xref: /openbmc/linux/net/core/dev.c (revision cd5d5810)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 
135 #include "net-sysfs.h"
136 
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
139 
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142 
143 static DEFINE_SPINLOCK(ptype_lock);
144 static DEFINE_SPINLOCK(offload_lock);
145 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
146 struct list_head ptype_all __read_mostly;	/* Taps */
147 static struct list_head offload_base __read_mostly;
148 
149 /*
150  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
151  * semaphore.
152  *
153  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
154  *
155  * Writers must hold the rtnl semaphore while they loop through the
156  * dev_base_head list, and hold dev_base_lock for writing when they do the
157  * actual updates.  This allows pure readers to access the list even
158  * while a writer is preparing to update it.
159  *
160  * To put it another way, dev_base_lock is held for writing only to
161  * protect against pure readers; the rtnl semaphore provides the
162  * protection against other writers.
163  *
164  * See, for example usages, register_netdevice() and
165  * unregister_netdevice(), which must be called with the rtnl
166  * semaphore held.
167  */
168 DEFINE_RWLOCK(dev_base_lock);
169 EXPORT_SYMBOL(dev_base_lock);
170 
171 /* protects napi_hash addition/deletion and napi_gen_id */
172 static DEFINE_SPINLOCK(napi_hash_lock);
173 
174 static unsigned int napi_gen_id;
175 static DEFINE_HASHTABLE(napi_hash, 8);
176 
177 static seqcount_t devnet_rename_seq;
178 
179 static inline void dev_base_seq_inc(struct net *net)
180 {
181 	while (++net->dev_base_seq == 0);
182 }
183 
184 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
185 {
186 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
187 
188 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
189 }
190 
191 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
192 {
193 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
194 }
195 
196 static inline void rps_lock(struct softnet_data *sd)
197 {
198 #ifdef CONFIG_RPS
199 	spin_lock(&sd->input_pkt_queue.lock);
200 #endif
201 }
202 
203 static inline void rps_unlock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206 	spin_unlock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209 
210 /* Device list insertion */
211 static void list_netdevice(struct net_device *dev)
212 {
213 	struct net *net = dev_net(dev);
214 
215 	ASSERT_RTNL();
216 
217 	write_lock_bh(&dev_base_lock);
218 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
219 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
220 	hlist_add_head_rcu(&dev->index_hlist,
221 			   dev_index_hash(net, dev->ifindex));
222 	write_unlock_bh(&dev_base_lock);
223 
224 	dev_base_seq_inc(net);
225 }
226 
227 /* Device list removal
228  * caller must respect a RCU grace period before freeing/reusing dev
229  */
230 static void unlist_netdevice(struct net_device *dev)
231 {
232 	ASSERT_RTNL();
233 
234 	/* Unlink dev from the device chain */
235 	write_lock_bh(&dev_base_lock);
236 	list_del_rcu(&dev->dev_list);
237 	hlist_del_rcu(&dev->name_hlist);
238 	hlist_del_rcu(&dev->index_hlist);
239 	write_unlock_bh(&dev_base_lock);
240 
241 	dev_base_seq_inc(dev_net(dev));
242 }
243 
244 /*
245  *	Our notifier list
246  */
247 
248 static RAW_NOTIFIER_HEAD(netdev_chain);
249 
250 /*
251  *	Device drivers call our routines to queue packets here. We empty the
252  *	queue in the local softnet handler.
253  */
254 
255 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
256 EXPORT_PER_CPU_SYMBOL(softnet_data);
257 
258 #ifdef CONFIG_LOCKDEP
259 /*
260  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
261  * according to dev->type
262  */
263 static const unsigned short netdev_lock_type[] =
264 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
265 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
266 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
267 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
268 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
269 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
270 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
271 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
272 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
273 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
274 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
275 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
276 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
277 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
278 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
279 
280 static const char *const netdev_lock_name[] =
281 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
282 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
283 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
284 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
285 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
286 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
287 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
288 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
289 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
290 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
291 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
292 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
293 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
294 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
295 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
296 
297 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
298 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
299 
300 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
301 {
302 	int i;
303 
304 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
305 		if (netdev_lock_type[i] == dev_type)
306 			return i;
307 	/* the last key is used by default */
308 	return ARRAY_SIZE(netdev_lock_type) - 1;
309 }
310 
311 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
312 						 unsigned short dev_type)
313 {
314 	int i;
315 
316 	i = netdev_lock_pos(dev_type);
317 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
318 				   netdev_lock_name[i]);
319 }
320 
321 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
322 {
323 	int i;
324 
325 	i = netdev_lock_pos(dev->type);
326 	lockdep_set_class_and_name(&dev->addr_list_lock,
327 				   &netdev_addr_lock_key[i],
328 				   netdev_lock_name[i]);
329 }
330 #else
331 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
332 						 unsigned short dev_type)
333 {
334 }
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 }
338 #endif
339 
340 /*******************************************************************************
341 
342 		Protocol management and registration routines
343 
344 *******************************************************************************/
345 
346 /*
347  *	Add a protocol ID to the list. Now that the input handler is
348  *	smarter we can dispense with all the messy stuff that used to be
349  *	here.
350  *
351  *	BEWARE!!! Protocol handlers, mangling input packets,
352  *	MUST BE last in hash buckets and checking protocol handlers
353  *	MUST start from promiscuous ptype_all chain in net_bh.
354  *	It is true now, do not change it.
355  *	Explanation follows: if protocol handler, mangling packet, will
356  *	be the first on list, it is not able to sense, that packet
357  *	is cloned and should be copied-on-write, so that it will
358  *	change it and subsequent readers will get broken packet.
359  *							--ANK (980803)
360  */
361 
362 static inline struct list_head *ptype_head(const struct packet_type *pt)
363 {
364 	if (pt->type == htons(ETH_P_ALL))
365 		return &ptype_all;
366 	else
367 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
368 }
369 
370 /**
371  *	dev_add_pack - add packet handler
372  *	@pt: packet type declaration
373  *
374  *	Add a protocol handler to the networking stack. The passed &packet_type
375  *	is linked into kernel lists and may not be freed until it has been
376  *	removed from the kernel lists.
377  *
378  *	This call does not sleep therefore it can not
379  *	guarantee all CPU's that are in middle of receiving packets
380  *	will see the new packet type (until the next received packet).
381  */
382 
383 void dev_add_pack(struct packet_type *pt)
384 {
385 	struct list_head *head = ptype_head(pt);
386 
387 	spin_lock(&ptype_lock);
388 	list_add_rcu(&pt->list, head);
389 	spin_unlock(&ptype_lock);
390 }
391 EXPORT_SYMBOL(dev_add_pack);
392 
393 /**
394  *	__dev_remove_pack	 - remove packet handler
395  *	@pt: packet type declaration
396  *
397  *	Remove a protocol handler that was previously added to the kernel
398  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
399  *	from the kernel lists and can be freed or reused once this function
400  *	returns.
401  *
402  *      The packet type might still be in use by receivers
403  *	and must not be freed until after all the CPU's have gone
404  *	through a quiescent state.
405  */
406 void __dev_remove_pack(struct packet_type *pt)
407 {
408 	struct list_head *head = ptype_head(pt);
409 	struct packet_type *pt1;
410 
411 	spin_lock(&ptype_lock);
412 
413 	list_for_each_entry(pt1, head, list) {
414 		if (pt == pt1) {
415 			list_del_rcu(&pt->list);
416 			goto out;
417 		}
418 	}
419 
420 	pr_warn("dev_remove_pack: %p not found\n", pt);
421 out:
422 	spin_unlock(&ptype_lock);
423 }
424 EXPORT_SYMBOL(__dev_remove_pack);
425 
426 /**
427  *	dev_remove_pack	 - remove packet handler
428  *	@pt: packet type declaration
429  *
430  *	Remove a protocol handler that was previously added to the kernel
431  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
432  *	from the kernel lists and can be freed or reused once this function
433  *	returns.
434  *
435  *	This call sleeps to guarantee that no CPU is looking at the packet
436  *	type after return.
437  */
438 void dev_remove_pack(struct packet_type *pt)
439 {
440 	__dev_remove_pack(pt);
441 
442 	synchronize_net();
443 }
444 EXPORT_SYMBOL(dev_remove_pack);
445 
446 
447 /**
448  *	dev_add_offload - register offload handlers
449  *	@po: protocol offload declaration
450  *
451  *	Add protocol offload handlers to the networking stack. The passed
452  *	&proto_offload is linked into kernel lists and may not be freed until
453  *	it has been removed from the kernel lists.
454  *
455  *	This call does not sleep therefore it can not
456  *	guarantee all CPU's that are in middle of receiving packets
457  *	will see the new offload handlers (until the next received packet).
458  */
459 void dev_add_offload(struct packet_offload *po)
460 {
461 	struct list_head *head = &offload_base;
462 
463 	spin_lock(&offload_lock);
464 	list_add_rcu(&po->list, head);
465 	spin_unlock(&offload_lock);
466 }
467 EXPORT_SYMBOL(dev_add_offload);
468 
469 /**
470  *	__dev_remove_offload	 - remove offload handler
471  *	@po: packet offload declaration
472  *
473  *	Remove a protocol offload handler that was previously added to the
474  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
475  *	is removed from the kernel lists and can be freed or reused once this
476  *	function returns.
477  *
478  *      The packet type might still be in use by receivers
479  *	and must not be freed until after all the CPU's have gone
480  *	through a quiescent state.
481  */
482 void __dev_remove_offload(struct packet_offload *po)
483 {
484 	struct list_head *head = &offload_base;
485 	struct packet_offload *po1;
486 
487 	spin_lock(&offload_lock);
488 
489 	list_for_each_entry(po1, head, list) {
490 		if (po == po1) {
491 			list_del_rcu(&po->list);
492 			goto out;
493 		}
494 	}
495 
496 	pr_warn("dev_remove_offload: %p not found\n", po);
497 out:
498 	spin_unlock(&offload_lock);
499 }
500 EXPORT_SYMBOL(__dev_remove_offload);
501 
502 /**
503  *	dev_remove_offload	 - remove packet offload handler
504  *	@po: packet offload declaration
505  *
506  *	Remove a packet offload handler that was previously added to the kernel
507  *	offload handlers by dev_add_offload(). The passed &offload_type is
508  *	removed from the kernel lists and can be freed or reused once this
509  *	function returns.
510  *
511  *	This call sleeps to guarantee that no CPU is looking at the packet
512  *	type after return.
513  */
514 void dev_remove_offload(struct packet_offload *po)
515 {
516 	__dev_remove_offload(po);
517 
518 	synchronize_net();
519 }
520 EXPORT_SYMBOL(dev_remove_offload);
521 
522 /******************************************************************************
523 
524 		      Device Boot-time Settings Routines
525 
526 *******************************************************************************/
527 
528 /* Boot time configuration table */
529 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
530 
531 /**
532  *	netdev_boot_setup_add	- add new setup entry
533  *	@name: name of the device
534  *	@map: configured settings for the device
535  *
536  *	Adds new setup entry to the dev_boot_setup list.  The function
537  *	returns 0 on error and 1 on success.  This is a generic routine to
538  *	all netdevices.
539  */
540 static int netdev_boot_setup_add(char *name, struct ifmap *map)
541 {
542 	struct netdev_boot_setup *s;
543 	int i;
544 
545 	s = dev_boot_setup;
546 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
547 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
548 			memset(s[i].name, 0, sizeof(s[i].name));
549 			strlcpy(s[i].name, name, IFNAMSIZ);
550 			memcpy(&s[i].map, map, sizeof(s[i].map));
551 			break;
552 		}
553 	}
554 
555 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
556 }
557 
558 /**
559  *	netdev_boot_setup_check	- check boot time settings
560  *	@dev: the netdevice
561  *
562  * 	Check boot time settings for the device.
563  *	The found settings are set for the device to be used
564  *	later in the device probing.
565  *	Returns 0 if no settings found, 1 if they are.
566  */
567 int netdev_boot_setup_check(struct net_device *dev)
568 {
569 	struct netdev_boot_setup *s = dev_boot_setup;
570 	int i;
571 
572 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
574 		    !strcmp(dev->name, s[i].name)) {
575 			dev->irq 	= s[i].map.irq;
576 			dev->base_addr 	= s[i].map.base_addr;
577 			dev->mem_start 	= s[i].map.mem_start;
578 			dev->mem_end 	= s[i].map.mem_end;
579 			return 1;
580 		}
581 	}
582 	return 0;
583 }
584 EXPORT_SYMBOL(netdev_boot_setup_check);
585 
586 
587 /**
588  *	netdev_boot_base	- get address from boot time settings
589  *	@prefix: prefix for network device
590  *	@unit: id for network device
591  *
592  * 	Check boot time settings for the base address of device.
593  *	The found settings are set for the device to be used
594  *	later in the device probing.
595  *	Returns 0 if no settings found.
596  */
597 unsigned long netdev_boot_base(const char *prefix, int unit)
598 {
599 	const struct netdev_boot_setup *s = dev_boot_setup;
600 	char name[IFNAMSIZ];
601 	int i;
602 
603 	sprintf(name, "%s%d", prefix, unit);
604 
605 	/*
606 	 * If device already registered then return base of 1
607 	 * to indicate not to probe for this interface
608 	 */
609 	if (__dev_get_by_name(&init_net, name))
610 		return 1;
611 
612 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
613 		if (!strcmp(name, s[i].name))
614 			return s[i].map.base_addr;
615 	return 0;
616 }
617 
618 /*
619  * Saves at boot time configured settings for any netdevice.
620  */
621 int __init netdev_boot_setup(char *str)
622 {
623 	int ints[5];
624 	struct ifmap map;
625 
626 	str = get_options(str, ARRAY_SIZE(ints), ints);
627 	if (!str || !*str)
628 		return 0;
629 
630 	/* Save settings */
631 	memset(&map, 0, sizeof(map));
632 	if (ints[0] > 0)
633 		map.irq = ints[1];
634 	if (ints[0] > 1)
635 		map.base_addr = ints[2];
636 	if (ints[0] > 2)
637 		map.mem_start = ints[3];
638 	if (ints[0] > 3)
639 		map.mem_end = ints[4];
640 
641 	/* Add new entry to the list */
642 	return netdev_boot_setup_add(str, &map);
643 }
644 
645 __setup("netdev=", netdev_boot_setup);
646 
647 /*******************************************************************************
648 
649 			    Device Interface Subroutines
650 
651 *******************************************************************************/
652 
653 /**
654  *	__dev_get_by_name	- find a device by its name
655  *	@net: the applicable net namespace
656  *	@name: name to find
657  *
658  *	Find an interface by name. Must be called under RTNL semaphore
659  *	or @dev_base_lock. If the name is found a pointer to the device
660  *	is returned. If the name is not found then %NULL is returned. The
661  *	reference counters are not incremented so the caller must be
662  *	careful with locks.
663  */
664 
665 struct net_device *__dev_get_by_name(struct net *net, const char *name)
666 {
667 	struct net_device *dev;
668 	struct hlist_head *head = dev_name_hash(net, name);
669 
670 	hlist_for_each_entry(dev, head, name_hlist)
671 		if (!strncmp(dev->name, name, IFNAMSIZ))
672 			return dev;
673 
674 	return NULL;
675 }
676 EXPORT_SYMBOL(__dev_get_by_name);
677 
678 /**
679  *	dev_get_by_name_rcu	- find a device by its name
680  *	@net: the applicable net namespace
681  *	@name: name to find
682  *
683  *	Find an interface by name.
684  *	If the name is found a pointer to the device is returned.
685  * 	If the name is not found then %NULL is returned.
686  *	The reference counters are not incremented so the caller must be
687  *	careful with locks. The caller must hold RCU lock.
688  */
689 
690 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
691 {
692 	struct net_device *dev;
693 	struct hlist_head *head = dev_name_hash(net, name);
694 
695 	hlist_for_each_entry_rcu(dev, head, name_hlist)
696 		if (!strncmp(dev->name, name, IFNAMSIZ))
697 			return dev;
698 
699 	return NULL;
700 }
701 EXPORT_SYMBOL(dev_get_by_name_rcu);
702 
703 /**
704  *	dev_get_by_name		- find a device by its name
705  *	@net: the applicable net namespace
706  *	@name: name to find
707  *
708  *	Find an interface by name. This can be called from any
709  *	context and does its own locking. The returned handle has
710  *	the usage count incremented and the caller must use dev_put() to
711  *	release it when it is no longer needed. %NULL is returned if no
712  *	matching device is found.
713  */
714 
715 struct net_device *dev_get_by_name(struct net *net, const char *name)
716 {
717 	struct net_device *dev;
718 
719 	rcu_read_lock();
720 	dev = dev_get_by_name_rcu(net, name);
721 	if (dev)
722 		dev_hold(dev);
723 	rcu_read_unlock();
724 	return dev;
725 }
726 EXPORT_SYMBOL(dev_get_by_name);
727 
728 /**
729  *	__dev_get_by_index - find a device by its ifindex
730  *	@net: the applicable net namespace
731  *	@ifindex: index of device
732  *
733  *	Search for an interface by index. Returns %NULL if the device
734  *	is not found or a pointer to the device. The device has not
735  *	had its reference counter increased so the caller must be careful
736  *	about locking. The caller must hold either the RTNL semaphore
737  *	or @dev_base_lock.
738  */
739 
740 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
741 {
742 	struct net_device *dev;
743 	struct hlist_head *head = dev_index_hash(net, ifindex);
744 
745 	hlist_for_each_entry(dev, head, index_hlist)
746 		if (dev->ifindex == ifindex)
747 			return dev;
748 
749 	return NULL;
750 }
751 EXPORT_SYMBOL(__dev_get_by_index);
752 
753 /**
754  *	dev_get_by_index_rcu - find a device by its ifindex
755  *	@net: the applicable net namespace
756  *	@ifindex: index of device
757  *
758  *	Search for an interface by index. Returns %NULL if the device
759  *	is not found or a pointer to the device. The device has not
760  *	had its reference counter increased so the caller must be careful
761  *	about locking. The caller must hold RCU lock.
762  */
763 
764 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
765 {
766 	struct net_device *dev;
767 	struct hlist_head *head = dev_index_hash(net, ifindex);
768 
769 	hlist_for_each_entry_rcu(dev, head, index_hlist)
770 		if (dev->ifindex == ifindex)
771 			return dev;
772 
773 	return NULL;
774 }
775 EXPORT_SYMBOL(dev_get_by_index_rcu);
776 
777 
778 /**
779  *	dev_get_by_index - find a device by its ifindex
780  *	@net: the applicable net namespace
781  *	@ifindex: index of device
782  *
783  *	Search for an interface by index. Returns NULL if the device
784  *	is not found or a pointer to the device. The device returned has
785  *	had a reference added and the pointer is safe until the user calls
786  *	dev_put to indicate they have finished with it.
787  */
788 
789 struct net_device *dev_get_by_index(struct net *net, int ifindex)
790 {
791 	struct net_device *dev;
792 
793 	rcu_read_lock();
794 	dev = dev_get_by_index_rcu(net, ifindex);
795 	if (dev)
796 		dev_hold(dev);
797 	rcu_read_unlock();
798 	return dev;
799 }
800 EXPORT_SYMBOL(dev_get_by_index);
801 
802 /**
803  *	netdev_get_name - get a netdevice name, knowing its ifindex.
804  *	@net: network namespace
805  *	@name: a pointer to the buffer where the name will be stored.
806  *	@ifindex: the ifindex of the interface to get the name from.
807  *
808  *	The use of raw_seqcount_begin() and cond_resched() before
809  *	retrying is required as we want to give the writers a chance
810  *	to complete when CONFIG_PREEMPT is not set.
811  */
812 int netdev_get_name(struct net *net, char *name, int ifindex)
813 {
814 	struct net_device *dev;
815 	unsigned int seq;
816 
817 retry:
818 	seq = raw_seqcount_begin(&devnet_rename_seq);
819 	rcu_read_lock();
820 	dev = dev_get_by_index_rcu(net, ifindex);
821 	if (!dev) {
822 		rcu_read_unlock();
823 		return -ENODEV;
824 	}
825 
826 	strcpy(name, dev->name);
827 	rcu_read_unlock();
828 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
829 		cond_resched();
830 		goto retry;
831 	}
832 
833 	return 0;
834 }
835 
836 /**
837  *	dev_getbyhwaddr_rcu - find a device by its hardware address
838  *	@net: the applicable net namespace
839  *	@type: media type of device
840  *	@ha: hardware address
841  *
842  *	Search for an interface by MAC address. Returns NULL if the device
843  *	is not found or a pointer to the device.
844  *	The caller must hold RCU or RTNL.
845  *	The returned device has not had its ref count increased
846  *	and the caller must therefore be careful about locking
847  *
848  */
849 
850 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
851 				       const char *ha)
852 {
853 	struct net_device *dev;
854 
855 	for_each_netdev_rcu(net, dev)
856 		if (dev->type == type &&
857 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
858 			return dev;
859 
860 	return NULL;
861 }
862 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
863 
864 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
865 {
866 	struct net_device *dev;
867 
868 	ASSERT_RTNL();
869 	for_each_netdev(net, dev)
870 		if (dev->type == type)
871 			return dev;
872 
873 	return NULL;
874 }
875 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
876 
877 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
878 {
879 	struct net_device *dev, *ret = NULL;
880 
881 	rcu_read_lock();
882 	for_each_netdev_rcu(net, dev)
883 		if (dev->type == type) {
884 			dev_hold(dev);
885 			ret = dev;
886 			break;
887 		}
888 	rcu_read_unlock();
889 	return ret;
890 }
891 EXPORT_SYMBOL(dev_getfirstbyhwtype);
892 
893 /**
894  *	dev_get_by_flags_rcu - find any device with given flags
895  *	@net: the applicable net namespace
896  *	@if_flags: IFF_* values
897  *	@mask: bitmask of bits in if_flags to check
898  *
899  *	Search for any interface with the given flags. Returns NULL if a device
900  *	is not found or a pointer to the device. Must be called inside
901  *	rcu_read_lock(), and result refcount is unchanged.
902  */
903 
904 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
905 				    unsigned short mask)
906 {
907 	struct net_device *dev, *ret;
908 
909 	ret = NULL;
910 	for_each_netdev_rcu(net, dev) {
911 		if (((dev->flags ^ if_flags) & mask) == 0) {
912 			ret = dev;
913 			break;
914 		}
915 	}
916 	return ret;
917 }
918 EXPORT_SYMBOL(dev_get_by_flags_rcu);
919 
920 /**
921  *	dev_valid_name - check if name is okay for network device
922  *	@name: name string
923  *
924  *	Network device names need to be valid file names to
925  *	to allow sysfs to work.  We also disallow any kind of
926  *	whitespace.
927  */
928 bool dev_valid_name(const char *name)
929 {
930 	if (*name == '\0')
931 		return false;
932 	if (strlen(name) >= IFNAMSIZ)
933 		return false;
934 	if (!strcmp(name, ".") || !strcmp(name, ".."))
935 		return false;
936 
937 	while (*name) {
938 		if (*name == '/' || isspace(*name))
939 			return false;
940 		name++;
941 	}
942 	return true;
943 }
944 EXPORT_SYMBOL(dev_valid_name);
945 
946 /**
947  *	__dev_alloc_name - allocate a name for a device
948  *	@net: network namespace to allocate the device name in
949  *	@name: name format string
950  *	@buf:  scratch buffer and result name string
951  *
952  *	Passed a format string - eg "lt%d" it will try and find a suitable
953  *	id. It scans list of devices to build up a free map, then chooses
954  *	the first empty slot. The caller must hold the dev_base or rtnl lock
955  *	while allocating the name and adding the device in order to avoid
956  *	duplicates.
957  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
958  *	Returns the number of the unit assigned or a negative errno code.
959  */
960 
961 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
962 {
963 	int i = 0;
964 	const char *p;
965 	const int max_netdevices = 8*PAGE_SIZE;
966 	unsigned long *inuse;
967 	struct net_device *d;
968 
969 	p = strnchr(name, IFNAMSIZ-1, '%');
970 	if (p) {
971 		/*
972 		 * Verify the string as this thing may have come from
973 		 * the user.  There must be either one "%d" and no other "%"
974 		 * characters.
975 		 */
976 		if (p[1] != 'd' || strchr(p + 2, '%'))
977 			return -EINVAL;
978 
979 		/* Use one page as a bit array of possible slots */
980 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
981 		if (!inuse)
982 			return -ENOMEM;
983 
984 		for_each_netdev(net, d) {
985 			if (!sscanf(d->name, name, &i))
986 				continue;
987 			if (i < 0 || i >= max_netdevices)
988 				continue;
989 
990 			/*  avoid cases where sscanf is not exact inverse of printf */
991 			snprintf(buf, IFNAMSIZ, name, i);
992 			if (!strncmp(buf, d->name, IFNAMSIZ))
993 				set_bit(i, inuse);
994 		}
995 
996 		i = find_first_zero_bit(inuse, max_netdevices);
997 		free_page((unsigned long) inuse);
998 	}
999 
1000 	if (buf != name)
1001 		snprintf(buf, IFNAMSIZ, name, i);
1002 	if (!__dev_get_by_name(net, buf))
1003 		return i;
1004 
1005 	/* It is possible to run out of possible slots
1006 	 * when the name is long and there isn't enough space left
1007 	 * for the digits, or if all bits are used.
1008 	 */
1009 	return -ENFILE;
1010 }
1011 
1012 /**
1013  *	dev_alloc_name - allocate a name for a device
1014  *	@dev: device
1015  *	@name: name format string
1016  *
1017  *	Passed a format string - eg "lt%d" it will try and find a suitable
1018  *	id. It scans list of devices to build up a free map, then chooses
1019  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1020  *	while allocating the name and adding the device in order to avoid
1021  *	duplicates.
1022  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023  *	Returns the number of the unit assigned or a negative errno code.
1024  */
1025 
1026 int dev_alloc_name(struct net_device *dev, const char *name)
1027 {
1028 	char buf[IFNAMSIZ];
1029 	struct net *net;
1030 	int ret;
1031 
1032 	BUG_ON(!dev_net(dev));
1033 	net = dev_net(dev);
1034 	ret = __dev_alloc_name(net, name, buf);
1035 	if (ret >= 0)
1036 		strlcpy(dev->name, buf, IFNAMSIZ);
1037 	return ret;
1038 }
1039 EXPORT_SYMBOL(dev_alloc_name);
1040 
1041 static int dev_alloc_name_ns(struct net *net,
1042 			     struct net_device *dev,
1043 			     const char *name)
1044 {
1045 	char buf[IFNAMSIZ];
1046 	int ret;
1047 
1048 	ret = __dev_alloc_name(net, name, buf);
1049 	if (ret >= 0)
1050 		strlcpy(dev->name, buf, IFNAMSIZ);
1051 	return ret;
1052 }
1053 
1054 static int dev_get_valid_name(struct net *net,
1055 			      struct net_device *dev,
1056 			      const char *name)
1057 {
1058 	BUG_ON(!net);
1059 
1060 	if (!dev_valid_name(name))
1061 		return -EINVAL;
1062 
1063 	if (strchr(name, '%'))
1064 		return dev_alloc_name_ns(net, dev, name);
1065 	else if (__dev_get_by_name(net, name))
1066 		return -EEXIST;
1067 	else if (dev->name != name)
1068 		strlcpy(dev->name, name, IFNAMSIZ);
1069 
1070 	return 0;
1071 }
1072 
1073 /**
1074  *	dev_change_name - change name of a device
1075  *	@dev: device
1076  *	@newname: name (or format string) must be at least IFNAMSIZ
1077  *
1078  *	Change name of a device, can pass format strings "eth%d".
1079  *	for wildcarding.
1080  */
1081 int dev_change_name(struct net_device *dev, const char *newname)
1082 {
1083 	char oldname[IFNAMSIZ];
1084 	int err = 0;
1085 	int ret;
1086 	struct net *net;
1087 
1088 	ASSERT_RTNL();
1089 	BUG_ON(!dev_net(dev));
1090 
1091 	net = dev_net(dev);
1092 	if (dev->flags & IFF_UP)
1093 		return -EBUSY;
1094 
1095 	write_seqcount_begin(&devnet_rename_seq);
1096 
1097 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1098 		write_seqcount_end(&devnet_rename_seq);
1099 		return 0;
1100 	}
1101 
1102 	memcpy(oldname, dev->name, IFNAMSIZ);
1103 
1104 	err = dev_get_valid_name(net, dev, newname);
1105 	if (err < 0) {
1106 		write_seqcount_end(&devnet_rename_seq);
1107 		return err;
1108 	}
1109 
1110 rollback:
1111 	ret = device_rename(&dev->dev, dev->name);
1112 	if (ret) {
1113 		memcpy(dev->name, oldname, IFNAMSIZ);
1114 		write_seqcount_end(&devnet_rename_seq);
1115 		return ret;
1116 	}
1117 
1118 	write_seqcount_end(&devnet_rename_seq);
1119 
1120 	write_lock_bh(&dev_base_lock);
1121 	hlist_del_rcu(&dev->name_hlist);
1122 	write_unlock_bh(&dev_base_lock);
1123 
1124 	synchronize_rcu();
1125 
1126 	write_lock_bh(&dev_base_lock);
1127 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1128 	write_unlock_bh(&dev_base_lock);
1129 
1130 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1131 	ret = notifier_to_errno(ret);
1132 
1133 	if (ret) {
1134 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1135 		if (err >= 0) {
1136 			err = ret;
1137 			write_seqcount_begin(&devnet_rename_seq);
1138 			memcpy(dev->name, oldname, IFNAMSIZ);
1139 			goto rollback;
1140 		} else {
1141 			pr_err("%s: name change rollback failed: %d\n",
1142 			       dev->name, ret);
1143 		}
1144 	}
1145 
1146 	return err;
1147 }
1148 
1149 /**
1150  *	dev_set_alias - change ifalias of a device
1151  *	@dev: device
1152  *	@alias: name up to IFALIASZ
1153  *	@len: limit of bytes to copy from info
1154  *
1155  *	Set ifalias for a device,
1156  */
1157 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1158 {
1159 	char *new_ifalias;
1160 
1161 	ASSERT_RTNL();
1162 
1163 	if (len >= IFALIASZ)
1164 		return -EINVAL;
1165 
1166 	if (!len) {
1167 		kfree(dev->ifalias);
1168 		dev->ifalias = NULL;
1169 		return 0;
1170 	}
1171 
1172 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1173 	if (!new_ifalias)
1174 		return -ENOMEM;
1175 	dev->ifalias = new_ifalias;
1176 
1177 	strlcpy(dev->ifalias, alias, len+1);
1178 	return len;
1179 }
1180 
1181 
1182 /**
1183  *	netdev_features_change - device changes features
1184  *	@dev: device to cause notification
1185  *
1186  *	Called to indicate a device has changed features.
1187  */
1188 void netdev_features_change(struct net_device *dev)
1189 {
1190 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1191 }
1192 EXPORT_SYMBOL(netdev_features_change);
1193 
1194 /**
1195  *	netdev_state_change - device changes state
1196  *	@dev: device to cause notification
1197  *
1198  *	Called to indicate a device has changed state. This function calls
1199  *	the notifier chains for netdev_chain and sends a NEWLINK message
1200  *	to the routing socket.
1201  */
1202 void netdev_state_change(struct net_device *dev)
1203 {
1204 	if (dev->flags & IFF_UP) {
1205 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1206 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1207 	}
1208 }
1209 EXPORT_SYMBOL(netdev_state_change);
1210 
1211 /**
1212  * 	netdev_notify_peers - notify network peers about existence of @dev
1213  * 	@dev: network device
1214  *
1215  * Generate traffic such that interested network peers are aware of
1216  * @dev, such as by generating a gratuitous ARP. This may be used when
1217  * a device wants to inform the rest of the network about some sort of
1218  * reconfiguration such as a failover event or virtual machine
1219  * migration.
1220  */
1221 void netdev_notify_peers(struct net_device *dev)
1222 {
1223 	rtnl_lock();
1224 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1225 	rtnl_unlock();
1226 }
1227 EXPORT_SYMBOL(netdev_notify_peers);
1228 
1229 static int __dev_open(struct net_device *dev)
1230 {
1231 	const struct net_device_ops *ops = dev->netdev_ops;
1232 	int ret;
1233 
1234 	ASSERT_RTNL();
1235 
1236 	if (!netif_device_present(dev))
1237 		return -ENODEV;
1238 
1239 	/* Block netpoll from trying to do any rx path servicing.
1240 	 * If we don't do this there is a chance ndo_poll_controller
1241 	 * or ndo_poll may be running while we open the device
1242 	 */
1243 	netpoll_rx_disable(dev);
1244 
1245 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1246 	ret = notifier_to_errno(ret);
1247 	if (ret)
1248 		return ret;
1249 
1250 	set_bit(__LINK_STATE_START, &dev->state);
1251 
1252 	if (ops->ndo_validate_addr)
1253 		ret = ops->ndo_validate_addr(dev);
1254 
1255 	if (!ret && ops->ndo_open)
1256 		ret = ops->ndo_open(dev);
1257 
1258 	netpoll_rx_enable(dev);
1259 
1260 	if (ret)
1261 		clear_bit(__LINK_STATE_START, &dev->state);
1262 	else {
1263 		dev->flags |= IFF_UP;
1264 		net_dmaengine_get();
1265 		dev_set_rx_mode(dev);
1266 		dev_activate(dev);
1267 		add_device_randomness(dev->dev_addr, dev->addr_len);
1268 	}
1269 
1270 	return ret;
1271 }
1272 
1273 /**
1274  *	dev_open	- prepare an interface for use.
1275  *	@dev:	device to open
1276  *
1277  *	Takes a device from down to up state. The device's private open
1278  *	function is invoked and then the multicast lists are loaded. Finally
1279  *	the device is moved into the up state and a %NETDEV_UP message is
1280  *	sent to the netdev notifier chain.
1281  *
1282  *	Calling this function on an active interface is a nop. On a failure
1283  *	a negative errno code is returned.
1284  */
1285 int dev_open(struct net_device *dev)
1286 {
1287 	int ret;
1288 
1289 	if (dev->flags & IFF_UP)
1290 		return 0;
1291 
1292 	ret = __dev_open(dev);
1293 	if (ret < 0)
1294 		return ret;
1295 
1296 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1297 	call_netdevice_notifiers(NETDEV_UP, dev);
1298 
1299 	return ret;
1300 }
1301 EXPORT_SYMBOL(dev_open);
1302 
1303 static int __dev_close_many(struct list_head *head)
1304 {
1305 	struct net_device *dev;
1306 
1307 	ASSERT_RTNL();
1308 	might_sleep();
1309 
1310 	list_for_each_entry(dev, head, unreg_list) {
1311 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1312 
1313 		clear_bit(__LINK_STATE_START, &dev->state);
1314 
1315 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1316 		 * can be even on different cpu. So just clear netif_running().
1317 		 *
1318 		 * dev->stop() will invoke napi_disable() on all of it's
1319 		 * napi_struct instances on this device.
1320 		 */
1321 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1322 	}
1323 
1324 	dev_deactivate_many(head);
1325 
1326 	list_for_each_entry(dev, head, unreg_list) {
1327 		const struct net_device_ops *ops = dev->netdev_ops;
1328 
1329 		/*
1330 		 *	Call the device specific close. This cannot fail.
1331 		 *	Only if device is UP
1332 		 *
1333 		 *	We allow it to be called even after a DETACH hot-plug
1334 		 *	event.
1335 		 */
1336 		if (ops->ndo_stop)
1337 			ops->ndo_stop(dev);
1338 
1339 		dev->flags &= ~IFF_UP;
1340 		net_dmaengine_put();
1341 	}
1342 
1343 	return 0;
1344 }
1345 
1346 static int __dev_close(struct net_device *dev)
1347 {
1348 	int retval;
1349 	LIST_HEAD(single);
1350 
1351 	/* Temporarily disable netpoll until the interface is down */
1352 	netpoll_rx_disable(dev);
1353 
1354 	list_add(&dev->unreg_list, &single);
1355 	retval = __dev_close_many(&single);
1356 	list_del(&single);
1357 
1358 	netpoll_rx_enable(dev);
1359 	return retval;
1360 }
1361 
1362 static int dev_close_many(struct list_head *head)
1363 {
1364 	struct net_device *dev, *tmp;
1365 	LIST_HEAD(tmp_list);
1366 
1367 	list_for_each_entry_safe(dev, tmp, head, unreg_list)
1368 		if (!(dev->flags & IFF_UP))
1369 			list_move(&dev->unreg_list, &tmp_list);
1370 
1371 	__dev_close_many(head);
1372 
1373 	list_for_each_entry(dev, head, unreg_list) {
1374 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1375 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1376 	}
1377 
1378 	/* rollback_registered_many needs the complete original list */
1379 	list_splice(&tmp_list, head);
1380 	return 0;
1381 }
1382 
1383 /**
1384  *	dev_close - shutdown an interface.
1385  *	@dev: device to shutdown
1386  *
1387  *	This function moves an active device into down state. A
1388  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1389  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1390  *	chain.
1391  */
1392 int dev_close(struct net_device *dev)
1393 {
1394 	if (dev->flags & IFF_UP) {
1395 		LIST_HEAD(single);
1396 
1397 		/* Block netpoll rx while the interface is going down */
1398 		netpoll_rx_disable(dev);
1399 
1400 		list_add(&dev->unreg_list, &single);
1401 		dev_close_many(&single);
1402 		list_del(&single);
1403 
1404 		netpoll_rx_enable(dev);
1405 	}
1406 	return 0;
1407 }
1408 EXPORT_SYMBOL(dev_close);
1409 
1410 
1411 /**
1412  *	dev_disable_lro - disable Large Receive Offload on a device
1413  *	@dev: device
1414  *
1415  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1416  *	called under RTNL.  This is needed if received packets may be
1417  *	forwarded to another interface.
1418  */
1419 void dev_disable_lro(struct net_device *dev)
1420 {
1421 	/*
1422 	 * If we're trying to disable lro on a vlan device
1423 	 * use the underlying physical device instead
1424 	 */
1425 	if (is_vlan_dev(dev))
1426 		dev = vlan_dev_real_dev(dev);
1427 
1428 	dev->wanted_features &= ~NETIF_F_LRO;
1429 	netdev_update_features(dev);
1430 
1431 	if (unlikely(dev->features & NETIF_F_LRO))
1432 		netdev_WARN(dev, "failed to disable LRO!\n");
1433 }
1434 EXPORT_SYMBOL(dev_disable_lro);
1435 
1436 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1437 				   struct net_device *dev)
1438 {
1439 	struct netdev_notifier_info info;
1440 
1441 	netdev_notifier_info_init(&info, dev);
1442 	return nb->notifier_call(nb, val, &info);
1443 }
1444 
1445 static int dev_boot_phase = 1;
1446 
1447 /**
1448  *	register_netdevice_notifier - register a network notifier block
1449  *	@nb: notifier
1450  *
1451  *	Register a notifier to be called when network device events occur.
1452  *	The notifier passed is linked into the kernel structures and must
1453  *	not be reused until it has been unregistered. A negative errno code
1454  *	is returned on a failure.
1455  *
1456  * 	When registered all registration and up events are replayed
1457  *	to the new notifier to allow device to have a race free
1458  *	view of the network device list.
1459  */
1460 
1461 int register_netdevice_notifier(struct notifier_block *nb)
1462 {
1463 	struct net_device *dev;
1464 	struct net_device *last;
1465 	struct net *net;
1466 	int err;
1467 
1468 	rtnl_lock();
1469 	err = raw_notifier_chain_register(&netdev_chain, nb);
1470 	if (err)
1471 		goto unlock;
1472 	if (dev_boot_phase)
1473 		goto unlock;
1474 	for_each_net(net) {
1475 		for_each_netdev(net, dev) {
1476 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1477 			err = notifier_to_errno(err);
1478 			if (err)
1479 				goto rollback;
1480 
1481 			if (!(dev->flags & IFF_UP))
1482 				continue;
1483 
1484 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1485 		}
1486 	}
1487 
1488 unlock:
1489 	rtnl_unlock();
1490 	return err;
1491 
1492 rollback:
1493 	last = dev;
1494 	for_each_net(net) {
1495 		for_each_netdev(net, dev) {
1496 			if (dev == last)
1497 				goto outroll;
1498 
1499 			if (dev->flags & IFF_UP) {
1500 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1501 							dev);
1502 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1503 			}
1504 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1505 		}
1506 	}
1507 
1508 outroll:
1509 	raw_notifier_chain_unregister(&netdev_chain, nb);
1510 	goto unlock;
1511 }
1512 EXPORT_SYMBOL(register_netdevice_notifier);
1513 
1514 /**
1515  *	unregister_netdevice_notifier - unregister a network notifier block
1516  *	@nb: notifier
1517  *
1518  *	Unregister a notifier previously registered by
1519  *	register_netdevice_notifier(). The notifier is unlinked into the
1520  *	kernel structures and may then be reused. A negative errno code
1521  *	is returned on a failure.
1522  *
1523  * 	After unregistering unregister and down device events are synthesized
1524  *	for all devices on the device list to the removed notifier to remove
1525  *	the need for special case cleanup code.
1526  */
1527 
1528 int unregister_netdevice_notifier(struct notifier_block *nb)
1529 {
1530 	struct net_device *dev;
1531 	struct net *net;
1532 	int err;
1533 
1534 	rtnl_lock();
1535 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1536 	if (err)
1537 		goto unlock;
1538 
1539 	for_each_net(net) {
1540 		for_each_netdev(net, dev) {
1541 			if (dev->flags & IFF_UP) {
1542 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1543 							dev);
1544 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1545 			}
1546 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1547 		}
1548 	}
1549 unlock:
1550 	rtnl_unlock();
1551 	return err;
1552 }
1553 EXPORT_SYMBOL(unregister_netdevice_notifier);
1554 
1555 /**
1556  *	call_netdevice_notifiers_info - call all network notifier blocks
1557  *	@val: value passed unmodified to notifier function
1558  *	@dev: net_device pointer passed unmodified to notifier function
1559  *	@info: notifier information data
1560  *
1561  *	Call all network notifier blocks.  Parameters and return value
1562  *	are as for raw_notifier_call_chain().
1563  */
1564 
1565 int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev,
1566 				  struct netdev_notifier_info *info)
1567 {
1568 	ASSERT_RTNL();
1569 	netdev_notifier_info_init(info, dev);
1570 	return raw_notifier_call_chain(&netdev_chain, val, info);
1571 }
1572 EXPORT_SYMBOL(call_netdevice_notifiers_info);
1573 
1574 /**
1575  *	call_netdevice_notifiers - call all network notifier blocks
1576  *      @val: value passed unmodified to notifier function
1577  *      @dev: net_device pointer passed unmodified to notifier function
1578  *
1579  *	Call all network notifier blocks.  Parameters and return value
1580  *	are as for raw_notifier_call_chain().
1581  */
1582 
1583 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1584 {
1585 	struct netdev_notifier_info info;
1586 
1587 	return call_netdevice_notifiers_info(val, dev, &info);
1588 }
1589 EXPORT_SYMBOL(call_netdevice_notifiers);
1590 
1591 static struct static_key netstamp_needed __read_mostly;
1592 #ifdef HAVE_JUMP_LABEL
1593 /* We are not allowed to call static_key_slow_dec() from irq context
1594  * If net_disable_timestamp() is called from irq context, defer the
1595  * static_key_slow_dec() calls.
1596  */
1597 static atomic_t netstamp_needed_deferred;
1598 #endif
1599 
1600 void net_enable_timestamp(void)
1601 {
1602 #ifdef HAVE_JUMP_LABEL
1603 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1604 
1605 	if (deferred) {
1606 		while (--deferred)
1607 			static_key_slow_dec(&netstamp_needed);
1608 		return;
1609 	}
1610 #endif
1611 	static_key_slow_inc(&netstamp_needed);
1612 }
1613 EXPORT_SYMBOL(net_enable_timestamp);
1614 
1615 void net_disable_timestamp(void)
1616 {
1617 #ifdef HAVE_JUMP_LABEL
1618 	if (in_interrupt()) {
1619 		atomic_inc(&netstamp_needed_deferred);
1620 		return;
1621 	}
1622 #endif
1623 	static_key_slow_dec(&netstamp_needed);
1624 }
1625 EXPORT_SYMBOL(net_disable_timestamp);
1626 
1627 static inline void net_timestamp_set(struct sk_buff *skb)
1628 {
1629 	skb->tstamp.tv64 = 0;
1630 	if (static_key_false(&netstamp_needed))
1631 		__net_timestamp(skb);
1632 }
1633 
1634 #define net_timestamp_check(COND, SKB)			\
1635 	if (static_key_false(&netstamp_needed)) {		\
1636 		if ((COND) && !(SKB)->tstamp.tv64)	\
1637 			__net_timestamp(SKB);		\
1638 	}						\
1639 
1640 static inline bool is_skb_forwardable(struct net_device *dev,
1641 				      struct sk_buff *skb)
1642 {
1643 	unsigned int len;
1644 
1645 	if (!(dev->flags & IFF_UP))
1646 		return false;
1647 
1648 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1649 	if (skb->len <= len)
1650 		return true;
1651 
1652 	/* if TSO is enabled, we don't care about the length as the packet
1653 	 * could be forwarded without being segmented before
1654 	 */
1655 	if (skb_is_gso(skb))
1656 		return true;
1657 
1658 	return false;
1659 }
1660 
1661 /**
1662  * dev_forward_skb - loopback an skb to another netif
1663  *
1664  * @dev: destination network device
1665  * @skb: buffer to forward
1666  *
1667  * return values:
1668  *	NET_RX_SUCCESS	(no congestion)
1669  *	NET_RX_DROP     (packet was dropped, but freed)
1670  *
1671  * dev_forward_skb can be used for injecting an skb from the
1672  * start_xmit function of one device into the receive queue
1673  * of another device.
1674  *
1675  * The receiving device may be in another namespace, so
1676  * we have to clear all information in the skb that could
1677  * impact namespace isolation.
1678  */
1679 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1680 {
1681 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1682 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1683 			atomic_long_inc(&dev->rx_dropped);
1684 			kfree_skb(skb);
1685 			return NET_RX_DROP;
1686 		}
1687 	}
1688 
1689 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1690 		atomic_long_inc(&dev->rx_dropped);
1691 		kfree_skb(skb);
1692 		return NET_RX_DROP;
1693 	}
1694 	skb->protocol = eth_type_trans(skb, dev);
1695 
1696 	/* eth_type_trans() can set pkt_type.
1697 	 * call skb_scrub_packet() after it to clear pkt_type _after_ calling
1698 	 * eth_type_trans().
1699 	 */
1700 	skb_scrub_packet(skb, true);
1701 
1702 	return netif_rx(skb);
1703 }
1704 EXPORT_SYMBOL_GPL(dev_forward_skb);
1705 
1706 static inline int deliver_skb(struct sk_buff *skb,
1707 			      struct packet_type *pt_prev,
1708 			      struct net_device *orig_dev)
1709 {
1710 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1711 		return -ENOMEM;
1712 	atomic_inc(&skb->users);
1713 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1714 }
1715 
1716 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1717 {
1718 	if (!ptype->af_packet_priv || !skb->sk)
1719 		return false;
1720 
1721 	if (ptype->id_match)
1722 		return ptype->id_match(ptype, skb->sk);
1723 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1724 		return true;
1725 
1726 	return false;
1727 }
1728 
1729 /*
1730  *	Support routine. Sends outgoing frames to any network
1731  *	taps currently in use.
1732  */
1733 
1734 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1735 {
1736 	struct packet_type *ptype;
1737 	struct sk_buff *skb2 = NULL;
1738 	struct packet_type *pt_prev = NULL;
1739 
1740 	rcu_read_lock();
1741 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1742 		/* Never send packets back to the socket
1743 		 * they originated from - MvS (miquels@drinkel.ow.org)
1744 		 */
1745 		if ((ptype->dev == dev || !ptype->dev) &&
1746 		    (!skb_loop_sk(ptype, skb))) {
1747 			if (pt_prev) {
1748 				deliver_skb(skb2, pt_prev, skb->dev);
1749 				pt_prev = ptype;
1750 				continue;
1751 			}
1752 
1753 			skb2 = skb_clone(skb, GFP_ATOMIC);
1754 			if (!skb2)
1755 				break;
1756 
1757 			net_timestamp_set(skb2);
1758 
1759 			/* skb->nh should be correctly
1760 			   set by sender, so that the second statement is
1761 			   just protection against buggy protocols.
1762 			 */
1763 			skb_reset_mac_header(skb2);
1764 
1765 			if (skb_network_header(skb2) < skb2->data ||
1766 			    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1767 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1768 						     ntohs(skb2->protocol),
1769 						     dev->name);
1770 				skb_reset_network_header(skb2);
1771 			}
1772 
1773 			skb2->transport_header = skb2->network_header;
1774 			skb2->pkt_type = PACKET_OUTGOING;
1775 			pt_prev = ptype;
1776 		}
1777 	}
1778 	if (pt_prev)
1779 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1780 	rcu_read_unlock();
1781 }
1782 
1783 /**
1784  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1785  * @dev: Network device
1786  * @txq: number of queues available
1787  *
1788  * If real_num_tx_queues is changed the tc mappings may no longer be
1789  * valid. To resolve this verify the tc mapping remains valid and if
1790  * not NULL the mapping. With no priorities mapping to this
1791  * offset/count pair it will no longer be used. In the worst case TC0
1792  * is invalid nothing can be done so disable priority mappings. If is
1793  * expected that drivers will fix this mapping if they can before
1794  * calling netif_set_real_num_tx_queues.
1795  */
1796 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1797 {
1798 	int i;
1799 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1800 
1801 	/* If TC0 is invalidated disable TC mapping */
1802 	if (tc->offset + tc->count > txq) {
1803 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1804 		dev->num_tc = 0;
1805 		return;
1806 	}
1807 
1808 	/* Invalidated prio to tc mappings set to TC0 */
1809 	for (i = 1; i < TC_BITMASK + 1; i++) {
1810 		int q = netdev_get_prio_tc_map(dev, i);
1811 
1812 		tc = &dev->tc_to_txq[q];
1813 		if (tc->offset + tc->count > txq) {
1814 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1815 				i, q);
1816 			netdev_set_prio_tc_map(dev, i, 0);
1817 		}
1818 	}
1819 }
1820 
1821 #ifdef CONFIG_XPS
1822 static DEFINE_MUTEX(xps_map_mutex);
1823 #define xmap_dereference(P)		\
1824 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1825 
1826 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1827 					int cpu, u16 index)
1828 {
1829 	struct xps_map *map = NULL;
1830 	int pos;
1831 
1832 	if (dev_maps)
1833 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1834 
1835 	for (pos = 0; map && pos < map->len; pos++) {
1836 		if (map->queues[pos] == index) {
1837 			if (map->len > 1) {
1838 				map->queues[pos] = map->queues[--map->len];
1839 			} else {
1840 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1841 				kfree_rcu(map, rcu);
1842 				map = NULL;
1843 			}
1844 			break;
1845 		}
1846 	}
1847 
1848 	return map;
1849 }
1850 
1851 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1852 {
1853 	struct xps_dev_maps *dev_maps;
1854 	int cpu, i;
1855 	bool active = false;
1856 
1857 	mutex_lock(&xps_map_mutex);
1858 	dev_maps = xmap_dereference(dev->xps_maps);
1859 
1860 	if (!dev_maps)
1861 		goto out_no_maps;
1862 
1863 	for_each_possible_cpu(cpu) {
1864 		for (i = index; i < dev->num_tx_queues; i++) {
1865 			if (!remove_xps_queue(dev_maps, cpu, i))
1866 				break;
1867 		}
1868 		if (i == dev->num_tx_queues)
1869 			active = true;
1870 	}
1871 
1872 	if (!active) {
1873 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1874 		kfree_rcu(dev_maps, rcu);
1875 	}
1876 
1877 	for (i = index; i < dev->num_tx_queues; i++)
1878 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1879 					     NUMA_NO_NODE);
1880 
1881 out_no_maps:
1882 	mutex_unlock(&xps_map_mutex);
1883 }
1884 
1885 static struct xps_map *expand_xps_map(struct xps_map *map,
1886 				      int cpu, u16 index)
1887 {
1888 	struct xps_map *new_map;
1889 	int alloc_len = XPS_MIN_MAP_ALLOC;
1890 	int i, pos;
1891 
1892 	for (pos = 0; map && pos < map->len; pos++) {
1893 		if (map->queues[pos] != index)
1894 			continue;
1895 		return map;
1896 	}
1897 
1898 	/* Need to add queue to this CPU's existing map */
1899 	if (map) {
1900 		if (pos < map->alloc_len)
1901 			return map;
1902 
1903 		alloc_len = map->alloc_len * 2;
1904 	}
1905 
1906 	/* Need to allocate new map to store queue on this CPU's map */
1907 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1908 			       cpu_to_node(cpu));
1909 	if (!new_map)
1910 		return NULL;
1911 
1912 	for (i = 0; i < pos; i++)
1913 		new_map->queues[i] = map->queues[i];
1914 	new_map->alloc_len = alloc_len;
1915 	new_map->len = pos;
1916 
1917 	return new_map;
1918 }
1919 
1920 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1921 			u16 index)
1922 {
1923 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1924 	struct xps_map *map, *new_map;
1925 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1926 	int cpu, numa_node_id = -2;
1927 	bool active = false;
1928 
1929 	mutex_lock(&xps_map_mutex);
1930 
1931 	dev_maps = xmap_dereference(dev->xps_maps);
1932 
1933 	/* allocate memory for queue storage */
1934 	for_each_online_cpu(cpu) {
1935 		if (!cpumask_test_cpu(cpu, mask))
1936 			continue;
1937 
1938 		if (!new_dev_maps)
1939 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1940 		if (!new_dev_maps) {
1941 			mutex_unlock(&xps_map_mutex);
1942 			return -ENOMEM;
1943 		}
1944 
1945 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1946 				 NULL;
1947 
1948 		map = expand_xps_map(map, cpu, index);
1949 		if (!map)
1950 			goto error;
1951 
1952 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1953 	}
1954 
1955 	if (!new_dev_maps)
1956 		goto out_no_new_maps;
1957 
1958 	for_each_possible_cpu(cpu) {
1959 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1960 			/* add queue to CPU maps */
1961 			int pos = 0;
1962 
1963 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1964 			while ((pos < map->len) && (map->queues[pos] != index))
1965 				pos++;
1966 
1967 			if (pos == map->len)
1968 				map->queues[map->len++] = index;
1969 #ifdef CONFIG_NUMA
1970 			if (numa_node_id == -2)
1971 				numa_node_id = cpu_to_node(cpu);
1972 			else if (numa_node_id != cpu_to_node(cpu))
1973 				numa_node_id = -1;
1974 #endif
1975 		} else if (dev_maps) {
1976 			/* fill in the new device map from the old device map */
1977 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1978 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1979 		}
1980 
1981 	}
1982 
1983 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1984 
1985 	/* Cleanup old maps */
1986 	if (dev_maps) {
1987 		for_each_possible_cpu(cpu) {
1988 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1989 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1990 			if (map && map != new_map)
1991 				kfree_rcu(map, rcu);
1992 		}
1993 
1994 		kfree_rcu(dev_maps, rcu);
1995 	}
1996 
1997 	dev_maps = new_dev_maps;
1998 	active = true;
1999 
2000 out_no_new_maps:
2001 	/* update Tx queue numa node */
2002 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2003 				     (numa_node_id >= 0) ? numa_node_id :
2004 				     NUMA_NO_NODE);
2005 
2006 	if (!dev_maps)
2007 		goto out_no_maps;
2008 
2009 	/* removes queue from unused CPUs */
2010 	for_each_possible_cpu(cpu) {
2011 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2012 			continue;
2013 
2014 		if (remove_xps_queue(dev_maps, cpu, index))
2015 			active = true;
2016 	}
2017 
2018 	/* free map if not active */
2019 	if (!active) {
2020 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2021 		kfree_rcu(dev_maps, rcu);
2022 	}
2023 
2024 out_no_maps:
2025 	mutex_unlock(&xps_map_mutex);
2026 
2027 	return 0;
2028 error:
2029 	/* remove any maps that we added */
2030 	for_each_possible_cpu(cpu) {
2031 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2032 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2033 				 NULL;
2034 		if (new_map && new_map != map)
2035 			kfree(new_map);
2036 	}
2037 
2038 	mutex_unlock(&xps_map_mutex);
2039 
2040 	kfree(new_dev_maps);
2041 	return -ENOMEM;
2042 }
2043 EXPORT_SYMBOL(netif_set_xps_queue);
2044 
2045 #endif
2046 /*
2047  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2048  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2049  */
2050 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2051 {
2052 	int rc;
2053 
2054 	if (txq < 1 || txq > dev->num_tx_queues)
2055 		return -EINVAL;
2056 
2057 	if (dev->reg_state == NETREG_REGISTERED ||
2058 	    dev->reg_state == NETREG_UNREGISTERING) {
2059 		ASSERT_RTNL();
2060 
2061 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2062 						  txq);
2063 		if (rc)
2064 			return rc;
2065 
2066 		if (dev->num_tc)
2067 			netif_setup_tc(dev, txq);
2068 
2069 		if (txq < dev->real_num_tx_queues) {
2070 			qdisc_reset_all_tx_gt(dev, txq);
2071 #ifdef CONFIG_XPS
2072 			netif_reset_xps_queues_gt(dev, txq);
2073 #endif
2074 		}
2075 	}
2076 
2077 	dev->real_num_tx_queues = txq;
2078 	return 0;
2079 }
2080 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2081 
2082 #ifdef CONFIG_RPS
2083 /**
2084  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2085  *	@dev: Network device
2086  *	@rxq: Actual number of RX queues
2087  *
2088  *	This must be called either with the rtnl_lock held or before
2089  *	registration of the net device.  Returns 0 on success, or a
2090  *	negative error code.  If called before registration, it always
2091  *	succeeds.
2092  */
2093 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2094 {
2095 	int rc;
2096 
2097 	if (rxq < 1 || rxq > dev->num_rx_queues)
2098 		return -EINVAL;
2099 
2100 	if (dev->reg_state == NETREG_REGISTERED) {
2101 		ASSERT_RTNL();
2102 
2103 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2104 						  rxq);
2105 		if (rc)
2106 			return rc;
2107 	}
2108 
2109 	dev->real_num_rx_queues = rxq;
2110 	return 0;
2111 }
2112 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2113 #endif
2114 
2115 /**
2116  * netif_get_num_default_rss_queues - default number of RSS queues
2117  *
2118  * This routine should set an upper limit on the number of RSS queues
2119  * used by default by multiqueue devices.
2120  */
2121 int netif_get_num_default_rss_queues(void)
2122 {
2123 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2124 }
2125 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2126 
2127 static inline void __netif_reschedule(struct Qdisc *q)
2128 {
2129 	struct softnet_data *sd;
2130 	unsigned long flags;
2131 
2132 	local_irq_save(flags);
2133 	sd = &__get_cpu_var(softnet_data);
2134 	q->next_sched = NULL;
2135 	*sd->output_queue_tailp = q;
2136 	sd->output_queue_tailp = &q->next_sched;
2137 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2138 	local_irq_restore(flags);
2139 }
2140 
2141 void __netif_schedule(struct Qdisc *q)
2142 {
2143 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2144 		__netif_reschedule(q);
2145 }
2146 EXPORT_SYMBOL(__netif_schedule);
2147 
2148 void dev_kfree_skb_irq(struct sk_buff *skb)
2149 {
2150 	if (atomic_dec_and_test(&skb->users)) {
2151 		struct softnet_data *sd;
2152 		unsigned long flags;
2153 
2154 		local_irq_save(flags);
2155 		sd = &__get_cpu_var(softnet_data);
2156 		skb->next = sd->completion_queue;
2157 		sd->completion_queue = skb;
2158 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
2159 		local_irq_restore(flags);
2160 	}
2161 }
2162 EXPORT_SYMBOL(dev_kfree_skb_irq);
2163 
2164 void dev_kfree_skb_any(struct sk_buff *skb)
2165 {
2166 	if (in_irq() || irqs_disabled())
2167 		dev_kfree_skb_irq(skb);
2168 	else
2169 		dev_kfree_skb(skb);
2170 }
2171 EXPORT_SYMBOL(dev_kfree_skb_any);
2172 
2173 
2174 /**
2175  * netif_device_detach - mark device as removed
2176  * @dev: network device
2177  *
2178  * Mark device as removed from system and therefore no longer available.
2179  */
2180 void netif_device_detach(struct net_device *dev)
2181 {
2182 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2183 	    netif_running(dev)) {
2184 		netif_tx_stop_all_queues(dev);
2185 	}
2186 }
2187 EXPORT_SYMBOL(netif_device_detach);
2188 
2189 /**
2190  * netif_device_attach - mark device as attached
2191  * @dev: network device
2192  *
2193  * Mark device as attached from system and restart if needed.
2194  */
2195 void netif_device_attach(struct net_device *dev)
2196 {
2197 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2198 	    netif_running(dev)) {
2199 		netif_tx_wake_all_queues(dev);
2200 		__netdev_watchdog_up(dev);
2201 	}
2202 }
2203 EXPORT_SYMBOL(netif_device_attach);
2204 
2205 static void skb_warn_bad_offload(const struct sk_buff *skb)
2206 {
2207 	static const netdev_features_t null_features = 0;
2208 	struct net_device *dev = skb->dev;
2209 	const char *driver = "";
2210 
2211 	if (!net_ratelimit())
2212 		return;
2213 
2214 	if (dev && dev->dev.parent)
2215 		driver = dev_driver_string(dev->dev.parent);
2216 
2217 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2218 	     "gso_type=%d ip_summed=%d\n",
2219 	     driver, dev ? &dev->features : &null_features,
2220 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2221 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2222 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2223 }
2224 
2225 /*
2226  * Invalidate hardware checksum when packet is to be mangled, and
2227  * complete checksum manually on outgoing path.
2228  */
2229 int skb_checksum_help(struct sk_buff *skb)
2230 {
2231 	__wsum csum;
2232 	int ret = 0, offset;
2233 
2234 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2235 		goto out_set_summed;
2236 
2237 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2238 		skb_warn_bad_offload(skb);
2239 		return -EINVAL;
2240 	}
2241 
2242 	/* Before computing a checksum, we should make sure no frag could
2243 	 * be modified by an external entity : checksum could be wrong.
2244 	 */
2245 	if (skb_has_shared_frag(skb)) {
2246 		ret = __skb_linearize(skb);
2247 		if (ret)
2248 			goto out;
2249 	}
2250 
2251 	offset = skb_checksum_start_offset(skb);
2252 	BUG_ON(offset >= skb_headlen(skb));
2253 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2254 
2255 	offset += skb->csum_offset;
2256 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2257 
2258 	if (skb_cloned(skb) &&
2259 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2260 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2261 		if (ret)
2262 			goto out;
2263 	}
2264 
2265 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2266 out_set_summed:
2267 	skb->ip_summed = CHECKSUM_NONE;
2268 out:
2269 	return ret;
2270 }
2271 EXPORT_SYMBOL(skb_checksum_help);
2272 
2273 __be16 skb_network_protocol(struct sk_buff *skb)
2274 {
2275 	__be16 type = skb->protocol;
2276 	int vlan_depth = ETH_HLEN;
2277 
2278 	/* Tunnel gso handlers can set protocol to ethernet. */
2279 	if (type == htons(ETH_P_TEB)) {
2280 		struct ethhdr *eth;
2281 
2282 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2283 			return 0;
2284 
2285 		eth = (struct ethhdr *)skb_mac_header(skb);
2286 		type = eth->h_proto;
2287 	}
2288 
2289 	while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2290 		struct vlan_hdr *vh;
2291 
2292 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2293 			return 0;
2294 
2295 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2296 		type = vh->h_vlan_encapsulated_proto;
2297 		vlan_depth += VLAN_HLEN;
2298 	}
2299 
2300 	return type;
2301 }
2302 
2303 /**
2304  *	skb_mac_gso_segment - mac layer segmentation handler.
2305  *	@skb: buffer to segment
2306  *	@features: features for the output path (see dev->features)
2307  */
2308 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2309 				    netdev_features_t features)
2310 {
2311 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2312 	struct packet_offload *ptype;
2313 	__be16 type = skb_network_protocol(skb);
2314 
2315 	if (unlikely(!type))
2316 		return ERR_PTR(-EINVAL);
2317 
2318 	__skb_pull(skb, skb->mac_len);
2319 
2320 	rcu_read_lock();
2321 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2322 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2323 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2324 				int err;
2325 
2326 				err = ptype->callbacks.gso_send_check(skb);
2327 				segs = ERR_PTR(err);
2328 				if (err || skb_gso_ok(skb, features))
2329 					break;
2330 				__skb_push(skb, (skb->data -
2331 						 skb_network_header(skb)));
2332 			}
2333 			segs = ptype->callbacks.gso_segment(skb, features);
2334 			break;
2335 		}
2336 	}
2337 	rcu_read_unlock();
2338 
2339 	__skb_push(skb, skb->data - skb_mac_header(skb));
2340 
2341 	return segs;
2342 }
2343 EXPORT_SYMBOL(skb_mac_gso_segment);
2344 
2345 
2346 /* openvswitch calls this on rx path, so we need a different check.
2347  */
2348 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2349 {
2350 	if (tx_path)
2351 		return skb->ip_summed != CHECKSUM_PARTIAL;
2352 	else
2353 		return skb->ip_summed == CHECKSUM_NONE;
2354 }
2355 
2356 /**
2357  *	__skb_gso_segment - Perform segmentation on skb.
2358  *	@skb: buffer to segment
2359  *	@features: features for the output path (see dev->features)
2360  *	@tx_path: whether it is called in TX path
2361  *
2362  *	This function segments the given skb and returns a list of segments.
2363  *
2364  *	It may return NULL if the skb requires no segmentation.  This is
2365  *	only possible when GSO is used for verifying header integrity.
2366  */
2367 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2368 				  netdev_features_t features, bool tx_path)
2369 {
2370 	if (unlikely(skb_needs_check(skb, tx_path))) {
2371 		int err;
2372 
2373 		skb_warn_bad_offload(skb);
2374 
2375 		if (skb_header_cloned(skb) &&
2376 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2377 			return ERR_PTR(err);
2378 	}
2379 
2380 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2381 	skb_reset_mac_header(skb);
2382 	skb_reset_mac_len(skb);
2383 
2384 	return skb_mac_gso_segment(skb, features);
2385 }
2386 EXPORT_SYMBOL(__skb_gso_segment);
2387 
2388 /* Take action when hardware reception checksum errors are detected. */
2389 #ifdef CONFIG_BUG
2390 void netdev_rx_csum_fault(struct net_device *dev)
2391 {
2392 	if (net_ratelimit()) {
2393 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2394 		dump_stack();
2395 	}
2396 }
2397 EXPORT_SYMBOL(netdev_rx_csum_fault);
2398 #endif
2399 
2400 /* Actually, we should eliminate this check as soon as we know, that:
2401  * 1. IOMMU is present and allows to map all the memory.
2402  * 2. No high memory really exists on this machine.
2403  */
2404 
2405 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2406 {
2407 #ifdef CONFIG_HIGHMEM
2408 	int i;
2409 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2410 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2411 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2412 			if (PageHighMem(skb_frag_page(frag)))
2413 				return 1;
2414 		}
2415 	}
2416 
2417 	if (PCI_DMA_BUS_IS_PHYS) {
2418 		struct device *pdev = dev->dev.parent;
2419 
2420 		if (!pdev)
2421 			return 0;
2422 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2423 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2424 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2425 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2426 				return 1;
2427 		}
2428 	}
2429 #endif
2430 	return 0;
2431 }
2432 
2433 struct dev_gso_cb {
2434 	void (*destructor)(struct sk_buff *skb);
2435 };
2436 
2437 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2438 
2439 static void dev_gso_skb_destructor(struct sk_buff *skb)
2440 {
2441 	struct dev_gso_cb *cb;
2442 
2443 	do {
2444 		struct sk_buff *nskb = skb->next;
2445 
2446 		skb->next = nskb->next;
2447 		nskb->next = NULL;
2448 		kfree_skb(nskb);
2449 	} while (skb->next);
2450 
2451 	cb = DEV_GSO_CB(skb);
2452 	if (cb->destructor)
2453 		cb->destructor(skb);
2454 }
2455 
2456 /**
2457  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2458  *	@skb: buffer to segment
2459  *	@features: device features as applicable to this skb
2460  *
2461  *	This function segments the given skb and stores the list of segments
2462  *	in skb->next.
2463  */
2464 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2465 {
2466 	struct sk_buff *segs;
2467 
2468 	segs = skb_gso_segment(skb, features);
2469 
2470 	/* Verifying header integrity only. */
2471 	if (!segs)
2472 		return 0;
2473 
2474 	if (IS_ERR(segs))
2475 		return PTR_ERR(segs);
2476 
2477 	skb->next = segs;
2478 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2479 	skb->destructor = dev_gso_skb_destructor;
2480 
2481 	return 0;
2482 }
2483 
2484 static netdev_features_t harmonize_features(struct sk_buff *skb,
2485 	netdev_features_t features)
2486 {
2487 	if (skb->ip_summed != CHECKSUM_NONE &&
2488 	    !can_checksum_protocol(features, skb_network_protocol(skb))) {
2489 		features &= ~NETIF_F_ALL_CSUM;
2490 	} else if (illegal_highdma(skb->dev, skb)) {
2491 		features &= ~NETIF_F_SG;
2492 	}
2493 
2494 	return features;
2495 }
2496 
2497 netdev_features_t netif_skb_features(struct sk_buff *skb)
2498 {
2499 	__be16 protocol = skb->protocol;
2500 	netdev_features_t features = skb->dev->features;
2501 
2502 	if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2503 		features &= ~NETIF_F_GSO_MASK;
2504 
2505 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2506 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2507 		protocol = veh->h_vlan_encapsulated_proto;
2508 	} else if (!vlan_tx_tag_present(skb)) {
2509 		return harmonize_features(skb, features);
2510 	}
2511 
2512 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2513 					       NETIF_F_HW_VLAN_STAG_TX);
2514 
2515 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2516 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2517 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2518 				NETIF_F_HW_VLAN_STAG_TX;
2519 
2520 	return harmonize_features(skb, features);
2521 }
2522 EXPORT_SYMBOL(netif_skb_features);
2523 
2524 /*
2525  * Returns true if either:
2526  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2527  *	2. skb is fragmented and the device does not support SG.
2528  */
2529 static inline int skb_needs_linearize(struct sk_buff *skb,
2530 				      netdev_features_t features)
2531 {
2532 	return skb_is_nonlinear(skb) &&
2533 			((skb_has_frag_list(skb) &&
2534 				!(features & NETIF_F_FRAGLIST)) ||
2535 			(skb_shinfo(skb)->nr_frags &&
2536 				!(features & NETIF_F_SG)));
2537 }
2538 
2539 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2540 			struct netdev_queue *txq)
2541 {
2542 	const struct net_device_ops *ops = dev->netdev_ops;
2543 	int rc = NETDEV_TX_OK;
2544 	unsigned int skb_len;
2545 
2546 	if (likely(!skb->next)) {
2547 		netdev_features_t features;
2548 
2549 		/*
2550 		 * If device doesn't need skb->dst, release it right now while
2551 		 * its hot in this cpu cache
2552 		 */
2553 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2554 			skb_dst_drop(skb);
2555 
2556 		features = netif_skb_features(skb);
2557 
2558 		if (vlan_tx_tag_present(skb) &&
2559 		    !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2560 			skb = __vlan_put_tag(skb, skb->vlan_proto,
2561 					     vlan_tx_tag_get(skb));
2562 			if (unlikely(!skb))
2563 				goto out;
2564 
2565 			skb->vlan_tci = 0;
2566 		}
2567 
2568 		/* If encapsulation offload request, verify we are testing
2569 		 * hardware encapsulation features instead of standard
2570 		 * features for the netdev
2571 		 */
2572 		if (skb->encapsulation)
2573 			features &= dev->hw_enc_features;
2574 
2575 		if (netif_needs_gso(skb, features)) {
2576 			if (unlikely(dev_gso_segment(skb, features)))
2577 				goto out_kfree_skb;
2578 			if (skb->next)
2579 				goto gso;
2580 		} else {
2581 			if (skb_needs_linearize(skb, features) &&
2582 			    __skb_linearize(skb))
2583 				goto out_kfree_skb;
2584 
2585 			/* If packet is not checksummed and device does not
2586 			 * support checksumming for this protocol, complete
2587 			 * checksumming here.
2588 			 */
2589 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2590 				if (skb->encapsulation)
2591 					skb_set_inner_transport_header(skb,
2592 						skb_checksum_start_offset(skb));
2593 				else
2594 					skb_set_transport_header(skb,
2595 						skb_checksum_start_offset(skb));
2596 				if (!(features & NETIF_F_ALL_CSUM) &&
2597 				     skb_checksum_help(skb))
2598 					goto out_kfree_skb;
2599 			}
2600 		}
2601 
2602 		if (!list_empty(&ptype_all))
2603 			dev_queue_xmit_nit(skb, dev);
2604 
2605 		skb_len = skb->len;
2606 		rc = ops->ndo_start_xmit(skb, dev);
2607 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2608 		if (rc == NETDEV_TX_OK)
2609 			txq_trans_update(txq);
2610 		return rc;
2611 	}
2612 
2613 gso:
2614 	do {
2615 		struct sk_buff *nskb = skb->next;
2616 
2617 		skb->next = nskb->next;
2618 		nskb->next = NULL;
2619 
2620 		if (!list_empty(&ptype_all))
2621 			dev_queue_xmit_nit(nskb, dev);
2622 
2623 		skb_len = nskb->len;
2624 		rc = ops->ndo_start_xmit(nskb, dev);
2625 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2626 		if (unlikely(rc != NETDEV_TX_OK)) {
2627 			if (rc & ~NETDEV_TX_MASK)
2628 				goto out_kfree_gso_skb;
2629 			nskb->next = skb->next;
2630 			skb->next = nskb;
2631 			return rc;
2632 		}
2633 		txq_trans_update(txq);
2634 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2635 			return NETDEV_TX_BUSY;
2636 	} while (skb->next);
2637 
2638 out_kfree_gso_skb:
2639 	if (likely(skb->next == NULL)) {
2640 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2641 		consume_skb(skb);
2642 		return rc;
2643 	}
2644 out_kfree_skb:
2645 	kfree_skb(skb);
2646 out:
2647 	return rc;
2648 }
2649 
2650 static void qdisc_pkt_len_init(struct sk_buff *skb)
2651 {
2652 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2653 
2654 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2655 
2656 	/* To get more precise estimation of bytes sent on wire,
2657 	 * we add to pkt_len the headers size of all segments
2658 	 */
2659 	if (shinfo->gso_size)  {
2660 		unsigned int hdr_len;
2661 		u16 gso_segs = shinfo->gso_segs;
2662 
2663 		/* mac layer + network layer */
2664 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2665 
2666 		/* + transport layer */
2667 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2668 			hdr_len += tcp_hdrlen(skb);
2669 		else
2670 			hdr_len += sizeof(struct udphdr);
2671 
2672 		if (shinfo->gso_type & SKB_GSO_DODGY)
2673 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2674 						shinfo->gso_size);
2675 
2676 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2677 	}
2678 }
2679 
2680 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2681 				 struct net_device *dev,
2682 				 struct netdev_queue *txq)
2683 {
2684 	spinlock_t *root_lock = qdisc_lock(q);
2685 	bool contended;
2686 	int rc;
2687 
2688 	qdisc_pkt_len_init(skb);
2689 	qdisc_calculate_pkt_len(skb, q);
2690 	/*
2691 	 * Heuristic to force contended enqueues to serialize on a
2692 	 * separate lock before trying to get qdisc main lock.
2693 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2694 	 * and dequeue packets faster.
2695 	 */
2696 	contended = qdisc_is_running(q);
2697 	if (unlikely(contended))
2698 		spin_lock(&q->busylock);
2699 
2700 	spin_lock(root_lock);
2701 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2702 		kfree_skb(skb);
2703 		rc = NET_XMIT_DROP;
2704 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2705 		   qdisc_run_begin(q)) {
2706 		/*
2707 		 * This is a work-conserving queue; there are no old skbs
2708 		 * waiting to be sent out; and the qdisc is not running -
2709 		 * xmit the skb directly.
2710 		 */
2711 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2712 			skb_dst_force(skb);
2713 
2714 		qdisc_bstats_update(q, skb);
2715 
2716 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2717 			if (unlikely(contended)) {
2718 				spin_unlock(&q->busylock);
2719 				contended = false;
2720 			}
2721 			__qdisc_run(q);
2722 		} else
2723 			qdisc_run_end(q);
2724 
2725 		rc = NET_XMIT_SUCCESS;
2726 	} else {
2727 		skb_dst_force(skb);
2728 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2729 		if (qdisc_run_begin(q)) {
2730 			if (unlikely(contended)) {
2731 				spin_unlock(&q->busylock);
2732 				contended = false;
2733 			}
2734 			__qdisc_run(q);
2735 		}
2736 	}
2737 	spin_unlock(root_lock);
2738 	if (unlikely(contended))
2739 		spin_unlock(&q->busylock);
2740 	return rc;
2741 }
2742 
2743 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2744 static void skb_update_prio(struct sk_buff *skb)
2745 {
2746 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2747 
2748 	if (!skb->priority && skb->sk && map) {
2749 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2750 
2751 		if (prioidx < map->priomap_len)
2752 			skb->priority = map->priomap[prioidx];
2753 	}
2754 }
2755 #else
2756 #define skb_update_prio(skb)
2757 #endif
2758 
2759 static DEFINE_PER_CPU(int, xmit_recursion);
2760 #define RECURSION_LIMIT 10
2761 
2762 /**
2763  *	dev_loopback_xmit - loop back @skb
2764  *	@skb: buffer to transmit
2765  */
2766 int dev_loopback_xmit(struct sk_buff *skb)
2767 {
2768 	skb_reset_mac_header(skb);
2769 	__skb_pull(skb, skb_network_offset(skb));
2770 	skb->pkt_type = PACKET_LOOPBACK;
2771 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2772 	WARN_ON(!skb_dst(skb));
2773 	skb_dst_force(skb);
2774 	netif_rx_ni(skb);
2775 	return 0;
2776 }
2777 EXPORT_SYMBOL(dev_loopback_xmit);
2778 
2779 /**
2780  *	dev_queue_xmit - transmit a buffer
2781  *	@skb: buffer to transmit
2782  *
2783  *	Queue a buffer for transmission to a network device. The caller must
2784  *	have set the device and priority and built the buffer before calling
2785  *	this function. The function can be called from an interrupt.
2786  *
2787  *	A negative errno code is returned on a failure. A success does not
2788  *	guarantee the frame will be transmitted as it may be dropped due
2789  *	to congestion or traffic shaping.
2790  *
2791  * -----------------------------------------------------------------------------------
2792  *      I notice this method can also return errors from the queue disciplines,
2793  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2794  *      be positive.
2795  *
2796  *      Regardless of the return value, the skb is consumed, so it is currently
2797  *      difficult to retry a send to this method.  (You can bump the ref count
2798  *      before sending to hold a reference for retry if you are careful.)
2799  *
2800  *      When calling this method, interrupts MUST be enabled.  This is because
2801  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2802  *          --BLG
2803  */
2804 int dev_queue_xmit(struct sk_buff *skb)
2805 {
2806 	struct net_device *dev = skb->dev;
2807 	struct netdev_queue *txq;
2808 	struct Qdisc *q;
2809 	int rc = -ENOMEM;
2810 
2811 	skb_reset_mac_header(skb);
2812 
2813 	/* Disable soft irqs for various locks below. Also
2814 	 * stops preemption for RCU.
2815 	 */
2816 	rcu_read_lock_bh();
2817 
2818 	skb_update_prio(skb);
2819 
2820 	txq = netdev_pick_tx(dev, skb);
2821 	q = rcu_dereference_bh(txq->qdisc);
2822 
2823 #ifdef CONFIG_NET_CLS_ACT
2824 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2825 #endif
2826 	trace_net_dev_queue(skb);
2827 	if (q->enqueue) {
2828 		rc = __dev_xmit_skb(skb, q, dev, txq);
2829 		goto out;
2830 	}
2831 
2832 	/* The device has no queue. Common case for software devices:
2833 	   loopback, all the sorts of tunnels...
2834 
2835 	   Really, it is unlikely that netif_tx_lock protection is necessary
2836 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2837 	   counters.)
2838 	   However, it is possible, that they rely on protection
2839 	   made by us here.
2840 
2841 	   Check this and shot the lock. It is not prone from deadlocks.
2842 	   Either shot noqueue qdisc, it is even simpler 8)
2843 	 */
2844 	if (dev->flags & IFF_UP) {
2845 		int cpu = smp_processor_id(); /* ok because BHs are off */
2846 
2847 		if (txq->xmit_lock_owner != cpu) {
2848 
2849 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2850 				goto recursion_alert;
2851 
2852 			HARD_TX_LOCK(dev, txq, cpu);
2853 
2854 			if (!netif_xmit_stopped(txq)) {
2855 				__this_cpu_inc(xmit_recursion);
2856 				rc = dev_hard_start_xmit(skb, dev, txq);
2857 				__this_cpu_dec(xmit_recursion);
2858 				if (dev_xmit_complete(rc)) {
2859 					HARD_TX_UNLOCK(dev, txq);
2860 					goto out;
2861 				}
2862 			}
2863 			HARD_TX_UNLOCK(dev, txq);
2864 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2865 					     dev->name);
2866 		} else {
2867 			/* Recursion is detected! It is possible,
2868 			 * unfortunately
2869 			 */
2870 recursion_alert:
2871 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2872 					     dev->name);
2873 		}
2874 	}
2875 
2876 	rc = -ENETDOWN;
2877 	rcu_read_unlock_bh();
2878 
2879 	kfree_skb(skb);
2880 	return rc;
2881 out:
2882 	rcu_read_unlock_bh();
2883 	return rc;
2884 }
2885 EXPORT_SYMBOL(dev_queue_xmit);
2886 
2887 
2888 /*=======================================================================
2889 			Receiver routines
2890   =======================================================================*/
2891 
2892 int netdev_max_backlog __read_mostly = 1000;
2893 EXPORT_SYMBOL(netdev_max_backlog);
2894 
2895 int netdev_tstamp_prequeue __read_mostly = 1;
2896 int netdev_budget __read_mostly = 300;
2897 int weight_p __read_mostly = 64;            /* old backlog weight */
2898 
2899 /* Called with irq disabled */
2900 static inline void ____napi_schedule(struct softnet_data *sd,
2901 				     struct napi_struct *napi)
2902 {
2903 	list_add_tail(&napi->poll_list, &sd->poll_list);
2904 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2905 }
2906 
2907 #ifdef CONFIG_RPS
2908 
2909 /* One global table that all flow-based protocols share. */
2910 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2911 EXPORT_SYMBOL(rps_sock_flow_table);
2912 
2913 struct static_key rps_needed __read_mostly;
2914 
2915 static struct rps_dev_flow *
2916 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2917 	    struct rps_dev_flow *rflow, u16 next_cpu)
2918 {
2919 	if (next_cpu != RPS_NO_CPU) {
2920 #ifdef CONFIG_RFS_ACCEL
2921 		struct netdev_rx_queue *rxqueue;
2922 		struct rps_dev_flow_table *flow_table;
2923 		struct rps_dev_flow *old_rflow;
2924 		u32 flow_id;
2925 		u16 rxq_index;
2926 		int rc;
2927 
2928 		/* Should we steer this flow to a different hardware queue? */
2929 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2930 		    !(dev->features & NETIF_F_NTUPLE))
2931 			goto out;
2932 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2933 		if (rxq_index == skb_get_rx_queue(skb))
2934 			goto out;
2935 
2936 		rxqueue = dev->_rx + rxq_index;
2937 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2938 		if (!flow_table)
2939 			goto out;
2940 		flow_id = skb->rxhash & flow_table->mask;
2941 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2942 							rxq_index, flow_id);
2943 		if (rc < 0)
2944 			goto out;
2945 		old_rflow = rflow;
2946 		rflow = &flow_table->flows[flow_id];
2947 		rflow->filter = rc;
2948 		if (old_rflow->filter == rflow->filter)
2949 			old_rflow->filter = RPS_NO_FILTER;
2950 	out:
2951 #endif
2952 		rflow->last_qtail =
2953 			per_cpu(softnet_data, next_cpu).input_queue_head;
2954 	}
2955 
2956 	rflow->cpu = next_cpu;
2957 	return rflow;
2958 }
2959 
2960 /*
2961  * get_rps_cpu is called from netif_receive_skb and returns the target
2962  * CPU from the RPS map of the receiving queue for a given skb.
2963  * rcu_read_lock must be held on entry.
2964  */
2965 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2966 		       struct rps_dev_flow **rflowp)
2967 {
2968 	struct netdev_rx_queue *rxqueue;
2969 	struct rps_map *map;
2970 	struct rps_dev_flow_table *flow_table;
2971 	struct rps_sock_flow_table *sock_flow_table;
2972 	int cpu = -1;
2973 	u16 tcpu;
2974 
2975 	if (skb_rx_queue_recorded(skb)) {
2976 		u16 index = skb_get_rx_queue(skb);
2977 		if (unlikely(index >= dev->real_num_rx_queues)) {
2978 			WARN_ONCE(dev->real_num_rx_queues > 1,
2979 				  "%s received packet on queue %u, but number "
2980 				  "of RX queues is %u\n",
2981 				  dev->name, index, dev->real_num_rx_queues);
2982 			goto done;
2983 		}
2984 		rxqueue = dev->_rx + index;
2985 	} else
2986 		rxqueue = dev->_rx;
2987 
2988 	map = rcu_dereference(rxqueue->rps_map);
2989 	if (map) {
2990 		if (map->len == 1 &&
2991 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
2992 			tcpu = map->cpus[0];
2993 			if (cpu_online(tcpu))
2994 				cpu = tcpu;
2995 			goto done;
2996 		}
2997 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2998 		goto done;
2999 	}
3000 
3001 	skb_reset_network_header(skb);
3002 	if (!skb_get_rxhash(skb))
3003 		goto done;
3004 
3005 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3006 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3007 	if (flow_table && sock_flow_table) {
3008 		u16 next_cpu;
3009 		struct rps_dev_flow *rflow;
3010 
3011 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
3012 		tcpu = rflow->cpu;
3013 
3014 		next_cpu = sock_flow_table->ents[skb->rxhash &
3015 		    sock_flow_table->mask];
3016 
3017 		/*
3018 		 * If the desired CPU (where last recvmsg was done) is
3019 		 * different from current CPU (one in the rx-queue flow
3020 		 * table entry), switch if one of the following holds:
3021 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
3022 		 *   - Current CPU is offline.
3023 		 *   - The current CPU's queue tail has advanced beyond the
3024 		 *     last packet that was enqueued using this table entry.
3025 		 *     This guarantees that all previous packets for the flow
3026 		 *     have been dequeued, thus preserving in order delivery.
3027 		 */
3028 		if (unlikely(tcpu != next_cpu) &&
3029 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3030 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3031 		      rflow->last_qtail)) >= 0)) {
3032 			tcpu = next_cpu;
3033 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3034 		}
3035 
3036 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3037 			*rflowp = rflow;
3038 			cpu = tcpu;
3039 			goto done;
3040 		}
3041 	}
3042 
3043 	if (map) {
3044 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
3045 
3046 		if (cpu_online(tcpu)) {
3047 			cpu = tcpu;
3048 			goto done;
3049 		}
3050 	}
3051 
3052 done:
3053 	return cpu;
3054 }
3055 
3056 #ifdef CONFIG_RFS_ACCEL
3057 
3058 /**
3059  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3060  * @dev: Device on which the filter was set
3061  * @rxq_index: RX queue index
3062  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3063  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3064  *
3065  * Drivers that implement ndo_rx_flow_steer() should periodically call
3066  * this function for each installed filter and remove the filters for
3067  * which it returns %true.
3068  */
3069 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3070 			 u32 flow_id, u16 filter_id)
3071 {
3072 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3073 	struct rps_dev_flow_table *flow_table;
3074 	struct rps_dev_flow *rflow;
3075 	bool expire = true;
3076 	int cpu;
3077 
3078 	rcu_read_lock();
3079 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3080 	if (flow_table && flow_id <= flow_table->mask) {
3081 		rflow = &flow_table->flows[flow_id];
3082 		cpu = ACCESS_ONCE(rflow->cpu);
3083 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3084 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3085 			   rflow->last_qtail) <
3086 		     (int)(10 * flow_table->mask)))
3087 			expire = false;
3088 	}
3089 	rcu_read_unlock();
3090 	return expire;
3091 }
3092 EXPORT_SYMBOL(rps_may_expire_flow);
3093 
3094 #endif /* CONFIG_RFS_ACCEL */
3095 
3096 /* Called from hardirq (IPI) context */
3097 static void rps_trigger_softirq(void *data)
3098 {
3099 	struct softnet_data *sd = data;
3100 
3101 	____napi_schedule(sd, &sd->backlog);
3102 	sd->received_rps++;
3103 }
3104 
3105 #endif /* CONFIG_RPS */
3106 
3107 /*
3108  * Check if this softnet_data structure is another cpu one
3109  * If yes, queue it to our IPI list and return 1
3110  * If no, return 0
3111  */
3112 static int rps_ipi_queued(struct softnet_data *sd)
3113 {
3114 #ifdef CONFIG_RPS
3115 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3116 
3117 	if (sd != mysd) {
3118 		sd->rps_ipi_next = mysd->rps_ipi_list;
3119 		mysd->rps_ipi_list = sd;
3120 
3121 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3122 		return 1;
3123 	}
3124 #endif /* CONFIG_RPS */
3125 	return 0;
3126 }
3127 
3128 #ifdef CONFIG_NET_FLOW_LIMIT
3129 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3130 #endif
3131 
3132 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3133 {
3134 #ifdef CONFIG_NET_FLOW_LIMIT
3135 	struct sd_flow_limit *fl;
3136 	struct softnet_data *sd;
3137 	unsigned int old_flow, new_flow;
3138 
3139 	if (qlen < (netdev_max_backlog >> 1))
3140 		return false;
3141 
3142 	sd = &__get_cpu_var(softnet_data);
3143 
3144 	rcu_read_lock();
3145 	fl = rcu_dereference(sd->flow_limit);
3146 	if (fl) {
3147 		new_flow = skb_get_rxhash(skb) & (fl->num_buckets - 1);
3148 		old_flow = fl->history[fl->history_head];
3149 		fl->history[fl->history_head] = new_flow;
3150 
3151 		fl->history_head++;
3152 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3153 
3154 		if (likely(fl->buckets[old_flow]))
3155 			fl->buckets[old_flow]--;
3156 
3157 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3158 			fl->count++;
3159 			rcu_read_unlock();
3160 			return true;
3161 		}
3162 	}
3163 	rcu_read_unlock();
3164 #endif
3165 	return false;
3166 }
3167 
3168 /*
3169  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3170  * queue (may be a remote CPU queue).
3171  */
3172 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3173 			      unsigned int *qtail)
3174 {
3175 	struct softnet_data *sd;
3176 	unsigned long flags;
3177 	unsigned int qlen;
3178 
3179 	sd = &per_cpu(softnet_data, cpu);
3180 
3181 	local_irq_save(flags);
3182 
3183 	rps_lock(sd);
3184 	qlen = skb_queue_len(&sd->input_pkt_queue);
3185 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3186 		if (skb_queue_len(&sd->input_pkt_queue)) {
3187 enqueue:
3188 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3189 			input_queue_tail_incr_save(sd, qtail);
3190 			rps_unlock(sd);
3191 			local_irq_restore(flags);
3192 			return NET_RX_SUCCESS;
3193 		}
3194 
3195 		/* Schedule NAPI for backlog device
3196 		 * We can use non atomic operation since we own the queue lock
3197 		 */
3198 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3199 			if (!rps_ipi_queued(sd))
3200 				____napi_schedule(sd, &sd->backlog);
3201 		}
3202 		goto enqueue;
3203 	}
3204 
3205 	sd->dropped++;
3206 	rps_unlock(sd);
3207 
3208 	local_irq_restore(flags);
3209 
3210 	atomic_long_inc(&skb->dev->rx_dropped);
3211 	kfree_skb(skb);
3212 	return NET_RX_DROP;
3213 }
3214 
3215 /**
3216  *	netif_rx	-	post buffer to the network code
3217  *	@skb: buffer to post
3218  *
3219  *	This function receives a packet from a device driver and queues it for
3220  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3221  *	may be dropped during processing for congestion control or by the
3222  *	protocol layers.
3223  *
3224  *	return values:
3225  *	NET_RX_SUCCESS	(no congestion)
3226  *	NET_RX_DROP     (packet was dropped)
3227  *
3228  */
3229 
3230 int netif_rx(struct sk_buff *skb)
3231 {
3232 	int ret;
3233 
3234 	/* if netpoll wants it, pretend we never saw it */
3235 	if (netpoll_rx(skb))
3236 		return NET_RX_DROP;
3237 
3238 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3239 
3240 	trace_netif_rx(skb);
3241 #ifdef CONFIG_RPS
3242 	if (static_key_false(&rps_needed)) {
3243 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3244 		int cpu;
3245 
3246 		preempt_disable();
3247 		rcu_read_lock();
3248 
3249 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3250 		if (cpu < 0)
3251 			cpu = smp_processor_id();
3252 
3253 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3254 
3255 		rcu_read_unlock();
3256 		preempt_enable();
3257 	} else
3258 #endif
3259 	{
3260 		unsigned int qtail;
3261 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3262 		put_cpu();
3263 	}
3264 	return ret;
3265 }
3266 EXPORT_SYMBOL(netif_rx);
3267 
3268 int netif_rx_ni(struct sk_buff *skb)
3269 {
3270 	int err;
3271 
3272 	preempt_disable();
3273 	err = netif_rx(skb);
3274 	if (local_softirq_pending())
3275 		do_softirq();
3276 	preempt_enable();
3277 
3278 	return err;
3279 }
3280 EXPORT_SYMBOL(netif_rx_ni);
3281 
3282 static void net_tx_action(struct softirq_action *h)
3283 {
3284 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3285 
3286 	if (sd->completion_queue) {
3287 		struct sk_buff *clist;
3288 
3289 		local_irq_disable();
3290 		clist = sd->completion_queue;
3291 		sd->completion_queue = NULL;
3292 		local_irq_enable();
3293 
3294 		while (clist) {
3295 			struct sk_buff *skb = clist;
3296 			clist = clist->next;
3297 
3298 			WARN_ON(atomic_read(&skb->users));
3299 			trace_kfree_skb(skb, net_tx_action);
3300 			__kfree_skb(skb);
3301 		}
3302 	}
3303 
3304 	if (sd->output_queue) {
3305 		struct Qdisc *head;
3306 
3307 		local_irq_disable();
3308 		head = sd->output_queue;
3309 		sd->output_queue = NULL;
3310 		sd->output_queue_tailp = &sd->output_queue;
3311 		local_irq_enable();
3312 
3313 		while (head) {
3314 			struct Qdisc *q = head;
3315 			spinlock_t *root_lock;
3316 
3317 			head = head->next_sched;
3318 
3319 			root_lock = qdisc_lock(q);
3320 			if (spin_trylock(root_lock)) {
3321 				smp_mb__before_clear_bit();
3322 				clear_bit(__QDISC_STATE_SCHED,
3323 					  &q->state);
3324 				qdisc_run(q);
3325 				spin_unlock(root_lock);
3326 			} else {
3327 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3328 					      &q->state)) {
3329 					__netif_reschedule(q);
3330 				} else {
3331 					smp_mb__before_clear_bit();
3332 					clear_bit(__QDISC_STATE_SCHED,
3333 						  &q->state);
3334 				}
3335 			}
3336 		}
3337 	}
3338 }
3339 
3340 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3341     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3342 /* This hook is defined here for ATM LANE */
3343 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3344 			     unsigned char *addr) __read_mostly;
3345 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3346 #endif
3347 
3348 #ifdef CONFIG_NET_CLS_ACT
3349 /* TODO: Maybe we should just force sch_ingress to be compiled in
3350  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3351  * a compare and 2 stores extra right now if we dont have it on
3352  * but have CONFIG_NET_CLS_ACT
3353  * NOTE: This doesn't stop any functionality; if you dont have
3354  * the ingress scheduler, you just can't add policies on ingress.
3355  *
3356  */
3357 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3358 {
3359 	struct net_device *dev = skb->dev;
3360 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3361 	int result = TC_ACT_OK;
3362 	struct Qdisc *q;
3363 
3364 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3365 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3366 				     skb->skb_iif, dev->ifindex);
3367 		return TC_ACT_SHOT;
3368 	}
3369 
3370 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3371 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3372 
3373 	q = rxq->qdisc;
3374 	if (q != &noop_qdisc) {
3375 		spin_lock(qdisc_lock(q));
3376 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3377 			result = qdisc_enqueue_root(skb, q);
3378 		spin_unlock(qdisc_lock(q));
3379 	}
3380 
3381 	return result;
3382 }
3383 
3384 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3385 					 struct packet_type **pt_prev,
3386 					 int *ret, struct net_device *orig_dev)
3387 {
3388 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3389 
3390 	if (!rxq || rxq->qdisc == &noop_qdisc)
3391 		goto out;
3392 
3393 	if (*pt_prev) {
3394 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3395 		*pt_prev = NULL;
3396 	}
3397 
3398 	switch (ing_filter(skb, rxq)) {
3399 	case TC_ACT_SHOT:
3400 	case TC_ACT_STOLEN:
3401 		kfree_skb(skb);
3402 		return NULL;
3403 	}
3404 
3405 out:
3406 	skb->tc_verd = 0;
3407 	return skb;
3408 }
3409 #endif
3410 
3411 /**
3412  *	netdev_rx_handler_register - register receive handler
3413  *	@dev: device to register a handler for
3414  *	@rx_handler: receive handler to register
3415  *	@rx_handler_data: data pointer that is used by rx handler
3416  *
3417  *	Register a receive hander for a device. This handler will then be
3418  *	called from __netif_receive_skb. A negative errno code is returned
3419  *	on a failure.
3420  *
3421  *	The caller must hold the rtnl_mutex.
3422  *
3423  *	For a general description of rx_handler, see enum rx_handler_result.
3424  */
3425 int netdev_rx_handler_register(struct net_device *dev,
3426 			       rx_handler_func_t *rx_handler,
3427 			       void *rx_handler_data)
3428 {
3429 	ASSERT_RTNL();
3430 
3431 	if (dev->rx_handler)
3432 		return -EBUSY;
3433 
3434 	/* Note: rx_handler_data must be set before rx_handler */
3435 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3436 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3437 
3438 	return 0;
3439 }
3440 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3441 
3442 /**
3443  *	netdev_rx_handler_unregister - unregister receive handler
3444  *	@dev: device to unregister a handler from
3445  *
3446  *	Unregister a receive handler from a device.
3447  *
3448  *	The caller must hold the rtnl_mutex.
3449  */
3450 void netdev_rx_handler_unregister(struct net_device *dev)
3451 {
3452 
3453 	ASSERT_RTNL();
3454 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3455 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3456 	 * section has a guarantee to see a non NULL rx_handler_data
3457 	 * as well.
3458 	 */
3459 	synchronize_net();
3460 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3461 }
3462 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3463 
3464 /*
3465  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3466  * the special handling of PFMEMALLOC skbs.
3467  */
3468 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3469 {
3470 	switch (skb->protocol) {
3471 	case __constant_htons(ETH_P_ARP):
3472 	case __constant_htons(ETH_P_IP):
3473 	case __constant_htons(ETH_P_IPV6):
3474 	case __constant_htons(ETH_P_8021Q):
3475 	case __constant_htons(ETH_P_8021AD):
3476 		return true;
3477 	default:
3478 		return false;
3479 	}
3480 }
3481 
3482 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3483 {
3484 	struct packet_type *ptype, *pt_prev;
3485 	rx_handler_func_t *rx_handler;
3486 	struct net_device *orig_dev;
3487 	struct net_device *null_or_dev;
3488 	bool deliver_exact = false;
3489 	int ret = NET_RX_DROP;
3490 	__be16 type;
3491 
3492 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3493 
3494 	trace_netif_receive_skb(skb);
3495 
3496 	/* if we've gotten here through NAPI, check netpoll */
3497 	if (netpoll_receive_skb(skb))
3498 		goto out;
3499 
3500 	orig_dev = skb->dev;
3501 
3502 	skb_reset_network_header(skb);
3503 	if (!skb_transport_header_was_set(skb))
3504 		skb_reset_transport_header(skb);
3505 	skb_reset_mac_len(skb);
3506 
3507 	pt_prev = NULL;
3508 
3509 	rcu_read_lock();
3510 
3511 another_round:
3512 	skb->skb_iif = skb->dev->ifindex;
3513 
3514 	__this_cpu_inc(softnet_data.processed);
3515 
3516 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3517 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3518 		skb = vlan_untag(skb);
3519 		if (unlikely(!skb))
3520 			goto unlock;
3521 	}
3522 
3523 #ifdef CONFIG_NET_CLS_ACT
3524 	if (skb->tc_verd & TC_NCLS) {
3525 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3526 		goto ncls;
3527 	}
3528 #endif
3529 
3530 	if (pfmemalloc)
3531 		goto skip_taps;
3532 
3533 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3534 		if (!ptype->dev || ptype->dev == skb->dev) {
3535 			if (pt_prev)
3536 				ret = deliver_skb(skb, pt_prev, orig_dev);
3537 			pt_prev = ptype;
3538 		}
3539 	}
3540 
3541 skip_taps:
3542 #ifdef CONFIG_NET_CLS_ACT
3543 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3544 	if (!skb)
3545 		goto unlock;
3546 ncls:
3547 #endif
3548 
3549 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3550 		goto drop;
3551 
3552 	if (vlan_tx_tag_present(skb)) {
3553 		if (pt_prev) {
3554 			ret = deliver_skb(skb, pt_prev, orig_dev);
3555 			pt_prev = NULL;
3556 		}
3557 		if (vlan_do_receive(&skb))
3558 			goto another_round;
3559 		else if (unlikely(!skb))
3560 			goto unlock;
3561 	}
3562 
3563 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3564 	if (rx_handler) {
3565 		if (pt_prev) {
3566 			ret = deliver_skb(skb, pt_prev, orig_dev);
3567 			pt_prev = NULL;
3568 		}
3569 		switch (rx_handler(&skb)) {
3570 		case RX_HANDLER_CONSUMED:
3571 			ret = NET_RX_SUCCESS;
3572 			goto unlock;
3573 		case RX_HANDLER_ANOTHER:
3574 			goto another_round;
3575 		case RX_HANDLER_EXACT:
3576 			deliver_exact = true;
3577 		case RX_HANDLER_PASS:
3578 			break;
3579 		default:
3580 			BUG();
3581 		}
3582 	}
3583 
3584 	if (unlikely(vlan_tx_tag_present(skb))) {
3585 		if (vlan_tx_tag_get_id(skb))
3586 			skb->pkt_type = PACKET_OTHERHOST;
3587 		/* Note: we might in the future use prio bits
3588 		 * and set skb->priority like in vlan_do_receive()
3589 		 * For the time being, just ignore Priority Code Point
3590 		 */
3591 		skb->vlan_tci = 0;
3592 	}
3593 
3594 	/* deliver only exact match when indicated */
3595 	null_or_dev = deliver_exact ? skb->dev : NULL;
3596 
3597 	type = skb->protocol;
3598 	list_for_each_entry_rcu(ptype,
3599 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3600 		if (ptype->type == type &&
3601 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3602 		     ptype->dev == orig_dev)) {
3603 			if (pt_prev)
3604 				ret = deliver_skb(skb, pt_prev, orig_dev);
3605 			pt_prev = ptype;
3606 		}
3607 	}
3608 
3609 	if (pt_prev) {
3610 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3611 			goto drop;
3612 		else
3613 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3614 	} else {
3615 drop:
3616 		atomic_long_inc(&skb->dev->rx_dropped);
3617 		kfree_skb(skb);
3618 		/* Jamal, now you will not able to escape explaining
3619 		 * me how you were going to use this. :-)
3620 		 */
3621 		ret = NET_RX_DROP;
3622 	}
3623 
3624 unlock:
3625 	rcu_read_unlock();
3626 out:
3627 	return ret;
3628 }
3629 
3630 static int __netif_receive_skb(struct sk_buff *skb)
3631 {
3632 	int ret;
3633 
3634 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3635 		unsigned long pflags = current->flags;
3636 
3637 		/*
3638 		 * PFMEMALLOC skbs are special, they should
3639 		 * - be delivered to SOCK_MEMALLOC sockets only
3640 		 * - stay away from userspace
3641 		 * - have bounded memory usage
3642 		 *
3643 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3644 		 * context down to all allocation sites.
3645 		 */
3646 		current->flags |= PF_MEMALLOC;
3647 		ret = __netif_receive_skb_core(skb, true);
3648 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3649 	} else
3650 		ret = __netif_receive_skb_core(skb, false);
3651 
3652 	return ret;
3653 }
3654 
3655 /**
3656  *	netif_receive_skb - process receive buffer from network
3657  *	@skb: buffer to process
3658  *
3659  *	netif_receive_skb() is the main receive data processing function.
3660  *	It always succeeds. The buffer may be dropped during processing
3661  *	for congestion control or by the protocol layers.
3662  *
3663  *	This function may only be called from softirq context and interrupts
3664  *	should be enabled.
3665  *
3666  *	Return values (usually ignored):
3667  *	NET_RX_SUCCESS: no congestion
3668  *	NET_RX_DROP: packet was dropped
3669  */
3670 int netif_receive_skb(struct sk_buff *skb)
3671 {
3672 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3673 
3674 	if (skb_defer_rx_timestamp(skb))
3675 		return NET_RX_SUCCESS;
3676 
3677 #ifdef CONFIG_RPS
3678 	if (static_key_false(&rps_needed)) {
3679 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3680 		int cpu, ret;
3681 
3682 		rcu_read_lock();
3683 
3684 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3685 
3686 		if (cpu >= 0) {
3687 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3688 			rcu_read_unlock();
3689 			return ret;
3690 		}
3691 		rcu_read_unlock();
3692 	}
3693 #endif
3694 	return __netif_receive_skb(skb);
3695 }
3696 EXPORT_SYMBOL(netif_receive_skb);
3697 
3698 /* Network device is going away, flush any packets still pending
3699  * Called with irqs disabled.
3700  */
3701 static void flush_backlog(void *arg)
3702 {
3703 	struct net_device *dev = arg;
3704 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3705 	struct sk_buff *skb, *tmp;
3706 
3707 	rps_lock(sd);
3708 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3709 		if (skb->dev == dev) {
3710 			__skb_unlink(skb, &sd->input_pkt_queue);
3711 			kfree_skb(skb);
3712 			input_queue_head_incr(sd);
3713 		}
3714 	}
3715 	rps_unlock(sd);
3716 
3717 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3718 		if (skb->dev == dev) {
3719 			__skb_unlink(skb, &sd->process_queue);
3720 			kfree_skb(skb);
3721 			input_queue_head_incr(sd);
3722 		}
3723 	}
3724 }
3725 
3726 static int napi_gro_complete(struct sk_buff *skb)
3727 {
3728 	struct packet_offload *ptype;
3729 	__be16 type = skb->protocol;
3730 	struct list_head *head = &offload_base;
3731 	int err = -ENOENT;
3732 
3733 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3734 
3735 	if (NAPI_GRO_CB(skb)->count == 1) {
3736 		skb_shinfo(skb)->gso_size = 0;
3737 		goto out;
3738 	}
3739 
3740 	rcu_read_lock();
3741 	list_for_each_entry_rcu(ptype, head, list) {
3742 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3743 			continue;
3744 
3745 		err = ptype->callbacks.gro_complete(skb);
3746 		break;
3747 	}
3748 	rcu_read_unlock();
3749 
3750 	if (err) {
3751 		WARN_ON(&ptype->list == head);
3752 		kfree_skb(skb);
3753 		return NET_RX_SUCCESS;
3754 	}
3755 
3756 out:
3757 	return netif_receive_skb(skb);
3758 }
3759 
3760 /* napi->gro_list contains packets ordered by age.
3761  * youngest packets at the head of it.
3762  * Complete skbs in reverse order to reduce latencies.
3763  */
3764 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3765 {
3766 	struct sk_buff *skb, *prev = NULL;
3767 
3768 	/* scan list and build reverse chain */
3769 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3770 		skb->prev = prev;
3771 		prev = skb;
3772 	}
3773 
3774 	for (skb = prev; skb; skb = prev) {
3775 		skb->next = NULL;
3776 
3777 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3778 			return;
3779 
3780 		prev = skb->prev;
3781 		napi_gro_complete(skb);
3782 		napi->gro_count--;
3783 	}
3784 
3785 	napi->gro_list = NULL;
3786 }
3787 EXPORT_SYMBOL(napi_gro_flush);
3788 
3789 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3790 {
3791 	struct sk_buff *p;
3792 	unsigned int maclen = skb->dev->hard_header_len;
3793 
3794 	for (p = napi->gro_list; p; p = p->next) {
3795 		unsigned long diffs;
3796 
3797 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3798 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3799 		if (maclen == ETH_HLEN)
3800 			diffs |= compare_ether_header(skb_mac_header(p),
3801 						      skb_gro_mac_header(skb));
3802 		else if (!diffs)
3803 			diffs = memcmp(skb_mac_header(p),
3804 				       skb_gro_mac_header(skb),
3805 				       maclen);
3806 		NAPI_GRO_CB(p)->same_flow = !diffs;
3807 		NAPI_GRO_CB(p)->flush = 0;
3808 	}
3809 }
3810 
3811 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3812 {
3813 	struct sk_buff **pp = NULL;
3814 	struct packet_offload *ptype;
3815 	__be16 type = skb->protocol;
3816 	struct list_head *head = &offload_base;
3817 	int same_flow;
3818 	enum gro_result ret;
3819 
3820 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3821 		goto normal;
3822 
3823 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3824 		goto normal;
3825 
3826 	gro_list_prepare(napi, skb);
3827 
3828 	rcu_read_lock();
3829 	list_for_each_entry_rcu(ptype, head, list) {
3830 		if (ptype->type != type || !ptype->callbacks.gro_receive)
3831 			continue;
3832 
3833 		skb_set_network_header(skb, skb_gro_offset(skb));
3834 		skb_reset_mac_len(skb);
3835 		NAPI_GRO_CB(skb)->same_flow = 0;
3836 		NAPI_GRO_CB(skb)->flush = 0;
3837 		NAPI_GRO_CB(skb)->free = 0;
3838 
3839 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3840 		break;
3841 	}
3842 	rcu_read_unlock();
3843 
3844 	if (&ptype->list == head)
3845 		goto normal;
3846 
3847 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3848 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3849 
3850 	if (pp) {
3851 		struct sk_buff *nskb = *pp;
3852 
3853 		*pp = nskb->next;
3854 		nskb->next = NULL;
3855 		napi_gro_complete(nskb);
3856 		napi->gro_count--;
3857 	}
3858 
3859 	if (same_flow)
3860 		goto ok;
3861 
3862 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3863 		goto normal;
3864 
3865 	napi->gro_count++;
3866 	NAPI_GRO_CB(skb)->count = 1;
3867 	NAPI_GRO_CB(skb)->age = jiffies;
3868 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3869 	skb->next = napi->gro_list;
3870 	napi->gro_list = skb;
3871 	ret = GRO_HELD;
3872 
3873 pull:
3874 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3875 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3876 
3877 		BUG_ON(skb->end - skb->tail < grow);
3878 
3879 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3880 
3881 		skb->tail += grow;
3882 		skb->data_len -= grow;
3883 
3884 		skb_shinfo(skb)->frags[0].page_offset += grow;
3885 		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3886 
3887 		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3888 			skb_frag_unref(skb, 0);
3889 			memmove(skb_shinfo(skb)->frags,
3890 				skb_shinfo(skb)->frags + 1,
3891 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3892 		}
3893 	}
3894 
3895 ok:
3896 	return ret;
3897 
3898 normal:
3899 	ret = GRO_NORMAL;
3900 	goto pull;
3901 }
3902 
3903 
3904 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3905 {
3906 	switch (ret) {
3907 	case GRO_NORMAL:
3908 		if (netif_receive_skb(skb))
3909 			ret = GRO_DROP;
3910 		break;
3911 
3912 	case GRO_DROP:
3913 		kfree_skb(skb);
3914 		break;
3915 
3916 	case GRO_MERGED_FREE:
3917 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3918 			kmem_cache_free(skbuff_head_cache, skb);
3919 		else
3920 			__kfree_skb(skb);
3921 		break;
3922 
3923 	case GRO_HELD:
3924 	case GRO_MERGED:
3925 		break;
3926 	}
3927 
3928 	return ret;
3929 }
3930 
3931 static void skb_gro_reset_offset(struct sk_buff *skb)
3932 {
3933 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3934 	const skb_frag_t *frag0 = &pinfo->frags[0];
3935 
3936 	NAPI_GRO_CB(skb)->data_offset = 0;
3937 	NAPI_GRO_CB(skb)->frag0 = NULL;
3938 	NAPI_GRO_CB(skb)->frag0_len = 0;
3939 
3940 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3941 	    pinfo->nr_frags &&
3942 	    !PageHighMem(skb_frag_page(frag0))) {
3943 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3944 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3945 	}
3946 }
3947 
3948 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3949 {
3950 	skb_gro_reset_offset(skb);
3951 
3952 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3953 }
3954 EXPORT_SYMBOL(napi_gro_receive);
3955 
3956 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3957 {
3958 	__skb_pull(skb, skb_headlen(skb));
3959 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
3960 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3961 	skb->vlan_tci = 0;
3962 	skb->dev = napi->dev;
3963 	skb->skb_iif = 0;
3964 
3965 	napi->skb = skb;
3966 }
3967 
3968 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3969 {
3970 	struct sk_buff *skb = napi->skb;
3971 
3972 	if (!skb) {
3973 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3974 		if (skb)
3975 			napi->skb = skb;
3976 	}
3977 	return skb;
3978 }
3979 EXPORT_SYMBOL(napi_get_frags);
3980 
3981 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3982 			       gro_result_t ret)
3983 {
3984 	switch (ret) {
3985 	case GRO_NORMAL:
3986 	case GRO_HELD:
3987 		skb->protocol = eth_type_trans(skb, skb->dev);
3988 
3989 		if (ret == GRO_HELD)
3990 			skb_gro_pull(skb, -ETH_HLEN);
3991 		else if (netif_receive_skb(skb))
3992 			ret = GRO_DROP;
3993 		break;
3994 
3995 	case GRO_DROP:
3996 	case GRO_MERGED_FREE:
3997 		napi_reuse_skb(napi, skb);
3998 		break;
3999 
4000 	case GRO_MERGED:
4001 		break;
4002 	}
4003 
4004 	return ret;
4005 }
4006 
4007 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4008 {
4009 	struct sk_buff *skb = napi->skb;
4010 	struct ethhdr *eth;
4011 	unsigned int hlen;
4012 	unsigned int off;
4013 
4014 	napi->skb = NULL;
4015 
4016 	skb_reset_mac_header(skb);
4017 	skb_gro_reset_offset(skb);
4018 
4019 	off = skb_gro_offset(skb);
4020 	hlen = off + sizeof(*eth);
4021 	eth = skb_gro_header_fast(skb, off);
4022 	if (skb_gro_header_hard(skb, hlen)) {
4023 		eth = skb_gro_header_slow(skb, hlen, off);
4024 		if (unlikely(!eth)) {
4025 			napi_reuse_skb(napi, skb);
4026 			skb = NULL;
4027 			goto out;
4028 		}
4029 	}
4030 
4031 	skb_gro_pull(skb, sizeof(*eth));
4032 
4033 	/*
4034 	 * This works because the only protocols we care about don't require
4035 	 * special handling.  We'll fix it up properly at the end.
4036 	 */
4037 	skb->protocol = eth->h_proto;
4038 
4039 out:
4040 	return skb;
4041 }
4042 
4043 gro_result_t napi_gro_frags(struct napi_struct *napi)
4044 {
4045 	struct sk_buff *skb = napi_frags_skb(napi);
4046 
4047 	if (!skb)
4048 		return GRO_DROP;
4049 
4050 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4051 }
4052 EXPORT_SYMBOL(napi_gro_frags);
4053 
4054 /*
4055  * net_rps_action sends any pending IPI's for rps.
4056  * Note: called with local irq disabled, but exits with local irq enabled.
4057  */
4058 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4059 {
4060 #ifdef CONFIG_RPS
4061 	struct softnet_data *remsd = sd->rps_ipi_list;
4062 
4063 	if (remsd) {
4064 		sd->rps_ipi_list = NULL;
4065 
4066 		local_irq_enable();
4067 
4068 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4069 		while (remsd) {
4070 			struct softnet_data *next = remsd->rps_ipi_next;
4071 
4072 			if (cpu_online(remsd->cpu))
4073 				__smp_call_function_single(remsd->cpu,
4074 							   &remsd->csd, 0);
4075 			remsd = next;
4076 		}
4077 	} else
4078 #endif
4079 		local_irq_enable();
4080 }
4081 
4082 static int process_backlog(struct napi_struct *napi, int quota)
4083 {
4084 	int work = 0;
4085 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4086 
4087 #ifdef CONFIG_RPS
4088 	/* Check if we have pending ipi, its better to send them now,
4089 	 * not waiting net_rx_action() end.
4090 	 */
4091 	if (sd->rps_ipi_list) {
4092 		local_irq_disable();
4093 		net_rps_action_and_irq_enable(sd);
4094 	}
4095 #endif
4096 	napi->weight = weight_p;
4097 	local_irq_disable();
4098 	while (work < quota) {
4099 		struct sk_buff *skb;
4100 		unsigned int qlen;
4101 
4102 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4103 			local_irq_enable();
4104 			__netif_receive_skb(skb);
4105 			local_irq_disable();
4106 			input_queue_head_incr(sd);
4107 			if (++work >= quota) {
4108 				local_irq_enable();
4109 				return work;
4110 			}
4111 		}
4112 
4113 		rps_lock(sd);
4114 		qlen = skb_queue_len(&sd->input_pkt_queue);
4115 		if (qlen)
4116 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
4117 						   &sd->process_queue);
4118 
4119 		if (qlen < quota - work) {
4120 			/*
4121 			 * Inline a custom version of __napi_complete().
4122 			 * only current cpu owns and manipulates this napi,
4123 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4124 			 * we can use a plain write instead of clear_bit(),
4125 			 * and we dont need an smp_mb() memory barrier.
4126 			 */
4127 			list_del(&napi->poll_list);
4128 			napi->state = 0;
4129 
4130 			quota = work + qlen;
4131 		}
4132 		rps_unlock(sd);
4133 	}
4134 	local_irq_enable();
4135 
4136 	return work;
4137 }
4138 
4139 /**
4140  * __napi_schedule - schedule for receive
4141  * @n: entry to schedule
4142  *
4143  * The entry's receive function will be scheduled to run
4144  */
4145 void __napi_schedule(struct napi_struct *n)
4146 {
4147 	unsigned long flags;
4148 
4149 	local_irq_save(flags);
4150 	____napi_schedule(&__get_cpu_var(softnet_data), n);
4151 	local_irq_restore(flags);
4152 }
4153 EXPORT_SYMBOL(__napi_schedule);
4154 
4155 void __napi_complete(struct napi_struct *n)
4156 {
4157 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4158 	BUG_ON(n->gro_list);
4159 
4160 	list_del(&n->poll_list);
4161 	smp_mb__before_clear_bit();
4162 	clear_bit(NAPI_STATE_SCHED, &n->state);
4163 }
4164 EXPORT_SYMBOL(__napi_complete);
4165 
4166 void napi_complete(struct napi_struct *n)
4167 {
4168 	unsigned long flags;
4169 
4170 	/*
4171 	 * don't let napi dequeue from the cpu poll list
4172 	 * just in case its running on a different cpu
4173 	 */
4174 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4175 		return;
4176 
4177 	napi_gro_flush(n, false);
4178 	local_irq_save(flags);
4179 	__napi_complete(n);
4180 	local_irq_restore(flags);
4181 }
4182 EXPORT_SYMBOL(napi_complete);
4183 
4184 /* must be called under rcu_read_lock(), as we dont take a reference */
4185 struct napi_struct *napi_by_id(unsigned int napi_id)
4186 {
4187 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4188 	struct napi_struct *napi;
4189 
4190 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4191 		if (napi->napi_id == napi_id)
4192 			return napi;
4193 
4194 	return NULL;
4195 }
4196 EXPORT_SYMBOL_GPL(napi_by_id);
4197 
4198 void napi_hash_add(struct napi_struct *napi)
4199 {
4200 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4201 
4202 		spin_lock(&napi_hash_lock);
4203 
4204 		/* 0 is not a valid id, we also skip an id that is taken
4205 		 * we expect both events to be extremely rare
4206 		 */
4207 		napi->napi_id = 0;
4208 		while (!napi->napi_id) {
4209 			napi->napi_id = ++napi_gen_id;
4210 			if (napi_by_id(napi->napi_id))
4211 				napi->napi_id = 0;
4212 		}
4213 
4214 		hlist_add_head_rcu(&napi->napi_hash_node,
4215 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4216 
4217 		spin_unlock(&napi_hash_lock);
4218 	}
4219 }
4220 EXPORT_SYMBOL_GPL(napi_hash_add);
4221 
4222 /* Warning : caller is responsible to make sure rcu grace period
4223  * is respected before freeing memory containing @napi
4224  */
4225 void napi_hash_del(struct napi_struct *napi)
4226 {
4227 	spin_lock(&napi_hash_lock);
4228 
4229 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4230 		hlist_del_rcu(&napi->napi_hash_node);
4231 
4232 	spin_unlock(&napi_hash_lock);
4233 }
4234 EXPORT_SYMBOL_GPL(napi_hash_del);
4235 
4236 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4237 		    int (*poll)(struct napi_struct *, int), int weight)
4238 {
4239 	INIT_LIST_HEAD(&napi->poll_list);
4240 	napi->gro_count = 0;
4241 	napi->gro_list = NULL;
4242 	napi->skb = NULL;
4243 	napi->poll = poll;
4244 	if (weight > NAPI_POLL_WEIGHT)
4245 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4246 			    weight, dev->name);
4247 	napi->weight = weight;
4248 	list_add(&napi->dev_list, &dev->napi_list);
4249 	napi->dev = dev;
4250 #ifdef CONFIG_NETPOLL
4251 	spin_lock_init(&napi->poll_lock);
4252 	napi->poll_owner = -1;
4253 #endif
4254 	set_bit(NAPI_STATE_SCHED, &napi->state);
4255 }
4256 EXPORT_SYMBOL(netif_napi_add);
4257 
4258 void netif_napi_del(struct napi_struct *napi)
4259 {
4260 	struct sk_buff *skb, *next;
4261 
4262 	list_del_init(&napi->dev_list);
4263 	napi_free_frags(napi);
4264 
4265 	for (skb = napi->gro_list; skb; skb = next) {
4266 		next = skb->next;
4267 		skb->next = NULL;
4268 		kfree_skb(skb);
4269 	}
4270 
4271 	napi->gro_list = NULL;
4272 	napi->gro_count = 0;
4273 }
4274 EXPORT_SYMBOL(netif_napi_del);
4275 
4276 static void net_rx_action(struct softirq_action *h)
4277 {
4278 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
4279 	unsigned long time_limit = jiffies + 2;
4280 	int budget = netdev_budget;
4281 	void *have;
4282 
4283 	local_irq_disable();
4284 
4285 	while (!list_empty(&sd->poll_list)) {
4286 		struct napi_struct *n;
4287 		int work, weight;
4288 
4289 		/* If softirq window is exhuasted then punt.
4290 		 * Allow this to run for 2 jiffies since which will allow
4291 		 * an average latency of 1.5/HZ.
4292 		 */
4293 		if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4294 			goto softnet_break;
4295 
4296 		local_irq_enable();
4297 
4298 		/* Even though interrupts have been re-enabled, this
4299 		 * access is safe because interrupts can only add new
4300 		 * entries to the tail of this list, and only ->poll()
4301 		 * calls can remove this head entry from the list.
4302 		 */
4303 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4304 
4305 		have = netpoll_poll_lock(n);
4306 
4307 		weight = n->weight;
4308 
4309 		/* This NAPI_STATE_SCHED test is for avoiding a race
4310 		 * with netpoll's poll_napi().  Only the entity which
4311 		 * obtains the lock and sees NAPI_STATE_SCHED set will
4312 		 * actually make the ->poll() call.  Therefore we avoid
4313 		 * accidentally calling ->poll() when NAPI is not scheduled.
4314 		 */
4315 		work = 0;
4316 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4317 			work = n->poll(n, weight);
4318 			trace_napi_poll(n);
4319 		}
4320 
4321 		WARN_ON_ONCE(work > weight);
4322 
4323 		budget -= work;
4324 
4325 		local_irq_disable();
4326 
4327 		/* Drivers must not modify the NAPI state if they
4328 		 * consume the entire weight.  In such cases this code
4329 		 * still "owns" the NAPI instance and therefore can
4330 		 * move the instance around on the list at-will.
4331 		 */
4332 		if (unlikely(work == weight)) {
4333 			if (unlikely(napi_disable_pending(n))) {
4334 				local_irq_enable();
4335 				napi_complete(n);
4336 				local_irq_disable();
4337 			} else {
4338 				if (n->gro_list) {
4339 					/* flush too old packets
4340 					 * If HZ < 1000, flush all packets.
4341 					 */
4342 					local_irq_enable();
4343 					napi_gro_flush(n, HZ >= 1000);
4344 					local_irq_disable();
4345 				}
4346 				list_move_tail(&n->poll_list, &sd->poll_list);
4347 			}
4348 		}
4349 
4350 		netpoll_poll_unlock(have);
4351 	}
4352 out:
4353 	net_rps_action_and_irq_enable(sd);
4354 
4355 #ifdef CONFIG_NET_DMA
4356 	/*
4357 	 * There may not be any more sk_buffs coming right now, so push
4358 	 * any pending DMA copies to hardware
4359 	 */
4360 	dma_issue_pending_all();
4361 #endif
4362 
4363 	return;
4364 
4365 softnet_break:
4366 	sd->time_squeeze++;
4367 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4368 	goto out;
4369 }
4370 
4371 struct netdev_adjacent {
4372 	struct net_device *dev;
4373 
4374 	/* upper master flag, there can only be one master device per list */
4375 	bool master;
4376 
4377 	/* indicates that this dev is our first-level lower/upper device */
4378 	bool neighbour;
4379 
4380 	/* counter for the number of times this device was added to us */
4381 	u16 ref_nr;
4382 
4383 	struct list_head list;
4384 	struct rcu_head rcu;
4385 };
4386 
4387 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4388 						 struct net_device *adj_dev,
4389 						 bool upper)
4390 {
4391 	struct netdev_adjacent *adj;
4392 	struct list_head *dev_list;
4393 
4394 	dev_list = upper ? &dev->upper_dev_list : &dev->lower_dev_list;
4395 
4396 	list_for_each_entry(adj, dev_list, list) {
4397 		if (adj->dev == adj_dev)
4398 			return adj;
4399 	}
4400 	return NULL;
4401 }
4402 
4403 static inline struct netdev_adjacent *__netdev_find_upper(struct net_device *dev,
4404 							  struct net_device *udev)
4405 {
4406 	return __netdev_find_adj(dev, udev, true);
4407 }
4408 
4409 static inline struct netdev_adjacent *__netdev_find_lower(struct net_device *dev,
4410 							  struct net_device *ldev)
4411 {
4412 	return __netdev_find_adj(dev, ldev, false);
4413 }
4414 
4415 /**
4416  * netdev_has_upper_dev - Check if device is linked to an upper device
4417  * @dev: device
4418  * @upper_dev: upper device to check
4419  *
4420  * Find out if a device is linked to specified upper device and return true
4421  * in case it is. Note that this checks only immediate upper device,
4422  * not through a complete stack of devices. The caller must hold the RTNL lock.
4423  */
4424 bool netdev_has_upper_dev(struct net_device *dev,
4425 			  struct net_device *upper_dev)
4426 {
4427 	ASSERT_RTNL();
4428 
4429 	return __netdev_find_upper(dev, upper_dev);
4430 }
4431 EXPORT_SYMBOL(netdev_has_upper_dev);
4432 
4433 /**
4434  * netdev_has_any_upper_dev - Check if device is linked to some device
4435  * @dev: device
4436  *
4437  * Find out if a device is linked to an upper device and return true in case
4438  * it is. The caller must hold the RTNL lock.
4439  */
4440 bool netdev_has_any_upper_dev(struct net_device *dev)
4441 {
4442 	ASSERT_RTNL();
4443 
4444 	return !list_empty(&dev->upper_dev_list);
4445 }
4446 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4447 
4448 /**
4449  * netdev_master_upper_dev_get - Get master upper device
4450  * @dev: device
4451  *
4452  * Find a master upper device and return pointer to it or NULL in case
4453  * it's not there. The caller must hold the RTNL lock.
4454  */
4455 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4456 {
4457 	struct netdev_adjacent *upper;
4458 
4459 	ASSERT_RTNL();
4460 
4461 	if (list_empty(&dev->upper_dev_list))
4462 		return NULL;
4463 
4464 	upper = list_first_entry(&dev->upper_dev_list,
4465 				 struct netdev_adjacent, list);
4466 	if (likely(upper->master))
4467 		return upper->dev;
4468 	return NULL;
4469 }
4470 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4471 
4472 /* netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4473  * @dev: device
4474  * @iter: list_head ** of the current position
4475  *
4476  * Gets the next device from the dev's upper list, starting from iter
4477  * position. The caller must hold RCU read lock.
4478  */
4479 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4480 						 struct list_head **iter)
4481 {
4482 	struct netdev_adjacent *upper;
4483 
4484 	WARN_ON_ONCE(!rcu_read_lock_held());
4485 
4486 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4487 
4488 	if (&upper->list == &dev->upper_dev_list)
4489 		return NULL;
4490 
4491 	*iter = &upper->list;
4492 
4493 	return upper->dev;
4494 }
4495 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4496 
4497 /**
4498  * netdev_master_upper_dev_get_rcu - Get master upper device
4499  * @dev: device
4500  *
4501  * Find a master upper device and return pointer to it or NULL in case
4502  * it's not there. The caller must hold the RCU read lock.
4503  */
4504 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4505 {
4506 	struct netdev_adjacent *upper;
4507 
4508 	upper = list_first_or_null_rcu(&dev->upper_dev_list,
4509 				       struct netdev_adjacent, list);
4510 	if (upper && likely(upper->master))
4511 		return upper->dev;
4512 	return NULL;
4513 }
4514 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4515 
4516 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4517 					struct net_device *adj_dev,
4518 					bool neighbour, bool master,
4519 					bool upper)
4520 {
4521 	struct netdev_adjacent *adj;
4522 
4523 	adj = __netdev_find_adj(dev, adj_dev, upper);
4524 
4525 	if (adj) {
4526 		BUG_ON(neighbour);
4527 		adj->ref_nr++;
4528 		return 0;
4529 	}
4530 
4531 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4532 	if (!adj)
4533 		return -ENOMEM;
4534 
4535 	adj->dev = adj_dev;
4536 	adj->master = master;
4537 	adj->neighbour = neighbour;
4538 	adj->ref_nr = 1;
4539 
4540 	dev_hold(adj_dev);
4541 	pr_debug("dev_hold for %s, because of %s link added from %s to %s\n",
4542 		 adj_dev->name, upper ? "upper" : "lower", dev->name,
4543 		 adj_dev->name);
4544 
4545 	if (!upper) {
4546 		list_add_tail_rcu(&adj->list, &dev->lower_dev_list);
4547 		return 0;
4548 	}
4549 
4550 	/* Ensure that master upper link is always the first item in list. */
4551 	if (master)
4552 		list_add_rcu(&adj->list, &dev->upper_dev_list);
4553 	else
4554 		list_add_tail_rcu(&adj->list, &dev->upper_dev_list);
4555 
4556 	return 0;
4557 }
4558 
4559 static inline int __netdev_upper_dev_insert(struct net_device *dev,
4560 					    struct net_device *udev,
4561 					    bool master, bool neighbour)
4562 {
4563 	return __netdev_adjacent_dev_insert(dev, udev, neighbour, master,
4564 					    true);
4565 }
4566 
4567 static inline int __netdev_lower_dev_insert(struct net_device *dev,
4568 					    struct net_device *ldev,
4569 					    bool neighbour)
4570 {
4571 	return __netdev_adjacent_dev_insert(dev, ldev, neighbour, false,
4572 					    false);
4573 }
4574 
4575 void __netdev_adjacent_dev_remove(struct net_device *dev,
4576 				  struct net_device *adj_dev, bool upper)
4577 {
4578 	struct netdev_adjacent *adj;
4579 
4580 	if (upper)
4581 		adj = __netdev_find_upper(dev, adj_dev);
4582 	else
4583 		adj = __netdev_find_lower(dev, adj_dev);
4584 
4585 	if (!adj)
4586 		BUG();
4587 
4588 	if (adj->ref_nr > 1) {
4589 		adj->ref_nr--;
4590 		return;
4591 	}
4592 
4593 	list_del_rcu(&adj->list);
4594 	pr_debug("dev_put for %s, because of %s link removed from %s to %s\n",
4595 		 adj_dev->name, upper ? "upper" : "lower", dev->name,
4596 		 adj_dev->name);
4597 	dev_put(adj_dev);
4598 	kfree_rcu(adj, rcu);
4599 }
4600 
4601 static inline void __netdev_upper_dev_remove(struct net_device *dev,
4602 					     struct net_device *udev)
4603 {
4604 	return __netdev_adjacent_dev_remove(dev, udev, true);
4605 }
4606 
4607 static inline void __netdev_lower_dev_remove(struct net_device *dev,
4608 					     struct net_device *ldev)
4609 {
4610 	return __netdev_adjacent_dev_remove(dev, ldev, false);
4611 }
4612 
4613 int __netdev_adjacent_dev_insert_link(struct net_device *dev,
4614 				      struct net_device *upper_dev,
4615 				      bool master, bool neighbour)
4616 {
4617 	int ret;
4618 
4619 	ret = __netdev_upper_dev_insert(dev, upper_dev, master, neighbour);
4620 	if (ret)
4621 		return ret;
4622 
4623 	ret = __netdev_lower_dev_insert(upper_dev, dev, neighbour);
4624 	if (ret) {
4625 		__netdev_upper_dev_remove(dev, upper_dev);
4626 		return ret;
4627 	}
4628 
4629 	return 0;
4630 }
4631 
4632 static inline int __netdev_adjacent_dev_link(struct net_device *dev,
4633 					     struct net_device *udev)
4634 {
4635 	return __netdev_adjacent_dev_insert_link(dev, udev, false, false);
4636 }
4637 
4638 static inline int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4639 						       struct net_device *udev,
4640 						       bool master)
4641 {
4642 	return __netdev_adjacent_dev_insert_link(dev, udev, master, true);
4643 }
4644 
4645 void __netdev_adjacent_dev_unlink(struct net_device *dev,
4646 				  struct net_device *upper_dev)
4647 {
4648 	__netdev_upper_dev_remove(dev, upper_dev);
4649 	__netdev_lower_dev_remove(upper_dev, dev);
4650 }
4651 
4652 
4653 static int __netdev_upper_dev_link(struct net_device *dev,
4654 				   struct net_device *upper_dev, bool master)
4655 {
4656 	struct netdev_adjacent *i, *j, *to_i, *to_j;
4657 	int ret = 0;
4658 
4659 	ASSERT_RTNL();
4660 
4661 	if (dev == upper_dev)
4662 		return -EBUSY;
4663 
4664 	/* To prevent loops, check if dev is not upper device to upper_dev. */
4665 	if (__netdev_find_upper(upper_dev, dev))
4666 		return -EBUSY;
4667 
4668 	if (__netdev_find_upper(dev, upper_dev))
4669 		return -EEXIST;
4670 
4671 	if (master && netdev_master_upper_dev_get(dev))
4672 		return -EBUSY;
4673 
4674 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, master);
4675 	if (ret)
4676 		return ret;
4677 
4678 	/* Now that we linked these devs, make all the upper_dev's
4679 	 * upper_dev_list visible to every dev's lower_dev_list and vice
4680 	 * versa, and don't forget the devices itself. All of these
4681 	 * links are non-neighbours.
4682 	 */
4683 	list_for_each_entry(i, &dev->lower_dev_list, list) {
4684 		list_for_each_entry(j, &upper_dev->upper_dev_list, list) {
4685 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4686 			if (ret)
4687 				goto rollback_mesh;
4688 		}
4689 	}
4690 
4691 	/* add dev to every upper_dev's upper device */
4692 	list_for_each_entry(i, &upper_dev->upper_dev_list, list) {
4693 		ret = __netdev_adjacent_dev_link(dev, i->dev);
4694 		if (ret)
4695 			goto rollback_upper_mesh;
4696 	}
4697 
4698 	/* add upper_dev to every dev's lower device */
4699 	list_for_each_entry(i, &dev->lower_dev_list, list) {
4700 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4701 		if (ret)
4702 			goto rollback_lower_mesh;
4703 	}
4704 
4705 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4706 	return 0;
4707 
4708 rollback_lower_mesh:
4709 	to_i = i;
4710 	list_for_each_entry(i, &dev->lower_dev_list, list) {
4711 		if (i == to_i)
4712 			break;
4713 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
4714 	}
4715 
4716 	i = NULL;
4717 
4718 rollback_upper_mesh:
4719 	to_i = i;
4720 	list_for_each_entry(i, &upper_dev->upper_dev_list, list) {
4721 		if (i == to_i)
4722 			break;
4723 		__netdev_adjacent_dev_unlink(dev, i->dev);
4724 	}
4725 
4726 	i = j = NULL;
4727 
4728 rollback_mesh:
4729 	to_i = i;
4730 	to_j = j;
4731 	list_for_each_entry(i, &dev->lower_dev_list, list) {
4732 		list_for_each_entry(j, &upper_dev->upper_dev_list, list) {
4733 			if (i == to_i && j == to_j)
4734 				break;
4735 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
4736 		}
4737 		if (i == to_i)
4738 			break;
4739 	}
4740 
4741 	__netdev_adjacent_dev_unlink(dev, upper_dev);
4742 
4743 	return ret;
4744 }
4745 
4746 /**
4747  * netdev_upper_dev_link - Add a link to the upper device
4748  * @dev: device
4749  * @upper_dev: new upper device
4750  *
4751  * Adds a link to device which is upper to this one. The caller must hold
4752  * the RTNL lock. On a failure a negative errno code is returned.
4753  * On success the reference counts are adjusted and the function
4754  * returns zero.
4755  */
4756 int netdev_upper_dev_link(struct net_device *dev,
4757 			  struct net_device *upper_dev)
4758 {
4759 	return __netdev_upper_dev_link(dev, upper_dev, false);
4760 }
4761 EXPORT_SYMBOL(netdev_upper_dev_link);
4762 
4763 /**
4764  * netdev_master_upper_dev_link - Add a master link to the upper device
4765  * @dev: device
4766  * @upper_dev: new upper device
4767  *
4768  * Adds a link to device which is upper to this one. In this case, only
4769  * one master upper device can be linked, although other non-master devices
4770  * might be linked as well. The caller must hold the RTNL lock.
4771  * On a failure a negative errno code is returned. On success the reference
4772  * counts are adjusted and the function returns zero.
4773  */
4774 int netdev_master_upper_dev_link(struct net_device *dev,
4775 				 struct net_device *upper_dev)
4776 {
4777 	return __netdev_upper_dev_link(dev, upper_dev, true);
4778 }
4779 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4780 
4781 /**
4782  * netdev_upper_dev_unlink - Removes a link to upper device
4783  * @dev: device
4784  * @upper_dev: new upper device
4785  *
4786  * Removes a link to device which is upper to this one. The caller must hold
4787  * the RTNL lock.
4788  */
4789 void netdev_upper_dev_unlink(struct net_device *dev,
4790 			     struct net_device *upper_dev)
4791 {
4792 	struct netdev_adjacent *i, *j;
4793 	ASSERT_RTNL();
4794 
4795 	__netdev_adjacent_dev_unlink(dev, upper_dev);
4796 
4797 	/* Here is the tricky part. We must remove all dev's lower
4798 	 * devices from all upper_dev's upper devices and vice
4799 	 * versa, to maintain the graph relationship.
4800 	 */
4801 	list_for_each_entry(i, &dev->lower_dev_list, list)
4802 		list_for_each_entry(j, &upper_dev->upper_dev_list, list)
4803 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
4804 
4805 	/* remove also the devices itself from lower/upper device
4806 	 * list
4807 	 */
4808 	list_for_each_entry(i, &dev->lower_dev_list, list)
4809 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
4810 
4811 	list_for_each_entry(i, &upper_dev->upper_dev_list, list)
4812 		__netdev_adjacent_dev_unlink(dev, i->dev);
4813 
4814 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4815 }
4816 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4817 
4818 static void dev_change_rx_flags(struct net_device *dev, int flags)
4819 {
4820 	const struct net_device_ops *ops = dev->netdev_ops;
4821 
4822 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4823 		ops->ndo_change_rx_flags(dev, flags);
4824 }
4825 
4826 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4827 {
4828 	unsigned int old_flags = dev->flags;
4829 	kuid_t uid;
4830 	kgid_t gid;
4831 
4832 	ASSERT_RTNL();
4833 
4834 	dev->flags |= IFF_PROMISC;
4835 	dev->promiscuity += inc;
4836 	if (dev->promiscuity == 0) {
4837 		/*
4838 		 * Avoid overflow.
4839 		 * If inc causes overflow, untouch promisc and return error.
4840 		 */
4841 		if (inc < 0)
4842 			dev->flags &= ~IFF_PROMISC;
4843 		else {
4844 			dev->promiscuity -= inc;
4845 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4846 				dev->name);
4847 			return -EOVERFLOW;
4848 		}
4849 	}
4850 	if (dev->flags != old_flags) {
4851 		pr_info("device %s %s promiscuous mode\n",
4852 			dev->name,
4853 			dev->flags & IFF_PROMISC ? "entered" : "left");
4854 		if (audit_enabled) {
4855 			current_uid_gid(&uid, &gid);
4856 			audit_log(current->audit_context, GFP_ATOMIC,
4857 				AUDIT_ANOM_PROMISCUOUS,
4858 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4859 				dev->name, (dev->flags & IFF_PROMISC),
4860 				(old_flags & IFF_PROMISC),
4861 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
4862 				from_kuid(&init_user_ns, uid),
4863 				from_kgid(&init_user_ns, gid),
4864 				audit_get_sessionid(current));
4865 		}
4866 
4867 		dev_change_rx_flags(dev, IFF_PROMISC);
4868 	}
4869 	return 0;
4870 }
4871 
4872 /**
4873  *	dev_set_promiscuity	- update promiscuity count on a device
4874  *	@dev: device
4875  *	@inc: modifier
4876  *
4877  *	Add or remove promiscuity from a device. While the count in the device
4878  *	remains above zero the interface remains promiscuous. Once it hits zero
4879  *	the device reverts back to normal filtering operation. A negative inc
4880  *	value is used to drop promiscuity on the device.
4881  *	Return 0 if successful or a negative errno code on error.
4882  */
4883 int dev_set_promiscuity(struct net_device *dev, int inc)
4884 {
4885 	unsigned int old_flags = dev->flags;
4886 	int err;
4887 
4888 	err = __dev_set_promiscuity(dev, inc);
4889 	if (err < 0)
4890 		return err;
4891 	if (dev->flags != old_flags)
4892 		dev_set_rx_mode(dev);
4893 	return err;
4894 }
4895 EXPORT_SYMBOL(dev_set_promiscuity);
4896 
4897 /**
4898  *	dev_set_allmulti	- update allmulti count on a device
4899  *	@dev: device
4900  *	@inc: modifier
4901  *
4902  *	Add or remove reception of all multicast frames to a device. While the
4903  *	count in the device remains above zero the interface remains listening
4904  *	to all interfaces. Once it hits zero the device reverts back to normal
4905  *	filtering operation. A negative @inc value is used to drop the counter
4906  *	when releasing a resource needing all multicasts.
4907  *	Return 0 if successful or a negative errno code on error.
4908  */
4909 
4910 int dev_set_allmulti(struct net_device *dev, int inc)
4911 {
4912 	unsigned int old_flags = dev->flags;
4913 
4914 	ASSERT_RTNL();
4915 
4916 	dev->flags |= IFF_ALLMULTI;
4917 	dev->allmulti += inc;
4918 	if (dev->allmulti == 0) {
4919 		/*
4920 		 * Avoid overflow.
4921 		 * If inc causes overflow, untouch allmulti and return error.
4922 		 */
4923 		if (inc < 0)
4924 			dev->flags &= ~IFF_ALLMULTI;
4925 		else {
4926 			dev->allmulti -= inc;
4927 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4928 				dev->name);
4929 			return -EOVERFLOW;
4930 		}
4931 	}
4932 	if (dev->flags ^ old_flags) {
4933 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4934 		dev_set_rx_mode(dev);
4935 	}
4936 	return 0;
4937 }
4938 EXPORT_SYMBOL(dev_set_allmulti);
4939 
4940 /*
4941  *	Upload unicast and multicast address lists to device and
4942  *	configure RX filtering. When the device doesn't support unicast
4943  *	filtering it is put in promiscuous mode while unicast addresses
4944  *	are present.
4945  */
4946 void __dev_set_rx_mode(struct net_device *dev)
4947 {
4948 	const struct net_device_ops *ops = dev->netdev_ops;
4949 
4950 	/* dev_open will call this function so the list will stay sane. */
4951 	if (!(dev->flags&IFF_UP))
4952 		return;
4953 
4954 	if (!netif_device_present(dev))
4955 		return;
4956 
4957 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4958 		/* Unicast addresses changes may only happen under the rtnl,
4959 		 * therefore calling __dev_set_promiscuity here is safe.
4960 		 */
4961 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4962 			__dev_set_promiscuity(dev, 1);
4963 			dev->uc_promisc = true;
4964 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4965 			__dev_set_promiscuity(dev, -1);
4966 			dev->uc_promisc = false;
4967 		}
4968 	}
4969 
4970 	if (ops->ndo_set_rx_mode)
4971 		ops->ndo_set_rx_mode(dev);
4972 }
4973 
4974 void dev_set_rx_mode(struct net_device *dev)
4975 {
4976 	netif_addr_lock_bh(dev);
4977 	__dev_set_rx_mode(dev);
4978 	netif_addr_unlock_bh(dev);
4979 }
4980 
4981 /**
4982  *	dev_get_flags - get flags reported to userspace
4983  *	@dev: device
4984  *
4985  *	Get the combination of flag bits exported through APIs to userspace.
4986  */
4987 unsigned int dev_get_flags(const struct net_device *dev)
4988 {
4989 	unsigned int flags;
4990 
4991 	flags = (dev->flags & ~(IFF_PROMISC |
4992 				IFF_ALLMULTI |
4993 				IFF_RUNNING |
4994 				IFF_LOWER_UP |
4995 				IFF_DORMANT)) |
4996 		(dev->gflags & (IFF_PROMISC |
4997 				IFF_ALLMULTI));
4998 
4999 	if (netif_running(dev)) {
5000 		if (netif_oper_up(dev))
5001 			flags |= IFF_RUNNING;
5002 		if (netif_carrier_ok(dev))
5003 			flags |= IFF_LOWER_UP;
5004 		if (netif_dormant(dev))
5005 			flags |= IFF_DORMANT;
5006 	}
5007 
5008 	return flags;
5009 }
5010 EXPORT_SYMBOL(dev_get_flags);
5011 
5012 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5013 {
5014 	unsigned int old_flags = dev->flags;
5015 	int ret;
5016 
5017 	ASSERT_RTNL();
5018 
5019 	/*
5020 	 *	Set the flags on our device.
5021 	 */
5022 
5023 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5024 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5025 			       IFF_AUTOMEDIA)) |
5026 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5027 				    IFF_ALLMULTI));
5028 
5029 	/*
5030 	 *	Load in the correct multicast list now the flags have changed.
5031 	 */
5032 
5033 	if ((old_flags ^ flags) & IFF_MULTICAST)
5034 		dev_change_rx_flags(dev, IFF_MULTICAST);
5035 
5036 	dev_set_rx_mode(dev);
5037 
5038 	/*
5039 	 *	Have we downed the interface. We handle IFF_UP ourselves
5040 	 *	according to user attempts to set it, rather than blindly
5041 	 *	setting it.
5042 	 */
5043 
5044 	ret = 0;
5045 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
5046 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5047 
5048 		if (!ret)
5049 			dev_set_rx_mode(dev);
5050 	}
5051 
5052 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5053 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5054 
5055 		dev->gflags ^= IFF_PROMISC;
5056 		dev_set_promiscuity(dev, inc);
5057 	}
5058 
5059 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5060 	   is important. Some (broken) drivers set IFF_PROMISC, when
5061 	   IFF_ALLMULTI is requested not asking us and not reporting.
5062 	 */
5063 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5064 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5065 
5066 		dev->gflags ^= IFF_ALLMULTI;
5067 		dev_set_allmulti(dev, inc);
5068 	}
5069 
5070 	return ret;
5071 }
5072 
5073 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
5074 {
5075 	unsigned int changes = dev->flags ^ old_flags;
5076 
5077 	if (changes & IFF_UP) {
5078 		if (dev->flags & IFF_UP)
5079 			call_netdevice_notifiers(NETDEV_UP, dev);
5080 		else
5081 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5082 	}
5083 
5084 	if (dev->flags & IFF_UP &&
5085 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5086 		struct netdev_notifier_change_info change_info;
5087 
5088 		change_info.flags_changed = changes;
5089 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5090 					      &change_info.info);
5091 	}
5092 }
5093 
5094 /**
5095  *	dev_change_flags - change device settings
5096  *	@dev: device
5097  *	@flags: device state flags
5098  *
5099  *	Change settings on device based state flags. The flags are
5100  *	in the userspace exported format.
5101  */
5102 int dev_change_flags(struct net_device *dev, unsigned int flags)
5103 {
5104 	int ret;
5105 	unsigned int changes, old_flags = dev->flags;
5106 
5107 	ret = __dev_change_flags(dev, flags);
5108 	if (ret < 0)
5109 		return ret;
5110 
5111 	changes = old_flags ^ dev->flags;
5112 	if (changes)
5113 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
5114 
5115 	__dev_notify_flags(dev, old_flags);
5116 	return ret;
5117 }
5118 EXPORT_SYMBOL(dev_change_flags);
5119 
5120 /**
5121  *	dev_set_mtu - Change maximum transfer unit
5122  *	@dev: device
5123  *	@new_mtu: new transfer unit
5124  *
5125  *	Change the maximum transfer size of the network device.
5126  */
5127 int dev_set_mtu(struct net_device *dev, int new_mtu)
5128 {
5129 	const struct net_device_ops *ops = dev->netdev_ops;
5130 	int err;
5131 
5132 	if (new_mtu == dev->mtu)
5133 		return 0;
5134 
5135 	/*	MTU must be positive.	 */
5136 	if (new_mtu < 0)
5137 		return -EINVAL;
5138 
5139 	if (!netif_device_present(dev))
5140 		return -ENODEV;
5141 
5142 	err = 0;
5143 	if (ops->ndo_change_mtu)
5144 		err = ops->ndo_change_mtu(dev, new_mtu);
5145 	else
5146 		dev->mtu = new_mtu;
5147 
5148 	if (!err)
5149 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5150 	return err;
5151 }
5152 EXPORT_SYMBOL(dev_set_mtu);
5153 
5154 /**
5155  *	dev_set_group - Change group this device belongs to
5156  *	@dev: device
5157  *	@new_group: group this device should belong to
5158  */
5159 void dev_set_group(struct net_device *dev, int new_group)
5160 {
5161 	dev->group = new_group;
5162 }
5163 EXPORT_SYMBOL(dev_set_group);
5164 
5165 /**
5166  *	dev_set_mac_address - Change Media Access Control Address
5167  *	@dev: device
5168  *	@sa: new address
5169  *
5170  *	Change the hardware (MAC) address of the device
5171  */
5172 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5173 {
5174 	const struct net_device_ops *ops = dev->netdev_ops;
5175 	int err;
5176 
5177 	if (!ops->ndo_set_mac_address)
5178 		return -EOPNOTSUPP;
5179 	if (sa->sa_family != dev->type)
5180 		return -EINVAL;
5181 	if (!netif_device_present(dev))
5182 		return -ENODEV;
5183 	err = ops->ndo_set_mac_address(dev, sa);
5184 	if (err)
5185 		return err;
5186 	dev->addr_assign_type = NET_ADDR_SET;
5187 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5188 	add_device_randomness(dev->dev_addr, dev->addr_len);
5189 	return 0;
5190 }
5191 EXPORT_SYMBOL(dev_set_mac_address);
5192 
5193 /**
5194  *	dev_change_carrier - Change device carrier
5195  *	@dev: device
5196  *	@new_carrier: new value
5197  *
5198  *	Change device carrier
5199  */
5200 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5201 {
5202 	const struct net_device_ops *ops = dev->netdev_ops;
5203 
5204 	if (!ops->ndo_change_carrier)
5205 		return -EOPNOTSUPP;
5206 	if (!netif_device_present(dev))
5207 		return -ENODEV;
5208 	return ops->ndo_change_carrier(dev, new_carrier);
5209 }
5210 EXPORT_SYMBOL(dev_change_carrier);
5211 
5212 /**
5213  *	dev_get_phys_port_id - Get device physical port ID
5214  *	@dev: device
5215  *	@ppid: port ID
5216  *
5217  *	Get device physical port ID
5218  */
5219 int dev_get_phys_port_id(struct net_device *dev,
5220 			 struct netdev_phys_port_id *ppid)
5221 {
5222 	const struct net_device_ops *ops = dev->netdev_ops;
5223 
5224 	if (!ops->ndo_get_phys_port_id)
5225 		return -EOPNOTSUPP;
5226 	return ops->ndo_get_phys_port_id(dev, ppid);
5227 }
5228 EXPORT_SYMBOL(dev_get_phys_port_id);
5229 
5230 /**
5231  *	dev_new_index	-	allocate an ifindex
5232  *	@net: the applicable net namespace
5233  *
5234  *	Returns a suitable unique value for a new device interface
5235  *	number.  The caller must hold the rtnl semaphore or the
5236  *	dev_base_lock to be sure it remains unique.
5237  */
5238 static int dev_new_index(struct net *net)
5239 {
5240 	int ifindex = net->ifindex;
5241 	for (;;) {
5242 		if (++ifindex <= 0)
5243 			ifindex = 1;
5244 		if (!__dev_get_by_index(net, ifindex))
5245 			return net->ifindex = ifindex;
5246 	}
5247 }
5248 
5249 /* Delayed registration/unregisteration */
5250 static LIST_HEAD(net_todo_list);
5251 static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5252 
5253 static void net_set_todo(struct net_device *dev)
5254 {
5255 	list_add_tail(&dev->todo_list, &net_todo_list);
5256 	dev_net(dev)->dev_unreg_count++;
5257 }
5258 
5259 static void rollback_registered_many(struct list_head *head)
5260 {
5261 	struct net_device *dev, *tmp;
5262 
5263 	BUG_ON(dev_boot_phase);
5264 	ASSERT_RTNL();
5265 
5266 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5267 		/* Some devices call without registering
5268 		 * for initialization unwind. Remove those
5269 		 * devices and proceed with the remaining.
5270 		 */
5271 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5272 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5273 				 dev->name, dev);
5274 
5275 			WARN_ON(1);
5276 			list_del(&dev->unreg_list);
5277 			continue;
5278 		}
5279 		dev->dismantle = true;
5280 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5281 	}
5282 
5283 	/* If device is running, close it first. */
5284 	dev_close_many(head);
5285 
5286 	list_for_each_entry(dev, head, unreg_list) {
5287 		/* And unlink it from device chain. */
5288 		unlist_netdevice(dev);
5289 
5290 		dev->reg_state = NETREG_UNREGISTERING;
5291 	}
5292 
5293 	synchronize_net();
5294 
5295 	list_for_each_entry(dev, head, unreg_list) {
5296 		/* Shutdown queueing discipline. */
5297 		dev_shutdown(dev);
5298 
5299 
5300 		/* Notify protocols, that we are about to destroy
5301 		   this device. They should clean all the things.
5302 		*/
5303 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5304 
5305 		if (!dev->rtnl_link_ops ||
5306 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5307 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5308 
5309 		/*
5310 		 *	Flush the unicast and multicast chains
5311 		 */
5312 		dev_uc_flush(dev);
5313 		dev_mc_flush(dev);
5314 
5315 		if (dev->netdev_ops->ndo_uninit)
5316 			dev->netdev_ops->ndo_uninit(dev);
5317 
5318 		/* Notifier chain MUST detach us all upper devices. */
5319 		WARN_ON(netdev_has_any_upper_dev(dev));
5320 
5321 		/* Remove entries from kobject tree */
5322 		netdev_unregister_kobject(dev);
5323 #ifdef CONFIG_XPS
5324 		/* Remove XPS queueing entries */
5325 		netif_reset_xps_queues_gt(dev, 0);
5326 #endif
5327 	}
5328 
5329 	synchronize_net();
5330 
5331 	list_for_each_entry(dev, head, unreg_list)
5332 		dev_put(dev);
5333 }
5334 
5335 static void rollback_registered(struct net_device *dev)
5336 {
5337 	LIST_HEAD(single);
5338 
5339 	list_add(&dev->unreg_list, &single);
5340 	rollback_registered_many(&single);
5341 	list_del(&single);
5342 }
5343 
5344 static netdev_features_t netdev_fix_features(struct net_device *dev,
5345 	netdev_features_t features)
5346 {
5347 	/* Fix illegal checksum combinations */
5348 	if ((features & NETIF_F_HW_CSUM) &&
5349 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5350 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5351 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5352 	}
5353 
5354 	/* TSO requires that SG is present as well. */
5355 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5356 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5357 		features &= ~NETIF_F_ALL_TSO;
5358 	}
5359 
5360 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5361 					!(features & NETIF_F_IP_CSUM)) {
5362 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5363 		features &= ~NETIF_F_TSO;
5364 		features &= ~NETIF_F_TSO_ECN;
5365 	}
5366 
5367 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5368 					 !(features & NETIF_F_IPV6_CSUM)) {
5369 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5370 		features &= ~NETIF_F_TSO6;
5371 	}
5372 
5373 	/* TSO ECN requires that TSO is present as well. */
5374 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5375 		features &= ~NETIF_F_TSO_ECN;
5376 
5377 	/* Software GSO depends on SG. */
5378 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5379 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5380 		features &= ~NETIF_F_GSO;
5381 	}
5382 
5383 	/* UFO needs SG and checksumming */
5384 	if (features & NETIF_F_UFO) {
5385 		/* maybe split UFO into V4 and V6? */
5386 		if (!((features & NETIF_F_GEN_CSUM) ||
5387 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5388 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5389 			netdev_dbg(dev,
5390 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5391 			features &= ~NETIF_F_UFO;
5392 		}
5393 
5394 		if (!(features & NETIF_F_SG)) {
5395 			netdev_dbg(dev,
5396 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5397 			features &= ~NETIF_F_UFO;
5398 		}
5399 	}
5400 
5401 	return features;
5402 }
5403 
5404 int __netdev_update_features(struct net_device *dev)
5405 {
5406 	netdev_features_t features;
5407 	int err = 0;
5408 
5409 	ASSERT_RTNL();
5410 
5411 	features = netdev_get_wanted_features(dev);
5412 
5413 	if (dev->netdev_ops->ndo_fix_features)
5414 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5415 
5416 	/* driver might be less strict about feature dependencies */
5417 	features = netdev_fix_features(dev, features);
5418 
5419 	if (dev->features == features)
5420 		return 0;
5421 
5422 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5423 		&dev->features, &features);
5424 
5425 	if (dev->netdev_ops->ndo_set_features)
5426 		err = dev->netdev_ops->ndo_set_features(dev, features);
5427 
5428 	if (unlikely(err < 0)) {
5429 		netdev_err(dev,
5430 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5431 			err, &features, &dev->features);
5432 		return -1;
5433 	}
5434 
5435 	if (!err)
5436 		dev->features = features;
5437 
5438 	return 1;
5439 }
5440 
5441 /**
5442  *	netdev_update_features - recalculate device features
5443  *	@dev: the device to check
5444  *
5445  *	Recalculate dev->features set and send notifications if it
5446  *	has changed. Should be called after driver or hardware dependent
5447  *	conditions might have changed that influence the features.
5448  */
5449 void netdev_update_features(struct net_device *dev)
5450 {
5451 	if (__netdev_update_features(dev))
5452 		netdev_features_change(dev);
5453 }
5454 EXPORT_SYMBOL(netdev_update_features);
5455 
5456 /**
5457  *	netdev_change_features - recalculate device features
5458  *	@dev: the device to check
5459  *
5460  *	Recalculate dev->features set and send notifications even
5461  *	if they have not changed. Should be called instead of
5462  *	netdev_update_features() if also dev->vlan_features might
5463  *	have changed to allow the changes to be propagated to stacked
5464  *	VLAN devices.
5465  */
5466 void netdev_change_features(struct net_device *dev)
5467 {
5468 	__netdev_update_features(dev);
5469 	netdev_features_change(dev);
5470 }
5471 EXPORT_SYMBOL(netdev_change_features);
5472 
5473 /**
5474  *	netif_stacked_transfer_operstate -	transfer operstate
5475  *	@rootdev: the root or lower level device to transfer state from
5476  *	@dev: the device to transfer operstate to
5477  *
5478  *	Transfer operational state from root to device. This is normally
5479  *	called when a stacking relationship exists between the root
5480  *	device and the device(a leaf device).
5481  */
5482 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5483 					struct net_device *dev)
5484 {
5485 	if (rootdev->operstate == IF_OPER_DORMANT)
5486 		netif_dormant_on(dev);
5487 	else
5488 		netif_dormant_off(dev);
5489 
5490 	if (netif_carrier_ok(rootdev)) {
5491 		if (!netif_carrier_ok(dev))
5492 			netif_carrier_on(dev);
5493 	} else {
5494 		if (netif_carrier_ok(dev))
5495 			netif_carrier_off(dev);
5496 	}
5497 }
5498 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5499 
5500 #ifdef CONFIG_RPS
5501 static int netif_alloc_rx_queues(struct net_device *dev)
5502 {
5503 	unsigned int i, count = dev->num_rx_queues;
5504 	struct netdev_rx_queue *rx;
5505 
5506 	BUG_ON(count < 1);
5507 
5508 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5509 	if (!rx)
5510 		return -ENOMEM;
5511 
5512 	dev->_rx = rx;
5513 
5514 	for (i = 0; i < count; i++)
5515 		rx[i].dev = dev;
5516 	return 0;
5517 }
5518 #endif
5519 
5520 static void netdev_init_one_queue(struct net_device *dev,
5521 				  struct netdev_queue *queue, void *_unused)
5522 {
5523 	/* Initialize queue lock */
5524 	spin_lock_init(&queue->_xmit_lock);
5525 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5526 	queue->xmit_lock_owner = -1;
5527 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5528 	queue->dev = dev;
5529 #ifdef CONFIG_BQL
5530 	dql_init(&queue->dql, HZ);
5531 #endif
5532 }
5533 
5534 static void netif_free_tx_queues(struct net_device *dev)
5535 {
5536 	if (is_vmalloc_addr(dev->_tx))
5537 		vfree(dev->_tx);
5538 	else
5539 		kfree(dev->_tx);
5540 }
5541 
5542 static int netif_alloc_netdev_queues(struct net_device *dev)
5543 {
5544 	unsigned int count = dev->num_tx_queues;
5545 	struct netdev_queue *tx;
5546 	size_t sz = count * sizeof(*tx);
5547 
5548 	BUG_ON(count < 1 || count > 0xffff);
5549 
5550 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5551 	if (!tx) {
5552 		tx = vzalloc(sz);
5553 		if (!tx)
5554 			return -ENOMEM;
5555 	}
5556 	dev->_tx = tx;
5557 
5558 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5559 	spin_lock_init(&dev->tx_global_lock);
5560 
5561 	return 0;
5562 }
5563 
5564 /**
5565  *	register_netdevice	- register a network device
5566  *	@dev: device to register
5567  *
5568  *	Take a completed network device structure and add it to the kernel
5569  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5570  *	chain. 0 is returned on success. A negative errno code is returned
5571  *	on a failure to set up the device, or if the name is a duplicate.
5572  *
5573  *	Callers must hold the rtnl semaphore. You may want
5574  *	register_netdev() instead of this.
5575  *
5576  *	BUGS:
5577  *	The locking appears insufficient to guarantee two parallel registers
5578  *	will not get the same name.
5579  */
5580 
5581 int register_netdevice(struct net_device *dev)
5582 {
5583 	int ret;
5584 	struct net *net = dev_net(dev);
5585 
5586 	BUG_ON(dev_boot_phase);
5587 	ASSERT_RTNL();
5588 
5589 	might_sleep();
5590 
5591 	/* When net_device's are persistent, this will be fatal. */
5592 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5593 	BUG_ON(!net);
5594 
5595 	spin_lock_init(&dev->addr_list_lock);
5596 	netdev_set_addr_lockdep_class(dev);
5597 
5598 	dev->iflink = -1;
5599 
5600 	ret = dev_get_valid_name(net, dev, dev->name);
5601 	if (ret < 0)
5602 		goto out;
5603 
5604 	/* Init, if this function is available */
5605 	if (dev->netdev_ops->ndo_init) {
5606 		ret = dev->netdev_ops->ndo_init(dev);
5607 		if (ret) {
5608 			if (ret > 0)
5609 				ret = -EIO;
5610 			goto out;
5611 		}
5612 	}
5613 
5614 	if (((dev->hw_features | dev->features) &
5615 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
5616 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5617 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5618 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5619 		ret = -EINVAL;
5620 		goto err_uninit;
5621 	}
5622 
5623 	ret = -EBUSY;
5624 	if (!dev->ifindex)
5625 		dev->ifindex = dev_new_index(net);
5626 	else if (__dev_get_by_index(net, dev->ifindex))
5627 		goto err_uninit;
5628 
5629 	if (dev->iflink == -1)
5630 		dev->iflink = dev->ifindex;
5631 
5632 	/* Transfer changeable features to wanted_features and enable
5633 	 * software offloads (GSO and GRO).
5634 	 */
5635 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5636 	dev->features |= NETIF_F_SOFT_FEATURES;
5637 	dev->wanted_features = dev->features & dev->hw_features;
5638 
5639 	/* Turn on no cache copy if HW is doing checksum */
5640 	if (!(dev->flags & IFF_LOOPBACK)) {
5641 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5642 		if (dev->features & NETIF_F_ALL_CSUM) {
5643 			dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5644 			dev->features |= NETIF_F_NOCACHE_COPY;
5645 		}
5646 	}
5647 
5648 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5649 	 */
5650 	dev->vlan_features |= NETIF_F_HIGHDMA;
5651 
5652 	/* Make NETIF_F_SG inheritable to tunnel devices.
5653 	 */
5654 	dev->hw_enc_features |= NETIF_F_SG;
5655 
5656 	/* Make NETIF_F_SG inheritable to MPLS.
5657 	 */
5658 	dev->mpls_features |= NETIF_F_SG;
5659 
5660 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5661 	ret = notifier_to_errno(ret);
5662 	if (ret)
5663 		goto err_uninit;
5664 
5665 	ret = netdev_register_kobject(dev);
5666 	if (ret)
5667 		goto err_uninit;
5668 	dev->reg_state = NETREG_REGISTERED;
5669 
5670 	__netdev_update_features(dev);
5671 
5672 	/*
5673 	 *	Default initial state at registry is that the
5674 	 *	device is present.
5675 	 */
5676 
5677 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5678 
5679 	linkwatch_init_dev(dev);
5680 
5681 	dev_init_scheduler(dev);
5682 	dev_hold(dev);
5683 	list_netdevice(dev);
5684 	add_device_randomness(dev->dev_addr, dev->addr_len);
5685 
5686 	/* If the device has permanent device address, driver should
5687 	 * set dev_addr and also addr_assign_type should be set to
5688 	 * NET_ADDR_PERM (default value).
5689 	 */
5690 	if (dev->addr_assign_type == NET_ADDR_PERM)
5691 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5692 
5693 	/* Notify protocols, that a new device appeared. */
5694 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5695 	ret = notifier_to_errno(ret);
5696 	if (ret) {
5697 		rollback_registered(dev);
5698 		dev->reg_state = NETREG_UNREGISTERED;
5699 	}
5700 	/*
5701 	 *	Prevent userspace races by waiting until the network
5702 	 *	device is fully setup before sending notifications.
5703 	 */
5704 	if (!dev->rtnl_link_ops ||
5705 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5706 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5707 
5708 out:
5709 	return ret;
5710 
5711 err_uninit:
5712 	if (dev->netdev_ops->ndo_uninit)
5713 		dev->netdev_ops->ndo_uninit(dev);
5714 	goto out;
5715 }
5716 EXPORT_SYMBOL(register_netdevice);
5717 
5718 /**
5719  *	init_dummy_netdev	- init a dummy network device for NAPI
5720  *	@dev: device to init
5721  *
5722  *	This takes a network device structure and initialize the minimum
5723  *	amount of fields so it can be used to schedule NAPI polls without
5724  *	registering a full blown interface. This is to be used by drivers
5725  *	that need to tie several hardware interfaces to a single NAPI
5726  *	poll scheduler due to HW limitations.
5727  */
5728 int init_dummy_netdev(struct net_device *dev)
5729 {
5730 	/* Clear everything. Note we don't initialize spinlocks
5731 	 * are they aren't supposed to be taken by any of the
5732 	 * NAPI code and this dummy netdev is supposed to be
5733 	 * only ever used for NAPI polls
5734 	 */
5735 	memset(dev, 0, sizeof(struct net_device));
5736 
5737 	/* make sure we BUG if trying to hit standard
5738 	 * register/unregister code path
5739 	 */
5740 	dev->reg_state = NETREG_DUMMY;
5741 
5742 	/* NAPI wants this */
5743 	INIT_LIST_HEAD(&dev->napi_list);
5744 
5745 	/* a dummy interface is started by default */
5746 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5747 	set_bit(__LINK_STATE_START, &dev->state);
5748 
5749 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5750 	 * because users of this 'device' dont need to change
5751 	 * its refcount.
5752 	 */
5753 
5754 	return 0;
5755 }
5756 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5757 
5758 
5759 /**
5760  *	register_netdev	- register a network device
5761  *	@dev: device to register
5762  *
5763  *	Take a completed network device structure and add it to the kernel
5764  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5765  *	chain. 0 is returned on success. A negative errno code is returned
5766  *	on a failure to set up the device, or if the name is a duplicate.
5767  *
5768  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5769  *	and expands the device name if you passed a format string to
5770  *	alloc_netdev.
5771  */
5772 int register_netdev(struct net_device *dev)
5773 {
5774 	int err;
5775 
5776 	rtnl_lock();
5777 	err = register_netdevice(dev);
5778 	rtnl_unlock();
5779 	return err;
5780 }
5781 EXPORT_SYMBOL(register_netdev);
5782 
5783 int netdev_refcnt_read(const struct net_device *dev)
5784 {
5785 	int i, refcnt = 0;
5786 
5787 	for_each_possible_cpu(i)
5788 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5789 	return refcnt;
5790 }
5791 EXPORT_SYMBOL(netdev_refcnt_read);
5792 
5793 /**
5794  * netdev_wait_allrefs - wait until all references are gone.
5795  * @dev: target net_device
5796  *
5797  * This is called when unregistering network devices.
5798  *
5799  * Any protocol or device that holds a reference should register
5800  * for netdevice notification, and cleanup and put back the
5801  * reference if they receive an UNREGISTER event.
5802  * We can get stuck here if buggy protocols don't correctly
5803  * call dev_put.
5804  */
5805 static void netdev_wait_allrefs(struct net_device *dev)
5806 {
5807 	unsigned long rebroadcast_time, warning_time;
5808 	int refcnt;
5809 
5810 	linkwatch_forget_dev(dev);
5811 
5812 	rebroadcast_time = warning_time = jiffies;
5813 	refcnt = netdev_refcnt_read(dev);
5814 
5815 	while (refcnt != 0) {
5816 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5817 			rtnl_lock();
5818 
5819 			/* Rebroadcast unregister notification */
5820 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5821 
5822 			__rtnl_unlock();
5823 			rcu_barrier();
5824 			rtnl_lock();
5825 
5826 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5827 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5828 				     &dev->state)) {
5829 				/* We must not have linkwatch events
5830 				 * pending on unregister. If this
5831 				 * happens, we simply run the queue
5832 				 * unscheduled, resulting in a noop
5833 				 * for this device.
5834 				 */
5835 				linkwatch_run_queue();
5836 			}
5837 
5838 			__rtnl_unlock();
5839 
5840 			rebroadcast_time = jiffies;
5841 		}
5842 
5843 		msleep(250);
5844 
5845 		refcnt = netdev_refcnt_read(dev);
5846 
5847 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5848 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5849 				 dev->name, refcnt);
5850 			warning_time = jiffies;
5851 		}
5852 	}
5853 }
5854 
5855 /* The sequence is:
5856  *
5857  *	rtnl_lock();
5858  *	...
5859  *	register_netdevice(x1);
5860  *	register_netdevice(x2);
5861  *	...
5862  *	unregister_netdevice(y1);
5863  *	unregister_netdevice(y2);
5864  *      ...
5865  *	rtnl_unlock();
5866  *	free_netdev(y1);
5867  *	free_netdev(y2);
5868  *
5869  * We are invoked by rtnl_unlock().
5870  * This allows us to deal with problems:
5871  * 1) We can delete sysfs objects which invoke hotplug
5872  *    without deadlocking with linkwatch via keventd.
5873  * 2) Since we run with the RTNL semaphore not held, we can sleep
5874  *    safely in order to wait for the netdev refcnt to drop to zero.
5875  *
5876  * We must not return until all unregister events added during
5877  * the interval the lock was held have been completed.
5878  */
5879 void netdev_run_todo(void)
5880 {
5881 	struct list_head list;
5882 
5883 	/* Snapshot list, allow later requests */
5884 	list_replace_init(&net_todo_list, &list);
5885 
5886 	__rtnl_unlock();
5887 
5888 
5889 	/* Wait for rcu callbacks to finish before next phase */
5890 	if (!list_empty(&list))
5891 		rcu_barrier();
5892 
5893 	while (!list_empty(&list)) {
5894 		struct net_device *dev
5895 			= list_first_entry(&list, struct net_device, todo_list);
5896 		list_del(&dev->todo_list);
5897 
5898 		rtnl_lock();
5899 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5900 		__rtnl_unlock();
5901 
5902 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5903 			pr_err("network todo '%s' but state %d\n",
5904 			       dev->name, dev->reg_state);
5905 			dump_stack();
5906 			continue;
5907 		}
5908 
5909 		dev->reg_state = NETREG_UNREGISTERED;
5910 
5911 		on_each_cpu(flush_backlog, dev, 1);
5912 
5913 		netdev_wait_allrefs(dev);
5914 
5915 		/* paranoia */
5916 		BUG_ON(netdev_refcnt_read(dev));
5917 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
5918 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5919 		WARN_ON(dev->dn_ptr);
5920 
5921 		if (dev->destructor)
5922 			dev->destructor(dev);
5923 
5924 		/* Report a network device has been unregistered */
5925 		rtnl_lock();
5926 		dev_net(dev)->dev_unreg_count--;
5927 		__rtnl_unlock();
5928 		wake_up(&netdev_unregistering_wq);
5929 
5930 		/* Free network device */
5931 		kobject_put(&dev->dev.kobj);
5932 	}
5933 }
5934 
5935 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5936  * fields in the same order, with only the type differing.
5937  */
5938 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5939 			     const struct net_device_stats *netdev_stats)
5940 {
5941 #if BITS_PER_LONG == 64
5942 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5943 	memcpy(stats64, netdev_stats, sizeof(*stats64));
5944 #else
5945 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5946 	const unsigned long *src = (const unsigned long *)netdev_stats;
5947 	u64 *dst = (u64 *)stats64;
5948 
5949 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5950 		     sizeof(*stats64) / sizeof(u64));
5951 	for (i = 0; i < n; i++)
5952 		dst[i] = src[i];
5953 #endif
5954 }
5955 EXPORT_SYMBOL(netdev_stats_to_stats64);
5956 
5957 /**
5958  *	dev_get_stats	- get network device statistics
5959  *	@dev: device to get statistics from
5960  *	@storage: place to store stats
5961  *
5962  *	Get network statistics from device. Return @storage.
5963  *	The device driver may provide its own method by setting
5964  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5965  *	otherwise the internal statistics structure is used.
5966  */
5967 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5968 					struct rtnl_link_stats64 *storage)
5969 {
5970 	const struct net_device_ops *ops = dev->netdev_ops;
5971 
5972 	if (ops->ndo_get_stats64) {
5973 		memset(storage, 0, sizeof(*storage));
5974 		ops->ndo_get_stats64(dev, storage);
5975 	} else if (ops->ndo_get_stats) {
5976 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5977 	} else {
5978 		netdev_stats_to_stats64(storage, &dev->stats);
5979 	}
5980 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5981 	return storage;
5982 }
5983 EXPORT_SYMBOL(dev_get_stats);
5984 
5985 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5986 {
5987 	struct netdev_queue *queue = dev_ingress_queue(dev);
5988 
5989 #ifdef CONFIG_NET_CLS_ACT
5990 	if (queue)
5991 		return queue;
5992 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5993 	if (!queue)
5994 		return NULL;
5995 	netdev_init_one_queue(dev, queue, NULL);
5996 	queue->qdisc = &noop_qdisc;
5997 	queue->qdisc_sleeping = &noop_qdisc;
5998 	rcu_assign_pointer(dev->ingress_queue, queue);
5999 #endif
6000 	return queue;
6001 }
6002 
6003 static const struct ethtool_ops default_ethtool_ops;
6004 
6005 void netdev_set_default_ethtool_ops(struct net_device *dev,
6006 				    const struct ethtool_ops *ops)
6007 {
6008 	if (dev->ethtool_ops == &default_ethtool_ops)
6009 		dev->ethtool_ops = ops;
6010 }
6011 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6012 
6013 /**
6014  *	alloc_netdev_mqs - allocate network device
6015  *	@sizeof_priv:	size of private data to allocate space for
6016  *	@name:		device name format string
6017  *	@setup:		callback to initialize device
6018  *	@txqs:		the number of TX subqueues to allocate
6019  *	@rxqs:		the number of RX subqueues to allocate
6020  *
6021  *	Allocates a struct net_device with private data area for driver use
6022  *	and performs basic initialization.  Also allocates subquue structs
6023  *	for each queue on the device.
6024  */
6025 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6026 		void (*setup)(struct net_device *),
6027 		unsigned int txqs, unsigned int rxqs)
6028 {
6029 	struct net_device *dev;
6030 	size_t alloc_size;
6031 	struct net_device *p;
6032 
6033 	BUG_ON(strlen(name) >= sizeof(dev->name));
6034 
6035 	if (txqs < 1) {
6036 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6037 		return NULL;
6038 	}
6039 
6040 #ifdef CONFIG_RPS
6041 	if (rxqs < 1) {
6042 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6043 		return NULL;
6044 	}
6045 #endif
6046 
6047 	alloc_size = sizeof(struct net_device);
6048 	if (sizeof_priv) {
6049 		/* ensure 32-byte alignment of private area */
6050 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6051 		alloc_size += sizeof_priv;
6052 	}
6053 	/* ensure 32-byte alignment of whole construct */
6054 	alloc_size += NETDEV_ALIGN - 1;
6055 
6056 	p = kzalloc(alloc_size, GFP_KERNEL);
6057 	if (!p)
6058 		return NULL;
6059 
6060 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6061 	dev->padded = (char *)dev - (char *)p;
6062 
6063 	dev->pcpu_refcnt = alloc_percpu(int);
6064 	if (!dev->pcpu_refcnt)
6065 		goto free_p;
6066 
6067 	if (dev_addr_init(dev))
6068 		goto free_pcpu;
6069 
6070 	dev_mc_init(dev);
6071 	dev_uc_init(dev);
6072 
6073 	dev_net_set(dev, &init_net);
6074 
6075 	dev->gso_max_size = GSO_MAX_SIZE;
6076 	dev->gso_max_segs = GSO_MAX_SEGS;
6077 
6078 	INIT_LIST_HEAD(&dev->napi_list);
6079 	INIT_LIST_HEAD(&dev->unreg_list);
6080 	INIT_LIST_HEAD(&dev->link_watch_list);
6081 	INIT_LIST_HEAD(&dev->upper_dev_list);
6082 	INIT_LIST_HEAD(&dev->lower_dev_list);
6083 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
6084 	setup(dev);
6085 
6086 	dev->num_tx_queues = txqs;
6087 	dev->real_num_tx_queues = txqs;
6088 	if (netif_alloc_netdev_queues(dev))
6089 		goto free_all;
6090 
6091 #ifdef CONFIG_RPS
6092 	dev->num_rx_queues = rxqs;
6093 	dev->real_num_rx_queues = rxqs;
6094 	if (netif_alloc_rx_queues(dev))
6095 		goto free_all;
6096 #endif
6097 
6098 	strcpy(dev->name, name);
6099 	dev->group = INIT_NETDEV_GROUP;
6100 	if (!dev->ethtool_ops)
6101 		dev->ethtool_ops = &default_ethtool_ops;
6102 	return dev;
6103 
6104 free_all:
6105 	free_netdev(dev);
6106 	return NULL;
6107 
6108 free_pcpu:
6109 	free_percpu(dev->pcpu_refcnt);
6110 	netif_free_tx_queues(dev);
6111 #ifdef CONFIG_RPS
6112 	kfree(dev->_rx);
6113 #endif
6114 
6115 free_p:
6116 	kfree(p);
6117 	return NULL;
6118 }
6119 EXPORT_SYMBOL(alloc_netdev_mqs);
6120 
6121 /**
6122  *	free_netdev - free network device
6123  *	@dev: device
6124  *
6125  *	This function does the last stage of destroying an allocated device
6126  * 	interface. The reference to the device object is released.
6127  *	If this is the last reference then it will be freed.
6128  */
6129 void free_netdev(struct net_device *dev)
6130 {
6131 	struct napi_struct *p, *n;
6132 
6133 	release_net(dev_net(dev));
6134 
6135 	netif_free_tx_queues(dev);
6136 #ifdef CONFIG_RPS
6137 	kfree(dev->_rx);
6138 #endif
6139 
6140 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6141 
6142 	/* Flush device addresses */
6143 	dev_addr_flush(dev);
6144 
6145 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6146 		netif_napi_del(p);
6147 
6148 	free_percpu(dev->pcpu_refcnt);
6149 	dev->pcpu_refcnt = NULL;
6150 
6151 	/*  Compatibility with error handling in drivers */
6152 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6153 		kfree((char *)dev - dev->padded);
6154 		return;
6155 	}
6156 
6157 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6158 	dev->reg_state = NETREG_RELEASED;
6159 
6160 	/* will free via device release */
6161 	put_device(&dev->dev);
6162 }
6163 EXPORT_SYMBOL(free_netdev);
6164 
6165 /**
6166  *	synchronize_net -  Synchronize with packet receive processing
6167  *
6168  *	Wait for packets currently being received to be done.
6169  *	Does not block later packets from starting.
6170  */
6171 void synchronize_net(void)
6172 {
6173 	might_sleep();
6174 	if (rtnl_is_locked())
6175 		synchronize_rcu_expedited();
6176 	else
6177 		synchronize_rcu();
6178 }
6179 EXPORT_SYMBOL(synchronize_net);
6180 
6181 /**
6182  *	unregister_netdevice_queue - remove device from the kernel
6183  *	@dev: device
6184  *	@head: list
6185  *
6186  *	This function shuts down a device interface and removes it
6187  *	from the kernel tables.
6188  *	If head not NULL, device is queued to be unregistered later.
6189  *
6190  *	Callers must hold the rtnl semaphore.  You may want
6191  *	unregister_netdev() instead of this.
6192  */
6193 
6194 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6195 {
6196 	ASSERT_RTNL();
6197 
6198 	if (head) {
6199 		list_move_tail(&dev->unreg_list, head);
6200 	} else {
6201 		rollback_registered(dev);
6202 		/* Finish processing unregister after unlock */
6203 		net_set_todo(dev);
6204 	}
6205 }
6206 EXPORT_SYMBOL(unregister_netdevice_queue);
6207 
6208 /**
6209  *	unregister_netdevice_many - unregister many devices
6210  *	@head: list of devices
6211  */
6212 void unregister_netdevice_many(struct list_head *head)
6213 {
6214 	struct net_device *dev;
6215 
6216 	if (!list_empty(head)) {
6217 		rollback_registered_many(head);
6218 		list_for_each_entry(dev, head, unreg_list)
6219 			net_set_todo(dev);
6220 	}
6221 }
6222 EXPORT_SYMBOL(unregister_netdevice_many);
6223 
6224 /**
6225  *	unregister_netdev - remove device from the kernel
6226  *	@dev: device
6227  *
6228  *	This function shuts down a device interface and removes it
6229  *	from the kernel tables.
6230  *
6231  *	This is just a wrapper for unregister_netdevice that takes
6232  *	the rtnl semaphore.  In general you want to use this and not
6233  *	unregister_netdevice.
6234  */
6235 void unregister_netdev(struct net_device *dev)
6236 {
6237 	rtnl_lock();
6238 	unregister_netdevice(dev);
6239 	rtnl_unlock();
6240 }
6241 EXPORT_SYMBOL(unregister_netdev);
6242 
6243 /**
6244  *	dev_change_net_namespace - move device to different nethost namespace
6245  *	@dev: device
6246  *	@net: network namespace
6247  *	@pat: If not NULL name pattern to try if the current device name
6248  *	      is already taken in the destination network namespace.
6249  *
6250  *	This function shuts down a device interface and moves it
6251  *	to a new network namespace. On success 0 is returned, on
6252  *	a failure a netagive errno code is returned.
6253  *
6254  *	Callers must hold the rtnl semaphore.
6255  */
6256 
6257 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6258 {
6259 	int err;
6260 
6261 	ASSERT_RTNL();
6262 
6263 	/* Don't allow namespace local devices to be moved. */
6264 	err = -EINVAL;
6265 	if (dev->features & NETIF_F_NETNS_LOCAL)
6266 		goto out;
6267 
6268 	/* Ensure the device has been registrered */
6269 	if (dev->reg_state != NETREG_REGISTERED)
6270 		goto out;
6271 
6272 	/* Get out if there is nothing todo */
6273 	err = 0;
6274 	if (net_eq(dev_net(dev), net))
6275 		goto out;
6276 
6277 	/* Pick the destination device name, and ensure
6278 	 * we can use it in the destination network namespace.
6279 	 */
6280 	err = -EEXIST;
6281 	if (__dev_get_by_name(net, dev->name)) {
6282 		/* We get here if we can't use the current device name */
6283 		if (!pat)
6284 			goto out;
6285 		if (dev_get_valid_name(net, dev, pat) < 0)
6286 			goto out;
6287 	}
6288 
6289 	/*
6290 	 * And now a mini version of register_netdevice unregister_netdevice.
6291 	 */
6292 
6293 	/* If device is running close it first. */
6294 	dev_close(dev);
6295 
6296 	/* And unlink it from device chain */
6297 	err = -ENODEV;
6298 	unlist_netdevice(dev);
6299 
6300 	synchronize_net();
6301 
6302 	/* Shutdown queueing discipline. */
6303 	dev_shutdown(dev);
6304 
6305 	/* Notify protocols, that we are about to destroy
6306 	   this device. They should clean all the things.
6307 
6308 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6309 	   This is wanted because this way 8021q and macvlan know
6310 	   the device is just moving and can keep their slaves up.
6311 	*/
6312 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6313 	rcu_barrier();
6314 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6315 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6316 
6317 	/*
6318 	 *	Flush the unicast and multicast chains
6319 	 */
6320 	dev_uc_flush(dev);
6321 	dev_mc_flush(dev);
6322 
6323 	/* Send a netdev-removed uevent to the old namespace */
6324 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6325 
6326 	/* Actually switch the network namespace */
6327 	dev_net_set(dev, net);
6328 
6329 	/* If there is an ifindex conflict assign a new one */
6330 	if (__dev_get_by_index(net, dev->ifindex)) {
6331 		int iflink = (dev->iflink == dev->ifindex);
6332 		dev->ifindex = dev_new_index(net);
6333 		if (iflink)
6334 			dev->iflink = dev->ifindex;
6335 	}
6336 
6337 	/* Send a netdev-add uevent to the new namespace */
6338 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6339 
6340 	/* Fixup kobjects */
6341 	err = device_rename(&dev->dev, dev->name);
6342 	WARN_ON(err);
6343 
6344 	/* Add the device back in the hashes */
6345 	list_netdevice(dev);
6346 
6347 	/* Notify protocols, that a new device appeared. */
6348 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6349 
6350 	/*
6351 	 *	Prevent userspace races by waiting until the network
6352 	 *	device is fully setup before sending notifications.
6353 	 */
6354 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6355 
6356 	synchronize_net();
6357 	err = 0;
6358 out:
6359 	return err;
6360 }
6361 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6362 
6363 static int dev_cpu_callback(struct notifier_block *nfb,
6364 			    unsigned long action,
6365 			    void *ocpu)
6366 {
6367 	struct sk_buff **list_skb;
6368 	struct sk_buff *skb;
6369 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6370 	struct softnet_data *sd, *oldsd;
6371 
6372 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6373 		return NOTIFY_OK;
6374 
6375 	local_irq_disable();
6376 	cpu = smp_processor_id();
6377 	sd = &per_cpu(softnet_data, cpu);
6378 	oldsd = &per_cpu(softnet_data, oldcpu);
6379 
6380 	/* Find end of our completion_queue. */
6381 	list_skb = &sd->completion_queue;
6382 	while (*list_skb)
6383 		list_skb = &(*list_skb)->next;
6384 	/* Append completion queue from offline CPU. */
6385 	*list_skb = oldsd->completion_queue;
6386 	oldsd->completion_queue = NULL;
6387 
6388 	/* Append output queue from offline CPU. */
6389 	if (oldsd->output_queue) {
6390 		*sd->output_queue_tailp = oldsd->output_queue;
6391 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6392 		oldsd->output_queue = NULL;
6393 		oldsd->output_queue_tailp = &oldsd->output_queue;
6394 	}
6395 	/* Append NAPI poll list from offline CPU. */
6396 	if (!list_empty(&oldsd->poll_list)) {
6397 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6398 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6399 	}
6400 
6401 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6402 	local_irq_enable();
6403 
6404 	/* Process offline CPU's input_pkt_queue */
6405 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6406 		netif_rx(skb);
6407 		input_queue_head_incr(oldsd);
6408 	}
6409 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6410 		netif_rx(skb);
6411 		input_queue_head_incr(oldsd);
6412 	}
6413 
6414 	return NOTIFY_OK;
6415 }
6416 
6417 
6418 /**
6419  *	netdev_increment_features - increment feature set by one
6420  *	@all: current feature set
6421  *	@one: new feature set
6422  *	@mask: mask feature set
6423  *
6424  *	Computes a new feature set after adding a device with feature set
6425  *	@one to the master device with current feature set @all.  Will not
6426  *	enable anything that is off in @mask. Returns the new feature set.
6427  */
6428 netdev_features_t netdev_increment_features(netdev_features_t all,
6429 	netdev_features_t one, netdev_features_t mask)
6430 {
6431 	if (mask & NETIF_F_GEN_CSUM)
6432 		mask |= NETIF_F_ALL_CSUM;
6433 	mask |= NETIF_F_VLAN_CHALLENGED;
6434 
6435 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6436 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6437 
6438 	/* If one device supports hw checksumming, set for all. */
6439 	if (all & NETIF_F_GEN_CSUM)
6440 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6441 
6442 	return all;
6443 }
6444 EXPORT_SYMBOL(netdev_increment_features);
6445 
6446 static struct hlist_head * __net_init netdev_create_hash(void)
6447 {
6448 	int i;
6449 	struct hlist_head *hash;
6450 
6451 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6452 	if (hash != NULL)
6453 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6454 			INIT_HLIST_HEAD(&hash[i]);
6455 
6456 	return hash;
6457 }
6458 
6459 /* Initialize per network namespace state */
6460 static int __net_init netdev_init(struct net *net)
6461 {
6462 	if (net != &init_net)
6463 		INIT_LIST_HEAD(&net->dev_base_head);
6464 
6465 	net->dev_name_head = netdev_create_hash();
6466 	if (net->dev_name_head == NULL)
6467 		goto err_name;
6468 
6469 	net->dev_index_head = netdev_create_hash();
6470 	if (net->dev_index_head == NULL)
6471 		goto err_idx;
6472 
6473 	return 0;
6474 
6475 err_idx:
6476 	kfree(net->dev_name_head);
6477 err_name:
6478 	return -ENOMEM;
6479 }
6480 
6481 /**
6482  *	netdev_drivername - network driver for the device
6483  *	@dev: network device
6484  *
6485  *	Determine network driver for device.
6486  */
6487 const char *netdev_drivername(const struct net_device *dev)
6488 {
6489 	const struct device_driver *driver;
6490 	const struct device *parent;
6491 	const char *empty = "";
6492 
6493 	parent = dev->dev.parent;
6494 	if (!parent)
6495 		return empty;
6496 
6497 	driver = parent->driver;
6498 	if (driver && driver->name)
6499 		return driver->name;
6500 	return empty;
6501 }
6502 
6503 static int __netdev_printk(const char *level, const struct net_device *dev,
6504 			   struct va_format *vaf)
6505 {
6506 	int r;
6507 
6508 	if (dev && dev->dev.parent) {
6509 		r = dev_printk_emit(level[1] - '0',
6510 				    dev->dev.parent,
6511 				    "%s %s %s: %pV",
6512 				    dev_driver_string(dev->dev.parent),
6513 				    dev_name(dev->dev.parent),
6514 				    netdev_name(dev), vaf);
6515 	} else if (dev) {
6516 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6517 	} else {
6518 		r = printk("%s(NULL net_device): %pV", level, vaf);
6519 	}
6520 
6521 	return r;
6522 }
6523 
6524 int netdev_printk(const char *level, const struct net_device *dev,
6525 		  const char *format, ...)
6526 {
6527 	struct va_format vaf;
6528 	va_list args;
6529 	int r;
6530 
6531 	va_start(args, format);
6532 
6533 	vaf.fmt = format;
6534 	vaf.va = &args;
6535 
6536 	r = __netdev_printk(level, dev, &vaf);
6537 
6538 	va_end(args);
6539 
6540 	return r;
6541 }
6542 EXPORT_SYMBOL(netdev_printk);
6543 
6544 #define define_netdev_printk_level(func, level)			\
6545 int func(const struct net_device *dev, const char *fmt, ...)	\
6546 {								\
6547 	int r;							\
6548 	struct va_format vaf;					\
6549 	va_list args;						\
6550 								\
6551 	va_start(args, fmt);					\
6552 								\
6553 	vaf.fmt = fmt;						\
6554 	vaf.va = &args;						\
6555 								\
6556 	r = __netdev_printk(level, dev, &vaf);			\
6557 								\
6558 	va_end(args);						\
6559 								\
6560 	return r;						\
6561 }								\
6562 EXPORT_SYMBOL(func);
6563 
6564 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6565 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6566 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6567 define_netdev_printk_level(netdev_err, KERN_ERR);
6568 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6569 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6570 define_netdev_printk_level(netdev_info, KERN_INFO);
6571 
6572 static void __net_exit netdev_exit(struct net *net)
6573 {
6574 	kfree(net->dev_name_head);
6575 	kfree(net->dev_index_head);
6576 }
6577 
6578 static struct pernet_operations __net_initdata netdev_net_ops = {
6579 	.init = netdev_init,
6580 	.exit = netdev_exit,
6581 };
6582 
6583 static void __net_exit default_device_exit(struct net *net)
6584 {
6585 	struct net_device *dev, *aux;
6586 	/*
6587 	 * Push all migratable network devices back to the
6588 	 * initial network namespace
6589 	 */
6590 	rtnl_lock();
6591 	for_each_netdev_safe(net, dev, aux) {
6592 		int err;
6593 		char fb_name[IFNAMSIZ];
6594 
6595 		/* Ignore unmoveable devices (i.e. loopback) */
6596 		if (dev->features & NETIF_F_NETNS_LOCAL)
6597 			continue;
6598 
6599 		/* Leave virtual devices for the generic cleanup */
6600 		if (dev->rtnl_link_ops)
6601 			continue;
6602 
6603 		/* Push remaining network devices to init_net */
6604 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6605 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6606 		if (err) {
6607 			pr_emerg("%s: failed to move %s to init_net: %d\n",
6608 				 __func__, dev->name, err);
6609 			BUG();
6610 		}
6611 	}
6612 	rtnl_unlock();
6613 }
6614 
6615 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
6616 {
6617 	/* Return with the rtnl_lock held when there are no network
6618 	 * devices unregistering in any network namespace in net_list.
6619 	 */
6620 	struct net *net;
6621 	bool unregistering;
6622 	DEFINE_WAIT(wait);
6623 
6624 	for (;;) {
6625 		prepare_to_wait(&netdev_unregistering_wq, &wait,
6626 				TASK_UNINTERRUPTIBLE);
6627 		unregistering = false;
6628 		rtnl_lock();
6629 		list_for_each_entry(net, net_list, exit_list) {
6630 			if (net->dev_unreg_count > 0) {
6631 				unregistering = true;
6632 				break;
6633 			}
6634 		}
6635 		if (!unregistering)
6636 			break;
6637 		__rtnl_unlock();
6638 		schedule();
6639 	}
6640 	finish_wait(&netdev_unregistering_wq, &wait);
6641 }
6642 
6643 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6644 {
6645 	/* At exit all network devices most be removed from a network
6646 	 * namespace.  Do this in the reverse order of registration.
6647 	 * Do this across as many network namespaces as possible to
6648 	 * improve batching efficiency.
6649 	 */
6650 	struct net_device *dev;
6651 	struct net *net;
6652 	LIST_HEAD(dev_kill_list);
6653 
6654 	/* To prevent network device cleanup code from dereferencing
6655 	 * loopback devices or network devices that have been freed
6656 	 * wait here for all pending unregistrations to complete,
6657 	 * before unregistring the loopback device and allowing the
6658 	 * network namespace be freed.
6659 	 *
6660 	 * The netdev todo list containing all network devices
6661 	 * unregistrations that happen in default_device_exit_batch
6662 	 * will run in the rtnl_unlock() at the end of
6663 	 * default_device_exit_batch.
6664 	 */
6665 	rtnl_lock_unregistering(net_list);
6666 	list_for_each_entry(net, net_list, exit_list) {
6667 		for_each_netdev_reverse(net, dev) {
6668 			if (dev->rtnl_link_ops)
6669 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6670 			else
6671 				unregister_netdevice_queue(dev, &dev_kill_list);
6672 		}
6673 	}
6674 	unregister_netdevice_many(&dev_kill_list);
6675 	list_del(&dev_kill_list);
6676 	rtnl_unlock();
6677 }
6678 
6679 static struct pernet_operations __net_initdata default_device_ops = {
6680 	.exit = default_device_exit,
6681 	.exit_batch = default_device_exit_batch,
6682 };
6683 
6684 /*
6685  *	Initialize the DEV module. At boot time this walks the device list and
6686  *	unhooks any devices that fail to initialise (normally hardware not
6687  *	present) and leaves us with a valid list of present and active devices.
6688  *
6689  */
6690 
6691 /*
6692  *       This is called single threaded during boot, so no need
6693  *       to take the rtnl semaphore.
6694  */
6695 static int __init net_dev_init(void)
6696 {
6697 	int i, rc = -ENOMEM;
6698 
6699 	BUG_ON(!dev_boot_phase);
6700 
6701 	if (dev_proc_init())
6702 		goto out;
6703 
6704 	if (netdev_kobject_init())
6705 		goto out;
6706 
6707 	INIT_LIST_HEAD(&ptype_all);
6708 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6709 		INIT_LIST_HEAD(&ptype_base[i]);
6710 
6711 	INIT_LIST_HEAD(&offload_base);
6712 
6713 	if (register_pernet_subsys(&netdev_net_ops))
6714 		goto out;
6715 
6716 	/*
6717 	 *	Initialise the packet receive queues.
6718 	 */
6719 
6720 	for_each_possible_cpu(i) {
6721 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6722 
6723 		memset(sd, 0, sizeof(*sd));
6724 		skb_queue_head_init(&sd->input_pkt_queue);
6725 		skb_queue_head_init(&sd->process_queue);
6726 		sd->completion_queue = NULL;
6727 		INIT_LIST_HEAD(&sd->poll_list);
6728 		sd->output_queue = NULL;
6729 		sd->output_queue_tailp = &sd->output_queue;
6730 #ifdef CONFIG_RPS
6731 		sd->csd.func = rps_trigger_softirq;
6732 		sd->csd.info = sd;
6733 		sd->csd.flags = 0;
6734 		sd->cpu = i;
6735 #endif
6736 
6737 		sd->backlog.poll = process_backlog;
6738 		sd->backlog.weight = weight_p;
6739 		sd->backlog.gro_list = NULL;
6740 		sd->backlog.gro_count = 0;
6741 
6742 #ifdef CONFIG_NET_FLOW_LIMIT
6743 		sd->flow_limit = NULL;
6744 #endif
6745 	}
6746 
6747 	dev_boot_phase = 0;
6748 
6749 	/* The loopback device is special if any other network devices
6750 	 * is present in a network namespace the loopback device must
6751 	 * be present. Since we now dynamically allocate and free the
6752 	 * loopback device ensure this invariant is maintained by
6753 	 * keeping the loopback device as the first device on the
6754 	 * list of network devices.  Ensuring the loopback devices
6755 	 * is the first device that appears and the last network device
6756 	 * that disappears.
6757 	 */
6758 	if (register_pernet_device(&loopback_net_ops))
6759 		goto out;
6760 
6761 	if (register_pernet_device(&default_device_ops))
6762 		goto out;
6763 
6764 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6765 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6766 
6767 	hotcpu_notifier(dev_cpu_callback, 0);
6768 	dst_init();
6769 	rc = 0;
6770 out:
6771 	return rc;
6772 }
6773 
6774 subsys_initcall(net_dev_init);
6775