1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/pkt_sched.h> 108 #include <net/pkt_cls.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <linux/pci.h> 136 #include <linux/inetdevice.h> 137 #include <linux/cpu_rmap.h> 138 #include <linux/static_key.h> 139 #include <linux/hashtable.h> 140 #include <linux/vmalloc.h> 141 #include <linux/if_macvlan.h> 142 #include <linux/errqueue.h> 143 #include <linux/hrtimer.h> 144 #include <linux/netfilter_ingress.h> 145 #include <linux/crash_dump.h> 146 #include <linux/sctp.h> 147 #include <net/udp_tunnel.h> 148 #include <linux/net_namespace.h> 149 150 #include "net-sysfs.h" 151 152 /* Instead of increasing this, you should create a hash table. */ 153 #define MAX_GRO_SKBS 8 154 155 /* This should be increased if a protocol with a bigger head is added. */ 156 #define GRO_MAX_HEAD (MAX_HEADER + 128) 157 158 static DEFINE_SPINLOCK(ptype_lock); 159 static DEFINE_SPINLOCK(offload_lock); 160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 161 struct list_head ptype_all __read_mostly; /* Taps */ 162 static struct list_head offload_base __read_mostly; 163 164 static int netif_rx_internal(struct sk_buff *skb); 165 static int call_netdevice_notifiers_info(unsigned long val, 166 struct netdev_notifier_info *info); 167 static struct napi_struct *napi_by_id(unsigned int napi_id); 168 169 /* 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 171 * semaphore. 172 * 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 174 * 175 * Writers must hold the rtnl semaphore while they loop through the 176 * dev_base_head list, and hold dev_base_lock for writing when they do the 177 * actual updates. This allows pure readers to access the list even 178 * while a writer is preparing to update it. 179 * 180 * To put it another way, dev_base_lock is held for writing only to 181 * protect against pure readers; the rtnl semaphore provides the 182 * protection against other writers. 183 * 184 * See, for example usages, register_netdevice() and 185 * unregister_netdevice(), which must be called with the rtnl 186 * semaphore held. 187 */ 188 DEFINE_RWLOCK(dev_base_lock); 189 EXPORT_SYMBOL(dev_base_lock); 190 191 static DEFINE_MUTEX(ifalias_mutex); 192 193 /* protects napi_hash addition/deletion and napi_gen_id */ 194 static DEFINE_SPINLOCK(napi_hash_lock); 195 196 static unsigned int napi_gen_id = NR_CPUS; 197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 198 199 static seqcount_t devnet_rename_seq; 200 201 static inline void dev_base_seq_inc(struct net *net) 202 { 203 while (++net->dev_base_seq == 0) 204 ; 205 } 206 207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 208 { 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 210 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 212 } 213 214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 215 { 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 217 } 218 219 static inline void rps_lock(struct softnet_data *sd) 220 { 221 #ifdef CONFIG_RPS 222 spin_lock(&sd->input_pkt_queue.lock); 223 #endif 224 } 225 226 static inline void rps_unlock(struct softnet_data *sd) 227 { 228 #ifdef CONFIG_RPS 229 spin_unlock(&sd->input_pkt_queue.lock); 230 #endif 231 } 232 233 /* Device list insertion */ 234 static void list_netdevice(struct net_device *dev) 235 { 236 struct net *net = dev_net(dev); 237 238 ASSERT_RTNL(); 239 240 write_lock_bh(&dev_base_lock); 241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 243 hlist_add_head_rcu(&dev->index_hlist, 244 dev_index_hash(net, dev->ifindex)); 245 write_unlock_bh(&dev_base_lock); 246 247 dev_base_seq_inc(net); 248 } 249 250 /* Device list removal 251 * caller must respect a RCU grace period before freeing/reusing dev 252 */ 253 static void unlist_netdevice(struct net_device *dev) 254 { 255 ASSERT_RTNL(); 256 257 /* Unlink dev from the device chain */ 258 write_lock_bh(&dev_base_lock); 259 list_del_rcu(&dev->dev_list); 260 hlist_del_rcu(&dev->name_hlist); 261 hlist_del_rcu(&dev->index_hlist); 262 write_unlock_bh(&dev_base_lock); 263 264 dev_base_seq_inc(dev_net(dev)); 265 } 266 267 /* 268 * Our notifier list 269 */ 270 271 static RAW_NOTIFIER_HEAD(netdev_chain); 272 273 /* 274 * Device drivers call our routines to queue packets here. We empty the 275 * queue in the local softnet handler. 276 */ 277 278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 279 EXPORT_PER_CPU_SYMBOL(softnet_data); 280 281 #ifdef CONFIG_LOCKDEP 282 /* 283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 284 * according to dev->type 285 */ 286 static const unsigned short netdev_lock_type[] = { 287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 302 303 static const char *const netdev_lock_name[] = { 304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 319 320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 322 323 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 324 { 325 int i; 326 327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 328 if (netdev_lock_type[i] == dev_type) 329 return i; 330 /* the last key is used by default */ 331 return ARRAY_SIZE(netdev_lock_type) - 1; 332 } 333 334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 335 unsigned short dev_type) 336 { 337 int i; 338 339 i = netdev_lock_pos(dev_type); 340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 341 netdev_lock_name[i]); 342 } 343 344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 345 { 346 int i; 347 348 i = netdev_lock_pos(dev->type); 349 lockdep_set_class_and_name(&dev->addr_list_lock, 350 &netdev_addr_lock_key[i], 351 netdev_lock_name[i]); 352 } 353 #else 354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 355 unsigned short dev_type) 356 { 357 } 358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 359 { 360 } 361 #endif 362 363 /******************************************************************************* 364 * 365 * Protocol management and registration routines 366 * 367 *******************************************************************************/ 368 369 370 /* 371 * Add a protocol ID to the list. Now that the input handler is 372 * smarter we can dispense with all the messy stuff that used to be 373 * here. 374 * 375 * BEWARE!!! Protocol handlers, mangling input packets, 376 * MUST BE last in hash buckets and checking protocol handlers 377 * MUST start from promiscuous ptype_all chain in net_bh. 378 * It is true now, do not change it. 379 * Explanation follows: if protocol handler, mangling packet, will 380 * be the first on list, it is not able to sense, that packet 381 * is cloned and should be copied-on-write, so that it will 382 * change it and subsequent readers will get broken packet. 383 * --ANK (980803) 384 */ 385 386 static inline struct list_head *ptype_head(const struct packet_type *pt) 387 { 388 if (pt->type == htons(ETH_P_ALL)) 389 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 390 else 391 return pt->dev ? &pt->dev->ptype_specific : 392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 393 } 394 395 /** 396 * dev_add_pack - add packet handler 397 * @pt: packet type declaration 398 * 399 * Add a protocol handler to the networking stack. The passed &packet_type 400 * is linked into kernel lists and may not be freed until it has been 401 * removed from the kernel lists. 402 * 403 * This call does not sleep therefore it can not 404 * guarantee all CPU's that are in middle of receiving packets 405 * will see the new packet type (until the next received packet). 406 */ 407 408 void dev_add_pack(struct packet_type *pt) 409 { 410 struct list_head *head = ptype_head(pt); 411 412 spin_lock(&ptype_lock); 413 list_add_rcu(&pt->list, head); 414 spin_unlock(&ptype_lock); 415 } 416 EXPORT_SYMBOL(dev_add_pack); 417 418 /** 419 * __dev_remove_pack - remove packet handler 420 * @pt: packet type declaration 421 * 422 * Remove a protocol handler that was previously added to the kernel 423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 424 * from the kernel lists and can be freed or reused once this function 425 * returns. 426 * 427 * The packet type might still be in use by receivers 428 * and must not be freed until after all the CPU's have gone 429 * through a quiescent state. 430 */ 431 void __dev_remove_pack(struct packet_type *pt) 432 { 433 struct list_head *head = ptype_head(pt); 434 struct packet_type *pt1; 435 436 spin_lock(&ptype_lock); 437 438 list_for_each_entry(pt1, head, list) { 439 if (pt == pt1) { 440 list_del_rcu(&pt->list); 441 goto out; 442 } 443 } 444 445 pr_warn("dev_remove_pack: %p not found\n", pt); 446 out: 447 spin_unlock(&ptype_lock); 448 } 449 EXPORT_SYMBOL(__dev_remove_pack); 450 451 /** 452 * dev_remove_pack - remove packet handler 453 * @pt: packet type declaration 454 * 455 * Remove a protocol handler that was previously added to the kernel 456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 457 * from the kernel lists and can be freed or reused once this function 458 * returns. 459 * 460 * This call sleeps to guarantee that no CPU is looking at the packet 461 * type after return. 462 */ 463 void dev_remove_pack(struct packet_type *pt) 464 { 465 __dev_remove_pack(pt); 466 467 synchronize_net(); 468 } 469 EXPORT_SYMBOL(dev_remove_pack); 470 471 472 /** 473 * dev_add_offload - register offload handlers 474 * @po: protocol offload declaration 475 * 476 * Add protocol offload handlers to the networking stack. The passed 477 * &proto_offload is linked into kernel lists and may not be freed until 478 * it has been removed from the kernel lists. 479 * 480 * This call does not sleep therefore it can not 481 * guarantee all CPU's that are in middle of receiving packets 482 * will see the new offload handlers (until the next received packet). 483 */ 484 void dev_add_offload(struct packet_offload *po) 485 { 486 struct packet_offload *elem; 487 488 spin_lock(&offload_lock); 489 list_for_each_entry(elem, &offload_base, list) { 490 if (po->priority < elem->priority) 491 break; 492 } 493 list_add_rcu(&po->list, elem->list.prev); 494 spin_unlock(&offload_lock); 495 } 496 EXPORT_SYMBOL(dev_add_offload); 497 498 /** 499 * __dev_remove_offload - remove offload handler 500 * @po: packet offload declaration 501 * 502 * Remove a protocol offload handler that was previously added to the 503 * kernel offload handlers by dev_add_offload(). The passed &offload_type 504 * is removed from the kernel lists and can be freed or reused once this 505 * function returns. 506 * 507 * The packet type might still be in use by receivers 508 * and must not be freed until after all the CPU's have gone 509 * through a quiescent state. 510 */ 511 static void __dev_remove_offload(struct packet_offload *po) 512 { 513 struct list_head *head = &offload_base; 514 struct packet_offload *po1; 515 516 spin_lock(&offload_lock); 517 518 list_for_each_entry(po1, head, list) { 519 if (po == po1) { 520 list_del_rcu(&po->list); 521 goto out; 522 } 523 } 524 525 pr_warn("dev_remove_offload: %p not found\n", po); 526 out: 527 spin_unlock(&offload_lock); 528 } 529 530 /** 531 * dev_remove_offload - remove packet offload handler 532 * @po: packet offload declaration 533 * 534 * Remove a packet offload handler that was previously added to the kernel 535 * offload handlers by dev_add_offload(). The passed &offload_type is 536 * removed from the kernel lists and can be freed or reused once this 537 * function returns. 538 * 539 * This call sleeps to guarantee that no CPU is looking at the packet 540 * type after return. 541 */ 542 void dev_remove_offload(struct packet_offload *po) 543 { 544 __dev_remove_offload(po); 545 546 synchronize_net(); 547 } 548 EXPORT_SYMBOL(dev_remove_offload); 549 550 /****************************************************************************** 551 * 552 * Device Boot-time Settings Routines 553 * 554 ******************************************************************************/ 555 556 /* Boot time configuration table */ 557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 558 559 /** 560 * netdev_boot_setup_add - add new setup entry 561 * @name: name of the device 562 * @map: configured settings for the device 563 * 564 * Adds new setup entry to the dev_boot_setup list. The function 565 * returns 0 on error and 1 on success. This is a generic routine to 566 * all netdevices. 567 */ 568 static int netdev_boot_setup_add(char *name, struct ifmap *map) 569 { 570 struct netdev_boot_setup *s; 571 int i; 572 573 s = dev_boot_setup; 574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 576 memset(s[i].name, 0, sizeof(s[i].name)); 577 strlcpy(s[i].name, name, IFNAMSIZ); 578 memcpy(&s[i].map, map, sizeof(s[i].map)); 579 break; 580 } 581 } 582 583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 584 } 585 586 /** 587 * netdev_boot_setup_check - check boot time settings 588 * @dev: the netdevice 589 * 590 * Check boot time settings for the device. 591 * The found settings are set for the device to be used 592 * later in the device probing. 593 * Returns 0 if no settings found, 1 if they are. 594 */ 595 int netdev_boot_setup_check(struct net_device *dev) 596 { 597 struct netdev_boot_setup *s = dev_boot_setup; 598 int i; 599 600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 602 !strcmp(dev->name, s[i].name)) { 603 dev->irq = s[i].map.irq; 604 dev->base_addr = s[i].map.base_addr; 605 dev->mem_start = s[i].map.mem_start; 606 dev->mem_end = s[i].map.mem_end; 607 return 1; 608 } 609 } 610 return 0; 611 } 612 EXPORT_SYMBOL(netdev_boot_setup_check); 613 614 615 /** 616 * netdev_boot_base - get address from boot time settings 617 * @prefix: prefix for network device 618 * @unit: id for network device 619 * 620 * Check boot time settings for the base address of device. 621 * The found settings are set for the device to be used 622 * later in the device probing. 623 * Returns 0 if no settings found. 624 */ 625 unsigned long netdev_boot_base(const char *prefix, int unit) 626 { 627 const struct netdev_boot_setup *s = dev_boot_setup; 628 char name[IFNAMSIZ]; 629 int i; 630 631 sprintf(name, "%s%d", prefix, unit); 632 633 /* 634 * If device already registered then return base of 1 635 * to indicate not to probe for this interface 636 */ 637 if (__dev_get_by_name(&init_net, name)) 638 return 1; 639 640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 641 if (!strcmp(name, s[i].name)) 642 return s[i].map.base_addr; 643 return 0; 644 } 645 646 /* 647 * Saves at boot time configured settings for any netdevice. 648 */ 649 int __init netdev_boot_setup(char *str) 650 { 651 int ints[5]; 652 struct ifmap map; 653 654 str = get_options(str, ARRAY_SIZE(ints), ints); 655 if (!str || !*str) 656 return 0; 657 658 /* Save settings */ 659 memset(&map, 0, sizeof(map)); 660 if (ints[0] > 0) 661 map.irq = ints[1]; 662 if (ints[0] > 1) 663 map.base_addr = ints[2]; 664 if (ints[0] > 2) 665 map.mem_start = ints[3]; 666 if (ints[0] > 3) 667 map.mem_end = ints[4]; 668 669 /* Add new entry to the list */ 670 return netdev_boot_setup_add(str, &map); 671 } 672 673 __setup("netdev=", netdev_boot_setup); 674 675 /******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681 /** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689 int dev_get_iflink(const struct net_device *dev) 690 { 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return dev->ifindex; 695 } 696 EXPORT_SYMBOL(dev_get_iflink); 697 698 /** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708 { 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724 /** 725 * __dev_get_by_name - find a device by its name 726 * @net: the applicable net namespace 727 * @name: name to find 728 * 729 * Find an interface by name. Must be called under RTNL semaphore 730 * or @dev_base_lock. If the name is found a pointer to the device 731 * is returned. If the name is not found then %NULL is returned. The 732 * reference counters are not incremented so the caller must be 733 * careful with locks. 734 */ 735 736 struct net_device *__dev_get_by_name(struct net *net, const char *name) 737 { 738 struct net_device *dev; 739 struct hlist_head *head = dev_name_hash(net, name); 740 741 hlist_for_each_entry(dev, head, name_hlist) 742 if (!strncmp(dev->name, name, IFNAMSIZ)) 743 return dev; 744 745 return NULL; 746 } 747 EXPORT_SYMBOL(__dev_get_by_name); 748 749 /** 750 * dev_get_by_name_rcu - find a device by its name 751 * @net: the applicable net namespace 752 * @name: name to find 753 * 754 * Find an interface by name. 755 * If the name is found a pointer to the device is returned. 756 * If the name is not found then %NULL is returned. 757 * The reference counters are not incremented so the caller must be 758 * careful with locks. The caller must hold RCU lock. 759 */ 760 761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 762 { 763 struct net_device *dev; 764 struct hlist_head *head = dev_name_hash(net, name); 765 766 hlist_for_each_entry_rcu(dev, head, name_hlist) 767 if (!strncmp(dev->name, name, IFNAMSIZ)) 768 return dev; 769 770 return NULL; 771 } 772 EXPORT_SYMBOL(dev_get_by_name_rcu); 773 774 /** 775 * dev_get_by_name - find a device by its name 776 * @net: the applicable net namespace 777 * @name: name to find 778 * 779 * Find an interface by name. This can be called from any 780 * context and does its own locking. The returned handle has 781 * the usage count incremented and the caller must use dev_put() to 782 * release it when it is no longer needed. %NULL is returned if no 783 * matching device is found. 784 */ 785 786 struct net_device *dev_get_by_name(struct net *net, const char *name) 787 { 788 struct net_device *dev; 789 790 rcu_read_lock(); 791 dev = dev_get_by_name_rcu(net, name); 792 if (dev) 793 dev_hold(dev); 794 rcu_read_unlock(); 795 return dev; 796 } 797 EXPORT_SYMBOL(dev_get_by_name); 798 799 /** 800 * __dev_get_by_index - find a device by its ifindex 801 * @net: the applicable net namespace 802 * @ifindex: index of device 803 * 804 * Search for an interface by index. Returns %NULL if the device 805 * is not found or a pointer to the device. The device has not 806 * had its reference counter increased so the caller must be careful 807 * about locking. The caller must hold either the RTNL semaphore 808 * or @dev_base_lock. 809 */ 810 811 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 812 { 813 struct net_device *dev; 814 struct hlist_head *head = dev_index_hash(net, ifindex); 815 816 hlist_for_each_entry(dev, head, index_hlist) 817 if (dev->ifindex == ifindex) 818 return dev; 819 820 return NULL; 821 } 822 EXPORT_SYMBOL(__dev_get_by_index); 823 824 /** 825 * dev_get_by_index_rcu - find a device by its ifindex 826 * @net: the applicable net namespace 827 * @ifindex: index of device 828 * 829 * Search for an interface by index. Returns %NULL if the device 830 * is not found or a pointer to the device. The device has not 831 * had its reference counter increased so the caller must be careful 832 * about locking. The caller must hold RCU lock. 833 */ 834 835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 836 { 837 struct net_device *dev; 838 struct hlist_head *head = dev_index_hash(net, ifindex); 839 840 hlist_for_each_entry_rcu(dev, head, index_hlist) 841 if (dev->ifindex == ifindex) 842 return dev; 843 844 return NULL; 845 } 846 EXPORT_SYMBOL(dev_get_by_index_rcu); 847 848 849 /** 850 * dev_get_by_index - find a device by its ifindex 851 * @net: the applicable net namespace 852 * @ifindex: index of device 853 * 854 * Search for an interface by index. Returns NULL if the device 855 * is not found or a pointer to the device. The device returned has 856 * had a reference added and the pointer is safe until the user calls 857 * dev_put to indicate they have finished with it. 858 */ 859 860 struct net_device *dev_get_by_index(struct net *net, int ifindex) 861 { 862 struct net_device *dev; 863 864 rcu_read_lock(); 865 dev = dev_get_by_index_rcu(net, ifindex); 866 if (dev) 867 dev_hold(dev); 868 rcu_read_unlock(); 869 return dev; 870 } 871 EXPORT_SYMBOL(dev_get_by_index); 872 873 /** 874 * dev_get_by_napi_id - find a device by napi_id 875 * @napi_id: ID of the NAPI struct 876 * 877 * Search for an interface by NAPI ID. Returns %NULL if the device 878 * is not found or a pointer to the device. The device has not had 879 * its reference counter increased so the caller must be careful 880 * about locking. The caller must hold RCU lock. 881 */ 882 883 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 884 { 885 struct napi_struct *napi; 886 887 WARN_ON_ONCE(!rcu_read_lock_held()); 888 889 if (napi_id < MIN_NAPI_ID) 890 return NULL; 891 892 napi = napi_by_id(napi_id); 893 894 return napi ? napi->dev : NULL; 895 } 896 EXPORT_SYMBOL(dev_get_by_napi_id); 897 898 /** 899 * netdev_get_name - get a netdevice name, knowing its ifindex. 900 * @net: network namespace 901 * @name: a pointer to the buffer where the name will be stored. 902 * @ifindex: the ifindex of the interface to get the name from. 903 * 904 * The use of raw_seqcount_begin() and cond_resched() before 905 * retrying is required as we want to give the writers a chance 906 * to complete when CONFIG_PREEMPT is not set. 907 */ 908 int netdev_get_name(struct net *net, char *name, int ifindex) 909 { 910 struct net_device *dev; 911 unsigned int seq; 912 913 retry: 914 seq = raw_seqcount_begin(&devnet_rename_seq); 915 rcu_read_lock(); 916 dev = dev_get_by_index_rcu(net, ifindex); 917 if (!dev) { 918 rcu_read_unlock(); 919 return -ENODEV; 920 } 921 922 strcpy(name, dev->name); 923 rcu_read_unlock(); 924 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 925 cond_resched(); 926 goto retry; 927 } 928 929 return 0; 930 } 931 932 /** 933 * dev_getbyhwaddr_rcu - find a device by its hardware address 934 * @net: the applicable net namespace 935 * @type: media type of device 936 * @ha: hardware address 937 * 938 * Search for an interface by MAC address. Returns NULL if the device 939 * is not found or a pointer to the device. 940 * The caller must hold RCU or RTNL. 941 * The returned device has not had its ref count increased 942 * and the caller must therefore be careful about locking 943 * 944 */ 945 946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 947 const char *ha) 948 { 949 struct net_device *dev; 950 951 for_each_netdev_rcu(net, dev) 952 if (dev->type == type && 953 !memcmp(dev->dev_addr, ha, dev->addr_len)) 954 return dev; 955 956 return NULL; 957 } 958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 959 960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 961 { 962 struct net_device *dev; 963 964 ASSERT_RTNL(); 965 for_each_netdev(net, dev) 966 if (dev->type == type) 967 return dev; 968 969 return NULL; 970 } 971 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 972 973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 974 { 975 struct net_device *dev, *ret = NULL; 976 977 rcu_read_lock(); 978 for_each_netdev_rcu(net, dev) 979 if (dev->type == type) { 980 dev_hold(dev); 981 ret = dev; 982 break; 983 } 984 rcu_read_unlock(); 985 return ret; 986 } 987 EXPORT_SYMBOL(dev_getfirstbyhwtype); 988 989 /** 990 * __dev_get_by_flags - find any device with given flags 991 * @net: the applicable net namespace 992 * @if_flags: IFF_* values 993 * @mask: bitmask of bits in if_flags to check 994 * 995 * Search for any interface with the given flags. Returns NULL if a device 996 * is not found or a pointer to the device. Must be called inside 997 * rtnl_lock(), and result refcount is unchanged. 998 */ 999 1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1001 unsigned short mask) 1002 { 1003 struct net_device *dev, *ret; 1004 1005 ASSERT_RTNL(); 1006 1007 ret = NULL; 1008 for_each_netdev(net, dev) { 1009 if (((dev->flags ^ if_flags) & mask) == 0) { 1010 ret = dev; 1011 break; 1012 } 1013 } 1014 return ret; 1015 } 1016 EXPORT_SYMBOL(__dev_get_by_flags); 1017 1018 /** 1019 * dev_valid_name - check if name is okay for network device 1020 * @name: name string 1021 * 1022 * Network device names need to be valid file names to 1023 * to allow sysfs to work. We also disallow any kind of 1024 * whitespace. 1025 */ 1026 bool dev_valid_name(const char *name) 1027 { 1028 if (*name == '\0') 1029 return false; 1030 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1031 return false; 1032 if (!strcmp(name, ".") || !strcmp(name, "..")) 1033 return false; 1034 1035 while (*name) { 1036 if (*name == '/' || *name == ':' || isspace(*name)) 1037 return false; 1038 name++; 1039 } 1040 return true; 1041 } 1042 EXPORT_SYMBOL(dev_valid_name); 1043 1044 /** 1045 * __dev_alloc_name - allocate a name for a device 1046 * @net: network namespace to allocate the device name in 1047 * @name: name format string 1048 * @buf: scratch buffer and result name string 1049 * 1050 * Passed a format string - eg "lt%d" it will try and find a suitable 1051 * id. It scans list of devices to build up a free map, then chooses 1052 * the first empty slot. The caller must hold the dev_base or rtnl lock 1053 * while allocating the name and adding the device in order to avoid 1054 * duplicates. 1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1056 * Returns the number of the unit assigned or a negative errno code. 1057 */ 1058 1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1060 { 1061 int i = 0; 1062 const char *p; 1063 const int max_netdevices = 8*PAGE_SIZE; 1064 unsigned long *inuse; 1065 struct net_device *d; 1066 1067 if (!dev_valid_name(name)) 1068 return -EINVAL; 1069 1070 p = strchr(name, '%'); 1071 if (p) { 1072 /* 1073 * Verify the string as this thing may have come from 1074 * the user. There must be either one "%d" and no other "%" 1075 * characters. 1076 */ 1077 if (p[1] != 'd' || strchr(p + 2, '%')) 1078 return -EINVAL; 1079 1080 /* Use one page as a bit array of possible slots */ 1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1082 if (!inuse) 1083 return -ENOMEM; 1084 1085 for_each_netdev(net, d) { 1086 if (!sscanf(d->name, name, &i)) 1087 continue; 1088 if (i < 0 || i >= max_netdevices) 1089 continue; 1090 1091 /* avoid cases where sscanf is not exact inverse of printf */ 1092 snprintf(buf, IFNAMSIZ, name, i); 1093 if (!strncmp(buf, d->name, IFNAMSIZ)) 1094 set_bit(i, inuse); 1095 } 1096 1097 i = find_first_zero_bit(inuse, max_netdevices); 1098 free_page((unsigned long) inuse); 1099 } 1100 1101 snprintf(buf, IFNAMSIZ, name, i); 1102 if (!__dev_get_by_name(net, buf)) 1103 return i; 1104 1105 /* It is possible to run out of possible slots 1106 * when the name is long and there isn't enough space left 1107 * for the digits, or if all bits are used. 1108 */ 1109 return -ENFILE; 1110 } 1111 1112 static int dev_alloc_name_ns(struct net *net, 1113 struct net_device *dev, 1114 const char *name) 1115 { 1116 char buf[IFNAMSIZ]; 1117 int ret; 1118 1119 BUG_ON(!net); 1120 ret = __dev_alloc_name(net, name, buf); 1121 if (ret >= 0) 1122 strlcpy(dev->name, buf, IFNAMSIZ); 1123 return ret; 1124 } 1125 1126 /** 1127 * dev_alloc_name - allocate a name for a device 1128 * @dev: device 1129 * @name: name format string 1130 * 1131 * Passed a format string - eg "lt%d" it will try and find a suitable 1132 * id. It scans list of devices to build up a free map, then chooses 1133 * the first empty slot. The caller must hold the dev_base or rtnl lock 1134 * while allocating the name and adding the device in order to avoid 1135 * duplicates. 1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1137 * Returns the number of the unit assigned or a negative errno code. 1138 */ 1139 1140 int dev_alloc_name(struct net_device *dev, const char *name) 1141 { 1142 return dev_alloc_name_ns(dev_net(dev), dev, name); 1143 } 1144 EXPORT_SYMBOL(dev_alloc_name); 1145 1146 int dev_get_valid_name(struct net *net, struct net_device *dev, 1147 const char *name) 1148 { 1149 BUG_ON(!net); 1150 1151 if (!dev_valid_name(name)) 1152 return -EINVAL; 1153 1154 if (strchr(name, '%')) 1155 return dev_alloc_name_ns(net, dev, name); 1156 else if (__dev_get_by_name(net, name)) 1157 return -EEXIST; 1158 else if (dev->name != name) 1159 strlcpy(dev->name, name, IFNAMSIZ); 1160 1161 return 0; 1162 } 1163 EXPORT_SYMBOL(dev_get_valid_name); 1164 1165 /** 1166 * dev_change_name - change name of a device 1167 * @dev: device 1168 * @newname: name (or format string) must be at least IFNAMSIZ 1169 * 1170 * Change name of a device, can pass format strings "eth%d". 1171 * for wildcarding. 1172 */ 1173 int dev_change_name(struct net_device *dev, const char *newname) 1174 { 1175 unsigned char old_assign_type; 1176 char oldname[IFNAMSIZ]; 1177 int err = 0; 1178 int ret; 1179 struct net *net; 1180 1181 ASSERT_RTNL(); 1182 BUG_ON(!dev_net(dev)); 1183 1184 net = dev_net(dev); 1185 if (dev->flags & IFF_UP) 1186 return -EBUSY; 1187 1188 write_seqcount_begin(&devnet_rename_seq); 1189 1190 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1191 write_seqcount_end(&devnet_rename_seq); 1192 return 0; 1193 } 1194 1195 memcpy(oldname, dev->name, IFNAMSIZ); 1196 1197 err = dev_get_valid_name(net, dev, newname); 1198 if (err < 0) { 1199 write_seqcount_end(&devnet_rename_seq); 1200 return err; 1201 } 1202 1203 if (oldname[0] && !strchr(oldname, '%')) 1204 netdev_info(dev, "renamed from %s\n", oldname); 1205 1206 old_assign_type = dev->name_assign_type; 1207 dev->name_assign_type = NET_NAME_RENAMED; 1208 1209 rollback: 1210 ret = device_rename(&dev->dev, dev->name); 1211 if (ret) { 1212 memcpy(dev->name, oldname, IFNAMSIZ); 1213 dev->name_assign_type = old_assign_type; 1214 write_seqcount_end(&devnet_rename_seq); 1215 return ret; 1216 } 1217 1218 write_seqcount_end(&devnet_rename_seq); 1219 1220 netdev_adjacent_rename_links(dev, oldname); 1221 1222 write_lock_bh(&dev_base_lock); 1223 hlist_del_rcu(&dev->name_hlist); 1224 write_unlock_bh(&dev_base_lock); 1225 1226 synchronize_rcu(); 1227 1228 write_lock_bh(&dev_base_lock); 1229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1230 write_unlock_bh(&dev_base_lock); 1231 1232 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1233 ret = notifier_to_errno(ret); 1234 1235 if (ret) { 1236 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1237 if (err >= 0) { 1238 err = ret; 1239 write_seqcount_begin(&devnet_rename_seq); 1240 memcpy(dev->name, oldname, IFNAMSIZ); 1241 memcpy(oldname, newname, IFNAMSIZ); 1242 dev->name_assign_type = old_assign_type; 1243 old_assign_type = NET_NAME_RENAMED; 1244 goto rollback; 1245 } else { 1246 pr_err("%s: name change rollback failed: %d\n", 1247 dev->name, ret); 1248 } 1249 } 1250 1251 return err; 1252 } 1253 1254 /** 1255 * dev_set_alias - change ifalias of a device 1256 * @dev: device 1257 * @alias: name up to IFALIASZ 1258 * @len: limit of bytes to copy from info 1259 * 1260 * Set ifalias for a device, 1261 */ 1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1263 { 1264 struct dev_ifalias *new_alias = NULL; 1265 1266 if (len >= IFALIASZ) 1267 return -EINVAL; 1268 1269 if (len) { 1270 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1271 if (!new_alias) 1272 return -ENOMEM; 1273 1274 memcpy(new_alias->ifalias, alias, len); 1275 new_alias->ifalias[len] = 0; 1276 } 1277 1278 mutex_lock(&ifalias_mutex); 1279 rcu_swap_protected(dev->ifalias, new_alias, 1280 mutex_is_locked(&ifalias_mutex)); 1281 mutex_unlock(&ifalias_mutex); 1282 1283 if (new_alias) 1284 kfree_rcu(new_alias, rcuhead); 1285 1286 return len; 1287 } 1288 EXPORT_SYMBOL(dev_set_alias); 1289 1290 /** 1291 * dev_get_alias - get ifalias of a device 1292 * @dev: device 1293 * @name: buffer to store name of ifalias 1294 * @len: size of buffer 1295 * 1296 * get ifalias for a device. Caller must make sure dev cannot go 1297 * away, e.g. rcu read lock or own a reference count to device. 1298 */ 1299 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1300 { 1301 const struct dev_ifalias *alias; 1302 int ret = 0; 1303 1304 rcu_read_lock(); 1305 alias = rcu_dereference(dev->ifalias); 1306 if (alias) 1307 ret = snprintf(name, len, "%s", alias->ifalias); 1308 rcu_read_unlock(); 1309 1310 return ret; 1311 } 1312 1313 /** 1314 * netdev_features_change - device changes features 1315 * @dev: device to cause notification 1316 * 1317 * Called to indicate a device has changed features. 1318 */ 1319 void netdev_features_change(struct net_device *dev) 1320 { 1321 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1322 } 1323 EXPORT_SYMBOL(netdev_features_change); 1324 1325 /** 1326 * netdev_state_change - device changes state 1327 * @dev: device to cause notification 1328 * 1329 * Called to indicate a device has changed state. This function calls 1330 * the notifier chains for netdev_chain and sends a NEWLINK message 1331 * to the routing socket. 1332 */ 1333 void netdev_state_change(struct net_device *dev) 1334 { 1335 if (dev->flags & IFF_UP) { 1336 struct netdev_notifier_change_info change_info = { 1337 .info.dev = dev, 1338 }; 1339 1340 call_netdevice_notifiers_info(NETDEV_CHANGE, 1341 &change_info.info); 1342 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1343 } 1344 } 1345 EXPORT_SYMBOL(netdev_state_change); 1346 1347 /** 1348 * netdev_notify_peers - notify network peers about existence of @dev 1349 * @dev: network device 1350 * 1351 * Generate traffic such that interested network peers are aware of 1352 * @dev, such as by generating a gratuitous ARP. This may be used when 1353 * a device wants to inform the rest of the network about some sort of 1354 * reconfiguration such as a failover event or virtual machine 1355 * migration. 1356 */ 1357 void netdev_notify_peers(struct net_device *dev) 1358 { 1359 rtnl_lock(); 1360 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1361 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1362 rtnl_unlock(); 1363 } 1364 EXPORT_SYMBOL(netdev_notify_peers); 1365 1366 static int __dev_open(struct net_device *dev) 1367 { 1368 const struct net_device_ops *ops = dev->netdev_ops; 1369 int ret; 1370 1371 ASSERT_RTNL(); 1372 1373 if (!netif_device_present(dev)) 1374 return -ENODEV; 1375 1376 /* Block netpoll from trying to do any rx path servicing. 1377 * If we don't do this there is a chance ndo_poll_controller 1378 * or ndo_poll may be running while we open the device 1379 */ 1380 netpoll_poll_disable(dev); 1381 1382 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1383 ret = notifier_to_errno(ret); 1384 if (ret) 1385 return ret; 1386 1387 set_bit(__LINK_STATE_START, &dev->state); 1388 1389 if (ops->ndo_validate_addr) 1390 ret = ops->ndo_validate_addr(dev); 1391 1392 if (!ret && ops->ndo_open) 1393 ret = ops->ndo_open(dev); 1394 1395 netpoll_poll_enable(dev); 1396 1397 if (ret) 1398 clear_bit(__LINK_STATE_START, &dev->state); 1399 else { 1400 dev->flags |= IFF_UP; 1401 dev_set_rx_mode(dev); 1402 dev_activate(dev); 1403 add_device_randomness(dev->dev_addr, dev->addr_len); 1404 } 1405 1406 return ret; 1407 } 1408 1409 /** 1410 * dev_open - prepare an interface for use. 1411 * @dev: device to open 1412 * 1413 * Takes a device from down to up state. The device's private open 1414 * function is invoked and then the multicast lists are loaded. Finally 1415 * the device is moved into the up state and a %NETDEV_UP message is 1416 * sent to the netdev notifier chain. 1417 * 1418 * Calling this function on an active interface is a nop. On a failure 1419 * a negative errno code is returned. 1420 */ 1421 int dev_open(struct net_device *dev) 1422 { 1423 int ret; 1424 1425 if (dev->flags & IFF_UP) 1426 return 0; 1427 1428 ret = __dev_open(dev); 1429 if (ret < 0) 1430 return ret; 1431 1432 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1433 call_netdevice_notifiers(NETDEV_UP, dev); 1434 1435 return ret; 1436 } 1437 EXPORT_SYMBOL(dev_open); 1438 1439 static void __dev_close_many(struct list_head *head) 1440 { 1441 struct net_device *dev; 1442 1443 ASSERT_RTNL(); 1444 might_sleep(); 1445 1446 list_for_each_entry(dev, head, close_list) { 1447 /* Temporarily disable netpoll until the interface is down */ 1448 netpoll_poll_disable(dev); 1449 1450 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1451 1452 clear_bit(__LINK_STATE_START, &dev->state); 1453 1454 /* Synchronize to scheduled poll. We cannot touch poll list, it 1455 * can be even on different cpu. So just clear netif_running(). 1456 * 1457 * dev->stop() will invoke napi_disable() on all of it's 1458 * napi_struct instances on this device. 1459 */ 1460 smp_mb__after_atomic(); /* Commit netif_running(). */ 1461 } 1462 1463 dev_deactivate_many(head); 1464 1465 list_for_each_entry(dev, head, close_list) { 1466 const struct net_device_ops *ops = dev->netdev_ops; 1467 1468 /* 1469 * Call the device specific close. This cannot fail. 1470 * Only if device is UP 1471 * 1472 * We allow it to be called even after a DETACH hot-plug 1473 * event. 1474 */ 1475 if (ops->ndo_stop) 1476 ops->ndo_stop(dev); 1477 1478 dev->flags &= ~IFF_UP; 1479 netpoll_poll_enable(dev); 1480 } 1481 } 1482 1483 static void __dev_close(struct net_device *dev) 1484 { 1485 LIST_HEAD(single); 1486 1487 list_add(&dev->close_list, &single); 1488 __dev_close_many(&single); 1489 list_del(&single); 1490 } 1491 1492 void dev_close_many(struct list_head *head, bool unlink) 1493 { 1494 struct net_device *dev, *tmp; 1495 1496 /* Remove the devices that don't need to be closed */ 1497 list_for_each_entry_safe(dev, tmp, head, close_list) 1498 if (!(dev->flags & IFF_UP)) 1499 list_del_init(&dev->close_list); 1500 1501 __dev_close_many(head); 1502 1503 list_for_each_entry_safe(dev, tmp, head, close_list) { 1504 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1505 call_netdevice_notifiers(NETDEV_DOWN, dev); 1506 if (unlink) 1507 list_del_init(&dev->close_list); 1508 } 1509 } 1510 EXPORT_SYMBOL(dev_close_many); 1511 1512 /** 1513 * dev_close - shutdown an interface. 1514 * @dev: device to shutdown 1515 * 1516 * This function moves an active device into down state. A 1517 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1518 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1519 * chain. 1520 */ 1521 void dev_close(struct net_device *dev) 1522 { 1523 if (dev->flags & IFF_UP) { 1524 LIST_HEAD(single); 1525 1526 list_add(&dev->close_list, &single); 1527 dev_close_many(&single, true); 1528 list_del(&single); 1529 } 1530 } 1531 EXPORT_SYMBOL(dev_close); 1532 1533 1534 /** 1535 * dev_disable_lro - disable Large Receive Offload on a device 1536 * @dev: device 1537 * 1538 * Disable Large Receive Offload (LRO) on a net device. Must be 1539 * called under RTNL. This is needed if received packets may be 1540 * forwarded to another interface. 1541 */ 1542 void dev_disable_lro(struct net_device *dev) 1543 { 1544 struct net_device *lower_dev; 1545 struct list_head *iter; 1546 1547 dev->wanted_features &= ~NETIF_F_LRO; 1548 netdev_update_features(dev); 1549 1550 if (unlikely(dev->features & NETIF_F_LRO)) 1551 netdev_WARN(dev, "failed to disable LRO!\n"); 1552 1553 netdev_for_each_lower_dev(dev, lower_dev, iter) 1554 dev_disable_lro(lower_dev); 1555 } 1556 EXPORT_SYMBOL(dev_disable_lro); 1557 1558 /** 1559 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1560 * @dev: device 1561 * 1562 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1563 * called under RTNL. This is needed if Generic XDP is installed on 1564 * the device. 1565 */ 1566 static void dev_disable_gro_hw(struct net_device *dev) 1567 { 1568 dev->wanted_features &= ~NETIF_F_GRO_HW; 1569 netdev_update_features(dev); 1570 1571 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1572 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1573 } 1574 1575 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1576 { 1577 #define N(val) \ 1578 case NETDEV_##val: \ 1579 return "NETDEV_" __stringify(val); 1580 switch (cmd) { 1581 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1582 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1583 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1584 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1585 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1586 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1587 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1588 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1589 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1590 } 1591 #undef N 1592 return "UNKNOWN_NETDEV_EVENT"; 1593 } 1594 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1595 1596 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1597 struct net_device *dev) 1598 { 1599 struct netdev_notifier_info info = { 1600 .dev = dev, 1601 }; 1602 1603 return nb->notifier_call(nb, val, &info); 1604 } 1605 1606 static int dev_boot_phase = 1; 1607 1608 /** 1609 * register_netdevice_notifier - register a network notifier block 1610 * @nb: notifier 1611 * 1612 * Register a notifier to be called when network device events occur. 1613 * The notifier passed is linked into the kernel structures and must 1614 * not be reused until it has been unregistered. A negative errno code 1615 * is returned on a failure. 1616 * 1617 * When registered all registration and up events are replayed 1618 * to the new notifier to allow device to have a race free 1619 * view of the network device list. 1620 */ 1621 1622 int register_netdevice_notifier(struct notifier_block *nb) 1623 { 1624 struct net_device *dev; 1625 struct net_device *last; 1626 struct net *net; 1627 int err; 1628 1629 /* Close race with setup_net() and cleanup_net() */ 1630 down_write(&pernet_ops_rwsem); 1631 rtnl_lock(); 1632 err = raw_notifier_chain_register(&netdev_chain, nb); 1633 if (err) 1634 goto unlock; 1635 if (dev_boot_phase) 1636 goto unlock; 1637 for_each_net(net) { 1638 for_each_netdev(net, dev) { 1639 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1640 err = notifier_to_errno(err); 1641 if (err) 1642 goto rollback; 1643 1644 if (!(dev->flags & IFF_UP)) 1645 continue; 1646 1647 call_netdevice_notifier(nb, NETDEV_UP, dev); 1648 } 1649 } 1650 1651 unlock: 1652 rtnl_unlock(); 1653 up_write(&pernet_ops_rwsem); 1654 return err; 1655 1656 rollback: 1657 last = dev; 1658 for_each_net(net) { 1659 for_each_netdev(net, dev) { 1660 if (dev == last) 1661 goto outroll; 1662 1663 if (dev->flags & IFF_UP) { 1664 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1665 dev); 1666 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1667 } 1668 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1669 } 1670 } 1671 1672 outroll: 1673 raw_notifier_chain_unregister(&netdev_chain, nb); 1674 goto unlock; 1675 } 1676 EXPORT_SYMBOL(register_netdevice_notifier); 1677 1678 /** 1679 * unregister_netdevice_notifier - unregister a network notifier block 1680 * @nb: notifier 1681 * 1682 * Unregister a notifier previously registered by 1683 * register_netdevice_notifier(). The notifier is unlinked into the 1684 * kernel structures and may then be reused. A negative errno code 1685 * is returned on a failure. 1686 * 1687 * After unregistering unregister and down device events are synthesized 1688 * for all devices on the device list to the removed notifier to remove 1689 * the need for special case cleanup code. 1690 */ 1691 1692 int unregister_netdevice_notifier(struct notifier_block *nb) 1693 { 1694 struct net_device *dev; 1695 struct net *net; 1696 int err; 1697 1698 /* Close race with setup_net() and cleanup_net() */ 1699 down_write(&pernet_ops_rwsem); 1700 rtnl_lock(); 1701 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1702 if (err) 1703 goto unlock; 1704 1705 for_each_net(net) { 1706 for_each_netdev(net, dev) { 1707 if (dev->flags & IFF_UP) { 1708 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1709 dev); 1710 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1711 } 1712 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1713 } 1714 } 1715 unlock: 1716 rtnl_unlock(); 1717 up_write(&pernet_ops_rwsem); 1718 return err; 1719 } 1720 EXPORT_SYMBOL(unregister_netdevice_notifier); 1721 1722 /** 1723 * call_netdevice_notifiers_info - call all network notifier blocks 1724 * @val: value passed unmodified to notifier function 1725 * @info: notifier information data 1726 * 1727 * Call all network notifier blocks. Parameters and return value 1728 * are as for raw_notifier_call_chain(). 1729 */ 1730 1731 static int call_netdevice_notifiers_info(unsigned long val, 1732 struct netdev_notifier_info *info) 1733 { 1734 ASSERT_RTNL(); 1735 return raw_notifier_call_chain(&netdev_chain, val, info); 1736 } 1737 1738 /** 1739 * call_netdevice_notifiers - call all network notifier blocks 1740 * @val: value passed unmodified to notifier function 1741 * @dev: net_device pointer passed unmodified to notifier function 1742 * 1743 * Call all network notifier blocks. Parameters and return value 1744 * are as for raw_notifier_call_chain(). 1745 */ 1746 1747 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1748 { 1749 struct netdev_notifier_info info = { 1750 .dev = dev, 1751 }; 1752 1753 return call_netdevice_notifiers_info(val, &info); 1754 } 1755 EXPORT_SYMBOL(call_netdevice_notifiers); 1756 1757 #ifdef CONFIG_NET_INGRESS 1758 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 1759 1760 void net_inc_ingress_queue(void) 1761 { 1762 static_branch_inc(&ingress_needed_key); 1763 } 1764 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1765 1766 void net_dec_ingress_queue(void) 1767 { 1768 static_branch_dec(&ingress_needed_key); 1769 } 1770 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1771 #endif 1772 1773 #ifdef CONFIG_NET_EGRESS 1774 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 1775 1776 void net_inc_egress_queue(void) 1777 { 1778 static_branch_inc(&egress_needed_key); 1779 } 1780 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1781 1782 void net_dec_egress_queue(void) 1783 { 1784 static_branch_dec(&egress_needed_key); 1785 } 1786 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1787 #endif 1788 1789 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 1790 #ifdef HAVE_JUMP_LABEL 1791 static atomic_t netstamp_needed_deferred; 1792 static atomic_t netstamp_wanted; 1793 static void netstamp_clear(struct work_struct *work) 1794 { 1795 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1796 int wanted; 1797 1798 wanted = atomic_add_return(deferred, &netstamp_wanted); 1799 if (wanted > 0) 1800 static_branch_enable(&netstamp_needed_key); 1801 else 1802 static_branch_disable(&netstamp_needed_key); 1803 } 1804 static DECLARE_WORK(netstamp_work, netstamp_clear); 1805 #endif 1806 1807 void net_enable_timestamp(void) 1808 { 1809 #ifdef HAVE_JUMP_LABEL 1810 int wanted; 1811 1812 while (1) { 1813 wanted = atomic_read(&netstamp_wanted); 1814 if (wanted <= 0) 1815 break; 1816 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1817 return; 1818 } 1819 atomic_inc(&netstamp_needed_deferred); 1820 schedule_work(&netstamp_work); 1821 #else 1822 static_branch_inc(&netstamp_needed_key); 1823 #endif 1824 } 1825 EXPORT_SYMBOL(net_enable_timestamp); 1826 1827 void net_disable_timestamp(void) 1828 { 1829 #ifdef HAVE_JUMP_LABEL 1830 int wanted; 1831 1832 while (1) { 1833 wanted = atomic_read(&netstamp_wanted); 1834 if (wanted <= 1) 1835 break; 1836 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1837 return; 1838 } 1839 atomic_dec(&netstamp_needed_deferred); 1840 schedule_work(&netstamp_work); 1841 #else 1842 static_branch_dec(&netstamp_needed_key); 1843 #endif 1844 } 1845 EXPORT_SYMBOL(net_disable_timestamp); 1846 1847 static inline void net_timestamp_set(struct sk_buff *skb) 1848 { 1849 skb->tstamp = 0; 1850 if (static_branch_unlikely(&netstamp_needed_key)) 1851 __net_timestamp(skb); 1852 } 1853 1854 #define net_timestamp_check(COND, SKB) \ 1855 if (static_branch_unlikely(&netstamp_needed_key)) { \ 1856 if ((COND) && !(SKB)->tstamp) \ 1857 __net_timestamp(SKB); \ 1858 } \ 1859 1860 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1861 { 1862 unsigned int len; 1863 1864 if (!(dev->flags & IFF_UP)) 1865 return false; 1866 1867 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1868 if (skb->len <= len) 1869 return true; 1870 1871 /* if TSO is enabled, we don't care about the length as the packet 1872 * could be forwarded without being segmented before 1873 */ 1874 if (skb_is_gso(skb)) 1875 return true; 1876 1877 return false; 1878 } 1879 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1880 1881 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1882 { 1883 int ret = ____dev_forward_skb(dev, skb); 1884 1885 if (likely(!ret)) { 1886 skb->protocol = eth_type_trans(skb, dev); 1887 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1888 } 1889 1890 return ret; 1891 } 1892 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1893 1894 /** 1895 * dev_forward_skb - loopback an skb to another netif 1896 * 1897 * @dev: destination network device 1898 * @skb: buffer to forward 1899 * 1900 * return values: 1901 * NET_RX_SUCCESS (no congestion) 1902 * NET_RX_DROP (packet was dropped, but freed) 1903 * 1904 * dev_forward_skb can be used for injecting an skb from the 1905 * start_xmit function of one device into the receive queue 1906 * of another device. 1907 * 1908 * The receiving device may be in another namespace, so 1909 * we have to clear all information in the skb that could 1910 * impact namespace isolation. 1911 */ 1912 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1913 { 1914 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1915 } 1916 EXPORT_SYMBOL_GPL(dev_forward_skb); 1917 1918 static inline int deliver_skb(struct sk_buff *skb, 1919 struct packet_type *pt_prev, 1920 struct net_device *orig_dev) 1921 { 1922 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1923 return -ENOMEM; 1924 refcount_inc(&skb->users); 1925 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1926 } 1927 1928 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1929 struct packet_type **pt, 1930 struct net_device *orig_dev, 1931 __be16 type, 1932 struct list_head *ptype_list) 1933 { 1934 struct packet_type *ptype, *pt_prev = *pt; 1935 1936 list_for_each_entry_rcu(ptype, ptype_list, list) { 1937 if (ptype->type != type) 1938 continue; 1939 if (pt_prev) 1940 deliver_skb(skb, pt_prev, orig_dev); 1941 pt_prev = ptype; 1942 } 1943 *pt = pt_prev; 1944 } 1945 1946 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1947 { 1948 if (!ptype->af_packet_priv || !skb->sk) 1949 return false; 1950 1951 if (ptype->id_match) 1952 return ptype->id_match(ptype, skb->sk); 1953 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1954 return true; 1955 1956 return false; 1957 } 1958 1959 /* 1960 * Support routine. Sends outgoing frames to any network 1961 * taps currently in use. 1962 */ 1963 1964 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1965 { 1966 struct packet_type *ptype; 1967 struct sk_buff *skb2 = NULL; 1968 struct packet_type *pt_prev = NULL; 1969 struct list_head *ptype_list = &ptype_all; 1970 1971 rcu_read_lock(); 1972 again: 1973 list_for_each_entry_rcu(ptype, ptype_list, list) { 1974 /* Never send packets back to the socket 1975 * they originated from - MvS (miquels@drinkel.ow.org) 1976 */ 1977 if (skb_loop_sk(ptype, skb)) 1978 continue; 1979 1980 if (pt_prev) { 1981 deliver_skb(skb2, pt_prev, skb->dev); 1982 pt_prev = ptype; 1983 continue; 1984 } 1985 1986 /* need to clone skb, done only once */ 1987 skb2 = skb_clone(skb, GFP_ATOMIC); 1988 if (!skb2) 1989 goto out_unlock; 1990 1991 net_timestamp_set(skb2); 1992 1993 /* skb->nh should be correctly 1994 * set by sender, so that the second statement is 1995 * just protection against buggy protocols. 1996 */ 1997 skb_reset_mac_header(skb2); 1998 1999 if (skb_network_header(skb2) < skb2->data || 2000 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2001 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2002 ntohs(skb2->protocol), 2003 dev->name); 2004 skb_reset_network_header(skb2); 2005 } 2006 2007 skb2->transport_header = skb2->network_header; 2008 skb2->pkt_type = PACKET_OUTGOING; 2009 pt_prev = ptype; 2010 } 2011 2012 if (ptype_list == &ptype_all) { 2013 ptype_list = &dev->ptype_all; 2014 goto again; 2015 } 2016 out_unlock: 2017 if (pt_prev) { 2018 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2019 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2020 else 2021 kfree_skb(skb2); 2022 } 2023 rcu_read_unlock(); 2024 } 2025 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2026 2027 /** 2028 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2029 * @dev: Network device 2030 * @txq: number of queues available 2031 * 2032 * If real_num_tx_queues is changed the tc mappings may no longer be 2033 * valid. To resolve this verify the tc mapping remains valid and if 2034 * not NULL the mapping. With no priorities mapping to this 2035 * offset/count pair it will no longer be used. In the worst case TC0 2036 * is invalid nothing can be done so disable priority mappings. If is 2037 * expected that drivers will fix this mapping if they can before 2038 * calling netif_set_real_num_tx_queues. 2039 */ 2040 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2041 { 2042 int i; 2043 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2044 2045 /* If TC0 is invalidated disable TC mapping */ 2046 if (tc->offset + tc->count > txq) { 2047 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2048 dev->num_tc = 0; 2049 return; 2050 } 2051 2052 /* Invalidated prio to tc mappings set to TC0 */ 2053 for (i = 1; i < TC_BITMASK + 1; i++) { 2054 int q = netdev_get_prio_tc_map(dev, i); 2055 2056 tc = &dev->tc_to_txq[q]; 2057 if (tc->offset + tc->count > txq) { 2058 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2059 i, q); 2060 netdev_set_prio_tc_map(dev, i, 0); 2061 } 2062 } 2063 } 2064 2065 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2066 { 2067 if (dev->num_tc) { 2068 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2069 int i; 2070 2071 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2072 if ((txq - tc->offset) < tc->count) 2073 return i; 2074 } 2075 2076 return -1; 2077 } 2078 2079 return 0; 2080 } 2081 EXPORT_SYMBOL(netdev_txq_to_tc); 2082 2083 #ifdef CONFIG_XPS 2084 static DEFINE_MUTEX(xps_map_mutex); 2085 #define xmap_dereference(P) \ 2086 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2087 2088 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2089 int tci, u16 index) 2090 { 2091 struct xps_map *map = NULL; 2092 int pos; 2093 2094 if (dev_maps) 2095 map = xmap_dereference(dev_maps->cpu_map[tci]); 2096 if (!map) 2097 return false; 2098 2099 for (pos = map->len; pos--;) { 2100 if (map->queues[pos] != index) 2101 continue; 2102 2103 if (map->len > 1) { 2104 map->queues[pos] = map->queues[--map->len]; 2105 break; 2106 } 2107 2108 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 2109 kfree_rcu(map, rcu); 2110 return false; 2111 } 2112 2113 return true; 2114 } 2115 2116 static bool remove_xps_queue_cpu(struct net_device *dev, 2117 struct xps_dev_maps *dev_maps, 2118 int cpu, u16 offset, u16 count) 2119 { 2120 int num_tc = dev->num_tc ? : 1; 2121 bool active = false; 2122 int tci; 2123 2124 for (tci = cpu * num_tc; num_tc--; tci++) { 2125 int i, j; 2126 2127 for (i = count, j = offset; i--; j++) { 2128 if (!remove_xps_queue(dev_maps, tci, j)) 2129 break; 2130 } 2131 2132 active |= i < 0; 2133 } 2134 2135 return active; 2136 } 2137 2138 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2139 u16 count) 2140 { 2141 struct xps_dev_maps *dev_maps; 2142 int cpu, i; 2143 bool active = false; 2144 2145 mutex_lock(&xps_map_mutex); 2146 dev_maps = xmap_dereference(dev->xps_maps); 2147 2148 if (!dev_maps) 2149 goto out_no_maps; 2150 2151 for_each_possible_cpu(cpu) 2152 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2153 offset, count); 2154 2155 if (!active) { 2156 RCU_INIT_POINTER(dev->xps_maps, NULL); 2157 kfree_rcu(dev_maps, rcu); 2158 } 2159 2160 for (i = offset + (count - 1); count--; i--) 2161 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2162 NUMA_NO_NODE); 2163 2164 out_no_maps: 2165 mutex_unlock(&xps_map_mutex); 2166 } 2167 2168 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2169 { 2170 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2171 } 2172 2173 static struct xps_map *expand_xps_map(struct xps_map *map, 2174 int cpu, u16 index) 2175 { 2176 struct xps_map *new_map; 2177 int alloc_len = XPS_MIN_MAP_ALLOC; 2178 int i, pos; 2179 2180 for (pos = 0; map && pos < map->len; pos++) { 2181 if (map->queues[pos] != index) 2182 continue; 2183 return map; 2184 } 2185 2186 /* Need to add queue to this CPU's existing map */ 2187 if (map) { 2188 if (pos < map->alloc_len) 2189 return map; 2190 2191 alloc_len = map->alloc_len * 2; 2192 } 2193 2194 /* Need to allocate new map to store queue on this CPU's map */ 2195 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2196 cpu_to_node(cpu)); 2197 if (!new_map) 2198 return NULL; 2199 2200 for (i = 0; i < pos; i++) 2201 new_map->queues[i] = map->queues[i]; 2202 new_map->alloc_len = alloc_len; 2203 new_map->len = pos; 2204 2205 return new_map; 2206 } 2207 2208 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2209 u16 index) 2210 { 2211 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2212 int i, cpu, tci, numa_node_id = -2; 2213 int maps_sz, num_tc = 1, tc = 0; 2214 struct xps_map *map, *new_map; 2215 bool active = false; 2216 2217 if (dev->num_tc) { 2218 num_tc = dev->num_tc; 2219 tc = netdev_txq_to_tc(dev, index); 2220 if (tc < 0) 2221 return -EINVAL; 2222 } 2223 2224 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2225 if (maps_sz < L1_CACHE_BYTES) 2226 maps_sz = L1_CACHE_BYTES; 2227 2228 mutex_lock(&xps_map_mutex); 2229 2230 dev_maps = xmap_dereference(dev->xps_maps); 2231 2232 /* allocate memory for queue storage */ 2233 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2234 if (!new_dev_maps) 2235 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2236 if (!new_dev_maps) { 2237 mutex_unlock(&xps_map_mutex); 2238 return -ENOMEM; 2239 } 2240 2241 tci = cpu * num_tc + tc; 2242 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2243 NULL; 2244 2245 map = expand_xps_map(map, cpu, index); 2246 if (!map) 2247 goto error; 2248 2249 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2250 } 2251 2252 if (!new_dev_maps) 2253 goto out_no_new_maps; 2254 2255 for_each_possible_cpu(cpu) { 2256 /* copy maps belonging to foreign traffic classes */ 2257 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2258 /* fill in the new device map from the old device map */ 2259 map = xmap_dereference(dev_maps->cpu_map[tci]); 2260 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2261 } 2262 2263 /* We need to explicitly update tci as prevous loop 2264 * could break out early if dev_maps is NULL. 2265 */ 2266 tci = cpu * num_tc + tc; 2267 2268 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2269 /* add queue to CPU maps */ 2270 int pos = 0; 2271 2272 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2273 while ((pos < map->len) && (map->queues[pos] != index)) 2274 pos++; 2275 2276 if (pos == map->len) 2277 map->queues[map->len++] = index; 2278 #ifdef CONFIG_NUMA 2279 if (numa_node_id == -2) 2280 numa_node_id = cpu_to_node(cpu); 2281 else if (numa_node_id != cpu_to_node(cpu)) 2282 numa_node_id = -1; 2283 #endif 2284 } else if (dev_maps) { 2285 /* fill in the new device map from the old device map */ 2286 map = xmap_dereference(dev_maps->cpu_map[tci]); 2287 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2288 } 2289 2290 /* copy maps belonging to foreign traffic classes */ 2291 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2292 /* fill in the new device map from the old device map */ 2293 map = xmap_dereference(dev_maps->cpu_map[tci]); 2294 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2295 } 2296 } 2297 2298 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2299 2300 /* Cleanup old maps */ 2301 if (!dev_maps) 2302 goto out_no_old_maps; 2303 2304 for_each_possible_cpu(cpu) { 2305 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2306 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2307 map = xmap_dereference(dev_maps->cpu_map[tci]); 2308 if (map && map != new_map) 2309 kfree_rcu(map, rcu); 2310 } 2311 } 2312 2313 kfree_rcu(dev_maps, rcu); 2314 2315 out_no_old_maps: 2316 dev_maps = new_dev_maps; 2317 active = true; 2318 2319 out_no_new_maps: 2320 /* update Tx queue numa node */ 2321 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2322 (numa_node_id >= 0) ? numa_node_id : 2323 NUMA_NO_NODE); 2324 2325 if (!dev_maps) 2326 goto out_no_maps; 2327 2328 /* removes queue from unused CPUs */ 2329 for_each_possible_cpu(cpu) { 2330 for (i = tc, tci = cpu * num_tc; i--; tci++) 2331 active |= remove_xps_queue(dev_maps, tci, index); 2332 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2333 active |= remove_xps_queue(dev_maps, tci, index); 2334 for (i = num_tc - tc, tci++; --i; tci++) 2335 active |= remove_xps_queue(dev_maps, tci, index); 2336 } 2337 2338 /* free map if not active */ 2339 if (!active) { 2340 RCU_INIT_POINTER(dev->xps_maps, NULL); 2341 kfree_rcu(dev_maps, rcu); 2342 } 2343 2344 out_no_maps: 2345 mutex_unlock(&xps_map_mutex); 2346 2347 return 0; 2348 error: 2349 /* remove any maps that we added */ 2350 for_each_possible_cpu(cpu) { 2351 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2352 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2353 map = dev_maps ? 2354 xmap_dereference(dev_maps->cpu_map[tci]) : 2355 NULL; 2356 if (new_map && new_map != map) 2357 kfree(new_map); 2358 } 2359 } 2360 2361 mutex_unlock(&xps_map_mutex); 2362 2363 kfree(new_dev_maps); 2364 return -ENOMEM; 2365 } 2366 EXPORT_SYMBOL(netif_set_xps_queue); 2367 2368 #endif 2369 void netdev_reset_tc(struct net_device *dev) 2370 { 2371 #ifdef CONFIG_XPS 2372 netif_reset_xps_queues_gt(dev, 0); 2373 #endif 2374 dev->num_tc = 0; 2375 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2376 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2377 } 2378 EXPORT_SYMBOL(netdev_reset_tc); 2379 2380 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2381 { 2382 if (tc >= dev->num_tc) 2383 return -EINVAL; 2384 2385 #ifdef CONFIG_XPS 2386 netif_reset_xps_queues(dev, offset, count); 2387 #endif 2388 dev->tc_to_txq[tc].count = count; 2389 dev->tc_to_txq[tc].offset = offset; 2390 return 0; 2391 } 2392 EXPORT_SYMBOL(netdev_set_tc_queue); 2393 2394 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2395 { 2396 if (num_tc > TC_MAX_QUEUE) 2397 return -EINVAL; 2398 2399 #ifdef CONFIG_XPS 2400 netif_reset_xps_queues_gt(dev, 0); 2401 #endif 2402 dev->num_tc = num_tc; 2403 return 0; 2404 } 2405 EXPORT_SYMBOL(netdev_set_num_tc); 2406 2407 /* 2408 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2409 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2410 */ 2411 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2412 { 2413 bool disabling; 2414 int rc; 2415 2416 disabling = txq < dev->real_num_tx_queues; 2417 2418 if (txq < 1 || txq > dev->num_tx_queues) 2419 return -EINVAL; 2420 2421 if (dev->reg_state == NETREG_REGISTERED || 2422 dev->reg_state == NETREG_UNREGISTERING) { 2423 ASSERT_RTNL(); 2424 2425 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2426 txq); 2427 if (rc) 2428 return rc; 2429 2430 if (dev->num_tc) 2431 netif_setup_tc(dev, txq); 2432 2433 dev->real_num_tx_queues = txq; 2434 2435 if (disabling) { 2436 synchronize_net(); 2437 qdisc_reset_all_tx_gt(dev, txq); 2438 #ifdef CONFIG_XPS 2439 netif_reset_xps_queues_gt(dev, txq); 2440 #endif 2441 } 2442 } else { 2443 dev->real_num_tx_queues = txq; 2444 } 2445 2446 return 0; 2447 } 2448 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2449 2450 #ifdef CONFIG_SYSFS 2451 /** 2452 * netif_set_real_num_rx_queues - set actual number of RX queues used 2453 * @dev: Network device 2454 * @rxq: Actual number of RX queues 2455 * 2456 * This must be called either with the rtnl_lock held or before 2457 * registration of the net device. Returns 0 on success, or a 2458 * negative error code. If called before registration, it always 2459 * succeeds. 2460 */ 2461 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2462 { 2463 int rc; 2464 2465 if (rxq < 1 || rxq > dev->num_rx_queues) 2466 return -EINVAL; 2467 2468 if (dev->reg_state == NETREG_REGISTERED) { 2469 ASSERT_RTNL(); 2470 2471 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2472 rxq); 2473 if (rc) 2474 return rc; 2475 } 2476 2477 dev->real_num_rx_queues = rxq; 2478 return 0; 2479 } 2480 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2481 #endif 2482 2483 /** 2484 * netif_get_num_default_rss_queues - default number of RSS queues 2485 * 2486 * This routine should set an upper limit on the number of RSS queues 2487 * used by default by multiqueue devices. 2488 */ 2489 int netif_get_num_default_rss_queues(void) 2490 { 2491 return is_kdump_kernel() ? 2492 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2493 } 2494 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2495 2496 static void __netif_reschedule(struct Qdisc *q) 2497 { 2498 struct softnet_data *sd; 2499 unsigned long flags; 2500 2501 local_irq_save(flags); 2502 sd = this_cpu_ptr(&softnet_data); 2503 q->next_sched = NULL; 2504 *sd->output_queue_tailp = q; 2505 sd->output_queue_tailp = &q->next_sched; 2506 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2507 local_irq_restore(flags); 2508 } 2509 2510 void __netif_schedule(struct Qdisc *q) 2511 { 2512 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2513 __netif_reschedule(q); 2514 } 2515 EXPORT_SYMBOL(__netif_schedule); 2516 2517 struct dev_kfree_skb_cb { 2518 enum skb_free_reason reason; 2519 }; 2520 2521 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2522 { 2523 return (struct dev_kfree_skb_cb *)skb->cb; 2524 } 2525 2526 void netif_schedule_queue(struct netdev_queue *txq) 2527 { 2528 rcu_read_lock(); 2529 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2530 struct Qdisc *q = rcu_dereference(txq->qdisc); 2531 2532 __netif_schedule(q); 2533 } 2534 rcu_read_unlock(); 2535 } 2536 EXPORT_SYMBOL(netif_schedule_queue); 2537 2538 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2539 { 2540 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2541 struct Qdisc *q; 2542 2543 rcu_read_lock(); 2544 q = rcu_dereference(dev_queue->qdisc); 2545 __netif_schedule(q); 2546 rcu_read_unlock(); 2547 } 2548 } 2549 EXPORT_SYMBOL(netif_tx_wake_queue); 2550 2551 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2552 { 2553 unsigned long flags; 2554 2555 if (unlikely(!skb)) 2556 return; 2557 2558 if (likely(refcount_read(&skb->users) == 1)) { 2559 smp_rmb(); 2560 refcount_set(&skb->users, 0); 2561 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2562 return; 2563 } 2564 get_kfree_skb_cb(skb)->reason = reason; 2565 local_irq_save(flags); 2566 skb->next = __this_cpu_read(softnet_data.completion_queue); 2567 __this_cpu_write(softnet_data.completion_queue, skb); 2568 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2569 local_irq_restore(flags); 2570 } 2571 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2572 2573 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2574 { 2575 if (in_irq() || irqs_disabled()) 2576 __dev_kfree_skb_irq(skb, reason); 2577 else 2578 dev_kfree_skb(skb); 2579 } 2580 EXPORT_SYMBOL(__dev_kfree_skb_any); 2581 2582 2583 /** 2584 * netif_device_detach - mark device as removed 2585 * @dev: network device 2586 * 2587 * Mark device as removed from system and therefore no longer available. 2588 */ 2589 void netif_device_detach(struct net_device *dev) 2590 { 2591 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2592 netif_running(dev)) { 2593 netif_tx_stop_all_queues(dev); 2594 } 2595 } 2596 EXPORT_SYMBOL(netif_device_detach); 2597 2598 /** 2599 * netif_device_attach - mark device as attached 2600 * @dev: network device 2601 * 2602 * Mark device as attached from system and restart if needed. 2603 */ 2604 void netif_device_attach(struct net_device *dev) 2605 { 2606 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2607 netif_running(dev)) { 2608 netif_tx_wake_all_queues(dev); 2609 __netdev_watchdog_up(dev); 2610 } 2611 } 2612 EXPORT_SYMBOL(netif_device_attach); 2613 2614 /* 2615 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2616 * to be used as a distribution range. 2617 */ 2618 static u16 skb_tx_hash(const struct net_device *dev, struct sk_buff *skb) 2619 { 2620 u32 hash; 2621 u16 qoffset = 0; 2622 u16 qcount = dev->real_num_tx_queues; 2623 2624 if (skb_rx_queue_recorded(skb)) { 2625 hash = skb_get_rx_queue(skb); 2626 while (unlikely(hash >= qcount)) 2627 hash -= qcount; 2628 return hash; 2629 } 2630 2631 if (dev->num_tc) { 2632 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2633 2634 qoffset = dev->tc_to_txq[tc].offset; 2635 qcount = dev->tc_to_txq[tc].count; 2636 } 2637 2638 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2639 } 2640 2641 static void skb_warn_bad_offload(const struct sk_buff *skb) 2642 { 2643 static const netdev_features_t null_features; 2644 struct net_device *dev = skb->dev; 2645 const char *name = ""; 2646 2647 if (!net_ratelimit()) 2648 return; 2649 2650 if (dev) { 2651 if (dev->dev.parent) 2652 name = dev_driver_string(dev->dev.parent); 2653 else 2654 name = netdev_name(dev); 2655 } 2656 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2657 "gso_type=%d ip_summed=%d\n", 2658 name, dev ? &dev->features : &null_features, 2659 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2660 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2661 skb_shinfo(skb)->gso_type, skb->ip_summed); 2662 } 2663 2664 /* 2665 * Invalidate hardware checksum when packet is to be mangled, and 2666 * complete checksum manually on outgoing path. 2667 */ 2668 int skb_checksum_help(struct sk_buff *skb) 2669 { 2670 __wsum csum; 2671 int ret = 0, offset; 2672 2673 if (skb->ip_summed == CHECKSUM_COMPLETE) 2674 goto out_set_summed; 2675 2676 if (unlikely(skb_shinfo(skb)->gso_size)) { 2677 skb_warn_bad_offload(skb); 2678 return -EINVAL; 2679 } 2680 2681 /* Before computing a checksum, we should make sure no frag could 2682 * be modified by an external entity : checksum could be wrong. 2683 */ 2684 if (skb_has_shared_frag(skb)) { 2685 ret = __skb_linearize(skb); 2686 if (ret) 2687 goto out; 2688 } 2689 2690 offset = skb_checksum_start_offset(skb); 2691 BUG_ON(offset >= skb_headlen(skb)); 2692 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2693 2694 offset += skb->csum_offset; 2695 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2696 2697 if (skb_cloned(skb) && 2698 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2699 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2700 if (ret) 2701 goto out; 2702 } 2703 2704 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2705 out_set_summed: 2706 skb->ip_summed = CHECKSUM_NONE; 2707 out: 2708 return ret; 2709 } 2710 EXPORT_SYMBOL(skb_checksum_help); 2711 2712 int skb_crc32c_csum_help(struct sk_buff *skb) 2713 { 2714 __le32 crc32c_csum; 2715 int ret = 0, offset, start; 2716 2717 if (skb->ip_summed != CHECKSUM_PARTIAL) 2718 goto out; 2719 2720 if (unlikely(skb_is_gso(skb))) 2721 goto out; 2722 2723 /* Before computing a checksum, we should make sure no frag could 2724 * be modified by an external entity : checksum could be wrong. 2725 */ 2726 if (unlikely(skb_has_shared_frag(skb))) { 2727 ret = __skb_linearize(skb); 2728 if (ret) 2729 goto out; 2730 } 2731 start = skb_checksum_start_offset(skb); 2732 offset = start + offsetof(struct sctphdr, checksum); 2733 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2734 ret = -EINVAL; 2735 goto out; 2736 } 2737 if (skb_cloned(skb) && 2738 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2739 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2740 if (ret) 2741 goto out; 2742 } 2743 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2744 skb->len - start, ~(__u32)0, 2745 crc32c_csum_stub)); 2746 *(__le32 *)(skb->data + offset) = crc32c_csum; 2747 skb->ip_summed = CHECKSUM_NONE; 2748 skb->csum_not_inet = 0; 2749 out: 2750 return ret; 2751 } 2752 2753 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2754 { 2755 __be16 type = skb->protocol; 2756 2757 /* Tunnel gso handlers can set protocol to ethernet. */ 2758 if (type == htons(ETH_P_TEB)) { 2759 struct ethhdr *eth; 2760 2761 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2762 return 0; 2763 2764 eth = (struct ethhdr *)skb->data; 2765 type = eth->h_proto; 2766 } 2767 2768 return __vlan_get_protocol(skb, type, depth); 2769 } 2770 2771 /** 2772 * skb_mac_gso_segment - mac layer segmentation handler. 2773 * @skb: buffer to segment 2774 * @features: features for the output path (see dev->features) 2775 */ 2776 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2777 netdev_features_t features) 2778 { 2779 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2780 struct packet_offload *ptype; 2781 int vlan_depth = skb->mac_len; 2782 __be16 type = skb_network_protocol(skb, &vlan_depth); 2783 2784 if (unlikely(!type)) 2785 return ERR_PTR(-EINVAL); 2786 2787 __skb_pull(skb, vlan_depth); 2788 2789 rcu_read_lock(); 2790 list_for_each_entry_rcu(ptype, &offload_base, list) { 2791 if (ptype->type == type && ptype->callbacks.gso_segment) { 2792 segs = ptype->callbacks.gso_segment(skb, features); 2793 break; 2794 } 2795 } 2796 rcu_read_unlock(); 2797 2798 __skb_push(skb, skb->data - skb_mac_header(skb)); 2799 2800 return segs; 2801 } 2802 EXPORT_SYMBOL(skb_mac_gso_segment); 2803 2804 2805 /* openvswitch calls this on rx path, so we need a different check. 2806 */ 2807 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2808 { 2809 if (tx_path) 2810 return skb->ip_summed != CHECKSUM_PARTIAL && 2811 skb->ip_summed != CHECKSUM_UNNECESSARY; 2812 2813 return skb->ip_summed == CHECKSUM_NONE; 2814 } 2815 2816 /** 2817 * __skb_gso_segment - Perform segmentation on skb. 2818 * @skb: buffer to segment 2819 * @features: features for the output path (see dev->features) 2820 * @tx_path: whether it is called in TX path 2821 * 2822 * This function segments the given skb and returns a list of segments. 2823 * 2824 * It may return NULL if the skb requires no segmentation. This is 2825 * only possible when GSO is used for verifying header integrity. 2826 * 2827 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2828 */ 2829 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2830 netdev_features_t features, bool tx_path) 2831 { 2832 struct sk_buff *segs; 2833 2834 if (unlikely(skb_needs_check(skb, tx_path))) { 2835 int err; 2836 2837 /* We're going to init ->check field in TCP or UDP header */ 2838 err = skb_cow_head(skb, 0); 2839 if (err < 0) 2840 return ERR_PTR(err); 2841 } 2842 2843 /* Only report GSO partial support if it will enable us to 2844 * support segmentation on this frame without needing additional 2845 * work. 2846 */ 2847 if (features & NETIF_F_GSO_PARTIAL) { 2848 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2849 struct net_device *dev = skb->dev; 2850 2851 partial_features |= dev->features & dev->gso_partial_features; 2852 if (!skb_gso_ok(skb, features | partial_features)) 2853 features &= ~NETIF_F_GSO_PARTIAL; 2854 } 2855 2856 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2857 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2858 2859 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2860 SKB_GSO_CB(skb)->encap_level = 0; 2861 2862 skb_reset_mac_header(skb); 2863 skb_reset_mac_len(skb); 2864 2865 segs = skb_mac_gso_segment(skb, features); 2866 2867 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 2868 skb_warn_bad_offload(skb); 2869 2870 return segs; 2871 } 2872 EXPORT_SYMBOL(__skb_gso_segment); 2873 2874 /* Take action when hardware reception checksum errors are detected. */ 2875 #ifdef CONFIG_BUG 2876 void netdev_rx_csum_fault(struct net_device *dev) 2877 { 2878 if (net_ratelimit()) { 2879 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2880 dump_stack(); 2881 } 2882 } 2883 EXPORT_SYMBOL(netdev_rx_csum_fault); 2884 #endif 2885 2886 /* Actually, we should eliminate this check as soon as we know, that: 2887 * 1. IOMMU is present and allows to map all the memory. 2888 * 2. No high memory really exists on this machine. 2889 */ 2890 2891 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2892 { 2893 #ifdef CONFIG_HIGHMEM 2894 int i; 2895 2896 if (!(dev->features & NETIF_F_HIGHDMA)) { 2897 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2898 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2899 2900 if (PageHighMem(skb_frag_page(frag))) 2901 return 1; 2902 } 2903 } 2904 2905 if (PCI_DMA_BUS_IS_PHYS) { 2906 struct device *pdev = dev->dev.parent; 2907 2908 if (!pdev) 2909 return 0; 2910 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2911 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2912 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2913 2914 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2915 return 1; 2916 } 2917 } 2918 #endif 2919 return 0; 2920 } 2921 2922 /* If MPLS offload request, verify we are testing hardware MPLS features 2923 * instead of standard features for the netdev. 2924 */ 2925 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2926 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2927 netdev_features_t features, 2928 __be16 type) 2929 { 2930 if (eth_p_mpls(type)) 2931 features &= skb->dev->mpls_features; 2932 2933 return features; 2934 } 2935 #else 2936 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2937 netdev_features_t features, 2938 __be16 type) 2939 { 2940 return features; 2941 } 2942 #endif 2943 2944 static netdev_features_t harmonize_features(struct sk_buff *skb, 2945 netdev_features_t features) 2946 { 2947 int tmp; 2948 __be16 type; 2949 2950 type = skb_network_protocol(skb, &tmp); 2951 features = net_mpls_features(skb, features, type); 2952 2953 if (skb->ip_summed != CHECKSUM_NONE && 2954 !can_checksum_protocol(features, type)) { 2955 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2956 } 2957 if (illegal_highdma(skb->dev, skb)) 2958 features &= ~NETIF_F_SG; 2959 2960 return features; 2961 } 2962 2963 netdev_features_t passthru_features_check(struct sk_buff *skb, 2964 struct net_device *dev, 2965 netdev_features_t features) 2966 { 2967 return features; 2968 } 2969 EXPORT_SYMBOL(passthru_features_check); 2970 2971 static netdev_features_t dflt_features_check(struct sk_buff *skb, 2972 struct net_device *dev, 2973 netdev_features_t features) 2974 { 2975 return vlan_features_check(skb, features); 2976 } 2977 2978 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2979 struct net_device *dev, 2980 netdev_features_t features) 2981 { 2982 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2983 2984 if (gso_segs > dev->gso_max_segs) 2985 return features & ~NETIF_F_GSO_MASK; 2986 2987 /* Support for GSO partial features requires software 2988 * intervention before we can actually process the packets 2989 * so we need to strip support for any partial features now 2990 * and we can pull them back in after we have partially 2991 * segmented the frame. 2992 */ 2993 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2994 features &= ~dev->gso_partial_features; 2995 2996 /* Make sure to clear the IPv4 ID mangling feature if the 2997 * IPv4 header has the potential to be fragmented. 2998 */ 2999 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3000 struct iphdr *iph = skb->encapsulation ? 3001 inner_ip_hdr(skb) : ip_hdr(skb); 3002 3003 if (!(iph->frag_off & htons(IP_DF))) 3004 features &= ~NETIF_F_TSO_MANGLEID; 3005 } 3006 3007 return features; 3008 } 3009 3010 netdev_features_t netif_skb_features(struct sk_buff *skb) 3011 { 3012 struct net_device *dev = skb->dev; 3013 netdev_features_t features = dev->features; 3014 3015 if (skb_is_gso(skb)) 3016 features = gso_features_check(skb, dev, features); 3017 3018 /* If encapsulation offload request, verify we are testing 3019 * hardware encapsulation features instead of standard 3020 * features for the netdev 3021 */ 3022 if (skb->encapsulation) 3023 features &= dev->hw_enc_features; 3024 3025 if (skb_vlan_tagged(skb)) 3026 features = netdev_intersect_features(features, 3027 dev->vlan_features | 3028 NETIF_F_HW_VLAN_CTAG_TX | 3029 NETIF_F_HW_VLAN_STAG_TX); 3030 3031 if (dev->netdev_ops->ndo_features_check) 3032 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3033 features); 3034 else 3035 features &= dflt_features_check(skb, dev, features); 3036 3037 return harmonize_features(skb, features); 3038 } 3039 EXPORT_SYMBOL(netif_skb_features); 3040 3041 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3042 struct netdev_queue *txq, bool more) 3043 { 3044 unsigned int len; 3045 int rc; 3046 3047 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 3048 dev_queue_xmit_nit(skb, dev); 3049 3050 len = skb->len; 3051 trace_net_dev_start_xmit(skb, dev); 3052 rc = netdev_start_xmit(skb, dev, txq, more); 3053 trace_net_dev_xmit(skb, rc, dev, len); 3054 3055 return rc; 3056 } 3057 3058 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3059 struct netdev_queue *txq, int *ret) 3060 { 3061 struct sk_buff *skb = first; 3062 int rc = NETDEV_TX_OK; 3063 3064 while (skb) { 3065 struct sk_buff *next = skb->next; 3066 3067 skb->next = NULL; 3068 rc = xmit_one(skb, dev, txq, next != NULL); 3069 if (unlikely(!dev_xmit_complete(rc))) { 3070 skb->next = next; 3071 goto out; 3072 } 3073 3074 skb = next; 3075 if (netif_xmit_stopped(txq) && skb) { 3076 rc = NETDEV_TX_BUSY; 3077 break; 3078 } 3079 } 3080 3081 out: 3082 *ret = rc; 3083 return skb; 3084 } 3085 3086 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3087 netdev_features_t features) 3088 { 3089 if (skb_vlan_tag_present(skb) && 3090 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3091 skb = __vlan_hwaccel_push_inside(skb); 3092 return skb; 3093 } 3094 3095 int skb_csum_hwoffload_help(struct sk_buff *skb, 3096 const netdev_features_t features) 3097 { 3098 if (unlikely(skb->csum_not_inet)) 3099 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3100 skb_crc32c_csum_help(skb); 3101 3102 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3103 } 3104 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3105 3106 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3107 { 3108 netdev_features_t features; 3109 3110 features = netif_skb_features(skb); 3111 skb = validate_xmit_vlan(skb, features); 3112 if (unlikely(!skb)) 3113 goto out_null; 3114 3115 skb = sk_validate_xmit_skb(skb, dev); 3116 if (unlikely(!skb)) 3117 goto out_null; 3118 3119 if (netif_needs_gso(skb, features)) { 3120 struct sk_buff *segs; 3121 3122 segs = skb_gso_segment(skb, features); 3123 if (IS_ERR(segs)) { 3124 goto out_kfree_skb; 3125 } else if (segs) { 3126 consume_skb(skb); 3127 skb = segs; 3128 } 3129 } else { 3130 if (skb_needs_linearize(skb, features) && 3131 __skb_linearize(skb)) 3132 goto out_kfree_skb; 3133 3134 /* If packet is not checksummed and device does not 3135 * support checksumming for this protocol, complete 3136 * checksumming here. 3137 */ 3138 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3139 if (skb->encapsulation) 3140 skb_set_inner_transport_header(skb, 3141 skb_checksum_start_offset(skb)); 3142 else 3143 skb_set_transport_header(skb, 3144 skb_checksum_start_offset(skb)); 3145 if (skb_csum_hwoffload_help(skb, features)) 3146 goto out_kfree_skb; 3147 } 3148 } 3149 3150 skb = validate_xmit_xfrm(skb, features, again); 3151 3152 return skb; 3153 3154 out_kfree_skb: 3155 kfree_skb(skb); 3156 out_null: 3157 atomic_long_inc(&dev->tx_dropped); 3158 return NULL; 3159 } 3160 3161 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3162 { 3163 struct sk_buff *next, *head = NULL, *tail; 3164 3165 for (; skb != NULL; skb = next) { 3166 next = skb->next; 3167 skb->next = NULL; 3168 3169 /* in case skb wont be segmented, point to itself */ 3170 skb->prev = skb; 3171 3172 skb = validate_xmit_skb(skb, dev, again); 3173 if (!skb) 3174 continue; 3175 3176 if (!head) 3177 head = skb; 3178 else 3179 tail->next = skb; 3180 /* If skb was segmented, skb->prev points to 3181 * the last segment. If not, it still contains skb. 3182 */ 3183 tail = skb->prev; 3184 } 3185 return head; 3186 } 3187 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3188 3189 static void qdisc_pkt_len_init(struct sk_buff *skb) 3190 { 3191 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3192 3193 qdisc_skb_cb(skb)->pkt_len = skb->len; 3194 3195 /* To get more precise estimation of bytes sent on wire, 3196 * we add to pkt_len the headers size of all segments 3197 */ 3198 if (shinfo->gso_size) { 3199 unsigned int hdr_len; 3200 u16 gso_segs = shinfo->gso_segs; 3201 3202 /* mac layer + network layer */ 3203 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3204 3205 /* + transport layer */ 3206 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3207 const struct tcphdr *th; 3208 struct tcphdr _tcphdr; 3209 3210 th = skb_header_pointer(skb, skb_transport_offset(skb), 3211 sizeof(_tcphdr), &_tcphdr); 3212 if (likely(th)) 3213 hdr_len += __tcp_hdrlen(th); 3214 } else { 3215 struct udphdr _udphdr; 3216 3217 if (skb_header_pointer(skb, skb_transport_offset(skb), 3218 sizeof(_udphdr), &_udphdr)) 3219 hdr_len += sizeof(struct udphdr); 3220 } 3221 3222 if (shinfo->gso_type & SKB_GSO_DODGY) 3223 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3224 shinfo->gso_size); 3225 3226 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3227 } 3228 } 3229 3230 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3231 struct net_device *dev, 3232 struct netdev_queue *txq) 3233 { 3234 spinlock_t *root_lock = qdisc_lock(q); 3235 struct sk_buff *to_free = NULL; 3236 bool contended; 3237 int rc; 3238 3239 qdisc_calculate_pkt_len(skb, q); 3240 3241 if (q->flags & TCQ_F_NOLOCK) { 3242 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3243 __qdisc_drop(skb, &to_free); 3244 rc = NET_XMIT_DROP; 3245 } else { 3246 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3247 qdisc_run(q); 3248 } 3249 3250 if (unlikely(to_free)) 3251 kfree_skb_list(to_free); 3252 return rc; 3253 } 3254 3255 /* 3256 * Heuristic to force contended enqueues to serialize on a 3257 * separate lock before trying to get qdisc main lock. 3258 * This permits qdisc->running owner to get the lock more 3259 * often and dequeue packets faster. 3260 */ 3261 contended = qdisc_is_running(q); 3262 if (unlikely(contended)) 3263 spin_lock(&q->busylock); 3264 3265 spin_lock(root_lock); 3266 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3267 __qdisc_drop(skb, &to_free); 3268 rc = NET_XMIT_DROP; 3269 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3270 qdisc_run_begin(q)) { 3271 /* 3272 * This is a work-conserving queue; there are no old skbs 3273 * waiting to be sent out; and the qdisc is not running - 3274 * xmit the skb directly. 3275 */ 3276 3277 qdisc_bstats_update(q, skb); 3278 3279 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3280 if (unlikely(contended)) { 3281 spin_unlock(&q->busylock); 3282 contended = false; 3283 } 3284 __qdisc_run(q); 3285 } 3286 3287 qdisc_run_end(q); 3288 rc = NET_XMIT_SUCCESS; 3289 } else { 3290 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3291 if (qdisc_run_begin(q)) { 3292 if (unlikely(contended)) { 3293 spin_unlock(&q->busylock); 3294 contended = false; 3295 } 3296 __qdisc_run(q); 3297 qdisc_run_end(q); 3298 } 3299 } 3300 spin_unlock(root_lock); 3301 if (unlikely(to_free)) 3302 kfree_skb_list(to_free); 3303 if (unlikely(contended)) 3304 spin_unlock(&q->busylock); 3305 return rc; 3306 } 3307 3308 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3309 static void skb_update_prio(struct sk_buff *skb) 3310 { 3311 const struct netprio_map *map; 3312 const struct sock *sk; 3313 unsigned int prioidx; 3314 3315 if (skb->priority) 3316 return; 3317 map = rcu_dereference_bh(skb->dev->priomap); 3318 if (!map) 3319 return; 3320 sk = skb_to_full_sk(skb); 3321 if (!sk) 3322 return; 3323 3324 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3325 3326 if (prioidx < map->priomap_len) 3327 skb->priority = map->priomap[prioidx]; 3328 } 3329 #else 3330 #define skb_update_prio(skb) 3331 #endif 3332 3333 DEFINE_PER_CPU(int, xmit_recursion); 3334 EXPORT_SYMBOL(xmit_recursion); 3335 3336 /** 3337 * dev_loopback_xmit - loop back @skb 3338 * @net: network namespace this loopback is happening in 3339 * @sk: sk needed to be a netfilter okfn 3340 * @skb: buffer to transmit 3341 */ 3342 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3343 { 3344 skb_reset_mac_header(skb); 3345 __skb_pull(skb, skb_network_offset(skb)); 3346 skb->pkt_type = PACKET_LOOPBACK; 3347 skb->ip_summed = CHECKSUM_UNNECESSARY; 3348 WARN_ON(!skb_dst(skb)); 3349 skb_dst_force(skb); 3350 netif_rx_ni(skb); 3351 return 0; 3352 } 3353 EXPORT_SYMBOL(dev_loopback_xmit); 3354 3355 #ifdef CONFIG_NET_EGRESS 3356 static struct sk_buff * 3357 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3358 { 3359 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3360 struct tcf_result cl_res; 3361 3362 if (!miniq) 3363 return skb; 3364 3365 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3366 mini_qdisc_bstats_cpu_update(miniq, skb); 3367 3368 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3369 case TC_ACT_OK: 3370 case TC_ACT_RECLASSIFY: 3371 skb->tc_index = TC_H_MIN(cl_res.classid); 3372 break; 3373 case TC_ACT_SHOT: 3374 mini_qdisc_qstats_cpu_drop(miniq); 3375 *ret = NET_XMIT_DROP; 3376 kfree_skb(skb); 3377 return NULL; 3378 case TC_ACT_STOLEN: 3379 case TC_ACT_QUEUED: 3380 case TC_ACT_TRAP: 3381 *ret = NET_XMIT_SUCCESS; 3382 consume_skb(skb); 3383 return NULL; 3384 case TC_ACT_REDIRECT: 3385 /* No need to push/pop skb's mac_header here on egress! */ 3386 skb_do_redirect(skb); 3387 *ret = NET_XMIT_SUCCESS; 3388 return NULL; 3389 default: 3390 break; 3391 } 3392 3393 return skb; 3394 } 3395 #endif /* CONFIG_NET_EGRESS */ 3396 3397 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3398 { 3399 #ifdef CONFIG_XPS 3400 struct xps_dev_maps *dev_maps; 3401 struct xps_map *map; 3402 int queue_index = -1; 3403 3404 rcu_read_lock(); 3405 dev_maps = rcu_dereference(dev->xps_maps); 3406 if (dev_maps) { 3407 unsigned int tci = skb->sender_cpu - 1; 3408 3409 if (dev->num_tc) { 3410 tci *= dev->num_tc; 3411 tci += netdev_get_prio_tc_map(dev, skb->priority); 3412 } 3413 3414 map = rcu_dereference(dev_maps->cpu_map[tci]); 3415 if (map) { 3416 if (map->len == 1) 3417 queue_index = map->queues[0]; 3418 else 3419 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3420 map->len)]; 3421 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3422 queue_index = -1; 3423 } 3424 } 3425 rcu_read_unlock(); 3426 3427 return queue_index; 3428 #else 3429 return -1; 3430 #endif 3431 } 3432 3433 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3434 { 3435 struct sock *sk = skb->sk; 3436 int queue_index = sk_tx_queue_get(sk); 3437 3438 if (queue_index < 0 || skb->ooo_okay || 3439 queue_index >= dev->real_num_tx_queues) { 3440 int new_index = get_xps_queue(dev, skb); 3441 3442 if (new_index < 0) 3443 new_index = skb_tx_hash(dev, skb); 3444 3445 if (queue_index != new_index && sk && 3446 sk_fullsock(sk) && 3447 rcu_access_pointer(sk->sk_dst_cache)) 3448 sk_tx_queue_set(sk, new_index); 3449 3450 queue_index = new_index; 3451 } 3452 3453 return queue_index; 3454 } 3455 3456 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3457 struct sk_buff *skb, 3458 void *accel_priv) 3459 { 3460 int queue_index = 0; 3461 3462 #ifdef CONFIG_XPS 3463 u32 sender_cpu = skb->sender_cpu - 1; 3464 3465 if (sender_cpu >= (u32)NR_CPUS) 3466 skb->sender_cpu = raw_smp_processor_id() + 1; 3467 #endif 3468 3469 if (dev->real_num_tx_queues != 1) { 3470 const struct net_device_ops *ops = dev->netdev_ops; 3471 3472 if (ops->ndo_select_queue) 3473 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3474 __netdev_pick_tx); 3475 else 3476 queue_index = __netdev_pick_tx(dev, skb); 3477 3478 queue_index = netdev_cap_txqueue(dev, queue_index); 3479 } 3480 3481 skb_set_queue_mapping(skb, queue_index); 3482 return netdev_get_tx_queue(dev, queue_index); 3483 } 3484 3485 /** 3486 * __dev_queue_xmit - transmit a buffer 3487 * @skb: buffer to transmit 3488 * @accel_priv: private data used for L2 forwarding offload 3489 * 3490 * Queue a buffer for transmission to a network device. The caller must 3491 * have set the device and priority and built the buffer before calling 3492 * this function. The function can be called from an interrupt. 3493 * 3494 * A negative errno code is returned on a failure. A success does not 3495 * guarantee the frame will be transmitted as it may be dropped due 3496 * to congestion or traffic shaping. 3497 * 3498 * ----------------------------------------------------------------------------------- 3499 * I notice this method can also return errors from the queue disciplines, 3500 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3501 * be positive. 3502 * 3503 * Regardless of the return value, the skb is consumed, so it is currently 3504 * difficult to retry a send to this method. (You can bump the ref count 3505 * before sending to hold a reference for retry if you are careful.) 3506 * 3507 * When calling this method, interrupts MUST be enabled. This is because 3508 * the BH enable code must have IRQs enabled so that it will not deadlock. 3509 * --BLG 3510 */ 3511 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3512 { 3513 struct net_device *dev = skb->dev; 3514 struct netdev_queue *txq; 3515 struct Qdisc *q; 3516 int rc = -ENOMEM; 3517 bool again = false; 3518 3519 skb_reset_mac_header(skb); 3520 3521 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3522 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3523 3524 /* Disable soft irqs for various locks below. Also 3525 * stops preemption for RCU. 3526 */ 3527 rcu_read_lock_bh(); 3528 3529 skb_update_prio(skb); 3530 3531 qdisc_pkt_len_init(skb); 3532 #ifdef CONFIG_NET_CLS_ACT 3533 skb->tc_at_ingress = 0; 3534 # ifdef CONFIG_NET_EGRESS 3535 if (static_branch_unlikely(&egress_needed_key)) { 3536 skb = sch_handle_egress(skb, &rc, dev); 3537 if (!skb) 3538 goto out; 3539 } 3540 # endif 3541 #endif 3542 /* If device/qdisc don't need skb->dst, release it right now while 3543 * its hot in this cpu cache. 3544 */ 3545 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3546 skb_dst_drop(skb); 3547 else 3548 skb_dst_force(skb); 3549 3550 txq = netdev_pick_tx(dev, skb, accel_priv); 3551 q = rcu_dereference_bh(txq->qdisc); 3552 3553 trace_net_dev_queue(skb); 3554 if (q->enqueue) { 3555 rc = __dev_xmit_skb(skb, q, dev, txq); 3556 goto out; 3557 } 3558 3559 /* The device has no queue. Common case for software devices: 3560 * loopback, all the sorts of tunnels... 3561 3562 * Really, it is unlikely that netif_tx_lock protection is necessary 3563 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3564 * counters.) 3565 * However, it is possible, that they rely on protection 3566 * made by us here. 3567 3568 * Check this and shot the lock. It is not prone from deadlocks. 3569 *Either shot noqueue qdisc, it is even simpler 8) 3570 */ 3571 if (dev->flags & IFF_UP) { 3572 int cpu = smp_processor_id(); /* ok because BHs are off */ 3573 3574 if (txq->xmit_lock_owner != cpu) { 3575 if (unlikely(__this_cpu_read(xmit_recursion) > 3576 XMIT_RECURSION_LIMIT)) 3577 goto recursion_alert; 3578 3579 skb = validate_xmit_skb(skb, dev, &again); 3580 if (!skb) 3581 goto out; 3582 3583 HARD_TX_LOCK(dev, txq, cpu); 3584 3585 if (!netif_xmit_stopped(txq)) { 3586 __this_cpu_inc(xmit_recursion); 3587 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3588 __this_cpu_dec(xmit_recursion); 3589 if (dev_xmit_complete(rc)) { 3590 HARD_TX_UNLOCK(dev, txq); 3591 goto out; 3592 } 3593 } 3594 HARD_TX_UNLOCK(dev, txq); 3595 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3596 dev->name); 3597 } else { 3598 /* Recursion is detected! It is possible, 3599 * unfortunately 3600 */ 3601 recursion_alert: 3602 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3603 dev->name); 3604 } 3605 } 3606 3607 rc = -ENETDOWN; 3608 rcu_read_unlock_bh(); 3609 3610 atomic_long_inc(&dev->tx_dropped); 3611 kfree_skb_list(skb); 3612 return rc; 3613 out: 3614 rcu_read_unlock_bh(); 3615 return rc; 3616 } 3617 3618 int dev_queue_xmit(struct sk_buff *skb) 3619 { 3620 return __dev_queue_xmit(skb, NULL); 3621 } 3622 EXPORT_SYMBOL(dev_queue_xmit); 3623 3624 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3625 { 3626 return __dev_queue_xmit(skb, accel_priv); 3627 } 3628 EXPORT_SYMBOL(dev_queue_xmit_accel); 3629 3630 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3631 { 3632 struct net_device *dev = skb->dev; 3633 struct sk_buff *orig_skb = skb; 3634 struct netdev_queue *txq; 3635 int ret = NETDEV_TX_BUSY; 3636 bool again = false; 3637 3638 if (unlikely(!netif_running(dev) || 3639 !netif_carrier_ok(dev))) 3640 goto drop; 3641 3642 skb = validate_xmit_skb_list(skb, dev, &again); 3643 if (skb != orig_skb) 3644 goto drop; 3645 3646 skb_set_queue_mapping(skb, queue_id); 3647 txq = skb_get_tx_queue(dev, skb); 3648 3649 local_bh_disable(); 3650 3651 HARD_TX_LOCK(dev, txq, smp_processor_id()); 3652 if (!netif_xmit_frozen_or_drv_stopped(txq)) 3653 ret = netdev_start_xmit(skb, dev, txq, false); 3654 HARD_TX_UNLOCK(dev, txq); 3655 3656 local_bh_enable(); 3657 3658 if (!dev_xmit_complete(ret)) 3659 kfree_skb(skb); 3660 3661 return ret; 3662 drop: 3663 atomic_long_inc(&dev->tx_dropped); 3664 kfree_skb_list(skb); 3665 return NET_XMIT_DROP; 3666 } 3667 EXPORT_SYMBOL(dev_direct_xmit); 3668 3669 /************************************************************************* 3670 * Receiver routines 3671 *************************************************************************/ 3672 3673 int netdev_max_backlog __read_mostly = 1000; 3674 EXPORT_SYMBOL(netdev_max_backlog); 3675 3676 int netdev_tstamp_prequeue __read_mostly = 1; 3677 int netdev_budget __read_mostly = 300; 3678 unsigned int __read_mostly netdev_budget_usecs = 2000; 3679 int weight_p __read_mostly = 64; /* old backlog weight */ 3680 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3681 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3682 int dev_rx_weight __read_mostly = 64; 3683 int dev_tx_weight __read_mostly = 64; 3684 3685 /* Called with irq disabled */ 3686 static inline void ____napi_schedule(struct softnet_data *sd, 3687 struct napi_struct *napi) 3688 { 3689 list_add_tail(&napi->poll_list, &sd->poll_list); 3690 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3691 } 3692 3693 #ifdef CONFIG_RPS 3694 3695 /* One global table that all flow-based protocols share. */ 3696 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3697 EXPORT_SYMBOL(rps_sock_flow_table); 3698 u32 rps_cpu_mask __read_mostly; 3699 EXPORT_SYMBOL(rps_cpu_mask); 3700 3701 struct static_key rps_needed __read_mostly; 3702 EXPORT_SYMBOL(rps_needed); 3703 struct static_key rfs_needed __read_mostly; 3704 EXPORT_SYMBOL(rfs_needed); 3705 3706 static struct rps_dev_flow * 3707 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3708 struct rps_dev_flow *rflow, u16 next_cpu) 3709 { 3710 if (next_cpu < nr_cpu_ids) { 3711 #ifdef CONFIG_RFS_ACCEL 3712 struct netdev_rx_queue *rxqueue; 3713 struct rps_dev_flow_table *flow_table; 3714 struct rps_dev_flow *old_rflow; 3715 u32 flow_id; 3716 u16 rxq_index; 3717 int rc; 3718 3719 /* Should we steer this flow to a different hardware queue? */ 3720 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3721 !(dev->features & NETIF_F_NTUPLE)) 3722 goto out; 3723 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3724 if (rxq_index == skb_get_rx_queue(skb)) 3725 goto out; 3726 3727 rxqueue = dev->_rx + rxq_index; 3728 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3729 if (!flow_table) 3730 goto out; 3731 flow_id = skb_get_hash(skb) & flow_table->mask; 3732 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3733 rxq_index, flow_id); 3734 if (rc < 0) 3735 goto out; 3736 old_rflow = rflow; 3737 rflow = &flow_table->flows[flow_id]; 3738 rflow->filter = rc; 3739 if (old_rflow->filter == rflow->filter) 3740 old_rflow->filter = RPS_NO_FILTER; 3741 out: 3742 #endif 3743 rflow->last_qtail = 3744 per_cpu(softnet_data, next_cpu).input_queue_head; 3745 } 3746 3747 rflow->cpu = next_cpu; 3748 return rflow; 3749 } 3750 3751 /* 3752 * get_rps_cpu is called from netif_receive_skb and returns the target 3753 * CPU from the RPS map of the receiving queue for a given skb. 3754 * rcu_read_lock must be held on entry. 3755 */ 3756 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3757 struct rps_dev_flow **rflowp) 3758 { 3759 const struct rps_sock_flow_table *sock_flow_table; 3760 struct netdev_rx_queue *rxqueue = dev->_rx; 3761 struct rps_dev_flow_table *flow_table; 3762 struct rps_map *map; 3763 int cpu = -1; 3764 u32 tcpu; 3765 u32 hash; 3766 3767 if (skb_rx_queue_recorded(skb)) { 3768 u16 index = skb_get_rx_queue(skb); 3769 3770 if (unlikely(index >= dev->real_num_rx_queues)) { 3771 WARN_ONCE(dev->real_num_rx_queues > 1, 3772 "%s received packet on queue %u, but number " 3773 "of RX queues is %u\n", 3774 dev->name, index, dev->real_num_rx_queues); 3775 goto done; 3776 } 3777 rxqueue += index; 3778 } 3779 3780 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3781 3782 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3783 map = rcu_dereference(rxqueue->rps_map); 3784 if (!flow_table && !map) 3785 goto done; 3786 3787 skb_reset_network_header(skb); 3788 hash = skb_get_hash(skb); 3789 if (!hash) 3790 goto done; 3791 3792 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3793 if (flow_table && sock_flow_table) { 3794 struct rps_dev_flow *rflow; 3795 u32 next_cpu; 3796 u32 ident; 3797 3798 /* First check into global flow table if there is a match */ 3799 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3800 if ((ident ^ hash) & ~rps_cpu_mask) 3801 goto try_rps; 3802 3803 next_cpu = ident & rps_cpu_mask; 3804 3805 /* OK, now we know there is a match, 3806 * we can look at the local (per receive queue) flow table 3807 */ 3808 rflow = &flow_table->flows[hash & flow_table->mask]; 3809 tcpu = rflow->cpu; 3810 3811 /* 3812 * If the desired CPU (where last recvmsg was done) is 3813 * different from current CPU (one in the rx-queue flow 3814 * table entry), switch if one of the following holds: 3815 * - Current CPU is unset (>= nr_cpu_ids). 3816 * - Current CPU is offline. 3817 * - The current CPU's queue tail has advanced beyond the 3818 * last packet that was enqueued using this table entry. 3819 * This guarantees that all previous packets for the flow 3820 * have been dequeued, thus preserving in order delivery. 3821 */ 3822 if (unlikely(tcpu != next_cpu) && 3823 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3824 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3825 rflow->last_qtail)) >= 0)) { 3826 tcpu = next_cpu; 3827 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3828 } 3829 3830 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3831 *rflowp = rflow; 3832 cpu = tcpu; 3833 goto done; 3834 } 3835 } 3836 3837 try_rps: 3838 3839 if (map) { 3840 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3841 if (cpu_online(tcpu)) { 3842 cpu = tcpu; 3843 goto done; 3844 } 3845 } 3846 3847 done: 3848 return cpu; 3849 } 3850 3851 #ifdef CONFIG_RFS_ACCEL 3852 3853 /** 3854 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3855 * @dev: Device on which the filter was set 3856 * @rxq_index: RX queue index 3857 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3858 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3859 * 3860 * Drivers that implement ndo_rx_flow_steer() should periodically call 3861 * this function for each installed filter and remove the filters for 3862 * which it returns %true. 3863 */ 3864 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3865 u32 flow_id, u16 filter_id) 3866 { 3867 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3868 struct rps_dev_flow_table *flow_table; 3869 struct rps_dev_flow *rflow; 3870 bool expire = true; 3871 unsigned int cpu; 3872 3873 rcu_read_lock(); 3874 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3875 if (flow_table && flow_id <= flow_table->mask) { 3876 rflow = &flow_table->flows[flow_id]; 3877 cpu = READ_ONCE(rflow->cpu); 3878 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3879 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3880 rflow->last_qtail) < 3881 (int)(10 * flow_table->mask))) 3882 expire = false; 3883 } 3884 rcu_read_unlock(); 3885 return expire; 3886 } 3887 EXPORT_SYMBOL(rps_may_expire_flow); 3888 3889 #endif /* CONFIG_RFS_ACCEL */ 3890 3891 /* Called from hardirq (IPI) context */ 3892 static void rps_trigger_softirq(void *data) 3893 { 3894 struct softnet_data *sd = data; 3895 3896 ____napi_schedule(sd, &sd->backlog); 3897 sd->received_rps++; 3898 } 3899 3900 #endif /* CONFIG_RPS */ 3901 3902 /* 3903 * Check if this softnet_data structure is another cpu one 3904 * If yes, queue it to our IPI list and return 1 3905 * If no, return 0 3906 */ 3907 static int rps_ipi_queued(struct softnet_data *sd) 3908 { 3909 #ifdef CONFIG_RPS 3910 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3911 3912 if (sd != mysd) { 3913 sd->rps_ipi_next = mysd->rps_ipi_list; 3914 mysd->rps_ipi_list = sd; 3915 3916 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3917 return 1; 3918 } 3919 #endif /* CONFIG_RPS */ 3920 return 0; 3921 } 3922 3923 #ifdef CONFIG_NET_FLOW_LIMIT 3924 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3925 #endif 3926 3927 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3928 { 3929 #ifdef CONFIG_NET_FLOW_LIMIT 3930 struct sd_flow_limit *fl; 3931 struct softnet_data *sd; 3932 unsigned int old_flow, new_flow; 3933 3934 if (qlen < (netdev_max_backlog >> 1)) 3935 return false; 3936 3937 sd = this_cpu_ptr(&softnet_data); 3938 3939 rcu_read_lock(); 3940 fl = rcu_dereference(sd->flow_limit); 3941 if (fl) { 3942 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3943 old_flow = fl->history[fl->history_head]; 3944 fl->history[fl->history_head] = new_flow; 3945 3946 fl->history_head++; 3947 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3948 3949 if (likely(fl->buckets[old_flow])) 3950 fl->buckets[old_flow]--; 3951 3952 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3953 fl->count++; 3954 rcu_read_unlock(); 3955 return true; 3956 } 3957 } 3958 rcu_read_unlock(); 3959 #endif 3960 return false; 3961 } 3962 3963 /* 3964 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3965 * queue (may be a remote CPU queue). 3966 */ 3967 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3968 unsigned int *qtail) 3969 { 3970 struct softnet_data *sd; 3971 unsigned long flags; 3972 unsigned int qlen; 3973 3974 sd = &per_cpu(softnet_data, cpu); 3975 3976 local_irq_save(flags); 3977 3978 rps_lock(sd); 3979 if (!netif_running(skb->dev)) 3980 goto drop; 3981 qlen = skb_queue_len(&sd->input_pkt_queue); 3982 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3983 if (qlen) { 3984 enqueue: 3985 __skb_queue_tail(&sd->input_pkt_queue, skb); 3986 input_queue_tail_incr_save(sd, qtail); 3987 rps_unlock(sd); 3988 local_irq_restore(flags); 3989 return NET_RX_SUCCESS; 3990 } 3991 3992 /* Schedule NAPI for backlog device 3993 * We can use non atomic operation since we own the queue lock 3994 */ 3995 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3996 if (!rps_ipi_queued(sd)) 3997 ____napi_schedule(sd, &sd->backlog); 3998 } 3999 goto enqueue; 4000 } 4001 4002 drop: 4003 sd->dropped++; 4004 rps_unlock(sd); 4005 4006 local_irq_restore(flags); 4007 4008 atomic_long_inc(&skb->dev->rx_dropped); 4009 kfree_skb(skb); 4010 return NET_RX_DROP; 4011 } 4012 4013 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4014 { 4015 struct net_device *dev = skb->dev; 4016 struct netdev_rx_queue *rxqueue; 4017 4018 rxqueue = dev->_rx; 4019 4020 if (skb_rx_queue_recorded(skb)) { 4021 u16 index = skb_get_rx_queue(skb); 4022 4023 if (unlikely(index >= dev->real_num_rx_queues)) { 4024 WARN_ONCE(dev->real_num_rx_queues > 1, 4025 "%s received packet on queue %u, but number " 4026 "of RX queues is %u\n", 4027 dev->name, index, dev->real_num_rx_queues); 4028 4029 return rxqueue; /* Return first rxqueue */ 4030 } 4031 rxqueue += index; 4032 } 4033 return rxqueue; 4034 } 4035 4036 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4037 struct xdp_buff *xdp, 4038 struct bpf_prog *xdp_prog) 4039 { 4040 struct netdev_rx_queue *rxqueue; 4041 void *orig_data, *orig_data_end; 4042 u32 metalen, act = XDP_DROP; 4043 int hlen, off; 4044 u32 mac_len; 4045 4046 /* Reinjected packets coming from act_mirred or similar should 4047 * not get XDP generic processing. 4048 */ 4049 if (skb_cloned(skb)) 4050 return XDP_PASS; 4051 4052 /* XDP packets must be linear and must have sufficient headroom 4053 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4054 * native XDP provides, thus we need to do it here as well. 4055 */ 4056 if (skb_is_nonlinear(skb) || 4057 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4058 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4059 int troom = skb->tail + skb->data_len - skb->end; 4060 4061 /* In case we have to go down the path and also linearize, 4062 * then lets do the pskb_expand_head() work just once here. 4063 */ 4064 if (pskb_expand_head(skb, 4065 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4066 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4067 goto do_drop; 4068 if (skb_linearize(skb)) 4069 goto do_drop; 4070 } 4071 4072 /* The XDP program wants to see the packet starting at the MAC 4073 * header. 4074 */ 4075 mac_len = skb->data - skb_mac_header(skb); 4076 hlen = skb_headlen(skb) + mac_len; 4077 xdp->data = skb->data - mac_len; 4078 xdp->data_meta = xdp->data; 4079 xdp->data_end = xdp->data + hlen; 4080 xdp->data_hard_start = skb->data - skb_headroom(skb); 4081 orig_data_end = xdp->data_end; 4082 orig_data = xdp->data; 4083 4084 rxqueue = netif_get_rxqueue(skb); 4085 xdp->rxq = &rxqueue->xdp_rxq; 4086 4087 act = bpf_prog_run_xdp(xdp_prog, xdp); 4088 4089 off = xdp->data - orig_data; 4090 if (off > 0) 4091 __skb_pull(skb, off); 4092 else if (off < 0) 4093 __skb_push(skb, -off); 4094 skb->mac_header += off; 4095 4096 /* check if bpf_xdp_adjust_tail was used. it can only "shrink" 4097 * pckt. 4098 */ 4099 off = orig_data_end - xdp->data_end; 4100 if (off != 0) { 4101 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4102 skb->len -= off; 4103 4104 } 4105 4106 switch (act) { 4107 case XDP_REDIRECT: 4108 case XDP_TX: 4109 __skb_push(skb, mac_len); 4110 break; 4111 case XDP_PASS: 4112 metalen = xdp->data - xdp->data_meta; 4113 if (metalen) 4114 skb_metadata_set(skb, metalen); 4115 break; 4116 default: 4117 bpf_warn_invalid_xdp_action(act); 4118 /* fall through */ 4119 case XDP_ABORTED: 4120 trace_xdp_exception(skb->dev, xdp_prog, act); 4121 /* fall through */ 4122 case XDP_DROP: 4123 do_drop: 4124 kfree_skb(skb); 4125 break; 4126 } 4127 4128 return act; 4129 } 4130 4131 /* When doing generic XDP we have to bypass the qdisc layer and the 4132 * network taps in order to match in-driver-XDP behavior. 4133 */ 4134 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4135 { 4136 struct net_device *dev = skb->dev; 4137 struct netdev_queue *txq; 4138 bool free_skb = true; 4139 int cpu, rc; 4140 4141 txq = netdev_pick_tx(dev, skb, NULL); 4142 cpu = smp_processor_id(); 4143 HARD_TX_LOCK(dev, txq, cpu); 4144 if (!netif_xmit_stopped(txq)) { 4145 rc = netdev_start_xmit(skb, dev, txq, 0); 4146 if (dev_xmit_complete(rc)) 4147 free_skb = false; 4148 } 4149 HARD_TX_UNLOCK(dev, txq); 4150 if (free_skb) { 4151 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4152 kfree_skb(skb); 4153 } 4154 } 4155 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4156 4157 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4158 4159 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4160 { 4161 if (xdp_prog) { 4162 struct xdp_buff xdp; 4163 u32 act; 4164 int err; 4165 4166 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4167 if (act != XDP_PASS) { 4168 switch (act) { 4169 case XDP_REDIRECT: 4170 err = xdp_do_generic_redirect(skb->dev, skb, 4171 &xdp, xdp_prog); 4172 if (err) 4173 goto out_redir; 4174 break; 4175 case XDP_TX: 4176 generic_xdp_tx(skb, xdp_prog); 4177 break; 4178 } 4179 return XDP_DROP; 4180 } 4181 } 4182 return XDP_PASS; 4183 out_redir: 4184 kfree_skb(skb); 4185 return XDP_DROP; 4186 } 4187 EXPORT_SYMBOL_GPL(do_xdp_generic); 4188 4189 static int netif_rx_internal(struct sk_buff *skb) 4190 { 4191 int ret; 4192 4193 net_timestamp_check(netdev_tstamp_prequeue, skb); 4194 4195 trace_netif_rx(skb); 4196 4197 if (static_branch_unlikely(&generic_xdp_needed_key)) { 4198 int ret; 4199 4200 preempt_disable(); 4201 rcu_read_lock(); 4202 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4203 rcu_read_unlock(); 4204 preempt_enable(); 4205 4206 /* Consider XDP consuming the packet a success from 4207 * the netdev point of view we do not want to count 4208 * this as an error. 4209 */ 4210 if (ret != XDP_PASS) 4211 return NET_RX_SUCCESS; 4212 } 4213 4214 #ifdef CONFIG_RPS 4215 if (static_key_false(&rps_needed)) { 4216 struct rps_dev_flow voidflow, *rflow = &voidflow; 4217 int cpu; 4218 4219 preempt_disable(); 4220 rcu_read_lock(); 4221 4222 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4223 if (cpu < 0) 4224 cpu = smp_processor_id(); 4225 4226 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4227 4228 rcu_read_unlock(); 4229 preempt_enable(); 4230 } else 4231 #endif 4232 { 4233 unsigned int qtail; 4234 4235 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4236 put_cpu(); 4237 } 4238 return ret; 4239 } 4240 4241 /** 4242 * netif_rx - post buffer to the network code 4243 * @skb: buffer to post 4244 * 4245 * This function receives a packet from a device driver and queues it for 4246 * the upper (protocol) levels to process. It always succeeds. The buffer 4247 * may be dropped during processing for congestion control or by the 4248 * protocol layers. 4249 * 4250 * return values: 4251 * NET_RX_SUCCESS (no congestion) 4252 * NET_RX_DROP (packet was dropped) 4253 * 4254 */ 4255 4256 int netif_rx(struct sk_buff *skb) 4257 { 4258 trace_netif_rx_entry(skb); 4259 4260 return netif_rx_internal(skb); 4261 } 4262 EXPORT_SYMBOL(netif_rx); 4263 4264 int netif_rx_ni(struct sk_buff *skb) 4265 { 4266 int err; 4267 4268 trace_netif_rx_ni_entry(skb); 4269 4270 preempt_disable(); 4271 err = netif_rx_internal(skb); 4272 if (local_softirq_pending()) 4273 do_softirq(); 4274 preempt_enable(); 4275 4276 return err; 4277 } 4278 EXPORT_SYMBOL(netif_rx_ni); 4279 4280 static __latent_entropy void net_tx_action(struct softirq_action *h) 4281 { 4282 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4283 4284 if (sd->completion_queue) { 4285 struct sk_buff *clist; 4286 4287 local_irq_disable(); 4288 clist = sd->completion_queue; 4289 sd->completion_queue = NULL; 4290 local_irq_enable(); 4291 4292 while (clist) { 4293 struct sk_buff *skb = clist; 4294 4295 clist = clist->next; 4296 4297 WARN_ON(refcount_read(&skb->users)); 4298 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4299 trace_consume_skb(skb); 4300 else 4301 trace_kfree_skb(skb, net_tx_action); 4302 4303 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4304 __kfree_skb(skb); 4305 else 4306 __kfree_skb_defer(skb); 4307 } 4308 4309 __kfree_skb_flush(); 4310 } 4311 4312 if (sd->output_queue) { 4313 struct Qdisc *head; 4314 4315 local_irq_disable(); 4316 head = sd->output_queue; 4317 sd->output_queue = NULL; 4318 sd->output_queue_tailp = &sd->output_queue; 4319 local_irq_enable(); 4320 4321 while (head) { 4322 struct Qdisc *q = head; 4323 spinlock_t *root_lock = NULL; 4324 4325 head = head->next_sched; 4326 4327 if (!(q->flags & TCQ_F_NOLOCK)) { 4328 root_lock = qdisc_lock(q); 4329 spin_lock(root_lock); 4330 } 4331 /* We need to make sure head->next_sched is read 4332 * before clearing __QDISC_STATE_SCHED 4333 */ 4334 smp_mb__before_atomic(); 4335 clear_bit(__QDISC_STATE_SCHED, &q->state); 4336 qdisc_run(q); 4337 if (root_lock) 4338 spin_unlock(root_lock); 4339 } 4340 } 4341 4342 xfrm_dev_backlog(sd); 4343 } 4344 4345 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4346 /* This hook is defined here for ATM LANE */ 4347 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4348 unsigned char *addr) __read_mostly; 4349 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4350 #endif 4351 4352 static inline struct sk_buff * 4353 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4354 struct net_device *orig_dev) 4355 { 4356 #ifdef CONFIG_NET_CLS_ACT 4357 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4358 struct tcf_result cl_res; 4359 4360 /* If there's at least one ingress present somewhere (so 4361 * we get here via enabled static key), remaining devices 4362 * that are not configured with an ingress qdisc will bail 4363 * out here. 4364 */ 4365 if (!miniq) 4366 return skb; 4367 4368 if (*pt_prev) { 4369 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4370 *pt_prev = NULL; 4371 } 4372 4373 qdisc_skb_cb(skb)->pkt_len = skb->len; 4374 skb->tc_at_ingress = 1; 4375 mini_qdisc_bstats_cpu_update(miniq, skb); 4376 4377 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4378 case TC_ACT_OK: 4379 case TC_ACT_RECLASSIFY: 4380 skb->tc_index = TC_H_MIN(cl_res.classid); 4381 break; 4382 case TC_ACT_SHOT: 4383 mini_qdisc_qstats_cpu_drop(miniq); 4384 kfree_skb(skb); 4385 return NULL; 4386 case TC_ACT_STOLEN: 4387 case TC_ACT_QUEUED: 4388 case TC_ACT_TRAP: 4389 consume_skb(skb); 4390 return NULL; 4391 case TC_ACT_REDIRECT: 4392 /* skb_mac_header check was done by cls/act_bpf, so 4393 * we can safely push the L2 header back before 4394 * redirecting to another netdev 4395 */ 4396 __skb_push(skb, skb->mac_len); 4397 skb_do_redirect(skb); 4398 return NULL; 4399 default: 4400 break; 4401 } 4402 #endif /* CONFIG_NET_CLS_ACT */ 4403 return skb; 4404 } 4405 4406 /** 4407 * netdev_is_rx_handler_busy - check if receive handler is registered 4408 * @dev: device to check 4409 * 4410 * Check if a receive handler is already registered for a given device. 4411 * Return true if there one. 4412 * 4413 * The caller must hold the rtnl_mutex. 4414 */ 4415 bool netdev_is_rx_handler_busy(struct net_device *dev) 4416 { 4417 ASSERT_RTNL(); 4418 return dev && rtnl_dereference(dev->rx_handler); 4419 } 4420 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4421 4422 /** 4423 * netdev_rx_handler_register - register receive handler 4424 * @dev: device to register a handler for 4425 * @rx_handler: receive handler to register 4426 * @rx_handler_data: data pointer that is used by rx handler 4427 * 4428 * Register a receive handler for a device. This handler will then be 4429 * called from __netif_receive_skb. A negative errno code is returned 4430 * on a failure. 4431 * 4432 * The caller must hold the rtnl_mutex. 4433 * 4434 * For a general description of rx_handler, see enum rx_handler_result. 4435 */ 4436 int netdev_rx_handler_register(struct net_device *dev, 4437 rx_handler_func_t *rx_handler, 4438 void *rx_handler_data) 4439 { 4440 if (netdev_is_rx_handler_busy(dev)) 4441 return -EBUSY; 4442 4443 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4444 return -EINVAL; 4445 4446 /* Note: rx_handler_data must be set before rx_handler */ 4447 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4448 rcu_assign_pointer(dev->rx_handler, rx_handler); 4449 4450 return 0; 4451 } 4452 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4453 4454 /** 4455 * netdev_rx_handler_unregister - unregister receive handler 4456 * @dev: device to unregister a handler from 4457 * 4458 * Unregister a receive handler from a device. 4459 * 4460 * The caller must hold the rtnl_mutex. 4461 */ 4462 void netdev_rx_handler_unregister(struct net_device *dev) 4463 { 4464 4465 ASSERT_RTNL(); 4466 RCU_INIT_POINTER(dev->rx_handler, NULL); 4467 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4468 * section has a guarantee to see a non NULL rx_handler_data 4469 * as well. 4470 */ 4471 synchronize_net(); 4472 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4473 } 4474 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4475 4476 /* 4477 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4478 * the special handling of PFMEMALLOC skbs. 4479 */ 4480 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4481 { 4482 switch (skb->protocol) { 4483 case htons(ETH_P_ARP): 4484 case htons(ETH_P_IP): 4485 case htons(ETH_P_IPV6): 4486 case htons(ETH_P_8021Q): 4487 case htons(ETH_P_8021AD): 4488 return true; 4489 default: 4490 return false; 4491 } 4492 } 4493 4494 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4495 int *ret, struct net_device *orig_dev) 4496 { 4497 #ifdef CONFIG_NETFILTER_INGRESS 4498 if (nf_hook_ingress_active(skb)) { 4499 int ingress_retval; 4500 4501 if (*pt_prev) { 4502 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4503 *pt_prev = NULL; 4504 } 4505 4506 rcu_read_lock(); 4507 ingress_retval = nf_hook_ingress(skb); 4508 rcu_read_unlock(); 4509 return ingress_retval; 4510 } 4511 #endif /* CONFIG_NETFILTER_INGRESS */ 4512 return 0; 4513 } 4514 4515 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4516 { 4517 struct packet_type *ptype, *pt_prev; 4518 rx_handler_func_t *rx_handler; 4519 struct net_device *orig_dev; 4520 bool deliver_exact = false; 4521 int ret = NET_RX_DROP; 4522 __be16 type; 4523 4524 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4525 4526 trace_netif_receive_skb(skb); 4527 4528 orig_dev = skb->dev; 4529 4530 skb_reset_network_header(skb); 4531 if (!skb_transport_header_was_set(skb)) 4532 skb_reset_transport_header(skb); 4533 skb_reset_mac_len(skb); 4534 4535 pt_prev = NULL; 4536 4537 another_round: 4538 skb->skb_iif = skb->dev->ifindex; 4539 4540 __this_cpu_inc(softnet_data.processed); 4541 4542 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4543 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4544 skb = skb_vlan_untag(skb); 4545 if (unlikely(!skb)) 4546 goto out; 4547 } 4548 4549 if (skb_skip_tc_classify(skb)) 4550 goto skip_classify; 4551 4552 if (pfmemalloc) 4553 goto skip_taps; 4554 4555 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4556 if (pt_prev) 4557 ret = deliver_skb(skb, pt_prev, orig_dev); 4558 pt_prev = ptype; 4559 } 4560 4561 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4562 if (pt_prev) 4563 ret = deliver_skb(skb, pt_prev, orig_dev); 4564 pt_prev = ptype; 4565 } 4566 4567 skip_taps: 4568 #ifdef CONFIG_NET_INGRESS 4569 if (static_branch_unlikely(&ingress_needed_key)) { 4570 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4571 if (!skb) 4572 goto out; 4573 4574 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4575 goto out; 4576 } 4577 #endif 4578 skb_reset_tc(skb); 4579 skip_classify: 4580 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4581 goto drop; 4582 4583 if (skb_vlan_tag_present(skb)) { 4584 if (pt_prev) { 4585 ret = deliver_skb(skb, pt_prev, orig_dev); 4586 pt_prev = NULL; 4587 } 4588 if (vlan_do_receive(&skb)) 4589 goto another_round; 4590 else if (unlikely(!skb)) 4591 goto out; 4592 } 4593 4594 rx_handler = rcu_dereference(skb->dev->rx_handler); 4595 if (rx_handler) { 4596 if (pt_prev) { 4597 ret = deliver_skb(skb, pt_prev, orig_dev); 4598 pt_prev = NULL; 4599 } 4600 switch (rx_handler(&skb)) { 4601 case RX_HANDLER_CONSUMED: 4602 ret = NET_RX_SUCCESS; 4603 goto out; 4604 case RX_HANDLER_ANOTHER: 4605 goto another_round; 4606 case RX_HANDLER_EXACT: 4607 deliver_exact = true; 4608 case RX_HANDLER_PASS: 4609 break; 4610 default: 4611 BUG(); 4612 } 4613 } 4614 4615 if (unlikely(skb_vlan_tag_present(skb))) { 4616 if (skb_vlan_tag_get_id(skb)) 4617 skb->pkt_type = PACKET_OTHERHOST; 4618 /* Note: we might in the future use prio bits 4619 * and set skb->priority like in vlan_do_receive() 4620 * For the time being, just ignore Priority Code Point 4621 */ 4622 skb->vlan_tci = 0; 4623 } 4624 4625 type = skb->protocol; 4626 4627 /* deliver only exact match when indicated */ 4628 if (likely(!deliver_exact)) { 4629 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4630 &ptype_base[ntohs(type) & 4631 PTYPE_HASH_MASK]); 4632 } 4633 4634 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4635 &orig_dev->ptype_specific); 4636 4637 if (unlikely(skb->dev != orig_dev)) { 4638 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4639 &skb->dev->ptype_specific); 4640 } 4641 4642 if (pt_prev) { 4643 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4644 goto drop; 4645 else 4646 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4647 } else { 4648 drop: 4649 if (!deliver_exact) 4650 atomic_long_inc(&skb->dev->rx_dropped); 4651 else 4652 atomic_long_inc(&skb->dev->rx_nohandler); 4653 kfree_skb(skb); 4654 /* Jamal, now you will not able to escape explaining 4655 * me how you were going to use this. :-) 4656 */ 4657 ret = NET_RX_DROP; 4658 } 4659 4660 out: 4661 return ret; 4662 } 4663 4664 /** 4665 * netif_receive_skb_core - special purpose version of netif_receive_skb 4666 * @skb: buffer to process 4667 * 4668 * More direct receive version of netif_receive_skb(). It should 4669 * only be used by callers that have a need to skip RPS and Generic XDP. 4670 * Caller must also take care of handling if (page_is_)pfmemalloc. 4671 * 4672 * This function may only be called from softirq context and interrupts 4673 * should be enabled. 4674 * 4675 * Return values (usually ignored): 4676 * NET_RX_SUCCESS: no congestion 4677 * NET_RX_DROP: packet was dropped 4678 */ 4679 int netif_receive_skb_core(struct sk_buff *skb) 4680 { 4681 int ret; 4682 4683 rcu_read_lock(); 4684 ret = __netif_receive_skb_core(skb, false); 4685 rcu_read_unlock(); 4686 4687 return ret; 4688 } 4689 EXPORT_SYMBOL(netif_receive_skb_core); 4690 4691 static int __netif_receive_skb(struct sk_buff *skb) 4692 { 4693 int ret; 4694 4695 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4696 unsigned int noreclaim_flag; 4697 4698 /* 4699 * PFMEMALLOC skbs are special, they should 4700 * - be delivered to SOCK_MEMALLOC sockets only 4701 * - stay away from userspace 4702 * - have bounded memory usage 4703 * 4704 * Use PF_MEMALLOC as this saves us from propagating the allocation 4705 * context down to all allocation sites. 4706 */ 4707 noreclaim_flag = memalloc_noreclaim_save(); 4708 ret = __netif_receive_skb_core(skb, true); 4709 memalloc_noreclaim_restore(noreclaim_flag); 4710 } else 4711 ret = __netif_receive_skb_core(skb, false); 4712 4713 return ret; 4714 } 4715 4716 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 4717 { 4718 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 4719 struct bpf_prog *new = xdp->prog; 4720 int ret = 0; 4721 4722 switch (xdp->command) { 4723 case XDP_SETUP_PROG: 4724 rcu_assign_pointer(dev->xdp_prog, new); 4725 if (old) 4726 bpf_prog_put(old); 4727 4728 if (old && !new) { 4729 static_branch_dec(&generic_xdp_needed_key); 4730 } else if (new && !old) { 4731 static_branch_inc(&generic_xdp_needed_key); 4732 dev_disable_lro(dev); 4733 dev_disable_gro_hw(dev); 4734 } 4735 break; 4736 4737 case XDP_QUERY_PROG: 4738 xdp->prog_attached = !!old; 4739 xdp->prog_id = old ? old->aux->id : 0; 4740 break; 4741 4742 default: 4743 ret = -EINVAL; 4744 break; 4745 } 4746 4747 return ret; 4748 } 4749 4750 static int netif_receive_skb_internal(struct sk_buff *skb) 4751 { 4752 int ret; 4753 4754 net_timestamp_check(netdev_tstamp_prequeue, skb); 4755 4756 if (skb_defer_rx_timestamp(skb)) 4757 return NET_RX_SUCCESS; 4758 4759 if (static_branch_unlikely(&generic_xdp_needed_key)) { 4760 int ret; 4761 4762 preempt_disable(); 4763 rcu_read_lock(); 4764 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4765 rcu_read_unlock(); 4766 preempt_enable(); 4767 4768 if (ret != XDP_PASS) 4769 return NET_RX_DROP; 4770 } 4771 4772 rcu_read_lock(); 4773 #ifdef CONFIG_RPS 4774 if (static_key_false(&rps_needed)) { 4775 struct rps_dev_flow voidflow, *rflow = &voidflow; 4776 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4777 4778 if (cpu >= 0) { 4779 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4780 rcu_read_unlock(); 4781 return ret; 4782 } 4783 } 4784 #endif 4785 ret = __netif_receive_skb(skb); 4786 rcu_read_unlock(); 4787 return ret; 4788 } 4789 4790 /** 4791 * netif_receive_skb - process receive buffer from network 4792 * @skb: buffer to process 4793 * 4794 * netif_receive_skb() is the main receive data processing function. 4795 * It always succeeds. The buffer may be dropped during processing 4796 * for congestion control or by the protocol layers. 4797 * 4798 * This function may only be called from softirq context and interrupts 4799 * should be enabled. 4800 * 4801 * Return values (usually ignored): 4802 * NET_RX_SUCCESS: no congestion 4803 * NET_RX_DROP: packet was dropped 4804 */ 4805 int netif_receive_skb(struct sk_buff *skb) 4806 { 4807 trace_netif_receive_skb_entry(skb); 4808 4809 return netif_receive_skb_internal(skb); 4810 } 4811 EXPORT_SYMBOL(netif_receive_skb); 4812 4813 DEFINE_PER_CPU(struct work_struct, flush_works); 4814 4815 /* Network device is going away, flush any packets still pending */ 4816 static void flush_backlog(struct work_struct *work) 4817 { 4818 struct sk_buff *skb, *tmp; 4819 struct softnet_data *sd; 4820 4821 local_bh_disable(); 4822 sd = this_cpu_ptr(&softnet_data); 4823 4824 local_irq_disable(); 4825 rps_lock(sd); 4826 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4827 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4828 __skb_unlink(skb, &sd->input_pkt_queue); 4829 kfree_skb(skb); 4830 input_queue_head_incr(sd); 4831 } 4832 } 4833 rps_unlock(sd); 4834 local_irq_enable(); 4835 4836 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4837 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4838 __skb_unlink(skb, &sd->process_queue); 4839 kfree_skb(skb); 4840 input_queue_head_incr(sd); 4841 } 4842 } 4843 local_bh_enable(); 4844 } 4845 4846 static void flush_all_backlogs(void) 4847 { 4848 unsigned int cpu; 4849 4850 get_online_cpus(); 4851 4852 for_each_online_cpu(cpu) 4853 queue_work_on(cpu, system_highpri_wq, 4854 per_cpu_ptr(&flush_works, cpu)); 4855 4856 for_each_online_cpu(cpu) 4857 flush_work(per_cpu_ptr(&flush_works, cpu)); 4858 4859 put_online_cpus(); 4860 } 4861 4862 static int napi_gro_complete(struct sk_buff *skb) 4863 { 4864 struct packet_offload *ptype; 4865 __be16 type = skb->protocol; 4866 struct list_head *head = &offload_base; 4867 int err = -ENOENT; 4868 4869 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4870 4871 if (NAPI_GRO_CB(skb)->count == 1) { 4872 skb_shinfo(skb)->gso_size = 0; 4873 goto out; 4874 } 4875 4876 rcu_read_lock(); 4877 list_for_each_entry_rcu(ptype, head, list) { 4878 if (ptype->type != type || !ptype->callbacks.gro_complete) 4879 continue; 4880 4881 err = ptype->callbacks.gro_complete(skb, 0); 4882 break; 4883 } 4884 rcu_read_unlock(); 4885 4886 if (err) { 4887 WARN_ON(&ptype->list == head); 4888 kfree_skb(skb); 4889 return NET_RX_SUCCESS; 4890 } 4891 4892 out: 4893 return netif_receive_skb_internal(skb); 4894 } 4895 4896 /* napi->gro_list contains packets ordered by age. 4897 * youngest packets at the head of it. 4898 * Complete skbs in reverse order to reduce latencies. 4899 */ 4900 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4901 { 4902 struct sk_buff *skb, *prev = NULL; 4903 4904 /* scan list and build reverse chain */ 4905 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4906 skb->prev = prev; 4907 prev = skb; 4908 } 4909 4910 for (skb = prev; skb; skb = prev) { 4911 skb->next = NULL; 4912 4913 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4914 return; 4915 4916 prev = skb->prev; 4917 napi_gro_complete(skb); 4918 napi->gro_count--; 4919 } 4920 4921 napi->gro_list = NULL; 4922 } 4923 EXPORT_SYMBOL(napi_gro_flush); 4924 4925 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4926 { 4927 struct sk_buff *p; 4928 unsigned int maclen = skb->dev->hard_header_len; 4929 u32 hash = skb_get_hash_raw(skb); 4930 4931 for (p = napi->gro_list; p; p = p->next) { 4932 unsigned long diffs; 4933 4934 NAPI_GRO_CB(p)->flush = 0; 4935 4936 if (hash != skb_get_hash_raw(p)) { 4937 NAPI_GRO_CB(p)->same_flow = 0; 4938 continue; 4939 } 4940 4941 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4942 diffs |= p->vlan_tci ^ skb->vlan_tci; 4943 diffs |= skb_metadata_dst_cmp(p, skb); 4944 diffs |= skb_metadata_differs(p, skb); 4945 if (maclen == ETH_HLEN) 4946 diffs |= compare_ether_header(skb_mac_header(p), 4947 skb_mac_header(skb)); 4948 else if (!diffs) 4949 diffs = memcmp(skb_mac_header(p), 4950 skb_mac_header(skb), 4951 maclen); 4952 NAPI_GRO_CB(p)->same_flow = !diffs; 4953 } 4954 } 4955 4956 static void skb_gro_reset_offset(struct sk_buff *skb) 4957 { 4958 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4959 const skb_frag_t *frag0 = &pinfo->frags[0]; 4960 4961 NAPI_GRO_CB(skb)->data_offset = 0; 4962 NAPI_GRO_CB(skb)->frag0 = NULL; 4963 NAPI_GRO_CB(skb)->frag0_len = 0; 4964 4965 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4966 pinfo->nr_frags && 4967 !PageHighMem(skb_frag_page(frag0))) { 4968 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4969 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4970 skb_frag_size(frag0), 4971 skb->end - skb->tail); 4972 } 4973 } 4974 4975 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4976 { 4977 struct skb_shared_info *pinfo = skb_shinfo(skb); 4978 4979 BUG_ON(skb->end - skb->tail < grow); 4980 4981 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4982 4983 skb->data_len -= grow; 4984 skb->tail += grow; 4985 4986 pinfo->frags[0].page_offset += grow; 4987 skb_frag_size_sub(&pinfo->frags[0], grow); 4988 4989 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4990 skb_frag_unref(skb, 0); 4991 memmove(pinfo->frags, pinfo->frags + 1, 4992 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4993 } 4994 } 4995 4996 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4997 { 4998 struct sk_buff **pp = NULL; 4999 struct packet_offload *ptype; 5000 __be16 type = skb->protocol; 5001 struct list_head *head = &offload_base; 5002 int same_flow; 5003 enum gro_result ret; 5004 int grow; 5005 5006 if (netif_elide_gro(skb->dev)) 5007 goto normal; 5008 5009 gro_list_prepare(napi, skb); 5010 5011 rcu_read_lock(); 5012 list_for_each_entry_rcu(ptype, head, list) { 5013 if (ptype->type != type || !ptype->callbacks.gro_receive) 5014 continue; 5015 5016 skb_set_network_header(skb, skb_gro_offset(skb)); 5017 skb_reset_mac_len(skb); 5018 NAPI_GRO_CB(skb)->same_flow = 0; 5019 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5020 NAPI_GRO_CB(skb)->free = 0; 5021 NAPI_GRO_CB(skb)->encap_mark = 0; 5022 NAPI_GRO_CB(skb)->recursion_counter = 0; 5023 NAPI_GRO_CB(skb)->is_fou = 0; 5024 NAPI_GRO_CB(skb)->is_atomic = 1; 5025 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5026 5027 /* Setup for GRO checksum validation */ 5028 switch (skb->ip_summed) { 5029 case CHECKSUM_COMPLETE: 5030 NAPI_GRO_CB(skb)->csum = skb->csum; 5031 NAPI_GRO_CB(skb)->csum_valid = 1; 5032 NAPI_GRO_CB(skb)->csum_cnt = 0; 5033 break; 5034 case CHECKSUM_UNNECESSARY: 5035 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5036 NAPI_GRO_CB(skb)->csum_valid = 0; 5037 break; 5038 default: 5039 NAPI_GRO_CB(skb)->csum_cnt = 0; 5040 NAPI_GRO_CB(skb)->csum_valid = 0; 5041 } 5042 5043 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 5044 break; 5045 } 5046 rcu_read_unlock(); 5047 5048 if (&ptype->list == head) 5049 goto normal; 5050 5051 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 5052 ret = GRO_CONSUMED; 5053 goto ok; 5054 } 5055 5056 same_flow = NAPI_GRO_CB(skb)->same_flow; 5057 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5058 5059 if (pp) { 5060 struct sk_buff *nskb = *pp; 5061 5062 *pp = nskb->next; 5063 nskb->next = NULL; 5064 napi_gro_complete(nskb); 5065 napi->gro_count--; 5066 } 5067 5068 if (same_flow) 5069 goto ok; 5070 5071 if (NAPI_GRO_CB(skb)->flush) 5072 goto normal; 5073 5074 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 5075 struct sk_buff *nskb = napi->gro_list; 5076 5077 /* locate the end of the list to select the 'oldest' flow */ 5078 while (nskb->next) { 5079 pp = &nskb->next; 5080 nskb = *pp; 5081 } 5082 *pp = NULL; 5083 nskb->next = NULL; 5084 napi_gro_complete(nskb); 5085 } else { 5086 napi->gro_count++; 5087 } 5088 NAPI_GRO_CB(skb)->count = 1; 5089 NAPI_GRO_CB(skb)->age = jiffies; 5090 NAPI_GRO_CB(skb)->last = skb; 5091 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5092 skb->next = napi->gro_list; 5093 napi->gro_list = skb; 5094 ret = GRO_HELD; 5095 5096 pull: 5097 grow = skb_gro_offset(skb) - skb_headlen(skb); 5098 if (grow > 0) 5099 gro_pull_from_frag0(skb, grow); 5100 ok: 5101 return ret; 5102 5103 normal: 5104 ret = GRO_NORMAL; 5105 goto pull; 5106 } 5107 5108 struct packet_offload *gro_find_receive_by_type(__be16 type) 5109 { 5110 struct list_head *offload_head = &offload_base; 5111 struct packet_offload *ptype; 5112 5113 list_for_each_entry_rcu(ptype, offload_head, list) { 5114 if (ptype->type != type || !ptype->callbacks.gro_receive) 5115 continue; 5116 return ptype; 5117 } 5118 return NULL; 5119 } 5120 EXPORT_SYMBOL(gro_find_receive_by_type); 5121 5122 struct packet_offload *gro_find_complete_by_type(__be16 type) 5123 { 5124 struct list_head *offload_head = &offload_base; 5125 struct packet_offload *ptype; 5126 5127 list_for_each_entry_rcu(ptype, offload_head, list) { 5128 if (ptype->type != type || !ptype->callbacks.gro_complete) 5129 continue; 5130 return ptype; 5131 } 5132 return NULL; 5133 } 5134 EXPORT_SYMBOL(gro_find_complete_by_type); 5135 5136 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5137 { 5138 skb_dst_drop(skb); 5139 secpath_reset(skb); 5140 kmem_cache_free(skbuff_head_cache, skb); 5141 } 5142 5143 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 5144 { 5145 switch (ret) { 5146 case GRO_NORMAL: 5147 if (netif_receive_skb_internal(skb)) 5148 ret = GRO_DROP; 5149 break; 5150 5151 case GRO_DROP: 5152 kfree_skb(skb); 5153 break; 5154 5155 case GRO_MERGED_FREE: 5156 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5157 napi_skb_free_stolen_head(skb); 5158 else 5159 __kfree_skb(skb); 5160 break; 5161 5162 case GRO_HELD: 5163 case GRO_MERGED: 5164 case GRO_CONSUMED: 5165 break; 5166 } 5167 5168 return ret; 5169 } 5170 5171 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5172 { 5173 skb_mark_napi_id(skb, napi); 5174 trace_napi_gro_receive_entry(skb); 5175 5176 skb_gro_reset_offset(skb); 5177 5178 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 5179 } 5180 EXPORT_SYMBOL(napi_gro_receive); 5181 5182 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5183 { 5184 if (unlikely(skb->pfmemalloc)) { 5185 consume_skb(skb); 5186 return; 5187 } 5188 __skb_pull(skb, skb_headlen(skb)); 5189 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5190 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5191 skb->vlan_tci = 0; 5192 skb->dev = napi->dev; 5193 skb->skb_iif = 0; 5194 skb->encapsulation = 0; 5195 skb_shinfo(skb)->gso_type = 0; 5196 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5197 secpath_reset(skb); 5198 5199 napi->skb = skb; 5200 } 5201 5202 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5203 { 5204 struct sk_buff *skb = napi->skb; 5205 5206 if (!skb) { 5207 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5208 if (skb) { 5209 napi->skb = skb; 5210 skb_mark_napi_id(skb, napi); 5211 } 5212 } 5213 return skb; 5214 } 5215 EXPORT_SYMBOL(napi_get_frags); 5216 5217 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5218 struct sk_buff *skb, 5219 gro_result_t ret) 5220 { 5221 switch (ret) { 5222 case GRO_NORMAL: 5223 case GRO_HELD: 5224 __skb_push(skb, ETH_HLEN); 5225 skb->protocol = eth_type_trans(skb, skb->dev); 5226 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5227 ret = GRO_DROP; 5228 break; 5229 5230 case GRO_DROP: 5231 napi_reuse_skb(napi, skb); 5232 break; 5233 5234 case GRO_MERGED_FREE: 5235 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5236 napi_skb_free_stolen_head(skb); 5237 else 5238 napi_reuse_skb(napi, skb); 5239 break; 5240 5241 case GRO_MERGED: 5242 case GRO_CONSUMED: 5243 break; 5244 } 5245 5246 return ret; 5247 } 5248 5249 /* Upper GRO stack assumes network header starts at gro_offset=0 5250 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5251 * We copy ethernet header into skb->data to have a common layout. 5252 */ 5253 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5254 { 5255 struct sk_buff *skb = napi->skb; 5256 const struct ethhdr *eth; 5257 unsigned int hlen = sizeof(*eth); 5258 5259 napi->skb = NULL; 5260 5261 skb_reset_mac_header(skb); 5262 skb_gro_reset_offset(skb); 5263 5264 eth = skb_gro_header_fast(skb, 0); 5265 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5266 eth = skb_gro_header_slow(skb, hlen, 0); 5267 if (unlikely(!eth)) { 5268 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5269 __func__, napi->dev->name); 5270 napi_reuse_skb(napi, skb); 5271 return NULL; 5272 } 5273 } else { 5274 gro_pull_from_frag0(skb, hlen); 5275 NAPI_GRO_CB(skb)->frag0 += hlen; 5276 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5277 } 5278 __skb_pull(skb, hlen); 5279 5280 /* 5281 * This works because the only protocols we care about don't require 5282 * special handling. 5283 * We'll fix it up properly in napi_frags_finish() 5284 */ 5285 skb->protocol = eth->h_proto; 5286 5287 return skb; 5288 } 5289 5290 gro_result_t napi_gro_frags(struct napi_struct *napi) 5291 { 5292 struct sk_buff *skb = napi_frags_skb(napi); 5293 5294 if (!skb) 5295 return GRO_DROP; 5296 5297 trace_napi_gro_frags_entry(skb); 5298 5299 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5300 } 5301 EXPORT_SYMBOL(napi_gro_frags); 5302 5303 /* Compute the checksum from gro_offset and return the folded value 5304 * after adding in any pseudo checksum. 5305 */ 5306 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5307 { 5308 __wsum wsum; 5309 __sum16 sum; 5310 5311 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5312 5313 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5314 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5315 if (likely(!sum)) { 5316 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5317 !skb->csum_complete_sw) 5318 netdev_rx_csum_fault(skb->dev); 5319 } 5320 5321 NAPI_GRO_CB(skb)->csum = wsum; 5322 NAPI_GRO_CB(skb)->csum_valid = 1; 5323 5324 return sum; 5325 } 5326 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5327 5328 static void net_rps_send_ipi(struct softnet_data *remsd) 5329 { 5330 #ifdef CONFIG_RPS 5331 while (remsd) { 5332 struct softnet_data *next = remsd->rps_ipi_next; 5333 5334 if (cpu_online(remsd->cpu)) 5335 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5336 remsd = next; 5337 } 5338 #endif 5339 } 5340 5341 /* 5342 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5343 * Note: called with local irq disabled, but exits with local irq enabled. 5344 */ 5345 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5346 { 5347 #ifdef CONFIG_RPS 5348 struct softnet_data *remsd = sd->rps_ipi_list; 5349 5350 if (remsd) { 5351 sd->rps_ipi_list = NULL; 5352 5353 local_irq_enable(); 5354 5355 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5356 net_rps_send_ipi(remsd); 5357 } else 5358 #endif 5359 local_irq_enable(); 5360 } 5361 5362 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5363 { 5364 #ifdef CONFIG_RPS 5365 return sd->rps_ipi_list != NULL; 5366 #else 5367 return false; 5368 #endif 5369 } 5370 5371 static int process_backlog(struct napi_struct *napi, int quota) 5372 { 5373 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5374 bool again = true; 5375 int work = 0; 5376 5377 /* Check if we have pending ipi, its better to send them now, 5378 * not waiting net_rx_action() end. 5379 */ 5380 if (sd_has_rps_ipi_waiting(sd)) { 5381 local_irq_disable(); 5382 net_rps_action_and_irq_enable(sd); 5383 } 5384 5385 napi->weight = dev_rx_weight; 5386 while (again) { 5387 struct sk_buff *skb; 5388 5389 while ((skb = __skb_dequeue(&sd->process_queue))) { 5390 rcu_read_lock(); 5391 __netif_receive_skb(skb); 5392 rcu_read_unlock(); 5393 input_queue_head_incr(sd); 5394 if (++work >= quota) 5395 return work; 5396 5397 } 5398 5399 local_irq_disable(); 5400 rps_lock(sd); 5401 if (skb_queue_empty(&sd->input_pkt_queue)) { 5402 /* 5403 * Inline a custom version of __napi_complete(). 5404 * only current cpu owns and manipulates this napi, 5405 * and NAPI_STATE_SCHED is the only possible flag set 5406 * on backlog. 5407 * We can use a plain write instead of clear_bit(), 5408 * and we dont need an smp_mb() memory barrier. 5409 */ 5410 napi->state = 0; 5411 again = false; 5412 } else { 5413 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5414 &sd->process_queue); 5415 } 5416 rps_unlock(sd); 5417 local_irq_enable(); 5418 } 5419 5420 return work; 5421 } 5422 5423 /** 5424 * __napi_schedule - schedule for receive 5425 * @n: entry to schedule 5426 * 5427 * The entry's receive function will be scheduled to run. 5428 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5429 */ 5430 void __napi_schedule(struct napi_struct *n) 5431 { 5432 unsigned long flags; 5433 5434 local_irq_save(flags); 5435 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5436 local_irq_restore(flags); 5437 } 5438 EXPORT_SYMBOL(__napi_schedule); 5439 5440 /** 5441 * napi_schedule_prep - check if napi can be scheduled 5442 * @n: napi context 5443 * 5444 * Test if NAPI routine is already running, and if not mark 5445 * it as running. This is used as a condition variable 5446 * insure only one NAPI poll instance runs. We also make 5447 * sure there is no pending NAPI disable. 5448 */ 5449 bool napi_schedule_prep(struct napi_struct *n) 5450 { 5451 unsigned long val, new; 5452 5453 do { 5454 val = READ_ONCE(n->state); 5455 if (unlikely(val & NAPIF_STATE_DISABLE)) 5456 return false; 5457 new = val | NAPIF_STATE_SCHED; 5458 5459 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5460 * This was suggested by Alexander Duyck, as compiler 5461 * emits better code than : 5462 * if (val & NAPIF_STATE_SCHED) 5463 * new |= NAPIF_STATE_MISSED; 5464 */ 5465 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5466 NAPIF_STATE_MISSED; 5467 } while (cmpxchg(&n->state, val, new) != val); 5468 5469 return !(val & NAPIF_STATE_SCHED); 5470 } 5471 EXPORT_SYMBOL(napi_schedule_prep); 5472 5473 /** 5474 * __napi_schedule_irqoff - schedule for receive 5475 * @n: entry to schedule 5476 * 5477 * Variant of __napi_schedule() assuming hard irqs are masked 5478 */ 5479 void __napi_schedule_irqoff(struct napi_struct *n) 5480 { 5481 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5482 } 5483 EXPORT_SYMBOL(__napi_schedule_irqoff); 5484 5485 bool napi_complete_done(struct napi_struct *n, int work_done) 5486 { 5487 unsigned long flags, val, new; 5488 5489 /* 5490 * 1) Don't let napi dequeue from the cpu poll list 5491 * just in case its running on a different cpu. 5492 * 2) If we are busy polling, do nothing here, we have 5493 * the guarantee we will be called later. 5494 */ 5495 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5496 NAPIF_STATE_IN_BUSY_POLL))) 5497 return false; 5498 5499 if (n->gro_list) { 5500 unsigned long timeout = 0; 5501 5502 if (work_done) 5503 timeout = n->dev->gro_flush_timeout; 5504 5505 if (timeout) 5506 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5507 HRTIMER_MODE_REL_PINNED); 5508 else 5509 napi_gro_flush(n, false); 5510 } 5511 if (unlikely(!list_empty(&n->poll_list))) { 5512 /* If n->poll_list is not empty, we need to mask irqs */ 5513 local_irq_save(flags); 5514 list_del_init(&n->poll_list); 5515 local_irq_restore(flags); 5516 } 5517 5518 do { 5519 val = READ_ONCE(n->state); 5520 5521 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5522 5523 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5524 5525 /* If STATE_MISSED was set, leave STATE_SCHED set, 5526 * because we will call napi->poll() one more time. 5527 * This C code was suggested by Alexander Duyck to help gcc. 5528 */ 5529 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5530 NAPIF_STATE_SCHED; 5531 } while (cmpxchg(&n->state, val, new) != val); 5532 5533 if (unlikely(val & NAPIF_STATE_MISSED)) { 5534 __napi_schedule(n); 5535 return false; 5536 } 5537 5538 return true; 5539 } 5540 EXPORT_SYMBOL(napi_complete_done); 5541 5542 /* must be called under rcu_read_lock(), as we dont take a reference */ 5543 static struct napi_struct *napi_by_id(unsigned int napi_id) 5544 { 5545 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5546 struct napi_struct *napi; 5547 5548 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5549 if (napi->napi_id == napi_id) 5550 return napi; 5551 5552 return NULL; 5553 } 5554 5555 #if defined(CONFIG_NET_RX_BUSY_POLL) 5556 5557 #define BUSY_POLL_BUDGET 8 5558 5559 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5560 { 5561 int rc; 5562 5563 /* Busy polling means there is a high chance device driver hard irq 5564 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5565 * set in napi_schedule_prep(). 5566 * Since we are about to call napi->poll() once more, we can safely 5567 * clear NAPI_STATE_MISSED. 5568 * 5569 * Note: x86 could use a single "lock and ..." instruction 5570 * to perform these two clear_bit() 5571 */ 5572 clear_bit(NAPI_STATE_MISSED, &napi->state); 5573 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5574 5575 local_bh_disable(); 5576 5577 /* All we really want here is to re-enable device interrupts. 5578 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5579 */ 5580 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5581 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 5582 netpoll_poll_unlock(have_poll_lock); 5583 if (rc == BUSY_POLL_BUDGET) 5584 __napi_schedule(napi); 5585 local_bh_enable(); 5586 } 5587 5588 void napi_busy_loop(unsigned int napi_id, 5589 bool (*loop_end)(void *, unsigned long), 5590 void *loop_end_arg) 5591 { 5592 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 5593 int (*napi_poll)(struct napi_struct *napi, int budget); 5594 void *have_poll_lock = NULL; 5595 struct napi_struct *napi; 5596 5597 restart: 5598 napi_poll = NULL; 5599 5600 rcu_read_lock(); 5601 5602 napi = napi_by_id(napi_id); 5603 if (!napi) 5604 goto out; 5605 5606 preempt_disable(); 5607 for (;;) { 5608 int work = 0; 5609 5610 local_bh_disable(); 5611 if (!napi_poll) { 5612 unsigned long val = READ_ONCE(napi->state); 5613 5614 /* If multiple threads are competing for this napi, 5615 * we avoid dirtying napi->state as much as we can. 5616 */ 5617 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5618 NAPIF_STATE_IN_BUSY_POLL)) 5619 goto count; 5620 if (cmpxchg(&napi->state, val, 5621 val | NAPIF_STATE_IN_BUSY_POLL | 5622 NAPIF_STATE_SCHED) != val) 5623 goto count; 5624 have_poll_lock = netpoll_poll_lock(napi); 5625 napi_poll = napi->poll; 5626 } 5627 work = napi_poll(napi, BUSY_POLL_BUDGET); 5628 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 5629 count: 5630 if (work > 0) 5631 __NET_ADD_STATS(dev_net(napi->dev), 5632 LINUX_MIB_BUSYPOLLRXPACKETS, work); 5633 local_bh_enable(); 5634 5635 if (!loop_end || loop_end(loop_end_arg, start_time)) 5636 break; 5637 5638 if (unlikely(need_resched())) { 5639 if (napi_poll) 5640 busy_poll_stop(napi, have_poll_lock); 5641 preempt_enable(); 5642 rcu_read_unlock(); 5643 cond_resched(); 5644 if (loop_end(loop_end_arg, start_time)) 5645 return; 5646 goto restart; 5647 } 5648 cpu_relax(); 5649 } 5650 if (napi_poll) 5651 busy_poll_stop(napi, have_poll_lock); 5652 preempt_enable(); 5653 out: 5654 rcu_read_unlock(); 5655 } 5656 EXPORT_SYMBOL(napi_busy_loop); 5657 5658 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5659 5660 static void napi_hash_add(struct napi_struct *napi) 5661 { 5662 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5663 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5664 return; 5665 5666 spin_lock(&napi_hash_lock); 5667 5668 /* 0..NR_CPUS range is reserved for sender_cpu use */ 5669 do { 5670 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 5671 napi_gen_id = MIN_NAPI_ID; 5672 } while (napi_by_id(napi_gen_id)); 5673 napi->napi_id = napi_gen_id; 5674 5675 hlist_add_head_rcu(&napi->napi_hash_node, 5676 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5677 5678 spin_unlock(&napi_hash_lock); 5679 } 5680 5681 /* Warning : caller is responsible to make sure rcu grace period 5682 * is respected before freeing memory containing @napi 5683 */ 5684 bool napi_hash_del(struct napi_struct *napi) 5685 { 5686 bool rcu_sync_needed = false; 5687 5688 spin_lock(&napi_hash_lock); 5689 5690 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5691 rcu_sync_needed = true; 5692 hlist_del_rcu(&napi->napi_hash_node); 5693 } 5694 spin_unlock(&napi_hash_lock); 5695 return rcu_sync_needed; 5696 } 5697 EXPORT_SYMBOL_GPL(napi_hash_del); 5698 5699 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5700 { 5701 struct napi_struct *napi; 5702 5703 napi = container_of(timer, struct napi_struct, timer); 5704 5705 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 5706 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 5707 */ 5708 if (napi->gro_list && !napi_disable_pending(napi) && 5709 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 5710 __napi_schedule_irqoff(napi); 5711 5712 return HRTIMER_NORESTART; 5713 } 5714 5715 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5716 int (*poll)(struct napi_struct *, int), int weight) 5717 { 5718 INIT_LIST_HEAD(&napi->poll_list); 5719 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5720 napi->timer.function = napi_watchdog; 5721 napi->gro_count = 0; 5722 napi->gro_list = NULL; 5723 napi->skb = NULL; 5724 napi->poll = poll; 5725 if (weight > NAPI_POLL_WEIGHT) 5726 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5727 weight, dev->name); 5728 napi->weight = weight; 5729 list_add(&napi->dev_list, &dev->napi_list); 5730 napi->dev = dev; 5731 #ifdef CONFIG_NETPOLL 5732 napi->poll_owner = -1; 5733 #endif 5734 set_bit(NAPI_STATE_SCHED, &napi->state); 5735 napi_hash_add(napi); 5736 } 5737 EXPORT_SYMBOL(netif_napi_add); 5738 5739 void napi_disable(struct napi_struct *n) 5740 { 5741 might_sleep(); 5742 set_bit(NAPI_STATE_DISABLE, &n->state); 5743 5744 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5745 msleep(1); 5746 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5747 msleep(1); 5748 5749 hrtimer_cancel(&n->timer); 5750 5751 clear_bit(NAPI_STATE_DISABLE, &n->state); 5752 } 5753 EXPORT_SYMBOL(napi_disable); 5754 5755 /* Must be called in process context */ 5756 void netif_napi_del(struct napi_struct *napi) 5757 { 5758 might_sleep(); 5759 if (napi_hash_del(napi)) 5760 synchronize_net(); 5761 list_del_init(&napi->dev_list); 5762 napi_free_frags(napi); 5763 5764 kfree_skb_list(napi->gro_list); 5765 napi->gro_list = NULL; 5766 napi->gro_count = 0; 5767 } 5768 EXPORT_SYMBOL(netif_napi_del); 5769 5770 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5771 { 5772 void *have; 5773 int work, weight; 5774 5775 list_del_init(&n->poll_list); 5776 5777 have = netpoll_poll_lock(n); 5778 5779 weight = n->weight; 5780 5781 /* This NAPI_STATE_SCHED test is for avoiding a race 5782 * with netpoll's poll_napi(). Only the entity which 5783 * obtains the lock and sees NAPI_STATE_SCHED set will 5784 * actually make the ->poll() call. Therefore we avoid 5785 * accidentally calling ->poll() when NAPI is not scheduled. 5786 */ 5787 work = 0; 5788 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5789 work = n->poll(n, weight); 5790 trace_napi_poll(n, work, weight); 5791 } 5792 5793 WARN_ON_ONCE(work > weight); 5794 5795 if (likely(work < weight)) 5796 goto out_unlock; 5797 5798 /* Drivers must not modify the NAPI state if they 5799 * consume the entire weight. In such cases this code 5800 * still "owns" the NAPI instance and therefore can 5801 * move the instance around on the list at-will. 5802 */ 5803 if (unlikely(napi_disable_pending(n))) { 5804 napi_complete(n); 5805 goto out_unlock; 5806 } 5807 5808 if (n->gro_list) { 5809 /* flush too old packets 5810 * If HZ < 1000, flush all packets. 5811 */ 5812 napi_gro_flush(n, HZ >= 1000); 5813 } 5814 5815 /* Some drivers may have called napi_schedule 5816 * prior to exhausting their budget. 5817 */ 5818 if (unlikely(!list_empty(&n->poll_list))) { 5819 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5820 n->dev ? n->dev->name : "backlog"); 5821 goto out_unlock; 5822 } 5823 5824 list_add_tail(&n->poll_list, repoll); 5825 5826 out_unlock: 5827 netpoll_poll_unlock(have); 5828 5829 return work; 5830 } 5831 5832 static __latent_entropy void net_rx_action(struct softirq_action *h) 5833 { 5834 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5835 unsigned long time_limit = jiffies + 5836 usecs_to_jiffies(netdev_budget_usecs); 5837 int budget = netdev_budget; 5838 LIST_HEAD(list); 5839 LIST_HEAD(repoll); 5840 5841 local_irq_disable(); 5842 list_splice_init(&sd->poll_list, &list); 5843 local_irq_enable(); 5844 5845 for (;;) { 5846 struct napi_struct *n; 5847 5848 if (list_empty(&list)) { 5849 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5850 goto out; 5851 break; 5852 } 5853 5854 n = list_first_entry(&list, struct napi_struct, poll_list); 5855 budget -= napi_poll(n, &repoll); 5856 5857 /* If softirq window is exhausted then punt. 5858 * Allow this to run for 2 jiffies since which will allow 5859 * an average latency of 1.5/HZ. 5860 */ 5861 if (unlikely(budget <= 0 || 5862 time_after_eq(jiffies, time_limit))) { 5863 sd->time_squeeze++; 5864 break; 5865 } 5866 } 5867 5868 local_irq_disable(); 5869 5870 list_splice_tail_init(&sd->poll_list, &list); 5871 list_splice_tail(&repoll, &list); 5872 list_splice(&list, &sd->poll_list); 5873 if (!list_empty(&sd->poll_list)) 5874 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5875 5876 net_rps_action_and_irq_enable(sd); 5877 out: 5878 __kfree_skb_flush(); 5879 } 5880 5881 struct netdev_adjacent { 5882 struct net_device *dev; 5883 5884 /* upper master flag, there can only be one master device per list */ 5885 bool master; 5886 5887 /* counter for the number of times this device was added to us */ 5888 u16 ref_nr; 5889 5890 /* private field for the users */ 5891 void *private; 5892 5893 struct list_head list; 5894 struct rcu_head rcu; 5895 }; 5896 5897 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5898 struct list_head *adj_list) 5899 { 5900 struct netdev_adjacent *adj; 5901 5902 list_for_each_entry(adj, adj_list, list) { 5903 if (adj->dev == adj_dev) 5904 return adj; 5905 } 5906 return NULL; 5907 } 5908 5909 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5910 { 5911 struct net_device *dev = data; 5912 5913 return upper_dev == dev; 5914 } 5915 5916 /** 5917 * netdev_has_upper_dev - Check if device is linked to an upper device 5918 * @dev: device 5919 * @upper_dev: upper device to check 5920 * 5921 * Find out if a device is linked to specified upper device and return true 5922 * in case it is. Note that this checks only immediate upper device, 5923 * not through a complete stack of devices. The caller must hold the RTNL lock. 5924 */ 5925 bool netdev_has_upper_dev(struct net_device *dev, 5926 struct net_device *upper_dev) 5927 { 5928 ASSERT_RTNL(); 5929 5930 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5931 upper_dev); 5932 } 5933 EXPORT_SYMBOL(netdev_has_upper_dev); 5934 5935 /** 5936 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5937 * @dev: device 5938 * @upper_dev: upper device to check 5939 * 5940 * Find out if a device is linked to specified upper device and return true 5941 * in case it is. Note that this checks the entire upper device chain. 5942 * The caller must hold rcu lock. 5943 */ 5944 5945 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5946 struct net_device *upper_dev) 5947 { 5948 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5949 upper_dev); 5950 } 5951 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5952 5953 /** 5954 * netdev_has_any_upper_dev - Check if device is linked to some device 5955 * @dev: device 5956 * 5957 * Find out if a device is linked to an upper device and return true in case 5958 * it is. The caller must hold the RTNL lock. 5959 */ 5960 bool netdev_has_any_upper_dev(struct net_device *dev) 5961 { 5962 ASSERT_RTNL(); 5963 5964 return !list_empty(&dev->adj_list.upper); 5965 } 5966 EXPORT_SYMBOL(netdev_has_any_upper_dev); 5967 5968 /** 5969 * netdev_master_upper_dev_get - Get master upper device 5970 * @dev: device 5971 * 5972 * Find a master upper device and return pointer to it or NULL in case 5973 * it's not there. The caller must hold the RTNL lock. 5974 */ 5975 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5976 { 5977 struct netdev_adjacent *upper; 5978 5979 ASSERT_RTNL(); 5980 5981 if (list_empty(&dev->adj_list.upper)) 5982 return NULL; 5983 5984 upper = list_first_entry(&dev->adj_list.upper, 5985 struct netdev_adjacent, list); 5986 if (likely(upper->master)) 5987 return upper->dev; 5988 return NULL; 5989 } 5990 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5991 5992 /** 5993 * netdev_has_any_lower_dev - Check if device is linked to some device 5994 * @dev: device 5995 * 5996 * Find out if a device is linked to a lower device and return true in case 5997 * it is. The caller must hold the RTNL lock. 5998 */ 5999 static bool netdev_has_any_lower_dev(struct net_device *dev) 6000 { 6001 ASSERT_RTNL(); 6002 6003 return !list_empty(&dev->adj_list.lower); 6004 } 6005 6006 void *netdev_adjacent_get_private(struct list_head *adj_list) 6007 { 6008 struct netdev_adjacent *adj; 6009 6010 adj = list_entry(adj_list, struct netdev_adjacent, list); 6011 6012 return adj->private; 6013 } 6014 EXPORT_SYMBOL(netdev_adjacent_get_private); 6015 6016 /** 6017 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6018 * @dev: device 6019 * @iter: list_head ** of the current position 6020 * 6021 * Gets the next device from the dev's upper list, starting from iter 6022 * position. The caller must hold RCU read lock. 6023 */ 6024 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6025 struct list_head **iter) 6026 { 6027 struct netdev_adjacent *upper; 6028 6029 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6030 6031 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6032 6033 if (&upper->list == &dev->adj_list.upper) 6034 return NULL; 6035 6036 *iter = &upper->list; 6037 6038 return upper->dev; 6039 } 6040 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6041 6042 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6043 struct list_head **iter) 6044 { 6045 struct netdev_adjacent *upper; 6046 6047 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6048 6049 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6050 6051 if (&upper->list == &dev->adj_list.upper) 6052 return NULL; 6053 6054 *iter = &upper->list; 6055 6056 return upper->dev; 6057 } 6058 6059 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6060 int (*fn)(struct net_device *dev, 6061 void *data), 6062 void *data) 6063 { 6064 struct net_device *udev; 6065 struct list_head *iter; 6066 int ret; 6067 6068 for (iter = &dev->adj_list.upper, 6069 udev = netdev_next_upper_dev_rcu(dev, &iter); 6070 udev; 6071 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 6072 /* first is the upper device itself */ 6073 ret = fn(udev, data); 6074 if (ret) 6075 return ret; 6076 6077 /* then look at all of its upper devices */ 6078 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 6079 if (ret) 6080 return ret; 6081 } 6082 6083 return 0; 6084 } 6085 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6086 6087 /** 6088 * netdev_lower_get_next_private - Get the next ->private from the 6089 * lower neighbour list 6090 * @dev: device 6091 * @iter: list_head ** of the current position 6092 * 6093 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6094 * list, starting from iter position. The caller must hold either hold the 6095 * RTNL lock or its own locking that guarantees that the neighbour lower 6096 * list will remain unchanged. 6097 */ 6098 void *netdev_lower_get_next_private(struct net_device *dev, 6099 struct list_head **iter) 6100 { 6101 struct netdev_adjacent *lower; 6102 6103 lower = list_entry(*iter, struct netdev_adjacent, list); 6104 6105 if (&lower->list == &dev->adj_list.lower) 6106 return NULL; 6107 6108 *iter = lower->list.next; 6109 6110 return lower->private; 6111 } 6112 EXPORT_SYMBOL(netdev_lower_get_next_private); 6113 6114 /** 6115 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6116 * lower neighbour list, RCU 6117 * variant 6118 * @dev: device 6119 * @iter: list_head ** of the current position 6120 * 6121 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6122 * list, starting from iter position. The caller must hold RCU read lock. 6123 */ 6124 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6125 struct list_head **iter) 6126 { 6127 struct netdev_adjacent *lower; 6128 6129 WARN_ON_ONCE(!rcu_read_lock_held()); 6130 6131 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6132 6133 if (&lower->list == &dev->adj_list.lower) 6134 return NULL; 6135 6136 *iter = &lower->list; 6137 6138 return lower->private; 6139 } 6140 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6141 6142 /** 6143 * netdev_lower_get_next - Get the next device from the lower neighbour 6144 * list 6145 * @dev: device 6146 * @iter: list_head ** of the current position 6147 * 6148 * Gets the next netdev_adjacent from the dev's lower neighbour 6149 * list, starting from iter position. The caller must hold RTNL lock or 6150 * its own locking that guarantees that the neighbour lower 6151 * list will remain unchanged. 6152 */ 6153 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6154 { 6155 struct netdev_adjacent *lower; 6156 6157 lower = list_entry(*iter, struct netdev_adjacent, list); 6158 6159 if (&lower->list == &dev->adj_list.lower) 6160 return NULL; 6161 6162 *iter = lower->list.next; 6163 6164 return lower->dev; 6165 } 6166 EXPORT_SYMBOL(netdev_lower_get_next); 6167 6168 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6169 struct list_head **iter) 6170 { 6171 struct netdev_adjacent *lower; 6172 6173 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6174 6175 if (&lower->list == &dev->adj_list.lower) 6176 return NULL; 6177 6178 *iter = &lower->list; 6179 6180 return lower->dev; 6181 } 6182 6183 int netdev_walk_all_lower_dev(struct net_device *dev, 6184 int (*fn)(struct net_device *dev, 6185 void *data), 6186 void *data) 6187 { 6188 struct net_device *ldev; 6189 struct list_head *iter; 6190 int ret; 6191 6192 for (iter = &dev->adj_list.lower, 6193 ldev = netdev_next_lower_dev(dev, &iter); 6194 ldev; 6195 ldev = netdev_next_lower_dev(dev, &iter)) { 6196 /* first is the lower device itself */ 6197 ret = fn(ldev, data); 6198 if (ret) 6199 return ret; 6200 6201 /* then look at all of its lower devices */ 6202 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6203 if (ret) 6204 return ret; 6205 } 6206 6207 return 0; 6208 } 6209 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6210 6211 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6212 struct list_head **iter) 6213 { 6214 struct netdev_adjacent *lower; 6215 6216 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6217 if (&lower->list == &dev->adj_list.lower) 6218 return NULL; 6219 6220 *iter = &lower->list; 6221 6222 return lower->dev; 6223 } 6224 6225 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6226 int (*fn)(struct net_device *dev, 6227 void *data), 6228 void *data) 6229 { 6230 struct net_device *ldev; 6231 struct list_head *iter; 6232 int ret; 6233 6234 for (iter = &dev->adj_list.lower, 6235 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6236 ldev; 6237 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6238 /* first is the lower device itself */ 6239 ret = fn(ldev, data); 6240 if (ret) 6241 return ret; 6242 6243 /* then look at all of its lower devices */ 6244 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6245 if (ret) 6246 return ret; 6247 } 6248 6249 return 0; 6250 } 6251 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6252 6253 /** 6254 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6255 * lower neighbour list, RCU 6256 * variant 6257 * @dev: device 6258 * 6259 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6260 * list. The caller must hold RCU read lock. 6261 */ 6262 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6263 { 6264 struct netdev_adjacent *lower; 6265 6266 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6267 struct netdev_adjacent, list); 6268 if (lower) 6269 return lower->private; 6270 return NULL; 6271 } 6272 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6273 6274 /** 6275 * netdev_master_upper_dev_get_rcu - Get master upper device 6276 * @dev: device 6277 * 6278 * Find a master upper device and return pointer to it or NULL in case 6279 * it's not there. The caller must hold the RCU read lock. 6280 */ 6281 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6282 { 6283 struct netdev_adjacent *upper; 6284 6285 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6286 struct netdev_adjacent, list); 6287 if (upper && likely(upper->master)) 6288 return upper->dev; 6289 return NULL; 6290 } 6291 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6292 6293 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6294 struct net_device *adj_dev, 6295 struct list_head *dev_list) 6296 { 6297 char linkname[IFNAMSIZ+7]; 6298 6299 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6300 "upper_%s" : "lower_%s", adj_dev->name); 6301 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6302 linkname); 6303 } 6304 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6305 char *name, 6306 struct list_head *dev_list) 6307 { 6308 char linkname[IFNAMSIZ+7]; 6309 6310 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6311 "upper_%s" : "lower_%s", name); 6312 sysfs_remove_link(&(dev->dev.kobj), linkname); 6313 } 6314 6315 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6316 struct net_device *adj_dev, 6317 struct list_head *dev_list) 6318 { 6319 return (dev_list == &dev->adj_list.upper || 6320 dev_list == &dev->adj_list.lower) && 6321 net_eq(dev_net(dev), dev_net(adj_dev)); 6322 } 6323 6324 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6325 struct net_device *adj_dev, 6326 struct list_head *dev_list, 6327 void *private, bool master) 6328 { 6329 struct netdev_adjacent *adj; 6330 int ret; 6331 6332 adj = __netdev_find_adj(adj_dev, dev_list); 6333 6334 if (adj) { 6335 adj->ref_nr += 1; 6336 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6337 dev->name, adj_dev->name, adj->ref_nr); 6338 6339 return 0; 6340 } 6341 6342 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6343 if (!adj) 6344 return -ENOMEM; 6345 6346 adj->dev = adj_dev; 6347 adj->master = master; 6348 adj->ref_nr = 1; 6349 adj->private = private; 6350 dev_hold(adj_dev); 6351 6352 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6353 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6354 6355 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6356 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6357 if (ret) 6358 goto free_adj; 6359 } 6360 6361 /* Ensure that master link is always the first item in list. */ 6362 if (master) { 6363 ret = sysfs_create_link(&(dev->dev.kobj), 6364 &(adj_dev->dev.kobj), "master"); 6365 if (ret) 6366 goto remove_symlinks; 6367 6368 list_add_rcu(&adj->list, dev_list); 6369 } else { 6370 list_add_tail_rcu(&adj->list, dev_list); 6371 } 6372 6373 return 0; 6374 6375 remove_symlinks: 6376 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6377 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6378 free_adj: 6379 kfree(adj); 6380 dev_put(adj_dev); 6381 6382 return ret; 6383 } 6384 6385 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6386 struct net_device *adj_dev, 6387 u16 ref_nr, 6388 struct list_head *dev_list) 6389 { 6390 struct netdev_adjacent *adj; 6391 6392 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6393 dev->name, adj_dev->name, ref_nr); 6394 6395 adj = __netdev_find_adj(adj_dev, dev_list); 6396 6397 if (!adj) { 6398 pr_err("Adjacency does not exist for device %s from %s\n", 6399 dev->name, adj_dev->name); 6400 WARN_ON(1); 6401 return; 6402 } 6403 6404 if (adj->ref_nr > ref_nr) { 6405 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6406 dev->name, adj_dev->name, ref_nr, 6407 adj->ref_nr - ref_nr); 6408 adj->ref_nr -= ref_nr; 6409 return; 6410 } 6411 6412 if (adj->master) 6413 sysfs_remove_link(&(dev->dev.kobj), "master"); 6414 6415 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6416 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6417 6418 list_del_rcu(&adj->list); 6419 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6420 adj_dev->name, dev->name, adj_dev->name); 6421 dev_put(adj_dev); 6422 kfree_rcu(adj, rcu); 6423 } 6424 6425 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6426 struct net_device *upper_dev, 6427 struct list_head *up_list, 6428 struct list_head *down_list, 6429 void *private, bool master) 6430 { 6431 int ret; 6432 6433 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6434 private, master); 6435 if (ret) 6436 return ret; 6437 6438 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6439 private, false); 6440 if (ret) { 6441 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6442 return ret; 6443 } 6444 6445 return 0; 6446 } 6447 6448 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6449 struct net_device *upper_dev, 6450 u16 ref_nr, 6451 struct list_head *up_list, 6452 struct list_head *down_list) 6453 { 6454 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6455 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6456 } 6457 6458 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6459 struct net_device *upper_dev, 6460 void *private, bool master) 6461 { 6462 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6463 &dev->adj_list.upper, 6464 &upper_dev->adj_list.lower, 6465 private, master); 6466 } 6467 6468 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6469 struct net_device *upper_dev) 6470 { 6471 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6472 &dev->adj_list.upper, 6473 &upper_dev->adj_list.lower); 6474 } 6475 6476 static int __netdev_upper_dev_link(struct net_device *dev, 6477 struct net_device *upper_dev, bool master, 6478 void *upper_priv, void *upper_info, 6479 struct netlink_ext_ack *extack) 6480 { 6481 struct netdev_notifier_changeupper_info changeupper_info = { 6482 .info = { 6483 .dev = dev, 6484 .extack = extack, 6485 }, 6486 .upper_dev = upper_dev, 6487 .master = master, 6488 .linking = true, 6489 .upper_info = upper_info, 6490 }; 6491 struct net_device *master_dev; 6492 int ret = 0; 6493 6494 ASSERT_RTNL(); 6495 6496 if (dev == upper_dev) 6497 return -EBUSY; 6498 6499 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6500 if (netdev_has_upper_dev(upper_dev, dev)) 6501 return -EBUSY; 6502 6503 if (!master) { 6504 if (netdev_has_upper_dev(dev, upper_dev)) 6505 return -EEXIST; 6506 } else { 6507 master_dev = netdev_master_upper_dev_get(dev); 6508 if (master_dev) 6509 return master_dev == upper_dev ? -EEXIST : -EBUSY; 6510 } 6511 6512 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6513 &changeupper_info.info); 6514 ret = notifier_to_errno(ret); 6515 if (ret) 6516 return ret; 6517 6518 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 6519 master); 6520 if (ret) 6521 return ret; 6522 6523 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6524 &changeupper_info.info); 6525 ret = notifier_to_errno(ret); 6526 if (ret) 6527 goto rollback; 6528 6529 return 0; 6530 6531 rollback: 6532 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6533 6534 return ret; 6535 } 6536 6537 /** 6538 * netdev_upper_dev_link - Add a link to the upper device 6539 * @dev: device 6540 * @upper_dev: new upper device 6541 * @extack: netlink extended ack 6542 * 6543 * Adds a link to device which is upper to this one. The caller must hold 6544 * the RTNL lock. On a failure a negative errno code is returned. 6545 * On success the reference counts are adjusted and the function 6546 * returns zero. 6547 */ 6548 int netdev_upper_dev_link(struct net_device *dev, 6549 struct net_device *upper_dev, 6550 struct netlink_ext_ack *extack) 6551 { 6552 return __netdev_upper_dev_link(dev, upper_dev, false, 6553 NULL, NULL, extack); 6554 } 6555 EXPORT_SYMBOL(netdev_upper_dev_link); 6556 6557 /** 6558 * netdev_master_upper_dev_link - Add a master link to the upper device 6559 * @dev: device 6560 * @upper_dev: new upper device 6561 * @upper_priv: upper device private 6562 * @upper_info: upper info to be passed down via notifier 6563 * @extack: netlink extended ack 6564 * 6565 * Adds a link to device which is upper to this one. In this case, only 6566 * one master upper device can be linked, although other non-master devices 6567 * might be linked as well. The caller must hold the RTNL lock. 6568 * On a failure a negative errno code is returned. On success the reference 6569 * counts are adjusted and the function returns zero. 6570 */ 6571 int netdev_master_upper_dev_link(struct net_device *dev, 6572 struct net_device *upper_dev, 6573 void *upper_priv, void *upper_info, 6574 struct netlink_ext_ack *extack) 6575 { 6576 return __netdev_upper_dev_link(dev, upper_dev, true, 6577 upper_priv, upper_info, extack); 6578 } 6579 EXPORT_SYMBOL(netdev_master_upper_dev_link); 6580 6581 /** 6582 * netdev_upper_dev_unlink - Removes a link to upper device 6583 * @dev: device 6584 * @upper_dev: new upper device 6585 * 6586 * Removes a link to device which is upper to this one. The caller must hold 6587 * the RTNL lock. 6588 */ 6589 void netdev_upper_dev_unlink(struct net_device *dev, 6590 struct net_device *upper_dev) 6591 { 6592 struct netdev_notifier_changeupper_info changeupper_info = { 6593 .info = { 6594 .dev = dev, 6595 }, 6596 .upper_dev = upper_dev, 6597 .linking = false, 6598 }; 6599 6600 ASSERT_RTNL(); 6601 6602 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 6603 6604 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6605 &changeupper_info.info); 6606 6607 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6608 6609 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6610 &changeupper_info.info); 6611 } 6612 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6613 6614 /** 6615 * netdev_bonding_info_change - Dispatch event about slave change 6616 * @dev: device 6617 * @bonding_info: info to dispatch 6618 * 6619 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6620 * The caller must hold the RTNL lock. 6621 */ 6622 void netdev_bonding_info_change(struct net_device *dev, 6623 struct netdev_bonding_info *bonding_info) 6624 { 6625 struct netdev_notifier_bonding_info info = { 6626 .info.dev = dev, 6627 }; 6628 6629 memcpy(&info.bonding_info, bonding_info, 6630 sizeof(struct netdev_bonding_info)); 6631 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 6632 &info.info); 6633 } 6634 EXPORT_SYMBOL(netdev_bonding_info_change); 6635 6636 static void netdev_adjacent_add_links(struct net_device *dev) 6637 { 6638 struct netdev_adjacent *iter; 6639 6640 struct net *net = dev_net(dev); 6641 6642 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6643 if (!net_eq(net, dev_net(iter->dev))) 6644 continue; 6645 netdev_adjacent_sysfs_add(iter->dev, dev, 6646 &iter->dev->adj_list.lower); 6647 netdev_adjacent_sysfs_add(dev, iter->dev, 6648 &dev->adj_list.upper); 6649 } 6650 6651 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6652 if (!net_eq(net, dev_net(iter->dev))) 6653 continue; 6654 netdev_adjacent_sysfs_add(iter->dev, dev, 6655 &iter->dev->adj_list.upper); 6656 netdev_adjacent_sysfs_add(dev, iter->dev, 6657 &dev->adj_list.lower); 6658 } 6659 } 6660 6661 static void netdev_adjacent_del_links(struct net_device *dev) 6662 { 6663 struct netdev_adjacent *iter; 6664 6665 struct net *net = dev_net(dev); 6666 6667 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6668 if (!net_eq(net, dev_net(iter->dev))) 6669 continue; 6670 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6671 &iter->dev->adj_list.lower); 6672 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6673 &dev->adj_list.upper); 6674 } 6675 6676 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6677 if (!net_eq(net, dev_net(iter->dev))) 6678 continue; 6679 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6680 &iter->dev->adj_list.upper); 6681 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6682 &dev->adj_list.lower); 6683 } 6684 } 6685 6686 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6687 { 6688 struct netdev_adjacent *iter; 6689 6690 struct net *net = dev_net(dev); 6691 6692 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6693 if (!net_eq(net, dev_net(iter->dev))) 6694 continue; 6695 netdev_adjacent_sysfs_del(iter->dev, oldname, 6696 &iter->dev->adj_list.lower); 6697 netdev_adjacent_sysfs_add(iter->dev, dev, 6698 &iter->dev->adj_list.lower); 6699 } 6700 6701 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6702 if (!net_eq(net, dev_net(iter->dev))) 6703 continue; 6704 netdev_adjacent_sysfs_del(iter->dev, oldname, 6705 &iter->dev->adj_list.upper); 6706 netdev_adjacent_sysfs_add(iter->dev, dev, 6707 &iter->dev->adj_list.upper); 6708 } 6709 } 6710 6711 void *netdev_lower_dev_get_private(struct net_device *dev, 6712 struct net_device *lower_dev) 6713 { 6714 struct netdev_adjacent *lower; 6715 6716 if (!lower_dev) 6717 return NULL; 6718 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6719 if (!lower) 6720 return NULL; 6721 6722 return lower->private; 6723 } 6724 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6725 6726 6727 int dev_get_nest_level(struct net_device *dev) 6728 { 6729 struct net_device *lower = NULL; 6730 struct list_head *iter; 6731 int max_nest = -1; 6732 int nest; 6733 6734 ASSERT_RTNL(); 6735 6736 netdev_for_each_lower_dev(dev, lower, iter) { 6737 nest = dev_get_nest_level(lower); 6738 if (max_nest < nest) 6739 max_nest = nest; 6740 } 6741 6742 return max_nest + 1; 6743 } 6744 EXPORT_SYMBOL(dev_get_nest_level); 6745 6746 /** 6747 * netdev_lower_change - Dispatch event about lower device state change 6748 * @lower_dev: device 6749 * @lower_state_info: state to dispatch 6750 * 6751 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6752 * The caller must hold the RTNL lock. 6753 */ 6754 void netdev_lower_state_changed(struct net_device *lower_dev, 6755 void *lower_state_info) 6756 { 6757 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 6758 .info.dev = lower_dev, 6759 }; 6760 6761 ASSERT_RTNL(); 6762 changelowerstate_info.lower_state_info = lower_state_info; 6763 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 6764 &changelowerstate_info.info); 6765 } 6766 EXPORT_SYMBOL(netdev_lower_state_changed); 6767 6768 static void dev_change_rx_flags(struct net_device *dev, int flags) 6769 { 6770 const struct net_device_ops *ops = dev->netdev_ops; 6771 6772 if (ops->ndo_change_rx_flags) 6773 ops->ndo_change_rx_flags(dev, flags); 6774 } 6775 6776 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6777 { 6778 unsigned int old_flags = dev->flags; 6779 kuid_t uid; 6780 kgid_t gid; 6781 6782 ASSERT_RTNL(); 6783 6784 dev->flags |= IFF_PROMISC; 6785 dev->promiscuity += inc; 6786 if (dev->promiscuity == 0) { 6787 /* 6788 * Avoid overflow. 6789 * If inc causes overflow, untouch promisc and return error. 6790 */ 6791 if (inc < 0) 6792 dev->flags &= ~IFF_PROMISC; 6793 else { 6794 dev->promiscuity -= inc; 6795 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6796 dev->name); 6797 return -EOVERFLOW; 6798 } 6799 } 6800 if (dev->flags != old_flags) { 6801 pr_info("device %s %s promiscuous mode\n", 6802 dev->name, 6803 dev->flags & IFF_PROMISC ? "entered" : "left"); 6804 if (audit_enabled) { 6805 current_uid_gid(&uid, &gid); 6806 audit_log(current->audit_context, GFP_ATOMIC, 6807 AUDIT_ANOM_PROMISCUOUS, 6808 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6809 dev->name, (dev->flags & IFF_PROMISC), 6810 (old_flags & IFF_PROMISC), 6811 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6812 from_kuid(&init_user_ns, uid), 6813 from_kgid(&init_user_ns, gid), 6814 audit_get_sessionid(current)); 6815 } 6816 6817 dev_change_rx_flags(dev, IFF_PROMISC); 6818 } 6819 if (notify) 6820 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6821 return 0; 6822 } 6823 6824 /** 6825 * dev_set_promiscuity - update promiscuity count on a device 6826 * @dev: device 6827 * @inc: modifier 6828 * 6829 * Add or remove promiscuity from a device. While the count in the device 6830 * remains above zero the interface remains promiscuous. Once it hits zero 6831 * the device reverts back to normal filtering operation. A negative inc 6832 * value is used to drop promiscuity on the device. 6833 * Return 0 if successful or a negative errno code on error. 6834 */ 6835 int dev_set_promiscuity(struct net_device *dev, int inc) 6836 { 6837 unsigned int old_flags = dev->flags; 6838 int err; 6839 6840 err = __dev_set_promiscuity(dev, inc, true); 6841 if (err < 0) 6842 return err; 6843 if (dev->flags != old_flags) 6844 dev_set_rx_mode(dev); 6845 return err; 6846 } 6847 EXPORT_SYMBOL(dev_set_promiscuity); 6848 6849 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6850 { 6851 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6852 6853 ASSERT_RTNL(); 6854 6855 dev->flags |= IFF_ALLMULTI; 6856 dev->allmulti += inc; 6857 if (dev->allmulti == 0) { 6858 /* 6859 * Avoid overflow. 6860 * If inc causes overflow, untouch allmulti and return error. 6861 */ 6862 if (inc < 0) 6863 dev->flags &= ~IFF_ALLMULTI; 6864 else { 6865 dev->allmulti -= inc; 6866 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6867 dev->name); 6868 return -EOVERFLOW; 6869 } 6870 } 6871 if (dev->flags ^ old_flags) { 6872 dev_change_rx_flags(dev, IFF_ALLMULTI); 6873 dev_set_rx_mode(dev); 6874 if (notify) 6875 __dev_notify_flags(dev, old_flags, 6876 dev->gflags ^ old_gflags); 6877 } 6878 return 0; 6879 } 6880 6881 /** 6882 * dev_set_allmulti - update allmulti count on a device 6883 * @dev: device 6884 * @inc: modifier 6885 * 6886 * Add or remove reception of all multicast frames to a device. While the 6887 * count in the device remains above zero the interface remains listening 6888 * to all interfaces. Once it hits zero the device reverts back to normal 6889 * filtering operation. A negative @inc value is used to drop the counter 6890 * when releasing a resource needing all multicasts. 6891 * Return 0 if successful or a negative errno code on error. 6892 */ 6893 6894 int dev_set_allmulti(struct net_device *dev, int inc) 6895 { 6896 return __dev_set_allmulti(dev, inc, true); 6897 } 6898 EXPORT_SYMBOL(dev_set_allmulti); 6899 6900 /* 6901 * Upload unicast and multicast address lists to device and 6902 * configure RX filtering. When the device doesn't support unicast 6903 * filtering it is put in promiscuous mode while unicast addresses 6904 * are present. 6905 */ 6906 void __dev_set_rx_mode(struct net_device *dev) 6907 { 6908 const struct net_device_ops *ops = dev->netdev_ops; 6909 6910 /* dev_open will call this function so the list will stay sane. */ 6911 if (!(dev->flags&IFF_UP)) 6912 return; 6913 6914 if (!netif_device_present(dev)) 6915 return; 6916 6917 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6918 /* Unicast addresses changes may only happen under the rtnl, 6919 * therefore calling __dev_set_promiscuity here is safe. 6920 */ 6921 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6922 __dev_set_promiscuity(dev, 1, false); 6923 dev->uc_promisc = true; 6924 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6925 __dev_set_promiscuity(dev, -1, false); 6926 dev->uc_promisc = false; 6927 } 6928 } 6929 6930 if (ops->ndo_set_rx_mode) 6931 ops->ndo_set_rx_mode(dev); 6932 } 6933 6934 void dev_set_rx_mode(struct net_device *dev) 6935 { 6936 netif_addr_lock_bh(dev); 6937 __dev_set_rx_mode(dev); 6938 netif_addr_unlock_bh(dev); 6939 } 6940 6941 /** 6942 * dev_get_flags - get flags reported to userspace 6943 * @dev: device 6944 * 6945 * Get the combination of flag bits exported through APIs to userspace. 6946 */ 6947 unsigned int dev_get_flags(const struct net_device *dev) 6948 { 6949 unsigned int flags; 6950 6951 flags = (dev->flags & ~(IFF_PROMISC | 6952 IFF_ALLMULTI | 6953 IFF_RUNNING | 6954 IFF_LOWER_UP | 6955 IFF_DORMANT)) | 6956 (dev->gflags & (IFF_PROMISC | 6957 IFF_ALLMULTI)); 6958 6959 if (netif_running(dev)) { 6960 if (netif_oper_up(dev)) 6961 flags |= IFF_RUNNING; 6962 if (netif_carrier_ok(dev)) 6963 flags |= IFF_LOWER_UP; 6964 if (netif_dormant(dev)) 6965 flags |= IFF_DORMANT; 6966 } 6967 6968 return flags; 6969 } 6970 EXPORT_SYMBOL(dev_get_flags); 6971 6972 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6973 { 6974 unsigned int old_flags = dev->flags; 6975 int ret; 6976 6977 ASSERT_RTNL(); 6978 6979 /* 6980 * Set the flags on our device. 6981 */ 6982 6983 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6984 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6985 IFF_AUTOMEDIA)) | 6986 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6987 IFF_ALLMULTI)); 6988 6989 /* 6990 * Load in the correct multicast list now the flags have changed. 6991 */ 6992 6993 if ((old_flags ^ flags) & IFF_MULTICAST) 6994 dev_change_rx_flags(dev, IFF_MULTICAST); 6995 6996 dev_set_rx_mode(dev); 6997 6998 /* 6999 * Have we downed the interface. We handle IFF_UP ourselves 7000 * according to user attempts to set it, rather than blindly 7001 * setting it. 7002 */ 7003 7004 ret = 0; 7005 if ((old_flags ^ flags) & IFF_UP) { 7006 if (old_flags & IFF_UP) 7007 __dev_close(dev); 7008 else 7009 ret = __dev_open(dev); 7010 } 7011 7012 if ((flags ^ dev->gflags) & IFF_PROMISC) { 7013 int inc = (flags & IFF_PROMISC) ? 1 : -1; 7014 unsigned int old_flags = dev->flags; 7015 7016 dev->gflags ^= IFF_PROMISC; 7017 7018 if (__dev_set_promiscuity(dev, inc, false) >= 0) 7019 if (dev->flags != old_flags) 7020 dev_set_rx_mode(dev); 7021 } 7022 7023 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 7024 * is important. Some (broken) drivers set IFF_PROMISC, when 7025 * IFF_ALLMULTI is requested not asking us and not reporting. 7026 */ 7027 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 7028 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 7029 7030 dev->gflags ^= IFF_ALLMULTI; 7031 __dev_set_allmulti(dev, inc, false); 7032 } 7033 7034 return ret; 7035 } 7036 7037 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 7038 unsigned int gchanges) 7039 { 7040 unsigned int changes = dev->flags ^ old_flags; 7041 7042 if (gchanges) 7043 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 7044 7045 if (changes & IFF_UP) { 7046 if (dev->flags & IFF_UP) 7047 call_netdevice_notifiers(NETDEV_UP, dev); 7048 else 7049 call_netdevice_notifiers(NETDEV_DOWN, dev); 7050 } 7051 7052 if (dev->flags & IFF_UP && 7053 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 7054 struct netdev_notifier_change_info change_info = { 7055 .info = { 7056 .dev = dev, 7057 }, 7058 .flags_changed = changes, 7059 }; 7060 7061 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 7062 } 7063 } 7064 7065 /** 7066 * dev_change_flags - change device settings 7067 * @dev: device 7068 * @flags: device state flags 7069 * 7070 * Change settings on device based state flags. The flags are 7071 * in the userspace exported format. 7072 */ 7073 int dev_change_flags(struct net_device *dev, unsigned int flags) 7074 { 7075 int ret; 7076 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 7077 7078 ret = __dev_change_flags(dev, flags); 7079 if (ret < 0) 7080 return ret; 7081 7082 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 7083 __dev_notify_flags(dev, old_flags, changes); 7084 return ret; 7085 } 7086 EXPORT_SYMBOL(dev_change_flags); 7087 7088 int __dev_set_mtu(struct net_device *dev, int new_mtu) 7089 { 7090 const struct net_device_ops *ops = dev->netdev_ops; 7091 7092 if (ops->ndo_change_mtu) 7093 return ops->ndo_change_mtu(dev, new_mtu); 7094 7095 dev->mtu = new_mtu; 7096 return 0; 7097 } 7098 EXPORT_SYMBOL(__dev_set_mtu); 7099 7100 /** 7101 * dev_set_mtu - Change maximum transfer unit 7102 * @dev: device 7103 * @new_mtu: new transfer unit 7104 * 7105 * Change the maximum transfer size of the network device. 7106 */ 7107 int dev_set_mtu(struct net_device *dev, int new_mtu) 7108 { 7109 int err, orig_mtu; 7110 7111 if (new_mtu == dev->mtu) 7112 return 0; 7113 7114 /* MTU must be positive, and in range */ 7115 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 7116 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 7117 dev->name, new_mtu, dev->min_mtu); 7118 return -EINVAL; 7119 } 7120 7121 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 7122 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 7123 dev->name, new_mtu, dev->max_mtu); 7124 return -EINVAL; 7125 } 7126 7127 if (!netif_device_present(dev)) 7128 return -ENODEV; 7129 7130 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 7131 err = notifier_to_errno(err); 7132 if (err) 7133 return err; 7134 7135 orig_mtu = dev->mtu; 7136 err = __dev_set_mtu(dev, new_mtu); 7137 7138 if (!err) { 7139 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 7140 err = notifier_to_errno(err); 7141 if (err) { 7142 /* setting mtu back and notifying everyone again, 7143 * so that they have a chance to revert changes. 7144 */ 7145 __dev_set_mtu(dev, orig_mtu); 7146 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 7147 } 7148 } 7149 return err; 7150 } 7151 EXPORT_SYMBOL(dev_set_mtu); 7152 7153 /** 7154 * dev_change_tx_queue_len - Change TX queue length of a netdevice 7155 * @dev: device 7156 * @new_len: new tx queue length 7157 */ 7158 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 7159 { 7160 unsigned int orig_len = dev->tx_queue_len; 7161 int res; 7162 7163 if (new_len != (unsigned int)new_len) 7164 return -ERANGE; 7165 7166 if (new_len != orig_len) { 7167 dev->tx_queue_len = new_len; 7168 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 7169 res = notifier_to_errno(res); 7170 if (res) { 7171 netdev_err(dev, 7172 "refused to change device tx_queue_len\n"); 7173 dev->tx_queue_len = orig_len; 7174 return res; 7175 } 7176 return dev_qdisc_change_tx_queue_len(dev); 7177 } 7178 7179 return 0; 7180 } 7181 7182 /** 7183 * dev_set_group - Change group this device belongs to 7184 * @dev: device 7185 * @new_group: group this device should belong to 7186 */ 7187 void dev_set_group(struct net_device *dev, int new_group) 7188 { 7189 dev->group = new_group; 7190 } 7191 EXPORT_SYMBOL(dev_set_group); 7192 7193 /** 7194 * dev_set_mac_address - Change Media Access Control Address 7195 * @dev: device 7196 * @sa: new address 7197 * 7198 * Change the hardware (MAC) address of the device 7199 */ 7200 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 7201 { 7202 const struct net_device_ops *ops = dev->netdev_ops; 7203 int err; 7204 7205 if (!ops->ndo_set_mac_address) 7206 return -EOPNOTSUPP; 7207 if (sa->sa_family != dev->type) 7208 return -EINVAL; 7209 if (!netif_device_present(dev)) 7210 return -ENODEV; 7211 err = ops->ndo_set_mac_address(dev, sa); 7212 if (err) 7213 return err; 7214 dev->addr_assign_type = NET_ADDR_SET; 7215 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7216 add_device_randomness(dev->dev_addr, dev->addr_len); 7217 return 0; 7218 } 7219 EXPORT_SYMBOL(dev_set_mac_address); 7220 7221 /** 7222 * dev_change_carrier - Change device carrier 7223 * @dev: device 7224 * @new_carrier: new value 7225 * 7226 * Change device carrier 7227 */ 7228 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7229 { 7230 const struct net_device_ops *ops = dev->netdev_ops; 7231 7232 if (!ops->ndo_change_carrier) 7233 return -EOPNOTSUPP; 7234 if (!netif_device_present(dev)) 7235 return -ENODEV; 7236 return ops->ndo_change_carrier(dev, new_carrier); 7237 } 7238 EXPORT_SYMBOL(dev_change_carrier); 7239 7240 /** 7241 * dev_get_phys_port_id - Get device physical port ID 7242 * @dev: device 7243 * @ppid: port ID 7244 * 7245 * Get device physical port ID 7246 */ 7247 int dev_get_phys_port_id(struct net_device *dev, 7248 struct netdev_phys_item_id *ppid) 7249 { 7250 const struct net_device_ops *ops = dev->netdev_ops; 7251 7252 if (!ops->ndo_get_phys_port_id) 7253 return -EOPNOTSUPP; 7254 return ops->ndo_get_phys_port_id(dev, ppid); 7255 } 7256 EXPORT_SYMBOL(dev_get_phys_port_id); 7257 7258 /** 7259 * dev_get_phys_port_name - Get device physical port name 7260 * @dev: device 7261 * @name: port name 7262 * @len: limit of bytes to copy to name 7263 * 7264 * Get device physical port name 7265 */ 7266 int dev_get_phys_port_name(struct net_device *dev, 7267 char *name, size_t len) 7268 { 7269 const struct net_device_ops *ops = dev->netdev_ops; 7270 7271 if (!ops->ndo_get_phys_port_name) 7272 return -EOPNOTSUPP; 7273 return ops->ndo_get_phys_port_name(dev, name, len); 7274 } 7275 EXPORT_SYMBOL(dev_get_phys_port_name); 7276 7277 /** 7278 * dev_change_proto_down - update protocol port state information 7279 * @dev: device 7280 * @proto_down: new value 7281 * 7282 * This info can be used by switch drivers to set the phys state of the 7283 * port. 7284 */ 7285 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7286 { 7287 const struct net_device_ops *ops = dev->netdev_ops; 7288 7289 if (!ops->ndo_change_proto_down) 7290 return -EOPNOTSUPP; 7291 if (!netif_device_present(dev)) 7292 return -ENODEV; 7293 return ops->ndo_change_proto_down(dev, proto_down); 7294 } 7295 EXPORT_SYMBOL(dev_change_proto_down); 7296 7297 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 7298 struct netdev_bpf *xdp) 7299 { 7300 memset(xdp, 0, sizeof(*xdp)); 7301 xdp->command = XDP_QUERY_PROG; 7302 7303 /* Query must always succeed. */ 7304 WARN_ON(bpf_op(dev, xdp) < 0); 7305 } 7306 7307 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op) 7308 { 7309 struct netdev_bpf xdp; 7310 7311 __dev_xdp_query(dev, bpf_op, &xdp); 7312 7313 return xdp.prog_attached; 7314 } 7315 7316 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 7317 struct netlink_ext_ack *extack, u32 flags, 7318 struct bpf_prog *prog) 7319 { 7320 struct netdev_bpf xdp; 7321 7322 memset(&xdp, 0, sizeof(xdp)); 7323 if (flags & XDP_FLAGS_HW_MODE) 7324 xdp.command = XDP_SETUP_PROG_HW; 7325 else 7326 xdp.command = XDP_SETUP_PROG; 7327 xdp.extack = extack; 7328 xdp.flags = flags; 7329 xdp.prog = prog; 7330 7331 return bpf_op(dev, &xdp); 7332 } 7333 7334 static void dev_xdp_uninstall(struct net_device *dev) 7335 { 7336 struct netdev_bpf xdp; 7337 bpf_op_t ndo_bpf; 7338 7339 /* Remove generic XDP */ 7340 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 7341 7342 /* Remove from the driver */ 7343 ndo_bpf = dev->netdev_ops->ndo_bpf; 7344 if (!ndo_bpf) 7345 return; 7346 7347 __dev_xdp_query(dev, ndo_bpf, &xdp); 7348 if (xdp.prog_attached == XDP_ATTACHED_NONE) 7349 return; 7350 7351 /* Program removal should always succeed */ 7352 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL)); 7353 } 7354 7355 /** 7356 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7357 * @dev: device 7358 * @extack: netlink extended ack 7359 * @fd: new program fd or negative value to clear 7360 * @flags: xdp-related flags 7361 * 7362 * Set or clear a bpf program for a device 7363 */ 7364 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7365 int fd, u32 flags) 7366 { 7367 const struct net_device_ops *ops = dev->netdev_ops; 7368 struct bpf_prog *prog = NULL; 7369 bpf_op_t bpf_op, bpf_chk; 7370 int err; 7371 7372 ASSERT_RTNL(); 7373 7374 bpf_op = bpf_chk = ops->ndo_bpf; 7375 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7376 return -EOPNOTSUPP; 7377 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 7378 bpf_op = generic_xdp_install; 7379 if (bpf_op == bpf_chk) 7380 bpf_chk = generic_xdp_install; 7381 7382 if (fd >= 0) { 7383 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk)) 7384 return -EEXIST; 7385 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7386 __dev_xdp_attached(dev, bpf_op)) 7387 return -EBUSY; 7388 7389 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 7390 bpf_op == ops->ndo_bpf); 7391 if (IS_ERR(prog)) 7392 return PTR_ERR(prog); 7393 7394 if (!(flags & XDP_FLAGS_HW_MODE) && 7395 bpf_prog_is_dev_bound(prog->aux)) { 7396 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 7397 bpf_prog_put(prog); 7398 return -EINVAL; 7399 } 7400 } 7401 7402 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 7403 if (err < 0 && prog) 7404 bpf_prog_put(prog); 7405 7406 return err; 7407 } 7408 7409 /** 7410 * dev_new_index - allocate an ifindex 7411 * @net: the applicable net namespace 7412 * 7413 * Returns a suitable unique value for a new device interface 7414 * number. The caller must hold the rtnl semaphore or the 7415 * dev_base_lock to be sure it remains unique. 7416 */ 7417 static int dev_new_index(struct net *net) 7418 { 7419 int ifindex = net->ifindex; 7420 7421 for (;;) { 7422 if (++ifindex <= 0) 7423 ifindex = 1; 7424 if (!__dev_get_by_index(net, ifindex)) 7425 return net->ifindex = ifindex; 7426 } 7427 } 7428 7429 /* Delayed registration/unregisteration */ 7430 static LIST_HEAD(net_todo_list); 7431 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7432 7433 static void net_set_todo(struct net_device *dev) 7434 { 7435 list_add_tail(&dev->todo_list, &net_todo_list); 7436 dev_net(dev)->dev_unreg_count++; 7437 } 7438 7439 static void rollback_registered_many(struct list_head *head) 7440 { 7441 struct net_device *dev, *tmp; 7442 LIST_HEAD(close_head); 7443 7444 BUG_ON(dev_boot_phase); 7445 ASSERT_RTNL(); 7446 7447 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7448 /* Some devices call without registering 7449 * for initialization unwind. Remove those 7450 * devices and proceed with the remaining. 7451 */ 7452 if (dev->reg_state == NETREG_UNINITIALIZED) { 7453 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7454 dev->name, dev); 7455 7456 WARN_ON(1); 7457 list_del(&dev->unreg_list); 7458 continue; 7459 } 7460 dev->dismantle = true; 7461 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7462 } 7463 7464 /* If device is running, close it first. */ 7465 list_for_each_entry(dev, head, unreg_list) 7466 list_add_tail(&dev->close_list, &close_head); 7467 dev_close_many(&close_head, true); 7468 7469 list_for_each_entry(dev, head, unreg_list) { 7470 /* And unlink it from device chain. */ 7471 unlist_netdevice(dev); 7472 7473 dev->reg_state = NETREG_UNREGISTERING; 7474 } 7475 flush_all_backlogs(); 7476 7477 synchronize_net(); 7478 7479 list_for_each_entry(dev, head, unreg_list) { 7480 struct sk_buff *skb = NULL; 7481 7482 /* Shutdown queueing discipline. */ 7483 dev_shutdown(dev); 7484 7485 dev_xdp_uninstall(dev); 7486 7487 /* Notify protocols, that we are about to destroy 7488 * this device. They should clean all the things. 7489 */ 7490 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7491 7492 if (!dev->rtnl_link_ops || 7493 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7494 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 7495 GFP_KERNEL, NULL, 0); 7496 7497 /* 7498 * Flush the unicast and multicast chains 7499 */ 7500 dev_uc_flush(dev); 7501 dev_mc_flush(dev); 7502 7503 if (dev->netdev_ops->ndo_uninit) 7504 dev->netdev_ops->ndo_uninit(dev); 7505 7506 if (skb) 7507 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 7508 7509 /* Notifier chain MUST detach us all upper devices. */ 7510 WARN_ON(netdev_has_any_upper_dev(dev)); 7511 WARN_ON(netdev_has_any_lower_dev(dev)); 7512 7513 /* Remove entries from kobject tree */ 7514 netdev_unregister_kobject(dev); 7515 #ifdef CONFIG_XPS 7516 /* Remove XPS queueing entries */ 7517 netif_reset_xps_queues_gt(dev, 0); 7518 #endif 7519 } 7520 7521 synchronize_net(); 7522 7523 list_for_each_entry(dev, head, unreg_list) 7524 dev_put(dev); 7525 } 7526 7527 static void rollback_registered(struct net_device *dev) 7528 { 7529 LIST_HEAD(single); 7530 7531 list_add(&dev->unreg_list, &single); 7532 rollback_registered_many(&single); 7533 list_del(&single); 7534 } 7535 7536 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 7537 struct net_device *upper, netdev_features_t features) 7538 { 7539 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7540 netdev_features_t feature; 7541 int feature_bit; 7542 7543 for_each_netdev_feature(&upper_disables, feature_bit) { 7544 feature = __NETIF_F_BIT(feature_bit); 7545 if (!(upper->wanted_features & feature) 7546 && (features & feature)) { 7547 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 7548 &feature, upper->name); 7549 features &= ~feature; 7550 } 7551 } 7552 7553 return features; 7554 } 7555 7556 static void netdev_sync_lower_features(struct net_device *upper, 7557 struct net_device *lower, netdev_features_t features) 7558 { 7559 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7560 netdev_features_t feature; 7561 int feature_bit; 7562 7563 for_each_netdev_feature(&upper_disables, feature_bit) { 7564 feature = __NETIF_F_BIT(feature_bit); 7565 if (!(features & feature) && (lower->features & feature)) { 7566 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 7567 &feature, lower->name); 7568 lower->wanted_features &= ~feature; 7569 netdev_update_features(lower); 7570 7571 if (unlikely(lower->features & feature)) 7572 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 7573 &feature, lower->name); 7574 } 7575 } 7576 } 7577 7578 static netdev_features_t netdev_fix_features(struct net_device *dev, 7579 netdev_features_t features) 7580 { 7581 /* Fix illegal checksum combinations */ 7582 if ((features & NETIF_F_HW_CSUM) && 7583 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 7584 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 7585 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 7586 } 7587 7588 /* TSO requires that SG is present as well. */ 7589 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 7590 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 7591 features &= ~NETIF_F_ALL_TSO; 7592 } 7593 7594 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 7595 !(features & NETIF_F_IP_CSUM)) { 7596 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 7597 features &= ~NETIF_F_TSO; 7598 features &= ~NETIF_F_TSO_ECN; 7599 } 7600 7601 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 7602 !(features & NETIF_F_IPV6_CSUM)) { 7603 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 7604 features &= ~NETIF_F_TSO6; 7605 } 7606 7607 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 7608 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 7609 features &= ~NETIF_F_TSO_MANGLEID; 7610 7611 /* TSO ECN requires that TSO is present as well. */ 7612 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 7613 features &= ~NETIF_F_TSO_ECN; 7614 7615 /* Software GSO depends on SG. */ 7616 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 7617 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 7618 features &= ~NETIF_F_GSO; 7619 } 7620 7621 /* GSO partial features require GSO partial be set */ 7622 if ((features & dev->gso_partial_features) && 7623 !(features & NETIF_F_GSO_PARTIAL)) { 7624 netdev_dbg(dev, 7625 "Dropping partially supported GSO features since no GSO partial.\n"); 7626 features &= ~dev->gso_partial_features; 7627 } 7628 7629 if (!(features & NETIF_F_RXCSUM)) { 7630 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 7631 * successfully merged by hardware must also have the 7632 * checksum verified by hardware. If the user does not 7633 * want to enable RXCSUM, logically, we should disable GRO_HW. 7634 */ 7635 if (features & NETIF_F_GRO_HW) { 7636 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 7637 features &= ~NETIF_F_GRO_HW; 7638 } 7639 } 7640 7641 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 7642 if (features & NETIF_F_RXFCS) { 7643 if (features & NETIF_F_LRO) { 7644 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 7645 features &= ~NETIF_F_LRO; 7646 } 7647 7648 if (features & NETIF_F_GRO_HW) { 7649 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 7650 features &= ~NETIF_F_GRO_HW; 7651 } 7652 } 7653 7654 return features; 7655 } 7656 7657 int __netdev_update_features(struct net_device *dev) 7658 { 7659 struct net_device *upper, *lower; 7660 netdev_features_t features; 7661 struct list_head *iter; 7662 int err = -1; 7663 7664 ASSERT_RTNL(); 7665 7666 features = netdev_get_wanted_features(dev); 7667 7668 if (dev->netdev_ops->ndo_fix_features) 7669 features = dev->netdev_ops->ndo_fix_features(dev, features); 7670 7671 /* driver might be less strict about feature dependencies */ 7672 features = netdev_fix_features(dev, features); 7673 7674 /* some features can't be enabled if they're off an an upper device */ 7675 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7676 features = netdev_sync_upper_features(dev, upper, features); 7677 7678 if (dev->features == features) 7679 goto sync_lower; 7680 7681 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7682 &dev->features, &features); 7683 7684 if (dev->netdev_ops->ndo_set_features) 7685 err = dev->netdev_ops->ndo_set_features(dev, features); 7686 else 7687 err = 0; 7688 7689 if (unlikely(err < 0)) { 7690 netdev_err(dev, 7691 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7692 err, &features, &dev->features); 7693 /* return non-0 since some features might have changed and 7694 * it's better to fire a spurious notification than miss it 7695 */ 7696 return -1; 7697 } 7698 7699 sync_lower: 7700 /* some features must be disabled on lower devices when disabled 7701 * on an upper device (think: bonding master or bridge) 7702 */ 7703 netdev_for_each_lower_dev(dev, lower, iter) 7704 netdev_sync_lower_features(dev, lower, features); 7705 7706 if (!err) { 7707 netdev_features_t diff = features ^ dev->features; 7708 7709 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 7710 /* udp_tunnel_{get,drop}_rx_info both need 7711 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 7712 * device, or they won't do anything. 7713 * Thus we need to update dev->features 7714 * *before* calling udp_tunnel_get_rx_info, 7715 * but *after* calling udp_tunnel_drop_rx_info. 7716 */ 7717 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 7718 dev->features = features; 7719 udp_tunnel_get_rx_info(dev); 7720 } else { 7721 udp_tunnel_drop_rx_info(dev); 7722 } 7723 } 7724 7725 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 7726 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 7727 dev->features = features; 7728 err |= vlan_get_rx_ctag_filter_info(dev); 7729 } else { 7730 vlan_drop_rx_ctag_filter_info(dev); 7731 } 7732 } 7733 7734 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 7735 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 7736 dev->features = features; 7737 err |= vlan_get_rx_stag_filter_info(dev); 7738 } else { 7739 vlan_drop_rx_stag_filter_info(dev); 7740 } 7741 } 7742 7743 dev->features = features; 7744 } 7745 7746 return err < 0 ? 0 : 1; 7747 } 7748 7749 /** 7750 * netdev_update_features - recalculate device features 7751 * @dev: the device to check 7752 * 7753 * Recalculate dev->features set and send notifications if it 7754 * has changed. Should be called after driver or hardware dependent 7755 * conditions might have changed that influence the features. 7756 */ 7757 void netdev_update_features(struct net_device *dev) 7758 { 7759 if (__netdev_update_features(dev)) 7760 netdev_features_change(dev); 7761 } 7762 EXPORT_SYMBOL(netdev_update_features); 7763 7764 /** 7765 * netdev_change_features - recalculate device features 7766 * @dev: the device to check 7767 * 7768 * Recalculate dev->features set and send notifications even 7769 * if they have not changed. Should be called instead of 7770 * netdev_update_features() if also dev->vlan_features might 7771 * have changed to allow the changes to be propagated to stacked 7772 * VLAN devices. 7773 */ 7774 void netdev_change_features(struct net_device *dev) 7775 { 7776 __netdev_update_features(dev); 7777 netdev_features_change(dev); 7778 } 7779 EXPORT_SYMBOL(netdev_change_features); 7780 7781 /** 7782 * netif_stacked_transfer_operstate - transfer operstate 7783 * @rootdev: the root or lower level device to transfer state from 7784 * @dev: the device to transfer operstate to 7785 * 7786 * Transfer operational state from root to device. This is normally 7787 * called when a stacking relationship exists between the root 7788 * device and the device(a leaf device). 7789 */ 7790 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7791 struct net_device *dev) 7792 { 7793 if (rootdev->operstate == IF_OPER_DORMANT) 7794 netif_dormant_on(dev); 7795 else 7796 netif_dormant_off(dev); 7797 7798 if (netif_carrier_ok(rootdev)) 7799 netif_carrier_on(dev); 7800 else 7801 netif_carrier_off(dev); 7802 } 7803 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7804 7805 static int netif_alloc_rx_queues(struct net_device *dev) 7806 { 7807 unsigned int i, count = dev->num_rx_queues; 7808 struct netdev_rx_queue *rx; 7809 size_t sz = count * sizeof(*rx); 7810 int err = 0; 7811 7812 BUG_ON(count < 1); 7813 7814 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7815 if (!rx) 7816 return -ENOMEM; 7817 7818 dev->_rx = rx; 7819 7820 for (i = 0; i < count; i++) { 7821 rx[i].dev = dev; 7822 7823 /* XDP RX-queue setup */ 7824 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 7825 if (err < 0) 7826 goto err_rxq_info; 7827 } 7828 return 0; 7829 7830 err_rxq_info: 7831 /* Rollback successful reg's and free other resources */ 7832 while (i--) 7833 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 7834 kvfree(dev->_rx); 7835 dev->_rx = NULL; 7836 return err; 7837 } 7838 7839 static void netif_free_rx_queues(struct net_device *dev) 7840 { 7841 unsigned int i, count = dev->num_rx_queues; 7842 7843 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 7844 if (!dev->_rx) 7845 return; 7846 7847 for (i = 0; i < count; i++) 7848 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 7849 7850 kvfree(dev->_rx); 7851 } 7852 7853 static void netdev_init_one_queue(struct net_device *dev, 7854 struct netdev_queue *queue, void *_unused) 7855 { 7856 /* Initialize queue lock */ 7857 spin_lock_init(&queue->_xmit_lock); 7858 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7859 queue->xmit_lock_owner = -1; 7860 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7861 queue->dev = dev; 7862 #ifdef CONFIG_BQL 7863 dql_init(&queue->dql, HZ); 7864 #endif 7865 } 7866 7867 static void netif_free_tx_queues(struct net_device *dev) 7868 { 7869 kvfree(dev->_tx); 7870 } 7871 7872 static int netif_alloc_netdev_queues(struct net_device *dev) 7873 { 7874 unsigned int count = dev->num_tx_queues; 7875 struct netdev_queue *tx; 7876 size_t sz = count * sizeof(*tx); 7877 7878 if (count < 1 || count > 0xffff) 7879 return -EINVAL; 7880 7881 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7882 if (!tx) 7883 return -ENOMEM; 7884 7885 dev->_tx = tx; 7886 7887 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7888 spin_lock_init(&dev->tx_global_lock); 7889 7890 return 0; 7891 } 7892 7893 void netif_tx_stop_all_queues(struct net_device *dev) 7894 { 7895 unsigned int i; 7896 7897 for (i = 0; i < dev->num_tx_queues; i++) { 7898 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7899 7900 netif_tx_stop_queue(txq); 7901 } 7902 } 7903 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7904 7905 /** 7906 * register_netdevice - register a network device 7907 * @dev: device to register 7908 * 7909 * Take a completed network device structure and add it to the kernel 7910 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7911 * chain. 0 is returned on success. A negative errno code is returned 7912 * on a failure to set up the device, or if the name is a duplicate. 7913 * 7914 * Callers must hold the rtnl semaphore. You may want 7915 * register_netdev() instead of this. 7916 * 7917 * BUGS: 7918 * The locking appears insufficient to guarantee two parallel registers 7919 * will not get the same name. 7920 */ 7921 7922 int register_netdevice(struct net_device *dev) 7923 { 7924 int ret; 7925 struct net *net = dev_net(dev); 7926 7927 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 7928 NETDEV_FEATURE_COUNT); 7929 BUG_ON(dev_boot_phase); 7930 ASSERT_RTNL(); 7931 7932 might_sleep(); 7933 7934 /* When net_device's are persistent, this will be fatal. */ 7935 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7936 BUG_ON(!net); 7937 7938 spin_lock_init(&dev->addr_list_lock); 7939 netdev_set_addr_lockdep_class(dev); 7940 7941 ret = dev_get_valid_name(net, dev, dev->name); 7942 if (ret < 0) 7943 goto out; 7944 7945 /* Init, if this function is available */ 7946 if (dev->netdev_ops->ndo_init) { 7947 ret = dev->netdev_ops->ndo_init(dev); 7948 if (ret) { 7949 if (ret > 0) 7950 ret = -EIO; 7951 goto out; 7952 } 7953 } 7954 7955 if (((dev->hw_features | dev->features) & 7956 NETIF_F_HW_VLAN_CTAG_FILTER) && 7957 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7958 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7959 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7960 ret = -EINVAL; 7961 goto err_uninit; 7962 } 7963 7964 ret = -EBUSY; 7965 if (!dev->ifindex) 7966 dev->ifindex = dev_new_index(net); 7967 else if (__dev_get_by_index(net, dev->ifindex)) 7968 goto err_uninit; 7969 7970 /* Transfer changeable features to wanted_features and enable 7971 * software offloads (GSO and GRO). 7972 */ 7973 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7974 dev->features |= NETIF_F_SOFT_FEATURES; 7975 7976 if (dev->netdev_ops->ndo_udp_tunnel_add) { 7977 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7978 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7979 } 7980 7981 dev->wanted_features = dev->features & dev->hw_features; 7982 7983 if (!(dev->flags & IFF_LOOPBACK)) 7984 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7985 7986 /* If IPv4 TCP segmentation offload is supported we should also 7987 * allow the device to enable segmenting the frame with the option 7988 * of ignoring a static IP ID value. This doesn't enable the 7989 * feature itself but allows the user to enable it later. 7990 */ 7991 if (dev->hw_features & NETIF_F_TSO) 7992 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7993 if (dev->vlan_features & NETIF_F_TSO) 7994 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7995 if (dev->mpls_features & NETIF_F_TSO) 7996 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7997 if (dev->hw_enc_features & NETIF_F_TSO) 7998 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7999 8000 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 8001 */ 8002 dev->vlan_features |= NETIF_F_HIGHDMA; 8003 8004 /* Make NETIF_F_SG inheritable to tunnel devices. 8005 */ 8006 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 8007 8008 /* Make NETIF_F_SG inheritable to MPLS. 8009 */ 8010 dev->mpls_features |= NETIF_F_SG; 8011 8012 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 8013 ret = notifier_to_errno(ret); 8014 if (ret) 8015 goto err_uninit; 8016 8017 ret = netdev_register_kobject(dev); 8018 if (ret) 8019 goto err_uninit; 8020 dev->reg_state = NETREG_REGISTERED; 8021 8022 __netdev_update_features(dev); 8023 8024 /* 8025 * Default initial state at registry is that the 8026 * device is present. 8027 */ 8028 8029 set_bit(__LINK_STATE_PRESENT, &dev->state); 8030 8031 linkwatch_init_dev(dev); 8032 8033 dev_init_scheduler(dev); 8034 dev_hold(dev); 8035 list_netdevice(dev); 8036 add_device_randomness(dev->dev_addr, dev->addr_len); 8037 8038 /* If the device has permanent device address, driver should 8039 * set dev_addr and also addr_assign_type should be set to 8040 * NET_ADDR_PERM (default value). 8041 */ 8042 if (dev->addr_assign_type == NET_ADDR_PERM) 8043 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 8044 8045 /* Notify protocols, that a new device appeared. */ 8046 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 8047 ret = notifier_to_errno(ret); 8048 if (ret) { 8049 rollback_registered(dev); 8050 dev->reg_state = NETREG_UNREGISTERED; 8051 } 8052 /* 8053 * Prevent userspace races by waiting until the network 8054 * device is fully setup before sending notifications. 8055 */ 8056 if (!dev->rtnl_link_ops || 8057 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8058 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8059 8060 out: 8061 return ret; 8062 8063 err_uninit: 8064 if (dev->netdev_ops->ndo_uninit) 8065 dev->netdev_ops->ndo_uninit(dev); 8066 if (dev->priv_destructor) 8067 dev->priv_destructor(dev); 8068 goto out; 8069 } 8070 EXPORT_SYMBOL(register_netdevice); 8071 8072 /** 8073 * init_dummy_netdev - init a dummy network device for NAPI 8074 * @dev: device to init 8075 * 8076 * This takes a network device structure and initialize the minimum 8077 * amount of fields so it can be used to schedule NAPI polls without 8078 * registering a full blown interface. This is to be used by drivers 8079 * that need to tie several hardware interfaces to a single NAPI 8080 * poll scheduler due to HW limitations. 8081 */ 8082 int init_dummy_netdev(struct net_device *dev) 8083 { 8084 /* Clear everything. Note we don't initialize spinlocks 8085 * are they aren't supposed to be taken by any of the 8086 * NAPI code and this dummy netdev is supposed to be 8087 * only ever used for NAPI polls 8088 */ 8089 memset(dev, 0, sizeof(struct net_device)); 8090 8091 /* make sure we BUG if trying to hit standard 8092 * register/unregister code path 8093 */ 8094 dev->reg_state = NETREG_DUMMY; 8095 8096 /* NAPI wants this */ 8097 INIT_LIST_HEAD(&dev->napi_list); 8098 8099 /* a dummy interface is started by default */ 8100 set_bit(__LINK_STATE_PRESENT, &dev->state); 8101 set_bit(__LINK_STATE_START, &dev->state); 8102 8103 /* Note : We dont allocate pcpu_refcnt for dummy devices, 8104 * because users of this 'device' dont need to change 8105 * its refcount. 8106 */ 8107 8108 return 0; 8109 } 8110 EXPORT_SYMBOL_GPL(init_dummy_netdev); 8111 8112 8113 /** 8114 * register_netdev - register a network device 8115 * @dev: device to register 8116 * 8117 * Take a completed network device structure and add it to the kernel 8118 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8119 * chain. 0 is returned on success. A negative errno code is returned 8120 * on a failure to set up the device, or if the name is a duplicate. 8121 * 8122 * This is a wrapper around register_netdevice that takes the rtnl semaphore 8123 * and expands the device name if you passed a format string to 8124 * alloc_netdev. 8125 */ 8126 int register_netdev(struct net_device *dev) 8127 { 8128 int err; 8129 8130 if (rtnl_lock_killable()) 8131 return -EINTR; 8132 err = register_netdevice(dev); 8133 rtnl_unlock(); 8134 return err; 8135 } 8136 EXPORT_SYMBOL(register_netdev); 8137 8138 int netdev_refcnt_read(const struct net_device *dev) 8139 { 8140 int i, refcnt = 0; 8141 8142 for_each_possible_cpu(i) 8143 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 8144 return refcnt; 8145 } 8146 EXPORT_SYMBOL(netdev_refcnt_read); 8147 8148 /** 8149 * netdev_wait_allrefs - wait until all references are gone. 8150 * @dev: target net_device 8151 * 8152 * This is called when unregistering network devices. 8153 * 8154 * Any protocol or device that holds a reference should register 8155 * for netdevice notification, and cleanup and put back the 8156 * reference if they receive an UNREGISTER event. 8157 * We can get stuck here if buggy protocols don't correctly 8158 * call dev_put. 8159 */ 8160 static void netdev_wait_allrefs(struct net_device *dev) 8161 { 8162 unsigned long rebroadcast_time, warning_time; 8163 int refcnt; 8164 8165 linkwatch_forget_dev(dev); 8166 8167 rebroadcast_time = warning_time = jiffies; 8168 refcnt = netdev_refcnt_read(dev); 8169 8170 while (refcnt != 0) { 8171 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 8172 rtnl_lock(); 8173 8174 /* Rebroadcast unregister notification */ 8175 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8176 8177 __rtnl_unlock(); 8178 rcu_barrier(); 8179 rtnl_lock(); 8180 8181 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 8182 &dev->state)) { 8183 /* We must not have linkwatch events 8184 * pending on unregister. If this 8185 * happens, we simply run the queue 8186 * unscheduled, resulting in a noop 8187 * for this device. 8188 */ 8189 linkwatch_run_queue(); 8190 } 8191 8192 __rtnl_unlock(); 8193 8194 rebroadcast_time = jiffies; 8195 } 8196 8197 msleep(250); 8198 8199 refcnt = netdev_refcnt_read(dev); 8200 8201 if (time_after(jiffies, warning_time + 10 * HZ)) { 8202 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 8203 dev->name, refcnt); 8204 warning_time = jiffies; 8205 } 8206 } 8207 } 8208 8209 /* The sequence is: 8210 * 8211 * rtnl_lock(); 8212 * ... 8213 * register_netdevice(x1); 8214 * register_netdevice(x2); 8215 * ... 8216 * unregister_netdevice(y1); 8217 * unregister_netdevice(y2); 8218 * ... 8219 * rtnl_unlock(); 8220 * free_netdev(y1); 8221 * free_netdev(y2); 8222 * 8223 * We are invoked by rtnl_unlock(). 8224 * This allows us to deal with problems: 8225 * 1) We can delete sysfs objects which invoke hotplug 8226 * without deadlocking with linkwatch via keventd. 8227 * 2) Since we run with the RTNL semaphore not held, we can sleep 8228 * safely in order to wait for the netdev refcnt to drop to zero. 8229 * 8230 * We must not return until all unregister events added during 8231 * the interval the lock was held have been completed. 8232 */ 8233 void netdev_run_todo(void) 8234 { 8235 struct list_head list; 8236 8237 /* Snapshot list, allow later requests */ 8238 list_replace_init(&net_todo_list, &list); 8239 8240 __rtnl_unlock(); 8241 8242 8243 /* Wait for rcu callbacks to finish before next phase */ 8244 if (!list_empty(&list)) 8245 rcu_barrier(); 8246 8247 while (!list_empty(&list)) { 8248 struct net_device *dev 8249 = list_first_entry(&list, struct net_device, todo_list); 8250 list_del(&dev->todo_list); 8251 8252 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 8253 pr_err("network todo '%s' but state %d\n", 8254 dev->name, dev->reg_state); 8255 dump_stack(); 8256 continue; 8257 } 8258 8259 dev->reg_state = NETREG_UNREGISTERED; 8260 8261 netdev_wait_allrefs(dev); 8262 8263 /* paranoia */ 8264 BUG_ON(netdev_refcnt_read(dev)); 8265 BUG_ON(!list_empty(&dev->ptype_all)); 8266 BUG_ON(!list_empty(&dev->ptype_specific)); 8267 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 8268 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 8269 #if IS_ENABLED(CONFIG_DECNET) 8270 WARN_ON(dev->dn_ptr); 8271 #endif 8272 if (dev->priv_destructor) 8273 dev->priv_destructor(dev); 8274 if (dev->needs_free_netdev) 8275 free_netdev(dev); 8276 8277 /* Report a network device has been unregistered */ 8278 rtnl_lock(); 8279 dev_net(dev)->dev_unreg_count--; 8280 __rtnl_unlock(); 8281 wake_up(&netdev_unregistering_wq); 8282 8283 /* Free network device */ 8284 kobject_put(&dev->dev.kobj); 8285 } 8286 } 8287 8288 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 8289 * all the same fields in the same order as net_device_stats, with only 8290 * the type differing, but rtnl_link_stats64 may have additional fields 8291 * at the end for newer counters. 8292 */ 8293 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 8294 const struct net_device_stats *netdev_stats) 8295 { 8296 #if BITS_PER_LONG == 64 8297 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 8298 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 8299 /* zero out counters that only exist in rtnl_link_stats64 */ 8300 memset((char *)stats64 + sizeof(*netdev_stats), 0, 8301 sizeof(*stats64) - sizeof(*netdev_stats)); 8302 #else 8303 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 8304 const unsigned long *src = (const unsigned long *)netdev_stats; 8305 u64 *dst = (u64 *)stats64; 8306 8307 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 8308 for (i = 0; i < n; i++) 8309 dst[i] = src[i]; 8310 /* zero out counters that only exist in rtnl_link_stats64 */ 8311 memset((char *)stats64 + n * sizeof(u64), 0, 8312 sizeof(*stats64) - n * sizeof(u64)); 8313 #endif 8314 } 8315 EXPORT_SYMBOL(netdev_stats_to_stats64); 8316 8317 /** 8318 * dev_get_stats - get network device statistics 8319 * @dev: device to get statistics from 8320 * @storage: place to store stats 8321 * 8322 * Get network statistics from device. Return @storage. 8323 * The device driver may provide its own method by setting 8324 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 8325 * otherwise the internal statistics structure is used. 8326 */ 8327 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 8328 struct rtnl_link_stats64 *storage) 8329 { 8330 const struct net_device_ops *ops = dev->netdev_ops; 8331 8332 if (ops->ndo_get_stats64) { 8333 memset(storage, 0, sizeof(*storage)); 8334 ops->ndo_get_stats64(dev, storage); 8335 } else if (ops->ndo_get_stats) { 8336 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 8337 } else { 8338 netdev_stats_to_stats64(storage, &dev->stats); 8339 } 8340 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 8341 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 8342 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 8343 return storage; 8344 } 8345 EXPORT_SYMBOL(dev_get_stats); 8346 8347 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 8348 { 8349 struct netdev_queue *queue = dev_ingress_queue(dev); 8350 8351 #ifdef CONFIG_NET_CLS_ACT 8352 if (queue) 8353 return queue; 8354 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 8355 if (!queue) 8356 return NULL; 8357 netdev_init_one_queue(dev, queue, NULL); 8358 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 8359 queue->qdisc_sleeping = &noop_qdisc; 8360 rcu_assign_pointer(dev->ingress_queue, queue); 8361 #endif 8362 return queue; 8363 } 8364 8365 static const struct ethtool_ops default_ethtool_ops; 8366 8367 void netdev_set_default_ethtool_ops(struct net_device *dev, 8368 const struct ethtool_ops *ops) 8369 { 8370 if (dev->ethtool_ops == &default_ethtool_ops) 8371 dev->ethtool_ops = ops; 8372 } 8373 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 8374 8375 void netdev_freemem(struct net_device *dev) 8376 { 8377 char *addr = (char *)dev - dev->padded; 8378 8379 kvfree(addr); 8380 } 8381 8382 /** 8383 * alloc_netdev_mqs - allocate network device 8384 * @sizeof_priv: size of private data to allocate space for 8385 * @name: device name format string 8386 * @name_assign_type: origin of device name 8387 * @setup: callback to initialize device 8388 * @txqs: the number of TX subqueues to allocate 8389 * @rxqs: the number of RX subqueues to allocate 8390 * 8391 * Allocates a struct net_device with private data area for driver use 8392 * and performs basic initialization. Also allocates subqueue structs 8393 * for each queue on the device. 8394 */ 8395 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 8396 unsigned char name_assign_type, 8397 void (*setup)(struct net_device *), 8398 unsigned int txqs, unsigned int rxqs) 8399 { 8400 struct net_device *dev; 8401 unsigned int alloc_size; 8402 struct net_device *p; 8403 8404 BUG_ON(strlen(name) >= sizeof(dev->name)); 8405 8406 if (txqs < 1) { 8407 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 8408 return NULL; 8409 } 8410 8411 if (rxqs < 1) { 8412 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 8413 return NULL; 8414 } 8415 8416 alloc_size = sizeof(struct net_device); 8417 if (sizeof_priv) { 8418 /* ensure 32-byte alignment of private area */ 8419 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8420 alloc_size += sizeof_priv; 8421 } 8422 /* ensure 32-byte alignment of whole construct */ 8423 alloc_size += NETDEV_ALIGN - 1; 8424 8425 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8426 if (!p) 8427 return NULL; 8428 8429 dev = PTR_ALIGN(p, NETDEV_ALIGN); 8430 dev->padded = (char *)dev - (char *)p; 8431 8432 dev->pcpu_refcnt = alloc_percpu(int); 8433 if (!dev->pcpu_refcnt) 8434 goto free_dev; 8435 8436 if (dev_addr_init(dev)) 8437 goto free_pcpu; 8438 8439 dev_mc_init(dev); 8440 dev_uc_init(dev); 8441 8442 dev_net_set(dev, &init_net); 8443 8444 dev->gso_max_size = GSO_MAX_SIZE; 8445 dev->gso_max_segs = GSO_MAX_SEGS; 8446 8447 INIT_LIST_HEAD(&dev->napi_list); 8448 INIT_LIST_HEAD(&dev->unreg_list); 8449 INIT_LIST_HEAD(&dev->close_list); 8450 INIT_LIST_HEAD(&dev->link_watch_list); 8451 INIT_LIST_HEAD(&dev->adj_list.upper); 8452 INIT_LIST_HEAD(&dev->adj_list.lower); 8453 INIT_LIST_HEAD(&dev->ptype_all); 8454 INIT_LIST_HEAD(&dev->ptype_specific); 8455 #ifdef CONFIG_NET_SCHED 8456 hash_init(dev->qdisc_hash); 8457 #endif 8458 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 8459 setup(dev); 8460 8461 if (!dev->tx_queue_len) { 8462 dev->priv_flags |= IFF_NO_QUEUE; 8463 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 8464 } 8465 8466 dev->num_tx_queues = txqs; 8467 dev->real_num_tx_queues = txqs; 8468 if (netif_alloc_netdev_queues(dev)) 8469 goto free_all; 8470 8471 dev->num_rx_queues = rxqs; 8472 dev->real_num_rx_queues = rxqs; 8473 if (netif_alloc_rx_queues(dev)) 8474 goto free_all; 8475 8476 strcpy(dev->name, name); 8477 dev->name_assign_type = name_assign_type; 8478 dev->group = INIT_NETDEV_GROUP; 8479 if (!dev->ethtool_ops) 8480 dev->ethtool_ops = &default_ethtool_ops; 8481 8482 nf_hook_ingress_init(dev); 8483 8484 return dev; 8485 8486 free_all: 8487 free_netdev(dev); 8488 return NULL; 8489 8490 free_pcpu: 8491 free_percpu(dev->pcpu_refcnt); 8492 free_dev: 8493 netdev_freemem(dev); 8494 return NULL; 8495 } 8496 EXPORT_SYMBOL(alloc_netdev_mqs); 8497 8498 /** 8499 * free_netdev - free network device 8500 * @dev: device 8501 * 8502 * This function does the last stage of destroying an allocated device 8503 * interface. The reference to the device object is released. If this 8504 * is the last reference then it will be freed.Must be called in process 8505 * context. 8506 */ 8507 void free_netdev(struct net_device *dev) 8508 { 8509 struct napi_struct *p, *n; 8510 8511 might_sleep(); 8512 netif_free_tx_queues(dev); 8513 netif_free_rx_queues(dev); 8514 8515 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 8516 8517 /* Flush device addresses */ 8518 dev_addr_flush(dev); 8519 8520 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 8521 netif_napi_del(p); 8522 8523 free_percpu(dev->pcpu_refcnt); 8524 dev->pcpu_refcnt = NULL; 8525 8526 /* Compatibility with error handling in drivers */ 8527 if (dev->reg_state == NETREG_UNINITIALIZED) { 8528 netdev_freemem(dev); 8529 return; 8530 } 8531 8532 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 8533 dev->reg_state = NETREG_RELEASED; 8534 8535 /* will free via device release */ 8536 put_device(&dev->dev); 8537 } 8538 EXPORT_SYMBOL(free_netdev); 8539 8540 /** 8541 * synchronize_net - Synchronize with packet receive processing 8542 * 8543 * Wait for packets currently being received to be done. 8544 * Does not block later packets from starting. 8545 */ 8546 void synchronize_net(void) 8547 { 8548 might_sleep(); 8549 if (rtnl_is_locked()) 8550 synchronize_rcu_expedited(); 8551 else 8552 synchronize_rcu(); 8553 } 8554 EXPORT_SYMBOL(synchronize_net); 8555 8556 /** 8557 * unregister_netdevice_queue - remove device from the kernel 8558 * @dev: device 8559 * @head: list 8560 * 8561 * This function shuts down a device interface and removes it 8562 * from the kernel tables. 8563 * If head not NULL, device is queued to be unregistered later. 8564 * 8565 * Callers must hold the rtnl semaphore. You may want 8566 * unregister_netdev() instead of this. 8567 */ 8568 8569 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 8570 { 8571 ASSERT_RTNL(); 8572 8573 if (head) { 8574 list_move_tail(&dev->unreg_list, head); 8575 } else { 8576 rollback_registered(dev); 8577 /* Finish processing unregister after unlock */ 8578 net_set_todo(dev); 8579 } 8580 } 8581 EXPORT_SYMBOL(unregister_netdevice_queue); 8582 8583 /** 8584 * unregister_netdevice_many - unregister many devices 8585 * @head: list of devices 8586 * 8587 * Note: As most callers use a stack allocated list_head, 8588 * we force a list_del() to make sure stack wont be corrupted later. 8589 */ 8590 void unregister_netdevice_many(struct list_head *head) 8591 { 8592 struct net_device *dev; 8593 8594 if (!list_empty(head)) { 8595 rollback_registered_many(head); 8596 list_for_each_entry(dev, head, unreg_list) 8597 net_set_todo(dev); 8598 list_del(head); 8599 } 8600 } 8601 EXPORT_SYMBOL(unregister_netdevice_many); 8602 8603 /** 8604 * unregister_netdev - remove device from the kernel 8605 * @dev: device 8606 * 8607 * This function shuts down a device interface and removes it 8608 * from the kernel tables. 8609 * 8610 * This is just a wrapper for unregister_netdevice that takes 8611 * the rtnl semaphore. In general you want to use this and not 8612 * unregister_netdevice. 8613 */ 8614 void unregister_netdev(struct net_device *dev) 8615 { 8616 rtnl_lock(); 8617 unregister_netdevice(dev); 8618 rtnl_unlock(); 8619 } 8620 EXPORT_SYMBOL(unregister_netdev); 8621 8622 /** 8623 * dev_change_net_namespace - move device to different nethost namespace 8624 * @dev: device 8625 * @net: network namespace 8626 * @pat: If not NULL name pattern to try if the current device name 8627 * is already taken in the destination network namespace. 8628 * 8629 * This function shuts down a device interface and moves it 8630 * to a new network namespace. On success 0 is returned, on 8631 * a failure a netagive errno code is returned. 8632 * 8633 * Callers must hold the rtnl semaphore. 8634 */ 8635 8636 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 8637 { 8638 int err, new_nsid, new_ifindex; 8639 8640 ASSERT_RTNL(); 8641 8642 /* Don't allow namespace local devices to be moved. */ 8643 err = -EINVAL; 8644 if (dev->features & NETIF_F_NETNS_LOCAL) 8645 goto out; 8646 8647 /* Ensure the device has been registrered */ 8648 if (dev->reg_state != NETREG_REGISTERED) 8649 goto out; 8650 8651 /* Get out if there is nothing todo */ 8652 err = 0; 8653 if (net_eq(dev_net(dev), net)) 8654 goto out; 8655 8656 /* Pick the destination device name, and ensure 8657 * we can use it in the destination network namespace. 8658 */ 8659 err = -EEXIST; 8660 if (__dev_get_by_name(net, dev->name)) { 8661 /* We get here if we can't use the current device name */ 8662 if (!pat) 8663 goto out; 8664 if (dev_get_valid_name(net, dev, pat) < 0) 8665 goto out; 8666 } 8667 8668 /* 8669 * And now a mini version of register_netdevice unregister_netdevice. 8670 */ 8671 8672 /* If device is running close it first. */ 8673 dev_close(dev); 8674 8675 /* And unlink it from device chain */ 8676 err = -ENODEV; 8677 unlist_netdevice(dev); 8678 8679 synchronize_net(); 8680 8681 /* Shutdown queueing discipline. */ 8682 dev_shutdown(dev); 8683 8684 /* Notify protocols, that we are about to destroy 8685 * this device. They should clean all the things. 8686 * 8687 * Note that dev->reg_state stays at NETREG_REGISTERED. 8688 * This is wanted because this way 8021q and macvlan know 8689 * the device is just moving and can keep their slaves up. 8690 */ 8691 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8692 rcu_barrier(); 8693 8694 new_nsid = peernet2id_alloc(dev_net(dev), net); 8695 /* If there is an ifindex conflict assign a new one */ 8696 if (__dev_get_by_index(net, dev->ifindex)) 8697 new_ifindex = dev_new_index(net); 8698 else 8699 new_ifindex = dev->ifindex; 8700 8701 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 8702 new_ifindex); 8703 8704 /* 8705 * Flush the unicast and multicast chains 8706 */ 8707 dev_uc_flush(dev); 8708 dev_mc_flush(dev); 8709 8710 /* Send a netdev-removed uevent to the old namespace */ 8711 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 8712 netdev_adjacent_del_links(dev); 8713 8714 /* Actually switch the network namespace */ 8715 dev_net_set(dev, net); 8716 dev->ifindex = new_ifindex; 8717 8718 /* Send a netdev-add uevent to the new namespace */ 8719 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 8720 netdev_adjacent_add_links(dev); 8721 8722 /* Fixup kobjects */ 8723 err = device_rename(&dev->dev, dev->name); 8724 WARN_ON(err); 8725 8726 /* Add the device back in the hashes */ 8727 list_netdevice(dev); 8728 8729 /* Notify protocols, that a new device appeared. */ 8730 call_netdevice_notifiers(NETDEV_REGISTER, dev); 8731 8732 /* 8733 * Prevent userspace races by waiting until the network 8734 * device is fully setup before sending notifications. 8735 */ 8736 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8737 8738 synchronize_net(); 8739 err = 0; 8740 out: 8741 return err; 8742 } 8743 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8744 8745 static int dev_cpu_dead(unsigned int oldcpu) 8746 { 8747 struct sk_buff **list_skb; 8748 struct sk_buff *skb; 8749 unsigned int cpu; 8750 struct softnet_data *sd, *oldsd, *remsd = NULL; 8751 8752 local_irq_disable(); 8753 cpu = smp_processor_id(); 8754 sd = &per_cpu(softnet_data, cpu); 8755 oldsd = &per_cpu(softnet_data, oldcpu); 8756 8757 /* Find end of our completion_queue. */ 8758 list_skb = &sd->completion_queue; 8759 while (*list_skb) 8760 list_skb = &(*list_skb)->next; 8761 /* Append completion queue from offline CPU. */ 8762 *list_skb = oldsd->completion_queue; 8763 oldsd->completion_queue = NULL; 8764 8765 /* Append output queue from offline CPU. */ 8766 if (oldsd->output_queue) { 8767 *sd->output_queue_tailp = oldsd->output_queue; 8768 sd->output_queue_tailp = oldsd->output_queue_tailp; 8769 oldsd->output_queue = NULL; 8770 oldsd->output_queue_tailp = &oldsd->output_queue; 8771 } 8772 /* Append NAPI poll list from offline CPU, with one exception : 8773 * process_backlog() must be called by cpu owning percpu backlog. 8774 * We properly handle process_queue & input_pkt_queue later. 8775 */ 8776 while (!list_empty(&oldsd->poll_list)) { 8777 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8778 struct napi_struct, 8779 poll_list); 8780 8781 list_del_init(&napi->poll_list); 8782 if (napi->poll == process_backlog) 8783 napi->state = 0; 8784 else 8785 ____napi_schedule(sd, napi); 8786 } 8787 8788 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8789 local_irq_enable(); 8790 8791 #ifdef CONFIG_RPS 8792 remsd = oldsd->rps_ipi_list; 8793 oldsd->rps_ipi_list = NULL; 8794 #endif 8795 /* send out pending IPI's on offline CPU */ 8796 net_rps_send_ipi(remsd); 8797 8798 /* Process offline CPU's input_pkt_queue */ 8799 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8800 netif_rx_ni(skb); 8801 input_queue_head_incr(oldsd); 8802 } 8803 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8804 netif_rx_ni(skb); 8805 input_queue_head_incr(oldsd); 8806 } 8807 8808 return 0; 8809 } 8810 8811 /** 8812 * netdev_increment_features - increment feature set by one 8813 * @all: current feature set 8814 * @one: new feature set 8815 * @mask: mask feature set 8816 * 8817 * Computes a new feature set after adding a device with feature set 8818 * @one to the master device with current feature set @all. Will not 8819 * enable anything that is off in @mask. Returns the new feature set. 8820 */ 8821 netdev_features_t netdev_increment_features(netdev_features_t all, 8822 netdev_features_t one, netdev_features_t mask) 8823 { 8824 if (mask & NETIF_F_HW_CSUM) 8825 mask |= NETIF_F_CSUM_MASK; 8826 mask |= NETIF_F_VLAN_CHALLENGED; 8827 8828 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8829 all &= one | ~NETIF_F_ALL_FOR_ALL; 8830 8831 /* If one device supports hw checksumming, set for all. */ 8832 if (all & NETIF_F_HW_CSUM) 8833 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8834 8835 return all; 8836 } 8837 EXPORT_SYMBOL(netdev_increment_features); 8838 8839 static struct hlist_head * __net_init netdev_create_hash(void) 8840 { 8841 int i; 8842 struct hlist_head *hash; 8843 8844 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8845 if (hash != NULL) 8846 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8847 INIT_HLIST_HEAD(&hash[i]); 8848 8849 return hash; 8850 } 8851 8852 /* Initialize per network namespace state */ 8853 static int __net_init netdev_init(struct net *net) 8854 { 8855 if (net != &init_net) 8856 INIT_LIST_HEAD(&net->dev_base_head); 8857 8858 net->dev_name_head = netdev_create_hash(); 8859 if (net->dev_name_head == NULL) 8860 goto err_name; 8861 8862 net->dev_index_head = netdev_create_hash(); 8863 if (net->dev_index_head == NULL) 8864 goto err_idx; 8865 8866 return 0; 8867 8868 err_idx: 8869 kfree(net->dev_name_head); 8870 err_name: 8871 return -ENOMEM; 8872 } 8873 8874 /** 8875 * netdev_drivername - network driver for the device 8876 * @dev: network device 8877 * 8878 * Determine network driver for device. 8879 */ 8880 const char *netdev_drivername(const struct net_device *dev) 8881 { 8882 const struct device_driver *driver; 8883 const struct device *parent; 8884 const char *empty = ""; 8885 8886 parent = dev->dev.parent; 8887 if (!parent) 8888 return empty; 8889 8890 driver = parent->driver; 8891 if (driver && driver->name) 8892 return driver->name; 8893 return empty; 8894 } 8895 8896 static void __netdev_printk(const char *level, const struct net_device *dev, 8897 struct va_format *vaf) 8898 { 8899 if (dev && dev->dev.parent) { 8900 dev_printk_emit(level[1] - '0', 8901 dev->dev.parent, 8902 "%s %s %s%s: %pV", 8903 dev_driver_string(dev->dev.parent), 8904 dev_name(dev->dev.parent), 8905 netdev_name(dev), netdev_reg_state(dev), 8906 vaf); 8907 } else if (dev) { 8908 printk("%s%s%s: %pV", 8909 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8910 } else { 8911 printk("%s(NULL net_device): %pV", level, vaf); 8912 } 8913 } 8914 8915 void netdev_printk(const char *level, const struct net_device *dev, 8916 const char *format, ...) 8917 { 8918 struct va_format vaf; 8919 va_list args; 8920 8921 va_start(args, format); 8922 8923 vaf.fmt = format; 8924 vaf.va = &args; 8925 8926 __netdev_printk(level, dev, &vaf); 8927 8928 va_end(args); 8929 } 8930 EXPORT_SYMBOL(netdev_printk); 8931 8932 #define define_netdev_printk_level(func, level) \ 8933 void func(const struct net_device *dev, const char *fmt, ...) \ 8934 { \ 8935 struct va_format vaf; \ 8936 va_list args; \ 8937 \ 8938 va_start(args, fmt); \ 8939 \ 8940 vaf.fmt = fmt; \ 8941 vaf.va = &args; \ 8942 \ 8943 __netdev_printk(level, dev, &vaf); \ 8944 \ 8945 va_end(args); \ 8946 } \ 8947 EXPORT_SYMBOL(func); 8948 8949 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8950 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8951 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8952 define_netdev_printk_level(netdev_err, KERN_ERR); 8953 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8954 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8955 define_netdev_printk_level(netdev_info, KERN_INFO); 8956 8957 static void __net_exit netdev_exit(struct net *net) 8958 { 8959 kfree(net->dev_name_head); 8960 kfree(net->dev_index_head); 8961 if (net != &init_net) 8962 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 8963 } 8964 8965 static struct pernet_operations __net_initdata netdev_net_ops = { 8966 .init = netdev_init, 8967 .exit = netdev_exit, 8968 }; 8969 8970 static void __net_exit default_device_exit(struct net *net) 8971 { 8972 struct net_device *dev, *aux; 8973 /* 8974 * Push all migratable network devices back to the 8975 * initial network namespace 8976 */ 8977 rtnl_lock(); 8978 for_each_netdev_safe(net, dev, aux) { 8979 int err; 8980 char fb_name[IFNAMSIZ]; 8981 8982 /* Ignore unmoveable devices (i.e. loopback) */ 8983 if (dev->features & NETIF_F_NETNS_LOCAL) 8984 continue; 8985 8986 /* Leave virtual devices for the generic cleanup */ 8987 if (dev->rtnl_link_ops) 8988 continue; 8989 8990 /* Push remaining network devices to init_net */ 8991 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8992 err = dev_change_net_namespace(dev, &init_net, fb_name); 8993 if (err) { 8994 pr_emerg("%s: failed to move %s to init_net: %d\n", 8995 __func__, dev->name, err); 8996 BUG(); 8997 } 8998 } 8999 rtnl_unlock(); 9000 } 9001 9002 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 9003 { 9004 /* Return with the rtnl_lock held when there are no network 9005 * devices unregistering in any network namespace in net_list. 9006 */ 9007 struct net *net; 9008 bool unregistering; 9009 DEFINE_WAIT_FUNC(wait, woken_wake_function); 9010 9011 add_wait_queue(&netdev_unregistering_wq, &wait); 9012 for (;;) { 9013 unregistering = false; 9014 rtnl_lock(); 9015 list_for_each_entry(net, net_list, exit_list) { 9016 if (net->dev_unreg_count > 0) { 9017 unregistering = true; 9018 break; 9019 } 9020 } 9021 if (!unregistering) 9022 break; 9023 __rtnl_unlock(); 9024 9025 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 9026 } 9027 remove_wait_queue(&netdev_unregistering_wq, &wait); 9028 } 9029 9030 static void __net_exit default_device_exit_batch(struct list_head *net_list) 9031 { 9032 /* At exit all network devices most be removed from a network 9033 * namespace. Do this in the reverse order of registration. 9034 * Do this across as many network namespaces as possible to 9035 * improve batching efficiency. 9036 */ 9037 struct net_device *dev; 9038 struct net *net; 9039 LIST_HEAD(dev_kill_list); 9040 9041 /* To prevent network device cleanup code from dereferencing 9042 * loopback devices or network devices that have been freed 9043 * wait here for all pending unregistrations to complete, 9044 * before unregistring the loopback device and allowing the 9045 * network namespace be freed. 9046 * 9047 * The netdev todo list containing all network devices 9048 * unregistrations that happen in default_device_exit_batch 9049 * will run in the rtnl_unlock() at the end of 9050 * default_device_exit_batch. 9051 */ 9052 rtnl_lock_unregistering(net_list); 9053 list_for_each_entry(net, net_list, exit_list) { 9054 for_each_netdev_reverse(net, dev) { 9055 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 9056 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 9057 else 9058 unregister_netdevice_queue(dev, &dev_kill_list); 9059 } 9060 } 9061 unregister_netdevice_many(&dev_kill_list); 9062 rtnl_unlock(); 9063 } 9064 9065 static struct pernet_operations __net_initdata default_device_ops = { 9066 .exit = default_device_exit, 9067 .exit_batch = default_device_exit_batch, 9068 }; 9069 9070 /* 9071 * Initialize the DEV module. At boot time this walks the device list and 9072 * unhooks any devices that fail to initialise (normally hardware not 9073 * present) and leaves us with a valid list of present and active devices. 9074 * 9075 */ 9076 9077 /* 9078 * This is called single threaded during boot, so no need 9079 * to take the rtnl semaphore. 9080 */ 9081 static int __init net_dev_init(void) 9082 { 9083 int i, rc = -ENOMEM; 9084 9085 BUG_ON(!dev_boot_phase); 9086 9087 if (dev_proc_init()) 9088 goto out; 9089 9090 if (netdev_kobject_init()) 9091 goto out; 9092 9093 INIT_LIST_HEAD(&ptype_all); 9094 for (i = 0; i < PTYPE_HASH_SIZE; i++) 9095 INIT_LIST_HEAD(&ptype_base[i]); 9096 9097 INIT_LIST_HEAD(&offload_base); 9098 9099 if (register_pernet_subsys(&netdev_net_ops)) 9100 goto out; 9101 9102 /* 9103 * Initialise the packet receive queues. 9104 */ 9105 9106 for_each_possible_cpu(i) { 9107 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 9108 struct softnet_data *sd = &per_cpu(softnet_data, i); 9109 9110 INIT_WORK(flush, flush_backlog); 9111 9112 skb_queue_head_init(&sd->input_pkt_queue); 9113 skb_queue_head_init(&sd->process_queue); 9114 #ifdef CONFIG_XFRM_OFFLOAD 9115 skb_queue_head_init(&sd->xfrm_backlog); 9116 #endif 9117 INIT_LIST_HEAD(&sd->poll_list); 9118 sd->output_queue_tailp = &sd->output_queue; 9119 #ifdef CONFIG_RPS 9120 sd->csd.func = rps_trigger_softirq; 9121 sd->csd.info = sd; 9122 sd->cpu = i; 9123 #endif 9124 9125 sd->backlog.poll = process_backlog; 9126 sd->backlog.weight = weight_p; 9127 } 9128 9129 dev_boot_phase = 0; 9130 9131 /* The loopback device is special if any other network devices 9132 * is present in a network namespace the loopback device must 9133 * be present. Since we now dynamically allocate and free the 9134 * loopback device ensure this invariant is maintained by 9135 * keeping the loopback device as the first device on the 9136 * list of network devices. Ensuring the loopback devices 9137 * is the first device that appears and the last network device 9138 * that disappears. 9139 */ 9140 if (register_pernet_device(&loopback_net_ops)) 9141 goto out; 9142 9143 if (register_pernet_device(&default_device_ops)) 9144 goto out; 9145 9146 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 9147 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 9148 9149 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 9150 NULL, dev_cpu_dead); 9151 WARN_ON(rc < 0); 9152 rc = 0; 9153 out: 9154 return rc; 9155 } 9156 9157 subsys_initcall(net_dev_init); 9158