xref: /openbmc/linux/net/core/dev.c (revision cd1e565a5b7fa60c349ca8a16db1e61715fe8230)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156 
157 #include "dev.h"
158 #include "net-sysfs.h"
159 
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;	/* Taps */
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 					   struct net_device *dev,
167 					   struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169 
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191 
192 static DEFINE_MUTEX(ifalias_mutex);
193 
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196 
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199 
200 static DECLARE_RWSEM(devnet_rename_sem);
201 
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204 	while (++net->dev_base_seq == 0)
205 		;
206 }
207 
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211 
212 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214 
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219 
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 				    unsigned long *flags)
222 {
223 	if (IS_ENABLED(CONFIG_RPS))
224 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 		local_irq_save(*flags);
227 }
228 
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231 	if (IS_ENABLED(CONFIG_RPS))
232 		spin_lock_irq(&sd->input_pkt_queue.lock);
233 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 		local_irq_disable();
235 }
236 
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 					  unsigned long *flags)
239 {
240 	if (IS_ENABLED(CONFIG_RPS))
241 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 		local_irq_restore(*flags);
244 }
245 
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248 	if (IS_ENABLED(CONFIG_RPS))
249 		spin_unlock_irq(&sd->input_pkt_queue.lock);
250 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 		local_irq_enable();
252 }
253 
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 						       const char *name)
256 {
257 	struct netdev_name_node *name_node;
258 
259 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 	if (!name_node)
261 		return NULL;
262 	INIT_HLIST_NODE(&name_node->hlist);
263 	name_node->dev = dev;
264 	name_node->name = name;
265 	return name_node;
266 }
267 
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271 	struct netdev_name_node *name_node;
272 
273 	name_node = netdev_name_node_alloc(dev, dev->name);
274 	if (!name_node)
275 		return NULL;
276 	INIT_LIST_HEAD(&name_node->list);
277 	return name_node;
278 }
279 
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282 	kfree(name_node);
283 }
284 
285 static void netdev_name_node_add(struct net *net,
286 				 struct netdev_name_node *name_node)
287 {
288 	hlist_add_head_rcu(&name_node->hlist,
289 			   dev_name_hash(net, name_node->name));
290 }
291 
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294 	hlist_del_rcu(&name_node->hlist);
295 }
296 
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 							const char *name)
299 {
300 	struct hlist_head *head = dev_name_hash(net, name);
301 	struct netdev_name_node *name_node;
302 
303 	hlist_for_each_entry(name_node, head, hlist)
304 		if (!strcmp(name_node->name, name))
305 			return name_node;
306 	return NULL;
307 }
308 
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 							    const char *name)
311 {
312 	struct hlist_head *head = dev_name_hash(net, name);
313 	struct netdev_name_node *name_node;
314 
315 	hlist_for_each_entry_rcu(name_node, head, hlist)
316 		if (!strcmp(name_node->name, name))
317 			return name_node;
318 	return NULL;
319 }
320 
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323 	return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326 
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329 	struct netdev_name_node *name_node;
330 	struct net *net = dev_net(dev);
331 
332 	name_node = netdev_name_node_lookup(net, name);
333 	if (name_node)
334 		return -EEXIST;
335 	name_node = netdev_name_node_alloc(dev, name);
336 	if (!name_node)
337 		return -ENOMEM;
338 	netdev_name_node_add(net, name_node);
339 	/* The node that holds dev->name acts as a head of per-device list. */
340 	list_add_tail(&name_node->list, &dev->name_node->list);
341 
342 	return 0;
343 }
344 
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 	list_del(&name_node->list);
348 	kfree(name_node->name);
349 	netdev_name_node_free(name_node);
350 }
351 
352 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
353 {
354 	struct netdev_name_node *name_node;
355 	struct net *net = dev_net(dev);
356 
357 	name_node = netdev_name_node_lookup(net, name);
358 	if (!name_node)
359 		return -ENOENT;
360 	/* lookup might have found our primary name or a name belonging
361 	 * to another device.
362 	 */
363 	if (name_node == dev->name_node || name_node->dev != dev)
364 		return -EINVAL;
365 
366 	netdev_name_node_del(name_node);
367 	synchronize_rcu();
368 	__netdev_name_node_alt_destroy(name_node);
369 
370 	return 0;
371 }
372 
373 static void netdev_name_node_alt_flush(struct net_device *dev)
374 {
375 	struct netdev_name_node *name_node, *tmp;
376 
377 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
378 		__netdev_name_node_alt_destroy(name_node);
379 }
380 
381 /* Device list insertion */
382 static void list_netdevice(struct net_device *dev)
383 {
384 	struct netdev_name_node *name_node;
385 	struct net *net = dev_net(dev);
386 
387 	ASSERT_RTNL();
388 
389 	write_lock(&dev_base_lock);
390 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
391 	netdev_name_node_add(net, dev->name_node);
392 	hlist_add_head_rcu(&dev->index_hlist,
393 			   dev_index_hash(net, dev->ifindex));
394 	write_unlock(&dev_base_lock);
395 
396 	netdev_for_each_altname(dev, name_node)
397 		netdev_name_node_add(net, name_node);
398 
399 	/* We reserved the ifindex, this can't fail */
400 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
401 
402 	dev_base_seq_inc(net);
403 }
404 
405 /* Device list removal
406  * caller must respect a RCU grace period before freeing/reusing dev
407  */
408 static void unlist_netdevice(struct net_device *dev, bool lock)
409 {
410 	struct netdev_name_node *name_node;
411 	struct net *net = dev_net(dev);
412 
413 	ASSERT_RTNL();
414 
415 	xa_erase(&net->dev_by_index, dev->ifindex);
416 
417 	netdev_for_each_altname(dev, name_node)
418 		netdev_name_node_del(name_node);
419 
420 	/* Unlink dev from the device chain */
421 	if (lock)
422 		write_lock(&dev_base_lock);
423 	list_del_rcu(&dev->dev_list);
424 	netdev_name_node_del(dev->name_node);
425 	hlist_del_rcu(&dev->index_hlist);
426 	if (lock)
427 		write_unlock(&dev_base_lock);
428 
429 	dev_base_seq_inc(dev_net(dev));
430 }
431 
432 /*
433  *	Our notifier list
434  */
435 
436 static RAW_NOTIFIER_HEAD(netdev_chain);
437 
438 /*
439  *	Device drivers call our routines to queue packets here. We empty the
440  *	queue in the local softnet handler.
441  */
442 
443 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
444 EXPORT_PER_CPU_SYMBOL(softnet_data);
445 
446 #ifdef CONFIG_LOCKDEP
447 /*
448  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
449  * according to dev->type
450  */
451 static const unsigned short netdev_lock_type[] = {
452 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
453 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
454 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
455 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
456 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
457 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
458 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
459 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
460 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
461 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
462 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
463 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
464 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
465 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
466 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
467 
468 static const char *const netdev_lock_name[] = {
469 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
470 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
471 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
472 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
473 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
474 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
475 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
476 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
477 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
478 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
479 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
480 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
481 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
482 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
483 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
484 
485 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
486 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
487 
488 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
489 {
490 	int i;
491 
492 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
493 		if (netdev_lock_type[i] == dev_type)
494 			return i;
495 	/* the last key is used by default */
496 	return ARRAY_SIZE(netdev_lock_type) - 1;
497 }
498 
499 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
500 						 unsigned short dev_type)
501 {
502 	int i;
503 
504 	i = netdev_lock_pos(dev_type);
505 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
506 				   netdev_lock_name[i]);
507 }
508 
509 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
510 {
511 	int i;
512 
513 	i = netdev_lock_pos(dev->type);
514 	lockdep_set_class_and_name(&dev->addr_list_lock,
515 				   &netdev_addr_lock_key[i],
516 				   netdev_lock_name[i]);
517 }
518 #else
519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
520 						 unsigned short dev_type)
521 {
522 }
523 
524 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
525 {
526 }
527 #endif
528 
529 /*******************************************************************************
530  *
531  *		Protocol management and registration routines
532  *
533  *******************************************************************************/
534 
535 
536 /*
537  *	Add a protocol ID to the list. Now that the input handler is
538  *	smarter we can dispense with all the messy stuff that used to be
539  *	here.
540  *
541  *	BEWARE!!! Protocol handlers, mangling input packets,
542  *	MUST BE last in hash buckets and checking protocol handlers
543  *	MUST start from promiscuous ptype_all chain in net_bh.
544  *	It is true now, do not change it.
545  *	Explanation follows: if protocol handler, mangling packet, will
546  *	be the first on list, it is not able to sense, that packet
547  *	is cloned and should be copied-on-write, so that it will
548  *	change it and subsequent readers will get broken packet.
549  *							--ANK (980803)
550  */
551 
552 static inline struct list_head *ptype_head(const struct packet_type *pt)
553 {
554 	if (pt->type == htons(ETH_P_ALL))
555 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
556 	else
557 		return pt->dev ? &pt->dev->ptype_specific :
558 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
559 }
560 
561 /**
562  *	dev_add_pack - add packet handler
563  *	@pt: packet type declaration
564  *
565  *	Add a protocol handler to the networking stack. The passed &packet_type
566  *	is linked into kernel lists and may not be freed until it has been
567  *	removed from the kernel lists.
568  *
569  *	This call does not sleep therefore it can not
570  *	guarantee all CPU's that are in middle of receiving packets
571  *	will see the new packet type (until the next received packet).
572  */
573 
574 void dev_add_pack(struct packet_type *pt)
575 {
576 	struct list_head *head = ptype_head(pt);
577 
578 	spin_lock(&ptype_lock);
579 	list_add_rcu(&pt->list, head);
580 	spin_unlock(&ptype_lock);
581 }
582 EXPORT_SYMBOL(dev_add_pack);
583 
584 /**
585  *	__dev_remove_pack	 - remove packet handler
586  *	@pt: packet type declaration
587  *
588  *	Remove a protocol handler that was previously added to the kernel
589  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
590  *	from the kernel lists and can be freed or reused once this function
591  *	returns.
592  *
593  *      The packet type might still be in use by receivers
594  *	and must not be freed until after all the CPU's have gone
595  *	through a quiescent state.
596  */
597 void __dev_remove_pack(struct packet_type *pt)
598 {
599 	struct list_head *head = ptype_head(pt);
600 	struct packet_type *pt1;
601 
602 	spin_lock(&ptype_lock);
603 
604 	list_for_each_entry(pt1, head, list) {
605 		if (pt == pt1) {
606 			list_del_rcu(&pt->list);
607 			goto out;
608 		}
609 	}
610 
611 	pr_warn("dev_remove_pack: %p not found\n", pt);
612 out:
613 	spin_unlock(&ptype_lock);
614 }
615 EXPORT_SYMBOL(__dev_remove_pack);
616 
617 /**
618  *	dev_remove_pack	 - remove packet handler
619  *	@pt: packet type declaration
620  *
621  *	Remove a protocol handler that was previously added to the kernel
622  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
623  *	from the kernel lists and can be freed or reused once this function
624  *	returns.
625  *
626  *	This call sleeps to guarantee that no CPU is looking at the packet
627  *	type after return.
628  */
629 void dev_remove_pack(struct packet_type *pt)
630 {
631 	__dev_remove_pack(pt);
632 
633 	synchronize_net();
634 }
635 EXPORT_SYMBOL(dev_remove_pack);
636 
637 
638 /*******************************************************************************
639  *
640  *			    Device Interface Subroutines
641  *
642  *******************************************************************************/
643 
644 /**
645  *	dev_get_iflink	- get 'iflink' value of a interface
646  *	@dev: targeted interface
647  *
648  *	Indicates the ifindex the interface is linked to.
649  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
650  */
651 
652 int dev_get_iflink(const struct net_device *dev)
653 {
654 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
655 		return dev->netdev_ops->ndo_get_iflink(dev);
656 
657 	return dev->ifindex;
658 }
659 EXPORT_SYMBOL(dev_get_iflink);
660 
661 /**
662  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
663  *	@dev: targeted interface
664  *	@skb: The packet.
665  *
666  *	For better visibility of tunnel traffic OVS needs to retrieve
667  *	egress tunnel information for a packet. Following API allows
668  *	user to get this info.
669  */
670 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
671 {
672 	struct ip_tunnel_info *info;
673 
674 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
675 		return -EINVAL;
676 
677 	info = skb_tunnel_info_unclone(skb);
678 	if (!info)
679 		return -ENOMEM;
680 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
681 		return -EINVAL;
682 
683 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
684 }
685 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
686 
687 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
688 {
689 	int k = stack->num_paths++;
690 
691 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
692 		return NULL;
693 
694 	return &stack->path[k];
695 }
696 
697 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
698 			  struct net_device_path_stack *stack)
699 {
700 	const struct net_device *last_dev;
701 	struct net_device_path_ctx ctx = {
702 		.dev	= dev,
703 	};
704 	struct net_device_path *path;
705 	int ret = 0;
706 
707 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
708 	stack->num_paths = 0;
709 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
710 		last_dev = ctx.dev;
711 		path = dev_fwd_path(stack);
712 		if (!path)
713 			return -1;
714 
715 		memset(path, 0, sizeof(struct net_device_path));
716 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
717 		if (ret < 0)
718 			return -1;
719 
720 		if (WARN_ON_ONCE(last_dev == ctx.dev))
721 			return -1;
722 	}
723 
724 	if (!ctx.dev)
725 		return ret;
726 
727 	path = dev_fwd_path(stack);
728 	if (!path)
729 		return -1;
730 	path->type = DEV_PATH_ETHERNET;
731 	path->dev = ctx.dev;
732 
733 	return ret;
734 }
735 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
736 
737 /**
738  *	__dev_get_by_name	- find a device by its name
739  *	@net: the applicable net namespace
740  *	@name: name to find
741  *
742  *	Find an interface by name. Must be called under RTNL semaphore
743  *	or @dev_base_lock. If the name is found a pointer to the device
744  *	is returned. If the name is not found then %NULL is returned. The
745  *	reference counters are not incremented so the caller must be
746  *	careful with locks.
747  */
748 
749 struct net_device *__dev_get_by_name(struct net *net, const char *name)
750 {
751 	struct netdev_name_node *node_name;
752 
753 	node_name = netdev_name_node_lookup(net, name);
754 	return node_name ? node_name->dev : NULL;
755 }
756 EXPORT_SYMBOL(__dev_get_by_name);
757 
758 /**
759  * dev_get_by_name_rcu	- find a device by its name
760  * @net: the applicable net namespace
761  * @name: name to find
762  *
763  * Find an interface by name.
764  * If the name is found a pointer to the device is returned.
765  * If the name is not found then %NULL is returned.
766  * The reference counters are not incremented so the caller must be
767  * careful with locks. The caller must hold RCU lock.
768  */
769 
770 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
771 {
772 	struct netdev_name_node *node_name;
773 
774 	node_name = netdev_name_node_lookup_rcu(net, name);
775 	return node_name ? node_name->dev : NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_name_rcu);
778 
779 /* Deprecated for new users, call netdev_get_by_name() instead */
780 struct net_device *dev_get_by_name(struct net *net, const char *name)
781 {
782 	struct net_device *dev;
783 
784 	rcu_read_lock();
785 	dev = dev_get_by_name_rcu(net, name);
786 	dev_hold(dev);
787 	rcu_read_unlock();
788 	return dev;
789 }
790 EXPORT_SYMBOL(dev_get_by_name);
791 
792 /**
793  *	netdev_get_by_name() - find a device by its name
794  *	@net: the applicable net namespace
795  *	@name: name to find
796  *	@tracker: tracking object for the acquired reference
797  *	@gfp: allocation flags for the tracker
798  *
799  *	Find an interface by name. This can be called from any
800  *	context and does its own locking. The returned handle has
801  *	the usage count incremented and the caller must use netdev_put() to
802  *	release it when it is no longer needed. %NULL is returned if no
803  *	matching device is found.
804  */
805 struct net_device *netdev_get_by_name(struct net *net, const char *name,
806 				      netdevice_tracker *tracker, gfp_t gfp)
807 {
808 	struct net_device *dev;
809 
810 	dev = dev_get_by_name(net, name);
811 	if (dev)
812 		netdev_tracker_alloc(dev, tracker, gfp);
813 	return dev;
814 }
815 EXPORT_SYMBOL(netdev_get_by_name);
816 
817 /**
818  *	__dev_get_by_index - find a device by its ifindex
819  *	@net: the applicable net namespace
820  *	@ifindex: index of device
821  *
822  *	Search for an interface by index. Returns %NULL if the device
823  *	is not found or a pointer to the device. The device has not
824  *	had its reference counter increased so the caller must be careful
825  *	about locking. The caller must hold either the RTNL semaphore
826  *	or @dev_base_lock.
827  */
828 
829 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
830 {
831 	struct net_device *dev;
832 	struct hlist_head *head = dev_index_hash(net, ifindex);
833 
834 	hlist_for_each_entry(dev, head, index_hlist)
835 		if (dev->ifindex == ifindex)
836 			return dev;
837 
838 	return NULL;
839 }
840 EXPORT_SYMBOL(__dev_get_by_index);
841 
842 /**
843  *	dev_get_by_index_rcu - find a device by its ifindex
844  *	@net: the applicable net namespace
845  *	@ifindex: index of device
846  *
847  *	Search for an interface by index. Returns %NULL if the device
848  *	is not found or a pointer to the device. The device has not
849  *	had its reference counter increased so the caller must be careful
850  *	about locking. The caller must hold RCU lock.
851  */
852 
853 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
854 {
855 	struct net_device *dev;
856 	struct hlist_head *head = dev_index_hash(net, ifindex);
857 
858 	hlist_for_each_entry_rcu(dev, head, index_hlist)
859 		if (dev->ifindex == ifindex)
860 			return dev;
861 
862 	return NULL;
863 }
864 EXPORT_SYMBOL(dev_get_by_index_rcu);
865 
866 /* Deprecated for new users, call netdev_get_by_index() instead */
867 struct net_device *dev_get_by_index(struct net *net, int ifindex)
868 {
869 	struct net_device *dev;
870 
871 	rcu_read_lock();
872 	dev = dev_get_by_index_rcu(net, ifindex);
873 	dev_hold(dev);
874 	rcu_read_unlock();
875 	return dev;
876 }
877 EXPORT_SYMBOL(dev_get_by_index);
878 
879 /**
880  *	netdev_get_by_index() - find a device by its ifindex
881  *	@net: the applicable net namespace
882  *	@ifindex: index of device
883  *	@tracker: tracking object for the acquired reference
884  *	@gfp: allocation flags for the tracker
885  *
886  *	Search for an interface by index. Returns NULL if the device
887  *	is not found or a pointer to the device. The device returned has
888  *	had a reference added and the pointer is safe until the user calls
889  *	netdev_put() to indicate they have finished with it.
890  */
891 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
892 				       netdevice_tracker *tracker, gfp_t gfp)
893 {
894 	struct net_device *dev;
895 
896 	dev = dev_get_by_index(net, ifindex);
897 	if (dev)
898 		netdev_tracker_alloc(dev, tracker, gfp);
899 	return dev;
900 }
901 EXPORT_SYMBOL(netdev_get_by_index);
902 
903 /**
904  *	dev_get_by_napi_id - find a device by napi_id
905  *	@napi_id: ID of the NAPI struct
906  *
907  *	Search for an interface by NAPI ID. Returns %NULL if the device
908  *	is not found or a pointer to the device. The device has not had
909  *	its reference counter increased so the caller must be careful
910  *	about locking. The caller must hold RCU lock.
911  */
912 
913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915 	struct napi_struct *napi;
916 
917 	WARN_ON_ONCE(!rcu_read_lock_held());
918 
919 	if (napi_id < MIN_NAPI_ID)
920 		return NULL;
921 
922 	napi = napi_by_id(napi_id);
923 
924 	return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927 
928 /**
929  *	netdev_get_name - get a netdevice name, knowing its ifindex.
930  *	@net: network namespace
931  *	@name: a pointer to the buffer where the name will be stored.
932  *	@ifindex: the ifindex of the interface to get the name from.
933  */
934 int netdev_get_name(struct net *net, char *name, int ifindex)
935 {
936 	struct net_device *dev;
937 	int ret;
938 
939 	down_read(&devnet_rename_sem);
940 	rcu_read_lock();
941 
942 	dev = dev_get_by_index_rcu(net, ifindex);
943 	if (!dev) {
944 		ret = -ENODEV;
945 		goto out;
946 	}
947 
948 	strcpy(name, dev->name);
949 
950 	ret = 0;
951 out:
952 	rcu_read_unlock();
953 	up_read(&devnet_rename_sem);
954 	return ret;
955 }
956 
957 /**
958  *	dev_getbyhwaddr_rcu - find a device by its hardware address
959  *	@net: the applicable net namespace
960  *	@type: media type of device
961  *	@ha: hardware address
962  *
963  *	Search for an interface by MAC address. Returns NULL if the device
964  *	is not found or a pointer to the device.
965  *	The caller must hold RCU or RTNL.
966  *	The returned device has not had its ref count increased
967  *	and the caller must therefore be careful about locking
968  *
969  */
970 
971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972 				       const char *ha)
973 {
974 	struct net_device *dev;
975 
976 	for_each_netdev_rcu(net, dev)
977 		if (dev->type == type &&
978 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
979 			return dev;
980 
981 	return NULL;
982 }
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
984 
985 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
986 {
987 	struct net_device *dev, *ret = NULL;
988 
989 	rcu_read_lock();
990 	for_each_netdev_rcu(net, dev)
991 		if (dev->type == type) {
992 			dev_hold(dev);
993 			ret = dev;
994 			break;
995 		}
996 	rcu_read_unlock();
997 	return ret;
998 }
999 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1000 
1001 /**
1002  *	__dev_get_by_flags - find any device with given flags
1003  *	@net: the applicable net namespace
1004  *	@if_flags: IFF_* values
1005  *	@mask: bitmask of bits in if_flags to check
1006  *
1007  *	Search for any interface with the given flags. Returns NULL if a device
1008  *	is not found or a pointer to the device. Must be called inside
1009  *	rtnl_lock(), and result refcount is unchanged.
1010  */
1011 
1012 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1013 				      unsigned short mask)
1014 {
1015 	struct net_device *dev, *ret;
1016 
1017 	ASSERT_RTNL();
1018 
1019 	ret = NULL;
1020 	for_each_netdev(net, dev) {
1021 		if (((dev->flags ^ if_flags) & mask) == 0) {
1022 			ret = dev;
1023 			break;
1024 		}
1025 	}
1026 	return ret;
1027 }
1028 EXPORT_SYMBOL(__dev_get_by_flags);
1029 
1030 /**
1031  *	dev_valid_name - check if name is okay for network device
1032  *	@name: name string
1033  *
1034  *	Network device names need to be valid file names to
1035  *	allow sysfs to work.  We also disallow any kind of
1036  *	whitespace.
1037  */
1038 bool dev_valid_name(const char *name)
1039 {
1040 	if (*name == '\0')
1041 		return false;
1042 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1043 		return false;
1044 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1045 		return false;
1046 
1047 	while (*name) {
1048 		if (*name == '/' || *name == ':' || isspace(*name))
1049 			return false;
1050 		name++;
1051 	}
1052 	return true;
1053 }
1054 EXPORT_SYMBOL(dev_valid_name);
1055 
1056 /**
1057  *	__dev_alloc_name - allocate a name for a device
1058  *	@net: network namespace to allocate the device name in
1059  *	@name: name format string
1060  *	@buf:  scratch buffer and result name string
1061  *
1062  *	Passed a format string - eg "lt%d" it will try and find a suitable
1063  *	id. It scans list of devices to build up a free map, then chooses
1064  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1065  *	while allocating the name and adding the device in order to avoid
1066  *	duplicates.
1067  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1068  *	Returns the number of the unit assigned or a negative errno code.
1069  */
1070 
1071 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1072 {
1073 	int i = 0;
1074 	const char *p;
1075 	const int max_netdevices = 8*PAGE_SIZE;
1076 	unsigned long *inuse;
1077 	struct net_device *d;
1078 
1079 	if (!dev_valid_name(name))
1080 		return -EINVAL;
1081 
1082 	p = strchr(name, '%');
1083 	if (p) {
1084 		/*
1085 		 * Verify the string as this thing may have come from
1086 		 * the user.  There must be either one "%d" and no other "%"
1087 		 * characters.
1088 		 */
1089 		if (p[1] != 'd' || strchr(p + 2, '%'))
1090 			return -EINVAL;
1091 
1092 		/* Use one page as a bit array of possible slots */
1093 		inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1094 		if (!inuse)
1095 			return -ENOMEM;
1096 
1097 		for_each_netdev(net, d) {
1098 			struct netdev_name_node *name_node;
1099 
1100 			netdev_for_each_altname(d, name_node) {
1101 				if (!sscanf(name_node->name, name, &i))
1102 					continue;
1103 				if (i < 0 || i >= max_netdevices)
1104 					continue;
1105 
1106 				/*  avoid cases where sscanf is not exact inverse of printf */
1107 				snprintf(buf, IFNAMSIZ, name, i);
1108 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1109 					__set_bit(i, inuse);
1110 			}
1111 			if (!sscanf(d->name, name, &i))
1112 				continue;
1113 			if (i < 0 || i >= max_netdevices)
1114 				continue;
1115 
1116 			/*  avoid cases where sscanf is not exact inverse of printf */
1117 			snprintf(buf, IFNAMSIZ, name, i);
1118 			if (!strncmp(buf, d->name, IFNAMSIZ))
1119 				__set_bit(i, inuse);
1120 		}
1121 
1122 		i = find_first_zero_bit(inuse, max_netdevices);
1123 		bitmap_free(inuse);
1124 	}
1125 
1126 	snprintf(buf, IFNAMSIZ, name, i);
1127 	if (!netdev_name_in_use(net, buf))
1128 		return i;
1129 
1130 	/* It is possible to run out of possible slots
1131 	 * when the name is long and there isn't enough space left
1132 	 * for the digits, or if all bits are used.
1133 	 */
1134 	return -ENFILE;
1135 }
1136 
1137 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1138 			       const char *want_name, char *out_name)
1139 {
1140 	int ret;
1141 
1142 	if (!dev_valid_name(want_name))
1143 		return -EINVAL;
1144 
1145 	if (strchr(want_name, '%')) {
1146 		ret = __dev_alloc_name(net, want_name, out_name);
1147 		return ret < 0 ? ret : 0;
1148 	} else if (netdev_name_in_use(net, want_name)) {
1149 		return -EEXIST;
1150 	} else if (out_name != want_name) {
1151 		strscpy(out_name, want_name, IFNAMSIZ);
1152 	}
1153 
1154 	return 0;
1155 }
1156 
1157 static int dev_alloc_name_ns(struct net *net,
1158 			     struct net_device *dev,
1159 			     const char *name)
1160 {
1161 	char buf[IFNAMSIZ];
1162 	int ret;
1163 
1164 	BUG_ON(!net);
1165 	ret = __dev_alloc_name(net, name, buf);
1166 	if (ret >= 0)
1167 		strscpy(dev->name, buf, IFNAMSIZ);
1168 	return ret;
1169 }
1170 
1171 /**
1172  *	dev_alloc_name - allocate a name for a device
1173  *	@dev: device
1174  *	@name: name format string
1175  *
1176  *	Passed a format string - eg "lt%d" it will try and find a suitable
1177  *	id. It scans list of devices to build up a free map, then chooses
1178  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1179  *	while allocating the name and adding the device in order to avoid
1180  *	duplicates.
1181  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1182  *	Returns the number of the unit assigned or a negative errno code.
1183  */
1184 
1185 int dev_alloc_name(struct net_device *dev, const char *name)
1186 {
1187 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1188 }
1189 EXPORT_SYMBOL(dev_alloc_name);
1190 
1191 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1192 			      const char *name)
1193 {
1194 	char buf[IFNAMSIZ];
1195 	int ret;
1196 
1197 	ret = dev_prep_valid_name(net, dev, name, buf);
1198 	if (ret >= 0)
1199 		strscpy(dev->name, buf, IFNAMSIZ);
1200 	return ret;
1201 }
1202 
1203 /**
1204  *	dev_change_name - change name of a device
1205  *	@dev: device
1206  *	@newname: name (or format string) must be at least IFNAMSIZ
1207  *
1208  *	Change name of a device, can pass format strings "eth%d".
1209  *	for wildcarding.
1210  */
1211 int dev_change_name(struct net_device *dev, const char *newname)
1212 {
1213 	unsigned char old_assign_type;
1214 	char oldname[IFNAMSIZ];
1215 	int err = 0;
1216 	int ret;
1217 	struct net *net;
1218 
1219 	ASSERT_RTNL();
1220 	BUG_ON(!dev_net(dev));
1221 
1222 	net = dev_net(dev);
1223 
1224 	down_write(&devnet_rename_sem);
1225 
1226 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1227 		up_write(&devnet_rename_sem);
1228 		return 0;
1229 	}
1230 
1231 	memcpy(oldname, dev->name, IFNAMSIZ);
1232 
1233 	err = dev_get_valid_name(net, dev, newname);
1234 	if (err < 0) {
1235 		up_write(&devnet_rename_sem);
1236 		return err;
1237 	}
1238 
1239 	if (oldname[0] && !strchr(oldname, '%'))
1240 		netdev_info(dev, "renamed from %s%s\n", oldname,
1241 			    dev->flags & IFF_UP ? " (while UP)" : "");
1242 
1243 	old_assign_type = dev->name_assign_type;
1244 	dev->name_assign_type = NET_NAME_RENAMED;
1245 
1246 rollback:
1247 	ret = device_rename(&dev->dev, dev->name);
1248 	if (ret) {
1249 		memcpy(dev->name, oldname, IFNAMSIZ);
1250 		dev->name_assign_type = old_assign_type;
1251 		up_write(&devnet_rename_sem);
1252 		return ret;
1253 	}
1254 
1255 	up_write(&devnet_rename_sem);
1256 
1257 	netdev_adjacent_rename_links(dev, oldname);
1258 
1259 	write_lock(&dev_base_lock);
1260 	netdev_name_node_del(dev->name_node);
1261 	write_unlock(&dev_base_lock);
1262 
1263 	synchronize_rcu();
1264 
1265 	write_lock(&dev_base_lock);
1266 	netdev_name_node_add(net, dev->name_node);
1267 	write_unlock(&dev_base_lock);
1268 
1269 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1270 	ret = notifier_to_errno(ret);
1271 
1272 	if (ret) {
1273 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1274 		if (err >= 0) {
1275 			err = ret;
1276 			down_write(&devnet_rename_sem);
1277 			memcpy(dev->name, oldname, IFNAMSIZ);
1278 			memcpy(oldname, newname, IFNAMSIZ);
1279 			dev->name_assign_type = old_assign_type;
1280 			old_assign_type = NET_NAME_RENAMED;
1281 			goto rollback;
1282 		} else {
1283 			netdev_err(dev, "name change rollback failed: %d\n",
1284 				   ret);
1285 		}
1286 	}
1287 
1288 	return err;
1289 }
1290 
1291 /**
1292  *	dev_set_alias - change ifalias of a device
1293  *	@dev: device
1294  *	@alias: name up to IFALIASZ
1295  *	@len: limit of bytes to copy from info
1296  *
1297  *	Set ifalias for a device,
1298  */
1299 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1300 {
1301 	struct dev_ifalias *new_alias = NULL;
1302 
1303 	if (len >= IFALIASZ)
1304 		return -EINVAL;
1305 
1306 	if (len) {
1307 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1308 		if (!new_alias)
1309 			return -ENOMEM;
1310 
1311 		memcpy(new_alias->ifalias, alias, len);
1312 		new_alias->ifalias[len] = 0;
1313 	}
1314 
1315 	mutex_lock(&ifalias_mutex);
1316 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1317 					mutex_is_locked(&ifalias_mutex));
1318 	mutex_unlock(&ifalias_mutex);
1319 
1320 	if (new_alias)
1321 		kfree_rcu(new_alias, rcuhead);
1322 
1323 	return len;
1324 }
1325 EXPORT_SYMBOL(dev_set_alias);
1326 
1327 /**
1328  *	dev_get_alias - get ifalias of a device
1329  *	@dev: device
1330  *	@name: buffer to store name of ifalias
1331  *	@len: size of buffer
1332  *
1333  *	get ifalias for a device.  Caller must make sure dev cannot go
1334  *	away,  e.g. rcu read lock or own a reference count to device.
1335  */
1336 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1337 {
1338 	const struct dev_ifalias *alias;
1339 	int ret = 0;
1340 
1341 	rcu_read_lock();
1342 	alias = rcu_dereference(dev->ifalias);
1343 	if (alias)
1344 		ret = snprintf(name, len, "%s", alias->ifalias);
1345 	rcu_read_unlock();
1346 
1347 	return ret;
1348 }
1349 
1350 /**
1351  *	netdev_features_change - device changes features
1352  *	@dev: device to cause notification
1353  *
1354  *	Called to indicate a device has changed features.
1355  */
1356 void netdev_features_change(struct net_device *dev)
1357 {
1358 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1359 }
1360 EXPORT_SYMBOL(netdev_features_change);
1361 
1362 /**
1363  *	netdev_state_change - device changes state
1364  *	@dev: device to cause notification
1365  *
1366  *	Called to indicate a device has changed state. This function calls
1367  *	the notifier chains for netdev_chain and sends a NEWLINK message
1368  *	to the routing socket.
1369  */
1370 void netdev_state_change(struct net_device *dev)
1371 {
1372 	if (dev->flags & IFF_UP) {
1373 		struct netdev_notifier_change_info change_info = {
1374 			.info.dev = dev,
1375 		};
1376 
1377 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1378 					      &change_info.info);
1379 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1380 	}
1381 }
1382 EXPORT_SYMBOL(netdev_state_change);
1383 
1384 /**
1385  * __netdev_notify_peers - notify network peers about existence of @dev,
1386  * to be called when rtnl lock is already held.
1387  * @dev: network device
1388  *
1389  * Generate traffic such that interested network peers are aware of
1390  * @dev, such as by generating a gratuitous ARP. This may be used when
1391  * a device wants to inform the rest of the network about some sort of
1392  * reconfiguration such as a failover event or virtual machine
1393  * migration.
1394  */
1395 void __netdev_notify_peers(struct net_device *dev)
1396 {
1397 	ASSERT_RTNL();
1398 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1399 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1400 }
1401 EXPORT_SYMBOL(__netdev_notify_peers);
1402 
1403 /**
1404  * netdev_notify_peers - notify network peers about existence of @dev
1405  * @dev: network device
1406  *
1407  * Generate traffic such that interested network peers are aware of
1408  * @dev, such as by generating a gratuitous ARP. This may be used when
1409  * a device wants to inform the rest of the network about some sort of
1410  * reconfiguration such as a failover event or virtual machine
1411  * migration.
1412  */
1413 void netdev_notify_peers(struct net_device *dev)
1414 {
1415 	rtnl_lock();
1416 	__netdev_notify_peers(dev);
1417 	rtnl_unlock();
1418 }
1419 EXPORT_SYMBOL(netdev_notify_peers);
1420 
1421 static int napi_threaded_poll(void *data);
1422 
1423 static int napi_kthread_create(struct napi_struct *n)
1424 {
1425 	int err = 0;
1426 
1427 	/* Create and wake up the kthread once to put it in
1428 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1429 	 * warning and work with loadavg.
1430 	 */
1431 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1432 				n->dev->name, n->napi_id);
1433 	if (IS_ERR(n->thread)) {
1434 		err = PTR_ERR(n->thread);
1435 		pr_err("kthread_run failed with err %d\n", err);
1436 		n->thread = NULL;
1437 	}
1438 
1439 	return err;
1440 }
1441 
1442 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1443 {
1444 	const struct net_device_ops *ops = dev->netdev_ops;
1445 	int ret;
1446 
1447 	ASSERT_RTNL();
1448 	dev_addr_check(dev);
1449 
1450 	if (!netif_device_present(dev)) {
1451 		/* may be detached because parent is runtime-suspended */
1452 		if (dev->dev.parent)
1453 			pm_runtime_resume(dev->dev.parent);
1454 		if (!netif_device_present(dev))
1455 			return -ENODEV;
1456 	}
1457 
1458 	/* Block netpoll from trying to do any rx path servicing.
1459 	 * If we don't do this there is a chance ndo_poll_controller
1460 	 * or ndo_poll may be running while we open the device
1461 	 */
1462 	netpoll_poll_disable(dev);
1463 
1464 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1465 	ret = notifier_to_errno(ret);
1466 	if (ret)
1467 		return ret;
1468 
1469 	set_bit(__LINK_STATE_START, &dev->state);
1470 
1471 	if (ops->ndo_validate_addr)
1472 		ret = ops->ndo_validate_addr(dev);
1473 
1474 	if (!ret && ops->ndo_open)
1475 		ret = ops->ndo_open(dev);
1476 
1477 	netpoll_poll_enable(dev);
1478 
1479 	if (ret)
1480 		clear_bit(__LINK_STATE_START, &dev->state);
1481 	else {
1482 		dev->flags |= IFF_UP;
1483 		dev_set_rx_mode(dev);
1484 		dev_activate(dev);
1485 		add_device_randomness(dev->dev_addr, dev->addr_len);
1486 	}
1487 
1488 	return ret;
1489 }
1490 
1491 /**
1492  *	dev_open	- prepare an interface for use.
1493  *	@dev: device to open
1494  *	@extack: netlink extended ack
1495  *
1496  *	Takes a device from down to up state. The device's private open
1497  *	function is invoked and then the multicast lists are loaded. Finally
1498  *	the device is moved into the up state and a %NETDEV_UP message is
1499  *	sent to the netdev notifier chain.
1500  *
1501  *	Calling this function on an active interface is a nop. On a failure
1502  *	a negative errno code is returned.
1503  */
1504 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1505 {
1506 	int ret;
1507 
1508 	if (dev->flags & IFF_UP)
1509 		return 0;
1510 
1511 	ret = __dev_open(dev, extack);
1512 	if (ret < 0)
1513 		return ret;
1514 
1515 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1516 	call_netdevice_notifiers(NETDEV_UP, dev);
1517 
1518 	return ret;
1519 }
1520 EXPORT_SYMBOL(dev_open);
1521 
1522 static void __dev_close_many(struct list_head *head)
1523 {
1524 	struct net_device *dev;
1525 
1526 	ASSERT_RTNL();
1527 	might_sleep();
1528 
1529 	list_for_each_entry(dev, head, close_list) {
1530 		/* Temporarily disable netpoll until the interface is down */
1531 		netpoll_poll_disable(dev);
1532 
1533 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1534 
1535 		clear_bit(__LINK_STATE_START, &dev->state);
1536 
1537 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1538 		 * can be even on different cpu. So just clear netif_running().
1539 		 *
1540 		 * dev->stop() will invoke napi_disable() on all of it's
1541 		 * napi_struct instances on this device.
1542 		 */
1543 		smp_mb__after_atomic(); /* Commit netif_running(). */
1544 	}
1545 
1546 	dev_deactivate_many(head);
1547 
1548 	list_for_each_entry(dev, head, close_list) {
1549 		const struct net_device_ops *ops = dev->netdev_ops;
1550 
1551 		/*
1552 		 *	Call the device specific close. This cannot fail.
1553 		 *	Only if device is UP
1554 		 *
1555 		 *	We allow it to be called even after a DETACH hot-plug
1556 		 *	event.
1557 		 */
1558 		if (ops->ndo_stop)
1559 			ops->ndo_stop(dev);
1560 
1561 		dev->flags &= ~IFF_UP;
1562 		netpoll_poll_enable(dev);
1563 	}
1564 }
1565 
1566 static void __dev_close(struct net_device *dev)
1567 {
1568 	LIST_HEAD(single);
1569 
1570 	list_add(&dev->close_list, &single);
1571 	__dev_close_many(&single);
1572 	list_del(&single);
1573 }
1574 
1575 void dev_close_many(struct list_head *head, bool unlink)
1576 {
1577 	struct net_device *dev, *tmp;
1578 
1579 	/* Remove the devices that don't need to be closed */
1580 	list_for_each_entry_safe(dev, tmp, head, close_list)
1581 		if (!(dev->flags & IFF_UP))
1582 			list_del_init(&dev->close_list);
1583 
1584 	__dev_close_many(head);
1585 
1586 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1587 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1588 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1589 		if (unlink)
1590 			list_del_init(&dev->close_list);
1591 	}
1592 }
1593 EXPORT_SYMBOL(dev_close_many);
1594 
1595 /**
1596  *	dev_close - shutdown an interface.
1597  *	@dev: device to shutdown
1598  *
1599  *	This function moves an active device into down state. A
1600  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1601  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1602  *	chain.
1603  */
1604 void dev_close(struct net_device *dev)
1605 {
1606 	if (dev->flags & IFF_UP) {
1607 		LIST_HEAD(single);
1608 
1609 		list_add(&dev->close_list, &single);
1610 		dev_close_many(&single, true);
1611 		list_del(&single);
1612 	}
1613 }
1614 EXPORT_SYMBOL(dev_close);
1615 
1616 
1617 /**
1618  *	dev_disable_lro - disable Large Receive Offload on a device
1619  *	@dev: device
1620  *
1621  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1622  *	called under RTNL.  This is needed if received packets may be
1623  *	forwarded to another interface.
1624  */
1625 void dev_disable_lro(struct net_device *dev)
1626 {
1627 	struct net_device *lower_dev;
1628 	struct list_head *iter;
1629 
1630 	dev->wanted_features &= ~NETIF_F_LRO;
1631 	netdev_update_features(dev);
1632 
1633 	if (unlikely(dev->features & NETIF_F_LRO))
1634 		netdev_WARN(dev, "failed to disable LRO!\n");
1635 
1636 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1637 		dev_disable_lro(lower_dev);
1638 }
1639 EXPORT_SYMBOL(dev_disable_lro);
1640 
1641 /**
1642  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1643  *	@dev: device
1644  *
1645  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1646  *	called under RTNL.  This is needed if Generic XDP is installed on
1647  *	the device.
1648  */
1649 static void dev_disable_gro_hw(struct net_device *dev)
1650 {
1651 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1652 	netdev_update_features(dev);
1653 
1654 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1655 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1656 }
1657 
1658 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1659 {
1660 #define N(val) 						\
1661 	case NETDEV_##val:				\
1662 		return "NETDEV_" __stringify(val);
1663 	switch (cmd) {
1664 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1665 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1666 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1667 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1668 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1669 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1670 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1671 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1672 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1673 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1674 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1675 	N(XDP_FEAT_CHANGE)
1676 	}
1677 #undef N
1678 	return "UNKNOWN_NETDEV_EVENT";
1679 }
1680 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1681 
1682 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1683 				   struct net_device *dev)
1684 {
1685 	struct netdev_notifier_info info = {
1686 		.dev = dev,
1687 	};
1688 
1689 	return nb->notifier_call(nb, val, &info);
1690 }
1691 
1692 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1693 					     struct net_device *dev)
1694 {
1695 	int err;
1696 
1697 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1698 	err = notifier_to_errno(err);
1699 	if (err)
1700 		return err;
1701 
1702 	if (!(dev->flags & IFF_UP))
1703 		return 0;
1704 
1705 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1706 	return 0;
1707 }
1708 
1709 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1710 						struct net_device *dev)
1711 {
1712 	if (dev->flags & IFF_UP) {
1713 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1714 					dev);
1715 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1716 	}
1717 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1718 }
1719 
1720 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1721 						 struct net *net)
1722 {
1723 	struct net_device *dev;
1724 	int err;
1725 
1726 	for_each_netdev(net, dev) {
1727 		err = call_netdevice_register_notifiers(nb, dev);
1728 		if (err)
1729 			goto rollback;
1730 	}
1731 	return 0;
1732 
1733 rollback:
1734 	for_each_netdev_continue_reverse(net, dev)
1735 		call_netdevice_unregister_notifiers(nb, dev);
1736 	return err;
1737 }
1738 
1739 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1740 						    struct net *net)
1741 {
1742 	struct net_device *dev;
1743 
1744 	for_each_netdev(net, dev)
1745 		call_netdevice_unregister_notifiers(nb, dev);
1746 }
1747 
1748 static int dev_boot_phase = 1;
1749 
1750 /**
1751  * register_netdevice_notifier - register a network notifier block
1752  * @nb: notifier
1753  *
1754  * Register a notifier to be called when network device events occur.
1755  * The notifier passed is linked into the kernel structures and must
1756  * not be reused until it has been unregistered. A negative errno code
1757  * is returned on a failure.
1758  *
1759  * When registered all registration and up events are replayed
1760  * to the new notifier to allow device to have a race free
1761  * view of the network device list.
1762  */
1763 
1764 int register_netdevice_notifier(struct notifier_block *nb)
1765 {
1766 	struct net *net;
1767 	int err;
1768 
1769 	/* Close race with setup_net() and cleanup_net() */
1770 	down_write(&pernet_ops_rwsem);
1771 	rtnl_lock();
1772 	err = raw_notifier_chain_register(&netdev_chain, nb);
1773 	if (err)
1774 		goto unlock;
1775 	if (dev_boot_phase)
1776 		goto unlock;
1777 	for_each_net(net) {
1778 		err = call_netdevice_register_net_notifiers(nb, net);
1779 		if (err)
1780 			goto rollback;
1781 	}
1782 
1783 unlock:
1784 	rtnl_unlock();
1785 	up_write(&pernet_ops_rwsem);
1786 	return err;
1787 
1788 rollback:
1789 	for_each_net_continue_reverse(net)
1790 		call_netdevice_unregister_net_notifiers(nb, net);
1791 
1792 	raw_notifier_chain_unregister(&netdev_chain, nb);
1793 	goto unlock;
1794 }
1795 EXPORT_SYMBOL(register_netdevice_notifier);
1796 
1797 /**
1798  * unregister_netdevice_notifier - unregister a network notifier block
1799  * @nb: notifier
1800  *
1801  * Unregister a notifier previously registered by
1802  * register_netdevice_notifier(). The notifier is unlinked into the
1803  * kernel structures and may then be reused. A negative errno code
1804  * is returned on a failure.
1805  *
1806  * After unregistering unregister and down device events are synthesized
1807  * for all devices on the device list to the removed notifier to remove
1808  * the need for special case cleanup code.
1809  */
1810 
1811 int unregister_netdevice_notifier(struct notifier_block *nb)
1812 {
1813 	struct net *net;
1814 	int err;
1815 
1816 	/* Close race with setup_net() and cleanup_net() */
1817 	down_write(&pernet_ops_rwsem);
1818 	rtnl_lock();
1819 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1820 	if (err)
1821 		goto unlock;
1822 
1823 	for_each_net(net)
1824 		call_netdevice_unregister_net_notifiers(nb, net);
1825 
1826 unlock:
1827 	rtnl_unlock();
1828 	up_write(&pernet_ops_rwsem);
1829 	return err;
1830 }
1831 EXPORT_SYMBOL(unregister_netdevice_notifier);
1832 
1833 static int __register_netdevice_notifier_net(struct net *net,
1834 					     struct notifier_block *nb,
1835 					     bool ignore_call_fail)
1836 {
1837 	int err;
1838 
1839 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1840 	if (err)
1841 		return err;
1842 	if (dev_boot_phase)
1843 		return 0;
1844 
1845 	err = call_netdevice_register_net_notifiers(nb, net);
1846 	if (err && !ignore_call_fail)
1847 		goto chain_unregister;
1848 
1849 	return 0;
1850 
1851 chain_unregister:
1852 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1853 	return err;
1854 }
1855 
1856 static int __unregister_netdevice_notifier_net(struct net *net,
1857 					       struct notifier_block *nb)
1858 {
1859 	int err;
1860 
1861 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1862 	if (err)
1863 		return err;
1864 
1865 	call_netdevice_unregister_net_notifiers(nb, net);
1866 	return 0;
1867 }
1868 
1869 /**
1870  * register_netdevice_notifier_net - register a per-netns network notifier block
1871  * @net: network namespace
1872  * @nb: notifier
1873  *
1874  * Register a notifier to be called when network device events occur.
1875  * The notifier passed is linked into the kernel structures and must
1876  * not be reused until it has been unregistered. A negative errno code
1877  * is returned on a failure.
1878  *
1879  * When registered all registration and up events are replayed
1880  * to the new notifier to allow device to have a race free
1881  * view of the network device list.
1882  */
1883 
1884 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1885 {
1886 	int err;
1887 
1888 	rtnl_lock();
1889 	err = __register_netdevice_notifier_net(net, nb, false);
1890 	rtnl_unlock();
1891 	return err;
1892 }
1893 EXPORT_SYMBOL(register_netdevice_notifier_net);
1894 
1895 /**
1896  * unregister_netdevice_notifier_net - unregister a per-netns
1897  *                                     network notifier block
1898  * @net: network namespace
1899  * @nb: notifier
1900  *
1901  * Unregister a notifier previously registered by
1902  * register_netdevice_notifier_net(). The notifier is unlinked from the
1903  * kernel structures and may then be reused. A negative errno code
1904  * is returned on a failure.
1905  *
1906  * After unregistering unregister and down device events are synthesized
1907  * for all devices on the device list to the removed notifier to remove
1908  * the need for special case cleanup code.
1909  */
1910 
1911 int unregister_netdevice_notifier_net(struct net *net,
1912 				      struct notifier_block *nb)
1913 {
1914 	int err;
1915 
1916 	rtnl_lock();
1917 	err = __unregister_netdevice_notifier_net(net, nb);
1918 	rtnl_unlock();
1919 	return err;
1920 }
1921 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1922 
1923 static void __move_netdevice_notifier_net(struct net *src_net,
1924 					  struct net *dst_net,
1925 					  struct notifier_block *nb)
1926 {
1927 	__unregister_netdevice_notifier_net(src_net, nb);
1928 	__register_netdevice_notifier_net(dst_net, nb, true);
1929 }
1930 
1931 int register_netdevice_notifier_dev_net(struct net_device *dev,
1932 					struct notifier_block *nb,
1933 					struct netdev_net_notifier *nn)
1934 {
1935 	int err;
1936 
1937 	rtnl_lock();
1938 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1939 	if (!err) {
1940 		nn->nb = nb;
1941 		list_add(&nn->list, &dev->net_notifier_list);
1942 	}
1943 	rtnl_unlock();
1944 	return err;
1945 }
1946 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1947 
1948 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1949 					  struct notifier_block *nb,
1950 					  struct netdev_net_notifier *nn)
1951 {
1952 	int err;
1953 
1954 	rtnl_lock();
1955 	list_del(&nn->list);
1956 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1957 	rtnl_unlock();
1958 	return err;
1959 }
1960 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1961 
1962 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1963 					     struct net *net)
1964 {
1965 	struct netdev_net_notifier *nn;
1966 
1967 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1968 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1969 }
1970 
1971 /**
1972  *	call_netdevice_notifiers_info - call all network notifier blocks
1973  *	@val: value passed unmodified to notifier function
1974  *	@info: notifier information data
1975  *
1976  *	Call all network notifier blocks.  Parameters and return value
1977  *	are as for raw_notifier_call_chain().
1978  */
1979 
1980 int call_netdevice_notifiers_info(unsigned long val,
1981 				  struct netdev_notifier_info *info)
1982 {
1983 	struct net *net = dev_net(info->dev);
1984 	int ret;
1985 
1986 	ASSERT_RTNL();
1987 
1988 	/* Run per-netns notifier block chain first, then run the global one.
1989 	 * Hopefully, one day, the global one is going to be removed after
1990 	 * all notifier block registrators get converted to be per-netns.
1991 	 */
1992 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1993 	if (ret & NOTIFY_STOP_MASK)
1994 		return ret;
1995 	return raw_notifier_call_chain(&netdev_chain, val, info);
1996 }
1997 
1998 /**
1999  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2000  *	                                       for and rollback on error
2001  *	@val_up: value passed unmodified to notifier function
2002  *	@val_down: value passed unmodified to the notifier function when
2003  *	           recovering from an error on @val_up
2004  *	@info: notifier information data
2005  *
2006  *	Call all per-netns network notifier blocks, but not notifier blocks on
2007  *	the global notifier chain. Parameters and return value are as for
2008  *	raw_notifier_call_chain_robust().
2009  */
2010 
2011 static int
2012 call_netdevice_notifiers_info_robust(unsigned long val_up,
2013 				     unsigned long val_down,
2014 				     struct netdev_notifier_info *info)
2015 {
2016 	struct net *net = dev_net(info->dev);
2017 
2018 	ASSERT_RTNL();
2019 
2020 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2021 					      val_up, val_down, info);
2022 }
2023 
2024 static int call_netdevice_notifiers_extack(unsigned long val,
2025 					   struct net_device *dev,
2026 					   struct netlink_ext_ack *extack)
2027 {
2028 	struct netdev_notifier_info info = {
2029 		.dev = dev,
2030 		.extack = extack,
2031 	};
2032 
2033 	return call_netdevice_notifiers_info(val, &info);
2034 }
2035 
2036 /**
2037  *	call_netdevice_notifiers - call all network notifier blocks
2038  *      @val: value passed unmodified to notifier function
2039  *      @dev: net_device pointer passed unmodified to notifier function
2040  *
2041  *	Call all network notifier blocks.  Parameters and return value
2042  *	are as for raw_notifier_call_chain().
2043  */
2044 
2045 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2046 {
2047 	return call_netdevice_notifiers_extack(val, dev, NULL);
2048 }
2049 EXPORT_SYMBOL(call_netdevice_notifiers);
2050 
2051 /**
2052  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2053  *	@val: value passed unmodified to notifier function
2054  *	@dev: net_device pointer passed unmodified to notifier function
2055  *	@arg: additional u32 argument passed to the notifier function
2056  *
2057  *	Call all network notifier blocks.  Parameters and return value
2058  *	are as for raw_notifier_call_chain().
2059  */
2060 static int call_netdevice_notifiers_mtu(unsigned long val,
2061 					struct net_device *dev, u32 arg)
2062 {
2063 	struct netdev_notifier_info_ext info = {
2064 		.info.dev = dev,
2065 		.ext.mtu = arg,
2066 	};
2067 
2068 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2069 
2070 	return call_netdevice_notifiers_info(val, &info.info);
2071 }
2072 
2073 #ifdef CONFIG_NET_INGRESS
2074 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2075 
2076 void net_inc_ingress_queue(void)
2077 {
2078 	static_branch_inc(&ingress_needed_key);
2079 }
2080 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2081 
2082 void net_dec_ingress_queue(void)
2083 {
2084 	static_branch_dec(&ingress_needed_key);
2085 }
2086 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2087 #endif
2088 
2089 #ifdef CONFIG_NET_EGRESS
2090 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2091 
2092 void net_inc_egress_queue(void)
2093 {
2094 	static_branch_inc(&egress_needed_key);
2095 }
2096 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2097 
2098 void net_dec_egress_queue(void)
2099 {
2100 	static_branch_dec(&egress_needed_key);
2101 }
2102 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2103 #endif
2104 
2105 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2106 EXPORT_SYMBOL(netstamp_needed_key);
2107 #ifdef CONFIG_JUMP_LABEL
2108 static atomic_t netstamp_needed_deferred;
2109 static atomic_t netstamp_wanted;
2110 static void netstamp_clear(struct work_struct *work)
2111 {
2112 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2113 	int wanted;
2114 
2115 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2116 	if (wanted > 0)
2117 		static_branch_enable(&netstamp_needed_key);
2118 	else
2119 		static_branch_disable(&netstamp_needed_key);
2120 }
2121 static DECLARE_WORK(netstamp_work, netstamp_clear);
2122 #endif
2123 
2124 void net_enable_timestamp(void)
2125 {
2126 #ifdef CONFIG_JUMP_LABEL
2127 	int wanted = atomic_read(&netstamp_wanted);
2128 
2129 	while (wanted > 0) {
2130 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2131 			return;
2132 	}
2133 	atomic_inc(&netstamp_needed_deferred);
2134 	schedule_work(&netstamp_work);
2135 #else
2136 	static_branch_inc(&netstamp_needed_key);
2137 #endif
2138 }
2139 EXPORT_SYMBOL(net_enable_timestamp);
2140 
2141 void net_disable_timestamp(void)
2142 {
2143 #ifdef CONFIG_JUMP_LABEL
2144 	int wanted = atomic_read(&netstamp_wanted);
2145 
2146 	while (wanted > 1) {
2147 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2148 			return;
2149 	}
2150 	atomic_dec(&netstamp_needed_deferred);
2151 	schedule_work(&netstamp_work);
2152 #else
2153 	static_branch_dec(&netstamp_needed_key);
2154 #endif
2155 }
2156 EXPORT_SYMBOL(net_disable_timestamp);
2157 
2158 static inline void net_timestamp_set(struct sk_buff *skb)
2159 {
2160 	skb->tstamp = 0;
2161 	skb->mono_delivery_time = 0;
2162 	if (static_branch_unlikely(&netstamp_needed_key))
2163 		skb->tstamp = ktime_get_real();
2164 }
2165 
2166 #define net_timestamp_check(COND, SKB)				\
2167 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2168 		if ((COND) && !(SKB)->tstamp)			\
2169 			(SKB)->tstamp = ktime_get_real();	\
2170 	}							\
2171 
2172 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2173 {
2174 	return __is_skb_forwardable(dev, skb, true);
2175 }
2176 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2177 
2178 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2179 			      bool check_mtu)
2180 {
2181 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2182 
2183 	if (likely(!ret)) {
2184 		skb->protocol = eth_type_trans(skb, dev);
2185 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2186 	}
2187 
2188 	return ret;
2189 }
2190 
2191 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2192 {
2193 	return __dev_forward_skb2(dev, skb, true);
2194 }
2195 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2196 
2197 /**
2198  * dev_forward_skb - loopback an skb to another netif
2199  *
2200  * @dev: destination network device
2201  * @skb: buffer to forward
2202  *
2203  * return values:
2204  *	NET_RX_SUCCESS	(no congestion)
2205  *	NET_RX_DROP     (packet was dropped, but freed)
2206  *
2207  * dev_forward_skb can be used for injecting an skb from the
2208  * start_xmit function of one device into the receive queue
2209  * of another device.
2210  *
2211  * The receiving device may be in another namespace, so
2212  * we have to clear all information in the skb that could
2213  * impact namespace isolation.
2214  */
2215 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2216 {
2217 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2218 }
2219 EXPORT_SYMBOL_GPL(dev_forward_skb);
2220 
2221 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2222 {
2223 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2224 }
2225 
2226 static inline int deliver_skb(struct sk_buff *skb,
2227 			      struct packet_type *pt_prev,
2228 			      struct net_device *orig_dev)
2229 {
2230 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2231 		return -ENOMEM;
2232 	refcount_inc(&skb->users);
2233 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2234 }
2235 
2236 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2237 					  struct packet_type **pt,
2238 					  struct net_device *orig_dev,
2239 					  __be16 type,
2240 					  struct list_head *ptype_list)
2241 {
2242 	struct packet_type *ptype, *pt_prev = *pt;
2243 
2244 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2245 		if (ptype->type != type)
2246 			continue;
2247 		if (pt_prev)
2248 			deliver_skb(skb, pt_prev, orig_dev);
2249 		pt_prev = ptype;
2250 	}
2251 	*pt = pt_prev;
2252 }
2253 
2254 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2255 {
2256 	if (!ptype->af_packet_priv || !skb->sk)
2257 		return false;
2258 
2259 	if (ptype->id_match)
2260 		return ptype->id_match(ptype, skb->sk);
2261 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2262 		return true;
2263 
2264 	return false;
2265 }
2266 
2267 /**
2268  * dev_nit_active - return true if any network interface taps are in use
2269  *
2270  * @dev: network device to check for the presence of taps
2271  */
2272 bool dev_nit_active(struct net_device *dev)
2273 {
2274 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2275 }
2276 EXPORT_SYMBOL_GPL(dev_nit_active);
2277 
2278 /*
2279  *	Support routine. Sends outgoing frames to any network
2280  *	taps currently in use.
2281  */
2282 
2283 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2284 {
2285 	struct packet_type *ptype;
2286 	struct sk_buff *skb2 = NULL;
2287 	struct packet_type *pt_prev = NULL;
2288 	struct list_head *ptype_list = &ptype_all;
2289 
2290 	rcu_read_lock();
2291 again:
2292 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2293 		if (READ_ONCE(ptype->ignore_outgoing))
2294 			continue;
2295 
2296 		/* Never send packets back to the socket
2297 		 * they originated from - MvS (miquels@drinkel.ow.org)
2298 		 */
2299 		if (skb_loop_sk(ptype, skb))
2300 			continue;
2301 
2302 		if (pt_prev) {
2303 			deliver_skb(skb2, pt_prev, skb->dev);
2304 			pt_prev = ptype;
2305 			continue;
2306 		}
2307 
2308 		/* need to clone skb, done only once */
2309 		skb2 = skb_clone(skb, GFP_ATOMIC);
2310 		if (!skb2)
2311 			goto out_unlock;
2312 
2313 		net_timestamp_set(skb2);
2314 
2315 		/* skb->nh should be correctly
2316 		 * set by sender, so that the second statement is
2317 		 * just protection against buggy protocols.
2318 		 */
2319 		skb_reset_mac_header(skb2);
2320 
2321 		if (skb_network_header(skb2) < skb2->data ||
2322 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2323 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2324 					     ntohs(skb2->protocol),
2325 					     dev->name);
2326 			skb_reset_network_header(skb2);
2327 		}
2328 
2329 		skb2->transport_header = skb2->network_header;
2330 		skb2->pkt_type = PACKET_OUTGOING;
2331 		pt_prev = ptype;
2332 	}
2333 
2334 	if (ptype_list == &ptype_all) {
2335 		ptype_list = &dev->ptype_all;
2336 		goto again;
2337 	}
2338 out_unlock:
2339 	if (pt_prev) {
2340 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2341 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2342 		else
2343 			kfree_skb(skb2);
2344 	}
2345 	rcu_read_unlock();
2346 }
2347 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2348 
2349 /**
2350  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2351  * @dev: Network device
2352  * @txq: number of queues available
2353  *
2354  * If real_num_tx_queues is changed the tc mappings may no longer be
2355  * valid. To resolve this verify the tc mapping remains valid and if
2356  * not NULL the mapping. With no priorities mapping to this
2357  * offset/count pair it will no longer be used. In the worst case TC0
2358  * is invalid nothing can be done so disable priority mappings. If is
2359  * expected that drivers will fix this mapping if they can before
2360  * calling netif_set_real_num_tx_queues.
2361  */
2362 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2363 {
2364 	int i;
2365 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2366 
2367 	/* If TC0 is invalidated disable TC mapping */
2368 	if (tc->offset + tc->count > txq) {
2369 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2370 		dev->num_tc = 0;
2371 		return;
2372 	}
2373 
2374 	/* Invalidated prio to tc mappings set to TC0 */
2375 	for (i = 1; i < TC_BITMASK + 1; i++) {
2376 		int q = netdev_get_prio_tc_map(dev, i);
2377 
2378 		tc = &dev->tc_to_txq[q];
2379 		if (tc->offset + tc->count > txq) {
2380 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2381 				    i, q);
2382 			netdev_set_prio_tc_map(dev, i, 0);
2383 		}
2384 	}
2385 }
2386 
2387 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2388 {
2389 	if (dev->num_tc) {
2390 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2391 		int i;
2392 
2393 		/* walk through the TCs and see if it falls into any of them */
2394 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2395 			if ((txq - tc->offset) < tc->count)
2396 				return i;
2397 		}
2398 
2399 		/* didn't find it, just return -1 to indicate no match */
2400 		return -1;
2401 	}
2402 
2403 	return 0;
2404 }
2405 EXPORT_SYMBOL(netdev_txq_to_tc);
2406 
2407 #ifdef CONFIG_XPS
2408 static struct static_key xps_needed __read_mostly;
2409 static struct static_key xps_rxqs_needed __read_mostly;
2410 static DEFINE_MUTEX(xps_map_mutex);
2411 #define xmap_dereference(P)		\
2412 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2413 
2414 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2415 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2416 {
2417 	struct xps_map *map = NULL;
2418 	int pos;
2419 
2420 	map = xmap_dereference(dev_maps->attr_map[tci]);
2421 	if (!map)
2422 		return false;
2423 
2424 	for (pos = map->len; pos--;) {
2425 		if (map->queues[pos] != index)
2426 			continue;
2427 
2428 		if (map->len > 1) {
2429 			map->queues[pos] = map->queues[--map->len];
2430 			break;
2431 		}
2432 
2433 		if (old_maps)
2434 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2435 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2436 		kfree_rcu(map, rcu);
2437 		return false;
2438 	}
2439 
2440 	return true;
2441 }
2442 
2443 static bool remove_xps_queue_cpu(struct net_device *dev,
2444 				 struct xps_dev_maps *dev_maps,
2445 				 int cpu, u16 offset, u16 count)
2446 {
2447 	int num_tc = dev_maps->num_tc;
2448 	bool active = false;
2449 	int tci;
2450 
2451 	for (tci = cpu * num_tc; num_tc--; tci++) {
2452 		int i, j;
2453 
2454 		for (i = count, j = offset; i--; j++) {
2455 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2456 				break;
2457 		}
2458 
2459 		active |= i < 0;
2460 	}
2461 
2462 	return active;
2463 }
2464 
2465 static void reset_xps_maps(struct net_device *dev,
2466 			   struct xps_dev_maps *dev_maps,
2467 			   enum xps_map_type type)
2468 {
2469 	static_key_slow_dec_cpuslocked(&xps_needed);
2470 	if (type == XPS_RXQS)
2471 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2472 
2473 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2474 
2475 	kfree_rcu(dev_maps, rcu);
2476 }
2477 
2478 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2479 			   u16 offset, u16 count)
2480 {
2481 	struct xps_dev_maps *dev_maps;
2482 	bool active = false;
2483 	int i, j;
2484 
2485 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2486 	if (!dev_maps)
2487 		return;
2488 
2489 	for (j = 0; j < dev_maps->nr_ids; j++)
2490 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2491 	if (!active)
2492 		reset_xps_maps(dev, dev_maps, type);
2493 
2494 	if (type == XPS_CPUS) {
2495 		for (i = offset + (count - 1); count--; i--)
2496 			netdev_queue_numa_node_write(
2497 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2498 	}
2499 }
2500 
2501 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2502 				   u16 count)
2503 {
2504 	if (!static_key_false(&xps_needed))
2505 		return;
2506 
2507 	cpus_read_lock();
2508 	mutex_lock(&xps_map_mutex);
2509 
2510 	if (static_key_false(&xps_rxqs_needed))
2511 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2512 
2513 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2514 
2515 	mutex_unlock(&xps_map_mutex);
2516 	cpus_read_unlock();
2517 }
2518 
2519 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2520 {
2521 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2522 }
2523 
2524 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2525 				      u16 index, bool is_rxqs_map)
2526 {
2527 	struct xps_map *new_map;
2528 	int alloc_len = XPS_MIN_MAP_ALLOC;
2529 	int i, pos;
2530 
2531 	for (pos = 0; map && pos < map->len; pos++) {
2532 		if (map->queues[pos] != index)
2533 			continue;
2534 		return map;
2535 	}
2536 
2537 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2538 	if (map) {
2539 		if (pos < map->alloc_len)
2540 			return map;
2541 
2542 		alloc_len = map->alloc_len * 2;
2543 	}
2544 
2545 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2546 	 *  map
2547 	 */
2548 	if (is_rxqs_map)
2549 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2550 	else
2551 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2552 				       cpu_to_node(attr_index));
2553 	if (!new_map)
2554 		return NULL;
2555 
2556 	for (i = 0; i < pos; i++)
2557 		new_map->queues[i] = map->queues[i];
2558 	new_map->alloc_len = alloc_len;
2559 	new_map->len = pos;
2560 
2561 	return new_map;
2562 }
2563 
2564 /* Copy xps maps at a given index */
2565 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2566 			      struct xps_dev_maps *new_dev_maps, int index,
2567 			      int tc, bool skip_tc)
2568 {
2569 	int i, tci = index * dev_maps->num_tc;
2570 	struct xps_map *map;
2571 
2572 	/* copy maps belonging to foreign traffic classes */
2573 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2574 		if (i == tc && skip_tc)
2575 			continue;
2576 
2577 		/* fill in the new device map from the old device map */
2578 		map = xmap_dereference(dev_maps->attr_map[tci]);
2579 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2580 	}
2581 }
2582 
2583 /* Must be called under cpus_read_lock */
2584 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2585 			  u16 index, enum xps_map_type type)
2586 {
2587 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2588 	const unsigned long *online_mask = NULL;
2589 	bool active = false, copy = false;
2590 	int i, j, tci, numa_node_id = -2;
2591 	int maps_sz, num_tc = 1, tc = 0;
2592 	struct xps_map *map, *new_map;
2593 	unsigned int nr_ids;
2594 
2595 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2596 
2597 	if (dev->num_tc) {
2598 		/* Do not allow XPS on subordinate device directly */
2599 		num_tc = dev->num_tc;
2600 		if (num_tc < 0)
2601 			return -EINVAL;
2602 
2603 		/* If queue belongs to subordinate dev use its map */
2604 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2605 
2606 		tc = netdev_txq_to_tc(dev, index);
2607 		if (tc < 0)
2608 			return -EINVAL;
2609 	}
2610 
2611 	mutex_lock(&xps_map_mutex);
2612 
2613 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2614 	if (type == XPS_RXQS) {
2615 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2616 		nr_ids = dev->num_rx_queues;
2617 	} else {
2618 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2619 		if (num_possible_cpus() > 1)
2620 			online_mask = cpumask_bits(cpu_online_mask);
2621 		nr_ids = nr_cpu_ids;
2622 	}
2623 
2624 	if (maps_sz < L1_CACHE_BYTES)
2625 		maps_sz = L1_CACHE_BYTES;
2626 
2627 	/* The old dev_maps could be larger or smaller than the one we're
2628 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2629 	 * between. We could try to be smart, but let's be safe instead and only
2630 	 * copy foreign traffic classes if the two map sizes match.
2631 	 */
2632 	if (dev_maps &&
2633 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2634 		copy = true;
2635 
2636 	/* allocate memory for queue storage */
2637 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2638 	     j < nr_ids;) {
2639 		if (!new_dev_maps) {
2640 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2641 			if (!new_dev_maps) {
2642 				mutex_unlock(&xps_map_mutex);
2643 				return -ENOMEM;
2644 			}
2645 
2646 			new_dev_maps->nr_ids = nr_ids;
2647 			new_dev_maps->num_tc = num_tc;
2648 		}
2649 
2650 		tci = j * num_tc + tc;
2651 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2652 
2653 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2654 		if (!map)
2655 			goto error;
2656 
2657 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2658 	}
2659 
2660 	if (!new_dev_maps)
2661 		goto out_no_new_maps;
2662 
2663 	if (!dev_maps) {
2664 		/* Increment static keys at most once per type */
2665 		static_key_slow_inc_cpuslocked(&xps_needed);
2666 		if (type == XPS_RXQS)
2667 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2668 	}
2669 
2670 	for (j = 0; j < nr_ids; j++) {
2671 		bool skip_tc = false;
2672 
2673 		tci = j * num_tc + tc;
2674 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2675 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2676 			/* add tx-queue to CPU/rx-queue maps */
2677 			int pos = 0;
2678 
2679 			skip_tc = true;
2680 
2681 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2682 			while ((pos < map->len) && (map->queues[pos] != index))
2683 				pos++;
2684 
2685 			if (pos == map->len)
2686 				map->queues[map->len++] = index;
2687 #ifdef CONFIG_NUMA
2688 			if (type == XPS_CPUS) {
2689 				if (numa_node_id == -2)
2690 					numa_node_id = cpu_to_node(j);
2691 				else if (numa_node_id != cpu_to_node(j))
2692 					numa_node_id = -1;
2693 			}
2694 #endif
2695 		}
2696 
2697 		if (copy)
2698 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2699 					  skip_tc);
2700 	}
2701 
2702 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2703 
2704 	/* Cleanup old maps */
2705 	if (!dev_maps)
2706 		goto out_no_old_maps;
2707 
2708 	for (j = 0; j < dev_maps->nr_ids; j++) {
2709 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2710 			map = xmap_dereference(dev_maps->attr_map[tci]);
2711 			if (!map)
2712 				continue;
2713 
2714 			if (copy) {
2715 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2716 				if (map == new_map)
2717 					continue;
2718 			}
2719 
2720 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2721 			kfree_rcu(map, rcu);
2722 		}
2723 	}
2724 
2725 	old_dev_maps = dev_maps;
2726 
2727 out_no_old_maps:
2728 	dev_maps = new_dev_maps;
2729 	active = true;
2730 
2731 out_no_new_maps:
2732 	if (type == XPS_CPUS)
2733 		/* update Tx queue numa node */
2734 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2735 					     (numa_node_id >= 0) ?
2736 					     numa_node_id : NUMA_NO_NODE);
2737 
2738 	if (!dev_maps)
2739 		goto out_no_maps;
2740 
2741 	/* removes tx-queue from unused CPUs/rx-queues */
2742 	for (j = 0; j < dev_maps->nr_ids; j++) {
2743 		tci = j * dev_maps->num_tc;
2744 
2745 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2746 			if (i == tc &&
2747 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2748 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2749 				continue;
2750 
2751 			active |= remove_xps_queue(dev_maps,
2752 						   copy ? old_dev_maps : NULL,
2753 						   tci, index);
2754 		}
2755 	}
2756 
2757 	if (old_dev_maps)
2758 		kfree_rcu(old_dev_maps, rcu);
2759 
2760 	/* free map if not active */
2761 	if (!active)
2762 		reset_xps_maps(dev, dev_maps, type);
2763 
2764 out_no_maps:
2765 	mutex_unlock(&xps_map_mutex);
2766 
2767 	return 0;
2768 error:
2769 	/* remove any maps that we added */
2770 	for (j = 0; j < nr_ids; j++) {
2771 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2772 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2773 			map = copy ?
2774 			      xmap_dereference(dev_maps->attr_map[tci]) :
2775 			      NULL;
2776 			if (new_map && new_map != map)
2777 				kfree(new_map);
2778 		}
2779 	}
2780 
2781 	mutex_unlock(&xps_map_mutex);
2782 
2783 	kfree(new_dev_maps);
2784 	return -ENOMEM;
2785 }
2786 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2787 
2788 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2789 			u16 index)
2790 {
2791 	int ret;
2792 
2793 	cpus_read_lock();
2794 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2795 	cpus_read_unlock();
2796 
2797 	return ret;
2798 }
2799 EXPORT_SYMBOL(netif_set_xps_queue);
2800 
2801 #endif
2802 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2803 {
2804 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2805 
2806 	/* Unbind any subordinate channels */
2807 	while (txq-- != &dev->_tx[0]) {
2808 		if (txq->sb_dev)
2809 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2810 	}
2811 }
2812 
2813 void netdev_reset_tc(struct net_device *dev)
2814 {
2815 #ifdef CONFIG_XPS
2816 	netif_reset_xps_queues_gt(dev, 0);
2817 #endif
2818 	netdev_unbind_all_sb_channels(dev);
2819 
2820 	/* Reset TC configuration of device */
2821 	dev->num_tc = 0;
2822 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2823 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2824 }
2825 EXPORT_SYMBOL(netdev_reset_tc);
2826 
2827 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2828 {
2829 	if (tc >= dev->num_tc)
2830 		return -EINVAL;
2831 
2832 #ifdef CONFIG_XPS
2833 	netif_reset_xps_queues(dev, offset, count);
2834 #endif
2835 	dev->tc_to_txq[tc].count = count;
2836 	dev->tc_to_txq[tc].offset = offset;
2837 	return 0;
2838 }
2839 EXPORT_SYMBOL(netdev_set_tc_queue);
2840 
2841 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2842 {
2843 	if (num_tc > TC_MAX_QUEUE)
2844 		return -EINVAL;
2845 
2846 #ifdef CONFIG_XPS
2847 	netif_reset_xps_queues_gt(dev, 0);
2848 #endif
2849 	netdev_unbind_all_sb_channels(dev);
2850 
2851 	dev->num_tc = num_tc;
2852 	return 0;
2853 }
2854 EXPORT_SYMBOL(netdev_set_num_tc);
2855 
2856 void netdev_unbind_sb_channel(struct net_device *dev,
2857 			      struct net_device *sb_dev)
2858 {
2859 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2860 
2861 #ifdef CONFIG_XPS
2862 	netif_reset_xps_queues_gt(sb_dev, 0);
2863 #endif
2864 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2865 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2866 
2867 	while (txq-- != &dev->_tx[0]) {
2868 		if (txq->sb_dev == sb_dev)
2869 			txq->sb_dev = NULL;
2870 	}
2871 }
2872 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2873 
2874 int netdev_bind_sb_channel_queue(struct net_device *dev,
2875 				 struct net_device *sb_dev,
2876 				 u8 tc, u16 count, u16 offset)
2877 {
2878 	/* Make certain the sb_dev and dev are already configured */
2879 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2880 		return -EINVAL;
2881 
2882 	/* We cannot hand out queues we don't have */
2883 	if ((offset + count) > dev->real_num_tx_queues)
2884 		return -EINVAL;
2885 
2886 	/* Record the mapping */
2887 	sb_dev->tc_to_txq[tc].count = count;
2888 	sb_dev->tc_to_txq[tc].offset = offset;
2889 
2890 	/* Provide a way for Tx queue to find the tc_to_txq map or
2891 	 * XPS map for itself.
2892 	 */
2893 	while (count--)
2894 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2895 
2896 	return 0;
2897 }
2898 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2899 
2900 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2901 {
2902 	/* Do not use a multiqueue device to represent a subordinate channel */
2903 	if (netif_is_multiqueue(dev))
2904 		return -ENODEV;
2905 
2906 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2907 	 * Channel 0 is meant to be "native" mode and used only to represent
2908 	 * the main root device. We allow writing 0 to reset the device back
2909 	 * to normal mode after being used as a subordinate channel.
2910 	 */
2911 	if (channel > S16_MAX)
2912 		return -EINVAL;
2913 
2914 	dev->num_tc = -channel;
2915 
2916 	return 0;
2917 }
2918 EXPORT_SYMBOL(netdev_set_sb_channel);
2919 
2920 /*
2921  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2922  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2923  */
2924 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2925 {
2926 	bool disabling;
2927 	int rc;
2928 
2929 	disabling = txq < dev->real_num_tx_queues;
2930 
2931 	if (txq < 1 || txq > dev->num_tx_queues)
2932 		return -EINVAL;
2933 
2934 	if (dev->reg_state == NETREG_REGISTERED ||
2935 	    dev->reg_state == NETREG_UNREGISTERING) {
2936 		ASSERT_RTNL();
2937 
2938 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2939 						  txq);
2940 		if (rc)
2941 			return rc;
2942 
2943 		if (dev->num_tc)
2944 			netif_setup_tc(dev, txq);
2945 
2946 		dev_qdisc_change_real_num_tx(dev, txq);
2947 
2948 		dev->real_num_tx_queues = txq;
2949 
2950 		if (disabling) {
2951 			synchronize_net();
2952 			qdisc_reset_all_tx_gt(dev, txq);
2953 #ifdef CONFIG_XPS
2954 			netif_reset_xps_queues_gt(dev, txq);
2955 #endif
2956 		}
2957 	} else {
2958 		dev->real_num_tx_queues = txq;
2959 	}
2960 
2961 	return 0;
2962 }
2963 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2964 
2965 #ifdef CONFIG_SYSFS
2966 /**
2967  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2968  *	@dev: Network device
2969  *	@rxq: Actual number of RX queues
2970  *
2971  *	This must be called either with the rtnl_lock held or before
2972  *	registration of the net device.  Returns 0 on success, or a
2973  *	negative error code.  If called before registration, it always
2974  *	succeeds.
2975  */
2976 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2977 {
2978 	int rc;
2979 
2980 	if (rxq < 1 || rxq > dev->num_rx_queues)
2981 		return -EINVAL;
2982 
2983 	if (dev->reg_state == NETREG_REGISTERED) {
2984 		ASSERT_RTNL();
2985 
2986 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2987 						  rxq);
2988 		if (rc)
2989 			return rc;
2990 	}
2991 
2992 	dev->real_num_rx_queues = rxq;
2993 	return 0;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2996 #endif
2997 
2998 /**
2999  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3000  *	@dev: Network device
3001  *	@txq: Actual number of TX queues
3002  *	@rxq: Actual number of RX queues
3003  *
3004  *	Set the real number of both TX and RX queues.
3005  *	Does nothing if the number of queues is already correct.
3006  */
3007 int netif_set_real_num_queues(struct net_device *dev,
3008 			      unsigned int txq, unsigned int rxq)
3009 {
3010 	unsigned int old_rxq = dev->real_num_rx_queues;
3011 	int err;
3012 
3013 	if (txq < 1 || txq > dev->num_tx_queues ||
3014 	    rxq < 1 || rxq > dev->num_rx_queues)
3015 		return -EINVAL;
3016 
3017 	/* Start from increases, so the error path only does decreases -
3018 	 * decreases can't fail.
3019 	 */
3020 	if (rxq > dev->real_num_rx_queues) {
3021 		err = netif_set_real_num_rx_queues(dev, rxq);
3022 		if (err)
3023 			return err;
3024 	}
3025 	if (txq > dev->real_num_tx_queues) {
3026 		err = netif_set_real_num_tx_queues(dev, txq);
3027 		if (err)
3028 			goto undo_rx;
3029 	}
3030 	if (rxq < dev->real_num_rx_queues)
3031 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3032 	if (txq < dev->real_num_tx_queues)
3033 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3034 
3035 	return 0;
3036 undo_rx:
3037 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3038 	return err;
3039 }
3040 EXPORT_SYMBOL(netif_set_real_num_queues);
3041 
3042 /**
3043  * netif_set_tso_max_size() - set the max size of TSO frames supported
3044  * @dev:	netdev to update
3045  * @size:	max skb->len of a TSO frame
3046  *
3047  * Set the limit on the size of TSO super-frames the device can handle.
3048  * Unless explicitly set the stack will assume the value of
3049  * %GSO_LEGACY_MAX_SIZE.
3050  */
3051 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3052 {
3053 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3054 	if (size < READ_ONCE(dev->gso_max_size))
3055 		netif_set_gso_max_size(dev, size);
3056 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3057 		netif_set_gso_ipv4_max_size(dev, size);
3058 }
3059 EXPORT_SYMBOL(netif_set_tso_max_size);
3060 
3061 /**
3062  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3063  * @dev:	netdev to update
3064  * @segs:	max number of TCP segments
3065  *
3066  * Set the limit on the number of TCP segments the device can generate from
3067  * a single TSO super-frame.
3068  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3069  */
3070 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3071 {
3072 	dev->tso_max_segs = segs;
3073 	if (segs < READ_ONCE(dev->gso_max_segs))
3074 		netif_set_gso_max_segs(dev, segs);
3075 }
3076 EXPORT_SYMBOL(netif_set_tso_max_segs);
3077 
3078 /**
3079  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3080  * @to:		netdev to update
3081  * @from:	netdev from which to copy the limits
3082  */
3083 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3084 {
3085 	netif_set_tso_max_size(to, from->tso_max_size);
3086 	netif_set_tso_max_segs(to, from->tso_max_segs);
3087 }
3088 EXPORT_SYMBOL(netif_inherit_tso_max);
3089 
3090 /**
3091  * netif_get_num_default_rss_queues - default number of RSS queues
3092  *
3093  * Default value is the number of physical cores if there are only 1 or 2, or
3094  * divided by 2 if there are more.
3095  */
3096 int netif_get_num_default_rss_queues(void)
3097 {
3098 	cpumask_var_t cpus;
3099 	int cpu, count = 0;
3100 
3101 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3102 		return 1;
3103 
3104 	cpumask_copy(cpus, cpu_online_mask);
3105 	for_each_cpu(cpu, cpus) {
3106 		++count;
3107 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3108 	}
3109 	free_cpumask_var(cpus);
3110 
3111 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3112 }
3113 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3114 
3115 static void __netif_reschedule(struct Qdisc *q)
3116 {
3117 	struct softnet_data *sd;
3118 	unsigned long flags;
3119 
3120 	local_irq_save(flags);
3121 	sd = this_cpu_ptr(&softnet_data);
3122 	q->next_sched = NULL;
3123 	*sd->output_queue_tailp = q;
3124 	sd->output_queue_tailp = &q->next_sched;
3125 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3126 	local_irq_restore(flags);
3127 }
3128 
3129 void __netif_schedule(struct Qdisc *q)
3130 {
3131 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3132 		__netif_reschedule(q);
3133 }
3134 EXPORT_SYMBOL(__netif_schedule);
3135 
3136 struct dev_kfree_skb_cb {
3137 	enum skb_drop_reason reason;
3138 };
3139 
3140 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3141 {
3142 	return (struct dev_kfree_skb_cb *)skb->cb;
3143 }
3144 
3145 void netif_schedule_queue(struct netdev_queue *txq)
3146 {
3147 	rcu_read_lock();
3148 	if (!netif_xmit_stopped(txq)) {
3149 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3150 
3151 		__netif_schedule(q);
3152 	}
3153 	rcu_read_unlock();
3154 }
3155 EXPORT_SYMBOL(netif_schedule_queue);
3156 
3157 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3158 {
3159 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3160 		struct Qdisc *q;
3161 
3162 		rcu_read_lock();
3163 		q = rcu_dereference(dev_queue->qdisc);
3164 		__netif_schedule(q);
3165 		rcu_read_unlock();
3166 	}
3167 }
3168 EXPORT_SYMBOL(netif_tx_wake_queue);
3169 
3170 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3171 {
3172 	unsigned long flags;
3173 
3174 	if (unlikely(!skb))
3175 		return;
3176 
3177 	if (likely(refcount_read(&skb->users) == 1)) {
3178 		smp_rmb();
3179 		refcount_set(&skb->users, 0);
3180 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3181 		return;
3182 	}
3183 	get_kfree_skb_cb(skb)->reason = reason;
3184 	local_irq_save(flags);
3185 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3186 	__this_cpu_write(softnet_data.completion_queue, skb);
3187 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3188 	local_irq_restore(flags);
3189 }
3190 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3191 
3192 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3193 {
3194 	if (in_hardirq() || irqs_disabled())
3195 		dev_kfree_skb_irq_reason(skb, reason);
3196 	else
3197 		kfree_skb_reason(skb, reason);
3198 }
3199 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3200 
3201 
3202 /**
3203  * netif_device_detach - mark device as removed
3204  * @dev: network device
3205  *
3206  * Mark device as removed from system and therefore no longer available.
3207  */
3208 void netif_device_detach(struct net_device *dev)
3209 {
3210 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3211 	    netif_running(dev)) {
3212 		netif_tx_stop_all_queues(dev);
3213 	}
3214 }
3215 EXPORT_SYMBOL(netif_device_detach);
3216 
3217 /**
3218  * netif_device_attach - mark device as attached
3219  * @dev: network device
3220  *
3221  * Mark device as attached from system and restart if needed.
3222  */
3223 void netif_device_attach(struct net_device *dev)
3224 {
3225 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3226 	    netif_running(dev)) {
3227 		netif_tx_wake_all_queues(dev);
3228 		__netdev_watchdog_up(dev);
3229 	}
3230 }
3231 EXPORT_SYMBOL(netif_device_attach);
3232 
3233 /*
3234  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3235  * to be used as a distribution range.
3236  */
3237 static u16 skb_tx_hash(const struct net_device *dev,
3238 		       const struct net_device *sb_dev,
3239 		       struct sk_buff *skb)
3240 {
3241 	u32 hash;
3242 	u16 qoffset = 0;
3243 	u16 qcount = dev->real_num_tx_queues;
3244 
3245 	if (dev->num_tc) {
3246 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3247 
3248 		qoffset = sb_dev->tc_to_txq[tc].offset;
3249 		qcount = sb_dev->tc_to_txq[tc].count;
3250 		if (unlikely(!qcount)) {
3251 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3252 					     sb_dev->name, qoffset, tc);
3253 			qoffset = 0;
3254 			qcount = dev->real_num_tx_queues;
3255 		}
3256 	}
3257 
3258 	if (skb_rx_queue_recorded(skb)) {
3259 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3260 		hash = skb_get_rx_queue(skb);
3261 		if (hash >= qoffset)
3262 			hash -= qoffset;
3263 		while (unlikely(hash >= qcount))
3264 			hash -= qcount;
3265 		return hash + qoffset;
3266 	}
3267 
3268 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3269 }
3270 
3271 void skb_warn_bad_offload(const struct sk_buff *skb)
3272 {
3273 	static const netdev_features_t null_features;
3274 	struct net_device *dev = skb->dev;
3275 	const char *name = "";
3276 
3277 	if (!net_ratelimit())
3278 		return;
3279 
3280 	if (dev) {
3281 		if (dev->dev.parent)
3282 			name = dev_driver_string(dev->dev.parent);
3283 		else
3284 			name = netdev_name(dev);
3285 	}
3286 	skb_dump(KERN_WARNING, skb, false);
3287 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3288 	     name, dev ? &dev->features : &null_features,
3289 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3290 }
3291 
3292 /*
3293  * Invalidate hardware checksum when packet is to be mangled, and
3294  * complete checksum manually on outgoing path.
3295  */
3296 int skb_checksum_help(struct sk_buff *skb)
3297 {
3298 	__wsum csum;
3299 	int ret = 0, offset;
3300 
3301 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3302 		goto out_set_summed;
3303 
3304 	if (unlikely(skb_is_gso(skb))) {
3305 		skb_warn_bad_offload(skb);
3306 		return -EINVAL;
3307 	}
3308 
3309 	/* Before computing a checksum, we should make sure no frag could
3310 	 * be modified by an external entity : checksum could be wrong.
3311 	 */
3312 	if (skb_has_shared_frag(skb)) {
3313 		ret = __skb_linearize(skb);
3314 		if (ret)
3315 			goto out;
3316 	}
3317 
3318 	offset = skb_checksum_start_offset(skb);
3319 	ret = -EINVAL;
3320 	if (unlikely(offset >= skb_headlen(skb))) {
3321 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3322 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3323 			  offset, skb_headlen(skb));
3324 		goto out;
3325 	}
3326 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3327 
3328 	offset += skb->csum_offset;
3329 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3330 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3331 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3332 			  offset + sizeof(__sum16), skb_headlen(skb));
3333 		goto out;
3334 	}
3335 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3336 	if (ret)
3337 		goto out;
3338 
3339 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3340 out_set_summed:
3341 	skb->ip_summed = CHECKSUM_NONE;
3342 out:
3343 	return ret;
3344 }
3345 EXPORT_SYMBOL(skb_checksum_help);
3346 
3347 int skb_crc32c_csum_help(struct sk_buff *skb)
3348 {
3349 	__le32 crc32c_csum;
3350 	int ret = 0, offset, start;
3351 
3352 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3353 		goto out;
3354 
3355 	if (unlikely(skb_is_gso(skb)))
3356 		goto out;
3357 
3358 	/* Before computing a checksum, we should make sure no frag could
3359 	 * be modified by an external entity : checksum could be wrong.
3360 	 */
3361 	if (unlikely(skb_has_shared_frag(skb))) {
3362 		ret = __skb_linearize(skb);
3363 		if (ret)
3364 			goto out;
3365 	}
3366 	start = skb_checksum_start_offset(skb);
3367 	offset = start + offsetof(struct sctphdr, checksum);
3368 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3369 		ret = -EINVAL;
3370 		goto out;
3371 	}
3372 
3373 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3374 	if (ret)
3375 		goto out;
3376 
3377 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3378 						  skb->len - start, ~(__u32)0,
3379 						  crc32c_csum_stub));
3380 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3381 	skb_reset_csum_not_inet(skb);
3382 out:
3383 	return ret;
3384 }
3385 
3386 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3387 {
3388 	__be16 type = skb->protocol;
3389 
3390 	/* Tunnel gso handlers can set protocol to ethernet. */
3391 	if (type == htons(ETH_P_TEB)) {
3392 		struct ethhdr *eth;
3393 
3394 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3395 			return 0;
3396 
3397 		eth = (struct ethhdr *)skb->data;
3398 		type = eth->h_proto;
3399 	}
3400 
3401 	return vlan_get_protocol_and_depth(skb, type, depth);
3402 }
3403 
3404 
3405 /* Take action when hardware reception checksum errors are detected. */
3406 #ifdef CONFIG_BUG
3407 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3408 {
3409 	netdev_err(dev, "hw csum failure\n");
3410 	skb_dump(KERN_ERR, skb, true);
3411 	dump_stack();
3412 }
3413 
3414 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3415 {
3416 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3417 }
3418 EXPORT_SYMBOL(netdev_rx_csum_fault);
3419 #endif
3420 
3421 /* XXX: check that highmem exists at all on the given machine. */
3422 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3423 {
3424 #ifdef CONFIG_HIGHMEM
3425 	int i;
3426 
3427 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3428 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3429 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3430 
3431 			if (PageHighMem(skb_frag_page(frag)))
3432 				return 1;
3433 		}
3434 	}
3435 #endif
3436 	return 0;
3437 }
3438 
3439 /* If MPLS offload request, verify we are testing hardware MPLS features
3440  * instead of standard features for the netdev.
3441  */
3442 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3443 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3444 					   netdev_features_t features,
3445 					   __be16 type)
3446 {
3447 	if (eth_p_mpls(type))
3448 		features &= skb->dev->mpls_features;
3449 
3450 	return features;
3451 }
3452 #else
3453 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3454 					   netdev_features_t features,
3455 					   __be16 type)
3456 {
3457 	return features;
3458 }
3459 #endif
3460 
3461 static netdev_features_t harmonize_features(struct sk_buff *skb,
3462 	netdev_features_t features)
3463 {
3464 	__be16 type;
3465 
3466 	type = skb_network_protocol(skb, NULL);
3467 	features = net_mpls_features(skb, features, type);
3468 
3469 	if (skb->ip_summed != CHECKSUM_NONE &&
3470 	    !can_checksum_protocol(features, type)) {
3471 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3472 	}
3473 	if (illegal_highdma(skb->dev, skb))
3474 		features &= ~NETIF_F_SG;
3475 
3476 	return features;
3477 }
3478 
3479 netdev_features_t passthru_features_check(struct sk_buff *skb,
3480 					  struct net_device *dev,
3481 					  netdev_features_t features)
3482 {
3483 	return features;
3484 }
3485 EXPORT_SYMBOL(passthru_features_check);
3486 
3487 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3488 					     struct net_device *dev,
3489 					     netdev_features_t features)
3490 {
3491 	return vlan_features_check(skb, features);
3492 }
3493 
3494 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3495 					    struct net_device *dev,
3496 					    netdev_features_t features)
3497 {
3498 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3499 
3500 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3501 		return features & ~NETIF_F_GSO_MASK;
3502 
3503 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3504 		return features & ~NETIF_F_GSO_MASK;
3505 
3506 	if (!skb_shinfo(skb)->gso_type) {
3507 		skb_warn_bad_offload(skb);
3508 		return features & ~NETIF_F_GSO_MASK;
3509 	}
3510 
3511 	/* Support for GSO partial features requires software
3512 	 * intervention before we can actually process the packets
3513 	 * so we need to strip support for any partial features now
3514 	 * and we can pull them back in after we have partially
3515 	 * segmented the frame.
3516 	 */
3517 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3518 		features &= ~dev->gso_partial_features;
3519 
3520 	/* Make sure to clear the IPv4 ID mangling feature if the
3521 	 * IPv4 header has the potential to be fragmented.
3522 	 */
3523 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3524 		struct iphdr *iph = skb->encapsulation ?
3525 				    inner_ip_hdr(skb) : ip_hdr(skb);
3526 
3527 		if (!(iph->frag_off & htons(IP_DF)))
3528 			features &= ~NETIF_F_TSO_MANGLEID;
3529 	}
3530 
3531 	return features;
3532 }
3533 
3534 netdev_features_t netif_skb_features(struct sk_buff *skb)
3535 {
3536 	struct net_device *dev = skb->dev;
3537 	netdev_features_t features = dev->features;
3538 
3539 	if (skb_is_gso(skb))
3540 		features = gso_features_check(skb, dev, features);
3541 
3542 	/* If encapsulation offload request, verify we are testing
3543 	 * hardware encapsulation features instead of standard
3544 	 * features for the netdev
3545 	 */
3546 	if (skb->encapsulation)
3547 		features &= dev->hw_enc_features;
3548 
3549 	if (skb_vlan_tagged(skb))
3550 		features = netdev_intersect_features(features,
3551 						     dev->vlan_features |
3552 						     NETIF_F_HW_VLAN_CTAG_TX |
3553 						     NETIF_F_HW_VLAN_STAG_TX);
3554 
3555 	if (dev->netdev_ops->ndo_features_check)
3556 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3557 								features);
3558 	else
3559 		features &= dflt_features_check(skb, dev, features);
3560 
3561 	return harmonize_features(skb, features);
3562 }
3563 EXPORT_SYMBOL(netif_skb_features);
3564 
3565 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3566 		    struct netdev_queue *txq, bool more)
3567 {
3568 	unsigned int len;
3569 	int rc;
3570 
3571 	if (dev_nit_active(dev))
3572 		dev_queue_xmit_nit(skb, dev);
3573 
3574 	len = skb->len;
3575 	trace_net_dev_start_xmit(skb, dev);
3576 	rc = netdev_start_xmit(skb, dev, txq, more);
3577 	trace_net_dev_xmit(skb, rc, dev, len);
3578 
3579 	return rc;
3580 }
3581 
3582 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3583 				    struct netdev_queue *txq, int *ret)
3584 {
3585 	struct sk_buff *skb = first;
3586 	int rc = NETDEV_TX_OK;
3587 
3588 	while (skb) {
3589 		struct sk_buff *next = skb->next;
3590 
3591 		skb_mark_not_on_list(skb);
3592 		rc = xmit_one(skb, dev, txq, next != NULL);
3593 		if (unlikely(!dev_xmit_complete(rc))) {
3594 			skb->next = next;
3595 			goto out;
3596 		}
3597 
3598 		skb = next;
3599 		if (netif_tx_queue_stopped(txq) && skb) {
3600 			rc = NETDEV_TX_BUSY;
3601 			break;
3602 		}
3603 	}
3604 
3605 out:
3606 	*ret = rc;
3607 	return skb;
3608 }
3609 
3610 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3611 					  netdev_features_t features)
3612 {
3613 	if (skb_vlan_tag_present(skb) &&
3614 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3615 		skb = __vlan_hwaccel_push_inside(skb);
3616 	return skb;
3617 }
3618 
3619 int skb_csum_hwoffload_help(struct sk_buff *skb,
3620 			    const netdev_features_t features)
3621 {
3622 	if (unlikely(skb_csum_is_sctp(skb)))
3623 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3624 			skb_crc32c_csum_help(skb);
3625 
3626 	if (features & NETIF_F_HW_CSUM)
3627 		return 0;
3628 
3629 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3630 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3631 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr))
3632 			goto sw_checksum;
3633 		switch (skb->csum_offset) {
3634 		case offsetof(struct tcphdr, check):
3635 		case offsetof(struct udphdr, check):
3636 			return 0;
3637 		}
3638 	}
3639 
3640 sw_checksum:
3641 	return skb_checksum_help(skb);
3642 }
3643 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3644 
3645 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3646 {
3647 	netdev_features_t features;
3648 
3649 	features = netif_skb_features(skb);
3650 	skb = validate_xmit_vlan(skb, features);
3651 	if (unlikely(!skb))
3652 		goto out_null;
3653 
3654 	skb = sk_validate_xmit_skb(skb, dev);
3655 	if (unlikely(!skb))
3656 		goto out_null;
3657 
3658 	if (netif_needs_gso(skb, features)) {
3659 		struct sk_buff *segs;
3660 
3661 		segs = skb_gso_segment(skb, features);
3662 		if (IS_ERR(segs)) {
3663 			goto out_kfree_skb;
3664 		} else if (segs) {
3665 			consume_skb(skb);
3666 			skb = segs;
3667 		}
3668 	} else {
3669 		if (skb_needs_linearize(skb, features) &&
3670 		    __skb_linearize(skb))
3671 			goto out_kfree_skb;
3672 
3673 		/* If packet is not checksummed and device does not
3674 		 * support checksumming for this protocol, complete
3675 		 * checksumming here.
3676 		 */
3677 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3678 			if (skb->encapsulation)
3679 				skb_set_inner_transport_header(skb,
3680 							       skb_checksum_start_offset(skb));
3681 			else
3682 				skb_set_transport_header(skb,
3683 							 skb_checksum_start_offset(skb));
3684 			if (skb_csum_hwoffload_help(skb, features))
3685 				goto out_kfree_skb;
3686 		}
3687 	}
3688 
3689 	skb = validate_xmit_xfrm(skb, features, again);
3690 
3691 	return skb;
3692 
3693 out_kfree_skb:
3694 	kfree_skb(skb);
3695 out_null:
3696 	dev_core_stats_tx_dropped_inc(dev);
3697 	return NULL;
3698 }
3699 
3700 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3701 {
3702 	struct sk_buff *next, *head = NULL, *tail;
3703 
3704 	for (; skb != NULL; skb = next) {
3705 		next = skb->next;
3706 		skb_mark_not_on_list(skb);
3707 
3708 		/* in case skb wont be segmented, point to itself */
3709 		skb->prev = skb;
3710 
3711 		skb = validate_xmit_skb(skb, dev, again);
3712 		if (!skb)
3713 			continue;
3714 
3715 		if (!head)
3716 			head = skb;
3717 		else
3718 			tail->next = skb;
3719 		/* If skb was segmented, skb->prev points to
3720 		 * the last segment. If not, it still contains skb.
3721 		 */
3722 		tail = skb->prev;
3723 	}
3724 	return head;
3725 }
3726 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3727 
3728 static void qdisc_pkt_len_init(struct sk_buff *skb)
3729 {
3730 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3731 
3732 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3733 
3734 	/* To get more precise estimation of bytes sent on wire,
3735 	 * we add to pkt_len the headers size of all segments
3736 	 */
3737 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3738 		u16 gso_segs = shinfo->gso_segs;
3739 		unsigned int hdr_len;
3740 
3741 		/* mac layer + network layer */
3742 		hdr_len = skb_transport_offset(skb);
3743 
3744 		/* + transport layer */
3745 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3746 			const struct tcphdr *th;
3747 			struct tcphdr _tcphdr;
3748 
3749 			th = skb_header_pointer(skb, hdr_len,
3750 						sizeof(_tcphdr), &_tcphdr);
3751 			if (likely(th))
3752 				hdr_len += __tcp_hdrlen(th);
3753 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3754 			struct udphdr _udphdr;
3755 
3756 			if (skb_header_pointer(skb, hdr_len,
3757 					       sizeof(_udphdr), &_udphdr))
3758 				hdr_len += sizeof(struct udphdr);
3759 		}
3760 
3761 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3762 			int payload = skb->len - hdr_len;
3763 
3764 			/* Malicious packet. */
3765 			if (payload <= 0)
3766 				return;
3767 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3768 		}
3769 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3770 	}
3771 }
3772 
3773 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3774 			     struct sk_buff **to_free,
3775 			     struct netdev_queue *txq)
3776 {
3777 	int rc;
3778 
3779 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3780 	if (rc == NET_XMIT_SUCCESS)
3781 		trace_qdisc_enqueue(q, txq, skb);
3782 	return rc;
3783 }
3784 
3785 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3786 				 struct net_device *dev,
3787 				 struct netdev_queue *txq)
3788 {
3789 	spinlock_t *root_lock = qdisc_lock(q);
3790 	struct sk_buff *to_free = NULL;
3791 	bool contended;
3792 	int rc;
3793 
3794 	qdisc_calculate_pkt_len(skb, q);
3795 
3796 	if (q->flags & TCQ_F_NOLOCK) {
3797 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3798 		    qdisc_run_begin(q)) {
3799 			/* Retest nolock_qdisc_is_empty() within the protection
3800 			 * of q->seqlock to protect from racing with requeuing.
3801 			 */
3802 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3803 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3804 				__qdisc_run(q);
3805 				qdisc_run_end(q);
3806 
3807 				goto no_lock_out;
3808 			}
3809 
3810 			qdisc_bstats_cpu_update(q, skb);
3811 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3812 			    !nolock_qdisc_is_empty(q))
3813 				__qdisc_run(q);
3814 
3815 			qdisc_run_end(q);
3816 			return NET_XMIT_SUCCESS;
3817 		}
3818 
3819 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3820 		qdisc_run(q);
3821 
3822 no_lock_out:
3823 		if (unlikely(to_free))
3824 			kfree_skb_list_reason(to_free,
3825 					      SKB_DROP_REASON_QDISC_DROP);
3826 		return rc;
3827 	}
3828 
3829 	/*
3830 	 * Heuristic to force contended enqueues to serialize on a
3831 	 * separate lock before trying to get qdisc main lock.
3832 	 * This permits qdisc->running owner to get the lock more
3833 	 * often and dequeue packets faster.
3834 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3835 	 * and then other tasks will only enqueue packets. The packets will be
3836 	 * sent after the qdisc owner is scheduled again. To prevent this
3837 	 * scenario the task always serialize on the lock.
3838 	 */
3839 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3840 	if (unlikely(contended))
3841 		spin_lock(&q->busylock);
3842 
3843 	spin_lock(root_lock);
3844 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3845 		__qdisc_drop(skb, &to_free);
3846 		rc = NET_XMIT_DROP;
3847 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3848 		   qdisc_run_begin(q)) {
3849 		/*
3850 		 * This is a work-conserving queue; there are no old skbs
3851 		 * waiting to be sent out; and the qdisc is not running -
3852 		 * xmit the skb directly.
3853 		 */
3854 
3855 		qdisc_bstats_update(q, skb);
3856 
3857 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3858 			if (unlikely(contended)) {
3859 				spin_unlock(&q->busylock);
3860 				contended = false;
3861 			}
3862 			__qdisc_run(q);
3863 		}
3864 
3865 		qdisc_run_end(q);
3866 		rc = NET_XMIT_SUCCESS;
3867 	} else {
3868 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3869 		if (qdisc_run_begin(q)) {
3870 			if (unlikely(contended)) {
3871 				spin_unlock(&q->busylock);
3872 				contended = false;
3873 			}
3874 			__qdisc_run(q);
3875 			qdisc_run_end(q);
3876 		}
3877 	}
3878 	spin_unlock(root_lock);
3879 	if (unlikely(to_free))
3880 		kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3881 	if (unlikely(contended))
3882 		spin_unlock(&q->busylock);
3883 	return rc;
3884 }
3885 
3886 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3887 static void skb_update_prio(struct sk_buff *skb)
3888 {
3889 	const struct netprio_map *map;
3890 	const struct sock *sk;
3891 	unsigned int prioidx;
3892 
3893 	if (skb->priority)
3894 		return;
3895 	map = rcu_dereference_bh(skb->dev->priomap);
3896 	if (!map)
3897 		return;
3898 	sk = skb_to_full_sk(skb);
3899 	if (!sk)
3900 		return;
3901 
3902 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3903 
3904 	if (prioidx < map->priomap_len)
3905 		skb->priority = map->priomap[prioidx];
3906 }
3907 #else
3908 #define skb_update_prio(skb)
3909 #endif
3910 
3911 /**
3912  *	dev_loopback_xmit - loop back @skb
3913  *	@net: network namespace this loopback is happening in
3914  *	@sk:  sk needed to be a netfilter okfn
3915  *	@skb: buffer to transmit
3916  */
3917 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3918 {
3919 	skb_reset_mac_header(skb);
3920 	__skb_pull(skb, skb_network_offset(skb));
3921 	skb->pkt_type = PACKET_LOOPBACK;
3922 	if (skb->ip_summed == CHECKSUM_NONE)
3923 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3924 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3925 	skb_dst_force(skb);
3926 	netif_rx(skb);
3927 	return 0;
3928 }
3929 EXPORT_SYMBOL(dev_loopback_xmit);
3930 
3931 #ifdef CONFIG_NET_EGRESS
3932 static struct netdev_queue *
3933 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3934 {
3935 	int qm = skb_get_queue_mapping(skb);
3936 
3937 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3938 }
3939 
3940 static bool netdev_xmit_txqueue_skipped(void)
3941 {
3942 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3943 }
3944 
3945 void netdev_xmit_skip_txqueue(bool skip)
3946 {
3947 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3948 }
3949 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3950 #endif /* CONFIG_NET_EGRESS */
3951 
3952 #ifdef CONFIG_NET_XGRESS
3953 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb)
3954 {
3955 	int ret = TC_ACT_UNSPEC;
3956 #ifdef CONFIG_NET_CLS_ACT
3957 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3958 	struct tcf_result res;
3959 
3960 	if (!miniq)
3961 		return ret;
3962 
3963 	tc_skb_cb(skb)->mru = 0;
3964 	tc_skb_cb(skb)->post_ct = false;
3965 
3966 	mini_qdisc_bstats_cpu_update(miniq, skb);
3967 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3968 	/* Only tcf related quirks below. */
3969 	switch (ret) {
3970 	case TC_ACT_SHOT:
3971 		mini_qdisc_qstats_cpu_drop(miniq);
3972 		break;
3973 	case TC_ACT_OK:
3974 	case TC_ACT_RECLASSIFY:
3975 		skb->tc_index = TC_H_MIN(res.classid);
3976 		break;
3977 	}
3978 #endif /* CONFIG_NET_CLS_ACT */
3979 	return ret;
3980 }
3981 
3982 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3983 
3984 void tcx_inc(void)
3985 {
3986 	static_branch_inc(&tcx_needed_key);
3987 }
3988 
3989 void tcx_dec(void)
3990 {
3991 	static_branch_dec(&tcx_needed_key);
3992 }
3993 
3994 static __always_inline enum tcx_action_base
3995 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3996 	const bool needs_mac)
3997 {
3998 	const struct bpf_mprog_fp *fp;
3999 	const struct bpf_prog *prog;
4000 	int ret = TCX_NEXT;
4001 
4002 	if (needs_mac)
4003 		__skb_push(skb, skb->mac_len);
4004 	bpf_mprog_foreach_prog(entry, fp, prog) {
4005 		bpf_compute_data_pointers(skb);
4006 		ret = bpf_prog_run(prog, skb);
4007 		if (ret != TCX_NEXT)
4008 			break;
4009 	}
4010 	if (needs_mac)
4011 		__skb_pull(skb, skb->mac_len);
4012 	return tcx_action_code(skb, ret);
4013 }
4014 
4015 static __always_inline struct sk_buff *
4016 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4017 		   struct net_device *orig_dev, bool *another)
4018 {
4019 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4020 	int sch_ret;
4021 
4022 	if (!entry)
4023 		return skb;
4024 	if (*pt_prev) {
4025 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4026 		*pt_prev = NULL;
4027 	}
4028 
4029 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4030 	tcx_set_ingress(skb, true);
4031 
4032 	if (static_branch_unlikely(&tcx_needed_key)) {
4033 		sch_ret = tcx_run(entry, skb, true);
4034 		if (sch_ret != TC_ACT_UNSPEC)
4035 			goto ingress_verdict;
4036 	}
4037 	sch_ret = tc_run(tcx_entry(entry), skb);
4038 ingress_verdict:
4039 	switch (sch_ret) {
4040 	case TC_ACT_REDIRECT:
4041 		/* skb_mac_header check was done by BPF, so we can safely
4042 		 * push the L2 header back before redirecting to another
4043 		 * netdev.
4044 		 */
4045 		__skb_push(skb, skb->mac_len);
4046 		if (skb_do_redirect(skb) == -EAGAIN) {
4047 			__skb_pull(skb, skb->mac_len);
4048 			*another = true;
4049 			break;
4050 		}
4051 		*ret = NET_RX_SUCCESS;
4052 		return NULL;
4053 	case TC_ACT_SHOT:
4054 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
4055 		*ret = NET_RX_DROP;
4056 		return NULL;
4057 	/* used by tc_run */
4058 	case TC_ACT_STOLEN:
4059 	case TC_ACT_QUEUED:
4060 	case TC_ACT_TRAP:
4061 		consume_skb(skb);
4062 		fallthrough;
4063 	case TC_ACT_CONSUMED:
4064 		*ret = NET_RX_SUCCESS;
4065 		return NULL;
4066 	}
4067 
4068 	return skb;
4069 }
4070 
4071 static __always_inline struct sk_buff *
4072 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4073 {
4074 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4075 	int sch_ret;
4076 
4077 	if (!entry)
4078 		return skb;
4079 
4080 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4081 	 * already set by the caller.
4082 	 */
4083 	if (static_branch_unlikely(&tcx_needed_key)) {
4084 		sch_ret = tcx_run(entry, skb, false);
4085 		if (sch_ret != TC_ACT_UNSPEC)
4086 			goto egress_verdict;
4087 	}
4088 	sch_ret = tc_run(tcx_entry(entry), skb);
4089 egress_verdict:
4090 	switch (sch_ret) {
4091 	case TC_ACT_REDIRECT:
4092 		/* No need to push/pop skb's mac_header here on egress! */
4093 		skb_do_redirect(skb);
4094 		*ret = NET_XMIT_SUCCESS;
4095 		return NULL;
4096 	case TC_ACT_SHOT:
4097 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
4098 		*ret = NET_XMIT_DROP;
4099 		return NULL;
4100 	/* used by tc_run */
4101 	case TC_ACT_STOLEN:
4102 	case TC_ACT_QUEUED:
4103 	case TC_ACT_TRAP:
4104 		consume_skb(skb);
4105 		fallthrough;
4106 	case TC_ACT_CONSUMED:
4107 		*ret = NET_XMIT_SUCCESS;
4108 		return NULL;
4109 	}
4110 
4111 	return skb;
4112 }
4113 #else
4114 static __always_inline struct sk_buff *
4115 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4116 		   struct net_device *orig_dev, bool *another)
4117 {
4118 	return skb;
4119 }
4120 
4121 static __always_inline struct sk_buff *
4122 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4123 {
4124 	return skb;
4125 }
4126 #endif /* CONFIG_NET_XGRESS */
4127 
4128 #ifdef CONFIG_XPS
4129 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4130 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4131 {
4132 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4133 	struct xps_map *map;
4134 	int queue_index = -1;
4135 
4136 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4137 		return queue_index;
4138 
4139 	tci *= dev_maps->num_tc;
4140 	tci += tc;
4141 
4142 	map = rcu_dereference(dev_maps->attr_map[tci]);
4143 	if (map) {
4144 		if (map->len == 1)
4145 			queue_index = map->queues[0];
4146 		else
4147 			queue_index = map->queues[reciprocal_scale(
4148 						skb_get_hash(skb), map->len)];
4149 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4150 			queue_index = -1;
4151 	}
4152 	return queue_index;
4153 }
4154 #endif
4155 
4156 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4157 			 struct sk_buff *skb)
4158 {
4159 #ifdef CONFIG_XPS
4160 	struct xps_dev_maps *dev_maps;
4161 	struct sock *sk = skb->sk;
4162 	int queue_index = -1;
4163 
4164 	if (!static_key_false(&xps_needed))
4165 		return -1;
4166 
4167 	rcu_read_lock();
4168 	if (!static_key_false(&xps_rxqs_needed))
4169 		goto get_cpus_map;
4170 
4171 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4172 	if (dev_maps) {
4173 		int tci = sk_rx_queue_get(sk);
4174 
4175 		if (tci >= 0)
4176 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4177 							  tci);
4178 	}
4179 
4180 get_cpus_map:
4181 	if (queue_index < 0) {
4182 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4183 		if (dev_maps) {
4184 			unsigned int tci = skb->sender_cpu - 1;
4185 
4186 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4187 							  tci);
4188 		}
4189 	}
4190 	rcu_read_unlock();
4191 
4192 	return queue_index;
4193 #else
4194 	return -1;
4195 #endif
4196 }
4197 
4198 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4199 		     struct net_device *sb_dev)
4200 {
4201 	return 0;
4202 }
4203 EXPORT_SYMBOL(dev_pick_tx_zero);
4204 
4205 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4206 		       struct net_device *sb_dev)
4207 {
4208 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4209 }
4210 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4211 
4212 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4213 		     struct net_device *sb_dev)
4214 {
4215 	struct sock *sk = skb->sk;
4216 	int queue_index = sk_tx_queue_get(sk);
4217 
4218 	sb_dev = sb_dev ? : dev;
4219 
4220 	if (queue_index < 0 || skb->ooo_okay ||
4221 	    queue_index >= dev->real_num_tx_queues) {
4222 		int new_index = get_xps_queue(dev, sb_dev, skb);
4223 
4224 		if (new_index < 0)
4225 			new_index = skb_tx_hash(dev, sb_dev, skb);
4226 
4227 		if (queue_index != new_index && sk &&
4228 		    sk_fullsock(sk) &&
4229 		    rcu_access_pointer(sk->sk_dst_cache))
4230 			sk_tx_queue_set(sk, new_index);
4231 
4232 		queue_index = new_index;
4233 	}
4234 
4235 	return queue_index;
4236 }
4237 EXPORT_SYMBOL(netdev_pick_tx);
4238 
4239 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4240 					 struct sk_buff *skb,
4241 					 struct net_device *sb_dev)
4242 {
4243 	int queue_index = 0;
4244 
4245 #ifdef CONFIG_XPS
4246 	u32 sender_cpu = skb->sender_cpu - 1;
4247 
4248 	if (sender_cpu >= (u32)NR_CPUS)
4249 		skb->sender_cpu = raw_smp_processor_id() + 1;
4250 #endif
4251 
4252 	if (dev->real_num_tx_queues != 1) {
4253 		const struct net_device_ops *ops = dev->netdev_ops;
4254 
4255 		if (ops->ndo_select_queue)
4256 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4257 		else
4258 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4259 
4260 		queue_index = netdev_cap_txqueue(dev, queue_index);
4261 	}
4262 
4263 	skb_set_queue_mapping(skb, queue_index);
4264 	return netdev_get_tx_queue(dev, queue_index);
4265 }
4266 
4267 /**
4268  * __dev_queue_xmit() - transmit a buffer
4269  * @skb:	buffer to transmit
4270  * @sb_dev:	suboordinate device used for L2 forwarding offload
4271  *
4272  * Queue a buffer for transmission to a network device. The caller must
4273  * have set the device and priority and built the buffer before calling
4274  * this function. The function can be called from an interrupt.
4275  *
4276  * When calling this method, interrupts MUST be enabled. This is because
4277  * the BH enable code must have IRQs enabled so that it will not deadlock.
4278  *
4279  * Regardless of the return value, the skb is consumed, so it is currently
4280  * difficult to retry a send to this method. (You can bump the ref count
4281  * before sending to hold a reference for retry if you are careful.)
4282  *
4283  * Return:
4284  * * 0				- buffer successfully transmitted
4285  * * positive qdisc return code	- NET_XMIT_DROP etc.
4286  * * negative errno		- other errors
4287  */
4288 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4289 {
4290 	struct net_device *dev = skb->dev;
4291 	struct netdev_queue *txq = NULL;
4292 	struct Qdisc *q;
4293 	int rc = -ENOMEM;
4294 	bool again = false;
4295 
4296 	skb_reset_mac_header(skb);
4297 	skb_assert_len(skb);
4298 
4299 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4300 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4301 
4302 	/* Disable soft irqs for various locks below. Also
4303 	 * stops preemption for RCU.
4304 	 */
4305 	rcu_read_lock_bh();
4306 
4307 	skb_update_prio(skb);
4308 
4309 	qdisc_pkt_len_init(skb);
4310 	tcx_set_ingress(skb, false);
4311 #ifdef CONFIG_NET_EGRESS
4312 	if (static_branch_unlikely(&egress_needed_key)) {
4313 		if (nf_hook_egress_active()) {
4314 			skb = nf_hook_egress(skb, &rc, dev);
4315 			if (!skb)
4316 				goto out;
4317 		}
4318 
4319 		netdev_xmit_skip_txqueue(false);
4320 
4321 		nf_skip_egress(skb, true);
4322 		skb = sch_handle_egress(skb, &rc, dev);
4323 		if (!skb)
4324 			goto out;
4325 		nf_skip_egress(skb, false);
4326 
4327 		if (netdev_xmit_txqueue_skipped())
4328 			txq = netdev_tx_queue_mapping(dev, skb);
4329 	}
4330 #endif
4331 	/* If device/qdisc don't need skb->dst, release it right now while
4332 	 * its hot in this cpu cache.
4333 	 */
4334 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4335 		skb_dst_drop(skb);
4336 	else
4337 		skb_dst_force(skb);
4338 
4339 	if (!txq)
4340 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4341 
4342 	q = rcu_dereference_bh(txq->qdisc);
4343 
4344 	trace_net_dev_queue(skb);
4345 	if (q->enqueue) {
4346 		rc = __dev_xmit_skb(skb, q, dev, txq);
4347 		goto out;
4348 	}
4349 
4350 	/* The device has no queue. Common case for software devices:
4351 	 * loopback, all the sorts of tunnels...
4352 
4353 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4354 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4355 	 * counters.)
4356 	 * However, it is possible, that they rely on protection
4357 	 * made by us here.
4358 
4359 	 * Check this and shot the lock. It is not prone from deadlocks.
4360 	 *Either shot noqueue qdisc, it is even simpler 8)
4361 	 */
4362 	if (dev->flags & IFF_UP) {
4363 		int cpu = smp_processor_id(); /* ok because BHs are off */
4364 
4365 		/* Other cpus might concurrently change txq->xmit_lock_owner
4366 		 * to -1 or to their cpu id, but not to our id.
4367 		 */
4368 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4369 			if (dev_xmit_recursion())
4370 				goto recursion_alert;
4371 
4372 			skb = validate_xmit_skb(skb, dev, &again);
4373 			if (!skb)
4374 				goto out;
4375 
4376 			HARD_TX_LOCK(dev, txq, cpu);
4377 
4378 			if (!netif_xmit_stopped(txq)) {
4379 				dev_xmit_recursion_inc();
4380 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4381 				dev_xmit_recursion_dec();
4382 				if (dev_xmit_complete(rc)) {
4383 					HARD_TX_UNLOCK(dev, txq);
4384 					goto out;
4385 				}
4386 			}
4387 			HARD_TX_UNLOCK(dev, txq);
4388 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4389 					     dev->name);
4390 		} else {
4391 			/* Recursion is detected! It is possible,
4392 			 * unfortunately
4393 			 */
4394 recursion_alert:
4395 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4396 					     dev->name);
4397 		}
4398 	}
4399 
4400 	rc = -ENETDOWN;
4401 	rcu_read_unlock_bh();
4402 
4403 	dev_core_stats_tx_dropped_inc(dev);
4404 	kfree_skb_list(skb);
4405 	return rc;
4406 out:
4407 	rcu_read_unlock_bh();
4408 	return rc;
4409 }
4410 EXPORT_SYMBOL(__dev_queue_xmit);
4411 
4412 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4413 {
4414 	struct net_device *dev = skb->dev;
4415 	struct sk_buff *orig_skb = skb;
4416 	struct netdev_queue *txq;
4417 	int ret = NETDEV_TX_BUSY;
4418 	bool again = false;
4419 
4420 	if (unlikely(!netif_running(dev) ||
4421 		     !netif_carrier_ok(dev)))
4422 		goto drop;
4423 
4424 	skb = validate_xmit_skb_list(skb, dev, &again);
4425 	if (skb != orig_skb)
4426 		goto drop;
4427 
4428 	skb_set_queue_mapping(skb, queue_id);
4429 	txq = skb_get_tx_queue(dev, skb);
4430 
4431 	local_bh_disable();
4432 
4433 	dev_xmit_recursion_inc();
4434 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4435 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4436 		ret = netdev_start_xmit(skb, dev, txq, false);
4437 	HARD_TX_UNLOCK(dev, txq);
4438 	dev_xmit_recursion_dec();
4439 
4440 	local_bh_enable();
4441 	return ret;
4442 drop:
4443 	dev_core_stats_tx_dropped_inc(dev);
4444 	kfree_skb_list(skb);
4445 	return NET_XMIT_DROP;
4446 }
4447 EXPORT_SYMBOL(__dev_direct_xmit);
4448 
4449 /*************************************************************************
4450  *			Receiver routines
4451  *************************************************************************/
4452 
4453 int netdev_max_backlog __read_mostly = 1000;
4454 EXPORT_SYMBOL(netdev_max_backlog);
4455 
4456 int netdev_tstamp_prequeue __read_mostly = 1;
4457 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4458 int netdev_budget __read_mostly = 300;
4459 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4460 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4461 int weight_p __read_mostly = 64;           /* old backlog weight */
4462 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4463 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4464 int dev_rx_weight __read_mostly = 64;
4465 int dev_tx_weight __read_mostly = 64;
4466 
4467 /* Called with irq disabled */
4468 static inline void ____napi_schedule(struct softnet_data *sd,
4469 				     struct napi_struct *napi)
4470 {
4471 	struct task_struct *thread;
4472 
4473 	lockdep_assert_irqs_disabled();
4474 
4475 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4476 		/* Paired with smp_mb__before_atomic() in
4477 		 * napi_enable()/dev_set_threaded().
4478 		 * Use READ_ONCE() to guarantee a complete
4479 		 * read on napi->thread. Only call
4480 		 * wake_up_process() when it's not NULL.
4481 		 */
4482 		thread = READ_ONCE(napi->thread);
4483 		if (thread) {
4484 			/* Avoid doing set_bit() if the thread is in
4485 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4486 			 * makes sure to proceed with napi polling
4487 			 * if the thread is explicitly woken from here.
4488 			 */
4489 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4490 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4491 			wake_up_process(thread);
4492 			return;
4493 		}
4494 	}
4495 
4496 	list_add_tail(&napi->poll_list, &sd->poll_list);
4497 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4498 	/* If not called from net_rx_action()
4499 	 * we have to raise NET_RX_SOFTIRQ.
4500 	 */
4501 	if (!sd->in_net_rx_action)
4502 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4503 }
4504 
4505 #ifdef CONFIG_RPS
4506 
4507 /* One global table that all flow-based protocols share. */
4508 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4509 EXPORT_SYMBOL(rps_sock_flow_table);
4510 u32 rps_cpu_mask __read_mostly;
4511 EXPORT_SYMBOL(rps_cpu_mask);
4512 
4513 struct static_key_false rps_needed __read_mostly;
4514 EXPORT_SYMBOL(rps_needed);
4515 struct static_key_false rfs_needed __read_mostly;
4516 EXPORT_SYMBOL(rfs_needed);
4517 
4518 static struct rps_dev_flow *
4519 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4520 	    struct rps_dev_flow *rflow, u16 next_cpu)
4521 {
4522 	if (next_cpu < nr_cpu_ids) {
4523 #ifdef CONFIG_RFS_ACCEL
4524 		struct netdev_rx_queue *rxqueue;
4525 		struct rps_dev_flow_table *flow_table;
4526 		struct rps_dev_flow *old_rflow;
4527 		u32 flow_id;
4528 		u16 rxq_index;
4529 		int rc;
4530 
4531 		/* Should we steer this flow to a different hardware queue? */
4532 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4533 		    !(dev->features & NETIF_F_NTUPLE))
4534 			goto out;
4535 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4536 		if (rxq_index == skb_get_rx_queue(skb))
4537 			goto out;
4538 
4539 		rxqueue = dev->_rx + rxq_index;
4540 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4541 		if (!flow_table)
4542 			goto out;
4543 		flow_id = skb_get_hash(skb) & flow_table->mask;
4544 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4545 							rxq_index, flow_id);
4546 		if (rc < 0)
4547 			goto out;
4548 		old_rflow = rflow;
4549 		rflow = &flow_table->flows[flow_id];
4550 		rflow->filter = rc;
4551 		if (old_rflow->filter == rflow->filter)
4552 			old_rflow->filter = RPS_NO_FILTER;
4553 	out:
4554 #endif
4555 		rflow->last_qtail =
4556 			per_cpu(softnet_data, next_cpu).input_queue_head;
4557 	}
4558 
4559 	rflow->cpu = next_cpu;
4560 	return rflow;
4561 }
4562 
4563 /*
4564  * get_rps_cpu is called from netif_receive_skb and returns the target
4565  * CPU from the RPS map of the receiving queue for a given skb.
4566  * rcu_read_lock must be held on entry.
4567  */
4568 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4569 		       struct rps_dev_flow **rflowp)
4570 {
4571 	const struct rps_sock_flow_table *sock_flow_table;
4572 	struct netdev_rx_queue *rxqueue = dev->_rx;
4573 	struct rps_dev_flow_table *flow_table;
4574 	struct rps_map *map;
4575 	int cpu = -1;
4576 	u32 tcpu;
4577 	u32 hash;
4578 
4579 	if (skb_rx_queue_recorded(skb)) {
4580 		u16 index = skb_get_rx_queue(skb);
4581 
4582 		if (unlikely(index >= dev->real_num_rx_queues)) {
4583 			WARN_ONCE(dev->real_num_rx_queues > 1,
4584 				  "%s received packet on queue %u, but number "
4585 				  "of RX queues is %u\n",
4586 				  dev->name, index, dev->real_num_rx_queues);
4587 			goto done;
4588 		}
4589 		rxqueue += index;
4590 	}
4591 
4592 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4593 
4594 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4595 	map = rcu_dereference(rxqueue->rps_map);
4596 	if (!flow_table && !map)
4597 		goto done;
4598 
4599 	skb_reset_network_header(skb);
4600 	hash = skb_get_hash(skb);
4601 	if (!hash)
4602 		goto done;
4603 
4604 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4605 	if (flow_table && sock_flow_table) {
4606 		struct rps_dev_flow *rflow;
4607 		u32 next_cpu;
4608 		u32 ident;
4609 
4610 		/* First check into global flow table if there is a match.
4611 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4612 		 */
4613 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4614 		if ((ident ^ hash) & ~rps_cpu_mask)
4615 			goto try_rps;
4616 
4617 		next_cpu = ident & rps_cpu_mask;
4618 
4619 		/* OK, now we know there is a match,
4620 		 * we can look at the local (per receive queue) flow table
4621 		 */
4622 		rflow = &flow_table->flows[hash & flow_table->mask];
4623 		tcpu = rflow->cpu;
4624 
4625 		/*
4626 		 * If the desired CPU (where last recvmsg was done) is
4627 		 * different from current CPU (one in the rx-queue flow
4628 		 * table entry), switch if one of the following holds:
4629 		 *   - Current CPU is unset (>= nr_cpu_ids).
4630 		 *   - Current CPU is offline.
4631 		 *   - The current CPU's queue tail has advanced beyond the
4632 		 *     last packet that was enqueued using this table entry.
4633 		 *     This guarantees that all previous packets for the flow
4634 		 *     have been dequeued, thus preserving in order delivery.
4635 		 */
4636 		if (unlikely(tcpu != next_cpu) &&
4637 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4638 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4639 		      rflow->last_qtail)) >= 0)) {
4640 			tcpu = next_cpu;
4641 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4642 		}
4643 
4644 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4645 			*rflowp = rflow;
4646 			cpu = tcpu;
4647 			goto done;
4648 		}
4649 	}
4650 
4651 try_rps:
4652 
4653 	if (map) {
4654 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4655 		if (cpu_online(tcpu)) {
4656 			cpu = tcpu;
4657 			goto done;
4658 		}
4659 	}
4660 
4661 done:
4662 	return cpu;
4663 }
4664 
4665 #ifdef CONFIG_RFS_ACCEL
4666 
4667 /**
4668  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4669  * @dev: Device on which the filter was set
4670  * @rxq_index: RX queue index
4671  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4672  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4673  *
4674  * Drivers that implement ndo_rx_flow_steer() should periodically call
4675  * this function for each installed filter and remove the filters for
4676  * which it returns %true.
4677  */
4678 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4679 			 u32 flow_id, u16 filter_id)
4680 {
4681 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4682 	struct rps_dev_flow_table *flow_table;
4683 	struct rps_dev_flow *rflow;
4684 	bool expire = true;
4685 	unsigned int cpu;
4686 
4687 	rcu_read_lock();
4688 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4689 	if (flow_table && flow_id <= flow_table->mask) {
4690 		rflow = &flow_table->flows[flow_id];
4691 		cpu = READ_ONCE(rflow->cpu);
4692 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4693 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4694 			   rflow->last_qtail) <
4695 		     (int)(10 * flow_table->mask)))
4696 			expire = false;
4697 	}
4698 	rcu_read_unlock();
4699 	return expire;
4700 }
4701 EXPORT_SYMBOL(rps_may_expire_flow);
4702 
4703 #endif /* CONFIG_RFS_ACCEL */
4704 
4705 /* Called from hardirq (IPI) context */
4706 static void rps_trigger_softirq(void *data)
4707 {
4708 	struct softnet_data *sd = data;
4709 
4710 	____napi_schedule(sd, &sd->backlog);
4711 	sd->received_rps++;
4712 }
4713 
4714 #endif /* CONFIG_RPS */
4715 
4716 /* Called from hardirq (IPI) context */
4717 static void trigger_rx_softirq(void *data)
4718 {
4719 	struct softnet_data *sd = data;
4720 
4721 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4722 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4723 }
4724 
4725 /*
4726  * After we queued a packet into sd->input_pkt_queue,
4727  * we need to make sure this queue is serviced soon.
4728  *
4729  * - If this is another cpu queue, link it to our rps_ipi_list,
4730  *   and make sure we will process rps_ipi_list from net_rx_action().
4731  *
4732  * - If this is our own queue, NAPI schedule our backlog.
4733  *   Note that this also raises NET_RX_SOFTIRQ.
4734  */
4735 static void napi_schedule_rps(struct softnet_data *sd)
4736 {
4737 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4738 
4739 #ifdef CONFIG_RPS
4740 	if (sd != mysd) {
4741 		sd->rps_ipi_next = mysd->rps_ipi_list;
4742 		mysd->rps_ipi_list = sd;
4743 
4744 		/* If not called from net_rx_action() or napi_threaded_poll()
4745 		 * we have to raise NET_RX_SOFTIRQ.
4746 		 */
4747 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4748 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4749 		return;
4750 	}
4751 #endif /* CONFIG_RPS */
4752 	__napi_schedule_irqoff(&mysd->backlog);
4753 }
4754 
4755 #ifdef CONFIG_NET_FLOW_LIMIT
4756 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4757 #endif
4758 
4759 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4760 {
4761 #ifdef CONFIG_NET_FLOW_LIMIT
4762 	struct sd_flow_limit *fl;
4763 	struct softnet_data *sd;
4764 	unsigned int old_flow, new_flow;
4765 
4766 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4767 		return false;
4768 
4769 	sd = this_cpu_ptr(&softnet_data);
4770 
4771 	rcu_read_lock();
4772 	fl = rcu_dereference(sd->flow_limit);
4773 	if (fl) {
4774 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4775 		old_flow = fl->history[fl->history_head];
4776 		fl->history[fl->history_head] = new_flow;
4777 
4778 		fl->history_head++;
4779 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4780 
4781 		if (likely(fl->buckets[old_flow]))
4782 			fl->buckets[old_flow]--;
4783 
4784 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4785 			fl->count++;
4786 			rcu_read_unlock();
4787 			return true;
4788 		}
4789 	}
4790 	rcu_read_unlock();
4791 #endif
4792 	return false;
4793 }
4794 
4795 /*
4796  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4797  * queue (may be a remote CPU queue).
4798  */
4799 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4800 			      unsigned int *qtail)
4801 {
4802 	enum skb_drop_reason reason;
4803 	struct softnet_data *sd;
4804 	unsigned long flags;
4805 	unsigned int qlen;
4806 
4807 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4808 	sd = &per_cpu(softnet_data, cpu);
4809 
4810 	rps_lock_irqsave(sd, &flags);
4811 	if (!netif_running(skb->dev))
4812 		goto drop;
4813 	qlen = skb_queue_len(&sd->input_pkt_queue);
4814 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4815 		if (qlen) {
4816 enqueue:
4817 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4818 			input_queue_tail_incr_save(sd, qtail);
4819 			rps_unlock_irq_restore(sd, &flags);
4820 			return NET_RX_SUCCESS;
4821 		}
4822 
4823 		/* Schedule NAPI for backlog device
4824 		 * We can use non atomic operation since we own the queue lock
4825 		 */
4826 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4827 			napi_schedule_rps(sd);
4828 		goto enqueue;
4829 	}
4830 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4831 
4832 drop:
4833 	sd->dropped++;
4834 	rps_unlock_irq_restore(sd, &flags);
4835 
4836 	dev_core_stats_rx_dropped_inc(skb->dev);
4837 	kfree_skb_reason(skb, reason);
4838 	return NET_RX_DROP;
4839 }
4840 
4841 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4842 {
4843 	struct net_device *dev = skb->dev;
4844 	struct netdev_rx_queue *rxqueue;
4845 
4846 	rxqueue = dev->_rx;
4847 
4848 	if (skb_rx_queue_recorded(skb)) {
4849 		u16 index = skb_get_rx_queue(skb);
4850 
4851 		if (unlikely(index >= dev->real_num_rx_queues)) {
4852 			WARN_ONCE(dev->real_num_rx_queues > 1,
4853 				  "%s received packet on queue %u, but number "
4854 				  "of RX queues is %u\n",
4855 				  dev->name, index, dev->real_num_rx_queues);
4856 
4857 			return rxqueue; /* Return first rxqueue */
4858 		}
4859 		rxqueue += index;
4860 	}
4861 	return rxqueue;
4862 }
4863 
4864 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4865 			     struct bpf_prog *xdp_prog)
4866 {
4867 	void *orig_data, *orig_data_end, *hard_start;
4868 	struct netdev_rx_queue *rxqueue;
4869 	bool orig_bcast, orig_host;
4870 	u32 mac_len, frame_sz;
4871 	__be16 orig_eth_type;
4872 	struct ethhdr *eth;
4873 	u32 metalen, act;
4874 	int off;
4875 
4876 	/* The XDP program wants to see the packet starting at the MAC
4877 	 * header.
4878 	 */
4879 	mac_len = skb->data - skb_mac_header(skb);
4880 	hard_start = skb->data - skb_headroom(skb);
4881 
4882 	/* SKB "head" area always have tailroom for skb_shared_info */
4883 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4884 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4885 
4886 	rxqueue = netif_get_rxqueue(skb);
4887 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4888 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4889 			 skb_headlen(skb) + mac_len, true);
4890 
4891 	orig_data_end = xdp->data_end;
4892 	orig_data = xdp->data;
4893 	eth = (struct ethhdr *)xdp->data;
4894 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4895 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4896 	orig_eth_type = eth->h_proto;
4897 
4898 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4899 
4900 	/* check if bpf_xdp_adjust_head was used */
4901 	off = xdp->data - orig_data;
4902 	if (off) {
4903 		if (off > 0)
4904 			__skb_pull(skb, off);
4905 		else if (off < 0)
4906 			__skb_push(skb, -off);
4907 
4908 		skb->mac_header += off;
4909 		skb_reset_network_header(skb);
4910 	}
4911 
4912 	/* check if bpf_xdp_adjust_tail was used */
4913 	off = xdp->data_end - orig_data_end;
4914 	if (off != 0) {
4915 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4916 		skb->len += off; /* positive on grow, negative on shrink */
4917 	}
4918 
4919 	/* check if XDP changed eth hdr such SKB needs update */
4920 	eth = (struct ethhdr *)xdp->data;
4921 	if ((orig_eth_type != eth->h_proto) ||
4922 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4923 						  skb->dev->dev_addr)) ||
4924 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4925 		__skb_push(skb, ETH_HLEN);
4926 		skb->pkt_type = PACKET_HOST;
4927 		skb->protocol = eth_type_trans(skb, skb->dev);
4928 	}
4929 
4930 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4931 	 * before calling us again on redirect path. We do not call do_redirect
4932 	 * as we leave that up to the caller.
4933 	 *
4934 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4935 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4936 	 */
4937 	switch (act) {
4938 	case XDP_REDIRECT:
4939 	case XDP_TX:
4940 		__skb_push(skb, mac_len);
4941 		break;
4942 	case XDP_PASS:
4943 		metalen = xdp->data - xdp->data_meta;
4944 		if (metalen)
4945 			skb_metadata_set(skb, metalen);
4946 		break;
4947 	}
4948 
4949 	return act;
4950 }
4951 
4952 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4953 				     struct xdp_buff *xdp,
4954 				     struct bpf_prog *xdp_prog)
4955 {
4956 	u32 act = XDP_DROP;
4957 
4958 	/* Reinjected packets coming from act_mirred or similar should
4959 	 * not get XDP generic processing.
4960 	 */
4961 	if (skb_is_redirected(skb))
4962 		return XDP_PASS;
4963 
4964 	/* XDP packets must be linear and must have sufficient headroom
4965 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4966 	 * native XDP provides, thus we need to do it here as well.
4967 	 */
4968 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4969 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4970 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4971 		int troom = skb->tail + skb->data_len - skb->end;
4972 
4973 		/* In case we have to go down the path and also linearize,
4974 		 * then lets do the pskb_expand_head() work just once here.
4975 		 */
4976 		if (pskb_expand_head(skb,
4977 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4978 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4979 			goto do_drop;
4980 		if (skb_linearize(skb))
4981 			goto do_drop;
4982 	}
4983 
4984 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4985 	switch (act) {
4986 	case XDP_REDIRECT:
4987 	case XDP_TX:
4988 	case XDP_PASS:
4989 		break;
4990 	default:
4991 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4992 		fallthrough;
4993 	case XDP_ABORTED:
4994 		trace_xdp_exception(skb->dev, xdp_prog, act);
4995 		fallthrough;
4996 	case XDP_DROP:
4997 	do_drop:
4998 		kfree_skb(skb);
4999 		break;
5000 	}
5001 
5002 	return act;
5003 }
5004 
5005 /* When doing generic XDP we have to bypass the qdisc layer and the
5006  * network taps in order to match in-driver-XDP behavior. This also means
5007  * that XDP packets are able to starve other packets going through a qdisc,
5008  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5009  * queues, so they do not have this starvation issue.
5010  */
5011 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5012 {
5013 	struct net_device *dev = skb->dev;
5014 	struct netdev_queue *txq;
5015 	bool free_skb = true;
5016 	int cpu, rc;
5017 
5018 	txq = netdev_core_pick_tx(dev, skb, NULL);
5019 	cpu = smp_processor_id();
5020 	HARD_TX_LOCK(dev, txq, cpu);
5021 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5022 		rc = netdev_start_xmit(skb, dev, txq, 0);
5023 		if (dev_xmit_complete(rc))
5024 			free_skb = false;
5025 	}
5026 	HARD_TX_UNLOCK(dev, txq);
5027 	if (free_skb) {
5028 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5029 		dev_core_stats_tx_dropped_inc(dev);
5030 		kfree_skb(skb);
5031 	}
5032 }
5033 
5034 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5035 
5036 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5037 {
5038 	if (xdp_prog) {
5039 		struct xdp_buff xdp;
5040 		u32 act;
5041 		int err;
5042 
5043 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5044 		if (act != XDP_PASS) {
5045 			switch (act) {
5046 			case XDP_REDIRECT:
5047 				err = xdp_do_generic_redirect(skb->dev, skb,
5048 							      &xdp, xdp_prog);
5049 				if (err)
5050 					goto out_redir;
5051 				break;
5052 			case XDP_TX:
5053 				generic_xdp_tx(skb, xdp_prog);
5054 				break;
5055 			}
5056 			return XDP_DROP;
5057 		}
5058 	}
5059 	return XDP_PASS;
5060 out_redir:
5061 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5062 	return XDP_DROP;
5063 }
5064 EXPORT_SYMBOL_GPL(do_xdp_generic);
5065 
5066 static int netif_rx_internal(struct sk_buff *skb)
5067 {
5068 	int ret;
5069 
5070 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5071 
5072 	trace_netif_rx(skb);
5073 
5074 #ifdef CONFIG_RPS
5075 	if (static_branch_unlikely(&rps_needed)) {
5076 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5077 		int cpu;
5078 
5079 		rcu_read_lock();
5080 
5081 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5082 		if (cpu < 0)
5083 			cpu = smp_processor_id();
5084 
5085 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5086 
5087 		rcu_read_unlock();
5088 	} else
5089 #endif
5090 	{
5091 		unsigned int qtail;
5092 
5093 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5094 	}
5095 	return ret;
5096 }
5097 
5098 /**
5099  *	__netif_rx	-	Slightly optimized version of netif_rx
5100  *	@skb: buffer to post
5101  *
5102  *	This behaves as netif_rx except that it does not disable bottom halves.
5103  *	As a result this function may only be invoked from the interrupt context
5104  *	(either hard or soft interrupt).
5105  */
5106 int __netif_rx(struct sk_buff *skb)
5107 {
5108 	int ret;
5109 
5110 	lockdep_assert_once(hardirq_count() | softirq_count());
5111 
5112 	trace_netif_rx_entry(skb);
5113 	ret = netif_rx_internal(skb);
5114 	trace_netif_rx_exit(ret);
5115 	return ret;
5116 }
5117 EXPORT_SYMBOL(__netif_rx);
5118 
5119 /**
5120  *	netif_rx	-	post buffer to the network code
5121  *	@skb: buffer to post
5122  *
5123  *	This function receives a packet from a device driver and queues it for
5124  *	the upper (protocol) levels to process via the backlog NAPI device. It
5125  *	always succeeds. The buffer may be dropped during processing for
5126  *	congestion control or by the protocol layers.
5127  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5128  *	driver should use NAPI and GRO.
5129  *	This function can used from interrupt and from process context. The
5130  *	caller from process context must not disable interrupts before invoking
5131  *	this function.
5132  *
5133  *	return values:
5134  *	NET_RX_SUCCESS	(no congestion)
5135  *	NET_RX_DROP     (packet was dropped)
5136  *
5137  */
5138 int netif_rx(struct sk_buff *skb)
5139 {
5140 	bool need_bh_off = !(hardirq_count() | softirq_count());
5141 	int ret;
5142 
5143 	if (need_bh_off)
5144 		local_bh_disable();
5145 	trace_netif_rx_entry(skb);
5146 	ret = netif_rx_internal(skb);
5147 	trace_netif_rx_exit(ret);
5148 	if (need_bh_off)
5149 		local_bh_enable();
5150 	return ret;
5151 }
5152 EXPORT_SYMBOL(netif_rx);
5153 
5154 static __latent_entropy void net_tx_action(struct softirq_action *h)
5155 {
5156 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5157 
5158 	if (sd->completion_queue) {
5159 		struct sk_buff *clist;
5160 
5161 		local_irq_disable();
5162 		clist = sd->completion_queue;
5163 		sd->completion_queue = NULL;
5164 		local_irq_enable();
5165 
5166 		while (clist) {
5167 			struct sk_buff *skb = clist;
5168 
5169 			clist = clist->next;
5170 
5171 			WARN_ON(refcount_read(&skb->users));
5172 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5173 				trace_consume_skb(skb, net_tx_action);
5174 			else
5175 				trace_kfree_skb(skb, net_tx_action,
5176 						get_kfree_skb_cb(skb)->reason);
5177 
5178 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5179 				__kfree_skb(skb);
5180 			else
5181 				__napi_kfree_skb(skb,
5182 						 get_kfree_skb_cb(skb)->reason);
5183 		}
5184 	}
5185 
5186 	if (sd->output_queue) {
5187 		struct Qdisc *head;
5188 
5189 		local_irq_disable();
5190 		head = sd->output_queue;
5191 		sd->output_queue = NULL;
5192 		sd->output_queue_tailp = &sd->output_queue;
5193 		local_irq_enable();
5194 
5195 		rcu_read_lock();
5196 
5197 		while (head) {
5198 			struct Qdisc *q = head;
5199 			spinlock_t *root_lock = NULL;
5200 
5201 			head = head->next_sched;
5202 
5203 			/* We need to make sure head->next_sched is read
5204 			 * before clearing __QDISC_STATE_SCHED
5205 			 */
5206 			smp_mb__before_atomic();
5207 
5208 			if (!(q->flags & TCQ_F_NOLOCK)) {
5209 				root_lock = qdisc_lock(q);
5210 				spin_lock(root_lock);
5211 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5212 						     &q->state))) {
5213 				/* There is a synchronize_net() between
5214 				 * STATE_DEACTIVATED flag being set and
5215 				 * qdisc_reset()/some_qdisc_is_busy() in
5216 				 * dev_deactivate(), so we can safely bail out
5217 				 * early here to avoid data race between
5218 				 * qdisc_deactivate() and some_qdisc_is_busy()
5219 				 * for lockless qdisc.
5220 				 */
5221 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5222 				continue;
5223 			}
5224 
5225 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5226 			qdisc_run(q);
5227 			if (root_lock)
5228 				spin_unlock(root_lock);
5229 		}
5230 
5231 		rcu_read_unlock();
5232 	}
5233 
5234 	xfrm_dev_backlog(sd);
5235 }
5236 
5237 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5238 /* This hook is defined here for ATM LANE */
5239 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5240 			     unsigned char *addr) __read_mostly;
5241 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5242 #endif
5243 
5244 /**
5245  *	netdev_is_rx_handler_busy - check if receive handler is registered
5246  *	@dev: device to check
5247  *
5248  *	Check if a receive handler is already registered for a given device.
5249  *	Return true if there one.
5250  *
5251  *	The caller must hold the rtnl_mutex.
5252  */
5253 bool netdev_is_rx_handler_busy(struct net_device *dev)
5254 {
5255 	ASSERT_RTNL();
5256 	return dev && rtnl_dereference(dev->rx_handler);
5257 }
5258 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5259 
5260 /**
5261  *	netdev_rx_handler_register - register receive handler
5262  *	@dev: device to register a handler for
5263  *	@rx_handler: receive handler to register
5264  *	@rx_handler_data: data pointer that is used by rx handler
5265  *
5266  *	Register a receive handler for a device. This handler will then be
5267  *	called from __netif_receive_skb. A negative errno code is returned
5268  *	on a failure.
5269  *
5270  *	The caller must hold the rtnl_mutex.
5271  *
5272  *	For a general description of rx_handler, see enum rx_handler_result.
5273  */
5274 int netdev_rx_handler_register(struct net_device *dev,
5275 			       rx_handler_func_t *rx_handler,
5276 			       void *rx_handler_data)
5277 {
5278 	if (netdev_is_rx_handler_busy(dev))
5279 		return -EBUSY;
5280 
5281 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5282 		return -EINVAL;
5283 
5284 	/* Note: rx_handler_data must be set before rx_handler */
5285 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5286 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5287 
5288 	return 0;
5289 }
5290 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5291 
5292 /**
5293  *	netdev_rx_handler_unregister - unregister receive handler
5294  *	@dev: device to unregister a handler from
5295  *
5296  *	Unregister a receive handler from a device.
5297  *
5298  *	The caller must hold the rtnl_mutex.
5299  */
5300 void netdev_rx_handler_unregister(struct net_device *dev)
5301 {
5302 
5303 	ASSERT_RTNL();
5304 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5305 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5306 	 * section has a guarantee to see a non NULL rx_handler_data
5307 	 * as well.
5308 	 */
5309 	synchronize_net();
5310 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5311 }
5312 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5313 
5314 /*
5315  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5316  * the special handling of PFMEMALLOC skbs.
5317  */
5318 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5319 {
5320 	switch (skb->protocol) {
5321 	case htons(ETH_P_ARP):
5322 	case htons(ETH_P_IP):
5323 	case htons(ETH_P_IPV6):
5324 	case htons(ETH_P_8021Q):
5325 	case htons(ETH_P_8021AD):
5326 		return true;
5327 	default:
5328 		return false;
5329 	}
5330 }
5331 
5332 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5333 			     int *ret, struct net_device *orig_dev)
5334 {
5335 	if (nf_hook_ingress_active(skb)) {
5336 		int ingress_retval;
5337 
5338 		if (*pt_prev) {
5339 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5340 			*pt_prev = NULL;
5341 		}
5342 
5343 		rcu_read_lock();
5344 		ingress_retval = nf_hook_ingress(skb);
5345 		rcu_read_unlock();
5346 		return ingress_retval;
5347 	}
5348 	return 0;
5349 }
5350 
5351 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5352 				    struct packet_type **ppt_prev)
5353 {
5354 	struct packet_type *ptype, *pt_prev;
5355 	rx_handler_func_t *rx_handler;
5356 	struct sk_buff *skb = *pskb;
5357 	struct net_device *orig_dev;
5358 	bool deliver_exact = false;
5359 	int ret = NET_RX_DROP;
5360 	__be16 type;
5361 
5362 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5363 
5364 	trace_netif_receive_skb(skb);
5365 
5366 	orig_dev = skb->dev;
5367 
5368 	skb_reset_network_header(skb);
5369 	if (!skb_transport_header_was_set(skb))
5370 		skb_reset_transport_header(skb);
5371 	skb_reset_mac_len(skb);
5372 
5373 	pt_prev = NULL;
5374 
5375 another_round:
5376 	skb->skb_iif = skb->dev->ifindex;
5377 
5378 	__this_cpu_inc(softnet_data.processed);
5379 
5380 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5381 		int ret2;
5382 
5383 		migrate_disable();
5384 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5385 		migrate_enable();
5386 
5387 		if (ret2 != XDP_PASS) {
5388 			ret = NET_RX_DROP;
5389 			goto out;
5390 		}
5391 	}
5392 
5393 	if (eth_type_vlan(skb->protocol)) {
5394 		skb = skb_vlan_untag(skb);
5395 		if (unlikely(!skb))
5396 			goto out;
5397 	}
5398 
5399 	if (skb_skip_tc_classify(skb))
5400 		goto skip_classify;
5401 
5402 	if (pfmemalloc)
5403 		goto skip_taps;
5404 
5405 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5406 		if (pt_prev)
5407 			ret = deliver_skb(skb, pt_prev, orig_dev);
5408 		pt_prev = ptype;
5409 	}
5410 
5411 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5412 		if (pt_prev)
5413 			ret = deliver_skb(skb, pt_prev, orig_dev);
5414 		pt_prev = ptype;
5415 	}
5416 
5417 skip_taps:
5418 #ifdef CONFIG_NET_INGRESS
5419 	if (static_branch_unlikely(&ingress_needed_key)) {
5420 		bool another = false;
5421 
5422 		nf_skip_egress(skb, true);
5423 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5424 					 &another);
5425 		if (another)
5426 			goto another_round;
5427 		if (!skb)
5428 			goto out;
5429 
5430 		nf_skip_egress(skb, false);
5431 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5432 			goto out;
5433 	}
5434 #endif
5435 	skb_reset_redirect(skb);
5436 skip_classify:
5437 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5438 		goto drop;
5439 
5440 	if (skb_vlan_tag_present(skb)) {
5441 		if (pt_prev) {
5442 			ret = deliver_skb(skb, pt_prev, orig_dev);
5443 			pt_prev = NULL;
5444 		}
5445 		if (vlan_do_receive(&skb))
5446 			goto another_round;
5447 		else if (unlikely(!skb))
5448 			goto out;
5449 	}
5450 
5451 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5452 	if (rx_handler) {
5453 		if (pt_prev) {
5454 			ret = deliver_skb(skb, pt_prev, orig_dev);
5455 			pt_prev = NULL;
5456 		}
5457 		switch (rx_handler(&skb)) {
5458 		case RX_HANDLER_CONSUMED:
5459 			ret = NET_RX_SUCCESS;
5460 			goto out;
5461 		case RX_HANDLER_ANOTHER:
5462 			goto another_round;
5463 		case RX_HANDLER_EXACT:
5464 			deliver_exact = true;
5465 			break;
5466 		case RX_HANDLER_PASS:
5467 			break;
5468 		default:
5469 			BUG();
5470 		}
5471 	}
5472 
5473 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5474 check_vlan_id:
5475 		if (skb_vlan_tag_get_id(skb)) {
5476 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5477 			 * find vlan device.
5478 			 */
5479 			skb->pkt_type = PACKET_OTHERHOST;
5480 		} else if (eth_type_vlan(skb->protocol)) {
5481 			/* Outer header is 802.1P with vlan 0, inner header is
5482 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5483 			 * not find vlan dev for vlan id 0.
5484 			 */
5485 			__vlan_hwaccel_clear_tag(skb);
5486 			skb = skb_vlan_untag(skb);
5487 			if (unlikely(!skb))
5488 				goto out;
5489 			if (vlan_do_receive(&skb))
5490 				/* After stripping off 802.1P header with vlan 0
5491 				 * vlan dev is found for inner header.
5492 				 */
5493 				goto another_round;
5494 			else if (unlikely(!skb))
5495 				goto out;
5496 			else
5497 				/* We have stripped outer 802.1P vlan 0 header.
5498 				 * But could not find vlan dev.
5499 				 * check again for vlan id to set OTHERHOST.
5500 				 */
5501 				goto check_vlan_id;
5502 		}
5503 		/* Note: we might in the future use prio bits
5504 		 * and set skb->priority like in vlan_do_receive()
5505 		 * For the time being, just ignore Priority Code Point
5506 		 */
5507 		__vlan_hwaccel_clear_tag(skb);
5508 	}
5509 
5510 	type = skb->protocol;
5511 
5512 	/* deliver only exact match when indicated */
5513 	if (likely(!deliver_exact)) {
5514 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5515 				       &ptype_base[ntohs(type) &
5516 						   PTYPE_HASH_MASK]);
5517 	}
5518 
5519 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5520 			       &orig_dev->ptype_specific);
5521 
5522 	if (unlikely(skb->dev != orig_dev)) {
5523 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5524 				       &skb->dev->ptype_specific);
5525 	}
5526 
5527 	if (pt_prev) {
5528 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5529 			goto drop;
5530 		*ppt_prev = pt_prev;
5531 	} else {
5532 drop:
5533 		if (!deliver_exact)
5534 			dev_core_stats_rx_dropped_inc(skb->dev);
5535 		else
5536 			dev_core_stats_rx_nohandler_inc(skb->dev);
5537 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5538 		/* Jamal, now you will not able to escape explaining
5539 		 * me how you were going to use this. :-)
5540 		 */
5541 		ret = NET_RX_DROP;
5542 	}
5543 
5544 out:
5545 	/* The invariant here is that if *ppt_prev is not NULL
5546 	 * then skb should also be non-NULL.
5547 	 *
5548 	 * Apparently *ppt_prev assignment above holds this invariant due to
5549 	 * skb dereferencing near it.
5550 	 */
5551 	*pskb = skb;
5552 	return ret;
5553 }
5554 
5555 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5556 {
5557 	struct net_device *orig_dev = skb->dev;
5558 	struct packet_type *pt_prev = NULL;
5559 	int ret;
5560 
5561 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5562 	if (pt_prev)
5563 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5564 					 skb->dev, pt_prev, orig_dev);
5565 	return ret;
5566 }
5567 
5568 /**
5569  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5570  *	@skb: buffer to process
5571  *
5572  *	More direct receive version of netif_receive_skb().  It should
5573  *	only be used by callers that have a need to skip RPS and Generic XDP.
5574  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5575  *
5576  *	This function may only be called from softirq context and interrupts
5577  *	should be enabled.
5578  *
5579  *	Return values (usually ignored):
5580  *	NET_RX_SUCCESS: no congestion
5581  *	NET_RX_DROP: packet was dropped
5582  */
5583 int netif_receive_skb_core(struct sk_buff *skb)
5584 {
5585 	int ret;
5586 
5587 	rcu_read_lock();
5588 	ret = __netif_receive_skb_one_core(skb, false);
5589 	rcu_read_unlock();
5590 
5591 	return ret;
5592 }
5593 EXPORT_SYMBOL(netif_receive_skb_core);
5594 
5595 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5596 						  struct packet_type *pt_prev,
5597 						  struct net_device *orig_dev)
5598 {
5599 	struct sk_buff *skb, *next;
5600 
5601 	if (!pt_prev)
5602 		return;
5603 	if (list_empty(head))
5604 		return;
5605 	if (pt_prev->list_func != NULL)
5606 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5607 				   ip_list_rcv, head, pt_prev, orig_dev);
5608 	else
5609 		list_for_each_entry_safe(skb, next, head, list) {
5610 			skb_list_del_init(skb);
5611 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5612 		}
5613 }
5614 
5615 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5616 {
5617 	/* Fast-path assumptions:
5618 	 * - There is no RX handler.
5619 	 * - Only one packet_type matches.
5620 	 * If either of these fails, we will end up doing some per-packet
5621 	 * processing in-line, then handling the 'last ptype' for the whole
5622 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5623 	 * because the 'last ptype' must be constant across the sublist, and all
5624 	 * other ptypes are handled per-packet.
5625 	 */
5626 	/* Current (common) ptype of sublist */
5627 	struct packet_type *pt_curr = NULL;
5628 	/* Current (common) orig_dev of sublist */
5629 	struct net_device *od_curr = NULL;
5630 	struct list_head sublist;
5631 	struct sk_buff *skb, *next;
5632 
5633 	INIT_LIST_HEAD(&sublist);
5634 	list_for_each_entry_safe(skb, next, head, list) {
5635 		struct net_device *orig_dev = skb->dev;
5636 		struct packet_type *pt_prev = NULL;
5637 
5638 		skb_list_del_init(skb);
5639 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5640 		if (!pt_prev)
5641 			continue;
5642 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5643 			/* dispatch old sublist */
5644 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5645 			/* start new sublist */
5646 			INIT_LIST_HEAD(&sublist);
5647 			pt_curr = pt_prev;
5648 			od_curr = orig_dev;
5649 		}
5650 		list_add_tail(&skb->list, &sublist);
5651 	}
5652 
5653 	/* dispatch final sublist */
5654 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5655 }
5656 
5657 static int __netif_receive_skb(struct sk_buff *skb)
5658 {
5659 	int ret;
5660 
5661 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5662 		unsigned int noreclaim_flag;
5663 
5664 		/*
5665 		 * PFMEMALLOC skbs are special, they should
5666 		 * - be delivered to SOCK_MEMALLOC sockets only
5667 		 * - stay away from userspace
5668 		 * - have bounded memory usage
5669 		 *
5670 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5671 		 * context down to all allocation sites.
5672 		 */
5673 		noreclaim_flag = memalloc_noreclaim_save();
5674 		ret = __netif_receive_skb_one_core(skb, true);
5675 		memalloc_noreclaim_restore(noreclaim_flag);
5676 	} else
5677 		ret = __netif_receive_skb_one_core(skb, false);
5678 
5679 	return ret;
5680 }
5681 
5682 static void __netif_receive_skb_list(struct list_head *head)
5683 {
5684 	unsigned long noreclaim_flag = 0;
5685 	struct sk_buff *skb, *next;
5686 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5687 
5688 	list_for_each_entry_safe(skb, next, head, list) {
5689 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5690 			struct list_head sublist;
5691 
5692 			/* Handle the previous sublist */
5693 			list_cut_before(&sublist, head, &skb->list);
5694 			if (!list_empty(&sublist))
5695 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5696 			pfmemalloc = !pfmemalloc;
5697 			/* See comments in __netif_receive_skb */
5698 			if (pfmemalloc)
5699 				noreclaim_flag = memalloc_noreclaim_save();
5700 			else
5701 				memalloc_noreclaim_restore(noreclaim_flag);
5702 		}
5703 	}
5704 	/* Handle the remaining sublist */
5705 	if (!list_empty(head))
5706 		__netif_receive_skb_list_core(head, pfmemalloc);
5707 	/* Restore pflags */
5708 	if (pfmemalloc)
5709 		memalloc_noreclaim_restore(noreclaim_flag);
5710 }
5711 
5712 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5713 {
5714 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5715 	struct bpf_prog *new = xdp->prog;
5716 	int ret = 0;
5717 
5718 	switch (xdp->command) {
5719 	case XDP_SETUP_PROG:
5720 		rcu_assign_pointer(dev->xdp_prog, new);
5721 		if (old)
5722 			bpf_prog_put(old);
5723 
5724 		if (old && !new) {
5725 			static_branch_dec(&generic_xdp_needed_key);
5726 		} else if (new && !old) {
5727 			static_branch_inc(&generic_xdp_needed_key);
5728 			dev_disable_lro(dev);
5729 			dev_disable_gro_hw(dev);
5730 		}
5731 		break;
5732 
5733 	default:
5734 		ret = -EINVAL;
5735 		break;
5736 	}
5737 
5738 	return ret;
5739 }
5740 
5741 static int netif_receive_skb_internal(struct sk_buff *skb)
5742 {
5743 	int ret;
5744 
5745 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5746 
5747 	if (skb_defer_rx_timestamp(skb))
5748 		return NET_RX_SUCCESS;
5749 
5750 	rcu_read_lock();
5751 #ifdef CONFIG_RPS
5752 	if (static_branch_unlikely(&rps_needed)) {
5753 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5754 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5755 
5756 		if (cpu >= 0) {
5757 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5758 			rcu_read_unlock();
5759 			return ret;
5760 		}
5761 	}
5762 #endif
5763 	ret = __netif_receive_skb(skb);
5764 	rcu_read_unlock();
5765 	return ret;
5766 }
5767 
5768 void netif_receive_skb_list_internal(struct list_head *head)
5769 {
5770 	struct sk_buff *skb, *next;
5771 	struct list_head sublist;
5772 
5773 	INIT_LIST_HEAD(&sublist);
5774 	list_for_each_entry_safe(skb, next, head, list) {
5775 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5776 		skb_list_del_init(skb);
5777 		if (!skb_defer_rx_timestamp(skb))
5778 			list_add_tail(&skb->list, &sublist);
5779 	}
5780 	list_splice_init(&sublist, head);
5781 
5782 	rcu_read_lock();
5783 #ifdef CONFIG_RPS
5784 	if (static_branch_unlikely(&rps_needed)) {
5785 		list_for_each_entry_safe(skb, next, head, list) {
5786 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5787 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5788 
5789 			if (cpu >= 0) {
5790 				/* Will be handled, remove from list */
5791 				skb_list_del_init(skb);
5792 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5793 			}
5794 		}
5795 	}
5796 #endif
5797 	__netif_receive_skb_list(head);
5798 	rcu_read_unlock();
5799 }
5800 
5801 /**
5802  *	netif_receive_skb - process receive buffer from network
5803  *	@skb: buffer to process
5804  *
5805  *	netif_receive_skb() is the main receive data processing function.
5806  *	It always succeeds. The buffer may be dropped during processing
5807  *	for congestion control or by the protocol layers.
5808  *
5809  *	This function may only be called from softirq context and interrupts
5810  *	should be enabled.
5811  *
5812  *	Return values (usually ignored):
5813  *	NET_RX_SUCCESS: no congestion
5814  *	NET_RX_DROP: packet was dropped
5815  */
5816 int netif_receive_skb(struct sk_buff *skb)
5817 {
5818 	int ret;
5819 
5820 	trace_netif_receive_skb_entry(skb);
5821 
5822 	ret = netif_receive_skb_internal(skb);
5823 	trace_netif_receive_skb_exit(ret);
5824 
5825 	return ret;
5826 }
5827 EXPORT_SYMBOL(netif_receive_skb);
5828 
5829 /**
5830  *	netif_receive_skb_list - process many receive buffers from network
5831  *	@head: list of skbs to process.
5832  *
5833  *	Since return value of netif_receive_skb() is normally ignored, and
5834  *	wouldn't be meaningful for a list, this function returns void.
5835  *
5836  *	This function may only be called from softirq context and interrupts
5837  *	should be enabled.
5838  */
5839 void netif_receive_skb_list(struct list_head *head)
5840 {
5841 	struct sk_buff *skb;
5842 
5843 	if (list_empty(head))
5844 		return;
5845 	if (trace_netif_receive_skb_list_entry_enabled()) {
5846 		list_for_each_entry(skb, head, list)
5847 			trace_netif_receive_skb_list_entry(skb);
5848 	}
5849 	netif_receive_skb_list_internal(head);
5850 	trace_netif_receive_skb_list_exit(0);
5851 }
5852 EXPORT_SYMBOL(netif_receive_skb_list);
5853 
5854 static DEFINE_PER_CPU(struct work_struct, flush_works);
5855 
5856 /* Network device is going away, flush any packets still pending */
5857 static void flush_backlog(struct work_struct *work)
5858 {
5859 	struct sk_buff *skb, *tmp;
5860 	struct softnet_data *sd;
5861 
5862 	local_bh_disable();
5863 	sd = this_cpu_ptr(&softnet_data);
5864 
5865 	rps_lock_irq_disable(sd);
5866 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5867 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5868 			__skb_unlink(skb, &sd->input_pkt_queue);
5869 			dev_kfree_skb_irq(skb);
5870 			input_queue_head_incr(sd);
5871 		}
5872 	}
5873 	rps_unlock_irq_enable(sd);
5874 
5875 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5876 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5877 			__skb_unlink(skb, &sd->process_queue);
5878 			kfree_skb(skb);
5879 			input_queue_head_incr(sd);
5880 		}
5881 	}
5882 	local_bh_enable();
5883 }
5884 
5885 static bool flush_required(int cpu)
5886 {
5887 #if IS_ENABLED(CONFIG_RPS)
5888 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5889 	bool do_flush;
5890 
5891 	rps_lock_irq_disable(sd);
5892 
5893 	/* as insertion into process_queue happens with the rps lock held,
5894 	 * process_queue access may race only with dequeue
5895 	 */
5896 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5897 		   !skb_queue_empty_lockless(&sd->process_queue);
5898 	rps_unlock_irq_enable(sd);
5899 
5900 	return do_flush;
5901 #endif
5902 	/* without RPS we can't safely check input_pkt_queue: during a
5903 	 * concurrent remote skb_queue_splice() we can detect as empty both
5904 	 * input_pkt_queue and process_queue even if the latter could end-up
5905 	 * containing a lot of packets.
5906 	 */
5907 	return true;
5908 }
5909 
5910 static void flush_all_backlogs(void)
5911 {
5912 	static cpumask_t flush_cpus;
5913 	unsigned int cpu;
5914 
5915 	/* since we are under rtnl lock protection we can use static data
5916 	 * for the cpumask and avoid allocating on stack the possibly
5917 	 * large mask
5918 	 */
5919 	ASSERT_RTNL();
5920 
5921 	cpus_read_lock();
5922 
5923 	cpumask_clear(&flush_cpus);
5924 	for_each_online_cpu(cpu) {
5925 		if (flush_required(cpu)) {
5926 			queue_work_on(cpu, system_highpri_wq,
5927 				      per_cpu_ptr(&flush_works, cpu));
5928 			cpumask_set_cpu(cpu, &flush_cpus);
5929 		}
5930 	}
5931 
5932 	/* we can have in flight packet[s] on the cpus we are not flushing,
5933 	 * synchronize_net() in unregister_netdevice_many() will take care of
5934 	 * them
5935 	 */
5936 	for_each_cpu(cpu, &flush_cpus)
5937 		flush_work(per_cpu_ptr(&flush_works, cpu));
5938 
5939 	cpus_read_unlock();
5940 }
5941 
5942 static void net_rps_send_ipi(struct softnet_data *remsd)
5943 {
5944 #ifdef CONFIG_RPS
5945 	while (remsd) {
5946 		struct softnet_data *next = remsd->rps_ipi_next;
5947 
5948 		if (cpu_online(remsd->cpu))
5949 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5950 		remsd = next;
5951 	}
5952 #endif
5953 }
5954 
5955 /*
5956  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5957  * Note: called with local irq disabled, but exits with local irq enabled.
5958  */
5959 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5960 {
5961 #ifdef CONFIG_RPS
5962 	struct softnet_data *remsd = sd->rps_ipi_list;
5963 
5964 	if (remsd) {
5965 		sd->rps_ipi_list = NULL;
5966 
5967 		local_irq_enable();
5968 
5969 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5970 		net_rps_send_ipi(remsd);
5971 	} else
5972 #endif
5973 		local_irq_enable();
5974 }
5975 
5976 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5977 {
5978 #ifdef CONFIG_RPS
5979 	return sd->rps_ipi_list != NULL;
5980 #else
5981 	return false;
5982 #endif
5983 }
5984 
5985 static int process_backlog(struct napi_struct *napi, int quota)
5986 {
5987 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5988 	bool again = true;
5989 	int work = 0;
5990 
5991 	/* Check if we have pending ipi, its better to send them now,
5992 	 * not waiting net_rx_action() end.
5993 	 */
5994 	if (sd_has_rps_ipi_waiting(sd)) {
5995 		local_irq_disable();
5996 		net_rps_action_and_irq_enable(sd);
5997 	}
5998 
5999 	napi->weight = READ_ONCE(dev_rx_weight);
6000 	while (again) {
6001 		struct sk_buff *skb;
6002 
6003 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6004 			rcu_read_lock();
6005 			__netif_receive_skb(skb);
6006 			rcu_read_unlock();
6007 			input_queue_head_incr(sd);
6008 			if (++work >= quota)
6009 				return work;
6010 
6011 		}
6012 
6013 		rps_lock_irq_disable(sd);
6014 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6015 			/*
6016 			 * Inline a custom version of __napi_complete().
6017 			 * only current cpu owns and manipulates this napi,
6018 			 * and NAPI_STATE_SCHED is the only possible flag set
6019 			 * on backlog.
6020 			 * We can use a plain write instead of clear_bit(),
6021 			 * and we dont need an smp_mb() memory barrier.
6022 			 */
6023 			napi->state = 0;
6024 			again = false;
6025 		} else {
6026 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6027 						   &sd->process_queue);
6028 		}
6029 		rps_unlock_irq_enable(sd);
6030 	}
6031 
6032 	return work;
6033 }
6034 
6035 /**
6036  * __napi_schedule - schedule for receive
6037  * @n: entry to schedule
6038  *
6039  * The entry's receive function will be scheduled to run.
6040  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6041  */
6042 void __napi_schedule(struct napi_struct *n)
6043 {
6044 	unsigned long flags;
6045 
6046 	local_irq_save(flags);
6047 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6048 	local_irq_restore(flags);
6049 }
6050 EXPORT_SYMBOL(__napi_schedule);
6051 
6052 /**
6053  *	napi_schedule_prep - check if napi can be scheduled
6054  *	@n: napi context
6055  *
6056  * Test if NAPI routine is already running, and if not mark
6057  * it as running.  This is used as a condition variable to
6058  * insure only one NAPI poll instance runs.  We also make
6059  * sure there is no pending NAPI disable.
6060  */
6061 bool napi_schedule_prep(struct napi_struct *n)
6062 {
6063 	unsigned long new, val = READ_ONCE(n->state);
6064 
6065 	do {
6066 		if (unlikely(val & NAPIF_STATE_DISABLE))
6067 			return false;
6068 		new = val | NAPIF_STATE_SCHED;
6069 
6070 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6071 		 * This was suggested by Alexander Duyck, as compiler
6072 		 * emits better code than :
6073 		 * if (val & NAPIF_STATE_SCHED)
6074 		 *     new |= NAPIF_STATE_MISSED;
6075 		 */
6076 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6077 						   NAPIF_STATE_MISSED;
6078 	} while (!try_cmpxchg(&n->state, &val, new));
6079 
6080 	return !(val & NAPIF_STATE_SCHED);
6081 }
6082 EXPORT_SYMBOL(napi_schedule_prep);
6083 
6084 /**
6085  * __napi_schedule_irqoff - schedule for receive
6086  * @n: entry to schedule
6087  *
6088  * Variant of __napi_schedule() assuming hard irqs are masked.
6089  *
6090  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6091  * because the interrupt disabled assumption might not be true
6092  * due to force-threaded interrupts and spinlock substitution.
6093  */
6094 void __napi_schedule_irqoff(struct napi_struct *n)
6095 {
6096 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6097 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6098 	else
6099 		__napi_schedule(n);
6100 }
6101 EXPORT_SYMBOL(__napi_schedule_irqoff);
6102 
6103 bool napi_complete_done(struct napi_struct *n, int work_done)
6104 {
6105 	unsigned long flags, val, new, timeout = 0;
6106 	bool ret = true;
6107 
6108 	/*
6109 	 * 1) Don't let napi dequeue from the cpu poll list
6110 	 *    just in case its running on a different cpu.
6111 	 * 2) If we are busy polling, do nothing here, we have
6112 	 *    the guarantee we will be called later.
6113 	 */
6114 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6115 				 NAPIF_STATE_IN_BUSY_POLL)))
6116 		return false;
6117 
6118 	if (work_done) {
6119 		if (n->gro_bitmask)
6120 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6121 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6122 	}
6123 	if (n->defer_hard_irqs_count > 0) {
6124 		n->defer_hard_irqs_count--;
6125 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6126 		if (timeout)
6127 			ret = false;
6128 	}
6129 	if (n->gro_bitmask) {
6130 		/* When the NAPI instance uses a timeout and keeps postponing
6131 		 * it, we need to bound somehow the time packets are kept in
6132 		 * the GRO layer
6133 		 */
6134 		napi_gro_flush(n, !!timeout);
6135 	}
6136 
6137 	gro_normal_list(n);
6138 
6139 	if (unlikely(!list_empty(&n->poll_list))) {
6140 		/* If n->poll_list is not empty, we need to mask irqs */
6141 		local_irq_save(flags);
6142 		list_del_init(&n->poll_list);
6143 		local_irq_restore(flags);
6144 	}
6145 	WRITE_ONCE(n->list_owner, -1);
6146 
6147 	val = READ_ONCE(n->state);
6148 	do {
6149 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6150 
6151 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6152 			      NAPIF_STATE_SCHED_THREADED |
6153 			      NAPIF_STATE_PREFER_BUSY_POLL);
6154 
6155 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6156 		 * because we will call napi->poll() one more time.
6157 		 * This C code was suggested by Alexander Duyck to help gcc.
6158 		 */
6159 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6160 						    NAPIF_STATE_SCHED;
6161 	} while (!try_cmpxchg(&n->state, &val, new));
6162 
6163 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6164 		__napi_schedule(n);
6165 		return false;
6166 	}
6167 
6168 	if (timeout)
6169 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6170 			      HRTIMER_MODE_REL_PINNED);
6171 	return ret;
6172 }
6173 EXPORT_SYMBOL(napi_complete_done);
6174 
6175 /* must be called under rcu_read_lock(), as we dont take a reference */
6176 static struct napi_struct *napi_by_id(unsigned int napi_id)
6177 {
6178 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6179 	struct napi_struct *napi;
6180 
6181 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6182 		if (napi->napi_id == napi_id)
6183 			return napi;
6184 
6185 	return NULL;
6186 }
6187 
6188 #if defined(CONFIG_NET_RX_BUSY_POLL)
6189 
6190 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6191 {
6192 	if (!skip_schedule) {
6193 		gro_normal_list(napi);
6194 		__napi_schedule(napi);
6195 		return;
6196 	}
6197 
6198 	if (napi->gro_bitmask) {
6199 		/* flush too old packets
6200 		 * If HZ < 1000, flush all packets.
6201 		 */
6202 		napi_gro_flush(napi, HZ >= 1000);
6203 	}
6204 
6205 	gro_normal_list(napi);
6206 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6207 }
6208 
6209 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6210 			   u16 budget)
6211 {
6212 	bool skip_schedule = false;
6213 	unsigned long timeout;
6214 	int rc;
6215 
6216 	/* Busy polling means there is a high chance device driver hard irq
6217 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6218 	 * set in napi_schedule_prep().
6219 	 * Since we are about to call napi->poll() once more, we can safely
6220 	 * clear NAPI_STATE_MISSED.
6221 	 *
6222 	 * Note: x86 could use a single "lock and ..." instruction
6223 	 * to perform these two clear_bit()
6224 	 */
6225 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6226 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6227 
6228 	local_bh_disable();
6229 
6230 	if (prefer_busy_poll) {
6231 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6232 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6233 		if (napi->defer_hard_irqs_count && timeout) {
6234 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6235 			skip_schedule = true;
6236 		}
6237 	}
6238 
6239 	/* All we really want here is to re-enable device interrupts.
6240 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6241 	 */
6242 	rc = napi->poll(napi, budget);
6243 	/* We can't gro_normal_list() here, because napi->poll() might have
6244 	 * rearmed the napi (napi_complete_done()) in which case it could
6245 	 * already be running on another CPU.
6246 	 */
6247 	trace_napi_poll(napi, rc, budget);
6248 	netpoll_poll_unlock(have_poll_lock);
6249 	if (rc == budget)
6250 		__busy_poll_stop(napi, skip_schedule);
6251 	local_bh_enable();
6252 }
6253 
6254 void napi_busy_loop(unsigned int napi_id,
6255 		    bool (*loop_end)(void *, unsigned long),
6256 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6257 {
6258 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6259 	int (*napi_poll)(struct napi_struct *napi, int budget);
6260 	void *have_poll_lock = NULL;
6261 	struct napi_struct *napi;
6262 
6263 restart:
6264 	napi_poll = NULL;
6265 
6266 	rcu_read_lock();
6267 
6268 	napi = napi_by_id(napi_id);
6269 	if (!napi)
6270 		goto out;
6271 
6272 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6273 		preempt_disable();
6274 	for (;;) {
6275 		int work = 0;
6276 
6277 		local_bh_disable();
6278 		if (!napi_poll) {
6279 			unsigned long val = READ_ONCE(napi->state);
6280 
6281 			/* If multiple threads are competing for this napi,
6282 			 * we avoid dirtying napi->state as much as we can.
6283 			 */
6284 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6285 				   NAPIF_STATE_IN_BUSY_POLL)) {
6286 				if (prefer_busy_poll)
6287 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6288 				goto count;
6289 			}
6290 			if (cmpxchg(&napi->state, val,
6291 				    val | NAPIF_STATE_IN_BUSY_POLL |
6292 					  NAPIF_STATE_SCHED) != val) {
6293 				if (prefer_busy_poll)
6294 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6295 				goto count;
6296 			}
6297 			have_poll_lock = netpoll_poll_lock(napi);
6298 			napi_poll = napi->poll;
6299 		}
6300 		work = napi_poll(napi, budget);
6301 		trace_napi_poll(napi, work, budget);
6302 		gro_normal_list(napi);
6303 count:
6304 		if (work > 0)
6305 			__NET_ADD_STATS(dev_net(napi->dev),
6306 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6307 		local_bh_enable();
6308 
6309 		if (!loop_end || loop_end(loop_end_arg, start_time))
6310 			break;
6311 
6312 		if (unlikely(need_resched())) {
6313 			if (napi_poll)
6314 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6315 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6316 				preempt_enable();
6317 			rcu_read_unlock();
6318 			cond_resched();
6319 			if (loop_end(loop_end_arg, start_time))
6320 				return;
6321 			goto restart;
6322 		}
6323 		cpu_relax();
6324 	}
6325 	if (napi_poll)
6326 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6327 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6328 		preempt_enable();
6329 out:
6330 	rcu_read_unlock();
6331 }
6332 EXPORT_SYMBOL(napi_busy_loop);
6333 
6334 #endif /* CONFIG_NET_RX_BUSY_POLL */
6335 
6336 static void napi_hash_add(struct napi_struct *napi)
6337 {
6338 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6339 		return;
6340 
6341 	spin_lock(&napi_hash_lock);
6342 
6343 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6344 	do {
6345 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6346 			napi_gen_id = MIN_NAPI_ID;
6347 	} while (napi_by_id(napi_gen_id));
6348 	napi->napi_id = napi_gen_id;
6349 
6350 	hlist_add_head_rcu(&napi->napi_hash_node,
6351 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6352 
6353 	spin_unlock(&napi_hash_lock);
6354 }
6355 
6356 /* Warning : caller is responsible to make sure rcu grace period
6357  * is respected before freeing memory containing @napi
6358  */
6359 static void napi_hash_del(struct napi_struct *napi)
6360 {
6361 	spin_lock(&napi_hash_lock);
6362 
6363 	hlist_del_init_rcu(&napi->napi_hash_node);
6364 
6365 	spin_unlock(&napi_hash_lock);
6366 }
6367 
6368 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6369 {
6370 	struct napi_struct *napi;
6371 
6372 	napi = container_of(timer, struct napi_struct, timer);
6373 
6374 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6375 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6376 	 */
6377 	if (!napi_disable_pending(napi) &&
6378 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6379 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6380 		__napi_schedule_irqoff(napi);
6381 	}
6382 
6383 	return HRTIMER_NORESTART;
6384 }
6385 
6386 static void init_gro_hash(struct napi_struct *napi)
6387 {
6388 	int i;
6389 
6390 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6391 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6392 		napi->gro_hash[i].count = 0;
6393 	}
6394 	napi->gro_bitmask = 0;
6395 }
6396 
6397 int dev_set_threaded(struct net_device *dev, bool threaded)
6398 {
6399 	struct napi_struct *napi;
6400 	int err = 0;
6401 
6402 	if (dev->threaded == threaded)
6403 		return 0;
6404 
6405 	if (threaded) {
6406 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6407 			if (!napi->thread) {
6408 				err = napi_kthread_create(napi);
6409 				if (err) {
6410 					threaded = false;
6411 					break;
6412 				}
6413 			}
6414 		}
6415 	}
6416 
6417 	dev->threaded = threaded;
6418 
6419 	/* Make sure kthread is created before THREADED bit
6420 	 * is set.
6421 	 */
6422 	smp_mb__before_atomic();
6423 
6424 	/* Setting/unsetting threaded mode on a napi might not immediately
6425 	 * take effect, if the current napi instance is actively being
6426 	 * polled. In this case, the switch between threaded mode and
6427 	 * softirq mode will happen in the next round of napi_schedule().
6428 	 * This should not cause hiccups/stalls to the live traffic.
6429 	 */
6430 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6431 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6432 
6433 	return err;
6434 }
6435 EXPORT_SYMBOL(dev_set_threaded);
6436 
6437 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6438 			   int (*poll)(struct napi_struct *, int), int weight)
6439 {
6440 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6441 		return;
6442 
6443 	INIT_LIST_HEAD(&napi->poll_list);
6444 	INIT_HLIST_NODE(&napi->napi_hash_node);
6445 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6446 	napi->timer.function = napi_watchdog;
6447 	init_gro_hash(napi);
6448 	napi->skb = NULL;
6449 	INIT_LIST_HEAD(&napi->rx_list);
6450 	napi->rx_count = 0;
6451 	napi->poll = poll;
6452 	if (weight > NAPI_POLL_WEIGHT)
6453 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6454 				weight);
6455 	napi->weight = weight;
6456 	napi->dev = dev;
6457 #ifdef CONFIG_NETPOLL
6458 	napi->poll_owner = -1;
6459 #endif
6460 	napi->list_owner = -1;
6461 	set_bit(NAPI_STATE_SCHED, &napi->state);
6462 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6463 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6464 	napi_hash_add(napi);
6465 	napi_get_frags_check(napi);
6466 	/* Create kthread for this napi if dev->threaded is set.
6467 	 * Clear dev->threaded if kthread creation failed so that
6468 	 * threaded mode will not be enabled in napi_enable().
6469 	 */
6470 	if (dev->threaded && napi_kthread_create(napi))
6471 		dev->threaded = 0;
6472 }
6473 EXPORT_SYMBOL(netif_napi_add_weight);
6474 
6475 void napi_disable(struct napi_struct *n)
6476 {
6477 	unsigned long val, new;
6478 
6479 	might_sleep();
6480 	set_bit(NAPI_STATE_DISABLE, &n->state);
6481 
6482 	val = READ_ONCE(n->state);
6483 	do {
6484 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6485 			usleep_range(20, 200);
6486 			val = READ_ONCE(n->state);
6487 		}
6488 
6489 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6490 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6491 	} while (!try_cmpxchg(&n->state, &val, new));
6492 
6493 	hrtimer_cancel(&n->timer);
6494 
6495 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6496 }
6497 EXPORT_SYMBOL(napi_disable);
6498 
6499 /**
6500  *	napi_enable - enable NAPI scheduling
6501  *	@n: NAPI context
6502  *
6503  * Resume NAPI from being scheduled on this context.
6504  * Must be paired with napi_disable.
6505  */
6506 void napi_enable(struct napi_struct *n)
6507 {
6508 	unsigned long new, val = READ_ONCE(n->state);
6509 
6510 	do {
6511 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6512 
6513 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6514 		if (n->dev->threaded && n->thread)
6515 			new |= NAPIF_STATE_THREADED;
6516 	} while (!try_cmpxchg(&n->state, &val, new));
6517 }
6518 EXPORT_SYMBOL(napi_enable);
6519 
6520 static void flush_gro_hash(struct napi_struct *napi)
6521 {
6522 	int i;
6523 
6524 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6525 		struct sk_buff *skb, *n;
6526 
6527 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6528 			kfree_skb(skb);
6529 		napi->gro_hash[i].count = 0;
6530 	}
6531 }
6532 
6533 /* Must be called in process context */
6534 void __netif_napi_del(struct napi_struct *napi)
6535 {
6536 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6537 		return;
6538 
6539 	napi_hash_del(napi);
6540 	list_del_rcu(&napi->dev_list);
6541 	napi_free_frags(napi);
6542 
6543 	flush_gro_hash(napi);
6544 	napi->gro_bitmask = 0;
6545 
6546 	if (napi->thread) {
6547 		kthread_stop(napi->thread);
6548 		napi->thread = NULL;
6549 	}
6550 }
6551 EXPORT_SYMBOL(__netif_napi_del);
6552 
6553 static int __napi_poll(struct napi_struct *n, bool *repoll)
6554 {
6555 	int work, weight;
6556 
6557 	weight = n->weight;
6558 
6559 	/* This NAPI_STATE_SCHED test is for avoiding a race
6560 	 * with netpoll's poll_napi().  Only the entity which
6561 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6562 	 * actually make the ->poll() call.  Therefore we avoid
6563 	 * accidentally calling ->poll() when NAPI is not scheduled.
6564 	 */
6565 	work = 0;
6566 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6567 		work = n->poll(n, weight);
6568 		trace_napi_poll(n, work, weight);
6569 	}
6570 
6571 	if (unlikely(work > weight))
6572 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6573 				n->poll, work, weight);
6574 
6575 	if (likely(work < weight))
6576 		return work;
6577 
6578 	/* Drivers must not modify the NAPI state if they
6579 	 * consume the entire weight.  In such cases this code
6580 	 * still "owns" the NAPI instance and therefore can
6581 	 * move the instance around on the list at-will.
6582 	 */
6583 	if (unlikely(napi_disable_pending(n))) {
6584 		napi_complete(n);
6585 		return work;
6586 	}
6587 
6588 	/* The NAPI context has more processing work, but busy-polling
6589 	 * is preferred. Exit early.
6590 	 */
6591 	if (napi_prefer_busy_poll(n)) {
6592 		if (napi_complete_done(n, work)) {
6593 			/* If timeout is not set, we need to make sure
6594 			 * that the NAPI is re-scheduled.
6595 			 */
6596 			napi_schedule(n);
6597 		}
6598 		return work;
6599 	}
6600 
6601 	if (n->gro_bitmask) {
6602 		/* flush too old packets
6603 		 * If HZ < 1000, flush all packets.
6604 		 */
6605 		napi_gro_flush(n, HZ >= 1000);
6606 	}
6607 
6608 	gro_normal_list(n);
6609 
6610 	/* Some drivers may have called napi_schedule
6611 	 * prior to exhausting their budget.
6612 	 */
6613 	if (unlikely(!list_empty(&n->poll_list))) {
6614 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6615 			     n->dev ? n->dev->name : "backlog");
6616 		return work;
6617 	}
6618 
6619 	*repoll = true;
6620 
6621 	return work;
6622 }
6623 
6624 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6625 {
6626 	bool do_repoll = false;
6627 	void *have;
6628 	int work;
6629 
6630 	list_del_init(&n->poll_list);
6631 
6632 	have = netpoll_poll_lock(n);
6633 
6634 	work = __napi_poll(n, &do_repoll);
6635 
6636 	if (do_repoll)
6637 		list_add_tail(&n->poll_list, repoll);
6638 
6639 	netpoll_poll_unlock(have);
6640 
6641 	return work;
6642 }
6643 
6644 static int napi_thread_wait(struct napi_struct *napi)
6645 {
6646 	bool woken = false;
6647 
6648 	set_current_state(TASK_INTERRUPTIBLE);
6649 
6650 	while (!kthread_should_stop()) {
6651 		/* Testing SCHED_THREADED bit here to make sure the current
6652 		 * kthread owns this napi and could poll on this napi.
6653 		 * Testing SCHED bit is not enough because SCHED bit might be
6654 		 * set by some other busy poll thread or by napi_disable().
6655 		 */
6656 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6657 			WARN_ON(!list_empty(&napi->poll_list));
6658 			__set_current_state(TASK_RUNNING);
6659 			return 0;
6660 		}
6661 
6662 		schedule();
6663 		/* woken being true indicates this thread owns this napi. */
6664 		woken = true;
6665 		set_current_state(TASK_INTERRUPTIBLE);
6666 	}
6667 	__set_current_state(TASK_RUNNING);
6668 
6669 	return -1;
6670 }
6671 
6672 static void skb_defer_free_flush(struct softnet_data *sd)
6673 {
6674 	struct sk_buff *skb, *next;
6675 
6676 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6677 	if (!READ_ONCE(sd->defer_list))
6678 		return;
6679 
6680 	spin_lock(&sd->defer_lock);
6681 	skb = sd->defer_list;
6682 	sd->defer_list = NULL;
6683 	sd->defer_count = 0;
6684 	spin_unlock(&sd->defer_lock);
6685 
6686 	while (skb != NULL) {
6687 		next = skb->next;
6688 		napi_consume_skb(skb, 1);
6689 		skb = next;
6690 	}
6691 }
6692 
6693 static int napi_threaded_poll(void *data)
6694 {
6695 	struct napi_struct *napi = data;
6696 	struct softnet_data *sd;
6697 	void *have;
6698 
6699 	while (!napi_thread_wait(napi)) {
6700 		unsigned long last_qs = jiffies;
6701 
6702 		for (;;) {
6703 			bool repoll = false;
6704 
6705 			local_bh_disable();
6706 			sd = this_cpu_ptr(&softnet_data);
6707 			sd->in_napi_threaded_poll = true;
6708 
6709 			have = netpoll_poll_lock(napi);
6710 			__napi_poll(napi, &repoll);
6711 			netpoll_poll_unlock(have);
6712 
6713 			sd->in_napi_threaded_poll = false;
6714 			barrier();
6715 
6716 			if (sd_has_rps_ipi_waiting(sd)) {
6717 				local_irq_disable();
6718 				net_rps_action_and_irq_enable(sd);
6719 			}
6720 			skb_defer_free_flush(sd);
6721 			local_bh_enable();
6722 
6723 			if (!repoll)
6724 				break;
6725 
6726 			rcu_softirq_qs_periodic(last_qs);
6727 			cond_resched();
6728 		}
6729 	}
6730 	return 0;
6731 }
6732 
6733 static __latent_entropy void net_rx_action(struct softirq_action *h)
6734 {
6735 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6736 	unsigned long time_limit = jiffies +
6737 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6738 	int budget = READ_ONCE(netdev_budget);
6739 	LIST_HEAD(list);
6740 	LIST_HEAD(repoll);
6741 
6742 start:
6743 	sd->in_net_rx_action = true;
6744 	local_irq_disable();
6745 	list_splice_init(&sd->poll_list, &list);
6746 	local_irq_enable();
6747 
6748 	for (;;) {
6749 		struct napi_struct *n;
6750 
6751 		skb_defer_free_flush(sd);
6752 
6753 		if (list_empty(&list)) {
6754 			if (list_empty(&repoll)) {
6755 				sd->in_net_rx_action = false;
6756 				barrier();
6757 				/* We need to check if ____napi_schedule()
6758 				 * had refilled poll_list while
6759 				 * sd->in_net_rx_action was true.
6760 				 */
6761 				if (!list_empty(&sd->poll_list))
6762 					goto start;
6763 				if (!sd_has_rps_ipi_waiting(sd))
6764 					goto end;
6765 			}
6766 			break;
6767 		}
6768 
6769 		n = list_first_entry(&list, struct napi_struct, poll_list);
6770 		budget -= napi_poll(n, &repoll);
6771 
6772 		/* If softirq window is exhausted then punt.
6773 		 * Allow this to run for 2 jiffies since which will allow
6774 		 * an average latency of 1.5/HZ.
6775 		 */
6776 		if (unlikely(budget <= 0 ||
6777 			     time_after_eq(jiffies, time_limit))) {
6778 			sd->time_squeeze++;
6779 			break;
6780 		}
6781 	}
6782 
6783 	local_irq_disable();
6784 
6785 	list_splice_tail_init(&sd->poll_list, &list);
6786 	list_splice_tail(&repoll, &list);
6787 	list_splice(&list, &sd->poll_list);
6788 	if (!list_empty(&sd->poll_list))
6789 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6790 	else
6791 		sd->in_net_rx_action = false;
6792 
6793 	net_rps_action_and_irq_enable(sd);
6794 end:;
6795 }
6796 
6797 struct netdev_adjacent {
6798 	struct net_device *dev;
6799 	netdevice_tracker dev_tracker;
6800 
6801 	/* upper master flag, there can only be one master device per list */
6802 	bool master;
6803 
6804 	/* lookup ignore flag */
6805 	bool ignore;
6806 
6807 	/* counter for the number of times this device was added to us */
6808 	u16 ref_nr;
6809 
6810 	/* private field for the users */
6811 	void *private;
6812 
6813 	struct list_head list;
6814 	struct rcu_head rcu;
6815 };
6816 
6817 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6818 						 struct list_head *adj_list)
6819 {
6820 	struct netdev_adjacent *adj;
6821 
6822 	list_for_each_entry(adj, adj_list, list) {
6823 		if (adj->dev == adj_dev)
6824 			return adj;
6825 	}
6826 	return NULL;
6827 }
6828 
6829 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6830 				    struct netdev_nested_priv *priv)
6831 {
6832 	struct net_device *dev = (struct net_device *)priv->data;
6833 
6834 	return upper_dev == dev;
6835 }
6836 
6837 /**
6838  * netdev_has_upper_dev - Check if device is linked to an upper device
6839  * @dev: device
6840  * @upper_dev: upper device to check
6841  *
6842  * Find out if a device is linked to specified upper device and return true
6843  * in case it is. Note that this checks only immediate upper device,
6844  * not through a complete stack of devices. The caller must hold the RTNL lock.
6845  */
6846 bool netdev_has_upper_dev(struct net_device *dev,
6847 			  struct net_device *upper_dev)
6848 {
6849 	struct netdev_nested_priv priv = {
6850 		.data = (void *)upper_dev,
6851 	};
6852 
6853 	ASSERT_RTNL();
6854 
6855 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6856 					     &priv);
6857 }
6858 EXPORT_SYMBOL(netdev_has_upper_dev);
6859 
6860 /**
6861  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6862  * @dev: device
6863  * @upper_dev: upper device to check
6864  *
6865  * Find out if a device is linked to specified upper device and return true
6866  * in case it is. Note that this checks the entire upper device chain.
6867  * The caller must hold rcu lock.
6868  */
6869 
6870 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6871 				  struct net_device *upper_dev)
6872 {
6873 	struct netdev_nested_priv priv = {
6874 		.data = (void *)upper_dev,
6875 	};
6876 
6877 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6878 					       &priv);
6879 }
6880 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6881 
6882 /**
6883  * netdev_has_any_upper_dev - Check if device is linked to some device
6884  * @dev: device
6885  *
6886  * Find out if a device is linked to an upper device and return true in case
6887  * it is. The caller must hold the RTNL lock.
6888  */
6889 bool netdev_has_any_upper_dev(struct net_device *dev)
6890 {
6891 	ASSERT_RTNL();
6892 
6893 	return !list_empty(&dev->adj_list.upper);
6894 }
6895 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6896 
6897 /**
6898  * netdev_master_upper_dev_get - Get master upper device
6899  * @dev: device
6900  *
6901  * Find a master upper device and return pointer to it or NULL in case
6902  * it's not there. The caller must hold the RTNL lock.
6903  */
6904 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6905 {
6906 	struct netdev_adjacent *upper;
6907 
6908 	ASSERT_RTNL();
6909 
6910 	if (list_empty(&dev->adj_list.upper))
6911 		return NULL;
6912 
6913 	upper = list_first_entry(&dev->adj_list.upper,
6914 				 struct netdev_adjacent, list);
6915 	if (likely(upper->master))
6916 		return upper->dev;
6917 	return NULL;
6918 }
6919 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6920 
6921 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6922 {
6923 	struct netdev_adjacent *upper;
6924 
6925 	ASSERT_RTNL();
6926 
6927 	if (list_empty(&dev->adj_list.upper))
6928 		return NULL;
6929 
6930 	upper = list_first_entry(&dev->adj_list.upper,
6931 				 struct netdev_adjacent, list);
6932 	if (likely(upper->master) && !upper->ignore)
6933 		return upper->dev;
6934 	return NULL;
6935 }
6936 
6937 /**
6938  * netdev_has_any_lower_dev - Check if device is linked to some device
6939  * @dev: device
6940  *
6941  * Find out if a device is linked to a lower device and return true in case
6942  * it is. The caller must hold the RTNL lock.
6943  */
6944 static bool netdev_has_any_lower_dev(struct net_device *dev)
6945 {
6946 	ASSERT_RTNL();
6947 
6948 	return !list_empty(&dev->adj_list.lower);
6949 }
6950 
6951 void *netdev_adjacent_get_private(struct list_head *adj_list)
6952 {
6953 	struct netdev_adjacent *adj;
6954 
6955 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6956 
6957 	return adj->private;
6958 }
6959 EXPORT_SYMBOL(netdev_adjacent_get_private);
6960 
6961 /**
6962  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6963  * @dev: device
6964  * @iter: list_head ** of the current position
6965  *
6966  * Gets the next device from the dev's upper list, starting from iter
6967  * position. The caller must hold RCU read lock.
6968  */
6969 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6970 						 struct list_head **iter)
6971 {
6972 	struct netdev_adjacent *upper;
6973 
6974 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6975 
6976 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6977 
6978 	if (&upper->list == &dev->adj_list.upper)
6979 		return NULL;
6980 
6981 	*iter = &upper->list;
6982 
6983 	return upper->dev;
6984 }
6985 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6986 
6987 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6988 						  struct list_head **iter,
6989 						  bool *ignore)
6990 {
6991 	struct netdev_adjacent *upper;
6992 
6993 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6994 
6995 	if (&upper->list == &dev->adj_list.upper)
6996 		return NULL;
6997 
6998 	*iter = &upper->list;
6999 	*ignore = upper->ignore;
7000 
7001 	return upper->dev;
7002 }
7003 
7004 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7005 						    struct list_head **iter)
7006 {
7007 	struct netdev_adjacent *upper;
7008 
7009 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7010 
7011 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7012 
7013 	if (&upper->list == &dev->adj_list.upper)
7014 		return NULL;
7015 
7016 	*iter = &upper->list;
7017 
7018 	return upper->dev;
7019 }
7020 
7021 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7022 				       int (*fn)(struct net_device *dev,
7023 					 struct netdev_nested_priv *priv),
7024 				       struct netdev_nested_priv *priv)
7025 {
7026 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7027 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7028 	int ret, cur = 0;
7029 	bool ignore;
7030 
7031 	now = dev;
7032 	iter = &dev->adj_list.upper;
7033 
7034 	while (1) {
7035 		if (now != dev) {
7036 			ret = fn(now, priv);
7037 			if (ret)
7038 				return ret;
7039 		}
7040 
7041 		next = NULL;
7042 		while (1) {
7043 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7044 			if (!udev)
7045 				break;
7046 			if (ignore)
7047 				continue;
7048 
7049 			next = udev;
7050 			niter = &udev->adj_list.upper;
7051 			dev_stack[cur] = now;
7052 			iter_stack[cur++] = iter;
7053 			break;
7054 		}
7055 
7056 		if (!next) {
7057 			if (!cur)
7058 				return 0;
7059 			next = dev_stack[--cur];
7060 			niter = iter_stack[cur];
7061 		}
7062 
7063 		now = next;
7064 		iter = niter;
7065 	}
7066 
7067 	return 0;
7068 }
7069 
7070 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7071 				  int (*fn)(struct net_device *dev,
7072 					    struct netdev_nested_priv *priv),
7073 				  struct netdev_nested_priv *priv)
7074 {
7075 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7076 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7077 	int ret, cur = 0;
7078 
7079 	now = dev;
7080 	iter = &dev->adj_list.upper;
7081 
7082 	while (1) {
7083 		if (now != dev) {
7084 			ret = fn(now, priv);
7085 			if (ret)
7086 				return ret;
7087 		}
7088 
7089 		next = NULL;
7090 		while (1) {
7091 			udev = netdev_next_upper_dev_rcu(now, &iter);
7092 			if (!udev)
7093 				break;
7094 
7095 			next = udev;
7096 			niter = &udev->adj_list.upper;
7097 			dev_stack[cur] = now;
7098 			iter_stack[cur++] = iter;
7099 			break;
7100 		}
7101 
7102 		if (!next) {
7103 			if (!cur)
7104 				return 0;
7105 			next = dev_stack[--cur];
7106 			niter = iter_stack[cur];
7107 		}
7108 
7109 		now = next;
7110 		iter = niter;
7111 	}
7112 
7113 	return 0;
7114 }
7115 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7116 
7117 static bool __netdev_has_upper_dev(struct net_device *dev,
7118 				   struct net_device *upper_dev)
7119 {
7120 	struct netdev_nested_priv priv = {
7121 		.flags = 0,
7122 		.data = (void *)upper_dev,
7123 	};
7124 
7125 	ASSERT_RTNL();
7126 
7127 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7128 					   &priv);
7129 }
7130 
7131 /**
7132  * netdev_lower_get_next_private - Get the next ->private from the
7133  *				   lower neighbour list
7134  * @dev: device
7135  * @iter: list_head ** of the current position
7136  *
7137  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7138  * list, starting from iter position. The caller must hold either hold the
7139  * RTNL lock or its own locking that guarantees that the neighbour lower
7140  * list will remain unchanged.
7141  */
7142 void *netdev_lower_get_next_private(struct net_device *dev,
7143 				    struct list_head **iter)
7144 {
7145 	struct netdev_adjacent *lower;
7146 
7147 	lower = list_entry(*iter, struct netdev_adjacent, list);
7148 
7149 	if (&lower->list == &dev->adj_list.lower)
7150 		return NULL;
7151 
7152 	*iter = lower->list.next;
7153 
7154 	return lower->private;
7155 }
7156 EXPORT_SYMBOL(netdev_lower_get_next_private);
7157 
7158 /**
7159  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7160  *				       lower neighbour list, RCU
7161  *				       variant
7162  * @dev: device
7163  * @iter: list_head ** of the current position
7164  *
7165  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7166  * list, starting from iter position. The caller must hold RCU read lock.
7167  */
7168 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7169 					struct list_head **iter)
7170 {
7171 	struct netdev_adjacent *lower;
7172 
7173 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7174 
7175 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7176 
7177 	if (&lower->list == &dev->adj_list.lower)
7178 		return NULL;
7179 
7180 	*iter = &lower->list;
7181 
7182 	return lower->private;
7183 }
7184 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7185 
7186 /**
7187  * netdev_lower_get_next - Get the next device from the lower neighbour
7188  *                         list
7189  * @dev: device
7190  * @iter: list_head ** of the current position
7191  *
7192  * Gets the next netdev_adjacent from the dev's lower neighbour
7193  * list, starting from iter position. The caller must hold RTNL lock or
7194  * its own locking that guarantees that the neighbour lower
7195  * list will remain unchanged.
7196  */
7197 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7198 {
7199 	struct netdev_adjacent *lower;
7200 
7201 	lower = list_entry(*iter, struct netdev_adjacent, list);
7202 
7203 	if (&lower->list == &dev->adj_list.lower)
7204 		return NULL;
7205 
7206 	*iter = lower->list.next;
7207 
7208 	return lower->dev;
7209 }
7210 EXPORT_SYMBOL(netdev_lower_get_next);
7211 
7212 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7213 						struct list_head **iter)
7214 {
7215 	struct netdev_adjacent *lower;
7216 
7217 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7218 
7219 	if (&lower->list == &dev->adj_list.lower)
7220 		return NULL;
7221 
7222 	*iter = &lower->list;
7223 
7224 	return lower->dev;
7225 }
7226 
7227 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7228 						  struct list_head **iter,
7229 						  bool *ignore)
7230 {
7231 	struct netdev_adjacent *lower;
7232 
7233 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7234 
7235 	if (&lower->list == &dev->adj_list.lower)
7236 		return NULL;
7237 
7238 	*iter = &lower->list;
7239 	*ignore = lower->ignore;
7240 
7241 	return lower->dev;
7242 }
7243 
7244 int netdev_walk_all_lower_dev(struct net_device *dev,
7245 			      int (*fn)(struct net_device *dev,
7246 					struct netdev_nested_priv *priv),
7247 			      struct netdev_nested_priv *priv)
7248 {
7249 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7250 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7251 	int ret, cur = 0;
7252 
7253 	now = dev;
7254 	iter = &dev->adj_list.lower;
7255 
7256 	while (1) {
7257 		if (now != dev) {
7258 			ret = fn(now, priv);
7259 			if (ret)
7260 				return ret;
7261 		}
7262 
7263 		next = NULL;
7264 		while (1) {
7265 			ldev = netdev_next_lower_dev(now, &iter);
7266 			if (!ldev)
7267 				break;
7268 
7269 			next = ldev;
7270 			niter = &ldev->adj_list.lower;
7271 			dev_stack[cur] = now;
7272 			iter_stack[cur++] = iter;
7273 			break;
7274 		}
7275 
7276 		if (!next) {
7277 			if (!cur)
7278 				return 0;
7279 			next = dev_stack[--cur];
7280 			niter = iter_stack[cur];
7281 		}
7282 
7283 		now = next;
7284 		iter = niter;
7285 	}
7286 
7287 	return 0;
7288 }
7289 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7290 
7291 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7292 				       int (*fn)(struct net_device *dev,
7293 					 struct netdev_nested_priv *priv),
7294 				       struct netdev_nested_priv *priv)
7295 {
7296 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7297 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7298 	int ret, cur = 0;
7299 	bool ignore;
7300 
7301 	now = dev;
7302 	iter = &dev->adj_list.lower;
7303 
7304 	while (1) {
7305 		if (now != dev) {
7306 			ret = fn(now, priv);
7307 			if (ret)
7308 				return ret;
7309 		}
7310 
7311 		next = NULL;
7312 		while (1) {
7313 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7314 			if (!ldev)
7315 				break;
7316 			if (ignore)
7317 				continue;
7318 
7319 			next = ldev;
7320 			niter = &ldev->adj_list.lower;
7321 			dev_stack[cur] = now;
7322 			iter_stack[cur++] = iter;
7323 			break;
7324 		}
7325 
7326 		if (!next) {
7327 			if (!cur)
7328 				return 0;
7329 			next = dev_stack[--cur];
7330 			niter = iter_stack[cur];
7331 		}
7332 
7333 		now = next;
7334 		iter = niter;
7335 	}
7336 
7337 	return 0;
7338 }
7339 
7340 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7341 					     struct list_head **iter)
7342 {
7343 	struct netdev_adjacent *lower;
7344 
7345 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7346 	if (&lower->list == &dev->adj_list.lower)
7347 		return NULL;
7348 
7349 	*iter = &lower->list;
7350 
7351 	return lower->dev;
7352 }
7353 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7354 
7355 static u8 __netdev_upper_depth(struct net_device *dev)
7356 {
7357 	struct net_device *udev;
7358 	struct list_head *iter;
7359 	u8 max_depth = 0;
7360 	bool ignore;
7361 
7362 	for (iter = &dev->adj_list.upper,
7363 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7364 	     udev;
7365 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7366 		if (ignore)
7367 			continue;
7368 		if (max_depth < udev->upper_level)
7369 			max_depth = udev->upper_level;
7370 	}
7371 
7372 	return max_depth;
7373 }
7374 
7375 static u8 __netdev_lower_depth(struct net_device *dev)
7376 {
7377 	struct net_device *ldev;
7378 	struct list_head *iter;
7379 	u8 max_depth = 0;
7380 	bool ignore;
7381 
7382 	for (iter = &dev->adj_list.lower,
7383 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7384 	     ldev;
7385 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7386 		if (ignore)
7387 			continue;
7388 		if (max_depth < ldev->lower_level)
7389 			max_depth = ldev->lower_level;
7390 	}
7391 
7392 	return max_depth;
7393 }
7394 
7395 static int __netdev_update_upper_level(struct net_device *dev,
7396 				       struct netdev_nested_priv *__unused)
7397 {
7398 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7399 	return 0;
7400 }
7401 
7402 #ifdef CONFIG_LOCKDEP
7403 static LIST_HEAD(net_unlink_list);
7404 
7405 static void net_unlink_todo(struct net_device *dev)
7406 {
7407 	if (list_empty(&dev->unlink_list))
7408 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7409 }
7410 #endif
7411 
7412 static int __netdev_update_lower_level(struct net_device *dev,
7413 				       struct netdev_nested_priv *priv)
7414 {
7415 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7416 
7417 #ifdef CONFIG_LOCKDEP
7418 	if (!priv)
7419 		return 0;
7420 
7421 	if (priv->flags & NESTED_SYNC_IMM)
7422 		dev->nested_level = dev->lower_level - 1;
7423 	if (priv->flags & NESTED_SYNC_TODO)
7424 		net_unlink_todo(dev);
7425 #endif
7426 	return 0;
7427 }
7428 
7429 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7430 				  int (*fn)(struct net_device *dev,
7431 					    struct netdev_nested_priv *priv),
7432 				  struct netdev_nested_priv *priv)
7433 {
7434 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7435 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7436 	int ret, cur = 0;
7437 
7438 	now = dev;
7439 	iter = &dev->adj_list.lower;
7440 
7441 	while (1) {
7442 		if (now != dev) {
7443 			ret = fn(now, priv);
7444 			if (ret)
7445 				return ret;
7446 		}
7447 
7448 		next = NULL;
7449 		while (1) {
7450 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7451 			if (!ldev)
7452 				break;
7453 
7454 			next = ldev;
7455 			niter = &ldev->adj_list.lower;
7456 			dev_stack[cur] = now;
7457 			iter_stack[cur++] = iter;
7458 			break;
7459 		}
7460 
7461 		if (!next) {
7462 			if (!cur)
7463 				return 0;
7464 			next = dev_stack[--cur];
7465 			niter = iter_stack[cur];
7466 		}
7467 
7468 		now = next;
7469 		iter = niter;
7470 	}
7471 
7472 	return 0;
7473 }
7474 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7475 
7476 /**
7477  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7478  *				       lower neighbour list, RCU
7479  *				       variant
7480  * @dev: device
7481  *
7482  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7483  * list. The caller must hold RCU read lock.
7484  */
7485 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7486 {
7487 	struct netdev_adjacent *lower;
7488 
7489 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7490 			struct netdev_adjacent, list);
7491 	if (lower)
7492 		return lower->private;
7493 	return NULL;
7494 }
7495 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7496 
7497 /**
7498  * netdev_master_upper_dev_get_rcu - Get master upper device
7499  * @dev: device
7500  *
7501  * Find a master upper device and return pointer to it or NULL in case
7502  * it's not there. The caller must hold the RCU read lock.
7503  */
7504 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7505 {
7506 	struct netdev_adjacent *upper;
7507 
7508 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7509 				       struct netdev_adjacent, list);
7510 	if (upper && likely(upper->master))
7511 		return upper->dev;
7512 	return NULL;
7513 }
7514 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7515 
7516 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7517 			      struct net_device *adj_dev,
7518 			      struct list_head *dev_list)
7519 {
7520 	char linkname[IFNAMSIZ+7];
7521 
7522 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7523 		"upper_%s" : "lower_%s", adj_dev->name);
7524 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7525 				 linkname);
7526 }
7527 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7528 			       char *name,
7529 			       struct list_head *dev_list)
7530 {
7531 	char linkname[IFNAMSIZ+7];
7532 
7533 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7534 		"upper_%s" : "lower_%s", name);
7535 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7536 }
7537 
7538 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7539 						 struct net_device *adj_dev,
7540 						 struct list_head *dev_list)
7541 {
7542 	return (dev_list == &dev->adj_list.upper ||
7543 		dev_list == &dev->adj_list.lower) &&
7544 		net_eq(dev_net(dev), dev_net(adj_dev));
7545 }
7546 
7547 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7548 					struct net_device *adj_dev,
7549 					struct list_head *dev_list,
7550 					void *private, bool master)
7551 {
7552 	struct netdev_adjacent *adj;
7553 	int ret;
7554 
7555 	adj = __netdev_find_adj(adj_dev, dev_list);
7556 
7557 	if (adj) {
7558 		adj->ref_nr += 1;
7559 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7560 			 dev->name, adj_dev->name, adj->ref_nr);
7561 
7562 		return 0;
7563 	}
7564 
7565 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7566 	if (!adj)
7567 		return -ENOMEM;
7568 
7569 	adj->dev = adj_dev;
7570 	adj->master = master;
7571 	adj->ref_nr = 1;
7572 	adj->private = private;
7573 	adj->ignore = false;
7574 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7575 
7576 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7577 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7578 
7579 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7580 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7581 		if (ret)
7582 			goto free_adj;
7583 	}
7584 
7585 	/* Ensure that master link is always the first item in list. */
7586 	if (master) {
7587 		ret = sysfs_create_link(&(dev->dev.kobj),
7588 					&(adj_dev->dev.kobj), "master");
7589 		if (ret)
7590 			goto remove_symlinks;
7591 
7592 		list_add_rcu(&adj->list, dev_list);
7593 	} else {
7594 		list_add_tail_rcu(&adj->list, dev_list);
7595 	}
7596 
7597 	return 0;
7598 
7599 remove_symlinks:
7600 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7601 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7602 free_adj:
7603 	netdev_put(adj_dev, &adj->dev_tracker);
7604 	kfree(adj);
7605 
7606 	return ret;
7607 }
7608 
7609 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7610 					 struct net_device *adj_dev,
7611 					 u16 ref_nr,
7612 					 struct list_head *dev_list)
7613 {
7614 	struct netdev_adjacent *adj;
7615 
7616 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7617 		 dev->name, adj_dev->name, ref_nr);
7618 
7619 	adj = __netdev_find_adj(adj_dev, dev_list);
7620 
7621 	if (!adj) {
7622 		pr_err("Adjacency does not exist for device %s from %s\n",
7623 		       dev->name, adj_dev->name);
7624 		WARN_ON(1);
7625 		return;
7626 	}
7627 
7628 	if (adj->ref_nr > ref_nr) {
7629 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7630 			 dev->name, adj_dev->name, ref_nr,
7631 			 adj->ref_nr - ref_nr);
7632 		adj->ref_nr -= ref_nr;
7633 		return;
7634 	}
7635 
7636 	if (adj->master)
7637 		sysfs_remove_link(&(dev->dev.kobj), "master");
7638 
7639 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7640 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7641 
7642 	list_del_rcu(&adj->list);
7643 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7644 		 adj_dev->name, dev->name, adj_dev->name);
7645 	netdev_put(adj_dev, &adj->dev_tracker);
7646 	kfree_rcu(adj, rcu);
7647 }
7648 
7649 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7650 					    struct net_device *upper_dev,
7651 					    struct list_head *up_list,
7652 					    struct list_head *down_list,
7653 					    void *private, bool master)
7654 {
7655 	int ret;
7656 
7657 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7658 					   private, master);
7659 	if (ret)
7660 		return ret;
7661 
7662 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7663 					   private, false);
7664 	if (ret) {
7665 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7666 		return ret;
7667 	}
7668 
7669 	return 0;
7670 }
7671 
7672 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7673 					       struct net_device *upper_dev,
7674 					       u16 ref_nr,
7675 					       struct list_head *up_list,
7676 					       struct list_head *down_list)
7677 {
7678 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7679 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7680 }
7681 
7682 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7683 						struct net_device *upper_dev,
7684 						void *private, bool master)
7685 {
7686 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7687 						&dev->adj_list.upper,
7688 						&upper_dev->adj_list.lower,
7689 						private, master);
7690 }
7691 
7692 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7693 						   struct net_device *upper_dev)
7694 {
7695 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7696 					   &dev->adj_list.upper,
7697 					   &upper_dev->adj_list.lower);
7698 }
7699 
7700 static int __netdev_upper_dev_link(struct net_device *dev,
7701 				   struct net_device *upper_dev, bool master,
7702 				   void *upper_priv, void *upper_info,
7703 				   struct netdev_nested_priv *priv,
7704 				   struct netlink_ext_ack *extack)
7705 {
7706 	struct netdev_notifier_changeupper_info changeupper_info = {
7707 		.info = {
7708 			.dev = dev,
7709 			.extack = extack,
7710 		},
7711 		.upper_dev = upper_dev,
7712 		.master = master,
7713 		.linking = true,
7714 		.upper_info = upper_info,
7715 	};
7716 	struct net_device *master_dev;
7717 	int ret = 0;
7718 
7719 	ASSERT_RTNL();
7720 
7721 	if (dev == upper_dev)
7722 		return -EBUSY;
7723 
7724 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7725 	if (__netdev_has_upper_dev(upper_dev, dev))
7726 		return -EBUSY;
7727 
7728 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7729 		return -EMLINK;
7730 
7731 	if (!master) {
7732 		if (__netdev_has_upper_dev(dev, upper_dev))
7733 			return -EEXIST;
7734 	} else {
7735 		master_dev = __netdev_master_upper_dev_get(dev);
7736 		if (master_dev)
7737 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7738 	}
7739 
7740 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7741 					    &changeupper_info.info);
7742 	ret = notifier_to_errno(ret);
7743 	if (ret)
7744 		return ret;
7745 
7746 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7747 						   master);
7748 	if (ret)
7749 		return ret;
7750 
7751 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7752 					    &changeupper_info.info);
7753 	ret = notifier_to_errno(ret);
7754 	if (ret)
7755 		goto rollback;
7756 
7757 	__netdev_update_upper_level(dev, NULL);
7758 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7759 
7760 	__netdev_update_lower_level(upper_dev, priv);
7761 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7762 				    priv);
7763 
7764 	return 0;
7765 
7766 rollback:
7767 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7768 
7769 	return ret;
7770 }
7771 
7772 /**
7773  * netdev_upper_dev_link - Add a link to the upper device
7774  * @dev: device
7775  * @upper_dev: new upper device
7776  * @extack: netlink extended ack
7777  *
7778  * Adds a link to device which is upper to this one. The caller must hold
7779  * the RTNL lock. On a failure a negative errno code is returned.
7780  * On success the reference counts are adjusted and the function
7781  * returns zero.
7782  */
7783 int netdev_upper_dev_link(struct net_device *dev,
7784 			  struct net_device *upper_dev,
7785 			  struct netlink_ext_ack *extack)
7786 {
7787 	struct netdev_nested_priv priv = {
7788 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7789 		.data = NULL,
7790 	};
7791 
7792 	return __netdev_upper_dev_link(dev, upper_dev, false,
7793 				       NULL, NULL, &priv, extack);
7794 }
7795 EXPORT_SYMBOL(netdev_upper_dev_link);
7796 
7797 /**
7798  * netdev_master_upper_dev_link - Add a master link to the upper device
7799  * @dev: device
7800  * @upper_dev: new upper device
7801  * @upper_priv: upper device private
7802  * @upper_info: upper info to be passed down via notifier
7803  * @extack: netlink extended ack
7804  *
7805  * Adds a link to device which is upper to this one. In this case, only
7806  * one master upper device can be linked, although other non-master devices
7807  * might be linked as well. The caller must hold the RTNL lock.
7808  * On a failure a negative errno code is returned. On success the reference
7809  * counts are adjusted and the function returns zero.
7810  */
7811 int netdev_master_upper_dev_link(struct net_device *dev,
7812 				 struct net_device *upper_dev,
7813 				 void *upper_priv, void *upper_info,
7814 				 struct netlink_ext_ack *extack)
7815 {
7816 	struct netdev_nested_priv priv = {
7817 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7818 		.data = NULL,
7819 	};
7820 
7821 	return __netdev_upper_dev_link(dev, upper_dev, true,
7822 				       upper_priv, upper_info, &priv, extack);
7823 }
7824 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7825 
7826 static void __netdev_upper_dev_unlink(struct net_device *dev,
7827 				      struct net_device *upper_dev,
7828 				      struct netdev_nested_priv *priv)
7829 {
7830 	struct netdev_notifier_changeupper_info changeupper_info = {
7831 		.info = {
7832 			.dev = dev,
7833 		},
7834 		.upper_dev = upper_dev,
7835 		.linking = false,
7836 	};
7837 
7838 	ASSERT_RTNL();
7839 
7840 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7841 
7842 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7843 				      &changeupper_info.info);
7844 
7845 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7846 
7847 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7848 				      &changeupper_info.info);
7849 
7850 	__netdev_update_upper_level(dev, NULL);
7851 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7852 
7853 	__netdev_update_lower_level(upper_dev, priv);
7854 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7855 				    priv);
7856 }
7857 
7858 /**
7859  * netdev_upper_dev_unlink - Removes a link to upper device
7860  * @dev: device
7861  * @upper_dev: new upper device
7862  *
7863  * Removes a link to device which is upper to this one. The caller must hold
7864  * the RTNL lock.
7865  */
7866 void netdev_upper_dev_unlink(struct net_device *dev,
7867 			     struct net_device *upper_dev)
7868 {
7869 	struct netdev_nested_priv priv = {
7870 		.flags = NESTED_SYNC_TODO,
7871 		.data = NULL,
7872 	};
7873 
7874 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7875 }
7876 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7877 
7878 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7879 				      struct net_device *lower_dev,
7880 				      bool val)
7881 {
7882 	struct netdev_adjacent *adj;
7883 
7884 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7885 	if (adj)
7886 		adj->ignore = val;
7887 
7888 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7889 	if (adj)
7890 		adj->ignore = val;
7891 }
7892 
7893 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7894 					struct net_device *lower_dev)
7895 {
7896 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7897 }
7898 
7899 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7900 				       struct net_device *lower_dev)
7901 {
7902 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7903 }
7904 
7905 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7906 				   struct net_device *new_dev,
7907 				   struct net_device *dev,
7908 				   struct netlink_ext_ack *extack)
7909 {
7910 	struct netdev_nested_priv priv = {
7911 		.flags = 0,
7912 		.data = NULL,
7913 	};
7914 	int err;
7915 
7916 	if (!new_dev)
7917 		return 0;
7918 
7919 	if (old_dev && new_dev != old_dev)
7920 		netdev_adjacent_dev_disable(dev, old_dev);
7921 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7922 				      extack);
7923 	if (err) {
7924 		if (old_dev && new_dev != old_dev)
7925 			netdev_adjacent_dev_enable(dev, old_dev);
7926 		return err;
7927 	}
7928 
7929 	return 0;
7930 }
7931 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7932 
7933 void netdev_adjacent_change_commit(struct net_device *old_dev,
7934 				   struct net_device *new_dev,
7935 				   struct net_device *dev)
7936 {
7937 	struct netdev_nested_priv priv = {
7938 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7939 		.data = NULL,
7940 	};
7941 
7942 	if (!new_dev || !old_dev)
7943 		return;
7944 
7945 	if (new_dev == old_dev)
7946 		return;
7947 
7948 	netdev_adjacent_dev_enable(dev, old_dev);
7949 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7950 }
7951 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7952 
7953 void netdev_adjacent_change_abort(struct net_device *old_dev,
7954 				  struct net_device *new_dev,
7955 				  struct net_device *dev)
7956 {
7957 	struct netdev_nested_priv priv = {
7958 		.flags = 0,
7959 		.data = NULL,
7960 	};
7961 
7962 	if (!new_dev)
7963 		return;
7964 
7965 	if (old_dev && new_dev != old_dev)
7966 		netdev_adjacent_dev_enable(dev, old_dev);
7967 
7968 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7969 }
7970 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7971 
7972 /**
7973  * netdev_bonding_info_change - Dispatch event about slave change
7974  * @dev: device
7975  * @bonding_info: info to dispatch
7976  *
7977  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7978  * The caller must hold the RTNL lock.
7979  */
7980 void netdev_bonding_info_change(struct net_device *dev,
7981 				struct netdev_bonding_info *bonding_info)
7982 {
7983 	struct netdev_notifier_bonding_info info = {
7984 		.info.dev = dev,
7985 	};
7986 
7987 	memcpy(&info.bonding_info, bonding_info,
7988 	       sizeof(struct netdev_bonding_info));
7989 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7990 				      &info.info);
7991 }
7992 EXPORT_SYMBOL(netdev_bonding_info_change);
7993 
7994 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7995 					   struct netlink_ext_ack *extack)
7996 {
7997 	struct netdev_notifier_offload_xstats_info info = {
7998 		.info.dev = dev,
7999 		.info.extack = extack,
8000 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8001 	};
8002 	int err;
8003 	int rc;
8004 
8005 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8006 					 GFP_KERNEL);
8007 	if (!dev->offload_xstats_l3)
8008 		return -ENOMEM;
8009 
8010 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8011 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8012 						  &info.info);
8013 	err = notifier_to_errno(rc);
8014 	if (err)
8015 		goto free_stats;
8016 
8017 	return 0;
8018 
8019 free_stats:
8020 	kfree(dev->offload_xstats_l3);
8021 	dev->offload_xstats_l3 = NULL;
8022 	return err;
8023 }
8024 
8025 int netdev_offload_xstats_enable(struct net_device *dev,
8026 				 enum netdev_offload_xstats_type type,
8027 				 struct netlink_ext_ack *extack)
8028 {
8029 	ASSERT_RTNL();
8030 
8031 	if (netdev_offload_xstats_enabled(dev, type))
8032 		return -EALREADY;
8033 
8034 	switch (type) {
8035 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8036 		return netdev_offload_xstats_enable_l3(dev, extack);
8037 	}
8038 
8039 	WARN_ON(1);
8040 	return -EINVAL;
8041 }
8042 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8043 
8044 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8045 {
8046 	struct netdev_notifier_offload_xstats_info info = {
8047 		.info.dev = dev,
8048 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8049 	};
8050 
8051 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8052 				      &info.info);
8053 	kfree(dev->offload_xstats_l3);
8054 	dev->offload_xstats_l3 = NULL;
8055 }
8056 
8057 int netdev_offload_xstats_disable(struct net_device *dev,
8058 				  enum netdev_offload_xstats_type type)
8059 {
8060 	ASSERT_RTNL();
8061 
8062 	if (!netdev_offload_xstats_enabled(dev, type))
8063 		return -EALREADY;
8064 
8065 	switch (type) {
8066 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8067 		netdev_offload_xstats_disable_l3(dev);
8068 		return 0;
8069 	}
8070 
8071 	WARN_ON(1);
8072 	return -EINVAL;
8073 }
8074 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8075 
8076 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8077 {
8078 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8079 }
8080 
8081 static struct rtnl_hw_stats64 *
8082 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8083 			      enum netdev_offload_xstats_type type)
8084 {
8085 	switch (type) {
8086 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8087 		return dev->offload_xstats_l3;
8088 	}
8089 
8090 	WARN_ON(1);
8091 	return NULL;
8092 }
8093 
8094 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8095 				   enum netdev_offload_xstats_type type)
8096 {
8097 	ASSERT_RTNL();
8098 
8099 	return netdev_offload_xstats_get_ptr(dev, type);
8100 }
8101 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8102 
8103 struct netdev_notifier_offload_xstats_ru {
8104 	bool used;
8105 };
8106 
8107 struct netdev_notifier_offload_xstats_rd {
8108 	struct rtnl_hw_stats64 stats;
8109 	bool used;
8110 };
8111 
8112 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8113 				  const struct rtnl_hw_stats64 *src)
8114 {
8115 	dest->rx_packets	  += src->rx_packets;
8116 	dest->tx_packets	  += src->tx_packets;
8117 	dest->rx_bytes		  += src->rx_bytes;
8118 	dest->tx_bytes		  += src->tx_bytes;
8119 	dest->rx_errors		  += src->rx_errors;
8120 	dest->tx_errors		  += src->tx_errors;
8121 	dest->rx_dropped	  += src->rx_dropped;
8122 	dest->tx_dropped	  += src->tx_dropped;
8123 	dest->multicast		  += src->multicast;
8124 }
8125 
8126 static int netdev_offload_xstats_get_used(struct net_device *dev,
8127 					  enum netdev_offload_xstats_type type,
8128 					  bool *p_used,
8129 					  struct netlink_ext_ack *extack)
8130 {
8131 	struct netdev_notifier_offload_xstats_ru report_used = {};
8132 	struct netdev_notifier_offload_xstats_info info = {
8133 		.info.dev = dev,
8134 		.info.extack = extack,
8135 		.type = type,
8136 		.report_used = &report_used,
8137 	};
8138 	int rc;
8139 
8140 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8141 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8142 					   &info.info);
8143 	*p_used = report_used.used;
8144 	return notifier_to_errno(rc);
8145 }
8146 
8147 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8148 					   enum netdev_offload_xstats_type type,
8149 					   struct rtnl_hw_stats64 *p_stats,
8150 					   bool *p_used,
8151 					   struct netlink_ext_ack *extack)
8152 {
8153 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8154 	struct netdev_notifier_offload_xstats_info info = {
8155 		.info.dev = dev,
8156 		.info.extack = extack,
8157 		.type = type,
8158 		.report_delta = &report_delta,
8159 	};
8160 	struct rtnl_hw_stats64 *stats;
8161 	int rc;
8162 
8163 	stats = netdev_offload_xstats_get_ptr(dev, type);
8164 	if (WARN_ON(!stats))
8165 		return -EINVAL;
8166 
8167 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8168 					   &info.info);
8169 
8170 	/* Cache whatever we got, even if there was an error, otherwise the
8171 	 * successful stats retrievals would get lost.
8172 	 */
8173 	netdev_hw_stats64_add(stats, &report_delta.stats);
8174 
8175 	if (p_stats)
8176 		*p_stats = *stats;
8177 	*p_used = report_delta.used;
8178 
8179 	return notifier_to_errno(rc);
8180 }
8181 
8182 int netdev_offload_xstats_get(struct net_device *dev,
8183 			      enum netdev_offload_xstats_type type,
8184 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8185 			      struct netlink_ext_ack *extack)
8186 {
8187 	ASSERT_RTNL();
8188 
8189 	if (p_stats)
8190 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8191 						       p_used, extack);
8192 	else
8193 		return netdev_offload_xstats_get_used(dev, type, p_used,
8194 						      extack);
8195 }
8196 EXPORT_SYMBOL(netdev_offload_xstats_get);
8197 
8198 void
8199 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8200 				   const struct rtnl_hw_stats64 *stats)
8201 {
8202 	report_delta->used = true;
8203 	netdev_hw_stats64_add(&report_delta->stats, stats);
8204 }
8205 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8206 
8207 void
8208 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8209 {
8210 	report_used->used = true;
8211 }
8212 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8213 
8214 void netdev_offload_xstats_push_delta(struct net_device *dev,
8215 				      enum netdev_offload_xstats_type type,
8216 				      const struct rtnl_hw_stats64 *p_stats)
8217 {
8218 	struct rtnl_hw_stats64 *stats;
8219 
8220 	ASSERT_RTNL();
8221 
8222 	stats = netdev_offload_xstats_get_ptr(dev, type);
8223 	if (WARN_ON(!stats))
8224 		return;
8225 
8226 	netdev_hw_stats64_add(stats, p_stats);
8227 }
8228 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8229 
8230 /**
8231  * netdev_get_xmit_slave - Get the xmit slave of master device
8232  * @dev: device
8233  * @skb: The packet
8234  * @all_slaves: assume all the slaves are active
8235  *
8236  * The reference counters are not incremented so the caller must be
8237  * careful with locks. The caller must hold RCU lock.
8238  * %NULL is returned if no slave is found.
8239  */
8240 
8241 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8242 					 struct sk_buff *skb,
8243 					 bool all_slaves)
8244 {
8245 	const struct net_device_ops *ops = dev->netdev_ops;
8246 
8247 	if (!ops->ndo_get_xmit_slave)
8248 		return NULL;
8249 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8250 }
8251 EXPORT_SYMBOL(netdev_get_xmit_slave);
8252 
8253 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8254 						  struct sock *sk)
8255 {
8256 	const struct net_device_ops *ops = dev->netdev_ops;
8257 
8258 	if (!ops->ndo_sk_get_lower_dev)
8259 		return NULL;
8260 	return ops->ndo_sk_get_lower_dev(dev, sk);
8261 }
8262 
8263 /**
8264  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8265  * @dev: device
8266  * @sk: the socket
8267  *
8268  * %NULL is returned if no lower device is found.
8269  */
8270 
8271 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8272 					    struct sock *sk)
8273 {
8274 	struct net_device *lower;
8275 
8276 	lower = netdev_sk_get_lower_dev(dev, sk);
8277 	while (lower) {
8278 		dev = lower;
8279 		lower = netdev_sk_get_lower_dev(dev, sk);
8280 	}
8281 
8282 	return dev;
8283 }
8284 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8285 
8286 static void netdev_adjacent_add_links(struct net_device *dev)
8287 {
8288 	struct netdev_adjacent *iter;
8289 
8290 	struct net *net = dev_net(dev);
8291 
8292 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8293 		if (!net_eq(net, dev_net(iter->dev)))
8294 			continue;
8295 		netdev_adjacent_sysfs_add(iter->dev, dev,
8296 					  &iter->dev->adj_list.lower);
8297 		netdev_adjacent_sysfs_add(dev, iter->dev,
8298 					  &dev->adj_list.upper);
8299 	}
8300 
8301 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8302 		if (!net_eq(net, dev_net(iter->dev)))
8303 			continue;
8304 		netdev_adjacent_sysfs_add(iter->dev, dev,
8305 					  &iter->dev->adj_list.upper);
8306 		netdev_adjacent_sysfs_add(dev, iter->dev,
8307 					  &dev->adj_list.lower);
8308 	}
8309 }
8310 
8311 static void netdev_adjacent_del_links(struct net_device *dev)
8312 {
8313 	struct netdev_adjacent *iter;
8314 
8315 	struct net *net = dev_net(dev);
8316 
8317 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8318 		if (!net_eq(net, dev_net(iter->dev)))
8319 			continue;
8320 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8321 					  &iter->dev->adj_list.lower);
8322 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8323 					  &dev->adj_list.upper);
8324 	}
8325 
8326 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8327 		if (!net_eq(net, dev_net(iter->dev)))
8328 			continue;
8329 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8330 					  &iter->dev->adj_list.upper);
8331 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8332 					  &dev->adj_list.lower);
8333 	}
8334 }
8335 
8336 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8337 {
8338 	struct netdev_adjacent *iter;
8339 
8340 	struct net *net = dev_net(dev);
8341 
8342 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8343 		if (!net_eq(net, dev_net(iter->dev)))
8344 			continue;
8345 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8346 					  &iter->dev->adj_list.lower);
8347 		netdev_adjacent_sysfs_add(iter->dev, dev,
8348 					  &iter->dev->adj_list.lower);
8349 	}
8350 
8351 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8352 		if (!net_eq(net, dev_net(iter->dev)))
8353 			continue;
8354 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8355 					  &iter->dev->adj_list.upper);
8356 		netdev_adjacent_sysfs_add(iter->dev, dev,
8357 					  &iter->dev->adj_list.upper);
8358 	}
8359 }
8360 
8361 void *netdev_lower_dev_get_private(struct net_device *dev,
8362 				   struct net_device *lower_dev)
8363 {
8364 	struct netdev_adjacent *lower;
8365 
8366 	if (!lower_dev)
8367 		return NULL;
8368 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8369 	if (!lower)
8370 		return NULL;
8371 
8372 	return lower->private;
8373 }
8374 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8375 
8376 
8377 /**
8378  * netdev_lower_state_changed - Dispatch event about lower device state change
8379  * @lower_dev: device
8380  * @lower_state_info: state to dispatch
8381  *
8382  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8383  * The caller must hold the RTNL lock.
8384  */
8385 void netdev_lower_state_changed(struct net_device *lower_dev,
8386 				void *lower_state_info)
8387 {
8388 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8389 		.info.dev = lower_dev,
8390 	};
8391 
8392 	ASSERT_RTNL();
8393 	changelowerstate_info.lower_state_info = lower_state_info;
8394 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8395 				      &changelowerstate_info.info);
8396 }
8397 EXPORT_SYMBOL(netdev_lower_state_changed);
8398 
8399 static void dev_change_rx_flags(struct net_device *dev, int flags)
8400 {
8401 	const struct net_device_ops *ops = dev->netdev_ops;
8402 
8403 	if (ops->ndo_change_rx_flags)
8404 		ops->ndo_change_rx_flags(dev, flags);
8405 }
8406 
8407 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8408 {
8409 	unsigned int old_flags = dev->flags;
8410 	kuid_t uid;
8411 	kgid_t gid;
8412 
8413 	ASSERT_RTNL();
8414 
8415 	dev->flags |= IFF_PROMISC;
8416 	dev->promiscuity += inc;
8417 	if (dev->promiscuity == 0) {
8418 		/*
8419 		 * Avoid overflow.
8420 		 * If inc causes overflow, untouch promisc and return error.
8421 		 */
8422 		if (inc < 0)
8423 			dev->flags &= ~IFF_PROMISC;
8424 		else {
8425 			dev->promiscuity -= inc;
8426 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8427 			return -EOVERFLOW;
8428 		}
8429 	}
8430 	if (dev->flags != old_flags) {
8431 		netdev_info(dev, "%s promiscuous mode\n",
8432 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8433 		if (audit_enabled) {
8434 			current_uid_gid(&uid, &gid);
8435 			audit_log(audit_context(), GFP_ATOMIC,
8436 				  AUDIT_ANOM_PROMISCUOUS,
8437 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8438 				  dev->name, (dev->flags & IFF_PROMISC),
8439 				  (old_flags & IFF_PROMISC),
8440 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8441 				  from_kuid(&init_user_ns, uid),
8442 				  from_kgid(&init_user_ns, gid),
8443 				  audit_get_sessionid(current));
8444 		}
8445 
8446 		dev_change_rx_flags(dev, IFF_PROMISC);
8447 	}
8448 	if (notify)
8449 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8450 	return 0;
8451 }
8452 
8453 /**
8454  *	dev_set_promiscuity	- update promiscuity count on a device
8455  *	@dev: device
8456  *	@inc: modifier
8457  *
8458  *	Add or remove promiscuity from a device. While the count in the device
8459  *	remains above zero the interface remains promiscuous. Once it hits zero
8460  *	the device reverts back to normal filtering operation. A negative inc
8461  *	value is used to drop promiscuity on the device.
8462  *	Return 0 if successful or a negative errno code on error.
8463  */
8464 int dev_set_promiscuity(struct net_device *dev, int inc)
8465 {
8466 	unsigned int old_flags = dev->flags;
8467 	int err;
8468 
8469 	err = __dev_set_promiscuity(dev, inc, true);
8470 	if (err < 0)
8471 		return err;
8472 	if (dev->flags != old_flags)
8473 		dev_set_rx_mode(dev);
8474 	return err;
8475 }
8476 EXPORT_SYMBOL(dev_set_promiscuity);
8477 
8478 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8479 {
8480 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8481 
8482 	ASSERT_RTNL();
8483 
8484 	dev->flags |= IFF_ALLMULTI;
8485 	dev->allmulti += inc;
8486 	if (dev->allmulti == 0) {
8487 		/*
8488 		 * Avoid overflow.
8489 		 * If inc causes overflow, untouch allmulti and return error.
8490 		 */
8491 		if (inc < 0)
8492 			dev->flags &= ~IFF_ALLMULTI;
8493 		else {
8494 			dev->allmulti -= inc;
8495 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8496 			return -EOVERFLOW;
8497 		}
8498 	}
8499 	if (dev->flags ^ old_flags) {
8500 		netdev_info(dev, "%s allmulticast mode\n",
8501 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8502 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8503 		dev_set_rx_mode(dev);
8504 		if (notify)
8505 			__dev_notify_flags(dev, old_flags,
8506 					   dev->gflags ^ old_gflags, 0, NULL);
8507 	}
8508 	return 0;
8509 }
8510 
8511 /**
8512  *	dev_set_allmulti	- update allmulti count on a device
8513  *	@dev: device
8514  *	@inc: modifier
8515  *
8516  *	Add or remove reception of all multicast frames to a device. While the
8517  *	count in the device remains above zero the interface remains listening
8518  *	to all interfaces. Once it hits zero the device reverts back to normal
8519  *	filtering operation. A negative @inc value is used to drop the counter
8520  *	when releasing a resource needing all multicasts.
8521  *	Return 0 if successful or a negative errno code on error.
8522  */
8523 
8524 int dev_set_allmulti(struct net_device *dev, int inc)
8525 {
8526 	return __dev_set_allmulti(dev, inc, true);
8527 }
8528 EXPORT_SYMBOL(dev_set_allmulti);
8529 
8530 /*
8531  *	Upload unicast and multicast address lists to device and
8532  *	configure RX filtering. When the device doesn't support unicast
8533  *	filtering it is put in promiscuous mode while unicast addresses
8534  *	are present.
8535  */
8536 void __dev_set_rx_mode(struct net_device *dev)
8537 {
8538 	const struct net_device_ops *ops = dev->netdev_ops;
8539 
8540 	/* dev_open will call this function so the list will stay sane. */
8541 	if (!(dev->flags&IFF_UP))
8542 		return;
8543 
8544 	if (!netif_device_present(dev))
8545 		return;
8546 
8547 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8548 		/* Unicast addresses changes may only happen under the rtnl,
8549 		 * therefore calling __dev_set_promiscuity here is safe.
8550 		 */
8551 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8552 			__dev_set_promiscuity(dev, 1, false);
8553 			dev->uc_promisc = true;
8554 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8555 			__dev_set_promiscuity(dev, -1, false);
8556 			dev->uc_promisc = false;
8557 		}
8558 	}
8559 
8560 	if (ops->ndo_set_rx_mode)
8561 		ops->ndo_set_rx_mode(dev);
8562 }
8563 
8564 void dev_set_rx_mode(struct net_device *dev)
8565 {
8566 	netif_addr_lock_bh(dev);
8567 	__dev_set_rx_mode(dev);
8568 	netif_addr_unlock_bh(dev);
8569 }
8570 
8571 /**
8572  *	dev_get_flags - get flags reported to userspace
8573  *	@dev: device
8574  *
8575  *	Get the combination of flag bits exported through APIs to userspace.
8576  */
8577 unsigned int dev_get_flags(const struct net_device *dev)
8578 {
8579 	unsigned int flags;
8580 
8581 	flags = (dev->flags & ~(IFF_PROMISC |
8582 				IFF_ALLMULTI |
8583 				IFF_RUNNING |
8584 				IFF_LOWER_UP |
8585 				IFF_DORMANT)) |
8586 		(dev->gflags & (IFF_PROMISC |
8587 				IFF_ALLMULTI));
8588 
8589 	if (netif_running(dev)) {
8590 		if (netif_oper_up(dev))
8591 			flags |= IFF_RUNNING;
8592 		if (netif_carrier_ok(dev))
8593 			flags |= IFF_LOWER_UP;
8594 		if (netif_dormant(dev))
8595 			flags |= IFF_DORMANT;
8596 	}
8597 
8598 	return flags;
8599 }
8600 EXPORT_SYMBOL(dev_get_flags);
8601 
8602 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8603 		       struct netlink_ext_ack *extack)
8604 {
8605 	unsigned int old_flags = dev->flags;
8606 	int ret;
8607 
8608 	ASSERT_RTNL();
8609 
8610 	/*
8611 	 *	Set the flags on our device.
8612 	 */
8613 
8614 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8615 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8616 			       IFF_AUTOMEDIA)) |
8617 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8618 				    IFF_ALLMULTI));
8619 
8620 	/*
8621 	 *	Load in the correct multicast list now the flags have changed.
8622 	 */
8623 
8624 	if ((old_flags ^ flags) & IFF_MULTICAST)
8625 		dev_change_rx_flags(dev, IFF_MULTICAST);
8626 
8627 	dev_set_rx_mode(dev);
8628 
8629 	/*
8630 	 *	Have we downed the interface. We handle IFF_UP ourselves
8631 	 *	according to user attempts to set it, rather than blindly
8632 	 *	setting it.
8633 	 */
8634 
8635 	ret = 0;
8636 	if ((old_flags ^ flags) & IFF_UP) {
8637 		if (old_flags & IFF_UP)
8638 			__dev_close(dev);
8639 		else
8640 			ret = __dev_open(dev, extack);
8641 	}
8642 
8643 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8644 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8645 		unsigned int old_flags = dev->flags;
8646 
8647 		dev->gflags ^= IFF_PROMISC;
8648 
8649 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8650 			if (dev->flags != old_flags)
8651 				dev_set_rx_mode(dev);
8652 	}
8653 
8654 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8655 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8656 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8657 	 */
8658 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8659 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8660 
8661 		dev->gflags ^= IFF_ALLMULTI;
8662 		__dev_set_allmulti(dev, inc, false);
8663 	}
8664 
8665 	return ret;
8666 }
8667 
8668 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8669 			unsigned int gchanges, u32 portid,
8670 			const struct nlmsghdr *nlh)
8671 {
8672 	unsigned int changes = dev->flags ^ old_flags;
8673 
8674 	if (gchanges)
8675 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8676 
8677 	if (changes & IFF_UP) {
8678 		if (dev->flags & IFF_UP)
8679 			call_netdevice_notifiers(NETDEV_UP, dev);
8680 		else
8681 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8682 	}
8683 
8684 	if (dev->flags & IFF_UP &&
8685 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8686 		struct netdev_notifier_change_info change_info = {
8687 			.info = {
8688 				.dev = dev,
8689 			},
8690 			.flags_changed = changes,
8691 		};
8692 
8693 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8694 	}
8695 }
8696 
8697 /**
8698  *	dev_change_flags - change device settings
8699  *	@dev: device
8700  *	@flags: device state flags
8701  *	@extack: netlink extended ack
8702  *
8703  *	Change settings on device based state flags. The flags are
8704  *	in the userspace exported format.
8705  */
8706 int dev_change_flags(struct net_device *dev, unsigned int flags,
8707 		     struct netlink_ext_ack *extack)
8708 {
8709 	int ret;
8710 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8711 
8712 	ret = __dev_change_flags(dev, flags, extack);
8713 	if (ret < 0)
8714 		return ret;
8715 
8716 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8717 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8718 	return ret;
8719 }
8720 EXPORT_SYMBOL(dev_change_flags);
8721 
8722 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8723 {
8724 	const struct net_device_ops *ops = dev->netdev_ops;
8725 
8726 	if (ops->ndo_change_mtu)
8727 		return ops->ndo_change_mtu(dev, new_mtu);
8728 
8729 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8730 	WRITE_ONCE(dev->mtu, new_mtu);
8731 	return 0;
8732 }
8733 EXPORT_SYMBOL(__dev_set_mtu);
8734 
8735 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8736 		     struct netlink_ext_ack *extack)
8737 {
8738 	/* MTU must be positive, and in range */
8739 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8740 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8741 		return -EINVAL;
8742 	}
8743 
8744 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8745 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8746 		return -EINVAL;
8747 	}
8748 	return 0;
8749 }
8750 
8751 /**
8752  *	dev_set_mtu_ext - Change maximum transfer unit
8753  *	@dev: device
8754  *	@new_mtu: new transfer unit
8755  *	@extack: netlink extended ack
8756  *
8757  *	Change the maximum transfer size of the network device.
8758  */
8759 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8760 		    struct netlink_ext_ack *extack)
8761 {
8762 	int err, orig_mtu;
8763 
8764 	if (new_mtu == dev->mtu)
8765 		return 0;
8766 
8767 	err = dev_validate_mtu(dev, new_mtu, extack);
8768 	if (err)
8769 		return err;
8770 
8771 	if (!netif_device_present(dev))
8772 		return -ENODEV;
8773 
8774 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8775 	err = notifier_to_errno(err);
8776 	if (err)
8777 		return err;
8778 
8779 	orig_mtu = dev->mtu;
8780 	err = __dev_set_mtu(dev, new_mtu);
8781 
8782 	if (!err) {
8783 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8784 						   orig_mtu);
8785 		err = notifier_to_errno(err);
8786 		if (err) {
8787 			/* setting mtu back and notifying everyone again,
8788 			 * so that they have a chance to revert changes.
8789 			 */
8790 			__dev_set_mtu(dev, orig_mtu);
8791 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8792 						     new_mtu);
8793 		}
8794 	}
8795 	return err;
8796 }
8797 
8798 int dev_set_mtu(struct net_device *dev, int new_mtu)
8799 {
8800 	struct netlink_ext_ack extack;
8801 	int err;
8802 
8803 	memset(&extack, 0, sizeof(extack));
8804 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8805 	if (err && extack._msg)
8806 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8807 	return err;
8808 }
8809 EXPORT_SYMBOL(dev_set_mtu);
8810 
8811 /**
8812  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8813  *	@dev: device
8814  *	@new_len: new tx queue length
8815  */
8816 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8817 {
8818 	unsigned int orig_len = dev->tx_queue_len;
8819 	int res;
8820 
8821 	if (new_len != (unsigned int)new_len)
8822 		return -ERANGE;
8823 
8824 	if (new_len != orig_len) {
8825 		dev->tx_queue_len = new_len;
8826 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8827 		res = notifier_to_errno(res);
8828 		if (res)
8829 			goto err_rollback;
8830 		res = dev_qdisc_change_tx_queue_len(dev);
8831 		if (res)
8832 			goto err_rollback;
8833 	}
8834 
8835 	return 0;
8836 
8837 err_rollback:
8838 	netdev_err(dev, "refused to change device tx_queue_len\n");
8839 	dev->tx_queue_len = orig_len;
8840 	return res;
8841 }
8842 
8843 /**
8844  *	dev_set_group - Change group this device belongs to
8845  *	@dev: device
8846  *	@new_group: group this device should belong to
8847  */
8848 void dev_set_group(struct net_device *dev, int new_group)
8849 {
8850 	dev->group = new_group;
8851 }
8852 
8853 /**
8854  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8855  *	@dev: device
8856  *	@addr: new address
8857  *	@extack: netlink extended ack
8858  */
8859 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8860 			      struct netlink_ext_ack *extack)
8861 {
8862 	struct netdev_notifier_pre_changeaddr_info info = {
8863 		.info.dev = dev,
8864 		.info.extack = extack,
8865 		.dev_addr = addr,
8866 	};
8867 	int rc;
8868 
8869 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8870 	return notifier_to_errno(rc);
8871 }
8872 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8873 
8874 /**
8875  *	dev_set_mac_address - Change Media Access Control Address
8876  *	@dev: device
8877  *	@sa: new address
8878  *	@extack: netlink extended ack
8879  *
8880  *	Change the hardware (MAC) address of the device
8881  */
8882 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8883 			struct netlink_ext_ack *extack)
8884 {
8885 	const struct net_device_ops *ops = dev->netdev_ops;
8886 	int err;
8887 
8888 	if (!ops->ndo_set_mac_address)
8889 		return -EOPNOTSUPP;
8890 	if (sa->sa_family != dev->type)
8891 		return -EINVAL;
8892 	if (!netif_device_present(dev))
8893 		return -ENODEV;
8894 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8895 	if (err)
8896 		return err;
8897 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8898 		err = ops->ndo_set_mac_address(dev, sa);
8899 		if (err)
8900 			return err;
8901 	}
8902 	dev->addr_assign_type = NET_ADDR_SET;
8903 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8904 	add_device_randomness(dev->dev_addr, dev->addr_len);
8905 	return 0;
8906 }
8907 EXPORT_SYMBOL(dev_set_mac_address);
8908 
8909 static DECLARE_RWSEM(dev_addr_sem);
8910 
8911 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8912 			     struct netlink_ext_ack *extack)
8913 {
8914 	int ret;
8915 
8916 	down_write(&dev_addr_sem);
8917 	ret = dev_set_mac_address(dev, sa, extack);
8918 	up_write(&dev_addr_sem);
8919 	return ret;
8920 }
8921 EXPORT_SYMBOL(dev_set_mac_address_user);
8922 
8923 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8924 {
8925 	size_t size = sizeof(sa->sa_data_min);
8926 	struct net_device *dev;
8927 	int ret = 0;
8928 
8929 	down_read(&dev_addr_sem);
8930 	rcu_read_lock();
8931 
8932 	dev = dev_get_by_name_rcu(net, dev_name);
8933 	if (!dev) {
8934 		ret = -ENODEV;
8935 		goto unlock;
8936 	}
8937 	if (!dev->addr_len)
8938 		memset(sa->sa_data, 0, size);
8939 	else
8940 		memcpy(sa->sa_data, dev->dev_addr,
8941 		       min_t(size_t, size, dev->addr_len));
8942 	sa->sa_family = dev->type;
8943 
8944 unlock:
8945 	rcu_read_unlock();
8946 	up_read(&dev_addr_sem);
8947 	return ret;
8948 }
8949 EXPORT_SYMBOL(dev_get_mac_address);
8950 
8951 /**
8952  *	dev_change_carrier - Change device carrier
8953  *	@dev: device
8954  *	@new_carrier: new value
8955  *
8956  *	Change device carrier
8957  */
8958 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8959 {
8960 	const struct net_device_ops *ops = dev->netdev_ops;
8961 
8962 	if (!ops->ndo_change_carrier)
8963 		return -EOPNOTSUPP;
8964 	if (!netif_device_present(dev))
8965 		return -ENODEV;
8966 	return ops->ndo_change_carrier(dev, new_carrier);
8967 }
8968 
8969 /**
8970  *	dev_get_phys_port_id - Get device physical port ID
8971  *	@dev: device
8972  *	@ppid: port ID
8973  *
8974  *	Get device physical port ID
8975  */
8976 int dev_get_phys_port_id(struct net_device *dev,
8977 			 struct netdev_phys_item_id *ppid)
8978 {
8979 	const struct net_device_ops *ops = dev->netdev_ops;
8980 
8981 	if (!ops->ndo_get_phys_port_id)
8982 		return -EOPNOTSUPP;
8983 	return ops->ndo_get_phys_port_id(dev, ppid);
8984 }
8985 
8986 /**
8987  *	dev_get_phys_port_name - Get device physical port name
8988  *	@dev: device
8989  *	@name: port name
8990  *	@len: limit of bytes to copy to name
8991  *
8992  *	Get device physical port name
8993  */
8994 int dev_get_phys_port_name(struct net_device *dev,
8995 			   char *name, size_t len)
8996 {
8997 	const struct net_device_ops *ops = dev->netdev_ops;
8998 	int err;
8999 
9000 	if (ops->ndo_get_phys_port_name) {
9001 		err = ops->ndo_get_phys_port_name(dev, name, len);
9002 		if (err != -EOPNOTSUPP)
9003 			return err;
9004 	}
9005 	return devlink_compat_phys_port_name_get(dev, name, len);
9006 }
9007 
9008 /**
9009  *	dev_get_port_parent_id - Get the device's port parent identifier
9010  *	@dev: network device
9011  *	@ppid: pointer to a storage for the port's parent identifier
9012  *	@recurse: allow/disallow recursion to lower devices
9013  *
9014  *	Get the devices's port parent identifier
9015  */
9016 int dev_get_port_parent_id(struct net_device *dev,
9017 			   struct netdev_phys_item_id *ppid,
9018 			   bool recurse)
9019 {
9020 	const struct net_device_ops *ops = dev->netdev_ops;
9021 	struct netdev_phys_item_id first = { };
9022 	struct net_device *lower_dev;
9023 	struct list_head *iter;
9024 	int err;
9025 
9026 	if (ops->ndo_get_port_parent_id) {
9027 		err = ops->ndo_get_port_parent_id(dev, ppid);
9028 		if (err != -EOPNOTSUPP)
9029 			return err;
9030 	}
9031 
9032 	err = devlink_compat_switch_id_get(dev, ppid);
9033 	if (!recurse || err != -EOPNOTSUPP)
9034 		return err;
9035 
9036 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9037 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9038 		if (err)
9039 			break;
9040 		if (!first.id_len)
9041 			first = *ppid;
9042 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9043 			return -EOPNOTSUPP;
9044 	}
9045 
9046 	return err;
9047 }
9048 EXPORT_SYMBOL(dev_get_port_parent_id);
9049 
9050 /**
9051  *	netdev_port_same_parent_id - Indicate if two network devices have
9052  *	the same port parent identifier
9053  *	@a: first network device
9054  *	@b: second network device
9055  */
9056 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9057 {
9058 	struct netdev_phys_item_id a_id = { };
9059 	struct netdev_phys_item_id b_id = { };
9060 
9061 	if (dev_get_port_parent_id(a, &a_id, true) ||
9062 	    dev_get_port_parent_id(b, &b_id, true))
9063 		return false;
9064 
9065 	return netdev_phys_item_id_same(&a_id, &b_id);
9066 }
9067 EXPORT_SYMBOL(netdev_port_same_parent_id);
9068 
9069 /**
9070  *	dev_change_proto_down - set carrier according to proto_down.
9071  *
9072  *	@dev: device
9073  *	@proto_down: new value
9074  */
9075 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9076 {
9077 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9078 		return -EOPNOTSUPP;
9079 	if (!netif_device_present(dev))
9080 		return -ENODEV;
9081 	if (proto_down)
9082 		netif_carrier_off(dev);
9083 	else
9084 		netif_carrier_on(dev);
9085 	dev->proto_down = proto_down;
9086 	return 0;
9087 }
9088 
9089 /**
9090  *	dev_change_proto_down_reason - proto down reason
9091  *
9092  *	@dev: device
9093  *	@mask: proto down mask
9094  *	@value: proto down value
9095  */
9096 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9097 				  u32 value)
9098 {
9099 	int b;
9100 
9101 	if (!mask) {
9102 		dev->proto_down_reason = value;
9103 	} else {
9104 		for_each_set_bit(b, &mask, 32) {
9105 			if (value & (1 << b))
9106 				dev->proto_down_reason |= BIT(b);
9107 			else
9108 				dev->proto_down_reason &= ~BIT(b);
9109 		}
9110 	}
9111 }
9112 
9113 struct bpf_xdp_link {
9114 	struct bpf_link link;
9115 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9116 	int flags;
9117 };
9118 
9119 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9120 {
9121 	if (flags & XDP_FLAGS_HW_MODE)
9122 		return XDP_MODE_HW;
9123 	if (flags & XDP_FLAGS_DRV_MODE)
9124 		return XDP_MODE_DRV;
9125 	if (flags & XDP_FLAGS_SKB_MODE)
9126 		return XDP_MODE_SKB;
9127 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9128 }
9129 
9130 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9131 {
9132 	switch (mode) {
9133 	case XDP_MODE_SKB:
9134 		return generic_xdp_install;
9135 	case XDP_MODE_DRV:
9136 	case XDP_MODE_HW:
9137 		return dev->netdev_ops->ndo_bpf;
9138 	default:
9139 		return NULL;
9140 	}
9141 }
9142 
9143 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9144 					 enum bpf_xdp_mode mode)
9145 {
9146 	return dev->xdp_state[mode].link;
9147 }
9148 
9149 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9150 				     enum bpf_xdp_mode mode)
9151 {
9152 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9153 
9154 	if (link)
9155 		return link->link.prog;
9156 	return dev->xdp_state[mode].prog;
9157 }
9158 
9159 u8 dev_xdp_prog_count(struct net_device *dev)
9160 {
9161 	u8 count = 0;
9162 	int i;
9163 
9164 	for (i = 0; i < __MAX_XDP_MODE; i++)
9165 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9166 			count++;
9167 	return count;
9168 }
9169 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9170 
9171 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9172 {
9173 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9174 
9175 	return prog ? prog->aux->id : 0;
9176 }
9177 
9178 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9179 			     struct bpf_xdp_link *link)
9180 {
9181 	dev->xdp_state[mode].link = link;
9182 	dev->xdp_state[mode].prog = NULL;
9183 }
9184 
9185 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9186 			     struct bpf_prog *prog)
9187 {
9188 	dev->xdp_state[mode].link = NULL;
9189 	dev->xdp_state[mode].prog = prog;
9190 }
9191 
9192 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9193 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9194 			   u32 flags, struct bpf_prog *prog)
9195 {
9196 	struct netdev_bpf xdp;
9197 	int err;
9198 
9199 	memset(&xdp, 0, sizeof(xdp));
9200 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9201 	xdp.extack = extack;
9202 	xdp.flags = flags;
9203 	xdp.prog = prog;
9204 
9205 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9206 	 * "moved" into driver), so they don't increment it on their own, but
9207 	 * they do decrement refcnt when program is detached or replaced.
9208 	 * Given net_device also owns link/prog, we need to bump refcnt here
9209 	 * to prevent drivers from underflowing it.
9210 	 */
9211 	if (prog)
9212 		bpf_prog_inc(prog);
9213 	err = bpf_op(dev, &xdp);
9214 	if (err) {
9215 		if (prog)
9216 			bpf_prog_put(prog);
9217 		return err;
9218 	}
9219 
9220 	if (mode != XDP_MODE_HW)
9221 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9222 
9223 	return 0;
9224 }
9225 
9226 static void dev_xdp_uninstall(struct net_device *dev)
9227 {
9228 	struct bpf_xdp_link *link;
9229 	struct bpf_prog *prog;
9230 	enum bpf_xdp_mode mode;
9231 	bpf_op_t bpf_op;
9232 
9233 	ASSERT_RTNL();
9234 
9235 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9236 		prog = dev_xdp_prog(dev, mode);
9237 		if (!prog)
9238 			continue;
9239 
9240 		bpf_op = dev_xdp_bpf_op(dev, mode);
9241 		if (!bpf_op)
9242 			continue;
9243 
9244 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9245 
9246 		/* auto-detach link from net device */
9247 		link = dev_xdp_link(dev, mode);
9248 		if (link)
9249 			link->dev = NULL;
9250 		else
9251 			bpf_prog_put(prog);
9252 
9253 		dev_xdp_set_link(dev, mode, NULL);
9254 	}
9255 }
9256 
9257 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9258 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9259 			  struct bpf_prog *old_prog, u32 flags)
9260 {
9261 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9262 	struct bpf_prog *cur_prog;
9263 	struct net_device *upper;
9264 	struct list_head *iter;
9265 	enum bpf_xdp_mode mode;
9266 	bpf_op_t bpf_op;
9267 	int err;
9268 
9269 	ASSERT_RTNL();
9270 
9271 	/* either link or prog attachment, never both */
9272 	if (link && (new_prog || old_prog))
9273 		return -EINVAL;
9274 	/* link supports only XDP mode flags */
9275 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9276 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9277 		return -EINVAL;
9278 	}
9279 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9280 	if (num_modes > 1) {
9281 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9282 		return -EINVAL;
9283 	}
9284 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9285 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9286 		NL_SET_ERR_MSG(extack,
9287 			       "More than one program loaded, unset mode is ambiguous");
9288 		return -EINVAL;
9289 	}
9290 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9291 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9292 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9293 		return -EINVAL;
9294 	}
9295 
9296 	mode = dev_xdp_mode(dev, flags);
9297 	/* can't replace attached link */
9298 	if (dev_xdp_link(dev, mode)) {
9299 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9300 		return -EBUSY;
9301 	}
9302 
9303 	/* don't allow if an upper device already has a program */
9304 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9305 		if (dev_xdp_prog_count(upper) > 0) {
9306 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9307 			return -EEXIST;
9308 		}
9309 	}
9310 
9311 	cur_prog = dev_xdp_prog(dev, mode);
9312 	/* can't replace attached prog with link */
9313 	if (link && cur_prog) {
9314 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9315 		return -EBUSY;
9316 	}
9317 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9318 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9319 		return -EEXIST;
9320 	}
9321 
9322 	/* put effective new program into new_prog */
9323 	if (link)
9324 		new_prog = link->link.prog;
9325 
9326 	if (new_prog) {
9327 		bool offload = mode == XDP_MODE_HW;
9328 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9329 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9330 
9331 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9332 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9333 			return -EBUSY;
9334 		}
9335 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9336 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9337 			return -EEXIST;
9338 		}
9339 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9340 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9341 			return -EINVAL;
9342 		}
9343 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9344 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9345 			return -EINVAL;
9346 		}
9347 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9348 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9349 			return -EINVAL;
9350 		}
9351 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9352 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9353 			return -EINVAL;
9354 		}
9355 	}
9356 
9357 	/* don't call drivers if the effective program didn't change */
9358 	if (new_prog != cur_prog) {
9359 		bpf_op = dev_xdp_bpf_op(dev, mode);
9360 		if (!bpf_op) {
9361 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9362 			return -EOPNOTSUPP;
9363 		}
9364 
9365 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9366 		if (err)
9367 			return err;
9368 	}
9369 
9370 	if (link)
9371 		dev_xdp_set_link(dev, mode, link);
9372 	else
9373 		dev_xdp_set_prog(dev, mode, new_prog);
9374 	if (cur_prog)
9375 		bpf_prog_put(cur_prog);
9376 
9377 	return 0;
9378 }
9379 
9380 static int dev_xdp_attach_link(struct net_device *dev,
9381 			       struct netlink_ext_ack *extack,
9382 			       struct bpf_xdp_link *link)
9383 {
9384 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9385 }
9386 
9387 static int dev_xdp_detach_link(struct net_device *dev,
9388 			       struct netlink_ext_ack *extack,
9389 			       struct bpf_xdp_link *link)
9390 {
9391 	enum bpf_xdp_mode mode;
9392 	bpf_op_t bpf_op;
9393 
9394 	ASSERT_RTNL();
9395 
9396 	mode = dev_xdp_mode(dev, link->flags);
9397 	if (dev_xdp_link(dev, mode) != link)
9398 		return -EINVAL;
9399 
9400 	bpf_op = dev_xdp_bpf_op(dev, mode);
9401 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9402 	dev_xdp_set_link(dev, mode, NULL);
9403 	return 0;
9404 }
9405 
9406 static void bpf_xdp_link_release(struct bpf_link *link)
9407 {
9408 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9409 
9410 	rtnl_lock();
9411 
9412 	/* if racing with net_device's tear down, xdp_link->dev might be
9413 	 * already NULL, in which case link was already auto-detached
9414 	 */
9415 	if (xdp_link->dev) {
9416 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9417 		xdp_link->dev = NULL;
9418 	}
9419 
9420 	rtnl_unlock();
9421 }
9422 
9423 static int bpf_xdp_link_detach(struct bpf_link *link)
9424 {
9425 	bpf_xdp_link_release(link);
9426 	return 0;
9427 }
9428 
9429 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9430 {
9431 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9432 
9433 	kfree(xdp_link);
9434 }
9435 
9436 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9437 				     struct seq_file *seq)
9438 {
9439 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9440 	u32 ifindex = 0;
9441 
9442 	rtnl_lock();
9443 	if (xdp_link->dev)
9444 		ifindex = xdp_link->dev->ifindex;
9445 	rtnl_unlock();
9446 
9447 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9448 }
9449 
9450 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9451 				       struct bpf_link_info *info)
9452 {
9453 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9454 	u32 ifindex = 0;
9455 
9456 	rtnl_lock();
9457 	if (xdp_link->dev)
9458 		ifindex = xdp_link->dev->ifindex;
9459 	rtnl_unlock();
9460 
9461 	info->xdp.ifindex = ifindex;
9462 	return 0;
9463 }
9464 
9465 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9466 			       struct bpf_prog *old_prog)
9467 {
9468 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9469 	enum bpf_xdp_mode mode;
9470 	bpf_op_t bpf_op;
9471 	int err = 0;
9472 
9473 	rtnl_lock();
9474 
9475 	/* link might have been auto-released already, so fail */
9476 	if (!xdp_link->dev) {
9477 		err = -ENOLINK;
9478 		goto out_unlock;
9479 	}
9480 
9481 	if (old_prog && link->prog != old_prog) {
9482 		err = -EPERM;
9483 		goto out_unlock;
9484 	}
9485 	old_prog = link->prog;
9486 	if (old_prog->type != new_prog->type ||
9487 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9488 		err = -EINVAL;
9489 		goto out_unlock;
9490 	}
9491 
9492 	if (old_prog == new_prog) {
9493 		/* no-op, don't disturb drivers */
9494 		bpf_prog_put(new_prog);
9495 		goto out_unlock;
9496 	}
9497 
9498 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9499 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9500 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9501 			      xdp_link->flags, new_prog);
9502 	if (err)
9503 		goto out_unlock;
9504 
9505 	old_prog = xchg(&link->prog, new_prog);
9506 	bpf_prog_put(old_prog);
9507 
9508 out_unlock:
9509 	rtnl_unlock();
9510 	return err;
9511 }
9512 
9513 static const struct bpf_link_ops bpf_xdp_link_lops = {
9514 	.release = bpf_xdp_link_release,
9515 	.dealloc = bpf_xdp_link_dealloc,
9516 	.detach = bpf_xdp_link_detach,
9517 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9518 	.fill_link_info = bpf_xdp_link_fill_link_info,
9519 	.update_prog = bpf_xdp_link_update,
9520 };
9521 
9522 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9523 {
9524 	struct net *net = current->nsproxy->net_ns;
9525 	struct bpf_link_primer link_primer;
9526 	struct netlink_ext_ack extack = {};
9527 	struct bpf_xdp_link *link;
9528 	struct net_device *dev;
9529 	int err, fd;
9530 
9531 	rtnl_lock();
9532 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9533 	if (!dev) {
9534 		rtnl_unlock();
9535 		return -EINVAL;
9536 	}
9537 
9538 	link = kzalloc(sizeof(*link), GFP_USER);
9539 	if (!link) {
9540 		err = -ENOMEM;
9541 		goto unlock;
9542 	}
9543 
9544 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9545 	link->dev = dev;
9546 	link->flags = attr->link_create.flags;
9547 
9548 	err = bpf_link_prime(&link->link, &link_primer);
9549 	if (err) {
9550 		kfree(link);
9551 		goto unlock;
9552 	}
9553 
9554 	err = dev_xdp_attach_link(dev, &extack, link);
9555 	rtnl_unlock();
9556 
9557 	if (err) {
9558 		link->dev = NULL;
9559 		bpf_link_cleanup(&link_primer);
9560 		trace_bpf_xdp_link_attach_failed(extack._msg);
9561 		goto out_put_dev;
9562 	}
9563 
9564 	fd = bpf_link_settle(&link_primer);
9565 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9566 	dev_put(dev);
9567 	return fd;
9568 
9569 unlock:
9570 	rtnl_unlock();
9571 
9572 out_put_dev:
9573 	dev_put(dev);
9574 	return err;
9575 }
9576 
9577 /**
9578  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9579  *	@dev: device
9580  *	@extack: netlink extended ack
9581  *	@fd: new program fd or negative value to clear
9582  *	@expected_fd: old program fd that userspace expects to replace or clear
9583  *	@flags: xdp-related flags
9584  *
9585  *	Set or clear a bpf program for a device
9586  */
9587 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9588 		      int fd, int expected_fd, u32 flags)
9589 {
9590 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9591 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9592 	int err;
9593 
9594 	ASSERT_RTNL();
9595 
9596 	if (fd >= 0) {
9597 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9598 						 mode != XDP_MODE_SKB);
9599 		if (IS_ERR(new_prog))
9600 			return PTR_ERR(new_prog);
9601 	}
9602 
9603 	if (expected_fd >= 0) {
9604 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9605 						 mode != XDP_MODE_SKB);
9606 		if (IS_ERR(old_prog)) {
9607 			err = PTR_ERR(old_prog);
9608 			old_prog = NULL;
9609 			goto err_out;
9610 		}
9611 	}
9612 
9613 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9614 
9615 err_out:
9616 	if (err && new_prog)
9617 		bpf_prog_put(new_prog);
9618 	if (old_prog)
9619 		bpf_prog_put(old_prog);
9620 	return err;
9621 }
9622 
9623 /**
9624  * dev_index_reserve() - allocate an ifindex in a namespace
9625  * @net: the applicable net namespace
9626  * @ifindex: requested ifindex, pass %0 to get one allocated
9627  *
9628  * Allocate a ifindex for a new device. Caller must either use the ifindex
9629  * to store the device (via list_netdevice()) or call dev_index_release()
9630  * to give the index up.
9631  *
9632  * Return: a suitable unique value for a new device interface number or -errno.
9633  */
9634 static int dev_index_reserve(struct net *net, u32 ifindex)
9635 {
9636 	int err;
9637 
9638 	if (ifindex > INT_MAX) {
9639 		DEBUG_NET_WARN_ON_ONCE(1);
9640 		return -EINVAL;
9641 	}
9642 
9643 	if (!ifindex)
9644 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9645 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9646 	else
9647 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9648 	if (err < 0)
9649 		return err;
9650 
9651 	return ifindex;
9652 }
9653 
9654 static void dev_index_release(struct net *net, int ifindex)
9655 {
9656 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9657 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9658 }
9659 
9660 /* Delayed registration/unregisteration */
9661 LIST_HEAD(net_todo_list);
9662 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9663 
9664 static void net_set_todo(struct net_device *dev)
9665 {
9666 	list_add_tail(&dev->todo_list, &net_todo_list);
9667 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9668 }
9669 
9670 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9671 	struct net_device *upper, netdev_features_t features)
9672 {
9673 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9674 	netdev_features_t feature;
9675 	int feature_bit;
9676 
9677 	for_each_netdev_feature(upper_disables, feature_bit) {
9678 		feature = __NETIF_F_BIT(feature_bit);
9679 		if (!(upper->wanted_features & feature)
9680 		    && (features & feature)) {
9681 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9682 				   &feature, upper->name);
9683 			features &= ~feature;
9684 		}
9685 	}
9686 
9687 	return features;
9688 }
9689 
9690 static void netdev_sync_lower_features(struct net_device *upper,
9691 	struct net_device *lower, netdev_features_t features)
9692 {
9693 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9694 	netdev_features_t feature;
9695 	int feature_bit;
9696 
9697 	for_each_netdev_feature(upper_disables, feature_bit) {
9698 		feature = __NETIF_F_BIT(feature_bit);
9699 		if (!(features & feature) && (lower->features & feature)) {
9700 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9701 				   &feature, lower->name);
9702 			lower->wanted_features &= ~feature;
9703 			__netdev_update_features(lower);
9704 
9705 			if (unlikely(lower->features & feature))
9706 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9707 					    &feature, lower->name);
9708 			else
9709 				netdev_features_change(lower);
9710 		}
9711 	}
9712 }
9713 
9714 static netdev_features_t netdev_fix_features(struct net_device *dev,
9715 	netdev_features_t features)
9716 {
9717 	/* Fix illegal checksum combinations */
9718 	if ((features & NETIF_F_HW_CSUM) &&
9719 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9720 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9721 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9722 	}
9723 
9724 	/* TSO requires that SG is present as well. */
9725 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9726 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9727 		features &= ~NETIF_F_ALL_TSO;
9728 	}
9729 
9730 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9731 					!(features & NETIF_F_IP_CSUM)) {
9732 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9733 		features &= ~NETIF_F_TSO;
9734 		features &= ~NETIF_F_TSO_ECN;
9735 	}
9736 
9737 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9738 					 !(features & NETIF_F_IPV6_CSUM)) {
9739 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9740 		features &= ~NETIF_F_TSO6;
9741 	}
9742 
9743 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9744 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9745 		features &= ~NETIF_F_TSO_MANGLEID;
9746 
9747 	/* TSO ECN requires that TSO is present as well. */
9748 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9749 		features &= ~NETIF_F_TSO_ECN;
9750 
9751 	/* Software GSO depends on SG. */
9752 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9753 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9754 		features &= ~NETIF_F_GSO;
9755 	}
9756 
9757 	/* GSO partial features require GSO partial be set */
9758 	if ((features & dev->gso_partial_features) &&
9759 	    !(features & NETIF_F_GSO_PARTIAL)) {
9760 		netdev_dbg(dev,
9761 			   "Dropping partially supported GSO features since no GSO partial.\n");
9762 		features &= ~dev->gso_partial_features;
9763 	}
9764 
9765 	if (!(features & NETIF_F_RXCSUM)) {
9766 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9767 		 * successfully merged by hardware must also have the
9768 		 * checksum verified by hardware.  If the user does not
9769 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9770 		 */
9771 		if (features & NETIF_F_GRO_HW) {
9772 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9773 			features &= ~NETIF_F_GRO_HW;
9774 		}
9775 	}
9776 
9777 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9778 	if (features & NETIF_F_RXFCS) {
9779 		if (features & NETIF_F_LRO) {
9780 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9781 			features &= ~NETIF_F_LRO;
9782 		}
9783 
9784 		if (features & NETIF_F_GRO_HW) {
9785 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9786 			features &= ~NETIF_F_GRO_HW;
9787 		}
9788 	}
9789 
9790 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9791 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9792 		features &= ~NETIF_F_LRO;
9793 	}
9794 
9795 	if (features & NETIF_F_HW_TLS_TX) {
9796 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9797 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9798 		bool hw_csum = features & NETIF_F_HW_CSUM;
9799 
9800 		if (!ip_csum && !hw_csum) {
9801 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9802 			features &= ~NETIF_F_HW_TLS_TX;
9803 		}
9804 	}
9805 
9806 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9807 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9808 		features &= ~NETIF_F_HW_TLS_RX;
9809 	}
9810 
9811 	return features;
9812 }
9813 
9814 int __netdev_update_features(struct net_device *dev)
9815 {
9816 	struct net_device *upper, *lower;
9817 	netdev_features_t features;
9818 	struct list_head *iter;
9819 	int err = -1;
9820 
9821 	ASSERT_RTNL();
9822 
9823 	features = netdev_get_wanted_features(dev);
9824 
9825 	if (dev->netdev_ops->ndo_fix_features)
9826 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9827 
9828 	/* driver might be less strict about feature dependencies */
9829 	features = netdev_fix_features(dev, features);
9830 
9831 	/* some features can't be enabled if they're off on an upper device */
9832 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9833 		features = netdev_sync_upper_features(dev, upper, features);
9834 
9835 	if (dev->features == features)
9836 		goto sync_lower;
9837 
9838 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9839 		&dev->features, &features);
9840 
9841 	if (dev->netdev_ops->ndo_set_features)
9842 		err = dev->netdev_ops->ndo_set_features(dev, features);
9843 	else
9844 		err = 0;
9845 
9846 	if (unlikely(err < 0)) {
9847 		netdev_err(dev,
9848 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9849 			err, &features, &dev->features);
9850 		/* return non-0 since some features might have changed and
9851 		 * it's better to fire a spurious notification than miss it
9852 		 */
9853 		return -1;
9854 	}
9855 
9856 sync_lower:
9857 	/* some features must be disabled on lower devices when disabled
9858 	 * on an upper device (think: bonding master or bridge)
9859 	 */
9860 	netdev_for_each_lower_dev(dev, lower, iter)
9861 		netdev_sync_lower_features(dev, lower, features);
9862 
9863 	if (!err) {
9864 		netdev_features_t diff = features ^ dev->features;
9865 
9866 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9867 			/* udp_tunnel_{get,drop}_rx_info both need
9868 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9869 			 * device, or they won't do anything.
9870 			 * Thus we need to update dev->features
9871 			 * *before* calling udp_tunnel_get_rx_info,
9872 			 * but *after* calling udp_tunnel_drop_rx_info.
9873 			 */
9874 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9875 				dev->features = features;
9876 				udp_tunnel_get_rx_info(dev);
9877 			} else {
9878 				udp_tunnel_drop_rx_info(dev);
9879 			}
9880 		}
9881 
9882 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9883 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9884 				dev->features = features;
9885 				err |= vlan_get_rx_ctag_filter_info(dev);
9886 			} else {
9887 				vlan_drop_rx_ctag_filter_info(dev);
9888 			}
9889 		}
9890 
9891 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9892 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9893 				dev->features = features;
9894 				err |= vlan_get_rx_stag_filter_info(dev);
9895 			} else {
9896 				vlan_drop_rx_stag_filter_info(dev);
9897 			}
9898 		}
9899 
9900 		dev->features = features;
9901 	}
9902 
9903 	return err < 0 ? 0 : 1;
9904 }
9905 
9906 /**
9907  *	netdev_update_features - recalculate device features
9908  *	@dev: the device to check
9909  *
9910  *	Recalculate dev->features set and send notifications if it
9911  *	has changed. Should be called after driver or hardware dependent
9912  *	conditions might have changed that influence the features.
9913  */
9914 void netdev_update_features(struct net_device *dev)
9915 {
9916 	if (__netdev_update_features(dev))
9917 		netdev_features_change(dev);
9918 }
9919 EXPORT_SYMBOL(netdev_update_features);
9920 
9921 /**
9922  *	netdev_change_features - recalculate device features
9923  *	@dev: the device to check
9924  *
9925  *	Recalculate dev->features set and send notifications even
9926  *	if they have not changed. Should be called instead of
9927  *	netdev_update_features() if also dev->vlan_features might
9928  *	have changed to allow the changes to be propagated to stacked
9929  *	VLAN devices.
9930  */
9931 void netdev_change_features(struct net_device *dev)
9932 {
9933 	__netdev_update_features(dev);
9934 	netdev_features_change(dev);
9935 }
9936 EXPORT_SYMBOL(netdev_change_features);
9937 
9938 /**
9939  *	netif_stacked_transfer_operstate -	transfer operstate
9940  *	@rootdev: the root or lower level device to transfer state from
9941  *	@dev: the device to transfer operstate to
9942  *
9943  *	Transfer operational state from root to device. This is normally
9944  *	called when a stacking relationship exists between the root
9945  *	device and the device(a leaf device).
9946  */
9947 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9948 					struct net_device *dev)
9949 {
9950 	if (rootdev->operstate == IF_OPER_DORMANT)
9951 		netif_dormant_on(dev);
9952 	else
9953 		netif_dormant_off(dev);
9954 
9955 	if (rootdev->operstate == IF_OPER_TESTING)
9956 		netif_testing_on(dev);
9957 	else
9958 		netif_testing_off(dev);
9959 
9960 	if (netif_carrier_ok(rootdev))
9961 		netif_carrier_on(dev);
9962 	else
9963 		netif_carrier_off(dev);
9964 }
9965 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9966 
9967 static int netif_alloc_rx_queues(struct net_device *dev)
9968 {
9969 	unsigned int i, count = dev->num_rx_queues;
9970 	struct netdev_rx_queue *rx;
9971 	size_t sz = count * sizeof(*rx);
9972 	int err = 0;
9973 
9974 	BUG_ON(count < 1);
9975 
9976 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9977 	if (!rx)
9978 		return -ENOMEM;
9979 
9980 	dev->_rx = rx;
9981 
9982 	for (i = 0; i < count; i++) {
9983 		rx[i].dev = dev;
9984 
9985 		/* XDP RX-queue setup */
9986 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9987 		if (err < 0)
9988 			goto err_rxq_info;
9989 	}
9990 	return 0;
9991 
9992 err_rxq_info:
9993 	/* Rollback successful reg's and free other resources */
9994 	while (i--)
9995 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9996 	kvfree(dev->_rx);
9997 	dev->_rx = NULL;
9998 	return err;
9999 }
10000 
10001 static void netif_free_rx_queues(struct net_device *dev)
10002 {
10003 	unsigned int i, count = dev->num_rx_queues;
10004 
10005 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10006 	if (!dev->_rx)
10007 		return;
10008 
10009 	for (i = 0; i < count; i++)
10010 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10011 
10012 	kvfree(dev->_rx);
10013 }
10014 
10015 static void netdev_init_one_queue(struct net_device *dev,
10016 				  struct netdev_queue *queue, void *_unused)
10017 {
10018 	/* Initialize queue lock */
10019 	spin_lock_init(&queue->_xmit_lock);
10020 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10021 	queue->xmit_lock_owner = -1;
10022 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10023 	queue->dev = dev;
10024 #ifdef CONFIG_BQL
10025 	dql_init(&queue->dql, HZ);
10026 #endif
10027 }
10028 
10029 static void netif_free_tx_queues(struct net_device *dev)
10030 {
10031 	kvfree(dev->_tx);
10032 }
10033 
10034 static int netif_alloc_netdev_queues(struct net_device *dev)
10035 {
10036 	unsigned int count = dev->num_tx_queues;
10037 	struct netdev_queue *tx;
10038 	size_t sz = count * sizeof(*tx);
10039 
10040 	if (count < 1 || count > 0xffff)
10041 		return -EINVAL;
10042 
10043 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10044 	if (!tx)
10045 		return -ENOMEM;
10046 
10047 	dev->_tx = tx;
10048 
10049 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10050 	spin_lock_init(&dev->tx_global_lock);
10051 
10052 	return 0;
10053 }
10054 
10055 void netif_tx_stop_all_queues(struct net_device *dev)
10056 {
10057 	unsigned int i;
10058 
10059 	for (i = 0; i < dev->num_tx_queues; i++) {
10060 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10061 
10062 		netif_tx_stop_queue(txq);
10063 	}
10064 }
10065 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10066 
10067 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10068 {
10069 	void __percpu *v;
10070 
10071 	/* Drivers implementing ndo_get_peer_dev must support tstat
10072 	 * accounting, so that skb_do_redirect() can bump the dev's
10073 	 * RX stats upon network namespace switch.
10074 	 */
10075 	if (dev->netdev_ops->ndo_get_peer_dev &&
10076 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10077 		return -EOPNOTSUPP;
10078 
10079 	switch (dev->pcpu_stat_type) {
10080 	case NETDEV_PCPU_STAT_NONE:
10081 		return 0;
10082 	case NETDEV_PCPU_STAT_LSTATS:
10083 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10084 		break;
10085 	case NETDEV_PCPU_STAT_TSTATS:
10086 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10087 		break;
10088 	case NETDEV_PCPU_STAT_DSTATS:
10089 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10090 		break;
10091 	default:
10092 		return -EINVAL;
10093 	}
10094 
10095 	return v ? 0 : -ENOMEM;
10096 }
10097 
10098 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10099 {
10100 	switch (dev->pcpu_stat_type) {
10101 	case NETDEV_PCPU_STAT_NONE:
10102 		return;
10103 	case NETDEV_PCPU_STAT_LSTATS:
10104 		free_percpu(dev->lstats);
10105 		break;
10106 	case NETDEV_PCPU_STAT_TSTATS:
10107 		free_percpu(dev->tstats);
10108 		break;
10109 	case NETDEV_PCPU_STAT_DSTATS:
10110 		free_percpu(dev->dstats);
10111 		break;
10112 	}
10113 }
10114 
10115 /**
10116  * register_netdevice() - register a network device
10117  * @dev: device to register
10118  *
10119  * Take a prepared network device structure and make it externally accessible.
10120  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10121  * Callers must hold the rtnl lock - you may want register_netdev()
10122  * instead of this.
10123  */
10124 int register_netdevice(struct net_device *dev)
10125 {
10126 	int ret;
10127 	struct net *net = dev_net(dev);
10128 
10129 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10130 		     NETDEV_FEATURE_COUNT);
10131 	BUG_ON(dev_boot_phase);
10132 	ASSERT_RTNL();
10133 
10134 	might_sleep();
10135 
10136 	/* When net_device's are persistent, this will be fatal. */
10137 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10138 	BUG_ON(!net);
10139 
10140 	ret = ethtool_check_ops(dev->ethtool_ops);
10141 	if (ret)
10142 		return ret;
10143 
10144 	spin_lock_init(&dev->addr_list_lock);
10145 	netdev_set_addr_lockdep_class(dev);
10146 
10147 	ret = dev_get_valid_name(net, dev, dev->name);
10148 	if (ret < 0)
10149 		goto out;
10150 
10151 	ret = -ENOMEM;
10152 	dev->name_node = netdev_name_node_head_alloc(dev);
10153 	if (!dev->name_node)
10154 		goto out;
10155 
10156 	/* Init, if this function is available */
10157 	if (dev->netdev_ops->ndo_init) {
10158 		ret = dev->netdev_ops->ndo_init(dev);
10159 		if (ret) {
10160 			if (ret > 0)
10161 				ret = -EIO;
10162 			goto err_free_name;
10163 		}
10164 	}
10165 
10166 	if (((dev->hw_features | dev->features) &
10167 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10168 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10169 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10170 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10171 		ret = -EINVAL;
10172 		goto err_uninit;
10173 	}
10174 
10175 	ret = netdev_do_alloc_pcpu_stats(dev);
10176 	if (ret)
10177 		goto err_uninit;
10178 
10179 	ret = dev_index_reserve(net, dev->ifindex);
10180 	if (ret < 0)
10181 		goto err_free_pcpu;
10182 	dev->ifindex = ret;
10183 
10184 	/* Transfer changeable features to wanted_features and enable
10185 	 * software offloads (GSO and GRO).
10186 	 */
10187 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10188 	dev->features |= NETIF_F_SOFT_FEATURES;
10189 
10190 	if (dev->udp_tunnel_nic_info) {
10191 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10192 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10193 	}
10194 
10195 	dev->wanted_features = dev->features & dev->hw_features;
10196 
10197 	if (!(dev->flags & IFF_LOOPBACK))
10198 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10199 
10200 	/* If IPv4 TCP segmentation offload is supported we should also
10201 	 * allow the device to enable segmenting the frame with the option
10202 	 * of ignoring a static IP ID value.  This doesn't enable the
10203 	 * feature itself but allows the user to enable it later.
10204 	 */
10205 	if (dev->hw_features & NETIF_F_TSO)
10206 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10207 	if (dev->vlan_features & NETIF_F_TSO)
10208 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10209 	if (dev->mpls_features & NETIF_F_TSO)
10210 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10211 	if (dev->hw_enc_features & NETIF_F_TSO)
10212 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10213 
10214 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10215 	 */
10216 	dev->vlan_features |= NETIF_F_HIGHDMA;
10217 
10218 	/* Make NETIF_F_SG inheritable to tunnel devices.
10219 	 */
10220 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10221 
10222 	/* Make NETIF_F_SG inheritable to MPLS.
10223 	 */
10224 	dev->mpls_features |= NETIF_F_SG;
10225 
10226 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10227 	ret = notifier_to_errno(ret);
10228 	if (ret)
10229 		goto err_ifindex_release;
10230 
10231 	ret = netdev_register_kobject(dev);
10232 	write_lock(&dev_base_lock);
10233 	dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10234 	write_unlock(&dev_base_lock);
10235 	if (ret)
10236 		goto err_uninit_notify;
10237 
10238 	__netdev_update_features(dev);
10239 
10240 	/*
10241 	 *	Default initial state at registry is that the
10242 	 *	device is present.
10243 	 */
10244 
10245 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10246 
10247 	linkwatch_init_dev(dev);
10248 
10249 	dev_init_scheduler(dev);
10250 
10251 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10252 	list_netdevice(dev);
10253 
10254 	add_device_randomness(dev->dev_addr, dev->addr_len);
10255 
10256 	/* If the device has permanent device address, driver should
10257 	 * set dev_addr and also addr_assign_type should be set to
10258 	 * NET_ADDR_PERM (default value).
10259 	 */
10260 	if (dev->addr_assign_type == NET_ADDR_PERM)
10261 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10262 
10263 	/* Notify protocols, that a new device appeared. */
10264 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10265 	ret = notifier_to_errno(ret);
10266 	if (ret) {
10267 		/* Expect explicit free_netdev() on failure */
10268 		dev->needs_free_netdev = false;
10269 		unregister_netdevice_queue(dev, NULL);
10270 		goto out;
10271 	}
10272 	/*
10273 	 *	Prevent userspace races by waiting until the network
10274 	 *	device is fully setup before sending notifications.
10275 	 */
10276 	if (!dev->rtnl_link_ops ||
10277 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10278 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10279 
10280 out:
10281 	return ret;
10282 
10283 err_uninit_notify:
10284 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10285 err_ifindex_release:
10286 	dev_index_release(net, dev->ifindex);
10287 err_free_pcpu:
10288 	netdev_do_free_pcpu_stats(dev);
10289 err_uninit:
10290 	if (dev->netdev_ops->ndo_uninit)
10291 		dev->netdev_ops->ndo_uninit(dev);
10292 	if (dev->priv_destructor)
10293 		dev->priv_destructor(dev);
10294 err_free_name:
10295 	netdev_name_node_free(dev->name_node);
10296 	goto out;
10297 }
10298 EXPORT_SYMBOL(register_netdevice);
10299 
10300 /**
10301  *	init_dummy_netdev	- init a dummy network device for NAPI
10302  *	@dev: device to init
10303  *
10304  *	This takes a network device structure and initialize the minimum
10305  *	amount of fields so it can be used to schedule NAPI polls without
10306  *	registering a full blown interface. This is to be used by drivers
10307  *	that need to tie several hardware interfaces to a single NAPI
10308  *	poll scheduler due to HW limitations.
10309  */
10310 int init_dummy_netdev(struct net_device *dev)
10311 {
10312 	/* Clear everything. Note we don't initialize spinlocks
10313 	 * are they aren't supposed to be taken by any of the
10314 	 * NAPI code and this dummy netdev is supposed to be
10315 	 * only ever used for NAPI polls
10316 	 */
10317 	memset(dev, 0, sizeof(struct net_device));
10318 
10319 	/* make sure we BUG if trying to hit standard
10320 	 * register/unregister code path
10321 	 */
10322 	dev->reg_state = NETREG_DUMMY;
10323 
10324 	/* NAPI wants this */
10325 	INIT_LIST_HEAD(&dev->napi_list);
10326 
10327 	/* a dummy interface is started by default */
10328 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10329 	set_bit(__LINK_STATE_START, &dev->state);
10330 
10331 	/* napi_busy_loop stats accounting wants this */
10332 	dev_net_set(dev, &init_net);
10333 
10334 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10335 	 * because users of this 'device' dont need to change
10336 	 * its refcount.
10337 	 */
10338 
10339 	return 0;
10340 }
10341 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10342 
10343 
10344 /**
10345  *	register_netdev	- register a network device
10346  *	@dev: device to register
10347  *
10348  *	Take a completed network device structure and add it to the kernel
10349  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10350  *	chain. 0 is returned on success. A negative errno code is returned
10351  *	on a failure to set up the device, or if the name is a duplicate.
10352  *
10353  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10354  *	and expands the device name if you passed a format string to
10355  *	alloc_netdev.
10356  */
10357 int register_netdev(struct net_device *dev)
10358 {
10359 	int err;
10360 
10361 	if (rtnl_lock_killable())
10362 		return -EINTR;
10363 	err = register_netdevice(dev);
10364 	rtnl_unlock();
10365 	return err;
10366 }
10367 EXPORT_SYMBOL(register_netdev);
10368 
10369 int netdev_refcnt_read(const struct net_device *dev)
10370 {
10371 #ifdef CONFIG_PCPU_DEV_REFCNT
10372 	int i, refcnt = 0;
10373 
10374 	for_each_possible_cpu(i)
10375 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10376 	return refcnt;
10377 #else
10378 	return refcount_read(&dev->dev_refcnt);
10379 #endif
10380 }
10381 EXPORT_SYMBOL(netdev_refcnt_read);
10382 
10383 int netdev_unregister_timeout_secs __read_mostly = 10;
10384 
10385 #define WAIT_REFS_MIN_MSECS 1
10386 #define WAIT_REFS_MAX_MSECS 250
10387 /**
10388  * netdev_wait_allrefs_any - wait until all references are gone.
10389  * @list: list of net_devices to wait on
10390  *
10391  * This is called when unregistering network devices.
10392  *
10393  * Any protocol or device that holds a reference should register
10394  * for netdevice notification, and cleanup and put back the
10395  * reference if they receive an UNREGISTER event.
10396  * We can get stuck here if buggy protocols don't correctly
10397  * call dev_put.
10398  */
10399 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10400 {
10401 	unsigned long rebroadcast_time, warning_time;
10402 	struct net_device *dev;
10403 	int wait = 0;
10404 
10405 	rebroadcast_time = warning_time = jiffies;
10406 
10407 	list_for_each_entry(dev, list, todo_list)
10408 		if (netdev_refcnt_read(dev) == 1)
10409 			return dev;
10410 
10411 	while (true) {
10412 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10413 			rtnl_lock();
10414 
10415 			/* Rebroadcast unregister notification */
10416 			list_for_each_entry(dev, list, todo_list)
10417 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10418 
10419 			__rtnl_unlock();
10420 			rcu_barrier();
10421 			rtnl_lock();
10422 
10423 			list_for_each_entry(dev, list, todo_list)
10424 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10425 					     &dev->state)) {
10426 					/* We must not have linkwatch events
10427 					 * pending on unregister. If this
10428 					 * happens, we simply run the queue
10429 					 * unscheduled, resulting in a noop
10430 					 * for this device.
10431 					 */
10432 					linkwatch_run_queue();
10433 					break;
10434 				}
10435 
10436 			__rtnl_unlock();
10437 
10438 			rebroadcast_time = jiffies;
10439 		}
10440 
10441 		rcu_barrier();
10442 
10443 		if (!wait) {
10444 			wait = WAIT_REFS_MIN_MSECS;
10445 		} else {
10446 			msleep(wait);
10447 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10448 		}
10449 
10450 		list_for_each_entry(dev, list, todo_list)
10451 			if (netdev_refcnt_read(dev) == 1)
10452 				return dev;
10453 
10454 		if (time_after(jiffies, warning_time +
10455 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10456 			list_for_each_entry(dev, list, todo_list) {
10457 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10458 					 dev->name, netdev_refcnt_read(dev));
10459 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10460 			}
10461 
10462 			warning_time = jiffies;
10463 		}
10464 	}
10465 }
10466 
10467 /* The sequence is:
10468  *
10469  *	rtnl_lock();
10470  *	...
10471  *	register_netdevice(x1);
10472  *	register_netdevice(x2);
10473  *	...
10474  *	unregister_netdevice(y1);
10475  *	unregister_netdevice(y2);
10476  *      ...
10477  *	rtnl_unlock();
10478  *	free_netdev(y1);
10479  *	free_netdev(y2);
10480  *
10481  * We are invoked by rtnl_unlock().
10482  * This allows us to deal with problems:
10483  * 1) We can delete sysfs objects which invoke hotplug
10484  *    without deadlocking with linkwatch via keventd.
10485  * 2) Since we run with the RTNL semaphore not held, we can sleep
10486  *    safely in order to wait for the netdev refcnt to drop to zero.
10487  *
10488  * We must not return until all unregister events added during
10489  * the interval the lock was held have been completed.
10490  */
10491 void netdev_run_todo(void)
10492 {
10493 	struct net_device *dev, *tmp;
10494 	struct list_head list;
10495 #ifdef CONFIG_LOCKDEP
10496 	struct list_head unlink_list;
10497 
10498 	list_replace_init(&net_unlink_list, &unlink_list);
10499 
10500 	while (!list_empty(&unlink_list)) {
10501 		struct net_device *dev = list_first_entry(&unlink_list,
10502 							  struct net_device,
10503 							  unlink_list);
10504 		list_del_init(&dev->unlink_list);
10505 		dev->nested_level = dev->lower_level - 1;
10506 	}
10507 #endif
10508 
10509 	/* Snapshot list, allow later requests */
10510 	list_replace_init(&net_todo_list, &list);
10511 
10512 	__rtnl_unlock();
10513 
10514 	/* Wait for rcu callbacks to finish before next phase */
10515 	if (!list_empty(&list))
10516 		rcu_barrier();
10517 
10518 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10519 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10520 			netdev_WARN(dev, "run_todo but not unregistering\n");
10521 			list_del(&dev->todo_list);
10522 			continue;
10523 		}
10524 
10525 		write_lock(&dev_base_lock);
10526 		dev->reg_state = NETREG_UNREGISTERED;
10527 		write_unlock(&dev_base_lock);
10528 		linkwatch_forget_dev(dev);
10529 	}
10530 
10531 	while (!list_empty(&list)) {
10532 		dev = netdev_wait_allrefs_any(&list);
10533 		list_del(&dev->todo_list);
10534 
10535 		/* paranoia */
10536 		BUG_ON(netdev_refcnt_read(dev) != 1);
10537 		BUG_ON(!list_empty(&dev->ptype_all));
10538 		BUG_ON(!list_empty(&dev->ptype_specific));
10539 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10540 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10541 
10542 		netdev_do_free_pcpu_stats(dev);
10543 		if (dev->priv_destructor)
10544 			dev->priv_destructor(dev);
10545 		if (dev->needs_free_netdev)
10546 			free_netdev(dev);
10547 
10548 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10549 			wake_up(&netdev_unregistering_wq);
10550 
10551 		/* Free network device */
10552 		kobject_put(&dev->dev.kobj);
10553 	}
10554 }
10555 
10556 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10557  * all the same fields in the same order as net_device_stats, with only
10558  * the type differing, but rtnl_link_stats64 may have additional fields
10559  * at the end for newer counters.
10560  */
10561 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10562 			     const struct net_device_stats *netdev_stats)
10563 {
10564 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10565 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10566 	u64 *dst = (u64 *)stats64;
10567 
10568 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10569 	for (i = 0; i < n; i++)
10570 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10571 	/* zero out counters that only exist in rtnl_link_stats64 */
10572 	memset((char *)stats64 + n * sizeof(u64), 0,
10573 	       sizeof(*stats64) - n * sizeof(u64));
10574 }
10575 EXPORT_SYMBOL(netdev_stats_to_stats64);
10576 
10577 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10578 {
10579 	struct net_device_core_stats __percpu *p;
10580 
10581 	p = alloc_percpu_gfp(struct net_device_core_stats,
10582 			     GFP_ATOMIC | __GFP_NOWARN);
10583 
10584 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10585 		free_percpu(p);
10586 
10587 	/* This READ_ONCE() pairs with the cmpxchg() above */
10588 	return READ_ONCE(dev->core_stats);
10589 }
10590 EXPORT_SYMBOL(netdev_core_stats_alloc);
10591 
10592 /**
10593  *	dev_get_stats	- get network device statistics
10594  *	@dev: device to get statistics from
10595  *	@storage: place to store stats
10596  *
10597  *	Get network statistics from device. Return @storage.
10598  *	The device driver may provide its own method by setting
10599  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10600  *	otherwise the internal statistics structure is used.
10601  */
10602 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10603 					struct rtnl_link_stats64 *storage)
10604 {
10605 	const struct net_device_ops *ops = dev->netdev_ops;
10606 	const struct net_device_core_stats __percpu *p;
10607 
10608 	if (ops->ndo_get_stats64) {
10609 		memset(storage, 0, sizeof(*storage));
10610 		ops->ndo_get_stats64(dev, storage);
10611 	} else if (ops->ndo_get_stats) {
10612 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10613 	} else {
10614 		netdev_stats_to_stats64(storage, &dev->stats);
10615 	}
10616 
10617 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10618 	p = READ_ONCE(dev->core_stats);
10619 	if (p) {
10620 		const struct net_device_core_stats *core_stats;
10621 		int i;
10622 
10623 		for_each_possible_cpu(i) {
10624 			core_stats = per_cpu_ptr(p, i);
10625 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10626 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10627 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10628 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10629 		}
10630 	}
10631 	return storage;
10632 }
10633 EXPORT_SYMBOL(dev_get_stats);
10634 
10635 /**
10636  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10637  *	@s: place to store stats
10638  *	@netstats: per-cpu network stats to read from
10639  *
10640  *	Read per-cpu network statistics and populate the related fields in @s.
10641  */
10642 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10643 			   const struct pcpu_sw_netstats __percpu *netstats)
10644 {
10645 	int cpu;
10646 
10647 	for_each_possible_cpu(cpu) {
10648 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10649 		const struct pcpu_sw_netstats *stats;
10650 		unsigned int start;
10651 
10652 		stats = per_cpu_ptr(netstats, cpu);
10653 		do {
10654 			start = u64_stats_fetch_begin(&stats->syncp);
10655 			rx_packets = u64_stats_read(&stats->rx_packets);
10656 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10657 			tx_packets = u64_stats_read(&stats->tx_packets);
10658 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10659 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10660 
10661 		s->rx_packets += rx_packets;
10662 		s->rx_bytes   += rx_bytes;
10663 		s->tx_packets += tx_packets;
10664 		s->tx_bytes   += tx_bytes;
10665 	}
10666 }
10667 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10668 
10669 /**
10670  *	dev_get_tstats64 - ndo_get_stats64 implementation
10671  *	@dev: device to get statistics from
10672  *	@s: place to store stats
10673  *
10674  *	Populate @s from dev->stats and dev->tstats. Can be used as
10675  *	ndo_get_stats64() callback.
10676  */
10677 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10678 {
10679 	netdev_stats_to_stats64(s, &dev->stats);
10680 	dev_fetch_sw_netstats(s, dev->tstats);
10681 }
10682 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10683 
10684 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10685 {
10686 	struct netdev_queue *queue = dev_ingress_queue(dev);
10687 
10688 #ifdef CONFIG_NET_CLS_ACT
10689 	if (queue)
10690 		return queue;
10691 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10692 	if (!queue)
10693 		return NULL;
10694 	netdev_init_one_queue(dev, queue, NULL);
10695 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10696 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10697 	rcu_assign_pointer(dev->ingress_queue, queue);
10698 #endif
10699 	return queue;
10700 }
10701 
10702 static const struct ethtool_ops default_ethtool_ops;
10703 
10704 void netdev_set_default_ethtool_ops(struct net_device *dev,
10705 				    const struct ethtool_ops *ops)
10706 {
10707 	if (dev->ethtool_ops == &default_ethtool_ops)
10708 		dev->ethtool_ops = ops;
10709 }
10710 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10711 
10712 /**
10713  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10714  * @dev: netdev to enable the IRQ coalescing on
10715  *
10716  * Sets a conservative default for SW IRQ coalescing. Users can use
10717  * sysfs attributes to override the default values.
10718  */
10719 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10720 {
10721 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10722 
10723 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10724 		dev->gro_flush_timeout = 20000;
10725 		dev->napi_defer_hard_irqs = 1;
10726 	}
10727 }
10728 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10729 
10730 void netdev_freemem(struct net_device *dev)
10731 {
10732 	char *addr = (char *)dev - dev->padded;
10733 
10734 	kvfree(addr);
10735 }
10736 
10737 /**
10738  * alloc_netdev_mqs - allocate network device
10739  * @sizeof_priv: size of private data to allocate space for
10740  * @name: device name format string
10741  * @name_assign_type: origin of device name
10742  * @setup: callback to initialize device
10743  * @txqs: the number of TX subqueues to allocate
10744  * @rxqs: the number of RX subqueues to allocate
10745  *
10746  * Allocates a struct net_device with private data area for driver use
10747  * and performs basic initialization.  Also allocates subqueue structs
10748  * for each queue on the device.
10749  */
10750 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10751 		unsigned char name_assign_type,
10752 		void (*setup)(struct net_device *),
10753 		unsigned int txqs, unsigned int rxqs)
10754 {
10755 	struct net_device *dev;
10756 	unsigned int alloc_size;
10757 	struct net_device *p;
10758 
10759 	BUG_ON(strlen(name) >= sizeof(dev->name));
10760 
10761 	if (txqs < 1) {
10762 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10763 		return NULL;
10764 	}
10765 
10766 	if (rxqs < 1) {
10767 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10768 		return NULL;
10769 	}
10770 
10771 	alloc_size = sizeof(struct net_device);
10772 	if (sizeof_priv) {
10773 		/* ensure 32-byte alignment of private area */
10774 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10775 		alloc_size += sizeof_priv;
10776 	}
10777 	/* ensure 32-byte alignment of whole construct */
10778 	alloc_size += NETDEV_ALIGN - 1;
10779 
10780 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10781 	if (!p)
10782 		return NULL;
10783 
10784 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10785 	dev->padded = (char *)dev - (char *)p;
10786 
10787 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10788 #ifdef CONFIG_PCPU_DEV_REFCNT
10789 	dev->pcpu_refcnt = alloc_percpu(int);
10790 	if (!dev->pcpu_refcnt)
10791 		goto free_dev;
10792 	__dev_hold(dev);
10793 #else
10794 	refcount_set(&dev->dev_refcnt, 1);
10795 #endif
10796 
10797 	if (dev_addr_init(dev))
10798 		goto free_pcpu;
10799 
10800 	dev_mc_init(dev);
10801 	dev_uc_init(dev);
10802 
10803 	dev_net_set(dev, &init_net);
10804 
10805 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10806 	dev->xdp_zc_max_segs = 1;
10807 	dev->gso_max_segs = GSO_MAX_SEGS;
10808 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10809 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10810 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10811 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10812 	dev->tso_max_segs = TSO_MAX_SEGS;
10813 	dev->upper_level = 1;
10814 	dev->lower_level = 1;
10815 #ifdef CONFIG_LOCKDEP
10816 	dev->nested_level = 0;
10817 	INIT_LIST_HEAD(&dev->unlink_list);
10818 #endif
10819 
10820 	INIT_LIST_HEAD(&dev->napi_list);
10821 	INIT_LIST_HEAD(&dev->unreg_list);
10822 	INIT_LIST_HEAD(&dev->close_list);
10823 	INIT_LIST_HEAD(&dev->link_watch_list);
10824 	INIT_LIST_HEAD(&dev->adj_list.upper);
10825 	INIT_LIST_HEAD(&dev->adj_list.lower);
10826 	INIT_LIST_HEAD(&dev->ptype_all);
10827 	INIT_LIST_HEAD(&dev->ptype_specific);
10828 	INIT_LIST_HEAD(&dev->net_notifier_list);
10829 #ifdef CONFIG_NET_SCHED
10830 	hash_init(dev->qdisc_hash);
10831 #endif
10832 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10833 	setup(dev);
10834 
10835 	if (!dev->tx_queue_len) {
10836 		dev->priv_flags |= IFF_NO_QUEUE;
10837 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10838 	}
10839 
10840 	dev->num_tx_queues = txqs;
10841 	dev->real_num_tx_queues = txqs;
10842 	if (netif_alloc_netdev_queues(dev))
10843 		goto free_all;
10844 
10845 	dev->num_rx_queues = rxqs;
10846 	dev->real_num_rx_queues = rxqs;
10847 	if (netif_alloc_rx_queues(dev))
10848 		goto free_all;
10849 
10850 	strcpy(dev->name, name);
10851 	dev->name_assign_type = name_assign_type;
10852 	dev->group = INIT_NETDEV_GROUP;
10853 	if (!dev->ethtool_ops)
10854 		dev->ethtool_ops = &default_ethtool_ops;
10855 
10856 	nf_hook_netdev_init(dev);
10857 
10858 	return dev;
10859 
10860 free_all:
10861 	free_netdev(dev);
10862 	return NULL;
10863 
10864 free_pcpu:
10865 #ifdef CONFIG_PCPU_DEV_REFCNT
10866 	free_percpu(dev->pcpu_refcnt);
10867 free_dev:
10868 #endif
10869 	netdev_freemem(dev);
10870 	return NULL;
10871 }
10872 EXPORT_SYMBOL(alloc_netdev_mqs);
10873 
10874 /**
10875  * free_netdev - free network device
10876  * @dev: device
10877  *
10878  * This function does the last stage of destroying an allocated device
10879  * interface. The reference to the device object is released. If this
10880  * is the last reference then it will be freed.Must be called in process
10881  * context.
10882  */
10883 void free_netdev(struct net_device *dev)
10884 {
10885 	struct napi_struct *p, *n;
10886 
10887 	might_sleep();
10888 
10889 	/* When called immediately after register_netdevice() failed the unwind
10890 	 * handling may still be dismantling the device. Handle that case by
10891 	 * deferring the free.
10892 	 */
10893 	if (dev->reg_state == NETREG_UNREGISTERING) {
10894 		ASSERT_RTNL();
10895 		dev->needs_free_netdev = true;
10896 		return;
10897 	}
10898 
10899 	netif_free_tx_queues(dev);
10900 	netif_free_rx_queues(dev);
10901 
10902 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10903 
10904 	/* Flush device addresses */
10905 	dev_addr_flush(dev);
10906 
10907 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10908 		netif_napi_del(p);
10909 
10910 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10911 #ifdef CONFIG_PCPU_DEV_REFCNT
10912 	free_percpu(dev->pcpu_refcnt);
10913 	dev->pcpu_refcnt = NULL;
10914 #endif
10915 	free_percpu(dev->core_stats);
10916 	dev->core_stats = NULL;
10917 	free_percpu(dev->xdp_bulkq);
10918 	dev->xdp_bulkq = NULL;
10919 
10920 	/*  Compatibility with error handling in drivers */
10921 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10922 		netdev_freemem(dev);
10923 		return;
10924 	}
10925 
10926 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10927 	dev->reg_state = NETREG_RELEASED;
10928 
10929 	/* will free via device release */
10930 	put_device(&dev->dev);
10931 }
10932 EXPORT_SYMBOL(free_netdev);
10933 
10934 /**
10935  *	synchronize_net -  Synchronize with packet receive processing
10936  *
10937  *	Wait for packets currently being received to be done.
10938  *	Does not block later packets from starting.
10939  */
10940 void synchronize_net(void)
10941 {
10942 	might_sleep();
10943 	if (rtnl_is_locked())
10944 		synchronize_rcu_expedited();
10945 	else
10946 		synchronize_rcu();
10947 }
10948 EXPORT_SYMBOL(synchronize_net);
10949 
10950 /**
10951  *	unregister_netdevice_queue - remove device from the kernel
10952  *	@dev: device
10953  *	@head: list
10954  *
10955  *	This function shuts down a device interface and removes it
10956  *	from the kernel tables.
10957  *	If head not NULL, device is queued to be unregistered later.
10958  *
10959  *	Callers must hold the rtnl semaphore.  You may want
10960  *	unregister_netdev() instead of this.
10961  */
10962 
10963 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10964 {
10965 	ASSERT_RTNL();
10966 
10967 	if (head) {
10968 		list_move_tail(&dev->unreg_list, head);
10969 	} else {
10970 		LIST_HEAD(single);
10971 
10972 		list_add(&dev->unreg_list, &single);
10973 		unregister_netdevice_many(&single);
10974 	}
10975 }
10976 EXPORT_SYMBOL(unregister_netdevice_queue);
10977 
10978 void unregister_netdevice_many_notify(struct list_head *head,
10979 				      u32 portid, const struct nlmsghdr *nlh)
10980 {
10981 	struct net_device *dev, *tmp;
10982 	LIST_HEAD(close_head);
10983 
10984 	BUG_ON(dev_boot_phase);
10985 	ASSERT_RTNL();
10986 
10987 	if (list_empty(head))
10988 		return;
10989 
10990 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10991 		/* Some devices call without registering
10992 		 * for initialization unwind. Remove those
10993 		 * devices and proceed with the remaining.
10994 		 */
10995 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10996 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10997 				 dev->name, dev);
10998 
10999 			WARN_ON(1);
11000 			list_del(&dev->unreg_list);
11001 			continue;
11002 		}
11003 		dev->dismantle = true;
11004 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11005 	}
11006 
11007 	/* If device is running, close it first. */
11008 	list_for_each_entry(dev, head, unreg_list)
11009 		list_add_tail(&dev->close_list, &close_head);
11010 	dev_close_many(&close_head, true);
11011 
11012 	list_for_each_entry(dev, head, unreg_list) {
11013 		/* And unlink it from device chain. */
11014 		write_lock(&dev_base_lock);
11015 		unlist_netdevice(dev, false);
11016 		dev->reg_state = NETREG_UNREGISTERING;
11017 		write_unlock(&dev_base_lock);
11018 	}
11019 	flush_all_backlogs();
11020 
11021 	synchronize_net();
11022 
11023 	list_for_each_entry(dev, head, unreg_list) {
11024 		struct sk_buff *skb = NULL;
11025 
11026 		/* Shutdown queueing discipline. */
11027 		dev_shutdown(dev);
11028 		dev_tcx_uninstall(dev);
11029 		dev_xdp_uninstall(dev);
11030 		bpf_dev_bound_netdev_unregister(dev);
11031 
11032 		netdev_offload_xstats_disable_all(dev);
11033 
11034 		/* Notify protocols, that we are about to destroy
11035 		 * this device. They should clean all the things.
11036 		 */
11037 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11038 
11039 		if (!dev->rtnl_link_ops ||
11040 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11041 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11042 						     GFP_KERNEL, NULL, 0,
11043 						     portid, nlh);
11044 
11045 		/*
11046 		 *	Flush the unicast and multicast chains
11047 		 */
11048 		dev_uc_flush(dev);
11049 		dev_mc_flush(dev);
11050 
11051 		netdev_name_node_alt_flush(dev);
11052 		netdev_name_node_free(dev->name_node);
11053 
11054 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11055 
11056 		if (dev->netdev_ops->ndo_uninit)
11057 			dev->netdev_ops->ndo_uninit(dev);
11058 
11059 		if (skb)
11060 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11061 
11062 		/* Notifier chain MUST detach us all upper devices. */
11063 		WARN_ON(netdev_has_any_upper_dev(dev));
11064 		WARN_ON(netdev_has_any_lower_dev(dev));
11065 
11066 		/* Remove entries from kobject tree */
11067 		netdev_unregister_kobject(dev);
11068 #ifdef CONFIG_XPS
11069 		/* Remove XPS queueing entries */
11070 		netif_reset_xps_queues_gt(dev, 0);
11071 #endif
11072 	}
11073 
11074 	synchronize_net();
11075 
11076 	list_for_each_entry(dev, head, unreg_list) {
11077 		netdev_put(dev, &dev->dev_registered_tracker);
11078 		net_set_todo(dev);
11079 	}
11080 
11081 	list_del(head);
11082 }
11083 
11084 /**
11085  *	unregister_netdevice_many - unregister many devices
11086  *	@head: list of devices
11087  *
11088  *  Note: As most callers use a stack allocated list_head,
11089  *  we force a list_del() to make sure stack wont be corrupted later.
11090  */
11091 void unregister_netdevice_many(struct list_head *head)
11092 {
11093 	unregister_netdevice_many_notify(head, 0, NULL);
11094 }
11095 EXPORT_SYMBOL(unregister_netdevice_many);
11096 
11097 /**
11098  *	unregister_netdev - remove device from the kernel
11099  *	@dev: device
11100  *
11101  *	This function shuts down a device interface and removes it
11102  *	from the kernel tables.
11103  *
11104  *	This is just a wrapper for unregister_netdevice that takes
11105  *	the rtnl semaphore.  In general you want to use this and not
11106  *	unregister_netdevice.
11107  */
11108 void unregister_netdev(struct net_device *dev)
11109 {
11110 	rtnl_lock();
11111 	unregister_netdevice(dev);
11112 	rtnl_unlock();
11113 }
11114 EXPORT_SYMBOL(unregister_netdev);
11115 
11116 /**
11117  *	__dev_change_net_namespace - move device to different nethost namespace
11118  *	@dev: device
11119  *	@net: network namespace
11120  *	@pat: If not NULL name pattern to try if the current device name
11121  *	      is already taken in the destination network namespace.
11122  *	@new_ifindex: If not zero, specifies device index in the target
11123  *	              namespace.
11124  *
11125  *	This function shuts down a device interface and moves it
11126  *	to a new network namespace. On success 0 is returned, on
11127  *	a failure a netagive errno code is returned.
11128  *
11129  *	Callers must hold the rtnl semaphore.
11130  */
11131 
11132 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11133 			       const char *pat, int new_ifindex)
11134 {
11135 	struct netdev_name_node *name_node;
11136 	struct net *net_old = dev_net(dev);
11137 	char new_name[IFNAMSIZ] = {};
11138 	int err, new_nsid;
11139 
11140 	ASSERT_RTNL();
11141 
11142 	/* Don't allow namespace local devices to be moved. */
11143 	err = -EINVAL;
11144 	if (dev->features & NETIF_F_NETNS_LOCAL)
11145 		goto out;
11146 
11147 	/* Ensure the device has been registrered */
11148 	if (dev->reg_state != NETREG_REGISTERED)
11149 		goto out;
11150 
11151 	/* Get out if there is nothing todo */
11152 	err = 0;
11153 	if (net_eq(net_old, net))
11154 		goto out;
11155 
11156 	/* Pick the destination device name, and ensure
11157 	 * we can use it in the destination network namespace.
11158 	 */
11159 	err = -EEXIST;
11160 	if (netdev_name_in_use(net, dev->name)) {
11161 		/* We get here if we can't use the current device name */
11162 		if (!pat)
11163 			goto out;
11164 		err = dev_prep_valid_name(net, dev, pat, new_name);
11165 		if (err < 0)
11166 			goto out;
11167 	}
11168 	/* Check that none of the altnames conflicts. */
11169 	err = -EEXIST;
11170 	netdev_for_each_altname(dev, name_node)
11171 		if (netdev_name_in_use(net, name_node->name))
11172 			goto out;
11173 
11174 	/* Check that new_ifindex isn't used yet. */
11175 	if (new_ifindex) {
11176 		err = dev_index_reserve(net, new_ifindex);
11177 		if (err < 0)
11178 			goto out;
11179 	} else {
11180 		/* If there is an ifindex conflict assign a new one */
11181 		err = dev_index_reserve(net, dev->ifindex);
11182 		if (err == -EBUSY)
11183 			err = dev_index_reserve(net, 0);
11184 		if (err < 0)
11185 			goto out;
11186 		new_ifindex = err;
11187 	}
11188 
11189 	/*
11190 	 * And now a mini version of register_netdevice unregister_netdevice.
11191 	 */
11192 
11193 	/* If device is running close it first. */
11194 	dev_close(dev);
11195 
11196 	/* And unlink it from device chain */
11197 	unlist_netdevice(dev, true);
11198 
11199 	synchronize_net();
11200 
11201 	/* Shutdown queueing discipline. */
11202 	dev_shutdown(dev);
11203 
11204 	/* Notify protocols, that we are about to destroy
11205 	 * this device. They should clean all the things.
11206 	 *
11207 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11208 	 * This is wanted because this way 8021q and macvlan know
11209 	 * the device is just moving and can keep their slaves up.
11210 	 */
11211 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11212 	rcu_barrier();
11213 
11214 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11215 
11216 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11217 			    new_ifindex);
11218 
11219 	/*
11220 	 *	Flush the unicast and multicast chains
11221 	 */
11222 	dev_uc_flush(dev);
11223 	dev_mc_flush(dev);
11224 
11225 	/* Send a netdev-removed uevent to the old namespace */
11226 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11227 	netdev_adjacent_del_links(dev);
11228 
11229 	/* Move per-net netdevice notifiers that are following the netdevice */
11230 	move_netdevice_notifiers_dev_net(dev, net);
11231 
11232 	/* Actually switch the network namespace */
11233 	dev_net_set(dev, net);
11234 	dev->ifindex = new_ifindex;
11235 
11236 	/* Send a netdev-add uevent to the new namespace */
11237 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11238 	netdev_adjacent_add_links(dev);
11239 
11240 	if (new_name[0]) /* Rename the netdev to prepared name */
11241 		strscpy(dev->name, new_name, IFNAMSIZ);
11242 
11243 	/* Fixup kobjects */
11244 	err = device_rename(&dev->dev, dev->name);
11245 	WARN_ON(err);
11246 
11247 	/* Adapt owner in case owning user namespace of target network
11248 	 * namespace is different from the original one.
11249 	 */
11250 	err = netdev_change_owner(dev, net_old, net);
11251 	WARN_ON(err);
11252 
11253 	/* Add the device back in the hashes */
11254 	list_netdevice(dev);
11255 
11256 	/* Notify protocols, that a new device appeared. */
11257 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11258 
11259 	/*
11260 	 *	Prevent userspace races by waiting until the network
11261 	 *	device is fully setup before sending notifications.
11262 	 */
11263 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11264 
11265 	synchronize_net();
11266 	err = 0;
11267 out:
11268 	return err;
11269 }
11270 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11271 
11272 static int dev_cpu_dead(unsigned int oldcpu)
11273 {
11274 	struct sk_buff **list_skb;
11275 	struct sk_buff *skb;
11276 	unsigned int cpu;
11277 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11278 
11279 	local_irq_disable();
11280 	cpu = smp_processor_id();
11281 	sd = &per_cpu(softnet_data, cpu);
11282 	oldsd = &per_cpu(softnet_data, oldcpu);
11283 
11284 	/* Find end of our completion_queue. */
11285 	list_skb = &sd->completion_queue;
11286 	while (*list_skb)
11287 		list_skb = &(*list_skb)->next;
11288 	/* Append completion queue from offline CPU. */
11289 	*list_skb = oldsd->completion_queue;
11290 	oldsd->completion_queue = NULL;
11291 
11292 	/* Append output queue from offline CPU. */
11293 	if (oldsd->output_queue) {
11294 		*sd->output_queue_tailp = oldsd->output_queue;
11295 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11296 		oldsd->output_queue = NULL;
11297 		oldsd->output_queue_tailp = &oldsd->output_queue;
11298 	}
11299 	/* Append NAPI poll list from offline CPU, with one exception :
11300 	 * process_backlog() must be called by cpu owning percpu backlog.
11301 	 * We properly handle process_queue & input_pkt_queue later.
11302 	 */
11303 	while (!list_empty(&oldsd->poll_list)) {
11304 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11305 							    struct napi_struct,
11306 							    poll_list);
11307 
11308 		list_del_init(&napi->poll_list);
11309 		if (napi->poll == process_backlog)
11310 			napi->state = 0;
11311 		else
11312 			____napi_schedule(sd, napi);
11313 	}
11314 
11315 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11316 	local_irq_enable();
11317 
11318 #ifdef CONFIG_RPS
11319 	remsd = oldsd->rps_ipi_list;
11320 	oldsd->rps_ipi_list = NULL;
11321 #endif
11322 	/* send out pending IPI's on offline CPU */
11323 	net_rps_send_ipi(remsd);
11324 
11325 	/* Process offline CPU's input_pkt_queue */
11326 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11327 		netif_rx(skb);
11328 		input_queue_head_incr(oldsd);
11329 	}
11330 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11331 		netif_rx(skb);
11332 		input_queue_head_incr(oldsd);
11333 	}
11334 
11335 	return 0;
11336 }
11337 
11338 /**
11339  *	netdev_increment_features - increment feature set by one
11340  *	@all: current feature set
11341  *	@one: new feature set
11342  *	@mask: mask feature set
11343  *
11344  *	Computes a new feature set after adding a device with feature set
11345  *	@one to the master device with current feature set @all.  Will not
11346  *	enable anything that is off in @mask. Returns the new feature set.
11347  */
11348 netdev_features_t netdev_increment_features(netdev_features_t all,
11349 	netdev_features_t one, netdev_features_t mask)
11350 {
11351 	if (mask & NETIF_F_HW_CSUM)
11352 		mask |= NETIF_F_CSUM_MASK;
11353 	mask |= NETIF_F_VLAN_CHALLENGED;
11354 
11355 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11356 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11357 
11358 	/* If one device supports hw checksumming, set for all. */
11359 	if (all & NETIF_F_HW_CSUM)
11360 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11361 
11362 	return all;
11363 }
11364 EXPORT_SYMBOL(netdev_increment_features);
11365 
11366 static struct hlist_head * __net_init netdev_create_hash(void)
11367 {
11368 	int i;
11369 	struct hlist_head *hash;
11370 
11371 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11372 	if (hash != NULL)
11373 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11374 			INIT_HLIST_HEAD(&hash[i]);
11375 
11376 	return hash;
11377 }
11378 
11379 /* Initialize per network namespace state */
11380 static int __net_init netdev_init(struct net *net)
11381 {
11382 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11383 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11384 
11385 	INIT_LIST_HEAD(&net->dev_base_head);
11386 
11387 	net->dev_name_head = netdev_create_hash();
11388 	if (net->dev_name_head == NULL)
11389 		goto err_name;
11390 
11391 	net->dev_index_head = netdev_create_hash();
11392 	if (net->dev_index_head == NULL)
11393 		goto err_idx;
11394 
11395 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11396 
11397 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11398 
11399 	return 0;
11400 
11401 err_idx:
11402 	kfree(net->dev_name_head);
11403 err_name:
11404 	return -ENOMEM;
11405 }
11406 
11407 /**
11408  *	netdev_drivername - network driver for the device
11409  *	@dev: network device
11410  *
11411  *	Determine network driver for device.
11412  */
11413 const char *netdev_drivername(const struct net_device *dev)
11414 {
11415 	const struct device_driver *driver;
11416 	const struct device *parent;
11417 	const char *empty = "";
11418 
11419 	parent = dev->dev.parent;
11420 	if (!parent)
11421 		return empty;
11422 
11423 	driver = parent->driver;
11424 	if (driver && driver->name)
11425 		return driver->name;
11426 	return empty;
11427 }
11428 
11429 static void __netdev_printk(const char *level, const struct net_device *dev,
11430 			    struct va_format *vaf)
11431 {
11432 	if (dev && dev->dev.parent) {
11433 		dev_printk_emit(level[1] - '0',
11434 				dev->dev.parent,
11435 				"%s %s %s%s: %pV",
11436 				dev_driver_string(dev->dev.parent),
11437 				dev_name(dev->dev.parent),
11438 				netdev_name(dev), netdev_reg_state(dev),
11439 				vaf);
11440 	} else if (dev) {
11441 		printk("%s%s%s: %pV",
11442 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11443 	} else {
11444 		printk("%s(NULL net_device): %pV", level, vaf);
11445 	}
11446 }
11447 
11448 void netdev_printk(const char *level, const struct net_device *dev,
11449 		   const char *format, ...)
11450 {
11451 	struct va_format vaf;
11452 	va_list args;
11453 
11454 	va_start(args, format);
11455 
11456 	vaf.fmt = format;
11457 	vaf.va = &args;
11458 
11459 	__netdev_printk(level, dev, &vaf);
11460 
11461 	va_end(args);
11462 }
11463 EXPORT_SYMBOL(netdev_printk);
11464 
11465 #define define_netdev_printk_level(func, level)			\
11466 void func(const struct net_device *dev, const char *fmt, ...)	\
11467 {								\
11468 	struct va_format vaf;					\
11469 	va_list args;						\
11470 								\
11471 	va_start(args, fmt);					\
11472 								\
11473 	vaf.fmt = fmt;						\
11474 	vaf.va = &args;						\
11475 								\
11476 	__netdev_printk(level, dev, &vaf);			\
11477 								\
11478 	va_end(args);						\
11479 }								\
11480 EXPORT_SYMBOL(func);
11481 
11482 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11483 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11484 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11485 define_netdev_printk_level(netdev_err, KERN_ERR);
11486 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11487 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11488 define_netdev_printk_level(netdev_info, KERN_INFO);
11489 
11490 static void __net_exit netdev_exit(struct net *net)
11491 {
11492 	kfree(net->dev_name_head);
11493 	kfree(net->dev_index_head);
11494 	xa_destroy(&net->dev_by_index);
11495 	if (net != &init_net)
11496 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11497 }
11498 
11499 static struct pernet_operations __net_initdata netdev_net_ops = {
11500 	.init = netdev_init,
11501 	.exit = netdev_exit,
11502 };
11503 
11504 static void __net_exit default_device_exit_net(struct net *net)
11505 {
11506 	struct netdev_name_node *name_node, *tmp;
11507 	struct net_device *dev, *aux;
11508 	/*
11509 	 * Push all migratable network devices back to the
11510 	 * initial network namespace
11511 	 */
11512 	ASSERT_RTNL();
11513 	for_each_netdev_safe(net, dev, aux) {
11514 		int err;
11515 		char fb_name[IFNAMSIZ];
11516 
11517 		/* Ignore unmoveable devices (i.e. loopback) */
11518 		if (dev->features & NETIF_F_NETNS_LOCAL)
11519 			continue;
11520 
11521 		/* Leave virtual devices for the generic cleanup */
11522 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11523 			continue;
11524 
11525 		/* Push remaining network devices to init_net */
11526 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11527 		if (netdev_name_in_use(&init_net, fb_name))
11528 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11529 
11530 		netdev_for_each_altname_safe(dev, name_node, tmp)
11531 			if (netdev_name_in_use(&init_net, name_node->name)) {
11532 				netdev_name_node_del(name_node);
11533 				synchronize_rcu();
11534 				__netdev_name_node_alt_destroy(name_node);
11535 			}
11536 
11537 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11538 		if (err) {
11539 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11540 				 __func__, dev->name, err);
11541 			BUG();
11542 		}
11543 	}
11544 }
11545 
11546 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11547 {
11548 	/* At exit all network devices most be removed from a network
11549 	 * namespace.  Do this in the reverse order of registration.
11550 	 * Do this across as many network namespaces as possible to
11551 	 * improve batching efficiency.
11552 	 */
11553 	struct net_device *dev;
11554 	struct net *net;
11555 	LIST_HEAD(dev_kill_list);
11556 
11557 	rtnl_lock();
11558 	list_for_each_entry(net, net_list, exit_list) {
11559 		default_device_exit_net(net);
11560 		cond_resched();
11561 	}
11562 
11563 	list_for_each_entry(net, net_list, exit_list) {
11564 		for_each_netdev_reverse(net, dev) {
11565 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11566 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11567 			else
11568 				unregister_netdevice_queue(dev, &dev_kill_list);
11569 		}
11570 	}
11571 	unregister_netdevice_many(&dev_kill_list);
11572 	rtnl_unlock();
11573 }
11574 
11575 static struct pernet_operations __net_initdata default_device_ops = {
11576 	.exit_batch = default_device_exit_batch,
11577 };
11578 
11579 /*
11580  *	Initialize the DEV module. At boot time this walks the device list and
11581  *	unhooks any devices that fail to initialise (normally hardware not
11582  *	present) and leaves us with a valid list of present and active devices.
11583  *
11584  */
11585 
11586 /*
11587  *       This is called single threaded during boot, so no need
11588  *       to take the rtnl semaphore.
11589  */
11590 static int __init net_dev_init(void)
11591 {
11592 	int i, rc = -ENOMEM;
11593 
11594 	BUG_ON(!dev_boot_phase);
11595 
11596 	if (dev_proc_init())
11597 		goto out;
11598 
11599 	if (netdev_kobject_init())
11600 		goto out;
11601 
11602 	INIT_LIST_HEAD(&ptype_all);
11603 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11604 		INIT_LIST_HEAD(&ptype_base[i]);
11605 
11606 	if (register_pernet_subsys(&netdev_net_ops))
11607 		goto out;
11608 
11609 	/*
11610 	 *	Initialise the packet receive queues.
11611 	 */
11612 
11613 	for_each_possible_cpu(i) {
11614 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11615 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11616 
11617 		INIT_WORK(flush, flush_backlog);
11618 
11619 		skb_queue_head_init(&sd->input_pkt_queue);
11620 		skb_queue_head_init(&sd->process_queue);
11621 #ifdef CONFIG_XFRM_OFFLOAD
11622 		skb_queue_head_init(&sd->xfrm_backlog);
11623 #endif
11624 		INIT_LIST_HEAD(&sd->poll_list);
11625 		sd->output_queue_tailp = &sd->output_queue;
11626 #ifdef CONFIG_RPS
11627 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11628 		sd->cpu = i;
11629 #endif
11630 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11631 		spin_lock_init(&sd->defer_lock);
11632 
11633 		init_gro_hash(&sd->backlog);
11634 		sd->backlog.poll = process_backlog;
11635 		sd->backlog.weight = weight_p;
11636 	}
11637 
11638 	dev_boot_phase = 0;
11639 
11640 	/* The loopback device is special if any other network devices
11641 	 * is present in a network namespace the loopback device must
11642 	 * be present. Since we now dynamically allocate and free the
11643 	 * loopback device ensure this invariant is maintained by
11644 	 * keeping the loopback device as the first device on the
11645 	 * list of network devices.  Ensuring the loopback devices
11646 	 * is the first device that appears and the last network device
11647 	 * that disappears.
11648 	 */
11649 	if (register_pernet_device(&loopback_net_ops))
11650 		goto out;
11651 
11652 	if (register_pernet_device(&default_device_ops))
11653 		goto out;
11654 
11655 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11656 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11657 
11658 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11659 				       NULL, dev_cpu_dead);
11660 	WARN_ON(rc < 0);
11661 	rc = 0;
11662 out:
11663 	return rc;
11664 }
11665 
11666 subsys_initcall(net_dev_init);
11667