xref: /openbmc/linux/net/core/dev.c (revision d23015c1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145 
146 #include "net-sysfs.h"
147 
148 #define MAX_GRO_SKBS 8
149 #define MAX_NEST_DEV 8
150 
151 /* This should be increased if a protocol with a bigger head is added. */
152 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153 
154 static DEFINE_SPINLOCK(ptype_lock);
155 static DEFINE_SPINLOCK(offload_lock);
156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157 struct list_head ptype_all __read_mostly;	/* Taps */
158 static struct list_head offload_base __read_mostly;
159 
160 static int netif_rx_internal(struct sk_buff *skb);
161 static int call_netdevice_notifiers_info(unsigned long val,
162 					 struct netdev_notifier_info *info);
163 static int call_netdevice_notifiers_extack(unsigned long val,
164 					   struct net_device *dev,
165 					   struct netlink_ext_ack *extack);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167 
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189 
190 static DEFINE_MUTEX(ifalias_mutex);
191 
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194 
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197 
198 static seqcount_t devnet_rename_seq;
199 
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202 	while (++net->dev_base_seq == 0)
203 		;
204 }
205 
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209 
210 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212 
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217 
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 	spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224 
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228 	spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231 
232 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
233 						       const char *name)
234 {
235 	struct netdev_name_node *name_node;
236 
237 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
238 	if (!name_node)
239 		return NULL;
240 	INIT_HLIST_NODE(&name_node->hlist);
241 	name_node->dev = dev;
242 	name_node->name = name;
243 	return name_node;
244 }
245 
246 static struct netdev_name_node *
247 netdev_name_node_head_alloc(struct net_device *dev)
248 {
249 	struct netdev_name_node *name_node;
250 
251 	name_node = netdev_name_node_alloc(dev, dev->name);
252 	if (!name_node)
253 		return NULL;
254 	INIT_LIST_HEAD(&name_node->list);
255 	return name_node;
256 }
257 
258 static void netdev_name_node_free(struct netdev_name_node *name_node)
259 {
260 	kfree(name_node);
261 }
262 
263 static void netdev_name_node_add(struct net *net,
264 				 struct netdev_name_node *name_node)
265 {
266 	hlist_add_head_rcu(&name_node->hlist,
267 			   dev_name_hash(net, name_node->name));
268 }
269 
270 static void netdev_name_node_del(struct netdev_name_node *name_node)
271 {
272 	hlist_del_rcu(&name_node->hlist);
273 }
274 
275 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
276 							const char *name)
277 {
278 	struct hlist_head *head = dev_name_hash(net, name);
279 	struct netdev_name_node *name_node;
280 
281 	hlist_for_each_entry(name_node, head, hlist)
282 		if (!strcmp(name_node->name, name))
283 			return name_node;
284 	return NULL;
285 }
286 
287 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
288 							    const char *name)
289 {
290 	struct hlist_head *head = dev_name_hash(net, name);
291 	struct netdev_name_node *name_node;
292 
293 	hlist_for_each_entry_rcu(name_node, head, hlist)
294 		if (!strcmp(name_node->name, name))
295 			return name_node;
296 	return NULL;
297 }
298 
299 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
300 {
301 	struct netdev_name_node *name_node;
302 	struct net *net = dev_net(dev);
303 
304 	name_node = netdev_name_node_lookup(net, name);
305 	if (name_node)
306 		return -EEXIST;
307 	name_node = netdev_name_node_alloc(dev, name);
308 	if (!name_node)
309 		return -ENOMEM;
310 	netdev_name_node_add(net, name_node);
311 	/* The node that holds dev->name acts as a head of per-device list. */
312 	list_add_tail(&name_node->list, &dev->name_node->list);
313 
314 	return 0;
315 }
316 EXPORT_SYMBOL(netdev_name_node_alt_create);
317 
318 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
319 {
320 	list_del(&name_node->list);
321 	netdev_name_node_del(name_node);
322 	kfree(name_node->name);
323 	netdev_name_node_free(name_node);
324 }
325 
326 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
327 {
328 	struct netdev_name_node *name_node;
329 	struct net *net = dev_net(dev);
330 
331 	name_node = netdev_name_node_lookup(net, name);
332 	if (!name_node)
333 		return -ENOENT;
334 	__netdev_name_node_alt_destroy(name_node);
335 
336 	return 0;
337 }
338 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
339 
340 static void netdev_name_node_alt_flush(struct net_device *dev)
341 {
342 	struct netdev_name_node *name_node, *tmp;
343 
344 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
345 		__netdev_name_node_alt_destroy(name_node);
346 }
347 
348 /* Device list insertion */
349 static void list_netdevice(struct net_device *dev)
350 {
351 	struct net *net = dev_net(dev);
352 
353 	ASSERT_RTNL();
354 
355 	write_lock_bh(&dev_base_lock);
356 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
357 	netdev_name_node_add(net, dev->name_node);
358 	hlist_add_head_rcu(&dev->index_hlist,
359 			   dev_index_hash(net, dev->ifindex));
360 	write_unlock_bh(&dev_base_lock);
361 
362 	dev_base_seq_inc(net);
363 }
364 
365 /* Device list removal
366  * caller must respect a RCU grace period before freeing/reusing dev
367  */
368 static void unlist_netdevice(struct net_device *dev)
369 {
370 	ASSERT_RTNL();
371 
372 	/* Unlink dev from the device chain */
373 	write_lock_bh(&dev_base_lock);
374 	list_del_rcu(&dev->dev_list);
375 	netdev_name_node_del(dev->name_node);
376 	hlist_del_rcu(&dev->index_hlist);
377 	write_unlock_bh(&dev_base_lock);
378 
379 	dev_base_seq_inc(dev_net(dev));
380 }
381 
382 /*
383  *	Our notifier list
384  */
385 
386 static RAW_NOTIFIER_HEAD(netdev_chain);
387 
388 /*
389  *	Device drivers call our routines to queue packets here. We empty the
390  *	queue in the local softnet handler.
391  */
392 
393 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
394 EXPORT_PER_CPU_SYMBOL(softnet_data);
395 
396 /*******************************************************************************
397  *
398  *		Protocol management and registration routines
399  *
400  *******************************************************************************/
401 
402 
403 /*
404  *	Add a protocol ID to the list. Now that the input handler is
405  *	smarter we can dispense with all the messy stuff that used to be
406  *	here.
407  *
408  *	BEWARE!!! Protocol handlers, mangling input packets,
409  *	MUST BE last in hash buckets and checking protocol handlers
410  *	MUST start from promiscuous ptype_all chain in net_bh.
411  *	It is true now, do not change it.
412  *	Explanation follows: if protocol handler, mangling packet, will
413  *	be the first on list, it is not able to sense, that packet
414  *	is cloned and should be copied-on-write, so that it will
415  *	change it and subsequent readers will get broken packet.
416  *							--ANK (980803)
417  */
418 
419 static inline struct list_head *ptype_head(const struct packet_type *pt)
420 {
421 	if (pt->type == htons(ETH_P_ALL))
422 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
423 	else
424 		return pt->dev ? &pt->dev->ptype_specific :
425 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
426 }
427 
428 /**
429  *	dev_add_pack - add packet handler
430  *	@pt: packet type declaration
431  *
432  *	Add a protocol handler to the networking stack. The passed &packet_type
433  *	is linked into kernel lists and may not be freed until it has been
434  *	removed from the kernel lists.
435  *
436  *	This call does not sleep therefore it can not
437  *	guarantee all CPU's that are in middle of receiving packets
438  *	will see the new packet type (until the next received packet).
439  */
440 
441 void dev_add_pack(struct packet_type *pt)
442 {
443 	struct list_head *head = ptype_head(pt);
444 
445 	spin_lock(&ptype_lock);
446 	list_add_rcu(&pt->list, head);
447 	spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(dev_add_pack);
450 
451 /**
452  *	__dev_remove_pack	 - remove packet handler
453  *	@pt: packet type declaration
454  *
455  *	Remove a protocol handler that was previously added to the kernel
456  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *	from the kernel lists and can be freed or reused once this function
458  *	returns.
459  *
460  *      The packet type might still be in use by receivers
461  *	and must not be freed until after all the CPU's have gone
462  *	through a quiescent state.
463  */
464 void __dev_remove_pack(struct packet_type *pt)
465 {
466 	struct list_head *head = ptype_head(pt);
467 	struct packet_type *pt1;
468 
469 	spin_lock(&ptype_lock);
470 
471 	list_for_each_entry(pt1, head, list) {
472 		if (pt == pt1) {
473 			list_del_rcu(&pt->list);
474 			goto out;
475 		}
476 	}
477 
478 	pr_warn("dev_remove_pack: %p not found\n", pt);
479 out:
480 	spin_unlock(&ptype_lock);
481 }
482 EXPORT_SYMBOL(__dev_remove_pack);
483 
484 /**
485  *	dev_remove_pack	 - remove packet handler
486  *	@pt: packet type declaration
487  *
488  *	Remove a protocol handler that was previously added to the kernel
489  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
490  *	from the kernel lists and can be freed or reused once this function
491  *	returns.
492  *
493  *	This call sleeps to guarantee that no CPU is looking at the packet
494  *	type after return.
495  */
496 void dev_remove_pack(struct packet_type *pt)
497 {
498 	__dev_remove_pack(pt);
499 
500 	synchronize_net();
501 }
502 EXPORT_SYMBOL(dev_remove_pack);
503 
504 
505 /**
506  *	dev_add_offload - register offload handlers
507  *	@po: protocol offload declaration
508  *
509  *	Add protocol offload handlers to the networking stack. The passed
510  *	&proto_offload is linked into kernel lists and may not be freed until
511  *	it has been removed from the kernel lists.
512  *
513  *	This call does not sleep therefore it can not
514  *	guarantee all CPU's that are in middle of receiving packets
515  *	will see the new offload handlers (until the next received packet).
516  */
517 void dev_add_offload(struct packet_offload *po)
518 {
519 	struct packet_offload *elem;
520 
521 	spin_lock(&offload_lock);
522 	list_for_each_entry(elem, &offload_base, list) {
523 		if (po->priority < elem->priority)
524 			break;
525 	}
526 	list_add_rcu(&po->list, elem->list.prev);
527 	spin_unlock(&offload_lock);
528 }
529 EXPORT_SYMBOL(dev_add_offload);
530 
531 /**
532  *	__dev_remove_offload	 - remove offload handler
533  *	@po: packet offload declaration
534  *
535  *	Remove a protocol offload handler that was previously added to the
536  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
537  *	is removed from the kernel lists and can be freed or reused once this
538  *	function returns.
539  *
540  *      The packet type might still be in use by receivers
541  *	and must not be freed until after all the CPU's have gone
542  *	through a quiescent state.
543  */
544 static void __dev_remove_offload(struct packet_offload *po)
545 {
546 	struct list_head *head = &offload_base;
547 	struct packet_offload *po1;
548 
549 	spin_lock(&offload_lock);
550 
551 	list_for_each_entry(po1, head, list) {
552 		if (po == po1) {
553 			list_del_rcu(&po->list);
554 			goto out;
555 		}
556 	}
557 
558 	pr_warn("dev_remove_offload: %p not found\n", po);
559 out:
560 	spin_unlock(&offload_lock);
561 }
562 
563 /**
564  *	dev_remove_offload	 - remove packet offload handler
565  *	@po: packet offload declaration
566  *
567  *	Remove a packet offload handler that was previously added to the kernel
568  *	offload handlers by dev_add_offload(). The passed &offload_type is
569  *	removed from the kernel lists and can be freed or reused once this
570  *	function returns.
571  *
572  *	This call sleeps to guarantee that no CPU is looking at the packet
573  *	type after return.
574  */
575 void dev_remove_offload(struct packet_offload *po)
576 {
577 	__dev_remove_offload(po);
578 
579 	synchronize_net();
580 }
581 EXPORT_SYMBOL(dev_remove_offload);
582 
583 /******************************************************************************
584  *
585  *		      Device Boot-time Settings Routines
586  *
587  ******************************************************************************/
588 
589 /* Boot time configuration table */
590 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
591 
592 /**
593  *	netdev_boot_setup_add	- add new setup entry
594  *	@name: name of the device
595  *	@map: configured settings for the device
596  *
597  *	Adds new setup entry to the dev_boot_setup list.  The function
598  *	returns 0 on error and 1 on success.  This is a generic routine to
599  *	all netdevices.
600  */
601 static int netdev_boot_setup_add(char *name, struct ifmap *map)
602 {
603 	struct netdev_boot_setup *s;
604 	int i;
605 
606 	s = dev_boot_setup;
607 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
608 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
609 			memset(s[i].name, 0, sizeof(s[i].name));
610 			strlcpy(s[i].name, name, IFNAMSIZ);
611 			memcpy(&s[i].map, map, sizeof(s[i].map));
612 			break;
613 		}
614 	}
615 
616 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
617 }
618 
619 /**
620  * netdev_boot_setup_check	- check boot time settings
621  * @dev: the netdevice
622  *
623  * Check boot time settings for the device.
624  * The found settings are set for the device to be used
625  * later in the device probing.
626  * Returns 0 if no settings found, 1 if they are.
627  */
628 int netdev_boot_setup_check(struct net_device *dev)
629 {
630 	struct netdev_boot_setup *s = dev_boot_setup;
631 	int i;
632 
633 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
634 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
635 		    !strcmp(dev->name, s[i].name)) {
636 			dev->irq = s[i].map.irq;
637 			dev->base_addr = s[i].map.base_addr;
638 			dev->mem_start = s[i].map.mem_start;
639 			dev->mem_end = s[i].map.mem_end;
640 			return 1;
641 		}
642 	}
643 	return 0;
644 }
645 EXPORT_SYMBOL(netdev_boot_setup_check);
646 
647 
648 /**
649  * netdev_boot_base	- get address from boot time settings
650  * @prefix: prefix for network device
651  * @unit: id for network device
652  *
653  * Check boot time settings for the base address of device.
654  * The found settings are set for the device to be used
655  * later in the device probing.
656  * Returns 0 if no settings found.
657  */
658 unsigned long netdev_boot_base(const char *prefix, int unit)
659 {
660 	const struct netdev_boot_setup *s = dev_boot_setup;
661 	char name[IFNAMSIZ];
662 	int i;
663 
664 	sprintf(name, "%s%d", prefix, unit);
665 
666 	/*
667 	 * If device already registered then return base of 1
668 	 * to indicate not to probe for this interface
669 	 */
670 	if (__dev_get_by_name(&init_net, name))
671 		return 1;
672 
673 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
674 		if (!strcmp(name, s[i].name))
675 			return s[i].map.base_addr;
676 	return 0;
677 }
678 
679 /*
680  * Saves at boot time configured settings for any netdevice.
681  */
682 int __init netdev_boot_setup(char *str)
683 {
684 	int ints[5];
685 	struct ifmap map;
686 
687 	str = get_options(str, ARRAY_SIZE(ints), ints);
688 	if (!str || !*str)
689 		return 0;
690 
691 	/* Save settings */
692 	memset(&map, 0, sizeof(map));
693 	if (ints[0] > 0)
694 		map.irq = ints[1];
695 	if (ints[0] > 1)
696 		map.base_addr = ints[2];
697 	if (ints[0] > 2)
698 		map.mem_start = ints[3];
699 	if (ints[0] > 3)
700 		map.mem_end = ints[4];
701 
702 	/* Add new entry to the list */
703 	return netdev_boot_setup_add(str, &map);
704 }
705 
706 __setup("netdev=", netdev_boot_setup);
707 
708 /*******************************************************************************
709  *
710  *			    Device Interface Subroutines
711  *
712  *******************************************************************************/
713 
714 /**
715  *	dev_get_iflink	- get 'iflink' value of a interface
716  *	@dev: targeted interface
717  *
718  *	Indicates the ifindex the interface is linked to.
719  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
720  */
721 
722 int dev_get_iflink(const struct net_device *dev)
723 {
724 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
725 		return dev->netdev_ops->ndo_get_iflink(dev);
726 
727 	return dev->ifindex;
728 }
729 EXPORT_SYMBOL(dev_get_iflink);
730 
731 /**
732  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
733  *	@dev: targeted interface
734  *	@skb: The packet.
735  *
736  *	For better visibility of tunnel traffic OVS needs to retrieve
737  *	egress tunnel information for a packet. Following API allows
738  *	user to get this info.
739  */
740 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
741 {
742 	struct ip_tunnel_info *info;
743 
744 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
745 		return -EINVAL;
746 
747 	info = skb_tunnel_info_unclone(skb);
748 	if (!info)
749 		return -ENOMEM;
750 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
751 		return -EINVAL;
752 
753 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
754 }
755 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
756 
757 /**
758  *	__dev_get_by_name	- find a device by its name
759  *	@net: the applicable net namespace
760  *	@name: name to find
761  *
762  *	Find an interface by name. Must be called under RTNL semaphore
763  *	or @dev_base_lock. If the name is found a pointer to the device
764  *	is returned. If the name is not found then %NULL is returned. The
765  *	reference counters are not incremented so the caller must be
766  *	careful with locks.
767  */
768 
769 struct net_device *__dev_get_by_name(struct net *net, const char *name)
770 {
771 	struct netdev_name_node *node_name;
772 
773 	node_name = netdev_name_node_lookup(net, name);
774 	return node_name ? node_name->dev : NULL;
775 }
776 EXPORT_SYMBOL(__dev_get_by_name);
777 
778 /**
779  * dev_get_by_name_rcu	- find a device by its name
780  * @net: the applicable net namespace
781  * @name: name to find
782  *
783  * Find an interface by name.
784  * If the name is found a pointer to the device is returned.
785  * If the name is not found then %NULL is returned.
786  * The reference counters are not incremented so the caller must be
787  * careful with locks. The caller must hold RCU lock.
788  */
789 
790 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
791 {
792 	struct netdev_name_node *node_name;
793 
794 	node_name = netdev_name_node_lookup_rcu(net, name);
795 	return node_name ? node_name->dev : NULL;
796 }
797 EXPORT_SYMBOL(dev_get_by_name_rcu);
798 
799 /**
800  *	dev_get_by_name		- find a device by its name
801  *	@net: the applicable net namespace
802  *	@name: name to find
803  *
804  *	Find an interface by name. This can be called from any
805  *	context and does its own locking. The returned handle has
806  *	the usage count incremented and the caller must use dev_put() to
807  *	release it when it is no longer needed. %NULL is returned if no
808  *	matching device is found.
809  */
810 
811 struct net_device *dev_get_by_name(struct net *net, const char *name)
812 {
813 	struct net_device *dev;
814 
815 	rcu_read_lock();
816 	dev = dev_get_by_name_rcu(net, name);
817 	if (dev)
818 		dev_hold(dev);
819 	rcu_read_unlock();
820 	return dev;
821 }
822 EXPORT_SYMBOL(dev_get_by_name);
823 
824 /**
825  *	__dev_get_by_index - find a device by its ifindex
826  *	@net: the applicable net namespace
827  *	@ifindex: index of device
828  *
829  *	Search for an interface by index. Returns %NULL if the device
830  *	is not found or a pointer to the device. The device has not
831  *	had its reference counter increased so the caller must be careful
832  *	about locking. The caller must hold either the RTNL semaphore
833  *	or @dev_base_lock.
834  */
835 
836 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
837 {
838 	struct net_device *dev;
839 	struct hlist_head *head = dev_index_hash(net, ifindex);
840 
841 	hlist_for_each_entry(dev, head, index_hlist)
842 		if (dev->ifindex == ifindex)
843 			return dev;
844 
845 	return NULL;
846 }
847 EXPORT_SYMBOL(__dev_get_by_index);
848 
849 /**
850  *	dev_get_by_index_rcu - find a device by its ifindex
851  *	@net: the applicable net namespace
852  *	@ifindex: index of device
853  *
854  *	Search for an interface by index. Returns %NULL if the device
855  *	is not found or a pointer to the device. The device has not
856  *	had its reference counter increased so the caller must be careful
857  *	about locking. The caller must hold RCU lock.
858  */
859 
860 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
861 {
862 	struct net_device *dev;
863 	struct hlist_head *head = dev_index_hash(net, ifindex);
864 
865 	hlist_for_each_entry_rcu(dev, head, index_hlist)
866 		if (dev->ifindex == ifindex)
867 			return dev;
868 
869 	return NULL;
870 }
871 EXPORT_SYMBOL(dev_get_by_index_rcu);
872 
873 
874 /**
875  *	dev_get_by_index - find a device by its ifindex
876  *	@net: the applicable net namespace
877  *	@ifindex: index of device
878  *
879  *	Search for an interface by index. Returns NULL if the device
880  *	is not found or a pointer to the device. The device returned has
881  *	had a reference added and the pointer is safe until the user calls
882  *	dev_put to indicate they have finished with it.
883  */
884 
885 struct net_device *dev_get_by_index(struct net *net, int ifindex)
886 {
887 	struct net_device *dev;
888 
889 	rcu_read_lock();
890 	dev = dev_get_by_index_rcu(net, ifindex);
891 	if (dev)
892 		dev_hold(dev);
893 	rcu_read_unlock();
894 	return dev;
895 }
896 EXPORT_SYMBOL(dev_get_by_index);
897 
898 /**
899  *	dev_get_by_napi_id - find a device by napi_id
900  *	@napi_id: ID of the NAPI struct
901  *
902  *	Search for an interface by NAPI ID. Returns %NULL if the device
903  *	is not found or a pointer to the device. The device has not had
904  *	its reference counter increased so the caller must be careful
905  *	about locking. The caller must hold RCU lock.
906  */
907 
908 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
909 {
910 	struct napi_struct *napi;
911 
912 	WARN_ON_ONCE(!rcu_read_lock_held());
913 
914 	if (napi_id < MIN_NAPI_ID)
915 		return NULL;
916 
917 	napi = napi_by_id(napi_id);
918 
919 	return napi ? napi->dev : NULL;
920 }
921 EXPORT_SYMBOL(dev_get_by_napi_id);
922 
923 /**
924  *	netdev_get_name - get a netdevice name, knowing its ifindex.
925  *	@net: network namespace
926  *	@name: a pointer to the buffer where the name will be stored.
927  *	@ifindex: the ifindex of the interface to get the name from.
928  *
929  *	The use of raw_seqcount_begin() and cond_resched() before
930  *	retrying is required as we want to give the writers a chance
931  *	to complete when CONFIG_PREEMPT is not set.
932  */
933 int netdev_get_name(struct net *net, char *name, int ifindex)
934 {
935 	struct net_device *dev;
936 	unsigned int seq;
937 
938 retry:
939 	seq = raw_seqcount_begin(&devnet_rename_seq);
940 	rcu_read_lock();
941 	dev = dev_get_by_index_rcu(net, ifindex);
942 	if (!dev) {
943 		rcu_read_unlock();
944 		return -ENODEV;
945 	}
946 
947 	strcpy(name, dev->name);
948 	rcu_read_unlock();
949 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
950 		cond_resched();
951 		goto retry;
952 	}
953 
954 	return 0;
955 }
956 
957 /**
958  *	dev_getbyhwaddr_rcu - find a device by its hardware address
959  *	@net: the applicable net namespace
960  *	@type: media type of device
961  *	@ha: hardware address
962  *
963  *	Search for an interface by MAC address. Returns NULL if the device
964  *	is not found or a pointer to the device.
965  *	The caller must hold RCU or RTNL.
966  *	The returned device has not had its ref count increased
967  *	and the caller must therefore be careful about locking
968  *
969  */
970 
971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972 				       const char *ha)
973 {
974 	struct net_device *dev;
975 
976 	for_each_netdev_rcu(net, dev)
977 		if (dev->type == type &&
978 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
979 			return dev;
980 
981 	return NULL;
982 }
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
984 
985 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
986 {
987 	struct net_device *dev;
988 
989 	ASSERT_RTNL();
990 	for_each_netdev(net, dev)
991 		if (dev->type == type)
992 			return dev;
993 
994 	return NULL;
995 }
996 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
997 
998 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
999 {
1000 	struct net_device *dev, *ret = NULL;
1001 
1002 	rcu_read_lock();
1003 	for_each_netdev_rcu(net, dev)
1004 		if (dev->type == type) {
1005 			dev_hold(dev);
1006 			ret = dev;
1007 			break;
1008 		}
1009 	rcu_read_unlock();
1010 	return ret;
1011 }
1012 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1013 
1014 /**
1015  *	__dev_get_by_flags - find any device with given flags
1016  *	@net: the applicable net namespace
1017  *	@if_flags: IFF_* values
1018  *	@mask: bitmask of bits in if_flags to check
1019  *
1020  *	Search for any interface with the given flags. Returns NULL if a device
1021  *	is not found or a pointer to the device. Must be called inside
1022  *	rtnl_lock(), and result refcount is unchanged.
1023  */
1024 
1025 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1026 				      unsigned short mask)
1027 {
1028 	struct net_device *dev, *ret;
1029 
1030 	ASSERT_RTNL();
1031 
1032 	ret = NULL;
1033 	for_each_netdev(net, dev) {
1034 		if (((dev->flags ^ if_flags) & mask) == 0) {
1035 			ret = dev;
1036 			break;
1037 		}
1038 	}
1039 	return ret;
1040 }
1041 EXPORT_SYMBOL(__dev_get_by_flags);
1042 
1043 /**
1044  *	dev_valid_name - check if name is okay for network device
1045  *	@name: name string
1046  *
1047  *	Network device names need to be valid file names to
1048  *	to allow sysfs to work.  We also disallow any kind of
1049  *	whitespace.
1050  */
1051 bool dev_valid_name(const char *name)
1052 {
1053 	if (*name == '\0')
1054 		return false;
1055 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1056 		return false;
1057 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1058 		return false;
1059 
1060 	while (*name) {
1061 		if (*name == '/' || *name == ':' || isspace(*name))
1062 			return false;
1063 		name++;
1064 	}
1065 	return true;
1066 }
1067 EXPORT_SYMBOL(dev_valid_name);
1068 
1069 /**
1070  *	__dev_alloc_name - allocate a name for a device
1071  *	@net: network namespace to allocate the device name in
1072  *	@name: name format string
1073  *	@buf:  scratch buffer and result name string
1074  *
1075  *	Passed a format string - eg "lt%d" it will try and find a suitable
1076  *	id. It scans list of devices to build up a free map, then chooses
1077  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1078  *	while allocating the name and adding the device in order to avoid
1079  *	duplicates.
1080  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1081  *	Returns the number of the unit assigned or a negative errno code.
1082  */
1083 
1084 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1085 {
1086 	int i = 0;
1087 	const char *p;
1088 	const int max_netdevices = 8*PAGE_SIZE;
1089 	unsigned long *inuse;
1090 	struct net_device *d;
1091 
1092 	if (!dev_valid_name(name))
1093 		return -EINVAL;
1094 
1095 	p = strchr(name, '%');
1096 	if (p) {
1097 		/*
1098 		 * Verify the string as this thing may have come from
1099 		 * the user.  There must be either one "%d" and no other "%"
1100 		 * characters.
1101 		 */
1102 		if (p[1] != 'd' || strchr(p + 2, '%'))
1103 			return -EINVAL;
1104 
1105 		/* Use one page as a bit array of possible slots */
1106 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1107 		if (!inuse)
1108 			return -ENOMEM;
1109 
1110 		for_each_netdev(net, d) {
1111 			if (!sscanf(d->name, name, &i))
1112 				continue;
1113 			if (i < 0 || i >= max_netdevices)
1114 				continue;
1115 
1116 			/*  avoid cases where sscanf is not exact inverse of printf */
1117 			snprintf(buf, IFNAMSIZ, name, i);
1118 			if (!strncmp(buf, d->name, IFNAMSIZ))
1119 				set_bit(i, inuse);
1120 		}
1121 
1122 		i = find_first_zero_bit(inuse, max_netdevices);
1123 		free_page((unsigned long) inuse);
1124 	}
1125 
1126 	snprintf(buf, IFNAMSIZ, name, i);
1127 	if (!__dev_get_by_name(net, buf))
1128 		return i;
1129 
1130 	/* It is possible to run out of possible slots
1131 	 * when the name is long and there isn't enough space left
1132 	 * for the digits, or if all bits are used.
1133 	 */
1134 	return -ENFILE;
1135 }
1136 
1137 static int dev_alloc_name_ns(struct net *net,
1138 			     struct net_device *dev,
1139 			     const char *name)
1140 {
1141 	char buf[IFNAMSIZ];
1142 	int ret;
1143 
1144 	BUG_ON(!net);
1145 	ret = __dev_alloc_name(net, name, buf);
1146 	if (ret >= 0)
1147 		strlcpy(dev->name, buf, IFNAMSIZ);
1148 	return ret;
1149 }
1150 
1151 /**
1152  *	dev_alloc_name - allocate a name for a device
1153  *	@dev: device
1154  *	@name: name format string
1155  *
1156  *	Passed a format string - eg "lt%d" it will try and find a suitable
1157  *	id. It scans list of devices to build up a free map, then chooses
1158  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1159  *	while allocating the name and adding the device in order to avoid
1160  *	duplicates.
1161  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1162  *	Returns the number of the unit assigned or a negative errno code.
1163  */
1164 
1165 int dev_alloc_name(struct net_device *dev, const char *name)
1166 {
1167 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1168 }
1169 EXPORT_SYMBOL(dev_alloc_name);
1170 
1171 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1172 			      const char *name)
1173 {
1174 	BUG_ON(!net);
1175 
1176 	if (!dev_valid_name(name))
1177 		return -EINVAL;
1178 
1179 	if (strchr(name, '%'))
1180 		return dev_alloc_name_ns(net, dev, name);
1181 	else if (__dev_get_by_name(net, name))
1182 		return -EEXIST;
1183 	else if (dev->name != name)
1184 		strlcpy(dev->name, name, IFNAMSIZ);
1185 
1186 	return 0;
1187 }
1188 
1189 /**
1190  *	dev_change_name - change name of a device
1191  *	@dev: device
1192  *	@newname: name (or format string) must be at least IFNAMSIZ
1193  *
1194  *	Change name of a device, can pass format strings "eth%d".
1195  *	for wildcarding.
1196  */
1197 int dev_change_name(struct net_device *dev, const char *newname)
1198 {
1199 	unsigned char old_assign_type;
1200 	char oldname[IFNAMSIZ];
1201 	int err = 0;
1202 	int ret;
1203 	struct net *net;
1204 
1205 	ASSERT_RTNL();
1206 	BUG_ON(!dev_net(dev));
1207 
1208 	net = dev_net(dev);
1209 
1210 	/* Some auto-enslaved devices e.g. failover slaves are
1211 	 * special, as userspace might rename the device after
1212 	 * the interface had been brought up and running since
1213 	 * the point kernel initiated auto-enslavement. Allow
1214 	 * live name change even when these slave devices are
1215 	 * up and running.
1216 	 *
1217 	 * Typically, users of these auto-enslaving devices
1218 	 * don't actually care about slave name change, as
1219 	 * they are supposed to operate on master interface
1220 	 * directly.
1221 	 */
1222 	if (dev->flags & IFF_UP &&
1223 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1224 		return -EBUSY;
1225 
1226 	write_seqcount_begin(&devnet_rename_seq);
1227 
1228 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1229 		write_seqcount_end(&devnet_rename_seq);
1230 		return 0;
1231 	}
1232 
1233 	memcpy(oldname, dev->name, IFNAMSIZ);
1234 
1235 	err = dev_get_valid_name(net, dev, newname);
1236 	if (err < 0) {
1237 		write_seqcount_end(&devnet_rename_seq);
1238 		return err;
1239 	}
1240 
1241 	if (oldname[0] && !strchr(oldname, '%'))
1242 		netdev_info(dev, "renamed from %s\n", oldname);
1243 
1244 	old_assign_type = dev->name_assign_type;
1245 	dev->name_assign_type = NET_NAME_RENAMED;
1246 
1247 rollback:
1248 	ret = device_rename(&dev->dev, dev->name);
1249 	if (ret) {
1250 		memcpy(dev->name, oldname, IFNAMSIZ);
1251 		dev->name_assign_type = old_assign_type;
1252 		write_seqcount_end(&devnet_rename_seq);
1253 		return ret;
1254 	}
1255 
1256 	write_seqcount_end(&devnet_rename_seq);
1257 
1258 	netdev_adjacent_rename_links(dev, oldname);
1259 
1260 	write_lock_bh(&dev_base_lock);
1261 	netdev_name_node_del(dev->name_node);
1262 	write_unlock_bh(&dev_base_lock);
1263 
1264 	synchronize_rcu();
1265 
1266 	write_lock_bh(&dev_base_lock);
1267 	netdev_name_node_add(net, dev->name_node);
1268 	write_unlock_bh(&dev_base_lock);
1269 
1270 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1271 	ret = notifier_to_errno(ret);
1272 
1273 	if (ret) {
1274 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1275 		if (err >= 0) {
1276 			err = ret;
1277 			write_seqcount_begin(&devnet_rename_seq);
1278 			memcpy(dev->name, oldname, IFNAMSIZ);
1279 			memcpy(oldname, newname, IFNAMSIZ);
1280 			dev->name_assign_type = old_assign_type;
1281 			old_assign_type = NET_NAME_RENAMED;
1282 			goto rollback;
1283 		} else {
1284 			pr_err("%s: name change rollback failed: %d\n",
1285 			       dev->name, ret);
1286 		}
1287 	}
1288 
1289 	return err;
1290 }
1291 
1292 /**
1293  *	dev_set_alias - change ifalias of a device
1294  *	@dev: device
1295  *	@alias: name up to IFALIASZ
1296  *	@len: limit of bytes to copy from info
1297  *
1298  *	Set ifalias for a device,
1299  */
1300 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1301 {
1302 	struct dev_ifalias *new_alias = NULL;
1303 
1304 	if (len >= IFALIASZ)
1305 		return -EINVAL;
1306 
1307 	if (len) {
1308 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1309 		if (!new_alias)
1310 			return -ENOMEM;
1311 
1312 		memcpy(new_alias->ifalias, alias, len);
1313 		new_alias->ifalias[len] = 0;
1314 	}
1315 
1316 	mutex_lock(&ifalias_mutex);
1317 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1318 					mutex_is_locked(&ifalias_mutex));
1319 	mutex_unlock(&ifalias_mutex);
1320 
1321 	if (new_alias)
1322 		kfree_rcu(new_alias, rcuhead);
1323 
1324 	return len;
1325 }
1326 EXPORT_SYMBOL(dev_set_alias);
1327 
1328 /**
1329  *	dev_get_alias - get ifalias of a device
1330  *	@dev: device
1331  *	@name: buffer to store name of ifalias
1332  *	@len: size of buffer
1333  *
1334  *	get ifalias for a device.  Caller must make sure dev cannot go
1335  *	away,  e.g. rcu read lock or own a reference count to device.
1336  */
1337 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1338 {
1339 	const struct dev_ifalias *alias;
1340 	int ret = 0;
1341 
1342 	rcu_read_lock();
1343 	alias = rcu_dereference(dev->ifalias);
1344 	if (alias)
1345 		ret = snprintf(name, len, "%s", alias->ifalias);
1346 	rcu_read_unlock();
1347 
1348 	return ret;
1349 }
1350 
1351 /**
1352  *	netdev_features_change - device changes features
1353  *	@dev: device to cause notification
1354  *
1355  *	Called to indicate a device has changed features.
1356  */
1357 void netdev_features_change(struct net_device *dev)
1358 {
1359 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1360 }
1361 EXPORT_SYMBOL(netdev_features_change);
1362 
1363 /**
1364  *	netdev_state_change - device changes state
1365  *	@dev: device to cause notification
1366  *
1367  *	Called to indicate a device has changed state. This function calls
1368  *	the notifier chains for netdev_chain and sends a NEWLINK message
1369  *	to the routing socket.
1370  */
1371 void netdev_state_change(struct net_device *dev)
1372 {
1373 	if (dev->flags & IFF_UP) {
1374 		struct netdev_notifier_change_info change_info = {
1375 			.info.dev = dev,
1376 		};
1377 
1378 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1379 					      &change_info.info);
1380 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1381 	}
1382 }
1383 EXPORT_SYMBOL(netdev_state_change);
1384 
1385 /**
1386  * netdev_notify_peers - notify network peers about existence of @dev
1387  * @dev: network device
1388  *
1389  * Generate traffic such that interested network peers are aware of
1390  * @dev, such as by generating a gratuitous ARP. This may be used when
1391  * a device wants to inform the rest of the network about some sort of
1392  * reconfiguration such as a failover event or virtual machine
1393  * migration.
1394  */
1395 void netdev_notify_peers(struct net_device *dev)
1396 {
1397 	rtnl_lock();
1398 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1399 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1400 	rtnl_unlock();
1401 }
1402 EXPORT_SYMBOL(netdev_notify_peers);
1403 
1404 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1405 {
1406 	const struct net_device_ops *ops = dev->netdev_ops;
1407 	int ret;
1408 
1409 	ASSERT_RTNL();
1410 
1411 	if (!netif_device_present(dev))
1412 		return -ENODEV;
1413 
1414 	/* Block netpoll from trying to do any rx path servicing.
1415 	 * If we don't do this there is a chance ndo_poll_controller
1416 	 * or ndo_poll may be running while we open the device
1417 	 */
1418 	netpoll_poll_disable(dev);
1419 
1420 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1421 	ret = notifier_to_errno(ret);
1422 	if (ret)
1423 		return ret;
1424 
1425 	set_bit(__LINK_STATE_START, &dev->state);
1426 
1427 	if (ops->ndo_validate_addr)
1428 		ret = ops->ndo_validate_addr(dev);
1429 
1430 	if (!ret && ops->ndo_open)
1431 		ret = ops->ndo_open(dev);
1432 
1433 	netpoll_poll_enable(dev);
1434 
1435 	if (ret)
1436 		clear_bit(__LINK_STATE_START, &dev->state);
1437 	else {
1438 		dev->flags |= IFF_UP;
1439 		dev_set_rx_mode(dev);
1440 		dev_activate(dev);
1441 		add_device_randomness(dev->dev_addr, dev->addr_len);
1442 	}
1443 
1444 	return ret;
1445 }
1446 
1447 /**
1448  *	dev_open	- prepare an interface for use.
1449  *	@dev: device to open
1450  *	@extack: netlink extended ack
1451  *
1452  *	Takes a device from down to up state. The device's private open
1453  *	function is invoked and then the multicast lists are loaded. Finally
1454  *	the device is moved into the up state and a %NETDEV_UP message is
1455  *	sent to the netdev notifier chain.
1456  *
1457  *	Calling this function on an active interface is a nop. On a failure
1458  *	a negative errno code is returned.
1459  */
1460 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1461 {
1462 	int ret;
1463 
1464 	if (dev->flags & IFF_UP)
1465 		return 0;
1466 
1467 	ret = __dev_open(dev, extack);
1468 	if (ret < 0)
1469 		return ret;
1470 
1471 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1472 	call_netdevice_notifiers(NETDEV_UP, dev);
1473 
1474 	return ret;
1475 }
1476 EXPORT_SYMBOL(dev_open);
1477 
1478 static void __dev_close_many(struct list_head *head)
1479 {
1480 	struct net_device *dev;
1481 
1482 	ASSERT_RTNL();
1483 	might_sleep();
1484 
1485 	list_for_each_entry(dev, head, close_list) {
1486 		/* Temporarily disable netpoll until the interface is down */
1487 		netpoll_poll_disable(dev);
1488 
1489 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1490 
1491 		clear_bit(__LINK_STATE_START, &dev->state);
1492 
1493 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1494 		 * can be even on different cpu. So just clear netif_running().
1495 		 *
1496 		 * dev->stop() will invoke napi_disable() on all of it's
1497 		 * napi_struct instances on this device.
1498 		 */
1499 		smp_mb__after_atomic(); /* Commit netif_running(). */
1500 	}
1501 
1502 	dev_deactivate_many(head);
1503 
1504 	list_for_each_entry(dev, head, close_list) {
1505 		const struct net_device_ops *ops = dev->netdev_ops;
1506 
1507 		/*
1508 		 *	Call the device specific close. This cannot fail.
1509 		 *	Only if device is UP
1510 		 *
1511 		 *	We allow it to be called even after a DETACH hot-plug
1512 		 *	event.
1513 		 */
1514 		if (ops->ndo_stop)
1515 			ops->ndo_stop(dev);
1516 
1517 		dev->flags &= ~IFF_UP;
1518 		netpoll_poll_enable(dev);
1519 	}
1520 }
1521 
1522 static void __dev_close(struct net_device *dev)
1523 {
1524 	LIST_HEAD(single);
1525 
1526 	list_add(&dev->close_list, &single);
1527 	__dev_close_many(&single);
1528 	list_del(&single);
1529 }
1530 
1531 void dev_close_many(struct list_head *head, bool unlink)
1532 {
1533 	struct net_device *dev, *tmp;
1534 
1535 	/* Remove the devices that don't need to be closed */
1536 	list_for_each_entry_safe(dev, tmp, head, close_list)
1537 		if (!(dev->flags & IFF_UP))
1538 			list_del_init(&dev->close_list);
1539 
1540 	__dev_close_many(head);
1541 
1542 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1543 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1544 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1545 		if (unlink)
1546 			list_del_init(&dev->close_list);
1547 	}
1548 }
1549 EXPORT_SYMBOL(dev_close_many);
1550 
1551 /**
1552  *	dev_close - shutdown an interface.
1553  *	@dev: device to shutdown
1554  *
1555  *	This function moves an active device into down state. A
1556  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1557  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1558  *	chain.
1559  */
1560 void dev_close(struct net_device *dev)
1561 {
1562 	if (dev->flags & IFF_UP) {
1563 		LIST_HEAD(single);
1564 
1565 		list_add(&dev->close_list, &single);
1566 		dev_close_many(&single, true);
1567 		list_del(&single);
1568 	}
1569 }
1570 EXPORT_SYMBOL(dev_close);
1571 
1572 
1573 /**
1574  *	dev_disable_lro - disable Large Receive Offload on a device
1575  *	@dev: device
1576  *
1577  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1578  *	called under RTNL.  This is needed if received packets may be
1579  *	forwarded to another interface.
1580  */
1581 void dev_disable_lro(struct net_device *dev)
1582 {
1583 	struct net_device *lower_dev;
1584 	struct list_head *iter;
1585 
1586 	dev->wanted_features &= ~NETIF_F_LRO;
1587 	netdev_update_features(dev);
1588 
1589 	if (unlikely(dev->features & NETIF_F_LRO))
1590 		netdev_WARN(dev, "failed to disable LRO!\n");
1591 
1592 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1593 		dev_disable_lro(lower_dev);
1594 }
1595 EXPORT_SYMBOL(dev_disable_lro);
1596 
1597 /**
1598  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1599  *	@dev: device
1600  *
1601  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1602  *	called under RTNL.  This is needed if Generic XDP is installed on
1603  *	the device.
1604  */
1605 static void dev_disable_gro_hw(struct net_device *dev)
1606 {
1607 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1608 	netdev_update_features(dev);
1609 
1610 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1611 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1612 }
1613 
1614 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1615 {
1616 #define N(val) 						\
1617 	case NETDEV_##val:				\
1618 		return "NETDEV_" __stringify(val);
1619 	switch (cmd) {
1620 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1621 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1622 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1623 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1624 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1625 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1626 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1627 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1628 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1629 	N(PRE_CHANGEADDR)
1630 	}
1631 #undef N
1632 	return "UNKNOWN_NETDEV_EVENT";
1633 }
1634 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1635 
1636 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1637 				   struct net_device *dev)
1638 {
1639 	struct netdev_notifier_info info = {
1640 		.dev = dev,
1641 	};
1642 
1643 	return nb->notifier_call(nb, val, &info);
1644 }
1645 
1646 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1647 					     struct net_device *dev)
1648 {
1649 	int err;
1650 
1651 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1652 	err = notifier_to_errno(err);
1653 	if (err)
1654 		return err;
1655 
1656 	if (!(dev->flags & IFF_UP))
1657 		return 0;
1658 
1659 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1660 	return 0;
1661 }
1662 
1663 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1664 						struct net_device *dev)
1665 {
1666 	if (dev->flags & IFF_UP) {
1667 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1668 					dev);
1669 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1670 	}
1671 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1672 }
1673 
1674 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1675 						 struct net *net)
1676 {
1677 	struct net_device *dev;
1678 	int err;
1679 
1680 	for_each_netdev(net, dev) {
1681 		err = call_netdevice_register_notifiers(nb, dev);
1682 		if (err)
1683 			goto rollback;
1684 	}
1685 	return 0;
1686 
1687 rollback:
1688 	for_each_netdev_continue_reverse(net, dev)
1689 		call_netdevice_unregister_notifiers(nb, dev);
1690 	return err;
1691 }
1692 
1693 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1694 						    struct net *net)
1695 {
1696 	struct net_device *dev;
1697 
1698 	for_each_netdev(net, dev)
1699 		call_netdevice_unregister_notifiers(nb, dev);
1700 }
1701 
1702 static int dev_boot_phase = 1;
1703 
1704 /**
1705  * register_netdevice_notifier - register a network notifier block
1706  * @nb: notifier
1707  *
1708  * Register a notifier to be called when network device events occur.
1709  * The notifier passed is linked into the kernel structures and must
1710  * not be reused until it has been unregistered. A negative errno code
1711  * is returned on a failure.
1712  *
1713  * When registered all registration and up events are replayed
1714  * to the new notifier to allow device to have a race free
1715  * view of the network device list.
1716  */
1717 
1718 int register_netdevice_notifier(struct notifier_block *nb)
1719 {
1720 	struct net *net;
1721 	int err;
1722 
1723 	/* Close race with setup_net() and cleanup_net() */
1724 	down_write(&pernet_ops_rwsem);
1725 	rtnl_lock();
1726 	err = raw_notifier_chain_register(&netdev_chain, nb);
1727 	if (err)
1728 		goto unlock;
1729 	if (dev_boot_phase)
1730 		goto unlock;
1731 	for_each_net(net) {
1732 		err = call_netdevice_register_net_notifiers(nb, net);
1733 		if (err)
1734 			goto rollback;
1735 	}
1736 
1737 unlock:
1738 	rtnl_unlock();
1739 	up_write(&pernet_ops_rwsem);
1740 	return err;
1741 
1742 rollback:
1743 	for_each_net_continue_reverse(net)
1744 		call_netdevice_unregister_net_notifiers(nb, net);
1745 
1746 	raw_notifier_chain_unregister(&netdev_chain, nb);
1747 	goto unlock;
1748 }
1749 EXPORT_SYMBOL(register_netdevice_notifier);
1750 
1751 /**
1752  * unregister_netdevice_notifier - unregister a network notifier block
1753  * @nb: notifier
1754  *
1755  * Unregister a notifier previously registered by
1756  * register_netdevice_notifier(). The notifier is unlinked into the
1757  * kernel structures and may then be reused. A negative errno code
1758  * is returned on a failure.
1759  *
1760  * After unregistering unregister and down device events are synthesized
1761  * for all devices on the device list to the removed notifier to remove
1762  * the need for special case cleanup code.
1763  */
1764 
1765 int unregister_netdevice_notifier(struct notifier_block *nb)
1766 {
1767 	struct net_device *dev;
1768 	struct net *net;
1769 	int err;
1770 
1771 	/* Close race with setup_net() and cleanup_net() */
1772 	down_write(&pernet_ops_rwsem);
1773 	rtnl_lock();
1774 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1775 	if (err)
1776 		goto unlock;
1777 
1778 	for_each_net(net) {
1779 		for_each_netdev(net, dev) {
1780 			if (dev->flags & IFF_UP) {
1781 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1782 							dev);
1783 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1784 			}
1785 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1786 		}
1787 	}
1788 unlock:
1789 	rtnl_unlock();
1790 	up_write(&pernet_ops_rwsem);
1791 	return err;
1792 }
1793 EXPORT_SYMBOL(unregister_netdevice_notifier);
1794 
1795 /**
1796  * register_netdevice_notifier_net - register a per-netns network notifier block
1797  * @net: network namespace
1798  * @nb: notifier
1799  *
1800  * Register a notifier to be called when network device events occur.
1801  * The notifier passed is linked into the kernel structures and must
1802  * not be reused until it has been unregistered. A negative errno code
1803  * is returned on a failure.
1804  *
1805  * When registered all registration and up events are replayed
1806  * to the new notifier to allow device to have a race free
1807  * view of the network device list.
1808  */
1809 
1810 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1811 {
1812 	int err;
1813 
1814 	rtnl_lock();
1815 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1816 	if (err)
1817 		goto unlock;
1818 	if (dev_boot_phase)
1819 		goto unlock;
1820 
1821 	err = call_netdevice_register_net_notifiers(nb, net);
1822 	if (err)
1823 		goto chain_unregister;
1824 
1825 unlock:
1826 	rtnl_unlock();
1827 	return err;
1828 
1829 chain_unregister:
1830 	raw_notifier_chain_unregister(&netdev_chain, nb);
1831 	goto unlock;
1832 }
1833 EXPORT_SYMBOL(register_netdevice_notifier_net);
1834 
1835 /**
1836  * unregister_netdevice_notifier_net - unregister a per-netns
1837  *                                     network notifier block
1838  * @net: network namespace
1839  * @nb: notifier
1840  *
1841  * Unregister a notifier previously registered by
1842  * register_netdevice_notifier(). The notifier is unlinked into the
1843  * kernel structures and may then be reused. A negative errno code
1844  * is returned on a failure.
1845  *
1846  * After unregistering unregister and down device events are synthesized
1847  * for all devices on the device list to the removed notifier to remove
1848  * the need for special case cleanup code.
1849  */
1850 
1851 int unregister_netdevice_notifier_net(struct net *net,
1852 				      struct notifier_block *nb)
1853 {
1854 	int err;
1855 
1856 	rtnl_lock();
1857 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1858 	if (err)
1859 		goto unlock;
1860 
1861 	call_netdevice_unregister_net_notifiers(nb, net);
1862 
1863 unlock:
1864 	rtnl_unlock();
1865 	return err;
1866 }
1867 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1868 
1869 /**
1870  *	call_netdevice_notifiers_info - call all network notifier blocks
1871  *	@val: value passed unmodified to notifier function
1872  *	@info: notifier information data
1873  *
1874  *	Call all network notifier blocks.  Parameters and return value
1875  *	are as for raw_notifier_call_chain().
1876  */
1877 
1878 static int call_netdevice_notifiers_info(unsigned long val,
1879 					 struct netdev_notifier_info *info)
1880 {
1881 	struct net *net = dev_net(info->dev);
1882 	int ret;
1883 
1884 	ASSERT_RTNL();
1885 
1886 	/* Run per-netns notifier block chain first, then run the global one.
1887 	 * Hopefully, one day, the global one is going to be removed after
1888 	 * all notifier block registrators get converted to be per-netns.
1889 	 */
1890 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1891 	if (ret & NOTIFY_STOP_MASK)
1892 		return ret;
1893 	return raw_notifier_call_chain(&netdev_chain, val, info);
1894 }
1895 
1896 static int call_netdevice_notifiers_extack(unsigned long val,
1897 					   struct net_device *dev,
1898 					   struct netlink_ext_ack *extack)
1899 {
1900 	struct netdev_notifier_info info = {
1901 		.dev = dev,
1902 		.extack = extack,
1903 	};
1904 
1905 	return call_netdevice_notifiers_info(val, &info);
1906 }
1907 
1908 /**
1909  *	call_netdevice_notifiers - call all network notifier blocks
1910  *      @val: value passed unmodified to notifier function
1911  *      @dev: net_device pointer passed unmodified to notifier function
1912  *
1913  *	Call all network notifier blocks.  Parameters and return value
1914  *	are as for raw_notifier_call_chain().
1915  */
1916 
1917 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1918 {
1919 	return call_netdevice_notifiers_extack(val, dev, NULL);
1920 }
1921 EXPORT_SYMBOL(call_netdevice_notifiers);
1922 
1923 /**
1924  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1925  *	@val: value passed unmodified to notifier function
1926  *	@dev: net_device pointer passed unmodified to notifier function
1927  *	@arg: additional u32 argument passed to the notifier function
1928  *
1929  *	Call all network notifier blocks.  Parameters and return value
1930  *	are as for raw_notifier_call_chain().
1931  */
1932 static int call_netdevice_notifiers_mtu(unsigned long val,
1933 					struct net_device *dev, u32 arg)
1934 {
1935 	struct netdev_notifier_info_ext info = {
1936 		.info.dev = dev,
1937 		.ext.mtu = arg,
1938 	};
1939 
1940 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1941 
1942 	return call_netdevice_notifiers_info(val, &info.info);
1943 }
1944 
1945 #ifdef CONFIG_NET_INGRESS
1946 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1947 
1948 void net_inc_ingress_queue(void)
1949 {
1950 	static_branch_inc(&ingress_needed_key);
1951 }
1952 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1953 
1954 void net_dec_ingress_queue(void)
1955 {
1956 	static_branch_dec(&ingress_needed_key);
1957 }
1958 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1959 #endif
1960 
1961 #ifdef CONFIG_NET_EGRESS
1962 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1963 
1964 void net_inc_egress_queue(void)
1965 {
1966 	static_branch_inc(&egress_needed_key);
1967 }
1968 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1969 
1970 void net_dec_egress_queue(void)
1971 {
1972 	static_branch_dec(&egress_needed_key);
1973 }
1974 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1975 #endif
1976 
1977 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1978 #ifdef CONFIG_JUMP_LABEL
1979 static atomic_t netstamp_needed_deferred;
1980 static atomic_t netstamp_wanted;
1981 static void netstamp_clear(struct work_struct *work)
1982 {
1983 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1984 	int wanted;
1985 
1986 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1987 	if (wanted > 0)
1988 		static_branch_enable(&netstamp_needed_key);
1989 	else
1990 		static_branch_disable(&netstamp_needed_key);
1991 }
1992 static DECLARE_WORK(netstamp_work, netstamp_clear);
1993 #endif
1994 
1995 void net_enable_timestamp(void)
1996 {
1997 #ifdef CONFIG_JUMP_LABEL
1998 	int wanted;
1999 
2000 	while (1) {
2001 		wanted = atomic_read(&netstamp_wanted);
2002 		if (wanted <= 0)
2003 			break;
2004 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2005 			return;
2006 	}
2007 	atomic_inc(&netstamp_needed_deferred);
2008 	schedule_work(&netstamp_work);
2009 #else
2010 	static_branch_inc(&netstamp_needed_key);
2011 #endif
2012 }
2013 EXPORT_SYMBOL(net_enable_timestamp);
2014 
2015 void net_disable_timestamp(void)
2016 {
2017 #ifdef CONFIG_JUMP_LABEL
2018 	int wanted;
2019 
2020 	while (1) {
2021 		wanted = atomic_read(&netstamp_wanted);
2022 		if (wanted <= 1)
2023 			break;
2024 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2025 			return;
2026 	}
2027 	atomic_dec(&netstamp_needed_deferred);
2028 	schedule_work(&netstamp_work);
2029 #else
2030 	static_branch_dec(&netstamp_needed_key);
2031 #endif
2032 }
2033 EXPORT_SYMBOL(net_disable_timestamp);
2034 
2035 static inline void net_timestamp_set(struct sk_buff *skb)
2036 {
2037 	skb->tstamp = 0;
2038 	if (static_branch_unlikely(&netstamp_needed_key))
2039 		__net_timestamp(skb);
2040 }
2041 
2042 #define net_timestamp_check(COND, SKB)				\
2043 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2044 		if ((COND) && !(SKB)->tstamp)			\
2045 			__net_timestamp(SKB);			\
2046 	}							\
2047 
2048 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2049 {
2050 	unsigned int len;
2051 
2052 	if (!(dev->flags & IFF_UP))
2053 		return false;
2054 
2055 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2056 	if (skb->len <= len)
2057 		return true;
2058 
2059 	/* if TSO is enabled, we don't care about the length as the packet
2060 	 * could be forwarded without being segmented before
2061 	 */
2062 	if (skb_is_gso(skb))
2063 		return true;
2064 
2065 	return false;
2066 }
2067 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2068 
2069 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2070 {
2071 	int ret = ____dev_forward_skb(dev, skb);
2072 
2073 	if (likely(!ret)) {
2074 		skb->protocol = eth_type_trans(skb, dev);
2075 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2076 	}
2077 
2078 	return ret;
2079 }
2080 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2081 
2082 /**
2083  * dev_forward_skb - loopback an skb to another netif
2084  *
2085  * @dev: destination network device
2086  * @skb: buffer to forward
2087  *
2088  * return values:
2089  *	NET_RX_SUCCESS	(no congestion)
2090  *	NET_RX_DROP     (packet was dropped, but freed)
2091  *
2092  * dev_forward_skb can be used for injecting an skb from the
2093  * start_xmit function of one device into the receive queue
2094  * of another device.
2095  *
2096  * The receiving device may be in another namespace, so
2097  * we have to clear all information in the skb that could
2098  * impact namespace isolation.
2099  */
2100 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2101 {
2102 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2103 }
2104 EXPORT_SYMBOL_GPL(dev_forward_skb);
2105 
2106 static inline int deliver_skb(struct sk_buff *skb,
2107 			      struct packet_type *pt_prev,
2108 			      struct net_device *orig_dev)
2109 {
2110 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2111 		return -ENOMEM;
2112 	refcount_inc(&skb->users);
2113 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2114 }
2115 
2116 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2117 					  struct packet_type **pt,
2118 					  struct net_device *orig_dev,
2119 					  __be16 type,
2120 					  struct list_head *ptype_list)
2121 {
2122 	struct packet_type *ptype, *pt_prev = *pt;
2123 
2124 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2125 		if (ptype->type != type)
2126 			continue;
2127 		if (pt_prev)
2128 			deliver_skb(skb, pt_prev, orig_dev);
2129 		pt_prev = ptype;
2130 	}
2131 	*pt = pt_prev;
2132 }
2133 
2134 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2135 {
2136 	if (!ptype->af_packet_priv || !skb->sk)
2137 		return false;
2138 
2139 	if (ptype->id_match)
2140 		return ptype->id_match(ptype, skb->sk);
2141 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2142 		return true;
2143 
2144 	return false;
2145 }
2146 
2147 /**
2148  * dev_nit_active - return true if any network interface taps are in use
2149  *
2150  * @dev: network device to check for the presence of taps
2151  */
2152 bool dev_nit_active(struct net_device *dev)
2153 {
2154 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2155 }
2156 EXPORT_SYMBOL_GPL(dev_nit_active);
2157 
2158 /*
2159  *	Support routine. Sends outgoing frames to any network
2160  *	taps currently in use.
2161  */
2162 
2163 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2164 {
2165 	struct packet_type *ptype;
2166 	struct sk_buff *skb2 = NULL;
2167 	struct packet_type *pt_prev = NULL;
2168 	struct list_head *ptype_list = &ptype_all;
2169 
2170 	rcu_read_lock();
2171 again:
2172 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2173 		if (ptype->ignore_outgoing)
2174 			continue;
2175 
2176 		/* Never send packets back to the socket
2177 		 * they originated from - MvS (miquels@drinkel.ow.org)
2178 		 */
2179 		if (skb_loop_sk(ptype, skb))
2180 			continue;
2181 
2182 		if (pt_prev) {
2183 			deliver_skb(skb2, pt_prev, skb->dev);
2184 			pt_prev = ptype;
2185 			continue;
2186 		}
2187 
2188 		/* need to clone skb, done only once */
2189 		skb2 = skb_clone(skb, GFP_ATOMIC);
2190 		if (!skb2)
2191 			goto out_unlock;
2192 
2193 		net_timestamp_set(skb2);
2194 
2195 		/* skb->nh should be correctly
2196 		 * set by sender, so that the second statement is
2197 		 * just protection against buggy protocols.
2198 		 */
2199 		skb_reset_mac_header(skb2);
2200 
2201 		if (skb_network_header(skb2) < skb2->data ||
2202 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2203 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2204 					     ntohs(skb2->protocol),
2205 					     dev->name);
2206 			skb_reset_network_header(skb2);
2207 		}
2208 
2209 		skb2->transport_header = skb2->network_header;
2210 		skb2->pkt_type = PACKET_OUTGOING;
2211 		pt_prev = ptype;
2212 	}
2213 
2214 	if (ptype_list == &ptype_all) {
2215 		ptype_list = &dev->ptype_all;
2216 		goto again;
2217 	}
2218 out_unlock:
2219 	if (pt_prev) {
2220 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2221 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2222 		else
2223 			kfree_skb(skb2);
2224 	}
2225 	rcu_read_unlock();
2226 }
2227 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2228 
2229 /**
2230  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2231  * @dev: Network device
2232  * @txq: number of queues available
2233  *
2234  * If real_num_tx_queues is changed the tc mappings may no longer be
2235  * valid. To resolve this verify the tc mapping remains valid and if
2236  * not NULL the mapping. With no priorities mapping to this
2237  * offset/count pair it will no longer be used. In the worst case TC0
2238  * is invalid nothing can be done so disable priority mappings. If is
2239  * expected that drivers will fix this mapping if they can before
2240  * calling netif_set_real_num_tx_queues.
2241  */
2242 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2243 {
2244 	int i;
2245 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2246 
2247 	/* If TC0 is invalidated disable TC mapping */
2248 	if (tc->offset + tc->count > txq) {
2249 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2250 		dev->num_tc = 0;
2251 		return;
2252 	}
2253 
2254 	/* Invalidated prio to tc mappings set to TC0 */
2255 	for (i = 1; i < TC_BITMASK + 1; i++) {
2256 		int q = netdev_get_prio_tc_map(dev, i);
2257 
2258 		tc = &dev->tc_to_txq[q];
2259 		if (tc->offset + tc->count > txq) {
2260 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2261 				i, q);
2262 			netdev_set_prio_tc_map(dev, i, 0);
2263 		}
2264 	}
2265 }
2266 
2267 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2268 {
2269 	if (dev->num_tc) {
2270 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2271 		int i;
2272 
2273 		/* walk through the TCs and see if it falls into any of them */
2274 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2275 			if ((txq - tc->offset) < tc->count)
2276 				return i;
2277 		}
2278 
2279 		/* didn't find it, just return -1 to indicate no match */
2280 		return -1;
2281 	}
2282 
2283 	return 0;
2284 }
2285 EXPORT_SYMBOL(netdev_txq_to_tc);
2286 
2287 #ifdef CONFIG_XPS
2288 struct static_key xps_needed __read_mostly;
2289 EXPORT_SYMBOL(xps_needed);
2290 struct static_key xps_rxqs_needed __read_mostly;
2291 EXPORT_SYMBOL(xps_rxqs_needed);
2292 static DEFINE_MUTEX(xps_map_mutex);
2293 #define xmap_dereference(P)		\
2294 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2295 
2296 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2297 			     int tci, u16 index)
2298 {
2299 	struct xps_map *map = NULL;
2300 	int pos;
2301 
2302 	if (dev_maps)
2303 		map = xmap_dereference(dev_maps->attr_map[tci]);
2304 	if (!map)
2305 		return false;
2306 
2307 	for (pos = map->len; pos--;) {
2308 		if (map->queues[pos] != index)
2309 			continue;
2310 
2311 		if (map->len > 1) {
2312 			map->queues[pos] = map->queues[--map->len];
2313 			break;
2314 		}
2315 
2316 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2317 		kfree_rcu(map, rcu);
2318 		return false;
2319 	}
2320 
2321 	return true;
2322 }
2323 
2324 static bool remove_xps_queue_cpu(struct net_device *dev,
2325 				 struct xps_dev_maps *dev_maps,
2326 				 int cpu, u16 offset, u16 count)
2327 {
2328 	int num_tc = dev->num_tc ? : 1;
2329 	bool active = false;
2330 	int tci;
2331 
2332 	for (tci = cpu * num_tc; num_tc--; tci++) {
2333 		int i, j;
2334 
2335 		for (i = count, j = offset; i--; j++) {
2336 			if (!remove_xps_queue(dev_maps, tci, j))
2337 				break;
2338 		}
2339 
2340 		active |= i < 0;
2341 	}
2342 
2343 	return active;
2344 }
2345 
2346 static void reset_xps_maps(struct net_device *dev,
2347 			   struct xps_dev_maps *dev_maps,
2348 			   bool is_rxqs_map)
2349 {
2350 	if (is_rxqs_map) {
2351 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2352 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2353 	} else {
2354 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2355 	}
2356 	static_key_slow_dec_cpuslocked(&xps_needed);
2357 	kfree_rcu(dev_maps, rcu);
2358 }
2359 
2360 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2361 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2362 			   u16 offset, u16 count, bool is_rxqs_map)
2363 {
2364 	bool active = false;
2365 	int i, j;
2366 
2367 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2368 	     j < nr_ids;)
2369 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2370 					       count);
2371 	if (!active)
2372 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2373 
2374 	if (!is_rxqs_map) {
2375 		for (i = offset + (count - 1); count--; i--) {
2376 			netdev_queue_numa_node_write(
2377 				netdev_get_tx_queue(dev, i),
2378 				NUMA_NO_NODE);
2379 		}
2380 	}
2381 }
2382 
2383 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2384 				   u16 count)
2385 {
2386 	const unsigned long *possible_mask = NULL;
2387 	struct xps_dev_maps *dev_maps;
2388 	unsigned int nr_ids;
2389 
2390 	if (!static_key_false(&xps_needed))
2391 		return;
2392 
2393 	cpus_read_lock();
2394 	mutex_lock(&xps_map_mutex);
2395 
2396 	if (static_key_false(&xps_rxqs_needed)) {
2397 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2398 		if (dev_maps) {
2399 			nr_ids = dev->num_rx_queues;
2400 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2401 				       offset, count, true);
2402 		}
2403 	}
2404 
2405 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2406 	if (!dev_maps)
2407 		goto out_no_maps;
2408 
2409 	if (num_possible_cpus() > 1)
2410 		possible_mask = cpumask_bits(cpu_possible_mask);
2411 	nr_ids = nr_cpu_ids;
2412 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2413 		       false);
2414 
2415 out_no_maps:
2416 	mutex_unlock(&xps_map_mutex);
2417 	cpus_read_unlock();
2418 }
2419 
2420 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2421 {
2422 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2423 }
2424 
2425 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2426 				      u16 index, bool is_rxqs_map)
2427 {
2428 	struct xps_map *new_map;
2429 	int alloc_len = XPS_MIN_MAP_ALLOC;
2430 	int i, pos;
2431 
2432 	for (pos = 0; map && pos < map->len; pos++) {
2433 		if (map->queues[pos] != index)
2434 			continue;
2435 		return map;
2436 	}
2437 
2438 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2439 	if (map) {
2440 		if (pos < map->alloc_len)
2441 			return map;
2442 
2443 		alloc_len = map->alloc_len * 2;
2444 	}
2445 
2446 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2447 	 *  map
2448 	 */
2449 	if (is_rxqs_map)
2450 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2451 	else
2452 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2453 				       cpu_to_node(attr_index));
2454 	if (!new_map)
2455 		return NULL;
2456 
2457 	for (i = 0; i < pos; i++)
2458 		new_map->queues[i] = map->queues[i];
2459 	new_map->alloc_len = alloc_len;
2460 	new_map->len = pos;
2461 
2462 	return new_map;
2463 }
2464 
2465 /* Must be called under cpus_read_lock */
2466 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2467 			  u16 index, bool is_rxqs_map)
2468 {
2469 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2470 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2471 	int i, j, tci, numa_node_id = -2;
2472 	int maps_sz, num_tc = 1, tc = 0;
2473 	struct xps_map *map, *new_map;
2474 	bool active = false;
2475 	unsigned int nr_ids;
2476 
2477 	if (dev->num_tc) {
2478 		/* Do not allow XPS on subordinate device directly */
2479 		num_tc = dev->num_tc;
2480 		if (num_tc < 0)
2481 			return -EINVAL;
2482 
2483 		/* If queue belongs to subordinate dev use its map */
2484 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2485 
2486 		tc = netdev_txq_to_tc(dev, index);
2487 		if (tc < 0)
2488 			return -EINVAL;
2489 	}
2490 
2491 	mutex_lock(&xps_map_mutex);
2492 	if (is_rxqs_map) {
2493 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2494 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2495 		nr_ids = dev->num_rx_queues;
2496 	} else {
2497 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2498 		if (num_possible_cpus() > 1) {
2499 			online_mask = cpumask_bits(cpu_online_mask);
2500 			possible_mask = cpumask_bits(cpu_possible_mask);
2501 		}
2502 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2503 		nr_ids = nr_cpu_ids;
2504 	}
2505 
2506 	if (maps_sz < L1_CACHE_BYTES)
2507 		maps_sz = L1_CACHE_BYTES;
2508 
2509 	/* allocate memory for queue storage */
2510 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2511 	     j < nr_ids;) {
2512 		if (!new_dev_maps)
2513 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2514 		if (!new_dev_maps) {
2515 			mutex_unlock(&xps_map_mutex);
2516 			return -ENOMEM;
2517 		}
2518 
2519 		tci = j * num_tc + tc;
2520 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2521 				 NULL;
2522 
2523 		map = expand_xps_map(map, j, index, is_rxqs_map);
2524 		if (!map)
2525 			goto error;
2526 
2527 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2528 	}
2529 
2530 	if (!new_dev_maps)
2531 		goto out_no_new_maps;
2532 
2533 	if (!dev_maps) {
2534 		/* Increment static keys at most once per type */
2535 		static_key_slow_inc_cpuslocked(&xps_needed);
2536 		if (is_rxqs_map)
2537 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2538 	}
2539 
2540 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2541 	     j < nr_ids;) {
2542 		/* copy maps belonging to foreign traffic classes */
2543 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2544 			/* fill in the new device map from the old device map */
2545 			map = xmap_dereference(dev_maps->attr_map[tci]);
2546 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2547 		}
2548 
2549 		/* We need to explicitly update tci as prevous loop
2550 		 * could break out early if dev_maps is NULL.
2551 		 */
2552 		tci = j * num_tc + tc;
2553 
2554 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2555 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2556 			/* add tx-queue to CPU/rx-queue maps */
2557 			int pos = 0;
2558 
2559 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2560 			while ((pos < map->len) && (map->queues[pos] != index))
2561 				pos++;
2562 
2563 			if (pos == map->len)
2564 				map->queues[map->len++] = index;
2565 #ifdef CONFIG_NUMA
2566 			if (!is_rxqs_map) {
2567 				if (numa_node_id == -2)
2568 					numa_node_id = cpu_to_node(j);
2569 				else if (numa_node_id != cpu_to_node(j))
2570 					numa_node_id = -1;
2571 			}
2572 #endif
2573 		} else if (dev_maps) {
2574 			/* fill in the new device map from the old device map */
2575 			map = xmap_dereference(dev_maps->attr_map[tci]);
2576 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2577 		}
2578 
2579 		/* copy maps belonging to foreign traffic classes */
2580 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2581 			/* fill in the new device map from the old device map */
2582 			map = xmap_dereference(dev_maps->attr_map[tci]);
2583 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2584 		}
2585 	}
2586 
2587 	if (is_rxqs_map)
2588 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2589 	else
2590 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2591 
2592 	/* Cleanup old maps */
2593 	if (!dev_maps)
2594 		goto out_no_old_maps;
2595 
2596 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2597 	     j < nr_ids;) {
2598 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2599 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2600 			map = xmap_dereference(dev_maps->attr_map[tci]);
2601 			if (map && map != new_map)
2602 				kfree_rcu(map, rcu);
2603 		}
2604 	}
2605 
2606 	kfree_rcu(dev_maps, rcu);
2607 
2608 out_no_old_maps:
2609 	dev_maps = new_dev_maps;
2610 	active = true;
2611 
2612 out_no_new_maps:
2613 	if (!is_rxqs_map) {
2614 		/* update Tx queue numa node */
2615 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2616 					     (numa_node_id >= 0) ?
2617 					     numa_node_id : NUMA_NO_NODE);
2618 	}
2619 
2620 	if (!dev_maps)
2621 		goto out_no_maps;
2622 
2623 	/* removes tx-queue from unused CPUs/rx-queues */
2624 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2625 	     j < nr_ids;) {
2626 		for (i = tc, tci = j * num_tc; i--; tci++)
2627 			active |= remove_xps_queue(dev_maps, tci, index);
2628 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2629 		    !netif_attr_test_online(j, online_mask, nr_ids))
2630 			active |= remove_xps_queue(dev_maps, tci, index);
2631 		for (i = num_tc - tc, tci++; --i; tci++)
2632 			active |= remove_xps_queue(dev_maps, tci, index);
2633 	}
2634 
2635 	/* free map if not active */
2636 	if (!active)
2637 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2638 
2639 out_no_maps:
2640 	mutex_unlock(&xps_map_mutex);
2641 
2642 	return 0;
2643 error:
2644 	/* remove any maps that we added */
2645 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2646 	     j < nr_ids;) {
2647 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2648 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2649 			map = dev_maps ?
2650 			      xmap_dereference(dev_maps->attr_map[tci]) :
2651 			      NULL;
2652 			if (new_map && new_map != map)
2653 				kfree(new_map);
2654 		}
2655 	}
2656 
2657 	mutex_unlock(&xps_map_mutex);
2658 
2659 	kfree(new_dev_maps);
2660 	return -ENOMEM;
2661 }
2662 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2663 
2664 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2665 			u16 index)
2666 {
2667 	int ret;
2668 
2669 	cpus_read_lock();
2670 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2671 	cpus_read_unlock();
2672 
2673 	return ret;
2674 }
2675 EXPORT_SYMBOL(netif_set_xps_queue);
2676 
2677 #endif
2678 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2679 {
2680 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2681 
2682 	/* Unbind any subordinate channels */
2683 	while (txq-- != &dev->_tx[0]) {
2684 		if (txq->sb_dev)
2685 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2686 	}
2687 }
2688 
2689 void netdev_reset_tc(struct net_device *dev)
2690 {
2691 #ifdef CONFIG_XPS
2692 	netif_reset_xps_queues_gt(dev, 0);
2693 #endif
2694 	netdev_unbind_all_sb_channels(dev);
2695 
2696 	/* Reset TC configuration of device */
2697 	dev->num_tc = 0;
2698 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2699 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2700 }
2701 EXPORT_SYMBOL(netdev_reset_tc);
2702 
2703 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2704 {
2705 	if (tc >= dev->num_tc)
2706 		return -EINVAL;
2707 
2708 #ifdef CONFIG_XPS
2709 	netif_reset_xps_queues(dev, offset, count);
2710 #endif
2711 	dev->tc_to_txq[tc].count = count;
2712 	dev->tc_to_txq[tc].offset = offset;
2713 	return 0;
2714 }
2715 EXPORT_SYMBOL(netdev_set_tc_queue);
2716 
2717 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2718 {
2719 	if (num_tc > TC_MAX_QUEUE)
2720 		return -EINVAL;
2721 
2722 #ifdef CONFIG_XPS
2723 	netif_reset_xps_queues_gt(dev, 0);
2724 #endif
2725 	netdev_unbind_all_sb_channels(dev);
2726 
2727 	dev->num_tc = num_tc;
2728 	return 0;
2729 }
2730 EXPORT_SYMBOL(netdev_set_num_tc);
2731 
2732 void netdev_unbind_sb_channel(struct net_device *dev,
2733 			      struct net_device *sb_dev)
2734 {
2735 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2736 
2737 #ifdef CONFIG_XPS
2738 	netif_reset_xps_queues_gt(sb_dev, 0);
2739 #endif
2740 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2741 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2742 
2743 	while (txq-- != &dev->_tx[0]) {
2744 		if (txq->sb_dev == sb_dev)
2745 			txq->sb_dev = NULL;
2746 	}
2747 }
2748 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2749 
2750 int netdev_bind_sb_channel_queue(struct net_device *dev,
2751 				 struct net_device *sb_dev,
2752 				 u8 tc, u16 count, u16 offset)
2753 {
2754 	/* Make certain the sb_dev and dev are already configured */
2755 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2756 		return -EINVAL;
2757 
2758 	/* We cannot hand out queues we don't have */
2759 	if ((offset + count) > dev->real_num_tx_queues)
2760 		return -EINVAL;
2761 
2762 	/* Record the mapping */
2763 	sb_dev->tc_to_txq[tc].count = count;
2764 	sb_dev->tc_to_txq[tc].offset = offset;
2765 
2766 	/* Provide a way for Tx queue to find the tc_to_txq map or
2767 	 * XPS map for itself.
2768 	 */
2769 	while (count--)
2770 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2771 
2772 	return 0;
2773 }
2774 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2775 
2776 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2777 {
2778 	/* Do not use a multiqueue device to represent a subordinate channel */
2779 	if (netif_is_multiqueue(dev))
2780 		return -ENODEV;
2781 
2782 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2783 	 * Channel 0 is meant to be "native" mode and used only to represent
2784 	 * the main root device. We allow writing 0 to reset the device back
2785 	 * to normal mode after being used as a subordinate channel.
2786 	 */
2787 	if (channel > S16_MAX)
2788 		return -EINVAL;
2789 
2790 	dev->num_tc = -channel;
2791 
2792 	return 0;
2793 }
2794 EXPORT_SYMBOL(netdev_set_sb_channel);
2795 
2796 /*
2797  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2798  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2799  */
2800 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2801 {
2802 	bool disabling;
2803 	int rc;
2804 
2805 	disabling = txq < dev->real_num_tx_queues;
2806 
2807 	if (txq < 1 || txq > dev->num_tx_queues)
2808 		return -EINVAL;
2809 
2810 	if (dev->reg_state == NETREG_REGISTERED ||
2811 	    dev->reg_state == NETREG_UNREGISTERING) {
2812 		ASSERT_RTNL();
2813 
2814 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2815 						  txq);
2816 		if (rc)
2817 			return rc;
2818 
2819 		if (dev->num_tc)
2820 			netif_setup_tc(dev, txq);
2821 
2822 		dev->real_num_tx_queues = txq;
2823 
2824 		if (disabling) {
2825 			synchronize_net();
2826 			qdisc_reset_all_tx_gt(dev, txq);
2827 #ifdef CONFIG_XPS
2828 			netif_reset_xps_queues_gt(dev, txq);
2829 #endif
2830 		}
2831 	} else {
2832 		dev->real_num_tx_queues = txq;
2833 	}
2834 
2835 	return 0;
2836 }
2837 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2838 
2839 #ifdef CONFIG_SYSFS
2840 /**
2841  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2842  *	@dev: Network device
2843  *	@rxq: Actual number of RX queues
2844  *
2845  *	This must be called either with the rtnl_lock held or before
2846  *	registration of the net device.  Returns 0 on success, or a
2847  *	negative error code.  If called before registration, it always
2848  *	succeeds.
2849  */
2850 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2851 {
2852 	int rc;
2853 
2854 	if (rxq < 1 || rxq > dev->num_rx_queues)
2855 		return -EINVAL;
2856 
2857 	if (dev->reg_state == NETREG_REGISTERED) {
2858 		ASSERT_RTNL();
2859 
2860 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2861 						  rxq);
2862 		if (rc)
2863 			return rc;
2864 	}
2865 
2866 	dev->real_num_rx_queues = rxq;
2867 	return 0;
2868 }
2869 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2870 #endif
2871 
2872 /**
2873  * netif_get_num_default_rss_queues - default number of RSS queues
2874  *
2875  * This routine should set an upper limit on the number of RSS queues
2876  * used by default by multiqueue devices.
2877  */
2878 int netif_get_num_default_rss_queues(void)
2879 {
2880 	return is_kdump_kernel() ?
2881 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2882 }
2883 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2884 
2885 static void __netif_reschedule(struct Qdisc *q)
2886 {
2887 	struct softnet_data *sd;
2888 	unsigned long flags;
2889 
2890 	local_irq_save(flags);
2891 	sd = this_cpu_ptr(&softnet_data);
2892 	q->next_sched = NULL;
2893 	*sd->output_queue_tailp = q;
2894 	sd->output_queue_tailp = &q->next_sched;
2895 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2896 	local_irq_restore(flags);
2897 }
2898 
2899 void __netif_schedule(struct Qdisc *q)
2900 {
2901 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2902 		__netif_reschedule(q);
2903 }
2904 EXPORT_SYMBOL(__netif_schedule);
2905 
2906 struct dev_kfree_skb_cb {
2907 	enum skb_free_reason reason;
2908 };
2909 
2910 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2911 {
2912 	return (struct dev_kfree_skb_cb *)skb->cb;
2913 }
2914 
2915 void netif_schedule_queue(struct netdev_queue *txq)
2916 {
2917 	rcu_read_lock();
2918 	if (!netif_xmit_stopped(txq)) {
2919 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2920 
2921 		__netif_schedule(q);
2922 	}
2923 	rcu_read_unlock();
2924 }
2925 EXPORT_SYMBOL(netif_schedule_queue);
2926 
2927 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2928 {
2929 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2930 		struct Qdisc *q;
2931 
2932 		rcu_read_lock();
2933 		q = rcu_dereference(dev_queue->qdisc);
2934 		__netif_schedule(q);
2935 		rcu_read_unlock();
2936 	}
2937 }
2938 EXPORT_SYMBOL(netif_tx_wake_queue);
2939 
2940 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2941 {
2942 	unsigned long flags;
2943 
2944 	if (unlikely(!skb))
2945 		return;
2946 
2947 	if (likely(refcount_read(&skb->users) == 1)) {
2948 		smp_rmb();
2949 		refcount_set(&skb->users, 0);
2950 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2951 		return;
2952 	}
2953 	get_kfree_skb_cb(skb)->reason = reason;
2954 	local_irq_save(flags);
2955 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2956 	__this_cpu_write(softnet_data.completion_queue, skb);
2957 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2958 	local_irq_restore(flags);
2959 }
2960 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2961 
2962 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2963 {
2964 	if (in_irq() || irqs_disabled())
2965 		__dev_kfree_skb_irq(skb, reason);
2966 	else
2967 		dev_kfree_skb(skb);
2968 }
2969 EXPORT_SYMBOL(__dev_kfree_skb_any);
2970 
2971 
2972 /**
2973  * netif_device_detach - mark device as removed
2974  * @dev: network device
2975  *
2976  * Mark device as removed from system and therefore no longer available.
2977  */
2978 void netif_device_detach(struct net_device *dev)
2979 {
2980 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2981 	    netif_running(dev)) {
2982 		netif_tx_stop_all_queues(dev);
2983 	}
2984 }
2985 EXPORT_SYMBOL(netif_device_detach);
2986 
2987 /**
2988  * netif_device_attach - mark device as attached
2989  * @dev: network device
2990  *
2991  * Mark device as attached from system and restart if needed.
2992  */
2993 void netif_device_attach(struct net_device *dev)
2994 {
2995 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2996 	    netif_running(dev)) {
2997 		netif_tx_wake_all_queues(dev);
2998 		__netdev_watchdog_up(dev);
2999 	}
3000 }
3001 EXPORT_SYMBOL(netif_device_attach);
3002 
3003 /*
3004  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3005  * to be used as a distribution range.
3006  */
3007 static u16 skb_tx_hash(const struct net_device *dev,
3008 		       const struct net_device *sb_dev,
3009 		       struct sk_buff *skb)
3010 {
3011 	u32 hash;
3012 	u16 qoffset = 0;
3013 	u16 qcount = dev->real_num_tx_queues;
3014 
3015 	if (dev->num_tc) {
3016 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3017 
3018 		qoffset = sb_dev->tc_to_txq[tc].offset;
3019 		qcount = sb_dev->tc_to_txq[tc].count;
3020 	}
3021 
3022 	if (skb_rx_queue_recorded(skb)) {
3023 		hash = skb_get_rx_queue(skb);
3024 		while (unlikely(hash >= qcount))
3025 			hash -= qcount;
3026 		return hash + qoffset;
3027 	}
3028 
3029 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3030 }
3031 
3032 static void skb_warn_bad_offload(const struct sk_buff *skb)
3033 {
3034 	static const netdev_features_t null_features;
3035 	struct net_device *dev = skb->dev;
3036 	const char *name = "";
3037 
3038 	if (!net_ratelimit())
3039 		return;
3040 
3041 	if (dev) {
3042 		if (dev->dev.parent)
3043 			name = dev_driver_string(dev->dev.parent);
3044 		else
3045 			name = netdev_name(dev);
3046 	}
3047 	skb_dump(KERN_WARNING, skb, false);
3048 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3049 	     name, dev ? &dev->features : &null_features,
3050 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3051 }
3052 
3053 /*
3054  * Invalidate hardware checksum when packet is to be mangled, and
3055  * complete checksum manually on outgoing path.
3056  */
3057 int skb_checksum_help(struct sk_buff *skb)
3058 {
3059 	__wsum csum;
3060 	int ret = 0, offset;
3061 
3062 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3063 		goto out_set_summed;
3064 
3065 	if (unlikely(skb_shinfo(skb)->gso_size)) {
3066 		skb_warn_bad_offload(skb);
3067 		return -EINVAL;
3068 	}
3069 
3070 	/* Before computing a checksum, we should make sure no frag could
3071 	 * be modified by an external entity : checksum could be wrong.
3072 	 */
3073 	if (skb_has_shared_frag(skb)) {
3074 		ret = __skb_linearize(skb);
3075 		if (ret)
3076 			goto out;
3077 	}
3078 
3079 	offset = skb_checksum_start_offset(skb);
3080 	BUG_ON(offset >= skb_headlen(skb));
3081 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3082 
3083 	offset += skb->csum_offset;
3084 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3085 
3086 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3087 	if (ret)
3088 		goto out;
3089 
3090 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3091 out_set_summed:
3092 	skb->ip_summed = CHECKSUM_NONE;
3093 out:
3094 	return ret;
3095 }
3096 EXPORT_SYMBOL(skb_checksum_help);
3097 
3098 int skb_crc32c_csum_help(struct sk_buff *skb)
3099 {
3100 	__le32 crc32c_csum;
3101 	int ret = 0, offset, start;
3102 
3103 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3104 		goto out;
3105 
3106 	if (unlikely(skb_is_gso(skb)))
3107 		goto out;
3108 
3109 	/* Before computing a checksum, we should make sure no frag could
3110 	 * be modified by an external entity : checksum could be wrong.
3111 	 */
3112 	if (unlikely(skb_has_shared_frag(skb))) {
3113 		ret = __skb_linearize(skb);
3114 		if (ret)
3115 			goto out;
3116 	}
3117 	start = skb_checksum_start_offset(skb);
3118 	offset = start + offsetof(struct sctphdr, checksum);
3119 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3120 		ret = -EINVAL;
3121 		goto out;
3122 	}
3123 
3124 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3125 	if (ret)
3126 		goto out;
3127 
3128 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3129 						  skb->len - start, ~(__u32)0,
3130 						  crc32c_csum_stub));
3131 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3132 	skb->ip_summed = CHECKSUM_NONE;
3133 	skb->csum_not_inet = 0;
3134 out:
3135 	return ret;
3136 }
3137 
3138 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3139 {
3140 	__be16 type = skb->protocol;
3141 
3142 	/* Tunnel gso handlers can set protocol to ethernet. */
3143 	if (type == htons(ETH_P_TEB)) {
3144 		struct ethhdr *eth;
3145 
3146 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3147 			return 0;
3148 
3149 		eth = (struct ethhdr *)skb->data;
3150 		type = eth->h_proto;
3151 	}
3152 
3153 	return __vlan_get_protocol(skb, type, depth);
3154 }
3155 
3156 /**
3157  *	skb_mac_gso_segment - mac layer segmentation handler.
3158  *	@skb: buffer to segment
3159  *	@features: features for the output path (see dev->features)
3160  */
3161 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3162 				    netdev_features_t features)
3163 {
3164 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3165 	struct packet_offload *ptype;
3166 	int vlan_depth = skb->mac_len;
3167 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3168 
3169 	if (unlikely(!type))
3170 		return ERR_PTR(-EINVAL);
3171 
3172 	__skb_pull(skb, vlan_depth);
3173 
3174 	rcu_read_lock();
3175 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3176 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3177 			segs = ptype->callbacks.gso_segment(skb, features);
3178 			break;
3179 		}
3180 	}
3181 	rcu_read_unlock();
3182 
3183 	__skb_push(skb, skb->data - skb_mac_header(skb));
3184 
3185 	return segs;
3186 }
3187 EXPORT_SYMBOL(skb_mac_gso_segment);
3188 
3189 
3190 /* openvswitch calls this on rx path, so we need a different check.
3191  */
3192 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3193 {
3194 	if (tx_path)
3195 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3196 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3197 
3198 	return skb->ip_summed == CHECKSUM_NONE;
3199 }
3200 
3201 /**
3202  *	__skb_gso_segment - Perform segmentation on skb.
3203  *	@skb: buffer to segment
3204  *	@features: features for the output path (see dev->features)
3205  *	@tx_path: whether it is called in TX path
3206  *
3207  *	This function segments the given skb and returns a list of segments.
3208  *
3209  *	It may return NULL if the skb requires no segmentation.  This is
3210  *	only possible when GSO is used for verifying header integrity.
3211  *
3212  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3213  */
3214 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3215 				  netdev_features_t features, bool tx_path)
3216 {
3217 	struct sk_buff *segs;
3218 
3219 	if (unlikely(skb_needs_check(skb, tx_path))) {
3220 		int err;
3221 
3222 		/* We're going to init ->check field in TCP or UDP header */
3223 		err = skb_cow_head(skb, 0);
3224 		if (err < 0)
3225 			return ERR_PTR(err);
3226 	}
3227 
3228 	/* Only report GSO partial support if it will enable us to
3229 	 * support segmentation on this frame without needing additional
3230 	 * work.
3231 	 */
3232 	if (features & NETIF_F_GSO_PARTIAL) {
3233 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3234 		struct net_device *dev = skb->dev;
3235 
3236 		partial_features |= dev->features & dev->gso_partial_features;
3237 		if (!skb_gso_ok(skb, features | partial_features))
3238 			features &= ~NETIF_F_GSO_PARTIAL;
3239 	}
3240 
3241 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3242 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3243 
3244 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3245 	SKB_GSO_CB(skb)->encap_level = 0;
3246 
3247 	skb_reset_mac_header(skb);
3248 	skb_reset_mac_len(skb);
3249 
3250 	segs = skb_mac_gso_segment(skb, features);
3251 
3252 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3253 		skb_warn_bad_offload(skb);
3254 
3255 	return segs;
3256 }
3257 EXPORT_SYMBOL(__skb_gso_segment);
3258 
3259 /* Take action when hardware reception checksum errors are detected. */
3260 #ifdef CONFIG_BUG
3261 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3262 {
3263 	if (net_ratelimit()) {
3264 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3265 		skb_dump(KERN_ERR, skb, true);
3266 		dump_stack();
3267 	}
3268 }
3269 EXPORT_SYMBOL(netdev_rx_csum_fault);
3270 #endif
3271 
3272 /* XXX: check that highmem exists at all on the given machine. */
3273 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3274 {
3275 #ifdef CONFIG_HIGHMEM
3276 	int i;
3277 
3278 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3279 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3280 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3281 
3282 			if (PageHighMem(skb_frag_page(frag)))
3283 				return 1;
3284 		}
3285 	}
3286 #endif
3287 	return 0;
3288 }
3289 
3290 /* If MPLS offload request, verify we are testing hardware MPLS features
3291  * instead of standard features for the netdev.
3292  */
3293 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3294 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3295 					   netdev_features_t features,
3296 					   __be16 type)
3297 {
3298 	if (eth_p_mpls(type))
3299 		features &= skb->dev->mpls_features;
3300 
3301 	return features;
3302 }
3303 #else
3304 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3305 					   netdev_features_t features,
3306 					   __be16 type)
3307 {
3308 	return features;
3309 }
3310 #endif
3311 
3312 static netdev_features_t harmonize_features(struct sk_buff *skb,
3313 	netdev_features_t features)
3314 {
3315 	int tmp;
3316 	__be16 type;
3317 
3318 	type = skb_network_protocol(skb, &tmp);
3319 	features = net_mpls_features(skb, features, type);
3320 
3321 	if (skb->ip_summed != CHECKSUM_NONE &&
3322 	    !can_checksum_protocol(features, type)) {
3323 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3324 	}
3325 	if (illegal_highdma(skb->dev, skb))
3326 		features &= ~NETIF_F_SG;
3327 
3328 	return features;
3329 }
3330 
3331 netdev_features_t passthru_features_check(struct sk_buff *skb,
3332 					  struct net_device *dev,
3333 					  netdev_features_t features)
3334 {
3335 	return features;
3336 }
3337 EXPORT_SYMBOL(passthru_features_check);
3338 
3339 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3340 					     struct net_device *dev,
3341 					     netdev_features_t features)
3342 {
3343 	return vlan_features_check(skb, features);
3344 }
3345 
3346 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3347 					    struct net_device *dev,
3348 					    netdev_features_t features)
3349 {
3350 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3351 
3352 	if (gso_segs > dev->gso_max_segs)
3353 		return features & ~NETIF_F_GSO_MASK;
3354 
3355 	/* Support for GSO partial features requires software
3356 	 * intervention before we can actually process the packets
3357 	 * so we need to strip support for any partial features now
3358 	 * and we can pull them back in after we have partially
3359 	 * segmented the frame.
3360 	 */
3361 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3362 		features &= ~dev->gso_partial_features;
3363 
3364 	/* Make sure to clear the IPv4 ID mangling feature if the
3365 	 * IPv4 header has the potential to be fragmented.
3366 	 */
3367 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3368 		struct iphdr *iph = skb->encapsulation ?
3369 				    inner_ip_hdr(skb) : ip_hdr(skb);
3370 
3371 		if (!(iph->frag_off & htons(IP_DF)))
3372 			features &= ~NETIF_F_TSO_MANGLEID;
3373 	}
3374 
3375 	return features;
3376 }
3377 
3378 netdev_features_t netif_skb_features(struct sk_buff *skb)
3379 {
3380 	struct net_device *dev = skb->dev;
3381 	netdev_features_t features = dev->features;
3382 
3383 	if (skb_is_gso(skb))
3384 		features = gso_features_check(skb, dev, features);
3385 
3386 	/* If encapsulation offload request, verify we are testing
3387 	 * hardware encapsulation features instead of standard
3388 	 * features for the netdev
3389 	 */
3390 	if (skb->encapsulation)
3391 		features &= dev->hw_enc_features;
3392 
3393 	if (skb_vlan_tagged(skb))
3394 		features = netdev_intersect_features(features,
3395 						     dev->vlan_features |
3396 						     NETIF_F_HW_VLAN_CTAG_TX |
3397 						     NETIF_F_HW_VLAN_STAG_TX);
3398 
3399 	if (dev->netdev_ops->ndo_features_check)
3400 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3401 								features);
3402 	else
3403 		features &= dflt_features_check(skb, dev, features);
3404 
3405 	return harmonize_features(skb, features);
3406 }
3407 EXPORT_SYMBOL(netif_skb_features);
3408 
3409 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3410 		    struct netdev_queue *txq, bool more)
3411 {
3412 	unsigned int len;
3413 	int rc;
3414 
3415 	if (dev_nit_active(dev))
3416 		dev_queue_xmit_nit(skb, dev);
3417 
3418 	len = skb->len;
3419 	trace_net_dev_start_xmit(skb, dev);
3420 	rc = netdev_start_xmit(skb, dev, txq, more);
3421 	trace_net_dev_xmit(skb, rc, dev, len);
3422 
3423 	return rc;
3424 }
3425 
3426 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3427 				    struct netdev_queue *txq, int *ret)
3428 {
3429 	struct sk_buff *skb = first;
3430 	int rc = NETDEV_TX_OK;
3431 
3432 	while (skb) {
3433 		struct sk_buff *next = skb->next;
3434 
3435 		skb_mark_not_on_list(skb);
3436 		rc = xmit_one(skb, dev, txq, next != NULL);
3437 		if (unlikely(!dev_xmit_complete(rc))) {
3438 			skb->next = next;
3439 			goto out;
3440 		}
3441 
3442 		skb = next;
3443 		if (netif_tx_queue_stopped(txq) && skb) {
3444 			rc = NETDEV_TX_BUSY;
3445 			break;
3446 		}
3447 	}
3448 
3449 out:
3450 	*ret = rc;
3451 	return skb;
3452 }
3453 
3454 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3455 					  netdev_features_t features)
3456 {
3457 	if (skb_vlan_tag_present(skb) &&
3458 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3459 		skb = __vlan_hwaccel_push_inside(skb);
3460 	return skb;
3461 }
3462 
3463 int skb_csum_hwoffload_help(struct sk_buff *skb,
3464 			    const netdev_features_t features)
3465 {
3466 	if (unlikely(skb->csum_not_inet))
3467 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3468 			skb_crc32c_csum_help(skb);
3469 
3470 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3471 }
3472 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3473 
3474 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3475 {
3476 	netdev_features_t features;
3477 
3478 	features = netif_skb_features(skb);
3479 	skb = validate_xmit_vlan(skb, features);
3480 	if (unlikely(!skb))
3481 		goto out_null;
3482 
3483 	skb = sk_validate_xmit_skb(skb, dev);
3484 	if (unlikely(!skb))
3485 		goto out_null;
3486 
3487 	if (netif_needs_gso(skb, features)) {
3488 		struct sk_buff *segs;
3489 
3490 		segs = skb_gso_segment(skb, features);
3491 		if (IS_ERR(segs)) {
3492 			goto out_kfree_skb;
3493 		} else if (segs) {
3494 			consume_skb(skb);
3495 			skb = segs;
3496 		}
3497 	} else {
3498 		if (skb_needs_linearize(skb, features) &&
3499 		    __skb_linearize(skb))
3500 			goto out_kfree_skb;
3501 
3502 		/* If packet is not checksummed and device does not
3503 		 * support checksumming for this protocol, complete
3504 		 * checksumming here.
3505 		 */
3506 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3507 			if (skb->encapsulation)
3508 				skb_set_inner_transport_header(skb,
3509 							       skb_checksum_start_offset(skb));
3510 			else
3511 				skb_set_transport_header(skb,
3512 							 skb_checksum_start_offset(skb));
3513 			if (skb_csum_hwoffload_help(skb, features))
3514 				goto out_kfree_skb;
3515 		}
3516 	}
3517 
3518 	skb = validate_xmit_xfrm(skb, features, again);
3519 
3520 	return skb;
3521 
3522 out_kfree_skb:
3523 	kfree_skb(skb);
3524 out_null:
3525 	atomic_long_inc(&dev->tx_dropped);
3526 	return NULL;
3527 }
3528 
3529 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3530 {
3531 	struct sk_buff *next, *head = NULL, *tail;
3532 
3533 	for (; skb != NULL; skb = next) {
3534 		next = skb->next;
3535 		skb_mark_not_on_list(skb);
3536 
3537 		/* in case skb wont be segmented, point to itself */
3538 		skb->prev = skb;
3539 
3540 		skb = validate_xmit_skb(skb, dev, again);
3541 		if (!skb)
3542 			continue;
3543 
3544 		if (!head)
3545 			head = skb;
3546 		else
3547 			tail->next = skb;
3548 		/* If skb was segmented, skb->prev points to
3549 		 * the last segment. If not, it still contains skb.
3550 		 */
3551 		tail = skb->prev;
3552 	}
3553 	return head;
3554 }
3555 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3556 
3557 static void qdisc_pkt_len_init(struct sk_buff *skb)
3558 {
3559 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3560 
3561 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3562 
3563 	/* To get more precise estimation of bytes sent on wire,
3564 	 * we add to pkt_len the headers size of all segments
3565 	 */
3566 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3567 		unsigned int hdr_len;
3568 		u16 gso_segs = shinfo->gso_segs;
3569 
3570 		/* mac layer + network layer */
3571 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3572 
3573 		/* + transport layer */
3574 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3575 			const struct tcphdr *th;
3576 			struct tcphdr _tcphdr;
3577 
3578 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3579 						sizeof(_tcphdr), &_tcphdr);
3580 			if (likely(th))
3581 				hdr_len += __tcp_hdrlen(th);
3582 		} else {
3583 			struct udphdr _udphdr;
3584 
3585 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3586 					       sizeof(_udphdr), &_udphdr))
3587 				hdr_len += sizeof(struct udphdr);
3588 		}
3589 
3590 		if (shinfo->gso_type & SKB_GSO_DODGY)
3591 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3592 						shinfo->gso_size);
3593 
3594 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3595 	}
3596 }
3597 
3598 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3599 				 struct net_device *dev,
3600 				 struct netdev_queue *txq)
3601 {
3602 	spinlock_t *root_lock = qdisc_lock(q);
3603 	struct sk_buff *to_free = NULL;
3604 	bool contended;
3605 	int rc;
3606 
3607 	qdisc_calculate_pkt_len(skb, q);
3608 
3609 	if (q->flags & TCQ_F_NOLOCK) {
3610 		if ((q->flags & TCQ_F_CAN_BYPASS) && READ_ONCE(q->empty) &&
3611 		    qdisc_run_begin(q)) {
3612 			if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
3613 					      &q->state))) {
3614 				__qdisc_drop(skb, &to_free);
3615 				rc = NET_XMIT_DROP;
3616 				goto end_run;
3617 			}
3618 			qdisc_bstats_cpu_update(q, skb);
3619 
3620 			rc = NET_XMIT_SUCCESS;
3621 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3622 				__qdisc_run(q);
3623 
3624 end_run:
3625 			qdisc_run_end(q);
3626 		} else {
3627 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3628 			qdisc_run(q);
3629 		}
3630 
3631 		if (unlikely(to_free))
3632 			kfree_skb_list(to_free);
3633 		return rc;
3634 	}
3635 
3636 	/*
3637 	 * Heuristic to force contended enqueues to serialize on a
3638 	 * separate lock before trying to get qdisc main lock.
3639 	 * This permits qdisc->running owner to get the lock more
3640 	 * often and dequeue packets faster.
3641 	 */
3642 	contended = qdisc_is_running(q);
3643 	if (unlikely(contended))
3644 		spin_lock(&q->busylock);
3645 
3646 	spin_lock(root_lock);
3647 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3648 		__qdisc_drop(skb, &to_free);
3649 		rc = NET_XMIT_DROP;
3650 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3651 		   qdisc_run_begin(q)) {
3652 		/*
3653 		 * This is a work-conserving queue; there are no old skbs
3654 		 * waiting to be sent out; and the qdisc is not running -
3655 		 * xmit the skb directly.
3656 		 */
3657 
3658 		qdisc_bstats_update(q, skb);
3659 
3660 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3661 			if (unlikely(contended)) {
3662 				spin_unlock(&q->busylock);
3663 				contended = false;
3664 			}
3665 			__qdisc_run(q);
3666 		}
3667 
3668 		qdisc_run_end(q);
3669 		rc = NET_XMIT_SUCCESS;
3670 	} else {
3671 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3672 		if (qdisc_run_begin(q)) {
3673 			if (unlikely(contended)) {
3674 				spin_unlock(&q->busylock);
3675 				contended = false;
3676 			}
3677 			__qdisc_run(q);
3678 			qdisc_run_end(q);
3679 		}
3680 	}
3681 	spin_unlock(root_lock);
3682 	if (unlikely(to_free))
3683 		kfree_skb_list(to_free);
3684 	if (unlikely(contended))
3685 		spin_unlock(&q->busylock);
3686 	return rc;
3687 }
3688 
3689 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3690 static void skb_update_prio(struct sk_buff *skb)
3691 {
3692 	const struct netprio_map *map;
3693 	const struct sock *sk;
3694 	unsigned int prioidx;
3695 
3696 	if (skb->priority)
3697 		return;
3698 	map = rcu_dereference_bh(skb->dev->priomap);
3699 	if (!map)
3700 		return;
3701 	sk = skb_to_full_sk(skb);
3702 	if (!sk)
3703 		return;
3704 
3705 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3706 
3707 	if (prioidx < map->priomap_len)
3708 		skb->priority = map->priomap[prioidx];
3709 }
3710 #else
3711 #define skb_update_prio(skb)
3712 #endif
3713 
3714 /**
3715  *	dev_loopback_xmit - loop back @skb
3716  *	@net: network namespace this loopback is happening in
3717  *	@sk:  sk needed to be a netfilter okfn
3718  *	@skb: buffer to transmit
3719  */
3720 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3721 {
3722 	skb_reset_mac_header(skb);
3723 	__skb_pull(skb, skb_network_offset(skb));
3724 	skb->pkt_type = PACKET_LOOPBACK;
3725 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3726 	WARN_ON(!skb_dst(skb));
3727 	skb_dst_force(skb);
3728 	netif_rx_ni(skb);
3729 	return 0;
3730 }
3731 EXPORT_SYMBOL(dev_loopback_xmit);
3732 
3733 #ifdef CONFIG_NET_EGRESS
3734 static struct sk_buff *
3735 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3736 {
3737 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3738 	struct tcf_result cl_res;
3739 
3740 	if (!miniq)
3741 		return skb;
3742 
3743 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3744 	mini_qdisc_bstats_cpu_update(miniq, skb);
3745 
3746 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3747 	case TC_ACT_OK:
3748 	case TC_ACT_RECLASSIFY:
3749 		skb->tc_index = TC_H_MIN(cl_res.classid);
3750 		break;
3751 	case TC_ACT_SHOT:
3752 		mini_qdisc_qstats_cpu_drop(miniq);
3753 		*ret = NET_XMIT_DROP;
3754 		kfree_skb(skb);
3755 		return NULL;
3756 	case TC_ACT_STOLEN:
3757 	case TC_ACT_QUEUED:
3758 	case TC_ACT_TRAP:
3759 		*ret = NET_XMIT_SUCCESS;
3760 		consume_skb(skb);
3761 		return NULL;
3762 	case TC_ACT_REDIRECT:
3763 		/* No need to push/pop skb's mac_header here on egress! */
3764 		skb_do_redirect(skb);
3765 		*ret = NET_XMIT_SUCCESS;
3766 		return NULL;
3767 	default:
3768 		break;
3769 	}
3770 
3771 	return skb;
3772 }
3773 #endif /* CONFIG_NET_EGRESS */
3774 
3775 #ifdef CONFIG_XPS
3776 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3777 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3778 {
3779 	struct xps_map *map;
3780 	int queue_index = -1;
3781 
3782 	if (dev->num_tc) {
3783 		tci *= dev->num_tc;
3784 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3785 	}
3786 
3787 	map = rcu_dereference(dev_maps->attr_map[tci]);
3788 	if (map) {
3789 		if (map->len == 1)
3790 			queue_index = map->queues[0];
3791 		else
3792 			queue_index = map->queues[reciprocal_scale(
3793 						skb_get_hash(skb), map->len)];
3794 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3795 			queue_index = -1;
3796 	}
3797 	return queue_index;
3798 }
3799 #endif
3800 
3801 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3802 			 struct sk_buff *skb)
3803 {
3804 #ifdef CONFIG_XPS
3805 	struct xps_dev_maps *dev_maps;
3806 	struct sock *sk = skb->sk;
3807 	int queue_index = -1;
3808 
3809 	if (!static_key_false(&xps_needed))
3810 		return -1;
3811 
3812 	rcu_read_lock();
3813 	if (!static_key_false(&xps_rxqs_needed))
3814 		goto get_cpus_map;
3815 
3816 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3817 	if (dev_maps) {
3818 		int tci = sk_rx_queue_get(sk);
3819 
3820 		if (tci >= 0 && tci < dev->num_rx_queues)
3821 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3822 							  tci);
3823 	}
3824 
3825 get_cpus_map:
3826 	if (queue_index < 0) {
3827 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3828 		if (dev_maps) {
3829 			unsigned int tci = skb->sender_cpu - 1;
3830 
3831 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3832 							  tci);
3833 		}
3834 	}
3835 	rcu_read_unlock();
3836 
3837 	return queue_index;
3838 #else
3839 	return -1;
3840 #endif
3841 }
3842 
3843 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3844 		     struct net_device *sb_dev)
3845 {
3846 	return 0;
3847 }
3848 EXPORT_SYMBOL(dev_pick_tx_zero);
3849 
3850 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3851 		       struct net_device *sb_dev)
3852 {
3853 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3854 }
3855 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3856 
3857 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3858 		     struct net_device *sb_dev)
3859 {
3860 	struct sock *sk = skb->sk;
3861 	int queue_index = sk_tx_queue_get(sk);
3862 
3863 	sb_dev = sb_dev ? : dev;
3864 
3865 	if (queue_index < 0 || skb->ooo_okay ||
3866 	    queue_index >= dev->real_num_tx_queues) {
3867 		int new_index = get_xps_queue(dev, sb_dev, skb);
3868 
3869 		if (new_index < 0)
3870 			new_index = skb_tx_hash(dev, sb_dev, skb);
3871 
3872 		if (queue_index != new_index && sk &&
3873 		    sk_fullsock(sk) &&
3874 		    rcu_access_pointer(sk->sk_dst_cache))
3875 			sk_tx_queue_set(sk, new_index);
3876 
3877 		queue_index = new_index;
3878 	}
3879 
3880 	return queue_index;
3881 }
3882 EXPORT_SYMBOL(netdev_pick_tx);
3883 
3884 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3885 					 struct sk_buff *skb,
3886 					 struct net_device *sb_dev)
3887 {
3888 	int queue_index = 0;
3889 
3890 #ifdef CONFIG_XPS
3891 	u32 sender_cpu = skb->sender_cpu - 1;
3892 
3893 	if (sender_cpu >= (u32)NR_CPUS)
3894 		skb->sender_cpu = raw_smp_processor_id() + 1;
3895 #endif
3896 
3897 	if (dev->real_num_tx_queues != 1) {
3898 		const struct net_device_ops *ops = dev->netdev_ops;
3899 
3900 		if (ops->ndo_select_queue)
3901 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3902 		else
3903 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
3904 
3905 		queue_index = netdev_cap_txqueue(dev, queue_index);
3906 	}
3907 
3908 	skb_set_queue_mapping(skb, queue_index);
3909 	return netdev_get_tx_queue(dev, queue_index);
3910 }
3911 
3912 /**
3913  *	__dev_queue_xmit - transmit a buffer
3914  *	@skb: buffer to transmit
3915  *	@sb_dev: suboordinate device used for L2 forwarding offload
3916  *
3917  *	Queue a buffer for transmission to a network device. The caller must
3918  *	have set the device and priority and built the buffer before calling
3919  *	this function. The function can be called from an interrupt.
3920  *
3921  *	A negative errno code is returned on a failure. A success does not
3922  *	guarantee the frame will be transmitted as it may be dropped due
3923  *	to congestion or traffic shaping.
3924  *
3925  * -----------------------------------------------------------------------------------
3926  *      I notice this method can also return errors from the queue disciplines,
3927  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3928  *      be positive.
3929  *
3930  *      Regardless of the return value, the skb is consumed, so it is currently
3931  *      difficult to retry a send to this method.  (You can bump the ref count
3932  *      before sending to hold a reference for retry if you are careful.)
3933  *
3934  *      When calling this method, interrupts MUST be enabled.  This is because
3935  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3936  *          --BLG
3937  */
3938 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3939 {
3940 	struct net_device *dev = skb->dev;
3941 	struct netdev_queue *txq;
3942 	struct Qdisc *q;
3943 	int rc = -ENOMEM;
3944 	bool again = false;
3945 
3946 	skb_reset_mac_header(skb);
3947 
3948 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3949 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3950 
3951 	/* Disable soft irqs for various locks below. Also
3952 	 * stops preemption for RCU.
3953 	 */
3954 	rcu_read_lock_bh();
3955 
3956 	skb_update_prio(skb);
3957 
3958 	qdisc_pkt_len_init(skb);
3959 #ifdef CONFIG_NET_CLS_ACT
3960 	skb->tc_at_ingress = 0;
3961 # ifdef CONFIG_NET_EGRESS
3962 	if (static_branch_unlikely(&egress_needed_key)) {
3963 		skb = sch_handle_egress(skb, &rc, dev);
3964 		if (!skb)
3965 			goto out;
3966 	}
3967 # endif
3968 #endif
3969 	/* If device/qdisc don't need skb->dst, release it right now while
3970 	 * its hot in this cpu cache.
3971 	 */
3972 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3973 		skb_dst_drop(skb);
3974 	else
3975 		skb_dst_force(skb);
3976 
3977 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
3978 	q = rcu_dereference_bh(txq->qdisc);
3979 
3980 	trace_net_dev_queue(skb);
3981 	if (q->enqueue) {
3982 		rc = __dev_xmit_skb(skb, q, dev, txq);
3983 		goto out;
3984 	}
3985 
3986 	/* The device has no queue. Common case for software devices:
3987 	 * loopback, all the sorts of tunnels...
3988 
3989 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3990 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3991 	 * counters.)
3992 	 * However, it is possible, that they rely on protection
3993 	 * made by us here.
3994 
3995 	 * Check this and shot the lock. It is not prone from deadlocks.
3996 	 *Either shot noqueue qdisc, it is even simpler 8)
3997 	 */
3998 	if (dev->flags & IFF_UP) {
3999 		int cpu = smp_processor_id(); /* ok because BHs are off */
4000 
4001 		if (txq->xmit_lock_owner != cpu) {
4002 			if (dev_xmit_recursion())
4003 				goto recursion_alert;
4004 
4005 			skb = validate_xmit_skb(skb, dev, &again);
4006 			if (!skb)
4007 				goto out;
4008 
4009 			HARD_TX_LOCK(dev, txq, cpu);
4010 
4011 			if (!netif_xmit_stopped(txq)) {
4012 				dev_xmit_recursion_inc();
4013 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4014 				dev_xmit_recursion_dec();
4015 				if (dev_xmit_complete(rc)) {
4016 					HARD_TX_UNLOCK(dev, txq);
4017 					goto out;
4018 				}
4019 			}
4020 			HARD_TX_UNLOCK(dev, txq);
4021 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4022 					     dev->name);
4023 		} else {
4024 			/* Recursion is detected! It is possible,
4025 			 * unfortunately
4026 			 */
4027 recursion_alert:
4028 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4029 					     dev->name);
4030 		}
4031 	}
4032 
4033 	rc = -ENETDOWN;
4034 	rcu_read_unlock_bh();
4035 
4036 	atomic_long_inc(&dev->tx_dropped);
4037 	kfree_skb_list(skb);
4038 	return rc;
4039 out:
4040 	rcu_read_unlock_bh();
4041 	return rc;
4042 }
4043 
4044 int dev_queue_xmit(struct sk_buff *skb)
4045 {
4046 	return __dev_queue_xmit(skb, NULL);
4047 }
4048 EXPORT_SYMBOL(dev_queue_xmit);
4049 
4050 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4051 {
4052 	return __dev_queue_xmit(skb, sb_dev);
4053 }
4054 EXPORT_SYMBOL(dev_queue_xmit_accel);
4055 
4056 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4057 {
4058 	struct net_device *dev = skb->dev;
4059 	struct sk_buff *orig_skb = skb;
4060 	struct netdev_queue *txq;
4061 	int ret = NETDEV_TX_BUSY;
4062 	bool again = false;
4063 
4064 	if (unlikely(!netif_running(dev) ||
4065 		     !netif_carrier_ok(dev)))
4066 		goto drop;
4067 
4068 	skb = validate_xmit_skb_list(skb, dev, &again);
4069 	if (skb != orig_skb)
4070 		goto drop;
4071 
4072 	skb_set_queue_mapping(skb, queue_id);
4073 	txq = skb_get_tx_queue(dev, skb);
4074 
4075 	local_bh_disable();
4076 
4077 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4078 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4079 		ret = netdev_start_xmit(skb, dev, txq, false);
4080 	HARD_TX_UNLOCK(dev, txq);
4081 
4082 	local_bh_enable();
4083 
4084 	if (!dev_xmit_complete(ret))
4085 		kfree_skb(skb);
4086 
4087 	return ret;
4088 drop:
4089 	atomic_long_inc(&dev->tx_dropped);
4090 	kfree_skb_list(skb);
4091 	return NET_XMIT_DROP;
4092 }
4093 EXPORT_SYMBOL(dev_direct_xmit);
4094 
4095 /*************************************************************************
4096  *			Receiver routines
4097  *************************************************************************/
4098 
4099 int netdev_max_backlog __read_mostly = 1000;
4100 EXPORT_SYMBOL(netdev_max_backlog);
4101 
4102 int netdev_tstamp_prequeue __read_mostly = 1;
4103 int netdev_budget __read_mostly = 300;
4104 unsigned int __read_mostly netdev_budget_usecs = 2000;
4105 int weight_p __read_mostly = 64;           /* old backlog weight */
4106 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4107 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4108 int dev_rx_weight __read_mostly = 64;
4109 int dev_tx_weight __read_mostly = 64;
4110 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4111 int gro_normal_batch __read_mostly = 8;
4112 
4113 /* Called with irq disabled */
4114 static inline void ____napi_schedule(struct softnet_data *sd,
4115 				     struct napi_struct *napi)
4116 {
4117 	list_add_tail(&napi->poll_list, &sd->poll_list);
4118 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4119 }
4120 
4121 #ifdef CONFIG_RPS
4122 
4123 /* One global table that all flow-based protocols share. */
4124 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4125 EXPORT_SYMBOL(rps_sock_flow_table);
4126 u32 rps_cpu_mask __read_mostly;
4127 EXPORT_SYMBOL(rps_cpu_mask);
4128 
4129 struct static_key_false rps_needed __read_mostly;
4130 EXPORT_SYMBOL(rps_needed);
4131 struct static_key_false rfs_needed __read_mostly;
4132 EXPORT_SYMBOL(rfs_needed);
4133 
4134 static struct rps_dev_flow *
4135 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4136 	    struct rps_dev_flow *rflow, u16 next_cpu)
4137 {
4138 	if (next_cpu < nr_cpu_ids) {
4139 #ifdef CONFIG_RFS_ACCEL
4140 		struct netdev_rx_queue *rxqueue;
4141 		struct rps_dev_flow_table *flow_table;
4142 		struct rps_dev_flow *old_rflow;
4143 		u32 flow_id;
4144 		u16 rxq_index;
4145 		int rc;
4146 
4147 		/* Should we steer this flow to a different hardware queue? */
4148 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4149 		    !(dev->features & NETIF_F_NTUPLE))
4150 			goto out;
4151 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4152 		if (rxq_index == skb_get_rx_queue(skb))
4153 			goto out;
4154 
4155 		rxqueue = dev->_rx + rxq_index;
4156 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4157 		if (!flow_table)
4158 			goto out;
4159 		flow_id = skb_get_hash(skb) & flow_table->mask;
4160 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4161 							rxq_index, flow_id);
4162 		if (rc < 0)
4163 			goto out;
4164 		old_rflow = rflow;
4165 		rflow = &flow_table->flows[flow_id];
4166 		rflow->filter = rc;
4167 		if (old_rflow->filter == rflow->filter)
4168 			old_rflow->filter = RPS_NO_FILTER;
4169 	out:
4170 #endif
4171 		rflow->last_qtail =
4172 			per_cpu(softnet_data, next_cpu).input_queue_head;
4173 	}
4174 
4175 	rflow->cpu = next_cpu;
4176 	return rflow;
4177 }
4178 
4179 /*
4180  * get_rps_cpu is called from netif_receive_skb and returns the target
4181  * CPU from the RPS map of the receiving queue for a given skb.
4182  * rcu_read_lock must be held on entry.
4183  */
4184 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4185 		       struct rps_dev_flow **rflowp)
4186 {
4187 	const struct rps_sock_flow_table *sock_flow_table;
4188 	struct netdev_rx_queue *rxqueue = dev->_rx;
4189 	struct rps_dev_flow_table *flow_table;
4190 	struct rps_map *map;
4191 	int cpu = -1;
4192 	u32 tcpu;
4193 	u32 hash;
4194 
4195 	if (skb_rx_queue_recorded(skb)) {
4196 		u16 index = skb_get_rx_queue(skb);
4197 
4198 		if (unlikely(index >= dev->real_num_rx_queues)) {
4199 			WARN_ONCE(dev->real_num_rx_queues > 1,
4200 				  "%s received packet on queue %u, but number "
4201 				  "of RX queues is %u\n",
4202 				  dev->name, index, dev->real_num_rx_queues);
4203 			goto done;
4204 		}
4205 		rxqueue += index;
4206 	}
4207 
4208 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4209 
4210 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4211 	map = rcu_dereference(rxqueue->rps_map);
4212 	if (!flow_table && !map)
4213 		goto done;
4214 
4215 	skb_reset_network_header(skb);
4216 	hash = skb_get_hash(skb);
4217 	if (!hash)
4218 		goto done;
4219 
4220 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4221 	if (flow_table && sock_flow_table) {
4222 		struct rps_dev_flow *rflow;
4223 		u32 next_cpu;
4224 		u32 ident;
4225 
4226 		/* First check into global flow table if there is a match */
4227 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4228 		if ((ident ^ hash) & ~rps_cpu_mask)
4229 			goto try_rps;
4230 
4231 		next_cpu = ident & rps_cpu_mask;
4232 
4233 		/* OK, now we know there is a match,
4234 		 * we can look at the local (per receive queue) flow table
4235 		 */
4236 		rflow = &flow_table->flows[hash & flow_table->mask];
4237 		tcpu = rflow->cpu;
4238 
4239 		/*
4240 		 * If the desired CPU (where last recvmsg was done) is
4241 		 * different from current CPU (one in the rx-queue flow
4242 		 * table entry), switch if one of the following holds:
4243 		 *   - Current CPU is unset (>= nr_cpu_ids).
4244 		 *   - Current CPU is offline.
4245 		 *   - The current CPU's queue tail has advanced beyond the
4246 		 *     last packet that was enqueued using this table entry.
4247 		 *     This guarantees that all previous packets for the flow
4248 		 *     have been dequeued, thus preserving in order delivery.
4249 		 */
4250 		if (unlikely(tcpu != next_cpu) &&
4251 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4252 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4253 		      rflow->last_qtail)) >= 0)) {
4254 			tcpu = next_cpu;
4255 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4256 		}
4257 
4258 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4259 			*rflowp = rflow;
4260 			cpu = tcpu;
4261 			goto done;
4262 		}
4263 	}
4264 
4265 try_rps:
4266 
4267 	if (map) {
4268 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4269 		if (cpu_online(tcpu)) {
4270 			cpu = tcpu;
4271 			goto done;
4272 		}
4273 	}
4274 
4275 done:
4276 	return cpu;
4277 }
4278 
4279 #ifdef CONFIG_RFS_ACCEL
4280 
4281 /**
4282  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4283  * @dev: Device on which the filter was set
4284  * @rxq_index: RX queue index
4285  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4286  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4287  *
4288  * Drivers that implement ndo_rx_flow_steer() should periodically call
4289  * this function for each installed filter and remove the filters for
4290  * which it returns %true.
4291  */
4292 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4293 			 u32 flow_id, u16 filter_id)
4294 {
4295 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4296 	struct rps_dev_flow_table *flow_table;
4297 	struct rps_dev_flow *rflow;
4298 	bool expire = true;
4299 	unsigned int cpu;
4300 
4301 	rcu_read_lock();
4302 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4303 	if (flow_table && flow_id <= flow_table->mask) {
4304 		rflow = &flow_table->flows[flow_id];
4305 		cpu = READ_ONCE(rflow->cpu);
4306 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4307 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4308 			   rflow->last_qtail) <
4309 		     (int)(10 * flow_table->mask)))
4310 			expire = false;
4311 	}
4312 	rcu_read_unlock();
4313 	return expire;
4314 }
4315 EXPORT_SYMBOL(rps_may_expire_flow);
4316 
4317 #endif /* CONFIG_RFS_ACCEL */
4318 
4319 /* Called from hardirq (IPI) context */
4320 static void rps_trigger_softirq(void *data)
4321 {
4322 	struct softnet_data *sd = data;
4323 
4324 	____napi_schedule(sd, &sd->backlog);
4325 	sd->received_rps++;
4326 }
4327 
4328 #endif /* CONFIG_RPS */
4329 
4330 /*
4331  * Check if this softnet_data structure is another cpu one
4332  * If yes, queue it to our IPI list and return 1
4333  * If no, return 0
4334  */
4335 static int rps_ipi_queued(struct softnet_data *sd)
4336 {
4337 #ifdef CONFIG_RPS
4338 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4339 
4340 	if (sd != mysd) {
4341 		sd->rps_ipi_next = mysd->rps_ipi_list;
4342 		mysd->rps_ipi_list = sd;
4343 
4344 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4345 		return 1;
4346 	}
4347 #endif /* CONFIG_RPS */
4348 	return 0;
4349 }
4350 
4351 #ifdef CONFIG_NET_FLOW_LIMIT
4352 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4353 #endif
4354 
4355 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4356 {
4357 #ifdef CONFIG_NET_FLOW_LIMIT
4358 	struct sd_flow_limit *fl;
4359 	struct softnet_data *sd;
4360 	unsigned int old_flow, new_flow;
4361 
4362 	if (qlen < (netdev_max_backlog >> 1))
4363 		return false;
4364 
4365 	sd = this_cpu_ptr(&softnet_data);
4366 
4367 	rcu_read_lock();
4368 	fl = rcu_dereference(sd->flow_limit);
4369 	if (fl) {
4370 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4371 		old_flow = fl->history[fl->history_head];
4372 		fl->history[fl->history_head] = new_flow;
4373 
4374 		fl->history_head++;
4375 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4376 
4377 		if (likely(fl->buckets[old_flow]))
4378 			fl->buckets[old_flow]--;
4379 
4380 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4381 			fl->count++;
4382 			rcu_read_unlock();
4383 			return true;
4384 		}
4385 	}
4386 	rcu_read_unlock();
4387 #endif
4388 	return false;
4389 }
4390 
4391 /*
4392  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4393  * queue (may be a remote CPU queue).
4394  */
4395 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4396 			      unsigned int *qtail)
4397 {
4398 	struct softnet_data *sd;
4399 	unsigned long flags;
4400 	unsigned int qlen;
4401 
4402 	sd = &per_cpu(softnet_data, cpu);
4403 
4404 	local_irq_save(flags);
4405 
4406 	rps_lock(sd);
4407 	if (!netif_running(skb->dev))
4408 		goto drop;
4409 	qlen = skb_queue_len(&sd->input_pkt_queue);
4410 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4411 		if (qlen) {
4412 enqueue:
4413 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4414 			input_queue_tail_incr_save(sd, qtail);
4415 			rps_unlock(sd);
4416 			local_irq_restore(flags);
4417 			return NET_RX_SUCCESS;
4418 		}
4419 
4420 		/* Schedule NAPI for backlog device
4421 		 * We can use non atomic operation since we own the queue lock
4422 		 */
4423 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4424 			if (!rps_ipi_queued(sd))
4425 				____napi_schedule(sd, &sd->backlog);
4426 		}
4427 		goto enqueue;
4428 	}
4429 
4430 drop:
4431 	sd->dropped++;
4432 	rps_unlock(sd);
4433 
4434 	local_irq_restore(flags);
4435 
4436 	atomic_long_inc(&skb->dev->rx_dropped);
4437 	kfree_skb(skb);
4438 	return NET_RX_DROP;
4439 }
4440 
4441 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4442 {
4443 	struct net_device *dev = skb->dev;
4444 	struct netdev_rx_queue *rxqueue;
4445 
4446 	rxqueue = dev->_rx;
4447 
4448 	if (skb_rx_queue_recorded(skb)) {
4449 		u16 index = skb_get_rx_queue(skb);
4450 
4451 		if (unlikely(index >= dev->real_num_rx_queues)) {
4452 			WARN_ONCE(dev->real_num_rx_queues > 1,
4453 				  "%s received packet on queue %u, but number "
4454 				  "of RX queues is %u\n",
4455 				  dev->name, index, dev->real_num_rx_queues);
4456 
4457 			return rxqueue; /* Return first rxqueue */
4458 		}
4459 		rxqueue += index;
4460 	}
4461 	return rxqueue;
4462 }
4463 
4464 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4465 				     struct xdp_buff *xdp,
4466 				     struct bpf_prog *xdp_prog)
4467 {
4468 	struct netdev_rx_queue *rxqueue;
4469 	void *orig_data, *orig_data_end;
4470 	u32 metalen, act = XDP_DROP;
4471 	__be16 orig_eth_type;
4472 	struct ethhdr *eth;
4473 	bool orig_bcast;
4474 	int hlen, off;
4475 	u32 mac_len;
4476 
4477 	/* Reinjected packets coming from act_mirred or similar should
4478 	 * not get XDP generic processing.
4479 	 */
4480 	if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4481 		return XDP_PASS;
4482 
4483 	/* XDP packets must be linear and must have sufficient headroom
4484 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4485 	 * native XDP provides, thus we need to do it here as well.
4486 	 */
4487 	if (skb_is_nonlinear(skb) ||
4488 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4489 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4490 		int troom = skb->tail + skb->data_len - skb->end;
4491 
4492 		/* In case we have to go down the path and also linearize,
4493 		 * then lets do the pskb_expand_head() work just once here.
4494 		 */
4495 		if (pskb_expand_head(skb,
4496 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4497 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4498 			goto do_drop;
4499 		if (skb_linearize(skb))
4500 			goto do_drop;
4501 	}
4502 
4503 	/* The XDP program wants to see the packet starting at the MAC
4504 	 * header.
4505 	 */
4506 	mac_len = skb->data - skb_mac_header(skb);
4507 	hlen = skb_headlen(skb) + mac_len;
4508 	xdp->data = skb->data - mac_len;
4509 	xdp->data_meta = xdp->data;
4510 	xdp->data_end = xdp->data + hlen;
4511 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4512 	orig_data_end = xdp->data_end;
4513 	orig_data = xdp->data;
4514 	eth = (struct ethhdr *)xdp->data;
4515 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4516 	orig_eth_type = eth->h_proto;
4517 
4518 	rxqueue = netif_get_rxqueue(skb);
4519 	xdp->rxq = &rxqueue->xdp_rxq;
4520 
4521 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4522 
4523 	/* check if bpf_xdp_adjust_head was used */
4524 	off = xdp->data - orig_data;
4525 	if (off) {
4526 		if (off > 0)
4527 			__skb_pull(skb, off);
4528 		else if (off < 0)
4529 			__skb_push(skb, -off);
4530 
4531 		skb->mac_header += off;
4532 		skb_reset_network_header(skb);
4533 	}
4534 
4535 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4536 	 * pckt.
4537 	 */
4538 	off = orig_data_end - xdp->data_end;
4539 	if (off != 0) {
4540 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4541 		skb->len -= off;
4542 
4543 	}
4544 
4545 	/* check if XDP changed eth hdr such SKB needs update */
4546 	eth = (struct ethhdr *)xdp->data;
4547 	if ((orig_eth_type != eth->h_proto) ||
4548 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4549 		__skb_push(skb, ETH_HLEN);
4550 		skb->protocol = eth_type_trans(skb, skb->dev);
4551 	}
4552 
4553 	switch (act) {
4554 	case XDP_REDIRECT:
4555 	case XDP_TX:
4556 		__skb_push(skb, mac_len);
4557 		break;
4558 	case XDP_PASS:
4559 		metalen = xdp->data - xdp->data_meta;
4560 		if (metalen)
4561 			skb_metadata_set(skb, metalen);
4562 		break;
4563 	default:
4564 		bpf_warn_invalid_xdp_action(act);
4565 		/* fall through */
4566 	case XDP_ABORTED:
4567 		trace_xdp_exception(skb->dev, xdp_prog, act);
4568 		/* fall through */
4569 	case XDP_DROP:
4570 	do_drop:
4571 		kfree_skb(skb);
4572 		break;
4573 	}
4574 
4575 	return act;
4576 }
4577 
4578 /* When doing generic XDP we have to bypass the qdisc layer and the
4579  * network taps in order to match in-driver-XDP behavior.
4580  */
4581 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4582 {
4583 	struct net_device *dev = skb->dev;
4584 	struct netdev_queue *txq;
4585 	bool free_skb = true;
4586 	int cpu, rc;
4587 
4588 	txq = netdev_core_pick_tx(dev, skb, NULL);
4589 	cpu = smp_processor_id();
4590 	HARD_TX_LOCK(dev, txq, cpu);
4591 	if (!netif_xmit_stopped(txq)) {
4592 		rc = netdev_start_xmit(skb, dev, txq, 0);
4593 		if (dev_xmit_complete(rc))
4594 			free_skb = false;
4595 	}
4596 	HARD_TX_UNLOCK(dev, txq);
4597 	if (free_skb) {
4598 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4599 		kfree_skb(skb);
4600 	}
4601 }
4602 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4603 
4604 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4605 
4606 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4607 {
4608 	if (xdp_prog) {
4609 		struct xdp_buff xdp;
4610 		u32 act;
4611 		int err;
4612 
4613 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4614 		if (act != XDP_PASS) {
4615 			switch (act) {
4616 			case XDP_REDIRECT:
4617 				err = xdp_do_generic_redirect(skb->dev, skb,
4618 							      &xdp, xdp_prog);
4619 				if (err)
4620 					goto out_redir;
4621 				break;
4622 			case XDP_TX:
4623 				generic_xdp_tx(skb, xdp_prog);
4624 				break;
4625 			}
4626 			return XDP_DROP;
4627 		}
4628 	}
4629 	return XDP_PASS;
4630 out_redir:
4631 	kfree_skb(skb);
4632 	return XDP_DROP;
4633 }
4634 EXPORT_SYMBOL_GPL(do_xdp_generic);
4635 
4636 static int netif_rx_internal(struct sk_buff *skb)
4637 {
4638 	int ret;
4639 
4640 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4641 
4642 	trace_netif_rx(skb);
4643 
4644 #ifdef CONFIG_RPS
4645 	if (static_branch_unlikely(&rps_needed)) {
4646 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4647 		int cpu;
4648 
4649 		preempt_disable();
4650 		rcu_read_lock();
4651 
4652 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4653 		if (cpu < 0)
4654 			cpu = smp_processor_id();
4655 
4656 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4657 
4658 		rcu_read_unlock();
4659 		preempt_enable();
4660 	} else
4661 #endif
4662 	{
4663 		unsigned int qtail;
4664 
4665 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4666 		put_cpu();
4667 	}
4668 	return ret;
4669 }
4670 
4671 /**
4672  *	netif_rx	-	post buffer to the network code
4673  *	@skb: buffer to post
4674  *
4675  *	This function receives a packet from a device driver and queues it for
4676  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4677  *	may be dropped during processing for congestion control or by the
4678  *	protocol layers.
4679  *
4680  *	return values:
4681  *	NET_RX_SUCCESS	(no congestion)
4682  *	NET_RX_DROP     (packet was dropped)
4683  *
4684  */
4685 
4686 int netif_rx(struct sk_buff *skb)
4687 {
4688 	int ret;
4689 
4690 	trace_netif_rx_entry(skb);
4691 
4692 	ret = netif_rx_internal(skb);
4693 	trace_netif_rx_exit(ret);
4694 
4695 	return ret;
4696 }
4697 EXPORT_SYMBOL(netif_rx);
4698 
4699 int netif_rx_ni(struct sk_buff *skb)
4700 {
4701 	int err;
4702 
4703 	trace_netif_rx_ni_entry(skb);
4704 
4705 	preempt_disable();
4706 	err = netif_rx_internal(skb);
4707 	if (local_softirq_pending())
4708 		do_softirq();
4709 	preempt_enable();
4710 	trace_netif_rx_ni_exit(err);
4711 
4712 	return err;
4713 }
4714 EXPORT_SYMBOL(netif_rx_ni);
4715 
4716 static __latent_entropy void net_tx_action(struct softirq_action *h)
4717 {
4718 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4719 
4720 	if (sd->completion_queue) {
4721 		struct sk_buff *clist;
4722 
4723 		local_irq_disable();
4724 		clist = sd->completion_queue;
4725 		sd->completion_queue = NULL;
4726 		local_irq_enable();
4727 
4728 		while (clist) {
4729 			struct sk_buff *skb = clist;
4730 
4731 			clist = clist->next;
4732 
4733 			WARN_ON(refcount_read(&skb->users));
4734 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4735 				trace_consume_skb(skb);
4736 			else
4737 				trace_kfree_skb(skb, net_tx_action);
4738 
4739 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4740 				__kfree_skb(skb);
4741 			else
4742 				__kfree_skb_defer(skb);
4743 		}
4744 
4745 		__kfree_skb_flush();
4746 	}
4747 
4748 	if (sd->output_queue) {
4749 		struct Qdisc *head;
4750 
4751 		local_irq_disable();
4752 		head = sd->output_queue;
4753 		sd->output_queue = NULL;
4754 		sd->output_queue_tailp = &sd->output_queue;
4755 		local_irq_enable();
4756 
4757 		while (head) {
4758 			struct Qdisc *q = head;
4759 			spinlock_t *root_lock = NULL;
4760 
4761 			head = head->next_sched;
4762 
4763 			if (!(q->flags & TCQ_F_NOLOCK)) {
4764 				root_lock = qdisc_lock(q);
4765 				spin_lock(root_lock);
4766 			}
4767 			/* We need to make sure head->next_sched is read
4768 			 * before clearing __QDISC_STATE_SCHED
4769 			 */
4770 			smp_mb__before_atomic();
4771 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4772 			qdisc_run(q);
4773 			if (root_lock)
4774 				spin_unlock(root_lock);
4775 		}
4776 	}
4777 
4778 	xfrm_dev_backlog(sd);
4779 }
4780 
4781 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4782 /* This hook is defined here for ATM LANE */
4783 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4784 			     unsigned char *addr) __read_mostly;
4785 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4786 #endif
4787 
4788 static inline struct sk_buff *
4789 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4790 		   struct net_device *orig_dev)
4791 {
4792 #ifdef CONFIG_NET_CLS_ACT
4793 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4794 	struct tcf_result cl_res;
4795 
4796 	/* If there's at least one ingress present somewhere (so
4797 	 * we get here via enabled static key), remaining devices
4798 	 * that are not configured with an ingress qdisc will bail
4799 	 * out here.
4800 	 */
4801 	if (!miniq)
4802 		return skb;
4803 
4804 	if (*pt_prev) {
4805 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4806 		*pt_prev = NULL;
4807 	}
4808 
4809 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4810 	skb->tc_at_ingress = 1;
4811 	mini_qdisc_bstats_cpu_update(miniq, skb);
4812 
4813 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4814 	case TC_ACT_OK:
4815 	case TC_ACT_RECLASSIFY:
4816 		skb->tc_index = TC_H_MIN(cl_res.classid);
4817 		break;
4818 	case TC_ACT_SHOT:
4819 		mini_qdisc_qstats_cpu_drop(miniq);
4820 		kfree_skb(skb);
4821 		return NULL;
4822 	case TC_ACT_STOLEN:
4823 	case TC_ACT_QUEUED:
4824 	case TC_ACT_TRAP:
4825 		consume_skb(skb);
4826 		return NULL;
4827 	case TC_ACT_REDIRECT:
4828 		/* skb_mac_header check was done by cls/act_bpf, so
4829 		 * we can safely push the L2 header back before
4830 		 * redirecting to another netdev
4831 		 */
4832 		__skb_push(skb, skb->mac_len);
4833 		skb_do_redirect(skb);
4834 		return NULL;
4835 	case TC_ACT_CONSUMED:
4836 		return NULL;
4837 	default:
4838 		break;
4839 	}
4840 #endif /* CONFIG_NET_CLS_ACT */
4841 	return skb;
4842 }
4843 
4844 /**
4845  *	netdev_is_rx_handler_busy - check if receive handler is registered
4846  *	@dev: device to check
4847  *
4848  *	Check if a receive handler is already registered for a given device.
4849  *	Return true if there one.
4850  *
4851  *	The caller must hold the rtnl_mutex.
4852  */
4853 bool netdev_is_rx_handler_busy(struct net_device *dev)
4854 {
4855 	ASSERT_RTNL();
4856 	return dev && rtnl_dereference(dev->rx_handler);
4857 }
4858 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4859 
4860 /**
4861  *	netdev_rx_handler_register - register receive handler
4862  *	@dev: device to register a handler for
4863  *	@rx_handler: receive handler to register
4864  *	@rx_handler_data: data pointer that is used by rx handler
4865  *
4866  *	Register a receive handler for a device. This handler will then be
4867  *	called from __netif_receive_skb. A negative errno code is returned
4868  *	on a failure.
4869  *
4870  *	The caller must hold the rtnl_mutex.
4871  *
4872  *	For a general description of rx_handler, see enum rx_handler_result.
4873  */
4874 int netdev_rx_handler_register(struct net_device *dev,
4875 			       rx_handler_func_t *rx_handler,
4876 			       void *rx_handler_data)
4877 {
4878 	if (netdev_is_rx_handler_busy(dev))
4879 		return -EBUSY;
4880 
4881 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4882 		return -EINVAL;
4883 
4884 	/* Note: rx_handler_data must be set before rx_handler */
4885 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4886 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4887 
4888 	return 0;
4889 }
4890 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4891 
4892 /**
4893  *	netdev_rx_handler_unregister - unregister receive handler
4894  *	@dev: device to unregister a handler from
4895  *
4896  *	Unregister a receive handler from a device.
4897  *
4898  *	The caller must hold the rtnl_mutex.
4899  */
4900 void netdev_rx_handler_unregister(struct net_device *dev)
4901 {
4902 
4903 	ASSERT_RTNL();
4904 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4905 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4906 	 * section has a guarantee to see a non NULL rx_handler_data
4907 	 * as well.
4908 	 */
4909 	synchronize_net();
4910 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4911 }
4912 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4913 
4914 /*
4915  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4916  * the special handling of PFMEMALLOC skbs.
4917  */
4918 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4919 {
4920 	switch (skb->protocol) {
4921 	case htons(ETH_P_ARP):
4922 	case htons(ETH_P_IP):
4923 	case htons(ETH_P_IPV6):
4924 	case htons(ETH_P_8021Q):
4925 	case htons(ETH_P_8021AD):
4926 		return true;
4927 	default:
4928 		return false;
4929 	}
4930 }
4931 
4932 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4933 			     int *ret, struct net_device *orig_dev)
4934 {
4935 #ifdef CONFIG_NETFILTER_INGRESS
4936 	if (nf_hook_ingress_active(skb)) {
4937 		int ingress_retval;
4938 
4939 		if (*pt_prev) {
4940 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4941 			*pt_prev = NULL;
4942 		}
4943 
4944 		rcu_read_lock();
4945 		ingress_retval = nf_hook_ingress(skb);
4946 		rcu_read_unlock();
4947 		return ingress_retval;
4948 	}
4949 #endif /* CONFIG_NETFILTER_INGRESS */
4950 	return 0;
4951 }
4952 
4953 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4954 				    struct packet_type **ppt_prev)
4955 {
4956 	struct packet_type *ptype, *pt_prev;
4957 	rx_handler_func_t *rx_handler;
4958 	struct net_device *orig_dev;
4959 	bool deliver_exact = false;
4960 	int ret = NET_RX_DROP;
4961 	__be16 type;
4962 
4963 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4964 
4965 	trace_netif_receive_skb(skb);
4966 
4967 	orig_dev = skb->dev;
4968 
4969 	skb_reset_network_header(skb);
4970 	if (!skb_transport_header_was_set(skb))
4971 		skb_reset_transport_header(skb);
4972 	skb_reset_mac_len(skb);
4973 
4974 	pt_prev = NULL;
4975 
4976 another_round:
4977 	skb->skb_iif = skb->dev->ifindex;
4978 
4979 	__this_cpu_inc(softnet_data.processed);
4980 
4981 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4982 		int ret2;
4983 
4984 		preempt_disable();
4985 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4986 		preempt_enable();
4987 
4988 		if (ret2 != XDP_PASS)
4989 			return NET_RX_DROP;
4990 		skb_reset_mac_len(skb);
4991 	}
4992 
4993 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4994 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4995 		skb = skb_vlan_untag(skb);
4996 		if (unlikely(!skb))
4997 			goto out;
4998 	}
4999 
5000 	if (skb_skip_tc_classify(skb))
5001 		goto skip_classify;
5002 
5003 	if (pfmemalloc)
5004 		goto skip_taps;
5005 
5006 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5007 		if (pt_prev)
5008 			ret = deliver_skb(skb, pt_prev, orig_dev);
5009 		pt_prev = ptype;
5010 	}
5011 
5012 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5013 		if (pt_prev)
5014 			ret = deliver_skb(skb, pt_prev, orig_dev);
5015 		pt_prev = ptype;
5016 	}
5017 
5018 skip_taps:
5019 #ifdef CONFIG_NET_INGRESS
5020 	if (static_branch_unlikely(&ingress_needed_key)) {
5021 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5022 		if (!skb)
5023 			goto out;
5024 
5025 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5026 			goto out;
5027 	}
5028 #endif
5029 	skb_reset_tc(skb);
5030 skip_classify:
5031 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5032 		goto drop;
5033 
5034 	if (skb_vlan_tag_present(skb)) {
5035 		if (pt_prev) {
5036 			ret = deliver_skb(skb, pt_prev, orig_dev);
5037 			pt_prev = NULL;
5038 		}
5039 		if (vlan_do_receive(&skb))
5040 			goto another_round;
5041 		else if (unlikely(!skb))
5042 			goto out;
5043 	}
5044 
5045 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5046 	if (rx_handler) {
5047 		if (pt_prev) {
5048 			ret = deliver_skb(skb, pt_prev, orig_dev);
5049 			pt_prev = NULL;
5050 		}
5051 		switch (rx_handler(&skb)) {
5052 		case RX_HANDLER_CONSUMED:
5053 			ret = NET_RX_SUCCESS;
5054 			goto out;
5055 		case RX_HANDLER_ANOTHER:
5056 			goto another_round;
5057 		case RX_HANDLER_EXACT:
5058 			deliver_exact = true;
5059 		case RX_HANDLER_PASS:
5060 			break;
5061 		default:
5062 			BUG();
5063 		}
5064 	}
5065 
5066 	if (unlikely(skb_vlan_tag_present(skb))) {
5067 check_vlan_id:
5068 		if (skb_vlan_tag_get_id(skb)) {
5069 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5070 			 * find vlan device.
5071 			 */
5072 			skb->pkt_type = PACKET_OTHERHOST;
5073 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5074 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5075 			/* Outer header is 802.1P with vlan 0, inner header is
5076 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5077 			 * not find vlan dev for vlan id 0.
5078 			 */
5079 			__vlan_hwaccel_clear_tag(skb);
5080 			skb = skb_vlan_untag(skb);
5081 			if (unlikely(!skb))
5082 				goto out;
5083 			if (vlan_do_receive(&skb))
5084 				/* After stripping off 802.1P header with vlan 0
5085 				 * vlan dev is found for inner header.
5086 				 */
5087 				goto another_round;
5088 			else if (unlikely(!skb))
5089 				goto out;
5090 			else
5091 				/* We have stripped outer 802.1P vlan 0 header.
5092 				 * But could not find vlan dev.
5093 				 * check again for vlan id to set OTHERHOST.
5094 				 */
5095 				goto check_vlan_id;
5096 		}
5097 		/* Note: we might in the future use prio bits
5098 		 * and set skb->priority like in vlan_do_receive()
5099 		 * For the time being, just ignore Priority Code Point
5100 		 */
5101 		__vlan_hwaccel_clear_tag(skb);
5102 	}
5103 
5104 	type = skb->protocol;
5105 
5106 	/* deliver only exact match when indicated */
5107 	if (likely(!deliver_exact)) {
5108 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5109 				       &ptype_base[ntohs(type) &
5110 						   PTYPE_HASH_MASK]);
5111 	}
5112 
5113 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5114 			       &orig_dev->ptype_specific);
5115 
5116 	if (unlikely(skb->dev != orig_dev)) {
5117 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5118 				       &skb->dev->ptype_specific);
5119 	}
5120 
5121 	if (pt_prev) {
5122 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5123 			goto drop;
5124 		*ppt_prev = pt_prev;
5125 	} else {
5126 drop:
5127 		if (!deliver_exact)
5128 			atomic_long_inc(&skb->dev->rx_dropped);
5129 		else
5130 			atomic_long_inc(&skb->dev->rx_nohandler);
5131 		kfree_skb(skb);
5132 		/* Jamal, now you will not able to escape explaining
5133 		 * me how you were going to use this. :-)
5134 		 */
5135 		ret = NET_RX_DROP;
5136 	}
5137 
5138 out:
5139 	return ret;
5140 }
5141 
5142 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5143 {
5144 	struct net_device *orig_dev = skb->dev;
5145 	struct packet_type *pt_prev = NULL;
5146 	int ret;
5147 
5148 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5149 	if (pt_prev)
5150 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5151 					 skb->dev, pt_prev, orig_dev);
5152 	return ret;
5153 }
5154 
5155 /**
5156  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5157  *	@skb: buffer to process
5158  *
5159  *	More direct receive version of netif_receive_skb().  It should
5160  *	only be used by callers that have a need to skip RPS and Generic XDP.
5161  *	Caller must also take care of handling if (page_is_)pfmemalloc.
5162  *
5163  *	This function may only be called from softirq context and interrupts
5164  *	should be enabled.
5165  *
5166  *	Return values (usually ignored):
5167  *	NET_RX_SUCCESS: no congestion
5168  *	NET_RX_DROP: packet was dropped
5169  */
5170 int netif_receive_skb_core(struct sk_buff *skb)
5171 {
5172 	int ret;
5173 
5174 	rcu_read_lock();
5175 	ret = __netif_receive_skb_one_core(skb, false);
5176 	rcu_read_unlock();
5177 
5178 	return ret;
5179 }
5180 EXPORT_SYMBOL(netif_receive_skb_core);
5181 
5182 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5183 						  struct packet_type *pt_prev,
5184 						  struct net_device *orig_dev)
5185 {
5186 	struct sk_buff *skb, *next;
5187 
5188 	if (!pt_prev)
5189 		return;
5190 	if (list_empty(head))
5191 		return;
5192 	if (pt_prev->list_func != NULL)
5193 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5194 				   ip_list_rcv, head, pt_prev, orig_dev);
5195 	else
5196 		list_for_each_entry_safe(skb, next, head, list) {
5197 			skb_list_del_init(skb);
5198 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5199 		}
5200 }
5201 
5202 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5203 {
5204 	/* Fast-path assumptions:
5205 	 * - There is no RX handler.
5206 	 * - Only one packet_type matches.
5207 	 * If either of these fails, we will end up doing some per-packet
5208 	 * processing in-line, then handling the 'last ptype' for the whole
5209 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5210 	 * because the 'last ptype' must be constant across the sublist, and all
5211 	 * other ptypes are handled per-packet.
5212 	 */
5213 	/* Current (common) ptype of sublist */
5214 	struct packet_type *pt_curr = NULL;
5215 	/* Current (common) orig_dev of sublist */
5216 	struct net_device *od_curr = NULL;
5217 	struct list_head sublist;
5218 	struct sk_buff *skb, *next;
5219 
5220 	INIT_LIST_HEAD(&sublist);
5221 	list_for_each_entry_safe(skb, next, head, list) {
5222 		struct net_device *orig_dev = skb->dev;
5223 		struct packet_type *pt_prev = NULL;
5224 
5225 		skb_list_del_init(skb);
5226 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5227 		if (!pt_prev)
5228 			continue;
5229 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5230 			/* dispatch old sublist */
5231 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5232 			/* start new sublist */
5233 			INIT_LIST_HEAD(&sublist);
5234 			pt_curr = pt_prev;
5235 			od_curr = orig_dev;
5236 		}
5237 		list_add_tail(&skb->list, &sublist);
5238 	}
5239 
5240 	/* dispatch final sublist */
5241 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5242 }
5243 
5244 static int __netif_receive_skb(struct sk_buff *skb)
5245 {
5246 	int ret;
5247 
5248 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5249 		unsigned int noreclaim_flag;
5250 
5251 		/*
5252 		 * PFMEMALLOC skbs are special, they should
5253 		 * - be delivered to SOCK_MEMALLOC sockets only
5254 		 * - stay away from userspace
5255 		 * - have bounded memory usage
5256 		 *
5257 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5258 		 * context down to all allocation sites.
5259 		 */
5260 		noreclaim_flag = memalloc_noreclaim_save();
5261 		ret = __netif_receive_skb_one_core(skb, true);
5262 		memalloc_noreclaim_restore(noreclaim_flag);
5263 	} else
5264 		ret = __netif_receive_skb_one_core(skb, false);
5265 
5266 	return ret;
5267 }
5268 
5269 static void __netif_receive_skb_list(struct list_head *head)
5270 {
5271 	unsigned long noreclaim_flag = 0;
5272 	struct sk_buff *skb, *next;
5273 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5274 
5275 	list_for_each_entry_safe(skb, next, head, list) {
5276 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5277 			struct list_head sublist;
5278 
5279 			/* Handle the previous sublist */
5280 			list_cut_before(&sublist, head, &skb->list);
5281 			if (!list_empty(&sublist))
5282 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5283 			pfmemalloc = !pfmemalloc;
5284 			/* See comments in __netif_receive_skb */
5285 			if (pfmemalloc)
5286 				noreclaim_flag = memalloc_noreclaim_save();
5287 			else
5288 				memalloc_noreclaim_restore(noreclaim_flag);
5289 		}
5290 	}
5291 	/* Handle the remaining sublist */
5292 	if (!list_empty(head))
5293 		__netif_receive_skb_list_core(head, pfmemalloc);
5294 	/* Restore pflags */
5295 	if (pfmemalloc)
5296 		memalloc_noreclaim_restore(noreclaim_flag);
5297 }
5298 
5299 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5300 {
5301 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5302 	struct bpf_prog *new = xdp->prog;
5303 	int ret = 0;
5304 
5305 	switch (xdp->command) {
5306 	case XDP_SETUP_PROG:
5307 		rcu_assign_pointer(dev->xdp_prog, new);
5308 		if (old)
5309 			bpf_prog_put(old);
5310 
5311 		if (old && !new) {
5312 			static_branch_dec(&generic_xdp_needed_key);
5313 		} else if (new && !old) {
5314 			static_branch_inc(&generic_xdp_needed_key);
5315 			dev_disable_lro(dev);
5316 			dev_disable_gro_hw(dev);
5317 		}
5318 		break;
5319 
5320 	case XDP_QUERY_PROG:
5321 		xdp->prog_id = old ? old->aux->id : 0;
5322 		break;
5323 
5324 	default:
5325 		ret = -EINVAL;
5326 		break;
5327 	}
5328 
5329 	return ret;
5330 }
5331 
5332 static int netif_receive_skb_internal(struct sk_buff *skb)
5333 {
5334 	int ret;
5335 
5336 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5337 
5338 	if (skb_defer_rx_timestamp(skb))
5339 		return NET_RX_SUCCESS;
5340 
5341 	rcu_read_lock();
5342 #ifdef CONFIG_RPS
5343 	if (static_branch_unlikely(&rps_needed)) {
5344 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5345 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5346 
5347 		if (cpu >= 0) {
5348 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5349 			rcu_read_unlock();
5350 			return ret;
5351 		}
5352 	}
5353 #endif
5354 	ret = __netif_receive_skb(skb);
5355 	rcu_read_unlock();
5356 	return ret;
5357 }
5358 
5359 static void netif_receive_skb_list_internal(struct list_head *head)
5360 {
5361 	struct sk_buff *skb, *next;
5362 	struct list_head sublist;
5363 
5364 	INIT_LIST_HEAD(&sublist);
5365 	list_for_each_entry_safe(skb, next, head, list) {
5366 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5367 		skb_list_del_init(skb);
5368 		if (!skb_defer_rx_timestamp(skb))
5369 			list_add_tail(&skb->list, &sublist);
5370 	}
5371 	list_splice_init(&sublist, head);
5372 
5373 	rcu_read_lock();
5374 #ifdef CONFIG_RPS
5375 	if (static_branch_unlikely(&rps_needed)) {
5376 		list_for_each_entry_safe(skb, next, head, list) {
5377 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5378 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5379 
5380 			if (cpu >= 0) {
5381 				/* Will be handled, remove from list */
5382 				skb_list_del_init(skb);
5383 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5384 			}
5385 		}
5386 	}
5387 #endif
5388 	__netif_receive_skb_list(head);
5389 	rcu_read_unlock();
5390 }
5391 
5392 /**
5393  *	netif_receive_skb - process receive buffer from network
5394  *	@skb: buffer to process
5395  *
5396  *	netif_receive_skb() is the main receive data processing function.
5397  *	It always succeeds. The buffer may be dropped during processing
5398  *	for congestion control or by the protocol layers.
5399  *
5400  *	This function may only be called from softirq context and interrupts
5401  *	should be enabled.
5402  *
5403  *	Return values (usually ignored):
5404  *	NET_RX_SUCCESS: no congestion
5405  *	NET_RX_DROP: packet was dropped
5406  */
5407 int netif_receive_skb(struct sk_buff *skb)
5408 {
5409 	int ret;
5410 
5411 	trace_netif_receive_skb_entry(skb);
5412 
5413 	ret = netif_receive_skb_internal(skb);
5414 	trace_netif_receive_skb_exit(ret);
5415 
5416 	return ret;
5417 }
5418 EXPORT_SYMBOL(netif_receive_skb);
5419 
5420 /**
5421  *	netif_receive_skb_list - process many receive buffers from network
5422  *	@head: list of skbs to process.
5423  *
5424  *	Since return value of netif_receive_skb() is normally ignored, and
5425  *	wouldn't be meaningful for a list, this function returns void.
5426  *
5427  *	This function may only be called from softirq context and interrupts
5428  *	should be enabled.
5429  */
5430 void netif_receive_skb_list(struct list_head *head)
5431 {
5432 	struct sk_buff *skb;
5433 
5434 	if (list_empty(head))
5435 		return;
5436 	if (trace_netif_receive_skb_list_entry_enabled()) {
5437 		list_for_each_entry(skb, head, list)
5438 			trace_netif_receive_skb_list_entry(skb);
5439 	}
5440 	netif_receive_skb_list_internal(head);
5441 	trace_netif_receive_skb_list_exit(0);
5442 }
5443 EXPORT_SYMBOL(netif_receive_skb_list);
5444 
5445 DEFINE_PER_CPU(struct work_struct, flush_works);
5446 
5447 /* Network device is going away, flush any packets still pending */
5448 static void flush_backlog(struct work_struct *work)
5449 {
5450 	struct sk_buff *skb, *tmp;
5451 	struct softnet_data *sd;
5452 
5453 	local_bh_disable();
5454 	sd = this_cpu_ptr(&softnet_data);
5455 
5456 	local_irq_disable();
5457 	rps_lock(sd);
5458 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5459 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5460 			__skb_unlink(skb, &sd->input_pkt_queue);
5461 			kfree_skb(skb);
5462 			input_queue_head_incr(sd);
5463 		}
5464 	}
5465 	rps_unlock(sd);
5466 	local_irq_enable();
5467 
5468 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5469 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5470 			__skb_unlink(skb, &sd->process_queue);
5471 			kfree_skb(skb);
5472 			input_queue_head_incr(sd);
5473 		}
5474 	}
5475 	local_bh_enable();
5476 }
5477 
5478 static void flush_all_backlogs(void)
5479 {
5480 	unsigned int cpu;
5481 
5482 	get_online_cpus();
5483 
5484 	for_each_online_cpu(cpu)
5485 		queue_work_on(cpu, system_highpri_wq,
5486 			      per_cpu_ptr(&flush_works, cpu));
5487 
5488 	for_each_online_cpu(cpu)
5489 		flush_work(per_cpu_ptr(&flush_works, cpu));
5490 
5491 	put_online_cpus();
5492 }
5493 
5494 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5495 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5496 static int napi_gro_complete(struct sk_buff *skb)
5497 {
5498 	struct packet_offload *ptype;
5499 	__be16 type = skb->protocol;
5500 	struct list_head *head = &offload_base;
5501 	int err = -ENOENT;
5502 
5503 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5504 
5505 	if (NAPI_GRO_CB(skb)->count == 1) {
5506 		skb_shinfo(skb)->gso_size = 0;
5507 		goto out;
5508 	}
5509 
5510 	rcu_read_lock();
5511 	list_for_each_entry_rcu(ptype, head, list) {
5512 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5513 			continue;
5514 
5515 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5516 					 ipv6_gro_complete, inet_gro_complete,
5517 					 skb, 0);
5518 		break;
5519 	}
5520 	rcu_read_unlock();
5521 
5522 	if (err) {
5523 		WARN_ON(&ptype->list == head);
5524 		kfree_skb(skb);
5525 		return NET_RX_SUCCESS;
5526 	}
5527 
5528 out:
5529 	return netif_receive_skb_internal(skb);
5530 }
5531 
5532 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5533 				   bool flush_old)
5534 {
5535 	struct list_head *head = &napi->gro_hash[index].list;
5536 	struct sk_buff *skb, *p;
5537 
5538 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5539 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5540 			return;
5541 		skb_list_del_init(skb);
5542 		napi_gro_complete(skb);
5543 		napi->gro_hash[index].count--;
5544 	}
5545 
5546 	if (!napi->gro_hash[index].count)
5547 		__clear_bit(index, &napi->gro_bitmask);
5548 }
5549 
5550 /* napi->gro_hash[].list contains packets ordered by age.
5551  * youngest packets at the head of it.
5552  * Complete skbs in reverse order to reduce latencies.
5553  */
5554 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5555 {
5556 	unsigned long bitmask = napi->gro_bitmask;
5557 	unsigned int i, base = ~0U;
5558 
5559 	while ((i = ffs(bitmask)) != 0) {
5560 		bitmask >>= i;
5561 		base += i;
5562 		__napi_gro_flush_chain(napi, base, flush_old);
5563 	}
5564 }
5565 EXPORT_SYMBOL(napi_gro_flush);
5566 
5567 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5568 					  struct sk_buff *skb)
5569 {
5570 	unsigned int maclen = skb->dev->hard_header_len;
5571 	u32 hash = skb_get_hash_raw(skb);
5572 	struct list_head *head;
5573 	struct sk_buff *p;
5574 
5575 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5576 	list_for_each_entry(p, head, list) {
5577 		unsigned long diffs;
5578 
5579 		NAPI_GRO_CB(p)->flush = 0;
5580 
5581 		if (hash != skb_get_hash_raw(p)) {
5582 			NAPI_GRO_CB(p)->same_flow = 0;
5583 			continue;
5584 		}
5585 
5586 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5587 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5588 		if (skb_vlan_tag_present(p))
5589 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5590 		diffs |= skb_metadata_dst_cmp(p, skb);
5591 		diffs |= skb_metadata_differs(p, skb);
5592 		if (maclen == ETH_HLEN)
5593 			diffs |= compare_ether_header(skb_mac_header(p),
5594 						      skb_mac_header(skb));
5595 		else if (!diffs)
5596 			diffs = memcmp(skb_mac_header(p),
5597 				       skb_mac_header(skb),
5598 				       maclen);
5599 		NAPI_GRO_CB(p)->same_flow = !diffs;
5600 	}
5601 
5602 	return head;
5603 }
5604 
5605 static void skb_gro_reset_offset(struct sk_buff *skb)
5606 {
5607 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5608 	const skb_frag_t *frag0 = &pinfo->frags[0];
5609 
5610 	NAPI_GRO_CB(skb)->data_offset = 0;
5611 	NAPI_GRO_CB(skb)->frag0 = NULL;
5612 	NAPI_GRO_CB(skb)->frag0_len = 0;
5613 
5614 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5615 	    !PageHighMem(skb_frag_page(frag0))) {
5616 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5617 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5618 						    skb_frag_size(frag0),
5619 						    skb->end - skb->tail);
5620 	}
5621 }
5622 
5623 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5624 {
5625 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5626 
5627 	BUG_ON(skb->end - skb->tail < grow);
5628 
5629 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5630 
5631 	skb->data_len -= grow;
5632 	skb->tail += grow;
5633 
5634 	skb_frag_off_add(&pinfo->frags[0], grow);
5635 	skb_frag_size_sub(&pinfo->frags[0], grow);
5636 
5637 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5638 		skb_frag_unref(skb, 0);
5639 		memmove(pinfo->frags, pinfo->frags + 1,
5640 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5641 	}
5642 }
5643 
5644 static void gro_flush_oldest(struct list_head *head)
5645 {
5646 	struct sk_buff *oldest;
5647 
5648 	oldest = list_last_entry(head, struct sk_buff, list);
5649 
5650 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5651 	 * impossible.
5652 	 */
5653 	if (WARN_ON_ONCE(!oldest))
5654 		return;
5655 
5656 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5657 	 * SKB to the chain.
5658 	 */
5659 	skb_list_del_init(oldest);
5660 	napi_gro_complete(oldest);
5661 }
5662 
5663 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5664 							   struct sk_buff *));
5665 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5666 							   struct sk_buff *));
5667 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5668 {
5669 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5670 	struct list_head *head = &offload_base;
5671 	struct packet_offload *ptype;
5672 	__be16 type = skb->protocol;
5673 	struct list_head *gro_head;
5674 	struct sk_buff *pp = NULL;
5675 	enum gro_result ret;
5676 	int same_flow;
5677 	int grow;
5678 
5679 	if (netif_elide_gro(skb->dev))
5680 		goto normal;
5681 
5682 	gro_head = gro_list_prepare(napi, skb);
5683 
5684 	rcu_read_lock();
5685 	list_for_each_entry_rcu(ptype, head, list) {
5686 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5687 			continue;
5688 
5689 		skb_set_network_header(skb, skb_gro_offset(skb));
5690 		skb_reset_mac_len(skb);
5691 		NAPI_GRO_CB(skb)->same_flow = 0;
5692 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5693 		NAPI_GRO_CB(skb)->free = 0;
5694 		NAPI_GRO_CB(skb)->encap_mark = 0;
5695 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5696 		NAPI_GRO_CB(skb)->is_fou = 0;
5697 		NAPI_GRO_CB(skb)->is_atomic = 1;
5698 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5699 
5700 		/* Setup for GRO checksum validation */
5701 		switch (skb->ip_summed) {
5702 		case CHECKSUM_COMPLETE:
5703 			NAPI_GRO_CB(skb)->csum = skb->csum;
5704 			NAPI_GRO_CB(skb)->csum_valid = 1;
5705 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5706 			break;
5707 		case CHECKSUM_UNNECESSARY:
5708 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5709 			NAPI_GRO_CB(skb)->csum_valid = 0;
5710 			break;
5711 		default:
5712 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5713 			NAPI_GRO_CB(skb)->csum_valid = 0;
5714 		}
5715 
5716 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5717 					ipv6_gro_receive, inet_gro_receive,
5718 					gro_head, skb);
5719 		break;
5720 	}
5721 	rcu_read_unlock();
5722 
5723 	if (&ptype->list == head)
5724 		goto normal;
5725 
5726 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5727 		ret = GRO_CONSUMED;
5728 		goto ok;
5729 	}
5730 
5731 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5732 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5733 
5734 	if (pp) {
5735 		skb_list_del_init(pp);
5736 		napi_gro_complete(pp);
5737 		napi->gro_hash[hash].count--;
5738 	}
5739 
5740 	if (same_flow)
5741 		goto ok;
5742 
5743 	if (NAPI_GRO_CB(skb)->flush)
5744 		goto normal;
5745 
5746 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5747 		gro_flush_oldest(gro_head);
5748 	} else {
5749 		napi->gro_hash[hash].count++;
5750 	}
5751 	NAPI_GRO_CB(skb)->count = 1;
5752 	NAPI_GRO_CB(skb)->age = jiffies;
5753 	NAPI_GRO_CB(skb)->last = skb;
5754 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5755 	list_add(&skb->list, gro_head);
5756 	ret = GRO_HELD;
5757 
5758 pull:
5759 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5760 	if (grow > 0)
5761 		gro_pull_from_frag0(skb, grow);
5762 ok:
5763 	if (napi->gro_hash[hash].count) {
5764 		if (!test_bit(hash, &napi->gro_bitmask))
5765 			__set_bit(hash, &napi->gro_bitmask);
5766 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5767 		__clear_bit(hash, &napi->gro_bitmask);
5768 	}
5769 
5770 	return ret;
5771 
5772 normal:
5773 	ret = GRO_NORMAL;
5774 	goto pull;
5775 }
5776 
5777 struct packet_offload *gro_find_receive_by_type(__be16 type)
5778 {
5779 	struct list_head *offload_head = &offload_base;
5780 	struct packet_offload *ptype;
5781 
5782 	list_for_each_entry_rcu(ptype, offload_head, list) {
5783 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5784 			continue;
5785 		return ptype;
5786 	}
5787 	return NULL;
5788 }
5789 EXPORT_SYMBOL(gro_find_receive_by_type);
5790 
5791 struct packet_offload *gro_find_complete_by_type(__be16 type)
5792 {
5793 	struct list_head *offload_head = &offload_base;
5794 	struct packet_offload *ptype;
5795 
5796 	list_for_each_entry_rcu(ptype, offload_head, list) {
5797 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5798 			continue;
5799 		return ptype;
5800 	}
5801 	return NULL;
5802 }
5803 EXPORT_SYMBOL(gro_find_complete_by_type);
5804 
5805 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5806 static void gro_normal_list(struct napi_struct *napi)
5807 {
5808 	if (!napi->rx_count)
5809 		return;
5810 	netif_receive_skb_list_internal(&napi->rx_list);
5811 	INIT_LIST_HEAD(&napi->rx_list);
5812 	napi->rx_count = 0;
5813 }
5814 
5815 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5816  * pass the whole batch up to the stack.
5817  */
5818 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5819 {
5820 	list_add_tail(&skb->list, &napi->rx_list);
5821 	if (++napi->rx_count >= gro_normal_batch)
5822 		gro_normal_list(napi);
5823 }
5824 
5825 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5826 {
5827 	skb_dst_drop(skb);
5828 	skb_ext_put(skb);
5829 	kmem_cache_free(skbuff_head_cache, skb);
5830 }
5831 
5832 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5833 				    struct sk_buff *skb,
5834 				    gro_result_t ret)
5835 {
5836 	switch (ret) {
5837 	case GRO_NORMAL:
5838 		gro_normal_one(napi, skb);
5839 		break;
5840 
5841 	case GRO_DROP:
5842 		kfree_skb(skb);
5843 		break;
5844 
5845 	case GRO_MERGED_FREE:
5846 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5847 			napi_skb_free_stolen_head(skb);
5848 		else
5849 			__kfree_skb(skb);
5850 		break;
5851 
5852 	case GRO_HELD:
5853 	case GRO_MERGED:
5854 	case GRO_CONSUMED:
5855 		break;
5856 	}
5857 
5858 	return ret;
5859 }
5860 
5861 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5862 {
5863 	gro_result_t ret;
5864 
5865 	skb_mark_napi_id(skb, napi);
5866 	trace_napi_gro_receive_entry(skb);
5867 
5868 	skb_gro_reset_offset(skb);
5869 
5870 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5871 	trace_napi_gro_receive_exit(ret);
5872 
5873 	return ret;
5874 }
5875 EXPORT_SYMBOL(napi_gro_receive);
5876 
5877 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5878 {
5879 	if (unlikely(skb->pfmemalloc)) {
5880 		consume_skb(skb);
5881 		return;
5882 	}
5883 	__skb_pull(skb, skb_headlen(skb));
5884 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5885 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5886 	__vlan_hwaccel_clear_tag(skb);
5887 	skb->dev = napi->dev;
5888 	skb->skb_iif = 0;
5889 
5890 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
5891 	skb->pkt_type = PACKET_HOST;
5892 
5893 	skb->encapsulation = 0;
5894 	skb_shinfo(skb)->gso_type = 0;
5895 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5896 	skb_ext_reset(skb);
5897 
5898 	napi->skb = skb;
5899 }
5900 
5901 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5902 {
5903 	struct sk_buff *skb = napi->skb;
5904 
5905 	if (!skb) {
5906 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5907 		if (skb) {
5908 			napi->skb = skb;
5909 			skb_mark_napi_id(skb, napi);
5910 		}
5911 	}
5912 	return skb;
5913 }
5914 EXPORT_SYMBOL(napi_get_frags);
5915 
5916 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5917 				      struct sk_buff *skb,
5918 				      gro_result_t ret)
5919 {
5920 	switch (ret) {
5921 	case GRO_NORMAL:
5922 	case GRO_HELD:
5923 		__skb_push(skb, ETH_HLEN);
5924 		skb->protocol = eth_type_trans(skb, skb->dev);
5925 		if (ret == GRO_NORMAL)
5926 			gro_normal_one(napi, skb);
5927 		break;
5928 
5929 	case GRO_DROP:
5930 		napi_reuse_skb(napi, skb);
5931 		break;
5932 
5933 	case GRO_MERGED_FREE:
5934 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5935 			napi_skb_free_stolen_head(skb);
5936 		else
5937 			napi_reuse_skb(napi, skb);
5938 		break;
5939 
5940 	case GRO_MERGED:
5941 	case GRO_CONSUMED:
5942 		break;
5943 	}
5944 
5945 	return ret;
5946 }
5947 
5948 /* Upper GRO stack assumes network header starts at gro_offset=0
5949  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5950  * We copy ethernet header into skb->data to have a common layout.
5951  */
5952 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5953 {
5954 	struct sk_buff *skb = napi->skb;
5955 	const struct ethhdr *eth;
5956 	unsigned int hlen = sizeof(*eth);
5957 
5958 	napi->skb = NULL;
5959 
5960 	skb_reset_mac_header(skb);
5961 	skb_gro_reset_offset(skb);
5962 
5963 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5964 		eth = skb_gro_header_slow(skb, hlen, 0);
5965 		if (unlikely(!eth)) {
5966 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5967 					     __func__, napi->dev->name);
5968 			napi_reuse_skb(napi, skb);
5969 			return NULL;
5970 		}
5971 	} else {
5972 		eth = (const struct ethhdr *)skb->data;
5973 		gro_pull_from_frag0(skb, hlen);
5974 		NAPI_GRO_CB(skb)->frag0 += hlen;
5975 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5976 	}
5977 	__skb_pull(skb, hlen);
5978 
5979 	/*
5980 	 * This works because the only protocols we care about don't require
5981 	 * special handling.
5982 	 * We'll fix it up properly in napi_frags_finish()
5983 	 */
5984 	skb->protocol = eth->h_proto;
5985 
5986 	return skb;
5987 }
5988 
5989 gro_result_t napi_gro_frags(struct napi_struct *napi)
5990 {
5991 	gro_result_t ret;
5992 	struct sk_buff *skb = napi_frags_skb(napi);
5993 
5994 	if (!skb)
5995 		return GRO_DROP;
5996 
5997 	trace_napi_gro_frags_entry(skb);
5998 
5999 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6000 	trace_napi_gro_frags_exit(ret);
6001 
6002 	return ret;
6003 }
6004 EXPORT_SYMBOL(napi_gro_frags);
6005 
6006 /* Compute the checksum from gro_offset and return the folded value
6007  * after adding in any pseudo checksum.
6008  */
6009 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6010 {
6011 	__wsum wsum;
6012 	__sum16 sum;
6013 
6014 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6015 
6016 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6017 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6018 	/* See comments in __skb_checksum_complete(). */
6019 	if (likely(!sum)) {
6020 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6021 		    !skb->csum_complete_sw)
6022 			netdev_rx_csum_fault(skb->dev, skb);
6023 	}
6024 
6025 	NAPI_GRO_CB(skb)->csum = wsum;
6026 	NAPI_GRO_CB(skb)->csum_valid = 1;
6027 
6028 	return sum;
6029 }
6030 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6031 
6032 static void net_rps_send_ipi(struct softnet_data *remsd)
6033 {
6034 #ifdef CONFIG_RPS
6035 	while (remsd) {
6036 		struct softnet_data *next = remsd->rps_ipi_next;
6037 
6038 		if (cpu_online(remsd->cpu))
6039 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6040 		remsd = next;
6041 	}
6042 #endif
6043 }
6044 
6045 /*
6046  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6047  * Note: called with local irq disabled, but exits with local irq enabled.
6048  */
6049 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6050 {
6051 #ifdef CONFIG_RPS
6052 	struct softnet_data *remsd = sd->rps_ipi_list;
6053 
6054 	if (remsd) {
6055 		sd->rps_ipi_list = NULL;
6056 
6057 		local_irq_enable();
6058 
6059 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6060 		net_rps_send_ipi(remsd);
6061 	} else
6062 #endif
6063 		local_irq_enable();
6064 }
6065 
6066 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6067 {
6068 #ifdef CONFIG_RPS
6069 	return sd->rps_ipi_list != NULL;
6070 #else
6071 	return false;
6072 #endif
6073 }
6074 
6075 static int process_backlog(struct napi_struct *napi, int quota)
6076 {
6077 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6078 	bool again = true;
6079 	int work = 0;
6080 
6081 	/* Check if we have pending ipi, its better to send them now,
6082 	 * not waiting net_rx_action() end.
6083 	 */
6084 	if (sd_has_rps_ipi_waiting(sd)) {
6085 		local_irq_disable();
6086 		net_rps_action_and_irq_enable(sd);
6087 	}
6088 
6089 	napi->weight = dev_rx_weight;
6090 	while (again) {
6091 		struct sk_buff *skb;
6092 
6093 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6094 			rcu_read_lock();
6095 			__netif_receive_skb(skb);
6096 			rcu_read_unlock();
6097 			input_queue_head_incr(sd);
6098 			if (++work >= quota)
6099 				return work;
6100 
6101 		}
6102 
6103 		local_irq_disable();
6104 		rps_lock(sd);
6105 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6106 			/*
6107 			 * Inline a custom version of __napi_complete().
6108 			 * only current cpu owns and manipulates this napi,
6109 			 * and NAPI_STATE_SCHED is the only possible flag set
6110 			 * on backlog.
6111 			 * We can use a plain write instead of clear_bit(),
6112 			 * and we dont need an smp_mb() memory barrier.
6113 			 */
6114 			napi->state = 0;
6115 			again = false;
6116 		} else {
6117 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6118 						   &sd->process_queue);
6119 		}
6120 		rps_unlock(sd);
6121 		local_irq_enable();
6122 	}
6123 
6124 	return work;
6125 }
6126 
6127 /**
6128  * __napi_schedule - schedule for receive
6129  * @n: entry to schedule
6130  *
6131  * The entry's receive function will be scheduled to run.
6132  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6133  */
6134 void __napi_schedule(struct napi_struct *n)
6135 {
6136 	unsigned long flags;
6137 
6138 	local_irq_save(flags);
6139 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6140 	local_irq_restore(flags);
6141 }
6142 EXPORT_SYMBOL(__napi_schedule);
6143 
6144 /**
6145  *	napi_schedule_prep - check if napi can be scheduled
6146  *	@n: napi context
6147  *
6148  * Test if NAPI routine is already running, and if not mark
6149  * it as running.  This is used as a condition variable
6150  * insure only one NAPI poll instance runs.  We also make
6151  * sure there is no pending NAPI disable.
6152  */
6153 bool napi_schedule_prep(struct napi_struct *n)
6154 {
6155 	unsigned long val, new;
6156 
6157 	do {
6158 		val = READ_ONCE(n->state);
6159 		if (unlikely(val & NAPIF_STATE_DISABLE))
6160 			return false;
6161 		new = val | NAPIF_STATE_SCHED;
6162 
6163 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6164 		 * This was suggested by Alexander Duyck, as compiler
6165 		 * emits better code than :
6166 		 * if (val & NAPIF_STATE_SCHED)
6167 		 *     new |= NAPIF_STATE_MISSED;
6168 		 */
6169 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6170 						   NAPIF_STATE_MISSED;
6171 	} while (cmpxchg(&n->state, val, new) != val);
6172 
6173 	return !(val & NAPIF_STATE_SCHED);
6174 }
6175 EXPORT_SYMBOL(napi_schedule_prep);
6176 
6177 /**
6178  * __napi_schedule_irqoff - schedule for receive
6179  * @n: entry to schedule
6180  *
6181  * Variant of __napi_schedule() assuming hard irqs are masked
6182  */
6183 void __napi_schedule_irqoff(struct napi_struct *n)
6184 {
6185 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6186 }
6187 EXPORT_SYMBOL(__napi_schedule_irqoff);
6188 
6189 bool napi_complete_done(struct napi_struct *n, int work_done)
6190 {
6191 	unsigned long flags, val, new;
6192 
6193 	/*
6194 	 * 1) Don't let napi dequeue from the cpu poll list
6195 	 *    just in case its running on a different cpu.
6196 	 * 2) If we are busy polling, do nothing here, we have
6197 	 *    the guarantee we will be called later.
6198 	 */
6199 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6200 				 NAPIF_STATE_IN_BUSY_POLL)))
6201 		return false;
6202 
6203 	gro_normal_list(n);
6204 
6205 	if (n->gro_bitmask) {
6206 		unsigned long timeout = 0;
6207 
6208 		if (work_done)
6209 			timeout = n->dev->gro_flush_timeout;
6210 
6211 		/* When the NAPI instance uses a timeout and keeps postponing
6212 		 * it, we need to bound somehow the time packets are kept in
6213 		 * the GRO layer
6214 		 */
6215 		napi_gro_flush(n, !!timeout);
6216 		if (timeout)
6217 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
6218 				      HRTIMER_MODE_REL_PINNED);
6219 	}
6220 	if (unlikely(!list_empty(&n->poll_list))) {
6221 		/* If n->poll_list is not empty, we need to mask irqs */
6222 		local_irq_save(flags);
6223 		list_del_init(&n->poll_list);
6224 		local_irq_restore(flags);
6225 	}
6226 
6227 	do {
6228 		val = READ_ONCE(n->state);
6229 
6230 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6231 
6232 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6233 
6234 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6235 		 * because we will call napi->poll() one more time.
6236 		 * This C code was suggested by Alexander Duyck to help gcc.
6237 		 */
6238 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6239 						    NAPIF_STATE_SCHED;
6240 	} while (cmpxchg(&n->state, val, new) != val);
6241 
6242 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6243 		__napi_schedule(n);
6244 		return false;
6245 	}
6246 
6247 	return true;
6248 }
6249 EXPORT_SYMBOL(napi_complete_done);
6250 
6251 /* must be called under rcu_read_lock(), as we dont take a reference */
6252 static struct napi_struct *napi_by_id(unsigned int napi_id)
6253 {
6254 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6255 	struct napi_struct *napi;
6256 
6257 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6258 		if (napi->napi_id == napi_id)
6259 			return napi;
6260 
6261 	return NULL;
6262 }
6263 
6264 #if defined(CONFIG_NET_RX_BUSY_POLL)
6265 
6266 #define BUSY_POLL_BUDGET 8
6267 
6268 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6269 {
6270 	int rc;
6271 
6272 	/* Busy polling means there is a high chance device driver hard irq
6273 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6274 	 * set in napi_schedule_prep().
6275 	 * Since we are about to call napi->poll() once more, we can safely
6276 	 * clear NAPI_STATE_MISSED.
6277 	 *
6278 	 * Note: x86 could use a single "lock and ..." instruction
6279 	 * to perform these two clear_bit()
6280 	 */
6281 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6282 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6283 
6284 	local_bh_disable();
6285 
6286 	/* All we really want here is to re-enable device interrupts.
6287 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6288 	 */
6289 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6290 	/* We can't gro_normal_list() here, because napi->poll() might have
6291 	 * rearmed the napi (napi_complete_done()) in which case it could
6292 	 * already be running on another CPU.
6293 	 */
6294 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6295 	netpoll_poll_unlock(have_poll_lock);
6296 	if (rc == BUSY_POLL_BUDGET) {
6297 		/* As the whole budget was spent, we still own the napi so can
6298 		 * safely handle the rx_list.
6299 		 */
6300 		gro_normal_list(napi);
6301 		__napi_schedule(napi);
6302 	}
6303 	local_bh_enable();
6304 }
6305 
6306 void napi_busy_loop(unsigned int napi_id,
6307 		    bool (*loop_end)(void *, unsigned long),
6308 		    void *loop_end_arg)
6309 {
6310 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6311 	int (*napi_poll)(struct napi_struct *napi, int budget);
6312 	void *have_poll_lock = NULL;
6313 	struct napi_struct *napi;
6314 
6315 restart:
6316 	napi_poll = NULL;
6317 
6318 	rcu_read_lock();
6319 
6320 	napi = napi_by_id(napi_id);
6321 	if (!napi)
6322 		goto out;
6323 
6324 	preempt_disable();
6325 	for (;;) {
6326 		int work = 0;
6327 
6328 		local_bh_disable();
6329 		if (!napi_poll) {
6330 			unsigned long val = READ_ONCE(napi->state);
6331 
6332 			/* If multiple threads are competing for this napi,
6333 			 * we avoid dirtying napi->state as much as we can.
6334 			 */
6335 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6336 				   NAPIF_STATE_IN_BUSY_POLL))
6337 				goto count;
6338 			if (cmpxchg(&napi->state, val,
6339 				    val | NAPIF_STATE_IN_BUSY_POLL |
6340 					  NAPIF_STATE_SCHED) != val)
6341 				goto count;
6342 			have_poll_lock = netpoll_poll_lock(napi);
6343 			napi_poll = napi->poll;
6344 		}
6345 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6346 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6347 		gro_normal_list(napi);
6348 count:
6349 		if (work > 0)
6350 			__NET_ADD_STATS(dev_net(napi->dev),
6351 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6352 		local_bh_enable();
6353 
6354 		if (!loop_end || loop_end(loop_end_arg, start_time))
6355 			break;
6356 
6357 		if (unlikely(need_resched())) {
6358 			if (napi_poll)
6359 				busy_poll_stop(napi, have_poll_lock);
6360 			preempt_enable();
6361 			rcu_read_unlock();
6362 			cond_resched();
6363 			if (loop_end(loop_end_arg, start_time))
6364 				return;
6365 			goto restart;
6366 		}
6367 		cpu_relax();
6368 	}
6369 	if (napi_poll)
6370 		busy_poll_stop(napi, have_poll_lock);
6371 	preempt_enable();
6372 out:
6373 	rcu_read_unlock();
6374 }
6375 EXPORT_SYMBOL(napi_busy_loop);
6376 
6377 #endif /* CONFIG_NET_RX_BUSY_POLL */
6378 
6379 static void napi_hash_add(struct napi_struct *napi)
6380 {
6381 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6382 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6383 		return;
6384 
6385 	spin_lock(&napi_hash_lock);
6386 
6387 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6388 	do {
6389 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6390 			napi_gen_id = MIN_NAPI_ID;
6391 	} while (napi_by_id(napi_gen_id));
6392 	napi->napi_id = napi_gen_id;
6393 
6394 	hlist_add_head_rcu(&napi->napi_hash_node,
6395 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6396 
6397 	spin_unlock(&napi_hash_lock);
6398 }
6399 
6400 /* Warning : caller is responsible to make sure rcu grace period
6401  * is respected before freeing memory containing @napi
6402  */
6403 bool napi_hash_del(struct napi_struct *napi)
6404 {
6405 	bool rcu_sync_needed = false;
6406 
6407 	spin_lock(&napi_hash_lock);
6408 
6409 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6410 		rcu_sync_needed = true;
6411 		hlist_del_rcu(&napi->napi_hash_node);
6412 	}
6413 	spin_unlock(&napi_hash_lock);
6414 	return rcu_sync_needed;
6415 }
6416 EXPORT_SYMBOL_GPL(napi_hash_del);
6417 
6418 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6419 {
6420 	struct napi_struct *napi;
6421 
6422 	napi = container_of(timer, struct napi_struct, timer);
6423 
6424 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6425 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6426 	 */
6427 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6428 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6429 		__napi_schedule_irqoff(napi);
6430 
6431 	return HRTIMER_NORESTART;
6432 }
6433 
6434 static void init_gro_hash(struct napi_struct *napi)
6435 {
6436 	int i;
6437 
6438 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6439 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6440 		napi->gro_hash[i].count = 0;
6441 	}
6442 	napi->gro_bitmask = 0;
6443 }
6444 
6445 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6446 		    int (*poll)(struct napi_struct *, int), int weight)
6447 {
6448 	INIT_LIST_HEAD(&napi->poll_list);
6449 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6450 	napi->timer.function = napi_watchdog;
6451 	init_gro_hash(napi);
6452 	napi->skb = NULL;
6453 	INIT_LIST_HEAD(&napi->rx_list);
6454 	napi->rx_count = 0;
6455 	napi->poll = poll;
6456 	if (weight > NAPI_POLL_WEIGHT)
6457 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6458 				weight);
6459 	napi->weight = weight;
6460 	list_add(&napi->dev_list, &dev->napi_list);
6461 	napi->dev = dev;
6462 #ifdef CONFIG_NETPOLL
6463 	napi->poll_owner = -1;
6464 #endif
6465 	set_bit(NAPI_STATE_SCHED, &napi->state);
6466 	napi_hash_add(napi);
6467 }
6468 EXPORT_SYMBOL(netif_napi_add);
6469 
6470 void napi_disable(struct napi_struct *n)
6471 {
6472 	might_sleep();
6473 	set_bit(NAPI_STATE_DISABLE, &n->state);
6474 
6475 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6476 		msleep(1);
6477 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6478 		msleep(1);
6479 
6480 	hrtimer_cancel(&n->timer);
6481 
6482 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6483 }
6484 EXPORT_SYMBOL(napi_disable);
6485 
6486 static void flush_gro_hash(struct napi_struct *napi)
6487 {
6488 	int i;
6489 
6490 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6491 		struct sk_buff *skb, *n;
6492 
6493 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6494 			kfree_skb(skb);
6495 		napi->gro_hash[i].count = 0;
6496 	}
6497 }
6498 
6499 /* Must be called in process context */
6500 void netif_napi_del(struct napi_struct *napi)
6501 {
6502 	might_sleep();
6503 	if (napi_hash_del(napi))
6504 		synchronize_net();
6505 	list_del_init(&napi->dev_list);
6506 	napi_free_frags(napi);
6507 
6508 	flush_gro_hash(napi);
6509 	napi->gro_bitmask = 0;
6510 }
6511 EXPORT_SYMBOL(netif_napi_del);
6512 
6513 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6514 {
6515 	void *have;
6516 	int work, weight;
6517 
6518 	list_del_init(&n->poll_list);
6519 
6520 	have = netpoll_poll_lock(n);
6521 
6522 	weight = n->weight;
6523 
6524 	/* This NAPI_STATE_SCHED test is for avoiding a race
6525 	 * with netpoll's poll_napi().  Only the entity which
6526 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6527 	 * actually make the ->poll() call.  Therefore we avoid
6528 	 * accidentally calling ->poll() when NAPI is not scheduled.
6529 	 */
6530 	work = 0;
6531 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6532 		work = n->poll(n, weight);
6533 		trace_napi_poll(n, work, weight);
6534 	}
6535 
6536 	WARN_ON_ONCE(work > weight);
6537 
6538 	if (likely(work < weight))
6539 		goto out_unlock;
6540 
6541 	/* Drivers must not modify the NAPI state if they
6542 	 * consume the entire weight.  In such cases this code
6543 	 * still "owns" the NAPI instance and therefore can
6544 	 * move the instance around on the list at-will.
6545 	 */
6546 	if (unlikely(napi_disable_pending(n))) {
6547 		napi_complete(n);
6548 		goto out_unlock;
6549 	}
6550 
6551 	gro_normal_list(n);
6552 
6553 	if (n->gro_bitmask) {
6554 		/* flush too old packets
6555 		 * If HZ < 1000, flush all packets.
6556 		 */
6557 		napi_gro_flush(n, HZ >= 1000);
6558 	}
6559 
6560 	/* Some drivers may have called napi_schedule
6561 	 * prior to exhausting their budget.
6562 	 */
6563 	if (unlikely(!list_empty(&n->poll_list))) {
6564 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6565 			     n->dev ? n->dev->name : "backlog");
6566 		goto out_unlock;
6567 	}
6568 
6569 	list_add_tail(&n->poll_list, repoll);
6570 
6571 out_unlock:
6572 	netpoll_poll_unlock(have);
6573 
6574 	return work;
6575 }
6576 
6577 static __latent_entropy void net_rx_action(struct softirq_action *h)
6578 {
6579 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6580 	unsigned long time_limit = jiffies +
6581 		usecs_to_jiffies(netdev_budget_usecs);
6582 	int budget = netdev_budget;
6583 	LIST_HEAD(list);
6584 	LIST_HEAD(repoll);
6585 
6586 	local_irq_disable();
6587 	list_splice_init(&sd->poll_list, &list);
6588 	local_irq_enable();
6589 
6590 	for (;;) {
6591 		struct napi_struct *n;
6592 
6593 		if (list_empty(&list)) {
6594 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6595 				goto out;
6596 			break;
6597 		}
6598 
6599 		n = list_first_entry(&list, struct napi_struct, poll_list);
6600 		budget -= napi_poll(n, &repoll);
6601 
6602 		/* If softirq window is exhausted then punt.
6603 		 * Allow this to run for 2 jiffies since which will allow
6604 		 * an average latency of 1.5/HZ.
6605 		 */
6606 		if (unlikely(budget <= 0 ||
6607 			     time_after_eq(jiffies, time_limit))) {
6608 			sd->time_squeeze++;
6609 			break;
6610 		}
6611 	}
6612 
6613 	local_irq_disable();
6614 
6615 	list_splice_tail_init(&sd->poll_list, &list);
6616 	list_splice_tail(&repoll, &list);
6617 	list_splice(&list, &sd->poll_list);
6618 	if (!list_empty(&sd->poll_list))
6619 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6620 
6621 	net_rps_action_and_irq_enable(sd);
6622 out:
6623 	__kfree_skb_flush();
6624 }
6625 
6626 struct netdev_adjacent {
6627 	struct net_device *dev;
6628 
6629 	/* upper master flag, there can only be one master device per list */
6630 	bool master;
6631 
6632 	/* lookup ignore flag */
6633 	bool ignore;
6634 
6635 	/* counter for the number of times this device was added to us */
6636 	u16 ref_nr;
6637 
6638 	/* private field for the users */
6639 	void *private;
6640 
6641 	struct list_head list;
6642 	struct rcu_head rcu;
6643 };
6644 
6645 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6646 						 struct list_head *adj_list)
6647 {
6648 	struct netdev_adjacent *adj;
6649 
6650 	list_for_each_entry(adj, adj_list, list) {
6651 		if (adj->dev == adj_dev)
6652 			return adj;
6653 	}
6654 	return NULL;
6655 }
6656 
6657 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6658 {
6659 	struct net_device *dev = data;
6660 
6661 	return upper_dev == dev;
6662 }
6663 
6664 /**
6665  * netdev_has_upper_dev - Check if device is linked to an upper device
6666  * @dev: device
6667  * @upper_dev: upper device to check
6668  *
6669  * Find out if a device is linked to specified upper device and return true
6670  * in case it is. Note that this checks only immediate upper device,
6671  * not through a complete stack of devices. The caller must hold the RTNL lock.
6672  */
6673 bool netdev_has_upper_dev(struct net_device *dev,
6674 			  struct net_device *upper_dev)
6675 {
6676 	ASSERT_RTNL();
6677 
6678 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6679 					     upper_dev);
6680 }
6681 EXPORT_SYMBOL(netdev_has_upper_dev);
6682 
6683 /**
6684  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6685  * @dev: device
6686  * @upper_dev: upper device to check
6687  *
6688  * Find out if a device is linked to specified upper device and return true
6689  * in case it is. Note that this checks the entire upper device chain.
6690  * The caller must hold rcu lock.
6691  */
6692 
6693 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6694 				  struct net_device *upper_dev)
6695 {
6696 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6697 					       upper_dev);
6698 }
6699 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6700 
6701 /**
6702  * netdev_has_any_upper_dev - Check if device is linked to some device
6703  * @dev: device
6704  *
6705  * Find out if a device is linked to an upper device and return true in case
6706  * it is. The caller must hold the RTNL lock.
6707  */
6708 bool netdev_has_any_upper_dev(struct net_device *dev)
6709 {
6710 	ASSERT_RTNL();
6711 
6712 	return !list_empty(&dev->adj_list.upper);
6713 }
6714 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6715 
6716 /**
6717  * netdev_master_upper_dev_get - Get master upper device
6718  * @dev: device
6719  *
6720  * Find a master upper device and return pointer to it or NULL in case
6721  * it's not there. The caller must hold the RTNL lock.
6722  */
6723 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6724 {
6725 	struct netdev_adjacent *upper;
6726 
6727 	ASSERT_RTNL();
6728 
6729 	if (list_empty(&dev->adj_list.upper))
6730 		return NULL;
6731 
6732 	upper = list_first_entry(&dev->adj_list.upper,
6733 				 struct netdev_adjacent, list);
6734 	if (likely(upper->master))
6735 		return upper->dev;
6736 	return NULL;
6737 }
6738 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6739 
6740 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6741 {
6742 	struct netdev_adjacent *upper;
6743 
6744 	ASSERT_RTNL();
6745 
6746 	if (list_empty(&dev->adj_list.upper))
6747 		return NULL;
6748 
6749 	upper = list_first_entry(&dev->adj_list.upper,
6750 				 struct netdev_adjacent, list);
6751 	if (likely(upper->master) && !upper->ignore)
6752 		return upper->dev;
6753 	return NULL;
6754 }
6755 
6756 /**
6757  * netdev_has_any_lower_dev - Check if device is linked to some device
6758  * @dev: device
6759  *
6760  * Find out if a device is linked to a lower device and return true in case
6761  * it is. The caller must hold the RTNL lock.
6762  */
6763 static bool netdev_has_any_lower_dev(struct net_device *dev)
6764 {
6765 	ASSERT_RTNL();
6766 
6767 	return !list_empty(&dev->adj_list.lower);
6768 }
6769 
6770 void *netdev_adjacent_get_private(struct list_head *adj_list)
6771 {
6772 	struct netdev_adjacent *adj;
6773 
6774 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6775 
6776 	return adj->private;
6777 }
6778 EXPORT_SYMBOL(netdev_adjacent_get_private);
6779 
6780 /**
6781  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6782  * @dev: device
6783  * @iter: list_head ** of the current position
6784  *
6785  * Gets the next device from the dev's upper list, starting from iter
6786  * position. The caller must hold RCU read lock.
6787  */
6788 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6789 						 struct list_head **iter)
6790 {
6791 	struct netdev_adjacent *upper;
6792 
6793 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6794 
6795 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6796 
6797 	if (&upper->list == &dev->adj_list.upper)
6798 		return NULL;
6799 
6800 	*iter = &upper->list;
6801 
6802 	return upper->dev;
6803 }
6804 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6805 
6806 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6807 						  struct list_head **iter,
6808 						  bool *ignore)
6809 {
6810 	struct netdev_adjacent *upper;
6811 
6812 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6813 
6814 	if (&upper->list == &dev->adj_list.upper)
6815 		return NULL;
6816 
6817 	*iter = &upper->list;
6818 	*ignore = upper->ignore;
6819 
6820 	return upper->dev;
6821 }
6822 
6823 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6824 						    struct list_head **iter)
6825 {
6826 	struct netdev_adjacent *upper;
6827 
6828 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6829 
6830 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6831 
6832 	if (&upper->list == &dev->adj_list.upper)
6833 		return NULL;
6834 
6835 	*iter = &upper->list;
6836 
6837 	return upper->dev;
6838 }
6839 
6840 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6841 				       int (*fn)(struct net_device *dev,
6842 						 void *data),
6843 				       void *data)
6844 {
6845 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6846 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6847 	int ret, cur = 0;
6848 	bool ignore;
6849 
6850 	now = dev;
6851 	iter = &dev->adj_list.upper;
6852 
6853 	while (1) {
6854 		if (now != dev) {
6855 			ret = fn(now, data);
6856 			if (ret)
6857 				return ret;
6858 		}
6859 
6860 		next = NULL;
6861 		while (1) {
6862 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6863 			if (!udev)
6864 				break;
6865 			if (ignore)
6866 				continue;
6867 
6868 			next = udev;
6869 			niter = &udev->adj_list.upper;
6870 			dev_stack[cur] = now;
6871 			iter_stack[cur++] = iter;
6872 			break;
6873 		}
6874 
6875 		if (!next) {
6876 			if (!cur)
6877 				return 0;
6878 			next = dev_stack[--cur];
6879 			niter = iter_stack[cur];
6880 		}
6881 
6882 		now = next;
6883 		iter = niter;
6884 	}
6885 
6886 	return 0;
6887 }
6888 
6889 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6890 				  int (*fn)(struct net_device *dev,
6891 					    void *data),
6892 				  void *data)
6893 {
6894 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6895 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6896 	int ret, cur = 0;
6897 
6898 	now = dev;
6899 	iter = &dev->adj_list.upper;
6900 
6901 	while (1) {
6902 		if (now != dev) {
6903 			ret = fn(now, data);
6904 			if (ret)
6905 				return ret;
6906 		}
6907 
6908 		next = NULL;
6909 		while (1) {
6910 			udev = netdev_next_upper_dev_rcu(now, &iter);
6911 			if (!udev)
6912 				break;
6913 
6914 			next = udev;
6915 			niter = &udev->adj_list.upper;
6916 			dev_stack[cur] = now;
6917 			iter_stack[cur++] = iter;
6918 			break;
6919 		}
6920 
6921 		if (!next) {
6922 			if (!cur)
6923 				return 0;
6924 			next = dev_stack[--cur];
6925 			niter = iter_stack[cur];
6926 		}
6927 
6928 		now = next;
6929 		iter = niter;
6930 	}
6931 
6932 	return 0;
6933 }
6934 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6935 
6936 static bool __netdev_has_upper_dev(struct net_device *dev,
6937 				   struct net_device *upper_dev)
6938 {
6939 	ASSERT_RTNL();
6940 
6941 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6942 					   upper_dev);
6943 }
6944 
6945 /**
6946  * netdev_lower_get_next_private - Get the next ->private from the
6947  *				   lower neighbour list
6948  * @dev: device
6949  * @iter: list_head ** of the current position
6950  *
6951  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6952  * list, starting from iter position. The caller must hold either hold the
6953  * RTNL lock or its own locking that guarantees that the neighbour lower
6954  * list will remain unchanged.
6955  */
6956 void *netdev_lower_get_next_private(struct net_device *dev,
6957 				    struct list_head **iter)
6958 {
6959 	struct netdev_adjacent *lower;
6960 
6961 	lower = list_entry(*iter, struct netdev_adjacent, list);
6962 
6963 	if (&lower->list == &dev->adj_list.lower)
6964 		return NULL;
6965 
6966 	*iter = lower->list.next;
6967 
6968 	return lower->private;
6969 }
6970 EXPORT_SYMBOL(netdev_lower_get_next_private);
6971 
6972 /**
6973  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6974  *				       lower neighbour list, RCU
6975  *				       variant
6976  * @dev: device
6977  * @iter: list_head ** of the current position
6978  *
6979  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6980  * list, starting from iter position. The caller must hold RCU read lock.
6981  */
6982 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6983 					struct list_head **iter)
6984 {
6985 	struct netdev_adjacent *lower;
6986 
6987 	WARN_ON_ONCE(!rcu_read_lock_held());
6988 
6989 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6990 
6991 	if (&lower->list == &dev->adj_list.lower)
6992 		return NULL;
6993 
6994 	*iter = &lower->list;
6995 
6996 	return lower->private;
6997 }
6998 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6999 
7000 /**
7001  * netdev_lower_get_next - Get the next device from the lower neighbour
7002  *                         list
7003  * @dev: device
7004  * @iter: list_head ** of the current position
7005  *
7006  * Gets the next netdev_adjacent from the dev's lower neighbour
7007  * list, starting from iter position. The caller must hold RTNL lock or
7008  * its own locking that guarantees that the neighbour lower
7009  * list will remain unchanged.
7010  */
7011 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7012 {
7013 	struct netdev_adjacent *lower;
7014 
7015 	lower = list_entry(*iter, struct netdev_adjacent, list);
7016 
7017 	if (&lower->list == &dev->adj_list.lower)
7018 		return NULL;
7019 
7020 	*iter = lower->list.next;
7021 
7022 	return lower->dev;
7023 }
7024 EXPORT_SYMBOL(netdev_lower_get_next);
7025 
7026 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7027 						struct list_head **iter)
7028 {
7029 	struct netdev_adjacent *lower;
7030 
7031 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7032 
7033 	if (&lower->list == &dev->adj_list.lower)
7034 		return NULL;
7035 
7036 	*iter = &lower->list;
7037 
7038 	return lower->dev;
7039 }
7040 
7041 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7042 						  struct list_head **iter,
7043 						  bool *ignore)
7044 {
7045 	struct netdev_adjacent *lower;
7046 
7047 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7048 
7049 	if (&lower->list == &dev->adj_list.lower)
7050 		return NULL;
7051 
7052 	*iter = &lower->list;
7053 	*ignore = lower->ignore;
7054 
7055 	return lower->dev;
7056 }
7057 
7058 int netdev_walk_all_lower_dev(struct net_device *dev,
7059 			      int (*fn)(struct net_device *dev,
7060 					void *data),
7061 			      void *data)
7062 {
7063 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7064 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7065 	int ret, cur = 0;
7066 
7067 	now = dev;
7068 	iter = &dev->adj_list.lower;
7069 
7070 	while (1) {
7071 		if (now != dev) {
7072 			ret = fn(now, data);
7073 			if (ret)
7074 				return ret;
7075 		}
7076 
7077 		next = NULL;
7078 		while (1) {
7079 			ldev = netdev_next_lower_dev(now, &iter);
7080 			if (!ldev)
7081 				break;
7082 
7083 			next = ldev;
7084 			niter = &ldev->adj_list.lower;
7085 			dev_stack[cur] = now;
7086 			iter_stack[cur++] = iter;
7087 			break;
7088 		}
7089 
7090 		if (!next) {
7091 			if (!cur)
7092 				return 0;
7093 			next = dev_stack[--cur];
7094 			niter = iter_stack[cur];
7095 		}
7096 
7097 		now = next;
7098 		iter = niter;
7099 	}
7100 
7101 	return 0;
7102 }
7103 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7104 
7105 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7106 				       int (*fn)(struct net_device *dev,
7107 						 void *data),
7108 				       void *data)
7109 {
7110 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7111 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7112 	int ret, cur = 0;
7113 	bool ignore;
7114 
7115 	now = dev;
7116 	iter = &dev->adj_list.lower;
7117 
7118 	while (1) {
7119 		if (now != dev) {
7120 			ret = fn(now, data);
7121 			if (ret)
7122 				return ret;
7123 		}
7124 
7125 		next = NULL;
7126 		while (1) {
7127 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7128 			if (!ldev)
7129 				break;
7130 			if (ignore)
7131 				continue;
7132 
7133 			next = ldev;
7134 			niter = &ldev->adj_list.lower;
7135 			dev_stack[cur] = now;
7136 			iter_stack[cur++] = iter;
7137 			break;
7138 		}
7139 
7140 		if (!next) {
7141 			if (!cur)
7142 				return 0;
7143 			next = dev_stack[--cur];
7144 			niter = iter_stack[cur];
7145 		}
7146 
7147 		now = next;
7148 		iter = niter;
7149 	}
7150 
7151 	return 0;
7152 }
7153 
7154 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7155 						    struct list_head **iter)
7156 {
7157 	struct netdev_adjacent *lower;
7158 
7159 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7160 	if (&lower->list == &dev->adj_list.lower)
7161 		return NULL;
7162 
7163 	*iter = &lower->list;
7164 
7165 	return lower->dev;
7166 }
7167 
7168 static u8 __netdev_upper_depth(struct net_device *dev)
7169 {
7170 	struct net_device *udev;
7171 	struct list_head *iter;
7172 	u8 max_depth = 0;
7173 	bool ignore;
7174 
7175 	for (iter = &dev->adj_list.upper,
7176 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7177 	     udev;
7178 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7179 		if (ignore)
7180 			continue;
7181 		if (max_depth < udev->upper_level)
7182 			max_depth = udev->upper_level;
7183 	}
7184 
7185 	return max_depth;
7186 }
7187 
7188 static u8 __netdev_lower_depth(struct net_device *dev)
7189 {
7190 	struct net_device *ldev;
7191 	struct list_head *iter;
7192 	u8 max_depth = 0;
7193 	bool ignore;
7194 
7195 	for (iter = &dev->adj_list.lower,
7196 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7197 	     ldev;
7198 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7199 		if (ignore)
7200 			continue;
7201 		if (max_depth < ldev->lower_level)
7202 			max_depth = ldev->lower_level;
7203 	}
7204 
7205 	return max_depth;
7206 }
7207 
7208 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7209 {
7210 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7211 	return 0;
7212 }
7213 
7214 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7215 {
7216 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7217 	return 0;
7218 }
7219 
7220 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7221 				  int (*fn)(struct net_device *dev,
7222 					    void *data),
7223 				  void *data)
7224 {
7225 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7226 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7227 	int ret, cur = 0;
7228 
7229 	now = dev;
7230 	iter = &dev->adj_list.lower;
7231 
7232 	while (1) {
7233 		if (now != dev) {
7234 			ret = fn(now, data);
7235 			if (ret)
7236 				return ret;
7237 		}
7238 
7239 		next = NULL;
7240 		while (1) {
7241 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7242 			if (!ldev)
7243 				break;
7244 
7245 			next = ldev;
7246 			niter = &ldev->adj_list.lower;
7247 			dev_stack[cur] = now;
7248 			iter_stack[cur++] = iter;
7249 			break;
7250 		}
7251 
7252 		if (!next) {
7253 			if (!cur)
7254 				return 0;
7255 			next = dev_stack[--cur];
7256 			niter = iter_stack[cur];
7257 		}
7258 
7259 		now = next;
7260 		iter = niter;
7261 	}
7262 
7263 	return 0;
7264 }
7265 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7266 
7267 /**
7268  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7269  *				       lower neighbour list, RCU
7270  *				       variant
7271  * @dev: device
7272  *
7273  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7274  * list. The caller must hold RCU read lock.
7275  */
7276 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7277 {
7278 	struct netdev_adjacent *lower;
7279 
7280 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7281 			struct netdev_adjacent, list);
7282 	if (lower)
7283 		return lower->private;
7284 	return NULL;
7285 }
7286 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7287 
7288 /**
7289  * netdev_master_upper_dev_get_rcu - Get master upper device
7290  * @dev: device
7291  *
7292  * Find a master upper device and return pointer to it or NULL in case
7293  * it's not there. The caller must hold the RCU read lock.
7294  */
7295 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7296 {
7297 	struct netdev_adjacent *upper;
7298 
7299 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7300 				       struct netdev_adjacent, list);
7301 	if (upper && likely(upper->master))
7302 		return upper->dev;
7303 	return NULL;
7304 }
7305 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7306 
7307 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7308 			      struct net_device *adj_dev,
7309 			      struct list_head *dev_list)
7310 {
7311 	char linkname[IFNAMSIZ+7];
7312 
7313 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7314 		"upper_%s" : "lower_%s", adj_dev->name);
7315 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7316 				 linkname);
7317 }
7318 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7319 			       char *name,
7320 			       struct list_head *dev_list)
7321 {
7322 	char linkname[IFNAMSIZ+7];
7323 
7324 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7325 		"upper_%s" : "lower_%s", name);
7326 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7327 }
7328 
7329 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7330 						 struct net_device *adj_dev,
7331 						 struct list_head *dev_list)
7332 {
7333 	return (dev_list == &dev->adj_list.upper ||
7334 		dev_list == &dev->adj_list.lower) &&
7335 		net_eq(dev_net(dev), dev_net(adj_dev));
7336 }
7337 
7338 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7339 					struct net_device *adj_dev,
7340 					struct list_head *dev_list,
7341 					void *private, bool master)
7342 {
7343 	struct netdev_adjacent *adj;
7344 	int ret;
7345 
7346 	adj = __netdev_find_adj(adj_dev, dev_list);
7347 
7348 	if (adj) {
7349 		adj->ref_nr += 1;
7350 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7351 			 dev->name, adj_dev->name, adj->ref_nr);
7352 
7353 		return 0;
7354 	}
7355 
7356 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7357 	if (!adj)
7358 		return -ENOMEM;
7359 
7360 	adj->dev = adj_dev;
7361 	adj->master = master;
7362 	adj->ref_nr = 1;
7363 	adj->private = private;
7364 	adj->ignore = false;
7365 	dev_hold(adj_dev);
7366 
7367 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7368 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7369 
7370 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7371 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7372 		if (ret)
7373 			goto free_adj;
7374 	}
7375 
7376 	/* Ensure that master link is always the first item in list. */
7377 	if (master) {
7378 		ret = sysfs_create_link(&(dev->dev.kobj),
7379 					&(adj_dev->dev.kobj), "master");
7380 		if (ret)
7381 			goto remove_symlinks;
7382 
7383 		list_add_rcu(&adj->list, dev_list);
7384 	} else {
7385 		list_add_tail_rcu(&adj->list, dev_list);
7386 	}
7387 
7388 	return 0;
7389 
7390 remove_symlinks:
7391 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7392 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7393 free_adj:
7394 	kfree(adj);
7395 	dev_put(adj_dev);
7396 
7397 	return ret;
7398 }
7399 
7400 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7401 					 struct net_device *adj_dev,
7402 					 u16 ref_nr,
7403 					 struct list_head *dev_list)
7404 {
7405 	struct netdev_adjacent *adj;
7406 
7407 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7408 		 dev->name, adj_dev->name, ref_nr);
7409 
7410 	adj = __netdev_find_adj(adj_dev, dev_list);
7411 
7412 	if (!adj) {
7413 		pr_err("Adjacency does not exist for device %s from %s\n",
7414 		       dev->name, adj_dev->name);
7415 		WARN_ON(1);
7416 		return;
7417 	}
7418 
7419 	if (adj->ref_nr > ref_nr) {
7420 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7421 			 dev->name, adj_dev->name, ref_nr,
7422 			 adj->ref_nr - ref_nr);
7423 		adj->ref_nr -= ref_nr;
7424 		return;
7425 	}
7426 
7427 	if (adj->master)
7428 		sysfs_remove_link(&(dev->dev.kobj), "master");
7429 
7430 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7431 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7432 
7433 	list_del_rcu(&adj->list);
7434 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7435 		 adj_dev->name, dev->name, adj_dev->name);
7436 	dev_put(adj_dev);
7437 	kfree_rcu(adj, rcu);
7438 }
7439 
7440 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7441 					    struct net_device *upper_dev,
7442 					    struct list_head *up_list,
7443 					    struct list_head *down_list,
7444 					    void *private, bool master)
7445 {
7446 	int ret;
7447 
7448 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7449 					   private, master);
7450 	if (ret)
7451 		return ret;
7452 
7453 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7454 					   private, false);
7455 	if (ret) {
7456 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7457 		return ret;
7458 	}
7459 
7460 	return 0;
7461 }
7462 
7463 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7464 					       struct net_device *upper_dev,
7465 					       u16 ref_nr,
7466 					       struct list_head *up_list,
7467 					       struct list_head *down_list)
7468 {
7469 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7470 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7471 }
7472 
7473 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7474 						struct net_device *upper_dev,
7475 						void *private, bool master)
7476 {
7477 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7478 						&dev->adj_list.upper,
7479 						&upper_dev->adj_list.lower,
7480 						private, master);
7481 }
7482 
7483 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7484 						   struct net_device *upper_dev)
7485 {
7486 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7487 					   &dev->adj_list.upper,
7488 					   &upper_dev->adj_list.lower);
7489 }
7490 
7491 static int __netdev_upper_dev_link(struct net_device *dev,
7492 				   struct net_device *upper_dev, bool master,
7493 				   void *upper_priv, void *upper_info,
7494 				   struct netlink_ext_ack *extack)
7495 {
7496 	struct netdev_notifier_changeupper_info changeupper_info = {
7497 		.info = {
7498 			.dev = dev,
7499 			.extack = extack,
7500 		},
7501 		.upper_dev = upper_dev,
7502 		.master = master,
7503 		.linking = true,
7504 		.upper_info = upper_info,
7505 	};
7506 	struct net_device *master_dev;
7507 	int ret = 0;
7508 
7509 	ASSERT_RTNL();
7510 
7511 	if (dev == upper_dev)
7512 		return -EBUSY;
7513 
7514 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7515 	if (__netdev_has_upper_dev(upper_dev, dev))
7516 		return -EBUSY;
7517 
7518 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7519 		return -EMLINK;
7520 
7521 	if (!master) {
7522 		if (__netdev_has_upper_dev(dev, upper_dev))
7523 			return -EEXIST;
7524 	} else {
7525 		master_dev = __netdev_master_upper_dev_get(dev);
7526 		if (master_dev)
7527 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7528 	}
7529 
7530 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7531 					    &changeupper_info.info);
7532 	ret = notifier_to_errno(ret);
7533 	if (ret)
7534 		return ret;
7535 
7536 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7537 						   master);
7538 	if (ret)
7539 		return ret;
7540 
7541 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7542 					    &changeupper_info.info);
7543 	ret = notifier_to_errno(ret);
7544 	if (ret)
7545 		goto rollback;
7546 
7547 	__netdev_update_upper_level(dev, NULL);
7548 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7549 
7550 	__netdev_update_lower_level(upper_dev, NULL);
7551 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7552 				    NULL);
7553 
7554 	return 0;
7555 
7556 rollback:
7557 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7558 
7559 	return ret;
7560 }
7561 
7562 /**
7563  * netdev_upper_dev_link - Add a link to the upper device
7564  * @dev: device
7565  * @upper_dev: new upper device
7566  * @extack: netlink extended ack
7567  *
7568  * Adds a link to device which is upper to this one. The caller must hold
7569  * the RTNL lock. On a failure a negative errno code is returned.
7570  * On success the reference counts are adjusted and the function
7571  * returns zero.
7572  */
7573 int netdev_upper_dev_link(struct net_device *dev,
7574 			  struct net_device *upper_dev,
7575 			  struct netlink_ext_ack *extack)
7576 {
7577 	return __netdev_upper_dev_link(dev, upper_dev, false,
7578 				       NULL, NULL, extack);
7579 }
7580 EXPORT_SYMBOL(netdev_upper_dev_link);
7581 
7582 /**
7583  * netdev_master_upper_dev_link - Add a master link to the upper device
7584  * @dev: device
7585  * @upper_dev: new upper device
7586  * @upper_priv: upper device private
7587  * @upper_info: upper info to be passed down via notifier
7588  * @extack: netlink extended ack
7589  *
7590  * Adds a link to device which is upper to this one. In this case, only
7591  * one master upper device can be linked, although other non-master devices
7592  * might be linked as well. The caller must hold the RTNL lock.
7593  * On a failure a negative errno code is returned. On success the reference
7594  * counts are adjusted and the function returns zero.
7595  */
7596 int netdev_master_upper_dev_link(struct net_device *dev,
7597 				 struct net_device *upper_dev,
7598 				 void *upper_priv, void *upper_info,
7599 				 struct netlink_ext_ack *extack)
7600 {
7601 	return __netdev_upper_dev_link(dev, upper_dev, true,
7602 				       upper_priv, upper_info, extack);
7603 }
7604 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7605 
7606 /**
7607  * netdev_upper_dev_unlink - Removes a link to upper device
7608  * @dev: device
7609  * @upper_dev: new upper device
7610  *
7611  * Removes a link to device which is upper to this one. The caller must hold
7612  * the RTNL lock.
7613  */
7614 void netdev_upper_dev_unlink(struct net_device *dev,
7615 			     struct net_device *upper_dev)
7616 {
7617 	struct netdev_notifier_changeupper_info changeupper_info = {
7618 		.info = {
7619 			.dev = dev,
7620 		},
7621 		.upper_dev = upper_dev,
7622 		.linking = false,
7623 	};
7624 
7625 	ASSERT_RTNL();
7626 
7627 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7628 
7629 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7630 				      &changeupper_info.info);
7631 
7632 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7633 
7634 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7635 				      &changeupper_info.info);
7636 
7637 	__netdev_update_upper_level(dev, NULL);
7638 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7639 
7640 	__netdev_update_lower_level(upper_dev, NULL);
7641 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7642 				    NULL);
7643 }
7644 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7645 
7646 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7647 				      struct net_device *lower_dev,
7648 				      bool val)
7649 {
7650 	struct netdev_adjacent *adj;
7651 
7652 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7653 	if (adj)
7654 		adj->ignore = val;
7655 
7656 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7657 	if (adj)
7658 		adj->ignore = val;
7659 }
7660 
7661 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7662 					struct net_device *lower_dev)
7663 {
7664 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7665 }
7666 
7667 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7668 				       struct net_device *lower_dev)
7669 {
7670 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7671 }
7672 
7673 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7674 				   struct net_device *new_dev,
7675 				   struct net_device *dev,
7676 				   struct netlink_ext_ack *extack)
7677 {
7678 	int err;
7679 
7680 	if (!new_dev)
7681 		return 0;
7682 
7683 	if (old_dev && new_dev != old_dev)
7684 		netdev_adjacent_dev_disable(dev, old_dev);
7685 
7686 	err = netdev_upper_dev_link(new_dev, dev, extack);
7687 	if (err) {
7688 		if (old_dev && new_dev != old_dev)
7689 			netdev_adjacent_dev_enable(dev, old_dev);
7690 		return err;
7691 	}
7692 
7693 	return 0;
7694 }
7695 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7696 
7697 void netdev_adjacent_change_commit(struct net_device *old_dev,
7698 				   struct net_device *new_dev,
7699 				   struct net_device *dev)
7700 {
7701 	if (!new_dev || !old_dev)
7702 		return;
7703 
7704 	if (new_dev == old_dev)
7705 		return;
7706 
7707 	netdev_adjacent_dev_enable(dev, old_dev);
7708 	netdev_upper_dev_unlink(old_dev, dev);
7709 }
7710 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7711 
7712 void netdev_adjacent_change_abort(struct net_device *old_dev,
7713 				  struct net_device *new_dev,
7714 				  struct net_device *dev)
7715 {
7716 	if (!new_dev)
7717 		return;
7718 
7719 	if (old_dev && new_dev != old_dev)
7720 		netdev_adjacent_dev_enable(dev, old_dev);
7721 
7722 	netdev_upper_dev_unlink(new_dev, dev);
7723 }
7724 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7725 
7726 /**
7727  * netdev_bonding_info_change - Dispatch event about slave change
7728  * @dev: device
7729  * @bonding_info: info to dispatch
7730  *
7731  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7732  * The caller must hold the RTNL lock.
7733  */
7734 void netdev_bonding_info_change(struct net_device *dev,
7735 				struct netdev_bonding_info *bonding_info)
7736 {
7737 	struct netdev_notifier_bonding_info info = {
7738 		.info.dev = dev,
7739 	};
7740 
7741 	memcpy(&info.bonding_info, bonding_info,
7742 	       sizeof(struct netdev_bonding_info));
7743 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7744 				      &info.info);
7745 }
7746 EXPORT_SYMBOL(netdev_bonding_info_change);
7747 
7748 static void netdev_adjacent_add_links(struct net_device *dev)
7749 {
7750 	struct netdev_adjacent *iter;
7751 
7752 	struct net *net = dev_net(dev);
7753 
7754 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7755 		if (!net_eq(net, dev_net(iter->dev)))
7756 			continue;
7757 		netdev_adjacent_sysfs_add(iter->dev, dev,
7758 					  &iter->dev->adj_list.lower);
7759 		netdev_adjacent_sysfs_add(dev, iter->dev,
7760 					  &dev->adj_list.upper);
7761 	}
7762 
7763 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7764 		if (!net_eq(net, dev_net(iter->dev)))
7765 			continue;
7766 		netdev_adjacent_sysfs_add(iter->dev, dev,
7767 					  &iter->dev->adj_list.upper);
7768 		netdev_adjacent_sysfs_add(dev, iter->dev,
7769 					  &dev->adj_list.lower);
7770 	}
7771 }
7772 
7773 static void netdev_adjacent_del_links(struct net_device *dev)
7774 {
7775 	struct netdev_adjacent *iter;
7776 
7777 	struct net *net = dev_net(dev);
7778 
7779 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7780 		if (!net_eq(net, dev_net(iter->dev)))
7781 			continue;
7782 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7783 					  &iter->dev->adj_list.lower);
7784 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7785 					  &dev->adj_list.upper);
7786 	}
7787 
7788 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7789 		if (!net_eq(net, dev_net(iter->dev)))
7790 			continue;
7791 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7792 					  &iter->dev->adj_list.upper);
7793 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7794 					  &dev->adj_list.lower);
7795 	}
7796 }
7797 
7798 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7799 {
7800 	struct netdev_adjacent *iter;
7801 
7802 	struct net *net = dev_net(dev);
7803 
7804 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7805 		if (!net_eq(net, dev_net(iter->dev)))
7806 			continue;
7807 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7808 					  &iter->dev->adj_list.lower);
7809 		netdev_adjacent_sysfs_add(iter->dev, dev,
7810 					  &iter->dev->adj_list.lower);
7811 	}
7812 
7813 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7814 		if (!net_eq(net, dev_net(iter->dev)))
7815 			continue;
7816 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7817 					  &iter->dev->adj_list.upper);
7818 		netdev_adjacent_sysfs_add(iter->dev, dev,
7819 					  &iter->dev->adj_list.upper);
7820 	}
7821 }
7822 
7823 void *netdev_lower_dev_get_private(struct net_device *dev,
7824 				   struct net_device *lower_dev)
7825 {
7826 	struct netdev_adjacent *lower;
7827 
7828 	if (!lower_dev)
7829 		return NULL;
7830 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7831 	if (!lower)
7832 		return NULL;
7833 
7834 	return lower->private;
7835 }
7836 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7837 
7838 
7839 /**
7840  * netdev_lower_change - Dispatch event about lower device state change
7841  * @lower_dev: device
7842  * @lower_state_info: state to dispatch
7843  *
7844  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7845  * The caller must hold the RTNL lock.
7846  */
7847 void netdev_lower_state_changed(struct net_device *lower_dev,
7848 				void *lower_state_info)
7849 {
7850 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7851 		.info.dev = lower_dev,
7852 	};
7853 
7854 	ASSERT_RTNL();
7855 	changelowerstate_info.lower_state_info = lower_state_info;
7856 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7857 				      &changelowerstate_info.info);
7858 }
7859 EXPORT_SYMBOL(netdev_lower_state_changed);
7860 
7861 static void dev_change_rx_flags(struct net_device *dev, int flags)
7862 {
7863 	const struct net_device_ops *ops = dev->netdev_ops;
7864 
7865 	if (ops->ndo_change_rx_flags)
7866 		ops->ndo_change_rx_flags(dev, flags);
7867 }
7868 
7869 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7870 {
7871 	unsigned int old_flags = dev->flags;
7872 	kuid_t uid;
7873 	kgid_t gid;
7874 
7875 	ASSERT_RTNL();
7876 
7877 	dev->flags |= IFF_PROMISC;
7878 	dev->promiscuity += inc;
7879 	if (dev->promiscuity == 0) {
7880 		/*
7881 		 * Avoid overflow.
7882 		 * If inc causes overflow, untouch promisc and return error.
7883 		 */
7884 		if (inc < 0)
7885 			dev->flags &= ~IFF_PROMISC;
7886 		else {
7887 			dev->promiscuity -= inc;
7888 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7889 				dev->name);
7890 			return -EOVERFLOW;
7891 		}
7892 	}
7893 	if (dev->flags != old_flags) {
7894 		pr_info("device %s %s promiscuous mode\n",
7895 			dev->name,
7896 			dev->flags & IFF_PROMISC ? "entered" : "left");
7897 		if (audit_enabled) {
7898 			current_uid_gid(&uid, &gid);
7899 			audit_log(audit_context(), GFP_ATOMIC,
7900 				  AUDIT_ANOM_PROMISCUOUS,
7901 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7902 				  dev->name, (dev->flags & IFF_PROMISC),
7903 				  (old_flags & IFF_PROMISC),
7904 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7905 				  from_kuid(&init_user_ns, uid),
7906 				  from_kgid(&init_user_ns, gid),
7907 				  audit_get_sessionid(current));
7908 		}
7909 
7910 		dev_change_rx_flags(dev, IFF_PROMISC);
7911 	}
7912 	if (notify)
7913 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7914 	return 0;
7915 }
7916 
7917 /**
7918  *	dev_set_promiscuity	- update promiscuity count on a device
7919  *	@dev: device
7920  *	@inc: modifier
7921  *
7922  *	Add or remove promiscuity from a device. While the count in the device
7923  *	remains above zero the interface remains promiscuous. Once it hits zero
7924  *	the device reverts back to normal filtering operation. A negative inc
7925  *	value is used to drop promiscuity on the device.
7926  *	Return 0 if successful or a negative errno code on error.
7927  */
7928 int dev_set_promiscuity(struct net_device *dev, int inc)
7929 {
7930 	unsigned int old_flags = dev->flags;
7931 	int err;
7932 
7933 	err = __dev_set_promiscuity(dev, inc, true);
7934 	if (err < 0)
7935 		return err;
7936 	if (dev->flags != old_flags)
7937 		dev_set_rx_mode(dev);
7938 	return err;
7939 }
7940 EXPORT_SYMBOL(dev_set_promiscuity);
7941 
7942 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7943 {
7944 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7945 
7946 	ASSERT_RTNL();
7947 
7948 	dev->flags |= IFF_ALLMULTI;
7949 	dev->allmulti += inc;
7950 	if (dev->allmulti == 0) {
7951 		/*
7952 		 * Avoid overflow.
7953 		 * If inc causes overflow, untouch allmulti and return error.
7954 		 */
7955 		if (inc < 0)
7956 			dev->flags &= ~IFF_ALLMULTI;
7957 		else {
7958 			dev->allmulti -= inc;
7959 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7960 				dev->name);
7961 			return -EOVERFLOW;
7962 		}
7963 	}
7964 	if (dev->flags ^ old_flags) {
7965 		dev_change_rx_flags(dev, IFF_ALLMULTI);
7966 		dev_set_rx_mode(dev);
7967 		if (notify)
7968 			__dev_notify_flags(dev, old_flags,
7969 					   dev->gflags ^ old_gflags);
7970 	}
7971 	return 0;
7972 }
7973 
7974 /**
7975  *	dev_set_allmulti	- update allmulti count on a device
7976  *	@dev: device
7977  *	@inc: modifier
7978  *
7979  *	Add or remove reception of all multicast frames to a device. While the
7980  *	count in the device remains above zero the interface remains listening
7981  *	to all interfaces. Once it hits zero the device reverts back to normal
7982  *	filtering operation. A negative @inc value is used to drop the counter
7983  *	when releasing a resource needing all multicasts.
7984  *	Return 0 if successful or a negative errno code on error.
7985  */
7986 
7987 int dev_set_allmulti(struct net_device *dev, int inc)
7988 {
7989 	return __dev_set_allmulti(dev, inc, true);
7990 }
7991 EXPORT_SYMBOL(dev_set_allmulti);
7992 
7993 /*
7994  *	Upload unicast and multicast address lists to device and
7995  *	configure RX filtering. When the device doesn't support unicast
7996  *	filtering it is put in promiscuous mode while unicast addresses
7997  *	are present.
7998  */
7999 void __dev_set_rx_mode(struct net_device *dev)
8000 {
8001 	const struct net_device_ops *ops = dev->netdev_ops;
8002 
8003 	/* dev_open will call this function so the list will stay sane. */
8004 	if (!(dev->flags&IFF_UP))
8005 		return;
8006 
8007 	if (!netif_device_present(dev))
8008 		return;
8009 
8010 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8011 		/* Unicast addresses changes may only happen under the rtnl,
8012 		 * therefore calling __dev_set_promiscuity here is safe.
8013 		 */
8014 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8015 			__dev_set_promiscuity(dev, 1, false);
8016 			dev->uc_promisc = true;
8017 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8018 			__dev_set_promiscuity(dev, -1, false);
8019 			dev->uc_promisc = false;
8020 		}
8021 	}
8022 
8023 	if (ops->ndo_set_rx_mode)
8024 		ops->ndo_set_rx_mode(dev);
8025 }
8026 
8027 void dev_set_rx_mode(struct net_device *dev)
8028 {
8029 	netif_addr_lock_bh(dev);
8030 	__dev_set_rx_mode(dev);
8031 	netif_addr_unlock_bh(dev);
8032 }
8033 
8034 /**
8035  *	dev_get_flags - get flags reported to userspace
8036  *	@dev: device
8037  *
8038  *	Get the combination of flag bits exported through APIs to userspace.
8039  */
8040 unsigned int dev_get_flags(const struct net_device *dev)
8041 {
8042 	unsigned int flags;
8043 
8044 	flags = (dev->flags & ~(IFF_PROMISC |
8045 				IFF_ALLMULTI |
8046 				IFF_RUNNING |
8047 				IFF_LOWER_UP |
8048 				IFF_DORMANT)) |
8049 		(dev->gflags & (IFF_PROMISC |
8050 				IFF_ALLMULTI));
8051 
8052 	if (netif_running(dev)) {
8053 		if (netif_oper_up(dev))
8054 			flags |= IFF_RUNNING;
8055 		if (netif_carrier_ok(dev))
8056 			flags |= IFF_LOWER_UP;
8057 		if (netif_dormant(dev))
8058 			flags |= IFF_DORMANT;
8059 	}
8060 
8061 	return flags;
8062 }
8063 EXPORT_SYMBOL(dev_get_flags);
8064 
8065 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8066 		       struct netlink_ext_ack *extack)
8067 {
8068 	unsigned int old_flags = dev->flags;
8069 	int ret;
8070 
8071 	ASSERT_RTNL();
8072 
8073 	/*
8074 	 *	Set the flags on our device.
8075 	 */
8076 
8077 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8078 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8079 			       IFF_AUTOMEDIA)) |
8080 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8081 				    IFF_ALLMULTI));
8082 
8083 	/*
8084 	 *	Load in the correct multicast list now the flags have changed.
8085 	 */
8086 
8087 	if ((old_flags ^ flags) & IFF_MULTICAST)
8088 		dev_change_rx_flags(dev, IFF_MULTICAST);
8089 
8090 	dev_set_rx_mode(dev);
8091 
8092 	/*
8093 	 *	Have we downed the interface. We handle IFF_UP ourselves
8094 	 *	according to user attempts to set it, rather than blindly
8095 	 *	setting it.
8096 	 */
8097 
8098 	ret = 0;
8099 	if ((old_flags ^ flags) & IFF_UP) {
8100 		if (old_flags & IFF_UP)
8101 			__dev_close(dev);
8102 		else
8103 			ret = __dev_open(dev, extack);
8104 	}
8105 
8106 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8107 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8108 		unsigned int old_flags = dev->flags;
8109 
8110 		dev->gflags ^= IFF_PROMISC;
8111 
8112 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8113 			if (dev->flags != old_flags)
8114 				dev_set_rx_mode(dev);
8115 	}
8116 
8117 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8118 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8119 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8120 	 */
8121 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8122 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8123 
8124 		dev->gflags ^= IFF_ALLMULTI;
8125 		__dev_set_allmulti(dev, inc, false);
8126 	}
8127 
8128 	return ret;
8129 }
8130 
8131 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8132 			unsigned int gchanges)
8133 {
8134 	unsigned int changes = dev->flags ^ old_flags;
8135 
8136 	if (gchanges)
8137 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8138 
8139 	if (changes & IFF_UP) {
8140 		if (dev->flags & IFF_UP)
8141 			call_netdevice_notifiers(NETDEV_UP, dev);
8142 		else
8143 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8144 	}
8145 
8146 	if (dev->flags & IFF_UP &&
8147 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8148 		struct netdev_notifier_change_info change_info = {
8149 			.info = {
8150 				.dev = dev,
8151 			},
8152 			.flags_changed = changes,
8153 		};
8154 
8155 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8156 	}
8157 }
8158 
8159 /**
8160  *	dev_change_flags - change device settings
8161  *	@dev: device
8162  *	@flags: device state flags
8163  *	@extack: netlink extended ack
8164  *
8165  *	Change settings on device based state flags. The flags are
8166  *	in the userspace exported format.
8167  */
8168 int dev_change_flags(struct net_device *dev, unsigned int flags,
8169 		     struct netlink_ext_ack *extack)
8170 {
8171 	int ret;
8172 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8173 
8174 	ret = __dev_change_flags(dev, flags, extack);
8175 	if (ret < 0)
8176 		return ret;
8177 
8178 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8179 	__dev_notify_flags(dev, old_flags, changes);
8180 	return ret;
8181 }
8182 EXPORT_SYMBOL(dev_change_flags);
8183 
8184 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8185 {
8186 	const struct net_device_ops *ops = dev->netdev_ops;
8187 
8188 	if (ops->ndo_change_mtu)
8189 		return ops->ndo_change_mtu(dev, new_mtu);
8190 
8191 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8192 	WRITE_ONCE(dev->mtu, new_mtu);
8193 	return 0;
8194 }
8195 EXPORT_SYMBOL(__dev_set_mtu);
8196 
8197 /**
8198  *	dev_set_mtu_ext - Change maximum transfer unit
8199  *	@dev: device
8200  *	@new_mtu: new transfer unit
8201  *	@extack: netlink extended ack
8202  *
8203  *	Change the maximum transfer size of the network device.
8204  */
8205 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8206 		    struct netlink_ext_ack *extack)
8207 {
8208 	int err, orig_mtu;
8209 
8210 	if (new_mtu == dev->mtu)
8211 		return 0;
8212 
8213 	/* MTU must be positive, and in range */
8214 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8215 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8216 		return -EINVAL;
8217 	}
8218 
8219 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8220 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8221 		return -EINVAL;
8222 	}
8223 
8224 	if (!netif_device_present(dev))
8225 		return -ENODEV;
8226 
8227 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8228 	err = notifier_to_errno(err);
8229 	if (err)
8230 		return err;
8231 
8232 	orig_mtu = dev->mtu;
8233 	err = __dev_set_mtu(dev, new_mtu);
8234 
8235 	if (!err) {
8236 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8237 						   orig_mtu);
8238 		err = notifier_to_errno(err);
8239 		if (err) {
8240 			/* setting mtu back and notifying everyone again,
8241 			 * so that they have a chance to revert changes.
8242 			 */
8243 			__dev_set_mtu(dev, orig_mtu);
8244 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8245 						     new_mtu);
8246 		}
8247 	}
8248 	return err;
8249 }
8250 
8251 int dev_set_mtu(struct net_device *dev, int new_mtu)
8252 {
8253 	struct netlink_ext_ack extack;
8254 	int err;
8255 
8256 	memset(&extack, 0, sizeof(extack));
8257 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8258 	if (err && extack._msg)
8259 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8260 	return err;
8261 }
8262 EXPORT_SYMBOL(dev_set_mtu);
8263 
8264 /**
8265  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8266  *	@dev: device
8267  *	@new_len: new tx queue length
8268  */
8269 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8270 {
8271 	unsigned int orig_len = dev->tx_queue_len;
8272 	int res;
8273 
8274 	if (new_len != (unsigned int)new_len)
8275 		return -ERANGE;
8276 
8277 	if (new_len != orig_len) {
8278 		dev->tx_queue_len = new_len;
8279 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8280 		res = notifier_to_errno(res);
8281 		if (res)
8282 			goto err_rollback;
8283 		res = dev_qdisc_change_tx_queue_len(dev);
8284 		if (res)
8285 			goto err_rollback;
8286 	}
8287 
8288 	return 0;
8289 
8290 err_rollback:
8291 	netdev_err(dev, "refused to change device tx_queue_len\n");
8292 	dev->tx_queue_len = orig_len;
8293 	return res;
8294 }
8295 
8296 /**
8297  *	dev_set_group - Change group this device belongs to
8298  *	@dev: device
8299  *	@new_group: group this device should belong to
8300  */
8301 void dev_set_group(struct net_device *dev, int new_group)
8302 {
8303 	dev->group = new_group;
8304 }
8305 EXPORT_SYMBOL(dev_set_group);
8306 
8307 /**
8308  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8309  *	@dev: device
8310  *	@addr: new address
8311  *	@extack: netlink extended ack
8312  */
8313 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8314 			      struct netlink_ext_ack *extack)
8315 {
8316 	struct netdev_notifier_pre_changeaddr_info info = {
8317 		.info.dev = dev,
8318 		.info.extack = extack,
8319 		.dev_addr = addr,
8320 	};
8321 	int rc;
8322 
8323 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8324 	return notifier_to_errno(rc);
8325 }
8326 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8327 
8328 /**
8329  *	dev_set_mac_address - Change Media Access Control Address
8330  *	@dev: device
8331  *	@sa: new address
8332  *	@extack: netlink extended ack
8333  *
8334  *	Change the hardware (MAC) address of the device
8335  */
8336 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8337 			struct netlink_ext_ack *extack)
8338 {
8339 	const struct net_device_ops *ops = dev->netdev_ops;
8340 	int err;
8341 
8342 	if (!ops->ndo_set_mac_address)
8343 		return -EOPNOTSUPP;
8344 	if (sa->sa_family != dev->type)
8345 		return -EINVAL;
8346 	if (!netif_device_present(dev))
8347 		return -ENODEV;
8348 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8349 	if (err)
8350 		return err;
8351 	err = ops->ndo_set_mac_address(dev, sa);
8352 	if (err)
8353 		return err;
8354 	dev->addr_assign_type = NET_ADDR_SET;
8355 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8356 	add_device_randomness(dev->dev_addr, dev->addr_len);
8357 	return 0;
8358 }
8359 EXPORT_SYMBOL(dev_set_mac_address);
8360 
8361 /**
8362  *	dev_change_carrier - Change device carrier
8363  *	@dev: device
8364  *	@new_carrier: new value
8365  *
8366  *	Change device carrier
8367  */
8368 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8369 {
8370 	const struct net_device_ops *ops = dev->netdev_ops;
8371 
8372 	if (!ops->ndo_change_carrier)
8373 		return -EOPNOTSUPP;
8374 	if (!netif_device_present(dev))
8375 		return -ENODEV;
8376 	return ops->ndo_change_carrier(dev, new_carrier);
8377 }
8378 EXPORT_SYMBOL(dev_change_carrier);
8379 
8380 /**
8381  *	dev_get_phys_port_id - Get device physical port ID
8382  *	@dev: device
8383  *	@ppid: port ID
8384  *
8385  *	Get device physical port ID
8386  */
8387 int dev_get_phys_port_id(struct net_device *dev,
8388 			 struct netdev_phys_item_id *ppid)
8389 {
8390 	const struct net_device_ops *ops = dev->netdev_ops;
8391 
8392 	if (!ops->ndo_get_phys_port_id)
8393 		return -EOPNOTSUPP;
8394 	return ops->ndo_get_phys_port_id(dev, ppid);
8395 }
8396 EXPORT_SYMBOL(dev_get_phys_port_id);
8397 
8398 /**
8399  *	dev_get_phys_port_name - Get device physical port name
8400  *	@dev: device
8401  *	@name: port name
8402  *	@len: limit of bytes to copy to name
8403  *
8404  *	Get device physical port name
8405  */
8406 int dev_get_phys_port_name(struct net_device *dev,
8407 			   char *name, size_t len)
8408 {
8409 	const struct net_device_ops *ops = dev->netdev_ops;
8410 	int err;
8411 
8412 	if (ops->ndo_get_phys_port_name) {
8413 		err = ops->ndo_get_phys_port_name(dev, name, len);
8414 		if (err != -EOPNOTSUPP)
8415 			return err;
8416 	}
8417 	return devlink_compat_phys_port_name_get(dev, name, len);
8418 }
8419 EXPORT_SYMBOL(dev_get_phys_port_name);
8420 
8421 /**
8422  *	dev_get_port_parent_id - Get the device's port parent identifier
8423  *	@dev: network device
8424  *	@ppid: pointer to a storage for the port's parent identifier
8425  *	@recurse: allow/disallow recursion to lower devices
8426  *
8427  *	Get the devices's port parent identifier
8428  */
8429 int dev_get_port_parent_id(struct net_device *dev,
8430 			   struct netdev_phys_item_id *ppid,
8431 			   bool recurse)
8432 {
8433 	const struct net_device_ops *ops = dev->netdev_ops;
8434 	struct netdev_phys_item_id first = { };
8435 	struct net_device *lower_dev;
8436 	struct list_head *iter;
8437 	int err;
8438 
8439 	if (ops->ndo_get_port_parent_id) {
8440 		err = ops->ndo_get_port_parent_id(dev, ppid);
8441 		if (err != -EOPNOTSUPP)
8442 			return err;
8443 	}
8444 
8445 	err = devlink_compat_switch_id_get(dev, ppid);
8446 	if (!err || err != -EOPNOTSUPP)
8447 		return err;
8448 
8449 	if (!recurse)
8450 		return -EOPNOTSUPP;
8451 
8452 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8453 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8454 		if (err)
8455 			break;
8456 		if (!first.id_len)
8457 			first = *ppid;
8458 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8459 			return -ENODATA;
8460 	}
8461 
8462 	return err;
8463 }
8464 EXPORT_SYMBOL(dev_get_port_parent_id);
8465 
8466 /**
8467  *	netdev_port_same_parent_id - Indicate if two network devices have
8468  *	the same port parent identifier
8469  *	@a: first network device
8470  *	@b: second network device
8471  */
8472 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8473 {
8474 	struct netdev_phys_item_id a_id = { };
8475 	struct netdev_phys_item_id b_id = { };
8476 
8477 	if (dev_get_port_parent_id(a, &a_id, true) ||
8478 	    dev_get_port_parent_id(b, &b_id, true))
8479 		return false;
8480 
8481 	return netdev_phys_item_id_same(&a_id, &b_id);
8482 }
8483 EXPORT_SYMBOL(netdev_port_same_parent_id);
8484 
8485 /**
8486  *	dev_change_proto_down - update protocol port state information
8487  *	@dev: device
8488  *	@proto_down: new value
8489  *
8490  *	This info can be used by switch drivers to set the phys state of the
8491  *	port.
8492  */
8493 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8494 {
8495 	const struct net_device_ops *ops = dev->netdev_ops;
8496 
8497 	if (!ops->ndo_change_proto_down)
8498 		return -EOPNOTSUPP;
8499 	if (!netif_device_present(dev))
8500 		return -ENODEV;
8501 	return ops->ndo_change_proto_down(dev, proto_down);
8502 }
8503 EXPORT_SYMBOL(dev_change_proto_down);
8504 
8505 /**
8506  *	dev_change_proto_down_generic - generic implementation for
8507  * 	ndo_change_proto_down that sets carrier according to
8508  * 	proto_down.
8509  *
8510  *	@dev: device
8511  *	@proto_down: new value
8512  */
8513 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8514 {
8515 	if (proto_down)
8516 		netif_carrier_off(dev);
8517 	else
8518 		netif_carrier_on(dev);
8519 	dev->proto_down = proto_down;
8520 	return 0;
8521 }
8522 EXPORT_SYMBOL(dev_change_proto_down_generic);
8523 
8524 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8525 		    enum bpf_netdev_command cmd)
8526 {
8527 	struct netdev_bpf xdp;
8528 
8529 	if (!bpf_op)
8530 		return 0;
8531 
8532 	memset(&xdp, 0, sizeof(xdp));
8533 	xdp.command = cmd;
8534 
8535 	/* Query must always succeed. */
8536 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8537 
8538 	return xdp.prog_id;
8539 }
8540 
8541 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8542 			   struct netlink_ext_ack *extack, u32 flags,
8543 			   struct bpf_prog *prog)
8544 {
8545 	struct netdev_bpf xdp;
8546 
8547 	memset(&xdp, 0, sizeof(xdp));
8548 	if (flags & XDP_FLAGS_HW_MODE)
8549 		xdp.command = XDP_SETUP_PROG_HW;
8550 	else
8551 		xdp.command = XDP_SETUP_PROG;
8552 	xdp.extack = extack;
8553 	xdp.flags = flags;
8554 	xdp.prog = prog;
8555 
8556 	return bpf_op(dev, &xdp);
8557 }
8558 
8559 static void dev_xdp_uninstall(struct net_device *dev)
8560 {
8561 	struct netdev_bpf xdp;
8562 	bpf_op_t ndo_bpf;
8563 
8564 	/* Remove generic XDP */
8565 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8566 
8567 	/* Remove from the driver */
8568 	ndo_bpf = dev->netdev_ops->ndo_bpf;
8569 	if (!ndo_bpf)
8570 		return;
8571 
8572 	memset(&xdp, 0, sizeof(xdp));
8573 	xdp.command = XDP_QUERY_PROG;
8574 	WARN_ON(ndo_bpf(dev, &xdp));
8575 	if (xdp.prog_id)
8576 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8577 					NULL));
8578 
8579 	/* Remove HW offload */
8580 	memset(&xdp, 0, sizeof(xdp));
8581 	xdp.command = XDP_QUERY_PROG_HW;
8582 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8583 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8584 					NULL));
8585 }
8586 
8587 /**
8588  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
8589  *	@dev: device
8590  *	@extack: netlink extended ack
8591  *	@fd: new program fd or negative value to clear
8592  *	@flags: xdp-related flags
8593  *
8594  *	Set or clear a bpf program for a device
8595  */
8596 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8597 		      int fd, u32 flags)
8598 {
8599 	const struct net_device_ops *ops = dev->netdev_ops;
8600 	enum bpf_netdev_command query;
8601 	struct bpf_prog *prog = NULL;
8602 	bpf_op_t bpf_op, bpf_chk;
8603 	bool offload;
8604 	int err;
8605 
8606 	ASSERT_RTNL();
8607 
8608 	offload = flags & XDP_FLAGS_HW_MODE;
8609 	query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8610 
8611 	bpf_op = bpf_chk = ops->ndo_bpf;
8612 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8613 		NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8614 		return -EOPNOTSUPP;
8615 	}
8616 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8617 		bpf_op = generic_xdp_install;
8618 	if (bpf_op == bpf_chk)
8619 		bpf_chk = generic_xdp_install;
8620 
8621 	if (fd >= 0) {
8622 		u32 prog_id;
8623 
8624 		if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8625 			NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8626 			return -EEXIST;
8627 		}
8628 
8629 		prog_id = __dev_xdp_query(dev, bpf_op, query);
8630 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8631 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8632 			return -EBUSY;
8633 		}
8634 
8635 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8636 					     bpf_op == ops->ndo_bpf);
8637 		if (IS_ERR(prog))
8638 			return PTR_ERR(prog);
8639 
8640 		if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8641 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8642 			bpf_prog_put(prog);
8643 			return -EINVAL;
8644 		}
8645 
8646 		/* prog->aux->id may be 0 for orphaned device-bound progs */
8647 		if (prog->aux->id && prog->aux->id == prog_id) {
8648 			bpf_prog_put(prog);
8649 			return 0;
8650 		}
8651 	} else {
8652 		if (!__dev_xdp_query(dev, bpf_op, query))
8653 			return 0;
8654 	}
8655 
8656 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8657 	if (err < 0 && prog)
8658 		bpf_prog_put(prog);
8659 
8660 	return err;
8661 }
8662 
8663 /**
8664  *	dev_new_index	-	allocate an ifindex
8665  *	@net: the applicable net namespace
8666  *
8667  *	Returns a suitable unique value for a new device interface
8668  *	number.  The caller must hold the rtnl semaphore or the
8669  *	dev_base_lock to be sure it remains unique.
8670  */
8671 static int dev_new_index(struct net *net)
8672 {
8673 	int ifindex = net->ifindex;
8674 
8675 	for (;;) {
8676 		if (++ifindex <= 0)
8677 			ifindex = 1;
8678 		if (!__dev_get_by_index(net, ifindex))
8679 			return net->ifindex = ifindex;
8680 	}
8681 }
8682 
8683 /* Delayed registration/unregisteration */
8684 static LIST_HEAD(net_todo_list);
8685 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8686 
8687 static void net_set_todo(struct net_device *dev)
8688 {
8689 	list_add_tail(&dev->todo_list, &net_todo_list);
8690 	dev_net(dev)->dev_unreg_count++;
8691 }
8692 
8693 static void rollback_registered_many(struct list_head *head)
8694 {
8695 	struct net_device *dev, *tmp;
8696 	LIST_HEAD(close_head);
8697 
8698 	BUG_ON(dev_boot_phase);
8699 	ASSERT_RTNL();
8700 
8701 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8702 		/* Some devices call without registering
8703 		 * for initialization unwind. Remove those
8704 		 * devices and proceed with the remaining.
8705 		 */
8706 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8707 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8708 				 dev->name, dev);
8709 
8710 			WARN_ON(1);
8711 			list_del(&dev->unreg_list);
8712 			continue;
8713 		}
8714 		dev->dismantle = true;
8715 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8716 	}
8717 
8718 	/* If device is running, close it first. */
8719 	list_for_each_entry(dev, head, unreg_list)
8720 		list_add_tail(&dev->close_list, &close_head);
8721 	dev_close_many(&close_head, true);
8722 
8723 	list_for_each_entry(dev, head, unreg_list) {
8724 		/* And unlink it from device chain. */
8725 		unlist_netdevice(dev);
8726 
8727 		dev->reg_state = NETREG_UNREGISTERING;
8728 	}
8729 	flush_all_backlogs();
8730 
8731 	synchronize_net();
8732 
8733 	list_for_each_entry(dev, head, unreg_list) {
8734 		struct sk_buff *skb = NULL;
8735 
8736 		/* Shutdown queueing discipline. */
8737 		dev_shutdown(dev);
8738 
8739 		dev_xdp_uninstall(dev);
8740 
8741 		/* Notify protocols, that we are about to destroy
8742 		 * this device. They should clean all the things.
8743 		 */
8744 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8745 
8746 		if (!dev->rtnl_link_ops ||
8747 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8748 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8749 						     GFP_KERNEL, NULL, 0);
8750 
8751 		/*
8752 		 *	Flush the unicast and multicast chains
8753 		 */
8754 		dev_uc_flush(dev);
8755 		dev_mc_flush(dev);
8756 
8757 		netdev_name_node_alt_flush(dev);
8758 		netdev_name_node_free(dev->name_node);
8759 
8760 		if (dev->netdev_ops->ndo_uninit)
8761 			dev->netdev_ops->ndo_uninit(dev);
8762 
8763 		if (skb)
8764 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8765 
8766 		/* Notifier chain MUST detach us all upper devices. */
8767 		WARN_ON(netdev_has_any_upper_dev(dev));
8768 		WARN_ON(netdev_has_any_lower_dev(dev));
8769 
8770 		/* Remove entries from kobject tree */
8771 		netdev_unregister_kobject(dev);
8772 #ifdef CONFIG_XPS
8773 		/* Remove XPS queueing entries */
8774 		netif_reset_xps_queues_gt(dev, 0);
8775 #endif
8776 	}
8777 
8778 	synchronize_net();
8779 
8780 	list_for_each_entry(dev, head, unreg_list)
8781 		dev_put(dev);
8782 }
8783 
8784 static void rollback_registered(struct net_device *dev)
8785 {
8786 	LIST_HEAD(single);
8787 
8788 	list_add(&dev->unreg_list, &single);
8789 	rollback_registered_many(&single);
8790 	list_del(&single);
8791 }
8792 
8793 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8794 	struct net_device *upper, netdev_features_t features)
8795 {
8796 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8797 	netdev_features_t feature;
8798 	int feature_bit;
8799 
8800 	for_each_netdev_feature(upper_disables, feature_bit) {
8801 		feature = __NETIF_F_BIT(feature_bit);
8802 		if (!(upper->wanted_features & feature)
8803 		    && (features & feature)) {
8804 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8805 				   &feature, upper->name);
8806 			features &= ~feature;
8807 		}
8808 	}
8809 
8810 	return features;
8811 }
8812 
8813 static void netdev_sync_lower_features(struct net_device *upper,
8814 	struct net_device *lower, netdev_features_t features)
8815 {
8816 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8817 	netdev_features_t feature;
8818 	int feature_bit;
8819 
8820 	for_each_netdev_feature(upper_disables, feature_bit) {
8821 		feature = __NETIF_F_BIT(feature_bit);
8822 		if (!(features & feature) && (lower->features & feature)) {
8823 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8824 				   &feature, lower->name);
8825 			lower->wanted_features &= ~feature;
8826 			netdev_update_features(lower);
8827 
8828 			if (unlikely(lower->features & feature))
8829 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8830 					    &feature, lower->name);
8831 		}
8832 	}
8833 }
8834 
8835 static netdev_features_t netdev_fix_features(struct net_device *dev,
8836 	netdev_features_t features)
8837 {
8838 	/* Fix illegal checksum combinations */
8839 	if ((features & NETIF_F_HW_CSUM) &&
8840 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8841 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8842 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8843 	}
8844 
8845 	/* TSO requires that SG is present as well. */
8846 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8847 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8848 		features &= ~NETIF_F_ALL_TSO;
8849 	}
8850 
8851 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8852 					!(features & NETIF_F_IP_CSUM)) {
8853 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8854 		features &= ~NETIF_F_TSO;
8855 		features &= ~NETIF_F_TSO_ECN;
8856 	}
8857 
8858 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8859 					 !(features & NETIF_F_IPV6_CSUM)) {
8860 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8861 		features &= ~NETIF_F_TSO6;
8862 	}
8863 
8864 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8865 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8866 		features &= ~NETIF_F_TSO_MANGLEID;
8867 
8868 	/* TSO ECN requires that TSO is present as well. */
8869 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8870 		features &= ~NETIF_F_TSO_ECN;
8871 
8872 	/* Software GSO depends on SG. */
8873 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8874 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8875 		features &= ~NETIF_F_GSO;
8876 	}
8877 
8878 	/* GSO partial features require GSO partial be set */
8879 	if ((features & dev->gso_partial_features) &&
8880 	    !(features & NETIF_F_GSO_PARTIAL)) {
8881 		netdev_dbg(dev,
8882 			   "Dropping partially supported GSO features since no GSO partial.\n");
8883 		features &= ~dev->gso_partial_features;
8884 	}
8885 
8886 	if (!(features & NETIF_F_RXCSUM)) {
8887 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8888 		 * successfully merged by hardware must also have the
8889 		 * checksum verified by hardware.  If the user does not
8890 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8891 		 */
8892 		if (features & NETIF_F_GRO_HW) {
8893 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8894 			features &= ~NETIF_F_GRO_HW;
8895 		}
8896 	}
8897 
8898 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8899 	if (features & NETIF_F_RXFCS) {
8900 		if (features & NETIF_F_LRO) {
8901 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8902 			features &= ~NETIF_F_LRO;
8903 		}
8904 
8905 		if (features & NETIF_F_GRO_HW) {
8906 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8907 			features &= ~NETIF_F_GRO_HW;
8908 		}
8909 	}
8910 
8911 	return features;
8912 }
8913 
8914 int __netdev_update_features(struct net_device *dev)
8915 {
8916 	struct net_device *upper, *lower;
8917 	netdev_features_t features;
8918 	struct list_head *iter;
8919 	int err = -1;
8920 
8921 	ASSERT_RTNL();
8922 
8923 	features = netdev_get_wanted_features(dev);
8924 
8925 	if (dev->netdev_ops->ndo_fix_features)
8926 		features = dev->netdev_ops->ndo_fix_features(dev, features);
8927 
8928 	/* driver might be less strict about feature dependencies */
8929 	features = netdev_fix_features(dev, features);
8930 
8931 	/* some features can't be enabled if they're off an an upper device */
8932 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
8933 		features = netdev_sync_upper_features(dev, upper, features);
8934 
8935 	if (dev->features == features)
8936 		goto sync_lower;
8937 
8938 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8939 		&dev->features, &features);
8940 
8941 	if (dev->netdev_ops->ndo_set_features)
8942 		err = dev->netdev_ops->ndo_set_features(dev, features);
8943 	else
8944 		err = 0;
8945 
8946 	if (unlikely(err < 0)) {
8947 		netdev_err(dev,
8948 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
8949 			err, &features, &dev->features);
8950 		/* return non-0 since some features might have changed and
8951 		 * it's better to fire a spurious notification than miss it
8952 		 */
8953 		return -1;
8954 	}
8955 
8956 sync_lower:
8957 	/* some features must be disabled on lower devices when disabled
8958 	 * on an upper device (think: bonding master or bridge)
8959 	 */
8960 	netdev_for_each_lower_dev(dev, lower, iter)
8961 		netdev_sync_lower_features(dev, lower, features);
8962 
8963 	if (!err) {
8964 		netdev_features_t diff = features ^ dev->features;
8965 
8966 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8967 			/* udp_tunnel_{get,drop}_rx_info both need
8968 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8969 			 * device, or they won't do anything.
8970 			 * Thus we need to update dev->features
8971 			 * *before* calling udp_tunnel_get_rx_info,
8972 			 * but *after* calling udp_tunnel_drop_rx_info.
8973 			 */
8974 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8975 				dev->features = features;
8976 				udp_tunnel_get_rx_info(dev);
8977 			} else {
8978 				udp_tunnel_drop_rx_info(dev);
8979 			}
8980 		}
8981 
8982 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8983 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8984 				dev->features = features;
8985 				err |= vlan_get_rx_ctag_filter_info(dev);
8986 			} else {
8987 				vlan_drop_rx_ctag_filter_info(dev);
8988 			}
8989 		}
8990 
8991 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8992 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8993 				dev->features = features;
8994 				err |= vlan_get_rx_stag_filter_info(dev);
8995 			} else {
8996 				vlan_drop_rx_stag_filter_info(dev);
8997 			}
8998 		}
8999 
9000 		dev->features = features;
9001 	}
9002 
9003 	return err < 0 ? 0 : 1;
9004 }
9005 
9006 /**
9007  *	netdev_update_features - recalculate device features
9008  *	@dev: the device to check
9009  *
9010  *	Recalculate dev->features set and send notifications if it
9011  *	has changed. Should be called after driver or hardware dependent
9012  *	conditions might have changed that influence the features.
9013  */
9014 void netdev_update_features(struct net_device *dev)
9015 {
9016 	if (__netdev_update_features(dev))
9017 		netdev_features_change(dev);
9018 }
9019 EXPORT_SYMBOL(netdev_update_features);
9020 
9021 /**
9022  *	netdev_change_features - recalculate device features
9023  *	@dev: the device to check
9024  *
9025  *	Recalculate dev->features set and send notifications even
9026  *	if they have not changed. Should be called instead of
9027  *	netdev_update_features() if also dev->vlan_features might
9028  *	have changed to allow the changes to be propagated to stacked
9029  *	VLAN devices.
9030  */
9031 void netdev_change_features(struct net_device *dev)
9032 {
9033 	__netdev_update_features(dev);
9034 	netdev_features_change(dev);
9035 }
9036 EXPORT_SYMBOL(netdev_change_features);
9037 
9038 /**
9039  *	netif_stacked_transfer_operstate -	transfer operstate
9040  *	@rootdev: the root or lower level device to transfer state from
9041  *	@dev: the device to transfer operstate to
9042  *
9043  *	Transfer operational state from root to device. This is normally
9044  *	called when a stacking relationship exists between the root
9045  *	device and the device(a leaf device).
9046  */
9047 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9048 					struct net_device *dev)
9049 {
9050 	if (rootdev->operstate == IF_OPER_DORMANT)
9051 		netif_dormant_on(dev);
9052 	else
9053 		netif_dormant_off(dev);
9054 
9055 	if (netif_carrier_ok(rootdev))
9056 		netif_carrier_on(dev);
9057 	else
9058 		netif_carrier_off(dev);
9059 }
9060 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9061 
9062 static int netif_alloc_rx_queues(struct net_device *dev)
9063 {
9064 	unsigned int i, count = dev->num_rx_queues;
9065 	struct netdev_rx_queue *rx;
9066 	size_t sz = count * sizeof(*rx);
9067 	int err = 0;
9068 
9069 	BUG_ON(count < 1);
9070 
9071 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9072 	if (!rx)
9073 		return -ENOMEM;
9074 
9075 	dev->_rx = rx;
9076 
9077 	for (i = 0; i < count; i++) {
9078 		rx[i].dev = dev;
9079 
9080 		/* XDP RX-queue setup */
9081 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9082 		if (err < 0)
9083 			goto err_rxq_info;
9084 	}
9085 	return 0;
9086 
9087 err_rxq_info:
9088 	/* Rollback successful reg's and free other resources */
9089 	while (i--)
9090 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9091 	kvfree(dev->_rx);
9092 	dev->_rx = NULL;
9093 	return err;
9094 }
9095 
9096 static void netif_free_rx_queues(struct net_device *dev)
9097 {
9098 	unsigned int i, count = dev->num_rx_queues;
9099 
9100 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9101 	if (!dev->_rx)
9102 		return;
9103 
9104 	for (i = 0; i < count; i++)
9105 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9106 
9107 	kvfree(dev->_rx);
9108 }
9109 
9110 static void netdev_init_one_queue(struct net_device *dev,
9111 				  struct netdev_queue *queue, void *_unused)
9112 {
9113 	/* Initialize queue lock */
9114 	spin_lock_init(&queue->_xmit_lock);
9115 	lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
9116 	queue->xmit_lock_owner = -1;
9117 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9118 	queue->dev = dev;
9119 #ifdef CONFIG_BQL
9120 	dql_init(&queue->dql, HZ);
9121 #endif
9122 }
9123 
9124 static void netif_free_tx_queues(struct net_device *dev)
9125 {
9126 	kvfree(dev->_tx);
9127 }
9128 
9129 static int netif_alloc_netdev_queues(struct net_device *dev)
9130 {
9131 	unsigned int count = dev->num_tx_queues;
9132 	struct netdev_queue *tx;
9133 	size_t sz = count * sizeof(*tx);
9134 
9135 	if (count < 1 || count > 0xffff)
9136 		return -EINVAL;
9137 
9138 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9139 	if (!tx)
9140 		return -ENOMEM;
9141 
9142 	dev->_tx = tx;
9143 
9144 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9145 	spin_lock_init(&dev->tx_global_lock);
9146 
9147 	return 0;
9148 }
9149 
9150 void netif_tx_stop_all_queues(struct net_device *dev)
9151 {
9152 	unsigned int i;
9153 
9154 	for (i = 0; i < dev->num_tx_queues; i++) {
9155 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9156 
9157 		netif_tx_stop_queue(txq);
9158 	}
9159 }
9160 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9161 
9162 static void netdev_register_lockdep_key(struct net_device *dev)
9163 {
9164 	lockdep_register_key(&dev->qdisc_tx_busylock_key);
9165 	lockdep_register_key(&dev->qdisc_running_key);
9166 	lockdep_register_key(&dev->qdisc_xmit_lock_key);
9167 	lockdep_register_key(&dev->addr_list_lock_key);
9168 }
9169 
9170 static void netdev_unregister_lockdep_key(struct net_device *dev)
9171 {
9172 	lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9173 	lockdep_unregister_key(&dev->qdisc_running_key);
9174 	lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9175 	lockdep_unregister_key(&dev->addr_list_lock_key);
9176 }
9177 
9178 void netdev_update_lockdep_key(struct net_device *dev)
9179 {
9180 	struct netdev_queue *queue;
9181 	int i;
9182 
9183 	lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9184 	lockdep_unregister_key(&dev->addr_list_lock_key);
9185 
9186 	lockdep_register_key(&dev->qdisc_xmit_lock_key);
9187 	lockdep_register_key(&dev->addr_list_lock_key);
9188 
9189 	lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9190 	for (i = 0; i < dev->num_tx_queues; i++) {
9191 		queue = netdev_get_tx_queue(dev, i);
9192 
9193 		lockdep_set_class(&queue->_xmit_lock,
9194 				  &dev->qdisc_xmit_lock_key);
9195 	}
9196 }
9197 EXPORT_SYMBOL(netdev_update_lockdep_key);
9198 
9199 /**
9200  *	register_netdevice	- register a network device
9201  *	@dev: device to register
9202  *
9203  *	Take a completed network device structure and add it to the kernel
9204  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9205  *	chain. 0 is returned on success. A negative errno code is returned
9206  *	on a failure to set up the device, or if the name is a duplicate.
9207  *
9208  *	Callers must hold the rtnl semaphore. You may want
9209  *	register_netdev() instead of this.
9210  *
9211  *	BUGS:
9212  *	The locking appears insufficient to guarantee two parallel registers
9213  *	will not get the same name.
9214  */
9215 
9216 int register_netdevice(struct net_device *dev)
9217 {
9218 	int ret;
9219 	struct net *net = dev_net(dev);
9220 
9221 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9222 		     NETDEV_FEATURE_COUNT);
9223 	BUG_ON(dev_boot_phase);
9224 	ASSERT_RTNL();
9225 
9226 	might_sleep();
9227 
9228 	/* When net_device's are persistent, this will be fatal. */
9229 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9230 	BUG_ON(!net);
9231 
9232 	spin_lock_init(&dev->addr_list_lock);
9233 	lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9234 
9235 	ret = dev_get_valid_name(net, dev, dev->name);
9236 	if (ret < 0)
9237 		goto out;
9238 
9239 	ret = -ENOMEM;
9240 	dev->name_node = netdev_name_node_head_alloc(dev);
9241 	if (!dev->name_node)
9242 		goto out;
9243 
9244 	/* Init, if this function is available */
9245 	if (dev->netdev_ops->ndo_init) {
9246 		ret = dev->netdev_ops->ndo_init(dev);
9247 		if (ret) {
9248 			if (ret > 0)
9249 				ret = -EIO;
9250 			goto err_free_name;
9251 		}
9252 	}
9253 
9254 	if (((dev->hw_features | dev->features) &
9255 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9256 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9257 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9258 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9259 		ret = -EINVAL;
9260 		goto err_uninit;
9261 	}
9262 
9263 	ret = -EBUSY;
9264 	if (!dev->ifindex)
9265 		dev->ifindex = dev_new_index(net);
9266 	else if (__dev_get_by_index(net, dev->ifindex))
9267 		goto err_uninit;
9268 
9269 	/* Transfer changeable features to wanted_features and enable
9270 	 * software offloads (GSO and GRO).
9271 	 */
9272 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
9273 	dev->features |= NETIF_F_SOFT_FEATURES;
9274 
9275 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
9276 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9277 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9278 	}
9279 
9280 	dev->wanted_features = dev->features & dev->hw_features;
9281 
9282 	if (!(dev->flags & IFF_LOOPBACK))
9283 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9284 
9285 	/* If IPv4 TCP segmentation offload is supported we should also
9286 	 * allow the device to enable segmenting the frame with the option
9287 	 * of ignoring a static IP ID value.  This doesn't enable the
9288 	 * feature itself but allows the user to enable it later.
9289 	 */
9290 	if (dev->hw_features & NETIF_F_TSO)
9291 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9292 	if (dev->vlan_features & NETIF_F_TSO)
9293 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9294 	if (dev->mpls_features & NETIF_F_TSO)
9295 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9296 	if (dev->hw_enc_features & NETIF_F_TSO)
9297 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9298 
9299 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9300 	 */
9301 	dev->vlan_features |= NETIF_F_HIGHDMA;
9302 
9303 	/* Make NETIF_F_SG inheritable to tunnel devices.
9304 	 */
9305 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9306 
9307 	/* Make NETIF_F_SG inheritable to MPLS.
9308 	 */
9309 	dev->mpls_features |= NETIF_F_SG;
9310 
9311 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9312 	ret = notifier_to_errno(ret);
9313 	if (ret)
9314 		goto err_uninit;
9315 
9316 	ret = netdev_register_kobject(dev);
9317 	if (ret)
9318 		goto err_uninit;
9319 	dev->reg_state = NETREG_REGISTERED;
9320 
9321 	__netdev_update_features(dev);
9322 
9323 	/*
9324 	 *	Default initial state at registry is that the
9325 	 *	device is present.
9326 	 */
9327 
9328 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9329 
9330 	linkwatch_init_dev(dev);
9331 
9332 	dev_init_scheduler(dev);
9333 	dev_hold(dev);
9334 	list_netdevice(dev);
9335 	add_device_randomness(dev->dev_addr, dev->addr_len);
9336 
9337 	/* If the device has permanent device address, driver should
9338 	 * set dev_addr and also addr_assign_type should be set to
9339 	 * NET_ADDR_PERM (default value).
9340 	 */
9341 	if (dev->addr_assign_type == NET_ADDR_PERM)
9342 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9343 
9344 	/* Notify protocols, that a new device appeared. */
9345 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9346 	ret = notifier_to_errno(ret);
9347 	if (ret) {
9348 		rollback_registered(dev);
9349 		rcu_barrier();
9350 
9351 		dev->reg_state = NETREG_UNREGISTERED;
9352 	}
9353 	/*
9354 	 *	Prevent userspace races by waiting until the network
9355 	 *	device is fully setup before sending notifications.
9356 	 */
9357 	if (!dev->rtnl_link_ops ||
9358 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9359 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9360 
9361 out:
9362 	return ret;
9363 
9364 err_uninit:
9365 	if (dev->netdev_ops->ndo_uninit)
9366 		dev->netdev_ops->ndo_uninit(dev);
9367 	if (dev->priv_destructor)
9368 		dev->priv_destructor(dev);
9369 err_free_name:
9370 	netdev_name_node_free(dev->name_node);
9371 	goto out;
9372 }
9373 EXPORT_SYMBOL(register_netdevice);
9374 
9375 /**
9376  *	init_dummy_netdev	- init a dummy network device for NAPI
9377  *	@dev: device to init
9378  *
9379  *	This takes a network device structure and initialize the minimum
9380  *	amount of fields so it can be used to schedule NAPI polls without
9381  *	registering a full blown interface. This is to be used by drivers
9382  *	that need to tie several hardware interfaces to a single NAPI
9383  *	poll scheduler due to HW limitations.
9384  */
9385 int init_dummy_netdev(struct net_device *dev)
9386 {
9387 	/* Clear everything. Note we don't initialize spinlocks
9388 	 * are they aren't supposed to be taken by any of the
9389 	 * NAPI code and this dummy netdev is supposed to be
9390 	 * only ever used for NAPI polls
9391 	 */
9392 	memset(dev, 0, sizeof(struct net_device));
9393 
9394 	/* make sure we BUG if trying to hit standard
9395 	 * register/unregister code path
9396 	 */
9397 	dev->reg_state = NETREG_DUMMY;
9398 
9399 	/* NAPI wants this */
9400 	INIT_LIST_HEAD(&dev->napi_list);
9401 
9402 	/* a dummy interface is started by default */
9403 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9404 	set_bit(__LINK_STATE_START, &dev->state);
9405 
9406 	/* napi_busy_loop stats accounting wants this */
9407 	dev_net_set(dev, &init_net);
9408 
9409 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
9410 	 * because users of this 'device' dont need to change
9411 	 * its refcount.
9412 	 */
9413 
9414 	return 0;
9415 }
9416 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9417 
9418 
9419 /**
9420  *	register_netdev	- register a network device
9421  *	@dev: device to register
9422  *
9423  *	Take a completed network device structure and add it to the kernel
9424  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9425  *	chain. 0 is returned on success. A negative errno code is returned
9426  *	on a failure to set up the device, or if the name is a duplicate.
9427  *
9428  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
9429  *	and expands the device name if you passed a format string to
9430  *	alloc_netdev.
9431  */
9432 int register_netdev(struct net_device *dev)
9433 {
9434 	int err;
9435 
9436 	if (rtnl_lock_killable())
9437 		return -EINTR;
9438 	err = register_netdevice(dev);
9439 	rtnl_unlock();
9440 	return err;
9441 }
9442 EXPORT_SYMBOL(register_netdev);
9443 
9444 int netdev_refcnt_read(const struct net_device *dev)
9445 {
9446 	int i, refcnt = 0;
9447 
9448 	for_each_possible_cpu(i)
9449 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9450 	return refcnt;
9451 }
9452 EXPORT_SYMBOL(netdev_refcnt_read);
9453 
9454 /**
9455  * netdev_wait_allrefs - wait until all references are gone.
9456  * @dev: target net_device
9457  *
9458  * This is called when unregistering network devices.
9459  *
9460  * Any protocol or device that holds a reference should register
9461  * for netdevice notification, and cleanup and put back the
9462  * reference if they receive an UNREGISTER event.
9463  * We can get stuck here if buggy protocols don't correctly
9464  * call dev_put.
9465  */
9466 static void netdev_wait_allrefs(struct net_device *dev)
9467 {
9468 	unsigned long rebroadcast_time, warning_time;
9469 	int refcnt;
9470 
9471 	linkwatch_forget_dev(dev);
9472 
9473 	rebroadcast_time = warning_time = jiffies;
9474 	refcnt = netdev_refcnt_read(dev);
9475 
9476 	while (refcnt != 0) {
9477 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9478 			rtnl_lock();
9479 
9480 			/* Rebroadcast unregister notification */
9481 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9482 
9483 			__rtnl_unlock();
9484 			rcu_barrier();
9485 			rtnl_lock();
9486 
9487 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9488 				     &dev->state)) {
9489 				/* We must not have linkwatch events
9490 				 * pending on unregister. If this
9491 				 * happens, we simply run the queue
9492 				 * unscheduled, resulting in a noop
9493 				 * for this device.
9494 				 */
9495 				linkwatch_run_queue();
9496 			}
9497 
9498 			__rtnl_unlock();
9499 
9500 			rebroadcast_time = jiffies;
9501 		}
9502 
9503 		msleep(250);
9504 
9505 		refcnt = netdev_refcnt_read(dev);
9506 
9507 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9508 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9509 				 dev->name, refcnt);
9510 			warning_time = jiffies;
9511 		}
9512 	}
9513 }
9514 
9515 /* The sequence is:
9516  *
9517  *	rtnl_lock();
9518  *	...
9519  *	register_netdevice(x1);
9520  *	register_netdevice(x2);
9521  *	...
9522  *	unregister_netdevice(y1);
9523  *	unregister_netdevice(y2);
9524  *      ...
9525  *	rtnl_unlock();
9526  *	free_netdev(y1);
9527  *	free_netdev(y2);
9528  *
9529  * We are invoked by rtnl_unlock().
9530  * This allows us to deal with problems:
9531  * 1) We can delete sysfs objects which invoke hotplug
9532  *    without deadlocking with linkwatch via keventd.
9533  * 2) Since we run with the RTNL semaphore not held, we can sleep
9534  *    safely in order to wait for the netdev refcnt to drop to zero.
9535  *
9536  * We must not return until all unregister events added during
9537  * the interval the lock was held have been completed.
9538  */
9539 void netdev_run_todo(void)
9540 {
9541 	struct list_head list;
9542 
9543 	/* Snapshot list, allow later requests */
9544 	list_replace_init(&net_todo_list, &list);
9545 
9546 	__rtnl_unlock();
9547 
9548 
9549 	/* Wait for rcu callbacks to finish before next phase */
9550 	if (!list_empty(&list))
9551 		rcu_barrier();
9552 
9553 	while (!list_empty(&list)) {
9554 		struct net_device *dev
9555 			= list_first_entry(&list, struct net_device, todo_list);
9556 		list_del(&dev->todo_list);
9557 
9558 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9559 			pr_err("network todo '%s' but state %d\n",
9560 			       dev->name, dev->reg_state);
9561 			dump_stack();
9562 			continue;
9563 		}
9564 
9565 		dev->reg_state = NETREG_UNREGISTERED;
9566 
9567 		netdev_wait_allrefs(dev);
9568 
9569 		/* paranoia */
9570 		BUG_ON(netdev_refcnt_read(dev));
9571 		BUG_ON(!list_empty(&dev->ptype_all));
9572 		BUG_ON(!list_empty(&dev->ptype_specific));
9573 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
9574 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9575 #if IS_ENABLED(CONFIG_DECNET)
9576 		WARN_ON(dev->dn_ptr);
9577 #endif
9578 		if (dev->priv_destructor)
9579 			dev->priv_destructor(dev);
9580 		if (dev->needs_free_netdev)
9581 			free_netdev(dev);
9582 
9583 		/* Report a network device has been unregistered */
9584 		rtnl_lock();
9585 		dev_net(dev)->dev_unreg_count--;
9586 		__rtnl_unlock();
9587 		wake_up(&netdev_unregistering_wq);
9588 
9589 		/* Free network device */
9590 		kobject_put(&dev->dev.kobj);
9591 	}
9592 }
9593 
9594 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9595  * all the same fields in the same order as net_device_stats, with only
9596  * the type differing, but rtnl_link_stats64 may have additional fields
9597  * at the end for newer counters.
9598  */
9599 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9600 			     const struct net_device_stats *netdev_stats)
9601 {
9602 #if BITS_PER_LONG == 64
9603 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9604 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9605 	/* zero out counters that only exist in rtnl_link_stats64 */
9606 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9607 	       sizeof(*stats64) - sizeof(*netdev_stats));
9608 #else
9609 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9610 	const unsigned long *src = (const unsigned long *)netdev_stats;
9611 	u64 *dst = (u64 *)stats64;
9612 
9613 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9614 	for (i = 0; i < n; i++)
9615 		dst[i] = src[i];
9616 	/* zero out counters that only exist in rtnl_link_stats64 */
9617 	memset((char *)stats64 + n * sizeof(u64), 0,
9618 	       sizeof(*stats64) - n * sizeof(u64));
9619 #endif
9620 }
9621 EXPORT_SYMBOL(netdev_stats_to_stats64);
9622 
9623 /**
9624  *	dev_get_stats	- get network device statistics
9625  *	@dev: device to get statistics from
9626  *	@storage: place to store stats
9627  *
9628  *	Get network statistics from device. Return @storage.
9629  *	The device driver may provide its own method by setting
9630  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9631  *	otherwise the internal statistics structure is used.
9632  */
9633 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9634 					struct rtnl_link_stats64 *storage)
9635 {
9636 	const struct net_device_ops *ops = dev->netdev_ops;
9637 
9638 	if (ops->ndo_get_stats64) {
9639 		memset(storage, 0, sizeof(*storage));
9640 		ops->ndo_get_stats64(dev, storage);
9641 	} else if (ops->ndo_get_stats) {
9642 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9643 	} else {
9644 		netdev_stats_to_stats64(storage, &dev->stats);
9645 	}
9646 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9647 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9648 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9649 	return storage;
9650 }
9651 EXPORT_SYMBOL(dev_get_stats);
9652 
9653 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9654 {
9655 	struct netdev_queue *queue = dev_ingress_queue(dev);
9656 
9657 #ifdef CONFIG_NET_CLS_ACT
9658 	if (queue)
9659 		return queue;
9660 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9661 	if (!queue)
9662 		return NULL;
9663 	netdev_init_one_queue(dev, queue, NULL);
9664 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9665 	queue->qdisc_sleeping = &noop_qdisc;
9666 	rcu_assign_pointer(dev->ingress_queue, queue);
9667 #endif
9668 	return queue;
9669 }
9670 
9671 static const struct ethtool_ops default_ethtool_ops;
9672 
9673 void netdev_set_default_ethtool_ops(struct net_device *dev,
9674 				    const struct ethtool_ops *ops)
9675 {
9676 	if (dev->ethtool_ops == &default_ethtool_ops)
9677 		dev->ethtool_ops = ops;
9678 }
9679 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9680 
9681 void netdev_freemem(struct net_device *dev)
9682 {
9683 	char *addr = (char *)dev - dev->padded;
9684 
9685 	kvfree(addr);
9686 }
9687 
9688 /**
9689  * alloc_netdev_mqs - allocate network device
9690  * @sizeof_priv: size of private data to allocate space for
9691  * @name: device name format string
9692  * @name_assign_type: origin of device name
9693  * @setup: callback to initialize device
9694  * @txqs: the number of TX subqueues to allocate
9695  * @rxqs: the number of RX subqueues to allocate
9696  *
9697  * Allocates a struct net_device with private data area for driver use
9698  * and performs basic initialization.  Also allocates subqueue structs
9699  * for each queue on the device.
9700  */
9701 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9702 		unsigned char name_assign_type,
9703 		void (*setup)(struct net_device *),
9704 		unsigned int txqs, unsigned int rxqs)
9705 {
9706 	struct net_device *dev;
9707 	unsigned int alloc_size;
9708 	struct net_device *p;
9709 
9710 	BUG_ON(strlen(name) >= sizeof(dev->name));
9711 
9712 	if (txqs < 1) {
9713 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9714 		return NULL;
9715 	}
9716 
9717 	if (rxqs < 1) {
9718 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9719 		return NULL;
9720 	}
9721 
9722 	alloc_size = sizeof(struct net_device);
9723 	if (sizeof_priv) {
9724 		/* ensure 32-byte alignment of private area */
9725 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9726 		alloc_size += sizeof_priv;
9727 	}
9728 	/* ensure 32-byte alignment of whole construct */
9729 	alloc_size += NETDEV_ALIGN - 1;
9730 
9731 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9732 	if (!p)
9733 		return NULL;
9734 
9735 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
9736 	dev->padded = (char *)dev - (char *)p;
9737 
9738 	dev->pcpu_refcnt = alloc_percpu(int);
9739 	if (!dev->pcpu_refcnt)
9740 		goto free_dev;
9741 
9742 	if (dev_addr_init(dev))
9743 		goto free_pcpu;
9744 
9745 	dev_mc_init(dev);
9746 	dev_uc_init(dev);
9747 
9748 	dev_net_set(dev, &init_net);
9749 
9750 	netdev_register_lockdep_key(dev);
9751 
9752 	dev->gso_max_size = GSO_MAX_SIZE;
9753 	dev->gso_max_segs = GSO_MAX_SEGS;
9754 	dev->upper_level = 1;
9755 	dev->lower_level = 1;
9756 
9757 	INIT_LIST_HEAD(&dev->napi_list);
9758 	INIT_LIST_HEAD(&dev->unreg_list);
9759 	INIT_LIST_HEAD(&dev->close_list);
9760 	INIT_LIST_HEAD(&dev->link_watch_list);
9761 	INIT_LIST_HEAD(&dev->adj_list.upper);
9762 	INIT_LIST_HEAD(&dev->adj_list.lower);
9763 	INIT_LIST_HEAD(&dev->ptype_all);
9764 	INIT_LIST_HEAD(&dev->ptype_specific);
9765 #ifdef CONFIG_NET_SCHED
9766 	hash_init(dev->qdisc_hash);
9767 #endif
9768 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9769 	setup(dev);
9770 
9771 	if (!dev->tx_queue_len) {
9772 		dev->priv_flags |= IFF_NO_QUEUE;
9773 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9774 	}
9775 
9776 	dev->num_tx_queues = txqs;
9777 	dev->real_num_tx_queues = txqs;
9778 	if (netif_alloc_netdev_queues(dev))
9779 		goto free_all;
9780 
9781 	dev->num_rx_queues = rxqs;
9782 	dev->real_num_rx_queues = rxqs;
9783 	if (netif_alloc_rx_queues(dev))
9784 		goto free_all;
9785 
9786 	strcpy(dev->name, name);
9787 	dev->name_assign_type = name_assign_type;
9788 	dev->group = INIT_NETDEV_GROUP;
9789 	if (!dev->ethtool_ops)
9790 		dev->ethtool_ops = &default_ethtool_ops;
9791 
9792 	nf_hook_ingress_init(dev);
9793 
9794 	return dev;
9795 
9796 free_all:
9797 	free_netdev(dev);
9798 	return NULL;
9799 
9800 free_pcpu:
9801 	free_percpu(dev->pcpu_refcnt);
9802 free_dev:
9803 	netdev_freemem(dev);
9804 	return NULL;
9805 }
9806 EXPORT_SYMBOL(alloc_netdev_mqs);
9807 
9808 /**
9809  * free_netdev - free network device
9810  * @dev: device
9811  *
9812  * This function does the last stage of destroying an allocated device
9813  * interface. The reference to the device object is released. If this
9814  * is the last reference then it will be freed.Must be called in process
9815  * context.
9816  */
9817 void free_netdev(struct net_device *dev)
9818 {
9819 	struct napi_struct *p, *n;
9820 
9821 	might_sleep();
9822 	netif_free_tx_queues(dev);
9823 	netif_free_rx_queues(dev);
9824 
9825 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9826 
9827 	/* Flush device addresses */
9828 	dev_addr_flush(dev);
9829 
9830 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9831 		netif_napi_del(p);
9832 
9833 	free_percpu(dev->pcpu_refcnt);
9834 	dev->pcpu_refcnt = NULL;
9835 
9836 	netdev_unregister_lockdep_key(dev);
9837 
9838 	/*  Compatibility with error handling in drivers */
9839 	if (dev->reg_state == NETREG_UNINITIALIZED) {
9840 		netdev_freemem(dev);
9841 		return;
9842 	}
9843 
9844 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9845 	dev->reg_state = NETREG_RELEASED;
9846 
9847 	/* will free via device release */
9848 	put_device(&dev->dev);
9849 }
9850 EXPORT_SYMBOL(free_netdev);
9851 
9852 /**
9853  *	synchronize_net -  Synchronize with packet receive processing
9854  *
9855  *	Wait for packets currently being received to be done.
9856  *	Does not block later packets from starting.
9857  */
9858 void synchronize_net(void)
9859 {
9860 	might_sleep();
9861 	if (rtnl_is_locked())
9862 		synchronize_rcu_expedited();
9863 	else
9864 		synchronize_rcu();
9865 }
9866 EXPORT_SYMBOL(synchronize_net);
9867 
9868 /**
9869  *	unregister_netdevice_queue - remove device from the kernel
9870  *	@dev: device
9871  *	@head: list
9872  *
9873  *	This function shuts down a device interface and removes it
9874  *	from the kernel tables.
9875  *	If head not NULL, device is queued to be unregistered later.
9876  *
9877  *	Callers must hold the rtnl semaphore.  You may want
9878  *	unregister_netdev() instead of this.
9879  */
9880 
9881 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9882 {
9883 	ASSERT_RTNL();
9884 
9885 	if (head) {
9886 		list_move_tail(&dev->unreg_list, head);
9887 	} else {
9888 		rollback_registered(dev);
9889 		/* Finish processing unregister after unlock */
9890 		net_set_todo(dev);
9891 	}
9892 }
9893 EXPORT_SYMBOL(unregister_netdevice_queue);
9894 
9895 /**
9896  *	unregister_netdevice_many - unregister many devices
9897  *	@head: list of devices
9898  *
9899  *  Note: As most callers use a stack allocated list_head,
9900  *  we force a list_del() to make sure stack wont be corrupted later.
9901  */
9902 void unregister_netdevice_many(struct list_head *head)
9903 {
9904 	struct net_device *dev;
9905 
9906 	if (!list_empty(head)) {
9907 		rollback_registered_many(head);
9908 		list_for_each_entry(dev, head, unreg_list)
9909 			net_set_todo(dev);
9910 		list_del(head);
9911 	}
9912 }
9913 EXPORT_SYMBOL(unregister_netdevice_many);
9914 
9915 /**
9916  *	unregister_netdev - remove device from the kernel
9917  *	@dev: device
9918  *
9919  *	This function shuts down a device interface and removes it
9920  *	from the kernel tables.
9921  *
9922  *	This is just a wrapper for unregister_netdevice that takes
9923  *	the rtnl semaphore.  In general you want to use this and not
9924  *	unregister_netdevice.
9925  */
9926 void unregister_netdev(struct net_device *dev)
9927 {
9928 	rtnl_lock();
9929 	unregister_netdevice(dev);
9930 	rtnl_unlock();
9931 }
9932 EXPORT_SYMBOL(unregister_netdev);
9933 
9934 /**
9935  *	dev_change_net_namespace - move device to different nethost namespace
9936  *	@dev: device
9937  *	@net: network namespace
9938  *	@pat: If not NULL name pattern to try if the current device name
9939  *	      is already taken in the destination network namespace.
9940  *
9941  *	This function shuts down a device interface and moves it
9942  *	to a new network namespace. On success 0 is returned, on
9943  *	a failure a netagive errno code is returned.
9944  *
9945  *	Callers must hold the rtnl semaphore.
9946  */
9947 
9948 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9949 {
9950 	int err, new_nsid, new_ifindex;
9951 
9952 	ASSERT_RTNL();
9953 
9954 	/* Don't allow namespace local devices to be moved. */
9955 	err = -EINVAL;
9956 	if (dev->features & NETIF_F_NETNS_LOCAL)
9957 		goto out;
9958 
9959 	/* Ensure the device has been registrered */
9960 	if (dev->reg_state != NETREG_REGISTERED)
9961 		goto out;
9962 
9963 	/* Get out if there is nothing todo */
9964 	err = 0;
9965 	if (net_eq(dev_net(dev), net))
9966 		goto out;
9967 
9968 	/* Pick the destination device name, and ensure
9969 	 * we can use it in the destination network namespace.
9970 	 */
9971 	err = -EEXIST;
9972 	if (__dev_get_by_name(net, dev->name)) {
9973 		/* We get here if we can't use the current device name */
9974 		if (!pat)
9975 			goto out;
9976 		err = dev_get_valid_name(net, dev, pat);
9977 		if (err < 0)
9978 			goto out;
9979 	}
9980 
9981 	/*
9982 	 * And now a mini version of register_netdevice unregister_netdevice.
9983 	 */
9984 
9985 	/* If device is running close it first. */
9986 	dev_close(dev);
9987 
9988 	/* And unlink it from device chain */
9989 	unlist_netdevice(dev);
9990 
9991 	synchronize_net();
9992 
9993 	/* Shutdown queueing discipline. */
9994 	dev_shutdown(dev);
9995 
9996 	/* Notify protocols, that we are about to destroy
9997 	 * this device. They should clean all the things.
9998 	 *
9999 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10000 	 * This is wanted because this way 8021q and macvlan know
10001 	 * the device is just moving and can keep their slaves up.
10002 	 */
10003 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10004 	rcu_barrier();
10005 
10006 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10007 	/* If there is an ifindex conflict assign a new one */
10008 	if (__dev_get_by_index(net, dev->ifindex))
10009 		new_ifindex = dev_new_index(net);
10010 	else
10011 		new_ifindex = dev->ifindex;
10012 
10013 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10014 			    new_ifindex);
10015 
10016 	/*
10017 	 *	Flush the unicast and multicast chains
10018 	 */
10019 	dev_uc_flush(dev);
10020 	dev_mc_flush(dev);
10021 
10022 	/* Send a netdev-removed uevent to the old namespace */
10023 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10024 	netdev_adjacent_del_links(dev);
10025 
10026 	/* Actually switch the network namespace */
10027 	dev_net_set(dev, net);
10028 	dev->ifindex = new_ifindex;
10029 
10030 	/* Send a netdev-add uevent to the new namespace */
10031 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10032 	netdev_adjacent_add_links(dev);
10033 
10034 	/* Fixup kobjects */
10035 	err = device_rename(&dev->dev, dev->name);
10036 	WARN_ON(err);
10037 
10038 	/* Add the device back in the hashes */
10039 	list_netdevice(dev);
10040 
10041 	/* Notify protocols, that a new device appeared. */
10042 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10043 
10044 	/*
10045 	 *	Prevent userspace races by waiting until the network
10046 	 *	device is fully setup before sending notifications.
10047 	 */
10048 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10049 
10050 	synchronize_net();
10051 	err = 0;
10052 out:
10053 	return err;
10054 }
10055 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10056 
10057 static int dev_cpu_dead(unsigned int oldcpu)
10058 {
10059 	struct sk_buff **list_skb;
10060 	struct sk_buff *skb;
10061 	unsigned int cpu;
10062 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10063 
10064 	local_irq_disable();
10065 	cpu = smp_processor_id();
10066 	sd = &per_cpu(softnet_data, cpu);
10067 	oldsd = &per_cpu(softnet_data, oldcpu);
10068 
10069 	/* Find end of our completion_queue. */
10070 	list_skb = &sd->completion_queue;
10071 	while (*list_skb)
10072 		list_skb = &(*list_skb)->next;
10073 	/* Append completion queue from offline CPU. */
10074 	*list_skb = oldsd->completion_queue;
10075 	oldsd->completion_queue = NULL;
10076 
10077 	/* Append output queue from offline CPU. */
10078 	if (oldsd->output_queue) {
10079 		*sd->output_queue_tailp = oldsd->output_queue;
10080 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10081 		oldsd->output_queue = NULL;
10082 		oldsd->output_queue_tailp = &oldsd->output_queue;
10083 	}
10084 	/* Append NAPI poll list from offline CPU, with one exception :
10085 	 * process_backlog() must be called by cpu owning percpu backlog.
10086 	 * We properly handle process_queue & input_pkt_queue later.
10087 	 */
10088 	while (!list_empty(&oldsd->poll_list)) {
10089 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10090 							    struct napi_struct,
10091 							    poll_list);
10092 
10093 		list_del_init(&napi->poll_list);
10094 		if (napi->poll == process_backlog)
10095 			napi->state = 0;
10096 		else
10097 			____napi_schedule(sd, napi);
10098 	}
10099 
10100 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10101 	local_irq_enable();
10102 
10103 #ifdef CONFIG_RPS
10104 	remsd = oldsd->rps_ipi_list;
10105 	oldsd->rps_ipi_list = NULL;
10106 #endif
10107 	/* send out pending IPI's on offline CPU */
10108 	net_rps_send_ipi(remsd);
10109 
10110 	/* Process offline CPU's input_pkt_queue */
10111 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10112 		netif_rx_ni(skb);
10113 		input_queue_head_incr(oldsd);
10114 	}
10115 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10116 		netif_rx_ni(skb);
10117 		input_queue_head_incr(oldsd);
10118 	}
10119 
10120 	return 0;
10121 }
10122 
10123 /**
10124  *	netdev_increment_features - increment feature set by one
10125  *	@all: current feature set
10126  *	@one: new feature set
10127  *	@mask: mask feature set
10128  *
10129  *	Computes a new feature set after adding a device with feature set
10130  *	@one to the master device with current feature set @all.  Will not
10131  *	enable anything that is off in @mask. Returns the new feature set.
10132  */
10133 netdev_features_t netdev_increment_features(netdev_features_t all,
10134 	netdev_features_t one, netdev_features_t mask)
10135 {
10136 	if (mask & NETIF_F_HW_CSUM)
10137 		mask |= NETIF_F_CSUM_MASK;
10138 	mask |= NETIF_F_VLAN_CHALLENGED;
10139 
10140 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10141 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10142 
10143 	/* If one device supports hw checksumming, set for all. */
10144 	if (all & NETIF_F_HW_CSUM)
10145 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10146 
10147 	return all;
10148 }
10149 EXPORT_SYMBOL(netdev_increment_features);
10150 
10151 static struct hlist_head * __net_init netdev_create_hash(void)
10152 {
10153 	int i;
10154 	struct hlist_head *hash;
10155 
10156 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10157 	if (hash != NULL)
10158 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
10159 			INIT_HLIST_HEAD(&hash[i]);
10160 
10161 	return hash;
10162 }
10163 
10164 /* Initialize per network namespace state */
10165 static int __net_init netdev_init(struct net *net)
10166 {
10167 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
10168 		     8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
10169 
10170 	if (net != &init_net)
10171 		INIT_LIST_HEAD(&net->dev_base_head);
10172 
10173 	net->dev_name_head = netdev_create_hash();
10174 	if (net->dev_name_head == NULL)
10175 		goto err_name;
10176 
10177 	net->dev_index_head = netdev_create_hash();
10178 	if (net->dev_index_head == NULL)
10179 		goto err_idx;
10180 
10181 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10182 
10183 	return 0;
10184 
10185 err_idx:
10186 	kfree(net->dev_name_head);
10187 err_name:
10188 	return -ENOMEM;
10189 }
10190 
10191 /**
10192  *	netdev_drivername - network driver for the device
10193  *	@dev: network device
10194  *
10195  *	Determine network driver for device.
10196  */
10197 const char *netdev_drivername(const struct net_device *dev)
10198 {
10199 	const struct device_driver *driver;
10200 	const struct device *parent;
10201 	const char *empty = "";
10202 
10203 	parent = dev->dev.parent;
10204 	if (!parent)
10205 		return empty;
10206 
10207 	driver = parent->driver;
10208 	if (driver && driver->name)
10209 		return driver->name;
10210 	return empty;
10211 }
10212 
10213 static void __netdev_printk(const char *level, const struct net_device *dev,
10214 			    struct va_format *vaf)
10215 {
10216 	if (dev && dev->dev.parent) {
10217 		dev_printk_emit(level[1] - '0',
10218 				dev->dev.parent,
10219 				"%s %s %s%s: %pV",
10220 				dev_driver_string(dev->dev.parent),
10221 				dev_name(dev->dev.parent),
10222 				netdev_name(dev), netdev_reg_state(dev),
10223 				vaf);
10224 	} else if (dev) {
10225 		printk("%s%s%s: %pV",
10226 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
10227 	} else {
10228 		printk("%s(NULL net_device): %pV", level, vaf);
10229 	}
10230 }
10231 
10232 void netdev_printk(const char *level, const struct net_device *dev,
10233 		   const char *format, ...)
10234 {
10235 	struct va_format vaf;
10236 	va_list args;
10237 
10238 	va_start(args, format);
10239 
10240 	vaf.fmt = format;
10241 	vaf.va = &args;
10242 
10243 	__netdev_printk(level, dev, &vaf);
10244 
10245 	va_end(args);
10246 }
10247 EXPORT_SYMBOL(netdev_printk);
10248 
10249 #define define_netdev_printk_level(func, level)			\
10250 void func(const struct net_device *dev, const char *fmt, ...)	\
10251 {								\
10252 	struct va_format vaf;					\
10253 	va_list args;						\
10254 								\
10255 	va_start(args, fmt);					\
10256 								\
10257 	vaf.fmt = fmt;						\
10258 	vaf.va = &args;						\
10259 								\
10260 	__netdev_printk(level, dev, &vaf);			\
10261 								\
10262 	va_end(args);						\
10263 }								\
10264 EXPORT_SYMBOL(func);
10265 
10266 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10267 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10268 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10269 define_netdev_printk_level(netdev_err, KERN_ERR);
10270 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10271 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10272 define_netdev_printk_level(netdev_info, KERN_INFO);
10273 
10274 static void __net_exit netdev_exit(struct net *net)
10275 {
10276 	kfree(net->dev_name_head);
10277 	kfree(net->dev_index_head);
10278 	if (net != &init_net)
10279 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10280 }
10281 
10282 static struct pernet_operations __net_initdata netdev_net_ops = {
10283 	.init = netdev_init,
10284 	.exit = netdev_exit,
10285 };
10286 
10287 static void __net_exit default_device_exit(struct net *net)
10288 {
10289 	struct net_device *dev, *aux;
10290 	/*
10291 	 * Push all migratable network devices back to the
10292 	 * initial network namespace
10293 	 */
10294 	rtnl_lock();
10295 	for_each_netdev_safe(net, dev, aux) {
10296 		int err;
10297 		char fb_name[IFNAMSIZ];
10298 
10299 		/* Ignore unmoveable devices (i.e. loopback) */
10300 		if (dev->features & NETIF_F_NETNS_LOCAL)
10301 			continue;
10302 
10303 		/* Leave virtual devices for the generic cleanup */
10304 		if (dev->rtnl_link_ops)
10305 			continue;
10306 
10307 		/* Push remaining network devices to init_net */
10308 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10309 		if (__dev_get_by_name(&init_net, fb_name))
10310 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
10311 		err = dev_change_net_namespace(dev, &init_net, fb_name);
10312 		if (err) {
10313 			pr_emerg("%s: failed to move %s to init_net: %d\n",
10314 				 __func__, dev->name, err);
10315 			BUG();
10316 		}
10317 	}
10318 	rtnl_unlock();
10319 }
10320 
10321 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10322 {
10323 	/* Return with the rtnl_lock held when there are no network
10324 	 * devices unregistering in any network namespace in net_list.
10325 	 */
10326 	struct net *net;
10327 	bool unregistering;
10328 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
10329 
10330 	add_wait_queue(&netdev_unregistering_wq, &wait);
10331 	for (;;) {
10332 		unregistering = false;
10333 		rtnl_lock();
10334 		list_for_each_entry(net, net_list, exit_list) {
10335 			if (net->dev_unreg_count > 0) {
10336 				unregistering = true;
10337 				break;
10338 			}
10339 		}
10340 		if (!unregistering)
10341 			break;
10342 		__rtnl_unlock();
10343 
10344 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10345 	}
10346 	remove_wait_queue(&netdev_unregistering_wq, &wait);
10347 }
10348 
10349 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10350 {
10351 	/* At exit all network devices most be removed from a network
10352 	 * namespace.  Do this in the reverse order of registration.
10353 	 * Do this across as many network namespaces as possible to
10354 	 * improve batching efficiency.
10355 	 */
10356 	struct net_device *dev;
10357 	struct net *net;
10358 	LIST_HEAD(dev_kill_list);
10359 
10360 	/* To prevent network device cleanup code from dereferencing
10361 	 * loopback devices or network devices that have been freed
10362 	 * wait here for all pending unregistrations to complete,
10363 	 * before unregistring the loopback device and allowing the
10364 	 * network namespace be freed.
10365 	 *
10366 	 * The netdev todo list containing all network devices
10367 	 * unregistrations that happen in default_device_exit_batch
10368 	 * will run in the rtnl_unlock() at the end of
10369 	 * default_device_exit_batch.
10370 	 */
10371 	rtnl_lock_unregistering(net_list);
10372 	list_for_each_entry(net, net_list, exit_list) {
10373 		for_each_netdev_reverse(net, dev) {
10374 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10375 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10376 			else
10377 				unregister_netdevice_queue(dev, &dev_kill_list);
10378 		}
10379 	}
10380 	unregister_netdevice_many(&dev_kill_list);
10381 	rtnl_unlock();
10382 }
10383 
10384 static struct pernet_operations __net_initdata default_device_ops = {
10385 	.exit = default_device_exit,
10386 	.exit_batch = default_device_exit_batch,
10387 };
10388 
10389 /*
10390  *	Initialize the DEV module. At boot time this walks the device list and
10391  *	unhooks any devices that fail to initialise (normally hardware not
10392  *	present) and leaves us with a valid list of present and active devices.
10393  *
10394  */
10395 
10396 /*
10397  *       This is called single threaded during boot, so no need
10398  *       to take the rtnl semaphore.
10399  */
10400 static int __init net_dev_init(void)
10401 {
10402 	int i, rc = -ENOMEM;
10403 
10404 	BUG_ON(!dev_boot_phase);
10405 
10406 	if (dev_proc_init())
10407 		goto out;
10408 
10409 	if (netdev_kobject_init())
10410 		goto out;
10411 
10412 	INIT_LIST_HEAD(&ptype_all);
10413 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
10414 		INIT_LIST_HEAD(&ptype_base[i]);
10415 
10416 	INIT_LIST_HEAD(&offload_base);
10417 
10418 	if (register_pernet_subsys(&netdev_net_ops))
10419 		goto out;
10420 
10421 	/*
10422 	 *	Initialise the packet receive queues.
10423 	 */
10424 
10425 	for_each_possible_cpu(i) {
10426 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10427 		struct softnet_data *sd = &per_cpu(softnet_data, i);
10428 
10429 		INIT_WORK(flush, flush_backlog);
10430 
10431 		skb_queue_head_init(&sd->input_pkt_queue);
10432 		skb_queue_head_init(&sd->process_queue);
10433 #ifdef CONFIG_XFRM_OFFLOAD
10434 		skb_queue_head_init(&sd->xfrm_backlog);
10435 #endif
10436 		INIT_LIST_HEAD(&sd->poll_list);
10437 		sd->output_queue_tailp = &sd->output_queue;
10438 #ifdef CONFIG_RPS
10439 		sd->csd.func = rps_trigger_softirq;
10440 		sd->csd.info = sd;
10441 		sd->cpu = i;
10442 #endif
10443 
10444 		init_gro_hash(&sd->backlog);
10445 		sd->backlog.poll = process_backlog;
10446 		sd->backlog.weight = weight_p;
10447 	}
10448 
10449 	dev_boot_phase = 0;
10450 
10451 	/* The loopback device is special if any other network devices
10452 	 * is present in a network namespace the loopback device must
10453 	 * be present. Since we now dynamically allocate and free the
10454 	 * loopback device ensure this invariant is maintained by
10455 	 * keeping the loopback device as the first device on the
10456 	 * list of network devices.  Ensuring the loopback devices
10457 	 * is the first device that appears and the last network device
10458 	 * that disappears.
10459 	 */
10460 	if (register_pernet_device(&loopback_net_ops))
10461 		goto out;
10462 
10463 	if (register_pernet_device(&default_device_ops))
10464 		goto out;
10465 
10466 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10467 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10468 
10469 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10470 				       NULL, dev_cpu_dead);
10471 	WARN_ON(rc < 0);
10472 	rc = 0;
10473 out:
10474 	return rc;
10475 }
10476 
10477 subsys_initcall(net_dev_init);
10478