1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/skbuff.h> 97 #include <linux/bpf.h> 98 #include <linux/bpf_trace.h> 99 #include <net/net_namespace.h> 100 #include <net/sock.h> 101 #include <net/busy_poll.h> 102 #include <linux/rtnetlink.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/dst_metadata.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <linux/highmem.h> 111 #include <linux/init.h> 112 #include <linux/module.h> 113 #include <linux/netpoll.h> 114 #include <linux/rcupdate.h> 115 #include <linux/delay.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <net/mpls.h> 127 #include <linux/ipv6.h> 128 #include <linux/in.h> 129 #include <linux/jhash.h> 130 #include <linux/random.h> 131 #include <trace/events/napi.h> 132 #include <trace/events/net.h> 133 #include <trace/events/skb.h> 134 #include <linux/pci.h> 135 #include <linux/inetdevice.h> 136 #include <linux/cpu_rmap.h> 137 #include <linux/static_key.h> 138 #include <linux/hashtable.h> 139 #include <linux/vmalloc.h> 140 #include <linux/if_macvlan.h> 141 #include <linux/errqueue.h> 142 #include <linux/hrtimer.h> 143 #include <linux/netfilter_ingress.h> 144 #include <linux/crash_dump.h> 145 #include <linux/sctp.h> 146 #include <net/udp_tunnel.h> 147 #include <linux/net_namespace.h> 148 #include <linux/indirect_call_wrapper.h> 149 150 #include "net-sysfs.h" 151 152 #define MAX_GRO_SKBS 8 153 154 /* This should be increased if a protocol with a bigger head is added. */ 155 #define GRO_MAX_HEAD (MAX_HEADER + 128) 156 157 static DEFINE_SPINLOCK(ptype_lock); 158 static DEFINE_SPINLOCK(offload_lock); 159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 160 struct list_head ptype_all __read_mostly; /* Taps */ 161 static struct list_head offload_base __read_mostly; 162 163 static int netif_rx_internal(struct sk_buff *skb); 164 static int call_netdevice_notifiers_info(unsigned long val, 165 struct netdev_notifier_info *info); 166 static int call_netdevice_notifiers_extack(unsigned long val, 167 struct net_device *dev, 168 struct netlink_ext_ack *extack); 169 static struct napi_struct *napi_by_id(unsigned int napi_id); 170 171 /* 172 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 173 * semaphore. 174 * 175 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 176 * 177 * Writers must hold the rtnl semaphore while they loop through the 178 * dev_base_head list, and hold dev_base_lock for writing when they do the 179 * actual updates. This allows pure readers to access the list even 180 * while a writer is preparing to update it. 181 * 182 * To put it another way, dev_base_lock is held for writing only to 183 * protect against pure readers; the rtnl semaphore provides the 184 * protection against other writers. 185 * 186 * See, for example usages, register_netdevice() and 187 * unregister_netdevice(), which must be called with the rtnl 188 * semaphore held. 189 */ 190 DEFINE_RWLOCK(dev_base_lock); 191 EXPORT_SYMBOL(dev_base_lock); 192 193 static DEFINE_MUTEX(ifalias_mutex); 194 195 /* protects napi_hash addition/deletion and napi_gen_id */ 196 static DEFINE_SPINLOCK(napi_hash_lock); 197 198 static unsigned int napi_gen_id = NR_CPUS; 199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 200 201 static seqcount_t devnet_rename_seq; 202 203 static inline void dev_base_seq_inc(struct net *net) 204 { 205 while (++net->dev_base_seq == 0) 206 ; 207 } 208 209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 210 { 211 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 212 213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 214 } 215 216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 217 { 218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 219 } 220 221 static inline void rps_lock(struct softnet_data *sd) 222 { 223 #ifdef CONFIG_RPS 224 spin_lock(&sd->input_pkt_queue.lock); 225 #endif 226 } 227 228 static inline void rps_unlock(struct softnet_data *sd) 229 { 230 #ifdef CONFIG_RPS 231 spin_unlock(&sd->input_pkt_queue.lock); 232 #endif 233 } 234 235 /* Device list insertion */ 236 static void list_netdevice(struct net_device *dev) 237 { 238 struct net *net = dev_net(dev); 239 240 ASSERT_RTNL(); 241 242 write_lock_bh(&dev_base_lock); 243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 245 hlist_add_head_rcu(&dev->index_hlist, 246 dev_index_hash(net, dev->ifindex)); 247 write_unlock_bh(&dev_base_lock); 248 249 dev_base_seq_inc(net); 250 } 251 252 /* Device list removal 253 * caller must respect a RCU grace period before freeing/reusing dev 254 */ 255 static void unlist_netdevice(struct net_device *dev) 256 { 257 ASSERT_RTNL(); 258 259 /* Unlink dev from the device chain */ 260 write_lock_bh(&dev_base_lock); 261 list_del_rcu(&dev->dev_list); 262 hlist_del_rcu(&dev->name_hlist); 263 hlist_del_rcu(&dev->index_hlist); 264 write_unlock_bh(&dev_base_lock); 265 266 dev_base_seq_inc(dev_net(dev)); 267 } 268 269 /* 270 * Our notifier list 271 */ 272 273 static RAW_NOTIFIER_HEAD(netdev_chain); 274 275 /* 276 * Device drivers call our routines to queue packets here. We empty the 277 * queue in the local softnet handler. 278 */ 279 280 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 281 EXPORT_PER_CPU_SYMBOL(softnet_data); 282 283 #ifdef CONFIG_LOCKDEP 284 /* 285 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 286 * according to dev->type 287 */ 288 static const unsigned short netdev_lock_type[] = { 289 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 290 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 291 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 292 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 293 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 294 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 295 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 296 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 297 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 298 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 299 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 300 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 301 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 302 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 303 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 304 305 static const char *const netdev_lock_name[] = { 306 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 307 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 308 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 309 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 310 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 311 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 312 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 313 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 314 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 315 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 316 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 317 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 318 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 319 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 320 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 321 322 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 323 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 324 325 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 326 { 327 int i; 328 329 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 330 if (netdev_lock_type[i] == dev_type) 331 return i; 332 /* the last key is used by default */ 333 return ARRAY_SIZE(netdev_lock_type) - 1; 334 } 335 336 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 337 unsigned short dev_type) 338 { 339 int i; 340 341 i = netdev_lock_pos(dev_type); 342 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 343 netdev_lock_name[i]); 344 } 345 346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 347 { 348 int i; 349 350 i = netdev_lock_pos(dev->type); 351 lockdep_set_class_and_name(&dev->addr_list_lock, 352 &netdev_addr_lock_key[i], 353 netdev_lock_name[i]); 354 } 355 #else 356 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 357 unsigned short dev_type) 358 { 359 } 360 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 361 { 362 } 363 #endif 364 365 /******************************************************************************* 366 * 367 * Protocol management and registration routines 368 * 369 *******************************************************************************/ 370 371 372 /* 373 * Add a protocol ID to the list. Now that the input handler is 374 * smarter we can dispense with all the messy stuff that used to be 375 * here. 376 * 377 * BEWARE!!! Protocol handlers, mangling input packets, 378 * MUST BE last in hash buckets and checking protocol handlers 379 * MUST start from promiscuous ptype_all chain in net_bh. 380 * It is true now, do not change it. 381 * Explanation follows: if protocol handler, mangling packet, will 382 * be the first on list, it is not able to sense, that packet 383 * is cloned and should be copied-on-write, so that it will 384 * change it and subsequent readers will get broken packet. 385 * --ANK (980803) 386 */ 387 388 static inline struct list_head *ptype_head(const struct packet_type *pt) 389 { 390 if (pt->type == htons(ETH_P_ALL)) 391 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 392 else 393 return pt->dev ? &pt->dev->ptype_specific : 394 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 395 } 396 397 /** 398 * dev_add_pack - add packet handler 399 * @pt: packet type declaration 400 * 401 * Add a protocol handler to the networking stack. The passed &packet_type 402 * is linked into kernel lists and may not be freed until it has been 403 * removed from the kernel lists. 404 * 405 * This call does not sleep therefore it can not 406 * guarantee all CPU's that are in middle of receiving packets 407 * will see the new packet type (until the next received packet). 408 */ 409 410 void dev_add_pack(struct packet_type *pt) 411 { 412 struct list_head *head = ptype_head(pt); 413 414 spin_lock(&ptype_lock); 415 list_add_rcu(&pt->list, head); 416 spin_unlock(&ptype_lock); 417 } 418 EXPORT_SYMBOL(dev_add_pack); 419 420 /** 421 * __dev_remove_pack - remove packet handler 422 * @pt: packet type declaration 423 * 424 * Remove a protocol handler that was previously added to the kernel 425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 426 * from the kernel lists and can be freed or reused once this function 427 * returns. 428 * 429 * The packet type might still be in use by receivers 430 * and must not be freed until after all the CPU's have gone 431 * through a quiescent state. 432 */ 433 void __dev_remove_pack(struct packet_type *pt) 434 { 435 struct list_head *head = ptype_head(pt); 436 struct packet_type *pt1; 437 438 spin_lock(&ptype_lock); 439 440 list_for_each_entry(pt1, head, list) { 441 if (pt == pt1) { 442 list_del_rcu(&pt->list); 443 goto out; 444 } 445 } 446 447 pr_warn("dev_remove_pack: %p not found\n", pt); 448 out: 449 spin_unlock(&ptype_lock); 450 } 451 EXPORT_SYMBOL(__dev_remove_pack); 452 453 /** 454 * dev_remove_pack - remove packet handler 455 * @pt: packet type declaration 456 * 457 * Remove a protocol handler that was previously added to the kernel 458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 459 * from the kernel lists and can be freed or reused once this function 460 * returns. 461 * 462 * This call sleeps to guarantee that no CPU is looking at the packet 463 * type after return. 464 */ 465 void dev_remove_pack(struct packet_type *pt) 466 { 467 __dev_remove_pack(pt); 468 469 synchronize_net(); 470 } 471 EXPORT_SYMBOL(dev_remove_pack); 472 473 474 /** 475 * dev_add_offload - register offload handlers 476 * @po: protocol offload declaration 477 * 478 * Add protocol offload handlers to the networking stack. The passed 479 * &proto_offload is linked into kernel lists and may not be freed until 480 * it has been removed from the kernel lists. 481 * 482 * This call does not sleep therefore it can not 483 * guarantee all CPU's that are in middle of receiving packets 484 * will see the new offload handlers (until the next received packet). 485 */ 486 void dev_add_offload(struct packet_offload *po) 487 { 488 struct packet_offload *elem; 489 490 spin_lock(&offload_lock); 491 list_for_each_entry(elem, &offload_base, list) { 492 if (po->priority < elem->priority) 493 break; 494 } 495 list_add_rcu(&po->list, elem->list.prev); 496 spin_unlock(&offload_lock); 497 } 498 EXPORT_SYMBOL(dev_add_offload); 499 500 /** 501 * __dev_remove_offload - remove offload handler 502 * @po: packet offload declaration 503 * 504 * Remove a protocol offload handler that was previously added to the 505 * kernel offload handlers by dev_add_offload(). The passed &offload_type 506 * is removed from the kernel lists and can be freed or reused once this 507 * function returns. 508 * 509 * The packet type might still be in use by receivers 510 * and must not be freed until after all the CPU's have gone 511 * through a quiescent state. 512 */ 513 static void __dev_remove_offload(struct packet_offload *po) 514 { 515 struct list_head *head = &offload_base; 516 struct packet_offload *po1; 517 518 spin_lock(&offload_lock); 519 520 list_for_each_entry(po1, head, list) { 521 if (po == po1) { 522 list_del_rcu(&po->list); 523 goto out; 524 } 525 } 526 527 pr_warn("dev_remove_offload: %p not found\n", po); 528 out: 529 spin_unlock(&offload_lock); 530 } 531 532 /** 533 * dev_remove_offload - remove packet offload handler 534 * @po: packet offload declaration 535 * 536 * Remove a packet offload handler that was previously added to the kernel 537 * offload handlers by dev_add_offload(). The passed &offload_type is 538 * removed from the kernel lists and can be freed or reused once this 539 * function returns. 540 * 541 * This call sleeps to guarantee that no CPU is looking at the packet 542 * type after return. 543 */ 544 void dev_remove_offload(struct packet_offload *po) 545 { 546 __dev_remove_offload(po); 547 548 synchronize_net(); 549 } 550 EXPORT_SYMBOL(dev_remove_offload); 551 552 /****************************************************************************** 553 * 554 * Device Boot-time Settings Routines 555 * 556 ******************************************************************************/ 557 558 /* Boot time configuration table */ 559 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 560 561 /** 562 * netdev_boot_setup_add - add new setup entry 563 * @name: name of the device 564 * @map: configured settings for the device 565 * 566 * Adds new setup entry to the dev_boot_setup list. The function 567 * returns 0 on error and 1 on success. This is a generic routine to 568 * all netdevices. 569 */ 570 static int netdev_boot_setup_add(char *name, struct ifmap *map) 571 { 572 struct netdev_boot_setup *s; 573 int i; 574 575 s = dev_boot_setup; 576 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 577 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 578 memset(s[i].name, 0, sizeof(s[i].name)); 579 strlcpy(s[i].name, name, IFNAMSIZ); 580 memcpy(&s[i].map, map, sizeof(s[i].map)); 581 break; 582 } 583 } 584 585 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 586 } 587 588 /** 589 * netdev_boot_setup_check - check boot time settings 590 * @dev: the netdevice 591 * 592 * Check boot time settings for the device. 593 * The found settings are set for the device to be used 594 * later in the device probing. 595 * Returns 0 if no settings found, 1 if they are. 596 */ 597 int netdev_boot_setup_check(struct net_device *dev) 598 { 599 struct netdev_boot_setup *s = dev_boot_setup; 600 int i; 601 602 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 603 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 604 !strcmp(dev->name, s[i].name)) { 605 dev->irq = s[i].map.irq; 606 dev->base_addr = s[i].map.base_addr; 607 dev->mem_start = s[i].map.mem_start; 608 dev->mem_end = s[i].map.mem_end; 609 return 1; 610 } 611 } 612 return 0; 613 } 614 EXPORT_SYMBOL(netdev_boot_setup_check); 615 616 617 /** 618 * netdev_boot_base - get address from boot time settings 619 * @prefix: prefix for network device 620 * @unit: id for network device 621 * 622 * Check boot time settings for the base address of device. 623 * The found settings are set for the device to be used 624 * later in the device probing. 625 * Returns 0 if no settings found. 626 */ 627 unsigned long netdev_boot_base(const char *prefix, int unit) 628 { 629 const struct netdev_boot_setup *s = dev_boot_setup; 630 char name[IFNAMSIZ]; 631 int i; 632 633 sprintf(name, "%s%d", prefix, unit); 634 635 /* 636 * If device already registered then return base of 1 637 * to indicate not to probe for this interface 638 */ 639 if (__dev_get_by_name(&init_net, name)) 640 return 1; 641 642 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 643 if (!strcmp(name, s[i].name)) 644 return s[i].map.base_addr; 645 return 0; 646 } 647 648 /* 649 * Saves at boot time configured settings for any netdevice. 650 */ 651 int __init netdev_boot_setup(char *str) 652 { 653 int ints[5]; 654 struct ifmap map; 655 656 str = get_options(str, ARRAY_SIZE(ints), ints); 657 if (!str || !*str) 658 return 0; 659 660 /* Save settings */ 661 memset(&map, 0, sizeof(map)); 662 if (ints[0] > 0) 663 map.irq = ints[1]; 664 if (ints[0] > 1) 665 map.base_addr = ints[2]; 666 if (ints[0] > 2) 667 map.mem_start = ints[3]; 668 if (ints[0] > 3) 669 map.mem_end = ints[4]; 670 671 /* Add new entry to the list */ 672 return netdev_boot_setup_add(str, &map); 673 } 674 675 __setup("netdev=", netdev_boot_setup); 676 677 /******************************************************************************* 678 * 679 * Device Interface Subroutines 680 * 681 *******************************************************************************/ 682 683 /** 684 * dev_get_iflink - get 'iflink' value of a interface 685 * @dev: targeted interface 686 * 687 * Indicates the ifindex the interface is linked to. 688 * Physical interfaces have the same 'ifindex' and 'iflink' values. 689 */ 690 691 int dev_get_iflink(const struct net_device *dev) 692 { 693 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 694 return dev->netdev_ops->ndo_get_iflink(dev); 695 696 return dev->ifindex; 697 } 698 EXPORT_SYMBOL(dev_get_iflink); 699 700 /** 701 * dev_fill_metadata_dst - Retrieve tunnel egress information. 702 * @dev: targeted interface 703 * @skb: The packet. 704 * 705 * For better visibility of tunnel traffic OVS needs to retrieve 706 * egress tunnel information for a packet. Following API allows 707 * user to get this info. 708 */ 709 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 710 { 711 struct ip_tunnel_info *info; 712 713 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 714 return -EINVAL; 715 716 info = skb_tunnel_info_unclone(skb); 717 if (!info) 718 return -ENOMEM; 719 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 720 return -EINVAL; 721 722 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 723 } 724 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 725 726 /** 727 * __dev_get_by_name - find a device by its name 728 * @net: the applicable net namespace 729 * @name: name to find 730 * 731 * Find an interface by name. Must be called under RTNL semaphore 732 * or @dev_base_lock. If the name is found a pointer to the device 733 * is returned. If the name is not found then %NULL is returned. The 734 * reference counters are not incremented so the caller must be 735 * careful with locks. 736 */ 737 738 struct net_device *__dev_get_by_name(struct net *net, const char *name) 739 { 740 struct net_device *dev; 741 struct hlist_head *head = dev_name_hash(net, name); 742 743 hlist_for_each_entry(dev, head, name_hlist) 744 if (!strncmp(dev->name, name, IFNAMSIZ)) 745 return dev; 746 747 return NULL; 748 } 749 EXPORT_SYMBOL(__dev_get_by_name); 750 751 /** 752 * dev_get_by_name_rcu - find a device by its name 753 * @net: the applicable net namespace 754 * @name: name to find 755 * 756 * Find an interface by name. 757 * If the name is found a pointer to the device is returned. 758 * If the name is not found then %NULL is returned. 759 * The reference counters are not incremented so the caller must be 760 * careful with locks. The caller must hold RCU lock. 761 */ 762 763 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 764 { 765 struct net_device *dev; 766 struct hlist_head *head = dev_name_hash(net, name); 767 768 hlist_for_each_entry_rcu(dev, head, name_hlist) 769 if (!strncmp(dev->name, name, IFNAMSIZ)) 770 return dev; 771 772 return NULL; 773 } 774 EXPORT_SYMBOL(dev_get_by_name_rcu); 775 776 /** 777 * dev_get_by_name - find a device by its name 778 * @net: the applicable net namespace 779 * @name: name to find 780 * 781 * Find an interface by name. This can be called from any 782 * context and does its own locking. The returned handle has 783 * the usage count incremented and the caller must use dev_put() to 784 * release it when it is no longer needed. %NULL is returned if no 785 * matching device is found. 786 */ 787 788 struct net_device *dev_get_by_name(struct net *net, const char *name) 789 { 790 struct net_device *dev; 791 792 rcu_read_lock(); 793 dev = dev_get_by_name_rcu(net, name); 794 if (dev) 795 dev_hold(dev); 796 rcu_read_unlock(); 797 return dev; 798 } 799 EXPORT_SYMBOL(dev_get_by_name); 800 801 /** 802 * __dev_get_by_index - find a device by its ifindex 803 * @net: the applicable net namespace 804 * @ifindex: index of device 805 * 806 * Search for an interface by index. Returns %NULL if the device 807 * is not found or a pointer to the device. The device has not 808 * had its reference counter increased so the caller must be careful 809 * about locking. The caller must hold either the RTNL semaphore 810 * or @dev_base_lock. 811 */ 812 813 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 814 { 815 struct net_device *dev; 816 struct hlist_head *head = dev_index_hash(net, ifindex); 817 818 hlist_for_each_entry(dev, head, index_hlist) 819 if (dev->ifindex == ifindex) 820 return dev; 821 822 return NULL; 823 } 824 EXPORT_SYMBOL(__dev_get_by_index); 825 826 /** 827 * dev_get_by_index_rcu - find a device by its ifindex 828 * @net: the applicable net namespace 829 * @ifindex: index of device 830 * 831 * Search for an interface by index. Returns %NULL if the device 832 * is not found or a pointer to the device. The device has not 833 * had its reference counter increased so the caller must be careful 834 * about locking. The caller must hold RCU lock. 835 */ 836 837 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 838 { 839 struct net_device *dev; 840 struct hlist_head *head = dev_index_hash(net, ifindex); 841 842 hlist_for_each_entry_rcu(dev, head, index_hlist) 843 if (dev->ifindex == ifindex) 844 return dev; 845 846 return NULL; 847 } 848 EXPORT_SYMBOL(dev_get_by_index_rcu); 849 850 851 /** 852 * dev_get_by_index - find a device by its ifindex 853 * @net: the applicable net namespace 854 * @ifindex: index of device 855 * 856 * Search for an interface by index. Returns NULL if the device 857 * is not found or a pointer to the device. The device returned has 858 * had a reference added and the pointer is safe until the user calls 859 * dev_put to indicate they have finished with it. 860 */ 861 862 struct net_device *dev_get_by_index(struct net *net, int ifindex) 863 { 864 struct net_device *dev; 865 866 rcu_read_lock(); 867 dev = dev_get_by_index_rcu(net, ifindex); 868 if (dev) 869 dev_hold(dev); 870 rcu_read_unlock(); 871 return dev; 872 } 873 EXPORT_SYMBOL(dev_get_by_index); 874 875 /** 876 * dev_get_by_napi_id - find a device by napi_id 877 * @napi_id: ID of the NAPI struct 878 * 879 * Search for an interface by NAPI ID. Returns %NULL if the device 880 * is not found or a pointer to the device. The device has not had 881 * its reference counter increased so the caller must be careful 882 * about locking. The caller must hold RCU lock. 883 */ 884 885 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 886 { 887 struct napi_struct *napi; 888 889 WARN_ON_ONCE(!rcu_read_lock_held()); 890 891 if (napi_id < MIN_NAPI_ID) 892 return NULL; 893 894 napi = napi_by_id(napi_id); 895 896 return napi ? napi->dev : NULL; 897 } 898 EXPORT_SYMBOL(dev_get_by_napi_id); 899 900 /** 901 * netdev_get_name - get a netdevice name, knowing its ifindex. 902 * @net: network namespace 903 * @name: a pointer to the buffer where the name will be stored. 904 * @ifindex: the ifindex of the interface to get the name from. 905 * 906 * The use of raw_seqcount_begin() and cond_resched() before 907 * retrying is required as we want to give the writers a chance 908 * to complete when CONFIG_PREEMPT is not set. 909 */ 910 int netdev_get_name(struct net *net, char *name, int ifindex) 911 { 912 struct net_device *dev; 913 unsigned int seq; 914 915 retry: 916 seq = raw_seqcount_begin(&devnet_rename_seq); 917 rcu_read_lock(); 918 dev = dev_get_by_index_rcu(net, ifindex); 919 if (!dev) { 920 rcu_read_unlock(); 921 return -ENODEV; 922 } 923 924 strcpy(name, dev->name); 925 rcu_read_unlock(); 926 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 927 cond_resched(); 928 goto retry; 929 } 930 931 return 0; 932 } 933 934 /** 935 * dev_getbyhwaddr_rcu - find a device by its hardware address 936 * @net: the applicable net namespace 937 * @type: media type of device 938 * @ha: hardware address 939 * 940 * Search for an interface by MAC address. Returns NULL if the device 941 * is not found or a pointer to the device. 942 * The caller must hold RCU or RTNL. 943 * The returned device has not had its ref count increased 944 * and the caller must therefore be careful about locking 945 * 946 */ 947 948 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 949 const char *ha) 950 { 951 struct net_device *dev; 952 953 for_each_netdev_rcu(net, dev) 954 if (dev->type == type && 955 !memcmp(dev->dev_addr, ha, dev->addr_len)) 956 return dev; 957 958 return NULL; 959 } 960 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 961 962 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 963 { 964 struct net_device *dev; 965 966 ASSERT_RTNL(); 967 for_each_netdev(net, dev) 968 if (dev->type == type) 969 return dev; 970 971 return NULL; 972 } 973 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 974 975 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 976 { 977 struct net_device *dev, *ret = NULL; 978 979 rcu_read_lock(); 980 for_each_netdev_rcu(net, dev) 981 if (dev->type == type) { 982 dev_hold(dev); 983 ret = dev; 984 break; 985 } 986 rcu_read_unlock(); 987 return ret; 988 } 989 EXPORT_SYMBOL(dev_getfirstbyhwtype); 990 991 /** 992 * __dev_get_by_flags - find any device with given flags 993 * @net: the applicable net namespace 994 * @if_flags: IFF_* values 995 * @mask: bitmask of bits in if_flags to check 996 * 997 * Search for any interface with the given flags. Returns NULL if a device 998 * is not found or a pointer to the device. Must be called inside 999 * rtnl_lock(), and result refcount is unchanged. 1000 */ 1001 1002 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1003 unsigned short mask) 1004 { 1005 struct net_device *dev, *ret; 1006 1007 ASSERT_RTNL(); 1008 1009 ret = NULL; 1010 for_each_netdev(net, dev) { 1011 if (((dev->flags ^ if_flags) & mask) == 0) { 1012 ret = dev; 1013 break; 1014 } 1015 } 1016 return ret; 1017 } 1018 EXPORT_SYMBOL(__dev_get_by_flags); 1019 1020 /** 1021 * dev_valid_name - check if name is okay for network device 1022 * @name: name string 1023 * 1024 * Network device names need to be valid file names to 1025 * to allow sysfs to work. We also disallow any kind of 1026 * whitespace. 1027 */ 1028 bool dev_valid_name(const char *name) 1029 { 1030 if (*name == '\0') 1031 return false; 1032 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1033 return false; 1034 if (!strcmp(name, ".") || !strcmp(name, "..")) 1035 return false; 1036 1037 while (*name) { 1038 if (*name == '/' || *name == ':' || isspace(*name)) 1039 return false; 1040 name++; 1041 } 1042 return true; 1043 } 1044 EXPORT_SYMBOL(dev_valid_name); 1045 1046 /** 1047 * __dev_alloc_name - allocate a name for a device 1048 * @net: network namespace to allocate the device name in 1049 * @name: name format string 1050 * @buf: scratch buffer and result name string 1051 * 1052 * Passed a format string - eg "lt%d" it will try and find a suitable 1053 * id. It scans list of devices to build up a free map, then chooses 1054 * the first empty slot. The caller must hold the dev_base or rtnl lock 1055 * while allocating the name and adding the device in order to avoid 1056 * duplicates. 1057 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1058 * Returns the number of the unit assigned or a negative errno code. 1059 */ 1060 1061 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1062 { 1063 int i = 0; 1064 const char *p; 1065 const int max_netdevices = 8*PAGE_SIZE; 1066 unsigned long *inuse; 1067 struct net_device *d; 1068 1069 if (!dev_valid_name(name)) 1070 return -EINVAL; 1071 1072 p = strchr(name, '%'); 1073 if (p) { 1074 /* 1075 * Verify the string as this thing may have come from 1076 * the user. There must be either one "%d" and no other "%" 1077 * characters. 1078 */ 1079 if (p[1] != 'd' || strchr(p + 2, '%')) 1080 return -EINVAL; 1081 1082 /* Use one page as a bit array of possible slots */ 1083 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1084 if (!inuse) 1085 return -ENOMEM; 1086 1087 for_each_netdev(net, d) { 1088 if (!sscanf(d->name, name, &i)) 1089 continue; 1090 if (i < 0 || i >= max_netdevices) 1091 continue; 1092 1093 /* avoid cases where sscanf is not exact inverse of printf */ 1094 snprintf(buf, IFNAMSIZ, name, i); 1095 if (!strncmp(buf, d->name, IFNAMSIZ)) 1096 set_bit(i, inuse); 1097 } 1098 1099 i = find_first_zero_bit(inuse, max_netdevices); 1100 free_page((unsigned long) inuse); 1101 } 1102 1103 snprintf(buf, IFNAMSIZ, name, i); 1104 if (!__dev_get_by_name(net, buf)) 1105 return i; 1106 1107 /* It is possible to run out of possible slots 1108 * when the name is long and there isn't enough space left 1109 * for the digits, or if all bits are used. 1110 */ 1111 return -ENFILE; 1112 } 1113 1114 static int dev_alloc_name_ns(struct net *net, 1115 struct net_device *dev, 1116 const char *name) 1117 { 1118 char buf[IFNAMSIZ]; 1119 int ret; 1120 1121 BUG_ON(!net); 1122 ret = __dev_alloc_name(net, name, buf); 1123 if (ret >= 0) 1124 strlcpy(dev->name, buf, IFNAMSIZ); 1125 return ret; 1126 } 1127 1128 /** 1129 * dev_alloc_name - allocate a name for a device 1130 * @dev: device 1131 * @name: name format string 1132 * 1133 * Passed a format string - eg "lt%d" it will try and find a suitable 1134 * id. It scans list of devices to build up a free map, then chooses 1135 * the first empty slot. The caller must hold the dev_base or rtnl lock 1136 * while allocating the name and adding the device in order to avoid 1137 * duplicates. 1138 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1139 * Returns the number of the unit assigned or a negative errno code. 1140 */ 1141 1142 int dev_alloc_name(struct net_device *dev, const char *name) 1143 { 1144 return dev_alloc_name_ns(dev_net(dev), dev, name); 1145 } 1146 EXPORT_SYMBOL(dev_alloc_name); 1147 1148 int dev_get_valid_name(struct net *net, struct net_device *dev, 1149 const char *name) 1150 { 1151 BUG_ON(!net); 1152 1153 if (!dev_valid_name(name)) 1154 return -EINVAL; 1155 1156 if (strchr(name, '%')) 1157 return dev_alloc_name_ns(net, dev, name); 1158 else if (__dev_get_by_name(net, name)) 1159 return -EEXIST; 1160 else if (dev->name != name) 1161 strlcpy(dev->name, name, IFNAMSIZ); 1162 1163 return 0; 1164 } 1165 EXPORT_SYMBOL(dev_get_valid_name); 1166 1167 /** 1168 * dev_change_name - change name of a device 1169 * @dev: device 1170 * @newname: name (or format string) must be at least IFNAMSIZ 1171 * 1172 * Change name of a device, can pass format strings "eth%d". 1173 * for wildcarding. 1174 */ 1175 int dev_change_name(struct net_device *dev, const char *newname) 1176 { 1177 unsigned char old_assign_type; 1178 char oldname[IFNAMSIZ]; 1179 int err = 0; 1180 int ret; 1181 struct net *net; 1182 1183 ASSERT_RTNL(); 1184 BUG_ON(!dev_net(dev)); 1185 1186 net = dev_net(dev); 1187 1188 /* Some auto-enslaved devices e.g. failover slaves are 1189 * special, as userspace might rename the device after 1190 * the interface had been brought up and running since 1191 * the point kernel initiated auto-enslavement. Allow 1192 * live name change even when these slave devices are 1193 * up and running. 1194 * 1195 * Typically, users of these auto-enslaving devices 1196 * don't actually care about slave name change, as 1197 * they are supposed to operate on master interface 1198 * directly. 1199 */ 1200 if (dev->flags & IFF_UP && 1201 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1202 return -EBUSY; 1203 1204 write_seqcount_begin(&devnet_rename_seq); 1205 1206 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1207 write_seqcount_end(&devnet_rename_seq); 1208 return 0; 1209 } 1210 1211 memcpy(oldname, dev->name, IFNAMSIZ); 1212 1213 err = dev_get_valid_name(net, dev, newname); 1214 if (err < 0) { 1215 write_seqcount_end(&devnet_rename_seq); 1216 return err; 1217 } 1218 1219 if (oldname[0] && !strchr(oldname, '%')) 1220 netdev_info(dev, "renamed from %s\n", oldname); 1221 1222 old_assign_type = dev->name_assign_type; 1223 dev->name_assign_type = NET_NAME_RENAMED; 1224 1225 rollback: 1226 ret = device_rename(&dev->dev, dev->name); 1227 if (ret) { 1228 memcpy(dev->name, oldname, IFNAMSIZ); 1229 dev->name_assign_type = old_assign_type; 1230 write_seqcount_end(&devnet_rename_seq); 1231 return ret; 1232 } 1233 1234 write_seqcount_end(&devnet_rename_seq); 1235 1236 netdev_adjacent_rename_links(dev, oldname); 1237 1238 write_lock_bh(&dev_base_lock); 1239 hlist_del_rcu(&dev->name_hlist); 1240 write_unlock_bh(&dev_base_lock); 1241 1242 synchronize_rcu(); 1243 1244 write_lock_bh(&dev_base_lock); 1245 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1246 write_unlock_bh(&dev_base_lock); 1247 1248 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1249 ret = notifier_to_errno(ret); 1250 1251 if (ret) { 1252 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1253 if (err >= 0) { 1254 err = ret; 1255 write_seqcount_begin(&devnet_rename_seq); 1256 memcpy(dev->name, oldname, IFNAMSIZ); 1257 memcpy(oldname, newname, IFNAMSIZ); 1258 dev->name_assign_type = old_assign_type; 1259 old_assign_type = NET_NAME_RENAMED; 1260 goto rollback; 1261 } else { 1262 pr_err("%s: name change rollback failed: %d\n", 1263 dev->name, ret); 1264 } 1265 } 1266 1267 return err; 1268 } 1269 1270 /** 1271 * dev_set_alias - change ifalias of a device 1272 * @dev: device 1273 * @alias: name up to IFALIASZ 1274 * @len: limit of bytes to copy from info 1275 * 1276 * Set ifalias for a device, 1277 */ 1278 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1279 { 1280 struct dev_ifalias *new_alias = NULL; 1281 1282 if (len >= IFALIASZ) 1283 return -EINVAL; 1284 1285 if (len) { 1286 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1287 if (!new_alias) 1288 return -ENOMEM; 1289 1290 memcpy(new_alias->ifalias, alias, len); 1291 new_alias->ifalias[len] = 0; 1292 } 1293 1294 mutex_lock(&ifalias_mutex); 1295 rcu_swap_protected(dev->ifalias, new_alias, 1296 mutex_is_locked(&ifalias_mutex)); 1297 mutex_unlock(&ifalias_mutex); 1298 1299 if (new_alias) 1300 kfree_rcu(new_alias, rcuhead); 1301 1302 return len; 1303 } 1304 EXPORT_SYMBOL(dev_set_alias); 1305 1306 /** 1307 * dev_get_alias - get ifalias of a device 1308 * @dev: device 1309 * @name: buffer to store name of ifalias 1310 * @len: size of buffer 1311 * 1312 * get ifalias for a device. Caller must make sure dev cannot go 1313 * away, e.g. rcu read lock or own a reference count to device. 1314 */ 1315 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1316 { 1317 const struct dev_ifalias *alias; 1318 int ret = 0; 1319 1320 rcu_read_lock(); 1321 alias = rcu_dereference(dev->ifalias); 1322 if (alias) 1323 ret = snprintf(name, len, "%s", alias->ifalias); 1324 rcu_read_unlock(); 1325 1326 return ret; 1327 } 1328 1329 /** 1330 * netdev_features_change - device changes features 1331 * @dev: device to cause notification 1332 * 1333 * Called to indicate a device has changed features. 1334 */ 1335 void netdev_features_change(struct net_device *dev) 1336 { 1337 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1338 } 1339 EXPORT_SYMBOL(netdev_features_change); 1340 1341 /** 1342 * netdev_state_change - device changes state 1343 * @dev: device to cause notification 1344 * 1345 * Called to indicate a device has changed state. This function calls 1346 * the notifier chains for netdev_chain and sends a NEWLINK message 1347 * to the routing socket. 1348 */ 1349 void netdev_state_change(struct net_device *dev) 1350 { 1351 if (dev->flags & IFF_UP) { 1352 struct netdev_notifier_change_info change_info = { 1353 .info.dev = dev, 1354 }; 1355 1356 call_netdevice_notifiers_info(NETDEV_CHANGE, 1357 &change_info.info); 1358 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1359 } 1360 } 1361 EXPORT_SYMBOL(netdev_state_change); 1362 1363 /** 1364 * netdev_notify_peers - notify network peers about existence of @dev 1365 * @dev: network device 1366 * 1367 * Generate traffic such that interested network peers are aware of 1368 * @dev, such as by generating a gratuitous ARP. This may be used when 1369 * a device wants to inform the rest of the network about some sort of 1370 * reconfiguration such as a failover event or virtual machine 1371 * migration. 1372 */ 1373 void netdev_notify_peers(struct net_device *dev) 1374 { 1375 rtnl_lock(); 1376 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1377 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1378 rtnl_unlock(); 1379 } 1380 EXPORT_SYMBOL(netdev_notify_peers); 1381 1382 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1383 { 1384 const struct net_device_ops *ops = dev->netdev_ops; 1385 int ret; 1386 1387 ASSERT_RTNL(); 1388 1389 if (!netif_device_present(dev)) 1390 return -ENODEV; 1391 1392 /* Block netpoll from trying to do any rx path servicing. 1393 * If we don't do this there is a chance ndo_poll_controller 1394 * or ndo_poll may be running while we open the device 1395 */ 1396 netpoll_poll_disable(dev); 1397 1398 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1399 ret = notifier_to_errno(ret); 1400 if (ret) 1401 return ret; 1402 1403 set_bit(__LINK_STATE_START, &dev->state); 1404 1405 if (ops->ndo_validate_addr) 1406 ret = ops->ndo_validate_addr(dev); 1407 1408 if (!ret && ops->ndo_open) 1409 ret = ops->ndo_open(dev); 1410 1411 netpoll_poll_enable(dev); 1412 1413 if (ret) 1414 clear_bit(__LINK_STATE_START, &dev->state); 1415 else { 1416 dev->flags |= IFF_UP; 1417 dev_set_rx_mode(dev); 1418 dev_activate(dev); 1419 add_device_randomness(dev->dev_addr, dev->addr_len); 1420 } 1421 1422 return ret; 1423 } 1424 1425 /** 1426 * dev_open - prepare an interface for use. 1427 * @dev: device to open 1428 * @extack: netlink extended ack 1429 * 1430 * Takes a device from down to up state. The device's private open 1431 * function is invoked and then the multicast lists are loaded. Finally 1432 * the device is moved into the up state and a %NETDEV_UP message is 1433 * sent to the netdev notifier chain. 1434 * 1435 * Calling this function on an active interface is a nop. On a failure 1436 * a negative errno code is returned. 1437 */ 1438 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1439 { 1440 int ret; 1441 1442 if (dev->flags & IFF_UP) 1443 return 0; 1444 1445 ret = __dev_open(dev, extack); 1446 if (ret < 0) 1447 return ret; 1448 1449 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1450 call_netdevice_notifiers(NETDEV_UP, dev); 1451 1452 return ret; 1453 } 1454 EXPORT_SYMBOL(dev_open); 1455 1456 static void __dev_close_many(struct list_head *head) 1457 { 1458 struct net_device *dev; 1459 1460 ASSERT_RTNL(); 1461 might_sleep(); 1462 1463 list_for_each_entry(dev, head, close_list) { 1464 /* Temporarily disable netpoll until the interface is down */ 1465 netpoll_poll_disable(dev); 1466 1467 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1468 1469 clear_bit(__LINK_STATE_START, &dev->state); 1470 1471 /* Synchronize to scheduled poll. We cannot touch poll list, it 1472 * can be even on different cpu. So just clear netif_running(). 1473 * 1474 * dev->stop() will invoke napi_disable() on all of it's 1475 * napi_struct instances on this device. 1476 */ 1477 smp_mb__after_atomic(); /* Commit netif_running(). */ 1478 } 1479 1480 dev_deactivate_many(head); 1481 1482 list_for_each_entry(dev, head, close_list) { 1483 const struct net_device_ops *ops = dev->netdev_ops; 1484 1485 /* 1486 * Call the device specific close. This cannot fail. 1487 * Only if device is UP 1488 * 1489 * We allow it to be called even after a DETACH hot-plug 1490 * event. 1491 */ 1492 if (ops->ndo_stop) 1493 ops->ndo_stop(dev); 1494 1495 dev->flags &= ~IFF_UP; 1496 netpoll_poll_enable(dev); 1497 } 1498 } 1499 1500 static void __dev_close(struct net_device *dev) 1501 { 1502 LIST_HEAD(single); 1503 1504 list_add(&dev->close_list, &single); 1505 __dev_close_many(&single); 1506 list_del(&single); 1507 } 1508 1509 void dev_close_many(struct list_head *head, bool unlink) 1510 { 1511 struct net_device *dev, *tmp; 1512 1513 /* Remove the devices that don't need to be closed */ 1514 list_for_each_entry_safe(dev, tmp, head, close_list) 1515 if (!(dev->flags & IFF_UP)) 1516 list_del_init(&dev->close_list); 1517 1518 __dev_close_many(head); 1519 1520 list_for_each_entry_safe(dev, tmp, head, close_list) { 1521 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1522 call_netdevice_notifiers(NETDEV_DOWN, dev); 1523 if (unlink) 1524 list_del_init(&dev->close_list); 1525 } 1526 } 1527 EXPORT_SYMBOL(dev_close_many); 1528 1529 /** 1530 * dev_close - shutdown an interface. 1531 * @dev: device to shutdown 1532 * 1533 * This function moves an active device into down state. A 1534 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1535 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1536 * chain. 1537 */ 1538 void dev_close(struct net_device *dev) 1539 { 1540 if (dev->flags & IFF_UP) { 1541 LIST_HEAD(single); 1542 1543 list_add(&dev->close_list, &single); 1544 dev_close_many(&single, true); 1545 list_del(&single); 1546 } 1547 } 1548 EXPORT_SYMBOL(dev_close); 1549 1550 1551 /** 1552 * dev_disable_lro - disable Large Receive Offload on a device 1553 * @dev: device 1554 * 1555 * Disable Large Receive Offload (LRO) on a net device. Must be 1556 * called under RTNL. This is needed if received packets may be 1557 * forwarded to another interface. 1558 */ 1559 void dev_disable_lro(struct net_device *dev) 1560 { 1561 struct net_device *lower_dev; 1562 struct list_head *iter; 1563 1564 dev->wanted_features &= ~NETIF_F_LRO; 1565 netdev_update_features(dev); 1566 1567 if (unlikely(dev->features & NETIF_F_LRO)) 1568 netdev_WARN(dev, "failed to disable LRO!\n"); 1569 1570 netdev_for_each_lower_dev(dev, lower_dev, iter) 1571 dev_disable_lro(lower_dev); 1572 } 1573 EXPORT_SYMBOL(dev_disable_lro); 1574 1575 /** 1576 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1577 * @dev: device 1578 * 1579 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1580 * called under RTNL. This is needed if Generic XDP is installed on 1581 * the device. 1582 */ 1583 static void dev_disable_gro_hw(struct net_device *dev) 1584 { 1585 dev->wanted_features &= ~NETIF_F_GRO_HW; 1586 netdev_update_features(dev); 1587 1588 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1589 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1590 } 1591 1592 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1593 { 1594 #define N(val) \ 1595 case NETDEV_##val: \ 1596 return "NETDEV_" __stringify(val); 1597 switch (cmd) { 1598 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1599 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1600 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1601 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1602 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1603 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1604 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1605 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1606 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1607 N(PRE_CHANGEADDR) 1608 } 1609 #undef N 1610 return "UNKNOWN_NETDEV_EVENT"; 1611 } 1612 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1613 1614 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1615 struct net_device *dev) 1616 { 1617 struct netdev_notifier_info info = { 1618 .dev = dev, 1619 }; 1620 1621 return nb->notifier_call(nb, val, &info); 1622 } 1623 1624 static int dev_boot_phase = 1; 1625 1626 /** 1627 * register_netdevice_notifier - register a network notifier block 1628 * @nb: notifier 1629 * 1630 * Register a notifier to be called when network device events occur. 1631 * The notifier passed is linked into the kernel structures and must 1632 * not be reused until it has been unregistered. A negative errno code 1633 * is returned on a failure. 1634 * 1635 * When registered all registration and up events are replayed 1636 * to the new notifier to allow device to have a race free 1637 * view of the network device list. 1638 */ 1639 1640 int register_netdevice_notifier(struct notifier_block *nb) 1641 { 1642 struct net_device *dev; 1643 struct net_device *last; 1644 struct net *net; 1645 int err; 1646 1647 /* Close race with setup_net() and cleanup_net() */ 1648 down_write(&pernet_ops_rwsem); 1649 rtnl_lock(); 1650 err = raw_notifier_chain_register(&netdev_chain, nb); 1651 if (err) 1652 goto unlock; 1653 if (dev_boot_phase) 1654 goto unlock; 1655 for_each_net(net) { 1656 for_each_netdev(net, dev) { 1657 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1658 err = notifier_to_errno(err); 1659 if (err) 1660 goto rollback; 1661 1662 if (!(dev->flags & IFF_UP)) 1663 continue; 1664 1665 call_netdevice_notifier(nb, NETDEV_UP, dev); 1666 } 1667 } 1668 1669 unlock: 1670 rtnl_unlock(); 1671 up_write(&pernet_ops_rwsem); 1672 return err; 1673 1674 rollback: 1675 last = dev; 1676 for_each_net(net) { 1677 for_each_netdev(net, dev) { 1678 if (dev == last) 1679 goto outroll; 1680 1681 if (dev->flags & IFF_UP) { 1682 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1683 dev); 1684 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1685 } 1686 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1687 } 1688 } 1689 1690 outroll: 1691 raw_notifier_chain_unregister(&netdev_chain, nb); 1692 goto unlock; 1693 } 1694 EXPORT_SYMBOL(register_netdevice_notifier); 1695 1696 /** 1697 * unregister_netdevice_notifier - unregister a network notifier block 1698 * @nb: notifier 1699 * 1700 * Unregister a notifier previously registered by 1701 * register_netdevice_notifier(). The notifier is unlinked into the 1702 * kernel structures and may then be reused. A negative errno code 1703 * is returned on a failure. 1704 * 1705 * After unregistering unregister and down device events are synthesized 1706 * for all devices on the device list to the removed notifier to remove 1707 * the need for special case cleanup code. 1708 */ 1709 1710 int unregister_netdevice_notifier(struct notifier_block *nb) 1711 { 1712 struct net_device *dev; 1713 struct net *net; 1714 int err; 1715 1716 /* Close race with setup_net() and cleanup_net() */ 1717 down_write(&pernet_ops_rwsem); 1718 rtnl_lock(); 1719 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1720 if (err) 1721 goto unlock; 1722 1723 for_each_net(net) { 1724 for_each_netdev(net, dev) { 1725 if (dev->flags & IFF_UP) { 1726 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1727 dev); 1728 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1729 } 1730 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1731 } 1732 } 1733 unlock: 1734 rtnl_unlock(); 1735 up_write(&pernet_ops_rwsem); 1736 return err; 1737 } 1738 EXPORT_SYMBOL(unregister_netdevice_notifier); 1739 1740 /** 1741 * call_netdevice_notifiers_info - call all network notifier blocks 1742 * @val: value passed unmodified to notifier function 1743 * @info: notifier information data 1744 * 1745 * Call all network notifier blocks. Parameters and return value 1746 * are as for raw_notifier_call_chain(). 1747 */ 1748 1749 static int call_netdevice_notifiers_info(unsigned long val, 1750 struct netdev_notifier_info *info) 1751 { 1752 ASSERT_RTNL(); 1753 return raw_notifier_call_chain(&netdev_chain, val, info); 1754 } 1755 1756 static int call_netdevice_notifiers_extack(unsigned long val, 1757 struct net_device *dev, 1758 struct netlink_ext_ack *extack) 1759 { 1760 struct netdev_notifier_info info = { 1761 .dev = dev, 1762 .extack = extack, 1763 }; 1764 1765 return call_netdevice_notifiers_info(val, &info); 1766 } 1767 1768 /** 1769 * call_netdevice_notifiers - call all network notifier blocks 1770 * @val: value passed unmodified to notifier function 1771 * @dev: net_device pointer passed unmodified to notifier function 1772 * 1773 * Call all network notifier blocks. Parameters and return value 1774 * are as for raw_notifier_call_chain(). 1775 */ 1776 1777 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1778 { 1779 return call_netdevice_notifiers_extack(val, dev, NULL); 1780 } 1781 EXPORT_SYMBOL(call_netdevice_notifiers); 1782 1783 /** 1784 * call_netdevice_notifiers_mtu - call all network notifier blocks 1785 * @val: value passed unmodified to notifier function 1786 * @dev: net_device pointer passed unmodified to notifier function 1787 * @arg: additional u32 argument passed to the notifier function 1788 * 1789 * Call all network notifier blocks. Parameters and return value 1790 * are as for raw_notifier_call_chain(). 1791 */ 1792 static int call_netdevice_notifiers_mtu(unsigned long val, 1793 struct net_device *dev, u32 arg) 1794 { 1795 struct netdev_notifier_info_ext info = { 1796 .info.dev = dev, 1797 .ext.mtu = arg, 1798 }; 1799 1800 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 1801 1802 return call_netdevice_notifiers_info(val, &info.info); 1803 } 1804 1805 #ifdef CONFIG_NET_INGRESS 1806 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 1807 1808 void net_inc_ingress_queue(void) 1809 { 1810 static_branch_inc(&ingress_needed_key); 1811 } 1812 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1813 1814 void net_dec_ingress_queue(void) 1815 { 1816 static_branch_dec(&ingress_needed_key); 1817 } 1818 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1819 #endif 1820 1821 #ifdef CONFIG_NET_EGRESS 1822 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 1823 1824 void net_inc_egress_queue(void) 1825 { 1826 static_branch_inc(&egress_needed_key); 1827 } 1828 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1829 1830 void net_dec_egress_queue(void) 1831 { 1832 static_branch_dec(&egress_needed_key); 1833 } 1834 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1835 #endif 1836 1837 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 1838 #ifdef CONFIG_JUMP_LABEL 1839 static atomic_t netstamp_needed_deferred; 1840 static atomic_t netstamp_wanted; 1841 static void netstamp_clear(struct work_struct *work) 1842 { 1843 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1844 int wanted; 1845 1846 wanted = atomic_add_return(deferred, &netstamp_wanted); 1847 if (wanted > 0) 1848 static_branch_enable(&netstamp_needed_key); 1849 else 1850 static_branch_disable(&netstamp_needed_key); 1851 } 1852 static DECLARE_WORK(netstamp_work, netstamp_clear); 1853 #endif 1854 1855 void net_enable_timestamp(void) 1856 { 1857 #ifdef CONFIG_JUMP_LABEL 1858 int wanted; 1859 1860 while (1) { 1861 wanted = atomic_read(&netstamp_wanted); 1862 if (wanted <= 0) 1863 break; 1864 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1865 return; 1866 } 1867 atomic_inc(&netstamp_needed_deferred); 1868 schedule_work(&netstamp_work); 1869 #else 1870 static_branch_inc(&netstamp_needed_key); 1871 #endif 1872 } 1873 EXPORT_SYMBOL(net_enable_timestamp); 1874 1875 void net_disable_timestamp(void) 1876 { 1877 #ifdef CONFIG_JUMP_LABEL 1878 int wanted; 1879 1880 while (1) { 1881 wanted = atomic_read(&netstamp_wanted); 1882 if (wanted <= 1) 1883 break; 1884 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1885 return; 1886 } 1887 atomic_dec(&netstamp_needed_deferred); 1888 schedule_work(&netstamp_work); 1889 #else 1890 static_branch_dec(&netstamp_needed_key); 1891 #endif 1892 } 1893 EXPORT_SYMBOL(net_disable_timestamp); 1894 1895 static inline void net_timestamp_set(struct sk_buff *skb) 1896 { 1897 skb->tstamp = 0; 1898 if (static_branch_unlikely(&netstamp_needed_key)) 1899 __net_timestamp(skb); 1900 } 1901 1902 #define net_timestamp_check(COND, SKB) \ 1903 if (static_branch_unlikely(&netstamp_needed_key)) { \ 1904 if ((COND) && !(SKB)->tstamp) \ 1905 __net_timestamp(SKB); \ 1906 } \ 1907 1908 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1909 { 1910 unsigned int len; 1911 1912 if (!(dev->flags & IFF_UP)) 1913 return false; 1914 1915 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1916 if (skb->len <= len) 1917 return true; 1918 1919 /* if TSO is enabled, we don't care about the length as the packet 1920 * could be forwarded without being segmented before 1921 */ 1922 if (skb_is_gso(skb)) 1923 return true; 1924 1925 return false; 1926 } 1927 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1928 1929 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1930 { 1931 int ret = ____dev_forward_skb(dev, skb); 1932 1933 if (likely(!ret)) { 1934 skb->protocol = eth_type_trans(skb, dev); 1935 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1936 } 1937 1938 return ret; 1939 } 1940 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1941 1942 /** 1943 * dev_forward_skb - loopback an skb to another netif 1944 * 1945 * @dev: destination network device 1946 * @skb: buffer to forward 1947 * 1948 * return values: 1949 * NET_RX_SUCCESS (no congestion) 1950 * NET_RX_DROP (packet was dropped, but freed) 1951 * 1952 * dev_forward_skb can be used for injecting an skb from the 1953 * start_xmit function of one device into the receive queue 1954 * of another device. 1955 * 1956 * The receiving device may be in another namespace, so 1957 * we have to clear all information in the skb that could 1958 * impact namespace isolation. 1959 */ 1960 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1961 { 1962 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1963 } 1964 EXPORT_SYMBOL_GPL(dev_forward_skb); 1965 1966 static inline int deliver_skb(struct sk_buff *skb, 1967 struct packet_type *pt_prev, 1968 struct net_device *orig_dev) 1969 { 1970 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1971 return -ENOMEM; 1972 refcount_inc(&skb->users); 1973 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1974 } 1975 1976 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1977 struct packet_type **pt, 1978 struct net_device *orig_dev, 1979 __be16 type, 1980 struct list_head *ptype_list) 1981 { 1982 struct packet_type *ptype, *pt_prev = *pt; 1983 1984 list_for_each_entry_rcu(ptype, ptype_list, list) { 1985 if (ptype->type != type) 1986 continue; 1987 if (pt_prev) 1988 deliver_skb(skb, pt_prev, orig_dev); 1989 pt_prev = ptype; 1990 } 1991 *pt = pt_prev; 1992 } 1993 1994 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1995 { 1996 if (!ptype->af_packet_priv || !skb->sk) 1997 return false; 1998 1999 if (ptype->id_match) 2000 return ptype->id_match(ptype, skb->sk); 2001 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2002 return true; 2003 2004 return false; 2005 } 2006 2007 /** 2008 * dev_nit_active - return true if any network interface taps are in use 2009 * 2010 * @dev: network device to check for the presence of taps 2011 */ 2012 bool dev_nit_active(struct net_device *dev) 2013 { 2014 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2015 } 2016 EXPORT_SYMBOL_GPL(dev_nit_active); 2017 2018 /* 2019 * Support routine. Sends outgoing frames to any network 2020 * taps currently in use. 2021 */ 2022 2023 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2024 { 2025 struct packet_type *ptype; 2026 struct sk_buff *skb2 = NULL; 2027 struct packet_type *pt_prev = NULL; 2028 struct list_head *ptype_list = &ptype_all; 2029 2030 rcu_read_lock(); 2031 again: 2032 list_for_each_entry_rcu(ptype, ptype_list, list) { 2033 if (ptype->ignore_outgoing) 2034 continue; 2035 2036 /* Never send packets back to the socket 2037 * they originated from - MvS (miquels@drinkel.ow.org) 2038 */ 2039 if (skb_loop_sk(ptype, skb)) 2040 continue; 2041 2042 if (pt_prev) { 2043 deliver_skb(skb2, pt_prev, skb->dev); 2044 pt_prev = ptype; 2045 continue; 2046 } 2047 2048 /* need to clone skb, done only once */ 2049 skb2 = skb_clone(skb, GFP_ATOMIC); 2050 if (!skb2) 2051 goto out_unlock; 2052 2053 net_timestamp_set(skb2); 2054 2055 /* skb->nh should be correctly 2056 * set by sender, so that the second statement is 2057 * just protection against buggy protocols. 2058 */ 2059 skb_reset_mac_header(skb2); 2060 2061 if (skb_network_header(skb2) < skb2->data || 2062 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2063 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2064 ntohs(skb2->protocol), 2065 dev->name); 2066 skb_reset_network_header(skb2); 2067 } 2068 2069 skb2->transport_header = skb2->network_header; 2070 skb2->pkt_type = PACKET_OUTGOING; 2071 pt_prev = ptype; 2072 } 2073 2074 if (ptype_list == &ptype_all) { 2075 ptype_list = &dev->ptype_all; 2076 goto again; 2077 } 2078 out_unlock: 2079 if (pt_prev) { 2080 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2081 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2082 else 2083 kfree_skb(skb2); 2084 } 2085 rcu_read_unlock(); 2086 } 2087 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2088 2089 /** 2090 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2091 * @dev: Network device 2092 * @txq: number of queues available 2093 * 2094 * If real_num_tx_queues is changed the tc mappings may no longer be 2095 * valid. To resolve this verify the tc mapping remains valid and if 2096 * not NULL the mapping. With no priorities mapping to this 2097 * offset/count pair it will no longer be used. In the worst case TC0 2098 * is invalid nothing can be done so disable priority mappings. If is 2099 * expected that drivers will fix this mapping if they can before 2100 * calling netif_set_real_num_tx_queues. 2101 */ 2102 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2103 { 2104 int i; 2105 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2106 2107 /* If TC0 is invalidated disable TC mapping */ 2108 if (tc->offset + tc->count > txq) { 2109 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2110 dev->num_tc = 0; 2111 return; 2112 } 2113 2114 /* Invalidated prio to tc mappings set to TC0 */ 2115 for (i = 1; i < TC_BITMASK + 1; i++) { 2116 int q = netdev_get_prio_tc_map(dev, i); 2117 2118 tc = &dev->tc_to_txq[q]; 2119 if (tc->offset + tc->count > txq) { 2120 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2121 i, q); 2122 netdev_set_prio_tc_map(dev, i, 0); 2123 } 2124 } 2125 } 2126 2127 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2128 { 2129 if (dev->num_tc) { 2130 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2131 int i; 2132 2133 /* walk through the TCs and see if it falls into any of them */ 2134 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2135 if ((txq - tc->offset) < tc->count) 2136 return i; 2137 } 2138 2139 /* didn't find it, just return -1 to indicate no match */ 2140 return -1; 2141 } 2142 2143 return 0; 2144 } 2145 EXPORT_SYMBOL(netdev_txq_to_tc); 2146 2147 #ifdef CONFIG_XPS 2148 struct static_key xps_needed __read_mostly; 2149 EXPORT_SYMBOL(xps_needed); 2150 struct static_key xps_rxqs_needed __read_mostly; 2151 EXPORT_SYMBOL(xps_rxqs_needed); 2152 static DEFINE_MUTEX(xps_map_mutex); 2153 #define xmap_dereference(P) \ 2154 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2155 2156 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2157 int tci, u16 index) 2158 { 2159 struct xps_map *map = NULL; 2160 int pos; 2161 2162 if (dev_maps) 2163 map = xmap_dereference(dev_maps->attr_map[tci]); 2164 if (!map) 2165 return false; 2166 2167 for (pos = map->len; pos--;) { 2168 if (map->queues[pos] != index) 2169 continue; 2170 2171 if (map->len > 1) { 2172 map->queues[pos] = map->queues[--map->len]; 2173 break; 2174 } 2175 2176 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2177 kfree_rcu(map, rcu); 2178 return false; 2179 } 2180 2181 return true; 2182 } 2183 2184 static bool remove_xps_queue_cpu(struct net_device *dev, 2185 struct xps_dev_maps *dev_maps, 2186 int cpu, u16 offset, u16 count) 2187 { 2188 int num_tc = dev->num_tc ? : 1; 2189 bool active = false; 2190 int tci; 2191 2192 for (tci = cpu * num_tc; num_tc--; tci++) { 2193 int i, j; 2194 2195 for (i = count, j = offset; i--; j++) { 2196 if (!remove_xps_queue(dev_maps, tci, j)) 2197 break; 2198 } 2199 2200 active |= i < 0; 2201 } 2202 2203 return active; 2204 } 2205 2206 static void reset_xps_maps(struct net_device *dev, 2207 struct xps_dev_maps *dev_maps, 2208 bool is_rxqs_map) 2209 { 2210 if (is_rxqs_map) { 2211 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2212 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2213 } else { 2214 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2215 } 2216 static_key_slow_dec_cpuslocked(&xps_needed); 2217 kfree_rcu(dev_maps, rcu); 2218 } 2219 2220 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2221 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2222 u16 offset, u16 count, bool is_rxqs_map) 2223 { 2224 bool active = false; 2225 int i, j; 2226 2227 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2228 j < nr_ids;) 2229 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2230 count); 2231 if (!active) 2232 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2233 2234 if (!is_rxqs_map) { 2235 for (i = offset + (count - 1); count--; i--) { 2236 netdev_queue_numa_node_write( 2237 netdev_get_tx_queue(dev, i), 2238 NUMA_NO_NODE); 2239 } 2240 } 2241 } 2242 2243 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2244 u16 count) 2245 { 2246 const unsigned long *possible_mask = NULL; 2247 struct xps_dev_maps *dev_maps; 2248 unsigned int nr_ids; 2249 2250 if (!static_key_false(&xps_needed)) 2251 return; 2252 2253 cpus_read_lock(); 2254 mutex_lock(&xps_map_mutex); 2255 2256 if (static_key_false(&xps_rxqs_needed)) { 2257 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2258 if (dev_maps) { 2259 nr_ids = dev->num_rx_queues; 2260 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2261 offset, count, true); 2262 } 2263 } 2264 2265 dev_maps = xmap_dereference(dev->xps_cpus_map); 2266 if (!dev_maps) 2267 goto out_no_maps; 2268 2269 if (num_possible_cpus() > 1) 2270 possible_mask = cpumask_bits(cpu_possible_mask); 2271 nr_ids = nr_cpu_ids; 2272 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2273 false); 2274 2275 out_no_maps: 2276 mutex_unlock(&xps_map_mutex); 2277 cpus_read_unlock(); 2278 } 2279 2280 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2281 { 2282 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2283 } 2284 2285 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2286 u16 index, bool is_rxqs_map) 2287 { 2288 struct xps_map *new_map; 2289 int alloc_len = XPS_MIN_MAP_ALLOC; 2290 int i, pos; 2291 2292 for (pos = 0; map && pos < map->len; pos++) { 2293 if (map->queues[pos] != index) 2294 continue; 2295 return map; 2296 } 2297 2298 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2299 if (map) { 2300 if (pos < map->alloc_len) 2301 return map; 2302 2303 alloc_len = map->alloc_len * 2; 2304 } 2305 2306 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2307 * map 2308 */ 2309 if (is_rxqs_map) 2310 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2311 else 2312 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2313 cpu_to_node(attr_index)); 2314 if (!new_map) 2315 return NULL; 2316 2317 for (i = 0; i < pos; i++) 2318 new_map->queues[i] = map->queues[i]; 2319 new_map->alloc_len = alloc_len; 2320 new_map->len = pos; 2321 2322 return new_map; 2323 } 2324 2325 /* Must be called under cpus_read_lock */ 2326 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2327 u16 index, bool is_rxqs_map) 2328 { 2329 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2330 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2331 int i, j, tci, numa_node_id = -2; 2332 int maps_sz, num_tc = 1, tc = 0; 2333 struct xps_map *map, *new_map; 2334 bool active = false; 2335 unsigned int nr_ids; 2336 2337 if (dev->num_tc) { 2338 /* Do not allow XPS on subordinate device directly */ 2339 num_tc = dev->num_tc; 2340 if (num_tc < 0) 2341 return -EINVAL; 2342 2343 /* If queue belongs to subordinate dev use its map */ 2344 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2345 2346 tc = netdev_txq_to_tc(dev, index); 2347 if (tc < 0) 2348 return -EINVAL; 2349 } 2350 2351 mutex_lock(&xps_map_mutex); 2352 if (is_rxqs_map) { 2353 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2354 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2355 nr_ids = dev->num_rx_queues; 2356 } else { 2357 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2358 if (num_possible_cpus() > 1) { 2359 online_mask = cpumask_bits(cpu_online_mask); 2360 possible_mask = cpumask_bits(cpu_possible_mask); 2361 } 2362 dev_maps = xmap_dereference(dev->xps_cpus_map); 2363 nr_ids = nr_cpu_ids; 2364 } 2365 2366 if (maps_sz < L1_CACHE_BYTES) 2367 maps_sz = L1_CACHE_BYTES; 2368 2369 /* allocate memory for queue storage */ 2370 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2371 j < nr_ids;) { 2372 if (!new_dev_maps) 2373 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2374 if (!new_dev_maps) { 2375 mutex_unlock(&xps_map_mutex); 2376 return -ENOMEM; 2377 } 2378 2379 tci = j * num_tc + tc; 2380 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2381 NULL; 2382 2383 map = expand_xps_map(map, j, index, is_rxqs_map); 2384 if (!map) 2385 goto error; 2386 2387 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2388 } 2389 2390 if (!new_dev_maps) 2391 goto out_no_new_maps; 2392 2393 if (!dev_maps) { 2394 /* Increment static keys at most once per type */ 2395 static_key_slow_inc_cpuslocked(&xps_needed); 2396 if (is_rxqs_map) 2397 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2398 } 2399 2400 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2401 j < nr_ids;) { 2402 /* copy maps belonging to foreign traffic classes */ 2403 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2404 /* fill in the new device map from the old device map */ 2405 map = xmap_dereference(dev_maps->attr_map[tci]); 2406 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2407 } 2408 2409 /* We need to explicitly update tci as prevous loop 2410 * could break out early if dev_maps is NULL. 2411 */ 2412 tci = j * num_tc + tc; 2413 2414 if (netif_attr_test_mask(j, mask, nr_ids) && 2415 netif_attr_test_online(j, online_mask, nr_ids)) { 2416 /* add tx-queue to CPU/rx-queue maps */ 2417 int pos = 0; 2418 2419 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2420 while ((pos < map->len) && (map->queues[pos] != index)) 2421 pos++; 2422 2423 if (pos == map->len) 2424 map->queues[map->len++] = index; 2425 #ifdef CONFIG_NUMA 2426 if (!is_rxqs_map) { 2427 if (numa_node_id == -2) 2428 numa_node_id = cpu_to_node(j); 2429 else if (numa_node_id != cpu_to_node(j)) 2430 numa_node_id = -1; 2431 } 2432 #endif 2433 } else if (dev_maps) { 2434 /* fill in the new device map from the old device map */ 2435 map = xmap_dereference(dev_maps->attr_map[tci]); 2436 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2437 } 2438 2439 /* copy maps belonging to foreign traffic classes */ 2440 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2441 /* fill in the new device map from the old device map */ 2442 map = xmap_dereference(dev_maps->attr_map[tci]); 2443 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2444 } 2445 } 2446 2447 if (is_rxqs_map) 2448 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2449 else 2450 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2451 2452 /* Cleanup old maps */ 2453 if (!dev_maps) 2454 goto out_no_old_maps; 2455 2456 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2457 j < nr_ids;) { 2458 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2459 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2460 map = xmap_dereference(dev_maps->attr_map[tci]); 2461 if (map && map != new_map) 2462 kfree_rcu(map, rcu); 2463 } 2464 } 2465 2466 kfree_rcu(dev_maps, rcu); 2467 2468 out_no_old_maps: 2469 dev_maps = new_dev_maps; 2470 active = true; 2471 2472 out_no_new_maps: 2473 if (!is_rxqs_map) { 2474 /* update Tx queue numa node */ 2475 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2476 (numa_node_id >= 0) ? 2477 numa_node_id : NUMA_NO_NODE); 2478 } 2479 2480 if (!dev_maps) 2481 goto out_no_maps; 2482 2483 /* removes tx-queue from unused CPUs/rx-queues */ 2484 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2485 j < nr_ids;) { 2486 for (i = tc, tci = j * num_tc; i--; tci++) 2487 active |= remove_xps_queue(dev_maps, tci, index); 2488 if (!netif_attr_test_mask(j, mask, nr_ids) || 2489 !netif_attr_test_online(j, online_mask, nr_ids)) 2490 active |= remove_xps_queue(dev_maps, tci, index); 2491 for (i = num_tc - tc, tci++; --i; tci++) 2492 active |= remove_xps_queue(dev_maps, tci, index); 2493 } 2494 2495 /* free map if not active */ 2496 if (!active) 2497 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2498 2499 out_no_maps: 2500 mutex_unlock(&xps_map_mutex); 2501 2502 return 0; 2503 error: 2504 /* remove any maps that we added */ 2505 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2506 j < nr_ids;) { 2507 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2508 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2509 map = dev_maps ? 2510 xmap_dereference(dev_maps->attr_map[tci]) : 2511 NULL; 2512 if (new_map && new_map != map) 2513 kfree(new_map); 2514 } 2515 } 2516 2517 mutex_unlock(&xps_map_mutex); 2518 2519 kfree(new_dev_maps); 2520 return -ENOMEM; 2521 } 2522 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2523 2524 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2525 u16 index) 2526 { 2527 int ret; 2528 2529 cpus_read_lock(); 2530 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2531 cpus_read_unlock(); 2532 2533 return ret; 2534 } 2535 EXPORT_SYMBOL(netif_set_xps_queue); 2536 2537 #endif 2538 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2539 { 2540 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2541 2542 /* Unbind any subordinate channels */ 2543 while (txq-- != &dev->_tx[0]) { 2544 if (txq->sb_dev) 2545 netdev_unbind_sb_channel(dev, txq->sb_dev); 2546 } 2547 } 2548 2549 void netdev_reset_tc(struct net_device *dev) 2550 { 2551 #ifdef CONFIG_XPS 2552 netif_reset_xps_queues_gt(dev, 0); 2553 #endif 2554 netdev_unbind_all_sb_channels(dev); 2555 2556 /* Reset TC configuration of device */ 2557 dev->num_tc = 0; 2558 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2559 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2560 } 2561 EXPORT_SYMBOL(netdev_reset_tc); 2562 2563 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2564 { 2565 if (tc >= dev->num_tc) 2566 return -EINVAL; 2567 2568 #ifdef CONFIG_XPS 2569 netif_reset_xps_queues(dev, offset, count); 2570 #endif 2571 dev->tc_to_txq[tc].count = count; 2572 dev->tc_to_txq[tc].offset = offset; 2573 return 0; 2574 } 2575 EXPORT_SYMBOL(netdev_set_tc_queue); 2576 2577 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2578 { 2579 if (num_tc > TC_MAX_QUEUE) 2580 return -EINVAL; 2581 2582 #ifdef CONFIG_XPS 2583 netif_reset_xps_queues_gt(dev, 0); 2584 #endif 2585 netdev_unbind_all_sb_channels(dev); 2586 2587 dev->num_tc = num_tc; 2588 return 0; 2589 } 2590 EXPORT_SYMBOL(netdev_set_num_tc); 2591 2592 void netdev_unbind_sb_channel(struct net_device *dev, 2593 struct net_device *sb_dev) 2594 { 2595 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2596 2597 #ifdef CONFIG_XPS 2598 netif_reset_xps_queues_gt(sb_dev, 0); 2599 #endif 2600 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2601 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2602 2603 while (txq-- != &dev->_tx[0]) { 2604 if (txq->sb_dev == sb_dev) 2605 txq->sb_dev = NULL; 2606 } 2607 } 2608 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2609 2610 int netdev_bind_sb_channel_queue(struct net_device *dev, 2611 struct net_device *sb_dev, 2612 u8 tc, u16 count, u16 offset) 2613 { 2614 /* Make certain the sb_dev and dev are already configured */ 2615 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2616 return -EINVAL; 2617 2618 /* We cannot hand out queues we don't have */ 2619 if ((offset + count) > dev->real_num_tx_queues) 2620 return -EINVAL; 2621 2622 /* Record the mapping */ 2623 sb_dev->tc_to_txq[tc].count = count; 2624 sb_dev->tc_to_txq[tc].offset = offset; 2625 2626 /* Provide a way for Tx queue to find the tc_to_txq map or 2627 * XPS map for itself. 2628 */ 2629 while (count--) 2630 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2631 2632 return 0; 2633 } 2634 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2635 2636 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2637 { 2638 /* Do not use a multiqueue device to represent a subordinate channel */ 2639 if (netif_is_multiqueue(dev)) 2640 return -ENODEV; 2641 2642 /* We allow channels 1 - 32767 to be used for subordinate channels. 2643 * Channel 0 is meant to be "native" mode and used only to represent 2644 * the main root device. We allow writing 0 to reset the device back 2645 * to normal mode after being used as a subordinate channel. 2646 */ 2647 if (channel > S16_MAX) 2648 return -EINVAL; 2649 2650 dev->num_tc = -channel; 2651 2652 return 0; 2653 } 2654 EXPORT_SYMBOL(netdev_set_sb_channel); 2655 2656 /* 2657 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2658 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2659 */ 2660 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2661 { 2662 bool disabling; 2663 int rc; 2664 2665 disabling = txq < dev->real_num_tx_queues; 2666 2667 if (txq < 1 || txq > dev->num_tx_queues) 2668 return -EINVAL; 2669 2670 if (dev->reg_state == NETREG_REGISTERED || 2671 dev->reg_state == NETREG_UNREGISTERING) { 2672 ASSERT_RTNL(); 2673 2674 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2675 txq); 2676 if (rc) 2677 return rc; 2678 2679 if (dev->num_tc) 2680 netif_setup_tc(dev, txq); 2681 2682 dev->real_num_tx_queues = txq; 2683 2684 if (disabling) { 2685 synchronize_net(); 2686 qdisc_reset_all_tx_gt(dev, txq); 2687 #ifdef CONFIG_XPS 2688 netif_reset_xps_queues_gt(dev, txq); 2689 #endif 2690 } 2691 } else { 2692 dev->real_num_tx_queues = txq; 2693 } 2694 2695 return 0; 2696 } 2697 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2698 2699 #ifdef CONFIG_SYSFS 2700 /** 2701 * netif_set_real_num_rx_queues - set actual number of RX queues used 2702 * @dev: Network device 2703 * @rxq: Actual number of RX queues 2704 * 2705 * This must be called either with the rtnl_lock held or before 2706 * registration of the net device. Returns 0 on success, or a 2707 * negative error code. If called before registration, it always 2708 * succeeds. 2709 */ 2710 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2711 { 2712 int rc; 2713 2714 if (rxq < 1 || rxq > dev->num_rx_queues) 2715 return -EINVAL; 2716 2717 if (dev->reg_state == NETREG_REGISTERED) { 2718 ASSERT_RTNL(); 2719 2720 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2721 rxq); 2722 if (rc) 2723 return rc; 2724 } 2725 2726 dev->real_num_rx_queues = rxq; 2727 return 0; 2728 } 2729 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2730 #endif 2731 2732 /** 2733 * netif_get_num_default_rss_queues - default number of RSS queues 2734 * 2735 * This routine should set an upper limit on the number of RSS queues 2736 * used by default by multiqueue devices. 2737 */ 2738 int netif_get_num_default_rss_queues(void) 2739 { 2740 return is_kdump_kernel() ? 2741 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2742 } 2743 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2744 2745 static void __netif_reschedule(struct Qdisc *q) 2746 { 2747 struct softnet_data *sd; 2748 unsigned long flags; 2749 2750 local_irq_save(flags); 2751 sd = this_cpu_ptr(&softnet_data); 2752 q->next_sched = NULL; 2753 *sd->output_queue_tailp = q; 2754 sd->output_queue_tailp = &q->next_sched; 2755 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2756 local_irq_restore(flags); 2757 } 2758 2759 void __netif_schedule(struct Qdisc *q) 2760 { 2761 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2762 __netif_reschedule(q); 2763 } 2764 EXPORT_SYMBOL(__netif_schedule); 2765 2766 struct dev_kfree_skb_cb { 2767 enum skb_free_reason reason; 2768 }; 2769 2770 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2771 { 2772 return (struct dev_kfree_skb_cb *)skb->cb; 2773 } 2774 2775 void netif_schedule_queue(struct netdev_queue *txq) 2776 { 2777 rcu_read_lock(); 2778 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2779 struct Qdisc *q = rcu_dereference(txq->qdisc); 2780 2781 __netif_schedule(q); 2782 } 2783 rcu_read_unlock(); 2784 } 2785 EXPORT_SYMBOL(netif_schedule_queue); 2786 2787 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2788 { 2789 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2790 struct Qdisc *q; 2791 2792 rcu_read_lock(); 2793 q = rcu_dereference(dev_queue->qdisc); 2794 __netif_schedule(q); 2795 rcu_read_unlock(); 2796 } 2797 } 2798 EXPORT_SYMBOL(netif_tx_wake_queue); 2799 2800 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2801 { 2802 unsigned long flags; 2803 2804 if (unlikely(!skb)) 2805 return; 2806 2807 if (likely(refcount_read(&skb->users) == 1)) { 2808 smp_rmb(); 2809 refcount_set(&skb->users, 0); 2810 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2811 return; 2812 } 2813 get_kfree_skb_cb(skb)->reason = reason; 2814 local_irq_save(flags); 2815 skb->next = __this_cpu_read(softnet_data.completion_queue); 2816 __this_cpu_write(softnet_data.completion_queue, skb); 2817 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2818 local_irq_restore(flags); 2819 } 2820 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2821 2822 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2823 { 2824 if (in_irq() || irqs_disabled()) 2825 __dev_kfree_skb_irq(skb, reason); 2826 else 2827 dev_kfree_skb(skb); 2828 } 2829 EXPORT_SYMBOL(__dev_kfree_skb_any); 2830 2831 2832 /** 2833 * netif_device_detach - mark device as removed 2834 * @dev: network device 2835 * 2836 * Mark device as removed from system and therefore no longer available. 2837 */ 2838 void netif_device_detach(struct net_device *dev) 2839 { 2840 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2841 netif_running(dev)) { 2842 netif_tx_stop_all_queues(dev); 2843 } 2844 } 2845 EXPORT_SYMBOL(netif_device_detach); 2846 2847 /** 2848 * netif_device_attach - mark device as attached 2849 * @dev: network device 2850 * 2851 * Mark device as attached from system and restart if needed. 2852 */ 2853 void netif_device_attach(struct net_device *dev) 2854 { 2855 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2856 netif_running(dev)) { 2857 netif_tx_wake_all_queues(dev); 2858 __netdev_watchdog_up(dev); 2859 } 2860 } 2861 EXPORT_SYMBOL(netif_device_attach); 2862 2863 /* 2864 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2865 * to be used as a distribution range. 2866 */ 2867 static u16 skb_tx_hash(const struct net_device *dev, 2868 const struct net_device *sb_dev, 2869 struct sk_buff *skb) 2870 { 2871 u32 hash; 2872 u16 qoffset = 0; 2873 u16 qcount = dev->real_num_tx_queues; 2874 2875 if (dev->num_tc) { 2876 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2877 2878 qoffset = sb_dev->tc_to_txq[tc].offset; 2879 qcount = sb_dev->tc_to_txq[tc].count; 2880 } 2881 2882 if (skb_rx_queue_recorded(skb)) { 2883 hash = skb_get_rx_queue(skb); 2884 while (unlikely(hash >= qcount)) 2885 hash -= qcount; 2886 return hash + qoffset; 2887 } 2888 2889 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2890 } 2891 2892 static void skb_warn_bad_offload(const struct sk_buff *skb) 2893 { 2894 static const netdev_features_t null_features; 2895 struct net_device *dev = skb->dev; 2896 const char *name = ""; 2897 2898 if (!net_ratelimit()) 2899 return; 2900 2901 if (dev) { 2902 if (dev->dev.parent) 2903 name = dev_driver_string(dev->dev.parent); 2904 else 2905 name = netdev_name(dev); 2906 } 2907 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2908 "gso_type=%d ip_summed=%d\n", 2909 name, dev ? &dev->features : &null_features, 2910 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2911 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2912 skb_shinfo(skb)->gso_type, skb->ip_summed); 2913 } 2914 2915 /* 2916 * Invalidate hardware checksum when packet is to be mangled, and 2917 * complete checksum manually on outgoing path. 2918 */ 2919 int skb_checksum_help(struct sk_buff *skb) 2920 { 2921 __wsum csum; 2922 int ret = 0, offset; 2923 2924 if (skb->ip_summed == CHECKSUM_COMPLETE) 2925 goto out_set_summed; 2926 2927 if (unlikely(skb_shinfo(skb)->gso_size)) { 2928 skb_warn_bad_offload(skb); 2929 return -EINVAL; 2930 } 2931 2932 /* Before computing a checksum, we should make sure no frag could 2933 * be modified by an external entity : checksum could be wrong. 2934 */ 2935 if (skb_has_shared_frag(skb)) { 2936 ret = __skb_linearize(skb); 2937 if (ret) 2938 goto out; 2939 } 2940 2941 offset = skb_checksum_start_offset(skb); 2942 BUG_ON(offset >= skb_headlen(skb)); 2943 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2944 2945 offset += skb->csum_offset; 2946 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2947 2948 if (skb_cloned(skb) && 2949 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2950 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2951 if (ret) 2952 goto out; 2953 } 2954 2955 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2956 out_set_summed: 2957 skb->ip_summed = CHECKSUM_NONE; 2958 out: 2959 return ret; 2960 } 2961 EXPORT_SYMBOL(skb_checksum_help); 2962 2963 int skb_crc32c_csum_help(struct sk_buff *skb) 2964 { 2965 __le32 crc32c_csum; 2966 int ret = 0, offset, start; 2967 2968 if (skb->ip_summed != CHECKSUM_PARTIAL) 2969 goto out; 2970 2971 if (unlikely(skb_is_gso(skb))) 2972 goto out; 2973 2974 /* Before computing a checksum, we should make sure no frag could 2975 * be modified by an external entity : checksum could be wrong. 2976 */ 2977 if (unlikely(skb_has_shared_frag(skb))) { 2978 ret = __skb_linearize(skb); 2979 if (ret) 2980 goto out; 2981 } 2982 start = skb_checksum_start_offset(skb); 2983 offset = start + offsetof(struct sctphdr, checksum); 2984 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2985 ret = -EINVAL; 2986 goto out; 2987 } 2988 if (skb_cloned(skb) && 2989 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2990 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2991 if (ret) 2992 goto out; 2993 } 2994 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2995 skb->len - start, ~(__u32)0, 2996 crc32c_csum_stub)); 2997 *(__le32 *)(skb->data + offset) = crc32c_csum; 2998 skb->ip_summed = CHECKSUM_NONE; 2999 skb->csum_not_inet = 0; 3000 out: 3001 return ret; 3002 } 3003 3004 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3005 { 3006 __be16 type = skb->protocol; 3007 3008 /* Tunnel gso handlers can set protocol to ethernet. */ 3009 if (type == htons(ETH_P_TEB)) { 3010 struct ethhdr *eth; 3011 3012 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3013 return 0; 3014 3015 eth = (struct ethhdr *)skb->data; 3016 type = eth->h_proto; 3017 } 3018 3019 return __vlan_get_protocol(skb, type, depth); 3020 } 3021 3022 /** 3023 * skb_mac_gso_segment - mac layer segmentation handler. 3024 * @skb: buffer to segment 3025 * @features: features for the output path (see dev->features) 3026 */ 3027 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3028 netdev_features_t features) 3029 { 3030 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3031 struct packet_offload *ptype; 3032 int vlan_depth = skb->mac_len; 3033 __be16 type = skb_network_protocol(skb, &vlan_depth); 3034 3035 if (unlikely(!type)) 3036 return ERR_PTR(-EINVAL); 3037 3038 __skb_pull(skb, vlan_depth); 3039 3040 rcu_read_lock(); 3041 list_for_each_entry_rcu(ptype, &offload_base, list) { 3042 if (ptype->type == type && ptype->callbacks.gso_segment) { 3043 segs = ptype->callbacks.gso_segment(skb, features); 3044 break; 3045 } 3046 } 3047 rcu_read_unlock(); 3048 3049 __skb_push(skb, skb->data - skb_mac_header(skb)); 3050 3051 return segs; 3052 } 3053 EXPORT_SYMBOL(skb_mac_gso_segment); 3054 3055 3056 /* openvswitch calls this on rx path, so we need a different check. 3057 */ 3058 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3059 { 3060 if (tx_path) 3061 return skb->ip_summed != CHECKSUM_PARTIAL && 3062 skb->ip_summed != CHECKSUM_UNNECESSARY; 3063 3064 return skb->ip_summed == CHECKSUM_NONE; 3065 } 3066 3067 /** 3068 * __skb_gso_segment - Perform segmentation on skb. 3069 * @skb: buffer to segment 3070 * @features: features for the output path (see dev->features) 3071 * @tx_path: whether it is called in TX path 3072 * 3073 * This function segments the given skb and returns a list of segments. 3074 * 3075 * It may return NULL if the skb requires no segmentation. This is 3076 * only possible when GSO is used for verifying header integrity. 3077 * 3078 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 3079 */ 3080 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3081 netdev_features_t features, bool tx_path) 3082 { 3083 struct sk_buff *segs; 3084 3085 if (unlikely(skb_needs_check(skb, tx_path))) { 3086 int err; 3087 3088 /* We're going to init ->check field in TCP or UDP header */ 3089 err = skb_cow_head(skb, 0); 3090 if (err < 0) 3091 return ERR_PTR(err); 3092 } 3093 3094 /* Only report GSO partial support if it will enable us to 3095 * support segmentation on this frame without needing additional 3096 * work. 3097 */ 3098 if (features & NETIF_F_GSO_PARTIAL) { 3099 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3100 struct net_device *dev = skb->dev; 3101 3102 partial_features |= dev->features & dev->gso_partial_features; 3103 if (!skb_gso_ok(skb, features | partial_features)) 3104 features &= ~NETIF_F_GSO_PARTIAL; 3105 } 3106 3107 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 3108 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3109 3110 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3111 SKB_GSO_CB(skb)->encap_level = 0; 3112 3113 skb_reset_mac_header(skb); 3114 skb_reset_mac_len(skb); 3115 3116 segs = skb_mac_gso_segment(skb, features); 3117 3118 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3119 skb_warn_bad_offload(skb); 3120 3121 return segs; 3122 } 3123 EXPORT_SYMBOL(__skb_gso_segment); 3124 3125 /* Take action when hardware reception checksum errors are detected. */ 3126 #ifdef CONFIG_BUG 3127 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3128 { 3129 if (net_ratelimit()) { 3130 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3131 if (dev) 3132 pr_err("dev features: %pNF\n", &dev->features); 3133 pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n", 3134 skb->len, skb->data_len, skb->pkt_type, 3135 skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type, 3136 skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum, 3137 skb->csum_complete_sw, skb->csum_valid, skb->csum_level); 3138 dump_stack(); 3139 } 3140 } 3141 EXPORT_SYMBOL(netdev_rx_csum_fault); 3142 #endif 3143 3144 /* XXX: check that highmem exists at all on the given machine. */ 3145 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3146 { 3147 #ifdef CONFIG_HIGHMEM 3148 int i; 3149 3150 if (!(dev->features & NETIF_F_HIGHDMA)) { 3151 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3152 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3153 3154 if (PageHighMem(skb_frag_page(frag))) 3155 return 1; 3156 } 3157 } 3158 #endif 3159 return 0; 3160 } 3161 3162 /* If MPLS offload request, verify we are testing hardware MPLS features 3163 * instead of standard features for the netdev. 3164 */ 3165 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3166 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3167 netdev_features_t features, 3168 __be16 type) 3169 { 3170 if (eth_p_mpls(type)) 3171 features &= skb->dev->mpls_features; 3172 3173 return features; 3174 } 3175 #else 3176 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3177 netdev_features_t features, 3178 __be16 type) 3179 { 3180 return features; 3181 } 3182 #endif 3183 3184 static netdev_features_t harmonize_features(struct sk_buff *skb, 3185 netdev_features_t features) 3186 { 3187 int tmp; 3188 __be16 type; 3189 3190 type = skb_network_protocol(skb, &tmp); 3191 features = net_mpls_features(skb, features, type); 3192 3193 if (skb->ip_summed != CHECKSUM_NONE && 3194 !can_checksum_protocol(features, type)) { 3195 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3196 } 3197 if (illegal_highdma(skb->dev, skb)) 3198 features &= ~NETIF_F_SG; 3199 3200 return features; 3201 } 3202 3203 netdev_features_t passthru_features_check(struct sk_buff *skb, 3204 struct net_device *dev, 3205 netdev_features_t features) 3206 { 3207 return features; 3208 } 3209 EXPORT_SYMBOL(passthru_features_check); 3210 3211 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3212 struct net_device *dev, 3213 netdev_features_t features) 3214 { 3215 return vlan_features_check(skb, features); 3216 } 3217 3218 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3219 struct net_device *dev, 3220 netdev_features_t features) 3221 { 3222 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3223 3224 if (gso_segs > dev->gso_max_segs) 3225 return features & ~NETIF_F_GSO_MASK; 3226 3227 /* Support for GSO partial features requires software 3228 * intervention before we can actually process the packets 3229 * so we need to strip support for any partial features now 3230 * and we can pull them back in after we have partially 3231 * segmented the frame. 3232 */ 3233 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3234 features &= ~dev->gso_partial_features; 3235 3236 /* Make sure to clear the IPv4 ID mangling feature if the 3237 * IPv4 header has the potential to be fragmented. 3238 */ 3239 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3240 struct iphdr *iph = skb->encapsulation ? 3241 inner_ip_hdr(skb) : ip_hdr(skb); 3242 3243 if (!(iph->frag_off & htons(IP_DF))) 3244 features &= ~NETIF_F_TSO_MANGLEID; 3245 } 3246 3247 return features; 3248 } 3249 3250 netdev_features_t netif_skb_features(struct sk_buff *skb) 3251 { 3252 struct net_device *dev = skb->dev; 3253 netdev_features_t features = dev->features; 3254 3255 if (skb_is_gso(skb)) 3256 features = gso_features_check(skb, dev, features); 3257 3258 /* If encapsulation offload request, verify we are testing 3259 * hardware encapsulation features instead of standard 3260 * features for the netdev 3261 */ 3262 if (skb->encapsulation) 3263 features &= dev->hw_enc_features; 3264 3265 if (skb_vlan_tagged(skb)) 3266 features = netdev_intersect_features(features, 3267 dev->vlan_features | 3268 NETIF_F_HW_VLAN_CTAG_TX | 3269 NETIF_F_HW_VLAN_STAG_TX); 3270 3271 if (dev->netdev_ops->ndo_features_check) 3272 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3273 features); 3274 else 3275 features &= dflt_features_check(skb, dev, features); 3276 3277 return harmonize_features(skb, features); 3278 } 3279 EXPORT_SYMBOL(netif_skb_features); 3280 3281 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3282 struct netdev_queue *txq, bool more) 3283 { 3284 unsigned int len; 3285 int rc; 3286 3287 if (dev_nit_active(dev)) 3288 dev_queue_xmit_nit(skb, dev); 3289 3290 len = skb->len; 3291 trace_net_dev_start_xmit(skb, dev); 3292 rc = netdev_start_xmit(skb, dev, txq, more); 3293 trace_net_dev_xmit(skb, rc, dev, len); 3294 3295 return rc; 3296 } 3297 3298 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3299 struct netdev_queue *txq, int *ret) 3300 { 3301 struct sk_buff *skb = first; 3302 int rc = NETDEV_TX_OK; 3303 3304 while (skb) { 3305 struct sk_buff *next = skb->next; 3306 3307 skb_mark_not_on_list(skb); 3308 rc = xmit_one(skb, dev, txq, next != NULL); 3309 if (unlikely(!dev_xmit_complete(rc))) { 3310 skb->next = next; 3311 goto out; 3312 } 3313 3314 skb = next; 3315 if (netif_tx_queue_stopped(txq) && skb) { 3316 rc = NETDEV_TX_BUSY; 3317 break; 3318 } 3319 } 3320 3321 out: 3322 *ret = rc; 3323 return skb; 3324 } 3325 3326 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3327 netdev_features_t features) 3328 { 3329 if (skb_vlan_tag_present(skb) && 3330 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3331 skb = __vlan_hwaccel_push_inside(skb); 3332 return skb; 3333 } 3334 3335 int skb_csum_hwoffload_help(struct sk_buff *skb, 3336 const netdev_features_t features) 3337 { 3338 if (unlikely(skb->csum_not_inet)) 3339 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3340 skb_crc32c_csum_help(skb); 3341 3342 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3343 } 3344 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3345 3346 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3347 { 3348 netdev_features_t features; 3349 3350 features = netif_skb_features(skb); 3351 skb = validate_xmit_vlan(skb, features); 3352 if (unlikely(!skb)) 3353 goto out_null; 3354 3355 skb = sk_validate_xmit_skb(skb, dev); 3356 if (unlikely(!skb)) 3357 goto out_null; 3358 3359 if (netif_needs_gso(skb, features)) { 3360 struct sk_buff *segs; 3361 3362 segs = skb_gso_segment(skb, features); 3363 if (IS_ERR(segs)) { 3364 goto out_kfree_skb; 3365 } else if (segs) { 3366 consume_skb(skb); 3367 skb = segs; 3368 } 3369 } else { 3370 if (skb_needs_linearize(skb, features) && 3371 __skb_linearize(skb)) 3372 goto out_kfree_skb; 3373 3374 /* If packet is not checksummed and device does not 3375 * support checksumming for this protocol, complete 3376 * checksumming here. 3377 */ 3378 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3379 if (skb->encapsulation) 3380 skb_set_inner_transport_header(skb, 3381 skb_checksum_start_offset(skb)); 3382 else 3383 skb_set_transport_header(skb, 3384 skb_checksum_start_offset(skb)); 3385 if (skb_csum_hwoffload_help(skb, features)) 3386 goto out_kfree_skb; 3387 } 3388 } 3389 3390 skb = validate_xmit_xfrm(skb, features, again); 3391 3392 return skb; 3393 3394 out_kfree_skb: 3395 kfree_skb(skb); 3396 out_null: 3397 atomic_long_inc(&dev->tx_dropped); 3398 return NULL; 3399 } 3400 3401 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3402 { 3403 struct sk_buff *next, *head = NULL, *tail; 3404 3405 for (; skb != NULL; skb = next) { 3406 next = skb->next; 3407 skb_mark_not_on_list(skb); 3408 3409 /* in case skb wont be segmented, point to itself */ 3410 skb->prev = skb; 3411 3412 skb = validate_xmit_skb(skb, dev, again); 3413 if (!skb) 3414 continue; 3415 3416 if (!head) 3417 head = skb; 3418 else 3419 tail->next = skb; 3420 /* If skb was segmented, skb->prev points to 3421 * the last segment. If not, it still contains skb. 3422 */ 3423 tail = skb->prev; 3424 } 3425 return head; 3426 } 3427 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3428 3429 static void qdisc_pkt_len_init(struct sk_buff *skb) 3430 { 3431 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3432 3433 qdisc_skb_cb(skb)->pkt_len = skb->len; 3434 3435 /* To get more precise estimation of bytes sent on wire, 3436 * we add to pkt_len the headers size of all segments 3437 */ 3438 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3439 unsigned int hdr_len; 3440 u16 gso_segs = shinfo->gso_segs; 3441 3442 /* mac layer + network layer */ 3443 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3444 3445 /* + transport layer */ 3446 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3447 const struct tcphdr *th; 3448 struct tcphdr _tcphdr; 3449 3450 th = skb_header_pointer(skb, skb_transport_offset(skb), 3451 sizeof(_tcphdr), &_tcphdr); 3452 if (likely(th)) 3453 hdr_len += __tcp_hdrlen(th); 3454 } else { 3455 struct udphdr _udphdr; 3456 3457 if (skb_header_pointer(skb, skb_transport_offset(skb), 3458 sizeof(_udphdr), &_udphdr)) 3459 hdr_len += sizeof(struct udphdr); 3460 } 3461 3462 if (shinfo->gso_type & SKB_GSO_DODGY) 3463 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3464 shinfo->gso_size); 3465 3466 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3467 } 3468 } 3469 3470 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3471 struct net_device *dev, 3472 struct netdev_queue *txq) 3473 { 3474 spinlock_t *root_lock = qdisc_lock(q); 3475 struct sk_buff *to_free = NULL; 3476 bool contended; 3477 int rc; 3478 3479 qdisc_calculate_pkt_len(skb, q); 3480 3481 if (q->flags & TCQ_F_NOLOCK) { 3482 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3483 __qdisc_drop(skb, &to_free); 3484 rc = NET_XMIT_DROP; 3485 } else { 3486 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3487 qdisc_run(q); 3488 } 3489 3490 if (unlikely(to_free)) 3491 kfree_skb_list(to_free); 3492 return rc; 3493 } 3494 3495 /* 3496 * Heuristic to force contended enqueues to serialize on a 3497 * separate lock before trying to get qdisc main lock. 3498 * This permits qdisc->running owner to get the lock more 3499 * often and dequeue packets faster. 3500 */ 3501 contended = qdisc_is_running(q); 3502 if (unlikely(contended)) 3503 spin_lock(&q->busylock); 3504 3505 spin_lock(root_lock); 3506 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3507 __qdisc_drop(skb, &to_free); 3508 rc = NET_XMIT_DROP; 3509 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3510 qdisc_run_begin(q)) { 3511 /* 3512 * This is a work-conserving queue; there are no old skbs 3513 * waiting to be sent out; and the qdisc is not running - 3514 * xmit the skb directly. 3515 */ 3516 3517 qdisc_bstats_update(q, skb); 3518 3519 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3520 if (unlikely(contended)) { 3521 spin_unlock(&q->busylock); 3522 contended = false; 3523 } 3524 __qdisc_run(q); 3525 } 3526 3527 qdisc_run_end(q); 3528 rc = NET_XMIT_SUCCESS; 3529 } else { 3530 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3531 if (qdisc_run_begin(q)) { 3532 if (unlikely(contended)) { 3533 spin_unlock(&q->busylock); 3534 contended = false; 3535 } 3536 __qdisc_run(q); 3537 qdisc_run_end(q); 3538 } 3539 } 3540 spin_unlock(root_lock); 3541 if (unlikely(to_free)) 3542 kfree_skb_list(to_free); 3543 if (unlikely(contended)) 3544 spin_unlock(&q->busylock); 3545 return rc; 3546 } 3547 3548 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3549 static void skb_update_prio(struct sk_buff *skb) 3550 { 3551 const struct netprio_map *map; 3552 const struct sock *sk; 3553 unsigned int prioidx; 3554 3555 if (skb->priority) 3556 return; 3557 map = rcu_dereference_bh(skb->dev->priomap); 3558 if (!map) 3559 return; 3560 sk = skb_to_full_sk(skb); 3561 if (!sk) 3562 return; 3563 3564 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3565 3566 if (prioidx < map->priomap_len) 3567 skb->priority = map->priomap[prioidx]; 3568 } 3569 #else 3570 #define skb_update_prio(skb) 3571 #endif 3572 3573 DEFINE_PER_CPU(int, xmit_recursion); 3574 EXPORT_SYMBOL(xmit_recursion); 3575 3576 /** 3577 * dev_loopback_xmit - loop back @skb 3578 * @net: network namespace this loopback is happening in 3579 * @sk: sk needed to be a netfilter okfn 3580 * @skb: buffer to transmit 3581 */ 3582 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3583 { 3584 skb_reset_mac_header(skb); 3585 __skb_pull(skb, skb_network_offset(skb)); 3586 skb->pkt_type = PACKET_LOOPBACK; 3587 skb->ip_summed = CHECKSUM_UNNECESSARY; 3588 WARN_ON(!skb_dst(skb)); 3589 skb_dst_force(skb); 3590 netif_rx_ni(skb); 3591 return 0; 3592 } 3593 EXPORT_SYMBOL(dev_loopback_xmit); 3594 3595 #ifdef CONFIG_NET_EGRESS 3596 static struct sk_buff * 3597 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3598 { 3599 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3600 struct tcf_result cl_res; 3601 3602 if (!miniq) 3603 return skb; 3604 3605 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3606 mini_qdisc_bstats_cpu_update(miniq, skb); 3607 3608 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3609 case TC_ACT_OK: 3610 case TC_ACT_RECLASSIFY: 3611 skb->tc_index = TC_H_MIN(cl_res.classid); 3612 break; 3613 case TC_ACT_SHOT: 3614 mini_qdisc_qstats_cpu_drop(miniq); 3615 *ret = NET_XMIT_DROP; 3616 kfree_skb(skb); 3617 return NULL; 3618 case TC_ACT_STOLEN: 3619 case TC_ACT_QUEUED: 3620 case TC_ACT_TRAP: 3621 *ret = NET_XMIT_SUCCESS; 3622 consume_skb(skb); 3623 return NULL; 3624 case TC_ACT_REDIRECT: 3625 /* No need to push/pop skb's mac_header here on egress! */ 3626 skb_do_redirect(skb); 3627 *ret = NET_XMIT_SUCCESS; 3628 return NULL; 3629 default: 3630 break; 3631 } 3632 3633 return skb; 3634 } 3635 #endif /* CONFIG_NET_EGRESS */ 3636 3637 #ifdef CONFIG_XPS 3638 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3639 struct xps_dev_maps *dev_maps, unsigned int tci) 3640 { 3641 struct xps_map *map; 3642 int queue_index = -1; 3643 3644 if (dev->num_tc) { 3645 tci *= dev->num_tc; 3646 tci += netdev_get_prio_tc_map(dev, skb->priority); 3647 } 3648 3649 map = rcu_dereference(dev_maps->attr_map[tci]); 3650 if (map) { 3651 if (map->len == 1) 3652 queue_index = map->queues[0]; 3653 else 3654 queue_index = map->queues[reciprocal_scale( 3655 skb_get_hash(skb), map->len)]; 3656 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3657 queue_index = -1; 3658 } 3659 return queue_index; 3660 } 3661 #endif 3662 3663 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3664 struct sk_buff *skb) 3665 { 3666 #ifdef CONFIG_XPS 3667 struct xps_dev_maps *dev_maps; 3668 struct sock *sk = skb->sk; 3669 int queue_index = -1; 3670 3671 if (!static_key_false(&xps_needed)) 3672 return -1; 3673 3674 rcu_read_lock(); 3675 if (!static_key_false(&xps_rxqs_needed)) 3676 goto get_cpus_map; 3677 3678 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3679 if (dev_maps) { 3680 int tci = sk_rx_queue_get(sk); 3681 3682 if (tci >= 0 && tci < dev->num_rx_queues) 3683 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3684 tci); 3685 } 3686 3687 get_cpus_map: 3688 if (queue_index < 0) { 3689 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3690 if (dev_maps) { 3691 unsigned int tci = skb->sender_cpu - 1; 3692 3693 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3694 tci); 3695 } 3696 } 3697 rcu_read_unlock(); 3698 3699 return queue_index; 3700 #else 3701 return -1; 3702 #endif 3703 } 3704 3705 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3706 struct net_device *sb_dev, 3707 select_queue_fallback_t fallback) 3708 { 3709 return 0; 3710 } 3711 EXPORT_SYMBOL(dev_pick_tx_zero); 3712 3713 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3714 struct net_device *sb_dev, 3715 select_queue_fallback_t fallback) 3716 { 3717 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3718 } 3719 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3720 3721 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3722 struct net_device *sb_dev) 3723 { 3724 struct sock *sk = skb->sk; 3725 int queue_index = sk_tx_queue_get(sk); 3726 3727 sb_dev = sb_dev ? : dev; 3728 3729 if (queue_index < 0 || skb->ooo_okay || 3730 queue_index >= dev->real_num_tx_queues) { 3731 int new_index = get_xps_queue(dev, sb_dev, skb); 3732 3733 if (new_index < 0) 3734 new_index = skb_tx_hash(dev, sb_dev, skb); 3735 3736 if (queue_index != new_index && sk && 3737 sk_fullsock(sk) && 3738 rcu_access_pointer(sk->sk_dst_cache)) 3739 sk_tx_queue_set(sk, new_index); 3740 3741 queue_index = new_index; 3742 } 3743 3744 return queue_index; 3745 } 3746 3747 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3748 struct sk_buff *skb, 3749 struct net_device *sb_dev) 3750 { 3751 int queue_index = 0; 3752 3753 #ifdef CONFIG_XPS 3754 u32 sender_cpu = skb->sender_cpu - 1; 3755 3756 if (sender_cpu >= (u32)NR_CPUS) 3757 skb->sender_cpu = raw_smp_processor_id() + 1; 3758 #endif 3759 3760 if (dev->real_num_tx_queues != 1) { 3761 const struct net_device_ops *ops = dev->netdev_ops; 3762 3763 if (ops->ndo_select_queue) 3764 queue_index = ops->ndo_select_queue(dev, skb, sb_dev, 3765 __netdev_pick_tx); 3766 else 3767 queue_index = __netdev_pick_tx(dev, skb, sb_dev); 3768 3769 queue_index = netdev_cap_txqueue(dev, queue_index); 3770 } 3771 3772 skb_set_queue_mapping(skb, queue_index); 3773 return netdev_get_tx_queue(dev, queue_index); 3774 } 3775 3776 /** 3777 * __dev_queue_xmit - transmit a buffer 3778 * @skb: buffer to transmit 3779 * @sb_dev: suboordinate device used for L2 forwarding offload 3780 * 3781 * Queue a buffer for transmission to a network device. The caller must 3782 * have set the device and priority and built the buffer before calling 3783 * this function. The function can be called from an interrupt. 3784 * 3785 * A negative errno code is returned on a failure. A success does not 3786 * guarantee the frame will be transmitted as it may be dropped due 3787 * to congestion or traffic shaping. 3788 * 3789 * ----------------------------------------------------------------------------------- 3790 * I notice this method can also return errors from the queue disciplines, 3791 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3792 * be positive. 3793 * 3794 * Regardless of the return value, the skb is consumed, so it is currently 3795 * difficult to retry a send to this method. (You can bump the ref count 3796 * before sending to hold a reference for retry if you are careful.) 3797 * 3798 * When calling this method, interrupts MUST be enabled. This is because 3799 * the BH enable code must have IRQs enabled so that it will not deadlock. 3800 * --BLG 3801 */ 3802 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 3803 { 3804 struct net_device *dev = skb->dev; 3805 struct netdev_queue *txq; 3806 struct Qdisc *q; 3807 int rc = -ENOMEM; 3808 bool again = false; 3809 3810 skb_reset_mac_header(skb); 3811 3812 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3813 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3814 3815 /* Disable soft irqs for various locks below. Also 3816 * stops preemption for RCU. 3817 */ 3818 rcu_read_lock_bh(); 3819 3820 skb_update_prio(skb); 3821 3822 qdisc_pkt_len_init(skb); 3823 #ifdef CONFIG_NET_CLS_ACT 3824 skb->tc_at_ingress = 0; 3825 # ifdef CONFIG_NET_EGRESS 3826 if (static_branch_unlikely(&egress_needed_key)) { 3827 skb = sch_handle_egress(skb, &rc, dev); 3828 if (!skb) 3829 goto out; 3830 } 3831 # endif 3832 #endif 3833 /* If device/qdisc don't need skb->dst, release it right now while 3834 * its hot in this cpu cache. 3835 */ 3836 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3837 skb_dst_drop(skb); 3838 else 3839 skb_dst_force(skb); 3840 3841 txq = netdev_pick_tx(dev, skb, sb_dev); 3842 q = rcu_dereference_bh(txq->qdisc); 3843 3844 trace_net_dev_queue(skb); 3845 if (q->enqueue) { 3846 rc = __dev_xmit_skb(skb, q, dev, txq); 3847 goto out; 3848 } 3849 3850 /* The device has no queue. Common case for software devices: 3851 * loopback, all the sorts of tunnels... 3852 3853 * Really, it is unlikely that netif_tx_lock protection is necessary 3854 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3855 * counters.) 3856 * However, it is possible, that they rely on protection 3857 * made by us here. 3858 3859 * Check this and shot the lock. It is not prone from deadlocks. 3860 *Either shot noqueue qdisc, it is even simpler 8) 3861 */ 3862 if (dev->flags & IFF_UP) { 3863 int cpu = smp_processor_id(); /* ok because BHs are off */ 3864 3865 if (txq->xmit_lock_owner != cpu) { 3866 if (unlikely(__this_cpu_read(xmit_recursion) > 3867 XMIT_RECURSION_LIMIT)) 3868 goto recursion_alert; 3869 3870 skb = validate_xmit_skb(skb, dev, &again); 3871 if (!skb) 3872 goto out; 3873 3874 HARD_TX_LOCK(dev, txq, cpu); 3875 3876 if (!netif_xmit_stopped(txq)) { 3877 __this_cpu_inc(xmit_recursion); 3878 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3879 __this_cpu_dec(xmit_recursion); 3880 if (dev_xmit_complete(rc)) { 3881 HARD_TX_UNLOCK(dev, txq); 3882 goto out; 3883 } 3884 } 3885 HARD_TX_UNLOCK(dev, txq); 3886 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3887 dev->name); 3888 } else { 3889 /* Recursion is detected! It is possible, 3890 * unfortunately 3891 */ 3892 recursion_alert: 3893 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3894 dev->name); 3895 } 3896 } 3897 3898 rc = -ENETDOWN; 3899 rcu_read_unlock_bh(); 3900 3901 atomic_long_inc(&dev->tx_dropped); 3902 kfree_skb_list(skb); 3903 return rc; 3904 out: 3905 rcu_read_unlock_bh(); 3906 return rc; 3907 } 3908 3909 int dev_queue_xmit(struct sk_buff *skb) 3910 { 3911 return __dev_queue_xmit(skb, NULL); 3912 } 3913 EXPORT_SYMBOL(dev_queue_xmit); 3914 3915 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 3916 { 3917 return __dev_queue_xmit(skb, sb_dev); 3918 } 3919 EXPORT_SYMBOL(dev_queue_xmit_accel); 3920 3921 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3922 { 3923 struct net_device *dev = skb->dev; 3924 struct sk_buff *orig_skb = skb; 3925 struct netdev_queue *txq; 3926 int ret = NETDEV_TX_BUSY; 3927 bool again = false; 3928 3929 if (unlikely(!netif_running(dev) || 3930 !netif_carrier_ok(dev))) 3931 goto drop; 3932 3933 skb = validate_xmit_skb_list(skb, dev, &again); 3934 if (skb != orig_skb) 3935 goto drop; 3936 3937 skb_set_queue_mapping(skb, queue_id); 3938 txq = skb_get_tx_queue(dev, skb); 3939 3940 local_bh_disable(); 3941 3942 HARD_TX_LOCK(dev, txq, smp_processor_id()); 3943 if (!netif_xmit_frozen_or_drv_stopped(txq)) 3944 ret = netdev_start_xmit(skb, dev, txq, false); 3945 HARD_TX_UNLOCK(dev, txq); 3946 3947 local_bh_enable(); 3948 3949 if (!dev_xmit_complete(ret)) 3950 kfree_skb(skb); 3951 3952 return ret; 3953 drop: 3954 atomic_long_inc(&dev->tx_dropped); 3955 kfree_skb_list(skb); 3956 return NET_XMIT_DROP; 3957 } 3958 EXPORT_SYMBOL(dev_direct_xmit); 3959 3960 /************************************************************************* 3961 * Receiver routines 3962 *************************************************************************/ 3963 3964 int netdev_max_backlog __read_mostly = 1000; 3965 EXPORT_SYMBOL(netdev_max_backlog); 3966 3967 int netdev_tstamp_prequeue __read_mostly = 1; 3968 int netdev_budget __read_mostly = 300; 3969 unsigned int __read_mostly netdev_budget_usecs = 2000; 3970 int weight_p __read_mostly = 64; /* old backlog weight */ 3971 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3972 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3973 int dev_rx_weight __read_mostly = 64; 3974 int dev_tx_weight __read_mostly = 64; 3975 3976 /* Called with irq disabled */ 3977 static inline void ____napi_schedule(struct softnet_data *sd, 3978 struct napi_struct *napi) 3979 { 3980 list_add_tail(&napi->poll_list, &sd->poll_list); 3981 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3982 } 3983 3984 #ifdef CONFIG_RPS 3985 3986 /* One global table that all flow-based protocols share. */ 3987 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3988 EXPORT_SYMBOL(rps_sock_flow_table); 3989 u32 rps_cpu_mask __read_mostly; 3990 EXPORT_SYMBOL(rps_cpu_mask); 3991 3992 struct static_key rps_needed __read_mostly; 3993 EXPORT_SYMBOL(rps_needed); 3994 struct static_key rfs_needed __read_mostly; 3995 EXPORT_SYMBOL(rfs_needed); 3996 3997 static struct rps_dev_flow * 3998 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3999 struct rps_dev_flow *rflow, u16 next_cpu) 4000 { 4001 if (next_cpu < nr_cpu_ids) { 4002 #ifdef CONFIG_RFS_ACCEL 4003 struct netdev_rx_queue *rxqueue; 4004 struct rps_dev_flow_table *flow_table; 4005 struct rps_dev_flow *old_rflow; 4006 u32 flow_id; 4007 u16 rxq_index; 4008 int rc; 4009 4010 /* Should we steer this flow to a different hardware queue? */ 4011 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4012 !(dev->features & NETIF_F_NTUPLE)) 4013 goto out; 4014 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4015 if (rxq_index == skb_get_rx_queue(skb)) 4016 goto out; 4017 4018 rxqueue = dev->_rx + rxq_index; 4019 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4020 if (!flow_table) 4021 goto out; 4022 flow_id = skb_get_hash(skb) & flow_table->mask; 4023 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4024 rxq_index, flow_id); 4025 if (rc < 0) 4026 goto out; 4027 old_rflow = rflow; 4028 rflow = &flow_table->flows[flow_id]; 4029 rflow->filter = rc; 4030 if (old_rflow->filter == rflow->filter) 4031 old_rflow->filter = RPS_NO_FILTER; 4032 out: 4033 #endif 4034 rflow->last_qtail = 4035 per_cpu(softnet_data, next_cpu).input_queue_head; 4036 } 4037 4038 rflow->cpu = next_cpu; 4039 return rflow; 4040 } 4041 4042 /* 4043 * get_rps_cpu is called from netif_receive_skb and returns the target 4044 * CPU from the RPS map of the receiving queue for a given skb. 4045 * rcu_read_lock must be held on entry. 4046 */ 4047 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4048 struct rps_dev_flow **rflowp) 4049 { 4050 const struct rps_sock_flow_table *sock_flow_table; 4051 struct netdev_rx_queue *rxqueue = dev->_rx; 4052 struct rps_dev_flow_table *flow_table; 4053 struct rps_map *map; 4054 int cpu = -1; 4055 u32 tcpu; 4056 u32 hash; 4057 4058 if (skb_rx_queue_recorded(skb)) { 4059 u16 index = skb_get_rx_queue(skb); 4060 4061 if (unlikely(index >= dev->real_num_rx_queues)) { 4062 WARN_ONCE(dev->real_num_rx_queues > 1, 4063 "%s received packet on queue %u, but number " 4064 "of RX queues is %u\n", 4065 dev->name, index, dev->real_num_rx_queues); 4066 goto done; 4067 } 4068 rxqueue += index; 4069 } 4070 4071 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4072 4073 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4074 map = rcu_dereference(rxqueue->rps_map); 4075 if (!flow_table && !map) 4076 goto done; 4077 4078 skb_reset_network_header(skb); 4079 hash = skb_get_hash(skb); 4080 if (!hash) 4081 goto done; 4082 4083 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4084 if (flow_table && sock_flow_table) { 4085 struct rps_dev_flow *rflow; 4086 u32 next_cpu; 4087 u32 ident; 4088 4089 /* First check into global flow table if there is a match */ 4090 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4091 if ((ident ^ hash) & ~rps_cpu_mask) 4092 goto try_rps; 4093 4094 next_cpu = ident & rps_cpu_mask; 4095 4096 /* OK, now we know there is a match, 4097 * we can look at the local (per receive queue) flow table 4098 */ 4099 rflow = &flow_table->flows[hash & flow_table->mask]; 4100 tcpu = rflow->cpu; 4101 4102 /* 4103 * If the desired CPU (where last recvmsg was done) is 4104 * different from current CPU (one in the rx-queue flow 4105 * table entry), switch if one of the following holds: 4106 * - Current CPU is unset (>= nr_cpu_ids). 4107 * - Current CPU is offline. 4108 * - The current CPU's queue tail has advanced beyond the 4109 * last packet that was enqueued using this table entry. 4110 * This guarantees that all previous packets for the flow 4111 * have been dequeued, thus preserving in order delivery. 4112 */ 4113 if (unlikely(tcpu != next_cpu) && 4114 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4115 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4116 rflow->last_qtail)) >= 0)) { 4117 tcpu = next_cpu; 4118 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4119 } 4120 4121 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4122 *rflowp = rflow; 4123 cpu = tcpu; 4124 goto done; 4125 } 4126 } 4127 4128 try_rps: 4129 4130 if (map) { 4131 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4132 if (cpu_online(tcpu)) { 4133 cpu = tcpu; 4134 goto done; 4135 } 4136 } 4137 4138 done: 4139 return cpu; 4140 } 4141 4142 #ifdef CONFIG_RFS_ACCEL 4143 4144 /** 4145 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4146 * @dev: Device on which the filter was set 4147 * @rxq_index: RX queue index 4148 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4149 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4150 * 4151 * Drivers that implement ndo_rx_flow_steer() should periodically call 4152 * this function for each installed filter and remove the filters for 4153 * which it returns %true. 4154 */ 4155 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4156 u32 flow_id, u16 filter_id) 4157 { 4158 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4159 struct rps_dev_flow_table *flow_table; 4160 struct rps_dev_flow *rflow; 4161 bool expire = true; 4162 unsigned int cpu; 4163 4164 rcu_read_lock(); 4165 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4166 if (flow_table && flow_id <= flow_table->mask) { 4167 rflow = &flow_table->flows[flow_id]; 4168 cpu = READ_ONCE(rflow->cpu); 4169 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4170 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4171 rflow->last_qtail) < 4172 (int)(10 * flow_table->mask))) 4173 expire = false; 4174 } 4175 rcu_read_unlock(); 4176 return expire; 4177 } 4178 EXPORT_SYMBOL(rps_may_expire_flow); 4179 4180 #endif /* CONFIG_RFS_ACCEL */ 4181 4182 /* Called from hardirq (IPI) context */ 4183 static void rps_trigger_softirq(void *data) 4184 { 4185 struct softnet_data *sd = data; 4186 4187 ____napi_schedule(sd, &sd->backlog); 4188 sd->received_rps++; 4189 } 4190 4191 #endif /* CONFIG_RPS */ 4192 4193 /* 4194 * Check if this softnet_data structure is another cpu one 4195 * If yes, queue it to our IPI list and return 1 4196 * If no, return 0 4197 */ 4198 static int rps_ipi_queued(struct softnet_data *sd) 4199 { 4200 #ifdef CONFIG_RPS 4201 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4202 4203 if (sd != mysd) { 4204 sd->rps_ipi_next = mysd->rps_ipi_list; 4205 mysd->rps_ipi_list = sd; 4206 4207 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4208 return 1; 4209 } 4210 #endif /* CONFIG_RPS */ 4211 return 0; 4212 } 4213 4214 #ifdef CONFIG_NET_FLOW_LIMIT 4215 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4216 #endif 4217 4218 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4219 { 4220 #ifdef CONFIG_NET_FLOW_LIMIT 4221 struct sd_flow_limit *fl; 4222 struct softnet_data *sd; 4223 unsigned int old_flow, new_flow; 4224 4225 if (qlen < (netdev_max_backlog >> 1)) 4226 return false; 4227 4228 sd = this_cpu_ptr(&softnet_data); 4229 4230 rcu_read_lock(); 4231 fl = rcu_dereference(sd->flow_limit); 4232 if (fl) { 4233 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4234 old_flow = fl->history[fl->history_head]; 4235 fl->history[fl->history_head] = new_flow; 4236 4237 fl->history_head++; 4238 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4239 4240 if (likely(fl->buckets[old_flow])) 4241 fl->buckets[old_flow]--; 4242 4243 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4244 fl->count++; 4245 rcu_read_unlock(); 4246 return true; 4247 } 4248 } 4249 rcu_read_unlock(); 4250 #endif 4251 return false; 4252 } 4253 4254 /* 4255 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4256 * queue (may be a remote CPU queue). 4257 */ 4258 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4259 unsigned int *qtail) 4260 { 4261 struct softnet_data *sd; 4262 unsigned long flags; 4263 unsigned int qlen; 4264 4265 sd = &per_cpu(softnet_data, cpu); 4266 4267 local_irq_save(flags); 4268 4269 rps_lock(sd); 4270 if (!netif_running(skb->dev)) 4271 goto drop; 4272 qlen = skb_queue_len(&sd->input_pkt_queue); 4273 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4274 if (qlen) { 4275 enqueue: 4276 __skb_queue_tail(&sd->input_pkt_queue, skb); 4277 input_queue_tail_incr_save(sd, qtail); 4278 rps_unlock(sd); 4279 local_irq_restore(flags); 4280 return NET_RX_SUCCESS; 4281 } 4282 4283 /* Schedule NAPI for backlog device 4284 * We can use non atomic operation since we own the queue lock 4285 */ 4286 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4287 if (!rps_ipi_queued(sd)) 4288 ____napi_schedule(sd, &sd->backlog); 4289 } 4290 goto enqueue; 4291 } 4292 4293 drop: 4294 sd->dropped++; 4295 rps_unlock(sd); 4296 4297 local_irq_restore(flags); 4298 4299 atomic_long_inc(&skb->dev->rx_dropped); 4300 kfree_skb(skb); 4301 return NET_RX_DROP; 4302 } 4303 4304 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4305 { 4306 struct net_device *dev = skb->dev; 4307 struct netdev_rx_queue *rxqueue; 4308 4309 rxqueue = dev->_rx; 4310 4311 if (skb_rx_queue_recorded(skb)) { 4312 u16 index = skb_get_rx_queue(skb); 4313 4314 if (unlikely(index >= dev->real_num_rx_queues)) { 4315 WARN_ONCE(dev->real_num_rx_queues > 1, 4316 "%s received packet on queue %u, but number " 4317 "of RX queues is %u\n", 4318 dev->name, index, dev->real_num_rx_queues); 4319 4320 return rxqueue; /* Return first rxqueue */ 4321 } 4322 rxqueue += index; 4323 } 4324 return rxqueue; 4325 } 4326 4327 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4328 struct xdp_buff *xdp, 4329 struct bpf_prog *xdp_prog) 4330 { 4331 struct netdev_rx_queue *rxqueue; 4332 void *orig_data, *orig_data_end; 4333 u32 metalen, act = XDP_DROP; 4334 __be16 orig_eth_type; 4335 struct ethhdr *eth; 4336 bool orig_bcast; 4337 int hlen, off; 4338 u32 mac_len; 4339 4340 /* Reinjected packets coming from act_mirred or similar should 4341 * not get XDP generic processing. 4342 */ 4343 if (skb_cloned(skb) || skb_is_tc_redirected(skb)) 4344 return XDP_PASS; 4345 4346 /* XDP packets must be linear and must have sufficient headroom 4347 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4348 * native XDP provides, thus we need to do it here as well. 4349 */ 4350 if (skb_is_nonlinear(skb) || 4351 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4352 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4353 int troom = skb->tail + skb->data_len - skb->end; 4354 4355 /* In case we have to go down the path and also linearize, 4356 * then lets do the pskb_expand_head() work just once here. 4357 */ 4358 if (pskb_expand_head(skb, 4359 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4360 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4361 goto do_drop; 4362 if (skb_linearize(skb)) 4363 goto do_drop; 4364 } 4365 4366 /* The XDP program wants to see the packet starting at the MAC 4367 * header. 4368 */ 4369 mac_len = skb->data - skb_mac_header(skb); 4370 hlen = skb_headlen(skb) + mac_len; 4371 xdp->data = skb->data - mac_len; 4372 xdp->data_meta = xdp->data; 4373 xdp->data_end = xdp->data + hlen; 4374 xdp->data_hard_start = skb->data - skb_headroom(skb); 4375 orig_data_end = xdp->data_end; 4376 orig_data = xdp->data; 4377 eth = (struct ethhdr *)xdp->data; 4378 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4379 orig_eth_type = eth->h_proto; 4380 4381 rxqueue = netif_get_rxqueue(skb); 4382 xdp->rxq = &rxqueue->xdp_rxq; 4383 4384 act = bpf_prog_run_xdp(xdp_prog, xdp); 4385 4386 off = xdp->data - orig_data; 4387 if (off > 0) 4388 __skb_pull(skb, off); 4389 else if (off < 0) 4390 __skb_push(skb, -off); 4391 skb->mac_header += off; 4392 4393 /* check if bpf_xdp_adjust_tail was used. it can only "shrink" 4394 * pckt. 4395 */ 4396 off = orig_data_end - xdp->data_end; 4397 if (off != 0) { 4398 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4399 skb->len -= off; 4400 4401 } 4402 4403 /* check if XDP changed eth hdr such SKB needs update */ 4404 eth = (struct ethhdr *)xdp->data; 4405 if ((orig_eth_type != eth->h_proto) || 4406 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4407 __skb_push(skb, ETH_HLEN); 4408 skb->protocol = eth_type_trans(skb, skb->dev); 4409 } 4410 4411 switch (act) { 4412 case XDP_REDIRECT: 4413 case XDP_TX: 4414 __skb_push(skb, mac_len); 4415 break; 4416 case XDP_PASS: 4417 metalen = xdp->data - xdp->data_meta; 4418 if (metalen) 4419 skb_metadata_set(skb, metalen); 4420 break; 4421 default: 4422 bpf_warn_invalid_xdp_action(act); 4423 /* fall through */ 4424 case XDP_ABORTED: 4425 trace_xdp_exception(skb->dev, xdp_prog, act); 4426 /* fall through */ 4427 case XDP_DROP: 4428 do_drop: 4429 kfree_skb(skb); 4430 break; 4431 } 4432 4433 return act; 4434 } 4435 4436 /* When doing generic XDP we have to bypass the qdisc layer and the 4437 * network taps in order to match in-driver-XDP behavior. 4438 */ 4439 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4440 { 4441 struct net_device *dev = skb->dev; 4442 struct netdev_queue *txq; 4443 bool free_skb = true; 4444 int cpu, rc; 4445 4446 txq = netdev_pick_tx(dev, skb, NULL); 4447 cpu = smp_processor_id(); 4448 HARD_TX_LOCK(dev, txq, cpu); 4449 if (!netif_xmit_stopped(txq)) { 4450 rc = netdev_start_xmit(skb, dev, txq, 0); 4451 if (dev_xmit_complete(rc)) 4452 free_skb = false; 4453 } 4454 HARD_TX_UNLOCK(dev, txq); 4455 if (free_skb) { 4456 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4457 kfree_skb(skb); 4458 } 4459 } 4460 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4461 4462 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4463 4464 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4465 { 4466 if (xdp_prog) { 4467 struct xdp_buff xdp; 4468 u32 act; 4469 int err; 4470 4471 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4472 if (act != XDP_PASS) { 4473 switch (act) { 4474 case XDP_REDIRECT: 4475 err = xdp_do_generic_redirect(skb->dev, skb, 4476 &xdp, xdp_prog); 4477 if (err) 4478 goto out_redir; 4479 break; 4480 case XDP_TX: 4481 generic_xdp_tx(skb, xdp_prog); 4482 break; 4483 } 4484 return XDP_DROP; 4485 } 4486 } 4487 return XDP_PASS; 4488 out_redir: 4489 kfree_skb(skb); 4490 return XDP_DROP; 4491 } 4492 EXPORT_SYMBOL_GPL(do_xdp_generic); 4493 4494 static int netif_rx_internal(struct sk_buff *skb) 4495 { 4496 int ret; 4497 4498 net_timestamp_check(netdev_tstamp_prequeue, skb); 4499 4500 trace_netif_rx(skb); 4501 4502 if (static_branch_unlikely(&generic_xdp_needed_key)) { 4503 int ret; 4504 4505 preempt_disable(); 4506 rcu_read_lock(); 4507 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4508 rcu_read_unlock(); 4509 preempt_enable(); 4510 4511 /* Consider XDP consuming the packet a success from 4512 * the netdev point of view we do not want to count 4513 * this as an error. 4514 */ 4515 if (ret != XDP_PASS) 4516 return NET_RX_SUCCESS; 4517 } 4518 4519 #ifdef CONFIG_RPS 4520 if (static_key_false(&rps_needed)) { 4521 struct rps_dev_flow voidflow, *rflow = &voidflow; 4522 int cpu; 4523 4524 preempt_disable(); 4525 rcu_read_lock(); 4526 4527 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4528 if (cpu < 0) 4529 cpu = smp_processor_id(); 4530 4531 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4532 4533 rcu_read_unlock(); 4534 preempt_enable(); 4535 } else 4536 #endif 4537 { 4538 unsigned int qtail; 4539 4540 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4541 put_cpu(); 4542 } 4543 return ret; 4544 } 4545 4546 /** 4547 * netif_rx - post buffer to the network code 4548 * @skb: buffer to post 4549 * 4550 * This function receives a packet from a device driver and queues it for 4551 * the upper (protocol) levels to process. It always succeeds. The buffer 4552 * may be dropped during processing for congestion control or by the 4553 * protocol layers. 4554 * 4555 * return values: 4556 * NET_RX_SUCCESS (no congestion) 4557 * NET_RX_DROP (packet was dropped) 4558 * 4559 */ 4560 4561 int netif_rx(struct sk_buff *skb) 4562 { 4563 int ret; 4564 4565 trace_netif_rx_entry(skb); 4566 4567 ret = netif_rx_internal(skb); 4568 trace_netif_rx_exit(ret); 4569 4570 return ret; 4571 } 4572 EXPORT_SYMBOL(netif_rx); 4573 4574 int netif_rx_ni(struct sk_buff *skb) 4575 { 4576 int err; 4577 4578 trace_netif_rx_ni_entry(skb); 4579 4580 preempt_disable(); 4581 err = netif_rx_internal(skb); 4582 if (local_softirq_pending()) 4583 do_softirq(); 4584 preempt_enable(); 4585 trace_netif_rx_ni_exit(err); 4586 4587 return err; 4588 } 4589 EXPORT_SYMBOL(netif_rx_ni); 4590 4591 static __latent_entropy void net_tx_action(struct softirq_action *h) 4592 { 4593 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4594 4595 if (sd->completion_queue) { 4596 struct sk_buff *clist; 4597 4598 local_irq_disable(); 4599 clist = sd->completion_queue; 4600 sd->completion_queue = NULL; 4601 local_irq_enable(); 4602 4603 while (clist) { 4604 struct sk_buff *skb = clist; 4605 4606 clist = clist->next; 4607 4608 WARN_ON(refcount_read(&skb->users)); 4609 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4610 trace_consume_skb(skb); 4611 else 4612 trace_kfree_skb(skb, net_tx_action); 4613 4614 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4615 __kfree_skb(skb); 4616 else 4617 __kfree_skb_defer(skb); 4618 } 4619 4620 __kfree_skb_flush(); 4621 } 4622 4623 if (sd->output_queue) { 4624 struct Qdisc *head; 4625 4626 local_irq_disable(); 4627 head = sd->output_queue; 4628 sd->output_queue = NULL; 4629 sd->output_queue_tailp = &sd->output_queue; 4630 local_irq_enable(); 4631 4632 while (head) { 4633 struct Qdisc *q = head; 4634 spinlock_t *root_lock = NULL; 4635 4636 head = head->next_sched; 4637 4638 if (!(q->flags & TCQ_F_NOLOCK)) { 4639 root_lock = qdisc_lock(q); 4640 spin_lock(root_lock); 4641 } 4642 /* We need to make sure head->next_sched is read 4643 * before clearing __QDISC_STATE_SCHED 4644 */ 4645 smp_mb__before_atomic(); 4646 clear_bit(__QDISC_STATE_SCHED, &q->state); 4647 qdisc_run(q); 4648 if (root_lock) 4649 spin_unlock(root_lock); 4650 } 4651 } 4652 4653 xfrm_dev_backlog(sd); 4654 } 4655 4656 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4657 /* This hook is defined here for ATM LANE */ 4658 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4659 unsigned char *addr) __read_mostly; 4660 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4661 #endif 4662 4663 static inline struct sk_buff * 4664 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4665 struct net_device *orig_dev) 4666 { 4667 #ifdef CONFIG_NET_CLS_ACT 4668 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4669 struct tcf_result cl_res; 4670 4671 /* If there's at least one ingress present somewhere (so 4672 * we get here via enabled static key), remaining devices 4673 * that are not configured with an ingress qdisc will bail 4674 * out here. 4675 */ 4676 if (!miniq) 4677 return skb; 4678 4679 if (*pt_prev) { 4680 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4681 *pt_prev = NULL; 4682 } 4683 4684 qdisc_skb_cb(skb)->pkt_len = skb->len; 4685 skb->tc_at_ingress = 1; 4686 mini_qdisc_bstats_cpu_update(miniq, skb); 4687 4688 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4689 case TC_ACT_OK: 4690 case TC_ACT_RECLASSIFY: 4691 skb->tc_index = TC_H_MIN(cl_res.classid); 4692 break; 4693 case TC_ACT_SHOT: 4694 mini_qdisc_qstats_cpu_drop(miniq); 4695 kfree_skb(skb); 4696 return NULL; 4697 case TC_ACT_STOLEN: 4698 case TC_ACT_QUEUED: 4699 case TC_ACT_TRAP: 4700 consume_skb(skb); 4701 return NULL; 4702 case TC_ACT_REDIRECT: 4703 /* skb_mac_header check was done by cls/act_bpf, so 4704 * we can safely push the L2 header back before 4705 * redirecting to another netdev 4706 */ 4707 __skb_push(skb, skb->mac_len); 4708 skb_do_redirect(skb); 4709 return NULL; 4710 case TC_ACT_REINSERT: 4711 /* this does not scrub the packet, and updates stats on error */ 4712 skb_tc_reinsert(skb, &cl_res); 4713 return NULL; 4714 default: 4715 break; 4716 } 4717 #endif /* CONFIG_NET_CLS_ACT */ 4718 return skb; 4719 } 4720 4721 /** 4722 * netdev_is_rx_handler_busy - check if receive handler is registered 4723 * @dev: device to check 4724 * 4725 * Check if a receive handler is already registered for a given device. 4726 * Return true if there one. 4727 * 4728 * The caller must hold the rtnl_mutex. 4729 */ 4730 bool netdev_is_rx_handler_busy(struct net_device *dev) 4731 { 4732 ASSERT_RTNL(); 4733 return dev && rtnl_dereference(dev->rx_handler); 4734 } 4735 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4736 4737 /** 4738 * netdev_rx_handler_register - register receive handler 4739 * @dev: device to register a handler for 4740 * @rx_handler: receive handler to register 4741 * @rx_handler_data: data pointer that is used by rx handler 4742 * 4743 * Register a receive handler for a device. This handler will then be 4744 * called from __netif_receive_skb. A negative errno code is returned 4745 * on a failure. 4746 * 4747 * The caller must hold the rtnl_mutex. 4748 * 4749 * For a general description of rx_handler, see enum rx_handler_result. 4750 */ 4751 int netdev_rx_handler_register(struct net_device *dev, 4752 rx_handler_func_t *rx_handler, 4753 void *rx_handler_data) 4754 { 4755 if (netdev_is_rx_handler_busy(dev)) 4756 return -EBUSY; 4757 4758 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4759 return -EINVAL; 4760 4761 /* Note: rx_handler_data must be set before rx_handler */ 4762 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4763 rcu_assign_pointer(dev->rx_handler, rx_handler); 4764 4765 return 0; 4766 } 4767 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4768 4769 /** 4770 * netdev_rx_handler_unregister - unregister receive handler 4771 * @dev: device to unregister a handler from 4772 * 4773 * Unregister a receive handler from a device. 4774 * 4775 * The caller must hold the rtnl_mutex. 4776 */ 4777 void netdev_rx_handler_unregister(struct net_device *dev) 4778 { 4779 4780 ASSERT_RTNL(); 4781 RCU_INIT_POINTER(dev->rx_handler, NULL); 4782 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4783 * section has a guarantee to see a non NULL rx_handler_data 4784 * as well. 4785 */ 4786 synchronize_net(); 4787 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4788 } 4789 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4790 4791 /* 4792 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4793 * the special handling of PFMEMALLOC skbs. 4794 */ 4795 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4796 { 4797 switch (skb->protocol) { 4798 case htons(ETH_P_ARP): 4799 case htons(ETH_P_IP): 4800 case htons(ETH_P_IPV6): 4801 case htons(ETH_P_8021Q): 4802 case htons(ETH_P_8021AD): 4803 return true; 4804 default: 4805 return false; 4806 } 4807 } 4808 4809 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4810 int *ret, struct net_device *orig_dev) 4811 { 4812 #ifdef CONFIG_NETFILTER_INGRESS 4813 if (nf_hook_ingress_active(skb)) { 4814 int ingress_retval; 4815 4816 if (*pt_prev) { 4817 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4818 *pt_prev = NULL; 4819 } 4820 4821 rcu_read_lock(); 4822 ingress_retval = nf_hook_ingress(skb); 4823 rcu_read_unlock(); 4824 return ingress_retval; 4825 } 4826 #endif /* CONFIG_NETFILTER_INGRESS */ 4827 return 0; 4828 } 4829 4830 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc, 4831 struct packet_type **ppt_prev) 4832 { 4833 struct packet_type *ptype, *pt_prev; 4834 rx_handler_func_t *rx_handler; 4835 struct net_device *orig_dev; 4836 bool deliver_exact = false; 4837 int ret = NET_RX_DROP; 4838 __be16 type; 4839 4840 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4841 4842 trace_netif_receive_skb(skb); 4843 4844 orig_dev = skb->dev; 4845 4846 skb_reset_network_header(skb); 4847 if (!skb_transport_header_was_set(skb)) 4848 skb_reset_transport_header(skb); 4849 skb_reset_mac_len(skb); 4850 4851 pt_prev = NULL; 4852 4853 another_round: 4854 skb->skb_iif = skb->dev->ifindex; 4855 4856 __this_cpu_inc(softnet_data.processed); 4857 4858 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4859 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4860 skb = skb_vlan_untag(skb); 4861 if (unlikely(!skb)) 4862 goto out; 4863 } 4864 4865 if (skb_skip_tc_classify(skb)) 4866 goto skip_classify; 4867 4868 if (pfmemalloc) 4869 goto skip_taps; 4870 4871 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4872 if (pt_prev) 4873 ret = deliver_skb(skb, pt_prev, orig_dev); 4874 pt_prev = ptype; 4875 } 4876 4877 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4878 if (pt_prev) 4879 ret = deliver_skb(skb, pt_prev, orig_dev); 4880 pt_prev = ptype; 4881 } 4882 4883 skip_taps: 4884 #ifdef CONFIG_NET_INGRESS 4885 if (static_branch_unlikely(&ingress_needed_key)) { 4886 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4887 if (!skb) 4888 goto out; 4889 4890 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4891 goto out; 4892 } 4893 #endif 4894 skb_reset_tc(skb); 4895 skip_classify: 4896 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4897 goto drop; 4898 4899 if (skb_vlan_tag_present(skb)) { 4900 if (pt_prev) { 4901 ret = deliver_skb(skb, pt_prev, orig_dev); 4902 pt_prev = NULL; 4903 } 4904 if (vlan_do_receive(&skb)) 4905 goto another_round; 4906 else if (unlikely(!skb)) 4907 goto out; 4908 } 4909 4910 rx_handler = rcu_dereference(skb->dev->rx_handler); 4911 if (rx_handler) { 4912 if (pt_prev) { 4913 ret = deliver_skb(skb, pt_prev, orig_dev); 4914 pt_prev = NULL; 4915 } 4916 switch (rx_handler(&skb)) { 4917 case RX_HANDLER_CONSUMED: 4918 ret = NET_RX_SUCCESS; 4919 goto out; 4920 case RX_HANDLER_ANOTHER: 4921 goto another_round; 4922 case RX_HANDLER_EXACT: 4923 deliver_exact = true; 4924 case RX_HANDLER_PASS: 4925 break; 4926 default: 4927 BUG(); 4928 } 4929 } 4930 4931 if (unlikely(skb_vlan_tag_present(skb))) { 4932 if (skb_vlan_tag_get_id(skb)) 4933 skb->pkt_type = PACKET_OTHERHOST; 4934 /* Note: we might in the future use prio bits 4935 * and set skb->priority like in vlan_do_receive() 4936 * For the time being, just ignore Priority Code Point 4937 */ 4938 __vlan_hwaccel_clear_tag(skb); 4939 } 4940 4941 type = skb->protocol; 4942 4943 /* deliver only exact match when indicated */ 4944 if (likely(!deliver_exact)) { 4945 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4946 &ptype_base[ntohs(type) & 4947 PTYPE_HASH_MASK]); 4948 } 4949 4950 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4951 &orig_dev->ptype_specific); 4952 4953 if (unlikely(skb->dev != orig_dev)) { 4954 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4955 &skb->dev->ptype_specific); 4956 } 4957 4958 if (pt_prev) { 4959 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4960 goto drop; 4961 *ppt_prev = pt_prev; 4962 } else { 4963 drop: 4964 if (!deliver_exact) 4965 atomic_long_inc(&skb->dev->rx_dropped); 4966 else 4967 atomic_long_inc(&skb->dev->rx_nohandler); 4968 kfree_skb(skb); 4969 /* Jamal, now you will not able to escape explaining 4970 * me how you were going to use this. :-) 4971 */ 4972 ret = NET_RX_DROP; 4973 } 4974 4975 out: 4976 return ret; 4977 } 4978 4979 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 4980 { 4981 struct net_device *orig_dev = skb->dev; 4982 struct packet_type *pt_prev = NULL; 4983 int ret; 4984 4985 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 4986 if (pt_prev) 4987 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4988 return ret; 4989 } 4990 4991 /** 4992 * netif_receive_skb_core - special purpose version of netif_receive_skb 4993 * @skb: buffer to process 4994 * 4995 * More direct receive version of netif_receive_skb(). It should 4996 * only be used by callers that have a need to skip RPS and Generic XDP. 4997 * Caller must also take care of handling if (page_is_)pfmemalloc. 4998 * 4999 * This function may only be called from softirq context and interrupts 5000 * should be enabled. 5001 * 5002 * Return values (usually ignored): 5003 * NET_RX_SUCCESS: no congestion 5004 * NET_RX_DROP: packet was dropped 5005 */ 5006 int netif_receive_skb_core(struct sk_buff *skb) 5007 { 5008 int ret; 5009 5010 rcu_read_lock(); 5011 ret = __netif_receive_skb_one_core(skb, false); 5012 rcu_read_unlock(); 5013 5014 return ret; 5015 } 5016 EXPORT_SYMBOL(netif_receive_skb_core); 5017 5018 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5019 struct packet_type *pt_prev, 5020 struct net_device *orig_dev) 5021 { 5022 struct sk_buff *skb, *next; 5023 5024 if (!pt_prev) 5025 return; 5026 if (list_empty(head)) 5027 return; 5028 if (pt_prev->list_func != NULL) 5029 pt_prev->list_func(head, pt_prev, orig_dev); 5030 else 5031 list_for_each_entry_safe(skb, next, head, list) { 5032 skb_list_del_init(skb); 5033 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5034 } 5035 } 5036 5037 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5038 { 5039 /* Fast-path assumptions: 5040 * - There is no RX handler. 5041 * - Only one packet_type matches. 5042 * If either of these fails, we will end up doing some per-packet 5043 * processing in-line, then handling the 'last ptype' for the whole 5044 * sublist. This can't cause out-of-order delivery to any single ptype, 5045 * because the 'last ptype' must be constant across the sublist, and all 5046 * other ptypes are handled per-packet. 5047 */ 5048 /* Current (common) ptype of sublist */ 5049 struct packet_type *pt_curr = NULL; 5050 /* Current (common) orig_dev of sublist */ 5051 struct net_device *od_curr = NULL; 5052 struct list_head sublist; 5053 struct sk_buff *skb, *next; 5054 5055 INIT_LIST_HEAD(&sublist); 5056 list_for_each_entry_safe(skb, next, head, list) { 5057 struct net_device *orig_dev = skb->dev; 5058 struct packet_type *pt_prev = NULL; 5059 5060 skb_list_del_init(skb); 5061 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5062 if (!pt_prev) 5063 continue; 5064 if (pt_curr != pt_prev || od_curr != orig_dev) { 5065 /* dispatch old sublist */ 5066 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5067 /* start new sublist */ 5068 INIT_LIST_HEAD(&sublist); 5069 pt_curr = pt_prev; 5070 od_curr = orig_dev; 5071 } 5072 list_add_tail(&skb->list, &sublist); 5073 } 5074 5075 /* dispatch final sublist */ 5076 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5077 } 5078 5079 static int __netif_receive_skb(struct sk_buff *skb) 5080 { 5081 int ret; 5082 5083 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5084 unsigned int noreclaim_flag; 5085 5086 /* 5087 * PFMEMALLOC skbs are special, they should 5088 * - be delivered to SOCK_MEMALLOC sockets only 5089 * - stay away from userspace 5090 * - have bounded memory usage 5091 * 5092 * Use PF_MEMALLOC as this saves us from propagating the allocation 5093 * context down to all allocation sites. 5094 */ 5095 noreclaim_flag = memalloc_noreclaim_save(); 5096 ret = __netif_receive_skb_one_core(skb, true); 5097 memalloc_noreclaim_restore(noreclaim_flag); 5098 } else 5099 ret = __netif_receive_skb_one_core(skb, false); 5100 5101 return ret; 5102 } 5103 5104 static void __netif_receive_skb_list(struct list_head *head) 5105 { 5106 unsigned long noreclaim_flag = 0; 5107 struct sk_buff *skb, *next; 5108 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5109 5110 list_for_each_entry_safe(skb, next, head, list) { 5111 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5112 struct list_head sublist; 5113 5114 /* Handle the previous sublist */ 5115 list_cut_before(&sublist, head, &skb->list); 5116 if (!list_empty(&sublist)) 5117 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5118 pfmemalloc = !pfmemalloc; 5119 /* See comments in __netif_receive_skb */ 5120 if (pfmemalloc) 5121 noreclaim_flag = memalloc_noreclaim_save(); 5122 else 5123 memalloc_noreclaim_restore(noreclaim_flag); 5124 } 5125 } 5126 /* Handle the remaining sublist */ 5127 if (!list_empty(head)) 5128 __netif_receive_skb_list_core(head, pfmemalloc); 5129 /* Restore pflags */ 5130 if (pfmemalloc) 5131 memalloc_noreclaim_restore(noreclaim_flag); 5132 } 5133 5134 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5135 { 5136 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5137 struct bpf_prog *new = xdp->prog; 5138 int ret = 0; 5139 5140 switch (xdp->command) { 5141 case XDP_SETUP_PROG: 5142 rcu_assign_pointer(dev->xdp_prog, new); 5143 if (old) 5144 bpf_prog_put(old); 5145 5146 if (old && !new) { 5147 static_branch_dec(&generic_xdp_needed_key); 5148 } else if (new && !old) { 5149 static_branch_inc(&generic_xdp_needed_key); 5150 dev_disable_lro(dev); 5151 dev_disable_gro_hw(dev); 5152 } 5153 break; 5154 5155 case XDP_QUERY_PROG: 5156 xdp->prog_id = old ? old->aux->id : 0; 5157 break; 5158 5159 default: 5160 ret = -EINVAL; 5161 break; 5162 } 5163 5164 return ret; 5165 } 5166 5167 static int netif_receive_skb_internal(struct sk_buff *skb) 5168 { 5169 int ret; 5170 5171 net_timestamp_check(netdev_tstamp_prequeue, skb); 5172 5173 if (skb_defer_rx_timestamp(skb)) 5174 return NET_RX_SUCCESS; 5175 5176 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5177 int ret; 5178 5179 preempt_disable(); 5180 rcu_read_lock(); 5181 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5182 rcu_read_unlock(); 5183 preempt_enable(); 5184 5185 if (ret != XDP_PASS) 5186 return NET_RX_DROP; 5187 } 5188 5189 rcu_read_lock(); 5190 #ifdef CONFIG_RPS 5191 if (static_key_false(&rps_needed)) { 5192 struct rps_dev_flow voidflow, *rflow = &voidflow; 5193 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5194 5195 if (cpu >= 0) { 5196 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5197 rcu_read_unlock(); 5198 return ret; 5199 } 5200 } 5201 #endif 5202 ret = __netif_receive_skb(skb); 5203 rcu_read_unlock(); 5204 return ret; 5205 } 5206 5207 static void netif_receive_skb_list_internal(struct list_head *head) 5208 { 5209 struct bpf_prog *xdp_prog = NULL; 5210 struct sk_buff *skb, *next; 5211 struct list_head sublist; 5212 5213 INIT_LIST_HEAD(&sublist); 5214 list_for_each_entry_safe(skb, next, head, list) { 5215 net_timestamp_check(netdev_tstamp_prequeue, skb); 5216 skb_list_del_init(skb); 5217 if (!skb_defer_rx_timestamp(skb)) 5218 list_add_tail(&skb->list, &sublist); 5219 } 5220 list_splice_init(&sublist, head); 5221 5222 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5223 preempt_disable(); 5224 rcu_read_lock(); 5225 list_for_each_entry_safe(skb, next, head, list) { 5226 xdp_prog = rcu_dereference(skb->dev->xdp_prog); 5227 skb_list_del_init(skb); 5228 if (do_xdp_generic(xdp_prog, skb) == XDP_PASS) 5229 list_add_tail(&skb->list, &sublist); 5230 } 5231 rcu_read_unlock(); 5232 preempt_enable(); 5233 /* Put passed packets back on main list */ 5234 list_splice_init(&sublist, head); 5235 } 5236 5237 rcu_read_lock(); 5238 #ifdef CONFIG_RPS 5239 if (static_key_false(&rps_needed)) { 5240 list_for_each_entry_safe(skb, next, head, list) { 5241 struct rps_dev_flow voidflow, *rflow = &voidflow; 5242 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5243 5244 if (cpu >= 0) { 5245 /* Will be handled, remove from list */ 5246 skb_list_del_init(skb); 5247 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5248 } 5249 } 5250 } 5251 #endif 5252 __netif_receive_skb_list(head); 5253 rcu_read_unlock(); 5254 } 5255 5256 /** 5257 * netif_receive_skb - process receive buffer from network 5258 * @skb: buffer to process 5259 * 5260 * netif_receive_skb() is the main receive data processing function. 5261 * It always succeeds. The buffer may be dropped during processing 5262 * for congestion control or by the protocol layers. 5263 * 5264 * This function may only be called from softirq context and interrupts 5265 * should be enabled. 5266 * 5267 * Return values (usually ignored): 5268 * NET_RX_SUCCESS: no congestion 5269 * NET_RX_DROP: packet was dropped 5270 */ 5271 int netif_receive_skb(struct sk_buff *skb) 5272 { 5273 int ret; 5274 5275 trace_netif_receive_skb_entry(skb); 5276 5277 ret = netif_receive_skb_internal(skb); 5278 trace_netif_receive_skb_exit(ret); 5279 5280 return ret; 5281 } 5282 EXPORT_SYMBOL(netif_receive_skb); 5283 5284 /** 5285 * netif_receive_skb_list - process many receive buffers from network 5286 * @head: list of skbs to process. 5287 * 5288 * Since return value of netif_receive_skb() is normally ignored, and 5289 * wouldn't be meaningful for a list, this function returns void. 5290 * 5291 * This function may only be called from softirq context and interrupts 5292 * should be enabled. 5293 */ 5294 void netif_receive_skb_list(struct list_head *head) 5295 { 5296 struct sk_buff *skb; 5297 5298 if (list_empty(head)) 5299 return; 5300 if (trace_netif_receive_skb_list_entry_enabled()) { 5301 list_for_each_entry(skb, head, list) 5302 trace_netif_receive_skb_list_entry(skb); 5303 } 5304 netif_receive_skb_list_internal(head); 5305 trace_netif_receive_skb_list_exit(0); 5306 } 5307 EXPORT_SYMBOL(netif_receive_skb_list); 5308 5309 DEFINE_PER_CPU(struct work_struct, flush_works); 5310 5311 /* Network device is going away, flush any packets still pending */ 5312 static void flush_backlog(struct work_struct *work) 5313 { 5314 struct sk_buff *skb, *tmp; 5315 struct softnet_data *sd; 5316 5317 local_bh_disable(); 5318 sd = this_cpu_ptr(&softnet_data); 5319 5320 local_irq_disable(); 5321 rps_lock(sd); 5322 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5323 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5324 __skb_unlink(skb, &sd->input_pkt_queue); 5325 kfree_skb(skb); 5326 input_queue_head_incr(sd); 5327 } 5328 } 5329 rps_unlock(sd); 5330 local_irq_enable(); 5331 5332 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5333 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5334 __skb_unlink(skb, &sd->process_queue); 5335 kfree_skb(skb); 5336 input_queue_head_incr(sd); 5337 } 5338 } 5339 local_bh_enable(); 5340 } 5341 5342 static void flush_all_backlogs(void) 5343 { 5344 unsigned int cpu; 5345 5346 get_online_cpus(); 5347 5348 for_each_online_cpu(cpu) 5349 queue_work_on(cpu, system_highpri_wq, 5350 per_cpu_ptr(&flush_works, cpu)); 5351 5352 for_each_online_cpu(cpu) 5353 flush_work(per_cpu_ptr(&flush_works, cpu)); 5354 5355 put_online_cpus(); 5356 } 5357 5358 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int)); 5359 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int)); 5360 static int napi_gro_complete(struct sk_buff *skb) 5361 { 5362 struct packet_offload *ptype; 5363 __be16 type = skb->protocol; 5364 struct list_head *head = &offload_base; 5365 int err = -ENOENT; 5366 5367 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5368 5369 if (NAPI_GRO_CB(skb)->count == 1) { 5370 skb_shinfo(skb)->gso_size = 0; 5371 goto out; 5372 } 5373 5374 rcu_read_lock(); 5375 list_for_each_entry_rcu(ptype, head, list) { 5376 if (ptype->type != type || !ptype->callbacks.gro_complete) 5377 continue; 5378 5379 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5380 ipv6_gro_complete, inet_gro_complete, 5381 skb, 0); 5382 break; 5383 } 5384 rcu_read_unlock(); 5385 5386 if (err) { 5387 WARN_ON(&ptype->list == head); 5388 kfree_skb(skb); 5389 return NET_RX_SUCCESS; 5390 } 5391 5392 out: 5393 return netif_receive_skb_internal(skb); 5394 } 5395 5396 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5397 bool flush_old) 5398 { 5399 struct list_head *head = &napi->gro_hash[index].list; 5400 struct sk_buff *skb, *p; 5401 5402 list_for_each_entry_safe_reverse(skb, p, head, list) { 5403 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5404 return; 5405 skb_list_del_init(skb); 5406 napi_gro_complete(skb); 5407 napi->gro_hash[index].count--; 5408 } 5409 5410 if (!napi->gro_hash[index].count) 5411 __clear_bit(index, &napi->gro_bitmask); 5412 } 5413 5414 /* napi->gro_hash[].list contains packets ordered by age. 5415 * youngest packets at the head of it. 5416 * Complete skbs in reverse order to reduce latencies. 5417 */ 5418 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5419 { 5420 unsigned long bitmask = napi->gro_bitmask; 5421 unsigned int i, base = ~0U; 5422 5423 while ((i = ffs(bitmask)) != 0) { 5424 bitmask >>= i; 5425 base += i; 5426 __napi_gro_flush_chain(napi, base, flush_old); 5427 } 5428 } 5429 EXPORT_SYMBOL(napi_gro_flush); 5430 5431 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5432 struct sk_buff *skb) 5433 { 5434 unsigned int maclen = skb->dev->hard_header_len; 5435 u32 hash = skb_get_hash_raw(skb); 5436 struct list_head *head; 5437 struct sk_buff *p; 5438 5439 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5440 list_for_each_entry(p, head, list) { 5441 unsigned long diffs; 5442 5443 NAPI_GRO_CB(p)->flush = 0; 5444 5445 if (hash != skb_get_hash_raw(p)) { 5446 NAPI_GRO_CB(p)->same_flow = 0; 5447 continue; 5448 } 5449 5450 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5451 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5452 if (skb_vlan_tag_present(p)) 5453 diffs |= p->vlan_tci ^ skb->vlan_tci; 5454 diffs |= skb_metadata_dst_cmp(p, skb); 5455 diffs |= skb_metadata_differs(p, skb); 5456 if (maclen == ETH_HLEN) 5457 diffs |= compare_ether_header(skb_mac_header(p), 5458 skb_mac_header(skb)); 5459 else if (!diffs) 5460 diffs = memcmp(skb_mac_header(p), 5461 skb_mac_header(skb), 5462 maclen); 5463 NAPI_GRO_CB(p)->same_flow = !diffs; 5464 } 5465 5466 return head; 5467 } 5468 5469 static void skb_gro_reset_offset(struct sk_buff *skb) 5470 { 5471 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5472 const skb_frag_t *frag0 = &pinfo->frags[0]; 5473 5474 NAPI_GRO_CB(skb)->data_offset = 0; 5475 NAPI_GRO_CB(skb)->frag0 = NULL; 5476 NAPI_GRO_CB(skb)->frag0_len = 0; 5477 5478 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 5479 pinfo->nr_frags && 5480 !PageHighMem(skb_frag_page(frag0))) { 5481 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5482 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5483 skb_frag_size(frag0), 5484 skb->end - skb->tail); 5485 } 5486 } 5487 5488 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5489 { 5490 struct skb_shared_info *pinfo = skb_shinfo(skb); 5491 5492 BUG_ON(skb->end - skb->tail < grow); 5493 5494 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5495 5496 skb->data_len -= grow; 5497 skb->tail += grow; 5498 5499 pinfo->frags[0].page_offset += grow; 5500 skb_frag_size_sub(&pinfo->frags[0], grow); 5501 5502 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5503 skb_frag_unref(skb, 0); 5504 memmove(pinfo->frags, pinfo->frags + 1, 5505 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5506 } 5507 } 5508 5509 static void gro_flush_oldest(struct list_head *head) 5510 { 5511 struct sk_buff *oldest; 5512 5513 oldest = list_last_entry(head, struct sk_buff, list); 5514 5515 /* We are called with head length >= MAX_GRO_SKBS, so this is 5516 * impossible. 5517 */ 5518 if (WARN_ON_ONCE(!oldest)) 5519 return; 5520 5521 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5522 * SKB to the chain. 5523 */ 5524 skb_list_del_init(oldest); 5525 napi_gro_complete(oldest); 5526 } 5527 5528 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *, 5529 struct sk_buff *)); 5530 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *, 5531 struct sk_buff *)); 5532 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5533 { 5534 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5535 struct list_head *head = &offload_base; 5536 struct packet_offload *ptype; 5537 __be16 type = skb->protocol; 5538 struct list_head *gro_head; 5539 struct sk_buff *pp = NULL; 5540 enum gro_result ret; 5541 int same_flow; 5542 int grow; 5543 5544 if (netif_elide_gro(skb->dev)) 5545 goto normal; 5546 5547 gro_head = gro_list_prepare(napi, skb); 5548 5549 rcu_read_lock(); 5550 list_for_each_entry_rcu(ptype, head, list) { 5551 if (ptype->type != type || !ptype->callbacks.gro_receive) 5552 continue; 5553 5554 skb_set_network_header(skb, skb_gro_offset(skb)); 5555 skb_reset_mac_len(skb); 5556 NAPI_GRO_CB(skb)->same_flow = 0; 5557 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5558 NAPI_GRO_CB(skb)->free = 0; 5559 NAPI_GRO_CB(skb)->encap_mark = 0; 5560 NAPI_GRO_CB(skb)->recursion_counter = 0; 5561 NAPI_GRO_CB(skb)->is_fou = 0; 5562 NAPI_GRO_CB(skb)->is_atomic = 1; 5563 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5564 5565 /* Setup for GRO checksum validation */ 5566 switch (skb->ip_summed) { 5567 case CHECKSUM_COMPLETE: 5568 NAPI_GRO_CB(skb)->csum = skb->csum; 5569 NAPI_GRO_CB(skb)->csum_valid = 1; 5570 NAPI_GRO_CB(skb)->csum_cnt = 0; 5571 break; 5572 case CHECKSUM_UNNECESSARY: 5573 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5574 NAPI_GRO_CB(skb)->csum_valid = 0; 5575 break; 5576 default: 5577 NAPI_GRO_CB(skb)->csum_cnt = 0; 5578 NAPI_GRO_CB(skb)->csum_valid = 0; 5579 } 5580 5581 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 5582 ipv6_gro_receive, inet_gro_receive, 5583 gro_head, skb); 5584 break; 5585 } 5586 rcu_read_unlock(); 5587 5588 if (&ptype->list == head) 5589 goto normal; 5590 5591 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 5592 ret = GRO_CONSUMED; 5593 goto ok; 5594 } 5595 5596 same_flow = NAPI_GRO_CB(skb)->same_flow; 5597 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5598 5599 if (pp) { 5600 skb_list_del_init(pp); 5601 napi_gro_complete(pp); 5602 napi->gro_hash[hash].count--; 5603 } 5604 5605 if (same_flow) 5606 goto ok; 5607 5608 if (NAPI_GRO_CB(skb)->flush) 5609 goto normal; 5610 5611 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5612 gro_flush_oldest(gro_head); 5613 } else { 5614 napi->gro_hash[hash].count++; 5615 } 5616 NAPI_GRO_CB(skb)->count = 1; 5617 NAPI_GRO_CB(skb)->age = jiffies; 5618 NAPI_GRO_CB(skb)->last = skb; 5619 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5620 list_add(&skb->list, gro_head); 5621 ret = GRO_HELD; 5622 5623 pull: 5624 grow = skb_gro_offset(skb) - skb_headlen(skb); 5625 if (grow > 0) 5626 gro_pull_from_frag0(skb, grow); 5627 ok: 5628 if (napi->gro_hash[hash].count) { 5629 if (!test_bit(hash, &napi->gro_bitmask)) 5630 __set_bit(hash, &napi->gro_bitmask); 5631 } else if (test_bit(hash, &napi->gro_bitmask)) { 5632 __clear_bit(hash, &napi->gro_bitmask); 5633 } 5634 5635 return ret; 5636 5637 normal: 5638 ret = GRO_NORMAL; 5639 goto pull; 5640 } 5641 5642 struct packet_offload *gro_find_receive_by_type(__be16 type) 5643 { 5644 struct list_head *offload_head = &offload_base; 5645 struct packet_offload *ptype; 5646 5647 list_for_each_entry_rcu(ptype, offload_head, list) { 5648 if (ptype->type != type || !ptype->callbacks.gro_receive) 5649 continue; 5650 return ptype; 5651 } 5652 return NULL; 5653 } 5654 EXPORT_SYMBOL(gro_find_receive_by_type); 5655 5656 struct packet_offload *gro_find_complete_by_type(__be16 type) 5657 { 5658 struct list_head *offload_head = &offload_base; 5659 struct packet_offload *ptype; 5660 5661 list_for_each_entry_rcu(ptype, offload_head, list) { 5662 if (ptype->type != type || !ptype->callbacks.gro_complete) 5663 continue; 5664 return ptype; 5665 } 5666 return NULL; 5667 } 5668 EXPORT_SYMBOL(gro_find_complete_by_type); 5669 5670 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5671 { 5672 skb_dst_drop(skb); 5673 secpath_reset(skb); 5674 kmem_cache_free(skbuff_head_cache, skb); 5675 } 5676 5677 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 5678 { 5679 switch (ret) { 5680 case GRO_NORMAL: 5681 if (netif_receive_skb_internal(skb)) 5682 ret = GRO_DROP; 5683 break; 5684 5685 case GRO_DROP: 5686 kfree_skb(skb); 5687 break; 5688 5689 case GRO_MERGED_FREE: 5690 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5691 napi_skb_free_stolen_head(skb); 5692 else 5693 __kfree_skb(skb); 5694 break; 5695 5696 case GRO_HELD: 5697 case GRO_MERGED: 5698 case GRO_CONSUMED: 5699 break; 5700 } 5701 5702 return ret; 5703 } 5704 5705 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5706 { 5707 gro_result_t ret; 5708 5709 skb_mark_napi_id(skb, napi); 5710 trace_napi_gro_receive_entry(skb); 5711 5712 skb_gro_reset_offset(skb); 5713 5714 ret = napi_skb_finish(dev_gro_receive(napi, skb), skb); 5715 trace_napi_gro_receive_exit(ret); 5716 5717 return ret; 5718 } 5719 EXPORT_SYMBOL(napi_gro_receive); 5720 5721 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5722 { 5723 if (unlikely(skb->pfmemalloc)) { 5724 consume_skb(skb); 5725 return; 5726 } 5727 __skb_pull(skb, skb_headlen(skb)); 5728 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5729 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5730 __vlan_hwaccel_clear_tag(skb); 5731 skb->dev = napi->dev; 5732 skb->skb_iif = 0; 5733 5734 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 5735 skb->pkt_type = PACKET_HOST; 5736 5737 skb->encapsulation = 0; 5738 skb_shinfo(skb)->gso_type = 0; 5739 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5740 secpath_reset(skb); 5741 5742 napi->skb = skb; 5743 } 5744 5745 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5746 { 5747 struct sk_buff *skb = napi->skb; 5748 5749 if (!skb) { 5750 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5751 if (skb) { 5752 napi->skb = skb; 5753 skb_mark_napi_id(skb, napi); 5754 } 5755 } 5756 return skb; 5757 } 5758 EXPORT_SYMBOL(napi_get_frags); 5759 5760 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5761 struct sk_buff *skb, 5762 gro_result_t ret) 5763 { 5764 switch (ret) { 5765 case GRO_NORMAL: 5766 case GRO_HELD: 5767 __skb_push(skb, ETH_HLEN); 5768 skb->protocol = eth_type_trans(skb, skb->dev); 5769 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5770 ret = GRO_DROP; 5771 break; 5772 5773 case GRO_DROP: 5774 napi_reuse_skb(napi, skb); 5775 break; 5776 5777 case GRO_MERGED_FREE: 5778 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5779 napi_skb_free_stolen_head(skb); 5780 else 5781 napi_reuse_skb(napi, skb); 5782 break; 5783 5784 case GRO_MERGED: 5785 case GRO_CONSUMED: 5786 break; 5787 } 5788 5789 return ret; 5790 } 5791 5792 /* Upper GRO stack assumes network header starts at gro_offset=0 5793 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5794 * We copy ethernet header into skb->data to have a common layout. 5795 */ 5796 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5797 { 5798 struct sk_buff *skb = napi->skb; 5799 const struct ethhdr *eth; 5800 unsigned int hlen = sizeof(*eth); 5801 5802 napi->skb = NULL; 5803 5804 skb_reset_mac_header(skb); 5805 skb_gro_reset_offset(skb); 5806 5807 eth = skb_gro_header_fast(skb, 0); 5808 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5809 eth = skb_gro_header_slow(skb, hlen, 0); 5810 if (unlikely(!eth)) { 5811 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5812 __func__, napi->dev->name); 5813 napi_reuse_skb(napi, skb); 5814 return NULL; 5815 } 5816 } else { 5817 gro_pull_from_frag0(skb, hlen); 5818 NAPI_GRO_CB(skb)->frag0 += hlen; 5819 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5820 } 5821 __skb_pull(skb, hlen); 5822 5823 /* 5824 * This works because the only protocols we care about don't require 5825 * special handling. 5826 * We'll fix it up properly in napi_frags_finish() 5827 */ 5828 skb->protocol = eth->h_proto; 5829 5830 return skb; 5831 } 5832 5833 gro_result_t napi_gro_frags(struct napi_struct *napi) 5834 { 5835 gro_result_t ret; 5836 struct sk_buff *skb = napi_frags_skb(napi); 5837 5838 if (!skb) 5839 return GRO_DROP; 5840 5841 trace_napi_gro_frags_entry(skb); 5842 5843 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5844 trace_napi_gro_frags_exit(ret); 5845 5846 return ret; 5847 } 5848 EXPORT_SYMBOL(napi_gro_frags); 5849 5850 /* Compute the checksum from gro_offset and return the folded value 5851 * after adding in any pseudo checksum. 5852 */ 5853 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5854 { 5855 __wsum wsum; 5856 __sum16 sum; 5857 5858 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5859 5860 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5861 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5862 /* See comments in __skb_checksum_complete(). */ 5863 if (likely(!sum)) { 5864 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5865 !skb->csum_complete_sw) 5866 netdev_rx_csum_fault(skb->dev, skb); 5867 } 5868 5869 NAPI_GRO_CB(skb)->csum = wsum; 5870 NAPI_GRO_CB(skb)->csum_valid = 1; 5871 5872 return sum; 5873 } 5874 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5875 5876 static void net_rps_send_ipi(struct softnet_data *remsd) 5877 { 5878 #ifdef CONFIG_RPS 5879 while (remsd) { 5880 struct softnet_data *next = remsd->rps_ipi_next; 5881 5882 if (cpu_online(remsd->cpu)) 5883 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5884 remsd = next; 5885 } 5886 #endif 5887 } 5888 5889 /* 5890 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5891 * Note: called with local irq disabled, but exits with local irq enabled. 5892 */ 5893 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5894 { 5895 #ifdef CONFIG_RPS 5896 struct softnet_data *remsd = sd->rps_ipi_list; 5897 5898 if (remsd) { 5899 sd->rps_ipi_list = NULL; 5900 5901 local_irq_enable(); 5902 5903 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5904 net_rps_send_ipi(remsd); 5905 } else 5906 #endif 5907 local_irq_enable(); 5908 } 5909 5910 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5911 { 5912 #ifdef CONFIG_RPS 5913 return sd->rps_ipi_list != NULL; 5914 #else 5915 return false; 5916 #endif 5917 } 5918 5919 static int process_backlog(struct napi_struct *napi, int quota) 5920 { 5921 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5922 bool again = true; 5923 int work = 0; 5924 5925 /* Check if we have pending ipi, its better to send them now, 5926 * not waiting net_rx_action() end. 5927 */ 5928 if (sd_has_rps_ipi_waiting(sd)) { 5929 local_irq_disable(); 5930 net_rps_action_and_irq_enable(sd); 5931 } 5932 5933 napi->weight = dev_rx_weight; 5934 while (again) { 5935 struct sk_buff *skb; 5936 5937 while ((skb = __skb_dequeue(&sd->process_queue))) { 5938 rcu_read_lock(); 5939 __netif_receive_skb(skb); 5940 rcu_read_unlock(); 5941 input_queue_head_incr(sd); 5942 if (++work >= quota) 5943 return work; 5944 5945 } 5946 5947 local_irq_disable(); 5948 rps_lock(sd); 5949 if (skb_queue_empty(&sd->input_pkt_queue)) { 5950 /* 5951 * Inline a custom version of __napi_complete(). 5952 * only current cpu owns and manipulates this napi, 5953 * and NAPI_STATE_SCHED is the only possible flag set 5954 * on backlog. 5955 * We can use a plain write instead of clear_bit(), 5956 * and we dont need an smp_mb() memory barrier. 5957 */ 5958 napi->state = 0; 5959 again = false; 5960 } else { 5961 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5962 &sd->process_queue); 5963 } 5964 rps_unlock(sd); 5965 local_irq_enable(); 5966 } 5967 5968 return work; 5969 } 5970 5971 /** 5972 * __napi_schedule - schedule for receive 5973 * @n: entry to schedule 5974 * 5975 * The entry's receive function will be scheduled to run. 5976 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5977 */ 5978 void __napi_schedule(struct napi_struct *n) 5979 { 5980 unsigned long flags; 5981 5982 local_irq_save(flags); 5983 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5984 local_irq_restore(flags); 5985 } 5986 EXPORT_SYMBOL(__napi_schedule); 5987 5988 /** 5989 * napi_schedule_prep - check if napi can be scheduled 5990 * @n: napi context 5991 * 5992 * Test if NAPI routine is already running, and if not mark 5993 * it as running. This is used as a condition variable 5994 * insure only one NAPI poll instance runs. We also make 5995 * sure there is no pending NAPI disable. 5996 */ 5997 bool napi_schedule_prep(struct napi_struct *n) 5998 { 5999 unsigned long val, new; 6000 6001 do { 6002 val = READ_ONCE(n->state); 6003 if (unlikely(val & NAPIF_STATE_DISABLE)) 6004 return false; 6005 new = val | NAPIF_STATE_SCHED; 6006 6007 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6008 * This was suggested by Alexander Duyck, as compiler 6009 * emits better code than : 6010 * if (val & NAPIF_STATE_SCHED) 6011 * new |= NAPIF_STATE_MISSED; 6012 */ 6013 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6014 NAPIF_STATE_MISSED; 6015 } while (cmpxchg(&n->state, val, new) != val); 6016 6017 return !(val & NAPIF_STATE_SCHED); 6018 } 6019 EXPORT_SYMBOL(napi_schedule_prep); 6020 6021 /** 6022 * __napi_schedule_irqoff - schedule for receive 6023 * @n: entry to schedule 6024 * 6025 * Variant of __napi_schedule() assuming hard irqs are masked 6026 */ 6027 void __napi_schedule_irqoff(struct napi_struct *n) 6028 { 6029 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6030 } 6031 EXPORT_SYMBOL(__napi_schedule_irqoff); 6032 6033 bool napi_complete_done(struct napi_struct *n, int work_done) 6034 { 6035 unsigned long flags, val, new; 6036 6037 /* 6038 * 1) Don't let napi dequeue from the cpu poll list 6039 * just in case its running on a different cpu. 6040 * 2) If we are busy polling, do nothing here, we have 6041 * the guarantee we will be called later. 6042 */ 6043 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6044 NAPIF_STATE_IN_BUSY_POLL))) 6045 return false; 6046 6047 if (n->gro_bitmask) { 6048 unsigned long timeout = 0; 6049 6050 if (work_done) 6051 timeout = n->dev->gro_flush_timeout; 6052 6053 /* When the NAPI instance uses a timeout and keeps postponing 6054 * it, we need to bound somehow the time packets are kept in 6055 * the GRO layer 6056 */ 6057 napi_gro_flush(n, !!timeout); 6058 if (timeout) 6059 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6060 HRTIMER_MODE_REL_PINNED); 6061 } 6062 if (unlikely(!list_empty(&n->poll_list))) { 6063 /* If n->poll_list is not empty, we need to mask irqs */ 6064 local_irq_save(flags); 6065 list_del_init(&n->poll_list); 6066 local_irq_restore(flags); 6067 } 6068 6069 do { 6070 val = READ_ONCE(n->state); 6071 6072 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6073 6074 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 6075 6076 /* If STATE_MISSED was set, leave STATE_SCHED set, 6077 * because we will call napi->poll() one more time. 6078 * This C code was suggested by Alexander Duyck to help gcc. 6079 */ 6080 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6081 NAPIF_STATE_SCHED; 6082 } while (cmpxchg(&n->state, val, new) != val); 6083 6084 if (unlikely(val & NAPIF_STATE_MISSED)) { 6085 __napi_schedule(n); 6086 return false; 6087 } 6088 6089 return true; 6090 } 6091 EXPORT_SYMBOL(napi_complete_done); 6092 6093 /* must be called under rcu_read_lock(), as we dont take a reference */ 6094 static struct napi_struct *napi_by_id(unsigned int napi_id) 6095 { 6096 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6097 struct napi_struct *napi; 6098 6099 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6100 if (napi->napi_id == napi_id) 6101 return napi; 6102 6103 return NULL; 6104 } 6105 6106 #if defined(CONFIG_NET_RX_BUSY_POLL) 6107 6108 #define BUSY_POLL_BUDGET 8 6109 6110 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6111 { 6112 int rc; 6113 6114 /* Busy polling means there is a high chance device driver hard irq 6115 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6116 * set in napi_schedule_prep(). 6117 * Since we are about to call napi->poll() once more, we can safely 6118 * clear NAPI_STATE_MISSED. 6119 * 6120 * Note: x86 could use a single "lock and ..." instruction 6121 * to perform these two clear_bit() 6122 */ 6123 clear_bit(NAPI_STATE_MISSED, &napi->state); 6124 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6125 6126 local_bh_disable(); 6127 6128 /* All we really want here is to re-enable device interrupts. 6129 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6130 */ 6131 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6132 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6133 netpoll_poll_unlock(have_poll_lock); 6134 if (rc == BUSY_POLL_BUDGET) 6135 __napi_schedule(napi); 6136 local_bh_enable(); 6137 } 6138 6139 void napi_busy_loop(unsigned int napi_id, 6140 bool (*loop_end)(void *, unsigned long), 6141 void *loop_end_arg) 6142 { 6143 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6144 int (*napi_poll)(struct napi_struct *napi, int budget); 6145 void *have_poll_lock = NULL; 6146 struct napi_struct *napi; 6147 6148 restart: 6149 napi_poll = NULL; 6150 6151 rcu_read_lock(); 6152 6153 napi = napi_by_id(napi_id); 6154 if (!napi) 6155 goto out; 6156 6157 preempt_disable(); 6158 for (;;) { 6159 int work = 0; 6160 6161 local_bh_disable(); 6162 if (!napi_poll) { 6163 unsigned long val = READ_ONCE(napi->state); 6164 6165 /* If multiple threads are competing for this napi, 6166 * we avoid dirtying napi->state as much as we can. 6167 */ 6168 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6169 NAPIF_STATE_IN_BUSY_POLL)) 6170 goto count; 6171 if (cmpxchg(&napi->state, val, 6172 val | NAPIF_STATE_IN_BUSY_POLL | 6173 NAPIF_STATE_SCHED) != val) 6174 goto count; 6175 have_poll_lock = netpoll_poll_lock(napi); 6176 napi_poll = napi->poll; 6177 } 6178 work = napi_poll(napi, BUSY_POLL_BUDGET); 6179 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6180 count: 6181 if (work > 0) 6182 __NET_ADD_STATS(dev_net(napi->dev), 6183 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6184 local_bh_enable(); 6185 6186 if (!loop_end || loop_end(loop_end_arg, start_time)) 6187 break; 6188 6189 if (unlikely(need_resched())) { 6190 if (napi_poll) 6191 busy_poll_stop(napi, have_poll_lock); 6192 preempt_enable(); 6193 rcu_read_unlock(); 6194 cond_resched(); 6195 if (loop_end(loop_end_arg, start_time)) 6196 return; 6197 goto restart; 6198 } 6199 cpu_relax(); 6200 } 6201 if (napi_poll) 6202 busy_poll_stop(napi, have_poll_lock); 6203 preempt_enable(); 6204 out: 6205 rcu_read_unlock(); 6206 } 6207 EXPORT_SYMBOL(napi_busy_loop); 6208 6209 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6210 6211 static void napi_hash_add(struct napi_struct *napi) 6212 { 6213 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 6214 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 6215 return; 6216 6217 spin_lock(&napi_hash_lock); 6218 6219 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6220 do { 6221 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6222 napi_gen_id = MIN_NAPI_ID; 6223 } while (napi_by_id(napi_gen_id)); 6224 napi->napi_id = napi_gen_id; 6225 6226 hlist_add_head_rcu(&napi->napi_hash_node, 6227 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6228 6229 spin_unlock(&napi_hash_lock); 6230 } 6231 6232 /* Warning : caller is responsible to make sure rcu grace period 6233 * is respected before freeing memory containing @napi 6234 */ 6235 bool napi_hash_del(struct napi_struct *napi) 6236 { 6237 bool rcu_sync_needed = false; 6238 6239 spin_lock(&napi_hash_lock); 6240 6241 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 6242 rcu_sync_needed = true; 6243 hlist_del_rcu(&napi->napi_hash_node); 6244 } 6245 spin_unlock(&napi_hash_lock); 6246 return rcu_sync_needed; 6247 } 6248 EXPORT_SYMBOL_GPL(napi_hash_del); 6249 6250 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6251 { 6252 struct napi_struct *napi; 6253 6254 napi = container_of(timer, struct napi_struct, timer); 6255 6256 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6257 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6258 */ 6259 if (napi->gro_bitmask && !napi_disable_pending(napi) && 6260 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6261 __napi_schedule_irqoff(napi); 6262 6263 return HRTIMER_NORESTART; 6264 } 6265 6266 static void init_gro_hash(struct napi_struct *napi) 6267 { 6268 int i; 6269 6270 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6271 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6272 napi->gro_hash[i].count = 0; 6273 } 6274 napi->gro_bitmask = 0; 6275 } 6276 6277 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6278 int (*poll)(struct napi_struct *, int), int weight) 6279 { 6280 INIT_LIST_HEAD(&napi->poll_list); 6281 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6282 napi->timer.function = napi_watchdog; 6283 init_gro_hash(napi); 6284 napi->skb = NULL; 6285 napi->poll = poll; 6286 if (weight > NAPI_POLL_WEIGHT) 6287 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6288 weight); 6289 napi->weight = weight; 6290 list_add(&napi->dev_list, &dev->napi_list); 6291 napi->dev = dev; 6292 #ifdef CONFIG_NETPOLL 6293 napi->poll_owner = -1; 6294 #endif 6295 set_bit(NAPI_STATE_SCHED, &napi->state); 6296 napi_hash_add(napi); 6297 } 6298 EXPORT_SYMBOL(netif_napi_add); 6299 6300 void napi_disable(struct napi_struct *n) 6301 { 6302 might_sleep(); 6303 set_bit(NAPI_STATE_DISABLE, &n->state); 6304 6305 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6306 msleep(1); 6307 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6308 msleep(1); 6309 6310 hrtimer_cancel(&n->timer); 6311 6312 clear_bit(NAPI_STATE_DISABLE, &n->state); 6313 } 6314 EXPORT_SYMBOL(napi_disable); 6315 6316 static void flush_gro_hash(struct napi_struct *napi) 6317 { 6318 int i; 6319 6320 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6321 struct sk_buff *skb, *n; 6322 6323 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6324 kfree_skb(skb); 6325 napi->gro_hash[i].count = 0; 6326 } 6327 } 6328 6329 /* Must be called in process context */ 6330 void netif_napi_del(struct napi_struct *napi) 6331 { 6332 might_sleep(); 6333 if (napi_hash_del(napi)) 6334 synchronize_net(); 6335 list_del_init(&napi->dev_list); 6336 napi_free_frags(napi); 6337 6338 flush_gro_hash(napi); 6339 napi->gro_bitmask = 0; 6340 } 6341 EXPORT_SYMBOL(netif_napi_del); 6342 6343 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6344 { 6345 void *have; 6346 int work, weight; 6347 6348 list_del_init(&n->poll_list); 6349 6350 have = netpoll_poll_lock(n); 6351 6352 weight = n->weight; 6353 6354 /* This NAPI_STATE_SCHED test is for avoiding a race 6355 * with netpoll's poll_napi(). Only the entity which 6356 * obtains the lock and sees NAPI_STATE_SCHED set will 6357 * actually make the ->poll() call. Therefore we avoid 6358 * accidentally calling ->poll() when NAPI is not scheduled. 6359 */ 6360 work = 0; 6361 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6362 work = n->poll(n, weight); 6363 trace_napi_poll(n, work, weight); 6364 } 6365 6366 WARN_ON_ONCE(work > weight); 6367 6368 if (likely(work < weight)) 6369 goto out_unlock; 6370 6371 /* Drivers must not modify the NAPI state if they 6372 * consume the entire weight. In such cases this code 6373 * still "owns" the NAPI instance and therefore can 6374 * move the instance around on the list at-will. 6375 */ 6376 if (unlikely(napi_disable_pending(n))) { 6377 napi_complete(n); 6378 goto out_unlock; 6379 } 6380 6381 if (n->gro_bitmask) { 6382 /* flush too old packets 6383 * If HZ < 1000, flush all packets. 6384 */ 6385 napi_gro_flush(n, HZ >= 1000); 6386 } 6387 6388 /* Some drivers may have called napi_schedule 6389 * prior to exhausting their budget. 6390 */ 6391 if (unlikely(!list_empty(&n->poll_list))) { 6392 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6393 n->dev ? n->dev->name : "backlog"); 6394 goto out_unlock; 6395 } 6396 6397 list_add_tail(&n->poll_list, repoll); 6398 6399 out_unlock: 6400 netpoll_poll_unlock(have); 6401 6402 return work; 6403 } 6404 6405 static __latent_entropy void net_rx_action(struct softirq_action *h) 6406 { 6407 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6408 unsigned long time_limit = jiffies + 6409 usecs_to_jiffies(netdev_budget_usecs); 6410 int budget = netdev_budget; 6411 LIST_HEAD(list); 6412 LIST_HEAD(repoll); 6413 6414 local_irq_disable(); 6415 list_splice_init(&sd->poll_list, &list); 6416 local_irq_enable(); 6417 6418 for (;;) { 6419 struct napi_struct *n; 6420 6421 if (list_empty(&list)) { 6422 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6423 goto out; 6424 break; 6425 } 6426 6427 n = list_first_entry(&list, struct napi_struct, poll_list); 6428 budget -= napi_poll(n, &repoll); 6429 6430 /* If softirq window is exhausted then punt. 6431 * Allow this to run for 2 jiffies since which will allow 6432 * an average latency of 1.5/HZ. 6433 */ 6434 if (unlikely(budget <= 0 || 6435 time_after_eq(jiffies, time_limit))) { 6436 sd->time_squeeze++; 6437 break; 6438 } 6439 } 6440 6441 local_irq_disable(); 6442 6443 list_splice_tail_init(&sd->poll_list, &list); 6444 list_splice_tail(&repoll, &list); 6445 list_splice(&list, &sd->poll_list); 6446 if (!list_empty(&sd->poll_list)) 6447 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6448 6449 net_rps_action_and_irq_enable(sd); 6450 out: 6451 __kfree_skb_flush(); 6452 } 6453 6454 struct netdev_adjacent { 6455 struct net_device *dev; 6456 6457 /* upper master flag, there can only be one master device per list */ 6458 bool master; 6459 6460 /* counter for the number of times this device was added to us */ 6461 u16 ref_nr; 6462 6463 /* private field for the users */ 6464 void *private; 6465 6466 struct list_head list; 6467 struct rcu_head rcu; 6468 }; 6469 6470 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6471 struct list_head *adj_list) 6472 { 6473 struct netdev_adjacent *adj; 6474 6475 list_for_each_entry(adj, adj_list, list) { 6476 if (adj->dev == adj_dev) 6477 return adj; 6478 } 6479 return NULL; 6480 } 6481 6482 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 6483 { 6484 struct net_device *dev = data; 6485 6486 return upper_dev == dev; 6487 } 6488 6489 /** 6490 * netdev_has_upper_dev - Check if device is linked to an upper device 6491 * @dev: device 6492 * @upper_dev: upper device to check 6493 * 6494 * Find out if a device is linked to specified upper device and return true 6495 * in case it is. Note that this checks only immediate upper device, 6496 * not through a complete stack of devices. The caller must hold the RTNL lock. 6497 */ 6498 bool netdev_has_upper_dev(struct net_device *dev, 6499 struct net_device *upper_dev) 6500 { 6501 ASSERT_RTNL(); 6502 6503 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6504 upper_dev); 6505 } 6506 EXPORT_SYMBOL(netdev_has_upper_dev); 6507 6508 /** 6509 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6510 * @dev: device 6511 * @upper_dev: upper device to check 6512 * 6513 * Find out if a device is linked to specified upper device and return true 6514 * in case it is. Note that this checks the entire upper device chain. 6515 * The caller must hold rcu lock. 6516 */ 6517 6518 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6519 struct net_device *upper_dev) 6520 { 6521 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6522 upper_dev); 6523 } 6524 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6525 6526 /** 6527 * netdev_has_any_upper_dev - Check if device is linked to some device 6528 * @dev: device 6529 * 6530 * Find out if a device is linked to an upper device and return true in case 6531 * it is. The caller must hold the RTNL lock. 6532 */ 6533 bool netdev_has_any_upper_dev(struct net_device *dev) 6534 { 6535 ASSERT_RTNL(); 6536 6537 return !list_empty(&dev->adj_list.upper); 6538 } 6539 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6540 6541 /** 6542 * netdev_master_upper_dev_get - Get master upper device 6543 * @dev: device 6544 * 6545 * Find a master upper device and return pointer to it or NULL in case 6546 * it's not there. The caller must hold the RTNL lock. 6547 */ 6548 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6549 { 6550 struct netdev_adjacent *upper; 6551 6552 ASSERT_RTNL(); 6553 6554 if (list_empty(&dev->adj_list.upper)) 6555 return NULL; 6556 6557 upper = list_first_entry(&dev->adj_list.upper, 6558 struct netdev_adjacent, list); 6559 if (likely(upper->master)) 6560 return upper->dev; 6561 return NULL; 6562 } 6563 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6564 6565 /** 6566 * netdev_has_any_lower_dev - Check if device is linked to some device 6567 * @dev: device 6568 * 6569 * Find out if a device is linked to a lower device and return true in case 6570 * it is. The caller must hold the RTNL lock. 6571 */ 6572 static bool netdev_has_any_lower_dev(struct net_device *dev) 6573 { 6574 ASSERT_RTNL(); 6575 6576 return !list_empty(&dev->adj_list.lower); 6577 } 6578 6579 void *netdev_adjacent_get_private(struct list_head *adj_list) 6580 { 6581 struct netdev_adjacent *adj; 6582 6583 adj = list_entry(adj_list, struct netdev_adjacent, list); 6584 6585 return adj->private; 6586 } 6587 EXPORT_SYMBOL(netdev_adjacent_get_private); 6588 6589 /** 6590 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6591 * @dev: device 6592 * @iter: list_head ** of the current position 6593 * 6594 * Gets the next device from the dev's upper list, starting from iter 6595 * position. The caller must hold RCU read lock. 6596 */ 6597 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6598 struct list_head **iter) 6599 { 6600 struct netdev_adjacent *upper; 6601 6602 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6603 6604 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6605 6606 if (&upper->list == &dev->adj_list.upper) 6607 return NULL; 6608 6609 *iter = &upper->list; 6610 6611 return upper->dev; 6612 } 6613 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6614 6615 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6616 struct list_head **iter) 6617 { 6618 struct netdev_adjacent *upper; 6619 6620 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6621 6622 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6623 6624 if (&upper->list == &dev->adj_list.upper) 6625 return NULL; 6626 6627 *iter = &upper->list; 6628 6629 return upper->dev; 6630 } 6631 6632 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6633 int (*fn)(struct net_device *dev, 6634 void *data), 6635 void *data) 6636 { 6637 struct net_device *udev; 6638 struct list_head *iter; 6639 int ret; 6640 6641 for (iter = &dev->adj_list.upper, 6642 udev = netdev_next_upper_dev_rcu(dev, &iter); 6643 udev; 6644 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 6645 /* first is the upper device itself */ 6646 ret = fn(udev, data); 6647 if (ret) 6648 return ret; 6649 6650 /* then look at all of its upper devices */ 6651 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 6652 if (ret) 6653 return ret; 6654 } 6655 6656 return 0; 6657 } 6658 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6659 6660 /** 6661 * netdev_lower_get_next_private - Get the next ->private from the 6662 * lower neighbour list 6663 * @dev: device 6664 * @iter: list_head ** of the current position 6665 * 6666 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6667 * list, starting from iter position. The caller must hold either hold the 6668 * RTNL lock or its own locking that guarantees that the neighbour lower 6669 * list will remain unchanged. 6670 */ 6671 void *netdev_lower_get_next_private(struct net_device *dev, 6672 struct list_head **iter) 6673 { 6674 struct netdev_adjacent *lower; 6675 6676 lower = list_entry(*iter, struct netdev_adjacent, list); 6677 6678 if (&lower->list == &dev->adj_list.lower) 6679 return NULL; 6680 6681 *iter = lower->list.next; 6682 6683 return lower->private; 6684 } 6685 EXPORT_SYMBOL(netdev_lower_get_next_private); 6686 6687 /** 6688 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6689 * lower neighbour list, RCU 6690 * variant 6691 * @dev: device 6692 * @iter: list_head ** of the current position 6693 * 6694 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6695 * list, starting from iter position. The caller must hold RCU read lock. 6696 */ 6697 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6698 struct list_head **iter) 6699 { 6700 struct netdev_adjacent *lower; 6701 6702 WARN_ON_ONCE(!rcu_read_lock_held()); 6703 6704 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6705 6706 if (&lower->list == &dev->adj_list.lower) 6707 return NULL; 6708 6709 *iter = &lower->list; 6710 6711 return lower->private; 6712 } 6713 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6714 6715 /** 6716 * netdev_lower_get_next - Get the next device from the lower neighbour 6717 * list 6718 * @dev: device 6719 * @iter: list_head ** of the current position 6720 * 6721 * Gets the next netdev_adjacent from the dev's lower neighbour 6722 * list, starting from iter position. The caller must hold RTNL lock or 6723 * its own locking that guarantees that the neighbour lower 6724 * list will remain unchanged. 6725 */ 6726 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6727 { 6728 struct netdev_adjacent *lower; 6729 6730 lower = list_entry(*iter, struct netdev_adjacent, list); 6731 6732 if (&lower->list == &dev->adj_list.lower) 6733 return NULL; 6734 6735 *iter = lower->list.next; 6736 6737 return lower->dev; 6738 } 6739 EXPORT_SYMBOL(netdev_lower_get_next); 6740 6741 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6742 struct list_head **iter) 6743 { 6744 struct netdev_adjacent *lower; 6745 6746 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6747 6748 if (&lower->list == &dev->adj_list.lower) 6749 return NULL; 6750 6751 *iter = &lower->list; 6752 6753 return lower->dev; 6754 } 6755 6756 int netdev_walk_all_lower_dev(struct net_device *dev, 6757 int (*fn)(struct net_device *dev, 6758 void *data), 6759 void *data) 6760 { 6761 struct net_device *ldev; 6762 struct list_head *iter; 6763 int ret; 6764 6765 for (iter = &dev->adj_list.lower, 6766 ldev = netdev_next_lower_dev(dev, &iter); 6767 ldev; 6768 ldev = netdev_next_lower_dev(dev, &iter)) { 6769 /* first is the lower device itself */ 6770 ret = fn(ldev, data); 6771 if (ret) 6772 return ret; 6773 6774 /* then look at all of its lower devices */ 6775 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6776 if (ret) 6777 return ret; 6778 } 6779 6780 return 0; 6781 } 6782 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6783 6784 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6785 struct list_head **iter) 6786 { 6787 struct netdev_adjacent *lower; 6788 6789 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6790 if (&lower->list == &dev->adj_list.lower) 6791 return NULL; 6792 6793 *iter = &lower->list; 6794 6795 return lower->dev; 6796 } 6797 6798 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6799 int (*fn)(struct net_device *dev, 6800 void *data), 6801 void *data) 6802 { 6803 struct net_device *ldev; 6804 struct list_head *iter; 6805 int ret; 6806 6807 for (iter = &dev->adj_list.lower, 6808 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6809 ldev; 6810 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6811 /* first is the lower device itself */ 6812 ret = fn(ldev, data); 6813 if (ret) 6814 return ret; 6815 6816 /* then look at all of its lower devices */ 6817 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6818 if (ret) 6819 return ret; 6820 } 6821 6822 return 0; 6823 } 6824 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6825 6826 /** 6827 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6828 * lower neighbour list, RCU 6829 * variant 6830 * @dev: device 6831 * 6832 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6833 * list. The caller must hold RCU read lock. 6834 */ 6835 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6836 { 6837 struct netdev_adjacent *lower; 6838 6839 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6840 struct netdev_adjacent, list); 6841 if (lower) 6842 return lower->private; 6843 return NULL; 6844 } 6845 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6846 6847 /** 6848 * netdev_master_upper_dev_get_rcu - Get master upper device 6849 * @dev: device 6850 * 6851 * Find a master upper device and return pointer to it or NULL in case 6852 * it's not there. The caller must hold the RCU read lock. 6853 */ 6854 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6855 { 6856 struct netdev_adjacent *upper; 6857 6858 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6859 struct netdev_adjacent, list); 6860 if (upper && likely(upper->master)) 6861 return upper->dev; 6862 return NULL; 6863 } 6864 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6865 6866 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6867 struct net_device *adj_dev, 6868 struct list_head *dev_list) 6869 { 6870 char linkname[IFNAMSIZ+7]; 6871 6872 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6873 "upper_%s" : "lower_%s", adj_dev->name); 6874 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6875 linkname); 6876 } 6877 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6878 char *name, 6879 struct list_head *dev_list) 6880 { 6881 char linkname[IFNAMSIZ+7]; 6882 6883 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6884 "upper_%s" : "lower_%s", name); 6885 sysfs_remove_link(&(dev->dev.kobj), linkname); 6886 } 6887 6888 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6889 struct net_device *adj_dev, 6890 struct list_head *dev_list) 6891 { 6892 return (dev_list == &dev->adj_list.upper || 6893 dev_list == &dev->adj_list.lower) && 6894 net_eq(dev_net(dev), dev_net(adj_dev)); 6895 } 6896 6897 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6898 struct net_device *adj_dev, 6899 struct list_head *dev_list, 6900 void *private, bool master) 6901 { 6902 struct netdev_adjacent *adj; 6903 int ret; 6904 6905 adj = __netdev_find_adj(adj_dev, dev_list); 6906 6907 if (adj) { 6908 adj->ref_nr += 1; 6909 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6910 dev->name, adj_dev->name, adj->ref_nr); 6911 6912 return 0; 6913 } 6914 6915 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6916 if (!adj) 6917 return -ENOMEM; 6918 6919 adj->dev = adj_dev; 6920 adj->master = master; 6921 adj->ref_nr = 1; 6922 adj->private = private; 6923 dev_hold(adj_dev); 6924 6925 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6926 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6927 6928 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6929 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6930 if (ret) 6931 goto free_adj; 6932 } 6933 6934 /* Ensure that master link is always the first item in list. */ 6935 if (master) { 6936 ret = sysfs_create_link(&(dev->dev.kobj), 6937 &(adj_dev->dev.kobj), "master"); 6938 if (ret) 6939 goto remove_symlinks; 6940 6941 list_add_rcu(&adj->list, dev_list); 6942 } else { 6943 list_add_tail_rcu(&adj->list, dev_list); 6944 } 6945 6946 return 0; 6947 6948 remove_symlinks: 6949 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6950 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6951 free_adj: 6952 kfree(adj); 6953 dev_put(adj_dev); 6954 6955 return ret; 6956 } 6957 6958 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6959 struct net_device *adj_dev, 6960 u16 ref_nr, 6961 struct list_head *dev_list) 6962 { 6963 struct netdev_adjacent *adj; 6964 6965 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6966 dev->name, adj_dev->name, ref_nr); 6967 6968 adj = __netdev_find_adj(adj_dev, dev_list); 6969 6970 if (!adj) { 6971 pr_err("Adjacency does not exist for device %s from %s\n", 6972 dev->name, adj_dev->name); 6973 WARN_ON(1); 6974 return; 6975 } 6976 6977 if (adj->ref_nr > ref_nr) { 6978 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6979 dev->name, adj_dev->name, ref_nr, 6980 adj->ref_nr - ref_nr); 6981 adj->ref_nr -= ref_nr; 6982 return; 6983 } 6984 6985 if (adj->master) 6986 sysfs_remove_link(&(dev->dev.kobj), "master"); 6987 6988 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6989 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6990 6991 list_del_rcu(&adj->list); 6992 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6993 adj_dev->name, dev->name, adj_dev->name); 6994 dev_put(adj_dev); 6995 kfree_rcu(adj, rcu); 6996 } 6997 6998 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6999 struct net_device *upper_dev, 7000 struct list_head *up_list, 7001 struct list_head *down_list, 7002 void *private, bool master) 7003 { 7004 int ret; 7005 7006 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7007 private, master); 7008 if (ret) 7009 return ret; 7010 7011 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7012 private, false); 7013 if (ret) { 7014 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7015 return ret; 7016 } 7017 7018 return 0; 7019 } 7020 7021 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7022 struct net_device *upper_dev, 7023 u16 ref_nr, 7024 struct list_head *up_list, 7025 struct list_head *down_list) 7026 { 7027 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7028 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7029 } 7030 7031 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7032 struct net_device *upper_dev, 7033 void *private, bool master) 7034 { 7035 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7036 &dev->adj_list.upper, 7037 &upper_dev->adj_list.lower, 7038 private, master); 7039 } 7040 7041 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7042 struct net_device *upper_dev) 7043 { 7044 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7045 &dev->adj_list.upper, 7046 &upper_dev->adj_list.lower); 7047 } 7048 7049 static int __netdev_upper_dev_link(struct net_device *dev, 7050 struct net_device *upper_dev, bool master, 7051 void *upper_priv, void *upper_info, 7052 struct netlink_ext_ack *extack) 7053 { 7054 struct netdev_notifier_changeupper_info changeupper_info = { 7055 .info = { 7056 .dev = dev, 7057 .extack = extack, 7058 }, 7059 .upper_dev = upper_dev, 7060 .master = master, 7061 .linking = true, 7062 .upper_info = upper_info, 7063 }; 7064 struct net_device *master_dev; 7065 int ret = 0; 7066 7067 ASSERT_RTNL(); 7068 7069 if (dev == upper_dev) 7070 return -EBUSY; 7071 7072 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7073 if (netdev_has_upper_dev(upper_dev, dev)) 7074 return -EBUSY; 7075 7076 if (!master) { 7077 if (netdev_has_upper_dev(dev, upper_dev)) 7078 return -EEXIST; 7079 } else { 7080 master_dev = netdev_master_upper_dev_get(dev); 7081 if (master_dev) 7082 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7083 } 7084 7085 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7086 &changeupper_info.info); 7087 ret = notifier_to_errno(ret); 7088 if (ret) 7089 return ret; 7090 7091 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7092 master); 7093 if (ret) 7094 return ret; 7095 7096 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7097 &changeupper_info.info); 7098 ret = notifier_to_errno(ret); 7099 if (ret) 7100 goto rollback; 7101 7102 return 0; 7103 7104 rollback: 7105 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7106 7107 return ret; 7108 } 7109 7110 /** 7111 * netdev_upper_dev_link - Add a link to the upper device 7112 * @dev: device 7113 * @upper_dev: new upper device 7114 * @extack: netlink extended ack 7115 * 7116 * Adds a link to device which is upper to this one. The caller must hold 7117 * the RTNL lock. On a failure a negative errno code is returned. 7118 * On success the reference counts are adjusted and the function 7119 * returns zero. 7120 */ 7121 int netdev_upper_dev_link(struct net_device *dev, 7122 struct net_device *upper_dev, 7123 struct netlink_ext_ack *extack) 7124 { 7125 return __netdev_upper_dev_link(dev, upper_dev, false, 7126 NULL, NULL, extack); 7127 } 7128 EXPORT_SYMBOL(netdev_upper_dev_link); 7129 7130 /** 7131 * netdev_master_upper_dev_link - Add a master link to the upper device 7132 * @dev: device 7133 * @upper_dev: new upper device 7134 * @upper_priv: upper device private 7135 * @upper_info: upper info to be passed down via notifier 7136 * @extack: netlink extended ack 7137 * 7138 * Adds a link to device which is upper to this one. In this case, only 7139 * one master upper device can be linked, although other non-master devices 7140 * might be linked as well. The caller must hold the RTNL lock. 7141 * On a failure a negative errno code is returned. On success the reference 7142 * counts are adjusted and the function returns zero. 7143 */ 7144 int netdev_master_upper_dev_link(struct net_device *dev, 7145 struct net_device *upper_dev, 7146 void *upper_priv, void *upper_info, 7147 struct netlink_ext_ack *extack) 7148 { 7149 return __netdev_upper_dev_link(dev, upper_dev, true, 7150 upper_priv, upper_info, extack); 7151 } 7152 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7153 7154 /** 7155 * netdev_upper_dev_unlink - Removes a link to upper device 7156 * @dev: device 7157 * @upper_dev: new upper device 7158 * 7159 * Removes a link to device which is upper to this one. The caller must hold 7160 * the RTNL lock. 7161 */ 7162 void netdev_upper_dev_unlink(struct net_device *dev, 7163 struct net_device *upper_dev) 7164 { 7165 struct netdev_notifier_changeupper_info changeupper_info = { 7166 .info = { 7167 .dev = dev, 7168 }, 7169 .upper_dev = upper_dev, 7170 .linking = false, 7171 }; 7172 7173 ASSERT_RTNL(); 7174 7175 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7176 7177 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7178 &changeupper_info.info); 7179 7180 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7181 7182 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7183 &changeupper_info.info); 7184 } 7185 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7186 7187 /** 7188 * netdev_bonding_info_change - Dispatch event about slave change 7189 * @dev: device 7190 * @bonding_info: info to dispatch 7191 * 7192 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7193 * The caller must hold the RTNL lock. 7194 */ 7195 void netdev_bonding_info_change(struct net_device *dev, 7196 struct netdev_bonding_info *bonding_info) 7197 { 7198 struct netdev_notifier_bonding_info info = { 7199 .info.dev = dev, 7200 }; 7201 7202 memcpy(&info.bonding_info, bonding_info, 7203 sizeof(struct netdev_bonding_info)); 7204 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7205 &info.info); 7206 } 7207 EXPORT_SYMBOL(netdev_bonding_info_change); 7208 7209 static void netdev_adjacent_add_links(struct net_device *dev) 7210 { 7211 struct netdev_adjacent *iter; 7212 7213 struct net *net = dev_net(dev); 7214 7215 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7216 if (!net_eq(net, dev_net(iter->dev))) 7217 continue; 7218 netdev_adjacent_sysfs_add(iter->dev, dev, 7219 &iter->dev->adj_list.lower); 7220 netdev_adjacent_sysfs_add(dev, iter->dev, 7221 &dev->adj_list.upper); 7222 } 7223 7224 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7225 if (!net_eq(net, dev_net(iter->dev))) 7226 continue; 7227 netdev_adjacent_sysfs_add(iter->dev, dev, 7228 &iter->dev->adj_list.upper); 7229 netdev_adjacent_sysfs_add(dev, iter->dev, 7230 &dev->adj_list.lower); 7231 } 7232 } 7233 7234 static void netdev_adjacent_del_links(struct net_device *dev) 7235 { 7236 struct netdev_adjacent *iter; 7237 7238 struct net *net = dev_net(dev); 7239 7240 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7241 if (!net_eq(net, dev_net(iter->dev))) 7242 continue; 7243 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7244 &iter->dev->adj_list.lower); 7245 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7246 &dev->adj_list.upper); 7247 } 7248 7249 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7250 if (!net_eq(net, dev_net(iter->dev))) 7251 continue; 7252 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7253 &iter->dev->adj_list.upper); 7254 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7255 &dev->adj_list.lower); 7256 } 7257 } 7258 7259 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 7260 { 7261 struct netdev_adjacent *iter; 7262 7263 struct net *net = dev_net(dev); 7264 7265 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7266 if (!net_eq(net, dev_net(iter->dev))) 7267 continue; 7268 netdev_adjacent_sysfs_del(iter->dev, oldname, 7269 &iter->dev->adj_list.lower); 7270 netdev_adjacent_sysfs_add(iter->dev, dev, 7271 &iter->dev->adj_list.lower); 7272 } 7273 7274 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7275 if (!net_eq(net, dev_net(iter->dev))) 7276 continue; 7277 netdev_adjacent_sysfs_del(iter->dev, oldname, 7278 &iter->dev->adj_list.upper); 7279 netdev_adjacent_sysfs_add(iter->dev, dev, 7280 &iter->dev->adj_list.upper); 7281 } 7282 } 7283 7284 void *netdev_lower_dev_get_private(struct net_device *dev, 7285 struct net_device *lower_dev) 7286 { 7287 struct netdev_adjacent *lower; 7288 7289 if (!lower_dev) 7290 return NULL; 7291 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 7292 if (!lower) 7293 return NULL; 7294 7295 return lower->private; 7296 } 7297 EXPORT_SYMBOL(netdev_lower_dev_get_private); 7298 7299 7300 int dev_get_nest_level(struct net_device *dev) 7301 { 7302 struct net_device *lower = NULL; 7303 struct list_head *iter; 7304 int max_nest = -1; 7305 int nest; 7306 7307 ASSERT_RTNL(); 7308 7309 netdev_for_each_lower_dev(dev, lower, iter) { 7310 nest = dev_get_nest_level(lower); 7311 if (max_nest < nest) 7312 max_nest = nest; 7313 } 7314 7315 return max_nest + 1; 7316 } 7317 EXPORT_SYMBOL(dev_get_nest_level); 7318 7319 /** 7320 * netdev_lower_change - Dispatch event about lower device state change 7321 * @lower_dev: device 7322 * @lower_state_info: state to dispatch 7323 * 7324 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 7325 * The caller must hold the RTNL lock. 7326 */ 7327 void netdev_lower_state_changed(struct net_device *lower_dev, 7328 void *lower_state_info) 7329 { 7330 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 7331 .info.dev = lower_dev, 7332 }; 7333 7334 ASSERT_RTNL(); 7335 changelowerstate_info.lower_state_info = lower_state_info; 7336 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 7337 &changelowerstate_info.info); 7338 } 7339 EXPORT_SYMBOL(netdev_lower_state_changed); 7340 7341 static void dev_change_rx_flags(struct net_device *dev, int flags) 7342 { 7343 const struct net_device_ops *ops = dev->netdev_ops; 7344 7345 if (ops->ndo_change_rx_flags) 7346 ops->ndo_change_rx_flags(dev, flags); 7347 } 7348 7349 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 7350 { 7351 unsigned int old_flags = dev->flags; 7352 kuid_t uid; 7353 kgid_t gid; 7354 7355 ASSERT_RTNL(); 7356 7357 dev->flags |= IFF_PROMISC; 7358 dev->promiscuity += inc; 7359 if (dev->promiscuity == 0) { 7360 /* 7361 * Avoid overflow. 7362 * If inc causes overflow, untouch promisc and return error. 7363 */ 7364 if (inc < 0) 7365 dev->flags &= ~IFF_PROMISC; 7366 else { 7367 dev->promiscuity -= inc; 7368 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 7369 dev->name); 7370 return -EOVERFLOW; 7371 } 7372 } 7373 if (dev->flags != old_flags) { 7374 pr_info("device %s %s promiscuous mode\n", 7375 dev->name, 7376 dev->flags & IFF_PROMISC ? "entered" : "left"); 7377 if (audit_enabled) { 7378 current_uid_gid(&uid, &gid); 7379 audit_log(audit_context(), GFP_ATOMIC, 7380 AUDIT_ANOM_PROMISCUOUS, 7381 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 7382 dev->name, (dev->flags & IFF_PROMISC), 7383 (old_flags & IFF_PROMISC), 7384 from_kuid(&init_user_ns, audit_get_loginuid(current)), 7385 from_kuid(&init_user_ns, uid), 7386 from_kgid(&init_user_ns, gid), 7387 audit_get_sessionid(current)); 7388 } 7389 7390 dev_change_rx_flags(dev, IFF_PROMISC); 7391 } 7392 if (notify) 7393 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 7394 return 0; 7395 } 7396 7397 /** 7398 * dev_set_promiscuity - update promiscuity count on a device 7399 * @dev: device 7400 * @inc: modifier 7401 * 7402 * Add or remove promiscuity from a device. While the count in the device 7403 * remains above zero the interface remains promiscuous. Once it hits zero 7404 * the device reverts back to normal filtering operation. A negative inc 7405 * value is used to drop promiscuity on the device. 7406 * Return 0 if successful or a negative errno code on error. 7407 */ 7408 int dev_set_promiscuity(struct net_device *dev, int inc) 7409 { 7410 unsigned int old_flags = dev->flags; 7411 int err; 7412 7413 err = __dev_set_promiscuity(dev, inc, true); 7414 if (err < 0) 7415 return err; 7416 if (dev->flags != old_flags) 7417 dev_set_rx_mode(dev); 7418 return err; 7419 } 7420 EXPORT_SYMBOL(dev_set_promiscuity); 7421 7422 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 7423 { 7424 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 7425 7426 ASSERT_RTNL(); 7427 7428 dev->flags |= IFF_ALLMULTI; 7429 dev->allmulti += inc; 7430 if (dev->allmulti == 0) { 7431 /* 7432 * Avoid overflow. 7433 * If inc causes overflow, untouch allmulti and return error. 7434 */ 7435 if (inc < 0) 7436 dev->flags &= ~IFF_ALLMULTI; 7437 else { 7438 dev->allmulti -= inc; 7439 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 7440 dev->name); 7441 return -EOVERFLOW; 7442 } 7443 } 7444 if (dev->flags ^ old_flags) { 7445 dev_change_rx_flags(dev, IFF_ALLMULTI); 7446 dev_set_rx_mode(dev); 7447 if (notify) 7448 __dev_notify_flags(dev, old_flags, 7449 dev->gflags ^ old_gflags); 7450 } 7451 return 0; 7452 } 7453 7454 /** 7455 * dev_set_allmulti - update allmulti count on a device 7456 * @dev: device 7457 * @inc: modifier 7458 * 7459 * Add or remove reception of all multicast frames to a device. While the 7460 * count in the device remains above zero the interface remains listening 7461 * to all interfaces. Once it hits zero the device reverts back to normal 7462 * filtering operation. A negative @inc value is used to drop the counter 7463 * when releasing a resource needing all multicasts. 7464 * Return 0 if successful or a negative errno code on error. 7465 */ 7466 7467 int dev_set_allmulti(struct net_device *dev, int inc) 7468 { 7469 return __dev_set_allmulti(dev, inc, true); 7470 } 7471 EXPORT_SYMBOL(dev_set_allmulti); 7472 7473 /* 7474 * Upload unicast and multicast address lists to device and 7475 * configure RX filtering. When the device doesn't support unicast 7476 * filtering it is put in promiscuous mode while unicast addresses 7477 * are present. 7478 */ 7479 void __dev_set_rx_mode(struct net_device *dev) 7480 { 7481 const struct net_device_ops *ops = dev->netdev_ops; 7482 7483 /* dev_open will call this function so the list will stay sane. */ 7484 if (!(dev->flags&IFF_UP)) 7485 return; 7486 7487 if (!netif_device_present(dev)) 7488 return; 7489 7490 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 7491 /* Unicast addresses changes may only happen under the rtnl, 7492 * therefore calling __dev_set_promiscuity here is safe. 7493 */ 7494 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 7495 __dev_set_promiscuity(dev, 1, false); 7496 dev->uc_promisc = true; 7497 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 7498 __dev_set_promiscuity(dev, -1, false); 7499 dev->uc_promisc = false; 7500 } 7501 } 7502 7503 if (ops->ndo_set_rx_mode) 7504 ops->ndo_set_rx_mode(dev); 7505 } 7506 7507 void dev_set_rx_mode(struct net_device *dev) 7508 { 7509 netif_addr_lock_bh(dev); 7510 __dev_set_rx_mode(dev); 7511 netif_addr_unlock_bh(dev); 7512 } 7513 7514 /** 7515 * dev_get_flags - get flags reported to userspace 7516 * @dev: device 7517 * 7518 * Get the combination of flag bits exported through APIs to userspace. 7519 */ 7520 unsigned int dev_get_flags(const struct net_device *dev) 7521 { 7522 unsigned int flags; 7523 7524 flags = (dev->flags & ~(IFF_PROMISC | 7525 IFF_ALLMULTI | 7526 IFF_RUNNING | 7527 IFF_LOWER_UP | 7528 IFF_DORMANT)) | 7529 (dev->gflags & (IFF_PROMISC | 7530 IFF_ALLMULTI)); 7531 7532 if (netif_running(dev)) { 7533 if (netif_oper_up(dev)) 7534 flags |= IFF_RUNNING; 7535 if (netif_carrier_ok(dev)) 7536 flags |= IFF_LOWER_UP; 7537 if (netif_dormant(dev)) 7538 flags |= IFF_DORMANT; 7539 } 7540 7541 return flags; 7542 } 7543 EXPORT_SYMBOL(dev_get_flags); 7544 7545 int __dev_change_flags(struct net_device *dev, unsigned int flags, 7546 struct netlink_ext_ack *extack) 7547 { 7548 unsigned int old_flags = dev->flags; 7549 int ret; 7550 7551 ASSERT_RTNL(); 7552 7553 /* 7554 * Set the flags on our device. 7555 */ 7556 7557 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 7558 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 7559 IFF_AUTOMEDIA)) | 7560 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 7561 IFF_ALLMULTI)); 7562 7563 /* 7564 * Load in the correct multicast list now the flags have changed. 7565 */ 7566 7567 if ((old_flags ^ flags) & IFF_MULTICAST) 7568 dev_change_rx_flags(dev, IFF_MULTICAST); 7569 7570 dev_set_rx_mode(dev); 7571 7572 /* 7573 * Have we downed the interface. We handle IFF_UP ourselves 7574 * according to user attempts to set it, rather than blindly 7575 * setting it. 7576 */ 7577 7578 ret = 0; 7579 if ((old_flags ^ flags) & IFF_UP) { 7580 if (old_flags & IFF_UP) 7581 __dev_close(dev); 7582 else 7583 ret = __dev_open(dev, extack); 7584 } 7585 7586 if ((flags ^ dev->gflags) & IFF_PROMISC) { 7587 int inc = (flags & IFF_PROMISC) ? 1 : -1; 7588 unsigned int old_flags = dev->flags; 7589 7590 dev->gflags ^= IFF_PROMISC; 7591 7592 if (__dev_set_promiscuity(dev, inc, false) >= 0) 7593 if (dev->flags != old_flags) 7594 dev_set_rx_mode(dev); 7595 } 7596 7597 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 7598 * is important. Some (broken) drivers set IFF_PROMISC, when 7599 * IFF_ALLMULTI is requested not asking us and not reporting. 7600 */ 7601 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 7602 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 7603 7604 dev->gflags ^= IFF_ALLMULTI; 7605 __dev_set_allmulti(dev, inc, false); 7606 } 7607 7608 return ret; 7609 } 7610 7611 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 7612 unsigned int gchanges) 7613 { 7614 unsigned int changes = dev->flags ^ old_flags; 7615 7616 if (gchanges) 7617 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 7618 7619 if (changes & IFF_UP) { 7620 if (dev->flags & IFF_UP) 7621 call_netdevice_notifiers(NETDEV_UP, dev); 7622 else 7623 call_netdevice_notifiers(NETDEV_DOWN, dev); 7624 } 7625 7626 if (dev->flags & IFF_UP && 7627 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 7628 struct netdev_notifier_change_info change_info = { 7629 .info = { 7630 .dev = dev, 7631 }, 7632 .flags_changed = changes, 7633 }; 7634 7635 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 7636 } 7637 } 7638 7639 /** 7640 * dev_change_flags - change device settings 7641 * @dev: device 7642 * @flags: device state flags 7643 * @extack: netlink extended ack 7644 * 7645 * Change settings on device based state flags. The flags are 7646 * in the userspace exported format. 7647 */ 7648 int dev_change_flags(struct net_device *dev, unsigned int flags, 7649 struct netlink_ext_ack *extack) 7650 { 7651 int ret; 7652 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 7653 7654 ret = __dev_change_flags(dev, flags, extack); 7655 if (ret < 0) 7656 return ret; 7657 7658 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 7659 __dev_notify_flags(dev, old_flags, changes); 7660 return ret; 7661 } 7662 EXPORT_SYMBOL(dev_change_flags); 7663 7664 int __dev_set_mtu(struct net_device *dev, int new_mtu) 7665 { 7666 const struct net_device_ops *ops = dev->netdev_ops; 7667 7668 if (ops->ndo_change_mtu) 7669 return ops->ndo_change_mtu(dev, new_mtu); 7670 7671 dev->mtu = new_mtu; 7672 return 0; 7673 } 7674 EXPORT_SYMBOL(__dev_set_mtu); 7675 7676 /** 7677 * dev_set_mtu_ext - Change maximum transfer unit 7678 * @dev: device 7679 * @new_mtu: new transfer unit 7680 * @extack: netlink extended ack 7681 * 7682 * Change the maximum transfer size of the network device. 7683 */ 7684 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 7685 struct netlink_ext_ack *extack) 7686 { 7687 int err, orig_mtu; 7688 7689 if (new_mtu == dev->mtu) 7690 return 0; 7691 7692 /* MTU must be positive, and in range */ 7693 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 7694 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 7695 return -EINVAL; 7696 } 7697 7698 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 7699 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 7700 return -EINVAL; 7701 } 7702 7703 if (!netif_device_present(dev)) 7704 return -ENODEV; 7705 7706 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 7707 err = notifier_to_errno(err); 7708 if (err) 7709 return err; 7710 7711 orig_mtu = dev->mtu; 7712 err = __dev_set_mtu(dev, new_mtu); 7713 7714 if (!err) { 7715 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7716 orig_mtu); 7717 err = notifier_to_errno(err); 7718 if (err) { 7719 /* setting mtu back and notifying everyone again, 7720 * so that they have a chance to revert changes. 7721 */ 7722 __dev_set_mtu(dev, orig_mtu); 7723 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7724 new_mtu); 7725 } 7726 } 7727 return err; 7728 } 7729 7730 int dev_set_mtu(struct net_device *dev, int new_mtu) 7731 { 7732 struct netlink_ext_ack extack; 7733 int err; 7734 7735 memset(&extack, 0, sizeof(extack)); 7736 err = dev_set_mtu_ext(dev, new_mtu, &extack); 7737 if (err && extack._msg) 7738 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 7739 return err; 7740 } 7741 EXPORT_SYMBOL(dev_set_mtu); 7742 7743 /** 7744 * dev_change_tx_queue_len - Change TX queue length of a netdevice 7745 * @dev: device 7746 * @new_len: new tx queue length 7747 */ 7748 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 7749 { 7750 unsigned int orig_len = dev->tx_queue_len; 7751 int res; 7752 7753 if (new_len != (unsigned int)new_len) 7754 return -ERANGE; 7755 7756 if (new_len != orig_len) { 7757 dev->tx_queue_len = new_len; 7758 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 7759 res = notifier_to_errno(res); 7760 if (res) 7761 goto err_rollback; 7762 res = dev_qdisc_change_tx_queue_len(dev); 7763 if (res) 7764 goto err_rollback; 7765 } 7766 7767 return 0; 7768 7769 err_rollback: 7770 netdev_err(dev, "refused to change device tx_queue_len\n"); 7771 dev->tx_queue_len = orig_len; 7772 return res; 7773 } 7774 7775 /** 7776 * dev_set_group - Change group this device belongs to 7777 * @dev: device 7778 * @new_group: group this device should belong to 7779 */ 7780 void dev_set_group(struct net_device *dev, int new_group) 7781 { 7782 dev->group = new_group; 7783 } 7784 EXPORT_SYMBOL(dev_set_group); 7785 7786 /** 7787 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 7788 * @dev: device 7789 * @addr: new address 7790 * @extack: netlink extended ack 7791 */ 7792 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 7793 struct netlink_ext_ack *extack) 7794 { 7795 struct netdev_notifier_pre_changeaddr_info info = { 7796 .info.dev = dev, 7797 .info.extack = extack, 7798 .dev_addr = addr, 7799 }; 7800 int rc; 7801 7802 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 7803 return notifier_to_errno(rc); 7804 } 7805 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 7806 7807 /** 7808 * dev_set_mac_address - Change Media Access Control Address 7809 * @dev: device 7810 * @sa: new address 7811 * @extack: netlink extended ack 7812 * 7813 * Change the hardware (MAC) address of the device 7814 */ 7815 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 7816 struct netlink_ext_ack *extack) 7817 { 7818 const struct net_device_ops *ops = dev->netdev_ops; 7819 int err; 7820 7821 if (!ops->ndo_set_mac_address) 7822 return -EOPNOTSUPP; 7823 if (sa->sa_family != dev->type) 7824 return -EINVAL; 7825 if (!netif_device_present(dev)) 7826 return -ENODEV; 7827 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 7828 if (err) 7829 return err; 7830 err = ops->ndo_set_mac_address(dev, sa); 7831 if (err) 7832 return err; 7833 dev->addr_assign_type = NET_ADDR_SET; 7834 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7835 add_device_randomness(dev->dev_addr, dev->addr_len); 7836 return 0; 7837 } 7838 EXPORT_SYMBOL(dev_set_mac_address); 7839 7840 /** 7841 * dev_change_carrier - Change device carrier 7842 * @dev: device 7843 * @new_carrier: new value 7844 * 7845 * Change device carrier 7846 */ 7847 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7848 { 7849 const struct net_device_ops *ops = dev->netdev_ops; 7850 7851 if (!ops->ndo_change_carrier) 7852 return -EOPNOTSUPP; 7853 if (!netif_device_present(dev)) 7854 return -ENODEV; 7855 return ops->ndo_change_carrier(dev, new_carrier); 7856 } 7857 EXPORT_SYMBOL(dev_change_carrier); 7858 7859 /** 7860 * dev_get_phys_port_id - Get device physical port ID 7861 * @dev: device 7862 * @ppid: port ID 7863 * 7864 * Get device physical port ID 7865 */ 7866 int dev_get_phys_port_id(struct net_device *dev, 7867 struct netdev_phys_item_id *ppid) 7868 { 7869 const struct net_device_ops *ops = dev->netdev_ops; 7870 7871 if (!ops->ndo_get_phys_port_id) 7872 return -EOPNOTSUPP; 7873 return ops->ndo_get_phys_port_id(dev, ppid); 7874 } 7875 EXPORT_SYMBOL(dev_get_phys_port_id); 7876 7877 /** 7878 * dev_get_phys_port_name - Get device physical port name 7879 * @dev: device 7880 * @name: port name 7881 * @len: limit of bytes to copy to name 7882 * 7883 * Get device physical port name 7884 */ 7885 int dev_get_phys_port_name(struct net_device *dev, 7886 char *name, size_t len) 7887 { 7888 const struct net_device_ops *ops = dev->netdev_ops; 7889 7890 if (!ops->ndo_get_phys_port_name) 7891 return -EOPNOTSUPP; 7892 return ops->ndo_get_phys_port_name(dev, name, len); 7893 } 7894 EXPORT_SYMBOL(dev_get_phys_port_name); 7895 7896 /** 7897 * dev_get_port_parent_id - Get the device's port parent identifier 7898 * @dev: network device 7899 * @ppid: pointer to a storage for the port's parent identifier 7900 * @recurse: allow/disallow recursion to lower devices 7901 * 7902 * Get the devices's port parent identifier 7903 */ 7904 int dev_get_port_parent_id(struct net_device *dev, 7905 struct netdev_phys_item_id *ppid, 7906 bool recurse) 7907 { 7908 const struct net_device_ops *ops = dev->netdev_ops; 7909 struct netdev_phys_item_id first = { }; 7910 struct net_device *lower_dev; 7911 struct list_head *iter; 7912 int err = -EOPNOTSUPP; 7913 7914 if (ops->ndo_get_port_parent_id) 7915 return ops->ndo_get_port_parent_id(dev, ppid); 7916 7917 if (!recurse) 7918 return err; 7919 7920 netdev_for_each_lower_dev(dev, lower_dev, iter) { 7921 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 7922 if (err) 7923 break; 7924 if (!first.id_len) 7925 first = *ppid; 7926 else if (memcmp(&first, ppid, sizeof(*ppid))) 7927 return -ENODATA; 7928 } 7929 7930 return err; 7931 } 7932 EXPORT_SYMBOL(dev_get_port_parent_id); 7933 7934 /** 7935 * netdev_port_same_parent_id - Indicate if two network devices have 7936 * the same port parent identifier 7937 * @a: first network device 7938 * @b: second network device 7939 */ 7940 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 7941 { 7942 struct netdev_phys_item_id a_id = { }; 7943 struct netdev_phys_item_id b_id = { }; 7944 7945 if (dev_get_port_parent_id(a, &a_id, true) || 7946 dev_get_port_parent_id(b, &b_id, true)) 7947 return false; 7948 7949 return netdev_phys_item_id_same(&a_id, &b_id); 7950 } 7951 EXPORT_SYMBOL(netdev_port_same_parent_id); 7952 7953 /** 7954 * dev_change_proto_down - update protocol port state information 7955 * @dev: device 7956 * @proto_down: new value 7957 * 7958 * This info can be used by switch drivers to set the phys state of the 7959 * port. 7960 */ 7961 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7962 { 7963 const struct net_device_ops *ops = dev->netdev_ops; 7964 7965 if (!ops->ndo_change_proto_down) 7966 return -EOPNOTSUPP; 7967 if (!netif_device_present(dev)) 7968 return -ENODEV; 7969 return ops->ndo_change_proto_down(dev, proto_down); 7970 } 7971 EXPORT_SYMBOL(dev_change_proto_down); 7972 7973 /** 7974 * dev_change_proto_down_generic - generic implementation for 7975 * ndo_change_proto_down that sets carrier according to 7976 * proto_down. 7977 * 7978 * @dev: device 7979 * @proto_down: new value 7980 */ 7981 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 7982 { 7983 if (proto_down) 7984 netif_carrier_off(dev); 7985 else 7986 netif_carrier_on(dev); 7987 dev->proto_down = proto_down; 7988 return 0; 7989 } 7990 EXPORT_SYMBOL(dev_change_proto_down_generic); 7991 7992 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 7993 enum bpf_netdev_command cmd) 7994 { 7995 struct netdev_bpf xdp; 7996 7997 if (!bpf_op) 7998 return 0; 7999 8000 memset(&xdp, 0, sizeof(xdp)); 8001 xdp.command = cmd; 8002 8003 /* Query must always succeed. */ 8004 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG); 8005 8006 return xdp.prog_id; 8007 } 8008 8009 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 8010 struct netlink_ext_ack *extack, u32 flags, 8011 struct bpf_prog *prog) 8012 { 8013 struct netdev_bpf xdp; 8014 8015 memset(&xdp, 0, sizeof(xdp)); 8016 if (flags & XDP_FLAGS_HW_MODE) 8017 xdp.command = XDP_SETUP_PROG_HW; 8018 else 8019 xdp.command = XDP_SETUP_PROG; 8020 xdp.extack = extack; 8021 xdp.flags = flags; 8022 xdp.prog = prog; 8023 8024 return bpf_op(dev, &xdp); 8025 } 8026 8027 static void dev_xdp_uninstall(struct net_device *dev) 8028 { 8029 struct netdev_bpf xdp; 8030 bpf_op_t ndo_bpf; 8031 8032 /* Remove generic XDP */ 8033 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 8034 8035 /* Remove from the driver */ 8036 ndo_bpf = dev->netdev_ops->ndo_bpf; 8037 if (!ndo_bpf) 8038 return; 8039 8040 memset(&xdp, 0, sizeof(xdp)); 8041 xdp.command = XDP_QUERY_PROG; 8042 WARN_ON(ndo_bpf(dev, &xdp)); 8043 if (xdp.prog_id) 8044 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8045 NULL)); 8046 8047 /* Remove HW offload */ 8048 memset(&xdp, 0, sizeof(xdp)); 8049 xdp.command = XDP_QUERY_PROG_HW; 8050 if (!ndo_bpf(dev, &xdp) && xdp.prog_id) 8051 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8052 NULL)); 8053 } 8054 8055 /** 8056 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 8057 * @dev: device 8058 * @extack: netlink extended ack 8059 * @fd: new program fd or negative value to clear 8060 * @flags: xdp-related flags 8061 * 8062 * Set or clear a bpf program for a device 8063 */ 8064 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 8065 int fd, u32 flags) 8066 { 8067 const struct net_device_ops *ops = dev->netdev_ops; 8068 enum bpf_netdev_command query; 8069 struct bpf_prog *prog = NULL; 8070 bpf_op_t bpf_op, bpf_chk; 8071 bool offload; 8072 int err; 8073 8074 ASSERT_RTNL(); 8075 8076 offload = flags & XDP_FLAGS_HW_MODE; 8077 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG; 8078 8079 bpf_op = bpf_chk = ops->ndo_bpf; 8080 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) { 8081 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode"); 8082 return -EOPNOTSUPP; 8083 } 8084 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 8085 bpf_op = generic_xdp_install; 8086 if (bpf_op == bpf_chk) 8087 bpf_chk = generic_xdp_install; 8088 8089 if (fd >= 0) { 8090 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) { 8091 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time"); 8092 return -EEXIST; 8093 } 8094 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 8095 __dev_xdp_query(dev, bpf_op, query)) { 8096 NL_SET_ERR_MSG(extack, "XDP program already attached"); 8097 return -EBUSY; 8098 } 8099 8100 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 8101 bpf_op == ops->ndo_bpf); 8102 if (IS_ERR(prog)) 8103 return PTR_ERR(prog); 8104 8105 if (!offload && bpf_prog_is_dev_bound(prog->aux)) { 8106 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 8107 bpf_prog_put(prog); 8108 return -EINVAL; 8109 } 8110 } 8111 8112 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 8113 if (err < 0 && prog) 8114 bpf_prog_put(prog); 8115 8116 return err; 8117 } 8118 8119 /** 8120 * dev_new_index - allocate an ifindex 8121 * @net: the applicable net namespace 8122 * 8123 * Returns a suitable unique value for a new device interface 8124 * number. The caller must hold the rtnl semaphore or the 8125 * dev_base_lock to be sure it remains unique. 8126 */ 8127 static int dev_new_index(struct net *net) 8128 { 8129 int ifindex = net->ifindex; 8130 8131 for (;;) { 8132 if (++ifindex <= 0) 8133 ifindex = 1; 8134 if (!__dev_get_by_index(net, ifindex)) 8135 return net->ifindex = ifindex; 8136 } 8137 } 8138 8139 /* Delayed registration/unregisteration */ 8140 static LIST_HEAD(net_todo_list); 8141 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 8142 8143 static void net_set_todo(struct net_device *dev) 8144 { 8145 list_add_tail(&dev->todo_list, &net_todo_list); 8146 dev_net(dev)->dev_unreg_count++; 8147 } 8148 8149 static void rollback_registered_many(struct list_head *head) 8150 { 8151 struct net_device *dev, *tmp; 8152 LIST_HEAD(close_head); 8153 8154 BUG_ON(dev_boot_phase); 8155 ASSERT_RTNL(); 8156 8157 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 8158 /* Some devices call without registering 8159 * for initialization unwind. Remove those 8160 * devices and proceed with the remaining. 8161 */ 8162 if (dev->reg_state == NETREG_UNINITIALIZED) { 8163 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 8164 dev->name, dev); 8165 8166 WARN_ON(1); 8167 list_del(&dev->unreg_list); 8168 continue; 8169 } 8170 dev->dismantle = true; 8171 BUG_ON(dev->reg_state != NETREG_REGISTERED); 8172 } 8173 8174 /* If device is running, close it first. */ 8175 list_for_each_entry(dev, head, unreg_list) 8176 list_add_tail(&dev->close_list, &close_head); 8177 dev_close_many(&close_head, true); 8178 8179 list_for_each_entry(dev, head, unreg_list) { 8180 /* And unlink it from device chain. */ 8181 unlist_netdevice(dev); 8182 8183 dev->reg_state = NETREG_UNREGISTERING; 8184 } 8185 flush_all_backlogs(); 8186 8187 synchronize_net(); 8188 8189 list_for_each_entry(dev, head, unreg_list) { 8190 struct sk_buff *skb = NULL; 8191 8192 /* Shutdown queueing discipline. */ 8193 dev_shutdown(dev); 8194 8195 dev_xdp_uninstall(dev); 8196 8197 /* Notify protocols, that we are about to destroy 8198 * this device. They should clean all the things. 8199 */ 8200 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8201 8202 if (!dev->rtnl_link_ops || 8203 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8204 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 8205 GFP_KERNEL, NULL, 0); 8206 8207 /* 8208 * Flush the unicast and multicast chains 8209 */ 8210 dev_uc_flush(dev); 8211 dev_mc_flush(dev); 8212 8213 if (dev->netdev_ops->ndo_uninit) 8214 dev->netdev_ops->ndo_uninit(dev); 8215 8216 if (skb) 8217 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 8218 8219 /* Notifier chain MUST detach us all upper devices. */ 8220 WARN_ON(netdev_has_any_upper_dev(dev)); 8221 WARN_ON(netdev_has_any_lower_dev(dev)); 8222 8223 /* Remove entries from kobject tree */ 8224 netdev_unregister_kobject(dev); 8225 #ifdef CONFIG_XPS 8226 /* Remove XPS queueing entries */ 8227 netif_reset_xps_queues_gt(dev, 0); 8228 #endif 8229 } 8230 8231 synchronize_net(); 8232 8233 list_for_each_entry(dev, head, unreg_list) 8234 dev_put(dev); 8235 } 8236 8237 static void rollback_registered(struct net_device *dev) 8238 { 8239 LIST_HEAD(single); 8240 8241 list_add(&dev->unreg_list, &single); 8242 rollback_registered_many(&single); 8243 list_del(&single); 8244 } 8245 8246 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 8247 struct net_device *upper, netdev_features_t features) 8248 { 8249 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8250 netdev_features_t feature; 8251 int feature_bit; 8252 8253 for_each_netdev_feature(upper_disables, feature_bit) { 8254 feature = __NETIF_F_BIT(feature_bit); 8255 if (!(upper->wanted_features & feature) 8256 && (features & feature)) { 8257 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 8258 &feature, upper->name); 8259 features &= ~feature; 8260 } 8261 } 8262 8263 return features; 8264 } 8265 8266 static void netdev_sync_lower_features(struct net_device *upper, 8267 struct net_device *lower, netdev_features_t features) 8268 { 8269 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8270 netdev_features_t feature; 8271 int feature_bit; 8272 8273 for_each_netdev_feature(upper_disables, feature_bit) { 8274 feature = __NETIF_F_BIT(feature_bit); 8275 if (!(features & feature) && (lower->features & feature)) { 8276 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 8277 &feature, lower->name); 8278 lower->wanted_features &= ~feature; 8279 netdev_update_features(lower); 8280 8281 if (unlikely(lower->features & feature)) 8282 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 8283 &feature, lower->name); 8284 } 8285 } 8286 } 8287 8288 static netdev_features_t netdev_fix_features(struct net_device *dev, 8289 netdev_features_t features) 8290 { 8291 /* Fix illegal checksum combinations */ 8292 if ((features & NETIF_F_HW_CSUM) && 8293 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 8294 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 8295 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 8296 } 8297 8298 /* TSO requires that SG is present as well. */ 8299 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 8300 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 8301 features &= ~NETIF_F_ALL_TSO; 8302 } 8303 8304 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 8305 !(features & NETIF_F_IP_CSUM)) { 8306 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 8307 features &= ~NETIF_F_TSO; 8308 features &= ~NETIF_F_TSO_ECN; 8309 } 8310 8311 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 8312 !(features & NETIF_F_IPV6_CSUM)) { 8313 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 8314 features &= ~NETIF_F_TSO6; 8315 } 8316 8317 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 8318 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 8319 features &= ~NETIF_F_TSO_MANGLEID; 8320 8321 /* TSO ECN requires that TSO is present as well. */ 8322 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 8323 features &= ~NETIF_F_TSO_ECN; 8324 8325 /* Software GSO depends on SG. */ 8326 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 8327 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 8328 features &= ~NETIF_F_GSO; 8329 } 8330 8331 /* GSO partial features require GSO partial be set */ 8332 if ((features & dev->gso_partial_features) && 8333 !(features & NETIF_F_GSO_PARTIAL)) { 8334 netdev_dbg(dev, 8335 "Dropping partially supported GSO features since no GSO partial.\n"); 8336 features &= ~dev->gso_partial_features; 8337 } 8338 8339 if (!(features & NETIF_F_RXCSUM)) { 8340 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 8341 * successfully merged by hardware must also have the 8342 * checksum verified by hardware. If the user does not 8343 * want to enable RXCSUM, logically, we should disable GRO_HW. 8344 */ 8345 if (features & NETIF_F_GRO_HW) { 8346 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 8347 features &= ~NETIF_F_GRO_HW; 8348 } 8349 } 8350 8351 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 8352 if (features & NETIF_F_RXFCS) { 8353 if (features & NETIF_F_LRO) { 8354 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 8355 features &= ~NETIF_F_LRO; 8356 } 8357 8358 if (features & NETIF_F_GRO_HW) { 8359 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 8360 features &= ~NETIF_F_GRO_HW; 8361 } 8362 } 8363 8364 return features; 8365 } 8366 8367 int __netdev_update_features(struct net_device *dev) 8368 { 8369 struct net_device *upper, *lower; 8370 netdev_features_t features; 8371 struct list_head *iter; 8372 int err = -1; 8373 8374 ASSERT_RTNL(); 8375 8376 features = netdev_get_wanted_features(dev); 8377 8378 if (dev->netdev_ops->ndo_fix_features) 8379 features = dev->netdev_ops->ndo_fix_features(dev, features); 8380 8381 /* driver might be less strict about feature dependencies */ 8382 features = netdev_fix_features(dev, features); 8383 8384 /* some features can't be enabled if they're off an an upper device */ 8385 netdev_for_each_upper_dev_rcu(dev, upper, iter) 8386 features = netdev_sync_upper_features(dev, upper, features); 8387 8388 if (dev->features == features) 8389 goto sync_lower; 8390 8391 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 8392 &dev->features, &features); 8393 8394 if (dev->netdev_ops->ndo_set_features) 8395 err = dev->netdev_ops->ndo_set_features(dev, features); 8396 else 8397 err = 0; 8398 8399 if (unlikely(err < 0)) { 8400 netdev_err(dev, 8401 "set_features() failed (%d); wanted %pNF, left %pNF\n", 8402 err, &features, &dev->features); 8403 /* return non-0 since some features might have changed and 8404 * it's better to fire a spurious notification than miss it 8405 */ 8406 return -1; 8407 } 8408 8409 sync_lower: 8410 /* some features must be disabled on lower devices when disabled 8411 * on an upper device (think: bonding master or bridge) 8412 */ 8413 netdev_for_each_lower_dev(dev, lower, iter) 8414 netdev_sync_lower_features(dev, lower, features); 8415 8416 if (!err) { 8417 netdev_features_t diff = features ^ dev->features; 8418 8419 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 8420 /* udp_tunnel_{get,drop}_rx_info both need 8421 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 8422 * device, or they won't do anything. 8423 * Thus we need to update dev->features 8424 * *before* calling udp_tunnel_get_rx_info, 8425 * but *after* calling udp_tunnel_drop_rx_info. 8426 */ 8427 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 8428 dev->features = features; 8429 udp_tunnel_get_rx_info(dev); 8430 } else { 8431 udp_tunnel_drop_rx_info(dev); 8432 } 8433 } 8434 8435 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 8436 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 8437 dev->features = features; 8438 err |= vlan_get_rx_ctag_filter_info(dev); 8439 } else { 8440 vlan_drop_rx_ctag_filter_info(dev); 8441 } 8442 } 8443 8444 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 8445 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 8446 dev->features = features; 8447 err |= vlan_get_rx_stag_filter_info(dev); 8448 } else { 8449 vlan_drop_rx_stag_filter_info(dev); 8450 } 8451 } 8452 8453 dev->features = features; 8454 } 8455 8456 return err < 0 ? 0 : 1; 8457 } 8458 8459 /** 8460 * netdev_update_features - recalculate device features 8461 * @dev: the device to check 8462 * 8463 * Recalculate dev->features set and send notifications if it 8464 * has changed. Should be called after driver or hardware dependent 8465 * conditions might have changed that influence the features. 8466 */ 8467 void netdev_update_features(struct net_device *dev) 8468 { 8469 if (__netdev_update_features(dev)) 8470 netdev_features_change(dev); 8471 } 8472 EXPORT_SYMBOL(netdev_update_features); 8473 8474 /** 8475 * netdev_change_features - recalculate device features 8476 * @dev: the device to check 8477 * 8478 * Recalculate dev->features set and send notifications even 8479 * if they have not changed. Should be called instead of 8480 * netdev_update_features() if also dev->vlan_features might 8481 * have changed to allow the changes to be propagated to stacked 8482 * VLAN devices. 8483 */ 8484 void netdev_change_features(struct net_device *dev) 8485 { 8486 __netdev_update_features(dev); 8487 netdev_features_change(dev); 8488 } 8489 EXPORT_SYMBOL(netdev_change_features); 8490 8491 /** 8492 * netif_stacked_transfer_operstate - transfer operstate 8493 * @rootdev: the root or lower level device to transfer state from 8494 * @dev: the device to transfer operstate to 8495 * 8496 * Transfer operational state from root to device. This is normally 8497 * called when a stacking relationship exists between the root 8498 * device and the device(a leaf device). 8499 */ 8500 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 8501 struct net_device *dev) 8502 { 8503 if (rootdev->operstate == IF_OPER_DORMANT) 8504 netif_dormant_on(dev); 8505 else 8506 netif_dormant_off(dev); 8507 8508 if (netif_carrier_ok(rootdev)) 8509 netif_carrier_on(dev); 8510 else 8511 netif_carrier_off(dev); 8512 } 8513 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 8514 8515 static int netif_alloc_rx_queues(struct net_device *dev) 8516 { 8517 unsigned int i, count = dev->num_rx_queues; 8518 struct netdev_rx_queue *rx; 8519 size_t sz = count * sizeof(*rx); 8520 int err = 0; 8521 8522 BUG_ON(count < 1); 8523 8524 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8525 if (!rx) 8526 return -ENOMEM; 8527 8528 dev->_rx = rx; 8529 8530 for (i = 0; i < count; i++) { 8531 rx[i].dev = dev; 8532 8533 /* XDP RX-queue setup */ 8534 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 8535 if (err < 0) 8536 goto err_rxq_info; 8537 } 8538 return 0; 8539 8540 err_rxq_info: 8541 /* Rollback successful reg's and free other resources */ 8542 while (i--) 8543 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 8544 kvfree(dev->_rx); 8545 dev->_rx = NULL; 8546 return err; 8547 } 8548 8549 static void netif_free_rx_queues(struct net_device *dev) 8550 { 8551 unsigned int i, count = dev->num_rx_queues; 8552 8553 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 8554 if (!dev->_rx) 8555 return; 8556 8557 for (i = 0; i < count; i++) 8558 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 8559 8560 kvfree(dev->_rx); 8561 } 8562 8563 static void netdev_init_one_queue(struct net_device *dev, 8564 struct netdev_queue *queue, void *_unused) 8565 { 8566 /* Initialize queue lock */ 8567 spin_lock_init(&queue->_xmit_lock); 8568 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 8569 queue->xmit_lock_owner = -1; 8570 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 8571 queue->dev = dev; 8572 #ifdef CONFIG_BQL 8573 dql_init(&queue->dql, HZ); 8574 #endif 8575 } 8576 8577 static void netif_free_tx_queues(struct net_device *dev) 8578 { 8579 kvfree(dev->_tx); 8580 } 8581 8582 static int netif_alloc_netdev_queues(struct net_device *dev) 8583 { 8584 unsigned int count = dev->num_tx_queues; 8585 struct netdev_queue *tx; 8586 size_t sz = count * sizeof(*tx); 8587 8588 if (count < 1 || count > 0xffff) 8589 return -EINVAL; 8590 8591 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8592 if (!tx) 8593 return -ENOMEM; 8594 8595 dev->_tx = tx; 8596 8597 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 8598 spin_lock_init(&dev->tx_global_lock); 8599 8600 return 0; 8601 } 8602 8603 void netif_tx_stop_all_queues(struct net_device *dev) 8604 { 8605 unsigned int i; 8606 8607 for (i = 0; i < dev->num_tx_queues; i++) { 8608 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 8609 8610 netif_tx_stop_queue(txq); 8611 } 8612 } 8613 EXPORT_SYMBOL(netif_tx_stop_all_queues); 8614 8615 /** 8616 * register_netdevice - register a network device 8617 * @dev: device to register 8618 * 8619 * Take a completed network device structure and add it to the kernel 8620 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8621 * chain. 0 is returned on success. A negative errno code is returned 8622 * on a failure to set up the device, or if the name is a duplicate. 8623 * 8624 * Callers must hold the rtnl semaphore. You may want 8625 * register_netdev() instead of this. 8626 * 8627 * BUGS: 8628 * The locking appears insufficient to guarantee two parallel registers 8629 * will not get the same name. 8630 */ 8631 8632 int register_netdevice(struct net_device *dev) 8633 { 8634 int ret; 8635 struct net *net = dev_net(dev); 8636 8637 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 8638 NETDEV_FEATURE_COUNT); 8639 BUG_ON(dev_boot_phase); 8640 ASSERT_RTNL(); 8641 8642 might_sleep(); 8643 8644 /* When net_device's are persistent, this will be fatal. */ 8645 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 8646 BUG_ON(!net); 8647 8648 spin_lock_init(&dev->addr_list_lock); 8649 netdev_set_addr_lockdep_class(dev); 8650 8651 ret = dev_get_valid_name(net, dev, dev->name); 8652 if (ret < 0) 8653 goto out; 8654 8655 /* Init, if this function is available */ 8656 if (dev->netdev_ops->ndo_init) { 8657 ret = dev->netdev_ops->ndo_init(dev); 8658 if (ret) { 8659 if (ret > 0) 8660 ret = -EIO; 8661 goto out; 8662 } 8663 } 8664 8665 if (((dev->hw_features | dev->features) & 8666 NETIF_F_HW_VLAN_CTAG_FILTER) && 8667 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 8668 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 8669 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 8670 ret = -EINVAL; 8671 goto err_uninit; 8672 } 8673 8674 ret = -EBUSY; 8675 if (!dev->ifindex) 8676 dev->ifindex = dev_new_index(net); 8677 else if (__dev_get_by_index(net, dev->ifindex)) 8678 goto err_uninit; 8679 8680 /* Transfer changeable features to wanted_features and enable 8681 * software offloads (GSO and GRO). 8682 */ 8683 dev->hw_features |= NETIF_F_SOFT_FEATURES; 8684 dev->features |= NETIF_F_SOFT_FEATURES; 8685 8686 if (dev->netdev_ops->ndo_udp_tunnel_add) { 8687 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8688 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8689 } 8690 8691 dev->wanted_features = dev->features & dev->hw_features; 8692 8693 if (!(dev->flags & IFF_LOOPBACK)) 8694 dev->hw_features |= NETIF_F_NOCACHE_COPY; 8695 8696 /* If IPv4 TCP segmentation offload is supported we should also 8697 * allow the device to enable segmenting the frame with the option 8698 * of ignoring a static IP ID value. This doesn't enable the 8699 * feature itself but allows the user to enable it later. 8700 */ 8701 if (dev->hw_features & NETIF_F_TSO) 8702 dev->hw_features |= NETIF_F_TSO_MANGLEID; 8703 if (dev->vlan_features & NETIF_F_TSO) 8704 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 8705 if (dev->mpls_features & NETIF_F_TSO) 8706 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 8707 if (dev->hw_enc_features & NETIF_F_TSO) 8708 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 8709 8710 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 8711 */ 8712 dev->vlan_features |= NETIF_F_HIGHDMA; 8713 8714 /* Make NETIF_F_SG inheritable to tunnel devices. 8715 */ 8716 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 8717 8718 /* Make NETIF_F_SG inheritable to MPLS. 8719 */ 8720 dev->mpls_features |= NETIF_F_SG; 8721 8722 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 8723 ret = notifier_to_errno(ret); 8724 if (ret) 8725 goto err_uninit; 8726 8727 ret = netdev_register_kobject(dev); 8728 if (ret) 8729 goto err_uninit; 8730 dev->reg_state = NETREG_REGISTERED; 8731 8732 __netdev_update_features(dev); 8733 8734 /* 8735 * Default initial state at registry is that the 8736 * device is present. 8737 */ 8738 8739 set_bit(__LINK_STATE_PRESENT, &dev->state); 8740 8741 linkwatch_init_dev(dev); 8742 8743 dev_init_scheduler(dev); 8744 dev_hold(dev); 8745 list_netdevice(dev); 8746 add_device_randomness(dev->dev_addr, dev->addr_len); 8747 8748 /* If the device has permanent device address, driver should 8749 * set dev_addr and also addr_assign_type should be set to 8750 * NET_ADDR_PERM (default value). 8751 */ 8752 if (dev->addr_assign_type == NET_ADDR_PERM) 8753 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 8754 8755 /* Notify protocols, that a new device appeared. */ 8756 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 8757 ret = notifier_to_errno(ret); 8758 if (ret) { 8759 rollback_registered(dev); 8760 dev->reg_state = NETREG_UNREGISTERED; 8761 } 8762 /* 8763 * Prevent userspace races by waiting until the network 8764 * device is fully setup before sending notifications. 8765 */ 8766 if (!dev->rtnl_link_ops || 8767 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8768 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8769 8770 out: 8771 return ret; 8772 8773 err_uninit: 8774 if (dev->netdev_ops->ndo_uninit) 8775 dev->netdev_ops->ndo_uninit(dev); 8776 if (dev->priv_destructor) 8777 dev->priv_destructor(dev); 8778 goto out; 8779 } 8780 EXPORT_SYMBOL(register_netdevice); 8781 8782 /** 8783 * init_dummy_netdev - init a dummy network device for NAPI 8784 * @dev: device to init 8785 * 8786 * This takes a network device structure and initialize the minimum 8787 * amount of fields so it can be used to schedule NAPI polls without 8788 * registering a full blown interface. This is to be used by drivers 8789 * that need to tie several hardware interfaces to a single NAPI 8790 * poll scheduler due to HW limitations. 8791 */ 8792 int init_dummy_netdev(struct net_device *dev) 8793 { 8794 /* Clear everything. Note we don't initialize spinlocks 8795 * are they aren't supposed to be taken by any of the 8796 * NAPI code and this dummy netdev is supposed to be 8797 * only ever used for NAPI polls 8798 */ 8799 memset(dev, 0, sizeof(struct net_device)); 8800 8801 /* make sure we BUG if trying to hit standard 8802 * register/unregister code path 8803 */ 8804 dev->reg_state = NETREG_DUMMY; 8805 8806 /* NAPI wants this */ 8807 INIT_LIST_HEAD(&dev->napi_list); 8808 8809 /* a dummy interface is started by default */ 8810 set_bit(__LINK_STATE_PRESENT, &dev->state); 8811 set_bit(__LINK_STATE_START, &dev->state); 8812 8813 /* napi_busy_loop stats accounting wants this */ 8814 dev_net_set(dev, &init_net); 8815 8816 /* Note : We dont allocate pcpu_refcnt for dummy devices, 8817 * because users of this 'device' dont need to change 8818 * its refcount. 8819 */ 8820 8821 return 0; 8822 } 8823 EXPORT_SYMBOL_GPL(init_dummy_netdev); 8824 8825 8826 /** 8827 * register_netdev - register a network device 8828 * @dev: device to register 8829 * 8830 * Take a completed network device structure and add it to the kernel 8831 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8832 * chain. 0 is returned on success. A negative errno code is returned 8833 * on a failure to set up the device, or if the name is a duplicate. 8834 * 8835 * This is a wrapper around register_netdevice that takes the rtnl semaphore 8836 * and expands the device name if you passed a format string to 8837 * alloc_netdev. 8838 */ 8839 int register_netdev(struct net_device *dev) 8840 { 8841 int err; 8842 8843 if (rtnl_lock_killable()) 8844 return -EINTR; 8845 err = register_netdevice(dev); 8846 rtnl_unlock(); 8847 return err; 8848 } 8849 EXPORT_SYMBOL(register_netdev); 8850 8851 int netdev_refcnt_read(const struct net_device *dev) 8852 { 8853 int i, refcnt = 0; 8854 8855 for_each_possible_cpu(i) 8856 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 8857 return refcnt; 8858 } 8859 EXPORT_SYMBOL(netdev_refcnt_read); 8860 8861 /** 8862 * netdev_wait_allrefs - wait until all references are gone. 8863 * @dev: target net_device 8864 * 8865 * This is called when unregistering network devices. 8866 * 8867 * Any protocol or device that holds a reference should register 8868 * for netdevice notification, and cleanup and put back the 8869 * reference if they receive an UNREGISTER event. 8870 * We can get stuck here if buggy protocols don't correctly 8871 * call dev_put. 8872 */ 8873 static void netdev_wait_allrefs(struct net_device *dev) 8874 { 8875 unsigned long rebroadcast_time, warning_time; 8876 int refcnt; 8877 8878 linkwatch_forget_dev(dev); 8879 8880 rebroadcast_time = warning_time = jiffies; 8881 refcnt = netdev_refcnt_read(dev); 8882 8883 while (refcnt != 0) { 8884 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 8885 rtnl_lock(); 8886 8887 /* Rebroadcast unregister notification */ 8888 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8889 8890 __rtnl_unlock(); 8891 rcu_barrier(); 8892 rtnl_lock(); 8893 8894 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 8895 &dev->state)) { 8896 /* We must not have linkwatch events 8897 * pending on unregister. If this 8898 * happens, we simply run the queue 8899 * unscheduled, resulting in a noop 8900 * for this device. 8901 */ 8902 linkwatch_run_queue(); 8903 } 8904 8905 __rtnl_unlock(); 8906 8907 rebroadcast_time = jiffies; 8908 } 8909 8910 msleep(250); 8911 8912 refcnt = netdev_refcnt_read(dev); 8913 8914 if (time_after(jiffies, warning_time + 10 * HZ)) { 8915 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 8916 dev->name, refcnt); 8917 warning_time = jiffies; 8918 } 8919 } 8920 } 8921 8922 /* The sequence is: 8923 * 8924 * rtnl_lock(); 8925 * ... 8926 * register_netdevice(x1); 8927 * register_netdevice(x2); 8928 * ... 8929 * unregister_netdevice(y1); 8930 * unregister_netdevice(y2); 8931 * ... 8932 * rtnl_unlock(); 8933 * free_netdev(y1); 8934 * free_netdev(y2); 8935 * 8936 * We are invoked by rtnl_unlock(). 8937 * This allows us to deal with problems: 8938 * 1) We can delete sysfs objects which invoke hotplug 8939 * without deadlocking with linkwatch via keventd. 8940 * 2) Since we run with the RTNL semaphore not held, we can sleep 8941 * safely in order to wait for the netdev refcnt to drop to zero. 8942 * 8943 * We must not return until all unregister events added during 8944 * the interval the lock was held have been completed. 8945 */ 8946 void netdev_run_todo(void) 8947 { 8948 struct list_head list; 8949 8950 /* Snapshot list, allow later requests */ 8951 list_replace_init(&net_todo_list, &list); 8952 8953 __rtnl_unlock(); 8954 8955 8956 /* Wait for rcu callbacks to finish before next phase */ 8957 if (!list_empty(&list)) 8958 rcu_barrier(); 8959 8960 while (!list_empty(&list)) { 8961 struct net_device *dev 8962 = list_first_entry(&list, struct net_device, todo_list); 8963 list_del(&dev->todo_list); 8964 8965 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 8966 pr_err("network todo '%s' but state %d\n", 8967 dev->name, dev->reg_state); 8968 dump_stack(); 8969 continue; 8970 } 8971 8972 dev->reg_state = NETREG_UNREGISTERED; 8973 8974 netdev_wait_allrefs(dev); 8975 8976 /* paranoia */ 8977 BUG_ON(netdev_refcnt_read(dev)); 8978 BUG_ON(!list_empty(&dev->ptype_all)); 8979 BUG_ON(!list_empty(&dev->ptype_specific)); 8980 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 8981 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 8982 #if IS_ENABLED(CONFIG_DECNET) 8983 WARN_ON(dev->dn_ptr); 8984 #endif 8985 if (dev->priv_destructor) 8986 dev->priv_destructor(dev); 8987 if (dev->needs_free_netdev) 8988 free_netdev(dev); 8989 8990 /* Report a network device has been unregistered */ 8991 rtnl_lock(); 8992 dev_net(dev)->dev_unreg_count--; 8993 __rtnl_unlock(); 8994 wake_up(&netdev_unregistering_wq); 8995 8996 /* Free network device */ 8997 kobject_put(&dev->dev.kobj); 8998 } 8999 } 9000 9001 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 9002 * all the same fields in the same order as net_device_stats, with only 9003 * the type differing, but rtnl_link_stats64 may have additional fields 9004 * at the end for newer counters. 9005 */ 9006 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 9007 const struct net_device_stats *netdev_stats) 9008 { 9009 #if BITS_PER_LONG == 64 9010 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 9011 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 9012 /* zero out counters that only exist in rtnl_link_stats64 */ 9013 memset((char *)stats64 + sizeof(*netdev_stats), 0, 9014 sizeof(*stats64) - sizeof(*netdev_stats)); 9015 #else 9016 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 9017 const unsigned long *src = (const unsigned long *)netdev_stats; 9018 u64 *dst = (u64 *)stats64; 9019 9020 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 9021 for (i = 0; i < n; i++) 9022 dst[i] = src[i]; 9023 /* zero out counters that only exist in rtnl_link_stats64 */ 9024 memset((char *)stats64 + n * sizeof(u64), 0, 9025 sizeof(*stats64) - n * sizeof(u64)); 9026 #endif 9027 } 9028 EXPORT_SYMBOL(netdev_stats_to_stats64); 9029 9030 /** 9031 * dev_get_stats - get network device statistics 9032 * @dev: device to get statistics from 9033 * @storage: place to store stats 9034 * 9035 * Get network statistics from device. Return @storage. 9036 * The device driver may provide its own method by setting 9037 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 9038 * otherwise the internal statistics structure is used. 9039 */ 9040 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 9041 struct rtnl_link_stats64 *storage) 9042 { 9043 const struct net_device_ops *ops = dev->netdev_ops; 9044 9045 if (ops->ndo_get_stats64) { 9046 memset(storage, 0, sizeof(*storage)); 9047 ops->ndo_get_stats64(dev, storage); 9048 } else if (ops->ndo_get_stats) { 9049 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 9050 } else { 9051 netdev_stats_to_stats64(storage, &dev->stats); 9052 } 9053 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 9054 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 9055 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 9056 return storage; 9057 } 9058 EXPORT_SYMBOL(dev_get_stats); 9059 9060 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 9061 { 9062 struct netdev_queue *queue = dev_ingress_queue(dev); 9063 9064 #ifdef CONFIG_NET_CLS_ACT 9065 if (queue) 9066 return queue; 9067 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 9068 if (!queue) 9069 return NULL; 9070 netdev_init_one_queue(dev, queue, NULL); 9071 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 9072 queue->qdisc_sleeping = &noop_qdisc; 9073 rcu_assign_pointer(dev->ingress_queue, queue); 9074 #endif 9075 return queue; 9076 } 9077 9078 static const struct ethtool_ops default_ethtool_ops; 9079 9080 void netdev_set_default_ethtool_ops(struct net_device *dev, 9081 const struct ethtool_ops *ops) 9082 { 9083 if (dev->ethtool_ops == &default_ethtool_ops) 9084 dev->ethtool_ops = ops; 9085 } 9086 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 9087 9088 void netdev_freemem(struct net_device *dev) 9089 { 9090 char *addr = (char *)dev - dev->padded; 9091 9092 kvfree(addr); 9093 } 9094 9095 /** 9096 * alloc_netdev_mqs - allocate network device 9097 * @sizeof_priv: size of private data to allocate space for 9098 * @name: device name format string 9099 * @name_assign_type: origin of device name 9100 * @setup: callback to initialize device 9101 * @txqs: the number of TX subqueues to allocate 9102 * @rxqs: the number of RX subqueues to allocate 9103 * 9104 * Allocates a struct net_device with private data area for driver use 9105 * and performs basic initialization. Also allocates subqueue structs 9106 * for each queue on the device. 9107 */ 9108 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 9109 unsigned char name_assign_type, 9110 void (*setup)(struct net_device *), 9111 unsigned int txqs, unsigned int rxqs) 9112 { 9113 struct net_device *dev; 9114 unsigned int alloc_size; 9115 struct net_device *p; 9116 9117 BUG_ON(strlen(name) >= sizeof(dev->name)); 9118 9119 if (txqs < 1) { 9120 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 9121 return NULL; 9122 } 9123 9124 if (rxqs < 1) { 9125 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 9126 return NULL; 9127 } 9128 9129 alloc_size = sizeof(struct net_device); 9130 if (sizeof_priv) { 9131 /* ensure 32-byte alignment of private area */ 9132 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 9133 alloc_size += sizeof_priv; 9134 } 9135 /* ensure 32-byte alignment of whole construct */ 9136 alloc_size += NETDEV_ALIGN - 1; 9137 9138 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9139 if (!p) 9140 return NULL; 9141 9142 dev = PTR_ALIGN(p, NETDEV_ALIGN); 9143 dev->padded = (char *)dev - (char *)p; 9144 9145 dev->pcpu_refcnt = alloc_percpu(int); 9146 if (!dev->pcpu_refcnt) 9147 goto free_dev; 9148 9149 if (dev_addr_init(dev)) 9150 goto free_pcpu; 9151 9152 dev_mc_init(dev); 9153 dev_uc_init(dev); 9154 9155 dev_net_set(dev, &init_net); 9156 9157 dev->gso_max_size = GSO_MAX_SIZE; 9158 dev->gso_max_segs = GSO_MAX_SEGS; 9159 9160 INIT_LIST_HEAD(&dev->napi_list); 9161 INIT_LIST_HEAD(&dev->unreg_list); 9162 INIT_LIST_HEAD(&dev->close_list); 9163 INIT_LIST_HEAD(&dev->link_watch_list); 9164 INIT_LIST_HEAD(&dev->adj_list.upper); 9165 INIT_LIST_HEAD(&dev->adj_list.lower); 9166 INIT_LIST_HEAD(&dev->ptype_all); 9167 INIT_LIST_HEAD(&dev->ptype_specific); 9168 #ifdef CONFIG_NET_SCHED 9169 hash_init(dev->qdisc_hash); 9170 #endif 9171 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 9172 setup(dev); 9173 9174 if (!dev->tx_queue_len) { 9175 dev->priv_flags |= IFF_NO_QUEUE; 9176 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 9177 } 9178 9179 dev->num_tx_queues = txqs; 9180 dev->real_num_tx_queues = txqs; 9181 if (netif_alloc_netdev_queues(dev)) 9182 goto free_all; 9183 9184 dev->num_rx_queues = rxqs; 9185 dev->real_num_rx_queues = rxqs; 9186 if (netif_alloc_rx_queues(dev)) 9187 goto free_all; 9188 9189 strcpy(dev->name, name); 9190 dev->name_assign_type = name_assign_type; 9191 dev->group = INIT_NETDEV_GROUP; 9192 if (!dev->ethtool_ops) 9193 dev->ethtool_ops = &default_ethtool_ops; 9194 9195 nf_hook_ingress_init(dev); 9196 9197 return dev; 9198 9199 free_all: 9200 free_netdev(dev); 9201 return NULL; 9202 9203 free_pcpu: 9204 free_percpu(dev->pcpu_refcnt); 9205 free_dev: 9206 netdev_freemem(dev); 9207 return NULL; 9208 } 9209 EXPORT_SYMBOL(alloc_netdev_mqs); 9210 9211 /** 9212 * free_netdev - free network device 9213 * @dev: device 9214 * 9215 * This function does the last stage of destroying an allocated device 9216 * interface. The reference to the device object is released. If this 9217 * is the last reference then it will be freed.Must be called in process 9218 * context. 9219 */ 9220 void free_netdev(struct net_device *dev) 9221 { 9222 struct napi_struct *p, *n; 9223 9224 might_sleep(); 9225 netif_free_tx_queues(dev); 9226 netif_free_rx_queues(dev); 9227 9228 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 9229 9230 /* Flush device addresses */ 9231 dev_addr_flush(dev); 9232 9233 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 9234 netif_napi_del(p); 9235 9236 free_percpu(dev->pcpu_refcnt); 9237 dev->pcpu_refcnt = NULL; 9238 9239 /* Compatibility with error handling in drivers */ 9240 if (dev->reg_state == NETREG_UNINITIALIZED) { 9241 netdev_freemem(dev); 9242 return; 9243 } 9244 9245 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 9246 dev->reg_state = NETREG_RELEASED; 9247 9248 /* will free via device release */ 9249 put_device(&dev->dev); 9250 } 9251 EXPORT_SYMBOL(free_netdev); 9252 9253 /** 9254 * synchronize_net - Synchronize with packet receive processing 9255 * 9256 * Wait for packets currently being received to be done. 9257 * Does not block later packets from starting. 9258 */ 9259 void synchronize_net(void) 9260 { 9261 might_sleep(); 9262 if (rtnl_is_locked()) 9263 synchronize_rcu_expedited(); 9264 else 9265 synchronize_rcu(); 9266 } 9267 EXPORT_SYMBOL(synchronize_net); 9268 9269 /** 9270 * unregister_netdevice_queue - remove device from the kernel 9271 * @dev: device 9272 * @head: list 9273 * 9274 * This function shuts down a device interface and removes it 9275 * from the kernel tables. 9276 * If head not NULL, device is queued to be unregistered later. 9277 * 9278 * Callers must hold the rtnl semaphore. You may want 9279 * unregister_netdev() instead of this. 9280 */ 9281 9282 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 9283 { 9284 ASSERT_RTNL(); 9285 9286 if (head) { 9287 list_move_tail(&dev->unreg_list, head); 9288 } else { 9289 rollback_registered(dev); 9290 /* Finish processing unregister after unlock */ 9291 net_set_todo(dev); 9292 } 9293 } 9294 EXPORT_SYMBOL(unregister_netdevice_queue); 9295 9296 /** 9297 * unregister_netdevice_many - unregister many devices 9298 * @head: list of devices 9299 * 9300 * Note: As most callers use a stack allocated list_head, 9301 * we force a list_del() to make sure stack wont be corrupted later. 9302 */ 9303 void unregister_netdevice_many(struct list_head *head) 9304 { 9305 struct net_device *dev; 9306 9307 if (!list_empty(head)) { 9308 rollback_registered_many(head); 9309 list_for_each_entry(dev, head, unreg_list) 9310 net_set_todo(dev); 9311 list_del(head); 9312 } 9313 } 9314 EXPORT_SYMBOL(unregister_netdevice_many); 9315 9316 /** 9317 * unregister_netdev - remove device from the kernel 9318 * @dev: device 9319 * 9320 * This function shuts down a device interface and removes it 9321 * from the kernel tables. 9322 * 9323 * This is just a wrapper for unregister_netdevice that takes 9324 * the rtnl semaphore. In general you want to use this and not 9325 * unregister_netdevice. 9326 */ 9327 void unregister_netdev(struct net_device *dev) 9328 { 9329 rtnl_lock(); 9330 unregister_netdevice(dev); 9331 rtnl_unlock(); 9332 } 9333 EXPORT_SYMBOL(unregister_netdev); 9334 9335 /** 9336 * dev_change_net_namespace - move device to different nethost namespace 9337 * @dev: device 9338 * @net: network namespace 9339 * @pat: If not NULL name pattern to try if the current device name 9340 * is already taken in the destination network namespace. 9341 * 9342 * This function shuts down a device interface and moves it 9343 * to a new network namespace. On success 0 is returned, on 9344 * a failure a netagive errno code is returned. 9345 * 9346 * Callers must hold the rtnl semaphore. 9347 */ 9348 9349 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 9350 { 9351 int err, new_nsid, new_ifindex; 9352 9353 ASSERT_RTNL(); 9354 9355 /* Don't allow namespace local devices to be moved. */ 9356 err = -EINVAL; 9357 if (dev->features & NETIF_F_NETNS_LOCAL) 9358 goto out; 9359 9360 /* Ensure the device has been registrered */ 9361 if (dev->reg_state != NETREG_REGISTERED) 9362 goto out; 9363 9364 /* Get out if there is nothing todo */ 9365 err = 0; 9366 if (net_eq(dev_net(dev), net)) 9367 goto out; 9368 9369 /* Pick the destination device name, and ensure 9370 * we can use it in the destination network namespace. 9371 */ 9372 err = -EEXIST; 9373 if (__dev_get_by_name(net, dev->name)) { 9374 /* We get here if we can't use the current device name */ 9375 if (!pat) 9376 goto out; 9377 err = dev_get_valid_name(net, dev, pat); 9378 if (err < 0) 9379 goto out; 9380 } 9381 9382 /* 9383 * And now a mini version of register_netdevice unregister_netdevice. 9384 */ 9385 9386 /* If device is running close it first. */ 9387 dev_close(dev); 9388 9389 /* And unlink it from device chain */ 9390 unlist_netdevice(dev); 9391 9392 synchronize_net(); 9393 9394 /* Shutdown queueing discipline. */ 9395 dev_shutdown(dev); 9396 9397 /* Notify protocols, that we are about to destroy 9398 * this device. They should clean all the things. 9399 * 9400 * Note that dev->reg_state stays at NETREG_REGISTERED. 9401 * This is wanted because this way 8021q and macvlan know 9402 * the device is just moving and can keep their slaves up. 9403 */ 9404 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9405 rcu_barrier(); 9406 9407 new_nsid = peernet2id_alloc(dev_net(dev), net); 9408 /* If there is an ifindex conflict assign a new one */ 9409 if (__dev_get_by_index(net, dev->ifindex)) 9410 new_ifindex = dev_new_index(net); 9411 else 9412 new_ifindex = dev->ifindex; 9413 9414 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 9415 new_ifindex); 9416 9417 /* 9418 * Flush the unicast and multicast chains 9419 */ 9420 dev_uc_flush(dev); 9421 dev_mc_flush(dev); 9422 9423 /* Send a netdev-removed uevent to the old namespace */ 9424 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 9425 netdev_adjacent_del_links(dev); 9426 9427 /* Actually switch the network namespace */ 9428 dev_net_set(dev, net); 9429 dev->ifindex = new_ifindex; 9430 9431 /* Send a netdev-add uevent to the new namespace */ 9432 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 9433 netdev_adjacent_add_links(dev); 9434 9435 /* Fixup kobjects */ 9436 err = device_rename(&dev->dev, dev->name); 9437 WARN_ON(err); 9438 9439 /* Add the device back in the hashes */ 9440 list_netdevice(dev); 9441 9442 /* Notify protocols, that a new device appeared. */ 9443 call_netdevice_notifiers(NETDEV_REGISTER, dev); 9444 9445 /* 9446 * Prevent userspace races by waiting until the network 9447 * device is fully setup before sending notifications. 9448 */ 9449 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9450 9451 synchronize_net(); 9452 err = 0; 9453 out: 9454 return err; 9455 } 9456 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 9457 9458 static int dev_cpu_dead(unsigned int oldcpu) 9459 { 9460 struct sk_buff **list_skb; 9461 struct sk_buff *skb; 9462 unsigned int cpu; 9463 struct softnet_data *sd, *oldsd, *remsd = NULL; 9464 9465 local_irq_disable(); 9466 cpu = smp_processor_id(); 9467 sd = &per_cpu(softnet_data, cpu); 9468 oldsd = &per_cpu(softnet_data, oldcpu); 9469 9470 /* Find end of our completion_queue. */ 9471 list_skb = &sd->completion_queue; 9472 while (*list_skb) 9473 list_skb = &(*list_skb)->next; 9474 /* Append completion queue from offline CPU. */ 9475 *list_skb = oldsd->completion_queue; 9476 oldsd->completion_queue = NULL; 9477 9478 /* Append output queue from offline CPU. */ 9479 if (oldsd->output_queue) { 9480 *sd->output_queue_tailp = oldsd->output_queue; 9481 sd->output_queue_tailp = oldsd->output_queue_tailp; 9482 oldsd->output_queue = NULL; 9483 oldsd->output_queue_tailp = &oldsd->output_queue; 9484 } 9485 /* Append NAPI poll list from offline CPU, with one exception : 9486 * process_backlog() must be called by cpu owning percpu backlog. 9487 * We properly handle process_queue & input_pkt_queue later. 9488 */ 9489 while (!list_empty(&oldsd->poll_list)) { 9490 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 9491 struct napi_struct, 9492 poll_list); 9493 9494 list_del_init(&napi->poll_list); 9495 if (napi->poll == process_backlog) 9496 napi->state = 0; 9497 else 9498 ____napi_schedule(sd, napi); 9499 } 9500 9501 raise_softirq_irqoff(NET_TX_SOFTIRQ); 9502 local_irq_enable(); 9503 9504 #ifdef CONFIG_RPS 9505 remsd = oldsd->rps_ipi_list; 9506 oldsd->rps_ipi_list = NULL; 9507 #endif 9508 /* send out pending IPI's on offline CPU */ 9509 net_rps_send_ipi(remsd); 9510 9511 /* Process offline CPU's input_pkt_queue */ 9512 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 9513 netif_rx_ni(skb); 9514 input_queue_head_incr(oldsd); 9515 } 9516 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 9517 netif_rx_ni(skb); 9518 input_queue_head_incr(oldsd); 9519 } 9520 9521 return 0; 9522 } 9523 9524 /** 9525 * netdev_increment_features - increment feature set by one 9526 * @all: current feature set 9527 * @one: new feature set 9528 * @mask: mask feature set 9529 * 9530 * Computes a new feature set after adding a device with feature set 9531 * @one to the master device with current feature set @all. Will not 9532 * enable anything that is off in @mask. Returns the new feature set. 9533 */ 9534 netdev_features_t netdev_increment_features(netdev_features_t all, 9535 netdev_features_t one, netdev_features_t mask) 9536 { 9537 if (mask & NETIF_F_HW_CSUM) 9538 mask |= NETIF_F_CSUM_MASK; 9539 mask |= NETIF_F_VLAN_CHALLENGED; 9540 9541 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 9542 all &= one | ~NETIF_F_ALL_FOR_ALL; 9543 9544 /* If one device supports hw checksumming, set for all. */ 9545 if (all & NETIF_F_HW_CSUM) 9546 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 9547 9548 return all; 9549 } 9550 EXPORT_SYMBOL(netdev_increment_features); 9551 9552 static struct hlist_head * __net_init netdev_create_hash(void) 9553 { 9554 int i; 9555 struct hlist_head *hash; 9556 9557 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 9558 if (hash != NULL) 9559 for (i = 0; i < NETDEV_HASHENTRIES; i++) 9560 INIT_HLIST_HEAD(&hash[i]); 9561 9562 return hash; 9563 } 9564 9565 /* Initialize per network namespace state */ 9566 static int __net_init netdev_init(struct net *net) 9567 { 9568 BUILD_BUG_ON(GRO_HASH_BUCKETS > 9569 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask)); 9570 9571 if (net != &init_net) 9572 INIT_LIST_HEAD(&net->dev_base_head); 9573 9574 net->dev_name_head = netdev_create_hash(); 9575 if (net->dev_name_head == NULL) 9576 goto err_name; 9577 9578 net->dev_index_head = netdev_create_hash(); 9579 if (net->dev_index_head == NULL) 9580 goto err_idx; 9581 9582 return 0; 9583 9584 err_idx: 9585 kfree(net->dev_name_head); 9586 err_name: 9587 return -ENOMEM; 9588 } 9589 9590 /** 9591 * netdev_drivername - network driver for the device 9592 * @dev: network device 9593 * 9594 * Determine network driver for device. 9595 */ 9596 const char *netdev_drivername(const struct net_device *dev) 9597 { 9598 const struct device_driver *driver; 9599 const struct device *parent; 9600 const char *empty = ""; 9601 9602 parent = dev->dev.parent; 9603 if (!parent) 9604 return empty; 9605 9606 driver = parent->driver; 9607 if (driver && driver->name) 9608 return driver->name; 9609 return empty; 9610 } 9611 9612 static void __netdev_printk(const char *level, const struct net_device *dev, 9613 struct va_format *vaf) 9614 { 9615 if (dev && dev->dev.parent) { 9616 dev_printk_emit(level[1] - '0', 9617 dev->dev.parent, 9618 "%s %s %s%s: %pV", 9619 dev_driver_string(dev->dev.parent), 9620 dev_name(dev->dev.parent), 9621 netdev_name(dev), netdev_reg_state(dev), 9622 vaf); 9623 } else if (dev) { 9624 printk("%s%s%s: %pV", 9625 level, netdev_name(dev), netdev_reg_state(dev), vaf); 9626 } else { 9627 printk("%s(NULL net_device): %pV", level, vaf); 9628 } 9629 } 9630 9631 void netdev_printk(const char *level, const struct net_device *dev, 9632 const char *format, ...) 9633 { 9634 struct va_format vaf; 9635 va_list args; 9636 9637 va_start(args, format); 9638 9639 vaf.fmt = format; 9640 vaf.va = &args; 9641 9642 __netdev_printk(level, dev, &vaf); 9643 9644 va_end(args); 9645 } 9646 EXPORT_SYMBOL(netdev_printk); 9647 9648 #define define_netdev_printk_level(func, level) \ 9649 void func(const struct net_device *dev, const char *fmt, ...) \ 9650 { \ 9651 struct va_format vaf; \ 9652 va_list args; \ 9653 \ 9654 va_start(args, fmt); \ 9655 \ 9656 vaf.fmt = fmt; \ 9657 vaf.va = &args; \ 9658 \ 9659 __netdev_printk(level, dev, &vaf); \ 9660 \ 9661 va_end(args); \ 9662 } \ 9663 EXPORT_SYMBOL(func); 9664 9665 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 9666 define_netdev_printk_level(netdev_alert, KERN_ALERT); 9667 define_netdev_printk_level(netdev_crit, KERN_CRIT); 9668 define_netdev_printk_level(netdev_err, KERN_ERR); 9669 define_netdev_printk_level(netdev_warn, KERN_WARNING); 9670 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 9671 define_netdev_printk_level(netdev_info, KERN_INFO); 9672 9673 static void __net_exit netdev_exit(struct net *net) 9674 { 9675 kfree(net->dev_name_head); 9676 kfree(net->dev_index_head); 9677 if (net != &init_net) 9678 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 9679 } 9680 9681 static struct pernet_operations __net_initdata netdev_net_ops = { 9682 .init = netdev_init, 9683 .exit = netdev_exit, 9684 }; 9685 9686 static void __net_exit default_device_exit(struct net *net) 9687 { 9688 struct net_device *dev, *aux; 9689 /* 9690 * Push all migratable network devices back to the 9691 * initial network namespace 9692 */ 9693 rtnl_lock(); 9694 for_each_netdev_safe(net, dev, aux) { 9695 int err; 9696 char fb_name[IFNAMSIZ]; 9697 9698 /* Ignore unmoveable devices (i.e. loopback) */ 9699 if (dev->features & NETIF_F_NETNS_LOCAL) 9700 continue; 9701 9702 /* Leave virtual devices for the generic cleanup */ 9703 if (dev->rtnl_link_ops) 9704 continue; 9705 9706 /* Push remaining network devices to init_net */ 9707 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 9708 err = dev_change_net_namespace(dev, &init_net, fb_name); 9709 if (err) { 9710 pr_emerg("%s: failed to move %s to init_net: %d\n", 9711 __func__, dev->name, err); 9712 BUG(); 9713 } 9714 } 9715 rtnl_unlock(); 9716 } 9717 9718 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 9719 { 9720 /* Return with the rtnl_lock held when there are no network 9721 * devices unregistering in any network namespace in net_list. 9722 */ 9723 struct net *net; 9724 bool unregistering; 9725 DEFINE_WAIT_FUNC(wait, woken_wake_function); 9726 9727 add_wait_queue(&netdev_unregistering_wq, &wait); 9728 for (;;) { 9729 unregistering = false; 9730 rtnl_lock(); 9731 list_for_each_entry(net, net_list, exit_list) { 9732 if (net->dev_unreg_count > 0) { 9733 unregistering = true; 9734 break; 9735 } 9736 } 9737 if (!unregistering) 9738 break; 9739 __rtnl_unlock(); 9740 9741 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 9742 } 9743 remove_wait_queue(&netdev_unregistering_wq, &wait); 9744 } 9745 9746 static void __net_exit default_device_exit_batch(struct list_head *net_list) 9747 { 9748 /* At exit all network devices most be removed from a network 9749 * namespace. Do this in the reverse order of registration. 9750 * Do this across as many network namespaces as possible to 9751 * improve batching efficiency. 9752 */ 9753 struct net_device *dev; 9754 struct net *net; 9755 LIST_HEAD(dev_kill_list); 9756 9757 /* To prevent network device cleanup code from dereferencing 9758 * loopback devices or network devices that have been freed 9759 * wait here for all pending unregistrations to complete, 9760 * before unregistring the loopback device and allowing the 9761 * network namespace be freed. 9762 * 9763 * The netdev todo list containing all network devices 9764 * unregistrations that happen in default_device_exit_batch 9765 * will run in the rtnl_unlock() at the end of 9766 * default_device_exit_batch. 9767 */ 9768 rtnl_lock_unregistering(net_list); 9769 list_for_each_entry(net, net_list, exit_list) { 9770 for_each_netdev_reverse(net, dev) { 9771 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 9772 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 9773 else 9774 unregister_netdevice_queue(dev, &dev_kill_list); 9775 } 9776 } 9777 unregister_netdevice_many(&dev_kill_list); 9778 rtnl_unlock(); 9779 } 9780 9781 static struct pernet_operations __net_initdata default_device_ops = { 9782 .exit = default_device_exit, 9783 .exit_batch = default_device_exit_batch, 9784 }; 9785 9786 /* 9787 * Initialize the DEV module. At boot time this walks the device list and 9788 * unhooks any devices that fail to initialise (normally hardware not 9789 * present) and leaves us with a valid list of present and active devices. 9790 * 9791 */ 9792 9793 /* 9794 * This is called single threaded during boot, so no need 9795 * to take the rtnl semaphore. 9796 */ 9797 static int __init net_dev_init(void) 9798 { 9799 int i, rc = -ENOMEM; 9800 9801 BUG_ON(!dev_boot_phase); 9802 9803 if (dev_proc_init()) 9804 goto out; 9805 9806 if (netdev_kobject_init()) 9807 goto out; 9808 9809 INIT_LIST_HEAD(&ptype_all); 9810 for (i = 0; i < PTYPE_HASH_SIZE; i++) 9811 INIT_LIST_HEAD(&ptype_base[i]); 9812 9813 INIT_LIST_HEAD(&offload_base); 9814 9815 if (register_pernet_subsys(&netdev_net_ops)) 9816 goto out; 9817 9818 /* 9819 * Initialise the packet receive queues. 9820 */ 9821 9822 for_each_possible_cpu(i) { 9823 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 9824 struct softnet_data *sd = &per_cpu(softnet_data, i); 9825 9826 INIT_WORK(flush, flush_backlog); 9827 9828 skb_queue_head_init(&sd->input_pkt_queue); 9829 skb_queue_head_init(&sd->process_queue); 9830 #ifdef CONFIG_XFRM_OFFLOAD 9831 skb_queue_head_init(&sd->xfrm_backlog); 9832 #endif 9833 INIT_LIST_HEAD(&sd->poll_list); 9834 sd->output_queue_tailp = &sd->output_queue; 9835 #ifdef CONFIG_RPS 9836 sd->csd.func = rps_trigger_softirq; 9837 sd->csd.info = sd; 9838 sd->cpu = i; 9839 #endif 9840 9841 init_gro_hash(&sd->backlog); 9842 sd->backlog.poll = process_backlog; 9843 sd->backlog.weight = weight_p; 9844 } 9845 9846 dev_boot_phase = 0; 9847 9848 /* The loopback device is special if any other network devices 9849 * is present in a network namespace the loopback device must 9850 * be present. Since we now dynamically allocate and free the 9851 * loopback device ensure this invariant is maintained by 9852 * keeping the loopback device as the first device on the 9853 * list of network devices. Ensuring the loopback devices 9854 * is the first device that appears and the last network device 9855 * that disappears. 9856 */ 9857 if (register_pernet_device(&loopback_net_ops)) 9858 goto out; 9859 9860 if (register_pernet_device(&default_device_ops)) 9861 goto out; 9862 9863 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 9864 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 9865 9866 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 9867 NULL, dev_cpu_dead); 9868 WARN_ON(rc < 0); 9869 rc = 0; 9870 out: 9871 return rc; 9872 } 9873 9874 subsys_initcall(net_dev_init); 9875