1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/rwsem.h> 83 #include <linux/string.h> 84 #include <linux/mm.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/errno.h> 88 #include <linux/interrupt.h> 89 #include <linux/if_ether.h> 90 #include <linux/netdevice.h> 91 #include <linux/etherdevice.h> 92 #include <linux/ethtool.h> 93 #include <linux/skbuff.h> 94 #include <linux/bpf.h> 95 #include <linux/bpf_trace.h> 96 #include <net/net_namespace.h> 97 #include <net/sock.h> 98 #include <net/busy_poll.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dsa.h> 102 #include <net/dst.h> 103 #include <net/dst_metadata.h> 104 #include <net/pkt_sched.h> 105 #include <net/pkt_cls.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/iw_handler.h> 115 #include <asm/current.h> 116 #include <linux/audit.h> 117 #include <linux/dmaengine.h> 118 #include <linux/err.h> 119 #include <linux/ctype.h> 120 #include <linux/if_arp.h> 121 #include <linux/if_vlan.h> 122 #include <linux/ip.h> 123 #include <net/ip.h> 124 #include <net/mpls.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/inetdevice.h> 133 #include <linux/cpu_rmap.h> 134 #include <linux/static_key.h> 135 #include <linux/hashtable.h> 136 #include <linux/vmalloc.h> 137 #include <linux/if_macvlan.h> 138 #include <linux/errqueue.h> 139 #include <linux/hrtimer.h> 140 #include <linux/netfilter_ingress.h> 141 #include <linux/crash_dump.h> 142 #include <linux/sctp.h> 143 #include <net/udp_tunnel.h> 144 #include <linux/net_namespace.h> 145 #include <linux/indirect_call_wrapper.h> 146 #include <net/devlink.h> 147 #include <linux/pm_runtime.h> 148 #include <linux/prandom.h> 149 150 #include "net-sysfs.h" 151 152 #define MAX_GRO_SKBS 8 153 154 /* This should be increased if a protocol with a bigger head is added. */ 155 #define GRO_MAX_HEAD (MAX_HEADER + 128) 156 157 static DEFINE_SPINLOCK(ptype_lock); 158 static DEFINE_SPINLOCK(offload_lock); 159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 160 struct list_head ptype_all __read_mostly; /* Taps */ 161 static struct list_head offload_base __read_mostly; 162 163 static int netif_rx_internal(struct sk_buff *skb); 164 static int call_netdevice_notifiers_info(unsigned long val, 165 struct netdev_notifier_info *info); 166 static int call_netdevice_notifiers_extack(unsigned long val, 167 struct net_device *dev, 168 struct netlink_ext_ack *extack); 169 static struct napi_struct *napi_by_id(unsigned int napi_id); 170 171 /* 172 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 173 * semaphore. 174 * 175 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 176 * 177 * Writers must hold the rtnl semaphore while they loop through the 178 * dev_base_head list, and hold dev_base_lock for writing when they do the 179 * actual updates. This allows pure readers to access the list even 180 * while a writer is preparing to update it. 181 * 182 * To put it another way, dev_base_lock is held for writing only to 183 * protect against pure readers; the rtnl semaphore provides the 184 * protection against other writers. 185 * 186 * See, for example usages, register_netdevice() and 187 * unregister_netdevice(), which must be called with the rtnl 188 * semaphore held. 189 */ 190 DEFINE_RWLOCK(dev_base_lock); 191 EXPORT_SYMBOL(dev_base_lock); 192 193 static DEFINE_MUTEX(ifalias_mutex); 194 195 /* protects napi_hash addition/deletion and napi_gen_id */ 196 static DEFINE_SPINLOCK(napi_hash_lock); 197 198 static unsigned int napi_gen_id = NR_CPUS; 199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 200 201 static DECLARE_RWSEM(devnet_rename_sem); 202 203 static inline void dev_base_seq_inc(struct net *net) 204 { 205 while (++net->dev_base_seq == 0) 206 ; 207 } 208 209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 210 { 211 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 212 213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 214 } 215 216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 217 { 218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 219 } 220 221 static inline void rps_lock(struct softnet_data *sd) 222 { 223 #ifdef CONFIG_RPS 224 spin_lock(&sd->input_pkt_queue.lock); 225 #endif 226 } 227 228 static inline void rps_unlock(struct softnet_data *sd) 229 { 230 #ifdef CONFIG_RPS 231 spin_unlock(&sd->input_pkt_queue.lock); 232 #endif 233 } 234 235 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 236 const char *name) 237 { 238 struct netdev_name_node *name_node; 239 240 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 241 if (!name_node) 242 return NULL; 243 INIT_HLIST_NODE(&name_node->hlist); 244 name_node->dev = dev; 245 name_node->name = name; 246 return name_node; 247 } 248 249 static struct netdev_name_node * 250 netdev_name_node_head_alloc(struct net_device *dev) 251 { 252 struct netdev_name_node *name_node; 253 254 name_node = netdev_name_node_alloc(dev, dev->name); 255 if (!name_node) 256 return NULL; 257 INIT_LIST_HEAD(&name_node->list); 258 return name_node; 259 } 260 261 static void netdev_name_node_free(struct netdev_name_node *name_node) 262 { 263 kfree(name_node); 264 } 265 266 static void netdev_name_node_add(struct net *net, 267 struct netdev_name_node *name_node) 268 { 269 hlist_add_head_rcu(&name_node->hlist, 270 dev_name_hash(net, name_node->name)); 271 } 272 273 static void netdev_name_node_del(struct netdev_name_node *name_node) 274 { 275 hlist_del_rcu(&name_node->hlist); 276 } 277 278 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 279 const char *name) 280 { 281 struct hlist_head *head = dev_name_hash(net, name); 282 struct netdev_name_node *name_node; 283 284 hlist_for_each_entry(name_node, head, hlist) 285 if (!strcmp(name_node->name, name)) 286 return name_node; 287 return NULL; 288 } 289 290 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 291 const char *name) 292 { 293 struct hlist_head *head = dev_name_hash(net, name); 294 struct netdev_name_node *name_node; 295 296 hlist_for_each_entry_rcu(name_node, head, hlist) 297 if (!strcmp(name_node->name, name)) 298 return name_node; 299 return NULL; 300 } 301 302 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 303 { 304 struct netdev_name_node *name_node; 305 struct net *net = dev_net(dev); 306 307 name_node = netdev_name_node_lookup(net, name); 308 if (name_node) 309 return -EEXIST; 310 name_node = netdev_name_node_alloc(dev, name); 311 if (!name_node) 312 return -ENOMEM; 313 netdev_name_node_add(net, name_node); 314 /* The node that holds dev->name acts as a head of per-device list. */ 315 list_add_tail(&name_node->list, &dev->name_node->list); 316 317 return 0; 318 } 319 EXPORT_SYMBOL(netdev_name_node_alt_create); 320 321 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 322 { 323 list_del(&name_node->list); 324 netdev_name_node_del(name_node); 325 kfree(name_node->name); 326 netdev_name_node_free(name_node); 327 } 328 329 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 330 { 331 struct netdev_name_node *name_node; 332 struct net *net = dev_net(dev); 333 334 name_node = netdev_name_node_lookup(net, name); 335 if (!name_node) 336 return -ENOENT; 337 /* lookup might have found our primary name or a name belonging 338 * to another device. 339 */ 340 if (name_node == dev->name_node || name_node->dev != dev) 341 return -EINVAL; 342 343 __netdev_name_node_alt_destroy(name_node); 344 345 return 0; 346 } 347 EXPORT_SYMBOL(netdev_name_node_alt_destroy); 348 349 static void netdev_name_node_alt_flush(struct net_device *dev) 350 { 351 struct netdev_name_node *name_node, *tmp; 352 353 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 354 __netdev_name_node_alt_destroy(name_node); 355 } 356 357 /* Device list insertion */ 358 static void list_netdevice(struct net_device *dev) 359 { 360 struct net *net = dev_net(dev); 361 362 ASSERT_RTNL(); 363 364 write_lock_bh(&dev_base_lock); 365 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 366 netdev_name_node_add(net, dev->name_node); 367 hlist_add_head_rcu(&dev->index_hlist, 368 dev_index_hash(net, dev->ifindex)); 369 write_unlock_bh(&dev_base_lock); 370 371 dev_base_seq_inc(net); 372 } 373 374 /* Device list removal 375 * caller must respect a RCU grace period before freeing/reusing dev 376 */ 377 static void unlist_netdevice(struct net_device *dev) 378 { 379 ASSERT_RTNL(); 380 381 /* Unlink dev from the device chain */ 382 write_lock_bh(&dev_base_lock); 383 list_del_rcu(&dev->dev_list); 384 netdev_name_node_del(dev->name_node); 385 hlist_del_rcu(&dev->index_hlist); 386 write_unlock_bh(&dev_base_lock); 387 388 dev_base_seq_inc(dev_net(dev)); 389 } 390 391 /* 392 * Our notifier list 393 */ 394 395 static RAW_NOTIFIER_HEAD(netdev_chain); 396 397 /* 398 * Device drivers call our routines to queue packets here. We empty the 399 * queue in the local softnet handler. 400 */ 401 402 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 403 EXPORT_PER_CPU_SYMBOL(softnet_data); 404 405 #ifdef CONFIG_LOCKDEP 406 /* 407 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 408 * according to dev->type 409 */ 410 static const unsigned short netdev_lock_type[] = { 411 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 412 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 413 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 414 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 415 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 416 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 417 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 418 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 419 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 420 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 421 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 422 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 423 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 424 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 425 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 426 427 static const char *const netdev_lock_name[] = { 428 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 429 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 430 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 431 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 432 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 433 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 434 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 435 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 436 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 437 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 438 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 439 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 440 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 441 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 442 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 443 444 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 445 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 446 447 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 448 { 449 int i; 450 451 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 452 if (netdev_lock_type[i] == dev_type) 453 return i; 454 /* the last key is used by default */ 455 return ARRAY_SIZE(netdev_lock_type) - 1; 456 } 457 458 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 459 unsigned short dev_type) 460 { 461 int i; 462 463 i = netdev_lock_pos(dev_type); 464 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 465 netdev_lock_name[i]); 466 } 467 468 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 469 { 470 int i; 471 472 i = netdev_lock_pos(dev->type); 473 lockdep_set_class_and_name(&dev->addr_list_lock, 474 &netdev_addr_lock_key[i], 475 netdev_lock_name[i]); 476 } 477 #else 478 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 479 unsigned short dev_type) 480 { 481 } 482 483 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 484 { 485 } 486 #endif 487 488 /******************************************************************************* 489 * 490 * Protocol management and registration routines 491 * 492 *******************************************************************************/ 493 494 495 /* 496 * Add a protocol ID to the list. Now that the input handler is 497 * smarter we can dispense with all the messy stuff that used to be 498 * here. 499 * 500 * BEWARE!!! Protocol handlers, mangling input packets, 501 * MUST BE last in hash buckets and checking protocol handlers 502 * MUST start from promiscuous ptype_all chain in net_bh. 503 * It is true now, do not change it. 504 * Explanation follows: if protocol handler, mangling packet, will 505 * be the first on list, it is not able to sense, that packet 506 * is cloned and should be copied-on-write, so that it will 507 * change it and subsequent readers will get broken packet. 508 * --ANK (980803) 509 */ 510 511 static inline struct list_head *ptype_head(const struct packet_type *pt) 512 { 513 if (pt->type == htons(ETH_P_ALL)) 514 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 515 else 516 return pt->dev ? &pt->dev->ptype_specific : 517 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 518 } 519 520 /** 521 * dev_add_pack - add packet handler 522 * @pt: packet type declaration 523 * 524 * Add a protocol handler to the networking stack. The passed &packet_type 525 * is linked into kernel lists and may not be freed until it has been 526 * removed from the kernel lists. 527 * 528 * This call does not sleep therefore it can not 529 * guarantee all CPU's that are in middle of receiving packets 530 * will see the new packet type (until the next received packet). 531 */ 532 533 void dev_add_pack(struct packet_type *pt) 534 { 535 struct list_head *head = ptype_head(pt); 536 537 spin_lock(&ptype_lock); 538 list_add_rcu(&pt->list, head); 539 spin_unlock(&ptype_lock); 540 } 541 EXPORT_SYMBOL(dev_add_pack); 542 543 /** 544 * __dev_remove_pack - remove packet handler 545 * @pt: packet type declaration 546 * 547 * Remove a protocol handler that was previously added to the kernel 548 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 549 * from the kernel lists and can be freed or reused once this function 550 * returns. 551 * 552 * The packet type might still be in use by receivers 553 * and must not be freed until after all the CPU's have gone 554 * through a quiescent state. 555 */ 556 void __dev_remove_pack(struct packet_type *pt) 557 { 558 struct list_head *head = ptype_head(pt); 559 struct packet_type *pt1; 560 561 spin_lock(&ptype_lock); 562 563 list_for_each_entry(pt1, head, list) { 564 if (pt == pt1) { 565 list_del_rcu(&pt->list); 566 goto out; 567 } 568 } 569 570 pr_warn("dev_remove_pack: %p not found\n", pt); 571 out: 572 spin_unlock(&ptype_lock); 573 } 574 EXPORT_SYMBOL(__dev_remove_pack); 575 576 /** 577 * dev_remove_pack - remove packet handler 578 * @pt: packet type declaration 579 * 580 * Remove a protocol handler that was previously added to the kernel 581 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 582 * from the kernel lists and can be freed or reused once this function 583 * returns. 584 * 585 * This call sleeps to guarantee that no CPU is looking at the packet 586 * type after return. 587 */ 588 void dev_remove_pack(struct packet_type *pt) 589 { 590 __dev_remove_pack(pt); 591 592 synchronize_net(); 593 } 594 EXPORT_SYMBOL(dev_remove_pack); 595 596 597 /** 598 * dev_add_offload - register offload handlers 599 * @po: protocol offload declaration 600 * 601 * Add protocol offload handlers to the networking stack. The passed 602 * &proto_offload is linked into kernel lists and may not be freed until 603 * it has been removed from the kernel lists. 604 * 605 * This call does not sleep therefore it can not 606 * guarantee all CPU's that are in middle of receiving packets 607 * will see the new offload handlers (until the next received packet). 608 */ 609 void dev_add_offload(struct packet_offload *po) 610 { 611 struct packet_offload *elem; 612 613 spin_lock(&offload_lock); 614 list_for_each_entry(elem, &offload_base, list) { 615 if (po->priority < elem->priority) 616 break; 617 } 618 list_add_rcu(&po->list, elem->list.prev); 619 spin_unlock(&offload_lock); 620 } 621 EXPORT_SYMBOL(dev_add_offload); 622 623 /** 624 * __dev_remove_offload - remove offload handler 625 * @po: packet offload declaration 626 * 627 * Remove a protocol offload handler that was previously added to the 628 * kernel offload handlers by dev_add_offload(). The passed &offload_type 629 * is removed from the kernel lists and can be freed or reused once this 630 * function returns. 631 * 632 * The packet type might still be in use by receivers 633 * and must not be freed until after all the CPU's have gone 634 * through a quiescent state. 635 */ 636 static void __dev_remove_offload(struct packet_offload *po) 637 { 638 struct list_head *head = &offload_base; 639 struct packet_offload *po1; 640 641 spin_lock(&offload_lock); 642 643 list_for_each_entry(po1, head, list) { 644 if (po == po1) { 645 list_del_rcu(&po->list); 646 goto out; 647 } 648 } 649 650 pr_warn("dev_remove_offload: %p not found\n", po); 651 out: 652 spin_unlock(&offload_lock); 653 } 654 655 /** 656 * dev_remove_offload - remove packet offload handler 657 * @po: packet offload declaration 658 * 659 * Remove a packet offload handler that was previously added to the kernel 660 * offload handlers by dev_add_offload(). The passed &offload_type is 661 * removed from the kernel lists and can be freed or reused once this 662 * function returns. 663 * 664 * This call sleeps to guarantee that no CPU is looking at the packet 665 * type after return. 666 */ 667 void dev_remove_offload(struct packet_offload *po) 668 { 669 __dev_remove_offload(po); 670 671 synchronize_net(); 672 } 673 EXPORT_SYMBOL(dev_remove_offload); 674 675 /****************************************************************************** 676 * 677 * Device Boot-time Settings Routines 678 * 679 ******************************************************************************/ 680 681 /* Boot time configuration table */ 682 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 683 684 /** 685 * netdev_boot_setup_add - add new setup entry 686 * @name: name of the device 687 * @map: configured settings for the device 688 * 689 * Adds new setup entry to the dev_boot_setup list. The function 690 * returns 0 on error and 1 on success. This is a generic routine to 691 * all netdevices. 692 */ 693 static int netdev_boot_setup_add(char *name, struct ifmap *map) 694 { 695 struct netdev_boot_setup *s; 696 int i; 697 698 s = dev_boot_setup; 699 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 700 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 701 memset(s[i].name, 0, sizeof(s[i].name)); 702 strlcpy(s[i].name, name, IFNAMSIZ); 703 memcpy(&s[i].map, map, sizeof(s[i].map)); 704 break; 705 } 706 } 707 708 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 709 } 710 711 /** 712 * netdev_boot_setup_check - check boot time settings 713 * @dev: the netdevice 714 * 715 * Check boot time settings for the device. 716 * The found settings are set for the device to be used 717 * later in the device probing. 718 * Returns 0 if no settings found, 1 if they are. 719 */ 720 int netdev_boot_setup_check(struct net_device *dev) 721 { 722 struct netdev_boot_setup *s = dev_boot_setup; 723 int i; 724 725 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 726 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 727 !strcmp(dev->name, s[i].name)) { 728 dev->irq = s[i].map.irq; 729 dev->base_addr = s[i].map.base_addr; 730 dev->mem_start = s[i].map.mem_start; 731 dev->mem_end = s[i].map.mem_end; 732 return 1; 733 } 734 } 735 return 0; 736 } 737 EXPORT_SYMBOL(netdev_boot_setup_check); 738 739 740 /** 741 * netdev_boot_base - get address from boot time settings 742 * @prefix: prefix for network device 743 * @unit: id for network device 744 * 745 * Check boot time settings for the base address of device. 746 * The found settings are set for the device to be used 747 * later in the device probing. 748 * Returns 0 if no settings found. 749 */ 750 unsigned long netdev_boot_base(const char *prefix, int unit) 751 { 752 const struct netdev_boot_setup *s = dev_boot_setup; 753 char name[IFNAMSIZ]; 754 int i; 755 756 sprintf(name, "%s%d", prefix, unit); 757 758 /* 759 * If device already registered then return base of 1 760 * to indicate not to probe for this interface 761 */ 762 if (__dev_get_by_name(&init_net, name)) 763 return 1; 764 765 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 766 if (!strcmp(name, s[i].name)) 767 return s[i].map.base_addr; 768 return 0; 769 } 770 771 /* 772 * Saves at boot time configured settings for any netdevice. 773 */ 774 int __init netdev_boot_setup(char *str) 775 { 776 int ints[5]; 777 struct ifmap map; 778 779 str = get_options(str, ARRAY_SIZE(ints), ints); 780 if (!str || !*str) 781 return 0; 782 783 /* Save settings */ 784 memset(&map, 0, sizeof(map)); 785 if (ints[0] > 0) 786 map.irq = ints[1]; 787 if (ints[0] > 1) 788 map.base_addr = ints[2]; 789 if (ints[0] > 2) 790 map.mem_start = ints[3]; 791 if (ints[0] > 3) 792 map.mem_end = ints[4]; 793 794 /* Add new entry to the list */ 795 return netdev_boot_setup_add(str, &map); 796 } 797 798 __setup("netdev=", netdev_boot_setup); 799 800 /******************************************************************************* 801 * 802 * Device Interface Subroutines 803 * 804 *******************************************************************************/ 805 806 /** 807 * dev_get_iflink - get 'iflink' value of a interface 808 * @dev: targeted interface 809 * 810 * Indicates the ifindex the interface is linked to. 811 * Physical interfaces have the same 'ifindex' and 'iflink' values. 812 */ 813 814 int dev_get_iflink(const struct net_device *dev) 815 { 816 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 817 return dev->netdev_ops->ndo_get_iflink(dev); 818 819 return dev->ifindex; 820 } 821 EXPORT_SYMBOL(dev_get_iflink); 822 823 /** 824 * dev_fill_metadata_dst - Retrieve tunnel egress information. 825 * @dev: targeted interface 826 * @skb: The packet. 827 * 828 * For better visibility of tunnel traffic OVS needs to retrieve 829 * egress tunnel information for a packet. Following API allows 830 * user to get this info. 831 */ 832 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 833 { 834 struct ip_tunnel_info *info; 835 836 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 837 return -EINVAL; 838 839 info = skb_tunnel_info_unclone(skb); 840 if (!info) 841 return -ENOMEM; 842 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 843 return -EINVAL; 844 845 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 846 } 847 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 848 849 /** 850 * __dev_get_by_name - find a device by its name 851 * @net: the applicable net namespace 852 * @name: name to find 853 * 854 * Find an interface by name. Must be called under RTNL semaphore 855 * or @dev_base_lock. If the name is found a pointer to the device 856 * is returned. If the name is not found then %NULL is returned. The 857 * reference counters are not incremented so the caller must be 858 * careful with locks. 859 */ 860 861 struct net_device *__dev_get_by_name(struct net *net, const char *name) 862 { 863 struct netdev_name_node *node_name; 864 865 node_name = netdev_name_node_lookup(net, name); 866 return node_name ? node_name->dev : NULL; 867 } 868 EXPORT_SYMBOL(__dev_get_by_name); 869 870 /** 871 * dev_get_by_name_rcu - find a device by its name 872 * @net: the applicable net namespace 873 * @name: name to find 874 * 875 * Find an interface by name. 876 * If the name is found a pointer to the device is returned. 877 * If the name is not found then %NULL is returned. 878 * The reference counters are not incremented so the caller must be 879 * careful with locks. The caller must hold RCU lock. 880 */ 881 882 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 883 { 884 struct netdev_name_node *node_name; 885 886 node_name = netdev_name_node_lookup_rcu(net, name); 887 return node_name ? node_name->dev : NULL; 888 } 889 EXPORT_SYMBOL(dev_get_by_name_rcu); 890 891 /** 892 * dev_get_by_name - find a device by its name 893 * @net: the applicable net namespace 894 * @name: name to find 895 * 896 * Find an interface by name. This can be called from any 897 * context and does its own locking. The returned handle has 898 * the usage count incremented and the caller must use dev_put() to 899 * release it when it is no longer needed. %NULL is returned if no 900 * matching device is found. 901 */ 902 903 struct net_device *dev_get_by_name(struct net *net, const char *name) 904 { 905 struct net_device *dev; 906 907 rcu_read_lock(); 908 dev = dev_get_by_name_rcu(net, name); 909 if (dev) 910 dev_hold(dev); 911 rcu_read_unlock(); 912 return dev; 913 } 914 EXPORT_SYMBOL(dev_get_by_name); 915 916 /** 917 * __dev_get_by_index - find a device by its ifindex 918 * @net: the applicable net namespace 919 * @ifindex: index of device 920 * 921 * Search for an interface by index. Returns %NULL if the device 922 * is not found or a pointer to the device. The device has not 923 * had its reference counter increased so the caller must be careful 924 * about locking. The caller must hold either the RTNL semaphore 925 * or @dev_base_lock. 926 */ 927 928 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 929 { 930 struct net_device *dev; 931 struct hlist_head *head = dev_index_hash(net, ifindex); 932 933 hlist_for_each_entry(dev, head, index_hlist) 934 if (dev->ifindex == ifindex) 935 return dev; 936 937 return NULL; 938 } 939 EXPORT_SYMBOL(__dev_get_by_index); 940 941 /** 942 * dev_get_by_index_rcu - find a device by its ifindex 943 * @net: the applicable net namespace 944 * @ifindex: index of device 945 * 946 * Search for an interface by index. Returns %NULL if the device 947 * is not found or a pointer to the device. The device has not 948 * had its reference counter increased so the caller must be careful 949 * about locking. The caller must hold RCU lock. 950 */ 951 952 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 953 { 954 struct net_device *dev; 955 struct hlist_head *head = dev_index_hash(net, ifindex); 956 957 hlist_for_each_entry_rcu(dev, head, index_hlist) 958 if (dev->ifindex == ifindex) 959 return dev; 960 961 return NULL; 962 } 963 EXPORT_SYMBOL(dev_get_by_index_rcu); 964 965 966 /** 967 * dev_get_by_index - find a device by its ifindex 968 * @net: the applicable net namespace 969 * @ifindex: index of device 970 * 971 * Search for an interface by index. Returns NULL if the device 972 * is not found or a pointer to the device. The device returned has 973 * had a reference added and the pointer is safe until the user calls 974 * dev_put to indicate they have finished with it. 975 */ 976 977 struct net_device *dev_get_by_index(struct net *net, int ifindex) 978 { 979 struct net_device *dev; 980 981 rcu_read_lock(); 982 dev = dev_get_by_index_rcu(net, ifindex); 983 if (dev) 984 dev_hold(dev); 985 rcu_read_unlock(); 986 return dev; 987 } 988 EXPORT_SYMBOL(dev_get_by_index); 989 990 /** 991 * dev_get_by_napi_id - find a device by napi_id 992 * @napi_id: ID of the NAPI struct 993 * 994 * Search for an interface by NAPI ID. Returns %NULL if the device 995 * is not found or a pointer to the device. The device has not had 996 * its reference counter increased so the caller must be careful 997 * about locking. The caller must hold RCU lock. 998 */ 999 1000 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1001 { 1002 struct napi_struct *napi; 1003 1004 WARN_ON_ONCE(!rcu_read_lock_held()); 1005 1006 if (napi_id < MIN_NAPI_ID) 1007 return NULL; 1008 1009 napi = napi_by_id(napi_id); 1010 1011 return napi ? napi->dev : NULL; 1012 } 1013 EXPORT_SYMBOL(dev_get_by_napi_id); 1014 1015 /** 1016 * netdev_get_name - get a netdevice name, knowing its ifindex. 1017 * @net: network namespace 1018 * @name: a pointer to the buffer where the name will be stored. 1019 * @ifindex: the ifindex of the interface to get the name from. 1020 */ 1021 int netdev_get_name(struct net *net, char *name, int ifindex) 1022 { 1023 struct net_device *dev; 1024 int ret; 1025 1026 down_read(&devnet_rename_sem); 1027 rcu_read_lock(); 1028 1029 dev = dev_get_by_index_rcu(net, ifindex); 1030 if (!dev) { 1031 ret = -ENODEV; 1032 goto out; 1033 } 1034 1035 strcpy(name, dev->name); 1036 1037 ret = 0; 1038 out: 1039 rcu_read_unlock(); 1040 up_read(&devnet_rename_sem); 1041 return ret; 1042 } 1043 1044 /** 1045 * dev_getbyhwaddr_rcu - find a device by its hardware address 1046 * @net: the applicable net namespace 1047 * @type: media type of device 1048 * @ha: hardware address 1049 * 1050 * Search for an interface by MAC address. Returns NULL if the device 1051 * is not found or a pointer to the device. 1052 * The caller must hold RCU or RTNL. 1053 * The returned device has not had its ref count increased 1054 * and the caller must therefore be careful about locking 1055 * 1056 */ 1057 1058 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1059 const char *ha) 1060 { 1061 struct net_device *dev; 1062 1063 for_each_netdev_rcu(net, dev) 1064 if (dev->type == type && 1065 !memcmp(dev->dev_addr, ha, dev->addr_len)) 1066 return dev; 1067 1068 return NULL; 1069 } 1070 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1071 1072 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1073 { 1074 struct net_device *dev, *ret = NULL; 1075 1076 rcu_read_lock(); 1077 for_each_netdev_rcu(net, dev) 1078 if (dev->type == type) { 1079 dev_hold(dev); 1080 ret = dev; 1081 break; 1082 } 1083 rcu_read_unlock(); 1084 return ret; 1085 } 1086 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1087 1088 /** 1089 * __dev_get_by_flags - find any device with given flags 1090 * @net: the applicable net namespace 1091 * @if_flags: IFF_* values 1092 * @mask: bitmask of bits in if_flags to check 1093 * 1094 * Search for any interface with the given flags. Returns NULL if a device 1095 * is not found or a pointer to the device. Must be called inside 1096 * rtnl_lock(), and result refcount is unchanged. 1097 */ 1098 1099 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1100 unsigned short mask) 1101 { 1102 struct net_device *dev, *ret; 1103 1104 ASSERT_RTNL(); 1105 1106 ret = NULL; 1107 for_each_netdev(net, dev) { 1108 if (((dev->flags ^ if_flags) & mask) == 0) { 1109 ret = dev; 1110 break; 1111 } 1112 } 1113 return ret; 1114 } 1115 EXPORT_SYMBOL(__dev_get_by_flags); 1116 1117 /** 1118 * dev_valid_name - check if name is okay for network device 1119 * @name: name string 1120 * 1121 * Network device names need to be valid file names to 1122 * allow sysfs to work. We also disallow any kind of 1123 * whitespace. 1124 */ 1125 bool dev_valid_name(const char *name) 1126 { 1127 if (*name == '\0') 1128 return false; 1129 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1130 return false; 1131 if (!strcmp(name, ".") || !strcmp(name, "..")) 1132 return false; 1133 1134 while (*name) { 1135 if (*name == '/' || *name == ':' || isspace(*name)) 1136 return false; 1137 name++; 1138 } 1139 return true; 1140 } 1141 EXPORT_SYMBOL(dev_valid_name); 1142 1143 /** 1144 * __dev_alloc_name - allocate a name for a device 1145 * @net: network namespace to allocate the device name in 1146 * @name: name format string 1147 * @buf: scratch buffer and result name string 1148 * 1149 * Passed a format string - eg "lt%d" it will try and find a suitable 1150 * id. It scans list of devices to build up a free map, then chooses 1151 * the first empty slot. The caller must hold the dev_base or rtnl lock 1152 * while allocating the name and adding the device in order to avoid 1153 * duplicates. 1154 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1155 * Returns the number of the unit assigned or a negative errno code. 1156 */ 1157 1158 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1159 { 1160 int i = 0; 1161 const char *p; 1162 const int max_netdevices = 8*PAGE_SIZE; 1163 unsigned long *inuse; 1164 struct net_device *d; 1165 1166 if (!dev_valid_name(name)) 1167 return -EINVAL; 1168 1169 p = strchr(name, '%'); 1170 if (p) { 1171 /* 1172 * Verify the string as this thing may have come from 1173 * the user. There must be either one "%d" and no other "%" 1174 * characters. 1175 */ 1176 if (p[1] != 'd' || strchr(p + 2, '%')) 1177 return -EINVAL; 1178 1179 /* Use one page as a bit array of possible slots */ 1180 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1181 if (!inuse) 1182 return -ENOMEM; 1183 1184 for_each_netdev(net, d) { 1185 if (!sscanf(d->name, name, &i)) 1186 continue; 1187 if (i < 0 || i >= max_netdevices) 1188 continue; 1189 1190 /* avoid cases where sscanf is not exact inverse of printf */ 1191 snprintf(buf, IFNAMSIZ, name, i); 1192 if (!strncmp(buf, d->name, IFNAMSIZ)) 1193 set_bit(i, inuse); 1194 } 1195 1196 i = find_first_zero_bit(inuse, max_netdevices); 1197 free_page((unsigned long) inuse); 1198 } 1199 1200 snprintf(buf, IFNAMSIZ, name, i); 1201 if (!__dev_get_by_name(net, buf)) 1202 return i; 1203 1204 /* It is possible to run out of possible slots 1205 * when the name is long and there isn't enough space left 1206 * for the digits, or if all bits are used. 1207 */ 1208 return -ENFILE; 1209 } 1210 1211 static int dev_alloc_name_ns(struct net *net, 1212 struct net_device *dev, 1213 const char *name) 1214 { 1215 char buf[IFNAMSIZ]; 1216 int ret; 1217 1218 BUG_ON(!net); 1219 ret = __dev_alloc_name(net, name, buf); 1220 if (ret >= 0) 1221 strlcpy(dev->name, buf, IFNAMSIZ); 1222 return ret; 1223 } 1224 1225 /** 1226 * dev_alloc_name - allocate a name for a device 1227 * @dev: device 1228 * @name: name format string 1229 * 1230 * Passed a format string - eg "lt%d" it will try and find a suitable 1231 * id. It scans list of devices to build up a free map, then chooses 1232 * the first empty slot. The caller must hold the dev_base or rtnl lock 1233 * while allocating the name and adding the device in order to avoid 1234 * duplicates. 1235 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1236 * Returns the number of the unit assigned or a negative errno code. 1237 */ 1238 1239 int dev_alloc_name(struct net_device *dev, const char *name) 1240 { 1241 return dev_alloc_name_ns(dev_net(dev), dev, name); 1242 } 1243 EXPORT_SYMBOL(dev_alloc_name); 1244 1245 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1246 const char *name) 1247 { 1248 BUG_ON(!net); 1249 1250 if (!dev_valid_name(name)) 1251 return -EINVAL; 1252 1253 if (strchr(name, '%')) 1254 return dev_alloc_name_ns(net, dev, name); 1255 else if (__dev_get_by_name(net, name)) 1256 return -EEXIST; 1257 else if (dev->name != name) 1258 strlcpy(dev->name, name, IFNAMSIZ); 1259 1260 return 0; 1261 } 1262 1263 /** 1264 * dev_change_name - change name of a device 1265 * @dev: device 1266 * @newname: name (or format string) must be at least IFNAMSIZ 1267 * 1268 * Change name of a device, can pass format strings "eth%d". 1269 * for wildcarding. 1270 */ 1271 int dev_change_name(struct net_device *dev, const char *newname) 1272 { 1273 unsigned char old_assign_type; 1274 char oldname[IFNAMSIZ]; 1275 int err = 0; 1276 int ret; 1277 struct net *net; 1278 1279 ASSERT_RTNL(); 1280 BUG_ON(!dev_net(dev)); 1281 1282 net = dev_net(dev); 1283 1284 /* Some auto-enslaved devices e.g. failover slaves are 1285 * special, as userspace might rename the device after 1286 * the interface had been brought up and running since 1287 * the point kernel initiated auto-enslavement. Allow 1288 * live name change even when these slave devices are 1289 * up and running. 1290 * 1291 * Typically, users of these auto-enslaving devices 1292 * don't actually care about slave name change, as 1293 * they are supposed to operate on master interface 1294 * directly. 1295 */ 1296 if (dev->flags & IFF_UP && 1297 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1298 return -EBUSY; 1299 1300 down_write(&devnet_rename_sem); 1301 1302 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1303 up_write(&devnet_rename_sem); 1304 return 0; 1305 } 1306 1307 memcpy(oldname, dev->name, IFNAMSIZ); 1308 1309 err = dev_get_valid_name(net, dev, newname); 1310 if (err < 0) { 1311 up_write(&devnet_rename_sem); 1312 return err; 1313 } 1314 1315 if (oldname[0] && !strchr(oldname, '%')) 1316 netdev_info(dev, "renamed from %s\n", oldname); 1317 1318 old_assign_type = dev->name_assign_type; 1319 dev->name_assign_type = NET_NAME_RENAMED; 1320 1321 rollback: 1322 ret = device_rename(&dev->dev, dev->name); 1323 if (ret) { 1324 memcpy(dev->name, oldname, IFNAMSIZ); 1325 dev->name_assign_type = old_assign_type; 1326 up_write(&devnet_rename_sem); 1327 return ret; 1328 } 1329 1330 up_write(&devnet_rename_sem); 1331 1332 netdev_adjacent_rename_links(dev, oldname); 1333 1334 write_lock_bh(&dev_base_lock); 1335 netdev_name_node_del(dev->name_node); 1336 write_unlock_bh(&dev_base_lock); 1337 1338 synchronize_rcu(); 1339 1340 write_lock_bh(&dev_base_lock); 1341 netdev_name_node_add(net, dev->name_node); 1342 write_unlock_bh(&dev_base_lock); 1343 1344 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1345 ret = notifier_to_errno(ret); 1346 1347 if (ret) { 1348 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1349 if (err >= 0) { 1350 err = ret; 1351 down_write(&devnet_rename_sem); 1352 memcpy(dev->name, oldname, IFNAMSIZ); 1353 memcpy(oldname, newname, IFNAMSIZ); 1354 dev->name_assign_type = old_assign_type; 1355 old_assign_type = NET_NAME_RENAMED; 1356 goto rollback; 1357 } else { 1358 pr_err("%s: name change rollback failed: %d\n", 1359 dev->name, ret); 1360 } 1361 } 1362 1363 return err; 1364 } 1365 1366 /** 1367 * dev_set_alias - change ifalias of a device 1368 * @dev: device 1369 * @alias: name up to IFALIASZ 1370 * @len: limit of bytes to copy from info 1371 * 1372 * Set ifalias for a device, 1373 */ 1374 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1375 { 1376 struct dev_ifalias *new_alias = NULL; 1377 1378 if (len >= IFALIASZ) 1379 return -EINVAL; 1380 1381 if (len) { 1382 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1383 if (!new_alias) 1384 return -ENOMEM; 1385 1386 memcpy(new_alias->ifalias, alias, len); 1387 new_alias->ifalias[len] = 0; 1388 } 1389 1390 mutex_lock(&ifalias_mutex); 1391 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1392 mutex_is_locked(&ifalias_mutex)); 1393 mutex_unlock(&ifalias_mutex); 1394 1395 if (new_alias) 1396 kfree_rcu(new_alias, rcuhead); 1397 1398 return len; 1399 } 1400 EXPORT_SYMBOL(dev_set_alias); 1401 1402 /** 1403 * dev_get_alias - get ifalias of a device 1404 * @dev: device 1405 * @name: buffer to store name of ifalias 1406 * @len: size of buffer 1407 * 1408 * get ifalias for a device. Caller must make sure dev cannot go 1409 * away, e.g. rcu read lock or own a reference count to device. 1410 */ 1411 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1412 { 1413 const struct dev_ifalias *alias; 1414 int ret = 0; 1415 1416 rcu_read_lock(); 1417 alias = rcu_dereference(dev->ifalias); 1418 if (alias) 1419 ret = snprintf(name, len, "%s", alias->ifalias); 1420 rcu_read_unlock(); 1421 1422 return ret; 1423 } 1424 1425 /** 1426 * netdev_features_change - device changes features 1427 * @dev: device to cause notification 1428 * 1429 * Called to indicate a device has changed features. 1430 */ 1431 void netdev_features_change(struct net_device *dev) 1432 { 1433 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1434 } 1435 EXPORT_SYMBOL(netdev_features_change); 1436 1437 /** 1438 * netdev_state_change - device changes state 1439 * @dev: device to cause notification 1440 * 1441 * Called to indicate a device has changed state. This function calls 1442 * the notifier chains for netdev_chain and sends a NEWLINK message 1443 * to the routing socket. 1444 */ 1445 void netdev_state_change(struct net_device *dev) 1446 { 1447 if (dev->flags & IFF_UP) { 1448 struct netdev_notifier_change_info change_info = { 1449 .info.dev = dev, 1450 }; 1451 1452 call_netdevice_notifiers_info(NETDEV_CHANGE, 1453 &change_info.info); 1454 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1455 } 1456 } 1457 EXPORT_SYMBOL(netdev_state_change); 1458 1459 /** 1460 * __netdev_notify_peers - notify network peers about existence of @dev, 1461 * to be called when rtnl lock is already held. 1462 * @dev: network device 1463 * 1464 * Generate traffic such that interested network peers are aware of 1465 * @dev, such as by generating a gratuitous ARP. This may be used when 1466 * a device wants to inform the rest of the network about some sort of 1467 * reconfiguration such as a failover event or virtual machine 1468 * migration. 1469 */ 1470 void __netdev_notify_peers(struct net_device *dev) 1471 { 1472 ASSERT_RTNL(); 1473 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1474 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1475 } 1476 EXPORT_SYMBOL(__netdev_notify_peers); 1477 1478 /** 1479 * netdev_notify_peers - notify network peers about existence of @dev 1480 * @dev: network device 1481 * 1482 * Generate traffic such that interested network peers are aware of 1483 * @dev, such as by generating a gratuitous ARP. This may be used when 1484 * a device wants to inform the rest of the network about some sort of 1485 * reconfiguration such as a failover event or virtual machine 1486 * migration. 1487 */ 1488 void netdev_notify_peers(struct net_device *dev) 1489 { 1490 rtnl_lock(); 1491 __netdev_notify_peers(dev); 1492 rtnl_unlock(); 1493 } 1494 EXPORT_SYMBOL(netdev_notify_peers); 1495 1496 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1497 { 1498 const struct net_device_ops *ops = dev->netdev_ops; 1499 int ret; 1500 1501 ASSERT_RTNL(); 1502 1503 if (!netif_device_present(dev)) { 1504 /* may be detached because parent is runtime-suspended */ 1505 if (dev->dev.parent) 1506 pm_runtime_resume(dev->dev.parent); 1507 if (!netif_device_present(dev)) 1508 return -ENODEV; 1509 } 1510 1511 /* Block netpoll from trying to do any rx path servicing. 1512 * If we don't do this there is a chance ndo_poll_controller 1513 * or ndo_poll may be running while we open the device 1514 */ 1515 netpoll_poll_disable(dev); 1516 1517 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1518 ret = notifier_to_errno(ret); 1519 if (ret) 1520 return ret; 1521 1522 set_bit(__LINK_STATE_START, &dev->state); 1523 1524 if (ops->ndo_validate_addr) 1525 ret = ops->ndo_validate_addr(dev); 1526 1527 if (!ret && ops->ndo_open) 1528 ret = ops->ndo_open(dev); 1529 1530 netpoll_poll_enable(dev); 1531 1532 if (ret) 1533 clear_bit(__LINK_STATE_START, &dev->state); 1534 else { 1535 dev->flags |= IFF_UP; 1536 dev_set_rx_mode(dev); 1537 dev_activate(dev); 1538 add_device_randomness(dev->dev_addr, dev->addr_len); 1539 } 1540 1541 return ret; 1542 } 1543 1544 /** 1545 * dev_open - prepare an interface for use. 1546 * @dev: device to open 1547 * @extack: netlink extended ack 1548 * 1549 * Takes a device from down to up state. The device's private open 1550 * function is invoked and then the multicast lists are loaded. Finally 1551 * the device is moved into the up state and a %NETDEV_UP message is 1552 * sent to the netdev notifier chain. 1553 * 1554 * Calling this function on an active interface is a nop. On a failure 1555 * a negative errno code is returned. 1556 */ 1557 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1558 { 1559 int ret; 1560 1561 if (dev->flags & IFF_UP) 1562 return 0; 1563 1564 ret = __dev_open(dev, extack); 1565 if (ret < 0) 1566 return ret; 1567 1568 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1569 call_netdevice_notifiers(NETDEV_UP, dev); 1570 1571 return ret; 1572 } 1573 EXPORT_SYMBOL(dev_open); 1574 1575 static void __dev_close_many(struct list_head *head) 1576 { 1577 struct net_device *dev; 1578 1579 ASSERT_RTNL(); 1580 might_sleep(); 1581 1582 list_for_each_entry(dev, head, close_list) { 1583 /* Temporarily disable netpoll until the interface is down */ 1584 netpoll_poll_disable(dev); 1585 1586 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1587 1588 clear_bit(__LINK_STATE_START, &dev->state); 1589 1590 /* Synchronize to scheduled poll. We cannot touch poll list, it 1591 * can be even on different cpu. So just clear netif_running(). 1592 * 1593 * dev->stop() will invoke napi_disable() on all of it's 1594 * napi_struct instances on this device. 1595 */ 1596 smp_mb__after_atomic(); /* Commit netif_running(). */ 1597 } 1598 1599 dev_deactivate_many(head); 1600 1601 list_for_each_entry(dev, head, close_list) { 1602 const struct net_device_ops *ops = dev->netdev_ops; 1603 1604 /* 1605 * Call the device specific close. This cannot fail. 1606 * Only if device is UP 1607 * 1608 * We allow it to be called even after a DETACH hot-plug 1609 * event. 1610 */ 1611 if (ops->ndo_stop) 1612 ops->ndo_stop(dev); 1613 1614 dev->flags &= ~IFF_UP; 1615 netpoll_poll_enable(dev); 1616 } 1617 } 1618 1619 static void __dev_close(struct net_device *dev) 1620 { 1621 LIST_HEAD(single); 1622 1623 list_add(&dev->close_list, &single); 1624 __dev_close_many(&single); 1625 list_del(&single); 1626 } 1627 1628 void dev_close_many(struct list_head *head, bool unlink) 1629 { 1630 struct net_device *dev, *tmp; 1631 1632 /* Remove the devices that don't need to be closed */ 1633 list_for_each_entry_safe(dev, tmp, head, close_list) 1634 if (!(dev->flags & IFF_UP)) 1635 list_del_init(&dev->close_list); 1636 1637 __dev_close_many(head); 1638 1639 list_for_each_entry_safe(dev, tmp, head, close_list) { 1640 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1641 call_netdevice_notifiers(NETDEV_DOWN, dev); 1642 if (unlink) 1643 list_del_init(&dev->close_list); 1644 } 1645 } 1646 EXPORT_SYMBOL(dev_close_many); 1647 1648 /** 1649 * dev_close - shutdown an interface. 1650 * @dev: device to shutdown 1651 * 1652 * This function moves an active device into down state. A 1653 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1654 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1655 * chain. 1656 */ 1657 void dev_close(struct net_device *dev) 1658 { 1659 if (dev->flags & IFF_UP) { 1660 LIST_HEAD(single); 1661 1662 list_add(&dev->close_list, &single); 1663 dev_close_many(&single, true); 1664 list_del(&single); 1665 } 1666 } 1667 EXPORT_SYMBOL(dev_close); 1668 1669 1670 /** 1671 * dev_disable_lro - disable Large Receive Offload on a device 1672 * @dev: device 1673 * 1674 * Disable Large Receive Offload (LRO) on a net device. Must be 1675 * called under RTNL. This is needed if received packets may be 1676 * forwarded to another interface. 1677 */ 1678 void dev_disable_lro(struct net_device *dev) 1679 { 1680 struct net_device *lower_dev; 1681 struct list_head *iter; 1682 1683 dev->wanted_features &= ~NETIF_F_LRO; 1684 netdev_update_features(dev); 1685 1686 if (unlikely(dev->features & NETIF_F_LRO)) 1687 netdev_WARN(dev, "failed to disable LRO!\n"); 1688 1689 netdev_for_each_lower_dev(dev, lower_dev, iter) 1690 dev_disable_lro(lower_dev); 1691 } 1692 EXPORT_SYMBOL(dev_disable_lro); 1693 1694 /** 1695 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1696 * @dev: device 1697 * 1698 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1699 * called under RTNL. This is needed if Generic XDP is installed on 1700 * the device. 1701 */ 1702 static void dev_disable_gro_hw(struct net_device *dev) 1703 { 1704 dev->wanted_features &= ~NETIF_F_GRO_HW; 1705 netdev_update_features(dev); 1706 1707 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1708 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1709 } 1710 1711 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1712 { 1713 #define N(val) \ 1714 case NETDEV_##val: \ 1715 return "NETDEV_" __stringify(val); 1716 switch (cmd) { 1717 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1718 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1719 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1720 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1721 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1722 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1723 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1724 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1725 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1726 N(PRE_CHANGEADDR) 1727 } 1728 #undef N 1729 return "UNKNOWN_NETDEV_EVENT"; 1730 } 1731 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1732 1733 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1734 struct net_device *dev) 1735 { 1736 struct netdev_notifier_info info = { 1737 .dev = dev, 1738 }; 1739 1740 return nb->notifier_call(nb, val, &info); 1741 } 1742 1743 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1744 struct net_device *dev) 1745 { 1746 int err; 1747 1748 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1749 err = notifier_to_errno(err); 1750 if (err) 1751 return err; 1752 1753 if (!(dev->flags & IFF_UP)) 1754 return 0; 1755 1756 call_netdevice_notifier(nb, NETDEV_UP, dev); 1757 return 0; 1758 } 1759 1760 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1761 struct net_device *dev) 1762 { 1763 if (dev->flags & IFF_UP) { 1764 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1765 dev); 1766 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1767 } 1768 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1769 } 1770 1771 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1772 struct net *net) 1773 { 1774 struct net_device *dev; 1775 int err; 1776 1777 for_each_netdev(net, dev) { 1778 err = call_netdevice_register_notifiers(nb, dev); 1779 if (err) 1780 goto rollback; 1781 } 1782 return 0; 1783 1784 rollback: 1785 for_each_netdev_continue_reverse(net, dev) 1786 call_netdevice_unregister_notifiers(nb, dev); 1787 return err; 1788 } 1789 1790 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1791 struct net *net) 1792 { 1793 struct net_device *dev; 1794 1795 for_each_netdev(net, dev) 1796 call_netdevice_unregister_notifiers(nb, dev); 1797 } 1798 1799 static int dev_boot_phase = 1; 1800 1801 /** 1802 * register_netdevice_notifier - register a network notifier block 1803 * @nb: notifier 1804 * 1805 * Register a notifier to be called when network device events occur. 1806 * The notifier passed is linked into the kernel structures and must 1807 * not be reused until it has been unregistered. A negative errno code 1808 * is returned on a failure. 1809 * 1810 * When registered all registration and up events are replayed 1811 * to the new notifier to allow device to have a race free 1812 * view of the network device list. 1813 */ 1814 1815 int register_netdevice_notifier(struct notifier_block *nb) 1816 { 1817 struct net *net; 1818 int err; 1819 1820 /* Close race with setup_net() and cleanup_net() */ 1821 down_write(&pernet_ops_rwsem); 1822 rtnl_lock(); 1823 err = raw_notifier_chain_register(&netdev_chain, nb); 1824 if (err) 1825 goto unlock; 1826 if (dev_boot_phase) 1827 goto unlock; 1828 for_each_net(net) { 1829 err = call_netdevice_register_net_notifiers(nb, net); 1830 if (err) 1831 goto rollback; 1832 } 1833 1834 unlock: 1835 rtnl_unlock(); 1836 up_write(&pernet_ops_rwsem); 1837 return err; 1838 1839 rollback: 1840 for_each_net_continue_reverse(net) 1841 call_netdevice_unregister_net_notifiers(nb, net); 1842 1843 raw_notifier_chain_unregister(&netdev_chain, nb); 1844 goto unlock; 1845 } 1846 EXPORT_SYMBOL(register_netdevice_notifier); 1847 1848 /** 1849 * unregister_netdevice_notifier - unregister a network notifier block 1850 * @nb: notifier 1851 * 1852 * Unregister a notifier previously registered by 1853 * register_netdevice_notifier(). The notifier is unlinked into the 1854 * kernel structures and may then be reused. A negative errno code 1855 * is returned on a failure. 1856 * 1857 * After unregistering unregister and down device events are synthesized 1858 * for all devices on the device list to the removed notifier to remove 1859 * the need for special case cleanup code. 1860 */ 1861 1862 int unregister_netdevice_notifier(struct notifier_block *nb) 1863 { 1864 struct net *net; 1865 int err; 1866 1867 /* Close race with setup_net() and cleanup_net() */ 1868 down_write(&pernet_ops_rwsem); 1869 rtnl_lock(); 1870 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1871 if (err) 1872 goto unlock; 1873 1874 for_each_net(net) 1875 call_netdevice_unregister_net_notifiers(nb, net); 1876 1877 unlock: 1878 rtnl_unlock(); 1879 up_write(&pernet_ops_rwsem); 1880 return err; 1881 } 1882 EXPORT_SYMBOL(unregister_netdevice_notifier); 1883 1884 static int __register_netdevice_notifier_net(struct net *net, 1885 struct notifier_block *nb, 1886 bool ignore_call_fail) 1887 { 1888 int err; 1889 1890 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1891 if (err) 1892 return err; 1893 if (dev_boot_phase) 1894 return 0; 1895 1896 err = call_netdevice_register_net_notifiers(nb, net); 1897 if (err && !ignore_call_fail) 1898 goto chain_unregister; 1899 1900 return 0; 1901 1902 chain_unregister: 1903 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1904 return err; 1905 } 1906 1907 static int __unregister_netdevice_notifier_net(struct net *net, 1908 struct notifier_block *nb) 1909 { 1910 int err; 1911 1912 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1913 if (err) 1914 return err; 1915 1916 call_netdevice_unregister_net_notifiers(nb, net); 1917 return 0; 1918 } 1919 1920 /** 1921 * register_netdevice_notifier_net - register a per-netns network notifier block 1922 * @net: network namespace 1923 * @nb: notifier 1924 * 1925 * Register a notifier to be called when network device events occur. 1926 * The notifier passed is linked into the kernel structures and must 1927 * not be reused until it has been unregistered. A negative errno code 1928 * is returned on a failure. 1929 * 1930 * When registered all registration and up events are replayed 1931 * to the new notifier to allow device to have a race free 1932 * view of the network device list. 1933 */ 1934 1935 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1936 { 1937 int err; 1938 1939 rtnl_lock(); 1940 err = __register_netdevice_notifier_net(net, nb, false); 1941 rtnl_unlock(); 1942 return err; 1943 } 1944 EXPORT_SYMBOL(register_netdevice_notifier_net); 1945 1946 /** 1947 * unregister_netdevice_notifier_net - unregister a per-netns 1948 * network notifier block 1949 * @net: network namespace 1950 * @nb: notifier 1951 * 1952 * Unregister a notifier previously registered by 1953 * register_netdevice_notifier(). The notifier is unlinked into the 1954 * kernel structures and may then be reused. A negative errno code 1955 * is returned on a failure. 1956 * 1957 * After unregistering unregister and down device events are synthesized 1958 * for all devices on the device list to the removed notifier to remove 1959 * the need for special case cleanup code. 1960 */ 1961 1962 int unregister_netdevice_notifier_net(struct net *net, 1963 struct notifier_block *nb) 1964 { 1965 int err; 1966 1967 rtnl_lock(); 1968 err = __unregister_netdevice_notifier_net(net, nb); 1969 rtnl_unlock(); 1970 return err; 1971 } 1972 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1973 1974 int register_netdevice_notifier_dev_net(struct net_device *dev, 1975 struct notifier_block *nb, 1976 struct netdev_net_notifier *nn) 1977 { 1978 int err; 1979 1980 rtnl_lock(); 1981 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1982 if (!err) { 1983 nn->nb = nb; 1984 list_add(&nn->list, &dev->net_notifier_list); 1985 } 1986 rtnl_unlock(); 1987 return err; 1988 } 1989 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1990 1991 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1992 struct notifier_block *nb, 1993 struct netdev_net_notifier *nn) 1994 { 1995 int err; 1996 1997 rtnl_lock(); 1998 list_del(&nn->list); 1999 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 2000 rtnl_unlock(); 2001 return err; 2002 } 2003 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 2004 2005 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2006 struct net *net) 2007 { 2008 struct netdev_net_notifier *nn; 2009 2010 list_for_each_entry(nn, &dev->net_notifier_list, list) { 2011 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb); 2012 __register_netdevice_notifier_net(net, nn->nb, true); 2013 } 2014 } 2015 2016 /** 2017 * call_netdevice_notifiers_info - call all network notifier blocks 2018 * @val: value passed unmodified to notifier function 2019 * @info: notifier information data 2020 * 2021 * Call all network notifier blocks. Parameters and return value 2022 * are as for raw_notifier_call_chain(). 2023 */ 2024 2025 static int call_netdevice_notifiers_info(unsigned long val, 2026 struct netdev_notifier_info *info) 2027 { 2028 struct net *net = dev_net(info->dev); 2029 int ret; 2030 2031 ASSERT_RTNL(); 2032 2033 /* Run per-netns notifier block chain first, then run the global one. 2034 * Hopefully, one day, the global one is going to be removed after 2035 * all notifier block registrators get converted to be per-netns. 2036 */ 2037 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2038 if (ret & NOTIFY_STOP_MASK) 2039 return ret; 2040 return raw_notifier_call_chain(&netdev_chain, val, info); 2041 } 2042 2043 static int call_netdevice_notifiers_extack(unsigned long val, 2044 struct net_device *dev, 2045 struct netlink_ext_ack *extack) 2046 { 2047 struct netdev_notifier_info info = { 2048 .dev = dev, 2049 .extack = extack, 2050 }; 2051 2052 return call_netdevice_notifiers_info(val, &info); 2053 } 2054 2055 /** 2056 * call_netdevice_notifiers - call all network notifier blocks 2057 * @val: value passed unmodified to notifier function 2058 * @dev: net_device pointer passed unmodified to notifier function 2059 * 2060 * Call all network notifier blocks. Parameters and return value 2061 * are as for raw_notifier_call_chain(). 2062 */ 2063 2064 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2065 { 2066 return call_netdevice_notifiers_extack(val, dev, NULL); 2067 } 2068 EXPORT_SYMBOL(call_netdevice_notifiers); 2069 2070 /** 2071 * call_netdevice_notifiers_mtu - call all network notifier blocks 2072 * @val: value passed unmodified to notifier function 2073 * @dev: net_device pointer passed unmodified to notifier function 2074 * @arg: additional u32 argument passed to the notifier function 2075 * 2076 * Call all network notifier blocks. Parameters and return value 2077 * are as for raw_notifier_call_chain(). 2078 */ 2079 static int call_netdevice_notifiers_mtu(unsigned long val, 2080 struct net_device *dev, u32 arg) 2081 { 2082 struct netdev_notifier_info_ext info = { 2083 .info.dev = dev, 2084 .ext.mtu = arg, 2085 }; 2086 2087 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2088 2089 return call_netdevice_notifiers_info(val, &info.info); 2090 } 2091 2092 #ifdef CONFIG_NET_INGRESS 2093 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2094 2095 void net_inc_ingress_queue(void) 2096 { 2097 static_branch_inc(&ingress_needed_key); 2098 } 2099 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2100 2101 void net_dec_ingress_queue(void) 2102 { 2103 static_branch_dec(&ingress_needed_key); 2104 } 2105 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2106 #endif 2107 2108 #ifdef CONFIG_NET_EGRESS 2109 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2110 2111 void net_inc_egress_queue(void) 2112 { 2113 static_branch_inc(&egress_needed_key); 2114 } 2115 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2116 2117 void net_dec_egress_queue(void) 2118 { 2119 static_branch_dec(&egress_needed_key); 2120 } 2121 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2122 #endif 2123 2124 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2125 #ifdef CONFIG_JUMP_LABEL 2126 static atomic_t netstamp_needed_deferred; 2127 static atomic_t netstamp_wanted; 2128 static void netstamp_clear(struct work_struct *work) 2129 { 2130 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2131 int wanted; 2132 2133 wanted = atomic_add_return(deferred, &netstamp_wanted); 2134 if (wanted > 0) 2135 static_branch_enable(&netstamp_needed_key); 2136 else 2137 static_branch_disable(&netstamp_needed_key); 2138 } 2139 static DECLARE_WORK(netstamp_work, netstamp_clear); 2140 #endif 2141 2142 void net_enable_timestamp(void) 2143 { 2144 #ifdef CONFIG_JUMP_LABEL 2145 int wanted; 2146 2147 while (1) { 2148 wanted = atomic_read(&netstamp_wanted); 2149 if (wanted <= 0) 2150 break; 2151 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 2152 return; 2153 } 2154 atomic_inc(&netstamp_needed_deferred); 2155 schedule_work(&netstamp_work); 2156 #else 2157 static_branch_inc(&netstamp_needed_key); 2158 #endif 2159 } 2160 EXPORT_SYMBOL(net_enable_timestamp); 2161 2162 void net_disable_timestamp(void) 2163 { 2164 #ifdef CONFIG_JUMP_LABEL 2165 int wanted; 2166 2167 while (1) { 2168 wanted = atomic_read(&netstamp_wanted); 2169 if (wanted <= 1) 2170 break; 2171 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 2172 return; 2173 } 2174 atomic_dec(&netstamp_needed_deferred); 2175 schedule_work(&netstamp_work); 2176 #else 2177 static_branch_dec(&netstamp_needed_key); 2178 #endif 2179 } 2180 EXPORT_SYMBOL(net_disable_timestamp); 2181 2182 static inline void net_timestamp_set(struct sk_buff *skb) 2183 { 2184 skb->tstamp = 0; 2185 if (static_branch_unlikely(&netstamp_needed_key)) 2186 __net_timestamp(skb); 2187 } 2188 2189 #define net_timestamp_check(COND, SKB) \ 2190 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2191 if ((COND) && !(SKB)->tstamp) \ 2192 __net_timestamp(SKB); \ 2193 } \ 2194 2195 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2196 { 2197 unsigned int len; 2198 2199 if (!(dev->flags & IFF_UP)) 2200 return false; 2201 2202 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 2203 if (skb->len <= len) 2204 return true; 2205 2206 /* if TSO is enabled, we don't care about the length as the packet 2207 * could be forwarded without being segmented before 2208 */ 2209 if (skb_is_gso(skb)) 2210 return true; 2211 2212 return false; 2213 } 2214 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2215 2216 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2217 { 2218 int ret = ____dev_forward_skb(dev, skb); 2219 2220 if (likely(!ret)) { 2221 skb->protocol = eth_type_trans(skb, dev); 2222 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2223 } 2224 2225 return ret; 2226 } 2227 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2228 2229 /** 2230 * dev_forward_skb - loopback an skb to another netif 2231 * 2232 * @dev: destination network device 2233 * @skb: buffer to forward 2234 * 2235 * return values: 2236 * NET_RX_SUCCESS (no congestion) 2237 * NET_RX_DROP (packet was dropped, but freed) 2238 * 2239 * dev_forward_skb can be used for injecting an skb from the 2240 * start_xmit function of one device into the receive queue 2241 * of another device. 2242 * 2243 * The receiving device may be in another namespace, so 2244 * we have to clear all information in the skb that could 2245 * impact namespace isolation. 2246 */ 2247 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2248 { 2249 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2250 } 2251 EXPORT_SYMBOL_GPL(dev_forward_skb); 2252 2253 static inline int deliver_skb(struct sk_buff *skb, 2254 struct packet_type *pt_prev, 2255 struct net_device *orig_dev) 2256 { 2257 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2258 return -ENOMEM; 2259 refcount_inc(&skb->users); 2260 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2261 } 2262 2263 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2264 struct packet_type **pt, 2265 struct net_device *orig_dev, 2266 __be16 type, 2267 struct list_head *ptype_list) 2268 { 2269 struct packet_type *ptype, *pt_prev = *pt; 2270 2271 list_for_each_entry_rcu(ptype, ptype_list, list) { 2272 if (ptype->type != type) 2273 continue; 2274 if (pt_prev) 2275 deliver_skb(skb, pt_prev, orig_dev); 2276 pt_prev = ptype; 2277 } 2278 *pt = pt_prev; 2279 } 2280 2281 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2282 { 2283 if (!ptype->af_packet_priv || !skb->sk) 2284 return false; 2285 2286 if (ptype->id_match) 2287 return ptype->id_match(ptype, skb->sk); 2288 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2289 return true; 2290 2291 return false; 2292 } 2293 2294 /** 2295 * dev_nit_active - return true if any network interface taps are in use 2296 * 2297 * @dev: network device to check for the presence of taps 2298 */ 2299 bool dev_nit_active(struct net_device *dev) 2300 { 2301 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2302 } 2303 EXPORT_SYMBOL_GPL(dev_nit_active); 2304 2305 /* 2306 * Support routine. Sends outgoing frames to any network 2307 * taps currently in use. 2308 */ 2309 2310 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2311 { 2312 struct packet_type *ptype; 2313 struct sk_buff *skb2 = NULL; 2314 struct packet_type *pt_prev = NULL; 2315 struct list_head *ptype_list = &ptype_all; 2316 2317 rcu_read_lock(); 2318 again: 2319 list_for_each_entry_rcu(ptype, ptype_list, list) { 2320 if (ptype->ignore_outgoing) 2321 continue; 2322 2323 /* Never send packets back to the socket 2324 * they originated from - MvS (miquels@drinkel.ow.org) 2325 */ 2326 if (skb_loop_sk(ptype, skb)) 2327 continue; 2328 2329 if (pt_prev) { 2330 deliver_skb(skb2, pt_prev, skb->dev); 2331 pt_prev = ptype; 2332 continue; 2333 } 2334 2335 /* need to clone skb, done only once */ 2336 skb2 = skb_clone(skb, GFP_ATOMIC); 2337 if (!skb2) 2338 goto out_unlock; 2339 2340 net_timestamp_set(skb2); 2341 2342 /* skb->nh should be correctly 2343 * set by sender, so that the second statement is 2344 * just protection against buggy protocols. 2345 */ 2346 skb_reset_mac_header(skb2); 2347 2348 if (skb_network_header(skb2) < skb2->data || 2349 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2350 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2351 ntohs(skb2->protocol), 2352 dev->name); 2353 skb_reset_network_header(skb2); 2354 } 2355 2356 skb2->transport_header = skb2->network_header; 2357 skb2->pkt_type = PACKET_OUTGOING; 2358 pt_prev = ptype; 2359 } 2360 2361 if (ptype_list == &ptype_all) { 2362 ptype_list = &dev->ptype_all; 2363 goto again; 2364 } 2365 out_unlock: 2366 if (pt_prev) { 2367 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2368 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2369 else 2370 kfree_skb(skb2); 2371 } 2372 rcu_read_unlock(); 2373 } 2374 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2375 2376 /** 2377 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2378 * @dev: Network device 2379 * @txq: number of queues available 2380 * 2381 * If real_num_tx_queues is changed the tc mappings may no longer be 2382 * valid. To resolve this verify the tc mapping remains valid and if 2383 * not NULL the mapping. With no priorities mapping to this 2384 * offset/count pair it will no longer be used. In the worst case TC0 2385 * is invalid nothing can be done so disable priority mappings. If is 2386 * expected that drivers will fix this mapping if they can before 2387 * calling netif_set_real_num_tx_queues. 2388 */ 2389 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2390 { 2391 int i; 2392 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2393 2394 /* If TC0 is invalidated disable TC mapping */ 2395 if (tc->offset + tc->count > txq) { 2396 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2397 dev->num_tc = 0; 2398 return; 2399 } 2400 2401 /* Invalidated prio to tc mappings set to TC0 */ 2402 for (i = 1; i < TC_BITMASK + 1; i++) { 2403 int q = netdev_get_prio_tc_map(dev, i); 2404 2405 tc = &dev->tc_to_txq[q]; 2406 if (tc->offset + tc->count > txq) { 2407 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2408 i, q); 2409 netdev_set_prio_tc_map(dev, i, 0); 2410 } 2411 } 2412 } 2413 2414 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2415 { 2416 if (dev->num_tc) { 2417 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2418 int i; 2419 2420 /* walk through the TCs and see if it falls into any of them */ 2421 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2422 if ((txq - tc->offset) < tc->count) 2423 return i; 2424 } 2425 2426 /* didn't find it, just return -1 to indicate no match */ 2427 return -1; 2428 } 2429 2430 return 0; 2431 } 2432 EXPORT_SYMBOL(netdev_txq_to_tc); 2433 2434 #ifdef CONFIG_XPS 2435 struct static_key xps_needed __read_mostly; 2436 EXPORT_SYMBOL(xps_needed); 2437 struct static_key xps_rxqs_needed __read_mostly; 2438 EXPORT_SYMBOL(xps_rxqs_needed); 2439 static DEFINE_MUTEX(xps_map_mutex); 2440 #define xmap_dereference(P) \ 2441 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2442 2443 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2444 int tci, u16 index) 2445 { 2446 struct xps_map *map = NULL; 2447 int pos; 2448 2449 if (dev_maps) 2450 map = xmap_dereference(dev_maps->attr_map[tci]); 2451 if (!map) 2452 return false; 2453 2454 for (pos = map->len; pos--;) { 2455 if (map->queues[pos] != index) 2456 continue; 2457 2458 if (map->len > 1) { 2459 map->queues[pos] = map->queues[--map->len]; 2460 break; 2461 } 2462 2463 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2464 kfree_rcu(map, rcu); 2465 return false; 2466 } 2467 2468 return true; 2469 } 2470 2471 static bool remove_xps_queue_cpu(struct net_device *dev, 2472 struct xps_dev_maps *dev_maps, 2473 int cpu, u16 offset, u16 count) 2474 { 2475 int num_tc = dev->num_tc ? : 1; 2476 bool active = false; 2477 int tci; 2478 2479 for (tci = cpu * num_tc; num_tc--; tci++) { 2480 int i, j; 2481 2482 for (i = count, j = offset; i--; j++) { 2483 if (!remove_xps_queue(dev_maps, tci, j)) 2484 break; 2485 } 2486 2487 active |= i < 0; 2488 } 2489 2490 return active; 2491 } 2492 2493 static void reset_xps_maps(struct net_device *dev, 2494 struct xps_dev_maps *dev_maps, 2495 bool is_rxqs_map) 2496 { 2497 if (is_rxqs_map) { 2498 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2499 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2500 } else { 2501 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2502 } 2503 static_key_slow_dec_cpuslocked(&xps_needed); 2504 kfree_rcu(dev_maps, rcu); 2505 } 2506 2507 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2508 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2509 u16 offset, u16 count, bool is_rxqs_map) 2510 { 2511 bool active = false; 2512 int i, j; 2513 2514 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2515 j < nr_ids;) 2516 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2517 count); 2518 if (!active) 2519 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2520 2521 if (!is_rxqs_map) { 2522 for (i = offset + (count - 1); count--; i--) { 2523 netdev_queue_numa_node_write( 2524 netdev_get_tx_queue(dev, i), 2525 NUMA_NO_NODE); 2526 } 2527 } 2528 } 2529 2530 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2531 u16 count) 2532 { 2533 const unsigned long *possible_mask = NULL; 2534 struct xps_dev_maps *dev_maps; 2535 unsigned int nr_ids; 2536 2537 if (!static_key_false(&xps_needed)) 2538 return; 2539 2540 cpus_read_lock(); 2541 mutex_lock(&xps_map_mutex); 2542 2543 if (static_key_false(&xps_rxqs_needed)) { 2544 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2545 if (dev_maps) { 2546 nr_ids = dev->num_rx_queues; 2547 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2548 offset, count, true); 2549 } 2550 } 2551 2552 dev_maps = xmap_dereference(dev->xps_cpus_map); 2553 if (!dev_maps) 2554 goto out_no_maps; 2555 2556 if (num_possible_cpus() > 1) 2557 possible_mask = cpumask_bits(cpu_possible_mask); 2558 nr_ids = nr_cpu_ids; 2559 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2560 false); 2561 2562 out_no_maps: 2563 mutex_unlock(&xps_map_mutex); 2564 cpus_read_unlock(); 2565 } 2566 2567 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2568 { 2569 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2570 } 2571 2572 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2573 u16 index, bool is_rxqs_map) 2574 { 2575 struct xps_map *new_map; 2576 int alloc_len = XPS_MIN_MAP_ALLOC; 2577 int i, pos; 2578 2579 for (pos = 0; map && pos < map->len; pos++) { 2580 if (map->queues[pos] != index) 2581 continue; 2582 return map; 2583 } 2584 2585 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2586 if (map) { 2587 if (pos < map->alloc_len) 2588 return map; 2589 2590 alloc_len = map->alloc_len * 2; 2591 } 2592 2593 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2594 * map 2595 */ 2596 if (is_rxqs_map) 2597 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2598 else 2599 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2600 cpu_to_node(attr_index)); 2601 if (!new_map) 2602 return NULL; 2603 2604 for (i = 0; i < pos; i++) 2605 new_map->queues[i] = map->queues[i]; 2606 new_map->alloc_len = alloc_len; 2607 new_map->len = pos; 2608 2609 return new_map; 2610 } 2611 2612 /* Must be called under cpus_read_lock */ 2613 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2614 u16 index, bool is_rxqs_map) 2615 { 2616 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2617 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2618 int i, j, tci, numa_node_id = -2; 2619 int maps_sz, num_tc = 1, tc = 0; 2620 struct xps_map *map, *new_map; 2621 bool active = false; 2622 unsigned int nr_ids; 2623 2624 if (dev->num_tc) { 2625 /* Do not allow XPS on subordinate device directly */ 2626 num_tc = dev->num_tc; 2627 if (num_tc < 0) 2628 return -EINVAL; 2629 2630 /* If queue belongs to subordinate dev use its map */ 2631 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2632 2633 tc = netdev_txq_to_tc(dev, index); 2634 if (tc < 0) 2635 return -EINVAL; 2636 } 2637 2638 mutex_lock(&xps_map_mutex); 2639 if (is_rxqs_map) { 2640 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2641 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2642 nr_ids = dev->num_rx_queues; 2643 } else { 2644 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2645 if (num_possible_cpus() > 1) { 2646 online_mask = cpumask_bits(cpu_online_mask); 2647 possible_mask = cpumask_bits(cpu_possible_mask); 2648 } 2649 dev_maps = xmap_dereference(dev->xps_cpus_map); 2650 nr_ids = nr_cpu_ids; 2651 } 2652 2653 if (maps_sz < L1_CACHE_BYTES) 2654 maps_sz = L1_CACHE_BYTES; 2655 2656 /* allocate memory for queue storage */ 2657 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2658 j < nr_ids;) { 2659 if (!new_dev_maps) 2660 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2661 if (!new_dev_maps) { 2662 mutex_unlock(&xps_map_mutex); 2663 return -ENOMEM; 2664 } 2665 2666 tci = j * num_tc + tc; 2667 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2668 NULL; 2669 2670 map = expand_xps_map(map, j, index, is_rxqs_map); 2671 if (!map) 2672 goto error; 2673 2674 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2675 } 2676 2677 if (!new_dev_maps) 2678 goto out_no_new_maps; 2679 2680 if (!dev_maps) { 2681 /* Increment static keys at most once per type */ 2682 static_key_slow_inc_cpuslocked(&xps_needed); 2683 if (is_rxqs_map) 2684 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2685 } 2686 2687 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2688 j < nr_ids;) { 2689 /* copy maps belonging to foreign traffic classes */ 2690 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2691 /* fill in the new device map from the old device map */ 2692 map = xmap_dereference(dev_maps->attr_map[tci]); 2693 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2694 } 2695 2696 /* We need to explicitly update tci as prevous loop 2697 * could break out early if dev_maps is NULL. 2698 */ 2699 tci = j * num_tc + tc; 2700 2701 if (netif_attr_test_mask(j, mask, nr_ids) && 2702 netif_attr_test_online(j, online_mask, nr_ids)) { 2703 /* add tx-queue to CPU/rx-queue maps */ 2704 int pos = 0; 2705 2706 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2707 while ((pos < map->len) && (map->queues[pos] != index)) 2708 pos++; 2709 2710 if (pos == map->len) 2711 map->queues[map->len++] = index; 2712 #ifdef CONFIG_NUMA 2713 if (!is_rxqs_map) { 2714 if (numa_node_id == -2) 2715 numa_node_id = cpu_to_node(j); 2716 else if (numa_node_id != cpu_to_node(j)) 2717 numa_node_id = -1; 2718 } 2719 #endif 2720 } else if (dev_maps) { 2721 /* fill in the new device map from the old device map */ 2722 map = xmap_dereference(dev_maps->attr_map[tci]); 2723 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2724 } 2725 2726 /* copy maps belonging to foreign traffic classes */ 2727 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2728 /* fill in the new device map from the old device map */ 2729 map = xmap_dereference(dev_maps->attr_map[tci]); 2730 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2731 } 2732 } 2733 2734 if (is_rxqs_map) 2735 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2736 else 2737 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2738 2739 /* Cleanup old maps */ 2740 if (!dev_maps) 2741 goto out_no_old_maps; 2742 2743 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2744 j < nr_ids;) { 2745 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2746 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2747 map = xmap_dereference(dev_maps->attr_map[tci]); 2748 if (map && map != new_map) 2749 kfree_rcu(map, rcu); 2750 } 2751 } 2752 2753 kfree_rcu(dev_maps, rcu); 2754 2755 out_no_old_maps: 2756 dev_maps = new_dev_maps; 2757 active = true; 2758 2759 out_no_new_maps: 2760 if (!is_rxqs_map) { 2761 /* update Tx queue numa node */ 2762 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2763 (numa_node_id >= 0) ? 2764 numa_node_id : NUMA_NO_NODE); 2765 } 2766 2767 if (!dev_maps) 2768 goto out_no_maps; 2769 2770 /* removes tx-queue from unused CPUs/rx-queues */ 2771 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2772 j < nr_ids;) { 2773 for (i = tc, tci = j * num_tc; i--; tci++) 2774 active |= remove_xps_queue(dev_maps, tci, index); 2775 if (!netif_attr_test_mask(j, mask, nr_ids) || 2776 !netif_attr_test_online(j, online_mask, nr_ids)) 2777 active |= remove_xps_queue(dev_maps, tci, index); 2778 for (i = num_tc - tc, tci++; --i; tci++) 2779 active |= remove_xps_queue(dev_maps, tci, index); 2780 } 2781 2782 /* free map if not active */ 2783 if (!active) 2784 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2785 2786 out_no_maps: 2787 mutex_unlock(&xps_map_mutex); 2788 2789 return 0; 2790 error: 2791 /* remove any maps that we added */ 2792 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2793 j < nr_ids;) { 2794 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2795 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2796 map = dev_maps ? 2797 xmap_dereference(dev_maps->attr_map[tci]) : 2798 NULL; 2799 if (new_map && new_map != map) 2800 kfree(new_map); 2801 } 2802 } 2803 2804 mutex_unlock(&xps_map_mutex); 2805 2806 kfree(new_dev_maps); 2807 return -ENOMEM; 2808 } 2809 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2810 2811 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2812 u16 index) 2813 { 2814 int ret; 2815 2816 cpus_read_lock(); 2817 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2818 cpus_read_unlock(); 2819 2820 return ret; 2821 } 2822 EXPORT_SYMBOL(netif_set_xps_queue); 2823 2824 #endif 2825 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2826 { 2827 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2828 2829 /* Unbind any subordinate channels */ 2830 while (txq-- != &dev->_tx[0]) { 2831 if (txq->sb_dev) 2832 netdev_unbind_sb_channel(dev, txq->sb_dev); 2833 } 2834 } 2835 2836 void netdev_reset_tc(struct net_device *dev) 2837 { 2838 #ifdef CONFIG_XPS 2839 netif_reset_xps_queues_gt(dev, 0); 2840 #endif 2841 netdev_unbind_all_sb_channels(dev); 2842 2843 /* Reset TC configuration of device */ 2844 dev->num_tc = 0; 2845 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2846 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2847 } 2848 EXPORT_SYMBOL(netdev_reset_tc); 2849 2850 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2851 { 2852 if (tc >= dev->num_tc) 2853 return -EINVAL; 2854 2855 #ifdef CONFIG_XPS 2856 netif_reset_xps_queues(dev, offset, count); 2857 #endif 2858 dev->tc_to_txq[tc].count = count; 2859 dev->tc_to_txq[tc].offset = offset; 2860 return 0; 2861 } 2862 EXPORT_SYMBOL(netdev_set_tc_queue); 2863 2864 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2865 { 2866 if (num_tc > TC_MAX_QUEUE) 2867 return -EINVAL; 2868 2869 #ifdef CONFIG_XPS 2870 netif_reset_xps_queues_gt(dev, 0); 2871 #endif 2872 netdev_unbind_all_sb_channels(dev); 2873 2874 dev->num_tc = num_tc; 2875 return 0; 2876 } 2877 EXPORT_SYMBOL(netdev_set_num_tc); 2878 2879 void netdev_unbind_sb_channel(struct net_device *dev, 2880 struct net_device *sb_dev) 2881 { 2882 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2883 2884 #ifdef CONFIG_XPS 2885 netif_reset_xps_queues_gt(sb_dev, 0); 2886 #endif 2887 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2888 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2889 2890 while (txq-- != &dev->_tx[0]) { 2891 if (txq->sb_dev == sb_dev) 2892 txq->sb_dev = NULL; 2893 } 2894 } 2895 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2896 2897 int netdev_bind_sb_channel_queue(struct net_device *dev, 2898 struct net_device *sb_dev, 2899 u8 tc, u16 count, u16 offset) 2900 { 2901 /* Make certain the sb_dev and dev are already configured */ 2902 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2903 return -EINVAL; 2904 2905 /* We cannot hand out queues we don't have */ 2906 if ((offset + count) > dev->real_num_tx_queues) 2907 return -EINVAL; 2908 2909 /* Record the mapping */ 2910 sb_dev->tc_to_txq[tc].count = count; 2911 sb_dev->tc_to_txq[tc].offset = offset; 2912 2913 /* Provide a way for Tx queue to find the tc_to_txq map or 2914 * XPS map for itself. 2915 */ 2916 while (count--) 2917 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2918 2919 return 0; 2920 } 2921 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2922 2923 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2924 { 2925 /* Do not use a multiqueue device to represent a subordinate channel */ 2926 if (netif_is_multiqueue(dev)) 2927 return -ENODEV; 2928 2929 /* We allow channels 1 - 32767 to be used for subordinate channels. 2930 * Channel 0 is meant to be "native" mode and used only to represent 2931 * the main root device. We allow writing 0 to reset the device back 2932 * to normal mode after being used as a subordinate channel. 2933 */ 2934 if (channel > S16_MAX) 2935 return -EINVAL; 2936 2937 dev->num_tc = -channel; 2938 2939 return 0; 2940 } 2941 EXPORT_SYMBOL(netdev_set_sb_channel); 2942 2943 /* 2944 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2945 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2946 */ 2947 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2948 { 2949 bool disabling; 2950 int rc; 2951 2952 disabling = txq < dev->real_num_tx_queues; 2953 2954 if (txq < 1 || txq > dev->num_tx_queues) 2955 return -EINVAL; 2956 2957 if (dev->reg_state == NETREG_REGISTERED || 2958 dev->reg_state == NETREG_UNREGISTERING) { 2959 ASSERT_RTNL(); 2960 2961 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2962 txq); 2963 if (rc) 2964 return rc; 2965 2966 if (dev->num_tc) 2967 netif_setup_tc(dev, txq); 2968 2969 dev->real_num_tx_queues = txq; 2970 2971 if (disabling) { 2972 synchronize_net(); 2973 qdisc_reset_all_tx_gt(dev, txq); 2974 #ifdef CONFIG_XPS 2975 netif_reset_xps_queues_gt(dev, txq); 2976 #endif 2977 } 2978 } else { 2979 dev->real_num_tx_queues = txq; 2980 } 2981 2982 return 0; 2983 } 2984 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2985 2986 #ifdef CONFIG_SYSFS 2987 /** 2988 * netif_set_real_num_rx_queues - set actual number of RX queues used 2989 * @dev: Network device 2990 * @rxq: Actual number of RX queues 2991 * 2992 * This must be called either with the rtnl_lock held or before 2993 * registration of the net device. Returns 0 on success, or a 2994 * negative error code. If called before registration, it always 2995 * succeeds. 2996 */ 2997 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2998 { 2999 int rc; 3000 3001 if (rxq < 1 || rxq > dev->num_rx_queues) 3002 return -EINVAL; 3003 3004 if (dev->reg_state == NETREG_REGISTERED) { 3005 ASSERT_RTNL(); 3006 3007 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3008 rxq); 3009 if (rc) 3010 return rc; 3011 } 3012 3013 dev->real_num_rx_queues = rxq; 3014 return 0; 3015 } 3016 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3017 #endif 3018 3019 /** 3020 * netif_get_num_default_rss_queues - default number of RSS queues 3021 * 3022 * This routine should set an upper limit on the number of RSS queues 3023 * used by default by multiqueue devices. 3024 */ 3025 int netif_get_num_default_rss_queues(void) 3026 { 3027 return is_kdump_kernel() ? 3028 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 3029 } 3030 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3031 3032 static void __netif_reschedule(struct Qdisc *q) 3033 { 3034 struct softnet_data *sd; 3035 unsigned long flags; 3036 3037 local_irq_save(flags); 3038 sd = this_cpu_ptr(&softnet_data); 3039 q->next_sched = NULL; 3040 *sd->output_queue_tailp = q; 3041 sd->output_queue_tailp = &q->next_sched; 3042 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3043 local_irq_restore(flags); 3044 } 3045 3046 void __netif_schedule(struct Qdisc *q) 3047 { 3048 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3049 __netif_reschedule(q); 3050 } 3051 EXPORT_SYMBOL(__netif_schedule); 3052 3053 struct dev_kfree_skb_cb { 3054 enum skb_free_reason reason; 3055 }; 3056 3057 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3058 { 3059 return (struct dev_kfree_skb_cb *)skb->cb; 3060 } 3061 3062 void netif_schedule_queue(struct netdev_queue *txq) 3063 { 3064 rcu_read_lock(); 3065 if (!netif_xmit_stopped(txq)) { 3066 struct Qdisc *q = rcu_dereference(txq->qdisc); 3067 3068 __netif_schedule(q); 3069 } 3070 rcu_read_unlock(); 3071 } 3072 EXPORT_SYMBOL(netif_schedule_queue); 3073 3074 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3075 { 3076 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3077 struct Qdisc *q; 3078 3079 rcu_read_lock(); 3080 q = rcu_dereference(dev_queue->qdisc); 3081 __netif_schedule(q); 3082 rcu_read_unlock(); 3083 } 3084 } 3085 EXPORT_SYMBOL(netif_tx_wake_queue); 3086 3087 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 3088 { 3089 unsigned long flags; 3090 3091 if (unlikely(!skb)) 3092 return; 3093 3094 if (likely(refcount_read(&skb->users) == 1)) { 3095 smp_rmb(); 3096 refcount_set(&skb->users, 0); 3097 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3098 return; 3099 } 3100 get_kfree_skb_cb(skb)->reason = reason; 3101 local_irq_save(flags); 3102 skb->next = __this_cpu_read(softnet_data.completion_queue); 3103 __this_cpu_write(softnet_data.completion_queue, skb); 3104 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3105 local_irq_restore(flags); 3106 } 3107 EXPORT_SYMBOL(__dev_kfree_skb_irq); 3108 3109 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 3110 { 3111 if (in_irq() || irqs_disabled()) 3112 __dev_kfree_skb_irq(skb, reason); 3113 else 3114 dev_kfree_skb(skb); 3115 } 3116 EXPORT_SYMBOL(__dev_kfree_skb_any); 3117 3118 3119 /** 3120 * netif_device_detach - mark device as removed 3121 * @dev: network device 3122 * 3123 * Mark device as removed from system and therefore no longer available. 3124 */ 3125 void netif_device_detach(struct net_device *dev) 3126 { 3127 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3128 netif_running(dev)) { 3129 netif_tx_stop_all_queues(dev); 3130 } 3131 } 3132 EXPORT_SYMBOL(netif_device_detach); 3133 3134 /** 3135 * netif_device_attach - mark device as attached 3136 * @dev: network device 3137 * 3138 * Mark device as attached from system and restart if needed. 3139 */ 3140 void netif_device_attach(struct net_device *dev) 3141 { 3142 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3143 netif_running(dev)) { 3144 netif_tx_wake_all_queues(dev); 3145 __netdev_watchdog_up(dev); 3146 } 3147 } 3148 EXPORT_SYMBOL(netif_device_attach); 3149 3150 /* 3151 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3152 * to be used as a distribution range. 3153 */ 3154 static u16 skb_tx_hash(const struct net_device *dev, 3155 const struct net_device *sb_dev, 3156 struct sk_buff *skb) 3157 { 3158 u32 hash; 3159 u16 qoffset = 0; 3160 u16 qcount = dev->real_num_tx_queues; 3161 3162 if (dev->num_tc) { 3163 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3164 3165 qoffset = sb_dev->tc_to_txq[tc].offset; 3166 qcount = sb_dev->tc_to_txq[tc].count; 3167 } 3168 3169 if (skb_rx_queue_recorded(skb)) { 3170 hash = skb_get_rx_queue(skb); 3171 if (hash >= qoffset) 3172 hash -= qoffset; 3173 while (unlikely(hash >= qcount)) 3174 hash -= qcount; 3175 return hash + qoffset; 3176 } 3177 3178 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3179 } 3180 3181 static void skb_warn_bad_offload(const struct sk_buff *skb) 3182 { 3183 static const netdev_features_t null_features; 3184 struct net_device *dev = skb->dev; 3185 const char *name = ""; 3186 3187 if (!net_ratelimit()) 3188 return; 3189 3190 if (dev) { 3191 if (dev->dev.parent) 3192 name = dev_driver_string(dev->dev.parent); 3193 else 3194 name = netdev_name(dev); 3195 } 3196 skb_dump(KERN_WARNING, skb, false); 3197 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3198 name, dev ? &dev->features : &null_features, 3199 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3200 } 3201 3202 /* 3203 * Invalidate hardware checksum when packet is to be mangled, and 3204 * complete checksum manually on outgoing path. 3205 */ 3206 int skb_checksum_help(struct sk_buff *skb) 3207 { 3208 __wsum csum; 3209 int ret = 0, offset; 3210 3211 if (skb->ip_summed == CHECKSUM_COMPLETE) 3212 goto out_set_summed; 3213 3214 if (unlikely(skb_is_gso(skb))) { 3215 skb_warn_bad_offload(skb); 3216 return -EINVAL; 3217 } 3218 3219 /* Before computing a checksum, we should make sure no frag could 3220 * be modified by an external entity : checksum could be wrong. 3221 */ 3222 if (skb_has_shared_frag(skb)) { 3223 ret = __skb_linearize(skb); 3224 if (ret) 3225 goto out; 3226 } 3227 3228 offset = skb_checksum_start_offset(skb); 3229 BUG_ON(offset >= skb_headlen(skb)); 3230 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3231 3232 offset += skb->csum_offset; 3233 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 3234 3235 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3236 if (ret) 3237 goto out; 3238 3239 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3240 out_set_summed: 3241 skb->ip_summed = CHECKSUM_NONE; 3242 out: 3243 return ret; 3244 } 3245 EXPORT_SYMBOL(skb_checksum_help); 3246 3247 int skb_crc32c_csum_help(struct sk_buff *skb) 3248 { 3249 __le32 crc32c_csum; 3250 int ret = 0, offset, start; 3251 3252 if (skb->ip_summed != CHECKSUM_PARTIAL) 3253 goto out; 3254 3255 if (unlikely(skb_is_gso(skb))) 3256 goto out; 3257 3258 /* Before computing a checksum, we should make sure no frag could 3259 * be modified by an external entity : checksum could be wrong. 3260 */ 3261 if (unlikely(skb_has_shared_frag(skb))) { 3262 ret = __skb_linearize(skb); 3263 if (ret) 3264 goto out; 3265 } 3266 start = skb_checksum_start_offset(skb); 3267 offset = start + offsetof(struct sctphdr, checksum); 3268 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3269 ret = -EINVAL; 3270 goto out; 3271 } 3272 3273 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3274 if (ret) 3275 goto out; 3276 3277 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3278 skb->len - start, ~(__u32)0, 3279 crc32c_csum_stub)); 3280 *(__le32 *)(skb->data + offset) = crc32c_csum; 3281 skb->ip_summed = CHECKSUM_NONE; 3282 skb->csum_not_inet = 0; 3283 out: 3284 return ret; 3285 } 3286 3287 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3288 { 3289 __be16 type = skb->protocol; 3290 3291 /* Tunnel gso handlers can set protocol to ethernet. */ 3292 if (type == htons(ETH_P_TEB)) { 3293 struct ethhdr *eth; 3294 3295 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3296 return 0; 3297 3298 eth = (struct ethhdr *)skb->data; 3299 type = eth->h_proto; 3300 } 3301 3302 return __vlan_get_protocol(skb, type, depth); 3303 } 3304 3305 /** 3306 * skb_mac_gso_segment - mac layer segmentation handler. 3307 * @skb: buffer to segment 3308 * @features: features for the output path (see dev->features) 3309 */ 3310 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3311 netdev_features_t features) 3312 { 3313 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3314 struct packet_offload *ptype; 3315 int vlan_depth = skb->mac_len; 3316 __be16 type = skb_network_protocol(skb, &vlan_depth); 3317 3318 if (unlikely(!type)) 3319 return ERR_PTR(-EINVAL); 3320 3321 __skb_pull(skb, vlan_depth); 3322 3323 rcu_read_lock(); 3324 list_for_each_entry_rcu(ptype, &offload_base, list) { 3325 if (ptype->type == type && ptype->callbacks.gso_segment) { 3326 segs = ptype->callbacks.gso_segment(skb, features); 3327 break; 3328 } 3329 } 3330 rcu_read_unlock(); 3331 3332 __skb_push(skb, skb->data - skb_mac_header(skb)); 3333 3334 return segs; 3335 } 3336 EXPORT_SYMBOL(skb_mac_gso_segment); 3337 3338 3339 /* openvswitch calls this on rx path, so we need a different check. 3340 */ 3341 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3342 { 3343 if (tx_path) 3344 return skb->ip_summed != CHECKSUM_PARTIAL && 3345 skb->ip_summed != CHECKSUM_UNNECESSARY; 3346 3347 return skb->ip_summed == CHECKSUM_NONE; 3348 } 3349 3350 /** 3351 * __skb_gso_segment - Perform segmentation on skb. 3352 * @skb: buffer to segment 3353 * @features: features for the output path (see dev->features) 3354 * @tx_path: whether it is called in TX path 3355 * 3356 * This function segments the given skb and returns a list of segments. 3357 * 3358 * It may return NULL if the skb requires no segmentation. This is 3359 * only possible when GSO is used for verifying header integrity. 3360 * 3361 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb. 3362 */ 3363 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3364 netdev_features_t features, bool tx_path) 3365 { 3366 struct sk_buff *segs; 3367 3368 if (unlikely(skb_needs_check(skb, tx_path))) { 3369 int err; 3370 3371 /* We're going to init ->check field in TCP or UDP header */ 3372 err = skb_cow_head(skb, 0); 3373 if (err < 0) 3374 return ERR_PTR(err); 3375 } 3376 3377 /* Only report GSO partial support if it will enable us to 3378 * support segmentation on this frame without needing additional 3379 * work. 3380 */ 3381 if (features & NETIF_F_GSO_PARTIAL) { 3382 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3383 struct net_device *dev = skb->dev; 3384 3385 partial_features |= dev->features & dev->gso_partial_features; 3386 if (!skb_gso_ok(skb, features | partial_features)) 3387 features &= ~NETIF_F_GSO_PARTIAL; 3388 } 3389 3390 BUILD_BUG_ON(SKB_GSO_CB_OFFSET + 3391 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3392 3393 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3394 SKB_GSO_CB(skb)->encap_level = 0; 3395 3396 skb_reset_mac_header(skb); 3397 skb_reset_mac_len(skb); 3398 3399 segs = skb_mac_gso_segment(skb, features); 3400 3401 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3402 skb_warn_bad_offload(skb); 3403 3404 return segs; 3405 } 3406 EXPORT_SYMBOL(__skb_gso_segment); 3407 3408 /* Take action when hardware reception checksum errors are detected. */ 3409 #ifdef CONFIG_BUG 3410 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3411 { 3412 if (net_ratelimit()) { 3413 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3414 skb_dump(KERN_ERR, skb, true); 3415 dump_stack(); 3416 } 3417 } 3418 EXPORT_SYMBOL(netdev_rx_csum_fault); 3419 #endif 3420 3421 /* XXX: check that highmem exists at all on the given machine. */ 3422 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3423 { 3424 #ifdef CONFIG_HIGHMEM 3425 int i; 3426 3427 if (!(dev->features & NETIF_F_HIGHDMA)) { 3428 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3429 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3430 3431 if (PageHighMem(skb_frag_page(frag))) 3432 return 1; 3433 } 3434 } 3435 #endif 3436 return 0; 3437 } 3438 3439 /* If MPLS offload request, verify we are testing hardware MPLS features 3440 * instead of standard features for the netdev. 3441 */ 3442 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3443 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3444 netdev_features_t features, 3445 __be16 type) 3446 { 3447 if (eth_p_mpls(type)) 3448 features &= skb->dev->mpls_features; 3449 3450 return features; 3451 } 3452 #else 3453 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3454 netdev_features_t features, 3455 __be16 type) 3456 { 3457 return features; 3458 } 3459 #endif 3460 3461 static netdev_features_t harmonize_features(struct sk_buff *skb, 3462 netdev_features_t features) 3463 { 3464 __be16 type; 3465 3466 type = skb_network_protocol(skb, NULL); 3467 features = net_mpls_features(skb, features, type); 3468 3469 if (skb->ip_summed != CHECKSUM_NONE && 3470 !can_checksum_protocol(features, type)) { 3471 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3472 } 3473 if (illegal_highdma(skb->dev, skb)) 3474 features &= ~NETIF_F_SG; 3475 3476 return features; 3477 } 3478 3479 netdev_features_t passthru_features_check(struct sk_buff *skb, 3480 struct net_device *dev, 3481 netdev_features_t features) 3482 { 3483 return features; 3484 } 3485 EXPORT_SYMBOL(passthru_features_check); 3486 3487 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3488 struct net_device *dev, 3489 netdev_features_t features) 3490 { 3491 return vlan_features_check(skb, features); 3492 } 3493 3494 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3495 struct net_device *dev, 3496 netdev_features_t features) 3497 { 3498 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3499 3500 if (gso_segs > dev->gso_max_segs) 3501 return features & ~NETIF_F_GSO_MASK; 3502 3503 if (!skb_shinfo(skb)->gso_type) { 3504 skb_warn_bad_offload(skb); 3505 return features & ~NETIF_F_GSO_MASK; 3506 } 3507 3508 /* Support for GSO partial features requires software 3509 * intervention before we can actually process the packets 3510 * so we need to strip support for any partial features now 3511 * and we can pull them back in after we have partially 3512 * segmented the frame. 3513 */ 3514 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3515 features &= ~dev->gso_partial_features; 3516 3517 /* Make sure to clear the IPv4 ID mangling feature if the 3518 * IPv4 header has the potential to be fragmented. 3519 */ 3520 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3521 struct iphdr *iph = skb->encapsulation ? 3522 inner_ip_hdr(skb) : ip_hdr(skb); 3523 3524 if (!(iph->frag_off & htons(IP_DF))) 3525 features &= ~NETIF_F_TSO_MANGLEID; 3526 } 3527 3528 return features; 3529 } 3530 3531 netdev_features_t netif_skb_features(struct sk_buff *skb) 3532 { 3533 struct net_device *dev = skb->dev; 3534 netdev_features_t features = dev->features; 3535 3536 if (skb_is_gso(skb)) 3537 features = gso_features_check(skb, dev, features); 3538 3539 /* If encapsulation offload request, verify we are testing 3540 * hardware encapsulation features instead of standard 3541 * features for the netdev 3542 */ 3543 if (skb->encapsulation) 3544 features &= dev->hw_enc_features; 3545 3546 if (skb_vlan_tagged(skb)) 3547 features = netdev_intersect_features(features, 3548 dev->vlan_features | 3549 NETIF_F_HW_VLAN_CTAG_TX | 3550 NETIF_F_HW_VLAN_STAG_TX); 3551 3552 if (dev->netdev_ops->ndo_features_check) 3553 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3554 features); 3555 else 3556 features &= dflt_features_check(skb, dev, features); 3557 3558 return harmonize_features(skb, features); 3559 } 3560 EXPORT_SYMBOL(netif_skb_features); 3561 3562 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3563 struct netdev_queue *txq, bool more) 3564 { 3565 unsigned int len; 3566 int rc; 3567 3568 if (dev_nit_active(dev)) 3569 dev_queue_xmit_nit(skb, dev); 3570 3571 len = skb->len; 3572 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies); 3573 trace_net_dev_start_xmit(skb, dev); 3574 rc = netdev_start_xmit(skb, dev, txq, more); 3575 trace_net_dev_xmit(skb, rc, dev, len); 3576 3577 return rc; 3578 } 3579 3580 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3581 struct netdev_queue *txq, int *ret) 3582 { 3583 struct sk_buff *skb = first; 3584 int rc = NETDEV_TX_OK; 3585 3586 while (skb) { 3587 struct sk_buff *next = skb->next; 3588 3589 skb_mark_not_on_list(skb); 3590 rc = xmit_one(skb, dev, txq, next != NULL); 3591 if (unlikely(!dev_xmit_complete(rc))) { 3592 skb->next = next; 3593 goto out; 3594 } 3595 3596 skb = next; 3597 if (netif_tx_queue_stopped(txq) && skb) { 3598 rc = NETDEV_TX_BUSY; 3599 break; 3600 } 3601 } 3602 3603 out: 3604 *ret = rc; 3605 return skb; 3606 } 3607 3608 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3609 netdev_features_t features) 3610 { 3611 if (skb_vlan_tag_present(skb) && 3612 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3613 skb = __vlan_hwaccel_push_inside(skb); 3614 return skb; 3615 } 3616 3617 int skb_csum_hwoffload_help(struct sk_buff *skb, 3618 const netdev_features_t features) 3619 { 3620 if (unlikely(skb_csum_is_sctp(skb))) 3621 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3622 skb_crc32c_csum_help(skb); 3623 3624 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3625 } 3626 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3627 3628 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3629 { 3630 netdev_features_t features; 3631 3632 features = netif_skb_features(skb); 3633 skb = validate_xmit_vlan(skb, features); 3634 if (unlikely(!skb)) 3635 goto out_null; 3636 3637 skb = sk_validate_xmit_skb(skb, dev); 3638 if (unlikely(!skb)) 3639 goto out_null; 3640 3641 if (netif_needs_gso(skb, features)) { 3642 struct sk_buff *segs; 3643 3644 segs = skb_gso_segment(skb, features); 3645 if (IS_ERR(segs)) { 3646 goto out_kfree_skb; 3647 } else if (segs) { 3648 consume_skb(skb); 3649 skb = segs; 3650 } 3651 } else { 3652 if (skb_needs_linearize(skb, features) && 3653 __skb_linearize(skb)) 3654 goto out_kfree_skb; 3655 3656 /* If packet is not checksummed and device does not 3657 * support checksumming for this protocol, complete 3658 * checksumming here. 3659 */ 3660 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3661 if (skb->encapsulation) 3662 skb_set_inner_transport_header(skb, 3663 skb_checksum_start_offset(skb)); 3664 else 3665 skb_set_transport_header(skb, 3666 skb_checksum_start_offset(skb)); 3667 if (skb_csum_hwoffload_help(skb, features)) 3668 goto out_kfree_skb; 3669 } 3670 } 3671 3672 skb = validate_xmit_xfrm(skb, features, again); 3673 3674 return skb; 3675 3676 out_kfree_skb: 3677 kfree_skb(skb); 3678 out_null: 3679 atomic_long_inc(&dev->tx_dropped); 3680 return NULL; 3681 } 3682 3683 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3684 { 3685 struct sk_buff *next, *head = NULL, *tail; 3686 3687 for (; skb != NULL; skb = next) { 3688 next = skb->next; 3689 skb_mark_not_on_list(skb); 3690 3691 /* in case skb wont be segmented, point to itself */ 3692 skb->prev = skb; 3693 3694 skb = validate_xmit_skb(skb, dev, again); 3695 if (!skb) 3696 continue; 3697 3698 if (!head) 3699 head = skb; 3700 else 3701 tail->next = skb; 3702 /* If skb was segmented, skb->prev points to 3703 * the last segment. If not, it still contains skb. 3704 */ 3705 tail = skb->prev; 3706 } 3707 return head; 3708 } 3709 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3710 3711 static void qdisc_pkt_len_init(struct sk_buff *skb) 3712 { 3713 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3714 3715 qdisc_skb_cb(skb)->pkt_len = skb->len; 3716 3717 /* To get more precise estimation of bytes sent on wire, 3718 * we add to pkt_len the headers size of all segments 3719 */ 3720 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3721 unsigned int hdr_len; 3722 u16 gso_segs = shinfo->gso_segs; 3723 3724 /* mac layer + network layer */ 3725 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3726 3727 /* + transport layer */ 3728 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3729 const struct tcphdr *th; 3730 struct tcphdr _tcphdr; 3731 3732 th = skb_header_pointer(skb, skb_transport_offset(skb), 3733 sizeof(_tcphdr), &_tcphdr); 3734 if (likely(th)) 3735 hdr_len += __tcp_hdrlen(th); 3736 } else { 3737 struct udphdr _udphdr; 3738 3739 if (skb_header_pointer(skb, skb_transport_offset(skb), 3740 sizeof(_udphdr), &_udphdr)) 3741 hdr_len += sizeof(struct udphdr); 3742 } 3743 3744 if (shinfo->gso_type & SKB_GSO_DODGY) 3745 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3746 shinfo->gso_size); 3747 3748 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3749 } 3750 } 3751 3752 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3753 struct net_device *dev, 3754 struct netdev_queue *txq) 3755 { 3756 spinlock_t *root_lock = qdisc_lock(q); 3757 struct sk_buff *to_free = NULL; 3758 bool contended; 3759 int rc; 3760 3761 qdisc_calculate_pkt_len(skb, q); 3762 3763 if (q->flags & TCQ_F_NOLOCK) { 3764 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3765 qdisc_run(q); 3766 3767 if (unlikely(to_free)) 3768 kfree_skb_list(to_free); 3769 return rc; 3770 } 3771 3772 /* 3773 * Heuristic to force contended enqueues to serialize on a 3774 * separate lock before trying to get qdisc main lock. 3775 * This permits qdisc->running owner to get the lock more 3776 * often and dequeue packets faster. 3777 */ 3778 contended = qdisc_is_running(q); 3779 if (unlikely(contended)) 3780 spin_lock(&q->busylock); 3781 3782 spin_lock(root_lock); 3783 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3784 __qdisc_drop(skb, &to_free); 3785 rc = NET_XMIT_DROP; 3786 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3787 qdisc_run_begin(q)) { 3788 /* 3789 * This is a work-conserving queue; there are no old skbs 3790 * waiting to be sent out; and the qdisc is not running - 3791 * xmit the skb directly. 3792 */ 3793 3794 qdisc_bstats_update(q, skb); 3795 3796 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3797 if (unlikely(contended)) { 3798 spin_unlock(&q->busylock); 3799 contended = false; 3800 } 3801 __qdisc_run(q); 3802 } 3803 3804 qdisc_run_end(q); 3805 rc = NET_XMIT_SUCCESS; 3806 } else { 3807 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3808 if (qdisc_run_begin(q)) { 3809 if (unlikely(contended)) { 3810 spin_unlock(&q->busylock); 3811 contended = false; 3812 } 3813 __qdisc_run(q); 3814 qdisc_run_end(q); 3815 } 3816 } 3817 spin_unlock(root_lock); 3818 if (unlikely(to_free)) 3819 kfree_skb_list(to_free); 3820 if (unlikely(contended)) 3821 spin_unlock(&q->busylock); 3822 return rc; 3823 } 3824 3825 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3826 static void skb_update_prio(struct sk_buff *skb) 3827 { 3828 const struct netprio_map *map; 3829 const struct sock *sk; 3830 unsigned int prioidx; 3831 3832 if (skb->priority) 3833 return; 3834 map = rcu_dereference_bh(skb->dev->priomap); 3835 if (!map) 3836 return; 3837 sk = skb_to_full_sk(skb); 3838 if (!sk) 3839 return; 3840 3841 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3842 3843 if (prioidx < map->priomap_len) 3844 skb->priority = map->priomap[prioidx]; 3845 } 3846 #else 3847 #define skb_update_prio(skb) 3848 #endif 3849 3850 /** 3851 * dev_loopback_xmit - loop back @skb 3852 * @net: network namespace this loopback is happening in 3853 * @sk: sk needed to be a netfilter okfn 3854 * @skb: buffer to transmit 3855 */ 3856 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3857 { 3858 skb_reset_mac_header(skb); 3859 __skb_pull(skb, skb_network_offset(skb)); 3860 skb->pkt_type = PACKET_LOOPBACK; 3861 skb->ip_summed = CHECKSUM_UNNECESSARY; 3862 WARN_ON(!skb_dst(skb)); 3863 skb_dst_force(skb); 3864 netif_rx_ni(skb); 3865 return 0; 3866 } 3867 EXPORT_SYMBOL(dev_loopback_xmit); 3868 3869 #ifdef CONFIG_NET_EGRESS 3870 static struct sk_buff * 3871 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3872 { 3873 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3874 struct tcf_result cl_res; 3875 3876 if (!miniq) 3877 return skb; 3878 3879 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3880 qdisc_skb_cb(skb)->mru = 0; 3881 qdisc_skb_cb(skb)->post_ct = false; 3882 mini_qdisc_bstats_cpu_update(miniq, skb); 3883 3884 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3885 case TC_ACT_OK: 3886 case TC_ACT_RECLASSIFY: 3887 skb->tc_index = TC_H_MIN(cl_res.classid); 3888 break; 3889 case TC_ACT_SHOT: 3890 mini_qdisc_qstats_cpu_drop(miniq); 3891 *ret = NET_XMIT_DROP; 3892 kfree_skb(skb); 3893 return NULL; 3894 case TC_ACT_STOLEN: 3895 case TC_ACT_QUEUED: 3896 case TC_ACT_TRAP: 3897 *ret = NET_XMIT_SUCCESS; 3898 consume_skb(skb); 3899 return NULL; 3900 case TC_ACT_REDIRECT: 3901 /* No need to push/pop skb's mac_header here on egress! */ 3902 skb_do_redirect(skb); 3903 *ret = NET_XMIT_SUCCESS; 3904 return NULL; 3905 default: 3906 break; 3907 } 3908 3909 return skb; 3910 } 3911 #endif /* CONFIG_NET_EGRESS */ 3912 3913 #ifdef CONFIG_XPS 3914 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3915 struct xps_dev_maps *dev_maps, unsigned int tci) 3916 { 3917 struct xps_map *map; 3918 int queue_index = -1; 3919 3920 if (dev->num_tc) { 3921 tci *= dev->num_tc; 3922 tci += netdev_get_prio_tc_map(dev, skb->priority); 3923 } 3924 3925 map = rcu_dereference(dev_maps->attr_map[tci]); 3926 if (map) { 3927 if (map->len == 1) 3928 queue_index = map->queues[0]; 3929 else 3930 queue_index = map->queues[reciprocal_scale( 3931 skb_get_hash(skb), map->len)]; 3932 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3933 queue_index = -1; 3934 } 3935 return queue_index; 3936 } 3937 #endif 3938 3939 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3940 struct sk_buff *skb) 3941 { 3942 #ifdef CONFIG_XPS 3943 struct xps_dev_maps *dev_maps; 3944 struct sock *sk = skb->sk; 3945 int queue_index = -1; 3946 3947 if (!static_key_false(&xps_needed)) 3948 return -1; 3949 3950 rcu_read_lock(); 3951 if (!static_key_false(&xps_rxqs_needed)) 3952 goto get_cpus_map; 3953 3954 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3955 if (dev_maps) { 3956 int tci = sk_rx_queue_get(sk); 3957 3958 if (tci >= 0 && tci < dev->num_rx_queues) 3959 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3960 tci); 3961 } 3962 3963 get_cpus_map: 3964 if (queue_index < 0) { 3965 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3966 if (dev_maps) { 3967 unsigned int tci = skb->sender_cpu - 1; 3968 3969 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3970 tci); 3971 } 3972 } 3973 rcu_read_unlock(); 3974 3975 return queue_index; 3976 #else 3977 return -1; 3978 #endif 3979 } 3980 3981 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3982 struct net_device *sb_dev) 3983 { 3984 return 0; 3985 } 3986 EXPORT_SYMBOL(dev_pick_tx_zero); 3987 3988 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3989 struct net_device *sb_dev) 3990 { 3991 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3992 } 3993 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3994 3995 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3996 struct net_device *sb_dev) 3997 { 3998 struct sock *sk = skb->sk; 3999 int queue_index = sk_tx_queue_get(sk); 4000 4001 sb_dev = sb_dev ? : dev; 4002 4003 if (queue_index < 0 || skb->ooo_okay || 4004 queue_index >= dev->real_num_tx_queues) { 4005 int new_index = get_xps_queue(dev, sb_dev, skb); 4006 4007 if (new_index < 0) 4008 new_index = skb_tx_hash(dev, sb_dev, skb); 4009 4010 if (queue_index != new_index && sk && 4011 sk_fullsock(sk) && 4012 rcu_access_pointer(sk->sk_dst_cache)) 4013 sk_tx_queue_set(sk, new_index); 4014 4015 queue_index = new_index; 4016 } 4017 4018 return queue_index; 4019 } 4020 EXPORT_SYMBOL(netdev_pick_tx); 4021 4022 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4023 struct sk_buff *skb, 4024 struct net_device *sb_dev) 4025 { 4026 int queue_index = 0; 4027 4028 #ifdef CONFIG_XPS 4029 u32 sender_cpu = skb->sender_cpu - 1; 4030 4031 if (sender_cpu >= (u32)NR_CPUS) 4032 skb->sender_cpu = raw_smp_processor_id() + 1; 4033 #endif 4034 4035 if (dev->real_num_tx_queues != 1) { 4036 const struct net_device_ops *ops = dev->netdev_ops; 4037 4038 if (ops->ndo_select_queue) 4039 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4040 else 4041 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4042 4043 queue_index = netdev_cap_txqueue(dev, queue_index); 4044 } 4045 4046 skb_set_queue_mapping(skb, queue_index); 4047 return netdev_get_tx_queue(dev, queue_index); 4048 } 4049 4050 /** 4051 * __dev_queue_xmit - transmit a buffer 4052 * @skb: buffer to transmit 4053 * @sb_dev: suboordinate device used for L2 forwarding offload 4054 * 4055 * Queue a buffer for transmission to a network device. The caller must 4056 * have set the device and priority and built the buffer before calling 4057 * this function. The function can be called from an interrupt. 4058 * 4059 * A negative errno code is returned on a failure. A success does not 4060 * guarantee the frame will be transmitted as it may be dropped due 4061 * to congestion or traffic shaping. 4062 * 4063 * ----------------------------------------------------------------------------------- 4064 * I notice this method can also return errors from the queue disciplines, 4065 * including NET_XMIT_DROP, which is a positive value. So, errors can also 4066 * be positive. 4067 * 4068 * Regardless of the return value, the skb is consumed, so it is currently 4069 * difficult to retry a send to this method. (You can bump the ref count 4070 * before sending to hold a reference for retry if you are careful.) 4071 * 4072 * When calling this method, interrupts MUST be enabled. This is because 4073 * the BH enable code must have IRQs enabled so that it will not deadlock. 4074 * --BLG 4075 */ 4076 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4077 { 4078 struct net_device *dev = skb->dev; 4079 struct netdev_queue *txq; 4080 struct Qdisc *q; 4081 int rc = -ENOMEM; 4082 bool again = false; 4083 4084 skb_reset_mac_header(skb); 4085 4086 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4087 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4088 4089 /* Disable soft irqs for various locks below. Also 4090 * stops preemption for RCU. 4091 */ 4092 rcu_read_lock_bh(); 4093 4094 skb_update_prio(skb); 4095 4096 qdisc_pkt_len_init(skb); 4097 #ifdef CONFIG_NET_CLS_ACT 4098 skb->tc_at_ingress = 0; 4099 # ifdef CONFIG_NET_EGRESS 4100 if (static_branch_unlikely(&egress_needed_key)) { 4101 skb = sch_handle_egress(skb, &rc, dev); 4102 if (!skb) 4103 goto out; 4104 } 4105 # endif 4106 #endif 4107 /* If device/qdisc don't need skb->dst, release it right now while 4108 * its hot in this cpu cache. 4109 */ 4110 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4111 skb_dst_drop(skb); 4112 else 4113 skb_dst_force(skb); 4114 4115 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4116 q = rcu_dereference_bh(txq->qdisc); 4117 4118 trace_net_dev_queue(skb); 4119 if (q->enqueue) { 4120 rc = __dev_xmit_skb(skb, q, dev, txq); 4121 goto out; 4122 } 4123 4124 /* The device has no queue. Common case for software devices: 4125 * loopback, all the sorts of tunnels... 4126 4127 * Really, it is unlikely that netif_tx_lock protection is necessary 4128 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4129 * counters.) 4130 * However, it is possible, that they rely on protection 4131 * made by us here. 4132 4133 * Check this and shot the lock. It is not prone from deadlocks. 4134 *Either shot noqueue qdisc, it is even simpler 8) 4135 */ 4136 if (dev->flags & IFF_UP) { 4137 int cpu = smp_processor_id(); /* ok because BHs are off */ 4138 4139 if (txq->xmit_lock_owner != cpu) { 4140 if (dev_xmit_recursion()) 4141 goto recursion_alert; 4142 4143 skb = validate_xmit_skb(skb, dev, &again); 4144 if (!skb) 4145 goto out; 4146 4147 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4148 HARD_TX_LOCK(dev, txq, cpu); 4149 4150 if (!netif_xmit_stopped(txq)) { 4151 dev_xmit_recursion_inc(); 4152 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4153 dev_xmit_recursion_dec(); 4154 if (dev_xmit_complete(rc)) { 4155 HARD_TX_UNLOCK(dev, txq); 4156 goto out; 4157 } 4158 } 4159 HARD_TX_UNLOCK(dev, txq); 4160 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4161 dev->name); 4162 } else { 4163 /* Recursion is detected! It is possible, 4164 * unfortunately 4165 */ 4166 recursion_alert: 4167 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4168 dev->name); 4169 } 4170 } 4171 4172 rc = -ENETDOWN; 4173 rcu_read_unlock_bh(); 4174 4175 atomic_long_inc(&dev->tx_dropped); 4176 kfree_skb_list(skb); 4177 return rc; 4178 out: 4179 rcu_read_unlock_bh(); 4180 return rc; 4181 } 4182 4183 int dev_queue_xmit(struct sk_buff *skb) 4184 { 4185 return __dev_queue_xmit(skb, NULL); 4186 } 4187 EXPORT_SYMBOL(dev_queue_xmit); 4188 4189 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 4190 { 4191 return __dev_queue_xmit(skb, sb_dev); 4192 } 4193 EXPORT_SYMBOL(dev_queue_xmit_accel); 4194 4195 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4196 { 4197 struct net_device *dev = skb->dev; 4198 struct sk_buff *orig_skb = skb; 4199 struct netdev_queue *txq; 4200 int ret = NETDEV_TX_BUSY; 4201 bool again = false; 4202 4203 if (unlikely(!netif_running(dev) || 4204 !netif_carrier_ok(dev))) 4205 goto drop; 4206 4207 skb = validate_xmit_skb_list(skb, dev, &again); 4208 if (skb != orig_skb) 4209 goto drop; 4210 4211 skb_set_queue_mapping(skb, queue_id); 4212 txq = skb_get_tx_queue(dev, skb); 4213 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4214 4215 local_bh_disable(); 4216 4217 dev_xmit_recursion_inc(); 4218 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4219 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4220 ret = netdev_start_xmit(skb, dev, txq, false); 4221 HARD_TX_UNLOCK(dev, txq); 4222 dev_xmit_recursion_dec(); 4223 4224 local_bh_enable(); 4225 return ret; 4226 drop: 4227 atomic_long_inc(&dev->tx_dropped); 4228 kfree_skb_list(skb); 4229 return NET_XMIT_DROP; 4230 } 4231 EXPORT_SYMBOL(__dev_direct_xmit); 4232 4233 /************************************************************************* 4234 * Receiver routines 4235 *************************************************************************/ 4236 4237 int netdev_max_backlog __read_mostly = 1000; 4238 EXPORT_SYMBOL(netdev_max_backlog); 4239 4240 int netdev_tstamp_prequeue __read_mostly = 1; 4241 int netdev_budget __read_mostly = 300; 4242 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4243 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4244 int weight_p __read_mostly = 64; /* old backlog weight */ 4245 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4246 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4247 int dev_rx_weight __read_mostly = 64; 4248 int dev_tx_weight __read_mostly = 64; 4249 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */ 4250 int gro_normal_batch __read_mostly = 8; 4251 4252 /* Called with irq disabled */ 4253 static inline void ____napi_schedule(struct softnet_data *sd, 4254 struct napi_struct *napi) 4255 { 4256 list_add_tail(&napi->poll_list, &sd->poll_list); 4257 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4258 } 4259 4260 #ifdef CONFIG_RPS 4261 4262 /* One global table that all flow-based protocols share. */ 4263 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4264 EXPORT_SYMBOL(rps_sock_flow_table); 4265 u32 rps_cpu_mask __read_mostly; 4266 EXPORT_SYMBOL(rps_cpu_mask); 4267 4268 struct static_key_false rps_needed __read_mostly; 4269 EXPORT_SYMBOL(rps_needed); 4270 struct static_key_false rfs_needed __read_mostly; 4271 EXPORT_SYMBOL(rfs_needed); 4272 4273 static struct rps_dev_flow * 4274 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4275 struct rps_dev_flow *rflow, u16 next_cpu) 4276 { 4277 if (next_cpu < nr_cpu_ids) { 4278 #ifdef CONFIG_RFS_ACCEL 4279 struct netdev_rx_queue *rxqueue; 4280 struct rps_dev_flow_table *flow_table; 4281 struct rps_dev_flow *old_rflow; 4282 u32 flow_id; 4283 u16 rxq_index; 4284 int rc; 4285 4286 /* Should we steer this flow to a different hardware queue? */ 4287 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4288 !(dev->features & NETIF_F_NTUPLE)) 4289 goto out; 4290 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4291 if (rxq_index == skb_get_rx_queue(skb)) 4292 goto out; 4293 4294 rxqueue = dev->_rx + rxq_index; 4295 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4296 if (!flow_table) 4297 goto out; 4298 flow_id = skb_get_hash(skb) & flow_table->mask; 4299 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4300 rxq_index, flow_id); 4301 if (rc < 0) 4302 goto out; 4303 old_rflow = rflow; 4304 rflow = &flow_table->flows[flow_id]; 4305 rflow->filter = rc; 4306 if (old_rflow->filter == rflow->filter) 4307 old_rflow->filter = RPS_NO_FILTER; 4308 out: 4309 #endif 4310 rflow->last_qtail = 4311 per_cpu(softnet_data, next_cpu).input_queue_head; 4312 } 4313 4314 rflow->cpu = next_cpu; 4315 return rflow; 4316 } 4317 4318 /* 4319 * get_rps_cpu is called from netif_receive_skb and returns the target 4320 * CPU from the RPS map of the receiving queue for a given skb. 4321 * rcu_read_lock must be held on entry. 4322 */ 4323 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4324 struct rps_dev_flow **rflowp) 4325 { 4326 const struct rps_sock_flow_table *sock_flow_table; 4327 struct netdev_rx_queue *rxqueue = dev->_rx; 4328 struct rps_dev_flow_table *flow_table; 4329 struct rps_map *map; 4330 int cpu = -1; 4331 u32 tcpu; 4332 u32 hash; 4333 4334 if (skb_rx_queue_recorded(skb)) { 4335 u16 index = skb_get_rx_queue(skb); 4336 4337 if (unlikely(index >= dev->real_num_rx_queues)) { 4338 WARN_ONCE(dev->real_num_rx_queues > 1, 4339 "%s received packet on queue %u, but number " 4340 "of RX queues is %u\n", 4341 dev->name, index, dev->real_num_rx_queues); 4342 goto done; 4343 } 4344 rxqueue += index; 4345 } 4346 4347 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4348 4349 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4350 map = rcu_dereference(rxqueue->rps_map); 4351 if (!flow_table && !map) 4352 goto done; 4353 4354 skb_reset_network_header(skb); 4355 hash = skb_get_hash(skb); 4356 if (!hash) 4357 goto done; 4358 4359 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4360 if (flow_table && sock_flow_table) { 4361 struct rps_dev_flow *rflow; 4362 u32 next_cpu; 4363 u32 ident; 4364 4365 /* First check into global flow table if there is a match */ 4366 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4367 if ((ident ^ hash) & ~rps_cpu_mask) 4368 goto try_rps; 4369 4370 next_cpu = ident & rps_cpu_mask; 4371 4372 /* OK, now we know there is a match, 4373 * we can look at the local (per receive queue) flow table 4374 */ 4375 rflow = &flow_table->flows[hash & flow_table->mask]; 4376 tcpu = rflow->cpu; 4377 4378 /* 4379 * If the desired CPU (where last recvmsg was done) is 4380 * different from current CPU (one in the rx-queue flow 4381 * table entry), switch if one of the following holds: 4382 * - Current CPU is unset (>= nr_cpu_ids). 4383 * - Current CPU is offline. 4384 * - The current CPU's queue tail has advanced beyond the 4385 * last packet that was enqueued using this table entry. 4386 * This guarantees that all previous packets for the flow 4387 * have been dequeued, thus preserving in order delivery. 4388 */ 4389 if (unlikely(tcpu != next_cpu) && 4390 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4391 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4392 rflow->last_qtail)) >= 0)) { 4393 tcpu = next_cpu; 4394 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4395 } 4396 4397 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4398 *rflowp = rflow; 4399 cpu = tcpu; 4400 goto done; 4401 } 4402 } 4403 4404 try_rps: 4405 4406 if (map) { 4407 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4408 if (cpu_online(tcpu)) { 4409 cpu = tcpu; 4410 goto done; 4411 } 4412 } 4413 4414 done: 4415 return cpu; 4416 } 4417 4418 #ifdef CONFIG_RFS_ACCEL 4419 4420 /** 4421 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4422 * @dev: Device on which the filter was set 4423 * @rxq_index: RX queue index 4424 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4425 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4426 * 4427 * Drivers that implement ndo_rx_flow_steer() should periodically call 4428 * this function for each installed filter and remove the filters for 4429 * which it returns %true. 4430 */ 4431 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4432 u32 flow_id, u16 filter_id) 4433 { 4434 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4435 struct rps_dev_flow_table *flow_table; 4436 struct rps_dev_flow *rflow; 4437 bool expire = true; 4438 unsigned int cpu; 4439 4440 rcu_read_lock(); 4441 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4442 if (flow_table && flow_id <= flow_table->mask) { 4443 rflow = &flow_table->flows[flow_id]; 4444 cpu = READ_ONCE(rflow->cpu); 4445 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4446 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4447 rflow->last_qtail) < 4448 (int)(10 * flow_table->mask))) 4449 expire = false; 4450 } 4451 rcu_read_unlock(); 4452 return expire; 4453 } 4454 EXPORT_SYMBOL(rps_may_expire_flow); 4455 4456 #endif /* CONFIG_RFS_ACCEL */ 4457 4458 /* Called from hardirq (IPI) context */ 4459 static void rps_trigger_softirq(void *data) 4460 { 4461 struct softnet_data *sd = data; 4462 4463 ____napi_schedule(sd, &sd->backlog); 4464 sd->received_rps++; 4465 } 4466 4467 #endif /* CONFIG_RPS */ 4468 4469 /* 4470 * Check if this softnet_data structure is another cpu one 4471 * If yes, queue it to our IPI list and return 1 4472 * If no, return 0 4473 */ 4474 static int rps_ipi_queued(struct softnet_data *sd) 4475 { 4476 #ifdef CONFIG_RPS 4477 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4478 4479 if (sd != mysd) { 4480 sd->rps_ipi_next = mysd->rps_ipi_list; 4481 mysd->rps_ipi_list = sd; 4482 4483 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4484 return 1; 4485 } 4486 #endif /* CONFIG_RPS */ 4487 return 0; 4488 } 4489 4490 #ifdef CONFIG_NET_FLOW_LIMIT 4491 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4492 #endif 4493 4494 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4495 { 4496 #ifdef CONFIG_NET_FLOW_LIMIT 4497 struct sd_flow_limit *fl; 4498 struct softnet_data *sd; 4499 unsigned int old_flow, new_flow; 4500 4501 if (qlen < (netdev_max_backlog >> 1)) 4502 return false; 4503 4504 sd = this_cpu_ptr(&softnet_data); 4505 4506 rcu_read_lock(); 4507 fl = rcu_dereference(sd->flow_limit); 4508 if (fl) { 4509 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4510 old_flow = fl->history[fl->history_head]; 4511 fl->history[fl->history_head] = new_flow; 4512 4513 fl->history_head++; 4514 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4515 4516 if (likely(fl->buckets[old_flow])) 4517 fl->buckets[old_flow]--; 4518 4519 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4520 fl->count++; 4521 rcu_read_unlock(); 4522 return true; 4523 } 4524 } 4525 rcu_read_unlock(); 4526 #endif 4527 return false; 4528 } 4529 4530 /* 4531 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4532 * queue (may be a remote CPU queue). 4533 */ 4534 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4535 unsigned int *qtail) 4536 { 4537 struct softnet_data *sd; 4538 unsigned long flags; 4539 unsigned int qlen; 4540 4541 sd = &per_cpu(softnet_data, cpu); 4542 4543 local_irq_save(flags); 4544 4545 rps_lock(sd); 4546 if (!netif_running(skb->dev)) 4547 goto drop; 4548 qlen = skb_queue_len(&sd->input_pkt_queue); 4549 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4550 if (qlen) { 4551 enqueue: 4552 __skb_queue_tail(&sd->input_pkt_queue, skb); 4553 input_queue_tail_incr_save(sd, qtail); 4554 rps_unlock(sd); 4555 local_irq_restore(flags); 4556 return NET_RX_SUCCESS; 4557 } 4558 4559 /* Schedule NAPI for backlog device 4560 * We can use non atomic operation since we own the queue lock 4561 */ 4562 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4563 if (!rps_ipi_queued(sd)) 4564 ____napi_schedule(sd, &sd->backlog); 4565 } 4566 goto enqueue; 4567 } 4568 4569 drop: 4570 sd->dropped++; 4571 rps_unlock(sd); 4572 4573 local_irq_restore(flags); 4574 4575 atomic_long_inc(&skb->dev->rx_dropped); 4576 kfree_skb(skb); 4577 return NET_RX_DROP; 4578 } 4579 4580 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4581 { 4582 struct net_device *dev = skb->dev; 4583 struct netdev_rx_queue *rxqueue; 4584 4585 rxqueue = dev->_rx; 4586 4587 if (skb_rx_queue_recorded(skb)) { 4588 u16 index = skb_get_rx_queue(skb); 4589 4590 if (unlikely(index >= dev->real_num_rx_queues)) { 4591 WARN_ONCE(dev->real_num_rx_queues > 1, 4592 "%s received packet on queue %u, but number " 4593 "of RX queues is %u\n", 4594 dev->name, index, dev->real_num_rx_queues); 4595 4596 return rxqueue; /* Return first rxqueue */ 4597 } 4598 rxqueue += index; 4599 } 4600 return rxqueue; 4601 } 4602 4603 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4604 struct xdp_buff *xdp, 4605 struct bpf_prog *xdp_prog) 4606 { 4607 void *orig_data, *orig_data_end, *hard_start; 4608 struct netdev_rx_queue *rxqueue; 4609 u32 metalen, act = XDP_DROP; 4610 u32 mac_len, frame_sz; 4611 __be16 orig_eth_type; 4612 struct ethhdr *eth; 4613 bool orig_bcast; 4614 int off; 4615 4616 /* Reinjected packets coming from act_mirred or similar should 4617 * not get XDP generic processing. 4618 */ 4619 if (skb_is_redirected(skb)) 4620 return XDP_PASS; 4621 4622 /* XDP packets must be linear and must have sufficient headroom 4623 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4624 * native XDP provides, thus we need to do it here as well. 4625 */ 4626 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4627 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4628 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4629 int troom = skb->tail + skb->data_len - skb->end; 4630 4631 /* In case we have to go down the path and also linearize, 4632 * then lets do the pskb_expand_head() work just once here. 4633 */ 4634 if (pskb_expand_head(skb, 4635 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4636 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4637 goto do_drop; 4638 if (skb_linearize(skb)) 4639 goto do_drop; 4640 } 4641 4642 /* The XDP program wants to see the packet starting at the MAC 4643 * header. 4644 */ 4645 mac_len = skb->data - skb_mac_header(skb); 4646 hard_start = skb->data - skb_headroom(skb); 4647 4648 /* SKB "head" area always have tailroom for skb_shared_info */ 4649 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 4650 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4651 4652 rxqueue = netif_get_rxqueue(skb); 4653 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 4654 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 4655 skb_headlen(skb) + mac_len, true); 4656 4657 orig_data_end = xdp->data_end; 4658 orig_data = xdp->data; 4659 eth = (struct ethhdr *)xdp->data; 4660 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4661 orig_eth_type = eth->h_proto; 4662 4663 act = bpf_prog_run_xdp(xdp_prog, xdp); 4664 4665 /* check if bpf_xdp_adjust_head was used */ 4666 off = xdp->data - orig_data; 4667 if (off) { 4668 if (off > 0) 4669 __skb_pull(skb, off); 4670 else if (off < 0) 4671 __skb_push(skb, -off); 4672 4673 skb->mac_header += off; 4674 skb_reset_network_header(skb); 4675 } 4676 4677 /* check if bpf_xdp_adjust_tail was used */ 4678 off = xdp->data_end - orig_data_end; 4679 if (off != 0) { 4680 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4681 skb->len += off; /* positive on grow, negative on shrink */ 4682 } 4683 4684 /* check if XDP changed eth hdr such SKB needs update */ 4685 eth = (struct ethhdr *)xdp->data; 4686 if ((orig_eth_type != eth->h_proto) || 4687 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4688 __skb_push(skb, ETH_HLEN); 4689 skb->protocol = eth_type_trans(skb, skb->dev); 4690 } 4691 4692 switch (act) { 4693 case XDP_REDIRECT: 4694 case XDP_TX: 4695 __skb_push(skb, mac_len); 4696 break; 4697 case XDP_PASS: 4698 metalen = xdp->data - xdp->data_meta; 4699 if (metalen) 4700 skb_metadata_set(skb, metalen); 4701 break; 4702 default: 4703 bpf_warn_invalid_xdp_action(act); 4704 fallthrough; 4705 case XDP_ABORTED: 4706 trace_xdp_exception(skb->dev, xdp_prog, act); 4707 fallthrough; 4708 case XDP_DROP: 4709 do_drop: 4710 kfree_skb(skb); 4711 break; 4712 } 4713 4714 return act; 4715 } 4716 4717 /* When doing generic XDP we have to bypass the qdisc layer and the 4718 * network taps in order to match in-driver-XDP behavior. 4719 */ 4720 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4721 { 4722 struct net_device *dev = skb->dev; 4723 struct netdev_queue *txq; 4724 bool free_skb = true; 4725 int cpu, rc; 4726 4727 txq = netdev_core_pick_tx(dev, skb, NULL); 4728 cpu = smp_processor_id(); 4729 HARD_TX_LOCK(dev, txq, cpu); 4730 if (!netif_xmit_stopped(txq)) { 4731 rc = netdev_start_xmit(skb, dev, txq, 0); 4732 if (dev_xmit_complete(rc)) 4733 free_skb = false; 4734 } 4735 HARD_TX_UNLOCK(dev, txq); 4736 if (free_skb) { 4737 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4738 kfree_skb(skb); 4739 } 4740 } 4741 4742 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4743 4744 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4745 { 4746 if (xdp_prog) { 4747 struct xdp_buff xdp; 4748 u32 act; 4749 int err; 4750 4751 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4752 if (act != XDP_PASS) { 4753 switch (act) { 4754 case XDP_REDIRECT: 4755 err = xdp_do_generic_redirect(skb->dev, skb, 4756 &xdp, xdp_prog); 4757 if (err) 4758 goto out_redir; 4759 break; 4760 case XDP_TX: 4761 generic_xdp_tx(skb, xdp_prog); 4762 break; 4763 } 4764 return XDP_DROP; 4765 } 4766 } 4767 return XDP_PASS; 4768 out_redir: 4769 kfree_skb(skb); 4770 return XDP_DROP; 4771 } 4772 EXPORT_SYMBOL_GPL(do_xdp_generic); 4773 4774 static int netif_rx_internal(struct sk_buff *skb) 4775 { 4776 int ret; 4777 4778 net_timestamp_check(netdev_tstamp_prequeue, skb); 4779 4780 trace_netif_rx(skb); 4781 4782 #ifdef CONFIG_RPS 4783 if (static_branch_unlikely(&rps_needed)) { 4784 struct rps_dev_flow voidflow, *rflow = &voidflow; 4785 int cpu; 4786 4787 preempt_disable(); 4788 rcu_read_lock(); 4789 4790 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4791 if (cpu < 0) 4792 cpu = smp_processor_id(); 4793 4794 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4795 4796 rcu_read_unlock(); 4797 preempt_enable(); 4798 } else 4799 #endif 4800 { 4801 unsigned int qtail; 4802 4803 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4804 put_cpu(); 4805 } 4806 return ret; 4807 } 4808 4809 /** 4810 * netif_rx - post buffer to the network code 4811 * @skb: buffer to post 4812 * 4813 * This function receives a packet from a device driver and queues it for 4814 * the upper (protocol) levels to process. It always succeeds. The buffer 4815 * may be dropped during processing for congestion control or by the 4816 * protocol layers. 4817 * 4818 * return values: 4819 * NET_RX_SUCCESS (no congestion) 4820 * NET_RX_DROP (packet was dropped) 4821 * 4822 */ 4823 4824 int netif_rx(struct sk_buff *skb) 4825 { 4826 int ret; 4827 4828 trace_netif_rx_entry(skb); 4829 4830 ret = netif_rx_internal(skb); 4831 trace_netif_rx_exit(ret); 4832 4833 return ret; 4834 } 4835 EXPORT_SYMBOL(netif_rx); 4836 4837 int netif_rx_ni(struct sk_buff *skb) 4838 { 4839 int err; 4840 4841 trace_netif_rx_ni_entry(skb); 4842 4843 preempt_disable(); 4844 err = netif_rx_internal(skb); 4845 if (local_softirq_pending()) 4846 do_softirq(); 4847 preempt_enable(); 4848 trace_netif_rx_ni_exit(err); 4849 4850 return err; 4851 } 4852 EXPORT_SYMBOL(netif_rx_ni); 4853 4854 int netif_rx_any_context(struct sk_buff *skb) 4855 { 4856 /* 4857 * If invoked from contexts which do not invoke bottom half 4858 * processing either at return from interrupt or when softrqs are 4859 * reenabled, use netif_rx_ni() which invokes bottomhalf processing 4860 * directly. 4861 */ 4862 if (in_interrupt()) 4863 return netif_rx(skb); 4864 else 4865 return netif_rx_ni(skb); 4866 } 4867 EXPORT_SYMBOL(netif_rx_any_context); 4868 4869 static __latent_entropy void net_tx_action(struct softirq_action *h) 4870 { 4871 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4872 4873 if (sd->completion_queue) { 4874 struct sk_buff *clist; 4875 4876 local_irq_disable(); 4877 clist = sd->completion_queue; 4878 sd->completion_queue = NULL; 4879 local_irq_enable(); 4880 4881 while (clist) { 4882 struct sk_buff *skb = clist; 4883 4884 clist = clist->next; 4885 4886 WARN_ON(refcount_read(&skb->users)); 4887 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4888 trace_consume_skb(skb); 4889 else 4890 trace_kfree_skb(skb, net_tx_action); 4891 4892 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4893 __kfree_skb(skb); 4894 else 4895 __kfree_skb_defer(skb); 4896 } 4897 4898 __kfree_skb_flush(); 4899 } 4900 4901 if (sd->output_queue) { 4902 struct Qdisc *head; 4903 4904 local_irq_disable(); 4905 head = sd->output_queue; 4906 sd->output_queue = NULL; 4907 sd->output_queue_tailp = &sd->output_queue; 4908 local_irq_enable(); 4909 4910 while (head) { 4911 struct Qdisc *q = head; 4912 spinlock_t *root_lock = NULL; 4913 4914 head = head->next_sched; 4915 4916 if (!(q->flags & TCQ_F_NOLOCK)) { 4917 root_lock = qdisc_lock(q); 4918 spin_lock(root_lock); 4919 } 4920 /* We need to make sure head->next_sched is read 4921 * before clearing __QDISC_STATE_SCHED 4922 */ 4923 smp_mb__before_atomic(); 4924 clear_bit(__QDISC_STATE_SCHED, &q->state); 4925 qdisc_run(q); 4926 if (root_lock) 4927 spin_unlock(root_lock); 4928 } 4929 } 4930 4931 xfrm_dev_backlog(sd); 4932 } 4933 4934 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4935 /* This hook is defined here for ATM LANE */ 4936 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4937 unsigned char *addr) __read_mostly; 4938 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4939 #endif 4940 4941 static inline struct sk_buff * 4942 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4943 struct net_device *orig_dev, bool *another) 4944 { 4945 #ifdef CONFIG_NET_CLS_ACT 4946 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4947 struct tcf_result cl_res; 4948 4949 /* If there's at least one ingress present somewhere (so 4950 * we get here via enabled static key), remaining devices 4951 * that are not configured with an ingress qdisc will bail 4952 * out here. 4953 */ 4954 if (!miniq) 4955 return skb; 4956 4957 if (*pt_prev) { 4958 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4959 *pt_prev = NULL; 4960 } 4961 4962 qdisc_skb_cb(skb)->pkt_len = skb->len; 4963 qdisc_skb_cb(skb)->mru = 0; 4964 qdisc_skb_cb(skb)->post_ct = false; 4965 skb->tc_at_ingress = 1; 4966 mini_qdisc_bstats_cpu_update(miniq, skb); 4967 4968 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list, 4969 &cl_res, false)) { 4970 case TC_ACT_OK: 4971 case TC_ACT_RECLASSIFY: 4972 skb->tc_index = TC_H_MIN(cl_res.classid); 4973 break; 4974 case TC_ACT_SHOT: 4975 mini_qdisc_qstats_cpu_drop(miniq); 4976 kfree_skb(skb); 4977 return NULL; 4978 case TC_ACT_STOLEN: 4979 case TC_ACT_QUEUED: 4980 case TC_ACT_TRAP: 4981 consume_skb(skb); 4982 return NULL; 4983 case TC_ACT_REDIRECT: 4984 /* skb_mac_header check was done by cls/act_bpf, so 4985 * we can safely push the L2 header back before 4986 * redirecting to another netdev 4987 */ 4988 __skb_push(skb, skb->mac_len); 4989 if (skb_do_redirect(skb) == -EAGAIN) { 4990 __skb_pull(skb, skb->mac_len); 4991 *another = true; 4992 break; 4993 } 4994 return NULL; 4995 case TC_ACT_CONSUMED: 4996 return NULL; 4997 default: 4998 break; 4999 } 5000 #endif /* CONFIG_NET_CLS_ACT */ 5001 return skb; 5002 } 5003 5004 /** 5005 * netdev_is_rx_handler_busy - check if receive handler is registered 5006 * @dev: device to check 5007 * 5008 * Check if a receive handler is already registered for a given device. 5009 * Return true if there one. 5010 * 5011 * The caller must hold the rtnl_mutex. 5012 */ 5013 bool netdev_is_rx_handler_busy(struct net_device *dev) 5014 { 5015 ASSERT_RTNL(); 5016 return dev && rtnl_dereference(dev->rx_handler); 5017 } 5018 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5019 5020 /** 5021 * netdev_rx_handler_register - register receive handler 5022 * @dev: device to register a handler for 5023 * @rx_handler: receive handler to register 5024 * @rx_handler_data: data pointer that is used by rx handler 5025 * 5026 * Register a receive handler for a device. This handler will then be 5027 * called from __netif_receive_skb. A negative errno code is returned 5028 * on a failure. 5029 * 5030 * The caller must hold the rtnl_mutex. 5031 * 5032 * For a general description of rx_handler, see enum rx_handler_result. 5033 */ 5034 int netdev_rx_handler_register(struct net_device *dev, 5035 rx_handler_func_t *rx_handler, 5036 void *rx_handler_data) 5037 { 5038 if (netdev_is_rx_handler_busy(dev)) 5039 return -EBUSY; 5040 5041 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5042 return -EINVAL; 5043 5044 /* Note: rx_handler_data must be set before rx_handler */ 5045 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5046 rcu_assign_pointer(dev->rx_handler, rx_handler); 5047 5048 return 0; 5049 } 5050 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5051 5052 /** 5053 * netdev_rx_handler_unregister - unregister receive handler 5054 * @dev: device to unregister a handler from 5055 * 5056 * Unregister a receive handler from a device. 5057 * 5058 * The caller must hold the rtnl_mutex. 5059 */ 5060 void netdev_rx_handler_unregister(struct net_device *dev) 5061 { 5062 5063 ASSERT_RTNL(); 5064 RCU_INIT_POINTER(dev->rx_handler, NULL); 5065 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5066 * section has a guarantee to see a non NULL rx_handler_data 5067 * as well. 5068 */ 5069 synchronize_net(); 5070 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5071 } 5072 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5073 5074 /* 5075 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5076 * the special handling of PFMEMALLOC skbs. 5077 */ 5078 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5079 { 5080 switch (skb->protocol) { 5081 case htons(ETH_P_ARP): 5082 case htons(ETH_P_IP): 5083 case htons(ETH_P_IPV6): 5084 case htons(ETH_P_8021Q): 5085 case htons(ETH_P_8021AD): 5086 return true; 5087 default: 5088 return false; 5089 } 5090 } 5091 5092 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5093 int *ret, struct net_device *orig_dev) 5094 { 5095 if (nf_hook_ingress_active(skb)) { 5096 int ingress_retval; 5097 5098 if (*pt_prev) { 5099 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5100 *pt_prev = NULL; 5101 } 5102 5103 rcu_read_lock(); 5104 ingress_retval = nf_hook_ingress(skb); 5105 rcu_read_unlock(); 5106 return ingress_retval; 5107 } 5108 return 0; 5109 } 5110 5111 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5112 struct packet_type **ppt_prev) 5113 { 5114 struct packet_type *ptype, *pt_prev; 5115 rx_handler_func_t *rx_handler; 5116 struct sk_buff *skb = *pskb; 5117 struct net_device *orig_dev; 5118 bool deliver_exact = false; 5119 int ret = NET_RX_DROP; 5120 __be16 type; 5121 5122 net_timestamp_check(!netdev_tstamp_prequeue, skb); 5123 5124 trace_netif_receive_skb(skb); 5125 5126 orig_dev = skb->dev; 5127 5128 skb_reset_network_header(skb); 5129 if (!skb_transport_header_was_set(skb)) 5130 skb_reset_transport_header(skb); 5131 skb_reset_mac_len(skb); 5132 5133 pt_prev = NULL; 5134 5135 another_round: 5136 skb->skb_iif = skb->dev->ifindex; 5137 5138 __this_cpu_inc(softnet_data.processed); 5139 5140 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5141 int ret2; 5142 5143 preempt_disable(); 5144 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5145 preempt_enable(); 5146 5147 if (ret2 != XDP_PASS) { 5148 ret = NET_RX_DROP; 5149 goto out; 5150 } 5151 skb_reset_mac_len(skb); 5152 } 5153 5154 if (eth_type_vlan(skb->protocol)) { 5155 skb = skb_vlan_untag(skb); 5156 if (unlikely(!skb)) 5157 goto out; 5158 } 5159 5160 if (skb_skip_tc_classify(skb)) 5161 goto skip_classify; 5162 5163 if (pfmemalloc) 5164 goto skip_taps; 5165 5166 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5167 if (pt_prev) 5168 ret = deliver_skb(skb, pt_prev, orig_dev); 5169 pt_prev = ptype; 5170 } 5171 5172 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5173 if (pt_prev) 5174 ret = deliver_skb(skb, pt_prev, orig_dev); 5175 pt_prev = ptype; 5176 } 5177 5178 skip_taps: 5179 #ifdef CONFIG_NET_INGRESS 5180 if (static_branch_unlikely(&ingress_needed_key)) { 5181 bool another = false; 5182 5183 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5184 &another); 5185 if (another) 5186 goto another_round; 5187 if (!skb) 5188 goto out; 5189 5190 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5191 goto out; 5192 } 5193 #endif 5194 skb_reset_redirect(skb); 5195 skip_classify: 5196 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5197 goto drop; 5198 5199 if (skb_vlan_tag_present(skb)) { 5200 if (pt_prev) { 5201 ret = deliver_skb(skb, pt_prev, orig_dev); 5202 pt_prev = NULL; 5203 } 5204 if (vlan_do_receive(&skb)) 5205 goto another_round; 5206 else if (unlikely(!skb)) 5207 goto out; 5208 } 5209 5210 rx_handler = rcu_dereference(skb->dev->rx_handler); 5211 if (rx_handler) { 5212 if (pt_prev) { 5213 ret = deliver_skb(skb, pt_prev, orig_dev); 5214 pt_prev = NULL; 5215 } 5216 switch (rx_handler(&skb)) { 5217 case RX_HANDLER_CONSUMED: 5218 ret = NET_RX_SUCCESS; 5219 goto out; 5220 case RX_HANDLER_ANOTHER: 5221 goto another_round; 5222 case RX_HANDLER_EXACT: 5223 deliver_exact = true; 5224 case RX_HANDLER_PASS: 5225 break; 5226 default: 5227 BUG(); 5228 } 5229 } 5230 5231 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5232 check_vlan_id: 5233 if (skb_vlan_tag_get_id(skb)) { 5234 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5235 * find vlan device. 5236 */ 5237 skb->pkt_type = PACKET_OTHERHOST; 5238 } else if (eth_type_vlan(skb->protocol)) { 5239 /* Outer header is 802.1P with vlan 0, inner header is 5240 * 802.1Q or 802.1AD and vlan_do_receive() above could 5241 * not find vlan dev for vlan id 0. 5242 */ 5243 __vlan_hwaccel_clear_tag(skb); 5244 skb = skb_vlan_untag(skb); 5245 if (unlikely(!skb)) 5246 goto out; 5247 if (vlan_do_receive(&skb)) 5248 /* After stripping off 802.1P header with vlan 0 5249 * vlan dev is found for inner header. 5250 */ 5251 goto another_round; 5252 else if (unlikely(!skb)) 5253 goto out; 5254 else 5255 /* We have stripped outer 802.1P vlan 0 header. 5256 * But could not find vlan dev. 5257 * check again for vlan id to set OTHERHOST. 5258 */ 5259 goto check_vlan_id; 5260 } 5261 /* Note: we might in the future use prio bits 5262 * and set skb->priority like in vlan_do_receive() 5263 * For the time being, just ignore Priority Code Point 5264 */ 5265 __vlan_hwaccel_clear_tag(skb); 5266 } 5267 5268 type = skb->protocol; 5269 5270 /* deliver only exact match when indicated */ 5271 if (likely(!deliver_exact)) { 5272 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5273 &ptype_base[ntohs(type) & 5274 PTYPE_HASH_MASK]); 5275 } 5276 5277 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5278 &orig_dev->ptype_specific); 5279 5280 if (unlikely(skb->dev != orig_dev)) { 5281 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5282 &skb->dev->ptype_specific); 5283 } 5284 5285 if (pt_prev) { 5286 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5287 goto drop; 5288 *ppt_prev = pt_prev; 5289 } else { 5290 drop: 5291 if (!deliver_exact) 5292 atomic_long_inc(&skb->dev->rx_dropped); 5293 else 5294 atomic_long_inc(&skb->dev->rx_nohandler); 5295 kfree_skb(skb); 5296 /* Jamal, now you will not able to escape explaining 5297 * me how you were going to use this. :-) 5298 */ 5299 ret = NET_RX_DROP; 5300 } 5301 5302 out: 5303 /* The invariant here is that if *ppt_prev is not NULL 5304 * then skb should also be non-NULL. 5305 * 5306 * Apparently *ppt_prev assignment above holds this invariant due to 5307 * skb dereferencing near it. 5308 */ 5309 *pskb = skb; 5310 return ret; 5311 } 5312 5313 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5314 { 5315 struct net_device *orig_dev = skb->dev; 5316 struct packet_type *pt_prev = NULL; 5317 int ret; 5318 5319 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5320 if (pt_prev) 5321 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5322 skb->dev, pt_prev, orig_dev); 5323 return ret; 5324 } 5325 5326 /** 5327 * netif_receive_skb_core - special purpose version of netif_receive_skb 5328 * @skb: buffer to process 5329 * 5330 * More direct receive version of netif_receive_skb(). It should 5331 * only be used by callers that have a need to skip RPS and Generic XDP. 5332 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5333 * 5334 * This function may only be called from softirq context and interrupts 5335 * should be enabled. 5336 * 5337 * Return values (usually ignored): 5338 * NET_RX_SUCCESS: no congestion 5339 * NET_RX_DROP: packet was dropped 5340 */ 5341 int netif_receive_skb_core(struct sk_buff *skb) 5342 { 5343 int ret; 5344 5345 rcu_read_lock(); 5346 ret = __netif_receive_skb_one_core(skb, false); 5347 rcu_read_unlock(); 5348 5349 return ret; 5350 } 5351 EXPORT_SYMBOL(netif_receive_skb_core); 5352 5353 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5354 struct packet_type *pt_prev, 5355 struct net_device *orig_dev) 5356 { 5357 struct sk_buff *skb, *next; 5358 5359 if (!pt_prev) 5360 return; 5361 if (list_empty(head)) 5362 return; 5363 if (pt_prev->list_func != NULL) 5364 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5365 ip_list_rcv, head, pt_prev, orig_dev); 5366 else 5367 list_for_each_entry_safe(skb, next, head, list) { 5368 skb_list_del_init(skb); 5369 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5370 } 5371 } 5372 5373 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5374 { 5375 /* Fast-path assumptions: 5376 * - There is no RX handler. 5377 * - Only one packet_type matches. 5378 * If either of these fails, we will end up doing some per-packet 5379 * processing in-line, then handling the 'last ptype' for the whole 5380 * sublist. This can't cause out-of-order delivery to any single ptype, 5381 * because the 'last ptype' must be constant across the sublist, and all 5382 * other ptypes are handled per-packet. 5383 */ 5384 /* Current (common) ptype of sublist */ 5385 struct packet_type *pt_curr = NULL; 5386 /* Current (common) orig_dev of sublist */ 5387 struct net_device *od_curr = NULL; 5388 struct list_head sublist; 5389 struct sk_buff *skb, *next; 5390 5391 INIT_LIST_HEAD(&sublist); 5392 list_for_each_entry_safe(skb, next, head, list) { 5393 struct net_device *orig_dev = skb->dev; 5394 struct packet_type *pt_prev = NULL; 5395 5396 skb_list_del_init(skb); 5397 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5398 if (!pt_prev) 5399 continue; 5400 if (pt_curr != pt_prev || od_curr != orig_dev) { 5401 /* dispatch old sublist */ 5402 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5403 /* start new sublist */ 5404 INIT_LIST_HEAD(&sublist); 5405 pt_curr = pt_prev; 5406 od_curr = orig_dev; 5407 } 5408 list_add_tail(&skb->list, &sublist); 5409 } 5410 5411 /* dispatch final sublist */ 5412 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5413 } 5414 5415 static int __netif_receive_skb(struct sk_buff *skb) 5416 { 5417 int ret; 5418 5419 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5420 unsigned int noreclaim_flag; 5421 5422 /* 5423 * PFMEMALLOC skbs are special, they should 5424 * - be delivered to SOCK_MEMALLOC sockets only 5425 * - stay away from userspace 5426 * - have bounded memory usage 5427 * 5428 * Use PF_MEMALLOC as this saves us from propagating the allocation 5429 * context down to all allocation sites. 5430 */ 5431 noreclaim_flag = memalloc_noreclaim_save(); 5432 ret = __netif_receive_skb_one_core(skb, true); 5433 memalloc_noreclaim_restore(noreclaim_flag); 5434 } else 5435 ret = __netif_receive_skb_one_core(skb, false); 5436 5437 return ret; 5438 } 5439 5440 static void __netif_receive_skb_list(struct list_head *head) 5441 { 5442 unsigned long noreclaim_flag = 0; 5443 struct sk_buff *skb, *next; 5444 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5445 5446 list_for_each_entry_safe(skb, next, head, list) { 5447 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5448 struct list_head sublist; 5449 5450 /* Handle the previous sublist */ 5451 list_cut_before(&sublist, head, &skb->list); 5452 if (!list_empty(&sublist)) 5453 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5454 pfmemalloc = !pfmemalloc; 5455 /* See comments in __netif_receive_skb */ 5456 if (pfmemalloc) 5457 noreclaim_flag = memalloc_noreclaim_save(); 5458 else 5459 memalloc_noreclaim_restore(noreclaim_flag); 5460 } 5461 } 5462 /* Handle the remaining sublist */ 5463 if (!list_empty(head)) 5464 __netif_receive_skb_list_core(head, pfmemalloc); 5465 /* Restore pflags */ 5466 if (pfmemalloc) 5467 memalloc_noreclaim_restore(noreclaim_flag); 5468 } 5469 5470 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5471 { 5472 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5473 struct bpf_prog *new = xdp->prog; 5474 int ret = 0; 5475 5476 if (new) { 5477 u32 i; 5478 5479 mutex_lock(&new->aux->used_maps_mutex); 5480 5481 /* generic XDP does not work with DEVMAPs that can 5482 * have a bpf_prog installed on an entry 5483 */ 5484 for (i = 0; i < new->aux->used_map_cnt; i++) { 5485 if (dev_map_can_have_prog(new->aux->used_maps[i]) || 5486 cpu_map_prog_allowed(new->aux->used_maps[i])) { 5487 mutex_unlock(&new->aux->used_maps_mutex); 5488 return -EINVAL; 5489 } 5490 } 5491 5492 mutex_unlock(&new->aux->used_maps_mutex); 5493 } 5494 5495 switch (xdp->command) { 5496 case XDP_SETUP_PROG: 5497 rcu_assign_pointer(dev->xdp_prog, new); 5498 if (old) 5499 bpf_prog_put(old); 5500 5501 if (old && !new) { 5502 static_branch_dec(&generic_xdp_needed_key); 5503 } else if (new && !old) { 5504 static_branch_inc(&generic_xdp_needed_key); 5505 dev_disable_lro(dev); 5506 dev_disable_gro_hw(dev); 5507 } 5508 break; 5509 5510 default: 5511 ret = -EINVAL; 5512 break; 5513 } 5514 5515 return ret; 5516 } 5517 5518 static int netif_receive_skb_internal(struct sk_buff *skb) 5519 { 5520 int ret; 5521 5522 net_timestamp_check(netdev_tstamp_prequeue, skb); 5523 5524 if (skb_defer_rx_timestamp(skb)) 5525 return NET_RX_SUCCESS; 5526 5527 rcu_read_lock(); 5528 #ifdef CONFIG_RPS 5529 if (static_branch_unlikely(&rps_needed)) { 5530 struct rps_dev_flow voidflow, *rflow = &voidflow; 5531 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5532 5533 if (cpu >= 0) { 5534 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5535 rcu_read_unlock(); 5536 return ret; 5537 } 5538 } 5539 #endif 5540 ret = __netif_receive_skb(skb); 5541 rcu_read_unlock(); 5542 return ret; 5543 } 5544 5545 static void netif_receive_skb_list_internal(struct list_head *head) 5546 { 5547 struct sk_buff *skb, *next; 5548 struct list_head sublist; 5549 5550 INIT_LIST_HEAD(&sublist); 5551 list_for_each_entry_safe(skb, next, head, list) { 5552 net_timestamp_check(netdev_tstamp_prequeue, skb); 5553 skb_list_del_init(skb); 5554 if (!skb_defer_rx_timestamp(skb)) 5555 list_add_tail(&skb->list, &sublist); 5556 } 5557 list_splice_init(&sublist, head); 5558 5559 rcu_read_lock(); 5560 #ifdef CONFIG_RPS 5561 if (static_branch_unlikely(&rps_needed)) { 5562 list_for_each_entry_safe(skb, next, head, list) { 5563 struct rps_dev_flow voidflow, *rflow = &voidflow; 5564 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5565 5566 if (cpu >= 0) { 5567 /* Will be handled, remove from list */ 5568 skb_list_del_init(skb); 5569 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5570 } 5571 } 5572 } 5573 #endif 5574 __netif_receive_skb_list(head); 5575 rcu_read_unlock(); 5576 } 5577 5578 /** 5579 * netif_receive_skb - process receive buffer from network 5580 * @skb: buffer to process 5581 * 5582 * netif_receive_skb() is the main receive data processing function. 5583 * It always succeeds. The buffer may be dropped during processing 5584 * for congestion control or by the protocol layers. 5585 * 5586 * This function may only be called from softirq context and interrupts 5587 * should be enabled. 5588 * 5589 * Return values (usually ignored): 5590 * NET_RX_SUCCESS: no congestion 5591 * NET_RX_DROP: packet was dropped 5592 */ 5593 int netif_receive_skb(struct sk_buff *skb) 5594 { 5595 int ret; 5596 5597 trace_netif_receive_skb_entry(skb); 5598 5599 ret = netif_receive_skb_internal(skb); 5600 trace_netif_receive_skb_exit(ret); 5601 5602 return ret; 5603 } 5604 EXPORT_SYMBOL(netif_receive_skb); 5605 5606 /** 5607 * netif_receive_skb_list - process many receive buffers from network 5608 * @head: list of skbs to process. 5609 * 5610 * Since return value of netif_receive_skb() is normally ignored, and 5611 * wouldn't be meaningful for a list, this function returns void. 5612 * 5613 * This function may only be called from softirq context and interrupts 5614 * should be enabled. 5615 */ 5616 void netif_receive_skb_list(struct list_head *head) 5617 { 5618 struct sk_buff *skb; 5619 5620 if (list_empty(head)) 5621 return; 5622 if (trace_netif_receive_skb_list_entry_enabled()) { 5623 list_for_each_entry(skb, head, list) 5624 trace_netif_receive_skb_list_entry(skb); 5625 } 5626 netif_receive_skb_list_internal(head); 5627 trace_netif_receive_skb_list_exit(0); 5628 } 5629 EXPORT_SYMBOL(netif_receive_skb_list); 5630 5631 static DEFINE_PER_CPU(struct work_struct, flush_works); 5632 5633 /* Network device is going away, flush any packets still pending */ 5634 static void flush_backlog(struct work_struct *work) 5635 { 5636 struct sk_buff *skb, *tmp; 5637 struct softnet_data *sd; 5638 5639 local_bh_disable(); 5640 sd = this_cpu_ptr(&softnet_data); 5641 5642 local_irq_disable(); 5643 rps_lock(sd); 5644 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5645 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5646 __skb_unlink(skb, &sd->input_pkt_queue); 5647 dev_kfree_skb_irq(skb); 5648 input_queue_head_incr(sd); 5649 } 5650 } 5651 rps_unlock(sd); 5652 local_irq_enable(); 5653 5654 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5655 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5656 __skb_unlink(skb, &sd->process_queue); 5657 kfree_skb(skb); 5658 input_queue_head_incr(sd); 5659 } 5660 } 5661 local_bh_enable(); 5662 } 5663 5664 static bool flush_required(int cpu) 5665 { 5666 #if IS_ENABLED(CONFIG_RPS) 5667 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5668 bool do_flush; 5669 5670 local_irq_disable(); 5671 rps_lock(sd); 5672 5673 /* as insertion into process_queue happens with the rps lock held, 5674 * process_queue access may race only with dequeue 5675 */ 5676 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 5677 !skb_queue_empty_lockless(&sd->process_queue); 5678 rps_unlock(sd); 5679 local_irq_enable(); 5680 5681 return do_flush; 5682 #endif 5683 /* without RPS we can't safely check input_pkt_queue: during a 5684 * concurrent remote skb_queue_splice() we can detect as empty both 5685 * input_pkt_queue and process_queue even if the latter could end-up 5686 * containing a lot of packets. 5687 */ 5688 return true; 5689 } 5690 5691 static void flush_all_backlogs(void) 5692 { 5693 static cpumask_t flush_cpus; 5694 unsigned int cpu; 5695 5696 /* since we are under rtnl lock protection we can use static data 5697 * for the cpumask and avoid allocating on stack the possibly 5698 * large mask 5699 */ 5700 ASSERT_RTNL(); 5701 5702 get_online_cpus(); 5703 5704 cpumask_clear(&flush_cpus); 5705 for_each_online_cpu(cpu) { 5706 if (flush_required(cpu)) { 5707 queue_work_on(cpu, system_highpri_wq, 5708 per_cpu_ptr(&flush_works, cpu)); 5709 cpumask_set_cpu(cpu, &flush_cpus); 5710 } 5711 } 5712 5713 /* we can have in flight packet[s] on the cpus we are not flushing, 5714 * synchronize_net() in unregister_netdevice_many() will take care of 5715 * them 5716 */ 5717 for_each_cpu(cpu, &flush_cpus) 5718 flush_work(per_cpu_ptr(&flush_works, cpu)); 5719 5720 put_online_cpus(); 5721 } 5722 5723 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */ 5724 static void gro_normal_list(struct napi_struct *napi) 5725 { 5726 if (!napi->rx_count) 5727 return; 5728 netif_receive_skb_list_internal(&napi->rx_list); 5729 INIT_LIST_HEAD(&napi->rx_list); 5730 napi->rx_count = 0; 5731 } 5732 5733 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded, 5734 * pass the whole batch up to the stack. 5735 */ 5736 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb) 5737 { 5738 list_add_tail(&skb->list, &napi->rx_list); 5739 if (++napi->rx_count >= gro_normal_batch) 5740 gro_normal_list(napi); 5741 } 5742 5743 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int)); 5744 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int)); 5745 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb) 5746 { 5747 struct packet_offload *ptype; 5748 __be16 type = skb->protocol; 5749 struct list_head *head = &offload_base; 5750 int err = -ENOENT; 5751 5752 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5753 5754 if (NAPI_GRO_CB(skb)->count == 1) { 5755 skb_shinfo(skb)->gso_size = 0; 5756 goto out; 5757 } 5758 5759 rcu_read_lock(); 5760 list_for_each_entry_rcu(ptype, head, list) { 5761 if (ptype->type != type || !ptype->callbacks.gro_complete) 5762 continue; 5763 5764 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5765 ipv6_gro_complete, inet_gro_complete, 5766 skb, 0); 5767 break; 5768 } 5769 rcu_read_unlock(); 5770 5771 if (err) { 5772 WARN_ON(&ptype->list == head); 5773 kfree_skb(skb); 5774 return NET_RX_SUCCESS; 5775 } 5776 5777 out: 5778 gro_normal_one(napi, skb); 5779 return NET_RX_SUCCESS; 5780 } 5781 5782 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5783 bool flush_old) 5784 { 5785 struct list_head *head = &napi->gro_hash[index].list; 5786 struct sk_buff *skb, *p; 5787 5788 list_for_each_entry_safe_reverse(skb, p, head, list) { 5789 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5790 return; 5791 skb_list_del_init(skb); 5792 napi_gro_complete(napi, skb); 5793 napi->gro_hash[index].count--; 5794 } 5795 5796 if (!napi->gro_hash[index].count) 5797 __clear_bit(index, &napi->gro_bitmask); 5798 } 5799 5800 /* napi->gro_hash[].list contains packets ordered by age. 5801 * youngest packets at the head of it. 5802 * Complete skbs in reverse order to reduce latencies. 5803 */ 5804 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5805 { 5806 unsigned long bitmask = napi->gro_bitmask; 5807 unsigned int i, base = ~0U; 5808 5809 while ((i = ffs(bitmask)) != 0) { 5810 bitmask >>= i; 5811 base += i; 5812 __napi_gro_flush_chain(napi, base, flush_old); 5813 } 5814 } 5815 EXPORT_SYMBOL(napi_gro_flush); 5816 5817 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5818 struct sk_buff *skb) 5819 { 5820 unsigned int maclen = skb->dev->hard_header_len; 5821 u32 hash = skb_get_hash_raw(skb); 5822 struct list_head *head; 5823 struct sk_buff *p; 5824 5825 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5826 list_for_each_entry(p, head, list) { 5827 unsigned long diffs; 5828 5829 NAPI_GRO_CB(p)->flush = 0; 5830 5831 if (hash != skb_get_hash_raw(p)) { 5832 NAPI_GRO_CB(p)->same_flow = 0; 5833 continue; 5834 } 5835 5836 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5837 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5838 if (skb_vlan_tag_present(p)) 5839 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb); 5840 diffs |= skb_metadata_dst_cmp(p, skb); 5841 diffs |= skb_metadata_differs(p, skb); 5842 if (maclen == ETH_HLEN) 5843 diffs |= compare_ether_header(skb_mac_header(p), 5844 skb_mac_header(skb)); 5845 else if (!diffs) 5846 diffs = memcmp(skb_mac_header(p), 5847 skb_mac_header(skb), 5848 maclen); 5849 NAPI_GRO_CB(p)->same_flow = !diffs; 5850 } 5851 5852 return head; 5853 } 5854 5855 static void skb_gro_reset_offset(struct sk_buff *skb) 5856 { 5857 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5858 const skb_frag_t *frag0 = &pinfo->frags[0]; 5859 5860 NAPI_GRO_CB(skb)->data_offset = 0; 5861 NAPI_GRO_CB(skb)->frag0 = NULL; 5862 NAPI_GRO_CB(skb)->frag0_len = 0; 5863 5864 if (!skb_headlen(skb) && pinfo->nr_frags && 5865 !PageHighMem(skb_frag_page(frag0))) { 5866 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5867 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5868 skb_frag_size(frag0), 5869 skb->end - skb->tail); 5870 } 5871 } 5872 5873 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5874 { 5875 struct skb_shared_info *pinfo = skb_shinfo(skb); 5876 5877 BUG_ON(skb->end - skb->tail < grow); 5878 5879 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5880 5881 skb->data_len -= grow; 5882 skb->tail += grow; 5883 5884 skb_frag_off_add(&pinfo->frags[0], grow); 5885 skb_frag_size_sub(&pinfo->frags[0], grow); 5886 5887 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5888 skb_frag_unref(skb, 0); 5889 memmove(pinfo->frags, pinfo->frags + 1, 5890 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5891 } 5892 } 5893 5894 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head) 5895 { 5896 struct sk_buff *oldest; 5897 5898 oldest = list_last_entry(head, struct sk_buff, list); 5899 5900 /* We are called with head length >= MAX_GRO_SKBS, so this is 5901 * impossible. 5902 */ 5903 if (WARN_ON_ONCE(!oldest)) 5904 return; 5905 5906 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5907 * SKB to the chain. 5908 */ 5909 skb_list_del_init(oldest); 5910 napi_gro_complete(napi, oldest); 5911 } 5912 5913 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *, 5914 struct sk_buff *)); 5915 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *, 5916 struct sk_buff *)); 5917 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5918 { 5919 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5920 struct list_head *head = &offload_base; 5921 struct packet_offload *ptype; 5922 __be16 type = skb->protocol; 5923 struct list_head *gro_head; 5924 struct sk_buff *pp = NULL; 5925 enum gro_result ret; 5926 int same_flow; 5927 int grow; 5928 5929 if (netif_elide_gro(skb->dev)) 5930 goto normal; 5931 5932 gro_head = gro_list_prepare(napi, skb); 5933 5934 rcu_read_lock(); 5935 list_for_each_entry_rcu(ptype, head, list) { 5936 if (ptype->type != type || !ptype->callbacks.gro_receive) 5937 continue; 5938 5939 skb_set_network_header(skb, skb_gro_offset(skb)); 5940 skb_reset_mac_len(skb); 5941 NAPI_GRO_CB(skb)->same_flow = 0; 5942 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5943 NAPI_GRO_CB(skb)->free = 0; 5944 NAPI_GRO_CB(skb)->encap_mark = 0; 5945 NAPI_GRO_CB(skb)->recursion_counter = 0; 5946 NAPI_GRO_CB(skb)->is_fou = 0; 5947 NAPI_GRO_CB(skb)->is_atomic = 1; 5948 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5949 5950 /* Setup for GRO checksum validation */ 5951 switch (skb->ip_summed) { 5952 case CHECKSUM_COMPLETE: 5953 NAPI_GRO_CB(skb)->csum = skb->csum; 5954 NAPI_GRO_CB(skb)->csum_valid = 1; 5955 NAPI_GRO_CB(skb)->csum_cnt = 0; 5956 break; 5957 case CHECKSUM_UNNECESSARY: 5958 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5959 NAPI_GRO_CB(skb)->csum_valid = 0; 5960 break; 5961 default: 5962 NAPI_GRO_CB(skb)->csum_cnt = 0; 5963 NAPI_GRO_CB(skb)->csum_valid = 0; 5964 } 5965 5966 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 5967 ipv6_gro_receive, inet_gro_receive, 5968 gro_head, skb); 5969 break; 5970 } 5971 rcu_read_unlock(); 5972 5973 if (&ptype->list == head) 5974 goto normal; 5975 5976 if (PTR_ERR(pp) == -EINPROGRESS) { 5977 ret = GRO_CONSUMED; 5978 goto ok; 5979 } 5980 5981 same_flow = NAPI_GRO_CB(skb)->same_flow; 5982 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5983 5984 if (pp) { 5985 skb_list_del_init(pp); 5986 napi_gro_complete(napi, pp); 5987 napi->gro_hash[hash].count--; 5988 } 5989 5990 if (same_flow) 5991 goto ok; 5992 5993 if (NAPI_GRO_CB(skb)->flush) 5994 goto normal; 5995 5996 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5997 gro_flush_oldest(napi, gro_head); 5998 } else { 5999 napi->gro_hash[hash].count++; 6000 } 6001 NAPI_GRO_CB(skb)->count = 1; 6002 NAPI_GRO_CB(skb)->age = jiffies; 6003 NAPI_GRO_CB(skb)->last = skb; 6004 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 6005 list_add(&skb->list, gro_head); 6006 ret = GRO_HELD; 6007 6008 pull: 6009 grow = skb_gro_offset(skb) - skb_headlen(skb); 6010 if (grow > 0) 6011 gro_pull_from_frag0(skb, grow); 6012 ok: 6013 if (napi->gro_hash[hash].count) { 6014 if (!test_bit(hash, &napi->gro_bitmask)) 6015 __set_bit(hash, &napi->gro_bitmask); 6016 } else if (test_bit(hash, &napi->gro_bitmask)) { 6017 __clear_bit(hash, &napi->gro_bitmask); 6018 } 6019 6020 return ret; 6021 6022 normal: 6023 ret = GRO_NORMAL; 6024 goto pull; 6025 } 6026 6027 struct packet_offload *gro_find_receive_by_type(__be16 type) 6028 { 6029 struct list_head *offload_head = &offload_base; 6030 struct packet_offload *ptype; 6031 6032 list_for_each_entry_rcu(ptype, offload_head, list) { 6033 if (ptype->type != type || !ptype->callbacks.gro_receive) 6034 continue; 6035 return ptype; 6036 } 6037 return NULL; 6038 } 6039 EXPORT_SYMBOL(gro_find_receive_by_type); 6040 6041 struct packet_offload *gro_find_complete_by_type(__be16 type) 6042 { 6043 struct list_head *offload_head = &offload_base; 6044 struct packet_offload *ptype; 6045 6046 list_for_each_entry_rcu(ptype, offload_head, list) { 6047 if (ptype->type != type || !ptype->callbacks.gro_complete) 6048 continue; 6049 return ptype; 6050 } 6051 return NULL; 6052 } 6053 EXPORT_SYMBOL(gro_find_complete_by_type); 6054 6055 static void napi_skb_free_stolen_head(struct sk_buff *skb) 6056 { 6057 skb_dst_drop(skb); 6058 skb_ext_put(skb); 6059 kmem_cache_free(skbuff_head_cache, skb); 6060 } 6061 6062 static gro_result_t napi_skb_finish(struct napi_struct *napi, 6063 struct sk_buff *skb, 6064 gro_result_t ret) 6065 { 6066 switch (ret) { 6067 case GRO_NORMAL: 6068 gro_normal_one(napi, skb); 6069 break; 6070 6071 case GRO_MERGED_FREE: 6072 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6073 napi_skb_free_stolen_head(skb); 6074 else 6075 __kfree_skb(skb); 6076 break; 6077 6078 case GRO_HELD: 6079 case GRO_MERGED: 6080 case GRO_CONSUMED: 6081 break; 6082 } 6083 6084 return ret; 6085 } 6086 6087 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 6088 { 6089 gro_result_t ret; 6090 6091 skb_mark_napi_id(skb, napi); 6092 trace_napi_gro_receive_entry(skb); 6093 6094 skb_gro_reset_offset(skb); 6095 6096 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb)); 6097 trace_napi_gro_receive_exit(ret); 6098 6099 return ret; 6100 } 6101 EXPORT_SYMBOL(napi_gro_receive); 6102 6103 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 6104 { 6105 if (unlikely(skb->pfmemalloc)) { 6106 consume_skb(skb); 6107 return; 6108 } 6109 __skb_pull(skb, skb_headlen(skb)); 6110 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 6111 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 6112 __vlan_hwaccel_clear_tag(skb); 6113 skb->dev = napi->dev; 6114 skb->skb_iif = 0; 6115 6116 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 6117 skb->pkt_type = PACKET_HOST; 6118 6119 skb->encapsulation = 0; 6120 skb_shinfo(skb)->gso_type = 0; 6121 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6122 skb_ext_reset(skb); 6123 6124 napi->skb = skb; 6125 } 6126 6127 struct sk_buff *napi_get_frags(struct napi_struct *napi) 6128 { 6129 struct sk_buff *skb = napi->skb; 6130 6131 if (!skb) { 6132 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 6133 if (skb) { 6134 napi->skb = skb; 6135 skb_mark_napi_id(skb, napi); 6136 } 6137 } 6138 return skb; 6139 } 6140 EXPORT_SYMBOL(napi_get_frags); 6141 6142 static gro_result_t napi_frags_finish(struct napi_struct *napi, 6143 struct sk_buff *skb, 6144 gro_result_t ret) 6145 { 6146 switch (ret) { 6147 case GRO_NORMAL: 6148 case GRO_HELD: 6149 __skb_push(skb, ETH_HLEN); 6150 skb->protocol = eth_type_trans(skb, skb->dev); 6151 if (ret == GRO_NORMAL) 6152 gro_normal_one(napi, skb); 6153 break; 6154 6155 case GRO_MERGED_FREE: 6156 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6157 napi_skb_free_stolen_head(skb); 6158 else 6159 napi_reuse_skb(napi, skb); 6160 break; 6161 6162 case GRO_MERGED: 6163 case GRO_CONSUMED: 6164 break; 6165 } 6166 6167 return ret; 6168 } 6169 6170 /* Upper GRO stack assumes network header starts at gro_offset=0 6171 * Drivers could call both napi_gro_frags() and napi_gro_receive() 6172 * We copy ethernet header into skb->data to have a common layout. 6173 */ 6174 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 6175 { 6176 struct sk_buff *skb = napi->skb; 6177 const struct ethhdr *eth; 6178 unsigned int hlen = sizeof(*eth); 6179 6180 napi->skb = NULL; 6181 6182 skb_reset_mac_header(skb); 6183 skb_gro_reset_offset(skb); 6184 6185 if (unlikely(skb_gro_header_hard(skb, hlen))) { 6186 eth = skb_gro_header_slow(skb, hlen, 0); 6187 if (unlikely(!eth)) { 6188 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 6189 __func__, napi->dev->name); 6190 napi_reuse_skb(napi, skb); 6191 return NULL; 6192 } 6193 } else { 6194 eth = (const struct ethhdr *)skb->data; 6195 gro_pull_from_frag0(skb, hlen); 6196 NAPI_GRO_CB(skb)->frag0 += hlen; 6197 NAPI_GRO_CB(skb)->frag0_len -= hlen; 6198 } 6199 __skb_pull(skb, hlen); 6200 6201 /* 6202 * This works because the only protocols we care about don't require 6203 * special handling. 6204 * We'll fix it up properly in napi_frags_finish() 6205 */ 6206 skb->protocol = eth->h_proto; 6207 6208 return skb; 6209 } 6210 6211 gro_result_t napi_gro_frags(struct napi_struct *napi) 6212 { 6213 gro_result_t ret; 6214 struct sk_buff *skb = napi_frags_skb(napi); 6215 6216 trace_napi_gro_frags_entry(skb); 6217 6218 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 6219 trace_napi_gro_frags_exit(ret); 6220 6221 return ret; 6222 } 6223 EXPORT_SYMBOL(napi_gro_frags); 6224 6225 /* Compute the checksum from gro_offset and return the folded value 6226 * after adding in any pseudo checksum. 6227 */ 6228 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 6229 { 6230 __wsum wsum; 6231 __sum16 sum; 6232 6233 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 6234 6235 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 6236 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 6237 /* See comments in __skb_checksum_complete(). */ 6238 if (likely(!sum)) { 6239 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 6240 !skb->csum_complete_sw) 6241 netdev_rx_csum_fault(skb->dev, skb); 6242 } 6243 6244 NAPI_GRO_CB(skb)->csum = wsum; 6245 NAPI_GRO_CB(skb)->csum_valid = 1; 6246 6247 return sum; 6248 } 6249 EXPORT_SYMBOL(__skb_gro_checksum_complete); 6250 6251 static void net_rps_send_ipi(struct softnet_data *remsd) 6252 { 6253 #ifdef CONFIG_RPS 6254 while (remsd) { 6255 struct softnet_data *next = remsd->rps_ipi_next; 6256 6257 if (cpu_online(remsd->cpu)) 6258 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6259 remsd = next; 6260 } 6261 #endif 6262 } 6263 6264 /* 6265 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6266 * Note: called with local irq disabled, but exits with local irq enabled. 6267 */ 6268 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6269 { 6270 #ifdef CONFIG_RPS 6271 struct softnet_data *remsd = sd->rps_ipi_list; 6272 6273 if (remsd) { 6274 sd->rps_ipi_list = NULL; 6275 6276 local_irq_enable(); 6277 6278 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6279 net_rps_send_ipi(remsd); 6280 } else 6281 #endif 6282 local_irq_enable(); 6283 } 6284 6285 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6286 { 6287 #ifdef CONFIG_RPS 6288 return sd->rps_ipi_list != NULL; 6289 #else 6290 return false; 6291 #endif 6292 } 6293 6294 static int process_backlog(struct napi_struct *napi, int quota) 6295 { 6296 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6297 bool again = true; 6298 int work = 0; 6299 6300 /* Check if we have pending ipi, its better to send them now, 6301 * not waiting net_rx_action() end. 6302 */ 6303 if (sd_has_rps_ipi_waiting(sd)) { 6304 local_irq_disable(); 6305 net_rps_action_and_irq_enable(sd); 6306 } 6307 6308 napi->weight = dev_rx_weight; 6309 while (again) { 6310 struct sk_buff *skb; 6311 6312 while ((skb = __skb_dequeue(&sd->process_queue))) { 6313 rcu_read_lock(); 6314 __netif_receive_skb(skb); 6315 rcu_read_unlock(); 6316 input_queue_head_incr(sd); 6317 if (++work >= quota) 6318 return work; 6319 6320 } 6321 6322 local_irq_disable(); 6323 rps_lock(sd); 6324 if (skb_queue_empty(&sd->input_pkt_queue)) { 6325 /* 6326 * Inline a custom version of __napi_complete(). 6327 * only current cpu owns and manipulates this napi, 6328 * and NAPI_STATE_SCHED is the only possible flag set 6329 * on backlog. 6330 * We can use a plain write instead of clear_bit(), 6331 * and we dont need an smp_mb() memory barrier. 6332 */ 6333 napi->state = 0; 6334 again = false; 6335 } else { 6336 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6337 &sd->process_queue); 6338 } 6339 rps_unlock(sd); 6340 local_irq_enable(); 6341 } 6342 6343 return work; 6344 } 6345 6346 /** 6347 * __napi_schedule - schedule for receive 6348 * @n: entry to schedule 6349 * 6350 * The entry's receive function will be scheduled to run. 6351 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6352 */ 6353 void __napi_schedule(struct napi_struct *n) 6354 { 6355 unsigned long flags; 6356 6357 local_irq_save(flags); 6358 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6359 local_irq_restore(flags); 6360 } 6361 EXPORT_SYMBOL(__napi_schedule); 6362 6363 /** 6364 * napi_schedule_prep - check if napi can be scheduled 6365 * @n: napi context 6366 * 6367 * Test if NAPI routine is already running, and if not mark 6368 * it as running. This is used as a condition variable to 6369 * insure only one NAPI poll instance runs. We also make 6370 * sure there is no pending NAPI disable. 6371 */ 6372 bool napi_schedule_prep(struct napi_struct *n) 6373 { 6374 unsigned long val, new; 6375 6376 do { 6377 val = READ_ONCE(n->state); 6378 if (unlikely(val & NAPIF_STATE_DISABLE)) 6379 return false; 6380 new = val | NAPIF_STATE_SCHED; 6381 6382 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6383 * This was suggested by Alexander Duyck, as compiler 6384 * emits better code than : 6385 * if (val & NAPIF_STATE_SCHED) 6386 * new |= NAPIF_STATE_MISSED; 6387 */ 6388 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6389 NAPIF_STATE_MISSED; 6390 } while (cmpxchg(&n->state, val, new) != val); 6391 6392 return !(val & NAPIF_STATE_SCHED); 6393 } 6394 EXPORT_SYMBOL(napi_schedule_prep); 6395 6396 /** 6397 * __napi_schedule_irqoff - schedule for receive 6398 * @n: entry to schedule 6399 * 6400 * Variant of __napi_schedule() assuming hard irqs are masked 6401 */ 6402 void __napi_schedule_irqoff(struct napi_struct *n) 6403 { 6404 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6405 } 6406 EXPORT_SYMBOL(__napi_schedule_irqoff); 6407 6408 bool napi_complete_done(struct napi_struct *n, int work_done) 6409 { 6410 unsigned long flags, val, new, timeout = 0; 6411 bool ret = true; 6412 6413 /* 6414 * 1) Don't let napi dequeue from the cpu poll list 6415 * just in case its running on a different cpu. 6416 * 2) If we are busy polling, do nothing here, we have 6417 * the guarantee we will be called later. 6418 */ 6419 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6420 NAPIF_STATE_IN_BUSY_POLL))) 6421 return false; 6422 6423 if (work_done) { 6424 if (n->gro_bitmask) 6425 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6426 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6427 } 6428 if (n->defer_hard_irqs_count > 0) { 6429 n->defer_hard_irqs_count--; 6430 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6431 if (timeout) 6432 ret = false; 6433 } 6434 if (n->gro_bitmask) { 6435 /* When the NAPI instance uses a timeout and keeps postponing 6436 * it, we need to bound somehow the time packets are kept in 6437 * the GRO layer 6438 */ 6439 napi_gro_flush(n, !!timeout); 6440 } 6441 6442 gro_normal_list(n); 6443 6444 if (unlikely(!list_empty(&n->poll_list))) { 6445 /* If n->poll_list is not empty, we need to mask irqs */ 6446 local_irq_save(flags); 6447 list_del_init(&n->poll_list); 6448 local_irq_restore(flags); 6449 } 6450 6451 do { 6452 val = READ_ONCE(n->state); 6453 6454 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6455 6456 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6457 NAPIF_STATE_PREFER_BUSY_POLL); 6458 6459 /* If STATE_MISSED was set, leave STATE_SCHED set, 6460 * because we will call napi->poll() one more time. 6461 * This C code was suggested by Alexander Duyck to help gcc. 6462 */ 6463 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6464 NAPIF_STATE_SCHED; 6465 } while (cmpxchg(&n->state, val, new) != val); 6466 6467 if (unlikely(val & NAPIF_STATE_MISSED)) { 6468 __napi_schedule(n); 6469 return false; 6470 } 6471 6472 if (timeout) 6473 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6474 HRTIMER_MODE_REL_PINNED); 6475 return ret; 6476 } 6477 EXPORT_SYMBOL(napi_complete_done); 6478 6479 /* must be called under rcu_read_lock(), as we dont take a reference */ 6480 static struct napi_struct *napi_by_id(unsigned int napi_id) 6481 { 6482 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6483 struct napi_struct *napi; 6484 6485 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6486 if (napi->napi_id == napi_id) 6487 return napi; 6488 6489 return NULL; 6490 } 6491 6492 #if defined(CONFIG_NET_RX_BUSY_POLL) 6493 6494 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6495 { 6496 if (!skip_schedule) { 6497 gro_normal_list(napi); 6498 __napi_schedule(napi); 6499 return; 6500 } 6501 6502 if (napi->gro_bitmask) { 6503 /* flush too old packets 6504 * If HZ < 1000, flush all packets. 6505 */ 6506 napi_gro_flush(napi, HZ >= 1000); 6507 } 6508 6509 gro_normal_list(napi); 6510 clear_bit(NAPI_STATE_SCHED, &napi->state); 6511 } 6512 6513 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll, 6514 u16 budget) 6515 { 6516 bool skip_schedule = false; 6517 unsigned long timeout; 6518 int rc; 6519 6520 /* Busy polling means there is a high chance device driver hard irq 6521 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6522 * set in napi_schedule_prep(). 6523 * Since we are about to call napi->poll() once more, we can safely 6524 * clear NAPI_STATE_MISSED. 6525 * 6526 * Note: x86 could use a single "lock and ..." instruction 6527 * to perform these two clear_bit() 6528 */ 6529 clear_bit(NAPI_STATE_MISSED, &napi->state); 6530 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6531 6532 local_bh_disable(); 6533 6534 if (prefer_busy_poll) { 6535 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs); 6536 timeout = READ_ONCE(napi->dev->gro_flush_timeout); 6537 if (napi->defer_hard_irqs_count && timeout) { 6538 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6539 skip_schedule = true; 6540 } 6541 } 6542 6543 /* All we really want here is to re-enable device interrupts. 6544 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6545 */ 6546 rc = napi->poll(napi, budget); 6547 /* We can't gro_normal_list() here, because napi->poll() might have 6548 * rearmed the napi (napi_complete_done()) in which case it could 6549 * already be running on another CPU. 6550 */ 6551 trace_napi_poll(napi, rc, budget); 6552 netpoll_poll_unlock(have_poll_lock); 6553 if (rc == budget) 6554 __busy_poll_stop(napi, skip_schedule); 6555 local_bh_enable(); 6556 } 6557 6558 void napi_busy_loop(unsigned int napi_id, 6559 bool (*loop_end)(void *, unsigned long), 6560 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6561 { 6562 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6563 int (*napi_poll)(struct napi_struct *napi, int budget); 6564 void *have_poll_lock = NULL; 6565 struct napi_struct *napi; 6566 6567 restart: 6568 napi_poll = NULL; 6569 6570 rcu_read_lock(); 6571 6572 napi = napi_by_id(napi_id); 6573 if (!napi) 6574 goto out; 6575 6576 preempt_disable(); 6577 for (;;) { 6578 int work = 0; 6579 6580 local_bh_disable(); 6581 if (!napi_poll) { 6582 unsigned long val = READ_ONCE(napi->state); 6583 6584 /* If multiple threads are competing for this napi, 6585 * we avoid dirtying napi->state as much as we can. 6586 */ 6587 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6588 NAPIF_STATE_IN_BUSY_POLL)) { 6589 if (prefer_busy_poll) 6590 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6591 goto count; 6592 } 6593 if (cmpxchg(&napi->state, val, 6594 val | NAPIF_STATE_IN_BUSY_POLL | 6595 NAPIF_STATE_SCHED) != val) { 6596 if (prefer_busy_poll) 6597 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6598 goto count; 6599 } 6600 have_poll_lock = netpoll_poll_lock(napi); 6601 napi_poll = napi->poll; 6602 } 6603 work = napi_poll(napi, budget); 6604 trace_napi_poll(napi, work, budget); 6605 gro_normal_list(napi); 6606 count: 6607 if (work > 0) 6608 __NET_ADD_STATS(dev_net(napi->dev), 6609 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6610 local_bh_enable(); 6611 6612 if (!loop_end || loop_end(loop_end_arg, start_time)) 6613 break; 6614 6615 if (unlikely(need_resched())) { 6616 if (napi_poll) 6617 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6618 preempt_enable(); 6619 rcu_read_unlock(); 6620 cond_resched(); 6621 if (loop_end(loop_end_arg, start_time)) 6622 return; 6623 goto restart; 6624 } 6625 cpu_relax(); 6626 } 6627 if (napi_poll) 6628 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6629 preempt_enable(); 6630 out: 6631 rcu_read_unlock(); 6632 } 6633 EXPORT_SYMBOL(napi_busy_loop); 6634 6635 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6636 6637 static void napi_hash_add(struct napi_struct *napi) 6638 { 6639 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6640 return; 6641 6642 spin_lock(&napi_hash_lock); 6643 6644 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6645 do { 6646 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6647 napi_gen_id = MIN_NAPI_ID; 6648 } while (napi_by_id(napi_gen_id)); 6649 napi->napi_id = napi_gen_id; 6650 6651 hlist_add_head_rcu(&napi->napi_hash_node, 6652 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6653 6654 spin_unlock(&napi_hash_lock); 6655 } 6656 6657 /* Warning : caller is responsible to make sure rcu grace period 6658 * is respected before freeing memory containing @napi 6659 */ 6660 static void napi_hash_del(struct napi_struct *napi) 6661 { 6662 spin_lock(&napi_hash_lock); 6663 6664 hlist_del_init_rcu(&napi->napi_hash_node); 6665 6666 spin_unlock(&napi_hash_lock); 6667 } 6668 6669 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6670 { 6671 struct napi_struct *napi; 6672 6673 napi = container_of(timer, struct napi_struct, timer); 6674 6675 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6676 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6677 */ 6678 if (!napi_disable_pending(napi) && 6679 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6680 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6681 __napi_schedule_irqoff(napi); 6682 } 6683 6684 return HRTIMER_NORESTART; 6685 } 6686 6687 static void init_gro_hash(struct napi_struct *napi) 6688 { 6689 int i; 6690 6691 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6692 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6693 napi->gro_hash[i].count = 0; 6694 } 6695 napi->gro_bitmask = 0; 6696 } 6697 6698 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6699 int (*poll)(struct napi_struct *, int), int weight) 6700 { 6701 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6702 return; 6703 6704 INIT_LIST_HEAD(&napi->poll_list); 6705 INIT_HLIST_NODE(&napi->napi_hash_node); 6706 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6707 napi->timer.function = napi_watchdog; 6708 init_gro_hash(napi); 6709 napi->skb = NULL; 6710 INIT_LIST_HEAD(&napi->rx_list); 6711 napi->rx_count = 0; 6712 napi->poll = poll; 6713 if (weight > NAPI_POLL_WEIGHT) 6714 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6715 weight); 6716 napi->weight = weight; 6717 napi->dev = dev; 6718 #ifdef CONFIG_NETPOLL 6719 napi->poll_owner = -1; 6720 #endif 6721 set_bit(NAPI_STATE_SCHED, &napi->state); 6722 set_bit(NAPI_STATE_NPSVC, &napi->state); 6723 list_add_rcu(&napi->dev_list, &dev->napi_list); 6724 napi_hash_add(napi); 6725 } 6726 EXPORT_SYMBOL(netif_napi_add); 6727 6728 void napi_disable(struct napi_struct *n) 6729 { 6730 might_sleep(); 6731 set_bit(NAPI_STATE_DISABLE, &n->state); 6732 6733 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6734 msleep(1); 6735 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6736 msleep(1); 6737 6738 hrtimer_cancel(&n->timer); 6739 6740 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 6741 clear_bit(NAPI_STATE_DISABLE, &n->state); 6742 } 6743 EXPORT_SYMBOL(napi_disable); 6744 6745 static void flush_gro_hash(struct napi_struct *napi) 6746 { 6747 int i; 6748 6749 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6750 struct sk_buff *skb, *n; 6751 6752 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6753 kfree_skb(skb); 6754 napi->gro_hash[i].count = 0; 6755 } 6756 } 6757 6758 /* Must be called in process context */ 6759 void __netif_napi_del(struct napi_struct *napi) 6760 { 6761 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6762 return; 6763 6764 napi_hash_del(napi); 6765 list_del_rcu(&napi->dev_list); 6766 napi_free_frags(napi); 6767 6768 flush_gro_hash(napi); 6769 napi->gro_bitmask = 0; 6770 } 6771 EXPORT_SYMBOL(__netif_napi_del); 6772 6773 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6774 { 6775 void *have; 6776 int work, weight; 6777 6778 list_del_init(&n->poll_list); 6779 6780 have = netpoll_poll_lock(n); 6781 6782 weight = n->weight; 6783 6784 /* This NAPI_STATE_SCHED test is for avoiding a race 6785 * with netpoll's poll_napi(). Only the entity which 6786 * obtains the lock and sees NAPI_STATE_SCHED set will 6787 * actually make the ->poll() call. Therefore we avoid 6788 * accidentally calling ->poll() when NAPI is not scheduled. 6789 */ 6790 work = 0; 6791 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6792 work = n->poll(n, weight); 6793 trace_napi_poll(n, work, weight); 6794 } 6795 6796 if (unlikely(work > weight)) 6797 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6798 n->poll, work, weight); 6799 6800 if (likely(work < weight)) 6801 goto out_unlock; 6802 6803 /* Drivers must not modify the NAPI state if they 6804 * consume the entire weight. In such cases this code 6805 * still "owns" the NAPI instance and therefore can 6806 * move the instance around on the list at-will. 6807 */ 6808 if (unlikely(napi_disable_pending(n))) { 6809 napi_complete(n); 6810 goto out_unlock; 6811 } 6812 6813 /* The NAPI context has more processing work, but busy-polling 6814 * is preferred. Exit early. 6815 */ 6816 if (napi_prefer_busy_poll(n)) { 6817 if (napi_complete_done(n, work)) { 6818 /* If timeout is not set, we need to make sure 6819 * that the NAPI is re-scheduled. 6820 */ 6821 napi_schedule(n); 6822 } 6823 goto out_unlock; 6824 } 6825 6826 if (n->gro_bitmask) { 6827 /* flush too old packets 6828 * If HZ < 1000, flush all packets. 6829 */ 6830 napi_gro_flush(n, HZ >= 1000); 6831 } 6832 6833 gro_normal_list(n); 6834 6835 /* Some drivers may have called napi_schedule 6836 * prior to exhausting their budget. 6837 */ 6838 if (unlikely(!list_empty(&n->poll_list))) { 6839 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6840 n->dev ? n->dev->name : "backlog"); 6841 goto out_unlock; 6842 } 6843 6844 list_add_tail(&n->poll_list, repoll); 6845 6846 out_unlock: 6847 netpoll_poll_unlock(have); 6848 6849 return work; 6850 } 6851 6852 static __latent_entropy void net_rx_action(struct softirq_action *h) 6853 { 6854 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6855 unsigned long time_limit = jiffies + 6856 usecs_to_jiffies(netdev_budget_usecs); 6857 int budget = netdev_budget; 6858 LIST_HEAD(list); 6859 LIST_HEAD(repoll); 6860 6861 local_irq_disable(); 6862 list_splice_init(&sd->poll_list, &list); 6863 local_irq_enable(); 6864 6865 for (;;) { 6866 struct napi_struct *n; 6867 6868 if (list_empty(&list)) { 6869 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6870 goto out; 6871 break; 6872 } 6873 6874 n = list_first_entry(&list, struct napi_struct, poll_list); 6875 budget -= napi_poll(n, &repoll); 6876 6877 /* If softirq window is exhausted then punt. 6878 * Allow this to run for 2 jiffies since which will allow 6879 * an average latency of 1.5/HZ. 6880 */ 6881 if (unlikely(budget <= 0 || 6882 time_after_eq(jiffies, time_limit))) { 6883 sd->time_squeeze++; 6884 break; 6885 } 6886 } 6887 6888 local_irq_disable(); 6889 6890 list_splice_tail_init(&sd->poll_list, &list); 6891 list_splice_tail(&repoll, &list); 6892 list_splice(&list, &sd->poll_list); 6893 if (!list_empty(&sd->poll_list)) 6894 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6895 6896 net_rps_action_and_irq_enable(sd); 6897 out: 6898 __kfree_skb_flush(); 6899 } 6900 6901 struct netdev_adjacent { 6902 struct net_device *dev; 6903 6904 /* upper master flag, there can only be one master device per list */ 6905 bool master; 6906 6907 /* lookup ignore flag */ 6908 bool ignore; 6909 6910 /* counter for the number of times this device was added to us */ 6911 u16 ref_nr; 6912 6913 /* private field for the users */ 6914 void *private; 6915 6916 struct list_head list; 6917 struct rcu_head rcu; 6918 }; 6919 6920 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6921 struct list_head *adj_list) 6922 { 6923 struct netdev_adjacent *adj; 6924 6925 list_for_each_entry(adj, adj_list, list) { 6926 if (adj->dev == adj_dev) 6927 return adj; 6928 } 6929 return NULL; 6930 } 6931 6932 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 6933 struct netdev_nested_priv *priv) 6934 { 6935 struct net_device *dev = (struct net_device *)priv->data; 6936 6937 return upper_dev == dev; 6938 } 6939 6940 /** 6941 * netdev_has_upper_dev - Check if device is linked to an upper device 6942 * @dev: device 6943 * @upper_dev: upper device to check 6944 * 6945 * Find out if a device is linked to specified upper device and return true 6946 * in case it is. Note that this checks only immediate upper device, 6947 * not through a complete stack of devices. The caller must hold the RTNL lock. 6948 */ 6949 bool netdev_has_upper_dev(struct net_device *dev, 6950 struct net_device *upper_dev) 6951 { 6952 struct netdev_nested_priv priv = { 6953 .data = (void *)upper_dev, 6954 }; 6955 6956 ASSERT_RTNL(); 6957 6958 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6959 &priv); 6960 } 6961 EXPORT_SYMBOL(netdev_has_upper_dev); 6962 6963 /** 6964 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 6965 * @dev: device 6966 * @upper_dev: upper device to check 6967 * 6968 * Find out if a device is linked to specified upper device and return true 6969 * in case it is. Note that this checks the entire upper device chain. 6970 * The caller must hold rcu lock. 6971 */ 6972 6973 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6974 struct net_device *upper_dev) 6975 { 6976 struct netdev_nested_priv priv = { 6977 .data = (void *)upper_dev, 6978 }; 6979 6980 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6981 &priv); 6982 } 6983 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6984 6985 /** 6986 * netdev_has_any_upper_dev - Check if device is linked to some device 6987 * @dev: device 6988 * 6989 * Find out if a device is linked to an upper device and return true in case 6990 * it is. The caller must hold the RTNL lock. 6991 */ 6992 bool netdev_has_any_upper_dev(struct net_device *dev) 6993 { 6994 ASSERT_RTNL(); 6995 6996 return !list_empty(&dev->adj_list.upper); 6997 } 6998 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6999 7000 /** 7001 * netdev_master_upper_dev_get - Get master upper device 7002 * @dev: device 7003 * 7004 * Find a master upper device and return pointer to it or NULL in case 7005 * it's not there. The caller must hold the RTNL lock. 7006 */ 7007 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7008 { 7009 struct netdev_adjacent *upper; 7010 7011 ASSERT_RTNL(); 7012 7013 if (list_empty(&dev->adj_list.upper)) 7014 return NULL; 7015 7016 upper = list_first_entry(&dev->adj_list.upper, 7017 struct netdev_adjacent, list); 7018 if (likely(upper->master)) 7019 return upper->dev; 7020 return NULL; 7021 } 7022 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7023 7024 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7025 { 7026 struct netdev_adjacent *upper; 7027 7028 ASSERT_RTNL(); 7029 7030 if (list_empty(&dev->adj_list.upper)) 7031 return NULL; 7032 7033 upper = list_first_entry(&dev->adj_list.upper, 7034 struct netdev_adjacent, list); 7035 if (likely(upper->master) && !upper->ignore) 7036 return upper->dev; 7037 return NULL; 7038 } 7039 7040 /** 7041 * netdev_has_any_lower_dev - Check if device is linked to some device 7042 * @dev: device 7043 * 7044 * Find out if a device is linked to a lower device and return true in case 7045 * it is. The caller must hold the RTNL lock. 7046 */ 7047 static bool netdev_has_any_lower_dev(struct net_device *dev) 7048 { 7049 ASSERT_RTNL(); 7050 7051 return !list_empty(&dev->adj_list.lower); 7052 } 7053 7054 void *netdev_adjacent_get_private(struct list_head *adj_list) 7055 { 7056 struct netdev_adjacent *adj; 7057 7058 adj = list_entry(adj_list, struct netdev_adjacent, list); 7059 7060 return adj->private; 7061 } 7062 EXPORT_SYMBOL(netdev_adjacent_get_private); 7063 7064 /** 7065 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7066 * @dev: device 7067 * @iter: list_head ** of the current position 7068 * 7069 * Gets the next device from the dev's upper list, starting from iter 7070 * position. The caller must hold RCU read lock. 7071 */ 7072 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7073 struct list_head **iter) 7074 { 7075 struct netdev_adjacent *upper; 7076 7077 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7078 7079 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7080 7081 if (&upper->list == &dev->adj_list.upper) 7082 return NULL; 7083 7084 *iter = &upper->list; 7085 7086 return upper->dev; 7087 } 7088 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7089 7090 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7091 struct list_head **iter, 7092 bool *ignore) 7093 { 7094 struct netdev_adjacent *upper; 7095 7096 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7097 7098 if (&upper->list == &dev->adj_list.upper) 7099 return NULL; 7100 7101 *iter = &upper->list; 7102 *ignore = upper->ignore; 7103 7104 return upper->dev; 7105 } 7106 7107 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7108 struct list_head **iter) 7109 { 7110 struct netdev_adjacent *upper; 7111 7112 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7113 7114 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7115 7116 if (&upper->list == &dev->adj_list.upper) 7117 return NULL; 7118 7119 *iter = &upper->list; 7120 7121 return upper->dev; 7122 } 7123 7124 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7125 int (*fn)(struct net_device *dev, 7126 struct netdev_nested_priv *priv), 7127 struct netdev_nested_priv *priv) 7128 { 7129 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7130 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7131 int ret, cur = 0; 7132 bool ignore; 7133 7134 now = dev; 7135 iter = &dev->adj_list.upper; 7136 7137 while (1) { 7138 if (now != dev) { 7139 ret = fn(now, priv); 7140 if (ret) 7141 return ret; 7142 } 7143 7144 next = NULL; 7145 while (1) { 7146 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7147 if (!udev) 7148 break; 7149 if (ignore) 7150 continue; 7151 7152 next = udev; 7153 niter = &udev->adj_list.upper; 7154 dev_stack[cur] = now; 7155 iter_stack[cur++] = iter; 7156 break; 7157 } 7158 7159 if (!next) { 7160 if (!cur) 7161 return 0; 7162 next = dev_stack[--cur]; 7163 niter = iter_stack[cur]; 7164 } 7165 7166 now = next; 7167 iter = niter; 7168 } 7169 7170 return 0; 7171 } 7172 7173 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7174 int (*fn)(struct net_device *dev, 7175 struct netdev_nested_priv *priv), 7176 struct netdev_nested_priv *priv) 7177 { 7178 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7179 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7180 int ret, cur = 0; 7181 7182 now = dev; 7183 iter = &dev->adj_list.upper; 7184 7185 while (1) { 7186 if (now != dev) { 7187 ret = fn(now, priv); 7188 if (ret) 7189 return ret; 7190 } 7191 7192 next = NULL; 7193 while (1) { 7194 udev = netdev_next_upper_dev_rcu(now, &iter); 7195 if (!udev) 7196 break; 7197 7198 next = udev; 7199 niter = &udev->adj_list.upper; 7200 dev_stack[cur] = now; 7201 iter_stack[cur++] = iter; 7202 break; 7203 } 7204 7205 if (!next) { 7206 if (!cur) 7207 return 0; 7208 next = dev_stack[--cur]; 7209 niter = iter_stack[cur]; 7210 } 7211 7212 now = next; 7213 iter = niter; 7214 } 7215 7216 return 0; 7217 } 7218 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7219 7220 static bool __netdev_has_upper_dev(struct net_device *dev, 7221 struct net_device *upper_dev) 7222 { 7223 struct netdev_nested_priv priv = { 7224 .flags = 0, 7225 .data = (void *)upper_dev, 7226 }; 7227 7228 ASSERT_RTNL(); 7229 7230 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7231 &priv); 7232 } 7233 7234 /** 7235 * netdev_lower_get_next_private - Get the next ->private from the 7236 * lower neighbour list 7237 * @dev: device 7238 * @iter: list_head ** of the current position 7239 * 7240 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7241 * list, starting from iter position. The caller must hold either hold the 7242 * RTNL lock or its own locking that guarantees that the neighbour lower 7243 * list will remain unchanged. 7244 */ 7245 void *netdev_lower_get_next_private(struct net_device *dev, 7246 struct list_head **iter) 7247 { 7248 struct netdev_adjacent *lower; 7249 7250 lower = list_entry(*iter, struct netdev_adjacent, list); 7251 7252 if (&lower->list == &dev->adj_list.lower) 7253 return NULL; 7254 7255 *iter = lower->list.next; 7256 7257 return lower->private; 7258 } 7259 EXPORT_SYMBOL(netdev_lower_get_next_private); 7260 7261 /** 7262 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7263 * lower neighbour list, RCU 7264 * variant 7265 * @dev: device 7266 * @iter: list_head ** of the current position 7267 * 7268 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7269 * list, starting from iter position. The caller must hold RCU read lock. 7270 */ 7271 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7272 struct list_head **iter) 7273 { 7274 struct netdev_adjacent *lower; 7275 7276 WARN_ON_ONCE(!rcu_read_lock_held()); 7277 7278 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7279 7280 if (&lower->list == &dev->adj_list.lower) 7281 return NULL; 7282 7283 *iter = &lower->list; 7284 7285 return lower->private; 7286 } 7287 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7288 7289 /** 7290 * netdev_lower_get_next - Get the next device from the lower neighbour 7291 * list 7292 * @dev: device 7293 * @iter: list_head ** of the current position 7294 * 7295 * Gets the next netdev_adjacent from the dev's lower neighbour 7296 * list, starting from iter position. The caller must hold RTNL lock or 7297 * its own locking that guarantees that the neighbour lower 7298 * list will remain unchanged. 7299 */ 7300 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7301 { 7302 struct netdev_adjacent *lower; 7303 7304 lower = list_entry(*iter, struct netdev_adjacent, list); 7305 7306 if (&lower->list == &dev->adj_list.lower) 7307 return NULL; 7308 7309 *iter = lower->list.next; 7310 7311 return lower->dev; 7312 } 7313 EXPORT_SYMBOL(netdev_lower_get_next); 7314 7315 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7316 struct list_head **iter) 7317 { 7318 struct netdev_adjacent *lower; 7319 7320 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7321 7322 if (&lower->list == &dev->adj_list.lower) 7323 return NULL; 7324 7325 *iter = &lower->list; 7326 7327 return lower->dev; 7328 } 7329 7330 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7331 struct list_head **iter, 7332 bool *ignore) 7333 { 7334 struct netdev_adjacent *lower; 7335 7336 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7337 7338 if (&lower->list == &dev->adj_list.lower) 7339 return NULL; 7340 7341 *iter = &lower->list; 7342 *ignore = lower->ignore; 7343 7344 return lower->dev; 7345 } 7346 7347 int netdev_walk_all_lower_dev(struct net_device *dev, 7348 int (*fn)(struct net_device *dev, 7349 struct netdev_nested_priv *priv), 7350 struct netdev_nested_priv *priv) 7351 { 7352 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7353 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7354 int ret, cur = 0; 7355 7356 now = dev; 7357 iter = &dev->adj_list.lower; 7358 7359 while (1) { 7360 if (now != dev) { 7361 ret = fn(now, priv); 7362 if (ret) 7363 return ret; 7364 } 7365 7366 next = NULL; 7367 while (1) { 7368 ldev = netdev_next_lower_dev(now, &iter); 7369 if (!ldev) 7370 break; 7371 7372 next = ldev; 7373 niter = &ldev->adj_list.lower; 7374 dev_stack[cur] = now; 7375 iter_stack[cur++] = iter; 7376 break; 7377 } 7378 7379 if (!next) { 7380 if (!cur) 7381 return 0; 7382 next = dev_stack[--cur]; 7383 niter = iter_stack[cur]; 7384 } 7385 7386 now = next; 7387 iter = niter; 7388 } 7389 7390 return 0; 7391 } 7392 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7393 7394 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7395 int (*fn)(struct net_device *dev, 7396 struct netdev_nested_priv *priv), 7397 struct netdev_nested_priv *priv) 7398 { 7399 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7400 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7401 int ret, cur = 0; 7402 bool ignore; 7403 7404 now = dev; 7405 iter = &dev->adj_list.lower; 7406 7407 while (1) { 7408 if (now != dev) { 7409 ret = fn(now, priv); 7410 if (ret) 7411 return ret; 7412 } 7413 7414 next = NULL; 7415 while (1) { 7416 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7417 if (!ldev) 7418 break; 7419 if (ignore) 7420 continue; 7421 7422 next = ldev; 7423 niter = &ldev->adj_list.lower; 7424 dev_stack[cur] = now; 7425 iter_stack[cur++] = iter; 7426 break; 7427 } 7428 7429 if (!next) { 7430 if (!cur) 7431 return 0; 7432 next = dev_stack[--cur]; 7433 niter = iter_stack[cur]; 7434 } 7435 7436 now = next; 7437 iter = niter; 7438 } 7439 7440 return 0; 7441 } 7442 7443 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7444 struct list_head **iter) 7445 { 7446 struct netdev_adjacent *lower; 7447 7448 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7449 if (&lower->list == &dev->adj_list.lower) 7450 return NULL; 7451 7452 *iter = &lower->list; 7453 7454 return lower->dev; 7455 } 7456 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7457 7458 static u8 __netdev_upper_depth(struct net_device *dev) 7459 { 7460 struct net_device *udev; 7461 struct list_head *iter; 7462 u8 max_depth = 0; 7463 bool ignore; 7464 7465 for (iter = &dev->adj_list.upper, 7466 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7467 udev; 7468 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7469 if (ignore) 7470 continue; 7471 if (max_depth < udev->upper_level) 7472 max_depth = udev->upper_level; 7473 } 7474 7475 return max_depth; 7476 } 7477 7478 static u8 __netdev_lower_depth(struct net_device *dev) 7479 { 7480 struct net_device *ldev; 7481 struct list_head *iter; 7482 u8 max_depth = 0; 7483 bool ignore; 7484 7485 for (iter = &dev->adj_list.lower, 7486 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7487 ldev; 7488 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7489 if (ignore) 7490 continue; 7491 if (max_depth < ldev->lower_level) 7492 max_depth = ldev->lower_level; 7493 } 7494 7495 return max_depth; 7496 } 7497 7498 static int __netdev_update_upper_level(struct net_device *dev, 7499 struct netdev_nested_priv *__unused) 7500 { 7501 dev->upper_level = __netdev_upper_depth(dev) + 1; 7502 return 0; 7503 } 7504 7505 static int __netdev_update_lower_level(struct net_device *dev, 7506 struct netdev_nested_priv *priv) 7507 { 7508 dev->lower_level = __netdev_lower_depth(dev) + 1; 7509 7510 #ifdef CONFIG_LOCKDEP 7511 if (!priv) 7512 return 0; 7513 7514 if (priv->flags & NESTED_SYNC_IMM) 7515 dev->nested_level = dev->lower_level - 1; 7516 if (priv->flags & NESTED_SYNC_TODO) 7517 net_unlink_todo(dev); 7518 #endif 7519 return 0; 7520 } 7521 7522 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7523 int (*fn)(struct net_device *dev, 7524 struct netdev_nested_priv *priv), 7525 struct netdev_nested_priv *priv) 7526 { 7527 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7528 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7529 int ret, cur = 0; 7530 7531 now = dev; 7532 iter = &dev->adj_list.lower; 7533 7534 while (1) { 7535 if (now != dev) { 7536 ret = fn(now, priv); 7537 if (ret) 7538 return ret; 7539 } 7540 7541 next = NULL; 7542 while (1) { 7543 ldev = netdev_next_lower_dev_rcu(now, &iter); 7544 if (!ldev) 7545 break; 7546 7547 next = ldev; 7548 niter = &ldev->adj_list.lower; 7549 dev_stack[cur] = now; 7550 iter_stack[cur++] = iter; 7551 break; 7552 } 7553 7554 if (!next) { 7555 if (!cur) 7556 return 0; 7557 next = dev_stack[--cur]; 7558 niter = iter_stack[cur]; 7559 } 7560 7561 now = next; 7562 iter = niter; 7563 } 7564 7565 return 0; 7566 } 7567 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7568 7569 /** 7570 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7571 * lower neighbour list, RCU 7572 * variant 7573 * @dev: device 7574 * 7575 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7576 * list. The caller must hold RCU read lock. 7577 */ 7578 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7579 { 7580 struct netdev_adjacent *lower; 7581 7582 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7583 struct netdev_adjacent, list); 7584 if (lower) 7585 return lower->private; 7586 return NULL; 7587 } 7588 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7589 7590 /** 7591 * netdev_master_upper_dev_get_rcu - Get master upper device 7592 * @dev: device 7593 * 7594 * Find a master upper device and return pointer to it or NULL in case 7595 * it's not there. The caller must hold the RCU read lock. 7596 */ 7597 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7598 { 7599 struct netdev_adjacent *upper; 7600 7601 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7602 struct netdev_adjacent, list); 7603 if (upper && likely(upper->master)) 7604 return upper->dev; 7605 return NULL; 7606 } 7607 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7608 7609 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7610 struct net_device *adj_dev, 7611 struct list_head *dev_list) 7612 { 7613 char linkname[IFNAMSIZ+7]; 7614 7615 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7616 "upper_%s" : "lower_%s", adj_dev->name); 7617 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7618 linkname); 7619 } 7620 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7621 char *name, 7622 struct list_head *dev_list) 7623 { 7624 char linkname[IFNAMSIZ+7]; 7625 7626 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7627 "upper_%s" : "lower_%s", name); 7628 sysfs_remove_link(&(dev->dev.kobj), linkname); 7629 } 7630 7631 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7632 struct net_device *adj_dev, 7633 struct list_head *dev_list) 7634 { 7635 return (dev_list == &dev->adj_list.upper || 7636 dev_list == &dev->adj_list.lower) && 7637 net_eq(dev_net(dev), dev_net(adj_dev)); 7638 } 7639 7640 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7641 struct net_device *adj_dev, 7642 struct list_head *dev_list, 7643 void *private, bool master) 7644 { 7645 struct netdev_adjacent *adj; 7646 int ret; 7647 7648 adj = __netdev_find_adj(adj_dev, dev_list); 7649 7650 if (adj) { 7651 adj->ref_nr += 1; 7652 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7653 dev->name, adj_dev->name, adj->ref_nr); 7654 7655 return 0; 7656 } 7657 7658 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7659 if (!adj) 7660 return -ENOMEM; 7661 7662 adj->dev = adj_dev; 7663 adj->master = master; 7664 adj->ref_nr = 1; 7665 adj->private = private; 7666 adj->ignore = false; 7667 dev_hold(adj_dev); 7668 7669 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7670 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7671 7672 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7673 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7674 if (ret) 7675 goto free_adj; 7676 } 7677 7678 /* Ensure that master link is always the first item in list. */ 7679 if (master) { 7680 ret = sysfs_create_link(&(dev->dev.kobj), 7681 &(adj_dev->dev.kobj), "master"); 7682 if (ret) 7683 goto remove_symlinks; 7684 7685 list_add_rcu(&adj->list, dev_list); 7686 } else { 7687 list_add_tail_rcu(&adj->list, dev_list); 7688 } 7689 7690 return 0; 7691 7692 remove_symlinks: 7693 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7694 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7695 free_adj: 7696 kfree(adj); 7697 dev_put(adj_dev); 7698 7699 return ret; 7700 } 7701 7702 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7703 struct net_device *adj_dev, 7704 u16 ref_nr, 7705 struct list_head *dev_list) 7706 { 7707 struct netdev_adjacent *adj; 7708 7709 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7710 dev->name, adj_dev->name, ref_nr); 7711 7712 adj = __netdev_find_adj(adj_dev, dev_list); 7713 7714 if (!adj) { 7715 pr_err("Adjacency does not exist for device %s from %s\n", 7716 dev->name, adj_dev->name); 7717 WARN_ON(1); 7718 return; 7719 } 7720 7721 if (adj->ref_nr > ref_nr) { 7722 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7723 dev->name, adj_dev->name, ref_nr, 7724 adj->ref_nr - ref_nr); 7725 adj->ref_nr -= ref_nr; 7726 return; 7727 } 7728 7729 if (adj->master) 7730 sysfs_remove_link(&(dev->dev.kobj), "master"); 7731 7732 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7733 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7734 7735 list_del_rcu(&adj->list); 7736 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7737 adj_dev->name, dev->name, adj_dev->name); 7738 dev_put(adj_dev); 7739 kfree_rcu(adj, rcu); 7740 } 7741 7742 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7743 struct net_device *upper_dev, 7744 struct list_head *up_list, 7745 struct list_head *down_list, 7746 void *private, bool master) 7747 { 7748 int ret; 7749 7750 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7751 private, master); 7752 if (ret) 7753 return ret; 7754 7755 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7756 private, false); 7757 if (ret) { 7758 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7759 return ret; 7760 } 7761 7762 return 0; 7763 } 7764 7765 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7766 struct net_device *upper_dev, 7767 u16 ref_nr, 7768 struct list_head *up_list, 7769 struct list_head *down_list) 7770 { 7771 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7772 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7773 } 7774 7775 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7776 struct net_device *upper_dev, 7777 void *private, bool master) 7778 { 7779 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7780 &dev->adj_list.upper, 7781 &upper_dev->adj_list.lower, 7782 private, master); 7783 } 7784 7785 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7786 struct net_device *upper_dev) 7787 { 7788 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7789 &dev->adj_list.upper, 7790 &upper_dev->adj_list.lower); 7791 } 7792 7793 static int __netdev_upper_dev_link(struct net_device *dev, 7794 struct net_device *upper_dev, bool master, 7795 void *upper_priv, void *upper_info, 7796 struct netdev_nested_priv *priv, 7797 struct netlink_ext_ack *extack) 7798 { 7799 struct netdev_notifier_changeupper_info changeupper_info = { 7800 .info = { 7801 .dev = dev, 7802 .extack = extack, 7803 }, 7804 .upper_dev = upper_dev, 7805 .master = master, 7806 .linking = true, 7807 .upper_info = upper_info, 7808 }; 7809 struct net_device *master_dev; 7810 int ret = 0; 7811 7812 ASSERT_RTNL(); 7813 7814 if (dev == upper_dev) 7815 return -EBUSY; 7816 7817 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7818 if (__netdev_has_upper_dev(upper_dev, dev)) 7819 return -EBUSY; 7820 7821 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7822 return -EMLINK; 7823 7824 if (!master) { 7825 if (__netdev_has_upper_dev(dev, upper_dev)) 7826 return -EEXIST; 7827 } else { 7828 master_dev = __netdev_master_upper_dev_get(dev); 7829 if (master_dev) 7830 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7831 } 7832 7833 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7834 &changeupper_info.info); 7835 ret = notifier_to_errno(ret); 7836 if (ret) 7837 return ret; 7838 7839 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7840 master); 7841 if (ret) 7842 return ret; 7843 7844 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7845 &changeupper_info.info); 7846 ret = notifier_to_errno(ret); 7847 if (ret) 7848 goto rollback; 7849 7850 __netdev_update_upper_level(dev, NULL); 7851 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7852 7853 __netdev_update_lower_level(upper_dev, priv); 7854 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7855 priv); 7856 7857 return 0; 7858 7859 rollback: 7860 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7861 7862 return ret; 7863 } 7864 7865 /** 7866 * netdev_upper_dev_link - Add a link to the upper device 7867 * @dev: device 7868 * @upper_dev: new upper device 7869 * @extack: netlink extended ack 7870 * 7871 * Adds a link to device which is upper to this one. The caller must hold 7872 * the RTNL lock. On a failure a negative errno code is returned. 7873 * On success the reference counts are adjusted and the function 7874 * returns zero. 7875 */ 7876 int netdev_upper_dev_link(struct net_device *dev, 7877 struct net_device *upper_dev, 7878 struct netlink_ext_ack *extack) 7879 { 7880 struct netdev_nested_priv priv = { 7881 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7882 .data = NULL, 7883 }; 7884 7885 return __netdev_upper_dev_link(dev, upper_dev, false, 7886 NULL, NULL, &priv, extack); 7887 } 7888 EXPORT_SYMBOL(netdev_upper_dev_link); 7889 7890 /** 7891 * netdev_master_upper_dev_link - Add a master link to the upper device 7892 * @dev: device 7893 * @upper_dev: new upper device 7894 * @upper_priv: upper device private 7895 * @upper_info: upper info to be passed down via notifier 7896 * @extack: netlink extended ack 7897 * 7898 * Adds a link to device which is upper to this one. In this case, only 7899 * one master upper device can be linked, although other non-master devices 7900 * might be linked as well. The caller must hold the RTNL lock. 7901 * On a failure a negative errno code is returned. On success the reference 7902 * counts are adjusted and the function returns zero. 7903 */ 7904 int netdev_master_upper_dev_link(struct net_device *dev, 7905 struct net_device *upper_dev, 7906 void *upper_priv, void *upper_info, 7907 struct netlink_ext_ack *extack) 7908 { 7909 struct netdev_nested_priv priv = { 7910 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7911 .data = NULL, 7912 }; 7913 7914 return __netdev_upper_dev_link(dev, upper_dev, true, 7915 upper_priv, upper_info, &priv, extack); 7916 } 7917 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7918 7919 static void __netdev_upper_dev_unlink(struct net_device *dev, 7920 struct net_device *upper_dev, 7921 struct netdev_nested_priv *priv) 7922 { 7923 struct netdev_notifier_changeupper_info changeupper_info = { 7924 .info = { 7925 .dev = dev, 7926 }, 7927 .upper_dev = upper_dev, 7928 .linking = false, 7929 }; 7930 7931 ASSERT_RTNL(); 7932 7933 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7934 7935 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7936 &changeupper_info.info); 7937 7938 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7939 7940 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7941 &changeupper_info.info); 7942 7943 __netdev_update_upper_level(dev, NULL); 7944 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7945 7946 __netdev_update_lower_level(upper_dev, priv); 7947 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7948 priv); 7949 } 7950 7951 /** 7952 * netdev_upper_dev_unlink - Removes a link to upper device 7953 * @dev: device 7954 * @upper_dev: new upper device 7955 * 7956 * Removes a link to device which is upper to this one. The caller must hold 7957 * the RTNL lock. 7958 */ 7959 void netdev_upper_dev_unlink(struct net_device *dev, 7960 struct net_device *upper_dev) 7961 { 7962 struct netdev_nested_priv priv = { 7963 .flags = NESTED_SYNC_TODO, 7964 .data = NULL, 7965 }; 7966 7967 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 7968 } 7969 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7970 7971 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 7972 struct net_device *lower_dev, 7973 bool val) 7974 { 7975 struct netdev_adjacent *adj; 7976 7977 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 7978 if (adj) 7979 adj->ignore = val; 7980 7981 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 7982 if (adj) 7983 adj->ignore = val; 7984 } 7985 7986 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 7987 struct net_device *lower_dev) 7988 { 7989 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 7990 } 7991 7992 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 7993 struct net_device *lower_dev) 7994 { 7995 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 7996 } 7997 7998 int netdev_adjacent_change_prepare(struct net_device *old_dev, 7999 struct net_device *new_dev, 8000 struct net_device *dev, 8001 struct netlink_ext_ack *extack) 8002 { 8003 struct netdev_nested_priv priv = { 8004 .flags = 0, 8005 .data = NULL, 8006 }; 8007 int err; 8008 8009 if (!new_dev) 8010 return 0; 8011 8012 if (old_dev && new_dev != old_dev) 8013 netdev_adjacent_dev_disable(dev, old_dev); 8014 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8015 extack); 8016 if (err) { 8017 if (old_dev && new_dev != old_dev) 8018 netdev_adjacent_dev_enable(dev, old_dev); 8019 return err; 8020 } 8021 8022 return 0; 8023 } 8024 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8025 8026 void netdev_adjacent_change_commit(struct net_device *old_dev, 8027 struct net_device *new_dev, 8028 struct net_device *dev) 8029 { 8030 struct netdev_nested_priv priv = { 8031 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8032 .data = NULL, 8033 }; 8034 8035 if (!new_dev || !old_dev) 8036 return; 8037 8038 if (new_dev == old_dev) 8039 return; 8040 8041 netdev_adjacent_dev_enable(dev, old_dev); 8042 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8043 } 8044 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8045 8046 void netdev_adjacent_change_abort(struct net_device *old_dev, 8047 struct net_device *new_dev, 8048 struct net_device *dev) 8049 { 8050 struct netdev_nested_priv priv = { 8051 .flags = 0, 8052 .data = NULL, 8053 }; 8054 8055 if (!new_dev) 8056 return; 8057 8058 if (old_dev && new_dev != old_dev) 8059 netdev_adjacent_dev_enable(dev, old_dev); 8060 8061 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8062 } 8063 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8064 8065 /** 8066 * netdev_bonding_info_change - Dispatch event about slave change 8067 * @dev: device 8068 * @bonding_info: info to dispatch 8069 * 8070 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8071 * The caller must hold the RTNL lock. 8072 */ 8073 void netdev_bonding_info_change(struct net_device *dev, 8074 struct netdev_bonding_info *bonding_info) 8075 { 8076 struct netdev_notifier_bonding_info info = { 8077 .info.dev = dev, 8078 }; 8079 8080 memcpy(&info.bonding_info, bonding_info, 8081 sizeof(struct netdev_bonding_info)); 8082 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8083 &info.info); 8084 } 8085 EXPORT_SYMBOL(netdev_bonding_info_change); 8086 8087 /** 8088 * netdev_get_xmit_slave - Get the xmit slave of master device 8089 * @dev: device 8090 * @skb: The packet 8091 * @all_slaves: assume all the slaves are active 8092 * 8093 * The reference counters are not incremented so the caller must be 8094 * careful with locks. The caller must hold RCU lock. 8095 * %NULL is returned if no slave is found. 8096 */ 8097 8098 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8099 struct sk_buff *skb, 8100 bool all_slaves) 8101 { 8102 const struct net_device_ops *ops = dev->netdev_ops; 8103 8104 if (!ops->ndo_get_xmit_slave) 8105 return NULL; 8106 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8107 } 8108 EXPORT_SYMBOL(netdev_get_xmit_slave); 8109 8110 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 8111 struct sock *sk) 8112 { 8113 const struct net_device_ops *ops = dev->netdev_ops; 8114 8115 if (!ops->ndo_sk_get_lower_dev) 8116 return NULL; 8117 return ops->ndo_sk_get_lower_dev(dev, sk); 8118 } 8119 8120 /** 8121 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 8122 * @dev: device 8123 * @sk: the socket 8124 * 8125 * %NULL is returned if no lower device is found. 8126 */ 8127 8128 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 8129 struct sock *sk) 8130 { 8131 struct net_device *lower; 8132 8133 lower = netdev_sk_get_lower_dev(dev, sk); 8134 while (lower) { 8135 dev = lower; 8136 lower = netdev_sk_get_lower_dev(dev, sk); 8137 } 8138 8139 return dev; 8140 } 8141 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 8142 8143 static void netdev_adjacent_add_links(struct net_device *dev) 8144 { 8145 struct netdev_adjacent *iter; 8146 8147 struct net *net = dev_net(dev); 8148 8149 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8150 if (!net_eq(net, dev_net(iter->dev))) 8151 continue; 8152 netdev_adjacent_sysfs_add(iter->dev, dev, 8153 &iter->dev->adj_list.lower); 8154 netdev_adjacent_sysfs_add(dev, iter->dev, 8155 &dev->adj_list.upper); 8156 } 8157 8158 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8159 if (!net_eq(net, dev_net(iter->dev))) 8160 continue; 8161 netdev_adjacent_sysfs_add(iter->dev, dev, 8162 &iter->dev->adj_list.upper); 8163 netdev_adjacent_sysfs_add(dev, iter->dev, 8164 &dev->adj_list.lower); 8165 } 8166 } 8167 8168 static void netdev_adjacent_del_links(struct net_device *dev) 8169 { 8170 struct netdev_adjacent *iter; 8171 8172 struct net *net = dev_net(dev); 8173 8174 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8175 if (!net_eq(net, dev_net(iter->dev))) 8176 continue; 8177 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8178 &iter->dev->adj_list.lower); 8179 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8180 &dev->adj_list.upper); 8181 } 8182 8183 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8184 if (!net_eq(net, dev_net(iter->dev))) 8185 continue; 8186 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8187 &iter->dev->adj_list.upper); 8188 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8189 &dev->adj_list.lower); 8190 } 8191 } 8192 8193 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8194 { 8195 struct netdev_adjacent *iter; 8196 8197 struct net *net = dev_net(dev); 8198 8199 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8200 if (!net_eq(net, dev_net(iter->dev))) 8201 continue; 8202 netdev_adjacent_sysfs_del(iter->dev, oldname, 8203 &iter->dev->adj_list.lower); 8204 netdev_adjacent_sysfs_add(iter->dev, dev, 8205 &iter->dev->adj_list.lower); 8206 } 8207 8208 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8209 if (!net_eq(net, dev_net(iter->dev))) 8210 continue; 8211 netdev_adjacent_sysfs_del(iter->dev, oldname, 8212 &iter->dev->adj_list.upper); 8213 netdev_adjacent_sysfs_add(iter->dev, dev, 8214 &iter->dev->adj_list.upper); 8215 } 8216 } 8217 8218 void *netdev_lower_dev_get_private(struct net_device *dev, 8219 struct net_device *lower_dev) 8220 { 8221 struct netdev_adjacent *lower; 8222 8223 if (!lower_dev) 8224 return NULL; 8225 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8226 if (!lower) 8227 return NULL; 8228 8229 return lower->private; 8230 } 8231 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8232 8233 8234 /** 8235 * netdev_lower_state_changed - Dispatch event about lower device state change 8236 * @lower_dev: device 8237 * @lower_state_info: state to dispatch 8238 * 8239 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8240 * The caller must hold the RTNL lock. 8241 */ 8242 void netdev_lower_state_changed(struct net_device *lower_dev, 8243 void *lower_state_info) 8244 { 8245 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8246 .info.dev = lower_dev, 8247 }; 8248 8249 ASSERT_RTNL(); 8250 changelowerstate_info.lower_state_info = lower_state_info; 8251 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8252 &changelowerstate_info.info); 8253 } 8254 EXPORT_SYMBOL(netdev_lower_state_changed); 8255 8256 static void dev_change_rx_flags(struct net_device *dev, int flags) 8257 { 8258 const struct net_device_ops *ops = dev->netdev_ops; 8259 8260 if (ops->ndo_change_rx_flags) 8261 ops->ndo_change_rx_flags(dev, flags); 8262 } 8263 8264 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8265 { 8266 unsigned int old_flags = dev->flags; 8267 kuid_t uid; 8268 kgid_t gid; 8269 8270 ASSERT_RTNL(); 8271 8272 dev->flags |= IFF_PROMISC; 8273 dev->promiscuity += inc; 8274 if (dev->promiscuity == 0) { 8275 /* 8276 * Avoid overflow. 8277 * If inc causes overflow, untouch promisc and return error. 8278 */ 8279 if (inc < 0) 8280 dev->flags &= ~IFF_PROMISC; 8281 else { 8282 dev->promiscuity -= inc; 8283 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 8284 dev->name); 8285 return -EOVERFLOW; 8286 } 8287 } 8288 if (dev->flags != old_flags) { 8289 pr_info("device %s %s promiscuous mode\n", 8290 dev->name, 8291 dev->flags & IFF_PROMISC ? "entered" : "left"); 8292 if (audit_enabled) { 8293 current_uid_gid(&uid, &gid); 8294 audit_log(audit_context(), GFP_ATOMIC, 8295 AUDIT_ANOM_PROMISCUOUS, 8296 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8297 dev->name, (dev->flags & IFF_PROMISC), 8298 (old_flags & IFF_PROMISC), 8299 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8300 from_kuid(&init_user_ns, uid), 8301 from_kgid(&init_user_ns, gid), 8302 audit_get_sessionid(current)); 8303 } 8304 8305 dev_change_rx_flags(dev, IFF_PROMISC); 8306 } 8307 if (notify) 8308 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 8309 return 0; 8310 } 8311 8312 /** 8313 * dev_set_promiscuity - update promiscuity count on a device 8314 * @dev: device 8315 * @inc: modifier 8316 * 8317 * Add or remove promiscuity from a device. While the count in the device 8318 * remains above zero the interface remains promiscuous. Once it hits zero 8319 * the device reverts back to normal filtering operation. A negative inc 8320 * value is used to drop promiscuity on the device. 8321 * Return 0 if successful or a negative errno code on error. 8322 */ 8323 int dev_set_promiscuity(struct net_device *dev, int inc) 8324 { 8325 unsigned int old_flags = dev->flags; 8326 int err; 8327 8328 err = __dev_set_promiscuity(dev, inc, true); 8329 if (err < 0) 8330 return err; 8331 if (dev->flags != old_flags) 8332 dev_set_rx_mode(dev); 8333 return err; 8334 } 8335 EXPORT_SYMBOL(dev_set_promiscuity); 8336 8337 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8338 { 8339 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8340 8341 ASSERT_RTNL(); 8342 8343 dev->flags |= IFF_ALLMULTI; 8344 dev->allmulti += inc; 8345 if (dev->allmulti == 0) { 8346 /* 8347 * Avoid overflow. 8348 * If inc causes overflow, untouch allmulti and return error. 8349 */ 8350 if (inc < 0) 8351 dev->flags &= ~IFF_ALLMULTI; 8352 else { 8353 dev->allmulti -= inc; 8354 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 8355 dev->name); 8356 return -EOVERFLOW; 8357 } 8358 } 8359 if (dev->flags ^ old_flags) { 8360 dev_change_rx_flags(dev, IFF_ALLMULTI); 8361 dev_set_rx_mode(dev); 8362 if (notify) 8363 __dev_notify_flags(dev, old_flags, 8364 dev->gflags ^ old_gflags); 8365 } 8366 return 0; 8367 } 8368 8369 /** 8370 * dev_set_allmulti - update allmulti count on a device 8371 * @dev: device 8372 * @inc: modifier 8373 * 8374 * Add or remove reception of all multicast frames to a device. While the 8375 * count in the device remains above zero the interface remains listening 8376 * to all interfaces. Once it hits zero the device reverts back to normal 8377 * filtering operation. A negative @inc value is used to drop the counter 8378 * when releasing a resource needing all multicasts. 8379 * Return 0 if successful or a negative errno code on error. 8380 */ 8381 8382 int dev_set_allmulti(struct net_device *dev, int inc) 8383 { 8384 return __dev_set_allmulti(dev, inc, true); 8385 } 8386 EXPORT_SYMBOL(dev_set_allmulti); 8387 8388 /* 8389 * Upload unicast and multicast address lists to device and 8390 * configure RX filtering. When the device doesn't support unicast 8391 * filtering it is put in promiscuous mode while unicast addresses 8392 * are present. 8393 */ 8394 void __dev_set_rx_mode(struct net_device *dev) 8395 { 8396 const struct net_device_ops *ops = dev->netdev_ops; 8397 8398 /* dev_open will call this function so the list will stay sane. */ 8399 if (!(dev->flags&IFF_UP)) 8400 return; 8401 8402 if (!netif_device_present(dev)) 8403 return; 8404 8405 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8406 /* Unicast addresses changes may only happen under the rtnl, 8407 * therefore calling __dev_set_promiscuity here is safe. 8408 */ 8409 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8410 __dev_set_promiscuity(dev, 1, false); 8411 dev->uc_promisc = true; 8412 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8413 __dev_set_promiscuity(dev, -1, false); 8414 dev->uc_promisc = false; 8415 } 8416 } 8417 8418 if (ops->ndo_set_rx_mode) 8419 ops->ndo_set_rx_mode(dev); 8420 } 8421 8422 void dev_set_rx_mode(struct net_device *dev) 8423 { 8424 netif_addr_lock_bh(dev); 8425 __dev_set_rx_mode(dev); 8426 netif_addr_unlock_bh(dev); 8427 } 8428 8429 /** 8430 * dev_get_flags - get flags reported to userspace 8431 * @dev: device 8432 * 8433 * Get the combination of flag bits exported through APIs to userspace. 8434 */ 8435 unsigned int dev_get_flags(const struct net_device *dev) 8436 { 8437 unsigned int flags; 8438 8439 flags = (dev->flags & ~(IFF_PROMISC | 8440 IFF_ALLMULTI | 8441 IFF_RUNNING | 8442 IFF_LOWER_UP | 8443 IFF_DORMANT)) | 8444 (dev->gflags & (IFF_PROMISC | 8445 IFF_ALLMULTI)); 8446 8447 if (netif_running(dev)) { 8448 if (netif_oper_up(dev)) 8449 flags |= IFF_RUNNING; 8450 if (netif_carrier_ok(dev)) 8451 flags |= IFF_LOWER_UP; 8452 if (netif_dormant(dev)) 8453 flags |= IFF_DORMANT; 8454 } 8455 8456 return flags; 8457 } 8458 EXPORT_SYMBOL(dev_get_flags); 8459 8460 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8461 struct netlink_ext_ack *extack) 8462 { 8463 unsigned int old_flags = dev->flags; 8464 int ret; 8465 8466 ASSERT_RTNL(); 8467 8468 /* 8469 * Set the flags on our device. 8470 */ 8471 8472 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8473 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8474 IFF_AUTOMEDIA)) | 8475 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8476 IFF_ALLMULTI)); 8477 8478 /* 8479 * Load in the correct multicast list now the flags have changed. 8480 */ 8481 8482 if ((old_flags ^ flags) & IFF_MULTICAST) 8483 dev_change_rx_flags(dev, IFF_MULTICAST); 8484 8485 dev_set_rx_mode(dev); 8486 8487 /* 8488 * Have we downed the interface. We handle IFF_UP ourselves 8489 * according to user attempts to set it, rather than blindly 8490 * setting it. 8491 */ 8492 8493 ret = 0; 8494 if ((old_flags ^ flags) & IFF_UP) { 8495 if (old_flags & IFF_UP) 8496 __dev_close(dev); 8497 else 8498 ret = __dev_open(dev, extack); 8499 } 8500 8501 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8502 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8503 unsigned int old_flags = dev->flags; 8504 8505 dev->gflags ^= IFF_PROMISC; 8506 8507 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8508 if (dev->flags != old_flags) 8509 dev_set_rx_mode(dev); 8510 } 8511 8512 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8513 * is important. Some (broken) drivers set IFF_PROMISC, when 8514 * IFF_ALLMULTI is requested not asking us and not reporting. 8515 */ 8516 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8517 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8518 8519 dev->gflags ^= IFF_ALLMULTI; 8520 __dev_set_allmulti(dev, inc, false); 8521 } 8522 8523 return ret; 8524 } 8525 8526 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8527 unsigned int gchanges) 8528 { 8529 unsigned int changes = dev->flags ^ old_flags; 8530 8531 if (gchanges) 8532 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 8533 8534 if (changes & IFF_UP) { 8535 if (dev->flags & IFF_UP) 8536 call_netdevice_notifiers(NETDEV_UP, dev); 8537 else 8538 call_netdevice_notifiers(NETDEV_DOWN, dev); 8539 } 8540 8541 if (dev->flags & IFF_UP && 8542 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8543 struct netdev_notifier_change_info change_info = { 8544 .info = { 8545 .dev = dev, 8546 }, 8547 .flags_changed = changes, 8548 }; 8549 8550 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8551 } 8552 } 8553 8554 /** 8555 * dev_change_flags - change device settings 8556 * @dev: device 8557 * @flags: device state flags 8558 * @extack: netlink extended ack 8559 * 8560 * Change settings on device based state flags. The flags are 8561 * in the userspace exported format. 8562 */ 8563 int dev_change_flags(struct net_device *dev, unsigned int flags, 8564 struct netlink_ext_ack *extack) 8565 { 8566 int ret; 8567 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8568 8569 ret = __dev_change_flags(dev, flags, extack); 8570 if (ret < 0) 8571 return ret; 8572 8573 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8574 __dev_notify_flags(dev, old_flags, changes); 8575 return ret; 8576 } 8577 EXPORT_SYMBOL(dev_change_flags); 8578 8579 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8580 { 8581 const struct net_device_ops *ops = dev->netdev_ops; 8582 8583 if (ops->ndo_change_mtu) 8584 return ops->ndo_change_mtu(dev, new_mtu); 8585 8586 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8587 WRITE_ONCE(dev->mtu, new_mtu); 8588 return 0; 8589 } 8590 EXPORT_SYMBOL(__dev_set_mtu); 8591 8592 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8593 struct netlink_ext_ack *extack) 8594 { 8595 /* MTU must be positive, and in range */ 8596 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8597 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8598 return -EINVAL; 8599 } 8600 8601 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8602 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8603 return -EINVAL; 8604 } 8605 return 0; 8606 } 8607 8608 /** 8609 * dev_set_mtu_ext - Change maximum transfer unit 8610 * @dev: device 8611 * @new_mtu: new transfer unit 8612 * @extack: netlink extended ack 8613 * 8614 * Change the maximum transfer size of the network device. 8615 */ 8616 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8617 struct netlink_ext_ack *extack) 8618 { 8619 int err, orig_mtu; 8620 8621 if (new_mtu == dev->mtu) 8622 return 0; 8623 8624 err = dev_validate_mtu(dev, new_mtu, extack); 8625 if (err) 8626 return err; 8627 8628 if (!netif_device_present(dev)) 8629 return -ENODEV; 8630 8631 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8632 err = notifier_to_errno(err); 8633 if (err) 8634 return err; 8635 8636 orig_mtu = dev->mtu; 8637 err = __dev_set_mtu(dev, new_mtu); 8638 8639 if (!err) { 8640 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8641 orig_mtu); 8642 err = notifier_to_errno(err); 8643 if (err) { 8644 /* setting mtu back and notifying everyone again, 8645 * so that they have a chance to revert changes. 8646 */ 8647 __dev_set_mtu(dev, orig_mtu); 8648 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8649 new_mtu); 8650 } 8651 } 8652 return err; 8653 } 8654 8655 int dev_set_mtu(struct net_device *dev, int new_mtu) 8656 { 8657 struct netlink_ext_ack extack; 8658 int err; 8659 8660 memset(&extack, 0, sizeof(extack)); 8661 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8662 if (err && extack._msg) 8663 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8664 return err; 8665 } 8666 EXPORT_SYMBOL(dev_set_mtu); 8667 8668 /** 8669 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8670 * @dev: device 8671 * @new_len: new tx queue length 8672 */ 8673 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8674 { 8675 unsigned int orig_len = dev->tx_queue_len; 8676 int res; 8677 8678 if (new_len != (unsigned int)new_len) 8679 return -ERANGE; 8680 8681 if (new_len != orig_len) { 8682 dev->tx_queue_len = new_len; 8683 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8684 res = notifier_to_errno(res); 8685 if (res) 8686 goto err_rollback; 8687 res = dev_qdisc_change_tx_queue_len(dev); 8688 if (res) 8689 goto err_rollback; 8690 } 8691 8692 return 0; 8693 8694 err_rollback: 8695 netdev_err(dev, "refused to change device tx_queue_len\n"); 8696 dev->tx_queue_len = orig_len; 8697 return res; 8698 } 8699 8700 /** 8701 * dev_set_group - Change group this device belongs to 8702 * @dev: device 8703 * @new_group: group this device should belong to 8704 */ 8705 void dev_set_group(struct net_device *dev, int new_group) 8706 { 8707 dev->group = new_group; 8708 } 8709 EXPORT_SYMBOL(dev_set_group); 8710 8711 /** 8712 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8713 * @dev: device 8714 * @addr: new address 8715 * @extack: netlink extended ack 8716 */ 8717 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8718 struct netlink_ext_ack *extack) 8719 { 8720 struct netdev_notifier_pre_changeaddr_info info = { 8721 .info.dev = dev, 8722 .info.extack = extack, 8723 .dev_addr = addr, 8724 }; 8725 int rc; 8726 8727 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8728 return notifier_to_errno(rc); 8729 } 8730 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8731 8732 /** 8733 * dev_set_mac_address - Change Media Access Control Address 8734 * @dev: device 8735 * @sa: new address 8736 * @extack: netlink extended ack 8737 * 8738 * Change the hardware (MAC) address of the device 8739 */ 8740 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8741 struct netlink_ext_ack *extack) 8742 { 8743 const struct net_device_ops *ops = dev->netdev_ops; 8744 int err; 8745 8746 if (!ops->ndo_set_mac_address) 8747 return -EOPNOTSUPP; 8748 if (sa->sa_family != dev->type) 8749 return -EINVAL; 8750 if (!netif_device_present(dev)) 8751 return -ENODEV; 8752 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8753 if (err) 8754 return err; 8755 err = ops->ndo_set_mac_address(dev, sa); 8756 if (err) 8757 return err; 8758 dev->addr_assign_type = NET_ADDR_SET; 8759 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8760 add_device_randomness(dev->dev_addr, dev->addr_len); 8761 return 0; 8762 } 8763 EXPORT_SYMBOL(dev_set_mac_address); 8764 8765 /** 8766 * dev_change_carrier - Change device carrier 8767 * @dev: device 8768 * @new_carrier: new value 8769 * 8770 * Change device carrier 8771 */ 8772 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8773 { 8774 const struct net_device_ops *ops = dev->netdev_ops; 8775 8776 if (!ops->ndo_change_carrier) 8777 return -EOPNOTSUPP; 8778 if (!netif_device_present(dev)) 8779 return -ENODEV; 8780 return ops->ndo_change_carrier(dev, new_carrier); 8781 } 8782 EXPORT_SYMBOL(dev_change_carrier); 8783 8784 /** 8785 * dev_get_phys_port_id - Get device physical port ID 8786 * @dev: device 8787 * @ppid: port ID 8788 * 8789 * Get device physical port ID 8790 */ 8791 int dev_get_phys_port_id(struct net_device *dev, 8792 struct netdev_phys_item_id *ppid) 8793 { 8794 const struct net_device_ops *ops = dev->netdev_ops; 8795 8796 if (!ops->ndo_get_phys_port_id) 8797 return -EOPNOTSUPP; 8798 return ops->ndo_get_phys_port_id(dev, ppid); 8799 } 8800 EXPORT_SYMBOL(dev_get_phys_port_id); 8801 8802 /** 8803 * dev_get_phys_port_name - Get device physical port name 8804 * @dev: device 8805 * @name: port name 8806 * @len: limit of bytes to copy to name 8807 * 8808 * Get device physical port name 8809 */ 8810 int dev_get_phys_port_name(struct net_device *dev, 8811 char *name, size_t len) 8812 { 8813 const struct net_device_ops *ops = dev->netdev_ops; 8814 int err; 8815 8816 if (ops->ndo_get_phys_port_name) { 8817 err = ops->ndo_get_phys_port_name(dev, name, len); 8818 if (err != -EOPNOTSUPP) 8819 return err; 8820 } 8821 return devlink_compat_phys_port_name_get(dev, name, len); 8822 } 8823 EXPORT_SYMBOL(dev_get_phys_port_name); 8824 8825 /** 8826 * dev_get_port_parent_id - Get the device's port parent identifier 8827 * @dev: network device 8828 * @ppid: pointer to a storage for the port's parent identifier 8829 * @recurse: allow/disallow recursion to lower devices 8830 * 8831 * Get the devices's port parent identifier 8832 */ 8833 int dev_get_port_parent_id(struct net_device *dev, 8834 struct netdev_phys_item_id *ppid, 8835 bool recurse) 8836 { 8837 const struct net_device_ops *ops = dev->netdev_ops; 8838 struct netdev_phys_item_id first = { }; 8839 struct net_device *lower_dev; 8840 struct list_head *iter; 8841 int err; 8842 8843 if (ops->ndo_get_port_parent_id) { 8844 err = ops->ndo_get_port_parent_id(dev, ppid); 8845 if (err != -EOPNOTSUPP) 8846 return err; 8847 } 8848 8849 err = devlink_compat_switch_id_get(dev, ppid); 8850 if (!err || err != -EOPNOTSUPP) 8851 return err; 8852 8853 if (!recurse) 8854 return -EOPNOTSUPP; 8855 8856 netdev_for_each_lower_dev(dev, lower_dev, iter) { 8857 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 8858 if (err) 8859 break; 8860 if (!first.id_len) 8861 first = *ppid; 8862 else if (memcmp(&first, ppid, sizeof(*ppid))) 8863 return -EOPNOTSUPP; 8864 } 8865 8866 return err; 8867 } 8868 EXPORT_SYMBOL(dev_get_port_parent_id); 8869 8870 /** 8871 * netdev_port_same_parent_id - Indicate if two network devices have 8872 * the same port parent identifier 8873 * @a: first network device 8874 * @b: second network device 8875 */ 8876 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 8877 { 8878 struct netdev_phys_item_id a_id = { }; 8879 struct netdev_phys_item_id b_id = { }; 8880 8881 if (dev_get_port_parent_id(a, &a_id, true) || 8882 dev_get_port_parent_id(b, &b_id, true)) 8883 return false; 8884 8885 return netdev_phys_item_id_same(&a_id, &b_id); 8886 } 8887 EXPORT_SYMBOL(netdev_port_same_parent_id); 8888 8889 /** 8890 * dev_change_proto_down - update protocol port state information 8891 * @dev: device 8892 * @proto_down: new value 8893 * 8894 * This info can be used by switch drivers to set the phys state of the 8895 * port. 8896 */ 8897 int dev_change_proto_down(struct net_device *dev, bool proto_down) 8898 { 8899 const struct net_device_ops *ops = dev->netdev_ops; 8900 8901 if (!ops->ndo_change_proto_down) 8902 return -EOPNOTSUPP; 8903 if (!netif_device_present(dev)) 8904 return -ENODEV; 8905 return ops->ndo_change_proto_down(dev, proto_down); 8906 } 8907 EXPORT_SYMBOL(dev_change_proto_down); 8908 8909 /** 8910 * dev_change_proto_down_generic - generic implementation for 8911 * ndo_change_proto_down that sets carrier according to 8912 * proto_down. 8913 * 8914 * @dev: device 8915 * @proto_down: new value 8916 */ 8917 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 8918 { 8919 if (proto_down) 8920 netif_carrier_off(dev); 8921 else 8922 netif_carrier_on(dev); 8923 dev->proto_down = proto_down; 8924 return 0; 8925 } 8926 EXPORT_SYMBOL(dev_change_proto_down_generic); 8927 8928 /** 8929 * dev_change_proto_down_reason - proto down reason 8930 * 8931 * @dev: device 8932 * @mask: proto down mask 8933 * @value: proto down value 8934 */ 8935 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 8936 u32 value) 8937 { 8938 int b; 8939 8940 if (!mask) { 8941 dev->proto_down_reason = value; 8942 } else { 8943 for_each_set_bit(b, &mask, 32) { 8944 if (value & (1 << b)) 8945 dev->proto_down_reason |= BIT(b); 8946 else 8947 dev->proto_down_reason &= ~BIT(b); 8948 } 8949 } 8950 } 8951 EXPORT_SYMBOL(dev_change_proto_down_reason); 8952 8953 struct bpf_xdp_link { 8954 struct bpf_link link; 8955 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 8956 int flags; 8957 }; 8958 8959 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 8960 { 8961 if (flags & XDP_FLAGS_HW_MODE) 8962 return XDP_MODE_HW; 8963 if (flags & XDP_FLAGS_DRV_MODE) 8964 return XDP_MODE_DRV; 8965 if (flags & XDP_FLAGS_SKB_MODE) 8966 return XDP_MODE_SKB; 8967 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 8968 } 8969 8970 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 8971 { 8972 switch (mode) { 8973 case XDP_MODE_SKB: 8974 return generic_xdp_install; 8975 case XDP_MODE_DRV: 8976 case XDP_MODE_HW: 8977 return dev->netdev_ops->ndo_bpf; 8978 default: 8979 return NULL; 8980 } 8981 } 8982 8983 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 8984 enum bpf_xdp_mode mode) 8985 { 8986 return dev->xdp_state[mode].link; 8987 } 8988 8989 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 8990 enum bpf_xdp_mode mode) 8991 { 8992 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 8993 8994 if (link) 8995 return link->link.prog; 8996 return dev->xdp_state[mode].prog; 8997 } 8998 8999 static u8 dev_xdp_prog_count(struct net_device *dev) 9000 { 9001 u8 count = 0; 9002 int i; 9003 9004 for (i = 0; i < __MAX_XDP_MODE; i++) 9005 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9006 count++; 9007 return count; 9008 } 9009 9010 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9011 { 9012 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9013 9014 return prog ? prog->aux->id : 0; 9015 } 9016 9017 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9018 struct bpf_xdp_link *link) 9019 { 9020 dev->xdp_state[mode].link = link; 9021 dev->xdp_state[mode].prog = NULL; 9022 } 9023 9024 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9025 struct bpf_prog *prog) 9026 { 9027 dev->xdp_state[mode].link = NULL; 9028 dev->xdp_state[mode].prog = prog; 9029 } 9030 9031 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9032 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9033 u32 flags, struct bpf_prog *prog) 9034 { 9035 struct netdev_bpf xdp; 9036 int err; 9037 9038 memset(&xdp, 0, sizeof(xdp)); 9039 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9040 xdp.extack = extack; 9041 xdp.flags = flags; 9042 xdp.prog = prog; 9043 9044 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9045 * "moved" into driver), so they don't increment it on their own, but 9046 * they do decrement refcnt when program is detached or replaced. 9047 * Given net_device also owns link/prog, we need to bump refcnt here 9048 * to prevent drivers from underflowing it. 9049 */ 9050 if (prog) 9051 bpf_prog_inc(prog); 9052 err = bpf_op(dev, &xdp); 9053 if (err) { 9054 if (prog) 9055 bpf_prog_put(prog); 9056 return err; 9057 } 9058 9059 if (mode != XDP_MODE_HW) 9060 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9061 9062 return 0; 9063 } 9064 9065 static void dev_xdp_uninstall(struct net_device *dev) 9066 { 9067 struct bpf_xdp_link *link; 9068 struct bpf_prog *prog; 9069 enum bpf_xdp_mode mode; 9070 bpf_op_t bpf_op; 9071 9072 ASSERT_RTNL(); 9073 9074 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9075 prog = dev_xdp_prog(dev, mode); 9076 if (!prog) 9077 continue; 9078 9079 bpf_op = dev_xdp_bpf_op(dev, mode); 9080 if (!bpf_op) 9081 continue; 9082 9083 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9084 9085 /* auto-detach link from net device */ 9086 link = dev_xdp_link(dev, mode); 9087 if (link) 9088 link->dev = NULL; 9089 else 9090 bpf_prog_put(prog); 9091 9092 dev_xdp_set_link(dev, mode, NULL); 9093 } 9094 } 9095 9096 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9097 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9098 struct bpf_prog *old_prog, u32 flags) 9099 { 9100 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9101 struct bpf_prog *cur_prog; 9102 enum bpf_xdp_mode mode; 9103 bpf_op_t bpf_op; 9104 int err; 9105 9106 ASSERT_RTNL(); 9107 9108 /* either link or prog attachment, never both */ 9109 if (link && (new_prog || old_prog)) 9110 return -EINVAL; 9111 /* link supports only XDP mode flags */ 9112 if (link && (flags & ~XDP_FLAGS_MODES)) { 9113 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9114 return -EINVAL; 9115 } 9116 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 9117 if (num_modes > 1) { 9118 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9119 return -EINVAL; 9120 } 9121 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 9122 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 9123 NL_SET_ERR_MSG(extack, 9124 "More than one program loaded, unset mode is ambiguous"); 9125 return -EINVAL; 9126 } 9127 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9128 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9129 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9130 return -EINVAL; 9131 } 9132 9133 mode = dev_xdp_mode(dev, flags); 9134 /* can't replace attached link */ 9135 if (dev_xdp_link(dev, mode)) { 9136 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9137 return -EBUSY; 9138 } 9139 9140 cur_prog = dev_xdp_prog(dev, mode); 9141 /* can't replace attached prog with link */ 9142 if (link && cur_prog) { 9143 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9144 return -EBUSY; 9145 } 9146 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9147 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9148 return -EEXIST; 9149 } 9150 9151 /* put effective new program into new_prog */ 9152 if (link) 9153 new_prog = link->link.prog; 9154 9155 if (new_prog) { 9156 bool offload = mode == XDP_MODE_HW; 9157 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9158 ? XDP_MODE_DRV : XDP_MODE_SKB; 9159 9160 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9161 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9162 return -EBUSY; 9163 } 9164 if (!offload && dev_xdp_prog(dev, other_mode)) { 9165 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9166 return -EEXIST; 9167 } 9168 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) { 9169 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported"); 9170 return -EINVAL; 9171 } 9172 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9173 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9174 return -EINVAL; 9175 } 9176 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9177 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9178 return -EINVAL; 9179 } 9180 } 9181 9182 /* don't call drivers if the effective program didn't change */ 9183 if (new_prog != cur_prog) { 9184 bpf_op = dev_xdp_bpf_op(dev, mode); 9185 if (!bpf_op) { 9186 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9187 return -EOPNOTSUPP; 9188 } 9189 9190 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9191 if (err) 9192 return err; 9193 } 9194 9195 if (link) 9196 dev_xdp_set_link(dev, mode, link); 9197 else 9198 dev_xdp_set_prog(dev, mode, new_prog); 9199 if (cur_prog) 9200 bpf_prog_put(cur_prog); 9201 9202 return 0; 9203 } 9204 9205 static int dev_xdp_attach_link(struct net_device *dev, 9206 struct netlink_ext_ack *extack, 9207 struct bpf_xdp_link *link) 9208 { 9209 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9210 } 9211 9212 static int dev_xdp_detach_link(struct net_device *dev, 9213 struct netlink_ext_ack *extack, 9214 struct bpf_xdp_link *link) 9215 { 9216 enum bpf_xdp_mode mode; 9217 bpf_op_t bpf_op; 9218 9219 ASSERT_RTNL(); 9220 9221 mode = dev_xdp_mode(dev, link->flags); 9222 if (dev_xdp_link(dev, mode) != link) 9223 return -EINVAL; 9224 9225 bpf_op = dev_xdp_bpf_op(dev, mode); 9226 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9227 dev_xdp_set_link(dev, mode, NULL); 9228 return 0; 9229 } 9230 9231 static void bpf_xdp_link_release(struct bpf_link *link) 9232 { 9233 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9234 9235 rtnl_lock(); 9236 9237 /* if racing with net_device's tear down, xdp_link->dev might be 9238 * already NULL, in which case link was already auto-detached 9239 */ 9240 if (xdp_link->dev) { 9241 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9242 xdp_link->dev = NULL; 9243 } 9244 9245 rtnl_unlock(); 9246 } 9247 9248 static int bpf_xdp_link_detach(struct bpf_link *link) 9249 { 9250 bpf_xdp_link_release(link); 9251 return 0; 9252 } 9253 9254 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9255 { 9256 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9257 9258 kfree(xdp_link); 9259 } 9260 9261 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9262 struct seq_file *seq) 9263 { 9264 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9265 u32 ifindex = 0; 9266 9267 rtnl_lock(); 9268 if (xdp_link->dev) 9269 ifindex = xdp_link->dev->ifindex; 9270 rtnl_unlock(); 9271 9272 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9273 } 9274 9275 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9276 struct bpf_link_info *info) 9277 { 9278 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9279 u32 ifindex = 0; 9280 9281 rtnl_lock(); 9282 if (xdp_link->dev) 9283 ifindex = xdp_link->dev->ifindex; 9284 rtnl_unlock(); 9285 9286 info->xdp.ifindex = ifindex; 9287 return 0; 9288 } 9289 9290 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9291 struct bpf_prog *old_prog) 9292 { 9293 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9294 enum bpf_xdp_mode mode; 9295 bpf_op_t bpf_op; 9296 int err = 0; 9297 9298 rtnl_lock(); 9299 9300 /* link might have been auto-released already, so fail */ 9301 if (!xdp_link->dev) { 9302 err = -ENOLINK; 9303 goto out_unlock; 9304 } 9305 9306 if (old_prog && link->prog != old_prog) { 9307 err = -EPERM; 9308 goto out_unlock; 9309 } 9310 old_prog = link->prog; 9311 if (old_prog == new_prog) { 9312 /* no-op, don't disturb drivers */ 9313 bpf_prog_put(new_prog); 9314 goto out_unlock; 9315 } 9316 9317 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9318 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9319 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9320 xdp_link->flags, new_prog); 9321 if (err) 9322 goto out_unlock; 9323 9324 old_prog = xchg(&link->prog, new_prog); 9325 bpf_prog_put(old_prog); 9326 9327 out_unlock: 9328 rtnl_unlock(); 9329 return err; 9330 } 9331 9332 static const struct bpf_link_ops bpf_xdp_link_lops = { 9333 .release = bpf_xdp_link_release, 9334 .dealloc = bpf_xdp_link_dealloc, 9335 .detach = bpf_xdp_link_detach, 9336 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9337 .fill_link_info = bpf_xdp_link_fill_link_info, 9338 .update_prog = bpf_xdp_link_update, 9339 }; 9340 9341 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9342 { 9343 struct net *net = current->nsproxy->net_ns; 9344 struct bpf_link_primer link_primer; 9345 struct bpf_xdp_link *link; 9346 struct net_device *dev; 9347 int err, fd; 9348 9349 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9350 if (!dev) 9351 return -EINVAL; 9352 9353 link = kzalloc(sizeof(*link), GFP_USER); 9354 if (!link) { 9355 err = -ENOMEM; 9356 goto out_put_dev; 9357 } 9358 9359 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9360 link->dev = dev; 9361 link->flags = attr->link_create.flags; 9362 9363 err = bpf_link_prime(&link->link, &link_primer); 9364 if (err) { 9365 kfree(link); 9366 goto out_put_dev; 9367 } 9368 9369 rtnl_lock(); 9370 err = dev_xdp_attach_link(dev, NULL, link); 9371 rtnl_unlock(); 9372 9373 if (err) { 9374 bpf_link_cleanup(&link_primer); 9375 goto out_put_dev; 9376 } 9377 9378 fd = bpf_link_settle(&link_primer); 9379 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9380 dev_put(dev); 9381 return fd; 9382 9383 out_put_dev: 9384 dev_put(dev); 9385 return err; 9386 } 9387 9388 /** 9389 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9390 * @dev: device 9391 * @extack: netlink extended ack 9392 * @fd: new program fd or negative value to clear 9393 * @expected_fd: old program fd that userspace expects to replace or clear 9394 * @flags: xdp-related flags 9395 * 9396 * Set or clear a bpf program for a device 9397 */ 9398 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9399 int fd, int expected_fd, u32 flags) 9400 { 9401 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9402 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9403 int err; 9404 9405 ASSERT_RTNL(); 9406 9407 if (fd >= 0) { 9408 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9409 mode != XDP_MODE_SKB); 9410 if (IS_ERR(new_prog)) 9411 return PTR_ERR(new_prog); 9412 } 9413 9414 if (expected_fd >= 0) { 9415 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9416 mode != XDP_MODE_SKB); 9417 if (IS_ERR(old_prog)) { 9418 err = PTR_ERR(old_prog); 9419 old_prog = NULL; 9420 goto err_out; 9421 } 9422 } 9423 9424 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9425 9426 err_out: 9427 if (err && new_prog) 9428 bpf_prog_put(new_prog); 9429 if (old_prog) 9430 bpf_prog_put(old_prog); 9431 return err; 9432 } 9433 9434 /** 9435 * dev_new_index - allocate an ifindex 9436 * @net: the applicable net namespace 9437 * 9438 * Returns a suitable unique value for a new device interface 9439 * number. The caller must hold the rtnl semaphore or the 9440 * dev_base_lock to be sure it remains unique. 9441 */ 9442 static int dev_new_index(struct net *net) 9443 { 9444 int ifindex = net->ifindex; 9445 9446 for (;;) { 9447 if (++ifindex <= 0) 9448 ifindex = 1; 9449 if (!__dev_get_by_index(net, ifindex)) 9450 return net->ifindex = ifindex; 9451 } 9452 } 9453 9454 /* Delayed registration/unregisteration */ 9455 static LIST_HEAD(net_todo_list); 9456 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9457 9458 static void net_set_todo(struct net_device *dev) 9459 { 9460 list_add_tail(&dev->todo_list, &net_todo_list); 9461 dev_net(dev)->dev_unreg_count++; 9462 } 9463 9464 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9465 struct net_device *upper, netdev_features_t features) 9466 { 9467 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9468 netdev_features_t feature; 9469 int feature_bit; 9470 9471 for_each_netdev_feature(upper_disables, feature_bit) { 9472 feature = __NETIF_F_BIT(feature_bit); 9473 if (!(upper->wanted_features & feature) 9474 && (features & feature)) { 9475 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9476 &feature, upper->name); 9477 features &= ~feature; 9478 } 9479 } 9480 9481 return features; 9482 } 9483 9484 static void netdev_sync_lower_features(struct net_device *upper, 9485 struct net_device *lower, netdev_features_t features) 9486 { 9487 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9488 netdev_features_t feature; 9489 int feature_bit; 9490 9491 for_each_netdev_feature(upper_disables, feature_bit) { 9492 feature = __NETIF_F_BIT(feature_bit); 9493 if (!(features & feature) && (lower->features & feature)) { 9494 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9495 &feature, lower->name); 9496 lower->wanted_features &= ~feature; 9497 __netdev_update_features(lower); 9498 9499 if (unlikely(lower->features & feature)) 9500 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9501 &feature, lower->name); 9502 else 9503 netdev_features_change(lower); 9504 } 9505 } 9506 } 9507 9508 static netdev_features_t netdev_fix_features(struct net_device *dev, 9509 netdev_features_t features) 9510 { 9511 /* Fix illegal checksum combinations */ 9512 if ((features & NETIF_F_HW_CSUM) && 9513 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9514 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9515 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9516 } 9517 9518 /* TSO requires that SG is present as well. */ 9519 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9520 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9521 features &= ~NETIF_F_ALL_TSO; 9522 } 9523 9524 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9525 !(features & NETIF_F_IP_CSUM)) { 9526 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9527 features &= ~NETIF_F_TSO; 9528 features &= ~NETIF_F_TSO_ECN; 9529 } 9530 9531 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9532 !(features & NETIF_F_IPV6_CSUM)) { 9533 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9534 features &= ~NETIF_F_TSO6; 9535 } 9536 9537 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9538 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9539 features &= ~NETIF_F_TSO_MANGLEID; 9540 9541 /* TSO ECN requires that TSO is present as well. */ 9542 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9543 features &= ~NETIF_F_TSO_ECN; 9544 9545 /* Software GSO depends on SG. */ 9546 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9547 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9548 features &= ~NETIF_F_GSO; 9549 } 9550 9551 /* GSO partial features require GSO partial be set */ 9552 if ((features & dev->gso_partial_features) && 9553 !(features & NETIF_F_GSO_PARTIAL)) { 9554 netdev_dbg(dev, 9555 "Dropping partially supported GSO features since no GSO partial.\n"); 9556 features &= ~dev->gso_partial_features; 9557 } 9558 9559 if (!(features & NETIF_F_RXCSUM)) { 9560 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9561 * successfully merged by hardware must also have the 9562 * checksum verified by hardware. If the user does not 9563 * want to enable RXCSUM, logically, we should disable GRO_HW. 9564 */ 9565 if (features & NETIF_F_GRO_HW) { 9566 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9567 features &= ~NETIF_F_GRO_HW; 9568 } 9569 } 9570 9571 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9572 if (features & NETIF_F_RXFCS) { 9573 if (features & NETIF_F_LRO) { 9574 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9575 features &= ~NETIF_F_LRO; 9576 } 9577 9578 if (features & NETIF_F_GRO_HW) { 9579 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9580 features &= ~NETIF_F_GRO_HW; 9581 } 9582 } 9583 9584 if (features & NETIF_F_HW_TLS_TX) { 9585 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) == 9586 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 9587 bool hw_csum = features & NETIF_F_HW_CSUM; 9588 9589 if (!ip_csum && !hw_csum) { 9590 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 9591 features &= ~NETIF_F_HW_TLS_TX; 9592 } 9593 } 9594 9595 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 9596 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 9597 features &= ~NETIF_F_HW_TLS_RX; 9598 } 9599 9600 return features; 9601 } 9602 9603 int __netdev_update_features(struct net_device *dev) 9604 { 9605 struct net_device *upper, *lower; 9606 netdev_features_t features; 9607 struct list_head *iter; 9608 int err = -1; 9609 9610 ASSERT_RTNL(); 9611 9612 features = netdev_get_wanted_features(dev); 9613 9614 if (dev->netdev_ops->ndo_fix_features) 9615 features = dev->netdev_ops->ndo_fix_features(dev, features); 9616 9617 /* driver might be less strict about feature dependencies */ 9618 features = netdev_fix_features(dev, features); 9619 9620 /* some features can't be enabled if they're off on an upper device */ 9621 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9622 features = netdev_sync_upper_features(dev, upper, features); 9623 9624 if (dev->features == features) 9625 goto sync_lower; 9626 9627 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9628 &dev->features, &features); 9629 9630 if (dev->netdev_ops->ndo_set_features) 9631 err = dev->netdev_ops->ndo_set_features(dev, features); 9632 else 9633 err = 0; 9634 9635 if (unlikely(err < 0)) { 9636 netdev_err(dev, 9637 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9638 err, &features, &dev->features); 9639 /* return non-0 since some features might have changed and 9640 * it's better to fire a spurious notification than miss it 9641 */ 9642 return -1; 9643 } 9644 9645 sync_lower: 9646 /* some features must be disabled on lower devices when disabled 9647 * on an upper device (think: bonding master or bridge) 9648 */ 9649 netdev_for_each_lower_dev(dev, lower, iter) 9650 netdev_sync_lower_features(dev, lower, features); 9651 9652 if (!err) { 9653 netdev_features_t diff = features ^ dev->features; 9654 9655 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9656 /* udp_tunnel_{get,drop}_rx_info both need 9657 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9658 * device, or they won't do anything. 9659 * Thus we need to update dev->features 9660 * *before* calling udp_tunnel_get_rx_info, 9661 * but *after* calling udp_tunnel_drop_rx_info. 9662 */ 9663 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9664 dev->features = features; 9665 udp_tunnel_get_rx_info(dev); 9666 } else { 9667 udp_tunnel_drop_rx_info(dev); 9668 } 9669 } 9670 9671 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9672 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9673 dev->features = features; 9674 err |= vlan_get_rx_ctag_filter_info(dev); 9675 } else { 9676 vlan_drop_rx_ctag_filter_info(dev); 9677 } 9678 } 9679 9680 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9681 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9682 dev->features = features; 9683 err |= vlan_get_rx_stag_filter_info(dev); 9684 } else { 9685 vlan_drop_rx_stag_filter_info(dev); 9686 } 9687 } 9688 9689 dev->features = features; 9690 } 9691 9692 return err < 0 ? 0 : 1; 9693 } 9694 9695 /** 9696 * netdev_update_features - recalculate device features 9697 * @dev: the device to check 9698 * 9699 * Recalculate dev->features set and send notifications if it 9700 * has changed. Should be called after driver or hardware dependent 9701 * conditions might have changed that influence the features. 9702 */ 9703 void netdev_update_features(struct net_device *dev) 9704 { 9705 if (__netdev_update_features(dev)) 9706 netdev_features_change(dev); 9707 } 9708 EXPORT_SYMBOL(netdev_update_features); 9709 9710 /** 9711 * netdev_change_features - recalculate device features 9712 * @dev: the device to check 9713 * 9714 * Recalculate dev->features set and send notifications even 9715 * if they have not changed. Should be called instead of 9716 * netdev_update_features() if also dev->vlan_features might 9717 * have changed to allow the changes to be propagated to stacked 9718 * VLAN devices. 9719 */ 9720 void netdev_change_features(struct net_device *dev) 9721 { 9722 __netdev_update_features(dev); 9723 netdev_features_change(dev); 9724 } 9725 EXPORT_SYMBOL(netdev_change_features); 9726 9727 /** 9728 * netif_stacked_transfer_operstate - transfer operstate 9729 * @rootdev: the root or lower level device to transfer state from 9730 * @dev: the device to transfer operstate to 9731 * 9732 * Transfer operational state from root to device. This is normally 9733 * called when a stacking relationship exists between the root 9734 * device and the device(a leaf device). 9735 */ 9736 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9737 struct net_device *dev) 9738 { 9739 if (rootdev->operstate == IF_OPER_DORMANT) 9740 netif_dormant_on(dev); 9741 else 9742 netif_dormant_off(dev); 9743 9744 if (rootdev->operstate == IF_OPER_TESTING) 9745 netif_testing_on(dev); 9746 else 9747 netif_testing_off(dev); 9748 9749 if (netif_carrier_ok(rootdev)) 9750 netif_carrier_on(dev); 9751 else 9752 netif_carrier_off(dev); 9753 } 9754 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 9755 9756 static int netif_alloc_rx_queues(struct net_device *dev) 9757 { 9758 unsigned int i, count = dev->num_rx_queues; 9759 struct netdev_rx_queue *rx; 9760 size_t sz = count * sizeof(*rx); 9761 int err = 0; 9762 9763 BUG_ON(count < 1); 9764 9765 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9766 if (!rx) 9767 return -ENOMEM; 9768 9769 dev->_rx = rx; 9770 9771 for (i = 0; i < count; i++) { 9772 rx[i].dev = dev; 9773 9774 /* XDP RX-queue setup */ 9775 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 9776 if (err < 0) 9777 goto err_rxq_info; 9778 } 9779 return 0; 9780 9781 err_rxq_info: 9782 /* Rollback successful reg's and free other resources */ 9783 while (i--) 9784 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 9785 kvfree(dev->_rx); 9786 dev->_rx = NULL; 9787 return err; 9788 } 9789 9790 static void netif_free_rx_queues(struct net_device *dev) 9791 { 9792 unsigned int i, count = dev->num_rx_queues; 9793 9794 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 9795 if (!dev->_rx) 9796 return; 9797 9798 for (i = 0; i < count; i++) 9799 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 9800 9801 kvfree(dev->_rx); 9802 } 9803 9804 static void netdev_init_one_queue(struct net_device *dev, 9805 struct netdev_queue *queue, void *_unused) 9806 { 9807 /* Initialize queue lock */ 9808 spin_lock_init(&queue->_xmit_lock); 9809 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 9810 queue->xmit_lock_owner = -1; 9811 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 9812 queue->dev = dev; 9813 #ifdef CONFIG_BQL 9814 dql_init(&queue->dql, HZ); 9815 #endif 9816 } 9817 9818 static void netif_free_tx_queues(struct net_device *dev) 9819 { 9820 kvfree(dev->_tx); 9821 } 9822 9823 static int netif_alloc_netdev_queues(struct net_device *dev) 9824 { 9825 unsigned int count = dev->num_tx_queues; 9826 struct netdev_queue *tx; 9827 size_t sz = count * sizeof(*tx); 9828 9829 if (count < 1 || count > 0xffff) 9830 return -EINVAL; 9831 9832 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9833 if (!tx) 9834 return -ENOMEM; 9835 9836 dev->_tx = tx; 9837 9838 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 9839 spin_lock_init(&dev->tx_global_lock); 9840 9841 return 0; 9842 } 9843 9844 void netif_tx_stop_all_queues(struct net_device *dev) 9845 { 9846 unsigned int i; 9847 9848 for (i = 0; i < dev->num_tx_queues; i++) { 9849 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 9850 9851 netif_tx_stop_queue(txq); 9852 } 9853 } 9854 EXPORT_SYMBOL(netif_tx_stop_all_queues); 9855 9856 /** 9857 * register_netdevice - register a network device 9858 * @dev: device to register 9859 * 9860 * Take a completed network device structure and add it to the kernel 9861 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9862 * chain. 0 is returned on success. A negative errno code is returned 9863 * on a failure to set up the device, or if the name is a duplicate. 9864 * 9865 * Callers must hold the rtnl semaphore. You may want 9866 * register_netdev() instead of this. 9867 * 9868 * BUGS: 9869 * The locking appears insufficient to guarantee two parallel registers 9870 * will not get the same name. 9871 */ 9872 9873 int register_netdevice(struct net_device *dev) 9874 { 9875 int ret; 9876 struct net *net = dev_net(dev); 9877 9878 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 9879 NETDEV_FEATURE_COUNT); 9880 BUG_ON(dev_boot_phase); 9881 ASSERT_RTNL(); 9882 9883 might_sleep(); 9884 9885 /* When net_device's are persistent, this will be fatal. */ 9886 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 9887 BUG_ON(!net); 9888 9889 ret = ethtool_check_ops(dev->ethtool_ops); 9890 if (ret) 9891 return ret; 9892 9893 spin_lock_init(&dev->addr_list_lock); 9894 netdev_set_addr_lockdep_class(dev); 9895 9896 ret = dev_get_valid_name(net, dev, dev->name); 9897 if (ret < 0) 9898 goto out; 9899 9900 ret = -ENOMEM; 9901 dev->name_node = netdev_name_node_head_alloc(dev); 9902 if (!dev->name_node) 9903 goto out; 9904 9905 /* Init, if this function is available */ 9906 if (dev->netdev_ops->ndo_init) { 9907 ret = dev->netdev_ops->ndo_init(dev); 9908 if (ret) { 9909 if (ret > 0) 9910 ret = -EIO; 9911 goto err_free_name; 9912 } 9913 } 9914 9915 if (((dev->hw_features | dev->features) & 9916 NETIF_F_HW_VLAN_CTAG_FILTER) && 9917 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 9918 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 9919 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 9920 ret = -EINVAL; 9921 goto err_uninit; 9922 } 9923 9924 ret = -EBUSY; 9925 if (!dev->ifindex) 9926 dev->ifindex = dev_new_index(net); 9927 else if (__dev_get_by_index(net, dev->ifindex)) 9928 goto err_uninit; 9929 9930 /* Transfer changeable features to wanted_features and enable 9931 * software offloads (GSO and GRO). 9932 */ 9933 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 9934 dev->features |= NETIF_F_SOFT_FEATURES; 9935 9936 if (dev->udp_tunnel_nic_info) { 9937 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9938 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9939 } 9940 9941 dev->wanted_features = dev->features & dev->hw_features; 9942 9943 if (!(dev->flags & IFF_LOOPBACK)) 9944 dev->hw_features |= NETIF_F_NOCACHE_COPY; 9945 9946 /* If IPv4 TCP segmentation offload is supported we should also 9947 * allow the device to enable segmenting the frame with the option 9948 * of ignoring a static IP ID value. This doesn't enable the 9949 * feature itself but allows the user to enable it later. 9950 */ 9951 if (dev->hw_features & NETIF_F_TSO) 9952 dev->hw_features |= NETIF_F_TSO_MANGLEID; 9953 if (dev->vlan_features & NETIF_F_TSO) 9954 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 9955 if (dev->mpls_features & NETIF_F_TSO) 9956 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 9957 if (dev->hw_enc_features & NETIF_F_TSO) 9958 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 9959 9960 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 9961 */ 9962 dev->vlan_features |= NETIF_F_HIGHDMA; 9963 9964 /* Make NETIF_F_SG inheritable to tunnel devices. 9965 */ 9966 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 9967 9968 /* Make NETIF_F_SG inheritable to MPLS. 9969 */ 9970 dev->mpls_features |= NETIF_F_SG; 9971 9972 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 9973 ret = notifier_to_errno(ret); 9974 if (ret) 9975 goto err_uninit; 9976 9977 ret = netdev_register_kobject(dev); 9978 if (ret) { 9979 dev->reg_state = NETREG_UNREGISTERED; 9980 goto err_uninit; 9981 } 9982 dev->reg_state = NETREG_REGISTERED; 9983 9984 __netdev_update_features(dev); 9985 9986 /* 9987 * Default initial state at registry is that the 9988 * device is present. 9989 */ 9990 9991 set_bit(__LINK_STATE_PRESENT, &dev->state); 9992 9993 linkwatch_init_dev(dev); 9994 9995 dev_init_scheduler(dev); 9996 dev_hold(dev); 9997 list_netdevice(dev); 9998 add_device_randomness(dev->dev_addr, dev->addr_len); 9999 10000 /* If the device has permanent device address, driver should 10001 * set dev_addr and also addr_assign_type should be set to 10002 * NET_ADDR_PERM (default value). 10003 */ 10004 if (dev->addr_assign_type == NET_ADDR_PERM) 10005 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 10006 10007 /* Notify protocols, that a new device appeared. */ 10008 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 10009 ret = notifier_to_errno(ret); 10010 if (ret) { 10011 /* Expect explicit free_netdev() on failure */ 10012 dev->needs_free_netdev = false; 10013 unregister_netdevice_queue(dev, NULL); 10014 goto out; 10015 } 10016 /* 10017 * Prevent userspace races by waiting until the network 10018 * device is fully setup before sending notifications. 10019 */ 10020 if (!dev->rtnl_link_ops || 10021 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10022 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10023 10024 out: 10025 return ret; 10026 10027 err_uninit: 10028 if (dev->netdev_ops->ndo_uninit) 10029 dev->netdev_ops->ndo_uninit(dev); 10030 if (dev->priv_destructor) 10031 dev->priv_destructor(dev); 10032 err_free_name: 10033 netdev_name_node_free(dev->name_node); 10034 goto out; 10035 } 10036 EXPORT_SYMBOL(register_netdevice); 10037 10038 /** 10039 * init_dummy_netdev - init a dummy network device for NAPI 10040 * @dev: device to init 10041 * 10042 * This takes a network device structure and initialize the minimum 10043 * amount of fields so it can be used to schedule NAPI polls without 10044 * registering a full blown interface. This is to be used by drivers 10045 * that need to tie several hardware interfaces to a single NAPI 10046 * poll scheduler due to HW limitations. 10047 */ 10048 int init_dummy_netdev(struct net_device *dev) 10049 { 10050 /* Clear everything. Note we don't initialize spinlocks 10051 * are they aren't supposed to be taken by any of the 10052 * NAPI code and this dummy netdev is supposed to be 10053 * only ever used for NAPI polls 10054 */ 10055 memset(dev, 0, sizeof(struct net_device)); 10056 10057 /* make sure we BUG if trying to hit standard 10058 * register/unregister code path 10059 */ 10060 dev->reg_state = NETREG_DUMMY; 10061 10062 /* NAPI wants this */ 10063 INIT_LIST_HEAD(&dev->napi_list); 10064 10065 /* a dummy interface is started by default */ 10066 set_bit(__LINK_STATE_PRESENT, &dev->state); 10067 set_bit(__LINK_STATE_START, &dev->state); 10068 10069 /* napi_busy_loop stats accounting wants this */ 10070 dev_net_set(dev, &init_net); 10071 10072 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10073 * because users of this 'device' dont need to change 10074 * its refcount. 10075 */ 10076 10077 return 0; 10078 } 10079 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10080 10081 10082 /** 10083 * register_netdev - register a network device 10084 * @dev: device to register 10085 * 10086 * Take a completed network device structure and add it to the kernel 10087 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10088 * chain. 0 is returned on success. A negative errno code is returned 10089 * on a failure to set up the device, or if the name is a duplicate. 10090 * 10091 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10092 * and expands the device name if you passed a format string to 10093 * alloc_netdev. 10094 */ 10095 int register_netdev(struct net_device *dev) 10096 { 10097 int err; 10098 10099 if (rtnl_lock_killable()) 10100 return -EINTR; 10101 err = register_netdevice(dev); 10102 rtnl_unlock(); 10103 return err; 10104 } 10105 EXPORT_SYMBOL(register_netdev); 10106 10107 int netdev_refcnt_read(const struct net_device *dev) 10108 { 10109 int i, refcnt = 0; 10110 10111 for_each_possible_cpu(i) 10112 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10113 return refcnt; 10114 } 10115 EXPORT_SYMBOL(netdev_refcnt_read); 10116 10117 #define WAIT_REFS_MIN_MSECS 1 10118 #define WAIT_REFS_MAX_MSECS 250 10119 /** 10120 * netdev_wait_allrefs - wait until all references are gone. 10121 * @dev: target net_device 10122 * 10123 * This is called when unregistering network devices. 10124 * 10125 * Any protocol or device that holds a reference should register 10126 * for netdevice notification, and cleanup and put back the 10127 * reference if they receive an UNREGISTER event. 10128 * We can get stuck here if buggy protocols don't correctly 10129 * call dev_put. 10130 */ 10131 static void netdev_wait_allrefs(struct net_device *dev) 10132 { 10133 unsigned long rebroadcast_time, warning_time; 10134 int wait = 0, refcnt; 10135 10136 linkwatch_forget_dev(dev); 10137 10138 rebroadcast_time = warning_time = jiffies; 10139 refcnt = netdev_refcnt_read(dev); 10140 10141 while (refcnt != 0) { 10142 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10143 rtnl_lock(); 10144 10145 /* Rebroadcast unregister notification */ 10146 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10147 10148 __rtnl_unlock(); 10149 rcu_barrier(); 10150 rtnl_lock(); 10151 10152 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10153 &dev->state)) { 10154 /* We must not have linkwatch events 10155 * pending on unregister. If this 10156 * happens, we simply run the queue 10157 * unscheduled, resulting in a noop 10158 * for this device. 10159 */ 10160 linkwatch_run_queue(); 10161 } 10162 10163 __rtnl_unlock(); 10164 10165 rebroadcast_time = jiffies; 10166 } 10167 10168 if (!wait) { 10169 rcu_barrier(); 10170 wait = WAIT_REFS_MIN_MSECS; 10171 } else { 10172 msleep(wait); 10173 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10174 } 10175 10176 refcnt = netdev_refcnt_read(dev); 10177 10178 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) { 10179 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10180 dev->name, refcnt); 10181 warning_time = jiffies; 10182 } 10183 } 10184 } 10185 10186 /* The sequence is: 10187 * 10188 * rtnl_lock(); 10189 * ... 10190 * register_netdevice(x1); 10191 * register_netdevice(x2); 10192 * ... 10193 * unregister_netdevice(y1); 10194 * unregister_netdevice(y2); 10195 * ... 10196 * rtnl_unlock(); 10197 * free_netdev(y1); 10198 * free_netdev(y2); 10199 * 10200 * We are invoked by rtnl_unlock(). 10201 * This allows us to deal with problems: 10202 * 1) We can delete sysfs objects which invoke hotplug 10203 * without deadlocking with linkwatch via keventd. 10204 * 2) Since we run with the RTNL semaphore not held, we can sleep 10205 * safely in order to wait for the netdev refcnt to drop to zero. 10206 * 10207 * We must not return until all unregister events added during 10208 * the interval the lock was held have been completed. 10209 */ 10210 void netdev_run_todo(void) 10211 { 10212 struct list_head list; 10213 #ifdef CONFIG_LOCKDEP 10214 struct list_head unlink_list; 10215 10216 list_replace_init(&net_unlink_list, &unlink_list); 10217 10218 while (!list_empty(&unlink_list)) { 10219 struct net_device *dev = list_first_entry(&unlink_list, 10220 struct net_device, 10221 unlink_list); 10222 list_del_init(&dev->unlink_list); 10223 dev->nested_level = dev->lower_level - 1; 10224 } 10225 #endif 10226 10227 /* Snapshot list, allow later requests */ 10228 list_replace_init(&net_todo_list, &list); 10229 10230 __rtnl_unlock(); 10231 10232 10233 /* Wait for rcu callbacks to finish before next phase */ 10234 if (!list_empty(&list)) 10235 rcu_barrier(); 10236 10237 while (!list_empty(&list)) { 10238 struct net_device *dev 10239 = list_first_entry(&list, struct net_device, todo_list); 10240 list_del(&dev->todo_list); 10241 10242 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10243 pr_err("network todo '%s' but state %d\n", 10244 dev->name, dev->reg_state); 10245 dump_stack(); 10246 continue; 10247 } 10248 10249 dev->reg_state = NETREG_UNREGISTERED; 10250 10251 netdev_wait_allrefs(dev); 10252 10253 /* paranoia */ 10254 BUG_ON(netdev_refcnt_read(dev)); 10255 BUG_ON(!list_empty(&dev->ptype_all)); 10256 BUG_ON(!list_empty(&dev->ptype_specific)); 10257 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10258 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10259 #if IS_ENABLED(CONFIG_DECNET) 10260 WARN_ON(dev->dn_ptr); 10261 #endif 10262 if (dev->priv_destructor) 10263 dev->priv_destructor(dev); 10264 if (dev->needs_free_netdev) 10265 free_netdev(dev); 10266 10267 /* Report a network device has been unregistered */ 10268 rtnl_lock(); 10269 dev_net(dev)->dev_unreg_count--; 10270 __rtnl_unlock(); 10271 wake_up(&netdev_unregistering_wq); 10272 10273 /* Free network device */ 10274 kobject_put(&dev->dev.kobj); 10275 } 10276 } 10277 10278 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10279 * all the same fields in the same order as net_device_stats, with only 10280 * the type differing, but rtnl_link_stats64 may have additional fields 10281 * at the end for newer counters. 10282 */ 10283 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10284 const struct net_device_stats *netdev_stats) 10285 { 10286 #if BITS_PER_LONG == 64 10287 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 10288 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 10289 /* zero out counters that only exist in rtnl_link_stats64 */ 10290 memset((char *)stats64 + sizeof(*netdev_stats), 0, 10291 sizeof(*stats64) - sizeof(*netdev_stats)); 10292 #else 10293 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 10294 const unsigned long *src = (const unsigned long *)netdev_stats; 10295 u64 *dst = (u64 *)stats64; 10296 10297 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10298 for (i = 0; i < n; i++) 10299 dst[i] = src[i]; 10300 /* zero out counters that only exist in rtnl_link_stats64 */ 10301 memset((char *)stats64 + n * sizeof(u64), 0, 10302 sizeof(*stats64) - n * sizeof(u64)); 10303 #endif 10304 } 10305 EXPORT_SYMBOL(netdev_stats_to_stats64); 10306 10307 /** 10308 * dev_get_stats - get network device statistics 10309 * @dev: device to get statistics from 10310 * @storage: place to store stats 10311 * 10312 * Get network statistics from device. Return @storage. 10313 * The device driver may provide its own method by setting 10314 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10315 * otherwise the internal statistics structure is used. 10316 */ 10317 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10318 struct rtnl_link_stats64 *storage) 10319 { 10320 const struct net_device_ops *ops = dev->netdev_ops; 10321 10322 if (ops->ndo_get_stats64) { 10323 memset(storage, 0, sizeof(*storage)); 10324 ops->ndo_get_stats64(dev, storage); 10325 } else if (ops->ndo_get_stats) { 10326 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10327 } else { 10328 netdev_stats_to_stats64(storage, &dev->stats); 10329 } 10330 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 10331 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 10332 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 10333 return storage; 10334 } 10335 EXPORT_SYMBOL(dev_get_stats); 10336 10337 /** 10338 * dev_fetch_sw_netstats - get per-cpu network device statistics 10339 * @s: place to store stats 10340 * @netstats: per-cpu network stats to read from 10341 * 10342 * Read per-cpu network statistics and populate the related fields in @s. 10343 */ 10344 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10345 const struct pcpu_sw_netstats __percpu *netstats) 10346 { 10347 int cpu; 10348 10349 for_each_possible_cpu(cpu) { 10350 const struct pcpu_sw_netstats *stats; 10351 struct pcpu_sw_netstats tmp; 10352 unsigned int start; 10353 10354 stats = per_cpu_ptr(netstats, cpu); 10355 do { 10356 start = u64_stats_fetch_begin_irq(&stats->syncp); 10357 tmp.rx_packets = stats->rx_packets; 10358 tmp.rx_bytes = stats->rx_bytes; 10359 tmp.tx_packets = stats->tx_packets; 10360 tmp.tx_bytes = stats->tx_bytes; 10361 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 10362 10363 s->rx_packets += tmp.rx_packets; 10364 s->rx_bytes += tmp.rx_bytes; 10365 s->tx_packets += tmp.tx_packets; 10366 s->tx_bytes += tmp.tx_bytes; 10367 } 10368 } 10369 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 10370 10371 /** 10372 * dev_get_tstats64 - ndo_get_stats64 implementation 10373 * @dev: device to get statistics from 10374 * @s: place to store stats 10375 * 10376 * Populate @s from dev->stats and dev->tstats. Can be used as 10377 * ndo_get_stats64() callback. 10378 */ 10379 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 10380 { 10381 netdev_stats_to_stats64(s, &dev->stats); 10382 dev_fetch_sw_netstats(s, dev->tstats); 10383 } 10384 EXPORT_SYMBOL_GPL(dev_get_tstats64); 10385 10386 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10387 { 10388 struct netdev_queue *queue = dev_ingress_queue(dev); 10389 10390 #ifdef CONFIG_NET_CLS_ACT 10391 if (queue) 10392 return queue; 10393 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 10394 if (!queue) 10395 return NULL; 10396 netdev_init_one_queue(dev, queue, NULL); 10397 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 10398 queue->qdisc_sleeping = &noop_qdisc; 10399 rcu_assign_pointer(dev->ingress_queue, queue); 10400 #endif 10401 return queue; 10402 } 10403 10404 static const struct ethtool_ops default_ethtool_ops; 10405 10406 void netdev_set_default_ethtool_ops(struct net_device *dev, 10407 const struct ethtool_ops *ops) 10408 { 10409 if (dev->ethtool_ops == &default_ethtool_ops) 10410 dev->ethtool_ops = ops; 10411 } 10412 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 10413 10414 void netdev_freemem(struct net_device *dev) 10415 { 10416 char *addr = (char *)dev - dev->padded; 10417 10418 kvfree(addr); 10419 } 10420 10421 /** 10422 * alloc_netdev_mqs - allocate network device 10423 * @sizeof_priv: size of private data to allocate space for 10424 * @name: device name format string 10425 * @name_assign_type: origin of device name 10426 * @setup: callback to initialize device 10427 * @txqs: the number of TX subqueues to allocate 10428 * @rxqs: the number of RX subqueues to allocate 10429 * 10430 * Allocates a struct net_device with private data area for driver use 10431 * and performs basic initialization. Also allocates subqueue structs 10432 * for each queue on the device. 10433 */ 10434 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 10435 unsigned char name_assign_type, 10436 void (*setup)(struct net_device *), 10437 unsigned int txqs, unsigned int rxqs) 10438 { 10439 struct net_device *dev; 10440 unsigned int alloc_size; 10441 struct net_device *p; 10442 10443 BUG_ON(strlen(name) >= sizeof(dev->name)); 10444 10445 if (txqs < 1) { 10446 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 10447 return NULL; 10448 } 10449 10450 if (rxqs < 1) { 10451 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 10452 return NULL; 10453 } 10454 10455 alloc_size = sizeof(struct net_device); 10456 if (sizeof_priv) { 10457 /* ensure 32-byte alignment of private area */ 10458 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 10459 alloc_size += sizeof_priv; 10460 } 10461 /* ensure 32-byte alignment of whole construct */ 10462 alloc_size += NETDEV_ALIGN - 1; 10463 10464 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 10465 if (!p) 10466 return NULL; 10467 10468 dev = PTR_ALIGN(p, NETDEV_ALIGN); 10469 dev->padded = (char *)dev - (char *)p; 10470 10471 dev->pcpu_refcnt = alloc_percpu(int); 10472 if (!dev->pcpu_refcnt) 10473 goto free_dev; 10474 10475 if (dev_addr_init(dev)) 10476 goto free_pcpu; 10477 10478 dev_mc_init(dev); 10479 dev_uc_init(dev); 10480 10481 dev_net_set(dev, &init_net); 10482 10483 dev->gso_max_size = GSO_MAX_SIZE; 10484 dev->gso_max_segs = GSO_MAX_SEGS; 10485 dev->upper_level = 1; 10486 dev->lower_level = 1; 10487 #ifdef CONFIG_LOCKDEP 10488 dev->nested_level = 0; 10489 INIT_LIST_HEAD(&dev->unlink_list); 10490 #endif 10491 10492 INIT_LIST_HEAD(&dev->napi_list); 10493 INIT_LIST_HEAD(&dev->unreg_list); 10494 INIT_LIST_HEAD(&dev->close_list); 10495 INIT_LIST_HEAD(&dev->link_watch_list); 10496 INIT_LIST_HEAD(&dev->adj_list.upper); 10497 INIT_LIST_HEAD(&dev->adj_list.lower); 10498 INIT_LIST_HEAD(&dev->ptype_all); 10499 INIT_LIST_HEAD(&dev->ptype_specific); 10500 INIT_LIST_HEAD(&dev->net_notifier_list); 10501 #ifdef CONFIG_NET_SCHED 10502 hash_init(dev->qdisc_hash); 10503 #endif 10504 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 10505 setup(dev); 10506 10507 if (!dev->tx_queue_len) { 10508 dev->priv_flags |= IFF_NO_QUEUE; 10509 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 10510 } 10511 10512 dev->num_tx_queues = txqs; 10513 dev->real_num_tx_queues = txqs; 10514 if (netif_alloc_netdev_queues(dev)) 10515 goto free_all; 10516 10517 dev->num_rx_queues = rxqs; 10518 dev->real_num_rx_queues = rxqs; 10519 if (netif_alloc_rx_queues(dev)) 10520 goto free_all; 10521 10522 strcpy(dev->name, name); 10523 dev->name_assign_type = name_assign_type; 10524 dev->group = INIT_NETDEV_GROUP; 10525 if (!dev->ethtool_ops) 10526 dev->ethtool_ops = &default_ethtool_ops; 10527 10528 nf_hook_ingress_init(dev); 10529 10530 return dev; 10531 10532 free_all: 10533 free_netdev(dev); 10534 return NULL; 10535 10536 free_pcpu: 10537 free_percpu(dev->pcpu_refcnt); 10538 free_dev: 10539 netdev_freemem(dev); 10540 return NULL; 10541 } 10542 EXPORT_SYMBOL(alloc_netdev_mqs); 10543 10544 /** 10545 * free_netdev - free network device 10546 * @dev: device 10547 * 10548 * This function does the last stage of destroying an allocated device 10549 * interface. The reference to the device object is released. If this 10550 * is the last reference then it will be freed.Must be called in process 10551 * context. 10552 */ 10553 void free_netdev(struct net_device *dev) 10554 { 10555 struct napi_struct *p, *n; 10556 10557 might_sleep(); 10558 10559 /* When called immediately after register_netdevice() failed the unwind 10560 * handling may still be dismantling the device. Handle that case by 10561 * deferring the free. 10562 */ 10563 if (dev->reg_state == NETREG_UNREGISTERING) { 10564 ASSERT_RTNL(); 10565 dev->needs_free_netdev = true; 10566 return; 10567 } 10568 10569 netif_free_tx_queues(dev); 10570 netif_free_rx_queues(dev); 10571 10572 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 10573 10574 /* Flush device addresses */ 10575 dev_addr_flush(dev); 10576 10577 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 10578 netif_napi_del(p); 10579 10580 free_percpu(dev->pcpu_refcnt); 10581 dev->pcpu_refcnt = NULL; 10582 free_percpu(dev->xdp_bulkq); 10583 dev->xdp_bulkq = NULL; 10584 10585 /* Compatibility with error handling in drivers */ 10586 if (dev->reg_state == NETREG_UNINITIALIZED) { 10587 netdev_freemem(dev); 10588 return; 10589 } 10590 10591 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 10592 dev->reg_state = NETREG_RELEASED; 10593 10594 /* will free via device release */ 10595 put_device(&dev->dev); 10596 } 10597 EXPORT_SYMBOL(free_netdev); 10598 10599 /** 10600 * synchronize_net - Synchronize with packet receive processing 10601 * 10602 * Wait for packets currently being received to be done. 10603 * Does not block later packets from starting. 10604 */ 10605 void synchronize_net(void) 10606 { 10607 might_sleep(); 10608 if (rtnl_is_locked()) 10609 synchronize_rcu_expedited(); 10610 else 10611 synchronize_rcu(); 10612 } 10613 EXPORT_SYMBOL(synchronize_net); 10614 10615 /** 10616 * unregister_netdevice_queue - remove device from the kernel 10617 * @dev: device 10618 * @head: list 10619 * 10620 * This function shuts down a device interface and removes it 10621 * from the kernel tables. 10622 * If head not NULL, device is queued to be unregistered later. 10623 * 10624 * Callers must hold the rtnl semaphore. You may want 10625 * unregister_netdev() instead of this. 10626 */ 10627 10628 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 10629 { 10630 ASSERT_RTNL(); 10631 10632 if (head) { 10633 list_move_tail(&dev->unreg_list, head); 10634 } else { 10635 LIST_HEAD(single); 10636 10637 list_add(&dev->unreg_list, &single); 10638 unregister_netdevice_many(&single); 10639 } 10640 } 10641 EXPORT_SYMBOL(unregister_netdevice_queue); 10642 10643 /** 10644 * unregister_netdevice_many - unregister many devices 10645 * @head: list of devices 10646 * 10647 * Note: As most callers use a stack allocated list_head, 10648 * we force a list_del() to make sure stack wont be corrupted later. 10649 */ 10650 void unregister_netdevice_many(struct list_head *head) 10651 { 10652 struct net_device *dev, *tmp; 10653 LIST_HEAD(close_head); 10654 10655 BUG_ON(dev_boot_phase); 10656 ASSERT_RTNL(); 10657 10658 if (list_empty(head)) 10659 return; 10660 10661 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 10662 /* Some devices call without registering 10663 * for initialization unwind. Remove those 10664 * devices and proceed with the remaining. 10665 */ 10666 if (dev->reg_state == NETREG_UNINITIALIZED) { 10667 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 10668 dev->name, dev); 10669 10670 WARN_ON(1); 10671 list_del(&dev->unreg_list); 10672 continue; 10673 } 10674 dev->dismantle = true; 10675 BUG_ON(dev->reg_state != NETREG_REGISTERED); 10676 } 10677 10678 /* If device is running, close it first. */ 10679 list_for_each_entry(dev, head, unreg_list) 10680 list_add_tail(&dev->close_list, &close_head); 10681 dev_close_many(&close_head, true); 10682 10683 list_for_each_entry(dev, head, unreg_list) { 10684 /* And unlink it from device chain. */ 10685 unlist_netdevice(dev); 10686 10687 dev->reg_state = NETREG_UNREGISTERING; 10688 } 10689 flush_all_backlogs(); 10690 10691 synchronize_net(); 10692 10693 list_for_each_entry(dev, head, unreg_list) { 10694 struct sk_buff *skb = NULL; 10695 10696 /* Shutdown queueing discipline. */ 10697 dev_shutdown(dev); 10698 10699 dev_xdp_uninstall(dev); 10700 10701 /* Notify protocols, that we are about to destroy 10702 * this device. They should clean all the things. 10703 */ 10704 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10705 10706 if (!dev->rtnl_link_ops || 10707 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10708 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 10709 GFP_KERNEL, NULL, 0); 10710 10711 /* 10712 * Flush the unicast and multicast chains 10713 */ 10714 dev_uc_flush(dev); 10715 dev_mc_flush(dev); 10716 10717 netdev_name_node_alt_flush(dev); 10718 netdev_name_node_free(dev->name_node); 10719 10720 if (dev->netdev_ops->ndo_uninit) 10721 dev->netdev_ops->ndo_uninit(dev); 10722 10723 if (skb) 10724 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 10725 10726 /* Notifier chain MUST detach us all upper devices. */ 10727 WARN_ON(netdev_has_any_upper_dev(dev)); 10728 WARN_ON(netdev_has_any_lower_dev(dev)); 10729 10730 /* Remove entries from kobject tree */ 10731 netdev_unregister_kobject(dev); 10732 #ifdef CONFIG_XPS 10733 /* Remove XPS queueing entries */ 10734 netif_reset_xps_queues_gt(dev, 0); 10735 #endif 10736 } 10737 10738 synchronize_net(); 10739 10740 list_for_each_entry(dev, head, unreg_list) { 10741 dev_put(dev); 10742 net_set_todo(dev); 10743 } 10744 10745 list_del(head); 10746 } 10747 EXPORT_SYMBOL(unregister_netdevice_many); 10748 10749 /** 10750 * unregister_netdev - remove device from the kernel 10751 * @dev: device 10752 * 10753 * This function shuts down a device interface and removes it 10754 * from the kernel tables. 10755 * 10756 * This is just a wrapper for unregister_netdevice that takes 10757 * the rtnl semaphore. In general you want to use this and not 10758 * unregister_netdevice. 10759 */ 10760 void unregister_netdev(struct net_device *dev) 10761 { 10762 rtnl_lock(); 10763 unregister_netdevice(dev); 10764 rtnl_unlock(); 10765 } 10766 EXPORT_SYMBOL(unregister_netdev); 10767 10768 /** 10769 * dev_change_net_namespace - move device to different nethost namespace 10770 * @dev: device 10771 * @net: network namespace 10772 * @pat: If not NULL name pattern to try if the current device name 10773 * is already taken in the destination network namespace. 10774 * 10775 * This function shuts down a device interface and moves it 10776 * to a new network namespace. On success 0 is returned, on 10777 * a failure a netagive errno code is returned. 10778 * 10779 * Callers must hold the rtnl semaphore. 10780 */ 10781 10782 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 10783 { 10784 struct net *net_old = dev_net(dev); 10785 int err, new_nsid, new_ifindex; 10786 10787 ASSERT_RTNL(); 10788 10789 /* Don't allow namespace local devices to be moved. */ 10790 err = -EINVAL; 10791 if (dev->features & NETIF_F_NETNS_LOCAL) 10792 goto out; 10793 10794 /* Ensure the device has been registrered */ 10795 if (dev->reg_state != NETREG_REGISTERED) 10796 goto out; 10797 10798 /* Get out if there is nothing todo */ 10799 err = 0; 10800 if (net_eq(net_old, net)) 10801 goto out; 10802 10803 /* Pick the destination device name, and ensure 10804 * we can use it in the destination network namespace. 10805 */ 10806 err = -EEXIST; 10807 if (__dev_get_by_name(net, dev->name)) { 10808 /* We get here if we can't use the current device name */ 10809 if (!pat) 10810 goto out; 10811 err = dev_get_valid_name(net, dev, pat); 10812 if (err < 0) 10813 goto out; 10814 } 10815 10816 /* 10817 * And now a mini version of register_netdevice unregister_netdevice. 10818 */ 10819 10820 /* If device is running close it first. */ 10821 dev_close(dev); 10822 10823 /* And unlink it from device chain */ 10824 unlist_netdevice(dev); 10825 10826 synchronize_net(); 10827 10828 /* Shutdown queueing discipline. */ 10829 dev_shutdown(dev); 10830 10831 /* Notify protocols, that we are about to destroy 10832 * this device. They should clean all the things. 10833 * 10834 * Note that dev->reg_state stays at NETREG_REGISTERED. 10835 * This is wanted because this way 8021q and macvlan know 10836 * the device is just moving and can keep their slaves up. 10837 */ 10838 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10839 rcu_barrier(); 10840 10841 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 10842 /* If there is an ifindex conflict assign a new one */ 10843 if (__dev_get_by_index(net, dev->ifindex)) 10844 new_ifindex = dev_new_index(net); 10845 else 10846 new_ifindex = dev->ifindex; 10847 10848 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 10849 new_ifindex); 10850 10851 /* 10852 * Flush the unicast and multicast chains 10853 */ 10854 dev_uc_flush(dev); 10855 dev_mc_flush(dev); 10856 10857 /* Send a netdev-removed uevent to the old namespace */ 10858 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 10859 netdev_adjacent_del_links(dev); 10860 10861 /* Move per-net netdevice notifiers that are following the netdevice */ 10862 move_netdevice_notifiers_dev_net(dev, net); 10863 10864 /* Actually switch the network namespace */ 10865 dev_net_set(dev, net); 10866 dev->ifindex = new_ifindex; 10867 10868 /* Send a netdev-add uevent to the new namespace */ 10869 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 10870 netdev_adjacent_add_links(dev); 10871 10872 /* Fixup kobjects */ 10873 err = device_rename(&dev->dev, dev->name); 10874 WARN_ON(err); 10875 10876 /* Adapt owner in case owning user namespace of target network 10877 * namespace is different from the original one. 10878 */ 10879 err = netdev_change_owner(dev, net_old, net); 10880 WARN_ON(err); 10881 10882 /* Add the device back in the hashes */ 10883 list_netdevice(dev); 10884 10885 /* Notify protocols, that a new device appeared. */ 10886 call_netdevice_notifiers(NETDEV_REGISTER, dev); 10887 10888 /* 10889 * Prevent userspace races by waiting until the network 10890 * device is fully setup before sending notifications. 10891 */ 10892 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10893 10894 synchronize_net(); 10895 err = 0; 10896 out: 10897 return err; 10898 } 10899 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 10900 10901 static int dev_cpu_dead(unsigned int oldcpu) 10902 { 10903 struct sk_buff **list_skb; 10904 struct sk_buff *skb; 10905 unsigned int cpu; 10906 struct softnet_data *sd, *oldsd, *remsd = NULL; 10907 10908 local_irq_disable(); 10909 cpu = smp_processor_id(); 10910 sd = &per_cpu(softnet_data, cpu); 10911 oldsd = &per_cpu(softnet_data, oldcpu); 10912 10913 /* Find end of our completion_queue. */ 10914 list_skb = &sd->completion_queue; 10915 while (*list_skb) 10916 list_skb = &(*list_skb)->next; 10917 /* Append completion queue from offline CPU. */ 10918 *list_skb = oldsd->completion_queue; 10919 oldsd->completion_queue = NULL; 10920 10921 /* Append output queue from offline CPU. */ 10922 if (oldsd->output_queue) { 10923 *sd->output_queue_tailp = oldsd->output_queue; 10924 sd->output_queue_tailp = oldsd->output_queue_tailp; 10925 oldsd->output_queue = NULL; 10926 oldsd->output_queue_tailp = &oldsd->output_queue; 10927 } 10928 /* Append NAPI poll list from offline CPU, with one exception : 10929 * process_backlog() must be called by cpu owning percpu backlog. 10930 * We properly handle process_queue & input_pkt_queue later. 10931 */ 10932 while (!list_empty(&oldsd->poll_list)) { 10933 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 10934 struct napi_struct, 10935 poll_list); 10936 10937 list_del_init(&napi->poll_list); 10938 if (napi->poll == process_backlog) 10939 napi->state = 0; 10940 else 10941 ____napi_schedule(sd, napi); 10942 } 10943 10944 raise_softirq_irqoff(NET_TX_SOFTIRQ); 10945 local_irq_enable(); 10946 10947 #ifdef CONFIG_RPS 10948 remsd = oldsd->rps_ipi_list; 10949 oldsd->rps_ipi_list = NULL; 10950 #endif 10951 /* send out pending IPI's on offline CPU */ 10952 net_rps_send_ipi(remsd); 10953 10954 /* Process offline CPU's input_pkt_queue */ 10955 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 10956 netif_rx_ni(skb); 10957 input_queue_head_incr(oldsd); 10958 } 10959 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 10960 netif_rx_ni(skb); 10961 input_queue_head_incr(oldsd); 10962 } 10963 10964 return 0; 10965 } 10966 10967 /** 10968 * netdev_increment_features - increment feature set by one 10969 * @all: current feature set 10970 * @one: new feature set 10971 * @mask: mask feature set 10972 * 10973 * Computes a new feature set after adding a device with feature set 10974 * @one to the master device with current feature set @all. Will not 10975 * enable anything that is off in @mask. Returns the new feature set. 10976 */ 10977 netdev_features_t netdev_increment_features(netdev_features_t all, 10978 netdev_features_t one, netdev_features_t mask) 10979 { 10980 if (mask & NETIF_F_HW_CSUM) 10981 mask |= NETIF_F_CSUM_MASK; 10982 mask |= NETIF_F_VLAN_CHALLENGED; 10983 10984 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 10985 all &= one | ~NETIF_F_ALL_FOR_ALL; 10986 10987 /* If one device supports hw checksumming, set for all. */ 10988 if (all & NETIF_F_HW_CSUM) 10989 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 10990 10991 return all; 10992 } 10993 EXPORT_SYMBOL(netdev_increment_features); 10994 10995 static struct hlist_head * __net_init netdev_create_hash(void) 10996 { 10997 int i; 10998 struct hlist_head *hash; 10999 11000 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 11001 if (hash != NULL) 11002 for (i = 0; i < NETDEV_HASHENTRIES; i++) 11003 INIT_HLIST_HEAD(&hash[i]); 11004 11005 return hash; 11006 } 11007 11008 /* Initialize per network namespace state */ 11009 static int __net_init netdev_init(struct net *net) 11010 { 11011 BUILD_BUG_ON(GRO_HASH_BUCKETS > 11012 8 * sizeof_field(struct napi_struct, gro_bitmask)); 11013 11014 if (net != &init_net) 11015 INIT_LIST_HEAD(&net->dev_base_head); 11016 11017 net->dev_name_head = netdev_create_hash(); 11018 if (net->dev_name_head == NULL) 11019 goto err_name; 11020 11021 net->dev_index_head = netdev_create_hash(); 11022 if (net->dev_index_head == NULL) 11023 goto err_idx; 11024 11025 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 11026 11027 return 0; 11028 11029 err_idx: 11030 kfree(net->dev_name_head); 11031 err_name: 11032 return -ENOMEM; 11033 } 11034 11035 /** 11036 * netdev_drivername - network driver for the device 11037 * @dev: network device 11038 * 11039 * Determine network driver for device. 11040 */ 11041 const char *netdev_drivername(const struct net_device *dev) 11042 { 11043 const struct device_driver *driver; 11044 const struct device *parent; 11045 const char *empty = ""; 11046 11047 parent = dev->dev.parent; 11048 if (!parent) 11049 return empty; 11050 11051 driver = parent->driver; 11052 if (driver && driver->name) 11053 return driver->name; 11054 return empty; 11055 } 11056 11057 static void __netdev_printk(const char *level, const struct net_device *dev, 11058 struct va_format *vaf) 11059 { 11060 if (dev && dev->dev.parent) { 11061 dev_printk_emit(level[1] - '0', 11062 dev->dev.parent, 11063 "%s %s %s%s: %pV", 11064 dev_driver_string(dev->dev.parent), 11065 dev_name(dev->dev.parent), 11066 netdev_name(dev), netdev_reg_state(dev), 11067 vaf); 11068 } else if (dev) { 11069 printk("%s%s%s: %pV", 11070 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11071 } else { 11072 printk("%s(NULL net_device): %pV", level, vaf); 11073 } 11074 } 11075 11076 void netdev_printk(const char *level, const struct net_device *dev, 11077 const char *format, ...) 11078 { 11079 struct va_format vaf; 11080 va_list args; 11081 11082 va_start(args, format); 11083 11084 vaf.fmt = format; 11085 vaf.va = &args; 11086 11087 __netdev_printk(level, dev, &vaf); 11088 11089 va_end(args); 11090 } 11091 EXPORT_SYMBOL(netdev_printk); 11092 11093 #define define_netdev_printk_level(func, level) \ 11094 void func(const struct net_device *dev, const char *fmt, ...) \ 11095 { \ 11096 struct va_format vaf; \ 11097 va_list args; \ 11098 \ 11099 va_start(args, fmt); \ 11100 \ 11101 vaf.fmt = fmt; \ 11102 vaf.va = &args; \ 11103 \ 11104 __netdev_printk(level, dev, &vaf); \ 11105 \ 11106 va_end(args); \ 11107 } \ 11108 EXPORT_SYMBOL(func); 11109 11110 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 11111 define_netdev_printk_level(netdev_alert, KERN_ALERT); 11112 define_netdev_printk_level(netdev_crit, KERN_CRIT); 11113 define_netdev_printk_level(netdev_err, KERN_ERR); 11114 define_netdev_printk_level(netdev_warn, KERN_WARNING); 11115 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11116 define_netdev_printk_level(netdev_info, KERN_INFO); 11117 11118 static void __net_exit netdev_exit(struct net *net) 11119 { 11120 kfree(net->dev_name_head); 11121 kfree(net->dev_index_head); 11122 if (net != &init_net) 11123 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11124 } 11125 11126 static struct pernet_operations __net_initdata netdev_net_ops = { 11127 .init = netdev_init, 11128 .exit = netdev_exit, 11129 }; 11130 11131 static void __net_exit default_device_exit(struct net *net) 11132 { 11133 struct net_device *dev, *aux; 11134 /* 11135 * Push all migratable network devices back to the 11136 * initial network namespace 11137 */ 11138 rtnl_lock(); 11139 for_each_netdev_safe(net, dev, aux) { 11140 int err; 11141 char fb_name[IFNAMSIZ]; 11142 11143 /* Ignore unmoveable devices (i.e. loopback) */ 11144 if (dev->features & NETIF_F_NETNS_LOCAL) 11145 continue; 11146 11147 /* Leave virtual devices for the generic cleanup */ 11148 if (dev->rtnl_link_ops) 11149 continue; 11150 11151 /* Push remaining network devices to init_net */ 11152 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11153 if (__dev_get_by_name(&init_net, fb_name)) 11154 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11155 err = dev_change_net_namespace(dev, &init_net, fb_name); 11156 if (err) { 11157 pr_emerg("%s: failed to move %s to init_net: %d\n", 11158 __func__, dev->name, err); 11159 BUG(); 11160 } 11161 } 11162 rtnl_unlock(); 11163 } 11164 11165 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 11166 { 11167 /* Return with the rtnl_lock held when there are no network 11168 * devices unregistering in any network namespace in net_list. 11169 */ 11170 struct net *net; 11171 bool unregistering; 11172 DEFINE_WAIT_FUNC(wait, woken_wake_function); 11173 11174 add_wait_queue(&netdev_unregistering_wq, &wait); 11175 for (;;) { 11176 unregistering = false; 11177 rtnl_lock(); 11178 list_for_each_entry(net, net_list, exit_list) { 11179 if (net->dev_unreg_count > 0) { 11180 unregistering = true; 11181 break; 11182 } 11183 } 11184 if (!unregistering) 11185 break; 11186 __rtnl_unlock(); 11187 11188 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 11189 } 11190 remove_wait_queue(&netdev_unregistering_wq, &wait); 11191 } 11192 11193 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11194 { 11195 /* At exit all network devices most be removed from a network 11196 * namespace. Do this in the reverse order of registration. 11197 * Do this across as many network namespaces as possible to 11198 * improve batching efficiency. 11199 */ 11200 struct net_device *dev; 11201 struct net *net; 11202 LIST_HEAD(dev_kill_list); 11203 11204 /* To prevent network device cleanup code from dereferencing 11205 * loopback devices or network devices that have been freed 11206 * wait here for all pending unregistrations to complete, 11207 * before unregistring the loopback device and allowing the 11208 * network namespace be freed. 11209 * 11210 * The netdev todo list containing all network devices 11211 * unregistrations that happen in default_device_exit_batch 11212 * will run in the rtnl_unlock() at the end of 11213 * default_device_exit_batch. 11214 */ 11215 rtnl_lock_unregistering(net_list); 11216 list_for_each_entry(net, net_list, exit_list) { 11217 for_each_netdev_reverse(net, dev) { 11218 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11219 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11220 else 11221 unregister_netdevice_queue(dev, &dev_kill_list); 11222 } 11223 } 11224 unregister_netdevice_many(&dev_kill_list); 11225 rtnl_unlock(); 11226 } 11227 11228 static struct pernet_operations __net_initdata default_device_ops = { 11229 .exit = default_device_exit, 11230 .exit_batch = default_device_exit_batch, 11231 }; 11232 11233 /* 11234 * Initialize the DEV module. At boot time this walks the device list and 11235 * unhooks any devices that fail to initialise (normally hardware not 11236 * present) and leaves us with a valid list of present and active devices. 11237 * 11238 */ 11239 11240 /* 11241 * This is called single threaded during boot, so no need 11242 * to take the rtnl semaphore. 11243 */ 11244 static int __init net_dev_init(void) 11245 { 11246 int i, rc = -ENOMEM; 11247 11248 BUG_ON(!dev_boot_phase); 11249 11250 if (dev_proc_init()) 11251 goto out; 11252 11253 if (netdev_kobject_init()) 11254 goto out; 11255 11256 INIT_LIST_HEAD(&ptype_all); 11257 for (i = 0; i < PTYPE_HASH_SIZE; i++) 11258 INIT_LIST_HEAD(&ptype_base[i]); 11259 11260 INIT_LIST_HEAD(&offload_base); 11261 11262 if (register_pernet_subsys(&netdev_net_ops)) 11263 goto out; 11264 11265 /* 11266 * Initialise the packet receive queues. 11267 */ 11268 11269 for_each_possible_cpu(i) { 11270 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 11271 struct softnet_data *sd = &per_cpu(softnet_data, i); 11272 11273 INIT_WORK(flush, flush_backlog); 11274 11275 skb_queue_head_init(&sd->input_pkt_queue); 11276 skb_queue_head_init(&sd->process_queue); 11277 #ifdef CONFIG_XFRM_OFFLOAD 11278 skb_queue_head_init(&sd->xfrm_backlog); 11279 #endif 11280 INIT_LIST_HEAD(&sd->poll_list); 11281 sd->output_queue_tailp = &sd->output_queue; 11282 #ifdef CONFIG_RPS 11283 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 11284 sd->cpu = i; 11285 #endif 11286 11287 init_gro_hash(&sd->backlog); 11288 sd->backlog.poll = process_backlog; 11289 sd->backlog.weight = weight_p; 11290 } 11291 11292 dev_boot_phase = 0; 11293 11294 /* The loopback device is special if any other network devices 11295 * is present in a network namespace the loopback device must 11296 * be present. Since we now dynamically allocate and free the 11297 * loopback device ensure this invariant is maintained by 11298 * keeping the loopback device as the first device on the 11299 * list of network devices. Ensuring the loopback devices 11300 * is the first device that appears and the last network device 11301 * that disappears. 11302 */ 11303 if (register_pernet_device(&loopback_net_ops)) 11304 goto out; 11305 11306 if (register_pernet_device(&default_device_ops)) 11307 goto out; 11308 11309 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 11310 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 11311 11312 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 11313 NULL, dev_cpu_dead); 11314 WARN_ON(rc < 0); 11315 rc = 0; 11316 out: 11317 return rc; 11318 } 11319 11320 subsys_initcall(net_dev_init); 11321