1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <linux/bpf.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <net/busy_poll.h> 101 #include <linux/rtnetlink.h> 102 #include <linux/stat.h> 103 #include <net/dst.h> 104 #include <net/dst_metadata.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/iw_handler.h> 115 #include <asm/current.h> 116 #include <linux/audit.h> 117 #include <linux/dmaengine.h> 118 #include <linux/err.h> 119 #include <linux/ctype.h> 120 #include <linux/if_arp.h> 121 #include <linux/if_vlan.h> 122 #include <linux/ip.h> 123 #include <net/ip.h> 124 #include <net/mpls.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/pci.h> 133 #include <linux/inetdevice.h> 134 #include <linux/cpu_rmap.h> 135 #include <linux/static_key.h> 136 #include <linux/hashtable.h> 137 #include <linux/vmalloc.h> 138 #include <linux/if_macvlan.h> 139 #include <linux/errqueue.h> 140 #include <linux/hrtimer.h> 141 #include <linux/netfilter_ingress.h> 142 #include <linux/crash_dump.h> 143 144 #include "net-sysfs.h" 145 146 /* Instead of increasing this, you should create a hash table. */ 147 #define MAX_GRO_SKBS 8 148 149 /* This should be increased if a protocol with a bigger head is added. */ 150 #define GRO_MAX_HEAD (MAX_HEADER + 128) 151 152 static DEFINE_SPINLOCK(ptype_lock); 153 static DEFINE_SPINLOCK(offload_lock); 154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 155 struct list_head ptype_all __read_mostly; /* Taps */ 156 static struct list_head offload_base __read_mostly; 157 158 static int netif_rx_internal(struct sk_buff *skb); 159 static int call_netdevice_notifiers_info(unsigned long val, 160 struct net_device *dev, 161 struct netdev_notifier_info *info); 162 163 /* 164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 165 * semaphore. 166 * 167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 168 * 169 * Writers must hold the rtnl semaphore while they loop through the 170 * dev_base_head list, and hold dev_base_lock for writing when they do the 171 * actual updates. This allows pure readers to access the list even 172 * while a writer is preparing to update it. 173 * 174 * To put it another way, dev_base_lock is held for writing only to 175 * protect against pure readers; the rtnl semaphore provides the 176 * protection against other writers. 177 * 178 * See, for example usages, register_netdevice() and 179 * unregister_netdevice(), which must be called with the rtnl 180 * semaphore held. 181 */ 182 DEFINE_RWLOCK(dev_base_lock); 183 EXPORT_SYMBOL(dev_base_lock); 184 185 /* protects napi_hash addition/deletion and napi_gen_id */ 186 static DEFINE_SPINLOCK(napi_hash_lock); 187 188 static unsigned int napi_gen_id = NR_CPUS; 189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 190 191 static seqcount_t devnet_rename_seq; 192 193 static inline void dev_base_seq_inc(struct net *net) 194 { 195 while (++net->dev_base_seq == 0); 196 } 197 198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 199 { 200 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 201 202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 203 } 204 205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 206 { 207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 208 } 209 210 static inline void rps_lock(struct softnet_data *sd) 211 { 212 #ifdef CONFIG_RPS 213 spin_lock(&sd->input_pkt_queue.lock); 214 #endif 215 } 216 217 static inline void rps_unlock(struct softnet_data *sd) 218 { 219 #ifdef CONFIG_RPS 220 spin_unlock(&sd->input_pkt_queue.lock); 221 #endif 222 } 223 224 /* Device list insertion */ 225 static void list_netdevice(struct net_device *dev) 226 { 227 struct net *net = dev_net(dev); 228 229 ASSERT_RTNL(); 230 231 write_lock_bh(&dev_base_lock); 232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 234 hlist_add_head_rcu(&dev->index_hlist, 235 dev_index_hash(net, dev->ifindex)); 236 write_unlock_bh(&dev_base_lock); 237 238 dev_base_seq_inc(net); 239 } 240 241 /* Device list removal 242 * caller must respect a RCU grace period before freeing/reusing dev 243 */ 244 static void unlist_netdevice(struct net_device *dev) 245 { 246 ASSERT_RTNL(); 247 248 /* Unlink dev from the device chain */ 249 write_lock_bh(&dev_base_lock); 250 list_del_rcu(&dev->dev_list); 251 hlist_del_rcu(&dev->name_hlist); 252 hlist_del_rcu(&dev->index_hlist); 253 write_unlock_bh(&dev_base_lock); 254 255 dev_base_seq_inc(dev_net(dev)); 256 } 257 258 /* 259 * Our notifier list 260 */ 261 262 static RAW_NOTIFIER_HEAD(netdev_chain); 263 264 /* 265 * Device drivers call our routines to queue packets here. We empty the 266 * queue in the local softnet handler. 267 */ 268 269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 270 EXPORT_PER_CPU_SYMBOL(softnet_data); 271 272 #ifdef CONFIG_LOCKDEP 273 /* 274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 275 * according to dev->type 276 */ 277 static const unsigned short netdev_lock_type[] = 278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 290 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 291 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 292 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 293 294 static const char *const netdev_lock_name[] = 295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 307 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 308 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 309 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 310 311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 313 314 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 315 { 316 int i; 317 318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 319 if (netdev_lock_type[i] == dev_type) 320 return i; 321 /* the last key is used by default */ 322 return ARRAY_SIZE(netdev_lock_type) - 1; 323 } 324 325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 326 unsigned short dev_type) 327 { 328 int i; 329 330 i = netdev_lock_pos(dev_type); 331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 332 netdev_lock_name[i]); 333 } 334 335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 336 { 337 int i; 338 339 i = netdev_lock_pos(dev->type); 340 lockdep_set_class_and_name(&dev->addr_list_lock, 341 &netdev_addr_lock_key[i], 342 netdev_lock_name[i]); 343 } 344 #else 345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 346 unsigned short dev_type) 347 { 348 } 349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 350 { 351 } 352 #endif 353 354 /******************************************************************************* 355 356 Protocol management and registration routines 357 358 *******************************************************************************/ 359 360 /* 361 * Add a protocol ID to the list. Now that the input handler is 362 * smarter we can dispense with all the messy stuff that used to be 363 * here. 364 * 365 * BEWARE!!! Protocol handlers, mangling input packets, 366 * MUST BE last in hash buckets and checking protocol handlers 367 * MUST start from promiscuous ptype_all chain in net_bh. 368 * It is true now, do not change it. 369 * Explanation follows: if protocol handler, mangling packet, will 370 * be the first on list, it is not able to sense, that packet 371 * is cloned and should be copied-on-write, so that it will 372 * change it and subsequent readers will get broken packet. 373 * --ANK (980803) 374 */ 375 376 static inline struct list_head *ptype_head(const struct packet_type *pt) 377 { 378 if (pt->type == htons(ETH_P_ALL)) 379 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 380 else 381 return pt->dev ? &pt->dev->ptype_specific : 382 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 383 } 384 385 /** 386 * dev_add_pack - add packet handler 387 * @pt: packet type declaration 388 * 389 * Add a protocol handler to the networking stack. The passed &packet_type 390 * is linked into kernel lists and may not be freed until it has been 391 * removed from the kernel lists. 392 * 393 * This call does not sleep therefore it can not 394 * guarantee all CPU's that are in middle of receiving packets 395 * will see the new packet type (until the next received packet). 396 */ 397 398 void dev_add_pack(struct packet_type *pt) 399 { 400 struct list_head *head = ptype_head(pt); 401 402 spin_lock(&ptype_lock); 403 list_add_rcu(&pt->list, head); 404 spin_unlock(&ptype_lock); 405 } 406 EXPORT_SYMBOL(dev_add_pack); 407 408 /** 409 * __dev_remove_pack - remove packet handler 410 * @pt: packet type declaration 411 * 412 * Remove a protocol handler that was previously added to the kernel 413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 414 * from the kernel lists and can be freed or reused once this function 415 * returns. 416 * 417 * The packet type might still be in use by receivers 418 * and must not be freed until after all the CPU's have gone 419 * through a quiescent state. 420 */ 421 void __dev_remove_pack(struct packet_type *pt) 422 { 423 struct list_head *head = ptype_head(pt); 424 struct packet_type *pt1; 425 426 spin_lock(&ptype_lock); 427 428 list_for_each_entry(pt1, head, list) { 429 if (pt == pt1) { 430 list_del_rcu(&pt->list); 431 goto out; 432 } 433 } 434 435 pr_warn("dev_remove_pack: %p not found\n", pt); 436 out: 437 spin_unlock(&ptype_lock); 438 } 439 EXPORT_SYMBOL(__dev_remove_pack); 440 441 /** 442 * dev_remove_pack - remove packet handler 443 * @pt: packet type declaration 444 * 445 * Remove a protocol handler that was previously added to the kernel 446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 447 * from the kernel lists and can be freed or reused once this function 448 * returns. 449 * 450 * This call sleeps to guarantee that no CPU is looking at the packet 451 * type after return. 452 */ 453 void dev_remove_pack(struct packet_type *pt) 454 { 455 __dev_remove_pack(pt); 456 457 synchronize_net(); 458 } 459 EXPORT_SYMBOL(dev_remove_pack); 460 461 462 /** 463 * dev_add_offload - register offload handlers 464 * @po: protocol offload declaration 465 * 466 * Add protocol offload handlers to the networking stack. The passed 467 * &proto_offload is linked into kernel lists and may not be freed until 468 * it has been removed from the kernel lists. 469 * 470 * This call does not sleep therefore it can not 471 * guarantee all CPU's that are in middle of receiving packets 472 * will see the new offload handlers (until the next received packet). 473 */ 474 void dev_add_offload(struct packet_offload *po) 475 { 476 struct packet_offload *elem; 477 478 spin_lock(&offload_lock); 479 list_for_each_entry(elem, &offload_base, list) { 480 if (po->priority < elem->priority) 481 break; 482 } 483 list_add_rcu(&po->list, elem->list.prev); 484 spin_unlock(&offload_lock); 485 } 486 EXPORT_SYMBOL(dev_add_offload); 487 488 /** 489 * __dev_remove_offload - remove offload handler 490 * @po: packet offload declaration 491 * 492 * Remove a protocol offload handler that was previously added to the 493 * kernel offload handlers by dev_add_offload(). The passed &offload_type 494 * is removed from the kernel lists and can be freed or reused once this 495 * function returns. 496 * 497 * The packet type might still be in use by receivers 498 * and must not be freed until after all the CPU's have gone 499 * through a quiescent state. 500 */ 501 static void __dev_remove_offload(struct packet_offload *po) 502 { 503 struct list_head *head = &offload_base; 504 struct packet_offload *po1; 505 506 spin_lock(&offload_lock); 507 508 list_for_each_entry(po1, head, list) { 509 if (po == po1) { 510 list_del_rcu(&po->list); 511 goto out; 512 } 513 } 514 515 pr_warn("dev_remove_offload: %p not found\n", po); 516 out: 517 spin_unlock(&offload_lock); 518 } 519 520 /** 521 * dev_remove_offload - remove packet offload handler 522 * @po: packet offload declaration 523 * 524 * Remove a packet offload handler that was previously added to the kernel 525 * offload handlers by dev_add_offload(). The passed &offload_type is 526 * removed from the kernel lists and can be freed or reused once this 527 * function returns. 528 * 529 * This call sleeps to guarantee that no CPU is looking at the packet 530 * type after return. 531 */ 532 void dev_remove_offload(struct packet_offload *po) 533 { 534 __dev_remove_offload(po); 535 536 synchronize_net(); 537 } 538 EXPORT_SYMBOL(dev_remove_offload); 539 540 /****************************************************************************** 541 542 Device Boot-time Settings Routines 543 544 *******************************************************************************/ 545 546 /* Boot time configuration table */ 547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 548 549 /** 550 * netdev_boot_setup_add - add new setup entry 551 * @name: name of the device 552 * @map: configured settings for the device 553 * 554 * Adds new setup entry to the dev_boot_setup list. The function 555 * returns 0 on error and 1 on success. This is a generic routine to 556 * all netdevices. 557 */ 558 static int netdev_boot_setup_add(char *name, struct ifmap *map) 559 { 560 struct netdev_boot_setup *s; 561 int i; 562 563 s = dev_boot_setup; 564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 565 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 566 memset(s[i].name, 0, sizeof(s[i].name)); 567 strlcpy(s[i].name, name, IFNAMSIZ); 568 memcpy(&s[i].map, map, sizeof(s[i].map)); 569 break; 570 } 571 } 572 573 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 574 } 575 576 /** 577 * netdev_boot_setup_check - check boot time settings 578 * @dev: the netdevice 579 * 580 * Check boot time settings for the device. 581 * The found settings are set for the device to be used 582 * later in the device probing. 583 * Returns 0 if no settings found, 1 if they are. 584 */ 585 int netdev_boot_setup_check(struct net_device *dev) 586 { 587 struct netdev_boot_setup *s = dev_boot_setup; 588 int i; 589 590 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 591 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 592 !strcmp(dev->name, s[i].name)) { 593 dev->irq = s[i].map.irq; 594 dev->base_addr = s[i].map.base_addr; 595 dev->mem_start = s[i].map.mem_start; 596 dev->mem_end = s[i].map.mem_end; 597 return 1; 598 } 599 } 600 return 0; 601 } 602 EXPORT_SYMBOL(netdev_boot_setup_check); 603 604 605 /** 606 * netdev_boot_base - get address from boot time settings 607 * @prefix: prefix for network device 608 * @unit: id for network device 609 * 610 * Check boot time settings for the base address of device. 611 * The found settings are set for the device to be used 612 * later in the device probing. 613 * Returns 0 if no settings found. 614 */ 615 unsigned long netdev_boot_base(const char *prefix, int unit) 616 { 617 const struct netdev_boot_setup *s = dev_boot_setup; 618 char name[IFNAMSIZ]; 619 int i; 620 621 sprintf(name, "%s%d", prefix, unit); 622 623 /* 624 * If device already registered then return base of 1 625 * to indicate not to probe for this interface 626 */ 627 if (__dev_get_by_name(&init_net, name)) 628 return 1; 629 630 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 631 if (!strcmp(name, s[i].name)) 632 return s[i].map.base_addr; 633 return 0; 634 } 635 636 /* 637 * Saves at boot time configured settings for any netdevice. 638 */ 639 int __init netdev_boot_setup(char *str) 640 { 641 int ints[5]; 642 struct ifmap map; 643 644 str = get_options(str, ARRAY_SIZE(ints), ints); 645 if (!str || !*str) 646 return 0; 647 648 /* Save settings */ 649 memset(&map, 0, sizeof(map)); 650 if (ints[0] > 0) 651 map.irq = ints[1]; 652 if (ints[0] > 1) 653 map.base_addr = ints[2]; 654 if (ints[0] > 2) 655 map.mem_start = ints[3]; 656 if (ints[0] > 3) 657 map.mem_end = ints[4]; 658 659 /* Add new entry to the list */ 660 return netdev_boot_setup_add(str, &map); 661 } 662 663 __setup("netdev=", netdev_boot_setup); 664 665 /******************************************************************************* 666 667 Device Interface Subroutines 668 669 *******************************************************************************/ 670 671 /** 672 * dev_get_iflink - get 'iflink' value of a interface 673 * @dev: targeted interface 674 * 675 * Indicates the ifindex the interface is linked to. 676 * Physical interfaces have the same 'ifindex' and 'iflink' values. 677 */ 678 679 int dev_get_iflink(const struct net_device *dev) 680 { 681 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 682 return dev->netdev_ops->ndo_get_iflink(dev); 683 684 return dev->ifindex; 685 } 686 EXPORT_SYMBOL(dev_get_iflink); 687 688 /** 689 * dev_fill_metadata_dst - Retrieve tunnel egress information. 690 * @dev: targeted interface 691 * @skb: The packet. 692 * 693 * For better visibility of tunnel traffic OVS needs to retrieve 694 * egress tunnel information for a packet. Following API allows 695 * user to get this info. 696 */ 697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 698 { 699 struct ip_tunnel_info *info; 700 701 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 702 return -EINVAL; 703 704 info = skb_tunnel_info_unclone(skb); 705 if (!info) 706 return -ENOMEM; 707 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 708 return -EINVAL; 709 710 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 711 } 712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 713 714 /** 715 * __dev_get_by_name - find a device by its name 716 * @net: the applicable net namespace 717 * @name: name to find 718 * 719 * Find an interface by name. Must be called under RTNL semaphore 720 * or @dev_base_lock. If the name is found a pointer to the device 721 * is returned. If the name is not found then %NULL is returned. The 722 * reference counters are not incremented so the caller must be 723 * careful with locks. 724 */ 725 726 struct net_device *__dev_get_by_name(struct net *net, const char *name) 727 { 728 struct net_device *dev; 729 struct hlist_head *head = dev_name_hash(net, name); 730 731 hlist_for_each_entry(dev, head, name_hlist) 732 if (!strncmp(dev->name, name, IFNAMSIZ)) 733 return dev; 734 735 return NULL; 736 } 737 EXPORT_SYMBOL(__dev_get_by_name); 738 739 /** 740 * dev_get_by_name_rcu - find a device by its name 741 * @net: the applicable net namespace 742 * @name: name to find 743 * 744 * Find an interface by name. 745 * If the name is found a pointer to the device is returned. 746 * If the name is not found then %NULL is returned. 747 * The reference counters are not incremented so the caller must be 748 * careful with locks. The caller must hold RCU lock. 749 */ 750 751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 752 { 753 struct net_device *dev; 754 struct hlist_head *head = dev_name_hash(net, name); 755 756 hlist_for_each_entry_rcu(dev, head, name_hlist) 757 if (!strncmp(dev->name, name, IFNAMSIZ)) 758 return dev; 759 760 return NULL; 761 } 762 EXPORT_SYMBOL(dev_get_by_name_rcu); 763 764 /** 765 * dev_get_by_name - find a device by its name 766 * @net: the applicable net namespace 767 * @name: name to find 768 * 769 * Find an interface by name. This can be called from any 770 * context and does its own locking. The returned handle has 771 * the usage count incremented and the caller must use dev_put() to 772 * release it when it is no longer needed. %NULL is returned if no 773 * matching device is found. 774 */ 775 776 struct net_device *dev_get_by_name(struct net *net, const char *name) 777 { 778 struct net_device *dev; 779 780 rcu_read_lock(); 781 dev = dev_get_by_name_rcu(net, name); 782 if (dev) 783 dev_hold(dev); 784 rcu_read_unlock(); 785 return dev; 786 } 787 EXPORT_SYMBOL(dev_get_by_name); 788 789 /** 790 * __dev_get_by_index - find a device by its ifindex 791 * @net: the applicable net namespace 792 * @ifindex: index of device 793 * 794 * Search for an interface by index. Returns %NULL if the device 795 * is not found or a pointer to the device. The device has not 796 * had its reference counter increased so the caller must be careful 797 * about locking. The caller must hold either the RTNL semaphore 798 * or @dev_base_lock. 799 */ 800 801 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 802 { 803 struct net_device *dev; 804 struct hlist_head *head = dev_index_hash(net, ifindex); 805 806 hlist_for_each_entry(dev, head, index_hlist) 807 if (dev->ifindex == ifindex) 808 return dev; 809 810 return NULL; 811 } 812 EXPORT_SYMBOL(__dev_get_by_index); 813 814 /** 815 * dev_get_by_index_rcu - find a device by its ifindex 816 * @net: the applicable net namespace 817 * @ifindex: index of device 818 * 819 * Search for an interface by index. Returns %NULL if the device 820 * is not found or a pointer to the device. The device has not 821 * had its reference counter increased so the caller must be careful 822 * about locking. The caller must hold RCU lock. 823 */ 824 825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 826 { 827 struct net_device *dev; 828 struct hlist_head *head = dev_index_hash(net, ifindex); 829 830 hlist_for_each_entry_rcu(dev, head, index_hlist) 831 if (dev->ifindex == ifindex) 832 return dev; 833 834 return NULL; 835 } 836 EXPORT_SYMBOL(dev_get_by_index_rcu); 837 838 839 /** 840 * dev_get_by_index - find a device by its ifindex 841 * @net: the applicable net namespace 842 * @ifindex: index of device 843 * 844 * Search for an interface by index. Returns NULL if the device 845 * is not found or a pointer to the device. The device returned has 846 * had a reference added and the pointer is safe until the user calls 847 * dev_put to indicate they have finished with it. 848 */ 849 850 struct net_device *dev_get_by_index(struct net *net, int ifindex) 851 { 852 struct net_device *dev; 853 854 rcu_read_lock(); 855 dev = dev_get_by_index_rcu(net, ifindex); 856 if (dev) 857 dev_hold(dev); 858 rcu_read_unlock(); 859 return dev; 860 } 861 EXPORT_SYMBOL(dev_get_by_index); 862 863 /** 864 * netdev_get_name - get a netdevice name, knowing its ifindex. 865 * @net: network namespace 866 * @name: a pointer to the buffer where the name will be stored. 867 * @ifindex: the ifindex of the interface to get the name from. 868 * 869 * The use of raw_seqcount_begin() and cond_resched() before 870 * retrying is required as we want to give the writers a chance 871 * to complete when CONFIG_PREEMPT is not set. 872 */ 873 int netdev_get_name(struct net *net, char *name, int ifindex) 874 { 875 struct net_device *dev; 876 unsigned int seq; 877 878 retry: 879 seq = raw_seqcount_begin(&devnet_rename_seq); 880 rcu_read_lock(); 881 dev = dev_get_by_index_rcu(net, ifindex); 882 if (!dev) { 883 rcu_read_unlock(); 884 return -ENODEV; 885 } 886 887 strcpy(name, dev->name); 888 rcu_read_unlock(); 889 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 890 cond_resched(); 891 goto retry; 892 } 893 894 return 0; 895 } 896 897 /** 898 * dev_getbyhwaddr_rcu - find a device by its hardware address 899 * @net: the applicable net namespace 900 * @type: media type of device 901 * @ha: hardware address 902 * 903 * Search for an interface by MAC address. Returns NULL if the device 904 * is not found or a pointer to the device. 905 * The caller must hold RCU or RTNL. 906 * The returned device has not had its ref count increased 907 * and the caller must therefore be careful about locking 908 * 909 */ 910 911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 912 const char *ha) 913 { 914 struct net_device *dev; 915 916 for_each_netdev_rcu(net, dev) 917 if (dev->type == type && 918 !memcmp(dev->dev_addr, ha, dev->addr_len)) 919 return dev; 920 921 return NULL; 922 } 923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 924 925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 926 { 927 struct net_device *dev; 928 929 ASSERT_RTNL(); 930 for_each_netdev(net, dev) 931 if (dev->type == type) 932 return dev; 933 934 return NULL; 935 } 936 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 937 938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 939 { 940 struct net_device *dev, *ret = NULL; 941 942 rcu_read_lock(); 943 for_each_netdev_rcu(net, dev) 944 if (dev->type == type) { 945 dev_hold(dev); 946 ret = dev; 947 break; 948 } 949 rcu_read_unlock(); 950 return ret; 951 } 952 EXPORT_SYMBOL(dev_getfirstbyhwtype); 953 954 /** 955 * __dev_get_by_flags - find any device with given flags 956 * @net: the applicable net namespace 957 * @if_flags: IFF_* values 958 * @mask: bitmask of bits in if_flags to check 959 * 960 * Search for any interface with the given flags. Returns NULL if a device 961 * is not found or a pointer to the device. Must be called inside 962 * rtnl_lock(), and result refcount is unchanged. 963 */ 964 965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 966 unsigned short mask) 967 { 968 struct net_device *dev, *ret; 969 970 ASSERT_RTNL(); 971 972 ret = NULL; 973 for_each_netdev(net, dev) { 974 if (((dev->flags ^ if_flags) & mask) == 0) { 975 ret = dev; 976 break; 977 } 978 } 979 return ret; 980 } 981 EXPORT_SYMBOL(__dev_get_by_flags); 982 983 /** 984 * dev_valid_name - check if name is okay for network device 985 * @name: name string 986 * 987 * Network device names need to be valid file names to 988 * to allow sysfs to work. We also disallow any kind of 989 * whitespace. 990 */ 991 bool dev_valid_name(const char *name) 992 { 993 if (*name == '\0') 994 return false; 995 if (strlen(name) >= IFNAMSIZ) 996 return false; 997 if (!strcmp(name, ".") || !strcmp(name, "..")) 998 return false; 999 1000 while (*name) { 1001 if (*name == '/' || *name == ':' || isspace(*name)) 1002 return false; 1003 name++; 1004 } 1005 return true; 1006 } 1007 EXPORT_SYMBOL(dev_valid_name); 1008 1009 /** 1010 * __dev_alloc_name - allocate a name for a device 1011 * @net: network namespace to allocate the device name in 1012 * @name: name format string 1013 * @buf: scratch buffer and result name string 1014 * 1015 * Passed a format string - eg "lt%d" it will try and find a suitable 1016 * id. It scans list of devices to build up a free map, then chooses 1017 * the first empty slot. The caller must hold the dev_base or rtnl lock 1018 * while allocating the name and adding the device in order to avoid 1019 * duplicates. 1020 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1021 * Returns the number of the unit assigned or a negative errno code. 1022 */ 1023 1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1025 { 1026 int i = 0; 1027 const char *p; 1028 const int max_netdevices = 8*PAGE_SIZE; 1029 unsigned long *inuse; 1030 struct net_device *d; 1031 1032 p = strnchr(name, IFNAMSIZ-1, '%'); 1033 if (p) { 1034 /* 1035 * Verify the string as this thing may have come from 1036 * the user. There must be either one "%d" and no other "%" 1037 * characters. 1038 */ 1039 if (p[1] != 'd' || strchr(p + 2, '%')) 1040 return -EINVAL; 1041 1042 /* Use one page as a bit array of possible slots */ 1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1044 if (!inuse) 1045 return -ENOMEM; 1046 1047 for_each_netdev(net, d) { 1048 if (!sscanf(d->name, name, &i)) 1049 continue; 1050 if (i < 0 || i >= max_netdevices) 1051 continue; 1052 1053 /* avoid cases where sscanf is not exact inverse of printf */ 1054 snprintf(buf, IFNAMSIZ, name, i); 1055 if (!strncmp(buf, d->name, IFNAMSIZ)) 1056 set_bit(i, inuse); 1057 } 1058 1059 i = find_first_zero_bit(inuse, max_netdevices); 1060 free_page((unsigned long) inuse); 1061 } 1062 1063 if (buf != name) 1064 snprintf(buf, IFNAMSIZ, name, i); 1065 if (!__dev_get_by_name(net, buf)) 1066 return i; 1067 1068 /* It is possible to run out of possible slots 1069 * when the name is long and there isn't enough space left 1070 * for the digits, or if all bits are used. 1071 */ 1072 return -ENFILE; 1073 } 1074 1075 /** 1076 * dev_alloc_name - allocate a name for a device 1077 * @dev: device 1078 * @name: name format string 1079 * 1080 * Passed a format string - eg "lt%d" it will try and find a suitable 1081 * id. It scans list of devices to build up a free map, then chooses 1082 * the first empty slot. The caller must hold the dev_base or rtnl lock 1083 * while allocating the name and adding the device in order to avoid 1084 * duplicates. 1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1086 * Returns the number of the unit assigned or a negative errno code. 1087 */ 1088 1089 int dev_alloc_name(struct net_device *dev, const char *name) 1090 { 1091 char buf[IFNAMSIZ]; 1092 struct net *net; 1093 int ret; 1094 1095 BUG_ON(!dev_net(dev)); 1096 net = dev_net(dev); 1097 ret = __dev_alloc_name(net, name, buf); 1098 if (ret >= 0) 1099 strlcpy(dev->name, buf, IFNAMSIZ); 1100 return ret; 1101 } 1102 EXPORT_SYMBOL(dev_alloc_name); 1103 1104 static int dev_alloc_name_ns(struct net *net, 1105 struct net_device *dev, 1106 const char *name) 1107 { 1108 char buf[IFNAMSIZ]; 1109 int ret; 1110 1111 ret = __dev_alloc_name(net, name, buf); 1112 if (ret >= 0) 1113 strlcpy(dev->name, buf, IFNAMSIZ); 1114 return ret; 1115 } 1116 1117 static int dev_get_valid_name(struct net *net, 1118 struct net_device *dev, 1119 const char *name) 1120 { 1121 BUG_ON(!net); 1122 1123 if (!dev_valid_name(name)) 1124 return -EINVAL; 1125 1126 if (strchr(name, '%')) 1127 return dev_alloc_name_ns(net, dev, name); 1128 else if (__dev_get_by_name(net, name)) 1129 return -EEXIST; 1130 else if (dev->name != name) 1131 strlcpy(dev->name, name, IFNAMSIZ); 1132 1133 return 0; 1134 } 1135 1136 /** 1137 * dev_change_name - change name of a device 1138 * @dev: device 1139 * @newname: name (or format string) must be at least IFNAMSIZ 1140 * 1141 * Change name of a device, can pass format strings "eth%d". 1142 * for wildcarding. 1143 */ 1144 int dev_change_name(struct net_device *dev, const char *newname) 1145 { 1146 unsigned char old_assign_type; 1147 char oldname[IFNAMSIZ]; 1148 int err = 0; 1149 int ret; 1150 struct net *net; 1151 1152 ASSERT_RTNL(); 1153 BUG_ON(!dev_net(dev)); 1154 1155 net = dev_net(dev); 1156 if (dev->flags & IFF_UP) 1157 return -EBUSY; 1158 1159 write_seqcount_begin(&devnet_rename_seq); 1160 1161 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1162 write_seqcount_end(&devnet_rename_seq); 1163 return 0; 1164 } 1165 1166 memcpy(oldname, dev->name, IFNAMSIZ); 1167 1168 err = dev_get_valid_name(net, dev, newname); 1169 if (err < 0) { 1170 write_seqcount_end(&devnet_rename_seq); 1171 return err; 1172 } 1173 1174 if (oldname[0] && !strchr(oldname, '%')) 1175 netdev_info(dev, "renamed from %s\n", oldname); 1176 1177 old_assign_type = dev->name_assign_type; 1178 dev->name_assign_type = NET_NAME_RENAMED; 1179 1180 rollback: 1181 ret = device_rename(&dev->dev, dev->name); 1182 if (ret) { 1183 memcpy(dev->name, oldname, IFNAMSIZ); 1184 dev->name_assign_type = old_assign_type; 1185 write_seqcount_end(&devnet_rename_seq); 1186 return ret; 1187 } 1188 1189 write_seqcount_end(&devnet_rename_seq); 1190 1191 netdev_adjacent_rename_links(dev, oldname); 1192 1193 write_lock_bh(&dev_base_lock); 1194 hlist_del_rcu(&dev->name_hlist); 1195 write_unlock_bh(&dev_base_lock); 1196 1197 synchronize_rcu(); 1198 1199 write_lock_bh(&dev_base_lock); 1200 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1201 write_unlock_bh(&dev_base_lock); 1202 1203 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1204 ret = notifier_to_errno(ret); 1205 1206 if (ret) { 1207 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1208 if (err >= 0) { 1209 err = ret; 1210 write_seqcount_begin(&devnet_rename_seq); 1211 memcpy(dev->name, oldname, IFNAMSIZ); 1212 memcpy(oldname, newname, IFNAMSIZ); 1213 dev->name_assign_type = old_assign_type; 1214 old_assign_type = NET_NAME_RENAMED; 1215 goto rollback; 1216 } else { 1217 pr_err("%s: name change rollback failed: %d\n", 1218 dev->name, ret); 1219 } 1220 } 1221 1222 return err; 1223 } 1224 1225 /** 1226 * dev_set_alias - change ifalias of a device 1227 * @dev: device 1228 * @alias: name up to IFALIASZ 1229 * @len: limit of bytes to copy from info 1230 * 1231 * Set ifalias for a device, 1232 */ 1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1234 { 1235 char *new_ifalias; 1236 1237 ASSERT_RTNL(); 1238 1239 if (len >= IFALIASZ) 1240 return -EINVAL; 1241 1242 if (!len) { 1243 kfree(dev->ifalias); 1244 dev->ifalias = NULL; 1245 return 0; 1246 } 1247 1248 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1249 if (!new_ifalias) 1250 return -ENOMEM; 1251 dev->ifalias = new_ifalias; 1252 1253 strlcpy(dev->ifalias, alias, len+1); 1254 return len; 1255 } 1256 1257 1258 /** 1259 * netdev_features_change - device changes features 1260 * @dev: device to cause notification 1261 * 1262 * Called to indicate a device has changed features. 1263 */ 1264 void netdev_features_change(struct net_device *dev) 1265 { 1266 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1267 } 1268 EXPORT_SYMBOL(netdev_features_change); 1269 1270 /** 1271 * netdev_state_change - device changes state 1272 * @dev: device to cause notification 1273 * 1274 * Called to indicate a device has changed state. This function calls 1275 * the notifier chains for netdev_chain and sends a NEWLINK message 1276 * to the routing socket. 1277 */ 1278 void netdev_state_change(struct net_device *dev) 1279 { 1280 if (dev->flags & IFF_UP) { 1281 struct netdev_notifier_change_info change_info; 1282 1283 change_info.flags_changed = 0; 1284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1285 &change_info.info); 1286 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1287 } 1288 } 1289 EXPORT_SYMBOL(netdev_state_change); 1290 1291 /** 1292 * netdev_notify_peers - notify network peers about existence of @dev 1293 * @dev: network device 1294 * 1295 * Generate traffic such that interested network peers are aware of 1296 * @dev, such as by generating a gratuitous ARP. This may be used when 1297 * a device wants to inform the rest of the network about some sort of 1298 * reconfiguration such as a failover event or virtual machine 1299 * migration. 1300 */ 1301 void netdev_notify_peers(struct net_device *dev) 1302 { 1303 rtnl_lock(); 1304 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1305 rtnl_unlock(); 1306 } 1307 EXPORT_SYMBOL(netdev_notify_peers); 1308 1309 static int __dev_open(struct net_device *dev) 1310 { 1311 const struct net_device_ops *ops = dev->netdev_ops; 1312 int ret; 1313 1314 ASSERT_RTNL(); 1315 1316 if (!netif_device_present(dev)) 1317 return -ENODEV; 1318 1319 /* Block netpoll from trying to do any rx path servicing. 1320 * If we don't do this there is a chance ndo_poll_controller 1321 * or ndo_poll may be running while we open the device 1322 */ 1323 netpoll_poll_disable(dev); 1324 1325 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1326 ret = notifier_to_errno(ret); 1327 if (ret) 1328 return ret; 1329 1330 set_bit(__LINK_STATE_START, &dev->state); 1331 1332 if (ops->ndo_validate_addr) 1333 ret = ops->ndo_validate_addr(dev); 1334 1335 if (!ret && ops->ndo_open) 1336 ret = ops->ndo_open(dev); 1337 1338 netpoll_poll_enable(dev); 1339 1340 if (ret) 1341 clear_bit(__LINK_STATE_START, &dev->state); 1342 else { 1343 dev->flags |= IFF_UP; 1344 dev_set_rx_mode(dev); 1345 dev_activate(dev); 1346 add_device_randomness(dev->dev_addr, dev->addr_len); 1347 } 1348 1349 return ret; 1350 } 1351 1352 /** 1353 * dev_open - prepare an interface for use. 1354 * @dev: device to open 1355 * 1356 * Takes a device from down to up state. The device's private open 1357 * function is invoked and then the multicast lists are loaded. Finally 1358 * the device is moved into the up state and a %NETDEV_UP message is 1359 * sent to the netdev notifier chain. 1360 * 1361 * Calling this function on an active interface is a nop. On a failure 1362 * a negative errno code is returned. 1363 */ 1364 int dev_open(struct net_device *dev) 1365 { 1366 int ret; 1367 1368 if (dev->flags & IFF_UP) 1369 return 0; 1370 1371 ret = __dev_open(dev); 1372 if (ret < 0) 1373 return ret; 1374 1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1376 call_netdevice_notifiers(NETDEV_UP, dev); 1377 1378 return ret; 1379 } 1380 EXPORT_SYMBOL(dev_open); 1381 1382 static int __dev_close_many(struct list_head *head) 1383 { 1384 struct net_device *dev; 1385 1386 ASSERT_RTNL(); 1387 might_sleep(); 1388 1389 list_for_each_entry(dev, head, close_list) { 1390 /* Temporarily disable netpoll until the interface is down */ 1391 netpoll_poll_disable(dev); 1392 1393 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1394 1395 clear_bit(__LINK_STATE_START, &dev->state); 1396 1397 /* Synchronize to scheduled poll. We cannot touch poll list, it 1398 * can be even on different cpu. So just clear netif_running(). 1399 * 1400 * dev->stop() will invoke napi_disable() on all of it's 1401 * napi_struct instances on this device. 1402 */ 1403 smp_mb__after_atomic(); /* Commit netif_running(). */ 1404 } 1405 1406 dev_deactivate_many(head); 1407 1408 list_for_each_entry(dev, head, close_list) { 1409 const struct net_device_ops *ops = dev->netdev_ops; 1410 1411 /* 1412 * Call the device specific close. This cannot fail. 1413 * Only if device is UP 1414 * 1415 * We allow it to be called even after a DETACH hot-plug 1416 * event. 1417 */ 1418 if (ops->ndo_stop) 1419 ops->ndo_stop(dev); 1420 1421 dev->flags &= ~IFF_UP; 1422 netpoll_poll_enable(dev); 1423 } 1424 1425 return 0; 1426 } 1427 1428 static int __dev_close(struct net_device *dev) 1429 { 1430 int retval; 1431 LIST_HEAD(single); 1432 1433 list_add(&dev->close_list, &single); 1434 retval = __dev_close_many(&single); 1435 list_del(&single); 1436 1437 return retval; 1438 } 1439 1440 int dev_close_many(struct list_head *head, bool unlink) 1441 { 1442 struct net_device *dev, *tmp; 1443 1444 /* Remove the devices that don't need to be closed */ 1445 list_for_each_entry_safe(dev, tmp, head, close_list) 1446 if (!(dev->flags & IFF_UP)) 1447 list_del_init(&dev->close_list); 1448 1449 __dev_close_many(head); 1450 1451 list_for_each_entry_safe(dev, tmp, head, close_list) { 1452 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1453 call_netdevice_notifiers(NETDEV_DOWN, dev); 1454 if (unlink) 1455 list_del_init(&dev->close_list); 1456 } 1457 1458 return 0; 1459 } 1460 EXPORT_SYMBOL(dev_close_many); 1461 1462 /** 1463 * dev_close - shutdown an interface. 1464 * @dev: device to shutdown 1465 * 1466 * This function moves an active device into down state. A 1467 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1468 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1469 * chain. 1470 */ 1471 int dev_close(struct net_device *dev) 1472 { 1473 if (dev->flags & IFF_UP) { 1474 LIST_HEAD(single); 1475 1476 list_add(&dev->close_list, &single); 1477 dev_close_many(&single, true); 1478 list_del(&single); 1479 } 1480 return 0; 1481 } 1482 EXPORT_SYMBOL(dev_close); 1483 1484 1485 /** 1486 * dev_disable_lro - disable Large Receive Offload on a device 1487 * @dev: device 1488 * 1489 * Disable Large Receive Offload (LRO) on a net device. Must be 1490 * called under RTNL. This is needed if received packets may be 1491 * forwarded to another interface. 1492 */ 1493 void dev_disable_lro(struct net_device *dev) 1494 { 1495 struct net_device *lower_dev; 1496 struct list_head *iter; 1497 1498 dev->wanted_features &= ~NETIF_F_LRO; 1499 netdev_update_features(dev); 1500 1501 if (unlikely(dev->features & NETIF_F_LRO)) 1502 netdev_WARN(dev, "failed to disable LRO!\n"); 1503 1504 netdev_for_each_lower_dev(dev, lower_dev, iter) 1505 dev_disable_lro(lower_dev); 1506 } 1507 EXPORT_SYMBOL(dev_disable_lro); 1508 1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1510 struct net_device *dev) 1511 { 1512 struct netdev_notifier_info info; 1513 1514 netdev_notifier_info_init(&info, dev); 1515 return nb->notifier_call(nb, val, &info); 1516 } 1517 1518 static int dev_boot_phase = 1; 1519 1520 /** 1521 * register_netdevice_notifier - register a network notifier block 1522 * @nb: notifier 1523 * 1524 * Register a notifier to be called when network device events occur. 1525 * The notifier passed is linked into the kernel structures and must 1526 * not be reused until it has been unregistered. A negative errno code 1527 * is returned on a failure. 1528 * 1529 * When registered all registration and up events are replayed 1530 * to the new notifier to allow device to have a race free 1531 * view of the network device list. 1532 */ 1533 1534 int register_netdevice_notifier(struct notifier_block *nb) 1535 { 1536 struct net_device *dev; 1537 struct net_device *last; 1538 struct net *net; 1539 int err; 1540 1541 rtnl_lock(); 1542 err = raw_notifier_chain_register(&netdev_chain, nb); 1543 if (err) 1544 goto unlock; 1545 if (dev_boot_phase) 1546 goto unlock; 1547 for_each_net(net) { 1548 for_each_netdev(net, dev) { 1549 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1550 err = notifier_to_errno(err); 1551 if (err) 1552 goto rollback; 1553 1554 if (!(dev->flags & IFF_UP)) 1555 continue; 1556 1557 call_netdevice_notifier(nb, NETDEV_UP, dev); 1558 } 1559 } 1560 1561 unlock: 1562 rtnl_unlock(); 1563 return err; 1564 1565 rollback: 1566 last = dev; 1567 for_each_net(net) { 1568 for_each_netdev(net, dev) { 1569 if (dev == last) 1570 goto outroll; 1571 1572 if (dev->flags & IFF_UP) { 1573 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1574 dev); 1575 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1576 } 1577 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1578 } 1579 } 1580 1581 outroll: 1582 raw_notifier_chain_unregister(&netdev_chain, nb); 1583 goto unlock; 1584 } 1585 EXPORT_SYMBOL(register_netdevice_notifier); 1586 1587 /** 1588 * unregister_netdevice_notifier - unregister a network notifier block 1589 * @nb: notifier 1590 * 1591 * Unregister a notifier previously registered by 1592 * register_netdevice_notifier(). The notifier is unlinked into the 1593 * kernel structures and may then be reused. A negative errno code 1594 * is returned on a failure. 1595 * 1596 * After unregistering unregister and down device events are synthesized 1597 * for all devices on the device list to the removed notifier to remove 1598 * the need for special case cleanup code. 1599 */ 1600 1601 int unregister_netdevice_notifier(struct notifier_block *nb) 1602 { 1603 struct net_device *dev; 1604 struct net *net; 1605 int err; 1606 1607 rtnl_lock(); 1608 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1609 if (err) 1610 goto unlock; 1611 1612 for_each_net(net) { 1613 for_each_netdev(net, dev) { 1614 if (dev->flags & IFF_UP) { 1615 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1616 dev); 1617 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1618 } 1619 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1620 } 1621 } 1622 unlock: 1623 rtnl_unlock(); 1624 return err; 1625 } 1626 EXPORT_SYMBOL(unregister_netdevice_notifier); 1627 1628 /** 1629 * call_netdevice_notifiers_info - call all network notifier blocks 1630 * @val: value passed unmodified to notifier function 1631 * @dev: net_device pointer passed unmodified to notifier function 1632 * @info: notifier information data 1633 * 1634 * Call all network notifier blocks. Parameters and return value 1635 * are as for raw_notifier_call_chain(). 1636 */ 1637 1638 static int call_netdevice_notifiers_info(unsigned long val, 1639 struct net_device *dev, 1640 struct netdev_notifier_info *info) 1641 { 1642 ASSERT_RTNL(); 1643 netdev_notifier_info_init(info, dev); 1644 return raw_notifier_call_chain(&netdev_chain, val, info); 1645 } 1646 1647 /** 1648 * call_netdevice_notifiers - call all network notifier blocks 1649 * @val: value passed unmodified to notifier function 1650 * @dev: net_device pointer passed unmodified to notifier function 1651 * 1652 * Call all network notifier blocks. Parameters and return value 1653 * are as for raw_notifier_call_chain(). 1654 */ 1655 1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1657 { 1658 struct netdev_notifier_info info; 1659 1660 return call_netdevice_notifiers_info(val, dev, &info); 1661 } 1662 EXPORT_SYMBOL(call_netdevice_notifiers); 1663 1664 #ifdef CONFIG_NET_INGRESS 1665 static struct static_key ingress_needed __read_mostly; 1666 1667 void net_inc_ingress_queue(void) 1668 { 1669 static_key_slow_inc(&ingress_needed); 1670 } 1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1672 1673 void net_dec_ingress_queue(void) 1674 { 1675 static_key_slow_dec(&ingress_needed); 1676 } 1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1678 #endif 1679 1680 #ifdef CONFIG_NET_EGRESS 1681 static struct static_key egress_needed __read_mostly; 1682 1683 void net_inc_egress_queue(void) 1684 { 1685 static_key_slow_inc(&egress_needed); 1686 } 1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1688 1689 void net_dec_egress_queue(void) 1690 { 1691 static_key_slow_dec(&egress_needed); 1692 } 1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1694 #endif 1695 1696 static struct static_key netstamp_needed __read_mostly; 1697 #ifdef HAVE_JUMP_LABEL 1698 /* We are not allowed to call static_key_slow_dec() from irq context 1699 * If net_disable_timestamp() is called from irq context, defer the 1700 * static_key_slow_dec() calls. 1701 */ 1702 static atomic_t netstamp_needed_deferred; 1703 #endif 1704 1705 void net_enable_timestamp(void) 1706 { 1707 #ifdef HAVE_JUMP_LABEL 1708 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1709 1710 if (deferred) { 1711 while (--deferred) 1712 static_key_slow_dec(&netstamp_needed); 1713 return; 1714 } 1715 #endif 1716 static_key_slow_inc(&netstamp_needed); 1717 } 1718 EXPORT_SYMBOL(net_enable_timestamp); 1719 1720 void net_disable_timestamp(void) 1721 { 1722 #ifdef HAVE_JUMP_LABEL 1723 if (in_interrupt()) { 1724 atomic_inc(&netstamp_needed_deferred); 1725 return; 1726 } 1727 #endif 1728 static_key_slow_dec(&netstamp_needed); 1729 } 1730 EXPORT_SYMBOL(net_disable_timestamp); 1731 1732 static inline void net_timestamp_set(struct sk_buff *skb) 1733 { 1734 skb->tstamp.tv64 = 0; 1735 if (static_key_false(&netstamp_needed)) 1736 __net_timestamp(skb); 1737 } 1738 1739 #define net_timestamp_check(COND, SKB) \ 1740 if (static_key_false(&netstamp_needed)) { \ 1741 if ((COND) && !(SKB)->tstamp.tv64) \ 1742 __net_timestamp(SKB); \ 1743 } \ 1744 1745 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1746 { 1747 unsigned int len; 1748 1749 if (!(dev->flags & IFF_UP)) 1750 return false; 1751 1752 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1753 if (skb->len <= len) 1754 return true; 1755 1756 /* if TSO is enabled, we don't care about the length as the packet 1757 * could be forwarded without being segmented before 1758 */ 1759 if (skb_is_gso(skb)) 1760 return true; 1761 1762 return false; 1763 } 1764 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1765 1766 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1767 { 1768 int ret = ____dev_forward_skb(dev, skb); 1769 1770 if (likely(!ret)) { 1771 skb->protocol = eth_type_trans(skb, dev); 1772 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1773 } 1774 1775 return ret; 1776 } 1777 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1778 1779 /** 1780 * dev_forward_skb - loopback an skb to another netif 1781 * 1782 * @dev: destination network device 1783 * @skb: buffer to forward 1784 * 1785 * return values: 1786 * NET_RX_SUCCESS (no congestion) 1787 * NET_RX_DROP (packet was dropped, but freed) 1788 * 1789 * dev_forward_skb can be used for injecting an skb from the 1790 * start_xmit function of one device into the receive queue 1791 * of another device. 1792 * 1793 * The receiving device may be in another namespace, so 1794 * we have to clear all information in the skb that could 1795 * impact namespace isolation. 1796 */ 1797 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1798 { 1799 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1800 } 1801 EXPORT_SYMBOL_GPL(dev_forward_skb); 1802 1803 static inline int deliver_skb(struct sk_buff *skb, 1804 struct packet_type *pt_prev, 1805 struct net_device *orig_dev) 1806 { 1807 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1808 return -ENOMEM; 1809 atomic_inc(&skb->users); 1810 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1811 } 1812 1813 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1814 struct packet_type **pt, 1815 struct net_device *orig_dev, 1816 __be16 type, 1817 struct list_head *ptype_list) 1818 { 1819 struct packet_type *ptype, *pt_prev = *pt; 1820 1821 list_for_each_entry_rcu(ptype, ptype_list, list) { 1822 if (ptype->type != type) 1823 continue; 1824 if (pt_prev) 1825 deliver_skb(skb, pt_prev, orig_dev); 1826 pt_prev = ptype; 1827 } 1828 *pt = pt_prev; 1829 } 1830 1831 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1832 { 1833 if (!ptype->af_packet_priv || !skb->sk) 1834 return false; 1835 1836 if (ptype->id_match) 1837 return ptype->id_match(ptype, skb->sk); 1838 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1839 return true; 1840 1841 return false; 1842 } 1843 1844 /* 1845 * Support routine. Sends outgoing frames to any network 1846 * taps currently in use. 1847 */ 1848 1849 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1850 { 1851 struct packet_type *ptype; 1852 struct sk_buff *skb2 = NULL; 1853 struct packet_type *pt_prev = NULL; 1854 struct list_head *ptype_list = &ptype_all; 1855 1856 rcu_read_lock(); 1857 again: 1858 list_for_each_entry_rcu(ptype, ptype_list, list) { 1859 /* Never send packets back to the socket 1860 * they originated from - MvS (miquels@drinkel.ow.org) 1861 */ 1862 if (skb_loop_sk(ptype, skb)) 1863 continue; 1864 1865 if (pt_prev) { 1866 deliver_skb(skb2, pt_prev, skb->dev); 1867 pt_prev = ptype; 1868 continue; 1869 } 1870 1871 /* need to clone skb, done only once */ 1872 skb2 = skb_clone(skb, GFP_ATOMIC); 1873 if (!skb2) 1874 goto out_unlock; 1875 1876 net_timestamp_set(skb2); 1877 1878 /* skb->nh should be correctly 1879 * set by sender, so that the second statement is 1880 * just protection against buggy protocols. 1881 */ 1882 skb_reset_mac_header(skb2); 1883 1884 if (skb_network_header(skb2) < skb2->data || 1885 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1886 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1887 ntohs(skb2->protocol), 1888 dev->name); 1889 skb_reset_network_header(skb2); 1890 } 1891 1892 skb2->transport_header = skb2->network_header; 1893 skb2->pkt_type = PACKET_OUTGOING; 1894 pt_prev = ptype; 1895 } 1896 1897 if (ptype_list == &ptype_all) { 1898 ptype_list = &dev->ptype_all; 1899 goto again; 1900 } 1901 out_unlock: 1902 if (pt_prev) 1903 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1904 rcu_read_unlock(); 1905 } 1906 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1907 1908 /** 1909 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1910 * @dev: Network device 1911 * @txq: number of queues available 1912 * 1913 * If real_num_tx_queues is changed the tc mappings may no longer be 1914 * valid. To resolve this verify the tc mapping remains valid and if 1915 * not NULL the mapping. With no priorities mapping to this 1916 * offset/count pair it will no longer be used. In the worst case TC0 1917 * is invalid nothing can be done so disable priority mappings. If is 1918 * expected that drivers will fix this mapping if they can before 1919 * calling netif_set_real_num_tx_queues. 1920 */ 1921 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1922 { 1923 int i; 1924 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1925 1926 /* If TC0 is invalidated disable TC mapping */ 1927 if (tc->offset + tc->count > txq) { 1928 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1929 dev->num_tc = 0; 1930 return; 1931 } 1932 1933 /* Invalidated prio to tc mappings set to TC0 */ 1934 for (i = 1; i < TC_BITMASK + 1; i++) { 1935 int q = netdev_get_prio_tc_map(dev, i); 1936 1937 tc = &dev->tc_to_txq[q]; 1938 if (tc->offset + tc->count > txq) { 1939 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1940 i, q); 1941 netdev_set_prio_tc_map(dev, i, 0); 1942 } 1943 } 1944 } 1945 1946 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 1947 { 1948 if (dev->num_tc) { 1949 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1950 int i; 1951 1952 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 1953 if ((txq - tc->offset) < tc->count) 1954 return i; 1955 } 1956 1957 return -1; 1958 } 1959 1960 return 0; 1961 } 1962 1963 #ifdef CONFIG_XPS 1964 static DEFINE_MUTEX(xps_map_mutex); 1965 #define xmap_dereference(P) \ 1966 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1967 1968 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 1969 int tci, u16 index) 1970 { 1971 struct xps_map *map = NULL; 1972 int pos; 1973 1974 if (dev_maps) 1975 map = xmap_dereference(dev_maps->cpu_map[tci]); 1976 if (!map) 1977 return false; 1978 1979 for (pos = map->len; pos--;) { 1980 if (map->queues[pos] != index) 1981 continue; 1982 1983 if (map->len > 1) { 1984 map->queues[pos] = map->queues[--map->len]; 1985 break; 1986 } 1987 1988 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 1989 kfree_rcu(map, rcu); 1990 return false; 1991 } 1992 1993 return true; 1994 } 1995 1996 static bool remove_xps_queue_cpu(struct net_device *dev, 1997 struct xps_dev_maps *dev_maps, 1998 int cpu, u16 offset, u16 count) 1999 { 2000 int num_tc = dev->num_tc ? : 1; 2001 bool active = false; 2002 int tci; 2003 2004 for (tci = cpu * num_tc; num_tc--; tci++) { 2005 int i, j; 2006 2007 for (i = count, j = offset; i--; j++) { 2008 if (!remove_xps_queue(dev_maps, cpu, j)) 2009 break; 2010 } 2011 2012 active |= i < 0; 2013 } 2014 2015 return active; 2016 } 2017 2018 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2019 u16 count) 2020 { 2021 struct xps_dev_maps *dev_maps; 2022 int cpu, i; 2023 bool active = false; 2024 2025 mutex_lock(&xps_map_mutex); 2026 dev_maps = xmap_dereference(dev->xps_maps); 2027 2028 if (!dev_maps) 2029 goto out_no_maps; 2030 2031 for_each_possible_cpu(cpu) 2032 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2033 offset, count); 2034 2035 if (!active) { 2036 RCU_INIT_POINTER(dev->xps_maps, NULL); 2037 kfree_rcu(dev_maps, rcu); 2038 } 2039 2040 for (i = offset + (count - 1); count--; i--) 2041 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2042 NUMA_NO_NODE); 2043 2044 out_no_maps: 2045 mutex_unlock(&xps_map_mutex); 2046 } 2047 2048 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2049 { 2050 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2051 } 2052 2053 static struct xps_map *expand_xps_map(struct xps_map *map, 2054 int cpu, u16 index) 2055 { 2056 struct xps_map *new_map; 2057 int alloc_len = XPS_MIN_MAP_ALLOC; 2058 int i, pos; 2059 2060 for (pos = 0; map && pos < map->len; pos++) { 2061 if (map->queues[pos] != index) 2062 continue; 2063 return map; 2064 } 2065 2066 /* Need to add queue to this CPU's existing map */ 2067 if (map) { 2068 if (pos < map->alloc_len) 2069 return map; 2070 2071 alloc_len = map->alloc_len * 2; 2072 } 2073 2074 /* Need to allocate new map to store queue on this CPU's map */ 2075 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2076 cpu_to_node(cpu)); 2077 if (!new_map) 2078 return NULL; 2079 2080 for (i = 0; i < pos; i++) 2081 new_map->queues[i] = map->queues[i]; 2082 new_map->alloc_len = alloc_len; 2083 new_map->len = pos; 2084 2085 return new_map; 2086 } 2087 2088 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2089 u16 index) 2090 { 2091 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2092 int i, cpu, tci, numa_node_id = -2; 2093 int maps_sz, num_tc = 1, tc = 0; 2094 struct xps_map *map, *new_map; 2095 bool active = false; 2096 2097 if (dev->num_tc) { 2098 num_tc = dev->num_tc; 2099 tc = netdev_txq_to_tc(dev, index); 2100 if (tc < 0) 2101 return -EINVAL; 2102 } 2103 2104 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2105 if (maps_sz < L1_CACHE_BYTES) 2106 maps_sz = L1_CACHE_BYTES; 2107 2108 mutex_lock(&xps_map_mutex); 2109 2110 dev_maps = xmap_dereference(dev->xps_maps); 2111 2112 /* allocate memory for queue storage */ 2113 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2114 if (!new_dev_maps) 2115 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2116 if (!new_dev_maps) { 2117 mutex_unlock(&xps_map_mutex); 2118 return -ENOMEM; 2119 } 2120 2121 tci = cpu * num_tc + tc; 2122 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2123 NULL; 2124 2125 map = expand_xps_map(map, cpu, index); 2126 if (!map) 2127 goto error; 2128 2129 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2130 } 2131 2132 if (!new_dev_maps) 2133 goto out_no_new_maps; 2134 2135 for_each_possible_cpu(cpu) { 2136 /* copy maps belonging to foreign traffic classes */ 2137 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2138 /* fill in the new device map from the old device map */ 2139 map = xmap_dereference(dev_maps->cpu_map[tci]); 2140 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2141 } 2142 2143 /* We need to explicitly update tci as prevous loop 2144 * could break out early if dev_maps is NULL. 2145 */ 2146 tci = cpu * num_tc + tc; 2147 2148 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2149 /* add queue to CPU maps */ 2150 int pos = 0; 2151 2152 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2153 while ((pos < map->len) && (map->queues[pos] != index)) 2154 pos++; 2155 2156 if (pos == map->len) 2157 map->queues[map->len++] = index; 2158 #ifdef CONFIG_NUMA 2159 if (numa_node_id == -2) 2160 numa_node_id = cpu_to_node(cpu); 2161 else if (numa_node_id != cpu_to_node(cpu)) 2162 numa_node_id = -1; 2163 #endif 2164 } else if (dev_maps) { 2165 /* fill in the new device map from the old device map */ 2166 map = xmap_dereference(dev_maps->cpu_map[tci]); 2167 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2168 } 2169 2170 /* copy maps belonging to foreign traffic classes */ 2171 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2172 /* fill in the new device map from the old device map */ 2173 map = xmap_dereference(dev_maps->cpu_map[tci]); 2174 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2175 } 2176 } 2177 2178 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2179 2180 /* Cleanup old maps */ 2181 if (!dev_maps) 2182 goto out_no_old_maps; 2183 2184 for_each_possible_cpu(cpu) { 2185 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2186 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2187 map = xmap_dereference(dev_maps->cpu_map[tci]); 2188 if (map && map != new_map) 2189 kfree_rcu(map, rcu); 2190 } 2191 } 2192 2193 kfree_rcu(dev_maps, rcu); 2194 2195 out_no_old_maps: 2196 dev_maps = new_dev_maps; 2197 active = true; 2198 2199 out_no_new_maps: 2200 /* update Tx queue numa node */ 2201 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2202 (numa_node_id >= 0) ? numa_node_id : 2203 NUMA_NO_NODE); 2204 2205 if (!dev_maps) 2206 goto out_no_maps; 2207 2208 /* removes queue from unused CPUs */ 2209 for_each_possible_cpu(cpu) { 2210 for (i = tc, tci = cpu * num_tc; i--; tci++) 2211 active |= remove_xps_queue(dev_maps, tci, index); 2212 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2213 active |= remove_xps_queue(dev_maps, tci, index); 2214 for (i = num_tc - tc, tci++; --i; tci++) 2215 active |= remove_xps_queue(dev_maps, tci, index); 2216 } 2217 2218 /* free map if not active */ 2219 if (!active) { 2220 RCU_INIT_POINTER(dev->xps_maps, NULL); 2221 kfree_rcu(dev_maps, rcu); 2222 } 2223 2224 out_no_maps: 2225 mutex_unlock(&xps_map_mutex); 2226 2227 return 0; 2228 error: 2229 /* remove any maps that we added */ 2230 for_each_possible_cpu(cpu) { 2231 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2232 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2233 map = dev_maps ? 2234 xmap_dereference(dev_maps->cpu_map[tci]) : 2235 NULL; 2236 if (new_map && new_map != map) 2237 kfree(new_map); 2238 } 2239 } 2240 2241 mutex_unlock(&xps_map_mutex); 2242 2243 kfree(new_dev_maps); 2244 return -ENOMEM; 2245 } 2246 EXPORT_SYMBOL(netif_set_xps_queue); 2247 2248 #endif 2249 void netdev_reset_tc(struct net_device *dev) 2250 { 2251 #ifdef CONFIG_XPS 2252 netif_reset_xps_queues_gt(dev, 0); 2253 #endif 2254 dev->num_tc = 0; 2255 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2256 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2257 } 2258 EXPORT_SYMBOL(netdev_reset_tc); 2259 2260 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2261 { 2262 if (tc >= dev->num_tc) 2263 return -EINVAL; 2264 2265 #ifdef CONFIG_XPS 2266 netif_reset_xps_queues(dev, offset, count); 2267 #endif 2268 dev->tc_to_txq[tc].count = count; 2269 dev->tc_to_txq[tc].offset = offset; 2270 return 0; 2271 } 2272 EXPORT_SYMBOL(netdev_set_tc_queue); 2273 2274 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2275 { 2276 if (num_tc > TC_MAX_QUEUE) 2277 return -EINVAL; 2278 2279 #ifdef CONFIG_XPS 2280 netif_reset_xps_queues_gt(dev, 0); 2281 #endif 2282 dev->num_tc = num_tc; 2283 return 0; 2284 } 2285 EXPORT_SYMBOL(netdev_set_num_tc); 2286 2287 /* 2288 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2289 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2290 */ 2291 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2292 { 2293 int rc; 2294 2295 if (txq < 1 || txq > dev->num_tx_queues) 2296 return -EINVAL; 2297 2298 if (dev->reg_state == NETREG_REGISTERED || 2299 dev->reg_state == NETREG_UNREGISTERING) { 2300 ASSERT_RTNL(); 2301 2302 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2303 txq); 2304 if (rc) 2305 return rc; 2306 2307 if (dev->num_tc) 2308 netif_setup_tc(dev, txq); 2309 2310 if (txq < dev->real_num_tx_queues) { 2311 qdisc_reset_all_tx_gt(dev, txq); 2312 #ifdef CONFIG_XPS 2313 netif_reset_xps_queues_gt(dev, txq); 2314 #endif 2315 } 2316 } 2317 2318 dev->real_num_tx_queues = txq; 2319 return 0; 2320 } 2321 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2322 2323 #ifdef CONFIG_SYSFS 2324 /** 2325 * netif_set_real_num_rx_queues - set actual number of RX queues used 2326 * @dev: Network device 2327 * @rxq: Actual number of RX queues 2328 * 2329 * This must be called either with the rtnl_lock held or before 2330 * registration of the net device. Returns 0 on success, or a 2331 * negative error code. If called before registration, it always 2332 * succeeds. 2333 */ 2334 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2335 { 2336 int rc; 2337 2338 if (rxq < 1 || rxq > dev->num_rx_queues) 2339 return -EINVAL; 2340 2341 if (dev->reg_state == NETREG_REGISTERED) { 2342 ASSERT_RTNL(); 2343 2344 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2345 rxq); 2346 if (rc) 2347 return rc; 2348 } 2349 2350 dev->real_num_rx_queues = rxq; 2351 return 0; 2352 } 2353 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2354 #endif 2355 2356 /** 2357 * netif_get_num_default_rss_queues - default number of RSS queues 2358 * 2359 * This routine should set an upper limit on the number of RSS queues 2360 * used by default by multiqueue devices. 2361 */ 2362 int netif_get_num_default_rss_queues(void) 2363 { 2364 return is_kdump_kernel() ? 2365 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2366 } 2367 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2368 2369 static void __netif_reschedule(struct Qdisc *q) 2370 { 2371 struct softnet_data *sd; 2372 unsigned long flags; 2373 2374 local_irq_save(flags); 2375 sd = this_cpu_ptr(&softnet_data); 2376 q->next_sched = NULL; 2377 *sd->output_queue_tailp = q; 2378 sd->output_queue_tailp = &q->next_sched; 2379 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2380 local_irq_restore(flags); 2381 } 2382 2383 void __netif_schedule(struct Qdisc *q) 2384 { 2385 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2386 __netif_reschedule(q); 2387 } 2388 EXPORT_SYMBOL(__netif_schedule); 2389 2390 struct dev_kfree_skb_cb { 2391 enum skb_free_reason reason; 2392 }; 2393 2394 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2395 { 2396 return (struct dev_kfree_skb_cb *)skb->cb; 2397 } 2398 2399 void netif_schedule_queue(struct netdev_queue *txq) 2400 { 2401 rcu_read_lock(); 2402 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2403 struct Qdisc *q = rcu_dereference(txq->qdisc); 2404 2405 __netif_schedule(q); 2406 } 2407 rcu_read_unlock(); 2408 } 2409 EXPORT_SYMBOL(netif_schedule_queue); 2410 2411 /** 2412 * netif_wake_subqueue - allow sending packets on subqueue 2413 * @dev: network device 2414 * @queue_index: sub queue index 2415 * 2416 * Resume individual transmit queue of a device with multiple transmit queues. 2417 */ 2418 void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2419 { 2420 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2421 2422 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) { 2423 struct Qdisc *q; 2424 2425 rcu_read_lock(); 2426 q = rcu_dereference(txq->qdisc); 2427 __netif_schedule(q); 2428 rcu_read_unlock(); 2429 } 2430 } 2431 EXPORT_SYMBOL(netif_wake_subqueue); 2432 2433 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2434 { 2435 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2436 struct Qdisc *q; 2437 2438 rcu_read_lock(); 2439 q = rcu_dereference(dev_queue->qdisc); 2440 __netif_schedule(q); 2441 rcu_read_unlock(); 2442 } 2443 } 2444 EXPORT_SYMBOL(netif_tx_wake_queue); 2445 2446 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2447 { 2448 unsigned long flags; 2449 2450 if (likely(atomic_read(&skb->users) == 1)) { 2451 smp_rmb(); 2452 atomic_set(&skb->users, 0); 2453 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2454 return; 2455 } 2456 get_kfree_skb_cb(skb)->reason = reason; 2457 local_irq_save(flags); 2458 skb->next = __this_cpu_read(softnet_data.completion_queue); 2459 __this_cpu_write(softnet_data.completion_queue, skb); 2460 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2461 local_irq_restore(flags); 2462 } 2463 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2464 2465 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2466 { 2467 if (in_irq() || irqs_disabled()) 2468 __dev_kfree_skb_irq(skb, reason); 2469 else 2470 dev_kfree_skb(skb); 2471 } 2472 EXPORT_SYMBOL(__dev_kfree_skb_any); 2473 2474 2475 /** 2476 * netif_device_detach - mark device as removed 2477 * @dev: network device 2478 * 2479 * Mark device as removed from system and therefore no longer available. 2480 */ 2481 void netif_device_detach(struct net_device *dev) 2482 { 2483 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2484 netif_running(dev)) { 2485 netif_tx_stop_all_queues(dev); 2486 } 2487 } 2488 EXPORT_SYMBOL(netif_device_detach); 2489 2490 /** 2491 * netif_device_attach - mark device as attached 2492 * @dev: network device 2493 * 2494 * Mark device as attached from system and restart if needed. 2495 */ 2496 void netif_device_attach(struct net_device *dev) 2497 { 2498 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2499 netif_running(dev)) { 2500 netif_tx_wake_all_queues(dev); 2501 __netdev_watchdog_up(dev); 2502 } 2503 } 2504 EXPORT_SYMBOL(netif_device_attach); 2505 2506 /* 2507 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2508 * to be used as a distribution range. 2509 */ 2510 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2511 unsigned int num_tx_queues) 2512 { 2513 u32 hash; 2514 u16 qoffset = 0; 2515 u16 qcount = num_tx_queues; 2516 2517 if (skb_rx_queue_recorded(skb)) { 2518 hash = skb_get_rx_queue(skb); 2519 while (unlikely(hash >= num_tx_queues)) 2520 hash -= num_tx_queues; 2521 return hash; 2522 } 2523 2524 if (dev->num_tc) { 2525 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2526 qoffset = dev->tc_to_txq[tc].offset; 2527 qcount = dev->tc_to_txq[tc].count; 2528 } 2529 2530 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2531 } 2532 EXPORT_SYMBOL(__skb_tx_hash); 2533 2534 static void skb_warn_bad_offload(const struct sk_buff *skb) 2535 { 2536 static const netdev_features_t null_features; 2537 struct net_device *dev = skb->dev; 2538 const char *name = ""; 2539 2540 if (!net_ratelimit()) 2541 return; 2542 2543 if (dev) { 2544 if (dev->dev.parent) 2545 name = dev_driver_string(dev->dev.parent); 2546 else 2547 name = netdev_name(dev); 2548 } 2549 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2550 "gso_type=%d ip_summed=%d\n", 2551 name, dev ? &dev->features : &null_features, 2552 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2553 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2554 skb_shinfo(skb)->gso_type, skb->ip_summed); 2555 } 2556 2557 /* 2558 * Invalidate hardware checksum when packet is to be mangled, and 2559 * complete checksum manually on outgoing path. 2560 */ 2561 int skb_checksum_help(struct sk_buff *skb) 2562 { 2563 __wsum csum; 2564 int ret = 0, offset; 2565 2566 if (skb->ip_summed == CHECKSUM_COMPLETE) 2567 goto out_set_summed; 2568 2569 if (unlikely(skb_shinfo(skb)->gso_size)) { 2570 skb_warn_bad_offload(skb); 2571 return -EINVAL; 2572 } 2573 2574 /* Before computing a checksum, we should make sure no frag could 2575 * be modified by an external entity : checksum could be wrong. 2576 */ 2577 if (skb_has_shared_frag(skb)) { 2578 ret = __skb_linearize(skb); 2579 if (ret) 2580 goto out; 2581 } 2582 2583 offset = skb_checksum_start_offset(skb); 2584 BUG_ON(offset >= skb_headlen(skb)); 2585 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2586 2587 offset += skb->csum_offset; 2588 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2589 2590 if (skb_cloned(skb) && 2591 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2592 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2593 if (ret) 2594 goto out; 2595 } 2596 2597 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2598 out_set_summed: 2599 skb->ip_summed = CHECKSUM_NONE; 2600 out: 2601 return ret; 2602 } 2603 EXPORT_SYMBOL(skb_checksum_help); 2604 2605 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2606 { 2607 __be16 type = skb->protocol; 2608 2609 /* Tunnel gso handlers can set protocol to ethernet. */ 2610 if (type == htons(ETH_P_TEB)) { 2611 struct ethhdr *eth; 2612 2613 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2614 return 0; 2615 2616 eth = (struct ethhdr *)skb_mac_header(skb); 2617 type = eth->h_proto; 2618 } 2619 2620 return __vlan_get_protocol(skb, type, depth); 2621 } 2622 2623 /** 2624 * skb_mac_gso_segment - mac layer segmentation handler. 2625 * @skb: buffer to segment 2626 * @features: features for the output path (see dev->features) 2627 */ 2628 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2629 netdev_features_t features) 2630 { 2631 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2632 struct packet_offload *ptype; 2633 int vlan_depth = skb->mac_len; 2634 __be16 type = skb_network_protocol(skb, &vlan_depth); 2635 2636 if (unlikely(!type)) 2637 return ERR_PTR(-EINVAL); 2638 2639 __skb_pull(skb, vlan_depth); 2640 2641 rcu_read_lock(); 2642 list_for_each_entry_rcu(ptype, &offload_base, list) { 2643 if (ptype->type == type && ptype->callbacks.gso_segment) { 2644 segs = ptype->callbacks.gso_segment(skb, features); 2645 break; 2646 } 2647 } 2648 rcu_read_unlock(); 2649 2650 __skb_push(skb, skb->data - skb_mac_header(skb)); 2651 2652 return segs; 2653 } 2654 EXPORT_SYMBOL(skb_mac_gso_segment); 2655 2656 2657 /* openvswitch calls this on rx path, so we need a different check. 2658 */ 2659 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2660 { 2661 if (tx_path) 2662 return skb->ip_summed != CHECKSUM_PARTIAL; 2663 else 2664 return skb->ip_summed == CHECKSUM_NONE; 2665 } 2666 2667 /** 2668 * __skb_gso_segment - Perform segmentation on skb. 2669 * @skb: buffer to segment 2670 * @features: features for the output path (see dev->features) 2671 * @tx_path: whether it is called in TX path 2672 * 2673 * This function segments the given skb and returns a list of segments. 2674 * 2675 * It may return NULL if the skb requires no segmentation. This is 2676 * only possible when GSO is used for verifying header integrity. 2677 * 2678 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2679 */ 2680 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2681 netdev_features_t features, bool tx_path) 2682 { 2683 if (unlikely(skb_needs_check(skb, tx_path))) { 2684 int err; 2685 2686 skb_warn_bad_offload(skb); 2687 2688 err = skb_cow_head(skb, 0); 2689 if (err < 0) 2690 return ERR_PTR(err); 2691 } 2692 2693 /* Only report GSO partial support if it will enable us to 2694 * support segmentation on this frame without needing additional 2695 * work. 2696 */ 2697 if (features & NETIF_F_GSO_PARTIAL) { 2698 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2699 struct net_device *dev = skb->dev; 2700 2701 partial_features |= dev->features & dev->gso_partial_features; 2702 if (!skb_gso_ok(skb, features | partial_features)) 2703 features &= ~NETIF_F_GSO_PARTIAL; 2704 } 2705 2706 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2707 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2708 2709 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2710 SKB_GSO_CB(skb)->encap_level = 0; 2711 2712 skb_reset_mac_header(skb); 2713 skb_reset_mac_len(skb); 2714 2715 return skb_mac_gso_segment(skb, features); 2716 } 2717 EXPORT_SYMBOL(__skb_gso_segment); 2718 2719 /* Take action when hardware reception checksum errors are detected. */ 2720 #ifdef CONFIG_BUG 2721 void netdev_rx_csum_fault(struct net_device *dev) 2722 { 2723 if (net_ratelimit()) { 2724 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2725 dump_stack(); 2726 } 2727 } 2728 EXPORT_SYMBOL(netdev_rx_csum_fault); 2729 #endif 2730 2731 /* Actually, we should eliminate this check as soon as we know, that: 2732 * 1. IOMMU is present and allows to map all the memory. 2733 * 2. No high memory really exists on this machine. 2734 */ 2735 2736 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2737 { 2738 #ifdef CONFIG_HIGHMEM 2739 int i; 2740 if (!(dev->features & NETIF_F_HIGHDMA)) { 2741 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2742 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2743 if (PageHighMem(skb_frag_page(frag))) 2744 return 1; 2745 } 2746 } 2747 2748 if (PCI_DMA_BUS_IS_PHYS) { 2749 struct device *pdev = dev->dev.parent; 2750 2751 if (!pdev) 2752 return 0; 2753 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2754 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2755 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2756 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2757 return 1; 2758 } 2759 } 2760 #endif 2761 return 0; 2762 } 2763 2764 /* If MPLS offload request, verify we are testing hardware MPLS features 2765 * instead of standard features for the netdev. 2766 */ 2767 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2768 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2769 netdev_features_t features, 2770 __be16 type) 2771 { 2772 if (eth_p_mpls(type)) 2773 features &= skb->dev->mpls_features; 2774 2775 return features; 2776 } 2777 #else 2778 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2779 netdev_features_t features, 2780 __be16 type) 2781 { 2782 return features; 2783 } 2784 #endif 2785 2786 static netdev_features_t harmonize_features(struct sk_buff *skb, 2787 netdev_features_t features) 2788 { 2789 int tmp; 2790 __be16 type; 2791 2792 type = skb_network_protocol(skb, &tmp); 2793 features = net_mpls_features(skb, features, type); 2794 2795 if (skb->ip_summed != CHECKSUM_NONE && 2796 !can_checksum_protocol(features, type)) { 2797 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2798 } else if (illegal_highdma(skb->dev, skb)) { 2799 features &= ~NETIF_F_SG; 2800 } 2801 2802 return features; 2803 } 2804 2805 netdev_features_t passthru_features_check(struct sk_buff *skb, 2806 struct net_device *dev, 2807 netdev_features_t features) 2808 { 2809 return features; 2810 } 2811 EXPORT_SYMBOL(passthru_features_check); 2812 2813 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2814 struct net_device *dev, 2815 netdev_features_t features) 2816 { 2817 return vlan_features_check(skb, features); 2818 } 2819 2820 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2821 struct net_device *dev, 2822 netdev_features_t features) 2823 { 2824 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2825 2826 if (gso_segs > dev->gso_max_segs) 2827 return features & ~NETIF_F_GSO_MASK; 2828 2829 /* Support for GSO partial features requires software 2830 * intervention before we can actually process the packets 2831 * so we need to strip support for any partial features now 2832 * and we can pull them back in after we have partially 2833 * segmented the frame. 2834 */ 2835 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2836 features &= ~dev->gso_partial_features; 2837 2838 /* Make sure to clear the IPv4 ID mangling feature if the 2839 * IPv4 header has the potential to be fragmented. 2840 */ 2841 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2842 struct iphdr *iph = skb->encapsulation ? 2843 inner_ip_hdr(skb) : ip_hdr(skb); 2844 2845 if (!(iph->frag_off & htons(IP_DF))) 2846 features &= ~NETIF_F_TSO_MANGLEID; 2847 } 2848 2849 return features; 2850 } 2851 2852 netdev_features_t netif_skb_features(struct sk_buff *skb) 2853 { 2854 struct net_device *dev = skb->dev; 2855 netdev_features_t features = dev->features; 2856 2857 if (skb_is_gso(skb)) 2858 features = gso_features_check(skb, dev, features); 2859 2860 /* If encapsulation offload request, verify we are testing 2861 * hardware encapsulation features instead of standard 2862 * features for the netdev 2863 */ 2864 if (skb->encapsulation) 2865 features &= dev->hw_enc_features; 2866 2867 if (skb_vlan_tagged(skb)) 2868 features = netdev_intersect_features(features, 2869 dev->vlan_features | 2870 NETIF_F_HW_VLAN_CTAG_TX | 2871 NETIF_F_HW_VLAN_STAG_TX); 2872 2873 if (dev->netdev_ops->ndo_features_check) 2874 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2875 features); 2876 else 2877 features &= dflt_features_check(skb, dev, features); 2878 2879 return harmonize_features(skb, features); 2880 } 2881 EXPORT_SYMBOL(netif_skb_features); 2882 2883 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2884 struct netdev_queue *txq, bool more) 2885 { 2886 unsigned int len; 2887 int rc; 2888 2889 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2890 dev_queue_xmit_nit(skb, dev); 2891 2892 len = skb->len; 2893 trace_net_dev_start_xmit(skb, dev); 2894 rc = netdev_start_xmit(skb, dev, txq, more); 2895 trace_net_dev_xmit(skb, rc, dev, len); 2896 2897 return rc; 2898 } 2899 2900 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2901 struct netdev_queue *txq, int *ret) 2902 { 2903 struct sk_buff *skb = first; 2904 int rc = NETDEV_TX_OK; 2905 2906 while (skb) { 2907 struct sk_buff *next = skb->next; 2908 2909 skb->next = NULL; 2910 rc = xmit_one(skb, dev, txq, next != NULL); 2911 if (unlikely(!dev_xmit_complete(rc))) { 2912 skb->next = next; 2913 goto out; 2914 } 2915 2916 skb = next; 2917 if (netif_xmit_stopped(txq) && skb) { 2918 rc = NETDEV_TX_BUSY; 2919 break; 2920 } 2921 } 2922 2923 out: 2924 *ret = rc; 2925 return skb; 2926 } 2927 2928 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2929 netdev_features_t features) 2930 { 2931 if (skb_vlan_tag_present(skb) && 2932 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2933 skb = __vlan_hwaccel_push_inside(skb); 2934 return skb; 2935 } 2936 2937 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2938 { 2939 netdev_features_t features; 2940 2941 features = netif_skb_features(skb); 2942 skb = validate_xmit_vlan(skb, features); 2943 if (unlikely(!skb)) 2944 goto out_null; 2945 2946 if (netif_needs_gso(skb, features)) { 2947 struct sk_buff *segs; 2948 2949 segs = skb_gso_segment(skb, features); 2950 if (IS_ERR(segs)) { 2951 goto out_kfree_skb; 2952 } else if (segs) { 2953 consume_skb(skb); 2954 skb = segs; 2955 } 2956 } else { 2957 if (skb_needs_linearize(skb, features) && 2958 __skb_linearize(skb)) 2959 goto out_kfree_skb; 2960 2961 /* If packet is not checksummed and device does not 2962 * support checksumming for this protocol, complete 2963 * checksumming here. 2964 */ 2965 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2966 if (skb->encapsulation) 2967 skb_set_inner_transport_header(skb, 2968 skb_checksum_start_offset(skb)); 2969 else 2970 skb_set_transport_header(skb, 2971 skb_checksum_start_offset(skb)); 2972 if (!(features & NETIF_F_CSUM_MASK) && 2973 skb_checksum_help(skb)) 2974 goto out_kfree_skb; 2975 } 2976 } 2977 2978 return skb; 2979 2980 out_kfree_skb: 2981 kfree_skb(skb); 2982 out_null: 2983 atomic_long_inc(&dev->tx_dropped); 2984 return NULL; 2985 } 2986 2987 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 2988 { 2989 struct sk_buff *next, *head = NULL, *tail; 2990 2991 for (; skb != NULL; skb = next) { 2992 next = skb->next; 2993 skb->next = NULL; 2994 2995 /* in case skb wont be segmented, point to itself */ 2996 skb->prev = skb; 2997 2998 skb = validate_xmit_skb(skb, dev); 2999 if (!skb) 3000 continue; 3001 3002 if (!head) 3003 head = skb; 3004 else 3005 tail->next = skb; 3006 /* If skb was segmented, skb->prev points to 3007 * the last segment. If not, it still contains skb. 3008 */ 3009 tail = skb->prev; 3010 } 3011 return head; 3012 } 3013 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3014 3015 static void qdisc_pkt_len_init(struct sk_buff *skb) 3016 { 3017 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3018 3019 qdisc_skb_cb(skb)->pkt_len = skb->len; 3020 3021 /* To get more precise estimation of bytes sent on wire, 3022 * we add to pkt_len the headers size of all segments 3023 */ 3024 if (shinfo->gso_size) { 3025 unsigned int hdr_len; 3026 u16 gso_segs = shinfo->gso_segs; 3027 3028 /* mac layer + network layer */ 3029 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3030 3031 /* + transport layer */ 3032 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3033 hdr_len += tcp_hdrlen(skb); 3034 else 3035 hdr_len += sizeof(struct udphdr); 3036 3037 if (shinfo->gso_type & SKB_GSO_DODGY) 3038 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3039 shinfo->gso_size); 3040 3041 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3042 } 3043 } 3044 3045 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3046 struct net_device *dev, 3047 struct netdev_queue *txq) 3048 { 3049 spinlock_t *root_lock = qdisc_lock(q); 3050 struct sk_buff *to_free = NULL; 3051 bool contended; 3052 int rc; 3053 3054 qdisc_calculate_pkt_len(skb, q); 3055 /* 3056 * Heuristic to force contended enqueues to serialize on a 3057 * separate lock before trying to get qdisc main lock. 3058 * This permits qdisc->running owner to get the lock more 3059 * often and dequeue packets faster. 3060 */ 3061 contended = qdisc_is_running(q); 3062 if (unlikely(contended)) 3063 spin_lock(&q->busylock); 3064 3065 spin_lock(root_lock); 3066 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3067 __qdisc_drop(skb, &to_free); 3068 rc = NET_XMIT_DROP; 3069 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3070 qdisc_run_begin(q)) { 3071 /* 3072 * This is a work-conserving queue; there are no old skbs 3073 * waiting to be sent out; and the qdisc is not running - 3074 * xmit the skb directly. 3075 */ 3076 3077 qdisc_bstats_update(q, skb); 3078 3079 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3080 if (unlikely(contended)) { 3081 spin_unlock(&q->busylock); 3082 contended = false; 3083 } 3084 __qdisc_run(q); 3085 } else 3086 qdisc_run_end(q); 3087 3088 rc = NET_XMIT_SUCCESS; 3089 } else { 3090 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3091 if (qdisc_run_begin(q)) { 3092 if (unlikely(contended)) { 3093 spin_unlock(&q->busylock); 3094 contended = false; 3095 } 3096 __qdisc_run(q); 3097 } 3098 } 3099 spin_unlock(root_lock); 3100 if (unlikely(to_free)) 3101 kfree_skb_list(to_free); 3102 if (unlikely(contended)) 3103 spin_unlock(&q->busylock); 3104 return rc; 3105 } 3106 3107 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3108 static void skb_update_prio(struct sk_buff *skb) 3109 { 3110 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3111 3112 if (!skb->priority && skb->sk && map) { 3113 unsigned int prioidx = 3114 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3115 3116 if (prioidx < map->priomap_len) 3117 skb->priority = map->priomap[prioidx]; 3118 } 3119 } 3120 #else 3121 #define skb_update_prio(skb) 3122 #endif 3123 3124 DEFINE_PER_CPU(int, xmit_recursion); 3125 EXPORT_SYMBOL(xmit_recursion); 3126 3127 /** 3128 * dev_loopback_xmit - loop back @skb 3129 * @net: network namespace this loopback is happening in 3130 * @sk: sk needed to be a netfilter okfn 3131 * @skb: buffer to transmit 3132 */ 3133 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3134 { 3135 skb_reset_mac_header(skb); 3136 __skb_pull(skb, skb_network_offset(skb)); 3137 skb->pkt_type = PACKET_LOOPBACK; 3138 skb->ip_summed = CHECKSUM_UNNECESSARY; 3139 WARN_ON(!skb_dst(skb)); 3140 skb_dst_force(skb); 3141 netif_rx_ni(skb); 3142 return 0; 3143 } 3144 EXPORT_SYMBOL(dev_loopback_xmit); 3145 3146 #ifdef CONFIG_NET_EGRESS 3147 static struct sk_buff * 3148 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3149 { 3150 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list); 3151 struct tcf_result cl_res; 3152 3153 if (!cl) 3154 return skb; 3155 3156 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set 3157 * earlier by the caller. 3158 */ 3159 qdisc_bstats_cpu_update(cl->q, skb); 3160 3161 switch (tc_classify(skb, cl, &cl_res, false)) { 3162 case TC_ACT_OK: 3163 case TC_ACT_RECLASSIFY: 3164 skb->tc_index = TC_H_MIN(cl_res.classid); 3165 break; 3166 case TC_ACT_SHOT: 3167 qdisc_qstats_cpu_drop(cl->q); 3168 *ret = NET_XMIT_DROP; 3169 kfree_skb(skb); 3170 return NULL; 3171 case TC_ACT_STOLEN: 3172 case TC_ACT_QUEUED: 3173 *ret = NET_XMIT_SUCCESS; 3174 consume_skb(skb); 3175 return NULL; 3176 case TC_ACT_REDIRECT: 3177 /* No need to push/pop skb's mac_header here on egress! */ 3178 skb_do_redirect(skb); 3179 *ret = NET_XMIT_SUCCESS; 3180 return NULL; 3181 default: 3182 break; 3183 } 3184 3185 return skb; 3186 } 3187 #endif /* CONFIG_NET_EGRESS */ 3188 3189 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3190 { 3191 #ifdef CONFIG_XPS 3192 struct xps_dev_maps *dev_maps; 3193 struct xps_map *map; 3194 int queue_index = -1; 3195 3196 rcu_read_lock(); 3197 dev_maps = rcu_dereference(dev->xps_maps); 3198 if (dev_maps) { 3199 unsigned int tci = skb->sender_cpu - 1; 3200 3201 if (dev->num_tc) { 3202 tci *= dev->num_tc; 3203 tci += netdev_get_prio_tc_map(dev, skb->priority); 3204 } 3205 3206 map = rcu_dereference(dev_maps->cpu_map[tci]); 3207 if (map) { 3208 if (map->len == 1) 3209 queue_index = map->queues[0]; 3210 else 3211 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3212 map->len)]; 3213 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3214 queue_index = -1; 3215 } 3216 } 3217 rcu_read_unlock(); 3218 3219 return queue_index; 3220 #else 3221 return -1; 3222 #endif 3223 } 3224 3225 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3226 { 3227 struct sock *sk = skb->sk; 3228 int queue_index = sk_tx_queue_get(sk); 3229 3230 if (queue_index < 0 || skb->ooo_okay || 3231 queue_index >= dev->real_num_tx_queues) { 3232 int new_index = get_xps_queue(dev, skb); 3233 if (new_index < 0) 3234 new_index = skb_tx_hash(dev, skb); 3235 3236 if (queue_index != new_index && sk && 3237 sk_fullsock(sk) && 3238 rcu_access_pointer(sk->sk_dst_cache)) 3239 sk_tx_queue_set(sk, new_index); 3240 3241 queue_index = new_index; 3242 } 3243 3244 return queue_index; 3245 } 3246 3247 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3248 struct sk_buff *skb, 3249 void *accel_priv) 3250 { 3251 int queue_index = 0; 3252 3253 #ifdef CONFIG_XPS 3254 u32 sender_cpu = skb->sender_cpu - 1; 3255 3256 if (sender_cpu >= (u32)NR_CPUS) 3257 skb->sender_cpu = raw_smp_processor_id() + 1; 3258 #endif 3259 3260 if (dev->real_num_tx_queues != 1) { 3261 const struct net_device_ops *ops = dev->netdev_ops; 3262 if (ops->ndo_select_queue) 3263 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3264 __netdev_pick_tx); 3265 else 3266 queue_index = __netdev_pick_tx(dev, skb); 3267 3268 if (!accel_priv) 3269 queue_index = netdev_cap_txqueue(dev, queue_index); 3270 } 3271 3272 skb_set_queue_mapping(skb, queue_index); 3273 return netdev_get_tx_queue(dev, queue_index); 3274 } 3275 3276 /** 3277 * __dev_queue_xmit - transmit a buffer 3278 * @skb: buffer to transmit 3279 * @accel_priv: private data used for L2 forwarding offload 3280 * 3281 * Queue a buffer for transmission to a network device. The caller must 3282 * have set the device and priority and built the buffer before calling 3283 * this function. The function can be called from an interrupt. 3284 * 3285 * A negative errno code is returned on a failure. A success does not 3286 * guarantee the frame will be transmitted as it may be dropped due 3287 * to congestion or traffic shaping. 3288 * 3289 * ----------------------------------------------------------------------------------- 3290 * I notice this method can also return errors from the queue disciplines, 3291 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3292 * be positive. 3293 * 3294 * Regardless of the return value, the skb is consumed, so it is currently 3295 * difficult to retry a send to this method. (You can bump the ref count 3296 * before sending to hold a reference for retry if you are careful.) 3297 * 3298 * When calling this method, interrupts MUST be enabled. This is because 3299 * the BH enable code must have IRQs enabled so that it will not deadlock. 3300 * --BLG 3301 */ 3302 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3303 { 3304 struct net_device *dev = skb->dev; 3305 struct netdev_queue *txq; 3306 struct Qdisc *q; 3307 int rc = -ENOMEM; 3308 3309 skb_reset_mac_header(skb); 3310 3311 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3312 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3313 3314 /* Disable soft irqs for various locks below. Also 3315 * stops preemption for RCU. 3316 */ 3317 rcu_read_lock_bh(); 3318 3319 skb_update_prio(skb); 3320 3321 qdisc_pkt_len_init(skb); 3322 #ifdef CONFIG_NET_CLS_ACT 3323 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 3324 # ifdef CONFIG_NET_EGRESS 3325 if (static_key_false(&egress_needed)) { 3326 skb = sch_handle_egress(skb, &rc, dev); 3327 if (!skb) 3328 goto out; 3329 } 3330 # endif 3331 #endif 3332 /* If device/qdisc don't need skb->dst, release it right now while 3333 * its hot in this cpu cache. 3334 */ 3335 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3336 skb_dst_drop(skb); 3337 else 3338 skb_dst_force(skb); 3339 3340 txq = netdev_pick_tx(dev, skb, accel_priv); 3341 q = rcu_dereference_bh(txq->qdisc); 3342 3343 trace_net_dev_queue(skb); 3344 if (q->enqueue) { 3345 rc = __dev_xmit_skb(skb, q, dev, txq); 3346 goto out; 3347 } 3348 3349 /* The device has no queue. Common case for software devices: 3350 loopback, all the sorts of tunnels... 3351 3352 Really, it is unlikely that netif_tx_lock protection is necessary 3353 here. (f.e. loopback and IP tunnels are clean ignoring statistics 3354 counters.) 3355 However, it is possible, that they rely on protection 3356 made by us here. 3357 3358 Check this and shot the lock. It is not prone from deadlocks. 3359 Either shot noqueue qdisc, it is even simpler 8) 3360 */ 3361 if (dev->flags & IFF_UP) { 3362 int cpu = smp_processor_id(); /* ok because BHs are off */ 3363 3364 if (txq->xmit_lock_owner != cpu) { 3365 if (unlikely(__this_cpu_read(xmit_recursion) > 3366 XMIT_RECURSION_LIMIT)) 3367 goto recursion_alert; 3368 3369 skb = validate_xmit_skb(skb, dev); 3370 if (!skb) 3371 goto out; 3372 3373 HARD_TX_LOCK(dev, txq, cpu); 3374 3375 if (!netif_xmit_stopped(txq)) { 3376 __this_cpu_inc(xmit_recursion); 3377 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3378 __this_cpu_dec(xmit_recursion); 3379 if (dev_xmit_complete(rc)) { 3380 HARD_TX_UNLOCK(dev, txq); 3381 goto out; 3382 } 3383 } 3384 HARD_TX_UNLOCK(dev, txq); 3385 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3386 dev->name); 3387 } else { 3388 /* Recursion is detected! It is possible, 3389 * unfortunately 3390 */ 3391 recursion_alert: 3392 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3393 dev->name); 3394 } 3395 } 3396 3397 rc = -ENETDOWN; 3398 rcu_read_unlock_bh(); 3399 3400 atomic_long_inc(&dev->tx_dropped); 3401 kfree_skb_list(skb); 3402 return rc; 3403 out: 3404 rcu_read_unlock_bh(); 3405 return rc; 3406 } 3407 3408 int dev_queue_xmit(struct sk_buff *skb) 3409 { 3410 return __dev_queue_xmit(skb, NULL); 3411 } 3412 EXPORT_SYMBOL(dev_queue_xmit); 3413 3414 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3415 { 3416 return __dev_queue_xmit(skb, accel_priv); 3417 } 3418 EXPORT_SYMBOL(dev_queue_xmit_accel); 3419 3420 3421 /*======================================================================= 3422 Receiver routines 3423 =======================================================================*/ 3424 3425 int netdev_max_backlog __read_mostly = 1000; 3426 EXPORT_SYMBOL(netdev_max_backlog); 3427 3428 int netdev_tstamp_prequeue __read_mostly = 1; 3429 int netdev_budget __read_mostly = 300; 3430 int weight_p __read_mostly = 64; /* old backlog weight */ 3431 3432 /* Called with irq disabled */ 3433 static inline void ____napi_schedule(struct softnet_data *sd, 3434 struct napi_struct *napi) 3435 { 3436 list_add_tail(&napi->poll_list, &sd->poll_list); 3437 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3438 } 3439 3440 #ifdef CONFIG_RPS 3441 3442 /* One global table that all flow-based protocols share. */ 3443 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3444 EXPORT_SYMBOL(rps_sock_flow_table); 3445 u32 rps_cpu_mask __read_mostly; 3446 EXPORT_SYMBOL(rps_cpu_mask); 3447 3448 struct static_key rps_needed __read_mostly; 3449 EXPORT_SYMBOL(rps_needed); 3450 3451 static struct rps_dev_flow * 3452 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3453 struct rps_dev_flow *rflow, u16 next_cpu) 3454 { 3455 if (next_cpu < nr_cpu_ids) { 3456 #ifdef CONFIG_RFS_ACCEL 3457 struct netdev_rx_queue *rxqueue; 3458 struct rps_dev_flow_table *flow_table; 3459 struct rps_dev_flow *old_rflow; 3460 u32 flow_id; 3461 u16 rxq_index; 3462 int rc; 3463 3464 /* Should we steer this flow to a different hardware queue? */ 3465 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3466 !(dev->features & NETIF_F_NTUPLE)) 3467 goto out; 3468 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3469 if (rxq_index == skb_get_rx_queue(skb)) 3470 goto out; 3471 3472 rxqueue = dev->_rx + rxq_index; 3473 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3474 if (!flow_table) 3475 goto out; 3476 flow_id = skb_get_hash(skb) & flow_table->mask; 3477 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3478 rxq_index, flow_id); 3479 if (rc < 0) 3480 goto out; 3481 old_rflow = rflow; 3482 rflow = &flow_table->flows[flow_id]; 3483 rflow->filter = rc; 3484 if (old_rflow->filter == rflow->filter) 3485 old_rflow->filter = RPS_NO_FILTER; 3486 out: 3487 #endif 3488 rflow->last_qtail = 3489 per_cpu(softnet_data, next_cpu).input_queue_head; 3490 } 3491 3492 rflow->cpu = next_cpu; 3493 return rflow; 3494 } 3495 3496 /* 3497 * get_rps_cpu is called from netif_receive_skb and returns the target 3498 * CPU from the RPS map of the receiving queue for a given skb. 3499 * rcu_read_lock must be held on entry. 3500 */ 3501 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3502 struct rps_dev_flow **rflowp) 3503 { 3504 const struct rps_sock_flow_table *sock_flow_table; 3505 struct netdev_rx_queue *rxqueue = dev->_rx; 3506 struct rps_dev_flow_table *flow_table; 3507 struct rps_map *map; 3508 int cpu = -1; 3509 u32 tcpu; 3510 u32 hash; 3511 3512 if (skb_rx_queue_recorded(skb)) { 3513 u16 index = skb_get_rx_queue(skb); 3514 3515 if (unlikely(index >= dev->real_num_rx_queues)) { 3516 WARN_ONCE(dev->real_num_rx_queues > 1, 3517 "%s received packet on queue %u, but number " 3518 "of RX queues is %u\n", 3519 dev->name, index, dev->real_num_rx_queues); 3520 goto done; 3521 } 3522 rxqueue += index; 3523 } 3524 3525 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3526 3527 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3528 map = rcu_dereference(rxqueue->rps_map); 3529 if (!flow_table && !map) 3530 goto done; 3531 3532 skb_reset_network_header(skb); 3533 hash = skb_get_hash(skb); 3534 if (!hash) 3535 goto done; 3536 3537 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3538 if (flow_table && sock_flow_table) { 3539 struct rps_dev_flow *rflow; 3540 u32 next_cpu; 3541 u32 ident; 3542 3543 /* First check into global flow table if there is a match */ 3544 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3545 if ((ident ^ hash) & ~rps_cpu_mask) 3546 goto try_rps; 3547 3548 next_cpu = ident & rps_cpu_mask; 3549 3550 /* OK, now we know there is a match, 3551 * we can look at the local (per receive queue) flow table 3552 */ 3553 rflow = &flow_table->flows[hash & flow_table->mask]; 3554 tcpu = rflow->cpu; 3555 3556 /* 3557 * If the desired CPU (where last recvmsg was done) is 3558 * different from current CPU (one in the rx-queue flow 3559 * table entry), switch if one of the following holds: 3560 * - Current CPU is unset (>= nr_cpu_ids). 3561 * - Current CPU is offline. 3562 * - The current CPU's queue tail has advanced beyond the 3563 * last packet that was enqueued using this table entry. 3564 * This guarantees that all previous packets for the flow 3565 * have been dequeued, thus preserving in order delivery. 3566 */ 3567 if (unlikely(tcpu != next_cpu) && 3568 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3569 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3570 rflow->last_qtail)) >= 0)) { 3571 tcpu = next_cpu; 3572 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3573 } 3574 3575 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3576 *rflowp = rflow; 3577 cpu = tcpu; 3578 goto done; 3579 } 3580 } 3581 3582 try_rps: 3583 3584 if (map) { 3585 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3586 if (cpu_online(tcpu)) { 3587 cpu = tcpu; 3588 goto done; 3589 } 3590 } 3591 3592 done: 3593 return cpu; 3594 } 3595 3596 #ifdef CONFIG_RFS_ACCEL 3597 3598 /** 3599 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3600 * @dev: Device on which the filter was set 3601 * @rxq_index: RX queue index 3602 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3603 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3604 * 3605 * Drivers that implement ndo_rx_flow_steer() should periodically call 3606 * this function for each installed filter and remove the filters for 3607 * which it returns %true. 3608 */ 3609 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3610 u32 flow_id, u16 filter_id) 3611 { 3612 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3613 struct rps_dev_flow_table *flow_table; 3614 struct rps_dev_flow *rflow; 3615 bool expire = true; 3616 unsigned int cpu; 3617 3618 rcu_read_lock(); 3619 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3620 if (flow_table && flow_id <= flow_table->mask) { 3621 rflow = &flow_table->flows[flow_id]; 3622 cpu = ACCESS_ONCE(rflow->cpu); 3623 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3624 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3625 rflow->last_qtail) < 3626 (int)(10 * flow_table->mask))) 3627 expire = false; 3628 } 3629 rcu_read_unlock(); 3630 return expire; 3631 } 3632 EXPORT_SYMBOL(rps_may_expire_flow); 3633 3634 #endif /* CONFIG_RFS_ACCEL */ 3635 3636 /* Called from hardirq (IPI) context */ 3637 static void rps_trigger_softirq(void *data) 3638 { 3639 struct softnet_data *sd = data; 3640 3641 ____napi_schedule(sd, &sd->backlog); 3642 sd->received_rps++; 3643 } 3644 3645 #endif /* CONFIG_RPS */ 3646 3647 /* 3648 * Check if this softnet_data structure is another cpu one 3649 * If yes, queue it to our IPI list and return 1 3650 * If no, return 0 3651 */ 3652 static int rps_ipi_queued(struct softnet_data *sd) 3653 { 3654 #ifdef CONFIG_RPS 3655 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3656 3657 if (sd != mysd) { 3658 sd->rps_ipi_next = mysd->rps_ipi_list; 3659 mysd->rps_ipi_list = sd; 3660 3661 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3662 return 1; 3663 } 3664 #endif /* CONFIG_RPS */ 3665 return 0; 3666 } 3667 3668 #ifdef CONFIG_NET_FLOW_LIMIT 3669 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3670 #endif 3671 3672 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3673 { 3674 #ifdef CONFIG_NET_FLOW_LIMIT 3675 struct sd_flow_limit *fl; 3676 struct softnet_data *sd; 3677 unsigned int old_flow, new_flow; 3678 3679 if (qlen < (netdev_max_backlog >> 1)) 3680 return false; 3681 3682 sd = this_cpu_ptr(&softnet_data); 3683 3684 rcu_read_lock(); 3685 fl = rcu_dereference(sd->flow_limit); 3686 if (fl) { 3687 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3688 old_flow = fl->history[fl->history_head]; 3689 fl->history[fl->history_head] = new_flow; 3690 3691 fl->history_head++; 3692 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3693 3694 if (likely(fl->buckets[old_flow])) 3695 fl->buckets[old_flow]--; 3696 3697 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3698 fl->count++; 3699 rcu_read_unlock(); 3700 return true; 3701 } 3702 } 3703 rcu_read_unlock(); 3704 #endif 3705 return false; 3706 } 3707 3708 /* 3709 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3710 * queue (may be a remote CPU queue). 3711 */ 3712 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3713 unsigned int *qtail) 3714 { 3715 struct softnet_data *sd; 3716 unsigned long flags; 3717 unsigned int qlen; 3718 3719 sd = &per_cpu(softnet_data, cpu); 3720 3721 local_irq_save(flags); 3722 3723 rps_lock(sd); 3724 if (!netif_running(skb->dev)) 3725 goto drop; 3726 qlen = skb_queue_len(&sd->input_pkt_queue); 3727 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3728 if (qlen) { 3729 enqueue: 3730 __skb_queue_tail(&sd->input_pkt_queue, skb); 3731 input_queue_tail_incr_save(sd, qtail); 3732 rps_unlock(sd); 3733 local_irq_restore(flags); 3734 return NET_RX_SUCCESS; 3735 } 3736 3737 /* Schedule NAPI for backlog device 3738 * We can use non atomic operation since we own the queue lock 3739 */ 3740 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3741 if (!rps_ipi_queued(sd)) 3742 ____napi_schedule(sd, &sd->backlog); 3743 } 3744 goto enqueue; 3745 } 3746 3747 drop: 3748 sd->dropped++; 3749 rps_unlock(sd); 3750 3751 local_irq_restore(flags); 3752 3753 atomic_long_inc(&skb->dev->rx_dropped); 3754 kfree_skb(skb); 3755 return NET_RX_DROP; 3756 } 3757 3758 static int netif_rx_internal(struct sk_buff *skb) 3759 { 3760 int ret; 3761 3762 net_timestamp_check(netdev_tstamp_prequeue, skb); 3763 3764 trace_netif_rx(skb); 3765 #ifdef CONFIG_RPS 3766 if (static_key_false(&rps_needed)) { 3767 struct rps_dev_flow voidflow, *rflow = &voidflow; 3768 int cpu; 3769 3770 preempt_disable(); 3771 rcu_read_lock(); 3772 3773 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3774 if (cpu < 0) 3775 cpu = smp_processor_id(); 3776 3777 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3778 3779 rcu_read_unlock(); 3780 preempt_enable(); 3781 } else 3782 #endif 3783 { 3784 unsigned int qtail; 3785 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3786 put_cpu(); 3787 } 3788 return ret; 3789 } 3790 3791 /** 3792 * netif_rx - post buffer to the network code 3793 * @skb: buffer to post 3794 * 3795 * This function receives a packet from a device driver and queues it for 3796 * the upper (protocol) levels to process. It always succeeds. The buffer 3797 * may be dropped during processing for congestion control or by the 3798 * protocol layers. 3799 * 3800 * return values: 3801 * NET_RX_SUCCESS (no congestion) 3802 * NET_RX_DROP (packet was dropped) 3803 * 3804 */ 3805 3806 int netif_rx(struct sk_buff *skb) 3807 { 3808 trace_netif_rx_entry(skb); 3809 3810 return netif_rx_internal(skb); 3811 } 3812 EXPORT_SYMBOL(netif_rx); 3813 3814 int netif_rx_ni(struct sk_buff *skb) 3815 { 3816 int err; 3817 3818 trace_netif_rx_ni_entry(skb); 3819 3820 preempt_disable(); 3821 err = netif_rx_internal(skb); 3822 if (local_softirq_pending()) 3823 do_softirq(); 3824 preempt_enable(); 3825 3826 return err; 3827 } 3828 EXPORT_SYMBOL(netif_rx_ni); 3829 3830 static __latent_entropy void net_tx_action(struct softirq_action *h) 3831 { 3832 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3833 3834 if (sd->completion_queue) { 3835 struct sk_buff *clist; 3836 3837 local_irq_disable(); 3838 clist = sd->completion_queue; 3839 sd->completion_queue = NULL; 3840 local_irq_enable(); 3841 3842 while (clist) { 3843 struct sk_buff *skb = clist; 3844 clist = clist->next; 3845 3846 WARN_ON(atomic_read(&skb->users)); 3847 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3848 trace_consume_skb(skb); 3849 else 3850 trace_kfree_skb(skb, net_tx_action); 3851 3852 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 3853 __kfree_skb(skb); 3854 else 3855 __kfree_skb_defer(skb); 3856 } 3857 3858 __kfree_skb_flush(); 3859 } 3860 3861 if (sd->output_queue) { 3862 struct Qdisc *head; 3863 3864 local_irq_disable(); 3865 head = sd->output_queue; 3866 sd->output_queue = NULL; 3867 sd->output_queue_tailp = &sd->output_queue; 3868 local_irq_enable(); 3869 3870 while (head) { 3871 struct Qdisc *q = head; 3872 spinlock_t *root_lock; 3873 3874 head = head->next_sched; 3875 3876 root_lock = qdisc_lock(q); 3877 spin_lock(root_lock); 3878 /* We need to make sure head->next_sched is read 3879 * before clearing __QDISC_STATE_SCHED 3880 */ 3881 smp_mb__before_atomic(); 3882 clear_bit(__QDISC_STATE_SCHED, &q->state); 3883 qdisc_run(q); 3884 spin_unlock(root_lock); 3885 } 3886 } 3887 } 3888 3889 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 3890 /* This hook is defined here for ATM LANE */ 3891 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3892 unsigned char *addr) __read_mostly; 3893 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3894 #endif 3895 3896 static inline struct sk_buff * 3897 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 3898 struct net_device *orig_dev) 3899 { 3900 #ifdef CONFIG_NET_CLS_ACT 3901 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 3902 struct tcf_result cl_res; 3903 3904 /* If there's at least one ingress present somewhere (so 3905 * we get here via enabled static key), remaining devices 3906 * that are not configured with an ingress qdisc will bail 3907 * out here. 3908 */ 3909 if (!cl) 3910 return skb; 3911 if (*pt_prev) { 3912 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3913 *pt_prev = NULL; 3914 } 3915 3916 qdisc_skb_cb(skb)->pkt_len = skb->len; 3917 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3918 qdisc_bstats_cpu_update(cl->q, skb); 3919 3920 switch (tc_classify(skb, cl, &cl_res, false)) { 3921 case TC_ACT_OK: 3922 case TC_ACT_RECLASSIFY: 3923 skb->tc_index = TC_H_MIN(cl_res.classid); 3924 break; 3925 case TC_ACT_SHOT: 3926 qdisc_qstats_cpu_drop(cl->q); 3927 kfree_skb(skb); 3928 return NULL; 3929 case TC_ACT_STOLEN: 3930 case TC_ACT_QUEUED: 3931 consume_skb(skb); 3932 return NULL; 3933 case TC_ACT_REDIRECT: 3934 /* skb_mac_header check was done by cls/act_bpf, so 3935 * we can safely push the L2 header back before 3936 * redirecting to another netdev 3937 */ 3938 __skb_push(skb, skb->mac_len); 3939 skb_do_redirect(skb); 3940 return NULL; 3941 default: 3942 break; 3943 } 3944 #endif /* CONFIG_NET_CLS_ACT */ 3945 return skb; 3946 } 3947 3948 /** 3949 * netdev_is_rx_handler_busy - check if receive handler is registered 3950 * @dev: device to check 3951 * 3952 * Check if a receive handler is already registered for a given device. 3953 * Return true if there one. 3954 * 3955 * The caller must hold the rtnl_mutex. 3956 */ 3957 bool netdev_is_rx_handler_busy(struct net_device *dev) 3958 { 3959 ASSERT_RTNL(); 3960 return dev && rtnl_dereference(dev->rx_handler); 3961 } 3962 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 3963 3964 /** 3965 * netdev_rx_handler_register - register receive handler 3966 * @dev: device to register a handler for 3967 * @rx_handler: receive handler to register 3968 * @rx_handler_data: data pointer that is used by rx handler 3969 * 3970 * Register a receive handler for a device. This handler will then be 3971 * called from __netif_receive_skb. A negative errno code is returned 3972 * on a failure. 3973 * 3974 * The caller must hold the rtnl_mutex. 3975 * 3976 * For a general description of rx_handler, see enum rx_handler_result. 3977 */ 3978 int netdev_rx_handler_register(struct net_device *dev, 3979 rx_handler_func_t *rx_handler, 3980 void *rx_handler_data) 3981 { 3982 ASSERT_RTNL(); 3983 3984 if (dev->rx_handler) 3985 return -EBUSY; 3986 3987 /* Note: rx_handler_data must be set before rx_handler */ 3988 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3989 rcu_assign_pointer(dev->rx_handler, rx_handler); 3990 3991 return 0; 3992 } 3993 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3994 3995 /** 3996 * netdev_rx_handler_unregister - unregister receive handler 3997 * @dev: device to unregister a handler from 3998 * 3999 * Unregister a receive handler from a device. 4000 * 4001 * The caller must hold the rtnl_mutex. 4002 */ 4003 void netdev_rx_handler_unregister(struct net_device *dev) 4004 { 4005 4006 ASSERT_RTNL(); 4007 RCU_INIT_POINTER(dev->rx_handler, NULL); 4008 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4009 * section has a guarantee to see a non NULL rx_handler_data 4010 * as well. 4011 */ 4012 synchronize_net(); 4013 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4014 } 4015 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4016 4017 /* 4018 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4019 * the special handling of PFMEMALLOC skbs. 4020 */ 4021 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4022 { 4023 switch (skb->protocol) { 4024 case htons(ETH_P_ARP): 4025 case htons(ETH_P_IP): 4026 case htons(ETH_P_IPV6): 4027 case htons(ETH_P_8021Q): 4028 case htons(ETH_P_8021AD): 4029 return true; 4030 default: 4031 return false; 4032 } 4033 } 4034 4035 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4036 int *ret, struct net_device *orig_dev) 4037 { 4038 #ifdef CONFIG_NETFILTER_INGRESS 4039 if (nf_hook_ingress_active(skb)) { 4040 int ingress_retval; 4041 4042 if (*pt_prev) { 4043 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4044 *pt_prev = NULL; 4045 } 4046 4047 rcu_read_lock(); 4048 ingress_retval = nf_hook_ingress(skb); 4049 rcu_read_unlock(); 4050 return ingress_retval; 4051 } 4052 #endif /* CONFIG_NETFILTER_INGRESS */ 4053 return 0; 4054 } 4055 4056 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4057 { 4058 struct packet_type *ptype, *pt_prev; 4059 rx_handler_func_t *rx_handler; 4060 struct net_device *orig_dev; 4061 bool deliver_exact = false; 4062 int ret = NET_RX_DROP; 4063 __be16 type; 4064 4065 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4066 4067 trace_netif_receive_skb(skb); 4068 4069 orig_dev = skb->dev; 4070 4071 skb_reset_network_header(skb); 4072 if (!skb_transport_header_was_set(skb)) 4073 skb_reset_transport_header(skb); 4074 skb_reset_mac_len(skb); 4075 4076 pt_prev = NULL; 4077 4078 another_round: 4079 skb->skb_iif = skb->dev->ifindex; 4080 4081 __this_cpu_inc(softnet_data.processed); 4082 4083 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4084 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4085 skb = skb_vlan_untag(skb); 4086 if (unlikely(!skb)) 4087 goto out; 4088 } 4089 4090 #ifdef CONFIG_NET_CLS_ACT 4091 if (skb->tc_verd & TC_NCLS) { 4092 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 4093 goto ncls; 4094 } 4095 #endif 4096 4097 if (pfmemalloc) 4098 goto skip_taps; 4099 4100 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4101 if (pt_prev) 4102 ret = deliver_skb(skb, pt_prev, orig_dev); 4103 pt_prev = ptype; 4104 } 4105 4106 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4107 if (pt_prev) 4108 ret = deliver_skb(skb, pt_prev, orig_dev); 4109 pt_prev = ptype; 4110 } 4111 4112 skip_taps: 4113 #ifdef CONFIG_NET_INGRESS 4114 if (static_key_false(&ingress_needed)) { 4115 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4116 if (!skb) 4117 goto out; 4118 4119 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4120 goto out; 4121 } 4122 #endif 4123 #ifdef CONFIG_NET_CLS_ACT 4124 skb->tc_verd = 0; 4125 ncls: 4126 #endif 4127 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4128 goto drop; 4129 4130 if (skb_vlan_tag_present(skb)) { 4131 if (pt_prev) { 4132 ret = deliver_skb(skb, pt_prev, orig_dev); 4133 pt_prev = NULL; 4134 } 4135 if (vlan_do_receive(&skb)) 4136 goto another_round; 4137 else if (unlikely(!skb)) 4138 goto out; 4139 } 4140 4141 rx_handler = rcu_dereference(skb->dev->rx_handler); 4142 if (rx_handler) { 4143 if (pt_prev) { 4144 ret = deliver_skb(skb, pt_prev, orig_dev); 4145 pt_prev = NULL; 4146 } 4147 switch (rx_handler(&skb)) { 4148 case RX_HANDLER_CONSUMED: 4149 ret = NET_RX_SUCCESS; 4150 goto out; 4151 case RX_HANDLER_ANOTHER: 4152 goto another_round; 4153 case RX_HANDLER_EXACT: 4154 deliver_exact = true; 4155 case RX_HANDLER_PASS: 4156 break; 4157 default: 4158 BUG(); 4159 } 4160 } 4161 4162 if (unlikely(skb_vlan_tag_present(skb))) { 4163 if (skb_vlan_tag_get_id(skb)) 4164 skb->pkt_type = PACKET_OTHERHOST; 4165 /* Note: we might in the future use prio bits 4166 * and set skb->priority like in vlan_do_receive() 4167 * For the time being, just ignore Priority Code Point 4168 */ 4169 skb->vlan_tci = 0; 4170 } 4171 4172 type = skb->protocol; 4173 4174 /* deliver only exact match when indicated */ 4175 if (likely(!deliver_exact)) { 4176 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4177 &ptype_base[ntohs(type) & 4178 PTYPE_HASH_MASK]); 4179 } 4180 4181 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4182 &orig_dev->ptype_specific); 4183 4184 if (unlikely(skb->dev != orig_dev)) { 4185 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4186 &skb->dev->ptype_specific); 4187 } 4188 4189 if (pt_prev) { 4190 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 4191 goto drop; 4192 else 4193 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4194 } else { 4195 drop: 4196 if (!deliver_exact) 4197 atomic_long_inc(&skb->dev->rx_dropped); 4198 else 4199 atomic_long_inc(&skb->dev->rx_nohandler); 4200 kfree_skb(skb); 4201 /* Jamal, now you will not able to escape explaining 4202 * me how you were going to use this. :-) 4203 */ 4204 ret = NET_RX_DROP; 4205 } 4206 4207 out: 4208 return ret; 4209 } 4210 4211 static int __netif_receive_skb(struct sk_buff *skb) 4212 { 4213 int ret; 4214 4215 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4216 unsigned long pflags = current->flags; 4217 4218 /* 4219 * PFMEMALLOC skbs are special, they should 4220 * - be delivered to SOCK_MEMALLOC sockets only 4221 * - stay away from userspace 4222 * - have bounded memory usage 4223 * 4224 * Use PF_MEMALLOC as this saves us from propagating the allocation 4225 * context down to all allocation sites. 4226 */ 4227 current->flags |= PF_MEMALLOC; 4228 ret = __netif_receive_skb_core(skb, true); 4229 tsk_restore_flags(current, pflags, PF_MEMALLOC); 4230 } else 4231 ret = __netif_receive_skb_core(skb, false); 4232 4233 return ret; 4234 } 4235 4236 static int netif_receive_skb_internal(struct sk_buff *skb) 4237 { 4238 int ret; 4239 4240 net_timestamp_check(netdev_tstamp_prequeue, skb); 4241 4242 if (skb_defer_rx_timestamp(skb)) 4243 return NET_RX_SUCCESS; 4244 4245 rcu_read_lock(); 4246 4247 #ifdef CONFIG_RPS 4248 if (static_key_false(&rps_needed)) { 4249 struct rps_dev_flow voidflow, *rflow = &voidflow; 4250 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4251 4252 if (cpu >= 0) { 4253 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4254 rcu_read_unlock(); 4255 return ret; 4256 } 4257 } 4258 #endif 4259 ret = __netif_receive_skb(skb); 4260 rcu_read_unlock(); 4261 return ret; 4262 } 4263 4264 /** 4265 * netif_receive_skb - process receive buffer from network 4266 * @skb: buffer to process 4267 * 4268 * netif_receive_skb() is the main receive data processing function. 4269 * It always succeeds. The buffer may be dropped during processing 4270 * for congestion control or by the protocol layers. 4271 * 4272 * This function may only be called from softirq context and interrupts 4273 * should be enabled. 4274 * 4275 * Return values (usually ignored): 4276 * NET_RX_SUCCESS: no congestion 4277 * NET_RX_DROP: packet was dropped 4278 */ 4279 int netif_receive_skb(struct sk_buff *skb) 4280 { 4281 trace_netif_receive_skb_entry(skb); 4282 4283 return netif_receive_skb_internal(skb); 4284 } 4285 EXPORT_SYMBOL(netif_receive_skb); 4286 4287 DEFINE_PER_CPU(struct work_struct, flush_works); 4288 4289 /* Network device is going away, flush any packets still pending */ 4290 static void flush_backlog(struct work_struct *work) 4291 { 4292 struct sk_buff *skb, *tmp; 4293 struct softnet_data *sd; 4294 4295 local_bh_disable(); 4296 sd = this_cpu_ptr(&softnet_data); 4297 4298 local_irq_disable(); 4299 rps_lock(sd); 4300 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4301 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4302 __skb_unlink(skb, &sd->input_pkt_queue); 4303 kfree_skb(skb); 4304 input_queue_head_incr(sd); 4305 } 4306 } 4307 rps_unlock(sd); 4308 local_irq_enable(); 4309 4310 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4311 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4312 __skb_unlink(skb, &sd->process_queue); 4313 kfree_skb(skb); 4314 input_queue_head_incr(sd); 4315 } 4316 } 4317 local_bh_enable(); 4318 } 4319 4320 static void flush_all_backlogs(void) 4321 { 4322 unsigned int cpu; 4323 4324 get_online_cpus(); 4325 4326 for_each_online_cpu(cpu) 4327 queue_work_on(cpu, system_highpri_wq, 4328 per_cpu_ptr(&flush_works, cpu)); 4329 4330 for_each_online_cpu(cpu) 4331 flush_work(per_cpu_ptr(&flush_works, cpu)); 4332 4333 put_online_cpus(); 4334 } 4335 4336 static int napi_gro_complete(struct sk_buff *skb) 4337 { 4338 struct packet_offload *ptype; 4339 __be16 type = skb->protocol; 4340 struct list_head *head = &offload_base; 4341 int err = -ENOENT; 4342 4343 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4344 4345 if (NAPI_GRO_CB(skb)->count == 1) { 4346 skb_shinfo(skb)->gso_size = 0; 4347 goto out; 4348 } 4349 4350 rcu_read_lock(); 4351 list_for_each_entry_rcu(ptype, head, list) { 4352 if (ptype->type != type || !ptype->callbacks.gro_complete) 4353 continue; 4354 4355 err = ptype->callbacks.gro_complete(skb, 0); 4356 break; 4357 } 4358 rcu_read_unlock(); 4359 4360 if (err) { 4361 WARN_ON(&ptype->list == head); 4362 kfree_skb(skb); 4363 return NET_RX_SUCCESS; 4364 } 4365 4366 out: 4367 return netif_receive_skb_internal(skb); 4368 } 4369 4370 /* napi->gro_list contains packets ordered by age. 4371 * youngest packets at the head of it. 4372 * Complete skbs in reverse order to reduce latencies. 4373 */ 4374 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4375 { 4376 struct sk_buff *skb, *prev = NULL; 4377 4378 /* scan list and build reverse chain */ 4379 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4380 skb->prev = prev; 4381 prev = skb; 4382 } 4383 4384 for (skb = prev; skb; skb = prev) { 4385 skb->next = NULL; 4386 4387 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4388 return; 4389 4390 prev = skb->prev; 4391 napi_gro_complete(skb); 4392 napi->gro_count--; 4393 } 4394 4395 napi->gro_list = NULL; 4396 } 4397 EXPORT_SYMBOL(napi_gro_flush); 4398 4399 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4400 { 4401 struct sk_buff *p; 4402 unsigned int maclen = skb->dev->hard_header_len; 4403 u32 hash = skb_get_hash_raw(skb); 4404 4405 for (p = napi->gro_list; p; p = p->next) { 4406 unsigned long diffs; 4407 4408 NAPI_GRO_CB(p)->flush = 0; 4409 4410 if (hash != skb_get_hash_raw(p)) { 4411 NAPI_GRO_CB(p)->same_flow = 0; 4412 continue; 4413 } 4414 4415 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4416 diffs |= p->vlan_tci ^ skb->vlan_tci; 4417 diffs |= skb_metadata_dst_cmp(p, skb); 4418 if (maclen == ETH_HLEN) 4419 diffs |= compare_ether_header(skb_mac_header(p), 4420 skb_mac_header(skb)); 4421 else if (!diffs) 4422 diffs = memcmp(skb_mac_header(p), 4423 skb_mac_header(skb), 4424 maclen); 4425 NAPI_GRO_CB(p)->same_flow = !diffs; 4426 } 4427 } 4428 4429 static void skb_gro_reset_offset(struct sk_buff *skb) 4430 { 4431 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4432 const skb_frag_t *frag0 = &pinfo->frags[0]; 4433 4434 NAPI_GRO_CB(skb)->data_offset = 0; 4435 NAPI_GRO_CB(skb)->frag0 = NULL; 4436 NAPI_GRO_CB(skb)->frag0_len = 0; 4437 4438 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4439 pinfo->nr_frags && 4440 !PageHighMem(skb_frag_page(frag0))) { 4441 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4442 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 4443 } 4444 } 4445 4446 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4447 { 4448 struct skb_shared_info *pinfo = skb_shinfo(skb); 4449 4450 BUG_ON(skb->end - skb->tail < grow); 4451 4452 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4453 4454 skb->data_len -= grow; 4455 skb->tail += grow; 4456 4457 pinfo->frags[0].page_offset += grow; 4458 skb_frag_size_sub(&pinfo->frags[0], grow); 4459 4460 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4461 skb_frag_unref(skb, 0); 4462 memmove(pinfo->frags, pinfo->frags + 1, 4463 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4464 } 4465 } 4466 4467 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4468 { 4469 struct sk_buff **pp = NULL; 4470 struct packet_offload *ptype; 4471 __be16 type = skb->protocol; 4472 struct list_head *head = &offload_base; 4473 int same_flow; 4474 enum gro_result ret; 4475 int grow; 4476 4477 if (!(skb->dev->features & NETIF_F_GRO)) 4478 goto normal; 4479 4480 if (skb->csum_bad) 4481 goto normal; 4482 4483 gro_list_prepare(napi, skb); 4484 4485 rcu_read_lock(); 4486 list_for_each_entry_rcu(ptype, head, list) { 4487 if (ptype->type != type || !ptype->callbacks.gro_receive) 4488 continue; 4489 4490 skb_set_network_header(skb, skb_gro_offset(skb)); 4491 skb_reset_mac_len(skb); 4492 NAPI_GRO_CB(skb)->same_flow = 0; 4493 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4494 NAPI_GRO_CB(skb)->free = 0; 4495 NAPI_GRO_CB(skb)->encap_mark = 0; 4496 NAPI_GRO_CB(skb)->recursion_counter = 0; 4497 NAPI_GRO_CB(skb)->is_fou = 0; 4498 NAPI_GRO_CB(skb)->is_atomic = 1; 4499 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4500 4501 /* Setup for GRO checksum validation */ 4502 switch (skb->ip_summed) { 4503 case CHECKSUM_COMPLETE: 4504 NAPI_GRO_CB(skb)->csum = skb->csum; 4505 NAPI_GRO_CB(skb)->csum_valid = 1; 4506 NAPI_GRO_CB(skb)->csum_cnt = 0; 4507 break; 4508 case CHECKSUM_UNNECESSARY: 4509 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4510 NAPI_GRO_CB(skb)->csum_valid = 0; 4511 break; 4512 default: 4513 NAPI_GRO_CB(skb)->csum_cnt = 0; 4514 NAPI_GRO_CB(skb)->csum_valid = 0; 4515 } 4516 4517 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4518 break; 4519 } 4520 rcu_read_unlock(); 4521 4522 if (&ptype->list == head) 4523 goto normal; 4524 4525 same_flow = NAPI_GRO_CB(skb)->same_flow; 4526 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4527 4528 if (pp) { 4529 struct sk_buff *nskb = *pp; 4530 4531 *pp = nskb->next; 4532 nskb->next = NULL; 4533 napi_gro_complete(nskb); 4534 napi->gro_count--; 4535 } 4536 4537 if (same_flow) 4538 goto ok; 4539 4540 if (NAPI_GRO_CB(skb)->flush) 4541 goto normal; 4542 4543 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4544 struct sk_buff *nskb = napi->gro_list; 4545 4546 /* locate the end of the list to select the 'oldest' flow */ 4547 while (nskb->next) { 4548 pp = &nskb->next; 4549 nskb = *pp; 4550 } 4551 *pp = NULL; 4552 nskb->next = NULL; 4553 napi_gro_complete(nskb); 4554 } else { 4555 napi->gro_count++; 4556 } 4557 NAPI_GRO_CB(skb)->count = 1; 4558 NAPI_GRO_CB(skb)->age = jiffies; 4559 NAPI_GRO_CB(skb)->last = skb; 4560 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4561 skb->next = napi->gro_list; 4562 napi->gro_list = skb; 4563 ret = GRO_HELD; 4564 4565 pull: 4566 grow = skb_gro_offset(skb) - skb_headlen(skb); 4567 if (grow > 0) 4568 gro_pull_from_frag0(skb, grow); 4569 ok: 4570 return ret; 4571 4572 normal: 4573 ret = GRO_NORMAL; 4574 goto pull; 4575 } 4576 4577 struct packet_offload *gro_find_receive_by_type(__be16 type) 4578 { 4579 struct list_head *offload_head = &offload_base; 4580 struct packet_offload *ptype; 4581 4582 list_for_each_entry_rcu(ptype, offload_head, list) { 4583 if (ptype->type != type || !ptype->callbacks.gro_receive) 4584 continue; 4585 return ptype; 4586 } 4587 return NULL; 4588 } 4589 EXPORT_SYMBOL(gro_find_receive_by_type); 4590 4591 struct packet_offload *gro_find_complete_by_type(__be16 type) 4592 { 4593 struct list_head *offload_head = &offload_base; 4594 struct packet_offload *ptype; 4595 4596 list_for_each_entry_rcu(ptype, offload_head, list) { 4597 if (ptype->type != type || !ptype->callbacks.gro_complete) 4598 continue; 4599 return ptype; 4600 } 4601 return NULL; 4602 } 4603 EXPORT_SYMBOL(gro_find_complete_by_type); 4604 4605 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4606 { 4607 switch (ret) { 4608 case GRO_NORMAL: 4609 if (netif_receive_skb_internal(skb)) 4610 ret = GRO_DROP; 4611 break; 4612 4613 case GRO_DROP: 4614 kfree_skb(skb); 4615 break; 4616 4617 case GRO_MERGED_FREE: 4618 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) { 4619 skb_dst_drop(skb); 4620 kmem_cache_free(skbuff_head_cache, skb); 4621 } else { 4622 __kfree_skb(skb); 4623 } 4624 break; 4625 4626 case GRO_HELD: 4627 case GRO_MERGED: 4628 break; 4629 } 4630 4631 return ret; 4632 } 4633 4634 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4635 { 4636 skb_mark_napi_id(skb, napi); 4637 trace_napi_gro_receive_entry(skb); 4638 4639 skb_gro_reset_offset(skb); 4640 4641 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4642 } 4643 EXPORT_SYMBOL(napi_gro_receive); 4644 4645 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4646 { 4647 if (unlikely(skb->pfmemalloc)) { 4648 consume_skb(skb); 4649 return; 4650 } 4651 __skb_pull(skb, skb_headlen(skb)); 4652 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4653 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4654 skb->vlan_tci = 0; 4655 skb->dev = napi->dev; 4656 skb->skb_iif = 0; 4657 skb->encapsulation = 0; 4658 skb_shinfo(skb)->gso_type = 0; 4659 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4660 4661 napi->skb = skb; 4662 } 4663 4664 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4665 { 4666 struct sk_buff *skb = napi->skb; 4667 4668 if (!skb) { 4669 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4670 if (skb) { 4671 napi->skb = skb; 4672 skb_mark_napi_id(skb, napi); 4673 } 4674 } 4675 return skb; 4676 } 4677 EXPORT_SYMBOL(napi_get_frags); 4678 4679 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4680 struct sk_buff *skb, 4681 gro_result_t ret) 4682 { 4683 switch (ret) { 4684 case GRO_NORMAL: 4685 case GRO_HELD: 4686 __skb_push(skb, ETH_HLEN); 4687 skb->protocol = eth_type_trans(skb, skb->dev); 4688 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4689 ret = GRO_DROP; 4690 break; 4691 4692 case GRO_DROP: 4693 case GRO_MERGED_FREE: 4694 napi_reuse_skb(napi, skb); 4695 break; 4696 4697 case GRO_MERGED: 4698 break; 4699 } 4700 4701 return ret; 4702 } 4703 4704 /* Upper GRO stack assumes network header starts at gro_offset=0 4705 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4706 * We copy ethernet header into skb->data to have a common layout. 4707 */ 4708 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4709 { 4710 struct sk_buff *skb = napi->skb; 4711 const struct ethhdr *eth; 4712 unsigned int hlen = sizeof(*eth); 4713 4714 napi->skb = NULL; 4715 4716 skb_reset_mac_header(skb); 4717 skb_gro_reset_offset(skb); 4718 4719 eth = skb_gro_header_fast(skb, 0); 4720 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4721 eth = skb_gro_header_slow(skb, hlen, 0); 4722 if (unlikely(!eth)) { 4723 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 4724 __func__, napi->dev->name); 4725 napi_reuse_skb(napi, skb); 4726 return NULL; 4727 } 4728 } else { 4729 gro_pull_from_frag0(skb, hlen); 4730 NAPI_GRO_CB(skb)->frag0 += hlen; 4731 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4732 } 4733 __skb_pull(skb, hlen); 4734 4735 /* 4736 * This works because the only protocols we care about don't require 4737 * special handling. 4738 * We'll fix it up properly in napi_frags_finish() 4739 */ 4740 skb->protocol = eth->h_proto; 4741 4742 return skb; 4743 } 4744 4745 gro_result_t napi_gro_frags(struct napi_struct *napi) 4746 { 4747 struct sk_buff *skb = napi_frags_skb(napi); 4748 4749 if (!skb) 4750 return GRO_DROP; 4751 4752 trace_napi_gro_frags_entry(skb); 4753 4754 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4755 } 4756 EXPORT_SYMBOL(napi_gro_frags); 4757 4758 /* Compute the checksum from gro_offset and return the folded value 4759 * after adding in any pseudo checksum. 4760 */ 4761 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4762 { 4763 __wsum wsum; 4764 __sum16 sum; 4765 4766 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4767 4768 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4769 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4770 if (likely(!sum)) { 4771 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4772 !skb->csum_complete_sw) 4773 netdev_rx_csum_fault(skb->dev); 4774 } 4775 4776 NAPI_GRO_CB(skb)->csum = wsum; 4777 NAPI_GRO_CB(skb)->csum_valid = 1; 4778 4779 return sum; 4780 } 4781 EXPORT_SYMBOL(__skb_gro_checksum_complete); 4782 4783 /* 4784 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4785 * Note: called with local irq disabled, but exits with local irq enabled. 4786 */ 4787 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4788 { 4789 #ifdef CONFIG_RPS 4790 struct softnet_data *remsd = sd->rps_ipi_list; 4791 4792 if (remsd) { 4793 sd->rps_ipi_list = NULL; 4794 4795 local_irq_enable(); 4796 4797 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4798 while (remsd) { 4799 struct softnet_data *next = remsd->rps_ipi_next; 4800 4801 if (cpu_online(remsd->cpu)) 4802 smp_call_function_single_async(remsd->cpu, 4803 &remsd->csd); 4804 remsd = next; 4805 } 4806 } else 4807 #endif 4808 local_irq_enable(); 4809 } 4810 4811 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4812 { 4813 #ifdef CONFIG_RPS 4814 return sd->rps_ipi_list != NULL; 4815 #else 4816 return false; 4817 #endif 4818 } 4819 4820 static int process_backlog(struct napi_struct *napi, int quota) 4821 { 4822 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4823 bool again = true; 4824 int work = 0; 4825 4826 /* Check if we have pending ipi, its better to send them now, 4827 * not waiting net_rx_action() end. 4828 */ 4829 if (sd_has_rps_ipi_waiting(sd)) { 4830 local_irq_disable(); 4831 net_rps_action_and_irq_enable(sd); 4832 } 4833 4834 napi->weight = weight_p; 4835 while (again) { 4836 struct sk_buff *skb; 4837 4838 while ((skb = __skb_dequeue(&sd->process_queue))) { 4839 rcu_read_lock(); 4840 __netif_receive_skb(skb); 4841 rcu_read_unlock(); 4842 input_queue_head_incr(sd); 4843 if (++work >= quota) 4844 return work; 4845 4846 } 4847 4848 local_irq_disable(); 4849 rps_lock(sd); 4850 if (skb_queue_empty(&sd->input_pkt_queue)) { 4851 /* 4852 * Inline a custom version of __napi_complete(). 4853 * only current cpu owns and manipulates this napi, 4854 * and NAPI_STATE_SCHED is the only possible flag set 4855 * on backlog. 4856 * We can use a plain write instead of clear_bit(), 4857 * and we dont need an smp_mb() memory barrier. 4858 */ 4859 napi->state = 0; 4860 again = false; 4861 } else { 4862 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4863 &sd->process_queue); 4864 } 4865 rps_unlock(sd); 4866 local_irq_enable(); 4867 } 4868 4869 return work; 4870 } 4871 4872 /** 4873 * __napi_schedule - schedule for receive 4874 * @n: entry to schedule 4875 * 4876 * The entry's receive function will be scheduled to run. 4877 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 4878 */ 4879 void __napi_schedule(struct napi_struct *n) 4880 { 4881 unsigned long flags; 4882 4883 local_irq_save(flags); 4884 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4885 local_irq_restore(flags); 4886 } 4887 EXPORT_SYMBOL(__napi_schedule); 4888 4889 /** 4890 * __napi_schedule_irqoff - schedule for receive 4891 * @n: entry to schedule 4892 * 4893 * Variant of __napi_schedule() assuming hard irqs are masked 4894 */ 4895 void __napi_schedule_irqoff(struct napi_struct *n) 4896 { 4897 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4898 } 4899 EXPORT_SYMBOL(__napi_schedule_irqoff); 4900 4901 bool __napi_complete(struct napi_struct *n) 4902 { 4903 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4904 4905 /* Some drivers call us directly, instead of calling 4906 * napi_complete_done(). 4907 */ 4908 if (unlikely(test_bit(NAPI_STATE_IN_BUSY_POLL, &n->state))) 4909 return false; 4910 4911 list_del_init(&n->poll_list); 4912 smp_mb__before_atomic(); 4913 clear_bit(NAPI_STATE_SCHED, &n->state); 4914 return true; 4915 } 4916 EXPORT_SYMBOL(__napi_complete); 4917 4918 bool napi_complete_done(struct napi_struct *n, int work_done) 4919 { 4920 unsigned long flags; 4921 4922 /* 4923 * 1) Don't let napi dequeue from the cpu poll list 4924 * just in case its running on a different cpu. 4925 * 2) If we are busy polling, do nothing here, we have 4926 * the guarantee we will be called later. 4927 */ 4928 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 4929 NAPIF_STATE_IN_BUSY_POLL))) 4930 return false; 4931 4932 if (n->gro_list) { 4933 unsigned long timeout = 0; 4934 4935 if (work_done) 4936 timeout = n->dev->gro_flush_timeout; 4937 4938 if (timeout) 4939 hrtimer_start(&n->timer, ns_to_ktime(timeout), 4940 HRTIMER_MODE_REL_PINNED); 4941 else 4942 napi_gro_flush(n, false); 4943 } 4944 if (likely(list_empty(&n->poll_list))) { 4945 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state)); 4946 } else { 4947 /* If n->poll_list is not empty, we need to mask irqs */ 4948 local_irq_save(flags); 4949 __napi_complete(n); 4950 local_irq_restore(flags); 4951 } 4952 return true; 4953 } 4954 EXPORT_SYMBOL(napi_complete_done); 4955 4956 /* must be called under rcu_read_lock(), as we dont take a reference */ 4957 static struct napi_struct *napi_by_id(unsigned int napi_id) 4958 { 4959 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4960 struct napi_struct *napi; 4961 4962 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4963 if (napi->napi_id == napi_id) 4964 return napi; 4965 4966 return NULL; 4967 } 4968 4969 #if defined(CONFIG_NET_RX_BUSY_POLL) 4970 4971 #define BUSY_POLL_BUDGET 8 4972 4973 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 4974 { 4975 int rc; 4976 4977 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 4978 4979 local_bh_disable(); 4980 4981 /* All we really want here is to re-enable device interrupts. 4982 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 4983 */ 4984 rc = napi->poll(napi, BUSY_POLL_BUDGET); 4985 netpoll_poll_unlock(have_poll_lock); 4986 if (rc == BUSY_POLL_BUDGET) 4987 __napi_schedule(napi); 4988 local_bh_enable(); 4989 if (local_softirq_pending()) 4990 do_softirq(); 4991 } 4992 4993 bool sk_busy_loop(struct sock *sk, int nonblock) 4994 { 4995 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0; 4996 int (*napi_poll)(struct napi_struct *napi, int budget); 4997 int (*busy_poll)(struct napi_struct *dev); 4998 void *have_poll_lock = NULL; 4999 struct napi_struct *napi; 5000 int rc; 5001 5002 restart: 5003 rc = false; 5004 napi_poll = NULL; 5005 5006 rcu_read_lock(); 5007 5008 napi = napi_by_id(sk->sk_napi_id); 5009 if (!napi) 5010 goto out; 5011 5012 /* Note: ndo_busy_poll method is optional in linux-4.5 */ 5013 busy_poll = napi->dev->netdev_ops->ndo_busy_poll; 5014 5015 preempt_disable(); 5016 for (;;) { 5017 rc = 0; 5018 local_bh_disable(); 5019 if (busy_poll) { 5020 rc = busy_poll(napi); 5021 goto count; 5022 } 5023 if (!napi_poll) { 5024 unsigned long val = READ_ONCE(napi->state); 5025 5026 /* If multiple threads are competing for this napi, 5027 * we avoid dirtying napi->state as much as we can. 5028 */ 5029 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5030 NAPIF_STATE_IN_BUSY_POLL)) 5031 goto count; 5032 if (cmpxchg(&napi->state, val, 5033 val | NAPIF_STATE_IN_BUSY_POLL | 5034 NAPIF_STATE_SCHED) != val) 5035 goto count; 5036 have_poll_lock = netpoll_poll_lock(napi); 5037 napi_poll = napi->poll; 5038 } 5039 rc = napi_poll(napi, BUSY_POLL_BUDGET); 5040 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 5041 count: 5042 if (rc > 0) 5043 __NET_ADD_STATS(sock_net(sk), 5044 LINUX_MIB_BUSYPOLLRXPACKETS, rc); 5045 local_bh_enable(); 5046 5047 if (rc == LL_FLUSH_FAILED) 5048 break; /* permanent failure */ 5049 5050 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) || 5051 busy_loop_timeout(end_time)) 5052 break; 5053 5054 if (unlikely(need_resched())) { 5055 if (napi_poll) 5056 busy_poll_stop(napi, have_poll_lock); 5057 preempt_enable(); 5058 rcu_read_unlock(); 5059 cond_resched(); 5060 rc = !skb_queue_empty(&sk->sk_receive_queue); 5061 if (rc || busy_loop_timeout(end_time)) 5062 return rc; 5063 goto restart; 5064 } 5065 cpu_relax_lowlatency(); 5066 } 5067 if (napi_poll) 5068 busy_poll_stop(napi, have_poll_lock); 5069 preempt_enable(); 5070 rc = !skb_queue_empty(&sk->sk_receive_queue); 5071 out: 5072 rcu_read_unlock(); 5073 return rc; 5074 } 5075 EXPORT_SYMBOL(sk_busy_loop); 5076 5077 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5078 5079 static void napi_hash_add(struct napi_struct *napi) 5080 { 5081 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5082 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5083 return; 5084 5085 spin_lock(&napi_hash_lock); 5086 5087 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */ 5088 do { 5089 if (unlikely(++napi_gen_id < NR_CPUS + 1)) 5090 napi_gen_id = NR_CPUS + 1; 5091 } while (napi_by_id(napi_gen_id)); 5092 napi->napi_id = napi_gen_id; 5093 5094 hlist_add_head_rcu(&napi->napi_hash_node, 5095 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5096 5097 spin_unlock(&napi_hash_lock); 5098 } 5099 5100 /* Warning : caller is responsible to make sure rcu grace period 5101 * is respected before freeing memory containing @napi 5102 */ 5103 bool napi_hash_del(struct napi_struct *napi) 5104 { 5105 bool rcu_sync_needed = false; 5106 5107 spin_lock(&napi_hash_lock); 5108 5109 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5110 rcu_sync_needed = true; 5111 hlist_del_rcu(&napi->napi_hash_node); 5112 } 5113 spin_unlock(&napi_hash_lock); 5114 return rcu_sync_needed; 5115 } 5116 EXPORT_SYMBOL_GPL(napi_hash_del); 5117 5118 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5119 { 5120 struct napi_struct *napi; 5121 5122 napi = container_of(timer, struct napi_struct, timer); 5123 if (napi->gro_list) 5124 napi_schedule(napi); 5125 5126 return HRTIMER_NORESTART; 5127 } 5128 5129 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5130 int (*poll)(struct napi_struct *, int), int weight) 5131 { 5132 INIT_LIST_HEAD(&napi->poll_list); 5133 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5134 napi->timer.function = napi_watchdog; 5135 napi->gro_count = 0; 5136 napi->gro_list = NULL; 5137 napi->skb = NULL; 5138 napi->poll = poll; 5139 if (weight > NAPI_POLL_WEIGHT) 5140 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5141 weight, dev->name); 5142 napi->weight = weight; 5143 list_add(&napi->dev_list, &dev->napi_list); 5144 napi->dev = dev; 5145 #ifdef CONFIG_NETPOLL 5146 napi->poll_owner = -1; 5147 #endif 5148 set_bit(NAPI_STATE_SCHED, &napi->state); 5149 napi_hash_add(napi); 5150 } 5151 EXPORT_SYMBOL(netif_napi_add); 5152 5153 void napi_disable(struct napi_struct *n) 5154 { 5155 might_sleep(); 5156 set_bit(NAPI_STATE_DISABLE, &n->state); 5157 5158 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5159 msleep(1); 5160 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5161 msleep(1); 5162 5163 hrtimer_cancel(&n->timer); 5164 5165 clear_bit(NAPI_STATE_DISABLE, &n->state); 5166 } 5167 EXPORT_SYMBOL(napi_disable); 5168 5169 /* Must be called in process context */ 5170 void netif_napi_del(struct napi_struct *napi) 5171 { 5172 might_sleep(); 5173 if (napi_hash_del(napi)) 5174 synchronize_net(); 5175 list_del_init(&napi->dev_list); 5176 napi_free_frags(napi); 5177 5178 kfree_skb_list(napi->gro_list); 5179 napi->gro_list = NULL; 5180 napi->gro_count = 0; 5181 } 5182 EXPORT_SYMBOL(netif_napi_del); 5183 5184 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5185 { 5186 void *have; 5187 int work, weight; 5188 5189 list_del_init(&n->poll_list); 5190 5191 have = netpoll_poll_lock(n); 5192 5193 weight = n->weight; 5194 5195 /* This NAPI_STATE_SCHED test is for avoiding a race 5196 * with netpoll's poll_napi(). Only the entity which 5197 * obtains the lock and sees NAPI_STATE_SCHED set will 5198 * actually make the ->poll() call. Therefore we avoid 5199 * accidentally calling ->poll() when NAPI is not scheduled. 5200 */ 5201 work = 0; 5202 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5203 work = n->poll(n, weight); 5204 trace_napi_poll(n, work, weight); 5205 } 5206 5207 WARN_ON_ONCE(work > weight); 5208 5209 if (likely(work < weight)) 5210 goto out_unlock; 5211 5212 /* Drivers must not modify the NAPI state if they 5213 * consume the entire weight. In such cases this code 5214 * still "owns" the NAPI instance and therefore can 5215 * move the instance around on the list at-will. 5216 */ 5217 if (unlikely(napi_disable_pending(n))) { 5218 napi_complete(n); 5219 goto out_unlock; 5220 } 5221 5222 if (n->gro_list) { 5223 /* flush too old packets 5224 * If HZ < 1000, flush all packets. 5225 */ 5226 napi_gro_flush(n, HZ >= 1000); 5227 } 5228 5229 /* Some drivers may have called napi_schedule 5230 * prior to exhausting their budget. 5231 */ 5232 if (unlikely(!list_empty(&n->poll_list))) { 5233 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5234 n->dev ? n->dev->name : "backlog"); 5235 goto out_unlock; 5236 } 5237 5238 list_add_tail(&n->poll_list, repoll); 5239 5240 out_unlock: 5241 netpoll_poll_unlock(have); 5242 5243 return work; 5244 } 5245 5246 static __latent_entropy void net_rx_action(struct softirq_action *h) 5247 { 5248 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5249 unsigned long time_limit = jiffies + 2; 5250 int budget = netdev_budget; 5251 LIST_HEAD(list); 5252 LIST_HEAD(repoll); 5253 5254 local_irq_disable(); 5255 list_splice_init(&sd->poll_list, &list); 5256 local_irq_enable(); 5257 5258 for (;;) { 5259 struct napi_struct *n; 5260 5261 if (list_empty(&list)) { 5262 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5263 goto out; 5264 break; 5265 } 5266 5267 n = list_first_entry(&list, struct napi_struct, poll_list); 5268 budget -= napi_poll(n, &repoll); 5269 5270 /* If softirq window is exhausted then punt. 5271 * Allow this to run for 2 jiffies since which will allow 5272 * an average latency of 1.5/HZ. 5273 */ 5274 if (unlikely(budget <= 0 || 5275 time_after_eq(jiffies, time_limit))) { 5276 sd->time_squeeze++; 5277 break; 5278 } 5279 } 5280 5281 local_irq_disable(); 5282 5283 list_splice_tail_init(&sd->poll_list, &list); 5284 list_splice_tail(&repoll, &list); 5285 list_splice(&list, &sd->poll_list); 5286 if (!list_empty(&sd->poll_list)) 5287 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5288 5289 net_rps_action_and_irq_enable(sd); 5290 out: 5291 __kfree_skb_flush(); 5292 } 5293 5294 struct netdev_adjacent { 5295 struct net_device *dev; 5296 5297 /* upper master flag, there can only be one master device per list */ 5298 bool master; 5299 5300 /* counter for the number of times this device was added to us */ 5301 u16 ref_nr; 5302 5303 /* private field for the users */ 5304 void *private; 5305 5306 struct list_head list; 5307 struct rcu_head rcu; 5308 }; 5309 5310 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5311 struct list_head *adj_list) 5312 { 5313 struct netdev_adjacent *adj; 5314 5315 list_for_each_entry(adj, adj_list, list) { 5316 if (adj->dev == adj_dev) 5317 return adj; 5318 } 5319 return NULL; 5320 } 5321 5322 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5323 { 5324 struct net_device *dev = data; 5325 5326 return upper_dev == dev; 5327 } 5328 5329 /** 5330 * netdev_has_upper_dev - Check if device is linked to an upper device 5331 * @dev: device 5332 * @upper_dev: upper device to check 5333 * 5334 * Find out if a device is linked to specified upper device and return true 5335 * in case it is. Note that this checks only immediate upper device, 5336 * not through a complete stack of devices. The caller must hold the RTNL lock. 5337 */ 5338 bool netdev_has_upper_dev(struct net_device *dev, 5339 struct net_device *upper_dev) 5340 { 5341 ASSERT_RTNL(); 5342 5343 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5344 upper_dev); 5345 } 5346 EXPORT_SYMBOL(netdev_has_upper_dev); 5347 5348 /** 5349 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5350 * @dev: device 5351 * @upper_dev: upper device to check 5352 * 5353 * Find out if a device is linked to specified upper device and return true 5354 * in case it is. Note that this checks the entire upper device chain. 5355 * The caller must hold rcu lock. 5356 */ 5357 5358 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5359 struct net_device *upper_dev) 5360 { 5361 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5362 upper_dev); 5363 } 5364 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5365 5366 /** 5367 * netdev_has_any_upper_dev - Check if device is linked to some device 5368 * @dev: device 5369 * 5370 * Find out if a device is linked to an upper device and return true in case 5371 * it is. The caller must hold the RTNL lock. 5372 */ 5373 static bool netdev_has_any_upper_dev(struct net_device *dev) 5374 { 5375 ASSERT_RTNL(); 5376 5377 return !list_empty(&dev->adj_list.upper); 5378 } 5379 5380 /** 5381 * netdev_master_upper_dev_get - Get master upper device 5382 * @dev: device 5383 * 5384 * Find a master upper device and return pointer to it or NULL in case 5385 * it's not there. The caller must hold the RTNL lock. 5386 */ 5387 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5388 { 5389 struct netdev_adjacent *upper; 5390 5391 ASSERT_RTNL(); 5392 5393 if (list_empty(&dev->adj_list.upper)) 5394 return NULL; 5395 5396 upper = list_first_entry(&dev->adj_list.upper, 5397 struct netdev_adjacent, list); 5398 if (likely(upper->master)) 5399 return upper->dev; 5400 return NULL; 5401 } 5402 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5403 5404 /** 5405 * netdev_has_any_lower_dev - Check if device is linked to some device 5406 * @dev: device 5407 * 5408 * Find out if a device is linked to a lower device and return true in case 5409 * it is. The caller must hold the RTNL lock. 5410 */ 5411 static bool netdev_has_any_lower_dev(struct net_device *dev) 5412 { 5413 ASSERT_RTNL(); 5414 5415 return !list_empty(&dev->adj_list.lower); 5416 } 5417 5418 void *netdev_adjacent_get_private(struct list_head *adj_list) 5419 { 5420 struct netdev_adjacent *adj; 5421 5422 adj = list_entry(adj_list, struct netdev_adjacent, list); 5423 5424 return adj->private; 5425 } 5426 EXPORT_SYMBOL(netdev_adjacent_get_private); 5427 5428 /** 5429 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5430 * @dev: device 5431 * @iter: list_head ** of the current position 5432 * 5433 * Gets the next device from the dev's upper list, starting from iter 5434 * position. The caller must hold RCU read lock. 5435 */ 5436 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5437 struct list_head **iter) 5438 { 5439 struct netdev_adjacent *upper; 5440 5441 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5442 5443 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5444 5445 if (&upper->list == &dev->adj_list.upper) 5446 return NULL; 5447 5448 *iter = &upper->list; 5449 5450 return upper->dev; 5451 } 5452 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5453 5454 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5455 struct list_head **iter) 5456 { 5457 struct netdev_adjacent *upper; 5458 5459 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5460 5461 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5462 5463 if (&upper->list == &dev->adj_list.upper) 5464 return NULL; 5465 5466 *iter = &upper->list; 5467 5468 return upper->dev; 5469 } 5470 5471 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5472 int (*fn)(struct net_device *dev, 5473 void *data), 5474 void *data) 5475 { 5476 struct net_device *udev; 5477 struct list_head *iter; 5478 int ret; 5479 5480 for (iter = &dev->adj_list.upper, 5481 udev = netdev_next_upper_dev_rcu(dev, &iter); 5482 udev; 5483 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 5484 /* first is the upper device itself */ 5485 ret = fn(udev, data); 5486 if (ret) 5487 return ret; 5488 5489 /* then look at all of its upper devices */ 5490 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 5491 if (ret) 5492 return ret; 5493 } 5494 5495 return 0; 5496 } 5497 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 5498 5499 /** 5500 * netdev_lower_get_next_private - Get the next ->private from the 5501 * lower neighbour list 5502 * @dev: device 5503 * @iter: list_head ** of the current position 5504 * 5505 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5506 * list, starting from iter position. The caller must hold either hold the 5507 * RTNL lock or its own locking that guarantees that the neighbour lower 5508 * list will remain unchanged. 5509 */ 5510 void *netdev_lower_get_next_private(struct net_device *dev, 5511 struct list_head **iter) 5512 { 5513 struct netdev_adjacent *lower; 5514 5515 lower = list_entry(*iter, struct netdev_adjacent, list); 5516 5517 if (&lower->list == &dev->adj_list.lower) 5518 return NULL; 5519 5520 *iter = lower->list.next; 5521 5522 return lower->private; 5523 } 5524 EXPORT_SYMBOL(netdev_lower_get_next_private); 5525 5526 /** 5527 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5528 * lower neighbour list, RCU 5529 * variant 5530 * @dev: device 5531 * @iter: list_head ** of the current position 5532 * 5533 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5534 * list, starting from iter position. The caller must hold RCU read lock. 5535 */ 5536 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5537 struct list_head **iter) 5538 { 5539 struct netdev_adjacent *lower; 5540 5541 WARN_ON_ONCE(!rcu_read_lock_held()); 5542 5543 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5544 5545 if (&lower->list == &dev->adj_list.lower) 5546 return NULL; 5547 5548 *iter = &lower->list; 5549 5550 return lower->private; 5551 } 5552 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5553 5554 /** 5555 * netdev_lower_get_next - Get the next device from the lower neighbour 5556 * list 5557 * @dev: device 5558 * @iter: list_head ** of the current position 5559 * 5560 * Gets the next netdev_adjacent from the dev's lower neighbour 5561 * list, starting from iter position. The caller must hold RTNL lock or 5562 * its own locking that guarantees that the neighbour lower 5563 * list will remain unchanged. 5564 */ 5565 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5566 { 5567 struct netdev_adjacent *lower; 5568 5569 lower = list_entry(*iter, struct netdev_adjacent, list); 5570 5571 if (&lower->list == &dev->adj_list.lower) 5572 return NULL; 5573 5574 *iter = lower->list.next; 5575 5576 return lower->dev; 5577 } 5578 EXPORT_SYMBOL(netdev_lower_get_next); 5579 5580 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 5581 struct list_head **iter) 5582 { 5583 struct netdev_adjacent *lower; 5584 5585 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 5586 5587 if (&lower->list == &dev->adj_list.lower) 5588 return NULL; 5589 5590 *iter = &lower->list; 5591 5592 return lower->dev; 5593 } 5594 5595 int netdev_walk_all_lower_dev(struct net_device *dev, 5596 int (*fn)(struct net_device *dev, 5597 void *data), 5598 void *data) 5599 { 5600 struct net_device *ldev; 5601 struct list_head *iter; 5602 int ret; 5603 5604 for (iter = &dev->adj_list.lower, 5605 ldev = netdev_next_lower_dev(dev, &iter); 5606 ldev; 5607 ldev = netdev_next_lower_dev(dev, &iter)) { 5608 /* first is the lower device itself */ 5609 ret = fn(ldev, data); 5610 if (ret) 5611 return ret; 5612 5613 /* then look at all of its lower devices */ 5614 ret = netdev_walk_all_lower_dev(ldev, fn, data); 5615 if (ret) 5616 return ret; 5617 } 5618 5619 return 0; 5620 } 5621 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 5622 5623 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 5624 struct list_head **iter) 5625 { 5626 struct netdev_adjacent *lower; 5627 5628 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5629 if (&lower->list == &dev->adj_list.lower) 5630 return NULL; 5631 5632 *iter = &lower->list; 5633 5634 return lower->dev; 5635 } 5636 5637 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 5638 int (*fn)(struct net_device *dev, 5639 void *data), 5640 void *data) 5641 { 5642 struct net_device *ldev; 5643 struct list_head *iter; 5644 int ret; 5645 5646 for (iter = &dev->adj_list.lower, 5647 ldev = netdev_next_lower_dev_rcu(dev, &iter); 5648 ldev; 5649 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 5650 /* first is the lower device itself */ 5651 ret = fn(ldev, data); 5652 if (ret) 5653 return ret; 5654 5655 /* then look at all of its lower devices */ 5656 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 5657 if (ret) 5658 return ret; 5659 } 5660 5661 return 0; 5662 } 5663 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 5664 5665 /** 5666 * netdev_lower_get_first_private_rcu - Get the first ->private from the 5667 * lower neighbour list, RCU 5668 * variant 5669 * @dev: device 5670 * 5671 * Gets the first netdev_adjacent->private from the dev's lower neighbour 5672 * list. The caller must hold RCU read lock. 5673 */ 5674 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 5675 { 5676 struct netdev_adjacent *lower; 5677 5678 lower = list_first_or_null_rcu(&dev->adj_list.lower, 5679 struct netdev_adjacent, list); 5680 if (lower) 5681 return lower->private; 5682 return NULL; 5683 } 5684 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 5685 5686 /** 5687 * netdev_master_upper_dev_get_rcu - Get master upper device 5688 * @dev: device 5689 * 5690 * Find a master upper device and return pointer to it or NULL in case 5691 * it's not there. The caller must hold the RCU read lock. 5692 */ 5693 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 5694 { 5695 struct netdev_adjacent *upper; 5696 5697 upper = list_first_or_null_rcu(&dev->adj_list.upper, 5698 struct netdev_adjacent, list); 5699 if (upper && likely(upper->master)) 5700 return upper->dev; 5701 return NULL; 5702 } 5703 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 5704 5705 static int netdev_adjacent_sysfs_add(struct net_device *dev, 5706 struct net_device *adj_dev, 5707 struct list_head *dev_list) 5708 { 5709 char linkname[IFNAMSIZ+7]; 5710 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5711 "upper_%s" : "lower_%s", adj_dev->name); 5712 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 5713 linkname); 5714 } 5715 static void netdev_adjacent_sysfs_del(struct net_device *dev, 5716 char *name, 5717 struct list_head *dev_list) 5718 { 5719 char linkname[IFNAMSIZ+7]; 5720 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5721 "upper_%s" : "lower_%s", name); 5722 sysfs_remove_link(&(dev->dev.kobj), linkname); 5723 } 5724 5725 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 5726 struct net_device *adj_dev, 5727 struct list_head *dev_list) 5728 { 5729 return (dev_list == &dev->adj_list.upper || 5730 dev_list == &dev->adj_list.lower) && 5731 net_eq(dev_net(dev), dev_net(adj_dev)); 5732 } 5733 5734 static int __netdev_adjacent_dev_insert(struct net_device *dev, 5735 struct net_device *adj_dev, 5736 struct list_head *dev_list, 5737 void *private, bool master) 5738 { 5739 struct netdev_adjacent *adj; 5740 int ret; 5741 5742 adj = __netdev_find_adj(adj_dev, dev_list); 5743 5744 if (adj) { 5745 adj->ref_nr += 1; 5746 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 5747 dev->name, adj_dev->name, adj->ref_nr); 5748 5749 return 0; 5750 } 5751 5752 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 5753 if (!adj) 5754 return -ENOMEM; 5755 5756 adj->dev = adj_dev; 5757 adj->master = master; 5758 adj->ref_nr = 1; 5759 adj->private = private; 5760 dev_hold(adj_dev); 5761 5762 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 5763 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 5764 5765 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 5766 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 5767 if (ret) 5768 goto free_adj; 5769 } 5770 5771 /* Ensure that master link is always the first item in list. */ 5772 if (master) { 5773 ret = sysfs_create_link(&(dev->dev.kobj), 5774 &(adj_dev->dev.kobj), "master"); 5775 if (ret) 5776 goto remove_symlinks; 5777 5778 list_add_rcu(&adj->list, dev_list); 5779 } else { 5780 list_add_tail_rcu(&adj->list, dev_list); 5781 } 5782 5783 return 0; 5784 5785 remove_symlinks: 5786 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5787 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5788 free_adj: 5789 kfree(adj); 5790 dev_put(adj_dev); 5791 5792 return ret; 5793 } 5794 5795 static void __netdev_adjacent_dev_remove(struct net_device *dev, 5796 struct net_device *adj_dev, 5797 u16 ref_nr, 5798 struct list_head *dev_list) 5799 { 5800 struct netdev_adjacent *adj; 5801 5802 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 5803 dev->name, adj_dev->name, ref_nr); 5804 5805 adj = __netdev_find_adj(adj_dev, dev_list); 5806 5807 if (!adj) { 5808 pr_err("Adjacency does not exist for device %s from %s\n", 5809 dev->name, adj_dev->name); 5810 WARN_ON(1); 5811 return; 5812 } 5813 5814 if (adj->ref_nr > ref_nr) { 5815 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 5816 dev->name, adj_dev->name, ref_nr, 5817 adj->ref_nr - ref_nr); 5818 adj->ref_nr -= ref_nr; 5819 return; 5820 } 5821 5822 if (adj->master) 5823 sysfs_remove_link(&(dev->dev.kobj), "master"); 5824 5825 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5826 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5827 5828 list_del_rcu(&adj->list); 5829 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 5830 adj_dev->name, dev->name, adj_dev->name); 5831 dev_put(adj_dev); 5832 kfree_rcu(adj, rcu); 5833 } 5834 5835 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 5836 struct net_device *upper_dev, 5837 struct list_head *up_list, 5838 struct list_head *down_list, 5839 void *private, bool master) 5840 { 5841 int ret; 5842 5843 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 5844 private, master); 5845 if (ret) 5846 return ret; 5847 5848 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 5849 private, false); 5850 if (ret) { 5851 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 5852 return ret; 5853 } 5854 5855 return 0; 5856 } 5857 5858 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 5859 struct net_device *upper_dev, 5860 u16 ref_nr, 5861 struct list_head *up_list, 5862 struct list_head *down_list) 5863 { 5864 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 5865 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 5866 } 5867 5868 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 5869 struct net_device *upper_dev, 5870 void *private, bool master) 5871 { 5872 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 5873 &dev->adj_list.upper, 5874 &upper_dev->adj_list.lower, 5875 private, master); 5876 } 5877 5878 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 5879 struct net_device *upper_dev) 5880 { 5881 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 5882 &dev->adj_list.upper, 5883 &upper_dev->adj_list.lower); 5884 } 5885 5886 static int __netdev_upper_dev_link(struct net_device *dev, 5887 struct net_device *upper_dev, bool master, 5888 void *upper_priv, void *upper_info) 5889 { 5890 struct netdev_notifier_changeupper_info changeupper_info; 5891 int ret = 0; 5892 5893 ASSERT_RTNL(); 5894 5895 if (dev == upper_dev) 5896 return -EBUSY; 5897 5898 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5899 if (netdev_has_upper_dev(upper_dev, dev)) 5900 return -EBUSY; 5901 5902 if (netdev_has_upper_dev(dev, upper_dev)) 5903 return -EEXIST; 5904 5905 if (master && netdev_master_upper_dev_get(dev)) 5906 return -EBUSY; 5907 5908 changeupper_info.upper_dev = upper_dev; 5909 changeupper_info.master = master; 5910 changeupper_info.linking = true; 5911 changeupper_info.upper_info = upper_info; 5912 5913 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 5914 &changeupper_info.info); 5915 ret = notifier_to_errno(ret); 5916 if (ret) 5917 return ret; 5918 5919 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 5920 master); 5921 if (ret) 5922 return ret; 5923 5924 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5925 &changeupper_info.info); 5926 ret = notifier_to_errno(ret); 5927 if (ret) 5928 goto rollback; 5929 5930 return 0; 5931 5932 rollback: 5933 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5934 5935 return ret; 5936 } 5937 5938 /** 5939 * netdev_upper_dev_link - Add a link to the upper device 5940 * @dev: device 5941 * @upper_dev: new upper device 5942 * 5943 * Adds a link to device which is upper to this one. The caller must hold 5944 * the RTNL lock. On a failure a negative errno code is returned. 5945 * On success the reference counts are adjusted and the function 5946 * returns zero. 5947 */ 5948 int netdev_upper_dev_link(struct net_device *dev, 5949 struct net_device *upper_dev) 5950 { 5951 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL); 5952 } 5953 EXPORT_SYMBOL(netdev_upper_dev_link); 5954 5955 /** 5956 * netdev_master_upper_dev_link - Add a master link to the upper device 5957 * @dev: device 5958 * @upper_dev: new upper device 5959 * @upper_priv: upper device private 5960 * @upper_info: upper info to be passed down via notifier 5961 * 5962 * Adds a link to device which is upper to this one. In this case, only 5963 * one master upper device can be linked, although other non-master devices 5964 * might be linked as well. The caller must hold the RTNL lock. 5965 * On a failure a negative errno code is returned. On success the reference 5966 * counts are adjusted and the function returns zero. 5967 */ 5968 int netdev_master_upper_dev_link(struct net_device *dev, 5969 struct net_device *upper_dev, 5970 void *upper_priv, void *upper_info) 5971 { 5972 return __netdev_upper_dev_link(dev, upper_dev, true, 5973 upper_priv, upper_info); 5974 } 5975 EXPORT_SYMBOL(netdev_master_upper_dev_link); 5976 5977 /** 5978 * netdev_upper_dev_unlink - Removes a link to upper device 5979 * @dev: device 5980 * @upper_dev: new upper device 5981 * 5982 * Removes a link to device which is upper to this one. The caller must hold 5983 * the RTNL lock. 5984 */ 5985 void netdev_upper_dev_unlink(struct net_device *dev, 5986 struct net_device *upper_dev) 5987 { 5988 struct netdev_notifier_changeupper_info changeupper_info; 5989 ASSERT_RTNL(); 5990 5991 changeupper_info.upper_dev = upper_dev; 5992 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 5993 changeupper_info.linking = false; 5994 5995 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 5996 &changeupper_info.info); 5997 5998 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5999 6000 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 6001 &changeupper_info.info); 6002 } 6003 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6004 6005 /** 6006 * netdev_bonding_info_change - Dispatch event about slave change 6007 * @dev: device 6008 * @bonding_info: info to dispatch 6009 * 6010 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6011 * The caller must hold the RTNL lock. 6012 */ 6013 void netdev_bonding_info_change(struct net_device *dev, 6014 struct netdev_bonding_info *bonding_info) 6015 { 6016 struct netdev_notifier_bonding_info info; 6017 6018 memcpy(&info.bonding_info, bonding_info, 6019 sizeof(struct netdev_bonding_info)); 6020 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 6021 &info.info); 6022 } 6023 EXPORT_SYMBOL(netdev_bonding_info_change); 6024 6025 static void netdev_adjacent_add_links(struct net_device *dev) 6026 { 6027 struct netdev_adjacent *iter; 6028 6029 struct net *net = dev_net(dev); 6030 6031 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6032 if (!net_eq(net, dev_net(iter->dev))) 6033 continue; 6034 netdev_adjacent_sysfs_add(iter->dev, dev, 6035 &iter->dev->adj_list.lower); 6036 netdev_adjacent_sysfs_add(dev, iter->dev, 6037 &dev->adj_list.upper); 6038 } 6039 6040 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6041 if (!net_eq(net, dev_net(iter->dev))) 6042 continue; 6043 netdev_adjacent_sysfs_add(iter->dev, dev, 6044 &iter->dev->adj_list.upper); 6045 netdev_adjacent_sysfs_add(dev, iter->dev, 6046 &dev->adj_list.lower); 6047 } 6048 } 6049 6050 static void netdev_adjacent_del_links(struct net_device *dev) 6051 { 6052 struct netdev_adjacent *iter; 6053 6054 struct net *net = dev_net(dev); 6055 6056 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6057 if (!net_eq(net, dev_net(iter->dev))) 6058 continue; 6059 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6060 &iter->dev->adj_list.lower); 6061 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6062 &dev->adj_list.upper); 6063 } 6064 6065 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6066 if (!net_eq(net, dev_net(iter->dev))) 6067 continue; 6068 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6069 &iter->dev->adj_list.upper); 6070 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6071 &dev->adj_list.lower); 6072 } 6073 } 6074 6075 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6076 { 6077 struct netdev_adjacent *iter; 6078 6079 struct net *net = dev_net(dev); 6080 6081 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6082 if (!net_eq(net, dev_net(iter->dev))) 6083 continue; 6084 netdev_adjacent_sysfs_del(iter->dev, oldname, 6085 &iter->dev->adj_list.lower); 6086 netdev_adjacent_sysfs_add(iter->dev, dev, 6087 &iter->dev->adj_list.lower); 6088 } 6089 6090 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6091 if (!net_eq(net, dev_net(iter->dev))) 6092 continue; 6093 netdev_adjacent_sysfs_del(iter->dev, oldname, 6094 &iter->dev->adj_list.upper); 6095 netdev_adjacent_sysfs_add(iter->dev, dev, 6096 &iter->dev->adj_list.upper); 6097 } 6098 } 6099 6100 void *netdev_lower_dev_get_private(struct net_device *dev, 6101 struct net_device *lower_dev) 6102 { 6103 struct netdev_adjacent *lower; 6104 6105 if (!lower_dev) 6106 return NULL; 6107 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6108 if (!lower) 6109 return NULL; 6110 6111 return lower->private; 6112 } 6113 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6114 6115 6116 int dev_get_nest_level(struct net_device *dev) 6117 { 6118 struct net_device *lower = NULL; 6119 struct list_head *iter; 6120 int max_nest = -1; 6121 int nest; 6122 6123 ASSERT_RTNL(); 6124 6125 netdev_for_each_lower_dev(dev, lower, iter) { 6126 nest = dev_get_nest_level(lower); 6127 if (max_nest < nest) 6128 max_nest = nest; 6129 } 6130 6131 return max_nest + 1; 6132 } 6133 EXPORT_SYMBOL(dev_get_nest_level); 6134 6135 /** 6136 * netdev_lower_change - Dispatch event about lower device state change 6137 * @lower_dev: device 6138 * @lower_state_info: state to dispatch 6139 * 6140 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6141 * The caller must hold the RTNL lock. 6142 */ 6143 void netdev_lower_state_changed(struct net_device *lower_dev, 6144 void *lower_state_info) 6145 { 6146 struct netdev_notifier_changelowerstate_info changelowerstate_info; 6147 6148 ASSERT_RTNL(); 6149 changelowerstate_info.lower_state_info = lower_state_info; 6150 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev, 6151 &changelowerstate_info.info); 6152 } 6153 EXPORT_SYMBOL(netdev_lower_state_changed); 6154 6155 int netdev_default_l2upper_neigh_construct(struct net_device *dev, 6156 struct neighbour *n) 6157 { 6158 struct net_device *lower_dev, *stop_dev; 6159 struct list_head *iter; 6160 int err; 6161 6162 netdev_for_each_lower_dev(dev, lower_dev, iter) { 6163 if (!lower_dev->netdev_ops->ndo_neigh_construct) 6164 continue; 6165 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n); 6166 if (err) { 6167 stop_dev = lower_dev; 6168 goto rollback; 6169 } 6170 } 6171 return 0; 6172 6173 rollback: 6174 netdev_for_each_lower_dev(dev, lower_dev, iter) { 6175 if (lower_dev == stop_dev) 6176 break; 6177 if (!lower_dev->netdev_ops->ndo_neigh_destroy) 6178 continue; 6179 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n); 6180 } 6181 return err; 6182 } 6183 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct); 6184 6185 void netdev_default_l2upper_neigh_destroy(struct net_device *dev, 6186 struct neighbour *n) 6187 { 6188 struct net_device *lower_dev; 6189 struct list_head *iter; 6190 6191 netdev_for_each_lower_dev(dev, lower_dev, iter) { 6192 if (!lower_dev->netdev_ops->ndo_neigh_destroy) 6193 continue; 6194 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n); 6195 } 6196 } 6197 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy); 6198 6199 static void dev_change_rx_flags(struct net_device *dev, int flags) 6200 { 6201 const struct net_device_ops *ops = dev->netdev_ops; 6202 6203 if (ops->ndo_change_rx_flags) 6204 ops->ndo_change_rx_flags(dev, flags); 6205 } 6206 6207 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6208 { 6209 unsigned int old_flags = dev->flags; 6210 kuid_t uid; 6211 kgid_t gid; 6212 6213 ASSERT_RTNL(); 6214 6215 dev->flags |= IFF_PROMISC; 6216 dev->promiscuity += inc; 6217 if (dev->promiscuity == 0) { 6218 /* 6219 * Avoid overflow. 6220 * If inc causes overflow, untouch promisc and return error. 6221 */ 6222 if (inc < 0) 6223 dev->flags &= ~IFF_PROMISC; 6224 else { 6225 dev->promiscuity -= inc; 6226 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6227 dev->name); 6228 return -EOVERFLOW; 6229 } 6230 } 6231 if (dev->flags != old_flags) { 6232 pr_info("device %s %s promiscuous mode\n", 6233 dev->name, 6234 dev->flags & IFF_PROMISC ? "entered" : "left"); 6235 if (audit_enabled) { 6236 current_uid_gid(&uid, &gid); 6237 audit_log(current->audit_context, GFP_ATOMIC, 6238 AUDIT_ANOM_PROMISCUOUS, 6239 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6240 dev->name, (dev->flags & IFF_PROMISC), 6241 (old_flags & IFF_PROMISC), 6242 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6243 from_kuid(&init_user_ns, uid), 6244 from_kgid(&init_user_ns, gid), 6245 audit_get_sessionid(current)); 6246 } 6247 6248 dev_change_rx_flags(dev, IFF_PROMISC); 6249 } 6250 if (notify) 6251 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6252 return 0; 6253 } 6254 6255 /** 6256 * dev_set_promiscuity - update promiscuity count on a device 6257 * @dev: device 6258 * @inc: modifier 6259 * 6260 * Add or remove promiscuity from a device. While the count in the device 6261 * remains above zero the interface remains promiscuous. Once it hits zero 6262 * the device reverts back to normal filtering operation. A negative inc 6263 * value is used to drop promiscuity on the device. 6264 * Return 0 if successful or a negative errno code on error. 6265 */ 6266 int dev_set_promiscuity(struct net_device *dev, int inc) 6267 { 6268 unsigned int old_flags = dev->flags; 6269 int err; 6270 6271 err = __dev_set_promiscuity(dev, inc, true); 6272 if (err < 0) 6273 return err; 6274 if (dev->flags != old_flags) 6275 dev_set_rx_mode(dev); 6276 return err; 6277 } 6278 EXPORT_SYMBOL(dev_set_promiscuity); 6279 6280 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6281 { 6282 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6283 6284 ASSERT_RTNL(); 6285 6286 dev->flags |= IFF_ALLMULTI; 6287 dev->allmulti += inc; 6288 if (dev->allmulti == 0) { 6289 /* 6290 * Avoid overflow. 6291 * If inc causes overflow, untouch allmulti and return error. 6292 */ 6293 if (inc < 0) 6294 dev->flags &= ~IFF_ALLMULTI; 6295 else { 6296 dev->allmulti -= inc; 6297 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6298 dev->name); 6299 return -EOVERFLOW; 6300 } 6301 } 6302 if (dev->flags ^ old_flags) { 6303 dev_change_rx_flags(dev, IFF_ALLMULTI); 6304 dev_set_rx_mode(dev); 6305 if (notify) 6306 __dev_notify_flags(dev, old_flags, 6307 dev->gflags ^ old_gflags); 6308 } 6309 return 0; 6310 } 6311 6312 /** 6313 * dev_set_allmulti - update allmulti count on a device 6314 * @dev: device 6315 * @inc: modifier 6316 * 6317 * Add or remove reception of all multicast frames to a device. While the 6318 * count in the device remains above zero the interface remains listening 6319 * to all interfaces. Once it hits zero the device reverts back to normal 6320 * filtering operation. A negative @inc value is used to drop the counter 6321 * when releasing a resource needing all multicasts. 6322 * Return 0 if successful or a negative errno code on error. 6323 */ 6324 6325 int dev_set_allmulti(struct net_device *dev, int inc) 6326 { 6327 return __dev_set_allmulti(dev, inc, true); 6328 } 6329 EXPORT_SYMBOL(dev_set_allmulti); 6330 6331 /* 6332 * Upload unicast and multicast address lists to device and 6333 * configure RX filtering. When the device doesn't support unicast 6334 * filtering it is put in promiscuous mode while unicast addresses 6335 * are present. 6336 */ 6337 void __dev_set_rx_mode(struct net_device *dev) 6338 { 6339 const struct net_device_ops *ops = dev->netdev_ops; 6340 6341 /* dev_open will call this function so the list will stay sane. */ 6342 if (!(dev->flags&IFF_UP)) 6343 return; 6344 6345 if (!netif_device_present(dev)) 6346 return; 6347 6348 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6349 /* Unicast addresses changes may only happen under the rtnl, 6350 * therefore calling __dev_set_promiscuity here is safe. 6351 */ 6352 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6353 __dev_set_promiscuity(dev, 1, false); 6354 dev->uc_promisc = true; 6355 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6356 __dev_set_promiscuity(dev, -1, false); 6357 dev->uc_promisc = false; 6358 } 6359 } 6360 6361 if (ops->ndo_set_rx_mode) 6362 ops->ndo_set_rx_mode(dev); 6363 } 6364 6365 void dev_set_rx_mode(struct net_device *dev) 6366 { 6367 netif_addr_lock_bh(dev); 6368 __dev_set_rx_mode(dev); 6369 netif_addr_unlock_bh(dev); 6370 } 6371 6372 /** 6373 * dev_get_flags - get flags reported to userspace 6374 * @dev: device 6375 * 6376 * Get the combination of flag bits exported through APIs to userspace. 6377 */ 6378 unsigned int dev_get_flags(const struct net_device *dev) 6379 { 6380 unsigned int flags; 6381 6382 flags = (dev->flags & ~(IFF_PROMISC | 6383 IFF_ALLMULTI | 6384 IFF_RUNNING | 6385 IFF_LOWER_UP | 6386 IFF_DORMANT)) | 6387 (dev->gflags & (IFF_PROMISC | 6388 IFF_ALLMULTI)); 6389 6390 if (netif_running(dev)) { 6391 if (netif_oper_up(dev)) 6392 flags |= IFF_RUNNING; 6393 if (netif_carrier_ok(dev)) 6394 flags |= IFF_LOWER_UP; 6395 if (netif_dormant(dev)) 6396 flags |= IFF_DORMANT; 6397 } 6398 6399 return flags; 6400 } 6401 EXPORT_SYMBOL(dev_get_flags); 6402 6403 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6404 { 6405 unsigned int old_flags = dev->flags; 6406 int ret; 6407 6408 ASSERT_RTNL(); 6409 6410 /* 6411 * Set the flags on our device. 6412 */ 6413 6414 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6415 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6416 IFF_AUTOMEDIA)) | 6417 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6418 IFF_ALLMULTI)); 6419 6420 /* 6421 * Load in the correct multicast list now the flags have changed. 6422 */ 6423 6424 if ((old_flags ^ flags) & IFF_MULTICAST) 6425 dev_change_rx_flags(dev, IFF_MULTICAST); 6426 6427 dev_set_rx_mode(dev); 6428 6429 /* 6430 * Have we downed the interface. We handle IFF_UP ourselves 6431 * according to user attempts to set it, rather than blindly 6432 * setting it. 6433 */ 6434 6435 ret = 0; 6436 if ((old_flags ^ flags) & IFF_UP) 6437 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 6438 6439 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6440 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6441 unsigned int old_flags = dev->flags; 6442 6443 dev->gflags ^= IFF_PROMISC; 6444 6445 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6446 if (dev->flags != old_flags) 6447 dev_set_rx_mode(dev); 6448 } 6449 6450 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6451 is important. Some (broken) drivers set IFF_PROMISC, when 6452 IFF_ALLMULTI is requested not asking us and not reporting. 6453 */ 6454 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6455 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6456 6457 dev->gflags ^= IFF_ALLMULTI; 6458 __dev_set_allmulti(dev, inc, false); 6459 } 6460 6461 return ret; 6462 } 6463 6464 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6465 unsigned int gchanges) 6466 { 6467 unsigned int changes = dev->flags ^ old_flags; 6468 6469 if (gchanges) 6470 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6471 6472 if (changes & IFF_UP) { 6473 if (dev->flags & IFF_UP) 6474 call_netdevice_notifiers(NETDEV_UP, dev); 6475 else 6476 call_netdevice_notifiers(NETDEV_DOWN, dev); 6477 } 6478 6479 if (dev->flags & IFF_UP && 6480 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6481 struct netdev_notifier_change_info change_info; 6482 6483 change_info.flags_changed = changes; 6484 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 6485 &change_info.info); 6486 } 6487 } 6488 6489 /** 6490 * dev_change_flags - change device settings 6491 * @dev: device 6492 * @flags: device state flags 6493 * 6494 * Change settings on device based state flags. The flags are 6495 * in the userspace exported format. 6496 */ 6497 int dev_change_flags(struct net_device *dev, unsigned int flags) 6498 { 6499 int ret; 6500 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6501 6502 ret = __dev_change_flags(dev, flags); 6503 if (ret < 0) 6504 return ret; 6505 6506 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6507 __dev_notify_flags(dev, old_flags, changes); 6508 return ret; 6509 } 6510 EXPORT_SYMBOL(dev_change_flags); 6511 6512 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 6513 { 6514 const struct net_device_ops *ops = dev->netdev_ops; 6515 6516 if (ops->ndo_change_mtu) 6517 return ops->ndo_change_mtu(dev, new_mtu); 6518 6519 dev->mtu = new_mtu; 6520 return 0; 6521 } 6522 6523 /** 6524 * dev_set_mtu - Change maximum transfer unit 6525 * @dev: device 6526 * @new_mtu: new transfer unit 6527 * 6528 * Change the maximum transfer size of the network device. 6529 */ 6530 int dev_set_mtu(struct net_device *dev, int new_mtu) 6531 { 6532 int err, orig_mtu; 6533 6534 if (new_mtu == dev->mtu) 6535 return 0; 6536 6537 /* MTU must be positive, and in range */ 6538 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 6539 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 6540 dev->name, new_mtu, dev->min_mtu); 6541 return -EINVAL; 6542 } 6543 6544 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 6545 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 6546 dev->name, new_mtu, dev->max_mtu); 6547 return -EINVAL; 6548 } 6549 6550 if (!netif_device_present(dev)) 6551 return -ENODEV; 6552 6553 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6554 err = notifier_to_errno(err); 6555 if (err) 6556 return err; 6557 6558 orig_mtu = dev->mtu; 6559 err = __dev_set_mtu(dev, new_mtu); 6560 6561 if (!err) { 6562 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6563 err = notifier_to_errno(err); 6564 if (err) { 6565 /* setting mtu back and notifying everyone again, 6566 * so that they have a chance to revert changes. 6567 */ 6568 __dev_set_mtu(dev, orig_mtu); 6569 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6570 } 6571 } 6572 return err; 6573 } 6574 EXPORT_SYMBOL(dev_set_mtu); 6575 6576 /** 6577 * dev_set_group - Change group this device belongs to 6578 * @dev: device 6579 * @new_group: group this device should belong to 6580 */ 6581 void dev_set_group(struct net_device *dev, int new_group) 6582 { 6583 dev->group = new_group; 6584 } 6585 EXPORT_SYMBOL(dev_set_group); 6586 6587 /** 6588 * dev_set_mac_address - Change Media Access Control Address 6589 * @dev: device 6590 * @sa: new address 6591 * 6592 * Change the hardware (MAC) address of the device 6593 */ 6594 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6595 { 6596 const struct net_device_ops *ops = dev->netdev_ops; 6597 int err; 6598 6599 if (!ops->ndo_set_mac_address) 6600 return -EOPNOTSUPP; 6601 if (sa->sa_family != dev->type) 6602 return -EINVAL; 6603 if (!netif_device_present(dev)) 6604 return -ENODEV; 6605 err = ops->ndo_set_mac_address(dev, sa); 6606 if (err) 6607 return err; 6608 dev->addr_assign_type = NET_ADDR_SET; 6609 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6610 add_device_randomness(dev->dev_addr, dev->addr_len); 6611 return 0; 6612 } 6613 EXPORT_SYMBOL(dev_set_mac_address); 6614 6615 /** 6616 * dev_change_carrier - Change device carrier 6617 * @dev: device 6618 * @new_carrier: new value 6619 * 6620 * Change device carrier 6621 */ 6622 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6623 { 6624 const struct net_device_ops *ops = dev->netdev_ops; 6625 6626 if (!ops->ndo_change_carrier) 6627 return -EOPNOTSUPP; 6628 if (!netif_device_present(dev)) 6629 return -ENODEV; 6630 return ops->ndo_change_carrier(dev, new_carrier); 6631 } 6632 EXPORT_SYMBOL(dev_change_carrier); 6633 6634 /** 6635 * dev_get_phys_port_id - Get device physical port ID 6636 * @dev: device 6637 * @ppid: port ID 6638 * 6639 * Get device physical port ID 6640 */ 6641 int dev_get_phys_port_id(struct net_device *dev, 6642 struct netdev_phys_item_id *ppid) 6643 { 6644 const struct net_device_ops *ops = dev->netdev_ops; 6645 6646 if (!ops->ndo_get_phys_port_id) 6647 return -EOPNOTSUPP; 6648 return ops->ndo_get_phys_port_id(dev, ppid); 6649 } 6650 EXPORT_SYMBOL(dev_get_phys_port_id); 6651 6652 /** 6653 * dev_get_phys_port_name - Get device physical port name 6654 * @dev: device 6655 * @name: port name 6656 * @len: limit of bytes to copy to name 6657 * 6658 * Get device physical port name 6659 */ 6660 int dev_get_phys_port_name(struct net_device *dev, 6661 char *name, size_t len) 6662 { 6663 const struct net_device_ops *ops = dev->netdev_ops; 6664 6665 if (!ops->ndo_get_phys_port_name) 6666 return -EOPNOTSUPP; 6667 return ops->ndo_get_phys_port_name(dev, name, len); 6668 } 6669 EXPORT_SYMBOL(dev_get_phys_port_name); 6670 6671 /** 6672 * dev_change_proto_down - update protocol port state information 6673 * @dev: device 6674 * @proto_down: new value 6675 * 6676 * This info can be used by switch drivers to set the phys state of the 6677 * port. 6678 */ 6679 int dev_change_proto_down(struct net_device *dev, bool proto_down) 6680 { 6681 const struct net_device_ops *ops = dev->netdev_ops; 6682 6683 if (!ops->ndo_change_proto_down) 6684 return -EOPNOTSUPP; 6685 if (!netif_device_present(dev)) 6686 return -ENODEV; 6687 return ops->ndo_change_proto_down(dev, proto_down); 6688 } 6689 EXPORT_SYMBOL(dev_change_proto_down); 6690 6691 /** 6692 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 6693 * @dev: device 6694 * @fd: new program fd or negative value to clear 6695 * @flags: xdp-related flags 6696 * 6697 * Set or clear a bpf program for a device 6698 */ 6699 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags) 6700 { 6701 const struct net_device_ops *ops = dev->netdev_ops; 6702 struct bpf_prog *prog = NULL; 6703 struct netdev_xdp xdp; 6704 int err; 6705 6706 ASSERT_RTNL(); 6707 6708 if (!ops->ndo_xdp) 6709 return -EOPNOTSUPP; 6710 if (fd >= 0) { 6711 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) { 6712 memset(&xdp, 0, sizeof(xdp)); 6713 xdp.command = XDP_QUERY_PROG; 6714 6715 err = ops->ndo_xdp(dev, &xdp); 6716 if (err < 0) 6717 return err; 6718 if (xdp.prog_attached) 6719 return -EBUSY; 6720 } 6721 6722 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 6723 if (IS_ERR(prog)) 6724 return PTR_ERR(prog); 6725 } 6726 6727 memset(&xdp, 0, sizeof(xdp)); 6728 xdp.command = XDP_SETUP_PROG; 6729 xdp.prog = prog; 6730 6731 err = ops->ndo_xdp(dev, &xdp); 6732 if (err < 0 && prog) 6733 bpf_prog_put(prog); 6734 6735 return err; 6736 } 6737 EXPORT_SYMBOL(dev_change_xdp_fd); 6738 6739 /** 6740 * dev_new_index - allocate an ifindex 6741 * @net: the applicable net namespace 6742 * 6743 * Returns a suitable unique value for a new device interface 6744 * number. The caller must hold the rtnl semaphore or the 6745 * dev_base_lock to be sure it remains unique. 6746 */ 6747 static int dev_new_index(struct net *net) 6748 { 6749 int ifindex = net->ifindex; 6750 for (;;) { 6751 if (++ifindex <= 0) 6752 ifindex = 1; 6753 if (!__dev_get_by_index(net, ifindex)) 6754 return net->ifindex = ifindex; 6755 } 6756 } 6757 6758 /* Delayed registration/unregisteration */ 6759 static LIST_HEAD(net_todo_list); 6760 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 6761 6762 static void net_set_todo(struct net_device *dev) 6763 { 6764 list_add_tail(&dev->todo_list, &net_todo_list); 6765 dev_net(dev)->dev_unreg_count++; 6766 } 6767 6768 static void rollback_registered_many(struct list_head *head) 6769 { 6770 struct net_device *dev, *tmp; 6771 LIST_HEAD(close_head); 6772 6773 BUG_ON(dev_boot_phase); 6774 ASSERT_RTNL(); 6775 6776 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 6777 /* Some devices call without registering 6778 * for initialization unwind. Remove those 6779 * devices and proceed with the remaining. 6780 */ 6781 if (dev->reg_state == NETREG_UNINITIALIZED) { 6782 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 6783 dev->name, dev); 6784 6785 WARN_ON(1); 6786 list_del(&dev->unreg_list); 6787 continue; 6788 } 6789 dev->dismantle = true; 6790 BUG_ON(dev->reg_state != NETREG_REGISTERED); 6791 } 6792 6793 /* If device is running, close it first. */ 6794 list_for_each_entry(dev, head, unreg_list) 6795 list_add_tail(&dev->close_list, &close_head); 6796 dev_close_many(&close_head, true); 6797 6798 list_for_each_entry(dev, head, unreg_list) { 6799 /* And unlink it from device chain. */ 6800 unlist_netdevice(dev); 6801 6802 dev->reg_state = NETREG_UNREGISTERING; 6803 } 6804 flush_all_backlogs(); 6805 6806 synchronize_net(); 6807 6808 list_for_each_entry(dev, head, unreg_list) { 6809 struct sk_buff *skb = NULL; 6810 6811 /* Shutdown queueing discipline. */ 6812 dev_shutdown(dev); 6813 6814 6815 /* Notify protocols, that we are about to destroy 6816 this device. They should clean all the things. 6817 */ 6818 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6819 6820 if (!dev->rtnl_link_ops || 6821 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6822 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 6823 GFP_KERNEL); 6824 6825 /* 6826 * Flush the unicast and multicast chains 6827 */ 6828 dev_uc_flush(dev); 6829 dev_mc_flush(dev); 6830 6831 if (dev->netdev_ops->ndo_uninit) 6832 dev->netdev_ops->ndo_uninit(dev); 6833 6834 if (skb) 6835 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 6836 6837 /* Notifier chain MUST detach us all upper devices. */ 6838 WARN_ON(netdev_has_any_upper_dev(dev)); 6839 WARN_ON(netdev_has_any_lower_dev(dev)); 6840 6841 /* Remove entries from kobject tree */ 6842 netdev_unregister_kobject(dev); 6843 #ifdef CONFIG_XPS 6844 /* Remove XPS queueing entries */ 6845 netif_reset_xps_queues_gt(dev, 0); 6846 #endif 6847 } 6848 6849 synchronize_net(); 6850 6851 list_for_each_entry(dev, head, unreg_list) 6852 dev_put(dev); 6853 } 6854 6855 static void rollback_registered(struct net_device *dev) 6856 { 6857 LIST_HEAD(single); 6858 6859 list_add(&dev->unreg_list, &single); 6860 rollback_registered_many(&single); 6861 list_del(&single); 6862 } 6863 6864 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 6865 struct net_device *upper, netdev_features_t features) 6866 { 6867 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6868 netdev_features_t feature; 6869 int feature_bit; 6870 6871 for_each_netdev_feature(&upper_disables, feature_bit) { 6872 feature = __NETIF_F_BIT(feature_bit); 6873 if (!(upper->wanted_features & feature) 6874 && (features & feature)) { 6875 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 6876 &feature, upper->name); 6877 features &= ~feature; 6878 } 6879 } 6880 6881 return features; 6882 } 6883 6884 static void netdev_sync_lower_features(struct net_device *upper, 6885 struct net_device *lower, netdev_features_t features) 6886 { 6887 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6888 netdev_features_t feature; 6889 int feature_bit; 6890 6891 for_each_netdev_feature(&upper_disables, feature_bit) { 6892 feature = __NETIF_F_BIT(feature_bit); 6893 if (!(features & feature) && (lower->features & feature)) { 6894 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 6895 &feature, lower->name); 6896 lower->wanted_features &= ~feature; 6897 netdev_update_features(lower); 6898 6899 if (unlikely(lower->features & feature)) 6900 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 6901 &feature, lower->name); 6902 } 6903 } 6904 } 6905 6906 static netdev_features_t netdev_fix_features(struct net_device *dev, 6907 netdev_features_t features) 6908 { 6909 /* Fix illegal checksum combinations */ 6910 if ((features & NETIF_F_HW_CSUM) && 6911 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6912 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 6913 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 6914 } 6915 6916 /* TSO requires that SG is present as well. */ 6917 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 6918 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 6919 features &= ~NETIF_F_ALL_TSO; 6920 } 6921 6922 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 6923 !(features & NETIF_F_IP_CSUM)) { 6924 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 6925 features &= ~NETIF_F_TSO; 6926 features &= ~NETIF_F_TSO_ECN; 6927 } 6928 6929 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 6930 !(features & NETIF_F_IPV6_CSUM)) { 6931 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 6932 features &= ~NETIF_F_TSO6; 6933 } 6934 6935 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 6936 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 6937 features &= ~NETIF_F_TSO_MANGLEID; 6938 6939 /* TSO ECN requires that TSO is present as well. */ 6940 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 6941 features &= ~NETIF_F_TSO_ECN; 6942 6943 /* Software GSO depends on SG. */ 6944 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 6945 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 6946 features &= ~NETIF_F_GSO; 6947 } 6948 6949 /* UFO needs SG and checksumming */ 6950 if (features & NETIF_F_UFO) { 6951 /* maybe split UFO into V4 and V6? */ 6952 if (!(features & NETIF_F_HW_CSUM) && 6953 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) != 6954 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) { 6955 netdev_dbg(dev, 6956 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 6957 features &= ~NETIF_F_UFO; 6958 } 6959 6960 if (!(features & NETIF_F_SG)) { 6961 netdev_dbg(dev, 6962 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 6963 features &= ~NETIF_F_UFO; 6964 } 6965 } 6966 6967 /* GSO partial features require GSO partial be set */ 6968 if ((features & dev->gso_partial_features) && 6969 !(features & NETIF_F_GSO_PARTIAL)) { 6970 netdev_dbg(dev, 6971 "Dropping partially supported GSO features since no GSO partial.\n"); 6972 features &= ~dev->gso_partial_features; 6973 } 6974 6975 #ifdef CONFIG_NET_RX_BUSY_POLL 6976 if (dev->netdev_ops->ndo_busy_poll) 6977 features |= NETIF_F_BUSY_POLL; 6978 else 6979 #endif 6980 features &= ~NETIF_F_BUSY_POLL; 6981 6982 return features; 6983 } 6984 6985 int __netdev_update_features(struct net_device *dev) 6986 { 6987 struct net_device *upper, *lower; 6988 netdev_features_t features; 6989 struct list_head *iter; 6990 int err = -1; 6991 6992 ASSERT_RTNL(); 6993 6994 features = netdev_get_wanted_features(dev); 6995 6996 if (dev->netdev_ops->ndo_fix_features) 6997 features = dev->netdev_ops->ndo_fix_features(dev, features); 6998 6999 /* driver might be less strict about feature dependencies */ 7000 features = netdev_fix_features(dev, features); 7001 7002 /* some features can't be enabled if they're off an an upper device */ 7003 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7004 features = netdev_sync_upper_features(dev, upper, features); 7005 7006 if (dev->features == features) 7007 goto sync_lower; 7008 7009 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7010 &dev->features, &features); 7011 7012 if (dev->netdev_ops->ndo_set_features) 7013 err = dev->netdev_ops->ndo_set_features(dev, features); 7014 else 7015 err = 0; 7016 7017 if (unlikely(err < 0)) { 7018 netdev_err(dev, 7019 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7020 err, &features, &dev->features); 7021 /* return non-0 since some features might have changed and 7022 * it's better to fire a spurious notification than miss it 7023 */ 7024 return -1; 7025 } 7026 7027 sync_lower: 7028 /* some features must be disabled on lower devices when disabled 7029 * on an upper device (think: bonding master or bridge) 7030 */ 7031 netdev_for_each_lower_dev(dev, lower, iter) 7032 netdev_sync_lower_features(dev, lower, features); 7033 7034 if (!err) 7035 dev->features = features; 7036 7037 return err < 0 ? 0 : 1; 7038 } 7039 7040 /** 7041 * netdev_update_features - recalculate device features 7042 * @dev: the device to check 7043 * 7044 * Recalculate dev->features set and send notifications if it 7045 * has changed. Should be called after driver or hardware dependent 7046 * conditions might have changed that influence the features. 7047 */ 7048 void netdev_update_features(struct net_device *dev) 7049 { 7050 if (__netdev_update_features(dev)) 7051 netdev_features_change(dev); 7052 } 7053 EXPORT_SYMBOL(netdev_update_features); 7054 7055 /** 7056 * netdev_change_features - recalculate device features 7057 * @dev: the device to check 7058 * 7059 * Recalculate dev->features set and send notifications even 7060 * if they have not changed. Should be called instead of 7061 * netdev_update_features() if also dev->vlan_features might 7062 * have changed to allow the changes to be propagated to stacked 7063 * VLAN devices. 7064 */ 7065 void netdev_change_features(struct net_device *dev) 7066 { 7067 __netdev_update_features(dev); 7068 netdev_features_change(dev); 7069 } 7070 EXPORT_SYMBOL(netdev_change_features); 7071 7072 /** 7073 * netif_stacked_transfer_operstate - transfer operstate 7074 * @rootdev: the root or lower level device to transfer state from 7075 * @dev: the device to transfer operstate to 7076 * 7077 * Transfer operational state from root to device. This is normally 7078 * called when a stacking relationship exists between the root 7079 * device and the device(a leaf device). 7080 */ 7081 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7082 struct net_device *dev) 7083 { 7084 if (rootdev->operstate == IF_OPER_DORMANT) 7085 netif_dormant_on(dev); 7086 else 7087 netif_dormant_off(dev); 7088 7089 if (netif_carrier_ok(rootdev)) { 7090 if (!netif_carrier_ok(dev)) 7091 netif_carrier_on(dev); 7092 } else { 7093 if (netif_carrier_ok(dev)) 7094 netif_carrier_off(dev); 7095 } 7096 } 7097 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7098 7099 #ifdef CONFIG_SYSFS 7100 static int netif_alloc_rx_queues(struct net_device *dev) 7101 { 7102 unsigned int i, count = dev->num_rx_queues; 7103 struct netdev_rx_queue *rx; 7104 size_t sz = count * sizeof(*rx); 7105 7106 BUG_ON(count < 1); 7107 7108 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7109 if (!rx) { 7110 rx = vzalloc(sz); 7111 if (!rx) 7112 return -ENOMEM; 7113 } 7114 dev->_rx = rx; 7115 7116 for (i = 0; i < count; i++) 7117 rx[i].dev = dev; 7118 return 0; 7119 } 7120 #endif 7121 7122 static void netdev_init_one_queue(struct net_device *dev, 7123 struct netdev_queue *queue, void *_unused) 7124 { 7125 /* Initialize queue lock */ 7126 spin_lock_init(&queue->_xmit_lock); 7127 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7128 queue->xmit_lock_owner = -1; 7129 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7130 queue->dev = dev; 7131 #ifdef CONFIG_BQL 7132 dql_init(&queue->dql, HZ); 7133 #endif 7134 } 7135 7136 static void netif_free_tx_queues(struct net_device *dev) 7137 { 7138 kvfree(dev->_tx); 7139 } 7140 7141 static int netif_alloc_netdev_queues(struct net_device *dev) 7142 { 7143 unsigned int count = dev->num_tx_queues; 7144 struct netdev_queue *tx; 7145 size_t sz = count * sizeof(*tx); 7146 7147 if (count < 1 || count > 0xffff) 7148 return -EINVAL; 7149 7150 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7151 if (!tx) { 7152 tx = vzalloc(sz); 7153 if (!tx) 7154 return -ENOMEM; 7155 } 7156 dev->_tx = tx; 7157 7158 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7159 spin_lock_init(&dev->tx_global_lock); 7160 7161 return 0; 7162 } 7163 7164 void netif_tx_stop_all_queues(struct net_device *dev) 7165 { 7166 unsigned int i; 7167 7168 for (i = 0; i < dev->num_tx_queues; i++) { 7169 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7170 netif_tx_stop_queue(txq); 7171 } 7172 } 7173 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7174 7175 /** 7176 * register_netdevice - register a network device 7177 * @dev: device to register 7178 * 7179 * Take a completed network device structure and add it to the kernel 7180 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7181 * chain. 0 is returned on success. A negative errno code is returned 7182 * on a failure to set up the device, or if the name is a duplicate. 7183 * 7184 * Callers must hold the rtnl semaphore. You may want 7185 * register_netdev() instead of this. 7186 * 7187 * BUGS: 7188 * The locking appears insufficient to guarantee two parallel registers 7189 * will not get the same name. 7190 */ 7191 7192 int register_netdevice(struct net_device *dev) 7193 { 7194 int ret; 7195 struct net *net = dev_net(dev); 7196 7197 BUG_ON(dev_boot_phase); 7198 ASSERT_RTNL(); 7199 7200 might_sleep(); 7201 7202 /* When net_device's are persistent, this will be fatal. */ 7203 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7204 BUG_ON(!net); 7205 7206 spin_lock_init(&dev->addr_list_lock); 7207 netdev_set_addr_lockdep_class(dev); 7208 7209 ret = dev_get_valid_name(net, dev, dev->name); 7210 if (ret < 0) 7211 goto out; 7212 7213 /* Init, if this function is available */ 7214 if (dev->netdev_ops->ndo_init) { 7215 ret = dev->netdev_ops->ndo_init(dev); 7216 if (ret) { 7217 if (ret > 0) 7218 ret = -EIO; 7219 goto out; 7220 } 7221 } 7222 7223 if (((dev->hw_features | dev->features) & 7224 NETIF_F_HW_VLAN_CTAG_FILTER) && 7225 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7226 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7227 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7228 ret = -EINVAL; 7229 goto err_uninit; 7230 } 7231 7232 ret = -EBUSY; 7233 if (!dev->ifindex) 7234 dev->ifindex = dev_new_index(net); 7235 else if (__dev_get_by_index(net, dev->ifindex)) 7236 goto err_uninit; 7237 7238 /* Transfer changeable features to wanted_features and enable 7239 * software offloads (GSO and GRO). 7240 */ 7241 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7242 dev->features |= NETIF_F_SOFT_FEATURES; 7243 dev->wanted_features = dev->features & dev->hw_features; 7244 7245 if (!(dev->flags & IFF_LOOPBACK)) 7246 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7247 7248 /* If IPv4 TCP segmentation offload is supported we should also 7249 * allow the device to enable segmenting the frame with the option 7250 * of ignoring a static IP ID value. This doesn't enable the 7251 * feature itself but allows the user to enable it later. 7252 */ 7253 if (dev->hw_features & NETIF_F_TSO) 7254 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7255 if (dev->vlan_features & NETIF_F_TSO) 7256 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7257 if (dev->mpls_features & NETIF_F_TSO) 7258 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7259 if (dev->hw_enc_features & NETIF_F_TSO) 7260 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7261 7262 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7263 */ 7264 dev->vlan_features |= NETIF_F_HIGHDMA; 7265 7266 /* Make NETIF_F_SG inheritable to tunnel devices. 7267 */ 7268 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7269 7270 /* Make NETIF_F_SG inheritable to MPLS. 7271 */ 7272 dev->mpls_features |= NETIF_F_SG; 7273 7274 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7275 ret = notifier_to_errno(ret); 7276 if (ret) 7277 goto err_uninit; 7278 7279 ret = netdev_register_kobject(dev); 7280 if (ret) 7281 goto err_uninit; 7282 dev->reg_state = NETREG_REGISTERED; 7283 7284 __netdev_update_features(dev); 7285 7286 /* 7287 * Default initial state at registry is that the 7288 * device is present. 7289 */ 7290 7291 set_bit(__LINK_STATE_PRESENT, &dev->state); 7292 7293 linkwatch_init_dev(dev); 7294 7295 dev_init_scheduler(dev); 7296 dev_hold(dev); 7297 list_netdevice(dev); 7298 add_device_randomness(dev->dev_addr, dev->addr_len); 7299 7300 /* If the device has permanent device address, driver should 7301 * set dev_addr and also addr_assign_type should be set to 7302 * NET_ADDR_PERM (default value). 7303 */ 7304 if (dev->addr_assign_type == NET_ADDR_PERM) 7305 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7306 7307 /* Notify protocols, that a new device appeared. */ 7308 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7309 ret = notifier_to_errno(ret); 7310 if (ret) { 7311 rollback_registered(dev); 7312 dev->reg_state = NETREG_UNREGISTERED; 7313 } 7314 /* 7315 * Prevent userspace races by waiting until the network 7316 * device is fully setup before sending notifications. 7317 */ 7318 if (!dev->rtnl_link_ops || 7319 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7320 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7321 7322 out: 7323 return ret; 7324 7325 err_uninit: 7326 if (dev->netdev_ops->ndo_uninit) 7327 dev->netdev_ops->ndo_uninit(dev); 7328 goto out; 7329 } 7330 EXPORT_SYMBOL(register_netdevice); 7331 7332 /** 7333 * init_dummy_netdev - init a dummy network device for NAPI 7334 * @dev: device to init 7335 * 7336 * This takes a network device structure and initialize the minimum 7337 * amount of fields so it can be used to schedule NAPI polls without 7338 * registering a full blown interface. This is to be used by drivers 7339 * that need to tie several hardware interfaces to a single NAPI 7340 * poll scheduler due to HW limitations. 7341 */ 7342 int init_dummy_netdev(struct net_device *dev) 7343 { 7344 /* Clear everything. Note we don't initialize spinlocks 7345 * are they aren't supposed to be taken by any of the 7346 * NAPI code and this dummy netdev is supposed to be 7347 * only ever used for NAPI polls 7348 */ 7349 memset(dev, 0, sizeof(struct net_device)); 7350 7351 /* make sure we BUG if trying to hit standard 7352 * register/unregister code path 7353 */ 7354 dev->reg_state = NETREG_DUMMY; 7355 7356 /* NAPI wants this */ 7357 INIT_LIST_HEAD(&dev->napi_list); 7358 7359 /* a dummy interface is started by default */ 7360 set_bit(__LINK_STATE_PRESENT, &dev->state); 7361 set_bit(__LINK_STATE_START, &dev->state); 7362 7363 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7364 * because users of this 'device' dont need to change 7365 * its refcount. 7366 */ 7367 7368 return 0; 7369 } 7370 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7371 7372 7373 /** 7374 * register_netdev - register a network device 7375 * @dev: device to register 7376 * 7377 * Take a completed network device structure and add it to the kernel 7378 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7379 * chain. 0 is returned on success. A negative errno code is returned 7380 * on a failure to set up the device, or if the name is a duplicate. 7381 * 7382 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7383 * and expands the device name if you passed a format string to 7384 * alloc_netdev. 7385 */ 7386 int register_netdev(struct net_device *dev) 7387 { 7388 int err; 7389 7390 rtnl_lock(); 7391 err = register_netdevice(dev); 7392 rtnl_unlock(); 7393 return err; 7394 } 7395 EXPORT_SYMBOL(register_netdev); 7396 7397 int netdev_refcnt_read(const struct net_device *dev) 7398 { 7399 int i, refcnt = 0; 7400 7401 for_each_possible_cpu(i) 7402 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7403 return refcnt; 7404 } 7405 EXPORT_SYMBOL(netdev_refcnt_read); 7406 7407 /** 7408 * netdev_wait_allrefs - wait until all references are gone. 7409 * @dev: target net_device 7410 * 7411 * This is called when unregistering network devices. 7412 * 7413 * Any protocol or device that holds a reference should register 7414 * for netdevice notification, and cleanup and put back the 7415 * reference if they receive an UNREGISTER event. 7416 * We can get stuck here if buggy protocols don't correctly 7417 * call dev_put. 7418 */ 7419 static void netdev_wait_allrefs(struct net_device *dev) 7420 { 7421 unsigned long rebroadcast_time, warning_time; 7422 int refcnt; 7423 7424 linkwatch_forget_dev(dev); 7425 7426 rebroadcast_time = warning_time = jiffies; 7427 refcnt = netdev_refcnt_read(dev); 7428 7429 while (refcnt != 0) { 7430 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7431 rtnl_lock(); 7432 7433 /* Rebroadcast unregister notification */ 7434 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7435 7436 __rtnl_unlock(); 7437 rcu_barrier(); 7438 rtnl_lock(); 7439 7440 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7441 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7442 &dev->state)) { 7443 /* We must not have linkwatch events 7444 * pending on unregister. If this 7445 * happens, we simply run the queue 7446 * unscheduled, resulting in a noop 7447 * for this device. 7448 */ 7449 linkwatch_run_queue(); 7450 } 7451 7452 __rtnl_unlock(); 7453 7454 rebroadcast_time = jiffies; 7455 } 7456 7457 msleep(250); 7458 7459 refcnt = netdev_refcnt_read(dev); 7460 7461 if (time_after(jiffies, warning_time + 10 * HZ)) { 7462 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7463 dev->name, refcnt); 7464 warning_time = jiffies; 7465 } 7466 } 7467 } 7468 7469 /* The sequence is: 7470 * 7471 * rtnl_lock(); 7472 * ... 7473 * register_netdevice(x1); 7474 * register_netdevice(x2); 7475 * ... 7476 * unregister_netdevice(y1); 7477 * unregister_netdevice(y2); 7478 * ... 7479 * rtnl_unlock(); 7480 * free_netdev(y1); 7481 * free_netdev(y2); 7482 * 7483 * We are invoked by rtnl_unlock(). 7484 * This allows us to deal with problems: 7485 * 1) We can delete sysfs objects which invoke hotplug 7486 * without deadlocking with linkwatch via keventd. 7487 * 2) Since we run with the RTNL semaphore not held, we can sleep 7488 * safely in order to wait for the netdev refcnt to drop to zero. 7489 * 7490 * We must not return until all unregister events added during 7491 * the interval the lock was held have been completed. 7492 */ 7493 void netdev_run_todo(void) 7494 { 7495 struct list_head list; 7496 7497 /* Snapshot list, allow later requests */ 7498 list_replace_init(&net_todo_list, &list); 7499 7500 __rtnl_unlock(); 7501 7502 7503 /* Wait for rcu callbacks to finish before next phase */ 7504 if (!list_empty(&list)) 7505 rcu_barrier(); 7506 7507 while (!list_empty(&list)) { 7508 struct net_device *dev 7509 = list_first_entry(&list, struct net_device, todo_list); 7510 list_del(&dev->todo_list); 7511 7512 rtnl_lock(); 7513 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7514 __rtnl_unlock(); 7515 7516 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 7517 pr_err("network todo '%s' but state %d\n", 7518 dev->name, dev->reg_state); 7519 dump_stack(); 7520 continue; 7521 } 7522 7523 dev->reg_state = NETREG_UNREGISTERED; 7524 7525 netdev_wait_allrefs(dev); 7526 7527 /* paranoia */ 7528 BUG_ON(netdev_refcnt_read(dev)); 7529 BUG_ON(!list_empty(&dev->ptype_all)); 7530 BUG_ON(!list_empty(&dev->ptype_specific)); 7531 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 7532 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 7533 WARN_ON(dev->dn_ptr); 7534 7535 if (dev->destructor) 7536 dev->destructor(dev); 7537 7538 /* Report a network device has been unregistered */ 7539 rtnl_lock(); 7540 dev_net(dev)->dev_unreg_count--; 7541 __rtnl_unlock(); 7542 wake_up(&netdev_unregistering_wq); 7543 7544 /* Free network device */ 7545 kobject_put(&dev->dev.kobj); 7546 } 7547 } 7548 7549 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 7550 * all the same fields in the same order as net_device_stats, with only 7551 * the type differing, but rtnl_link_stats64 may have additional fields 7552 * at the end for newer counters. 7553 */ 7554 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 7555 const struct net_device_stats *netdev_stats) 7556 { 7557 #if BITS_PER_LONG == 64 7558 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 7559 memcpy(stats64, netdev_stats, sizeof(*stats64)); 7560 /* zero out counters that only exist in rtnl_link_stats64 */ 7561 memset((char *)stats64 + sizeof(*netdev_stats), 0, 7562 sizeof(*stats64) - sizeof(*netdev_stats)); 7563 #else 7564 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 7565 const unsigned long *src = (const unsigned long *)netdev_stats; 7566 u64 *dst = (u64 *)stats64; 7567 7568 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 7569 for (i = 0; i < n; i++) 7570 dst[i] = src[i]; 7571 /* zero out counters that only exist in rtnl_link_stats64 */ 7572 memset((char *)stats64 + n * sizeof(u64), 0, 7573 sizeof(*stats64) - n * sizeof(u64)); 7574 #endif 7575 } 7576 EXPORT_SYMBOL(netdev_stats_to_stats64); 7577 7578 /** 7579 * dev_get_stats - get network device statistics 7580 * @dev: device to get statistics from 7581 * @storage: place to store stats 7582 * 7583 * Get network statistics from device. Return @storage. 7584 * The device driver may provide its own method by setting 7585 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 7586 * otherwise the internal statistics structure is used. 7587 */ 7588 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 7589 struct rtnl_link_stats64 *storage) 7590 { 7591 const struct net_device_ops *ops = dev->netdev_ops; 7592 7593 if (ops->ndo_get_stats64) { 7594 memset(storage, 0, sizeof(*storage)); 7595 ops->ndo_get_stats64(dev, storage); 7596 } else if (ops->ndo_get_stats) { 7597 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 7598 } else { 7599 netdev_stats_to_stats64(storage, &dev->stats); 7600 } 7601 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 7602 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 7603 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler); 7604 return storage; 7605 } 7606 EXPORT_SYMBOL(dev_get_stats); 7607 7608 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 7609 { 7610 struct netdev_queue *queue = dev_ingress_queue(dev); 7611 7612 #ifdef CONFIG_NET_CLS_ACT 7613 if (queue) 7614 return queue; 7615 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 7616 if (!queue) 7617 return NULL; 7618 netdev_init_one_queue(dev, queue, NULL); 7619 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 7620 queue->qdisc_sleeping = &noop_qdisc; 7621 rcu_assign_pointer(dev->ingress_queue, queue); 7622 #endif 7623 return queue; 7624 } 7625 7626 static const struct ethtool_ops default_ethtool_ops; 7627 7628 void netdev_set_default_ethtool_ops(struct net_device *dev, 7629 const struct ethtool_ops *ops) 7630 { 7631 if (dev->ethtool_ops == &default_ethtool_ops) 7632 dev->ethtool_ops = ops; 7633 } 7634 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 7635 7636 void netdev_freemem(struct net_device *dev) 7637 { 7638 char *addr = (char *)dev - dev->padded; 7639 7640 kvfree(addr); 7641 } 7642 7643 /** 7644 * alloc_netdev_mqs - allocate network device 7645 * @sizeof_priv: size of private data to allocate space for 7646 * @name: device name format string 7647 * @name_assign_type: origin of device name 7648 * @setup: callback to initialize device 7649 * @txqs: the number of TX subqueues to allocate 7650 * @rxqs: the number of RX subqueues to allocate 7651 * 7652 * Allocates a struct net_device with private data area for driver use 7653 * and performs basic initialization. Also allocates subqueue structs 7654 * for each queue on the device. 7655 */ 7656 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 7657 unsigned char name_assign_type, 7658 void (*setup)(struct net_device *), 7659 unsigned int txqs, unsigned int rxqs) 7660 { 7661 struct net_device *dev; 7662 size_t alloc_size; 7663 struct net_device *p; 7664 7665 BUG_ON(strlen(name) >= sizeof(dev->name)); 7666 7667 if (txqs < 1) { 7668 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 7669 return NULL; 7670 } 7671 7672 #ifdef CONFIG_SYSFS 7673 if (rxqs < 1) { 7674 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 7675 return NULL; 7676 } 7677 #endif 7678 7679 alloc_size = sizeof(struct net_device); 7680 if (sizeof_priv) { 7681 /* ensure 32-byte alignment of private area */ 7682 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 7683 alloc_size += sizeof_priv; 7684 } 7685 /* ensure 32-byte alignment of whole construct */ 7686 alloc_size += NETDEV_ALIGN - 1; 7687 7688 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7689 if (!p) 7690 p = vzalloc(alloc_size); 7691 if (!p) 7692 return NULL; 7693 7694 dev = PTR_ALIGN(p, NETDEV_ALIGN); 7695 dev->padded = (char *)dev - (char *)p; 7696 7697 dev->pcpu_refcnt = alloc_percpu(int); 7698 if (!dev->pcpu_refcnt) 7699 goto free_dev; 7700 7701 if (dev_addr_init(dev)) 7702 goto free_pcpu; 7703 7704 dev_mc_init(dev); 7705 dev_uc_init(dev); 7706 7707 dev_net_set(dev, &init_net); 7708 7709 dev->gso_max_size = GSO_MAX_SIZE; 7710 dev->gso_max_segs = GSO_MAX_SEGS; 7711 7712 INIT_LIST_HEAD(&dev->napi_list); 7713 INIT_LIST_HEAD(&dev->unreg_list); 7714 INIT_LIST_HEAD(&dev->close_list); 7715 INIT_LIST_HEAD(&dev->link_watch_list); 7716 INIT_LIST_HEAD(&dev->adj_list.upper); 7717 INIT_LIST_HEAD(&dev->adj_list.lower); 7718 INIT_LIST_HEAD(&dev->ptype_all); 7719 INIT_LIST_HEAD(&dev->ptype_specific); 7720 #ifdef CONFIG_NET_SCHED 7721 hash_init(dev->qdisc_hash); 7722 #endif 7723 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 7724 setup(dev); 7725 7726 if (!dev->tx_queue_len) { 7727 dev->priv_flags |= IFF_NO_QUEUE; 7728 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 7729 } 7730 7731 dev->num_tx_queues = txqs; 7732 dev->real_num_tx_queues = txqs; 7733 if (netif_alloc_netdev_queues(dev)) 7734 goto free_all; 7735 7736 #ifdef CONFIG_SYSFS 7737 dev->num_rx_queues = rxqs; 7738 dev->real_num_rx_queues = rxqs; 7739 if (netif_alloc_rx_queues(dev)) 7740 goto free_all; 7741 #endif 7742 7743 strcpy(dev->name, name); 7744 dev->name_assign_type = name_assign_type; 7745 dev->group = INIT_NETDEV_GROUP; 7746 if (!dev->ethtool_ops) 7747 dev->ethtool_ops = &default_ethtool_ops; 7748 7749 nf_hook_ingress_init(dev); 7750 7751 return dev; 7752 7753 free_all: 7754 free_netdev(dev); 7755 return NULL; 7756 7757 free_pcpu: 7758 free_percpu(dev->pcpu_refcnt); 7759 free_dev: 7760 netdev_freemem(dev); 7761 return NULL; 7762 } 7763 EXPORT_SYMBOL(alloc_netdev_mqs); 7764 7765 /** 7766 * free_netdev - free network device 7767 * @dev: device 7768 * 7769 * This function does the last stage of destroying an allocated device 7770 * interface. The reference to the device object is released. 7771 * If this is the last reference then it will be freed. 7772 * Must be called in process context. 7773 */ 7774 void free_netdev(struct net_device *dev) 7775 { 7776 struct napi_struct *p, *n; 7777 7778 might_sleep(); 7779 netif_free_tx_queues(dev); 7780 #ifdef CONFIG_SYSFS 7781 kvfree(dev->_rx); 7782 #endif 7783 7784 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 7785 7786 /* Flush device addresses */ 7787 dev_addr_flush(dev); 7788 7789 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 7790 netif_napi_del(p); 7791 7792 free_percpu(dev->pcpu_refcnt); 7793 dev->pcpu_refcnt = NULL; 7794 7795 /* Compatibility with error handling in drivers */ 7796 if (dev->reg_state == NETREG_UNINITIALIZED) { 7797 netdev_freemem(dev); 7798 return; 7799 } 7800 7801 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 7802 dev->reg_state = NETREG_RELEASED; 7803 7804 /* will free via device release */ 7805 put_device(&dev->dev); 7806 } 7807 EXPORT_SYMBOL(free_netdev); 7808 7809 /** 7810 * synchronize_net - Synchronize with packet receive processing 7811 * 7812 * Wait for packets currently being received to be done. 7813 * Does not block later packets from starting. 7814 */ 7815 void synchronize_net(void) 7816 { 7817 might_sleep(); 7818 if (rtnl_is_locked()) 7819 synchronize_rcu_expedited(); 7820 else 7821 synchronize_rcu(); 7822 } 7823 EXPORT_SYMBOL(synchronize_net); 7824 7825 /** 7826 * unregister_netdevice_queue - remove device from the kernel 7827 * @dev: device 7828 * @head: list 7829 * 7830 * This function shuts down a device interface and removes it 7831 * from the kernel tables. 7832 * If head not NULL, device is queued to be unregistered later. 7833 * 7834 * Callers must hold the rtnl semaphore. You may want 7835 * unregister_netdev() instead of this. 7836 */ 7837 7838 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 7839 { 7840 ASSERT_RTNL(); 7841 7842 if (head) { 7843 list_move_tail(&dev->unreg_list, head); 7844 } else { 7845 rollback_registered(dev); 7846 /* Finish processing unregister after unlock */ 7847 net_set_todo(dev); 7848 } 7849 } 7850 EXPORT_SYMBOL(unregister_netdevice_queue); 7851 7852 /** 7853 * unregister_netdevice_many - unregister many devices 7854 * @head: list of devices 7855 * 7856 * Note: As most callers use a stack allocated list_head, 7857 * we force a list_del() to make sure stack wont be corrupted later. 7858 */ 7859 void unregister_netdevice_many(struct list_head *head) 7860 { 7861 struct net_device *dev; 7862 7863 if (!list_empty(head)) { 7864 rollback_registered_many(head); 7865 list_for_each_entry(dev, head, unreg_list) 7866 net_set_todo(dev); 7867 list_del(head); 7868 } 7869 } 7870 EXPORT_SYMBOL(unregister_netdevice_many); 7871 7872 /** 7873 * unregister_netdev - remove device from the kernel 7874 * @dev: device 7875 * 7876 * This function shuts down a device interface and removes it 7877 * from the kernel tables. 7878 * 7879 * This is just a wrapper for unregister_netdevice that takes 7880 * the rtnl semaphore. In general you want to use this and not 7881 * unregister_netdevice. 7882 */ 7883 void unregister_netdev(struct net_device *dev) 7884 { 7885 rtnl_lock(); 7886 unregister_netdevice(dev); 7887 rtnl_unlock(); 7888 } 7889 EXPORT_SYMBOL(unregister_netdev); 7890 7891 /** 7892 * dev_change_net_namespace - move device to different nethost namespace 7893 * @dev: device 7894 * @net: network namespace 7895 * @pat: If not NULL name pattern to try if the current device name 7896 * is already taken in the destination network namespace. 7897 * 7898 * This function shuts down a device interface and moves it 7899 * to a new network namespace. On success 0 is returned, on 7900 * a failure a netagive errno code is returned. 7901 * 7902 * Callers must hold the rtnl semaphore. 7903 */ 7904 7905 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 7906 { 7907 int err; 7908 7909 ASSERT_RTNL(); 7910 7911 /* Don't allow namespace local devices to be moved. */ 7912 err = -EINVAL; 7913 if (dev->features & NETIF_F_NETNS_LOCAL) 7914 goto out; 7915 7916 /* Ensure the device has been registrered */ 7917 if (dev->reg_state != NETREG_REGISTERED) 7918 goto out; 7919 7920 /* Get out if there is nothing todo */ 7921 err = 0; 7922 if (net_eq(dev_net(dev), net)) 7923 goto out; 7924 7925 /* Pick the destination device name, and ensure 7926 * we can use it in the destination network namespace. 7927 */ 7928 err = -EEXIST; 7929 if (__dev_get_by_name(net, dev->name)) { 7930 /* We get here if we can't use the current device name */ 7931 if (!pat) 7932 goto out; 7933 if (dev_get_valid_name(net, dev, pat) < 0) 7934 goto out; 7935 } 7936 7937 /* 7938 * And now a mini version of register_netdevice unregister_netdevice. 7939 */ 7940 7941 /* If device is running close it first. */ 7942 dev_close(dev); 7943 7944 /* And unlink it from device chain */ 7945 err = -ENODEV; 7946 unlist_netdevice(dev); 7947 7948 synchronize_net(); 7949 7950 /* Shutdown queueing discipline. */ 7951 dev_shutdown(dev); 7952 7953 /* Notify protocols, that we are about to destroy 7954 this device. They should clean all the things. 7955 7956 Note that dev->reg_state stays at NETREG_REGISTERED. 7957 This is wanted because this way 8021q and macvlan know 7958 the device is just moving and can keep their slaves up. 7959 */ 7960 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7961 rcu_barrier(); 7962 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7963 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 7964 7965 /* 7966 * Flush the unicast and multicast chains 7967 */ 7968 dev_uc_flush(dev); 7969 dev_mc_flush(dev); 7970 7971 /* Send a netdev-removed uevent to the old namespace */ 7972 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 7973 netdev_adjacent_del_links(dev); 7974 7975 /* Actually switch the network namespace */ 7976 dev_net_set(dev, net); 7977 7978 /* If there is an ifindex conflict assign a new one */ 7979 if (__dev_get_by_index(net, dev->ifindex)) 7980 dev->ifindex = dev_new_index(net); 7981 7982 /* Send a netdev-add uevent to the new namespace */ 7983 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 7984 netdev_adjacent_add_links(dev); 7985 7986 /* Fixup kobjects */ 7987 err = device_rename(&dev->dev, dev->name); 7988 WARN_ON(err); 7989 7990 /* Add the device back in the hashes */ 7991 list_netdevice(dev); 7992 7993 /* Notify protocols, that a new device appeared. */ 7994 call_netdevice_notifiers(NETDEV_REGISTER, dev); 7995 7996 /* 7997 * Prevent userspace races by waiting until the network 7998 * device is fully setup before sending notifications. 7999 */ 8000 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8001 8002 synchronize_net(); 8003 err = 0; 8004 out: 8005 return err; 8006 } 8007 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8008 8009 static int dev_cpu_callback(struct notifier_block *nfb, 8010 unsigned long action, 8011 void *ocpu) 8012 { 8013 struct sk_buff **list_skb; 8014 struct sk_buff *skb; 8015 unsigned int cpu, oldcpu = (unsigned long)ocpu; 8016 struct softnet_data *sd, *oldsd; 8017 8018 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 8019 return NOTIFY_OK; 8020 8021 local_irq_disable(); 8022 cpu = smp_processor_id(); 8023 sd = &per_cpu(softnet_data, cpu); 8024 oldsd = &per_cpu(softnet_data, oldcpu); 8025 8026 /* Find end of our completion_queue. */ 8027 list_skb = &sd->completion_queue; 8028 while (*list_skb) 8029 list_skb = &(*list_skb)->next; 8030 /* Append completion queue from offline CPU. */ 8031 *list_skb = oldsd->completion_queue; 8032 oldsd->completion_queue = NULL; 8033 8034 /* Append output queue from offline CPU. */ 8035 if (oldsd->output_queue) { 8036 *sd->output_queue_tailp = oldsd->output_queue; 8037 sd->output_queue_tailp = oldsd->output_queue_tailp; 8038 oldsd->output_queue = NULL; 8039 oldsd->output_queue_tailp = &oldsd->output_queue; 8040 } 8041 /* Append NAPI poll list from offline CPU, with one exception : 8042 * process_backlog() must be called by cpu owning percpu backlog. 8043 * We properly handle process_queue & input_pkt_queue later. 8044 */ 8045 while (!list_empty(&oldsd->poll_list)) { 8046 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8047 struct napi_struct, 8048 poll_list); 8049 8050 list_del_init(&napi->poll_list); 8051 if (napi->poll == process_backlog) 8052 napi->state = 0; 8053 else 8054 ____napi_schedule(sd, napi); 8055 } 8056 8057 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8058 local_irq_enable(); 8059 8060 /* Process offline CPU's input_pkt_queue */ 8061 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8062 netif_rx_ni(skb); 8063 input_queue_head_incr(oldsd); 8064 } 8065 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8066 netif_rx_ni(skb); 8067 input_queue_head_incr(oldsd); 8068 } 8069 8070 return NOTIFY_OK; 8071 } 8072 8073 8074 /** 8075 * netdev_increment_features - increment feature set by one 8076 * @all: current feature set 8077 * @one: new feature set 8078 * @mask: mask feature set 8079 * 8080 * Computes a new feature set after adding a device with feature set 8081 * @one to the master device with current feature set @all. Will not 8082 * enable anything that is off in @mask. Returns the new feature set. 8083 */ 8084 netdev_features_t netdev_increment_features(netdev_features_t all, 8085 netdev_features_t one, netdev_features_t mask) 8086 { 8087 if (mask & NETIF_F_HW_CSUM) 8088 mask |= NETIF_F_CSUM_MASK; 8089 mask |= NETIF_F_VLAN_CHALLENGED; 8090 8091 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8092 all &= one | ~NETIF_F_ALL_FOR_ALL; 8093 8094 /* If one device supports hw checksumming, set for all. */ 8095 if (all & NETIF_F_HW_CSUM) 8096 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8097 8098 return all; 8099 } 8100 EXPORT_SYMBOL(netdev_increment_features); 8101 8102 static struct hlist_head * __net_init netdev_create_hash(void) 8103 { 8104 int i; 8105 struct hlist_head *hash; 8106 8107 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8108 if (hash != NULL) 8109 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8110 INIT_HLIST_HEAD(&hash[i]); 8111 8112 return hash; 8113 } 8114 8115 /* Initialize per network namespace state */ 8116 static int __net_init netdev_init(struct net *net) 8117 { 8118 if (net != &init_net) 8119 INIT_LIST_HEAD(&net->dev_base_head); 8120 8121 net->dev_name_head = netdev_create_hash(); 8122 if (net->dev_name_head == NULL) 8123 goto err_name; 8124 8125 net->dev_index_head = netdev_create_hash(); 8126 if (net->dev_index_head == NULL) 8127 goto err_idx; 8128 8129 return 0; 8130 8131 err_idx: 8132 kfree(net->dev_name_head); 8133 err_name: 8134 return -ENOMEM; 8135 } 8136 8137 /** 8138 * netdev_drivername - network driver for the device 8139 * @dev: network device 8140 * 8141 * Determine network driver for device. 8142 */ 8143 const char *netdev_drivername(const struct net_device *dev) 8144 { 8145 const struct device_driver *driver; 8146 const struct device *parent; 8147 const char *empty = ""; 8148 8149 parent = dev->dev.parent; 8150 if (!parent) 8151 return empty; 8152 8153 driver = parent->driver; 8154 if (driver && driver->name) 8155 return driver->name; 8156 return empty; 8157 } 8158 8159 static void __netdev_printk(const char *level, const struct net_device *dev, 8160 struct va_format *vaf) 8161 { 8162 if (dev && dev->dev.parent) { 8163 dev_printk_emit(level[1] - '0', 8164 dev->dev.parent, 8165 "%s %s %s%s: %pV", 8166 dev_driver_string(dev->dev.parent), 8167 dev_name(dev->dev.parent), 8168 netdev_name(dev), netdev_reg_state(dev), 8169 vaf); 8170 } else if (dev) { 8171 printk("%s%s%s: %pV", 8172 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8173 } else { 8174 printk("%s(NULL net_device): %pV", level, vaf); 8175 } 8176 } 8177 8178 void netdev_printk(const char *level, const struct net_device *dev, 8179 const char *format, ...) 8180 { 8181 struct va_format vaf; 8182 va_list args; 8183 8184 va_start(args, format); 8185 8186 vaf.fmt = format; 8187 vaf.va = &args; 8188 8189 __netdev_printk(level, dev, &vaf); 8190 8191 va_end(args); 8192 } 8193 EXPORT_SYMBOL(netdev_printk); 8194 8195 #define define_netdev_printk_level(func, level) \ 8196 void func(const struct net_device *dev, const char *fmt, ...) \ 8197 { \ 8198 struct va_format vaf; \ 8199 va_list args; \ 8200 \ 8201 va_start(args, fmt); \ 8202 \ 8203 vaf.fmt = fmt; \ 8204 vaf.va = &args; \ 8205 \ 8206 __netdev_printk(level, dev, &vaf); \ 8207 \ 8208 va_end(args); \ 8209 } \ 8210 EXPORT_SYMBOL(func); 8211 8212 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8213 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8214 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8215 define_netdev_printk_level(netdev_err, KERN_ERR); 8216 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8217 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8218 define_netdev_printk_level(netdev_info, KERN_INFO); 8219 8220 static void __net_exit netdev_exit(struct net *net) 8221 { 8222 kfree(net->dev_name_head); 8223 kfree(net->dev_index_head); 8224 } 8225 8226 static struct pernet_operations __net_initdata netdev_net_ops = { 8227 .init = netdev_init, 8228 .exit = netdev_exit, 8229 }; 8230 8231 static void __net_exit default_device_exit(struct net *net) 8232 { 8233 struct net_device *dev, *aux; 8234 /* 8235 * Push all migratable network devices back to the 8236 * initial network namespace 8237 */ 8238 rtnl_lock(); 8239 for_each_netdev_safe(net, dev, aux) { 8240 int err; 8241 char fb_name[IFNAMSIZ]; 8242 8243 /* Ignore unmoveable devices (i.e. loopback) */ 8244 if (dev->features & NETIF_F_NETNS_LOCAL) 8245 continue; 8246 8247 /* Leave virtual devices for the generic cleanup */ 8248 if (dev->rtnl_link_ops) 8249 continue; 8250 8251 /* Push remaining network devices to init_net */ 8252 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8253 err = dev_change_net_namespace(dev, &init_net, fb_name); 8254 if (err) { 8255 pr_emerg("%s: failed to move %s to init_net: %d\n", 8256 __func__, dev->name, err); 8257 BUG(); 8258 } 8259 } 8260 rtnl_unlock(); 8261 } 8262 8263 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8264 { 8265 /* Return with the rtnl_lock held when there are no network 8266 * devices unregistering in any network namespace in net_list. 8267 */ 8268 struct net *net; 8269 bool unregistering; 8270 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8271 8272 add_wait_queue(&netdev_unregistering_wq, &wait); 8273 for (;;) { 8274 unregistering = false; 8275 rtnl_lock(); 8276 list_for_each_entry(net, net_list, exit_list) { 8277 if (net->dev_unreg_count > 0) { 8278 unregistering = true; 8279 break; 8280 } 8281 } 8282 if (!unregistering) 8283 break; 8284 __rtnl_unlock(); 8285 8286 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8287 } 8288 remove_wait_queue(&netdev_unregistering_wq, &wait); 8289 } 8290 8291 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8292 { 8293 /* At exit all network devices most be removed from a network 8294 * namespace. Do this in the reverse order of registration. 8295 * Do this across as many network namespaces as possible to 8296 * improve batching efficiency. 8297 */ 8298 struct net_device *dev; 8299 struct net *net; 8300 LIST_HEAD(dev_kill_list); 8301 8302 /* To prevent network device cleanup code from dereferencing 8303 * loopback devices or network devices that have been freed 8304 * wait here for all pending unregistrations to complete, 8305 * before unregistring the loopback device and allowing the 8306 * network namespace be freed. 8307 * 8308 * The netdev todo list containing all network devices 8309 * unregistrations that happen in default_device_exit_batch 8310 * will run in the rtnl_unlock() at the end of 8311 * default_device_exit_batch. 8312 */ 8313 rtnl_lock_unregistering(net_list); 8314 list_for_each_entry(net, net_list, exit_list) { 8315 for_each_netdev_reverse(net, dev) { 8316 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8317 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8318 else 8319 unregister_netdevice_queue(dev, &dev_kill_list); 8320 } 8321 } 8322 unregister_netdevice_many(&dev_kill_list); 8323 rtnl_unlock(); 8324 } 8325 8326 static struct pernet_operations __net_initdata default_device_ops = { 8327 .exit = default_device_exit, 8328 .exit_batch = default_device_exit_batch, 8329 }; 8330 8331 /* 8332 * Initialize the DEV module. At boot time this walks the device list and 8333 * unhooks any devices that fail to initialise (normally hardware not 8334 * present) and leaves us with a valid list of present and active devices. 8335 * 8336 */ 8337 8338 /* 8339 * This is called single threaded during boot, so no need 8340 * to take the rtnl semaphore. 8341 */ 8342 static int __init net_dev_init(void) 8343 { 8344 int i, rc = -ENOMEM; 8345 8346 BUG_ON(!dev_boot_phase); 8347 8348 if (dev_proc_init()) 8349 goto out; 8350 8351 if (netdev_kobject_init()) 8352 goto out; 8353 8354 INIT_LIST_HEAD(&ptype_all); 8355 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8356 INIT_LIST_HEAD(&ptype_base[i]); 8357 8358 INIT_LIST_HEAD(&offload_base); 8359 8360 if (register_pernet_subsys(&netdev_net_ops)) 8361 goto out; 8362 8363 /* 8364 * Initialise the packet receive queues. 8365 */ 8366 8367 for_each_possible_cpu(i) { 8368 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8369 struct softnet_data *sd = &per_cpu(softnet_data, i); 8370 8371 INIT_WORK(flush, flush_backlog); 8372 8373 skb_queue_head_init(&sd->input_pkt_queue); 8374 skb_queue_head_init(&sd->process_queue); 8375 INIT_LIST_HEAD(&sd->poll_list); 8376 sd->output_queue_tailp = &sd->output_queue; 8377 #ifdef CONFIG_RPS 8378 sd->csd.func = rps_trigger_softirq; 8379 sd->csd.info = sd; 8380 sd->cpu = i; 8381 #endif 8382 8383 sd->backlog.poll = process_backlog; 8384 sd->backlog.weight = weight_p; 8385 } 8386 8387 dev_boot_phase = 0; 8388 8389 /* The loopback device is special if any other network devices 8390 * is present in a network namespace the loopback device must 8391 * be present. Since we now dynamically allocate and free the 8392 * loopback device ensure this invariant is maintained by 8393 * keeping the loopback device as the first device on the 8394 * list of network devices. Ensuring the loopback devices 8395 * is the first device that appears and the last network device 8396 * that disappears. 8397 */ 8398 if (register_pernet_device(&loopback_net_ops)) 8399 goto out; 8400 8401 if (register_pernet_device(&default_device_ops)) 8402 goto out; 8403 8404 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8405 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8406 8407 hotcpu_notifier(dev_cpu_callback, 0); 8408 dst_subsys_init(); 8409 rc = 0; 8410 out: 8411 return rc; 8412 } 8413 8414 subsys_initcall(net_dev_init); 8415