xref: /openbmc/linux/net/core/dev.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
143 
144 #include "net-sysfs.h"
145 
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
148 
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151 
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly;	/* Taps */
156 static struct list_head offload_base __read_mostly;
157 
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160 					 struct net_device *dev,
161 					 struct netdev_notifier_info *info);
162 
163 /*
164  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165  * semaphore.
166  *
167  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168  *
169  * Writers must hold the rtnl semaphore while they loop through the
170  * dev_base_head list, and hold dev_base_lock for writing when they do the
171  * actual updates.  This allows pure readers to access the list even
172  * while a writer is preparing to update it.
173  *
174  * To put it another way, dev_base_lock is held for writing only to
175  * protect against pure readers; the rtnl semaphore provides the
176  * protection against other writers.
177  *
178  * See, for example usages, register_netdevice() and
179  * unregister_netdevice(), which must be called with the rtnl
180  * semaphore held.
181  */
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
184 
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
187 
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190 
191 static seqcount_t devnet_rename_seq;
192 
193 static inline void dev_base_seq_inc(struct net *net)
194 {
195 	while (++net->dev_base_seq == 0);
196 }
197 
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 {
200 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
201 
202 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 }
204 
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 }
209 
210 static inline void rps_lock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 	spin_lock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216 
217 static inline void rps_unlock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_unlock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
224 /* Device list insertion */
225 static void list_netdevice(struct net_device *dev)
226 {
227 	struct net *net = dev_net(dev);
228 
229 	ASSERT_RTNL();
230 
231 	write_lock_bh(&dev_base_lock);
232 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234 	hlist_add_head_rcu(&dev->index_hlist,
235 			   dev_index_hash(net, dev->ifindex));
236 	write_unlock_bh(&dev_base_lock);
237 
238 	dev_base_seq_inc(net);
239 }
240 
241 /* Device list removal
242  * caller must respect a RCU grace period before freeing/reusing dev
243  */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246 	ASSERT_RTNL();
247 
248 	/* Unlink dev from the device chain */
249 	write_lock_bh(&dev_base_lock);
250 	list_del_rcu(&dev->dev_list);
251 	hlist_del_rcu(&dev->name_hlist);
252 	hlist_del_rcu(&dev->index_hlist);
253 	write_unlock_bh(&dev_base_lock);
254 
255 	dev_base_seq_inc(dev_net(dev));
256 }
257 
258 /*
259  *	Our notifier list
260  */
261 
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263 
264 /*
265  *	Device drivers call our routines to queue packets here. We empty the
266  *	queue in the local softnet handler.
267  */
268 
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271 
272 #ifdef CONFIG_LOCKDEP
273 /*
274  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275  * according to dev->type
276  */
277 static const unsigned short netdev_lock_type[] =
278 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
293 
294 static const char *const netdev_lock_name[] =
295 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
310 
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316 	int i;
317 
318 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 		if (netdev_lock_type[i] == dev_type)
320 			return i;
321 	/* the last key is used by default */
322 	return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324 
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 						 unsigned short dev_type)
327 {
328 	int i;
329 
330 	i = netdev_lock_pos(dev_type);
331 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 				   netdev_lock_name[i]);
333 }
334 
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 	int i;
338 
339 	i = netdev_lock_pos(dev->type);
340 	lockdep_set_class_and_name(&dev->addr_list_lock,
341 				   &netdev_addr_lock_key[i],
342 				   netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 						 unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353 
354 /*******************************************************************************
355 
356 		Protocol management and registration routines
357 
358 *******************************************************************************/
359 
360 /*
361  *	Add a protocol ID to the list. Now that the input handler is
362  *	smarter we can dispense with all the messy stuff that used to be
363  *	here.
364  *
365  *	BEWARE!!! Protocol handlers, mangling input packets,
366  *	MUST BE last in hash buckets and checking protocol handlers
367  *	MUST start from promiscuous ptype_all chain in net_bh.
368  *	It is true now, do not change it.
369  *	Explanation follows: if protocol handler, mangling packet, will
370  *	be the first on list, it is not able to sense, that packet
371  *	is cloned and should be copied-on-write, so that it will
372  *	change it and subsequent readers will get broken packet.
373  *							--ANK (980803)
374  */
375 
376 static inline struct list_head *ptype_head(const struct packet_type *pt)
377 {
378 	if (pt->type == htons(ETH_P_ALL))
379 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
380 	else
381 		return pt->dev ? &pt->dev->ptype_specific :
382 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384 
385 /**
386  *	dev_add_pack - add packet handler
387  *	@pt: packet type declaration
388  *
389  *	Add a protocol handler to the networking stack. The passed &packet_type
390  *	is linked into kernel lists and may not be freed until it has been
391  *	removed from the kernel lists.
392  *
393  *	This call does not sleep therefore it can not
394  *	guarantee all CPU's that are in middle of receiving packets
395  *	will see the new packet type (until the next received packet).
396  */
397 
398 void dev_add_pack(struct packet_type *pt)
399 {
400 	struct list_head *head = ptype_head(pt);
401 
402 	spin_lock(&ptype_lock);
403 	list_add_rcu(&pt->list, head);
404 	spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407 
408 /**
409  *	__dev_remove_pack	 - remove packet handler
410  *	@pt: packet type declaration
411  *
412  *	Remove a protocol handler that was previously added to the kernel
413  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
414  *	from the kernel lists and can be freed or reused once this function
415  *	returns.
416  *
417  *      The packet type might still be in use by receivers
418  *	and must not be freed until after all the CPU's have gone
419  *	through a quiescent state.
420  */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 	struct list_head *head = ptype_head(pt);
424 	struct packet_type *pt1;
425 
426 	spin_lock(&ptype_lock);
427 
428 	list_for_each_entry(pt1, head, list) {
429 		if (pt == pt1) {
430 			list_del_rcu(&pt->list);
431 			goto out;
432 		}
433 	}
434 
435 	pr_warn("dev_remove_pack: %p not found\n", pt);
436 out:
437 	spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440 
441 /**
442  *	dev_remove_pack	 - remove packet handler
443  *	@pt: packet type declaration
444  *
445  *	Remove a protocol handler that was previously added to the kernel
446  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
447  *	from the kernel lists and can be freed or reused once this function
448  *	returns.
449  *
450  *	This call sleeps to guarantee that no CPU is looking at the packet
451  *	type after return.
452  */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 	__dev_remove_pack(pt);
456 
457 	synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460 
461 
462 /**
463  *	dev_add_offload - register offload handlers
464  *	@po: protocol offload declaration
465  *
466  *	Add protocol offload handlers to the networking stack. The passed
467  *	&proto_offload is linked into kernel lists and may not be freed until
468  *	it has been removed from the kernel lists.
469  *
470  *	This call does not sleep therefore it can not
471  *	guarantee all CPU's that are in middle of receiving packets
472  *	will see the new offload handlers (until the next received packet).
473  */
474 void dev_add_offload(struct packet_offload *po)
475 {
476 	struct packet_offload *elem;
477 
478 	spin_lock(&offload_lock);
479 	list_for_each_entry(elem, &offload_base, list) {
480 		if (po->priority < elem->priority)
481 			break;
482 	}
483 	list_add_rcu(&po->list, elem->list.prev);
484 	spin_unlock(&offload_lock);
485 }
486 EXPORT_SYMBOL(dev_add_offload);
487 
488 /**
489  *	__dev_remove_offload	 - remove offload handler
490  *	@po: packet offload declaration
491  *
492  *	Remove a protocol offload handler that was previously added to the
493  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
494  *	is removed from the kernel lists and can be freed or reused once this
495  *	function returns.
496  *
497  *      The packet type might still be in use by receivers
498  *	and must not be freed until after all the CPU's have gone
499  *	through a quiescent state.
500  */
501 static void __dev_remove_offload(struct packet_offload *po)
502 {
503 	struct list_head *head = &offload_base;
504 	struct packet_offload *po1;
505 
506 	spin_lock(&offload_lock);
507 
508 	list_for_each_entry(po1, head, list) {
509 		if (po == po1) {
510 			list_del_rcu(&po->list);
511 			goto out;
512 		}
513 	}
514 
515 	pr_warn("dev_remove_offload: %p not found\n", po);
516 out:
517 	spin_unlock(&offload_lock);
518 }
519 
520 /**
521  *	dev_remove_offload	 - remove packet offload handler
522  *	@po: packet offload declaration
523  *
524  *	Remove a packet offload handler that was previously added to the kernel
525  *	offload handlers by dev_add_offload(). The passed &offload_type is
526  *	removed from the kernel lists and can be freed or reused once this
527  *	function returns.
528  *
529  *	This call sleeps to guarantee that no CPU is looking at the packet
530  *	type after return.
531  */
532 void dev_remove_offload(struct packet_offload *po)
533 {
534 	__dev_remove_offload(po);
535 
536 	synchronize_net();
537 }
538 EXPORT_SYMBOL(dev_remove_offload);
539 
540 /******************************************************************************
541 
542 		      Device Boot-time Settings Routines
543 
544 *******************************************************************************/
545 
546 /* Boot time configuration table */
547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548 
549 /**
550  *	netdev_boot_setup_add	- add new setup entry
551  *	@name: name of the device
552  *	@map: configured settings for the device
553  *
554  *	Adds new setup entry to the dev_boot_setup list.  The function
555  *	returns 0 on error and 1 on success.  This is a generic routine to
556  *	all netdevices.
557  */
558 static int netdev_boot_setup_add(char *name, struct ifmap *map)
559 {
560 	struct netdev_boot_setup *s;
561 	int i;
562 
563 	s = dev_boot_setup;
564 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566 			memset(s[i].name, 0, sizeof(s[i].name));
567 			strlcpy(s[i].name, name, IFNAMSIZ);
568 			memcpy(&s[i].map, map, sizeof(s[i].map));
569 			break;
570 		}
571 	}
572 
573 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574 }
575 
576 /**
577  *	netdev_boot_setup_check	- check boot time settings
578  *	@dev: the netdevice
579  *
580  * 	Check boot time settings for the device.
581  *	The found settings are set for the device to be used
582  *	later in the device probing.
583  *	Returns 0 if no settings found, 1 if they are.
584  */
585 int netdev_boot_setup_check(struct net_device *dev)
586 {
587 	struct netdev_boot_setup *s = dev_boot_setup;
588 	int i;
589 
590 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
592 		    !strcmp(dev->name, s[i].name)) {
593 			dev->irq 	= s[i].map.irq;
594 			dev->base_addr 	= s[i].map.base_addr;
595 			dev->mem_start 	= s[i].map.mem_start;
596 			dev->mem_end 	= s[i].map.mem_end;
597 			return 1;
598 		}
599 	}
600 	return 0;
601 }
602 EXPORT_SYMBOL(netdev_boot_setup_check);
603 
604 
605 /**
606  *	netdev_boot_base	- get address from boot time settings
607  *	@prefix: prefix for network device
608  *	@unit: id for network device
609  *
610  * 	Check boot time settings for the base address of device.
611  *	The found settings are set for the device to be used
612  *	later in the device probing.
613  *	Returns 0 if no settings found.
614  */
615 unsigned long netdev_boot_base(const char *prefix, int unit)
616 {
617 	const struct netdev_boot_setup *s = dev_boot_setup;
618 	char name[IFNAMSIZ];
619 	int i;
620 
621 	sprintf(name, "%s%d", prefix, unit);
622 
623 	/*
624 	 * If device already registered then return base of 1
625 	 * to indicate not to probe for this interface
626 	 */
627 	if (__dev_get_by_name(&init_net, name))
628 		return 1;
629 
630 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631 		if (!strcmp(name, s[i].name))
632 			return s[i].map.base_addr;
633 	return 0;
634 }
635 
636 /*
637  * Saves at boot time configured settings for any netdevice.
638  */
639 int __init netdev_boot_setup(char *str)
640 {
641 	int ints[5];
642 	struct ifmap map;
643 
644 	str = get_options(str, ARRAY_SIZE(ints), ints);
645 	if (!str || !*str)
646 		return 0;
647 
648 	/* Save settings */
649 	memset(&map, 0, sizeof(map));
650 	if (ints[0] > 0)
651 		map.irq = ints[1];
652 	if (ints[0] > 1)
653 		map.base_addr = ints[2];
654 	if (ints[0] > 2)
655 		map.mem_start = ints[3];
656 	if (ints[0] > 3)
657 		map.mem_end = ints[4];
658 
659 	/* Add new entry to the list */
660 	return netdev_boot_setup_add(str, &map);
661 }
662 
663 __setup("netdev=", netdev_boot_setup);
664 
665 /*******************************************************************************
666 
667 			    Device Interface Subroutines
668 
669 *******************************************************************************/
670 
671 /**
672  *	dev_get_iflink	- get 'iflink' value of a interface
673  *	@dev: targeted interface
674  *
675  *	Indicates the ifindex the interface is linked to.
676  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
677  */
678 
679 int dev_get_iflink(const struct net_device *dev)
680 {
681 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682 		return dev->netdev_ops->ndo_get_iflink(dev);
683 
684 	return dev->ifindex;
685 }
686 EXPORT_SYMBOL(dev_get_iflink);
687 
688 /**
689  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
690  *	@dev: targeted interface
691  *	@skb: The packet.
692  *
693  *	For better visibility of tunnel traffic OVS needs to retrieve
694  *	egress tunnel information for a packet. Following API allows
695  *	user to get this info.
696  */
697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698 {
699 	struct ip_tunnel_info *info;
700 
701 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
702 		return -EINVAL;
703 
704 	info = skb_tunnel_info_unclone(skb);
705 	if (!info)
706 		return -ENOMEM;
707 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708 		return -EINVAL;
709 
710 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711 }
712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713 
714 /**
715  *	__dev_get_by_name	- find a device by its name
716  *	@net: the applicable net namespace
717  *	@name: name to find
718  *
719  *	Find an interface by name. Must be called under RTNL semaphore
720  *	or @dev_base_lock. If the name is found a pointer to the device
721  *	is returned. If the name is not found then %NULL is returned. The
722  *	reference counters are not incremented so the caller must be
723  *	careful with locks.
724  */
725 
726 struct net_device *__dev_get_by_name(struct net *net, const char *name)
727 {
728 	struct net_device *dev;
729 	struct hlist_head *head = dev_name_hash(net, name);
730 
731 	hlist_for_each_entry(dev, head, name_hlist)
732 		if (!strncmp(dev->name, name, IFNAMSIZ))
733 			return dev;
734 
735 	return NULL;
736 }
737 EXPORT_SYMBOL(__dev_get_by_name);
738 
739 /**
740  *	dev_get_by_name_rcu	- find a device by its name
741  *	@net: the applicable net namespace
742  *	@name: name to find
743  *
744  *	Find an interface by name.
745  *	If the name is found a pointer to the device is returned.
746  * 	If the name is not found then %NULL is returned.
747  *	The reference counters are not incremented so the caller must be
748  *	careful with locks. The caller must hold RCU lock.
749  */
750 
751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752 {
753 	struct net_device *dev;
754 	struct hlist_head *head = dev_name_hash(net, name);
755 
756 	hlist_for_each_entry_rcu(dev, head, name_hlist)
757 		if (!strncmp(dev->name, name, IFNAMSIZ))
758 			return dev;
759 
760 	return NULL;
761 }
762 EXPORT_SYMBOL(dev_get_by_name_rcu);
763 
764 /**
765  *	dev_get_by_name		- find a device by its name
766  *	@net: the applicable net namespace
767  *	@name: name to find
768  *
769  *	Find an interface by name. This can be called from any
770  *	context and does its own locking. The returned handle has
771  *	the usage count incremented and the caller must use dev_put() to
772  *	release it when it is no longer needed. %NULL is returned if no
773  *	matching device is found.
774  */
775 
776 struct net_device *dev_get_by_name(struct net *net, const char *name)
777 {
778 	struct net_device *dev;
779 
780 	rcu_read_lock();
781 	dev = dev_get_by_name_rcu(net, name);
782 	if (dev)
783 		dev_hold(dev);
784 	rcu_read_unlock();
785 	return dev;
786 }
787 EXPORT_SYMBOL(dev_get_by_name);
788 
789 /**
790  *	__dev_get_by_index - find a device by its ifindex
791  *	@net: the applicable net namespace
792  *	@ifindex: index of device
793  *
794  *	Search for an interface by index. Returns %NULL if the device
795  *	is not found or a pointer to the device. The device has not
796  *	had its reference counter increased so the caller must be careful
797  *	about locking. The caller must hold either the RTNL semaphore
798  *	or @dev_base_lock.
799  */
800 
801 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
802 {
803 	struct net_device *dev;
804 	struct hlist_head *head = dev_index_hash(net, ifindex);
805 
806 	hlist_for_each_entry(dev, head, index_hlist)
807 		if (dev->ifindex == ifindex)
808 			return dev;
809 
810 	return NULL;
811 }
812 EXPORT_SYMBOL(__dev_get_by_index);
813 
814 /**
815  *	dev_get_by_index_rcu - find a device by its ifindex
816  *	@net: the applicable net namespace
817  *	@ifindex: index of device
818  *
819  *	Search for an interface by index. Returns %NULL if the device
820  *	is not found or a pointer to the device. The device has not
821  *	had its reference counter increased so the caller must be careful
822  *	about locking. The caller must hold RCU lock.
823  */
824 
825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826 {
827 	struct net_device *dev;
828 	struct hlist_head *head = dev_index_hash(net, ifindex);
829 
830 	hlist_for_each_entry_rcu(dev, head, index_hlist)
831 		if (dev->ifindex == ifindex)
832 			return dev;
833 
834 	return NULL;
835 }
836 EXPORT_SYMBOL(dev_get_by_index_rcu);
837 
838 
839 /**
840  *	dev_get_by_index - find a device by its ifindex
841  *	@net: the applicable net namespace
842  *	@ifindex: index of device
843  *
844  *	Search for an interface by index. Returns NULL if the device
845  *	is not found or a pointer to the device. The device returned has
846  *	had a reference added and the pointer is safe until the user calls
847  *	dev_put to indicate they have finished with it.
848  */
849 
850 struct net_device *dev_get_by_index(struct net *net, int ifindex)
851 {
852 	struct net_device *dev;
853 
854 	rcu_read_lock();
855 	dev = dev_get_by_index_rcu(net, ifindex);
856 	if (dev)
857 		dev_hold(dev);
858 	rcu_read_unlock();
859 	return dev;
860 }
861 EXPORT_SYMBOL(dev_get_by_index);
862 
863 /**
864  *	netdev_get_name - get a netdevice name, knowing its ifindex.
865  *	@net: network namespace
866  *	@name: a pointer to the buffer where the name will be stored.
867  *	@ifindex: the ifindex of the interface to get the name from.
868  *
869  *	The use of raw_seqcount_begin() and cond_resched() before
870  *	retrying is required as we want to give the writers a chance
871  *	to complete when CONFIG_PREEMPT is not set.
872  */
873 int netdev_get_name(struct net *net, char *name, int ifindex)
874 {
875 	struct net_device *dev;
876 	unsigned int seq;
877 
878 retry:
879 	seq = raw_seqcount_begin(&devnet_rename_seq);
880 	rcu_read_lock();
881 	dev = dev_get_by_index_rcu(net, ifindex);
882 	if (!dev) {
883 		rcu_read_unlock();
884 		return -ENODEV;
885 	}
886 
887 	strcpy(name, dev->name);
888 	rcu_read_unlock();
889 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890 		cond_resched();
891 		goto retry;
892 	}
893 
894 	return 0;
895 }
896 
897 /**
898  *	dev_getbyhwaddr_rcu - find a device by its hardware address
899  *	@net: the applicable net namespace
900  *	@type: media type of device
901  *	@ha: hardware address
902  *
903  *	Search for an interface by MAC address. Returns NULL if the device
904  *	is not found or a pointer to the device.
905  *	The caller must hold RCU or RTNL.
906  *	The returned device has not had its ref count increased
907  *	and the caller must therefore be careful about locking
908  *
909  */
910 
911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912 				       const char *ha)
913 {
914 	struct net_device *dev;
915 
916 	for_each_netdev_rcu(net, dev)
917 		if (dev->type == type &&
918 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
919 			return dev;
920 
921 	return NULL;
922 }
923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
924 
925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
926 {
927 	struct net_device *dev;
928 
929 	ASSERT_RTNL();
930 	for_each_netdev(net, dev)
931 		if (dev->type == type)
932 			return dev;
933 
934 	return NULL;
935 }
936 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937 
938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
939 {
940 	struct net_device *dev, *ret = NULL;
941 
942 	rcu_read_lock();
943 	for_each_netdev_rcu(net, dev)
944 		if (dev->type == type) {
945 			dev_hold(dev);
946 			ret = dev;
947 			break;
948 		}
949 	rcu_read_unlock();
950 	return ret;
951 }
952 EXPORT_SYMBOL(dev_getfirstbyhwtype);
953 
954 /**
955  *	__dev_get_by_flags - find any device with given flags
956  *	@net: the applicable net namespace
957  *	@if_flags: IFF_* values
958  *	@mask: bitmask of bits in if_flags to check
959  *
960  *	Search for any interface with the given flags. Returns NULL if a device
961  *	is not found or a pointer to the device. Must be called inside
962  *	rtnl_lock(), and result refcount is unchanged.
963  */
964 
965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966 				      unsigned short mask)
967 {
968 	struct net_device *dev, *ret;
969 
970 	ASSERT_RTNL();
971 
972 	ret = NULL;
973 	for_each_netdev(net, dev) {
974 		if (((dev->flags ^ if_flags) & mask) == 0) {
975 			ret = dev;
976 			break;
977 		}
978 	}
979 	return ret;
980 }
981 EXPORT_SYMBOL(__dev_get_by_flags);
982 
983 /**
984  *	dev_valid_name - check if name is okay for network device
985  *	@name: name string
986  *
987  *	Network device names need to be valid file names to
988  *	to allow sysfs to work.  We also disallow any kind of
989  *	whitespace.
990  */
991 bool dev_valid_name(const char *name)
992 {
993 	if (*name == '\0')
994 		return false;
995 	if (strlen(name) >= IFNAMSIZ)
996 		return false;
997 	if (!strcmp(name, ".") || !strcmp(name, ".."))
998 		return false;
999 
1000 	while (*name) {
1001 		if (*name == '/' || *name == ':' || isspace(*name))
1002 			return false;
1003 		name++;
1004 	}
1005 	return true;
1006 }
1007 EXPORT_SYMBOL(dev_valid_name);
1008 
1009 /**
1010  *	__dev_alloc_name - allocate a name for a device
1011  *	@net: network namespace to allocate the device name in
1012  *	@name: name format string
1013  *	@buf:  scratch buffer and result name string
1014  *
1015  *	Passed a format string - eg "lt%d" it will try and find a suitable
1016  *	id. It scans list of devices to build up a free map, then chooses
1017  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1018  *	while allocating the name and adding the device in order to avoid
1019  *	duplicates.
1020  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021  *	Returns the number of the unit assigned or a negative errno code.
1022  */
1023 
1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1025 {
1026 	int i = 0;
1027 	const char *p;
1028 	const int max_netdevices = 8*PAGE_SIZE;
1029 	unsigned long *inuse;
1030 	struct net_device *d;
1031 
1032 	p = strnchr(name, IFNAMSIZ-1, '%');
1033 	if (p) {
1034 		/*
1035 		 * Verify the string as this thing may have come from
1036 		 * the user.  There must be either one "%d" and no other "%"
1037 		 * characters.
1038 		 */
1039 		if (p[1] != 'd' || strchr(p + 2, '%'))
1040 			return -EINVAL;
1041 
1042 		/* Use one page as a bit array of possible slots */
1043 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1044 		if (!inuse)
1045 			return -ENOMEM;
1046 
1047 		for_each_netdev(net, d) {
1048 			if (!sscanf(d->name, name, &i))
1049 				continue;
1050 			if (i < 0 || i >= max_netdevices)
1051 				continue;
1052 
1053 			/*  avoid cases where sscanf is not exact inverse of printf */
1054 			snprintf(buf, IFNAMSIZ, name, i);
1055 			if (!strncmp(buf, d->name, IFNAMSIZ))
1056 				set_bit(i, inuse);
1057 		}
1058 
1059 		i = find_first_zero_bit(inuse, max_netdevices);
1060 		free_page((unsigned long) inuse);
1061 	}
1062 
1063 	if (buf != name)
1064 		snprintf(buf, IFNAMSIZ, name, i);
1065 	if (!__dev_get_by_name(net, buf))
1066 		return i;
1067 
1068 	/* It is possible to run out of possible slots
1069 	 * when the name is long and there isn't enough space left
1070 	 * for the digits, or if all bits are used.
1071 	 */
1072 	return -ENFILE;
1073 }
1074 
1075 /**
1076  *	dev_alloc_name - allocate a name for a device
1077  *	@dev: device
1078  *	@name: name format string
1079  *
1080  *	Passed a format string - eg "lt%d" it will try and find a suitable
1081  *	id. It scans list of devices to build up a free map, then chooses
1082  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1083  *	while allocating the name and adding the device in order to avoid
1084  *	duplicates.
1085  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086  *	Returns the number of the unit assigned or a negative errno code.
1087  */
1088 
1089 int dev_alloc_name(struct net_device *dev, const char *name)
1090 {
1091 	char buf[IFNAMSIZ];
1092 	struct net *net;
1093 	int ret;
1094 
1095 	BUG_ON(!dev_net(dev));
1096 	net = dev_net(dev);
1097 	ret = __dev_alloc_name(net, name, buf);
1098 	if (ret >= 0)
1099 		strlcpy(dev->name, buf, IFNAMSIZ);
1100 	return ret;
1101 }
1102 EXPORT_SYMBOL(dev_alloc_name);
1103 
1104 static int dev_alloc_name_ns(struct net *net,
1105 			     struct net_device *dev,
1106 			     const char *name)
1107 {
1108 	char buf[IFNAMSIZ];
1109 	int ret;
1110 
1111 	ret = __dev_alloc_name(net, name, buf);
1112 	if (ret >= 0)
1113 		strlcpy(dev->name, buf, IFNAMSIZ);
1114 	return ret;
1115 }
1116 
1117 static int dev_get_valid_name(struct net *net,
1118 			      struct net_device *dev,
1119 			      const char *name)
1120 {
1121 	BUG_ON(!net);
1122 
1123 	if (!dev_valid_name(name))
1124 		return -EINVAL;
1125 
1126 	if (strchr(name, '%'))
1127 		return dev_alloc_name_ns(net, dev, name);
1128 	else if (__dev_get_by_name(net, name))
1129 		return -EEXIST;
1130 	else if (dev->name != name)
1131 		strlcpy(dev->name, name, IFNAMSIZ);
1132 
1133 	return 0;
1134 }
1135 
1136 /**
1137  *	dev_change_name - change name of a device
1138  *	@dev: device
1139  *	@newname: name (or format string) must be at least IFNAMSIZ
1140  *
1141  *	Change name of a device, can pass format strings "eth%d".
1142  *	for wildcarding.
1143  */
1144 int dev_change_name(struct net_device *dev, const char *newname)
1145 {
1146 	unsigned char old_assign_type;
1147 	char oldname[IFNAMSIZ];
1148 	int err = 0;
1149 	int ret;
1150 	struct net *net;
1151 
1152 	ASSERT_RTNL();
1153 	BUG_ON(!dev_net(dev));
1154 
1155 	net = dev_net(dev);
1156 	if (dev->flags & IFF_UP)
1157 		return -EBUSY;
1158 
1159 	write_seqcount_begin(&devnet_rename_seq);
1160 
1161 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1162 		write_seqcount_end(&devnet_rename_seq);
1163 		return 0;
1164 	}
1165 
1166 	memcpy(oldname, dev->name, IFNAMSIZ);
1167 
1168 	err = dev_get_valid_name(net, dev, newname);
1169 	if (err < 0) {
1170 		write_seqcount_end(&devnet_rename_seq);
1171 		return err;
1172 	}
1173 
1174 	if (oldname[0] && !strchr(oldname, '%'))
1175 		netdev_info(dev, "renamed from %s\n", oldname);
1176 
1177 	old_assign_type = dev->name_assign_type;
1178 	dev->name_assign_type = NET_NAME_RENAMED;
1179 
1180 rollback:
1181 	ret = device_rename(&dev->dev, dev->name);
1182 	if (ret) {
1183 		memcpy(dev->name, oldname, IFNAMSIZ);
1184 		dev->name_assign_type = old_assign_type;
1185 		write_seqcount_end(&devnet_rename_seq);
1186 		return ret;
1187 	}
1188 
1189 	write_seqcount_end(&devnet_rename_seq);
1190 
1191 	netdev_adjacent_rename_links(dev, oldname);
1192 
1193 	write_lock_bh(&dev_base_lock);
1194 	hlist_del_rcu(&dev->name_hlist);
1195 	write_unlock_bh(&dev_base_lock);
1196 
1197 	synchronize_rcu();
1198 
1199 	write_lock_bh(&dev_base_lock);
1200 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1201 	write_unlock_bh(&dev_base_lock);
1202 
1203 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1204 	ret = notifier_to_errno(ret);
1205 
1206 	if (ret) {
1207 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1208 		if (err >= 0) {
1209 			err = ret;
1210 			write_seqcount_begin(&devnet_rename_seq);
1211 			memcpy(dev->name, oldname, IFNAMSIZ);
1212 			memcpy(oldname, newname, IFNAMSIZ);
1213 			dev->name_assign_type = old_assign_type;
1214 			old_assign_type = NET_NAME_RENAMED;
1215 			goto rollback;
1216 		} else {
1217 			pr_err("%s: name change rollback failed: %d\n",
1218 			       dev->name, ret);
1219 		}
1220 	}
1221 
1222 	return err;
1223 }
1224 
1225 /**
1226  *	dev_set_alias - change ifalias of a device
1227  *	@dev: device
1228  *	@alias: name up to IFALIASZ
1229  *	@len: limit of bytes to copy from info
1230  *
1231  *	Set ifalias for a device,
1232  */
1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234 {
1235 	char *new_ifalias;
1236 
1237 	ASSERT_RTNL();
1238 
1239 	if (len >= IFALIASZ)
1240 		return -EINVAL;
1241 
1242 	if (!len) {
1243 		kfree(dev->ifalias);
1244 		dev->ifalias = NULL;
1245 		return 0;
1246 	}
1247 
1248 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249 	if (!new_ifalias)
1250 		return -ENOMEM;
1251 	dev->ifalias = new_ifalias;
1252 
1253 	strlcpy(dev->ifalias, alias, len+1);
1254 	return len;
1255 }
1256 
1257 
1258 /**
1259  *	netdev_features_change - device changes features
1260  *	@dev: device to cause notification
1261  *
1262  *	Called to indicate a device has changed features.
1263  */
1264 void netdev_features_change(struct net_device *dev)
1265 {
1266 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1267 }
1268 EXPORT_SYMBOL(netdev_features_change);
1269 
1270 /**
1271  *	netdev_state_change - device changes state
1272  *	@dev: device to cause notification
1273  *
1274  *	Called to indicate a device has changed state. This function calls
1275  *	the notifier chains for netdev_chain and sends a NEWLINK message
1276  *	to the routing socket.
1277  */
1278 void netdev_state_change(struct net_device *dev)
1279 {
1280 	if (dev->flags & IFF_UP) {
1281 		struct netdev_notifier_change_info change_info;
1282 
1283 		change_info.flags_changed = 0;
1284 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285 					      &change_info.info);
1286 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1287 	}
1288 }
1289 EXPORT_SYMBOL(netdev_state_change);
1290 
1291 /**
1292  * 	netdev_notify_peers - notify network peers about existence of @dev
1293  * 	@dev: network device
1294  *
1295  * Generate traffic such that interested network peers are aware of
1296  * @dev, such as by generating a gratuitous ARP. This may be used when
1297  * a device wants to inform the rest of the network about some sort of
1298  * reconfiguration such as a failover event or virtual machine
1299  * migration.
1300  */
1301 void netdev_notify_peers(struct net_device *dev)
1302 {
1303 	rtnl_lock();
1304 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305 	rtnl_unlock();
1306 }
1307 EXPORT_SYMBOL(netdev_notify_peers);
1308 
1309 static int __dev_open(struct net_device *dev)
1310 {
1311 	const struct net_device_ops *ops = dev->netdev_ops;
1312 	int ret;
1313 
1314 	ASSERT_RTNL();
1315 
1316 	if (!netif_device_present(dev))
1317 		return -ENODEV;
1318 
1319 	/* Block netpoll from trying to do any rx path servicing.
1320 	 * If we don't do this there is a chance ndo_poll_controller
1321 	 * or ndo_poll may be running while we open the device
1322 	 */
1323 	netpoll_poll_disable(dev);
1324 
1325 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326 	ret = notifier_to_errno(ret);
1327 	if (ret)
1328 		return ret;
1329 
1330 	set_bit(__LINK_STATE_START, &dev->state);
1331 
1332 	if (ops->ndo_validate_addr)
1333 		ret = ops->ndo_validate_addr(dev);
1334 
1335 	if (!ret && ops->ndo_open)
1336 		ret = ops->ndo_open(dev);
1337 
1338 	netpoll_poll_enable(dev);
1339 
1340 	if (ret)
1341 		clear_bit(__LINK_STATE_START, &dev->state);
1342 	else {
1343 		dev->flags |= IFF_UP;
1344 		dev_set_rx_mode(dev);
1345 		dev_activate(dev);
1346 		add_device_randomness(dev->dev_addr, dev->addr_len);
1347 	}
1348 
1349 	return ret;
1350 }
1351 
1352 /**
1353  *	dev_open	- prepare an interface for use.
1354  *	@dev:	device to open
1355  *
1356  *	Takes a device from down to up state. The device's private open
1357  *	function is invoked and then the multicast lists are loaded. Finally
1358  *	the device is moved into the up state and a %NETDEV_UP message is
1359  *	sent to the netdev notifier chain.
1360  *
1361  *	Calling this function on an active interface is a nop. On a failure
1362  *	a negative errno code is returned.
1363  */
1364 int dev_open(struct net_device *dev)
1365 {
1366 	int ret;
1367 
1368 	if (dev->flags & IFF_UP)
1369 		return 0;
1370 
1371 	ret = __dev_open(dev);
1372 	if (ret < 0)
1373 		return ret;
1374 
1375 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1376 	call_netdevice_notifiers(NETDEV_UP, dev);
1377 
1378 	return ret;
1379 }
1380 EXPORT_SYMBOL(dev_open);
1381 
1382 static int __dev_close_many(struct list_head *head)
1383 {
1384 	struct net_device *dev;
1385 
1386 	ASSERT_RTNL();
1387 	might_sleep();
1388 
1389 	list_for_each_entry(dev, head, close_list) {
1390 		/* Temporarily disable netpoll until the interface is down */
1391 		netpoll_poll_disable(dev);
1392 
1393 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1394 
1395 		clear_bit(__LINK_STATE_START, &dev->state);
1396 
1397 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1398 		 * can be even on different cpu. So just clear netif_running().
1399 		 *
1400 		 * dev->stop() will invoke napi_disable() on all of it's
1401 		 * napi_struct instances on this device.
1402 		 */
1403 		smp_mb__after_atomic(); /* Commit netif_running(). */
1404 	}
1405 
1406 	dev_deactivate_many(head);
1407 
1408 	list_for_each_entry(dev, head, close_list) {
1409 		const struct net_device_ops *ops = dev->netdev_ops;
1410 
1411 		/*
1412 		 *	Call the device specific close. This cannot fail.
1413 		 *	Only if device is UP
1414 		 *
1415 		 *	We allow it to be called even after a DETACH hot-plug
1416 		 *	event.
1417 		 */
1418 		if (ops->ndo_stop)
1419 			ops->ndo_stop(dev);
1420 
1421 		dev->flags &= ~IFF_UP;
1422 		netpoll_poll_enable(dev);
1423 	}
1424 
1425 	return 0;
1426 }
1427 
1428 static int __dev_close(struct net_device *dev)
1429 {
1430 	int retval;
1431 	LIST_HEAD(single);
1432 
1433 	list_add(&dev->close_list, &single);
1434 	retval = __dev_close_many(&single);
1435 	list_del(&single);
1436 
1437 	return retval;
1438 }
1439 
1440 int dev_close_many(struct list_head *head, bool unlink)
1441 {
1442 	struct net_device *dev, *tmp;
1443 
1444 	/* Remove the devices that don't need to be closed */
1445 	list_for_each_entry_safe(dev, tmp, head, close_list)
1446 		if (!(dev->flags & IFF_UP))
1447 			list_del_init(&dev->close_list);
1448 
1449 	__dev_close_many(head);
1450 
1451 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1452 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1453 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1454 		if (unlink)
1455 			list_del_init(&dev->close_list);
1456 	}
1457 
1458 	return 0;
1459 }
1460 EXPORT_SYMBOL(dev_close_many);
1461 
1462 /**
1463  *	dev_close - shutdown an interface.
1464  *	@dev: device to shutdown
1465  *
1466  *	This function moves an active device into down state. A
1467  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469  *	chain.
1470  */
1471 int dev_close(struct net_device *dev)
1472 {
1473 	if (dev->flags & IFF_UP) {
1474 		LIST_HEAD(single);
1475 
1476 		list_add(&dev->close_list, &single);
1477 		dev_close_many(&single, true);
1478 		list_del(&single);
1479 	}
1480 	return 0;
1481 }
1482 EXPORT_SYMBOL(dev_close);
1483 
1484 
1485 /**
1486  *	dev_disable_lro - disable Large Receive Offload on a device
1487  *	@dev: device
1488  *
1489  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1490  *	called under RTNL.  This is needed if received packets may be
1491  *	forwarded to another interface.
1492  */
1493 void dev_disable_lro(struct net_device *dev)
1494 {
1495 	struct net_device *lower_dev;
1496 	struct list_head *iter;
1497 
1498 	dev->wanted_features &= ~NETIF_F_LRO;
1499 	netdev_update_features(dev);
1500 
1501 	if (unlikely(dev->features & NETIF_F_LRO))
1502 		netdev_WARN(dev, "failed to disable LRO!\n");
1503 
1504 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1505 		dev_disable_lro(lower_dev);
1506 }
1507 EXPORT_SYMBOL(dev_disable_lro);
1508 
1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510 				   struct net_device *dev)
1511 {
1512 	struct netdev_notifier_info info;
1513 
1514 	netdev_notifier_info_init(&info, dev);
1515 	return nb->notifier_call(nb, val, &info);
1516 }
1517 
1518 static int dev_boot_phase = 1;
1519 
1520 /**
1521  *	register_netdevice_notifier - register a network notifier block
1522  *	@nb: notifier
1523  *
1524  *	Register a notifier to be called when network device events occur.
1525  *	The notifier passed is linked into the kernel structures and must
1526  *	not be reused until it has been unregistered. A negative errno code
1527  *	is returned on a failure.
1528  *
1529  * 	When registered all registration and up events are replayed
1530  *	to the new notifier to allow device to have a race free
1531  *	view of the network device list.
1532  */
1533 
1534 int register_netdevice_notifier(struct notifier_block *nb)
1535 {
1536 	struct net_device *dev;
1537 	struct net_device *last;
1538 	struct net *net;
1539 	int err;
1540 
1541 	rtnl_lock();
1542 	err = raw_notifier_chain_register(&netdev_chain, nb);
1543 	if (err)
1544 		goto unlock;
1545 	if (dev_boot_phase)
1546 		goto unlock;
1547 	for_each_net(net) {
1548 		for_each_netdev(net, dev) {
1549 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1550 			err = notifier_to_errno(err);
1551 			if (err)
1552 				goto rollback;
1553 
1554 			if (!(dev->flags & IFF_UP))
1555 				continue;
1556 
1557 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1558 		}
1559 	}
1560 
1561 unlock:
1562 	rtnl_unlock();
1563 	return err;
1564 
1565 rollback:
1566 	last = dev;
1567 	for_each_net(net) {
1568 		for_each_netdev(net, dev) {
1569 			if (dev == last)
1570 				goto outroll;
1571 
1572 			if (dev->flags & IFF_UP) {
1573 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574 							dev);
1575 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1576 			}
1577 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1578 		}
1579 	}
1580 
1581 outroll:
1582 	raw_notifier_chain_unregister(&netdev_chain, nb);
1583 	goto unlock;
1584 }
1585 EXPORT_SYMBOL(register_netdevice_notifier);
1586 
1587 /**
1588  *	unregister_netdevice_notifier - unregister a network notifier block
1589  *	@nb: notifier
1590  *
1591  *	Unregister a notifier previously registered by
1592  *	register_netdevice_notifier(). The notifier is unlinked into the
1593  *	kernel structures and may then be reused. A negative errno code
1594  *	is returned on a failure.
1595  *
1596  * 	After unregistering unregister and down device events are synthesized
1597  *	for all devices on the device list to the removed notifier to remove
1598  *	the need for special case cleanup code.
1599  */
1600 
1601 int unregister_netdevice_notifier(struct notifier_block *nb)
1602 {
1603 	struct net_device *dev;
1604 	struct net *net;
1605 	int err;
1606 
1607 	rtnl_lock();
1608 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1609 	if (err)
1610 		goto unlock;
1611 
1612 	for_each_net(net) {
1613 		for_each_netdev(net, dev) {
1614 			if (dev->flags & IFF_UP) {
1615 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616 							dev);
1617 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1618 			}
1619 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1620 		}
1621 	}
1622 unlock:
1623 	rtnl_unlock();
1624 	return err;
1625 }
1626 EXPORT_SYMBOL(unregister_netdevice_notifier);
1627 
1628 /**
1629  *	call_netdevice_notifiers_info - call all network notifier blocks
1630  *	@val: value passed unmodified to notifier function
1631  *	@dev: net_device pointer passed unmodified to notifier function
1632  *	@info: notifier information data
1633  *
1634  *	Call all network notifier blocks.  Parameters and return value
1635  *	are as for raw_notifier_call_chain().
1636  */
1637 
1638 static int call_netdevice_notifiers_info(unsigned long val,
1639 					 struct net_device *dev,
1640 					 struct netdev_notifier_info *info)
1641 {
1642 	ASSERT_RTNL();
1643 	netdev_notifier_info_init(info, dev);
1644 	return raw_notifier_call_chain(&netdev_chain, val, info);
1645 }
1646 
1647 /**
1648  *	call_netdevice_notifiers - call all network notifier blocks
1649  *      @val: value passed unmodified to notifier function
1650  *      @dev: net_device pointer passed unmodified to notifier function
1651  *
1652  *	Call all network notifier blocks.  Parameters and return value
1653  *	are as for raw_notifier_call_chain().
1654  */
1655 
1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1657 {
1658 	struct netdev_notifier_info info;
1659 
1660 	return call_netdevice_notifiers_info(val, dev, &info);
1661 }
1662 EXPORT_SYMBOL(call_netdevice_notifiers);
1663 
1664 #ifdef CONFIG_NET_INGRESS
1665 static struct static_key ingress_needed __read_mostly;
1666 
1667 void net_inc_ingress_queue(void)
1668 {
1669 	static_key_slow_inc(&ingress_needed);
1670 }
1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672 
1673 void net_dec_ingress_queue(void)
1674 {
1675 	static_key_slow_dec(&ingress_needed);
1676 }
1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678 #endif
1679 
1680 #ifdef CONFIG_NET_EGRESS
1681 static struct static_key egress_needed __read_mostly;
1682 
1683 void net_inc_egress_queue(void)
1684 {
1685 	static_key_slow_inc(&egress_needed);
1686 }
1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688 
1689 void net_dec_egress_queue(void)
1690 {
1691 	static_key_slow_dec(&egress_needed);
1692 }
1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694 #endif
1695 
1696 static struct static_key netstamp_needed __read_mostly;
1697 #ifdef HAVE_JUMP_LABEL
1698 /* We are not allowed to call static_key_slow_dec() from irq context
1699  * If net_disable_timestamp() is called from irq context, defer the
1700  * static_key_slow_dec() calls.
1701  */
1702 static atomic_t netstamp_needed_deferred;
1703 #endif
1704 
1705 void net_enable_timestamp(void)
1706 {
1707 #ifdef HAVE_JUMP_LABEL
1708 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709 
1710 	if (deferred) {
1711 		while (--deferred)
1712 			static_key_slow_dec(&netstamp_needed);
1713 		return;
1714 	}
1715 #endif
1716 	static_key_slow_inc(&netstamp_needed);
1717 }
1718 EXPORT_SYMBOL(net_enable_timestamp);
1719 
1720 void net_disable_timestamp(void)
1721 {
1722 #ifdef HAVE_JUMP_LABEL
1723 	if (in_interrupt()) {
1724 		atomic_inc(&netstamp_needed_deferred);
1725 		return;
1726 	}
1727 #endif
1728 	static_key_slow_dec(&netstamp_needed);
1729 }
1730 EXPORT_SYMBOL(net_disable_timestamp);
1731 
1732 static inline void net_timestamp_set(struct sk_buff *skb)
1733 {
1734 	skb->tstamp.tv64 = 0;
1735 	if (static_key_false(&netstamp_needed))
1736 		__net_timestamp(skb);
1737 }
1738 
1739 #define net_timestamp_check(COND, SKB)			\
1740 	if (static_key_false(&netstamp_needed)) {		\
1741 		if ((COND) && !(SKB)->tstamp.tv64)	\
1742 			__net_timestamp(SKB);		\
1743 	}						\
1744 
1745 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1746 {
1747 	unsigned int len;
1748 
1749 	if (!(dev->flags & IFF_UP))
1750 		return false;
1751 
1752 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753 	if (skb->len <= len)
1754 		return true;
1755 
1756 	/* if TSO is enabled, we don't care about the length as the packet
1757 	 * could be forwarded without being segmented before
1758 	 */
1759 	if (skb_is_gso(skb))
1760 		return true;
1761 
1762 	return false;
1763 }
1764 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1765 
1766 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767 {
1768 	int ret = ____dev_forward_skb(dev, skb);
1769 
1770 	if (likely(!ret)) {
1771 		skb->protocol = eth_type_trans(skb, dev);
1772 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1773 	}
1774 
1775 	return ret;
1776 }
1777 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1778 
1779 /**
1780  * dev_forward_skb - loopback an skb to another netif
1781  *
1782  * @dev: destination network device
1783  * @skb: buffer to forward
1784  *
1785  * return values:
1786  *	NET_RX_SUCCESS	(no congestion)
1787  *	NET_RX_DROP     (packet was dropped, but freed)
1788  *
1789  * dev_forward_skb can be used for injecting an skb from the
1790  * start_xmit function of one device into the receive queue
1791  * of another device.
1792  *
1793  * The receiving device may be in another namespace, so
1794  * we have to clear all information in the skb that could
1795  * impact namespace isolation.
1796  */
1797 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1798 {
1799 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1800 }
1801 EXPORT_SYMBOL_GPL(dev_forward_skb);
1802 
1803 static inline int deliver_skb(struct sk_buff *skb,
1804 			      struct packet_type *pt_prev,
1805 			      struct net_device *orig_dev)
1806 {
1807 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1808 		return -ENOMEM;
1809 	atomic_inc(&skb->users);
1810 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1811 }
1812 
1813 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1814 					  struct packet_type **pt,
1815 					  struct net_device *orig_dev,
1816 					  __be16 type,
1817 					  struct list_head *ptype_list)
1818 {
1819 	struct packet_type *ptype, *pt_prev = *pt;
1820 
1821 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1822 		if (ptype->type != type)
1823 			continue;
1824 		if (pt_prev)
1825 			deliver_skb(skb, pt_prev, orig_dev);
1826 		pt_prev = ptype;
1827 	}
1828 	*pt = pt_prev;
1829 }
1830 
1831 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1832 {
1833 	if (!ptype->af_packet_priv || !skb->sk)
1834 		return false;
1835 
1836 	if (ptype->id_match)
1837 		return ptype->id_match(ptype, skb->sk);
1838 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1839 		return true;
1840 
1841 	return false;
1842 }
1843 
1844 /*
1845  *	Support routine. Sends outgoing frames to any network
1846  *	taps currently in use.
1847  */
1848 
1849 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1850 {
1851 	struct packet_type *ptype;
1852 	struct sk_buff *skb2 = NULL;
1853 	struct packet_type *pt_prev = NULL;
1854 	struct list_head *ptype_list = &ptype_all;
1855 
1856 	rcu_read_lock();
1857 again:
1858 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1859 		/* Never send packets back to the socket
1860 		 * they originated from - MvS (miquels@drinkel.ow.org)
1861 		 */
1862 		if (skb_loop_sk(ptype, skb))
1863 			continue;
1864 
1865 		if (pt_prev) {
1866 			deliver_skb(skb2, pt_prev, skb->dev);
1867 			pt_prev = ptype;
1868 			continue;
1869 		}
1870 
1871 		/* need to clone skb, done only once */
1872 		skb2 = skb_clone(skb, GFP_ATOMIC);
1873 		if (!skb2)
1874 			goto out_unlock;
1875 
1876 		net_timestamp_set(skb2);
1877 
1878 		/* skb->nh should be correctly
1879 		 * set by sender, so that the second statement is
1880 		 * just protection against buggy protocols.
1881 		 */
1882 		skb_reset_mac_header(skb2);
1883 
1884 		if (skb_network_header(skb2) < skb2->data ||
1885 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1886 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1887 					     ntohs(skb2->protocol),
1888 					     dev->name);
1889 			skb_reset_network_header(skb2);
1890 		}
1891 
1892 		skb2->transport_header = skb2->network_header;
1893 		skb2->pkt_type = PACKET_OUTGOING;
1894 		pt_prev = ptype;
1895 	}
1896 
1897 	if (ptype_list == &ptype_all) {
1898 		ptype_list = &dev->ptype_all;
1899 		goto again;
1900 	}
1901 out_unlock:
1902 	if (pt_prev)
1903 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1904 	rcu_read_unlock();
1905 }
1906 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1907 
1908 /**
1909  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1910  * @dev: Network device
1911  * @txq: number of queues available
1912  *
1913  * If real_num_tx_queues is changed the tc mappings may no longer be
1914  * valid. To resolve this verify the tc mapping remains valid and if
1915  * not NULL the mapping. With no priorities mapping to this
1916  * offset/count pair it will no longer be used. In the worst case TC0
1917  * is invalid nothing can be done so disable priority mappings. If is
1918  * expected that drivers will fix this mapping if they can before
1919  * calling netif_set_real_num_tx_queues.
1920  */
1921 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1922 {
1923 	int i;
1924 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1925 
1926 	/* If TC0 is invalidated disable TC mapping */
1927 	if (tc->offset + tc->count > txq) {
1928 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1929 		dev->num_tc = 0;
1930 		return;
1931 	}
1932 
1933 	/* Invalidated prio to tc mappings set to TC0 */
1934 	for (i = 1; i < TC_BITMASK + 1; i++) {
1935 		int q = netdev_get_prio_tc_map(dev, i);
1936 
1937 		tc = &dev->tc_to_txq[q];
1938 		if (tc->offset + tc->count > txq) {
1939 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1940 				i, q);
1941 			netdev_set_prio_tc_map(dev, i, 0);
1942 		}
1943 	}
1944 }
1945 
1946 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1947 {
1948 	if (dev->num_tc) {
1949 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1950 		int i;
1951 
1952 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1953 			if ((txq - tc->offset) < tc->count)
1954 				return i;
1955 		}
1956 
1957 		return -1;
1958 	}
1959 
1960 	return 0;
1961 }
1962 
1963 #ifdef CONFIG_XPS
1964 static DEFINE_MUTEX(xps_map_mutex);
1965 #define xmap_dereference(P)		\
1966 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1967 
1968 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1969 			     int tci, u16 index)
1970 {
1971 	struct xps_map *map = NULL;
1972 	int pos;
1973 
1974 	if (dev_maps)
1975 		map = xmap_dereference(dev_maps->cpu_map[tci]);
1976 	if (!map)
1977 		return false;
1978 
1979 	for (pos = map->len; pos--;) {
1980 		if (map->queues[pos] != index)
1981 			continue;
1982 
1983 		if (map->len > 1) {
1984 			map->queues[pos] = map->queues[--map->len];
1985 			break;
1986 		}
1987 
1988 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1989 		kfree_rcu(map, rcu);
1990 		return false;
1991 	}
1992 
1993 	return true;
1994 }
1995 
1996 static bool remove_xps_queue_cpu(struct net_device *dev,
1997 				 struct xps_dev_maps *dev_maps,
1998 				 int cpu, u16 offset, u16 count)
1999 {
2000 	int num_tc = dev->num_tc ? : 1;
2001 	bool active = false;
2002 	int tci;
2003 
2004 	for (tci = cpu * num_tc; num_tc--; tci++) {
2005 		int i, j;
2006 
2007 		for (i = count, j = offset; i--; j++) {
2008 			if (!remove_xps_queue(dev_maps, cpu, j))
2009 				break;
2010 		}
2011 
2012 		active |= i < 0;
2013 	}
2014 
2015 	return active;
2016 }
2017 
2018 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2019 				   u16 count)
2020 {
2021 	struct xps_dev_maps *dev_maps;
2022 	int cpu, i;
2023 	bool active = false;
2024 
2025 	mutex_lock(&xps_map_mutex);
2026 	dev_maps = xmap_dereference(dev->xps_maps);
2027 
2028 	if (!dev_maps)
2029 		goto out_no_maps;
2030 
2031 	for_each_possible_cpu(cpu)
2032 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2033 					       offset, count);
2034 
2035 	if (!active) {
2036 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2037 		kfree_rcu(dev_maps, rcu);
2038 	}
2039 
2040 	for (i = offset + (count - 1); count--; i--)
2041 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2042 					     NUMA_NO_NODE);
2043 
2044 out_no_maps:
2045 	mutex_unlock(&xps_map_mutex);
2046 }
2047 
2048 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2049 {
2050 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2051 }
2052 
2053 static struct xps_map *expand_xps_map(struct xps_map *map,
2054 				      int cpu, u16 index)
2055 {
2056 	struct xps_map *new_map;
2057 	int alloc_len = XPS_MIN_MAP_ALLOC;
2058 	int i, pos;
2059 
2060 	for (pos = 0; map && pos < map->len; pos++) {
2061 		if (map->queues[pos] != index)
2062 			continue;
2063 		return map;
2064 	}
2065 
2066 	/* Need to add queue to this CPU's existing map */
2067 	if (map) {
2068 		if (pos < map->alloc_len)
2069 			return map;
2070 
2071 		alloc_len = map->alloc_len * 2;
2072 	}
2073 
2074 	/* Need to allocate new map to store queue on this CPU's map */
2075 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2076 			       cpu_to_node(cpu));
2077 	if (!new_map)
2078 		return NULL;
2079 
2080 	for (i = 0; i < pos; i++)
2081 		new_map->queues[i] = map->queues[i];
2082 	new_map->alloc_len = alloc_len;
2083 	new_map->len = pos;
2084 
2085 	return new_map;
2086 }
2087 
2088 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2089 			u16 index)
2090 {
2091 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2092 	int i, cpu, tci, numa_node_id = -2;
2093 	int maps_sz, num_tc = 1, tc = 0;
2094 	struct xps_map *map, *new_map;
2095 	bool active = false;
2096 
2097 	if (dev->num_tc) {
2098 		num_tc = dev->num_tc;
2099 		tc = netdev_txq_to_tc(dev, index);
2100 		if (tc < 0)
2101 			return -EINVAL;
2102 	}
2103 
2104 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2105 	if (maps_sz < L1_CACHE_BYTES)
2106 		maps_sz = L1_CACHE_BYTES;
2107 
2108 	mutex_lock(&xps_map_mutex);
2109 
2110 	dev_maps = xmap_dereference(dev->xps_maps);
2111 
2112 	/* allocate memory for queue storage */
2113 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2114 		if (!new_dev_maps)
2115 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2116 		if (!new_dev_maps) {
2117 			mutex_unlock(&xps_map_mutex);
2118 			return -ENOMEM;
2119 		}
2120 
2121 		tci = cpu * num_tc + tc;
2122 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2123 				 NULL;
2124 
2125 		map = expand_xps_map(map, cpu, index);
2126 		if (!map)
2127 			goto error;
2128 
2129 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2130 	}
2131 
2132 	if (!new_dev_maps)
2133 		goto out_no_new_maps;
2134 
2135 	for_each_possible_cpu(cpu) {
2136 		/* copy maps belonging to foreign traffic classes */
2137 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2138 			/* fill in the new device map from the old device map */
2139 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2140 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2141 		}
2142 
2143 		/* We need to explicitly update tci as prevous loop
2144 		 * could break out early if dev_maps is NULL.
2145 		 */
2146 		tci = cpu * num_tc + tc;
2147 
2148 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2149 			/* add queue to CPU maps */
2150 			int pos = 0;
2151 
2152 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2153 			while ((pos < map->len) && (map->queues[pos] != index))
2154 				pos++;
2155 
2156 			if (pos == map->len)
2157 				map->queues[map->len++] = index;
2158 #ifdef CONFIG_NUMA
2159 			if (numa_node_id == -2)
2160 				numa_node_id = cpu_to_node(cpu);
2161 			else if (numa_node_id != cpu_to_node(cpu))
2162 				numa_node_id = -1;
2163 #endif
2164 		} else if (dev_maps) {
2165 			/* fill in the new device map from the old device map */
2166 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2167 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2168 		}
2169 
2170 		/* copy maps belonging to foreign traffic classes */
2171 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2172 			/* fill in the new device map from the old device map */
2173 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2174 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2175 		}
2176 	}
2177 
2178 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2179 
2180 	/* Cleanup old maps */
2181 	if (!dev_maps)
2182 		goto out_no_old_maps;
2183 
2184 	for_each_possible_cpu(cpu) {
2185 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2186 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2187 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2188 			if (map && map != new_map)
2189 				kfree_rcu(map, rcu);
2190 		}
2191 	}
2192 
2193 	kfree_rcu(dev_maps, rcu);
2194 
2195 out_no_old_maps:
2196 	dev_maps = new_dev_maps;
2197 	active = true;
2198 
2199 out_no_new_maps:
2200 	/* update Tx queue numa node */
2201 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2202 				     (numa_node_id >= 0) ? numa_node_id :
2203 				     NUMA_NO_NODE);
2204 
2205 	if (!dev_maps)
2206 		goto out_no_maps;
2207 
2208 	/* removes queue from unused CPUs */
2209 	for_each_possible_cpu(cpu) {
2210 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2211 			active |= remove_xps_queue(dev_maps, tci, index);
2212 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2213 			active |= remove_xps_queue(dev_maps, tci, index);
2214 		for (i = num_tc - tc, tci++; --i; tci++)
2215 			active |= remove_xps_queue(dev_maps, tci, index);
2216 	}
2217 
2218 	/* free map if not active */
2219 	if (!active) {
2220 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2221 		kfree_rcu(dev_maps, rcu);
2222 	}
2223 
2224 out_no_maps:
2225 	mutex_unlock(&xps_map_mutex);
2226 
2227 	return 0;
2228 error:
2229 	/* remove any maps that we added */
2230 	for_each_possible_cpu(cpu) {
2231 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2232 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2233 			map = dev_maps ?
2234 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2235 			      NULL;
2236 			if (new_map && new_map != map)
2237 				kfree(new_map);
2238 		}
2239 	}
2240 
2241 	mutex_unlock(&xps_map_mutex);
2242 
2243 	kfree(new_dev_maps);
2244 	return -ENOMEM;
2245 }
2246 EXPORT_SYMBOL(netif_set_xps_queue);
2247 
2248 #endif
2249 void netdev_reset_tc(struct net_device *dev)
2250 {
2251 #ifdef CONFIG_XPS
2252 	netif_reset_xps_queues_gt(dev, 0);
2253 #endif
2254 	dev->num_tc = 0;
2255 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2256 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2257 }
2258 EXPORT_SYMBOL(netdev_reset_tc);
2259 
2260 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2261 {
2262 	if (tc >= dev->num_tc)
2263 		return -EINVAL;
2264 
2265 #ifdef CONFIG_XPS
2266 	netif_reset_xps_queues(dev, offset, count);
2267 #endif
2268 	dev->tc_to_txq[tc].count = count;
2269 	dev->tc_to_txq[tc].offset = offset;
2270 	return 0;
2271 }
2272 EXPORT_SYMBOL(netdev_set_tc_queue);
2273 
2274 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2275 {
2276 	if (num_tc > TC_MAX_QUEUE)
2277 		return -EINVAL;
2278 
2279 #ifdef CONFIG_XPS
2280 	netif_reset_xps_queues_gt(dev, 0);
2281 #endif
2282 	dev->num_tc = num_tc;
2283 	return 0;
2284 }
2285 EXPORT_SYMBOL(netdev_set_num_tc);
2286 
2287 /*
2288  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2289  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2290  */
2291 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2292 {
2293 	int rc;
2294 
2295 	if (txq < 1 || txq > dev->num_tx_queues)
2296 		return -EINVAL;
2297 
2298 	if (dev->reg_state == NETREG_REGISTERED ||
2299 	    dev->reg_state == NETREG_UNREGISTERING) {
2300 		ASSERT_RTNL();
2301 
2302 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2303 						  txq);
2304 		if (rc)
2305 			return rc;
2306 
2307 		if (dev->num_tc)
2308 			netif_setup_tc(dev, txq);
2309 
2310 		if (txq < dev->real_num_tx_queues) {
2311 			qdisc_reset_all_tx_gt(dev, txq);
2312 #ifdef CONFIG_XPS
2313 			netif_reset_xps_queues_gt(dev, txq);
2314 #endif
2315 		}
2316 	}
2317 
2318 	dev->real_num_tx_queues = txq;
2319 	return 0;
2320 }
2321 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2322 
2323 #ifdef CONFIG_SYSFS
2324 /**
2325  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2326  *	@dev: Network device
2327  *	@rxq: Actual number of RX queues
2328  *
2329  *	This must be called either with the rtnl_lock held or before
2330  *	registration of the net device.  Returns 0 on success, or a
2331  *	negative error code.  If called before registration, it always
2332  *	succeeds.
2333  */
2334 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2335 {
2336 	int rc;
2337 
2338 	if (rxq < 1 || rxq > dev->num_rx_queues)
2339 		return -EINVAL;
2340 
2341 	if (dev->reg_state == NETREG_REGISTERED) {
2342 		ASSERT_RTNL();
2343 
2344 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2345 						  rxq);
2346 		if (rc)
2347 			return rc;
2348 	}
2349 
2350 	dev->real_num_rx_queues = rxq;
2351 	return 0;
2352 }
2353 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2354 #endif
2355 
2356 /**
2357  * netif_get_num_default_rss_queues - default number of RSS queues
2358  *
2359  * This routine should set an upper limit on the number of RSS queues
2360  * used by default by multiqueue devices.
2361  */
2362 int netif_get_num_default_rss_queues(void)
2363 {
2364 	return is_kdump_kernel() ?
2365 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2366 }
2367 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2368 
2369 static void __netif_reschedule(struct Qdisc *q)
2370 {
2371 	struct softnet_data *sd;
2372 	unsigned long flags;
2373 
2374 	local_irq_save(flags);
2375 	sd = this_cpu_ptr(&softnet_data);
2376 	q->next_sched = NULL;
2377 	*sd->output_queue_tailp = q;
2378 	sd->output_queue_tailp = &q->next_sched;
2379 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2380 	local_irq_restore(flags);
2381 }
2382 
2383 void __netif_schedule(struct Qdisc *q)
2384 {
2385 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2386 		__netif_reschedule(q);
2387 }
2388 EXPORT_SYMBOL(__netif_schedule);
2389 
2390 struct dev_kfree_skb_cb {
2391 	enum skb_free_reason reason;
2392 };
2393 
2394 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2395 {
2396 	return (struct dev_kfree_skb_cb *)skb->cb;
2397 }
2398 
2399 void netif_schedule_queue(struct netdev_queue *txq)
2400 {
2401 	rcu_read_lock();
2402 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2403 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2404 
2405 		__netif_schedule(q);
2406 	}
2407 	rcu_read_unlock();
2408 }
2409 EXPORT_SYMBOL(netif_schedule_queue);
2410 
2411 /**
2412  *	netif_wake_subqueue - allow sending packets on subqueue
2413  *	@dev: network device
2414  *	@queue_index: sub queue index
2415  *
2416  * Resume individual transmit queue of a device with multiple transmit queues.
2417  */
2418 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2419 {
2420 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2421 
2422 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2423 		struct Qdisc *q;
2424 
2425 		rcu_read_lock();
2426 		q = rcu_dereference(txq->qdisc);
2427 		__netif_schedule(q);
2428 		rcu_read_unlock();
2429 	}
2430 }
2431 EXPORT_SYMBOL(netif_wake_subqueue);
2432 
2433 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2434 {
2435 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2436 		struct Qdisc *q;
2437 
2438 		rcu_read_lock();
2439 		q = rcu_dereference(dev_queue->qdisc);
2440 		__netif_schedule(q);
2441 		rcu_read_unlock();
2442 	}
2443 }
2444 EXPORT_SYMBOL(netif_tx_wake_queue);
2445 
2446 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2447 {
2448 	unsigned long flags;
2449 
2450 	if (likely(atomic_read(&skb->users) == 1)) {
2451 		smp_rmb();
2452 		atomic_set(&skb->users, 0);
2453 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2454 		return;
2455 	}
2456 	get_kfree_skb_cb(skb)->reason = reason;
2457 	local_irq_save(flags);
2458 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2459 	__this_cpu_write(softnet_data.completion_queue, skb);
2460 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2461 	local_irq_restore(flags);
2462 }
2463 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2464 
2465 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2466 {
2467 	if (in_irq() || irqs_disabled())
2468 		__dev_kfree_skb_irq(skb, reason);
2469 	else
2470 		dev_kfree_skb(skb);
2471 }
2472 EXPORT_SYMBOL(__dev_kfree_skb_any);
2473 
2474 
2475 /**
2476  * netif_device_detach - mark device as removed
2477  * @dev: network device
2478  *
2479  * Mark device as removed from system and therefore no longer available.
2480  */
2481 void netif_device_detach(struct net_device *dev)
2482 {
2483 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2484 	    netif_running(dev)) {
2485 		netif_tx_stop_all_queues(dev);
2486 	}
2487 }
2488 EXPORT_SYMBOL(netif_device_detach);
2489 
2490 /**
2491  * netif_device_attach - mark device as attached
2492  * @dev: network device
2493  *
2494  * Mark device as attached from system and restart if needed.
2495  */
2496 void netif_device_attach(struct net_device *dev)
2497 {
2498 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2499 	    netif_running(dev)) {
2500 		netif_tx_wake_all_queues(dev);
2501 		__netdev_watchdog_up(dev);
2502 	}
2503 }
2504 EXPORT_SYMBOL(netif_device_attach);
2505 
2506 /*
2507  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2508  * to be used as a distribution range.
2509  */
2510 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2511 		  unsigned int num_tx_queues)
2512 {
2513 	u32 hash;
2514 	u16 qoffset = 0;
2515 	u16 qcount = num_tx_queues;
2516 
2517 	if (skb_rx_queue_recorded(skb)) {
2518 		hash = skb_get_rx_queue(skb);
2519 		while (unlikely(hash >= num_tx_queues))
2520 			hash -= num_tx_queues;
2521 		return hash;
2522 	}
2523 
2524 	if (dev->num_tc) {
2525 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2526 		qoffset = dev->tc_to_txq[tc].offset;
2527 		qcount = dev->tc_to_txq[tc].count;
2528 	}
2529 
2530 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2531 }
2532 EXPORT_SYMBOL(__skb_tx_hash);
2533 
2534 static void skb_warn_bad_offload(const struct sk_buff *skb)
2535 {
2536 	static const netdev_features_t null_features;
2537 	struct net_device *dev = skb->dev;
2538 	const char *name = "";
2539 
2540 	if (!net_ratelimit())
2541 		return;
2542 
2543 	if (dev) {
2544 		if (dev->dev.parent)
2545 			name = dev_driver_string(dev->dev.parent);
2546 		else
2547 			name = netdev_name(dev);
2548 	}
2549 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2550 	     "gso_type=%d ip_summed=%d\n",
2551 	     name, dev ? &dev->features : &null_features,
2552 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2553 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2554 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2555 }
2556 
2557 /*
2558  * Invalidate hardware checksum when packet is to be mangled, and
2559  * complete checksum manually on outgoing path.
2560  */
2561 int skb_checksum_help(struct sk_buff *skb)
2562 {
2563 	__wsum csum;
2564 	int ret = 0, offset;
2565 
2566 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2567 		goto out_set_summed;
2568 
2569 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2570 		skb_warn_bad_offload(skb);
2571 		return -EINVAL;
2572 	}
2573 
2574 	/* Before computing a checksum, we should make sure no frag could
2575 	 * be modified by an external entity : checksum could be wrong.
2576 	 */
2577 	if (skb_has_shared_frag(skb)) {
2578 		ret = __skb_linearize(skb);
2579 		if (ret)
2580 			goto out;
2581 	}
2582 
2583 	offset = skb_checksum_start_offset(skb);
2584 	BUG_ON(offset >= skb_headlen(skb));
2585 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2586 
2587 	offset += skb->csum_offset;
2588 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2589 
2590 	if (skb_cloned(skb) &&
2591 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2592 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2593 		if (ret)
2594 			goto out;
2595 	}
2596 
2597 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2598 out_set_summed:
2599 	skb->ip_summed = CHECKSUM_NONE;
2600 out:
2601 	return ret;
2602 }
2603 EXPORT_SYMBOL(skb_checksum_help);
2604 
2605 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2606 {
2607 	__be16 type = skb->protocol;
2608 
2609 	/* Tunnel gso handlers can set protocol to ethernet. */
2610 	if (type == htons(ETH_P_TEB)) {
2611 		struct ethhdr *eth;
2612 
2613 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2614 			return 0;
2615 
2616 		eth = (struct ethhdr *)skb_mac_header(skb);
2617 		type = eth->h_proto;
2618 	}
2619 
2620 	return __vlan_get_protocol(skb, type, depth);
2621 }
2622 
2623 /**
2624  *	skb_mac_gso_segment - mac layer segmentation handler.
2625  *	@skb: buffer to segment
2626  *	@features: features for the output path (see dev->features)
2627  */
2628 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2629 				    netdev_features_t features)
2630 {
2631 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2632 	struct packet_offload *ptype;
2633 	int vlan_depth = skb->mac_len;
2634 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2635 
2636 	if (unlikely(!type))
2637 		return ERR_PTR(-EINVAL);
2638 
2639 	__skb_pull(skb, vlan_depth);
2640 
2641 	rcu_read_lock();
2642 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2643 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2644 			segs = ptype->callbacks.gso_segment(skb, features);
2645 			break;
2646 		}
2647 	}
2648 	rcu_read_unlock();
2649 
2650 	__skb_push(skb, skb->data - skb_mac_header(skb));
2651 
2652 	return segs;
2653 }
2654 EXPORT_SYMBOL(skb_mac_gso_segment);
2655 
2656 
2657 /* openvswitch calls this on rx path, so we need a different check.
2658  */
2659 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2660 {
2661 	if (tx_path)
2662 		return skb->ip_summed != CHECKSUM_PARTIAL;
2663 	else
2664 		return skb->ip_summed == CHECKSUM_NONE;
2665 }
2666 
2667 /**
2668  *	__skb_gso_segment - Perform segmentation on skb.
2669  *	@skb: buffer to segment
2670  *	@features: features for the output path (see dev->features)
2671  *	@tx_path: whether it is called in TX path
2672  *
2673  *	This function segments the given skb and returns a list of segments.
2674  *
2675  *	It may return NULL if the skb requires no segmentation.  This is
2676  *	only possible when GSO is used for verifying header integrity.
2677  *
2678  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2679  */
2680 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2681 				  netdev_features_t features, bool tx_path)
2682 {
2683 	if (unlikely(skb_needs_check(skb, tx_path))) {
2684 		int err;
2685 
2686 		skb_warn_bad_offload(skb);
2687 
2688 		err = skb_cow_head(skb, 0);
2689 		if (err < 0)
2690 			return ERR_PTR(err);
2691 	}
2692 
2693 	/* Only report GSO partial support if it will enable us to
2694 	 * support segmentation on this frame without needing additional
2695 	 * work.
2696 	 */
2697 	if (features & NETIF_F_GSO_PARTIAL) {
2698 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2699 		struct net_device *dev = skb->dev;
2700 
2701 		partial_features |= dev->features & dev->gso_partial_features;
2702 		if (!skb_gso_ok(skb, features | partial_features))
2703 			features &= ~NETIF_F_GSO_PARTIAL;
2704 	}
2705 
2706 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2707 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2708 
2709 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2710 	SKB_GSO_CB(skb)->encap_level = 0;
2711 
2712 	skb_reset_mac_header(skb);
2713 	skb_reset_mac_len(skb);
2714 
2715 	return skb_mac_gso_segment(skb, features);
2716 }
2717 EXPORT_SYMBOL(__skb_gso_segment);
2718 
2719 /* Take action when hardware reception checksum errors are detected. */
2720 #ifdef CONFIG_BUG
2721 void netdev_rx_csum_fault(struct net_device *dev)
2722 {
2723 	if (net_ratelimit()) {
2724 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2725 		dump_stack();
2726 	}
2727 }
2728 EXPORT_SYMBOL(netdev_rx_csum_fault);
2729 #endif
2730 
2731 /* Actually, we should eliminate this check as soon as we know, that:
2732  * 1. IOMMU is present and allows to map all the memory.
2733  * 2. No high memory really exists on this machine.
2734  */
2735 
2736 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2737 {
2738 #ifdef CONFIG_HIGHMEM
2739 	int i;
2740 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2741 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2742 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2743 			if (PageHighMem(skb_frag_page(frag)))
2744 				return 1;
2745 		}
2746 	}
2747 
2748 	if (PCI_DMA_BUS_IS_PHYS) {
2749 		struct device *pdev = dev->dev.parent;
2750 
2751 		if (!pdev)
2752 			return 0;
2753 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2754 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2755 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2756 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2757 				return 1;
2758 		}
2759 	}
2760 #endif
2761 	return 0;
2762 }
2763 
2764 /* If MPLS offload request, verify we are testing hardware MPLS features
2765  * instead of standard features for the netdev.
2766  */
2767 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2768 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2769 					   netdev_features_t features,
2770 					   __be16 type)
2771 {
2772 	if (eth_p_mpls(type))
2773 		features &= skb->dev->mpls_features;
2774 
2775 	return features;
2776 }
2777 #else
2778 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2779 					   netdev_features_t features,
2780 					   __be16 type)
2781 {
2782 	return features;
2783 }
2784 #endif
2785 
2786 static netdev_features_t harmonize_features(struct sk_buff *skb,
2787 	netdev_features_t features)
2788 {
2789 	int tmp;
2790 	__be16 type;
2791 
2792 	type = skb_network_protocol(skb, &tmp);
2793 	features = net_mpls_features(skb, features, type);
2794 
2795 	if (skb->ip_summed != CHECKSUM_NONE &&
2796 	    !can_checksum_protocol(features, type)) {
2797 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2798 	} else if (illegal_highdma(skb->dev, skb)) {
2799 		features &= ~NETIF_F_SG;
2800 	}
2801 
2802 	return features;
2803 }
2804 
2805 netdev_features_t passthru_features_check(struct sk_buff *skb,
2806 					  struct net_device *dev,
2807 					  netdev_features_t features)
2808 {
2809 	return features;
2810 }
2811 EXPORT_SYMBOL(passthru_features_check);
2812 
2813 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2814 					     struct net_device *dev,
2815 					     netdev_features_t features)
2816 {
2817 	return vlan_features_check(skb, features);
2818 }
2819 
2820 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2821 					    struct net_device *dev,
2822 					    netdev_features_t features)
2823 {
2824 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2825 
2826 	if (gso_segs > dev->gso_max_segs)
2827 		return features & ~NETIF_F_GSO_MASK;
2828 
2829 	/* Support for GSO partial features requires software
2830 	 * intervention before we can actually process the packets
2831 	 * so we need to strip support for any partial features now
2832 	 * and we can pull them back in after we have partially
2833 	 * segmented the frame.
2834 	 */
2835 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2836 		features &= ~dev->gso_partial_features;
2837 
2838 	/* Make sure to clear the IPv4 ID mangling feature if the
2839 	 * IPv4 header has the potential to be fragmented.
2840 	 */
2841 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2842 		struct iphdr *iph = skb->encapsulation ?
2843 				    inner_ip_hdr(skb) : ip_hdr(skb);
2844 
2845 		if (!(iph->frag_off & htons(IP_DF)))
2846 			features &= ~NETIF_F_TSO_MANGLEID;
2847 	}
2848 
2849 	return features;
2850 }
2851 
2852 netdev_features_t netif_skb_features(struct sk_buff *skb)
2853 {
2854 	struct net_device *dev = skb->dev;
2855 	netdev_features_t features = dev->features;
2856 
2857 	if (skb_is_gso(skb))
2858 		features = gso_features_check(skb, dev, features);
2859 
2860 	/* If encapsulation offload request, verify we are testing
2861 	 * hardware encapsulation features instead of standard
2862 	 * features for the netdev
2863 	 */
2864 	if (skb->encapsulation)
2865 		features &= dev->hw_enc_features;
2866 
2867 	if (skb_vlan_tagged(skb))
2868 		features = netdev_intersect_features(features,
2869 						     dev->vlan_features |
2870 						     NETIF_F_HW_VLAN_CTAG_TX |
2871 						     NETIF_F_HW_VLAN_STAG_TX);
2872 
2873 	if (dev->netdev_ops->ndo_features_check)
2874 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2875 								features);
2876 	else
2877 		features &= dflt_features_check(skb, dev, features);
2878 
2879 	return harmonize_features(skb, features);
2880 }
2881 EXPORT_SYMBOL(netif_skb_features);
2882 
2883 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2884 		    struct netdev_queue *txq, bool more)
2885 {
2886 	unsigned int len;
2887 	int rc;
2888 
2889 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2890 		dev_queue_xmit_nit(skb, dev);
2891 
2892 	len = skb->len;
2893 	trace_net_dev_start_xmit(skb, dev);
2894 	rc = netdev_start_xmit(skb, dev, txq, more);
2895 	trace_net_dev_xmit(skb, rc, dev, len);
2896 
2897 	return rc;
2898 }
2899 
2900 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2901 				    struct netdev_queue *txq, int *ret)
2902 {
2903 	struct sk_buff *skb = first;
2904 	int rc = NETDEV_TX_OK;
2905 
2906 	while (skb) {
2907 		struct sk_buff *next = skb->next;
2908 
2909 		skb->next = NULL;
2910 		rc = xmit_one(skb, dev, txq, next != NULL);
2911 		if (unlikely(!dev_xmit_complete(rc))) {
2912 			skb->next = next;
2913 			goto out;
2914 		}
2915 
2916 		skb = next;
2917 		if (netif_xmit_stopped(txq) && skb) {
2918 			rc = NETDEV_TX_BUSY;
2919 			break;
2920 		}
2921 	}
2922 
2923 out:
2924 	*ret = rc;
2925 	return skb;
2926 }
2927 
2928 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2929 					  netdev_features_t features)
2930 {
2931 	if (skb_vlan_tag_present(skb) &&
2932 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2933 		skb = __vlan_hwaccel_push_inside(skb);
2934 	return skb;
2935 }
2936 
2937 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2938 {
2939 	netdev_features_t features;
2940 
2941 	features = netif_skb_features(skb);
2942 	skb = validate_xmit_vlan(skb, features);
2943 	if (unlikely(!skb))
2944 		goto out_null;
2945 
2946 	if (netif_needs_gso(skb, features)) {
2947 		struct sk_buff *segs;
2948 
2949 		segs = skb_gso_segment(skb, features);
2950 		if (IS_ERR(segs)) {
2951 			goto out_kfree_skb;
2952 		} else if (segs) {
2953 			consume_skb(skb);
2954 			skb = segs;
2955 		}
2956 	} else {
2957 		if (skb_needs_linearize(skb, features) &&
2958 		    __skb_linearize(skb))
2959 			goto out_kfree_skb;
2960 
2961 		/* If packet is not checksummed and device does not
2962 		 * support checksumming for this protocol, complete
2963 		 * checksumming here.
2964 		 */
2965 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2966 			if (skb->encapsulation)
2967 				skb_set_inner_transport_header(skb,
2968 							       skb_checksum_start_offset(skb));
2969 			else
2970 				skb_set_transport_header(skb,
2971 							 skb_checksum_start_offset(skb));
2972 			if (!(features & NETIF_F_CSUM_MASK) &&
2973 			    skb_checksum_help(skb))
2974 				goto out_kfree_skb;
2975 		}
2976 	}
2977 
2978 	return skb;
2979 
2980 out_kfree_skb:
2981 	kfree_skb(skb);
2982 out_null:
2983 	atomic_long_inc(&dev->tx_dropped);
2984 	return NULL;
2985 }
2986 
2987 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2988 {
2989 	struct sk_buff *next, *head = NULL, *tail;
2990 
2991 	for (; skb != NULL; skb = next) {
2992 		next = skb->next;
2993 		skb->next = NULL;
2994 
2995 		/* in case skb wont be segmented, point to itself */
2996 		skb->prev = skb;
2997 
2998 		skb = validate_xmit_skb(skb, dev);
2999 		if (!skb)
3000 			continue;
3001 
3002 		if (!head)
3003 			head = skb;
3004 		else
3005 			tail->next = skb;
3006 		/* If skb was segmented, skb->prev points to
3007 		 * the last segment. If not, it still contains skb.
3008 		 */
3009 		tail = skb->prev;
3010 	}
3011 	return head;
3012 }
3013 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3014 
3015 static void qdisc_pkt_len_init(struct sk_buff *skb)
3016 {
3017 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3018 
3019 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3020 
3021 	/* To get more precise estimation of bytes sent on wire,
3022 	 * we add to pkt_len the headers size of all segments
3023 	 */
3024 	if (shinfo->gso_size)  {
3025 		unsigned int hdr_len;
3026 		u16 gso_segs = shinfo->gso_segs;
3027 
3028 		/* mac layer + network layer */
3029 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3030 
3031 		/* + transport layer */
3032 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3033 			hdr_len += tcp_hdrlen(skb);
3034 		else
3035 			hdr_len += sizeof(struct udphdr);
3036 
3037 		if (shinfo->gso_type & SKB_GSO_DODGY)
3038 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3039 						shinfo->gso_size);
3040 
3041 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3042 	}
3043 }
3044 
3045 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3046 				 struct net_device *dev,
3047 				 struct netdev_queue *txq)
3048 {
3049 	spinlock_t *root_lock = qdisc_lock(q);
3050 	struct sk_buff *to_free = NULL;
3051 	bool contended;
3052 	int rc;
3053 
3054 	qdisc_calculate_pkt_len(skb, q);
3055 	/*
3056 	 * Heuristic to force contended enqueues to serialize on a
3057 	 * separate lock before trying to get qdisc main lock.
3058 	 * This permits qdisc->running owner to get the lock more
3059 	 * often and dequeue packets faster.
3060 	 */
3061 	contended = qdisc_is_running(q);
3062 	if (unlikely(contended))
3063 		spin_lock(&q->busylock);
3064 
3065 	spin_lock(root_lock);
3066 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3067 		__qdisc_drop(skb, &to_free);
3068 		rc = NET_XMIT_DROP;
3069 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3070 		   qdisc_run_begin(q)) {
3071 		/*
3072 		 * This is a work-conserving queue; there are no old skbs
3073 		 * waiting to be sent out; and the qdisc is not running -
3074 		 * xmit the skb directly.
3075 		 */
3076 
3077 		qdisc_bstats_update(q, skb);
3078 
3079 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3080 			if (unlikely(contended)) {
3081 				spin_unlock(&q->busylock);
3082 				contended = false;
3083 			}
3084 			__qdisc_run(q);
3085 		} else
3086 			qdisc_run_end(q);
3087 
3088 		rc = NET_XMIT_SUCCESS;
3089 	} else {
3090 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3091 		if (qdisc_run_begin(q)) {
3092 			if (unlikely(contended)) {
3093 				spin_unlock(&q->busylock);
3094 				contended = false;
3095 			}
3096 			__qdisc_run(q);
3097 		}
3098 	}
3099 	spin_unlock(root_lock);
3100 	if (unlikely(to_free))
3101 		kfree_skb_list(to_free);
3102 	if (unlikely(contended))
3103 		spin_unlock(&q->busylock);
3104 	return rc;
3105 }
3106 
3107 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3108 static void skb_update_prio(struct sk_buff *skb)
3109 {
3110 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3111 
3112 	if (!skb->priority && skb->sk && map) {
3113 		unsigned int prioidx =
3114 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3115 
3116 		if (prioidx < map->priomap_len)
3117 			skb->priority = map->priomap[prioidx];
3118 	}
3119 }
3120 #else
3121 #define skb_update_prio(skb)
3122 #endif
3123 
3124 DEFINE_PER_CPU(int, xmit_recursion);
3125 EXPORT_SYMBOL(xmit_recursion);
3126 
3127 /**
3128  *	dev_loopback_xmit - loop back @skb
3129  *	@net: network namespace this loopback is happening in
3130  *	@sk:  sk needed to be a netfilter okfn
3131  *	@skb: buffer to transmit
3132  */
3133 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3134 {
3135 	skb_reset_mac_header(skb);
3136 	__skb_pull(skb, skb_network_offset(skb));
3137 	skb->pkt_type = PACKET_LOOPBACK;
3138 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3139 	WARN_ON(!skb_dst(skb));
3140 	skb_dst_force(skb);
3141 	netif_rx_ni(skb);
3142 	return 0;
3143 }
3144 EXPORT_SYMBOL(dev_loopback_xmit);
3145 
3146 #ifdef CONFIG_NET_EGRESS
3147 static struct sk_buff *
3148 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3149 {
3150 	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3151 	struct tcf_result cl_res;
3152 
3153 	if (!cl)
3154 		return skb;
3155 
3156 	/* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3157 	 * earlier by the caller.
3158 	 */
3159 	qdisc_bstats_cpu_update(cl->q, skb);
3160 
3161 	switch (tc_classify(skb, cl, &cl_res, false)) {
3162 	case TC_ACT_OK:
3163 	case TC_ACT_RECLASSIFY:
3164 		skb->tc_index = TC_H_MIN(cl_res.classid);
3165 		break;
3166 	case TC_ACT_SHOT:
3167 		qdisc_qstats_cpu_drop(cl->q);
3168 		*ret = NET_XMIT_DROP;
3169 		kfree_skb(skb);
3170 		return NULL;
3171 	case TC_ACT_STOLEN:
3172 	case TC_ACT_QUEUED:
3173 		*ret = NET_XMIT_SUCCESS;
3174 		consume_skb(skb);
3175 		return NULL;
3176 	case TC_ACT_REDIRECT:
3177 		/* No need to push/pop skb's mac_header here on egress! */
3178 		skb_do_redirect(skb);
3179 		*ret = NET_XMIT_SUCCESS;
3180 		return NULL;
3181 	default:
3182 		break;
3183 	}
3184 
3185 	return skb;
3186 }
3187 #endif /* CONFIG_NET_EGRESS */
3188 
3189 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3190 {
3191 #ifdef CONFIG_XPS
3192 	struct xps_dev_maps *dev_maps;
3193 	struct xps_map *map;
3194 	int queue_index = -1;
3195 
3196 	rcu_read_lock();
3197 	dev_maps = rcu_dereference(dev->xps_maps);
3198 	if (dev_maps) {
3199 		unsigned int tci = skb->sender_cpu - 1;
3200 
3201 		if (dev->num_tc) {
3202 			tci *= dev->num_tc;
3203 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3204 		}
3205 
3206 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3207 		if (map) {
3208 			if (map->len == 1)
3209 				queue_index = map->queues[0];
3210 			else
3211 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3212 									   map->len)];
3213 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3214 				queue_index = -1;
3215 		}
3216 	}
3217 	rcu_read_unlock();
3218 
3219 	return queue_index;
3220 #else
3221 	return -1;
3222 #endif
3223 }
3224 
3225 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3226 {
3227 	struct sock *sk = skb->sk;
3228 	int queue_index = sk_tx_queue_get(sk);
3229 
3230 	if (queue_index < 0 || skb->ooo_okay ||
3231 	    queue_index >= dev->real_num_tx_queues) {
3232 		int new_index = get_xps_queue(dev, skb);
3233 		if (new_index < 0)
3234 			new_index = skb_tx_hash(dev, skb);
3235 
3236 		if (queue_index != new_index && sk &&
3237 		    sk_fullsock(sk) &&
3238 		    rcu_access_pointer(sk->sk_dst_cache))
3239 			sk_tx_queue_set(sk, new_index);
3240 
3241 		queue_index = new_index;
3242 	}
3243 
3244 	return queue_index;
3245 }
3246 
3247 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3248 				    struct sk_buff *skb,
3249 				    void *accel_priv)
3250 {
3251 	int queue_index = 0;
3252 
3253 #ifdef CONFIG_XPS
3254 	u32 sender_cpu = skb->sender_cpu - 1;
3255 
3256 	if (sender_cpu >= (u32)NR_CPUS)
3257 		skb->sender_cpu = raw_smp_processor_id() + 1;
3258 #endif
3259 
3260 	if (dev->real_num_tx_queues != 1) {
3261 		const struct net_device_ops *ops = dev->netdev_ops;
3262 		if (ops->ndo_select_queue)
3263 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3264 							    __netdev_pick_tx);
3265 		else
3266 			queue_index = __netdev_pick_tx(dev, skb);
3267 
3268 		if (!accel_priv)
3269 			queue_index = netdev_cap_txqueue(dev, queue_index);
3270 	}
3271 
3272 	skb_set_queue_mapping(skb, queue_index);
3273 	return netdev_get_tx_queue(dev, queue_index);
3274 }
3275 
3276 /**
3277  *	__dev_queue_xmit - transmit a buffer
3278  *	@skb: buffer to transmit
3279  *	@accel_priv: private data used for L2 forwarding offload
3280  *
3281  *	Queue a buffer for transmission to a network device. The caller must
3282  *	have set the device and priority and built the buffer before calling
3283  *	this function. The function can be called from an interrupt.
3284  *
3285  *	A negative errno code is returned on a failure. A success does not
3286  *	guarantee the frame will be transmitted as it may be dropped due
3287  *	to congestion or traffic shaping.
3288  *
3289  * -----------------------------------------------------------------------------------
3290  *      I notice this method can also return errors from the queue disciplines,
3291  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3292  *      be positive.
3293  *
3294  *      Regardless of the return value, the skb is consumed, so it is currently
3295  *      difficult to retry a send to this method.  (You can bump the ref count
3296  *      before sending to hold a reference for retry if you are careful.)
3297  *
3298  *      When calling this method, interrupts MUST be enabled.  This is because
3299  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3300  *          --BLG
3301  */
3302 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3303 {
3304 	struct net_device *dev = skb->dev;
3305 	struct netdev_queue *txq;
3306 	struct Qdisc *q;
3307 	int rc = -ENOMEM;
3308 
3309 	skb_reset_mac_header(skb);
3310 
3311 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3312 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3313 
3314 	/* Disable soft irqs for various locks below. Also
3315 	 * stops preemption for RCU.
3316 	 */
3317 	rcu_read_lock_bh();
3318 
3319 	skb_update_prio(skb);
3320 
3321 	qdisc_pkt_len_init(skb);
3322 #ifdef CONFIG_NET_CLS_ACT
3323 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3324 # ifdef CONFIG_NET_EGRESS
3325 	if (static_key_false(&egress_needed)) {
3326 		skb = sch_handle_egress(skb, &rc, dev);
3327 		if (!skb)
3328 			goto out;
3329 	}
3330 # endif
3331 #endif
3332 	/* If device/qdisc don't need skb->dst, release it right now while
3333 	 * its hot in this cpu cache.
3334 	 */
3335 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3336 		skb_dst_drop(skb);
3337 	else
3338 		skb_dst_force(skb);
3339 
3340 	txq = netdev_pick_tx(dev, skb, accel_priv);
3341 	q = rcu_dereference_bh(txq->qdisc);
3342 
3343 	trace_net_dev_queue(skb);
3344 	if (q->enqueue) {
3345 		rc = __dev_xmit_skb(skb, q, dev, txq);
3346 		goto out;
3347 	}
3348 
3349 	/* The device has no queue. Common case for software devices:
3350 	   loopback, all the sorts of tunnels...
3351 
3352 	   Really, it is unlikely that netif_tx_lock protection is necessary
3353 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3354 	   counters.)
3355 	   However, it is possible, that they rely on protection
3356 	   made by us here.
3357 
3358 	   Check this and shot the lock. It is not prone from deadlocks.
3359 	   Either shot noqueue qdisc, it is even simpler 8)
3360 	 */
3361 	if (dev->flags & IFF_UP) {
3362 		int cpu = smp_processor_id(); /* ok because BHs are off */
3363 
3364 		if (txq->xmit_lock_owner != cpu) {
3365 			if (unlikely(__this_cpu_read(xmit_recursion) >
3366 				     XMIT_RECURSION_LIMIT))
3367 				goto recursion_alert;
3368 
3369 			skb = validate_xmit_skb(skb, dev);
3370 			if (!skb)
3371 				goto out;
3372 
3373 			HARD_TX_LOCK(dev, txq, cpu);
3374 
3375 			if (!netif_xmit_stopped(txq)) {
3376 				__this_cpu_inc(xmit_recursion);
3377 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3378 				__this_cpu_dec(xmit_recursion);
3379 				if (dev_xmit_complete(rc)) {
3380 					HARD_TX_UNLOCK(dev, txq);
3381 					goto out;
3382 				}
3383 			}
3384 			HARD_TX_UNLOCK(dev, txq);
3385 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3386 					     dev->name);
3387 		} else {
3388 			/* Recursion is detected! It is possible,
3389 			 * unfortunately
3390 			 */
3391 recursion_alert:
3392 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3393 					     dev->name);
3394 		}
3395 	}
3396 
3397 	rc = -ENETDOWN;
3398 	rcu_read_unlock_bh();
3399 
3400 	atomic_long_inc(&dev->tx_dropped);
3401 	kfree_skb_list(skb);
3402 	return rc;
3403 out:
3404 	rcu_read_unlock_bh();
3405 	return rc;
3406 }
3407 
3408 int dev_queue_xmit(struct sk_buff *skb)
3409 {
3410 	return __dev_queue_xmit(skb, NULL);
3411 }
3412 EXPORT_SYMBOL(dev_queue_xmit);
3413 
3414 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3415 {
3416 	return __dev_queue_xmit(skb, accel_priv);
3417 }
3418 EXPORT_SYMBOL(dev_queue_xmit_accel);
3419 
3420 
3421 /*=======================================================================
3422 			Receiver routines
3423   =======================================================================*/
3424 
3425 int netdev_max_backlog __read_mostly = 1000;
3426 EXPORT_SYMBOL(netdev_max_backlog);
3427 
3428 int netdev_tstamp_prequeue __read_mostly = 1;
3429 int netdev_budget __read_mostly = 300;
3430 int weight_p __read_mostly = 64;            /* old backlog weight */
3431 
3432 /* Called with irq disabled */
3433 static inline void ____napi_schedule(struct softnet_data *sd,
3434 				     struct napi_struct *napi)
3435 {
3436 	list_add_tail(&napi->poll_list, &sd->poll_list);
3437 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3438 }
3439 
3440 #ifdef CONFIG_RPS
3441 
3442 /* One global table that all flow-based protocols share. */
3443 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3444 EXPORT_SYMBOL(rps_sock_flow_table);
3445 u32 rps_cpu_mask __read_mostly;
3446 EXPORT_SYMBOL(rps_cpu_mask);
3447 
3448 struct static_key rps_needed __read_mostly;
3449 EXPORT_SYMBOL(rps_needed);
3450 
3451 static struct rps_dev_flow *
3452 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3453 	    struct rps_dev_flow *rflow, u16 next_cpu)
3454 {
3455 	if (next_cpu < nr_cpu_ids) {
3456 #ifdef CONFIG_RFS_ACCEL
3457 		struct netdev_rx_queue *rxqueue;
3458 		struct rps_dev_flow_table *flow_table;
3459 		struct rps_dev_flow *old_rflow;
3460 		u32 flow_id;
3461 		u16 rxq_index;
3462 		int rc;
3463 
3464 		/* Should we steer this flow to a different hardware queue? */
3465 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3466 		    !(dev->features & NETIF_F_NTUPLE))
3467 			goto out;
3468 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3469 		if (rxq_index == skb_get_rx_queue(skb))
3470 			goto out;
3471 
3472 		rxqueue = dev->_rx + rxq_index;
3473 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3474 		if (!flow_table)
3475 			goto out;
3476 		flow_id = skb_get_hash(skb) & flow_table->mask;
3477 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3478 							rxq_index, flow_id);
3479 		if (rc < 0)
3480 			goto out;
3481 		old_rflow = rflow;
3482 		rflow = &flow_table->flows[flow_id];
3483 		rflow->filter = rc;
3484 		if (old_rflow->filter == rflow->filter)
3485 			old_rflow->filter = RPS_NO_FILTER;
3486 	out:
3487 #endif
3488 		rflow->last_qtail =
3489 			per_cpu(softnet_data, next_cpu).input_queue_head;
3490 	}
3491 
3492 	rflow->cpu = next_cpu;
3493 	return rflow;
3494 }
3495 
3496 /*
3497  * get_rps_cpu is called from netif_receive_skb and returns the target
3498  * CPU from the RPS map of the receiving queue for a given skb.
3499  * rcu_read_lock must be held on entry.
3500  */
3501 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3502 		       struct rps_dev_flow **rflowp)
3503 {
3504 	const struct rps_sock_flow_table *sock_flow_table;
3505 	struct netdev_rx_queue *rxqueue = dev->_rx;
3506 	struct rps_dev_flow_table *flow_table;
3507 	struct rps_map *map;
3508 	int cpu = -1;
3509 	u32 tcpu;
3510 	u32 hash;
3511 
3512 	if (skb_rx_queue_recorded(skb)) {
3513 		u16 index = skb_get_rx_queue(skb);
3514 
3515 		if (unlikely(index >= dev->real_num_rx_queues)) {
3516 			WARN_ONCE(dev->real_num_rx_queues > 1,
3517 				  "%s received packet on queue %u, but number "
3518 				  "of RX queues is %u\n",
3519 				  dev->name, index, dev->real_num_rx_queues);
3520 			goto done;
3521 		}
3522 		rxqueue += index;
3523 	}
3524 
3525 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3526 
3527 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3528 	map = rcu_dereference(rxqueue->rps_map);
3529 	if (!flow_table && !map)
3530 		goto done;
3531 
3532 	skb_reset_network_header(skb);
3533 	hash = skb_get_hash(skb);
3534 	if (!hash)
3535 		goto done;
3536 
3537 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3538 	if (flow_table && sock_flow_table) {
3539 		struct rps_dev_flow *rflow;
3540 		u32 next_cpu;
3541 		u32 ident;
3542 
3543 		/* First check into global flow table if there is a match */
3544 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3545 		if ((ident ^ hash) & ~rps_cpu_mask)
3546 			goto try_rps;
3547 
3548 		next_cpu = ident & rps_cpu_mask;
3549 
3550 		/* OK, now we know there is a match,
3551 		 * we can look at the local (per receive queue) flow table
3552 		 */
3553 		rflow = &flow_table->flows[hash & flow_table->mask];
3554 		tcpu = rflow->cpu;
3555 
3556 		/*
3557 		 * If the desired CPU (where last recvmsg was done) is
3558 		 * different from current CPU (one in the rx-queue flow
3559 		 * table entry), switch if one of the following holds:
3560 		 *   - Current CPU is unset (>= nr_cpu_ids).
3561 		 *   - Current CPU is offline.
3562 		 *   - The current CPU's queue tail has advanced beyond the
3563 		 *     last packet that was enqueued using this table entry.
3564 		 *     This guarantees that all previous packets for the flow
3565 		 *     have been dequeued, thus preserving in order delivery.
3566 		 */
3567 		if (unlikely(tcpu != next_cpu) &&
3568 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3569 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3570 		      rflow->last_qtail)) >= 0)) {
3571 			tcpu = next_cpu;
3572 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3573 		}
3574 
3575 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3576 			*rflowp = rflow;
3577 			cpu = tcpu;
3578 			goto done;
3579 		}
3580 	}
3581 
3582 try_rps:
3583 
3584 	if (map) {
3585 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3586 		if (cpu_online(tcpu)) {
3587 			cpu = tcpu;
3588 			goto done;
3589 		}
3590 	}
3591 
3592 done:
3593 	return cpu;
3594 }
3595 
3596 #ifdef CONFIG_RFS_ACCEL
3597 
3598 /**
3599  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3600  * @dev: Device on which the filter was set
3601  * @rxq_index: RX queue index
3602  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3603  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3604  *
3605  * Drivers that implement ndo_rx_flow_steer() should periodically call
3606  * this function for each installed filter and remove the filters for
3607  * which it returns %true.
3608  */
3609 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3610 			 u32 flow_id, u16 filter_id)
3611 {
3612 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3613 	struct rps_dev_flow_table *flow_table;
3614 	struct rps_dev_flow *rflow;
3615 	bool expire = true;
3616 	unsigned int cpu;
3617 
3618 	rcu_read_lock();
3619 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3620 	if (flow_table && flow_id <= flow_table->mask) {
3621 		rflow = &flow_table->flows[flow_id];
3622 		cpu = ACCESS_ONCE(rflow->cpu);
3623 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3624 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3625 			   rflow->last_qtail) <
3626 		     (int)(10 * flow_table->mask)))
3627 			expire = false;
3628 	}
3629 	rcu_read_unlock();
3630 	return expire;
3631 }
3632 EXPORT_SYMBOL(rps_may_expire_flow);
3633 
3634 #endif /* CONFIG_RFS_ACCEL */
3635 
3636 /* Called from hardirq (IPI) context */
3637 static void rps_trigger_softirq(void *data)
3638 {
3639 	struct softnet_data *sd = data;
3640 
3641 	____napi_schedule(sd, &sd->backlog);
3642 	sd->received_rps++;
3643 }
3644 
3645 #endif /* CONFIG_RPS */
3646 
3647 /*
3648  * Check if this softnet_data structure is another cpu one
3649  * If yes, queue it to our IPI list and return 1
3650  * If no, return 0
3651  */
3652 static int rps_ipi_queued(struct softnet_data *sd)
3653 {
3654 #ifdef CONFIG_RPS
3655 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3656 
3657 	if (sd != mysd) {
3658 		sd->rps_ipi_next = mysd->rps_ipi_list;
3659 		mysd->rps_ipi_list = sd;
3660 
3661 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3662 		return 1;
3663 	}
3664 #endif /* CONFIG_RPS */
3665 	return 0;
3666 }
3667 
3668 #ifdef CONFIG_NET_FLOW_LIMIT
3669 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3670 #endif
3671 
3672 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3673 {
3674 #ifdef CONFIG_NET_FLOW_LIMIT
3675 	struct sd_flow_limit *fl;
3676 	struct softnet_data *sd;
3677 	unsigned int old_flow, new_flow;
3678 
3679 	if (qlen < (netdev_max_backlog >> 1))
3680 		return false;
3681 
3682 	sd = this_cpu_ptr(&softnet_data);
3683 
3684 	rcu_read_lock();
3685 	fl = rcu_dereference(sd->flow_limit);
3686 	if (fl) {
3687 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3688 		old_flow = fl->history[fl->history_head];
3689 		fl->history[fl->history_head] = new_flow;
3690 
3691 		fl->history_head++;
3692 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3693 
3694 		if (likely(fl->buckets[old_flow]))
3695 			fl->buckets[old_flow]--;
3696 
3697 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3698 			fl->count++;
3699 			rcu_read_unlock();
3700 			return true;
3701 		}
3702 	}
3703 	rcu_read_unlock();
3704 #endif
3705 	return false;
3706 }
3707 
3708 /*
3709  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3710  * queue (may be a remote CPU queue).
3711  */
3712 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3713 			      unsigned int *qtail)
3714 {
3715 	struct softnet_data *sd;
3716 	unsigned long flags;
3717 	unsigned int qlen;
3718 
3719 	sd = &per_cpu(softnet_data, cpu);
3720 
3721 	local_irq_save(flags);
3722 
3723 	rps_lock(sd);
3724 	if (!netif_running(skb->dev))
3725 		goto drop;
3726 	qlen = skb_queue_len(&sd->input_pkt_queue);
3727 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3728 		if (qlen) {
3729 enqueue:
3730 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3731 			input_queue_tail_incr_save(sd, qtail);
3732 			rps_unlock(sd);
3733 			local_irq_restore(flags);
3734 			return NET_RX_SUCCESS;
3735 		}
3736 
3737 		/* Schedule NAPI for backlog device
3738 		 * We can use non atomic operation since we own the queue lock
3739 		 */
3740 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3741 			if (!rps_ipi_queued(sd))
3742 				____napi_schedule(sd, &sd->backlog);
3743 		}
3744 		goto enqueue;
3745 	}
3746 
3747 drop:
3748 	sd->dropped++;
3749 	rps_unlock(sd);
3750 
3751 	local_irq_restore(flags);
3752 
3753 	atomic_long_inc(&skb->dev->rx_dropped);
3754 	kfree_skb(skb);
3755 	return NET_RX_DROP;
3756 }
3757 
3758 static int netif_rx_internal(struct sk_buff *skb)
3759 {
3760 	int ret;
3761 
3762 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3763 
3764 	trace_netif_rx(skb);
3765 #ifdef CONFIG_RPS
3766 	if (static_key_false(&rps_needed)) {
3767 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3768 		int cpu;
3769 
3770 		preempt_disable();
3771 		rcu_read_lock();
3772 
3773 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3774 		if (cpu < 0)
3775 			cpu = smp_processor_id();
3776 
3777 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3778 
3779 		rcu_read_unlock();
3780 		preempt_enable();
3781 	} else
3782 #endif
3783 	{
3784 		unsigned int qtail;
3785 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3786 		put_cpu();
3787 	}
3788 	return ret;
3789 }
3790 
3791 /**
3792  *	netif_rx	-	post buffer to the network code
3793  *	@skb: buffer to post
3794  *
3795  *	This function receives a packet from a device driver and queues it for
3796  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3797  *	may be dropped during processing for congestion control or by the
3798  *	protocol layers.
3799  *
3800  *	return values:
3801  *	NET_RX_SUCCESS	(no congestion)
3802  *	NET_RX_DROP     (packet was dropped)
3803  *
3804  */
3805 
3806 int netif_rx(struct sk_buff *skb)
3807 {
3808 	trace_netif_rx_entry(skb);
3809 
3810 	return netif_rx_internal(skb);
3811 }
3812 EXPORT_SYMBOL(netif_rx);
3813 
3814 int netif_rx_ni(struct sk_buff *skb)
3815 {
3816 	int err;
3817 
3818 	trace_netif_rx_ni_entry(skb);
3819 
3820 	preempt_disable();
3821 	err = netif_rx_internal(skb);
3822 	if (local_softirq_pending())
3823 		do_softirq();
3824 	preempt_enable();
3825 
3826 	return err;
3827 }
3828 EXPORT_SYMBOL(netif_rx_ni);
3829 
3830 static __latent_entropy void net_tx_action(struct softirq_action *h)
3831 {
3832 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3833 
3834 	if (sd->completion_queue) {
3835 		struct sk_buff *clist;
3836 
3837 		local_irq_disable();
3838 		clist = sd->completion_queue;
3839 		sd->completion_queue = NULL;
3840 		local_irq_enable();
3841 
3842 		while (clist) {
3843 			struct sk_buff *skb = clist;
3844 			clist = clist->next;
3845 
3846 			WARN_ON(atomic_read(&skb->users));
3847 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3848 				trace_consume_skb(skb);
3849 			else
3850 				trace_kfree_skb(skb, net_tx_action);
3851 
3852 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3853 				__kfree_skb(skb);
3854 			else
3855 				__kfree_skb_defer(skb);
3856 		}
3857 
3858 		__kfree_skb_flush();
3859 	}
3860 
3861 	if (sd->output_queue) {
3862 		struct Qdisc *head;
3863 
3864 		local_irq_disable();
3865 		head = sd->output_queue;
3866 		sd->output_queue = NULL;
3867 		sd->output_queue_tailp = &sd->output_queue;
3868 		local_irq_enable();
3869 
3870 		while (head) {
3871 			struct Qdisc *q = head;
3872 			spinlock_t *root_lock;
3873 
3874 			head = head->next_sched;
3875 
3876 			root_lock = qdisc_lock(q);
3877 			spin_lock(root_lock);
3878 			/* We need to make sure head->next_sched is read
3879 			 * before clearing __QDISC_STATE_SCHED
3880 			 */
3881 			smp_mb__before_atomic();
3882 			clear_bit(__QDISC_STATE_SCHED, &q->state);
3883 			qdisc_run(q);
3884 			spin_unlock(root_lock);
3885 		}
3886 	}
3887 }
3888 
3889 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3890 /* This hook is defined here for ATM LANE */
3891 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3892 			     unsigned char *addr) __read_mostly;
3893 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3894 #endif
3895 
3896 static inline struct sk_buff *
3897 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3898 		   struct net_device *orig_dev)
3899 {
3900 #ifdef CONFIG_NET_CLS_ACT
3901 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3902 	struct tcf_result cl_res;
3903 
3904 	/* If there's at least one ingress present somewhere (so
3905 	 * we get here via enabled static key), remaining devices
3906 	 * that are not configured with an ingress qdisc will bail
3907 	 * out here.
3908 	 */
3909 	if (!cl)
3910 		return skb;
3911 	if (*pt_prev) {
3912 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3913 		*pt_prev = NULL;
3914 	}
3915 
3916 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3917 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3918 	qdisc_bstats_cpu_update(cl->q, skb);
3919 
3920 	switch (tc_classify(skb, cl, &cl_res, false)) {
3921 	case TC_ACT_OK:
3922 	case TC_ACT_RECLASSIFY:
3923 		skb->tc_index = TC_H_MIN(cl_res.classid);
3924 		break;
3925 	case TC_ACT_SHOT:
3926 		qdisc_qstats_cpu_drop(cl->q);
3927 		kfree_skb(skb);
3928 		return NULL;
3929 	case TC_ACT_STOLEN:
3930 	case TC_ACT_QUEUED:
3931 		consume_skb(skb);
3932 		return NULL;
3933 	case TC_ACT_REDIRECT:
3934 		/* skb_mac_header check was done by cls/act_bpf, so
3935 		 * we can safely push the L2 header back before
3936 		 * redirecting to another netdev
3937 		 */
3938 		__skb_push(skb, skb->mac_len);
3939 		skb_do_redirect(skb);
3940 		return NULL;
3941 	default:
3942 		break;
3943 	}
3944 #endif /* CONFIG_NET_CLS_ACT */
3945 	return skb;
3946 }
3947 
3948 /**
3949  *	netdev_is_rx_handler_busy - check if receive handler is registered
3950  *	@dev: device to check
3951  *
3952  *	Check if a receive handler is already registered for a given device.
3953  *	Return true if there one.
3954  *
3955  *	The caller must hold the rtnl_mutex.
3956  */
3957 bool netdev_is_rx_handler_busy(struct net_device *dev)
3958 {
3959 	ASSERT_RTNL();
3960 	return dev && rtnl_dereference(dev->rx_handler);
3961 }
3962 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3963 
3964 /**
3965  *	netdev_rx_handler_register - register receive handler
3966  *	@dev: device to register a handler for
3967  *	@rx_handler: receive handler to register
3968  *	@rx_handler_data: data pointer that is used by rx handler
3969  *
3970  *	Register a receive handler for a device. This handler will then be
3971  *	called from __netif_receive_skb. A negative errno code is returned
3972  *	on a failure.
3973  *
3974  *	The caller must hold the rtnl_mutex.
3975  *
3976  *	For a general description of rx_handler, see enum rx_handler_result.
3977  */
3978 int netdev_rx_handler_register(struct net_device *dev,
3979 			       rx_handler_func_t *rx_handler,
3980 			       void *rx_handler_data)
3981 {
3982 	ASSERT_RTNL();
3983 
3984 	if (dev->rx_handler)
3985 		return -EBUSY;
3986 
3987 	/* Note: rx_handler_data must be set before rx_handler */
3988 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3989 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3990 
3991 	return 0;
3992 }
3993 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3994 
3995 /**
3996  *	netdev_rx_handler_unregister - unregister receive handler
3997  *	@dev: device to unregister a handler from
3998  *
3999  *	Unregister a receive handler from a device.
4000  *
4001  *	The caller must hold the rtnl_mutex.
4002  */
4003 void netdev_rx_handler_unregister(struct net_device *dev)
4004 {
4005 
4006 	ASSERT_RTNL();
4007 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4008 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4009 	 * section has a guarantee to see a non NULL rx_handler_data
4010 	 * as well.
4011 	 */
4012 	synchronize_net();
4013 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4014 }
4015 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4016 
4017 /*
4018  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4019  * the special handling of PFMEMALLOC skbs.
4020  */
4021 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4022 {
4023 	switch (skb->protocol) {
4024 	case htons(ETH_P_ARP):
4025 	case htons(ETH_P_IP):
4026 	case htons(ETH_P_IPV6):
4027 	case htons(ETH_P_8021Q):
4028 	case htons(ETH_P_8021AD):
4029 		return true;
4030 	default:
4031 		return false;
4032 	}
4033 }
4034 
4035 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4036 			     int *ret, struct net_device *orig_dev)
4037 {
4038 #ifdef CONFIG_NETFILTER_INGRESS
4039 	if (nf_hook_ingress_active(skb)) {
4040 		int ingress_retval;
4041 
4042 		if (*pt_prev) {
4043 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4044 			*pt_prev = NULL;
4045 		}
4046 
4047 		rcu_read_lock();
4048 		ingress_retval = nf_hook_ingress(skb);
4049 		rcu_read_unlock();
4050 		return ingress_retval;
4051 	}
4052 #endif /* CONFIG_NETFILTER_INGRESS */
4053 	return 0;
4054 }
4055 
4056 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4057 {
4058 	struct packet_type *ptype, *pt_prev;
4059 	rx_handler_func_t *rx_handler;
4060 	struct net_device *orig_dev;
4061 	bool deliver_exact = false;
4062 	int ret = NET_RX_DROP;
4063 	__be16 type;
4064 
4065 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4066 
4067 	trace_netif_receive_skb(skb);
4068 
4069 	orig_dev = skb->dev;
4070 
4071 	skb_reset_network_header(skb);
4072 	if (!skb_transport_header_was_set(skb))
4073 		skb_reset_transport_header(skb);
4074 	skb_reset_mac_len(skb);
4075 
4076 	pt_prev = NULL;
4077 
4078 another_round:
4079 	skb->skb_iif = skb->dev->ifindex;
4080 
4081 	__this_cpu_inc(softnet_data.processed);
4082 
4083 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4084 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4085 		skb = skb_vlan_untag(skb);
4086 		if (unlikely(!skb))
4087 			goto out;
4088 	}
4089 
4090 #ifdef CONFIG_NET_CLS_ACT
4091 	if (skb->tc_verd & TC_NCLS) {
4092 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4093 		goto ncls;
4094 	}
4095 #endif
4096 
4097 	if (pfmemalloc)
4098 		goto skip_taps;
4099 
4100 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4101 		if (pt_prev)
4102 			ret = deliver_skb(skb, pt_prev, orig_dev);
4103 		pt_prev = ptype;
4104 	}
4105 
4106 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4107 		if (pt_prev)
4108 			ret = deliver_skb(skb, pt_prev, orig_dev);
4109 		pt_prev = ptype;
4110 	}
4111 
4112 skip_taps:
4113 #ifdef CONFIG_NET_INGRESS
4114 	if (static_key_false(&ingress_needed)) {
4115 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4116 		if (!skb)
4117 			goto out;
4118 
4119 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4120 			goto out;
4121 	}
4122 #endif
4123 #ifdef CONFIG_NET_CLS_ACT
4124 	skb->tc_verd = 0;
4125 ncls:
4126 #endif
4127 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4128 		goto drop;
4129 
4130 	if (skb_vlan_tag_present(skb)) {
4131 		if (pt_prev) {
4132 			ret = deliver_skb(skb, pt_prev, orig_dev);
4133 			pt_prev = NULL;
4134 		}
4135 		if (vlan_do_receive(&skb))
4136 			goto another_round;
4137 		else if (unlikely(!skb))
4138 			goto out;
4139 	}
4140 
4141 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4142 	if (rx_handler) {
4143 		if (pt_prev) {
4144 			ret = deliver_skb(skb, pt_prev, orig_dev);
4145 			pt_prev = NULL;
4146 		}
4147 		switch (rx_handler(&skb)) {
4148 		case RX_HANDLER_CONSUMED:
4149 			ret = NET_RX_SUCCESS;
4150 			goto out;
4151 		case RX_HANDLER_ANOTHER:
4152 			goto another_round;
4153 		case RX_HANDLER_EXACT:
4154 			deliver_exact = true;
4155 		case RX_HANDLER_PASS:
4156 			break;
4157 		default:
4158 			BUG();
4159 		}
4160 	}
4161 
4162 	if (unlikely(skb_vlan_tag_present(skb))) {
4163 		if (skb_vlan_tag_get_id(skb))
4164 			skb->pkt_type = PACKET_OTHERHOST;
4165 		/* Note: we might in the future use prio bits
4166 		 * and set skb->priority like in vlan_do_receive()
4167 		 * For the time being, just ignore Priority Code Point
4168 		 */
4169 		skb->vlan_tci = 0;
4170 	}
4171 
4172 	type = skb->protocol;
4173 
4174 	/* deliver only exact match when indicated */
4175 	if (likely(!deliver_exact)) {
4176 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4177 				       &ptype_base[ntohs(type) &
4178 						   PTYPE_HASH_MASK]);
4179 	}
4180 
4181 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4182 			       &orig_dev->ptype_specific);
4183 
4184 	if (unlikely(skb->dev != orig_dev)) {
4185 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4186 				       &skb->dev->ptype_specific);
4187 	}
4188 
4189 	if (pt_prev) {
4190 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4191 			goto drop;
4192 		else
4193 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4194 	} else {
4195 drop:
4196 		if (!deliver_exact)
4197 			atomic_long_inc(&skb->dev->rx_dropped);
4198 		else
4199 			atomic_long_inc(&skb->dev->rx_nohandler);
4200 		kfree_skb(skb);
4201 		/* Jamal, now you will not able to escape explaining
4202 		 * me how you were going to use this. :-)
4203 		 */
4204 		ret = NET_RX_DROP;
4205 	}
4206 
4207 out:
4208 	return ret;
4209 }
4210 
4211 static int __netif_receive_skb(struct sk_buff *skb)
4212 {
4213 	int ret;
4214 
4215 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4216 		unsigned long pflags = current->flags;
4217 
4218 		/*
4219 		 * PFMEMALLOC skbs are special, they should
4220 		 * - be delivered to SOCK_MEMALLOC sockets only
4221 		 * - stay away from userspace
4222 		 * - have bounded memory usage
4223 		 *
4224 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4225 		 * context down to all allocation sites.
4226 		 */
4227 		current->flags |= PF_MEMALLOC;
4228 		ret = __netif_receive_skb_core(skb, true);
4229 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
4230 	} else
4231 		ret = __netif_receive_skb_core(skb, false);
4232 
4233 	return ret;
4234 }
4235 
4236 static int netif_receive_skb_internal(struct sk_buff *skb)
4237 {
4238 	int ret;
4239 
4240 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4241 
4242 	if (skb_defer_rx_timestamp(skb))
4243 		return NET_RX_SUCCESS;
4244 
4245 	rcu_read_lock();
4246 
4247 #ifdef CONFIG_RPS
4248 	if (static_key_false(&rps_needed)) {
4249 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4250 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4251 
4252 		if (cpu >= 0) {
4253 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4254 			rcu_read_unlock();
4255 			return ret;
4256 		}
4257 	}
4258 #endif
4259 	ret = __netif_receive_skb(skb);
4260 	rcu_read_unlock();
4261 	return ret;
4262 }
4263 
4264 /**
4265  *	netif_receive_skb - process receive buffer from network
4266  *	@skb: buffer to process
4267  *
4268  *	netif_receive_skb() is the main receive data processing function.
4269  *	It always succeeds. The buffer may be dropped during processing
4270  *	for congestion control or by the protocol layers.
4271  *
4272  *	This function may only be called from softirq context and interrupts
4273  *	should be enabled.
4274  *
4275  *	Return values (usually ignored):
4276  *	NET_RX_SUCCESS: no congestion
4277  *	NET_RX_DROP: packet was dropped
4278  */
4279 int netif_receive_skb(struct sk_buff *skb)
4280 {
4281 	trace_netif_receive_skb_entry(skb);
4282 
4283 	return netif_receive_skb_internal(skb);
4284 }
4285 EXPORT_SYMBOL(netif_receive_skb);
4286 
4287 DEFINE_PER_CPU(struct work_struct, flush_works);
4288 
4289 /* Network device is going away, flush any packets still pending */
4290 static void flush_backlog(struct work_struct *work)
4291 {
4292 	struct sk_buff *skb, *tmp;
4293 	struct softnet_data *sd;
4294 
4295 	local_bh_disable();
4296 	sd = this_cpu_ptr(&softnet_data);
4297 
4298 	local_irq_disable();
4299 	rps_lock(sd);
4300 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4301 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4302 			__skb_unlink(skb, &sd->input_pkt_queue);
4303 			kfree_skb(skb);
4304 			input_queue_head_incr(sd);
4305 		}
4306 	}
4307 	rps_unlock(sd);
4308 	local_irq_enable();
4309 
4310 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4311 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4312 			__skb_unlink(skb, &sd->process_queue);
4313 			kfree_skb(skb);
4314 			input_queue_head_incr(sd);
4315 		}
4316 	}
4317 	local_bh_enable();
4318 }
4319 
4320 static void flush_all_backlogs(void)
4321 {
4322 	unsigned int cpu;
4323 
4324 	get_online_cpus();
4325 
4326 	for_each_online_cpu(cpu)
4327 		queue_work_on(cpu, system_highpri_wq,
4328 			      per_cpu_ptr(&flush_works, cpu));
4329 
4330 	for_each_online_cpu(cpu)
4331 		flush_work(per_cpu_ptr(&flush_works, cpu));
4332 
4333 	put_online_cpus();
4334 }
4335 
4336 static int napi_gro_complete(struct sk_buff *skb)
4337 {
4338 	struct packet_offload *ptype;
4339 	__be16 type = skb->protocol;
4340 	struct list_head *head = &offload_base;
4341 	int err = -ENOENT;
4342 
4343 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4344 
4345 	if (NAPI_GRO_CB(skb)->count == 1) {
4346 		skb_shinfo(skb)->gso_size = 0;
4347 		goto out;
4348 	}
4349 
4350 	rcu_read_lock();
4351 	list_for_each_entry_rcu(ptype, head, list) {
4352 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4353 			continue;
4354 
4355 		err = ptype->callbacks.gro_complete(skb, 0);
4356 		break;
4357 	}
4358 	rcu_read_unlock();
4359 
4360 	if (err) {
4361 		WARN_ON(&ptype->list == head);
4362 		kfree_skb(skb);
4363 		return NET_RX_SUCCESS;
4364 	}
4365 
4366 out:
4367 	return netif_receive_skb_internal(skb);
4368 }
4369 
4370 /* napi->gro_list contains packets ordered by age.
4371  * youngest packets at the head of it.
4372  * Complete skbs in reverse order to reduce latencies.
4373  */
4374 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4375 {
4376 	struct sk_buff *skb, *prev = NULL;
4377 
4378 	/* scan list and build reverse chain */
4379 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4380 		skb->prev = prev;
4381 		prev = skb;
4382 	}
4383 
4384 	for (skb = prev; skb; skb = prev) {
4385 		skb->next = NULL;
4386 
4387 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4388 			return;
4389 
4390 		prev = skb->prev;
4391 		napi_gro_complete(skb);
4392 		napi->gro_count--;
4393 	}
4394 
4395 	napi->gro_list = NULL;
4396 }
4397 EXPORT_SYMBOL(napi_gro_flush);
4398 
4399 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4400 {
4401 	struct sk_buff *p;
4402 	unsigned int maclen = skb->dev->hard_header_len;
4403 	u32 hash = skb_get_hash_raw(skb);
4404 
4405 	for (p = napi->gro_list; p; p = p->next) {
4406 		unsigned long diffs;
4407 
4408 		NAPI_GRO_CB(p)->flush = 0;
4409 
4410 		if (hash != skb_get_hash_raw(p)) {
4411 			NAPI_GRO_CB(p)->same_flow = 0;
4412 			continue;
4413 		}
4414 
4415 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4416 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4417 		diffs |= skb_metadata_dst_cmp(p, skb);
4418 		if (maclen == ETH_HLEN)
4419 			diffs |= compare_ether_header(skb_mac_header(p),
4420 						      skb_mac_header(skb));
4421 		else if (!diffs)
4422 			diffs = memcmp(skb_mac_header(p),
4423 				       skb_mac_header(skb),
4424 				       maclen);
4425 		NAPI_GRO_CB(p)->same_flow = !diffs;
4426 	}
4427 }
4428 
4429 static void skb_gro_reset_offset(struct sk_buff *skb)
4430 {
4431 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4432 	const skb_frag_t *frag0 = &pinfo->frags[0];
4433 
4434 	NAPI_GRO_CB(skb)->data_offset = 0;
4435 	NAPI_GRO_CB(skb)->frag0 = NULL;
4436 	NAPI_GRO_CB(skb)->frag0_len = 0;
4437 
4438 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4439 	    pinfo->nr_frags &&
4440 	    !PageHighMem(skb_frag_page(frag0))) {
4441 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4442 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4443 	}
4444 }
4445 
4446 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4447 {
4448 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4449 
4450 	BUG_ON(skb->end - skb->tail < grow);
4451 
4452 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4453 
4454 	skb->data_len -= grow;
4455 	skb->tail += grow;
4456 
4457 	pinfo->frags[0].page_offset += grow;
4458 	skb_frag_size_sub(&pinfo->frags[0], grow);
4459 
4460 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4461 		skb_frag_unref(skb, 0);
4462 		memmove(pinfo->frags, pinfo->frags + 1,
4463 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4464 	}
4465 }
4466 
4467 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4468 {
4469 	struct sk_buff **pp = NULL;
4470 	struct packet_offload *ptype;
4471 	__be16 type = skb->protocol;
4472 	struct list_head *head = &offload_base;
4473 	int same_flow;
4474 	enum gro_result ret;
4475 	int grow;
4476 
4477 	if (!(skb->dev->features & NETIF_F_GRO))
4478 		goto normal;
4479 
4480 	if (skb->csum_bad)
4481 		goto normal;
4482 
4483 	gro_list_prepare(napi, skb);
4484 
4485 	rcu_read_lock();
4486 	list_for_each_entry_rcu(ptype, head, list) {
4487 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4488 			continue;
4489 
4490 		skb_set_network_header(skb, skb_gro_offset(skb));
4491 		skb_reset_mac_len(skb);
4492 		NAPI_GRO_CB(skb)->same_flow = 0;
4493 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4494 		NAPI_GRO_CB(skb)->free = 0;
4495 		NAPI_GRO_CB(skb)->encap_mark = 0;
4496 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4497 		NAPI_GRO_CB(skb)->is_fou = 0;
4498 		NAPI_GRO_CB(skb)->is_atomic = 1;
4499 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4500 
4501 		/* Setup for GRO checksum validation */
4502 		switch (skb->ip_summed) {
4503 		case CHECKSUM_COMPLETE:
4504 			NAPI_GRO_CB(skb)->csum = skb->csum;
4505 			NAPI_GRO_CB(skb)->csum_valid = 1;
4506 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4507 			break;
4508 		case CHECKSUM_UNNECESSARY:
4509 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4510 			NAPI_GRO_CB(skb)->csum_valid = 0;
4511 			break;
4512 		default:
4513 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4514 			NAPI_GRO_CB(skb)->csum_valid = 0;
4515 		}
4516 
4517 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4518 		break;
4519 	}
4520 	rcu_read_unlock();
4521 
4522 	if (&ptype->list == head)
4523 		goto normal;
4524 
4525 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4526 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4527 
4528 	if (pp) {
4529 		struct sk_buff *nskb = *pp;
4530 
4531 		*pp = nskb->next;
4532 		nskb->next = NULL;
4533 		napi_gro_complete(nskb);
4534 		napi->gro_count--;
4535 	}
4536 
4537 	if (same_flow)
4538 		goto ok;
4539 
4540 	if (NAPI_GRO_CB(skb)->flush)
4541 		goto normal;
4542 
4543 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4544 		struct sk_buff *nskb = napi->gro_list;
4545 
4546 		/* locate the end of the list to select the 'oldest' flow */
4547 		while (nskb->next) {
4548 			pp = &nskb->next;
4549 			nskb = *pp;
4550 		}
4551 		*pp = NULL;
4552 		nskb->next = NULL;
4553 		napi_gro_complete(nskb);
4554 	} else {
4555 		napi->gro_count++;
4556 	}
4557 	NAPI_GRO_CB(skb)->count = 1;
4558 	NAPI_GRO_CB(skb)->age = jiffies;
4559 	NAPI_GRO_CB(skb)->last = skb;
4560 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4561 	skb->next = napi->gro_list;
4562 	napi->gro_list = skb;
4563 	ret = GRO_HELD;
4564 
4565 pull:
4566 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4567 	if (grow > 0)
4568 		gro_pull_from_frag0(skb, grow);
4569 ok:
4570 	return ret;
4571 
4572 normal:
4573 	ret = GRO_NORMAL;
4574 	goto pull;
4575 }
4576 
4577 struct packet_offload *gro_find_receive_by_type(__be16 type)
4578 {
4579 	struct list_head *offload_head = &offload_base;
4580 	struct packet_offload *ptype;
4581 
4582 	list_for_each_entry_rcu(ptype, offload_head, list) {
4583 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4584 			continue;
4585 		return ptype;
4586 	}
4587 	return NULL;
4588 }
4589 EXPORT_SYMBOL(gro_find_receive_by_type);
4590 
4591 struct packet_offload *gro_find_complete_by_type(__be16 type)
4592 {
4593 	struct list_head *offload_head = &offload_base;
4594 	struct packet_offload *ptype;
4595 
4596 	list_for_each_entry_rcu(ptype, offload_head, list) {
4597 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4598 			continue;
4599 		return ptype;
4600 	}
4601 	return NULL;
4602 }
4603 EXPORT_SYMBOL(gro_find_complete_by_type);
4604 
4605 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4606 {
4607 	switch (ret) {
4608 	case GRO_NORMAL:
4609 		if (netif_receive_skb_internal(skb))
4610 			ret = GRO_DROP;
4611 		break;
4612 
4613 	case GRO_DROP:
4614 		kfree_skb(skb);
4615 		break;
4616 
4617 	case GRO_MERGED_FREE:
4618 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4619 			skb_dst_drop(skb);
4620 			kmem_cache_free(skbuff_head_cache, skb);
4621 		} else {
4622 			__kfree_skb(skb);
4623 		}
4624 		break;
4625 
4626 	case GRO_HELD:
4627 	case GRO_MERGED:
4628 		break;
4629 	}
4630 
4631 	return ret;
4632 }
4633 
4634 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4635 {
4636 	skb_mark_napi_id(skb, napi);
4637 	trace_napi_gro_receive_entry(skb);
4638 
4639 	skb_gro_reset_offset(skb);
4640 
4641 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4642 }
4643 EXPORT_SYMBOL(napi_gro_receive);
4644 
4645 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4646 {
4647 	if (unlikely(skb->pfmemalloc)) {
4648 		consume_skb(skb);
4649 		return;
4650 	}
4651 	__skb_pull(skb, skb_headlen(skb));
4652 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4653 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4654 	skb->vlan_tci = 0;
4655 	skb->dev = napi->dev;
4656 	skb->skb_iif = 0;
4657 	skb->encapsulation = 0;
4658 	skb_shinfo(skb)->gso_type = 0;
4659 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4660 
4661 	napi->skb = skb;
4662 }
4663 
4664 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4665 {
4666 	struct sk_buff *skb = napi->skb;
4667 
4668 	if (!skb) {
4669 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4670 		if (skb) {
4671 			napi->skb = skb;
4672 			skb_mark_napi_id(skb, napi);
4673 		}
4674 	}
4675 	return skb;
4676 }
4677 EXPORT_SYMBOL(napi_get_frags);
4678 
4679 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4680 				      struct sk_buff *skb,
4681 				      gro_result_t ret)
4682 {
4683 	switch (ret) {
4684 	case GRO_NORMAL:
4685 	case GRO_HELD:
4686 		__skb_push(skb, ETH_HLEN);
4687 		skb->protocol = eth_type_trans(skb, skb->dev);
4688 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4689 			ret = GRO_DROP;
4690 		break;
4691 
4692 	case GRO_DROP:
4693 	case GRO_MERGED_FREE:
4694 		napi_reuse_skb(napi, skb);
4695 		break;
4696 
4697 	case GRO_MERGED:
4698 		break;
4699 	}
4700 
4701 	return ret;
4702 }
4703 
4704 /* Upper GRO stack assumes network header starts at gro_offset=0
4705  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4706  * We copy ethernet header into skb->data to have a common layout.
4707  */
4708 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4709 {
4710 	struct sk_buff *skb = napi->skb;
4711 	const struct ethhdr *eth;
4712 	unsigned int hlen = sizeof(*eth);
4713 
4714 	napi->skb = NULL;
4715 
4716 	skb_reset_mac_header(skb);
4717 	skb_gro_reset_offset(skb);
4718 
4719 	eth = skb_gro_header_fast(skb, 0);
4720 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4721 		eth = skb_gro_header_slow(skb, hlen, 0);
4722 		if (unlikely(!eth)) {
4723 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4724 					     __func__, napi->dev->name);
4725 			napi_reuse_skb(napi, skb);
4726 			return NULL;
4727 		}
4728 	} else {
4729 		gro_pull_from_frag0(skb, hlen);
4730 		NAPI_GRO_CB(skb)->frag0 += hlen;
4731 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4732 	}
4733 	__skb_pull(skb, hlen);
4734 
4735 	/*
4736 	 * This works because the only protocols we care about don't require
4737 	 * special handling.
4738 	 * We'll fix it up properly in napi_frags_finish()
4739 	 */
4740 	skb->protocol = eth->h_proto;
4741 
4742 	return skb;
4743 }
4744 
4745 gro_result_t napi_gro_frags(struct napi_struct *napi)
4746 {
4747 	struct sk_buff *skb = napi_frags_skb(napi);
4748 
4749 	if (!skb)
4750 		return GRO_DROP;
4751 
4752 	trace_napi_gro_frags_entry(skb);
4753 
4754 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4755 }
4756 EXPORT_SYMBOL(napi_gro_frags);
4757 
4758 /* Compute the checksum from gro_offset and return the folded value
4759  * after adding in any pseudo checksum.
4760  */
4761 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4762 {
4763 	__wsum wsum;
4764 	__sum16 sum;
4765 
4766 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4767 
4768 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4769 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4770 	if (likely(!sum)) {
4771 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4772 		    !skb->csum_complete_sw)
4773 			netdev_rx_csum_fault(skb->dev);
4774 	}
4775 
4776 	NAPI_GRO_CB(skb)->csum = wsum;
4777 	NAPI_GRO_CB(skb)->csum_valid = 1;
4778 
4779 	return sum;
4780 }
4781 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4782 
4783 /*
4784  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4785  * Note: called with local irq disabled, but exits with local irq enabled.
4786  */
4787 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4788 {
4789 #ifdef CONFIG_RPS
4790 	struct softnet_data *remsd = sd->rps_ipi_list;
4791 
4792 	if (remsd) {
4793 		sd->rps_ipi_list = NULL;
4794 
4795 		local_irq_enable();
4796 
4797 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4798 		while (remsd) {
4799 			struct softnet_data *next = remsd->rps_ipi_next;
4800 
4801 			if (cpu_online(remsd->cpu))
4802 				smp_call_function_single_async(remsd->cpu,
4803 							   &remsd->csd);
4804 			remsd = next;
4805 		}
4806 	} else
4807 #endif
4808 		local_irq_enable();
4809 }
4810 
4811 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4812 {
4813 #ifdef CONFIG_RPS
4814 	return sd->rps_ipi_list != NULL;
4815 #else
4816 	return false;
4817 #endif
4818 }
4819 
4820 static int process_backlog(struct napi_struct *napi, int quota)
4821 {
4822 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4823 	bool again = true;
4824 	int work = 0;
4825 
4826 	/* Check if we have pending ipi, its better to send them now,
4827 	 * not waiting net_rx_action() end.
4828 	 */
4829 	if (sd_has_rps_ipi_waiting(sd)) {
4830 		local_irq_disable();
4831 		net_rps_action_and_irq_enable(sd);
4832 	}
4833 
4834 	napi->weight = weight_p;
4835 	while (again) {
4836 		struct sk_buff *skb;
4837 
4838 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4839 			rcu_read_lock();
4840 			__netif_receive_skb(skb);
4841 			rcu_read_unlock();
4842 			input_queue_head_incr(sd);
4843 			if (++work >= quota)
4844 				return work;
4845 
4846 		}
4847 
4848 		local_irq_disable();
4849 		rps_lock(sd);
4850 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4851 			/*
4852 			 * Inline a custom version of __napi_complete().
4853 			 * only current cpu owns and manipulates this napi,
4854 			 * and NAPI_STATE_SCHED is the only possible flag set
4855 			 * on backlog.
4856 			 * We can use a plain write instead of clear_bit(),
4857 			 * and we dont need an smp_mb() memory barrier.
4858 			 */
4859 			napi->state = 0;
4860 			again = false;
4861 		} else {
4862 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
4863 						   &sd->process_queue);
4864 		}
4865 		rps_unlock(sd);
4866 		local_irq_enable();
4867 	}
4868 
4869 	return work;
4870 }
4871 
4872 /**
4873  * __napi_schedule - schedule for receive
4874  * @n: entry to schedule
4875  *
4876  * The entry's receive function will be scheduled to run.
4877  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4878  */
4879 void __napi_schedule(struct napi_struct *n)
4880 {
4881 	unsigned long flags;
4882 
4883 	local_irq_save(flags);
4884 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4885 	local_irq_restore(flags);
4886 }
4887 EXPORT_SYMBOL(__napi_schedule);
4888 
4889 /**
4890  * __napi_schedule_irqoff - schedule for receive
4891  * @n: entry to schedule
4892  *
4893  * Variant of __napi_schedule() assuming hard irqs are masked
4894  */
4895 void __napi_schedule_irqoff(struct napi_struct *n)
4896 {
4897 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4898 }
4899 EXPORT_SYMBOL(__napi_schedule_irqoff);
4900 
4901 bool __napi_complete(struct napi_struct *n)
4902 {
4903 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4904 
4905 	/* Some drivers call us directly, instead of calling
4906 	 * napi_complete_done().
4907 	 */
4908 	if (unlikely(test_bit(NAPI_STATE_IN_BUSY_POLL, &n->state)))
4909 		return false;
4910 
4911 	list_del_init(&n->poll_list);
4912 	smp_mb__before_atomic();
4913 	clear_bit(NAPI_STATE_SCHED, &n->state);
4914 	return true;
4915 }
4916 EXPORT_SYMBOL(__napi_complete);
4917 
4918 bool napi_complete_done(struct napi_struct *n, int work_done)
4919 {
4920 	unsigned long flags;
4921 
4922 	/*
4923 	 * 1) Don't let napi dequeue from the cpu poll list
4924 	 *    just in case its running on a different cpu.
4925 	 * 2) If we are busy polling, do nothing here, we have
4926 	 *    the guarantee we will be called later.
4927 	 */
4928 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4929 				 NAPIF_STATE_IN_BUSY_POLL)))
4930 		return false;
4931 
4932 	if (n->gro_list) {
4933 		unsigned long timeout = 0;
4934 
4935 		if (work_done)
4936 			timeout = n->dev->gro_flush_timeout;
4937 
4938 		if (timeout)
4939 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4940 				      HRTIMER_MODE_REL_PINNED);
4941 		else
4942 			napi_gro_flush(n, false);
4943 	}
4944 	if (likely(list_empty(&n->poll_list))) {
4945 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4946 	} else {
4947 		/* If n->poll_list is not empty, we need to mask irqs */
4948 		local_irq_save(flags);
4949 		__napi_complete(n);
4950 		local_irq_restore(flags);
4951 	}
4952 	return true;
4953 }
4954 EXPORT_SYMBOL(napi_complete_done);
4955 
4956 /* must be called under rcu_read_lock(), as we dont take a reference */
4957 static struct napi_struct *napi_by_id(unsigned int napi_id)
4958 {
4959 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4960 	struct napi_struct *napi;
4961 
4962 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4963 		if (napi->napi_id == napi_id)
4964 			return napi;
4965 
4966 	return NULL;
4967 }
4968 
4969 #if defined(CONFIG_NET_RX_BUSY_POLL)
4970 
4971 #define BUSY_POLL_BUDGET 8
4972 
4973 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
4974 {
4975 	int rc;
4976 
4977 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
4978 
4979 	local_bh_disable();
4980 
4981 	/* All we really want here is to re-enable device interrupts.
4982 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
4983 	 */
4984 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
4985 	netpoll_poll_unlock(have_poll_lock);
4986 	if (rc == BUSY_POLL_BUDGET)
4987 		__napi_schedule(napi);
4988 	local_bh_enable();
4989 	if (local_softirq_pending())
4990 		do_softirq();
4991 }
4992 
4993 bool sk_busy_loop(struct sock *sk, int nonblock)
4994 {
4995 	unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4996 	int (*napi_poll)(struct napi_struct *napi, int budget);
4997 	int (*busy_poll)(struct napi_struct *dev);
4998 	void *have_poll_lock = NULL;
4999 	struct napi_struct *napi;
5000 	int rc;
5001 
5002 restart:
5003 	rc = false;
5004 	napi_poll = NULL;
5005 
5006 	rcu_read_lock();
5007 
5008 	napi = napi_by_id(sk->sk_napi_id);
5009 	if (!napi)
5010 		goto out;
5011 
5012 	/* Note: ndo_busy_poll method is optional in linux-4.5 */
5013 	busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
5014 
5015 	preempt_disable();
5016 	for (;;) {
5017 		rc = 0;
5018 		local_bh_disable();
5019 		if (busy_poll) {
5020 			rc = busy_poll(napi);
5021 			goto count;
5022 		}
5023 		if (!napi_poll) {
5024 			unsigned long val = READ_ONCE(napi->state);
5025 
5026 			/* If multiple threads are competing for this napi,
5027 			 * we avoid dirtying napi->state as much as we can.
5028 			 */
5029 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5030 				   NAPIF_STATE_IN_BUSY_POLL))
5031 				goto count;
5032 			if (cmpxchg(&napi->state, val,
5033 				    val | NAPIF_STATE_IN_BUSY_POLL |
5034 					  NAPIF_STATE_SCHED) != val)
5035 				goto count;
5036 			have_poll_lock = netpoll_poll_lock(napi);
5037 			napi_poll = napi->poll;
5038 		}
5039 		rc = napi_poll(napi, BUSY_POLL_BUDGET);
5040 		trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5041 count:
5042 		if (rc > 0)
5043 			__NET_ADD_STATS(sock_net(sk),
5044 					LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5045 		local_bh_enable();
5046 
5047 		if (rc == LL_FLUSH_FAILED)
5048 			break; /* permanent failure */
5049 
5050 		if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5051 		    busy_loop_timeout(end_time))
5052 			break;
5053 
5054 		if (unlikely(need_resched())) {
5055 			if (napi_poll)
5056 				busy_poll_stop(napi, have_poll_lock);
5057 			preempt_enable();
5058 			rcu_read_unlock();
5059 			cond_resched();
5060 			rc = !skb_queue_empty(&sk->sk_receive_queue);
5061 			if (rc || busy_loop_timeout(end_time))
5062 				return rc;
5063 			goto restart;
5064 		}
5065 		cpu_relax_lowlatency();
5066 	}
5067 	if (napi_poll)
5068 		busy_poll_stop(napi, have_poll_lock);
5069 	preempt_enable();
5070 	rc = !skb_queue_empty(&sk->sk_receive_queue);
5071 out:
5072 	rcu_read_unlock();
5073 	return rc;
5074 }
5075 EXPORT_SYMBOL(sk_busy_loop);
5076 
5077 #endif /* CONFIG_NET_RX_BUSY_POLL */
5078 
5079 static void napi_hash_add(struct napi_struct *napi)
5080 {
5081 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5082 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5083 		return;
5084 
5085 	spin_lock(&napi_hash_lock);
5086 
5087 	/* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5088 	do {
5089 		if (unlikely(++napi_gen_id < NR_CPUS + 1))
5090 			napi_gen_id = NR_CPUS + 1;
5091 	} while (napi_by_id(napi_gen_id));
5092 	napi->napi_id = napi_gen_id;
5093 
5094 	hlist_add_head_rcu(&napi->napi_hash_node,
5095 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5096 
5097 	spin_unlock(&napi_hash_lock);
5098 }
5099 
5100 /* Warning : caller is responsible to make sure rcu grace period
5101  * is respected before freeing memory containing @napi
5102  */
5103 bool napi_hash_del(struct napi_struct *napi)
5104 {
5105 	bool rcu_sync_needed = false;
5106 
5107 	spin_lock(&napi_hash_lock);
5108 
5109 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5110 		rcu_sync_needed = true;
5111 		hlist_del_rcu(&napi->napi_hash_node);
5112 	}
5113 	spin_unlock(&napi_hash_lock);
5114 	return rcu_sync_needed;
5115 }
5116 EXPORT_SYMBOL_GPL(napi_hash_del);
5117 
5118 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5119 {
5120 	struct napi_struct *napi;
5121 
5122 	napi = container_of(timer, struct napi_struct, timer);
5123 	if (napi->gro_list)
5124 		napi_schedule(napi);
5125 
5126 	return HRTIMER_NORESTART;
5127 }
5128 
5129 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5130 		    int (*poll)(struct napi_struct *, int), int weight)
5131 {
5132 	INIT_LIST_HEAD(&napi->poll_list);
5133 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5134 	napi->timer.function = napi_watchdog;
5135 	napi->gro_count = 0;
5136 	napi->gro_list = NULL;
5137 	napi->skb = NULL;
5138 	napi->poll = poll;
5139 	if (weight > NAPI_POLL_WEIGHT)
5140 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5141 			    weight, dev->name);
5142 	napi->weight = weight;
5143 	list_add(&napi->dev_list, &dev->napi_list);
5144 	napi->dev = dev;
5145 #ifdef CONFIG_NETPOLL
5146 	napi->poll_owner = -1;
5147 #endif
5148 	set_bit(NAPI_STATE_SCHED, &napi->state);
5149 	napi_hash_add(napi);
5150 }
5151 EXPORT_SYMBOL(netif_napi_add);
5152 
5153 void napi_disable(struct napi_struct *n)
5154 {
5155 	might_sleep();
5156 	set_bit(NAPI_STATE_DISABLE, &n->state);
5157 
5158 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5159 		msleep(1);
5160 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5161 		msleep(1);
5162 
5163 	hrtimer_cancel(&n->timer);
5164 
5165 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5166 }
5167 EXPORT_SYMBOL(napi_disable);
5168 
5169 /* Must be called in process context */
5170 void netif_napi_del(struct napi_struct *napi)
5171 {
5172 	might_sleep();
5173 	if (napi_hash_del(napi))
5174 		synchronize_net();
5175 	list_del_init(&napi->dev_list);
5176 	napi_free_frags(napi);
5177 
5178 	kfree_skb_list(napi->gro_list);
5179 	napi->gro_list = NULL;
5180 	napi->gro_count = 0;
5181 }
5182 EXPORT_SYMBOL(netif_napi_del);
5183 
5184 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5185 {
5186 	void *have;
5187 	int work, weight;
5188 
5189 	list_del_init(&n->poll_list);
5190 
5191 	have = netpoll_poll_lock(n);
5192 
5193 	weight = n->weight;
5194 
5195 	/* This NAPI_STATE_SCHED test is for avoiding a race
5196 	 * with netpoll's poll_napi().  Only the entity which
5197 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5198 	 * actually make the ->poll() call.  Therefore we avoid
5199 	 * accidentally calling ->poll() when NAPI is not scheduled.
5200 	 */
5201 	work = 0;
5202 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5203 		work = n->poll(n, weight);
5204 		trace_napi_poll(n, work, weight);
5205 	}
5206 
5207 	WARN_ON_ONCE(work > weight);
5208 
5209 	if (likely(work < weight))
5210 		goto out_unlock;
5211 
5212 	/* Drivers must not modify the NAPI state if they
5213 	 * consume the entire weight.  In such cases this code
5214 	 * still "owns" the NAPI instance and therefore can
5215 	 * move the instance around on the list at-will.
5216 	 */
5217 	if (unlikely(napi_disable_pending(n))) {
5218 		napi_complete(n);
5219 		goto out_unlock;
5220 	}
5221 
5222 	if (n->gro_list) {
5223 		/* flush too old packets
5224 		 * If HZ < 1000, flush all packets.
5225 		 */
5226 		napi_gro_flush(n, HZ >= 1000);
5227 	}
5228 
5229 	/* Some drivers may have called napi_schedule
5230 	 * prior to exhausting their budget.
5231 	 */
5232 	if (unlikely(!list_empty(&n->poll_list))) {
5233 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5234 			     n->dev ? n->dev->name : "backlog");
5235 		goto out_unlock;
5236 	}
5237 
5238 	list_add_tail(&n->poll_list, repoll);
5239 
5240 out_unlock:
5241 	netpoll_poll_unlock(have);
5242 
5243 	return work;
5244 }
5245 
5246 static __latent_entropy void net_rx_action(struct softirq_action *h)
5247 {
5248 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5249 	unsigned long time_limit = jiffies + 2;
5250 	int budget = netdev_budget;
5251 	LIST_HEAD(list);
5252 	LIST_HEAD(repoll);
5253 
5254 	local_irq_disable();
5255 	list_splice_init(&sd->poll_list, &list);
5256 	local_irq_enable();
5257 
5258 	for (;;) {
5259 		struct napi_struct *n;
5260 
5261 		if (list_empty(&list)) {
5262 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5263 				goto out;
5264 			break;
5265 		}
5266 
5267 		n = list_first_entry(&list, struct napi_struct, poll_list);
5268 		budget -= napi_poll(n, &repoll);
5269 
5270 		/* If softirq window is exhausted then punt.
5271 		 * Allow this to run for 2 jiffies since which will allow
5272 		 * an average latency of 1.5/HZ.
5273 		 */
5274 		if (unlikely(budget <= 0 ||
5275 			     time_after_eq(jiffies, time_limit))) {
5276 			sd->time_squeeze++;
5277 			break;
5278 		}
5279 	}
5280 
5281 	local_irq_disable();
5282 
5283 	list_splice_tail_init(&sd->poll_list, &list);
5284 	list_splice_tail(&repoll, &list);
5285 	list_splice(&list, &sd->poll_list);
5286 	if (!list_empty(&sd->poll_list))
5287 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5288 
5289 	net_rps_action_and_irq_enable(sd);
5290 out:
5291 	__kfree_skb_flush();
5292 }
5293 
5294 struct netdev_adjacent {
5295 	struct net_device *dev;
5296 
5297 	/* upper master flag, there can only be one master device per list */
5298 	bool master;
5299 
5300 	/* counter for the number of times this device was added to us */
5301 	u16 ref_nr;
5302 
5303 	/* private field for the users */
5304 	void *private;
5305 
5306 	struct list_head list;
5307 	struct rcu_head rcu;
5308 };
5309 
5310 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5311 						 struct list_head *adj_list)
5312 {
5313 	struct netdev_adjacent *adj;
5314 
5315 	list_for_each_entry(adj, adj_list, list) {
5316 		if (adj->dev == adj_dev)
5317 			return adj;
5318 	}
5319 	return NULL;
5320 }
5321 
5322 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5323 {
5324 	struct net_device *dev = data;
5325 
5326 	return upper_dev == dev;
5327 }
5328 
5329 /**
5330  * netdev_has_upper_dev - Check if device is linked to an upper device
5331  * @dev: device
5332  * @upper_dev: upper device to check
5333  *
5334  * Find out if a device is linked to specified upper device and return true
5335  * in case it is. Note that this checks only immediate upper device,
5336  * not through a complete stack of devices. The caller must hold the RTNL lock.
5337  */
5338 bool netdev_has_upper_dev(struct net_device *dev,
5339 			  struct net_device *upper_dev)
5340 {
5341 	ASSERT_RTNL();
5342 
5343 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5344 					     upper_dev);
5345 }
5346 EXPORT_SYMBOL(netdev_has_upper_dev);
5347 
5348 /**
5349  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5350  * @dev: device
5351  * @upper_dev: upper device to check
5352  *
5353  * Find out if a device is linked to specified upper device and return true
5354  * in case it is. Note that this checks the entire upper device chain.
5355  * The caller must hold rcu lock.
5356  */
5357 
5358 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5359 				  struct net_device *upper_dev)
5360 {
5361 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5362 					       upper_dev);
5363 }
5364 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5365 
5366 /**
5367  * netdev_has_any_upper_dev - Check if device is linked to some device
5368  * @dev: device
5369  *
5370  * Find out if a device is linked to an upper device and return true in case
5371  * it is. The caller must hold the RTNL lock.
5372  */
5373 static bool netdev_has_any_upper_dev(struct net_device *dev)
5374 {
5375 	ASSERT_RTNL();
5376 
5377 	return !list_empty(&dev->adj_list.upper);
5378 }
5379 
5380 /**
5381  * netdev_master_upper_dev_get - Get master upper device
5382  * @dev: device
5383  *
5384  * Find a master upper device and return pointer to it or NULL in case
5385  * it's not there. The caller must hold the RTNL lock.
5386  */
5387 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5388 {
5389 	struct netdev_adjacent *upper;
5390 
5391 	ASSERT_RTNL();
5392 
5393 	if (list_empty(&dev->adj_list.upper))
5394 		return NULL;
5395 
5396 	upper = list_first_entry(&dev->adj_list.upper,
5397 				 struct netdev_adjacent, list);
5398 	if (likely(upper->master))
5399 		return upper->dev;
5400 	return NULL;
5401 }
5402 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5403 
5404 /**
5405  * netdev_has_any_lower_dev - Check if device is linked to some device
5406  * @dev: device
5407  *
5408  * Find out if a device is linked to a lower device and return true in case
5409  * it is. The caller must hold the RTNL lock.
5410  */
5411 static bool netdev_has_any_lower_dev(struct net_device *dev)
5412 {
5413 	ASSERT_RTNL();
5414 
5415 	return !list_empty(&dev->adj_list.lower);
5416 }
5417 
5418 void *netdev_adjacent_get_private(struct list_head *adj_list)
5419 {
5420 	struct netdev_adjacent *adj;
5421 
5422 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5423 
5424 	return adj->private;
5425 }
5426 EXPORT_SYMBOL(netdev_adjacent_get_private);
5427 
5428 /**
5429  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5430  * @dev: device
5431  * @iter: list_head ** of the current position
5432  *
5433  * Gets the next device from the dev's upper list, starting from iter
5434  * position. The caller must hold RCU read lock.
5435  */
5436 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5437 						 struct list_head **iter)
5438 {
5439 	struct netdev_adjacent *upper;
5440 
5441 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5442 
5443 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5444 
5445 	if (&upper->list == &dev->adj_list.upper)
5446 		return NULL;
5447 
5448 	*iter = &upper->list;
5449 
5450 	return upper->dev;
5451 }
5452 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5453 
5454 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5455 						    struct list_head **iter)
5456 {
5457 	struct netdev_adjacent *upper;
5458 
5459 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5460 
5461 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5462 
5463 	if (&upper->list == &dev->adj_list.upper)
5464 		return NULL;
5465 
5466 	*iter = &upper->list;
5467 
5468 	return upper->dev;
5469 }
5470 
5471 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5472 				  int (*fn)(struct net_device *dev,
5473 					    void *data),
5474 				  void *data)
5475 {
5476 	struct net_device *udev;
5477 	struct list_head *iter;
5478 	int ret;
5479 
5480 	for (iter = &dev->adj_list.upper,
5481 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
5482 	     udev;
5483 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5484 		/* first is the upper device itself */
5485 		ret = fn(udev, data);
5486 		if (ret)
5487 			return ret;
5488 
5489 		/* then look at all of its upper devices */
5490 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5491 		if (ret)
5492 			return ret;
5493 	}
5494 
5495 	return 0;
5496 }
5497 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5498 
5499 /**
5500  * netdev_lower_get_next_private - Get the next ->private from the
5501  *				   lower neighbour list
5502  * @dev: device
5503  * @iter: list_head ** of the current position
5504  *
5505  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5506  * list, starting from iter position. The caller must hold either hold the
5507  * RTNL lock or its own locking that guarantees that the neighbour lower
5508  * list will remain unchanged.
5509  */
5510 void *netdev_lower_get_next_private(struct net_device *dev,
5511 				    struct list_head **iter)
5512 {
5513 	struct netdev_adjacent *lower;
5514 
5515 	lower = list_entry(*iter, struct netdev_adjacent, list);
5516 
5517 	if (&lower->list == &dev->adj_list.lower)
5518 		return NULL;
5519 
5520 	*iter = lower->list.next;
5521 
5522 	return lower->private;
5523 }
5524 EXPORT_SYMBOL(netdev_lower_get_next_private);
5525 
5526 /**
5527  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5528  *				       lower neighbour list, RCU
5529  *				       variant
5530  * @dev: device
5531  * @iter: list_head ** of the current position
5532  *
5533  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5534  * list, starting from iter position. The caller must hold RCU read lock.
5535  */
5536 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5537 					struct list_head **iter)
5538 {
5539 	struct netdev_adjacent *lower;
5540 
5541 	WARN_ON_ONCE(!rcu_read_lock_held());
5542 
5543 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5544 
5545 	if (&lower->list == &dev->adj_list.lower)
5546 		return NULL;
5547 
5548 	*iter = &lower->list;
5549 
5550 	return lower->private;
5551 }
5552 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5553 
5554 /**
5555  * netdev_lower_get_next - Get the next device from the lower neighbour
5556  *                         list
5557  * @dev: device
5558  * @iter: list_head ** of the current position
5559  *
5560  * Gets the next netdev_adjacent from the dev's lower neighbour
5561  * list, starting from iter position. The caller must hold RTNL lock or
5562  * its own locking that guarantees that the neighbour lower
5563  * list will remain unchanged.
5564  */
5565 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5566 {
5567 	struct netdev_adjacent *lower;
5568 
5569 	lower = list_entry(*iter, struct netdev_adjacent, list);
5570 
5571 	if (&lower->list == &dev->adj_list.lower)
5572 		return NULL;
5573 
5574 	*iter = lower->list.next;
5575 
5576 	return lower->dev;
5577 }
5578 EXPORT_SYMBOL(netdev_lower_get_next);
5579 
5580 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5581 						struct list_head **iter)
5582 {
5583 	struct netdev_adjacent *lower;
5584 
5585 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5586 
5587 	if (&lower->list == &dev->adj_list.lower)
5588 		return NULL;
5589 
5590 	*iter = &lower->list;
5591 
5592 	return lower->dev;
5593 }
5594 
5595 int netdev_walk_all_lower_dev(struct net_device *dev,
5596 			      int (*fn)(struct net_device *dev,
5597 					void *data),
5598 			      void *data)
5599 {
5600 	struct net_device *ldev;
5601 	struct list_head *iter;
5602 	int ret;
5603 
5604 	for (iter = &dev->adj_list.lower,
5605 	     ldev = netdev_next_lower_dev(dev, &iter);
5606 	     ldev;
5607 	     ldev = netdev_next_lower_dev(dev, &iter)) {
5608 		/* first is the lower device itself */
5609 		ret = fn(ldev, data);
5610 		if (ret)
5611 			return ret;
5612 
5613 		/* then look at all of its lower devices */
5614 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
5615 		if (ret)
5616 			return ret;
5617 	}
5618 
5619 	return 0;
5620 }
5621 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5622 
5623 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5624 						    struct list_head **iter)
5625 {
5626 	struct netdev_adjacent *lower;
5627 
5628 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5629 	if (&lower->list == &dev->adj_list.lower)
5630 		return NULL;
5631 
5632 	*iter = &lower->list;
5633 
5634 	return lower->dev;
5635 }
5636 
5637 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5638 				  int (*fn)(struct net_device *dev,
5639 					    void *data),
5640 				  void *data)
5641 {
5642 	struct net_device *ldev;
5643 	struct list_head *iter;
5644 	int ret;
5645 
5646 	for (iter = &dev->adj_list.lower,
5647 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
5648 	     ldev;
5649 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5650 		/* first is the lower device itself */
5651 		ret = fn(ldev, data);
5652 		if (ret)
5653 			return ret;
5654 
5655 		/* then look at all of its lower devices */
5656 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5657 		if (ret)
5658 			return ret;
5659 	}
5660 
5661 	return 0;
5662 }
5663 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5664 
5665 /**
5666  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5667  *				       lower neighbour list, RCU
5668  *				       variant
5669  * @dev: device
5670  *
5671  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5672  * list. The caller must hold RCU read lock.
5673  */
5674 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5675 {
5676 	struct netdev_adjacent *lower;
5677 
5678 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5679 			struct netdev_adjacent, list);
5680 	if (lower)
5681 		return lower->private;
5682 	return NULL;
5683 }
5684 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5685 
5686 /**
5687  * netdev_master_upper_dev_get_rcu - Get master upper device
5688  * @dev: device
5689  *
5690  * Find a master upper device and return pointer to it or NULL in case
5691  * it's not there. The caller must hold the RCU read lock.
5692  */
5693 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5694 {
5695 	struct netdev_adjacent *upper;
5696 
5697 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5698 				       struct netdev_adjacent, list);
5699 	if (upper && likely(upper->master))
5700 		return upper->dev;
5701 	return NULL;
5702 }
5703 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5704 
5705 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5706 			      struct net_device *adj_dev,
5707 			      struct list_head *dev_list)
5708 {
5709 	char linkname[IFNAMSIZ+7];
5710 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5711 		"upper_%s" : "lower_%s", adj_dev->name);
5712 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5713 				 linkname);
5714 }
5715 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5716 			       char *name,
5717 			       struct list_head *dev_list)
5718 {
5719 	char linkname[IFNAMSIZ+7];
5720 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5721 		"upper_%s" : "lower_%s", name);
5722 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5723 }
5724 
5725 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5726 						 struct net_device *adj_dev,
5727 						 struct list_head *dev_list)
5728 {
5729 	return (dev_list == &dev->adj_list.upper ||
5730 		dev_list == &dev->adj_list.lower) &&
5731 		net_eq(dev_net(dev), dev_net(adj_dev));
5732 }
5733 
5734 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5735 					struct net_device *adj_dev,
5736 					struct list_head *dev_list,
5737 					void *private, bool master)
5738 {
5739 	struct netdev_adjacent *adj;
5740 	int ret;
5741 
5742 	adj = __netdev_find_adj(adj_dev, dev_list);
5743 
5744 	if (adj) {
5745 		adj->ref_nr += 1;
5746 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5747 			 dev->name, adj_dev->name, adj->ref_nr);
5748 
5749 		return 0;
5750 	}
5751 
5752 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5753 	if (!adj)
5754 		return -ENOMEM;
5755 
5756 	adj->dev = adj_dev;
5757 	adj->master = master;
5758 	adj->ref_nr = 1;
5759 	adj->private = private;
5760 	dev_hold(adj_dev);
5761 
5762 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5763 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5764 
5765 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5766 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5767 		if (ret)
5768 			goto free_adj;
5769 	}
5770 
5771 	/* Ensure that master link is always the first item in list. */
5772 	if (master) {
5773 		ret = sysfs_create_link(&(dev->dev.kobj),
5774 					&(adj_dev->dev.kobj), "master");
5775 		if (ret)
5776 			goto remove_symlinks;
5777 
5778 		list_add_rcu(&adj->list, dev_list);
5779 	} else {
5780 		list_add_tail_rcu(&adj->list, dev_list);
5781 	}
5782 
5783 	return 0;
5784 
5785 remove_symlinks:
5786 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5787 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5788 free_adj:
5789 	kfree(adj);
5790 	dev_put(adj_dev);
5791 
5792 	return ret;
5793 }
5794 
5795 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5796 					 struct net_device *adj_dev,
5797 					 u16 ref_nr,
5798 					 struct list_head *dev_list)
5799 {
5800 	struct netdev_adjacent *adj;
5801 
5802 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5803 		 dev->name, adj_dev->name, ref_nr);
5804 
5805 	adj = __netdev_find_adj(adj_dev, dev_list);
5806 
5807 	if (!adj) {
5808 		pr_err("Adjacency does not exist for device %s from %s\n",
5809 		       dev->name, adj_dev->name);
5810 		WARN_ON(1);
5811 		return;
5812 	}
5813 
5814 	if (adj->ref_nr > ref_nr) {
5815 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5816 			 dev->name, adj_dev->name, ref_nr,
5817 			 adj->ref_nr - ref_nr);
5818 		adj->ref_nr -= ref_nr;
5819 		return;
5820 	}
5821 
5822 	if (adj->master)
5823 		sysfs_remove_link(&(dev->dev.kobj), "master");
5824 
5825 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5826 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5827 
5828 	list_del_rcu(&adj->list);
5829 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5830 		 adj_dev->name, dev->name, adj_dev->name);
5831 	dev_put(adj_dev);
5832 	kfree_rcu(adj, rcu);
5833 }
5834 
5835 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5836 					    struct net_device *upper_dev,
5837 					    struct list_head *up_list,
5838 					    struct list_head *down_list,
5839 					    void *private, bool master)
5840 {
5841 	int ret;
5842 
5843 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5844 					   private, master);
5845 	if (ret)
5846 		return ret;
5847 
5848 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5849 					   private, false);
5850 	if (ret) {
5851 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5852 		return ret;
5853 	}
5854 
5855 	return 0;
5856 }
5857 
5858 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5859 					       struct net_device *upper_dev,
5860 					       u16 ref_nr,
5861 					       struct list_head *up_list,
5862 					       struct list_head *down_list)
5863 {
5864 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5865 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5866 }
5867 
5868 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5869 						struct net_device *upper_dev,
5870 						void *private, bool master)
5871 {
5872 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5873 						&dev->adj_list.upper,
5874 						&upper_dev->adj_list.lower,
5875 						private, master);
5876 }
5877 
5878 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5879 						   struct net_device *upper_dev)
5880 {
5881 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5882 					   &dev->adj_list.upper,
5883 					   &upper_dev->adj_list.lower);
5884 }
5885 
5886 static int __netdev_upper_dev_link(struct net_device *dev,
5887 				   struct net_device *upper_dev, bool master,
5888 				   void *upper_priv, void *upper_info)
5889 {
5890 	struct netdev_notifier_changeupper_info changeupper_info;
5891 	int ret = 0;
5892 
5893 	ASSERT_RTNL();
5894 
5895 	if (dev == upper_dev)
5896 		return -EBUSY;
5897 
5898 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5899 	if (netdev_has_upper_dev(upper_dev, dev))
5900 		return -EBUSY;
5901 
5902 	if (netdev_has_upper_dev(dev, upper_dev))
5903 		return -EEXIST;
5904 
5905 	if (master && netdev_master_upper_dev_get(dev))
5906 		return -EBUSY;
5907 
5908 	changeupper_info.upper_dev = upper_dev;
5909 	changeupper_info.master = master;
5910 	changeupper_info.linking = true;
5911 	changeupper_info.upper_info = upper_info;
5912 
5913 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5914 					    &changeupper_info.info);
5915 	ret = notifier_to_errno(ret);
5916 	if (ret)
5917 		return ret;
5918 
5919 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5920 						   master);
5921 	if (ret)
5922 		return ret;
5923 
5924 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5925 					    &changeupper_info.info);
5926 	ret = notifier_to_errno(ret);
5927 	if (ret)
5928 		goto rollback;
5929 
5930 	return 0;
5931 
5932 rollback:
5933 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5934 
5935 	return ret;
5936 }
5937 
5938 /**
5939  * netdev_upper_dev_link - Add a link to the upper device
5940  * @dev: device
5941  * @upper_dev: new upper device
5942  *
5943  * Adds a link to device which is upper to this one. The caller must hold
5944  * the RTNL lock. On a failure a negative errno code is returned.
5945  * On success the reference counts are adjusted and the function
5946  * returns zero.
5947  */
5948 int netdev_upper_dev_link(struct net_device *dev,
5949 			  struct net_device *upper_dev)
5950 {
5951 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5952 }
5953 EXPORT_SYMBOL(netdev_upper_dev_link);
5954 
5955 /**
5956  * netdev_master_upper_dev_link - Add a master link to the upper device
5957  * @dev: device
5958  * @upper_dev: new upper device
5959  * @upper_priv: upper device private
5960  * @upper_info: upper info to be passed down via notifier
5961  *
5962  * Adds a link to device which is upper to this one. In this case, only
5963  * one master upper device can be linked, although other non-master devices
5964  * might be linked as well. The caller must hold the RTNL lock.
5965  * On a failure a negative errno code is returned. On success the reference
5966  * counts are adjusted and the function returns zero.
5967  */
5968 int netdev_master_upper_dev_link(struct net_device *dev,
5969 				 struct net_device *upper_dev,
5970 				 void *upper_priv, void *upper_info)
5971 {
5972 	return __netdev_upper_dev_link(dev, upper_dev, true,
5973 				       upper_priv, upper_info);
5974 }
5975 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5976 
5977 /**
5978  * netdev_upper_dev_unlink - Removes a link to upper device
5979  * @dev: device
5980  * @upper_dev: new upper device
5981  *
5982  * Removes a link to device which is upper to this one. The caller must hold
5983  * the RTNL lock.
5984  */
5985 void netdev_upper_dev_unlink(struct net_device *dev,
5986 			     struct net_device *upper_dev)
5987 {
5988 	struct netdev_notifier_changeupper_info changeupper_info;
5989 	ASSERT_RTNL();
5990 
5991 	changeupper_info.upper_dev = upper_dev;
5992 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5993 	changeupper_info.linking = false;
5994 
5995 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5996 				      &changeupper_info.info);
5997 
5998 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5999 
6000 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6001 				      &changeupper_info.info);
6002 }
6003 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6004 
6005 /**
6006  * netdev_bonding_info_change - Dispatch event about slave change
6007  * @dev: device
6008  * @bonding_info: info to dispatch
6009  *
6010  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6011  * The caller must hold the RTNL lock.
6012  */
6013 void netdev_bonding_info_change(struct net_device *dev,
6014 				struct netdev_bonding_info *bonding_info)
6015 {
6016 	struct netdev_notifier_bonding_info	info;
6017 
6018 	memcpy(&info.bonding_info, bonding_info,
6019 	       sizeof(struct netdev_bonding_info));
6020 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6021 				      &info.info);
6022 }
6023 EXPORT_SYMBOL(netdev_bonding_info_change);
6024 
6025 static void netdev_adjacent_add_links(struct net_device *dev)
6026 {
6027 	struct netdev_adjacent *iter;
6028 
6029 	struct net *net = dev_net(dev);
6030 
6031 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6032 		if (!net_eq(net, dev_net(iter->dev)))
6033 			continue;
6034 		netdev_adjacent_sysfs_add(iter->dev, dev,
6035 					  &iter->dev->adj_list.lower);
6036 		netdev_adjacent_sysfs_add(dev, iter->dev,
6037 					  &dev->adj_list.upper);
6038 	}
6039 
6040 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6041 		if (!net_eq(net, dev_net(iter->dev)))
6042 			continue;
6043 		netdev_adjacent_sysfs_add(iter->dev, dev,
6044 					  &iter->dev->adj_list.upper);
6045 		netdev_adjacent_sysfs_add(dev, iter->dev,
6046 					  &dev->adj_list.lower);
6047 	}
6048 }
6049 
6050 static void netdev_adjacent_del_links(struct net_device *dev)
6051 {
6052 	struct netdev_adjacent *iter;
6053 
6054 	struct net *net = dev_net(dev);
6055 
6056 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6057 		if (!net_eq(net, dev_net(iter->dev)))
6058 			continue;
6059 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6060 					  &iter->dev->adj_list.lower);
6061 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6062 					  &dev->adj_list.upper);
6063 	}
6064 
6065 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6066 		if (!net_eq(net, dev_net(iter->dev)))
6067 			continue;
6068 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6069 					  &iter->dev->adj_list.upper);
6070 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6071 					  &dev->adj_list.lower);
6072 	}
6073 }
6074 
6075 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6076 {
6077 	struct netdev_adjacent *iter;
6078 
6079 	struct net *net = dev_net(dev);
6080 
6081 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6082 		if (!net_eq(net, dev_net(iter->dev)))
6083 			continue;
6084 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6085 					  &iter->dev->adj_list.lower);
6086 		netdev_adjacent_sysfs_add(iter->dev, dev,
6087 					  &iter->dev->adj_list.lower);
6088 	}
6089 
6090 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6091 		if (!net_eq(net, dev_net(iter->dev)))
6092 			continue;
6093 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6094 					  &iter->dev->adj_list.upper);
6095 		netdev_adjacent_sysfs_add(iter->dev, dev,
6096 					  &iter->dev->adj_list.upper);
6097 	}
6098 }
6099 
6100 void *netdev_lower_dev_get_private(struct net_device *dev,
6101 				   struct net_device *lower_dev)
6102 {
6103 	struct netdev_adjacent *lower;
6104 
6105 	if (!lower_dev)
6106 		return NULL;
6107 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6108 	if (!lower)
6109 		return NULL;
6110 
6111 	return lower->private;
6112 }
6113 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6114 
6115 
6116 int dev_get_nest_level(struct net_device *dev)
6117 {
6118 	struct net_device *lower = NULL;
6119 	struct list_head *iter;
6120 	int max_nest = -1;
6121 	int nest;
6122 
6123 	ASSERT_RTNL();
6124 
6125 	netdev_for_each_lower_dev(dev, lower, iter) {
6126 		nest = dev_get_nest_level(lower);
6127 		if (max_nest < nest)
6128 			max_nest = nest;
6129 	}
6130 
6131 	return max_nest + 1;
6132 }
6133 EXPORT_SYMBOL(dev_get_nest_level);
6134 
6135 /**
6136  * netdev_lower_change - Dispatch event about lower device state change
6137  * @lower_dev: device
6138  * @lower_state_info: state to dispatch
6139  *
6140  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6141  * The caller must hold the RTNL lock.
6142  */
6143 void netdev_lower_state_changed(struct net_device *lower_dev,
6144 				void *lower_state_info)
6145 {
6146 	struct netdev_notifier_changelowerstate_info changelowerstate_info;
6147 
6148 	ASSERT_RTNL();
6149 	changelowerstate_info.lower_state_info = lower_state_info;
6150 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6151 				      &changelowerstate_info.info);
6152 }
6153 EXPORT_SYMBOL(netdev_lower_state_changed);
6154 
6155 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6156 					   struct neighbour *n)
6157 {
6158 	struct net_device *lower_dev, *stop_dev;
6159 	struct list_head *iter;
6160 	int err;
6161 
6162 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6163 		if (!lower_dev->netdev_ops->ndo_neigh_construct)
6164 			continue;
6165 		err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6166 		if (err) {
6167 			stop_dev = lower_dev;
6168 			goto rollback;
6169 		}
6170 	}
6171 	return 0;
6172 
6173 rollback:
6174 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6175 		if (lower_dev == stop_dev)
6176 			break;
6177 		if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6178 			continue;
6179 		lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6180 	}
6181 	return err;
6182 }
6183 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6184 
6185 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6186 					  struct neighbour *n)
6187 {
6188 	struct net_device *lower_dev;
6189 	struct list_head *iter;
6190 
6191 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6192 		if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6193 			continue;
6194 		lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6195 	}
6196 }
6197 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6198 
6199 static void dev_change_rx_flags(struct net_device *dev, int flags)
6200 {
6201 	const struct net_device_ops *ops = dev->netdev_ops;
6202 
6203 	if (ops->ndo_change_rx_flags)
6204 		ops->ndo_change_rx_flags(dev, flags);
6205 }
6206 
6207 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6208 {
6209 	unsigned int old_flags = dev->flags;
6210 	kuid_t uid;
6211 	kgid_t gid;
6212 
6213 	ASSERT_RTNL();
6214 
6215 	dev->flags |= IFF_PROMISC;
6216 	dev->promiscuity += inc;
6217 	if (dev->promiscuity == 0) {
6218 		/*
6219 		 * Avoid overflow.
6220 		 * If inc causes overflow, untouch promisc and return error.
6221 		 */
6222 		if (inc < 0)
6223 			dev->flags &= ~IFF_PROMISC;
6224 		else {
6225 			dev->promiscuity -= inc;
6226 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6227 				dev->name);
6228 			return -EOVERFLOW;
6229 		}
6230 	}
6231 	if (dev->flags != old_flags) {
6232 		pr_info("device %s %s promiscuous mode\n",
6233 			dev->name,
6234 			dev->flags & IFF_PROMISC ? "entered" : "left");
6235 		if (audit_enabled) {
6236 			current_uid_gid(&uid, &gid);
6237 			audit_log(current->audit_context, GFP_ATOMIC,
6238 				AUDIT_ANOM_PROMISCUOUS,
6239 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6240 				dev->name, (dev->flags & IFF_PROMISC),
6241 				(old_flags & IFF_PROMISC),
6242 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6243 				from_kuid(&init_user_ns, uid),
6244 				from_kgid(&init_user_ns, gid),
6245 				audit_get_sessionid(current));
6246 		}
6247 
6248 		dev_change_rx_flags(dev, IFF_PROMISC);
6249 	}
6250 	if (notify)
6251 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6252 	return 0;
6253 }
6254 
6255 /**
6256  *	dev_set_promiscuity	- update promiscuity count on a device
6257  *	@dev: device
6258  *	@inc: modifier
6259  *
6260  *	Add or remove promiscuity from a device. While the count in the device
6261  *	remains above zero the interface remains promiscuous. Once it hits zero
6262  *	the device reverts back to normal filtering operation. A negative inc
6263  *	value is used to drop promiscuity on the device.
6264  *	Return 0 if successful or a negative errno code on error.
6265  */
6266 int dev_set_promiscuity(struct net_device *dev, int inc)
6267 {
6268 	unsigned int old_flags = dev->flags;
6269 	int err;
6270 
6271 	err = __dev_set_promiscuity(dev, inc, true);
6272 	if (err < 0)
6273 		return err;
6274 	if (dev->flags != old_flags)
6275 		dev_set_rx_mode(dev);
6276 	return err;
6277 }
6278 EXPORT_SYMBOL(dev_set_promiscuity);
6279 
6280 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6281 {
6282 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6283 
6284 	ASSERT_RTNL();
6285 
6286 	dev->flags |= IFF_ALLMULTI;
6287 	dev->allmulti += inc;
6288 	if (dev->allmulti == 0) {
6289 		/*
6290 		 * Avoid overflow.
6291 		 * If inc causes overflow, untouch allmulti and return error.
6292 		 */
6293 		if (inc < 0)
6294 			dev->flags &= ~IFF_ALLMULTI;
6295 		else {
6296 			dev->allmulti -= inc;
6297 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6298 				dev->name);
6299 			return -EOVERFLOW;
6300 		}
6301 	}
6302 	if (dev->flags ^ old_flags) {
6303 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6304 		dev_set_rx_mode(dev);
6305 		if (notify)
6306 			__dev_notify_flags(dev, old_flags,
6307 					   dev->gflags ^ old_gflags);
6308 	}
6309 	return 0;
6310 }
6311 
6312 /**
6313  *	dev_set_allmulti	- update allmulti count on a device
6314  *	@dev: device
6315  *	@inc: modifier
6316  *
6317  *	Add or remove reception of all multicast frames to a device. While the
6318  *	count in the device remains above zero the interface remains listening
6319  *	to all interfaces. Once it hits zero the device reverts back to normal
6320  *	filtering operation. A negative @inc value is used to drop the counter
6321  *	when releasing a resource needing all multicasts.
6322  *	Return 0 if successful or a negative errno code on error.
6323  */
6324 
6325 int dev_set_allmulti(struct net_device *dev, int inc)
6326 {
6327 	return __dev_set_allmulti(dev, inc, true);
6328 }
6329 EXPORT_SYMBOL(dev_set_allmulti);
6330 
6331 /*
6332  *	Upload unicast and multicast address lists to device and
6333  *	configure RX filtering. When the device doesn't support unicast
6334  *	filtering it is put in promiscuous mode while unicast addresses
6335  *	are present.
6336  */
6337 void __dev_set_rx_mode(struct net_device *dev)
6338 {
6339 	const struct net_device_ops *ops = dev->netdev_ops;
6340 
6341 	/* dev_open will call this function so the list will stay sane. */
6342 	if (!(dev->flags&IFF_UP))
6343 		return;
6344 
6345 	if (!netif_device_present(dev))
6346 		return;
6347 
6348 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6349 		/* Unicast addresses changes may only happen under the rtnl,
6350 		 * therefore calling __dev_set_promiscuity here is safe.
6351 		 */
6352 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6353 			__dev_set_promiscuity(dev, 1, false);
6354 			dev->uc_promisc = true;
6355 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6356 			__dev_set_promiscuity(dev, -1, false);
6357 			dev->uc_promisc = false;
6358 		}
6359 	}
6360 
6361 	if (ops->ndo_set_rx_mode)
6362 		ops->ndo_set_rx_mode(dev);
6363 }
6364 
6365 void dev_set_rx_mode(struct net_device *dev)
6366 {
6367 	netif_addr_lock_bh(dev);
6368 	__dev_set_rx_mode(dev);
6369 	netif_addr_unlock_bh(dev);
6370 }
6371 
6372 /**
6373  *	dev_get_flags - get flags reported to userspace
6374  *	@dev: device
6375  *
6376  *	Get the combination of flag bits exported through APIs to userspace.
6377  */
6378 unsigned int dev_get_flags(const struct net_device *dev)
6379 {
6380 	unsigned int flags;
6381 
6382 	flags = (dev->flags & ~(IFF_PROMISC |
6383 				IFF_ALLMULTI |
6384 				IFF_RUNNING |
6385 				IFF_LOWER_UP |
6386 				IFF_DORMANT)) |
6387 		(dev->gflags & (IFF_PROMISC |
6388 				IFF_ALLMULTI));
6389 
6390 	if (netif_running(dev)) {
6391 		if (netif_oper_up(dev))
6392 			flags |= IFF_RUNNING;
6393 		if (netif_carrier_ok(dev))
6394 			flags |= IFF_LOWER_UP;
6395 		if (netif_dormant(dev))
6396 			flags |= IFF_DORMANT;
6397 	}
6398 
6399 	return flags;
6400 }
6401 EXPORT_SYMBOL(dev_get_flags);
6402 
6403 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6404 {
6405 	unsigned int old_flags = dev->flags;
6406 	int ret;
6407 
6408 	ASSERT_RTNL();
6409 
6410 	/*
6411 	 *	Set the flags on our device.
6412 	 */
6413 
6414 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6415 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6416 			       IFF_AUTOMEDIA)) |
6417 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6418 				    IFF_ALLMULTI));
6419 
6420 	/*
6421 	 *	Load in the correct multicast list now the flags have changed.
6422 	 */
6423 
6424 	if ((old_flags ^ flags) & IFF_MULTICAST)
6425 		dev_change_rx_flags(dev, IFF_MULTICAST);
6426 
6427 	dev_set_rx_mode(dev);
6428 
6429 	/*
6430 	 *	Have we downed the interface. We handle IFF_UP ourselves
6431 	 *	according to user attempts to set it, rather than blindly
6432 	 *	setting it.
6433 	 */
6434 
6435 	ret = 0;
6436 	if ((old_flags ^ flags) & IFF_UP)
6437 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6438 
6439 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6440 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6441 		unsigned int old_flags = dev->flags;
6442 
6443 		dev->gflags ^= IFF_PROMISC;
6444 
6445 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6446 			if (dev->flags != old_flags)
6447 				dev_set_rx_mode(dev);
6448 	}
6449 
6450 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6451 	   is important. Some (broken) drivers set IFF_PROMISC, when
6452 	   IFF_ALLMULTI is requested not asking us and not reporting.
6453 	 */
6454 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6455 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6456 
6457 		dev->gflags ^= IFF_ALLMULTI;
6458 		__dev_set_allmulti(dev, inc, false);
6459 	}
6460 
6461 	return ret;
6462 }
6463 
6464 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6465 			unsigned int gchanges)
6466 {
6467 	unsigned int changes = dev->flags ^ old_flags;
6468 
6469 	if (gchanges)
6470 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6471 
6472 	if (changes & IFF_UP) {
6473 		if (dev->flags & IFF_UP)
6474 			call_netdevice_notifiers(NETDEV_UP, dev);
6475 		else
6476 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6477 	}
6478 
6479 	if (dev->flags & IFF_UP &&
6480 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6481 		struct netdev_notifier_change_info change_info;
6482 
6483 		change_info.flags_changed = changes;
6484 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6485 					      &change_info.info);
6486 	}
6487 }
6488 
6489 /**
6490  *	dev_change_flags - change device settings
6491  *	@dev: device
6492  *	@flags: device state flags
6493  *
6494  *	Change settings on device based state flags. The flags are
6495  *	in the userspace exported format.
6496  */
6497 int dev_change_flags(struct net_device *dev, unsigned int flags)
6498 {
6499 	int ret;
6500 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6501 
6502 	ret = __dev_change_flags(dev, flags);
6503 	if (ret < 0)
6504 		return ret;
6505 
6506 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6507 	__dev_notify_flags(dev, old_flags, changes);
6508 	return ret;
6509 }
6510 EXPORT_SYMBOL(dev_change_flags);
6511 
6512 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6513 {
6514 	const struct net_device_ops *ops = dev->netdev_ops;
6515 
6516 	if (ops->ndo_change_mtu)
6517 		return ops->ndo_change_mtu(dev, new_mtu);
6518 
6519 	dev->mtu = new_mtu;
6520 	return 0;
6521 }
6522 
6523 /**
6524  *	dev_set_mtu - Change maximum transfer unit
6525  *	@dev: device
6526  *	@new_mtu: new transfer unit
6527  *
6528  *	Change the maximum transfer size of the network device.
6529  */
6530 int dev_set_mtu(struct net_device *dev, int new_mtu)
6531 {
6532 	int err, orig_mtu;
6533 
6534 	if (new_mtu == dev->mtu)
6535 		return 0;
6536 
6537 	/* MTU must be positive, and in range */
6538 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6539 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6540 				    dev->name, new_mtu, dev->min_mtu);
6541 		return -EINVAL;
6542 	}
6543 
6544 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6545 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6546 				    dev->name, new_mtu, dev->max_mtu);
6547 		return -EINVAL;
6548 	}
6549 
6550 	if (!netif_device_present(dev))
6551 		return -ENODEV;
6552 
6553 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6554 	err = notifier_to_errno(err);
6555 	if (err)
6556 		return err;
6557 
6558 	orig_mtu = dev->mtu;
6559 	err = __dev_set_mtu(dev, new_mtu);
6560 
6561 	if (!err) {
6562 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6563 		err = notifier_to_errno(err);
6564 		if (err) {
6565 			/* setting mtu back and notifying everyone again,
6566 			 * so that they have a chance to revert changes.
6567 			 */
6568 			__dev_set_mtu(dev, orig_mtu);
6569 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6570 		}
6571 	}
6572 	return err;
6573 }
6574 EXPORT_SYMBOL(dev_set_mtu);
6575 
6576 /**
6577  *	dev_set_group - Change group this device belongs to
6578  *	@dev: device
6579  *	@new_group: group this device should belong to
6580  */
6581 void dev_set_group(struct net_device *dev, int new_group)
6582 {
6583 	dev->group = new_group;
6584 }
6585 EXPORT_SYMBOL(dev_set_group);
6586 
6587 /**
6588  *	dev_set_mac_address - Change Media Access Control Address
6589  *	@dev: device
6590  *	@sa: new address
6591  *
6592  *	Change the hardware (MAC) address of the device
6593  */
6594 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6595 {
6596 	const struct net_device_ops *ops = dev->netdev_ops;
6597 	int err;
6598 
6599 	if (!ops->ndo_set_mac_address)
6600 		return -EOPNOTSUPP;
6601 	if (sa->sa_family != dev->type)
6602 		return -EINVAL;
6603 	if (!netif_device_present(dev))
6604 		return -ENODEV;
6605 	err = ops->ndo_set_mac_address(dev, sa);
6606 	if (err)
6607 		return err;
6608 	dev->addr_assign_type = NET_ADDR_SET;
6609 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6610 	add_device_randomness(dev->dev_addr, dev->addr_len);
6611 	return 0;
6612 }
6613 EXPORT_SYMBOL(dev_set_mac_address);
6614 
6615 /**
6616  *	dev_change_carrier - Change device carrier
6617  *	@dev: device
6618  *	@new_carrier: new value
6619  *
6620  *	Change device carrier
6621  */
6622 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6623 {
6624 	const struct net_device_ops *ops = dev->netdev_ops;
6625 
6626 	if (!ops->ndo_change_carrier)
6627 		return -EOPNOTSUPP;
6628 	if (!netif_device_present(dev))
6629 		return -ENODEV;
6630 	return ops->ndo_change_carrier(dev, new_carrier);
6631 }
6632 EXPORT_SYMBOL(dev_change_carrier);
6633 
6634 /**
6635  *	dev_get_phys_port_id - Get device physical port ID
6636  *	@dev: device
6637  *	@ppid: port ID
6638  *
6639  *	Get device physical port ID
6640  */
6641 int dev_get_phys_port_id(struct net_device *dev,
6642 			 struct netdev_phys_item_id *ppid)
6643 {
6644 	const struct net_device_ops *ops = dev->netdev_ops;
6645 
6646 	if (!ops->ndo_get_phys_port_id)
6647 		return -EOPNOTSUPP;
6648 	return ops->ndo_get_phys_port_id(dev, ppid);
6649 }
6650 EXPORT_SYMBOL(dev_get_phys_port_id);
6651 
6652 /**
6653  *	dev_get_phys_port_name - Get device physical port name
6654  *	@dev: device
6655  *	@name: port name
6656  *	@len: limit of bytes to copy to name
6657  *
6658  *	Get device physical port name
6659  */
6660 int dev_get_phys_port_name(struct net_device *dev,
6661 			   char *name, size_t len)
6662 {
6663 	const struct net_device_ops *ops = dev->netdev_ops;
6664 
6665 	if (!ops->ndo_get_phys_port_name)
6666 		return -EOPNOTSUPP;
6667 	return ops->ndo_get_phys_port_name(dev, name, len);
6668 }
6669 EXPORT_SYMBOL(dev_get_phys_port_name);
6670 
6671 /**
6672  *	dev_change_proto_down - update protocol port state information
6673  *	@dev: device
6674  *	@proto_down: new value
6675  *
6676  *	This info can be used by switch drivers to set the phys state of the
6677  *	port.
6678  */
6679 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6680 {
6681 	const struct net_device_ops *ops = dev->netdev_ops;
6682 
6683 	if (!ops->ndo_change_proto_down)
6684 		return -EOPNOTSUPP;
6685 	if (!netif_device_present(dev))
6686 		return -ENODEV;
6687 	return ops->ndo_change_proto_down(dev, proto_down);
6688 }
6689 EXPORT_SYMBOL(dev_change_proto_down);
6690 
6691 /**
6692  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
6693  *	@dev: device
6694  *	@fd: new program fd or negative value to clear
6695  *	@flags: xdp-related flags
6696  *
6697  *	Set or clear a bpf program for a device
6698  */
6699 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
6700 {
6701 	const struct net_device_ops *ops = dev->netdev_ops;
6702 	struct bpf_prog *prog = NULL;
6703 	struct netdev_xdp xdp;
6704 	int err;
6705 
6706 	ASSERT_RTNL();
6707 
6708 	if (!ops->ndo_xdp)
6709 		return -EOPNOTSUPP;
6710 	if (fd >= 0) {
6711 		if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6712 			memset(&xdp, 0, sizeof(xdp));
6713 			xdp.command = XDP_QUERY_PROG;
6714 
6715 			err = ops->ndo_xdp(dev, &xdp);
6716 			if (err < 0)
6717 				return err;
6718 			if (xdp.prog_attached)
6719 				return -EBUSY;
6720 		}
6721 
6722 		prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6723 		if (IS_ERR(prog))
6724 			return PTR_ERR(prog);
6725 	}
6726 
6727 	memset(&xdp, 0, sizeof(xdp));
6728 	xdp.command = XDP_SETUP_PROG;
6729 	xdp.prog = prog;
6730 
6731 	err = ops->ndo_xdp(dev, &xdp);
6732 	if (err < 0 && prog)
6733 		bpf_prog_put(prog);
6734 
6735 	return err;
6736 }
6737 EXPORT_SYMBOL(dev_change_xdp_fd);
6738 
6739 /**
6740  *	dev_new_index	-	allocate an ifindex
6741  *	@net: the applicable net namespace
6742  *
6743  *	Returns a suitable unique value for a new device interface
6744  *	number.  The caller must hold the rtnl semaphore or the
6745  *	dev_base_lock to be sure it remains unique.
6746  */
6747 static int dev_new_index(struct net *net)
6748 {
6749 	int ifindex = net->ifindex;
6750 	for (;;) {
6751 		if (++ifindex <= 0)
6752 			ifindex = 1;
6753 		if (!__dev_get_by_index(net, ifindex))
6754 			return net->ifindex = ifindex;
6755 	}
6756 }
6757 
6758 /* Delayed registration/unregisteration */
6759 static LIST_HEAD(net_todo_list);
6760 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6761 
6762 static void net_set_todo(struct net_device *dev)
6763 {
6764 	list_add_tail(&dev->todo_list, &net_todo_list);
6765 	dev_net(dev)->dev_unreg_count++;
6766 }
6767 
6768 static void rollback_registered_many(struct list_head *head)
6769 {
6770 	struct net_device *dev, *tmp;
6771 	LIST_HEAD(close_head);
6772 
6773 	BUG_ON(dev_boot_phase);
6774 	ASSERT_RTNL();
6775 
6776 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6777 		/* Some devices call without registering
6778 		 * for initialization unwind. Remove those
6779 		 * devices and proceed with the remaining.
6780 		 */
6781 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6782 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6783 				 dev->name, dev);
6784 
6785 			WARN_ON(1);
6786 			list_del(&dev->unreg_list);
6787 			continue;
6788 		}
6789 		dev->dismantle = true;
6790 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6791 	}
6792 
6793 	/* If device is running, close it first. */
6794 	list_for_each_entry(dev, head, unreg_list)
6795 		list_add_tail(&dev->close_list, &close_head);
6796 	dev_close_many(&close_head, true);
6797 
6798 	list_for_each_entry(dev, head, unreg_list) {
6799 		/* And unlink it from device chain. */
6800 		unlist_netdevice(dev);
6801 
6802 		dev->reg_state = NETREG_UNREGISTERING;
6803 	}
6804 	flush_all_backlogs();
6805 
6806 	synchronize_net();
6807 
6808 	list_for_each_entry(dev, head, unreg_list) {
6809 		struct sk_buff *skb = NULL;
6810 
6811 		/* Shutdown queueing discipline. */
6812 		dev_shutdown(dev);
6813 
6814 
6815 		/* Notify protocols, that we are about to destroy
6816 		   this device. They should clean all the things.
6817 		*/
6818 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6819 
6820 		if (!dev->rtnl_link_ops ||
6821 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6822 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6823 						     GFP_KERNEL);
6824 
6825 		/*
6826 		 *	Flush the unicast and multicast chains
6827 		 */
6828 		dev_uc_flush(dev);
6829 		dev_mc_flush(dev);
6830 
6831 		if (dev->netdev_ops->ndo_uninit)
6832 			dev->netdev_ops->ndo_uninit(dev);
6833 
6834 		if (skb)
6835 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6836 
6837 		/* Notifier chain MUST detach us all upper devices. */
6838 		WARN_ON(netdev_has_any_upper_dev(dev));
6839 		WARN_ON(netdev_has_any_lower_dev(dev));
6840 
6841 		/* Remove entries from kobject tree */
6842 		netdev_unregister_kobject(dev);
6843 #ifdef CONFIG_XPS
6844 		/* Remove XPS queueing entries */
6845 		netif_reset_xps_queues_gt(dev, 0);
6846 #endif
6847 	}
6848 
6849 	synchronize_net();
6850 
6851 	list_for_each_entry(dev, head, unreg_list)
6852 		dev_put(dev);
6853 }
6854 
6855 static void rollback_registered(struct net_device *dev)
6856 {
6857 	LIST_HEAD(single);
6858 
6859 	list_add(&dev->unreg_list, &single);
6860 	rollback_registered_many(&single);
6861 	list_del(&single);
6862 }
6863 
6864 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6865 	struct net_device *upper, netdev_features_t features)
6866 {
6867 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6868 	netdev_features_t feature;
6869 	int feature_bit;
6870 
6871 	for_each_netdev_feature(&upper_disables, feature_bit) {
6872 		feature = __NETIF_F_BIT(feature_bit);
6873 		if (!(upper->wanted_features & feature)
6874 		    && (features & feature)) {
6875 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6876 				   &feature, upper->name);
6877 			features &= ~feature;
6878 		}
6879 	}
6880 
6881 	return features;
6882 }
6883 
6884 static void netdev_sync_lower_features(struct net_device *upper,
6885 	struct net_device *lower, netdev_features_t features)
6886 {
6887 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6888 	netdev_features_t feature;
6889 	int feature_bit;
6890 
6891 	for_each_netdev_feature(&upper_disables, feature_bit) {
6892 		feature = __NETIF_F_BIT(feature_bit);
6893 		if (!(features & feature) && (lower->features & feature)) {
6894 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6895 				   &feature, lower->name);
6896 			lower->wanted_features &= ~feature;
6897 			netdev_update_features(lower);
6898 
6899 			if (unlikely(lower->features & feature))
6900 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6901 					    &feature, lower->name);
6902 		}
6903 	}
6904 }
6905 
6906 static netdev_features_t netdev_fix_features(struct net_device *dev,
6907 	netdev_features_t features)
6908 {
6909 	/* Fix illegal checksum combinations */
6910 	if ((features & NETIF_F_HW_CSUM) &&
6911 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6912 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6913 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6914 	}
6915 
6916 	/* TSO requires that SG is present as well. */
6917 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6918 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6919 		features &= ~NETIF_F_ALL_TSO;
6920 	}
6921 
6922 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6923 					!(features & NETIF_F_IP_CSUM)) {
6924 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6925 		features &= ~NETIF_F_TSO;
6926 		features &= ~NETIF_F_TSO_ECN;
6927 	}
6928 
6929 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6930 					 !(features & NETIF_F_IPV6_CSUM)) {
6931 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6932 		features &= ~NETIF_F_TSO6;
6933 	}
6934 
6935 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6936 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6937 		features &= ~NETIF_F_TSO_MANGLEID;
6938 
6939 	/* TSO ECN requires that TSO is present as well. */
6940 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6941 		features &= ~NETIF_F_TSO_ECN;
6942 
6943 	/* Software GSO depends on SG. */
6944 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6945 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6946 		features &= ~NETIF_F_GSO;
6947 	}
6948 
6949 	/* UFO needs SG and checksumming */
6950 	if (features & NETIF_F_UFO) {
6951 		/* maybe split UFO into V4 and V6? */
6952 		if (!(features & NETIF_F_HW_CSUM) &&
6953 		    ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6954 		     (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6955 			netdev_dbg(dev,
6956 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6957 			features &= ~NETIF_F_UFO;
6958 		}
6959 
6960 		if (!(features & NETIF_F_SG)) {
6961 			netdev_dbg(dev,
6962 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6963 			features &= ~NETIF_F_UFO;
6964 		}
6965 	}
6966 
6967 	/* GSO partial features require GSO partial be set */
6968 	if ((features & dev->gso_partial_features) &&
6969 	    !(features & NETIF_F_GSO_PARTIAL)) {
6970 		netdev_dbg(dev,
6971 			   "Dropping partially supported GSO features since no GSO partial.\n");
6972 		features &= ~dev->gso_partial_features;
6973 	}
6974 
6975 #ifdef CONFIG_NET_RX_BUSY_POLL
6976 	if (dev->netdev_ops->ndo_busy_poll)
6977 		features |= NETIF_F_BUSY_POLL;
6978 	else
6979 #endif
6980 		features &= ~NETIF_F_BUSY_POLL;
6981 
6982 	return features;
6983 }
6984 
6985 int __netdev_update_features(struct net_device *dev)
6986 {
6987 	struct net_device *upper, *lower;
6988 	netdev_features_t features;
6989 	struct list_head *iter;
6990 	int err = -1;
6991 
6992 	ASSERT_RTNL();
6993 
6994 	features = netdev_get_wanted_features(dev);
6995 
6996 	if (dev->netdev_ops->ndo_fix_features)
6997 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6998 
6999 	/* driver might be less strict about feature dependencies */
7000 	features = netdev_fix_features(dev, features);
7001 
7002 	/* some features can't be enabled if they're off an an upper device */
7003 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7004 		features = netdev_sync_upper_features(dev, upper, features);
7005 
7006 	if (dev->features == features)
7007 		goto sync_lower;
7008 
7009 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7010 		&dev->features, &features);
7011 
7012 	if (dev->netdev_ops->ndo_set_features)
7013 		err = dev->netdev_ops->ndo_set_features(dev, features);
7014 	else
7015 		err = 0;
7016 
7017 	if (unlikely(err < 0)) {
7018 		netdev_err(dev,
7019 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7020 			err, &features, &dev->features);
7021 		/* return non-0 since some features might have changed and
7022 		 * it's better to fire a spurious notification than miss it
7023 		 */
7024 		return -1;
7025 	}
7026 
7027 sync_lower:
7028 	/* some features must be disabled on lower devices when disabled
7029 	 * on an upper device (think: bonding master or bridge)
7030 	 */
7031 	netdev_for_each_lower_dev(dev, lower, iter)
7032 		netdev_sync_lower_features(dev, lower, features);
7033 
7034 	if (!err)
7035 		dev->features = features;
7036 
7037 	return err < 0 ? 0 : 1;
7038 }
7039 
7040 /**
7041  *	netdev_update_features - recalculate device features
7042  *	@dev: the device to check
7043  *
7044  *	Recalculate dev->features set and send notifications if it
7045  *	has changed. Should be called after driver or hardware dependent
7046  *	conditions might have changed that influence the features.
7047  */
7048 void netdev_update_features(struct net_device *dev)
7049 {
7050 	if (__netdev_update_features(dev))
7051 		netdev_features_change(dev);
7052 }
7053 EXPORT_SYMBOL(netdev_update_features);
7054 
7055 /**
7056  *	netdev_change_features - recalculate device features
7057  *	@dev: the device to check
7058  *
7059  *	Recalculate dev->features set and send notifications even
7060  *	if they have not changed. Should be called instead of
7061  *	netdev_update_features() if also dev->vlan_features might
7062  *	have changed to allow the changes to be propagated to stacked
7063  *	VLAN devices.
7064  */
7065 void netdev_change_features(struct net_device *dev)
7066 {
7067 	__netdev_update_features(dev);
7068 	netdev_features_change(dev);
7069 }
7070 EXPORT_SYMBOL(netdev_change_features);
7071 
7072 /**
7073  *	netif_stacked_transfer_operstate -	transfer operstate
7074  *	@rootdev: the root or lower level device to transfer state from
7075  *	@dev: the device to transfer operstate to
7076  *
7077  *	Transfer operational state from root to device. This is normally
7078  *	called when a stacking relationship exists between the root
7079  *	device and the device(a leaf device).
7080  */
7081 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7082 					struct net_device *dev)
7083 {
7084 	if (rootdev->operstate == IF_OPER_DORMANT)
7085 		netif_dormant_on(dev);
7086 	else
7087 		netif_dormant_off(dev);
7088 
7089 	if (netif_carrier_ok(rootdev)) {
7090 		if (!netif_carrier_ok(dev))
7091 			netif_carrier_on(dev);
7092 	} else {
7093 		if (netif_carrier_ok(dev))
7094 			netif_carrier_off(dev);
7095 	}
7096 }
7097 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7098 
7099 #ifdef CONFIG_SYSFS
7100 static int netif_alloc_rx_queues(struct net_device *dev)
7101 {
7102 	unsigned int i, count = dev->num_rx_queues;
7103 	struct netdev_rx_queue *rx;
7104 	size_t sz = count * sizeof(*rx);
7105 
7106 	BUG_ON(count < 1);
7107 
7108 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7109 	if (!rx) {
7110 		rx = vzalloc(sz);
7111 		if (!rx)
7112 			return -ENOMEM;
7113 	}
7114 	dev->_rx = rx;
7115 
7116 	for (i = 0; i < count; i++)
7117 		rx[i].dev = dev;
7118 	return 0;
7119 }
7120 #endif
7121 
7122 static void netdev_init_one_queue(struct net_device *dev,
7123 				  struct netdev_queue *queue, void *_unused)
7124 {
7125 	/* Initialize queue lock */
7126 	spin_lock_init(&queue->_xmit_lock);
7127 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7128 	queue->xmit_lock_owner = -1;
7129 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7130 	queue->dev = dev;
7131 #ifdef CONFIG_BQL
7132 	dql_init(&queue->dql, HZ);
7133 #endif
7134 }
7135 
7136 static void netif_free_tx_queues(struct net_device *dev)
7137 {
7138 	kvfree(dev->_tx);
7139 }
7140 
7141 static int netif_alloc_netdev_queues(struct net_device *dev)
7142 {
7143 	unsigned int count = dev->num_tx_queues;
7144 	struct netdev_queue *tx;
7145 	size_t sz = count * sizeof(*tx);
7146 
7147 	if (count < 1 || count > 0xffff)
7148 		return -EINVAL;
7149 
7150 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7151 	if (!tx) {
7152 		tx = vzalloc(sz);
7153 		if (!tx)
7154 			return -ENOMEM;
7155 	}
7156 	dev->_tx = tx;
7157 
7158 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7159 	spin_lock_init(&dev->tx_global_lock);
7160 
7161 	return 0;
7162 }
7163 
7164 void netif_tx_stop_all_queues(struct net_device *dev)
7165 {
7166 	unsigned int i;
7167 
7168 	for (i = 0; i < dev->num_tx_queues; i++) {
7169 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7170 		netif_tx_stop_queue(txq);
7171 	}
7172 }
7173 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7174 
7175 /**
7176  *	register_netdevice	- register a network device
7177  *	@dev: device to register
7178  *
7179  *	Take a completed network device structure and add it to the kernel
7180  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7181  *	chain. 0 is returned on success. A negative errno code is returned
7182  *	on a failure to set up the device, or if the name is a duplicate.
7183  *
7184  *	Callers must hold the rtnl semaphore. You may want
7185  *	register_netdev() instead of this.
7186  *
7187  *	BUGS:
7188  *	The locking appears insufficient to guarantee two parallel registers
7189  *	will not get the same name.
7190  */
7191 
7192 int register_netdevice(struct net_device *dev)
7193 {
7194 	int ret;
7195 	struct net *net = dev_net(dev);
7196 
7197 	BUG_ON(dev_boot_phase);
7198 	ASSERT_RTNL();
7199 
7200 	might_sleep();
7201 
7202 	/* When net_device's are persistent, this will be fatal. */
7203 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7204 	BUG_ON(!net);
7205 
7206 	spin_lock_init(&dev->addr_list_lock);
7207 	netdev_set_addr_lockdep_class(dev);
7208 
7209 	ret = dev_get_valid_name(net, dev, dev->name);
7210 	if (ret < 0)
7211 		goto out;
7212 
7213 	/* Init, if this function is available */
7214 	if (dev->netdev_ops->ndo_init) {
7215 		ret = dev->netdev_ops->ndo_init(dev);
7216 		if (ret) {
7217 			if (ret > 0)
7218 				ret = -EIO;
7219 			goto out;
7220 		}
7221 	}
7222 
7223 	if (((dev->hw_features | dev->features) &
7224 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7225 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7226 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7227 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7228 		ret = -EINVAL;
7229 		goto err_uninit;
7230 	}
7231 
7232 	ret = -EBUSY;
7233 	if (!dev->ifindex)
7234 		dev->ifindex = dev_new_index(net);
7235 	else if (__dev_get_by_index(net, dev->ifindex))
7236 		goto err_uninit;
7237 
7238 	/* Transfer changeable features to wanted_features and enable
7239 	 * software offloads (GSO and GRO).
7240 	 */
7241 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7242 	dev->features |= NETIF_F_SOFT_FEATURES;
7243 	dev->wanted_features = dev->features & dev->hw_features;
7244 
7245 	if (!(dev->flags & IFF_LOOPBACK))
7246 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7247 
7248 	/* If IPv4 TCP segmentation offload is supported we should also
7249 	 * allow the device to enable segmenting the frame with the option
7250 	 * of ignoring a static IP ID value.  This doesn't enable the
7251 	 * feature itself but allows the user to enable it later.
7252 	 */
7253 	if (dev->hw_features & NETIF_F_TSO)
7254 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7255 	if (dev->vlan_features & NETIF_F_TSO)
7256 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7257 	if (dev->mpls_features & NETIF_F_TSO)
7258 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7259 	if (dev->hw_enc_features & NETIF_F_TSO)
7260 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7261 
7262 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7263 	 */
7264 	dev->vlan_features |= NETIF_F_HIGHDMA;
7265 
7266 	/* Make NETIF_F_SG inheritable to tunnel devices.
7267 	 */
7268 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7269 
7270 	/* Make NETIF_F_SG inheritable to MPLS.
7271 	 */
7272 	dev->mpls_features |= NETIF_F_SG;
7273 
7274 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7275 	ret = notifier_to_errno(ret);
7276 	if (ret)
7277 		goto err_uninit;
7278 
7279 	ret = netdev_register_kobject(dev);
7280 	if (ret)
7281 		goto err_uninit;
7282 	dev->reg_state = NETREG_REGISTERED;
7283 
7284 	__netdev_update_features(dev);
7285 
7286 	/*
7287 	 *	Default initial state at registry is that the
7288 	 *	device is present.
7289 	 */
7290 
7291 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7292 
7293 	linkwatch_init_dev(dev);
7294 
7295 	dev_init_scheduler(dev);
7296 	dev_hold(dev);
7297 	list_netdevice(dev);
7298 	add_device_randomness(dev->dev_addr, dev->addr_len);
7299 
7300 	/* If the device has permanent device address, driver should
7301 	 * set dev_addr and also addr_assign_type should be set to
7302 	 * NET_ADDR_PERM (default value).
7303 	 */
7304 	if (dev->addr_assign_type == NET_ADDR_PERM)
7305 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7306 
7307 	/* Notify protocols, that a new device appeared. */
7308 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7309 	ret = notifier_to_errno(ret);
7310 	if (ret) {
7311 		rollback_registered(dev);
7312 		dev->reg_state = NETREG_UNREGISTERED;
7313 	}
7314 	/*
7315 	 *	Prevent userspace races by waiting until the network
7316 	 *	device is fully setup before sending notifications.
7317 	 */
7318 	if (!dev->rtnl_link_ops ||
7319 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7320 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7321 
7322 out:
7323 	return ret;
7324 
7325 err_uninit:
7326 	if (dev->netdev_ops->ndo_uninit)
7327 		dev->netdev_ops->ndo_uninit(dev);
7328 	goto out;
7329 }
7330 EXPORT_SYMBOL(register_netdevice);
7331 
7332 /**
7333  *	init_dummy_netdev	- init a dummy network device for NAPI
7334  *	@dev: device to init
7335  *
7336  *	This takes a network device structure and initialize the minimum
7337  *	amount of fields so it can be used to schedule NAPI polls without
7338  *	registering a full blown interface. This is to be used by drivers
7339  *	that need to tie several hardware interfaces to a single NAPI
7340  *	poll scheduler due to HW limitations.
7341  */
7342 int init_dummy_netdev(struct net_device *dev)
7343 {
7344 	/* Clear everything. Note we don't initialize spinlocks
7345 	 * are they aren't supposed to be taken by any of the
7346 	 * NAPI code and this dummy netdev is supposed to be
7347 	 * only ever used for NAPI polls
7348 	 */
7349 	memset(dev, 0, sizeof(struct net_device));
7350 
7351 	/* make sure we BUG if trying to hit standard
7352 	 * register/unregister code path
7353 	 */
7354 	dev->reg_state = NETREG_DUMMY;
7355 
7356 	/* NAPI wants this */
7357 	INIT_LIST_HEAD(&dev->napi_list);
7358 
7359 	/* a dummy interface is started by default */
7360 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7361 	set_bit(__LINK_STATE_START, &dev->state);
7362 
7363 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7364 	 * because users of this 'device' dont need to change
7365 	 * its refcount.
7366 	 */
7367 
7368 	return 0;
7369 }
7370 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7371 
7372 
7373 /**
7374  *	register_netdev	- register a network device
7375  *	@dev: device to register
7376  *
7377  *	Take a completed network device structure and add it to the kernel
7378  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7379  *	chain. 0 is returned on success. A negative errno code is returned
7380  *	on a failure to set up the device, or if the name is a duplicate.
7381  *
7382  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7383  *	and expands the device name if you passed a format string to
7384  *	alloc_netdev.
7385  */
7386 int register_netdev(struct net_device *dev)
7387 {
7388 	int err;
7389 
7390 	rtnl_lock();
7391 	err = register_netdevice(dev);
7392 	rtnl_unlock();
7393 	return err;
7394 }
7395 EXPORT_SYMBOL(register_netdev);
7396 
7397 int netdev_refcnt_read(const struct net_device *dev)
7398 {
7399 	int i, refcnt = 0;
7400 
7401 	for_each_possible_cpu(i)
7402 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7403 	return refcnt;
7404 }
7405 EXPORT_SYMBOL(netdev_refcnt_read);
7406 
7407 /**
7408  * netdev_wait_allrefs - wait until all references are gone.
7409  * @dev: target net_device
7410  *
7411  * This is called when unregistering network devices.
7412  *
7413  * Any protocol or device that holds a reference should register
7414  * for netdevice notification, and cleanup and put back the
7415  * reference if they receive an UNREGISTER event.
7416  * We can get stuck here if buggy protocols don't correctly
7417  * call dev_put.
7418  */
7419 static void netdev_wait_allrefs(struct net_device *dev)
7420 {
7421 	unsigned long rebroadcast_time, warning_time;
7422 	int refcnt;
7423 
7424 	linkwatch_forget_dev(dev);
7425 
7426 	rebroadcast_time = warning_time = jiffies;
7427 	refcnt = netdev_refcnt_read(dev);
7428 
7429 	while (refcnt != 0) {
7430 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7431 			rtnl_lock();
7432 
7433 			/* Rebroadcast unregister notification */
7434 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7435 
7436 			__rtnl_unlock();
7437 			rcu_barrier();
7438 			rtnl_lock();
7439 
7440 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7441 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7442 				     &dev->state)) {
7443 				/* We must not have linkwatch events
7444 				 * pending on unregister. If this
7445 				 * happens, we simply run the queue
7446 				 * unscheduled, resulting in a noop
7447 				 * for this device.
7448 				 */
7449 				linkwatch_run_queue();
7450 			}
7451 
7452 			__rtnl_unlock();
7453 
7454 			rebroadcast_time = jiffies;
7455 		}
7456 
7457 		msleep(250);
7458 
7459 		refcnt = netdev_refcnt_read(dev);
7460 
7461 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7462 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7463 				 dev->name, refcnt);
7464 			warning_time = jiffies;
7465 		}
7466 	}
7467 }
7468 
7469 /* The sequence is:
7470  *
7471  *	rtnl_lock();
7472  *	...
7473  *	register_netdevice(x1);
7474  *	register_netdevice(x2);
7475  *	...
7476  *	unregister_netdevice(y1);
7477  *	unregister_netdevice(y2);
7478  *      ...
7479  *	rtnl_unlock();
7480  *	free_netdev(y1);
7481  *	free_netdev(y2);
7482  *
7483  * We are invoked by rtnl_unlock().
7484  * This allows us to deal with problems:
7485  * 1) We can delete sysfs objects which invoke hotplug
7486  *    without deadlocking with linkwatch via keventd.
7487  * 2) Since we run with the RTNL semaphore not held, we can sleep
7488  *    safely in order to wait for the netdev refcnt to drop to zero.
7489  *
7490  * We must not return until all unregister events added during
7491  * the interval the lock was held have been completed.
7492  */
7493 void netdev_run_todo(void)
7494 {
7495 	struct list_head list;
7496 
7497 	/* Snapshot list, allow later requests */
7498 	list_replace_init(&net_todo_list, &list);
7499 
7500 	__rtnl_unlock();
7501 
7502 
7503 	/* Wait for rcu callbacks to finish before next phase */
7504 	if (!list_empty(&list))
7505 		rcu_barrier();
7506 
7507 	while (!list_empty(&list)) {
7508 		struct net_device *dev
7509 			= list_first_entry(&list, struct net_device, todo_list);
7510 		list_del(&dev->todo_list);
7511 
7512 		rtnl_lock();
7513 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7514 		__rtnl_unlock();
7515 
7516 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7517 			pr_err("network todo '%s' but state %d\n",
7518 			       dev->name, dev->reg_state);
7519 			dump_stack();
7520 			continue;
7521 		}
7522 
7523 		dev->reg_state = NETREG_UNREGISTERED;
7524 
7525 		netdev_wait_allrefs(dev);
7526 
7527 		/* paranoia */
7528 		BUG_ON(netdev_refcnt_read(dev));
7529 		BUG_ON(!list_empty(&dev->ptype_all));
7530 		BUG_ON(!list_empty(&dev->ptype_specific));
7531 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7532 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7533 		WARN_ON(dev->dn_ptr);
7534 
7535 		if (dev->destructor)
7536 			dev->destructor(dev);
7537 
7538 		/* Report a network device has been unregistered */
7539 		rtnl_lock();
7540 		dev_net(dev)->dev_unreg_count--;
7541 		__rtnl_unlock();
7542 		wake_up(&netdev_unregistering_wq);
7543 
7544 		/* Free network device */
7545 		kobject_put(&dev->dev.kobj);
7546 	}
7547 }
7548 
7549 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7550  * all the same fields in the same order as net_device_stats, with only
7551  * the type differing, but rtnl_link_stats64 may have additional fields
7552  * at the end for newer counters.
7553  */
7554 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7555 			     const struct net_device_stats *netdev_stats)
7556 {
7557 #if BITS_PER_LONG == 64
7558 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7559 	memcpy(stats64, netdev_stats, sizeof(*stats64));
7560 	/* zero out counters that only exist in rtnl_link_stats64 */
7561 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7562 	       sizeof(*stats64) - sizeof(*netdev_stats));
7563 #else
7564 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7565 	const unsigned long *src = (const unsigned long *)netdev_stats;
7566 	u64 *dst = (u64 *)stats64;
7567 
7568 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7569 	for (i = 0; i < n; i++)
7570 		dst[i] = src[i];
7571 	/* zero out counters that only exist in rtnl_link_stats64 */
7572 	memset((char *)stats64 + n * sizeof(u64), 0,
7573 	       sizeof(*stats64) - n * sizeof(u64));
7574 #endif
7575 }
7576 EXPORT_SYMBOL(netdev_stats_to_stats64);
7577 
7578 /**
7579  *	dev_get_stats	- get network device statistics
7580  *	@dev: device to get statistics from
7581  *	@storage: place to store stats
7582  *
7583  *	Get network statistics from device. Return @storage.
7584  *	The device driver may provide its own method by setting
7585  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7586  *	otherwise the internal statistics structure is used.
7587  */
7588 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7589 					struct rtnl_link_stats64 *storage)
7590 {
7591 	const struct net_device_ops *ops = dev->netdev_ops;
7592 
7593 	if (ops->ndo_get_stats64) {
7594 		memset(storage, 0, sizeof(*storage));
7595 		ops->ndo_get_stats64(dev, storage);
7596 	} else if (ops->ndo_get_stats) {
7597 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7598 	} else {
7599 		netdev_stats_to_stats64(storage, &dev->stats);
7600 	}
7601 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7602 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7603 	storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7604 	return storage;
7605 }
7606 EXPORT_SYMBOL(dev_get_stats);
7607 
7608 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7609 {
7610 	struct netdev_queue *queue = dev_ingress_queue(dev);
7611 
7612 #ifdef CONFIG_NET_CLS_ACT
7613 	if (queue)
7614 		return queue;
7615 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7616 	if (!queue)
7617 		return NULL;
7618 	netdev_init_one_queue(dev, queue, NULL);
7619 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7620 	queue->qdisc_sleeping = &noop_qdisc;
7621 	rcu_assign_pointer(dev->ingress_queue, queue);
7622 #endif
7623 	return queue;
7624 }
7625 
7626 static const struct ethtool_ops default_ethtool_ops;
7627 
7628 void netdev_set_default_ethtool_ops(struct net_device *dev,
7629 				    const struct ethtool_ops *ops)
7630 {
7631 	if (dev->ethtool_ops == &default_ethtool_ops)
7632 		dev->ethtool_ops = ops;
7633 }
7634 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7635 
7636 void netdev_freemem(struct net_device *dev)
7637 {
7638 	char *addr = (char *)dev - dev->padded;
7639 
7640 	kvfree(addr);
7641 }
7642 
7643 /**
7644  *	alloc_netdev_mqs - allocate network device
7645  *	@sizeof_priv:		size of private data to allocate space for
7646  *	@name:			device name format string
7647  *	@name_assign_type: 	origin of device name
7648  *	@setup:			callback to initialize device
7649  *	@txqs:			the number of TX subqueues to allocate
7650  *	@rxqs:			the number of RX subqueues to allocate
7651  *
7652  *	Allocates a struct net_device with private data area for driver use
7653  *	and performs basic initialization.  Also allocates subqueue structs
7654  *	for each queue on the device.
7655  */
7656 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7657 		unsigned char name_assign_type,
7658 		void (*setup)(struct net_device *),
7659 		unsigned int txqs, unsigned int rxqs)
7660 {
7661 	struct net_device *dev;
7662 	size_t alloc_size;
7663 	struct net_device *p;
7664 
7665 	BUG_ON(strlen(name) >= sizeof(dev->name));
7666 
7667 	if (txqs < 1) {
7668 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7669 		return NULL;
7670 	}
7671 
7672 #ifdef CONFIG_SYSFS
7673 	if (rxqs < 1) {
7674 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7675 		return NULL;
7676 	}
7677 #endif
7678 
7679 	alloc_size = sizeof(struct net_device);
7680 	if (sizeof_priv) {
7681 		/* ensure 32-byte alignment of private area */
7682 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7683 		alloc_size += sizeof_priv;
7684 	}
7685 	/* ensure 32-byte alignment of whole construct */
7686 	alloc_size += NETDEV_ALIGN - 1;
7687 
7688 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7689 	if (!p)
7690 		p = vzalloc(alloc_size);
7691 	if (!p)
7692 		return NULL;
7693 
7694 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
7695 	dev->padded = (char *)dev - (char *)p;
7696 
7697 	dev->pcpu_refcnt = alloc_percpu(int);
7698 	if (!dev->pcpu_refcnt)
7699 		goto free_dev;
7700 
7701 	if (dev_addr_init(dev))
7702 		goto free_pcpu;
7703 
7704 	dev_mc_init(dev);
7705 	dev_uc_init(dev);
7706 
7707 	dev_net_set(dev, &init_net);
7708 
7709 	dev->gso_max_size = GSO_MAX_SIZE;
7710 	dev->gso_max_segs = GSO_MAX_SEGS;
7711 
7712 	INIT_LIST_HEAD(&dev->napi_list);
7713 	INIT_LIST_HEAD(&dev->unreg_list);
7714 	INIT_LIST_HEAD(&dev->close_list);
7715 	INIT_LIST_HEAD(&dev->link_watch_list);
7716 	INIT_LIST_HEAD(&dev->adj_list.upper);
7717 	INIT_LIST_HEAD(&dev->adj_list.lower);
7718 	INIT_LIST_HEAD(&dev->ptype_all);
7719 	INIT_LIST_HEAD(&dev->ptype_specific);
7720 #ifdef CONFIG_NET_SCHED
7721 	hash_init(dev->qdisc_hash);
7722 #endif
7723 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7724 	setup(dev);
7725 
7726 	if (!dev->tx_queue_len) {
7727 		dev->priv_flags |= IFF_NO_QUEUE;
7728 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7729 	}
7730 
7731 	dev->num_tx_queues = txqs;
7732 	dev->real_num_tx_queues = txqs;
7733 	if (netif_alloc_netdev_queues(dev))
7734 		goto free_all;
7735 
7736 #ifdef CONFIG_SYSFS
7737 	dev->num_rx_queues = rxqs;
7738 	dev->real_num_rx_queues = rxqs;
7739 	if (netif_alloc_rx_queues(dev))
7740 		goto free_all;
7741 #endif
7742 
7743 	strcpy(dev->name, name);
7744 	dev->name_assign_type = name_assign_type;
7745 	dev->group = INIT_NETDEV_GROUP;
7746 	if (!dev->ethtool_ops)
7747 		dev->ethtool_ops = &default_ethtool_ops;
7748 
7749 	nf_hook_ingress_init(dev);
7750 
7751 	return dev;
7752 
7753 free_all:
7754 	free_netdev(dev);
7755 	return NULL;
7756 
7757 free_pcpu:
7758 	free_percpu(dev->pcpu_refcnt);
7759 free_dev:
7760 	netdev_freemem(dev);
7761 	return NULL;
7762 }
7763 EXPORT_SYMBOL(alloc_netdev_mqs);
7764 
7765 /**
7766  *	free_netdev - free network device
7767  *	@dev: device
7768  *
7769  *	This function does the last stage of destroying an allocated device
7770  * 	interface. The reference to the device object is released.
7771  *	If this is the last reference then it will be freed.
7772  *	Must be called in process context.
7773  */
7774 void free_netdev(struct net_device *dev)
7775 {
7776 	struct napi_struct *p, *n;
7777 
7778 	might_sleep();
7779 	netif_free_tx_queues(dev);
7780 #ifdef CONFIG_SYSFS
7781 	kvfree(dev->_rx);
7782 #endif
7783 
7784 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7785 
7786 	/* Flush device addresses */
7787 	dev_addr_flush(dev);
7788 
7789 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7790 		netif_napi_del(p);
7791 
7792 	free_percpu(dev->pcpu_refcnt);
7793 	dev->pcpu_refcnt = NULL;
7794 
7795 	/*  Compatibility with error handling in drivers */
7796 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7797 		netdev_freemem(dev);
7798 		return;
7799 	}
7800 
7801 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7802 	dev->reg_state = NETREG_RELEASED;
7803 
7804 	/* will free via device release */
7805 	put_device(&dev->dev);
7806 }
7807 EXPORT_SYMBOL(free_netdev);
7808 
7809 /**
7810  *	synchronize_net -  Synchronize with packet receive processing
7811  *
7812  *	Wait for packets currently being received to be done.
7813  *	Does not block later packets from starting.
7814  */
7815 void synchronize_net(void)
7816 {
7817 	might_sleep();
7818 	if (rtnl_is_locked())
7819 		synchronize_rcu_expedited();
7820 	else
7821 		synchronize_rcu();
7822 }
7823 EXPORT_SYMBOL(synchronize_net);
7824 
7825 /**
7826  *	unregister_netdevice_queue - remove device from the kernel
7827  *	@dev: device
7828  *	@head: list
7829  *
7830  *	This function shuts down a device interface and removes it
7831  *	from the kernel tables.
7832  *	If head not NULL, device is queued to be unregistered later.
7833  *
7834  *	Callers must hold the rtnl semaphore.  You may want
7835  *	unregister_netdev() instead of this.
7836  */
7837 
7838 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7839 {
7840 	ASSERT_RTNL();
7841 
7842 	if (head) {
7843 		list_move_tail(&dev->unreg_list, head);
7844 	} else {
7845 		rollback_registered(dev);
7846 		/* Finish processing unregister after unlock */
7847 		net_set_todo(dev);
7848 	}
7849 }
7850 EXPORT_SYMBOL(unregister_netdevice_queue);
7851 
7852 /**
7853  *	unregister_netdevice_many - unregister many devices
7854  *	@head: list of devices
7855  *
7856  *  Note: As most callers use a stack allocated list_head,
7857  *  we force a list_del() to make sure stack wont be corrupted later.
7858  */
7859 void unregister_netdevice_many(struct list_head *head)
7860 {
7861 	struct net_device *dev;
7862 
7863 	if (!list_empty(head)) {
7864 		rollback_registered_many(head);
7865 		list_for_each_entry(dev, head, unreg_list)
7866 			net_set_todo(dev);
7867 		list_del(head);
7868 	}
7869 }
7870 EXPORT_SYMBOL(unregister_netdevice_many);
7871 
7872 /**
7873  *	unregister_netdev - remove device from the kernel
7874  *	@dev: device
7875  *
7876  *	This function shuts down a device interface and removes it
7877  *	from the kernel tables.
7878  *
7879  *	This is just a wrapper for unregister_netdevice that takes
7880  *	the rtnl semaphore.  In general you want to use this and not
7881  *	unregister_netdevice.
7882  */
7883 void unregister_netdev(struct net_device *dev)
7884 {
7885 	rtnl_lock();
7886 	unregister_netdevice(dev);
7887 	rtnl_unlock();
7888 }
7889 EXPORT_SYMBOL(unregister_netdev);
7890 
7891 /**
7892  *	dev_change_net_namespace - move device to different nethost namespace
7893  *	@dev: device
7894  *	@net: network namespace
7895  *	@pat: If not NULL name pattern to try if the current device name
7896  *	      is already taken in the destination network namespace.
7897  *
7898  *	This function shuts down a device interface and moves it
7899  *	to a new network namespace. On success 0 is returned, on
7900  *	a failure a netagive errno code is returned.
7901  *
7902  *	Callers must hold the rtnl semaphore.
7903  */
7904 
7905 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7906 {
7907 	int err;
7908 
7909 	ASSERT_RTNL();
7910 
7911 	/* Don't allow namespace local devices to be moved. */
7912 	err = -EINVAL;
7913 	if (dev->features & NETIF_F_NETNS_LOCAL)
7914 		goto out;
7915 
7916 	/* Ensure the device has been registrered */
7917 	if (dev->reg_state != NETREG_REGISTERED)
7918 		goto out;
7919 
7920 	/* Get out if there is nothing todo */
7921 	err = 0;
7922 	if (net_eq(dev_net(dev), net))
7923 		goto out;
7924 
7925 	/* Pick the destination device name, and ensure
7926 	 * we can use it in the destination network namespace.
7927 	 */
7928 	err = -EEXIST;
7929 	if (__dev_get_by_name(net, dev->name)) {
7930 		/* We get here if we can't use the current device name */
7931 		if (!pat)
7932 			goto out;
7933 		if (dev_get_valid_name(net, dev, pat) < 0)
7934 			goto out;
7935 	}
7936 
7937 	/*
7938 	 * And now a mini version of register_netdevice unregister_netdevice.
7939 	 */
7940 
7941 	/* If device is running close it first. */
7942 	dev_close(dev);
7943 
7944 	/* And unlink it from device chain */
7945 	err = -ENODEV;
7946 	unlist_netdevice(dev);
7947 
7948 	synchronize_net();
7949 
7950 	/* Shutdown queueing discipline. */
7951 	dev_shutdown(dev);
7952 
7953 	/* Notify protocols, that we are about to destroy
7954 	   this device. They should clean all the things.
7955 
7956 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7957 	   This is wanted because this way 8021q and macvlan know
7958 	   the device is just moving and can keep their slaves up.
7959 	*/
7960 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7961 	rcu_barrier();
7962 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7963 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7964 
7965 	/*
7966 	 *	Flush the unicast and multicast chains
7967 	 */
7968 	dev_uc_flush(dev);
7969 	dev_mc_flush(dev);
7970 
7971 	/* Send a netdev-removed uevent to the old namespace */
7972 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7973 	netdev_adjacent_del_links(dev);
7974 
7975 	/* Actually switch the network namespace */
7976 	dev_net_set(dev, net);
7977 
7978 	/* If there is an ifindex conflict assign a new one */
7979 	if (__dev_get_by_index(net, dev->ifindex))
7980 		dev->ifindex = dev_new_index(net);
7981 
7982 	/* Send a netdev-add uevent to the new namespace */
7983 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7984 	netdev_adjacent_add_links(dev);
7985 
7986 	/* Fixup kobjects */
7987 	err = device_rename(&dev->dev, dev->name);
7988 	WARN_ON(err);
7989 
7990 	/* Add the device back in the hashes */
7991 	list_netdevice(dev);
7992 
7993 	/* Notify protocols, that a new device appeared. */
7994 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7995 
7996 	/*
7997 	 *	Prevent userspace races by waiting until the network
7998 	 *	device is fully setup before sending notifications.
7999 	 */
8000 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8001 
8002 	synchronize_net();
8003 	err = 0;
8004 out:
8005 	return err;
8006 }
8007 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8008 
8009 static int dev_cpu_callback(struct notifier_block *nfb,
8010 			    unsigned long action,
8011 			    void *ocpu)
8012 {
8013 	struct sk_buff **list_skb;
8014 	struct sk_buff *skb;
8015 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
8016 	struct softnet_data *sd, *oldsd;
8017 
8018 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
8019 		return NOTIFY_OK;
8020 
8021 	local_irq_disable();
8022 	cpu = smp_processor_id();
8023 	sd = &per_cpu(softnet_data, cpu);
8024 	oldsd = &per_cpu(softnet_data, oldcpu);
8025 
8026 	/* Find end of our completion_queue. */
8027 	list_skb = &sd->completion_queue;
8028 	while (*list_skb)
8029 		list_skb = &(*list_skb)->next;
8030 	/* Append completion queue from offline CPU. */
8031 	*list_skb = oldsd->completion_queue;
8032 	oldsd->completion_queue = NULL;
8033 
8034 	/* Append output queue from offline CPU. */
8035 	if (oldsd->output_queue) {
8036 		*sd->output_queue_tailp = oldsd->output_queue;
8037 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8038 		oldsd->output_queue = NULL;
8039 		oldsd->output_queue_tailp = &oldsd->output_queue;
8040 	}
8041 	/* Append NAPI poll list from offline CPU, with one exception :
8042 	 * process_backlog() must be called by cpu owning percpu backlog.
8043 	 * We properly handle process_queue & input_pkt_queue later.
8044 	 */
8045 	while (!list_empty(&oldsd->poll_list)) {
8046 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8047 							    struct napi_struct,
8048 							    poll_list);
8049 
8050 		list_del_init(&napi->poll_list);
8051 		if (napi->poll == process_backlog)
8052 			napi->state = 0;
8053 		else
8054 			____napi_schedule(sd, napi);
8055 	}
8056 
8057 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8058 	local_irq_enable();
8059 
8060 	/* Process offline CPU's input_pkt_queue */
8061 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8062 		netif_rx_ni(skb);
8063 		input_queue_head_incr(oldsd);
8064 	}
8065 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8066 		netif_rx_ni(skb);
8067 		input_queue_head_incr(oldsd);
8068 	}
8069 
8070 	return NOTIFY_OK;
8071 }
8072 
8073 
8074 /**
8075  *	netdev_increment_features - increment feature set by one
8076  *	@all: current feature set
8077  *	@one: new feature set
8078  *	@mask: mask feature set
8079  *
8080  *	Computes a new feature set after adding a device with feature set
8081  *	@one to the master device with current feature set @all.  Will not
8082  *	enable anything that is off in @mask. Returns the new feature set.
8083  */
8084 netdev_features_t netdev_increment_features(netdev_features_t all,
8085 	netdev_features_t one, netdev_features_t mask)
8086 {
8087 	if (mask & NETIF_F_HW_CSUM)
8088 		mask |= NETIF_F_CSUM_MASK;
8089 	mask |= NETIF_F_VLAN_CHALLENGED;
8090 
8091 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8092 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8093 
8094 	/* If one device supports hw checksumming, set for all. */
8095 	if (all & NETIF_F_HW_CSUM)
8096 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8097 
8098 	return all;
8099 }
8100 EXPORT_SYMBOL(netdev_increment_features);
8101 
8102 static struct hlist_head * __net_init netdev_create_hash(void)
8103 {
8104 	int i;
8105 	struct hlist_head *hash;
8106 
8107 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8108 	if (hash != NULL)
8109 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8110 			INIT_HLIST_HEAD(&hash[i]);
8111 
8112 	return hash;
8113 }
8114 
8115 /* Initialize per network namespace state */
8116 static int __net_init netdev_init(struct net *net)
8117 {
8118 	if (net != &init_net)
8119 		INIT_LIST_HEAD(&net->dev_base_head);
8120 
8121 	net->dev_name_head = netdev_create_hash();
8122 	if (net->dev_name_head == NULL)
8123 		goto err_name;
8124 
8125 	net->dev_index_head = netdev_create_hash();
8126 	if (net->dev_index_head == NULL)
8127 		goto err_idx;
8128 
8129 	return 0;
8130 
8131 err_idx:
8132 	kfree(net->dev_name_head);
8133 err_name:
8134 	return -ENOMEM;
8135 }
8136 
8137 /**
8138  *	netdev_drivername - network driver for the device
8139  *	@dev: network device
8140  *
8141  *	Determine network driver for device.
8142  */
8143 const char *netdev_drivername(const struct net_device *dev)
8144 {
8145 	const struct device_driver *driver;
8146 	const struct device *parent;
8147 	const char *empty = "";
8148 
8149 	parent = dev->dev.parent;
8150 	if (!parent)
8151 		return empty;
8152 
8153 	driver = parent->driver;
8154 	if (driver && driver->name)
8155 		return driver->name;
8156 	return empty;
8157 }
8158 
8159 static void __netdev_printk(const char *level, const struct net_device *dev,
8160 			    struct va_format *vaf)
8161 {
8162 	if (dev && dev->dev.parent) {
8163 		dev_printk_emit(level[1] - '0',
8164 				dev->dev.parent,
8165 				"%s %s %s%s: %pV",
8166 				dev_driver_string(dev->dev.parent),
8167 				dev_name(dev->dev.parent),
8168 				netdev_name(dev), netdev_reg_state(dev),
8169 				vaf);
8170 	} else if (dev) {
8171 		printk("%s%s%s: %pV",
8172 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8173 	} else {
8174 		printk("%s(NULL net_device): %pV", level, vaf);
8175 	}
8176 }
8177 
8178 void netdev_printk(const char *level, const struct net_device *dev,
8179 		   const char *format, ...)
8180 {
8181 	struct va_format vaf;
8182 	va_list args;
8183 
8184 	va_start(args, format);
8185 
8186 	vaf.fmt = format;
8187 	vaf.va = &args;
8188 
8189 	__netdev_printk(level, dev, &vaf);
8190 
8191 	va_end(args);
8192 }
8193 EXPORT_SYMBOL(netdev_printk);
8194 
8195 #define define_netdev_printk_level(func, level)			\
8196 void func(const struct net_device *dev, const char *fmt, ...)	\
8197 {								\
8198 	struct va_format vaf;					\
8199 	va_list args;						\
8200 								\
8201 	va_start(args, fmt);					\
8202 								\
8203 	vaf.fmt = fmt;						\
8204 	vaf.va = &args;						\
8205 								\
8206 	__netdev_printk(level, dev, &vaf);			\
8207 								\
8208 	va_end(args);						\
8209 }								\
8210 EXPORT_SYMBOL(func);
8211 
8212 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8213 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8214 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8215 define_netdev_printk_level(netdev_err, KERN_ERR);
8216 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8217 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8218 define_netdev_printk_level(netdev_info, KERN_INFO);
8219 
8220 static void __net_exit netdev_exit(struct net *net)
8221 {
8222 	kfree(net->dev_name_head);
8223 	kfree(net->dev_index_head);
8224 }
8225 
8226 static struct pernet_operations __net_initdata netdev_net_ops = {
8227 	.init = netdev_init,
8228 	.exit = netdev_exit,
8229 };
8230 
8231 static void __net_exit default_device_exit(struct net *net)
8232 {
8233 	struct net_device *dev, *aux;
8234 	/*
8235 	 * Push all migratable network devices back to the
8236 	 * initial network namespace
8237 	 */
8238 	rtnl_lock();
8239 	for_each_netdev_safe(net, dev, aux) {
8240 		int err;
8241 		char fb_name[IFNAMSIZ];
8242 
8243 		/* Ignore unmoveable devices (i.e. loopback) */
8244 		if (dev->features & NETIF_F_NETNS_LOCAL)
8245 			continue;
8246 
8247 		/* Leave virtual devices for the generic cleanup */
8248 		if (dev->rtnl_link_ops)
8249 			continue;
8250 
8251 		/* Push remaining network devices to init_net */
8252 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8253 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8254 		if (err) {
8255 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8256 				 __func__, dev->name, err);
8257 			BUG();
8258 		}
8259 	}
8260 	rtnl_unlock();
8261 }
8262 
8263 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8264 {
8265 	/* Return with the rtnl_lock held when there are no network
8266 	 * devices unregistering in any network namespace in net_list.
8267 	 */
8268 	struct net *net;
8269 	bool unregistering;
8270 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8271 
8272 	add_wait_queue(&netdev_unregistering_wq, &wait);
8273 	for (;;) {
8274 		unregistering = false;
8275 		rtnl_lock();
8276 		list_for_each_entry(net, net_list, exit_list) {
8277 			if (net->dev_unreg_count > 0) {
8278 				unregistering = true;
8279 				break;
8280 			}
8281 		}
8282 		if (!unregistering)
8283 			break;
8284 		__rtnl_unlock();
8285 
8286 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8287 	}
8288 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8289 }
8290 
8291 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8292 {
8293 	/* At exit all network devices most be removed from a network
8294 	 * namespace.  Do this in the reverse order of registration.
8295 	 * Do this across as many network namespaces as possible to
8296 	 * improve batching efficiency.
8297 	 */
8298 	struct net_device *dev;
8299 	struct net *net;
8300 	LIST_HEAD(dev_kill_list);
8301 
8302 	/* To prevent network device cleanup code from dereferencing
8303 	 * loopback devices or network devices that have been freed
8304 	 * wait here for all pending unregistrations to complete,
8305 	 * before unregistring the loopback device and allowing the
8306 	 * network namespace be freed.
8307 	 *
8308 	 * The netdev todo list containing all network devices
8309 	 * unregistrations that happen in default_device_exit_batch
8310 	 * will run in the rtnl_unlock() at the end of
8311 	 * default_device_exit_batch.
8312 	 */
8313 	rtnl_lock_unregistering(net_list);
8314 	list_for_each_entry(net, net_list, exit_list) {
8315 		for_each_netdev_reverse(net, dev) {
8316 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8317 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8318 			else
8319 				unregister_netdevice_queue(dev, &dev_kill_list);
8320 		}
8321 	}
8322 	unregister_netdevice_many(&dev_kill_list);
8323 	rtnl_unlock();
8324 }
8325 
8326 static struct pernet_operations __net_initdata default_device_ops = {
8327 	.exit = default_device_exit,
8328 	.exit_batch = default_device_exit_batch,
8329 };
8330 
8331 /*
8332  *	Initialize the DEV module. At boot time this walks the device list and
8333  *	unhooks any devices that fail to initialise (normally hardware not
8334  *	present) and leaves us with a valid list of present and active devices.
8335  *
8336  */
8337 
8338 /*
8339  *       This is called single threaded during boot, so no need
8340  *       to take the rtnl semaphore.
8341  */
8342 static int __init net_dev_init(void)
8343 {
8344 	int i, rc = -ENOMEM;
8345 
8346 	BUG_ON(!dev_boot_phase);
8347 
8348 	if (dev_proc_init())
8349 		goto out;
8350 
8351 	if (netdev_kobject_init())
8352 		goto out;
8353 
8354 	INIT_LIST_HEAD(&ptype_all);
8355 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8356 		INIT_LIST_HEAD(&ptype_base[i]);
8357 
8358 	INIT_LIST_HEAD(&offload_base);
8359 
8360 	if (register_pernet_subsys(&netdev_net_ops))
8361 		goto out;
8362 
8363 	/*
8364 	 *	Initialise the packet receive queues.
8365 	 */
8366 
8367 	for_each_possible_cpu(i) {
8368 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8369 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8370 
8371 		INIT_WORK(flush, flush_backlog);
8372 
8373 		skb_queue_head_init(&sd->input_pkt_queue);
8374 		skb_queue_head_init(&sd->process_queue);
8375 		INIT_LIST_HEAD(&sd->poll_list);
8376 		sd->output_queue_tailp = &sd->output_queue;
8377 #ifdef CONFIG_RPS
8378 		sd->csd.func = rps_trigger_softirq;
8379 		sd->csd.info = sd;
8380 		sd->cpu = i;
8381 #endif
8382 
8383 		sd->backlog.poll = process_backlog;
8384 		sd->backlog.weight = weight_p;
8385 	}
8386 
8387 	dev_boot_phase = 0;
8388 
8389 	/* The loopback device is special if any other network devices
8390 	 * is present in a network namespace the loopback device must
8391 	 * be present. Since we now dynamically allocate and free the
8392 	 * loopback device ensure this invariant is maintained by
8393 	 * keeping the loopback device as the first device on the
8394 	 * list of network devices.  Ensuring the loopback devices
8395 	 * is the first device that appears and the last network device
8396 	 * that disappears.
8397 	 */
8398 	if (register_pernet_device(&loopback_net_ops))
8399 		goto out;
8400 
8401 	if (register_pernet_device(&default_device_ops))
8402 		goto out;
8403 
8404 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8405 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8406 
8407 	hotcpu_notifier(dev_cpu_callback, 0);
8408 	dst_subsys_init();
8409 	rc = 0;
8410 out:
8411 	return rc;
8412 }
8413 
8414 subsys_initcall(net_dev_init);
8415