1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/dst_metadata.h> 103 #include <net/pkt_sched.h> 104 #include <net/checksum.h> 105 #include <net/xfrm.h> 106 #include <linux/highmem.h> 107 #include <linux/init.h> 108 #include <linux/module.h> 109 #include <linux/netpoll.h> 110 #include <linux/rcupdate.h> 111 #include <linux/delay.h> 112 #include <net/iw_handler.h> 113 #include <asm/current.h> 114 #include <linux/audit.h> 115 #include <linux/dmaengine.h> 116 #include <linux/err.h> 117 #include <linux/ctype.h> 118 #include <linux/if_arp.h> 119 #include <linux/if_vlan.h> 120 #include <linux/ip.h> 121 #include <net/ip.h> 122 #include <net/mpls.h> 123 #include <linux/ipv6.h> 124 #include <linux/in.h> 125 #include <linux/jhash.h> 126 #include <linux/random.h> 127 #include <trace/events/napi.h> 128 #include <trace/events/net.h> 129 #include <trace/events/skb.h> 130 #include <linux/pci.h> 131 #include <linux/inetdevice.h> 132 #include <linux/cpu_rmap.h> 133 #include <linux/static_key.h> 134 #include <linux/hashtable.h> 135 #include <linux/vmalloc.h> 136 #include <linux/if_macvlan.h> 137 #include <linux/errqueue.h> 138 #include <linux/hrtimer.h> 139 #include <linux/netfilter_ingress.h> 140 141 #include "net-sysfs.h" 142 143 /* Instead of increasing this, you should create a hash table. */ 144 #define MAX_GRO_SKBS 8 145 146 /* This should be increased if a protocol with a bigger head is added. */ 147 #define GRO_MAX_HEAD (MAX_HEADER + 128) 148 149 static DEFINE_SPINLOCK(ptype_lock); 150 static DEFINE_SPINLOCK(offload_lock); 151 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 152 struct list_head ptype_all __read_mostly; /* Taps */ 153 static struct list_head offload_base __read_mostly; 154 155 static int netif_rx_internal(struct sk_buff *skb); 156 static int call_netdevice_notifiers_info(unsigned long val, 157 struct net_device *dev, 158 struct netdev_notifier_info *info); 159 160 /* 161 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 162 * semaphore. 163 * 164 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 165 * 166 * Writers must hold the rtnl semaphore while they loop through the 167 * dev_base_head list, and hold dev_base_lock for writing when they do the 168 * actual updates. This allows pure readers to access the list even 169 * while a writer is preparing to update it. 170 * 171 * To put it another way, dev_base_lock is held for writing only to 172 * protect against pure readers; the rtnl semaphore provides the 173 * protection against other writers. 174 * 175 * See, for example usages, register_netdevice() and 176 * unregister_netdevice(), which must be called with the rtnl 177 * semaphore held. 178 */ 179 DEFINE_RWLOCK(dev_base_lock); 180 EXPORT_SYMBOL(dev_base_lock); 181 182 /* protects napi_hash addition/deletion and napi_gen_id */ 183 static DEFINE_SPINLOCK(napi_hash_lock); 184 185 static unsigned int napi_gen_id; 186 static DEFINE_HASHTABLE(napi_hash, 8); 187 188 static seqcount_t devnet_rename_seq; 189 190 static inline void dev_base_seq_inc(struct net *net) 191 { 192 while (++net->dev_base_seq == 0); 193 } 194 195 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 196 { 197 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 198 199 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 200 } 201 202 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 203 { 204 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 205 } 206 207 static inline void rps_lock(struct softnet_data *sd) 208 { 209 #ifdef CONFIG_RPS 210 spin_lock(&sd->input_pkt_queue.lock); 211 #endif 212 } 213 214 static inline void rps_unlock(struct softnet_data *sd) 215 { 216 #ifdef CONFIG_RPS 217 spin_unlock(&sd->input_pkt_queue.lock); 218 #endif 219 } 220 221 /* Device list insertion */ 222 static void list_netdevice(struct net_device *dev) 223 { 224 struct net *net = dev_net(dev); 225 226 ASSERT_RTNL(); 227 228 write_lock_bh(&dev_base_lock); 229 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 230 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 231 hlist_add_head_rcu(&dev->index_hlist, 232 dev_index_hash(net, dev->ifindex)); 233 write_unlock_bh(&dev_base_lock); 234 235 dev_base_seq_inc(net); 236 } 237 238 /* Device list removal 239 * caller must respect a RCU grace period before freeing/reusing dev 240 */ 241 static void unlist_netdevice(struct net_device *dev) 242 { 243 ASSERT_RTNL(); 244 245 /* Unlink dev from the device chain */ 246 write_lock_bh(&dev_base_lock); 247 list_del_rcu(&dev->dev_list); 248 hlist_del_rcu(&dev->name_hlist); 249 hlist_del_rcu(&dev->index_hlist); 250 write_unlock_bh(&dev_base_lock); 251 252 dev_base_seq_inc(dev_net(dev)); 253 } 254 255 /* 256 * Our notifier list 257 */ 258 259 static RAW_NOTIFIER_HEAD(netdev_chain); 260 261 /* 262 * Device drivers call our routines to queue packets here. We empty the 263 * queue in the local softnet handler. 264 */ 265 266 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 267 EXPORT_PER_CPU_SYMBOL(softnet_data); 268 269 #ifdef CONFIG_LOCKDEP 270 /* 271 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 272 * according to dev->type 273 */ 274 static const unsigned short netdev_lock_type[] = 275 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 276 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 277 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 278 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 279 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 280 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 281 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 282 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 283 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 284 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 285 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 286 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 287 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 288 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 289 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 290 291 static const char *const netdev_lock_name[] = 292 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 293 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 294 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 295 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 296 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 297 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 298 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 299 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 300 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 301 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 302 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 303 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 304 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 305 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 306 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 307 308 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 309 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 310 311 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 312 { 313 int i; 314 315 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 316 if (netdev_lock_type[i] == dev_type) 317 return i; 318 /* the last key is used by default */ 319 return ARRAY_SIZE(netdev_lock_type) - 1; 320 } 321 322 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 323 unsigned short dev_type) 324 { 325 int i; 326 327 i = netdev_lock_pos(dev_type); 328 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 329 netdev_lock_name[i]); 330 } 331 332 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 333 { 334 int i; 335 336 i = netdev_lock_pos(dev->type); 337 lockdep_set_class_and_name(&dev->addr_list_lock, 338 &netdev_addr_lock_key[i], 339 netdev_lock_name[i]); 340 } 341 #else 342 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 343 unsigned short dev_type) 344 { 345 } 346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 347 { 348 } 349 #endif 350 351 /******************************************************************************* 352 353 Protocol management and registration routines 354 355 *******************************************************************************/ 356 357 /* 358 * Add a protocol ID to the list. Now that the input handler is 359 * smarter we can dispense with all the messy stuff that used to be 360 * here. 361 * 362 * BEWARE!!! Protocol handlers, mangling input packets, 363 * MUST BE last in hash buckets and checking protocol handlers 364 * MUST start from promiscuous ptype_all chain in net_bh. 365 * It is true now, do not change it. 366 * Explanation follows: if protocol handler, mangling packet, will 367 * be the first on list, it is not able to sense, that packet 368 * is cloned and should be copied-on-write, so that it will 369 * change it and subsequent readers will get broken packet. 370 * --ANK (980803) 371 */ 372 373 static inline struct list_head *ptype_head(const struct packet_type *pt) 374 { 375 if (pt->type == htons(ETH_P_ALL)) 376 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 377 else 378 return pt->dev ? &pt->dev->ptype_specific : 379 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 380 } 381 382 /** 383 * dev_add_pack - add packet handler 384 * @pt: packet type declaration 385 * 386 * Add a protocol handler to the networking stack. The passed &packet_type 387 * is linked into kernel lists and may not be freed until it has been 388 * removed from the kernel lists. 389 * 390 * This call does not sleep therefore it can not 391 * guarantee all CPU's that are in middle of receiving packets 392 * will see the new packet type (until the next received packet). 393 */ 394 395 void dev_add_pack(struct packet_type *pt) 396 { 397 struct list_head *head = ptype_head(pt); 398 399 spin_lock(&ptype_lock); 400 list_add_rcu(&pt->list, head); 401 spin_unlock(&ptype_lock); 402 } 403 EXPORT_SYMBOL(dev_add_pack); 404 405 /** 406 * __dev_remove_pack - remove packet handler 407 * @pt: packet type declaration 408 * 409 * Remove a protocol handler that was previously added to the kernel 410 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 411 * from the kernel lists and can be freed or reused once this function 412 * returns. 413 * 414 * The packet type might still be in use by receivers 415 * and must not be freed until after all the CPU's have gone 416 * through a quiescent state. 417 */ 418 void __dev_remove_pack(struct packet_type *pt) 419 { 420 struct list_head *head = ptype_head(pt); 421 struct packet_type *pt1; 422 423 spin_lock(&ptype_lock); 424 425 list_for_each_entry(pt1, head, list) { 426 if (pt == pt1) { 427 list_del_rcu(&pt->list); 428 goto out; 429 } 430 } 431 432 pr_warn("dev_remove_pack: %p not found\n", pt); 433 out: 434 spin_unlock(&ptype_lock); 435 } 436 EXPORT_SYMBOL(__dev_remove_pack); 437 438 /** 439 * dev_remove_pack - remove packet handler 440 * @pt: packet type declaration 441 * 442 * Remove a protocol handler that was previously added to the kernel 443 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 444 * from the kernel lists and can be freed or reused once this function 445 * returns. 446 * 447 * This call sleeps to guarantee that no CPU is looking at the packet 448 * type after return. 449 */ 450 void dev_remove_pack(struct packet_type *pt) 451 { 452 __dev_remove_pack(pt); 453 454 synchronize_net(); 455 } 456 EXPORT_SYMBOL(dev_remove_pack); 457 458 459 /** 460 * dev_add_offload - register offload handlers 461 * @po: protocol offload declaration 462 * 463 * Add protocol offload handlers to the networking stack. The passed 464 * &proto_offload is linked into kernel lists and may not be freed until 465 * it has been removed from the kernel lists. 466 * 467 * This call does not sleep therefore it can not 468 * guarantee all CPU's that are in middle of receiving packets 469 * will see the new offload handlers (until the next received packet). 470 */ 471 void dev_add_offload(struct packet_offload *po) 472 { 473 struct packet_offload *elem; 474 475 spin_lock(&offload_lock); 476 list_for_each_entry(elem, &offload_base, list) { 477 if (po->priority < elem->priority) 478 break; 479 } 480 list_add_rcu(&po->list, elem->list.prev); 481 spin_unlock(&offload_lock); 482 } 483 EXPORT_SYMBOL(dev_add_offload); 484 485 /** 486 * __dev_remove_offload - remove offload handler 487 * @po: packet offload declaration 488 * 489 * Remove a protocol offload handler that was previously added to the 490 * kernel offload handlers by dev_add_offload(). The passed &offload_type 491 * is removed from the kernel lists and can be freed or reused once this 492 * function returns. 493 * 494 * The packet type might still be in use by receivers 495 * and must not be freed until after all the CPU's have gone 496 * through a quiescent state. 497 */ 498 static void __dev_remove_offload(struct packet_offload *po) 499 { 500 struct list_head *head = &offload_base; 501 struct packet_offload *po1; 502 503 spin_lock(&offload_lock); 504 505 list_for_each_entry(po1, head, list) { 506 if (po == po1) { 507 list_del_rcu(&po->list); 508 goto out; 509 } 510 } 511 512 pr_warn("dev_remove_offload: %p not found\n", po); 513 out: 514 spin_unlock(&offload_lock); 515 } 516 517 /** 518 * dev_remove_offload - remove packet offload handler 519 * @po: packet offload declaration 520 * 521 * Remove a packet offload handler that was previously added to the kernel 522 * offload handlers by dev_add_offload(). The passed &offload_type is 523 * removed from the kernel lists and can be freed or reused once this 524 * function returns. 525 * 526 * This call sleeps to guarantee that no CPU is looking at the packet 527 * type after return. 528 */ 529 void dev_remove_offload(struct packet_offload *po) 530 { 531 __dev_remove_offload(po); 532 533 synchronize_net(); 534 } 535 EXPORT_SYMBOL(dev_remove_offload); 536 537 /****************************************************************************** 538 539 Device Boot-time Settings Routines 540 541 *******************************************************************************/ 542 543 /* Boot time configuration table */ 544 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 545 546 /** 547 * netdev_boot_setup_add - add new setup entry 548 * @name: name of the device 549 * @map: configured settings for the device 550 * 551 * Adds new setup entry to the dev_boot_setup list. The function 552 * returns 0 on error and 1 on success. This is a generic routine to 553 * all netdevices. 554 */ 555 static int netdev_boot_setup_add(char *name, struct ifmap *map) 556 { 557 struct netdev_boot_setup *s; 558 int i; 559 560 s = dev_boot_setup; 561 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 562 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 563 memset(s[i].name, 0, sizeof(s[i].name)); 564 strlcpy(s[i].name, name, IFNAMSIZ); 565 memcpy(&s[i].map, map, sizeof(s[i].map)); 566 break; 567 } 568 } 569 570 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 571 } 572 573 /** 574 * netdev_boot_setup_check - check boot time settings 575 * @dev: the netdevice 576 * 577 * Check boot time settings for the device. 578 * The found settings are set for the device to be used 579 * later in the device probing. 580 * Returns 0 if no settings found, 1 if they are. 581 */ 582 int netdev_boot_setup_check(struct net_device *dev) 583 { 584 struct netdev_boot_setup *s = dev_boot_setup; 585 int i; 586 587 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 588 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 589 !strcmp(dev->name, s[i].name)) { 590 dev->irq = s[i].map.irq; 591 dev->base_addr = s[i].map.base_addr; 592 dev->mem_start = s[i].map.mem_start; 593 dev->mem_end = s[i].map.mem_end; 594 return 1; 595 } 596 } 597 return 0; 598 } 599 EXPORT_SYMBOL(netdev_boot_setup_check); 600 601 602 /** 603 * netdev_boot_base - get address from boot time settings 604 * @prefix: prefix for network device 605 * @unit: id for network device 606 * 607 * Check boot time settings for the base address of device. 608 * The found settings are set for the device to be used 609 * later in the device probing. 610 * Returns 0 if no settings found. 611 */ 612 unsigned long netdev_boot_base(const char *prefix, int unit) 613 { 614 const struct netdev_boot_setup *s = dev_boot_setup; 615 char name[IFNAMSIZ]; 616 int i; 617 618 sprintf(name, "%s%d", prefix, unit); 619 620 /* 621 * If device already registered then return base of 1 622 * to indicate not to probe for this interface 623 */ 624 if (__dev_get_by_name(&init_net, name)) 625 return 1; 626 627 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 628 if (!strcmp(name, s[i].name)) 629 return s[i].map.base_addr; 630 return 0; 631 } 632 633 /* 634 * Saves at boot time configured settings for any netdevice. 635 */ 636 int __init netdev_boot_setup(char *str) 637 { 638 int ints[5]; 639 struct ifmap map; 640 641 str = get_options(str, ARRAY_SIZE(ints), ints); 642 if (!str || !*str) 643 return 0; 644 645 /* Save settings */ 646 memset(&map, 0, sizeof(map)); 647 if (ints[0] > 0) 648 map.irq = ints[1]; 649 if (ints[0] > 1) 650 map.base_addr = ints[2]; 651 if (ints[0] > 2) 652 map.mem_start = ints[3]; 653 if (ints[0] > 3) 654 map.mem_end = ints[4]; 655 656 /* Add new entry to the list */ 657 return netdev_boot_setup_add(str, &map); 658 } 659 660 __setup("netdev=", netdev_boot_setup); 661 662 /******************************************************************************* 663 664 Device Interface Subroutines 665 666 *******************************************************************************/ 667 668 /** 669 * dev_get_iflink - get 'iflink' value of a interface 670 * @dev: targeted interface 671 * 672 * Indicates the ifindex the interface is linked to. 673 * Physical interfaces have the same 'ifindex' and 'iflink' values. 674 */ 675 676 int dev_get_iflink(const struct net_device *dev) 677 { 678 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 679 return dev->netdev_ops->ndo_get_iflink(dev); 680 681 return dev->ifindex; 682 } 683 EXPORT_SYMBOL(dev_get_iflink); 684 685 /** 686 * dev_fill_metadata_dst - Retrieve tunnel egress information. 687 * @dev: targeted interface 688 * @skb: The packet. 689 * 690 * For better visibility of tunnel traffic OVS needs to retrieve 691 * egress tunnel information for a packet. Following API allows 692 * user to get this info. 693 */ 694 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 695 { 696 struct ip_tunnel_info *info; 697 698 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 699 return -EINVAL; 700 701 info = skb_tunnel_info_unclone(skb); 702 if (!info) 703 return -ENOMEM; 704 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 705 return -EINVAL; 706 707 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 708 } 709 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 710 711 /** 712 * __dev_get_by_name - find a device by its name 713 * @net: the applicable net namespace 714 * @name: name to find 715 * 716 * Find an interface by name. Must be called under RTNL semaphore 717 * or @dev_base_lock. If the name is found a pointer to the device 718 * is returned. If the name is not found then %NULL is returned. The 719 * reference counters are not incremented so the caller must be 720 * careful with locks. 721 */ 722 723 struct net_device *__dev_get_by_name(struct net *net, const char *name) 724 { 725 struct net_device *dev; 726 struct hlist_head *head = dev_name_hash(net, name); 727 728 hlist_for_each_entry(dev, head, name_hlist) 729 if (!strncmp(dev->name, name, IFNAMSIZ)) 730 return dev; 731 732 return NULL; 733 } 734 EXPORT_SYMBOL(__dev_get_by_name); 735 736 /** 737 * dev_get_by_name_rcu - find a device by its name 738 * @net: the applicable net namespace 739 * @name: name to find 740 * 741 * Find an interface by name. 742 * If the name is found a pointer to the device is returned. 743 * If the name is not found then %NULL is returned. 744 * The reference counters are not incremented so the caller must be 745 * careful with locks. The caller must hold RCU lock. 746 */ 747 748 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 749 { 750 struct net_device *dev; 751 struct hlist_head *head = dev_name_hash(net, name); 752 753 hlist_for_each_entry_rcu(dev, head, name_hlist) 754 if (!strncmp(dev->name, name, IFNAMSIZ)) 755 return dev; 756 757 return NULL; 758 } 759 EXPORT_SYMBOL(dev_get_by_name_rcu); 760 761 /** 762 * dev_get_by_name - find a device by its name 763 * @net: the applicable net namespace 764 * @name: name to find 765 * 766 * Find an interface by name. This can be called from any 767 * context and does its own locking. The returned handle has 768 * the usage count incremented and the caller must use dev_put() to 769 * release it when it is no longer needed. %NULL is returned if no 770 * matching device is found. 771 */ 772 773 struct net_device *dev_get_by_name(struct net *net, const char *name) 774 { 775 struct net_device *dev; 776 777 rcu_read_lock(); 778 dev = dev_get_by_name_rcu(net, name); 779 if (dev) 780 dev_hold(dev); 781 rcu_read_unlock(); 782 return dev; 783 } 784 EXPORT_SYMBOL(dev_get_by_name); 785 786 /** 787 * __dev_get_by_index - find a device by its ifindex 788 * @net: the applicable net namespace 789 * @ifindex: index of device 790 * 791 * Search for an interface by index. Returns %NULL if the device 792 * is not found or a pointer to the device. The device has not 793 * had its reference counter increased so the caller must be careful 794 * about locking. The caller must hold either the RTNL semaphore 795 * or @dev_base_lock. 796 */ 797 798 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 799 { 800 struct net_device *dev; 801 struct hlist_head *head = dev_index_hash(net, ifindex); 802 803 hlist_for_each_entry(dev, head, index_hlist) 804 if (dev->ifindex == ifindex) 805 return dev; 806 807 return NULL; 808 } 809 EXPORT_SYMBOL(__dev_get_by_index); 810 811 /** 812 * dev_get_by_index_rcu - find a device by its ifindex 813 * @net: the applicable net namespace 814 * @ifindex: index of device 815 * 816 * Search for an interface by index. Returns %NULL if the device 817 * is not found or a pointer to the device. The device has not 818 * had its reference counter increased so the caller must be careful 819 * about locking. The caller must hold RCU lock. 820 */ 821 822 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 823 { 824 struct net_device *dev; 825 struct hlist_head *head = dev_index_hash(net, ifindex); 826 827 hlist_for_each_entry_rcu(dev, head, index_hlist) 828 if (dev->ifindex == ifindex) 829 return dev; 830 831 return NULL; 832 } 833 EXPORT_SYMBOL(dev_get_by_index_rcu); 834 835 836 /** 837 * dev_get_by_index - find a device by its ifindex 838 * @net: the applicable net namespace 839 * @ifindex: index of device 840 * 841 * Search for an interface by index. Returns NULL if the device 842 * is not found or a pointer to the device. The device returned has 843 * had a reference added and the pointer is safe until the user calls 844 * dev_put to indicate they have finished with it. 845 */ 846 847 struct net_device *dev_get_by_index(struct net *net, int ifindex) 848 { 849 struct net_device *dev; 850 851 rcu_read_lock(); 852 dev = dev_get_by_index_rcu(net, ifindex); 853 if (dev) 854 dev_hold(dev); 855 rcu_read_unlock(); 856 return dev; 857 } 858 EXPORT_SYMBOL(dev_get_by_index); 859 860 /** 861 * netdev_get_name - get a netdevice name, knowing its ifindex. 862 * @net: network namespace 863 * @name: a pointer to the buffer where the name will be stored. 864 * @ifindex: the ifindex of the interface to get the name from. 865 * 866 * The use of raw_seqcount_begin() and cond_resched() before 867 * retrying is required as we want to give the writers a chance 868 * to complete when CONFIG_PREEMPT is not set. 869 */ 870 int netdev_get_name(struct net *net, char *name, int ifindex) 871 { 872 struct net_device *dev; 873 unsigned int seq; 874 875 retry: 876 seq = raw_seqcount_begin(&devnet_rename_seq); 877 rcu_read_lock(); 878 dev = dev_get_by_index_rcu(net, ifindex); 879 if (!dev) { 880 rcu_read_unlock(); 881 return -ENODEV; 882 } 883 884 strcpy(name, dev->name); 885 rcu_read_unlock(); 886 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 887 cond_resched(); 888 goto retry; 889 } 890 891 return 0; 892 } 893 894 /** 895 * dev_getbyhwaddr_rcu - find a device by its hardware address 896 * @net: the applicable net namespace 897 * @type: media type of device 898 * @ha: hardware address 899 * 900 * Search for an interface by MAC address. Returns NULL if the device 901 * is not found or a pointer to the device. 902 * The caller must hold RCU or RTNL. 903 * The returned device has not had its ref count increased 904 * and the caller must therefore be careful about locking 905 * 906 */ 907 908 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 909 const char *ha) 910 { 911 struct net_device *dev; 912 913 for_each_netdev_rcu(net, dev) 914 if (dev->type == type && 915 !memcmp(dev->dev_addr, ha, dev->addr_len)) 916 return dev; 917 918 return NULL; 919 } 920 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 921 922 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 923 { 924 struct net_device *dev; 925 926 ASSERT_RTNL(); 927 for_each_netdev(net, dev) 928 if (dev->type == type) 929 return dev; 930 931 return NULL; 932 } 933 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 934 935 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 936 { 937 struct net_device *dev, *ret = NULL; 938 939 rcu_read_lock(); 940 for_each_netdev_rcu(net, dev) 941 if (dev->type == type) { 942 dev_hold(dev); 943 ret = dev; 944 break; 945 } 946 rcu_read_unlock(); 947 return ret; 948 } 949 EXPORT_SYMBOL(dev_getfirstbyhwtype); 950 951 /** 952 * __dev_get_by_flags - find any device with given flags 953 * @net: the applicable net namespace 954 * @if_flags: IFF_* values 955 * @mask: bitmask of bits in if_flags to check 956 * 957 * Search for any interface with the given flags. Returns NULL if a device 958 * is not found or a pointer to the device. Must be called inside 959 * rtnl_lock(), and result refcount is unchanged. 960 */ 961 962 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 963 unsigned short mask) 964 { 965 struct net_device *dev, *ret; 966 967 ASSERT_RTNL(); 968 969 ret = NULL; 970 for_each_netdev(net, dev) { 971 if (((dev->flags ^ if_flags) & mask) == 0) { 972 ret = dev; 973 break; 974 } 975 } 976 return ret; 977 } 978 EXPORT_SYMBOL(__dev_get_by_flags); 979 980 /** 981 * dev_valid_name - check if name is okay for network device 982 * @name: name string 983 * 984 * Network device names need to be valid file names to 985 * to allow sysfs to work. We also disallow any kind of 986 * whitespace. 987 */ 988 bool dev_valid_name(const char *name) 989 { 990 if (*name == '\0') 991 return false; 992 if (strlen(name) >= IFNAMSIZ) 993 return false; 994 if (!strcmp(name, ".") || !strcmp(name, "..")) 995 return false; 996 997 while (*name) { 998 if (*name == '/' || *name == ':' || isspace(*name)) 999 return false; 1000 name++; 1001 } 1002 return true; 1003 } 1004 EXPORT_SYMBOL(dev_valid_name); 1005 1006 /** 1007 * __dev_alloc_name - allocate a name for a device 1008 * @net: network namespace to allocate the device name in 1009 * @name: name format string 1010 * @buf: scratch buffer and result name string 1011 * 1012 * Passed a format string - eg "lt%d" it will try and find a suitable 1013 * id. It scans list of devices to build up a free map, then chooses 1014 * the first empty slot. The caller must hold the dev_base or rtnl lock 1015 * while allocating the name and adding the device in order to avoid 1016 * duplicates. 1017 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1018 * Returns the number of the unit assigned or a negative errno code. 1019 */ 1020 1021 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1022 { 1023 int i = 0; 1024 const char *p; 1025 const int max_netdevices = 8*PAGE_SIZE; 1026 unsigned long *inuse; 1027 struct net_device *d; 1028 1029 p = strnchr(name, IFNAMSIZ-1, '%'); 1030 if (p) { 1031 /* 1032 * Verify the string as this thing may have come from 1033 * the user. There must be either one "%d" and no other "%" 1034 * characters. 1035 */ 1036 if (p[1] != 'd' || strchr(p + 2, '%')) 1037 return -EINVAL; 1038 1039 /* Use one page as a bit array of possible slots */ 1040 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1041 if (!inuse) 1042 return -ENOMEM; 1043 1044 for_each_netdev(net, d) { 1045 if (!sscanf(d->name, name, &i)) 1046 continue; 1047 if (i < 0 || i >= max_netdevices) 1048 continue; 1049 1050 /* avoid cases where sscanf is not exact inverse of printf */ 1051 snprintf(buf, IFNAMSIZ, name, i); 1052 if (!strncmp(buf, d->name, IFNAMSIZ)) 1053 set_bit(i, inuse); 1054 } 1055 1056 i = find_first_zero_bit(inuse, max_netdevices); 1057 free_page((unsigned long) inuse); 1058 } 1059 1060 if (buf != name) 1061 snprintf(buf, IFNAMSIZ, name, i); 1062 if (!__dev_get_by_name(net, buf)) 1063 return i; 1064 1065 /* It is possible to run out of possible slots 1066 * when the name is long and there isn't enough space left 1067 * for the digits, or if all bits are used. 1068 */ 1069 return -ENFILE; 1070 } 1071 1072 /** 1073 * dev_alloc_name - allocate a name for a device 1074 * @dev: device 1075 * @name: name format string 1076 * 1077 * Passed a format string - eg "lt%d" it will try and find a suitable 1078 * id. It scans list of devices to build up a free map, then chooses 1079 * the first empty slot. The caller must hold the dev_base or rtnl lock 1080 * while allocating the name and adding the device in order to avoid 1081 * duplicates. 1082 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1083 * Returns the number of the unit assigned or a negative errno code. 1084 */ 1085 1086 int dev_alloc_name(struct net_device *dev, const char *name) 1087 { 1088 char buf[IFNAMSIZ]; 1089 struct net *net; 1090 int ret; 1091 1092 BUG_ON(!dev_net(dev)); 1093 net = dev_net(dev); 1094 ret = __dev_alloc_name(net, name, buf); 1095 if (ret >= 0) 1096 strlcpy(dev->name, buf, IFNAMSIZ); 1097 return ret; 1098 } 1099 EXPORT_SYMBOL(dev_alloc_name); 1100 1101 static int dev_alloc_name_ns(struct net *net, 1102 struct net_device *dev, 1103 const char *name) 1104 { 1105 char buf[IFNAMSIZ]; 1106 int ret; 1107 1108 ret = __dev_alloc_name(net, name, buf); 1109 if (ret >= 0) 1110 strlcpy(dev->name, buf, IFNAMSIZ); 1111 return ret; 1112 } 1113 1114 static int dev_get_valid_name(struct net *net, 1115 struct net_device *dev, 1116 const char *name) 1117 { 1118 BUG_ON(!net); 1119 1120 if (!dev_valid_name(name)) 1121 return -EINVAL; 1122 1123 if (strchr(name, '%')) 1124 return dev_alloc_name_ns(net, dev, name); 1125 else if (__dev_get_by_name(net, name)) 1126 return -EEXIST; 1127 else if (dev->name != name) 1128 strlcpy(dev->name, name, IFNAMSIZ); 1129 1130 return 0; 1131 } 1132 1133 /** 1134 * dev_change_name - change name of a device 1135 * @dev: device 1136 * @newname: name (or format string) must be at least IFNAMSIZ 1137 * 1138 * Change name of a device, can pass format strings "eth%d". 1139 * for wildcarding. 1140 */ 1141 int dev_change_name(struct net_device *dev, const char *newname) 1142 { 1143 unsigned char old_assign_type; 1144 char oldname[IFNAMSIZ]; 1145 int err = 0; 1146 int ret; 1147 struct net *net; 1148 1149 ASSERT_RTNL(); 1150 BUG_ON(!dev_net(dev)); 1151 1152 net = dev_net(dev); 1153 if (dev->flags & IFF_UP) 1154 return -EBUSY; 1155 1156 write_seqcount_begin(&devnet_rename_seq); 1157 1158 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1159 write_seqcount_end(&devnet_rename_seq); 1160 return 0; 1161 } 1162 1163 memcpy(oldname, dev->name, IFNAMSIZ); 1164 1165 err = dev_get_valid_name(net, dev, newname); 1166 if (err < 0) { 1167 write_seqcount_end(&devnet_rename_seq); 1168 return err; 1169 } 1170 1171 if (oldname[0] && !strchr(oldname, '%')) 1172 netdev_info(dev, "renamed from %s\n", oldname); 1173 1174 old_assign_type = dev->name_assign_type; 1175 dev->name_assign_type = NET_NAME_RENAMED; 1176 1177 rollback: 1178 ret = device_rename(&dev->dev, dev->name); 1179 if (ret) { 1180 memcpy(dev->name, oldname, IFNAMSIZ); 1181 dev->name_assign_type = old_assign_type; 1182 write_seqcount_end(&devnet_rename_seq); 1183 return ret; 1184 } 1185 1186 write_seqcount_end(&devnet_rename_seq); 1187 1188 netdev_adjacent_rename_links(dev, oldname); 1189 1190 write_lock_bh(&dev_base_lock); 1191 hlist_del_rcu(&dev->name_hlist); 1192 write_unlock_bh(&dev_base_lock); 1193 1194 synchronize_rcu(); 1195 1196 write_lock_bh(&dev_base_lock); 1197 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1198 write_unlock_bh(&dev_base_lock); 1199 1200 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1201 ret = notifier_to_errno(ret); 1202 1203 if (ret) { 1204 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1205 if (err >= 0) { 1206 err = ret; 1207 write_seqcount_begin(&devnet_rename_seq); 1208 memcpy(dev->name, oldname, IFNAMSIZ); 1209 memcpy(oldname, newname, IFNAMSIZ); 1210 dev->name_assign_type = old_assign_type; 1211 old_assign_type = NET_NAME_RENAMED; 1212 goto rollback; 1213 } else { 1214 pr_err("%s: name change rollback failed: %d\n", 1215 dev->name, ret); 1216 } 1217 } 1218 1219 return err; 1220 } 1221 1222 /** 1223 * dev_set_alias - change ifalias of a device 1224 * @dev: device 1225 * @alias: name up to IFALIASZ 1226 * @len: limit of bytes to copy from info 1227 * 1228 * Set ifalias for a device, 1229 */ 1230 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1231 { 1232 char *new_ifalias; 1233 1234 ASSERT_RTNL(); 1235 1236 if (len >= IFALIASZ) 1237 return -EINVAL; 1238 1239 if (!len) { 1240 kfree(dev->ifalias); 1241 dev->ifalias = NULL; 1242 return 0; 1243 } 1244 1245 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1246 if (!new_ifalias) 1247 return -ENOMEM; 1248 dev->ifalias = new_ifalias; 1249 1250 strlcpy(dev->ifalias, alias, len+1); 1251 return len; 1252 } 1253 1254 1255 /** 1256 * netdev_features_change - device changes features 1257 * @dev: device to cause notification 1258 * 1259 * Called to indicate a device has changed features. 1260 */ 1261 void netdev_features_change(struct net_device *dev) 1262 { 1263 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1264 } 1265 EXPORT_SYMBOL(netdev_features_change); 1266 1267 /** 1268 * netdev_state_change - device changes state 1269 * @dev: device to cause notification 1270 * 1271 * Called to indicate a device has changed state. This function calls 1272 * the notifier chains for netdev_chain and sends a NEWLINK message 1273 * to the routing socket. 1274 */ 1275 void netdev_state_change(struct net_device *dev) 1276 { 1277 if (dev->flags & IFF_UP) { 1278 struct netdev_notifier_change_info change_info; 1279 1280 change_info.flags_changed = 0; 1281 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1282 &change_info.info); 1283 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1284 } 1285 } 1286 EXPORT_SYMBOL(netdev_state_change); 1287 1288 /** 1289 * netdev_notify_peers - notify network peers about existence of @dev 1290 * @dev: network device 1291 * 1292 * Generate traffic such that interested network peers are aware of 1293 * @dev, such as by generating a gratuitous ARP. This may be used when 1294 * a device wants to inform the rest of the network about some sort of 1295 * reconfiguration such as a failover event or virtual machine 1296 * migration. 1297 */ 1298 void netdev_notify_peers(struct net_device *dev) 1299 { 1300 rtnl_lock(); 1301 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1302 rtnl_unlock(); 1303 } 1304 EXPORT_SYMBOL(netdev_notify_peers); 1305 1306 static int __dev_open(struct net_device *dev) 1307 { 1308 const struct net_device_ops *ops = dev->netdev_ops; 1309 int ret; 1310 1311 ASSERT_RTNL(); 1312 1313 if (!netif_device_present(dev)) 1314 return -ENODEV; 1315 1316 /* Block netpoll from trying to do any rx path servicing. 1317 * If we don't do this there is a chance ndo_poll_controller 1318 * or ndo_poll may be running while we open the device 1319 */ 1320 netpoll_poll_disable(dev); 1321 1322 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1323 ret = notifier_to_errno(ret); 1324 if (ret) 1325 return ret; 1326 1327 set_bit(__LINK_STATE_START, &dev->state); 1328 1329 if (ops->ndo_validate_addr) 1330 ret = ops->ndo_validate_addr(dev); 1331 1332 if (!ret && ops->ndo_open) 1333 ret = ops->ndo_open(dev); 1334 1335 netpoll_poll_enable(dev); 1336 1337 if (ret) 1338 clear_bit(__LINK_STATE_START, &dev->state); 1339 else { 1340 dev->flags |= IFF_UP; 1341 dev_set_rx_mode(dev); 1342 dev_activate(dev); 1343 add_device_randomness(dev->dev_addr, dev->addr_len); 1344 } 1345 1346 return ret; 1347 } 1348 1349 /** 1350 * dev_open - prepare an interface for use. 1351 * @dev: device to open 1352 * 1353 * Takes a device from down to up state. The device's private open 1354 * function is invoked and then the multicast lists are loaded. Finally 1355 * the device is moved into the up state and a %NETDEV_UP message is 1356 * sent to the netdev notifier chain. 1357 * 1358 * Calling this function on an active interface is a nop. On a failure 1359 * a negative errno code is returned. 1360 */ 1361 int dev_open(struct net_device *dev) 1362 { 1363 int ret; 1364 1365 if (dev->flags & IFF_UP) 1366 return 0; 1367 1368 ret = __dev_open(dev); 1369 if (ret < 0) 1370 return ret; 1371 1372 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1373 call_netdevice_notifiers(NETDEV_UP, dev); 1374 1375 return ret; 1376 } 1377 EXPORT_SYMBOL(dev_open); 1378 1379 static int __dev_close_many(struct list_head *head) 1380 { 1381 struct net_device *dev; 1382 1383 ASSERT_RTNL(); 1384 might_sleep(); 1385 1386 list_for_each_entry(dev, head, close_list) { 1387 /* Temporarily disable netpoll until the interface is down */ 1388 netpoll_poll_disable(dev); 1389 1390 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1391 1392 clear_bit(__LINK_STATE_START, &dev->state); 1393 1394 /* Synchronize to scheduled poll. We cannot touch poll list, it 1395 * can be even on different cpu. So just clear netif_running(). 1396 * 1397 * dev->stop() will invoke napi_disable() on all of it's 1398 * napi_struct instances on this device. 1399 */ 1400 smp_mb__after_atomic(); /* Commit netif_running(). */ 1401 } 1402 1403 dev_deactivate_many(head); 1404 1405 list_for_each_entry(dev, head, close_list) { 1406 const struct net_device_ops *ops = dev->netdev_ops; 1407 1408 /* 1409 * Call the device specific close. This cannot fail. 1410 * Only if device is UP 1411 * 1412 * We allow it to be called even after a DETACH hot-plug 1413 * event. 1414 */ 1415 if (ops->ndo_stop) 1416 ops->ndo_stop(dev); 1417 1418 dev->flags &= ~IFF_UP; 1419 netpoll_poll_enable(dev); 1420 } 1421 1422 return 0; 1423 } 1424 1425 static int __dev_close(struct net_device *dev) 1426 { 1427 int retval; 1428 LIST_HEAD(single); 1429 1430 list_add(&dev->close_list, &single); 1431 retval = __dev_close_many(&single); 1432 list_del(&single); 1433 1434 return retval; 1435 } 1436 1437 int dev_close_many(struct list_head *head, bool unlink) 1438 { 1439 struct net_device *dev, *tmp; 1440 1441 /* Remove the devices that don't need to be closed */ 1442 list_for_each_entry_safe(dev, tmp, head, close_list) 1443 if (!(dev->flags & IFF_UP)) 1444 list_del_init(&dev->close_list); 1445 1446 __dev_close_many(head); 1447 1448 list_for_each_entry_safe(dev, tmp, head, close_list) { 1449 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1450 call_netdevice_notifiers(NETDEV_DOWN, dev); 1451 if (unlink) 1452 list_del_init(&dev->close_list); 1453 } 1454 1455 return 0; 1456 } 1457 EXPORT_SYMBOL(dev_close_many); 1458 1459 /** 1460 * dev_close - shutdown an interface. 1461 * @dev: device to shutdown 1462 * 1463 * This function moves an active device into down state. A 1464 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1465 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1466 * chain. 1467 */ 1468 int dev_close(struct net_device *dev) 1469 { 1470 if (dev->flags & IFF_UP) { 1471 LIST_HEAD(single); 1472 1473 list_add(&dev->close_list, &single); 1474 dev_close_many(&single, true); 1475 list_del(&single); 1476 } 1477 return 0; 1478 } 1479 EXPORT_SYMBOL(dev_close); 1480 1481 1482 /** 1483 * dev_disable_lro - disable Large Receive Offload on a device 1484 * @dev: device 1485 * 1486 * Disable Large Receive Offload (LRO) on a net device. Must be 1487 * called under RTNL. This is needed if received packets may be 1488 * forwarded to another interface. 1489 */ 1490 void dev_disable_lro(struct net_device *dev) 1491 { 1492 struct net_device *lower_dev; 1493 struct list_head *iter; 1494 1495 dev->wanted_features &= ~NETIF_F_LRO; 1496 netdev_update_features(dev); 1497 1498 if (unlikely(dev->features & NETIF_F_LRO)) 1499 netdev_WARN(dev, "failed to disable LRO!\n"); 1500 1501 netdev_for_each_lower_dev(dev, lower_dev, iter) 1502 dev_disable_lro(lower_dev); 1503 } 1504 EXPORT_SYMBOL(dev_disable_lro); 1505 1506 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1507 struct net_device *dev) 1508 { 1509 struct netdev_notifier_info info; 1510 1511 netdev_notifier_info_init(&info, dev); 1512 return nb->notifier_call(nb, val, &info); 1513 } 1514 1515 static int dev_boot_phase = 1; 1516 1517 /** 1518 * register_netdevice_notifier - register a network notifier block 1519 * @nb: notifier 1520 * 1521 * Register a notifier to be called when network device events occur. 1522 * The notifier passed is linked into the kernel structures and must 1523 * not be reused until it has been unregistered. A negative errno code 1524 * is returned on a failure. 1525 * 1526 * When registered all registration and up events are replayed 1527 * to the new notifier to allow device to have a race free 1528 * view of the network device list. 1529 */ 1530 1531 int register_netdevice_notifier(struct notifier_block *nb) 1532 { 1533 struct net_device *dev; 1534 struct net_device *last; 1535 struct net *net; 1536 int err; 1537 1538 rtnl_lock(); 1539 err = raw_notifier_chain_register(&netdev_chain, nb); 1540 if (err) 1541 goto unlock; 1542 if (dev_boot_phase) 1543 goto unlock; 1544 for_each_net(net) { 1545 for_each_netdev(net, dev) { 1546 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1547 err = notifier_to_errno(err); 1548 if (err) 1549 goto rollback; 1550 1551 if (!(dev->flags & IFF_UP)) 1552 continue; 1553 1554 call_netdevice_notifier(nb, NETDEV_UP, dev); 1555 } 1556 } 1557 1558 unlock: 1559 rtnl_unlock(); 1560 return err; 1561 1562 rollback: 1563 last = dev; 1564 for_each_net(net) { 1565 for_each_netdev(net, dev) { 1566 if (dev == last) 1567 goto outroll; 1568 1569 if (dev->flags & IFF_UP) { 1570 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1571 dev); 1572 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1573 } 1574 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1575 } 1576 } 1577 1578 outroll: 1579 raw_notifier_chain_unregister(&netdev_chain, nb); 1580 goto unlock; 1581 } 1582 EXPORT_SYMBOL(register_netdevice_notifier); 1583 1584 /** 1585 * unregister_netdevice_notifier - unregister a network notifier block 1586 * @nb: notifier 1587 * 1588 * Unregister a notifier previously registered by 1589 * register_netdevice_notifier(). The notifier is unlinked into the 1590 * kernel structures and may then be reused. A negative errno code 1591 * is returned on a failure. 1592 * 1593 * After unregistering unregister and down device events are synthesized 1594 * for all devices on the device list to the removed notifier to remove 1595 * the need for special case cleanup code. 1596 */ 1597 1598 int unregister_netdevice_notifier(struct notifier_block *nb) 1599 { 1600 struct net_device *dev; 1601 struct net *net; 1602 int err; 1603 1604 rtnl_lock(); 1605 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1606 if (err) 1607 goto unlock; 1608 1609 for_each_net(net) { 1610 for_each_netdev(net, dev) { 1611 if (dev->flags & IFF_UP) { 1612 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1613 dev); 1614 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1615 } 1616 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1617 } 1618 } 1619 unlock: 1620 rtnl_unlock(); 1621 return err; 1622 } 1623 EXPORT_SYMBOL(unregister_netdevice_notifier); 1624 1625 /** 1626 * call_netdevice_notifiers_info - call all network notifier blocks 1627 * @val: value passed unmodified to notifier function 1628 * @dev: net_device pointer passed unmodified to notifier function 1629 * @info: notifier information data 1630 * 1631 * Call all network notifier blocks. Parameters and return value 1632 * are as for raw_notifier_call_chain(). 1633 */ 1634 1635 static int call_netdevice_notifiers_info(unsigned long val, 1636 struct net_device *dev, 1637 struct netdev_notifier_info *info) 1638 { 1639 ASSERT_RTNL(); 1640 netdev_notifier_info_init(info, dev); 1641 return raw_notifier_call_chain(&netdev_chain, val, info); 1642 } 1643 1644 /** 1645 * call_netdevice_notifiers - call all network notifier blocks 1646 * @val: value passed unmodified to notifier function 1647 * @dev: net_device pointer passed unmodified to notifier function 1648 * 1649 * Call all network notifier blocks. Parameters and return value 1650 * are as for raw_notifier_call_chain(). 1651 */ 1652 1653 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1654 { 1655 struct netdev_notifier_info info; 1656 1657 return call_netdevice_notifiers_info(val, dev, &info); 1658 } 1659 EXPORT_SYMBOL(call_netdevice_notifiers); 1660 1661 #ifdef CONFIG_NET_INGRESS 1662 static struct static_key ingress_needed __read_mostly; 1663 1664 void net_inc_ingress_queue(void) 1665 { 1666 static_key_slow_inc(&ingress_needed); 1667 } 1668 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1669 1670 void net_dec_ingress_queue(void) 1671 { 1672 static_key_slow_dec(&ingress_needed); 1673 } 1674 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1675 #endif 1676 1677 static struct static_key netstamp_needed __read_mostly; 1678 #ifdef HAVE_JUMP_LABEL 1679 /* We are not allowed to call static_key_slow_dec() from irq context 1680 * If net_disable_timestamp() is called from irq context, defer the 1681 * static_key_slow_dec() calls. 1682 */ 1683 static atomic_t netstamp_needed_deferred; 1684 #endif 1685 1686 void net_enable_timestamp(void) 1687 { 1688 #ifdef HAVE_JUMP_LABEL 1689 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1690 1691 if (deferred) { 1692 while (--deferred) 1693 static_key_slow_dec(&netstamp_needed); 1694 return; 1695 } 1696 #endif 1697 static_key_slow_inc(&netstamp_needed); 1698 } 1699 EXPORT_SYMBOL(net_enable_timestamp); 1700 1701 void net_disable_timestamp(void) 1702 { 1703 #ifdef HAVE_JUMP_LABEL 1704 if (in_interrupt()) { 1705 atomic_inc(&netstamp_needed_deferred); 1706 return; 1707 } 1708 #endif 1709 static_key_slow_dec(&netstamp_needed); 1710 } 1711 EXPORT_SYMBOL(net_disable_timestamp); 1712 1713 static inline void net_timestamp_set(struct sk_buff *skb) 1714 { 1715 skb->tstamp.tv64 = 0; 1716 if (static_key_false(&netstamp_needed)) 1717 __net_timestamp(skb); 1718 } 1719 1720 #define net_timestamp_check(COND, SKB) \ 1721 if (static_key_false(&netstamp_needed)) { \ 1722 if ((COND) && !(SKB)->tstamp.tv64) \ 1723 __net_timestamp(SKB); \ 1724 } \ 1725 1726 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb) 1727 { 1728 unsigned int len; 1729 1730 if (!(dev->flags & IFF_UP)) 1731 return false; 1732 1733 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1734 if (skb->len <= len) 1735 return true; 1736 1737 /* if TSO is enabled, we don't care about the length as the packet 1738 * could be forwarded without being segmented before 1739 */ 1740 if (skb_is_gso(skb)) 1741 return true; 1742 1743 return false; 1744 } 1745 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1746 1747 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1748 { 1749 if (skb_orphan_frags(skb, GFP_ATOMIC) || 1750 unlikely(!is_skb_forwardable(dev, skb))) { 1751 atomic_long_inc(&dev->rx_dropped); 1752 kfree_skb(skb); 1753 return NET_RX_DROP; 1754 } 1755 1756 skb_scrub_packet(skb, true); 1757 skb->priority = 0; 1758 skb->protocol = eth_type_trans(skb, dev); 1759 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1760 1761 return 0; 1762 } 1763 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1764 1765 /** 1766 * dev_forward_skb - loopback an skb to another netif 1767 * 1768 * @dev: destination network device 1769 * @skb: buffer to forward 1770 * 1771 * return values: 1772 * NET_RX_SUCCESS (no congestion) 1773 * NET_RX_DROP (packet was dropped, but freed) 1774 * 1775 * dev_forward_skb can be used for injecting an skb from the 1776 * start_xmit function of one device into the receive queue 1777 * of another device. 1778 * 1779 * The receiving device may be in another namespace, so 1780 * we have to clear all information in the skb that could 1781 * impact namespace isolation. 1782 */ 1783 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1784 { 1785 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1786 } 1787 EXPORT_SYMBOL_GPL(dev_forward_skb); 1788 1789 static inline int deliver_skb(struct sk_buff *skb, 1790 struct packet_type *pt_prev, 1791 struct net_device *orig_dev) 1792 { 1793 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1794 return -ENOMEM; 1795 atomic_inc(&skb->users); 1796 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1797 } 1798 1799 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1800 struct packet_type **pt, 1801 struct net_device *orig_dev, 1802 __be16 type, 1803 struct list_head *ptype_list) 1804 { 1805 struct packet_type *ptype, *pt_prev = *pt; 1806 1807 list_for_each_entry_rcu(ptype, ptype_list, list) { 1808 if (ptype->type != type) 1809 continue; 1810 if (pt_prev) 1811 deliver_skb(skb, pt_prev, orig_dev); 1812 pt_prev = ptype; 1813 } 1814 *pt = pt_prev; 1815 } 1816 1817 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1818 { 1819 if (!ptype->af_packet_priv || !skb->sk) 1820 return false; 1821 1822 if (ptype->id_match) 1823 return ptype->id_match(ptype, skb->sk); 1824 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1825 return true; 1826 1827 return false; 1828 } 1829 1830 /* 1831 * Support routine. Sends outgoing frames to any network 1832 * taps currently in use. 1833 */ 1834 1835 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1836 { 1837 struct packet_type *ptype; 1838 struct sk_buff *skb2 = NULL; 1839 struct packet_type *pt_prev = NULL; 1840 struct list_head *ptype_list = &ptype_all; 1841 1842 rcu_read_lock(); 1843 again: 1844 list_for_each_entry_rcu(ptype, ptype_list, list) { 1845 /* Never send packets back to the socket 1846 * they originated from - MvS (miquels@drinkel.ow.org) 1847 */ 1848 if (skb_loop_sk(ptype, skb)) 1849 continue; 1850 1851 if (pt_prev) { 1852 deliver_skb(skb2, pt_prev, skb->dev); 1853 pt_prev = ptype; 1854 continue; 1855 } 1856 1857 /* need to clone skb, done only once */ 1858 skb2 = skb_clone(skb, GFP_ATOMIC); 1859 if (!skb2) 1860 goto out_unlock; 1861 1862 net_timestamp_set(skb2); 1863 1864 /* skb->nh should be correctly 1865 * set by sender, so that the second statement is 1866 * just protection against buggy protocols. 1867 */ 1868 skb_reset_mac_header(skb2); 1869 1870 if (skb_network_header(skb2) < skb2->data || 1871 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1872 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1873 ntohs(skb2->protocol), 1874 dev->name); 1875 skb_reset_network_header(skb2); 1876 } 1877 1878 skb2->transport_header = skb2->network_header; 1879 skb2->pkt_type = PACKET_OUTGOING; 1880 pt_prev = ptype; 1881 } 1882 1883 if (ptype_list == &ptype_all) { 1884 ptype_list = &dev->ptype_all; 1885 goto again; 1886 } 1887 out_unlock: 1888 if (pt_prev) 1889 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1890 rcu_read_unlock(); 1891 } 1892 1893 /** 1894 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1895 * @dev: Network device 1896 * @txq: number of queues available 1897 * 1898 * If real_num_tx_queues is changed the tc mappings may no longer be 1899 * valid. To resolve this verify the tc mapping remains valid and if 1900 * not NULL the mapping. With no priorities mapping to this 1901 * offset/count pair it will no longer be used. In the worst case TC0 1902 * is invalid nothing can be done so disable priority mappings. If is 1903 * expected that drivers will fix this mapping if they can before 1904 * calling netif_set_real_num_tx_queues. 1905 */ 1906 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1907 { 1908 int i; 1909 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1910 1911 /* If TC0 is invalidated disable TC mapping */ 1912 if (tc->offset + tc->count > txq) { 1913 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1914 dev->num_tc = 0; 1915 return; 1916 } 1917 1918 /* Invalidated prio to tc mappings set to TC0 */ 1919 for (i = 1; i < TC_BITMASK + 1; i++) { 1920 int q = netdev_get_prio_tc_map(dev, i); 1921 1922 tc = &dev->tc_to_txq[q]; 1923 if (tc->offset + tc->count > txq) { 1924 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1925 i, q); 1926 netdev_set_prio_tc_map(dev, i, 0); 1927 } 1928 } 1929 } 1930 1931 #ifdef CONFIG_XPS 1932 static DEFINE_MUTEX(xps_map_mutex); 1933 #define xmap_dereference(P) \ 1934 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1935 1936 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1937 int cpu, u16 index) 1938 { 1939 struct xps_map *map = NULL; 1940 int pos; 1941 1942 if (dev_maps) 1943 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1944 1945 for (pos = 0; map && pos < map->len; pos++) { 1946 if (map->queues[pos] == index) { 1947 if (map->len > 1) { 1948 map->queues[pos] = map->queues[--map->len]; 1949 } else { 1950 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1951 kfree_rcu(map, rcu); 1952 map = NULL; 1953 } 1954 break; 1955 } 1956 } 1957 1958 return map; 1959 } 1960 1961 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1962 { 1963 struct xps_dev_maps *dev_maps; 1964 int cpu, i; 1965 bool active = false; 1966 1967 mutex_lock(&xps_map_mutex); 1968 dev_maps = xmap_dereference(dev->xps_maps); 1969 1970 if (!dev_maps) 1971 goto out_no_maps; 1972 1973 for_each_possible_cpu(cpu) { 1974 for (i = index; i < dev->num_tx_queues; i++) { 1975 if (!remove_xps_queue(dev_maps, cpu, i)) 1976 break; 1977 } 1978 if (i == dev->num_tx_queues) 1979 active = true; 1980 } 1981 1982 if (!active) { 1983 RCU_INIT_POINTER(dev->xps_maps, NULL); 1984 kfree_rcu(dev_maps, rcu); 1985 } 1986 1987 for (i = index; i < dev->num_tx_queues; i++) 1988 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1989 NUMA_NO_NODE); 1990 1991 out_no_maps: 1992 mutex_unlock(&xps_map_mutex); 1993 } 1994 1995 static struct xps_map *expand_xps_map(struct xps_map *map, 1996 int cpu, u16 index) 1997 { 1998 struct xps_map *new_map; 1999 int alloc_len = XPS_MIN_MAP_ALLOC; 2000 int i, pos; 2001 2002 for (pos = 0; map && pos < map->len; pos++) { 2003 if (map->queues[pos] != index) 2004 continue; 2005 return map; 2006 } 2007 2008 /* Need to add queue to this CPU's existing map */ 2009 if (map) { 2010 if (pos < map->alloc_len) 2011 return map; 2012 2013 alloc_len = map->alloc_len * 2; 2014 } 2015 2016 /* Need to allocate new map to store queue on this CPU's map */ 2017 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2018 cpu_to_node(cpu)); 2019 if (!new_map) 2020 return NULL; 2021 2022 for (i = 0; i < pos; i++) 2023 new_map->queues[i] = map->queues[i]; 2024 new_map->alloc_len = alloc_len; 2025 new_map->len = pos; 2026 2027 return new_map; 2028 } 2029 2030 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2031 u16 index) 2032 { 2033 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2034 struct xps_map *map, *new_map; 2035 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 2036 int cpu, numa_node_id = -2; 2037 bool active = false; 2038 2039 mutex_lock(&xps_map_mutex); 2040 2041 dev_maps = xmap_dereference(dev->xps_maps); 2042 2043 /* allocate memory for queue storage */ 2044 for_each_online_cpu(cpu) { 2045 if (!cpumask_test_cpu(cpu, mask)) 2046 continue; 2047 2048 if (!new_dev_maps) 2049 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2050 if (!new_dev_maps) { 2051 mutex_unlock(&xps_map_mutex); 2052 return -ENOMEM; 2053 } 2054 2055 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2056 NULL; 2057 2058 map = expand_xps_map(map, cpu, index); 2059 if (!map) 2060 goto error; 2061 2062 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2063 } 2064 2065 if (!new_dev_maps) 2066 goto out_no_new_maps; 2067 2068 for_each_possible_cpu(cpu) { 2069 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2070 /* add queue to CPU maps */ 2071 int pos = 0; 2072 2073 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2074 while ((pos < map->len) && (map->queues[pos] != index)) 2075 pos++; 2076 2077 if (pos == map->len) 2078 map->queues[map->len++] = index; 2079 #ifdef CONFIG_NUMA 2080 if (numa_node_id == -2) 2081 numa_node_id = cpu_to_node(cpu); 2082 else if (numa_node_id != cpu_to_node(cpu)) 2083 numa_node_id = -1; 2084 #endif 2085 } else if (dev_maps) { 2086 /* fill in the new device map from the old device map */ 2087 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2088 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2089 } 2090 2091 } 2092 2093 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2094 2095 /* Cleanup old maps */ 2096 if (dev_maps) { 2097 for_each_possible_cpu(cpu) { 2098 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2099 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2100 if (map && map != new_map) 2101 kfree_rcu(map, rcu); 2102 } 2103 2104 kfree_rcu(dev_maps, rcu); 2105 } 2106 2107 dev_maps = new_dev_maps; 2108 active = true; 2109 2110 out_no_new_maps: 2111 /* update Tx queue numa node */ 2112 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2113 (numa_node_id >= 0) ? numa_node_id : 2114 NUMA_NO_NODE); 2115 2116 if (!dev_maps) 2117 goto out_no_maps; 2118 2119 /* removes queue from unused CPUs */ 2120 for_each_possible_cpu(cpu) { 2121 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2122 continue; 2123 2124 if (remove_xps_queue(dev_maps, cpu, index)) 2125 active = true; 2126 } 2127 2128 /* free map if not active */ 2129 if (!active) { 2130 RCU_INIT_POINTER(dev->xps_maps, NULL); 2131 kfree_rcu(dev_maps, rcu); 2132 } 2133 2134 out_no_maps: 2135 mutex_unlock(&xps_map_mutex); 2136 2137 return 0; 2138 error: 2139 /* remove any maps that we added */ 2140 for_each_possible_cpu(cpu) { 2141 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2142 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2143 NULL; 2144 if (new_map && new_map != map) 2145 kfree(new_map); 2146 } 2147 2148 mutex_unlock(&xps_map_mutex); 2149 2150 kfree(new_dev_maps); 2151 return -ENOMEM; 2152 } 2153 EXPORT_SYMBOL(netif_set_xps_queue); 2154 2155 #endif 2156 /* 2157 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2158 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2159 */ 2160 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2161 { 2162 int rc; 2163 2164 if (txq < 1 || txq > dev->num_tx_queues) 2165 return -EINVAL; 2166 2167 if (dev->reg_state == NETREG_REGISTERED || 2168 dev->reg_state == NETREG_UNREGISTERING) { 2169 ASSERT_RTNL(); 2170 2171 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2172 txq); 2173 if (rc) 2174 return rc; 2175 2176 if (dev->num_tc) 2177 netif_setup_tc(dev, txq); 2178 2179 if (txq < dev->real_num_tx_queues) { 2180 qdisc_reset_all_tx_gt(dev, txq); 2181 #ifdef CONFIG_XPS 2182 netif_reset_xps_queues_gt(dev, txq); 2183 #endif 2184 } 2185 } 2186 2187 dev->real_num_tx_queues = txq; 2188 return 0; 2189 } 2190 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2191 2192 #ifdef CONFIG_SYSFS 2193 /** 2194 * netif_set_real_num_rx_queues - set actual number of RX queues used 2195 * @dev: Network device 2196 * @rxq: Actual number of RX queues 2197 * 2198 * This must be called either with the rtnl_lock held or before 2199 * registration of the net device. Returns 0 on success, or a 2200 * negative error code. If called before registration, it always 2201 * succeeds. 2202 */ 2203 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2204 { 2205 int rc; 2206 2207 if (rxq < 1 || rxq > dev->num_rx_queues) 2208 return -EINVAL; 2209 2210 if (dev->reg_state == NETREG_REGISTERED) { 2211 ASSERT_RTNL(); 2212 2213 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2214 rxq); 2215 if (rc) 2216 return rc; 2217 } 2218 2219 dev->real_num_rx_queues = rxq; 2220 return 0; 2221 } 2222 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2223 #endif 2224 2225 /** 2226 * netif_get_num_default_rss_queues - default number of RSS queues 2227 * 2228 * This routine should set an upper limit on the number of RSS queues 2229 * used by default by multiqueue devices. 2230 */ 2231 int netif_get_num_default_rss_queues(void) 2232 { 2233 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2234 } 2235 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2236 2237 static inline void __netif_reschedule(struct Qdisc *q) 2238 { 2239 struct softnet_data *sd; 2240 unsigned long flags; 2241 2242 local_irq_save(flags); 2243 sd = this_cpu_ptr(&softnet_data); 2244 q->next_sched = NULL; 2245 *sd->output_queue_tailp = q; 2246 sd->output_queue_tailp = &q->next_sched; 2247 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2248 local_irq_restore(flags); 2249 } 2250 2251 void __netif_schedule(struct Qdisc *q) 2252 { 2253 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2254 __netif_reschedule(q); 2255 } 2256 EXPORT_SYMBOL(__netif_schedule); 2257 2258 struct dev_kfree_skb_cb { 2259 enum skb_free_reason reason; 2260 }; 2261 2262 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2263 { 2264 return (struct dev_kfree_skb_cb *)skb->cb; 2265 } 2266 2267 void netif_schedule_queue(struct netdev_queue *txq) 2268 { 2269 rcu_read_lock(); 2270 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2271 struct Qdisc *q = rcu_dereference(txq->qdisc); 2272 2273 __netif_schedule(q); 2274 } 2275 rcu_read_unlock(); 2276 } 2277 EXPORT_SYMBOL(netif_schedule_queue); 2278 2279 /** 2280 * netif_wake_subqueue - allow sending packets on subqueue 2281 * @dev: network device 2282 * @queue_index: sub queue index 2283 * 2284 * Resume individual transmit queue of a device with multiple transmit queues. 2285 */ 2286 void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2287 { 2288 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2289 2290 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) { 2291 struct Qdisc *q; 2292 2293 rcu_read_lock(); 2294 q = rcu_dereference(txq->qdisc); 2295 __netif_schedule(q); 2296 rcu_read_unlock(); 2297 } 2298 } 2299 EXPORT_SYMBOL(netif_wake_subqueue); 2300 2301 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2302 { 2303 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2304 struct Qdisc *q; 2305 2306 rcu_read_lock(); 2307 q = rcu_dereference(dev_queue->qdisc); 2308 __netif_schedule(q); 2309 rcu_read_unlock(); 2310 } 2311 } 2312 EXPORT_SYMBOL(netif_tx_wake_queue); 2313 2314 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2315 { 2316 unsigned long flags; 2317 2318 if (likely(atomic_read(&skb->users) == 1)) { 2319 smp_rmb(); 2320 atomic_set(&skb->users, 0); 2321 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2322 return; 2323 } 2324 get_kfree_skb_cb(skb)->reason = reason; 2325 local_irq_save(flags); 2326 skb->next = __this_cpu_read(softnet_data.completion_queue); 2327 __this_cpu_write(softnet_data.completion_queue, skb); 2328 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2329 local_irq_restore(flags); 2330 } 2331 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2332 2333 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2334 { 2335 if (in_irq() || irqs_disabled()) 2336 __dev_kfree_skb_irq(skb, reason); 2337 else 2338 dev_kfree_skb(skb); 2339 } 2340 EXPORT_SYMBOL(__dev_kfree_skb_any); 2341 2342 2343 /** 2344 * netif_device_detach - mark device as removed 2345 * @dev: network device 2346 * 2347 * Mark device as removed from system and therefore no longer available. 2348 */ 2349 void netif_device_detach(struct net_device *dev) 2350 { 2351 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2352 netif_running(dev)) { 2353 netif_tx_stop_all_queues(dev); 2354 } 2355 } 2356 EXPORT_SYMBOL(netif_device_detach); 2357 2358 /** 2359 * netif_device_attach - mark device as attached 2360 * @dev: network device 2361 * 2362 * Mark device as attached from system and restart if needed. 2363 */ 2364 void netif_device_attach(struct net_device *dev) 2365 { 2366 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2367 netif_running(dev)) { 2368 netif_tx_wake_all_queues(dev); 2369 __netdev_watchdog_up(dev); 2370 } 2371 } 2372 EXPORT_SYMBOL(netif_device_attach); 2373 2374 /* 2375 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2376 * to be used as a distribution range. 2377 */ 2378 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2379 unsigned int num_tx_queues) 2380 { 2381 u32 hash; 2382 u16 qoffset = 0; 2383 u16 qcount = num_tx_queues; 2384 2385 if (skb_rx_queue_recorded(skb)) { 2386 hash = skb_get_rx_queue(skb); 2387 while (unlikely(hash >= num_tx_queues)) 2388 hash -= num_tx_queues; 2389 return hash; 2390 } 2391 2392 if (dev->num_tc) { 2393 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2394 qoffset = dev->tc_to_txq[tc].offset; 2395 qcount = dev->tc_to_txq[tc].count; 2396 } 2397 2398 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2399 } 2400 EXPORT_SYMBOL(__skb_tx_hash); 2401 2402 static void skb_warn_bad_offload(const struct sk_buff *skb) 2403 { 2404 static const netdev_features_t null_features = 0; 2405 struct net_device *dev = skb->dev; 2406 const char *driver = ""; 2407 2408 if (!net_ratelimit()) 2409 return; 2410 2411 if (dev && dev->dev.parent) 2412 driver = dev_driver_string(dev->dev.parent); 2413 2414 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2415 "gso_type=%d ip_summed=%d\n", 2416 driver, dev ? &dev->features : &null_features, 2417 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2418 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2419 skb_shinfo(skb)->gso_type, skb->ip_summed); 2420 } 2421 2422 /* 2423 * Invalidate hardware checksum when packet is to be mangled, and 2424 * complete checksum manually on outgoing path. 2425 */ 2426 int skb_checksum_help(struct sk_buff *skb) 2427 { 2428 __wsum csum; 2429 int ret = 0, offset; 2430 2431 if (skb->ip_summed == CHECKSUM_COMPLETE) 2432 goto out_set_summed; 2433 2434 if (unlikely(skb_shinfo(skb)->gso_size)) { 2435 skb_warn_bad_offload(skb); 2436 return -EINVAL; 2437 } 2438 2439 /* Before computing a checksum, we should make sure no frag could 2440 * be modified by an external entity : checksum could be wrong. 2441 */ 2442 if (skb_has_shared_frag(skb)) { 2443 ret = __skb_linearize(skb); 2444 if (ret) 2445 goto out; 2446 } 2447 2448 offset = skb_checksum_start_offset(skb); 2449 BUG_ON(offset >= skb_headlen(skb)); 2450 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2451 2452 offset += skb->csum_offset; 2453 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2454 2455 if (skb_cloned(skb) && 2456 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2457 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2458 if (ret) 2459 goto out; 2460 } 2461 2462 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2463 out_set_summed: 2464 skb->ip_summed = CHECKSUM_NONE; 2465 out: 2466 return ret; 2467 } 2468 EXPORT_SYMBOL(skb_checksum_help); 2469 2470 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2471 { 2472 __be16 type = skb->protocol; 2473 2474 /* Tunnel gso handlers can set protocol to ethernet. */ 2475 if (type == htons(ETH_P_TEB)) { 2476 struct ethhdr *eth; 2477 2478 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2479 return 0; 2480 2481 eth = (struct ethhdr *)skb_mac_header(skb); 2482 type = eth->h_proto; 2483 } 2484 2485 return __vlan_get_protocol(skb, type, depth); 2486 } 2487 2488 /** 2489 * skb_mac_gso_segment - mac layer segmentation handler. 2490 * @skb: buffer to segment 2491 * @features: features for the output path (see dev->features) 2492 */ 2493 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2494 netdev_features_t features) 2495 { 2496 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2497 struct packet_offload *ptype; 2498 int vlan_depth = skb->mac_len; 2499 __be16 type = skb_network_protocol(skb, &vlan_depth); 2500 2501 if (unlikely(!type)) 2502 return ERR_PTR(-EINVAL); 2503 2504 __skb_pull(skb, vlan_depth); 2505 2506 rcu_read_lock(); 2507 list_for_each_entry_rcu(ptype, &offload_base, list) { 2508 if (ptype->type == type && ptype->callbacks.gso_segment) { 2509 segs = ptype->callbacks.gso_segment(skb, features); 2510 break; 2511 } 2512 } 2513 rcu_read_unlock(); 2514 2515 __skb_push(skb, skb->data - skb_mac_header(skb)); 2516 2517 return segs; 2518 } 2519 EXPORT_SYMBOL(skb_mac_gso_segment); 2520 2521 2522 /* openvswitch calls this on rx path, so we need a different check. 2523 */ 2524 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2525 { 2526 if (tx_path) 2527 return skb->ip_summed != CHECKSUM_PARTIAL; 2528 else 2529 return skb->ip_summed == CHECKSUM_NONE; 2530 } 2531 2532 /** 2533 * __skb_gso_segment - Perform segmentation on skb. 2534 * @skb: buffer to segment 2535 * @features: features for the output path (see dev->features) 2536 * @tx_path: whether it is called in TX path 2537 * 2538 * This function segments the given skb and returns a list of segments. 2539 * 2540 * It may return NULL if the skb requires no segmentation. This is 2541 * only possible when GSO is used for verifying header integrity. 2542 */ 2543 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2544 netdev_features_t features, bool tx_path) 2545 { 2546 if (unlikely(skb_needs_check(skb, tx_path))) { 2547 int err; 2548 2549 skb_warn_bad_offload(skb); 2550 2551 err = skb_cow_head(skb, 0); 2552 if (err < 0) 2553 return ERR_PTR(err); 2554 } 2555 2556 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2557 SKB_GSO_CB(skb)->encap_level = 0; 2558 2559 skb_reset_mac_header(skb); 2560 skb_reset_mac_len(skb); 2561 2562 return skb_mac_gso_segment(skb, features); 2563 } 2564 EXPORT_SYMBOL(__skb_gso_segment); 2565 2566 /* Take action when hardware reception checksum errors are detected. */ 2567 #ifdef CONFIG_BUG 2568 void netdev_rx_csum_fault(struct net_device *dev) 2569 { 2570 if (net_ratelimit()) { 2571 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2572 dump_stack(); 2573 } 2574 } 2575 EXPORT_SYMBOL(netdev_rx_csum_fault); 2576 #endif 2577 2578 /* Actually, we should eliminate this check as soon as we know, that: 2579 * 1. IOMMU is present and allows to map all the memory. 2580 * 2. No high memory really exists on this machine. 2581 */ 2582 2583 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2584 { 2585 #ifdef CONFIG_HIGHMEM 2586 int i; 2587 if (!(dev->features & NETIF_F_HIGHDMA)) { 2588 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2589 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2590 if (PageHighMem(skb_frag_page(frag))) 2591 return 1; 2592 } 2593 } 2594 2595 if (PCI_DMA_BUS_IS_PHYS) { 2596 struct device *pdev = dev->dev.parent; 2597 2598 if (!pdev) 2599 return 0; 2600 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2601 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2602 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2603 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2604 return 1; 2605 } 2606 } 2607 #endif 2608 return 0; 2609 } 2610 2611 /* If MPLS offload request, verify we are testing hardware MPLS features 2612 * instead of standard features for the netdev. 2613 */ 2614 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2615 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2616 netdev_features_t features, 2617 __be16 type) 2618 { 2619 if (eth_p_mpls(type)) 2620 features &= skb->dev->mpls_features; 2621 2622 return features; 2623 } 2624 #else 2625 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2626 netdev_features_t features, 2627 __be16 type) 2628 { 2629 return features; 2630 } 2631 #endif 2632 2633 static netdev_features_t harmonize_features(struct sk_buff *skb, 2634 netdev_features_t features) 2635 { 2636 int tmp; 2637 __be16 type; 2638 2639 type = skb_network_protocol(skb, &tmp); 2640 features = net_mpls_features(skb, features, type); 2641 2642 if (skb->ip_summed != CHECKSUM_NONE && 2643 !can_checksum_protocol(features, type)) { 2644 features &= ~NETIF_F_ALL_CSUM; 2645 } else if (illegal_highdma(skb->dev, skb)) { 2646 features &= ~NETIF_F_SG; 2647 } 2648 2649 return features; 2650 } 2651 2652 netdev_features_t passthru_features_check(struct sk_buff *skb, 2653 struct net_device *dev, 2654 netdev_features_t features) 2655 { 2656 return features; 2657 } 2658 EXPORT_SYMBOL(passthru_features_check); 2659 2660 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2661 struct net_device *dev, 2662 netdev_features_t features) 2663 { 2664 return vlan_features_check(skb, features); 2665 } 2666 2667 netdev_features_t netif_skb_features(struct sk_buff *skb) 2668 { 2669 struct net_device *dev = skb->dev; 2670 netdev_features_t features = dev->features; 2671 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2672 2673 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs) 2674 features &= ~NETIF_F_GSO_MASK; 2675 2676 /* If encapsulation offload request, verify we are testing 2677 * hardware encapsulation features instead of standard 2678 * features for the netdev 2679 */ 2680 if (skb->encapsulation) 2681 features &= dev->hw_enc_features; 2682 2683 if (skb_vlan_tagged(skb)) 2684 features = netdev_intersect_features(features, 2685 dev->vlan_features | 2686 NETIF_F_HW_VLAN_CTAG_TX | 2687 NETIF_F_HW_VLAN_STAG_TX); 2688 2689 if (dev->netdev_ops->ndo_features_check) 2690 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2691 features); 2692 else 2693 features &= dflt_features_check(skb, dev, features); 2694 2695 return harmonize_features(skb, features); 2696 } 2697 EXPORT_SYMBOL(netif_skb_features); 2698 2699 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2700 struct netdev_queue *txq, bool more) 2701 { 2702 unsigned int len; 2703 int rc; 2704 2705 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2706 dev_queue_xmit_nit(skb, dev); 2707 2708 len = skb->len; 2709 trace_net_dev_start_xmit(skb, dev); 2710 rc = netdev_start_xmit(skb, dev, txq, more); 2711 trace_net_dev_xmit(skb, rc, dev, len); 2712 2713 return rc; 2714 } 2715 2716 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2717 struct netdev_queue *txq, int *ret) 2718 { 2719 struct sk_buff *skb = first; 2720 int rc = NETDEV_TX_OK; 2721 2722 while (skb) { 2723 struct sk_buff *next = skb->next; 2724 2725 skb->next = NULL; 2726 rc = xmit_one(skb, dev, txq, next != NULL); 2727 if (unlikely(!dev_xmit_complete(rc))) { 2728 skb->next = next; 2729 goto out; 2730 } 2731 2732 skb = next; 2733 if (netif_xmit_stopped(txq) && skb) { 2734 rc = NETDEV_TX_BUSY; 2735 break; 2736 } 2737 } 2738 2739 out: 2740 *ret = rc; 2741 return skb; 2742 } 2743 2744 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2745 netdev_features_t features) 2746 { 2747 if (skb_vlan_tag_present(skb) && 2748 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2749 skb = __vlan_hwaccel_push_inside(skb); 2750 return skb; 2751 } 2752 2753 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2754 { 2755 netdev_features_t features; 2756 2757 if (skb->next) 2758 return skb; 2759 2760 features = netif_skb_features(skb); 2761 skb = validate_xmit_vlan(skb, features); 2762 if (unlikely(!skb)) 2763 goto out_null; 2764 2765 if (netif_needs_gso(skb, features)) { 2766 struct sk_buff *segs; 2767 2768 segs = skb_gso_segment(skb, features); 2769 if (IS_ERR(segs)) { 2770 goto out_kfree_skb; 2771 } else if (segs) { 2772 consume_skb(skb); 2773 skb = segs; 2774 } 2775 } else { 2776 if (skb_needs_linearize(skb, features) && 2777 __skb_linearize(skb)) 2778 goto out_kfree_skb; 2779 2780 /* If packet is not checksummed and device does not 2781 * support checksumming for this protocol, complete 2782 * checksumming here. 2783 */ 2784 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2785 if (skb->encapsulation) 2786 skb_set_inner_transport_header(skb, 2787 skb_checksum_start_offset(skb)); 2788 else 2789 skb_set_transport_header(skb, 2790 skb_checksum_start_offset(skb)); 2791 if (!(features & NETIF_F_ALL_CSUM) && 2792 skb_checksum_help(skb)) 2793 goto out_kfree_skb; 2794 } 2795 } 2796 2797 return skb; 2798 2799 out_kfree_skb: 2800 kfree_skb(skb); 2801 out_null: 2802 return NULL; 2803 } 2804 2805 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 2806 { 2807 struct sk_buff *next, *head = NULL, *tail; 2808 2809 for (; skb != NULL; skb = next) { 2810 next = skb->next; 2811 skb->next = NULL; 2812 2813 /* in case skb wont be segmented, point to itself */ 2814 skb->prev = skb; 2815 2816 skb = validate_xmit_skb(skb, dev); 2817 if (!skb) 2818 continue; 2819 2820 if (!head) 2821 head = skb; 2822 else 2823 tail->next = skb; 2824 /* If skb was segmented, skb->prev points to 2825 * the last segment. If not, it still contains skb. 2826 */ 2827 tail = skb->prev; 2828 } 2829 return head; 2830 } 2831 2832 static void qdisc_pkt_len_init(struct sk_buff *skb) 2833 { 2834 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2835 2836 qdisc_skb_cb(skb)->pkt_len = skb->len; 2837 2838 /* To get more precise estimation of bytes sent on wire, 2839 * we add to pkt_len the headers size of all segments 2840 */ 2841 if (shinfo->gso_size) { 2842 unsigned int hdr_len; 2843 u16 gso_segs = shinfo->gso_segs; 2844 2845 /* mac layer + network layer */ 2846 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2847 2848 /* + transport layer */ 2849 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2850 hdr_len += tcp_hdrlen(skb); 2851 else 2852 hdr_len += sizeof(struct udphdr); 2853 2854 if (shinfo->gso_type & SKB_GSO_DODGY) 2855 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2856 shinfo->gso_size); 2857 2858 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2859 } 2860 } 2861 2862 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2863 struct net_device *dev, 2864 struct netdev_queue *txq) 2865 { 2866 spinlock_t *root_lock = qdisc_lock(q); 2867 bool contended; 2868 int rc; 2869 2870 qdisc_pkt_len_init(skb); 2871 qdisc_calculate_pkt_len(skb, q); 2872 /* 2873 * Heuristic to force contended enqueues to serialize on a 2874 * separate lock before trying to get qdisc main lock. 2875 * This permits __QDISC___STATE_RUNNING owner to get the lock more 2876 * often and dequeue packets faster. 2877 */ 2878 contended = qdisc_is_running(q); 2879 if (unlikely(contended)) 2880 spin_lock(&q->busylock); 2881 2882 spin_lock(root_lock); 2883 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2884 kfree_skb(skb); 2885 rc = NET_XMIT_DROP; 2886 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2887 qdisc_run_begin(q)) { 2888 /* 2889 * This is a work-conserving queue; there are no old skbs 2890 * waiting to be sent out; and the qdisc is not running - 2891 * xmit the skb directly. 2892 */ 2893 2894 qdisc_bstats_update(q, skb); 2895 2896 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 2897 if (unlikely(contended)) { 2898 spin_unlock(&q->busylock); 2899 contended = false; 2900 } 2901 __qdisc_run(q); 2902 } else 2903 qdisc_run_end(q); 2904 2905 rc = NET_XMIT_SUCCESS; 2906 } else { 2907 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2908 if (qdisc_run_begin(q)) { 2909 if (unlikely(contended)) { 2910 spin_unlock(&q->busylock); 2911 contended = false; 2912 } 2913 __qdisc_run(q); 2914 } 2915 } 2916 spin_unlock(root_lock); 2917 if (unlikely(contended)) 2918 spin_unlock(&q->busylock); 2919 return rc; 2920 } 2921 2922 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2923 static void skb_update_prio(struct sk_buff *skb) 2924 { 2925 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2926 2927 if (!skb->priority && skb->sk && map) { 2928 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2929 2930 if (prioidx < map->priomap_len) 2931 skb->priority = map->priomap[prioidx]; 2932 } 2933 } 2934 #else 2935 #define skb_update_prio(skb) 2936 #endif 2937 2938 DEFINE_PER_CPU(int, xmit_recursion); 2939 EXPORT_SYMBOL(xmit_recursion); 2940 2941 #define RECURSION_LIMIT 10 2942 2943 /** 2944 * dev_loopback_xmit - loop back @skb 2945 * @skb: buffer to transmit 2946 */ 2947 int dev_loopback_xmit(struct sock *sk, struct sk_buff *skb) 2948 { 2949 skb_reset_mac_header(skb); 2950 __skb_pull(skb, skb_network_offset(skb)); 2951 skb->pkt_type = PACKET_LOOPBACK; 2952 skb->ip_summed = CHECKSUM_UNNECESSARY; 2953 WARN_ON(!skb_dst(skb)); 2954 skb_dst_force(skb); 2955 netif_rx_ni(skb); 2956 return 0; 2957 } 2958 EXPORT_SYMBOL(dev_loopback_xmit); 2959 2960 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2961 { 2962 #ifdef CONFIG_XPS 2963 struct xps_dev_maps *dev_maps; 2964 struct xps_map *map; 2965 int queue_index = -1; 2966 2967 rcu_read_lock(); 2968 dev_maps = rcu_dereference(dev->xps_maps); 2969 if (dev_maps) { 2970 map = rcu_dereference( 2971 dev_maps->cpu_map[skb->sender_cpu - 1]); 2972 if (map) { 2973 if (map->len == 1) 2974 queue_index = map->queues[0]; 2975 else 2976 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 2977 map->len)]; 2978 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2979 queue_index = -1; 2980 } 2981 } 2982 rcu_read_unlock(); 2983 2984 return queue_index; 2985 #else 2986 return -1; 2987 #endif 2988 } 2989 2990 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 2991 { 2992 struct sock *sk = skb->sk; 2993 int queue_index = sk_tx_queue_get(sk); 2994 2995 if (queue_index < 0 || skb->ooo_okay || 2996 queue_index >= dev->real_num_tx_queues) { 2997 int new_index = get_xps_queue(dev, skb); 2998 if (new_index < 0) 2999 new_index = skb_tx_hash(dev, skb); 3000 3001 if (queue_index != new_index && sk && 3002 rcu_access_pointer(sk->sk_dst_cache)) 3003 sk_tx_queue_set(sk, new_index); 3004 3005 queue_index = new_index; 3006 } 3007 3008 return queue_index; 3009 } 3010 3011 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3012 struct sk_buff *skb, 3013 void *accel_priv) 3014 { 3015 int queue_index = 0; 3016 3017 #ifdef CONFIG_XPS 3018 if (skb->sender_cpu == 0) 3019 skb->sender_cpu = raw_smp_processor_id() + 1; 3020 #endif 3021 3022 if (dev->real_num_tx_queues != 1) { 3023 const struct net_device_ops *ops = dev->netdev_ops; 3024 if (ops->ndo_select_queue) 3025 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3026 __netdev_pick_tx); 3027 else 3028 queue_index = __netdev_pick_tx(dev, skb); 3029 3030 if (!accel_priv) 3031 queue_index = netdev_cap_txqueue(dev, queue_index); 3032 } 3033 3034 skb_set_queue_mapping(skb, queue_index); 3035 return netdev_get_tx_queue(dev, queue_index); 3036 } 3037 3038 /** 3039 * __dev_queue_xmit - transmit a buffer 3040 * @skb: buffer to transmit 3041 * @accel_priv: private data used for L2 forwarding offload 3042 * 3043 * Queue a buffer for transmission to a network device. The caller must 3044 * have set the device and priority and built the buffer before calling 3045 * this function. The function can be called from an interrupt. 3046 * 3047 * A negative errno code is returned on a failure. A success does not 3048 * guarantee the frame will be transmitted as it may be dropped due 3049 * to congestion or traffic shaping. 3050 * 3051 * ----------------------------------------------------------------------------------- 3052 * I notice this method can also return errors from the queue disciplines, 3053 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3054 * be positive. 3055 * 3056 * Regardless of the return value, the skb is consumed, so it is currently 3057 * difficult to retry a send to this method. (You can bump the ref count 3058 * before sending to hold a reference for retry if you are careful.) 3059 * 3060 * When calling this method, interrupts MUST be enabled. This is because 3061 * the BH enable code must have IRQs enabled so that it will not deadlock. 3062 * --BLG 3063 */ 3064 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3065 { 3066 struct net_device *dev = skb->dev; 3067 struct netdev_queue *txq; 3068 struct Qdisc *q; 3069 int rc = -ENOMEM; 3070 3071 skb_reset_mac_header(skb); 3072 3073 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3074 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3075 3076 /* Disable soft irqs for various locks below. Also 3077 * stops preemption for RCU. 3078 */ 3079 rcu_read_lock_bh(); 3080 3081 skb_update_prio(skb); 3082 3083 /* If device/qdisc don't need skb->dst, release it right now while 3084 * its hot in this cpu cache. 3085 */ 3086 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3087 skb_dst_drop(skb); 3088 else 3089 skb_dst_force(skb); 3090 3091 #ifdef CONFIG_NET_SWITCHDEV 3092 /* Don't forward if offload device already forwarded */ 3093 if (skb->offload_fwd_mark && 3094 skb->offload_fwd_mark == dev->offload_fwd_mark) { 3095 consume_skb(skb); 3096 rc = NET_XMIT_SUCCESS; 3097 goto out; 3098 } 3099 #endif 3100 3101 txq = netdev_pick_tx(dev, skb, accel_priv); 3102 q = rcu_dereference_bh(txq->qdisc); 3103 3104 #ifdef CONFIG_NET_CLS_ACT 3105 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 3106 #endif 3107 trace_net_dev_queue(skb); 3108 if (q->enqueue) { 3109 rc = __dev_xmit_skb(skb, q, dev, txq); 3110 goto out; 3111 } 3112 3113 /* The device has no queue. Common case for software devices: 3114 loopback, all the sorts of tunnels... 3115 3116 Really, it is unlikely that netif_tx_lock protection is necessary 3117 here. (f.e. loopback and IP tunnels are clean ignoring statistics 3118 counters.) 3119 However, it is possible, that they rely on protection 3120 made by us here. 3121 3122 Check this and shot the lock. It is not prone from deadlocks. 3123 Either shot noqueue qdisc, it is even simpler 8) 3124 */ 3125 if (dev->flags & IFF_UP) { 3126 int cpu = smp_processor_id(); /* ok because BHs are off */ 3127 3128 if (txq->xmit_lock_owner != cpu) { 3129 3130 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 3131 goto recursion_alert; 3132 3133 skb = validate_xmit_skb(skb, dev); 3134 if (!skb) 3135 goto drop; 3136 3137 HARD_TX_LOCK(dev, txq, cpu); 3138 3139 if (!netif_xmit_stopped(txq)) { 3140 __this_cpu_inc(xmit_recursion); 3141 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3142 __this_cpu_dec(xmit_recursion); 3143 if (dev_xmit_complete(rc)) { 3144 HARD_TX_UNLOCK(dev, txq); 3145 goto out; 3146 } 3147 } 3148 HARD_TX_UNLOCK(dev, txq); 3149 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3150 dev->name); 3151 } else { 3152 /* Recursion is detected! It is possible, 3153 * unfortunately 3154 */ 3155 recursion_alert: 3156 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3157 dev->name); 3158 } 3159 } 3160 3161 rc = -ENETDOWN; 3162 drop: 3163 rcu_read_unlock_bh(); 3164 3165 atomic_long_inc(&dev->tx_dropped); 3166 kfree_skb_list(skb); 3167 return rc; 3168 out: 3169 rcu_read_unlock_bh(); 3170 return rc; 3171 } 3172 3173 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb) 3174 { 3175 return __dev_queue_xmit(skb, NULL); 3176 } 3177 EXPORT_SYMBOL(dev_queue_xmit_sk); 3178 3179 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3180 { 3181 return __dev_queue_xmit(skb, accel_priv); 3182 } 3183 EXPORT_SYMBOL(dev_queue_xmit_accel); 3184 3185 3186 /*======================================================================= 3187 Receiver routines 3188 =======================================================================*/ 3189 3190 int netdev_max_backlog __read_mostly = 1000; 3191 EXPORT_SYMBOL(netdev_max_backlog); 3192 3193 int netdev_tstamp_prequeue __read_mostly = 1; 3194 int netdev_budget __read_mostly = 300; 3195 int weight_p __read_mostly = 64; /* old backlog weight */ 3196 3197 /* Called with irq disabled */ 3198 static inline void ____napi_schedule(struct softnet_data *sd, 3199 struct napi_struct *napi) 3200 { 3201 list_add_tail(&napi->poll_list, &sd->poll_list); 3202 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3203 } 3204 3205 #ifdef CONFIG_RPS 3206 3207 /* One global table that all flow-based protocols share. */ 3208 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3209 EXPORT_SYMBOL(rps_sock_flow_table); 3210 u32 rps_cpu_mask __read_mostly; 3211 EXPORT_SYMBOL(rps_cpu_mask); 3212 3213 struct static_key rps_needed __read_mostly; 3214 3215 static struct rps_dev_flow * 3216 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3217 struct rps_dev_flow *rflow, u16 next_cpu) 3218 { 3219 if (next_cpu < nr_cpu_ids) { 3220 #ifdef CONFIG_RFS_ACCEL 3221 struct netdev_rx_queue *rxqueue; 3222 struct rps_dev_flow_table *flow_table; 3223 struct rps_dev_flow *old_rflow; 3224 u32 flow_id; 3225 u16 rxq_index; 3226 int rc; 3227 3228 /* Should we steer this flow to a different hardware queue? */ 3229 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3230 !(dev->features & NETIF_F_NTUPLE)) 3231 goto out; 3232 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3233 if (rxq_index == skb_get_rx_queue(skb)) 3234 goto out; 3235 3236 rxqueue = dev->_rx + rxq_index; 3237 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3238 if (!flow_table) 3239 goto out; 3240 flow_id = skb_get_hash(skb) & flow_table->mask; 3241 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3242 rxq_index, flow_id); 3243 if (rc < 0) 3244 goto out; 3245 old_rflow = rflow; 3246 rflow = &flow_table->flows[flow_id]; 3247 rflow->filter = rc; 3248 if (old_rflow->filter == rflow->filter) 3249 old_rflow->filter = RPS_NO_FILTER; 3250 out: 3251 #endif 3252 rflow->last_qtail = 3253 per_cpu(softnet_data, next_cpu).input_queue_head; 3254 } 3255 3256 rflow->cpu = next_cpu; 3257 return rflow; 3258 } 3259 3260 /* 3261 * get_rps_cpu is called from netif_receive_skb and returns the target 3262 * CPU from the RPS map of the receiving queue for a given skb. 3263 * rcu_read_lock must be held on entry. 3264 */ 3265 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3266 struct rps_dev_flow **rflowp) 3267 { 3268 const struct rps_sock_flow_table *sock_flow_table; 3269 struct netdev_rx_queue *rxqueue = dev->_rx; 3270 struct rps_dev_flow_table *flow_table; 3271 struct rps_map *map; 3272 int cpu = -1; 3273 u32 tcpu; 3274 u32 hash; 3275 3276 if (skb_rx_queue_recorded(skb)) { 3277 u16 index = skb_get_rx_queue(skb); 3278 3279 if (unlikely(index >= dev->real_num_rx_queues)) { 3280 WARN_ONCE(dev->real_num_rx_queues > 1, 3281 "%s received packet on queue %u, but number " 3282 "of RX queues is %u\n", 3283 dev->name, index, dev->real_num_rx_queues); 3284 goto done; 3285 } 3286 rxqueue += index; 3287 } 3288 3289 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3290 3291 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3292 map = rcu_dereference(rxqueue->rps_map); 3293 if (!flow_table && !map) 3294 goto done; 3295 3296 skb_reset_network_header(skb); 3297 hash = skb_get_hash(skb); 3298 if (!hash) 3299 goto done; 3300 3301 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3302 if (flow_table && sock_flow_table) { 3303 struct rps_dev_flow *rflow; 3304 u32 next_cpu; 3305 u32 ident; 3306 3307 /* First check into global flow table if there is a match */ 3308 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3309 if ((ident ^ hash) & ~rps_cpu_mask) 3310 goto try_rps; 3311 3312 next_cpu = ident & rps_cpu_mask; 3313 3314 /* OK, now we know there is a match, 3315 * we can look at the local (per receive queue) flow table 3316 */ 3317 rflow = &flow_table->flows[hash & flow_table->mask]; 3318 tcpu = rflow->cpu; 3319 3320 /* 3321 * If the desired CPU (where last recvmsg was done) is 3322 * different from current CPU (one in the rx-queue flow 3323 * table entry), switch if one of the following holds: 3324 * - Current CPU is unset (>= nr_cpu_ids). 3325 * - Current CPU is offline. 3326 * - The current CPU's queue tail has advanced beyond the 3327 * last packet that was enqueued using this table entry. 3328 * This guarantees that all previous packets for the flow 3329 * have been dequeued, thus preserving in order delivery. 3330 */ 3331 if (unlikely(tcpu != next_cpu) && 3332 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3333 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3334 rflow->last_qtail)) >= 0)) { 3335 tcpu = next_cpu; 3336 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3337 } 3338 3339 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3340 *rflowp = rflow; 3341 cpu = tcpu; 3342 goto done; 3343 } 3344 } 3345 3346 try_rps: 3347 3348 if (map) { 3349 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3350 if (cpu_online(tcpu)) { 3351 cpu = tcpu; 3352 goto done; 3353 } 3354 } 3355 3356 done: 3357 return cpu; 3358 } 3359 3360 #ifdef CONFIG_RFS_ACCEL 3361 3362 /** 3363 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3364 * @dev: Device on which the filter was set 3365 * @rxq_index: RX queue index 3366 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3367 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3368 * 3369 * Drivers that implement ndo_rx_flow_steer() should periodically call 3370 * this function for each installed filter and remove the filters for 3371 * which it returns %true. 3372 */ 3373 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3374 u32 flow_id, u16 filter_id) 3375 { 3376 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3377 struct rps_dev_flow_table *flow_table; 3378 struct rps_dev_flow *rflow; 3379 bool expire = true; 3380 unsigned int cpu; 3381 3382 rcu_read_lock(); 3383 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3384 if (flow_table && flow_id <= flow_table->mask) { 3385 rflow = &flow_table->flows[flow_id]; 3386 cpu = ACCESS_ONCE(rflow->cpu); 3387 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3388 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3389 rflow->last_qtail) < 3390 (int)(10 * flow_table->mask))) 3391 expire = false; 3392 } 3393 rcu_read_unlock(); 3394 return expire; 3395 } 3396 EXPORT_SYMBOL(rps_may_expire_flow); 3397 3398 #endif /* CONFIG_RFS_ACCEL */ 3399 3400 /* Called from hardirq (IPI) context */ 3401 static void rps_trigger_softirq(void *data) 3402 { 3403 struct softnet_data *sd = data; 3404 3405 ____napi_schedule(sd, &sd->backlog); 3406 sd->received_rps++; 3407 } 3408 3409 #endif /* CONFIG_RPS */ 3410 3411 /* 3412 * Check if this softnet_data structure is another cpu one 3413 * If yes, queue it to our IPI list and return 1 3414 * If no, return 0 3415 */ 3416 static int rps_ipi_queued(struct softnet_data *sd) 3417 { 3418 #ifdef CONFIG_RPS 3419 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3420 3421 if (sd != mysd) { 3422 sd->rps_ipi_next = mysd->rps_ipi_list; 3423 mysd->rps_ipi_list = sd; 3424 3425 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3426 return 1; 3427 } 3428 #endif /* CONFIG_RPS */ 3429 return 0; 3430 } 3431 3432 #ifdef CONFIG_NET_FLOW_LIMIT 3433 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3434 #endif 3435 3436 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3437 { 3438 #ifdef CONFIG_NET_FLOW_LIMIT 3439 struct sd_flow_limit *fl; 3440 struct softnet_data *sd; 3441 unsigned int old_flow, new_flow; 3442 3443 if (qlen < (netdev_max_backlog >> 1)) 3444 return false; 3445 3446 sd = this_cpu_ptr(&softnet_data); 3447 3448 rcu_read_lock(); 3449 fl = rcu_dereference(sd->flow_limit); 3450 if (fl) { 3451 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3452 old_flow = fl->history[fl->history_head]; 3453 fl->history[fl->history_head] = new_flow; 3454 3455 fl->history_head++; 3456 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3457 3458 if (likely(fl->buckets[old_flow])) 3459 fl->buckets[old_flow]--; 3460 3461 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3462 fl->count++; 3463 rcu_read_unlock(); 3464 return true; 3465 } 3466 } 3467 rcu_read_unlock(); 3468 #endif 3469 return false; 3470 } 3471 3472 /* 3473 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3474 * queue (may be a remote CPU queue). 3475 */ 3476 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3477 unsigned int *qtail) 3478 { 3479 struct softnet_data *sd; 3480 unsigned long flags; 3481 unsigned int qlen; 3482 3483 sd = &per_cpu(softnet_data, cpu); 3484 3485 local_irq_save(flags); 3486 3487 rps_lock(sd); 3488 if (!netif_running(skb->dev)) 3489 goto drop; 3490 qlen = skb_queue_len(&sd->input_pkt_queue); 3491 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3492 if (qlen) { 3493 enqueue: 3494 __skb_queue_tail(&sd->input_pkt_queue, skb); 3495 input_queue_tail_incr_save(sd, qtail); 3496 rps_unlock(sd); 3497 local_irq_restore(flags); 3498 return NET_RX_SUCCESS; 3499 } 3500 3501 /* Schedule NAPI for backlog device 3502 * We can use non atomic operation since we own the queue lock 3503 */ 3504 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3505 if (!rps_ipi_queued(sd)) 3506 ____napi_schedule(sd, &sd->backlog); 3507 } 3508 goto enqueue; 3509 } 3510 3511 drop: 3512 sd->dropped++; 3513 rps_unlock(sd); 3514 3515 local_irq_restore(flags); 3516 3517 atomic_long_inc(&skb->dev->rx_dropped); 3518 kfree_skb(skb); 3519 return NET_RX_DROP; 3520 } 3521 3522 static int netif_rx_internal(struct sk_buff *skb) 3523 { 3524 int ret; 3525 3526 net_timestamp_check(netdev_tstamp_prequeue, skb); 3527 3528 trace_netif_rx(skb); 3529 #ifdef CONFIG_RPS 3530 if (static_key_false(&rps_needed)) { 3531 struct rps_dev_flow voidflow, *rflow = &voidflow; 3532 int cpu; 3533 3534 preempt_disable(); 3535 rcu_read_lock(); 3536 3537 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3538 if (cpu < 0) 3539 cpu = smp_processor_id(); 3540 3541 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3542 3543 rcu_read_unlock(); 3544 preempt_enable(); 3545 } else 3546 #endif 3547 { 3548 unsigned int qtail; 3549 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3550 put_cpu(); 3551 } 3552 return ret; 3553 } 3554 3555 /** 3556 * netif_rx - post buffer to the network code 3557 * @skb: buffer to post 3558 * 3559 * This function receives a packet from a device driver and queues it for 3560 * the upper (protocol) levels to process. It always succeeds. The buffer 3561 * may be dropped during processing for congestion control or by the 3562 * protocol layers. 3563 * 3564 * return values: 3565 * NET_RX_SUCCESS (no congestion) 3566 * NET_RX_DROP (packet was dropped) 3567 * 3568 */ 3569 3570 int netif_rx(struct sk_buff *skb) 3571 { 3572 trace_netif_rx_entry(skb); 3573 3574 return netif_rx_internal(skb); 3575 } 3576 EXPORT_SYMBOL(netif_rx); 3577 3578 int netif_rx_ni(struct sk_buff *skb) 3579 { 3580 int err; 3581 3582 trace_netif_rx_ni_entry(skb); 3583 3584 preempt_disable(); 3585 err = netif_rx_internal(skb); 3586 if (local_softirq_pending()) 3587 do_softirq(); 3588 preempt_enable(); 3589 3590 return err; 3591 } 3592 EXPORT_SYMBOL(netif_rx_ni); 3593 3594 static void net_tx_action(struct softirq_action *h) 3595 { 3596 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3597 3598 if (sd->completion_queue) { 3599 struct sk_buff *clist; 3600 3601 local_irq_disable(); 3602 clist = sd->completion_queue; 3603 sd->completion_queue = NULL; 3604 local_irq_enable(); 3605 3606 while (clist) { 3607 struct sk_buff *skb = clist; 3608 clist = clist->next; 3609 3610 WARN_ON(atomic_read(&skb->users)); 3611 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3612 trace_consume_skb(skb); 3613 else 3614 trace_kfree_skb(skb, net_tx_action); 3615 __kfree_skb(skb); 3616 } 3617 } 3618 3619 if (sd->output_queue) { 3620 struct Qdisc *head; 3621 3622 local_irq_disable(); 3623 head = sd->output_queue; 3624 sd->output_queue = NULL; 3625 sd->output_queue_tailp = &sd->output_queue; 3626 local_irq_enable(); 3627 3628 while (head) { 3629 struct Qdisc *q = head; 3630 spinlock_t *root_lock; 3631 3632 head = head->next_sched; 3633 3634 root_lock = qdisc_lock(q); 3635 if (spin_trylock(root_lock)) { 3636 smp_mb__before_atomic(); 3637 clear_bit(__QDISC_STATE_SCHED, 3638 &q->state); 3639 qdisc_run(q); 3640 spin_unlock(root_lock); 3641 } else { 3642 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3643 &q->state)) { 3644 __netif_reschedule(q); 3645 } else { 3646 smp_mb__before_atomic(); 3647 clear_bit(__QDISC_STATE_SCHED, 3648 &q->state); 3649 } 3650 } 3651 } 3652 } 3653 } 3654 3655 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3656 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3657 /* This hook is defined here for ATM LANE */ 3658 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3659 unsigned char *addr) __read_mostly; 3660 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3661 #endif 3662 3663 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3664 struct packet_type **pt_prev, 3665 int *ret, struct net_device *orig_dev) 3666 { 3667 #ifdef CONFIG_NET_CLS_ACT 3668 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 3669 struct tcf_result cl_res; 3670 3671 /* If there's at least one ingress present somewhere (so 3672 * we get here via enabled static key), remaining devices 3673 * that are not configured with an ingress qdisc will bail 3674 * out here. 3675 */ 3676 if (!cl) 3677 return skb; 3678 if (*pt_prev) { 3679 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3680 *pt_prev = NULL; 3681 } 3682 3683 qdisc_skb_cb(skb)->pkt_len = skb->len; 3684 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3685 qdisc_bstats_cpu_update(cl->q, skb); 3686 3687 switch (tc_classify(skb, cl, &cl_res, false)) { 3688 case TC_ACT_OK: 3689 case TC_ACT_RECLASSIFY: 3690 skb->tc_index = TC_H_MIN(cl_res.classid); 3691 break; 3692 case TC_ACT_SHOT: 3693 qdisc_qstats_cpu_drop(cl->q); 3694 case TC_ACT_STOLEN: 3695 case TC_ACT_QUEUED: 3696 kfree_skb(skb); 3697 return NULL; 3698 default: 3699 break; 3700 } 3701 #endif /* CONFIG_NET_CLS_ACT */ 3702 return skb; 3703 } 3704 3705 /** 3706 * netdev_rx_handler_register - register receive handler 3707 * @dev: device to register a handler for 3708 * @rx_handler: receive handler to register 3709 * @rx_handler_data: data pointer that is used by rx handler 3710 * 3711 * Register a receive handler for a device. This handler will then be 3712 * called from __netif_receive_skb. A negative errno code is returned 3713 * on a failure. 3714 * 3715 * The caller must hold the rtnl_mutex. 3716 * 3717 * For a general description of rx_handler, see enum rx_handler_result. 3718 */ 3719 int netdev_rx_handler_register(struct net_device *dev, 3720 rx_handler_func_t *rx_handler, 3721 void *rx_handler_data) 3722 { 3723 ASSERT_RTNL(); 3724 3725 if (dev->rx_handler) 3726 return -EBUSY; 3727 3728 /* Note: rx_handler_data must be set before rx_handler */ 3729 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3730 rcu_assign_pointer(dev->rx_handler, rx_handler); 3731 3732 return 0; 3733 } 3734 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3735 3736 /** 3737 * netdev_rx_handler_unregister - unregister receive handler 3738 * @dev: device to unregister a handler from 3739 * 3740 * Unregister a receive handler from a device. 3741 * 3742 * The caller must hold the rtnl_mutex. 3743 */ 3744 void netdev_rx_handler_unregister(struct net_device *dev) 3745 { 3746 3747 ASSERT_RTNL(); 3748 RCU_INIT_POINTER(dev->rx_handler, NULL); 3749 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3750 * section has a guarantee to see a non NULL rx_handler_data 3751 * as well. 3752 */ 3753 synchronize_net(); 3754 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3755 } 3756 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3757 3758 /* 3759 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3760 * the special handling of PFMEMALLOC skbs. 3761 */ 3762 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3763 { 3764 switch (skb->protocol) { 3765 case htons(ETH_P_ARP): 3766 case htons(ETH_P_IP): 3767 case htons(ETH_P_IPV6): 3768 case htons(ETH_P_8021Q): 3769 case htons(ETH_P_8021AD): 3770 return true; 3771 default: 3772 return false; 3773 } 3774 } 3775 3776 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 3777 int *ret, struct net_device *orig_dev) 3778 { 3779 #ifdef CONFIG_NETFILTER_INGRESS 3780 if (nf_hook_ingress_active(skb)) { 3781 if (*pt_prev) { 3782 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3783 *pt_prev = NULL; 3784 } 3785 3786 return nf_hook_ingress(skb); 3787 } 3788 #endif /* CONFIG_NETFILTER_INGRESS */ 3789 return 0; 3790 } 3791 3792 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3793 { 3794 struct packet_type *ptype, *pt_prev; 3795 rx_handler_func_t *rx_handler; 3796 struct net_device *orig_dev; 3797 bool deliver_exact = false; 3798 int ret = NET_RX_DROP; 3799 __be16 type; 3800 3801 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3802 3803 trace_netif_receive_skb(skb); 3804 3805 orig_dev = skb->dev; 3806 3807 skb_reset_network_header(skb); 3808 if (!skb_transport_header_was_set(skb)) 3809 skb_reset_transport_header(skb); 3810 skb_reset_mac_len(skb); 3811 3812 pt_prev = NULL; 3813 3814 another_round: 3815 skb->skb_iif = skb->dev->ifindex; 3816 3817 __this_cpu_inc(softnet_data.processed); 3818 3819 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3820 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3821 skb = skb_vlan_untag(skb); 3822 if (unlikely(!skb)) 3823 goto out; 3824 } 3825 3826 #ifdef CONFIG_NET_CLS_ACT 3827 if (skb->tc_verd & TC_NCLS) { 3828 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3829 goto ncls; 3830 } 3831 #endif 3832 3833 if (pfmemalloc) 3834 goto skip_taps; 3835 3836 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3837 if (pt_prev) 3838 ret = deliver_skb(skb, pt_prev, orig_dev); 3839 pt_prev = ptype; 3840 } 3841 3842 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 3843 if (pt_prev) 3844 ret = deliver_skb(skb, pt_prev, orig_dev); 3845 pt_prev = ptype; 3846 } 3847 3848 skip_taps: 3849 #ifdef CONFIG_NET_INGRESS 3850 if (static_key_false(&ingress_needed)) { 3851 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3852 if (!skb) 3853 goto out; 3854 3855 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 3856 goto out; 3857 } 3858 #endif 3859 #ifdef CONFIG_NET_CLS_ACT 3860 skb->tc_verd = 0; 3861 ncls: 3862 #endif 3863 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3864 goto drop; 3865 3866 if (skb_vlan_tag_present(skb)) { 3867 if (pt_prev) { 3868 ret = deliver_skb(skb, pt_prev, orig_dev); 3869 pt_prev = NULL; 3870 } 3871 if (vlan_do_receive(&skb)) 3872 goto another_round; 3873 else if (unlikely(!skb)) 3874 goto out; 3875 } 3876 3877 rx_handler = rcu_dereference(skb->dev->rx_handler); 3878 if (rx_handler) { 3879 if (pt_prev) { 3880 ret = deliver_skb(skb, pt_prev, orig_dev); 3881 pt_prev = NULL; 3882 } 3883 switch (rx_handler(&skb)) { 3884 case RX_HANDLER_CONSUMED: 3885 ret = NET_RX_SUCCESS; 3886 goto out; 3887 case RX_HANDLER_ANOTHER: 3888 goto another_round; 3889 case RX_HANDLER_EXACT: 3890 deliver_exact = true; 3891 case RX_HANDLER_PASS: 3892 break; 3893 default: 3894 BUG(); 3895 } 3896 } 3897 3898 if (unlikely(skb_vlan_tag_present(skb))) { 3899 if (skb_vlan_tag_get_id(skb)) 3900 skb->pkt_type = PACKET_OTHERHOST; 3901 /* Note: we might in the future use prio bits 3902 * and set skb->priority like in vlan_do_receive() 3903 * For the time being, just ignore Priority Code Point 3904 */ 3905 skb->vlan_tci = 0; 3906 } 3907 3908 type = skb->protocol; 3909 3910 /* deliver only exact match when indicated */ 3911 if (likely(!deliver_exact)) { 3912 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3913 &ptype_base[ntohs(type) & 3914 PTYPE_HASH_MASK]); 3915 } 3916 3917 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3918 &orig_dev->ptype_specific); 3919 3920 if (unlikely(skb->dev != orig_dev)) { 3921 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3922 &skb->dev->ptype_specific); 3923 } 3924 3925 if (pt_prev) { 3926 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3927 goto drop; 3928 else 3929 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3930 } else { 3931 drop: 3932 atomic_long_inc(&skb->dev->rx_dropped); 3933 kfree_skb(skb); 3934 /* Jamal, now you will not able to escape explaining 3935 * me how you were going to use this. :-) 3936 */ 3937 ret = NET_RX_DROP; 3938 } 3939 3940 out: 3941 return ret; 3942 } 3943 3944 static int __netif_receive_skb(struct sk_buff *skb) 3945 { 3946 int ret; 3947 3948 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3949 unsigned long pflags = current->flags; 3950 3951 /* 3952 * PFMEMALLOC skbs are special, they should 3953 * - be delivered to SOCK_MEMALLOC sockets only 3954 * - stay away from userspace 3955 * - have bounded memory usage 3956 * 3957 * Use PF_MEMALLOC as this saves us from propagating the allocation 3958 * context down to all allocation sites. 3959 */ 3960 current->flags |= PF_MEMALLOC; 3961 ret = __netif_receive_skb_core(skb, true); 3962 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3963 } else 3964 ret = __netif_receive_skb_core(skb, false); 3965 3966 return ret; 3967 } 3968 3969 static int netif_receive_skb_internal(struct sk_buff *skb) 3970 { 3971 int ret; 3972 3973 net_timestamp_check(netdev_tstamp_prequeue, skb); 3974 3975 if (skb_defer_rx_timestamp(skb)) 3976 return NET_RX_SUCCESS; 3977 3978 rcu_read_lock(); 3979 3980 #ifdef CONFIG_RPS 3981 if (static_key_false(&rps_needed)) { 3982 struct rps_dev_flow voidflow, *rflow = &voidflow; 3983 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 3984 3985 if (cpu >= 0) { 3986 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3987 rcu_read_unlock(); 3988 return ret; 3989 } 3990 } 3991 #endif 3992 ret = __netif_receive_skb(skb); 3993 rcu_read_unlock(); 3994 return ret; 3995 } 3996 3997 /** 3998 * netif_receive_skb - process receive buffer from network 3999 * @skb: buffer to process 4000 * 4001 * netif_receive_skb() is the main receive data processing function. 4002 * It always succeeds. The buffer may be dropped during processing 4003 * for congestion control or by the protocol layers. 4004 * 4005 * This function may only be called from softirq context and interrupts 4006 * should be enabled. 4007 * 4008 * Return values (usually ignored): 4009 * NET_RX_SUCCESS: no congestion 4010 * NET_RX_DROP: packet was dropped 4011 */ 4012 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb) 4013 { 4014 trace_netif_receive_skb_entry(skb); 4015 4016 return netif_receive_skb_internal(skb); 4017 } 4018 EXPORT_SYMBOL(netif_receive_skb_sk); 4019 4020 /* Network device is going away, flush any packets still pending 4021 * Called with irqs disabled. 4022 */ 4023 static void flush_backlog(void *arg) 4024 { 4025 struct net_device *dev = arg; 4026 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4027 struct sk_buff *skb, *tmp; 4028 4029 rps_lock(sd); 4030 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4031 if (skb->dev == dev) { 4032 __skb_unlink(skb, &sd->input_pkt_queue); 4033 kfree_skb(skb); 4034 input_queue_head_incr(sd); 4035 } 4036 } 4037 rps_unlock(sd); 4038 4039 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4040 if (skb->dev == dev) { 4041 __skb_unlink(skb, &sd->process_queue); 4042 kfree_skb(skb); 4043 input_queue_head_incr(sd); 4044 } 4045 } 4046 } 4047 4048 static int napi_gro_complete(struct sk_buff *skb) 4049 { 4050 struct packet_offload *ptype; 4051 __be16 type = skb->protocol; 4052 struct list_head *head = &offload_base; 4053 int err = -ENOENT; 4054 4055 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4056 4057 if (NAPI_GRO_CB(skb)->count == 1) { 4058 skb_shinfo(skb)->gso_size = 0; 4059 goto out; 4060 } 4061 4062 rcu_read_lock(); 4063 list_for_each_entry_rcu(ptype, head, list) { 4064 if (ptype->type != type || !ptype->callbacks.gro_complete) 4065 continue; 4066 4067 err = ptype->callbacks.gro_complete(skb, 0); 4068 break; 4069 } 4070 rcu_read_unlock(); 4071 4072 if (err) { 4073 WARN_ON(&ptype->list == head); 4074 kfree_skb(skb); 4075 return NET_RX_SUCCESS; 4076 } 4077 4078 out: 4079 return netif_receive_skb_internal(skb); 4080 } 4081 4082 /* napi->gro_list contains packets ordered by age. 4083 * youngest packets at the head of it. 4084 * Complete skbs in reverse order to reduce latencies. 4085 */ 4086 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4087 { 4088 struct sk_buff *skb, *prev = NULL; 4089 4090 /* scan list and build reverse chain */ 4091 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4092 skb->prev = prev; 4093 prev = skb; 4094 } 4095 4096 for (skb = prev; skb; skb = prev) { 4097 skb->next = NULL; 4098 4099 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4100 return; 4101 4102 prev = skb->prev; 4103 napi_gro_complete(skb); 4104 napi->gro_count--; 4105 } 4106 4107 napi->gro_list = NULL; 4108 } 4109 EXPORT_SYMBOL(napi_gro_flush); 4110 4111 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4112 { 4113 struct sk_buff *p; 4114 unsigned int maclen = skb->dev->hard_header_len; 4115 u32 hash = skb_get_hash_raw(skb); 4116 4117 for (p = napi->gro_list; p; p = p->next) { 4118 unsigned long diffs; 4119 4120 NAPI_GRO_CB(p)->flush = 0; 4121 4122 if (hash != skb_get_hash_raw(p)) { 4123 NAPI_GRO_CB(p)->same_flow = 0; 4124 continue; 4125 } 4126 4127 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4128 diffs |= p->vlan_tci ^ skb->vlan_tci; 4129 if (maclen == ETH_HLEN) 4130 diffs |= compare_ether_header(skb_mac_header(p), 4131 skb_mac_header(skb)); 4132 else if (!diffs) 4133 diffs = memcmp(skb_mac_header(p), 4134 skb_mac_header(skb), 4135 maclen); 4136 NAPI_GRO_CB(p)->same_flow = !diffs; 4137 } 4138 } 4139 4140 static void skb_gro_reset_offset(struct sk_buff *skb) 4141 { 4142 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4143 const skb_frag_t *frag0 = &pinfo->frags[0]; 4144 4145 NAPI_GRO_CB(skb)->data_offset = 0; 4146 NAPI_GRO_CB(skb)->frag0 = NULL; 4147 NAPI_GRO_CB(skb)->frag0_len = 0; 4148 4149 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4150 pinfo->nr_frags && 4151 !PageHighMem(skb_frag_page(frag0))) { 4152 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4153 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 4154 } 4155 } 4156 4157 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4158 { 4159 struct skb_shared_info *pinfo = skb_shinfo(skb); 4160 4161 BUG_ON(skb->end - skb->tail < grow); 4162 4163 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4164 4165 skb->data_len -= grow; 4166 skb->tail += grow; 4167 4168 pinfo->frags[0].page_offset += grow; 4169 skb_frag_size_sub(&pinfo->frags[0], grow); 4170 4171 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4172 skb_frag_unref(skb, 0); 4173 memmove(pinfo->frags, pinfo->frags + 1, 4174 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4175 } 4176 } 4177 4178 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4179 { 4180 struct sk_buff **pp = NULL; 4181 struct packet_offload *ptype; 4182 __be16 type = skb->protocol; 4183 struct list_head *head = &offload_base; 4184 int same_flow; 4185 enum gro_result ret; 4186 int grow; 4187 4188 if (!(skb->dev->features & NETIF_F_GRO)) 4189 goto normal; 4190 4191 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad) 4192 goto normal; 4193 4194 gro_list_prepare(napi, skb); 4195 4196 rcu_read_lock(); 4197 list_for_each_entry_rcu(ptype, head, list) { 4198 if (ptype->type != type || !ptype->callbacks.gro_receive) 4199 continue; 4200 4201 skb_set_network_header(skb, skb_gro_offset(skb)); 4202 skb_reset_mac_len(skb); 4203 NAPI_GRO_CB(skb)->same_flow = 0; 4204 NAPI_GRO_CB(skb)->flush = 0; 4205 NAPI_GRO_CB(skb)->free = 0; 4206 NAPI_GRO_CB(skb)->udp_mark = 0; 4207 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4208 4209 /* Setup for GRO checksum validation */ 4210 switch (skb->ip_summed) { 4211 case CHECKSUM_COMPLETE: 4212 NAPI_GRO_CB(skb)->csum = skb->csum; 4213 NAPI_GRO_CB(skb)->csum_valid = 1; 4214 NAPI_GRO_CB(skb)->csum_cnt = 0; 4215 break; 4216 case CHECKSUM_UNNECESSARY: 4217 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4218 NAPI_GRO_CB(skb)->csum_valid = 0; 4219 break; 4220 default: 4221 NAPI_GRO_CB(skb)->csum_cnt = 0; 4222 NAPI_GRO_CB(skb)->csum_valid = 0; 4223 } 4224 4225 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4226 break; 4227 } 4228 rcu_read_unlock(); 4229 4230 if (&ptype->list == head) 4231 goto normal; 4232 4233 same_flow = NAPI_GRO_CB(skb)->same_flow; 4234 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4235 4236 if (pp) { 4237 struct sk_buff *nskb = *pp; 4238 4239 *pp = nskb->next; 4240 nskb->next = NULL; 4241 napi_gro_complete(nskb); 4242 napi->gro_count--; 4243 } 4244 4245 if (same_flow) 4246 goto ok; 4247 4248 if (NAPI_GRO_CB(skb)->flush) 4249 goto normal; 4250 4251 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4252 struct sk_buff *nskb = napi->gro_list; 4253 4254 /* locate the end of the list to select the 'oldest' flow */ 4255 while (nskb->next) { 4256 pp = &nskb->next; 4257 nskb = *pp; 4258 } 4259 *pp = NULL; 4260 nskb->next = NULL; 4261 napi_gro_complete(nskb); 4262 } else { 4263 napi->gro_count++; 4264 } 4265 NAPI_GRO_CB(skb)->count = 1; 4266 NAPI_GRO_CB(skb)->age = jiffies; 4267 NAPI_GRO_CB(skb)->last = skb; 4268 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4269 skb->next = napi->gro_list; 4270 napi->gro_list = skb; 4271 ret = GRO_HELD; 4272 4273 pull: 4274 grow = skb_gro_offset(skb) - skb_headlen(skb); 4275 if (grow > 0) 4276 gro_pull_from_frag0(skb, grow); 4277 ok: 4278 return ret; 4279 4280 normal: 4281 ret = GRO_NORMAL; 4282 goto pull; 4283 } 4284 4285 struct packet_offload *gro_find_receive_by_type(__be16 type) 4286 { 4287 struct list_head *offload_head = &offload_base; 4288 struct packet_offload *ptype; 4289 4290 list_for_each_entry_rcu(ptype, offload_head, list) { 4291 if (ptype->type != type || !ptype->callbacks.gro_receive) 4292 continue; 4293 return ptype; 4294 } 4295 return NULL; 4296 } 4297 EXPORT_SYMBOL(gro_find_receive_by_type); 4298 4299 struct packet_offload *gro_find_complete_by_type(__be16 type) 4300 { 4301 struct list_head *offload_head = &offload_base; 4302 struct packet_offload *ptype; 4303 4304 list_for_each_entry_rcu(ptype, offload_head, list) { 4305 if (ptype->type != type || !ptype->callbacks.gro_complete) 4306 continue; 4307 return ptype; 4308 } 4309 return NULL; 4310 } 4311 EXPORT_SYMBOL(gro_find_complete_by_type); 4312 4313 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4314 { 4315 switch (ret) { 4316 case GRO_NORMAL: 4317 if (netif_receive_skb_internal(skb)) 4318 ret = GRO_DROP; 4319 break; 4320 4321 case GRO_DROP: 4322 kfree_skb(skb); 4323 break; 4324 4325 case GRO_MERGED_FREE: 4326 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4327 kmem_cache_free(skbuff_head_cache, skb); 4328 else 4329 __kfree_skb(skb); 4330 break; 4331 4332 case GRO_HELD: 4333 case GRO_MERGED: 4334 break; 4335 } 4336 4337 return ret; 4338 } 4339 4340 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4341 { 4342 trace_napi_gro_receive_entry(skb); 4343 4344 skb_gro_reset_offset(skb); 4345 4346 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4347 } 4348 EXPORT_SYMBOL(napi_gro_receive); 4349 4350 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4351 { 4352 if (unlikely(skb->pfmemalloc)) { 4353 consume_skb(skb); 4354 return; 4355 } 4356 __skb_pull(skb, skb_headlen(skb)); 4357 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4358 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4359 skb->vlan_tci = 0; 4360 skb->dev = napi->dev; 4361 skb->skb_iif = 0; 4362 skb->encapsulation = 0; 4363 skb_shinfo(skb)->gso_type = 0; 4364 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4365 4366 napi->skb = skb; 4367 } 4368 4369 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4370 { 4371 struct sk_buff *skb = napi->skb; 4372 4373 if (!skb) { 4374 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4375 napi->skb = skb; 4376 } 4377 return skb; 4378 } 4379 EXPORT_SYMBOL(napi_get_frags); 4380 4381 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4382 struct sk_buff *skb, 4383 gro_result_t ret) 4384 { 4385 switch (ret) { 4386 case GRO_NORMAL: 4387 case GRO_HELD: 4388 __skb_push(skb, ETH_HLEN); 4389 skb->protocol = eth_type_trans(skb, skb->dev); 4390 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4391 ret = GRO_DROP; 4392 break; 4393 4394 case GRO_DROP: 4395 case GRO_MERGED_FREE: 4396 napi_reuse_skb(napi, skb); 4397 break; 4398 4399 case GRO_MERGED: 4400 break; 4401 } 4402 4403 return ret; 4404 } 4405 4406 /* Upper GRO stack assumes network header starts at gro_offset=0 4407 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4408 * We copy ethernet header into skb->data to have a common layout. 4409 */ 4410 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4411 { 4412 struct sk_buff *skb = napi->skb; 4413 const struct ethhdr *eth; 4414 unsigned int hlen = sizeof(*eth); 4415 4416 napi->skb = NULL; 4417 4418 skb_reset_mac_header(skb); 4419 skb_gro_reset_offset(skb); 4420 4421 eth = skb_gro_header_fast(skb, 0); 4422 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4423 eth = skb_gro_header_slow(skb, hlen, 0); 4424 if (unlikely(!eth)) { 4425 napi_reuse_skb(napi, skb); 4426 return NULL; 4427 } 4428 } else { 4429 gro_pull_from_frag0(skb, hlen); 4430 NAPI_GRO_CB(skb)->frag0 += hlen; 4431 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4432 } 4433 __skb_pull(skb, hlen); 4434 4435 /* 4436 * This works because the only protocols we care about don't require 4437 * special handling. 4438 * We'll fix it up properly in napi_frags_finish() 4439 */ 4440 skb->protocol = eth->h_proto; 4441 4442 return skb; 4443 } 4444 4445 gro_result_t napi_gro_frags(struct napi_struct *napi) 4446 { 4447 struct sk_buff *skb = napi_frags_skb(napi); 4448 4449 if (!skb) 4450 return GRO_DROP; 4451 4452 trace_napi_gro_frags_entry(skb); 4453 4454 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4455 } 4456 EXPORT_SYMBOL(napi_gro_frags); 4457 4458 /* Compute the checksum from gro_offset and return the folded value 4459 * after adding in any pseudo checksum. 4460 */ 4461 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4462 { 4463 __wsum wsum; 4464 __sum16 sum; 4465 4466 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4467 4468 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4469 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4470 if (likely(!sum)) { 4471 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4472 !skb->csum_complete_sw) 4473 netdev_rx_csum_fault(skb->dev); 4474 } 4475 4476 NAPI_GRO_CB(skb)->csum = wsum; 4477 NAPI_GRO_CB(skb)->csum_valid = 1; 4478 4479 return sum; 4480 } 4481 EXPORT_SYMBOL(__skb_gro_checksum_complete); 4482 4483 /* 4484 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4485 * Note: called with local irq disabled, but exits with local irq enabled. 4486 */ 4487 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4488 { 4489 #ifdef CONFIG_RPS 4490 struct softnet_data *remsd = sd->rps_ipi_list; 4491 4492 if (remsd) { 4493 sd->rps_ipi_list = NULL; 4494 4495 local_irq_enable(); 4496 4497 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4498 while (remsd) { 4499 struct softnet_data *next = remsd->rps_ipi_next; 4500 4501 if (cpu_online(remsd->cpu)) 4502 smp_call_function_single_async(remsd->cpu, 4503 &remsd->csd); 4504 remsd = next; 4505 } 4506 } else 4507 #endif 4508 local_irq_enable(); 4509 } 4510 4511 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4512 { 4513 #ifdef CONFIG_RPS 4514 return sd->rps_ipi_list != NULL; 4515 #else 4516 return false; 4517 #endif 4518 } 4519 4520 static int process_backlog(struct napi_struct *napi, int quota) 4521 { 4522 int work = 0; 4523 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4524 4525 /* Check if we have pending ipi, its better to send them now, 4526 * not waiting net_rx_action() end. 4527 */ 4528 if (sd_has_rps_ipi_waiting(sd)) { 4529 local_irq_disable(); 4530 net_rps_action_and_irq_enable(sd); 4531 } 4532 4533 napi->weight = weight_p; 4534 local_irq_disable(); 4535 while (1) { 4536 struct sk_buff *skb; 4537 4538 while ((skb = __skb_dequeue(&sd->process_queue))) { 4539 rcu_read_lock(); 4540 local_irq_enable(); 4541 __netif_receive_skb(skb); 4542 rcu_read_unlock(); 4543 local_irq_disable(); 4544 input_queue_head_incr(sd); 4545 if (++work >= quota) { 4546 local_irq_enable(); 4547 return work; 4548 } 4549 } 4550 4551 rps_lock(sd); 4552 if (skb_queue_empty(&sd->input_pkt_queue)) { 4553 /* 4554 * Inline a custom version of __napi_complete(). 4555 * only current cpu owns and manipulates this napi, 4556 * and NAPI_STATE_SCHED is the only possible flag set 4557 * on backlog. 4558 * We can use a plain write instead of clear_bit(), 4559 * and we dont need an smp_mb() memory barrier. 4560 */ 4561 napi->state = 0; 4562 rps_unlock(sd); 4563 4564 break; 4565 } 4566 4567 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4568 &sd->process_queue); 4569 rps_unlock(sd); 4570 } 4571 local_irq_enable(); 4572 4573 return work; 4574 } 4575 4576 /** 4577 * __napi_schedule - schedule for receive 4578 * @n: entry to schedule 4579 * 4580 * The entry's receive function will be scheduled to run. 4581 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 4582 */ 4583 void __napi_schedule(struct napi_struct *n) 4584 { 4585 unsigned long flags; 4586 4587 local_irq_save(flags); 4588 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4589 local_irq_restore(flags); 4590 } 4591 EXPORT_SYMBOL(__napi_schedule); 4592 4593 /** 4594 * __napi_schedule_irqoff - schedule for receive 4595 * @n: entry to schedule 4596 * 4597 * Variant of __napi_schedule() assuming hard irqs are masked 4598 */ 4599 void __napi_schedule_irqoff(struct napi_struct *n) 4600 { 4601 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4602 } 4603 EXPORT_SYMBOL(__napi_schedule_irqoff); 4604 4605 void __napi_complete(struct napi_struct *n) 4606 { 4607 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4608 4609 list_del_init(&n->poll_list); 4610 smp_mb__before_atomic(); 4611 clear_bit(NAPI_STATE_SCHED, &n->state); 4612 } 4613 EXPORT_SYMBOL(__napi_complete); 4614 4615 void napi_complete_done(struct napi_struct *n, int work_done) 4616 { 4617 unsigned long flags; 4618 4619 /* 4620 * don't let napi dequeue from the cpu poll list 4621 * just in case its running on a different cpu 4622 */ 4623 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4624 return; 4625 4626 if (n->gro_list) { 4627 unsigned long timeout = 0; 4628 4629 if (work_done) 4630 timeout = n->dev->gro_flush_timeout; 4631 4632 if (timeout) 4633 hrtimer_start(&n->timer, ns_to_ktime(timeout), 4634 HRTIMER_MODE_REL_PINNED); 4635 else 4636 napi_gro_flush(n, false); 4637 } 4638 if (likely(list_empty(&n->poll_list))) { 4639 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state)); 4640 } else { 4641 /* If n->poll_list is not empty, we need to mask irqs */ 4642 local_irq_save(flags); 4643 __napi_complete(n); 4644 local_irq_restore(flags); 4645 } 4646 } 4647 EXPORT_SYMBOL(napi_complete_done); 4648 4649 /* must be called under rcu_read_lock(), as we dont take a reference */ 4650 struct napi_struct *napi_by_id(unsigned int napi_id) 4651 { 4652 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4653 struct napi_struct *napi; 4654 4655 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4656 if (napi->napi_id == napi_id) 4657 return napi; 4658 4659 return NULL; 4660 } 4661 EXPORT_SYMBOL_GPL(napi_by_id); 4662 4663 void napi_hash_add(struct napi_struct *napi) 4664 { 4665 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4666 4667 spin_lock(&napi_hash_lock); 4668 4669 /* 0 is not a valid id, we also skip an id that is taken 4670 * we expect both events to be extremely rare 4671 */ 4672 napi->napi_id = 0; 4673 while (!napi->napi_id) { 4674 napi->napi_id = ++napi_gen_id; 4675 if (napi_by_id(napi->napi_id)) 4676 napi->napi_id = 0; 4677 } 4678 4679 hlist_add_head_rcu(&napi->napi_hash_node, 4680 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4681 4682 spin_unlock(&napi_hash_lock); 4683 } 4684 } 4685 EXPORT_SYMBOL_GPL(napi_hash_add); 4686 4687 /* Warning : caller is responsible to make sure rcu grace period 4688 * is respected before freeing memory containing @napi 4689 */ 4690 void napi_hash_del(struct napi_struct *napi) 4691 { 4692 spin_lock(&napi_hash_lock); 4693 4694 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4695 hlist_del_rcu(&napi->napi_hash_node); 4696 4697 spin_unlock(&napi_hash_lock); 4698 } 4699 EXPORT_SYMBOL_GPL(napi_hash_del); 4700 4701 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 4702 { 4703 struct napi_struct *napi; 4704 4705 napi = container_of(timer, struct napi_struct, timer); 4706 if (napi->gro_list) 4707 napi_schedule(napi); 4708 4709 return HRTIMER_NORESTART; 4710 } 4711 4712 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4713 int (*poll)(struct napi_struct *, int), int weight) 4714 { 4715 INIT_LIST_HEAD(&napi->poll_list); 4716 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 4717 napi->timer.function = napi_watchdog; 4718 napi->gro_count = 0; 4719 napi->gro_list = NULL; 4720 napi->skb = NULL; 4721 napi->poll = poll; 4722 if (weight > NAPI_POLL_WEIGHT) 4723 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4724 weight, dev->name); 4725 napi->weight = weight; 4726 list_add(&napi->dev_list, &dev->napi_list); 4727 napi->dev = dev; 4728 #ifdef CONFIG_NETPOLL 4729 spin_lock_init(&napi->poll_lock); 4730 napi->poll_owner = -1; 4731 #endif 4732 set_bit(NAPI_STATE_SCHED, &napi->state); 4733 } 4734 EXPORT_SYMBOL(netif_napi_add); 4735 4736 void napi_disable(struct napi_struct *n) 4737 { 4738 might_sleep(); 4739 set_bit(NAPI_STATE_DISABLE, &n->state); 4740 4741 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 4742 msleep(1); 4743 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 4744 msleep(1); 4745 4746 hrtimer_cancel(&n->timer); 4747 4748 clear_bit(NAPI_STATE_DISABLE, &n->state); 4749 } 4750 EXPORT_SYMBOL(napi_disable); 4751 4752 void netif_napi_del(struct napi_struct *napi) 4753 { 4754 list_del_init(&napi->dev_list); 4755 napi_free_frags(napi); 4756 4757 kfree_skb_list(napi->gro_list); 4758 napi->gro_list = NULL; 4759 napi->gro_count = 0; 4760 } 4761 EXPORT_SYMBOL(netif_napi_del); 4762 4763 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 4764 { 4765 void *have; 4766 int work, weight; 4767 4768 list_del_init(&n->poll_list); 4769 4770 have = netpoll_poll_lock(n); 4771 4772 weight = n->weight; 4773 4774 /* This NAPI_STATE_SCHED test is for avoiding a race 4775 * with netpoll's poll_napi(). Only the entity which 4776 * obtains the lock and sees NAPI_STATE_SCHED set will 4777 * actually make the ->poll() call. Therefore we avoid 4778 * accidentally calling ->poll() when NAPI is not scheduled. 4779 */ 4780 work = 0; 4781 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4782 work = n->poll(n, weight); 4783 trace_napi_poll(n); 4784 } 4785 4786 WARN_ON_ONCE(work > weight); 4787 4788 if (likely(work < weight)) 4789 goto out_unlock; 4790 4791 /* Drivers must not modify the NAPI state if they 4792 * consume the entire weight. In such cases this code 4793 * still "owns" the NAPI instance and therefore can 4794 * move the instance around on the list at-will. 4795 */ 4796 if (unlikely(napi_disable_pending(n))) { 4797 napi_complete(n); 4798 goto out_unlock; 4799 } 4800 4801 if (n->gro_list) { 4802 /* flush too old packets 4803 * If HZ < 1000, flush all packets. 4804 */ 4805 napi_gro_flush(n, HZ >= 1000); 4806 } 4807 4808 /* Some drivers may have called napi_schedule 4809 * prior to exhausting their budget. 4810 */ 4811 if (unlikely(!list_empty(&n->poll_list))) { 4812 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 4813 n->dev ? n->dev->name : "backlog"); 4814 goto out_unlock; 4815 } 4816 4817 list_add_tail(&n->poll_list, repoll); 4818 4819 out_unlock: 4820 netpoll_poll_unlock(have); 4821 4822 return work; 4823 } 4824 4825 static void net_rx_action(struct softirq_action *h) 4826 { 4827 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4828 unsigned long time_limit = jiffies + 2; 4829 int budget = netdev_budget; 4830 LIST_HEAD(list); 4831 LIST_HEAD(repoll); 4832 4833 local_irq_disable(); 4834 list_splice_init(&sd->poll_list, &list); 4835 local_irq_enable(); 4836 4837 for (;;) { 4838 struct napi_struct *n; 4839 4840 if (list_empty(&list)) { 4841 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 4842 return; 4843 break; 4844 } 4845 4846 n = list_first_entry(&list, struct napi_struct, poll_list); 4847 budget -= napi_poll(n, &repoll); 4848 4849 /* If softirq window is exhausted then punt. 4850 * Allow this to run for 2 jiffies since which will allow 4851 * an average latency of 1.5/HZ. 4852 */ 4853 if (unlikely(budget <= 0 || 4854 time_after_eq(jiffies, time_limit))) { 4855 sd->time_squeeze++; 4856 break; 4857 } 4858 } 4859 4860 local_irq_disable(); 4861 4862 list_splice_tail_init(&sd->poll_list, &list); 4863 list_splice_tail(&repoll, &list); 4864 list_splice(&list, &sd->poll_list); 4865 if (!list_empty(&sd->poll_list)) 4866 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4867 4868 net_rps_action_and_irq_enable(sd); 4869 } 4870 4871 struct netdev_adjacent { 4872 struct net_device *dev; 4873 4874 /* upper master flag, there can only be one master device per list */ 4875 bool master; 4876 4877 /* counter for the number of times this device was added to us */ 4878 u16 ref_nr; 4879 4880 /* private field for the users */ 4881 void *private; 4882 4883 struct list_head list; 4884 struct rcu_head rcu; 4885 }; 4886 4887 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev, 4888 struct net_device *adj_dev, 4889 struct list_head *adj_list) 4890 { 4891 struct netdev_adjacent *adj; 4892 4893 list_for_each_entry(adj, adj_list, list) { 4894 if (adj->dev == adj_dev) 4895 return adj; 4896 } 4897 return NULL; 4898 } 4899 4900 /** 4901 * netdev_has_upper_dev - Check if device is linked to an upper device 4902 * @dev: device 4903 * @upper_dev: upper device to check 4904 * 4905 * Find out if a device is linked to specified upper device and return true 4906 * in case it is. Note that this checks only immediate upper device, 4907 * not through a complete stack of devices. The caller must hold the RTNL lock. 4908 */ 4909 bool netdev_has_upper_dev(struct net_device *dev, 4910 struct net_device *upper_dev) 4911 { 4912 ASSERT_RTNL(); 4913 4914 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper); 4915 } 4916 EXPORT_SYMBOL(netdev_has_upper_dev); 4917 4918 /** 4919 * netdev_has_any_upper_dev - Check if device is linked to some device 4920 * @dev: device 4921 * 4922 * Find out if a device is linked to an upper device and return true in case 4923 * it is. The caller must hold the RTNL lock. 4924 */ 4925 static bool netdev_has_any_upper_dev(struct net_device *dev) 4926 { 4927 ASSERT_RTNL(); 4928 4929 return !list_empty(&dev->all_adj_list.upper); 4930 } 4931 4932 /** 4933 * netdev_master_upper_dev_get - Get master upper device 4934 * @dev: device 4935 * 4936 * Find a master upper device and return pointer to it or NULL in case 4937 * it's not there. The caller must hold the RTNL lock. 4938 */ 4939 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4940 { 4941 struct netdev_adjacent *upper; 4942 4943 ASSERT_RTNL(); 4944 4945 if (list_empty(&dev->adj_list.upper)) 4946 return NULL; 4947 4948 upper = list_first_entry(&dev->adj_list.upper, 4949 struct netdev_adjacent, list); 4950 if (likely(upper->master)) 4951 return upper->dev; 4952 return NULL; 4953 } 4954 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4955 4956 void *netdev_adjacent_get_private(struct list_head *adj_list) 4957 { 4958 struct netdev_adjacent *adj; 4959 4960 adj = list_entry(adj_list, struct netdev_adjacent, list); 4961 4962 return adj->private; 4963 } 4964 EXPORT_SYMBOL(netdev_adjacent_get_private); 4965 4966 /** 4967 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 4968 * @dev: device 4969 * @iter: list_head ** of the current position 4970 * 4971 * Gets the next device from the dev's upper list, starting from iter 4972 * position. The caller must hold RCU read lock. 4973 */ 4974 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4975 struct list_head **iter) 4976 { 4977 struct netdev_adjacent *upper; 4978 4979 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4980 4981 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4982 4983 if (&upper->list == &dev->adj_list.upper) 4984 return NULL; 4985 4986 *iter = &upper->list; 4987 4988 return upper->dev; 4989 } 4990 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 4991 4992 /** 4993 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 4994 * @dev: device 4995 * @iter: list_head ** of the current position 4996 * 4997 * Gets the next device from the dev's upper list, starting from iter 4998 * position. The caller must hold RCU read lock. 4999 */ 5000 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 5001 struct list_head **iter) 5002 { 5003 struct netdev_adjacent *upper; 5004 5005 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5006 5007 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5008 5009 if (&upper->list == &dev->all_adj_list.upper) 5010 return NULL; 5011 5012 *iter = &upper->list; 5013 5014 return upper->dev; 5015 } 5016 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 5017 5018 /** 5019 * netdev_lower_get_next_private - Get the next ->private from the 5020 * lower neighbour list 5021 * @dev: device 5022 * @iter: list_head ** of the current position 5023 * 5024 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5025 * list, starting from iter position. The caller must hold either hold the 5026 * RTNL lock or its own locking that guarantees that the neighbour lower 5027 * list will remain unchanged. 5028 */ 5029 void *netdev_lower_get_next_private(struct net_device *dev, 5030 struct list_head **iter) 5031 { 5032 struct netdev_adjacent *lower; 5033 5034 lower = list_entry(*iter, struct netdev_adjacent, list); 5035 5036 if (&lower->list == &dev->adj_list.lower) 5037 return NULL; 5038 5039 *iter = lower->list.next; 5040 5041 return lower->private; 5042 } 5043 EXPORT_SYMBOL(netdev_lower_get_next_private); 5044 5045 /** 5046 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5047 * lower neighbour list, RCU 5048 * variant 5049 * @dev: device 5050 * @iter: list_head ** of the current position 5051 * 5052 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5053 * list, starting from iter position. The caller must hold RCU read lock. 5054 */ 5055 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5056 struct list_head **iter) 5057 { 5058 struct netdev_adjacent *lower; 5059 5060 WARN_ON_ONCE(!rcu_read_lock_held()); 5061 5062 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5063 5064 if (&lower->list == &dev->adj_list.lower) 5065 return NULL; 5066 5067 *iter = &lower->list; 5068 5069 return lower->private; 5070 } 5071 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5072 5073 /** 5074 * netdev_lower_get_next - Get the next device from the lower neighbour 5075 * list 5076 * @dev: device 5077 * @iter: list_head ** of the current position 5078 * 5079 * Gets the next netdev_adjacent from the dev's lower neighbour 5080 * list, starting from iter position. The caller must hold RTNL lock or 5081 * its own locking that guarantees that the neighbour lower 5082 * list will remain unchanged. 5083 */ 5084 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5085 { 5086 struct netdev_adjacent *lower; 5087 5088 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 5089 5090 if (&lower->list == &dev->adj_list.lower) 5091 return NULL; 5092 5093 *iter = &lower->list; 5094 5095 return lower->dev; 5096 } 5097 EXPORT_SYMBOL(netdev_lower_get_next); 5098 5099 /** 5100 * netdev_lower_get_first_private_rcu - Get the first ->private from the 5101 * lower neighbour list, RCU 5102 * variant 5103 * @dev: device 5104 * 5105 * Gets the first netdev_adjacent->private from the dev's lower neighbour 5106 * list. The caller must hold RCU read lock. 5107 */ 5108 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 5109 { 5110 struct netdev_adjacent *lower; 5111 5112 lower = list_first_or_null_rcu(&dev->adj_list.lower, 5113 struct netdev_adjacent, list); 5114 if (lower) 5115 return lower->private; 5116 return NULL; 5117 } 5118 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 5119 5120 /** 5121 * netdev_master_upper_dev_get_rcu - Get master upper device 5122 * @dev: device 5123 * 5124 * Find a master upper device and return pointer to it or NULL in case 5125 * it's not there. The caller must hold the RCU read lock. 5126 */ 5127 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 5128 { 5129 struct netdev_adjacent *upper; 5130 5131 upper = list_first_or_null_rcu(&dev->adj_list.upper, 5132 struct netdev_adjacent, list); 5133 if (upper && likely(upper->master)) 5134 return upper->dev; 5135 return NULL; 5136 } 5137 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 5138 5139 static int netdev_adjacent_sysfs_add(struct net_device *dev, 5140 struct net_device *adj_dev, 5141 struct list_head *dev_list) 5142 { 5143 char linkname[IFNAMSIZ+7]; 5144 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5145 "upper_%s" : "lower_%s", adj_dev->name); 5146 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 5147 linkname); 5148 } 5149 static void netdev_adjacent_sysfs_del(struct net_device *dev, 5150 char *name, 5151 struct list_head *dev_list) 5152 { 5153 char linkname[IFNAMSIZ+7]; 5154 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5155 "upper_%s" : "lower_%s", name); 5156 sysfs_remove_link(&(dev->dev.kobj), linkname); 5157 } 5158 5159 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 5160 struct net_device *adj_dev, 5161 struct list_head *dev_list) 5162 { 5163 return (dev_list == &dev->adj_list.upper || 5164 dev_list == &dev->adj_list.lower) && 5165 net_eq(dev_net(dev), dev_net(adj_dev)); 5166 } 5167 5168 static int __netdev_adjacent_dev_insert(struct net_device *dev, 5169 struct net_device *adj_dev, 5170 struct list_head *dev_list, 5171 void *private, bool master) 5172 { 5173 struct netdev_adjacent *adj; 5174 int ret; 5175 5176 adj = __netdev_find_adj(dev, adj_dev, dev_list); 5177 5178 if (adj) { 5179 adj->ref_nr++; 5180 return 0; 5181 } 5182 5183 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 5184 if (!adj) 5185 return -ENOMEM; 5186 5187 adj->dev = adj_dev; 5188 adj->master = master; 5189 adj->ref_nr = 1; 5190 adj->private = private; 5191 dev_hold(adj_dev); 5192 5193 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 5194 adj_dev->name, dev->name, adj_dev->name); 5195 5196 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 5197 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 5198 if (ret) 5199 goto free_adj; 5200 } 5201 5202 /* Ensure that master link is always the first item in list. */ 5203 if (master) { 5204 ret = sysfs_create_link(&(dev->dev.kobj), 5205 &(adj_dev->dev.kobj), "master"); 5206 if (ret) 5207 goto remove_symlinks; 5208 5209 list_add_rcu(&adj->list, dev_list); 5210 } else { 5211 list_add_tail_rcu(&adj->list, dev_list); 5212 } 5213 5214 return 0; 5215 5216 remove_symlinks: 5217 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5218 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5219 free_adj: 5220 kfree(adj); 5221 dev_put(adj_dev); 5222 5223 return ret; 5224 } 5225 5226 static void __netdev_adjacent_dev_remove(struct net_device *dev, 5227 struct net_device *adj_dev, 5228 struct list_head *dev_list) 5229 { 5230 struct netdev_adjacent *adj; 5231 5232 adj = __netdev_find_adj(dev, adj_dev, dev_list); 5233 5234 if (!adj) { 5235 pr_err("tried to remove device %s from %s\n", 5236 dev->name, adj_dev->name); 5237 BUG(); 5238 } 5239 5240 if (adj->ref_nr > 1) { 5241 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 5242 adj->ref_nr-1); 5243 adj->ref_nr--; 5244 return; 5245 } 5246 5247 if (adj->master) 5248 sysfs_remove_link(&(dev->dev.kobj), "master"); 5249 5250 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5251 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5252 5253 list_del_rcu(&adj->list); 5254 pr_debug("dev_put for %s, because link removed from %s to %s\n", 5255 adj_dev->name, dev->name, adj_dev->name); 5256 dev_put(adj_dev); 5257 kfree_rcu(adj, rcu); 5258 } 5259 5260 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 5261 struct net_device *upper_dev, 5262 struct list_head *up_list, 5263 struct list_head *down_list, 5264 void *private, bool master) 5265 { 5266 int ret; 5267 5268 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 5269 master); 5270 if (ret) 5271 return ret; 5272 5273 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 5274 false); 5275 if (ret) { 5276 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5277 return ret; 5278 } 5279 5280 return 0; 5281 } 5282 5283 static int __netdev_adjacent_dev_link(struct net_device *dev, 5284 struct net_device *upper_dev) 5285 { 5286 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 5287 &dev->all_adj_list.upper, 5288 &upper_dev->all_adj_list.lower, 5289 NULL, false); 5290 } 5291 5292 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 5293 struct net_device *upper_dev, 5294 struct list_head *up_list, 5295 struct list_head *down_list) 5296 { 5297 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5298 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 5299 } 5300 5301 static void __netdev_adjacent_dev_unlink(struct net_device *dev, 5302 struct net_device *upper_dev) 5303 { 5304 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5305 &dev->all_adj_list.upper, 5306 &upper_dev->all_adj_list.lower); 5307 } 5308 5309 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 5310 struct net_device *upper_dev, 5311 void *private, bool master) 5312 { 5313 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 5314 5315 if (ret) 5316 return ret; 5317 5318 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 5319 &dev->adj_list.upper, 5320 &upper_dev->adj_list.lower, 5321 private, master); 5322 if (ret) { 5323 __netdev_adjacent_dev_unlink(dev, upper_dev); 5324 return ret; 5325 } 5326 5327 return 0; 5328 } 5329 5330 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 5331 struct net_device *upper_dev) 5332 { 5333 __netdev_adjacent_dev_unlink(dev, upper_dev); 5334 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5335 &dev->adj_list.upper, 5336 &upper_dev->adj_list.lower); 5337 } 5338 5339 static int __netdev_upper_dev_link(struct net_device *dev, 5340 struct net_device *upper_dev, bool master, 5341 void *private) 5342 { 5343 struct netdev_notifier_changeupper_info changeupper_info; 5344 struct netdev_adjacent *i, *j, *to_i, *to_j; 5345 int ret = 0; 5346 5347 ASSERT_RTNL(); 5348 5349 if (dev == upper_dev) 5350 return -EBUSY; 5351 5352 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5353 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper)) 5354 return -EBUSY; 5355 5356 if (__netdev_find_adj(dev, upper_dev, &dev->adj_list.upper)) 5357 return -EEXIST; 5358 5359 if (master && netdev_master_upper_dev_get(dev)) 5360 return -EBUSY; 5361 5362 changeupper_info.upper_dev = upper_dev; 5363 changeupper_info.master = master; 5364 changeupper_info.linking = true; 5365 5366 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private, 5367 master); 5368 if (ret) 5369 return ret; 5370 5371 /* Now that we linked these devs, make all the upper_dev's 5372 * all_adj_list.upper visible to every dev's all_adj_list.lower an 5373 * versa, and don't forget the devices itself. All of these 5374 * links are non-neighbours. 5375 */ 5376 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5377 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5378 pr_debug("Interlinking %s with %s, non-neighbour\n", 5379 i->dev->name, j->dev->name); 5380 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 5381 if (ret) 5382 goto rollback_mesh; 5383 } 5384 } 5385 5386 /* add dev to every upper_dev's upper device */ 5387 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5388 pr_debug("linking %s's upper device %s with %s\n", 5389 upper_dev->name, i->dev->name, dev->name); 5390 ret = __netdev_adjacent_dev_link(dev, i->dev); 5391 if (ret) 5392 goto rollback_upper_mesh; 5393 } 5394 5395 /* add upper_dev to every dev's lower device */ 5396 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5397 pr_debug("linking %s's lower device %s with %s\n", dev->name, 5398 i->dev->name, upper_dev->name); 5399 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 5400 if (ret) 5401 goto rollback_lower_mesh; 5402 } 5403 5404 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5405 &changeupper_info.info); 5406 return 0; 5407 5408 rollback_lower_mesh: 5409 to_i = i; 5410 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5411 if (i == to_i) 5412 break; 5413 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5414 } 5415 5416 i = NULL; 5417 5418 rollback_upper_mesh: 5419 to_i = i; 5420 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5421 if (i == to_i) 5422 break; 5423 __netdev_adjacent_dev_unlink(dev, i->dev); 5424 } 5425 5426 i = j = NULL; 5427 5428 rollback_mesh: 5429 to_i = i; 5430 to_j = j; 5431 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5432 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5433 if (i == to_i && j == to_j) 5434 break; 5435 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5436 } 5437 if (i == to_i) 5438 break; 5439 } 5440 5441 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5442 5443 return ret; 5444 } 5445 5446 /** 5447 * netdev_upper_dev_link - Add a link to the upper device 5448 * @dev: device 5449 * @upper_dev: new upper device 5450 * 5451 * Adds a link to device which is upper to this one. The caller must hold 5452 * the RTNL lock. On a failure a negative errno code is returned. 5453 * On success the reference counts are adjusted and the function 5454 * returns zero. 5455 */ 5456 int netdev_upper_dev_link(struct net_device *dev, 5457 struct net_device *upper_dev) 5458 { 5459 return __netdev_upper_dev_link(dev, upper_dev, false, NULL); 5460 } 5461 EXPORT_SYMBOL(netdev_upper_dev_link); 5462 5463 /** 5464 * netdev_master_upper_dev_link - Add a master link to the upper device 5465 * @dev: device 5466 * @upper_dev: new upper device 5467 * 5468 * Adds a link to device which is upper to this one. In this case, only 5469 * one master upper device can be linked, although other non-master devices 5470 * might be linked as well. The caller must hold the RTNL lock. 5471 * On a failure a negative errno code is returned. On success the reference 5472 * counts are adjusted and the function returns zero. 5473 */ 5474 int netdev_master_upper_dev_link(struct net_device *dev, 5475 struct net_device *upper_dev) 5476 { 5477 return __netdev_upper_dev_link(dev, upper_dev, true, NULL); 5478 } 5479 EXPORT_SYMBOL(netdev_master_upper_dev_link); 5480 5481 int netdev_master_upper_dev_link_private(struct net_device *dev, 5482 struct net_device *upper_dev, 5483 void *private) 5484 { 5485 return __netdev_upper_dev_link(dev, upper_dev, true, private); 5486 } 5487 EXPORT_SYMBOL(netdev_master_upper_dev_link_private); 5488 5489 /** 5490 * netdev_upper_dev_unlink - Removes a link to upper device 5491 * @dev: device 5492 * @upper_dev: new upper device 5493 * 5494 * Removes a link to device which is upper to this one. The caller must hold 5495 * the RTNL lock. 5496 */ 5497 void netdev_upper_dev_unlink(struct net_device *dev, 5498 struct net_device *upper_dev) 5499 { 5500 struct netdev_notifier_changeupper_info changeupper_info; 5501 struct netdev_adjacent *i, *j; 5502 ASSERT_RTNL(); 5503 5504 changeupper_info.upper_dev = upper_dev; 5505 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 5506 changeupper_info.linking = false; 5507 5508 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5509 5510 /* Here is the tricky part. We must remove all dev's lower 5511 * devices from all upper_dev's upper devices and vice 5512 * versa, to maintain the graph relationship. 5513 */ 5514 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5515 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 5516 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5517 5518 /* remove also the devices itself from lower/upper device 5519 * list 5520 */ 5521 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5522 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5523 5524 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 5525 __netdev_adjacent_dev_unlink(dev, i->dev); 5526 5527 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5528 &changeupper_info.info); 5529 } 5530 EXPORT_SYMBOL(netdev_upper_dev_unlink); 5531 5532 /** 5533 * netdev_bonding_info_change - Dispatch event about slave change 5534 * @dev: device 5535 * @bonding_info: info to dispatch 5536 * 5537 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 5538 * The caller must hold the RTNL lock. 5539 */ 5540 void netdev_bonding_info_change(struct net_device *dev, 5541 struct netdev_bonding_info *bonding_info) 5542 { 5543 struct netdev_notifier_bonding_info info; 5544 5545 memcpy(&info.bonding_info, bonding_info, 5546 sizeof(struct netdev_bonding_info)); 5547 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 5548 &info.info); 5549 } 5550 EXPORT_SYMBOL(netdev_bonding_info_change); 5551 5552 static void netdev_adjacent_add_links(struct net_device *dev) 5553 { 5554 struct netdev_adjacent *iter; 5555 5556 struct net *net = dev_net(dev); 5557 5558 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5559 if (!net_eq(net,dev_net(iter->dev))) 5560 continue; 5561 netdev_adjacent_sysfs_add(iter->dev, dev, 5562 &iter->dev->adj_list.lower); 5563 netdev_adjacent_sysfs_add(dev, iter->dev, 5564 &dev->adj_list.upper); 5565 } 5566 5567 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5568 if (!net_eq(net,dev_net(iter->dev))) 5569 continue; 5570 netdev_adjacent_sysfs_add(iter->dev, dev, 5571 &iter->dev->adj_list.upper); 5572 netdev_adjacent_sysfs_add(dev, iter->dev, 5573 &dev->adj_list.lower); 5574 } 5575 } 5576 5577 static void netdev_adjacent_del_links(struct net_device *dev) 5578 { 5579 struct netdev_adjacent *iter; 5580 5581 struct net *net = dev_net(dev); 5582 5583 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5584 if (!net_eq(net,dev_net(iter->dev))) 5585 continue; 5586 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5587 &iter->dev->adj_list.lower); 5588 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5589 &dev->adj_list.upper); 5590 } 5591 5592 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5593 if (!net_eq(net,dev_net(iter->dev))) 5594 continue; 5595 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5596 &iter->dev->adj_list.upper); 5597 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5598 &dev->adj_list.lower); 5599 } 5600 } 5601 5602 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 5603 { 5604 struct netdev_adjacent *iter; 5605 5606 struct net *net = dev_net(dev); 5607 5608 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5609 if (!net_eq(net,dev_net(iter->dev))) 5610 continue; 5611 netdev_adjacent_sysfs_del(iter->dev, oldname, 5612 &iter->dev->adj_list.lower); 5613 netdev_adjacent_sysfs_add(iter->dev, dev, 5614 &iter->dev->adj_list.lower); 5615 } 5616 5617 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5618 if (!net_eq(net,dev_net(iter->dev))) 5619 continue; 5620 netdev_adjacent_sysfs_del(iter->dev, oldname, 5621 &iter->dev->adj_list.upper); 5622 netdev_adjacent_sysfs_add(iter->dev, dev, 5623 &iter->dev->adj_list.upper); 5624 } 5625 } 5626 5627 void *netdev_lower_dev_get_private(struct net_device *dev, 5628 struct net_device *lower_dev) 5629 { 5630 struct netdev_adjacent *lower; 5631 5632 if (!lower_dev) 5633 return NULL; 5634 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower); 5635 if (!lower) 5636 return NULL; 5637 5638 return lower->private; 5639 } 5640 EXPORT_SYMBOL(netdev_lower_dev_get_private); 5641 5642 5643 int dev_get_nest_level(struct net_device *dev, 5644 bool (*type_check)(struct net_device *dev)) 5645 { 5646 struct net_device *lower = NULL; 5647 struct list_head *iter; 5648 int max_nest = -1; 5649 int nest; 5650 5651 ASSERT_RTNL(); 5652 5653 netdev_for_each_lower_dev(dev, lower, iter) { 5654 nest = dev_get_nest_level(lower, type_check); 5655 if (max_nest < nest) 5656 max_nest = nest; 5657 } 5658 5659 if (type_check(dev)) 5660 max_nest++; 5661 5662 return max_nest; 5663 } 5664 EXPORT_SYMBOL(dev_get_nest_level); 5665 5666 static void dev_change_rx_flags(struct net_device *dev, int flags) 5667 { 5668 const struct net_device_ops *ops = dev->netdev_ops; 5669 5670 if (ops->ndo_change_rx_flags) 5671 ops->ndo_change_rx_flags(dev, flags); 5672 } 5673 5674 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 5675 { 5676 unsigned int old_flags = dev->flags; 5677 kuid_t uid; 5678 kgid_t gid; 5679 5680 ASSERT_RTNL(); 5681 5682 dev->flags |= IFF_PROMISC; 5683 dev->promiscuity += inc; 5684 if (dev->promiscuity == 0) { 5685 /* 5686 * Avoid overflow. 5687 * If inc causes overflow, untouch promisc and return error. 5688 */ 5689 if (inc < 0) 5690 dev->flags &= ~IFF_PROMISC; 5691 else { 5692 dev->promiscuity -= inc; 5693 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 5694 dev->name); 5695 return -EOVERFLOW; 5696 } 5697 } 5698 if (dev->flags != old_flags) { 5699 pr_info("device %s %s promiscuous mode\n", 5700 dev->name, 5701 dev->flags & IFF_PROMISC ? "entered" : "left"); 5702 if (audit_enabled) { 5703 current_uid_gid(&uid, &gid); 5704 audit_log(current->audit_context, GFP_ATOMIC, 5705 AUDIT_ANOM_PROMISCUOUS, 5706 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 5707 dev->name, (dev->flags & IFF_PROMISC), 5708 (old_flags & IFF_PROMISC), 5709 from_kuid(&init_user_ns, audit_get_loginuid(current)), 5710 from_kuid(&init_user_ns, uid), 5711 from_kgid(&init_user_ns, gid), 5712 audit_get_sessionid(current)); 5713 } 5714 5715 dev_change_rx_flags(dev, IFF_PROMISC); 5716 } 5717 if (notify) 5718 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 5719 return 0; 5720 } 5721 5722 /** 5723 * dev_set_promiscuity - update promiscuity count on a device 5724 * @dev: device 5725 * @inc: modifier 5726 * 5727 * Add or remove promiscuity from a device. While the count in the device 5728 * remains above zero the interface remains promiscuous. Once it hits zero 5729 * the device reverts back to normal filtering operation. A negative inc 5730 * value is used to drop promiscuity on the device. 5731 * Return 0 if successful or a negative errno code on error. 5732 */ 5733 int dev_set_promiscuity(struct net_device *dev, int inc) 5734 { 5735 unsigned int old_flags = dev->flags; 5736 int err; 5737 5738 err = __dev_set_promiscuity(dev, inc, true); 5739 if (err < 0) 5740 return err; 5741 if (dev->flags != old_flags) 5742 dev_set_rx_mode(dev); 5743 return err; 5744 } 5745 EXPORT_SYMBOL(dev_set_promiscuity); 5746 5747 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 5748 { 5749 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 5750 5751 ASSERT_RTNL(); 5752 5753 dev->flags |= IFF_ALLMULTI; 5754 dev->allmulti += inc; 5755 if (dev->allmulti == 0) { 5756 /* 5757 * Avoid overflow. 5758 * If inc causes overflow, untouch allmulti and return error. 5759 */ 5760 if (inc < 0) 5761 dev->flags &= ~IFF_ALLMULTI; 5762 else { 5763 dev->allmulti -= inc; 5764 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 5765 dev->name); 5766 return -EOVERFLOW; 5767 } 5768 } 5769 if (dev->flags ^ old_flags) { 5770 dev_change_rx_flags(dev, IFF_ALLMULTI); 5771 dev_set_rx_mode(dev); 5772 if (notify) 5773 __dev_notify_flags(dev, old_flags, 5774 dev->gflags ^ old_gflags); 5775 } 5776 return 0; 5777 } 5778 5779 /** 5780 * dev_set_allmulti - update allmulti count on a device 5781 * @dev: device 5782 * @inc: modifier 5783 * 5784 * Add or remove reception of all multicast frames to a device. While the 5785 * count in the device remains above zero the interface remains listening 5786 * to all interfaces. Once it hits zero the device reverts back to normal 5787 * filtering operation. A negative @inc value is used to drop the counter 5788 * when releasing a resource needing all multicasts. 5789 * Return 0 if successful or a negative errno code on error. 5790 */ 5791 5792 int dev_set_allmulti(struct net_device *dev, int inc) 5793 { 5794 return __dev_set_allmulti(dev, inc, true); 5795 } 5796 EXPORT_SYMBOL(dev_set_allmulti); 5797 5798 /* 5799 * Upload unicast and multicast address lists to device and 5800 * configure RX filtering. When the device doesn't support unicast 5801 * filtering it is put in promiscuous mode while unicast addresses 5802 * are present. 5803 */ 5804 void __dev_set_rx_mode(struct net_device *dev) 5805 { 5806 const struct net_device_ops *ops = dev->netdev_ops; 5807 5808 /* dev_open will call this function so the list will stay sane. */ 5809 if (!(dev->flags&IFF_UP)) 5810 return; 5811 5812 if (!netif_device_present(dev)) 5813 return; 5814 5815 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 5816 /* Unicast addresses changes may only happen under the rtnl, 5817 * therefore calling __dev_set_promiscuity here is safe. 5818 */ 5819 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 5820 __dev_set_promiscuity(dev, 1, false); 5821 dev->uc_promisc = true; 5822 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 5823 __dev_set_promiscuity(dev, -1, false); 5824 dev->uc_promisc = false; 5825 } 5826 } 5827 5828 if (ops->ndo_set_rx_mode) 5829 ops->ndo_set_rx_mode(dev); 5830 } 5831 5832 void dev_set_rx_mode(struct net_device *dev) 5833 { 5834 netif_addr_lock_bh(dev); 5835 __dev_set_rx_mode(dev); 5836 netif_addr_unlock_bh(dev); 5837 } 5838 5839 /** 5840 * dev_get_flags - get flags reported to userspace 5841 * @dev: device 5842 * 5843 * Get the combination of flag bits exported through APIs to userspace. 5844 */ 5845 unsigned int dev_get_flags(const struct net_device *dev) 5846 { 5847 unsigned int flags; 5848 5849 flags = (dev->flags & ~(IFF_PROMISC | 5850 IFF_ALLMULTI | 5851 IFF_RUNNING | 5852 IFF_LOWER_UP | 5853 IFF_DORMANT)) | 5854 (dev->gflags & (IFF_PROMISC | 5855 IFF_ALLMULTI)); 5856 5857 if (netif_running(dev)) { 5858 if (netif_oper_up(dev)) 5859 flags |= IFF_RUNNING; 5860 if (netif_carrier_ok(dev)) 5861 flags |= IFF_LOWER_UP; 5862 if (netif_dormant(dev)) 5863 flags |= IFF_DORMANT; 5864 } 5865 5866 return flags; 5867 } 5868 EXPORT_SYMBOL(dev_get_flags); 5869 5870 int __dev_change_flags(struct net_device *dev, unsigned int flags) 5871 { 5872 unsigned int old_flags = dev->flags; 5873 int ret; 5874 5875 ASSERT_RTNL(); 5876 5877 /* 5878 * Set the flags on our device. 5879 */ 5880 5881 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5882 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5883 IFF_AUTOMEDIA)) | 5884 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5885 IFF_ALLMULTI)); 5886 5887 /* 5888 * Load in the correct multicast list now the flags have changed. 5889 */ 5890 5891 if ((old_flags ^ flags) & IFF_MULTICAST) 5892 dev_change_rx_flags(dev, IFF_MULTICAST); 5893 5894 dev_set_rx_mode(dev); 5895 5896 /* 5897 * Have we downed the interface. We handle IFF_UP ourselves 5898 * according to user attempts to set it, rather than blindly 5899 * setting it. 5900 */ 5901 5902 ret = 0; 5903 if ((old_flags ^ flags) & IFF_UP) 5904 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5905 5906 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5907 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5908 unsigned int old_flags = dev->flags; 5909 5910 dev->gflags ^= IFF_PROMISC; 5911 5912 if (__dev_set_promiscuity(dev, inc, false) >= 0) 5913 if (dev->flags != old_flags) 5914 dev_set_rx_mode(dev); 5915 } 5916 5917 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5918 is important. Some (broken) drivers set IFF_PROMISC, when 5919 IFF_ALLMULTI is requested not asking us and not reporting. 5920 */ 5921 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5922 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5923 5924 dev->gflags ^= IFF_ALLMULTI; 5925 __dev_set_allmulti(dev, inc, false); 5926 } 5927 5928 return ret; 5929 } 5930 5931 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 5932 unsigned int gchanges) 5933 { 5934 unsigned int changes = dev->flags ^ old_flags; 5935 5936 if (gchanges) 5937 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 5938 5939 if (changes & IFF_UP) { 5940 if (dev->flags & IFF_UP) 5941 call_netdevice_notifiers(NETDEV_UP, dev); 5942 else 5943 call_netdevice_notifiers(NETDEV_DOWN, dev); 5944 } 5945 5946 if (dev->flags & IFF_UP && 5947 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5948 struct netdev_notifier_change_info change_info; 5949 5950 change_info.flags_changed = changes; 5951 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5952 &change_info.info); 5953 } 5954 } 5955 5956 /** 5957 * dev_change_flags - change device settings 5958 * @dev: device 5959 * @flags: device state flags 5960 * 5961 * Change settings on device based state flags. The flags are 5962 * in the userspace exported format. 5963 */ 5964 int dev_change_flags(struct net_device *dev, unsigned int flags) 5965 { 5966 int ret; 5967 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 5968 5969 ret = __dev_change_flags(dev, flags); 5970 if (ret < 0) 5971 return ret; 5972 5973 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 5974 __dev_notify_flags(dev, old_flags, changes); 5975 return ret; 5976 } 5977 EXPORT_SYMBOL(dev_change_flags); 5978 5979 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 5980 { 5981 const struct net_device_ops *ops = dev->netdev_ops; 5982 5983 if (ops->ndo_change_mtu) 5984 return ops->ndo_change_mtu(dev, new_mtu); 5985 5986 dev->mtu = new_mtu; 5987 return 0; 5988 } 5989 5990 /** 5991 * dev_set_mtu - Change maximum transfer unit 5992 * @dev: device 5993 * @new_mtu: new transfer unit 5994 * 5995 * Change the maximum transfer size of the network device. 5996 */ 5997 int dev_set_mtu(struct net_device *dev, int new_mtu) 5998 { 5999 int err, orig_mtu; 6000 6001 if (new_mtu == dev->mtu) 6002 return 0; 6003 6004 /* MTU must be positive. */ 6005 if (new_mtu < 0) 6006 return -EINVAL; 6007 6008 if (!netif_device_present(dev)) 6009 return -ENODEV; 6010 6011 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6012 err = notifier_to_errno(err); 6013 if (err) 6014 return err; 6015 6016 orig_mtu = dev->mtu; 6017 err = __dev_set_mtu(dev, new_mtu); 6018 6019 if (!err) { 6020 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6021 err = notifier_to_errno(err); 6022 if (err) { 6023 /* setting mtu back and notifying everyone again, 6024 * so that they have a chance to revert changes. 6025 */ 6026 __dev_set_mtu(dev, orig_mtu); 6027 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6028 } 6029 } 6030 return err; 6031 } 6032 EXPORT_SYMBOL(dev_set_mtu); 6033 6034 /** 6035 * dev_set_group - Change group this device belongs to 6036 * @dev: device 6037 * @new_group: group this device should belong to 6038 */ 6039 void dev_set_group(struct net_device *dev, int new_group) 6040 { 6041 dev->group = new_group; 6042 } 6043 EXPORT_SYMBOL(dev_set_group); 6044 6045 /** 6046 * dev_set_mac_address - Change Media Access Control Address 6047 * @dev: device 6048 * @sa: new address 6049 * 6050 * Change the hardware (MAC) address of the device 6051 */ 6052 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6053 { 6054 const struct net_device_ops *ops = dev->netdev_ops; 6055 int err; 6056 6057 if (!ops->ndo_set_mac_address) 6058 return -EOPNOTSUPP; 6059 if (sa->sa_family != dev->type) 6060 return -EINVAL; 6061 if (!netif_device_present(dev)) 6062 return -ENODEV; 6063 err = ops->ndo_set_mac_address(dev, sa); 6064 if (err) 6065 return err; 6066 dev->addr_assign_type = NET_ADDR_SET; 6067 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6068 add_device_randomness(dev->dev_addr, dev->addr_len); 6069 return 0; 6070 } 6071 EXPORT_SYMBOL(dev_set_mac_address); 6072 6073 /** 6074 * dev_change_carrier - Change device carrier 6075 * @dev: device 6076 * @new_carrier: new value 6077 * 6078 * Change device carrier 6079 */ 6080 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6081 { 6082 const struct net_device_ops *ops = dev->netdev_ops; 6083 6084 if (!ops->ndo_change_carrier) 6085 return -EOPNOTSUPP; 6086 if (!netif_device_present(dev)) 6087 return -ENODEV; 6088 return ops->ndo_change_carrier(dev, new_carrier); 6089 } 6090 EXPORT_SYMBOL(dev_change_carrier); 6091 6092 /** 6093 * dev_get_phys_port_id - Get device physical port ID 6094 * @dev: device 6095 * @ppid: port ID 6096 * 6097 * Get device physical port ID 6098 */ 6099 int dev_get_phys_port_id(struct net_device *dev, 6100 struct netdev_phys_item_id *ppid) 6101 { 6102 const struct net_device_ops *ops = dev->netdev_ops; 6103 6104 if (!ops->ndo_get_phys_port_id) 6105 return -EOPNOTSUPP; 6106 return ops->ndo_get_phys_port_id(dev, ppid); 6107 } 6108 EXPORT_SYMBOL(dev_get_phys_port_id); 6109 6110 /** 6111 * dev_get_phys_port_name - Get device physical port name 6112 * @dev: device 6113 * @name: port name 6114 * 6115 * Get device physical port name 6116 */ 6117 int dev_get_phys_port_name(struct net_device *dev, 6118 char *name, size_t len) 6119 { 6120 const struct net_device_ops *ops = dev->netdev_ops; 6121 6122 if (!ops->ndo_get_phys_port_name) 6123 return -EOPNOTSUPP; 6124 return ops->ndo_get_phys_port_name(dev, name, len); 6125 } 6126 EXPORT_SYMBOL(dev_get_phys_port_name); 6127 6128 /** 6129 * dev_change_proto_down - update protocol port state information 6130 * @dev: device 6131 * @proto_down: new value 6132 * 6133 * This info can be used by switch drivers to set the phys state of the 6134 * port. 6135 */ 6136 int dev_change_proto_down(struct net_device *dev, bool proto_down) 6137 { 6138 const struct net_device_ops *ops = dev->netdev_ops; 6139 6140 if (!ops->ndo_change_proto_down) 6141 return -EOPNOTSUPP; 6142 if (!netif_device_present(dev)) 6143 return -ENODEV; 6144 return ops->ndo_change_proto_down(dev, proto_down); 6145 } 6146 EXPORT_SYMBOL(dev_change_proto_down); 6147 6148 /** 6149 * dev_new_index - allocate an ifindex 6150 * @net: the applicable net namespace 6151 * 6152 * Returns a suitable unique value for a new device interface 6153 * number. The caller must hold the rtnl semaphore or the 6154 * dev_base_lock to be sure it remains unique. 6155 */ 6156 static int dev_new_index(struct net *net) 6157 { 6158 int ifindex = net->ifindex; 6159 for (;;) { 6160 if (++ifindex <= 0) 6161 ifindex = 1; 6162 if (!__dev_get_by_index(net, ifindex)) 6163 return net->ifindex = ifindex; 6164 } 6165 } 6166 6167 /* Delayed registration/unregisteration */ 6168 static LIST_HEAD(net_todo_list); 6169 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 6170 6171 static void net_set_todo(struct net_device *dev) 6172 { 6173 list_add_tail(&dev->todo_list, &net_todo_list); 6174 dev_net(dev)->dev_unreg_count++; 6175 } 6176 6177 static void rollback_registered_many(struct list_head *head) 6178 { 6179 struct net_device *dev, *tmp; 6180 LIST_HEAD(close_head); 6181 6182 BUG_ON(dev_boot_phase); 6183 ASSERT_RTNL(); 6184 6185 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 6186 /* Some devices call without registering 6187 * for initialization unwind. Remove those 6188 * devices and proceed with the remaining. 6189 */ 6190 if (dev->reg_state == NETREG_UNINITIALIZED) { 6191 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 6192 dev->name, dev); 6193 6194 WARN_ON(1); 6195 list_del(&dev->unreg_list); 6196 continue; 6197 } 6198 dev->dismantle = true; 6199 BUG_ON(dev->reg_state != NETREG_REGISTERED); 6200 } 6201 6202 /* If device is running, close it first. */ 6203 list_for_each_entry(dev, head, unreg_list) 6204 list_add_tail(&dev->close_list, &close_head); 6205 dev_close_many(&close_head, true); 6206 6207 list_for_each_entry(dev, head, unreg_list) { 6208 /* And unlink it from device chain. */ 6209 unlist_netdevice(dev); 6210 6211 dev->reg_state = NETREG_UNREGISTERING; 6212 on_each_cpu(flush_backlog, dev, 1); 6213 } 6214 6215 synchronize_net(); 6216 6217 list_for_each_entry(dev, head, unreg_list) { 6218 struct sk_buff *skb = NULL; 6219 6220 /* Shutdown queueing discipline. */ 6221 dev_shutdown(dev); 6222 6223 6224 /* Notify protocols, that we are about to destroy 6225 this device. They should clean all the things. 6226 */ 6227 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6228 6229 if (!dev->rtnl_link_ops || 6230 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6231 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 6232 GFP_KERNEL); 6233 6234 /* 6235 * Flush the unicast and multicast chains 6236 */ 6237 dev_uc_flush(dev); 6238 dev_mc_flush(dev); 6239 6240 if (dev->netdev_ops->ndo_uninit) 6241 dev->netdev_ops->ndo_uninit(dev); 6242 6243 if (skb) 6244 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 6245 6246 /* Notifier chain MUST detach us all upper devices. */ 6247 WARN_ON(netdev_has_any_upper_dev(dev)); 6248 6249 /* Remove entries from kobject tree */ 6250 netdev_unregister_kobject(dev); 6251 #ifdef CONFIG_XPS 6252 /* Remove XPS queueing entries */ 6253 netif_reset_xps_queues_gt(dev, 0); 6254 #endif 6255 } 6256 6257 synchronize_net(); 6258 6259 list_for_each_entry(dev, head, unreg_list) 6260 dev_put(dev); 6261 } 6262 6263 static void rollback_registered(struct net_device *dev) 6264 { 6265 LIST_HEAD(single); 6266 6267 list_add(&dev->unreg_list, &single); 6268 rollback_registered_many(&single); 6269 list_del(&single); 6270 } 6271 6272 static netdev_features_t netdev_fix_features(struct net_device *dev, 6273 netdev_features_t features) 6274 { 6275 /* Fix illegal checksum combinations */ 6276 if ((features & NETIF_F_HW_CSUM) && 6277 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6278 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 6279 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 6280 } 6281 6282 /* TSO requires that SG is present as well. */ 6283 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 6284 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 6285 features &= ~NETIF_F_ALL_TSO; 6286 } 6287 6288 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 6289 !(features & NETIF_F_IP_CSUM)) { 6290 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 6291 features &= ~NETIF_F_TSO; 6292 features &= ~NETIF_F_TSO_ECN; 6293 } 6294 6295 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 6296 !(features & NETIF_F_IPV6_CSUM)) { 6297 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 6298 features &= ~NETIF_F_TSO6; 6299 } 6300 6301 /* TSO ECN requires that TSO is present as well. */ 6302 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 6303 features &= ~NETIF_F_TSO_ECN; 6304 6305 /* Software GSO depends on SG. */ 6306 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 6307 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 6308 features &= ~NETIF_F_GSO; 6309 } 6310 6311 /* UFO needs SG and checksumming */ 6312 if (features & NETIF_F_UFO) { 6313 /* maybe split UFO into V4 and V6? */ 6314 if (!((features & NETIF_F_GEN_CSUM) || 6315 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 6316 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6317 netdev_dbg(dev, 6318 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 6319 features &= ~NETIF_F_UFO; 6320 } 6321 6322 if (!(features & NETIF_F_SG)) { 6323 netdev_dbg(dev, 6324 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 6325 features &= ~NETIF_F_UFO; 6326 } 6327 } 6328 6329 #ifdef CONFIG_NET_RX_BUSY_POLL 6330 if (dev->netdev_ops->ndo_busy_poll) 6331 features |= NETIF_F_BUSY_POLL; 6332 else 6333 #endif 6334 features &= ~NETIF_F_BUSY_POLL; 6335 6336 return features; 6337 } 6338 6339 int __netdev_update_features(struct net_device *dev) 6340 { 6341 netdev_features_t features; 6342 int err = 0; 6343 6344 ASSERT_RTNL(); 6345 6346 features = netdev_get_wanted_features(dev); 6347 6348 if (dev->netdev_ops->ndo_fix_features) 6349 features = dev->netdev_ops->ndo_fix_features(dev, features); 6350 6351 /* driver might be less strict about feature dependencies */ 6352 features = netdev_fix_features(dev, features); 6353 6354 if (dev->features == features) 6355 return 0; 6356 6357 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 6358 &dev->features, &features); 6359 6360 if (dev->netdev_ops->ndo_set_features) 6361 err = dev->netdev_ops->ndo_set_features(dev, features); 6362 6363 if (unlikely(err < 0)) { 6364 netdev_err(dev, 6365 "set_features() failed (%d); wanted %pNF, left %pNF\n", 6366 err, &features, &dev->features); 6367 return -1; 6368 } 6369 6370 if (!err) 6371 dev->features = features; 6372 6373 return 1; 6374 } 6375 6376 /** 6377 * netdev_update_features - recalculate device features 6378 * @dev: the device to check 6379 * 6380 * Recalculate dev->features set and send notifications if it 6381 * has changed. Should be called after driver or hardware dependent 6382 * conditions might have changed that influence the features. 6383 */ 6384 void netdev_update_features(struct net_device *dev) 6385 { 6386 if (__netdev_update_features(dev)) 6387 netdev_features_change(dev); 6388 } 6389 EXPORT_SYMBOL(netdev_update_features); 6390 6391 /** 6392 * netdev_change_features - recalculate device features 6393 * @dev: the device to check 6394 * 6395 * Recalculate dev->features set and send notifications even 6396 * if they have not changed. Should be called instead of 6397 * netdev_update_features() if also dev->vlan_features might 6398 * have changed to allow the changes to be propagated to stacked 6399 * VLAN devices. 6400 */ 6401 void netdev_change_features(struct net_device *dev) 6402 { 6403 __netdev_update_features(dev); 6404 netdev_features_change(dev); 6405 } 6406 EXPORT_SYMBOL(netdev_change_features); 6407 6408 /** 6409 * netif_stacked_transfer_operstate - transfer operstate 6410 * @rootdev: the root or lower level device to transfer state from 6411 * @dev: the device to transfer operstate to 6412 * 6413 * Transfer operational state from root to device. This is normally 6414 * called when a stacking relationship exists between the root 6415 * device and the device(a leaf device). 6416 */ 6417 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 6418 struct net_device *dev) 6419 { 6420 if (rootdev->operstate == IF_OPER_DORMANT) 6421 netif_dormant_on(dev); 6422 else 6423 netif_dormant_off(dev); 6424 6425 if (netif_carrier_ok(rootdev)) { 6426 if (!netif_carrier_ok(dev)) 6427 netif_carrier_on(dev); 6428 } else { 6429 if (netif_carrier_ok(dev)) 6430 netif_carrier_off(dev); 6431 } 6432 } 6433 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 6434 6435 #ifdef CONFIG_SYSFS 6436 static int netif_alloc_rx_queues(struct net_device *dev) 6437 { 6438 unsigned int i, count = dev->num_rx_queues; 6439 struct netdev_rx_queue *rx; 6440 size_t sz = count * sizeof(*rx); 6441 6442 BUG_ON(count < 1); 6443 6444 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6445 if (!rx) { 6446 rx = vzalloc(sz); 6447 if (!rx) 6448 return -ENOMEM; 6449 } 6450 dev->_rx = rx; 6451 6452 for (i = 0; i < count; i++) 6453 rx[i].dev = dev; 6454 return 0; 6455 } 6456 #endif 6457 6458 static void netdev_init_one_queue(struct net_device *dev, 6459 struct netdev_queue *queue, void *_unused) 6460 { 6461 /* Initialize queue lock */ 6462 spin_lock_init(&queue->_xmit_lock); 6463 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 6464 queue->xmit_lock_owner = -1; 6465 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 6466 queue->dev = dev; 6467 #ifdef CONFIG_BQL 6468 dql_init(&queue->dql, HZ); 6469 #endif 6470 } 6471 6472 static void netif_free_tx_queues(struct net_device *dev) 6473 { 6474 kvfree(dev->_tx); 6475 } 6476 6477 static int netif_alloc_netdev_queues(struct net_device *dev) 6478 { 6479 unsigned int count = dev->num_tx_queues; 6480 struct netdev_queue *tx; 6481 size_t sz = count * sizeof(*tx); 6482 6483 if (count < 1 || count > 0xffff) 6484 return -EINVAL; 6485 6486 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6487 if (!tx) { 6488 tx = vzalloc(sz); 6489 if (!tx) 6490 return -ENOMEM; 6491 } 6492 dev->_tx = tx; 6493 6494 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 6495 spin_lock_init(&dev->tx_global_lock); 6496 6497 return 0; 6498 } 6499 6500 void netif_tx_stop_all_queues(struct net_device *dev) 6501 { 6502 unsigned int i; 6503 6504 for (i = 0; i < dev->num_tx_queues; i++) { 6505 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 6506 netif_tx_stop_queue(txq); 6507 } 6508 } 6509 EXPORT_SYMBOL(netif_tx_stop_all_queues); 6510 6511 /** 6512 * register_netdevice - register a network device 6513 * @dev: device to register 6514 * 6515 * Take a completed network device structure and add it to the kernel 6516 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6517 * chain. 0 is returned on success. A negative errno code is returned 6518 * on a failure to set up the device, or if the name is a duplicate. 6519 * 6520 * Callers must hold the rtnl semaphore. You may want 6521 * register_netdev() instead of this. 6522 * 6523 * BUGS: 6524 * The locking appears insufficient to guarantee two parallel registers 6525 * will not get the same name. 6526 */ 6527 6528 int register_netdevice(struct net_device *dev) 6529 { 6530 int ret; 6531 struct net *net = dev_net(dev); 6532 6533 BUG_ON(dev_boot_phase); 6534 ASSERT_RTNL(); 6535 6536 might_sleep(); 6537 6538 /* When net_device's are persistent, this will be fatal. */ 6539 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 6540 BUG_ON(!net); 6541 6542 spin_lock_init(&dev->addr_list_lock); 6543 netdev_set_addr_lockdep_class(dev); 6544 6545 ret = dev_get_valid_name(net, dev, dev->name); 6546 if (ret < 0) 6547 goto out; 6548 6549 /* Init, if this function is available */ 6550 if (dev->netdev_ops->ndo_init) { 6551 ret = dev->netdev_ops->ndo_init(dev); 6552 if (ret) { 6553 if (ret > 0) 6554 ret = -EIO; 6555 goto out; 6556 } 6557 } 6558 6559 if (((dev->hw_features | dev->features) & 6560 NETIF_F_HW_VLAN_CTAG_FILTER) && 6561 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 6562 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 6563 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 6564 ret = -EINVAL; 6565 goto err_uninit; 6566 } 6567 6568 ret = -EBUSY; 6569 if (!dev->ifindex) 6570 dev->ifindex = dev_new_index(net); 6571 else if (__dev_get_by_index(net, dev->ifindex)) 6572 goto err_uninit; 6573 6574 /* Transfer changeable features to wanted_features and enable 6575 * software offloads (GSO and GRO). 6576 */ 6577 dev->hw_features |= NETIF_F_SOFT_FEATURES; 6578 dev->features |= NETIF_F_SOFT_FEATURES; 6579 dev->wanted_features = dev->features & dev->hw_features; 6580 6581 if (!(dev->flags & IFF_LOOPBACK)) { 6582 dev->hw_features |= NETIF_F_NOCACHE_COPY; 6583 } 6584 6585 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 6586 */ 6587 dev->vlan_features |= NETIF_F_HIGHDMA; 6588 6589 /* Make NETIF_F_SG inheritable to tunnel devices. 6590 */ 6591 dev->hw_enc_features |= NETIF_F_SG; 6592 6593 /* Make NETIF_F_SG inheritable to MPLS. 6594 */ 6595 dev->mpls_features |= NETIF_F_SG; 6596 6597 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 6598 ret = notifier_to_errno(ret); 6599 if (ret) 6600 goto err_uninit; 6601 6602 ret = netdev_register_kobject(dev); 6603 if (ret) 6604 goto err_uninit; 6605 dev->reg_state = NETREG_REGISTERED; 6606 6607 __netdev_update_features(dev); 6608 6609 /* 6610 * Default initial state at registry is that the 6611 * device is present. 6612 */ 6613 6614 set_bit(__LINK_STATE_PRESENT, &dev->state); 6615 6616 linkwatch_init_dev(dev); 6617 6618 dev_init_scheduler(dev); 6619 dev_hold(dev); 6620 list_netdevice(dev); 6621 add_device_randomness(dev->dev_addr, dev->addr_len); 6622 6623 /* If the device has permanent device address, driver should 6624 * set dev_addr and also addr_assign_type should be set to 6625 * NET_ADDR_PERM (default value). 6626 */ 6627 if (dev->addr_assign_type == NET_ADDR_PERM) 6628 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 6629 6630 /* Notify protocols, that a new device appeared. */ 6631 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 6632 ret = notifier_to_errno(ret); 6633 if (ret) { 6634 rollback_registered(dev); 6635 dev->reg_state = NETREG_UNREGISTERED; 6636 } 6637 /* 6638 * Prevent userspace races by waiting until the network 6639 * device is fully setup before sending notifications. 6640 */ 6641 if (!dev->rtnl_link_ops || 6642 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6643 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6644 6645 out: 6646 return ret; 6647 6648 err_uninit: 6649 if (dev->netdev_ops->ndo_uninit) 6650 dev->netdev_ops->ndo_uninit(dev); 6651 goto out; 6652 } 6653 EXPORT_SYMBOL(register_netdevice); 6654 6655 /** 6656 * init_dummy_netdev - init a dummy network device for NAPI 6657 * @dev: device to init 6658 * 6659 * This takes a network device structure and initialize the minimum 6660 * amount of fields so it can be used to schedule NAPI polls without 6661 * registering a full blown interface. This is to be used by drivers 6662 * that need to tie several hardware interfaces to a single NAPI 6663 * poll scheduler due to HW limitations. 6664 */ 6665 int init_dummy_netdev(struct net_device *dev) 6666 { 6667 /* Clear everything. Note we don't initialize spinlocks 6668 * are they aren't supposed to be taken by any of the 6669 * NAPI code and this dummy netdev is supposed to be 6670 * only ever used for NAPI polls 6671 */ 6672 memset(dev, 0, sizeof(struct net_device)); 6673 6674 /* make sure we BUG if trying to hit standard 6675 * register/unregister code path 6676 */ 6677 dev->reg_state = NETREG_DUMMY; 6678 6679 /* NAPI wants this */ 6680 INIT_LIST_HEAD(&dev->napi_list); 6681 6682 /* a dummy interface is started by default */ 6683 set_bit(__LINK_STATE_PRESENT, &dev->state); 6684 set_bit(__LINK_STATE_START, &dev->state); 6685 6686 /* Note : We dont allocate pcpu_refcnt for dummy devices, 6687 * because users of this 'device' dont need to change 6688 * its refcount. 6689 */ 6690 6691 return 0; 6692 } 6693 EXPORT_SYMBOL_GPL(init_dummy_netdev); 6694 6695 6696 /** 6697 * register_netdev - register a network device 6698 * @dev: device to register 6699 * 6700 * Take a completed network device structure and add it to the kernel 6701 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6702 * chain. 0 is returned on success. A negative errno code is returned 6703 * on a failure to set up the device, or if the name is a duplicate. 6704 * 6705 * This is a wrapper around register_netdevice that takes the rtnl semaphore 6706 * and expands the device name if you passed a format string to 6707 * alloc_netdev. 6708 */ 6709 int register_netdev(struct net_device *dev) 6710 { 6711 int err; 6712 6713 rtnl_lock(); 6714 err = register_netdevice(dev); 6715 rtnl_unlock(); 6716 return err; 6717 } 6718 EXPORT_SYMBOL(register_netdev); 6719 6720 int netdev_refcnt_read(const struct net_device *dev) 6721 { 6722 int i, refcnt = 0; 6723 6724 for_each_possible_cpu(i) 6725 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 6726 return refcnt; 6727 } 6728 EXPORT_SYMBOL(netdev_refcnt_read); 6729 6730 /** 6731 * netdev_wait_allrefs - wait until all references are gone. 6732 * @dev: target net_device 6733 * 6734 * This is called when unregistering network devices. 6735 * 6736 * Any protocol or device that holds a reference should register 6737 * for netdevice notification, and cleanup and put back the 6738 * reference if they receive an UNREGISTER event. 6739 * We can get stuck here if buggy protocols don't correctly 6740 * call dev_put. 6741 */ 6742 static void netdev_wait_allrefs(struct net_device *dev) 6743 { 6744 unsigned long rebroadcast_time, warning_time; 6745 int refcnt; 6746 6747 linkwatch_forget_dev(dev); 6748 6749 rebroadcast_time = warning_time = jiffies; 6750 refcnt = netdev_refcnt_read(dev); 6751 6752 while (refcnt != 0) { 6753 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 6754 rtnl_lock(); 6755 6756 /* Rebroadcast unregister notification */ 6757 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6758 6759 __rtnl_unlock(); 6760 rcu_barrier(); 6761 rtnl_lock(); 6762 6763 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6764 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 6765 &dev->state)) { 6766 /* We must not have linkwatch events 6767 * pending on unregister. If this 6768 * happens, we simply run the queue 6769 * unscheduled, resulting in a noop 6770 * for this device. 6771 */ 6772 linkwatch_run_queue(); 6773 } 6774 6775 __rtnl_unlock(); 6776 6777 rebroadcast_time = jiffies; 6778 } 6779 6780 msleep(250); 6781 6782 refcnt = netdev_refcnt_read(dev); 6783 6784 if (time_after(jiffies, warning_time + 10 * HZ)) { 6785 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 6786 dev->name, refcnt); 6787 warning_time = jiffies; 6788 } 6789 } 6790 } 6791 6792 /* The sequence is: 6793 * 6794 * rtnl_lock(); 6795 * ... 6796 * register_netdevice(x1); 6797 * register_netdevice(x2); 6798 * ... 6799 * unregister_netdevice(y1); 6800 * unregister_netdevice(y2); 6801 * ... 6802 * rtnl_unlock(); 6803 * free_netdev(y1); 6804 * free_netdev(y2); 6805 * 6806 * We are invoked by rtnl_unlock(). 6807 * This allows us to deal with problems: 6808 * 1) We can delete sysfs objects which invoke hotplug 6809 * without deadlocking with linkwatch via keventd. 6810 * 2) Since we run with the RTNL semaphore not held, we can sleep 6811 * safely in order to wait for the netdev refcnt to drop to zero. 6812 * 6813 * We must not return until all unregister events added during 6814 * the interval the lock was held have been completed. 6815 */ 6816 void netdev_run_todo(void) 6817 { 6818 struct list_head list; 6819 6820 /* Snapshot list, allow later requests */ 6821 list_replace_init(&net_todo_list, &list); 6822 6823 __rtnl_unlock(); 6824 6825 6826 /* Wait for rcu callbacks to finish before next phase */ 6827 if (!list_empty(&list)) 6828 rcu_barrier(); 6829 6830 while (!list_empty(&list)) { 6831 struct net_device *dev 6832 = list_first_entry(&list, struct net_device, todo_list); 6833 list_del(&dev->todo_list); 6834 6835 rtnl_lock(); 6836 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6837 __rtnl_unlock(); 6838 6839 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6840 pr_err("network todo '%s' but state %d\n", 6841 dev->name, dev->reg_state); 6842 dump_stack(); 6843 continue; 6844 } 6845 6846 dev->reg_state = NETREG_UNREGISTERED; 6847 6848 netdev_wait_allrefs(dev); 6849 6850 /* paranoia */ 6851 BUG_ON(netdev_refcnt_read(dev)); 6852 BUG_ON(!list_empty(&dev->ptype_all)); 6853 BUG_ON(!list_empty(&dev->ptype_specific)); 6854 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6855 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6856 WARN_ON(dev->dn_ptr); 6857 6858 if (dev->destructor) 6859 dev->destructor(dev); 6860 6861 /* Report a network device has been unregistered */ 6862 rtnl_lock(); 6863 dev_net(dev)->dev_unreg_count--; 6864 __rtnl_unlock(); 6865 wake_up(&netdev_unregistering_wq); 6866 6867 /* Free network device */ 6868 kobject_put(&dev->dev.kobj); 6869 } 6870 } 6871 6872 /* Convert net_device_stats to rtnl_link_stats64. They have the same 6873 * fields in the same order, with only the type differing. 6874 */ 6875 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6876 const struct net_device_stats *netdev_stats) 6877 { 6878 #if BITS_PER_LONG == 64 6879 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6880 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6881 #else 6882 size_t i, n = sizeof(*stats64) / sizeof(u64); 6883 const unsigned long *src = (const unsigned long *)netdev_stats; 6884 u64 *dst = (u64 *)stats64; 6885 6886 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6887 sizeof(*stats64) / sizeof(u64)); 6888 for (i = 0; i < n; i++) 6889 dst[i] = src[i]; 6890 #endif 6891 } 6892 EXPORT_SYMBOL(netdev_stats_to_stats64); 6893 6894 /** 6895 * dev_get_stats - get network device statistics 6896 * @dev: device to get statistics from 6897 * @storage: place to store stats 6898 * 6899 * Get network statistics from device. Return @storage. 6900 * The device driver may provide its own method by setting 6901 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6902 * otherwise the internal statistics structure is used. 6903 */ 6904 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6905 struct rtnl_link_stats64 *storage) 6906 { 6907 const struct net_device_ops *ops = dev->netdev_ops; 6908 6909 if (ops->ndo_get_stats64) { 6910 memset(storage, 0, sizeof(*storage)); 6911 ops->ndo_get_stats64(dev, storage); 6912 } else if (ops->ndo_get_stats) { 6913 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6914 } else { 6915 netdev_stats_to_stats64(storage, &dev->stats); 6916 } 6917 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 6918 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 6919 return storage; 6920 } 6921 EXPORT_SYMBOL(dev_get_stats); 6922 6923 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 6924 { 6925 struct netdev_queue *queue = dev_ingress_queue(dev); 6926 6927 #ifdef CONFIG_NET_CLS_ACT 6928 if (queue) 6929 return queue; 6930 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 6931 if (!queue) 6932 return NULL; 6933 netdev_init_one_queue(dev, queue, NULL); 6934 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 6935 queue->qdisc_sleeping = &noop_qdisc; 6936 rcu_assign_pointer(dev->ingress_queue, queue); 6937 #endif 6938 return queue; 6939 } 6940 6941 static const struct ethtool_ops default_ethtool_ops; 6942 6943 void netdev_set_default_ethtool_ops(struct net_device *dev, 6944 const struct ethtool_ops *ops) 6945 { 6946 if (dev->ethtool_ops == &default_ethtool_ops) 6947 dev->ethtool_ops = ops; 6948 } 6949 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 6950 6951 void netdev_freemem(struct net_device *dev) 6952 { 6953 char *addr = (char *)dev - dev->padded; 6954 6955 kvfree(addr); 6956 } 6957 6958 /** 6959 * alloc_netdev_mqs - allocate network device 6960 * @sizeof_priv: size of private data to allocate space for 6961 * @name: device name format string 6962 * @name_assign_type: origin of device name 6963 * @setup: callback to initialize device 6964 * @txqs: the number of TX subqueues to allocate 6965 * @rxqs: the number of RX subqueues to allocate 6966 * 6967 * Allocates a struct net_device with private data area for driver use 6968 * and performs basic initialization. Also allocates subqueue structs 6969 * for each queue on the device. 6970 */ 6971 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6972 unsigned char name_assign_type, 6973 void (*setup)(struct net_device *), 6974 unsigned int txqs, unsigned int rxqs) 6975 { 6976 struct net_device *dev; 6977 size_t alloc_size; 6978 struct net_device *p; 6979 6980 BUG_ON(strlen(name) >= sizeof(dev->name)); 6981 6982 if (txqs < 1) { 6983 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6984 return NULL; 6985 } 6986 6987 #ifdef CONFIG_SYSFS 6988 if (rxqs < 1) { 6989 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6990 return NULL; 6991 } 6992 #endif 6993 6994 alloc_size = sizeof(struct net_device); 6995 if (sizeof_priv) { 6996 /* ensure 32-byte alignment of private area */ 6997 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6998 alloc_size += sizeof_priv; 6999 } 7000 /* ensure 32-byte alignment of whole construct */ 7001 alloc_size += NETDEV_ALIGN - 1; 7002 7003 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7004 if (!p) 7005 p = vzalloc(alloc_size); 7006 if (!p) 7007 return NULL; 7008 7009 dev = PTR_ALIGN(p, NETDEV_ALIGN); 7010 dev->padded = (char *)dev - (char *)p; 7011 7012 dev->pcpu_refcnt = alloc_percpu(int); 7013 if (!dev->pcpu_refcnt) 7014 goto free_dev; 7015 7016 if (dev_addr_init(dev)) 7017 goto free_pcpu; 7018 7019 dev_mc_init(dev); 7020 dev_uc_init(dev); 7021 7022 dev_net_set(dev, &init_net); 7023 7024 dev->gso_max_size = GSO_MAX_SIZE; 7025 dev->gso_max_segs = GSO_MAX_SEGS; 7026 dev->gso_min_segs = 0; 7027 7028 INIT_LIST_HEAD(&dev->napi_list); 7029 INIT_LIST_HEAD(&dev->unreg_list); 7030 INIT_LIST_HEAD(&dev->close_list); 7031 INIT_LIST_HEAD(&dev->link_watch_list); 7032 INIT_LIST_HEAD(&dev->adj_list.upper); 7033 INIT_LIST_HEAD(&dev->adj_list.lower); 7034 INIT_LIST_HEAD(&dev->all_adj_list.upper); 7035 INIT_LIST_HEAD(&dev->all_adj_list.lower); 7036 INIT_LIST_HEAD(&dev->ptype_all); 7037 INIT_LIST_HEAD(&dev->ptype_specific); 7038 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 7039 setup(dev); 7040 7041 if (!dev->tx_queue_len) 7042 dev->priv_flags |= IFF_NO_QUEUE; 7043 7044 dev->num_tx_queues = txqs; 7045 dev->real_num_tx_queues = txqs; 7046 if (netif_alloc_netdev_queues(dev)) 7047 goto free_all; 7048 7049 #ifdef CONFIG_SYSFS 7050 dev->num_rx_queues = rxqs; 7051 dev->real_num_rx_queues = rxqs; 7052 if (netif_alloc_rx_queues(dev)) 7053 goto free_all; 7054 #endif 7055 7056 strcpy(dev->name, name); 7057 dev->name_assign_type = name_assign_type; 7058 dev->group = INIT_NETDEV_GROUP; 7059 if (!dev->ethtool_ops) 7060 dev->ethtool_ops = &default_ethtool_ops; 7061 7062 nf_hook_ingress_init(dev); 7063 7064 return dev; 7065 7066 free_all: 7067 free_netdev(dev); 7068 return NULL; 7069 7070 free_pcpu: 7071 free_percpu(dev->pcpu_refcnt); 7072 free_dev: 7073 netdev_freemem(dev); 7074 return NULL; 7075 } 7076 EXPORT_SYMBOL(alloc_netdev_mqs); 7077 7078 /** 7079 * free_netdev - free network device 7080 * @dev: device 7081 * 7082 * This function does the last stage of destroying an allocated device 7083 * interface. The reference to the device object is released. 7084 * If this is the last reference then it will be freed. 7085 */ 7086 void free_netdev(struct net_device *dev) 7087 { 7088 struct napi_struct *p, *n; 7089 7090 netif_free_tx_queues(dev); 7091 #ifdef CONFIG_SYSFS 7092 kvfree(dev->_rx); 7093 #endif 7094 7095 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 7096 7097 /* Flush device addresses */ 7098 dev_addr_flush(dev); 7099 7100 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 7101 netif_napi_del(p); 7102 7103 free_percpu(dev->pcpu_refcnt); 7104 dev->pcpu_refcnt = NULL; 7105 7106 /* Compatibility with error handling in drivers */ 7107 if (dev->reg_state == NETREG_UNINITIALIZED) { 7108 netdev_freemem(dev); 7109 return; 7110 } 7111 7112 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 7113 dev->reg_state = NETREG_RELEASED; 7114 7115 /* will free via device release */ 7116 put_device(&dev->dev); 7117 } 7118 EXPORT_SYMBOL(free_netdev); 7119 7120 /** 7121 * synchronize_net - Synchronize with packet receive processing 7122 * 7123 * Wait for packets currently being received to be done. 7124 * Does not block later packets from starting. 7125 */ 7126 void synchronize_net(void) 7127 { 7128 might_sleep(); 7129 if (rtnl_is_locked()) 7130 synchronize_rcu_expedited(); 7131 else 7132 synchronize_rcu(); 7133 } 7134 EXPORT_SYMBOL(synchronize_net); 7135 7136 /** 7137 * unregister_netdevice_queue - remove device from the kernel 7138 * @dev: device 7139 * @head: list 7140 * 7141 * This function shuts down a device interface and removes it 7142 * from the kernel tables. 7143 * If head not NULL, device is queued to be unregistered later. 7144 * 7145 * Callers must hold the rtnl semaphore. You may want 7146 * unregister_netdev() instead of this. 7147 */ 7148 7149 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 7150 { 7151 ASSERT_RTNL(); 7152 7153 if (head) { 7154 list_move_tail(&dev->unreg_list, head); 7155 } else { 7156 rollback_registered(dev); 7157 /* Finish processing unregister after unlock */ 7158 net_set_todo(dev); 7159 } 7160 } 7161 EXPORT_SYMBOL(unregister_netdevice_queue); 7162 7163 /** 7164 * unregister_netdevice_many - unregister many devices 7165 * @head: list of devices 7166 * 7167 * Note: As most callers use a stack allocated list_head, 7168 * we force a list_del() to make sure stack wont be corrupted later. 7169 */ 7170 void unregister_netdevice_many(struct list_head *head) 7171 { 7172 struct net_device *dev; 7173 7174 if (!list_empty(head)) { 7175 rollback_registered_many(head); 7176 list_for_each_entry(dev, head, unreg_list) 7177 net_set_todo(dev); 7178 list_del(head); 7179 } 7180 } 7181 EXPORT_SYMBOL(unregister_netdevice_many); 7182 7183 /** 7184 * unregister_netdev - remove device from the kernel 7185 * @dev: device 7186 * 7187 * This function shuts down a device interface and removes it 7188 * from the kernel tables. 7189 * 7190 * This is just a wrapper for unregister_netdevice that takes 7191 * the rtnl semaphore. In general you want to use this and not 7192 * unregister_netdevice. 7193 */ 7194 void unregister_netdev(struct net_device *dev) 7195 { 7196 rtnl_lock(); 7197 unregister_netdevice(dev); 7198 rtnl_unlock(); 7199 } 7200 EXPORT_SYMBOL(unregister_netdev); 7201 7202 /** 7203 * dev_change_net_namespace - move device to different nethost namespace 7204 * @dev: device 7205 * @net: network namespace 7206 * @pat: If not NULL name pattern to try if the current device name 7207 * is already taken in the destination network namespace. 7208 * 7209 * This function shuts down a device interface and moves it 7210 * to a new network namespace. On success 0 is returned, on 7211 * a failure a netagive errno code is returned. 7212 * 7213 * Callers must hold the rtnl semaphore. 7214 */ 7215 7216 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 7217 { 7218 int err; 7219 7220 ASSERT_RTNL(); 7221 7222 /* Don't allow namespace local devices to be moved. */ 7223 err = -EINVAL; 7224 if (dev->features & NETIF_F_NETNS_LOCAL) 7225 goto out; 7226 7227 /* Ensure the device has been registrered */ 7228 if (dev->reg_state != NETREG_REGISTERED) 7229 goto out; 7230 7231 /* Get out if there is nothing todo */ 7232 err = 0; 7233 if (net_eq(dev_net(dev), net)) 7234 goto out; 7235 7236 /* Pick the destination device name, and ensure 7237 * we can use it in the destination network namespace. 7238 */ 7239 err = -EEXIST; 7240 if (__dev_get_by_name(net, dev->name)) { 7241 /* We get here if we can't use the current device name */ 7242 if (!pat) 7243 goto out; 7244 if (dev_get_valid_name(net, dev, pat) < 0) 7245 goto out; 7246 } 7247 7248 /* 7249 * And now a mini version of register_netdevice unregister_netdevice. 7250 */ 7251 7252 /* If device is running close it first. */ 7253 dev_close(dev); 7254 7255 /* And unlink it from device chain */ 7256 err = -ENODEV; 7257 unlist_netdevice(dev); 7258 7259 synchronize_net(); 7260 7261 /* Shutdown queueing discipline. */ 7262 dev_shutdown(dev); 7263 7264 /* Notify protocols, that we are about to destroy 7265 this device. They should clean all the things. 7266 7267 Note that dev->reg_state stays at NETREG_REGISTERED. 7268 This is wanted because this way 8021q and macvlan know 7269 the device is just moving and can keep their slaves up. 7270 */ 7271 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7272 rcu_barrier(); 7273 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7274 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 7275 7276 /* 7277 * Flush the unicast and multicast chains 7278 */ 7279 dev_uc_flush(dev); 7280 dev_mc_flush(dev); 7281 7282 /* Send a netdev-removed uevent to the old namespace */ 7283 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 7284 netdev_adjacent_del_links(dev); 7285 7286 /* Actually switch the network namespace */ 7287 dev_net_set(dev, net); 7288 7289 /* If there is an ifindex conflict assign a new one */ 7290 if (__dev_get_by_index(net, dev->ifindex)) 7291 dev->ifindex = dev_new_index(net); 7292 7293 /* Send a netdev-add uevent to the new namespace */ 7294 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 7295 netdev_adjacent_add_links(dev); 7296 7297 /* Fixup kobjects */ 7298 err = device_rename(&dev->dev, dev->name); 7299 WARN_ON(err); 7300 7301 /* Add the device back in the hashes */ 7302 list_netdevice(dev); 7303 7304 /* Notify protocols, that a new device appeared. */ 7305 call_netdevice_notifiers(NETDEV_REGISTER, dev); 7306 7307 /* 7308 * Prevent userspace races by waiting until the network 7309 * device is fully setup before sending notifications. 7310 */ 7311 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7312 7313 synchronize_net(); 7314 err = 0; 7315 out: 7316 return err; 7317 } 7318 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 7319 7320 static int dev_cpu_callback(struct notifier_block *nfb, 7321 unsigned long action, 7322 void *ocpu) 7323 { 7324 struct sk_buff **list_skb; 7325 struct sk_buff *skb; 7326 unsigned int cpu, oldcpu = (unsigned long)ocpu; 7327 struct softnet_data *sd, *oldsd; 7328 7329 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 7330 return NOTIFY_OK; 7331 7332 local_irq_disable(); 7333 cpu = smp_processor_id(); 7334 sd = &per_cpu(softnet_data, cpu); 7335 oldsd = &per_cpu(softnet_data, oldcpu); 7336 7337 /* Find end of our completion_queue. */ 7338 list_skb = &sd->completion_queue; 7339 while (*list_skb) 7340 list_skb = &(*list_skb)->next; 7341 /* Append completion queue from offline CPU. */ 7342 *list_skb = oldsd->completion_queue; 7343 oldsd->completion_queue = NULL; 7344 7345 /* Append output queue from offline CPU. */ 7346 if (oldsd->output_queue) { 7347 *sd->output_queue_tailp = oldsd->output_queue; 7348 sd->output_queue_tailp = oldsd->output_queue_tailp; 7349 oldsd->output_queue = NULL; 7350 oldsd->output_queue_tailp = &oldsd->output_queue; 7351 } 7352 /* Append NAPI poll list from offline CPU, with one exception : 7353 * process_backlog() must be called by cpu owning percpu backlog. 7354 * We properly handle process_queue & input_pkt_queue later. 7355 */ 7356 while (!list_empty(&oldsd->poll_list)) { 7357 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 7358 struct napi_struct, 7359 poll_list); 7360 7361 list_del_init(&napi->poll_list); 7362 if (napi->poll == process_backlog) 7363 napi->state = 0; 7364 else 7365 ____napi_schedule(sd, napi); 7366 } 7367 7368 raise_softirq_irqoff(NET_TX_SOFTIRQ); 7369 local_irq_enable(); 7370 7371 /* Process offline CPU's input_pkt_queue */ 7372 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 7373 netif_rx_ni(skb); 7374 input_queue_head_incr(oldsd); 7375 } 7376 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 7377 netif_rx_ni(skb); 7378 input_queue_head_incr(oldsd); 7379 } 7380 7381 return NOTIFY_OK; 7382 } 7383 7384 7385 /** 7386 * netdev_increment_features - increment feature set by one 7387 * @all: current feature set 7388 * @one: new feature set 7389 * @mask: mask feature set 7390 * 7391 * Computes a new feature set after adding a device with feature set 7392 * @one to the master device with current feature set @all. Will not 7393 * enable anything that is off in @mask. Returns the new feature set. 7394 */ 7395 netdev_features_t netdev_increment_features(netdev_features_t all, 7396 netdev_features_t one, netdev_features_t mask) 7397 { 7398 if (mask & NETIF_F_GEN_CSUM) 7399 mask |= NETIF_F_ALL_CSUM; 7400 mask |= NETIF_F_VLAN_CHALLENGED; 7401 7402 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 7403 all &= one | ~NETIF_F_ALL_FOR_ALL; 7404 7405 /* If one device supports hw checksumming, set for all. */ 7406 if (all & NETIF_F_GEN_CSUM) 7407 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 7408 7409 return all; 7410 } 7411 EXPORT_SYMBOL(netdev_increment_features); 7412 7413 static struct hlist_head * __net_init netdev_create_hash(void) 7414 { 7415 int i; 7416 struct hlist_head *hash; 7417 7418 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 7419 if (hash != NULL) 7420 for (i = 0; i < NETDEV_HASHENTRIES; i++) 7421 INIT_HLIST_HEAD(&hash[i]); 7422 7423 return hash; 7424 } 7425 7426 /* Initialize per network namespace state */ 7427 static int __net_init netdev_init(struct net *net) 7428 { 7429 if (net != &init_net) 7430 INIT_LIST_HEAD(&net->dev_base_head); 7431 7432 net->dev_name_head = netdev_create_hash(); 7433 if (net->dev_name_head == NULL) 7434 goto err_name; 7435 7436 net->dev_index_head = netdev_create_hash(); 7437 if (net->dev_index_head == NULL) 7438 goto err_idx; 7439 7440 return 0; 7441 7442 err_idx: 7443 kfree(net->dev_name_head); 7444 err_name: 7445 return -ENOMEM; 7446 } 7447 7448 /** 7449 * netdev_drivername - network driver for the device 7450 * @dev: network device 7451 * 7452 * Determine network driver for device. 7453 */ 7454 const char *netdev_drivername(const struct net_device *dev) 7455 { 7456 const struct device_driver *driver; 7457 const struct device *parent; 7458 const char *empty = ""; 7459 7460 parent = dev->dev.parent; 7461 if (!parent) 7462 return empty; 7463 7464 driver = parent->driver; 7465 if (driver && driver->name) 7466 return driver->name; 7467 return empty; 7468 } 7469 7470 static void __netdev_printk(const char *level, const struct net_device *dev, 7471 struct va_format *vaf) 7472 { 7473 if (dev && dev->dev.parent) { 7474 dev_printk_emit(level[1] - '0', 7475 dev->dev.parent, 7476 "%s %s %s%s: %pV", 7477 dev_driver_string(dev->dev.parent), 7478 dev_name(dev->dev.parent), 7479 netdev_name(dev), netdev_reg_state(dev), 7480 vaf); 7481 } else if (dev) { 7482 printk("%s%s%s: %pV", 7483 level, netdev_name(dev), netdev_reg_state(dev), vaf); 7484 } else { 7485 printk("%s(NULL net_device): %pV", level, vaf); 7486 } 7487 } 7488 7489 void netdev_printk(const char *level, const struct net_device *dev, 7490 const char *format, ...) 7491 { 7492 struct va_format vaf; 7493 va_list args; 7494 7495 va_start(args, format); 7496 7497 vaf.fmt = format; 7498 vaf.va = &args; 7499 7500 __netdev_printk(level, dev, &vaf); 7501 7502 va_end(args); 7503 } 7504 EXPORT_SYMBOL(netdev_printk); 7505 7506 #define define_netdev_printk_level(func, level) \ 7507 void func(const struct net_device *dev, const char *fmt, ...) \ 7508 { \ 7509 struct va_format vaf; \ 7510 va_list args; \ 7511 \ 7512 va_start(args, fmt); \ 7513 \ 7514 vaf.fmt = fmt; \ 7515 vaf.va = &args; \ 7516 \ 7517 __netdev_printk(level, dev, &vaf); \ 7518 \ 7519 va_end(args); \ 7520 } \ 7521 EXPORT_SYMBOL(func); 7522 7523 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 7524 define_netdev_printk_level(netdev_alert, KERN_ALERT); 7525 define_netdev_printk_level(netdev_crit, KERN_CRIT); 7526 define_netdev_printk_level(netdev_err, KERN_ERR); 7527 define_netdev_printk_level(netdev_warn, KERN_WARNING); 7528 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 7529 define_netdev_printk_level(netdev_info, KERN_INFO); 7530 7531 static void __net_exit netdev_exit(struct net *net) 7532 { 7533 kfree(net->dev_name_head); 7534 kfree(net->dev_index_head); 7535 } 7536 7537 static struct pernet_operations __net_initdata netdev_net_ops = { 7538 .init = netdev_init, 7539 .exit = netdev_exit, 7540 }; 7541 7542 static void __net_exit default_device_exit(struct net *net) 7543 { 7544 struct net_device *dev, *aux; 7545 /* 7546 * Push all migratable network devices back to the 7547 * initial network namespace 7548 */ 7549 rtnl_lock(); 7550 for_each_netdev_safe(net, dev, aux) { 7551 int err; 7552 char fb_name[IFNAMSIZ]; 7553 7554 /* Ignore unmoveable devices (i.e. loopback) */ 7555 if (dev->features & NETIF_F_NETNS_LOCAL) 7556 continue; 7557 7558 /* Leave virtual devices for the generic cleanup */ 7559 if (dev->rtnl_link_ops) 7560 continue; 7561 7562 /* Push remaining network devices to init_net */ 7563 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 7564 err = dev_change_net_namespace(dev, &init_net, fb_name); 7565 if (err) { 7566 pr_emerg("%s: failed to move %s to init_net: %d\n", 7567 __func__, dev->name, err); 7568 BUG(); 7569 } 7570 } 7571 rtnl_unlock(); 7572 } 7573 7574 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 7575 { 7576 /* Return with the rtnl_lock held when there are no network 7577 * devices unregistering in any network namespace in net_list. 7578 */ 7579 struct net *net; 7580 bool unregistering; 7581 DEFINE_WAIT_FUNC(wait, woken_wake_function); 7582 7583 add_wait_queue(&netdev_unregistering_wq, &wait); 7584 for (;;) { 7585 unregistering = false; 7586 rtnl_lock(); 7587 list_for_each_entry(net, net_list, exit_list) { 7588 if (net->dev_unreg_count > 0) { 7589 unregistering = true; 7590 break; 7591 } 7592 } 7593 if (!unregistering) 7594 break; 7595 __rtnl_unlock(); 7596 7597 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 7598 } 7599 remove_wait_queue(&netdev_unregistering_wq, &wait); 7600 } 7601 7602 static void __net_exit default_device_exit_batch(struct list_head *net_list) 7603 { 7604 /* At exit all network devices most be removed from a network 7605 * namespace. Do this in the reverse order of registration. 7606 * Do this across as many network namespaces as possible to 7607 * improve batching efficiency. 7608 */ 7609 struct net_device *dev; 7610 struct net *net; 7611 LIST_HEAD(dev_kill_list); 7612 7613 /* To prevent network device cleanup code from dereferencing 7614 * loopback devices or network devices that have been freed 7615 * wait here for all pending unregistrations to complete, 7616 * before unregistring the loopback device and allowing the 7617 * network namespace be freed. 7618 * 7619 * The netdev todo list containing all network devices 7620 * unregistrations that happen in default_device_exit_batch 7621 * will run in the rtnl_unlock() at the end of 7622 * default_device_exit_batch. 7623 */ 7624 rtnl_lock_unregistering(net_list); 7625 list_for_each_entry(net, net_list, exit_list) { 7626 for_each_netdev_reverse(net, dev) { 7627 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 7628 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 7629 else 7630 unregister_netdevice_queue(dev, &dev_kill_list); 7631 } 7632 } 7633 unregister_netdevice_many(&dev_kill_list); 7634 rtnl_unlock(); 7635 } 7636 7637 static struct pernet_operations __net_initdata default_device_ops = { 7638 .exit = default_device_exit, 7639 .exit_batch = default_device_exit_batch, 7640 }; 7641 7642 /* 7643 * Initialize the DEV module. At boot time this walks the device list and 7644 * unhooks any devices that fail to initialise (normally hardware not 7645 * present) and leaves us with a valid list of present and active devices. 7646 * 7647 */ 7648 7649 /* 7650 * This is called single threaded during boot, so no need 7651 * to take the rtnl semaphore. 7652 */ 7653 static int __init net_dev_init(void) 7654 { 7655 int i, rc = -ENOMEM; 7656 7657 BUG_ON(!dev_boot_phase); 7658 7659 if (dev_proc_init()) 7660 goto out; 7661 7662 if (netdev_kobject_init()) 7663 goto out; 7664 7665 INIT_LIST_HEAD(&ptype_all); 7666 for (i = 0; i < PTYPE_HASH_SIZE; i++) 7667 INIT_LIST_HEAD(&ptype_base[i]); 7668 7669 INIT_LIST_HEAD(&offload_base); 7670 7671 if (register_pernet_subsys(&netdev_net_ops)) 7672 goto out; 7673 7674 /* 7675 * Initialise the packet receive queues. 7676 */ 7677 7678 for_each_possible_cpu(i) { 7679 struct softnet_data *sd = &per_cpu(softnet_data, i); 7680 7681 skb_queue_head_init(&sd->input_pkt_queue); 7682 skb_queue_head_init(&sd->process_queue); 7683 INIT_LIST_HEAD(&sd->poll_list); 7684 sd->output_queue_tailp = &sd->output_queue; 7685 #ifdef CONFIG_RPS 7686 sd->csd.func = rps_trigger_softirq; 7687 sd->csd.info = sd; 7688 sd->cpu = i; 7689 #endif 7690 7691 sd->backlog.poll = process_backlog; 7692 sd->backlog.weight = weight_p; 7693 } 7694 7695 dev_boot_phase = 0; 7696 7697 /* The loopback device is special if any other network devices 7698 * is present in a network namespace the loopback device must 7699 * be present. Since we now dynamically allocate and free the 7700 * loopback device ensure this invariant is maintained by 7701 * keeping the loopback device as the first device on the 7702 * list of network devices. Ensuring the loopback devices 7703 * is the first device that appears and the last network device 7704 * that disappears. 7705 */ 7706 if (register_pernet_device(&loopback_net_ops)) 7707 goto out; 7708 7709 if (register_pernet_device(&default_device_ops)) 7710 goto out; 7711 7712 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 7713 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 7714 7715 hotcpu_notifier(dev_cpu_callback, 0); 7716 dst_subsys_init(); 7717 rc = 0; 7718 out: 7719 return rc; 7720 } 7721 7722 subsys_initcall(net_dev_init); 7723