1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <linux/ipv6.h> 122 #include <linux/in.h> 123 #include <linux/jhash.h> 124 #include <linux/random.h> 125 #include <trace/events/napi.h> 126 #include <trace/events/net.h> 127 #include <trace/events/skb.h> 128 #include <linux/pci.h> 129 #include <linux/inetdevice.h> 130 #include <linux/cpu_rmap.h> 131 #include <linux/static_key.h> 132 #include <linux/hashtable.h> 133 #include <linux/vmalloc.h> 134 135 #include "net-sysfs.h" 136 137 /* Instead of increasing this, you should create a hash table. */ 138 #define MAX_GRO_SKBS 8 139 140 /* This should be increased if a protocol with a bigger head is added. */ 141 #define GRO_MAX_HEAD (MAX_HEADER + 128) 142 143 static DEFINE_SPINLOCK(ptype_lock); 144 static DEFINE_SPINLOCK(offload_lock); 145 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 146 struct list_head ptype_all __read_mostly; /* Taps */ 147 static struct list_head offload_base __read_mostly; 148 149 /* 150 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 151 * semaphore. 152 * 153 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 154 * 155 * Writers must hold the rtnl semaphore while they loop through the 156 * dev_base_head list, and hold dev_base_lock for writing when they do the 157 * actual updates. This allows pure readers to access the list even 158 * while a writer is preparing to update it. 159 * 160 * To put it another way, dev_base_lock is held for writing only to 161 * protect against pure readers; the rtnl semaphore provides the 162 * protection against other writers. 163 * 164 * See, for example usages, register_netdevice() and 165 * unregister_netdevice(), which must be called with the rtnl 166 * semaphore held. 167 */ 168 DEFINE_RWLOCK(dev_base_lock); 169 EXPORT_SYMBOL(dev_base_lock); 170 171 /* protects napi_hash addition/deletion and napi_gen_id */ 172 static DEFINE_SPINLOCK(napi_hash_lock); 173 174 static unsigned int napi_gen_id; 175 static DEFINE_HASHTABLE(napi_hash, 8); 176 177 static seqcount_t devnet_rename_seq; 178 179 static inline void dev_base_seq_inc(struct net *net) 180 { 181 while (++net->dev_base_seq == 0); 182 } 183 184 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 185 { 186 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 187 188 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 189 } 190 191 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 192 { 193 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 194 } 195 196 static inline void rps_lock(struct softnet_data *sd) 197 { 198 #ifdef CONFIG_RPS 199 spin_lock(&sd->input_pkt_queue.lock); 200 #endif 201 } 202 203 static inline void rps_unlock(struct softnet_data *sd) 204 { 205 #ifdef CONFIG_RPS 206 spin_unlock(&sd->input_pkt_queue.lock); 207 #endif 208 } 209 210 /* Device list insertion */ 211 static void list_netdevice(struct net_device *dev) 212 { 213 struct net *net = dev_net(dev); 214 215 ASSERT_RTNL(); 216 217 write_lock_bh(&dev_base_lock); 218 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 219 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 220 hlist_add_head_rcu(&dev->index_hlist, 221 dev_index_hash(net, dev->ifindex)); 222 write_unlock_bh(&dev_base_lock); 223 224 dev_base_seq_inc(net); 225 } 226 227 /* Device list removal 228 * caller must respect a RCU grace period before freeing/reusing dev 229 */ 230 static void unlist_netdevice(struct net_device *dev) 231 { 232 ASSERT_RTNL(); 233 234 /* Unlink dev from the device chain */ 235 write_lock_bh(&dev_base_lock); 236 list_del_rcu(&dev->dev_list); 237 hlist_del_rcu(&dev->name_hlist); 238 hlist_del_rcu(&dev->index_hlist); 239 write_unlock_bh(&dev_base_lock); 240 241 dev_base_seq_inc(dev_net(dev)); 242 } 243 244 /* 245 * Our notifier list 246 */ 247 248 static RAW_NOTIFIER_HEAD(netdev_chain); 249 250 /* 251 * Device drivers call our routines to queue packets here. We empty the 252 * queue in the local softnet handler. 253 */ 254 255 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 256 EXPORT_PER_CPU_SYMBOL(softnet_data); 257 258 #ifdef CONFIG_LOCKDEP 259 /* 260 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 261 * according to dev->type 262 */ 263 static const unsigned short netdev_lock_type[] = 264 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 265 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 266 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 267 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 268 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 269 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 270 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 271 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 272 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 273 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 274 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 275 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 276 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 277 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 278 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 279 280 static const char *const netdev_lock_name[] = 281 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 282 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 283 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 284 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 285 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 286 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 287 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 288 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 289 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 290 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 291 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 292 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 293 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 294 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 295 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 296 297 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 298 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 299 300 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 301 { 302 int i; 303 304 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 305 if (netdev_lock_type[i] == dev_type) 306 return i; 307 /* the last key is used by default */ 308 return ARRAY_SIZE(netdev_lock_type) - 1; 309 } 310 311 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 312 unsigned short dev_type) 313 { 314 int i; 315 316 i = netdev_lock_pos(dev_type); 317 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 318 netdev_lock_name[i]); 319 } 320 321 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 322 { 323 int i; 324 325 i = netdev_lock_pos(dev->type); 326 lockdep_set_class_and_name(&dev->addr_list_lock, 327 &netdev_addr_lock_key[i], 328 netdev_lock_name[i]); 329 } 330 #else 331 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 332 unsigned short dev_type) 333 { 334 } 335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 336 { 337 } 338 #endif 339 340 /******************************************************************************* 341 342 Protocol management and registration routines 343 344 *******************************************************************************/ 345 346 /* 347 * Add a protocol ID to the list. Now that the input handler is 348 * smarter we can dispense with all the messy stuff that used to be 349 * here. 350 * 351 * BEWARE!!! Protocol handlers, mangling input packets, 352 * MUST BE last in hash buckets and checking protocol handlers 353 * MUST start from promiscuous ptype_all chain in net_bh. 354 * It is true now, do not change it. 355 * Explanation follows: if protocol handler, mangling packet, will 356 * be the first on list, it is not able to sense, that packet 357 * is cloned and should be copied-on-write, so that it will 358 * change it and subsequent readers will get broken packet. 359 * --ANK (980803) 360 */ 361 362 static inline struct list_head *ptype_head(const struct packet_type *pt) 363 { 364 if (pt->type == htons(ETH_P_ALL)) 365 return &ptype_all; 366 else 367 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 368 } 369 370 /** 371 * dev_add_pack - add packet handler 372 * @pt: packet type declaration 373 * 374 * Add a protocol handler to the networking stack. The passed &packet_type 375 * is linked into kernel lists and may not be freed until it has been 376 * removed from the kernel lists. 377 * 378 * This call does not sleep therefore it can not 379 * guarantee all CPU's that are in middle of receiving packets 380 * will see the new packet type (until the next received packet). 381 */ 382 383 void dev_add_pack(struct packet_type *pt) 384 { 385 struct list_head *head = ptype_head(pt); 386 387 spin_lock(&ptype_lock); 388 list_add_rcu(&pt->list, head); 389 spin_unlock(&ptype_lock); 390 } 391 EXPORT_SYMBOL(dev_add_pack); 392 393 /** 394 * __dev_remove_pack - remove packet handler 395 * @pt: packet type declaration 396 * 397 * Remove a protocol handler that was previously added to the kernel 398 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 399 * from the kernel lists and can be freed or reused once this function 400 * returns. 401 * 402 * The packet type might still be in use by receivers 403 * and must not be freed until after all the CPU's have gone 404 * through a quiescent state. 405 */ 406 void __dev_remove_pack(struct packet_type *pt) 407 { 408 struct list_head *head = ptype_head(pt); 409 struct packet_type *pt1; 410 411 spin_lock(&ptype_lock); 412 413 list_for_each_entry(pt1, head, list) { 414 if (pt == pt1) { 415 list_del_rcu(&pt->list); 416 goto out; 417 } 418 } 419 420 pr_warn("dev_remove_pack: %p not found\n", pt); 421 out: 422 spin_unlock(&ptype_lock); 423 } 424 EXPORT_SYMBOL(__dev_remove_pack); 425 426 /** 427 * dev_remove_pack - remove packet handler 428 * @pt: packet type declaration 429 * 430 * Remove a protocol handler that was previously added to the kernel 431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 432 * from the kernel lists and can be freed or reused once this function 433 * returns. 434 * 435 * This call sleeps to guarantee that no CPU is looking at the packet 436 * type after return. 437 */ 438 void dev_remove_pack(struct packet_type *pt) 439 { 440 __dev_remove_pack(pt); 441 442 synchronize_net(); 443 } 444 EXPORT_SYMBOL(dev_remove_pack); 445 446 447 /** 448 * dev_add_offload - register offload handlers 449 * @po: protocol offload declaration 450 * 451 * Add protocol offload handlers to the networking stack. The passed 452 * &proto_offload is linked into kernel lists and may not be freed until 453 * it has been removed from the kernel lists. 454 * 455 * This call does not sleep therefore it can not 456 * guarantee all CPU's that are in middle of receiving packets 457 * will see the new offload handlers (until the next received packet). 458 */ 459 void dev_add_offload(struct packet_offload *po) 460 { 461 struct list_head *head = &offload_base; 462 463 spin_lock(&offload_lock); 464 list_add_rcu(&po->list, head); 465 spin_unlock(&offload_lock); 466 } 467 EXPORT_SYMBOL(dev_add_offload); 468 469 /** 470 * __dev_remove_offload - remove offload handler 471 * @po: packet offload declaration 472 * 473 * Remove a protocol offload handler that was previously added to the 474 * kernel offload handlers by dev_add_offload(). The passed &offload_type 475 * is removed from the kernel lists and can be freed or reused once this 476 * function returns. 477 * 478 * The packet type might still be in use by receivers 479 * and must not be freed until after all the CPU's have gone 480 * through a quiescent state. 481 */ 482 void __dev_remove_offload(struct packet_offload *po) 483 { 484 struct list_head *head = &offload_base; 485 struct packet_offload *po1; 486 487 spin_lock(&offload_lock); 488 489 list_for_each_entry(po1, head, list) { 490 if (po == po1) { 491 list_del_rcu(&po->list); 492 goto out; 493 } 494 } 495 496 pr_warn("dev_remove_offload: %p not found\n", po); 497 out: 498 spin_unlock(&offload_lock); 499 } 500 EXPORT_SYMBOL(__dev_remove_offload); 501 502 /** 503 * dev_remove_offload - remove packet offload handler 504 * @po: packet offload declaration 505 * 506 * Remove a packet offload handler that was previously added to the kernel 507 * offload handlers by dev_add_offload(). The passed &offload_type is 508 * removed from the kernel lists and can be freed or reused once this 509 * function returns. 510 * 511 * This call sleeps to guarantee that no CPU is looking at the packet 512 * type after return. 513 */ 514 void dev_remove_offload(struct packet_offload *po) 515 { 516 __dev_remove_offload(po); 517 518 synchronize_net(); 519 } 520 EXPORT_SYMBOL(dev_remove_offload); 521 522 /****************************************************************************** 523 524 Device Boot-time Settings Routines 525 526 *******************************************************************************/ 527 528 /* Boot time configuration table */ 529 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 530 531 /** 532 * netdev_boot_setup_add - add new setup entry 533 * @name: name of the device 534 * @map: configured settings for the device 535 * 536 * Adds new setup entry to the dev_boot_setup list. The function 537 * returns 0 on error and 1 on success. This is a generic routine to 538 * all netdevices. 539 */ 540 static int netdev_boot_setup_add(char *name, struct ifmap *map) 541 { 542 struct netdev_boot_setup *s; 543 int i; 544 545 s = dev_boot_setup; 546 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 547 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 548 memset(s[i].name, 0, sizeof(s[i].name)); 549 strlcpy(s[i].name, name, IFNAMSIZ); 550 memcpy(&s[i].map, map, sizeof(s[i].map)); 551 break; 552 } 553 } 554 555 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 556 } 557 558 /** 559 * netdev_boot_setup_check - check boot time settings 560 * @dev: the netdevice 561 * 562 * Check boot time settings for the device. 563 * The found settings are set for the device to be used 564 * later in the device probing. 565 * Returns 0 if no settings found, 1 if they are. 566 */ 567 int netdev_boot_setup_check(struct net_device *dev) 568 { 569 struct netdev_boot_setup *s = dev_boot_setup; 570 int i; 571 572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 573 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 574 !strcmp(dev->name, s[i].name)) { 575 dev->irq = s[i].map.irq; 576 dev->base_addr = s[i].map.base_addr; 577 dev->mem_start = s[i].map.mem_start; 578 dev->mem_end = s[i].map.mem_end; 579 return 1; 580 } 581 } 582 return 0; 583 } 584 EXPORT_SYMBOL(netdev_boot_setup_check); 585 586 587 /** 588 * netdev_boot_base - get address from boot time settings 589 * @prefix: prefix for network device 590 * @unit: id for network device 591 * 592 * Check boot time settings for the base address of device. 593 * The found settings are set for the device to be used 594 * later in the device probing. 595 * Returns 0 if no settings found. 596 */ 597 unsigned long netdev_boot_base(const char *prefix, int unit) 598 { 599 const struct netdev_boot_setup *s = dev_boot_setup; 600 char name[IFNAMSIZ]; 601 int i; 602 603 sprintf(name, "%s%d", prefix, unit); 604 605 /* 606 * If device already registered then return base of 1 607 * to indicate not to probe for this interface 608 */ 609 if (__dev_get_by_name(&init_net, name)) 610 return 1; 611 612 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 613 if (!strcmp(name, s[i].name)) 614 return s[i].map.base_addr; 615 return 0; 616 } 617 618 /* 619 * Saves at boot time configured settings for any netdevice. 620 */ 621 int __init netdev_boot_setup(char *str) 622 { 623 int ints[5]; 624 struct ifmap map; 625 626 str = get_options(str, ARRAY_SIZE(ints), ints); 627 if (!str || !*str) 628 return 0; 629 630 /* Save settings */ 631 memset(&map, 0, sizeof(map)); 632 if (ints[0] > 0) 633 map.irq = ints[1]; 634 if (ints[0] > 1) 635 map.base_addr = ints[2]; 636 if (ints[0] > 2) 637 map.mem_start = ints[3]; 638 if (ints[0] > 3) 639 map.mem_end = ints[4]; 640 641 /* Add new entry to the list */ 642 return netdev_boot_setup_add(str, &map); 643 } 644 645 __setup("netdev=", netdev_boot_setup); 646 647 /******************************************************************************* 648 649 Device Interface Subroutines 650 651 *******************************************************************************/ 652 653 /** 654 * __dev_get_by_name - find a device by its name 655 * @net: the applicable net namespace 656 * @name: name to find 657 * 658 * Find an interface by name. Must be called under RTNL semaphore 659 * or @dev_base_lock. If the name is found a pointer to the device 660 * is returned. If the name is not found then %NULL is returned. The 661 * reference counters are not incremented so the caller must be 662 * careful with locks. 663 */ 664 665 struct net_device *__dev_get_by_name(struct net *net, const char *name) 666 { 667 struct net_device *dev; 668 struct hlist_head *head = dev_name_hash(net, name); 669 670 hlist_for_each_entry(dev, head, name_hlist) 671 if (!strncmp(dev->name, name, IFNAMSIZ)) 672 return dev; 673 674 return NULL; 675 } 676 EXPORT_SYMBOL(__dev_get_by_name); 677 678 /** 679 * dev_get_by_name_rcu - find a device by its name 680 * @net: the applicable net namespace 681 * @name: name to find 682 * 683 * Find an interface by name. 684 * If the name is found a pointer to the device is returned. 685 * If the name is not found then %NULL is returned. 686 * The reference counters are not incremented so the caller must be 687 * careful with locks. The caller must hold RCU lock. 688 */ 689 690 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 691 { 692 struct net_device *dev; 693 struct hlist_head *head = dev_name_hash(net, name); 694 695 hlist_for_each_entry_rcu(dev, head, name_hlist) 696 if (!strncmp(dev->name, name, IFNAMSIZ)) 697 return dev; 698 699 return NULL; 700 } 701 EXPORT_SYMBOL(dev_get_by_name_rcu); 702 703 /** 704 * dev_get_by_name - find a device by its name 705 * @net: the applicable net namespace 706 * @name: name to find 707 * 708 * Find an interface by name. This can be called from any 709 * context and does its own locking. The returned handle has 710 * the usage count incremented and the caller must use dev_put() to 711 * release it when it is no longer needed. %NULL is returned if no 712 * matching device is found. 713 */ 714 715 struct net_device *dev_get_by_name(struct net *net, const char *name) 716 { 717 struct net_device *dev; 718 719 rcu_read_lock(); 720 dev = dev_get_by_name_rcu(net, name); 721 if (dev) 722 dev_hold(dev); 723 rcu_read_unlock(); 724 return dev; 725 } 726 EXPORT_SYMBOL(dev_get_by_name); 727 728 /** 729 * __dev_get_by_index - find a device by its ifindex 730 * @net: the applicable net namespace 731 * @ifindex: index of device 732 * 733 * Search for an interface by index. Returns %NULL if the device 734 * is not found or a pointer to the device. The device has not 735 * had its reference counter increased so the caller must be careful 736 * about locking. The caller must hold either the RTNL semaphore 737 * or @dev_base_lock. 738 */ 739 740 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 741 { 742 struct net_device *dev; 743 struct hlist_head *head = dev_index_hash(net, ifindex); 744 745 hlist_for_each_entry(dev, head, index_hlist) 746 if (dev->ifindex == ifindex) 747 return dev; 748 749 return NULL; 750 } 751 EXPORT_SYMBOL(__dev_get_by_index); 752 753 /** 754 * dev_get_by_index_rcu - find a device by its ifindex 755 * @net: the applicable net namespace 756 * @ifindex: index of device 757 * 758 * Search for an interface by index. Returns %NULL if the device 759 * is not found or a pointer to the device. The device has not 760 * had its reference counter increased so the caller must be careful 761 * about locking. The caller must hold RCU lock. 762 */ 763 764 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 765 { 766 struct net_device *dev; 767 struct hlist_head *head = dev_index_hash(net, ifindex); 768 769 hlist_for_each_entry_rcu(dev, head, index_hlist) 770 if (dev->ifindex == ifindex) 771 return dev; 772 773 return NULL; 774 } 775 EXPORT_SYMBOL(dev_get_by_index_rcu); 776 777 778 /** 779 * dev_get_by_index - find a device by its ifindex 780 * @net: the applicable net namespace 781 * @ifindex: index of device 782 * 783 * Search for an interface by index. Returns NULL if the device 784 * is not found or a pointer to the device. The device returned has 785 * had a reference added and the pointer is safe until the user calls 786 * dev_put to indicate they have finished with it. 787 */ 788 789 struct net_device *dev_get_by_index(struct net *net, int ifindex) 790 { 791 struct net_device *dev; 792 793 rcu_read_lock(); 794 dev = dev_get_by_index_rcu(net, ifindex); 795 if (dev) 796 dev_hold(dev); 797 rcu_read_unlock(); 798 return dev; 799 } 800 EXPORT_SYMBOL(dev_get_by_index); 801 802 /** 803 * netdev_get_name - get a netdevice name, knowing its ifindex. 804 * @net: network namespace 805 * @name: a pointer to the buffer where the name will be stored. 806 * @ifindex: the ifindex of the interface to get the name from. 807 * 808 * The use of raw_seqcount_begin() and cond_resched() before 809 * retrying is required as we want to give the writers a chance 810 * to complete when CONFIG_PREEMPT is not set. 811 */ 812 int netdev_get_name(struct net *net, char *name, int ifindex) 813 { 814 struct net_device *dev; 815 unsigned int seq; 816 817 retry: 818 seq = raw_seqcount_begin(&devnet_rename_seq); 819 rcu_read_lock(); 820 dev = dev_get_by_index_rcu(net, ifindex); 821 if (!dev) { 822 rcu_read_unlock(); 823 return -ENODEV; 824 } 825 826 strcpy(name, dev->name); 827 rcu_read_unlock(); 828 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 829 cond_resched(); 830 goto retry; 831 } 832 833 return 0; 834 } 835 836 /** 837 * dev_getbyhwaddr_rcu - find a device by its hardware address 838 * @net: the applicable net namespace 839 * @type: media type of device 840 * @ha: hardware address 841 * 842 * Search for an interface by MAC address. Returns NULL if the device 843 * is not found or a pointer to the device. 844 * The caller must hold RCU or RTNL. 845 * The returned device has not had its ref count increased 846 * and the caller must therefore be careful about locking 847 * 848 */ 849 850 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 851 const char *ha) 852 { 853 struct net_device *dev; 854 855 for_each_netdev_rcu(net, dev) 856 if (dev->type == type && 857 !memcmp(dev->dev_addr, ha, dev->addr_len)) 858 return dev; 859 860 return NULL; 861 } 862 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 863 864 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 865 { 866 struct net_device *dev; 867 868 ASSERT_RTNL(); 869 for_each_netdev(net, dev) 870 if (dev->type == type) 871 return dev; 872 873 return NULL; 874 } 875 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 876 877 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 878 { 879 struct net_device *dev, *ret = NULL; 880 881 rcu_read_lock(); 882 for_each_netdev_rcu(net, dev) 883 if (dev->type == type) { 884 dev_hold(dev); 885 ret = dev; 886 break; 887 } 888 rcu_read_unlock(); 889 return ret; 890 } 891 EXPORT_SYMBOL(dev_getfirstbyhwtype); 892 893 /** 894 * dev_get_by_flags_rcu - find any device with given flags 895 * @net: the applicable net namespace 896 * @if_flags: IFF_* values 897 * @mask: bitmask of bits in if_flags to check 898 * 899 * Search for any interface with the given flags. Returns NULL if a device 900 * is not found or a pointer to the device. Must be called inside 901 * rcu_read_lock(), and result refcount is unchanged. 902 */ 903 904 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 905 unsigned short mask) 906 { 907 struct net_device *dev, *ret; 908 909 ret = NULL; 910 for_each_netdev_rcu(net, dev) { 911 if (((dev->flags ^ if_flags) & mask) == 0) { 912 ret = dev; 913 break; 914 } 915 } 916 return ret; 917 } 918 EXPORT_SYMBOL(dev_get_by_flags_rcu); 919 920 /** 921 * dev_valid_name - check if name is okay for network device 922 * @name: name string 923 * 924 * Network device names need to be valid file names to 925 * to allow sysfs to work. We also disallow any kind of 926 * whitespace. 927 */ 928 bool dev_valid_name(const char *name) 929 { 930 if (*name == '\0') 931 return false; 932 if (strlen(name) >= IFNAMSIZ) 933 return false; 934 if (!strcmp(name, ".") || !strcmp(name, "..")) 935 return false; 936 937 while (*name) { 938 if (*name == '/' || isspace(*name)) 939 return false; 940 name++; 941 } 942 return true; 943 } 944 EXPORT_SYMBOL(dev_valid_name); 945 946 /** 947 * __dev_alloc_name - allocate a name for a device 948 * @net: network namespace to allocate the device name in 949 * @name: name format string 950 * @buf: scratch buffer and result name string 951 * 952 * Passed a format string - eg "lt%d" it will try and find a suitable 953 * id. It scans list of devices to build up a free map, then chooses 954 * the first empty slot. The caller must hold the dev_base or rtnl lock 955 * while allocating the name and adding the device in order to avoid 956 * duplicates. 957 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 958 * Returns the number of the unit assigned or a negative errno code. 959 */ 960 961 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 962 { 963 int i = 0; 964 const char *p; 965 const int max_netdevices = 8*PAGE_SIZE; 966 unsigned long *inuse; 967 struct net_device *d; 968 969 p = strnchr(name, IFNAMSIZ-1, '%'); 970 if (p) { 971 /* 972 * Verify the string as this thing may have come from 973 * the user. There must be either one "%d" and no other "%" 974 * characters. 975 */ 976 if (p[1] != 'd' || strchr(p + 2, '%')) 977 return -EINVAL; 978 979 /* Use one page as a bit array of possible slots */ 980 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 981 if (!inuse) 982 return -ENOMEM; 983 984 for_each_netdev(net, d) { 985 if (!sscanf(d->name, name, &i)) 986 continue; 987 if (i < 0 || i >= max_netdevices) 988 continue; 989 990 /* avoid cases where sscanf is not exact inverse of printf */ 991 snprintf(buf, IFNAMSIZ, name, i); 992 if (!strncmp(buf, d->name, IFNAMSIZ)) 993 set_bit(i, inuse); 994 } 995 996 i = find_first_zero_bit(inuse, max_netdevices); 997 free_page((unsigned long) inuse); 998 } 999 1000 if (buf != name) 1001 snprintf(buf, IFNAMSIZ, name, i); 1002 if (!__dev_get_by_name(net, buf)) 1003 return i; 1004 1005 /* It is possible to run out of possible slots 1006 * when the name is long and there isn't enough space left 1007 * for the digits, or if all bits are used. 1008 */ 1009 return -ENFILE; 1010 } 1011 1012 /** 1013 * dev_alloc_name - allocate a name for a device 1014 * @dev: device 1015 * @name: name format string 1016 * 1017 * Passed a format string - eg "lt%d" it will try and find a suitable 1018 * id. It scans list of devices to build up a free map, then chooses 1019 * the first empty slot. The caller must hold the dev_base or rtnl lock 1020 * while allocating the name and adding the device in order to avoid 1021 * duplicates. 1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1023 * Returns the number of the unit assigned or a negative errno code. 1024 */ 1025 1026 int dev_alloc_name(struct net_device *dev, const char *name) 1027 { 1028 char buf[IFNAMSIZ]; 1029 struct net *net; 1030 int ret; 1031 1032 BUG_ON(!dev_net(dev)); 1033 net = dev_net(dev); 1034 ret = __dev_alloc_name(net, name, buf); 1035 if (ret >= 0) 1036 strlcpy(dev->name, buf, IFNAMSIZ); 1037 return ret; 1038 } 1039 EXPORT_SYMBOL(dev_alloc_name); 1040 1041 static int dev_alloc_name_ns(struct net *net, 1042 struct net_device *dev, 1043 const char *name) 1044 { 1045 char buf[IFNAMSIZ]; 1046 int ret; 1047 1048 ret = __dev_alloc_name(net, name, buf); 1049 if (ret >= 0) 1050 strlcpy(dev->name, buf, IFNAMSIZ); 1051 return ret; 1052 } 1053 1054 static int dev_get_valid_name(struct net *net, 1055 struct net_device *dev, 1056 const char *name) 1057 { 1058 BUG_ON(!net); 1059 1060 if (!dev_valid_name(name)) 1061 return -EINVAL; 1062 1063 if (strchr(name, '%')) 1064 return dev_alloc_name_ns(net, dev, name); 1065 else if (__dev_get_by_name(net, name)) 1066 return -EEXIST; 1067 else if (dev->name != name) 1068 strlcpy(dev->name, name, IFNAMSIZ); 1069 1070 return 0; 1071 } 1072 1073 /** 1074 * dev_change_name - change name of a device 1075 * @dev: device 1076 * @newname: name (or format string) must be at least IFNAMSIZ 1077 * 1078 * Change name of a device, can pass format strings "eth%d". 1079 * for wildcarding. 1080 */ 1081 int dev_change_name(struct net_device *dev, const char *newname) 1082 { 1083 char oldname[IFNAMSIZ]; 1084 int err = 0; 1085 int ret; 1086 struct net *net; 1087 1088 ASSERT_RTNL(); 1089 BUG_ON(!dev_net(dev)); 1090 1091 net = dev_net(dev); 1092 if (dev->flags & IFF_UP) 1093 return -EBUSY; 1094 1095 write_seqcount_begin(&devnet_rename_seq); 1096 1097 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1098 write_seqcount_end(&devnet_rename_seq); 1099 return 0; 1100 } 1101 1102 memcpy(oldname, dev->name, IFNAMSIZ); 1103 1104 err = dev_get_valid_name(net, dev, newname); 1105 if (err < 0) { 1106 write_seqcount_end(&devnet_rename_seq); 1107 return err; 1108 } 1109 1110 rollback: 1111 ret = device_rename(&dev->dev, dev->name); 1112 if (ret) { 1113 memcpy(dev->name, oldname, IFNAMSIZ); 1114 write_seqcount_end(&devnet_rename_seq); 1115 return ret; 1116 } 1117 1118 write_seqcount_end(&devnet_rename_seq); 1119 1120 write_lock_bh(&dev_base_lock); 1121 hlist_del_rcu(&dev->name_hlist); 1122 write_unlock_bh(&dev_base_lock); 1123 1124 synchronize_rcu(); 1125 1126 write_lock_bh(&dev_base_lock); 1127 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1128 write_unlock_bh(&dev_base_lock); 1129 1130 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1131 ret = notifier_to_errno(ret); 1132 1133 if (ret) { 1134 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1135 if (err >= 0) { 1136 err = ret; 1137 write_seqcount_begin(&devnet_rename_seq); 1138 memcpy(dev->name, oldname, IFNAMSIZ); 1139 goto rollback; 1140 } else { 1141 pr_err("%s: name change rollback failed: %d\n", 1142 dev->name, ret); 1143 } 1144 } 1145 1146 return err; 1147 } 1148 1149 /** 1150 * dev_set_alias - change ifalias of a device 1151 * @dev: device 1152 * @alias: name up to IFALIASZ 1153 * @len: limit of bytes to copy from info 1154 * 1155 * Set ifalias for a device, 1156 */ 1157 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1158 { 1159 char *new_ifalias; 1160 1161 ASSERT_RTNL(); 1162 1163 if (len >= IFALIASZ) 1164 return -EINVAL; 1165 1166 if (!len) { 1167 kfree(dev->ifalias); 1168 dev->ifalias = NULL; 1169 return 0; 1170 } 1171 1172 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1173 if (!new_ifalias) 1174 return -ENOMEM; 1175 dev->ifalias = new_ifalias; 1176 1177 strlcpy(dev->ifalias, alias, len+1); 1178 return len; 1179 } 1180 1181 1182 /** 1183 * netdev_features_change - device changes features 1184 * @dev: device to cause notification 1185 * 1186 * Called to indicate a device has changed features. 1187 */ 1188 void netdev_features_change(struct net_device *dev) 1189 { 1190 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1191 } 1192 EXPORT_SYMBOL(netdev_features_change); 1193 1194 /** 1195 * netdev_state_change - device changes state 1196 * @dev: device to cause notification 1197 * 1198 * Called to indicate a device has changed state. This function calls 1199 * the notifier chains for netdev_chain and sends a NEWLINK message 1200 * to the routing socket. 1201 */ 1202 void netdev_state_change(struct net_device *dev) 1203 { 1204 if (dev->flags & IFF_UP) { 1205 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1206 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1207 } 1208 } 1209 EXPORT_SYMBOL(netdev_state_change); 1210 1211 /** 1212 * netdev_notify_peers - notify network peers about existence of @dev 1213 * @dev: network device 1214 * 1215 * Generate traffic such that interested network peers are aware of 1216 * @dev, such as by generating a gratuitous ARP. This may be used when 1217 * a device wants to inform the rest of the network about some sort of 1218 * reconfiguration such as a failover event or virtual machine 1219 * migration. 1220 */ 1221 void netdev_notify_peers(struct net_device *dev) 1222 { 1223 rtnl_lock(); 1224 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1225 rtnl_unlock(); 1226 } 1227 EXPORT_SYMBOL(netdev_notify_peers); 1228 1229 static int __dev_open(struct net_device *dev) 1230 { 1231 const struct net_device_ops *ops = dev->netdev_ops; 1232 int ret; 1233 1234 ASSERT_RTNL(); 1235 1236 if (!netif_device_present(dev)) 1237 return -ENODEV; 1238 1239 /* Block netpoll from trying to do any rx path servicing. 1240 * If we don't do this there is a chance ndo_poll_controller 1241 * or ndo_poll may be running while we open the device 1242 */ 1243 netpoll_rx_disable(dev); 1244 1245 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1246 ret = notifier_to_errno(ret); 1247 if (ret) 1248 return ret; 1249 1250 set_bit(__LINK_STATE_START, &dev->state); 1251 1252 if (ops->ndo_validate_addr) 1253 ret = ops->ndo_validate_addr(dev); 1254 1255 if (!ret && ops->ndo_open) 1256 ret = ops->ndo_open(dev); 1257 1258 netpoll_rx_enable(dev); 1259 1260 if (ret) 1261 clear_bit(__LINK_STATE_START, &dev->state); 1262 else { 1263 dev->flags |= IFF_UP; 1264 net_dmaengine_get(); 1265 dev_set_rx_mode(dev); 1266 dev_activate(dev); 1267 add_device_randomness(dev->dev_addr, dev->addr_len); 1268 } 1269 1270 return ret; 1271 } 1272 1273 /** 1274 * dev_open - prepare an interface for use. 1275 * @dev: device to open 1276 * 1277 * Takes a device from down to up state. The device's private open 1278 * function is invoked and then the multicast lists are loaded. Finally 1279 * the device is moved into the up state and a %NETDEV_UP message is 1280 * sent to the netdev notifier chain. 1281 * 1282 * Calling this function on an active interface is a nop. On a failure 1283 * a negative errno code is returned. 1284 */ 1285 int dev_open(struct net_device *dev) 1286 { 1287 int ret; 1288 1289 if (dev->flags & IFF_UP) 1290 return 0; 1291 1292 ret = __dev_open(dev); 1293 if (ret < 0) 1294 return ret; 1295 1296 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1297 call_netdevice_notifiers(NETDEV_UP, dev); 1298 1299 return ret; 1300 } 1301 EXPORT_SYMBOL(dev_open); 1302 1303 static int __dev_close_many(struct list_head *head) 1304 { 1305 struct net_device *dev; 1306 1307 ASSERT_RTNL(); 1308 might_sleep(); 1309 1310 list_for_each_entry(dev, head, unreg_list) { 1311 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1312 1313 clear_bit(__LINK_STATE_START, &dev->state); 1314 1315 /* Synchronize to scheduled poll. We cannot touch poll list, it 1316 * can be even on different cpu. So just clear netif_running(). 1317 * 1318 * dev->stop() will invoke napi_disable() on all of it's 1319 * napi_struct instances on this device. 1320 */ 1321 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1322 } 1323 1324 dev_deactivate_many(head); 1325 1326 list_for_each_entry(dev, head, unreg_list) { 1327 const struct net_device_ops *ops = dev->netdev_ops; 1328 1329 /* 1330 * Call the device specific close. This cannot fail. 1331 * Only if device is UP 1332 * 1333 * We allow it to be called even after a DETACH hot-plug 1334 * event. 1335 */ 1336 if (ops->ndo_stop) 1337 ops->ndo_stop(dev); 1338 1339 dev->flags &= ~IFF_UP; 1340 net_dmaengine_put(); 1341 } 1342 1343 return 0; 1344 } 1345 1346 static int __dev_close(struct net_device *dev) 1347 { 1348 int retval; 1349 LIST_HEAD(single); 1350 1351 /* Temporarily disable netpoll until the interface is down */ 1352 netpoll_rx_disable(dev); 1353 1354 list_add(&dev->unreg_list, &single); 1355 retval = __dev_close_many(&single); 1356 list_del(&single); 1357 1358 netpoll_rx_enable(dev); 1359 return retval; 1360 } 1361 1362 static int dev_close_many(struct list_head *head) 1363 { 1364 struct net_device *dev, *tmp; 1365 LIST_HEAD(tmp_list); 1366 1367 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1368 if (!(dev->flags & IFF_UP)) 1369 list_move(&dev->unreg_list, &tmp_list); 1370 1371 __dev_close_many(head); 1372 1373 list_for_each_entry(dev, head, unreg_list) { 1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1375 call_netdevice_notifiers(NETDEV_DOWN, dev); 1376 } 1377 1378 /* rollback_registered_many needs the complete original list */ 1379 list_splice(&tmp_list, head); 1380 return 0; 1381 } 1382 1383 /** 1384 * dev_close - shutdown an interface. 1385 * @dev: device to shutdown 1386 * 1387 * This function moves an active device into down state. A 1388 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1389 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1390 * chain. 1391 */ 1392 int dev_close(struct net_device *dev) 1393 { 1394 if (dev->flags & IFF_UP) { 1395 LIST_HEAD(single); 1396 1397 /* Block netpoll rx while the interface is going down */ 1398 netpoll_rx_disable(dev); 1399 1400 list_add(&dev->unreg_list, &single); 1401 dev_close_many(&single); 1402 list_del(&single); 1403 1404 netpoll_rx_enable(dev); 1405 } 1406 return 0; 1407 } 1408 EXPORT_SYMBOL(dev_close); 1409 1410 1411 /** 1412 * dev_disable_lro - disable Large Receive Offload on a device 1413 * @dev: device 1414 * 1415 * Disable Large Receive Offload (LRO) on a net device. Must be 1416 * called under RTNL. This is needed if received packets may be 1417 * forwarded to another interface. 1418 */ 1419 void dev_disable_lro(struct net_device *dev) 1420 { 1421 /* 1422 * If we're trying to disable lro on a vlan device 1423 * use the underlying physical device instead 1424 */ 1425 if (is_vlan_dev(dev)) 1426 dev = vlan_dev_real_dev(dev); 1427 1428 dev->wanted_features &= ~NETIF_F_LRO; 1429 netdev_update_features(dev); 1430 1431 if (unlikely(dev->features & NETIF_F_LRO)) 1432 netdev_WARN(dev, "failed to disable LRO!\n"); 1433 } 1434 EXPORT_SYMBOL(dev_disable_lro); 1435 1436 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1437 struct net_device *dev) 1438 { 1439 struct netdev_notifier_info info; 1440 1441 netdev_notifier_info_init(&info, dev); 1442 return nb->notifier_call(nb, val, &info); 1443 } 1444 1445 static int dev_boot_phase = 1; 1446 1447 /** 1448 * register_netdevice_notifier - register a network notifier block 1449 * @nb: notifier 1450 * 1451 * Register a notifier to be called when network device events occur. 1452 * The notifier passed is linked into the kernel structures and must 1453 * not be reused until it has been unregistered. A negative errno code 1454 * is returned on a failure. 1455 * 1456 * When registered all registration and up events are replayed 1457 * to the new notifier to allow device to have a race free 1458 * view of the network device list. 1459 */ 1460 1461 int register_netdevice_notifier(struct notifier_block *nb) 1462 { 1463 struct net_device *dev; 1464 struct net_device *last; 1465 struct net *net; 1466 int err; 1467 1468 rtnl_lock(); 1469 err = raw_notifier_chain_register(&netdev_chain, nb); 1470 if (err) 1471 goto unlock; 1472 if (dev_boot_phase) 1473 goto unlock; 1474 for_each_net(net) { 1475 for_each_netdev(net, dev) { 1476 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1477 err = notifier_to_errno(err); 1478 if (err) 1479 goto rollback; 1480 1481 if (!(dev->flags & IFF_UP)) 1482 continue; 1483 1484 call_netdevice_notifier(nb, NETDEV_UP, dev); 1485 } 1486 } 1487 1488 unlock: 1489 rtnl_unlock(); 1490 return err; 1491 1492 rollback: 1493 last = dev; 1494 for_each_net(net) { 1495 for_each_netdev(net, dev) { 1496 if (dev == last) 1497 goto outroll; 1498 1499 if (dev->flags & IFF_UP) { 1500 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1501 dev); 1502 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1503 } 1504 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1505 } 1506 } 1507 1508 outroll: 1509 raw_notifier_chain_unregister(&netdev_chain, nb); 1510 goto unlock; 1511 } 1512 EXPORT_SYMBOL(register_netdevice_notifier); 1513 1514 /** 1515 * unregister_netdevice_notifier - unregister a network notifier block 1516 * @nb: notifier 1517 * 1518 * Unregister a notifier previously registered by 1519 * register_netdevice_notifier(). The notifier is unlinked into the 1520 * kernel structures and may then be reused. A negative errno code 1521 * is returned on a failure. 1522 * 1523 * After unregistering unregister and down device events are synthesized 1524 * for all devices on the device list to the removed notifier to remove 1525 * the need for special case cleanup code. 1526 */ 1527 1528 int unregister_netdevice_notifier(struct notifier_block *nb) 1529 { 1530 struct net_device *dev; 1531 struct net *net; 1532 int err; 1533 1534 rtnl_lock(); 1535 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1536 if (err) 1537 goto unlock; 1538 1539 for_each_net(net) { 1540 for_each_netdev(net, dev) { 1541 if (dev->flags & IFF_UP) { 1542 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1543 dev); 1544 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1545 } 1546 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1547 } 1548 } 1549 unlock: 1550 rtnl_unlock(); 1551 return err; 1552 } 1553 EXPORT_SYMBOL(unregister_netdevice_notifier); 1554 1555 /** 1556 * call_netdevice_notifiers_info - call all network notifier blocks 1557 * @val: value passed unmodified to notifier function 1558 * @dev: net_device pointer passed unmodified to notifier function 1559 * @info: notifier information data 1560 * 1561 * Call all network notifier blocks. Parameters and return value 1562 * are as for raw_notifier_call_chain(). 1563 */ 1564 1565 int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev, 1566 struct netdev_notifier_info *info) 1567 { 1568 ASSERT_RTNL(); 1569 netdev_notifier_info_init(info, dev); 1570 return raw_notifier_call_chain(&netdev_chain, val, info); 1571 } 1572 EXPORT_SYMBOL(call_netdevice_notifiers_info); 1573 1574 /** 1575 * call_netdevice_notifiers - call all network notifier blocks 1576 * @val: value passed unmodified to notifier function 1577 * @dev: net_device pointer passed unmodified to notifier function 1578 * 1579 * Call all network notifier blocks. Parameters and return value 1580 * are as for raw_notifier_call_chain(). 1581 */ 1582 1583 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1584 { 1585 struct netdev_notifier_info info; 1586 1587 return call_netdevice_notifiers_info(val, dev, &info); 1588 } 1589 EXPORT_SYMBOL(call_netdevice_notifiers); 1590 1591 static struct static_key netstamp_needed __read_mostly; 1592 #ifdef HAVE_JUMP_LABEL 1593 /* We are not allowed to call static_key_slow_dec() from irq context 1594 * If net_disable_timestamp() is called from irq context, defer the 1595 * static_key_slow_dec() calls. 1596 */ 1597 static atomic_t netstamp_needed_deferred; 1598 #endif 1599 1600 void net_enable_timestamp(void) 1601 { 1602 #ifdef HAVE_JUMP_LABEL 1603 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1604 1605 if (deferred) { 1606 while (--deferred) 1607 static_key_slow_dec(&netstamp_needed); 1608 return; 1609 } 1610 #endif 1611 static_key_slow_inc(&netstamp_needed); 1612 } 1613 EXPORT_SYMBOL(net_enable_timestamp); 1614 1615 void net_disable_timestamp(void) 1616 { 1617 #ifdef HAVE_JUMP_LABEL 1618 if (in_interrupt()) { 1619 atomic_inc(&netstamp_needed_deferred); 1620 return; 1621 } 1622 #endif 1623 static_key_slow_dec(&netstamp_needed); 1624 } 1625 EXPORT_SYMBOL(net_disable_timestamp); 1626 1627 static inline void net_timestamp_set(struct sk_buff *skb) 1628 { 1629 skb->tstamp.tv64 = 0; 1630 if (static_key_false(&netstamp_needed)) 1631 __net_timestamp(skb); 1632 } 1633 1634 #define net_timestamp_check(COND, SKB) \ 1635 if (static_key_false(&netstamp_needed)) { \ 1636 if ((COND) && !(SKB)->tstamp.tv64) \ 1637 __net_timestamp(SKB); \ 1638 } \ 1639 1640 static inline bool is_skb_forwardable(struct net_device *dev, 1641 struct sk_buff *skb) 1642 { 1643 unsigned int len; 1644 1645 if (!(dev->flags & IFF_UP)) 1646 return false; 1647 1648 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1649 if (skb->len <= len) 1650 return true; 1651 1652 /* if TSO is enabled, we don't care about the length as the packet 1653 * could be forwarded without being segmented before 1654 */ 1655 if (skb_is_gso(skb)) 1656 return true; 1657 1658 return false; 1659 } 1660 1661 /** 1662 * dev_forward_skb - loopback an skb to another netif 1663 * 1664 * @dev: destination network device 1665 * @skb: buffer to forward 1666 * 1667 * return values: 1668 * NET_RX_SUCCESS (no congestion) 1669 * NET_RX_DROP (packet was dropped, but freed) 1670 * 1671 * dev_forward_skb can be used for injecting an skb from the 1672 * start_xmit function of one device into the receive queue 1673 * of another device. 1674 * 1675 * The receiving device may be in another namespace, so 1676 * we have to clear all information in the skb that could 1677 * impact namespace isolation. 1678 */ 1679 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1680 { 1681 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1682 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1683 atomic_long_inc(&dev->rx_dropped); 1684 kfree_skb(skb); 1685 return NET_RX_DROP; 1686 } 1687 } 1688 1689 if (unlikely(!is_skb_forwardable(dev, skb))) { 1690 atomic_long_inc(&dev->rx_dropped); 1691 kfree_skb(skb); 1692 return NET_RX_DROP; 1693 } 1694 skb->protocol = eth_type_trans(skb, dev); 1695 1696 /* eth_type_trans() can set pkt_type. 1697 * call skb_scrub_packet() after it to clear pkt_type _after_ calling 1698 * eth_type_trans(). 1699 */ 1700 skb_scrub_packet(skb, true); 1701 1702 return netif_rx(skb); 1703 } 1704 EXPORT_SYMBOL_GPL(dev_forward_skb); 1705 1706 static inline int deliver_skb(struct sk_buff *skb, 1707 struct packet_type *pt_prev, 1708 struct net_device *orig_dev) 1709 { 1710 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1711 return -ENOMEM; 1712 atomic_inc(&skb->users); 1713 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1714 } 1715 1716 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1717 { 1718 if (!ptype->af_packet_priv || !skb->sk) 1719 return false; 1720 1721 if (ptype->id_match) 1722 return ptype->id_match(ptype, skb->sk); 1723 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1724 return true; 1725 1726 return false; 1727 } 1728 1729 /* 1730 * Support routine. Sends outgoing frames to any network 1731 * taps currently in use. 1732 */ 1733 1734 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1735 { 1736 struct packet_type *ptype; 1737 struct sk_buff *skb2 = NULL; 1738 struct packet_type *pt_prev = NULL; 1739 1740 rcu_read_lock(); 1741 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1742 /* Never send packets back to the socket 1743 * they originated from - MvS (miquels@drinkel.ow.org) 1744 */ 1745 if ((ptype->dev == dev || !ptype->dev) && 1746 (!skb_loop_sk(ptype, skb))) { 1747 if (pt_prev) { 1748 deliver_skb(skb2, pt_prev, skb->dev); 1749 pt_prev = ptype; 1750 continue; 1751 } 1752 1753 skb2 = skb_clone(skb, GFP_ATOMIC); 1754 if (!skb2) 1755 break; 1756 1757 net_timestamp_set(skb2); 1758 1759 /* skb->nh should be correctly 1760 set by sender, so that the second statement is 1761 just protection against buggy protocols. 1762 */ 1763 skb_reset_mac_header(skb2); 1764 1765 if (skb_network_header(skb2) < skb2->data || 1766 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1767 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1768 ntohs(skb2->protocol), 1769 dev->name); 1770 skb_reset_network_header(skb2); 1771 } 1772 1773 skb2->transport_header = skb2->network_header; 1774 skb2->pkt_type = PACKET_OUTGOING; 1775 pt_prev = ptype; 1776 } 1777 } 1778 if (pt_prev) 1779 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1780 rcu_read_unlock(); 1781 } 1782 1783 /** 1784 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1785 * @dev: Network device 1786 * @txq: number of queues available 1787 * 1788 * If real_num_tx_queues is changed the tc mappings may no longer be 1789 * valid. To resolve this verify the tc mapping remains valid and if 1790 * not NULL the mapping. With no priorities mapping to this 1791 * offset/count pair it will no longer be used. In the worst case TC0 1792 * is invalid nothing can be done so disable priority mappings. If is 1793 * expected that drivers will fix this mapping if they can before 1794 * calling netif_set_real_num_tx_queues. 1795 */ 1796 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1797 { 1798 int i; 1799 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1800 1801 /* If TC0 is invalidated disable TC mapping */ 1802 if (tc->offset + tc->count > txq) { 1803 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1804 dev->num_tc = 0; 1805 return; 1806 } 1807 1808 /* Invalidated prio to tc mappings set to TC0 */ 1809 for (i = 1; i < TC_BITMASK + 1; i++) { 1810 int q = netdev_get_prio_tc_map(dev, i); 1811 1812 tc = &dev->tc_to_txq[q]; 1813 if (tc->offset + tc->count > txq) { 1814 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1815 i, q); 1816 netdev_set_prio_tc_map(dev, i, 0); 1817 } 1818 } 1819 } 1820 1821 #ifdef CONFIG_XPS 1822 static DEFINE_MUTEX(xps_map_mutex); 1823 #define xmap_dereference(P) \ 1824 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1825 1826 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1827 int cpu, u16 index) 1828 { 1829 struct xps_map *map = NULL; 1830 int pos; 1831 1832 if (dev_maps) 1833 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1834 1835 for (pos = 0; map && pos < map->len; pos++) { 1836 if (map->queues[pos] == index) { 1837 if (map->len > 1) { 1838 map->queues[pos] = map->queues[--map->len]; 1839 } else { 1840 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1841 kfree_rcu(map, rcu); 1842 map = NULL; 1843 } 1844 break; 1845 } 1846 } 1847 1848 return map; 1849 } 1850 1851 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1852 { 1853 struct xps_dev_maps *dev_maps; 1854 int cpu, i; 1855 bool active = false; 1856 1857 mutex_lock(&xps_map_mutex); 1858 dev_maps = xmap_dereference(dev->xps_maps); 1859 1860 if (!dev_maps) 1861 goto out_no_maps; 1862 1863 for_each_possible_cpu(cpu) { 1864 for (i = index; i < dev->num_tx_queues; i++) { 1865 if (!remove_xps_queue(dev_maps, cpu, i)) 1866 break; 1867 } 1868 if (i == dev->num_tx_queues) 1869 active = true; 1870 } 1871 1872 if (!active) { 1873 RCU_INIT_POINTER(dev->xps_maps, NULL); 1874 kfree_rcu(dev_maps, rcu); 1875 } 1876 1877 for (i = index; i < dev->num_tx_queues; i++) 1878 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1879 NUMA_NO_NODE); 1880 1881 out_no_maps: 1882 mutex_unlock(&xps_map_mutex); 1883 } 1884 1885 static struct xps_map *expand_xps_map(struct xps_map *map, 1886 int cpu, u16 index) 1887 { 1888 struct xps_map *new_map; 1889 int alloc_len = XPS_MIN_MAP_ALLOC; 1890 int i, pos; 1891 1892 for (pos = 0; map && pos < map->len; pos++) { 1893 if (map->queues[pos] != index) 1894 continue; 1895 return map; 1896 } 1897 1898 /* Need to add queue to this CPU's existing map */ 1899 if (map) { 1900 if (pos < map->alloc_len) 1901 return map; 1902 1903 alloc_len = map->alloc_len * 2; 1904 } 1905 1906 /* Need to allocate new map to store queue on this CPU's map */ 1907 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1908 cpu_to_node(cpu)); 1909 if (!new_map) 1910 return NULL; 1911 1912 for (i = 0; i < pos; i++) 1913 new_map->queues[i] = map->queues[i]; 1914 new_map->alloc_len = alloc_len; 1915 new_map->len = pos; 1916 1917 return new_map; 1918 } 1919 1920 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 1921 u16 index) 1922 { 1923 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1924 struct xps_map *map, *new_map; 1925 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1926 int cpu, numa_node_id = -2; 1927 bool active = false; 1928 1929 mutex_lock(&xps_map_mutex); 1930 1931 dev_maps = xmap_dereference(dev->xps_maps); 1932 1933 /* allocate memory for queue storage */ 1934 for_each_online_cpu(cpu) { 1935 if (!cpumask_test_cpu(cpu, mask)) 1936 continue; 1937 1938 if (!new_dev_maps) 1939 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1940 if (!new_dev_maps) { 1941 mutex_unlock(&xps_map_mutex); 1942 return -ENOMEM; 1943 } 1944 1945 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1946 NULL; 1947 1948 map = expand_xps_map(map, cpu, index); 1949 if (!map) 1950 goto error; 1951 1952 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1953 } 1954 1955 if (!new_dev_maps) 1956 goto out_no_new_maps; 1957 1958 for_each_possible_cpu(cpu) { 1959 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 1960 /* add queue to CPU maps */ 1961 int pos = 0; 1962 1963 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1964 while ((pos < map->len) && (map->queues[pos] != index)) 1965 pos++; 1966 1967 if (pos == map->len) 1968 map->queues[map->len++] = index; 1969 #ifdef CONFIG_NUMA 1970 if (numa_node_id == -2) 1971 numa_node_id = cpu_to_node(cpu); 1972 else if (numa_node_id != cpu_to_node(cpu)) 1973 numa_node_id = -1; 1974 #endif 1975 } else if (dev_maps) { 1976 /* fill in the new device map from the old device map */ 1977 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1978 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1979 } 1980 1981 } 1982 1983 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 1984 1985 /* Cleanup old maps */ 1986 if (dev_maps) { 1987 for_each_possible_cpu(cpu) { 1988 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1989 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1990 if (map && map != new_map) 1991 kfree_rcu(map, rcu); 1992 } 1993 1994 kfree_rcu(dev_maps, rcu); 1995 } 1996 1997 dev_maps = new_dev_maps; 1998 active = true; 1999 2000 out_no_new_maps: 2001 /* update Tx queue numa node */ 2002 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2003 (numa_node_id >= 0) ? numa_node_id : 2004 NUMA_NO_NODE); 2005 2006 if (!dev_maps) 2007 goto out_no_maps; 2008 2009 /* removes queue from unused CPUs */ 2010 for_each_possible_cpu(cpu) { 2011 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2012 continue; 2013 2014 if (remove_xps_queue(dev_maps, cpu, index)) 2015 active = true; 2016 } 2017 2018 /* free map if not active */ 2019 if (!active) { 2020 RCU_INIT_POINTER(dev->xps_maps, NULL); 2021 kfree_rcu(dev_maps, rcu); 2022 } 2023 2024 out_no_maps: 2025 mutex_unlock(&xps_map_mutex); 2026 2027 return 0; 2028 error: 2029 /* remove any maps that we added */ 2030 for_each_possible_cpu(cpu) { 2031 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2032 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2033 NULL; 2034 if (new_map && new_map != map) 2035 kfree(new_map); 2036 } 2037 2038 mutex_unlock(&xps_map_mutex); 2039 2040 kfree(new_dev_maps); 2041 return -ENOMEM; 2042 } 2043 EXPORT_SYMBOL(netif_set_xps_queue); 2044 2045 #endif 2046 /* 2047 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2048 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2049 */ 2050 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2051 { 2052 int rc; 2053 2054 if (txq < 1 || txq > dev->num_tx_queues) 2055 return -EINVAL; 2056 2057 if (dev->reg_state == NETREG_REGISTERED || 2058 dev->reg_state == NETREG_UNREGISTERING) { 2059 ASSERT_RTNL(); 2060 2061 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2062 txq); 2063 if (rc) 2064 return rc; 2065 2066 if (dev->num_tc) 2067 netif_setup_tc(dev, txq); 2068 2069 if (txq < dev->real_num_tx_queues) { 2070 qdisc_reset_all_tx_gt(dev, txq); 2071 #ifdef CONFIG_XPS 2072 netif_reset_xps_queues_gt(dev, txq); 2073 #endif 2074 } 2075 } 2076 2077 dev->real_num_tx_queues = txq; 2078 return 0; 2079 } 2080 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2081 2082 #ifdef CONFIG_RPS 2083 /** 2084 * netif_set_real_num_rx_queues - set actual number of RX queues used 2085 * @dev: Network device 2086 * @rxq: Actual number of RX queues 2087 * 2088 * This must be called either with the rtnl_lock held or before 2089 * registration of the net device. Returns 0 on success, or a 2090 * negative error code. If called before registration, it always 2091 * succeeds. 2092 */ 2093 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2094 { 2095 int rc; 2096 2097 if (rxq < 1 || rxq > dev->num_rx_queues) 2098 return -EINVAL; 2099 2100 if (dev->reg_state == NETREG_REGISTERED) { 2101 ASSERT_RTNL(); 2102 2103 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2104 rxq); 2105 if (rc) 2106 return rc; 2107 } 2108 2109 dev->real_num_rx_queues = rxq; 2110 return 0; 2111 } 2112 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2113 #endif 2114 2115 /** 2116 * netif_get_num_default_rss_queues - default number of RSS queues 2117 * 2118 * This routine should set an upper limit on the number of RSS queues 2119 * used by default by multiqueue devices. 2120 */ 2121 int netif_get_num_default_rss_queues(void) 2122 { 2123 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2124 } 2125 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2126 2127 static inline void __netif_reschedule(struct Qdisc *q) 2128 { 2129 struct softnet_data *sd; 2130 unsigned long flags; 2131 2132 local_irq_save(flags); 2133 sd = &__get_cpu_var(softnet_data); 2134 q->next_sched = NULL; 2135 *sd->output_queue_tailp = q; 2136 sd->output_queue_tailp = &q->next_sched; 2137 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2138 local_irq_restore(flags); 2139 } 2140 2141 void __netif_schedule(struct Qdisc *q) 2142 { 2143 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2144 __netif_reschedule(q); 2145 } 2146 EXPORT_SYMBOL(__netif_schedule); 2147 2148 void dev_kfree_skb_irq(struct sk_buff *skb) 2149 { 2150 if (atomic_dec_and_test(&skb->users)) { 2151 struct softnet_data *sd; 2152 unsigned long flags; 2153 2154 local_irq_save(flags); 2155 sd = &__get_cpu_var(softnet_data); 2156 skb->next = sd->completion_queue; 2157 sd->completion_queue = skb; 2158 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2159 local_irq_restore(flags); 2160 } 2161 } 2162 EXPORT_SYMBOL(dev_kfree_skb_irq); 2163 2164 void dev_kfree_skb_any(struct sk_buff *skb) 2165 { 2166 if (in_irq() || irqs_disabled()) 2167 dev_kfree_skb_irq(skb); 2168 else 2169 dev_kfree_skb(skb); 2170 } 2171 EXPORT_SYMBOL(dev_kfree_skb_any); 2172 2173 2174 /** 2175 * netif_device_detach - mark device as removed 2176 * @dev: network device 2177 * 2178 * Mark device as removed from system and therefore no longer available. 2179 */ 2180 void netif_device_detach(struct net_device *dev) 2181 { 2182 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2183 netif_running(dev)) { 2184 netif_tx_stop_all_queues(dev); 2185 } 2186 } 2187 EXPORT_SYMBOL(netif_device_detach); 2188 2189 /** 2190 * netif_device_attach - mark device as attached 2191 * @dev: network device 2192 * 2193 * Mark device as attached from system and restart if needed. 2194 */ 2195 void netif_device_attach(struct net_device *dev) 2196 { 2197 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2198 netif_running(dev)) { 2199 netif_tx_wake_all_queues(dev); 2200 __netdev_watchdog_up(dev); 2201 } 2202 } 2203 EXPORT_SYMBOL(netif_device_attach); 2204 2205 static void skb_warn_bad_offload(const struct sk_buff *skb) 2206 { 2207 static const netdev_features_t null_features = 0; 2208 struct net_device *dev = skb->dev; 2209 const char *driver = ""; 2210 2211 if (!net_ratelimit()) 2212 return; 2213 2214 if (dev && dev->dev.parent) 2215 driver = dev_driver_string(dev->dev.parent); 2216 2217 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2218 "gso_type=%d ip_summed=%d\n", 2219 driver, dev ? &dev->features : &null_features, 2220 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2221 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2222 skb_shinfo(skb)->gso_type, skb->ip_summed); 2223 } 2224 2225 /* 2226 * Invalidate hardware checksum when packet is to be mangled, and 2227 * complete checksum manually on outgoing path. 2228 */ 2229 int skb_checksum_help(struct sk_buff *skb) 2230 { 2231 __wsum csum; 2232 int ret = 0, offset; 2233 2234 if (skb->ip_summed == CHECKSUM_COMPLETE) 2235 goto out_set_summed; 2236 2237 if (unlikely(skb_shinfo(skb)->gso_size)) { 2238 skb_warn_bad_offload(skb); 2239 return -EINVAL; 2240 } 2241 2242 /* Before computing a checksum, we should make sure no frag could 2243 * be modified by an external entity : checksum could be wrong. 2244 */ 2245 if (skb_has_shared_frag(skb)) { 2246 ret = __skb_linearize(skb); 2247 if (ret) 2248 goto out; 2249 } 2250 2251 offset = skb_checksum_start_offset(skb); 2252 BUG_ON(offset >= skb_headlen(skb)); 2253 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2254 2255 offset += skb->csum_offset; 2256 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2257 2258 if (skb_cloned(skb) && 2259 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2260 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2261 if (ret) 2262 goto out; 2263 } 2264 2265 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2266 out_set_summed: 2267 skb->ip_summed = CHECKSUM_NONE; 2268 out: 2269 return ret; 2270 } 2271 EXPORT_SYMBOL(skb_checksum_help); 2272 2273 __be16 skb_network_protocol(struct sk_buff *skb) 2274 { 2275 __be16 type = skb->protocol; 2276 int vlan_depth = ETH_HLEN; 2277 2278 /* Tunnel gso handlers can set protocol to ethernet. */ 2279 if (type == htons(ETH_P_TEB)) { 2280 struct ethhdr *eth; 2281 2282 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2283 return 0; 2284 2285 eth = (struct ethhdr *)skb_mac_header(skb); 2286 type = eth->h_proto; 2287 } 2288 2289 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) { 2290 struct vlan_hdr *vh; 2291 2292 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 2293 return 0; 2294 2295 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2296 type = vh->h_vlan_encapsulated_proto; 2297 vlan_depth += VLAN_HLEN; 2298 } 2299 2300 return type; 2301 } 2302 2303 /** 2304 * skb_mac_gso_segment - mac layer segmentation handler. 2305 * @skb: buffer to segment 2306 * @features: features for the output path (see dev->features) 2307 */ 2308 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2309 netdev_features_t features) 2310 { 2311 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2312 struct packet_offload *ptype; 2313 __be16 type = skb_network_protocol(skb); 2314 2315 if (unlikely(!type)) 2316 return ERR_PTR(-EINVAL); 2317 2318 __skb_pull(skb, skb->mac_len); 2319 2320 rcu_read_lock(); 2321 list_for_each_entry_rcu(ptype, &offload_base, list) { 2322 if (ptype->type == type && ptype->callbacks.gso_segment) { 2323 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2324 int err; 2325 2326 err = ptype->callbacks.gso_send_check(skb); 2327 segs = ERR_PTR(err); 2328 if (err || skb_gso_ok(skb, features)) 2329 break; 2330 __skb_push(skb, (skb->data - 2331 skb_network_header(skb))); 2332 } 2333 segs = ptype->callbacks.gso_segment(skb, features); 2334 break; 2335 } 2336 } 2337 rcu_read_unlock(); 2338 2339 __skb_push(skb, skb->data - skb_mac_header(skb)); 2340 2341 return segs; 2342 } 2343 EXPORT_SYMBOL(skb_mac_gso_segment); 2344 2345 2346 /* openvswitch calls this on rx path, so we need a different check. 2347 */ 2348 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2349 { 2350 if (tx_path) 2351 return skb->ip_summed != CHECKSUM_PARTIAL; 2352 else 2353 return skb->ip_summed == CHECKSUM_NONE; 2354 } 2355 2356 /** 2357 * __skb_gso_segment - Perform segmentation on skb. 2358 * @skb: buffer to segment 2359 * @features: features for the output path (see dev->features) 2360 * @tx_path: whether it is called in TX path 2361 * 2362 * This function segments the given skb and returns a list of segments. 2363 * 2364 * It may return NULL if the skb requires no segmentation. This is 2365 * only possible when GSO is used for verifying header integrity. 2366 */ 2367 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2368 netdev_features_t features, bool tx_path) 2369 { 2370 if (unlikely(skb_needs_check(skb, tx_path))) { 2371 int err; 2372 2373 skb_warn_bad_offload(skb); 2374 2375 if (skb_header_cloned(skb) && 2376 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 2377 return ERR_PTR(err); 2378 } 2379 2380 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2381 skb_reset_mac_header(skb); 2382 skb_reset_mac_len(skb); 2383 2384 return skb_mac_gso_segment(skb, features); 2385 } 2386 EXPORT_SYMBOL(__skb_gso_segment); 2387 2388 /* Take action when hardware reception checksum errors are detected. */ 2389 #ifdef CONFIG_BUG 2390 void netdev_rx_csum_fault(struct net_device *dev) 2391 { 2392 if (net_ratelimit()) { 2393 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2394 dump_stack(); 2395 } 2396 } 2397 EXPORT_SYMBOL(netdev_rx_csum_fault); 2398 #endif 2399 2400 /* Actually, we should eliminate this check as soon as we know, that: 2401 * 1. IOMMU is present and allows to map all the memory. 2402 * 2. No high memory really exists on this machine. 2403 */ 2404 2405 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2406 { 2407 #ifdef CONFIG_HIGHMEM 2408 int i; 2409 if (!(dev->features & NETIF_F_HIGHDMA)) { 2410 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2411 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2412 if (PageHighMem(skb_frag_page(frag))) 2413 return 1; 2414 } 2415 } 2416 2417 if (PCI_DMA_BUS_IS_PHYS) { 2418 struct device *pdev = dev->dev.parent; 2419 2420 if (!pdev) 2421 return 0; 2422 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2423 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2424 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2425 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2426 return 1; 2427 } 2428 } 2429 #endif 2430 return 0; 2431 } 2432 2433 struct dev_gso_cb { 2434 void (*destructor)(struct sk_buff *skb); 2435 }; 2436 2437 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2438 2439 static void dev_gso_skb_destructor(struct sk_buff *skb) 2440 { 2441 struct dev_gso_cb *cb; 2442 2443 do { 2444 struct sk_buff *nskb = skb->next; 2445 2446 skb->next = nskb->next; 2447 nskb->next = NULL; 2448 kfree_skb(nskb); 2449 } while (skb->next); 2450 2451 cb = DEV_GSO_CB(skb); 2452 if (cb->destructor) 2453 cb->destructor(skb); 2454 } 2455 2456 /** 2457 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2458 * @skb: buffer to segment 2459 * @features: device features as applicable to this skb 2460 * 2461 * This function segments the given skb and stores the list of segments 2462 * in skb->next. 2463 */ 2464 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2465 { 2466 struct sk_buff *segs; 2467 2468 segs = skb_gso_segment(skb, features); 2469 2470 /* Verifying header integrity only. */ 2471 if (!segs) 2472 return 0; 2473 2474 if (IS_ERR(segs)) 2475 return PTR_ERR(segs); 2476 2477 skb->next = segs; 2478 DEV_GSO_CB(skb)->destructor = skb->destructor; 2479 skb->destructor = dev_gso_skb_destructor; 2480 2481 return 0; 2482 } 2483 2484 static netdev_features_t harmonize_features(struct sk_buff *skb, 2485 netdev_features_t features) 2486 { 2487 if (skb->ip_summed != CHECKSUM_NONE && 2488 !can_checksum_protocol(features, skb_network_protocol(skb))) { 2489 features &= ~NETIF_F_ALL_CSUM; 2490 } else if (illegal_highdma(skb->dev, skb)) { 2491 features &= ~NETIF_F_SG; 2492 } 2493 2494 return features; 2495 } 2496 2497 netdev_features_t netif_skb_features(struct sk_buff *skb) 2498 { 2499 __be16 protocol = skb->protocol; 2500 netdev_features_t features = skb->dev->features; 2501 2502 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs) 2503 features &= ~NETIF_F_GSO_MASK; 2504 2505 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) { 2506 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2507 protocol = veh->h_vlan_encapsulated_proto; 2508 } else if (!vlan_tx_tag_present(skb)) { 2509 return harmonize_features(skb, features); 2510 } 2511 2512 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX | 2513 NETIF_F_HW_VLAN_STAG_TX); 2514 2515 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) 2516 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2517 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX | 2518 NETIF_F_HW_VLAN_STAG_TX; 2519 2520 return harmonize_features(skb, features); 2521 } 2522 EXPORT_SYMBOL(netif_skb_features); 2523 2524 /* 2525 * Returns true if either: 2526 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2527 * 2. skb is fragmented and the device does not support SG. 2528 */ 2529 static inline int skb_needs_linearize(struct sk_buff *skb, 2530 netdev_features_t features) 2531 { 2532 return skb_is_nonlinear(skb) && 2533 ((skb_has_frag_list(skb) && 2534 !(features & NETIF_F_FRAGLIST)) || 2535 (skb_shinfo(skb)->nr_frags && 2536 !(features & NETIF_F_SG))); 2537 } 2538 2539 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2540 struct netdev_queue *txq) 2541 { 2542 const struct net_device_ops *ops = dev->netdev_ops; 2543 int rc = NETDEV_TX_OK; 2544 unsigned int skb_len; 2545 2546 if (likely(!skb->next)) { 2547 netdev_features_t features; 2548 2549 /* 2550 * If device doesn't need skb->dst, release it right now while 2551 * its hot in this cpu cache 2552 */ 2553 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2554 skb_dst_drop(skb); 2555 2556 features = netif_skb_features(skb); 2557 2558 if (vlan_tx_tag_present(skb) && 2559 !vlan_hw_offload_capable(features, skb->vlan_proto)) { 2560 skb = __vlan_put_tag(skb, skb->vlan_proto, 2561 vlan_tx_tag_get(skb)); 2562 if (unlikely(!skb)) 2563 goto out; 2564 2565 skb->vlan_tci = 0; 2566 } 2567 2568 /* If encapsulation offload request, verify we are testing 2569 * hardware encapsulation features instead of standard 2570 * features for the netdev 2571 */ 2572 if (skb->encapsulation) 2573 features &= dev->hw_enc_features; 2574 2575 if (netif_needs_gso(skb, features)) { 2576 if (unlikely(dev_gso_segment(skb, features))) 2577 goto out_kfree_skb; 2578 if (skb->next) 2579 goto gso; 2580 } else { 2581 if (skb_needs_linearize(skb, features) && 2582 __skb_linearize(skb)) 2583 goto out_kfree_skb; 2584 2585 /* If packet is not checksummed and device does not 2586 * support checksumming for this protocol, complete 2587 * checksumming here. 2588 */ 2589 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2590 if (skb->encapsulation) 2591 skb_set_inner_transport_header(skb, 2592 skb_checksum_start_offset(skb)); 2593 else 2594 skb_set_transport_header(skb, 2595 skb_checksum_start_offset(skb)); 2596 if (!(features & NETIF_F_ALL_CSUM) && 2597 skb_checksum_help(skb)) 2598 goto out_kfree_skb; 2599 } 2600 } 2601 2602 if (!list_empty(&ptype_all)) 2603 dev_queue_xmit_nit(skb, dev); 2604 2605 skb_len = skb->len; 2606 rc = ops->ndo_start_xmit(skb, dev); 2607 trace_net_dev_xmit(skb, rc, dev, skb_len); 2608 if (rc == NETDEV_TX_OK) 2609 txq_trans_update(txq); 2610 return rc; 2611 } 2612 2613 gso: 2614 do { 2615 struct sk_buff *nskb = skb->next; 2616 2617 skb->next = nskb->next; 2618 nskb->next = NULL; 2619 2620 if (!list_empty(&ptype_all)) 2621 dev_queue_xmit_nit(nskb, dev); 2622 2623 skb_len = nskb->len; 2624 rc = ops->ndo_start_xmit(nskb, dev); 2625 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2626 if (unlikely(rc != NETDEV_TX_OK)) { 2627 if (rc & ~NETDEV_TX_MASK) 2628 goto out_kfree_gso_skb; 2629 nskb->next = skb->next; 2630 skb->next = nskb; 2631 return rc; 2632 } 2633 txq_trans_update(txq); 2634 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2635 return NETDEV_TX_BUSY; 2636 } while (skb->next); 2637 2638 out_kfree_gso_skb: 2639 if (likely(skb->next == NULL)) { 2640 skb->destructor = DEV_GSO_CB(skb)->destructor; 2641 consume_skb(skb); 2642 return rc; 2643 } 2644 out_kfree_skb: 2645 kfree_skb(skb); 2646 out: 2647 return rc; 2648 } 2649 2650 static void qdisc_pkt_len_init(struct sk_buff *skb) 2651 { 2652 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2653 2654 qdisc_skb_cb(skb)->pkt_len = skb->len; 2655 2656 /* To get more precise estimation of bytes sent on wire, 2657 * we add to pkt_len the headers size of all segments 2658 */ 2659 if (shinfo->gso_size) { 2660 unsigned int hdr_len; 2661 u16 gso_segs = shinfo->gso_segs; 2662 2663 /* mac layer + network layer */ 2664 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2665 2666 /* + transport layer */ 2667 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2668 hdr_len += tcp_hdrlen(skb); 2669 else 2670 hdr_len += sizeof(struct udphdr); 2671 2672 if (shinfo->gso_type & SKB_GSO_DODGY) 2673 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2674 shinfo->gso_size); 2675 2676 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2677 } 2678 } 2679 2680 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2681 struct net_device *dev, 2682 struct netdev_queue *txq) 2683 { 2684 spinlock_t *root_lock = qdisc_lock(q); 2685 bool contended; 2686 int rc; 2687 2688 qdisc_pkt_len_init(skb); 2689 qdisc_calculate_pkt_len(skb, q); 2690 /* 2691 * Heuristic to force contended enqueues to serialize on a 2692 * separate lock before trying to get qdisc main lock. 2693 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2694 * and dequeue packets faster. 2695 */ 2696 contended = qdisc_is_running(q); 2697 if (unlikely(contended)) 2698 spin_lock(&q->busylock); 2699 2700 spin_lock(root_lock); 2701 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2702 kfree_skb(skb); 2703 rc = NET_XMIT_DROP; 2704 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2705 qdisc_run_begin(q)) { 2706 /* 2707 * This is a work-conserving queue; there are no old skbs 2708 * waiting to be sent out; and the qdisc is not running - 2709 * xmit the skb directly. 2710 */ 2711 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2712 skb_dst_force(skb); 2713 2714 qdisc_bstats_update(q, skb); 2715 2716 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2717 if (unlikely(contended)) { 2718 spin_unlock(&q->busylock); 2719 contended = false; 2720 } 2721 __qdisc_run(q); 2722 } else 2723 qdisc_run_end(q); 2724 2725 rc = NET_XMIT_SUCCESS; 2726 } else { 2727 skb_dst_force(skb); 2728 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2729 if (qdisc_run_begin(q)) { 2730 if (unlikely(contended)) { 2731 spin_unlock(&q->busylock); 2732 contended = false; 2733 } 2734 __qdisc_run(q); 2735 } 2736 } 2737 spin_unlock(root_lock); 2738 if (unlikely(contended)) 2739 spin_unlock(&q->busylock); 2740 return rc; 2741 } 2742 2743 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2744 static void skb_update_prio(struct sk_buff *skb) 2745 { 2746 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2747 2748 if (!skb->priority && skb->sk && map) { 2749 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2750 2751 if (prioidx < map->priomap_len) 2752 skb->priority = map->priomap[prioidx]; 2753 } 2754 } 2755 #else 2756 #define skb_update_prio(skb) 2757 #endif 2758 2759 static DEFINE_PER_CPU(int, xmit_recursion); 2760 #define RECURSION_LIMIT 10 2761 2762 /** 2763 * dev_loopback_xmit - loop back @skb 2764 * @skb: buffer to transmit 2765 */ 2766 int dev_loopback_xmit(struct sk_buff *skb) 2767 { 2768 skb_reset_mac_header(skb); 2769 __skb_pull(skb, skb_network_offset(skb)); 2770 skb->pkt_type = PACKET_LOOPBACK; 2771 skb->ip_summed = CHECKSUM_UNNECESSARY; 2772 WARN_ON(!skb_dst(skb)); 2773 skb_dst_force(skb); 2774 netif_rx_ni(skb); 2775 return 0; 2776 } 2777 EXPORT_SYMBOL(dev_loopback_xmit); 2778 2779 /** 2780 * dev_queue_xmit - transmit a buffer 2781 * @skb: buffer to transmit 2782 * 2783 * Queue a buffer for transmission to a network device. The caller must 2784 * have set the device and priority and built the buffer before calling 2785 * this function. The function can be called from an interrupt. 2786 * 2787 * A negative errno code is returned on a failure. A success does not 2788 * guarantee the frame will be transmitted as it may be dropped due 2789 * to congestion or traffic shaping. 2790 * 2791 * ----------------------------------------------------------------------------------- 2792 * I notice this method can also return errors from the queue disciplines, 2793 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2794 * be positive. 2795 * 2796 * Regardless of the return value, the skb is consumed, so it is currently 2797 * difficult to retry a send to this method. (You can bump the ref count 2798 * before sending to hold a reference for retry if you are careful.) 2799 * 2800 * When calling this method, interrupts MUST be enabled. This is because 2801 * the BH enable code must have IRQs enabled so that it will not deadlock. 2802 * --BLG 2803 */ 2804 int dev_queue_xmit(struct sk_buff *skb) 2805 { 2806 struct net_device *dev = skb->dev; 2807 struct netdev_queue *txq; 2808 struct Qdisc *q; 2809 int rc = -ENOMEM; 2810 2811 skb_reset_mac_header(skb); 2812 2813 /* Disable soft irqs for various locks below. Also 2814 * stops preemption for RCU. 2815 */ 2816 rcu_read_lock_bh(); 2817 2818 skb_update_prio(skb); 2819 2820 txq = netdev_pick_tx(dev, skb); 2821 q = rcu_dereference_bh(txq->qdisc); 2822 2823 #ifdef CONFIG_NET_CLS_ACT 2824 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2825 #endif 2826 trace_net_dev_queue(skb); 2827 if (q->enqueue) { 2828 rc = __dev_xmit_skb(skb, q, dev, txq); 2829 goto out; 2830 } 2831 2832 /* The device has no queue. Common case for software devices: 2833 loopback, all the sorts of tunnels... 2834 2835 Really, it is unlikely that netif_tx_lock protection is necessary 2836 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2837 counters.) 2838 However, it is possible, that they rely on protection 2839 made by us here. 2840 2841 Check this and shot the lock. It is not prone from deadlocks. 2842 Either shot noqueue qdisc, it is even simpler 8) 2843 */ 2844 if (dev->flags & IFF_UP) { 2845 int cpu = smp_processor_id(); /* ok because BHs are off */ 2846 2847 if (txq->xmit_lock_owner != cpu) { 2848 2849 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2850 goto recursion_alert; 2851 2852 HARD_TX_LOCK(dev, txq, cpu); 2853 2854 if (!netif_xmit_stopped(txq)) { 2855 __this_cpu_inc(xmit_recursion); 2856 rc = dev_hard_start_xmit(skb, dev, txq); 2857 __this_cpu_dec(xmit_recursion); 2858 if (dev_xmit_complete(rc)) { 2859 HARD_TX_UNLOCK(dev, txq); 2860 goto out; 2861 } 2862 } 2863 HARD_TX_UNLOCK(dev, txq); 2864 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2865 dev->name); 2866 } else { 2867 /* Recursion is detected! It is possible, 2868 * unfortunately 2869 */ 2870 recursion_alert: 2871 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2872 dev->name); 2873 } 2874 } 2875 2876 rc = -ENETDOWN; 2877 rcu_read_unlock_bh(); 2878 2879 kfree_skb(skb); 2880 return rc; 2881 out: 2882 rcu_read_unlock_bh(); 2883 return rc; 2884 } 2885 EXPORT_SYMBOL(dev_queue_xmit); 2886 2887 2888 /*======================================================================= 2889 Receiver routines 2890 =======================================================================*/ 2891 2892 int netdev_max_backlog __read_mostly = 1000; 2893 EXPORT_SYMBOL(netdev_max_backlog); 2894 2895 int netdev_tstamp_prequeue __read_mostly = 1; 2896 int netdev_budget __read_mostly = 300; 2897 int weight_p __read_mostly = 64; /* old backlog weight */ 2898 2899 /* Called with irq disabled */ 2900 static inline void ____napi_schedule(struct softnet_data *sd, 2901 struct napi_struct *napi) 2902 { 2903 list_add_tail(&napi->poll_list, &sd->poll_list); 2904 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2905 } 2906 2907 #ifdef CONFIG_RPS 2908 2909 /* One global table that all flow-based protocols share. */ 2910 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2911 EXPORT_SYMBOL(rps_sock_flow_table); 2912 2913 struct static_key rps_needed __read_mostly; 2914 2915 static struct rps_dev_flow * 2916 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2917 struct rps_dev_flow *rflow, u16 next_cpu) 2918 { 2919 if (next_cpu != RPS_NO_CPU) { 2920 #ifdef CONFIG_RFS_ACCEL 2921 struct netdev_rx_queue *rxqueue; 2922 struct rps_dev_flow_table *flow_table; 2923 struct rps_dev_flow *old_rflow; 2924 u32 flow_id; 2925 u16 rxq_index; 2926 int rc; 2927 2928 /* Should we steer this flow to a different hardware queue? */ 2929 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2930 !(dev->features & NETIF_F_NTUPLE)) 2931 goto out; 2932 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2933 if (rxq_index == skb_get_rx_queue(skb)) 2934 goto out; 2935 2936 rxqueue = dev->_rx + rxq_index; 2937 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2938 if (!flow_table) 2939 goto out; 2940 flow_id = skb->rxhash & flow_table->mask; 2941 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2942 rxq_index, flow_id); 2943 if (rc < 0) 2944 goto out; 2945 old_rflow = rflow; 2946 rflow = &flow_table->flows[flow_id]; 2947 rflow->filter = rc; 2948 if (old_rflow->filter == rflow->filter) 2949 old_rflow->filter = RPS_NO_FILTER; 2950 out: 2951 #endif 2952 rflow->last_qtail = 2953 per_cpu(softnet_data, next_cpu).input_queue_head; 2954 } 2955 2956 rflow->cpu = next_cpu; 2957 return rflow; 2958 } 2959 2960 /* 2961 * get_rps_cpu is called from netif_receive_skb and returns the target 2962 * CPU from the RPS map of the receiving queue for a given skb. 2963 * rcu_read_lock must be held on entry. 2964 */ 2965 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2966 struct rps_dev_flow **rflowp) 2967 { 2968 struct netdev_rx_queue *rxqueue; 2969 struct rps_map *map; 2970 struct rps_dev_flow_table *flow_table; 2971 struct rps_sock_flow_table *sock_flow_table; 2972 int cpu = -1; 2973 u16 tcpu; 2974 2975 if (skb_rx_queue_recorded(skb)) { 2976 u16 index = skb_get_rx_queue(skb); 2977 if (unlikely(index >= dev->real_num_rx_queues)) { 2978 WARN_ONCE(dev->real_num_rx_queues > 1, 2979 "%s received packet on queue %u, but number " 2980 "of RX queues is %u\n", 2981 dev->name, index, dev->real_num_rx_queues); 2982 goto done; 2983 } 2984 rxqueue = dev->_rx + index; 2985 } else 2986 rxqueue = dev->_rx; 2987 2988 map = rcu_dereference(rxqueue->rps_map); 2989 if (map) { 2990 if (map->len == 1 && 2991 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2992 tcpu = map->cpus[0]; 2993 if (cpu_online(tcpu)) 2994 cpu = tcpu; 2995 goto done; 2996 } 2997 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2998 goto done; 2999 } 3000 3001 skb_reset_network_header(skb); 3002 if (!skb_get_rxhash(skb)) 3003 goto done; 3004 3005 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3006 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3007 if (flow_table && sock_flow_table) { 3008 u16 next_cpu; 3009 struct rps_dev_flow *rflow; 3010 3011 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 3012 tcpu = rflow->cpu; 3013 3014 next_cpu = sock_flow_table->ents[skb->rxhash & 3015 sock_flow_table->mask]; 3016 3017 /* 3018 * If the desired CPU (where last recvmsg was done) is 3019 * different from current CPU (one in the rx-queue flow 3020 * table entry), switch if one of the following holds: 3021 * - Current CPU is unset (equal to RPS_NO_CPU). 3022 * - Current CPU is offline. 3023 * - The current CPU's queue tail has advanced beyond the 3024 * last packet that was enqueued using this table entry. 3025 * This guarantees that all previous packets for the flow 3026 * have been dequeued, thus preserving in order delivery. 3027 */ 3028 if (unlikely(tcpu != next_cpu) && 3029 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 3030 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3031 rflow->last_qtail)) >= 0)) { 3032 tcpu = next_cpu; 3033 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3034 } 3035 3036 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 3037 *rflowp = rflow; 3038 cpu = tcpu; 3039 goto done; 3040 } 3041 } 3042 3043 if (map) { 3044 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 3045 3046 if (cpu_online(tcpu)) { 3047 cpu = tcpu; 3048 goto done; 3049 } 3050 } 3051 3052 done: 3053 return cpu; 3054 } 3055 3056 #ifdef CONFIG_RFS_ACCEL 3057 3058 /** 3059 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3060 * @dev: Device on which the filter was set 3061 * @rxq_index: RX queue index 3062 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3063 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3064 * 3065 * Drivers that implement ndo_rx_flow_steer() should periodically call 3066 * this function for each installed filter and remove the filters for 3067 * which it returns %true. 3068 */ 3069 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3070 u32 flow_id, u16 filter_id) 3071 { 3072 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3073 struct rps_dev_flow_table *flow_table; 3074 struct rps_dev_flow *rflow; 3075 bool expire = true; 3076 int cpu; 3077 3078 rcu_read_lock(); 3079 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3080 if (flow_table && flow_id <= flow_table->mask) { 3081 rflow = &flow_table->flows[flow_id]; 3082 cpu = ACCESS_ONCE(rflow->cpu); 3083 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3084 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3085 rflow->last_qtail) < 3086 (int)(10 * flow_table->mask))) 3087 expire = false; 3088 } 3089 rcu_read_unlock(); 3090 return expire; 3091 } 3092 EXPORT_SYMBOL(rps_may_expire_flow); 3093 3094 #endif /* CONFIG_RFS_ACCEL */ 3095 3096 /* Called from hardirq (IPI) context */ 3097 static void rps_trigger_softirq(void *data) 3098 { 3099 struct softnet_data *sd = data; 3100 3101 ____napi_schedule(sd, &sd->backlog); 3102 sd->received_rps++; 3103 } 3104 3105 #endif /* CONFIG_RPS */ 3106 3107 /* 3108 * Check if this softnet_data structure is another cpu one 3109 * If yes, queue it to our IPI list and return 1 3110 * If no, return 0 3111 */ 3112 static int rps_ipi_queued(struct softnet_data *sd) 3113 { 3114 #ifdef CONFIG_RPS 3115 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 3116 3117 if (sd != mysd) { 3118 sd->rps_ipi_next = mysd->rps_ipi_list; 3119 mysd->rps_ipi_list = sd; 3120 3121 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3122 return 1; 3123 } 3124 #endif /* CONFIG_RPS */ 3125 return 0; 3126 } 3127 3128 #ifdef CONFIG_NET_FLOW_LIMIT 3129 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3130 #endif 3131 3132 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3133 { 3134 #ifdef CONFIG_NET_FLOW_LIMIT 3135 struct sd_flow_limit *fl; 3136 struct softnet_data *sd; 3137 unsigned int old_flow, new_flow; 3138 3139 if (qlen < (netdev_max_backlog >> 1)) 3140 return false; 3141 3142 sd = &__get_cpu_var(softnet_data); 3143 3144 rcu_read_lock(); 3145 fl = rcu_dereference(sd->flow_limit); 3146 if (fl) { 3147 new_flow = skb_get_rxhash(skb) & (fl->num_buckets - 1); 3148 old_flow = fl->history[fl->history_head]; 3149 fl->history[fl->history_head] = new_flow; 3150 3151 fl->history_head++; 3152 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3153 3154 if (likely(fl->buckets[old_flow])) 3155 fl->buckets[old_flow]--; 3156 3157 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3158 fl->count++; 3159 rcu_read_unlock(); 3160 return true; 3161 } 3162 } 3163 rcu_read_unlock(); 3164 #endif 3165 return false; 3166 } 3167 3168 /* 3169 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3170 * queue (may be a remote CPU queue). 3171 */ 3172 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3173 unsigned int *qtail) 3174 { 3175 struct softnet_data *sd; 3176 unsigned long flags; 3177 unsigned int qlen; 3178 3179 sd = &per_cpu(softnet_data, cpu); 3180 3181 local_irq_save(flags); 3182 3183 rps_lock(sd); 3184 qlen = skb_queue_len(&sd->input_pkt_queue); 3185 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3186 if (skb_queue_len(&sd->input_pkt_queue)) { 3187 enqueue: 3188 __skb_queue_tail(&sd->input_pkt_queue, skb); 3189 input_queue_tail_incr_save(sd, qtail); 3190 rps_unlock(sd); 3191 local_irq_restore(flags); 3192 return NET_RX_SUCCESS; 3193 } 3194 3195 /* Schedule NAPI for backlog device 3196 * We can use non atomic operation since we own the queue lock 3197 */ 3198 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3199 if (!rps_ipi_queued(sd)) 3200 ____napi_schedule(sd, &sd->backlog); 3201 } 3202 goto enqueue; 3203 } 3204 3205 sd->dropped++; 3206 rps_unlock(sd); 3207 3208 local_irq_restore(flags); 3209 3210 atomic_long_inc(&skb->dev->rx_dropped); 3211 kfree_skb(skb); 3212 return NET_RX_DROP; 3213 } 3214 3215 /** 3216 * netif_rx - post buffer to the network code 3217 * @skb: buffer to post 3218 * 3219 * This function receives a packet from a device driver and queues it for 3220 * the upper (protocol) levels to process. It always succeeds. The buffer 3221 * may be dropped during processing for congestion control or by the 3222 * protocol layers. 3223 * 3224 * return values: 3225 * NET_RX_SUCCESS (no congestion) 3226 * NET_RX_DROP (packet was dropped) 3227 * 3228 */ 3229 3230 int netif_rx(struct sk_buff *skb) 3231 { 3232 int ret; 3233 3234 /* if netpoll wants it, pretend we never saw it */ 3235 if (netpoll_rx(skb)) 3236 return NET_RX_DROP; 3237 3238 net_timestamp_check(netdev_tstamp_prequeue, skb); 3239 3240 trace_netif_rx(skb); 3241 #ifdef CONFIG_RPS 3242 if (static_key_false(&rps_needed)) { 3243 struct rps_dev_flow voidflow, *rflow = &voidflow; 3244 int cpu; 3245 3246 preempt_disable(); 3247 rcu_read_lock(); 3248 3249 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3250 if (cpu < 0) 3251 cpu = smp_processor_id(); 3252 3253 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3254 3255 rcu_read_unlock(); 3256 preempt_enable(); 3257 } else 3258 #endif 3259 { 3260 unsigned int qtail; 3261 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3262 put_cpu(); 3263 } 3264 return ret; 3265 } 3266 EXPORT_SYMBOL(netif_rx); 3267 3268 int netif_rx_ni(struct sk_buff *skb) 3269 { 3270 int err; 3271 3272 preempt_disable(); 3273 err = netif_rx(skb); 3274 if (local_softirq_pending()) 3275 do_softirq(); 3276 preempt_enable(); 3277 3278 return err; 3279 } 3280 EXPORT_SYMBOL(netif_rx_ni); 3281 3282 static void net_tx_action(struct softirq_action *h) 3283 { 3284 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3285 3286 if (sd->completion_queue) { 3287 struct sk_buff *clist; 3288 3289 local_irq_disable(); 3290 clist = sd->completion_queue; 3291 sd->completion_queue = NULL; 3292 local_irq_enable(); 3293 3294 while (clist) { 3295 struct sk_buff *skb = clist; 3296 clist = clist->next; 3297 3298 WARN_ON(atomic_read(&skb->users)); 3299 trace_kfree_skb(skb, net_tx_action); 3300 __kfree_skb(skb); 3301 } 3302 } 3303 3304 if (sd->output_queue) { 3305 struct Qdisc *head; 3306 3307 local_irq_disable(); 3308 head = sd->output_queue; 3309 sd->output_queue = NULL; 3310 sd->output_queue_tailp = &sd->output_queue; 3311 local_irq_enable(); 3312 3313 while (head) { 3314 struct Qdisc *q = head; 3315 spinlock_t *root_lock; 3316 3317 head = head->next_sched; 3318 3319 root_lock = qdisc_lock(q); 3320 if (spin_trylock(root_lock)) { 3321 smp_mb__before_clear_bit(); 3322 clear_bit(__QDISC_STATE_SCHED, 3323 &q->state); 3324 qdisc_run(q); 3325 spin_unlock(root_lock); 3326 } else { 3327 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3328 &q->state)) { 3329 __netif_reschedule(q); 3330 } else { 3331 smp_mb__before_clear_bit(); 3332 clear_bit(__QDISC_STATE_SCHED, 3333 &q->state); 3334 } 3335 } 3336 } 3337 } 3338 } 3339 3340 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3341 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3342 /* This hook is defined here for ATM LANE */ 3343 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3344 unsigned char *addr) __read_mostly; 3345 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3346 #endif 3347 3348 #ifdef CONFIG_NET_CLS_ACT 3349 /* TODO: Maybe we should just force sch_ingress to be compiled in 3350 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3351 * a compare and 2 stores extra right now if we dont have it on 3352 * but have CONFIG_NET_CLS_ACT 3353 * NOTE: This doesn't stop any functionality; if you dont have 3354 * the ingress scheduler, you just can't add policies on ingress. 3355 * 3356 */ 3357 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3358 { 3359 struct net_device *dev = skb->dev; 3360 u32 ttl = G_TC_RTTL(skb->tc_verd); 3361 int result = TC_ACT_OK; 3362 struct Qdisc *q; 3363 3364 if (unlikely(MAX_RED_LOOP < ttl++)) { 3365 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3366 skb->skb_iif, dev->ifindex); 3367 return TC_ACT_SHOT; 3368 } 3369 3370 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3371 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3372 3373 q = rxq->qdisc; 3374 if (q != &noop_qdisc) { 3375 spin_lock(qdisc_lock(q)); 3376 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3377 result = qdisc_enqueue_root(skb, q); 3378 spin_unlock(qdisc_lock(q)); 3379 } 3380 3381 return result; 3382 } 3383 3384 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3385 struct packet_type **pt_prev, 3386 int *ret, struct net_device *orig_dev) 3387 { 3388 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3389 3390 if (!rxq || rxq->qdisc == &noop_qdisc) 3391 goto out; 3392 3393 if (*pt_prev) { 3394 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3395 *pt_prev = NULL; 3396 } 3397 3398 switch (ing_filter(skb, rxq)) { 3399 case TC_ACT_SHOT: 3400 case TC_ACT_STOLEN: 3401 kfree_skb(skb); 3402 return NULL; 3403 } 3404 3405 out: 3406 skb->tc_verd = 0; 3407 return skb; 3408 } 3409 #endif 3410 3411 /** 3412 * netdev_rx_handler_register - register receive handler 3413 * @dev: device to register a handler for 3414 * @rx_handler: receive handler to register 3415 * @rx_handler_data: data pointer that is used by rx handler 3416 * 3417 * Register a receive hander for a device. This handler will then be 3418 * called from __netif_receive_skb. A negative errno code is returned 3419 * on a failure. 3420 * 3421 * The caller must hold the rtnl_mutex. 3422 * 3423 * For a general description of rx_handler, see enum rx_handler_result. 3424 */ 3425 int netdev_rx_handler_register(struct net_device *dev, 3426 rx_handler_func_t *rx_handler, 3427 void *rx_handler_data) 3428 { 3429 ASSERT_RTNL(); 3430 3431 if (dev->rx_handler) 3432 return -EBUSY; 3433 3434 /* Note: rx_handler_data must be set before rx_handler */ 3435 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3436 rcu_assign_pointer(dev->rx_handler, rx_handler); 3437 3438 return 0; 3439 } 3440 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3441 3442 /** 3443 * netdev_rx_handler_unregister - unregister receive handler 3444 * @dev: device to unregister a handler from 3445 * 3446 * Unregister a receive handler from a device. 3447 * 3448 * The caller must hold the rtnl_mutex. 3449 */ 3450 void netdev_rx_handler_unregister(struct net_device *dev) 3451 { 3452 3453 ASSERT_RTNL(); 3454 RCU_INIT_POINTER(dev->rx_handler, NULL); 3455 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3456 * section has a guarantee to see a non NULL rx_handler_data 3457 * as well. 3458 */ 3459 synchronize_net(); 3460 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3461 } 3462 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3463 3464 /* 3465 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3466 * the special handling of PFMEMALLOC skbs. 3467 */ 3468 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3469 { 3470 switch (skb->protocol) { 3471 case __constant_htons(ETH_P_ARP): 3472 case __constant_htons(ETH_P_IP): 3473 case __constant_htons(ETH_P_IPV6): 3474 case __constant_htons(ETH_P_8021Q): 3475 case __constant_htons(ETH_P_8021AD): 3476 return true; 3477 default: 3478 return false; 3479 } 3480 } 3481 3482 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3483 { 3484 struct packet_type *ptype, *pt_prev; 3485 rx_handler_func_t *rx_handler; 3486 struct net_device *orig_dev; 3487 struct net_device *null_or_dev; 3488 bool deliver_exact = false; 3489 int ret = NET_RX_DROP; 3490 __be16 type; 3491 3492 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3493 3494 trace_netif_receive_skb(skb); 3495 3496 /* if we've gotten here through NAPI, check netpoll */ 3497 if (netpoll_receive_skb(skb)) 3498 goto out; 3499 3500 orig_dev = skb->dev; 3501 3502 skb_reset_network_header(skb); 3503 if (!skb_transport_header_was_set(skb)) 3504 skb_reset_transport_header(skb); 3505 skb_reset_mac_len(skb); 3506 3507 pt_prev = NULL; 3508 3509 rcu_read_lock(); 3510 3511 another_round: 3512 skb->skb_iif = skb->dev->ifindex; 3513 3514 __this_cpu_inc(softnet_data.processed); 3515 3516 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3517 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3518 skb = vlan_untag(skb); 3519 if (unlikely(!skb)) 3520 goto unlock; 3521 } 3522 3523 #ifdef CONFIG_NET_CLS_ACT 3524 if (skb->tc_verd & TC_NCLS) { 3525 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3526 goto ncls; 3527 } 3528 #endif 3529 3530 if (pfmemalloc) 3531 goto skip_taps; 3532 3533 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3534 if (!ptype->dev || ptype->dev == skb->dev) { 3535 if (pt_prev) 3536 ret = deliver_skb(skb, pt_prev, orig_dev); 3537 pt_prev = ptype; 3538 } 3539 } 3540 3541 skip_taps: 3542 #ifdef CONFIG_NET_CLS_ACT 3543 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3544 if (!skb) 3545 goto unlock; 3546 ncls: 3547 #endif 3548 3549 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3550 goto drop; 3551 3552 if (vlan_tx_tag_present(skb)) { 3553 if (pt_prev) { 3554 ret = deliver_skb(skb, pt_prev, orig_dev); 3555 pt_prev = NULL; 3556 } 3557 if (vlan_do_receive(&skb)) 3558 goto another_round; 3559 else if (unlikely(!skb)) 3560 goto unlock; 3561 } 3562 3563 rx_handler = rcu_dereference(skb->dev->rx_handler); 3564 if (rx_handler) { 3565 if (pt_prev) { 3566 ret = deliver_skb(skb, pt_prev, orig_dev); 3567 pt_prev = NULL; 3568 } 3569 switch (rx_handler(&skb)) { 3570 case RX_HANDLER_CONSUMED: 3571 ret = NET_RX_SUCCESS; 3572 goto unlock; 3573 case RX_HANDLER_ANOTHER: 3574 goto another_round; 3575 case RX_HANDLER_EXACT: 3576 deliver_exact = true; 3577 case RX_HANDLER_PASS: 3578 break; 3579 default: 3580 BUG(); 3581 } 3582 } 3583 3584 if (unlikely(vlan_tx_tag_present(skb))) { 3585 if (vlan_tx_tag_get_id(skb)) 3586 skb->pkt_type = PACKET_OTHERHOST; 3587 /* Note: we might in the future use prio bits 3588 * and set skb->priority like in vlan_do_receive() 3589 * For the time being, just ignore Priority Code Point 3590 */ 3591 skb->vlan_tci = 0; 3592 } 3593 3594 /* deliver only exact match when indicated */ 3595 null_or_dev = deliver_exact ? skb->dev : NULL; 3596 3597 type = skb->protocol; 3598 list_for_each_entry_rcu(ptype, 3599 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3600 if (ptype->type == type && 3601 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3602 ptype->dev == orig_dev)) { 3603 if (pt_prev) 3604 ret = deliver_skb(skb, pt_prev, orig_dev); 3605 pt_prev = ptype; 3606 } 3607 } 3608 3609 if (pt_prev) { 3610 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3611 goto drop; 3612 else 3613 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3614 } else { 3615 drop: 3616 atomic_long_inc(&skb->dev->rx_dropped); 3617 kfree_skb(skb); 3618 /* Jamal, now you will not able to escape explaining 3619 * me how you were going to use this. :-) 3620 */ 3621 ret = NET_RX_DROP; 3622 } 3623 3624 unlock: 3625 rcu_read_unlock(); 3626 out: 3627 return ret; 3628 } 3629 3630 static int __netif_receive_skb(struct sk_buff *skb) 3631 { 3632 int ret; 3633 3634 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3635 unsigned long pflags = current->flags; 3636 3637 /* 3638 * PFMEMALLOC skbs are special, they should 3639 * - be delivered to SOCK_MEMALLOC sockets only 3640 * - stay away from userspace 3641 * - have bounded memory usage 3642 * 3643 * Use PF_MEMALLOC as this saves us from propagating the allocation 3644 * context down to all allocation sites. 3645 */ 3646 current->flags |= PF_MEMALLOC; 3647 ret = __netif_receive_skb_core(skb, true); 3648 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3649 } else 3650 ret = __netif_receive_skb_core(skb, false); 3651 3652 return ret; 3653 } 3654 3655 /** 3656 * netif_receive_skb - process receive buffer from network 3657 * @skb: buffer to process 3658 * 3659 * netif_receive_skb() is the main receive data processing function. 3660 * It always succeeds. The buffer may be dropped during processing 3661 * for congestion control or by the protocol layers. 3662 * 3663 * This function may only be called from softirq context and interrupts 3664 * should be enabled. 3665 * 3666 * Return values (usually ignored): 3667 * NET_RX_SUCCESS: no congestion 3668 * NET_RX_DROP: packet was dropped 3669 */ 3670 int netif_receive_skb(struct sk_buff *skb) 3671 { 3672 net_timestamp_check(netdev_tstamp_prequeue, skb); 3673 3674 if (skb_defer_rx_timestamp(skb)) 3675 return NET_RX_SUCCESS; 3676 3677 #ifdef CONFIG_RPS 3678 if (static_key_false(&rps_needed)) { 3679 struct rps_dev_flow voidflow, *rflow = &voidflow; 3680 int cpu, ret; 3681 3682 rcu_read_lock(); 3683 3684 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3685 3686 if (cpu >= 0) { 3687 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3688 rcu_read_unlock(); 3689 return ret; 3690 } 3691 rcu_read_unlock(); 3692 } 3693 #endif 3694 return __netif_receive_skb(skb); 3695 } 3696 EXPORT_SYMBOL(netif_receive_skb); 3697 3698 /* Network device is going away, flush any packets still pending 3699 * Called with irqs disabled. 3700 */ 3701 static void flush_backlog(void *arg) 3702 { 3703 struct net_device *dev = arg; 3704 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3705 struct sk_buff *skb, *tmp; 3706 3707 rps_lock(sd); 3708 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3709 if (skb->dev == dev) { 3710 __skb_unlink(skb, &sd->input_pkt_queue); 3711 kfree_skb(skb); 3712 input_queue_head_incr(sd); 3713 } 3714 } 3715 rps_unlock(sd); 3716 3717 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3718 if (skb->dev == dev) { 3719 __skb_unlink(skb, &sd->process_queue); 3720 kfree_skb(skb); 3721 input_queue_head_incr(sd); 3722 } 3723 } 3724 } 3725 3726 static int napi_gro_complete(struct sk_buff *skb) 3727 { 3728 struct packet_offload *ptype; 3729 __be16 type = skb->protocol; 3730 struct list_head *head = &offload_base; 3731 int err = -ENOENT; 3732 3733 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3734 3735 if (NAPI_GRO_CB(skb)->count == 1) { 3736 skb_shinfo(skb)->gso_size = 0; 3737 goto out; 3738 } 3739 3740 rcu_read_lock(); 3741 list_for_each_entry_rcu(ptype, head, list) { 3742 if (ptype->type != type || !ptype->callbacks.gro_complete) 3743 continue; 3744 3745 err = ptype->callbacks.gro_complete(skb); 3746 break; 3747 } 3748 rcu_read_unlock(); 3749 3750 if (err) { 3751 WARN_ON(&ptype->list == head); 3752 kfree_skb(skb); 3753 return NET_RX_SUCCESS; 3754 } 3755 3756 out: 3757 return netif_receive_skb(skb); 3758 } 3759 3760 /* napi->gro_list contains packets ordered by age. 3761 * youngest packets at the head of it. 3762 * Complete skbs in reverse order to reduce latencies. 3763 */ 3764 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3765 { 3766 struct sk_buff *skb, *prev = NULL; 3767 3768 /* scan list and build reverse chain */ 3769 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3770 skb->prev = prev; 3771 prev = skb; 3772 } 3773 3774 for (skb = prev; skb; skb = prev) { 3775 skb->next = NULL; 3776 3777 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3778 return; 3779 3780 prev = skb->prev; 3781 napi_gro_complete(skb); 3782 napi->gro_count--; 3783 } 3784 3785 napi->gro_list = NULL; 3786 } 3787 EXPORT_SYMBOL(napi_gro_flush); 3788 3789 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3790 { 3791 struct sk_buff *p; 3792 unsigned int maclen = skb->dev->hard_header_len; 3793 3794 for (p = napi->gro_list; p; p = p->next) { 3795 unsigned long diffs; 3796 3797 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3798 diffs |= p->vlan_tci ^ skb->vlan_tci; 3799 if (maclen == ETH_HLEN) 3800 diffs |= compare_ether_header(skb_mac_header(p), 3801 skb_gro_mac_header(skb)); 3802 else if (!diffs) 3803 diffs = memcmp(skb_mac_header(p), 3804 skb_gro_mac_header(skb), 3805 maclen); 3806 NAPI_GRO_CB(p)->same_flow = !diffs; 3807 NAPI_GRO_CB(p)->flush = 0; 3808 } 3809 } 3810 3811 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3812 { 3813 struct sk_buff **pp = NULL; 3814 struct packet_offload *ptype; 3815 __be16 type = skb->protocol; 3816 struct list_head *head = &offload_base; 3817 int same_flow; 3818 enum gro_result ret; 3819 3820 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3821 goto normal; 3822 3823 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3824 goto normal; 3825 3826 gro_list_prepare(napi, skb); 3827 3828 rcu_read_lock(); 3829 list_for_each_entry_rcu(ptype, head, list) { 3830 if (ptype->type != type || !ptype->callbacks.gro_receive) 3831 continue; 3832 3833 skb_set_network_header(skb, skb_gro_offset(skb)); 3834 skb_reset_mac_len(skb); 3835 NAPI_GRO_CB(skb)->same_flow = 0; 3836 NAPI_GRO_CB(skb)->flush = 0; 3837 NAPI_GRO_CB(skb)->free = 0; 3838 3839 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 3840 break; 3841 } 3842 rcu_read_unlock(); 3843 3844 if (&ptype->list == head) 3845 goto normal; 3846 3847 same_flow = NAPI_GRO_CB(skb)->same_flow; 3848 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3849 3850 if (pp) { 3851 struct sk_buff *nskb = *pp; 3852 3853 *pp = nskb->next; 3854 nskb->next = NULL; 3855 napi_gro_complete(nskb); 3856 napi->gro_count--; 3857 } 3858 3859 if (same_flow) 3860 goto ok; 3861 3862 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3863 goto normal; 3864 3865 napi->gro_count++; 3866 NAPI_GRO_CB(skb)->count = 1; 3867 NAPI_GRO_CB(skb)->age = jiffies; 3868 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3869 skb->next = napi->gro_list; 3870 napi->gro_list = skb; 3871 ret = GRO_HELD; 3872 3873 pull: 3874 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3875 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3876 3877 BUG_ON(skb->end - skb->tail < grow); 3878 3879 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3880 3881 skb->tail += grow; 3882 skb->data_len -= grow; 3883 3884 skb_shinfo(skb)->frags[0].page_offset += grow; 3885 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3886 3887 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3888 skb_frag_unref(skb, 0); 3889 memmove(skb_shinfo(skb)->frags, 3890 skb_shinfo(skb)->frags + 1, 3891 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3892 } 3893 } 3894 3895 ok: 3896 return ret; 3897 3898 normal: 3899 ret = GRO_NORMAL; 3900 goto pull; 3901 } 3902 3903 3904 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3905 { 3906 switch (ret) { 3907 case GRO_NORMAL: 3908 if (netif_receive_skb(skb)) 3909 ret = GRO_DROP; 3910 break; 3911 3912 case GRO_DROP: 3913 kfree_skb(skb); 3914 break; 3915 3916 case GRO_MERGED_FREE: 3917 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 3918 kmem_cache_free(skbuff_head_cache, skb); 3919 else 3920 __kfree_skb(skb); 3921 break; 3922 3923 case GRO_HELD: 3924 case GRO_MERGED: 3925 break; 3926 } 3927 3928 return ret; 3929 } 3930 3931 static void skb_gro_reset_offset(struct sk_buff *skb) 3932 { 3933 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3934 const skb_frag_t *frag0 = &pinfo->frags[0]; 3935 3936 NAPI_GRO_CB(skb)->data_offset = 0; 3937 NAPI_GRO_CB(skb)->frag0 = NULL; 3938 NAPI_GRO_CB(skb)->frag0_len = 0; 3939 3940 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 3941 pinfo->nr_frags && 3942 !PageHighMem(skb_frag_page(frag0))) { 3943 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3944 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3945 } 3946 } 3947 3948 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3949 { 3950 skb_gro_reset_offset(skb); 3951 3952 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 3953 } 3954 EXPORT_SYMBOL(napi_gro_receive); 3955 3956 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3957 { 3958 __skb_pull(skb, skb_headlen(skb)); 3959 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3960 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3961 skb->vlan_tci = 0; 3962 skb->dev = napi->dev; 3963 skb->skb_iif = 0; 3964 3965 napi->skb = skb; 3966 } 3967 3968 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3969 { 3970 struct sk_buff *skb = napi->skb; 3971 3972 if (!skb) { 3973 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3974 if (skb) 3975 napi->skb = skb; 3976 } 3977 return skb; 3978 } 3979 EXPORT_SYMBOL(napi_get_frags); 3980 3981 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3982 gro_result_t ret) 3983 { 3984 switch (ret) { 3985 case GRO_NORMAL: 3986 case GRO_HELD: 3987 skb->protocol = eth_type_trans(skb, skb->dev); 3988 3989 if (ret == GRO_HELD) 3990 skb_gro_pull(skb, -ETH_HLEN); 3991 else if (netif_receive_skb(skb)) 3992 ret = GRO_DROP; 3993 break; 3994 3995 case GRO_DROP: 3996 case GRO_MERGED_FREE: 3997 napi_reuse_skb(napi, skb); 3998 break; 3999 4000 case GRO_MERGED: 4001 break; 4002 } 4003 4004 return ret; 4005 } 4006 4007 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4008 { 4009 struct sk_buff *skb = napi->skb; 4010 struct ethhdr *eth; 4011 unsigned int hlen; 4012 unsigned int off; 4013 4014 napi->skb = NULL; 4015 4016 skb_reset_mac_header(skb); 4017 skb_gro_reset_offset(skb); 4018 4019 off = skb_gro_offset(skb); 4020 hlen = off + sizeof(*eth); 4021 eth = skb_gro_header_fast(skb, off); 4022 if (skb_gro_header_hard(skb, hlen)) { 4023 eth = skb_gro_header_slow(skb, hlen, off); 4024 if (unlikely(!eth)) { 4025 napi_reuse_skb(napi, skb); 4026 skb = NULL; 4027 goto out; 4028 } 4029 } 4030 4031 skb_gro_pull(skb, sizeof(*eth)); 4032 4033 /* 4034 * This works because the only protocols we care about don't require 4035 * special handling. We'll fix it up properly at the end. 4036 */ 4037 skb->protocol = eth->h_proto; 4038 4039 out: 4040 return skb; 4041 } 4042 4043 gro_result_t napi_gro_frags(struct napi_struct *napi) 4044 { 4045 struct sk_buff *skb = napi_frags_skb(napi); 4046 4047 if (!skb) 4048 return GRO_DROP; 4049 4050 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4051 } 4052 EXPORT_SYMBOL(napi_gro_frags); 4053 4054 /* 4055 * net_rps_action sends any pending IPI's for rps. 4056 * Note: called with local irq disabled, but exits with local irq enabled. 4057 */ 4058 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4059 { 4060 #ifdef CONFIG_RPS 4061 struct softnet_data *remsd = sd->rps_ipi_list; 4062 4063 if (remsd) { 4064 sd->rps_ipi_list = NULL; 4065 4066 local_irq_enable(); 4067 4068 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4069 while (remsd) { 4070 struct softnet_data *next = remsd->rps_ipi_next; 4071 4072 if (cpu_online(remsd->cpu)) 4073 __smp_call_function_single(remsd->cpu, 4074 &remsd->csd, 0); 4075 remsd = next; 4076 } 4077 } else 4078 #endif 4079 local_irq_enable(); 4080 } 4081 4082 static int process_backlog(struct napi_struct *napi, int quota) 4083 { 4084 int work = 0; 4085 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4086 4087 #ifdef CONFIG_RPS 4088 /* Check if we have pending ipi, its better to send them now, 4089 * not waiting net_rx_action() end. 4090 */ 4091 if (sd->rps_ipi_list) { 4092 local_irq_disable(); 4093 net_rps_action_and_irq_enable(sd); 4094 } 4095 #endif 4096 napi->weight = weight_p; 4097 local_irq_disable(); 4098 while (work < quota) { 4099 struct sk_buff *skb; 4100 unsigned int qlen; 4101 4102 while ((skb = __skb_dequeue(&sd->process_queue))) { 4103 local_irq_enable(); 4104 __netif_receive_skb(skb); 4105 local_irq_disable(); 4106 input_queue_head_incr(sd); 4107 if (++work >= quota) { 4108 local_irq_enable(); 4109 return work; 4110 } 4111 } 4112 4113 rps_lock(sd); 4114 qlen = skb_queue_len(&sd->input_pkt_queue); 4115 if (qlen) 4116 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4117 &sd->process_queue); 4118 4119 if (qlen < quota - work) { 4120 /* 4121 * Inline a custom version of __napi_complete(). 4122 * only current cpu owns and manipulates this napi, 4123 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 4124 * we can use a plain write instead of clear_bit(), 4125 * and we dont need an smp_mb() memory barrier. 4126 */ 4127 list_del(&napi->poll_list); 4128 napi->state = 0; 4129 4130 quota = work + qlen; 4131 } 4132 rps_unlock(sd); 4133 } 4134 local_irq_enable(); 4135 4136 return work; 4137 } 4138 4139 /** 4140 * __napi_schedule - schedule for receive 4141 * @n: entry to schedule 4142 * 4143 * The entry's receive function will be scheduled to run 4144 */ 4145 void __napi_schedule(struct napi_struct *n) 4146 { 4147 unsigned long flags; 4148 4149 local_irq_save(flags); 4150 ____napi_schedule(&__get_cpu_var(softnet_data), n); 4151 local_irq_restore(flags); 4152 } 4153 EXPORT_SYMBOL(__napi_schedule); 4154 4155 void __napi_complete(struct napi_struct *n) 4156 { 4157 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4158 BUG_ON(n->gro_list); 4159 4160 list_del(&n->poll_list); 4161 smp_mb__before_clear_bit(); 4162 clear_bit(NAPI_STATE_SCHED, &n->state); 4163 } 4164 EXPORT_SYMBOL(__napi_complete); 4165 4166 void napi_complete(struct napi_struct *n) 4167 { 4168 unsigned long flags; 4169 4170 /* 4171 * don't let napi dequeue from the cpu poll list 4172 * just in case its running on a different cpu 4173 */ 4174 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4175 return; 4176 4177 napi_gro_flush(n, false); 4178 local_irq_save(flags); 4179 __napi_complete(n); 4180 local_irq_restore(flags); 4181 } 4182 EXPORT_SYMBOL(napi_complete); 4183 4184 /* must be called under rcu_read_lock(), as we dont take a reference */ 4185 struct napi_struct *napi_by_id(unsigned int napi_id) 4186 { 4187 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4188 struct napi_struct *napi; 4189 4190 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4191 if (napi->napi_id == napi_id) 4192 return napi; 4193 4194 return NULL; 4195 } 4196 EXPORT_SYMBOL_GPL(napi_by_id); 4197 4198 void napi_hash_add(struct napi_struct *napi) 4199 { 4200 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4201 4202 spin_lock(&napi_hash_lock); 4203 4204 /* 0 is not a valid id, we also skip an id that is taken 4205 * we expect both events to be extremely rare 4206 */ 4207 napi->napi_id = 0; 4208 while (!napi->napi_id) { 4209 napi->napi_id = ++napi_gen_id; 4210 if (napi_by_id(napi->napi_id)) 4211 napi->napi_id = 0; 4212 } 4213 4214 hlist_add_head_rcu(&napi->napi_hash_node, 4215 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4216 4217 spin_unlock(&napi_hash_lock); 4218 } 4219 } 4220 EXPORT_SYMBOL_GPL(napi_hash_add); 4221 4222 /* Warning : caller is responsible to make sure rcu grace period 4223 * is respected before freeing memory containing @napi 4224 */ 4225 void napi_hash_del(struct napi_struct *napi) 4226 { 4227 spin_lock(&napi_hash_lock); 4228 4229 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4230 hlist_del_rcu(&napi->napi_hash_node); 4231 4232 spin_unlock(&napi_hash_lock); 4233 } 4234 EXPORT_SYMBOL_GPL(napi_hash_del); 4235 4236 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4237 int (*poll)(struct napi_struct *, int), int weight) 4238 { 4239 INIT_LIST_HEAD(&napi->poll_list); 4240 napi->gro_count = 0; 4241 napi->gro_list = NULL; 4242 napi->skb = NULL; 4243 napi->poll = poll; 4244 if (weight > NAPI_POLL_WEIGHT) 4245 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4246 weight, dev->name); 4247 napi->weight = weight; 4248 list_add(&napi->dev_list, &dev->napi_list); 4249 napi->dev = dev; 4250 #ifdef CONFIG_NETPOLL 4251 spin_lock_init(&napi->poll_lock); 4252 napi->poll_owner = -1; 4253 #endif 4254 set_bit(NAPI_STATE_SCHED, &napi->state); 4255 } 4256 EXPORT_SYMBOL(netif_napi_add); 4257 4258 void netif_napi_del(struct napi_struct *napi) 4259 { 4260 struct sk_buff *skb, *next; 4261 4262 list_del_init(&napi->dev_list); 4263 napi_free_frags(napi); 4264 4265 for (skb = napi->gro_list; skb; skb = next) { 4266 next = skb->next; 4267 skb->next = NULL; 4268 kfree_skb(skb); 4269 } 4270 4271 napi->gro_list = NULL; 4272 napi->gro_count = 0; 4273 } 4274 EXPORT_SYMBOL(netif_napi_del); 4275 4276 static void net_rx_action(struct softirq_action *h) 4277 { 4278 struct softnet_data *sd = &__get_cpu_var(softnet_data); 4279 unsigned long time_limit = jiffies + 2; 4280 int budget = netdev_budget; 4281 void *have; 4282 4283 local_irq_disable(); 4284 4285 while (!list_empty(&sd->poll_list)) { 4286 struct napi_struct *n; 4287 int work, weight; 4288 4289 /* If softirq window is exhuasted then punt. 4290 * Allow this to run for 2 jiffies since which will allow 4291 * an average latency of 1.5/HZ. 4292 */ 4293 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit))) 4294 goto softnet_break; 4295 4296 local_irq_enable(); 4297 4298 /* Even though interrupts have been re-enabled, this 4299 * access is safe because interrupts can only add new 4300 * entries to the tail of this list, and only ->poll() 4301 * calls can remove this head entry from the list. 4302 */ 4303 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 4304 4305 have = netpoll_poll_lock(n); 4306 4307 weight = n->weight; 4308 4309 /* This NAPI_STATE_SCHED test is for avoiding a race 4310 * with netpoll's poll_napi(). Only the entity which 4311 * obtains the lock and sees NAPI_STATE_SCHED set will 4312 * actually make the ->poll() call. Therefore we avoid 4313 * accidentally calling ->poll() when NAPI is not scheduled. 4314 */ 4315 work = 0; 4316 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4317 work = n->poll(n, weight); 4318 trace_napi_poll(n); 4319 } 4320 4321 WARN_ON_ONCE(work > weight); 4322 4323 budget -= work; 4324 4325 local_irq_disable(); 4326 4327 /* Drivers must not modify the NAPI state if they 4328 * consume the entire weight. In such cases this code 4329 * still "owns" the NAPI instance and therefore can 4330 * move the instance around on the list at-will. 4331 */ 4332 if (unlikely(work == weight)) { 4333 if (unlikely(napi_disable_pending(n))) { 4334 local_irq_enable(); 4335 napi_complete(n); 4336 local_irq_disable(); 4337 } else { 4338 if (n->gro_list) { 4339 /* flush too old packets 4340 * If HZ < 1000, flush all packets. 4341 */ 4342 local_irq_enable(); 4343 napi_gro_flush(n, HZ >= 1000); 4344 local_irq_disable(); 4345 } 4346 list_move_tail(&n->poll_list, &sd->poll_list); 4347 } 4348 } 4349 4350 netpoll_poll_unlock(have); 4351 } 4352 out: 4353 net_rps_action_and_irq_enable(sd); 4354 4355 #ifdef CONFIG_NET_DMA 4356 /* 4357 * There may not be any more sk_buffs coming right now, so push 4358 * any pending DMA copies to hardware 4359 */ 4360 dma_issue_pending_all(); 4361 #endif 4362 4363 return; 4364 4365 softnet_break: 4366 sd->time_squeeze++; 4367 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4368 goto out; 4369 } 4370 4371 struct netdev_adjacent { 4372 struct net_device *dev; 4373 4374 /* upper master flag, there can only be one master device per list */ 4375 bool master; 4376 4377 /* indicates that this dev is our first-level lower/upper device */ 4378 bool neighbour; 4379 4380 /* counter for the number of times this device was added to us */ 4381 u16 ref_nr; 4382 4383 struct list_head list; 4384 struct rcu_head rcu; 4385 }; 4386 4387 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev, 4388 struct net_device *adj_dev, 4389 bool upper) 4390 { 4391 struct netdev_adjacent *adj; 4392 struct list_head *dev_list; 4393 4394 dev_list = upper ? &dev->upper_dev_list : &dev->lower_dev_list; 4395 4396 list_for_each_entry(adj, dev_list, list) { 4397 if (adj->dev == adj_dev) 4398 return adj; 4399 } 4400 return NULL; 4401 } 4402 4403 static inline struct netdev_adjacent *__netdev_find_upper(struct net_device *dev, 4404 struct net_device *udev) 4405 { 4406 return __netdev_find_adj(dev, udev, true); 4407 } 4408 4409 static inline struct netdev_adjacent *__netdev_find_lower(struct net_device *dev, 4410 struct net_device *ldev) 4411 { 4412 return __netdev_find_adj(dev, ldev, false); 4413 } 4414 4415 /** 4416 * netdev_has_upper_dev - Check if device is linked to an upper device 4417 * @dev: device 4418 * @upper_dev: upper device to check 4419 * 4420 * Find out if a device is linked to specified upper device and return true 4421 * in case it is. Note that this checks only immediate upper device, 4422 * not through a complete stack of devices. The caller must hold the RTNL lock. 4423 */ 4424 bool netdev_has_upper_dev(struct net_device *dev, 4425 struct net_device *upper_dev) 4426 { 4427 ASSERT_RTNL(); 4428 4429 return __netdev_find_upper(dev, upper_dev); 4430 } 4431 EXPORT_SYMBOL(netdev_has_upper_dev); 4432 4433 /** 4434 * netdev_has_any_upper_dev - Check if device is linked to some device 4435 * @dev: device 4436 * 4437 * Find out if a device is linked to an upper device and return true in case 4438 * it is. The caller must hold the RTNL lock. 4439 */ 4440 bool netdev_has_any_upper_dev(struct net_device *dev) 4441 { 4442 ASSERT_RTNL(); 4443 4444 return !list_empty(&dev->upper_dev_list); 4445 } 4446 EXPORT_SYMBOL(netdev_has_any_upper_dev); 4447 4448 /** 4449 * netdev_master_upper_dev_get - Get master upper device 4450 * @dev: device 4451 * 4452 * Find a master upper device and return pointer to it or NULL in case 4453 * it's not there. The caller must hold the RTNL lock. 4454 */ 4455 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4456 { 4457 struct netdev_adjacent *upper; 4458 4459 ASSERT_RTNL(); 4460 4461 if (list_empty(&dev->upper_dev_list)) 4462 return NULL; 4463 4464 upper = list_first_entry(&dev->upper_dev_list, 4465 struct netdev_adjacent, list); 4466 if (likely(upper->master)) 4467 return upper->dev; 4468 return NULL; 4469 } 4470 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4471 4472 /* netdev_upper_get_next_dev_rcu - Get the next dev from upper list 4473 * @dev: device 4474 * @iter: list_head ** of the current position 4475 * 4476 * Gets the next device from the dev's upper list, starting from iter 4477 * position. The caller must hold RCU read lock. 4478 */ 4479 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4480 struct list_head **iter) 4481 { 4482 struct netdev_adjacent *upper; 4483 4484 WARN_ON_ONCE(!rcu_read_lock_held()); 4485 4486 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4487 4488 if (&upper->list == &dev->upper_dev_list) 4489 return NULL; 4490 4491 *iter = &upper->list; 4492 4493 return upper->dev; 4494 } 4495 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 4496 4497 /** 4498 * netdev_master_upper_dev_get_rcu - Get master upper device 4499 * @dev: device 4500 * 4501 * Find a master upper device and return pointer to it or NULL in case 4502 * it's not there. The caller must hold the RCU read lock. 4503 */ 4504 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4505 { 4506 struct netdev_adjacent *upper; 4507 4508 upper = list_first_or_null_rcu(&dev->upper_dev_list, 4509 struct netdev_adjacent, list); 4510 if (upper && likely(upper->master)) 4511 return upper->dev; 4512 return NULL; 4513 } 4514 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4515 4516 static int __netdev_adjacent_dev_insert(struct net_device *dev, 4517 struct net_device *adj_dev, 4518 bool neighbour, bool master, 4519 bool upper) 4520 { 4521 struct netdev_adjacent *adj; 4522 4523 adj = __netdev_find_adj(dev, adj_dev, upper); 4524 4525 if (adj) { 4526 BUG_ON(neighbour); 4527 adj->ref_nr++; 4528 return 0; 4529 } 4530 4531 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 4532 if (!adj) 4533 return -ENOMEM; 4534 4535 adj->dev = adj_dev; 4536 adj->master = master; 4537 adj->neighbour = neighbour; 4538 adj->ref_nr = 1; 4539 4540 dev_hold(adj_dev); 4541 pr_debug("dev_hold for %s, because of %s link added from %s to %s\n", 4542 adj_dev->name, upper ? "upper" : "lower", dev->name, 4543 adj_dev->name); 4544 4545 if (!upper) { 4546 list_add_tail_rcu(&adj->list, &dev->lower_dev_list); 4547 return 0; 4548 } 4549 4550 /* Ensure that master upper link is always the first item in list. */ 4551 if (master) 4552 list_add_rcu(&adj->list, &dev->upper_dev_list); 4553 else 4554 list_add_tail_rcu(&adj->list, &dev->upper_dev_list); 4555 4556 return 0; 4557 } 4558 4559 static inline int __netdev_upper_dev_insert(struct net_device *dev, 4560 struct net_device *udev, 4561 bool master, bool neighbour) 4562 { 4563 return __netdev_adjacent_dev_insert(dev, udev, neighbour, master, 4564 true); 4565 } 4566 4567 static inline int __netdev_lower_dev_insert(struct net_device *dev, 4568 struct net_device *ldev, 4569 bool neighbour) 4570 { 4571 return __netdev_adjacent_dev_insert(dev, ldev, neighbour, false, 4572 false); 4573 } 4574 4575 void __netdev_adjacent_dev_remove(struct net_device *dev, 4576 struct net_device *adj_dev, bool upper) 4577 { 4578 struct netdev_adjacent *adj; 4579 4580 if (upper) 4581 adj = __netdev_find_upper(dev, adj_dev); 4582 else 4583 adj = __netdev_find_lower(dev, adj_dev); 4584 4585 if (!adj) 4586 BUG(); 4587 4588 if (adj->ref_nr > 1) { 4589 adj->ref_nr--; 4590 return; 4591 } 4592 4593 list_del_rcu(&adj->list); 4594 pr_debug("dev_put for %s, because of %s link removed from %s to %s\n", 4595 adj_dev->name, upper ? "upper" : "lower", dev->name, 4596 adj_dev->name); 4597 dev_put(adj_dev); 4598 kfree_rcu(adj, rcu); 4599 } 4600 4601 static inline void __netdev_upper_dev_remove(struct net_device *dev, 4602 struct net_device *udev) 4603 { 4604 return __netdev_adjacent_dev_remove(dev, udev, true); 4605 } 4606 4607 static inline void __netdev_lower_dev_remove(struct net_device *dev, 4608 struct net_device *ldev) 4609 { 4610 return __netdev_adjacent_dev_remove(dev, ldev, false); 4611 } 4612 4613 int __netdev_adjacent_dev_insert_link(struct net_device *dev, 4614 struct net_device *upper_dev, 4615 bool master, bool neighbour) 4616 { 4617 int ret; 4618 4619 ret = __netdev_upper_dev_insert(dev, upper_dev, master, neighbour); 4620 if (ret) 4621 return ret; 4622 4623 ret = __netdev_lower_dev_insert(upper_dev, dev, neighbour); 4624 if (ret) { 4625 __netdev_upper_dev_remove(dev, upper_dev); 4626 return ret; 4627 } 4628 4629 return 0; 4630 } 4631 4632 static inline int __netdev_adjacent_dev_link(struct net_device *dev, 4633 struct net_device *udev) 4634 { 4635 return __netdev_adjacent_dev_insert_link(dev, udev, false, false); 4636 } 4637 4638 static inline int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 4639 struct net_device *udev, 4640 bool master) 4641 { 4642 return __netdev_adjacent_dev_insert_link(dev, udev, master, true); 4643 } 4644 4645 void __netdev_adjacent_dev_unlink(struct net_device *dev, 4646 struct net_device *upper_dev) 4647 { 4648 __netdev_upper_dev_remove(dev, upper_dev); 4649 __netdev_lower_dev_remove(upper_dev, dev); 4650 } 4651 4652 4653 static int __netdev_upper_dev_link(struct net_device *dev, 4654 struct net_device *upper_dev, bool master) 4655 { 4656 struct netdev_adjacent *i, *j, *to_i, *to_j; 4657 int ret = 0; 4658 4659 ASSERT_RTNL(); 4660 4661 if (dev == upper_dev) 4662 return -EBUSY; 4663 4664 /* To prevent loops, check if dev is not upper device to upper_dev. */ 4665 if (__netdev_find_upper(upper_dev, dev)) 4666 return -EBUSY; 4667 4668 if (__netdev_find_upper(dev, upper_dev)) 4669 return -EEXIST; 4670 4671 if (master && netdev_master_upper_dev_get(dev)) 4672 return -EBUSY; 4673 4674 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, master); 4675 if (ret) 4676 return ret; 4677 4678 /* Now that we linked these devs, make all the upper_dev's 4679 * upper_dev_list visible to every dev's lower_dev_list and vice 4680 * versa, and don't forget the devices itself. All of these 4681 * links are non-neighbours. 4682 */ 4683 list_for_each_entry(i, &dev->lower_dev_list, list) { 4684 list_for_each_entry(j, &upper_dev->upper_dev_list, list) { 4685 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 4686 if (ret) 4687 goto rollback_mesh; 4688 } 4689 } 4690 4691 /* add dev to every upper_dev's upper device */ 4692 list_for_each_entry(i, &upper_dev->upper_dev_list, list) { 4693 ret = __netdev_adjacent_dev_link(dev, i->dev); 4694 if (ret) 4695 goto rollback_upper_mesh; 4696 } 4697 4698 /* add upper_dev to every dev's lower device */ 4699 list_for_each_entry(i, &dev->lower_dev_list, list) { 4700 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 4701 if (ret) 4702 goto rollback_lower_mesh; 4703 } 4704 4705 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 4706 return 0; 4707 4708 rollback_lower_mesh: 4709 to_i = i; 4710 list_for_each_entry(i, &dev->lower_dev_list, list) { 4711 if (i == to_i) 4712 break; 4713 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 4714 } 4715 4716 i = NULL; 4717 4718 rollback_upper_mesh: 4719 to_i = i; 4720 list_for_each_entry(i, &upper_dev->upper_dev_list, list) { 4721 if (i == to_i) 4722 break; 4723 __netdev_adjacent_dev_unlink(dev, i->dev); 4724 } 4725 4726 i = j = NULL; 4727 4728 rollback_mesh: 4729 to_i = i; 4730 to_j = j; 4731 list_for_each_entry(i, &dev->lower_dev_list, list) { 4732 list_for_each_entry(j, &upper_dev->upper_dev_list, list) { 4733 if (i == to_i && j == to_j) 4734 break; 4735 __netdev_adjacent_dev_unlink(i->dev, j->dev); 4736 } 4737 if (i == to_i) 4738 break; 4739 } 4740 4741 __netdev_adjacent_dev_unlink(dev, upper_dev); 4742 4743 return ret; 4744 } 4745 4746 /** 4747 * netdev_upper_dev_link - Add a link to the upper device 4748 * @dev: device 4749 * @upper_dev: new upper device 4750 * 4751 * Adds a link to device which is upper to this one. The caller must hold 4752 * the RTNL lock. On a failure a negative errno code is returned. 4753 * On success the reference counts are adjusted and the function 4754 * returns zero. 4755 */ 4756 int netdev_upper_dev_link(struct net_device *dev, 4757 struct net_device *upper_dev) 4758 { 4759 return __netdev_upper_dev_link(dev, upper_dev, false); 4760 } 4761 EXPORT_SYMBOL(netdev_upper_dev_link); 4762 4763 /** 4764 * netdev_master_upper_dev_link - Add a master link to the upper device 4765 * @dev: device 4766 * @upper_dev: new upper device 4767 * 4768 * Adds a link to device which is upper to this one. In this case, only 4769 * one master upper device can be linked, although other non-master devices 4770 * might be linked as well. The caller must hold the RTNL lock. 4771 * On a failure a negative errno code is returned. On success the reference 4772 * counts are adjusted and the function returns zero. 4773 */ 4774 int netdev_master_upper_dev_link(struct net_device *dev, 4775 struct net_device *upper_dev) 4776 { 4777 return __netdev_upper_dev_link(dev, upper_dev, true); 4778 } 4779 EXPORT_SYMBOL(netdev_master_upper_dev_link); 4780 4781 /** 4782 * netdev_upper_dev_unlink - Removes a link to upper device 4783 * @dev: device 4784 * @upper_dev: new upper device 4785 * 4786 * Removes a link to device which is upper to this one. The caller must hold 4787 * the RTNL lock. 4788 */ 4789 void netdev_upper_dev_unlink(struct net_device *dev, 4790 struct net_device *upper_dev) 4791 { 4792 struct netdev_adjacent *i, *j; 4793 ASSERT_RTNL(); 4794 4795 __netdev_adjacent_dev_unlink(dev, upper_dev); 4796 4797 /* Here is the tricky part. We must remove all dev's lower 4798 * devices from all upper_dev's upper devices and vice 4799 * versa, to maintain the graph relationship. 4800 */ 4801 list_for_each_entry(i, &dev->lower_dev_list, list) 4802 list_for_each_entry(j, &upper_dev->upper_dev_list, list) 4803 __netdev_adjacent_dev_unlink(i->dev, j->dev); 4804 4805 /* remove also the devices itself from lower/upper device 4806 * list 4807 */ 4808 list_for_each_entry(i, &dev->lower_dev_list, list) 4809 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 4810 4811 list_for_each_entry(i, &upper_dev->upper_dev_list, list) 4812 __netdev_adjacent_dev_unlink(dev, i->dev); 4813 4814 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 4815 } 4816 EXPORT_SYMBOL(netdev_upper_dev_unlink); 4817 4818 static void dev_change_rx_flags(struct net_device *dev, int flags) 4819 { 4820 const struct net_device_ops *ops = dev->netdev_ops; 4821 4822 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4823 ops->ndo_change_rx_flags(dev, flags); 4824 } 4825 4826 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4827 { 4828 unsigned int old_flags = dev->flags; 4829 kuid_t uid; 4830 kgid_t gid; 4831 4832 ASSERT_RTNL(); 4833 4834 dev->flags |= IFF_PROMISC; 4835 dev->promiscuity += inc; 4836 if (dev->promiscuity == 0) { 4837 /* 4838 * Avoid overflow. 4839 * If inc causes overflow, untouch promisc and return error. 4840 */ 4841 if (inc < 0) 4842 dev->flags &= ~IFF_PROMISC; 4843 else { 4844 dev->promiscuity -= inc; 4845 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 4846 dev->name); 4847 return -EOVERFLOW; 4848 } 4849 } 4850 if (dev->flags != old_flags) { 4851 pr_info("device %s %s promiscuous mode\n", 4852 dev->name, 4853 dev->flags & IFF_PROMISC ? "entered" : "left"); 4854 if (audit_enabled) { 4855 current_uid_gid(&uid, &gid); 4856 audit_log(current->audit_context, GFP_ATOMIC, 4857 AUDIT_ANOM_PROMISCUOUS, 4858 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4859 dev->name, (dev->flags & IFF_PROMISC), 4860 (old_flags & IFF_PROMISC), 4861 from_kuid(&init_user_ns, audit_get_loginuid(current)), 4862 from_kuid(&init_user_ns, uid), 4863 from_kgid(&init_user_ns, gid), 4864 audit_get_sessionid(current)); 4865 } 4866 4867 dev_change_rx_flags(dev, IFF_PROMISC); 4868 } 4869 return 0; 4870 } 4871 4872 /** 4873 * dev_set_promiscuity - update promiscuity count on a device 4874 * @dev: device 4875 * @inc: modifier 4876 * 4877 * Add or remove promiscuity from a device. While the count in the device 4878 * remains above zero the interface remains promiscuous. Once it hits zero 4879 * the device reverts back to normal filtering operation. A negative inc 4880 * value is used to drop promiscuity on the device. 4881 * Return 0 if successful or a negative errno code on error. 4882 */ 4883 int dev_set_promiscuity(struct net_device *dev, int inc) 4884 { 4885 unsigned int old_flags = dev->flags; 4886 int err; 4887 4888 err = __dev_set_promiscuity(dev, inc); 4889 if (err < 0) 4890 return err; 4891 if (dev->flags != old_flags) 4892 dev_set_rx_mode(dev); 4893 return err; 4894 } 4895 EXPORT_SYMBOL(dev_set_promiscuity); 4896 4897 /** 4898 * dev_set_allmulti - update allmulti count on a device 4899 * @dev: device 4900 * @inc: modifier 4901 * 4902 * Add or remove reception of all multicast frames to a device. While the 4903 * count in the device remains above zero the interface remains listening 4904 * to all interfaces. Once it hits zero the device reverts back to normal 4905 * filtering operation. A negative @inc value is used to drop the counter 4906 * when releasing a resource needing all multicasts. 4907 * Return 0 if successful or a negative errno code on error. 4908 */ 4909 4910 int dev_set_allmulti(struct net_device *dev, int inc) 4911 { 4912 unsigned int old_flags = dev->flags; 4913 4914 ASSERT_RTNL(); 4915 4916 dev->flags |= IFF_ALLMULTI; 4917 dev->allmulti += inc; 4918 if (dev->allmulti == 0) { 4919 /* 4920 * Avoid overflow. 4921 * If inc causes overflow, untouch allmulti and return error. 4922 */ 4923 if (inc < 0) 4924 dev->flags &= ~IFF_ALLMULTI; 4925 else { 4926 dev->allmulti -= inc; 4927 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 4928 dev->name); 4929 return -EOVERFLOW; 4930 } 4931 } 4932 if (dev->flags ^ old_flags) { 4933 dev_change_rx_flags(dev, IFF_ALLMULTI); 4934 dev_set_rx_mode(dev); 4935 } 4936 return 0; 4937 } 4938 EXPORT_SYMBOL(dev_set_allmulti); 4939 4940 /* 4941 * Upload unicast and multicast address lists to device and 4942 * configure RX filtering. When the device doesn't support unicast 4943 * filtering it is put in promiscuous mode while unicast addresses 4944 * are present. 4945 */ 4946 void __dev_set_rx_mode(struct net_device *dev) 4947 { 4948 const struct net_device_ops *ops = dev->netdev_ops; 4949 4950 /* dev_open will call this function so the list will stay sane. */ 4951 if (!(dev->flags&IFF_UP)) 4952 return; 4953 4954 if (!netif_device_present(dev)) 4955 return; 4956 4957 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4958 /* Unicast addresses changes may only happen under the rtnl, 4959 * therefore calling __dev_set_promiscuity here is safe. 4960 */ 4961 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4962 __dev_set_promiscuity(dev, 1); 4963 dev->uc_promisc = true; 4964 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4965 __dev_set_promiscuity(dev, -1); 4966 dev->uc_promisc = false; 4967 } 4968 } 4969 4970 if (ops->ndo_set_rx_mode) 4971 ops->ndo_set_rx_mode(dev); 4972 } 4973 4974 void dev_set_rx_mode(struct net_device *dev) 4975 { 4976 netif_addr_lock_bh(dev); 4977 __dev_set_rx_mode(dev); 4978 netif_addr_unlock_bh(dev); 4979 } 4980 4981 /** 4982 * dev_get_flags - get flags reported to userspace 4983 * @dev: device 4984 * 4985 * Get the combination of flag bits exported through APIs to userspace. 4986 */ 4987 unsigned int dev_get_flags(const struct net_device *dev) 4988 { 4989 unsigned int flags; 4990 4991 flags = (dev->flags & ~(IFF_PROMISC | 4992 IFF_ALLMULTI | 4993 IFF_RUNNING | 4994 IFF_LOWER_UP | 4995 IFF_DORMANT)) | 4996 (dev->gflags & (IFF_PROMISC | 4997 IFF_ALLMULTI)); 4998 4999 if (netif_running(dev)) { 5000 if (netif_oper_up(dev)) 5001 flags |= IFF_RUNNING; 5002 if (netif_carrier_ok(dev)) 5003 flags |= IFF_LOWER_UP; 5004 if (netif_dormant(dev)) 5005 flags |= IFF_DORMANT; 5006 } 5007 5008 return flags; 5009 } 5010 EXPORT_SYMBOL(dev_get_flags); 5011 5012 int __dev_change_flags(struct net_device *dev, unsigned int flags) 5013 { 5014 unsigned int old_flags = dev->flags; 5015 int ret; 5016 5017 ASSERT_RTNL(); 5018 5019 /* 5020 * Set the flags on our device. 5021 */ 5022 5023 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5024 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5025 IFF_AUTOMEDIA)) | 5026 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5027 IFF_ALLMULTI)); 5028 5029 /* 5030 * Load in the correct multicast list now the flags have changed. 5031 */ 5032 5033 if ((old_flags ^ flags) & IFF_MULTICAST) 5034 dev_change_rx_flags(dev, IFF_MULTICAST); 5035 5036 dev_set_rx_mode(dev); 5037 5038 /* 5039 * Have we downed the interface. We handle IFF_UP ourselves 5040 * according to user attempts to set it, rather than blindly 5041 * setting it. 5042 */ 5043 5044 ret = 0; 5045 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 5046 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5047 5048 if (!ret) 5049 dev_set_rx_mode(dev); 5050 } 5051 5052 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5053 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5054 5055 dev->gflags ^= IFF_PROMISC; 5056 dev_set_promiscuity(dev, inc); 5057 } 5058 5059 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5060 is important. Some (broken) drivers set IFF_PROMISC, when 5061 IFF_ALLMULTI is requested not asking us and not reporting. 5062 */ 5063 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5064 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5065 5066 dev->gflags ^= IFF_ALLMULTI; 5067 dev_set_allmulti(dev, inc); 5068 } 5069 5070 return ret; 5071 } 5072 5073 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 5074 { 5075 unsigned int changes = dev->flags ^ old_flags; 5076 5077 if (changes & IFF_UP) { 5078 if (dev->flags & IFF_UP) 5079 call_netdevice_notifiers(NETDEV_UP, dev); 5080 else 5081 call_netdevice_notifiers(NETDEV_DOWN, dev); 5082 } 5083 5084 if (dev->flags & IFF_UP && 5085 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5086 struct netdev_notifier_change_info change_info; 5087 5088 change_info.flags_changed = changes; 5089 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5090 &change_info.info); 5091 } 5092 } 5093 5094 /** 5095 * dev_change_flags - change device settings 5096 * @dev: device 5097 * @flags: device state flags 5098 * 5099 * Change settings on device based state flags. The flags are 5100 * in the userspace exported format. 5101 */ 5102 int dev_change_flags(struct net_device *dev, unsigned int flags) 5103 { 5104 int ret; 5105 unsigned int changes, old_flags = dev->flags; 5106 5107 ret = __dev_change_flags(dev, flags); 5108 if (ret < 0) 5109 return ret; 5110 5111 changes = old_flags ^ dev->flags; 5112 if (changes) 5113 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 5114 5115 __dev_notify_flags(dev, old_flags); 5116 return ret; 5117 } 5118 EXPORT_SYMBOL(dev_change_flags); 5119 5120 /** 5121 * dev_set_mtu - Change maximum transfer unit 5122 * @dev: device 5123 * @new_mtu: new transfer unit 5124 * 5125 * Change the maximum transfer size of the network device. 5126 */ 5127 int dev_set_mtu(struct net_device *dev, int new_mtu) 5128 { 5129 const struct net_device_ops *ops = dev->netdev_ops; 5130 int err; 5131 5132 if (new_mtu == dev->mtu) 5133 return 0; 5134 5135 /* MTU must be positive. */ 5136 if (new_mtu < 0) 5137 return -EINVAL; 5138 5139 if (!netif_device_present(dev)) 5140 return -ENODEV; 5141 5142 err = 0; 5143 if (ops->ndo_change_mtu) 5144 err = ops->ndo_change_mtu(dev, new_mtu); 5145 else 5146 dev->mtu = new_mtu; 5147 5148 if (!err) 5149 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5150 return err; 5151 } 5152 EXPORT_SYMBOL(dev_set_mtu); 5153 5154 /** 5155 * dev_set_group - Change group this device belongs to 5156 * @dev: device 5157 * @new_group: group this device should belong to 5158 */ 5159 void dev_set_group(struct net_device *dev, int new_group) 5160 { 5161 dev->group = new_group; 5162 } 5163 EXPORT_SYMBOL(dev_set_group); 5164 5165 /** 5166 * dev_set_mac_address - Change Media Access Control Address 5167 * @dev: device 5168 * @sa: new address 5169 * 5170 * Change the hardware (MAC) address of the device 5171 */ 5172 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 5173 { 5174 const struct net_device_ops *ops = dev->netdev_ops; 5175 int err; 5176 5177 if (!ops->ndo_set_mac_address) 5178 return -EOPNOTSUPP; 5179 if (sa->sa_family != dev->type) 5180 return -EINVAL; 5181 if (!netif_device_present(dev)) 5182 return -ENODEV; 5183 err = ops->ndo_set_mac_address(dev, sa); 5184 if (err) 5185 return err; 5186 dev->addr_assign_type = NET_ADDR_SET; 5187 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5188 add_device_randomness(dev->dev_addr, dev->addr_len); 5189 return 0; 5190 } 5191 EXPORT_SYMBOL(dev_set_mac_address); 5192 5193 /** 5194 * dev_change_carrier - Change device carrier 5195 * @dev: device 5196 * @new_carrier: new value 5197 * 5198 * Change device carrier 5199 */ 5200 int dev_change_carrier(struct net_device *dev, bool new_carrier) 5201 { 5202 const struct net_device_ops *ops = dev->netdev_ops; 5203 5204 if (!ops->ndo_change_carrier) 5205 return -EOPNOTSUPP; 5206 if (!netif_device_present(dev)) 5207 return -ENODEV; 5208 return ops->ndo_change_carrier(dev, new_carrier); 5209 } 5210 EXPORT_SYMBOL(dev_change_carrier); 5211 5212 /** 5213 * dev_get_phys_port_id - Get device physical port ID 5214 * @dev: device 5215 * @ppid: port ID 5216 * 5217 * Get device physical port ID 5218 */ 5219 int dev_get_phys_port_id(struct net_device *dev, 5220 struct netdev_phys_port_id *ppid) 5221 { 5222 const struct net_device_ops *ops = dev->netdev_ops; 5223 5224 if (!ops->ndo_get_phys_port_id) 5225 return -EOPNOTSUPP; 5226 return ops->ndo_get_phys_port_id(dev, ppid); 5227 } 5228 EXPORT_SYMBOL(dev_get_phys_port_id); 5229 5230 /** 5231 * dev_new_index - allocate an ifindex 5232 * @net: the applicable net namespace 5233 * 5234 * Returns a suitable unique value for a new device interface 5235 * number. The caller must hold the rtnl semaphore or the 5236 * dev_base_lock to be sure it remains unique. 5237 */ 5238 static int dev_new_index(struct net *net) 5239 { 5240 int ifindex = net->ifindex; 5241 for (;;) { 5242 if (++ifindex <= 0) 5243 ifindex = 1; 5244 if (!__dev_get_by_index(net, ifindex)) 5245 return net->ifindex = ifindex; 5246 } 5247 } 5248 5249 /* Delayed registration/unregisteration */ 5250 static LIST_HEAD(net_todo_list); 5251 static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 5252 5253 static void net_set_todo(struct net_device *dev) 5254 { 5255 list_add_tail(&dev->todo_list, &net_todo_list); 5256 dev_net(dev)->dev_unreg_count++; 5257 } 5258 5259 static void rollback_registered_many(struct list_head *head) 5260 { 5261 struct net_device *dev, *tmp; 5262 5263 BUG_ON(dev_boot_phase); 5264 ASSERT_RTNL(); 5265 5266 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5267 /* Some devices call without registering 5268 * for initialization unwind. Remove those 5269 * devices and proceed with the remaining. 5270 */ 5271 if (dev->reg_state == NETREG_UNINITIALIZED) { 5272 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5273 dev->name, dev); 5274 5275 WARN_ON(1); 5276 list_del(&dev->unreg_list); 5277 continue; 5278 } 5279 dev->dismantle = true; 5280 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5281 } 5282 5283 /* If device is running, close it first. */ 5284 dev_close_many(head); 5285 5286 list_for_each_entry(dev, head, unreg_list) { 5287 /* And unlink it from device chain. */ 5288 unlist_netdevice(dev); 5289 5290 dev->reg_state = NETREG_UNREGISTERING; 5291 } 5292 5293 synchronize_net(); 5294 5295 list_for_each_entry(dev, head, unreg_list) { 5296 /* Shutdown queueing discipline. */ 5297 dev_shutdown(dev); 5298 5299 5300 /* Notify protocols, that we are about to destroy 5301 this device. They should clean all the things. 5302 */ 5303 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5304 5305 if (!dev->rtnl_link_ops || 5306 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5307 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5308 5309 /* 5310 * Flush the unicast and multicast chains 5311 */ 5312 dev_uc_flush(dev); 5313 dev_mc_flush(dev); 5314 5315 if (dev->netdev_ops->ndo_uninit) 5316 dev->netdev_ops->ndo_uninit(dev); 5317 5318 /* Notifier chain MUST detach us all upper devices. */ 5319 WARN_ON(netdev_has_any_upper_dev(dev)); 5320 5321 /* Remove entries from kobject tree */ 5322 netdev_unregister_kobject(dev); 5323 #ifdef CONFIG_XPS 5324 /* Remove XPS queueing entries */ 5325 netif_reset_xps_queues_gt(dev, 0); 5326 #endif 5327 } 5328 5329 synchronize_net(); 5330 5331 list_for_each_entry(dev, head, unreg_list) 5332 dev_put(dev); 5333 } 5334 5335 static void rollback_registered(struct net_device *dev) 5336 { 5337 LIST_HEAD(single); 5338 5339 list_add(&dev->unreg_list, &single); 5340 rollback_registered_many(&single); 5341 list_del(&single); 5342 } 5343 5344 static netdev_features_t netdev_fix_features(struct net_device *dev, 5345 netdev_features_t features) 5346 { 5347 /* Fix illegal checksum combinations */ 5348 if ((features & NETIF_F_HW_CSUM) && 5349 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5350 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5351 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5352 } 5353 5354 /* TSO requires that SG is present as well. */ 5355 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5356 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5357 features &= ~NETIF_F_ALL_TSO; 5358 } 5359 5360 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 5361 !(features & NETIF_F_IP_CSUM)) { 5362 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 5363 features &= ~NETIF_F_TSO; 5364 features &= ~NETIF_F_TSO_ECN; 5365 } 5366 5367 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 5368 !(features & NETIF_F_IPV6_CSUM)) { 5369 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 5370 features &= ~NETIF_F_TSO6; 5371 } 5372 5373 /* TSO ECN requires that TSO is present as well. */ 5374 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5375 features &= ~NETIF_F_TSO_ECN; 5376 5377 /* Software GSO depends on SG. */ 5378 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5379 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5380 features &= ~NETIF_F_GSO; 5381 } 5382 5383 /* UFO needs SG and checksumming */ 5384 if (features & NETIF_F_UFO) { 5385 /* maybe split UFO into V4 and V6? */ 5386 if (!((features & NETIF_F_GEN_CSUM) || 5387 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5388 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5389 netdev_dbg(dev, 5390 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5391 features &= ~NETIF_F_UFO; 5392 } 5393 5394 if (!(features & NETIF_F_SG)) { 5395 netdev_dbg(dev, 5396 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5397 features &= ~NETIF_F_UFO; 5398 } 5399 } 5400 5401 return features; 5402 } 5403 5404 int __netdev_update_features(struct net_device *dev) 5405 { 5406 netdev_features_t features; 5407 int err = 0; 5408 5409 ASSERT_RTNL(); 5410 5411 features = netdev_get_wanted_features(dev); 5412 5413 if (dev->netdev_ops->ndo_fix_features) 5414 features = dev->netdev_ops->ndo_fix_features(dev, features); 5415 5416 /* driver might be less strict about feature dependencies */ 5417 features = netdev_fix_features(dev, features); 5418 5419 if (dev->features == features) 5420 return 0; 5421 5422 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5423 &dev->features, &features); 5424 5425 if (dev->netdev_ops->ndo_set_features) 5426 err = dev->netdev_ops->ndo_set_features(dev, features); 5427 5428 if (unlikely(err < 0)) { 5429 netdev_err(dev, 5430 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5431 err, &features, &dev->features); 5432 return -1; 5433 } 5434 5435 if (!err) 5436 dev->features = features; 5437 5438 return 1; 5439 } 5440 5441 /** 5442 * netdev_update_features - recalculate device features 5443 * @dev: the device to check 5444 * 5445 * Recalculate dev->features set and send notifications if it 5446 * has changed. Should be called after driver or hardware dependent 5447 * conditions might have changed that influence the features. 5448 */ 5449 void netdev_update_features(struct net_device *dev) 5450 { 5451 if (__netdev_update_features(dev)) 5452 netdev_features_change(dev); 5453 } 5454 EXPORT_SYMBOL(netdev_update_features); 5455 5456 /** 5457 * netdev_change_features - recalculate device features 5458 * @dev: the device to check 5459 * 5460 * Recalculate dev->features set and send notifications even 5461 * if they have not changed. Should be called instead of 5462 * netdev_update_features() if also dev->vlan_features might 5463 * have changed to allow the changes to be propagated to stacked 5464 * VLAN devices. 5465 */ 5466 void netdev_change_features(struct net_device *dev) 5467 { 5468 __netdev_update_features(dev); 5469 netdev_features_change(dev); 5470 } 5471 EXPORT_SYMBOL(netdev_change_features); 5472 5473 /** 5474 * netif_stacked_transfer_operstate - transfer operstate 5475 * @rootdev: the root or lower level device to transfer state from 5476 * @dev: the device to transfer operstate to 5477 * 5478 * Transfer operational state from root to device. This is normally 5479 * called when a stacking relationship exists between the root 5480 * device and the device(a leaf device). 5481 */ 5482 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5483 struct net_device *dev) 5484 { 5485 if (rootdev->operstate == IF_OPER_DORMANT) 5486 netif_dormant_on(dev); 5487 else 5488 netif_dormant_off(dev); 5489 5490 if (netif_carrier_ok(rootdev)) { 5491 if (!netif_carrier_ok(dev)) 5492 netif_carrier_on(dev); 5493 } else { 5494 if (netif_carrier_ok(dev)) 5495 netif_carrier_off(dev); 5496 } 5497 } 5498 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5499 5500 #ifdef CONFIG_RPS 5501 static int netif_alloc_rx_queues(struct net_device *dev) 5502 { 5503 unsigned int i, count = dev->num_rx_queues; 5504 struct netdev_rx_queue *rx; 5505 5506 BUG_ON(count < 1); 5507 5508 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5509 if (!rx) 5510 return -ENOMEM; 5511 5512 dev->_rx = rx; 5513 5514 for (i = 0; i < count; i++) 5515 rx[i].dev = dev; 5516 return 0; 5517 } 5518 #endif 5519 5520 static void netdev_init_one_queue(struct net_device *dev, 5521 struct netdev_queue *queue, void *_unused) 5522 { 5523 /* Initialize queue lock */ 5524 spin_lock_init(&queue->_xmit_lock); 5525 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5526 queue->xmit_lock_owner = -1; 5527 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5528 queue->dev = dev; 5529 #ifdef CONFIG_BQL 5530 dql_init(&queue->dql, HZ); 5531 #endif 5532 } 5533 5534 static void netif_free_tx_queues(struct net_device *dev) 5535 { 5536 if (is_vmalloc_addr(dev->_tx)) 5537 vfree(dev->_tx); 5538 else 5539 kfree(dev->_tx); 5540 } 5541 5542 static int netif_alloc_netdev_queues(struct net_device *dev) 5543 { 5544 unsigned int count = dev->num_tx_queues; 5545 struct netdev_queue *tx; 5546 size_t sz = count * sizeof(*tx); 5547 5548 BUG_ON(count < 1 || count > 0xffff); 5549 5550 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 5551 if (!tx) { 5552 tx = vzalloc(sz); 5553 if (!tx) 5554 return -ENOMEM; 5555 } 5556 dev->_tx = tx; 5557 5558 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5559 spin_lock_init(&dev->tx_global_lock); 5560 5561 return 0; 5562 } 5563 5564 /** 5565 * register_netdevice - register a network device 5566 * @dev: device to register 5567 * 5568 * Take a completed network device structure and add it to the kernel 5569 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5570 * chain. 0 is returned on success. A negative errno code is returned 5571 * on a failure to set up the device, or if the name is a duplicate. 5572 * 5573 * Callers must hold the rtnl semaphore. You may want 5574 * register_netdev() instead of this. 5575 * 5576 * BUGS: 5577 * The locking appears insufficient to guarantee two parallel registers 5578 * will not get the same name. 5579 */ 5580 5581 int register_netdevice(struct net_device *dev) 5582 { 5583 int ret; 5584 struct net *net = dev_net(dev); 5585 5586 BUG_ON(dev_boot_phase); 5587 ASSERT_RTNL(); 5588 5589 might_sleep(); 5590 5591 /* When net_device's are persistent, this will be fatal. */ 5592 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5593 BUG_ON(!net); 5594 5595 spin_lock_init(&dev->addr_list_lock); 5596 netdev_set_addr_lockdep_class(dev); 5597 5598 dev->iflink = -1; 5599 5600 ret = dev_get_valid_name(net, dev, dev->name); 5601 if (ret < 0) 5602 goto out; 5603 5604 /* Init, if this function is available */ 5605 if (dev->netdev_ops->ndo_init) { 5606 ret = dev->netdev_ops->ndo_init(dev); 5607 if (ret) { 5608 if (ret > 0) 5609 ret = -EIO; 5610 goto out; 5611 } 5612 } 5613 5614 if (((dev->hw_features | dev->features) & 5615 NETIF_F_HW_VLAN_CTAG_FILTER) && 5616 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 5617 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 5618 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 5619 ret = -EINVAL; 5620 goto err_uninit; 5621 } 5622 5623 ret = -EBUSY; 5624 if (!dev->ifindex) 5625 dev->ifindex = dev_new_index(net); 5626 else if (__dev_get_by_index(net, dev->ifindex)) 5627 goto err_uninit; 5628 5629 if (dev->iflink == -1) 5630 dev->iflink = dev->ifindex; 5631 5632 /* Transfer changeable features to wanted_features and enable 5633 * software offloads (GSO and GRO). 5634 */ 5635 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5636 dev->features |= NETIF_F_SOFT_FEATURES; 5637 dev->wanted_features = dev->features & dev->hw_features; 5638 5639 /* Turn on no cache copy if HW is doing checksum */ 5640 if (!(dev->flags & IFF_LOOPBACK)) { 5641 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5642 if (dev->features & NETIF_F_ALL_CSUM) { 5643 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5644 dev->features |= NETIF_F_NOCACHE_COPY; 5645 } 5646 } 5647 5648 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5649 */ 5650 dev->vlan_features |= NETIF_F_HIGHDMA; 5651 5652 /* Make NETIF_F_SG inheritable to tunnel devices. 5653 */ 5654 dev->hw_enc_features |= NETIF_F_SG; 5655 5656 /* Make NETIF_F_SG inheritable to MPLS. 5657 */ 5658 dev->mpls_features |= NETIF_F_SG; 5659 5660 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5661 ret = notifier_to_errno(ret); 5662 if (ret) 5663 goto err_uninit; 5664 5665 ret = netdev_register_kobject(dev); 5666 if (ret) 5667 goto err_uninit; 5668 dev->reg_state = NETREG_REGISTERED; 5669 5670 __netdev_update_features(dev); 5671 5672 /* 5673 * Default initial state at registry is that the 5674 * device is present. 5675 */ 5676 5677 set_bit(__LINK_STATE_PRESENT, &dev->state); 5678 5679 linkwatch_init_dev(dev); 5680 5681 dev_init_scheduler(dev); 5682 dev_hold(dev); 5683 list_netdevice(dev); 5684 add_device_randomness(dev->dev_addr, dev->addr_len); 5685 5686 /* If the device has permanent device address, driver should 5687 * set dev_addr and also addr_assign_type should be set to 5688 * NET_ADDR_PERM (default value). 5689 */ 5690 if (dev->addr_assign_type == NET_ADDR_PERM) 5691 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 5692 5693 /* Notify protocols, that a new device appeared. */ 5694 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5695 ret = notifier_to_errno(ret); 5696 if (ret) { 5697 rollback_registered(dev); 5698 dev->reg_state = NETREG_UNREGISTERED; 5699 } 5700 /* 5701 * Prevent userspace races by waiting until the network 5702 * device is fully setup before sending notifications. 5703 */ 5704 if (!dev->rtnl_link_ops || 5705 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5706 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5707 5708 out: 5709 return ret; 5710 5711 err_uninit: 5712 if (dev->netdev_ops->ndo_uninit) 5713 dev->netdev_ops->ndo_uninit(dev); 5714 goto out; 5715 } 5716 EXPORT_SYMBOL(register_netdevice); 5717 5718 /** 5719 * init_dummy_netdev - init a dummy network device for NAPI 5720 * @dev: device to init 5721 * 5722 * This takes a network device structure and initialize the minimum 5723 * amount of fields so it can be used to schedule NAPI polls without 5724 * registering a full blown interface. This is to be used by drivers 5725 * that need to tie several hardware interfaces to a single NAPI 5726 * poll scheduler due to HW limitations. 5727 */ 5728 int init_dummy_netdev(struct net_device *dev) 5729 { 5730 /* Clear everything. Note we don't initialize spinlocks 5731 * are they aren't supposed to be taken by any of the 5732 * NAPI code and this dummy netdev is supposed to be 5733 * only ever used for NAPI polls 5734 */ 5735 memset(dev, 0, sizeof(struct net_device)); 5736 5737 /* make sure we BUG if trying to hit standard 5738 * register/unregister code path 5739 */ 5740 dev->reg_state = NETREG_DUMMY; 5741 5742 /* NAPI wants this */ 5743 INIT_LIST_HEAD(&dev->napi_list); 5744 5745 /* a dummy interface is started by default */ 5746 set_bit(__LINK_STATE_PRESENT, &dev->state); 5747 set_bit(__LINK_STATE_START, &dev->state); 5748 5749 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5750 * because users of this 'device' dont need to change 5751 * its refcount. 5752 */ 5753 5754 return 0; 5755 } 5756 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5757 5758 5759 /** 5760 * register_netdev - register a network device 5761 * @dev: device to register 5762 * 5763 * Take a completed network device structure and add it to the kernel 5764 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5765 * chain. 0 is returned on success. A negative errno code is returned 5766 * on a failure to set up the device, or if the name is a duplicate. 5767 * 5768 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5769 * and expands the device name if you passed a format string to 5770 * alloc_netdev. 5771 */ 5772 int register_netdev(struct net_device *dev) 5773 { 5774 int err; 5775 5776 rtnl_lock(); 5777 err = register_netdevice(dev); 5778 rtnl_unlock(); 5779 return err; 5780 } 5781 EXPORT_SYMBOL(register_netdev); 5782 5783 int netdev_refcnt_read(const struct net_device *dev) 5784 { 5785 int i, refcnt = 0; 5786 5787 for_each_possible_cpu(i) 5788 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5789 return refcnt; 5790 } 5791 EXPORT_SYMBOL(netdev_refcnt_read); 5792 5793 /** 5794 * netdev_wait_allrefs - wait until all references are gone. 5795 * @dev: target net_device 5796 * 5797 * This is called when unregistering network devices. 5798 * 5799 * Any protocol or device that holds a reference should register 5800 * for netdevice notification, and cleanup and put back the 5801 * reference if they receive an UNREGISTER event. 5802 * We can get stuck here if buggy protocols don't correctly 5803 * call dev_put. 5804 */ 5805 static void netdev_wait_allrefs(struct net_device *dev) 5806 { 5807 unsigned long rebroadcast_time, warning_time; 5808 int refcnt; 5809 5810 linkwatch_forget_dev(dev); 5811 5812 rebroadcast_time = warning_time = jiffies; 5813 refcnt = netdev_refcnt_read(dev); 5814 5815 while (refcnt != 0) { 5816 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5817 rtnl_lock(); 5818 5819 /* Rebroadcast unregister notification */ 5820 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5821 5822 __rtnl_unlock(); 5823 rcu_barrier(); 5824 rtnl_lock(); 5825 5826 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5827 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5828 &dev->state)) { 5829 /* We must not have linkwatch events 5830 * pending on unregister. If this 5831 * happens, we simply run the queue 5832 * unscheduled, resulting in a noop 5833 * for this device. 5834 */ 5835 linkwatch_run_queue(); 5836 } 5837 5838 __rtnl_unlock(); 5839 5840 rebroadcast_time = jiffies; 5841 } 5842 5843 msleep(250); 5844 5845 refcnt = netdev_refcnt_read(dev); 5846 5847 if (time_after(jiffies, warning_time + 10 * HZ)) { 5848 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 5849 dev->name, refcnt); 5850 warning_time = jiffies; 5851 } 5852 } 5853 } 5854 5855 /* The sequence is: 5856 * 5857 * rtnl_lock(); 5858 * ... 5859 * register_netdevice(x1); 5860 * register_netdevice(x2); 5861 * ... 5862 * unregister_netdevice(y1); 5863 * unregister_netdevice(y2); 5864 * ... 5865 * rtnl_unlock(); 5866 * free_netdev(y1); 5867 * free_netdev(y2); 5868 * 5869 * We are invoked by rtnl_unlock(). 5870 * This allows us to deal with problems: 5871 * 1) We can delete sysfs objects which invoke hotplug 5872 * without deadlocking with linkwatch via keventd. 5873 * 2) Since we run with the RTNL semaphore not held, we can sleep 5874 * safely in order to wait for the netdev refcnt to drop to zero. 5875 * 5876 * We must not return until all unregister events added during 5877 * the interval the lock was held have been completed. 5878 */ 5879 void netdev_run_todo(void) 5880 { 5881 struct list_head list; 5882 5883 /* Snapshot list, allow later requests */ 5884 list_replace_init(&net_todo_list, &list); 5885 5886 __rtnl_unlock(); 5887 5888 5889 /* Wait for rcu callbacks to finish before next phase */ 5890 if (!list_empty(&list)) 5891 rcu_barrier(); 5892 5893 while (!list_empty(&list)) { 5894 struct net_device *dev 5895 = list_first_entry(&list, struct net_device, todo_list); 5896 list_del(&dev->todo_list); 5897 5898 rtnl_lock(); 5899 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5900 __rtnl_unlock(); 5901 5902 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5903 pr_err("network todo '%s' but state %d\n", 5904 dev->name, dev->reg_state); 5905 dump_stack(); 5906 continue; 5907 } 5908 5909 dev->reg_state = NETREG_UNREGISTERED; 5910 5911 on_each_cpu(flush_backlog, dev, 1); 5912 5913 netdev_wait_allrefs(dev); 5914 5915 /* paranoia */ 5916 BUG_ON(netdev_refcnt_read(dev)); 5917 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5918 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5919 WARN_ON(dev->dn_ptr); 5920 5921 if (dev->destructor) 5922 dev->destructor(dev); 5923 5924 /* Report a network device has been unregistered */ 5925 rtnl_lock(); 5926 dev_net(dev)->dev_unreg_count--; 5927 __rtnl_unlock(); 5928 wake_up(&netdev_unregistering_wq); 5929 5930 /* Free network device */ 5931 kobject_put(&dev->dev.kobj); 5932 } 5933 } 5934 5935 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5936 * fields in the same order, with only the type differing. 5937 */ 5938 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5939 const struct net_device_stats *netdev_stats) 5940 { 5941 #if BITS_PER_LONG == 64 5942 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5943 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5944 #else 5945 size_t i, n = sizeof(*stats64) / sizeof(u64); 5946 const unsigned long *src = (const unsigned long *)netdev_stats; 5947 u64 *dst = (u64 *)stats64; 5948 5949 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5950 sizeof(*stats64) / sizeof(u64)); 5951 for (i = 0; i < n; i++) 5952 dst[i] = src[i]; 5953 #endif 5954 } 5955 EXPORT_SYMBOL(netdev_stats_to_stats64); 5956 5957 /** 5958 * dev_get_stats - get network device statistics 5959 * @dev: device to get statistics from 5960 * @storage: place to store stats 5961 * 5962 * Get network statistics from device. Return @storage. 5963 * The device driver may provide its own method by setting 5964 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5965 * otherwise the internal statistics structure is used. 5966 */ 5967 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5968 struct rtnl_link_stats64 *storage) 5969 { 5970 const struct net_device_ops *ops = dev->netdev_ops; 5971 5972 if (ops->ndo_get_stats64) { 5973 memset(storage, 0, sizeof(*storage)); 5974 ops->ndo_get_stats64(dev, storage); 5975 } else if (ops->ndo_get_stats) { 5976 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5977 } else { 5978 netdev_stats_to_stats64(storage, &dev->stats); 5979 } 5980 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5981 return storage; 5982 } 5983 EXPORT_SYMBOL(dev_get_stats); 5984 5985 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5986 { 5987 struct netdev_queue *queue = dev_ingress_queue(dev); 5988 5989 #ifdef CONFIG_NET_CLS_ACT 5990 if (queue) 5991 return queue; 5992 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5993 if (!queue) 5994 return NULL; 5995 netdev_init_one_queue(dev, queue, NULL); 5996 queue->qdisc = &noop_qdisc; 5997 queue->qdisc_sleeping = &noop_qdisc; 5998 rcu_assign_pointer(dev->ingress_queue, queue); 5999 #endif 6000 return queue; 6001 } 6002 6003 static const struct ethtool_ops default_ethtool_ops; 6004 6005 void netdev_set_default_ethtool_ops(struct net_device *dev, 6006 const struct ethtool_ops *ops) 6007 { 6008 if (dev->ethtool_ops == &default_ethtool_ops) 6009 dev->ethtool_ops = ops; 6010 } 6011 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 6012 6013 /** 6014 * alloc_netdev_mqs - allocate network device 6015 * @sizeof_priv: size of private data to allocate space for 6016 * @name: device name format string 6017 * @setup: callback to initialize device 6018 * @txqs: the number of TX subqueues to allocate 6019 * @rxqs: the number of RX subqueues to allocate 6020 * 6021 * Allocates a struct net_device with private data area for driver use 6022 * and performs basic initialization. Also allocates subquue structs 6023 * for each queue on the device. 6024 */ 6025 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6026 void (*setup)(struct net_device *), 6027 unsigned int txqs, unsigned int rxqs) 6028 { 6029 struct net_device *dev; 6030 size_t alloc_size; 6031 struct net_device *p; 6032 6033 BUG_ON(strlen(name) >= sizeof(dev->name)); 6034 6035 if (txqs < 1) { 6036 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6037 return NULL; 6038 } 6039 6040 #ifdef CONFIG_RPS 6041 if (rxqs < 1) { 6042 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6043 return NULL; 6044 } 6045 #endif 6046 6047 alloc_size = sizeof(struct net_device); 6048 if (sizeof_priv) { 6049 /* ensure 32-byte alignment of private area */ 6050 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6051 alloc_size += sizeof_priv; 6052 } 6053 /* ensure 32-byte alignment of whole construct */ 6054 alloc_size += NETDEV_ALIGN - 1; 6055 6056 p = kzalloc(alloc_size, GFP_KERNEL); 6057 if (!p) 6058 return NULL; 6059 6060 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6061 dev->padded = (char *)dev - (char *)p; 6062 6063 dev->pcpu_refcnt = alloc_percpu(int); 6064 if (!dev->pcpu_refcnt) 6065 goto free_p; 6066 6067 if (dev_addr_init(dev)) 6068 goto free_pcpu; 6069 6070 dev_mc_init(dev); 6071 dev_uc_init(dev); 6072 6073 dev_net_set(dev, &init_net); 6074 6075 dev->gso_max_size = GSO_MAX_SIZE; 6076 dev->gso_max_segs = GSO_MAX_SEGS; 6077 6078 INIT_LIST_HEAD(&dev->napi_list); 6079 INIT_LIST_HEAD(&dev->unreg_list); 6080 INIT_LIST_HEAD(&dev->link_watch_list); 6081 INIT_LIST_HEAD(&dev->upper_dev_list); 6082 INIT_LIST_HEAD(&dev->lower_dev_list); 6083 dev->priv_flags = IFF_XMIT_DST_RELEASE; 6084 setup(dev); 6085 6086 dev->num_tx_queues = txqs; 6087 dev->real_num_tx_queues = txqs; 6088 if (netif_alloc_netdev_queues(dev)) 6089 goto free_all; 6090 6091 #ifdef CONFIG_RPS 6092 dev->num_rx_queues = rxqs; 6093 dev->real_num_rx_queues = rxqs; 6094 if (netif_alloc_rx_queues(dev)) 6095 goto free_all; 6096 #endif 6097 6098 strcpy(dev->name, name); 6099 dev->group = INIT_NETDEV_GROUP; 6100 if (!dev->ethtool_ops) 6101 dev->ethtool_ops = &default_ethtool_ops; 6102 return dev; 6103 6104 free_all: 6105 free_netdev(dev); 6106 return NULL; 6107 6108 free_pcpu: 6109 free_percpu(dev->pcpu_refcnt); 6110 netif_free_tx_queues(dev); 6111 #ifdef CONFIG_RPS 6112 kfree(dev->_rx); 6113 #endif 6114 6115 free_p: 6116 kfree(p); 6117 return NULL; 6118 } 6119 EXPORT_SYMBOL(alloc_netdev_mqs); 6120 6121 /** 6122 * free_netdev - free network device 6123 * @dev: device 6124 * 6125 * This function does the last stage of destroying an allocated device 6126 * interface. The reference to the device object is released. 6127 * If this is the last reference then it will be freed. 6128 */ 6129 void free_netdev(struct net_device *dev) 6130 { 6131 struct napi_struct *p, *n; 6132 6133 release_net(dev_net(dev)); 6134 6135 netif_free_tx_queues(dev); 6136 #ifdef CONFIG_RPS 6137 kfree(dev->_rx); 6138 #endif 6139 6140 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6141 6142 /* Flush device addresses */ 6143 dev_addr_flush(dev); 6144 6145 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6146 netif_napi_del(p); 6147 6148 free_percpu(dev->pcpu_refcnt); 6149 dev->pcpu_refcnt = NULL; 6150 6151 /* Compatibility with error handling in drivers */ 6152 if (dev->reg_state == NETREG_UNINITIALIZED) { 6153 kfree((char *)dev - dev->padded); 6154 return; 6155 } 6156 6157 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6158 dev->reg_state = NETREG_RELEASED; 6159 6160 /* will free via device release */ 6161 put_device(&dev->dev); 6162 } 6163 EXPORT_SYMBOL(free_netdev); 6164 6165 /** 6166 * synchronize_net - Synchronize with packet receive processing 6167 * 6168 * Wait for packets currently being received to be done. 6169 * Does not block later packets from starting. 6170 */ 6171 void synchronize_net(void) 6172 { 6173 might_sleep(); 6174 if (rtnl_is_locked()) 6175 synchronize_rcu_expedited(); 6176 else 6177 synchronize_rcu(); 6178 } 6179 EXPORT_SYMBOL(synchronize_net); 6180 6181 /** 6182 * unregister_netdevice_queue - remove device from the kernel 6183 * @dev: device 6184 * @head: list 6185 * 6186 * This function shuts down a device interface and removes it 6187 * from the kernel tables. 6188 * If head not NULL, device is queued to be unregistered later. 6189 * 6190 * Callers must hold the rtnl semaphore. You may want 6191 * unregister_netdev() instead of this. 6192 */ 6193 6194 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6195 { 6196 ASSERT_RTNL(); 6197 6198 if (head) { 6199 list_move_tail(&dev->unreg_list, head); 6200 } else { 6201 rollback_registered(dev); 6202 /* Finish processing unregister after unlock */ 6203 net_set_todo(dev); 6204 } 6205 } 6206 EXPORT_SYMBOL(unregister_netdevice_queue); 6207 6208 /** 6209 * unregister_netdevice_many - unregister many devices 6210 * @head: list of devices 6211 */ 6212 void unregister_netdevice_many(struct list_head *head) 6213 { 6214 struct net_device *dev; 6215 6216 if (!list_empty(head)) { 6217 rollback_registered_many(head); 6218 list_for_each_entry(dev, head, unreg_list) 6219 net_set_todo(dev); 6220 } 6221 } 6222 EXPORT_SYMBOL(unregister_netdevice_many); 6223 6224 /** 6225 * unregister_netdev - remove device from the kernel 6226 * @dev: device 6227 * 6228 * This function shuts down a device interface and removes it 6229 * from the kernel tables. 6230 * 6231 * This is just a wrapper for unregister_netdevice that takes 6232 * the rtnl semaphore. In general you want to use this and not 6233 * unregister_netdevice. 6234 */ 6235 void unregister_netdev(struct net_device *dev) 6236 { 6237 rtnl_lock(); 6238 unregister_netdevice(dev); 6239 rtnl_unlock(); 6240 } 6241 EXPORT_SYMBOL(unregister_netdev); 6242 6243 /** 6244 * dev_change_net_namespace - move device to different nethost namespace 6245 * @dev: device 6246 * @net: network namespace 6247 * @pat: If not NULL name pattern to try if the current device name 6248 * is already taken in the destination network namespace. 6249 * 6250 * This function shuts down a device interface and moves it 6251 * to a new network namespace. On success 0 is returned, on 6252 * a failure a netagive errno code is returned. 6253 * 6254 * Callers must hold the rtnl semaphore. 6255 */ 6256 6257 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6258 { 6259 int err; 6260 6261 ASSERT_RTNL(); 6262 6263 /* Don't allow namespace local devices to be moved. */ 6264 err = -EINVAL; 6265 if (dev->features & NETIF_F_NETNS_LOCAL) 6266 goto out; 6267 6268 /* Ensure the device has been registrered */ 6269 if (dev->reg_state != NETREG_REGISTERED) 6270 goto out; 6271 6272 /* Get out if there is nothing todo */ 6273 err = 0; 6274 if (net_eq(dev_net(dev), net)) 6275 goto out; 6276 6277 /* Pick the destination device name, and ensure 6278 * we can use it in the destination network namespace. 6279 */ 6280 err = -EEXIST; 6281 if (__dev_get_by_name(net, dev->name)) { 6282 /* We get here if we can't use the current device name */ 6283 if (!pat) 6284 goto out; 6285 if (dev_get_valid_name(net, dev, pat) < 0) 6286 goto out; 6287 } 6288 6289 /* 6290 * And now a mini version of register_netdevice unregister_netdevice. 6291 */ 6292 6293 /* If device is running close it first. */ 6294 dev_close(dev); 6295 6296 /* And unlink it from device chain */ 6297 err = -ENODEV; 6298 unlist_netdevice(dev); 6299 6300 synchronize_net(); 6301 6302 /* Shutdown queueing discipline. */ 6303 dev_shutdown(dev); 6304 6305 /* Notify protocols, that we are about to destroy 6306 this device. They should clean all the things. 6307 6308 Note that dev->reg_state stays at NETREG_REGISTERED. 6309 This is wanted because this way 8021q and macvlan know 6310 the device is just moving and can keep their slaves up. 6311 */ 6312 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6313 rcu_barrier(); 6314 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6315 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 6316 6317 /* 6318 * Flush the unicast and multicast chains 6319 */ 6320 dev_uc_flush(dev); 6321 dev_mc_flush(dev); 6322 6323 /* Send a netdev-removed uevent to the old namespace */ 6324 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 6325 6326 /* Actually switch the network namespace */ 6327 dev_net_set(dev, net); 6328 6329 /* If there is an ifindex conflict assign a new one */ 6330 if (__dev_get_by_index(net, dev->ifindex)) { 6331 int iflink = (dev->iflink == dev->ifindex); 6332 dev->ifindex = dev_new_index(net); 6333 if (iflink) 6334 dev->iflink = dev->ifindex; 6335 } 6336 6337 /* Send a netdev-add uevent to the new namespace */ 6338 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 6339 6340 /* Fixup kobjects */ 6341 err = device_rename(&dev->dev, dev->name); 6342 WARN_ON(err); 6343 6344 /* Add the device back in the hashes */ 6345 list_netdevice(dev); 6346 6347 /* Notify protocols, that a new device appeared. */ 6348 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6349 6350 /* 6351 * Prevent userspace races by waiting until the network 6352 * device is fully setup before sending notifications. 6353 */ 6354 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6355 6356 synchronize_net(); 6357 err = 0; 6358 out: 6359 return err; 6360 } 6361 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6362 6363 static int dev_cpu_callback(struct notifier_block *nfb, 6364 unsigned long action, 6365 void *ocpu) 6366 { 6367 struct sk_buff **list_skb; 6368 struct sk_buff *skb; 6369 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6370 struct softnet_data *sd, *oldsd; 6371 6372 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6373 return NOTIFY_OK; 6374 6375 local_irq_disable(); 6376 cpu = smp_processor_id(); 6377 sd = &per_cpu(softnet_data, cpu); 6378 oldsd = &per_cpu(softnet_data, oldcpu); 6379 6380 /* Find end of our completion_queue. */ 6381 list_skb = &sd->completion_queue; 6382 while (*list_skb) 6383 list_skb = &(*list_skb)->next; 6384 /* Append completion queue from offline CPU. */ 6385 *list_skb = oldsd->completion_queue; 6386 oldsd->completion_queue = NULL; 6387 6388 /* Append output queue from offline CPU. */ 6389 if (oldsd->output_queue) { 6390 *sd->output_queue_tailp = oldsd->output_queue; 6391 sd->output_queue_tailp = oldsd->output_queue_tailp; 6392 oldsd->output_queue = NULL; 6393 oldsd->output_queue_tailp = &oldsd->output_queue; 6394 } 6395 /* Append NAPI poll list from offline CPU. */ 6396 if (!list_empty(&oldsd->poll_list)) { 6397 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6398 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6399 } 6400 6401 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6402 local_irq_enable(); 6403 6404 /* Process offline CPU's input_pkt_queue */ 6405 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6406 netif_rx(skb); 6407 input_queue_head_incr(oldsd); 6408 } 6409 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6410 netif_rx(skb); 6411 input_queue_head_incr(oldsd); 6412 } 6413 6414 return NOTIFY_OK; 6415 } 6416 6417 6418 /** 6419 * netdev_increment_features - increment feature set by one 6420 * @all: current feature set 6421 * @one: new feature set 6422 * @mask: mask feature set 6423 * 6424 * Computes a new feature set after adding a device with feature set 6425 * @one to the master device with current feature set @all. Will not 6426 * enable anything that is off in @mask. Returns the new feature set. 6427 */ 6428 netdev_features_t netdev_increment_features(netdev_features_t all, 6429 netdev_features_t one, netdev_features_t mask) 6430 { 6431 if (mask & NETIF_F_GEN_CSUM) 6432 mask |= NETIF_F_ALL_CSUM; 6433 mask |= NETIF_F_VLAN_CHALLENGED; 6434 6435 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6436 all &= one | ~NETIF_F_ALL_FOR_ALL; 6437 6438 /* If one device supports hw checksumming, set for all. */ 6439 if (all & NETIF_F_GEN_CSUM) 6440 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6441 6442 return all; 6443 } 6444 EXPORT_SYMBOL(netdev_increment_features); 6445 6446 static struct hlist_head * __net_init netdev_create_hash(void) 6447 { 6448 int i; 6449 struct hlist_head *hash; 6450 6451 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6452 if (hash != NULL) 6453 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6454 INIT_HLIST_HEAD(&hash[i]); 6455 6456 return hash; 6457 } 6458 6459 /* Initialize per network namespace state */ 6460 static int __net_init netdev_init(struct net *net) 6461 { 6462 if (net != &init_net) 6463 INIT_LIST_HEAD(&net->dev_base_head); 6464 6465 net->dev_name_head = netdev_create_hash(); 6466 if (net->dev_name_head == NULL) 6467 goto err_name; 6468 6469 net->dev_index_head = netdev_create_hash(); 6470 if (net->dev_index_head == NULL) 6471 goto err_idx; 6472 6473 return 0; 6474 6475 err_idx: 6476 kfree(net->dev_name_head); 6477 err_name: 6478 return -ENOMEM; 6479 } 6480 6481 /** 6482 * netdev_drivername - network driver for the device 6483 * @dev: network device 6484 * 6485 * Determine network driver for device. 6486 */ 6487 const char *netdev_drivername(const struct net_device *dev) 6488 { 6489 const struct device_driver *driver; 6490 const struct device *parent; 6491 const char *empty = ""; 6492 6493 parent = dev->dev.parent; 6494 if (!parent) 6495 return empty; 6496 6497 driver = parent->driver; 6498 if (driver && driver->name) 6499 return driver->name; 6500 return empty; 6501 } 6502 6503 static int __netdev_printk(const char *level, const struct net_device *dev, 6504 struct va_format *vaf) 6505 { 6506 int r; 6507 6508 if (dev && dev->dev.parent) { 6509 r = dev_printk_emit(level[1] - '0', 6510 dev->dev.parent, 6511 "%s %s %s: %pV", 6512 dev_driver_string(dev->dev.parent), 6513 dev_name(dev->dev.parent), 6514 netdev_name(dev), vaf); 6515 } else if (dev) { 6516 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6517 } else { 6518 r = printk("%s(NULL net_device): %pV", level, vaf); 6519 } 6520 6521 return r; 6522 } 6523 6524 int netdev_printk(const char *level, const struct net_device *dev, 6525 const char *format, ...) 6526 { 6527 struct va_format vaf; 6528 va_list args; 6529 int r; 6530 6531 va_start(args, format); 6532 6533 vaf.fmt = format; 6534 vaf.va = &args; 6535 6536 r = __netdev_printk(level, dev, &vaf); 6537 6538 va_end(args); 6539 6540 return r; 6541 } 6542 EXPORT_SYMBOL(netdev_printk); 6543 6544 #define define_netdev_printk_level(func, level) \ 6545 int func(const struct net_device *dev, const char *fmt, ...) \ 6546 { \ 6547 int r; \ 6548 struct va_format vaf; \ 6549 va_list args; \ 6550 \ 6551 va_start(args, fmt); \ 6552 \ 6553 vaf.fmt = fmt; \ 6554 vaf.va = &args; \ 6555 \ 6556 r = __netdev_printk(level, dev, &vaf); \ 6557 \ 6558 va_end(args); \ 6559 \ 6560 return r; \ 6561 } \ 6562 EXPORT_SYMBOL(func); 6563 6564 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6565 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6566 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6567 define_netdev_printk_level(netdev_err, KERN_ERR); 6568 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6569 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6570 define_netdev_printk_level(netdev_info, KERN_INFO); 6571 6572 static void __net_exit netdev_exit(struct net *net) 6573 { 6574 kfree(net->dev_name_head); 6575 kfree(net->dev_index_head); 6576 } 6577 6578 static struct pernet_operations __net_initdata netdev_net_ops = { 6579 .init = netdev_init, 6580 .exit = netdev_exit, 6581 }; 6582 6583 static void __net_exit default_device_exit(struct net *net) 6584 { 6585 struct net_device *dev, *aux; 6586 /* 6587 * Push all migratable network devices back to the 6588 * initial network namespace 6589 */ 6590 rtnl_lock(); 6591 for_each_netdev_safe(net, dev, aux) { 6592 int err; 6593 char fb_name[IFNAMSIZ]; 6594 6595 /* Ignore unmoveable devices (i.e. loopback) */ 6596 if (dev->features & NETIF_F_NETNS_LOCAL) 6597 continue; 6598 6599 /* Leave virtual devices for the generic cleanup */ 6600 if (dev->rtnl_link_ops) 6601 continue; 6602 6603 /* Push remaining network devices to init_net */ 6604 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6605 err = dev_change_net_namespace(dev, &init_net, fb_name); 6606 if (err) { 6607 pr_emerg("%s: failed to move %s to init_net: %d\n", 6608 __func__, dev->name, err); 6609 BUG(); 6610 } 6611 } 6612 rtnl_unlock(); 6613 } 6614 6615 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 6616 { 6617 /* Return with the rtnl_lock held when there are no network 6618 * devices unregistering in any network namespace in net_list. 6619 */ 6620 struct net *net; 6621 bool unregistering; 6622 DEFINE_WAIT(wait); 6623 6624 for (;;) { 6625 prepare_to_wait(&netdev_unregistering_wq, &wait, 6626 TASK_UNINTERRUPTIBLE); 6627 unregistering = false; 6628 rtnl_lock(); 6629 list_for_each_entry(net, net_list, exit_list) { 6630 if (net->dev_unreg_count > 0) { 6631 unregistering = true; 6632 break; 6633 } 6634 } 6635 if (!unregistering) 6636 break; 6637 __rtnl_unlock(); 6638 schedule(); 6639 } 6640 finish_wait(&netdev_unregistering_wq, &wait); 6641 } 6642 6643 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6644 { 6645 /* At exit all network devices most be removed from a network 6646 * namespace. Do this in the reverse order of registration. 6647 * Do this across as many network namespaces as possible to 6648 * improve batching efficiency. 6649 */ 6650 struct net_device *dev; 6651 struct net *net; 6652 LIST_HEAD(dev_kill_list); 6653 6654 /* To prevent network device cleanup code from dereferencing 6655 * loopback devices or network devices that have been freed 6656 * wait here for all pending unregistrations to complete, 6657 * before unregistring the loopback device and allowing the 6658 * network namespace be freed. 6659 * 6660 * The netdev todo list containing all network devices 6661 * unregistrations that happen in default_device_exit_batch 6662 * will run in the rtnl_unlock() at the end of 6663 * default_device_exit_batch. 6664 */ 6665 rtnl_lock_unregistering(net_list); 6666 list_for_each_entry(net, net_list, exit_list) { 6667 for_each_netdev_reverse(net, dev) { 6668 if (dev->rtnl_link_ops) 6669 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6670 else 6671 unregister_netdevice_queue(dev, &dev_kill_list); 6672 } 6673 } 6674 unregister_netdevice_many(&dev_kill_list); 6675 list_del(&dev_kill_list); 6676 rtnl_unlock(); 6677 } 6678 6679 static struct pernet_operations __net_initdata default_device_ops = { 6680 .exit = default_device_exit, 6681 .exit_batch = default_device_exit_batch, 6682 }; 6683 6684 /* 6685 * Initialize the DEV module. At boot time this walks the device list and 6686 * unhooks any devices that fail to initialise (normally hardware not 6687 * present) and leaves us with a valid list of present and active devices. 6688 * 6689 */ 6690 6691 /* 6692 * This is called single threaded during boot, so no need 6693 * to take the rtnl semaphore. 6694 */ 6695 static int __init net_dev_init(void) 6696 { 6697 int i, rc = -ENOMEM; 6698 6699 BUG_ON(!dev_boot_phase); 6700 6701 if (dev_proc_init()) 6702 goto out; 6703 6704 if (netdev_kobject_init()) 6705 goto out; 6706 6707 INIT_LIST_HEAD(&ptype_all); 6708 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6709 INIT_LIST_HEAD(&ptype_base[i]); 6710 6711 INIT_LIST_HEAD(&offload_base); 6712 6713 if (register_pernet_subsys(&netdev_net_ops)) 6714 goto out; 6715 6716 /* 6717 * Initialise the packet receive queues. 6718 */ 6719 6720 for_each_possible_cpu(i) { 6721 struct softnet_data *sd = &per_cpu(softnet_data, i); 6722 6723 memset(sd, 0, sizeof(*sd)); 6724 skb_queue_head_init(&sd->input_pkt_queue); 6725 skb_queue_head_init(&sd->process_queue); 6726 sd->completion_queue = NULL; 6727 INIT_LIST_HEAD(&sd->poll_list); 6728 sd->output_queue = NULL; 6729 sd->output_queue_tailp = &sd->output_queue; 6730 #ifdef CONFIG_RPS 6731 sd->csd.func = rps_trigger_softirq; 6732 sd->csd.info = sd; 6733 sd->csd.flags = 0; 6734 sd->cpu = i; 6735 #endif 6736 6737 sd->backlog.poll = process_backlog; 6738 sd->backlog.weight = weight_p; 6739 sd->backlog.gro_list = NULL; 6740 sd->backlog.gro_count = 0; 6741 6742 #ifdef CONFIG_NET_FLOW_LIMIT 6743 sd->flow_limit = NULL; 6744 #endif 6745 } 6746 6747 dev_boot_phase = 0; 6748 6749 /* The loopback device is special if any other network devices 6750 * is present in a network namespace the loopback device must 6751 * be present. Since we now dynamically allocate and free the 6752 * loopback device ensure this invariant is maintained by 6753 * keeping the loopback device as the first device on the 6754 * list of network devices. Ensuring the loopback devices 6755 * is the first device that appears and the last network device 6756 * that disappears. 6757 */ 6758 if (register_pernet_device(&loopback_net_ops)) 6759 goto out; 6760 6761 if (register_pernet_device(&default_device_ops)) 6762 goto out; 6763 6764 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6765 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6766 6767 hotcpu_notifier(dev_cpu_callback, 0); 6768 dst_init(); 6769 rc = 0; 6770 out: 6771 return rc; 6772 } 6773 6774 subsys_initcall(net_dev_init); 6775