xref: /openbmc/linux/net/core/dev.c (revision d0e22329)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 
150 #include "net-sysfs.h"
151 
152 #define MAX_GRO_SKBS 8
153 
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 static struct list_head offload_base __read_mostly;
162 
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 					 struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167 					   struct net_device *dev,
168 					   struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170 
171 /*
172  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173  * semaphore.
174  *
175  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176  *
177  * Writers must hold the rtnl semaphore while they loop through the
178  * dev_base_head list, and hold dev_base_lock for writing when they do the
179  * actual updates.  This allows pure readers to access the list even
180  * while a writer is preparing to update it.
181  *
182  * To put it another way, dev_base_lock is held for writing only to
183  * protect against pure readers; the rtnl semaphore provides the
184  * protection against other writers.
185  *
186  * See, for example usages, register_netdevice() and
187  * unregister_netdevice(), which must be called with the rtnl
188  * semaphore held.
189  */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192 
193 static DEFINE_MUTEX(ifalias_mutex);
194 
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197 
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200 
201 static seqcount_t devnet_rename_seq;
202 
203 static inline void dev_base_seq_inc(struct net *net)
204 {
205 	while (++net->dev_base_seq == 0)
206 		;
207 }
208 
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212 
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
235 /* Device list insertion */
236 static void list_netdevice(struct net_device *dev)
237 {
238 	struct net *net = dev_net(dev);
239 
240 	ASSERT_RTNL();
241 
242 	write_lock_bh(&dev_base_lock);
243 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 	hlist_add_head_rcu(&dev->index_hlist,
246 			   dev_index_hash(net, dev->ifindex));
247 	write_unlock_bh(&dev_base_lock);
248 
249 	dev_base_seq_inc(net);
250 }
251 
252 /* Device list removal
253  * caller must respect a RCU grace period before freeing/reusing dev
254  */
255 static void unlist_netdevice(struct net_device *dev)
256 {
257 	ASSERT_RTNL();
258 
259 	/* Unlink dev from the device chain */
260 	write_lock_bh(&dev_base_lock);
261 	list_del_rcu(&dev->dev_list);
262 	hlist_del_rcu(&dev->name_hlist);
263 	hlist_del_rcu(&dev->index_hlist);
264 	write_unlock_bh(&dev_base_lock);
265 
266 	dev_base_seq_inc(dev_net(dev));
267 }
268 
269 /*
270  *	Our notifier list
271  */
272 
273 static RAW_NOTIFIER_HEAD(netdev_chain);
274 
275 /*
276  *	Device drivers call our routines to queue packets here. We empty the
277  *	queue in the local softnet handler.
278  */
279 
280 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
281 EXPORT_PER_CPU_SYMBOL(softnet_data);
282 
283 #ifdef CONFIG_LOCKDEP
284 /*
285  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
286  * according to dev->type
287  */
288 static const unsigned short netdev_lock_type[] = {
289 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
290 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
291 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
292 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
293 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
294 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
295 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
296 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
297 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
298 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
299 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
300 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
301 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
302 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
303 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
304 
305 static const char *const netdev_lock_name[] = {
306 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
307 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
308 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
309 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
310 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
311 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
312 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
313 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
314 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
315 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
316 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
317 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
318 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
319 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
320 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
321 
322 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
323 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
324 
325 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
326 {
327 	int i;
328 
329 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
330 		if (netdev_lock_type[i] == dev_type)
331 			return i;
332 	/* the last key is used by default */
333 	return ARRAY_SIZE(netdev_lock_type) - 1;
334 }
335 
336 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
337 						 unsigned short dev_type)
338 {
339 	int i;
340 
341 	i = netdev_lock_pos(dev_type);
342 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
343 				   netdev_lock_name[i]);
344 }
345 
346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347 {
348 	int i;
349 
350 	i = netdev_lock_pos(dev->type);
351 	lockdep_set_class_and_name(&dev->addr_list_lock,
352 				   &netdev_addr_lock_key[i],
353 				   netdev_lock_name[i]);
354 }
355 #else
356 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
357 						 unsigned short dev_type)
358 {
359 }
360 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
361 {
362 }
363 #endif
364 
365 /*******************************************************************************
366  *
367  *		Protocol management and registration routines
368  *
369  *******************************************************************************/
370 
371 
372 /*
373  *	Add a protocol ID to the list. Now that the input handler is
374  *	smarter we can dispense with all the messy stuff that used to be
375  *	here.
376  *
377  *	BEWARE!!! Protocol handlers, mangling input packets,
378  *	MUST BE last in hash buckets and checking protocol handlers
379  *	MUST start from promiscuous ptype_all chain in net_bh.
380  *	It is true now, do not change it.
381  *	Explanation follows: if protocol handler, mangling packet, will
382  *	be the first on list, it is not able to sense, that packet
383  *	is cloned and should be copied-on-write, so that it will
384  *	change it and subsequent readers will get broken packet.
385  *							--ANK (980803)
386  */
387 
388 static inline struct list_head *ptype_head(const struct packet_type *pt)
389 {
390 	if (pt->type == htons(ETH_P_ALL))
391 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
392 	else
393 		return pt->dev ? &pt->dev->ptype_specific :
394 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396 
397 /**
398  *	dev_add_pack - add packet handler
399  *	@pt: packet type declaration
400  *
401  *	Add a protocol handler to the networking stack. The passed &packet_type
402  *	is linked into kernel lists and may not be freed until it has been
403  *	removed from the kernel lists.
404  *
405  *	This call does not sleep therefore it can not
406  *	guarantee all CPU's that are in middle of receiving packets
407  *	will see the new packet type (until the next received packet).
408  */
409 
410 void dev_add_pack(struct packet_type *pt)
411 {
412 	struct list_head *head = ptype_head(pt);
413 
414 	spin_lock(&ptype_lock);
415 	list_add_rcu(&pt->list, head);
416 	spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419 
420 /**
421  *	__dev_remove_pack	 - remove packet handler
422  *	@pt: packet type declaration
423  *
424  *	Remove a protocol handler that was previously added to the kernel
425  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
426  *	from the kernel lists and can be freed or reused once this function
427  *	returns.
428  *
429  *      The packet type might still be in use by receivers
430  *	and must not be freed until after all the CPU's have gone
431  *	through a quiescent state.
432  */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 	struct list_head *head = ptype_head(pt);
436 	struct packet_type *pt1;
437 
438 	spin_lock(&ptype_lock);
439 
440 	list_for_each_entry(pt1, head, list) {
441 		if (pt == pt1) {
442 			list_del_rcu(&pt->list);
443 			goto out;
444 		}
445 	}
446 
447 	pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 	spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452 
453 /**
454  *	dev_remove_pack	 - remove packet handler
455  *	@pt: packet type declaration
456  *
457  *	Remove a protocol handler that was previously added to the kernel
458  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
459  *	from the kernel lists and can be freed or reused once this function
460  *	returns.
461  *
462  *	This call sleeps to guarantee that no CPU is looking at the packet
463  *	type after return.
464  */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 	__dev_remove_pack(pt);
468 
469 	synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472 
473 
474 /**
475  *	dev_add_offload - register offload handlers
476  *	@po: protocol offload declaration
477  *
478  *	Add protocol offload handlers to the networking stack. The passed
479  *	&proto_offload is linked into kernel lists and may not be freed until
480  *	it has been removed from the kernel lists.
481  *
482  *	This call does not sleep therefore it can not
483  *	guarantee all CPU's that are in middle of receiving packets
484  *	will see the new offload handlers (until the next received packet).
485  */
486 void dev_add_offload(struct packet_offload *po)
487 {
488 	struct packet_offload *elem;
489 
490 	spin_lock(&offload_lock);
491 	list_for_each_entry(elem, &offload_base, list) {
492 		if (po->priority < elem->priority)
493 			break;
494 	}
495 	list_add_rcu(&po->list, elem->list.prev);
496 	spin_unlock(&offload_lock);
497 }
498 EXPORT_SYMBOL(dev_add_offload);
499 
500 /**
501  *	__dev_remove_offload	 - remove offload handler
502  *	@po: packet offload declaration
503  *
504  *	Remove a protocol offload handler that was previously added to the
505  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
506  *	is removed from the kernel lists and can be freed or reused once this
507  *	function returns.
508  *
509  *      The packet type might still be in use by receivers
510  *	and must not be freed until after all the CPU's have gone
511  *	through a quiescent state.
512  */
513 static void __dev_remove_offload(struct packet_offload *po)
514 {
515 	struct list_head *head = &offload_base;
516 	struct packet_offload *po1;
517 
518 	spin_lock(&offload_lock);
519 
520 	list_for_each_entry(po1, head, list) {
521 		if (po == po1) {
522 			list_del_rcu(&po->list);
523 			goto out;
524 		}
525 	}
526 
527 	pr_warn("dev_remove_offload: %p not found\n", po);
528 out:
529 	spin_unlock(&offload_lock);
530 }
531 
532 /**
533  *	dev_remove_offload	 - remove packet offload handler
534  *	@po: packet offload declaration
535  *
536  *	Remove a packet offload handler that was previously added to the kernel
537  *	offload handlers by dev_add_offload(). The passed &offload_type is
538  *	removed from the kernel lists and can be freed or reused once this
539  *	function returns.
540  *
541  *	This call sleeps to guarantee that no CPU is looking at the packet
542  *	type after return.
543  */
544 void dev_remove_offload(struct packet_offload *po)
545 {
546 	__dev_remove_offload(po);
547 
548 	synchronize_net();
549 }
550 EXPORT_SYMBOL(dev_remove_offload);
551 
552 /******************************************************************************
553  *
554  *		      Device Boot-time Settings Routines
555  *
556  ******************************************************************************/
557 
558 /* Boot time configuration table */
559 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
560 
561 /**
562  *	netdev_boot_setup_add	- add new setup entry
563  *	@name: name of the device
564  *	@map: configured settings for the device
565  *
566  *	Adds new setup entry to the dev_boot_setup list.  The function
567  *	returns 0 on error and 1 on success.  This is a generic routine to
568  *	all netdevices.
569  */
570 static int netdev_boot_setup_add(char *name, struct ifmap *map)
571 {
572 	struct netdev_boot_setup *s;
573 	int i;
574 
575 	s = dev_boot_setup;
576 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
577 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
578 			memset(s[i].name, 0, sizeof(s[i].name));
579 			strlcpy(s[i].name, name, IFNAMSIZ);
580 			memcpy(&s[i].map, map, sizeof(s[i].map));
581 			break;
582 		}
583 	}
584 
585 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
586 }
587 
588 /**
589  * netdev_boot_setup_check	- check boot time settings
590  * @dev: the netdevice
591  *
592  * Check boot time settings for the device.
593  * The found settings are set for the device to be used
594  * later in the device probing.
595  * Returns 0 if no settings found, 1 if they are.
596  */
597 int netdev_boot_setup_check(struct net_device *dev)
598 {
599 	struct netdev_boot_setup *s = dev_boot_setup;
600 	int i;
601 
602 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
603 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
604 		    !strcmp(dev->name, s[i].name)) {
605 			dev->irq = s[i].map.irq;
606 			dev->base_addr = s[i].map.base_addr;
607 			dev->mem_start = s[i].map.mem_start;
608 			dev->mem_end = s[i].map.mem_end;
609 			return 1;
610 		}
611 	}
612 	return 0;
613 }
614 EXPORT_SYMBOL(netdev_boot_setup_check);
615 
616 
617 /**
618  * netdev_boot_base	- get address from boot time settings
619  * @prefix: prefix for network device
620  * @unit: id for network device
621  *
622  * Check boot time settings for the base address of device.
623  * The found settings are set for the device to be used
624  * later in the device probing.
625  * Returns 0 if no settings found.
626  */
627 unsigned long netdev_boot_base(const char *prefix, int unit)
628 {
629 	const struct netdev_boot_setup *s = dev_boot_setup;
630 	char name[IFNAMSIZ];
631 	int i;
632 
633 	sprintf(name, "%s%d", prefix, unit);
634 
635 	/*
636 	 * If device already registered then return base of 1
637 	 * to indicate not to probe for this interface
638 	 */
639 	if (__dev_get_by_name(&init_net, name))
640 		return 1;
641 
642 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
643 		if (!strcmp(name, s[i].name))
644 			return s[i].map.base_addr;
645 	return 0;
646 }
647 
648 /*
649  * Saves at boot time configured settings for any netdevice.
650  */
651 int __init netdev_boot_setup(char *str)
652 {
653 	int ints[5];
654 	struct ifmap map;
655 
656 	str = get_options(str, ARRAY_SIZE(ints), ints);
657 	if (!str || !*str)
658 		return 0;
659 
660 	/* Save settings */
661 	memset(&map, 0, sizeof(map));
662 	if (ints[0] > 0)
663 		map.irq = ints[1];
664 	if (ints[0] > 1)
665 		map.base_addr = ints[2];
666 	if (ints[0] > 2)
667 		map.mem_start = ints[3];
668 	if (ints[0] > 3)
669 		map.mem_end = ints[4];
670 
671 	/* Add new entry to the list */
672 	return netdev_boot_setup_add(str, &map);
673 }
674 
675 __setup("netdev=", netdev_boot_setup);
676 
677 /*******************************************************************************
678  *
679  *			    Device Interface Subroutines
680  *
681  *******************************************************************************/
682 
683 /**
684  *	dev_get_iflink	- get 'iflink' value of a interface
685  *	@dev: targeted interface
686  *
687  *	Indicates the ifindex the interface is linked to.
688  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
689  */
690 
691 int dev_get_iflink(const struct net_device *dev)
692 {
693 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
694 		return dev->netdev_ops->ndo_get_iflink(dev);
695 
696 	return dev->ifindex;
697 }
698 EXPORT_SYMBOL(dev_get_iflink);
699 
700 /**
701  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
702  *	@dev: targeted interface
703  *	@skb: The packet.
704  *
705  *	For better visibility of tunnel traffic OVS needs to retrieve
706  *	egress tunnel information for a packet. Following API allows
707  *	user to get this info.
708  */
709 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
710 {
711 	struct ip_tunnel_info *info;
712 
713 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
714 		return -EINVAL;
715 
716 	info = skb_tunnel_info_unclone(skb);
717 	if (!info)
718 		return -ENOMEM;
719 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
720 		return -EINVAL;
721 
722 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
723 }
724 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
725 
726 /**
727  *	__dev_get_by_name	- find a device by its name
728  *	@net: the applicable net namespace
729  *	@name: name to find
730  *
731  *	Find an interface by name. Must be called under RTNL semaphore
732  *	or @dev_base_lock. If the name is found a pointer to the device
733  *	is returned. If the name is not found then %NULL is returned. The
734  *	reference counters are not incremented so the caller must be
735  *	careful with locks.
736  */
737 
738 struct net_device *__dev_get_by_name(struct net *net, const char *name)
739 {
740 	struct net_device *dev;
741 	struct hlist_head *head = dev_name_hash(net, name);
742 
743 	hlist_for_each_entry(dev, head, name_hlist)
744 		if (!strncmp(dev->name, name, IFNAMSIZ))
745 			return dev;
746 
747 	return NULL;
748 }
749 EXPORT_SYMBOL(__dev_get_by_name);
750 
751 /**
752  * dev_get_by_name_rcu	- find a device by its name
753  * @net: the applicable net namespace
754  * @name: name to find
755  *
756  * Find an interface by name.
757  * If the name is found a pointer to the device is returned.
758  * If the name is not found then %NULL is returned.
759  * The reference counters are not incremented so the caller must be
760  * careful with locks. The caller must hold RCU lock.
761  */
762 
763 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
764 {
765 	struct net_device *dev;
766 	struct hlist_head *head = dev_name_hash(net, name);
767 
768 	hlist_for_each_entry_rcu(dev, head, name_hlist)
769 		if (!strncmp(dev->name, name, IFNAMSIZ))
770 			return dev;
771 
772 	return NULL;
773 }
774 EXPORT_SYMBOL(dev_get_by_name_rcu);
775 
776 /**
777  *	dev_get_by_name		- find a device by its name
778  *	@net: the applicable net namespace
779  *	@name: name to find
780  *
781  *	Find an interface by name. This can be called from any
782  *	context and does its own locking. The returned handle has
783  *	the usage count incremented and the caller must use dev_put() to
784  *	release it when it is no longer needed. %NULL is returned if no
785  *	matching device is found.
786  */
787 
788 struct net_device *dev_get_by_name(struct net *net, const char *name)
789 {
790 	struct net_device *dev;
791 
792 	rcu_read_lock();
793 	dev = dev_get_by_name_rcu(net, name);
794 	if (dev)
795 		dev_hold(dev);
796 	rcu_read_unlock();
797 	return dev;
798 }
799 EXPORT_SYMBOL(dev_get_by_name);
800 
801 /**
802  *	__dev_get_by_index - find a device by its ifindex
803  *	@net: the applicable net namespace
804  *	@ifindex: index of device
805  *
806  *	Search for an interface by index. Returns %NULL if the device
807  *	is not found or a pointer to the device. The device has not
808  *	had its reference counter increased so the caller must be careful
809  *	about locking. The caller must hold either the RTNL semaphore
810  *	or @dev_base_lock.
811  */
812 
813 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
814 {
815 	struct net_device *dev;
816 	struct hlist_head *head = dev_index_hash(net, ifindex);
817 
818 	hlist_for_each_entry(dev, head, index_hlist)
819 		if (dev->ifindex == ifindex)
820 			return dev;
821 
822 	return NULL;
823 }
824 EXPORT_SYMBOL(__dev_get_by_index);
825 
826 /**
827  *	dev_get_by_index_rcu - find a device by its ifindex
828  *	@net: the applicable net namespace
829  *	@ifindex: index of device
830  *
831  *	Search for an interface by index. Returns %NULL if the device
832  *	is not found or a pointer to the device. The device has not
833  *	had its reference counter increased so the caller must be careful
834  *	about locking. The caller must hold RCU lock.
835  */
836 
837 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
838 {
839 	struct net_device *dev;
840 	struct hlist_head *head = dev_index_hash(net, ifindex);
841 
842 	hlist_for_each_entry_rcu(dev, head, index_hlist)
843 		if (dev->ifindex == ifindex)
844 			return dev;
845 
846 	return NULL;
847 }
848 EXPORT_SYMBOL(dev_get_by_index_rcu);
849 
850 
851 /**
852  *	dev_get_by_index - find a device by its ifindex
853  *	@net: the applicable net namespace
854  *	@ifindex: index of device
855  *
856  *	Search for an interface by index. Returns NULL if the device
857  *	is not found or a pointer to the device. The device returned has
858  *	had a reference added and the pointer is safe until the user calls
859  *	dev_put to indicate they have finished with it.
860  */
861 
862 struct net_device *dev_get_by_index(struct net *net, int ifindex)
863 {
864 	struct net_device *dev;
865 
866 	rcu_read_lock();
867 	dev = dev_get_by_index_rcu(net, ifindex);
868 	if (dev)
869 		dev_hold(dev);
870 	rcu_read_unlock();
871 	return dev;
872 }
873 EXPORT_SYMBOL(dev_get_by_index);
874 
875 /**
876  *	dev_get_by_napi_id - find a device by napi_id
877  *	@napi_id: ID of the NAPI struct
878  *
879  *	Search for an interface by NAPI ID. Returns %NULL if the device
880  *	is not found or a pointer to the device. The device has not had
881  *	its reference counter increased so the caller must be careful
882  *	about locking. The caller must hold RCU lock.
883  */
884 
885 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
886 {
887 	struct napi_struct *napi;
888 
889 	WARN_ON_ONCE(!rcu_read_lock_held());
890 
891 	if (napi_id < MIN_NAPI_ID)
892 		return NULL;
893 
894 	napi = napi_by_id(napi_id);
895 
896 	return napi ? napi->dev : NULL;
897 }
898 EXPORT_SYMBOL(dev_get_by_napi_id);
899 
900 /**
901  *	netdev_get_name - get a netdevice name, knowing its ifindex.
902  *	@net: network namespace
903  *	@name: a pointer to the buffer where the name will be stored.
904  *	@ifindex: the ifindex of the interface to get the name from.
905  *
906  *	The use of raw_seqcount_begin() and cond_resched() before
907  *	retrying is required as we want to give the writers a chance
908  *	to complete when CONFIG_PREEMPT is not set.
909  */
910 int netdev_get_name(struct net *net, char *name, int ifindex)
911 {
912 	struct net_device *dev;
913 	unsigned int seq;
914 
915 retry:
916 	seq = raw_seqcount_begin(&devnet_rename_seq);
917 	rcu_read_lock();
918 	dev = dev_get_by_index_rcu(net, ifindex);
919 	if (!dev) {
920 		rcu_read_unlock();
921 		return -ENODEV;
922 	}
923 
924 	strcpy(name, dev->name);
925 	rcu_read_unlock();
926 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
927 		cond_resched();
928 		goto retry;
929 	}
930 
931 	return 0;
932 }
933 
934 /**
935  *	dev_getbyhwaddr_rcu - find a device by its hardware address
936  *	@net: the applicable net namespace
937  *	@type: media type of device
938  *	@ha: hardware address
939  *
940  *	Search for an interface by MAC address. Returns NULL if the device
941  *	is not found or a pointer to the device.
942  *	The caller must hold RCU or RTNL.
943  *	The returned device has not had its ref count increased
944  *	and the caller must therefore be careful about locking
945  *
946  */
947 
948 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
949 				       const char *ha)
950 {
951 	struct net_device *dev;
952 
953 	for_each_netdev_rcu(net, dev)
954 		if (dev->type == type &&
955 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
956 			return dev;
957 
958 	return NULL;
959 }
960 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
961 
962 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
963 {
964 	struct net_device *dev;
965 
966 	ASSERT_RTNL();
967 	for_each_netdev(net, dev)
968 		if (dev->type == type)
969 			return dev;
970 
971 	return NULL;
972 }
973 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
974 
975 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
976 {
977 	struct net_device *dev, *ret = NULL;
978 
979 	rcu_read_lock();
980 	for_each_netdev_rcu(net, dev)
981 		if (dev->type == type) {
982 			dev_hold(dev);
983 			ret = dev;
984 			break;
985 		}
986 	rcu_read_unlock();
987 	return ret;
988 }
989 EXPORT_SYMBOL(dev_getfirstbyhwtype);
990 
991 /**
992  *	__dev_get_by_flags - find any device with given flags
993  *	@net: the applicable net namespace
994  *	@if_flags: IFF_* values
995  *	@mask: bitmask of bits in if_flags to check
996  *
997  *	Search for any interface with the given flags. Returns NULL if a device
998  *	is not found or a pointer to the device. Must be called inside
999  *	rtnl_lock(), and result refcount is unchanged.
1000  */
1001 
1002 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1003 				      unsigned short mask)
1004 {
1005 	struct net_device *dev, *ret;
1006 
1007 	ASSERT_RTNL();
1008 
1009 	ret = NULL;
1010 	for_each_netdev(net, dev) {
1011 		if (((dev->flags ^ if_flags) & mask) == 0) {
1012 			ret = dev;
1013 			break;
1014 		}
1015 	}
1016 	return ret;
1017 }
1018 EXPORT_SYMBOL(__dev_get_by_flags);
1019 
1020 /**
1021  *	dev_valid_name - check if name is okay for network device
1022  *	@name: name string
1023  *
1024  *	Network device names need to be valid file names to
1025  *	to allow sysfs to work.  We also disallow any kind of
1026  *	whitespace.
1027  */
1028 bool dev_valid_name(const char *name)
1029 {
1030 	if (*name == '\0')
1031 		return false;
1032 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1033 		return false;
1034 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1035 		return false;
1036 
1037 	while (*name) {
1038 		if (*name == '/' || *name == ':' || isspace(*name))
1039 			return false;
1040 		name++;
1041 	}
1042 	return true;
1043 }
1044 EXPORT_SYMBOL(dev_valid_name);
1045 
1046 /**
1047  *	__dev_alloc_name - allocate a name for a device
1048  *	@net: network namespace to allocate the device name in
1049  *	@name: name format string
1050  *	@buf:  scratch buffer and result name string
1051  *
1052  *	Passed a format string - eg "lt%d" it will try and find a suitable
1053  *	id. It scans list of devices to build up a free map, then chooses
1054  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1055  *	while allocating the name and adding the device in order to avoid
1056  *	duplicates.
1057  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1058  *	Returns the number of the unit assigned or a negative errno code.
1059  */
1060 
1061 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1062 {
1063 	int i = 0;
1064 	const char *p;
1065 	const int max_netdevices = 8*PAGE_SIZE;
1066 	unsigned long *inuse;
1067 	struct net_device *d;
1068 
1069 	if (!dev_valid_name(name))
1070 		return -EINVAL;
1071 
1072 	p = strchr(name, '%');
1073 	if (p) {
1074 		/*
1075 		 * Verify the string as this thing may have come from
1076 		 * the user.  There must be either one "%d" and no other "%"
1077 		 * characters.
1078 		 */
1079 		if (p[1] != 'd' || strchr(p + 2, '%'))
1080 			return -EINVAL;
1081 
1082 		/* Use one page as a bit array of possible slots */
1083 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1084 		if (!inuse)
1085 			return -ENOMEM;
1086 
1087 		for_each_netdev(net, d) {
1088 			if (!sscanf(d->name, name, &i))
1089 				continue;
1090 			if (i < 0 || i >= max_netdevices)
1091 				continue;
1092 
1093 			/*  avoid cases where sscanf is not exact inverse of printf */
1094 			snprintf(buf, IFNAMSIZ, name, i);
1095 			if (!strncmp(buf, d->name, IFNAMSIZ))
1096 				set_bit(i, inuse);
1097 		}
1098 
1099 		i = find_first_zero_bit(inuse, max_netdevices);
1100 		free_page((unsigned long) inuse);
1101 	}
1102 
1103 	snprintf(buf, IFNAMSIZ, name, i);
1104 	if (!__dev_get_by_name(net, buf))
1105 		return i;
1106 
1107 	/* It is possible to run out of possible slots
1108 	 * when the name is long and there isn't enough space left
1109 	 * for the digits, or if all bits are used.
1110 	 */
1111 	return -ENFILE;
1112 }
1113 
1114 static int dev_alloc_name_ns(struct net *net,
1115 			     struct net_device *dev,
1116 			     const char *name)
1117 {
1118 	char buf[IFNAMSIZ];
1119 	int ret;
1120 
1121 	BUG_ON(!net);
1122 	ret = __dev_alloc_name(net, name, buf);
1123 	if (ret >= 0)
1124 		strlcpy(dev->name, buf, IFNAMSIZ);
1125 	return ret;
1126 }
1127 
1128 /**
1129  *	dev_alloc_name - allocate a name for a device
1130  *	@dev: device
1131  *	@name: name format string
1132  *
1133  *	Passed a format string - eg "lt%d" it will try and find a suitable
1134  *	id. It scans list of devices to build up a free map, then chooses
1135  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1136  *	while allocating the name and adding the device in order to avoid
1137  *	duplicates.
1138  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1139  *	Returns the number of the unit assigned or a negative errno code.
1140  */
1141 
1142 int dev_alloc_name(struct net_device *dev, const char *name)
1143 {
1144 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1145 }
1146 EXPORT_SYMBOL(dev_alloc_name);
1147 
1148 int dev_get_valid_name(struct net *net, struct net_device *dev,
1149 		       const char *name)
1150 {
1151 	BUG_ON(!net);
1152 
1153 	if (!dev_valid_name(name))
1154 		return -EINVAL;
1155 
1156 	if (strchr(name, '%'))
1157 		return dev_alloc_name_ns(net, dev, name);
1158 	else if (__dev_get_by_name(net, name))
1159 		return -EEXIST;
1160 	else if (dev->name != name)
1161 		strlcpy(dev->name, name, IFNAMSIZ);
1162 
1163 	return 0;
1164 }
1165 EXPORT_SYMBOL(dev_get_valid_name);
1166 
1167 /**
1168  *	dev_change_name - change name of a device
1169  *	@dev: device
1170  *	@newname: name (or format string) must be at least IFNAMSIZ
1171  *
1172  *	Change name of a device, can pass format strings "eth%d".
1173  *	for wildcarding.
1174  */
1175 int dev_change_name(struct net_device *dev, const char *newname)
1176 {
1177 	unsigned char old_assign_type;
1178 	char oldname[IFNAMSIZ];
1179 	int err = 0;
1180 	int ret;
1181 	struct net *net;
1182 
1183 	ASSERT_RTNL();
1184 	BUG_ON(!dev_net(dev));
1185 
1186 	net = dev_net(dev);
1187 	if (dev->flags & IFF_UP)
1188 		return -EBUSY;
1189 
1190 	write_seqcount_begin(&devnet_rename_seq);
1191 
1192 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1193 		write_seqcount_end(&devnet_rename_seq);
1194 		return 0;
1195 	}
1196 
1197 	memcpy(oldname, dev->name, IFNAMSIZ);
1198 
1199 	err = dev_get_valid_name(net, dev, newname);
1200 	if (err < 0) {
1201 		write_seqcount_end(&devnet_rename_seq);
1202 		return err;
1203 	}
1204 
1205 	if (oldname[0] && !strchr(oldname, '%'))
1206 		netdev_info(dev, "renamed from %s\n", oldname);
1207 
1208 	old_assign_type = dev->name_assign_type;
1209 	dev->name_assign_type = NET_NAME_RENAMED;
1210 
1211 rollback:
1212 	ret = device_rename(&dev->dev, dev->name);
1213 	if (ret) {
1214 		memcpy(dev->name, oldname, IFNAMSIZ);
1215 		dev->name_assign_type = old_assign_type;
1216 		write_seqcount_end(&devnet_rename_seq);
1217 		return ret;
1218 	}
1219 
1220 	write_seqcount_end(&devnet_rename_seq);
1221 
1222 	netdev_adjacent_rename_links(dev, oldname);
1223 
1224 	write_lock_bh(&dev_base_lock);
1225 	hlist_del_rcu(&dev->name_hlist);
1226 	write_unlock_bh(&dev_base_lock);
1227 
1228 	synchronize_rcu();
1229 
1230 	write_lock_bh(&dev_base_lock);
1231 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1232 	write_unlock_bh(&dev_base_lock);
1233 
1234 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1235 	ret = notifier_to_errno(ret);
1236 
1237 	if (ret) {
1238 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1239 		if (err >= 0) {
1240 			err = ret;
1241 			write_seqcount_begin(&devnet_rename_seq);
1242 			memcpy(dev->name, oldname, IFNAMSIZ);
1243 			memcpy(oldname, newname, IFNAMSIZ);
1244 			dev->name_assign_type = old_assign_type;
1245 			old_assign_type = NET_NAME_RENAMED;
1246 			goto rollback;
1247 		} else {
1248 			pr_err("%s: name change rollback failed: %d\n",
1249 			       dev->name, ret);
1250 		}
1251 	}
1252 
1253 	return err;
1254 }
1255 
1256 /**
1257  *	dev_set_alias - change ifalias of a device
1258  *	@dev: device
1259  *	@alias: name up to IFALIASZ
1260  *	@len: limit of bytes to copy from info
1261  *
1262  *	Set ifalias for a device,
1263  */
1264 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1265 {
1266 	struct dev_ifalias *new_alias = NULL;
1267 
1268 	if (len >= IFALIASZ)
1269 		return -EINVAL;
1270 
1271 	if (len) {
1272 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1273 		if (!new_alias)
1274 			return -ENOMEM;
1275 
1276 		memcpy(new_alias->ifalias, alias, len);
1277 		new_alias->ifalias[len] = 0;
1278 	}
1279 
1280 	mutex_lock(&ifalias_mutex);
1281 	rcu_swap_protected(dev->ifalias, new_alias,
1282 			   mutex_is_locked(&ifalias_mutex));
1283 	mutex_unlock(&ifalias_mutex);
1284 
1285 	if (new_alias)
1286 		kfree_rcu(new_alias, rcuhead);
1287 
1288 	return len;
1289 }
1290 EXPORT_SYMBOL(dev_set_alias);
1291 
1292 /**
1293  *	dev_get_alias - get ifalias of a device
1294  *	@dev: device
1295  *	@name: buffer to store name of ifalias
1296  *	@len: size of buffer
1297  *
1298  *	get ifalias for a device.  Caller must make sure dev cannot go
1299  *	away,  e.g. rcu read lock or own a reference count to device.
1300  */
1301 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1302 {
1303 	const struct dev_ifalias *alias;
1304 	int ret = 0;
1305 
1306 	rcu_read_lock();
1307 	alias = rcu_dereference(dev->ifalias);
1308 	if (alias)
1309 		ret = snprintf(name, len, "%s", alias->ifalias);
1310 	rcu_read_unlock();
1311 
1312 	return ret;
1313 }
1314 
1315 /**
1316  *	netdev_features_change - device changes features
1317  *	@dev: device to cause notification
1318  *
1319  *	Called to indicate a device has changed features.
1320  */
1321 void netdev_features_change(struct net_device *dev)
1322 {
1323 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1324 }
1325 EXPORT_SYMBOL(netdev_features_change);
1326 
1327 /**
1328  *	netdev_state_change - device changes state
1329  *	@dev: device to cause notification
1330  *
1331  *	Called to indicate a device has changed state. This function calls
1332  *	the notifier chains for netdev_chain and sends a NEWLINK message
1333  *	to the routing socket.
1334  */
1335 void netdev_state_change(struct net_device *dev)
1336 {
1337 	if (dev->flags & IFF_UP) {
1338 		struct netdev_notifier_change_info change_info = {
1339 			.info.dev = dev,
1340 		};
1341 
1342 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1343 					      &change_info.info);
1344 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1345 	}
1346 }
1347 EXPORT_SYMBOL(netdev_state_change);
1348 
1349 /**
1350  * netdev_notify_peers - notify network peers about existence of @dev
1351  * @dev: network device
1352  *
1353  * Generate traffic such that interested network peers are aware of
1354  * @dev, such as by generating a gratuitous ARP. This may be used when
1355  * a device wants to inform the rest of the network about some sort of
1356  * reconfiguration such as a failover event or virtual machine
1357  * migration.
1358  */
1359 void netdev_notify_peers(struct net_device *dev)
1360 {
1361 	rtnl_lock();
1362 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1363 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1364 	rtnl_unlock();
1365 }
1366 EXPORT_SYMBOL(netdev_notify_peers);
1367 
1368 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1369 {
1370 	const struct net_device_ops *ops = dev->netdev_ops;
1371 	int ret;
1372 
1373 	ASSERT_RTNL();
1374 
1375 	if (!netif_device_present(dev))
1376 		return -ENODEV;
1377 
1378 	/* Block netpoll from trying to do any rx path servicing.
1379 	 * If we don't do this there is a chance ndo_poll_controller
1380 	 * or ndo_poll may be running while we open the device
1381 	 */
1382 	netpoll_poll_disable(dev);
1383 
1384 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1385 	ret = notifier_to_errno(ret);
1386 	if (ret)
1387 		return ret;
1388 
1389 	set_bit(__LINK_STATE_START, &dev->state);
1390 
1391 	if (ops->ndo_validate_addr)
1392 		ret = ops->ndo_validate_addr(dev);
1393 
1394 	if (!ret && ops->ndo_open)
1395 		ret = ops->ndo_open(dev);
1396 
1397 	netpoll_poll_enable(dev);
1398 
1399 	if (ret)
1400 		clear_bit(__LINK_STATE_START, &dev->state);
1401 	else {
1402 		dev->flags |= IFF_UP;
1403 		dev_set_rx_mode(dev);
1404 		dev_activate(dev);
1405 		add_device_randomness(dev->dev_addr, dev->addr_len);
1406 	}
1407 
1408 	return ret;
1409 }
1410 
1411 /**
1412  *	dev_open	- prepare an interface for use.
1413  *	@dev: device to open
1414  *	@extack: netlink extended ack
1415  *
1416  *	Takes a device from down to up state. The device's private open
1417  *	function is invoked and then the multicast lists are loaded. Finally
1418  *	the device is moved into the up state and a %NETDEV_UP message is
1419  *	sent to the netdev notifier chain.
1420  *
1421  *	Calling this function on an active interface is a nop. On a failure
1422  *	a negative errno code is returned.
1423  */
1424 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1425 {
1426 	int ret;
1427 
1428 	if (dev->flags & IFF_UP)
1429 		return 0;
1430 
1431 	ret = __dev_open(dev, extack);
1432 	if (ret < 0)
1433 		return ret;
1434 
1435 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1436 	call_netdevice_notifiers(NETDEV_UP, dev);
1437 
1438 	return ret;
1439 }
1440 EXPORT_SYMBOL(dev_open);
1441 
1442 static void __dev_close_many(struct list_head *head)
1443 {
1444 	struct net_device *dev;
1445 
1446 	ASSERT_RTNL();
1447 	might_sleep();
1448 
1449 	list_for_each_entry(dev, head, close_list) {
1450 		/* Temporarily disable netpoll until the interface is down */
1451 		netpoll_poll_disable(dev);
1452 
1453 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1454 
1455 		clear_bit(__LINK_STATE_START, &dev->state);
1456 
1457 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1458 		 * can be even on different cpu. So just clear netif_running().
1459 		 *
1460 		 * dev->stop() will invoke napi_disable() on all of it's
1461 		 * napi_struct instances on this device.
1462 		 */
1463 		smp_mb__after_atomic(); /* Commit netif_running(). */
1464 	}
1465 
1466 	dev_deactivate_many(head);
1467 
1468 	list_for_each_entry(dev, head, close_list) {
1469 		const struct net_device_ops *ops = dev->netdev_ops;
1470 
1471 		/*
1472 		 *	Call the device specific close. This cannot fail.
1473 		 *	Only if device is UP
1474 		 *
1475 		 *	We allow it to be called even after a DETACH hot-plug
1476 		 *	event.
1477 		 */
1478 		if (ops->ndo_stop)
1479 			ops->ndo_stop(dev);
1480 
1481 		dev->flags &= ~IFF_UP;
1482 		netpoll_poll_enable(dev);
1483 	}
1484 }
1485 
1486 static void __dev_close(struct net_device *dev)
1487 {
1488 	LIST_HEAD(single);
1489 
1490 	list_add(&dev->close_list, &single);
1491 	__dev_close_many(&single);
1492 	list_del(&single);
1493 }
1494 
1495 void dev_close_many(struct list_head *head, bool unlink)
1496 {
1497 	struct net_device *dev, *tmp;
1498 
1499 	/* Remove the devices that don't need to be closed */
1500 	list_for_each_entry_safe(dev, tmp, head, close_list)
1501 		if (!(dev->flags & IFF_UP))
1502 			list_del_init(&dev->close_list);
1503 
1504 	__dev_close_many(head);
1505 
1506 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1507 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1508 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1509 		if (unlink)
1510 			list_del_init(&dev->close_list);
1511 	}
1512 }
1513 EXPORT_SYMBOL(dev_close_many);
1514 
1515 /**
1516  *	dev_close - shutdown an interface.
1517  *	@dev: device to shutdown
1518  *
1519  *	This function moves an active device into down state. A
1520  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1521  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1522  *	chain.
1523  */
1524 void dev_close(struct net_device *dev)
1525 {
1526 	if (dev->flags & IFF_UP) {
1527 		LIST_HEAD(single);
1528 
1529 		list_add(&dev->close_list, &single);
1530 		dev_close_many(&single, true);
1531 		list_del(&single);
1532 	}
1533 }
1534 EXPORT_SYMBOL(dev_close);
1535 
1536 
1537 /**
1538  *	dev_disable_lro - disable Large Receive Offload on a device
1539  *	@dev: device
1540  *
1541  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1542  *	called under RTNL.  This is needed if received packets may be
1543  *	forwarded to another interface.
1544  */
1545 void dev_disable_lro(struct net_device *dev)
1546 {
1547 	struct net_device *lower_dev;
1548 	struct list_head *iter;
1549 
1550 	dev->wanted_features &= ~NETIF_F_LRO;
1551 	netdev_update_features(dev);
1552 
1553 	if (unlikely(dev->features & NETIF_F_LRO))
1554 		netdev_WARN(dev, "failed to disable LRO!\n");
1555 
1556 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1557 		dev_disable_lro(lower_dev);
1558 }
1559 EXPORT_SYMBOL(dev_disable_lro);
1560 
1561 /**
1562  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1563  *	@dev: device
1564  *
1565  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1566  *	called under RTNL.  This is needed if Generic XDP is installed on
1567  *	the device.
1568  */
1569 static void dev_disable_gro_hw(struct net_device *dev)
1570 {
1571 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1572 	netdev_update_features(dev);
1573 
1574 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1575 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1576 }
1577 
1578 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1579 {
1580 #define N(val) 						\
1581 	case NETDEV_##val:				\
1582 		return "NETDEV_" __stringify(val);
1583 	switch (cmd) {
1584 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1585 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1586 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1587 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1588 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1589 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1590 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1591 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1592 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1593 	N(PRE_CHANGEADDR)
1594 	}
1595 #undef N
1596 	return "UNKNOWN_NETDEV_EVENT";
1597 }
1598 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1599 
1600 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1601 				   struct net_device *dev)
1602 {
1603 	struct netdev_notifier_info info = {
1604 		.dev = dev,
1605 	};
1606 
1607 	return nb->notifier_call(nb, val, &info);
1608 }
1609 
1610 static int dev_boot_phase = 1;
1611 
1612 /**
1613  * register_netdevice_notifier - register a network notifier block
1614  * @nb: notifier
1615  *
1616  * Register a notifier to be called when network device events occur.
1617  * The notifier passed is linked into the kernel structures and must
1618  * not be reused until it has been unregistered. A negative errno code
1619  * is returned on a failure.
1620  *
1621  * When registered all registration and up events are replayed
1622  * to the new notifier to allow device to have a race free
1623  * view of the network device list.
1624  */
1625 
1626 int register_netdevice_notifier(struct notifier_block *nb)
1627 {
1628 	struct net_device *dev;
1629 	struct net_device *last;
1630 	struct net *net;
1631 	int err;
1632 
1633 	/* Close race with setup_net() and cleanup_net() */
1634 	down_write(&pernet_ops_rwsem);
1635 	rtnl_lock();
1636 	err = raw_notifier_chain_register(&netdev_chain, nb);
1637 	if (err)
1638 		goto unlock;
1639 	if (dev_boot_phase)
1640 		goto unlock;
1641 	for_each_net(net) {
1642 		for_each_netdev(net, dev) {
1643 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1644 			err = notifier_to_errno(err);
1645 			if (err)
1646 				goto rollback;
1647 
1648 			if (!(dev->flags & IFF_UP))
1649 				continue;
1650 
1651 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1652 		}
1653 	}
1654 
1655 unlock:
1656 	rtnl_unlock();
1657 	up_write(&pernet_ops_rwsem);
1658 	return err;
1659 
1660 rollback:
1661 	last = dev;
1662 	for_each_net(net) {
1663 		for_each_netdev(net, dev) {
1664 			if (dev == last)
1665 				goto outroll;
1666 
1667 			if (dev->flags & IFF_UP) {
1668 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1669 							dev);
1670 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1671 			}
1672 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1673 		}
1674 	}
1675 
1676 outroll:
1677 	raw_notifier_chain_unregister(&netdev_chain, nb);
1678 	goto unlock;
1679 }
1680 EXPORT_SYMBOL(register_netdevice_notifier);
1681 
1682 /**
1683  * unregister_netdevice_notifier - unregister a network notifier block
1684  * @nb: notifier
1685  *
1686  * Unregister a notifier previously registered by
1687  * register_netdevice_notifier(). The notifier is unlinked into the
1688  * kernel structures and may then be reused. A negative errno code
1689  * is returned on a failure.
1690  *
1691  * After unregistering unregister and down device events are synthesized
1692  * for all devices on the device list to the removed notifier to remove
1693  * the need for special case cleanup code.
1694  */
1695 
1696 int unregister_netdevice_notifier(struct notifier_block *nb)
1697 {
1698 	struct net_device *dev;
1699 	struct net *net;
1700 	int err;
1701 
1702 	/* Close race with setup_net() and cleanup_net() */
1703 	down_write(&pernet_ops_rwsem);
1704 	rtnl_lock();
1705 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1706 	if (err)
1707 		goto unlock;
1708 
1709 	for_each_net(net) {
1710 		for_each_netdev(net, dev) {
1711 			if (dev->flags & IFF_UP) {
1712 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1713 							dev);
1714 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1715 			}
1716 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1717 		}
1718 	}
1719 unlock:
1720 	rtnl_unlock();
1721 	up_write(&pernet_ops_rwsem);
1722 	return err;
1723 }
1724 EXPORT_SYMBOL(unregister_netdevice_notifier);
1725 
1726 /**
1727  *	call_netdevice_notifiers_info - call all network notifier blocks
1728  *	@val: value passed unmodified to notifier function
1729  *	@info: notifier information data
1730  *
1731  *	Call all network notifier blocks.  Parameters and return value
1732  *	are as for raw_notifier_call_chain().
1733  */
1734 
1735 static int call_netdevice_notifiers_info(unsigned long val,
1736 					 struct netdev_notifier_info *info)
1737 {
1738 	ASSERT_RTNL();
1739 	return raw_notifier_call_chain(&netdev_chain, val, info);
1740 }
1741 
1742 static int call_netdevice_notifiers_extack(unsigned long val,
1743 					   struct net_device *dev,
1744 					   struct netlink_ext_ack *extack)
1745 {
1746 	struct netdev_notifier_info info = {
1747 		.dev = dev,
1748 		.extack = extack,
1749 	};
1750 
1751 	return call_netdevice_notifiers_info(val, &info);
1752 }
1753 
1754 /**
1755  *	call_netdevice_notifiers - call all network notifier blocks
1756  *      @val: value passed unmodified to notifier function
1757  *      @dev: net_device pointer passed unmodified to notifier function
1758  *
1759  *	Call all network notifier blocks.  Parameters and return value
1760  *	are as for raw_notifier_call_chain().
1761  */
1762 
1763 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1764 {
1765 	return call_netdevice_notifiers_extack(val, dev, NULL);
1766 }
1767 EXPORT_SYMBOL(call_netdevice_notifiers);
1768 
1769 /**
1770  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1771  *	@val: value passed unmodified to notifier function
1772  *	@dev: net_device pointer passed unmodified to notifier function
1773  *	@arg: additional u32 argument passed to the notifier function
1774  *
1775  *	Call all network notifier blocks.  Parameters and return value
1776  *	are as for raw_notifier_call_chain().
1777  */
1778 static int call_netdevice_notifiers_mtu(unsigned long val,
1779 					struct net_device *dev, u32 arg)
1780 {
1781 	struct netdev_notifier_info_ext info = {
1782 		.info.dev = dev,
1783 		.ext.mtu = arg,
1784 	};
1785 
1786 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1787 
1788 	return call_netdevice_notifiers_info(val, &info.info);
1789 }
1790 
1791 #ifdef CONFIG_NET_INGRESS
1792 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1793 
1794 void net_inc_ingress_queue(void)
1795 {
1796 	static_branch_inc(&ingress_needed_key);
1797 }
1798 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1799 
1800 void net_dec_ingress_queue(void)
1801 {
1802 	static_branch_dec(&ingress_needed_key);
1803 }
1804 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1805 #endif
1806 
1807 #ifdef CONFIG_NET_EGRESS
1808 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1809 
1810 void net_inc_egress_queue(void)
1811 {
1812 	static_branch_inc(&egress_needed_key);
1813 }
1814 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1815 
1816 void net_dec_egress_queue(void)
1817 {
1818 	static_branch_dec(&egress_needed_key);
1819 }
1820 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1821 #endif
1822 
1823 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1824 #ifdef CONFIG_JUMP_LABEL
1825 static atomic_t netstamp_needed_deferred;
1826 static atomic_t netstamp_wanted;
1827 static void netstamp_clear(struct work_struct *work)
1828 {
1829 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1830 	int wanted;
1831 
1832 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1833 	if (wanted > 0)
1834 		static_branch_enable(&netstamp_needed_key);
1835 	else
1836 		static_branch_disable(&netstamp_needed_key);
1837 }
1838 static DECLARE_WORK(netstamp_work, netstamp_clear);
1839 #endif
1840 
1841 void net_enable_timestamp(void)
1842 {
1843 #ifdef CONFIG_JUMP_LABEL
1844 	int wanted;
1845 
1846 	while (1) {
1847 		wanted = atomic_read(&netstamp_wanted);
1848 		if (wanted <= 0)
1849 			break;
1850 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1851 			return;
1852 	}
1853 	atomic_inc(&netstamp_needed_deferred);
1854 	schedule_work(&netstamp_work);
1855 #else
1856 	static_branch_inc(&netstamp_needed_key);
1857 #endif
1858 }
1859 EXPORT_SYMBOL(net_enable_timestamp);
1860 
1861 void net_disable_timestamp(void)
1862 {
1863 #ifdef CONFIG_JUMP_LABEL
1864 	int wanted;
1865 
1866 	while (1) {
1867 		wanted = atomic_read(&netstamp_wanted);
1868 		if (wanted <= 1)
1869 			break;
1870 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1871 			return;
1872 	}
1873 	atomic_dec(&netstamp_needed_deferred);
1874 	schedule_work(&netstamp_work);
1875 #else
1876 	static_branch_dec(&netstamp_needed_key);
1877 #endif
1878 }
1879 EXPORT_SYMBOL(net_disable_timestamp);
1880 
1881 static inline void net_timestamp_set(struct sk_buff *skb)
1882 {
1883 	skb->tstamp = 0;
1884 	if (static_branch_unlikely(&netstamp_needed_key))
1885 		__net_timestamp(skb);
1886 }
1887 
1888 #define net_timestamp_check(COND, SKB)				\
1889 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
1890 		if ((COND) && !(SKB)->tstamp)			\
1891 			__net_timestamp(SKB);			\
1892 	}							\
1893 
1894 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1895 {
1896 	unsigned int len;
1897 
1898 	if (!(dev->flags & IFF_UP))
1899 		return false;
1900 
1901 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1902 	if (skb->len <= len)
1903 		return true;
1904 
1905 	/* if TSO is enabled, we don't care about the length as the packet
1906 	 * could be forwarded without being segmented before
1907 	 */
1908 	if (skb_is_gso(skb))
1909 		return true;
1910 
1911 	return false;
1912 }
1913 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1914 
1915 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1916 {
1917 	int ret = ____dev_forward_skb(dev, skb);
1918 
1919 	if (likely(!ret)) {
1920 		skb->protocol = eth_type_trans(skb, dev);
1921 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1922 	}
1923 
1924 	return ret;
1925 }
1926 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1927 
1928 /**
1929  * dev_forward_skb - loopback an skb to another netif
1930  *
1931  * @dev: destination network device
1932  * @skb: buffer to forward
1933  *
1934  * return values:
1935  *	NET_RX_SUCCESS	(no congestion)
1936  *	NET_RX_DROP     (packet was dropped, but freed)
1937  *
1938  * dev_forward_skb can be used for injecting an skb from the
1939  * start_xmit function of one device into the receive queue
1940  * of another device.
1941  *
1942  * The receiving device may be in another namespace, so
1943  * we have to clear all information in the skb that could
1944  * impact namespace isolation.
1945  */
1946 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1947 {
1948 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1949 }
1950 EXPORT_SYMBOL_GPL(dev_forward_skb);
1951 
1952 static inline int deliver_skb(struct sk_buff *skb,
1953 			      struct packet_type *pt_prev,
1954 			      struct net_device *orig_dev)
1955 {
1956 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1957 		return -ENOMEM;
1958 	refcount_inc(&skb->users);
1959 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1960 }
1961 
1962 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1963 					  struct packet_type **pt,
1964 					  struct net_device *orig_dev,
1965 					  __be16 type,
1966 					  struct list_head *ptype_list)
1967 {
1968 	struct packet_type *ptype, *pt_prev = *pt;
1969 
1970 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1971 		if (ptype->type != type)
1972 			continue;
1973 		if (pt_prev)
1974 			deliver_skb(skb, pt_prev, orig_dev);
1975 		pt_prev = ptype;
1976 	}
1977 	*pt = pt_prev;
1978 }
1979 
1980 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1981 {
1982 	if (!ptype->af_packet_priv || !skb->sk)
1983 		return false;
1984 
1985 	if (ptype->id_match)
1986 		return ptype->id_match(ptype, skb->sk);
1987 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1988 		return true;
1989 
1990 	return false;
1991 }
1992 
1993 /**
1994  * dev_nit_active - return true if any network interface taps are in use
1995  *
1996  * @dev: network device to check for the presence of taps
1997  */
1998 bool dev_nit_active(struct net_device *dev)
1999 {
2000 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2001 }
2002 EXPORT_SYMBOL_GPL(dev_nit_active);
2003 
2004 /*
2005  *	Support routine. Sends outgoing frames to any network
2006  *	taps currently in use.
2007  */
2008 
2009 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2010 {
2011 	struct packet_type *ptype;
2012 	struct sk_buff *skb2 = NULL;
2013 	struct packet_type *pt_prev = NULL;
2014 	struct list_head *ptype_list = &ptype_all;
2015 
2016 	rcu_read_lock();
2017 again:
2018 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2019 		if (ptype->ignore_outgoing)
2020 			continue;
2021 
2022 		/* Never send packets back to the socket
2023 		 * they originated from - MvS (miquels@drinkel.ow.org)
2024 		 */
2025 		if (skb_loop_sk(ptype, skb))
2026 			continue;
2027 
2028 		if (pt_prev) {
2029 			deliver_skb(skb2, pt_prev, skb->dev);
2030 			pt_prev = ptype;
2031 			continue;
2032 		}
2033 
2034 		/* need to clone skb, done only once */
2035 		skb2 = skb_clone(skb, GFP_ATOMIC);
2036 		if (!skb2)
2037 			goto out_unlock;
2038 
2039 		net_timestamp_set(skb2);
2040 
2041 		/* skb->nh should be correctly
2042 		 * set by sender, so that the second statement is
2043 		 * just protection against buggy protocols.
2044 		 */
2045 		skb_reset_mac_header(skb2);
2046 
2047 		if (skb_network_header(skb2) < skb2->data ||
2048 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2049 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2050 					     ntohs(skb2->protocol),
2051 					     dev->name);
2052 			skb_reset_network_header(skb2);
2053 		}
2054 
2055 		skb2->transport_header = skb2->network_header;
2056 		skb2->pkt_type = PACKET_OUTGOING;
2057 		pt_prev = ptype;
2058 	}
2059 
2060 	if (ptype_list == &ptype_all) {
2061 		ptype_list = &dev->ptype_all;
2062 		goto again;
2063 	}
2064 out_unlock:
2065 	if (pt_prev) {
2066 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2067 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2068 		else
2069 			kfree_skb(skb2);
2070 	}
2071 	rcu_read_unlock();
2072 }
2073 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2074 
2075 /**
2076  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2077  * @dev: Network device
2078  * @txq: number of queues available
2079  *
2080  * If real_num_tx_queues is changed the tc mappings may no longer be
2081  * valid. To resolve this verify the tc mapping remains valid and if
2082  * not NULL the mapping. With no priorities mapping to this
2083  * offset/count pair it will no longer be used. In the worst case TC0
2084  * is invalid nothing can be done so disable priority mappings. If is
2085  * expected that drivers will fix this mapping if they can before
2086  * calling netif_set_real_num_tx_queues.
2087  */
2088 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2089 {
2090 	int i;
2091 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2092 
2093 	/* If TC0 is invalidated disable TC mapping */
2094 	if (tc->offset + tc->count > txq) {
2095 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2096 		dev->num_tc = 0;
2097 		return;
2098 	}
2099 
2100 	/* Invalidated prio to tc mappings set to TC0 */
2101 	for (i = 1; i < TC_BITMASK + 1; i++) {
2102 		int q = netdev_get_prio_tc_map(dev, i);
2103 
2104 		tc = &dev->tc_to_txq[q];
2105 		if (tc->offset + tc->count > txq) {
2106 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2107 				i, q);
2108 			netdev_set_prio_tc_map(dev, i, 0);
2109 		}
2110 	}
2111 }
2112 
2113 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2114 {
2115 	if (dev->num_tc) {
2116 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2117 		int i;
2118 
2119 		/* walk through the TCs and see if it falls into any of them */
2120 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2121 			if ((txq - tc->offset) < tc->count)
2122 				return i;
2123 		}
2124 
2125 		/* didn't find it, just return -1 to indicate no match */
2126 		return -1;
2127 	}
2128 
2129 	return 0;
2130 }
2131 EXPORT_SYMBOL(netdev_txq_to_tc);
2132 
2133 #ifdef CONFIG_XPS
2134 struct static_key xps_needed __read_mostly;
2135 EXPORT_SYMBOL(xps_needed);
2136 struct static_key xps_rxqs_needed __read_mostly;
2137 EXPORT_SYMBOL(xps_rxqs_needed);
2138 static DEFINE_MUTEX(xps_map_mutex);
2139 #define xmap_dereference(P)		\
2140 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2141 
2142 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2143 			     int tci, u16 index)
2144 {
2145 	struct xps_map *map = NULL;
2146 	int pos;
2147 
2148 	if (dev_maps)
2149 		map = xmap_dereference(dev_maps->attr_map[tci]);
2150 	if (!map)
2151 		return false;
2152 
2153 	for (pos = map->len; pos--;) {
2154 		if (map->queues[pos] != index)
2155 			continue;
2156 
2157 		if (map->len > 1) {
2158 			map->queues[pos] = map->queues[--map->len];
2159 			break;
2160 		}
2161 
2162 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2163 		kfree_rcu(map, rcu);
2164 		return false;
2165 	}
2166 
2167 	return true;
2168 }
2169 
2170 static bool remove_xps_queue_cpu(struct net_device *dev,
2171 				 struct xps_dev_maps *dev_maps,
2172 				 int cpu, u16 offset, u16 count)
2173 {
2174 	int num_tc = dev->num_tc ? : 1;
2175 	bool active = false;
2176 	int tci;
2177 
2178 	for (tci = cpu * num_tc; num_tc--; tci++) {
2179 		int i, j;
2180 
2181 		for (i = count, j = offset; i--; j++) {
2182 			if (!remove_xps_queue(dev_maps, tci, j))
2183 				break;
2184 		}
2185 
2186 		active |= i < 0;
2187 	}
2188 
2189 	return active;
2190 }
2191 
2192 static void reset_xps_maps(struct net_device *dev,
2193 			   struct xps_dev_maps *dev_maps,
2194 			   bool is_rxqs_map)
2195 {
2196 	if (is_rxqs_map) {
2197 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2198 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2199 	} else {
2200 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2201 	}
2202 	static_key_slow_dec_cpuslocked(&xps_needed);
2203 	kfree_rcu(dev_maps, rcu);
2204 }
2205 
2206 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2207 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2208 			   u16 offset, u16 count, bool is_rxqs_map)
2209 {
2210 	bool active = false;
2211 	int i, j;
2212 
2213 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2214 	     j < nr_ids;)
2215 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2216 					       count);
2217 	if (!active)
2218 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2219 
2220 	if (!is_rxqs_map) {
2221 		for (i = offset + (count - 1); count--; i--) {
2222 			netdev_queue_numa_node_write(
2223 				netdev_get_tx_queue(dev, i),
2224 				NUMA_NO_NODE);
2225 		}
2226 	}
2227 }
2228 
2229 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2230 				   u16 count)
2231 {
2232 	const unsigned long *possible_mask = NULL;
2233 	struct xps_dev_maps *dev_maps;
2234 	unsigned int nr_ids;
2235 
2236 	if (!static_key_false(&xps_needed))
2237 		return;
2238 
2239 	cpus_read_lock();
2240 	mutex_lock(&xps_map_mutex);
2241 
2242 	if (static_key_false(&xps_rxqs_needed)) {
2243 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2244 		if (dev_maps) {
2245 			nr_ids = dev->num_rx_queues;
2246 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2247 				       offset, count, true);
2248 		}
2249 	}
2250 
2251 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2252 	if (!dev_maps)
2253 		goto out_no_maps;
2254 
2255 	if (num_possible_cpus() > 1)
2256 		possible_mask = cpumask_bits(cpu_possible_mask);
2257 	nr_ids = nr_cpu_ids;
2258 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2259 		       false);
2260 
2261 out_no_maps:
2262 	mutex_unlock(&xps_map_mutex);
2263 	cpus_read_unlock();
2264 }
2265 
2266 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2267 {
2268 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2269 }
2270 
2271 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2272 				      u16 index, bool is_rxqs_map)
2273 {
2274 	struct xps_map *new_map;
2275 	int alloc_len = XPS_MIN_MAP_ALLOC;
2276 	int i, pos;
2277 
2278 	for (pos = 0; map && pos < map->len; pos++) {
2279 		if (map->queues[pos] != index)
2280 			continue;
2281 		return map;
2282 	}
2283 
2284 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2285 	if (map) {
2286 		if (pos < map->alloc_len)
2287 			return map;
2288 
2289 		alloc_len = map->alloc_len * 2;
2290 	}
2291 
2292 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2293 	 *  map
2294 	 */
2295 	if (is_rxqs_map)
2296 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2297 	else
2298 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2299 				       cpu_to_node(attr_index));
2300 	if (!new_map)
2301 		return NULL;
2302 
2303 	for (i = 0; i < pos; i++)
2304 		new_map->queues[i] = map->queues[i];
2305 	new_map->alloc_len = alloc_len;
2306 	new_map->len = pos;
2307 
2308 	return new_map;
2309 }
2310 
2311 /* Must be called under cpus_read_lock */
2312 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2313 			  u16 index, bool is_rxqs_map)
2314 {
2315 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2316 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2317 	int i, j, tci, numa_node_id = -2;
2318 	int maps_sz, num_tc = 1, tc = 0;
2319 	struct xps_map *map, *new_map;
2320 	bool active = false;
2321 	unsigned int nr_ids;
2322 
2323 	if (dev->num_tc) {
2324 		/* Do not allow XPS on subordinate device directly */
2325 		num_tc = dev->num_tc;
2326 		if (num_tc < 0)
2327 			return -EINVAL;
2328 
2329 		/* If queue belongs to subordinate dev use its map */
2330 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2331 
2332 		tc = netdev_txq_to_tc(dev, index);
2333 		if (tc < 0)
2334 			return -EINVAL;
2335 	}
2336 
2337 	mutex_lock(&xps_map_mutex);
2338 	if (is_rxqs_map) {
2339 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2340 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2341 		nr_ids = dev->num_rx_queues;
2342 	} else {
2343 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2344 		if (num_possible_cpus() > 1) {
2345 			online_mask = cpumask_bits(cpu_online_mask);
2346 			possible_mask = cpumask_bits(cpu_possible_mask);
2347 		}
2348 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2349 		nr_ids = nr_cpu_ids;
2350 	}
2351 
2352 	if (maps_sz < L1_CACHE_BYTES)
2353 		maps_sz = L1_CACHE_BYTES;
2354 
2355 	/* allocate memory for queue storage */
2356 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2357 	     j < nr_ids;) {
2358 		if (!new_dev_maps)
2359 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2360 		if (!new_dev_maps) {
2361 			mutex_unlock(&xps_map_mutex);
2362 			return -ENOMEM;
2363 		}
2364 
2365 		tci = j * num_tc + tc;
2366 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2367 				 NULL;
2368 
2369 		map = expand_xps_map(map, j, index, is_rxqs_map);
2370 		if (!map)
2371 			goto error;
2372 
2373 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2374 	}
2375 
2376 	if (!new_dev_maps)
2377 		goto out_no_new_maps;
2378 
2379 	if (!dev_maps) {
2380 		/* Increment static keys at most once per type */
2381 		static_key_slow_inc_cpuslocked(&xps_needed);
2382 		if (is_rxqs_map)
2383 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2384 	}
2385 
2386 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2387 	     j < nr_ids;) {
2388 		/* copy maps belonging to foreign traffic classes */
2389 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2390 			/* fill in the new device map from the old device map */
2391 			map = xmap_dereference(dev_maps->attr_map[tci]);
2392 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2393 		}
2394 
2395 		/* We need to explicitly update tci as prevous loop
2396 		 * could break out early if dev_maps is NULL.
2397 		 */
2398 		tci = j * num_tc + tc;
2399 
2400 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2401 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2402 			/* add tx-queue to CPU/rx-queue maps */
2403 			int pos = 0;
2404 
2405 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2406 			while ((pos < map->len) && (map->queues[pos] != index))
2407 				pos++;
2408 
2409 			if (pos == map->len)
2410 				map->queues[map->len++] = index;
2411 #ifdef CONFIG_NUMA
2412 			if (!is_rxqs_map) {
2413 				if (numa_node_id == -2)
2414 					numa_node_id = cpu_to_node(j);
2415 				else if (numa_node_id != cpu_to_node(j))
2416 					numa_node_id = -1;
2417 			}
2418 #endif
2419 		} else if (dev_maps) {
2420 			/* fill in the new device map from the old device map */
2421 			map = xmap_dereference(dev_maps->attr_map[tci]);
2422 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2423 		}
2424 
2425 		/* copy maps belonging to foreign traffic classes */
2426 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2427 			/* fill in the new device map from the old device map */
2428 			map = xmap_dereference(dev_maps->attr_map[tci]);
2429 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2430 		}
2431 	}
2432 
2433 	if (is_rxqs_map)
2434 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2435 	else
2436 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2437 
2438 	/* Cleanup old maps */
2439 	if (!dev_maps)
2440 		goto out_no_old_maps;
2441 
2442 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2443 	     j < nr_ids;) {
2444 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2445 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2446 			map = xmap_dereference(dev_maps->attr_map[tci]);
2447 			if (map && map != new_map)
2448 				kfree_rcu(map, rcu);
2449 		}
2450 	}
2451 
2452 	kfree_rcu(dev_maps, rcu);
2453 
2454 out_no_old_maps:
2455 	dev_maps = new_dev_maps;
2456 	active = true;
2457 
2458 out_no_new_maps:
2459 	if (!is_rxqs_map) {
2460 		/* update Tx queue numa node */
2461 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2462 					     (numa_node_id >= 0) ?
2463 					     numa_node_id : NUMA_NO_NODE);
2464 	}
2465 
2466 	if (!dev_maps)
2467 		goto out_no_maps;
2468 
2469 	/* removes tx-queue from unused CPUs/rx-queues */
2470 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2471 	     j < nr_ids;) {
2472 		for (i = tc, tci = j * num_tc; i--; tci++)
2473 			active |= remove_xps_queue(dev_maps, tci, index);
2474 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2475 		    !netif_attr_test_online(j, online_mask, nr_ids))
2476 			active |= remove_xps_queue(dev_maps, tci, index);
2477 		for (i = num_tc - tc, tci++; --i; tci++)
2478 			active |= remove_xps_queue(dev_maps, tci, index);
2479 	}
2480 
2481 	/* free map if not active */
2482 	if (!active)
2483 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2484 
2485 out_no_maps:
2486 	mutex_unlock(&xps_map_mutex);
2487 
2488 	return 0;
2489 error:
2490 	/* remove any maps that we added */
2491 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2492 	     j < nr_ids;) {
2493 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2494 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2495 			map = dev_maps ?
2496 			      xmap_dereference(dev_maps->attr_map[tci]) :
2497 			      NULL;
2498 			if (new_map && new_map != map)
2499 				kfree(new_map);
2500 		}
2501 	}
2502 
2503 	mutex_unlock(&xps_map_mutex);
2504 
2505 	kfree(new_dev_maps);
2506 	return -ENOMEM;
2507 }
2508 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2509 
2510 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2511 			u16 index)
2512 {
2513 	int ret;
2514 
2515 	cpus_read_lock();
2516 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2517 	cpus_read_unlock();
2518 
2519 	return ret;
2520 }
2521 EXPORT_SYMBOL(netif_set_xps_queue);
2522 
2523 #endif
2524 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2525 {
2526 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2527 
2528 	/* Unbind any subordinate channels */
2529 	while (txq-- != &dev->_tx[0]) {
2530 		if (txq->sb_dev)
2531 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2532 	}
2533 }
2534 
2535 void netdev_reset_tc(struct net_device *dev)
2536 {
2537 #ifdef CONFIG_XPS
2538 	netif_reset_xps_queues_gt(dev, 0);
2539 #endif
2540 	netdev_unbind_all_sb_channels(dev);
2541 
2542 	/* Reset TC configuration of device */
2543 	dev->num_tc = 0;
2544 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2545 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2546 }
2547 EXPORT_SYMBOL(netdev_reset_tc);
2548 
2549 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2550 {
2551 	if (tc >= dev->num_tc)
2552 		return -EINVAL;
2553 
2554 #ifdef CONFIG_XPS
2555 	netif_reset_xps_queues(dev, offset, count);
2556 #endif
2557 	dev->tc_to_txq[tc].count = count;
2558 	dev->tc_to_txq[tc].offset = offset;
2559 	return 0;
2560 }
2561 EXPORT_SYMBOL(netdev_set_tc_queue);
2562 
2563 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2564 {
2565 	if (num_tc > TC_MAX_QUEUE)
2566 		return -EINVAL;
2567 
2568 #ifdef CONFIG_XPS
2569 	netif_reset_xps_queues_gt(dev, 0);
2570 #endif
2571 	netdev_unbind_all_sb_channels(dev);
2572 
2573 	dev->num_tc = num_tc;
2574 	return 0;
2575 }
2576 EXPORT_SYMBOL(netdev_set_num_tc);
2577 
2578 void netdev_unbind_sb_channel(struct net_device *dev,
2579 			      struct net_device *sb_dev)
2580 {
2581 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2582 
2583 #ifdef CONFIG_XPS
2584 	netif_reset_xps_queues_gt(sb_dev, 0);
2585 #endif
2586 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2587 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2588 
2589 	while (txq-- != &dev->_tx[0]) {
2590 		if (txq->sb_dev == sb_dev)
2591 			txq->sb_dev = NULL;
2592 	}
2593 }
2594 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2595 
2596 int netdev_bind_sb_channel_queue(struct net_device *dev,
2597 				 struct net_device *sb_dev,
2598 				 u8 tc, u16 count, u16 offset)
2599 {
2600 	/* Make certain the sb_dev and dev are already configured */
2601 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2602 		return -EINVAL;
2603 
2604 	/* We cannot hand out queues we don't have */
2605 	if ((offset + count) > dev->real_num_tx_queues)
2606 		return -EINVAL;
2607 
2608 	/* Record the mapping */
2609 	sb_dev->tc_to_txq[tc].count = count;
2610 	sb_dev->tc_to_txq[tc].offset = offset;
2611 
2612 	/* Provide a way for Tx queue to find the tc_to_txq map or
2613 	 * XPS map for itself.
2614 	 */
2615 	while (count--)
2616 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2617 
2618 	return 0;
2619 }
2620 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2621 
2622 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2623 {
2624 	/* Do not use a multiqueue device to represent a subordinate channel */
2625 	if (netif_is_multiqueue(dev))
2626 		return -ENODEV;
2627 
2628 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2629 	 * Channel 0 is meant to be "native" mode and used only to represent
2630 	 * the main root device. We allow writing 0 to reset the device back
2631 	 * to normal mode after being used as a subordinate channel.
2632 	 */
2633 	if (channel > S16_MAX)
2634 		return -EINVAL;
2635 
2636 	dev->num_tc = -channel;
2637 
2638 	return 0;
2639 }
2640 EXPORT_SYMBOL(netdev_set_sb_channel);
2641 
2642 /*
2643  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2644  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2645  */
2646 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2647 {
2648 	bool disabling;
2649 	int rc;
2650 
2651 	disabling = txq < dev->real_num_tx_queues;
2652 
2653 	if (txq < 1 || txq > dev->num_tx_queues)
2654 		return -EINVAL;
2655 
2656 	if (dev->reg_state == NETREG_REGISTERED ||
2657 	    dev->reg_state == NETREG_UNREGISTERING) {
2658 		ASSERT_RTNL();
2659 
2660 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2661 						  txq);
2662 		if (rc)
2663 			return rc;
2664 
2665 		if (dev->num_tc)
2666 			netif_setup_tc(dev, txq);
2667 
2668 		dev->real_num_tx_queues = txq;
2669 
2670 		if (disabling) {
2671 			synchronize_net();
2672 			qdisc_reset_all_tx_gt(dev, txq);
2673 #ifdef CONFIG_XPS
2674 			netif_reset_xps_queues_gt(dev, txq);
2675 #endif
2676 		}
2677 	} else {
2678 		dev->real_num_tx_queues = txq;
2679 	}
2680 
2681 	return 0;
2682 }
2683 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2684 
2685 #ifdef CONFIG_SYSFS
2686 /**
2687  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2688  *	@dev: Network device
2689  *	@rxq: Actual number of RX queues
2690  *
2691  *	This must be called either with the rtnl_lock held or before
2692  *	registration of the net device.  Returns 0 on success, or a
2693  *	negative error code.  If called before registration, it always
2694  *	succeeds.
2695  */
2696 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2697 {
2698 	int rc;
2699 
2700 	if (rxq < 1 || rxq > dev->num_rx_queues)
2701 		return -EINVAL;
2702 
2703 	if (dev->reg_state == NETREG_REGISTERED) {
2704 		ASSERT_RTNL();
2705 
2706 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2707 						  rxq);
2708 		if (rc)
2709 			return rc;
2710 	}
2711 
2712 	dev->real_num_rx_queues = rxq;
2713 	return 0;
2714 }
2715 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2716 #endif
2717 
2718 /**
2719  * netif_get_num_default_rss_queues - default number of RSS queues
2720  *
2721  * This routine should set an upper limit on the number of RSS queues
2722  * used by default by multiqueue devices.
2723  */
2724 int netif_get_num_default_rss_queues(void)
2725 {
2726 	return is_kdump_kernel() ?
2727 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2728 }
2729 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2730 
2731 static void __netif_reschedule(struct Qdisc *q)
2732 {
2733 	struct softnet_data *sd;
2734 	unsigned long flags;
2735 
2736 	local_irq_save(flags);
2737 	sd = this_cpu_ptr(&softnet_data);
2738 	q->next_sched = NULL;
2739 	*sd->output_queue_tailp = q;
2740 	sd->output_queue_tailp = &q->next_sched;
2741 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2742 	local_irq_restore(flags);
2743 }
2744 
2745 void __netif_schedule(struct Qdisc *q)
2746 {
2747 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2748 		__netif_reschedule(q);
2749 }
2750 EXPORT_SYMBOL(__netif_schedule);
2751 
2752 struct dev_kfree_skb_cb {
2753 	enum skb_free_reason reason;
2754 };
2755 
2756 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2757 {
2758 	return (struct dev_kfree_skb_cb *)skb->cb;
2759 }
2760 
2761 void netif_schedule_queue(struct netdev_queue *txq)
2762 {
2763 	rcu_read_lock();
2764 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2765 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2766 
2767 		__netif_schedule(q);
2768 	}
2769 	rcu_read_unlock();
2770 }
2771 EXPORT_SYMBOL(netif_schedule_queue);
2772 
2773 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2774 {
2775 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2776 		struct Qdisc *q;
2777 
2778 		rcu_read_lock();
2779 		q = rcu_dereference(dev_queue->qdisc);
2780 		__netif_schedule(q);
2781 		rcu_read_unlock();
2782 	}
2783 }
2784 EXPORT_SYMBOL(netif_tx_wake_queue);
2785 
2786 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2787 {
2788 	unsigned long flags;
2789 
2790 	if (unlikely(!skb))
2791 		return;
2792 
2793 	if (likely(refcount_read(&skb->users) == 1)) {
2794 		smp_rmb();
2795 		refcount_set(&skb->users, 0);
2796 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2797 		return;
2798 	}
2799 	get_kfree_skb_cb(skb)->reason = reason;
2800 	local_irq_save(flags);
2801 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2802 	__this_cpu_write(softnet_data.completion_queue, skb);
2803 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2804 	local_irq_restore(flags);
2805 }
2806 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2807 
2808 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2809 {
2810 	if (in_irq() || irqs_disabled())
2811 		__dev_kfree_skb_irq(skb, reason);
2812 	else
2813 		dev_kfree_skb(skb);
2814 }
2815 EXPORT_SYMBOL(__dev_kfree_skb_any);
2816 
2817 
2818 /**
2819  * netif_device_detach - mark device as removed
2820  * @dev: network device
2821  *
2822  * Mark device as removed from system and therefore no longer available.
2823  */
2824 void netif_device_detach(struct net_device *dev)
2825 {
2826 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2827 	    netif_running(dev)) {
2828 		netif_tx_stop_all_queues(dev);
2829 	}
2830 }
2831 EXPORT_SYMBOL(netif_device_detach);
2832 
2833 /**
2834  * netif_device_attach - mark device as attached
2835  * @dev: network device
2836  *
2837  * Mark device as attached from system and restart if needed.
2838  */
2839 void netif_device_attach(struct net_device *dev)
2840 {
2841 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2842 	    netif_running(dev)) {
2843 		netif_tx_wake_all_queues(dev);
2844 		__netdev_watchdog_up(dev);
2845 	}
2846 }
2847 EXPORT_SYMBOL(netif_device_attach);
2848 
2849 /*
2850  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2851  * to be used as a distribution range.
2852  */
2853 static u16 skb_tx_hash(const struct net_device *dev,
2854 		       const struct net_device *sb_dev,
2855 		       struct sk_buff *skb)
2856 {
2857 	u32 hash;
2858 	u16 qoffset = 0;
2859 	u16 qcount = dev->real_num_tx_queues;
2860 
2861 	if (dev->num_tc) {
2862 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2863 
2864 		qoffset = sb_dev->tc_to_txq[tc].offset;
2865 		qcount = sb_dev->tc_to_txq[tc].count;
2866 	}
2867 
2868 	if (skb_rx_queue_recorded(skb)) {
2869 		hash = skb_get_rx_queue(skb);
2870 		while (unlikely(hash >= qcount))
2871 			hash -= qcount;
2872 		return hash + qoffset;
2873 	}
2874 
2875 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2876 }
2877 
2878 static void skb_warn_bad_offload(const struct sk_buff *skb)
2879 {
2880 	static const netdev_features_t null_features;
2881 	struct net_device *dev = skb->dev;
2882 	const char *name = "";
2883 
2884 	if (!net_ratelimit())
2885 		return;
2886 
2887 	if (dev) {
2888 		if (dev->dev.parent)
2889 			name = dev_driver_string(dev->dev.parent);
2890 		else
2891 			name = netdev_name(dev);
2892 	}
2893 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2894 	     "gso_type=%d ip_summed=%d\n",
2895 	     name, dev ? &dev->features : &null_features,
2896 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2897 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2898 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2899 }
2900 
2901 /*
2902  * Invalidate hardware checksum when packet is to be mangled, and
2903  * complete checksum manually on outgoing path.
2904  */
2905 int skb_checksum_help(struct sk_buff *skb)
2906 {
2907 	__wsum csum;
2908 	int ret = 0, offset;
2909 
2910 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2911 		goto out_set_summed;
2912 
2913 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2914 		skb_warn_bad_offload(skb);
2915 		return -EINVAL;
2916 	}
2917 
2918 	/* Before computing a checksum, we should make sure no frag could
2919 	 * be modified by an external entity : checksum could be wrong.
2920 	 */
2921 	if (skb_has_shared_frag(skb)) {
2922 		ret = __skb_linearize(skb);
2923 		if (ret)
2924 			goto out;
2925 	}
2926 
2927 	offset = skb_checksum_start_offset(skb);
2928 	BUG_ON(offset >= skb_headlen(skb));
2929 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2930 
2931 	offset += skb->csum_offset;
2932 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2933 
2934 	if (skb_cloned(skb) &&
2935 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2936 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2937 		if (ret)
2938 			goto out;
2939 	}
2940 
2941 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2942 out_set_summed:
2943 	skb->ip_summed = CHECKSUM_NONE;
2944 out:
2945 	return ret;
2946 }
2947 EXPORT_SYMBOL(skb_checksum_help);
2948 
2949 int skb_crc32c_csum_help(struct sk_buff *skb)
2950 {
2951 	__le32 crc32c_csum;
2952 	int ret = 0, offset, start;
2953 
2954 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2955 		goto out;
2956 
2957 	if (unlikely(skb_is_gso(skb)))
2958 		goto out;
2959 
2960 	/* Before computing a checksum, we should make sure no frag could
2961 	 * be modified by an external entity : checksum could be wrong.
2962 	 */
2963 	if (unlikely(skb_has_shared_frag(skb))) {
2964 		ret = __skb_linearize(skb);
2965 		if (ret)
2966 			goto out;
2967 	}
2968 	start = skb_checksum_start_offset(skb);
2969 	offset = start + offsetof(struct sctphdr, checksum);
2970 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2971 		ret = -EINVAL;
2972 		goto out;
2973 	}
2974 	if (skb_cloned(skb) &&
2975 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2976 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2977 		if (ret)
2978 			goto out;
2979 	}
2980 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2981 						  skb->len - start, ~(__u32)0,
2982 						  crc32c_csum_stub));
2983 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2984 	skb->ip_summed = CHECKSUM_NONE;
2985 	skb->csum_not_inet = 0;
2986 out:
2987 	return ret;
2988 }
2989 
2990 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2991 {
2992 	__be16 type = skb->protocol;
2993 
2994 	/* Tunnel gso handlers can set protocol to ethernet. */
2995 	if (type == htons(ETH_P_TEB)) {
2996 		struct ethhdr *eth;
2997 
2998 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2999 			return 0;
3000 
3001 		eth = (struct ethhdr *)skb->data;
3002 		type = eth->h_proto;
3003 	}
3004 
3005 	return __vlan_get_protocol(skb, type, depth);
3006 }
3007 
3008 /**
3009  *	skb_mac_gso_segment - mac layer segmentation handler.
3010  *	@skb: buffer to segment
3011  *	@features: features for the output path (see dev->features)
3012  */
3013 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3014 				    netdev_features_t features)
3015 {
3016 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3017 	struct packet_offload *ptype;
3018 	int vlan_depth = skb->mac_len;
3019 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3020 
3021 	if (unlikely(!type))
3022 		return ERR_PTR(-EINVAL);
3023 
3024 	__skb_pull(skb, vlan_depth);
3025 
3026 	rcu_read_lock();
3027 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3028 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3029 			segs = ptype->callbacks.gso_segment(skb, features);
3030 			break;
3031 		}
3032 	}
3033 	rcu_read_unlock();
3034 
3035 	__skb_push(skb, skb->data - skb_mac_header(skb));
3036 
3037 	return segs;
3038 }
3039 EXPORT_SYMBOL(skb_mac_gso_segment);
3040 
3041 
3042 /* openvswitch calls this on rx path, so we need a different check.
3043  */
3044 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3045 {
3046 	if (tx_path)
3047 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3048 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3049 
3050 	return skb->ip_summed == CHECKSUM_NONE;
3051 }
3052 
3053 /**
3054  *	__skb_gso_segment - Perform segmentation on skb.
3055  *	@skb: buffer to segment
3056  *	@features: features for the output path (see dev->features)
3057  *	@tx_path: whether it is called in TX path
3058  *
3059  *	This function segments the given skb and returns a list of segments.
3060  *
3061  *	It may return NULL if the skb requires no segmentation.  This is
3062  *	only possible when GSO is used for verifying header integrity.
3063  *
3064  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3065  */
3066 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3067 				  netdev_features_t features, bool tx_path)
3068 {
3069 	struct sk_buff *segs;
3070 
3071 	if (unlikely(skb_needs_check(skb, tx_path))) {
3072 		int err;
3073 
3074 		/* We're going to init ->check field in TCP or UDP header */
3075 		err = skb_cow_head(skb, 0);
3076 		if (err < 0)
3077 			return ERR_PTR(err);
3078 	}
3079 
3080 	/* Only report GSO partial support if it will enable us to
3081 	 * support segmentation on this frame without needing additional
3082 	 * work.
3083 	 */
3084 	if (features & NETIF_F_GSO_PARTIAL) {
3085 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3086 		struct net_device *dev = skb->dev;
3087 
3088 		partial_features |= dev->features & dev->gso_partial_features;
3089 		if (!skb_gso_ok(skb, features | partial_features))
3090 			features &= ~NETIF_F_GSO_PARTIAL;
3091 	}
3092 
3093 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3094 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3095 
3096 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3097 	SKB_GSO_CB(skb)->encap_level = 0;
3098 
3099 	skb_reset_mac_header(skb);
3100 	skb_reset_mac_len(skb);
3101 
3102 	segs = skb_mac_gso_segment(skb, features);
3103 
3104 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3105 		skb_warn_bad_offload(skb);
3106 
3107 	return segs;
3108 }
3109 EXPORT_SYMBOL(__skb_gso_segment);
3110 
3111 /* Take action when hardware reception checksum errors are detected. */
3112 #ifdef CONFIG_BUG
3113 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3114 {
3115 	if (net_ratelimit()) {
3116 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3117 		if (dev)
3118 			pr_err("dev features: %pNF\n", &dev->features);
3119 		pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n",
3120 		       skb->len, skb->data_len, skb->pkt_type,
3121 		       skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type,
3122 		       skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum,
3123 		       skb->csum_complete_sw, skb->csum_valid, skb->csum_level);
3124 		dump_stack();
3125 	}
3126 }
3127 EXPORT_SYMBOL(netdev_rx_csum_fault);
3128 #endif
3129 
3130 /* XXX: check that highmem exists at all on the given machine. */
3131 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3132 {
3133 #ifdef CONFIG_HIGHMEM
3134 	int i;
3135 
3136 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3137 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3138 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3139 
3140 			if (PageHighMem(skb_frag_page(frag)))
3141 				return 1;
3142 		}
3143 	}
3144 #endif
3145 	return 0;
3146 }
3147 
3148 /* If MPLS offload request, verify we are testing hardware MPLS features
3149  * instead of standard features for the netdev.
3150  */
3151 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3152 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3153 					   netdev_features_t features,
3154 					   __be16 type)
3155 {
3156 	if (eth_p_mpls(type))
3157 		features &= skb->dev->mpls_features;
3158 
3159 	return features;
3160 }
3161 #else
3162 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3163 					   netdev_features_t features,
3164 					   __be16 type)
3165 {
3166 	return features;
3167 }
3168 #endif
3169 
3170 static netdev_features_t harmonize_features(struct sk_buff *skb,
3171 	netdev_features_t features)
3172 {
3173 	int tmp;
3174 	__be16 type;
3175 
3176 	type = skb_network_protocol(skb, &tmp);
3177 	features = net_mpls_features(skb, features, type);
3178 
3179 	if (skb->ip_summed != CHECKSUM_NONE &&
3180 	    !can_checksum_protocol(features, type)) {
3181 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3182 	}
3183 	if (illegal_highdma(skb->dev, skb))
3184 		features &= ~NETIF_F_SG;
3185 
3186 	return features;
3187 }
3188 
3189 netdev_features_t passthru_features_check(struct sk_buff *skb,
3190 					  struct net_device *dev,
3191 					  netdev_features_t features)
3192 {
3193 	return features;
3194 }
3195 EXPORT_SYMBOL(passthru_features_check);
3196 
3197 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3198 					     struct net_device *dev,
3199 					     netdev_features_t features)
3200 {
3201 	return vlan_features_check(skb, features);
3202 }
3203 
3204 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3205 					    struct net_device *dev,
3206 					    netdev_features_t features)
3207 {
3208 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3209 
3210 	if (gso_segs > dev->gso_max_segs)
3211 		return features & ~NETIF_F_GSO_MASK;
3212 
3213 	/* Support for GSO partial features requires software
3214 	 * intervention before we can actually process the packets
3215 	 * so we need to strip support for any partial features now
3216 	 * and we can pull them back in after we have partially
3217 	 * segmented the frame.
3218 	 */
3219 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3220 		features &= ~dev->gso_partial_features;
3221 
3222 	/* Make sure to clear the IPv4 ID mangling feature if the
3223 	 * IPv4 header has the potential to be fragmented.
3224 	 */
3225 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3226 		struct iphdr *iph = skb->encapsulation ?
3227 				    inner_ip_hdr(skb) : ip_hdr(skb);
3228 
3229 		if (!(iph->frag_off & htons(IP_DF)))
3230 			features &= ~NETIF_F_TSO_MANGLEID;
3231 	}
3232 
3233 	return features;
3234 }
3235 
3236 netdev_features_t netif_skb_features(struct sk_buff *skb)
3237 {
3238 	struct net_device *dev = skb->dev;
3239 	netdev_features_t features = dev->features;
3240 
3241 	if (skb_is_gso(skb))
3242 		features = gso_features_check(skb, dev, features);
3243 
3244 	/* If encapsulation offload request, verify we are testing
3245 	 * hardware encapsulation features instead of standard
3246 	 * features for the netdev
3247 	 */
3248 	if (skb->encapsulation)
3249 		features &= dev->hw_enc_features;
3250 
3251 	if (skb_vlan_tagged(skb))
3252 		features = netdev_intersect_features(features,
3253 						     dev->vlan_features |
3254 						     NETIF_F_HW_VLAN_CTAG_TX |
3255 						     NETIF_F_HW_VLAN_STAG_TX);
3256 
3257 	if (dev->netdev_ops->ndo_features_check)
3258 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3259 								features);
3260 	else
3261 		features &= dflt_features_check(skb, dev, features);
3262 
3263 	return harmonize_features(skb, features);
3264 }
3265 EXPORT_SYMBOL(netif_skb_features);
3266 
3267 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3268 		    struct netdev_queue *txq, bool more)
3269 {
3270 	unsigned int len;
3271 	int rc;
3272 
3273 	if (dev_nit_active(dev))
3274 		dev_queue_xmit_nit(skb, dev);
3275 
3276 	len = skb->len;
3277 	trace_net_dev_start_xmit(skb, dev);
3278 	rc = netdev_start_xmit(skb, dev, txq, more);
3279 	trace_net_dev_xmit(skb, rc, dev, len);
3280 
3281 	return rc;
3282 }
3283 
3284 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3285 				    struct netdev_queue *txq, int *ret)
3286 {
3287 	struct sk_buff *skb = first;
3288 	int rc = NETDEV_TX_OK;
3289 
3290 	while (skb) {
3291 		struct sk_buff *next = skb->next;
3292 
3293 		skb_mark_not_on_list(skb);
3294 		rc = xmit_one(skb, dev, txq, next != NULL);
3295 		if (unlikely(!dev_xmit_complete(rc))) {
3296 			skb->next = next;
3297 			goto out;
3298 		}
3299 
3300 		skb = next;
3301 		if (netif_tx_queue_stopped(txq) && skb) {
3302 			rc = NETDEV_TX_BUSY;
3303 			break;
3304 		}
3305 	}
3306 
3307 out:
3308 	*ret = rc;
3309 	return skb;
3310 }
3311 
3312 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3313 					  netdev_features_t features)
3314 {
3315 	if (skb_vlan_tag_present(skb) &&
3316 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3317 		skb = __vlan_hwaccel_push_inside(skb);
3318 	return skb;
3319 }
3320 
3321 int skb_csum_hwoffload_help(struct sk_buff *skb,
3322 			    const netdev_features_t features)
3323 {
3324 	if (unlikely(skb->csum_not_inet))
3325 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3326 			skb_crc32c_csum_help(skb);
3327 
3328 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3329 }
3330 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3331 
3332 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3333 {
3334 	netdev_features_t features;
3335 
3336 	features = netif_skb_features(skb);
3337 	skb = validate_xmit_vlan(skb, features);
3338 	if (unlikely(!skb))
3339 		goto out_null;
3340 
3341 	skb = sk_validate_xmit_skb(skb, dev);
3342 	if (unlikely(!skb))
3343 		goto out_null;
3344 
3345 	if (netif_needs_gso(skb, features)) {
3346 		struct sk_buff *segs;
3347 
3348 		segs = skb_gso_segment(skb, features);
3349 		if (IS_ERR(segs)) {
3350 			goto out_kfree_skb;
3351 		} else if (segs) {
3352 			consume_skb(skb);
3353 			skb = segs;
3354 		}
3355 	} else {
3356 		if (skb_needs_linearize(skb, features) &&
3357 		    __skb_linearize(skb))
3358 			goto out_kfree_skb;
3359 
3360 		/* If packet is not checksummed and device does not
3361 		 * support checksumming for this protocol, complete
3362 		 * checksumming here.
3363 		 */
3364 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3365 			if (skb->encapsulation)
3366 				skb_set_inner_transport_header(skb,
3367 							       skb_checksum_start_offset(skb));
3368 			else
3369 				skb_set_transport_header(skb,
3370 							 skb_checksum_start_offset(skb));
3371 			if (skb_csum_hwoffload_help(skb, features))
3372 				goto out_kfree_skb;
3373 		}
3374 	}
3375 
3376 	skb = validate_xmit_xfrm(skb, features, again);
3377 
3378 	return skb;
3379 
3380 out_kfree_skb:
3381 	kfree_skb(skb);
3382 out_null:
3383 	atomic_long_inc(&dev->tx_dropped);
3384 	return NULL;
3385 }
3386 
3387 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3388 {
3389 	struct sk_buff *next, *head = NULL, *tail;
3390 
3391 	for (; skb != NULL; skb = next) {
3392 		next = skb->next;
3393 		skb_mark_not_on_list(skb);
3394 
3395 		/* in case skb wont be segmented, point to itself */
3396 		skb->prev = skb;
3397 
3398 		skb = validate_xmit_skb(skb, dev, again);
3399 		if (!skb)
3400 			continue;
3401 
3402 		if (!head)
3403 			head = skb;
3404 		else
3405 			tail->next = skb;
3406 		/* If skb was segmented, skb->prev points to
3407 		 * the last segment. If not, it still contains skb.
3408 		 */
3409 		tail = skb->prev;
3410 	}
3411 	return head;
3412 }
3413 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3414 
3415 static void qdisc_pkt_len_init(struct sk_buff *skb)
3416 {
3417 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3418 
3419 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3420 
3421 	/* To get more precise estimation of bytes sent on wire,
3422 	 * we add to pkt_len the headers size of all segments
3423 	 */
3424 	if (shinfo->gso_size)  {
3425 		unsigned int hdr_len;
3426 		u16 gso_segs = shinfo->gso_segs;
3427 
3428 		/* mac layer + network layer */
3429 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3430 
3431 		/* + transport layer */
3432 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3433 			const struct tcphdr *th;
3434 			struct tcphdr _tcphdr;
3435 
3436 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3437 						sizeof(_tcphdr), &_tcphdr);
3438 			if (likely(th))
3439 				hdr_len += __tcp_hdrlen(th);
3440 		} else {
3441 			struct udphdr _udphdr;
3442 
3443 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3444 					       sizeof(_udphdr), &_udphdr))
3445 				hdr_len += sizeof(struct udphdr);
3446 		}
3447 
3448 		if (shinfo->gso_type & SKB_GSO_DODGY)
3449 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3450 						shinfo->gso_size);
3451 
3452 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3453 	}
3454 }
3455 
3456 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3457 				 struct net_device *dev,
3458 				 struct netdev_queue *txq)
3459 {
3460 	spinlock_t *root_lock = qdisc_lock(q);
3461 	struct sk_buff *to_free = NULL;
3462 	bool contended;
3463 	int rc;
3464 
3465 	qdisc_calculate_pkt_len(skb, q);
3466 
3467 	if (q->flags & TCQ_F_NOLOCK) {
3468 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3469 			__qdisc_drop(skb, &to_free);
3470 			rc = NET_XMIT_DROP;
3471 		} else {
3472 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3473 			qdisc_run(q);
3474 		}
3475 
3476 		if (unlikely(to_free))
3477 			kfree_skb_list(to_free);
3478 		return rc;
3479 	}
3480 
3481 	/*
3482 	 * Heuristic to force contended enqueues to serialize on a
3483 	 * separate lock before trying to get qdisc main lock.
3484 	 * This permits qdisc->running owner to get the lock more
3485 	 * often and dequeue packets faster.
3486 	 */
3487 	contended = qdisc_is_running(q);
3488 	if (unlikely(contended))
3489 		spin_lock(&q->busylock);
3490 
3491 	spin_lock(root_lock);
3492 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3493 		__qdisc_drop(skb, &to_free);
3494 		rc = NET_XMIT_DROP;
3495 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3496 		   qdisc_run_begin(q)) {
3497 		/*
3498 		 * This is a work-conserving queue; there are no old skbs
3499 		 * waiting to be sent out; and the qdisc is not running -
3500 		 * xmit the skb directly.
3501 		 */
3502 
3503 		qdisc_bstats_update(q, skb);
3504 
3505 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3506 			if (unlikely(contended)) {
3507 				spin_unlock(&q->busylock);
3508 				contended = false;
3509 			}
3510 			__qdisc_run(q);
3511 		}
3512 
3513 		qdisc_run_end(q);
3514 		rc = NET_XMIT_SUCCESS;
3515 	} else {
3516 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3517 		if (qdisc_run_begin(q)) {
3518 			if (unlikely(contended)) {
3519 				spin_unlock(&q->busylock);
3520 				contended = false;
3521 			}
3522 			__qdisc_run(q);
3523 			qdisc_run_end(q);
3524 		}
3525 	}
3526 	spin_unlock(root_lock);
3527 	if (unlikely(to_free))
3528 		kfree_skb_list(to_free);
3529 	if (unlikely(contended))
3530 		spin_unlock(&q->busylock);
3531 	return rc;
3532 }
3533 
3534 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3535 static void skb_update_prio(struct sk_buff *skb)
3536 {
3537 	const struct netprio_map *map;
3538 	const struct sock *sk;
3539 	unsigned int prioidx;
3540 
3541 	if (skb->priority)
3542 		return;
3543 	map = rcu_dereference_bh(skb->dev->priomap);
3544 	if (!map)
3545 		return;
3546 	sk = skb_to_full_sk(skb);
3547 	if (!sk)
3548 		return;
3549 
3550 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3551 
3552 	if (prioidx < map->priomap_len)
3553 		skb->priority = map->priomap[prioidx];
3554 }
3555 #else
3556 #define skb_update_prio(skb)
3557 #endif
3558 
3559 DEFINE_PER_CPU(int, xmit_recursion);
3560 EXPORT_SYMBOL(xmit_recursion);
3561 
3562 /**
3563  *	dev_loopback_xmit - loop back @skb
3564  *	@net: network namespace this loopback is happening in
3565  *	@sk:  sk needed to be a netfilter okfn
3566  *	@skb: buffer to transmit
3567  */
3568 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3569 {
3570 	skb_reset_mac_header(skb);
3571 	__skb_pull(skb, skb_network_offset(skb));
3572 	skb->pkt_type = PACKET_LOOPBACK;
3573 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3574 	WARN_ON(!skb_dst(skb));
3575 	skb_dst_force(skb);
3576 	netif_rx_ni(skb);
3577 	return 0;
3578 }
3579 EXPORT_SYMBOL(dev_loopback_xmit);
3580 
3581 #ifdef CONFIG_NET_EGRESS
3582 static struct sk_buff *
3583 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3584 {
3585 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3586 	struct tcf_result cl_res;
3587 
3588 	if (!miniq)
3589 		return skb;
3590 
3591 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3592 	mini_qdisc_bstats_cpu_update(miniq, skb);
3593 
3594 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3595 	case TC_ACT_OK:
3596 	case TC_ACT_RECLASSIFY:
3597 		skb->tc_index = TC_H_MIN(cl_res.classid);
3598 		break;
3599 	case TC_ACT_SHOT:
3600 		mini_qdisc_qstats_cpu_drop(miniq);
3601 		*ret = NET_XMIT_DROP;
3602 		kfree_skb(skb);
3603 		return NULL;
3604 	case TC_ACT_STOLEN:
3605 	case TC_ACT_QUEUED:
3606 	case TC_ACT_TRAP:
3607 		*ret = NET_XMIT_SUCCESS;
3608 		consume_skb(skb);
3609 		return NULL;
3610 	case TC_ACT_REDIRECT:
3611 		/* No need to push/pop skb's mac_header here on egress! */
3612 		skb_do_redirect(skb);
3613 		*ret = NET_XMIT_SUCCESS;
3614 		return NULL;
3615 	default:
3616 		break;
3617 	}
3618 
3619 	return skb;
3620 }
3621 #endif /* CONFIG_NET_EGRESS */
3622 
3623 #ifdef CONFIG_XPS
3624 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3625 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3626 {
3627 	struct xps_map *map;
3628 	int queue_index = -1;
3629 
3630 	if (dev->num_tc) {
3631 		tci *= dev->num_tc;
3632 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3633 	}
3634 
3635 	map = rcu_dereference(dev_maps->attr_map[tci]);
3636 	if (map) {
3637 		if (map->len == 1)
3638 			queue_index = map->queues[0];
3639 		else
3640 			queue_index = map->queues[reciprocal_scale(
3641 						skb_get_hash(skb), map->len)];
3642 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3643 			queue_index = -1;
3644 	}
3645 	return queue_index;
3646 }
3647 #endif
3648 
3649 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3650 			 struct sk_buff *skb)
3651 {
3652 #ifdef CONFIG_XPS
3653 	struct xps_dev_maps *dev_maps;
3654 	struct sock *sk = skb->sk;
3655 	int queue_index = -1;
3656 
3657 	if (!static_key_false(&xps_needed))
3658 		return -1;
3659 
3660 	rcu_read_lock();
3661 	if (!static_key_false(&xps_rxqs_needed))
3662 		goto get_cpus_map;
3663 
3664 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3665 	if (dev_maps) {
3666 		int tci = sk_rx_queue_get(sk);
3667 
3668 		if (tci >= 0 && tci < dev->num_rx_queues)
3669 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3670 							  tci);
3671 	}
3672 
3673 get_cpus_map:
3674 	if (queue_index < 0) {
3675 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3676 		if (dev_maps) {
3677 			unsigned int tci = skb->sender_cpu - 1;
3678 
3679 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3680 							  tci);
3681 		}
3682 	}
3683 	rcu_read_unlock();
3684 
3685 	return queue_index;
3686 #else
3687 	return -1;
3688 #endif
3689 }
3690 
3691 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3692 		     struct net_device *sb_dev,
3693 		     select_queue_fallback_t fallback)
3694 {
3695 	return 0;
3696 }
3697 EXPORT_SYMBOL(dev_pick_tx_zero);
3698 
3699 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3700 		       struct net_device *sb_dev,
3701 		       select_queue_fallback_t fallback)
3702 {
3703 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3704 }
3705 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3706 
3707 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3708 			    struct net_device *sb_dev)
3709 {
3710 	struct sock *sk = skb->sk;
3711 	int queue_index = sk_tx_queue_get(sk);
3712 
3713 	sb_dev = sb_dev ? : dev;
3714 
3715 	if (queue_index < 0 || skb->ooo_okay ||
3716 	    queue_index >= dev->real_num_tx_queues) {
3717 		int new_index = get_xps_queue(dev, sb_dev, skb);
3718 
3719 		if (new_index < 0)
3720 			new_index = skb_tx_hash(dev, sb_dev, skb);
3721 
3722 		if (queue_index != new_index && sk &&
3723 		    sk_fullsock(sk) &&
3724 		    rcu_access_pointer(sk->sk_dst_cache))
3725 			sk_tx_queue_set(sk, new_index);
3726 
3727 		queue_index = new_index;
3728 	}
3729 
3730 	return queue_index;
3731 }
3732 
3733 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3734 				    struct sk_buff *skb,
3735 				    struct net_device *sb_dev)
3736 {
3737 	int queue_index = 0;
3738 
3739 #ifdef CONFIG_XPS
3740 	u32 sender_cpu = skb->sender_cpu - 1;
3741 
3742 	if (sender_cpu >= (u32)NR_CPUS)
3743 		skb->sender_cpu = raw_smp_processor_id() + 1;
3744 #endif
3745 
3746 	if (dev->real_num_tx_queues != 1) {
3747 		const struct net_device_ops *ops = dev->netdev_ops;
3748 
3749 		if (ops->ndo_select_queue)
3750 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3751 							    __netdev_pick_tx);
3752 		else
3753 			queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3754 
3755 		queue_index = netdev_cap_txqueue(dev, queue_index);
3756 	}
3757 
3758 	skb_set_queue_mapping(skb, queue_index);
3759 	return netdev_get_tx_queue(dev, queue_index);
3760 }
3761 
3762 /**
3763  *	__dev_queue_xmit - transmit a buffer
3764  *	@skb: buffer to transmit
3765  *	@sb_dev: suboordinate device used for L2 forwarding offload
3766  *
3767  *	Queue a buffer for transmission to a network device. The caller must
3768  *	have set the device and priority and built the buffer before calling
3769  *	this function. The function can be called from an interrupt.
3770  *
3771  *	A negative errno code is returned on a failure. A success does not
3772  *	guarantee the frame will be transmitted as it may be dropped due
3773  *	to congestion or traffic shaping.
3774  *
3775  * -----------------------------------------------------------------------------------
3776  *      I notice this method can also return errors from the queue disciplines,
3777  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3778  *      be positive.
3779  *
3780  *      Regardless of the return value, the skb is consumed, so it is currently
3781  *      difficult to retry a send to this method.  (You can bump the ref count
3782  *      before sending to hold a reference for retry if you are careful.)
3783  *
3784  *      When calling this method, interrupts MUST be enabled.  This is because
3785  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3786  *          --BLG
3787  */
3788 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3789 {
3790 	struct net_device *dev = skb->dev;
3791 	struct netdev_queue *txq;
3792 	struct Qdisc *q;
3793 	int rc = -ENOMEM;
3794 	bool again = false;
3795 
3796 	skb_reset_mac_header(skb);
3797 
3798 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3799 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3800 
3801 	/* Disable soft irqs for various locks below. Also
3802 	 * stops preemption for RCU.
3803 	 */
3804 	rcu_read_lock_bh();
3805 
3806 	skb_update_prio(skb);
3807 
3808 	qdisc_pkt_len_init(skb);
3809 #ifdef CONFIG_NET_CLS_ACT
3810 	skb->tc_at_ingress = 0;
3811 # ifdef CONFIG_NET_EGRESS
3812 	if (static_branch_unlikely(&egress_needed_key)) {
3813 		skb = sch_handle_egress(skb, &rc, dev);
3814 		if (!skb)
3815 			goto out;
3816 	}
3817 # endif
3818 #endif
3819 	/* If device/qdisc don't need skb->dst, release it right now while
3820 	 * its hot in this cpu cache.
3821 	 */
3822 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3823 		skb_dst_drop(skb);
3824 	else
3825 		skb_dst_force(skb);
3826 
3827 	txq = netdev_pick_tx(dev, skb, sb_dev);
3828 	q = rcu_dereference_bh(txq->qdisc);
3829 
3830 	trace_net_dev_queue(skb);
3831 	if (q->enqueue) {
3832 		rc = __dev_xmit_skb(skb, q, dev, txq);
3833 		goto out;
3834 	}
3835 
3836 	/* The device has no queue. Common case for software devices:
3837 	 * loopback, all the sorts of tunnels...
3838 
3839 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3840 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3841 	 * counters.)
3842 	 * However, it is possible, that they rely on protection
3843 	 * made by us here.
3844 
3845 	 * Check this and shot the lock. It is not prone from deadlocks.
3846 	 *Either shot noqueue qdisc, it is even simpler 8)
3847 	 */
3848 	if (dev->flags & IFF_UP) {
3849 		int cpu = smp_processor_id(); /* ok because BHs are off */
3850 
3851 		if (txq->xmit_lock_owner != cpu) {
3852 			if (unlikely(__this_cpu_read(xmit_recursion) >
3853 				     XMIT_RECURSION_LIMIT))
3854 				goto recursion_alert;
3855 
3856 			skb = validate_xmit_skb(skb, dev, &again);
3857 			if (!skb)
3858 				goto out;
3859 
3860 			HARD_TX_LOCK(dev, txq, cpu);
3861 
3862 			if (!netif_xmit_stopped(txq)) {
3863 				__this_cpu_inc(xmit_recursion);
3864 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3865 				__this_cpu_dec(xmit_recursion);
3866 				if (dev_xmit_complete(rc)) {
3867 					HARD_TX_UNLOCK(dev, txq);
3868 					goto out;
3869 				}
3870 			}
3871 			HARD_TX_UNLOCK(dev, txq);
3872 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3873 					     dev->name);
3874 		} else {
3875 			/* Recursion is detected! It is possible,
3876 			 * unfortunately
3877 			 */
3878 recursion_alert:
3879 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3880 					     dev->name);
3881 		}
3882 	}
3883 
3884 	rc = -ENETDOWN;
3885 	rcu_read_unlock_bh();
3886 
3887 	atomic_long_inc(&dev->tx_dropped);
3888 	kfree_skb_list(skb);
3889 	return rc;
3890 out:
3891 	rcu_read_unlock_bh();
3892 	return rc;
3893 }
3894 
3895 int dev_queue_xmit(struct sk_buff *skb)
3896 {
3897 	return __dev_queue_xmit(skb, NULL);
3898 }
3899 EXPORT_SYMBOL(dev_queue_xmit);
3900 
3901 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3902 {
3903 	return __dev_queue_xmit(skb, sb_dev);
3904 }
3905 EXPORT_SYMBOL(dev_queue_xmit_accel);
3906 
3907 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3908 {
3909 	struct net_device *dev = skb->dev;
3910 	struct sk_buff *orig_skb = skb;
3911 	struct netdev_queue *txq;
3912 	int ret = NETDEV_TX_BUSY;
3913 	bool again = false;
3914 
3915 	if (unlikely(!netif_running(dev) ||
3916 		     !netif_carrier_ok(dev)))
3917 		goto drop;
3918 
3919 	skb = validate_xmit_skb_list(skb, dev, &again);
3920 	if (skb != orig_skb)
3921 		goto drop;
3922 
3923 	skb_set_queue_mapping(skb, queue_id);
3924 	txq = skb_get_tx_queue(dev, skb);
3925 
3926 	local_bh_disable();
3927 
3928 	HARD_TX_LOCK(dev, txq, smp_processor_id());
3929 	if (!netif_xmit_frozen_or_drv_stopped(txq))
3930 		ret = netdev_start_xmit(skb, dev, txq, false);
3931 	HARD_TX_UNLOCK(dev, txq);
3932 
3933 	local_bh_enable();
3934 
3935 	if (!dev_xmit_complete(ret))
3936 		kfree_skb(skb);
3937 
3938 	return ret;
3939 drop:
3940 	atomic_long_inc(&dev->tx_dropped);
3941 	kfree_skb_list(skb);
3942 	return NET_XMIT_DROP;
3943 }
3944 EXPORT_SYMBOL(dev_direct_xmit);
3945 
3946 /*************************************************************************
3947  *			Receiver routines
3948  *************************************************************************/
3949 
3950 int netdev_max_backlog __read_mostly = 1000;
3951 EXPORT_SYMBOL(netdev_max_backlog);
3952 
3953 int netdev_tstamp_prequeue __read_mostly = 1;
3954 int netdev_budget __read_mostly = 300;
3955 unsigned int __read_mostly netdev_budget_usecs = 2000;
3956 int weight_p __read_mostly = 64;           /* old backlog weight */
3957 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3958 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3959 int dev_rx_weight __read_mostly = 64;
3960 int dev_tx_weight __read_mostly = 64;
3961 
3962 /* Called with irq disabled */
3963 static inline void ____napi_schedule(struct softnet_data *sd,
3964 				     struct napi_struct *napi)
3965 {
3966 	list_add_tail(&napi->poll_list, &sd->poll_list);
3967 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3968 }
3969 
3970 #ifdef CONFIG_RPS
3971 
3972 /* One global table that all flow-based protocols share. */
3973 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3974 EXPORT_SYMBOL(rps_sock_flow_table);
3975 u32 rps_cpu_mask __read_mostly;
3976 EXPORT_SYMBOL(rps_cpu_mask);
3977 
3978 struct static_key rps_needed __read_mostly;
3979 EXPORT_SYMBOL(rps_needed);
3980 struct static_key rfs_needed __read_mostly;
3981 EXPORT_SYMBOL(rfs_needed);
3982 
3983 static struct rps_dev_flow *
3984 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3985 	    struct rps_dev_flow *rflow, u16 next_cpu)
3986 {
3987 	if (next_cpu < nr_cpu_ids) {
3988 #ifdef CONFIG_RFS_ACCEL
3989 		struct netdev_rx_queue *rxqueue;
3990 		struct rps_dev_flow_table *flow_table;
3991 		struct rps_dev_flow *old_rflow;
3992 		u32 flow_id;
3993 		u16 rxq_index;
3994 		int rc;
3995 
3996 		/* Should we steer this flow to a different hardware queue? */
3997 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3998 		    !(dev->features & NETIF_F_NTUPLE))
3999 			goto out;
4000 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4001 		if (rxq_index == skb_get_rx_queue(skb))
4002 			goto out;
4003 
4004 		rxqueue = dev->_rx + rxq_index;
4005 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4006 		if (!flow_table)
4007 			goto out;
4008 		flow_id = skb_get_hash(skb) & flow_table->mask;
4009 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4010 							rxq_index, flow_id);
4011 		if (rc < 0)
4012 			goto out;
4013 		old_rflow = rflow;
4014 		rflow = &flow_table->flows[flow_id];
4015 		rflow->filter = rc;
4016 		if (old_rflow->filter == rflow->filter)
4017 			old_rflow->filter = RPS_NO_FILTER;
4018 	out:
4019 #endif
4020 		rflow->last_qtail =
4021 			per_cpu(softnet_data, next_cpu).input_queue_head;
4022 	}
4023 
4024 	rflow->cpu = next_cpu;
4025 	return rflow;
4026 }
4027 
4028 /*
4029  * get_rps_cpu is called from netif_receive_skb and returns the target
4030  * CPU from the RPS map of the receiving queue for a given skb.
4031  * rcu_read_lock must be held on entry.
4032  */
4033 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4034 		       struct rps_dev_flow **rflowp)
4035 {
4036 	const struct rps_sock_flow_table *sock_flow_table;
4037 	struct netdev_rx_queue *rxqueue = dev->_rx;
4038 	struct rps_dev_flow_table *flow_table;
4039 	struct rps_map *map;
4040 	int cpu = -1;
4041 	u32 tcpu;
4042 	u32 hash;
4043 
4044 	if (skb_rx_queue_recorded(skb)) {
4045 		u16 index = skb_get_rx_queue(skb);
4046 
4047 		if (unlikely(index >= dev->real_num_rx_queues)) {
4048 			WARN_ONCE(dev->real_num_rx_queues > 1,
4049 				  "%s received packet on queue %u, but number "
4050 				  "of RX queues is %u\n",
4051 				  dev->name, index, dev->real_num_rx_queues);
4052 			goto done;
4053 		}
4054 		rxqueue += index;
4055 	}
4056 
4057 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4058 
4059 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4060 	map = rcu_dereference(rxqueue->rps_map);
4061 	if (!flow_table && !map)
4062 		goto done;
4063 
4064 	skb_reset_network_header(skb);
4065 	hash = skb_get_hash(skb);
4066 	if (!hash)
4067 		goto done;
4068 
4069 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4070 	if (flow_table && sock_flow_table) {
4071 		struct rps_dev_flow *rflow;
4072 		u32 next_cpu;
4073 		u32 ident;
4074 
4075 		/* First check into global flow table if there is a match */
4076 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4077 		if ((ident ^ hash) & ~rps_cpu_mask)
4078 			goto try_rps;
4079 
4080 		next_cpu = ident & rps_cpu_mask;
4081 
4082 		/* OK, now we know there is a match,
4083 		 * we can look at the local (per receive queue) flow table
4084 		 */
4085 		rflow = &flow_table->flows[hash & flow_table->mask];
4086 		tcpu = rflow->cpu;
4087 
4088 		/*
4089 		 * If the desired CPU (where last recvmsg was done) is
4090 		 * different from current CPU (one in the rx-queue flow
4091 		 * table entry), switch if one of the following holds:
4092 		 *   - Current CPU is unset (>= nr_cpu_ids).
4093 		 *   - Current CPU is offline.
4094 		 *   - The current CPU's queue tail has advanced beyond the
4095 		 *     last packet that was enqueued using this table entry.
4096 		 *     This guarantees that all previous packets for the flow
4097 		 *     have been dequeued, thus preserving in order delivery.
4098 		 */
4099 		if (unlikely(tcpu != next_cpu) &&
4100 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4101 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4102 		      rflow->last_qtail)) >= 0)) {
4103 			tcpu = next_cpu;
4104 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4105 		}
4106 
4107 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4108 			*rflowp = rflow;
4109 			cpu = tcpu;
4110 			goto done;
4111 		}
4112 	}
4113 
4114 try_rps:
4115 
4116 	if (map) {
4117 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4118 		if (cpu_online(tcpu)) {
4119 			cpu = tcpu;
4120 			goto done;
4121 		}
4122 	}
4123 
4124 done:
4125 	return cpu;
4126 }
4127 
4128 #ifdef CONFIG_RFS_ACCEL
4129 
4130 /**
4131  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4132  * @dev: Device on which the filter was set
4133  * @rxq_index: RX queue index
4134  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4135  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4136  *
4137  * Drivers that implement ndo_rx_flow_steer() should periodically call
4138  * this function for each installed filter and remove the filters for
4139  * which it returns %true.
4140  */
4141 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4142 			 u32 flow_id, u16 filter_id)
4143 {
4144 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4145 	struct rps_dev_flow_table *flow_table;
4146 	struct rps_dev_flow *rflow;
4147 	bool expire = true;
4148 	unsigned int cpu;
4149 
4150 	rcu_read_lock();
4151 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4152 	if (flow_table && flow_id <= flow_table->mask) {
4153 		rflow = &flow_table->flows[flow_id];
4154 		cpu = READ_ONCE(rflow->cpu);
4155 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4156 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4157 			   rflow->last_qtail) <
4158 		     (int)(10 * flow_table->mask)))
4159 			expire = false;
4160 	}
4161 	rcu_read_unlock();
4162 	return expire;
4163 }
4164 EXPORT_SYMBOL(rps_may_expire_flow);
4165 
4166 #endif /* CONFIG_RFS_ACCEL */
4167 
4168 /* Called from hardirq (IPI) context */
4169 static void rps_trigger_softirq(void *data)
4170 {
4171 	struct softnet_data *sd = data;
4172 
4173 	____napi_schedule(sd, &sd->backlog);
4174 	sd->received_rps++;
4175 }
4176 
4177 #endif /* CONFIG_RPS */
4178 
4179 /*
4180  * Check if this softnet_data structure is another cpu one
4181  * If yes, queue it to our IPI list and return 1
4182  * If no, return 0
4183  */
4184 static int rps_ipi_queued(struct softnet_data *sd)
4185 {
4186 #ifdef CONFIG_RPS
4187 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4188 
4189 	if (sd != mysd) {
4190 		sd->rps_ipi_next = mysd->rps_ipi_list;
4191 		mysd->rps_ipi_list = sd;
4192 
4193 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4194 		return 1;
4195 	}
4196 #endif /* CONFIG_RPS */
4197 	return 0;
4198 }
4199 
4200 #ifdef CONFIG_NET_FLOW_LIMIT
4201 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4202 #endif
4203 
4204 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4205 {
4206 #ifdef CONFIG_NET_FLOW_LIMIT
4207 	struct sd_flow_limit *fl;
4208 	struct softnet_data *sd;
4209 	unsigned int old_flow, new_flow;
4210 
4211 	if (qlen < (netdev_max_backlog >> 1))
4212 		return false;
4213 
4214 	sd = this_cpu_ptr(&softnet_data);
4215 
4216 	rcu_read_lock();
4217 	fl = rcu_dereference(sd->flow_limit);
4218 	if (fl) {
4219 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4220 		old_flow = fl->history[fl->history_head];
4221 		fl->history[fl->history_head] = new_flow;
4222 
4223 		fl->history_head++;
4224 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4225 
4226 		if (likely(fl->buckets[old_flow]))
4227 			fl->buckets[old_flow]--;
4228 
4229 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4230 			fl->count++;
4231 			rcu_read_unlock();
4232 			return true;
4233 		}
4234 	}
4235 	rcu_read_unlock();
4236 #endif
4237 	return false;
4238 }
4239 
4240 /*
4241  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4242  * queue (may be a remote CPU queue).
4243  */
4244 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4245 			      unsigned int *qtail)
4246 {
4247 	struct softnet_data *sd;
4248 	unsigned long flags;
4249 	unsigned int qlen;
4250 
4251 	sd = &per_cpu(softnet_data, cpu);
4252 
4253 	local_irq_save(flags);
4254 
4255 	rps_lock(sd);
4256 	if (!netif_running(skb->dev))
4257 		goto drop;
4258 	qlen = skb_queue_len(&sd->input_pkt_queue);
4259 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4260 		if (qlen) {
4261 enqueue:
4262 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4263 			input_queue_tail_incr_save(sd, qtail);
4264 			rps_unlock(sd);
4265 			local_irq_restore(flags);
4266 			return NET_RX_SUCCESS;
4267 		}
4268 
4269 		/* Schedule NAPI for backlog device
4270 		 * We can use non atomic operation since we own the queue lock
4271 		 */
4272 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4273 			if (!rps_ipi_queued(sd))
4274 				____napi_schedule(sd, &sd->backlog);
4275 		}
4276 		goto enqueue;
4277 	}
4278 
4279 drop:
4280 	sd->dropped++;
4281 	rps_unlock(sd);
4282 
4283 	local_irq_restore(flags);
4284 
4285 	atomic_long_inc(&skb->dev->rx_dropped);
4286 	kfree_skb(skb);
4287 	return NET_RX_DROP;
4288 }
4289 
4290 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4291 {
4292 	struct net_device *dev = skb->dev;
4293 	struct netdev_rx_queue *rxqueue;
4294 
4295 	rxqueue = dev->_rx;
4296 
4297 	if (skb_rx_queue_recorded(skb)) {
4298 		u16 index = skb_get_rx_queue(skb);
4299 
4300 		if (unlikely(index >= dev->real_num_rx_queues)) {
4301 			WARN_ONCE(dev->real_num_rx_queues > 1,
4302 				  "%s received packet on queue %u, but number "
4303 				  "of RX queues is %u\n",
4304 				  dev->name, index, dev->real_num_rx_queues);
4305 
4306 			return rxqueue; /* Return first rxqueue */
4307 		}
4308 		rxqueue += index;
4309 	}
4310 	return rxqueue;
4311 }
4312 
4313 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4314 				     struct xdp_buff *xdp,
4315 				     struct bpf_prog *xdp_prog)
4316 {
4317 	struct netdev_rx_queue *rxqueue;
4318 	void *orig_data, *orig_data_end;
4319 	u32 metalen, act = XDP_DROP;
4320 	__be16 orig_eth_type;
4321 	struct ethhdr *eth;
4322 	bool orig_bcast;
4323 	int hlen, off;
4324 	u32 mac_len;
4325 
4326 	/* Reinjected packets coming from act_mirred or similar should
4327 	 * not get XDP generic processing.
4328 	 */
4329 	if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4330 		return XDP_PASS;
4331 
4332 	/* XDP packets must be linear and must have sufficient headroom
4333 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4334 	 * native XDP provides, thus we need to do it here as well.
4335 	 */
4336 	if (skb_is_nonlinear(skb) ||
4337 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4338 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4339 		int troom = skb->tail + skb->data_len - skb->end;
4340 
4341 		/* In case we have to go down the path and also linearize,
4342 		 * then lets do the pskb_expand_head() work just once here.
4343 		 */
4344 		if (pskb_expand_head(skb,
4345 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4346 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4347 			goto do_drop;
4348 		if (skb_linearize(skb))
4349 			goto do_drop;
4350 	}
4351 
4352 	/* The XDP program wants to see the packet starting at the MAC
4353 	 * header.
4354 	 */
4355 	mac_len = skb->data - skb_mac_header(skb);
4356 	hlen = skb_headlen(skb) + mac_len;
4357 	xdp->data = skb->data - mac_len;
4358 	xdp->data_meta = xdp->data;
4359 	xdp->data_end = xdp->data + hlen;
4360 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4361 	orig_data_end = xdp->data_end;
4362 	orig_data = xdp->data;
4363 	eth = (struct ethhdr *)xdp->data;
4364 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4365 	orig_eth_type = eth->h_proto;
4366 
4367 	rxqueue = netif_get_rxqueue(skb);
4368 	xdp->rxq = &rxqueue->xdp_rxq;
4369 
4370 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4371 
4372 	off = xdp->data - orig_data;
4373 	if (off > 0)
4374 		__skb_pull(skb, off);
4375 	else if (off < 0)
4376 		__skb_push(skb, -off);
4377 	skb->mac_header += off;
4378 
4379 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4380 	 * pckt.
4381 	 */
4382 	off = orig_data_end - xdp->data_end;
4383 	if (off != 0) {
4384 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4385 		skb->len -= off;
4386 
4387 	}
4388 
4389 	/* check if XDP changed eth hdr such SKB needs update */
4390 	eth = (struct ethhdr *)xdp->data;
4391 	if ((orig_eth_type != eth->h_proto) ||
4392 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4393 		__skb_push(skb, ETH_HLEN);
4394 		skb->protocol = eth_type_trans(skb, skb->dev);
4395 	}
4396 
4397 	switch (act) {
4398 	case XDP_REDIRECT:
4399 	case XDP_TX:
4400 		__skb_push(skb, mac_len);
4401 		break;
4402 	case XDP_PASS:
4403 		metalen = xdp->data - xdp->data_meta;
4404 		if (metalen)
4405 			skb_metadata_set(skb, metalen);
4406 		break;
4407 	default:
4408 		bpf_warn_invalid_xdp_action(act);
4409 		/* fall through */
4410 	case XDP_ABORTED:
4411 		trace_xdp_exception(skb->dev, xdp_prog, act);
4412 		/* fall through */
4413 	case XDP_DROP:
4414 	do_drop:
4415 		kfree_skb(skb);
4416 		break;
4417 	}
4418 
4419 	return act;
4420 }
4421 
4422 /* When doing generic XDP we have to bypass the qdisc layer and the
4423  * network taps in order to match in-driver-XDP behavior.
4424  */
4425 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4426 {
4427 	struct net_device *dev = skb->dev;
4428 	struct netdev_queue *txq;
4429 	bool free_skb = true;
4430 	int cpu, rc;
4431 
4432 	txq = netdev_pick_tx(dev, skb, NULL);
4433 	cpu = smp_processor_id();
4434 	HARD_TX_LOCK(dev, txq, cpu);
4435 	if (!netif_xmit_stopped(txq)) {
4436 		rc = netdev_start_xmit(skb, dev, txq, 0);
4437 		if (dev_xmit_complete(rc))
4438 			free_skb = false;
4439 	}
4440 	HARD_TX_UNLOCK(dev, txq);
4441 	if (free_skb) {
4442 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4443 		kfree_skb(skb);
4444 	}
4445 }
4446 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4447 
4448 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4449 
4450 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4451 {
4452 	if (xdp_prog) {
4453 		struct xdp_buff xdp;
4454 		u32 act;
4455 		int err;
4456 
4457 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4458 		if (act != XDP_PASS) {
4459 			switch (act) {
4460 			case XDP_REDIRECT:
4461 				err = xdp_do_generic_redirect(skb->dev, skb,
4462 							      &xdp, xdp_prog);
4463 				if (err)
4464 					goto out_redir;
4465 				break;
4466 			case XDP_TX:
4467 				generic_xdp_tx(skb, xdp_prog);
4468 				break;
4469 			}
4470 			return XDP_DROP;
4471 		}
4472 	}
4473 	return XDP_PASS;
4474 out_redir:
4475 	kfree_skb(skb);
4476 	return XDP_DROP;
4477 }
4478 EXPORT_SYMBOL_GPL(do_xdp_generic);
4479 
4480 static int netif_rx_internal(struct sk_buff *skb)
4481 {
4482 	int ret;
4483 
4484 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4485 
4486 	trace_netif_rx(skb);
4487 
4488 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4489 		int ret;
4490 
4491 		preempt_disable();
4492 		rcu_read_lock();
4493 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4494 		rcu_read_unlock();
4495 		preempt_enable();
4496 
4497 		/* Consider XDP consuming the packet a success from
4498 		 * the netdev point of view we do not want to count
4499 		 * this as an error.
4500 		 */
4501 		if (ret != XDP_PASS)
4502 			return NET_RX_SUCCESS;
4503 	}
4504 
4505 #ifdef CONFIG_RPS
4506 	if (static_key_false(&rps_needed)) {
4507 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4508 		int cpu;
4509 
4510 		preempt_disable();
4511 		rcu_read_lock();
4512 
4513 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4514 		if (cpu < 0)
4515 			cpu = smp_processor_id();
4516 
4517 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4518 
4519 		rcu_read_unlock();
4520 		preempt_enable();
4521 	} else
4522 #endif
4523 	{
4524 		unsigned int qtail;
4525 
4526 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4527 		put_cpu();
4528 	}
4529 	return ret;
4530 }
4531 
4532 /**
4533  *	netif_rx	-	post buffer to the network code
4534  *	@skb: buffer to post
4535  *
4536  *	This function receives a packet from a device driver and queues it for
4537  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4538  *	may be dropped during processing for congestion control or by the
4539  *	protocol layers.
4540  *
4541  *	return values:
4542  *	NET_RX_SUCCESS	(no congestion)
4543  *	NET_RX_DROP     (packet was dropped)
4544  *
4545  */
4546 
4547 int netif_rx(struct sk_buff *skb)
4548 {
4549 	int ret;
4550 
4551 	trace_netif_rx_entry(skb);
4552 
4553 	ret = netif_rx_internal(skb);
4554 	trace_netif_rx_exit(ret);
4555 
4556 	return ret;
4557 }
4558 EXPORT_SYMBOL(netif_rx);
4559 
4560 int netif_rx_ni(struct sk_buff *skb)
4561 {
4562 	int err;
4563 
4564 	trace_netif_rx_ni_entry(skb);
4565 
4566 	preempt_disable();
4567 	err = netif_rx_internal(skb);
4568 	if (local_softirq_pending())
4569 		do_softirq();
4570 	preempt_enable();
4571 	trace_netif_rx_ni_exit(err);
4572 
4573 	return err;
4574 }
4575 EXPORT_SYMBOL(netif_rx_ni);
4576 
4577 static __latent_entropy void net_tx_action(struct softirq_action *h)
4578 {
4579 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4580 
4581 	if (sd->completion_queue) {
4582 		struct sk_buff *clist;
4583 
4584 		local_irq_disable();
4585 		clist = sd->completion_queue;
4586 		sd->completion_queue = NULL;
4587 		local_irq_enable();
4588 
4589 		while (clist) {
4590 			struct sk_buff *skb = clist;
4591 
4592 			clist = clist->next;
4593 
4594 			WARN_ON(refcount_read(&skb->users));
4595 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4596 				trace_consume_skb(skb);
4597 			else
4598 				trace_kfree_skb(skb, net_tx_action);
4599 
4600 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4601 				__kfree_skb(skb);
4602 			else
4603 				__kfree_skb_defer(skb);
4604 		}
4605 
4606 		__kfree_skb_flush();
4607 	}
4608 
4609 	if (sd->output_queue) {
4610 		struct Qdisc *head;
4611 
4612 		local_irq_disable();
4613 		head = sd->output_queue;
4614 		sd->output_queue = NULL;
4615 		sd->output_queue_tailp = &sd->output_queue;
4616 		local_irq_enable();
4617 
4618 		while (head) {
4619 			struct Qdisc *q = head;
4620 			spinlock_t *root_lock = NULL;
4621 
4622 			head = head->next_sched;
4623 
4624 			if (!(q->flags & TCQ_F_NOLOCK)) {
4625 				root_lock = qdisc_lock(q);
4626 				spin_lock(root_lock);
4627 			}
4628 			/* We need to make sure head->next_sched is read
4629 			 * before clearing __QDISC_STATE_SCHED
4630 			 */
4631 			smp_mb__before_atomic();
4632 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4633 			qdisc_run(q);
4634 			if (root_lock)
4635 				spin_unlock(root_lock);
4636 		}
4637 	}
4638 
4639 	xfrm_dev_backlog(sd);
4640 }
4641 
4642 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4643 /* This hook is defined here for ATM LANE */
4644 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4645 			     unsigned char *addr) __read_mostly;
4646 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4647 #endif
4648 
4649 static inline struct sk_buff *
4650 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4651 		   struct net_device *orig_dev)
4652 {
4653 #ifdef CONFIG_NET_CLS_ACT
4654 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4655 	struct tcf_result cl_res;
4656 
4657 	/* If there's at least one ingress present somewhere (so
4658 	 * we get here via enabled static key), remaining devices
4659 	 * that are not configured with an ingress qdisc will bail
4660 	 * out here.
4661 	 */
4662 	if (!miniq)
4663 		return skb;
4664 
4665 	if (*pt_prev) {
4666 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4667 		*pt_prev = NULL;
4668 	}
4669 
4670 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4671 	skb->tc_at_ingress = 1;
4672 	mini_qdisc_bstats_cpu_update(miniq, skb);
4673 
4674 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4675 	case TC_ACT_OK:
4676 	case TC_ACT_RECLASSIFY:
4677 		skb->tc_index = TC_H_MIN(cl_res.classid);
4678 		break;
4679 	case TC_ACT_SHOT:
4680 		mini_qdisc_qstats_cpu_drop(miniq);
4681 		kfree_skb(skb);
4682 		return NULL;
4683 	case TC_ACT_STOLEN:
4684 	case TC_ACT_QUEUED:
4685 	case TC_ACT_TRAP:
4686 		consume_skb(skb);
4687 		return NULL;
4688 	case TC_ACT_REDIRECT:
4689 		/* skb_mac_header check was done by cls/act_bpf, so
4690 		 * we can safely push the L2 header back before
4691 		 * redirecting to another netdev
4692 		 */
4693 		__skb_push(skb, skb->mac_len);
4694 		skb_do_redirect(skb);
4695 		return NULL;
4696 	case TC_ACT_REINSERT:
4697 		/* this does not scrub the packet, and updates stats on error */
4698 		skb_tc_reinsert(skb, &cl_res);
4699 		return NULL;
4700 	default:
4701 		break;
4702 	}
4703 #endif /* CONFIG_NET_CLS_ACT */
4704 	return skb;
4705 }
4706 
4707 /**
4708  *	netdev_is_rx_handler_busy - check if receive handler is registered
4709  *	@dev: device to check
4710  *
4711  *	Check if a receive handler is already registered for a given device.
4712  *	Return true if there one.
4713  *
4714  *	The caller must hold the rtnl_mutex.
4715  */
4716 bool netdev_is_rx_handler_busy(struct net_device *dev)
4717 {
4718 	ASSERT_RTNL();
4719 	return dev && rtnl_dereference(dev->rx_handler);
4720 }
4721 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4722 
4723 /**
4724  *	netdev_rx_handler_register - register receive handler
4725  *	@dev: device to register a handler for
4726  *	@rx_handler: receive handler to register
4727  *	@rx_handler_data: data pointer that is used by rx handler
4728  *
4729  *	Register a receive handler for a device. This handler will then be
4730  *	called from __netif_receive_skb. A negative errno code is returned
4731  *	on a failure.
4732  *
4733  *	The caller must hold the rtnl_mutex.
4734  *
4735  *	For a general description of rx_handler, see enum rx_handler_result.
4736  */
4737 int netdev_rx_handler_register(struct net_device *dev,
4738 			       rx_handler_func_t *rx_handler,
4739 			       void *rx_handler_data)
4740 {
4741 	if (netdev_is_rx_handler_busy(dev))
4742 		return -EBUSY;
4743 
4744 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4745 		return -EINVAL;
4746 
4747 	/* Note: rx_handler_data must be set before rx_handler */
4748 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4749 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4750 
4751 	return 0;
4752 }
4753 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4754 
4755 /**
4756  *	netdev_rx_handler_unregister - unregister receive handler
4757  *	@dev: device to unregister a handler from
4758  *
4759  *	Unregister a receive handler from a device.
4760  *
4761  *	The caller must hold the rtnl_mutex.
4762  */
4763 void netdev_rx_handler_unregister(struct net_device *dev)
4764 {
4765 
4766 	ASSERT_RTNL();
4767 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4768 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4769 	 * section has a guarantee to see a non NULL rx_handler_data
4770 	 * as well.
4771 	 */
4772 	synchronize_net();
4773 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4774 }
4775 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4776 
4777 /*
4778  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4779  * the special handling of PFMEMALLOC skbs.
4780  */
4781 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4782 {
4783 	switch (skb->protocol) {
4784 	case htons(ETH_P_ARP):
4785 	case htons(ETH_P_IP):
4786 	case htons(ETH_P_IPV6):
4787 	case htons(ETH_P_8021Q):
4788 	case htons(ETH_P_8021AD):
4789 		return true;
4790 	default:
4791 		return false;
4792 	}
4793 }
4794 
4795 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4796 			     int *ret, struct net_device *orig_dev)
4797 {
4798 #ifdef CONFIG_NETFILTER_INGRESS
4799 	if (nf_hook_ingress_active(skb)) {
4800 		int ingress_retval;
4801 
4802 		if (*pt_prev) {
4803 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4804 			*pt_prev = NULL;
4805 		}
4806 
4807 		rcu_read_lock();
4808 		ingress_retval = nf_hook_ingress(skb);
4809 		rcu_read_unlock();
4810 		return ingress_retval;
4811 	}
4812 #endif /* CONFIG_NETFILTER_INGRESS */
4813 	return 0;
4814 }
4815 
4816 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4817 				    struct packet_type **ppt_prev)
4818 {
4819 	struct packet_type *ptype, *pt_prev;
4820 	rx_handler_func_t *rx_handler;
4821 	struct net_device *orig_dev;
4822 	bool deliver_exact = false;
4823 	int ret = NET_RX_DROP;
4824 	__be16 type;
4825 
4826 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4827 
4828 	trace_netif_receive_skb(skb);
4829 
4830 	orig_dev = skb->dev;
4831 
4832 	skb_reset_network_header(skb);
4833 	if (!skb_transport_header_was_set(skb))
4834 		skb_reset_transport_header(skb);
4835 	skb_reset_mac_len(skb);
4836 
4837 	pt_prev = NULL;
4838 
4839 another_round:
4840 	skb->skb_iif = skb->dev->ifindex;
4841 
4842 	__this_cpu_inc(softnet_data.processed);
4843 
4844 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4845 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4846 		skb = skb_vlan_untag(skb);
4847 		if (unlikely(!skb))
4848 			goto out;
4849 	}
4850 
4851 	if (skb_skip_tc_classify(skb))
4852 		goto skip_classify;
4853 
4854 	if (pfmemalloc)
4855 		goto skip_taps;
4856 
4857 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4858 		if (pt_prev)
4859 			ret = deliver_skb(skb, pt_prev, orig_dev);
4860 		pt_prev = ptype;
4861 	}
4862 
4863 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4864 		if (pt_prev)
4865 			ret = deliver_skb(skb, pt_prev, orig_dev);
4866 		pt_prev = ptype;
4867 	}
4868 
4869 skip_taps:
4870 #ifdef CONFIG_NET_INGRESS
4871 	if (static_branch_unlikely(&ingress_needed_key)) {
4872 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4873 		if (!skb)
4874 			goto out;
4875 
4876 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4877 			goto out;
4878 	}
4879 #endif
4880 	skb_reset_tc(skb);
4881 skip_classify:
4882 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4883 		goto drop;
4884 
4885 	if (skb_vlan_tag_present(skb)) {
4886 		if (pt_prev) {
4887 			ret = deliver_skb(skb, pt_prev, orig_dev);
4888 			pt_prev = NULL;
4889 		}
4890 		if (vlan_do_receive(&skb))
4891 			goto another_round;
4892 		else if (unlikely(!skb))
4893 			goto out;
4894 	}
4895 
4896 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4897 	if (rx_handler) {
4898 		if (pt_prev) {
4899 			ret = deliver_skb(skb, pt_prev, orig_dev);
4900 			pt_prev = NULL;
4901 		}
4902 		switch (rx_handler(&skb)) {
4903 		case RX_HANDLER_CONSUMED:
4904 			ret = NET_RX_SUCCESS;
4905 			goto out;
4906 		case RX_HANDLER_ANOTHER:
4907 			goto another_round;
4908 		case RX_HANDLER_EXACT:
4909 			deliver_exact = true;
4910 		case RX_HANDLER_PASS:
4911 			break;
4912 		default:
4913 			BUG();
4914 		}
4915 	}
4916 
4917 	if (unlikely(skb_vlan_tag_present(skb))) {
4918 		if (skb_vlan_tag_get_id(skb))
4919 			skb->pkt_type = PACKET_OTHERHOST;
4920 		/* Note: we might in the future use prio bits
4921 		 * and set skb->priority like in vlan_do_receive()
4922 		 * For the time being, just ignore Priority Code Point
4923 		 */
4924 		__vlan_hwaccel_clear_tag(skb);
4925 	}
4926 
4927 	type = skb->protocol;
4928 
4929 	/* deliver only exact match when indicated */
4930 	if (likely(!deliver_exact)) {
4931 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4932 				       &ptype_base[ntohs(type) &
4933 						   PTYPE_HASH_MASK]);
4934 	}
4935 
4936 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4937 			       &orig_dev->ptype_specific);
4938 
4939 	if (unlikely(skb->dev != orig_dev)) {
4940 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4941 				       &skb->dev->ptype_specific);
4942 	}
4943 
4944 	if (pt_prev) {
4945 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4946 			goto drop;
4947 		*ppt_prev = pt_prev;
4948 	} else {
4949 drop:
4950 		if (!deliver_exact)
4951 			atomic_long_inc(&skb->dev->rx_dropped);
4952 		else
4953 			atomic_long_inc(&skb->dev->rx_nohandler);
4954 		kfree_skb(skb);
4955 		/* Jamal, now you will not able to escape explaining
4956 		 * me how you were going to use this. :-)
4957 		 */
4958 		ret = NET_RX_DROP;
4959 	}
4960 
4961 out:
4962 	return ret;
4963 }
4964 
4965 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4966 {
4967 	struct net_device *orig_dev = skb->dev;
4968 	struct packet_type *pt_prev = NULL;
4969 	int ret;
4970 
4971 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4972 	if (pt_prev)
4973 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4974 	return ret;
4975 }
4976 
4977 /**
4978  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4979  *	@skb: buffer to process
4980  *
4981  *	More direct receive version of netif_receive_skb().  It should
4982  *	only be used by callers that have a need to skip RPS and Generic XDP.
4983  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4984  *
4985  *	This function may only be called from softirq context and interrupts
4986  *	should be enabled.
4987  *
4988  *	Return values (usually ignored):
4989  *	NET_RX_SUCCESS: no congestion
4990  *	NET_RX_DROP: packet was dropped
4991  */
4992 int netif_receive_skb_core(struct sk_buff *skb)
4993 {
4994 	int ret;
4995 
4996 	rcu_read_lock();
4997 	ret = __netif_receive_skb_one_core(skb, false);
4998 	rcu_read_unlock();
4999 
5000 	return ret;
5001 }
5002 EXPORT_SYMBOL(netif_receive_skb_core);
5003 
5004 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5005 						  struct packet_type *pt_prev,
5006 						  struct net_device *orig_dev)
5007 {
5008 	struct sk_buff *skb, *next;
5009 
5010 	if (!pt_prev)
5011 		return;
5012 	if (list_empty(head))
5013 		return;
5014 	if (pt_prev->list_func != NULL)
5015 		pt_prev->list_func(head, pt_prev, orig_dev);
5016 	else
5017 		list_for_each_entry_safe(skb, next, head, list)
5018 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5019 }
5020 
5021 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5022 {
5023 	/* Fast-path assumptions:
5024 	 * - There is no RX handler.
5025 	 * - Only one packet_type matches.
5026 	 * If either of these fails, we will end up doing some per-packet
5027 	 * processing in-line, then handling the 'last ptype' for the whole
5028 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5029 	 * because the 'last ptype' must be constant across the sublist, and all
5030 	 * other ptypes are handled per-packet.
5031 	 */
5032 	/* Current (common) ptype of sublist */
5033 	struct packet_type *pt_curr = NULL;
5034 	/* Current (common) orig_dev of sublist */
5035 	struct net_device *od_curr = NULL;
5036 	struct list_head sublist;
5037 	struct sk_buff *skb, *next;
5038 
5039 	INIT_LIST_HEAD(&sublist);
5040 	list_for_each_entry_safe(skb, next, head, list) {
5041 		struct net_device *orig_dev = skb->dev;
5042 		struct packet_type *pt_prev = NULL;
5043 
5044 		skb_list_del_init(skb);
5045 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5046 		if (!pt_prev)
5047 			continue;
5048 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5049 			/* dispatch old sublist */
5050 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5051 			/* start new sublist */
5052 			INIT_LIST_HEAD(&sublist);
5053 			pt_curr = pt_prev;
5054 			od_curr = orig_dev;
5055 		}
5056 		list_add_tail(&skb->list, &sublist);
5057 	}
5058 
5059 	/* dispatch final sublist */
5060 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5061 }
5062 
5063 static int __netif_receive_skb(struct sk_buff *skb)
5064 {
5065 	int ret;
5066 
5067 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5068 		unsigned int noreclaim_flag;
5069 
5070 		/*
5071 		 * PFMEMALLOC skbs are special, they should
5072 		 * - be delivered to SOCK_MEMALLOC sockets only
5073 		 * - stay away from userspace
5074 		 * - have bounded memory usage
5075 		 *
5076 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5077 		 * context down to all allocation sites.
5078 		 */
5079 		noreclaim_flag = memalloc_noreclaim_save();
5080 		ret = __netif_receive_skb_one_core(skb, true);
5081 		memalloc_noreclaim_restore(noreclaim_flag);
5082 	} else
5083 		ret = __netif_receive_skb_one_core(skb, false);
5084 
5085 	return ret;
5086 }
5087 
5088 static void __netif_receive_skb_list(struct list_head *head)
5089 {
5090 	unsigned long noreclaim_flag = 0;
5091 	struct sk_buff *skb, *next;
5092 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5093 
5094 	list_for_each_entry_safe(skb, next, head, list) {
5095 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5096 			struct list_head sublist;
5097 
5098 			/* Handle the previous sublist */
5099 			list_cut_before(&sublist, head, &skb->list);
5100 			if (!list_empty(&sublist))
5101 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5102 			pfmemalloc = !pfmemalloc;
5103 			/* See comments in __netif_receive_skb */
5104 			if (pfmemalloc)
5105 				noreclaim_flag = memalloc_noreclaim_save();
5106 			else
5107 				memalloc_noreclaim_restore(noreclaim_flag);
5108 		}
5109 	}
5110 	/* Handle the remaining sublist */
5111 	if (!list_empty(head))
5112 		__netif_receive_skb_list_core(head, pfmemalloc);
5113 	/* Restore pflags */
5114 	if (pfmemalloc)
5115 		memalloc_noreclaim_restore(noreclaim_flag);
5116 }
5117 
5118 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5119 {
5120 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5121 	struct bpf_prog *new = xdp->prog;
5122 	int ret = 0;
5123 
5124 	switch (xdp->command) {
5125 	case XDP_SETUP_PROG:
5126 		rcu_assign_pointer(dev->xdp_prog, new);
5127 		if (old)
5128 			bpf_prog_put(old);
5129 
5130 		if (old && !new) {
5131 			static_branch_dec(&generic_xdp_needed_key);
5132 		} else if (new && !old) {
5133 			static_branch_inc(&generic_xdp_needed_key);
5134 			dev_disable_lro(dev);
5135 			dev_disable_gro_hw(dev);
5136 		}
5137 		break;
5138 
5139 	case XDP_QUERY_PROG:
5140 		xdp->prog_id = old ? old->aux->id : 0;
5141 		break;
5142 
5143 	default:
5144 		ret = -EINVAL;
5145 		break;
5146 	}
5147 
5148 	return ret;
5149 }
5150 
5151 static int netif_receive_skb_internal(struct sk_buff *skb)
5152 {
5153 	int ret;
5154 
5155 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5156 
5157 	if (skb_defer_rx_timestamp(skb))
5158 		return NET_RX_SUCCESS;
5159 
5160 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5161 		int ret;
5162 
5163 		preempt_disable();
5164 		rcu_read_lock();
5165 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5166 		rcu_read_unlock();
5167 		preempt_enable();
5168 
5169 		if (ret != XDP_PASS)
5170 			return NET_RX_DROP;
5171 	}
5172 
5173 	rcu_read_lock();
5174 #ifdef CONFIG_RPS
5175 	if (static_key_false(&rps_needed)) {
5176 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5177 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5178 
5179 		if (cpu >= 0) {
5180 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5181 			rcu_read_unlock();
5182 			return ret;
5183 		}
5184 	}
5185 #endif
5186 	ret = __netif_receive_skb(skb);
5187 	rcu_read_unlock();
5188 	return ret;
5189 }
5190 
5191 static void netif_receive_skb_list_internal(struct list_head *head)
5192 {
5193 	struct bpf_prog *xdp_prog = NULL;
5194 	struct sk_buff *skb, *next;
5195 	struct list_head sublist;
5196 
5197 	INIT_LIST_HEAD(&sublist);
5198 	list_for_each_entry_safe(skb, next, head, list) {
5199 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5200 		skb_list_del_init(skb);
5201 		if (!skb_defer_rx_timestamp(skb))
5202 			list_add_tail(&skb->list, &sublist);
5203 	}
5204 	list_splice_init(&sublist, head);
5205 
5206 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5207 		preempt_disable();
5208 		rcu_read_lock();
5209 		list_for_each_entry_safe(skb, next, head, list) {
5210 			xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5211 			skb_list_del_init(skb);
5212 			if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5213 				list_add_tail(&skb->list, &sublist);
5214 		}
5215 		rcu_read_unlock();
5216 		preempt_enable();
5217 		/* Put passed packets back on main list */
5218 		list_splice_init(&sublist, head);
5219 	}
5220 
5221 	rcu_read_lock();
5222 #ifdef CONFIG_RPS
5223 	if (static_key_false(&rps_needed)) {
5224 		list_for_each_entry_safe(skb, next, head, list) {
5225 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5226 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5227 
5228 			if (cpu >= 0) {
5229 				/* Will be handled, remove from list */
5230 				skb_list_del_init(skb);
5231 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5232 			}
5233 		}
5234 	}
5235 #endif
5236 	__netif_receive_skb_list(head);
5237 	rcu_read_unlock();
5238 }
5239 
5240 /**
5241  *	netif_receive_skb - process receive buffer from network
5242  *	@skb: buffer to process
5243  *
5244  *	netif_receive_skb() is the main receive data processing function.
5245  *	It always succeeds. The buffer may be dropped during processing
5246  *	for congestion control or by the protocol layers.
5247  *
5248  *	This function may only be called from softirq context and interrupts
5249  *	should be enabled.
5250  *
5251  *	Return values (usually ignored):
5252  *	NET_RX_SUCCESS: no congestion
5253  *	NET_RX_DROP: packet was dropped
5254  */
5255 int netif_receive_skb(struct sk_buff *skb)
5256 {
5257 	int ret;
5258 
5259 	trace_netif_receive_skb_entry(skb);
5260 
5261 	ret = netif_receive_skb_internal(skb);
5262 	trace_netif_receive_skb_exit(ret);
5263 
5264 	return ret;
5265 }
5266 EXPORT_SYMBOL(netif_receive_skb);
5267 
5268 /**
5269  *	netif_receive_skb_list - process many receive buffers from network
5270  *	@head: list of skbs to process.
5271  *
5272  *	Since return value of netif_receive_skb() is normally ignored, and
5273  *	wouldn't be meaningful for a list, this function returns void.
5274  *
5275  *	This function may only be called from softirq context and interrupts
5276  *	should be enabled.
5277  */
5278 void netif_receive_skb_list(struct list_head *head)
5279 {
5280 	struct sk_buff *skb;
5281 
5282 	if (list_empty(head))
5283 		return;
5284 	if (trace_netif_receive_skb_list_entry_enabled()) {
5285 		list_for_each_entry(skb, head, list)
5286 			trace_netif_receive_skb_list_entry(skb);
5287 	}
5288 	netif_receive_skb_list_internal(head);
5289 	trace_netif_receive_skb_list_exit(0);
5290 }
5291 EXPORT_SYMBOL(netif_receive_skb_list);
5292 
5293 DEFINE_PER_CPU(struct work_struct, flush_works);
5294 
5295 /* Network device is going away, flush any packets still pending */
5296 static void flush_backlog(struct work_struct *work)
5297 {
5298 	struct sk_buff *skb, *tmp;
5299 	struct softnet_data *sd;
5300 
5301 	local_bh_disable();
5302 	sd = this_cpu_ptr(&softnet_data);
5303 
5304 	local_irq_disable();
5305 	rps_lock(sd);
5306 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5307 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5308 			__skb_unlink(skb, &sd->input_pkt_queue);
5309 			kfree_skb(skb);
5310 			input_queue_head_incr(sd);
5311 		}
5312 	}
5313 	rps_unlock(sd);
5314 	local_irq_enable();
5315 
5316 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5317 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5318 			__skb_unlink(skb, &sd->process_queue);
5319 			kfree_skb(skb);
5320 			input_queue_head_incr(sd);
5321 		}
5322 	}
5323 	local_bh_enable();
5324 }
5325 
5326 static void flush_all_backlogs(void)
5327 {
5328 	unsigned int cpu;
5329 
5330 	get_online_cpus();
5331 
5332 	for_each_online_cpu(cpu)
5333 		queue_work_on(cpu, system_highpri_wq,
5334 			      per_cpu_ptr(&flush_works, cpu));
5335 
5336 	for_each_online_cpu(cpu)
5337 		flush_work(per_cpu_ptr(&flush_works, cpu));
5338 
5339 	put_online_cpus();
5340 }
5341 
5342 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5343 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5344 static int napi_gro_complete(struct sk_buff *skb)
5345 {
5346 	struct packet_offload *ptype;
5347 	__be16 type = skb->protocol;
5348 	struct list_head *head = &offload_base;
5349 	int err = -ENOENT;
5350 
5351 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5352 
5353 	if (NAPI_GRO_CB(skb)->count == 1) {
5354 		skb_shinfo(skb)->gso_size = 0;
5355 		goto out;
5356 	}
5357 
5358 	rcu_read_lock();
5359 	list_for_each_entry_rcu(ptype, head, list) {
5360 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5361 			continue;
5362 
5363 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5364 					 ipv6_gro_complete, inet_gro_complete,
5365 					 skb, 0);
5366 		break;
5367 	}
5368 	rcu_read_unlock();
5369 
5370 	if (err) {
5371 		WARN_ON(&ptype->list == head);
5372 		kfree_skb(skb);
5373 		return NET_RX_SUCCESS;
5374 	}
5375 
5376 out:
5377 	return netif_receive_skb_internal(skb);
5378 }
5379 
5380 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5381 				   bool flush_old)
5382 {
5383 	struct list_head *head = &napi->gro_hash[index].list;
5384 	struct sk_buff *skb, *p;
5385 
5386 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5387 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5388 			return;
5389 		skb_list_del_init(skb);
5390 		napi_gro_complete(skb);
5391 		napi->gro_hash[index].count--;
5392 	}
5393 
5394 	if (!napi->gro_hash[index].count)
5395 		__clear_bit(index, &napi->gro_bitmask);
5396 }
5397 
5398 /* napi->gro_hash[].list contains packets ordered by age.
5399  * youngest packets at the head of it.
5400  * Complete skbs in reverse order to reduce latencies.
5401  */
5402 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5403 {
5404 	unsigned long bitmask = napi->gro_bitmask;
5405 	unsigned int i, base = ~0U;
5406 
5407 	while ((i = ffs(bitmask)) != 0) {
5408 		bitmask >>= i;
5409 		base += i;
5410 		__napi_gro_flush_chain(napi, base, flush_old);
5411 	}
5412 }
5413 EXPORT_SYMBOL(napi_gro_flush);
5414 
5415 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5416 					  struct sk_buff *skb)
5417 {
5418 	unsigned int maclen = skb->dev->hard_header_len;
5419 	u32 hash = skb_get_hash_raw(skb);
5420 	struct list_head *head;
5421 	struct sk_buff *p;
5422 
5423 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5424 	list_for_each_entry(p, head, list) {
5425 		unsigned long diffs;
5426 
5427 		NAPI_GRO_CB(p)->flush = 0;
5428 
5429 		if (hash != skb_get_hash_raw(p)) {
5430 			NAPI_GRO_CB(p)->same_flow = 0;
5431 			continue;
5432 		}
5433 
5434 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5435 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5436 		if (skb_vlan_tag_present(p))
5437 			diffs |= p->vlan_tci ^ skb->vlan_tci;
5438 		diffs |= skb_metadata_dst_cmp(p, skb);
5439 		diffs |= skb_metadata_differs(p, skb);
5440 		if (maclen == ETH_HLEN)
5441 			diffs |= compare_ether_header(skb_mac_header(p),
5442 						      skb_mac_header(skb));
5443 		else if (!diffs)
5444 			diffs = memcmp(skb_mac_header(p),
5445 				       skb_mac_header(skb),
5446 				       maclen);
5447 		NAPI_GRO_CB(p)->same_flow = !diffs;
5448 	}
5449 
5450 	return head;
5451 }
5452 
5453 static void skb_gro_reset_offset(struct sk_buff *skb)
5454 {
5455 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5456 	const skb_frag_t *frag0 = &pinfo->frags[0];
5457 
5458 	NAPI_GRO_CB(skb)->data_offset = 0;
5459 	NAPI_GRO_CB(skb)->frag0 = NULL;
5460 	NAPI_GRO_CB(skb)->frag0_len = 0;
5461 
5462 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5463 	    pinfo->nr_frags &&
5464 	    !PageHighMem(skb_frag_page(frag0))) {
5465 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5466 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5467 						    skb_frag_size(frag0),
5468 						    skb->end - skb->tail);
5469 	}
5470 }
5471 
5472 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5473 {
5474 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5475 
5476 	BUG_ON(skb->end - skb->tail < grow);
5477 
5478 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5479 
5480 	skb->data_len -= grow;
5481 	skb->tail += grow;
5482 
5483 	pinfo->frags[0].page_offset += grow;
5484 	skb_frag_size_sub(&pinfo->frags[0], grow);
5485 
5486 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5487 		skb_frag_unref(skb, 0);
5488 		memmove(pinfo->frags, pinfo->frags + 1,
5489 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5490 	}
5491 }
5492 
5493 static void gro_flush_oldest(struct list_head *head)
5494 {
5495 	struct sk_buff *oldest;
5496 
5497 	oldest = list_last_entry(head, struct sk_buff, list);
5498 
5499 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5500 	 * impossible.
5501 	 */
5502 	if (WARN_ON_ONCE(!oldest))
5503 		return;
5504 
5505 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5506 	 * SKB to the chain.
5507 	 */
5508 	skb_list_del_init(oldest);
5509 	napi_gro_complete(oldest);
5510 }
5511 
5512 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5513 							   struct sk_buff *));
5514 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5515 							   struct sk_buff *));
5516 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5517 {
5518 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5519 	struct list_head *head = &offload_base;
5520 	struct packet_offload *ptype;
5521 	__be16 type = skb->protocol;
5522 	struct list_head *gro_head;
5523 	struct sk_buff *pp = NULL;
5524 	enum gro_result ret;
5525 	int same_flow;
5526 	int grow;
5527 
5528 	if (netif_elide_gro(skb->dev))
5529 		goto normal;
5530 
5531 	gro_head = gro_list_prepare(napi, skb);
5532 
5533 	rcu_read_lock();
5534 	list_for_each_entry_rcu(ptype, head, list) {
5535 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5536 			continue;
5537 
5538 		skb_set_network_header(skb, skb_gro_offset(skb));
5539 		skb_reset_mac_len(skb);
5540 		NAPI_GRO_CB(skb)->same_flow = 0;
5541 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5542 		NAPI_GRO_CB(skb)->free = 0;
5543 		NAPI_GRO_CB(skb)->encap_mark = 0;
5544 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5545 		NAPI_GRO_CB(skb)->is_fou = 0;
5546 		NAPI_GRO_CB(skb)->is_atomic = 1;
5547 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5548 
5549 		/* Setup for GRO checksum validation */
5550 		switch (skb->ip_summed) {
5551 		case CHECKSUM_COMPLETE:
5552 			NAPI_GRO_CB(skb)->csum = skb->csum;
5553 			NAPI_GRO_CB(skb)->csum_valid = 1;
5554 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5555 			break;
5556 		case CHECKSUM_UNNECESSARY:
5557 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5558 			NAPI_GRO_CB(skb)->csum_valid = 0;
5559 			break;
5560 		default:
5561 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5562 			NAPI_GRO_CB(skb)->csum_valid = 0;
5563 		}
5564 
5565 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5566 					ipv6_gro_receive, inet_gro_receive,
5567 					gro_head, skb);
5568 		break;
5569 	}
5570 	rcu_read_unlock();
5571 
5572 	if (&ptype->list == head)
5573 		goto normal;
5574 
5575 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5576 		ret = GRO_CONSUMED;
5577 		goto ok;
5578 	}
5579 
5580 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5581 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5582 
5583 	if (pp) {
5584 		skb_list_del_init(pp);
5585 		napi_gro_complete(pp);
5586 		napi->gro_hash[hash].count--;
5587 	}
5588 
5589 	if (same_flow)
5590 		goto ok;
5591 
5592 	if (NAPI_GRO_CB(skb)->flush)
5593 		goto normal;
5594 
5595 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5596 		gro_flush_oldest(gro_head);
5597 	} else {
5598 		napi->gro_hash[hash].count++;
5599 	}
5600 	NAPI_GRO_CB(skb)->count = 1;
5601 	NAPI_GRO_CB(skb)->age = jiffies;
5602 	NAPI_GRO_CB(skb)->last = skb;
5603 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5604 	list_add(&skb->list, gro_head);
5605 	ret = GRO_HELD;
5606 
5607 pull:
5608 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5609 	if (grow > 0)
5610 		gro_pull_from_frag0(skb, grow);
5611 ok:
5612 	if (napi->gro_hash[hash].count) {
5613 		if (!test_bit(hash, &napi->gro_bitmask))
5614 			__set_bit(hash, &napi->gro_bitmask);
5615 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5616 		__clear_bit(hash, &napi->gro_bitmask);
5617 	}
5618 
5619 	return ret;
5620 
5621 normal:
5622 	ret = GRO_NORMAL;
5623 	goto pull;
5624 }
5625 
5626 struct packet_offload *gro_find_receive_by_type(__be16 type)
5627 {
5628 	struct list_head *offload_head = &offload_base;
5629 	struct packet_offload *ptype;
5630 
5631 	list_for_each_entry_rcu(ptype, offload_head, list) {
5632 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5633 			continue;
5634 		return ptype;
5635 	}
5636 	return NULL;
5637 }
5638 EXPORT_SYMBOL(gro_find_receive_by_type);
5639 
5640 struct packet_offload *gro_find_complete_by_type(__be16 type)
5641 {
5642 	struct list_head *offload_head = &offload_base;
5643 	struct packet_offload *ptype;
5644 
5645 	list_for_each_entry_rcu(ptype, offload_head, list) {
5646 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5647 			continue;
5648 		return ptype;
5649 	}
5650 	return NULL;
5651 }
5652 EXPORT_SYMBOL(gro_find_complete_by_type);
5653 
5654 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5655 {
5656 	skb_dst_drop(skb);
5657 	secpath_reset(skb);
5658 	kmem_cache_free(skbuff_head_cache, skb);
5659 }
5660 
5661 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5662 {
5663 	switch (ret) {
5664 	case GRO_NORMAL:
5665 		if (netif_receive_skb_internal(skb))
5666 			ret = GRO_DROP;
5667 		break;
5668 
5669 	case GRO_DROP:
5670 		kfree_skb(skb);
5671 		break;
5672 
5673 	case GRO_MERGED_FREE:
5674 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5675 			napi_skb_free_stolen_head(skb);
5676 		else
5677 			__kfree_skb(skb);
5678 		break;
5679 
5680 	case GRO_HELD:
5681 	case GRO_MERGED:
5682 	case GRO_CONSUMED:
5683 		break;
5684 	}
5685 
5686 	return ret;
5687 }
5688 
5689 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5690 {
5691 	gro_result_t ret;
5692 
5693 	skb_mark_napi_id(skb, napi);
5694 	trace_napi_gro_receive_entry(skb);
5695 
5696 	skb_gro_reset_offset(skb);
5697 
5698 	ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5699 	trace_napi_gro_receive_exit(ret);
5700 
5701 	return ret;
5702 }
5703 EXPORT_SYMBOL(napi_gro_receive);
5704 
5705 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5706 {
5707 	if (unlikely(skb->pfmemalloc)) {
5708 		consume_skb(skb);
5709 		return;
5710 	}
5711 	__skb_pull(skb, skb_headlen(skb));
5712 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5713 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5714 	__vlan_hwaccel_clear_tag(skb);
5715 	skb->dev = napi->dev;
5716 	skb->skb_iif = 0;
5717 
5718 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
5719 	skb->pkt_type = PACKET_HOST;
5720 
5721 	skb->encapsulation = 0;
5722 	skb_shinfo(skb)->gso_type = 0;
5723 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5724 	secpath_reset(skb);
5725 
5726 	napi->skb = skb;
5727 }
5728 
5729 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5730 {
5731 	struct sk_buff *skb = napi->skb;
5732 
5733 	if (!skb) {
5734 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5735 		if (skb) {
5736 			napi->skb = skb;
5737 			skb_mark_napi_id(skb, napi);
5738 		}
5739 	}
5740 	return skb;
5741 }
5742 EXPORT_SYMBOL(napi_get_frags);
5743 
5744 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5745 				      struct sk_buff *skb,
5746 				      gro_result_t ret)
5747 {
5748 	switch (ret) {
5749 	case GRO_NORMAL:
5750 	case GRO_HELD:
5751 		__skb_push(skb, ETH_HLEN);
5752 		skb->protocol = eth_type_trans(skb, skb->dev);
5753 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5754 			ret = GRO_DROP;
5755 		break;
5756 
5757 	case GRO_DROP:
5758 		napi_reuse_skb(napi, skb);
5759 		break;
5760 
5761 	case GRO_MERGED_FREE:
5762 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5763 			napi_skb_free_stolen_head(skb);
5764 		else
5765 			napi_reuse_skb(napi, skb);
5766 		break;
5767 
5768 	case GRO_MERGED:
5769 	case GRO_CONSUMED:
5770 		break;
5771 	}
5772 
5773 	return ret;
5774 }
5775 
5776 /* Upper GRO stack assumes network header starts at gro_offset=0
5777  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5778  * We copy ethernet header into skb->data to have a common layout.
5779  */
5780 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5781 {
5782 	struct sk_buff *skb = napi->skb;
5783 	const struct ethhdr *eth;
5784 	unsigned int hlen = sizeof(*eth);
5785 
5786 	napi->skb = NULL;
5787 
5788 	skb_reset_mac_header(skb);
5789 	skb_gro_reset_offset(skb);
5790 
5791 	eth = skb_gro_header_fast(skb, 0);
5792 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5793 		eth = skb_gro_header_slow(skb, hlen, 0);
5794 		if (unlikely(!eth)) {
5795 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5796 					     __func__, napi->dev->name);
5797 			napi_reuse_skb(napi, skb);
5798 			return NULL;
5799 		}
5800 	} else {
5801 		gro_pull_from_frag0(skb, hlen);
5802 		NAPI_GRO_CB(skb)->frag0 += hlen;
5803 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5804 	}
5805 	__skb_pull(skb, hlen);
5806 
5807 	/*
5808 	 * This works because the only protocols we care about don't require
5809 	 * special handling.
5810 	 * We'll fix it up properly in napi_frags_finish()
5811 	 */
5812 	skb->protocol = eth->h_proto;
5813 
5814 	return skb;
5815 }
5816 
5817 gro_result_t napi_gro_frags(struct napi_struct *napi)
5818 {
5819 	gro_result_t ret;
5820 	struct sk_buff *skb = napi_frags_skb(napi);
5821 
5822 	if (!skb)
5823 		return GRO_DROP;
5824 
5825 	trace_napi_gro_frags_entry(skb);
5826 
5827 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5828 	trace_napi_gro_frags_exit(ret);
5829 
5830 	return ret;
5831 }
5832 EXPORT_SYMBOL(napi_gro_frags);
5833 
5834 /* Compute the checksum from gro_offset and return the folded value
5835  * after adding in any pseudo checksum.
5836  */
5837 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5838 {
5839 	__wsum wsum;
5840 	__sum16 sum;
5841 
5842 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5843 
5844 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5845 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5846 	/* See comments in __skb_checksum_complete(). */
5847 	if (likely(!sum)) {
5848 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5849 		    !skb->csum_complete_sw)
5850 			netdev_rx_csum_fault(skb->dev, skb);
5851 	}
5852 
5853 	NAPI_GRO_CB(skb)->csum = wsum;
5854 	NAPI_GRO_CB(skb)->csum_valid = 1;
5855 
5856 	return sum;
5857 }
5858 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5859 
5860 static void net_rps_send_ipi(struct softnet_data *remsd)
5861 {
5862 #ifdef CONFIG_RPS
5863 	while (remsd) {
5864 		struct softnet_data *next = remsd->rps_ipi_next;
5865 
5866 		if (cpu_online(remsd->cpu))
5867 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5868 		remsd = next;
5869 	}
5870 #endif
5871 }
5872 
5873 /*
5874  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5875  * Note: called with local irq disabled, but exits with local irq enabled.
5876  */
5877 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5878 {
5879 #ifdef CONFIG_RPS
5880 	struct softnet_data *remsd = sd->rps_ipi_list;
5881 
5882 	if (remsd) {
5883 		sd->rps_ipi_list = NULL;
5884 
5885 		local_irq_enable();
5886 
5887 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5888 		net_rps_send_ipi(remsd);
5889 	} else
5890 #endif
5891 		local_irq_enable();
5892 }
5893 
5894 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5895 {
5896 #ifdef CONFIG_RPS
5897 	return sd->rps_ipi_list != NULL;
5898 #else
5899 	return false;
5900 #endif
5901 }
5902 
5903 static int process_backlog(struct napi_struct *napi, int quota)
5904 {
5905 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5906 	bool again = true;
5907 	int work = 0;
5908 
5909 	/* Check if we have pending ipi, its better to send them now,
5910 	 * not waiting net_rx_action() end.
5911 	 */
5912 	if (sd_has_rps_ipi_waiting(sd)) {
5913 		local_irq_disable();
5914 		net_rps_action_and_irq_enable(sd);
5915 	}
5916 
5917 	napi->weight = dev_rx_weight;
5918 	while (again) {
5919 		struct sk_buff *skb;
5920 
5921 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5922 			rcu_read_lock();
5923 			__netif_receive_skb(skb);
5924 			rcu_read_unlock();
5925 			input_queue_head_incr(sd);
5926 			if (++work >= quota)
5927 				return work;
5928 
5929 		}
5930 
5931 		local_irq_disable();
5932 		rps_lock(sd);
5933 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5934 			/*
5935 			 * Inline a custom version of __napi_complete().
5936 			 * only current cpu owns and manipulates this napi,
5937 			 * and NAPI_STATE_SCHED is the only possible flag set
5938 			 * on backlog.
5939 			 * We can use a plain write instead of clear_bit(),
5940 			 * and we dont need an smp_mb() memory barrier.
5941 			 */
5942 			napi->state = 0;
5943 			again = false;
5944 		} else {
5945 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5946 						   &sd->process_queue);
5947 		}
5948 		rps_unlock(sd);
5949 		local_irq_enable();
5950 	}
5951 
5952 	return work;
5953 }
5954 
5955 /**
5956  * __napi_schedule - schedule for receive
5957  * @n: entry to schedule
5958  *
5959  * The entry's receive function will be scheduled to run.
5960  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5961  */
5962 void __napi_schedule(struct napi_struct *n)
5963 {
5964 	unsigned long flags;
5965 
5966 	local_irq_save(flags);
5967 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5968 	local_irq_restore(flags);
5969 }
5970 EXPORT_SYMBOL(__napi_schedule);
5971 
5972 /**
5973  *	napi_schedule_prep - check if napi can be scheduled
5974  *	@n: napi context
5975  *
5976  * Test if NAPI routine is already running, and if not mark
5977  * it as running.  This is used as a condition variable
5978  * insure only one NAPI poll instance runs.  We also make
5979  * sure there is no pending NAPI disable.
5980  */
5981 bool napi_schedule_prep(struct napi_struct *n)
5982 {
5983 	unsigned long val, new;
5984 
5985 	do {
5986 		val = READ_ONCE(n->state);
5987 		if (unlikely(val & NAPIF_STATE_DISABLE))
5988 			return false;
5989 		new = val | NAPIF_STATE_SCHED;
5990 
5991 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5992 		 * This was suggested by Alexander Duyck, as compiler
5993 		 * emits better code than :
5994 		 * if (val & NAPIF_STATE_SCHED)
5995 		 *     new |= NAPIF_STATE_MISSED;
5996 		 */
5997 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5998 						   NAPIF_STATE_MISSED;
5999 	} while (cmpxchg(&n->state, val, new) != val);
6000 
6001 	return !(val & NAPIF_STATE_SCHED);
6002 }
6003 EXPORT_SYMBOL(napi_schedule_prep);
6004 
6005 /**
6006  * __napi_schedule_irqoff - schedule for receive
6007  * @n: entry to schedule
6008  *
6009  * Variant of __napi_schedule() assuming hard irqs are masked
6010  */
6011 void __napi_schedule_irqoff(struct napi_struct *n)
6012 {
6013 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6014 }
6015 EXPORT_SYMBOL(__napi_schedule_irqoff);
6016 
6017 bool napi_complete_done(struct napi_struct *n, int work_done)
6018 {
6019 	unsigned long flags, val, new;
6020 
6021 	/*
6022 	 * 1) Don't let napi dequeue from the cpu poll list
6023 	 *    just in case its running on a different cpu.
6024 	 * 2) If we are busy polling, do nothing here, we have
6025 	 *    the guarantee we will be called later.
6026 	 */
6027 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6028 				 NAPIF_STATE_IN_BUSY_POLL)))
6029 		return false;
6030 
6031 	if (n->gro_bitmask) {
6032 		unsigned long timeout = 0;
6033 
6034 		if (work_done)
6035 			timeout = n->dev->gro_flush_timeout;
6036 
6037 		/* When the NAPI instance uses a timeout and keeps postponing
6038 		 * it, we need to bound somehow the time packets are kept in
6039 		 * the GRO layer
6040 		 */
6041 		napi_gro_flush(n, !!timeout);
6042 		if (timeout)
6043 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
6044 				      HRTIMER_MODE_REL_PINNED);
6045 	}
6046 	if (unlikely(!list_empty(&n->poll_list))) {
6047 		/* If n->poll_list is not empty, we need to mask irqs */
6048 		local_irq_save(flags);
6049 		list_del_init(&n->poll_list);
6050 		local_irq_restore(flags);
6051 	}
6052 
6053 	do {
6054 		val = READ_ONCE(n->state);
6055 
6056 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6057 
6058 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6059 
6060 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6061 		 * because we will call napi->poll() one more time.
6062 		 * This C code was suggested by Alexander Duyck to help gcc.
6063 		 */
6064 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6065 						    NAPIF_STATE_SCHED;
6066 	} while (cmpxchg(&n->state, val, new) != val);
6067 
6068 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6069 		__napi_schedule(n);
6070 		return false;
6071 	}
6072 
6073 	return true;
6074 }
6075 EXPORT_SYMBOL(napi_complete_done);
6076 
6077 /* must be called under rcu_read_lock(), as we dont take a reference */
6078 static struct napi_struct *napi_by_id(unsigned int napi_id)
6079 {
6080 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6081 	struct napi_struct *napi;
6082 
6083 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6084 		if (napi->napi_id == napi_id)
6085 			return napi;
6086 
6087 	return NULL;
6088 }
6089 
6090 #if defined(CONFIG_NET_RX_BUSY_POLL)
6091 
6092 #define BUSY_POLL_BUDGET 8
6093 
6094 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6095 {
6096 	int rc;
6097 
6098 	/* Busy polling means there is a high chance device driver hard irq
6099 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6100 	 * set in napi_schedule_prep().
6101 	 * Since we are about to call napi->poll() once more, we can safely
6102 	 * clear NAPI_STATE_MISSED.
6103 	 *
6104 	 * Note: x86 could use a single "lock and ..." instruction
6105 	 * to perform these two clear_bit()
6106 	 */
6107 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6108 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6109 
6110 	local_bh_disable();
6111 
6112 	/* All we really want here is to re-enable device interrupts.
6113 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6114 	 */
6115 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6116 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6117 	netpoll_poll_unlock(have_poll_lock);
6118 	if (rc == BUSY_POLL_BUDGET)
6119 		__napi_schedule(napi);
6120 	local_bh_enable();
6121 }
6122 
6123 void napi_busy_loop(unsigned int napi_id,
6124 		    bool (*loop_end)(void *, unsigned long),
6125 		    void *loop_end_arg)
6126 {
6127 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6128 	int (*napi_poll)(struct napi_struct *napi, int budget);
6129 	void *have_poll_lock = NULL;
6130 	struct napi_struct *napi;
6131 
6132 restart:
6133 	napi_poll = NULL;
6134 
6135 	rcu_read_lock();
6136 
6137 	napi = napi_by_id(napi_id);
6138 	if (!napi)
6139 		goto out;
6140 
6141 	preempt_disable();
6142 	for (;;) {
6143 		int work = 0;
6144 
6145 		local_bh_disable();
6146 		if (!napi_poll) {
6147 			unsigned long val = READ_ONCE(napi->state);
6148 
6149 			/* If multiple threads are competing for this napi,
6150 			 * we avoid dirtying napi->state as much as we can.
6151 			 */
6152 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6153 				   NAPIF_STATE_IN_BUSY_POLL))
6154 				goto count;
6155 			if (cmpxchg(&napi->state, val,
6156 				    val | NAPIF_STATE_IN_BUSY_POLL |
6157 					  NAPIF_STATE_SCHED) != val)
6158 				goto count;
6159 			have_poll_lock = netpoll_poll_lock(napi);
6160 			napi_poll = napi->poll;
6161 		}
6162 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6163 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6164 count:
6165 		if (work > 0)
6166 			__NET_ADD_STATS(dev_net(napi->dev),
6167 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6168 		local_bh_enable();
6169 
6170 		if (!loop_end || loop_end(loop_end_arg, start_time))
6171 			break;
6172 
6173 		if (unlikely(need_resched())) {
6174 			if (napi_poll)
6175 				busy_poll_stop(napi, have_poll_lock);
6176 			preempt_enable();
6177 			rcu_read_unlock();
6178 			cond_resched();
6179 			if (loop_end(loop_end_arg, start_time))
6180 				return;
6181 			goto restart;
6182 		}
6183 		cpu_relax();
6184 	}
6185 	if (napi_poll)
6186 		busy_poll_stop(napi, have_poll_lock);
6187 	preempt_enable();
6188 out:
6189 	rcu_read_unlock();
6190 }
6191 EXPORT_SYMBOL(napi_busy_loop);
6192 
6193 #endif /* CONFIG_NET_RX_BUSY_POLL */
6194 
6195 static void napi_hash_add(struct napi_struct *napi)
6196 {
6197 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6198 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6199 		return;
6200 
6201 	spin_lock(&napi_hash_lock);
6202 
6203 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6204 	do {
6205 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6206 			napi_gen_id = MIN_NAPI_ID;
6207 	} while (napi_by_id(napi_gen_id));
6208 	napi->napi_id = napi_gen_id;
6209 
6210 	hlist_add_head_rcu(&napi->napi_hash_node,
6211 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6212 
6213 	spin_unlock(&napi_hash_lock);
6214 }
6215 
6216 /* Warning : caller is responsible to make sure rcu grace period
6217  * is respected before freeing memory containing @napi
6218  */
6219 bool napi_hash_del(struct napi_struct *napi)
6220 {
6221 	bool rcu_sync_needed = false;
6222 
6223 	spin_lock(&napi_hash_lock);
6224 
6225 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6226 		rcu_sync_needed = true;
6227 		hlist_del_rcu(&napi->napi_hash_node);
6228 	}
6229 	spin_unlock(&napi_hash_lock);
6230 	return rcu_sync_needed;
6231 }
6232 EXPORT_SYMBOL_GPL(napi_hash_del);
6233 
6234 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6235 {
6236 	struct napi_struct *napi;
6237 
6238 	napi = container_of(timer, struct napi_struct, timer);
6239 
6240 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6241 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6242 	 */
6243 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6244 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6245 		__napi_schedule_irqoff(napi);
6246 
6247 	return HRTIMER_NORESTART;
6248 }
6249 
6250 static void init_gro_hash(struct napi_struct *napi)
6251 {
6252 	int i;
6253 
6254 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6255 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6256 		napi->gro_hash[i].count = 0;
6257 	}
6258 	napi->gro_bitmask = 0;
6259 }
6260 
6261 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6262 		    int (*poll)(struct napi_struct *, int), int weight)
6263 {
6264 	INIT_LIST_HEAD(&napi->poll_list);
6265 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6266 	napi->timer.function = napi_watchdog;
6267 	init_gro_hash(napi);
6268 	napi->skb = NULL;
6269 	napi->poll = poll;
6270 	if (weight > NAPI_POLL_WEIGHT)
6271 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6272 				weight);
6273 	napi->weight = weight;
6274 	list_add(&napi->dev_list, &dev->napi_list);
6275 	napi->dev = dev;
6276 #ifdef CONFIG_NETPOLL
6277 	napi->poll_owner = -1;
6278 #endif
6279 	set_bit(NAPI_STATE_SCHED, &napi->state);
6280 	napi_hash_add(napi);
6281 }
6282 EXPORT_SYMBOL(netif_napi_add);
6283 
6284 void napi_disable(struct napi_struct *n)
6285 {
6286 	might_sleep();
6287 	set_bit(NAPI_STATE_DISABLE, &n->state);
6288 
6289 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6290 		msleep(1);
6291 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6292 		msleep(1);
6293 
6294 	hrtimer_cancel(&n->timer);
6295 
6296 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6297 }
6298 EXPORT_SYMBOL(napi_disable);
6299 
6300 static void flush_gro_hash(struct napi_struct *napi)
6301 {
6302 	int i;
6303 
6304 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6305 		struct sk_buff *skb, *n;
6306 
6307 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6308 			kfree_skb(skb);
6309 		napi->gro_hash[i].count = 0;
6310 	}
6311 }
6312 
6313 /* Must be called in process context */
6314 void netif_napi_del(struct napi_struct *napi)
6315 {
6316 	might_sleep();
6317 	if (napi_hash_del(napi))
6318 		synchronize_net();
6319 	list_del_init(&napi->dev_list);
6320 	napi_free_frags(napi);
6321 
6322 	flush_gro_hash(napi);
6323 	napi->gro_bitmask = 0;
6324 }
6325 EXPORT_SYMBOL(netif_napi_del);
6326 
6327 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6328 {
6329 	void *have;
6330 	int work, weight;
6331 
6332 	list_del_init(&n->poll_list);
6333 
6334 	have = netpoll_poll_lock(n);
6335 
6336 	weight = n->weight;
6337 
6338 	/* This NAPI_STATE_SCHED test is for avoiding a race
6339 	 * with netpoll's poll_napi().  Only the entity which
6340 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6341 	 * actually make the ->poll() call.  Therefore we avoid
6342 	 * accidentally calling ->poll() when NAPI is not scheduled.
6343 	 */
6344 	work = 0;
6345 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6346 		work = n->poll(n, weight);
6347 		trace_napi_poll(n, work, weight);
6348 	}
6349 
6350 	WARN_ON_ONCE(work > weight);
6351 
6352 	if (likely(work < weight))
6353 		goto out_unlock;
6354 
6355 	/* Drivers must not modify the NAPI state if they
6356 	 * consume the entire weight.  In such cases this code
6357 	 * still "owns" the NAPI instance and therefore can
6358 	 * move the instance around on the list at-will.
6359 	 */
6360 	if (unlikely(napi_disable_pending(n))) {
6361 		napi_complete(n);
6362 		goto out_unlock;
6363 	}
6364 
6365 	if (n->gro_bitmask) {
6366 		/* flush too old packets
6367 		 * If HZ < 1000, flush all packets.
6368 		 */
6369 		napi_gro_flush(n, HZ >= 1000);
6370 	}
6371 
6372 	/* Some drivers may have called napi_schedule
6373 	 * prior to exhausting their budget.
6374 	 */
6375 	if (unlikely(!list_empty(&n->poll_list))) {
6376 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6377 			     n->dev ? n->dev->name : "backlog");
6378 		goto out_unlock;
6379 	}
6380 
6381 	list_add_tail(&n->poll_list, repoll);
6382 
6383 out_unlock:
6384 	netpoll_poll_unlock(have);
6385 
6386 	return work;
6387 }
6388 
6389 static __latent_entropy void net_rx_action(struct softirq_action *h)
6390 {
6391 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6392 	unsigned long time_limit = jiffies +
6393 		usecs_to_jiffies(netdev_budget_usecs);
6394 	int budget = netdev_budget;
6395 	LIST_HEAD(list);
6396 	LIST_HEAD(repoll);
6397 
6398 	local_irq_disable();
6399 	list_splice_init(&sd->poll_list, &list);
6400 	local_irq_enable();
6401 
6402 	for (;;) {
6403 		struct napi_struct *n;
6404 
6405 		if (list_empty(&list)) {
6406 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6407 				goto out;
6408 			break;
6409 		}
6410 
6411 		n = list_first_entry(&list, struct napi_struct, poll_list);
6412 		budget -= napi_poll(n, &repoll);
6413 
6414 		/* If softirq window is exhausted then punt.
6415 		 * Allow this to run for 2 jiffies since which will allow
6416 		 * an average latency of 1.5/HZ.
6417 		 */
6418 		if (unlikely(budget <= 0 ||
6419 			     time_after_eq(jiffies, time_limit))) {
6420 			sd->time_squeeze++;
6421 			break;
6422 		}
6423 	}
6424 
6425 	local_irq_disable();
6426 
6427 	list_splice_tail_init(&sd->poll_list, &list);
6428 	list_splice_tail(&repoll, &list);
6429 	list_splice(&list, &sd->poll_list);
6430 	if (!list_empty(&sd->poll_list))
6431 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6432 
6433 	net_rps_action_and_irq_enable(sd);
6434 out:
6435 	__kfree_skb_flush();
6436 }
6437 
6438 struct netdev_adjacent {
6439 	struct net_device *dev;
6440 
6441 	/* upper master flag, there can only be one master device per list */
6442 	bool master;
6443 
6444 	/* counter for the number of times this device was added to us */
6445 	u16 ref_nr;
6446 
6447 	/* private field for the users */
6448 	void *private;
6449 
6450 	struct list_head list;
6451 	struct rcu_head rcu;
6452 };
6453 
6454 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6455 						 struct list_head *adj_list)
6456 {
6457 	struct netdev_adjacent *adj;
6458 
6459 	list_for_each_entry(adj, adj_list, list) {
6460 		if (adj->dev == adj_dev)
6461 			return adj;
6462 	}
6463 	return NULL;
6464 }
6465 
6466 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6467 {
6468 	struct net_device *dev = data;
6469 
6470 	return upper_dev == dev;
6471 }
6472 
6473 /**
6474  * netdev_has_upper_dev - Check if device is linked to an upper device
6475  * @dev: device
6476  * @upper_dev: upper device to check
6477  *
6478  * Find out if a device is linked to specified upper device and return true
6479  * in case it is. Note that this checks only immediate upper device,
6480  * not through a complete stack of devices. The caller must hold the RTNL lock.
6481  */
6482 bool netdev_has_upper_dev(struct net_device *dev,
6483 			  struct net_device *upper_dev)
6484 {
6485 	ASSERT_RTNL();
6486 
6487 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6488 					     upper_dev);
6489 }
6490 EXPORT_SYMBOL(netdev_has_upper_dev);
6491 
6492 /**
6493  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6494  * @dev: device
6495  * @upper_dev: upper device to check
6496  *
6497  * Find out if a device is linked to specified upper device and return true
6498  * in case it is. Note that this checks the entire upper device chain.
6499  * The caller must hold rcu lock.
6500  */
6501 
6502 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6503 				  struct net_device *upper_dev)
6504 {
6505 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6506 					       upper_dev);
6507 }
6508 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6509 
6510 /**
6511  * netdev_has_any_upper_dev - Check if device is linked to some device
6512  * @dev: device
6513  *
6514  * Find out if a device is linked to an upper device and return true in case
6515  * it is. The caller must hold the RTNL lock.
6516  */
6517 bool netdev_has_any_upper_dev(struct net_device *dev)
6518 {
6519 	ASSERT_RTNL();
6520 
6521 	return !list_empty(&dev->adj_list.upper);
6522 }
6523 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6524 
6525 /**
6526  * netdev_master_upper_dev_get - Get master upper device
6527  * @dev: device
6528  *
6529  * Find a master upper device and return pointer to it or NULL in case
6530  * it's not there. The caller must hold the RTNL lock.
6531  */
6532 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6533 {
6534 	struct netdev_adjacent *upper;
6535 
6536 	ASSERT_RTNL();
6537 
6538 	if (list_empty(&dev->adj_list.upper))
6539 		return NULL;
6540 
6541 	upper = list_first_entry(&dev->adj_list.upper,
6542 				 struct netdev_adjacent, list);
6543 	if (likely(upper->master))
6544 		return upper->dev;
6545 	return NULL;
6546 }
6547 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6548 
6549 /**
6550  * netdev_has_any_lower_dev - Check if device is linked to some device
6551  * @dev: device
6552  *
6553  * Find out if a device is linked to a lower device and return true in case
6554  * it is. The caller must hold the RTNL lock.
6555  */
6556 static bool netdev_has_any_lower_dev(struct net_device *dev)
6557 {
6558 	ASSERT_RTNL();
6559 
6560 	return !list_empty(&dev->adj_list.lower);
6561 }
6562 
6563 void *netdev_adjacent_get_private(struct list_head *adj_list)
6564 {
6565 	struct netdev_adjacent *adj;
6566 
6567 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6568 
6569 	return adj->private;
6570 }
6571 EXPORT_SYMBOL(netdev_adjacent_get_private);
6572 
6573 /**
6574  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6575  * @dev: device
6576  * @iter: list_head ** of the current position
6577  *
6578  * Gets the next device from the dev's upper list, starting from iter
6579  * position. The caller must hold RCU read lock.
6580  */
6581 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6582 						 struct list_head **iter)
6583 {
6584 	struct netdev_adjacent *upper;
6585 
6586 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6587 
6588 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6589 
6590 	if (&upper->list == &dev->adj_list.upper)
6591 		return NULL;
6592 
6593 	*iter = &upper->list;
6594 
6595 	return upper->dev;
6596 }
6597 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6598 
6599 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6600 						    struct list_head **iter)
6601 {
6602 	struct netdev_adjacent *upper;
6603 
6604 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6605 
6606 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6607 
6608 	if (&upper->list == &dev->adj_list.upper)
6609 		return NULL;
6610 
6611 	*iter = &upper->list;
6612 
6613 	return upper->dev;
6614 }
6615 
6616 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6617 				  int (*fn)(struct net_device *dev,
6618 					    void *data),
6619 				  void *data)
6620 {
6621 	struct net_device *udev;
6622 	struct list_head *iter;
6623 	int ret;
6624 
6625 	for (iter = &dev->adj_list.upper,
6626 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
6627 	     udev;
6628 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6629 		/* first is the upper device itself */
6630 		ret = fn(udev, data);
6631 		if (ret)
6632 			return ret;
6633 
6634 		/* then look at all of its upper devices */
6635 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6636 		if (ret)
6637 			return ret;
6638 	}
6639 
6640 	return 0;
6641 }
6642 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6643 
6644 /**
6645  * netdev_lower_get_next_private - Get the next ->private from the
6646  *				   lower neighbour list
6647  * @dev: device
6648  * @iter: list_head ** of the current position
6649  *
6650  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6651  * list, starting from iter position. The caller must hold either hold the
6652  * RTNL lock or its own locking that guarantees that the neighbour lower
6653  * list will remain unchanged.
6654  */
6655 void *netdev_lower_get_next_private(struct net_device *dev,
6656 				    struct list_head **iter)
6657 {
6658 	struct netdev_adjacent *lower;
6659 
6660 	lower = list_entry(*iter, struct netdev_adjacent, list);
6661 
6662 	if (&lower->list == &dev->adj_list.lower)
6663 		return NULL;
6664 
6665 	*iter = lower->list.next;
6666 
6667 	return lower->private;
6668 }
6669 EXPORT_SYMBOL(netdev_lower_get_next_private);
6670 
6671 /**
6672  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6673  *				       lower neighbour list, RCU
6674  *				       variant
6675  * @dev: device
6676  * @iter: list_head ** of the current position
6677  *
6678  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6679  * list, starting from iter position. The caller must hold RCU read lock.
6680  */
6681 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6682 					struct list_head **iter)
6683 {
6684 	struct netdev_adjacent *lower;
6685 
6686 	WARN_ON_ONCE(!rcu_read_lock_held());
6687 
6688 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6689 
6690 	if (&lower->list == &dev->adj_list.lower)
6691 		return NULL;
6692 
6693 	*iter = &lower->list;
6694 
6695 	return lower->private;
6696 }
6697 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6698 
6699 /**
6700  * netdev_lower_get_next - Get the next device from the lower neighbour
6701  *                         list
6702  * @dev: device
6703  * @iter: list_head ** of the current position
6704  *
6705  * Gets the next netdev_adjacent from the dev's lower neighbour
6706  * list, starting from iter position. The caller must hold RTNL lock or
6707  * its own locking that guarantees that the neighbour lower
6708  * list will remain unchanged.
6709  */
6710 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6711 {
6712 	struct netdev_adjacent *lower;
6713 
6714 	lower = list_entry(*iter, struct netdev_adjacent, list);
6715 
6716 	if (&lower->list == &dev->adj_list.lower)
6717 		return NULL;
6718 
6719 	*iter = lower->list.next;
6720 
6721 	return lower->dev;
6722 }
6723 EXPORT_SYMBOL(netdev_lower_get_next);
6724 
6725 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6726 						struct list_head **iter)
6727 {
6728 	struct netdev_adjacent *lower;
6729 
6730 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6731 
6732 	if (&lower->list == &dev->adj_list.lower)
6733 		return NULL;
6734 
6735 	*iter = &lower->list;
6736 
6737 	return lower->dev;
6738 }
6739 
6740 int netdev_walk_all_lower_dev(struct net_device *dev,
6741 			      int (*fn)(struct net_device *dev,
6742 					void *data),
6743 			      void *data)
6744 {
6745 	struct net_device *ldev;
6746 	struct list_head *iter;
6747 	int ret;
6748 
6749 	for (iter = &dev->adj_list.lower,
6750 	     ldev = netdev_next_lower_dev(dev, &iter);
6751 	     ldev;
6752 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6753 		/* first is the lower device itself */
6754 		ret = fn(ldev, data);
6755 		if (ret)
6756 			return ret;
6757 
6758 		/* then look at all of its lower devices */
6759 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6760 		if (ret)
6761 			return ret;
6762 	}
6763 
6764 	return 0;
6765 }
6766 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6767 
6768 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6769 						    struct list_head **iter)
6770 {
6771 	struct netdev_adjacent *lower;
6772 
6773 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6774 	if (&lower->list == &dev->adj_list.lower)
6775 		return NULL;
6776 
6777 	*iter = &lower->list;
6778 
6779 	return lower->dev;
6780 }
6781 
6782 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6783 				  int (*fn)(struct net_device *dev,
6784 					    void *data),
6785 				  void *data)
6786 {
6787 	struct net_device *ldev;
6788 	struct list_head *iter;
6789 	int ret;
6790 
6791 	for (iter = &dev->adj_list.lower,
6792 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6793 	     ldev;
6794 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6795 		/* first is the lower device itself */
6796 		ret = fn(ldev, data);
6797 		if (ret)
6798 			return ret;
6799 
6800 		/* then look at all of its lower devices */
6801 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6802 		if (ret)
6803 			return ret;
6804 	}
6805 
6806 	return 0;
6807 }
6808 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6809 
6810 /**
6811  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6812  *				       lower neighbour list, RCU
6813  *				       variant
6814  * @dev: device
6815  *
6816  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6817  * list. The caller must hold RCU read lock.
6818  */
6819 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6820 {
6821 	struct netdev_adjacent *lower;
6822 
6823 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6824 			struct netdev_adjacent, list);
6825 	if (lower)
6826 		return lower->private;
6827 	return NULL;
6828 }
6829 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6830 
6831 /**
6832  * netdev_master_upper_dev_get_rcu - Get master upper device
6833  * @dev: device
6834  *
6835  * Find a master upper device and return pointer to it or NULL in case
6836  * it's not there. The caller must hold the RCU read lock.
6837  */
6838 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6839 {
6840 	struct netdev_adjacent *upper;
6841 
6842 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6843 				       struct netdev_adjacent, list);
6844 	if (upper && likely(upper->master))
6845 		return upper->dev;
6846 	return NULL;
6847 }
6848 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6849 
6850 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6851 			      struct net_device *adj_dev,
6852 			      struct list_head *dev_list)
6853 {
6854 	char linkname[IFNAMSIZ+7];
6855 
6856 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6857 		"upper_%s" : "lower_%s", adj_dev->name);
6858 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6859 				 linkname);
6860 }
6861 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6862 			       char *name,
6863 			       struct list_head *dev_list)
6864 {
6865 	char linkname[IFNAMSIZ+7];
6866 
6867 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6868 		"upper_%s" : "lower_%s", name);
6869 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6870 }
6871 
6872 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6873 						 struct net_device *adj_dev,
6874 						 struct list_head *dev_list)
6875 {
6876 	return (dev_list == &dev->adj_list.upper ||
6877 		dev_list == &dev->adj_list.lower) &&
6878 		net_eq(dev_net(dev), dev_net(adj_dev));
6879 }
6880 
6881 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6882 					struct net_device *adj_dev,
6883 					struct list_head *dev_list,
6884 					void *private, bool master)
6885 {
6886 	struct netdev_adjacent *adj;
6887 	int ret;
6888 
6889 	adj = __netdev_find_adj(adj_dev, dev_list);
6890 
6891 	if (adj) {
6892 		adj->ref_nr += 1;
6893 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6894 			 dev->name, adj_dev->name, adj->ref_nr);
6895 
6896 		return 0;
6897 	}
6898 
6899 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6900 	if (!adj)
6901 		return -ENOMEM;
6902 
6903 	adj->dev = adj_dev;
6904 	adj->master = master;
6905 	adj->ref_nr = 1;
6906 	adj->private = private;
6907 	dev_hold(adj_dev);
6908 
6909 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6910 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6911 
6912 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6913 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6914 		if (ret)
6915 			goto free_adj;
6916 	}
6917 
6918 	/* Ensure that master link is always the first item in list. */
6919 	if (master) {
6920 		ret = sysfs_create_link(&(dev->dev.kobj),
6921 					&(adj_dev->dev.kobj), "master");
6922 		if (ret)
6923 			goto remove_symlinks;
6924 
6925 		list_add_rcu(&adj->list, dev_list);
6926 	} else {
6927 		list_add_tail_rcu(&adj->list, dev_list);
6928 	}
6929 
6930 	return 0;
6931 
6932 remove_symlinks:
6933 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6934 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6935 free_adj:
6936 	kfree(adj);
6937 	dev_put(adj_dev);
6938 
6939 	return ret;
6940 }
6941 
6942 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6943 					 struct net_device *adj_dev,
6944 					 u16 ref_nr,
6945 					 struct list_head *dev_list)
6946 {
6947 	struct netdev_adjacent *adj;
6948 
6949 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6950 		 dev->name, adj_dev->name, ref_nr);
6951 
6952 	adj = __netdev_find_adj(adj_dev, dev_list);
6953 
6954 	if (!adj) {
6955 		pr_err("Adjacency does not exist for device %s from %s\n",
6956 		       dev->name, adj_dev->name);
6957 		WARN_ON(1);
6958 		return;
6959 	}
6960 
6961 	if (adj->ref_nr > ref_nr) {
6962 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6963 			 dev->name, adj_dev->name, ref_nr,
6964 			 adj->ref_nr - ref_nr);
6965 		adj->ref_nr -= ref_nr;
6966 		return;
6967 	}
6968 
6969 	if (adj->master)
6970 		sysfs_remove_link(&(dev->dev.kobj), "master");
6971 
6972 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6973 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6974 
6975 	list_del_rcu(&adj->list);
6976 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6977 		 adj_dev->name, dev->name, adj_dev->name);
6978 	dev_put(adj_dev);
6979 	kfree_rcu(adj, rcu);
6980 }
6981 
6982 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6983 					    struct net_device *upper_dev,
6984 					    struct list_head *up_list,
6985 					    struct list_head *down_list,
6986 					    void *private, bool master)
6987 {
6988 	int ret;
6989 
6990 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6991 					   private, master);
6992 	if (ret)
6993 		return ret;
6994 
6995 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6996 					   private, false);
6997 	if (ret) {
6998 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6999 		return ret;
7000 	}
7001 
7002 	return 0;
7003 }
7004 
7005 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7006 					       struct net_device *upper_dev,
7007 					       u16 ref_nr,
7008 					       struct list_head *up_list,
7009 					       struct list_head *down_list)
7010 {
7011 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7012 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7013 }
7014 
7015 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7016 						struct net_device *upper_dev,
7017 						void *private, bool master)
7018 {
7019 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7020 						&dev->adj_list.upper,
7021 						&upper_dev->adj_list.lower,
7022 						private, master);
7023 }
7024 
7025 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7026 						   struct net_device *upper_dev)
7027 {
7028 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7029 					   &dev->adj_list.upper,
7030 					   &upper_dev->adj_list.lower);
7031 }
7032 
7033 static int __netdev_upper_dev_link(struct net_device *dev,
7034 				   struct net_device *upper_dev, bool master,
7035 				   void *upper_priv, void *upper_info,
7036 				   struct netlink_ext_ack *extack)
7037 {
7038 	struct netdev_notifier_changeupper_info changeupper_info = {
7039 		.info = {
7040 			.dev = dev,
7041 			.extack = extack,
7042 		},
7043 		.upper_dev = upper_dev,
7044 		.master = master,
7045 		.linking = true,
7046 		.upper_info = upper_info,
7047 	};
7048 	struct net_device *master_dev;
7049 	int ret = 0;
7050 
7051 	ASSERT_RTNL();
7052 
7053 	if (dev == upper_dev)
7054 		return -EBUSY;
7055 
7056 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7057 	if (netdev_has_upper_dev(upper_dev, dev))
7058 		return -EBUSY;
7059 
7060 	if (!master) {
7061 		if (netdev_has_upper_dev(dev, upper_dev))
7062 			return -EEXIST;
7063 	} else {
7064 		master_dev = netdev_master_upper_dev_get(dev);
7065 		if (master_dev)
7066 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7067 	}
7068 
7069 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7070 					    &changeupper_info.info);
7071 	ret = notifier_to_errno(ret);
7072 	if (ret)
7073 		return ret;
7074 
7075 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7076 						   master);
7077 	if (ret)
7078 		return ret;
7079 
7080 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7081 					    &changeupper_info.info);
7082 	ret = notifier_to_errno(ret);
7083 	if (ret)
7084 		goto rollback;
7085 
7086 	return 0;
7087 
7088 rollback:
7089 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7090 
7091 	return ret;
7092 }
7093 
7094 /**
7095  * netdev_upper_dev_link - Add a link to the upper device
7096  * @dev: device
7097  * @upper_dev: new upper device
7098  * @extack: netlink extended ack
7099  *
7100  * Adds a link to device which is upper to this one. The caller must hold
7101  * the RTNL lock. On a failure a negative errno code is returned.
7102  * On success the reference counts are adjusted and the function
7103  * returns zero.
7104  */
7105 int netdev_upper_dev_link(struct net_device *dev,
7106 			  struct net_device *upper_dev,
7107 			  struct netlink_ext_ack *extack)
7108 {
7109 	return __netdev_upper_dev_link(dev, upper_dev, false,
7110 				       NULL, NULL, extack);
7111 }
7112 EXPORT_SYMBOL(netdev_upper_dev_link);
7113 
7114 /**
7115  * netdev_master_upper_dev_link - Add a master link to the upper device
7116  * @dev: device
7117  * @upper_dev: new upper device
7118  * @upper_priv: upper device private
7119  * @upper_info: upper info to be passed down via notifier
7120  * @extack: netlink extended ack
7121  *
7122  * Adds a link to device which is upper to this one. In this case, only
7123  * one master upper device can be linked, although other non-master devices
7124  * might be linked as well. The caller must hold the RTNL lock.
7125  * On a failure a negative errno code is returned. On success the reference
7126  * counts are adjusted and the function returns zero.
7127  */
7128 int netdev_master_upper_dev_link(struct net_device *dev,
7129 				 struct net_device *upper_dev,
7130 				 void *upper_priv, void *upper_info,
7131 				 struct netlink_ext_ack *extack)
7132 {
7133 	return __netdev_upper_dev_link(dev, upper_dev, true,
7134 				       upper_priv, upper_info, extack);
7135 }
7136 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7137 
7138 /**
7139  * netdev_upper_dev_unlink - Removes a link to upper device
7140  * @dev: device
7141  * @upper_dev: new upper device
7142  *
7143  * Removes a link to device which is upper to this one. The caller must hold
7144  * the RTNL lock.
7145  */
7146 void netdev_upper_dev_unlink(struct net_device *dev,
7147 			     struct net_device *upper_dev)
7148 {
7149 	struct netdev_notifier_changeupper_info changeupper_info = {
7150 		.info = {
7151 			.dev = dev,
7152 		},
7153 		.upper_dev = upper_dev,
7154 		.linking = false,
7155 	};
7156 
7157 	ASSERT_RTNL();
7158 
7159 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7160 
7161 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7162 				      &changeupper_info.info);
7163 
7164 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7165 
7166 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7167 				      &changeupper_info.info);
7168 }
7169 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7170 
7171 /**
7172  * netdev_bonding_info_change - Dispatch event about slave change
7173  * @dev: device
7174  * @bonding_info: info to dispatch
7175  *
7176  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7177  * The caller must hold the RTNL lock.
7178  */
7179 void netdev_bonding_info_change(struct net_device *dev,
7180 				struct netdev_bonding_info *bonding_info)
7181 {
7182 	struct netdev_notifier_bonding_info info = {
7183 		.info.dev = dev,
7184 	};
7185 
7186 	memcpy(&info.bonding_info, bonding_info,
7187 	       sizeof(struct netdev_bonding_info));
7188 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7189 				      &info.info);
7190 }
7191 EXPORT_SYMBOL(netdev_bonding_info_change);
7192 
7193 static void netdev_adjacent_add_links(struct net_device *dev)
7194 {
7195 	struct netdev_adjacent *iter;
7196 
7197 	struct net *net = dev_net(dev);
7198 
7199 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7200 		if (!net_eq(net, dev_net(iter->dev)))
7201 			continue;
7202 		netdev_adjacent_sysfs_add(iter->dev, dev,
7203 					  &iter->dev->adj_list.lower);
7204 		netdev_adjacent_sysfs_add(dev, iter->dev,
7205 					  &dev->adj_list.upper);
7206 	}
7207 
7208 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7209 		if (!net_eq(net, dev_net(iter->dev)))
7210 			continue;
7211 		netdev_adjacent_sysfs_add(iter->dev, dev,
7212 					  &iter->dev->adj_list.upper);
7213 		netdev_adjacent_sysfs_add(dev, iter->dev,
7214 					  &dev->adj_list.lower);
7215 	}
7216 }
7217 
7218 static void netdev_adjacent_del_links(struct net_device *dev)
7219 {
7220 	struct netdev_adjacent *iter;
7221 
7222 	struct net *net = dev_net(dev);
7223 
7224 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7225 		if (!net_eq(net, dev_net(iter->dev)))
7226 			continue;
7227 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7228 					  &iter->dev->adj_list.lower);
7229 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7230 					  &dev->adj_list.upper);
7231 	}
7232 
7233 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7234 		if (!net_eq(net, dev_net(iter->dev)))
7235 			continue;
7236 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7237 					  &iter->dev->adj_list.upper);
7238 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7239 					  &dev->adj_list.lower);
7240 	}
7241 }
7242 
7243 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7244 {
7245 	struct netdev_adjacent *iter;
7246 
7247 	struct net *net = dev_net(dev);
7248 
7249 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7250 		if (!net_eq(net, dev_net(iter->dev)))
7251 			continue;
7252 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7253 					  &iter->dev->adj_list.lower);
7254 		netdev_adjacent_sysfs_add(iter->dev, dev,
7255 					  &iter->dev->adj_list.lower);
7256 	}
7257 
7258 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7259 		if (!net_eq(net, dev_net(iter->dev)))
7260 			continue;
7261 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7262 					  &iter->dev->adj_list.upper);
7263 		netdev_adjacent_sysfs_add(iter->dev, dev,
7264 					  &iter->dev->adj_list.upper);
7265 	}
7266 }
7267 
7268 void *netdev_lower_dev_get_private(struct net_device *dev,
7269 				   struct net_device *lower_dev)
7270 {
7271 	struct netdev_adjacent *lower;
7272 
7273 	if (!lower_dev)
7274 		return NULL;
7275 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7276 	if (!lower)
7277 		return NULL;
7278 
7279 	return lower->private;
7280 }
7281 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7282 
7283 
7284 int dev_get_nest_level(struct net_device *dev)
7285 {
7286 	struct net_device *lower = NULL;
7287 	struct list_head *iter;
7288 	int max_nest = -1;
7289 	int nest;
7290 
7291 	ASSERT_RTNL();
7292 
7293 	netdev_for_each_lower_dev(dev, lower, iter) {
7294 		nest = dev_get_nest_level(lower);
7295 		if (max_nest < nest)
7296 			max_nest = nest;
7297 	}
7298 
7299 	return max_nest + 1;
7300 }
7301 EXPORT_SYMBOL(dev_get_nest_level);
7302 
7303 /**
7304  * netdev_lower_change - Dispatch event about lower device state change
7305  * @lower_dev: device
7306  * @lower_state_info: state to dispatch
7307  *
7308  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7309  * The caller must hold the RTNL lock.
7310  */
7311 void netdev_lower_state_changed(struct net_device *lower_dev,
7312 				void *lower_state_info)
7313 {
7314 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7315 		.info.dev = lower_dev,
7316 	};
7317 
7318 	ASSERT_RTNL();
7319 	changelowerstate_info.lower_state_info = lower_state_info;
7320 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7321 				      &changelowerstate_info.info);
7322 }
7323 EXPORT_SYMBOL(netdev_lower_state_changed);
7324 
7325 static void dev_change_rx_flags(struct net_device *dev, int flags)
7326 {
7327 	const struct net_device_ops *ops = dev->netdev_ops;
7328 
7329 	if (ops->ndo_change_rx_flags)
7330 		ops->ndo_change_rx_flags(dev, flags);
7331 }
7332 
7333 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7334 {
7335 	unsigned int old_flags = dev->flags;
7336 	kuid_t uid;
7337 	kgid_t gid;
7338 
7339 	ASSERT_RTNL();
7340 
7341 	dev->flags |= IFF_PROMISC;
7342 	dev->promiscuity += inc;
7343 	if (dev->promiscuity == 0) {
7344 		/*
7345 		 * Avoid overflow.
7346 		 * If inc causes overflow, untouch promisc and return error.
7347 		 */
7348 		if (inc < 0)
7349 			dev->flags &= ~IFF_PROMISC;
7350 		else {
7351 			dev->promiscuity -= inc;
7352 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7353 				dev->name);
7354 			return -EOVERFLOW;
7355 		}
7356 	}
7357 	if (dev->flags != old_flags) {
7358 		pr_info("device %s %s promiscuous mode\n",
7359 			dev->name,
7360 			dev->flags & IFF_PROMISC ? "entered" : "left");
7361 		if (audit_enabled) {
7362 			current_uid_gid(&uid, &gid);
7363 			audit_log(audit_context(), GFP_ATOMIC,
7364 				  AUDIT_ANOM_PROMISCUOUS,
7365 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7366 				  dev->name, (dev->flags & IFF_PROMISC),
7367 				  (old_flags & IFF_PROMISC),
7368 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7369 				  from_kuid(&init_user_ns, uid),
7370 				  from_kgid(&init_user_ns, gid),
7371 				  audit_get_sessionid(current));
7372 		}
7373 
7374 		dev_change_rx_flags(dev, IFF_PROMISC);
7375 	}
7376 	if (notify)
7377 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7378 	return 0;
7379 }
7380 
7381 /**
7382  *	dev_set_promiscuity	- update promiscuity count on a device
7383  *	@dev: device
7384  *	@inc: modifier
7385  *
7386  *	Add or remove promiscuity from a device. While the count in the device
7387  *	remains above zero the interface remains promiscuous. Once it hits zero
7388  *	the device reverts back to normal filtering operation. A negative inc
7389  *	value is used to drop promiscuity on the device.
7390  *	Return 0 if successful or a negative errno code on error.
7391  */
7392 int dev_set_promiscuity(struct net_device *dev, int inc)
7393 {
7394 	unsigned int old_flags = dev->flags;
7395 	int err;
7396 
7397 	err = __dev_set_promiscuity(dev, inc, true);
7398 	if (err < 0)
7399 		return err;
7400 	if (dev->flags != old_flags)
7401 		dev_set_rx_mode(dev);
7402 	return err;
7403 }
7404 EXPORT_SYMBOL(dev_set_promiscuity);
7405 
7406 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7407 {
7408 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7409 
7410 	ASSERT_RTNL();
7411 
7412 	dev->flags |= IFF_ALLMULTI;
7413 	dev->allmulti += inc;
7414 	if (dev->allmulti == 0) {
7415 		/*
7416 		 * Avoid overflow.
7417 		 * If inc causes overflow, untouch allmulti and return error.
7418 		 */
7419 		if (inc < 0)
7420 			dev->flags &= ~IFF_ALLMULTI;
7421 		else {
7422 			dev->allmulti -= inc;
7423 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7424 				dev->name);
7425 			return -EOVERFLOW;
7426 		}
7427 	}
7428 	if (dev->flags ^ old_flags) {
7429 		dev_change_rx_flags(dev, IFF_ALLMULTI);
7430 		dev_set_rx_mode(dev);
7431 		if (notify)
7432 			__dev_notify_flags(dev, old_flags,
7433 					   dev->gflags ^ old_gflags);
7434 	}
7435 	return 0;
7436 }
7437 
7438 /**
7439  *	dev_set_allmulti	- update allmulti count on a device
7440  *	@dev: device
7441  *	@inc: modifier
7442  *
7443  *	Add or remove reception of all multicast frames to a device. While the
7444  *	count in the device remains above zero the interface remains listening
7445  *	to all interfaces. Once it hits zero the device reverts back to normal
7446  *	filtering operation. A negative @inc value is used to drop the counter
7447  *	when releasing a resource needing all multicasts.
7448  *	Return 0 if successful or a negative errno code on error.
7449  */
7450 
7451 int dev_set_allmulti(struct net_device *dev, int inc)
7452 {
7453 	return __dev_set_allmulti(dev, inc, true);
7454 }
7455 EXPORT_SYMBOL(dev_set_allmulti);
7456 
7457 /*
7458  *	Upload unicast and multicast address lists to device and
7459  *	configure RX filtering. When the device doesn't support unicast
7460  *	filtering it is put in promiscuous mode while unicast addresses
7461  *	are present.
7462  */
7463 void __dev_set_rx_mode(struct net_device *dev)
7464 {
7465 	const struct net_device_ops *ops = dev->netdev_ops;
7466 
7467 	/* dev_open will call this function so the list will stay sane. */
7468 	if (!(dev->flags&IFF_UP))
7469 		return;
7470 
7471 	if (!netif_device_present(dev))
7472 		return;
7473 
7474 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7475 		/* Unicast addresses changes may only happen under the rtnl,
7476 		 * therefore calling __dev_set_promiscuity here is safe.
7477 		 */
7478 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7479 			__dev_set_promiscuity(dev, 1, false);
7480 			dev->uc_promisc = true;
7481 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7482 			__dev_set_promiscuity(dev, -1, false);
7483 			dev->uc_promisc = false;
7484 		}
7485 	}
7486 
7487 	if (ops->ndo_set_rx_mode)
7488 		ops->ndo_set_rx_mode(dev);
7489 }
7490 
7491 void dev_set_rx_mode(struct net_device *dev)
7492 {
7493 	netif_addr_lock_bh(dev);
7494 	__dev_set_rx_mode(dev);
7495 	netif_addr_unlock_bh(dev);
7496 }
7497 
7498 /**
7499  *	dev_get_flags - get flags reported to userspace
7500  *	@dev: device
7501  *
7502  *	Get the combination of flag bits exported through APIs to userspace.
7503  */
7504 unsigned int dev_get_flags(const struct net_device *dev)
7505 {
7506 	unsigned int flags;
7507 
7508 	flags = (dev->flags & ~(IFF_PROMISC |
7509 				IFF_ALLMULTI |
7510 				IFF_RUNNING |
7511 				IFF_LOWER_UP |
7512 				IFF_DORMANT)) |
7513 		(dev->gflags & (IFF_PROMISC |
7514 				IFF_ALLMULTI));
7515 
7516 	if (netif_running(dev)) {
7517 		if (netif_oper_up(dev))
7518 			flags |= IFF_RUNNING;
7519 		if (netif_carrier_ok(dev))
7520 			flags |= IFF_LOWER_UP;
7521 		if (netif_dormant(dev))
7522 			flags |= IFF_DORMANT;
7523 	}
7524 
7525 	return flags;
7526 }
7527 EXPORT_SYMBOL(dev_get_flags);
7528 
7529 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7530 		       struct netlink_ext_ack *extack)
7531 {
7532 	unsigned int old_flags = dev->flags;
7533 	int ret;
7534 
7535 	ASSERT_RTNL();
7536 
7537 	/*
7538 	 *	Set the flags on our device.
7539 	 */
7540 
7541 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7542 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7543 			       IFF_AUTOMEDIA)) |
7544 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7545 				    IFF_ALLMULTI));
7546 
7547 	/*
7548 	 *	Load in the correct multicast list now the flags have changed.
7549 	 */
7550 
7551 	if ((old_flags ^ flags) & IFF_MULTICAST)
7552 		dev_change_rx_flags(dev, IFF_MULTICAST);
7553 
7554 	dev_set_rx_mode(dev);
7555 
7556 	/*
7557 	 *	Have we downed the interface. We handle IFF_UP ourselves
7558 	 *	according to user attempts to set it, rather than blindly
7559 	 *	setting it.
7560 	 */
7561 
7562 	ret = 0;
7563 	if ((old_flags ^ flags) & IFF_UP) {
7564 		if (old_flags & IFF_UP)
7565 			__dev_close(dev);
7566 		else
7567 			ret = __dev_open(dev, extack);
7568 	}
7569 
7570 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
7571 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
7572 		unsigned int old_flags = dev->flags;
7573 
7574 		dev->gflags ^= IFF_PROMISC;
7575 
7576 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
7577 			if (dev->flags != old_flags)
7578 				dev_set_rx_mode(dev);
7579 	}
7580 
7581 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7582 	 * is important. Some (broken) drivers set IFF_PROMISC, when
7583 	 * IFF_ALLMULTI is requested not asking us and not reporting.
7584 	 */
7585 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7586 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7587 
7588 		dev->gflags ^= IFF_ALLMULTI;
7589 		__dev_set_allmulti(dev, inc, false);
7590 	}
7591 
7592 	return ret;
7593 }
7594 
7595 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7596 			unsigned int gchanges)
7597 {
7598 	unsigned int changes = dev->flags ^ old_flags;
7599 
7600 	if (gchanges)
7601 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7602 
7603 	if (changes & IFF_UP) {
7604 		if (dev->flags & IFF_UP)
7605 			call_netdevice_notifiers(NETDEV_UP, dev);
7606 		else
7607 			call_netdevice_notifiers(NETDEV_DOWN, dev);
7608 	}
7609 
7610 	if (dev->flags & IFF_UP &&
7611 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7612 		struct netdev_notifier_change_info change_info = {
7613 			.info = {
7614 				.dev = dev,
7615 			},
7616 			.flags_changed = changes,
7617 		};
7618 
7619 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7620 	}
7621 }
7622 
7623 /**
7624  *	dev_change_flags - change device settings
7625  *	@dev: device
7626  *	@flags: device state flags
7627  *	@extack: netlink extended ack
7628  *
7629  *	Change settings on device based state flags. The flags are
7630  *	in the userspace exported format.
7631  */
7632 int dev_change_flags(struct net_device *dev, unsigned int flags,
7633 		     struct netlink_ext_ack *extack)
7634 {
7635 	int ret;
7636 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7637 
7638 	ret = __dev_change_flags(dev, flags, extack);
7639 	if (ret < 0)
7640 		return ret;
7641 
7642 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7643 	__dev_notify_flags(dev, old_flags, changes);
7644 	return ret;
7645 }
7646 EXPORT_SYMBOL(dev_change_flags);
7647 
7648 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7649 {
7650 	const struct net_device_ops *ops = dev->netdev_ops;
7651 
7652 	if (ops->ndo_change_mtu)
7653 		return ops->ndo_change_mtu(dev, new_mtu);
7654 
7655 	dev->mtu = new_mtu;
7656 	return 0;
7657 }
7658 EXPORT_SYMBOL(__dev_set_mtu);
7659 
7660 /**
7661  *	dev_set_mtu_ext - Change maximum transfer unit
7662  *	@dev: device
7663  *	@new_mtu: new transfer unit
7664  *	@extack: netlink extended ack
7665  *
7666  *	Change the maximum transfer size of the network device.
7667  */
7668 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7669 		    struct netlink_ext_ack *extack)
7670 {
7671 	int err, orig_mtu;
7672 
7673 	if (new_mtu == dev->mtu)
7674 		return 0;
7675 
7676 	/* MTU must be positive, and in range */
7677 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7678 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7679 		return -EINVAL;
7680 	}
7681 
7682 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7683 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7684 		return -EINVAL;
7685 	}
7686 
7687 	if (!netif_device_present(dev))
7688 		return -ENODEV;
7689 
7690 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7691 	err = notifier_to_errno(err);
7692 	if (err)
7693 		return err;
7694 
7695 	orig_mtu = dev->mtu;
7696 	err = __dev_set_mtu(dev, new_mtu);
7697 
7698 	if (!err) {
7699 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7700 						   orig_mtu);
7701 		err = notifier_to_errno(err);
7702 		if (err) {
7703 			/* setting mtu back and notifying everyone again,
7704 			 * so that they have a chance to revert changes.
7705 			 */
7706 			__dev_set_mtu(dev, orig_mtu);
7707 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7708 						     new_mtu);
7709 		}
7710 	}
7711 	return err;
7712 }
7713 
7714 int dev_set_mtu(struct net_device *dev, int new_mtu)
7715 {
7716 	struct netlink_ext_ack extack;
7717 	int err;
7718 
7719 	memset(&extack, 0, sizeof(extack));
7720 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
7721 	if (err && extack._msg)
7722 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7723 	return err;
7724 }
7725 EXPORT_SYMBOL(dev_set_mtu);
7726 
7727 /**
7728  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7729  *	@dev: device
7730  *	@new_len: new tx queue length
7731  */
7732 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7733 {
7734 	unsigned int orig_len = dev->tx_queue_len;
7735 	int res;
7736 
7737 	if (new_len != (unsigned int)new_len)
7738 		return -ERANGE;
7739 
7740 	if (new_len != orig_len) {
7741 		dev->tx_queue_len = new_len;
7742 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7743 		res = notifier_to_errno(res);
7744 		if (res)
7745 			goto err_rollback;
7746 		res = dev_qdisc_change_tx_queue_len(dev);
7747 		if (res)
7748 			goto err_rollback;
7749 	}
7750 
7751 	return 0;
7752 
7753 err_rollback:
7754 	netdev_err(dev, "refused to change device tx_queue_len\n");
7755 	dev->tx_queue_len = orig_len;
7756 	return res;
7757 }
7758 
7759 /**
7760  *	dev_set_group - Change group this device belongs to
7761  *	@dev: device
7762  *	@new_group: group this device should belong to
7763  */
7764 void dev_set_group(struct net_device *dev, int new_group)
7765 {
7766 	dev->group = new_group;
7767 }
7768 EXPORT_SYMBOL(dev_set_group);
7769 
7770 /**
7771  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7772  *	@dev: device
7773  *	@addr: new address
7774  *	@extack: netlink extended ack
7775  */
7776 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7777 			      struct netlink_ext_ack *extack)
7778 {
7779 	struct netdev_notifier_pre_changeaddr_info info = {
7780 		.info.dev = dev,
7781 		.info.extack = extack,
7782 		.dev_addr = addr,
7783 	};
7784 	int rc;
7785 
7786 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7787 	return notifier_to_errno(rc);
7788 }
7789 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7790 
7791 /**
7792  *	dev_set_mac_address - Change Media Access Control Address
7793  *	@dev: device
7794  *	@sa: new address
7795  *	@extack: netlink extended ack
7796  *
7797  *	Change the hardware (MAC) address of the device
7798  */
7799 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7800 			struct netlink_ext_ack *extack)
7801 {
7802 	const struct net_device_ops *ops = dev->netdev_ops;
7803 	int err;
7804 
7805 	if (!ops->ndo_set_mac_address)
7806 		return -EOPNOTSUPP;
7807 	if (sa->sa_family != dev->type)
7808 		return -EINVAL;
7809 	if (!netif_device_present(dev))
7810 		return -ENODEV;
7811 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7812 	if (err)
7813 		return err;
7814 	err = ops->ndo_set_mac_address(dev, sa);
7815 	if (err)
7816 		return err;
7817 	dev->addr_assign_type = NET_ADDR_SET;
7818 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7819 	add_device_randomness(dev->dev_addr, dev->addr_len);
7820 	return 0;
7821 }
7822 EXPORT_SYMBOL(dev_set_mac_address);
7823 
7824 /**
7825  *	dev_change_carrier - Change device carrier
7826  *	@dev: device
7827  *	@new_carrier: new value
7828  *
7829  *	Change device carrier
7830  */
7831 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7832 {
7833 	const struct net_device_ops *ops = dev->netdev_ops;
7834 
7835 	if (!ops->ndo_change_carrier)
7836 		return -EOPNOTSUPP;
7837 	if (!netif_device_present(dev))
7838 		return -ENODEV;
7839 	return ops->ndo_change_carrier(dev, new_carrier);
7840 }
7841 EXPORT_SYMBOL(dev_change_carrier);
7842 
7843 /**
7844  *	dev_get_phys_port_id - Get device physical port ID
7845  *	@dev: device
7846  *	@ppid: port ID
7847  *
7848  *	Get device physical port ID
7849  */
7850 int dev_get_phys_port_id(struct net_device *dev,
7851 			 struct netdev_phys_item_id *ppid)
7852 {
7853 	const struct net_device_ops *ops = dev->netdev_ops;
7854 
7855 	if (!ops->ndo_get_phys_port_id)
7856 		return -EOPNOTSUPP;
7857 	return ops->ndo_get_phys_port_id(dev, ppid);
7858 }
7859 EXPORT_SYMBOL(dev_get_phys_port_id);
7860 
7861 /**
7862  *	dev_get_phys_port_name - Get device physical port name
7863  *	@dev: device
7864  *	@name: port name
7865  *	@len: limit of bytes to copy to name
7866  *
7867  *	Get device physical port name
7868  */
7869 int dev_get_phys_port_name(struct net_device *dev,
7870 			   char *name, size_t len)
7871 {
7872 	const struct net_device_ops *ops = dev->netdev_ops;
7873 
7874 	if (!ops->ndo_get_phys_port_name)
7875 		return -EOPNOTSUPP;
7876 	return ops->ndo_get_phys_port_name(dev, name, len);
7877 }
7878 EXPORT_SYMBOL(dev_get_phys_port_name);
7879 
7880 /**
7881  *	dev_change_proto_down - update protocol port state information
7882  *	@dev: device
7883  *	@proto_down: new value
7884  *
7885  *	This info can be used by switch drivers to set the phys state of the
7886  *	port.
7887  */
7888 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7889 {
7890 	const struct net_device_ops *ops = dev->netdev_ops;
7891 
7892 	if (!ops->ndo_change_proto_down)
7893 		return -EOPNOTSUPP;
7894 	if (!netif_device_present(dev))
7895 		return -ENODEV;
7896 	return ops->ndo_change_proto_down(dev, proto_down);
7897 }
7898 EXPORT_SYMBOL(dev_change_proto_down);
7899 
7900 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7901 		    enum bpf_netdev_command cmd)
7902 {
7903 	struct netdev_bpf xdp;
7904 
7905 	if (!bpf_op)
7906 		return 0;
7907 
7908 	memset(&xdp, 0, sizeof(xdp));
7909 	xdp.command = cmd;
7910 
7911 	/* Query must always succeed. */
7912 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7913 
7914 	return xdp.prog_id;
7915 }
7916 
7917 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7918 			   struct netlink_ext_ack *extack, u32 flags,
7919 			   struct bpf_prog *prog)
7920 {
7921 	struct netdev_bpf xdp;
7922 
7923 	memset(&xdp, 0, sizeof(xdp));
7924 	if (flags & XDP_FLAGS_HW_MODE)
7925 		xdp.command = XDP_SETUP_PROG_HW;
7926 	else
7927 		xdp.command = XDP_SETUP_PROG;
7928 	xdp.extack = extack;
7929 	xdp.flags = flags;
7930 	xdp.prog = prog;
7931 
7932 	return bpf_op(dev, &xdp);
7933 }
7934 
7935 static void dev_xdp_uninstall(struct net_device *dev)
7936 {
7937 	struct netdev_bpf xdp;
7938 	bpf_op_t ndo_bpf;
7939 
7940 	/* Remove generic XDP */
7941 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7942 
7943 	/* Remove from the driver */
7944 	ndo_bpf = dev->netdev_ops->ndo_bpf;
7945 	if (!ndo_bpf)
7946 		return;
7947 
7948 	memset(&xdp, 0, sizeof(xdp));
7949 	xdp.command = XDP_QUERY_PROG;
7950 	WARN_ON(ndo_bpf(dev, &xdp));
7951 	if (xdp.prog_id)
7952 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7953 					NULL));
7954 
7955 	/* Remove HW offload */
7956 	memset(&xdp, 0, sizeof(xdp));
7957 	xdp.command = XDP_QUERY_PROG_HW;
7958 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7959 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7960 					NULL));
7961 }
7962 
7963 /**
7964  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7965  *	@dev: device
7966  *	@extack: netlink extended ack
7967  *	@fd: new program fd or negative value to clear
7968  *	@flags: xdp-related flags
7969  *
7970  *	Set or clear a bpf program for a device
7971  */
7972 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7973 		      int fd, u32 flags)
7974 {
7975 	const struct net_device_ops *ops = dev->netdev_ops;
7976 	enum bpf_netdev_command query;
7977 	struct bpf_prog *prog = NULL;
7978 	bpf_op_t bpf_op, bpf_chk;
7979 	int err;
7980 
7981 	ASSERT_RTNL();
7982 
7983 	query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7984 
7985 	bpf_op = bpf_chk = ops->ndo_bpf;
7986 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7987 		return -EOPNOTSUPP;
7988 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7989 		bpf_op = generic_xdp_install;
7990 	if (bpf_op == bpf_chk)
7991 		bpf_chk = generic_xdp_install;
7992 
7993 	if (fd >= 0) {
7994 		if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7995 		    __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7996 			return -EEXIST;
7997 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7998 		    __dev_xdp_query(dev, bpf_op, query))
7999 			return -EBUSY;
8000 
8001 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8002 					     bpf_op == ops->ndo_bpf);
8003 		if (IS_ERR(prog))
8004 			return PTR_ERR(prog);
8005 
8006 		if (!(flags & XDP_FLAGS_HW_MODE) &&
8007 		    bpf_prog_is_dev_bound(prog->aux)) {
8008 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8009 			bpf_prog_put(prog);
8010 			return -EINVAL;
8011 		}
8012 	}
8013 
8014 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8015 	if (err < 0 && prog)
8016 		bpf_prog_put(prog);
8017 
8018 	return err;
8019 }
8020 
8021 /**
8022  *	dev_new_index	-	allocate an ifindex
8023  *	@net: the applicable net namespace
8024  *
8025  *	Returns a suitable unique value for a new device interface
8026  *	number.  The caller must hold the rtnl semaphore or the
8027  *	dev_base_lock to be sure it remains unique.
8028  */
8029 static int dev_new_index(struct net *net)
8030 {
8031 	int ifindex = net->ifindex;
8032 
8033 	for (;;) {
8034 		if (++ifindex <= 0)
8035 			ifindex = 1;
8036 		if (!__dev_get_by_index(net, ifindex))
8037 			return net->ifindex = ifindex;
8038 	}
8039 }
8040 
8041 /* Delayed registration/unregisteration */
8042 static LIST_HEAD(net_todo_list);
8043 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8044 
8045 static void net_set_todo(struct net_device *dev)
8046 {
8047 	list_add_tail(&dev->todo_list, &net_todo_list);
8048 	dev_net(dev)->dev_unreg_count++;
8049 }
8050 
8051 static void rollback_registered_many(struct list_head *head)
8052 {
8053 	struct net_device *dev, *tmp;
8054 	LIST_HEAD(close_head);
8055 
8056 	BUG_ON(dev_boot_phase);
8057 	ASSERT_RTNL();
8058 
8059 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8060 		/* Some devices call without registering
8061 		 * for initialization unwind. Remove those
8062 		 * devices and proceed with the remaining.
8063 		 */
8064 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8065 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8066 				 dev->name, dev);
8067 
8068 			WARN_ON(1);
8069 			list_del(&dev->unreg_list);
8070 			continue;
8071 		}
8072 		dev->dismantle = true;
8073 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8074 	}
8075 
8076 	/* If device is running, close it first. */
8077 	list_for_each_entry(dev, head, unreg_list)
8078 		list_add_tail(&dev->close_list, &close_head);
8079 	dev_close_many(&close_head, true);
8080 
8081 	list_for_each_entry(dev, head, unreg_list) {
8082 		/* And unlink it from device chain. */
8083 		unlist_netdevice(dev);
8084 
8085 		dev->reg_state = NETREG_UNREGISTERING;
8086 	}
8087 	flush_all_backlogs();
8088 
8089 	synchronize_net();
8090 
8091 	list_for_each_entry(dev, head, unreg_list) {
8092 		struct sk_buff *skb = NULL;
8093 
8094 		/* Shutdown queueing discipline. */
8095 		dev_shutdown(dev);
8096 
8097 		dev_xdp_uninstall(dev);
8098 
8099 		/* Notify protocols, that we are about to destroy
8100 		 * this device. They should clean all the things.
8101 		 */
8102 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8103 
8104 		if (!dev->rtnl_link_ops ||
8105 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8106 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8107 						     GFP_KERNEL, NULL, 0);
8108 
8109 		/*
8110 		 *	Flush the unicast and multicast chains
8111 		 */
8112 		dev_uc_flush(dev);
8113 		dev_mc_flush(dev);
8114 
8115 		if (dev->netdev_ops->ndo_uninit)
8116 			dev->netdev_ops->ndo_uninit(dev);
8117 
8118 		if (skb)
8119 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8120 
8121 		/* Notifier chain MUST detach us all upper devices. */
8122 		WARN_ON(netdev_has_any_upper_dev(dev));
8123 		WARN_ON(netdev_has_any_lower_dev(dev));
8124 
8125 		/* Remove entries from kobject tree */
8126 		netdev_unregister_kobject(dev);
8127 #ifdef CONFIG_XPS
8128 		/* Remove XPS queueing entries */
8129 		netif_reset_xps_queues_gt(dev, 0);
8130 #endif
8131 	}
8132 
8133 	synchronize_net();
8134 
8135 	list_for_each_entry(dev, head, unreg_list)
8136 		dev_put(dev);
8137 }
8138 
8139 static void rollback_registered(struct net_device *dev)
8140 {
8141 	LIST_HEAD(single);
8142 
8143 	list_add(&dev->unreg_list, &single);
8144 	rollback_registered_many(&single);
8145 	list_del(&single);
8146 }
8147 
8148 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8149 	struct net_device *upper, netdev_features_t features)
8150 {
8151 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8152 	netdev_features_t feature;
8153 	int feature_bit;
8154 
8155 	for_each_netdev_feature(&upper_disables, feature_bit) {
8156 		feature = __NETIF_F_BIT(feature_bit);
8157 		if (!(upper->wanted_features & feature)
8158 		    && (features & feature)) {
8159 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8160 				   &feature, upper->name);
8161 			features &= ~feature;
8162 		}
8163 	}
8164 
8165 	return features;
8166 }
8167 
8168 static void netdev_sync_lower_features(struct net_device *upper,
8169 	struct net_device *lower, netdev_features_t features)
8170 {
8171 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8172 	netdev_features_t feature;
8173 	int feature_bit;
8174 
8175 	for_each_netdev_feature(&upper_disables, feature_bit) {
8176 		feature = __NETIF_F_BIT(feature_bit);
8177 		if (!(features & feature) && (lower->features & feature)) {
8178 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8179 				   &feature, lower->name);
8180 			lower->wanted_features &= ~feature;
8181 			netdev_update_features(lower);
8182 
8183 			if (unlikely(lower->features & feature))
8184 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8185 					    &feature, lower->name);
8186 		}
8187 	}
8188 }
8189 
8190 static netdev_features_t netdev_fix_features(struct net_device *dev,
8191 	netdev_features_t features)
8192 {
8193 	/* Fix illegal checksum combinations */
8194 	if ((features & NETIF_F_HW_CSUM) &&
8195 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8196 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8197 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8198 	}
8199 
8200 	/* TSO requires that SG is present as well. */
8201 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8202 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8203 		features &= ~NETIF_F_ALL_TSO;
8204 	}
8205 
8206 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8207 					!(features & NETIF_F_IP_CSUM)) {
8208 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8209 		features &= ~NETIF_F_TSO;
8210 		features &= ~NETIF_F_TSO_ECN;
8211 	}
8212 
8213 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8214 					 !(features & NETIF_F_IPV6_CSUM)) {
8215 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8216 		features &= ~NETIF_F_TSO6;
8217 	}
8218 
8219 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8220 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8221 		features &= ~NETIF_F_TSO_MANGLEID;
8222 
8223 	/* TSO ECN requires that TSO is present as well. */
8224 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8225 		features &= ~NETIF_F_TSO_ECN;
8226 
8227 	/* Software GSO depends on SG. */
8228 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8229 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8230 		features &= ~NETIF_F_GSO;
8231 	}
8232 
8233 	/* GSO partial features require GSO partial be set */
8234 	if ((features & dev->gso_partial_features) &&
8235 	    !(features & NETIF_F_GSO_PARTIAL)) {
8236 		netdev_dbg(dev,
8237 			   "Dropping partially supported GSO features since no GSO partial.\n");
8238 		features &= ~dev->gso_partial_features;
8239 	}
8240 
8241 	if (!(features & NETIF_F_RXCSUM)) {
8242 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8243 		 * successfully merged by hardware must also have the
8244 		 * checksum verified by hardware.  If the user does not
8245 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8246 		 */
8247 		if (features & NETIF_F_GRO_HW) {
8248 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8249 			features &= ~NETIF_F_GRO_HW;
8250 		}
8251 	}
8252 
8253 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8254 	if (features & NETIF_F_RXFCS) {
8255 		if (features & NETIF_F_LRO) {
8256 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8257 			features &= ~NETIF_F_LRO;
8258 		}
8259 
8260 		if (features & NETIF_F_GRO_HW) {
8261 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8262 			features &= ~NETIF_F_GRO_HW;
8263 		}
8264 	}
8265 
8266 	return features;
8267 }
8268 
8269 int __netdev_update_features(struct net_device *dev)
8270 {
8271 	struct net_device *upper, *lower;
8272 	netdev_features_t features;
8273 	struct list_head *iter;
8274 	int err = -1;
8275 
8276 	ASSERT_RTNL();
8277 
8278 	features = netdev_get_wanted_features(dev);
8279 
8280 	if (dev->netdev_ops->ndo_fix_features)
8281 		features = dev->netdev_ops->ndo_fix_features(dev, features);
8282 
8283 	/* driver might be less strict about feature dependencies */
8284 	features = netdev_fix_features(dev, features);
8285 
8286 	/* some features can't be enabled if they're off an an upper device */
8287 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
8288 		features = netdev_sync_upper_features(dev, upper, features);
8289 
8290 	if (dev->features == features)
8291 		goto sync_lower;
8292 
8293 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8294 		&dev->features, &features);
8295 
8296 	if (dev->netdev_ops->ndo_set_features)
8297 		err = dev->netdev_ops->ndo_set_features(dev, features);
8298 	else
8299 		err = 0;
8300 
8301 	if (unlikely(err < 0)) {
8302 		netdev_err(dev,
8303 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
8304 			err, &features, &dev->features);
8305 		/* return non-0 since some features might have changed and
8306 		 * it's better to fire a spurious notification than miss it
8307 		 */
8308 		return -1;
8309 	}
8310 
8311 sync_lower:
8312 	/* some features must be disabled on lower devices when disabled
8313 	 * on an upper device (think: bonding master or bridge)
8314 	 */
8315 	netdev_for_each_lower_dev(dev, lower, iter)
8316 		netdev_sync_lower_features(dev, lower, features);
8317 
8318 	if (!err) {
8319 		netdev_features_t diff = features ^ dev->features;
8320 
8321 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8322 			/* udp_tunnel_{get,drop}_rx_info both need
8323 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8324 			 * device, or they won't do anything.
8325 			 * Thus we need to update dev->features
8326 			 * *before* calling udp_tunnel_get_rx_info,
8327 			 * but *after* calling udp_tunnel_drop_rx_info.
8328 			 */
8329 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8330 				dev->features = features;
8331 				udp_tunnel_get_rx_info(dev);
8332 			} else {
8333 				udp_tunnel_drop_rx_info(dev);
8334 			}
8335 		}
8336 
8337 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8338 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8339 				dev->features = features;
8340 				err |= vlan_get_rx_ctag_filter_info(dev);
8341 			} else {
8342 				vlan_drop_rx_ctag_filter_info(dev);
8343 			}
8344 		}
8345 
8346 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8347 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8348 				dev->features = features;
8349 				err |= vlan_get_rx_stag_filter_info(dev);
8350 			} else {
8351 				vlan_drop_rx_stag_filter_info(dev);
8352 			}
8353 		}
8354 
8355 		dev->features = features;
8356 	}
8357 
8358 	return err < 0 ? 0 : 1;
8359 }
8360 
8361 /**
8362  *	netdev_update_features - recalculate device features
8363  *	@dev: the device to check
8364  *
8365  *	Recalculate dev->features set and send notifications if it
8366  *	has changed. Should be called after driver or hardware dependent
8367  *	conditions might have changed that influence the features.
8368  */
8369 void netdev_update_features(struct net_device *dev)
8370 {
8371 	if (__netdev_update_features(dev))
8372 		netdev_features_change(dev);
8373 }
8374 EXPORT_SYMBOL(netdev_update_features);
8375 
8376 /**
8377  *	netdev_change_features - recalculate device features
8378  *	@dev: the device to check
8379  *
8380  *	Recalculate dev->features set and send notifications even
8381  *	if they have not changed. Should be called instead of
8382  *	netdev_update_features() if also dev->vlan_features might
8383  *	have changed to allow the changes to be propagated to stacked
8384  *	VLAN devices.
8385  */
8386 void netdev_change_features(struct net_device *dev)
8387 {
8388 	__netdev_update_features(dev);
8389 	netdev_features_change(dev);
8390 }
8391 EXPORT_SYMBOL(netdev_change_features);
8392 
8393 /**
8394  *	netif_stacked_transfer_operstate -	transfer operstate
8395  *	@rootdev: the root or lower level device to transfer state from
8396  *	@dev: the device to transfer operstate to
8397  *
8398  *	Transfer operational state from root to device. This is normally
8399  *	called when a stacking relationship exists between the root
8400  *	device and the device(a leaf device).
8401  */
8402 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8403 					struct net_device *dev)
8404 {
8405 	if (rootdev->operstate == IF_OPER_DORMANT)
8406 		netif_dormant_on(dev);
8407 	else
8408 		netif_dormant_off(dev);
8409 
8410 	if (netif_carrier_ok(rootdev))
8411 		netif_carrier_on(dev);
8412 	else
8413 		netif_carrier_off(dev);
8414 }
8415 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8416 
8417 static int netif_alloc_rx_queues(struct net_device *dev)
8418 {
8419 	unsigned int i, count = dev->num_rx_queues;
8420 	struct netdev_rx_queue *rx;
8421 	size_t sz = count * sizeof(*rx);
8422 	int err = 0;
8423 
8424 	BUG_ON(count < 1);
8425 
8426 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8427 	if (!rx)
8428 		return -ENOMEM;
8429 
8430 	dev->_rx = rx;
8431 
8432 	for (i = 0; i < count; i++) {
8433 		rx[i].dev = dev;
8434 
8435 		/* XDP RX-queue setup */
8436 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8437 		if (err < 0)
8438 			goto err_rxq_info;
8439 	}
8440 	return 0;
8441 
8442 err_rxq_info:
8443 	/* Rollback successful reg's and free other resources */
8444 	while (i--)
8445 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8446 	kvfree(dev->_rx);
8447 	dev->_rx = NULL;
8448 	return err;
8449 }
8450 
8451 static void netif_free_rx_queues(struct net_device *dev)
8452 {
8453 	unsigned int i, count = dev->num_rx_queues;
8454 
8455 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8456 	if (!dev->_rx)
8457 		return;
8458 
8459 	for (i = 0; i < count; i++)
8460 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8461 
8462 	kvfree(dev->_rx);
8463 }
8464 
8465 static void netdev_init_one_queue(struct net_device *dev,
8466 				  struct netdev_queue *queue, void *_unused)
8467 {
8468 	/* Initialize queue lock */
8469 	spin_lock_init(&queue->_xmit_lock);
8470 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8471 	queue->xmit_lock_owner = -1;
8472 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8473 	queue->dev = dev;
8474 #ifdef CONFIG_BQL
8475 	dql_init(&queue->dql, HZ);
8476 #endif
8477 }
8478 
8479 static void netif_free_tx_queues(struct net_device *dev)
8480 {
8481 	kvfree(dev->_tx);
8482 }
8483 
8484 static int netif_alloc_netdev_queues(struct net_device *dev)
8485 {
8486 	unsigned int count = dev->num_tx_queues;
8487 	struct netdev_queue *tx;
8488 	size_t sz = count * sizeof(*tx);
8489 
8490 	if (count < 1 || count > 0xffff)
8491 		return -EINVAL;
8492 
8493 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8494 	if (!tx)
8495 		return -ENOMEM;
8496 
8497 	dev->_tx = tx;
8498 
8499 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8500 	spin_lock_init(&dev->tx_global_lock);
8501 
8502 	return 0;
8503 }
8504 
8505 void netif_tx_stop_all_queues(struct net_device *dev)
8506 {
8507 	unsigned int i;
8508 
8509 	for (i = 0; i < dev->num_tx_queues; i++) {
8510 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8511 
8512 		netif_tx_stop_queue(txq);
8513 	}
8514 }
8515 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8516 
8517 /**
8518  *	register_netdevice	- register a network device
8519  *	@dev: device to register
8520  *
8521  *	Take a completed network device structure and add it to the kernel
8522  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8523  *	chain. 0 is returned on success. A negative errno code is returned
8524  *	on a failure to set up the device, or if the name is a duplicate.
8525  *
8526  *	Callers must hold the rtnl semaphore. You may want
8527  *	register_netdev() instead of this.
8528  *
8529  *	BUGS:
8530  *	The locking appears insufficient to guarantee two parallel registers
8531  *	will not get the same name.
8532  */
8533 
8534 int register_netdevice(struct net_device *dev)
8535 {
8536 	int ret;
8537 	struct net *net = dev_net(dev);
8538 
8539 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8540 		     NETDEV_FEATURE_COUNT);
8541 	BUG_ON(dev_boot_phase);
8542 	ASSERT_RTNL();
8543 
8544 	might_sleep();
8545 
8546 	/* When net_device's are persistent, this will be fatal. */
8547 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8548 	BUG_ON(!net);
8549 
8550 	spin_lock_init(&dev->addr_list_lock);
8551 	netdev_set_addr_lockdep_class(dev);
8552 
8553 	ret = dev_get_valid_name(net, dev, dev->name);
8554 	if (ret < 0)
8555 		goto out;
8556 
8557 	/* Init, if this function is available */
8558 	if (dev->netdev_ops->ndo_init) {
8559 		ret = dev->netdev_ops->ndo_init(dev);
8560 		if (ret) {
8561 			if (ret > 0)
8562 				ret = -EIO;
8563 			goto out;
8564 		}
8565 	}
8566 
8567 	if (((dev->hw_features | dev->features) &
8568 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
8569 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8570 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8571 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8572 		ret = -EINVAL;
8573 		goto err_uninit;
8574 	}
8575 
8576 	ret = -EBUSY;
8577 	if (!dev->ifindex)
8578 		dev->ifindex = dev_new_index(net);
8579 	else if (__dev_get_by_index(net, dev->ifindex))
8580 		goto err_uninit;
8581 
8582 	/* Transfer changeable features to wanted_features and enable
8583 	 * software offloads (GSO and GRO).
8584 	 */
8585 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
8586 	dev->features |= NETIF_F_SOFT_FEATURES;
8587 
8588 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
8589 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8590 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8591 	}
8592 
8593 	dev->wanted_features = dev->features & dev->hw_features;
8594 
8595 	if (!(dev->flags & IFF_LOOPBACK))
8596 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
8597 
8598 	/* If IPv4 TCP segmentation offload is supported we should also
8599 	 * allow the device to enable segmenting the frame with the option
8600 	 * of ignoring a static IP ID value.  This doesn't enable the
8601 	 * feature itself but allows the user to enable it later.
8602 	 */
8603 	if (dev->hw_features & NETIF_F_TSO)
8604 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
8605 	if (dev->vlan_features & NETIF_F_TSO)
8606 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8607 	if (dev->mpls_features & NETIF_F_TSO)
8608 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8609 	if (dev->hw_enc_features & NETIF_F_TSO)
8610 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8611 
8612 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8613 	 */
8614 	dev->vlan_features |= NETIF_F_HIGHDMA;
8615 
8616 	/* Make NETIF_F_SG inheritable to tunnel devices.
8617 	 */
8618 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8619 
8620 	/* Make NETIF_F_SG inheritable to MPLS.
8621 	 */
8622 	dev->mpls_features |= NETIF_F_SG;
8623 
8624 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8625 	ret = notifier_to_errno(ret);
8626 	if (ret)
8627 		goto err_uninit;
8628 
8629 	ret = netdev_register_kobject(dev);
8630 	if (ret)
8631 		goto err_uninit;
8632 	dev->reg_state = NETREG_REGISTERED;
8633 
8634 	__netdev_update_features(dev);
8635 
8636 	/*
8637 	 *	Default initial state at registry is that the
8638 	 *	device is present.
8639 	 */
8640 
8641 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8642 
8643 	linkwatch_init_dev(dev);
8644 
8645 	dev_init_scheduler(dev);
8646 	dev_hold(dev);
8647 	list_netdevice(dev);
8648 	add_device_randomness(dev->dev_addr, dev->addr_len);
8649 
8650 	/* If the device has permanent device address, driver should
8651 	 * set dev_addr and also addr_assign_type should be set to
8652 	 * NET_ADDR_PERM (default value).
8653 	 */
8654 	if (dev->addr_assign_type == NET_ADDR_PERM)
8655 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8656 
8657 	/* Notify protocols, that a new device appeared. */
8658 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8659 	ret = notifier_to_errno(ret);
8660 	if (ret) {
8661 		rollback_registered(dev);
8662 		dev->reg_state = NETREG_UNREGISTERED;
8663 	}
8664 	/*
8665 	 *	Prevent userspace races by waiting until the network
8666 	 *	device is fully setup before sending notifications.
8667 	 */
8668 	if (!dev->rtnl_link_ops ||
8669 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8670 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8671 
8672 out:
8673 	return ret;
8674 
8675 err_uninit:
8676 	if (dev->netdev_ops->ndo_uninit)
8677 		dev->netdev_ops->ndo_uninit(dev);
8678 	if (dev->priv_destructor)
8679 		dev->priv_destructor(dev);
8680 	goto out;
8681 }
8682 EXPORT_SYMBOL(register_netdevice);
8683 
8684 /**
8685  *	init_dummy_netdev	- init a dummy network device for NAPI
8686  *	@dev: device to init
8687  *
8688  *	This takes a network device structure and initialize the minimum
8689  *	amount of fields so it can be used to schedule NAPI polls without
8690  *	registering a full blown interface. This is to be used by drivers
8691  *	that need to tie several hardware interfaces to a single NAPI
8692  *	poll scheduler due to HW limitations.
8693  */
8694 int init_dummy_netdev(struct net_device *dev)
8695 {
8696 	/* Clear everything. Note we don't initialize spinlocks
8697 	 * are they aren't supposed to be taken by any of the
8698 	 * NAPI code and this dummy netdev is supposed to be
8699 	 * only ever used for NAPI polls
8700 	 */
8701 	memset(dev, 0, sizeof(struct net_device));
8702 
8703 	/* make sure we BUG if trying to hit standard
8704 	 * register/unregister code path
8705 	 */
8706 	dev->reg_state = NETREG_DUMMY;
8707 
8708 	/* NAPI wants this */
8709 	INIT_LIST_HEAD(&dev->napi_list);
8710 
8711 	/* a dummy interface is started by default */
8712 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8713 	set_bit(__LINK_STATE_START, &dev->state);
8714 
8715 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8716 	 * because users of this 'device' dont need to change
8717 	 * its refcount.
8718 	 */
8719 
8720 	return 0;
8721 }
8722 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8723 
8724 
8725 /**
8726  *	register_netdev	- register a network device
8727  *	@dev: device to register
8728  *
8729  *	Take a completed network device structure and add it to the kernel
8730  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8731  *	chain. 0 is returned on success. A negative errno code is returned
8732  *	on a failure to set up the device, or if the name is a duplicate.
8733  *
8734  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8735  *	and expands the device name if you passed a format string to
8736  *	alloc_netdev.
8737  */
8738 int register_netdev(struct net_device *dev)
8739 {
8740 	int err;
8741 
8742 	if (rtnl_lock_killable())
8743 		return -EINTR;
8744 	err = register_netdevice(dev);
8745 	rtnl_unlock();
8746 	return err;
8747 }
8748 EXPORT_SYMBOL(register_netdev);
8749 
8750 int netdev_refcnt_read(const struct net_device *dev)
8751 {
8752 	int i, refcnt = 0;
8753 
8754 	for_each_possible_cpu(i)
8755 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8756 	return refcnt;
8757 }
8758 EXPORT_SYMBOL(netdev_refcnt_read);
8759 
8760 /**
8761  * netdev_wait_allrefs - wait until all references are gone.
8762  * @dev: target net_device
8763  *
8764  * This is called when unregistering network devices.
8765  *
8766  * Any protocol or device that holds a reference should register
8767  * for netdevice notification, and cleanup and put back the
8768  * reference if they receive an UNREGISTER event.
8769  * We can get stuck here if buggy protocols don't correctly
8770  * call dev_put.
8771  */
8772 static void netdev_wait_allrefs(struct net_device *dev)
8773 {
8774 	unsigned long rebroadcast_time, warning_time;
8775 	int refcnt;
8776 
8777 	linkwatch_forget_dev(dev);
8778 
8779 	rebroadcast_time = warning_time = jiffies;
8780 	refcnt = netdev_refcnt_read(dev);
8781 
8782 	while (refcnt != 0) {
8783 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8784 			rtnl_lock();
8785 
8786 			/* Rebroadcast unregister notification */
8787 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8788 
8789 			__rtnl_unlock();
8790 			rcu_barrier();
8791 			rtnl_lock();
8792 
8793 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8794 				     &dev->state)) {
8795 				/* We must not have linkwatch events
8796 				 * pending on unregister. If this
8797 				 * happens, we simply run the queue
8798 				 * unscheduled, resulting in a noop
8799 				 * for this device.
8800 				 */
8801 				linkwatch_run_queue();
8802 			}
8803 
8804 			__rtnl_unlock();
8805 
8806 			rebroadcast_time = jiffies;
8807 		}
8808 
8809 		msleep(250);
8810 
8811 		refcnt = netdev_refcnt_read(dev);
8812 
8813 		if (time_after(jiffies, warning_time + 10 * HZ)) {
8814 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8815 				 dev->name, refcnt);
8816 			warning_time = jiffies;
8817 		}
8818 	}
8819 }
8820 
8821 /* The sequence is:
8822  *
8823  *	rtnl_lock();
8824  *	...
8825  *	register_netdevice(x1);
8826  *	register_netdevice(x2);
8827  *	...
8828  *	unregister_netdevice(y1);
8829  *	unregister_netdevice(y2);
8830  *      ...
8831  *	rtnl_unlock();
8832  *	free_netdev(y1);
8833  *	free_netdev(y2);
8834  *
8835  * We are invoked by rtnl_unlock().
8836  * This allows us to deal with problems:
8837  * 1) We can delete sysfs objects which invoke hotplug
8838  *    without deadlocking with linkwatch via keventd.
8839  * 2) Since we run with the RTNL semaphore not held, we can sleep
8840  *    safely in order to wait for the netdev refcnt to drop to zero.
8841  *
8842  * We must not return until all unregister events added during
8843  * the interval the lock was held have been completed.
8844  */
8845 void netdev_run_todo(void)
8846 {
8847 	struct list_head list;
8848 
8849 	/* Snapshot list, allow later requests */
8850 	list_replace_init(&net_todo_list, &list);
8851 
8852 	__rtnl_unlock();
8853 
8854 
8855 	/* Wait for rcu callbacks to finish before next phase */
8856 	if (!list_empty(&list))
8857 		rcu_barrier();
8858 
8859 	while (!list_empty(&list)) {
8860 		struct net_device *dev
8861 			= list_first_entry(&list, struct net_device, todo_list);
8862 		list_del(&dev->todo_list);
8863 
8864 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8865 			pr_err("network todo '%s' but state %d\n",
8866 			       dev->name, dev->reg_state);
8867 			dump_stack();
8868 			continue;
8869 		}
8870 
8871 		dev->reg_state = NETREG_UNREGISTERED;
8872 
8873 		netdev_wait_allrefs(dev);
8874 
8875 		/* paranoia */
8876 		BUG_ON(netdev_refcnt_read(dev));
8877 		BUG_ON(!list_empty(&dev->ptype_all));
8878 		BUG_ON(!list_empty(&dev->ptype_specific));
8879 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8880 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8881 #if IS_ENABLED(CONFIG_DECNET)
8882 		WARN_ON(dev->dn_ptr);
8883 #endif
8884 		if (dev->priv_destructor)
8885 			dev->priv_destructor(dev);
8886 		if (dev->needs_free_netdev)
8887 			free_netdev(dev);
8888 
8889 		/* Report a network device has been unregistered */
8890 		rtnl_lock();
8891 		dev_net(dev)->dev_unreg_count--;
8892 		__rtnl_unlock();
8893 		wake_up(&netdev_unregistering_wq);
8894 
8895 		/* Free network device */
8896 		kobject_put(&dev->dev.kobj);
8897 	}
8898 }
8899 
8900 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8901  * all the same fields in the same order as net_device_stats, with only
8902  * the type differing, but rtnl_link_stats64 may have additional fields
8903  * at the end for newer counters.
8904  */
8905 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8906 			     const struct net_device_stats *netdev_stats)
8907 {
8908 #if BITS_PER_LONG == 64
8909 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8910 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8911 	/* zero out counters that only exist in rtnl_link_stats64 */
8912 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
8913 	       sizeof(*stats64) - sizeof(*netdev_stats));
8914 #else
8915 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8916 	const unsigned long *src = (const unsigned long *)netdev_stats;
8917 	u64 *dst = (u64 *)stats64;
8918 
8919 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8920 	for (i = 0; i < n; i++)
8921 		dst[i] = src[i];
8922 	/* zero out counters that only exist in rtnl_link_stats64 */
8923 	memset((char *)stats64 + n * sizeof(u64), 0,
8924 	       sizeof(*stats64) - n * sizeof(u64));
8925 #endif
8926 }
8927 EXPORT_SYMBOL(netdev_stats_to_stats64);
8928 
8929 /**
8930  *	dev_get_stats	- get network device statistics
8931  *	@dev: device to get statistics from
8932  *	@storage: place to store stats
8933  *
8934  *	Get network statistics from device. Return @storage.
8935  *	The device driver may provide its own method by setting
8936  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8937  *	otherwise the internal statistics structure is used.
8938  */
8939 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8940 					struct rtnl_link_stats64 *storage)
8941 {
8942 	const struct net_device_ops *ops = dev->netdev_ops;
8943 
8944 	if (ops->ndo_get_stats64) {
8945 		memset(storage, 0, sizeof(*storage));
8946 		ops->ndo_get_stats64(dev, storage);
8947 	} else if (ops->ndo_get_stats) {
8948 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8949 	} else {
8950 		netdev_stats_to_stats64(storage, &dev->stats);
8951 	}
8952 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8953 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8954 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8955 	return storage;
8956 }
8957 EXPORT_SYMBOL(dev_get_stats);
8958 
8959 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8960 {
8961 	struct netdev_queue *queue = dev_ingress_queue(dev);
8962 
8963 #ifdef CONFIG_NET_CLS_ACT
8964 	if (queue)
8965 		return queue;
8966 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8967 	if (!queue)
8968 		return NULL;
8969 	netdev_init_one_queue(dev, queue, NULL);
8970 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8971 	queue->qdisc_sleeping = &noop_qdisc;
8972 	rcu_assign_pointer(dev->ingress_queue, queue);
8973 #endif
8974 	return queue;
8975 }
8976 
8977 static const struct ethtool_ops default_ethtool_ops;
8978 
8979 void netdev_set_default_ethtool_ops(struct net_device *dev,
8980 				    const struct ethtool_ops *ops)
8981 {
8982 	if (dev->ethtool_ops == &default_ethtool_ops)
8983 		dev->ethtool_ops = ops;
8984 }
8985 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8986 
8987 void netdev_freemem(struct net_device *dev)
8988 {
8989 	char *addr = (char *)dev - dev->padded;
8990 
8991 	kvfree(addr);
8992 }
8993 
8994 /**
8995  * alloc_netdev_mqs - allocate network device
8996  * @sizeof_priv: size of private data to allocate space for
8997  * @name: device name format string
8998  * @name_assign_type: origin of device name
8999  * @setup: callback to initialize device
9000  * @txqs: the number of TX subqueues to allocate
9001  * @rxqs: the number of RX subqueues to allocate
9002  *
9003  * Allocates a struct net_device with private data area for driver use
9004  * and performs basic initialization.  Also allocates subqueue structs
9005  * for each queue on the device.
9006  */
9007 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9008 		unsigned char name_assign_type,
9009 		void (*setup)(struct net_device *),
9010 		unsigned int txqs, unsigned int rxqs)
9011 {
9012 	struct net_device *dev;
9013 	unsigned int alloc_size;
9014 	struct net_device *p;
9015 
9016 	BUG_ON(strlen(name) >= sizeof(dev->name));
9017 
9018 	if (txqs < 1) {
9019 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9020 		return NULL;
9021 	}
9022 
9023 	if (rxqs < 1) {
9024 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9025 		return NULL;
9026 	}
9027 
9028 	alloc_size = sizeof(struct net_device);
9029 	if (sizeof_priv) {
9030 		/* ensure 32-byte alignment of private area */
9031 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9032 		alloc_size += sizeof_priv;
9033 	}
9034 	/* ensure 32-byte alignment of whole construct */
9035 	alloc_size += NETDEV_ALIGN - 1;
9036 
9037 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9038 	if (!p)
9039 		return NULL;
9040 
9041 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
9042 	dev->padded = (char *)dev - (char *)p;
9043 
9044 	dev->pcpu_refcnt = alloc_percpu(int);
9045 	if (!dev->pcpu_refcnt)
9046 		goto free_dev;
9047 
9048 	if (dev_addr_init(dev))
9049 		goto free_pcpu;
9050 
9051 	dev_mc_init(dev);
9052 	dev_uc_init(dev);
9053 
9054 	dev_net_set(dev, &init_net);
9055 
9056 	dev->gso_max_size = GSO_MAX_SIZE;
9057 	dev->gso_max_segs = GSO_MAX_SEGS;
9058 
9059 	INIT_LIST_HEAD(&dev->napi_list);
9060 	INIT_LIST_HEAD(&dev->unreg_list);
9061 	INIT_LIST_HEAD(&dev->close_list);
9062 	INIT_LIST_HEAD(&dev->link_watch_list);
9063 	INIT_LIST_HEAD(&dev->adj_list.upper);
9064 	INIT_LIST_HEAD(&dev->adj_list.lower);
9065 	INIT_LIST_HEAD(&dev->ptype_all);
9066 	INIT_LIST_HEAD(&dev->ptype_specific);
9067 #ifdef CONFIG_NET_SCHED
9068 	hash_init(dev->qdisc_hash);
9069 #endif
9070 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9071 	setup(dev);
9072 
9073 	if (!dev->tx_queue_len) {
9074 		dev->priv_flags |= IFF_NO_QUEUE;
9075 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9076 	}
9077 
9078 	dev->num_tx_queues = txqs;
9079 	dev->real_num_tx_queues = txqs;
9080 	if (netif_alloc_netdev_queues(dev))
9081 		goto free_all;
9082 
9083 	dev->num_rx_queues = rxqs;
9084 	dev->real_num_rx_queues = rxqs;
9085 	if (netif_alloc_rx_queues(dev))
9086 		goto free_all;
9087 
9088 	strcpy(dev->name, name);
9089 	dev->name_assign_type = name_assign_type;
9090 	dev->group = INIT_NETDEV_GROUP;
9091 	if (!dev->ethtool_ops)
9092 		dev->ethtool_ops = &default_ethtool_ops;
9093 
9094 	nf_hook_ingress_init(dev);
9095 
9096 	return dev;
9097 
9098 free_all:
9099 	free_netdev(dev);
9100 	return NULL;
9101 
9102 free_pcpu:
9103 	free_percpu(dev->pcpu_refcnt);
9104 free_dev:
9105 	netdev_freemem(dev);
9106 	return NULL;
9107 }
9108 EXPORT_SYMBOL(alloc_netdev_mqs);
9109 
9110 /**
9111  * free_netdev - free network device
9112  * @dev: device
9113  *
9114  * This function does the last stage of destroying an allocated device
9115  * interface. The reference to the device object is released. If this
9116  * is the last reference then it will be freed.Must be called in process
9117  * context.
9118  */
9119 void free_netdev(struct net_device *dev)
9120 {
9121 	struct napi_struct *p, *n;
9122 
9123 	might_sleep();
9124 	netif_free_tx_queues(dev);
9125 	netif_free_rx_queues(dev);
9126 
9127 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9128 
9129 	/* Flush device addresses */
9130 	dev_addr_flush(dev);
9131 
9132 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9133 		netif_napi_del(p);
9134 
9135 	free_percpu(dev->pcpu_refcnt);
9136 	dev->pcpu_refcnt = NULL;
9137 
9138 	/*  Compatibility with error handling in drivers */
9139 	if (dev->reg_state == NETREG_UNINITIALIZED) {
9140 		netdev_freemem(dev);
9141 		return;
9142 	}
9143 
9144 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9145 	dev->reg_state = NETREG_RELEASED;
9146 
9147 	/* will free via device release */
9148 	put_device(&dev->dev);
9149 }
9150 EXPORT_SYMBOL(free_netdev);
9151 
9152 /**
9153  *	synchronize_net -  Synchronize with packet receive processing
9154  *
9155  *	Wait for packets currently being received to be done.
9156  *	Does not block later packets from starting.
9157  */
9158 void synchronize_net(void)
9159 {
9160 	might_sleep();
9161 	if (rtnl_is_locked())
9162 		synchronize_rcu_expedited();
9163 	else
9164 		synchronize_rcu();
9165 }
9166 EXPORT_SYMBOL(synchronize_net);
9167 
9168 /**
9169  *	unregister_netdevice_queue - remove device from the kernel
9170  *	@dev: device
9171  *	@head: list
9172  *
9173  *	This function shuts down a device interface and removes it
9174  *	from the kernel tables.
9175  *	If head not NULL, device is queued to be unregistered later.
9176  *
9177  *	Callers must hold the rtnl semaphore.  You may want
9178  *	unregister_netdev() instead of this.
9179  */
9180 
9181 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9182 {
9183 	ASSERT_RTNL();
9184 
9185 	if (head) {
9186 		list_move_tail(&dev->unreg_list, head);
9187 	} else {
9188 		rollback_registered(dev);
9189 		/* Finish processing unregister after unlock */
9190 		net_set_todo(dev);
9191 	}
9192 }
9193 EXPORT_SYMBOL(unregister_netdevice_queue);
9194 
9195 /**
9196  *	unregister_netdevice_many - unregister many devices
9197  *	@head: list of devices
9198  *
9199  *  Note: As most callers use a stack allocated list_head,
9200  *  we force a list_del() to make sure stack wont be corrupted later.
9201  */
9202 void unregister_netdevice_many(struct list_head *head)
9203 {
9204 	struct net_device *dev;
9205 
9206 	if (!list_empty(head)) {
9207 		rollback_registered_many(head);
9208 		list_for_each_entry(dev, head, unreg_list)
9209 			net_set_todo(dev);
9210 		list_del(head);
9211 	}
9212 }
9213 EXPORT_SYMBOL(unregister_netdevice_many);
9214 
9215 /**
9216  *	unregister_netdev - remove device from the kernel
9217  *	@dev: device
9218  *
9219  *	This function shuts down a device interface and removes it
9220  *	from the kernel tables.
9221  *
9222  *	This is just a wrapper for unregister_netdevice that takes
9223  *	the rtnl semaphore.  In general you want to use this and not
9224  *	unregister_netdevice.
9225  */
9226 void unregister_netdev(struct net_device *dev)
9227 {
9228 	rtnl_lock();
9229 	unregister_netdevice(dev);
9230 	rtnl_unlock();
9231 }
9232 EXPORT_SYMBOL(unregister_netdev);
9233 
9234 /**
9235  *	dev_change_net_namespace - move device to different nethost namespace
9236  *	@dev: device
9237  *	@net: network namespace
9238  *	@pat: If not NULL name pattern to try if the current device name
9239  *	      is already taken in the destination network namespace.
9240  *
9241  *	This function shuts down a device interface and moves it
9242  *	to a new network namespace. On success 0 is returned, on
9243  *	a failure a netagive errno code is returned.
9244  *
9245  *	Callers must hold the rtnl semaphore.
9246  */
9247 
9248 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9249 {
9250 	int err, new_nsid, new_ifindex;
9251 
9252 	ASSERT_RTNL();
9253 
9254 	/* Don't allow namespace local devices to be moved. */
9255 	err = -EINVAL;
9256 	if (dev->features & NETIF_F_NETNS_LOCAL)
9257 		goto out;
9258 
9259 	/* Ensure the device has been registrered */
9260 	if (dev->reg_state != NETREG_REGISTERED)
9261 		goto out;
9262 
9263 	/* Get out if there is nothing todo */
9264 	err = 0;
9265 	if (net_eq(dev_net(dev), net))
9266 		goto out;
9267 
9268 	/* Pick the destination device name, and ensure
9269 	 * we can use it in the destination network namespace.
9270 	 */
9271 	err = -EEXIST;
9272 	if (__dev_get_by_name(net, dev->name)) {
9273 		/* We get here if we can't use the current device name */
9274 		if (!pat)
9275 			goto out;
9276 		err = dev_get_valid_name(net, dev, pat);
9277 		if (err < 0)
9278 			goto out;
9279 	}
9280 
9281 	/*
9282 	 * And now a mini version of register_netdevice unregister_netdevice.
9283 	 */
9284 
9285 	/* If device is running close it first. */
9286 	dev_close(dev);
9287 
9288 	/* And unlink it from device chain */
9289 	unlist_netdevice(dev);
9290 
9291 	synchronize_net();
9292 
9293 	/* Shutdown queueing discipline. */
9294 	dev_shutdown(dev);
9295 
9296 	/* Notify protocols, that we are about to destroy
9297 	 * this device. They should clean all the things.
9298 	 *
9299 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
9300 	 * This is wanted because this way 8021q and macvlan know
9301 	 * the device is just moving and can keep their slaves up.
9302 	 */
9303 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9304 	rcu_barrier();
9305 
9306 	new_nsid = peernet2id_alloc(dev_net(dev), net);
9307 	/* If there is an ifindex conflict assign a new one */
9308 	if (__dev_get_by_index(net, dev->ifindex))
9309 		new_ifindex = dev_new_index(net);
9310 	else
9311 		new_ifindex = dev->ifindex;
9312 
9313 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9314 			    new_ifindex);
9315 
9316 	/*
9317 	 *	Flush the unicast and multicast chains
9318 	 */
9319 	dev_uc_flush(dev);
9320 	dev_mc_flush(dev);
9321 
9322 	/* Send a netdev-removed uevent to the old namespace */
9323 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9324 	netdev_adjacent_del_links(dev);
9325 
9326 	/* Actually switch the network namespace */
9327 	dev_net_set(dev, net);
9328 	dev->ifindex = new_ifindex;
9329 
9330 	/* Send a netdev-add uevent to the new namespace */
9331 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9332 	netdev_adjacent_add_links(dev);
9333 
9334 	/* Fixup kobjects */
9335 	err = device_rename(&dev->dev, dev->name);
9336 	WARN_ON(err);
9337 
9338 	/* Add the device back in the hashes */
9339 	list_netdevice(dev);
9340 
9341 	/* Notify protocols, that a new device appeared. */
9342 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
9343 
9344 	/*
9345 	 *	Prevent userspace races by waiting until the network
9346 	 *	device is fully setup before sending notifications.
9347 	 */
9348 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9349 
9350 	synchronize_net();
9351 	err = 0;
9352 out:
9353 	return err;
9354 }
9355 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9356 
9357 static int dev_cpu_dead(unsigned int oldcpu)
9358 {
9359 	struct sk_buff **list_skb;
9360 	struct sk_buff *skb;
9361 	unsigned int cpu;
9362 	struct softnet_data *sd, *oldsd, *remsd = NULL;
9363 
9364 	local_irq_disable();
9365 	cpu = smp_processor_id();
9366 	sd = &per_cpu(softnet_data, cpu);
9367 	oldsd = &per_cpu(softnet_data, oldcpu);
9368 
9369 	/* Find end of our completion_queue. */
9370 	list_skb = &sd->completion_queue;
9371 	while (*list_skb)
9372 		list_skb = &(*list_skb)->next;
9373 	/* Append completion queue from offline CPU. */
9374 	*list_skb = oldsd->completion_queue;
9375 	oldsd->completion_queue = NULL;
9376 
9377 	/* Append output queue from offline CPU. */
9378 	if (oldsd->output_queue) {
9379 		*sd->output_queue_tailp = oldsd->output_queue;
9380 		sd->output_queue_tailp = oldsd->output_queue_tailp;
9381 		oldsd->output_queue = NULL;
9382 		oldsd->output_queue_tailp = &oldsd->output_queue;
9383 	}
9384 	/* Append NAPI poll list from offline CPU, with one exception :
9385 	 * process_backlog() must be called by cpu owning percpu backlog.
9386 	 * We properly handle process_queue & input_pkt_queue later.
9387 	 */
9388 	while (!list_empty(&oldsd->poll_list)) {
9389 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9390 							    struct napi_struct,
9391 							    poll_list);
9392 
9393 		list_del_init(&napi->poll_list);
9394 		if (napi->poll == process_backlog)
9395 			napi->state = 0;
9396 		else
9397 			____napi_schedule(sd, napi);
9398 	}
9399 
9400 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
9401 	local_irq_enable();
9402 
9403 #ifdef CONFIG_RPS
9404 	remsd = oldsd->rps_ipi_list;
9405 	oldsd->rps_ipi_list = NULL;
9406 #endif
9407 	/* send out pending IPI's on offline CPU */
9408 	net_rps_send_ipi(remsd);
9409 
9410 	/* Process offline CPU's input_pkt_queue */
9411 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9412 		netif_rx_ni(skb);
9413 		input_queue_head_incr(oldsd);
9414 	}
9415 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9416 		netif_rx_ni(skb);
9417 		input_queue_head_incr(oldsd);
9418 	}
9419 
9420 	return 0;
9421 }
9422 
9423 /**
9424  *	netdev_increment_features - increment feature set by one
9425  *	@all: current feature set
9426  *	@one: new feature set
9427  *	@mask: mask feature set
9428  *
9429  *	Computes a new feature set after adding a device with feature set
9430  *	@one to the master device with current feature set @all.  Will not
9431  *	enable anything that is off in @mask. Returns the new feature set.
9432  */
9433 netdev_features_t netdev_increment_features(netdev_features_t all,
9434 	netdev_features_t one, netdev_features_t mask)
9435 {
9436 	if (mask & NETIF_F_HW_CSUM)
9437 		mask |= NETIF_F_CSUM_MASK;
9438 	mask |= NETIF_F_VLAN_CHALLENGED;
9439 
9440 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9441 	all &= one | ~NETIF_F_ALL_FOR_ALL;
9442 
9443 	/* If one device supports hw checksumming, set for all. */
9444 	if (all & NETIF_F_HW_CSUM)
9445 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9446 
9447 	return all;
9448 }
9449 EXPORT_SYMBOL(netdev_increment_features);
9450 
9451 static struct hlist_head * __net_init netdev_create_hash(void)
9452 {
9453 	int i;
9454 	struct hlist_head *hash;
9455 
9456 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9457 	if (hash != NULL)
9458 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
9459 			INIT_HLIST_HEAD(&hash[i]);
9460 
9461 	return hash;
9462 }
9463 
9464 /* Initialize per network namespace state */
9465 static int __net_init netdev_init(struct net *net)
9466 {
9467 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
9468 		     8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9469 
9470 	if (net != &init_net)
9471 		INIT_LIST_HEAD(&net->dev_base_head);
9472 
9473 	net->dev_name_head = netdev_create_hash();
9474 	if (net->dev_name_head == NULL)
9475 		goto err_name;
9476 
9477 	net->dev_index_head = netdev_create_hash();
9478 	if (net->dev_index_head == NULL)
9479 		goto err_idx;
9480 
9481 	return 0;
9482 
9483 err_idx:
9484 	kfree(net->dev_name_head);
9485 err_name:
9486 	return -ENOMEM;
9487 }
9488 
9489 /**
9490  *	netdev_drivername - network driver for the device
9491  *	@dev: network device
9492  *
9493  *	Determine network driver for device.
9494  */
9495 const char *netdev_drivername(const struct net_device *dev)
9496 {
9497 	const struct device_driver *driver;
9498 	const struct device *parent;
9499 	const char *empty = "";
9500 
9501 	parent = dev->dev.parent;
9502 	if (!parent)
9503 		return empty;
9504 
9505 	driver = parent->driver;
9506 	if (driver && driver->name)
9507 		return driver->name;
9508 	return empty;
9509 }
9510 
9511 static void __netdev_printk(const char *level, const struct net_device *dev,
9512 			    struct va_format *vaf)
9513 {
9514 	if (dev && dev->dev.parent) {
9515 		dev_printk_emit(level[1] - '0',
9516 				dev->dev.parent,
9517 				"%s %s %s%s: %pV",
9518 				dev_driver_string(dev->dev.parent),
9519 				dev_name(dev->dev.parent),
9520 				netdev_name(dev), netdev_reg_state(dev),
9521 				vaf);
9522 	} else if (dev) {
9523 		printk("%s%s%s: %pV",
9524 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
9525 	} else {
9526 		printk("%s(NULL net_device): %pV", level, vaf);
9527 	}
9528 }
9529 
9530 void netdev_printk(const char *level, const struct net_device *dev,
9531 		   const char *format, ...)
9532 {
9533 	struct va_format vaf;
9534 	va_list args;
9535 
9536 	va_start(args, format);
9537 
9538 	vaf.fmt = format;
9539 	vaf.va = &args;
9540 
9541 	__netdev_printk(level, dev, &vaf);
9542 
9543 	va_end(args);
9544 }
9545 EXPORT_SYMBOL(netdev_printk);
9546 
9547 #define define_netdev_printk_level(func, level)			\
9548 void func(const struct net_device *dev, const char *fmt, ...)	\
9549 {								\
9550 	struct va_format vaf;					\
9551 	va_list args;						\
9552 								\
9553 	va_start(args, fmt);					\
9554 								\
9555 	vaf.fmt = fmt;						\
9556 	vaf.va = &args;						\
9557 								\
9558 	__netdev_printk(level, dev, &vaf);			\
9559 								\
9560 	va_end(args);						\
9561 }								\
9562 EXPORT_SYMBOL(func);
9563 
9564 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9565 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9566 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9567 define_netdev_printk_level(netdev_err, KERN_ERR);
9568 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9569 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9570 define_netdev_printk_level(netdev_info, KERN_INFO);
9571 
9572 static void __net_exit netdev_exit(struct net *net)
9573 {
9574 	kfree(net->dev_name_head);
9575 	kfree(net->dev_index_head);
9576 	if (net != &init_net)
9577 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9578 }
9579 
9580 static struct pernet_operations __net_initdata netdev_net_ops = {
9581 	.init = netdev_init,
9582 	.exit = netdev_exit,
9583 };
9584 
9585 static void __net_exit default_device_exit(struct net *net)
9586 {
9587 	struct net_device *dev, *aux;
9588 	/*
9589 	 * Push all migratable network devices back to the
9590 	 * initial network namespace
9591 	 */
9592 	rtnl_lock();
9593 	for_each_netdev_safe(net, dev, aux) {
9594 		int err;
9595 		char fb_name[IFNAMSIZ];
9596 
9597 		/* Ignore unmoveable devices (i.e. loopback) */
9598 		if (dev->features & NETIF_F_NETNS_LOCAL)
9599 			continue;
9600 
9601 		/* Leave virtual devices for the generic cleanup */
9602 		if (dev->rtnl_link_ops)
9603 			continue;
9604 
9605 		/* Push remaining network devices to init_net */
9606 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9607 		err = dev_change_net_namespace(dev, &init_net, fb_name);
9608 		if (err) {
9609 			pr_emerg("%s: failed to move %s to init_net: %d\n",
9610 				 __func__, dev->name, err);
9611 			BUG();
9612 		}
9613 	}
9614 	rtnl_unlock();
9615 }
9616 
9617 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9618 {
9619 	/* Return with the rtnl_lock held when there are no network
9620 	 * devices unregistering in any network namespace in net_list.
9621 	 */
9622 	struct net *net;
9623 	bool unregistering;
9624 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
9625 
9626 	add_wait_queue(&netdev_unregistering_wq, &wait);
9627 	for (;;) {
9628 		unregistering = false;
9629 		rtnl_lock();
9630 		list_for_each_entry(net, net_list, exit_list) {
9631 			if (net->dev_unreg_count > 0) {
9632 				unregistering = true;
9633 				break;
9634 			}
9635 		}
9636 		if (!unregistering)
9637 			break;
9638 		__rtnl_unlock();
9639 
9640 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9641 	}
9642 	remove_wait_queue(&netdev_unregistering_wq, &wait);
9643 }
9644 
9645 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9646 {
9647 	/* At exit all network devices most be removed from a network
9648 	 * namespace.  Do this in the reverse order of registration.
9649 	 * Do this across as many network namespaces as possible to
9650 	 * improve batching efficiency.
9651 	 */
9652 	struct net_device *dev;
9653 	struct net *net;
9654 	LIST_HEAD(dev_kill_list);
9655 
9656 	/* To prevent network device cleanup code from dereferencing
9657 	 * loopback devices or network devices that have been freed
9658 	 * wait here for all pending unregistrations to complete,
9659 	 * before unregistring the loopback device and allowing the
9660 	 * network namespace be freed.
9661 	 *
9662 	 * The netdev todo list containing all network devices
9663 	 * unregistrations that happen in default_device_exit_batch
9664 	 * will run in the rtnl_unlock() at the end of
9665 	 * default_device_exit_batch.
9666 	 */
9667 	rtnl_lock_unregistering(net_list);
9668 	list_for_each_entry(net, net_list, exit_list) {
9669 		for_each_netdev_reverse(net, dev) {
9670 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9671 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9672 			else
9673 				unregister_netdevice_queue(dev, &dev_kill_list);
9674 		}
9675 	}
9676 	unregister_netdevice_many(&dev_kill_list);
9677 	rtnl_unlock();
9678 }
9679 
9680 static struct pernet_operations __net_initdata default_device_ops = {
9681 	.exit = default_device_exit,
9682 	.exit_batch = default_device_exit_batch,
9683 };
9684 
9685 /*
9686  *	Initialize the DEV module. At boot time this walks the device list and
9687  *	unhooks any devices that fail to initialise (normally hardware not
9688  *	present) and leaves us with a valid list of present and active devices.
9689  *
9690  */
9691 
9692 /*
9693  *       This is called single threaded during boot, so no need
9694  *       to take the rtnl semaphore.
9695  */
9696 static int __init net_dev_init(void)
9697 {
9698 	int i, rc = -ENOMEM;
9699 
9700 	BUG_ON(!dev_boot_phase);
9701 
9702 	if (dev_proc_init())
9703 		goto out;
9704 
9705 	if (netdev_kobject_init())
9706 		goto out;
9707 
9708 	INIT_LIST_HEAD(&ptype_all);
9709 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9710 		INIT_LIST_HEAD(&ptype_base[i]);
9711 
9712 	INIT_LIST_HEAD(&offload_base);
9713 
9714 	if (register_pernet_subsys(&netdev_net_ops))
9715 		goto out;
9716 
9717 	/*
9718 	 *	Initialise the packet receive queues.
9719 	 */
9720 
9721 	for_each_possible_cpu(i) {
9722 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9723 		struct softnet_data *sd = &per_cpu(softnet_data, i);
9724 
9725 		INIT_WORK(flush, flush_backlog);
9726 
9727 		skb_queue_head_init(&sd->input_pkt_queue);
9728 		skb_queue_head_init(&sd->process_queue);
9729 #ifdef CONFIG_XFRM_OFFLOAD
9730 		skb_queue_head_init(&sd->xfrm_backlog);
9731 #endif
9732 		INIT_LIST_HEAD(&sd->poll_list);
9733 		sd->output_queue_tailp = &sd->output_queue;
9734 #ifdef CONFIG_RPS
9735 		sd->csd.func = rps_trigger_softirq;
9736 		sd->csd.info = sd;
9737 		sd->cpu = i;
9738 #endif
9739 
9740 		init_gro_hash(&sd->backlog);
9741 		sd->backlog.poll = process_backlog;
9742 		sd->backlog.weight = weight_p;
9743 	}
9744 
9745 	dev_boot_phase = 0;
9746 
9747 	/* The loopback device is special if any other network devices
9748 	 * is present in a network namespace the loopback device must
9749 	 * be present. Since we now dynamically allocate and free the
9750 	 * loopback device ensure this invariant is maintained by
9751 	 * keeping the loopback device as the first device on the
9752 	 * list of network devices.  Ensuring the loopback devices
9753 	 * is the first device that appears and the last network device
9754 	 * that disappears.
9755 	 */
9756 	if (register_pernet_device(&loopback_net_ops))
9757 		goto out;
9758 
9759 	if (register_pernet_device(&default_device_ops))
9760 		goto out;
9761 
9762 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9763 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9764 
9765 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9766 				       NULL, dev_cpu_dead);
9767 	WARN_ON(rc < 0);
9768 	rc = 0;
9769 out:
9770 	return rc;
9771 }
9772 
9773 subsys_initcall(net_dev_init);
9774