xref: /openbmc/linux/net/core/dev.c (revision d003d772)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 
150 #include "net-sysfs.h"
151 
152 #define MAX_GRO_SKBS 8
153 
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 static struct list_head offload_base __read_mostly;
162 
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 					 struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167 					   struct net_device *dev,
168 					   struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170 
171 /*
172  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173  * semaphore.
174  *
175  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176  *
177  * Writers must hold the rtnl semaphore while they loop through the
178  * dev_base_head list, and hold dev_base_lock for writing when they do the
179  * actual updates.  This allows pure readers to access the list even
180  * while a writer is preparing to update it.
181  *
182  * To put it another way, dev_base_lock is held for writing only to
183  * protect against pure readers; the rtnl semaphore provides the
184  * protection against other writers.
185  *
186  * See, for example usages, register_netdevice() and
187  * unregister_netdevice(), which must be called with the rtnl
188  * semaphore held.
189  */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192 
193 static DEFINE_MUTEX(ifalias_mutex);
194 
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197 
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200 
201 static seqcount_t devnet_rename_seq;
202 
203 static inline void dev_base_seq_inc(struct net *net)
204 {
205 	while (++net->dev_base_seq == 0)
206 		;
207 }
208 
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212 
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
235 /* Device list insertion */
236 static void list_netdevice(struct net_device *dev)
237 {
238 	struct net *net = dev_net(dev);
239 
240 	ASSERT_RTNL();
241 
242 	write_lock_bh(&dev_base_lock);
243 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 	hlist_add_head_rcu(&dev->index_hlist,
246 			   dev_index_hash(net, dev->ifindex));
247 	write_unlock_bh(&dev_base_lock);
248 
249 	dev_base_seq_inc(net);
250 }
251 
252 /* Device list removal
253  * caller must respect a RCU grace period before freeing/reusing dev
254  */
255 static void unlist_netdevice(struct net_device *dev)
256 {
257 	ASSERT_RTNL();
258 
259 	/* Unlink dev from the device chain */
260 	write_lock_bh(&dev_base_lock);
261 	list_del_rcu(&dev->dev_list);
262 	hlist_del_rcu(&dev->name_hlist);
263 	hlist_del_rcu(&dev->index_hlist);
264 	write_unlock_bh(&dev_base_lock);
265 
266 	dev_base_seq_inc(dev_net(dev));
267 }
268 
269 /*
270  *	Our notifier list
271  */
272 
273 static RAW_NOTIFIER_HEAD(netdev_chain);
274 
275 /*
276  *	Device drivers call our routines to queue packets here. We empty the
277  *	queue in the local softnet handler.
278  */
279 
280 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
281 EXPORT_PER_CPU_SYMBOL(softnet_data);
282 
283 #ifdef CONFIG_LOCKDEP
284 /*
285  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
286  * according to dev->type
287  */
288 static const unsigned short netdev_lock_type[] = {
289 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
290 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
291 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
292 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
293 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
294 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
295 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
296 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
297 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
298 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
299 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
300 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
301 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
302 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
303 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
304 
305 static const char *const netdev_lock_name[] = {
306 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
307 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
308 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
309 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
310 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
311 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
312 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
313 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
314 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
315 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
316 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
317 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
318 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
319 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
320 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
321 
322 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
323 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
324 
325 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
326 {
327 	int i;
328 
329 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
330 		if (netdev_lock_type[i] == dev_type)
331 			return i;
332 	/* the last key is used by default */
333 	return ARRAY_SIZE(netdev_lock_type) - 1;
334 }
335 
336 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
337 						 unsigned short dev_type)
338 {
339 	int i;
340 
341 	i = netdev_lock_pos(dev_type);
342 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
343 				   netdev_lock_name[i]);
344 }
345 
346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347 {
348 	int i;
349 
350 	i = netdev_lock_pos(dev->type);
351 	lockdep_set_class_and_name(&dev->addr_list_lock,
352 				   &netdev_addr_lock_key[i],
353 				   netdev_lock_name[i]);
354 }
355 #else
356 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
357 						 unsigned short dev_type)
358 {
359 }
360 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
361 {
362 }
363 #endif
364 
365 /*******************************************************************************
366  *
367  *		Protocol management and registration routines
368  *
369  *******************************************************************************/
370 
371 
372 /*
373  *	Add a protocol ID to the list. Now that the input handler is
374  *	smarter we can dispense with all the messy stuff that used to be
375  *	here.
376  *
377  *	BEWARE!!! Protocol handlers, mangling input packets,
378  *	MUST BE last in hash buckets and checking protocol handlers
379  *	MUST start from promiscuous ptype_all chain in net_bh.
380  *	It is true now, do not change it.
381  *	Explanation follows: if protocol handler, mangling packet, will
382  *	be the first on list, it is not able to sense, that packet
383  *	is cloned and should be copied-on-write, so that it will
384  *	change it and subsequent readers will get broken packet.
385  *							--ANK (980803)
386  */
387 
388 static inline struct list_head *ptype_head(const struct packet_type *pt)
389 {
390 	if (pt->type == htons(ETH_P_ALL))
391 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
392 	else
393 		return pt->dev ? &pt->dev->ptype_specific :
394 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396 
397 /**
398  *	dev_add_pack - add packet handler
399  *	@pt: packet type declaration
400  *
401  *	Add a protocol handler to the networking stack. The passed &packet_type
402  *	is linked into kernel lists and may not be freed until it has been
403  *	removed from the kernel lists.
404  *
405  *	This call does not sleep therefore it can not
406  *	guarantee all CPU's that are in middle of receiving packets
407  *	will see the new packet type (until the next received packet).
408  */
409 
410 void dev_add_pack(struct packet_type *pt)
411 {
412 	struct list_head *head = ptype_head(pt);
413 
414 	spin_lock(&ptype_lock);
415 	list_add_rcu(&pt->list, head);
416 	spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419 
420 /**
421  *	__dev_remove_pack	 - remove packet handler
422  *	@pt: packet type declaration
423  *
424  *	Remove a protocol handler that was previously added to the kernel
425  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
426  *	from the kernel lists and can be freed or reused once this function
427  *	returns.
428  *
429  *      The packet type might still be in use by receivers
430  *	and must not be freed until after all the CPU's have gone
431  *	through a quiescent state.
432  */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 	struct list_head *head = ptype_head(pt);
436 	struct packet_type *pt1;
437 
438 	spin_lock(&ptype_lock);
439 
440 	list_for_each_entry(pt1, head, list) {
441 		if (pt == pt1) {
442 			list_del_rcu(&pt->list);
443 			goto out;
444 		}
445 	}
446 
447 	pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 	spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452 
453 /**
454  *	dev_remove_pack	 - remove packet handler
455  *	@pt: packet type declaration
456  *
457  *	Remove a protocol handler that was previously added to the kernel
458  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
459  *	from the kernel lists and can be freed or reused once this function
460  *	returns.
461  *
462  *	This call sleeps to guarantee that no CPU is looking at the packet
463  *	type after return.
464  */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 	__dev_remove_pack(pt);
468 
469 	synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472 
473 
474 /**
475  *	dev_add_offload - register offload handlers
476  *	@po: protocol offload declaration
477  *
478  *	Add protocol offload handlers to the networking stack. The passed
479  *	&proto_offload is linked into kernel lists and may not be freed until
480  *	it has been removed from the kernel lists.
481  *
482  *	This call does not sleep therefore it can not
483  *	guarantee all CPU's that are in middle of receiving packets
484  *	will see the new offload handlers (until the next received packet).
485  */
486 void dev_add_offload(struct packet_offload *po)
487 {
488 	struct packet_offload *elem;
489 
490 	spin_lock(&offload_lock);
491 	list_for_each_entry(elem, &offload_base, list) {
492 		if (po->priority < elem->priority)
493 			break;
494 	}
495 	list_add_rcu(&po->list, elem->list.prev);
496 	spin_unlock(&offload_lock);
497 }
498 EXPORT_SYMBOL(dev_add_offload);
499 
500 /**
501  *	__dev_remove_offload	 - remove offload handler
502  *	@po: packet offload declaration
503  *
504  *	Remove a protocol offload handler that was previously added to the
505  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
506  *	is removed from the kernel lists and can be freed or reused once this
507  *	function returns.
508  *
509  *      The packet type might still be in use by receivers
510  *	and must not be freed until after all the CPU's have gone
511  *	through a quiescent state.
512  */
513 static void __dev_remove_offload(struct packet_offload *po)
514 {
515 	struct list_head *head = &offload_base;
516 	struct packet_offload *po1;
517 
518 	spin_lock(&offload_lock);
519 
520 	list_for_each_entry(po1, head, list) {
521 		if (po == po1) {
522 			list_del_rcu(&po->list);
523 			goto out;
524 		}
525 	}
526 
527 	pr_warn("dev_remove_offload: %p not found\n", po);
528 out:
529 	spin_unlock(&offload_lock);
530 }
531 
532 /**
533  *	dev_remove_offload	 - remove packet offload handler
534  *	@po: packet offload declaration
535  *
536  *	Remove a packet offload handler that was previously added to the kernel
537  *	offload handlers by dev_add_offload(). The passed &offload_type is
538  *	removed from the kernel lists and can be freed or reused once this
539  *	function returns.
540  *
541  *	This call sleeps to guarantee that no CPU is looking at the packet
542  *	type after return.
543  */
544 void dev_remove_offload(struct packet_offload *po)
545 {
546 	__dev_remove_offload(po);
547 
548 	synchronize_net();
549 }
550 EXPORT_SYMBOL(dev_remove_offload);
551 
552 /******************************************************************************
553  *
554  *		      Device Boot-time Settings Routines
555  *
556  ******************************************************************************/
557 
558 /* Boot time configuration table */
559 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
560 
561 /**
562  *	netdev_boot_setup_add	- add new setup entry
563  *	@name: name of the device
564  *	@map: configured settings for the device
565  *
566  *	Adds new setup entry to the dev_boot_setup list.  The function
567  *	returns 0 on error and 1 on success.  This is a generic routine to
568  *	all netdevices.
569  */
570 static int netdev_boot_setup_add(char *name, struct ifmap *map)
571 {
572 	struct netdev_boot_setup *s;
573 	int i;
574 
575 	s = dev_boot_setup;
576 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
577 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
578 			memset(s[i].name, 0, sizeof(s[i].name));
579 			strlcpy(s[i].name, name, IFNAMSIZ);
580 			memcpy(&s[i].map, map, sizeof(s[i].map));
581 			break;
582 		}
583 	}
584 
585 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
586 }
587 
588 /**
589  * netdev_boot_setup_check	- check boot time settings
590  * @dev: the netdevice
591  *
592  * Check boot time settings for the device.
593  * The found settings are set for the device to be used
594  * later in the device probing.
595  * Returns 0 if no settings found, 1 if they are.
596  */
597 int netdev_boot_setup_check(struct net_device *dev)
598 {
599 	struct netdev_boot_setup *s = dev_boot_setup;
600 	int i;
601 
602 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
603 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
604 		    !strcmp(dev->name, s[i].name)) {
605 			dev->irq = s[i].map.irq;
606 			dev->base_addr = s[i].map.base_addr;
607 			dev->mem_start = s[i].map.mem_start;
608 			dev->mem_end = s[i].map.mem_end;
609 			return 1;
610 		}
611 	}
612 	return 0;
613 }
614 EXPORT_SYMBOL(netdev_boot_setup_check);
615 
616 
617 /**
618  * netdev_boot_base	- get address from boot time settings
619  * @prefix: prefix for network device
620  * @unit: id for network device
621  *
622  * Check boot time settings for the base address of device.
623  * The found settings are set for the device to be used
624  * later in the device probing.
625  * Returns 0 if no settings found.
626  */
627 unsigned long netdev_boot_base(const char *prefix, int unit)
628 {
629 	const struct netdev_boot_setup *s = dev_boot_setup;
630 	char name[IFNAMSIZ];
631 	int i;
632 
633 	sprintf(name, "%s%d", prefix, unit);
634 
635 	/*
636 	 * If device already registered then return base of 1
637 	 * to indicate not to probe for this interface
638 	 */
639 	if (__dev_get_by_name(&init_net, name))
640 		return 1;
641 
642 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
643 		if (!strcmp(name, s[i].name))
644 			return s[i].map.base_addr;
645 	return 0;
646 }
647 
648 /*
649  * Saves at boot time configured settings for any netdevice.
650  */
651 int __init netdev_boot_setup(char *str)
652 {
653 	int ints[5];
654 	struct ifmap map;
655 
656 	str = get_options(str, ARRAY_SIZE(ints), ints);
657 	if (!str || !*str)
658 		return 0;
659 
660 	/* Save settings */
661 	memset(&map, 0, sizeof(map));
662 	if (ints[0] > 0)
663 		map.irq = ints[1];
664 	if (ints[0] > 1)
665 		map.base_addr = ints[2];
666 	if (ints[0] > 2)
667 		map.mem_start = ints[3];
668 	if (ints[0] > 3)
669 		map.mem_end = ints[4];
670 
671 	/* Add new entry to the list */
672 	return netdev_boot_setup_add(str, &map);
673 }
674 
675 __setup("netdev=", netdev_boot_setup);
676 
677 /*******************************************************************************
678  *
679  *			    Device Interface Subroutines
680  *
681  *******************************************************************************/
682 
683 /**
684  *	dev_get_iflink	- get 'iflink' value of a interface
685  *	@dev: targeted interface
686  *
687  *	Indicates the ifindex the interface is linked to.
688  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
689  */
690 
691 int dev_get_iflink(const struct net_device *dev)
692 {
693 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
694 		return dev->netdev_ops->ndo_get_iflink(dev);
695 
696 	return dev->ifindex;
697 }
698 EXPORT_SYMBOL(dev_get_iflink);
699 
700 /**
701  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
702  *	@dev: targeted interface
703  *	@skb: The packet.
704  *
705  *	For better visibility of tunnel traffic OVS needs to retrieve
706  *	egress tunnel information for a packet. Following API allows
707  *	user to get this info.
708  */
709 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
710 {
711 	struct ip_tunnel_info *info;
712 
713 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
714 		return -EINVAL;
715 
716 	info = skb_tunnel_info_unclone(skb);
717 	if (!info)
718 		return -ENOMEM;
719 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
720 		return -EINVAL;
721 
722 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
723 }
724 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
725 
726 /**
727  *	__dev_get_by_name	- find a device by its name
728  *	@net: the applicable net namespace
729  *	@name: name to find
730  *
731  *	Find an interface by name. Must be called under RTNL semaphore
732  *	or @dev_base_lock. If the name is found a pointer to the device
733  *	is returned. If the name is not found then %NULL is returned. The
734  *	reference counters are not incremented so the caller must be
735  *	careful with locks.
736  */
737 
738 struct net_device *__dev_get_by_name(struct net *net, const char *name)
739 {
740 	struct net_device *dev;
741 	struct hlist_head *head = dev_name_hash(net, name);
742 
743 	hlist_for_each_entry(dev, head, name_hlist)
744 		if (!strncmp(dev->name, name, IFNAMSIZ))
745 			return dev;
746 
747 	return NULL;
748 }
749 EXPORT_SYMBOL(__dev_get_by_name);
750 
751 /**
752  * dev_get_by_name_rcu	- find a device by its name
753  * @net: the applicable net namespace
754  * @name: name to find
755  *
756  * Find an interface by name.
757  * If the name is found a pointer to the device is returned.
758  * If the name is not found then %NULL is returned.
759  * The reference counters are not incremented so the caller must be
760  * careful with locks. The caller must hold RCU lock.
761  */
762 
763 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
764 {
765 	struct net_device *dev;
766 	struct hlist_head *head = dev_name_hash(net, name);
767 
768 	hlist_for_each_entry_rcu(dev, head, name_hlist)
769 		if (!strncmp(dev->name, name, IFNAMSIZ))
770 			return dev;
771 
772 	return NULL;
773 }
774 EXPORT_SYMBOL(dev_get_by_name_rcu);
775 
776 /**
777  *	dev_get_by_name		- find a device by its name
778  *	@net: the applicable net namespace
779  *	@name: name to find
780  *
781  *	Find an interface by name. This can be called from any
782  *	context and does its own locking. The returned handle has
783  *	the usage count incremented and the caller must use dev_put() to
784  *	release it when it is no longer needed. %NULL is returned if no
785  *	matching device is found.
786  */
787 
788 struct net_device *dev_get_by_name(struct net *net, const char *name)
789 {
790 	struct net_device *dev;
791 
792 	rcu_read_lock();
793 	dev = dev_get_by_name_rcu(net, name);
794 	if (dev)
795 		dev_hold(dev);
796 	rcu_read_unlock();
797 	return dev;
798 }
799 EXPORT_SYMBOL(dev_get_by_name);
800 
801 /**
802  *	__dev_get_by_index - find a device by its ifindex
803  *	@net: the applicable net namespace
804  *	@ifindex: index of device
805  *
806  *	Search for an interface by index. Returns %NULL if the device
807  *	is not found or a pointer to the device. The device has not
808  *	had its reference counter increased so the caller must be careful
809  *	about locking. The caller must hold either the RTNL semaphore
810  *	or @dev_base_lock.
811  */
812 
813 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
814 {
815 	struct net_device *dev;
816 	struct hlist_head *head = dev_index_hash(net, ifindex);
817 
818 	hlist_for_each_entry(dev, head, index_hlist)
819 		if (dev->ifindex == ifindex)
820 			return dev;
821 
822 	return NULL;
823 }
824 EXPORT_SYMBOL(__dev_get_by_index);
825 
826 /**
827  *	dev_get_by_index_rcu - find a device by its ifindex
828  *	@net: the applicable net namespace
829  *	@ifindex: index of device
830  *
831  *	Search for an interface by index. Returns %NULL if the device
832  *	is not found or a pointer to the device. The device has not
833  *	had its reference counter increased so the caller must be careful
834  *	about locking. The caller must hold RCU lock.
835  */
836 
837 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
838 {
839 	struct net_device *dev;
840 	struct hlist_head *head = dev_index_hash(net, ifindex);
841 
842 	hlist_for_each_entry_rcu(dev, head, index_hlist)
843 		if (dev->ifindex == ifindex)
844 			return dev;
845 
846 	return NULL;
847 }
848 EXPORT_SYMBOL(dev_get_by_index_rcu);
849 
850 
851 /**
852  *	dev_get_by_index - find a device by its ifindex
853  *	@net: the applicable net namespace
854  *	@ifindex: index of device
855  *
856  *	Search for an interface by index. Returns NULL if the device
857  *	is not found or a pointer to the device. The device returned has
858  *	had a reference added and the pointer is safe until the user calls
859  *	dev_put to indicate they have finished with it.
860  */
861 
862 struct net_device *dev_get_by_index(struct net *net, int ifindex)
863 {
864 	struct net_device *dev;
865 
866 	rcu_read_lock();
867 	dev = dev_get_by_index_rcu(net, ifindex);
868 	if (dev)
869 		dev_hold(dev);
870 	rcu_read_unlock();
871 	return dev;
872 }
873 EXPORT_SYMBOL(dev_get_by_index);
874 
875 /**
876  *	dev_get_by_napi_id - find a device by napi_id
877  *	@napi_id: ID of the NAPI struct
878  *
879  *	Search for an interface by NAPI ID. Returns %NULL if the device
880  *	is not found or a pointer to the device. The device has not had
881  *	its reference counter increased so the caller must be careful
882  *	about locking. The caller must hold RCU lock.
883  */
884 
885 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
886 {
887 	struct napi_struct *napi;
888 
889 	WARN_ON_ONCE(!rcu_read_lock_held());
890 
891 	if (napi_id < MIN_NAPI_ID)
892 		return NULL;
893 
894 	napi = napi_by_id(napi_id);
895 
896 	return napi ? napi->dev : NULL;
897 }
898 EXPORT_SYMBOL(dev_get_by_napi_id);
899 
900 /**
901  *	netdev_get_name - get a netdevice name, knowing its ifindex.
902  *	@net: network namespace
903  *	@name: a pointer to the buffer where the name will be stored.
904  *	@ifindex: the ifindex of the interface to get the name from.
905  *
906  *	The use of raw_seqcount_begin() and cond_resched() before
907  *	retrying is required as we want to give the writers a chance
908  *	to complete when CONFIG_PREEMPT is not set.
909  */
910 int netdev_get_name(struct net *net, char *name, int ifindex)
911 {
912 	struct net_device *dev;
913 	unsigned int seq;
914 
915 retry:
916 	seq = raw_seqcount_begin(&devnet_rename_seq);
917 	rcu_read_lock();
918 	dev = dev_get_by_index_rcu(net, ifindex);
919 	if (!dev) {
920 		rcu_read_unlock();
921 		return -ENODEV;
922 	}
923 
924 	strcpy(name, dev->name);
925 	rcu_read_unlock();
926 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
927 		cond_resched();
928 		goto retry;
929 	}
930 
931 	return 0;
932 }
933 
934 /**
935  *	dev_getbyhwaddr_rcu - find a device by its hardware address
936  *	@net: the applicable net namespace
937  *	@type: media type of device
938  *	@ha: hardware address
939  *
940  *	Search for an interface by MAC address. Returns NULL if the device
941  *	is not found or a pointer to the device.
942  *	The caller must hold RCU or RTNL.
943  *	The returned device has not had its ref count increased
944  *	and the caller must therefore be careful about locking
945  *
946  */
947 
948 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
949 				       const char *ha)
950 {
951 	struct net_device *dev;
952 
953 	for_each_netdev_rcu(net, dev)
954 		if (dev->type == type &&
955 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
956 			return dev;
957 
958 	return NULL;
959 }
960 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
961 
962 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
963 {
964 	struct net_device *dev;
965 
966 	ASSERT_RTNL();
967 	for_each_netdev(net, dev)
968 		if (dev->type == type)
969 			return dev;
970 
971 	return NULL;
972 }
973 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
974 
975 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
976 {
977 	struct net_device *dev, *ret = NULL;
978 
979 	rcu_read_lock();
980 	for_each_netdev_rcu(net, dev)
981 		if (dev->type == type) {
982 			dev_hold(dev);
983 			ret = dev;
984 			break;
985 		}
986 	rcu_read_unlock();
987 	return ret;
988 }
989 EXPORT_SYMBOL(dev_getfirstbyhwtype);
990 
991 /**
992  *	__dev_get_by_flags - find any device with given flags
993  *	@net: the applicable net namespace
994  *	@if_flags: IFF_* values
995  *	@mask: bitmask of bits in if_flags to check
996  *
997  *	Search for any interface with the given flags. Returns NULL if a device
998  *	is not found or a pointer to the device. Must be called inside
999  *	rtnl_lock(), and result refcount is unchanged.
1000  */
1001 
1002 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1003 				      unsigned short mask)
1004 {
1005 	struct net_device *dev, *ret;
1006 
1007 	ASSERT_RTNL();
1008 
1009 	ret = NULL;
1010 	for_each_netdev(net, dev) {
1011 		if (((dev->flags ^ if_flags) & mask) == 0) {
1012 			ret = dev;
1013 			break;
1014 		}
1015 	}
1016 	return ret;
1017 }
1018 EXPORT_SYMBOL(__dev_get_by_flags);
1019 
1020 /**
1021  *	dev_valid_name - check if name is okay for network device
1022  *	@name: name string
1023  *
1024  *	Network device names need to be valid file names to
1025  *	to allow sysfs to work.  We also disallow any kind of
1026  *	whitespace.
1027  */
1028 bool dev_valid_name(const char *name)
1029 {
1030 	if (*name == '\0')
1031 		return false;
1032 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1033 		return false;
1034 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1035 		return false;
1036 
1037 	while (*name) {
1038 		if (*name == '/' || *name == ':' || isspace(*name))
1039 			return false;
1040 		name++;
1041 	}
1042 	return true;
1043 }
1044 EXPORT_SYMBOL(dev_valid_name);
1045 
1046 /**
1047  *	__dev_alloc_name - allocate a name for a device
1048  *	@net: network namespace to allocate the device name in
1049  *	@name: name format string
1050  *	@buf:  scratch buffer and result name string
1051  *
1052  *	Passed a format string - eg "lt%d" it will try and find a suitable
1053  *	id. It scans list of devices to build up a free map, then chooses
1054  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1055  *	while allocating the name and adding the device in order to avoid
1056  *	duplicates.
1057  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1058  *	Returns the number of the unit assigned or a negative errno code.
1059  */
1060 
1061 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1062 {
1063 	int i = 0;
1064 	const char *p;
1065 	const int max_netdevices = 8*PAGE_SIZE;
1066 	unsigned long *inuse;
1067 	struct net_device *d;
1068 
1069 	if (!dev_valid_name(name))
1070 		return -EINVAL;
1071 
1072 	p = strchr(name, '%');
1073 	if (p) {
1074 		/*
1075 		 * Verify the string as this thing may have come from
1076 		 * the user.  There must be either one "%d" and no other "%"
1077 		 * characters.
1078 		 */
1079 		if (p[1] != 'd' || strchr(p + 2, '%'))
1080 			return -EINVAL;
1081 
1082 		/* Use one page as a bit array of possible slots */
1083 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1084 		if (!inuse)
1085 			return -ENOMEM;
1086 
1087 		for_each_netdev(net, d) {
1088 			if (!sscanf(d->name, name, &i))
1089 				continue;
1090 			if (i < 0 || i >= max_netdevices)
1091 				continue;
1092 
1093 			/*  avoid cases where sscanf is not exact inverse of printf */
1094 			snprintf(buf, IFNAMSIZ, name, i);
1095 			if (!strncmp(buf, d->name, IFNAMSIZ))
1096 				set_bit(i, inuse);
1097 		}
1098 
1099 		i = find_first_zero_bit(inuse, max_netdevices);
1100 		free_page((unsigned long) inuse);
1101 	}
1102 
1103 	snprintf(buf, IFNAMSIZ, name, i);
1104 	if (!__dev_get_by_name(net, buf))
1105 		return i;
1106 
1107 	/* It is possible to run out of possible slots
1108 	 * when the name is long and there isn't enough space left
1109 	 * for the digits, or if all bits are used.
1110 	 */
1111 	return -ENFILE;
1112 }
1113 
1114 static int dev_alloc_name_ns(struct net *net,
1115 			     struct net_device *dev,
1116 			     const char *name)
1117 {
1118 	char buf[IFNAMSIZ];
1119 	int ret;
1120 
1121 	BUG_ON(!net);
1122 	ret = __dev_alloc_name(net, name, buf);
1123 	if (ret >= 0)
1124 		strlcpy(dev->name, buf, IFNAMSIZ);
1125 	return ret;
1126 }
1127 
1128 /**
1129  *	dev_alloc_name - allocate a name for a device
1130  *	@dev: device
1131  *	@name: name format string
1132  *
1133  *	Passed a format string - eg "lt%d" it will try and find a suitable
1134  *	id. It scans list of devices to build up a free map, then chooses
1135  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1136  *	while allocating the name and adding the device in order to avoid
1137  *	duplicates.
1138  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1139  *	Returns the number of the unit assigned or a negative errno code.
1140  */
1141 
1142 int dev_alloc_name(struct net_device *dev, const char *name)
1143 {
1144 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1145 }
1146 EXPORT_SYMBOL(dev_alloc_name);
1147 
1148 int dev_get_valid_name(struct net *net, struct net_device *dev,
1149 		       const char *name)
1150 {
1151 	BUG_ON(!net);
1152 
1153 	if (!dev_valid_name(name))
1154 		return -EINVAL;
1155 
1156 	if (strchr(name, '%'))
1157 		return dev_alloc_name_ns(net, dev, name);
1158 	else if (__dev_get_by_name(net, name))
1159 		return -EEXIST;
1160 	else if (dev->name != name)
1161 		strlcpy(dev->name, name, IFNAMSIZ);
1162 
1163 	return 0;
1164 }
1165 EXPORT_SYMBOL(dev_get_valid_name);
1166 
1167 /**
1168  *	dev_change_name - change name of a device
1169  *	@dev: device
1170  *	@newname: name (or format string) must be at least IFNAMSIZ
1171  *
1172  *	Change name of a device, can pass format strings "eth%d".
1173  *	for wildcarding.
1174  */
1175 int dev_change_name(struct net_device *dev, const char *newname)
1176 {
1177 	unsigned char old_assign_type;
1178 	char oldname[IFNAMSIZ];
1179 	int err = 0;
1180 	int ret;
1181 	struct net *net;
1182 
1183 	ASSERT_RTNL();
1184 	BUG_ON(!dev_net(dev));
1185 
1186 	net = dev_net(dev);
1187 
1188 	/* Some auto-enslaved devices e.g. failover slaves are
1189 	 * special, as userspace might rename the device after
1190 	 * the interface had been brought up and running since
1191 	 * the point kernel initiated auto-enslavement. Allow
1192 	 * live name change even when these slave devices are
1193 	 * up and running.
1194 	 *
1195 	 * Typically, users of these auto-enslaving devices
1196 	 * don't actually care about slave name change, as
1197 	 * they are supposed to operate on master interface
1198 	 * directly.
1199 	 */
1200 	if (dev->flags & IFF_UP &&
1201 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1202 		return -EBUSY;
1203 
1204 	write_seqcount_begin(&devnet_rename_seq);
1205 
1206 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1207 		write_seqcount_end(&devnet_rename_seq);
1208 		return 0;
1209 	}
1210 
1211 	memcpy(oldname, dev->name, IFNAMSIZ);
1212 
1213 	err = dev_get_valid_name(net, dev, newname);
1214 	if (err < 0) {
1215 		write_seqcount_end(&devnet_rename_seq);
1216 		return err;
1217 	}
1218 
1219 	if (oldname[0] && !strchr(oldname, '%'))
1220 		netdev_info(dev, "renamed from %s\n", oldname);
1221 
1222 	old_assign_type = dev->name_assign_type;
1223 	dev->name_assign_type = NET_NAME_RENAMED;
1224 
1225 rollback:
1226 	ret = device_rename(&dev->dev, dev->name);
1227 	if (ret) {
1228 		memcpy(dev->name, oldname, IFNAMSIZ);
1229 		dev->name_assign_type = old_assign_type;
1230 		write_seqcount_end(&devnet_rename_seq);
1231 		return ret;
1232 	}
1233 
1234 	write_seqcount_end(&devnet_rename_seq);
1235 
1236 	netdev_adjacent_rename_links(dev, oldname);
1237 
1238 	write_lock_bh(&dev_base_lock);
1239 	hlist_del_rcu(&dev->name_hlist);
1240 	write_unlock_bh(&dev_base_lock);
1241 
1242 	synchronize_rcu();
1243 
1244 	write_lock_bh(&dev_base_lock);
1245 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1246 	write_unlock_bh(&dev_base_lock);
1247 
1248 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1249 	ret = notifier_to_errno(ret);
1250 
1251 	if (ret) {
1252 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1253 		if (err >= 0) {
1254 			err = ret;
1255 			write_seqcount_begin(&devnet_rename_seq);
1256 			memcpy(dev->name, oldname, IFNAMSIZ);
1257 			memcpy(oldname, newname, IFNAMSIZ);
1258 			dev->name_assign_type = old_assign_type;
1259 			old_assign_type = NET_NAME_RENAMED;
1260 			goto rollback;
1261 		} else {
1262 			pr_err("%s: name change rollback failed: %d\n",
1263 			       dev->name, ret);
1264 		}
1265 	}
1266 
1267 	return err;
1268 }
1269 
1270 /**
1271  *	dev_set_alias - change ifalias of a device
1272  *	@dev: device
1273  *	@alias: name up to IFALIASZ
1274  *	@len: limit of bytes to copy from info
1275  *
1276  *	Set ifalias for a device,
1277  */
1278 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1279 {
1280 	struct dev_ifalias *new_alias = NULL;
1281 
1282 	if (len >= IFALIASZ)
1283 		return -EINVAL;
1284 
1285 	if (len) {
1286 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1287 		if (!new_alias)
1288 			return -ENOMEM;
1289 
1290 		memcpy(new_alias->ifalias, alias, len);
1291 		new_alias->ifalias[len] = 0;
1292 	}
1293 
1294 	mutex_lock(&ifalias_mutex);
1295 	rcu_swap_protected(dev->ifalias, new_alias,
1296 			   mutex_is_locked(&ifalias_mutex));
1297 	mutex_unlock(&ifalias_mutex);
1298 
1299 	if (new_alias)
1300 		kfree_rcu(new_alias, rcuhead);
1301 
1302 	return len;
1303 }
1304 EXPORT_SYMBOL(dev_set_alias);
1305 
1306 /**
1307  *	dev_get_alias - get ifalias of a device
1308  *	@dev: device
1309  *	@name: buffer to store name of ifalias
1310  *	@len: size of buffer
1311  *
1312  *	get ifalias for a device.  Caller must make sure dev cannot go
1313  *	away,  e.g. rcu read lock or own a reference count to device.
1314  */
1315 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1316 {
1317 	const struct dev_ifalias *alias;
1318 	int ret = 0;
1319 
1320 	rcu_read_lock();
1321 	alias = rcu_dereference(dev->ifalias);
1322 	if (alias)
1323 		ret = snprintf(name, len, "%s", alias->ifalias);
1324 	rcu_read_unlock();
1325 
1326 	return ret;
1327 }
1328 
1329 /**
1330  *	netdev_features_change - device changes features
1331  *	@dev: device to cause notification
1332  *
1333  *	Called to indicate a device has changed features.
1334  */
1335 void netdev_features_change(struct net_device *dev)
1336 {
1337 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1338 }
1339 EXPORT_SYMBOL(netdev_features_change);
1340 
1341 /**
1342  *	netdev_state_change - device changes state
1343  *	@dev: device to cause notification
1344  *
1345  *	Called to indicate a device has changed state. This function calls
1346  *	the notifier chains for netdev_chain and sends a NEWLINK message
1347  *	to the routing socket.
1348  */
1349 void netdev_state_change(struct net_device *dev)
1350 {
1351 	if (dev->flags & IFF_UP) {
1352 		struct netdev_notifier_change_info change_info = {
1353 			.info.dev = dev,
1354 		};
1355 
1356 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1357 					      &change_info.info);
1358 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1359 	}
1360 }
1361 EXPORT_SYMBOL(netdev_state_change);
1362 
1363 /**
1364  * netdev_notify_peers - notify network peers about existence of @dev
1365  * @dev: network device
1366  *
1367  * Generate traffic such that interested network peers are aware of
1368  * @dev, such as by generating a gratuitous ARP. This may be used when
1369  * a device wants to inform the rest of the network about some sort of
1370  * reconfiguration such as a failover event or virtual machine
1371  * migration.
1372  */
1373 void netdev_notify_peers(struct net_device *dev)
1374 {
1375 	rtnl_lock();
1376 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1377 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1378 	rtnl_unlock();
1379 }
1380 EXPORT_SYMBOL(netdev_notify_peers);
1381 
1382 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1383 {
1384 	const struct net_device_ops *ops = dev->netdev_ops;
1385 	int ret;
1386 
1387 	ASSERT_RTNL();
1388 
1389 	if (!netif_device_present(dev))
1390 		return -ENODEV;
1391 
1392 	/* Block netpoll from trying to do any rx path servicing.
1393 	 * If we don't do this there is a chance ndo_poll_controller
1394 	 * or ndo_poll may be running while we open the device
1395 	 */
1396 	netpoll_poll_disable(dev);
1397 
1398 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1399 	ret = notifier_to_errno(ret);
1400 	if (ret)
1401 		return ret;
1402 
1403 	set_bit(__LINK_STATE_START, &dev->state);
1404 
1405 	if (ops->ndo_validate_addr)
1406 		ret = ops->ndo_validate_addr(dev);
1407 
1408 	if (!ret && ops->ndo_open)
1409 		ret = ops->ndo_open(dev);
1410 
1411 	netpoll_poll_enable(dev);
1412 
1413 	if (ret)
1414 		clear_bit(__LINK_STATE_START, &dev->state);
1415 	else {
1416 		dev->flags |= IFF_UP;
1417 		dev_set_rx_mode(dev);
1418 		dev_activate(dev);
1419 		add_device_randomness(dev->dev_addr, dev->addr_len);
1420 	}
1421 
1422 	return ret;
1423 }
1424 
1425 /**
1426  *	dev_open	- prepare an interface for use.
1427  *	@dev: device to open
1428  *	@extack: netlink extended ack
1429  *
1430  *	Takes a device from down to up state. The device's private open
1431  *	function is invoked and then the multicast lists are loaded. Finally
1432  *	the device is moved into the up state and a %NETDEV_UP message is
1433  *	sent to the netdev notifier chain.
1434  *
1435  *	Calling this function on an active interface is a nop. On a failure
1436  *	a negative errno code is returned.
1437  */
1438 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1439 {
1440 	int ret;
1441 
1442 	if (dev->flags & IFF_UP)
1443 		return 0;
1444 
1445 	ret = __dev_open(dev, extack);
1446 	if (ret < 0)
1447 		return ret;
1448 
1449 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1450 	call_netdevice_notifiers(NETDEV_UP, dev);
1451 
1452 	return ret;
1453 }
1454 EXPORT_SYMBOL(dev_open);
1455 
1456 static void __dev_close_many(struct list_head *head)
1457 {
1458 	struct net_device *dev;
1459 
1460 	ASSERT_RTNL();
1461 	might_sleep();
1462 
1463 	list_for_each_entry(dev, head, close_list) {
1464 		/* Temporarily disable netpoll until the interface is down */
1465 		netpoll_poll_disable(dev);
1466 
1467 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1468 
1469 		clear_bit(__LINK_STATE_START, &dev->state);
1470 
1471 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1472 		 * can be even on different cpu. So just clear netif_running().
1473 		 *
1474 		 * dev->stop() will invoke napi_disable() on all of it's
1475 		 * napi_struct instances on this device.
1476 		 */
1477 		smp_mb__after_atomic(); /* Commit netif_running(). */
1478 	}
1479 
1480 	dev_deactivate_many(head);
1481 
1482 	list_for_each_entry(dev, head, close_list) {
1483 		const struct net_device_ops *ops = dev->netdev_ops;
1484 
1485 		/*
1486 		 *	Call the device specific close. This cannot fail.
1487 		 *	Only if device is UP
1488 		 *
1489 		 *	We allow it to be called even after a DETACH hot-plug
1490 		 *	event.
1491 		 */
1492 		if (ops->ndo_stop)
1493 			ops->ndo_stop(dev);
1494 
1495 		dev->flags &= ~IFF_UP;
1496 		netpoll_poll_enable(dev);
1497 	}
1498 }
1499 
1500 static void __dev_close(struct net_device *dev)
1501 {
1502 	LIST_HEAD(single);
1503 
1504 	list_add(&dev->close_list, &single);
1505 	__dev_close_many(&single);
1506 	list_del(&single);
1507 }
1508 
1509 void dev_close_many(struct list_head *head, bool unlink)
1510 {
1511 	struct net_device *dev, *tmp;
1512 
1513 	/* Remove the devices that don't need to be closed */
1514 	list_for_each_entry_safe(dev, tmp, head, close_list)
1515 		if (!(dev->flags & IFF_UP))
1516 			list_del_init(&dev->close_list);
1517 
1518 	__dev_close_many(head);
1519 
1520 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1521 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1522 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1523 		if (unlink)
1524 			list_del_init(&dev->close_list);
1525 	}
1526 }
1527 EXPORT_SYMBOL(dev_close_many);
1528 
1529 /**
1530  *	dev_close - shutdown an interface.
1531  *	@dev: device to shutdown
1532  *
1533  *	This function moves an active device into down state. A
1534  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1535  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1536  *	chain.
1537  */
1538 void dev_close(struct net_device *dev)
1539 {
1540 	if (dev->flags & IFF_UP) {
1541 		LIST_HEAD(single);
1542 
1543 		list_add(&dev->close_list, &single);
1544 		dev_close_many(&single, true);
1545 		list_del(&single);
1546 	}
1547 }
1548 EXPORT_SYMBOL(dev_close);
1549 
1550 
1551 /**
1552  *	dev_disable_lro - disable Large Receive Offload on a device
1553  *	@dev: device
1554  *
1555  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1556  *	called under RTNL.  This is needed if received packets may be
1557  *	forwarded to another interface.
1558  */
1559 void dev_disable_lro(struct net_device *dev)
1560 {
1561 	struct net_device *lower_dev;
1562 	struct list_head *iter;
1563 
1564 	dev->wanted_features &= ~NETIF_F_LRO;
1565 	netdev_update_features(dev);
1566 
1567 	if (unlikely(dev->features & NETIF_F_LRO))
1568 		netdev_WARN(dev, "failed to disable LRO!\n");
1569 
1570 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1571 		dev_disable_lro(lower_dev);
1572 }
1573 EXPORT_SYMBOL(dev_disable_lro);
1574 
1575 /**
1576  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1577  *	@dev: device
1578  *
1579  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1580  *	called under RTNL.  This is needed if Generic XDP is installed on
1581  *	the device.
1582  */
1583 static void dev_disable_gro_hw(struct net_device *dev)
1584 {
1585 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1586 	netdev_update_features(dev);
1587 
1588 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1589 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1590 }
1591 
1592 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1593 {
1594 #define N(val) 						\
1595 	case NETDEV_##val:				\
1596 		return "NETDEV_" __stringify(val);
1597 	switch (cmd) {
1598 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1599 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1600 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1601 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1602 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1603 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1604 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1605 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1606 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1607 	N(PRE_CHANGEADDR)
1608 	}
1609 #undef N
1610 	return "UNKNOWN_NETDEV_EVENT";
1611 }
1612 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1613 
1614 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1615 				   struct net_device *dev)
1616 {
1617 	struct netdev_notifier_info info = {
1618 		.dev = dev,
1619 	};
1620 
1621 	return nb->notifier_call(nb, val, &info);
1622 }
1623 
1624 static int dev_boot_phase = 1;
1625 
1626 /**
1627  * register_netdevice_notifier - register a network notifier block
1628  * @nb: notifier
1629  *
1630  * Register a notifier to be called when network device events occur.
1631  * The notifier passed is linked into the kernel structures and must
1632  * not be reused until it has been unregistered. A negative errno code
1633  * is returned on a failure.
1634  *
1635  * When registered all registration and up events are replayed
1636  * to the new notifier to allow device to have a race free
1637  * view of the network device list.
1638  */
1639 
1640 int register_netdevice_notifier(struct notifier_block *nb)
1641 {
1642 	struct net_device *dev;
1643 	struct net_device *last;
1644 	struct net *net;
1645 	int err;
1646 
1647 	/* Close race with setup_net() and cleanup_net() */
1648 	down_write(&pernet_ops_rwsem);
1649 	rtnl_lock();
1650 	err = raw_notifier_chain_register(&netdev_chain, nb);
1651 	if (err)
1652 		goto unlock;
1653 	if (dev_boot_phase)
1654 		goto unlock;
1655 	for_each_net(net) {
1656 		for_each_netdev(net, dev) {
1657 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1658 			err = notifier_to_errno(err);
1659 			if (err)
1660 				goto rollback;
1661 
1662 			if (!(dev->flags & IFF_UP))
1663 				continue;
1664 
1665 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1666 		}
1667 	}
1668 
1669 unlock:
1670 	rtnl_unlock();
1671 	up_write(&pernet_ops_rwsem);
1672 	return err;
1673 
1674 rollback:
1675 	last = dev;
1676 	for_each_net(net) {
1677 		for_each_netdev(net, dev) {
1678 			if (dev == last)
1679 				goto outroll;
1680 
1681 			if (dev->flags & IFF_UP) {
1682 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1683 							dev);
1684 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1685 			}
1686 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1687 		}
1688 	}
1689 
1690 outroll:
1691 	raw_notifier_chain_unregister(&netdev_chain, nb);
1692 	goto unlock;
1693 }
1694 EXPORT_SYMBOL(register_netdevice_notifier);
1695 
1696 /**
1697  * unregister_netdevice_notifier - unregister a network notifier block
1698  * @nb: notifier
1699  *
1700  * Unregister a notifier previously registered by
1701  * register_netdevice_notifier(). The notifier is unlinked into the
1702  * kernel structures and may then be reused. A negative errno code
1703  * is returned on a failure.
1704  *
1705  * After unregistering unregister and down device events are synthesized
1706  * for all devices on the device list to the removed notifier to remove
1707  * the need for special case cleanup code.
1708  */
1709 
1710 int unregister_netdevice_notifier(struct notifier_block *nb)
1711 {
1712 	struct net_device *dev;
1713 	struct net *net;
1714 	int err;
1715 
1716 	/* Close race with setup_net() and cleanup_net() */
1717 	down_write(&pernet_ops_rwsem);
1718 	rtnl_lock();
1719 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1720 	if (err)
1721 		goto unlock;
1722 
1723 	for_each_net(net) {
1724 		for_each_netdev(net, dev) {
1725 			if (dev->flags & IFF_UP) {
1726 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1727 							dev);
1728 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1729 			}
1730 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1731 		}
1732 	}
1733 unlock:
1734 	rtnl_unlock();
1735 	up_write(&pernet_ops_rwsem);
1736 	return err;
1737 }
1738 EXPORT_SYMBOL(unregister_netdevice_notifier);
1739 
1740 /**
1741  *	call_netdevice_notifiers_info - call all network notifier blocks
1742  *	@val: value passed unmodified to notifier function
1743  *	@info: notifier information data
1744  *
1745  *	Call all network notifier blocks.  Parameters and return value
1746  *	are as for raw_notifier_call_chain().
1747  */
1748 
1749 static int call_netdevice_notifiers_info(unsigned long val,
1750 					 struct netdev_notifier_info *info)
1751 {
1752 	ASSERT_RTNL();
1753 	return raw_notifier_call_chain(&netdev_chain, val, info);
1754 }
1755 
1756 static int call_netdevice_notifiers_extack(unsigned long val,
1757 					   struct net_device *dev,
1758 					   struct netlink_ext_ack *extack)
1759 {
1760 	struct netdev_notifier_info info = {
1761 		.dev = dev,
1762 		.extack = extack,
1763 	};
1764 
1765 	return call_netdevice_notifiers_info(val, &info);
1766 }
1767 
1768 /**
1769  *	call_netdevice_notifiers - call all network notifier blocks
1770  *      @val: value passed unmodified to notifier function
1771  *      @dev: net_device pointer passed unmodified to notifier function
1772  *
1773  *	Call all network notifier blocks.  Parameters and return value
1774  *	are as for raw_notifier_call_chain().
1775  */
1776 
1777 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1778 {
1779 	return call_netdevice_notifiers_extack(val, dev, NULL);
1780 }
1781 EXPORT_SYMBOL(call_netdevice_notifiers);
1782 
1783 /**
1784  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1785  *	@val: value passed unmodified to notifier function
1786  *	@dev: net_device pointer passed unmodified to notifier function
1787  *	@arg: additional u32 argument passed to the notifier function
1788  *
1789  *	Call all network notifier blocks.  Parameters and return value
1790  *	are as for raw_notifier_call_chain().
1791  */
1792 static int call_netdevice_notifiers_mtu(unsigned long val,
1793 					struct net_device *dev, u32 arg)
1794 {
1795 	struct netdev_notifier_info_ext info = {
1796 		.info.dev = dev,
1797 		.ext.mtu = arg,
1798 	};
1799 
1800 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1801 
1802 	return call_netdevice_notifiers_info(val, &info.info);
1803 }
1804 
1805 #ifdef CONFIG_NET_INGRESS
1806 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1807 
1808 void net_inc_ingress_queue(void)
1809 {
1810 	static_branch_inc(&ingress_needed_key);
1811 }
1812 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1813 
1814 void net_dec_ingress_queue(void)
1815 {
1816 	static_branch_dec(&ingress_needed_key);
1817 }
1818 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1819 #endif
1820 
1821 #ifdef CONFIG_NET_EGRESS
1822 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1823 
1824 void net_inc_egress_queue(void)
1825 {
1826 	static_branch_inc(&egress_needed_key);
1827 }
1828 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1829 
1830 void net_dec_egress_queue(void)
1831 {
1832 	static_branch_dec(&egress_needed_key);
1833 }
1834 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1835 #endif
1836 
1837 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1838 #ifdef CONFIG_JUMP_LABEL
1839 static atomic_t netstamp_needed_deferred;
1840 static atomic_t netstamp_wanted;
1841 static void netstamp_clear(struct work_struct *work)
1842 {
1843 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1844 	int wanted;
1845 
1846 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1847 	if (wanted > 0)
1848 		static_branch_enable(&netstamp_needed_key);
1849 	else
1850 		static_branch_disable(&netstamp_needed_key);
1851 }
1852 static DECLARE_WORK(netstamp_work, netstamp_clear);
1853 #endif
1854 
1855 void net_enable_timestamp(void)
1856 {
1857 #ifdef CONFIG_JUMP_LABEL
1858 	int wanted;
1859 
1860 	while (1) {
1861 		wanted = atomic_read(&netstamp_wanted);
1862 		if (wanted <= 0)
1863 			break;
1864 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1865 			return;
1866 	}
1867 	atomic_inc(&netstamp_needed_deferred);
1868 	schedule_work(&netstamp_work);
1869 #else
1870 	static_branch_inc(&netstamp_needed_key);
1871 #endif
1872 }
1873 EXPORT_SYMBOL(net_enable_timestamp);
1874 
1875 void net_disable_timestamp(void)
1876 {
1877 #ifdef CONFIG_JUMP_LABEL
1878 	int wanted;
1879 
1880 	while (1) {
1881 		wanted = atomic_read(&netstamp_wanted);
1882 		if (wanted <= 1)
1883 			break;
1884 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1885 			return;
1886 	}
1887 	atomic_dec(&netstamp_needed_deferred);
1888 	schedule_work(&netstamp_work);
1889 #else
1890 	static_branch_dec(&netstamp_needed_key);
1891 #endif
1892 }
1893 EXPORT_SYMBOL(net_disable_timestamp);
1894 
1895 static inline void net_timestamp_set(struct sk_buff *skb)
1896 {
1897 	skb->tstamp = 0;
1898 	if (static_branch_unlikely(&netstamp_needed_key))
1899 		__net_timestamp(skb);
1900 }
1901 
1902 #define net_timestamp_check(COND, SKB)				\
1903 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
1904 		if ((COND) && !(SKB)->tstamp)			\
1905 			__net_timestamp(SKB);			\
1906 	}							\
1907 
1908 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1909 {
1910 	unsigned int len;
1911 
1912 	if (!(dev->flags & IFF_UP))
1913 		return false;
1914 
1915 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1916 	if (skb->len <= len)
1917 		return true;
1918 
1919 	/* if TSO is enabled, we don't care about the length as the packet
1920 	 * could be forwarded without being segmented before
1921 	 */
1922 	if (skb_is_gso(skb))
1923 		return true;
1924 
1925 	return false;
1926 }
1927 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1928 
1929 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1930 {
1931 	int ret = ____dev_forward_skb(dev, skb);
1932 
1933 	if (likely(!ret)) {
1934 		skb->protocol = eth_type_trans(skb, dev);
1935 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1936 	}
1937 
1938 	return ret;
1939 }
1940 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1941 
1942 /**
1943  * dev_forward_skb - loopback an skb to another netif
1944  *
1945  * @dev: destination network device
1946  * @skb: buffer to forward
1947  *
1948  * return values:
1949  *	NET_RX_SUCCESS	(no congestion)
1950  *	NET_RX_DROP     (packet was dropped, but freed)
1951  *
1952  * dev_forward_skb can be used for injecting an skb from the
1953  * start_xmit function of one device into the receive queue
1954  * of another device.
1955  *
1956  * The receiving device may be in another namespace, so
1957  * we have to clear all information in the skb that could
1958  * impact namespace isolation.
1959  */
1960 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1961 {
1962 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1963 }
1964 EXPORT_SYMBOL_GPL(dev_forward_skb);
1965 
1966 static inline int deliver_skb(struct sk_buff *skb,
1967 			      struct packet_type *pt_prev,
1968 			      struct net_device *orig_dev)
1969 {
1970 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1971 		return -ENOMEM;
1972 	refcount_inc(&skb->users);
1973 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1974 }
1975 
1976 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1977 					  struct packet_type **pt,
1978 					  struct net_device *orig_dev,
1979 					  __be16 type,
1980 					  struct list_head *ptype_list)
1981 {
1982 	struct packet_type *ptype, *pt_prev = *pt;
1983 
1984 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1985 		if (ptype->type != type)
1986 			continue;
1987 		if (pt_prev)
1988 			deliver_skb(skb, pt_prev, orig_dev);
1989 		pt_prev = ptype;
1990 	}
1991 	*pt = pt_prev;
1992 }
1993 
1994 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1995 {
1996 	if (!ptype->af_packet_priv || !skb->sk)
1997 		return false;
1998 
1999 	if (ptype->id_match)
2000 		return ptype->id_match(ptype, skb->sk);
2001 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2002 		return true;
2003 
2004 	return false;
2005 }
2006 
2007 /**
2008  * dev_nit_active - return true if any network interface taps are in use
2009  *
2010  * @dev: network device to check for the presence of taps
2011  */
2012 bool dev_nit_active(struct net_device *dev)
2013 {
2014 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2015 }
2016 EXPORT_SYMBOL_GPL(dev_nit_active);
2017 
2018 /*
2019  *	Support routine. Sends outgoing frames to any network
2020  *	taps currently in use.
2021  */
2022 
2023 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2024 {
2025 	struct packet_type *ptype;
2026 	struct sk_buff *skb2 = NULL;
2027 	struct packet_type *pt_prev = NULL;
2028 	struct list_head *ptype_list = &ptype_all;
2029 
2030 	rcu_read_lock();
2031 again:
2032 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2033 		if (ptype->ignore_outgoing)
2034 			continue;
2035 
2036 		/* Never send packets back to the socket
2037 		 * they originated from - MvS (miquels@drinkel.ow.org)
2038 		 */
2039 		if (skb_loop_sk(ptype, skb))
2040 			continue;
2041 
2042 		if (pt_prev) {
2043 			deliver_skb(skb2, pt_prev, skb->dev);
2044 			pt_prev = ptype;
2045 			continue;
2046 		}
2047 
2048 		/* need to clone skb, done only once */
2049 		skb2 = skb_clone(skb, GFP_ATOMIC);
2050 		if (!skb2)
2051 			goto out_unlock;
2052 
2053 		net_timestamp_set(skb2);
2054 
2055 		/* skb->nh should be correctly
2056 		 * set by sender, so that the second statement is
2057 		 * just protection against buggy protocols.
2058 		 */
2059 		skb_reset_mac_header(skb2);
2060 
2061 		if (skb_network_header(skb2) < skb2->data ||
2062 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2063 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2064 					     ntohs(skb2->protocol),
2065 					     dev->name);
2066 			skb_reset_network_header(skb2);
2067 		}
2068 
2069 		skb2->transport_header = skb2->network_header;
2070 		skb2->pkt_type = PACKET_OUTGOING;
2071 		pt_prev = ptype;
2072 	}
2073 
2074 	if (ptype_list == &ptype_all) {
2075 		ptype_list = &dev->ptype_all;
2076 		goto again;
2077 	}
2078 out_unlock:
2079 	if (pt_prev) {
2080 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2081 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2082 		else
2083 			kfree_skb(skb2);
2084 	}
2085 	rcu_read_unlock();
2086 }
2087 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2088 
2089 /**
2090  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2091  * @dev: Network device
2092  * @txq: number of queues available
2093  *
2094  * If real_num_tx_queues is changed the tc mappings may no longer be
2095  * valid. To resolve this verify the tc mapping remains valid and if
2096  * not NULL the mapping. With no priorities mapping to this
2097  * offset/count pair it will no longer be used. In the worst case TC0
2098  * is invalid nothing can be done so disable priority mappings. If is
2099  * expected that drivers will fix this mapping if they can before
2100  * calling netif_set_real_num_tx_queues.
2101  */
2102 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2103 {
2104 	int i;
2105 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2106 
2107 	/* If TC0 is invalidated disable TC mapping */
2108 	if (tc->offset + tc->count > txq) {
2109 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2110 		dev->num_tc = 0;
2111 		return;
2112 	}
2113 
2114 	/* Invalidated prio to tc mappings set to TC0 */
2115 	for (i = 1; i < TC_BITMASK + 1; i++) {
2116 		int q = netdev_get_prio_tc_map(dev, i);
2117 
2118 		tc = &dev->tc_to_txq[q];
2119 		if (tc->offset + tc->count > txq) {
2120 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2121 				i, q);
2122 			netdev_set_prio_tc_map(dev, i, 0);
2123 		}
2124 	}
2125 }
2126 
2127 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2128 {
2129 	if (dev->num_tc) {
2130 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2131 		int i;
2132 
2133 		/* walk through the TCs and see if it falls into any of them */
2134 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2135 			if ((txq - tc->offset) < tc->count)
2136 				return i;
2137 		}
2138 
2139 		/* didn't find it, just return -1 to indicate no match */
2140 		return -1;
2141 	}
2142 
2143 	return 0;
2144 }
2145 EXPORT_SYMBOL(netdev_txq_to_tc);
2146 
2147 #ifdef CONFIG_XPS
2148 struct static_key xps_needed __read_mostly;
2149 EXPORT_SYMBOL(xps_needed);
2150 struct static_key xps_rxqs_needed __read_mostly;
2151 EXPORT_SYMBOL(xps_rxqs_needed);
2152 static DEFINE_MUTEX(xps_map_mutex);
2153 #define xmap_dereference(P)		\
2154 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2155 
2156 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2157 			     int tci, u16 index)
2158 {
2159 	struct xps_map *map = NULL;
2160 	int pos;
2161 
2162 	if (dev_maps)
2163 		map = xmap_dereference(dev_maps->attr_map[tci]);
2164 	if (!map)
2165 		return false;
2166 
2167 	for (pos = map->len; pos--;) {
2168 		if (map->queues[pos] != index)
2169 			continue;
2170 
2171 		if (map->len > 1) {
2172 			map->queues[pos] = map->queues[--map->len];
2173 			break;
2174 		}
2175 
2176 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2177 		kfree_rcu(map, rcu);
2178 		return false;
2179 	}
2180 
2181 	return true;
2182 }
2183 
2184 static bool remove_xps_queue_cpu(struct net_device *dev,
2185 				 struct xps_dev_maps *dev_maps,
2186 				 int cpu, u16 offset, u16 count)
2187 {
2188 	int num_tc = dev->num_tc ? : 1;
2189 	bool active = false;
2190 	int tci;
2191 
2192 	for (tci = cpu * num_tc; num_tc--; tci++) {
2193 		int i, j;
2194 
2195 		for (i = count, j = offset; i--; j++) {
2196 			if (!remove_xps_queue(dev_maps, tci, j))
2197 				break;
2198 		}
2199 
2200 		active |= i < 0;
2201 	}
2202 
2203 	return active;
2204 }
2205 
2206 static void reset_xps_maps(struct net_device *dev,
2207 			   struct xps_dev_maps *dev_maps,
2208 			   bool is_rxqs_map)
2209 {
2210 	if (is_rxqs_map) {
2211 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2212 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2213 	} else {
2214 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2215 	}
2216 	static_key_slow_dec_cpuslocked(&xps_needed);
2217 	kfree_rcu(dev_maps, rcu);
2218 }
2219 
2220 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2221 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2222 			   u16 offset, u16 count, bool is_rxqs_map)
2223 {
2224 	bool active = false;
2225 	int i, j;
2226 
2227 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2228 	     j < nr_ids;)
2229 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2230 					       count);
2231 	if (!active)
2232 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2233 
2234 	if (!is_rxqs_map) {
2235 		for (i = offset + (count - 1); count--; i--) {
2236 			netdev_queue_numa_node_write(
2237 				netdev_get_tx_queue(dev, i),
2238 				NUMA_NO_NODE);
2239 		}
2240 	}
2241 }
2242 
2243 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2244 				   u16 count)
2245 {
2246 	const unsigned long *possible_mask = NULL;
2247 	struct xps_dev_maps *dev_maps;
2248 	unsigned int nr_ids;
2249 
2250 	if (!static_key_false(&xps_needed))
2251 		return;
2252 
2253 	cpus_read_lock();
2254 	mutex_lock(&xps_map_mutex);
2255 
2256 	if (static_key_false(&xps_rxqs_needed)) {
2257 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2258 		if (dev_maps) {
2259 			nr_ids = dev->num_rx_queues;
2260 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2261 				       offset, count, true);
2262 		}
2263 	}
2264 
2265 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2266 	if (!dev_maps)
2267 		goto out_no_maps;
2268 
2269 	if (num_possible_cpus() > 1)
2270 		possible_mask = cpumask_bits(cpu_possible_mask);
2271 	nr_ids = nr_cpu_ids;
2272 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2273 		       false);
2274 
2275 out_no_maps:
2276 	mutex_unlock(&xps_map_mutex);
2277 	cpus_read_unlock();
2278 }
2279 
2280 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2281 {
2282 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2283 }
2284 
2285 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2286 				      u16 index, bool is_rxqs_map)
2287 {
2288 	struct xps_map *new_map;
2289 	int alloc_len = XPS_MIN_MAP_ALLOC;
2290 	int i, pos;
2291 
2292 	for (pos = 0; map && pos < map->len; pos++) {
2293 		if (map->queues[pos] != index)
2294 			continue;
2295 		return map;
2296 	}
2297 
2298 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2299 	if (map) {
2300 		if (pos < map->alloc_len)
2301 			return map;
2302 
2303 		alloc_len = map->alloc_len * 2;
2304 	}
2305 
2306 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2307 	 *  map
2308 	 */
2309 	if (is_rxqs_map)
2310 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2311 	else
2312 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2313 				       cpu_to_node(attr_index));
2314 	if (!new_map)
2315 		return NULL;
2316 
2317 	for (i = 0; i < pos; i++)
2318 		new_map->queues[i] = map->queues[i];
2319 	new_map->alloc_len = alloc_len;
2320 	new_map->len = pos;
2321 
2322 	return new_map;
2323 }
2324 
2325 /* Must be called under cpus_read_lock */
2326 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2327 			  u16 index, bool is_rxqs_map)
2328 {
2329 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2330 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2331 	int i, j, tci, numa_node_id = -2;
2332 	int maps_sz, num_tc = 1, tc = 0;
2333 	struct xps_map *map, *new_map;
2334 	bool active = false;
2335 	unsigned int nr_ids;
2336 
2337 	if (dev->num_tc) {
2338 		/* Do not allow XPS on subordinate device directly */
2339 		num_tc = dev->num_tc;
2340 		if (num_tc < 0)
2341 			return -EINVAL;
2342 
2343 		/* If queue belongs to subordinate dev use its map */
2344 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2345 
2346 		tc = netdev_txq_to_tc(dev, index);
2347 		if (tc < 0)
2348 			return -EINVAL;
2349 	}
2350 
2351 	mutex_lock(&xps_map_mutex);
2352 	if (is_rxqs_map) {
2353 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2354 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2355 		nr_ids = dev->num_rx_queues;
2356 	} else {
2357 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2358 		if (num_possible_cpus() > 1) {
2359 			online_mask = cpumask_bits(cpu_online_mask);
2360 			possible_mask = cpumask_bits(cpu_possible_mask);
2361 		}
2362 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2363 		nr_ids = nr_cpu_ids;
2364 	}
2365 
2366 	if (maps_sz < L1_CACHE_BYTES)
2367 		maps_sz = L1_CACHE_BYTES;
2368 
2369 	/* allocate memory for queue storage */
2370 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2371 	     j < nr_ids;) {
2372 		if (!new_dev_maps)
2373 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2374 		if (!new_dev_maps) {
2375 			mutex_unlock(&xps_map_mutex);
2376 			return -ENOMEM;
2377 		}
2378 
2379 		tci = j * num_tc + tc;
2380 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2381 				 NULL;
2382 
2383 		map = expand_xps_map(map, j, index, is_rxqs_map);
2384 		if (!map)
2385 			goto error;
2386 
2387 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2388 	}
2389 
2390 	if (!new_dev_maps)
2391 		goto out_no_new_maps;
2392 
2393 	if (!dev_maps) {
2394 		/* Increment static keys at most once per type */
2395 		static_key_slow_inc_cpuslocked(&xps_needed);
2396 		if (is_rxqs_map)
2397 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2398 	}
2399 
2400 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2401 	     j < nr_ids;) {
2402 		/* copy maps belonging to foreign traffic classes */
2403 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2404 			/* fill in the new device map from the old device map */
2405 			map = xmap_dereference(dev_maps->attr_map[tci]);
2406 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2407 		}
2408 
2409 		/* We need to explicitly update tci as prevous loop
2410 		 * could break out early if dev_maps is NULL.
2411 		 */
2412 		tci = j * num_tc + tc;
2413 
2414 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2415 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2416 			/* add tx-queue to CPU/rx-queue maps */
2417 			int pos = 0;
2418 
2419 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2420 			while ((pos < map->len) && (map->queues[pos] != index))
2421 				pos++;
2422 
2423 			if (pos == map->len)
2424 				map->queues[map->len++] = index;
2425 #ifdef CONFIG_NUMA
2426 			if (!is_rxqs_map) {
2427 				if (numa_node_id == -2)
2428 					numa_node_id = cpu_to_node(j);
2429 				else if (numa_node_id != cpu_to_node(j))
2430 					numa_node_id = -1;
2431 			}
2432 #endif
2433 		} else if (dev_maps) {
2434 			/* fill in the new device map from the old device map */
2435 			map = xmap_dereference(dev_maps->attr_map[tci]);
2436 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2437 		}
2438 
2439 		/* copy maps belonging to foreign traffic classes */
2440 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2441 			/* fill in the new device map from the old device map */
2442 			map = xmap_dereference(dev_maps->attr_map[tci]);
2443 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2444 		}
2445 	}
2446 
2447 	if (is_rxqs_map)
2448 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2449 	else
2450 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2451 
2452 	/* Cleanup old maps */
2453 	if (!dev_maps)
2454 		goto out_no_old_maps;
2455 
2456 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2457 	     j < nr_ids;) {
2458 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2459 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2460 			map = xmap_dereference(dev_maps->attr_map[tci]);
2461 			if (map && map != new_map)
2462 				kfree_rcu(map, rcu);
2463 		}
2464 	}
2465 
2466 	kfree_rcu(dev_maps, rcu);
2467 
2468 out_no_old_maps:
2469 	dev_maps = new_dev_maps;
2470 	active = true;
2471 
2472 out_no_new_maps:
2473 	if (!is_rxqs_map) {
2474 		/* update Tx queue numa node */
2475 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2476 					     (numa_node_id >= 0) ?
2477 					     numa_node_id : NUMA_NO_NODE);
2478 	}
2479 
2480 	if (!dev_maps)
2481 		goto out_no_maps;
2482 
2483 	/* removes tx-queue from unused CPUs/rx-queues */
2484 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2485 	     j < nr_ids;) {
2486 		for (i = tc, tci = j * num_tc; i--; tci++)
2487 			active |= remove_xps_queue(dev_maps, tci, index);
2488 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2489 		    !netif_attr_test_online(j, online_mask, nr_ids))
2490 			active |= remove_xps_queue(dev_maps, tci, index);
2491 		for (i = num_tc - tc, tci++; --i; tci++)
2492 			active |= remove_xps_queue(dev_maps, tci, index);
2493 	}
2494 
2495 	/* free map if not active */
2496 	if (!active)
2497 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2498 
2499 out_no_maps:
2500 	mutex_unlock(&xps_map_mutex);
2501 
2502 	return 0;
2503 error:
2504 	/* remove any maps that we added */
2505 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2506 	     j < nr_ids;) {
2507 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2508 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2509 			map = dev_maps ?
2510 			      xmap_dereference(dev_maps->attr_map[tci]) :
2511 			      NULL;
2512 			if (new_map && new_map != map)
2513 				kfree(new_map);
2514 		}
2515 	}
2516 
2517 	mutex_unlock(&xps_map_mutex);
2518 
2519 	kfree(new_dev_maps);
2520 	return -ENOMEM;
2521 }
2522 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2523 
2524 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2525 			u16 index)
2526 {
2527 	int ret;
2528 
2529 	cpus_read_lock();
2530 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2531 	cpus_read_unlock();
2532 
2533 	return ret;
2534 }
2535 EXPORT_SYMBOL(netif_set_xps_queue);
2536 
2537 #endif
2538 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2539 {
2540 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2541 
2542 	/* Unbind any subordinate channels */
2543 	while (txq-- != &dev->_tx[0]) {
2544 		if (txq->sb_dev)
2545 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2546 	}
2547 }
2548 
2549 void netdev_reset_tc(struct net_device *dev)
2550 {
2551 #ifdef CONFIG_XPS
2552 	netif_reset_xps_queues_gt(dev, 0);
2553 #endif
2554 	netdev_unbind_all_sb_channels(dev);
2555 
2556 	/* Reset TC configuration of device */
2557 	dev->num_tc = 0;
2558 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2559 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2560 }
2561 EXPORT_SYMBOL(netdev_reset_tc);
2562 
2563 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2564 {
2565 	if (tc >= dev->num_tc)
2566 		return -EINVAL;
2567 
2568 #ifdef CONFIG_XPS
2569 	netif_reset_xps_queues(dev, offset, count);
2570 #endif
2571 	dev->tc_to_txq[tc].count = count;
2572 	dev->tc_to_txq[tc].offset = offset;
2573 	return 0;
2574 }
2575 EXPORT_SYMBOL(netdev_set_tc_queue);
2576 
2577 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2578 {
2579 	if (num_tc > TC_MAX_QUEUE)
2580 		return -EINVAL;
2581 
2582 #ifdef CONFIG_XPS
2583 	netif_reset_xps_queues_gt(dev, 0);
2584 #endif
2585 	netdev_unbind_all_sb_channels(dev);
2586 
2587 	dev->num_tc = num_tc;
2588 	return 0;
2589 }
2590 EXPORT_SYMBOL(netdev_set_num_tc);
2591 
2592 void netdev_unbind_sb_channel(struct net_device *dev,
2593 			      struct net_device *sb_dev)
2594 {
2595 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2596 
2597 #ifdef CONFIG_XPS
2598 	netif_reset_xps_queues_gt(sb_dev, 0);
2599 #endif
2600 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2601 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2602 
2603 	while (txq-- != &dev->_tx[0]) {
2604 		if (txq->sb_dev == sb_dev)
2605 			txq->sb_dev = NULL;
2606 	}
2607 }
2608 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2609 
2610 int netdev_bind_sb_channel_queue(struct net_device *dev,
2611 				 struct net_device *sb_dev,
2612 				 u8 tc, u16 count, u16 offset)
2613 {
2614 	/* Make certain the sb_dev and dev are already configured */
2615 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2616 		return -EINVAL;
2617 
2618 	/* We cannot hand out queues we don't have */
2619 	if ((offset + count) > dev->real_num_tx_queues)
2620 		return -EINVAL;
2621 
2622 	/* Record the mapping */
2623 	sb_dev->tc_to_txq[tc].count = count;
2624 	sb_dev->tc_to_txq[tc].offset = offset;
2625 
2626 	/* Provide a way for Tx queue to find the tc_to_txq map or
2627 	 * XPS map for itself.
2628 	 */
2629 	while (count--)
2630 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2631 
2632 	return 0;
2633 }
2634 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2635 
2636 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2637 {
2638 	/* Do not use a multiqueue device to represent a subordinate channel */
2639 	if (netif_is_multiqueue(dev))
2640 		return -ENODEV;
2641 
2642 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2643 	 * Channel 0 is meant to be "native" mode and used only to represent
2644 	 * the main root device. We allow writing 0 to reset the device back
2645 	 * to normal mode after being used as a subordinate channel.
2646 	 */
2647 	if (channel > S16_MAX)
2648 		return -EINVAL;
2649 
2650 	dev->num_tc = -channel;
2651 
2652 	return 0;
2653 }
2654 EXPORT_SYMBOL(netdev_set_sb_channel);
2655 
2656 /*
2657  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2658  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2659  */
2660 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2661 {
2662 	bool disabling;
2663 	int rc;
2664 
2665 	disabling = txq < dev->real_num_tx_queues;
2666 
2667 	if (txq < 1 || txq > dev->num_tx_queues)
2668 		return -EINVAL;
2669 
2670 	if (dev->reg_state == NETREG_REGISTERED ||
2671 	    dev->reg_state == NETREG_UNREGISTERING) {
2672 		ASSERT_RTNL();
2673 
2674 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2675 						  txq);
2676 		if (rc)
2677 			return rc;
2678 
2679 		if (dev->num_tc)
2680 			netif_setup_tc(dev, txq);
2681 
2682 		dev->real_num_tx_queues = txq;
2683 
2684 		if (disabling) {
2685 			synchronize_net();
2686 			qdisc_reset_all_tx_gt(dev, txq);
2687 #ifdef CONFIG_XPS
2688 			netif_reset_xps_queues_gt(dev, txq);
2689 #endif
2690 		}
2691 	} else {
2692 		dev->real_num_tx_queues = txq;
2693 	}
2694 
2695 	return 0;
2696 }
2697 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2698 
2699 #ifdef CONFIG_SYSFS
2700 /**
2701  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2702  *	@dev: Network device
2703  *	@rxq: Actual number of RX queues
2704  *
2705  *	This must be called either with the rtnl_lock held or before
2706  *	registration of the net device.  Returns 0 on success, or a
2707  *	negative error code.  If called before registration, it always
2708  *	succeeds.
2709  */
2710 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2711 {
2712 	int rc;
2713 
2714 	if (rxq < 1 || rxq > dev->num_rx_queues)
2715 		return -EINVAL;
2716 
2717 	if (dev->reg_state == NETREG_REGISTERED) {
2718 		ASSERT_RTNL();
2719 
2720 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2721 						  rxq);
2722 		if (rc)
2723 			return rc;
2724 	}
2725 
2726 	dev->real_num_rx_queues = rxq;
2727 	return 0;
2728 }
2729 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2730 #endif
2731 
2732 /**
2733  * netif_get_num_default_rss_queues - default number of RSS queues
2734  *
2735  * This routine should set an upper limit on the number of RSS queues
2736  * used by default by multiqueue devices.
2737  */
2738 int netif_get_num_default_rss_queues(void)
2739 {
2740 	return is_kdump_kernel() ?
2741 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2742 }
2743 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2744 
2745 static void __netif_reschedule(struct Qdisc *q)
2746 {
2747 	struct softnet_data *sd;
2748 	unsigned long flags;
2749 
2750 	local_irq_save(flags);
2751 	sd = this_cpu_ptr(&softnet_data);
2752 	q->next_sched = NULL;
2753 	*sd->output_queue_tailp = q;
2754 	sd->output_queue_tailp = &q->next_sched;
2755 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2756 	local_irq_restore(flags);
2757 }
2758 
2759 void __netif_schedule(struct Qdisc *q)
2760 {
2761 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2762 		__netif_reschedule(q);
2763 }
2764 EXPORT_SYMBOL(__netif_schedule);
2765 
2766 struct dev_kfree_skb_cb {
2767 	enum skb_free_reason reason;
2768 };
2769 
2770 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2771 {
2772 	return (struct dev_kfree_skb_cb *)skb->cb;
2773 }
2774 
2775 void netif_schedule_queue(struct netdev_queue *txq)
2776 {
2777 	rcu_read_lock();
2778 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2779 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2780 
2781 		__netif_schedule(q);
2782 	}
2783 	rcu_read_unlock();
2784 }
2785 EXPORT_SYMBOL(netif_schedule_queue);
2786 
2787 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2788 {
2789 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2790 		struct Qdisc *q;
2791 
2792 		rcu_read_lock();
2793 		q = rcu_dereference(dev_queue->qdisc);
2794 		__netif_schedule(q);
2795 		rcu_read_unlock();
2796 	}
2797 }
2798 EXPORT_SYMBOL(netif_tx_wake_queue);
2799 
2800 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2801 {
2802 	unsigned long flags;
2803 
2804 	if (unlikely(!skb))
2805 		return;
2806 
2807 	if (likely(refcount_read(&skb->users) == 1)) {
2808 		smp_rmb();
2809 		refcount_set(&skb->users, 0);
2810 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2811 		return;
2812 	}
2813 	get_kfree_skb_cb(skb)->reason = reason;
2814 	local_irq_save(flags);
2815 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2816 	__this_cpu_write(softnet_data.completion_queue, skb);
2817 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2818 	local_irq_restore(flags);
2819 }
2820 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2821 
2822 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2823 {
2824 	if (in_irq() || irqs_disabled())
2825 		__dev_kfree_skb_irq(skb, reason);
2826 	else
2827 		dev_kfree_skb(skb);
2828 }
2829 EXPORT_SYMBOL(__dev_kfree_skb_any);
2830 
2831 
2832 /**
2833  * netif_device_detach - mark device as removed
2834  * @dev: network device
2835  *
2836  * Mark device as removed from system and therefore no longer available.
2837  */
2838 void netif_device_detach(struct net_device *dev)
2839 {
2840 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2841 	    netif_running(dev)) {
2842 		netif_tx_stop_all_queues(dev);
2843 	}
2844 }
2845 EXPORT_SYMBOL(netif_device_detach);
2846 
2847 /**
2848  * netif_device_attach - mark device as attached
2849  * @dev: network device
2850  *
2851  * Mark device as attached from system and restart if needed.
2852  */
2853 void netif_device_attach(struct net_device *dev)
2854 {
2855 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2856 	    netif_running(dev)) {
2857 		netif_tx_wake_all_queues(dev);
2858 		__netdev_watchdog_up(dev);
2859 	}
2860 }
2861 EXPORT_SYMBOL(netif_device_attach);
2862 
2863 /*
2864  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2865  * to be used as a distribution range.
2866  */
2867 static u16 skb_tx_hash(const struct net_device *dev,
2868 		       const struct net_device *sb_dev,
2869 		       struct sk_buff *skb)
2870 {
2871 	u32 hash;
2872 	u16 qoffset = 0;
2873 	u16 qcount = dev->real_num_tx_queues;
2874 
2875 	if (dev->num_tc) {
2876 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2877 
2878 		qoffset = sb_dev->tc_to_txq[tc].offset;
2879 		qcount = sb_dev->tc_to_txq[tc].count;
2880 	}
2881 
2882 	if (skb_rx_queue_recorded(skb)) {
2883 		hash = skb_get_rx_queue(skb);
2884 		while (unlikely(hash >= qcount))
2885 			hash -= qcount;
2886 		return hash + qoffset;
2887 	}
2888 
2889 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2890 }
2891 
2892 static void skb_warn_bad_offload(const struct sk_buff *skb)
2893 {
2894 	static const netdev_features_t null_features;
2895 	struct net_device *dev = skb->dev;
2896 	const char *name = "";
2897 
2898 	if (!net_ratelimit())
2899 		return;
2900 
2901 	if (dev) {
2902 		if (dev->dev.parent)
2903 			name = dev_driver_string(dev->dev.parent);
2904 		else
2905 			name = netdev_name(dev);
2906 	}
2907 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2908 	     "gso_type=%d ip_summed=%d\n",
2909 	     name, dev ? &dev->features : &null_features,
2910 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2911 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2912 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2913 }
2914 
2915 /*
2916  * Invalidate hardware checksum when packet is to be mangled, and
2917  * complete checksum manually on outgoing path.
2918  */
2919 int skb_checksum_help(struct sk_buff *skb)
2920 {
2921 	__wsum csum;
2922 	int ret = 0, offset;
2923 
2924 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2925 		goto out_set_summed;
2926 
2927 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2928 		skb_warn_bad_offload(skb);
2929 		return -EINVAL;
2930 	}
2931 
2932 	/* Before computing a checksum, we should make sure no frag could
2933 	 * be modified by an external entity : checksum could be wrong.
2934 	 */
2935 	if (skb_has_shared_frag(skb)) {
2936 		ret = __skb_linearize(skb);
2937 		if (ret)
2938 			goto out;
2939 	}
2940 
2941 	offset = skb_checksum_start_offset(skb);
2942 	BUG_ON(offset >= skb_headlen(skb));
2943 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2944 
2945 	offset += skb->csum_offset;
2946 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2947 
2948 	if (skb_cloned(skb) &&
2949 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2950 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2951 		if (ret)
2952 			goto out;
2953 	}
2954 
2955 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2956 out_set_summed:
2957 	skb->ip_summed = CHECKSUM_NONE;
2958 out:
2959 	return ret;
2960 }
2961 EXPORT_SYMBOL(skb_checksum_help);
2962 
2963 int skb_crc32c_csum_help(struct sk_buff *skb)
2964 {
2965 	__le32 crc32c_csum;
2966 	int ret = 0, offset, start;
2967 
2968 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2969 		goto out;
2970 
2971 	if (unlikely(skb_is_gso(skb)))
2972 		goto out;
2973 
2974 	/* Before computing a checksum, we should make sure no frag could
2975 	 * be modified by an external entity : checksum could be wrong.
2976 	 */
2977 	if (unlikely(skb_has_shared_frag(skb))) {
2978 		ret = __skb_linearize(skb);
2979 		if (ret)
2980 			goto out;
2981 	}
2982 	start = skb_checksum_start_offset(skb);
2983 	offset = start + offsetof(struct sctphdr, checksum);
2984 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2985 		ret = -EINVAL;
2986 		goto out;
2987 	}
2988 	if (skb_cloned(skb) &&
2989 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2990 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2991 		if (ret)
2992 			goto out;
2993 	}
2994 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2995 						  skb->len - start, ~(__u32)0,
2996 						  crc32c_csum_stub));
2997 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2998 	skb->ip_summed = CHECKSUM_NONE;
2999 	skb->csum_not_inet = 0;
3000 out:
3001 	return ret;
3002 }
3003 
3004 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3005 {
3006 	__be16 type = skb->protocol;
3007 
3008 	/* Tunnel gso handlers can set protocol to ethernet. */
3009 	if (type == htons(ETH_P_TEB)) {
3010 		struct ethhdr *eth;
3011 
3012 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3013 			return 0;
3014 
3015 		eth = (struct ethhdr *)skb->data;
3016 		type = eth->h_proto;
3017 	}
3018 
3019 	return __vlan_get_protocol(skb, type, depth);
3020 }
3021 
3022 /**
3023  *	skb_mac_gso_segment - mac layer segmentation handler.
3024  *	@skb: buffer to segment
3025  *	@features: features for the output path (see dev->features)
3026  */
3027 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3028 				    netdev_features_t features)
3029 {
3030 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3031 	struct packet_offload *ptype;
3032 	int vlan_depth = skb->mac_len;
3033 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3034 
3035 	if (unlikely(!type))
3036 		return ERR_PTR(-EINVAL);
3037 
3038 	__skb_pull(skb, vlan_depth);
3039 
3040 	rcu_read_lock();
3041 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3042 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3043 			segs = ptype->callbacks.gso_segment(skb, features);
3044 			break;
3045 		}
3046 	}
3047 	rcu_read_unlock();
3048 
3049 	__skb_push(skb, skb->data - skb_mac_header(skb));
3050 
3051 	return segs;
3052 }
3053 EXPORT_SYMBOL(skb_mac_gso_segment);
3054 
3055 
3056 /* openvswitch calls this on rx path, so we need a different check.
3057  */
3058 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3059 {
3060 	if (tx_path)
3061 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3062 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3063 
3064 	return skb->ip_summed == CHECKSUM_NONE;
3065 }
3066 
3067 /**
3068  *	__skb_gso_segment - Perform segmentation on skb.
3069  *	@skb: buffer to segment
3070  *	@features: features for the output path (see dev->features)
3071  *	@tx_path: whether it is called in TX path
3072  *
3073  *	This function segments the given skb and returns a list of segments.
3074  *
3075  *	It may return NULL if the skb requires no segmentation.  This is
3076  *	only possible when GSO is used for verifying header integrity.
3077  *
3078  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3079  */
3080 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3081 				  netdev_features_t features, bool tx_path)
3082 {
3083 	struct sk_buff *segs;
3084 
3085 	if (unlikely(skb_needs_check(skb, tx_path))) {
3086 		int err;
3087 
3088 		/* We're going to init ->check field in TCP or UDP header */
3089 		err = skb_cow_head(skb, 0);
3090 		if (err < 0)
3091 			return ERR_PTR(err);
3092 	}
3093 
3094 	/* Only report GSO partial support if it will enable us to
3095 	 * support segmentation on this frame without needing additional
3096 	 * work.
3097 	 */
3098 	if (features & NETIF_F_GSO_PARTIAL) {
3099 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3100 		struct net_device *dev = skb->dev;
3101 
3102 		partial_features |= dev->features & dev->gso_partial_features;
3103 		if (!skb_gso_ok(skb, features | partial_features))
3104 			features &= ~NETIF_F_GSO_PARTIAL;
3105 	}
3106 
3107 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3108 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3109 
3110 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3111 	SKB_GSO_CB(skb)->encap_level = 0;
3112 
3113 	skb_reset_mac_header(skb);
3114 	skb_reset_mac_len(skb);
3115 
3116 	segs = skb_mac_gso_segment(skb, features);
3117 
3118 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3119 		skb_warn_bad_offload(skb);
3120 
3121 	return segs;
3122 }
3123 EXPORT_SYMBOL(__skb_gso_segment);
3124 
3125 /* Take action when hardware reception checksum errors are detected. */
3126 #ifdef CONFIG_BUG
3127 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3128 {
3129 	if (net_ratelimit()) {
3130 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3131 		if (dev)
3132 			pr_err("dev features: %pNF\n", &dev->features);
3133 		pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n",
3134 		       skb->len, skb->data_len, skb->pkt_type,
3135 		       skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type,
3136 		       skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum,
3137 		       skb->csum_complete_sw, skb->csum_valid, skb->csum_level);
3138 		dump_stack();
3139 	}
3140 }
3141 EXPORT_SYMBOL(netdev_rx_csum_fault);
3142 #endif
3143 
3144 /* XXX: check that highmem exists at all on the given machine. */
3145 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3146 {
3147 #ifdef CONFIG_HIGHMEM
3148 	int i;
3149 
3150 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3151 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3152 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3153 
3154 			if (PageHighMem(skb_frag_page(frag)))
3155 				return 1;
3156 		}
3157 	}
3158 #endif
3159 	return 0;
3160 }
3161 
3162 /* If MPLS offload request, verify we are testing hardware MPLS features
3163  * instead of standard features for the netdev.
3164  */
3165 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3166 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3167 					   netdev_features_t features,
3168 					   __be16 type)
3169 {
3170 	if (eth_p_mpls(type))
3171 		features &= skb->dev->mpls_features;
3172 
3173 	return features;
3174 }
3175 #else
3176 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3177 					   netdev_features_t features,
3178 					   __be16 type)
3179 {
3180 	return features;
3181 }
3182 #endif
3183 
3184 static netdev_features_t harmonize_features(struct sk_buff *skb,
3185 	netdev_features_t features)
3186 {
3187 	int tmp;
3188 	__be16 type;
3189 
3190 	type = skb_network_protocol(skb, &tmp);
3191 	features = net_mpls_features(skb, features, type);
3192 
3193 	if (skb->ip_summed != CHECKSUM_NONE &&
3194 	    !can_checksum_protocol(features, type)) {
3195 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3196 	}
3197 	if (illegal_highdma(skb->dev, skb))
3198 		features &= ~NETIF_F_SG;
3199 
3200 	return features;
3201 }
3202 
3203 netdev_features_t passthru_features_check(struct sk_buff *skb,
3204 					  struct net_device *dev,
3205 					  netdev_features_t features)
3206 {
3207 	return features;
3208 }
3209 EXPORT_SYMBOL(passthru_features_check);
3210 
3211 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3212 					     struct net_device *dev,
3213 					     netdev_features_t features)
3214 {
3215 	return vlan_features_check(skb, features);
3216 }
3217 
3218 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3219 					    struct net_device *dev,
3220 					    netdev_features_t features)
3221 {
3222 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3223 
3224 	if (gso_segs > dev->gso_max_segs)
3225 		return features & ~NETIF_F_GSO_MASK;
3226 
3227 	/* Support for GSO partial features requires software
3228 	 * intervention before we can actually process the packets
3229 	 * so we need to strip support for any partial features now
3230 	 * and we can pull them back in after we have partially
3231 	 * segmented the frame.
3232 	 */
3233 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3234 		features &= ~dev->gso_partial_features;
3235 
3236 	/* Make sure to clear the IPv4 ID mangling feature if the
3237 	 * IPv4 header has the potential to be fragmented.
3238 	 */
3239 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3240 		struct iphdr *iph = skb->encapsulation ?
3241 				    inner_ip_hdr(skb) : ip_hdr(skb);
3242 
3243 		if (!(iph->frag_off & htons(IP_DF)))
3244 			features &= ~NETIF_F_TSO_MANGLEID;
3245 	}
3246 
3247 	return features;
3248 }
3249 
3250 netdev_features_t netif_skb_features(struct sk_buff *skb)
3251 {
3252 	struct net_device *dev = skb->dev;
3253 	netdev_features_t features = dev->features;
3254 
3255 	if (skb_is_gso(skb))
3256 		features = gso_features_check(skb, dev, features);
3257 
3258 	/* If encapsulation offload request, verify we are testing
3259 	 * hardware encapsulation features instead of standard
3260 	 * features for the netdev
3261 	 */
3262 	if (skb->encapsulation)
3263 		features &= dev->hw_enc_features;
3264 
3265 	if (skb_vlan_tagged(skb))
3266 		features = netdev_intersect_features(features,
3267 						     dev->vlan_features |
3268 						     NETIF_F_HW_VLAN_CTAG_TX |
3269 						     NETIF_F_HW_VLAN_STAG_TX);
3270 
3271 	if (dev->netdev_ops->ndo_features_check)
3272 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3273 								features);
3274 	else
3275 		features &= dflt_features_check(skb, dev, features);
3276 
3277 	return harmonize_features(skb, features);
3278 }
3279 EXPORT_SYMBOL(netif_skb_features);
3280 
3281 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3282 		    struct netdev_queue *txq, bool more)
3283 {
3284 	unsigned int len;
3285 	int rc;
3286 
3287 	if (dev_nit_active(dev))
3288 		dev_queue_xmit_nit(skb, dev);
3289 
3290 	len = skb->len;
3291 	trace_net_dev_start_xmit(skb, dev);
3292 	rc = netdev_start_xmit(skb, dev, txq, more);
3293 	trace_net_dev_xmit(skb, rc, dev, len);
3294 
3295 	return rc;
3296 }
3297 
3298 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3299 				    struct netdev_queue *txq, int *ret)
3300 {
3301 	struct sk_buff *skb = first;
3302 	int rc = NETDEV_TX_OK;
3303 
3304 	while (skb) {
3305 		struct sk_buff *next = skb->next;
3306 
3307 		skb_mark_not_on_list(skb);
3308 		rc = xmit_one(skb, dev, txq, next != NULL);
3309 		if (unlikely(!dev_xmit_complete(rc))) {
3310 			skb->next = next;
3311 			goto out;
3312 		}
3313 
3314 		skb = next;
3315 		if (netif_tx_queue_stopped(txq) && skb) {
3316 			rc = NETDEV_TX_BUSY;
3317 			break;
3318 		}
3319 	}
3320 
3321 out:
3322 	*ret = rc;
3323 	return skb;
3324 }
3325 
3326 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3327 					  netdev_features_t features)
3328 {
3329 	if (skb_vlan_tag_present(skb) &&
3330 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3331 		skb = __vlan_hwaccel_push_inside(skb);
3332 	return skb;
3333 }
3334 
3335 int skb_csum_hwoffload_help(struct sk_buff *skb,
3336 			    const netdev_features_t features)
3337 {
3338 	if (unlikely(skb->csum_not_inet))
3339 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3340 			skb_crc32c_csum_help(skb);
3341 
3342 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3343 }
3344 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3345 
3346 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3347 {
3348 	netdev_features_t features;
3349 
3350 	features = netif_skb_features(skb);
3351 	skb = validate_xmit_vlan(skb, features);
3352 	if (unlikely(!skb))
3353 		goto out_null;
3354 
3355 	skb = sk_validate_xmit_skb(skb, dev);
3356 	if (unlikely(!skb))
3357 		goto out_null;
3358 
3359 	if (netif_needs_gso(skb, features)) {
3360 		struct sk_buff *segs;
3361 
3362 		segs = skb_gso_segment(skb, features);
3363 		if (IS_ERR(segs)) {
3364 			goto out_kfree_skb;
3365 		} else if (segs) {
3366 			consume_skb(skb);
3367 			skb = segs;
3368 		}
3369 	} else {
3370 		if (skb_needs_linearize(skb, features) &&
3371 		    __skb_linearize(skb))
3372 			goto out_kfree_skb;
3373 
3374 		/* If packet is not checksummed and device does not
3375 		 * support checksumming for this protocol, complete
3376 		 * checksumming here.
3377 		 */
3378 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3379 			if (skb->encapsulation)
3380 				skb_set_inner_transport_header(skb,
3381 							       skb_checksum_start_offset(skb));
3382 			else
3383 				skb_set_transport_header(skb,
3384 							 skb_checksum_start_offset(skb));
3385 			if (skb_csum_hwoffload_help(skb, features))
3386 				goto out_kfree_skb;
3387 		}
3388 	}
3389 
3390 	skb = validate_xmit_xfrm(skb, features, again);
3391 
3392 	return skb;
3393 
3394 out_kfree_skb:
3395 	kfree_skb(skb);
3396 out_null:
3397 	atomic_long_inc(&dev->tx_dropped);
3398 	return NULL;
3399 }
3400 
3401 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3402 {
3403 	struct sk_buff *next, *head = NULL, *tail;
3404 
3405 	for (; skb != NULL; skb = next) {
3406 		next = skb->next;
3407 		skb_mark_not_on_list(skb);
3408 
3409 		/* in case skb wont be segmented, point to itself */
3410 		skb->prev = skb;
3411 
3412 		skb = validate_xmit_skb(skb, dev, again);
3413 		if (!skb)
3414 			continue;
3415 
3416 		if (!head)
3417 			head = skb;
3418 		else
3419 			tail->next = skb;
3420 		/* If skb was segmented, skb->prev points to
3421 		 * the last segment. If not, it still contains skb.
3422 		 */
3423 		tail = skb->prev;
3424 	}
3425 	return head;
3426 }
3427 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3428 
3429 static void qdisc_pkt_len_init(struct sk_buff *skb)
3430 {
3431 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3432 
3433 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3434 
3435 	/* To get more precise estimation of bytes sent on wire,
3436 	 * we add to pkt_len the headers size of all segments
3437 	 */
3438 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3439 		unsigned int hdr_len;
3440 		u16 gso_segs = shinfo->gso_segs;
3441 
3442 		/* mac layer + network layer */
3443 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3444 
3445 		/* + transport layer */
3446 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3447 			const struct tcphdr *th;
3448 			struct tcphdr _tcphdr;
3449 
3450 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3451 						sizeof(_tcphdr), &_tcphdr);
3452 			if (likely(th))
3453 				hdr_len += __tcp_hdrlen(th);
3454 		} else {
3455 			struct udphdr _udphdr;
3456 
3457 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3458 					       sizeof(_udphdr), &_udphdr))
3459 				hdr_len += sizeof(struct udphdr);
3460 		}
3461 
3462 		if (shinfo->gso_type & SKB_GSO_DODGY)
3463 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3464 						shinfo->gso_size);
3465 
3466 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3467 	}
3468 }
3469 
3470 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3471 				 struct net_device *dev,
3472 				 struct netdev_queue *txq)
3473 {
3474 	spinlock_t *root_lock = qdisc_lock(q);
3475 	struct sk_buff *to_free = NULL;
3476 	bool contended;
3477 	int rc;
3478 
3479 	qdisc_calculate_pkt_len(skb, q);
3480 
3481 	if (q->flags & TCQ_F_NOLOCK) {
3482 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3483 			__qdisc_drop(skb, &to_free);
3484 			rc = NET_XMIT_DROP;
3485 		} else {
3486 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3487 			qdisc_run(q);
3488 		}
3489 
3490 		if (unlikely(to_free))
3491 			kfree_skb_list(to_free);
3492 		return rc;
3493 	}
3494 
3495 	/*
3496 	 * Heuristic to force contended enqueues to serialize on a
3497 	 * separate lock before trying to get qdisc main lock.
3498 	 * This permits qdisc->running owner to get the lock more
3499 	 * often and dequeue packets faster.
3500 	 */
3501 	contended = qdisc_is_running(q);
3502 	if (unlikely(contended))
3503 		spin_lock(&q->busylock);
3504 
3505 	spin_lock(root_lock);
3506 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3507 		__qdisc_drop(skb, &to_free);
3508 		rc = NET_XMIT_DROP;
3509 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3510 		   qdisc_run_begin(q)) {
3511 		/*
3512 		 * This is a work-conserving queue; there are no old skbs
3513 		 * waiting to be sent out; and the qdisc is not running -
3514 		 * xmit the skb directly.
3515 		 */
3516 
3517 		qdisc_bstats_update(q, skb);
3518 
3519 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3520 			if (unlikely(contended)) {
3521 				spin_unlock(&q->busylock);
3522 				contended = false;
3523 			}
3524 			__qdisc_run(q);
3525 		}
3526 
3527 		qdisc_run_end(q);
3528 		rc = NET_XMIT_SUCCESS;
3529 	} else {
3530 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3531 		if (qdisc_run_begin(q)) {
3532 			if (unlikely(contended)) {
3533 				spin_unlock(&q->busylock);
3534 				contended = false;
3535 			}
3536 			__qdisc_run(q);
3537 			qdisc_run_end(q);
3538 		}
3539 	}
3540 	spin_unlock(root_lock);
3541 	if (unlikely(to_free))
3542 		kfree_skb_list(to_free);
3543 	if (unlikely(contended))
3544 		spin_unlock(&q->busylock);
3545 	return rc;
3546 }
3547 
3548 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3549 static void skb_update_prio(struct sk_buff *skb)
3550 {
3551 	const struct netprio_map *map;
3552 	const struct sock *sk;
3553 	unsigned int prioidx;
3554 
3555 	if (skb->priority)
3556 		return;
3557 	map = rcu_dereference_bh(skb->dev->priomap);
3558 	if (!map)
3559 		return;
3560 	sk = skb_to_full_sk(skb);
3561 	if (!sk)
3562 		return;
3563 
3564 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3565 
3566 	if (prioidx < map->priomap_len)
3567 		skb->priority = map->priomap[prioidx];
3568 }
3569 #else
3570 #define skb_update_prio(skb)
3571 #endif
3572 
3573 DEFINE_PER_CPU(int, xmit_recursion);
3574 EXPORT_SYMBOL(xmit_recursion);
3575 
3576 /**
3577  *	dev_loopback_xmit - loop back @skb
3578  *	@net: network namespace this loopback is happening in
3579  *	@sk:  sk needed to be a netfilter okfn
3580  *	@skb: buffer to transmit
3581  */
3582 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3583 {
3584 	skb_reset_mac_header(skb);
3585 	__skb_pull(skb, skb_network_offset(skb));
3586 	skb->pkt_type = PACKET_LOOPBACK;
3587 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3588 	WARN_ON(!skb_dst(skb));
3589 	skb_dst_force(skb);
3590 	netif_rx_ni(skb);
3591 	return 0;
3592 }
3593 EXPORT_SYMBOL(dev_loopback_xmit);
3594 
3595 #ifdef CONFIG_NET_EGRESS
3596 static struct sk_buff *
3597 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3598 {
3599 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3600 	struct tcf_result cl_res;
3601 
3602 	if (!miniq)
3603 		return skb;
3604 
3605 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3606 	mini_qdisc_bstats_cpu_update(miniq, skb);
3607 
3608 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3609 	case TC_ACT_OK:
3610 	case TC_ACT_RECLASSIFY:
3611 		skb->tc_index = TC_H_MIN(cl_res.classid);
3612 		break;
3613 	case TC_ACT_SHOT:
3614 		mini_qdisc_qstats_cpu_drop(miniq);
3615 		*ret = NET_XMIT_DROP;
3616 		kfree_skb(skb);
3617 		return NULL;
3618 	case TC_ACT_STOLEN:
3619 	case TC_ACT_QUEUED:
3620 	case TC_ACT_TRAP:
3621 		*ret = NET_XMIT_SUCCESS;
3622 		consume_skb(skb);
3623 		return NULL;
3624 	case TC_ACT_REDIRECT:
3625 		/* No need to push/pop skb's mac_header here on egress! */
3626 		skb_do_redirect(skb);
3627 		*ret = NET_XMIT_SUCCESS;
3628 		return NULL;
3629 	default:
3630 		break;
3631 	}
3632 
3633 	return skb;
3634 }
3635 #endif /* CONFIG_NET_EGRESS */
3636 
3637 #ifdef CONFIG_XPS
3638 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3639 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3640 {
3641 	struct xps_map *map;
3642 	int queue_index = -1;
3643 
3644 	if (dev->num_tc) {
3645 		tci *= dev->num_tc;
3646 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3647 	}
3648 
3649 	map = rcu_dereference(dev_maps->attr_map[tci]);
3650 	if (map) {
3651 		if (map->len == 1)
3652 			queue_index = map->queues[0];
3653 		else
3654 			queue_index = map->queues[reciprocal_scale(
3655 						skb_get_hash(skb), map->len)];
3656 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3657 			queue_index = -1;
3658 	}
3659 	return queue_index;
3660 }
3661 #endif
3662 
3663 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3664 			 struct sk_buff *skb)
3665 {
3666 #ifdef CONFIG_XPS
3667 	struct xps_dev_maps *dev_maps;
3668 	struct sock *sk = skb->sk;
3669 	int queue_index = -1;
3670 
3671 	if (!static_key_false(&xps_needed))
3672 		return -1;
3673 
3674 	rcu_read_lock();
3675 	if (!static_key_false(&xps_rxqs_needed))
3676 		goto get_cpus_map;
3677 
3678 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3679 	if (dev_maps) {
3680 		int tci = sk_rx_queue_get(sk);
3681 
3682 		if (tci >= 0 && tci < dev->num_rx_queues)
3683 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3684 							  tci);
3685 	}
3686 
3687 get_cpus_map:
3688 	if (queue_index < 0) {
3689 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3690 		if (dev_maps) {
3691 			unsigned int tci = skb->sender_cpu - 1;
3692 
3693 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3694 							  tci);
3695 		}
3696 	}
3697 	rcu_read_unlock();
3698 
3699 	return queue_index;
3700 #else
3701 	return -1;
3702 #endif
3703 }
3704 
3705 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3706 		     struct net_device *sb_dev,
3707 		     select_queue_fallback_t fallback)
3708 {
3709 	return 0;
3710 }
3711 EXPORT_SYMBOL(dev_pick_tx_zero);
3712 
3713 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3714 		       struct net_device *sb_dev,
3715 		       select_queue_fallback_t fallback)
3716 {
3717 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3718 }
3719 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3720 
3721 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3722 			    struct net_device *sb_dev)
3723 {
3724 	struct sock *sk = skb->sk;
3725 	int queue_index = sk_tx_queue_get(sk);
3726 
3727 	sb_dev = sb_dev ? : dev;
3728 
3729 	if (queue_index < 0 || skb->ooo_okay ||
3730 	    queue_index >= dev->real_num_tx_queues) {
3731 		int new_index = get_xps_queue(dev, sb_dev, skb);
3732 
3733 		if (new_index < 0)
3734 			new_index = skb_tx_hash(dev, sb_dev, skb);
3735 
3736 		if (queue_index != new_index && sk &&
3737 		    sk_fullsock(sk) &&
3738 		    rcu_access_pointer(sk->sk_dst_cache))
3739 			sk_tx_queue_set(sk, new_index);
3740 
3741 		queue_index = new_index;
3742 	}
3743 
3744 	return queue_index;
3745 }
3746 
3747 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3748 				    struct sk_buff *skb,
3749 				    struct net_device *sb_dev)
3750 {
3751 	int queue_index = 0;
3752 
3753 #ifdef CONFIG_XPS
3754 	u32 sender_cpu = skb->sender_cpu - 1;
3755 
3756 	if (sender_cpu >= (u32)NR_CPUS)
3757 		skb->sender_cpu = raw_smp_processor_id() + 1;
3758 #endif
3759 
3760 	if (dev->real_num_tx_queues != 1) {
3761 		const struct net_device_ops *ops = dev->netdev_ops;
3762 
3763 		if (ops->ndo_select_queue)
3764 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3765 							    __netdev_pick_tx);
3766 		else
3767 			queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3768 
3769 		queue_index = netdev_cap_txqueue(dev, queue_index);
3770 	}
3771 
3772 	skb_set_queue_mapping(skb, queue_index);
3773 	return netdev_get_tx_queue(dev, queue_index);
3774 }
3775 
3776 /**
3777  *	__dev_queue_xmit - transmit a buffer
3778  *	@skb: buffer to transmit
3779  *	@sb_dev: suboordinate device used for L2 forwarding offload
3780  *
3781  *	Queue a buffer for transmission to a network device. The caller must
3782  *	have set the device and priority and built the buffer before calling
3783  *	this function. The function can be called from an interrupt.
3784  *
3785  *	A negative errno code is returned on a failure. A success does not
3786  *	guarantee the frame will be transmitted as it may be dropped due
3787  *	to congestion or traffic shaping.
3788  *
3789  * -----------------------------------------------------------------------------------
3790  *      I notice this method can also return errors from the queue disciplines,
3791  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3792  *      be positive.
3793  *
3794  *      Regardless of the return value, the skb is consumed, so it is currently
3795  *      difficult to retry a send to this method.  (You can bump the ref count
3796  *      before sending to hold a reference for retry if you are careful.)
3797  *
3798  *      When calling this method, interrupts MUST be enabled.  This is because
3799  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3800  *          --BLG
3801  */
3802 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3803 {
3804 	struct net_device *dev = skb->dev;
3805 	struct netdev_queue *txq;
3806 	struct Qdisc *q;
3807 	int rc = -ENOMEM;
3808 	bool again = false;
3809 
3810 	skb_reset_mac_header(skb);
3811 
3812 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3813 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3814 
3815 	/* Disable soft irqs for various locks below. Also
3816 	 * stops preemption for RCU.
3817 	 */
3818 	rcu_read_lock_bh();
3819 
3820 	skb_update_prio(skb);
3821 
3822 	qdisc_pkt_len_init(skb);
3823 #ifdef CONFIG_NET_CLS_ACT
3824 	skb->tc_at_ingress = 0;
3825 # ifdef CONFIG_NET_EGRESS
3826 	if (static_branch_unlikely(&egress_needed_key)) {
3827 		skb = sch_handle_egress(skb, &rc, dev);
3828 		if (!skb)
3829 			goto out;
3830 	}
3831 # endif
3832 #endif
3833 	/* If device/qdisc don't need skb->dst, release it right now while
3834 	 * its hot in this cpu cache.
3835 	 */
3836 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3837 		skb_dst_drop(skb);
3838 	else
3839 		skb_dst_force(skb);
3840 
3841 	txq = netdev_pick_tx(dev, skb, sb_dev);
3842 	q = rcu_dereference_bh(txq->qdisc);
3843 
3844 	trace_net_dev_queue(skb);
3845 	if (q->enqueue) {
3846 		rc = __dev_xmit_skb(skb, q, dev, txq);
3847 		goto out;
3848 	}
3849 
3850 	/* The device has no queue. Common case for software devices:
3851 	 * loopback, all the sorts of tunnels...
3852 
3853 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3854 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3855 	 * counters.)
3856 	 * However, it is possible, that they rely on protection
3857 	 * made by us here.
3858 
3859 	 * Check this and shot the lock. It is not prone from deadlocks.
3860 	 *Either shot noqueue qdisc, it is even simpler 8)
3861 	 */
3862 	if (dev->flags & IFF_UP) {
3863 		int cpu = smp_processor_id(); /* ok because BHs are off */
3864 
3865 		if (txq->xmit_lock_owner != cpu) {
3866 			if (unlikely(__this_cpu_read(xmit_recursion) >
3867 				     XMIT_RECURSION_LIMIT))
3868 				goto recursion_alert;
3869 
3870 			skb = validate_xmit_skb(skb, dev, &again);
3871 			if (!skb)
3872 				goto out;
3873 
3874 			HARD_TX_LOCK(dev, txq, cpu);
3875 
3876 			if (!netif_xmit_stopped(txq)) {
3877 				__this_cpu_inc(xmit_recursion);
3878 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3879 				__this_cpu_dec(xmit_recursion);
3880 				if (dev_xmit_complete(rc)) {
3881 					HARD_TX_UNLOCK(dev, txq);
3882 					goto out;
3883 				}
3884 			}
3885 			HARD_TX_UNLOCK(dev, txq);
3886 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3887 					     dev->name);
3888 		} else {
3889 			/* Recursion is detected! It is possible,
3890 			 * unfortunately
3891 			 */
3892 recursion_alert:
3893 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3894 					     dev->name);
3895 		}
3896 	}
3897 
3898 	rc = -ENETDOWN;
3899 	rcu_read_unlock_bh();
3900 
3901 	atomic_long_inc(&dev->tx_dropped);
3902 	kfree_skb_list(skb);
3903 	return rc;
3904 out:
3905 	rcu_read_unlock_bh();
3906 	return rc;
3907 }
3908 
3909 int dev_queue_xmit(struct sk_buff *skb)
3910 {
3911 	return __dev_queue_xmit(skb, NULL);
3912 }
3913 EXPORT_SYMBOL(dev_queue_xmit);
3914 
3915 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3916 {
3917 	return __dev_queue_xmit(skb, sb_dev);
3918 }
3919 EXPORT_SYMBOL(dev_queue_xmit_accel);
3920 
3921 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3922 {
3923 	struct net_device *dev = skb->dev;
3924 	struct sk_buff *orig_skb = skb;
3925 	struct netdev_queue *txq;
3926 	int ret = NETDEV_TX_BUSY;
3927 	bool again = false;
3928 
3929 	if (unlikely(!netif_running(dev) ||
3930 		     !netif_carrier_ok(dev)))
3931 		goto drop;
3932 
3933 	skb = validate_xmit_skb_list(skb, dev, &again);
3934 	if (skb != orig_skb)
3935 		goto drop;
3936 
3937 	skb_set_queue_mapping(skb, queue_id);
3938 	txq = skb_get_tx_queue(dev, skb);
3939 
3940 	local_bh_disable();
3941 
3942 	HARD_TX_LOCK(dev, txq, smp_processor_id());
3943 	if (!netif_xmit_frozen_or_drv_stopped(txq))
3944 		ret = netdev_start_xmit(skb, dev, txq, false);
3945 	HARD_TX_UNLOCK(dev, txq);
3946 
3947 	local_bh_enable();
3948 
3949 	if (!dev_xmit_complete(ret))
3950 		kfree_skb(skb);
3951 
3952 	return ret;
3953 drop:
3954 	atomic_long_inc(&dev->tx_dropped);
3955 	kfree_skb_list(skb);
3956 	return NET_XMIT_DROP;
3957 }
3958 EXPORT_SYMBOL(dev_direct_xmit);
3959 
3960 /*************************************************************************
3961  *			Receiver routines
3962  *************************************************************************/
3963 
3964 int netdev_max_backlog __read_mostly = 1000;
3965 EXPORT_SYMBOL(netdev_max_backlog);
3966 
3967 int netdev_tstamp_prequeue __read_mostly = 1;
3968 int netdev_budget __read_mostly = 300;
3969 unsigned int __read_mostly netdev_budget_usecs = 2000;
3970 int weight_p __read_mostly = 64;           /* old backlog weight */
3971 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3972 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3973 int dev_rx_weight __read_mostly = 64;
3974 int dev_tx_weight __read_mostly = 64;
3975 
3976 /* Called with irq disabled */
3977 static inline void ____napi_schedule(struct softnet_data *sd,
3978 				     struct napi_struct *napi)
3979 {
3980 	list_add_tail(&napi->poll_list, &sd->poll_list);
3981 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3982 }
3983 
3984 #ifdef CONFIG_RPS
3985 
3986 /* One global table that all flow-based protocols share. */
3987 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3988 EXPORT_SYMBOL(rps_sock_flow_table);
3989 u32 rps_cpu_mask __read_mostly;
3990 EXPORT_SYMBOL(rps_cpu_mask);
3991 
3992 struct static_key rps_needed __read_mostly;
3993 EXPORT_SYMBOL(rps_needed);
3994 struct static_key rfs_needed __read_mostly;
3995 EXPORT_SYMBOL(rfs_needed);
3996 
3997 static struct rps_dev_flow *
3998 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3999 	    struct rps_dev_flow *rflow, u16 next_cpu)
4000 {
4001 	if (next_cpu < nr_cpu_ids) {
4002 #ifdef CONFIG_RFS_ACCEL
4003 		struct netdev_rx_queue *rxqueue;
4004 		struct rps_dev_flow_table *flow_table;
4005 		struct rps_dev_flow *old_rflow;
4006 		u32 flow_id;
4007 		u16 rxq_index;
4008 		int rc;
4009 
4010 		/* Should we steer this flow to a different hardware queue? */
4011 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4012 		    !(dev->features & NETIF_F_NTUPLE))
4013 			goto out;
4014 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4015 		if (rxq_index == skb_get_rx_queue(skb))
4016 			goto out;
4017 
4018 		rxqueue = dev->_rx + rxq_index;
4019 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4020 		if (!flow_table)
4021 			goto out;
4022 		flow_id = skb_get_hash(skb) & flow_table->mask;
4023 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4024 							rxq_index, flow_id);
4025 		if (rc < 0)
4026 			goto out;
4027 		old_rflow = rflow;
4028 		rflow = &flow_table->flows[flow_id];
4029 		rflow->filter = rc;
4030 		if (old_rflow->filter == rflow->filter)
4031 			old_rflow->filter = RPS_NO_FILTER;
4032 	out:
4033 #endif
4034 		rflow->last_qtail =
4035 			per_cpu(softnet_data, next_cpu).input_queue_head;
4036 	}
4037 
4038 	rflow->cpu = next_cpu;
4039 	return rflow;
4040 }
4041 
4042 /*
4043  * get_rps_cpu is called from netif_receive_skb and returns the target
4044  * CPU from the RPS map of the receiving queue for a given skb.
4045  * rcu_read_lock must be held on entry.
4046  */
4047 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4048 		       struct rps_dev_flow **rflowp)
4049 {
4050 	const struct rps_sock_flow_table *sock_flow_table;
4051 	struct netdev_rx_queue *rxqueue = dev->_rx;
4052 	struct rps_dev_flow_table *flow_table;
4053 	struct rps_map *map;
4054 	int cpu = -1;
4055 	u32 tcpu;
4056 	u32 hash;
4057 
4058 	if (skb_rx_queue_recorded(skb)) {
4059 		u16 index = skb_get_rx_queue(skb);
4060 
4061 		if (unlikely(index >= dev->real_num_rx_queues)) {
4062 			WARN_ONCE(dev->real_num_rx_queues > 1,
4063 				  "%s received packet on queue %u, but number "
4064 				  "of RX queues is %u\n",
4065 				  dev->name, index, dev->real_num_rx_queues);
4066 			goto done;
4067 		}
4068 		rxqueue += index;
4069 	}
4070 
4071 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4072 
4073 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4074 	map = rcu_dereference(rxqueue->rps_map);
4075 	if (!flow_table && !map)
4076 		goto done;
4077 
4078 	skb_reset_network_header(skb);
4079 	hash = skb_get_hash(skb);
4080 	if (!hash)
4081 		goto done;
4082 
4083 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4084 	if (flow_table && sock_flow_table) {
4085 		struct rps_dev_flow *rflow;
4086 		u32 next_cpu;
4087 		u32 ident;
4088 
4089 		/* First check into global flow table if there is a match */
4090 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4091 		if ((ident ^ hash) & ~rps_cpu_mask)
4092 			goto try_rps;
4093 
4094 		next_cpu = ident & rps_cpu_mask;
4095 
4096 		/* OK, now we know there is a match,
4097 		 * we can look at the local (per receive queue) flow table
4098 		 */
4099 		rflow = &flow_table->flows[hash & flow_table->mask];
4100 		tcpu = rflow->cpu;
4101 
4102 		/*
4103 		 * If the desired CPU (where last recvmsg was done) is
4104 		 * different from current CPU (one in the rx-queue flow
4105 		 * table entry), switch if one of the following holds:
4106 		 *   - Current CPU is unset (>= nr_cpu_ids).
4107 		 *   - Current CPU is offline.
4108 		 *   - The current CPU's queue tail has advanced beyond the
4109 		 *     last packet that was enqueued using this table entry.
4110 		 *     This guarantees that all previous packets for the flow
4111 		 *     have been dequeued, thus preserving in order delivery.
4112 		 */
4113 		if (unlikely(tcpu != next_cpu) &&
4114 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4115 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4116 		      rflow->last_qtail)) >= 0)) {
4117 			tcpu = next_cpu;
4118 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4119 		}
4120 
4121 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4122 			*rflowp = rflow;
4123 			cpu = tcpu;
4124 			goto done;
4125 		}
4126 	}
4127 
4128 try_rps:
4129 
4130 	if (map) {
4131 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4132 		if (cpu_online(tcpu)) {
4133 			cpu = tcpu;
4134 			goto done;
4135 		}
4136 	}
4137 
4138 done:
4139 	return cpu;
4140 }
4141 
4142 #ifdef CONFIG_RFS_ACCEL
4143 
4144 /**
4145  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4146  * @dev: Device on which the filter was set
4147  * @rxq_index: RX queue index
4148  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4149  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4150  *
4151  * Drivers that implement ndo_rx_flow_steer() should periodically call
4152  * this function for each installed filter and remove the filters for
4153  * which it returns %true.
4154  */
4155 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4156 			 u32 flow_id, u16 filter_id)
4157 {
4158 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4159 	struct rps_dev_flow_table *flow_table;
4160 	struct rps_dev_flow *rflow;
4161 	bool expire = true;
4162 	unsigned int cpu;
4163 
4164 	rcu_read_lock();
4165 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4166 	if (flow_table && flow_id <= flow_table->mask) {
4167 		rflow = &flow_table->flows[flow_id];
4168 		cpu = READ_ONCE(rflow->cpu);
4169 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4170 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4171 			   rflow->last_qtail) <
4172 		     (int)(10 * flow_table->mask)))
4173 			expire = false;
4174 	}
4175 	rcu_read_unlock();
4176 	return expire;
4177 }
4178 EXPORT_SYMBOL(rps_may_expire_flow);
4179 
4180 #endif /* CONFIG_RFS_ACCEL */
4181 
4182 /* Called from hardirq (IPI) context */
4183 static void rps_trigger_softirq(void *data)
4184 {
4185 	struct softnet_data *sd = data;
4186 
4187 	____napi_schedule(sd, &sd->backlog);
4188 	sd->received_rps++;
4189 }
4190 
4191 #endif /* CONFIG_RPS */
4192 
4193 /*
4194  * Check if this softnet_data structure is another cpu one
4195  * If yes, queue it to our IPI list and return 1
4196  * If no, return 0
4197  */
4198 static int rps_ipi_queued(struct softnet_data *sd)
4199 {
4200 #ifdef CONFIG_RPS
4201 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4202 
4203 	if (sd != mysd) {
4204 		sd->rps_ipi_next = mysd->rps_ipi_list;
4205 		mysd->rps_ipi_list = sd;
4206 
4207 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4208 		return 1;
4209 	}
4210 #endif /* CONFIG_RPS */
4211 	return 0;
4212 }
4213 
4214 #ifdef CONFIG_NET_FLOW_LIMIT
4215 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4216 #endif
4217 
4218 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4219 {
4220 #ifdef CONFIG_NET_FLOW_LIMIT
4221 	struct sd_flow_limit *fl;
4222 	struct softnet_data *sd;
4223 	unsigned int old_flow, new_flow;
4224 
4225 	if (qlen < (netdev_max_backlog >> 1))
4226 		return false;
4227 
4228 	sd = this_cpu_ptr(&softnet_data);
4229 
4230 	rcu_read_lock();
4231 	fl = rcu_dereference(sd->flow_limit);
4232 	if (fl) {
4233 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4234 		old_flow = fl->history[fl->history_head];
4235 		fl->history[fl->history_head] = new_flow;
4236 
4237 		fl->history_head++;
4238 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4239 
4240 		if (likely(fl->buckets[old_flow]))
4241 			fl->buckets[old_flow]--;
4242 
4243 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4244 			fl->count++;
4245 			rcu_read_unlock();
4246 			return true;
4247 		}
4248 	}
4249 	rcu_read_unlock();
4250 #endif
4251 	return false;
4252 }
4253 
4254 /*
4255  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4256  * queue (may be a remote CPU queue).
4257  */
4258 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4259 			      unsigned int *qtail)
4260 {
4261 	struct softnet_data *sd;
4262 	unsigned long flags;
4263 	unsigned int qlen;
4264 
4265 	sd = &per_cpu(softnet_data, cpu);
4266 
4267 	local_irq_save(flags);
4268 
4269 	rps_lock(sd);
4270 	if (!netif_running(skb->dev))
4271 		goto drop;
4272 	qlen = skb_queue_len(&sd->input_pkt_queue);
4273 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4274 		if (qlen) {
4275 enqueue:
4276 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4277 			input_queue_tail_incr_save(sd, qtail);
4278 			rps_unlock(sd);
4279 			local_irq_restore(flags);
4280 			return NET_RX_SUCCESS;
4281 		}
4282 
4283 		/* Schedule NAPI for backlog device
4284 		 * We can use non atomic operation since we own the queue lock
4285 		 */
4286 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4287 			if (!rps_ipi_queued(sd))
4288 				____napi_schedule(sd, &sd->backlog);
4289 		}
4290 		goto enqueue;
4291 	}
4292 
4293 drop:
4294 	sd->dropped++;
4295 	rps_unlock(sd);
4296 
4297 	local_irq_restore(flags);
4298 
4299 	atomic_long_inc(&skb->dev->rx_dropped);
4300 	kfree_skb(skb);
4301 	return NET_RX_DROP;
4302 }
4303 
4304 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4305 {
4306 	struct net_device *dev = skb->dev;
4307 	struct netdev_rx_queue *rxqueue;
4308 
4309 	rxqueue = dev->_rx;
4310 
4311 	if (skb_rx_queue_recorded(skb)) {
4312 		u16 index = skb_get_rx_queue(skb);
4313 
4314 		if (unlikely(index >= dev->real_num_rx_queues)) {
4315 			WARN_ONCE(dev->real_num_rx_queues > 1,
4316 				  "%s received packet on queue %u, but number "
4317 				  "of RX queues is %u\n",
4318 				  dev->name, index, dev->real_num_rx_queues);
4319 
4320 			return rxqueue; /* Return first rxqueue */
4321 		}
4322 		rxqueue += index;
4323 	}
4324 	return rxqueue;
4325 }
4326 
4327 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4328 				     struct xdp_buff *xdp,
4329 				     struct bpf_prog *xdp_prog)
4330 {
4331 	struct netdev_rx_queue *rxqueue;
4332 	void *orig_data, *orig_data_end;
4333 	u32 metalen, act = XDP_DROP;
4334 	__be16 orig_eth_type;
4335 	struct ethhdr *eth;
4336 	bool orig_bcast;
4337 	int hlen, off;
4338 	u32 mac_len;
4339 
4340 	/* Reinjected packets coming from act_mirred or similar should
4341 	 * not get XDP generic processing.
4342 	 */
4343 	if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4344 		return XDP_PASS;
4345 
4346 	/* XDP packets must be linear and must have sufficient headroom
4347 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4348 	 * native XDP provides, thus we need to do it here as well.
4349 	 */
4350 	if (skb_is_nonlinear(skb) ||
4351 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4352 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4353 		int troom = skb->tail + skb->data_len - skb->end;
4354 
4355 		/* In case we have to go down the path and also linearize,
4356 		 * then lets do the pskb_expand_head() work just once here.
4357 		 */
4358 		if (pskb_expand_head(skb,
4359 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4360 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4361 			goto do_drop;
4362 		if (skb_linearize(skb))
4363 			goto do_drop;
4364 	}
4365 
4366 	/* The XDP program wants to see the packet starting at the MAC
4367 	 * header.
4368 	 */
4369 	mac_len = skb->data - skb_mac_header(skb);
4370 	hlen = skb_headlen(skb) + mac_len;
4371 	xdp->data = skb->data - mac_len;
4372 	xdp->data_meta = xdp->data;
4373 	xdp->data_end = xdp->data + hlen;
4374 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4375 	orig_data_end = xdp->data_end;
4376 	orig_data = xdp->data;
4377 	eth = (struct ethhdr *)xdp->data;
4378 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4379 	orig_eth_type = eth->h_proto;
4380 
4381 	rxqueue = netif_get_rxqueue(skb);
4382 	xdp->rxq = &rxqueue->xdp_rxq;
4383 
4384 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4385 
4386 	off = xdp->data - orig_data;
4387 	if (off > 0)
4388 		__skb_pull(skb, off);
4389 	else if (off < 0)
4390 		__skb_push(skb, -off);
4391 	skb->mac_header += off;
4392 
4393 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4394 	 * pckt.
4395 	 */
4396 	off = orig_data_end - xdp->data_end;
4397 	if (off != 0) {
4398 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4399 		skb->len -= off;
4400 
4401 	}
4402 
4403 	/* check if XDP changed eth hdr such SKB needs update */
4404 	eth = (struct ethhdr *)xdp->data;
4405 	if ((orig_eth_type != eth->h_proto) ||
4406 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4407 		__skb_push(skb, ETH_HLEN);
4408 		skb->protocol = eth_type_trans(skb, skb->dev);
4409 	}
4410 
4411 	switch (act) {
4412 	case XDP_REDIRECT:
4413 	case XDP_TX:
4414 		__skb_push(skb, mac_len);
4415 		break;
4416 	case XDP_PASS:
4417 		metalen = xdp->data - xdp->data_meta;
4418 		if (metalen)
4419 			skb_metadata_set(skb, metalen);
4420 		break;
4421 	default:
4422 		bpf_warn_invalid_xdp_action(act);
4423 		/* fall through */
4424 	case XDP_ABORTED:
4425 		trace_xdp_exception(skb->dev, xdp_prog, act);
4426 		/* fall through */
4427 	case XDP_DROP:
4428 	do_drop:
4429 		kfree_skb(skb);
4430 		break;
4431 	}
4432 
4433 	return act;
4434 }
4435 
4436 /* When doing generic XDP we have to bypass the qdisc layer and the
4437  * network taps in order to match in-driver-XDP behavior.
4438  */
4439 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4440 {
4441 	struct net_device *dev = skb->dev;
4442 	struct netdev_queue *txq;
4443 	bool free_skb = true;
4444 	int cpu, rc;
4445 
4446 	txq = netdev_pick_tx(dev, skb, NULL);
4447 	cpu = smp_processor_id();
4448 	HARD_TX_LOCK(dev, txq, cpu);
4449 	if (!netif_xmit_stopped(txq)) {
4450 		rc = netdev_start_xmit(skb, dev, txq, 0);
4451 		if (dev_xmit_complete(rc))
4452 			free_skb = false;
4453 	}
4454 	HARD_TX_UNLOCK(dev, txq);
4455 	if (free_skb) {
4456 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4457 		kfree_skb(skb);
4458 	}
4459 }
4460 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4461 
4462 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4463 
4464 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4465 {
4466 	if (xdp_prog) {
4467 		struct xdp_buff xdp;
4468 		u32 act;
4469 		int err;
4470 
4471 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4472 		if (act != XDP_PASS) {
4473 			switch (act) {
4474 			case XDP_REDIRECT:
4475 				err = xdp_do_generic_redirect(skb->dev, skb,
4476 							      &xdp, xdp_prog);
4477 				if (err)
4478 					goto out_redir;
4479 				break;
4480 			case XDP_TX:
4481 				generic_xdp_tx(skb, xdp_prog);
4482 				break;
4483 			}
4484 			return XDP_DROP;
4485 		}
4486 	}
4487 	return XDP_PASS;
4488 out_redir:
4489 	kfree_skb(skb);
4490 	return XDP_DROP;
4491 }
4492 EXPORT_SYMBOL_GPL(do_xdp_generic);
4493 
4494 static int netif_rx_internal(struct sk_buff *skb)
4495 {
4496 	int ret;
4497 
4498 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4499 
4500 	trace_netif_rx(skb);
4501 
4502 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4503 		int ret;
4504 
4505 		preempt_disable();
4506 		rcu_read_lock();
4507 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4508 		rcu_read_unlock();
4509 		preempt_enable();
4510 
4511 		/* Consider XDP consuming the packet a success from
4512 		 * the netdev point of view we do not want to count
4513 		 * this as an error.
4514 		 */
4515 		if (ret != XDP_PASS)
4516 			return NET_RX_SUCCESS;
4517 	}
4518 
4519 #ifdef CONFIG_RPS
4520 	if (static_key_false(&rps_needed)) {
4521 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4522 		int cpu;
4523 
4524 		preempt_disable();
4525 		rcu_read_lock();
4526 
4527 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4528 		if (cpu < 0)
4529 			cpu = smp_processor_id();
4530 
4531 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4532 
4533 		rcu_read_unlock();
4534 		preempt_enable();
4535 	} else
4536 #endif
4537 	{
4538 		unsigned int qtail;
4539 
4540 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4541 		put_cpu();
4542 	}
4543 	return ret;
4544 }
4545 
4546 /**
4547  *	netif_rx	-	post buffer to the network code
4548  *	@skb: buffer to post
4549  *
4550  *	This function receives a packet from a device driver and queues it for
4551  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4552  *	may be dropped during processing for congestion control or by the
4553  *	protocol layers.
4554  *
4555  *	return values:
4556  *	NET_RX_SUCCESS	(no congestion)
4557  *	NET_RX_DROP     (packet was dropped)
4558  *
4559  */
4560 
4561 int netif_rx(struct sk_buff *skb)
4562 {
4563 	int ret;
4564 
4565 	trace_netif_rx_entry(skb);
4566 
4567 	ret = netif_rx_internal(skb);
4568 	trace_netif_rx_exit(ret);
4569 
4570 	return ret;
4571 }
4572 EXPORT_SYMBOL(netif_rx);
4573 
4574 int netif_rx_ni(struct sk_buff *skb)
4575 {
4576 	int err;
4577 
4578 	trace_netif_rx_ni_entry(skb);
4579 
4580 	preempt_disable();
4581 	err = netif_rx_internal(skb);
4582 	if (local_softirq_pending())
4583 		do_softirq();
4584 	preempt_enable();
4585 	trace_netif_rx_ni_exit(err);
4586 
4587 	return err;
4588 }
4589 EXPORT_SYMBOL(netif_rx_ni);
4590 
4591 static __latent_entropy void net_tx_action(struct softirq_action *h)
4592 {
4593 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4594 
4595 	if (sd->completion_queue) {
4596 		struct sk_buff *clist;
4597 
4598 		local_irq_disable();
4599 		clist = sd->completion_queue;
4600 		sd->completion_queue = NULL;
4601 		local_irq_enable();
4602 
4603 		while (clist) {
4604 			struct sk_buff *skb = clist;
4605 
4606 			clist = clist->next;
4607 
4608 			WARN_ON(refcount_read(&skb->users));
4609 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4610 				trace_consume_skb(skb);
4611 			else
4612 				trace_kfree_skb(skb, net_tx_action);
4613 
4614 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4615 				__kfree_skb(skb);
4616 			else
4617 				__kfree_skb_defer(skb);
4618 		}
4619 
4620 		__kfree_skb_flush();
4621 	}
4622 
4623 	if (sd->output_queue) {
4624 		struct Qdisc *head;
4625 
4626 		local_irq_disable();
4627 		head = sd->output_queue;
4628 		sd->output_queue = NULL;
4629 		sd->output_queue_tailp = &sd->output_queue;
4630 		local_irq_enable();
4631 
4632 		while (head) {
4633 			struct Qdisc *q = head;
4634 			spinlock_t *root_lock = NULL;
4635 
4636 			head = head->next_sched;
4637 
4638 			if (!(q->flags & TCQ_F_NOLOCK)) {
4639 				root_lock = qdisc_lock(q);
4640 				spin_lock(root_lock);
4641 			}
4642 			/* We need to make sure head->next_sched is read
4643 			 * before clearing __QDISC_STATE_SCHED
4644 			 */
4645 			smp_mb__before_atomic();
4646 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4647 			qdisc_run(q);
4648 			if (root_lock)
4649 				spin_unlock(root_lock);
4650 		}
4651 	}
4652 
4653 	xfrm_dev_backlog(sd);
4654 }
4655 
4656 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4657 /* This hook is defined here for ATM LANE */
4658 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4659 			     unsigned char *addr) __read_mostly;
4660 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4661 #endif
4662 
4663 static inline struct sk_buff *
4664 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4665 		   struct net_device *orig_dev)
4666 {
4667 #ifdef CONFIG_NET_CLS_ACT
4668 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4669 	struct tcf_result cl_res;
4670 
4671 	/* If there's at least one ingress present somewhere (so
4672 	 * we get here via enabled static key), remaining devices
4673 	 * that are not configured with an ingress qdisc will bail
4674 	 * out here.
4675 	 */
4676 	if (!miniq)
4677 		return skb;
4678 
4679 	if (*pt_prev) {
4680 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4681 		*pt_prev = NULL;
4682 	}
4683 
4684 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4685 	skb->tc_at_ingress = 1;
4686 	mini_qdisc_bstats_cpu_update(miniq, skb);
4687 
4688 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4689 	case TC_ACT_OK:
4690 	case TC_ACT_RECLASSIFY:
4691 		skb->tc_index = TC_H_MIN(cl_res.classid);
4692 		break;
4693 	case TC_ACT_SHOT:
4694 		mini_qdisc_qstats_cpu_drop(miniq);
4695 		kfree_skb(skb);
4696 		return NULL;
4697 	case TC_ACT_STOLEN:
4698 	case TC_ACT_QUEUED:
4699 	case TC_ACT_TRAP:
4700 		consume_skb(skb);
4701 		return NULL;
4702 	case TC_ACT_REDIRECT:
4703 		/* skb_mac_header check was done by cls/act_bpf, so
4704 		 * we can safely push the L2 header back before
4705 		 * redirecting to another netdev
4706 		 */
4707 		__skb_push(skb, skb->mac_len);
4708 		skb_do_redirect(skb);
4709 		return NULL;
4710 	case TC_ACT_REINSERT:
4711 		/* this does not scrub the packet, and updates stats on error */
4712 		skb_tc_reinsert(skb, &cl_res);
4713 		return NULL;
4714 	default:
4715 		break;
4716 	}
4717 #endif /* CONFIG_NET_CLS_ACT */
4718 	return skb;
4719 }
4720 
4721 /**
4722  *	netdev_is_rx_handler_busy - check if receive handler is registered
4723  *	@dev: device to check
4724  *
4725  *	Check if a receive handler is already registered for a given device.
4726  *	Return true if there one.
4727  *
4728  *	The caller must hold the rtnl_mutex.
4729  */
4730 bool netdev_is_rx_handler_busy(struct net_device *dev)
4731 {
4732 	ASSERT_RTNL();
4733 	return dev && rtnl_dereference(dev->rx_handler);
4734 }
4735 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4736 
4737 /**
4738  *	netdev_rx_handler_register - register receive handler
4739  *	@dev: device to register a handler for
4740  *	@rx_handler: receive handler to register
4741  *	@rx_handler_data: data pointer that is used by rx handler
4742  *
4743  *	Register a receive handler for a device. This handler will then be
4744  *	called from __netif_receive_skb. A negative errno code is returned
4745  *	on a failure.
4746  *
4747  *	The caller must hold the rtnl_mutex.
4748  *
4749  *	For a general description of rx_handler, see enum rx_handler_result.
4750  */
4751 int netdev_rx_handler_register(struct net_device *dev,
4752 			       rx_handler_func_t *rx_handler,
4753 			       void *rx_handler_data)
4754 {
4755 	if (netdev_is_rx_handler_busy(dev))
4756 		return -EBUSY;
4757 
4758 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4759 		return -EINVAL;
4760 
4761 	/* Note: rx_handler_data must be set before rx_handler */
4762 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4763 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4764 
4765 	return 0;
4766 }
4767 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4768 
4769 /**
4770  *	netdev_rx_handler_unregister - unregister receive handler
4771  *	@dev: device to unregister a handler from
4772  *
4773  *	Unregister a receive handler from a device.
4774  *
4775  *	The caller must hold the rtnl_mutex.
4776  */
4777 void netdev_rx_handler_unregister(struct net_device *dev)
4778 {
4779 
4780 	ASSERT_RTNL();
4781 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4782 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4783 	 * section has a guarantee to see a non NULL rx_handler_data
4784 	 * as well.
4785 	 */
4786 	synchronize_net();
4787 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4788 }
4789 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4790 
4791 /*
4792  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4793  * the special handling of PFMEMALLOC skbs.
4794  */
4795 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4796 {
4797 	switch (skb->protocol) {
4798 	case htons(ETH_P_ARP):
4799 	case htons(ETH_P_IP):
4800 	case htons(ETH_P_IPV6):
4801 	case htons(ETH_P_8021Q):
4802 	case htons(ETH_P_8021AD):
4803 		return true;
4804 	default:
4805 		return false;
4806 	}
4807 }
4808 
4809 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4810 			     int *ret, struct net_device *orig_dev)
4811 {
4812 #ifdef CONFIG_NETFILTER_INGRESS
4813 	if (nf_hook_ingress_active(skb)) {
4814 		int ingress_retval;
4815 
4816 		if (*pt_prev) {
4817 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4818 			*pt_prev = NULL;
4819 		}
4820 
4821 		rcu_read_lock();
4822 		ingress_retval = nf_hook_ingress(skb);
4823 		rcu_read_unlock();
4824 		return ingress_retval;
4825 	}
4826 #endif /* CONFIG_NETFILTER_INGRESS */
4827 	return 0;
4828 }
4829 
4830 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4831 				    struct packet_type **ppt_prev)
4832 {
4833 	struct packet_type *ptype, *pt_prev;
4834 	rx_handler_func_t *rx_handler;
4835 	struct net_device *orig_dev;
4836 	bool deliver_exact = false;
4837 	int ret = NET_RX_DROP;
4838 	__be16 type;
4839 
4840 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4841 
4842 	trace_netif_receive_skb(skb);
4843 
4844 	orig_dev = skb->dev;
4845 
4846 	skb_reset_network_header(skb);
4847 	if (!skb_transport_header_was_set(skb))
4848 		skb_reset_transport_header(skb);
4849 	skb_reset_mac_len(skb);
4850 
4851 	pt_prev = NULL;
4852 
4853 another_round:
4854 	skb->skb_iif = skb->dev->ifindex;
4855 
4856 	__this_cpu_inc(softnet_data.processed);
4857 
4858 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4859 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4860 		skb = skb_vlan_untag(skb);
4861 		if (unlikely(!skb))
4862 			goto out;
4863 	}
4864 
4865 	if (skb_skip_tc_classify(skb))
4866 		goto skip_classify;
4867 
4868 	if (pfmemalloc)
4869 		goto skip_taps;
4870 
4871 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4872 		if (pt_prev)
4873 			ret = deliver_skb(skb, pt_prev, orig_dev);
4874 		pt_prev = ptype;
4875 	}
4876 
4877 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4878 		if (pt_prev)
4879 			ret = deliver_skb(skb, pt_prev, orig_dev);
4880 		pt_prev = ptype;
4881 	}
4882 
4883 skip_taps:
4884 #ifdef CONFIG_NET_INGRESS
4885 	if (static_branch_unlikely(&ingress_needed_key)) {
4886 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4887 		if (!skb)
4888 			goto out;
4889 
4890 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4891 			goto out;
4892 	}
4893 #endif
4894 	skb_reset_tc(skb);
4895 skip_classify:
4896 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4897 		goto drop;
4898 
4899 	if (skb_vlan_tag_present(skb)) {
4900 		if (pt_prev) {
4901 			ret = deliver_skb(skb, pt_prev, orig_dev);
4902 			pt_prev = NULL;
4903 		}
4904 		if (vlan_do_receive(&skb))
4905 			goto another_round;
4906 		else if (unlikely(!skb))
4907 			goto out;
4908 	}
4909 
4910 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4911 	if (rx_handler) {
4912 		if (pt_prev) {
4913 			ret = deliver_skb(skb, pt_prev, orig_dev);
4914 			pt_prev = NULL;
4915 		}
4916 		switch (rx_handler(&skb)) {
4917 		case RX_HANDLER_CONSUMED:
4918 			ret = NET_RX_SUCCESS;
4919 			goto out;
4920 		case RX_HANDLER_ANOTHER:
4921 			goto another_round;
4922 		case RX_HANDLER_EXACT:
4923 			deliver_exact = true;
4924 		case RX_HANDLER_PASS:
4925 			break;
4926 		default:
4927 			BUG();
4928 		}
4929 	}
4930 
4931 	if (unlikely(skb_vlan_tag_present(skb))) {
4932 		if (skb_vlan_tag_get_id(skb))
4933 			skb->pkt_type = PACKET_OTHERHOST;
4934 		/* Note: we might in the future use prio bits
4935 		 * and set skb->priority like in vlan_do_receive()
4936 		 * For the time being, just ignore Priority Code Point
4937 		 */
4938 		__vlan_hwaccel_clear_tag(skb);
4939 	}
4940 
4941 	type = skb->protocol;
4942 
4943 	/* deliver only exact match when indicated */
4944 	if (likely(!deliver_exact)) {
4945 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4946 				       &ptype_base[ntohs(type) &
4947 						   PTYPE_HASH_MASK]);
4948 	}
4949 
4950 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4951 			       &orig_dev->ptype_specific);
4952 
4953 	if (unlikely(skb->dev != orig_dev)) {
4954 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4955 				       &skb->dev->ptype_specific);
4956 	}
4957 
4958 	if (pt_prev) {
4959 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4960 			goto drop;
4961 		*ppt_prev = pt_prev;
4962 	} else {
4963 drop:
4964 		if (!deliver_exact)
4965 			atomic_long_inc(&skb->dev->rx_dropped);
4966 		else
4967 			atomic_long_inc(&skb->dev->rx_nohandler);
4968 		kfree_skb(skb);
4969 		/* Jamal, now you will not able to escape explaining
4970 		 * me how you were going to use this. :-)
4971 		 */
4972 		ret = NET_RX_DROP;
4973 	}
4974 
4975 out:
4976 	return ret;
4977 }
4978 
4979 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4980 {
4981 	struct net_device *orig_dev = skb->dev;
4982 	struct packet_type *pt_prev = NULL;
4983 	int ret;
4984 
4985 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4986 	if (pt_prev)
4987 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4988 	return ret;
4989 }
4990 
4991 /**
4992  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4993  *	@skb: buffer to process
4994  *
4995  *	More direct receive version of netif_receive_skb().  It should
4996  *	only be used by callers that have a need to skip RPS and Generic XDP.
4997  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4998  *
4999  *	This function may only be called from softirq context and interrupts
5000  *	should be enabled.
5001  *
5002  *	Return values (usually ignored):
5003  *	NET_RX_SUCCESS: no congestion
5004  *	NET_RX_DROP: packet was dropped
5005  */
5006 int netif_receive_skb_core(struct sk_buff *skb)
5007 {
5008 	int ret;
5009 
5010 	rcu_read_lock();
5011 	ret = __netif_receive_skb_one_core(skb, false);
5012 	rcu_read_unlock();
5013 
5014 	return ret;
5015 }
5016 EXPORT_SYMBOL(netif_receive_skb_core);
5017 
5018 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5019 						  struct packet_type *pt_prev,
5020 						  struct net_device *orig_dev)
5021 {
5022 	struct sk_buff *skb, *next;
5023 
5024 	if (!pt_prev)
5025 		return;
5026 	if (list_empty(head))
5027 		return;
5028 	if (pt_prev->list_func != NULL)
5029 		pt_prev->list_func(head, pt_prev, orig_dev);
5030 	else
5031 		list_for_each_entry_safe(skb, next, head, list) {
5032 			skb_list_del_init(skb);
5033 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5034 		}
5035 }
5036 
5037 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5038 {
5039 	/* Fast-path assumptions:
5040 	 * - There is no RX handler.
5041 	 * - Only one packet_type matches.
5042 	 * If either of these fails, we will end up doing some per-packet
5043 	 * processing in-line, then handling the 'last ptype' for the whole
5044 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5045 	 * because the 'last ptype' must be constant across the sublist, and all
5046 	 * other ptypes are handled per-packet.
5047 	 */
5048 	/* Current (common) ptype of sublist */
5049 	struct packet_type *pt_curr = NULL;
5050 	/* Current (common) orig_dev of sublist */
5051 	struct net_device *od_curr = NULL;
5052 	struct list_head sublist;
5053 	struct sk_buff *skb, *next;
5054 
5055 	INIT_LIST_HEAD(&sublist);
5056 	list_for_each_entry_safe(skb, next, head, list) {
5057 		struct net_device *orig_dev = skb->dev;
5058 		struct packet_type *pt_prev = NULL;
5059 
5060 		skb_list_del_init(skb);
5061 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5062 		if (!pt_prev)
5063 			continue;
5064 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5065 			/* dispatch old sublist */
5066 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5067 			/* start new sublist */
5068 			INIT_LIST_HEAD(&sublist);
5069 			pt_curr = pt_prev;
5070 			od_curr = orig_dev;
5071 		}
5072 		list_add_tail(&skb->list, &sublist);
5073 	}
5074 
5075 	/* dispatch final sublist */
5076 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5077 }
5078 
5079 static int __netif_receive_skb(struct sk_buff *skb)
5080 {
5081 	int ret;
5082 
5083 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5084 		unsigned int noreclaim_flag;
5085 
5086 		/*
5087 		 * PFMEMALLOC skbs are special, they should
5088 		 * - be delivered to SOCK_MEMALLOC sockets only
5089 		 * - stay away from userspace
5090 		 * - have bounded memory usage
5091 		 *
5092 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5093 		 * context down to all allocation sites.
5094 		 */
5095 		noreclaim_flag = memalloc_noreclaim_save();
5096 		ret = __netif_receive_skb_one_core(skb, true);
5097 		memalloc_noreclaim_restore(noreclaim_flag);
5098 	} else
5099 		ret = __netif_receive_skb_one_core(skb, false);
5100 
5101 	return ret;
5102 }
5103 
5104 static void __netif_receive_skb_list(struct list_head *head)
5105 {
5106 	unsigned long noreclaim_flag = 0;
5107 	struct sk_buff *skb, *next;
5108 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5109 
5110 	list_for_each_entry_safe(skb, next, head, list) {
5111 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5112 			struct list_head sublist;
5113 
5114 			/* Handle the previous sublist */
5115 			list_cut_before(&sublist, head, &skb->list);
5116 			if (!list_empty(&sublist))
5117 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5118 			pfmemalloc = !pfmemalloc;
5119 			/* See comments in __netif_receive_skb */
5120 			if (pfmemalloc)
5121 				noreclaim_flag = memalloc_noreclaim_save();
5122 			else
5123 				memalloc_noreclaim_restore(noreclaim_flag);
5124 		}
5125 	}
5126 	/* Handle the remaining sublist */
5127 	if (!list_empty(head))
5128 		__netif_receive_skb_list_core(head, pfmemalloc);
5129 	/* Restore pflags */
5130 	if (pfmemalloc)
5131 		memalloc_noreclaim_restore(noreclaim_flag);
5132 }
5133 
5134 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5135 {
5136 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5137 	struct bpf_prog *new = xdp->prog;
5138 	int ret = 0;
5139 
5140 	switch (xdp->command) {
5141 	case XDP_SETUP_PROG:
5142 		rcu_assign_pointer(dev->xdp_prog, new);
5143 		if (old)
5144 			bpf_prog_put(old);
5145 
5146 		if (old && !new) {
5147 			static_branch_dec(&generic_xdp_needed_key);
5148 		} else if (new && !old) {
5149 			static_branch_inc(&generic_xdp_needed_key);
5150 			dev_disable_lro(dev);
5151 			dev_disable_gro_hw(dev);
5152 		}
5153 		break;
5154 
5155 	case XDP_QUERY_PROG:
5156 		xdp->prog_id = old ? old->aux->id : 0;
5157 		break;
5158 
5159 	default:
5160 		ret = -EINVAL;
5161 		break;
5162 	}
5163 
5164 	return ret;
5165 }
5166 
5167 static int netif_receive_skb_internal(struct sk_buff *skb)
5168 {
5169 	int ret;
5170 
5171 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5172 
5173 	if (skb_defer_rx_timestamp(skb))
5174 		return NET_RX_SUCCESS;
5175 
5176 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5177 		int ret;
5178 
5179 		preempt_disable();
5180 		rcu_read_lock();
5181 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5182 		rcu_read_unlock();
5183 		preempt_enable();
5184 
5185 		if (ret != XDP_PASS)
5186 			return NET_RX_DROP;
5187 	}
5188 
5189 	rcu_read_lock();
5190 #ifdef CONFIG_RPS
5191 	if (static_key_false(&rps_needed)) {
5192 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5193 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5194 
5195 		if (cpu >= 0) {
5196 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5197 			rcu_read_unlock();
5198 			return ret;
5199 		}
5200 	}
5201 #endif
5202 	ret = __netif_receive_skb(skb);
5203 	rcu_read_unlock();
5204 	return ret;
5205 }
5206 
5207 static void netif_receive_skb_list_internal(struct list_head *head)
5208 {
5209 	struct bpf_prog *xdp_prog = NULL;
5210 	struct sk_buff *skb, *next;
5211 	struct list_head sublist;
5212 
5213 	INIT_LIST_HEAD(&sublist);
5214 	list_for_each_entry_safe(skb, next, head, list) {
5215 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5216 		skb_list_del_init(skb);
5217 		if (!skb_defer_rx_timestamp(skb))
5218 			list_add_tail(&skb->list, &sublist);
5219 	}
5220 	list_splice_init(&sublist, head);
5221 
5222 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5223 		preempt_disable();
5224 		rcu_read_lock();
5225 		list_for_each_entry_safe(skb, next, head, list) {
5226 			xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5227 			skb_list_del_init(skb);
5228 			if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5229 				list_add_tail(&skb->list, &sublist);
5230 		}
5231 		rcu_read_unlock();
5232 		preempt_enable();
5233 		/* Put passed packets back on main list */
5234 		list_splice_init(&sublist, head);
5235 	}
5236 
5237 	rcu_read_lock();
5238 #ifdef CONFIG_RPS
5239 	if (static_key_false(&rps_needed)) {
5240 		list_for_each_entry_safe(skb, next, head, list) {
5241 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5242 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5243 
5244 			if (cpu >= 0) {
5245 				/* Will be handled, remove from list */
5246 				skb_list_del_init(skb);
5247 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5248 			}
5249 		}
5250 	}
5251 #endif
5252 	__netif_receive_skb_list(head);
5253 	rcu_read_unlock();
5254 }
5255 
5256 /**
5257  *	netif_receive_skb - process receive buffer from network
5258  *	@skb: buffer to process
5259  *
5260  *	netif_receive_skb() is the main receive data processing function.
5261  *	It always succeeds. The buffer may be dropped during processing
5262  *	for congestion control or by the protocol layers.
5263  *
5264  *	This function may only be called from softirq context and interrupts
5265  *	should be enabled.
5266  *
5267  *	Return values (usually ignored):
5268  *	NET_RX_SUCCESS: no congestion
5269  *	NET_RX_DROP: packet was dropped
5270  */
5271 int netif_receive_skb(struct sk_buff *skb)
5272 {
5273 	int ret;
5274 
5275 	trace_netif_receive_skb_entry(skb);
5276 
5277 	ret = netif_receive_skb_internal(skb);
5278 	trace_netif_receive_skb_exit(ret);
5279 
5280 	return ret;
5281 }
5282 EXPORT_SYMBOL(netif_receive_skb);
5283 
5284 /**
5285  *	netif_receive_skb_list - process many receive buffers from network
5286  *	@head: list of skbs to process.
5287  *
5288  *	Since return value of netif_receive_skb() is normally ignored, and
5289  *	wouldn't be meaningful for a list, this function returns void.
5290  *
5291  *	This function may only be called from softirq context and interrupts
5292  *	should be enabled.
5293  */
5294 void netif_receive_skb_list(struct list_head *head)
5295 {
5296 	struct sk_buff *skb;
5297 
5298 	if (list_empty(head))
5299 		return;
5300 	if (trace_netif_receive_skb_list_entry_enabled()) {
5301 		list_for_each_entry(skb, head, list)
5302 			trace_netif_receive_skb_list_entry(skb);
5303 	}
5304 	netif_receive_skb_list_internal(head);
5305 	trace_netif_receive_skb_list_exit(0);
5306 }
5307 EXPORT_SYMBOL(netif_receive_skb_list);
5308 
5309 DEFINE_PER_CPU(struct work_struct, flush_works);
5310 
5311 /* Network device is going away, flush any packets still pending */
5312 static void flush_backlog(struct work_struct *work)
5313 {
5314 	struct sk_buff *skb, *tmp;
5315 	struct softnet_data *sd;
5316 
5317 	local_bh_disable();
5318 	sd = this_cpu_ptr(&softnet_data);
5319 
5320 	local_irq_disable();
5321 	rps_lock(sd);
5322 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5323 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5324 			__skb_unlink(skb, &sd->input_pkt_queue);
5325 			kfree_skb(skb);
5326 			input_queue_head_incr(sd);
5327 		}
5328 	}
5329 	rps_unlock(sd);
5330 	local_irq_enable();
5331 
5332 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5333 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5334 			__skb_unlink(skb, &sd->process_queue);
5335 			kfree_skb(skb);
5336 			input_queue_head_incr(sd);
5337 		}
5338 	}
5339 	local_bh_enable();
5340 }
5341 
5342 static void flush_all_backlogs(void)
5343 {
5344 	unsigned int cpu;
5345 
5346 	get_online_cpus();
5347 
5348 	for_each_online_cpu(cpu)
5349 		queue_work_on(cpu, system_highpri_wq,
5350 			      per_cpu_ptr(&flush_works, cpu));
5351 
5352 	for_each_online_cpu(cpu)
5353 		flush_work(per_cpu_ptr(&flush_works, cpu));
5354 
5355 	put_online_cpus();
5356 }
5357 
5358 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5359 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5360 static int napi_gro_complete(struct sk_buff *skb)
5361 {
5362 	struct packet_offload *ptype;
5363 	__be16 type = skb->protocol;
5364 	struct list_head *head = &offload_base;
5365 	int err = -ENOENT;
5366 
5367 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5368 
5369 	if (NAPI_GRO_CB(skb)->count == 1) {
5370 		skb_shinfo(skb)->gso_size = 0;
5371 		goto out;
5372 	}
5373 
5374 	rcu_read_lock();
5375 	list_for_each_entry_rcu(ptype, head, list) {
5376 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5377 			continue;
5378 
5379 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5380 					 ipv6_gro_complete, inet_gro_complete,
5381 					 skb, 0);
5382 		break;
5383 	}
5384 	rcu_read_unlock();
5385 
5386 	if (err) {
5387 		WARN_ON(&ptype->list == head);
5388 		kfree_skb(skb);
5389 		return NET_RX_SUCCESS;
5390 	}
5391 
5392 out:
5393 	return netif_receive_skb_internal(skb);
5394 }
5395 
5396 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5397 				   bool flush_old)
5398 {
5399 	struct list_head *head = &napi->gro_hash[index].list;
5400 	struct sk_buff *skb, *p;
5401 
5402 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5403 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5404 			return;
5405 		skb_list_del_init(skb);
5406 		napi_gro_complete(skb);
5407 		napi->gro_hash[index].count--;
5408 	}
5409 
5410 	if (!napi->gro_hash[index].count)
5411 		__clear_bit(index, &napi->gro_bitmask);
5412 }
5413 
5414 /* napi->gro_hash[].list contains packets ordered by age.
5415  * youngest packets at the head of it.
5416  * Complete skbs in reverse order to reduce latencies.
5417  */
5418 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5419 {
5420 	unsigned long bitmask = napi->gro_bitmask;
5421 	unsigned int i, base = ~0U;
5422 
5423 	while ((i = ffs(bitmask)) != 0) {
5424 		bitmask >>= i;
5425 		base += i;
5426 		__napi_gro_flush_chain(napi, base, flush_old);
5427 	}
5428 }
5429 EXPORT_SYMBOL(napi_gro_flush);
5430 
5431 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5432 					  struct sk_buff *skb)
5433 {
5434 	unsigned int maclen = skb->dev->hard_header_len;
5435 	u32 hash = skb_get_hash_raw(skb);
5436 	struct list_head *head;
5437 	struct sk_buff *p;
5438 
5439 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5440 	list_for_each_entry(p, head, list) {
5441 		unsigned long diffs;
5442 
5443 		NAPI_GRO_CB(p)->flush = 0;
5444 
5445 		if (hash != skb_get_hash_raw(p)) {
5446 			NAPI_GRO_CB(p)->same_flow = 0;
5447 			continue;
5448 		}
5449 
5450 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5451 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5452 		if (skb_vlan_tag_present(p))
5453 			diffs |= p->vlan_tci ^ skb->vlan_tci;
5454 		diffs |= skb_metadata_dst_cmp(p, skb);
5455 		diffs |= skb_metadata_differs(p, skb);
5456 		if (maclen == ETH_HLEN)
5457 			diffs |= compare_ether_header(skb_mac_header(p),
5458 						      skb_mac_header(skb));
5459 		else if (!diffs)
5460 			diffs = memcmp(skb_mac_header(p),
5461 				       skb_mac_header(skb),
5462 				       maclen);
5463 		NAPI_GRO_CB(p)->same_flow = !diffs;
5464 	}
5465 
5466 	return head;
5467 }
5468 
5469 static void skb_gro_reset_offset(struct sk_buff *skb)
5470 {
5471 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5472 	const skb_frag_t *frag0 = &pinfo->frags[0];
5473 
5474 	NAPI_GRO_CB(skb)->data_offset = 0;
5475 	NAPI_GRO_CB(skb)->frag0 = NULL;
5476 	NAPI_GRO_CB(skb)->frag0_len = 0;
5477 
5478 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5479 	    pinfo->nr_frags &&
5480 	    !PageHighMem(skb_frag_page(frag0))) {
5481 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5482 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5483 						    skb_frag_size(frag0),
5484 						    skb->end - skb->tail);
5485 	}
5486 }
5487 
5488 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5489 {
5490 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5491 
5492 	BUG_ON(skb->end - skb->tail < grow);
5493 
5494 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5495 
5496 	skb->data_len -= grow;
5497 	skb->tail += grow;
5498 
5499 	pinfo->frags[0].page_offset += grow;
5500 	skb_frag_size_sub(&pinfo->frags[0], grow);
5501 
5502 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5503 		skb_frag_unref(skb, 0);
5504 		memmove(pinfo->frags, pinfo->frags + 1,
5505 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5506 	}
5507 }
5508 
5509 static void gro_flush_oldest(struct list_head *head)
5510 {
5511 	struct sk_buff *oldest;
5512 
5513 	oldest = list_last_entry(head, struct sk_buff, list);
5514 
5515 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5516 	 * impossible.
5517 	 */
5518 	if (WARN_ON_ONCE(!oldest))
5519 		return;
5520 
5521 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5522 	 * SKB to the chain.
5523 	 */
5524 	skb_list_del_init(oldest);
5525 	napi_gro_complete(oldest);
5526 }
5527 
5528 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5529 							   struct sk_buff *));
5530 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5531 							   struct sk_buff *));
5532 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5533 {
5534 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5535 	struct list_head *head = &offload_base;
5536 	struct packet_offload *ptype;
5537 	__be16 type = skb->protocol;
5538 	struct list_head *gro_head;
5539 	struct sk_buff *pp = NULL;
5540 	enum gro_result ret;
5541 	int same_flow;
5542 	int grow;
5543 
5544 	if (netif_elide_gro(skb->dev))
5545 		goto normal;
5546 
5547 	gro_head = gro_list_prepare(napi, skb);
5548 
5549 	rcu_read_lock();
5550 	list_for_each_entry_rcu(ptype, head, list) {
5551 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5552 			continue;
5553 
5554 		skb_set_network_header(skb, skb_gro_offset(skb));
5555 		skb_reset_mac_len(skb);
5556 		NAPI_GRO_CB(skb)->same_flow = 0;
5557 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5558 		NAPI_GRO_CB(skb)->free = 0;
5559 		NAPI_GRO_CB(skb)->encap_mark = 0;
5560 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5561 		NAPI_GRO_CB(skb)->is_fou = 0;
5562 		NAPI_GRO_CB(skb)->is_atomic = 1;
5563 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5564 
5565 		/* Setup for GRO checksum validation */
5566 		switch (skb->ip_summed) {
5567 		case CHECKSUM_COMPLETE:
5568 			NAPI_GRO_CB(skb)->csum = skb->csum;
5569 			NAPI_GRO_CB(skb)->csum_valid = 1;
5570 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5571 			break;
5572 		case CHECKSUM_UNNECESSARY:
5573 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5574 			NAPI_GRO_CB(skb)->csum_valid = 0;
5575 			break;
5576 		default:
5577 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5578 			NAPI_GRO_CB(skb)->csum_valid = 0;
5579 		}
5580 
5581 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5582 					ipv6_gro_receive, inet_gro_receive,
5583 					gro_head, skb);
5584 		break;
5585 	}
5586 	rcu_read_unlock();
5587 
5588 	if (&ptype->list == head)
5589 		goto normal;
5590 
5591 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5592 		ret = GRO_CONSUMED;
5593 		goto ok;
5594 	}
5595 
5596 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5597 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5598 
5599 	if (pp) {
5600 		skb_list_del_init(pp);
5601 		napi_gro_complete(pp);
5602 		napi->gro_hash[hash].count--;
5603 	}
5604 
5605 	if (same_flow)
5606 		goto ok;
5607 
5608 	if (NAPI_GRO_CB(skb)->flush)
5609 		goto normal;
5610 
5611 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5612 		gro_flush_oldest(gro_head);
5613 	} else {
5614 		napi->gro_hash[hash].count++;
5615 	}
5616 	NAPI_GRO_CB(skb)->count = 1;
5617 	NAPI_GRO_CB(skb)->age = jiffies;
5618 	NAPI_GRO_CB(skb)->last = skb;
5619 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5620 	list_add(&skb->list, gro_head);
5621 	ret = GRO_HELD;
5622 
5623 pull:
5624 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5625 	if (grow > 0)
5626 		gro_pull_from_frag0(skb, grow);
5627 ok:
5628 	if (napi->gro_hash[hash].count) {
5629 		if (!test_bit(hash, &napi->gro_bitmask))
5630 			__set_bit(hash, &napi->gro_bitmask);
5631 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5632 		__clear_bit(hash, &napi->gro_bitmask);
5633 	}
5634 
5635 	return ret;
5636 
5637 normal:
5638 	ret = GRO_NORMAL;
5639 	goto pull;
5640 }
5641 
5642 struct packet_offload *gro_find_receive_by_type(__be16 type)
5643 {
5644 	struct list_head *offload_head = &offload_base;
5645 	struct packet_offload *ptype;
5646 
5647 	list_for_each_entry_rcu(ptype, offload_head, list) {
5648 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5649 			continue;
5650 		return ptype;
5651 	}
5652 	return NULL;
5653 }
5654 EXPORT_SYMBOL(gro_find_receive_by_type);
5655 
5656 struct packet_offload *gro_find_complete_by_type(__be16 type)
5657 {
5658 	struct list_head *offload_head = &offload_base;
5659 	struct packet_offload *ptype;
5660 
5661 	list_for_each_entry_rcu(ptype, offload_head, list) {
5662 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5663 			continue;
5664 		return ptype;
5665 	}
5666 	return NULL;
5667 }
5668 EXPORT_SYMBOL(gro_find_complete_by_type);
5669 
5670 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5671 {
5672 	skb_dst_drop(skb);
5673 	secpath_reset(skb);
5674 	kmem_cache_free(skbuff_head_cache, skb);
5675 }
5676 
5677 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5678 {
5679 	switch (ret) {
5680 	case GRO_NORMAL:
5681 		if (netif_receive_skb_internal(skb))
5682 			ret = GRO_DROP;
5683 		break;
5684 
5685 	case GRO_DROP:
5686 		kfree_skb(skb);
5687 		break;
5688 
5689 	case GRO_MERGED_FREE:
5690 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5691 			napi_skb_free_stolen_head(skb);
5692 		else
5693 			__kfree_skb(skb);
5694 		break;
5695 
5696 	case GRO_HELD:
5697 	case GRO_MERGED:
5698 	case GRO_CONSUMED:
5699 		break;
5700 	}
5701 
5702 	return ret;
5703 }
5704 
5705 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5706 {
5707 	gro_result_t ret;
5708 
5709 	skb_mark_napi_id(skb, napi);
5710 	trace_napi_gro_receive_entry(skb);
5711 
5712 	skb_gro_reset_offset(skb);
5713 
5714 	ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5715 	trace_napi_gro_receive_exit(ret);
5716 
5717 	return ret;
5718 }
5719 EXPORT_SYMBOL(napi_gro_receive);
5720 
5721 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5722 {
5723 	if (unlikely(skb->pfmemalloc)) {
5724 		consume_skb(skb);
5725 		return;
5726 	}
5727 	__skb_pull(skb, skb_headlen(skb));
5728 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5729 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5730 	__vlan_hwaccel_clear_tag(skb);
5731 	skb->dev = napi->dev;
5732 	skb->skb_iif = 0;
5733 
5734 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
5735 	skb->pkt_type = PACKET_HOST;
5736 
5737 	skb->encapsulation = 0;
5738 	skb_shinfo(skb)->gso_type = 0;
5739 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5740 	secpath_reset(skb);
5741 
5742 	napi->skb = skb;
5743 }
5744 
5745 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5746 {
5747 	struct sk_buff *skb = napi->skb;
5748 
5749 	if (!skb) {
5750 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5751 		if (skb) {
5752 			napi->skb = skb;
5753 			skb_mark_napi_id(skb, napi);
5754 		}
5755 	}
5756 	return skb;
5757 }
5758 EXPORT_SYMBOL(napi_get_frags);
5759 
5760 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5761 				      struct sk_buff *skb,
5762 				      gro_result_t ret)
5763 {
5764 	switch (ret) {
5765 	case GRO_NORMAL:
5766 	case GRO_HELD:
5767 		__skb_push(skb, ETH_HLEN);
5768 		skb->protocol = eth_type_trans(skb, skb->dev);
5769 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5770 			ret = GRO_DROP;
5771 		break;
5772 
5773 	case GRO_DROP:
5774 		napi_reuse_skb(napi, skb);
5775 		break;
5776 
5777 	case GRO_MERGED_FREE:
5778 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5779 			napi_skb_free_stolen_head(skb);
5780 		else
5781 			napi_reuse_skb(napi, skb);
5782 		break;
5783 
5784 	case GRO_MERGED:
5785 	case GRO_CONSUMED:
5786 		break;
5787 	}
5788 
5789 	return ret;
5790 }
5791 
5792 /* Upper GRO stack assumes network header starts at gro_offset=0
5793  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5794  * We copy ethernet header into skb->data to have a common layout.
5795  */
5796 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5797 {
5798 	struct sk_buff *skb = napi->skb;
5799 	const struct ethhdr *eth;
5800 	unsigned int hlen = sizeof(*eth);
5801 
5802 	napi->skb = NULL;
5803 
5804 	skb_reset_mac_header(skb);
5805 	skb_gro_reset_offset(skb);
5806 
5807 	eth = skb_gro_header_fast(skb, 0);
5808 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5809 		eth = skb_gro_header_slow(skb, hlen, 0);
5810 		if (unlikely(!eth)) {
5811 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5812 					     __func__, napi->dev->name);
5813 			napi_reuse_skb(napi, skb);
5814 			return NULL;
5815 		}
5816 	} else {
5817 		gro_pull_from_frag0(skb, hlen);
5818 		NAPI_GRO_CB(skb)->frag0 += hlen;
5819 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5820 	}
5821 	__skb_pull(skb, hlen);
5822 
5823 	/*
5824 	 * This works because the only protocols we care about don't require
5825 	 * special handling.
5826 	 * We'll fix it up properly in napi_frags_finish()
5827 	 */
5828 	skb->protocol = eth->h_proto;
5829 
5830 	return skb;
5831 }
5832 
5833 gro_result_t napi_gro_frags(struct napi_struct *napi)
5834 {
5835 	gro_result_t ret;
5836 	struct sk_buff *skb = napi_frags_skb(napi);
5837 
5838 	if (!skb)
5839 		return GRO_DROP;
5840 
5841 	trace_napi_gro_frags_entry(skb);
5842 
5843 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5844 	trace_napi_gro_frags_exit(ret);
5845 
5846 	return ret;
5847 }
5848 EXPORT_SYMBOL(napi_gro_frags);
5849 
5850 /* Compute the checksum from gro_offset and return the folded value
5851  * after adding in any pseudo checksum.
5852  */
5853 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5854 {
5855 	__wsum wsum;
5856 	__sum16 sum;
5857 
5858 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5859 
5860 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5861 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5862 	/* See comments in __skb_checksum_complete(). */
5863 	if (likely(!sum)) {
5864 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5865 		    !skb->csum_complete_sw)
5866 			netdev_rx_csum_fault(skb->dev, skb);
5867 	}
5868 
5869 	NAPI_GRO_CB(skb)->csum = wsum;
5870 	NAPI_GRO_CB(skb)->csum_valid = 1;
5871 
5872 	return sum;
5873 }
5874 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5875 
5876 static void net_rps_send_ipi(struct softnet_data *remsd)
5877 {
5878 #ifdef CONFIG_RPS
5879 	while (remsd) {
5880 		struct softnet_data *next = remsd->rps_ipi_next;
5881 
5882 		if (cpu_online(remsd->cpu))
5883 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5884 		remsd = next;
5885 	}
5886 #endif
5887 }
5888 
5889 /*
5890  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5891  * Note: called with local irq disabled, but exits with local irq enabled.
5892  */
5893 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5894 {
5895 #ifdef CONFIG_RPS
5896 	struct softnet_data *remsd = sd->rps_ipi_list;
5897 
5898 	if (remsd) {
5899 		sd->rps_ipi_list = NULL;
5900 
5901 		local_irq_enable();
5902 
5903 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5904 		net_rps_send_ipi(remsd);
5905 	} else
5906 #endif
5907 		local_irq_enable();
5908 }
5909 
5910 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5911 {
5912 #ifdef CONFIG_RPS
5913 	return sd->rps_ipi_list != NULL;
5914 #else
5915 	return false;
5916 #endif
5917 }
5918 
5919 static int process_backlog(struct napi_struct *napi, int quota)
5920 {
5921 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5922 	bool again = true;
5923 	int work = 0;
5924 
5925 	/* Check if we have pending ipi, its better to send them now,
5926 	 * not waiting net_rx_action() end.
5927 	 */
5928 	if (sd_has_rps_ipi_waiting(sd)) {
5929 		local_irq_disable();
5930 		net_rps_action_and_irq_enable(sd);
5931 	}
5932 
5933 	napi->weight = dev_rx_weight;
5934 	while (again) {
5935 		struct sk_buff *skb;
5936 
5937 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5938 			rcu_read_lock();
5939 			__netif_receive_skb(skb);
5940 			rcu_read_unlock();
5941 			input_queue_head_incr(sd);
5942 			if (++work >= quota)
5943 				return work;
5944 
5945 		}
5946 
5947 		local_irq_disable();
5948 		rps_lock(sd);
5949 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5950 			/*
5951 			 * Inline a custom version of __napi_complete().
5952 			 * only current cpu owns and manipulates this napi,
5953 			 * and NAPI_STATE_SCHED is the only possible flag set
5954 			 * on backlog.
5955 			 * We can use a plain write instead of clear_bit(),
5956 			 * and we dont need an smp_mb() memory barrier.
5957 			 */
5958 			napi->state = 0;
5959 			again = false;
5960 		} else {
5961 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5962 						   &sd->process_queue);
5963 		}
5964 		rps_unlock(sd);
5965 		local_irq_enable();
5966 	}
5967 
5968 	return work;
5969 }
5970 
5971 /**
5972  * __napi_schedule - schedule for receive
5973  * @n: entry to schedule
5974  *
5975  * The entry's receive function will be scheduled to run.
5976  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5977  */
5978 void __napi_schedule(struct napi_struct *n)
5979 {
5980 	unsigned long flags;
5981 
5982 	local_irq_save(flags);
5983 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5984 	local_irq_restore(flags);
5985 }
5986 EXPORT_SYMBOL(__napi_schedule);
5987 
5988 /**
5989  *	napi_schedule_prep - check if napi can be scheduled
5990  *	@n: napi context
5991  *
5992  * Test if NAPI routine is already running, and if not mark
5993  * it as running.  This is used as a condition variable
5994  * insure only one NAPI poll instance runs.  We also make
5995  * sure there is no pending NAPI disable.
5996  */
5997 bool napi_schedule_prep(struct napi_struct *n)
5998 {
5999 	unsigned long val, new;
6000 
6001 	do {
6002 		val = READ_ONCE(n->state);
6003 		if (unlikely(val & NAPIF_STATE_DISABLE))
6004 			return false;
6005 		new = val | NAPIF_STATE_SCHED;
6006 
6007 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6008 		 * This was suggested by Alexander Duyck, as compiler
6009 		 * emits better code than :
6010 		 * if (val & NAPIF_STATE_SCHED)
6011 		 *     new |= NAPIF_STATE_MISSED;
6012 		 */
6013 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6014 						   NAPIF_STATE_MISSED;
6015 	} while (cmpxchg(&n->state, val, new) != val);
6016 
6017 	return !(val & NAPIF_STATE_SCHED);
6018 }
6019 EXPORT_SYMBOL(napi_schedule_prep);
6020 
6021 /**
6022  * __napi_schedule_irqoff - schedule for receive
6023  * @n: entry to schedule
6024  *
6025  * Variant of __napi_schedule() assuming hard irqs are masked
6026  */
6027 void __napi_schedule_irqoff(struct napi_struct *n)
6028 {
6029 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6030 }
6031 EXPORT_SYMBOL(__napi_schedule_irqoff);
6032 
6033 bool napi_complete_done(struct napi_struct *n, int work_done)
6034 {
6035 	unsigned long flags, val, new;
6036 
6037 	/*
6038 	 * 1) Don't let napi dequeue from the cpu poll list
6039 	 *    just in case its running on a different cpu.
6040 	 * 2) If we are busy polling, do nothing here, we have
6041 	 *    the guarantee we will be called later.
6042 	 */
6043 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6044 				 NAPIF_STATE_IN_BUSY_POLL)))
6045 		return false;
6046 
6047 	if (n->gro_bitmask) {
6048 		unsigned long timeout = 0;
6049 
6050 		if (work_done)
6051 			timeout = n->dev->gro_flush_timeout;
6052 
6053 		/* When the NAPI instance uses a timeout and keeps postponing
6054 		 * it, we need to bound somehow the time packets are kept in
6055 		 * the GRO layer
6056 		 */
6057 		napi_gro_flush(n, !!timeout);
6058 		if (timeout)
6059 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
6060 				      HRTIMER_MODE_REL_PINNED);
6061 	}
6062 	if (unlikely(!list_empty(&n->poll_list))) {
6063 		/* If n->poll_list is not empty, we need to mask irqs */
6064 		local_irq_save(flags);
6065 		list_del_init(&n->poll_list);
6066 		local_irq_restore(flags);
6067 	}
6068 
6069 	do {
6070 		val = READ_ONCE(n->state);
6071 
6072 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6073 
6074 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6075 
6076 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6077 		 * because we will call napi->poll() one more time.
6078 		 * This C code was suggested by Alexander Duyck to help gcc.
6079 		 */
6080 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6081 						    NAPIF_STATE_SCHED;
6082 	} while (cmpxchg(&n->state, val, new) != val);
6083 
6084 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6085 		__napi_schedule(n);
6086 		return false;
6087 	}
6088 
6089 	return true;
6090 }
6091 EXPORT_SYMBOL(napi_complete_done);
6092 
6093 /* must be called under rcu_read_lock(), as we dont take a reference */
6094 static struct napi_struct *napi_by_id(unsigned int napi_id)
6095 {
6096 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6097 	struct napi_struct *napi;
6098 
6099 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6100 		if (napi->napi_id == napi_id)
6101 			return napi;
6102 
6103 	return NULL;
6104 }
6105 
6106 #if defined(CONFIG_NET_RX_BUSY_POLL)
6107 
6108 #define BUSY_POLL_BUDGET 8
6109 
6110 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6111 {
6112 	int rc;
6113 
6114 	/* Busy polling means there is a high chance device driver hard irq
6115 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6116 	 * set in napi_schedule_prep().
6117 	 * Since we are about to call napi->poll() once more, we can safely
6118 	 * clear NAPI_STATE_MISSED.
6119 	 *
6120 	 * Note: x86 could use a single "lock and ..." instruction
6121 	 * to perform these two clear_bit()
6122 	 */
6123 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6124 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6125 
6126 	local_bh_disable();
6127 
6128 	/* All we really want here is to re-enable device interrupts.
6129 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6130 	 */
6131 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6132 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6133 	netpoll_poll_unlock(have_poll_lock);
6134 	if (rc == BUSY_POLL_BUDGET)
6135 		__napi_schedule(napi);
6136 	local_bh_enable();
6137 }
6138 
6139 void napi_busy_loop(unsigned int napi_id,
6140 		    bool (*loop_end)(void *, unsigned long),
6141 		    void *loop_end_arg)
6142 {
6143 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6144 	int (*napi_poll)(struct napi_struct *napi, int budget);
6145 	void *have_poll_lock = NULL;
6146 	struct napi_struct *napi;
6147 
6148 restart:
6149 	napi_poll = NULL;
6150 
6151 	rcu_read_lock();
6152 
6153 	napi = napi_by_id(napi_id);
6154 	if (!napi)
6155 		goto out;
6156 
6157 	preempt_disable();
6158 	for (;;) {
6159 		int work = 0;
6160 
6161 		local_bh_disable();
6162 		if (!napi_poll) {
6163 			unsigned long val = READ_ONCE(napi->state);
6164 
6165 			/* If multiple threads are competing for this napi,
6166 			 * we avoid dirtying napi->state as much as we can.
6167 			 */
6168 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6169 				   NAPIF_STATE_IN_BUSY_POLL))
6170 				goto count;
6171 			if (cmpxchg(&napi->state, val,
6172 				    val | NAPIF_STATE_IN_BUSY_POLL |
6173 					  NAPIF_STATE_SCHED) != val)
6174 				goto count;
6175 			have_poll_lock = netpoll_poll_lock(napi);
6176 			napi_poll = napi->poll;
6177 		}
6178 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6179 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6180 count:
6181 		if (work > 0)
6182 			__NET_ADD_STATS(dev_net(napi->dev),
6183 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6184 		local_bh_enable();
6185 
6186 		if (!loop_end || loop_end(loop_end_arg, start_time))
6187 			break;
6188 
6189 		if (unlikely(need_resched())) {
6190 			if (napi_poll)
6191 				busy_poll_stop(napi, have_poll_lock);
6192 			preempt_enable();
6193 			rcu_read_unlock();
6194 			cond_resched();
6195 			if (loop_end(loop_end_arg, start_time))
6196 				return;
6197 			goto restart;
6198 		}
6199 		cpu_relax();
6200 	}
6201 	if (napi_poll)
6202 		busy_poll_stop(napi, have_poll_lock);
6203 	preempt_enable();
6204 out:
6205 	rcu_read_unlock();
6206 }
6207 EXPORT_SYMBOL(napi_busy_loop);
6208 
6209 #endif /* CONFIG_NET_RX_BUSY_POLL */
6210 
6211 static void napi_hash_add(struct napi_struct *napi)
6212 {
6213 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6214 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6215 		return;
6216 
6217 	spin_lock(&napi_hash_lock);
6218 
6219 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6220 	do {
6221 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6222 			napi_gen_id = MIN_NAPI_ID;
6223 	} while (napi_by_id(napi_gen_id));
6224 	napi->napi_id = napi_gen_id;
6225 
6226 	hlist_add_head_rcu(&napi->napi_hash_node,
6227 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6228 
6229 	spin_unlock(&napi_hash_lock);
6230 }
6231 
6232 /* Warning : caller is responsible to make sure rcu grace period
6233  * is respected before freeing memory containing @napi
6234  */
6235 bool napi_hash_del(struct napi_struct *napi)
6236 {
6237 	bool rcu_sync_needed = false;
6238 
6239 	spin_lock(&napi_hash_lock);
6240 
6241 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6242 		rcu_sync_needed = true;
6243 		hlist_del_rcu(&napi->napi_hash_node);
6244 	}
6245 	spin_unlock(&napi_hash_lock);
6246 	return rcu_sync_needed;
6247 }
6248 EXPORT_SYMBOL_GPL(napi_hash_del);
6249 
6250 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6251 {
6252 	struct napi_struct *napi;
6253 
6254 	napi = container_of(timer, struct napi_struct, timer);
6255 
6256 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6257 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6258 	 */
6259 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6260 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6261 		__napi_schedule_irqoff(napi);
6262 
6263 	return HRTIMER_NORESTART;
6264 }
6265 
6266 static void init_gro_hash(struct napi_struct *napi)
6267 {
6268 	int i;
6269 
6270 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6271 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6272 		napi->gro_hash[i].count = 0;
6273 	}
6274 	napi->gro_bitmask = 0;
6275 }
6276 
6277 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6278 		    int (*poll)(struct napi_struct *, int), int weight)
6279 {
6280 	INIT_LIST_HEAD(&napi->poll_list);
6281 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6282 	napi->timer.function = napi_watchdog;
6283 	init_gro_hash(napi);
6284 	napi->skb = NULL;
6285 	napi->poll = poll;
6286 	if (weight > NAPI_POLL_WEIGHT)
6287 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6288 				weight);
6289 	napi->weight = weight;
6290 	list_add(&napi->dev_list, &dev->napi_list);
6291 	napi->dev = dev;
6292 #ifdef CONFIG_NETPOLL
6293 	napi->poll_owner = -1;
6294 #endif
6295 	set_bit(NAPI_STATE_SCHED, &napi->state);
6296 	napi_hash_add(napi);
6297 }
6298 EXPORT_SYMBOL(netif_napi_add);
6299 
6300 void napi_disable(struct napi_struct *n)
6301 {
6302 	might_sleep();
6303 	set_bit(NAPI_STATE_DISABLE, &n->state);
6304 
6305 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6306 		msleep(1);
6307 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6308 		msleep(1);
6309 
6310 	hrtimer_cancel(&n->timer);
6311 
6312 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6313 }
6314 EXPORT_SYMBOL(napi_disable);
6315 
6316 static void flush_gro_hash(struct napi_struct *napi)
6317 {
6318 	int i;
6319 
6320 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6321 		struct sk_buff *skb, *n;
6322 
6323 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6324 			kfree_skb(skb);
6325 		napi->gro_hash[i].count = 0;
6326 	}
6327 }
6328 
6329 /* Must be called in process context */
6330 void netif_napi_del(struct napi_struct *napi)
6331 {
6332 	might_sleep();
6333 	if (napi_hash_del(napi))
6334 		synchronize_net();
6335 	list_del_init(&napi->dev_list);
6336 	napi_free_frags(napi);
6337 
6338 	flush_gro_hash(napi);
6339 	napi->gro_bitmask = 0;
6340 }
6341 EXPORT_SYMBOL(netif_napi_del);
6342 
6343 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6344 {
6345 	void *have;
6346 	int work, weight;
6347 
6348 	list_del_init(&n->poll_list);
6349 
6350 	have = netpoll_poll_lock(n);
6351 
6352 	weight = n->weight;
6353 
6354 	/* This NAPI_STATE_SCHED test is for avoiding a race
6355 	 * with netpoll's poll_napi().  Only the entity which
6356 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6357 	 * actually make the ->poll() call.  Therefore we avoid
6358 	 * accidentally calling ->poll() when NAPI is not scheduled.
6359 	 */
6360 	work = 0;
6361 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6362 		work = n->poll(n, weight);
6363 		trace_napi_poll(n, work, weight);
6364 	}
6365 
6366 	WARN_ON_ONCE(work > weight);
6367 
6368 	if (likely(work < weight))
6369 		goto out_unlock;
6370 
6371 	/* Drivers must not modify the NAPI state if they
6372 	 * consume the entire weight.  In such cases this code
6373 	 * still "owns" the NAPI instance and therefore can
6374 	 * move the instance around on the list at-will.
6375 	 */
6376 	if (unlikely(napi_disable_pending(n))) {
6377 		napi_complete(n);
6378 		goto out_unlock;
6379 	}
6380 
6381 	if (n->gro_bitmask) {
6382 		/* flush too old packets
6383 		 * If HZ < 1000, flush all packets.
6384 		 */
6385 		napi_gro_flush(n, HZ >= 1000);
6386 	}
6387 
6388 	/* Some drivers may have called napi_schedule
6389 	 * prior to exhausting their budget.
6390 	 */
6391 	if (unlikely(!list_empty(&n->poll_list))) {
6392 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6393 			     n->dev ? n->dev->name : "backlog");
6394 		goto out_unlock;
6395 	}
6396 
6397 	list_add_tail(&n->poll_list, repoll);
6398 
6399 out_unlock:
6400 	netpoll_poll_unlock(have);
6401 
6402 	return work;
6403 }
6404 
6405 static __latent_entropy void net_rx_action(struct softirq_action *h)
6406 {
6407 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6408 	unsigned long time_limit = jiffies +
6409 		usecs_to_jiffies(netdev_budget_usecs);
6410 	int budget = netdev_budget;
6411 	LIST_HEAD(list);
6412 	LIST_HEAD(repoll);
6413 
6414 	local_irq_disable();
6415 	list_splice_init(&sd->poll_list, &list);
6416 	local_irq_enable();
6417 
6418 	for (;;) {
6419 		struct napi_struct *n;
6420 
6421 		if (list_empty(&list)) {
6422 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6423 				goto out;
6424 			break;
6425 		}
6426 
6427 		n = list_first_entry(&list, struct napi_struct, poll_list);
6428 		budget -= napi_poll(n, &repoll);
6429 
6430 		/* If softirq window is exhausted then punt.
6431 		 * Allow this to run for 2 jiffies since which will allow
6432 		 * an average latency of 1.5/HZ.
6433 		 */
6434 		if (unlikely(budget <= 0 ||
6435 			     time_after_eq(jiffies, time_limit))) {
6436 			sd->time_squeeze++;
6437 			break;
6438 		}
6439 	}
6440 
6441 	local_irq_disable();
6442 
6443 	list_splice_tail_init(&sd->poll_list, &list);
6444 	list_splice_tail(&repoll, &list);
6445 	list_splice(&list, &sd->poll_list);
6446 	if (!list_empty(&sd->poll_list))
6447 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6448 
6449 	net_rps_action_and_irq_enable(sd);
6450 out:
6451 	__kfree_skb_flush();
6452 }
6453 
6454 struct netdev_adjacent {
6455 	struct net_device *dev;
6456 
6457 	/* upper master flag, there can only be one master device per list */
6458 	bool master;
6459 
6460 	/* counter for the number of times this device was added to us */
6461 	u16 ref_nr;
6462 
6463 	/* private field for the users */
6464 	void *private;
6465 
6466 	struct list_head list;
6467 	struct rcu_head rcu;
6468 };
6469 
6470 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6471 						 struct list_head *adj_list)
6472 {
6473 	struct netdev_adjacent *adj;
6474 
6475 	list_for_each_entry(adj, adj_list, list) {
6476 		if (adj->dev == adj_dev)
6477 			return adj;
6478 	}
6479 	return NULL;
6480 }
6481 
6482 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6483 {
6484 	struct net_device *dev = data;
6485 
6486 	return upper_dev == dev;
6487 }
6488 
6489 /**
6490  * netdev_has_upper_dev - Check if device is linked to an upper device
6491  * @dev: device
6492  * @upper_dev: upper device to check
6493  *
6494  * Find out if a device is linked to specified upper device and return true
6495  * in case it is. Note that this checks only immediate upper device,
6496  * not through a complete stack of devices. The caller must hold the RTNL lock.
6497  */
6498 bool netdev_has_upper_dev(struct net_device *dev,
6499 			  struct net_device *upper_dev)
6500 {
6501 	ASSERT_RTNL();
6502 
6503 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6504 					     upper_dev);
6505 }
6506 EXPORT_SYMBOL(netdev_has_upper_dev);
6507 
6508 /**
6509  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6510  * @dev: device
6511  * @upper_dev: upper device to check
6512  *
6513  * Find out if a device is linked to specified upper device and return true
6514  * in case it is. Note that this checks the entire upper device chain.
6515  * The caller must hold rcu lock.
6516  */
6517 
6518 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6519 				  struct net_device *upper_dev)
6520 {
6521 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6522 					       upper_dev);
6523 }
6524 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6525 
6526 /**
6527  * netdev_has_any_upper_dev - Check if device is linked to some device
6528  * @dev: device
6529  *
6530  * Find out if a device is linked to an upper device and return true in case
6531  * it is. The caller must hold the RTNL lock.
6532  */
6533 bool netdev_has_any_upper_dev(struct net_device *dev)
6534 {
6535 	ASSERT_RTNL();
6536 
6537 	return !list_empty(&dev->adj_list.upper);
6538 }
6539 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6540 
6541 /**
6542  * netdev_master_upper_dev_get - Get master upper device
6543  * @dev: device
6544  *
6545  * Find a master upper device and return pointer to it or NULL in case
6546  * it's not there. The caller must hold the RTNL lock.
6547  */
6548 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6549 {
6550 	struct netdev_adjacent *upper;
6551 
6552 	ASSERT_RTNL();
6553 
6554 	if (list_empty(&dev->adj_list.upper))
6555 		return NULL;
6556 
6557 	upper = list_first_entry(&dev->adj_list.upper,
6558 				 struct netdev_adjacent, list);
6559 	if (likely(upper->master))
6560 		return upper->dev;
6561 	return NULL;
6562 }
6563 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6564 
6565 /**
6566  * netdev_has_any_lower_dev - Check if device is linked to some device
6567  * @dev: device
6568  *
6569  * Find out if a device is linked to a lower device and return true in case
6570  * it is. The caller must hold the RTNL lock.
6571  */
6572 static bool netdev_has_any_lower_dev(struct net_device *dev)
6573 {
6574 	ASSERT_RTNL();
6575 
6576 	return !list_empty(&dev->adj_list.lower);
6577 }
6578 
6579 void *netdev_adjacent_get_private(struct list_head *adj_list)
6580 {
6581 	struct netdev_adjacent *adj;
6582 
6583 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6584 
6585 	return adj->private;
6586 }
6587 EXPORT_SYMBOL(netdev_adjacent_get_private);
6588 
6589 /**
6590  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6591  * @dev: device
6592  * @iter: list_head ** of the current position
6593  *
6594  * Gets the next device from the dev's upper list, starting from iter
6595  * position. The caller must hold RCU read lock.
6596  */
6597 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6598 						 struct list_head **iter)
6599 {
6600 	struct netdev_adjacent *upper;
6601 
6602 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6603 
6604 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6605 
6606 	if (&upper->list == &dev->adj_list.upper)
6607 		return NULL;
6608 
6609 	*iter = &upper->list;
6610 
6611 	return upper->dev;
6612 }
6613 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6614 
6615 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6616 						    struct list_head **iter)
6617 {
6618 	struct netdev_adjacent *upper;
6619 
6620 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6621 
6622 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6623 
6624 	if (&upper->list == &dev->adj_list.upper)
6625 		return NULL;
6626 
6627 	*iter = &upper->list;
6628 
6629 	return upper->dev;
6630 }
6631 
6632 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6633 				  int (*fn)(struct net_device *dev,
6634 					    void *data),
6635 				  void *data)
6636 {
6637 	struct net_device *udev;
6638 	struct list_head *iter;
6639 	int ret;
6640 
6641 	for (iter = &dev->adj_list.upper,
6642 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
6643 	     udev;
6644 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6645 		/* first is the upper device itself */
6646 		ret = fn(udev, data);
6647 		if (ret)
6648 			return ret;
6649 
6650 		/* then look at all of its upper devices */
6651 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6652 		if (ret)
6653 			return ret;
6654 	}
6655 
6656 	return 0;
6657 }
6658 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6659 
6660 /**
6661  * netdev_lower_get_next_private - Get the next ->private from the
6662  *				   lower neighbour list
6663  * @dev: device
6664  * @iter: list_head ** of the current position
6665  *
6666  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6667  * list, starting from iter position. The caller must hold either hold the
6668  * RTNL lock or its own locking that guarantees that the neighbour lower
6669  * list will remain unchanged.
6670  */
6671 void *netdev_lower_get_next_private(struct net_device *dev,
6672 				    struct list_head **iter)
6673 {
6674 	struct netdev_adjacent *lower;
6675 
6676 	lower = list_entry(*iter, struct netdev_adjacent, list);
6677 
6678 	if (&lower->list == &dev->adj_list.lower)
6679 		return NULL;
6680 
6681 	*iter = lower->list.next;
6682 
6683 	return lower->private;
6684 }
6685 EXPORT_SYMBOL(netdev_lower_get_next_private);
6686 
6687 /**
6688  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6689  *				       lower neighbour list, RCU
6690  *				       variant
6691  * @dev: device
6692  * @iter: list_head ** of the current position
6693  *
6694  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6695  * list, starting from iter position. The caller must hold RCU read lock.
6696  */
6697 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6698 					struct list_head **iter)
6699 {
6700 	struct netdev_adjacent *lower;
6701 
6702 	WARN_ON_ONCE(!rcu_read_lock_held());
6703 
6704 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6705 
6706 	if (&lower->list == &dev->adj_list.lower)
6707 		return NULL;
6708 
6709 	*iter = &lower->list;
6710 
6711 	return lower->private;
6712 }
6713 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6714 
6715 /**
6716  * netdev_lower_get_next - Get the next device from the lower neighbour
6717  *                         list
6718  * @dev: device
6719  * @iter: list_head ** of the current position
6720  *
6721  * Gets the next netdev_adjacent from the dev's lower neighbour
6722  * list, starting from iter position. The caller must hold RTNL lock or
6723  * its own locking that guarantees that the neighbour lower
6724  * list will remain unchanged.
6725  */
6726 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6727 {
6728 	struct netdev_adjacent *lower;
6729 
6730 	lower = list_entry(*iter, struct netdev_adjacent, list);
6731 
6732 	if (&lower->list == &dev->adj_list.lower)
6733 		return NULL;
6734 
6735 	*iter = lower->list.next;
6736 
6737 	return lower->dev;
6738 }
6739 EXPORT_SYMBOL(netdev_lower_get_next);
6740 
6741 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6742 						struct list_head **iter)
6743 {
6744 	struct netdev_adjacent *lower;
6745 
6746 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6747 
6748 	if (&lower->list == &dev->adj_list.lower)
6749 		return NULL;
6750 
6751 	*iter = &lower->list;
6752 
6753 	return lower->dev;
6754 }
6755 
6756 int netdev_walk_all_lower_dev(struct net_device *dev,
6757 			      int (*fn)(struct net_device *dev,
6758 					void *data),
6759 			      void *data)
6760 {
6761 	struct net_device *ldev;
6762 	struct list_head *iter;
6763 	int ret;
6764 
6765 	for (iter = &dev->adj_list.lower,
6766 	     ldev = netdev_next_lower_dev(dev, &iter);
6767 	     ldev;
6768 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6769 		/* first is the lower device itself */
6770 		ret = fn(ldev, data);
6771 		if (ret)
6772 			return ret;
6773 
6774 		/* then look at all of its lower devices */
6775 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6776 		if (ret)
6777 			return ret;
6778 	}
6779 
6780 	return 0;
6781 }
6782 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6783 
6784 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6785 						    struct list_head **iter)
6786 {
6787 	struct netdev_adjacent *lower;
6788 
6789 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6790 	if (&lower->list == &dev->adj_list.lower)
6791 		return NULL;
6792 
6793 	*iter = &lower->list;
6794 
6795 	return lower->dev;
6796 }
6797 
6798 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6799 				  int (*fn)(struct net_device *dev,
6800 					    void *data),
6801 				  void *data)
6802 {
6803 	struct net_device *ldev;
6804 	struct list_head *iter;
6805 	int ret;
6806 
6807 	for (iter = &dev->adj_list.lower,
6808 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6809 	     ldev;
6810 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6811 		/* first is the lower device itself */
6812 		ret = fn(ldev, data);
6813 		if (ret)
6814 			return ret;
6815 
6816 		/* then look at all of its lower devices */
6817 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6818 		if (ret)
6819 			return ret;
6820 	}
6821 
6822 	return 0;
6823 }
6824 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6825 
6826 /**
6827  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6828  *				       lower neighbour list, RCU
6829  *				       variant
6830  * @dev: device
6831  *
6832  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6833  * list. The caller must hold RCU read lock.
6834  */
6835 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6836 {
6837 	struct netdev_adjacent *lower;
6838 
6839 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6840 			struct netdev_adjacent, list);
6841 	if (lower)
6842 		return lower->private;
6843 	return NULL;
6844 }
6845 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6846 
6847 /**
6848  * netdev_master_upper_dev_get_rcu - Get master upper device
6849  * @dev: device
6850  *
6851  * Find a master upper device and return pointer to it or NULL in case
6852  * it's not there. The caller must hold the RCU read lock.
6853  */
6854 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6855 {
6856 	struct netdev_adjacent *upper;
6857 
6858 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6859 				       struct netdev_adjacent, list);
6860 	if (upper && likely(upper->master))
6861 		return upper->dev;
6862 	return NULL;
6863 }
6864 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6865 
6866 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6867 			      struct net_device *adj_dev,
6868 			      struct list_head *dev_list)
6869 {
6870 	char linkname[IFNAMSIZ+7];
6871 
6872 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6873 		"upper_%s" : "lower_%s", adj_dev->name);
6874 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6875 				 linkname);
6876 }
6877 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6878 			       char *name,
6879 			       struct list_head *dev_list)
6880 {
6881 	char linkname[IFNAMSIZ+7];
6882 
6883 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6884 		"upper_%s" : "lower_%s", name);
6885 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6886 }
6887 
6888 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6889 						 struct net_device *adj_dev,
6890 						 struct list_head *dev_list)
6891 {
6892 	return (dev_list == &dev->adj_list.upper ||
6893 		dev_list == &dev->adj_list.lower) &&
6894 		net_eq(dev_net(dev), dev_net(adj_dev));
6895 }
6896 
6897 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6898 					struct net_device *adj_dev,
6899 					struct list_head *dev_list,
6900 					void *private, bool master)
6901 {
6902 	struct netdev_adjacent *adj;
6903 	int ret;
6904 
6905 	adj = __netdev_find_adj(adj_dev, dev_list);
6906 
6907 	if (adj) {
6908 		adj->ref_nr += 1;
6909 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6910 			 dev->name, adj_dev->name, adj->ref_nr);
6911 
6912 		return 0;
6913 	}
6914 
6915 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6916 	if (!adj)
6917 		return -ENOMEM;
6918 
6919 	adj->dev = adj_dev;
6920 	adj->master = master;
6921 	adj->ref_nr = 1;
6922 	adj->private = private;
6923 	dev_hold(adj_dev);
6924 
6925 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6926 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6927 
6928 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6929 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6930 		if (ret)
6931 			goto free_adj;
6932 	}
6933 
6934 	/* Ensure that master link is always the first item in list. */
6935 	if (master) {
6936 		ret = sysfs_create_link(&(dev->dev.kobj),
6937 					&(adj_dev->dev.kobj), "master");
6938 		if (ret)
6939 			goto remove_symlinks;
6940 
6941 		list_add_rcu(&adj->list, dev_list);
6942 	} else {
6943 		list_add_tail_rcu(&adj->list, dev_list);
6944 	}
6945 
6946 	return 0;
6947 
6948 remove_symlinks:
6949 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6950 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6951 free_adj:
6952 	kfree(adj);
6953 	dev_put(adj_dev);
6954 
6955 	return ret;
6956 }
6957 
6958 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6959 					 struct net_device *adj_dev,
6960 					 u16 ref_nr,
6961 					 struct list_head *dev_list)
6962 {
6963 	struct netdev_adjacent *adj;
6964 
6965 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6966 		 dev->name, adj_dev->name, ref_nr);
6967 
6968 	adj = __netdev_find_adj(adj_dev, dev_list);
6969 
6970 	if (!adj) {
6971 		pr_err("Adjacency does not exist for device %s from %s\n",
6972 		       dev->name, adj_dev->name);
6973 		WARN_ON(1);
6974 		return;
6975 	}
6976 
6977 	if (adj->ref_nr > ref_nr) {
6978 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6979 			 dev->name, adj_dev->name, ref_nr,
6980 			 adj->ref_nr - ref_nr);
6981 		adj->ref_nr -= ref_nr;
6982 		return;
6983 	}
6984 
6985 	if (adj->master)
6986 		sysfs_remove_link(&(dev->dev.kobj), "master");
6987 
6988 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6989 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6990 
6991 	list_del_rcu(&adj->list);
6992 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6993 		 adj_dev->name, dev->name, adj_dev->name);
6994 	dev_put(adj_dev);
6995 	kfree_rcu(adj, rcu);
6996 }
6997 
6998 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6999 					    struct net_device *upper_dev,
7000 					    struct list_head *up_list,
7001 					    struct list_head *down_list,
7002 					    void *private, bool master)
7003 {
7004 	int ret;
7005 
7006 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7007 					   private, master);
7008 	if (ret)
7009 		return ret;
7010 
7011 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7012 					   private, false);
7013 	if (ret) {
7014 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7015 		return ret;
7016 	}
7017 
7018 	return 0;
7019 }
7020 
7021 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7022 					       struct net_device *upper_dev,
7023 					       u16 ref_nr,
7024 					       struct list_head *up_list,
7025 					       struct list_head *down_list)
7026 {
7027 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7028 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7029 }
7030 
7031 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7032 						struct net_device *upper_dev,
7033 						void *private, bool master)
7034 {
7035 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7036 						&dev->adj_list.upper,
7037 						&upper_dev->adj_list.lower,
7038 						private, master);
7039 }
7040 
7041 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7042 						   struct net_device *upper_dev)
7043 {
7044 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7045 					   &dev->adj_list.upper,
7046 					   &upper_dev->adj_list.lower);
7047 }
7048 
7049 static int __netdev_upper_dev_link(struct net_device *dev,
7050 				   struct net_device *upper_dev, bool master,
7051 				   void *upper_priv, void *upper_info,
7052 				   struct netlink_ext_ack *extack)
7053 {
7054 	struct netdev_notifier_changeupper_info changeupper_info = {
7055 		.info = {
7056 			.dev = dev,
7057 			.extack = extack,
7058 		},
7059 		.upper_dev = upper_dev,
7060 		.master = master,
7061 		.linking = true,
7062 		.upper_info = upper_info,
7063 	};
7064 	struct net_device *master_dev;
7065 	int ret = 0;
7066 
7067 	ASSERT_RTNL();
7068 
7069 	if (dev == upper_dev)
7070 		return -EBUSY;
7071 
7072 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7073 	if (netdev_has_upper_dev(upper_dev, dev))
7074 		return -EBUSY;
7075 
7076 	if (!master) {
7077 		if (netdev_has_upper_dev(dev, upper_dev))
7078 			return -EEXIST;
7079 	} else {
7080 		master_dev = netdev_master_upper_dev_get(dev);
7081 		if (master_dev)
7082 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7083 	}
7084 
7085 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7086 					    &changeupper_info.info);
7087 	ret = notifier_to_errno(ret);
7088 	if (ret)
7089 		return ret;
7090 
7091 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7092 						   master);
7093 	if (ret)
7094 		return ret;
7095 
7096 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7097 					    &changeupper_info.info);
7098 	ret = notifier_to_errno(ret);
7099 	if (ret)
7100 		goto rollback;
7101 
7102 	return 0;
7103 
7104 rollback:
7105 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7106 
7107 	return ret;
7108 }
7109 
7110 /**
7111  * netdev_upper_dev_link - Add a link to the upper device
7112  * @dev: device
7113  * @upper_dev: new upper device
7114  * @extack: netlink extended ack
7115  *
7116  * Adds a link to device which is upper to this one. The caller must hold
7117  * the RTNL lock. On a failure a negative errno code is returned.
7118  * On success the reference counts are adjusted and the function
7119  * returns zero.
7120  */
7121 int netdev_upper_dev_link(struct net_device *dev,
7122 			  struct net_device *upper_dev,
7123 			  struct netlink_ext_ack *extack)
7124 {
7125 	return __netdev_upper_dev_link(dev, upper_dev, false,
7126 				       NULL, NULL, extack);
7127 }
7128 EXPORT_SYMBOL(netdev_upper_dev_link);
7129 
7130 /**
7131  * netdev_master_upper_dev_link - Add a master link to the upper device
7132  * @dev: device
7133  * @upper_dev: new upper device
7134  * @upper_priv: upper device private
7135  * @upper_info: upper info to be passed down via notifier
7136  * @extack: netlink extended ack
7137  *
7138  * Adds a link to device which is upper to this one. In this case, only
7139  * one master upper device can be linked, although other non-master devices
7140  * might be linked as well. The caller must hold the RTNL lock.
7141  * On a failure a negative errno code is returned. On success the reference
7142  * counts are adjusted and the function returns zero.
7143  */
7144 int netdev_master_upper_dev_link(struct net_device *dev,
7145 				 struct net_device *upper_dev,
7146 				 void *upper_priv, void *upper_info,
7147 				 struct netlink_ext_ack *extack)
7148 {
7149 	return __netdev_upper_dev_link(dev, upper_dev, true,
7150 				       upper_priv, upper_info, extack);
7151 }
7152 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7153 
7154 /**
7155  * netdev_upper_dev_unlink - Removes a link to upper device
7156  * @dev: device
7157  * @upper_dev: new upper device
7158  *
7159  * Removes a link to device which is upper to this one. The caller must hold
7160  * the RTNL lock.
7161  */
7162 void netdev_upper_dev_unlink(struct net_device *dev,
7163 			     struct net_device *upper_dev)
7164 {
7165 	struct netdev_notifier_changeupper_info changeupper_info = {
7166 		.info = {
7167 			.dev = dev,
7168 		},
7169 		.upper_dev = upper_dev,
7170 		.linking = false,
7171 	};
7172 
7173 	ASSERT_RTNL();
7174 
7175 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7176 
7177 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7178 				      &changeupper_info.info);
7179 
7180 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7181 
7182 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7183 				      &changeupper_info.info);
7184 }
7185 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7186 
7187 /**
7188  * netdev_bonding_info_change - Dispatch event about slave change
7189  * @dev: device
7190  * @bonding_info: info to dispatch
7191  *
7192  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7193  * The caller must hold the RTNL lock.
7194  */
7195 void netdev_bonding_info_change(struct net_device *dev,
7196 				struct netdev_bonding_info *bonding_info)
7197 {
7198 	struct netdev_notifier_bonding_info info = {
7199 		.info.dev = dev,
7200 	};
7201 
7202 	memcpy(&info.bonding_info, bonding_info,
7203 	       sizeof(struct netdev_bonding_info));
7204 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7205 				      &info.info);
7206 }
7207 EXPORT_SYMBOL(netdev_bonding_info_change);
7208 
7209 static void netdev_adjacent_add_links(struct net_device *dev)
7210 {
7211 	struct netdev_adjacent *iter;
7212 
7213 	struct net *net = dev_net(dev);
7214 
7215 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7216 		if (!net_eq(net, dev_net(iter->dev)))
7217 			continue;
7218 		netdev_adjacent_sysfs_add(iter->dev, dev,
7219 					  &iter->dev->adj_list.lower);
7220 		netdev_adjacent_sysfs_add(dev, iter->dev,
7221 					  &dev->adj_list.upper);
7222 	}
7223 
7224 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7225 		if (!net_eq(net, dev_net(iter->dev)))
7226 			continue;
7227 		netdev_adjacent_sysfs_add(iter->dev, dev,
7228 					  &iter->dev->adj_list.upper);
7229 		netdev_adjacent_sysfs_add(dev, iter->dev,
7230 					  &dev->adj_list.lower);
7231 	}
7232 }
7233 
7234 static void netdev_adjacent_del_links(struct net_device *dev)
7235 {
7236 	struct netdev_adjacent *iter;
7237 
7238 	struct net *net = dev_net(dev);
7239 
7240 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7241 		if (!net_eq(net, dev_net(iter->dev)))
7242 			continue;
7243 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7244 					  &iter->dev->adj_list.lower);
7245 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7246 					  &dev->adj_list.upper);
7247 	}
7248 
7249 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7250 		if (!net_eq(net, dev_net(iter->dev)))
7251 			continue;
7252 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7253 					  &iter->dev->adj_list.upper);
7254 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7255 					  &dev->adj_list.lower);
7256 	}
7257 }
7258 
7259 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7260 {
7261 	struct netdev_adjacent *iter;
7262 
7263 	struct net *net = dev_net(dev);
7264 
7265 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7266 		if (!net_eq(net, dev_net(iter->dev)))
7267 			continue;
7268 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7269 					  &iter->dev->adj_list.lower);
7270 		netdev_adjacent_sysfs_add(iter->dev, dev,
7271 					  &iter->dev->adj_list.lower);
7272 	}
7273 
7274 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7275 		if (!net_eq(net, dev_net(iter->dev)))
7276 			continue;
7277 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7278 					  &iter->dev->adj_list.upper);
7279 		netdev_adjacent_sysfs_add(iter->dev, dev,
7280 					  &iter->dev->adj_list.upper);
7281 	}
7282 }
7283 
7284 void *netdev_lower_dev_get_private(struct net_device *dev,
7285 				   struct net_device *lower_dev)
7286 {
7287 	struct netdev_adjacent *lower;
7288 
7289 	if (!lower_dev)
7290 		return NULL;
7291 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7292 	if (!lower)
7293 		return NULL;
7294 
7295 	return lower->private;
7296 }
7297 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7298 
7299 
7300 int dev_get_nest_level(struct net_device *dev)
7301 {
7302 	struct net_device *lower = NULL;
7303 	struct list_head *iter;
7304 	int max_nest = -1;
7305 	int nest;
7306 
7307 	ASSERT_RTNL();
7308 
7309 	netdev_for_each_lower_dev(dev, lower, iter) {
7310 		nest = dev_get_nest_level(lower);
7311 		if (max_nest < nest)
7312 			max_nest = nest;
7313 	}
7314 
7315 	return max_nest + 1;
7316 }
7317 EXPORT_SYMBOL(dev_get_nest_level);
7318 
7319 /**
7320  * netdev_lower_change - Dispatch event about lower device state change
7321  * @lower_dev: device
7322  * @lower_state_info: state to dispatch
7323  *
7324  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7325  * The caller must hold the RTNL lock.
7326  */
7327 void netdev_lower_state_changed(struct net_device *lower_dev,
7328 				void *lower_state_info)
7329 {
7330 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7331 		.info.dev = lower_dev,
7332 	};
7333 
7334 	ASSERT_RTNL();
7335 	changelowerstate_info.lower_state_info = lower_state_info;
7336 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7337 				      &changelowerstate_info.info);
7338 }
7339 EXPORT_SYMBOL(netdev_lower_state_changed);
7340 
7341 static void dev_change_rx_flags(struct net_device *dev, int flags)
7342 {
7343 	const struct net_device_ops *ops = dev->netdev_ops;
7344 
7345 	if (ops->ndo_change_rx_flags)
7346 		ops->ndo_change_rx_flags(dev, flags);
7347 }
7348 
7349 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7350 {
7351 	unsigned int old_flags = dev->flags;
7352 	kuid_t uid;
7353 	kgid_t gid;
7354 
7355 	ASSERT_RTNL();
7356 
7357 	dev->flags |= IFF_PROMISC;
7358 	dev->promiscuity += inc;
7359 	if (dev->promiscuity == 0) {
7360 		/*
7361 		 * Avoid overflow.
7362 		 * If inc causes overflow, untouch promisc and return error.
7363 		 */
7364 		if (inc < 0)
7365 			dev->flags &= ~IFF_PROMISC;
7366 		else {
7367 			dev->promiscuity -= inc;
7368 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7369 				dev->name);
7370 			return -EOVERFLOW;
7371 		}
7372 	}
7373 	if (dev->flags != old_flags) {
7374 		pr_info("device %s %s promiscuous mode\n",
7375 			dev->name,
7376 			dev->flags & IFF_PROMISC ? "entered" : "left");
7377 		if (audit_enabled) {
7378 			current_uid_gid(&uid, &gid);
7379 			audit_log(audit_context(), GFP_ATOMIC,
7380 				  AUDIT_ANOM_PROMISCUOUS,
7381 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7382 				  dev->name, (dev->flags & IFF_PROMISC),
7383 				  (old_flags & IFF_PROMISC),
7384 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7385 				  from_kuid(&init_user_ns, uid),
7386 				  from_kgid(&init_user_ns, gid),
7387 				  audit_get_sessionid(current));
7388 		}
7389 
7390 		dev_change_rx_flags(dev, IFF_PROMISC);
7391 	}
7392 	if (notify)
7393 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7394 	return 0;
7395 }
7396 
7397 /**
7398  *	dev_set_promiscuity	- update promiscuity count on a device
7399  *	@dev: device
7400  *	@inc: modifier
7401  *
7402  *	Add or remove promiscuity from a device. While the count in the device
7403  *	remains above zero the interface remains promiscuous. Once it hits zero
7404  *	the device reverts back to normal filtering operation. A negative inc
7405  *	value is used to drop promiscuity on the device.
7406  *	Return 0 if successful or a negative errno code on error.
7407  */
7408 int dev_set_promiscuity(struct net_device *dev, int inc)
7409 {
7410 	unsigned int old_flags = dev->flags;
7411 	int err;
7412 
7413 	err = __dev_set_promiscuity(dev, inc, true);
7414 	if (err < 0)
7415 		return err;
7416 	if (dev->flags != old_flags)
7417 		dev_set_rx_mode(dev);
7418 	return err;
7419 }
7420 EXPORT_SYMBOL(dev_set_promiscuity);
7421 
7422 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7423 {
7424 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7425 
7426 	ASSERT_RTNL();
7427 
7428 	dev->flags |= IFF_ALLMULTI;
7429 	dev->allmulti += inc;
7430 	if (dev->allmulti == 0) {
7431 		/*
7432 		 * Avoid overflow.
7433 		 * If inc causes overflow, untouch allmulti and return error.
7434 		 */
7435 		if (inc < 0)
7436 			dev->flags &= ~IFF_ALLMULTI;
7437 		else {
7438 			dev->allmulti -= inc;
7439 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7440 				dev->name);
7441 			return -EOVERFLOW;
7442 		}
7443 	}
7444 	if (dev->flags ^ old_flags) {
7445 		dev_change_rx_flags(dev, IFF_ALLMULTI);
7446 		dev_set_rx_mode(dev);
7447 		if (notify)
7448 			__dev_notify_flags(dev, old_flags,
7449 					   dev->gflags ^ old_gflags);
7450 	}
7451 	return 0;
7452 }
7453 
7454 /**
7455  *	dev_set_allmulti	- update allmulti count on a device
7456  *	@dev: device
7457  *	@inc: modifier
7458  *
7459  *	Add or remove reception of all multicast frames to a device. While the
7460  *	count in the device remains above zero the interface remains listening
7461  *	to all interfaces. Once it hits zero the device reverts back to normal
7462  *	filtering operation. A negative @inc value is used to drop the counter
7463  *	when releasing a resource needing all multicasts.
7464  *	Return 0 if successful or a negative errno code on error.
7465  */
7466 
7467 int dev_set_allmulti(struct net_device *dev, int inc)
7468 {
7469 	return __dev_set_allmulti(dev, inc, true);
7470 }
7471 EXPORT_SYMBOL(dev_set_allmulti);
7472 
7473 /*
7474  *	Upload unicast and multicast address lists to device and
7475  *	configure RX filtering. When the device doesn't support unicast
7476  *	filtering it is put in promiscuous mode while unicast addresses
7477  *	are present.
7478  */
7479 void __dev_set_rx_mode(struct net_device *dev)
7480 {
7481 	const struct net_device_ops *ops = dev->netdev_ops;
7482 
7483 	/* dev_open will call this function so the list will stay sane. */
7484 	if (!(dev->flags&IFF_UP))
7485 		return;
7486 
7487 	if (!netif_device_present(dev))
7488 		return;
7489 
7490 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7491 		/* Unicast addresses changes may only happen under the rtnl,
7492 		 * therefore calling __dev_set_promiscuity here is safe.
7493 		 */
7494 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7495 			__dev_set_promiscuity(dev, 1, false);
7496 			dev->uc_promisc = true;
7497 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7498 			__dev_set_promiscuity(dev, -1, false);
7499 			dev->uc_promisc = false;
7500 		}
7501 	}
7502 
7503 	if (ops->ndo_set_rx_mode)
7504 		ops->ndo_set_rx_mode(dev);
7505 }
7506 
7507 void dev_set_rx_mode(struct net_device *dev)
7508 {
7509 	netif_addr_lock_bh(dev);
7510 	__dev_set_rx_mode(dev);
7511 	netif_addr_unlock_bh(dev);
7512 }
7513 
7514 /**
7515  *	dev_get_flags - get flags reported to userspace
7516  *	@dev: device
7517  *
7518  *	Get the combination of flag bits exported through APIs to userspace.
7519  */
7520 unsigned int dev_get_flags(const struct net_device *dev)
7521 {
7522 	unsigned int flags;
7523 
7524 	flags = (dev->flags & ~(IFF_PROMISC |
7525 				IFF_ALLMULTI |
7526 				IFF_RUNNING |
7527 				IFF_LOWER_UP |
7528 				IFF_DORMANT)) |
7529 		(dev->gflags & (IFF_PROMISC |
7530 				IFF_ALLMULTI));
7531 
7532 	if (netif_running(dev)) {
7533 		if (netif_oper_up(dev))
7534 			flags |= IFF_RUNNING;
7535 		if (netif_carrier_ok(dev))
7536 			flags |= IFF_LOWER_UP;
7537 		if (netif_dormant(dev))
7538 			flags |= IFF_DORMANT;
7539 	}
7540 
7541 	return flags;
7542 }
7543 EXPORT_SYMBOL(dev_get_flags);
7544 
7545 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7546 		       struct netlink_ext_ack *extack)
7547 {
7548 	unsigned int old_flags = dev->flags;
7549 	int ret;
7550 
7551 	ASSERT_RTNL();
7552 
7553 	/*
7554 	 *	Set the flags on our device.
7555 	 */
7556 
7557 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7558 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7559 			       IFF_AUTOMEDIA)) |
7560 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7561 				    IFF_ALLMULTI));
7562 
7563 	/*
7564 	 *	Load in the correct multicast list now the flags have changed.
7565 	 */
7566 
7567 	if ((old_flags ^ flags) & IFF_MULTICAST)
7568 		dev_change_rx_flags(dev, IFF_MULTICAST);
7569 
7570 	dev_set_rx_mode(dev);
7571 
7572 	/*
7573 	 *	Have we downed the interface. We handle IFF_UP ourselves
7574 	 *	according to user attempts to set it, rather than blindly
7575 	 *	setting it.
7576 	 */
7577 
7578 	ret = 0;
7579 	if ((old_flags ^ flags) & IFF_UP) {
7580 		if (old_flags & IFF_UP)
7581 			__dev_close(dev);
7582 		else
7583 			ret = __dev_open(dev, extack);
7584 	}
7585 
7586 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
7587 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
7588 		unsigned int old_flags = dev->flags;
7589 
7590 		dev->gflags ^= IFF_PROMISC;
7591 
7592 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
7593 			if (dev->flags != old_flags)
7594 				dev_set_rx_mode(dev);
7595 	}
7596 
7597 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7598 	 * is important. Some (broken) drivers set IFF_PROMISC, when
7599 	 * IFF_ALLMULTI is requested not asking us and not reporting.
7600 	 */
7601 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7602 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7603 
7604 		dev->gflags ^= IFF_ALLMULTI;
7605 		__dev_set_allmulti(dev, inc, false);
7606 	}
7607 
7608 	return ret;
7609 }
7610 
7611 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7612 			unsigned int gchanges)
7613 {
7614 	unsigned int changes = dev->flags ^ old_flags;
7615 
7616 	if (gchanges)
7617 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7618 
7619 	if (changes & IFF_UP) {
7620 		if (dev->flags & IFF_UP)
7621 			call_netdevice_notifiers(NETDEV_UP, dev);
7622 		else
7623 			call_netdevice_notifiers(NETDEV_DOWN, dev);
7624 	}
7625 
7626 	if (dev->flags & IFF_UP &&
7627 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7628 		struct netdev_notifier_change_info change_info = {
7629 			.info = {
7630 				.dev = dev,
7631 			},
7632 			.flags_changed = changes,
7633 		};
7634 
7635 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7636 	}
7637 }
7638 
7639 /**
7640  *	dev_change_flags - change device settings
7641  *	@dev: device
7642  *	@flags: device state flags
7643  *	@extack: netlink extended ack
7644  *
7645  *	Change settings on device based state flags. The flags are
7646  *	in the userspace exported format.
7647  */
7648 int dev_change_flags(struct net_device *dev, unsigned int flags,
7649 		     struct netlink_ext_ack *extack)
7650 {
7651 	int ret;
7652 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7653 
7654 	ret = __dev_change_flags(dev, flags, extack);
7655 	if (ret < 0)
7656 		return ret;
7657 
7658 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7659 	__dev_notify_flags(dev, old_flags, changes);
7660 	return ret;
7661 }
7662 EXPORT_SYMBOL(dev_change_flags);
7663 
7664 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7665 {
7666 	const struct net_device_ops *ops = dev->netdev_ops;
7667 
7668 	if (ops->ndo_change_mtu)
7669 		return ops->ndo_change_mtu(dev, new_mtu);
7670 
7671 	dev->mtu = new_mtu;
7672 	return 0;
7673 }
7674 EXPORT_SYMBOL(__dev_set_mtu);
7675 
7676 /**
7677  *	dev_set_mtu_ext - Change maximum transfer unit
7678  *	@dev: device
7679  *	@new_mtu: new transfer unit
7680  *	@extack: netlink extended ack
7681  *
7682  *	Change the maximum transfer size of the network device.
7683  */
7684 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7685 		    struct netlink_ext_ack *extack)
7686 {
7687 	int err, orig_mtu;
7688 
7689 	if (new_mtu == dev->mtu)
7690 		return 0;
7691 
7692 	/* MTU must be positive, and in range */
7693 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7694 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7695 		return -EINVAL;
7696 	}
7697 
7698 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7699 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7700 		return -EINVAL;
7701 	}
7702 
7703 	if (!netif_device_present(dev))
7704 		return -ENODEV;
7705 
7706 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7707 	err = notifier_to_errno(err);
7708 	if (err)
7709 		return err;
7710 
7711 	orig_mtu = dev->mtu;
7712 	err = __dev_set_mtu(dev, new_mtu);
7713 
7714 	if (!err) {
7715 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7716 						   orig_mtu);
7717 		err = notifier_to_errno(err);
7718 		if (err) {
7719 			/* setting mtu back and notifying everyone again,
7720 			 * so that they have a chance to revert changes.
7721 			 */
7722 			__dev_set_mtu(dev, orig_mtu);
7723 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7724 						     new_mtu);
7725 		}
7726 	}
7727 	return err;
7728 }
7729 
7730 int dev_set_mtu(struct net_device *dev, int new_mtu)
7731 {
7732 	struct netlink_ext_ack extack;
7733 	int err;
7734 
7735 	memset(&extack, 0, sizeof(extack));
7736 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
7737 	if (err && extack._msg)
7738 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7739 	return err;
7740 }
7741 EXPORT_SYMBOL(dev_set_mtu);
7742 
7743 /**
7744  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7745  *	@dev: device
7746  *	@new_len: new tx queue length
7747  */
7748 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7749 {
7750 	unsigned int orig_len = dev->tx_queue_len;
7751 	int res;
7752 
7753 	if (new_len != (unsigned int)new_len)
7754 		return -ERANGE;
7755 
7756 	if (new_len != orig_len) {
7757 		dev->tx_queue_len = new_len;
7758 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7759 		res = notifier_to_errno(res);
7760 		if (res)
7761 			goto err_rollback;
7762 		res = dev_qdisc_change_tx_queue_len(dev);
7763 		if (res)
7764 			goto err_rollback;
7765 	}
7766 
7767 	return 0;
7768 
7769 err_rollback:
7770 	netdev_err(dev, "refused to change device tx_queue_len\n");
7771 	dev->tx_queue_len = orig_len;
7772 	return res;
7773 }
7774 
7775 /**
7776  *	dev_set_group - Change group this device belongs to
7777  *	@dev: device
7778  *	@new_group: group this device should belong to
7779  */
7780 void dev_set_group(struct net_device *dev, int new_group)
7781 {
7782 	dev->group = new_group;
7783 }
7784 EXPORT_SYMBOL(dev_set_group);
7785 
7786 /**
7787  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7788  *	@dev: device
7789  *	@addr: new address
7790  *	@extack: netlink extended ack
7791  */
7792 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7793 			      struct netlink_ext_ack *extack)
7794 {
7795 	struct netdev_notifier_pre_changeaddr_info info = {
7796 		.info.dev = dev,
7797 		.info.extack = extack,
7798 		.dev_addr = addr,
7799 	};
7800 	int rc;
7801 
7802 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7803 	return notifier_to_errno(rc);
7804 }
7805 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7806 
7807 /**
7808  *	dev_set_mac_address - Change Media Access Control Address
7809  *	@dev: device
7810  *	@sa: new address
7811  *	@extack: netlink extended ack
7812  *
7813  *	Change the hardware (MAC) address of the device
7814  */
7815 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7816 			struct netlink_ext_ack *extack)
7817 {
7818 	const struct net_device_ops *ops = dev->netdev_ops;
7819 	int err;
7820 
7821 	if (!ops->ndo_set_mac_address)
7822 		return -EOPNOTSUPP;
7823 	if (sa->sa_family != dev->type)
7824 		return -EINVAL;
7825 	if (!netif_device_present(dev))
7826 		return -ENODEV;
7827 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7828 	if (err)
7829 		return err;
7830 	err = ops->ndo_set_mac_address(dev, sa);
7831 	if (err)
7832 		return err;
7833 	dev->addr_assign_type = NET_ADDR_SET;
7834 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7835 	add_device_randomness(dev->dev_addr, dev->addr_len);
7836 	return 0;
7837 }
7838 EXPORT_SYMBOL(dev_set_mac_address);
7839 
7840 /**
7841  *	dev_change_carrier - Change device carrier
7842  *	@dev: device
7843  *	@new_carrier: new value
7844  *
7845  *	Change device carrier
7846  */
7847 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7848 {
7849 	const struct net_device_ops *ops = dev->netdev_ops;
7850 
7851 	if (!ops->ndo_change_carrier)
7852 		return -EOPNOTSUPP;
7853 	if (!netif_device_present(dev))
7854 		return -ENODEV;
7855 	return ops->ndo_change_carrier(dev, new_carrier);
7856 }
7857 EXPORT_SYMBOL(dev_change_carrier);
7858 
7859 /**
7860  *	dev_get_phys_port_id - Get device physical port ID
7861  *	@dev: device
7862  *	@ppid: port ID
7863  *
7864  *	Get device physical port ID
7865  */
7866 int dev_get_phys_port_id(struct net_device *dev,
7867 			 struct netdev_phys_item_id *ppid)
7868 {
7869 	const struct net_device_ops *ops = dev->netdev_ops;
7870 
7871 	if (!ops->ndo_get_phys_port_id)
7872 		return -EOPNOTSUPP;
7873 	return ops->ndo_get_phys_port_id(dev, ppid);
7874 }
7875 EXPORT_SYMBOL(dev_get_phys_port_id);
7876 
7877 /**
7878  *	dev_get_phys_port_name - Get device physical port name
7879  *	@dev: device
7880  *	@name: port name
7881  *	@len: limit of bytes to copy to name
7882  *
7883  *	Get device physical port name
7884  */
7885 int dev_get_phys_port_name(struct net_device *dev,
7886 			   char *name, size_t len)
7887 {
7888 	const struct net_device_ops *ops = dev->netdev_ops;
7889 
7890 	if (!ops->ndo_get_phys_port_name)
7891 		return -EOPNOTSUPP;
7892 	return ops->ndo_get_phys_port_name(dev, name, len);
7893 }
7894 EXPORT_SYMBOL(dev_get_phys_port_name);
7895 
7896 /**
7897  *	dev_get_port_parent_id - Get the device's port parent identifier
7898  *	@dev: network device
7899  *	@ppid: pointer to a storage for the port's parent identifier
7900  *	@recurse: allow/disallow recursion to lower devices
7901  *
7902  *	Get the devices's port parent identifier
7903  */
7904 int dev_get_port_parent_id(struct net_device *dev,
7905 			   struct netdev_phys_item_id *ppid,
7906 			   bool recurse)
7907 {
7908 	const struct net_device_ops *ops = dev->netdev_ops;
7909 	struct netdev_phys_item_id first = { };
7910 	struct net_device *lower_dev;
7911 	struct list_head *iter;
7912 	int err = -EOPNOTSUPP;
7913 
7914 	if (ops->ndo_get_port_parent_id)
7915 		return ops->ndo_get_port_parent_id(dev, ppid);
7916 
7917 	if (!recurse)
7918 		return err;
7919 
7920 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
7921 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7922 		if (err)
7923 			break;
7924 		if (!first.id_len)
7925 			first = *ppid;
7926 		else if (memcmp(&first, ppid, sizeof(*ppid)))
7927 			return -ENODATA;
7928 	}
7929 
7930 	return err;
7931 }
7932 EXPORT_SYMBOL(dev_get_port_parent_id);
7933 
7934 /**
7935  *	netdev_port_same_parent_id - Indicate if two network devices have
7936  *	the same port parent identifier
7937  *	@a: first network device
7938  *	@b: second network device
7939  */
7940 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7941 {
7942 	struct netdev_phys_item_id a_id = { };
7943 	struct netdev_phys_item_id b_id = { };
7944 
7945 	if (dev_get_port_parent_id(a, &a_id, true) ||
7946 	    dev_get_port_parent_id(b, &b_id, true))
7947 		return false;
7948 
7949 	return netdev_phys_item_id_same(&a_id, &b_id);
7950 }
7951 EXPORT_SYMBOL(netdev_port_same_parent_id);
7952 
7953 /**
7954  *	dev_change_proto_down - update protocol port state information
7955  *	@dev: device
7956  *	@proto_down: new value
7957  *
7958  *	This info can be used by switch drivers to set the phys state of the
7959  *	port.
7960  */
7961 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7962 {
7963 	const struct net_device_ops *ops = dev->netdev_ops;
7964 
7965 	if (!ops->ndo_change_proto_down)
7966 		return -EOPNOTSUPP;
7967 	if (!netif_device_present(dev))
7968 		return -ENODEV;
7969 	return ops->ndo_change_proto_down(dev, proto_down);
7970 }
7971 EXPORT_SYMBOL(dev_change_proto_down);
7972 
7973 /**
7974  *	dev_change_proto_down_generic - generic implementation for
7975  * 	ndo_change_proto_down that sets carrier according to
7976  * 	proto_down.
7977  *
7978  *	@dev: device
7979  *	@proto_down: new value
7980  */
7981 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
7982 {
7983 	if (proto_down)
7984 		netif_carrier_off(dev);
7985 	else
7986 		netif_carrier_on(dev);
7987 	dev->proto_down = proto_down;
7988 	return 0;
7989 }
7990 EXPORT_SYMBOL(dev_change_proto_down_generic);
7991 
7992 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7993 		    enum bpf_netdev_command cmd)
7994 {
7995 	struct netdev_bpf xdp;
7996 
7997 	if (!bpf_op)
7998 		return 0;
7999 
8000 	memset(&xdp, 0, sizeof(xdp));
8001 	xdp.command = cmd;
8002 
8003 	/* Query must always succeed. */
8004 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8005 
8006 	return xdp.prog_id;
8007 }
8008 
8009 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8010 			   struct netlink_ext_ack *extack, u32 flags,
8011 			   struct bpf_prog *prog)
8012 {
8013 	struct netdev_bpf xdp;
8014 
8015 	memset(&xdp, 0, sizeof(xdp));
8016 	if (flags & XDP_FLAGS_HW_MODE)
8017 		xdp.command = XDP_SETUP_PROG_HW;
8018 	else
8019 		xdp.command = XDP_SETUP_PROG;
8020 	xdp.extack = extack;
8021 	xdp.flags = flags;
8022 	xdp.prog = prog;
8023 
8024 	return bpf_op(dev, &xdp);
8025 }
8026 
8027 static void dev_xdp_uninstall(struct net_device *dev)
8028 {
8029 	struct netdev_bpf xdp;
8030 	bpf_op_t ndo_bpf;
8031 
8032 	/* Remove generic XDP */
8033 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8034 
8035 	/* Remove from the driver */
8036 	ndo_bpf = dev->netdev_ops->ndo_bpf;
8037 	if (!ndo_bpf)
8038 		return;
8039 
8040 	memset(&xdp, 0, sizeof(xdp));
8041 	xdp.command = XDP_QUERY_PROG;
8042 	WARN_ON(ndo_bpf(dev, &xdp));
8043 	if (xdp.prog_id)
8044 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8045 					NULL));
8046 
8047 	/* Remove HW offload */
8048 	memset(&xdp, 0, sizeof(xdp));
8049 	xdp.command = XDP_QUERY_PROG_HW;
8050 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8051 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8052 					NULL));
8053 }
8054 
8055 /**
8056  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
8057  *	@dev: device
8058  *	@extack: netlink extended ack
8059  *	@fd: new program fd or negative value to clear
8060  *	@flags: xdp-related flags
8061  *
8062  *	Set or clear a bpf program for a device
8063  */
8064 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8065 		      int fd, u32 flags)
8066 {
8067 	const struct net_device_ops *ops = dev->netdev_ops;
8068 	enum bpf_netdev_command query;
8069 	struct bpf_prog *prog = NULL;
8070 	bpf_op_t bpf_op, bpf_chk;
8071 	bool offload;
8072 	int err;
8073 
8074 	ASSERT_RTNL();
8075 
8076 	offload = flags & XDP_FLAGS_HW_MODE;
8077 	query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8078 
8079 	bpf_op = bpf_chk = ops->ndo_bpf;
8080 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8081 		NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8082 		return -EOPNOTSUPP;
8083 	}
8084 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8085 		bpf_op = generic_xdp_install;
8086 	if (bpf_op == bpf_chk)
8087 		bpf_chk = generic_xdp_install;
8088 
8089 	if (fd >= 0) {
8090 		if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8091 			NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8092 			return -EEXIST;
8093 		}
8094 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
8095 		    __dev_xdp_query(dev, bpf_op, query)) {
8096 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8097 			return -EBUSY;
8098 		}
8099 
8100 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8101 					     bpf_op == ops->ndo_bpf);
8102 		if (IS_ERR(prog))
8103 			return PTR_ERR(prog);
8104 
8105 		if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8106 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8107 			bpf_prog_put(prog);
8108 			return -EINVAL;
8109 		}
8110 	}
8111 
8112 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8113 	if (err < 0 && prog)
8114 		bpf_prog_put(prog);
8115 
8116 	return err;
8117 }
8118 
8119 /**
8120  *	dev_new_index	-	allocate an ifindex
8121  *	@net: the applicable net namespace
8122  *
8123  *	Returns a suitable unique value for a new device interface
8124  *	number.  The caller must hold the rtnl semaphore or the
8125  *	dev_base_lock to be sure it remains unique.
8126  */
8127 static int dev_new_index(struct net *net)
8128 {
8129 	int ifindex = net->ifindex;
8130 
8131 	for (;;) {
8132 		if (++ifindex <= 0)
8133 			ifindex = 1;
8134 		if (!__dev_get_by_index(net, ifindex))
8135 			return net->ifindex = ifindex;
8136 	}
8137 }
8138 
8139 /* Delayed registration/unregisteration */
8140 static LIST_HEAD(net_todo_list);
8141 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8142 
8143 static void net_set_todo(struct net_device *dev)
8144 {
8145 	list_add_tail(&dev->todo_list, &net_todo_list);
8146 	dev_net(dev)->dev_unreg_count++;
8147 }
8148 
8149 static void rollback_registered_many(struct list_head *head)
8150 {
8151 	struct net_device *dev, *tmp;
8152 	LIST_HEAD(close_head);
8153 
8154 	BUG_ON(dev_boot_phase);
8155 	ASSERT_RTNL();
8156 
8157 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8158 		/* Some devices call without registering
8159 		 * for initialization unwind. Remove those
8160 		 * devices and proceed with the remaining.
8161 		 */
8162 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8163 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8164 				 dev->name, dev);
8165 
8166 			WARN_ON(1);
8167 			list_del(&dev->unreg_list);
8168 			continue;
8169 		}
8170 		dev->dismantle = true;
8171 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8172 	}
8173 
8174 	/* If device is running, close it first. */
8175 	list_for_each_entry(dev, head, unreg_list)
8176 		list_add_tail(&dev->close_list, &close_head);
8177 	dev_close_many(&close_head, true);
8178 
8179 	list_for_each_entry(dev, head, unreg_list) {
8180 		/* And unlink it from device chain. */
8181 		unlist_netdevice(dev);
8182 
8183 		dev->reg_state = NETREG_UNREGISTERING;
8184 	}
8185 	flush_all_backlogs();
8186 
8187 	synchronize_net();
8188 
8189 	list_for_each_entry(dev, head, unreg_list) {
8190 		struct sk_buff *skb = NULL;
8191 
8192 		/* Shutdown queueing discipline. */
8193 		dev_shutdown(dev);
8194 
8195 		dev_xdp_uninstall(dev);
8196 
8197 		/* Notify protocols, that we are about to destroy
8198 		 * this device. They should clean all the things.
8199 		 */
8200 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8201 
8202 		if (!dev->rtnl_link_ops ||
8203 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8204 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8205 						     GFP_KERNEL, NULL, 0);
8206 
8207 		/*
8208 		 *	Flush the unicast and multicast chains
8209 		 */
8210 		dev_uc_flush(dev);
8211 		dev_mc_flush(dev);
8212 
8213 		if (dev->netdev_ops->ndo_uninit)
8214 			dev->netdev_ops->ndo_uninit(dev);
8215 
8216 		if (skb)
8217 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8218 
8219 		/* Notifier chain MUST detach us all upper devices. */
8220 		WARN_ON(netdev_has_any_upper_dev(dev));
8221 		WARN_ON(netdev_has_any_lower_dev(dev));
8222 
8223 		/* Remove entries from kobject tree */
8224 		netdev_unregister_kobject(dev);
8225 #ifdef CONFIG_XPS
8226 		/* Remove XPS queueing entries */
8227 		netif_reset_xps_queues_gt(dev, 0);
8228 #endif
8229 	}
8230 
8231 	synchronize_net();
8232 
8233 	list_for_each_entry(dev, head, unreg_list)
8234 		dev_put(dev);
8235 }
8236 
8237 static void rollback_registered(struct net_device *dev)
8238 {
8239 	LIST_HEAD(single);
8240 
8241 	list_add(&dev->unreg_list, &single);
8242 	rollback_registered_many(&single);
8243 	list_del(&single);
8244 }
8245 
8246 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8247 	struct net_device *upper, netdev_features_t features)
8248 {
8249 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8250 	netdev_features_t feature;
8251 	int feature_bit;
8252 
8253 	for_each_netdev_feature(upper_disables, feature_bit) {
8254 		feature = __NETIF_F_BIT(feature_bit);
8255 		if (!(upper->wanted_features & feature)
8256 		    && (features & feature)) {
8257 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8258 				   &feature, upper->name);
8259 			features &= ~feature;
8260 		}
8261 	}
8262 
8263 	return features;
8264 }
8265 
8266 static void netdev_sync_lower_features(struct net_device *upper,
8267 	struct net_device *lower, netdev_features_t features)
8268 {
8269 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8270 	netdev_features_t feature;
8271 	int feature_bit;
8272 
8273 	for_each_netdev_feature(upper_disables, feature_bit) {
8274 		feature = __NETIF_F_BIT(feature_bit);
8275 		if (!(features & feature) && (lower->features & feature)) {
8276 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8277 				   &feature, lower->name);
8278 			lower->wanted_features &= ~feature;
8279 			netdev_update_features(lower);
8280 
8281 			if (unlikely(lower->features & feature))
8282 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8283 					    &feature, lower->name);
8284 		}
8285 	}
8286 }
8287 
8288 static netdev_features_t netdev_fix_features(struct net_device *dev,
8289 	netdev_features_t features)
8290 {
8291 	/* Fix illegal checksum combinations */
8292 	if ((features & NETIF_F_HW_CSUM) &&
8293 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8294 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8295 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8296 	}
8297 
8298 	/* TSO requires that SG is present as well. */
8299 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8300 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8301 		features &= ~NETIF_F_ALL_TSO;
8302 	}
8303 
8304 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8305 					!(features & NETIF_F_IP_CSUM)) {
8306 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8307 		features &= ~NETIF_F_TSO;
8308 		features &= ~NETIF_F_TSO_ECN;
8309 	}
8310 
8311 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8312 					 !(features & NETIF_F_IPV6_CSUM)) {
8313 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8314 		features &= ~NETIF_F_TSO6;
8315 	}
8316 
8317 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8318 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8319 		features &= ~NETIF_F_TSO_MANGLEID;
8320 
8321 	/* TSO ECN requires that TSO is present as well. */
8322 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8323 		features &= ~NETIF_F_TSO_ECN;
8324 
8325 	/* Software GSO depends on SG. */
8326 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8327 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8328 		features &= ~NETIF_F_GSO;
8329 	}
8330 
8331 	/* GSO partial features require GSO partial be set */
8332 	if ((features & dev->gso_partial_features) &&
8333 	    !(features & NETIF_F_GSO_PARTIAL)) {
8334 		netdev_dbg(dev,
8335 			   "Dropping partially supported GSO features since no GSO partial.\n");
8336 		features &= ~dev->gso_partial_features;
8337 	}
8338 
8339 	if (!(features & NETIF_F_RXCSUM)) {
8340 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8341 		 * successfully merged by hardware must also have the
8342 		 * checksum verified by hardware.  If the user does not
8343 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8344 		 */
8345 		if (features & NETIF_F_GRO_HW) {
8346 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8347 			features &= ~NETIF_F_GRO_HW;
8348 		}
8349 	}
8350 
8351 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8352 	if (features & NETIF_F_RXFCS) {
8353 		if (features & NETIF_F_LRO) {
8354 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8355 			features &= ~NETIF_F_LRO;
8356 		}
8357 
8358 		if (features & NETIF_F_GRO_HW) {
8359 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8360 			features &= ~NETIF_F_GRO_HW;
8361 		}
8362 	}
8363 
8364 	return features;
8365 }
8366 
8367 int __netdev_update_features(struct net_device *dev)
8368 {
8369 	struct net_device *upper, *lower;
8370 	netdev_features_t features;
8371 	struct list_head *iter;
8372 	int err = -1;
8373 
8374 	ASSERT_RTNL();
8375 
8376 	features = netdev_get_wanted_features(dev);
8377 
8378 	if (dev->netdev_ops->ndo_fix_features)
8379 		features = dev->netdev_ops->ndo_fix_features(dev, features);
8380 
8381 	/* driver might be less strict about feature dependencies */
8382 	features = netdev_fix_features(dev, features);
8383 
8384 	/* some features can't be enabled if they're off an an upper device */
8385 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
8386 		features = netdev_sync_upper_features(dev, upper, features);
8387 
8388 	if (dev->features == features)
8389 		goto sync_lower;
8390 
8391 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8392 		&dev->features, &features);
8393 
8394 	if (dev->netdev_ops->ndo_set_features)
8395 		err = dev->netdev_ops->ndo_set_features(dev, features);
8396 	else
8397 		err = 0;
8398 
8399 	if (unlikely(err < 0)) {
8400 		netdev_err(dev,
8401 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
8402 			err, &features, &dev->features);
8403 		/* return non-0 since some features might have changed and
8404 		 * it's better to fire a spurious notification than miss it
8405 		 */
8406 		return -1;
8407 	}
8408 
8409 sync_lower:
8410 	/* some features must be disabled on lower devices when disabled
8411 	 * on an upper device (think: bonding master or bridge)
8412 	 */
8413 	netdev_for_each_lower_dev(dev, lower, iter)
8414 		netdev_sync_lower_features(dev, lower, features);
8415 
8416 	if (!err) {
8417 		netdev_features_t diff = features ^ dev->features;
8418 
8419 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8420 			/* udp_tunnel_{get,drop}_rx_info both need
8421 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8422 			 * device, or they won't do anything.
8423 			 * Thus we need to update dev->features
8424 			 * *before* calling udp_tunnel_get_rx_info,
8425 			 * but *after* calling udp_tunnel_drop_rx_info.
8426 			 */
8427 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8428 				dev->features = features;
8429 				udp_tunnel_get_rx_info(dev);
8430 			} else {
8431 				udp_tunnel_drop_rx_info(dev);
8432 			}
8433 		}
8434 
8435 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8436 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8437 				dev->features = features;
8438 				err |= vlan_get_rx_ctag_filter_info(dev);
8439 			} else {
8440 				vlan_drop_rx_ctag_filter_info(dev);
8441 			}
8442 		}
8443 
8444 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8445 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8446 				dev->features = features;
8447 				err |= vlan_get_rx_stag_filter_info(dev);
8448 			} else {
8449 				vlan_drop_rx_stag_filter_info(dev);
8450 			}
8451 		}
8452 
8453 		dev->features = features;
8454 	}
8455 
8456 	return err < 0 ? 0 : 1;
8457 }
8458 
8459 /**
8460  *	netdev_update_features - recalculate device features
8461  *	@dev: the device to check
8462  *
8463  *	Recalculate dev->features set and send notifications if it
8464  *	has changed. Should be called after driver or hardware dependent
8465  *	conditions might have changed that influence the features.
8466  */
8467 void netdev_update_features(struct net_device *dev)
8468 {
8469 	if (__netdev_update_features(dev))
8470 		netdev_features_change(dev);
8471 }
8472 EXPORT_SYMBOL(netdev_update_features);
8473 
8474 /**
8475  *	netdev_change_features - recalculate device features
8476  *	@dev: the device to check
8477  *
8478  *	Recalculate dev->features set and send notifications even
8479  *	if they have not changed. Should be called instead of
8480  *	netdev_update_features() if also dev->vlan_features might
8481  *	have changed to allow the changes to be propagated to stacked
8482  *	VLAN devices.
8483  */
8484 void netdev_change_features(struct net_device *dev)
8485 {
8486 	__netdev_update_features(dev);
8487 	netdev_features_change(dev);
8488 }
8489 EXPORT_SYMBOL(netdev_change_features);
8490 
8491 /**
8492  *	netif_stacked_transfer_operstate -	transfer operstate
8493  *	@rootdev: the root or lower level device to transfer state from
8494  *	@dev: the device to transfer operstate to
8495  *
8496  *	Transfer operational state from root to device. This is normally
8497  *	called when a stacking relationship exists between the root
8498  *	device and the device(a leaf device).
8499  */
8500 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8501 					struct net_device *dev)
8502 {
8503 	if (rootdev->operstate == IF_OPER_DORMANT)
8504 		netif_dormant_on(dev);
8505 	else
8506 		netif_dormant_off(dev);
8507 
8508 	if (netif_carrier_ok(rootdev))
8509 		netif_carrier_on(dev);
8510 	else
8511 		netif_carrier_off(dev);
8512 }
8513 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8514 
8515 static int netif_alloc_rx_queues(struct net_device *dev)
8516 {
8517 	unsigned int i, count = dev->num_rx_queues;
8518 	struct netdev_rx_queue *rx;
8519 	size_t sz = count * sizeof(*rx);
8520 	int err = 0;
8521 
8522 	BUG_ON(count < 1);
8523 
8524 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8525 	if (!rx)
8526 		return -ENOMEM;
8527 
8528 	dev->_rx = rx;
8529 
8530 	for (i = 0; i < count; i++) {
8531 		rx[i].dev = dev;
8532 
8533 		/* XDP RX-queue setup */
8534 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8535 		if (err < 0)
8536 			goto err_rxq_info;
8537 	}
8538 	return 0;
8539 
8540 err_rxq_info:
8541 	/* Rollback successful reg's and free other resources */
8542 	while (i--)
8543 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8544 	kvfree(dev->_rx);
8545 	dev->_rx = NULL;
8546 	return err;
8547 }
8548 
8549 static void netif_free_rx_queues(struct net_device *dev)
8550 {
8551 	unsigned int i, count = dev->num_rx_queues;
8552 
8553 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8554 	if (!dev->_rx)
8555 		return;
8556 
8557 	for (i = 0; i < count; i++)
8558 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8559 
8560 	kvfree(dev->_rx);
8561 }
8562 
8563 static void netdev_init_one_queue(struct net_device *dev,
8564 				  struct netdev_queue *queue, void *_unused)
8565 {
8566 	/* Initialize queue lock */
8567 	spin_lock_init(&queue->_xmit_lock);
8568 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8569 	queue->xmit_lock_owner = -1;
8570 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8571 	queue->dev = dev;
8572 #ifdef CONFIG_BQL
8573 	dql_init(&queue->dql, HZ);
8574 #endif
8575 }
8576 
8577 static void netif_free_tx_queues(struct net_device *dev)
8578 {
8579 	kvfree(dev->_tx);
8580 }
8581 
8582 static int netif_alloc_netdev_queues(struct net_device *dev)
8583 {
8584 	unsigned int count = dev->num_tx_queues;
8585 	struct netdev_queue *tx;
8586 	size_t sz = count * sizeof(*tx);
8587 
8588 	if (count < 1 || count > 0xffff)
8589 		return -EINVAL;
8590 
8591 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8592 	if (!tx)
8593 		return -ENOMEM;
8594 
8595 	dev->_tx = tx;
8596 
8597 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8598 	spin_lock_init(&dev->tx_global_lock);
8599 
8600 	return 0;
8601 }
8602 
8603 void netif_tx_stop_all_queues(struct net_device *dev)
8604 {
8605 	unsigned int i;
8606 
8607 	for (i = 0; i < dev->num_tx_queues; i++) {
8608 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8609 
8610 		netif_tx_stop_queue(txq);
8611 	}
8612 }
8613 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8614 
8615 /**
8616  *	register_netdevice	- register a network device
8617  *	@dev: device to register
8618  *
8619  *	Take a completed network device structure and add it to the kernel
8620  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8621  *	chain. 0 is returned on success. A negative errno code is returned
8622  *	on a failure to set up the device, or if the name is a duplicate.
8623  *
8624  *	Callers must hold the rtnl semaphore. You may want
8625  *	register_netdev() instead of this.
8626  *
8627  *	BUGS:
8628  *	The locking appears insufficient to guarantee two parallel registers
8629  *	will not get the same name.
8630  */
8631 
8632 int register_netdevice(struct net_device *dev)
8633 {
8634 	int ret;
8635 	struct net *net = dev_net(dev);
8636 
8637 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8638 		     NETDEV_FEATURE_COUNT);
8639 	BUG_ON(dev_boot_phase);
8640 	ASSERT_RTNL();
8641 
8642 	might_sleep();
8643 
8644 	/* When net_device's are persistent, this will be fatal. */
8645 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8646 	BUG_ON(!net);
8647 
8648 	spin_lock_init(&dev->addr_list_lock);
8649 	netdev_set_addr_lockdep_class(dev);
8650 
8651 	ret = dev_get_valid_name(net, dev, dev->name);
8652 	if (ret < 0)
8653 		goto out;
8654 
8655 	/* Init, if this function is available */
8656 	if (dev->netdev_ops->ndo_init) {
8657 		ret = dev->netdev_ops->ndo_init(dev);
8658 		if (ret) {
8659 			if (ret > 0)
8660 				ret = -EIO;
8661 			goto out;
8662 		}
8663 	}
8664 
8665 	if (((dev->hw_features | dev->features) &
8666 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
8667 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8668 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8669 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8670 		ret = -EINVAL;
8671 		goto err_uninit;
8672 	}
8673 
8674 	ret = -EBUSY;
8675 	if (!dev->ifindex)
8676 		dev->ifindex = dev_new_index(net);
8677 	else if (__dev_get_by_index(net, dev->ifindex))
8678 		goto err_uninit;
8679 
8680 	/* Transfer changeable features to wanted_features and enable
8681 	 * software offloads (GSO and GRO).
8682 	 */
8683 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
8684 	dev->features |= NETIF_F_SOFT_FEATURES;
8685 
8686 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
8687 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8688 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8689 	}
8690 
8691 	dev->wanted_features = dev->features & dev->hw_features;
8692 
8693 	if (!(dev->flags & IFF_LOOPBACK))
8694 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
8695 
8696 	/* If IPv4 TCP segmentation offload is supported we should also
8697 	 * allow the device to enable segmenting the frame with the option
8698 	 * of ignoring a static IP ID value.  This doesn't enable the
8699 	 * feature itself but allows the user to enable it later.
8700 	 */
8701 	if (dev->hw_features & NETIF_F_TSO)
8702 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
8703 	if (dev->vlan_features & NETIF_F_TSO)
8704 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8705 	if (dev->mpls_features & NETIF_F_TSO)
8706 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8707 	if (dev->hw_enc_features & NETIF_F_TSO)
8708 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8709 
8710 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8711 	 */
8712 	dev->vlan_features |= NETIF_F_HIGHDMA;
8713 
8714 	/* Make NETIF_F_SG inheritable to tunnel devices.
8715 	 */
8716 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8717 
8718 	/* Make NETIF_F_SG inheritable to MPLS.
8719 	 */
8720 	dev->mpls_features |= NETIF_F_SG;
8721 
8722 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8723 	ret = notifier_to_errno(ret);
8724 	if (ret)
8725 		goto err_uninit;
8726 
8727 	ret = netdev_register_kobject(dev);
8728 	if (ret)
8729 		goto err_uninit;
8730 	dev->reg_state = NETREG_REGISTERED;
8731 
8732 	__netdev_update_features(dev);
8733 
8734 	/*
8735 	 *	Default initial state at registry is that the
8736 	 *	device is present.
8737 	 */
8738 
8739 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8740 
8741 	linkwatch_init_dev(dev);
8742 
8743 	dev_init_scheduler(dev);
8744 	dev_hold(dev);
8745 	list_netdevice(dev);
8746 	add_device_randomness(dev->dev_addr, dev->addr_len);
8747 
8748 	/* If the device has permanent device address, driver should
8749 	 * set dev_addr and also addr_assign_type should be set to
8750 	 * NET_ADDR_PERM (default value).
8751 	 */
8752 	if (dev->addr_assign_type == NET_ADDR_PERM)
8753 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8754 
8755 	/* Notify protocols, that a new device appeared. */
8756 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8757 	ret = notifier_to_errno(ret);
8758 	if (ret) {
8759 		rollback_registered(dev);
8760 		dev->reg_state = NETREG_UNREGISTERED;
8761 	}
8762 	/*
8763 	 *	Prevent userspace races by waiting until the network
8764 	 *	device is fully setup before sending notifications.
8765 	 */
8766 	if (!dev->rtnl_link_ops ||
8767 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8768 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8769 
8770 out:
8771 	return ret;
8772 
8773 err_uninit:
8774 	if (dev->netdev_ops->ndo_uninit)
8775 		dev->netdev_ops->ndo_uninit(dev);
8776 	if (dev->priv_destructor)
8777 		dev->priv_destructor(dev);
8778 	goto out;
8779 }
8780 EXPORT_SYMBOL(register_netdevice);
8781 
8782 /**
8783  *	init_dummy_netdev	- init a dummy network device for NAPI
8784  *	@dev: device to init
8785  *
8786  *	This takes a network device structure and initialize the minimum
8787  *	amount of fields so it can be used to schedule NAPI polls without
8788  *	registering a full blown interface. This is to be used by drivers
8789  *	that need to tie several hardware interfaces to a single NAPI
8790  *	poll scheduler due to HW limitations.
8791  */
8792 int init_dummy_netdev(struct net_device *dev)
8793 {
8794 	/* Clear everything. Note we don't initialize spinlocks
8795 	 * are they aren't supposed to be taken by any of the
8796 	 * NAPI code and this dummy netdev is supposed to be
8797 	 * only ever used for NAPI polls
8798 	 */
8799 	memset(dev, 0, sizeof(struct net_device));
8800 
8801 	/* make sure we BUG if trying to hit standard
8802 	 * register/unregister code path
8803 	 */
8804 	dev->reg_state = NETREG_DUMMY;
8805 
8806 	/* NAPI wants this */
8807 	INIT_LIST_HEAD(&dev->napi_list);
8808 
8809 	/* a dummy interface is started by default */
8810 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8811 	set_bit(__LINK_STATE_START, &dev->state);
8812 
8813 	/* napi_busy_loop stats accounting wants this */
8814 	dev_net_set(dev, &init_net);
8815 
8816 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8817 	 * because users of this 'device' dont need to change
8818 	 * its refcount.
8819 	 */
8820 
8821 	return 0;
8822 }
8823 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8824 
8825 
8826 /**
8827  *	register_netdev	- register a network device
8828  *	@dev: device to register
8829  *
8830  *	Take a completed network device structure and add it to the kernel
8831  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8832  *	chain. 0 is returned on success. A negative errno code is returned
8833  *	on a failure to set up the device, or if the name is a duplicate.
8834  *
8835  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8836  *	and expands the device name if you passed a format string to
8837  *	alloc_netdev.
8838  */
8839 int register_netdev(struct net_device *dev)
8840 {
8841 	int err;
8842 
8843 	if (rtnl_lock_killable())
8844 		return -EINTR;
8845 	err = register_netdevice(dev);
8846 	rtnl_unlock();
8847 	return err;
8848 }
8849 EXPORT_SYMBOL(register_netdev);
8850 
8851 int netdev_refcnt_read(const struct net_device *dev)
8852 {
8853 	int i, refcnt = 0;
8854 
8855 	for_each_possible_cpu(i)
8856 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8857 	return refcnt;
8858 }
8859 EXPORT_SYMBOL(netdev_refcnt_read);
8860 
8861 /**
8862  * netdev_wait_allrefs - wait until all references are gone.
8863  * @dev: target net_device
8864  *
8865  * This is called when unregistering network devices.
8866  *
8867  * Any protocol or device that holds a reference should register
8868  * for netdevice notification, and cleanup and put back the
8869  * reference if they receive an UNREGISTER event.
8870  * We can get stuck here if buggy protocols don't correctly
8871  * call dev_put.
8872  */
8873 static void netdev_wait_allrefs(struct net_device *dev)
8874 {
8875 	unsigned long rebroadcast_time, warning_time;
8876 	int refcnt;
8877 
8878 	linkwatch_forget_dev(dev);
8879 
8880 	rebroadcast_time = warning_time = jiffies;
8881 	refcnt = netdev_refcnt_read(dev);
8882 
8883 	while (refcnt != 0) {
8884 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8885 			rtnl_lock();
8886 
8887 			/* Rebroadcast unregister notification */
8888 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8889 
8890 			__rtnl_unlock();
8891 			rcu_barrier();
8892 			rtnl_lock();
8893 
8894 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8895 				     &dev->state)) {
8896 				/* We must not have linkwatch events
8897 				 * pending on unregister. If this
8898 				 * happens, we simply run the queue
8899 				 * unscheduled, resulting in a noop
8900 				 * for this device.
8901 				 */
8902 				linkwatch_run_queue();
8903 			}
8904 
8905 			__rtnl_unlock();
8906 
8907 			rebroadcast_time = jiffies;
8908 		}
8909 
8910 		msleep(250);
8911 
8912 		refcnt = netdev_refcnt_read(dev);
8913 
8914 		if (time_after(jiffies, warning_time + 10 * HZ)) {
8915 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8916 				 dev->name, refcnt);
8917 			warning_time = jiffies;
8918 		}
8919 	}
8920 }
8921 
8922 /* The sequence is:
8923  *
8924  *	rtnl_lock();
8925  *	...
8926  *	register_netdevice(x1);
8927  *	register_netdevice(x2);
8928  *	...
8929  *	unregister_netdevice(y1);
8930  *	unregister_netdevice(y2);
8931  *      ...
8932  *	rtnl_unlock();
8933  *	free_netdev(y1);
8934  *	free_netdev(y2);
8935  *
8936  * We are invoked by rtnl_unlock().
8937  * This allows us to deal with problems:
8938  * 1) We can delete sysfs objects which invoke hotplug
8939  *    without deadlocking with linkwatch via keventd.
8940  * 2) Since we run with the RTNL semaphore not held, we can sleep
8941  *    safely in order to wait for the netdev refcnt to drop to zero.
8942  *
8943  * We must not return until all unregister events added during
8944  * the interval the lock was held have been completed.
8945  */
8946 void netdev_run_todo(void)
8947 {
8948 	struct list_head list;
8949 
8950 	/* Snapshot list, allow later requests */
8951 	list_replace_init(&net_todo_list, &list);
8952 
8953 	__rtnl_unlock();
8954 
8955 
8956 	/* Wait for rcu callbacks to finish before next phase */
8957 	if (!list_empty(&list))
8958 		rcu_barrier();
8959 
8960 	while (!list_empty(&list)) {
8961 		struct net_device *dev
8962 			= list_first_entry(&list, struct net_device, todo_list);
8963 		list_del(&dev->todo_list);
8964 
8965 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8966 			pr_err("network todo '%s' but state %d\n",
8967 			       dev->name, dev->reg_state);
8968 			dump_stack();
8969 			continue;
8970 		}
8971 
8972 		dev->reg_state = NETREG_UNREGISTERED;
8973 
8974 		netdev_wait_allrefs(dev);
8975 
8976 		/* paranoia */
8977 		BUG_ON(netdev_refcnt_read(dev));
8978 		BUG_ON(!list_empty(&dev->ptype_all));
8979 		BUG_ON(!list_empty(&dev->ptype_specific));
8980 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8981 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8982 #if IS_ENABLED(CONFIG_DECNET)
8983 		WARN_ON(dev->dn_ptr);
8984 #endif
8985 		if (dev->priv_destructor)
8986 			dev->priv_destructor(dev);
8987 		if (dev->needs_free_netdev)
8988 			free_netdev(dev);
8989 
8990 		/* Report a network device has been unregistered */
8991 		rtnl_lock();
8992 		dev_net(dev)->dev_unreg_count--;
8993 		__rtnl_unlock();
8994 		wake_up(&netdev_unregistering_wq);
8995 
8996 		/* Free network device */
8997 		kobject_put(&dev->dev.kobj);
8998 	}
8999 }
9000 
9001 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9002  * all the same fields in the same order as net_device_stats, with only
9003  * the type differing, but rtnl_link_stats64 may have additional fields
9004  * at the end for newer counters.
9005  */
9006 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9007 			     const struct net_device_stats *netdev_stats)
9008 {
9009 #if BITS_PER_LONG == 64
9010 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9011 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9012 	/* zero out counters that only exist in rtnl_link_stats64 */
9013 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9014 	       sizeof(*stats64) - sizeof(*netdev_stats));
9015 #else
9016 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9017 	const unsigned long *src = (const unsigned long *)netdev_stats;
9018 	u64 *dst = (u64 *)stats64;
9019 
9020 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9021 	for (i = 0; i < n; i++)
9022 		dst[i] = src[i];
9023 	/* zero out counters that only exist in rtnl_link_stats64 */
9024 	memset((char *)stats64 + n * sizeof(u64), 0,
9025 	       sizeof(*stats64) - n * sizeof(u64));
9026 #endif
9027 }
9028 EXPORT_SYMBOL(netdev_stats_to_stats64);
9029 
9030 /**
9031  *	dev_get_stats	- get network device statistics
9032  *	@dev: device to get statistics from
9033  *	@storage: place to store stats
9034  *
9035  *	Get network statistics from device. Return @storage.
9036  *	The device driver may provide its own method by setting
9037  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9038  *	otherwise the internal statistics structure is used.
9039  */
9040 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9041 					struct rtnl_link_stats64 *storage)
9042 {
9043 	const struct net_device_ops *ops = dev->netdev_ops;
9044 
9045 	if (ops->ndo_get_stats64) {
9046 		memset(storage, 0, sizeof(*storage));
9047 		ops->ndo_get_stats64(dev, storage);
9048 	} else if (ops->ndo_get_stats) {
9049 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9050 	} else {
9051 		netdev_stats_to_stats64(storage, &dev->stats);
9052 	}
9053 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9054 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9055 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9056 	return storage;
9057 }
9058 EXPORT_SYMBOL(dev_get_stats);
9059 
9060 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9061 {
9062 	struct netdev_queue *queue = dev_ingress_queue(dev);
9063 
9064 #ifdef CONFIG_NET_CLS_ACT
9065 	if (queue)
9066 		return queue;
9067 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9068 	if (!queue)
9069 		return NULL;
9070 	netdev_init_one_queue(dev, queue, NULL);
9071 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9072 	queue->qdisc_sleeping = &noop_qdisc;
9073 	rcu_assign_pointer(dev->ingress_queue, queue);
9074 #endif
9075 	return queue;
9076 }
9077 
9078 static const struct ethtool_ops default_ethtool_ops;
9079 
9080 void netdev_set_default_ethtool_ops(struct net_device *dev,
9081 				    const struct ethtool_ops *ops)
9082 {
9083 	if (dev->ethtool_ops == &default_ethtool_ops)
9084 		dev->ethtool_ops = ops;
9085 }
9086 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9087 
9088 void netdev_freemem(struct net_device *dev)
9089 {
9090 	char *addr = (char *)dev - dev->padded;
9091 
9092 	kvfree(addr);
9093 }
9094 
9095 /**
9096  * alloc_netdev_mqs - allocate network device
9097  * @sizeof_priv: size of private data to allocate space for
9098  * @name: device name format string
9099  * @name_assign_type: origin of device name
9100  * @setup: callback to initialize device
9101  * @txqs: the number of TX subqueues to allocate
9102  * @rxqs: the number of RX subqueues to allocate
9103  *
9104  * Allocates a struct net_device with private data area for driver use
9105  * and performs basic initialization.  Also allocates subqueue structs
9106  * for each queue on the device.
9107  */
9108 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9109 		unsigned char name_assign_type,
9110 		void (*setup)(struct net_device *),
9111 		unsigned int txqs, unsigned int rxqs)
9112 {
9113 	struct net_device *dev;
9114 	unsigned int alloc_size;
9115 	struct net_device *p;
9116 
9117 	BUG_ON(strlen(name) >= sizeof(dev->name));
9118 
9119 	if (txqs < 1) {
9120 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9121 		return NULL;
9122 	}
9123 
9124 	if (rxqs < 1) {
9125 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9126 		return NULL;
9127 	}
9128 
9129 	alloc_size = sizeof(struct net_device);
9130 	if (sizeof_priv) {
9131 		/* ensure 32-byte alignment of private area */
9132 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9133 		alloc_size += sizeof_priv;
9134 	}
9135 	/* ensure 32-byte alignment of whole construct */
9136 	alloc_size += NETDEV_ALIGN - 1;
9137 
9138 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9139 	if (!p)
9140 		return NULL;
9141 
9142 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
9143 	dev->padded = (char *)dev - (char *)p;
9144 
9145 	dev->pcpu_refcnt = alloc_percpu(int);
9146 	if (!dev->pcpu_refcnt)
9147 		goto free_dev;
9148 
9149 	if (dev_addr_init(dev))
9150 		goto free_pcpu;
9151 
9152 	dev_mc_init(dev);
9153 	dev_uc_init(dev);
9154 
9155 	dev_net_set(dev, &init_net);
9156 
9157 	dev->gso_max_size = GSO_MAX_SIZE;
9158 	dev->gso_max_segs = GSO_MAX_SEGS;
9159 
9160 	INIT_LIST_HEAD(&dev->napi_list);
9161 	INIT_LIST_HEAD(&dev->unreg_list);
9162 	INIT_LIST_HEAD(&dev->close_list);
9163 	INIT_LIST_HEAD(&dev->link_watch_list);
9164 	INIT_LIST_HEAD(&dev->adj_list.upper);
9165 	INIT_LIST_HEAD(&dev->adj_list.lower);
9166 	INIT_LIST_HEAD(&dev->ptype_all);
9167 	INIT_LIST_HEAD(&dev->ptype_specific);
9168 #ifdef CONFIG_NET_SCHED
9169 	hash_init(dev->qdisc_hash);
9170 #endif
9171 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9172 	setup(dev);
9173 
9174 	if (!dev->tx_queue_len) {
9175 		dev->priv_flags |= IFF_NO_QUEUE;
9176 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9177 	}
9178 
9179 	dev->num_tx_queues = txqs;
9180 	dev->real_num_tx_queues = txqs;
9181 	if (netif_alloc_netdev_queues(dev))
9182 		goto free_all;
9183 
9184 	dev->num_rx_queues = rxqs;
9185 	dev->real_num_rx_queues = rxqs;
9186 	if (netif_alloc_rx_queues(dev))
9187 		goto free_all;
9188 
9189 	strcpy(dev->name, name);
9190 	dev->name_assign_type = name_assign_type;
9191 	dev->group = INIT_NETDEV_GROUP;
9192 	if (!dev->ethtool_ops)
9193 		dev->ethtool_ops = &default_ethtool_ops;
9194 
9195 	nf_hook_ingress_init(dev);
9196 
9197 	return dev;
9198 
9199 free_all:
9200 	free_netdev(dev);
9201 	return NULL;
9202 
9203 free_pcpu:
9204 	free_percpu(dev->pcpu_refcnt);
9205 free_dev:
9206 	netdev_freemem(dev);
9207 	return NULL;
9208 }
9209 EXPORT_SYMBOL(alloc_netdev_mqs);
9210 
9211 /**
9212  * free_netdev - free network device
9213  * @dev: device
9214  *
9215  * This function does the last stage of destroying an allocated device
9216  * interface. The reference to the device object is released. If this
9217  * is the last reference then it will be freed.Must be called in process
9218  * context.
9219  */
9220 void free_netdev(struct net_device *dev)
9221 {
9222 	struct napi_struct *p, *n;
9223 
9224 	might_sleep();
9225 	netif_free_tx_queues(dev);
9226 	netif_free_rx_queues(dev);
9227 
9228 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9229 
9230 	/* Flush device addresses */
9231 	dev_addr_flush(dev);
9232 
9233 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9234 		netif_napi_del(p);
9235 
9236 	free_percpu(dev->pcpu_refcnt);
9237 	dev->pcpu_refcnt = NULL;
9238 
9239 	/*  Compatibility with error handling in drivers */
9240 	if (dev->reg_state == NETREG_UNINITIALIZED) {
9241 		netdev_freemem(dev);
9242 		return;
9243 	}
9244 
9245 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9246 	dev->reg_state = NETREG_RELEASED;
9247 
9248 	/* will free via device release */
9249 	put_device(&dev->dev);
9250 }
9251 EXPORT_SYMBOL(free_netdev);
9252 
9253 /**
9254  *	synchronize_net -  Synchronize with packet receive processing
9255  *
9256  *	Wait for packets currently being received to be done.
9257  *	Does not block later packets from starting.
9258  */
9259 void synchronize_net(void)
9260 {
9261 	might_sleep();
9262 	if (rtnl_is_locked())
9263 		synchronize_rcu_expedited();
9264 	else
9265 		synchronize_rcu();
9266 }
9267 EXPORT_SYMBOL(synchronize_net);
9268 
9269 /**
9270  *	unregister_netdevice_queue - remove device from the kernel
9271  *	@dev: device
9272  *	@head: list
9273  *
9274  *	This function shuts down a device interface and removes it
9275  *	from the kernel tables.
9276  *	If head not NULL, device is queued to be unregistered later.
9277  *
9278  *	Callers must hold the rtnl semaphore.  You may want
9279  *	unregister_netdev() instead of this.
9280  */
9281 
9282 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9283 {
9284 	ASSERT_RTNL();
9285 
9286 	if (head) {
9287 		list_move_tail(&dev->unreg_list, head);
9288 	} else {
9289 		rollback_registered(dev);
9290 		/* Finish processing unregister after unlock */
9291 		net_set_todo(dev);
9292 	}
9293 }
9294 EXPORT_SYMBOL(unregister_netdevice_queue);
9295 
9296 /**
9297  *	unregister_netdevice_many - unregister many devices
9298  *	@head: list of devices
9299  *
9300  *  Note: As most callers use a stack allocated list_head,
9301  *  we force a list_del() to make sure stack wont be corrupted later.
9302  */
9303 void unregister_netdevice_many(struct list_head *head)
9304 {
9305 	struct net_device *dev;
9306 
9307 	if (!list_empty(head)) {
9308 		rollback_registered_many(head);
9309 		list_for_each_entry(dev, head, unreg_list)
9310 			net_set_todo(dev);
9311 		list_del(head);
9312 	}
9313 }
9314 EXPORT_SYMBOL(unregister_netdevice_many);
9315 
9316 /**
9317  *	unregister_netdev - remove device from the kernel
9318  *	@dev: device
9319  *
9320  *	This function shuts down a device interface and removes it
9321  *	from the kernel tables.
9322  *
9323  *	This is just a wrapper for unregister_netdevice that takes
9324  *	the rtnl semaphore.  In general you want to use this and not
9325  *	unregister_netdevice.
9326  */
9327 void unregister_netdev(struct net_device *dev)
9328 {
9329 	rtnl_lock();
9330 	unregister_netdevice(dev);
9331 	rtnl_unlock();
9332 }
9333 EXPORT_SYMBOL(unregister_netdev);
9334 
9335 /**
9336  *	dev_change_net_namespace - move device to different nethost namespace
9337  *	@dev: device
9338  *	@net: network namespace
9339  *	@pat: If not NULL name pattern to try if the current device name
9340  *	      is already taken in the destination network namespace.
9341  *
9342  *	This function shuts down a device interface and moves it
9343  *	to a new network namespace. On success 0 is returned, on
9344  *	a failure a netagive errno code is returned.
9345  *
9346  *	Callers must hold the rtnl semaphore.
9347  */
9348 
9349 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9350 {
9351 	int err, new_nsid, new_ifindex;
9352 
9353 	ASSERT_RTNL();
9354 
9355 	/* Don't allow namespace local devices to be moved. */
9356 	err = -EINVAL;
9357 	if (dev->features & NETIF_F_NETNS_LOCAL)
9358 		goto out;
9359 
9360 	/* Ensure the device has been registrered */
9361 	if (dev->reg_state != NETREG_REGISTERED)
9362 		goto out;
9363 
9364 	/* Get out if there is nothing todo */
9365 	err = 0;
9366 	if (net_eq(dev_net(dev), net))
9367 		goto out;
9368 
9369 	/* Pick the destination device name, and ensure
9370 	 * we can use it in the destination network namespace.
9371 	 */
9372 	err = -EEXIST;
9373 	if (__dev_get_by_name(net, dev->name)) {
9374 		/* We get here if we can't use the current device name */
9375 		if (!pat)
9376 			goto out;
9377 		err = dev_get_valid_name(net, dev, pat);
9378 		if (err < 0)
9379 			goto out;
9380 	}
9381 
9382 	/*
9383 	 * And now a mini version of register_netdevice unregister_netdevice.
9384 	 */
9385 
9386 	/* If device is running close it first. */
9387 	dev_close(dev);
9388 
9389 	/* And unlink it from device chain */
9390 	unlist_netdevice(dev);
9391 
9392 	synchronize_net();
9393 
9394 	/* Shutdown queueing discipline. */
9395 	dev_shutdown(dev);
9396 
9397 	/* Notify protocols, that we are about to destroy
9398 	 * this device. They should clean all the things.
9399 	 *
9400 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
9401 	 * This is wanted because this way 8021q and macvlan know
9402 	 * the device is just moving and can keep their slaves up.
9403 	 */
9404 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9405 	rcu_barrier();
9406 
9407 	new_nsid = peernet2id_alloc(dev_net(dev), net);
9408 	/* If there is an ifindex conflict assign a new one */
9409 	if (__dev_get_by_index(net, dev->ifindex))
9410 		new_ifindex = dev_new_index(net);
9411 	else
9412 		new_ifindex = dev->ifindex;
9413 
9414 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9415 			    new_ifindex);
9416 
9417 	/*
9418 	 *	Flush the unicast and multicast chains
9419 	 */
9420 	dev_uc_flush(dev);
9421 	dev_mc_flush(dev);
9422 
9423 	/* Send a netdev-removed uevent to the old namespace */
9424 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9425 	netdev_adjacent_del_links(dev);
9426 
9427 	/* Actually switch the network namespace */
9428 	dev_net_set(dev, net);
9429 	dev->ifindex = new_ifindex;
9430 
9431 	/* Send a netdev-add uevent to the new namespace */
9432 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9433 	netdev_adjacent_add_links(dev);
9434 
9435 	/* Fixup kobjects */
9436 	err = device_rename(&dev->dev, dev->name);
9437 	WARN_ON(err);
9438 
9439 	/* Add the device back in the hashes */
9440 	list_netdevice(dev);
9441 
9442 	/* Notify protocols, that a new device appeared. */
9443 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
9444 
9445 	/*
9446 	 *	Prevent userspace races by waiting until the network
9447 	 *	device is fully setup before sending notifications.
9448 	 */
9449 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9450 
9451 	synchronize_net();
9452 	err = 0;
9453 out:
9454 	return err;
9455 }
9456 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9457 
9458 static int dev_cpu_dead(unsigned int oldcpu)
9459 {
9460 	struct sk_buff **list_skb;
9461 	struct sk_buff *skb;
9462 	unsigned int cpu;
9463 	struct softnet_data *sd, *oldsd, *remsd = NULL;
9464 
9465 	local_irq_disable();
9466 	cpu = smp_processor_id();
9467 	sd = &per_cpu(softnet_data, cpu);
9468 	oldsd = &per_cpu(softnet_data, oldcpu);
9469 
9470 	/* Find end of our completion_queue. */
9471 	list_skb = &sd->completion_queue;
9472 	while (*list_skb)
9473 		list_skb = &(*list_skb)->next;
9474 	/* Append completion queue from offline CPU. */
9475 	*list_skb = oldsd->completion_queue;
9476 	oldsd->completion_queue = NULL;
9477 
9478 	/* Append output queue from offline CPU. */
9479 	if (oldsd->output_queue) {
9480 		*sd->output_queue_tailp = oldsd->output_queue;
9481 		sd->output_queue_tailp = oldsd->output_queue_tailp;
9482 		oldsd->output_queue = NULL;
9483 		oldsd->output_queue_tailp = &oldsd->output_queue;
9484 	}
9485 	/* Append NAPI poll list from offline CPU, with one exception :
9486 	 * process_backlog() must be called by cpu owning percpu backlog.
9487 	 * We properly handle process_queue & input_pkt_queue later.
9488 	 */
9489 	while (!list_empty(&oldsd->poll_list)) {
9490 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9491 							    struct napi_struct,
9492 							    poll_list);
9493 
9494 		list_del_init(&napi->poll_list);
9495 		if (napi->poll == process_backlog)
9496 			napi->state = 0;
9497 		else
9498 			____napi_schedule(sd, napi);
9499 	}
9500 
9501 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
9502 	local_irq_enable();
9503 
9504 #ifdef CONFIG_RPS
9505 	remsd = oldsd->rps_ipi_list;
9506 	oldsd->rps_ipi_list = NULL;
9507 #endif
9508 	/* send out pending IPI's on offline CPU */
9509 	net_rps_send_ipi(remsd);
9510 
9511 	/* Process offline CPU's input_pkt_queue */
9512 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9513 		netif_rx_ni(skb);
9514 		input_queue_head_incr(oldsd);
9515 	}
9516 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9517 		netif_rx_ni(skb);
9518 		input_queue_head_incr(oldsd);
9519 	}
9520 
9521 	return 0;
9522 }
9523 
9524 /**
9525  *	netdev_increment_features - increment feature set by one
9526  *	@all: current feature set
9527  *	@one: new feature set
9528  *	@mask: mask feature set
9529  *
9530  *	Computes a new feature set after adding a device with feature set
9531  *	@one to the master device with current feature set @all.  Will not
9532  *	enable anything that is off in @mask. Returns the new feature set.
9533  */
9534 netdev_features_t netdev_increment_features(netdev_features_t all,
9535 	netdev_features_t one, netdev_features_t mask)
9536 {
9537 	if (mask & NETIF_F_HW_CSUM)
9538 		mask |= NETIF_F_CSUM_MASK;
9539 	mask |= NETIF_F_VLAN_CHALLENGED;
9540 
9541 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9542 	all &= one | ~NETIF_F_ALL_FOR_ALL;
9543 
9544 	/* If one device supports hw checksumming, set for all. */
9545 	if (all & NETIF_F_HW_CSUM)
9546 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9547 
9548 	return all;
9549 }
9550 EXPORT_SYMBOL(netdev_increment_features);
9551 
9552 static struct hlist_head * __net_init netdev_create_hash(void)
9553 {
9554 	int i;
9555 	struct hlist_head *hash;
9556 
9557 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9558 	if (hash != NULL)
9559 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
9560 			INIT_HLIST_HEAD(&hash[i]);
9561 
9562 	return hash;
9563 }
9564 
9565 /* Initialize per network namespace state */
9566 static int __net_init netdev_init(struct net *net)
9567 {
9568 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
9569 		     8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9570 
9571 	if (net != &init_net)
9572 		INIT_LIST_HEAD(&net->dev_base_head);
9573 
9574 	net->dev_name_head = netdev_create_hash();
9575 	if (net->dev_name_head == NULL)
9576 		goto err_name;
9577 
9578 	net->dev_index_head = netdev_create_hash();
9579 	if (net->dev_index_head == NULL)
9580 		goto err_idx;
9581 
9582 	return 0;
9583 
9584 err_idx:
9585 	kfree(net->dev_name_head);
9586 err_name:
9587 	return -ENOMEM;
9588 }
9589 
9590 /**
9591  *	netdev_drivername - network driver for the device
9592  *	@dev: network device
9593  *
9594  *	Determine network driver for device.
9595  */
9596 const char *netdev_drivername(const struct net_device *dev)
9597 {
9598 	const struct device_driver *driver;
9599 	const struct device *parent;
9600 	const char *empty = "";
9601 
9602 	parent = dev->dev.parent;
9603 	if (!parent)
9604 		return empty;
9605 
9606 	driver = parent->driver;
9607 	if (driver && driver->name)
9608 		return driver->name;
9609 	return empty;
9610 }
9611 
9612 static void __netdev_printk(const char *level, const struct net_device *dev,
9613 			    struct va_format *vaf)
9614 {
9615 	if (dev && dev->dev.parent) {
9616 		dev_printk_emit(level[1] - '0',
9617 				dev->dev.parent,
9618 				"%s %s %s%s: %pV",
9619 				dev_driver_string(dev->dev.parent),
9620 				dev_name(dev->dev.parent),
9621 				netdev_name(dev), netdev_reg_state(dev),
9622 				vaf);
9623 	} else if (dev) {
9624 		printk("%s%s%s: %pV",
9625 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
9626 	} else {
9627 		printk("%s(NULL net_device): %pV", level, vaf);
9628 	}
9629 }
9630 
9631 void netdev_printk(const char *level, const struct net_device *dev,
9632 		   const char *format, ...)
9633 {
9634 	struct va_format vaf;
9635 	va_list args;
9636 
9637 	va_start(args, format);
9638 
9639 	vaf.fmt = format;
9640 	vaf.va = &args;
9641 
9642 	__netdev_printk(level, dev, &vaf);
9643 
9644 	va_end(args);
9645 }
9646 EXPORT_SYMBOL(netdev_printk);
9647 
9648 #define define_netdev_printk_level(func, level)			\
9649 void func(const struct net_device *dev, const char *fmt, ...)	\
9650 {								\
9651 	struct va_format vaf;					\
9652 	va_list args;						\
9653 								\
9654 	va_start(args, fmt);					\
9655 								\
9656 	vaf.fmt = fmt;						\
9657 	vaf.va = &args;						\
9658 								\
9659 	__netdev_printk(level, dev, &vaf);			\
9660 								\
9661 	va_end(args);						\
9662 }								\
9663 EXPORT_SYMBOL(func);
9664 
9665 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9666 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9667 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9668 define_netdev_printk_level(netdev_err, KERN_ERR);
9669 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9670 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9671 define_netdev_printk_level(netdev_info, KERN_INFO);
9672 
9673 static void __net_exit netdev_exit(struct net *net)
9674 {
9675 	kfree(net->dev_name_head);
9676 	kfree(net->dev_index_head);
9677 	if (net != &init_net)
9678 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9679 }
9680 
9681 static struct pernet_operations __net_initdata netdev_net_ops = {
9682 	.init = netdev_init,
9683 	.exit = netdev_exit,
9684 };
9685 
9686 static void __net_exit default_device_exit(struct net *net)
9687 {
9688 	struct net_device *dev, *aux;
9689 	/*
9690 	 * Push all migratable network devices back to the
9691 	 * initial network namespace
9692 	 */
9693 	rtnl_lock();
9694 	for_each_netdev_safe(net, dev, aux) {
9695 		int err;
9696 		char fb_name[IFNAMSIZ];
9697 
9698 		/* Ignore unmoveable devices (i.e. loopback) */
9699 		if (dev->features & NETIF_F_NETNS_LOCAL)
9700 			continue;
9701 
9702 		/* Leave virtual devices for the generic cleanup */
9703 		if (dev->rtnl_link_ops)
9704 			continue;
9705 
9706 		/* Push remaining network devices to init_net */
9707 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9708 		err = dev_change_net_namespace(dev, &init_net, fb_name);
9709 		if (err) {
9710 			pr_emerg("%s: failed to move %s to init_net: %d\n",
9711 				 __func__, dev->name, err);
9712 			BUG();
9713 		}
9714 	}
9715 	rtnl_unlock();
9716 }
9717 
9718 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9719 {
9720 	/* Return with the rtnl_lock held when there are no network
9721 	 * devices unregistering in any network namespace in net_list.
9722 	 */
9723 	struct net *net;
9724 	bool unregistering;
9725 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
9726 
9727 	add_wait_queue(&netdev_unregistering_wq, &wait);
9728 	for (;;) {
9729 		unregistering = false;
9730 		rtnl_lock();
9731 		list_for_each_entry(net, net_list, exit_list) {
9732 			if (net->dev_unreg_count > 0) {
9733 				unregistering = true;
9734 				break;
9735 			}
9736 		}
9737 		if (!unregistering)
9738 			break;
9739 		__rtnl_unlock();
9740 
9741 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9742 	}
9743 	remove_wait_queue(&netdev_unregistering_wq, &wait);
9744 }
9745 
9746 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9747 {
9748 	/* At exit all network devices most be removed from a network
9749 	 * namespace.  Do this in the reverse order of registration.
9750 	 * Do this across as many network namespaces as possible to
9751 	 * improve batching efficiency.
9752 	 */
9753 	struct net_device *dev;
9754 	struct net *net;
9755 	LIST_HEAD(dev_kill_list);
9756 
9757 	/* To prevent network device cleanup code from dereferencing
9758 	 * loopback devices or network devices that have been freed
9759 	 * wait here for all pending unregistrations to complete,
9760 	 * before unregistring the loopback device and allowing the
9761 	 * network namespace be freed.
9762 	 *
9763 	 * The netdev todo list containing all network devices
9764 	 * unregistrations that happen in default_device_exit_batch
9765 	 * will run in the rtnl_unlock() at the end of
9766 	 * default_device_exit_batch.
9767 	 */
9768 	rtnl_lock_unregistering(net_list);
9769 	list_for_each_entry(net, net_list, exit_list) {
9770 		for_each_netdev_reverse(net, dev) {
9771 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9772 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9773 			else
9774 				unregister_netdevice_queue(dev, &dev_kill_list);
9775 		}
9776 	}
9777 	unregister_netdevice_many(&dev_kill_list);
9778 	rtnl_unlock();
9779 }
9780 
9781 static struct pernet_operations __net_initdata default_device_ops = {
9782 	.exit = default_device_exit,
9783 	.exit_batch = default_device_exit_batch,
9784 };
9785 
9786 /*
9787  *	Initialize the DEV module. At boot time this walks the device list and
9788  *	unhooks any devices that fail to initialise (normally hardware not
9789  *	present) and leaves us with a valid list of present and active devices.
9790  *
9791  */
9792 
9793 /*
9794  *       This is called single threaded during boot, so no need
9795  *       to take the rtnl semaphore.
9796  */
9797 static int __init net_dev_init(void)
9798 {
9799 	int i, rc = -ENOMEM;
9800 
9801 	BUG_ON(!dev_boot_phase);
9802 
9803 	if (dev_proc_init())
9804 		goto out;
9805 
9806 	if (netdev_kobject_init())
9807 		goto out;
9808 
9809 	INIT_LIST_HEAD(&ptype_all);
9810 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9811 		INIT_LIST_HEAD(&ptype_base[i]);
9812 
9813 	INIT_LIST_HEAD(&offload_base);
9814 
9815 	if (register_pernet_subsys(&netdev_net_ops))
9816 		goto out;
9817 
9818 	/*
9819 	 *	Initialise the packet receive queues.
9820 	 */
9821 
9822 	for_each_possible_cpu(i) {
9823 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9824 		struct softnet_data *sd = &per_cpu(softnet_data, i);
9825 
9826 		INIT_WORK(flush, flush_backlog);
9827 
9828 		skb_queue_head_init(&sd->input_pkt_queue);
9829 		skb_queue_head_init(&sd->process_queue);
9830 #ifdef CONFIG_XFRM_OFFLOAD
9831 		skb_queue_head_init(&sd->xfrm_backlog);
9832 #endif
9833 		INIT_LIST_HEAD(&sd->poll_list);
9834 		sd->output_queue_tailp = &sd->output_queue;
9835 #ifdef CONFIG_RPS
9836 		sd->csd.func = rps_trigger_softirq;
9837 		sd->csd.info = sd;
9838 		sd->cpu = i;
9839 #endif
9840 
9841 		init_gro_hash(&sd->backlog);
9842 		sd->backlog.poll = process_backlog;
9843 		sd->backlog.weight = weight_p;
9844 	}
9845 
9846 	dev_boot_phase = 0;
9847 
9848 	/* The loopback device is special if any other network devices
9849 	 * is present in a network namespace the loopback device must
9850 	 * be present. Since we now dynamically allocate and free the
9851 	 * loopback device ensure this invariant is maintained by
9852 	 * keeping the loopback device as the first device on the
9853 	 * list of network devices.  Ensuring the loopback devices
9854 	 * is the first device that appears and the last network device
9855 	 * that disappears.
9856 	 */
9857 	if (register_pernet_device(&loopback_net_ops))
9858 		goto out;
9859 
9860 	if (register_pernet_device(&default_device_ops))
9861 		goto out;
9862 
9863 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9864 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9865 
9866 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9867 				       NULL, dev_cpu_dead);
9868 	WARN_ON(rc < 0);
9869 	rc = 0;
9870 out:
9871 	return rc;
9872 }
9873 
9874 subsys_initcall(net_dev_init);
9875