xref: /openbmc/linux/net/core/dev.c (revision d2ba09c1)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149 
150 #include "net-sysfs.h"
151 
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154 
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;	/* Taps */
162 static struct list_head offload_base __read_mostly;
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166 					 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static seqcount_t devnet_rename_seq;
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 	spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232 
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236 	struct net *net = dev_net(dev);
237 
238 	ASSERT_RTNL();
239 
240 	write_lock_bh(&dev_base_lock);
241 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 	hlist_add_head_rcu(&dev->index_hlist,
244 			   dev_index_hash(net, dev->ifindex));
245 	write_unlock_bh(&dev_base_lock);
246 
247 	dev_base_seq_inc(net);
248 }
249 
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255 	ASSERT_RTNL();
256 
257 	/* Unlink dev from the device chain */
258 	write_lock_bh(&dev_base_lock);
259 	list_del_rcu(&dev->dev_list);
260 	hlist_del_rcu(&dev->name_hlist);
261 	hlist_del_rcu(&dev->index_hlist);
262 	write_unlock_bh(&dev_base_lock);
263 
264 	dev_base_seq_inc(dev_net(dev));
265 }
266 
267 /*
268  *	Our notifier list
269  */
270 
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272 
273 /*
274  *	Device drivers call our routines to queue packets here. We empty the
275  *	queue in the local softnet handler.
276  */
277 
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280 
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302 
303 static const char *const netdev_lock_name[] = {
304 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319 
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322 
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325 	int i;
326 
327 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 		if (netdev_lock_type[i] == dev_type)
329 			return i;
330 	/* the last key is used by default */
331 	return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333 
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 						 unsigned short dev_type)
336 {
337 	int i;
338 
339 	i = netdev_lock_pos(dev_type);
340 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 				   netdev_lock_name[i]);
342 }
343 
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 	int i;
347 
348 	i = netdev_lock_pos(dev->type);
349 	lockdep_set_class_and_name(&dev->addr_list_lock,
350 				   &netdev_addr_lock_key[i],
351 				   netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 						 unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362 
363 /*******************************************************************************
364  *
365  *		Protocol management and registration routines
366  *
367  *******************************************************************************/
368 
369 
370 /*
371  *	Add a protocol ID to the list. Now that the input handler is
372  *	smarter we can dispense with all the messy stuff that used to be
373  *	here.
374  *
375  *	BEWARE!!! Protocol handlers, mangling input packets,
376  *	MUST BE last in hash buckets and checking protocol handlers
377  *	MUST start from promiscuous ptype_all chain in net_bh.
378  *	It is true now, do not change it.
379  *	Explanation follows: if protocol handler, mangling packet, will
380  *	be the first on list, it is not able to sense, that packet
381  *	is cloned and should be copied-on-write, so that it will
382  *	change it and subsequent readers will get broken packet.
383  *							--ANK (980803)
384  */
385 
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388 	if (pt->type == htons(ETH_P_ALL))
389 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 	else
391 		return pt->dev ? &pt->dev->ptype_specific :
392 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394 
395 /**
396  *	dev_add_pack - add packet handler
397  *	@pt: packet type declaration
398  *
399  *	Add a protocol handler to the networking stack. The passed &packet_type
400  *	is linked into kernel lists and may not be freed until it has been
401  *	removed from the kernel lists.
402  *
403  *	This call does not sleep therefore it can not
404  *	guarantee all CPU's that are in middle of receiving packets
405  *	will see the new packet type (until the next received packet).
406  */
407 
408 void dev_add_pack(struct packet_type *pt)
409 {
410 	struct list_head *head = ptype_head(pt);
411 
412 	spin_lock(&ptype_lock);
413 	list_add_rcu(&pt->list, head);
414 	spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417 
418 /**
419  *	__dev_remove_pack	 - remove packet handler
420  *	@pt: packet type declaration
421  *
422  *	Remove a protocol handler that was previously added to the kernel
423  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *	from the kernel lists and can be freed or reused once this function
425  *	returns.
426  *
427  *      The packet type might still be in use by receivers
428  *	and must not be freed until after all the CPU's have gone
429  *	through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433 	struct list_head *head = ptype_head(pt);
434 	struct packet_type *pt1;
435 
436 	spin_lock(&ptype_lock);
437 
438 	list_for_each_entry(pt1, head, list) {
439 		if (pt == pt1) {
440 			list_del_rcu(&pt->list);
441 			goto out;
442 		}
443 	}
444 
445 	pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447 	spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450 
451 /**
452  *	dev_remove_pack	 - remove packet handler
453  *	@pt: packet type declaration
454  *
455  *	Remove a protocol handler that was previously added to the kernel
456  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *	from the kernel lists and can be freed or reused once this function
458  *	returns.
459  *
460  *	This call sleeps to guarantee that no CPU is looking at the packet
461  *	type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465 	__dev_remove_pack(pt);
466 
467 	synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470 
471 
472 /**
473  *	dev_add_offload - register offload handlers
474  *	@po: protocol offload declaration
475  *
476  *	Add protocol offload handlers to the networking stack. The passed
477  *	&proto_offload is linked into kernel lists and may not be freed until
478  *	it has been removed from the kernel lists.
479  *
480  *	This call does not sleep therefore it can not
481  *	guarantee all CPU's that are in middle of receiving packets
482  *	will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486 	struct packet_offload *elem;
487 
488 	spin_lock(&offload_lock);
489 	list_for_each_entry(elem, &offload_base, list) {
490 		if (po->priority < elem->priority)
491 			break;
492 	}
493 	list_add_rcu(&po->list, elem->list.prev);
494 	spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497 
498 /**
499  *	__dev_remove_offload	 - remove offload handler
500  *	@po: packet offload declaration
501  *
502  *	Remove a protocol offload handler that was previously added to the
503  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *	is removed from the kernel lists and can be freed or reused once this
505  *	function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *	and must not be freed until after all the CPU's have gone
509  *	through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513 	struct list_head *head = &offload_base;
514 	struct packet_offload *po1;
515 
516 	spin_lock(&offload_lock);
517 
518 	list_for_each_entry(po1, head, list) {
519 		if (po == po1) {
520 			list_del_rcu(&po->list);
521 			goto out;
522 		}
523 	}
524 
525 	pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 	spin_unlock(&offload_lock);
528 }
529 
530 /**
531  *	dev_remove_offload	 - remove packet offload handler
532  *	@po: packet offload declaration
533  *
534  *	Remove a packet offload handler that was previously added to the kernel
535  *	offload handlers by dev_add_offload(). The passed &offload_type is
536  *	removed from the kernel lists and can be freed or reused once this
537  *	function returns.
538  *
539  *	This call sleeps to guarantee that no CPU is looking at the packet
540  *	type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544 	__dev_remove_offload(po);
545 
546 	synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549 
550 /******************************************************************************
551  *
552  *		      Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555 
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558 
559 /**
560  *	netdev_boot_setup_add	- add new setup entry
561  *	@name: name of the device
562  *	@map: configured settings for the device
563  *
564  *	Adds new setup entry to the dev_boot_setup list.  The function
565  *	returns 0 on error and 1 on success.  This is a generic routine to
566  *	all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570 	struct netdev_boot_setup *s;
571 	int i;
572 
573 	s = dev_boot_setup;
574 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 			memset(s[i].name, 0, sizeof(s[i].name));
577 			strlcpy(s[i].name, name, IFNAMSIZ);
578 			memcpy(&s[i].map, map, sizeof(s[i].map));
579 			break;
580 		}
581 	}
582 
583 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585 
586 /**
587  * netdev_boot_setup_check	- check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597 	struct netdev_boot_setup *s = dev_boot_setup;
598 	int i;
599 
600 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 		    !strcmp(dev->name, s[i].name)) {
603 			dev->irq = s[i].map.irq;
604 			dev->base_addr = s[i].map.base_addr;
605 			dev->mem_start = s[i].map.mem_start;
606 			dev->mem_end = s[i].map.mem_end;
607 			return 1;
608 		}
609 	}
610 	return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613 
614 
615 /**
616  * netdev_boot_base	- get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627 	const struct netdev_boot_setup *s = dev_boot_setup;
628 	char name[IFNAMSIZ];
629 	int i;
630 
631 	sprintf(name, "%s%d", prefix, unit);
632 
633 	/*
634 	 * If device already registered then return base of 1
635 	 * to indicate not to probe for this interface
636 	 */
637 	if (__dev_get_by_name(&init_net, name))
638 		return 1;
639 
640 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 		if (!strcmp(name, s[i].name))
642 			return s[i].map.base_addr;
643 	return 0;
644 }
645 
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651 	int ints[5];
652 	struct ifmap map;
653 
654 	str = get_options(str, ARRAY_SIZE(ints), ints);
655 	if (!str || !*str)
656 		return 0;
657 
658 	/* Save settings */
659 	memset(&map, 0, sizeof(map));
660 	if (ints[0] > 0)
661 		map.irq = ints[1];
662 	if (ints[0] > 1)
663 		map.base_addr = ints[2];
664 	if (ints[0] > 2)
665 		map.mem_start = ints[3];
666 	if (ints[0] > 3)
667 		map.mem_end = ints[4];
668 
669 	/* Add new entry to the list */
670 	return netdev_boot_setup_add(str, &map);
671 }
672 
673 __setup("netdev=", netdev_boot_setup);
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
724 /**
725  *	__dev_get_by_name	- find a device by its name
726  *	@net: the applicable net namespace
727  *	@name: name to find
728  *
729  *	Find an interface by name. Must be called under RTNL semaphore
730  *	or @dev_base_lock. If the name is found a pointer to the device
731  *	is returned. If the name is not found then %NULL is returned. The
732  *	reference counters are not incremented so the caller must be
733  *	careful with locks.
734  */
735 
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738 	struct net_device *dev;
739 	struct hlist_head *head = dev_name_hash(net, name);
740 
741 	hlist_for_each_entry(dev, head, name_hlist)
742 		if (!strncmp(dev->name, name, IFNAMSIZ))
743 			return dev;
744 
745 	return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748 
749 /**
750  * dev_get_by_name_rcu	- find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760 
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763 	struct net_device *dev;
764 	struct hlist_head *head = dev_name_hash(net, name);
765 
766 	hlist_for_each_entry_rcu(dev, head, name_hlist)
767 		if (!strncmp(dev->name, name, IFNAMSIZ))
768 			return dev;
769 
770 	return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773 
774 /**
775  *	dev_get_by_name		- find a device by its name
776  *	@net: the applicable net namespace
777  *	@name: name to find
778  *
779  *	Find an interface by name. This can be called from any
780  *	context and does its own locking. The returned handle has
781  *	the usage count incremented and the caller must use dev_put() to
782  *	release it when it is no longer needed. %NULL is returned if no
783  *	matching device is found.
784  */
785 
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788 	struct net_device *dev;
789 
790 	rcu_read_lock();
791 	dev = dev_get_by_name_rcu(net, name);
792 	if (dev)
793 		dev_hold(dev);
794 	rcu_read_unlock();
795 	return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798 
799 /**
800  *	__dev_get_by_index - find a device by its ifindex
801  *	@net: the applicable net namespace
802  *	@ifindex: index of device
803  *
804  *	Search for an interface by index. Returns %NULL if the device
805  *	is not found or a pointer to the device. The device has not
806  *	had its reference counter increased so the caller must be careful
807  *	about locking. The caller must hold either the RTNL semaphore
808  *	or @dev_base_lock.
809  */
810 
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813 	struct net_device *dev;
814 	struct hlist_head *head = dev_index_hash(net, ifindex);
815 
816 	hlist_for_each_entry(dev, head, index_hlist)
817 		if (dev->ifindex == ifindex)
818 			return dev;
819 
820 	return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823 
824 /**
825  *	dev_get_by_index_rcu - find a device by its ifindex
826  *	@net: the applicable net namespace
827  *	@ifindex: index of device
828  *
829  *	Search for an interface by index. Returns %NULL if the device
830  *	is not found or a pointer to the device. The device has not
831  *	had its reference counter increased so the caller must be careful
832  *	about locking. The caller must hold RCU lock.
833  */
834 
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837 	struct net_device *dev;
838 	struct hlist_head *head = dev_index_hash(net, ifindex);
839 
840 	hlist_for_each_entry_rcu(dev, head, index_hlist)
841 		if (dev->ifindex == ifindex)
842 			return dev;
843 
844 	return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847 
848 
849 /**
850  *	dev_get_by_index - find a device by its ifindex
851  *	@net: the applicable net namespace
852  *	@ifindex: index of device
853  *
854  *	Search for an interface by index. Returns NULL if the device
855  *	is not found or a pointer to the device. The device returned has
856  *	had a reference added and the pointer is safe until the user calls
857  *	dev_put to indicate they have finished with it.
858  */
859 
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862 	struct net_device *dev;
863 
864 	rcu_read_lock();
865 	dev = dev_get_by_index_rcu(net, ifindex);
866 	if (dev)
867 		dev_hold(dev);
868 	rcu_read_unlock();
869 	return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872 
873 /**
874  *	dev_get_by_napi_id - find a device by napi_id
875  *	@napi_id: ID of the NAPI struct
876  *
877  *	Search for an interface by NAPI ID. Returns %NULL if the device
878  *	is not found or a pointer to the device. The device has not had
879  *	its reference counter increased so the caller must be careful
880  *	about locking. The caller must hold RCU lock.
881  */
882 
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885 	struct napi_struct *napi;
886 
887 	WARN_ON_ONCE(!rcu_read_lock_held());
888 
889 	if (napi_id < MIN_NAPI_ID)
890 		return NULL;
891 
892 	napi = napi_by_id(napi_id);
893 
894 	return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897 
898 /**
899  *	netdev_get_name - get a netdevice name, knowing its ifindex.
900  *	@net: network namespace
901  *	@name: a pointer to the buffer where the name will be stored.
902  *	@ifindex: the ifindex of the interface to get the name from.
903  *
904  *	The use of raw_seqcount_begin() and cond_resched() before
905  *	retrying is required as we want to give the writers a chance
906  *	to complete when CONFIG_PREEMPT is not set.
907  */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910 	struct net_device *dev;
911 	unsigned int seq;
912 
913 retry:
914 	seq = raw_seqcount_begin(&devnet_rename_seq);
915 	rcu_read_lock();
916 	dev = dev_get_by_index_rcu(net, ifindex);
917 	if (!dev) {
918 		rcu_read_unlock();
919 		return -ENODEV;
920 	}
921 
922 	strcpy(name, dev->name);
923 	rcu_read_unlock();
924 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 		cond_resched();
926 		goto retry;
927 	}
928 
929 	return 0;
930 }
931 
932 /**
933  *	dev_getbyhwaddr_rcu - find a device by its hardware address
934  *	@net: the applicable net namespace
935  *	@type: media type of device
936  *	@ha: hardware address
937  *
938  *	Search for an interface by MAC address. Returns NULL if the device
939  *	is not found or a pointer to the device.
940  *	The caller must hold RCU or RTNL.
941  *	The returned device has not had its ref count increased
942  *	and the caller must therefore be careful about locking
943  *
944  */
945 
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 				       const char *ha)
948 {
949 	struct net_device *dev;
950 
951 	for_each_netdev_rcu(net, dev)
952 		if (dev->type == type &&
953 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
954 			return dev;
955 
956 	return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959 
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962 	struct net_device *dev;
963 
964 	ASSERT_RTNL();
965 	for_each_netdev(net, dev)
966 		if (dev->type == type)
967 			return dev;
968 
969 	return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972 
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975 	struct net_device *dev, *ret = NULL;
976 
977 	rcu_read_lock();
978 	for_each_netdev_rcu(net, dev)
979 		if (dev->type == type) {
980 			dev_hold(dev);
981 			ret = dev;
982 			break;
983 		}
984 	rcu_read_unlock();
985 	return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988 
989 /**
990  *	__dev_get_by_flags - find any device with given flags
991  *	@net: the applicable net namespace
992  *	@if_flags: IFF_* values
993  *	@mask: bitmask of bits in if_flags to check
994  *
995  *	Search for any interface with the given flags. Returns NULL if a device
996  *	is not found or a pointer to the device. Must be called inside
997  *	rtnl_lock(), and result refcount is unchanged.
998  */
999 
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 				      unsigned short mask)
1002 {
1003 	struct net_device *dev, *ret;
1004 
1005 	ASSERT_RTNL();
1006 
1007 	ret = NULL;
1008 	for_each_netdev(net, dev) {
1009 		if (((dev->flags ^ if_flags) & mask) == 0) {
1010 			ret = dev;
1011 			break;
1012 		}
1013 	}
1014 	return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017 
1018 /**
1019  *	dev_valid_name - check if name is okay for network device
1020  *	@name: name string
1021  *
1022  *	Network device names need to be valid file names to
1023  *	to allow sysfs to work.  We also disallow any kind of
1024  *	whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028 	if (*name == '\0')
1029 		return false;
1030 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1031 		return false;
1032 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 		return false;
1034 
1035 	while (*name) {
1036 		if (*name == '/' || *name == ':' || isspace(*name))
1037 			return false;
1038 		name++;
1039 	}
1040 	return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043 
1044 /**
1045  *	__dev_alloc_name - allocate a name for a device
1046  *	@net: network namespace to allocate the device name in
1047  *	@name: name format string
1048  *	@buf:  scratch buffer and result name string
1049  *
1050  *	Passed a format string - eg "lt%d" it will try and find a suitable
1051  *	id. It scans list of devices to build up a free map, then chooses
1052  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *	while allocating the name and adding the device in order to avoid
1054  *	duplicates.
1055  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *	Returns the number of the unit assigned or a negative errno code.
1057  */
1058 
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061 	int i = 0;
1062 	const char *p;
1063 	const int max_netdevices = 8*PAGE_SIZE;
1064 	unsigned long *inuse;
1065 	struct net_device *d;
1066 
1067 	if (!dev_valid_name(name))
1068 		return -EINVAL;
1069 
1070 	p = strchr(name, '%');
1071 	if (p) {
1072 		/*
1073 		 * Verify the string as this thing may have come from
1074 		 * the user.  There must be either one "%d" and no other "%"
1075 		 * characters.
1076 		 */
1077 		if (p[1] != 'd' || strchr(p + 2, '%'))
1078 			return -EINVAL;
1079 
1080 		/* Use one page as a bit array of possible slots */
1081 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082 		if (!inuse)
1083 			return -ENOMEM;
1084 
1085 		for_each_netdev(net, d) {
1086 			if (!sscanf(d->name, name, &i))
1087 				continue;
1088 			if (i < 0 || i >= max_netdevices)
1089 				continue;
1090 
1091 			/*  avoid cases where sscanf is not exact inverse of printf */
1092 			snprintf(buf, IFNAMSIZ, name, i);
1093 			if (!strncmp(buf, d->name, IFNAMSIZ))
1094 				set_bit(i, inuse);
1095 		}
1096 
1097 		i = find_first_zero_bit(inuse, max_netdevices);
1098 		free_page((unsigned long) inuse);
1099 	}
1100 
1101 	snprintf(buf, IFNAMSIZ, name, i);
1102 	if (!__dev_get_by_name(net, buf))
1103 		return i;
1104 
1105 	/* It is possible to run out of possible slots
1106 	 * when the name is long and there isn't enough space left
1107 	 * for the digits, or if all bits are used.
1108 	 */
1109 	return -ENFILE;
1110 }
1111 
1112 static int dev_alloc_name_ns(struct net *net,
1113 			     struct net_device *dev,
1114 			     const char *name)
1115 {
1116 	char buf[IFNAMSIZ];
1117 	int ret;
1118 
1119 	BUG_ON(!net);
1120 	ret = __dev_alloc_name(net, name, buf);
1121 	if (ret >= 0)
1122 		strlcpy(dev->name, buf, IFNAMSIZ);
1123 	return ret;
1124 }
1125 
1126 /**
1127  *	dev_alloc_name - allocate a name for a device
1128  *	@dev: device
1129  *	@name: name format string
1130  *
1131  *	Passed a format string - eg "lt%d" it will try and find a suitable
1132  *	id. It scans list of devices to build up a free map, then chooses
1133  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1134  *	while allocating the name and adding the device in order to avoid
1135  *	duplicates.
1136  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137  *	Returns the number of the unit assigned or a negative errno code.
1138  */
1139 
1140 int dev_alloc_name(struct net_device *dev, const char *name)
1141 {
1142 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1143 }
1144 EXPORT_SYMBOL(dev_alloc_name);
1145 
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 		       const char *name)
1148 {
1149 	BUG_ON(!net);
1150 
1151 	if (!dev_valid_name(name))
1152 		return -EINVAL;
1153 
1154 	if (strchr(name, '%'))
1155 		return dev_alloc_name_ns(net, dev, name);
1156 	else if (__dev_get_by_name(net, name))
1157 		return -EEXIST;
1158 	else if (dev->name != name)
1159 		strlcpy(dev->name, name, IFNAMSIZ);
1160 
1161 	return 0;
1162 }
1163 EXPORT_SYMBOL(dev_get_valid_name);
1164 
1165 /**
1166  *	dev_change_name - change name of a device
1167  *	@dev: device
1168  *	@newname: name (or format string) must be at least IFNAMSIZ
1169  *
1170  *	Change name of a device, can pass format strings "eth%d".
1171  *	for wildcarding.
1172  */
1173 int dev_change_name(struct net_device *dev, const char *newname)
1174 {
1175 	unsigned char old_assign_type;
1176 	char oldname[IFNAMSIZ];
1177 	int err = 0;
1178 	int ret;
1179 	struct net *net;
1180 
1181 	ASSERT_RTNL();
1182 	BUG_ON(!dev_net(dev));
1183 
1184 	net = dev_net(dev);
1185 	if (dev->flags & IFF_UP)
1186 		return -EBUSY;
1187 
1188 	write_seqcount_begin(&devnet_rename_seq);
1189 
1190 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191 		write_seqcount_end(&devnet_rename_seq);
1192 		return 0;
1193 	}
1194 
1195 	memcpy(oldname, dev->name, IFNAMSIZ);
1196 
1197 	err = dev_get_valid_name(net, dev, newname);
1198 	if (err < 0) {
1199 		write_seqcount_end(&devnet_rename_seq);
1200 		return err;
1201 	}
1202 
1203 	if (oldname[0] && !strchr(oldname, '%'))
1204 		netdev_info(dev, "renamed from %s\n", oldname);
1205 
1206 	old_assign_type = dev->name_assign_type;
1207 	dev->name_assign_type = NET_NAME_RENAMED;
1208 
1209 rollback:
1210 	ret = device_rename(&dev->dev, dev->name);
1211 	if (ret) {
1212 		memcpy(dev->name, oldname, IFNAMSIZ);
1213 		dev->name_assign_type = old_assign_type;
1214 		write_seqcount_end(&devnet_rename_seq);
1215 		return ret;
1216 	}
1217 
1218 	write_seqcount_end(&devnet_rename_seq);
1219 
1220 	netdev_adjacent_rename_links(dev, oldname);
1221 
1222 	write_lock_bh(&dev_base_lock);
1223 	hlist_del_rcu(&dev->name_hlist);
1224 	write_unlock_bh(&dev_base_lock);
1225 
1226 	synchronize_rcu();
1227 
1228 	write_lock_bh(&dev_base_lock);
1229 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230 	write_unlock_bh(&dev_base_lock);
1231 
1232 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233 	ret = notifier_to_errno(ret);
1234 
1235 	if (ret) {
1236 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1237 		if (err >= 0) {
1238 			err = ret;
1239 			write_seqcount_begin(&devnet_rename_seq);
1240 			memcpy(dev->name, oldname, IFNAMSIZ);
1241 			memcpy(oldname, newname, IFNAMSIZ);
1242 			dev->name_assign_type = old_assign_type;
1243 			old_assign_type = NET_NAME_RENAMED;
1244 			goto rollback;
1245 		} else {
1246 			pr_err("%s: name change rollback failed: %d\n",
1247 			       dev->name, ret);
1248 		}
1249 	}
1250 
1251 	return err;
1252 }
1253 
1254 /**
1255  *	dev_set_alias - change ifalias of a device
1256  *	@dev: device
1257  *	@alias: name up to IFALIASZ
1258  *	@len: limit of bytes to copy from info
1259  *
1260  *	Set ifalias for a device,
1261  */
1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263 {
1264 	struct dev_ifalias *new_alias = NULL;
1265 
1266 	if (len >= IFALIASZ)
1267 		return -EINVAL;
1268 
1269 	if (len) {
1270 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271 		if (!new_alias)
1272 			return -ENOMEM;
1273 
1274 		memcpy(new_alias->ifalias, alias, len);
1275 		new_alias->ifalias[len] = 0;
1276 	}
1277 
1278 	mutex_lock(&ifalias_mutex);
1279 	rcu_swap_protected(dev->ifalias, new_alias,
1280 			   mutex_is_locked(&ifalias_mutex));
1281 	mutex_unlock(&ifalias_mutex);
1282 
1283 	if (new_alias)
1284 		kfree_rcu(new_alias, rcuhead);
1285 
1286 	return len;
1287 }
1288 EXPORT_SYMBOL(dev_set_alias);
1289 
1290 /**
1291  *	dev_get_alias - get ifalias of a device
1292  *	@dev: device
1293  *	@name: buffer to store name of ifalias
1294  *	@len: size of buffer
1295  *
1296  *	get ifalias for a device.  Caller must make sure dev cannot go
1297  *	away,  e.g. rcu read lock or own a reference count to device.
1298  */
1299 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1300 {
1301 	const struct dev_ifalias *alias;
1302 	int ret = 0;
1303 
1304 	rcu_read_lock();
1305 	alias = rcu_dereference(dev->ifalias);
1306 	if (alias)
1307 		ret = snprintf(name, len, "%s", alias->ifalias);
1308 	rcu_read_unlock();
1309 
1310 	return ret;
1311 }
1312 
1313 /**
1314  *	netdev_features_change - device changes features
1315  *	@dev: device to cause notification
1316  *
1317  *	Called to indicate a device has changed features.
1318  */
1319 void netdev_features_change(struct net_device *dev)
1320 {
1321 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1322 }
1323 EXPORT_SYMBOL(netdev_features_change);
1324 
1325 /**
1326  *	netdev_state_change - device changes state
1327  *	@dev: device to cause notification
1328  *
1329  *	Called to indicate a device has changed state. This function calls
1330  *	the notifier chains for netdev_chain and sends a NEWLINK message
1331  *	to the routing socket.
1332  */
1333 void netdev_state_change(struct net_device *dev)
1334 {
1335 	if (dev->flags & IFF_UP) {
1336 		struct netdev_notifier_change_info change_info = {
1337 			.info.dev = dev,
1338 		};
1339 
1340 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1341 					      &change_info.info);
1342 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1343 	}
1344 }
1345 EXPORT_SYMBOL(netdev_state_change);
1346 
1347 /**
1348  * netdev_notify_peers - notify network peers about existence of @dev
1349  * @dev: network device
1350  *
1351  * Generate traffic such that interested network peers are aware of
1352  * @dev, such as by generating a gratuitous ARP. This may be used when
1353  * a device wants to inform the rest of the network about some sort of
1354  * reconfiguration such as a failover event or virtual machine
1355  * migration.
1356  */
1357 void netdev_notify_peers(struct net_device *dev)
1358 {
1359 	rtnl_lock();
1360 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1361 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1362 	rtnl_unlock();
1363 }
1364 EXPORT_SYMBOL(netdev_notify_peers);
1365 
1366 static int __dev_open(struct net_device *dev)
1367 {
1368 	const struct net_device_ops *ops = dev->netdev_ops;
1369 	int ret;
1370 
1371 	ASSERT_RTNL();
1372 
1373 	if (!netif_device_present(dev))
1374 		return -ENODEV;
1375 
1376 	/* Block netpoll from trying to do any rx path servicing.
1377 	 * If we don't do this there is a chance ndo_poll_controller
1378 	 * or ndo_poll may be running while we open the device
1379 	 */
1380 	netpoll_poll_disable(dev);
1381 
1382 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1383 	ret = notifier_to_errno(ret);
1384 	if (ret)
1385 		return ret;
1386 
1387 	set_bit(__LINK_STATE_START, &dev->state);
1388 
1389 	if (ops->ndo_validate_addr)
1390 		ret = ops->ndo_validate_addr(dev);
1391 
1392 	if (!ret && ops->ndo_open)
1393 		ret = ops->ndo_open(dev);
1394 
1395 	netpoll_poll_enable(dev);
1396 
1397 	if (ret)
1398 		clear_bit(__LINK_STATE_START, &dev->state);
1399 	else {
1400 		dev->flags |= IFF_UP;
1401 		dev_set_rx_mode(dev);
1402 		dev_activate(dev);
1403 		add_device_randomness(dev->dev_addr, dev->addr_len);
1404 	}
1405 
1406 	return ret;
1407 }
1408 
1409 /**
1410  *	dev_open	- prepare an interface for use.
1411  *	@dev:	device to open
1412  *
1413  *	Takes a device from down to up state. The device's private open
1414  *	function is invoked and then the multicast lists are loaded. Finally
1415  *	the device is moved into the up state and a %NETDEV_UP message is
1416  *	sent to the netdev notifier chain.
1417  *
1418  *	Calling this function on an active interface is a nop. On a failure
1419  *	a negative errno code is returned.
1420  */
1421 int dev_open(struct net_device *dev)
1422 {
1423 	int ret;
1424 
1425 	if (dev->flags & IFF_UP)
1426 		return 0;
1427 
1428 	ret = __dev_open(dev);
1429 	if (ret < 0)
1430 		return ret;
1431 
1432 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1433 	call_netdevice_notifiers(NETDEV_UP, dev);
1434 
1435 	return ret;
1436 }
1437 EXPORT_SYMBOL(dev_open);
1438 
1439 static void __dev_close_many(struct list_head *head)
1440 {
1441 	struct net_device *dev;
1442 
1443 	ASSERT_RTNL();
1444 	might_sleep();
1445 
1446 	list_for_each_entry(dev, head, close_list) {
1447 		/* Temporarily disable netpoll until the interface is down */
1448 		netpoll_poll_disable(dev);
1449 
1450 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1451 
1452 		clear_bit(__LINK_STATE_START, &dev->state);
1453 
1454 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1455 		 * can be even on different cpu. So just clear netif_running().
1456 		 *
1457 		 * dev->stop() will invoke napi_disable() on all of it's
1458 		 * napi_struct instances on this device.
1459 		 */
1460 		smp_mb__after_atomic(); /* Commit netif_running(). */
1461 	}
1462 
1463 	dev_deactivate_many(head);
1464 
1465 	list_for_each_entry(dev, head, close_list) {
1466 		const struct net_device_ops *ops = dev->netdev_ops;
1467 
1468 		/*
1469 		 *	Call the device specific close. This cannot fail.
1470 		 *	Only if device is UP
1471 		 *
1472 		 *	We allow it to be called even after a DETACH hot-plug
1473 		 *	event.
1474 		 */
1475 		if (ops->ndo_stop)
1476 			ops->ndo_stop(dev);
1477 
1478 		dev->flags &= ~IFF_UP;
1479 		netpoll_poll_enable(dev);
1480 	}
1481 }
1482 
1483 static void __dev_close(struct net_device *dev)
1484 {
1485 	LIST_HEAD(single);
1486 
1487 	list_add(&dev->close_list, &single);
1488 	__dev_close_many(&single);
1489 	list_del(&single);
1490 }
1491 
1492 void dev_close_many(struct list_head *head, bool unlink)
1493 {
1494 	struct net_device *dev, *tmp;
1495 
1496 	/* Remove the devices that don't need to be closed */
1497 	list_for_each_entry_safe(dev, tmp, head, close_list)
1498 		if (!(dev->flags & IFF_UP))
1499 			list_del_init(&dev->close_list);
1500 
1501 	__dev_close_many(head);
1502 
1503 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1504 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1505 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1506 		if (unlink)
1507 			list_del_init(&dev->close_list);
1508 	}
1509 }
1510 EXPORT_SYMBOL(dev_close_many);
1511 
1512 /**
1513  *	dev_close - shutdown an interface.
1514  *	@dev: device to shutdown
1515  *
1516  *	This function moves an active device into down state. A
1517  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1518  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1519  *	chain.
1520  */
1521 void dev_close(struct net_device *dev)
1522 {
1523 	if (dev->flags & IFF_UP) {
1524 		LIST_HEAD(single);
1525 
1526 		list_add(&dev->close_list, &single);
1527 		dev_close_many(&single, true);
1528 		list_del(&single);
1529 	}
1530 }
1531 EXPORT_SYMBOL(dev_close);
1532 
1533 
1534 /**
1535  *	dev_disable_lro - disable Large Receive Offload on a device
1536  *	@dev: device
1537  *
1538  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1539  *	called under RTNL.  This is needed if received packets may be
1540  *	forwarded to another interface.
1541  */
1542 void dev_disable_lro(struct net_device *dev)
1543 {
1544 	struct net_device *lower_dev;
1545 	struct list_head *iter;
1546 
1547 	dev->wanted_features &= ~NETIF_F_LRO;
1548 	netdev_update_features(dev);
1549 
1550 	if (unlikely(dev->features & NETIF_F_LRO))
1551 		netdev_WARN(dev, "failed to disable LRO!\n");
1552 
1553 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1554 		dev_disable_lro(lower_dev);
1555 }
1556 EXPORT_SYMBOL(dev_disable_lro);
1557 
1558 /**
1559  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1560  *	@dev: device
1561  *
1562  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1563  *	called under RTNL.  This is needed if Generic XDP is installed on
1564  *	the device.
1565  */
1566 static void dev_disable_gro_hw(struct net_device *dev)
1567 {
1568 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1569 	netdev_update_features(dev);
1570 
1571 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1572 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1573 }
1574 
1575 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1576 {
1577 #define N(val) 						\
1578 	case NETDEV_##val:				\
1579 		return "NETDEV_" __stringify(val);
1580 	switch (cmd) {
1581 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1582 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1583 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1584 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1585 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1586 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1587 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1588 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1589 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1590 	}
1591 #undef N
1592 	return "UNKNOWN_NETDEV_EVENT";
1593 }
1594 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1595 
1596 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1597 				   struct net_device *dev)
1598 {
1599 	struct netdev_notifier_info info = {
1600 		.dev = dev,
1601 	};
1602 
1603 	return nb->notifier_call(nb, val, &info);
1604 }
1605 
1606 static int dev_boot_phase = 1;
1607 
1608 /**
1609  * register_netdevice_notifier - register a network notifier block
1610  * @nb: notifier
1611  *
1612  * Register a notifier to be called when network device events occur.
1613  * The notifier passed is linked into the kernel structures and must
1614  * not be reused until it has been unregistered. A negative errno code
1615  * is returned on a failure.
1616  *
1617  * When registered all registration and up events are replayed
1618  * to the new notifier to allow device to have a race free
1619  * view of the network device list.
1620  */
1621 
1622 int register_netdevice_notifier(struct notifier_block *nb)
1623 {
1624 	struct net_device *dev;
1625 	struct net_device *last;
1626 	struct net *net;
1627 	int err;
1628 
1629 	/* Close race with setup_net() and cleanup_net() */
1630 	down_write(&pernet_ops_rwsem);
1631 	rtnl_lock();
1632 	err = raw_notifier_chain_register(&netdev_chain, nb);
1633 	if (err)
1634 		goto unlock;
1635 	if (dev_boot_phase)
1636 		goto unlock;
1637 	for_each_net(net) {
1638 		for_each_netdev(net, dev) {
1639 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1640 			err = notifier_to_errno(err);
1641 			if (err)
1642 				goto rollback;
1643 
1644 			if (!(dev->flags & IFF_UP))
1645 				continue;
1646 
1647 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1648 		}
1649 	}
1650 
1651 unlock:
1652 	rtnl_unlock();
1653 	up_write(&pernet_ops_rwsem);
1654 	return err;
1655 
1656 rollback:
1657 	last = dev;
1658 	for_each_net(net) {
1659 		for_each_netdev(net, dev) {
1660 			if (dev == last)
1661 				goto outroll;
1662 
1663 			if (dev->flags & IFF_UP) {
1664 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1665 							dev);
1666 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1667 			}
1668 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1669 		}
1670 	}
1671 
1672 outroll:
1673 	raw_notifier_chain_unregister(&netdev_chain, nb);
1674 	goto unlock;
1675 }
1676 EXPORT_SYMBOL(register_netdevice_notifier);
1677 
1678 /**
1679  * unregister_netdevice_notifier - unregister a network notifier block
1680  * @nb: notifier
1681  *
1682  * Unregister a notifier previously registered by
1683  * register_netdevice_notifier(). The notifier is unlinked into the
1684  * kernel structures and may then be reused. A negative errno code
1685  * is returned on a failure.
1686  *
1687  * After unregistering unregister and down device events are synthesized
1688  * for all devices on the device list to the removed notifier to remove
1689  * the need for special case cleanup code.
1690  */
1691 
1692 int unregister_netdevice_notifier(struct notifier_block *nb)
1693 {
1694 	struct net_device *dev;
1695 	struct net *net;
1696 	int err;
1697 
1698 	/* Close race with setup_net() and cleanup_net() */
1699 	down_write(&pernet_ops_rwsem);
1700 	rtnl_lock();
1701 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1702 	if (err)
1703 		goto unlock;
1704 
1705 	for_each_net(net) {
1706 		for_each_netdev(net, dev) {
1707 			if (dev->flags & IFF_UP) {
1708 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1709 							dev);
1710 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1711 			}
1712 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1713 		}
1714 	}
1715 unlock:
1716 	rtnl_unlock();
1717 	up_write(&pernet_ops_rwsem);
1718 	return err;
1719 }
1720 EXPORT_SYMBOL(unregister_netdevice_notifier);
1721 
1722 /**
1723  *	call_netdevice_notifiers_info - call all network notifier blocks
1724  *	@val: value passed unmodified to notifier function
1725  *	@info: notifier information data
1726  *
1727  *	Call all network notifier blocks.  Parameters and return value
1728  *	are as for raw_notifier_call_chain().
1729  */
1730 
1731 static int call_netdevice_notifiers_info(unsigned long val,
1732 					 struct netdev_notifier_info *info)
1733 {
1734 	ASSERT_RTNL();
1735 	return raw_notifier_call_chain(&netdev_chain, val, info);
1736 }
1737 
1738 /**
1739  *	call_netdevice_notifiers - call all network notifier blocks
1740  *      @val: value passed unmodified to notifier function
1741  *      @dev: net_device pointer passed unmodified to notifier function
1742  *
1743  *	Call all network notifier blocks.  Parameters and return value
1744  *	are as for raw_notifier_call_chain().
1745  */
1746 
1747 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1748 {
1749 	struct netdev_notifier_info info = {
1750 		.dev = dev,
1751 	};
1752 
1753 	return call_netdevice_notifiers_info(val, &info);
1754 }
1755 EXPORT_SYMBOL(call_netdevice_notifiers);
1756 
1757 #ifdef CONFIG_NET_INGRESS
1758 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1759 
1760 void net_inc_ingress_queue(void)
1761 {
1762 	static_branch_inc(&ingress_needed_key);
1763 }
1764 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1765 
1766 void net_dec_ingress_queue(void)
1767 {
1768 	static_branch_dec(&ingress_needed_key);
1769 }
1770 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1771 #endif
1772 
1773 #ifdef CONFIG_NET_EGRESS
1774 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1775 
1776 void net_inc_egress_queue(void)
1777 {
1778 	static_branch_inc(&egress_needed_key);
1779 }
1780 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1781 
1782 void net_dec_egress_queue(void)
1783 {
1784 	static_branch_dec(&egress_needed_key);
1785 }
1786 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1787 #endif
1788 
1789 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1790 #ifdef HAVE_JUMP_LABEL
1791 static atomic_t netstamp_needed_deferred;
1792 static atomic_t netstamp_wanted;
1793 static void netstamp_clear(struct work_struct *work)
1794 {
1795 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1796 	int wanted;
1797 
1798 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1799 	if (wanted > 0)
1800 		static_branch_enable(&netstamp_needed_key);
1801 	else
1802 		static_branch_disable(&netstamp_needed_key);
1803 }
1804 static DECLARE_WORK(netstamp_work, netstamp_clear);
1805 #endif
1806 
1807 void net_enable_timestamp(void)
1808 {
1809 #ifdef HAVE_JUMP_LABEL
1810 	int wanted;
1811 
1812 	while (1) {
1813 		wanted = atomic_read(&netstamp_wanted);
1814 		if (wanted <= 0)
1815 			break;
1816 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1817 			return;
1818 	}
1819 	atomic_inc(&netstamp_needed_deferred);
1820 	schedule_work(&netstamp_work);
1821 #else
1822 	static_branch_inc(&netstamp_needed_key);
1823 #endif
1824 }
1825 EXPORT_SYMBOL(net_enable_timestamp);
1826 
1827 void net_disable_timestamp(void)
1828 {
1829 #ifdef HAVE_JUMP_LABEL
1830 	int wanted;
1831 
1832 	while (1) {
1833 		wanted = atomic_read(&netstamp_wanted);
1834 		if (wanted <= 1)
1835 			break;
1836 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1837 			return;
1838 	}
1839 	atomic_dec(&netstamp_needed_deferred);
1840 	schedule_work(&netstamp_work);
1841 #else
1842 	static_branch_dec(&netstamp_needed_key);
1843 #endif
1844 }
1845 EXPORT_SYMBOL(net_disable_timestamp);
1846 
1847 static inline void net_timestamp_set(struct sk_buff *skb)
1848 {
1849 	skb->tstamp = 0;
1850 	if (static_branch_unlikely(&netstamp_needed_key))
1851 		__net_timestamp(skb);
1852 }
1853 
1854 #define net_timestamp_check(COND, SKB)				\
1855 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
1856 		if ((COND) && !(SKB)->tstamp)			\
1857 			__net_timestamp(SKB);			\
1858 	}							\
1859 
1860 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1861 {
1862 	unsigned int len;
1863 
1864 	if (!(dev->flags & IFF_UP))
1865 		return false;
1866 
1867 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1868 	if (skb->len <= len)
1869 		return true;
1870 
1871 	/* if TSO is enabled, we don't care about the length as the packet
1872 	 * could be forwarded without being segmented before
1873 	 */
1874 	if (skb_is_gso(skb))
1875 		return true;
1876 
1877 	return false;
1878 }
1879 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1880 
1881 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1882 {
1883 	int ret = ____dev_forward_skb(dev, skb);
1884 
1885 	if (likely(!ret)) {
1886 		skb->protocol = eth_type_trans(skb, dev);
1887 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1888 	}
1889 
1890 	return ret;
1891 }
1892 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1893 
1894 /**
1895  * dev_forward_skb - loopback an skb to another netif
1896  *
1897  * @dev: destination network device
1898  * @skb: buffer to forward
1899  *
1900  * return values:
1901  *	NET_RX_SUCCESS	(no congestion)
1902  *	NET_RX_DROP     (packet was dropped, but freed)
1903  *
1904  * dev_forward_skb can be used for injecting an skb from the
1905  * start_xmit function of one device into the receive queue
1906  * of another device.
1907  *
1908  * The receiving device may be in another namespace, so
1909  * we have to clear all information in the skb that could
1910  * impact namespace isolation.
1911  */
1912 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1913 {
1914 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1915 }
1916 EXPORT_SYMBOL_GPL(dev_forward_skb);
1917 
1918 static inline int deliver_skb(struct sk_buff *skb,
1919 			      struct packet_type *pt_prev,
1920 			      struct net_device *orig_dev)
1921 {
1922 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1923 		return -ENOMEM;
1924 	refcount_inc(&skb->users);
1925 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1926 }
1927 
1928 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1929 					  struct packet_type **pt,
1930 					  struct net_device *orig_dev,
1931 					  __be16 type,
1932 					  struct list_head *ptype_list)
1933 {
1934 	struct packet_type *ptype, *pt_prev = *pt;
1935 
1936 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1937 		if (ptype->type != type)
1938 			continue;
1939 		if (pt_prev)
1940 			deliver_skb(skb, pt_prev, orig_dev);
1941 		pt_prev = ptype;
1942 	}
1943 	*pt = pt_prev;
1944 }
1945 
1946 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1947 {
1948 	if (!ptype->af_packet_priv || !skb->sk)
1949 		return false;
1950 
1951 	if (ptype->id_match)
1952 		return ptype->id_match(ptype, skb->sk);
1953 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1954 		return true;
1955 
1956 	return false;
1957 }
1958 
1959 /*
1960  *	Support routine. Sends outgoing frames to any network
1961  *	taps currently in use.
1962  */
1963 
1964 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1965 {
1966 	struct packet_type *ptype;
1967 	struct sk_buff *skb2 = NULL;
1968 	struct packet_type *pt_prev = NULL;
1969 	struct list_head *ptype_list = &ptype_all;
1970 
1971 	rcu_read_lock();
1972 again:
1973 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1974 		/* Never send packets back to the socket
1975 		 * they originated from - MvS (miquels@drinkel.ow.org)
1976 		 */
1977 		if (skb_loop_sk(ptype, skb))
1978 			continue;
1979 
1980 		if (pt_prev) {
1981 			deliver_skb(skb2, pt_prev, skb->dev);
1982 			pt_prev = ptype;
1983 			continue;
1984 		}
1985 
1986 		/* need to clone skb, done only once */
1987 		skb2 = skb_clone(skb, GFP_ATOMIC);
1988 		if (!skb2)
1989 			goto out_unlock;
1990 
1991 		net_timestamp_set(skb2);
1992 
1993 		/* skb->nh should be correctly
1994 		 * set by sender, so that the second statement is
1995 		 * just protection against buggy protocols.
1996 		 */
1997 		skb_reset_mac_header(skb2);
1998 
1999 		if (skb_network_header(skb2) < skb2->data ||
2000 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2001 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2002 					     ntohs(skb2->protocol),
2003 					     dev->name);
2004 			skb_reset_network_header(skb2);
2005 		}
2006 
2007 		skb2->transport_header = skb2->network_header;
2008 		skb2->pkt_type = PACKET_OUTGOING;
2009 		pt_prev = ptype;
2010 	}
2011 
2012 	if (ptype_list == &ptype_all) {
2013 		ptype_list = &dev->ptype_all;
2014 		goto again;
2015 	}
2016 out_unlock:
2017 	if (pt_prev) {
2018 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2019 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2020 		else
2021 			kfree_skb(skb2);
2022 	}
2023 	rcu_read_unlock();
2024 }
2025 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2026 
2027 /**
2028  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2029  * @dev: Network device
2030  * @txq: number of queues available
2031  *
2032  * If real_num_tx_queues is changed the tc mappings may no longer be
2033  * valid. To resolve this verify the tc mapping remains valid and if
2034  * not NULL the mapping. With no priorities mapping to this
2035  * offset/count pair it will no longer be used. In the worst case TC0
2036  * is invalid nothing can be done so disable priority mappings. If is
2037  * expected that drivers will fix this mapping if they can before
2038  * calling netif_set_real_num_tx_queues.
2039  */
2040 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2041 {
2042 	int i;
2043 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2044 
2045 	/* If TC0 is invalidated disable TC mapping */
2046 	if (tc->offset + tc->count > txq) {
2047 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2048 		dev->num_tc = 0;
2049 		return;
2050 	}
2051 
2052 	/* Invalidated prio to tc mappings set to TC0 */
2053 	for (i = 1; i < TC_BITMASK + 1; i++) {
2054 		int q = netdev_get_prio_tc_map(dev, i);
2055 
2056 		tc = &dev->tc_to_txq[q];
2057 		if (tc->offset + tc->count > txq) {
2058 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2059 				i, q);
2060 			netdev_set_prio_tc_map(dev, i, 0);
2061 		}
2062 	}
2063 }
2064 
2065 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2066 {
2067 	if (dev->num_tc) {
2068 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2069 		int i;
2070 
2071 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2072 			if ((txq - tc->offset) < tc->count)
2073 				return i;
2074 		}
2075 
2076 		return -1;
2077 	}
2078 
2079 	return 0;
2080 }
2081 EXPORT_SYMBOL(netdev_txq_to_tc);
2082 
2083 #ifdef CONFIG_XPS
2084 static DEFINE_MUTEX(xps_map_mutex);
2085 #define xmap_dereference(P)		\
2086 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2087 
2088 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2089 			     int tci, u16 index)
2090 {
2091 	struct xps_map *map = NULL;
2092 	int pos;
2093 
2094 	if (dev_maps)
2095 		map = xmap_dereference(dev_maps->cpu_map[tci]);
2096 	if (!map)
2097 		return false;
2098 
2099 	for (pos = map->len; pos--;) {
2100 		if (map->queues[pos] != index)
2101 			continue;
2102 
2103 		if (map->len > 1) {
2104 			map->queues[pos] = map->queues[--map->len];
2105 			break;
2106 		}
2107 
2108 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2109 		kfree_rcu(map, rcu);
2110 		return false;
2111 	}
2112 
2113 	return true;
2114 }
2115 
2116 static bool remove_xps_queue_cpu(struct net_device *dev,
2117 				 struct xps_dev_maps *dev_maps,
2118 				 int cpu, u16 offset, u16 count)
2119 {
2120 	int num_tc = dev->num_tc ? : 1;
2121 	bool active = false;
2122 	int tci;
2123 
2124 	for (tci = cpu * num_tc; num_tc--; tci++) {
2125 		int i, j;
2126 
2127 		for (i = count, j = offset; i--; j++) {
2128 			if (!remove_xps_queue(dev_maps, tci, j))
2129 				break;
2130 		}
2131 
2132 		active |= i < 0;
2133 	}
2134 
2135 	return active;
2136 }
2137 
2138 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2139 				   u16 count)
2140 {
2141 	struct xps_dev_maps *dev_maps;
2142 	int cpu, i;
2143 	bool active = false;
2144 
2145 	mutex_lock(&xps_map_mutex);
2146 	dev_maps = xmap_dereference(dev->xps_maps);
2147 
2148 	if (!dev_maps)
2149 		goto out_no_maps;
2150 
2151 	for_each_possible_cpu(cpu)
2152 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2153 					       offset, count);
2154 
2155 	if (!active) {
2156 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2157 		kfree_rcu(dev_maps, rcu);
2158 	}
2159 
2160 	for (i = offset + (count - 1); count--; i--)
2161 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2162 					     NUMA_NO_NODE);
2163 
2164 out_no_maps:
2165 	mutex_unlock(&xps_map_mutex);
2166 }
2167 
2168 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2169 {
2170 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2171 }
2172 
2173 static struct xps_map *expand_xps_map(struct xps_map *map,
2174 				      int cpu, u16 index)
2175 {
2176 	struct xps_map *new_map;
2177 	int alloc_len = XPS_MIN_MAP_ALLOC;
2178 	int i, pos;
2179 
2180 	for (pos = 0; map && pos < map->len; pos++) {
2181 		if (map->queues[pos] != index)
2182 			continue;
2183 		return map;
2184 	}
2185 
2186 	/* Need to add queue to this CPU's existing map */
2187 	if (map) {
2188 		if (pos < map->alloc_len)
2189 			return map;
2190 
2191 		alloc_len = map->alloc_len * 2;
2192 	}
2193 
2194 	/* Need to allocate new map to store queue on this CPU's map */
2195 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2196 			       cpu_to_node(cpu));
2197 	if (!new_map)
2198 		return NULL;
2199 
2200 	for (i = 0; i < pos; i++)
2201 		new_map->queues[i] = map->queues[i];
2202 	new_map->alloc_len = alloc_len;
2203 	new_map->len = pos;
2204 
2205 	return new_map;
2206 }
2207 
2208 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2209 			u16 index)
2210 {
2211 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2212 	int i, cpu, tci, numa_node_id = -2;
2213 	int maps_sz, num_tc = 1, tc = 0;
2214 	struct xps_map *map, *new_map;
2215 	bool active = false;
2216 
2217 	if (dev->num_tc) {
2218 		num_tc = dev->num_tc;
2219 		tc = netdev_txq_to_tc(dev, index);
2220 		if (tc < 0)
2221 			return -EINVAL;
2222 	}
2223 
2224 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2225 	if (maps_sz < L1_CACHE_BYTES)
2226 		maps_sz = L1_CACHE_BYTES;
2227 
2228 	mutex_lock(&xps_map_mutex);
2229 
2230 	dev_maps = xmap_dereference(dev->xps_maps);
2231 
2232 	/* allocate memory for queue storage */
2233 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2234 		if (!new_dev_maps)
2235 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2236 		if (!new_dev_maps) {
2237 			mutex_unlock(&xps_map_mutex);
2238 			return -ENOMEM;
2239 		}
2240 
2241 		tci = cpu * num_tc + tc;
2242 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2243 				 NULL;
2244 
2245 		map = expand_xps_map(map, cpu, index);
2246 		if (!map)
2247 			goto error;
2248 
2249 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2250 	}
2251 
2252 	if (!new_dev_maps)
2253 		goto out_no_new_maps;
2254 
2255 	for_each_possible_cpu(cpu) {
2256 		/* copy maps belonging to foreign traffic classes */
2257 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2258 			/* fill in the new device map from the old device map */
2259 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2260 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2261 		}
2262 
2263 		/* We need to explicitly update tci as prevous loop
2264 		 * could break out early if dev_maps is NULL.
2265 		 */
2266 		tci = cpu * num_tc + tc;
2267 
2268 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2269 			/* add queue to CPU maps */
2270 			int pos = 0;
2271 
2272 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2273 			while ((pos < map->len) && (map->queues[pos] != index))
2274 				pos++;
2275 
2276 			if (pos == map->len)
2277 				map->queues[map->len++] = index;
2278 #ifdef CONFIG_NUMA
2279 			if (numa_node_id == -2)
2280 				numa_node_id = cpu_to_node(cpu);
2281 			else if (numa_node_id != cpu_to_node(cpu))
2282 				numa_node_id = -1;
2283 #endif
2284 		} else if (dev_maps) {
2285 			/* fill in the new device map from the old device map */
2286 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2287 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2288 		}
2289 
2290 		/* copy maps belonging to foreign traffic classes */
2291 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2292 			/* fill in the new device map from the old device map */
2293 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2294 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2295 		}
2296 	}
2297 
2298 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2299 
2300 	/* Cleanup old maps */
2301 	if (!dev_maps)
2302 		goto out_no_old_maps;
2303 
2304 	for_each_possible_cpu(cpu) {
2305 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2306 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2307 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2308 			if (map && map != new_map)
2309 				kfree_rcu(map, rcu);
2310 		}
2311 	}
2312 
2313 	kfree_rcu(dev_maps, rcu);
2314 
2315 out_no_old_maps:
2316 	dev_maps = new_dev_maps;
2317 	active = true;
2318 
2319 out_no_new_maps:
2320 	/* update Tx queue numa node */
2321 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2322 				     (numa_node_id >= 0) ? numa_node_id :
2323 				     NUMA_NO_NODE);
2324 
2325 	if (!dev_maps)
2326 		goto out_no_maps;
2327 
2328 	/* removes queue from unused CPUs */
2329 	for_each_possible_cpu(cpu) {
2330 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2331 			active |= remove_xps_queue(dev_maps, tci, index);
2332 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2333 			active |= remove_xps_queue(dev_maps, tci, index);
2334 		for (i = num_tc - tc, tci++; --i; tci++)
2335 			active |= remove_xps_queue(dev_maps, tci, index);
2336 	}
2337 
2338 	/* free map if not active */
2339 	if (!active) {
2340 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2341 		kfree_rcu(dev_maps, rcu);
2342 	}
2343 
2344 out_no_maps:
2345 	mutex_unlock(&xps_map_mutex);
2346 
2347 	return 0;
2348 error:
2349 	/* remove any maps that we added */
2350 	for_each_possible_cpu(cpu) {
2351 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2352 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2353 			map = dev_maps ?
2354 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2355 			      NULL;
2356 			if (new_map && new_map != map)
2357 				kfree(new_map);
2358 		}
2359 	}
2360 
2361 	mutex_unlock(&xps_map_mutex);
2362 
2363 	kfree(new_dev_maps);
2364 	return -ENOMEM;
2365 }
2366 EXPORT_SYMBOL(netif_set_xps_queue);
2367 
2368 #endif
2369 void netdev_reset_tc(struct net_device *dev)
2370 {
2371 #ifdef CONFIG_XPS
2372 	netif_reset_xps_queues_gt(dev, 0);
2373 #endif
2374 	dev->num_tc = 0;
2375 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2376 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2377 }
2378 EXPORT_SYMBOL(netdev_reset_tc);
2379 
2380 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2381 {
2382 	if (tc >= dev->num_tc)
2383 		return -EINVAL;
2384 
2385 #ifdef CONFIG_XPS
2386 	netif_reset_xps_queues(dev, offset, count);
2387 #endif
2388 	dev->tc_to_txq[tc].count = count;
2389 	dev->tc_to_txq[tc].offset = offset;
2390 	return 0;
2391 }
2392 EXPORT_SYMBOL(netdev_set_tc_queue);
2393 
2394 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2395 {
2396 	if (num_tc > TC_MAX_QUEUE)
2397 		return -EINVAL;
2398 
2399 #ifdef CONFIG_XPS
2400 	netif_reset_xps_queues_gt(dev, 0);
2401 #endif
2402 	dev->num_tc = num_tc;
2403 	return 0;
2404 }
2405 EXPORT_SYMBOL(netdev_set_num_tc);
2406 
2407 /*
2408  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2409  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2410  */
2411 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2412 {
2413 	bool disabling;
2414 	int rc;
2415 
2416 	disabling = txq < dev->real_num_tx_queues;
2417 
2418 	if (txq < 1 || txq > dev->num_tx_queues)
2419 		return -EINVAL;
2420 
2421 	if (dev->reg_state == NETREG_REGISTERED ||
2422 	    dev->reg_state == NETREG_UNREGISTERING) {
2423 		ASSERT_RTNL();
2424 
2425 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2426 						  txq);
2427 		if (rc)
2428 			return rc;
2429 
2430 		if (dev->num_tc)
2431 			netif_setup_tc(dev, txq);
2432 
2433 		dev->real_num_tx_queues = txq;
2434 
2435 		if (disabling) {
2436 			synchronize_net();
2437 			qdisc_reset_all_tx_gt(dev, txq);
2438 #ifdef CONFIG_XPS
2439 			netif_reset_xps_queues_gt(dev, txq);
2440 #endif
2441 		}
2442 	} else {
2443 		dev->real_num_tx_queues = txq;
2444 	}
2445 
2446 	return 0;
2447 }
2448 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2449 
2450 #ifdef CONFIG_SYSFS
2451 /**
2452  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2453  *	@dev: Network device
2454  *	@rxq: Actual number of RX queues
2455  *
2456  *	This must be called either with the rtnl_lock held or before
2457  *	registration of the net device.  Returns 0 on success, or a
2458  *	negative error code.  If called before registration, it always
2459  *	succeeds.
2460  */
2461 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2462 {
2463 	int rc;
2464 
2465 	if (rxq < 1 || rxq > dev->num_rx_queues)
2466 		return -EINVAL;
2467 
2468 	if (dev->reg_state == NETREG_REGISTERED) {
2469 		ASSERT_RTNL();
2470 
2471 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2472 						  rxq);
2473 		if (rc)
2474 			return rc;
2475 	}
2476 
2477 	dev->real_num_rx_queues = rxq;
2478 	return 0;
2479 }
2480 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2481 #endif
2482 
2483 /**
2484  * netif_get_num_default_rss_queues - default number of RSS queues
2485  *
2486  * This routine should set an upper limit on the number of RSS queues
2487  * used by default by multiqueue devices.
2488  */
2489 int netif_get_num_default_rss_queues(void)
2490 {
2491 	return is_kdump_kernel() ?
2492 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2493 }
2494 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2495 
2496 static void __netif_reschedule(struct Qdisc *q)
2497 {
2498 	struct softnet_data *sd;
2499 	unsigned long flags;
2500 
2501 	local_irq_save(flags);
2502 	sd = this_cpu_ptr(&softnet_data);
2503 	q->next_sched = NULL;
2504 	*sd->output_queue_tailp = q;
2505 	sd->output_queue_tailp = &q->next_sched;
2506 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2507 	local_irq_restore(flags);
2508 }
2509 
2510 void __netif_schedule(struct Qdisc *q)
2511 {
2512 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2513 		__netif_reschedule(q);
2514 }
2515 EXPORT_SYMBOL(__netif_schedule);
2516 
2517 struct dev_kfree_skb_cb {
2518 	enum skb_free_reason reason;
2519 };
2520 
2521 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2522 {
2523 	return (struct dev_kfree_skb_cb *)skb->cb;
2524 }
2525 
2526 void netif_schedule_queue(struct netdev_queue *txq)
2527 {
2528 	rcu_read_lock();
2529 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2530 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2531 
2532 		__netif_schedule(q);
2533 	}
2534 	rcu_read_unlock();
2535 }
2536 EXPORT_SYMBOL(netif_schedule_queue);
2537 
2538 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2539 {
2540 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2541 		struct Qdisc *q;
2542 
2543 		rcu_read_lock();
2544 		q = rcu_dereference(dev_queue->qdisc);
2545 		__netif_schedule(q);
2546 		rcu_read_unlock();
2547 	}
2548 }
2549 EXPORT_SYMBOL(netif_tx_wake_queue);
2550 
2551 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2552 {
2553 	unsigned long flags;
2554 
2555 	if (unlikely(!skb))
2556 		return;
2557 
2558 	if (likely(refcount_read(&skb->users) == 1)) {
2559 		smp_rmb();
2560 		refcount_set(&skb->users, 0);
2561 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2562 		return;
2563 	}
2564 	get_kfree_skb_cb(skb)->reason = reason;
2565 	local_irq_save(flags);
2566 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2567 	__this_cpu_write(softnet_data.completion_queue, skb);
2568 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2569 	local_irq_restore(flags);
2570 }
2571 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2572 
2573 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2574 {
2575 	if (in_irq() || irqs_disabled())
2576 		__dev_kfree_skb_irq(skb, reason);
2577 	else
2578 		dev_kfree_skb(skb);
2579 }
2580 EXPORT_SYMBOL(__dev_kfree_skb_any);
2581 
2582 
2583 /**
2584  * netif_device_detach - mark device as removed
2585  * @dev: network device
2586  *
2587  * Mark device as removed from system and therefore no longer available.
2588  */
2589 void netif_device_detach(struct net_device *dev)
2590 {
2591 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2592 	    netif_running(dev)) {
2593 		netif_tx_stop_all_queues(dev);
2594 	}
2595 }
2596 EXPORT_SYMBOL(netif_device_detach);
2597 
2598 /**
2599  * netif_device_attach - mark device as attached
2600  * @dev: network device
2601  *
2602  * Mark device as attached from system and restart if needed.
2603  */
2604 void netif_device_attach(struct net_device *dev)
2605 {
2606 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2607 	    netif_running(dev)) {
2608 		netif_tx_wake_all_queues(dev);
2609 		__netdev_watchdog_up(dev);
2610 	}
2611 }
2612 EXPORT_SYMBOL(netif_device_attach);
2613 
2614 /*
2615  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2616  * to be used as a distribution range.
2617  */
2618 static u16 skb_tx_hash(const struct net_device *dev, struct sk_buff *skb)
2619 {
2620 	u32 hash;
2621 	u16 qoffset = 0;
2622 	u16 qcount = dev->real_num_tx_queues;
2623 
2624 	if (skb_rx_queue_recorded(skb)) {
2625 		hash = skb_get_rx_queue(skb);
2626 		while (unlikely(hash >= qcount))
2627 			hash -= qcount;
2628 		return hash;
2629 	}
2630 
2631 	if (dev->num_tc) {
2632 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2633 
2634 		qoffset = dev->tc_to_txq[tc].offset;
2635 		qcount = dev->tc_to_txq[tc].count;
2636 	}
2637 
2638 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2639 }
2640 
2641 static void skb_warn_bad_offload(const struct sk_buff *skb)
2642 {
2643 	static const netdev_features_t null_features;
2644 	struct net_device *dev = skb->dev;
2645 	const char *name = "";
2646 
2647 	if (!net_ratelimit())
2648 		return;
2649 
2650 	if (dev) {
2651 		if (dev->dev.parent)
2652 			name = dev_driver_string(dev->dev.parent);
2653 		else
2654 			name = netdev_name(dev);
2655 	}
2656 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2657 	     "gso_type=%d ip_summed=%d\n",
2658 	     name, dev ? &dev->features : &null_features,
2659 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2660 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2661 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2662 }
2663 
2664 /*
2665  * Invalidate hardware checksum when packet is to be mangled, and
2666  * complete checksum manually on outgoing path.
2667  */
2668 int skb_checksum_help(struct sk_buff *skb)
2669 {
2670 	__wsum csum;
2671 	int ret = 0, offset;
2672 
2673 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2674 		goto out_set_summed;
2675 
2676 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2677 		skb_warn_bad_offload(skb);
2678 		return -EINVAL;
2679 	}
2680 
2681 	/* Before computing a checksum, we should make sure no frag could
2682 	 * be modified by an external entity : checksum could be wrong.
2683 	 */
2684 	if (skb_has_shared_frag(skb)) {
2685 		ret = __skb_linearize(skb);
2686 		if (ret)
2687 			goto out;
2688 	}
2689 
2690 	offset = skb_checksum_start_offset(skb);
2691 	BUG_ON(offset >= skb_headlen(skb));
2692 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2693 
2694 	offset += skb->csum_offset;
2695 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2696 
2697 	if (skb_cloned(skb) &&
2698 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2699 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2700 		if (ret)
2701 			goto out;
2702 	}
2703 
2704 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2705 out_set_summed:
2706 	skb->ip_summed = CHECKSUM_NONE;
2707 out:
2708 	return ret;
2709 }
2710 EXPORT_SYMBOL(skb_checksum_help);
2711 
2712 int skb_crc32c_csum_help(struct sk_buff *skb)
2713 {
2714 	__le32 crc32c_csum;
2715 	int ret = 0, offset, start;
2716 
2717 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2718 		goto out;
2719 
2720 	if (unlikely(skb_is_gso(skb)))
2721 		goto out;
2722 
2723 	/* Before computing a checksum, we should make sure no frag could
2724 	 * be modified by an external entity : checksum could be wrong.
2725 	 */
2726 	if (unlikely(skb_has_shared_frag(skb))) {
2727 		ret = __skb_linearize(skb);
2728 		if (ret)
2729 			goto out;
2730 	}
2731 	start = skb_checksum_start_offset(skb);
2732 	offset = start + offsetof(struct sctphdr, checksum);
2733 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2734 		ret = -EINVAL;
2735 		goto out;
2736 	}
2737 	if (skb_cloned(skb) &&
2738 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2739 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2740 		if (ret)
2741 			goto out;
2742 	}
2743 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2744 						  skb->len - start, ~(__u32)0,
2745 						  crc32c_csum_stub));
2746 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2747 	skb->ip_summed = CHECKSUM_NONE;
2748 	skb->csum_not_inet = 0;
2749 out:
2750 	return ret;
2751 }
2752 
2753 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2754 {
2755 	__be16 type = skb->protocol;
2756 
2757 	/* Tunnel gso handlers can set protocol to ethernet. */
2758 	if (type == htons(ETH_P_TEB)) {
2759 		struct ethhdr *eth;
2760 
2761 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2762 			return 0;
2763 
2764 		eth = (struct ethhdr *)skb->data;
2765 		type = eth->h_proto;
2766 	}
2767 
2768 	return __vlan_get_protocol(skb, type, depth);
2769 }
2770 
2771 /**
2772  *	skb_mac_gso_segment - mac layer segmentation handler.
2773  *	@skb: buffer to segment
2774  *	@features: features for the output path (see dev->features)
2775  */
2776 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2777 				    netdev_features_t features)
2778 {
2779 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2780 	struct packet_offload *ptype;
2781 	int vlan_depth = skb->mac_len;
2782 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2783 
2784 	if (unlikely(!type))
2785 		return ERR_PTR(-EINVAL);
2786 
2787 	__skb_pull(skb, vlan_depth);
2788 
2789 	rcu_read_lock();
2790 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2791 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2792 			segs = ptype->callbacks.gso_segment(skb, features);
2793 			break;
2794 		}
2795 	}
2796 	rcu_read_unlock();
2797 
2798 	__skb_push(skb, skb->data - skb_mac_header(skb));
2799 
2800 	return segs;
2801 }
2802 EXPORT_SYMBOL(skb_mac_gso_segment);
2803 
2804 
2805 /* openvswitch calls this on rx path, so we need a different check.
2806  */
2807 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2808 {
2809 	if (tx_path)
2810 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2811 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
2812 
2813 	return skb->ip_summed == CHECKSUM_NONE;
2814 }
2815 
2816 /**
2817  *	__skb_gso_segment - Perform segmentation on skb.
2818  *	@skb: buffer to segment
2819  *	@features: features for the output path (see dev->features)
2820  *	@tx_path: whether it is called in TX path
2821  *
2822  *	This function segments the given skb and returns a list of segments.
2823  *
2824  *	It may return NULL if the skb requires no segmentation.  This is
2825  *	only possible when GSO is used for verifying header integrity.
2826  *
2827  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2828  */
2829 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2830 				  netdev_features_t features, bool tx_path)
2831 {
2832 	struct sk_buff *segs;
2833 
2834 	if (unlikely(skb_needs_check(skb, tx_path))) {
2835 		int err;
2836 
2837 		/* We're going to init ->check field in TCP or UDP header */
2838 		err = skb_cow_head(skb, 0);
2839 		if (err < 0)
2840 			return ERR_PTR(err);
2841 	}
2842 
2843 	/* Only report GSO partial support if it will enable us to
2844 	 * support segmentation on this frame without needing additional
2845 	 * work.
2846 	 */
2847 	if (features & NETIF_F_GSO_PARTIAL) {
2848 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2849 		struct net_device *dev = skb->dev;
2850 
2851 		partial_features |= dev->features & dev->gso_partial_features;
2852 		if (!skb_gso_ok(skb, features | partial_features))
2853 			features &= ~NETIF_F_GSO_PARTIAL;
2854 	}
2855 
2856 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2857 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2858 
2859 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2860 	SKB_GSO_CB(skb)->encap_level = 0;
2861 
2862 	skb_reset_mac_header(skb);
2863 	skb_reset_mac_len(skb);
2864 
2865 	segs = skb_mac_gso_segment(skb, features);
2866 
2867 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2868 		skb_warn_bad_offload(skb);
2869 
2870 	return segs;
2871 }
2872 EXPORT_SYMBOL(__skb_gso_segment);
2873 
2874 /* Take action when hardware reception checksum errors are detected. */
2875 #ifdef CONFIG_BUG
2876 void netdev_rx_csum_fault(struct net_device *dev)
2877 {
2878 	if (net_ratelimit()) {
2879 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2880 		dump_stack();
2881 	}
2882 }
2883 EXPORT_SYMBOL(netdev_rx_csum_fault);
2884 #endif
2885 
2886 /* Actually, we should eliminate this check as soon as we know, that:
2887  * 1. IOMMU is present and allows to map all the memory.
2888  * 2. No high memory really exists on this machine.
2889  */
2890 
2891 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2892 {
2893 #ifdef CONFIG_HIGHMEM
2894 	int i;
2895 
2896 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2897 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2898 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2899 
2900 			if (PageHighMem(skb_frag_page(frag)))
2901 				return 1;
2902 		}
2903 	}
2904 
2905 	if (PCI_DMA_BUS_IS_PHYS) {
2906 		struct device *pdev = dev->dev.parent;
2907 
2908 		if (!pdev)
2909 			return 0;
2910 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2911 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2912 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2913 
2914 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2915 				return 1;
2916 		}
2917 	}
2918 #endif
2919 	return 0;
2920 }
2921 
2922 /* If MPLS offload request, verify we are testing hardware MPLS features
2923  * instead of standard features for the netdev.
2924  */
2925 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2926 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2927 					   netdev_features_t features,
2928 					   __be16 type)
2929 {
2930 	if (eth_p_mpls(type))
2931 		features &= skb->dev->mpls_features;
2932 
2933 	return features;
2934 }
2935 #else
2936 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2937 					   netdev_features_t features,
2938 					   __be16 type)
2939 {
2940 	return features;
2941 }
2942 #endif
2943 
2944 static netdev_features_t harmonize_features(struct sk_buff *skb,
2945 	netdev_features_t features)
2946 {
2947 	int tmp;
2948 	__be16 type;
2949 
2950 	type = skb_network_protocol(skb, &tmp);
2951 	features = net_mpls_features(skb, features, type);
2952 
2953 	if (skb->ip_summed != CHECKSUM_NONE &&
2954 	    !can_checksum_protocol(features, type)) {
2955 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2956 	}
2957 	if (illegal_highdma(skb->dev, skb))
2958 		features &= ~NETIF_F_SG;
2959 
2960 	return features;
2961 }
2962 
2963 netdev_features_t passthru_features_check(struct sk_buff *skb,
2964 					  struct net_device *dev,
2965 					  netdev_features_t features)
2966 {
2967 	return features;
2968 }
2969 EXPORT_SYMBOL(passthru_features_check);
2970 
2971 static netdev_features_t dflt_features_check(struct sk_buff *skb,
2972 					     struct net_device *dev,
2973 					     netdev_features_t features)
2974 {
2975 	return vlan_features_check(skb, features);
2976 }
2977 
2978 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2979 					    struct net_device *dev,
2980 					    netdev_features_t features)
2981 {
2982 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2983 
2984 	if (gso_segs > dev->gso_max_segs)
2985 		return features & ~NETIF_F_GSO_MASK;
2986 
2987 	/* Support for GSO partial features requires software
2988 	 * intervention before we can actually process the packets
2989 	 * so we need to strip support for any partial features now
2990 	 * and we can pull them back in after we have partially
2991 	 * segmented the frame.
2992 	 */
2993 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2994 		features &= ~dev->gso_partial_features;
2995 
2996 	/* Make sure to clear the IPv4 ID mangling feature if the
2997 	 * IPv4 header has the potential to be fragmented.
2998 	 */
2999 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3000 		struct iphdr *iph = skb->encapsulation ?
3001 				    inner_ip_hdr(skb) : ip_hdr(skb);
3002 
3003 		if (!(iph->frag_off & htons(IP_DF)))
3004 			features &= ~NETIF_F_TSO_MANGLEID;
3005 	}
3006 
3007 	return features;
3008 }
3009 
3010 netdev_features_t netif_skb_features(struct sk_buff *skb)
3011 {
3012 	struct net_device *dev = skb->dev;
3013 	netdev_features_t features = dev->features;
3014 
3015 	if (skb_is_gso(skb))
3016 		features = gso_features_check(skb, dev, features);
3017 
3018 	/* If encapsulation offload request, verify we are testing
3019 	 * hardware encapsulation features instead of standard
3020 	 * features for the netdev
3021 	 */
3022 	if (skb->encapsulation)
3023 		features &= dev->hw_enc_features;
3024 
3025 	if (skb_vlan_tagged(skb))
3026 		features = netdev_intersect_features(features,
3027 						     dev->vlan_features |
3028 						     NETIF_F_HW_VLAN_CTAG_TX |
3029 						     NETIF_F_HW_VLAN_STAG_TX);
3030 
3031 	if (dev->netdev_ops->ndo_features_check)
3032 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3033 								features);
3034 	else
3035 		features &= dflt_features_check(skb, dev, features);
3036 
3037 	return harmonize_features(skb, features);
3038 }
3039 EXPORT_SYMBOL(netif_skb_features);
3040 
3041 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3042 		    struct netdev_queue *txq, bool more)
3043 {
3044 	unsigned int len;
3045 	int rc;
3046 
3047 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3048 		dev_queue_xmit_nit(skb, dev);
3049 
3050 	len = skb->len;
3051 	trace_net_dev_start_xmit(skb, dev);
3052 	rc = netdev_start_xmit(skb, dev, txq, more);
3053 	trace_net_dev_xmit(skb, rc, dev, len);
3054 
3055 	return rc;
3056 }
3057 
3058 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3059 				    struct netdev_queue *txq, int *ret)
3060 {
3061 	struct sk_buff *skb = first;
3062 	int rc = NETDEV_TX_OK;
3063 
3064 	while (skb) {
3065 		struct sk_buff *next = skb->next;
3066 
3067 		skb->next = NULL;
3068 		rc = xmit_one(skb, dev, txq, next != NULL);
3069 		if (unlikely(!dev_xmit_complete(rc))) {
3070 			skb->next = next;
3071 			goto out;
3072 		}
3073 
3074 		skb = next;
3075 		if (netif_xmit_stopped(txq) && skb) {
3076 			rc = NETDEV_TX_BUSY;
3077 			break;
3078 		}
3079 	}
3080 
3081 out:
3082 	*ret = rc;
3083 	return skb;
3084 }
3085 
3086 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3087 					  netdev_features_t features)
3088 {
3089 	if (skb_vlan_tag_present(skb) &&
3090 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3091 		skb = __vlan_hwaccel_push_inside(skb);
3092 	return skb;
3093 }
3094 
3095 int skb_csum_hwoffload_help(struct sk_buff *skb,
3096 			    const netdev_features_t features)
3097 {
3098 	if (unlikely(skb->csum_not_inet))
3099 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3100 			skb_crc32c_csum_help(skb);
3101 
3102 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3103 }
3104 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3105 
3106 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3107 {
3108 	netdev_features_t features;
3109 
3110 	features = netif_skb_features(skb);
3111 	skb = validate_xmit_vlan(skb, features);
3112 	if (unlikely(!skb))
3113 		goto out_null;
3114 
3115 	skb = sk_validate_xmit_skb(skb, dev);
3116 	if (unlikely(!skb))
3117 		goto out_null;
3118 
3119 	if (netif_needs_gso(skb, features)) {
3120 		struct sk_buff *segs;
3121 
3122 		segs = skb_gso_segment(skb, features);
3123 		if (IS_ERR(segs)) {
3124 			goto out_kfree_skb;
3125 		} else if (segs) {
3126 			consume_skb(skb);
3127 			skb = segs;
3128 		}
3129 	} else {
3130 		if (skb_needs_linearize(skb, features) &&
3131 		    __skb_linearize(skb))
3132 			goto out_kfree_skb;
3133 
3134 		/* If packet is not checksummed and device does not
3135 		 * support checksumming for this protocol, complete
3136 		 * checksumming here.
3137 		 */
3138 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3139 			if (skb->encapsulation)
3140 				skb_set_inner_transport_header(skb,
3141 							       skb_checksum_start_offset(skb));
3142 			else
3143 				skb_set_transport_header(skb,
3144 							 skb_checksum_start_offset(skb));
3145 			if (skb_csum_hwoffload_help(skb, features))
3146 				goto out_kfree_skb;
3147 		}
3148 	}
3149 
3150 	skb = validate_xmit_xfrm(skb, features, again);
3151 
3152 	return skb;
3153 
3154 out_kfree_skb:
3155 	kfree_skb(skb);
3156 out_null:
3157 	atomic_long_inc(&dev->tx_dropped);
3158 	return NULL;
3159 }
3160 
3161 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3162 {
3163 	struct sk_buff *next, *head = NULL, *tail;
3164 
3165 	for (; skb != NULL; skb = next) {
3166 		next = skb->next;
3167 		skb->next = NULL;
3168 
3169 		/* in case skb wont be segmented, point to itself */
3170 		skb->prev = skb;
3171 
3172 		skb = validate_xmit_skb(skb, dev, again);
3173 		if (!skb)
3174 			continue;
3175 
3176 		if (!head)
3177 			head = skb;
3178 		else
3179 			tail->next = skb;
3180 		/* If skb was segmented, skb->prev points to
3181 		 * the last segment. If not, it still contains skb.
3182 		 */
3183 		tail = skb->prev;
3184 	}
3185 	return head;
3186 }
3187 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3188 
3189 static void qdisc_pkt_len_init(struct sk_buff *skb)
3190 {
3191 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3192 
3193 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3194 
3195 	/* To get more precise estimation of bytes sent on wire,
3196 	 * we add to pkt_len the headers size of all segments
3197 	 */
3198 	if (shinfo->gso_size)  {
3199 		unsigned int hdr_len;
3200 		u16 gso_segs = shinfo->gso_segs;
3201 
3202 		/* mac layer + network layer */
3203 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3204 
3205 		/* + transport layer */
3206 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3207 			const struct tcphdr *th;
3208 			struct tcphdr _tcphdr;
3209 
3210 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3211 						sizeof(_tcphdr), &_tcphdr);
3212 			if (likely(th))
3213 				hdr_len += __tcp_hdrlen(th);
3214 		} else {
3215 			struct udphdr _udphdr;
3216 
3217 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3218 					       sizeof(_udphdr), &_udphdr))
3219 				hdr_len += sizeof(struct udphdr);
3220 		}
3221 
3222 		if (shinfo->gso_type & SKB_GSO_DODGY)
3223 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3224 						shinfo->gso_size);
3225 
3226 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3227 	}
3228 }
3229 
3230 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3231 				 struct net_device *dev,
3232 				 struct netdev_queue *txq)
3233 {
3234 	spinlock_t *root_lock = qdisc_lock(q);
3235 	struct sk_buff *to_free = NULL;
3236 	bool contended;
3237 	int rc;
3238 
3239 	qdisc_calculate_pkt_len(skb, q);
3240 
3241 	if (q->flags & TCQ_F_NOLOCK) {
3242 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3243 			__qdisc_drop(skb, &to_free);
3244 			rc = NET_XMIT_DROP;
3245 		} else {
3246 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3247 			qdisc_run(q);
3248 		}
3249 
3250 		if (unlikely(to_free))
3251 			kfree_skb_list(to_free);
3252 		return rc;
3253 	}
3254 
3255 	/*
3256 	 * Heuristic to force contended enqueues to serialize on a
3257 	 * separate lock before trying to get qdisc main lock.
3258 	 * This permits qdisc->running owner to get the lock more
3259 	 * often and dequeue packets faster.
3260 	 */
3261 	contended = qdisc_is_running(q);
3262 	if (unlikely(contended))
3263 		spin_lock(&q->busylock);
3264 
3265 	spin_lock(root_lock);
3266 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3267 		__qdisc_drop(skb, &to_free);
3268 		rc = NET_XMIT_DROP;
3269 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3270 		   qdisc_run_begin(q)) {
3271 		/*
3272 		 * This is a work-conserving queue; there are no old skbs
3273 		 * waiting to be sent out; and the qdisc is not running -
3274 		 * xmit the skb directly.
3275 		 */
3276 
3277 		qdisc_bstats_update(q, skb);
3278 
3279 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3280 			if (unlikely(contended)) {
3281 				spin_unlock(&q->busylock);
3282 				contended = false;
3283 			}
3284 			__qdisc_run(q);
3285 		}
3286 
3287 		qdisc_run_end(q);
3288 		rc = NET_XMIT_SUCCESS;
3289 	} else {
3290 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3291 		if (qdisc_run_begin(q)) {
3292 			if (unlikely(contended)) {
3293 				spin_unlock(&q->busylock);
3294 				contended = false;
3295 			}
3296 			__qdisc_run(q);
3297 			qdisc_run_end(q);
3298 		}
3299 	}
3300 	spin_unlock(root_lock);
3301 	if (unlikely(to_free))
3302 		kfree_skb_list(to_free);
3303 	if (unlikely(contended))
3304 		spin_unlock(&q->busylock);
3305 	return rc;
3306 }
3307 
3308 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3309 static void skb_update_prio(struct sk_buff *skb)
3310 {
3311 	const struct netprio_map *map;
3312 	const struct sock *sk;
3313 	unsigned int prioidx;
3314 
3315 	if (skb->priority)
3316 		return;
3317 	map = rcu_dereference_bh(skb->dev->priomap);
3318 	if (!map)
3319 		return;
3320 	sk = skb_to_full_sk(skb);
3321 	if (!sk)
3322 		return;
3323 
3324 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3325 
3326 	if (prioidx < map->priomap_len)
3327 		skb->priority = map->priomap[prioidx];
3328 }
3329 #else
3330 #define skb_update_prio(skb)
3331 #endif
3332 
3333 DEFINE_PER_CPU(int, xmit_recursion);
3334 EXPORT_SYMBOL(xmit_recursion);
3335 
3336 /**
3337  *	dev_loopback_xmit - loop back @skb
3338  *	@net: network namespace this loopback is happening in
3339  *	@sk:  sk needed to be a netfilter okfn
3340  *	@skb: buffer to transmit
3341  */
3342 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3343 {
3344 	skb_reset_mac_header(skb);
3345 	__skb_pull(skb, skb_network_offset(skb));
3346 	skb->pkt_type = PACKET_LOOPBACK;
3347 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3348 	WARN_ON(!skb_dst(skb));
3349 	skb_dst_force(skb);
3350 	netif_rx_ni(skb);
3351 	return 0;
3352 }
3353 EXPORT_SYMBOL(dev_loopback_xmit);
3354 
3355 #ifdef CONFIG_NET_EGRESS
3356 static struct sk_buff *
3357 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3358 {
3359 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3360 	struct tcf_result cl_res;
3361 
3362 	if (!miniq)
3363 		return skb;
3364 
3365 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3366 	mini_qdisc_bstats_cpu_update(miniq, skb);
3367 
3368 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3369 	case TC_ACT_OK:
3370 	case TC_ACT_RECLASSIFY:
3371 		skb->tc_index = TC_H_MIN(cl_res.classid);
3372 		break;
3373 	case TC_ACT_SHOT:
3374 		mini_qdisc_qstats_cpu_drop(miniq);
3375 		*ret = NET_XMIT_DROP;
3376 		kfree_skb(skb);
3377 		return NULL;
3378 	case TC_ACT_STOLEN:
3379 	case TC_ACT_QUEUED:
3380 	case TC_ACT_TRAP:
3381 		*ret = NET_XMIT_SUCCESS;
3382 		consume_skb(skb);
3383 		return NULL;
3384 	case TC_ACT_REDIRECT:
3385 		/* No need to push/pop skb's mac_header here on egress! */
3386 		skb_do_redirect(skb);
3387 		*ret = NET_XMIT_SUCCESS;
3388 		return NULL;
3389 	default:
3390 		break;
3391 	}
3392 
3393 	return skb;
3394 }
3395 #endif /* CONFIG_NET_EGRESS */
3396 
3397 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3398 {
3399 #ifdef CONFIG_XPS
3400 	struct xps_dev_maps *dev_maps;
3401 	struct xps_map *map;
3402 	int queue_index = -1;
3403 
3404 	rcu_read_lock();
3405 	dev_maps = rcu_dereference(dev->xps_maps);
3406 	if (dev_maps) {
3407 		unsigned int tci = skb->sender_cpu - 1;
3408 
3409 		if (dev->num_tc) {
3410 			tci *= dev->num_tc;
3411 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3412 		}
3413 
3414 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3415 		if (map) {
3416 			if (map->len == 1)
3417 				queue_index = map->queues[0];
3418 			else
3419 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3420 									   map->len)];
3421 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3422 				queue_index = -1;
3423 		}
3424 	}
3425 	rcu_read_unlock();
3426 
3427 	return queue_index;
3428 #else
3429 	return -1;
3430 #endif
3431 }
3432 
3433 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3434 {
3435 	struct sock *sk = skb->sk;
3436 	int queue_index = sk_tx_queue_get(sk);
3437 
3438 	if (queue_index < 0 || skb->ooo_okay ||
3439 	    queue_index >= dev->real_num_tx_queues) {
3440 		int new_index = get_xps_queue(dev, skb);
3441 
3442 		if (new_index < 0)
3443 			new_index = skb_tx_hash(dev, skb);
3444 
3445 		if (queue_index != new_index && sk &&
3446 		    sk_fullsock(sk) &&
3447 		    rcu_access_pointer(sk->sk_dst_cache))
3448 			sk_tx_queue_set(sk, new_index);
3449 
3450 		queue_index = new_index;
3451 	}
3452 
3453 	return queue_index;
3454 }
3455 
3456 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3457 				    struct sk_buff *skb,
3458 				    void *accel_priv)
3459 {
3460 	int queue_index = 0;
3461 
3462 #ifdef CONFIG_XPS
3463 	u32 sender_cpu = skb->sender_cpu - 1;
3464 
3465 	if (sender_cpu >= (u32)NR_CPUS)
3466 		skb->sender_cpu = raw_smp_processor_id() + 1;
3467 #endif
3468 
3469 	if (dev->real_num_tx_queues != 1) {
3470 		const struct net_device_ops *ops = dev->netdev_ops;
3471 
3472 		if (ops->ndo_select_queue)
3473 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3474 							    __netdev_pick_tx);
3475 		else
3476 			queue_index = __netdev_pick_tx(dev, skb);
3477 
3478 		queue_index = netdev_cap_txqueue(dev, queue_index);
3479 	}
3480 
3481 	skb_set_queue_mapping(skb, queue_index);
3482 	return netdev_get_tx_queue(dev, queue_index);
3483 }
3484 
3485 /**
3486  *	__dev_queue_xmit - transmit a buffer
3487  *	@skb: buffer to transmit
3488  *	@accel_priv: private data used for L2 forwarding offload
3489  *
3490  *	Queue a buffer for transmission to a network device. The caller must
3491  *	have set the device and priority and built the buffer before calling
3492  *	this function. The function can be called from an interrupt.
3493  *
3494  *	A negative errno code is returned on a failure. A success does not
3495  *	guarantee the frame will be transmitted as it may be dropped due
3496  *	to congestion or traffic shaping.
3497  *
3498  * -----------------------------------------------------------------------------------
3499  *      I notice this method can also return errors from the queue disciplines,
3500  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3501  *      be positive.
3502  *
3503  *      Regardless of the return value, the skb is consumed, so it is currently
3504  *      difficult to retry a send to this method.  (You can bump the ref count
3505  *      before sending to hold a reference for retry if you are careful.)
3506  *
3507  *      When calling this method, interrupts MUST be enabled.  This is because
3508  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3509  *          --BLG
3510  */
3511 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3512 {
3513 	struct net_device *dev = skb->dev;
3514 	struct netdev_queue *txq;
3515 	struct Qdisc *q;
3516 	int rc = -ENOMEM;
3517 	bool again = false;
3518 
3519 	skb_reset_mac_header(skb);
3520 
3521 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3522 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3523 
3524 	/* Disable soft irqs for various locks below. Also
3525 	 * stops preemption for RCU.
3526 	 */
3527 	rcu_read_lock_bh();
3528 
3529 	skb_update_prio(skb);
3530 
3531 	qdisc_pkt_len_init(skb);
3532 #ifdef CONFIG_NET_CLS_ACT
3533 	skb->tc_at_ingress = 0;
3534 # ifdef CONFIG_NET_EGRESS
3535 	if (static_branch_unlikely(&egress_needed_key)) {
3536 		skb = sch_handle_egress(skb, &rc, dev);
3537 		if (!skb)
3538 			goto out;
3539 	}
3540 # endif
3541 #endif
3542 	/* If device/qdisc don't need skb->dst, release it right now while
3543 	 * its hot in this cpu cache.
3544 	 */
3545 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3546 		skb_dst_drop(skb);
3547 	else
3548 		skb_dst_force(skb);
3549 
3550 	txq = netdev_pick_tx(dev, skb, accel_priv);
3551 	q = rcu_dereference_bh(txq->qdisc);
3552 
3553 	trace_net_dev_queue(skb);
3554 	if (q->enqueue) {
3555 		rc = __dev_xmit_skb(skb, q, dev, txq);
3556 		goto out;
3557 	}
3558 
3559 	/* The device has no queue. Common case for software devices:
3560 	 * loopback, all the sorts of tunnels...
3561 
3562 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3563 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3564 	 * counters.)
3565 	 * However, it is possible, that they rely on protection
3566 	 * made by us here.
3567 
3568 	 * Check this and shot the lock. It is not prone from deadlocks.
3569 	 *Either shot noqueue qdisc, it is even simpler 8)
3570 	 */
3571 	if (dev->flags & IFF_UP) {
3572 		int cpu = smp_processor_id(); /* ok because BHs are off */
3573 
3574 		if (txq->xmit_lock_owner != cpu) {
3575 			if (unlikely(__this_cpu_read(xmit_recursion) >
3576 				     XMIT_RECURSION_LIMIT))
3577 				goto recursion_alert;
3578 
3579 			skb = validate_xmit_skb(skb, dev, &again);
3580 			if (!skb)
3581 				goto out;
3582 
3583 			HARD_TX_LOCK(dev, txq, cpu);
3584 
3585 			if (!netif_xmit_stopped(txq)) {
3586 				__this_cpu_inc(xmit_recursion);
3587 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3588 				__this_cpu_dec(xmit_recursion);
3589 				if (dev_xmit_complete(rc)) {
3590 					HARD_TX_UNLOCK(dev, txq);
3591 					goto out;
3592 				}
3593 			}
3594 			HARD_TX_UNLOCK(dev, txq);
3595 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3596 					     dev->name);
3597 		} else {
3598 			/* Recursion is detected! It is possible,
3599 			 * unfortunately
3600 			 */
3601 recursion_alert:
3602 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3603 					     dev->name);
3604 		}
3605 	}
3606 
3607 	rc = -ENETDOWN;
3608 	rcu_read_unlock_bh();
3609 
3610 	atomic_long_inc(&dev->tx_dropped);
3611 	kfree_skb_list(skb);
3612 	return rc;
3613 out:
3614 	rcu_read_unlock_bh();
3615 	return rc;
3616 }
3617 
3618 int dev_queue_xmit(struct sk_buff *skb)
3619 {
3620 	return __dev_queue_xmit(skb, NULL);
3621 }
3622 EXPORT_SYMBOL(dev_queue_xmit);
3623 
3624 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3625 {
3626 	return __dev_queue_xmit(skb, accel_priv);
3627 }
3628 EXPORT_SYMBOL(dev_queue_xmit_accel);
3629 
3630 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3631 {
3632 	struct net_device *dev = skb->dev;
3633 	struct sk_buff *orig_skb = skb;
3634 	struct netdev_queue *txq;
3635 	int ret = NETDEV_TX_BUSY;
3636 	bool again = false;
3637 
3638 	if (unlikely(!netif_running(dev) ||
3639 		     !netif_carrier_ok(dev)))
3640 		goto drop;
3641 
3642 	skb = validate_xmit_skb_list(skb, dev, &again);
3643 	if (skb != orig_skb)
3644 		goto drop;
3645 
3646 	skb_set_queue_mapping(skb, queue_id);
3647 	txq = skb_get_tx_queue(dev, skb);
3648 
3649 	local_bh_disable();
3650 
3651 	HARD_TX_LOCK(dev, txq, smp_processor_id());
3652 	if (!netif_xmit_frozen_or_drv_stopped(txq))
3653 		ret = netdev_start_xmit(skb, dev, txq, false);
3654 	HARD_TX_UNLOCK(dev, txq);
3655 
3656 	local_bh_enable();
3657 
3658 	if (!dev_xmit_complete(ret))
3659 		kfree_skb(skb);
3660 
3661 	return ret;
3662 drop:
3663 	atomic_long_inc(&dev->tx_dropped);
3664 	kfree_skb_list(skb);
3665 	return NET_XMIT_DROP;
3666 }
3667 EXPORT_SYMBOL(dev_direct_xmit);
3668 
3669 /*************************************************************************
3670  *			Receiver routines
3671  *************************************************************************/
3672 
3673 int netdev_max_backlog __read_mostly = 1000;
3674 EXPORT_SYMBOL(netdev_max_backlog);
3675 
3676 int netdev_tstamp_prequeue __read_mostly = 1;
3677 int netdev_budget __read_mostly = 300;
3678 unsigned int __read_mostly netdev_budget_usecs = 2000;
3679 int weight_p __read_mostly = 64;           /* old backlog weight */
3680 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3681 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3682 int dev_rx_weight __read_mostly = 64;
3683 int dev_tx_weight __read_mostly = 64;
3684 
3685 /* Called with irq disabled */
3686 static inline void ____napi_schedule(struct softnet_data *sd,
3687 				     struct napi_struct *napi)
3688 {
3689 	list_add_tail(&napi->poll_list, &sd->poll_list);
3690 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3691 }
3692 
3693 #ifdef CONFIG_RPS
3694 
3695 /* One global table that all flow-based protocols share. */
3696 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3697 EXPORT_SYMBOL(rps_sock_flow_table);
3698 u32 rps_cpu_mask __read_mostly;
3699 EXPORT_SYMBOL(rps_cpu_mask);
3700 
3701 struct static_key rps_needed __read_mostly;
3702 EXPORT_SYMBOL(rps_needed);
3703 struct static_key rfs_needed __read_mostly;
3704 EXPORT_SYMBOL(rfs_needed);
3705 
3706 static struct rps_dev_flow *
3707 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3708 	    struct rps_dev_flow *rflow, u16 next_cpu)
3709 {
3710 	if (next_cpu < nr_cpu_ids) {
3711 #ifdef CONFIG_RFS_ACCEL
3712 		struct netdev_rx_queue *rxqueue;
3713 		struct rps_dev_flow_table *flow_table;
3714 		struct rps_dev_flow *old_rflow;
3715 		u32 flow_id;
3716 		u16 rxq_index;
3717 		int rc;
3718 
3719 		/* Should we steer this flow to a different hardware queue? */
3720 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3721 		    !(dev->features & NETIF_F_NTUPLE))
3722 			goto out;
3723 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3724 		if (rxq_index == skb_get_rx_queue(skb))
3725 			goto out;
3726 
3727 		rxqueue = dev->_rx + rxq_index;
3728 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3729 		if (!flow_table)
3730 			goto out;
3731 		flow_id = skb_get_hash(skb) & flow_table->mask;
3732 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3733 							rxq_index, flow_id);
3734 		if (rc < 0)
3735 			goto out;
3736 		old_rflow = rflow;
3737 		rflow = &flow_table->flows[flow_id];
3738 		rflow->filter = rc;
3739 		if (old_rflow->filter == rflow->filter)
3740 			old_rflow->filter = RPS_NO_FILTER;
3741 	out:
3742 #endif
3743 		rflow->last_qtail =
3744 			per_cpu(softnet_data, next_cpu).input_queue_head;
3745 	}
3746 
3747 	rflow->cpu = next_cpu;
3748 	return rflow;
3749 }
3750 
3751 /*
3752  * get_rps_cpu is called from netif_receive_skb and returns the target
3753  * CPU from the RPS map of the receiving queue for a given skb.
3754  * rcu_read_lock must be held on entry.
3755  */
3756 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3757 		       struct rps_dev_flow **rflowp)
3758 {
3759 	const struct rps_sock_flow_table *sock_flow_table;
3760 	struct netdev_rx_queue *rxqueue = dev->_rx;
3761 	struct rps_dev_flow_table *flow_table;
3762 	struct rps_map *map;
3763 	int cpu = -1;
3764 	u32 tcpu;
3765 	u32 hash;
3766 
3767 	if (skb_rx_queue_recorded(skb)) {
3768 		u16 index = skb_get_rx_queue(skb);
3769 
3770 		if (unlikely(index >= dev->real_num_rx_queues)) {
3771 			WARN_ONCE(dev->real_num_rx_queues > 1,
3772 				  "%s received packet on queue %u, but number "
3773 				  "of RX queues is %u\n",
3774 				  dev->name, index, dev->real_num_rx_queues);
3775 			goto done;
3776 		}
3777 		rxqueue += index;
3778 	}
3779 
3780 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3781 
3782 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3783 	map = rcu_dereference(rxqueue->rps_map);
3784 	if (!flow_table && !map)
3785 		goto done;
3786 
3787 	skb_reset_network_header(skb);
3788 	hash = skb_get_hash(skb);
3789 	if (!hash)
3790 		goto done;
3791 
3792 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3793 	if (flow_table && sock_flow_table) {
3794 		struct rps_dev_flow *rflow;
3795 		u32 next_cpu;
3796 		u32 ident;
3797 
3798 		/* First check into global flow table if there is a match */
3799 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3800 		if ((ident ^ hash) & ~rps_cpu_mask)
3801 			goto try_rps;
3802 
3803 		next_cpu = ident & rps_cpu_mask;
3804 
3805 		/* OK, now we know there is a match,
3806 		 * we can look at the local (per receive queue) flow table
3807 		 */
3808 		rflow = &flow_table->flows[hash & flow_table->mask];
3809 		tcpu = rflow->cpu;
3810 
3811 		/*
3812 		 * If the desired CPU (where last recvmsg was done) is
3813 		 * different from current CPU (one in the rx-queue flow
3814 		 * table entry), switch if one of the following holds:
3815 		 *   - Current CPU is unset (>= nr_cpu_ids).
3816 		 *   - Current CPU is offline.
3817 		 *   - The current CPU's queue tail has advanced beyond the
3818 		 *     last packet that was enqueued using this table entry.
3819 		 *     This guarantees that all previous packets for the flow
3820 		 *     have been dequeued, thus preserving in order delivery.
3821 		 */
3822 		if (unlikely(tcpu != next_cpu) &&
3823 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3824 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3825 		      rflow->last_qtail)) >= 0)) {
3826 			tcpu = next_cpu;
3827 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3828 		}
3829 
3830 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3831 			*rflowp = rflow;
3832 			cpu = tcpu;
3833 			goto done;
3834 		}
3835 	}
3836 
3837 try_rps:
3838 
3839 	if (map) {
3840 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3841 		if (cpu_online(tcpu)) {
3842 			cpu = tcpu;
3843 			goto done;
3844 		}
3845 	}
3846 
3847 done:
3848 	return cpu;
3849 }
3850 
3851 #ifdef CONFIG_RFS_ACCEL
3852 
3853 /**
3854  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3855  * @dev: Device on which the filter was set
3856  * @rxq_index: RX queue index
3857  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3858  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3859  *
3860  * Drivers that implement ndo_rx_flow_steer() should periodically call
3861  * this function for each installed filter and remove the filters for
3862  * which it returns %true.
3863  */
3864 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3865 			 u32 flow_id, u16 filter_id)
3866 {
3867 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3868 	struct rps_dev_flow_table *flow_table;
3869 	struct rps_dev_flow *rflow;
3870 	bool expire = true;
3871 	unsigned int cpu;
3872 
3873 	rcu_read_lock();
3874 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3875 	if (flow_table && flow_id <= flow_table->mask) {
3876 		rflow = &flow_table->flows[flow_id];
3877 		cpu = READ_ONCE(rflow->cpu);
3878 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3879 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3880 			   rflow->last_qtail) <
3881 		     (int)(10 * flow_table->mask)))
3882 			expire = false;
3883 	}
3884 	rcu_read_unlock();
3885 	return expire;
3886 }
3887 EXPORT_SYMBOL(rps_may_expire_flow);
3888 
3889 #endif /* CONFIG_RFS_ACCEL */
3890 
3891 /* Called from hardirq (IPI) context */
3892 static void rps_trigger_softirq(void *data)
3893 {
3894 	struct softnet_data *sd = data;
3895 
3896 	____napi_schedule(sd, &sd->backlog);
3897 	sd->received_rps++;
3898 }
3899 
3900 #endif /* CONFIG_RPS */
3901 
3902 /*
3903  * Check if this softnet_data structure is another cpu one
3904  * If yes, queue it to our IPI list and return 1
3905  * If no, return 0
3906  */
3907 static int rps_ipi_queued(struct softnet_data *sd)
3908 {
3909 #ifdef CONFIG_RPS
3910 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3911 
3912 	if (sd != mysd) {
3913 		sd->rps_ipi_next = mysd->rps_ipi_list;
3914 		mysd->rps_ipi_list = sd;
3915 
3916 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3917 		return 1;
3918 	}
3919 #endif /* CONFIG_RPS */
3920 	return 0;
3921 }
3922 
3923 #ifdef CONFIG_NET_FLOW_LIMIT
3924 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3925 #endif
3926 
3927 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3928 {
3929 #ifdef CONFIG_NET_FLOW_LIMIT
3930 	struct sd_flow_limit *fl;
3931 	struct softnet_data *sd;
3932 	unsigned int old_flow, new_flow;
3933 
3934 	if (qlen < (netdev_max_backlog >> 1))
3935 		return false;
3936 
3937 	sd = this_cpu_ptr(&softnet_data);
3938 
3939 	rcu_read_lock();
3940 	fl = rcu_dereference(sd->flow_limit);
3941 	if (fl) {
3942 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3943 		old_flow = fl->history[fl->history_head];
3944 		fl->history[fl->history_head] = new_flow;
3945 
3946 		fl->history_head++;
3947 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3948 
3949 		if (likely(fl->buckets[old_flow]))
3950 			fl->buckets[old_flow]--;
3951 
3952 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3953 			fl->count++;
3954 			rcu_read_unlock();
3955 			return true;
3956 		}
3957 	}
3958 	rcu_read_unlock();
3959 #endif
3960 	return false;
3961 }
3962 
3963 /*
3964  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3965  * queue (may be a remote CPU queue).
3966  */
3967 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3968 			      unsigned int *qtail)
3969 {
3970 	struct softnet_data *sd;
3971 	unsigned long flags;
3972 	unsigned int qlen;
3973 
3974 	sd = &per_cpu(softnet_data, cpu);
3975 
3976 	local_irq_save(flags);
3977 
3978 	rps_lock(sd);
3979 	if (!netif_running(skb->dev))
3980 		goto drop;
3981 	qlen = skb_queue_len(&sd->input_pkt_queue);
3982 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3983 		if (qlen) {
3984 enqueue:
3985 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3986 			input_queue_tail_incr_save(sd, qtail);
3987 			rps_unlock(sd);
3988 			local_irq_restore(flags);
3989 			return NET_RX_SUCCESS;
3990 		}
3991 
3992 		/* Schedule NAPI for backlog device
3993 		 * We can use non atomic operation since we own the queue lock
3994 		 */
3995 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3996 			if (!rps_ipi_queued(sd))
3997 				____napi_schedule(sd, &sd->backlog);
3998 		}
3999 		goto enqueue;
4000 	}
4001 
4002 drop:
4003 	sd->dropped++;
4004 	rps_unlock(sd);
4005 
4006 	local_irq_restore(flags);
4007 
4008 	atomic_long_inc(&skb->dev->rx_dropped);
4009 	kfree_skb(skb);
4010 	return NET_RX_DROP;
4011 }
4012 
4013 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4014 {
4015 	struct net_device *dev = skb->dev;
4016 	struct netdev_rx_queue *rxqueue;
4017 
4018 	rxqueue = dev->_rx;
4019 
4020 	if (skb_rx_queue_recorded(skb)) {
4021 		u16 index = skb_get_rx_queue(skb);
4022 
4023 		if (unlikely(index >= dev->real_num_rx_queues)) {
4024 			WARN_ONCE(dev->real_num_rx_queues > 1,
4025 				  "%s received packet on queue %u, but number "
4026 				  "of RX queues is %u\n",
4027 				  dev->name, index, dev->real_num_rx_queues);
4028 
4029 			return rxqueue; /* Return first rxqueue */
4030 		}
4031 		rxqueue += index;
4032 	}
4033 	return rxqueue;
4034 }
4035 
4036 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4037 				     struct xdp_buff *xdp,
4038 				     struct bpf_prog *xdp_prog)
4039 {
4040 	struct netdev_rx_queue *rxqueue;
4041 	void *orig_data, *orig_data_end;
4042 	u32 metalen, act = XDP_DROP;
4043 	int hlen, off;
4044 	u32 mac_len;
4045 
4046 	/* Reinjected packets coming from act_mirred or similar should
4047 	 * not get XDP generic processing.
4048 	 */
4049 	if (skb_cloned(skb))
4050 		return XDP_PASS;
4051 
4052 	/* XDP packets must be linear and must have sufficient headroom
4053 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4054 	 * native XDP provides, thus we need to do it here as well.
4055 	 */
4056 	if (skb_is_nonlinear(skb) ||
4057 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4058 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4059 		int troom = skb->tail + skb->data_len - skb->end;
4060 
4061 		/* In case we have to go down the path and also linearize,
4062 		 * then lets do the pskb_expand_head() work just once here.
4063 		 */
4064 		if (pskb_expand_head(skb,
4065 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4066 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4067 			goto do_drop;
4068 		if (skb_linearize(skb))
4069 			goto do_drop;
4070 	}
4071 
4072 	/* The XDP program wants to see the packet starting at the MAC
4073 	 * header.
4074 	 */
4075 	mac_len = skb->data - skb_mac_header(skb);
4076 	hlen = skb_headlen(skb) + mac_len;
4077 	xdp->data = skb->data - mac_len;
4078 	xdp->data_meta = xdp->data;
4079 	xdp->data_end = xdp->data + hlen;
4080 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4081 	orig_data_end = xdp->data_end;
4082 	orig_data = xdp->data;
4083 
4084 	rxqueue = netif_get_rxqueue(skb);
4085 	xdp->rxq = &rxqueue->xdp_rxq;
4086 
4087 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4088 
4089 	off = xdp->data - orig_data;
4090 	if (off > 0)
4091 		__skb_pull(skb, off);
4092 	else if (off < 0)
4093 		__skb_push(skb, -off);
4094 	skb->mac_header += off;
4095 
4096 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4097 	 * pckt.
4098 	 */
4099 	off = orig_data_end - xdp->data_end;
4100 	if (off != 0) {
4101 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4102 		skb->len -= off;
4103 
4104 	}
4105 
4106 	switch (act) {
4107 	case XDP_REDIRECT:
4108 	case XDP_TX:
4109 		__skb_push(skb, mac_len);
4110 		break;
4111 	case XDP_PASS:
4112 		metalen = xdp->data - xdp->data_meta;
4113 		if (metalen)
4114 			skb_metadata_set(skb, metalen);
4115 		break;
4116 	default:
4117 		bpf_warn_invalid_xdp_action(act);
4118 		/* fall through */
4119 	case XDP_ABORTED:
4120 		trace_xdp_exception(skb->dev, xdp_prog, act);
4121 		/* fall through */
4122 	case XDP_DROP:
4123 	do_drop:
4124 		kfree_skb(skb);
4125 		break;
4126 	}
4127 
4128 	return act;
4129 }
4130 
4131 /* When doing generic XDP we have to bypass the qdisc layer and the
4132  * network taps in order to match in-driver-XDP behavior.
4133  */
4134 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4135 {
4136 	struct net_device *dev = skb->dev;
4137 	struct netdev_queue *txq;
4138 	bool free_skb = true;
4139 	int cpu, rc;
4140 
4141 	txq = netdev_pick_tx(dev, skb, NULL);
4142 	cpu = smp_processor_id();
4143 	HARD_TX_LOCK(dev, txq, cpu);
4144 	if (!netif_xmit_stopped(txq)) {
4145 		rc = netdev_start_xmit(skb, dev, txq, 0);
4146 		if (dev_xmit_complete(rc))
4147 			free_skb = false;
4148 	}
4149 	HARD_TX_UNLOCK(dev, txq);
4150 	if (free_skb) {
4151 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4152 		kfree_skb(skb);
4153 	}
4154 }
4155 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4156 
4157 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4158 
4159 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4160 {
4161 	if (xdp_prog) {
4162 		struct xdp_buff xdp;
4163 		u32 act;
4164 		int err;
4165 
4166 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4167 		if (act != XDP_PASS) {
4168 			switch (act) {
4169 			case XDP_REDIRECT:
4170 				err = xdp_do_generic_redirect(skb->dev, skb,
4171 							      &xdp, xdp_prog);
4172 				if (err)
4173 					goto out_redir;
4174 				break;
4175 			case XDP_TX:
4176 				generic_xdp_tx(skb, xdp_prog);
4177 				break;
4178 			}
4179 			return XDP_DROP;
4180 		}
4181 	}
4182 	return XDP_PASS;
4183 out_redir:
4184 	kfree_skb(skb);
4185 	return XDP_DROP;
4186 }
4187 EXPORT_SYMBOL_GPL(do_xdp_generic);
4188 
4189 static int netif_rx_internal(struct sk_buff *skb)
4190 {
4191 	int ret;
4192 
4193 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4194 
4195 	trace_netif_rx(skb);
4196 
4197 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4198 		int ret;
4199 
4200 		preempt_disable();
4201 		rcu_read_lock();
4202 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4203 		rcu_read_unlock();
4204 		preempt_enable();
4205 
4206 		/* Consider XDP consuming the packet a success from
4207 		 * the netdev point of view we do not want to count
4208 		 * this as an error.
4209 		 */
4210 		if (ret != XDP_PASS)
4211 			return NET_RX_SUCCESS;
4212 	}
4213 
4214 #ifdef CONFIG_RPS
4215 	if (static_key_false(&rps_needed)) {
4216 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4217 		int cpu;
4218 
4219 		preempt_disable();
4220 		rcu_read_lock();
4221 
4222 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4223 		if (cpu < 0)
4224 			cpu = smp_processor_id();
4225 
4226 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4227 
4228 		rcu_read_unlock();
4229 		preempt_enable();
4230 	} else
4231 #endif
4232 	{
4233 		unsigned int qtail;
4234 
4235 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4236 		put_cpu();
4237 	}
4238 	return ret;
4239 }
4240 
4241 /**
4242  *	netif_rx	-	post buffer to the network code
4243  *	@skb: buffer to post
4244  *
4245  *	This function receives a packet from a device driver and queues it for
4246  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4247  *	may be dropped during processing for congestion control or by the
4248  *	protocol layers.
4249  *
4250  *	return values:
4251  *	NET_RX_SUCCESS	(no congestion)
4252  *	NET_RX_DROP     (packet was dropped)
4253  *
4254  */
4255 
4256 int netif_rx(struct sk_buff *skb)
4257 {
4258 	trace_netif_rx_entry(skb);
4259 
4260 	return netif_rx_internal(skb);
4261 }
4262 EXPORT_SYMBOL(netif_rx);
4263 
4264 int netif_rx_ni(struct sk_buff *skb)
4265 {
4266 	int err;
4267 
4268 	trace_netif_rx_ni_entry(skb);
4269 
4270 	preempt_disable();
4271 	err = netif_rx_internal(skb);
4272 	if (local_softirq_pending())
4273 		do_softirq();
4274 	preempt_enable();
4275 
4276 	return err;
4277 }
4278 EXPORT_SYMBOL(netif_rx_ni);
4279 
4280 static __latent_entropy void net_tx_action(struct softirq_action *h)
4281 {
4282 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4283 
4284 	if (sd->completion_queue) {
4285 		struct sk_buff *clist;
4286 
4287 		local_irq_disable();
4288 		clist = sd->completion_queue;
4289 		sd->completion_queue = NULL;
4290 		local_irq_enable();
4291 
4292 		while (clist) {
4293 			struct sk_buff *skb = clist;
4294 
4295 			clist = clist->next;
4296 
4297 			WARN_ON(refcount_read(&skb->users));
4298 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4299 				trace_consume_skb(skb);
4300 			else
4301 				trace_kfree_skb(skb, net_tx_action);
4302 
4303 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4304 				__kfree_skb(skb);
4305 			else
4306 				__kfree_skb_defer(skb);
4307 		}
4308 
4309 		__kfree_skb_flush();
4310 	}
4311 
4312 	if (sd->output_queue) {
4313 		struct Qdisc *head;
4314 
4315 		local_irq_disable();
4316 		head = sd->output_queue;
4317 		sd->output_queue = NULL;
4318 		sd->output_queue_tailp = &sd->output_queue;
4319 		local_irq_enable();
4320 
4321 		while (head) {
4322 			struct Qdisc *q = head;
4323 			spinlock_t *root_lock = NULL;
4324 
4325 			head = head->next_sched;
4326 
4327 			if (!(q->flags & TCQ_F_NOLOCK)) {
4328 				root_lock = qdisc_lock(q);
4329 				spin_lock(root_lock);
4330 			}
4331 			/* We need to make sure head->next_sched is read
4332 			 * before clearing __QDISC_STATE_SCHED
4333 			 */
4334 			smp_mb__before_atomic();
4335 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4336 			qdisc_run(q);
4337 			if (root_lock)
4338 				spin_unlock(root_lock);
4339 		}
4340 	}
4341 
4342 	xfrm_dev_backlog(sd);
4343 }
4344 
4345 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4346 /* This hook is defined here for ATM LANE */
4347 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4348 			     unsigned char *addr) __read_mostly;
4349 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4350 #endif
4351 
4352 static inline struct sk_buff *
4353 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4354 		   struct net_device *orig_dev)
4355 {
4356 #ifdef CONFIG_NET_CLS_ACT
4357 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4358 	struct tcf_result cl_res;
4359 
4360 	/* If there's at least one ingress present somewhere (so
4361 	 * we get here via enabled static key), remaining devices
4362 	 * that are not configured with an ingress qdisc will bail
4363 	 * out here.
4364 	 */
4365 	if (!miniq)
4366 		return skb;
4367 
4368 	if (*pt_prev) {
4369 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4370 		*pt_prev = NULL;
4371 	}
4372 
4373 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4374 	skb->tc_at_ingress = 1;
4375 	mini_qdisc_bstats_cpu_update(miniq, skb);
4376 
4377 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4378 	case TC_ACT_OK:
4379 	case TC_ACT_RECLASSIFY:
4380 		skb->tc_index = TC_H_MIN(cl_res.classid);
4381 		break;
4382 	case TC_ACT_SHOT:
4383 		mini_qdisc_qstats_cpu_drop(miniq);
4384 		kfree_skb(skb);
4385 		return NULL;
4386 	case TC_ACT_STOLEN:
4387 	case TC_ACT_QUEUED:
4388 	case TC_ACT_TRAP:
4389 		consume_skb(skb);
4390 		return NULL;
4391 	case TC_ACT_REDIRECT:
4392 		/* skb_mac_header check was done by cls/act_bpf, so
4393 		 * we can safely push the L2 header back before
4394 		 * redirecting to another netdev
4395 		 */
4396 		__skb_push(skb, skb->mac_len);
4397 		skb_do_redirect(skb);
4398 		return NULL;
4399 	default:
4400 		break;
4401 	}
4402 #endif /* CONFIG_NET_CLS_ACT */
4403 	return skb;
4404 }
4405 
4406 /**
4407  *	netdev_is_rx_handler_busy - check if receive handler is registered
4408  *	@dev: device to check
4409  *
4410  *	Check if a receive handler is already registered for a given device.
4411  *	Return true if there one.
4412  *
4413  *	The caller must hold the rtnl_mutex.
4414  */
4415 bool netdev_is_rx_handler_busy(struct net_device *dev)
4416 {
4417 	ASSERT_RTNL();
4418 	return dev && rtnl_dereference(dev->rx_handler);
4419 }
4420 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4421 
4422 /**
4423  *	netdev_rx_handler_register - register receive handler
4424  *	@dev: device to register a handler for
4425  *	@rx_handler: receive handler to register
4426  *	@rx_handler_data: data pointer that is used by rx handler
4427  *
4428  *	Register a receive handler for a device. This handler will then be
4429  *	called from __netif_receive_skb. A negative errno code is returned
4430  *	on a failure.
4431  *
4432  *	The caller must hold the rtnl_mutex.
4433  *
4434  *	For a general description of rx_handler, see enum rx_handler_result.
4435  */
4436 int netdev_rx_handler_register(struct net_device *dev,
4437 			       rx_handler_func_t *rx_handler,
4438 			       void *rx_handler_data)
4439 {
4440 	if (netdev_is_rx_handler_busy(dev))
4441 		return -EBUSY;
4442 
4443 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4444 		return -EINVAL;
4445 
4446 	/* Note: rx_handler_data must be set before rx_handler */
4447 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4448 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4449 
4450 	return 0;
4451 }
4452 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4453 
4454 /**
4455  *	netdev_rx_handler_unregister - unregister receive handler
4456  *	@dev: device to unregister a handler from
4457  *
4458  *	Unregister a receive handler from a device.
4459  *
4460  *	The caller must hold the rtnl_mutex.
4461  */
4462 void netdev_rx_handler_unregister(struct net_device *dev)
4463 {
4464 
4465 	ASSERT_RTNL();
4466 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4467 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4468 	 * section has a guarantee to see a non NULL rx_handler_data
4469 	 * as well.
4470 	 */
4471 	synchronize_net();
4472 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4473 }
4474 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4475 
4476 /*
4477  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4478  * the special handling of PFMEMALLOC skbs.
4479  */
4480 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4481 {
4482 	switch (skb->protocol) {
4483 	case htons(ETH_P_ARP):
4484 	case htons(ETH_P_IP):
4485 	case htons(ETH_P_IPV6):
4486 	case htons(ETH_P_8021Q):
4487 	case htons(ETH_P_8021AD):
4488 		return true;
4489 	default:
4490 		return false;
4491 	}
4492 }
4493 
4494 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4495 			     int *ret, struct net_device *orig_dev)
4496 {
4497 #ifdef CONFIG_NETFILTER_INGRESS
4498 	if (nf_hook_ingress_active(skb)) {
4499 		int ingress_retval;
4500 
4501 		if (*pt_prev) {
4502 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4503 			*pt_prev = NULL;
4504 		}
4505 
4506 		rcu_read_lock();
4507 		ingress_retval = nf_hook_ingress(skb);
4508 		rcu_read_unlock();
4509 		return ingress_retval;
4510 	}
4511 #endif /* CONFIG_NETFILTER_INGRESS */
4512 	return 0;
4513 }
4514 
4515 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4516 {
4517 	struct packet_type *ptype, *pt_prev;
4518 	rx_handler_func_t *rx_handler;
4519 	struct net_device *orig_dev;
4520 	bool deliver_exact = false;
4521 	int ret = NET_RX_DROP;
4522 	__be16 type;
4523 
4524 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4525 
4526 	trace_netif_receive_skb(skb);
4527 
4528 	orig_dev = skb->dev;
4529 
4530 	skb_reset_network_header(skb);
4531 	if (!skb_transport_header_was_set(skb))
4532 		skb_reset_transport_header(skb);
4533 	skb_reset_mac_len(skb);
4534 
4535 	pt_prev = NULL;
4536 
4537 another_round:
4538 	skb->skb_iif = skb->dev->ifindex;
4539 
4540 	__this_cpu_inc(softnet_data.processed);
4541 
4542 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4543 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4544 		skb = skb_vlan_untag(skb);
4545 		if (unlikely(!skb))
4546 			goto out;
4547 	}
4548 
4549 	if (skb_skip_tc_classify(skb))
4550 		goto skip_classify;
4551 
4552 	if (pfmemalloc)
4553 		goto skip_taps;
4554 
4555 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4556 		if (pt_prev)
4557 			ret = deliver_skb(skb, pt_prev, orig_dev);
4558 		pt_prev = ptype;
4559 	}
4560 
4561 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4562 		if (pt_prev)
4563 			ret = deliver_skb(skb, pt_prev, orig_dev);
4564 		pt_prev = ptype;
4565 	}
4566 
4567 skip_taps:
4568 #ifdef CONFIG_NET_INGRESS
4569 	if (static_branch_unlikely(&ingress_needed_key)) {
4570 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4571 		if (!skb)
4572 			goto out;
4573 
4574 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4575 			goto out;
4576 	}
4577 #endif
4578 	skb_reset_tc(skb);
4579 skip_classify:
4580 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4581 		goto drop;
4582 
4583 	if (skb_vlan_tag_present(skb)) {
4584 		if (pt_prev) {
4585 			ret = deliver_skb(skb, pt_prev, orig_dev);
4586 			pt_prev = NULL;
4587 		}
4588 		if (vlan_do_receive(&skb))
4589 			goto another_round;
4590 		else if (unlikely(!skb))
4591 			goto out;
4592 	}
4593 
4594 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4595 	if (rx_handler) {
4596 		if (pt_prev) {
4597 			ret = deliver_skb(skb, pt_prev, orig_dev);
4598 			pt_prev = NULL;
4599 		}
4600 		switch (rx_handler(&skb)) {
4601 		case RX_HANDLER_CONSUMED:
4602 			ret = NET_RX_SUCCESS;
4603 			goto out;
4604 		case RX_HANDLER_ANOTHER:
4605 			goto another_round;
4606 		case RX_HANDLER_EXACT:
4607 			deliver_exact = true;
4608 		case RX_HANDLER_PASS:
4609 			break;
4610 		default:
4611 			BUG();
4612 		}
4613 	}
4614 
4615 	if (unlikely(skb_vlan_tag_present(skb))) {
4616 		if (skb_vlan_tag_get_id(skb))
4617 			skb->pkt_type = PACKET_OTHERHOST;
4618 		/* Note: we might in the future use prio bits
4619 		 * and set skb->priority like in vlan_do_receive()
4620 		 * For the time being, just ignore Priority Code Point
4621 		 */
4622 		skb->vlan_tci = 0;
4623 	}
4624 
4625 	type = skb->protocol;
4626 
4627 	/* deliver only exact match when indicated */
4628 	if (likely(!deliver_exact)) {
4629 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4630 				       &ptype_base[ntohs(type) &
4631 						   PTYPE_HASH_MASK]);
4632 	}
4633 
4634 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4635 			       &orig_dev->ptype_specific);
4636 
4637 	if (unlikely(skb->dev != orig_dev)) {
4638 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4639 				       &skb->dev->ptype_specific);
4640 	}
4641 
4642 	if (pt_prev) {
4643 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4644 			goto drop;
4645 		else
4646 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4647 	} else {
4648 drop:
4649 		if (!deliver_exact)
4650 			atomic_long_inc(&skb->dev->rx_dropped);
4651 		else
4652 			atomic_long_inc(&skb->dev->rx_nohandler);
4653 		kfree_skb(skb);
4654 		/* Jamal, now you will not able to escape explaining
4655 		 * me how you were going to use this. :-)
4656 		 */
4657 		ret = NET_RX_DROP;
4658 	}
4659 
4660 out:
4661 	return ret;
4662 }
4663 
4664 /**
4665  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4666  *	@skb: buffer to process
4667  *
4668  *	More direct receive version of netif_receive_skb().  It should
4669  *	only be used by callers that have a need to skip RPS and Generic XDP.
4670  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4671  *
4672  *	This function may only be called from softirq context and interrupts
4673  *	should be enabled.
4674  *
4675  *	Return values (usually ignored):
4676  *	NET_RX_SUCCESS: no congestion
4677  *	NET_RX_DROP: packet was dropped
4678  */
4679 int netif_receive_skb_core(struct sk_buff *skb)
4680 {
4681 	int ret;
4682 
4683 	rcu_read_lock();
4684 	ret = __netif_receive_skb_core(skb, false);
4685 	rcu_read_unlock();
4686 
4687 	return ret;
4688 }
4689 EXPORT_SYMBOL(netif_receive_skb_core);
4690 
4691 static int __netif_receive_skb(struct sk_buff *skb)
4692 {
4693 	int ret;
4694 
4695 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4696 		unsigned int noreclaim_flag;
4697 
4698 		/*
4699 		 * PFMEMALLOC skbs are special, they should
4700 		 * - be delivered to SOCK_MEMALLOC sockets only
4701 		 * - stay away from userspace
4702 		 * - have bounded memory usage
4703 		 *
4704 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4705 		 * context down to all allocation sites.
4706 		 */
4707 		noreclaim_flag = memalloc_noreclaim_save();
4708 		ret = __netif_receive_skb_core(skb, true);
4709 		memalloc_noreclaim_restore(noreclaim_flag);
4710 	} else
4711 		ret = __netif_receive_skb_core(skb, false);
4712 
4713 	return ret;
4714 }
4715 
4716 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4717 {
4718 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4719 	struct bpf_prog *new = xdp->prog;
4720 	int ret = 0;
4721 
4722 	switch (xdp->command) {
4723 	case XDP_SETUP_PROG:
4724 		rcu_assign_pointer(dev->xdp_prog, new);
4725 		if (old)
4726 			bpf_prog_put(old);
4727 
4728 		if (old && !new) {
4729 			static_branch_dec(&generic_xdp_needed_key);
4730 		} else if (new && !old) {
4731 			static_branch_inc(&generic_xdp_needed_key);
4732 			dev_disable_lro(dev);
4733 			dev_disable_gro_hw(dev);
4734 		}
4735 		break;
4736 
4737 	case XDP_QUERY_PROG:
4738 		xdp->prog_attached = !!old;
4739 		xdp->prog_id = old ? old->aux->id : 0;
4740 		break;
4741 
4742 	default:
4743 		ret = -EINVAL;
4744 		break;
4745 	}
4746 
4747 	return ret;
4748 }
4749 
4750 static int netif_receive_skb_internal(struct sk_buff *skb)
4751 {
4752 	int ret;
4753 
4754 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4755 
4756 	if (skb_defer_rx_timestamp(skb))
4757 		return NET_RX_SUCCESS;
4758 
4759 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4760 		int ret;
4761 
4762 		preempt_disable();
4763 		rcu_read_lock();
4764 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4765 		rcu_read_unlock();
4766 		preempt_enable();
4767 
4768 		if (ret != XDP_PASS)
4769 			return NET_RX_DROP;
4770 	}
4771 
4772 	rcu_read_lock();
4773 #ifdef CONFIG_RPS
4774 	if (static_key_false(&rps_needed)) {
4775 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4776 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4777 
4778 		if (cpu >= 0) {
4779 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4780 			rcu_read_unlock();
4781 			return ret;
4782 		}
4783 	}
4784 #endif
4785 	ret = __netif_receive_skb(skb);
4786 	rcu_read_unlock();
4787 	return ret;
4788 }
4789 
4790 /**
4791  *	netif_receive_skb - process receive buffer from network
4792  *	@skb: buffer to process
4793  *
4794  *	netif_receive_skb() is the main receive data processing function.
4795  *	It always succeeds. The buffer may be dropped during processing
4796  *	for congestion control or by the protocol layers.
4797  *
4798  *	This function may only be called from softirq context and interrupts
4799  *	should be enabled.
4800  *
4801  *	Return values (usually ignored):
4802  *	NET_RX_SUCCESS: no congestion
4803  *	NET_RX_DROP: packet was dropped
4804  */
4805 int netif_receive_skb(struct sk_buff *skb)
4806 {
4807 	trace_netif_receive_skb_entry(skb);
4808 
4809 	return netif_receive_skb_internal(skb);
4810 }
4811 EXPORT_SYMBOL(netif_receive_skb);
4812 
4813 DEFINE_PER_CPU(struct work_struct, flush_works);
4814 
4815 /* Network device is going away, flush any packets still pending */
4816 static void flush_backlog(struct work_struct *work)
4817 {
4818 	struct sk_buff *skb, *tmp;
4819 	struct softnet_data *sd;
4820 
4821 	local_bh_disable();
4822 	sd = this_cpu_ptr(&softnet_data);
4823 
4824 	local_irq_disable();
4825 	rps_lock(sd);
4826 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4827 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4828 			__skb_unlink(skb, &sd->input_pkt_queue);
4829 			kfree_skb(skb);
4830 			input_queue_head_incr(sd);
4831 		}
4832 	}
4833 	rps_unlock(sd);
4834 	local_irq_enable();
4835 
4836 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4837 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4838 			__skb_unlink(skb, &sd->process_queue);
4839 			kfree_skb(skb);
4840 			input_queue_head_incr(sd);
4841 		}
4842 	}
4843 	local_bh_enable();
4844 }
4845 
4846 static void flush_all_backlogs(void)
4847 {
4848 	unsigned int cpu;
4849 
4850 	get_online_cpus();
4851 
4852 	for_each_online_cpu(cpu)
4853 		queue_work_on(cpu, system_highpri_wq,
4854 			      per_cpu_ptr(&flush_works, cpu));
4855 
4856 	for_each_online_cpu(cpu)
4857 		flush_work(per_cpu_ptr(&flush_works, cpu));
4858 
4859 	put_online_cpus();
4860 }
4861 
4862 static int napi_gro_complete(struct sk_buff *skb)
4863 {
4864 	struct packet_offload *ptype;
4865 	__be16 type = skb->protocol;
4866 	struct list_head *head = &offload_base;
4867 	int err = -ENOENT;
4868 
4869 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4870 
4871 	if (NAPI_GRO_CB(skb)->count == 1) {
4872 		skb_shinfo(skb)->gso_size = 0;
4873 		goto out;
4874 	}
4875 
4876 	rcu_read_lock();
4877 	list_for_each_entry_rcu(ptype, head, list) {
4878 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4879 			continue;
4880 
4881 		err = ptype->callbacks.gro_complete(skb, 0);
4882 		break;
4883 	}
4884 	rcu_read_unlock();
4885 
4886 	if (err) {
4887 		WARN_ON(&ptype->list == head);
4888 		kfree_skb(skb);
4889 		return NET_RX_SUCCESS;
4890 	}
4891 
4892 out:
4893 	return netif_receive_skb_internal(skb);
4894 }
4895 
4896 /* napi->gro_list contains packets ordered by age.
4897  * youngest packets at the head of it.
4898  * Complete skbs in reverse order to reduce latencies.
4899  */
4900 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4901 {
4902 	struct sk_buff *skb, *prev = NULL;
4903 
4904 	/* scan list and build reverse chain */
4905 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4906 		skb->prev = prev;
4907 		prev = skb;
4908 	}
4909 
4910 	for (skb = prev; skb; skb = prev) {
4911 		skb->next = NULL;
4912 
4913 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4914 			return;
4915 
4916 		prev = skb->prev;
4917 		napi_gro_complete(skb);
4918 		napi->gro_count--;
4919 	}
4920 
4921 	napi->gro_list = NULL;
4922 }
4923 EXPORT_SYMBOL(napi_gro_flush);
4924 
4925 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4926 {
4927 	struct sk_buff *p;
4928 	unsigned int maclen = skb->dev->hard_header_len;
4929 	u32 hash = skb_get_hash_raw(skb);
4930 
4931 	for (p = napi->gro_list; p; p = p->next) {
4932 		unsigned long diffs;
4933 
4934 		NAPI_GRO_CB(p)->flush = 0;
4935 
4936 		if (hash != skb_get_hash_raw(p)) {
4937 			NAPI_GRO_CB(p)->same_flow = 0;
4938 			continue;
4939 		}
4940 
4941 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4942 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4943 		diffs |= skb_metadata_dst_cmp(p, skb);
4944 		diffs |= skb_metadata_differs(p, skb);
4945 		if (maclen == ETH_HLEN)
4946 			diffs |= compare_ether_header(skb_mac_header(p),
4947 						      skb_mac_header(skb));
4948 		else if (!diffs)
4949 			diffs = memcmp(skb_mac_header(p),
4950 				       skb_mac_header(skb),
4951 				       maclen);
4952 		NAPI_GRO_CB(p)->same_flow = !diffs;
4953 	}
4954 }
4955 
4956 static void skb_gro_reset_offset(struct sk_buff *skb)
4957 {
4958 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4959 	const skb_frag_t *frag0 = &pinfo->frags[0];
4960 
4961 	NAPI_GRO_CB(skb)->data_offset = 0;
4962 	NAPI_GRO_CB(skb)->frag0 = NULL;
4963 	NAPI_GRO_CB(skb)->frag0_len = 0;
4964 
4965 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4966 	    pinfo->nr_frags &&
4967 	    !PageHighMem(skb_frag_page(frag0))) {
4968 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4969 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4970 						    skb_frag_size(frag0),
4971 						    skb->end - skb->tail);
4972 	}
4973 }
4974 
4975 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4976 {
4977 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4978 
4979 	BUG_ON(skb->end - skb->tail < grow);
4980 
4981 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4982 
4983 	skb->data_len -= grow;
4984 	skb->tail += grow;
4985 
4986 	pinfo->frags[0].page_offset += grow;
4987 	skb_frag_size_sub(&pinfo->frags[0], grow);
4988 
4989 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4990 		skb_frag_unref(skb, 0);
4991 		memmove(pinfo->frags, pinfo->frags + 1,
4992 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4993 	}
4994 }
4995 
4996 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4997 {
4998 	struct sk_buff **pp = NULL;
4999 	struct packet_offload *ptype;
5000 	__be16 type = skb->protocol;
5001 	struct list_head *head = &offload_base;
5002 	int same_flow;
5003 	enum gro_result ret;
5004 	int grow;
5005 
5006 	if (netif_elide_gro(skb->dev))
5007 		goto normal;
5008 
5009 	gro_list_prepare(napi, skb);
5010 
5011 	rcu_read_lock();
5012 	list_for_each_entry_rcu(ptype, head, list) {
5013 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5014 			continue;
5015 
5016 		skb_set_network_header(skb, skb_gro_offset(skb));
5017 		skb_reset_mac_len(skb);
5018 		NAPI_GRO_CB(skb)->same_flow = 0;
5019 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5020 		NAPI_GRO_CB(skb)->free = 0;
5021 		NAPI_GRO_CB(skb)->encap_mark = 0;
5022 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5023 		NAPI_GRO_CB(skb)->is_fou = 0;
5024 		NAPI_GRO_CB(skb)->is_atomic = 1;
5025 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5026 
5027 		/* Setup for GRO checksum validation */
5028 		switch (skb->ip_summed) {
5029 		case CHECKSUM_COMPLETE:
5030 			NAPI_GRO_CB(skb)->csum = skb->csum;
5031 			NAPI_GRO_CB(skb)->csum_valid = 1;
5032 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5033 			break;
5034 		case CHECKSUM_UNNECESSARY:
5035 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5036 			NAPI_GRO_CB(skb)->csum_valid = 0;
5037 			break;
5038 		default:
5039 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5040 			NAPI_GRO_CB(skb)->csum_valid = 0;
5041 		}
5042 
5043 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
5044 		break;
5045 	}
5046 	rcu_read_unlock();
5047 
5048 	if (&ptype->list == head)
5049 		goto normal;
5050 
5051 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5052 		ret = GRO_CONSUMED;
5053 		goto ok;
5054 	}
5055 
5056 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5057 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5058 
5059 	if (pp) {
5060 		struct sk_buff *nskb = *pp;
5061 
5062 		*pp = nskb->next;
5063 		nskb->next = NULL;
5064 		napi_gro_complete(nskb);
5065 		napi->gro_count--;
5066 	}
5067 
5068 	if (same_flow)
5069 		goto ok;
5070 
5071 	if (NAPI_GRO_CB(skb)->flush)
5072 		goto normal;
5073 
5074 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
5075 		struct sk_buff *nskb = napi->gro_list;
5076 
5077 		/* locate the end of the list to select the 'oldest' flow */
5078 		while (nskb->next) {
5079 			pp = &nskb->next;
5080 			nskb = *pp;
5081 		}
5082 		*pp = NULL;
5083 		nskb->next = NULL;
5084 		napi_gro_complete(nskb);
5085 	} else {
5086 		napi->gro_count++;
5087 	}
5088 	NAPI_GRO_CB(skb)->count = 1;
5089 	NAPI_GRO_CB(skb)->age = jiffies;
5090 	NAPI_GRO_CB(skb)->last = skb;
5091 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5092 	skb->next = napi->gro_list;
5093 	napi->gro_list = skb;
5094 	ret = GRO_HELD;
5095 
5096 pull:
5097 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5098 	if (grow > 0)
5099 		gro_pull_from_frag0(skb, grow);
5100 ok:
5101 	return ret;
5102 
5103 normal:
5104 	ret = GRO_NORMAL;
5105 	goto pull;
5106 }
5107 
5108 struct packet_offload *gro_find_receive_by_type(__be16 type)
5109 {
5110 	struct list_head *offload_head = &offload_base;
5111 	struct packet_offload *ptype;
5112 
5113 	list_for_each_entry_rcu(ptype, offload_head, list) {
5114 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5115 			continue;
5116 		return ptype;
5117 	}
5118 	return NULL;
5119 }
5120 EXPORT_SYMBOL(gro_find_receive_by_type);
5121 
5122 struct packet_offload *gro_find_complete_by_type(__be16 type)
5123 {
5124 	struct list_head *offload_head = &offload_base;
5125 	struct packet_offload *ptype;
5126 
5127 	list_for_each_entry_rcu(ptype, offload_head, list) {
5128 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5129 			continue;
5130 		return ptype;
5131 	}
5132 	return NULL;
5133 }
5134 EXPORT_SYMBOL(gro_find_complete_by_type);
5135 
5136 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5137 {
5138 	skb_dst_drop(skb);
5139 	secpath_reset(skb);
5140 	kmem_cache_free(skbuff_head_cache, skb);
5141 }
5142 
5143 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5144 {
5145 	switch (ret) {
5146 	case GRO_NORMAL:
5147 		if (netif_receive_skb_internal(skb))
5148 			ret = GRO_DROP;
5149 		break;
5150 
5151 	case GRO_DROP:
5152 		kfree_skb(skb);
5153 		break;
5154 
5155 	case GRO_MERGED_FREE:
5156 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5157 			napi_skb_free_stolen_head(skb);
5158 		else
5159 			__kfree_skb(skb);
5160 		break;
5161 
5162 	case GRO_HELD:
5163 	case GRO_MERGED:
5164 	case GRO_CONSUMED:
5165 		break;
5166 	}
5167 
5168 	return ret;
5169 }
5170 
5171 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5172 {
5173 	skb_mark_napi_id(skb, napi);
5174 	trace_napi_gro_receive_entry(skb);
5175 
5176 	skb_gro_reset_offset(skb);
5177 
5178 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5179 }
5180 EXPORT_SYMBOL(napi_gro_receive);
5181 
5182 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5183 {
5184 	if (unlikely(skb->pfmemalloc)) {
5185 		consume_skb(skb);
5186 		return;
5187 	}
5188 	__skb_pull(skb, skb_headlen(skb));
5189 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5190 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5191 	skb->vlan_tci = 0;
5192 	skb->dev = napi->dev;
5193 	skb->skb_iif = 0;
5194 	skb->encapsulation = 0;
5195 	skb_shinfo(skb)->gso_type = 0;
5196 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5197 	secpath_reset(skb);
5198 
5199 	napi->skb = skb;
5200 }
5201 
5202 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5203 {
5204 	struct sk_buff *skb = napi->skb;
5205 
5206 	if (!skb) {
5207 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5208 		if (skb) {
5209 			napi->skb = skb;
5210 			skb_mark_napi_id(skb, napi);
5211 		}
5212 	}
5213 	return skb;
5214 }
5215 EXPORT_SYMBOL(napi_get_frags);
5216 
5217 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5218 				      struct sk_buff *skb,
5219 				      gro_result_t ret)
5220 {
5221 	switch (ret) {
5222 	case GRO_NORMAL:
5223 	case GRO_HELD:
5224 		__skb_push(skb, ETH_HLEN);
5225 		skb->protocol = eth_type_trans(skb, skb->dev);
5226 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5227 			ret = GRO_DROP;
5228 		break;
5229 
5230 	case GRO_DROP:
5231 		napi_reuse_skb(napi, skb);
5232 		break;
5233 
5234 	case GRO_MERGED_FREE:
5235 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5236 			napi_skb_free_stolen_head(skb);
5237 		else
5238 			napi_reuse_skb(napi, skb);
5239 		break;
5240 
5241 	case GRO_MERGED:
5242 	case GRO_CONSUMED:
5243 		break;
5244 	}
5245 
5246 	return ret;
5247 }
5248 
5249 /* Upper GRO stack assumes network header starts at gro_offset=0
5250  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5251  * We copy ethernet header into skb->data to have a common layout.
5252  */
5253 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5254 {
5255 	struct sk_buff *skb = napi->skb;
5256 	const struct ethhdr *eth;
5257 	unsigned int hlen = sizeof(*eth);
5258 
5259 	napi->skb = NULL;
5260 
5261 	skb_reset_mac_header(skb);
5262 	skb_gro_reset_offset(skb);
5263 
5264 	eth = skb_gro_header_fast(skb, 0);
5265 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5266 		eth = skb_gro_header_slow(skb, hlen, 0);
5267 		if (unlikely(!eth)) {
5268 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5269 					     __func__, napi->dev->name);
5270 			napi_reuse_skb(napi, skb);
5271 			return NULL;
5272 		}
5273 	} else {
5274 		gro_pull_from_frag0(skb, hlen);
5275 		NAPI_GRO_CB(skb)->frag0 += hlen;
5276 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5277 	}
5278 	__skb_pull(skb, hlen);
5279 
5280 	/*
5281 	 * This works because the only protocols we care about don't require
5282 	 * special handling.
5283 	 * We'll fix it up properly in napi_frags_finish()
5284 	 */
5285 	skb->protocol = eth->h_proto;
5286 
5287 	return skb;
5288 }
5289 
5290 gro_result_t napi_gro_frags(struct napi_struct *napi)
5291 {
5292 	struct sk_buff *skb = napi_frags_skb(napi);
5293 
5294 	if (!skb)
5295 		return GRO_DROP;
5296 
5297 	trace_napi_gro_frags_entry(skb);
5298 
5299 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5300 }
5301 EXPORT_SYMBOL(napi_gro_frags);
5302 
5303 /* Compute the checksum from gro_offset and return the folded value
5304  * after adding in any pseudo checksum.
5305  */
5306 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5307 {
5308 	__wsum wsum;
5309 	__sum16 sum;
5310 
5311 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5312 
5313 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5314 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5315 	if (likely(!sum)) {
5316 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5317 		    !skb->csum_complete_sw)
5318 			netdev_rx_csum_fault(skb->dev);
5319 	}
5320 
5321 	NAPI_GRO_CB(skb)->csum = wsum;
5322 	NAPI_GRO_CB(skb)->csum_valid = 1;
5323 
5324 	return sum;
5325 }
5326 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5327 
5328 static void net_rps_send_ipi(struct softnet_data *remsd)
5329 {
5330 #ifdef CONFIG_RPS
5331 	while (remsd) {
5332 		struct softnet_data *next = remsd->rps_ipi_next;
5333 
5334 		if (cpu_online(remsd->cpu))
5335 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5336 		remsd = next;
5337 	}
5338 #endif
5339 }
5340 
5341 /*
5342  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5343  * Note: called with local irq disabled, but exits with local irq enabled.
5344  */
5345 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5346 {
5347 #ifdef CONFIG_RPS
5348 	struct softnet_data *remsd = sd->rps_ipi_list;
5349 
5350 	if (remsd) {
5351 		sd->rps_ipi_list = NULL;
5352 
5353 		local_irq_enable();
5354 
5355 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5356 		net_rps_send_ipi(remsd);
5357 	} else
5358 #endif
5359 		local_irq_enable();
5360 }
5361 
5362 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5363 {
5364 #ifdef CONFIG_RPS
5365 	return sd->rps_ipi_list != NULL;
5366 #else
5367 	return false;
5368 #endif
5369 }
5370 
5371 static int process_backlog(struct napi_struct *napi, int quota)
5372 {
5373 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5374 	bool again = true;
5375 	int work = 0;
5376 
5377 	/* Check if we have pending ipi, its better to send them now,
5378 	 * not waiting net_rx_action() end.
5379 	 */
5380 	if (sd_has_rps_ipi_waiting(sd)) {
5381 		local_irq_disable();
5382 		net_rps_action_and_irq_enable(sd);
5383 	}
5384 
5385 	napi->weight = dev_rx_weight;
5386 	while (again) {
5387 		struct sk_buff *skb;
5388 
5389 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5390 			rcu_read_lock();
5391 			__netif_receive_skb(skb);
5392 			rcu_read_unlock();
5393 			input_queue_head_incr(sd);
5394 			if (++work >= quota)
5395 				return work;
5396 
5397 		}
5398 
5399 		local_irq_disable();
5400 		rps_lock(sd);
5401 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5402 			/*
5403 			 * Inline a custom version of __napi_complete().
5404 			 * only current cpu owns and manipulates this napi,
5405 			 * and NAPI_STATE_SCHED is the only possible flag set
5406 			 * on backlog.
5407 			 * We can use a plain write instead of clear_bit(),
5408 			 * and we dont need an smp_mb() memory barrier.
5409 			 */
5410 			napi->state = 0;
5411 			again = false;
5412 		} else {
5413 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5414 						   &sd->process_queue);
5415 		}
5416 		rps_unlock(sd);
5417 		local_irq_enable();
5418 	}
5419 
5420 	return work;
5421 }
5422 
5423 /**
5424  * __napi_schedule - schedule for receive
5425  * @n: entry to schedule
5426  *
5427  * The entry's receive function will be scheduled to run.
5428  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5429  */
5430 void __napi_schedule(struct napi_struct *n)
5431 {
5432 	unsigned long flags;
5433 
5434 	local_irq_save(flags);
5435 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5436 	local_irq_restore(flags);
5437 }
5438 EXPORT_SYMBOL(__napi_schedule);
5439 
5440 /**
5441  *	napi_schedule_prep - check if napi can be scheduled
5442  *	@n: napi context
5443  *
5444  * Test if NAPI routine is already running, and if not mark
5445  * it as running.  This is used as a condition variable
5446  * insure only one NAPI poll instance runs.  We also make
5447  * sure there is no pending NAPI disable.
5448  */
5449 bool napi_schedule_prep(struct napi_struct *n)
5450 {
5451 	unsigned long val, new;
5452 
5453 	do {
5454 		val = READ_ONCE(n->state);
5455 		if (unlikely(val & NAPIF_STATE_DISABLE))
5456 			return false;
5457 		new = val | NAPIF_STATE_SCHED;
5458 
5459 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5460 		 * This was suggested by Alexander Duyck, as compiler
5461 		 * emits better code than :
5462 		 * if (val & NAPIF_STATE_SCHED)
5463 		 *     new |= NAPIF_STATE_MISSED;
5464 		 */
5465 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5466 						   NAPIF_STATE_MISSED;
5467 	} while (cmpxchg(&n->state, val, new) != val);
5468 
5469 	return !(val & NAPIF_STATE_SCHED);
5470 }
5471 EXPORT_SYMBOL(napi_schedule_prep);
5472 
5473 /**
5474  * __napi_schedule_irqoff - schedule for receive
5475  * @n: entry to schedule
5476  *
5477  * Variant of __napi_schedule() assuming hard irqs are masked
5478  */
5479 void __napi_schedule_irqoff(struct napi_struct *n)
5480 {
5481 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5482 }
5483 EXPORT_SYMBOL(__napi_schedule_irqoff);
5484 
5485 bool napi_complete_done(struct napi_struct *n, int work_done)
5486 {
5487 	unsigned long flags, val, new;
5488 
5489 	/*
5490 	 * 1) Don't let napi dequeue from the cpu poll list
5491 	 *    just in case its running on a different cpu.
5492 	 * 2) If we are busy polling, do nothing here, we have
5493 	 *    the guarantee we will be called later.
5494 	 */
5495 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5496 				 NAPIF_STATE_IN_BUSY_POLL)))
5497 		return false;
5498 
5499 	if (n->gro_list) {
5500 		unsigned long timeout = 0;
5501 
5502 		if (work_done)
5503 			timeout = n->dev->gro_flush_timeout;
5504 
5505 		if (timeout)
5506 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5507 				      HRTIMER_MODE_REL_PINNED);
5508 		else
5509 			napi_gro_flush(n, false);
5510 	}
5511 	if (unlikely(!list_empty(&n->poll_list))) {
5512 		/* If n->poll_list is not empty, we need to mask irqs */
5513 		local_irq_save(flags);
5514 		list_del_init(&n->poll_list);
5515 		local_irq_restore(flags);
5516 	}
5517 
5518 	do {
5519 		val = READ_ONCE(n->state);
5520 
5521 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5522 
5523 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5524 
5525 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5526 		 * because we will call napi->poll() one more time.
5527 		 * This C code was suggested by Alexander Duyck to help gcc.
5528 		 */
5529 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5530 						    NAPIF_STATE_SCHED;
5531 	} while (cmpxchg(&n->state, val, new) != val);
5532 
5533 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5534 		__napi_schedule(n);
5535 		return false;
5536 	}
5537 
5538 	return true;
5539 }
5540 EXPORT_SYMBOL(napi_complete_done);
5541 
5542 /* must be called under rcu_read_lock(), as we dont take a reference */
5543 static struct napi_struct *napi_by_id(unsigned int napi_id)
5544 {
5545 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5546 	struct napi_struct *napi;
5547 
5548 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5549 		if (napi->napi_id == napi_id)
5550 			return napi;
5551 
5552 	return NULL;
5553 }
5554 
5555 #if defined(CONFIG_NET_RX_BUSY_POLL)
5556 
5557 #define BUSY_POLL_BUDGET 8
5558 
5559 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5560 {
5561 	int rc;
5562 
5563 	/* Busy polling means there is a high chance device driver hard irq
5564 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5565 	 * set in napi_schedule_prep().
5566 	 * Since we are about to call napi->poll() once more, we can safely
5567 	 * clear NAPI_STATE_MISSED.
5568 	 *
5569 	 * Note: x86 could use a single "lock and ..." instruction
5570 	 * to perform these two clear_bit()
5571 	 */
5572 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5573 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5574 
5575 	local_bh_disable();
5576 
5577 	/* All we really want here is to re-enable device interrupts.
5578 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5579 	 */
5580 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5581 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5582 	netpoll_poll_unlock(have_poll_lock);
5583 	if (rc == BUSY_POLL_BUDGET)
5584 		__napi_schedule(napi);
5585 	local_bh_enable();
5586 }
5587 
5588 void napi_busy_loop(unsigned int napi_id,
5589 		    bool (*loop_end)(void *, unsigned long),
5590 		    void *loop_end_arg)
5591 {
5592 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5593 	int (*napi_poll)(struct napi_struct *napi, int budget);
5594 	void *have_poll_lock = NULL;
5595 	struct napi_struct *napi;
5596 
5597 restart:
5598 	napi_poll = NULL;
5599 
5600 	rcu_read_lock();
5601 
5602 	napi = napi_by_id(napi_id);
5603 	if (!napi)
5604 		goto out;
5605 
5606 	preempt_disable();
5607 	for (;;) {
5608 		int work = 0;
5609 
5610 		local_bh_disable();
5611 		if (!napi_poll) {
5612 			unsigned long val = READ_ONCE(napi->state);
5613 
5614 			/* If multiple threads are competing for this napi,
5615 			 * we avoid dirtying napi->state as much as we can.
5616 			 */
5617 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5618 				   NAPIF_STATE_IN_BUSY_POLL))
5619 				goto count;
5620 			if (cmpxchg(&napi->state, val,
5621 				    val | NAPIF_STATE_IN_BUSY_POLL |
5622 					  NAPIF_STATE_SCHED) != val)
5623 				goto count;
5624 			have_poll_lock = netpoll_poll_lock(napi);
5625 			napi_poll = napi->poll;
5626 		}
5627 		work = napi_poll(napi, BUSY_POLL_BUDGET);
5628 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5629 count:
5630 		if (work > 0)
5631 			__NET_ADD_STATS(dev_net(napi->dev),
5632 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
5633 		local_bh_enable();
5634 
5635 		if (!loop_end || loop_end(loop_end_arg, start_time))
5636 			break;
5637 
5638 		if (unlikely(need_resched())) {
5639 			if (napi_poll)
5640 				busy_poll_stop(napi, have_poll_lock);
5641 			preempt_enable();
5642 			rcu_read_unlock();
5643 			cond_resched();
5644 			if (loop_end(loop_end_arg, start_time))
5645 				return;
5646 			goto restart;
5647 		}
5648 		cpu_relax();
5649 	}
5650 	if (napi_poll)
5651 		busy_poll_stop(napi, have_poll_lock);
5652 	preempt_enable();
5653 out:
5654 	rcu_read_unlock();
5655 }
5656 EXPORT_SYMBOL(napi_busy_loop);
5657 
5658 #endif /* CONFIG_NET_RX_BUSY_POLL */
5659 
5660 static void napi_hash_add(struct napi_struct *napi)
5661 {
5662 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5663 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5664 		return;
5665 
5666 	spin_lock(&napi_hash_lock);
5667 
5668 	/* 0..NR_CPUS range is reserved for sender_cpu use */
5669 	do {
5670 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5671 			napi_gen_id = MIN_NAPI_ID;
5672 	} while (napi_by_id(napi_gen_id));
5673 	napi->napi_id = napi_gen_id;
5674 
5675 	hlist_add_head_rcu(&napi->napi_hash_node,
5676 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5677 
5678 	spin_unlock(&napi_hash_lock);
5679 }
5680 
5681 /* Warning : caller is responsible to make sure rcu grace period
5682  * is respected before freeing memory containing @napi
5683  */
5684 bool napi_hash_del(struct napi_struct *napi)
5685 {
5686 	bool rcu_sync_needed = false;
5687 
5688 	spin_lock(&napi_hash_lock);
5689 
5690 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5691 		rcu_sync_needed = true;
5692 		hlist_del_rcu(&napi->napi_hash_node);
5693 	}
5694 	spin_unlock(&napi_hash_lock);
5695 	return rcu_sync_needed;
5696 }
5697 EXPORT_SYMBOL_GPL(napi_hash_del);
5698 
5699 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5700 {
5701 	struct napi_struct *napi;
5702 
5703 	napi = container_of(timer, struct napi_struct, timer);
5704 
5705 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5706 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5707 	 */
5708 	if (napi->gro_list && !napi_disable_pending(napi) &&
5709 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5710 		__napi_schedule_irqoff(napi);
5711 
5712 	return HRTIMER_NORESTART;
5713 }
5714 
5715 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5716 		    int (*poll)(struct napi_struct *, int), int weight)
5717 {
5718 	INIT_LIST_HEAD(&napi->poll_list);
5719 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5720 	napi->timer.function = napi_watchdog;
5721 	napi->gro_count = 0;
5722 	napi->gro_list = NULL;
5723 	napi->skb = NULL;
5724 	napi->poll = poll;
5725 	if (weight > NAPI_POLL_WEIGHT)
5726 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5727 			    weight, dev->name);
5728 	napi->weight = weight;
5729 	list_add(&napi->dev_list, &dev->napi_list);
5730 	napi->dev = dev;
5731 #ifdef CONFIG_NETPOLL
5732 	napi->poll_owner = -1;
5733 #endif
5734 	set_bit(NAPI_STATE_SCHED, &napi->state);
5735 	napi_hash_add(napi);
5736 }
5737 EXPORT_SYMBOL(netif_napi_add);
5738 
5739 void napi_disable(struct napi_struct *n)
5740 {
5741 	might_sleep();
5742 	set_bit(NAPI_STATE_DISABLE, &n->state);
5743 
5744 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5745 		msleep(1);
5746 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5747 		msleep(1);
5748 
5749 	hrtimer_cancel(&n->timer);
5750 
5751 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5752 }
5753 EXPORT_SYMBOL(napi_disable);
5754 
5755 /* Must be called in process context */
5756 void netif_napi_del(struct napi_struct *napi)
5757 {
5758 	might_sleep();
5759 	if (napi_hash_del(napi))
5760 		synchronize_net();
5761 	list_del_init(&napi->dev_list);
5762 	napi_free_frags(napi);
5763 
5764 	kfree_skb_list(napi->gro_list);
5765 	napi->gro_list = NULL;
5766 	napi->gro_count = 0;
5767 }
5768 EXPORT_SYMBOL(netif_napi_del);
5769 
5770 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5771 {
5772 	void *have;
5773 	int work, weight;
5774 
5775 	list_del_init(&n->poll_list);
5776 
5777 	have = netpoll_poll_lock(n);
5778 
5779 	weight = n->weight;
5780 
5781 	/* This NAPI_STATE_SCHED test is for avoiding a race
5782 	 * with netpoll's poll_napi().  Only the entity which
5783 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5784 	 * actually make the ->poll() call.  Therefore we avoid
5785 	 * accidentally calling ->poll() when NAPI is not scheduled.
5786 	 */
5787 	work = 0;
5788 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5789 		work = n->poll(n, weight);
5790 		trace_napi_poll(n, work, weight);
5791 	}
5792 
5793 	WARN_ON_ONCE(work > weight);
5794 
5795 	if (likely(work < weight))
5796 		goto out_unlock;
5797 
5798 	/* Drivers must not modify the NAPI state if they
5799 	 * consume the entire weight.  In such cases this code
5800 	 * still "owns" the NAPI instance and therefore can
5801 	 * move the instance around on the list at-will.
5802 	 */
5803 	if (unlikely(napi_disable_pending(n))) {
5804 		napi_complete(n);
5805 		goto out_unlock;
5806 	}
5807 
5808 	if (n->gro_list) {
5809 		/* flush too old packets
5810 		 * If HZ < 1000, flush all packets.
5811 		 */
5812 		napi_gro_flush(n, HZ >= 1000);
5813 	}
5814 
5815 	/* Some drivers may have called napi_schedule
5816 	 * prior to exhausting their budget.
5817 	 */
5818 	if (unlikely(!list_empty(&n->poll_list))) {
5819 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5820 			     n->dev ? n->dev->name : "backlog");
5821 		goto out_unlock;
5822 	}
5823 
5824 	list_add_tail(&n->poll_list, repoll);
5825 
5826 out_unlock:
5827 	netpoll_poll_unlock(have);
5828 
5829 	return work;
5830 }
5831 
5832 static __latent_entropy void net_rx_action(struct softirq_action *h)
5833 {
5834 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5835 	unsigned long time_limit = jiffies +
5836 		usecs_to_jiffies(netdev_budget_usecs);
5837 	int budget = netdev_budget;
5838 	LIST_HEAD(list);
5839 	LIST_HEAD(repoll);
5840 
5841 	local_irq_disable();
5842 	list_splice_init(&sd->poll_list, &list);
5843 	local_irq_enable();
5844 
5845 	for (;;) {
5846 		struct napi_struct *n;
5847 
5848 		if (list_empty(&list)) {
5849 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5850 				goto out;
5851 			break;
5852 		}
5853 
5854 		n = list_first_entry(&list, struct napi_struct, poll_list);
5855 		budget -= napi_poll(n, &repoll);
5856 
5857 		/* If softirq window is exhausted then punt.
5858 		 * Allow this to run for 2 jiffies since which will allow
5859 		 * an average latency of 1.5/HZ.
5860 		 */
5861 		if (unlikely(budget <= 0 ||
5862 			     time_after_eq(jiffies, time_limit))) {
5863 			sd->time_squeeze++;
5864 			break;
5865 		}
5866 	}
5867 
5868 	local_irq_disable();
5869 
5870 	list_splice_tail_init(&sd->poll_list, &list);
5871 	list_splice_tail(&repoll, &list);
5872 	list_splice(&list, &sd->poll_list);
5873 	if (!list_empty(&sd->poll_list))
5874 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5875 
5876 	net_rps_action_and_irq_enable(sd);
5877 out:
5878 	__kfree_skb_flush();
5879 }
5880 
5881 struct netdev_adjacent {
5882 	struct net_device *dev;
5883 
5884 	/* upper master flag, there can only be one master device per list */
5885 	bool master;
5886 
5887 	/* counter for the number of times this device was added to us */
5888 	u16 ref_nr;
5889 
5890 	/* private field for the users */
5891 	void *private;
5892 
5893 	struct list_head list;
5894 	struct rcu_head rcu;
5895 };
5896 
5897 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5898 						 struct list_head *adj_list)
5899 {
5900 	struct netdev_adjacent *adj;
5901 
5902 	list_for_each_entry(adj, adj_list, list) {
5903 		if (adj->dev == adj_dev)
5904 			return adj;
5905 	}
5906 	return NULL;
5907 }
5908 
5909 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5910 {
5911 	struct net_device *dev = data;
5912 
5913 	return upper_dev == dev;
5914 }
5915 
5916 /**
5917  * netdev_has_upper_dev - Check if device is linked to an upper device
5918  * @dev: device
5919  * @upper_dev: upper device to check
5920  *
5921  * Find out if a device is linked to specified upper device and return true
5922  * in case it is. Note that this checks only immediate upper device,
5923  * not through a complete stack of devices. The caller must hold the RTNL lock.
5924  */
5925 bool netdev_has_upper_dev(struct net_device *dev,
5926 			  struct net_device *upper_dev)
5927 {
5928 	ASSERT_RTNL();
5929 
5930 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5931 					     upper_dev);
5932 }
5933 EXPORT_SYMBOL(netdev_has_upper_dev);
5934 
5935 /**
5936  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5937  * @dev: device
5938  * @upper_dev: upper device to check
5939  *
5940  * Find out if a device is linked to specified upper device and return true
5941  * in case it is. Note that this checks the entire upper device chain.
5942  * The caller must hold rcu lock.
5943  */
5944 
5945 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5946 				  struct net_device *upper_dev)
5947 {
5948 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5949 					       upper_dev);
5950 }
5951 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5952 
5953 /**
5954  * netdev_has_any_upper_dev - Check if device is linked to some device
5955  * @dev: device
5956  *
5957  * Find out if a device is linked to an upper device and return true in case
5958  * it is. The caller must hold the RTNL lock.
5959  */
5960 bool netdev_has_any_upper_dev(struct net_device *dev)
5961 {
5962 	ASSERT_RTNL();
5963 
5964 	return !list_empty(&dev->adj_list.upper);
5965 }
5966 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5967 
5968 /**
5969  * netdev_master_upper_dev_get - Get master upper device
5970  * @dev: device
5971  *
5972  * Find a master upper device and return pointer to it or NULL in case
5973  * it's not there. The caller must hold the RTNL lock.
5974  */
5975 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5976 {
5977 	struct netdev_adjacent *upper;
5978 
5979 	ASSERT_RTNL();
5980 
5981 	if (list_empty(&dev->adj_list.upper))
5982 		return NULL;
5983 
5984 	upper = list_first_entry(&dev->adj_list.upper,
5985 				 struct netdev_adjacent, list);
5986 	if (likely(upper->master))
5987 		return upper->dev;
5988 	return NULL;
5989 }
5990 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5991 
5992 /**
5993  * netdev_has_any_lower_dev - Check if device is linked to some device
5994  * @dev: device
5995  *
5996  * Find out if a device is linked to a lower device and return true in case
5997  * it is. The caller must hold the RTNL lock.
5998  */
5999 static bool netdev_has_any_lower_dev(struct net_device *dev)
6000 {
6001 	ASSERT_RTNL();
6002 
6003 	return !list_empty(&dev->adj_list.lower);
6004 }
6005 
6006 void *netdev_adjacent_get_private(struct list_head *adj_list)
6007 {
6008 	struct netdev_adjacent *adj;
6009 
6010 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6011 
6012 	return adj->private;
6013 }
6014 EXPORT_SYMBOL(netdev_adjacent_get_private);
6015 
6016 /**
6017  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6018  * @dev: device
6019  * @iter: list_head ** of the current position
6020  *
6021  * Gets the next device from the dev's upper list, starting from iter
6022  * position. The caller must hold RCU read lock.
6023  */
6024 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6025 						 struct list_head **iter)
6026 {
6027 	struct netdev_adjacent *upper;
6028 
6029 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6030 
6031 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6032 
6033 	if (&upper->list == &dev->adj_list.upper)
6034 		return NULL;
6035 
6036 	*iter = &upper->list;
6037 
6038 	return upper->dev;
6039 }
6040 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6041 
6042 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6043 						    struct list_head **iter)
6044 {
6045 	struct netdev_adjacent *upper;
6046 
6047 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6048 
6049 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6050 
6051 	if (&upper->list == &dev->adj_list.upper)
6052 		return NULL;
6053 
6054 	*iter = &upper->list;
6055 
6056 	return upper->dev;
6057 }
6058 
6059 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6060 				  int (*fn)(struct net_device *dev,
6061 					    void *data),
6062 				  void *data)
6063 {
6064 	struct net_device *udev;
6065 	struct list_head *iter;
6066 	int ret;
6067 
6068 	for (iter = &dev->adj_list.upper,
6069 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
6070 	     udev;
6071 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6072 		/* first is the upper device itself */
6073 		ret = fn(udev, data);
6074 		if (ret)
6075 			return ret;
6076 
6077 		/* then look at all of its upper devices */
6078 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6079 		if (ret)
6080 			return ret;
6081 	}
6082 
6083 	return 0;
6084 }
6085 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6086 
6087 /**
6088  * netdev_lower_get_next_private - Get the next ->private from the
6089  *				   lower neighbour list
6090  * @dev: device
6091  * @iter: list_head ** of the current position
6092  *
6093  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6094  * list, starting from iter position. The caller must hold either hold the
6095  * RTNL lock or its own locking that guarantees that the neighbour lower
6096  * list will remain unchanged.
6097  */
6098 void *netdev_lower_get_next_private(struct net_device *dev,
6099 				    struct list_head **iter)
6100 {
6101 	struct netdev_adjacent *lower;
6102 
6103 	lower = list_entry(*iter, struct netdev_adjacent, list);
6104 
6105 	if (&lower->list == &dev->adj_list.lower)
6106 		return NULL;
6107 
6108 	*iter = lower->list.next;
6109 
6110 	return lower->private;
6111 }
6112 EXPORT_SYMBOL(netdev_lower_get_next_private);
6113 
6114 /**
6115  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6116  *				       lower neighbour list, RCU
6117  *				       variant
6118  * @dev: device
6119  * @iter: list_head ** of the current position
6120  *
6121  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6122  * list, starting from iter position. The caller must hold RCU read lock.
6123  */
6124 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6125 					struct list_head **iter)
6126 {
6127 	struct netdev_adjacent *lower;
6128 
6129 	WARN_ON_ONCE(!rcu_read_lock_held());
6130 
6131 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6132 
6133 	if (&lower->list == &dev->adj_list.lower)
6134 		return NULL;
6135 
6136 	*iter = &lower->list;
6137 
6138 	return lower->private;
6139 }
6140 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6141 
6142 /**
6143  * netdev_lower_get_next - Get the next device from the lower neighbour
6144  *                         list
6145  * @dev: device
6146  * @iter: list_head ** of the current position
6147  *
6148  * Gets the next netdev_adjacent from the dev's lower neighbour
6149  * list, starting from iter position. The caller must hold RTNL lock or
6150  * its own locking that guarantees that the neighbour lower
6151  * list will remain unchanged.
6152  */
6153 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6154 {
6155 	struct netdev_adjacent *lower;
6156 
6157 	lower = list_entry(*iter, struct netdev_adjacent, list);
6158 
6159 	if (&lower->list == &dev->adj_list.lower)
6160 		return NULL;
6161 
6162 	*iter = lower->list.next;
6163 
6164 	return lower->dev;
6165 }
6166 EXPORT_SYMBOL(netdev_lower_get_next);
6167 
6168 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6169 						struct list_head **iter)
6170 {
6171 	struct netdev_adjacent *lower;
6172 
6173 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6174 
6175 	if (&lower->list == &dev->adj_list.lower)
6176 		return NULL;
6177 
6178 	*iter = &lower->list;
6179 
6180 	return lower->dev;
6181 }
6182 
6183 int netdev_walk_all_lower_dev(struct net_device *dev,
6184 			      int (*fn)(struct net_device *dev,
6185 					void *data),
6186 			      void *data)
6187 {
6188 	struct net_device *ldev;
6189 	struct list_head *iter;
6190 	int ret;
6191 
6192 	for (iter = &dev->adj_list.lower,
6193 	     ldev = netdev_next_lower_dev(dev, &iter);
6194 	     ldev;
6195 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6196 		/* first is the lower device itself */
6197 		ret = fn(ldev, data);
6198 		if (ret)
6199 			return ret;
6200 
6201 		/* then look at all of its lower devices */
6202 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6203 		if (ret)
6204 			return ret;
6205 	}
6206 
6207 	return 0;
6208 }
6209 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6210 
6211 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6212 						    struct list_head **iter)
6213 {
6214 	struct netdev_adjacent *lower;
6215 
6216 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6217 	if (&lower->list == &dev->adj_list.lower)
6218 		return NULL;
6219 
6220 	*iter = &lower->list;
6221 
6222 	return lower->dev;
6223 }
6224 
6225 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6226 				  int (*fn)(struct net_device *dev,
6227 					    void *data),
6228 				  void *data)
6229 {
6230 	struct net_device *ldev;
6231 	struct list_head *iter;
6232 	int ret;
6233 
6234 	for (iter = &dev->adj_list.lower,
6235 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6236 	     ldev;
6237 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6238 		/* first is the lower device itself */
6239 		ret = fn(ldev, data);
6240 		if (ret)
6241 			return ret;
6242 
6243 		/* then look at all of its lower devices */
6244 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6245 		if (ret)
6246 			return ret;
6247 	}
6248 
6249 	return 0;
6250 }
6251 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6252 
6253 /**
6254  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6255  *				       lower neighbour list, RCU
6256  *				       variant
6257  * @dev: device
6258  *
6259  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6260  * list. The caller must hold RCU read lock.
6261  */
6262 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6263 {
6264 	struct netdev_adjacent *lower;
6265 
6266 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6267 			struct netdev_adjacent, list);
6268 	if (lower)
6269 		return lower->private;
6270 	return NULL;
6271 }
6272 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6273 
6274 /**
6275  * netdev_master_upper_dev_get_rcu - Get master upper device
6276  * @dev: device
6277  *
6278  * Find a master upper device and return pointer to it or NULL in case
6279  * it's not there. The caller must hold the RCU read lock.
6280  */
6281 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6282 {
6283 	struct netdev_adjacent *upper;
6284 
6285 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6286 				       struct netdev_adjacent, list);
6287 	if (upper && likely(upper->master))
6288 		return upper->dev;
6289 	return NULL;
6290 }
6291 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6292 
6293 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6294 			      struct net_device *adj_dev,
6295 			      struct list_head *dev_list)
6296 {
6297 	char linkname[IFNAMSIZ+7];
6298 
6299 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6300 		"upper_%s" : "lower_%s", adj_dev->name);
6301 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6302 				 linkname);
6303 }
6304 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6305 			       char *name,
6306 			       struct list_head *dev_list)
6307 {
6308 	char linkname[IFNAMSIZ+7];
6309 
6310 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6311 		"upper_%s" : "lower_%s", name);
6312 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6313 }
6314 
6315 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6316 						 struct net_device *adj_dev,
6317 						 struct list_head *dev_list)
6318 {
6319 	return (dev_list == &dev->adj_list.upper ||
6320 		dev_list == &dev->adj_list.lower) &&
6321 		net_eq(dev_net(dev), dev_net(adj_dev));
6322 }
6323 
6324 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6325 					struct net_device *adj_dev,
6326 					struct list_head *dev_list,
6327 					void *private, bool master)
6328 {
6329 	struct netdev_adjacent *adj;
6330 	int ret;
6331 
6332 	adj = __netdev_find_adj(adj_dev, dev_list);
6333 
6334 	if (adj) {
6335 		adj->ref_nr += 1;
6336 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6337 			 dev->name, adj_dev->name, adj->ref_nr);
6338 
6339 		return 0;
6340 	}
6341 
6342 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6343 	if (!adj)
6344 		return -ENOMEM;
6345 
6346 	adj->dev = adj_dev;
6347 	adj->master = master;
6348 	adj->ref_nr = 1;
6349 	adj->private = private;
6350 	dev_hold(adj_dev);
6351 
6352 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6353 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6354 
6355 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6356 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6357 		if (ret)
6358 			goto free_adj;
6359 	}
6360 
6361 	/* Ensure that master link is always the first item in list. */
6362 	if (master) {
6363 		ret = sysfs_create_link(&(dev->dev.kobj),
6364 					&(adj_dev->dev.kobj), "master");
6365 		if (ret)
6366 			goto remove_symlinks;
6367 
6368 		list_add_rcu(&adj->list, dev_list);
6369 	} else {
6370 		list_add_tail_rcu(&adj->list, dev_list);
6371 	}
6372 
6373 	return 0;
6374 
6375 remove_symlinks:
6376 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6377 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6378 free_adj:
6379 	kfree(adj);
6380 	dev_put(adj_dev);
6381 
6382 	return ret;
6383 }
6384 
6385 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6386 					 struct net_device *adj_dev,
6387 					 u16 ref_nr,
6388 					 struct list_head *dev_list)
6389 {
6390 	struct netdev_adjacent *adj;
6391 
6392 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6393 		 dev->name, adj_dev->name, ref_nr);
6394 
6395 	adj = __netdev_find_adj(adj_dev, dev_list);
6396 
6397 	if (!adj) {
6398 		pr_err("Adjacency does not exist for device %s from %s\n",
6399 		       dev->name, adj_dev->name);
6400 		WARN_ON(1);
6401 		return;
6402 	}
6403 
6404 	if (adj->ref_nr > ref_nr) {
6405 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6406 			 dev->name, adj_dev->name, ref_nr,
6407 			 adj->ref_nr - ref_nr);
6408 		adj->ref_nr -= ref_nr;
6409 		return;
6410 	}
6411 
6412 	if (adj->master)
6413 		sysfs_remove_link(&(dev->dev.kobj), "master");
6414 
6415 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6416 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6417 
6418 	list_del_rcu(&adj->list);
6419 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6420 		 adj_dev->name, dev->name, adj_dev->name);
6421 	dev_put(adj_dev);
6422 	kfree_rcu(adj, rcu);
6423 }
6424 
6425 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6426 					    struct net_device *upper_dev,
6427 					    struct list_head *up_list,
6428 					    struct list_head *down_list,
6429 					    void *private, bool master)
6430 {
6431 	int ret;
6432 
6433 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6434 					   private, master);
6435 	if (ret)
6436 		return ret;
6437 
6438 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6439 					   private, false);
6440 	if (ret) {
6441 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6442 		return ret;
6443 	}
6444 
6445 	return 0;
6446 }
6447 
6448 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6449 					       struct net_device *upper_dev,
6450 					       u16 ref_nr,
6451 					       struct list_head *up_list,
6452 					       struct list_head *down_list)
6453 {
6454 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6455 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6456 }
6457 
6458 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6459 						struct net_device *upper_dev,
6460 						void *private, bool master)
6461 {
6462 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6463 						&dev->adj_list.upper,
6464 						&upper_dev->adj_list.lower,
6465 						private, master);
6466 }
6467 
6468 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6469 						   struct net_device *upper_dev)
6470 {
6471 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6472 					   &dev->adj_list.upper,
6473 					   &upper_dev->adj_list.lower);
6474 }
6475 
6476 static int __netdev_upper_dev_link(struct net_device *dev,
6477 				   struct net_device *upper_dev, bool master,
6478 				   void *upper_priv, void *upper_info,
6479 				   struct netlink_ext_ack *extack)
6480 {
6481 	struct netdev_notifier_changeupper_info changeupper_info = {
6482 		.info = {
6483 			.dev = dev,
6484 			.extack = extack,
6485 		},
6486 		.upper_dev = upper_dev,
6487 		.master = master,
6488 		.linking = true,
6489 		.upper_info = upper_info,
6490 	};
6491 	struct net_device *master_dev;
6492 	int ret = 0;
6493 
6494 	ASSERT_RTNL();
6495 
6496 	if (dev == upper_dev)
6497 		return -EBUSY;
6498 
6499 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6500 	if (netdev_has_upper_dev(upper_dev, dev))
6501 		return -EBUSY;
6502 
6503 	if (!master) {
6504 		if (netdev_has_upper_dev(dev, upper_dev))
6505 			return -EEXIST;
6506 	} else {
6507 		master_dev = netdev_master_upper_dev_get(dev);
6508 		if (master_dev)
6509 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
6510 	}
6511 
6512 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6513 					    &changeupper_info.info);
6514 	ret = notifier_to_errno(ret);
6515 	if (ret)
6516 		return ret;
6517 
6518 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6519 						   master);
6520 	if (ret)
6521 		return ret;
6522 
6523 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6524 					    &changeupper_info.info);
6525 	ret = notifier_to_errno(ret);
6526 	if (ret)
6527 		goto rollback;
6528 
6529 	return 0;
6530 
6531 rollback:
6532 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6533 
6534 	return ret;
6535 }
6536 
6537 /**
6538  * netdev_upper_dev_link - Add a link to the upper device
6539  * @dev: device
6540  * @upper_dev: new upper device
6541  * @extack: netlink extended ack
6542  *
6543  * Adds a link to device which is upper to this one. The caller must hold
6544  * the RTNL lock. On a failure a negative errno code is returned.
6545  * On success the reference counts are adjusted and the function
6546  * returns zero.
6547  */
6548 int netdev_upper_dev_link(struct net_device *dev,
6549 			  struct net_device *upper_dev,
6550 			  struct netlink_ext_ack *extack)
6551 {
6552 	return __netdev_upper_dev_link(dev, upper_dev, false,
6553 				       NULL, NULL, extack);
6554 }
6555 EXPORT_SYMBOL(netdev_upper_dev_link);
6556 
6557 /**
6558  * netdev_master_upper_dev_link - Add a master link to the upper device
6559  * @dev: device
6560  * @upper_dev: new upper device
6561  * @upper_priv: upper device private
6562  * @upper_info: upper info to be passed down via notifier
6563  * @extack: netlink extended ack
6564  *
6565  * Adds a link to device which is upper to this one. In this case, only
6566  * one master upper device can be linked, although other non-master devices
6567  * might be linked as well. The caller must hold the RTNL lock.
6568  * On a failure a negative errno code is returned. On success the reference
6569  * counts are adjusted and the function returns zero.
6570  */
6571 int netdev_master_upper_dev_link(struct net_device *dev,
6572 				 struct net_device *upper_dev,
6573 				 void *upper_priv, void *upper_info,
6574 				 struct netlink_ext_ack *extack)
6575 {
6576 	return __netdev_upper_dev_link(dev, upper_dev, true,
6577 				       upper_priv, upper_info, extack);
6578 }
6579 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6580 
6581 /**
6582  * netdev_upper_dev_unlink - Removes a link to upper device
6583  * @dev: device
6584  * @upper_dev: new upper device
6585  *
6586  * Removes a link to device which is upper to this one. The caller must hold
6587  * the RTNL lock.
6588  */
6589 void netdev_upper_dev_unlink(struct net_device *dev,
6590 			     struct net_device *upper_dev)
6591 {
6592 	struct netdev_notifier_changeupper_info changeupper_info = {
6593 		.info = {
6594 			.dev = dev,
6595 		},
6596 		.upper_dev = upper_dev,
6597 		.linking = false,
6598 	};
6599 
6600 	ASSERT_RTNL();
6601 
6602 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6603 
6604 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6605 				      &changeupper_info.info);
6606 
6607 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6608 
6609 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6610 				      &changeupper_info.info);
6611 }
6612 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6613 
6614 /**
6615  * netdev_bonding_info_change - Dispatch event about slave change
6616  * @dev: device
6617  * @bonding_info: info to dispatch
6618  *
6619  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6620  * The caller must hold the RTNL lock.
6621  */
6622 void netdev_bonding_info_change(struct net_device *dev,
6623 				struct netdev_bonding_info *bonding_info)
6624 {
6625 	struct netdev_notifier_bonding_info info = {
6626 		.info.dev = dev,
6627 	};
6628 
6629 	memcpy(&info.bonding_info, bonding_info,
6630 	       sizeof(struct netdev_bonding_info));
6631 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6632 				      &info.info);
6633 }
6634 EXPORT_SYMBOL(netdev_bonding_info_change);
6635 
6636 static void netdev_adjacent_add_links(struct net_device *dev)
6637 {
6638 	struct netdev_adjacent *iter;
6639 
6640 	struct net *net = dev_net(dev);
6641 
6642 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6643 		if (!net_eq(net, dev_net(iter->dev)))
6644 			continue;
6645 		netdev_adjacent_sysfs_add(iter->dev, dev,
6646 					  &iter->dev->adj_list.lower);
6647 		netdev_adjacent_sysfs_add(dev, iter->dev,
6648 					  &dev->adj_list.upper);
6649 	}
6650 
6651 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6652 		if (!net_eq(net, dev_net(iter->dev)))
6653 			continue;
6654 		netdev_adjacent_sysfs_add(iter->dev, dev,
6655 					  &iter->dev->adj_list.upper);
6656 		netdev_adjacent_sysfs_add(dev, iter->dev,
6657 					  &dev->adj_list.lower);
6658 	}
6659 }
6660 
6661 static void netdev_adjacent_del_links(struct net_device *dev)
6662 {
6663 	struct netdev_adjacent *iter;
6664 
6665 	struct net *net = dev_net(dev);
6666 
6667 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6668 		if (!net_eq(net, dev_net(iter->dev)))
6669 			continue;
6670 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6671 					  &iter->dev->adj_list.lower);
6672 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6673 					  &dev->adj_list.upper);
6674 	}
6675 
6676 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6677 		if (!net_eq(net, dev_net(iter->dev)))
6678 			continue;
6679 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6680 					  &iter->dev->adj_list.upper);
6681 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6682 					  &dev->adj_list.lower);
6683 	}
6684 }
6685 
6686 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6687 {
6688 	struct netdev_adjacent *iter;
6689 
6690 	struct net *net = dev_net(dev);
6691 
6692 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6693 		if (!net_eq(net, dev_net(iter->dev)))
6694 			continue;
6695 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6696 					  &iter->dev->adj_list.lower);
6697 		netdev_adjacent_sysfs_add(iter->dev, dev,
6698 					  &iter->dev->adj_list.lower);
6699 	}
6700 
6701 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6702 		if (!net_eq(net, dev_net(iter->dev)))
6703 			continue;
6704 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6705 					  &iter->dev->adj_list.upper);
6706 		netdev_adjacent_sysfs_add(iter->dev, dev,
6707 					  &iter->dev->adj_list.upper);
6708 	}
6709 }
6710 
6711 void *netdev_lower_dev_get_private(struct net_device *dev,
6712 				   struct net_device *lower_dev)
6713 {
6714 	struct netdev_adjacent *lower;
6715 
6716 	if (!lower_dev)
6717 		return NULL;
6718 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6719 	if (!lower)
6720 		return NULL;
6721 
6722 	return lower->private;
6723 }
6724 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6725 
6726 
6727 int dev_get_nest_level(struct net_device *dev)
6728 {
6729 	struct net_device *lower = NULL;
6730 	struct list_head *iter;
6731 	int max_nest = -1;
6732 	int nest;
6733 
6734 	ASSERT_RTNL();
6735 
6736 	netdev_for_each_lower_dev(dev, lower, iter) {
6737 		nest = dev_get_nest_level(lower);
6738 		if (max_nest < nest)
6739 			max_nest = nest;
6740 	}
6741 
6742 	return max_nest + 1;
6743 }
6744 EXPORT_SYMBOL(dev_get_nest_level);
6745 
6746 /**
6747  * netdev_lower_change - Dispatch event about lower device state change
6748  * @lower_dev: device
6749  * @lower_state_info: state to dispatch
6750  *
6751  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6752  * The caller must hold the RTNL lock.
6753  */
6754 void netdev_lower_state_changed(struct net_device *lower_dev,
6755 				void *lower_state_info)
6756 {
6757 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6758 		.info.dev = lower_dev,
6759 	};
6760 
6761 	ASSERT_RTNL();
6762 	changelowerstate_info.lower_state_info = lower_state_info;
6763 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6764 				      &changelowerstate_info.info);
6765 }
6766 EXPORT_SYMBOL(netdev_lower_state_changed);
6767 
6768 static void dev_change_rx_flags(struct net_device *dev, int flags)
6769 {
6770 	const struct net_device_ops *ops = dev->netdev_ops;
6771 
6772 	if (ops->ndo_change_rx_flags)
6773 		ops->ndo_change_rx_flags(dev, flags);
6774 }
6775 
6776 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6777 {
6778 	unsigned int old_flags = dev->flags;
6779 	kuid_t uid;
6780 	kgid_t gid;
6781 
6782 	ASSERT_RTNL();
6783 
6784 	dev->flags |= IFF_PROMISC;
6785 	dev->promiscuity += inc;
6786 	if (dev->promiscuity == 0) {
6787 		/*
6788 		 * Avoid overflow.
6789 		 * If inc causes overflow, untouch promisc and return error.
6790 		 */
6791 		if (inc < 0)
6792 			dev->flags &= ~IFF_PROMISC;
6793 		else {
6794 			dev->promiscuity -= inc;
6795 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6796 				dev->name);
6797 			return -EOVERFLOW;
6798 		}
6799 	}
6800 	if (dev->flags != old_flags) {
6801 		pr_info("device %s %s promiscuous mode\n",
6802 			dev->name,
6803 			dev->flags & IFF_PROMISC ? "entered" : "left");
6804 		if (audit_enabled) {
6805 			current_uid_gid(&uid, &gid);
6806 			audit_log(current->audit_context, GFP_ATOMIC,
6807 				AUDIT_ANOM_PROMISCUOUS,
6808 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6809 				dev->name, (dev->flags & IFF_PROMISC),
6810 				(old_flags & IFF_PROMISC),
6811 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6812 				from_kuid(&init_user_ns, uid),
6813 				from_kgid(&init_user_ns, gid),
6814 				audit_get_sessionid(current));
6815 		}
6816 
6817 		dev_change_rx_flags(dev, IFF_PROMISC);
6818 	}
6819 	if (notify)
6820 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6821 	return 0;
6822 }
6823 
6824 /**
6825  *	dev_set_promiscuity	- update promiscuity count on a device
6826  *	@dev: device
6827  *	@inc: modifier
6828  *
6829  *	Add or remove promiscuity from a device. While the count in the device
6830  *	remains above zero the interface remains promiscuous. Once it hits zero
6831  *	the device reverts back to normal filtering operation. A negative inc
6832  *	value is used to drop promiscuity on the device.
6833  *	Return 0 if successful or a negative errno code on error.
6834  */
6835 int dev_set_promiscuity(struct net_device *dev, int inc)
6836 {
6837 	unsigned int old_flags = dev->flags;
6838 	int err;
6839 
6840 	err = __dev_set_promiscuity(dev, inc, true);
6841 	if (err < 0)
6842 		return err;
6843 	if (dev->flags != old_flags)
6844 		dev_set_rx_mode(dev);
6845 	return err;
6846 }
6847 EXPORT_SYMBOL(dev_set_promiscuity);
6848 
6849 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6850 {
6851 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6852 
6853 	ASSERT_RTNL();
6854 
6855 	dev->flags |= IFF_ALLMULTI;
6856 	dev->allmulti += inc;
6857 	if (dev->allmulti == 0) {
6858 		/*
6859 		 * Avoid overflow.
6860 		 * If inc causes overflow, untouch allmulti and return error.
6861 		 */
6862 		if (inc < 0)
6863 			dev->flags &= ~IFF_ALLMULTI;
6864 		else {
6865 			dev->allmulti -= inc;
6866 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6867 				dev->name);
6868 			return -EOVERFLOW;
6869 		}
6870 	}
6871 	if (dev->flags ^ old_flags) {
6872 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6873 		dev_set_rx_mode(dev);
6874 		if (notify)
6875 			__dev_notify_flags(dev, old_flags,
6876 					   dev->gflags ^ old_gflags);
6877 	}
6878 	return 0;
6879 }
6880 
6881 /**
6882  *	dev_set_allmulti	- update allmulti count on a device
6883  *	@dev: device
6884  *	@inc: modifier
6885  *
6886  *	Add or remove reception of all multicast frames to a device. While the
6887  *	count in the device remains above zero the interface remains listening
6888  *	to all interfaces. Once it hits zero the device reverts back to normal
6889  *	filtering operation. A negative @inc value is used to drop the counter
6890  *	when releasing a resource needing all multicasts.
6891  *	Return 0 if successful or a negative errno code on error.
6892  */
6893 
6894 int dev_set_allmulti(struct net_device *dev, int inc)
6895 {
6896 	return __dev_set_allmulti(dev, inc, true);
6897 }
6898 EXPORT_SYMBOL(dev_set_allmulti);
6899 
6900 /*
6901  *	Upload unicast and multicast address lists to device and
6902  *	configure RX filtering. When the device doesn't support unicast
6903  *	filtering it is put in promiscuous mode while unicast addresses
6904  *	are present.
6905  */
6906 void __dev_set_rx_mode(struct net_device *dev)
6907 {
6908 	const struct net_device_ops *ops = dev->netdev_ops;
6909 
6910 	/* dev_open will call this function so the list will stay sane. */
6911 	if (!(dev->flags&IFF_UP))
6912 		return;
6913 
6914 	if (!netif_device_present(dev))
6915 		return;
6916 
6917 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6918 		/* Unicast addresses changes may only happen under the rtnl,
6919 		 * therefore calling __dev_set_promiscuity here is safe.
6920 		 */
6921 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6922 			__dev_set_promiscuity(dev, 1, false);
6923 			dev->uc_promisc = true;
6924 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6925 			__dev_set_promiscuity(dev, -1, false);
6926 			dev->uc_promisc = false;
6927 		}
6928 	}
6929 
6930 	if (ops->ndo_set_rx_mode)
6931 		ops->ndo_set_rx_mode(dev);
6932 }
6933 
6934 void dev_set_rx_mode(struct net_device *dev)
6935 {
6936 	netif_addr_lock_bh(dev);
6937 	__dev_set_rx_mode(dev);
6938 	netif_addr_unlock_bh(dev);
6939 }
6940 
6941 /**
6942  *	dev_get_flags - get flags reported to userspace
6943  *	@dev: device
6944  *
6945  *	Get the combination of flag bits exported through APIs to userspace.
6946  */
6947 unsigned int dev_get_flags(const struct net_device *dev)
6948 {
6949 	unsigned int flags;
6950 
6951 	flags = (dev->flags & ~(IFF_PROMISC |
6952 				IFF_ALLMULTI |
6953 				IFF_RUNNING |
6954 				IFF_LOWER_UP |
6955 				IFF_DORMANT)) |
6956 		(dev->gflags & (IFF_PROMISC |
6957 				IFF_ALLMULTI));
6958 
6959 	if (netif_running(dev)) {
6960 		if (netif_oper_up(dev))
6961 			flags |= IFF_RUNNING;
6962 		if (netif_carrier_ok(dev))
6963 			flags |= IFF_LOWER_UP;
6964 		if (netif_dormant(dev))
6965 			flags |= IFF_DORMANT;
6966 	}
6967 
6968 	return flags;
6969 }
6970 EXPORT_SYMBOL(dev_get_flags);
6971 
6972 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6973 {
6974 	unsigned int old_flags = dev->flags;
6975 	int ret;
6976 
6977 	ASSERT_RTNL();
6978 
6979 	/*
6980 	 *	Set the flags on our device.
6981 	 */
6982 
6983 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6984 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6985 			       IFF_AUTOMEDIA)) |
6986 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6987 				    IFF_ALLMULTI));
6988 
6989 	/*
6990 	 *	Load in the correct multicast list now the flags have changed.
6991 	 */
6992 
6993 	if ((old_flags ^ flags) & IFF_MULTICAST)
6994 		dev_change_rx_flags(dev, IFF_MULTICAST);
6995 
6996 	dev_set_rx_mode(dev);
6997 
6998 	/*
6999 	 *	Have we downed the interface. We handle IFF_UP ourselves
7000 	 *	according to user attempts to set it, rather than blindly
7001 	 *	setting it.
7002 	 */
7003 
7004 	ret = 0;
7005 	if ((old_flags ^ flags) & IFF_UP) {
7006 		if (old_flags & IFF_UP)
7007 			__dev_close(dev);
7008 		else
7009 			ret = __dev_open(dev);
7010 	}
7011 
7012 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
7013 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
7014 		unsigned int old_flags = dev->flags;
7015 
7016 		dev->gflags ^= IFF_PROMISC;
7017 
7018 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
7019 			if (dev->flags != old_flags)
7020 				dev_set_rx_mode(dev);
7021 	}
7022 
7023 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7024 	 * is important. Some (broken) drivers set IFF_PROMISC, when
7025 	 * IFF_ALLMULTI is requested not asking us and not reporting.
7026 	 */
7027 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7028 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7029 
7030 		dev->gflags ^= IFF_ALLMULTI;
7031 		__dev_set_allmulti(dev, inc, false);
7032 	}
7033 
7034 	return ret;
7035 }
7036 
7037 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7038 			unsigned int gchanges)
7039 {
7040 	unsigned int changes = dev->flags ^ old_flags;
7041 
7042 	if (gchanges)
7043 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7044 
7045 	if (changes & IFF_UP) {
7046 		if (dev->flags & IFF_UP)
7047 			call_netdevice_notifiers(NETDEV_UP, dev);
7048 		else
7049 			call_netdevice_notifiers(NETDEV_DOWN, dev);
7050 	}
7051 
7052 	if (dev->flags & IFF_UP &&
7053 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7054 		struct netdev_notifier_change_info change_info = {
7055 			.info = {
7056 				.dev = dev,
7057 			},
7058 			.flags_changed = changes,
7059 		};
7060 
7061 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7062 	}
7063 }
7064 
7065 /**
7066  *	dev_change_flags - change device settings
7067  *	@dev: device
7068  *	@flags: device state flags
7069  *
7070  *	Change settings on device based state flags. The flags are
7071  *	in the userspace exported format.
7072  */
7073 int dev_change_flags(struct net_device *dev, unsigned int flags)
7074 {
7075 	int ret;
7076 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7077 
7078 	ret = __dev_change_flags(dev, flags);
7079 	if (ret < 0)
7080 		return ret;
7081 
7082 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7083 	__dev_notify_flags(dev, old_flags, changes);
7084 	return ret;
7085 }
7086 EXPORT_SYMBOL(dev_change_flags);
7087 
7088 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7089 {
7090 	const struct net_device_ops *ops = dev->netdev_ops;
7091 
7092 	if (ops->ndo_change_mtu)
7093 		return ops->ndo_change_mtu(dev, new_mtu);
7094 
7095 	dev->mtu = new_mtu;
7096 	return 0;
7097 }
7098 EXPORT_SYMBOL(__dev_set_mtu);
7099 
7100 /**
7101  *	dev_set_mtu - Change maximum transfer unit
7102  *	@dev: device
7103  *	@new_mtu: new transfer unit
7104  *
7105  *	Change the maximum transfer size of the network device.
7106  */
7107 int dev_set_mtu(struct net_device *dev, int new_mtu)
7108 {
7109 	int err, orig_mtu;
7110 
7111 	if (new_mtu == dev->mtu)
7112 		return 0;
7113 
7114 	/* MTU must be positive, and in range */
7115 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7116 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7117 				    dev->name, new_mtu, dev->min_mtu);
7118 		return -EINVAL;
7119 	}
7120 
7121 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7122 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7123 				    dev->name, new_mtu, dev->max_mtu);
7124 		return -EINVAL;
7125 	}
7126 
7127 	if (!netif_device_present(dev))
7128 		return -ENODEV;
7129 
7130 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7131 	err = notifier_to_errno(err);
7132 	if (err)
7133 		return err;
7134 
7135 	orig_mtu = dev->mtu;
7136 	err = __dev_set_mtu(dev, new_mtu);
7137 
7138 	if (!err) {
7139 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7140 		err = notifier_to_errno(err);
7141 		if (err) {
7142 			/* setting mtu back and notifying everyone again,
7143 			 * so that they have a chance to revert changes.
7144 			 */
7145 			__dev_set_mtu(dev, orig_mtu);
7146 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7147 		}
7148 	}
7149 	return err;
7150 }
7151 EXPORT_SYMBOL(dev_set_mtu);
7152 
7153 /**
7154  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7155  *	@dev: device
7156  *	@new_len: new tx queue length
7157  */
7158 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7159 {
7160 	unsigned int orig_len = dev->tx_queue_len;
7161 	int res;
7162 
7163 	if (new_len != (unsigned int)new_len)
7164 		return -ERANGE;
7165 
7166 	if (new_len != orig_len) {
7167 		dev->tx_queue_len = new_len;
7168 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7169 		res = notifier_to_errno(res);
7170 		if (res) {
7171 			netdev_err(dev,
7172 				   "refused to change device tx_queue_len\n");
7173 			dev->tx_queue_len = orig_len;
7174 			return res;
7175 		}
7176 		return dev_qdisc_change_tx_queue_len(dev);
7177 	}
7178 
7179 	return 0;
7180 }
7181 
7182 /**
7183  *	dev_set_group - Change group this device belongs to
7184  *	@dev: device
7185  *	@new_group: group this device should belong to
7186  */
7187 void dev_set_group(struct net_device *dev, int new_group)
7188 {
7189 	dev->group = new_group;
7190 }
7191 EXPORT_SYMBOL(dev_set_group);
7192 
7193 /**
7194  *	dev_set_mac_address - Change Media Access Control Address
7195  *	@dev: device
7196  *	@sa: new address
7197  *
7198  *	Change the hardware (MAC) address of the device
7199  */
7200 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7201 {
7202 	const struct net_device_ops *ops = dev->netdev_ops;
7203 	int err;
7204 
7205 	if (!ops->ndo_set_mac_address)
7206 		return -EOPNOTSUPP;
7207 	if (sa->sa_family != dev->type)
7208 		return -EINVAL;
7209 	if (!netif_device_present(dev))
7210 		return -ENODEV;
7211 	err = ops->ndo_set_mac_address(dev, sa);
7212 	if (err)
7213 		return err;
7214 	dev->addr_assign_type = NET_ADDR_SET;
7215 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7216 	add_device_randomness(dev->dev_addr, dev->addr_len);
7217 	return 0;
7218 }
7219 EXPORT_SYMBOL(dev_set_mac_address);
7220 
7221 /**
7222  *	dev_change_carrier - Change device carrier
7223  *	@dev: device
7224  *	@new_carrier: new value
7225  *
7226  *	Change device carrier
7227  */
7228 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7229 {
7230 	const struct net_device_ops *ops = dev->netdev_ops;
7231 
7232 	if (!ops->ndo_change_carrier)
7233 		return -EOPNOTSUPP;
7234 	if (!netif_device_present(dev))
7235 		return -ENODEV;
7236 	return ops->ndo_change_carrier(dev, new_carrier);
7237 }
7238 EXPORT_SYMBOL(dev_change_carrier);
7239 
7240 /**
7241  *	dev_get_phys_port_id - Get device physical port ID
7242  *	@dev: device
7243  *	@ppid: port ID
7244  *
7245  *	Get device physical port ID
7246  */
7247 int dev_get_phys_port_id(struct net_device *dev,
7248 			 struct netdev_phys_item_id *ppid)
7249 {
7250 	const struct net_device_ops *ops = dev->netdev_ops;
7251 
7252 	if (!ops->ndo_get_phys_port_id)
7253 		return -EOPNOTSUPP;
7254 	return ops->ndo_get_phys_port_id(dev, ppid);
7255 }
7256 EXPORT_SYMBOL(dev_get_phys_port_id);
7257 
7258 /**
7259  *	dev_get_phys_port_name - Get device physical port name
7260  *	@dev: device
7261  *	@name: port name
7262  *	@len: limit of bytes to copy to name
7263  *
7264  *	Get device physical port name
7265  */
7266 int dev_get_phys_port_name(struct net_device *dev,
7267 			   char *name, size_t len)
7268 {
7269 	const struct net_device_ops *ops = dev->netdev_ops;
7270 
7271 	if (!ops->ndo_get_phys_port_name)
7272 		return -EOPNOTSUPP;
7273 	return ops->ndo_get_phys_port_name(dev, name, len);
7274 }
7275 EXPORT_SYMBOL(dev_get_phys_port_name);
7276 
7277 /**
7278  *	dev_change_proto_down - update protocol port state information
7279  *	@dev: device
7280  *	@proto_down: new value
7281  *
7282  *	This info can be used by switch drivers to set the phys state of the
7283  *	port.
7284  */
7285 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7286 {
7287 	const struct net_device_ops *ops = dev->netdev_ops;
7288 
7289 	if (!ops->ndo_change_proto_down)
7290 		return -EOPNOTSUPP;
7291 	if (!netif_device_present(dev))
7292 		return -ENODEV;
7293 	return ops->ndo_change_proto_down(dev, proto_down);
7294 }
7295 EXPORT_SYMBOL(dev_change_proto_down);
7296 
7297 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7298 		     struct netdev_bpf *xdp)
7299 {
7300 	memset(xdp, 0, sizeof(*xdp));
7301 	xdp->command = XDP_QUERY_PROG;
7302 
7303 	/* Query must always succeed. */
7304 	WARN_ON(bpf_op(dev, xdp) < 0);
7305 }
7306 
7307 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7308 {
7309 	struct netdev_bpf xdp;
7310 
7311 	__dev_xdp_query(dev, bpf_op, &xdp);
7312 
7313 	return xdp.prog_attached;
7314 }
7315 
7316 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7317 			   struct netlink_ext_ack *extack, u32 flags,
7318 			   struct bpf_prog *prog)
7319 {
7320 	struct netdev_bpf xdp;
7321 
7322 	memset(&xdp, 0, sizeof(xdp));
7323 	if (flags & XDP_FLAGS_HW_MODE)
7324 		xdp.command = XDP_SETUP_PROG_HW;
7325 	else
7326 		xdp.command = XDP_SETUP_PROG;
7327 	xdp.extack = extack;
7328 	xdp.flags = flags;
7329 	xdp.prog = prog;
7330 
7331 	return bpf_op(dev, &xdp);
7332 }
7333 
7334 static void dev_xdp_uninstall(struct net_device *dev)
7335 {
7336 	struct netdev_bpf xdp;
7337 	bpf_op_t ndo_bpf;
7338 
7339 	/* Remove generic XDP */
7340 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7341 
7342 	/* Remove from the driver */
7343 	ndo_bpf = dev->netdev_ops->ndo_bpf;
7344 	if (!ndo_bpf)
7345 		return;
7346 
7347 	__dev_xdp_query(dev, ndo_bpf, &xdp);
7348 	if (xdp.prog_attached == XDP_ATTACHED_NONE)
7349 		return;
7350 
7351 	/* Program removal should always succeed */
7352 	WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7353 }
7354 
7355 /**
7356  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7357  *	@dev: device
7358  *	@extack: netlink extended ack
7359  *	@fd: new program fd or negative value to clear
7360  *	@flags: xdp-related flags
7361  *
7362  *	Set or clear a bpf program for a device
7363  */
7364 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7365 		      int fd, u32 flags)
7366 {
7367 	const struct net_device_ops *ops = dev->netdev_ops;
7368 	struct bpf_prog *prog = NULL;
7369 	bpf_op_t bpf_op, bpf_chk;
7370 	int err;
7371 
7372 	ASSERT_RTNL();
7373 
7374 	bpf_op = bpf_chk = ops->ndo_bpf;
7375 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7376 		return -EOPNOTSUPP;
7377 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7378 		bpf_op = generic_xdp_install;
7379 	if (bpf_op == bpf_chk)
7380 		bpf_chk = generic_xdp_install;
7381 
7382 	if (fd >= 0) {
7383 		if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7384 			return -EEXIST;
7385 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7386 		    __dev_xdp_attached(dev, bpf_op))
7387 			return -EBUSY;
7388 
7389 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7390 					     bpf_op == ops->ndo_bpf);
7391 		if (IS_ERR(prog))
7392 			return PTR_ERR(prog);
7393 
7394 		if (!(flags & XDP_FLAGS_HW_MODE) &&
7395 		    bpf_prog_is_dev_bound(prog->aux)) {
7396 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7397 			bpf_prog_put(prog);
7398 			return -EINVAL;
7399 		}
7400 	}
7401 
7402 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7403 	if (err < 0 && prog)
7404 		bpf_prog_put(prog);
7405 
7406 	return err;
7407 }
7408 
7409 /**
7410  *	dev_new_index	-	allocate an ifindex
7411  *	@net: the applicable net namespace
7412  *
7413  *	Returns a suitable unique value for a new device interface
7414  *	number.  The caller must hold the rtnl semaphore or the
7415  *	dev_base_lock to be sure it remains unique.
7416  */
7417 static int dev_new_index(struct net *net)
7418 {
7419 	int ifindex = net->ifindex;
7420 
7421 	for (;;) {
7422 		if (++ifindex <= 0)
7423 			ifindex = 1;
7424 		if (!__dev_get_by_index(net, ifindex))
7425 			return net->ifindex = ifindex;
7426 	}
7427 }
7428 
7429 /* Delayed registration/unregisteration */
7430 static LIST_HEAD(net_todo_list);
7431 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7432 
7433 static void net_set_todo(struct net_device *dev)
7434 {
7435 	list_add_tail(&dev->todo_list, &net_todo_list);
7436 	dev_net(dev)->dev_unreg_count++;
7437 }
7438 
7439 static void rollback_registered_many(struct list_head *head)
7440 {
7441 	struct net_device *dev, *tmp;
7442 	LIST_HEAD(close_head);
7443 
7444 	BUG_ON(dev_boot_phase);
7445 	ASSERT_RTNL();
7446 
7447 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7448 		/* Some devices call without registering
7449 		 * for initialization unwind. Remove those
7450 		 * devices and proceed with the remaining.
7451 		 */
7452 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7453 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7454 				 dev->name, dev);
7455 
7456 			WARN_ON(1);
7457 			list_del(&dev->unreg_list);
7458 			continue;
7459 		}
7460 		dev->dismantle = true;
7461 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7462 	}
7463 
7464 	/* If device is running, close it first. */
7465 	list_for_each_entry(dev, head, unreg_list)
7466 		list_add_tail(&dev->close_list, &close_head);
7467 	dev_close_many(&close_head, true);
7468 
7469 	list_for_each_entry(dev, head, unreg_list) {
7470 		/* And unlink it from device chain. */
7471 		unlist_netdevice(dev);
7472 
7473 		dev->reg_state = NETREG_UNREGISTERING;
7474 	}
7475 	flush_all_backlogs();
7476 
7477 	synchronize_net();
7478 
7479 	list_for_each_entry(dev, head, unreg_list) {
7480 		struct sk_buff *skb = NULL;
7481 
7482 		/* Shutdown queueing discipline. */
7483 		dev_shutdown(dev);
7484 
7485 		dev_xdp_uninstall(dev);
7486 
7487 		/* Notify protocols, that we are about to destroy
7488 		 * this device. They should clean all the things.
7489 		 */
7490 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7491 
7492 		if (!dev->rtnl_link_ops ||
7493 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7494 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7495 						     GFP_KERNEL, NULL, 0);
7496 
7497 		/*
7498 		 *	Flush the unicast and multicast chains
7499 		 */
7500 		dev_uc_flush(dev);
7501 		dev_mc_flush(dev);
7502 
7503 		if (dev->netdev_ops->ndo_uninit)
7504 			dev->netdev_ops->ndo_uninit(dev);
7505 
7506 		if (skb)
7507 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7508 
7509 		/* Notifier chain MUST detach us all upper devices. */
7510 		WARN_ON(netdev_has_any_upper_dev(dev));
7511 		WARN_ON(netdev_has_any_lower_dev(dev));
7512 
7513 		/* Remove entries from kobject tree */
7514 		netdev_unregister_kobject(dev);
7515 #ifdef CONFIG_XPS
7516 		/* Remove XPS queueing entries */
7517 		netif_reset_xps_queues_gt(dev, 0);
7518 #endif
7519 	}
7520 
7521 	synchronize_net();
7522 
7523 	list_for_each_entry(dev, head, unreg_list)
7524 		dev_put(dev);
7525 }
7526 
7527 static void rollback_registered(struct net_device *dev)
7528 {
7529 	LIST_HEAD(single);
7530 
7531 	list_add(&dev->unreg_list, &single);
7532 	rollback_registered_many(&single);
7533 	list_del(&single);
7534 }
7535 
7536 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7537 	struct net_device *upper, netdev_features_t features)
7538 {
7539 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7540 	netdev_features_t feature;
7541 	int feature_bit;
7542 
7543 	for_each_netdev_feature(&upper_disables, feature_bit) {
7544 		feature = __NETIF_F_BIT(feature_bit);
7545 		if (!(upper->wanted_features & feature)
7546 		    && (features & feature)) {
7547 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7548 				   &feature, upper->name);
7549 			features &= ~feature;
7550 		}
7551 	}
7552 
7553 	return features;
7554 }
7555 
7556 static void netdev_sync_lower_features(struct net_device *upper,
7557 	struct net_device *lower, netdev_features_t features)
7558 {
7559 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7560 	netdev_features_t feature;
7561 	int feature_bit;
7562 
7563 	for_each_netdev_feature(&upper_disables, feature_bit) {
7564 		feature = __NETIF_F_BIT(feature_bit);
7565 		if (!(features & feature) && (lower->features & feature)) {
7566 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7567 				   &feature, lower->name);
7568 			lower->wanted_features &= ~feature;
7569 			netdev_update_features(lower);
7570 
7571 			if (unlikely(lower->features & feature))
7572 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7573 					    &feature, lower->name);
7574 		}
7575 	}
7576 }
7577 
7578 static netdev_features_t netdev_fix_features(struct net_device *dev,
7579 	netdev_features_t features)
7580 {
7581 	/* Fix illegal checksum combinations */
7582 	if ((features & NETIF_F_HW_CSUM) &&
7583 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7584 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7585 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7586 	}
7587 
7588 	/* TSO requires that SG is present as well. */
7589 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7590 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7591 		features &= ~NETIF_F_ALL_TSO;
7592 	}
7593 
7594 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7595 					!(features & NETIF_F_IP_CSUM)) {
7596 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7597 		features &= ~NETIF_F_TSO;
7598 		features &= ~NETIF_F_TSO_ECN;
7599 	}
7600 
7601 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7602 					 !(features & NETIF_F_IPV6_CSUM)) {
7603 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7604 		features &= ~NETIF_F_TSO6;
7605 	}
7606 
7607 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7608 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7609 		features &= ~NETIF_F_TSO_MANGLEID;
7610 
7611 	/* TSO ECN requires that TSO is present as well. */
7612 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7613 		features &= ~NETIF_F_TSO_ECN;
7614 
7615 	/* Software GSO depends on SG. */
7616 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7617 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7618 		features &= ~NETIF_F_GSO;
7619 	}
7620 
7621 	/* GSO partial features require GSO partial be set */
7622 	if ((features & dev->gso_partial_features) &&
7623 	    !(features & NETIF_F_GSO_PARTIAL)) {
7624 		netdev_dbg(dev,
7625 			   "Dropping partially supported GSO features since no GSO partial.\n");
7626 		features &= ~dev->gso_partial_features;
7627 	}
7628 
7629 	if (!(features & NETIF_F_RXCSUM)) {
7630 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7631 		 * successfully merged by hardware must also have the
7632 		 * checksum verified by hardware.  If the user does not
7633 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
7634 		 */
7635 		if (features & NETIF_F_GRO_HW) {
7636 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7637 			features &= ~NETIF_F_GRO_HW;
7638 		}
7639 	}
7640 
7641 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
7642 	if (features & NETIF_F_RXFCS) {
7643 		if (features & NETIF_F_LRO) {
7644 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
7645 			features &= ~NETIF_F_LRO;
7646 		}
7647 
7648 		if (features & NETIF_F_GRO_HW) {
7649 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
7650 			features &= ~NETIF_F_GRO_HW;
7651 		}
7652 	}
7653 
7654 	return features;
7655 }
7656 
7657 int __netdev_update_features(struct net_device *dev)
7658 {
7659 	struct net_device *upper, *lower;
7660 	netdev_features_t features;
7661 	struct list_head *iter;
7662 	int err = -1;
7663 
7664 	ASSERT_RTNL();
7665 
7666 	features = netdev_get_wanted_features(dev);
7667 
7668 	if (dev->netdev_ops->ndo_fix_features)
7669 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7670 
7671 	/* driver might be less strict about feature dependencies */
7672 	features = netdev_fix_features(dev, features);
7673 
7674 	/* some features can't be enabled if they're off an an upper device */
7675 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7676 		features = netdev_sync_upper_features(dev, upper, features);
7677 
7678 	if (dev->features == features)
7679 		goto sync_lower;
7680 
7681 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7682 		&dev->features, &features);
7683 
7684 	if (dev->netdev_ops->ndo_set_features)
7685 		err = dev->netdev_ops->ndo_set_features(dev, features);
7686 	else
7687 		err = 0;
7688 
7689 	if (unlikely(err < 0)) {
7690 		netdev_err(dev,
7691 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7692 			err, &features, &dev->features);
7693 		/* return non-0 since some features might have changed and
7694 		 * it's better to fire a spurious notification than miss it
7695 		 */
7696 		return -1;
7697 	}
7698 
7699 sync_lower:
7700 	/* some features must be disabled on lower devices when disabled
7701 	 * on an upper device (think: bonding master or bridge)
7702 	 */
7703 	netdev_for_each_lower_dev(dev, lower, iter)
7704 		netdev_sync_lower_features(dev, lower, features);
7705 
7706 	if (!err) {
7707 		netdev_features_t diff = features ^ dev->features;
7708 
7709 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7710 			/* udp_tunnel_{get,drop}_rx_info both need
7711 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7712 			 * device, or they won't do anything.
7713 			 * Thus we need to update dev->features
7714 			 * *before* calling udp_tunnel_get_rx_info,
7715 			 * but *after* calling udp_tunnel_drop_rx_info.
7716 			 */
7717 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7718 				dev->features = features;
7719 				udp_tunnel_get_rx_info(dev);
7720 			} else {
7721 				udp_tunnel_drop_rx_info(dev);
7722 			}
7723 		}
7724 
7725 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
7726 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
7727 				dev->features = features;
7728 				err |= vlan_get_rx_ctag_filter_info(dev);
7729 			} else {
7730 				vlan_drop_rx_ctag_filter_info(dev);
7731 			}
7732 		}
7733 
7734 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
7735 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
7736 				dev->features = features;
7737 				err |= vlan_get_rx_stag_filter_info(dev);
7738 			} else {
7739 				vlan_drop_rx_stag_filter_info(dev);
7740 			}
7741 		}
7742 
7743 		dev->features = features;
7744 	}
7745 
7746 	return err < 0 ? 0 : 1;
7747 }
7748 
7749 /**
7750  *	netdev_update_features - recalculate device features
7751  *	@dev: the device to check
7752  *
7753  *	Recalculate dev->features set and send notifications if it
7754  *	has changed. Should be called after driver or hardware dependent
7755  *	conditions might have changed that influence the features.
7756  */
7757 void netdev_update_features(struct net_device *dev)
7758 {
7759 	if (__netdev_update_features(dev))
7760 		netdev_features_change(dev);
7761 }
7762 EXPORT_SYMBOL(netdev_update_features);
7763 
7764 /**
7765  *	netdev_change_features - recalculate device features
7766  *	@dev: the device to check
7767  *
7768  *	Recalculate dev->features set and send notifications even
7769  *	if they have not changed. Should be called instead of
7770  *	netdev_update_features() if also dev->vlan_features might
7771  *	have changed to allow the changes to be propagated to stacked
7772  *	VLAN devices.
7773  */
7774 void netdev_change_features(struct net_device *dev)
7775 {
7776 	__netdev_update_features(dev);
7777 	netdev_features_change(dev);
7778 }
7779 EXPORT_SYMBOL(netdev_change_features);
7780 
7781 /**
7782  *	netif_stacked_transfer_operstate -	transfer operstate
7783  *	@rootdev: the root or lower level device to transfer state from
7784  *	@dev: the device to transfer operstate to
7785  *
7786  *	Transfer operational state from root to device. This is normally
7787  *	called when a stacking relationship exists between the root
7788  *	device and the device(a leaf device).
7789  */
7790 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7791 					struct net_device *dev)
7792 {
7793 	if (rootdev->operstate == IF_OPER_DORMANT)
7794 		netif_dormant_on(dev);
7795 	else
7796 		netif_dormant_off(dev);
7797 
7798 	if (netif_carrier_ok(rootdev))
7799 		netif_carrier_on(dev);
7800 	else
7801 		netif_carrier_off(dev);
7802 }
7803 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7804 
7805 static int netif_alloc_rx_queues(struct net_device *dev)
7806 {
7807 	unsigned int i, count = dev->num_rx_queues;
7808 	struct netdev_rx_queue *rx;
7809 	size_t sz = count * sizeof(*rx);
7810 	int err = 0;
7811 
7812 	BUG_ON(count < 1);
7813 
7814 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7815 	if (!rx)
7816 		return -ENOMEM;
7817 
7818 	dev->_rx = rx;
7819 
7820 	for (i = 0; i < count; i++) {
7821 		rx[i].dev = dev;
7822 
7823 		/* XDP RX-queue setup */
7824 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7825 		if (err < 0)
7826 			goto err_rxq_info;
7827 	}
7828 	return 0;
7829 
7830 err_rxq_info:
7831 	/* Rollback successful reg's and free other resources */
7832 	while (i--)
7833 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7834 	kvfree(dev->_rx);
7835 	dev->_rx = NULL;
7836 	return err;
7837 }
7838 
7839 static void netif_free_rx_queues(struct net_device *dev)
7840 {
7841 	unsigned int i, count = dev->num_rx_queues;
7842 
7843 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7844 	if (!dev->_rx)
7845 		return;
7846 
7847 	for (i = 0; i < count; i++)
7848 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
7849 
7850 	kvfree(dev->_rx);
7851 }
7852 
7853 static void netdev_init_one_queue(struct net_device *dev,
7854 				  struct netdev_queue *queue, void *_unused)
7855 {
7856 	/* Initialize queue lock */
7857 	spin_lock_init(&queue->_xmit_lock);
7858 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7859 	queue->xmit_lock_owner = -1;
7860 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7861 	queue->dev = dev;
7862 #ifdef CONFIG_BQL
7863 	dql_init(&queue->dql, HZ);
7864 #endif
7865 }
7866 
7867 static void netif_free_tx_queues(struct net_device *dev)
7868 {
7869 	kvfree(dev->_tx);
7870 }
7871 
7872 static int netif_alloc_netdev_queues(struct net_device *dev)
7873 {
7874 	unsigned int count = dev->num_tx_queues;
7875 	struct netdev_queue *tx;
7876 	size_t sz = count * sizeof(*tx);
7877 
7878 	if (count < 1 || count > 0xffff)
7879 		return -EINVAL;
7880 
7881 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7882 	if (!tx)
7883 		return -ENOMEM;
7884 
7885 	dev->_tx = tx;
7886 
7887 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7888 	spin_lock_init(&dev->tx_global_lock);
7889 
7890 	return 0;
7891 }
7892 
7893 void netif_tx_stop_all_queues(struct net_device *dev)
7894 {
7895 	unsigned int i;
7896 
7897 	for (i = 0; i < dev->num_tx_queues; i++) {
7898 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7899 
7900 		netif_tx_stop_queue(txq);
7901 	}
7902 }
7903 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7904 
7905 /**
7906  *	register_netdevice	- register a network device
7907  *	@dev: device to register
7908  *
7909  *	Take a completed network device structure and add it to the kernel
7910  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7911  *	chain. 0 is returned on success. A negative errno code is returned
7912  *	on a failure to set up the device, or if the name is a duplicate.
7913  *
7914  *	Callers must hold the rtnl semaphore. You may want
7915  *	register_netdev() instead of this.
7916  *
7917  *	BUGS:
7918  *	The locking appears insufficient to guarantee two parallel registers
7919  *	will not get the same name.
7920  */
7921 
7922 int register_netdevice(struct net_device *dev)
7923 {
7924 	int ret;
7925 	struct net *net = dev_net(dev);
7926 
7927 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
7928 		     NETDEV_FEATURE_COUNT);
7929 	BUG_ON(dev_boot_phase);
7930 	ASSERT_RTNL();
7931 
7932 	might_sleep();
7933 
7934 	/* When net_device's are persistent, this will be fatal. */
7935 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7936 	BUG_ON(!net);
7937 
7938 	spin_lock_init(&dev->addr_list_lock);
7939 	netdev_set_addr_lockdep_class(dev);
7940 
7941 	ret = dev_get_valid_name(net, dev, dev->name);
7942 	if (ret < 0)
7943 		goto out;
7944 
7945 	/* Init, if this function is available */
7946 	if (dev->netdev_ops->ndo_init) {
7947 		ret = dev->netdev_ops->ndo_init(dev);
7948 		if (ret) {
7949 			if (ret > 0)
7950 				ret = -EIO;
7951 			goto out;
7952 		}
7953 	}
7954 
7955 	if (((dev->hw_features | dev->features) &
7956 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7957 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7958 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7959 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7960 		ret = -EINVAL;
7961 		goto err_uninit;
7962 	}
7963 
7964 	ret = -EBUSY;
7965 	if (!dev->ifindex)
7966 		dev->ifindex = dev_new_index(net);
7967 	else if (__dev_get_by_index(net, dev->ifindex))
7968 		goto err_uninit;
7969 
7970 	/* Transfer changeable features to wanted_features and enable
7971 	 * software offloads (GSO and GRO).
7972 	 */
7973 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7974 	dev->features |= NETIF_F_SOFT_FEATURES;
7975 
7976 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
7977 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7978 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7979 	}
7980 
7981 	dev->wanted_features = dev->features & dev->hw_features;
7982 
7983 	if (!(dev->flags & IFF_LOOPBACK))
7984 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7985 
7986 	/* If IPv4 TCP segmentation offload is supported we should also
7987 	 * allow the device to enable segmenting the frame with the option
7988 	 * of ignoring a static IP ID value.  This doesn't enable the
7989 	 * feature itself but allows the user to enable it later.
7990 	 */
7991 	if (dev->hw_features & NETIF_F_TSO)
7992 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7993 	if (dev->vlan_features & NETIF_F_TSO)
7994 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7995 	if (dev->mpls_features & NETIF_F_TSO)
7996 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7997 	if (dev->hw_enc_features & NETIF_F_TSO)
7998 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7999 
8000 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8001 	 */
8002 	dev->vlan_features |= NETIF_F_HIGHDMA;
8003 
8004 	/* Make NETIF_F_SG inheritable to tunnel devices.
8005 	 */
8006 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8007 
8008 	/* Make NETIF_F_SG inheritable to MPLS.
8009 	 */
8010 	dev->mpls_features |= NETIF_F_SG;
8011 
8012 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8013 	ret = notifier_to_errno(ret);
8014 	if (ret)
8015 		goto err_uninit;
8016 
8017 	ret = netdev_register_kobject(dev);
8018 	if (ret)
8019 		goto err_uninit;
8020 	dev->reg_state = NETREG_REGISTERED;
8021 
8022 	__netdev_update_features(dev);
8023 
8024 	/*
8025 	 *	Default initial state at registry is that the
8026 	 *	device is present.
8027 	 */
8028 
8029 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8030 
8031 	linkwatch_init_dev(dev);
8032 
8033 	dev_init_scheduler(dev);
8034 	dev_hold(dev);
8035 	list_netdevice(dev);
8036 	add_device_randomness(dev->dev_addr, dev->addr_len);
8037 
8038 	/* If the device has permanent device address, driver should
8039 	 * set dev_addr and also addr_assign_type should be set to
8040 	 * NET_ADDR_PERM (default value).
8041 	 */
8042 	if (dev->addr_assign_type == NET_ADDR_PERM)
8043 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8044 
8045 	/* Notify protocols, that a new device appeared. */
8046 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8047 	ret = notifier_to_errno(ret);
8048 	if (ret) {
8049 		rollback_registered(dev);
8050 		dev->reg_state = NETREG_UNREGISTERED;
8051 	}
8052 	/*
8053 	 *	Prevent userspace races by waiting until the network
8054 	 *	device is fully setup before sending notifications.
8055 	 */
8056 	if (!dev->rtnl_link_ops ||
8057 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8058 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8059 
8060 out:
8061 	return ret;
8062 
8063 err_uninit:
8064 	if (dev->netdev_ops->ndo_uninit)
8065 		dev->netdev_ops->ndo_uninit(dev);
8066 	if (dev->priv_destructor)
8067 		dev->priv_destructor(dev);
8068 	goto out;
8069 }
8070 EXPORT_SYMBOL(register_netdevice);
8071 
8072 /**
8073  *	init_dummy_netdev	- init a dummy network device for NAPI
8074  *	@dev: device to init
8075  *
8076  *	This takes a network device structure and initialize the minimum
8077  *	amount of fields so it can be used to schedule NAPI polls without
8078  *	registering a full blown interface. This is to be used by drivers
8079  *	that need to tie several hardware interfaces to a single NAPI
8080  *	poll scheduler due to HW limitations.
8081  */
8082 int init_dummy_netdev(struct net_device *dev)
8083 {
8084 	/* Clear everything. Note we don't initialize spinlocks
8085 	 * are they aren't supposed to be taken by any of the
8086 	 * NAPI code and this dummy netdev is supposed to be
8087 	 * only ever used for NAPI polls
8088 	 */
8089 	memset(dev, 0, sizeof(struct net_device));
8090 
8091 	/* make sure we BUG if trying to hit standard
8092 	 * register/unregister code path
8093 	 */
8094 	dev->reg_state = NETREG_DUMMY;
8095 
8096 	/* NAPI wants this */
8097 	INIT_LIST_HEAD(&dev->napi_list);
8098 
8099 	/* a dummy interface is started by default */
8100 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8101 	set_bit(__LINK_STATE_START, &dev->state);
8102 
8103 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8104 	 * because users of this 'device' dont need to change
8105 	 * its refcount.
8106 	 */
8107 
8108 	return 0;
8109 }
8110 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8111 
8112 
8113 /**
8114  *	register_netdev	- register a network device
8115  *	@dev: device to register
8116  *
8117  *	Take a completed network device structure and add it to the kernel
8118  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8119  *	chain. 0 is returned on success. A negative errno code is returned
8120  *	on a failure to set up the device, or if the name is a duplicate.
8121  *
8122  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8123  *	and expands the device name if you passed a format string to
8124  *	alloc_netdev.
8125  */
8126 int register_netdev(struct net_device *dev)
8127 {
8128 	int err;
8129 
8130 	if (rtnl_lock_killable())
8131 		return -EINTR;
8132 	err = register_netdevice(dev);
8133 	rtnl_unlock();
8134 	return err;
8135 }
8136 EXPORT_SYMBOL(register_netdev);
8137 
8138 int netdev_refcnt_read(const struct net_device *dev)
8139 {
8140 	int i, refcnt = 0;
8141 
8142 	for_each_possible_cpu(i)
8143 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8144 	return refcnt;
8145 }
8146 EXPORT_SYMBOL(netdev_refcnt_read);
8147 
8148 /**
8149  * netdev_wait_allrefs - wait until all references are gone.
8150  * @dev: target net_device
8151  *
8152  * This is called when unregistering network devices.
8153  *
8154  * Any protocol or device that holds a reference should register
8155  * for netdevice notification, and cleanup and put back the
8156  * reference if they receive an UNREGISTER event.
8157  * We can get stuck here if buggy protocols don't correctly
8158  * call dev_put.
8159  */
8160 static void netdev_wait_allrefs(struct net_device *dev)
8161 {
8162 	unsigned long rebroadcast_time, warning_time;
8163 	int refcnt;
8164 
8165 	linkwatch_forget_dev(dev);
8166 
8167 	rebroadcast_time = warning_time = jiffies;
8168 	refcnt = netdev_refcnt_read(dev);
8169 
8170 	while (refcnt != 0) {
8171 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8172 			rtnl_lock();
8173 
8174 			/* Rebroadcast unregister notification */
8175 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8176 
8177 			__rtnl_unlock();
8178 			rcu_barrier();
8179 			rtnl_lock();
8180 
8181 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8182 				     &dev->state)) {
8183 				/* We must not have linkwatch events
8184 				 * pending on unregister. If this
8185 				 * happens, we simply run the queue
8186 				 * unscheduled, resulting in a noop
8187 				 * for this device.
8188 				 */
8189 				linkwatch_run_queue();
8190 			}
8191 
8192 			__rtnl_unlock();
8193 
8194 			rebroadcast_time = jiffies;
8195 		}
8196 
8197 		msleep(250);
8198 
8199 		refcnt = netdev_refcnt_read(dev);
8200 
8201 		if (time_after(jiffies, warning_time + 10 * HZ)) {
8202 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8203 				 dev->name, refcnt);
8204 			warning_time = jiffies;
8205 		}
8206 	}
8207 }
8208 
8209 /* The sequence is:
8210  *
8211  *	rtnl_lock();
8212  *	...
8213  *	register_netdevice(x1);
8214  *	register_netdevice(x2);
8215  *	...
8216  *	unregister_netdevice(y1);
8217  *	unregister_netdevice(y2);
8218  *      ...
8219  *	rtnl_unlock();
8220  *	free_netdev(y1);
8221  *	free_netdev(y2);
8222  *
8223  * We are invoked by rtnl_unlock().
8224  * This allows us to deal with problems:
8225  * 1) We can delete sysfs objects which invoke hotplug
8226  *    without deadlocking with linkwatch via keventd.
8227  * 2) Since we run with the RTNL semaphore not held, we can sleep
8228  *    safely in order to wait for the netdev refcnt to drop to zero.
8229  *
8230  * We must not return until all unregister events added during
8231  * the interval the lock was held have been completed.
8232  */
8233 void netdev_run_todo(void)
8234 {
8235 	struct list_head list;
8236 
8237 	/* Snapshot list, allow later requests */
8238 	list_replace_init(&net_todo_list, &list);
8239 
8240 	__rtnl_unlock();
8241 
8242 
8243 	/* Wait for rcu callbacks to finish before next phase */
8244 	if (!list_empty(&list))
8245 		rcu_barrier();
8246 
8247 	while (!list_empty(&list)) {
8248 		struct net_device *dev
8249 			= list_first_entry(&list, struct net_device, todo_list);
8250 		list_del(&dev->todo_list);
8251 
8252 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8253 			pr_err("network todo '%s' but state %d\n",
8254 			       dev->name, dev->reg_state);
8255 			dump_stack();
8256 			continue;
8257 		}
8258 
8259 		dev->reg_state = NETREG_UNREGISTERED;
8260 
8261 		netdev_wait_allrefs(dev);
8262 
8263 		/* paranoia */
8264 		BUG_ON(netdev_refcnt_read(dev));
8265 		BUG_ON(!list_empty(&dev->ptype_all));
8266 		BUG_ON(!list_empty(&dev->ptype_specific));
8267 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8268 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8269 #if IS_ENABLED(CONFIG_DECNET)
8270 		WARN_ON(dev->dn_ptr);
8271 #endif
8272 		if (dev->priv_destructor)
8273 			dev->priv_destructor(dev);
8274 		if (dev->needs_free_netdev)
8275 			free_netdev(dev);
8276 
8277 		/* Report a network device has been unregistered */
8278 		rtnl_lock();
8279 		dev_net(dev)->dev_unreg_count--;
8280 		__rtnl_unlock();
8281 		wake_up(&netdev_unregistering_wq);
8282 
8283 		/* Free network device */
8284 		kobject_put(&dev->dev.kobj);
8285 	}
8286 }
8287 
8288 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8289  * all the same fields in the same order as net_device_stats, with only
8290  * the type differing, but rtnl_link_stats64 may have additional fields
8291  * at the end for newer counters.
8292  */
8293 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8294 			     const struct net_device_stats *netdev_stats)
8295 {
8296 #if BITS_PER_LONG == 64
8297 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8298 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8299 	/* zero out counters that only exist in rtnl_link_stats64 */
8300 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
8301 	       sizeof(*stats64) - sizeof(*netdev_stats));
8302 #else
8303 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8304 	const unsigned long *src = (const unsigned long *)netdev_stats;
8305 	u64 *dst = (u64 *)stats64;
8306 
8307 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8308 	for (i = 0; i < n; i++)
8309 		dst[i] = src[i];
8310 	/* zero out counters that only exist in rtnl_link_stats64 */
8311 	memset((char *)stats64 + n * sizeof(u64), 0,
8312 	       sizeof(*stats64) - n * sizeof(u64));
8313 #endif
8314 }
8315 EXPORT_SYMBOL(netdev_stats_to_stats64);
8316 
8317 /**
8318  *	dev_get_stats	- get network device statistics
8319  *	@dev: device to get statistics from
8320  *	@storage: place to store stats
8321  *
8322  *	Get network statistics from device. Return @storage.
8323  *	The device driver may provide its own method by setting
8324  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8325  *	otherwise the internal statistics structure is used.
8326  */
8327 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8328 					struct rtnl_link_stats64 *storage)
8329 {
8330 	const struct net_device_ops *ops = dev->netdev_ops;
8331 
8332 	if (ops->ndo_get_stats64) {
8333 		memset(storage, 0, sizeof(*storage));
8334 		ops->ndo_get_stats64(dev, storage);
8335 	} else if (ops->ndo_get_stats) {
8336 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8337 	} else {
8338 		netdev_stats_to_stats64(storage, &dev->stats);
8339 	}
8340 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8341 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8342 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8343 	return storage;
8344 }
8345 EXPORT_SYMBOL(dev_get_stats);
8346 
8347 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8348 {
8349 	struct netdev_queue *queue = dev_ingress_queue(dev);
8350 
8351 #ifdef CONFIG_NET_CLS_ACT
8352 	if (queue)
8353 		return queue;
8354 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8355 	if (!queue)
8356 		return NULL;
8357 	netdev_init_one_queue(dev, queue, NULL);
8358 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8359 	queue->qdisc_sleeping = &noop_qdisc;
8360 	rcu_assign_pointer(dev->ingress_queue, queue);
8361 #endif
8362 	return queue;
8363 }
8364 
8365 static const struct ethtool_ops default_ethtool_ops;
8366 
8367 void netdev_set_default_ethtool_ops(struct net_device *dev,
8368 				    const struct ethtool_ops *ops)
8369 {
8370 	if (dev->ethtool_ops == &default_ethtool_ops)
8371 		dev->ethtool_ops = ops;
8372 }
8373 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8374 
8375 void netdev_freemem(struct net_device *dev)
8376 {
8377 	char *addr = (char *)dev - dev->padded;
8378 
8379 	kvfree(addr);
8380 }
8381 
8382 /**
8383  * alloc_netdev_mqs - allocate network device
8384  * @sizeof_priv: size of private data to allocate space for
8385  * @name: device name format string
8386  * @name_assign_type: origin of device name
8387  * @setup: callback to initialize device
8388  * @txqs: the number of TX subqueues to allocate
8389  * @rxqs: the number of RX subqueues to allocate
8390  *
8391  * Allocates a struct net_device with private data area for driver use
8392  * and performs basic initialization.  Also allocates subqueue structs
8393  * for each queue on the device.
8394  */
8395 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8396 		unsigned char name_assign_type,
8397 		void (*setup)(struct net_device *),
8398 		unsigned int txqs, unsigned int rxqs)
8399 {
8400 	struct net_device *dev;
8401 	unsigned int alloc_size;
8402 	struct net_device *p;
8403 
8404 	BUG_ON(strlen(name) >= sizeof(dev->name));
8405 
8406 	if (txqs < 1) {
8407 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8408 		return NULL;
8409 	}
8410 
8411 	if (rxqs < 1) {
8412 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8413 		return NULL;
8414 	}
8415 
8416 	alloc_size = sizeof(struct net_device);
8417 	if (sizeof_priv) {
8418 		/* ensure 32-byte alignment of private area */
8419 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8420 		alloc_size += sizeof_priv;
8421 	}
8422 	/* ensure 32-byte alignment of whole construct */
8423 	alloc_size += NETDEV_ALIGN - 1;
8424 
8425 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8426 	if (!p)
8427 		return NULL;
8428 
8429 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8430 	dev->padded = (char *)dev - (char *)p;
8431 
8432 	dev->pcpu_refcnt = alloc_percpu(int);
8433 	if (!dev->pcpu_refcnt)
8434 		goto free_dev;
8435 
8436 	if (dev_addr_init(dev))
8437 		goto free_pcpu;
8438 
8439 	dev_mc_init(dev);
8440 	dev_uc_init(dev);
8441 
8442 	dev_net_set(dev, &init_net);
8443 
8444 	dev->gso_max_size = GSO_MAX_SIZE;
8445 	dev->gso_max_segs = GSO_MAX_SEGS;
8446 
8447 	INIT_LIST_HEAD(&dev->napi_list);
8448 	INIT_LIST_HEAD(&dev->unreg_list);
8449 	INIT_LIST_HEAD(&dev->close_list);
8450 	INIT_LIST_HEAD(&dev->link_watch_list);
8451 	INIT_LIST_HEAD(&dev->adj_list.upper);
8452 	INIT_LIST_HEAD(&dev->adj_list.lower);
8453 	INIT_LIST_HEAD(&dev->ptype_all);
8454 	INIT_LIST_HEAD(&dev->ptype_specific);
8455 #ifdef CONFIG_NET_SCHED
8456 	hash_init(dev->qdisc_hash);
8457 #endif
8458 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8459 	setup(dev);
8460 
8461 	if (!dev->tx_queue_len) {
8462 		dev->priv_flags |= IFF_NO_QUEUE;
8463 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8464 	}
8465 
8466 	dev->num_tx_queues = txqs;
8467 	dev->real_num_tx_queues = txqs;
8468 	if (netif_alloc_netdev_queues(dev))
8469 		goto free_all;
8470 
8471 	dev->num_rx_queues = rxqs;
8472 	dev->real_num_rx_queues = rxqs;
8473 	if (netif_alloc_rx_queues(dev))
8474 		goto free_all;
8475 
8476 	strcpy(dev->name, name);
8477 	dev->name_assign_type = name_assign_type;
8478 	dev->group = INIT_NETDEV_GROUP;
8479 	if (!dev->ethtool_ops)
8480 		dev->ethtool_ops = &default_ethtool_ops;
8481 
8482 	nf_hook_ingress_init(dev);
8483 
8484 	return dev;
8485 
8486 free_all:
8487 	free_netdev(dev);
8488 	return NULL;
8489 
8490 free_pcpu:
8491 	free_percpu(dev->pcpu_refcnt);
8492 free_dev:
8493 	netdev_freemem(dev);
8494 	return NULL;
8495 }
8496 EXPORT_SYMBOL(alloc_netdev_mqs);
8497 
8498 /**
8499  * free_netdev - free network device
8500  * @dev: device
8501  *
8502  * This function does the last stage of destroying an allocated device
8503  * interface. The reference to the device object is released. If this
8504  * is the last reference then it will be freed.Must be called in process
8505  * context.
8506  */
8507 void free_netdev(struct net_device *dev)
8508 {
8509 	struct napi_struct *p, *n;
8510 
8511 	might_sleep();
8512 	netif_free_tx_queues(dev);
8513 	netif_free_rx_queues(dev);
8514 
8515 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8516 
8517 	/* Flush device addresses */
8518 	dev_addr_flush(dev);
8519 
8520 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8521 		netif_napi_del(p);
8522 
8523 	free_percpu(dev->pcpu_refcnt);
8524 	dev->pcpu_refcnt = NULL;
8525 
8526 	/*  Compatibility with error handling in drivers */
8527 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8528 		netdev_freemem(dev);
8529 		return;
8530 	}
8531 
8532 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8533 	dev->reg_state = NETREG_RELEASED;
8534 
8535 	/* will free via device release */
8536 	put_device(&dev->dev);
8537 }
8538 EXPORT_SYMBOL(free_netdev);
8539 
8540 /**
8541  *	synchronize_net -  Synchronize with packet receive processing
8542  *
8543  *	Wait for packets currently being received to be done.
8544  *	Does not block later packets from starting.
8545  */
8546 void synchronize_net(void)
8547 {
8548 	might_sleep();
8549 	if (rtnl_is_locked())
8550 		synchronize_rcu_expedited();
8551 	else
8552 		synchronize_rcu();
8553 }
8554 EXPORT_SYMBOL(synchronize_net);
8555 
8556 /**
8557  *	unregister_netdevice_queue - remove device from the kernel
8558  *	@dev: device
8559  *	@head: list
8560  *
8561  *	This function shuts down a device interface and removes it
8562  *	from the kernel tables.
8563  *	If head not NULL, device is queued to be unregistered later.
8564  *
8565  *	Callers must hold the rtnl semaphore.  You may want
8566  *	unregister_netdev() instead of this.
8567  */
8568 
8569 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8570 {
8571 	ASSERT_RTNL();
8572 
8573 	if (head) {
8574 		list_move_tail(&dev->unreg_list, head);
8575 	} else {
8576 		rollback_registered(dev);
8577 		/* Finish processing unregister after unlock */
8578 		net_set_todo(dev);
8579 	}
8580 }
8581 EXPORT_SYMBOL(unregister_netdevice_queue);
8582 
8583 /**
8584  *	unregister_netdevice_many - unregister many devices
8585  *	@head: list of devices
8586  *
8587  *  Note: As most callers use a stack allocated list_head,
8588  *  we force a list_del() to make sure stack wont be corrupted later.
8589  */
8590 void unregister_netdevice_many(struct list_head *head)
8591 {
8592 	struct net_device *dev;
8593 
8594 	if (!list_empty(head)) {
8595 		rollback_registered_many(head);
8596 		list_for_each_entry(dev, head, unreg_list)
8597 			net_set_todo(dev);
8598 		list_del(head);
8599 	}
8600 }
8601 EXPORT_SYMBOL(unregister_netdevice_many);
8602 
8603 /**
8604  *	unregister_netdev - remove device from the kernel
8605  *	@dev: device
8606  *
8607  *	This function shuts down a device interface and removes it
8608  *	from the kernel tables.
8609  *
8610  *	This is just a wrapper for unregister_netdevice that takes
8611  *	the rtnl semaphore.  In general you want to use this and not
8612  *	unregister_netdevice.
8613  */
8614 void unregister_netdev(struct net_device *dev)
8615 {
8616 	rtnl_lock();
8617 	unregister_netdevice(dev);
8618 	rtnl_unlock();
8619 }
8620 EXPORT_SYMBOL(unregister_netdev);
8621 
8622 /**
8623  *	dev_change_net_namespace - move device to different nethost namespace
8624  *	@dev: device
8625  *	@net: network namespace
8626  *	@pat: If not NULL name pattern to try if the current device name
8627  *	      is already taken in the destination network namespace.
8628  *
8629  *	This function shuts down a device interface and moves it
8630  *	to a new network namespace. On success 0 is returned, on
8631  *	a failure a netagive errno code is returned.
8632  *
8633  *	Callers must hold the rtnl semaphore.
8634  */
8635 
8636 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8637 {
8638 	int err, new_nsid, new_ifindex;
8639 
8640 	ASSERT_RTNL();
8641 
8642 	/* Don't allow namespace local devices to be moved. */
8643 	err = -EINVAL;
8644 	if (dev->features & NETIF_F_NETNS_LOCAL)
8645 		goto out;
8646 
8647 	/* Ensure the device has been registrered */
8648 	if (dev->reg_state != NETREG_REGISTERED)
8649 		goto out;
8650 
8651 	/* Get out if there is nothing todo */
8652 	err = 0;
8653 	if (net_eq(dev_net(dev), net))
8654 		goto out;
8655 
8656 	/* Pick the destination device name, and ensure
8657 	 * we can use it in the destination network namespace.
8658 	 */
8659 	err = -EEXIST;
8660 	if (__dev_get_by_name(net, dev->name)) {
8661 		/* We get here if we can't use the current device name */
8662 		if (!pat)
8663 			goto out;
8664 		if (dev_get_valid_name(net, dev, pat) < 0)
8665 			goto out;
8666 	}
8667 
8668 	/*
8669 	 * And now a mini version of register_netdevice unregister_netdevice.
8670 	 */
8671 
8672 	/* If device is running close it first. */
8673 	dev_close(dev);
8674 
8675 	/* And unlink it from device chain */
8676 	err = -ENODEV;
8677 	unlist_netdevice(dev);
8678 
8679 	synchronize_net();
8680 
8681 	/* Shutdown queueing discipline. */
8682 	dev_shutdown(dev);
8683 
8684 	/* Notify protocols, that we are about to destroy
8685 	 * this device. They should clean all the things.
8686 	 *
8687 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
8688 	 * This is wanted because this way 8021q and macvlan know
8689 	 * the device is just moving and can keep their slaves up.
8690 	 */
8691 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8692 	rcu_barrier();
8693 
8694 	new_nsid = peernet2id_alloc(dev_net(dev), net);
8695 	/* If there is an ifindex conflict assign a new one */
8696 	if (__dev_get_by_index(net, dev->ifindex))
8697 		new_ifindex = dev_new_index(net);
8698 	else
8699 		new_ifindex = dev->ifindex;
8700 
8701 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8702 			    new_ifindex);
8703 
8704 	/*
8705 	 *	Flush the unicast and multicast chains
8706 	 */
8707 	dev_uc_flush(dev);
8708 	dev_mc_flush(dev);
8709 
8710 	/* Send a netdev-removed uevent to the old namespace */
8711 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8712 	netdev_adjacent_del_links(dev);
8713 
8714 	/* Actually switch the network namespace */
8715 	dev_net_set(dev, net);
8716 	dev->ifindex = new_ifindex;
8717 
8718 	/* Send a netdev-add uevent to the new namespace */
8719 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8720 	netdev_adjacent_add_links(dev);
8721 
8722 	/* Fixup kobjects */
8723 	err = device_rename(&dev->dev, dev->name);
8724 	WARN_ON(err);
8725 
8726 	/* Add the device back in the hashes */
8727 	list_netdevice(dev);
8728 
8729 	/* Notify protocols, that a new device appeared. */
8730 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8731 
8732 	/*
8733 	 *	Prevent userspace races by waiting until the network
8734 	 *	device is fully setup before sending notifications.
8735 	 */
8736 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8737 
8738 	synchronize_net();
8739 	err = 0;
8740 out:
8741 	return err;
8742 }
8743 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8744 
8745 static int dev_cpu_dead(unsigned int oldcpu)
8746 {
8747 	struct sk_buff **list_skb;
8748 	struct sk_buff *skb;
8749 	unsigned int cpu;
8750 	struct softnet_data *sd, *oldsd, *remsd = NULL;
8751 
8752 	local_irq_disable();
8753 	cpu = smp_processor_id();
8754 	sd = &per_cpu(softnet_data, cpu);
8755 	oldsd = &per_cpu(softnet_data, oldcpu);
8756 
8757 	/* Find end of our completion_queue. */
8758 	list_skb = &sd->completion_queue;
8759 	while (*list_skb)
8760 		list_skb = &(*list_skb)->next;
8761 	/* Append completion queue from offline CPU. */
8762 	*list_skb = oldsd->completion_queue;
8763 	oldsd->completion_queue = NULL;
8764 
8765 	/* Append output queue from offline CPU. */
8766 	if (oldsd->output_queue) {
8767 		*sd->output_queue_tailp = oldsd->output_queue;
8768 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8769 		oldsd->output_queue = NULL;
8770 		oldsd->output_queue_tailp = &oldsd->output_queue;
8771 	}
8772 	/* Append NAPI poll list from offline CPU, with one exception :
8773 	 * process_backlog() must be called by cpu owning percpu backlog.
8774 	 * We properly handle process_queue & input_pkt_queue later.
8775 	 */
8776 	while (!list_empty(&oldsd->poll_list)) {
8777 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8778 							    struct napi_struct,
8779 							    poll_list);
8780 
8781 		list_del_init(&napi->poll_list);
8782 		if (napi->poll == process_backlog)
8783 			napi->state = 0;
8784 		else
8785 			____napi_schedule(sd, napi);
8786 	}
8787 
8788 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8789 	local_irq_enable();
8790 
8791 #ifdef CONFIG_RPS
8792 	remsd = oldsd->rps_ipi_list;
8793 	oldsd->rps_ipi_list = NULL;
8794 #endif
8795 	/* send out pending IPI's on offline CPU */
8796 	net_rps_send_ipi(remsd);
8797 
8798 	/* Process offline CPU's input_pkt_queue */
8799 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8800 		netif_rx_ni(skb);
8801 		input_queue_head_incr(oldsd);
8802 	}
8803 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8804 		netif_rx_ni(skb);
8805 		input_queue_head_incr(oldsd);
8806 	}
8807 
8808 	return 0;
8809 }
8810 
8811 /**
8812  *	netdev_increment_features - increment feature set by one
8813  *	@all: current feature set
8814  *	@one: new feature set
8815  *	@mask: mask feature set
8816  *
8817  *	Computes a new feature set after adding a device with feature set
8818  *	@one to the master device with current feature set @all.  Will not
8819  *	enable anything that is off in @mask. Returns the new feature set.
8820  */
8821 netdev_features_t netdev_increment_features(netdev_features_t all,
8822 	netdev_features_t one, netdev_features_t mask)
8823 {
8824 	if (mask & NETIF_F_HW_CSUM)
8825 		mask |= NETIF_F_CSUM_MASK;
8826 	mask |= NETIF_F_VLAN_CHALLENGED;
8827 
8828 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8829 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8830 
8831 	/* If one device supports hw checksumming, set for all. */
8832 	if (all & NETIF_F_HW_CSUM)
8833 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8834 
8835 	return all;
8836 }
8837 EXPORT_SYMBOL(netdev_increment_features);
8838 
8839 static struct hlist_head * __net_init netdev_create_hash(void)
8840 {
8841 	int i;
8842 	struct hlist_head *hash;
8843 
8844 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8845 	if (hash != NULL)
8846 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8847 			INIT_HLIST_HEAD(&hash[i]);
8848 
8849 	return hash;
8850 }
8851 
8852 /* Initialize per network namespace state */
8853 static int __net_init netdev_init(struct net *net)
8854 {
8855 	if (net != &init_net)
8856 		INIT_LIST_HEAD(&net->dev_base_head);
8857 
8858 	net->dev_name_head = netdev_create_hash();
8859 	if (net->dev_name_head == NULL)
8860 		goto err_name;
8861 
8862 	net->dev_index_head = netdev_create_hash();
8863 	if (net->dev_index_head == NULL)
8864 		goto err_idx;
8865 
8866 	return 0;
8867 
8868 err_idx:
8869 	kfree(net->dev_name_head);
8870 err_name:
8871 	return -ENOMEM;
8872 }
8873 
8874 /**
8875  *	netdev_drivername - network driver for the device
8876  *	@dev: network device
8877  *
8878  *	Determine network driver for device.
8879  */
8880 const char *netdev_drivername(const struct net_device *dev)
8881 {
8882 	const struct device_driver *driver;
8883 	const struct device *parent;
8884 	const char *empty = "";
8885 
8886 	parent = dev->dev.parent;
8887 	if (!parent)
8888 		return empty;
8889 
8890 	driver = parent->driver;
8891 	if (driver && driver->name)
8892 		return driver->name;
8893 	return empty;
8894 }
8895 
8896 static void __netdev_printk(const char *level, const struct net_device *dev,
8897 			    struct va_format *vaf)
8898 {
8899 	if (dev && dev->dev.parent) {
8900 		dev_printk_emit(level[1] - '0',
8901 				dev->dev.parent,
8902 				"%s %s %s%s: %pV",
8903 				dev_driver_string(dev->dev.parent),
8904 				dev_name(dev->dev.parent),
8905 				netdev_name(dev), netdev_reg_state(dev),
8906 				vaf);
8907 	} else if (dev) {
8908 		printk("%s%s%s: %pV",
8909 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8910 	} else {
8911 		printk("%s(NULL net_device): %pV", level, vaf);
8912 	}
8913 }
8914 
8915 void netdev_printk(const char *level, const struct net_device *dev,
8916 		   const char *format, ...)
8917 {
8918 	struct va_format vaf;
8919 	va_list args;
8920 
8921 	va_start(args, format);
8922 
8923 	vaf.fmt = format;
8924 	vaf.va = &args;
8925 
8926 	__netdev_printk(level, dev, &vaf);
8927 
8928 	va_end(args);
8929 }
8930 EXPORT_SYMBOL(netdev_printk);
8931 
8932 #define define_netdev_printk_level(func, level)			\
8933 void func(const struct net_device *dev, const char *fmt, ...)	\
8934 {								\
8935 	struct va_format vaf;					\
8936 	va_list args;						\
8937 								\
8938 	va_start(args, fmt);					\
8939 								\
8940 	vaf.fmt = fmt;						\
8941 	vaf.va = &args;						\
8942 								\
8943 	__netdev_printk(level, dev, &vaf);			\
8944 								\
8945 	va_end(args);						\
8946 }								\
8947 EXPORT_SYMBOL(func);
8948 
8949 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8950 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8951 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8952 define_netdev_printk_level(netdev_err, KERN_ERR);
8953 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8954 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8955 define_netdev_printk_level(netdev_info, KERN_INFO);
8956 
8957 static void __net_exit netdev_exit(struct net *net)
8958 {
8959 	kfree(net->dev_name_head);
8960 	kfree(net->dev_index_head);
8961 	if (net != &init_net)
8962 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8963 }
8964 
8965 static struct pernet_operations __net_initdata netdev_net_ops = {
8966 	.init = netdev_init,
8967 	.exit = netdev_exit,
8968 };
8969 
8970 static void __net_exit default_device_exit(struct net *net)
8971 {
8972 	struct net_device *dev, *aux;
8973 	/*
8974 	 * Push all migratable network devices back to the
8975 	 * initial network namespace
8976 	 */
8977 	rtnl_lock();
8978 	for_each_netdev_safe(net, dev, aux) {
8979 		int err;
8980 		char fb_name[IFNAMSIZ];
8981 
8982 		/* Ignore unmoveable devices (i.e. loopback) */
8983 		if (dev->features & NETIF_F_NETNS_LOCAL)
8984 			continue;
8985 
8986 		/* Leave virtual devices for the generic cleanup */
8987 		if (dev->rtnl_link_ops)
8988 			continue;
8989 
8990 		/* Push remaining network devices to init_net */
8991 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8992 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8993 		if (err) {
8994 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8995 				 __func__, dev->name, err);
8996 			BUG();
8997 		}
8998 	}
8999 	rtnl_unlock();
9000 }
9001 
9002 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9003 {
9004 	/* Return with the rtnl_lock held when there are no network
9005 	 * devices unregistering in any network namespace in net_list.
9006 	 */
9007 	struct net *net;
9008 	bool unregistering;
9009 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
9010 
9011 	add_wait_queue(&netdev_unregistering_wq, &wait);
9012 	for (;;) {
9013 		unregistering = false;
9014 		rtnl_lock();
9015 		list_for_each_entry(net, net_list, exit_list) {
9016 			if (net->dev_unreg_count > 0) {
9017 				unregistering = true;
9018 				break;
9019 			}
9020 		}
9021 		if (!unregistering)
9022 			break;
9023 		__rtnl_unlock();
9024 
9025 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9026 	}
9027 	remove_wait_queue(&netdev_unregistering_wq, &wait);
9028 }
9029 
9030 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9031 {
9032 	/* At exit all network devices most be removed from a network
9033 	 * namespace.  Do this in the reverse order of registration.
9034 	 * Do this across as many network namespaces as possible to
9035 	 * improve batching efficiency.
9036 	 */
9037 	struct net_device *dev;
9038 	struct net *net;
9039 	LIST_HEAD(dev_kill_list);
9040 
9041 	/* To prevent network device cleanup code from dereferencing
9042 	 * loopback devices or network devices that have been freed
9043 	 * wait here for all pending unregistrations to complete,
9044 	 * before unregistring the loopback device and allowing the
9045 	 * network namespace be freed.
9046 	 *
9047 	 * The netdev todo list containing all network devices
9048 	 * unregistrations that happen in default_device_exit_batch
9049 	 * will run in the rtnl_unlock() at the end of
9050 	 * default_device_exit_batch.
9051 	 */
9052 	rtnl_lock_unregistering(net_list);
9053 	list_for_each_entry(net, net_list, exit_list) {
9054 		for_each_netdev_reverse(net, dev) {
9055 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9056 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9057 			else
9058 				unregister_netdevice_queue(dev, &dev_kill_list);
9059 		}
9060 	}
9061 	unregister_netdevice_many(&dev_kill_list);
9062 	rtnl_unlock();
9063 }
9064 
9065 static struct pernet_operations __net_initdata default_device_ops = {
9066 	.exit = default_device_exit,
9067 	.exit_batch = default_device_exit_batch,
9068 };
9069 
9070 /*
9071  *	Initialize the DEV module. At boot time this walks the device list and
9072  *	unhooks any devices that fail to initialise (normally hardware not
9073  *	present) and leaves us with a valid list of present and active devices.
9074  *
9075  */
9076 
9077 /*
9078  *       This is called single threaded during boot, so no need
9079  *       to take the rtnl semaphore.
9080  */
9081 static int __init net_dev_init(void)
9082 {
9083 	int i, rc = -ENOMEM;
9084 
9085 	BUG_ON(!dev_boot_phase);
9086 
9087 	if (dev_proc_init())
9088 		goto out;
9089 
9090 	if (netdev_kobject_init())
9091 		goto out;
9092 
9093 	INIT_LIST_HEAD(&ptype_all);
9094 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9095 		INIT_LIST_HEAD(&ptype_base[i]);
9096 
9097 	INIT_LIST_HEAD(&offload_base);
9098 
9099 	if (register_pernet_subsys(&netdev_net_ops))
9100 		goto out;
9101 
9102 	/*
9103 	 *	Initialise the packet receive queues.
9104 	 */
9105 
9106 	for_each_possible_cpu(i) {
9107 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9108 		struct softnet_data *sd = &per_cpu(softnet_data, i);
9109 
9110 		INIT_WORK(flush, flush_backlog);
9111 
9112 		skb_queue_head_init(&sd->input_pkt_queue);
9113 		skb_queue_head_init(&sd->process_queue);
9114 #ifdef CONFIG_XFRM_OFFLOAD
9115 		skb_queue_head_init(&sd->xfrm_backlog);
9116 #endif
9117 		INIT_LIST_HEAD(&sd->poll_list);
9118 		sd->output_queue_tailp = &sd->output_queue;
9119 #ifdef CONFIG_RPS
9120 		sd->csd.func = rps_trigger_softirq;
9121 		sd->csd.info = sd;
9122 		sd->cpu = i;
9123 #endif
9124 
9125 		sd->backlog.poll = process_backlog;
9126 		sd->backlog.weight = weight_p;
9127 	}
9128 
9129 	dev_boot_phase = 0;
9130 
9131 	/* The loopback device is special if any other network devices
9132 	 * is present in a network namespace the loopback device must
9133 	 * be present. Since we now dynamically allocate and free the
9134 	 * loopback device ensure this invariant is maintained by
9135 	 * keeping the loopback device as the first device on the
9136 	 * list of network devices.  Ensuring the loopback devices
9137 	 * is the first device that appears and the last network device
9138 	 * that disappears.
9139 	 */
9140 	if (register_pernet_device(&loopback_net_ops))
9141 		goto out;
9142 
9143 	if (register_pernet_device(&default_device_ops))
9144 		goto out;
9145 
9146 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9147 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9148 
9149 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9150 				       NULL, dev_cpu_dead);
9151 	WARN_ON(rc < 0);
9152 	rc = 0;
9153 out:
9154 	return rc;
9155 }
9156 
9157 subsys_initcall(net_dev_init);
9158