xref: /openbmc/linux/net/core/dev.c (revision bf8981a2aa082d9d64771b47c8a1c9c388d8cd40)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 
150 #include "net-sysfs.h"
151 
152 #define MAX_GRO_SKBS 8
153 
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 static struct list_head offload_base __read_mostly;
162 
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 					 struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167 					   struct net_device *dev,
168 					   struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170 
171 /*
172  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173  * semaphore.
174  *
175  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176  *
177  * Writers must hold the rtnl semaphore while they loop through the
178  * dev_base_head list, and hold dev_base_lock for writing when they do the
179  * actual updates.  This allows pure readers to access the list even
180  * while a writer is preparing to update it.
181  *
182  * To put it another way, dev_base_lock is held for writing only to
183  * protect against pure readers; the rtnl semaphore provides the
184  * protection against other writers.
185  *
186  * See, for example usages, register_netdevice() and
187  * unregister_netdevice(), which must be called with the rtnl
188  * semaphore held.
189  */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192 
193 static DEFINE_MUTEX(ifalias_mutex);
194 
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197 
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200 
201 static seqcount_t devnet_rename_seq;
202 
203 static inline void dev_base_seq_inc(struct net *net)
204 {
205 	while (++net->dev_base_seq == 0)
206 		;
207 }
208 
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212 
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
235 /* Device list insertion */
236 static void list_netdevice(struct net_device *dev)
237 {
238 	struct net *net = dev_net(dev);
239 
240 	ASSERT_RTNL();
241 
242 	write_lock_bh(&dev_base_lock);
243 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 	hlist_add_head_rcu(&dev->index_hlist,
246 			   dev_index_hash(net, dev->ifindex));
247 	write_unlock_bh(&dev_base_lock);
248 
249 	dev_base_seq_inc(net);
250 }
251 
252 /* Device list removal
253  * caller must respect a RCU grace period before freeing/reusing dev
254  */
255 static void unlist_netdevice(struct net_device *dev)
256 {
257 	ASSERT_RTNL();
258 
259 	/* Unlink dev from the device chain */
260 	write_lock_bh(&dev_base_lock);
261 	list_del_rcu(&dev->dev_list);
262 	hlist_del_rcu(&dev->name_hlist);
263 	hlist_del_rcu(&dev->index_hlist);
264 	write_unlock_bh(&dev_base_lock);
265 
266 	dev_base_seq_inc(dev_net(dev));
267 }
268 
269 /*
270  *	Our notifier list
271  */
272 
273 static RAW_NOTIFIER_HEAD(netdev_chain);
274 
275 /*
276  *	Device drivers call our routines to queue packets here. We empty the
277  *	queue in the local softnet handler.
278  */
279 
280 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
281 EXPORT_PER_CPU_SYMBOL(softnet_data);
282 
283 #ifdef CONFIG_LOCKDEP
284 /*
285  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
286  * according to dev->type
287  */
288 static const unsigned short netdev_lock_type[] = {
289 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
290 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
291 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
292 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
293 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
294 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
295 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
296 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
297 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
298 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
299 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
300 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
301 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
302 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
303 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
304 
305 static const char *const netdev_lock_name[] = {
306 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
307 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
308 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
309 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
310 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
311 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
312 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
313 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
314 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
315 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
316 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
317 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
318 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
319 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
320 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
321 
322 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
323 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
324 
325 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
326 {
327 	int i;
328 
329 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
330 		if (netdev_lock_type[i] == dev_type)
331 			return i;
332 	/* the last key is used by default */
333 	return ARRAY_SIZE(netdev_lock_type) - 1;
334 }
335 
336 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
337 						 unsigned short dev_type)
338 {
339 	int i;
340 
341 	i = netdev_lock_pos(dev_type);
342 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
343 				   netdev_lock_name[i]);
344 }
345 
346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347 {
348 	int i;
349 
350 	i = netdev_lock_pos(dev->type);
351 	lockdep_set_class_and_name(&dev->addr_list_lock,
352 				   &netdev_addr_lock_key[i],
353 				   netdev_lock_name[i]);
354 }
355 #else
356 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
357 						 unsigned short dev_type)
358 {
359 }
360 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
361 {
362 }
363 #endif
364 
365 /*******************************************************************************
366  *
367  *		Protocol management and registration routines
368  *
369  *******************************************************************************/
370 
371 
372 /*
373  *	Add a protocol ID to the list. Now that the input handler is
374  *	smarter we can dispense with all the messy stuff that used to be
375  *	here.
376  *
377  *	BEWARE!!! Protocol handlers, mangling input packets,
378  *	MUST BE last in hash buckets and checking protocol handlers
379  *	MUST start from promiscuous ptype_all chain in net_bh.
380  *	It is true now, do not change it.
381  *	Explanation follows: if protocol handler, mangling packet, will
382  *	be the first on list, it is not able to sense, that packet
383  *	is cloned and should be copied-on-write, so that it will
384  *	change it and subsequent readers will get broken packet.
385  *							--ANK (980803)
386  */
387 
388 static inline struct list_head *ptype_head(const struct packet_type *pt)
389 {
390 	if (pt->type == htons(ETH_P_ALL))
391 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
392 	else
393 		return pt->dev ? &pt->dev->ptype_specific :
394 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396 
397 /**
398  *	dev_add_pack - add packet handler
399  *	@pt: packet type declaration
400  *
401  *	Add a protocol handler to the networking stack. The passed &packet_type
402  *	is linked into kernel lists and may not be freed until it has been
403  *	removed from the kernel lists.
404  *
405  *	This call does not sleep therefore it can not
406  *	guarantee all CPU's that are in middle of receiving packets
407  *	will see the new packet type (until the next received packet).
408  */
409 
410 void dev_add_pack(struct packet_type *pt)
411 {
412 	struct list_head *head = ptype_head(pt);
413 
414 	spin_lock(&ptype_lock);
415 	list_add_rcu(&pt->list, head);
416 	spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419 
420 /**
421  *	__dev_remove_pack	 - remove packet handler
422  *	@pt: packet type declaration
423  *
424  *	Remove a protocol handler that was previously added to the kernel
425  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
426  *	from the kernel lists and can be freed or reused once this function
427  *	returns.
428  *
429  *      The packet type might still be in use by receivers
430  *	and must not be freed until after all the CPU's have gone
431  *	through a quiescent state.
432  */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 	struct list_head *head = ptype_head(pt);
436 	struct packet_type *pt1;
437 
438 	spin_lock(&ptype_lock);
439 
440 	list_for_each_entry(pt1, head, list) {
441 		if (pt == pt1) {
442 			list_del_rcu(&pt->list);
443 			goto out;
444 		}
445 	}
446 
447 	pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 	spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452 
453 /**
454  *	dev_remove_pack	 - remove packet handler
455  *	@pt: packet type declaration
456  *
457  *	Remove a protocol handler that was previously added to the kernel
458  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
459  *	from the kernel lists and can be freed or reused once this function
460  *	returns.
461  *
462  *	This call sleeps to guarantee that no CPU is looking at the packet
463  *	type after return.
464  */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 	__dev_remove_pack(pt);
468 
469 	synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472 
473 
474 /**
475  *	dev_add_offload - register offload handlers
476  *	@po: protocol offload declaration
477  *
478  *	Add protocol offload handlers to the networking stack. The passed
479  *	&proto_offload is linked into kernel lists and may not be freed until
480  *	it has been removed from the kernel lists.
481  *
482  *	This call does not sleep therefore it can not
483  *	guarantee all CPU's that are in middle of receiving packets
484  *	will see the new offload handlers (until the next received packet).
485  */
486 void dev_add_offload(struct packet_offload *po)
487 {
488 	struct packet_offload *elem;
489 
490 	spin_lock(&offload_lock);
491 	list_for_each_entry(elem, &offload_base, list) {
492 		if (po->priority < elem->priority)
493 			break;
494 	}
495 	list_add_rcu(&po->list, elem->list.prev);
496 	spin_unlock(&offload_lock);
497 }
498 EXPORT_SYMBOL(dev_add_offload);
499 
500 /**
501  *	__dev_remove_offload	 - remove offload handler
502  *	@po: packet offload declaration
503  *
504  *	Remove a protocol offload handler that was previously added to the
505  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
506  *	is removed from the kernel lists and can be freed or reused once this
507  *	function returns.
508  *
509  *      The packet type might still be in use by receivers
510  *	and must not be freed until after all the CPU's have gone
511  *	through a quiescent state.
512  */
513 static void __dev_remove_offload(struct packet_offload *po)
514 {
515 	struct list_head *head = &offload_base;
516 	struct packet_offload *po1;
517 
518 	spin_lock(&offload_lock);
519 
520 	list_for_each_entry(po1, head, list) {
521 		if (po == po1) {
522 			list_del_rcu(&po->list);
523 			goto out;
524 		}
525 	}
526 
527 	pr_warn("dev_remove_offload: %p not found\n", po);
528 out:
529 	spin_unlock(&offload_lock);
530 }
531 
532 /**
533  *	dev_remove_offload	 - remove packet offload handler
534  *	@po: packet offload declaration
535  *
536  *	Remove a packet offload handler that was previously added to the kernel
537  *	offload handlers by dev_add_offload(). The passed &offload_type is
538  *	removed from the kernel lists and can be freed or reused once this
539  *	function returns.
540  *
541  *	This call sleeps to guarantee that no CPU is looking at the packet
542  *	type after return.
543  */
544 void dev_remove_offload(struct packet_offload *po)
545 {
546 	__dev_remove_offload(po);
547 
548 	synchronize_net();
549 }
550 EXPORT_SYMBOL(dev_remove_offload);
551 
552 /******************************************************************************
553  *
554  *		      Device Boot-time Settings Routines
555  *
556  ******************************************************************************/
557 
558 /* Boot time configuration table */
559 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
560 
561 /**
562  *	netdev_boot_setup_add	- add new setup entry
563  *	@name: name of the device
564  *	@map: configured settings for the device
565  *
566  *	Adds new setup entry to the dev_boot_setup list.  The function
567  *	returns 0 on error and 1 on success.  This is a generic routine to
568  *	all netdevices.
569  */
570 static int netdev_boot_setup_add(char *name, struct ifmap *map)
571 {
572 	struct netdev_boot_setup *s;
573 	int i;
574 
575 	s = dev_boot_setup;
576 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
577 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
578 			memset(s[i].name, 0, sizeof(s[i].name));
579 			strlcpy(s[i].name, name, IFNAMSIZ);
580 			memcpy(&s[i].map, map, sizeof(s[i].map));
581 			break;
582 		}
583 	}
584 
585 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
586 }
587 
588 /**
589  * netdev_boot_setup_check	- check boot time settings
590  * @dev: the netdevice
591  *
592  * Check boot time settings for the device.
593  * The found settings are set for the device to be used
594  * later in the device probing.
595  * Returns 0 if no settings found, 1 if they are.
596  */
597 int netdev_boot_setup_check(struct net_device *dev)
598 {
599 	struct netdev_boot_setup *s = dev_boot_setup;
600 	int i;
601 
602 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
603 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
604 		    !strcmp(dev->name, s[i].name)) {
605 			dev->irq = s[i].map.irq;
606 			dev->base_addr = s[i].map.base_addr;
607 			dev->mem_start = s[i].map.mem_start;
608 			dev->mem_end = s[i].map.mem_end;
609 			return 1;
610 		}
611 	}
612 	return 0;
613 }
614 EXPORT_SYMBOL(netdev_boot_setup_check);
615 
616 
617 /**
618  * netdev_boot_base	- get address from boot time settings
619  * @prefix: prefix for network device
620  * @unit: id for network device
621  *
622  * Check boot time settings for the base address of device.
623  * The found settings are set for the device to be used
624  * later in the device probing.
625  * Returns 0 if no settings found.
626  */
627 unsigned long netdev_boot_base(const char *prefix, int unit)
628 {
629 	const struct netdev_boot_setup *s = dev_boot_setup;
630 	char name[IFNAMSIZ];
631 	int i;
632 
633 	sprintf(name, "%s%d", prefix, unit);
634 
635 	/*
636 	 * If device already registered then return base of 1
637 	 * to indicate not to probe for this interface
638 	 */
639 	if (__dev_get_by_name(&init_net, name))
640 		return 1;
641 
642 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
643 		if (!strcmp(name, s[i].name))
644 			return s[i].map.base_addr;
645 	return 0;
646 }
647 
648 /*
649  * Saves at boot time configured settings for any netdevice.
650  */
651 int __init netdev_boot_setup(char *str)
652 {
653 	int ints[5];
654 	struct ifmap map;
655 
656 	str = get_options(str, ARRAY_SIZE(ints), ints);
657 	if (!str || !*str)
658 		return 0;
659 
660 	/* Save settings */
661 	memset(&map, 0, sizeof(map));
662 	if (ints[0] > 0)
663 		map.irq = ints[1];
664 	if (ints[0] > 1)
665 		map.base_addr = ints[2];
666 	if (ints[0] > 2)
667 		map.mem_start = ints[3];
668 	if (ints[0] > 3)
669 		map.mem_end = ints[4];
670 
671 	/* Add new entry to the list */
672 	return netdev_boot_setup_add(str, &map);
673 }
674 
675 __setup("netdev=", netdev_boot_setup);
676 
677 /*******************************************************************************
678  *
679  *			    Device Interface Subroutines
680  *
681  *******************************************************************************/
682 
683 /**
684  *	dev_get_iflink	- get 'iflink' value of a interface
685  *	@dev: targeted interface
686  *
687  *	Indicates the ifindex the interface is linked to.
688  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
689  */
690 
691 int dev_get_iflink(const struct net_device *dev)
692 {
693 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
694 		return dev->netdev_ops->ndo_get_iflink(dev);
695 
696 	return dev->ifindex;
697 }
698 EXPORT_SYMBOL(dev_get_iflink);
699 
700 /**
701  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
702  *	@dev: targeted interface
703  *	@skb: The packet.
704  *
705  *	For better visibility of tunnel traffic OVS needs to retrieve
706  *	egress tunnel information for a packet. Following API allows
707  *	user to get this info.
708  */
709 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
710 {
711 	struct ip_tunnel_info *info;
712 
713 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
714 		return -EINVAL;
715 
716 	info = skb_tunnel_info_unclone(skb);
717 	if (!info)
718 		return -ENOMEM;
719 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
720 		return -EINVAL;
721 
722 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
723 }
724 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
725 
726 /**
727  *	__dev_get_by_name	- find a device by its name
728  *	@net: the applicable net namespace
729  *	@name: name to find
730  *
731  *	Find an interface by name. Must be called under RTNL semaphore
732  *	or @dev_base_lock. If the name is found a pointer to the device
733  *	is returned. If the name is not found then %NULL is returned. The
734  *	reference counters are not incremented so the caller must be
735  *	careful with locks.
736  */
737 
738 struct net_device *__dev_get_by_name(struct net *net, const char *name)
739 {
740 	struct net_device *dev;
741 	struct hlist_head *head = dev_name_hash(net, name);
742 
743 	hlist_for_each_entry(dev, head, name_hlist)
744 		if (!strncmp(dev->name, name, IFNAMSIZ))
745 			return dev;
746 
747 	return NULL;
748 }
749 EXPORT_SYMBOL(__dev_get_by_name);
750 
751 /**
752  * dev_get_by_name_rcu	- find a device by its name
753  * @net: the applicable net namespace
754  * @name: name to find
755  *
756  * Find an interface by name.
757  * If the name is found a pointer to the device is returned.
758  * If the name is not found then %NULL is returned.
759  * The reference counters are not incremented so the caller must be
760  * careful with locks. The caller must hold RCU lock.
761  */
762 
763 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
764 {
765 	struct net_device *dev;
766 	struct hlist_head *head = dev_name_hash(net, name);
767 
768 	hlist_for_each_entry_rcu(dev, head, name_hlist)
769 		if (!strncmp(dev->name, name, IFNAMSIZ))
770 			return dev;
771 
772 	return NULL;
773 }
774 EXPORT_SYMBOL(dev_get_by_name_rcu);
775 
776 /**
777  *	dev_get_by_name		- find a device by its name
778  *	@net: the applicable net namespace
779  *	@name: name to find
780  *
781  *	Find an interface by name. This can be called from any
782  *	context and does its own locking. The returned handle has
783  *	the usage count incremented and the caller must use dev_put() to
784  *	release it when it is no longer needed. %NULL is returned if no
785  *	matching device is found.
786  */
787 
788 struct net_device *dev_get_by_name(struct net *net, const char *name)
789 {
790 	struct net_device *dev;
791 
792 	rcu_read_lock();
793 	dev = dev_get_by_name_rcu(net, name);
794 	if (dev)
795 		dev_hold(dev);
796 	rcu_read_unlock();
797 	return dev;
798 }
799 EXPORT_SYMBOL(dev_get_by_name);
800 
801 /**
802  *	__dev_get_by_index - find a device by its ifindex
803  *	@net: the applicable net namespace
804  *	@ifindex: index of device
805  *
806  *	Search for an interface by index. Returns %NULL if the device
807  *	is not found or a pointer to the device. The device has not
808  *	had its reference counter increased so the caller must be careful
809  *	about locking. The caller must hold either the RTNL semaphore
810  *	or @dev_base_lock.
811  */
812 
813 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
814 {
815 	struct net_device *dev;
816 	struct hlist_head *head = dev_index_hash(net, ifindex);
817 
818 	hlist_for_each_entry(dev, head, index_hlist)
819 		if (dev->ifindex == ifindex)
820 			return dev;
821 
822 	return NULL;
823 }
824 EXPORT_SYMBOL(__dev_get_by_index);
825 
826 /**
827  *	dev_get_by_index_rcu - find a device by its ifindex
828  *	@net: the applicable net namespace
829  *	@ifindex: index of device
830  *
831  *	Search for an interface by index. Returns %NULL if the device
832  *	is not found or a pointer to the device. The device has not
833  *	had its reference counter increased so the caller must be careful
834  *	about locking. The caller must hold RCU lock.
835  */
836 
837 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
838 {
839 	struct net_device *dev;
840 	struct hlist_head *head = dev_index_hash(net, ifindex);
841 
842 	hlist_for_each_entry_rcu(dev, head, index_hlist)
843 		if (dev->ifindex == ifindex)
844 			return dev;
845 
846 	return NULL;
847 }
848 EXPORT_SYMBOL(dev_get_by_index_rcu);
849 
850 
851 /**
852  *	dev_get_by_index - find a device by its ifindex
853  *	@net: the applicable net namespace
854  *	@ifindex: index of device
855  *
856  *	Search for an interface by index. Returns NULL if the device
857  *	is not found or a pointer to the device. The device returned has
858  *	had a reference added and the pointer is safe until the user calls
859  *	dev_put to indicate they have finished with it.
860  */
861 
862 struct net_device *dev_get_by_index(struct net *net, int ifindex)
863 {
864 	struct net_device *dev;
865 
866 	rcu_read_lock();
867 	dev = dev_get_by_index_rcu(net, ifindex);
868 	if (dev)
869 		dev_hold(dev);
870 	rcu_read_unlock();
871 	return dev;
872 }
873 EXPORT_SYMBOL(dev_get_by_index);
874 
875 /**
876  *	dev_get_by_napi_id - find a device by napi_id
877  *	@napi_id: ID of the NAPI struct
878  *
879  *	Search for an interface by NAPI ID. Returns %NULL if the device
880  *	is not found or a pointer to the device. The device has not had
881  *	its reference counter increased so the caller must be careful
882  *	about locking. The caller must hold RCU lock.
883  */
884 
885 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
886 {
887 	struct napi_struct *napi;
888 
889 	WARN_ON_ONCE(!rcu_read_lock_held());
890 
891 	if (napi_id < MIN_NAPI_ID)
892 		return NULL;
893 
894 	napi = napi_by_id(napi_id);
895 
896 	return napi ? napi->dev : NULL;
897 }
898 EXPORT_SYMBOL(dev_get_by_napi_id);
899 
900 /**
901  *	netdev_get_name - get a netdevice name, knowing its ifindex.
902  *	@net: network namespace
903  *	@name: a pointer to the buffer where the name will be stored.
904  *	@ifindex: the ifindex of the interface to get the name from.
905  *
906  *	The use of raw_seqcount_begin() and cond_resched() before
907  *	retrying is required as we want to give the writers a chance
908  *	to complete when CONFIG_PREEMPT is not set.
909  */
910 int netdev_get_name(struct net *net, char *name, int ifindex)
911 {
912 	struct net_device *dev;
913 	unsigned int seq;
914 
915 retry:
916 	seq = raw_seqcount_begin(&devnet_rename_seq);
917 	rcu_read_lock();
918 	dev = dev_get_by_index_rcu(net, ifindex);
919 	if (!dev) {
920 		rcu_read_unlock();
921 		return -ENODEV;
922 	}
923 
924 	strcpy(name, dev->name);
925 	rcu_read_unlock();
926 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
927 		cond_resched();
928 		goto retry;
929 	}
930 
931 	return 0;
932 }
933 
934 /**
935  *	dev_getbyhwaddr_rcu - find a device by its hardware address
936  *	@net: the applicable net namespace
937  *	@type: media type of device
938  *	@ha: hardware address
939  *
940  *	Search for an interface by MAC address. Returns NULL if the device
941  *	is not found or a pointer to the device.
942  *	The caller must hold RCU or RTNL.
943  *	The returned device has not had its ref count increased
944  *	and the caller must therefore be careful about locking
945  *
946  */
947 
948 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
949 				       const char *ha)
950 {
951 	struct net_device *dev;
952 
953 	for_each_netdev_rcu(net, dev)
954 		if (dev->type == type &&
955 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
956 			return dev;
957 
958 	return NULL;
959 }
960 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
961 
962 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
963 {
964 	struct net_device *dev;
965 
966 	ASSERT_RTNL();
967 	for_each_netdev(net, dev)
968 		if (dev->type == type)
969 			return dev;
970 
971 	return NULL;
972 }
973 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
974 
975 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
976 {
977 	struct net_device *dev, *ret = NULL;
978 
979 	rcu_read_lock();
980 	for_each_netdev_rcu(net, dev)
981 		if (dev->type == type) {
982 			dev_hold(dev);
983 			ret = dev;
984 			break;
985 		}
986 	rcu_read_unlock();
987 	return ret;
988 }
989 EXPORT_SYMBOL(dev_getfirstbyhwtype);
990 
991 /**
992  *	__dev_get_by_flags - find any device with given flags
993  *	@net: the applicable net namespace
994  *	@if_flags: IFF_* values
995  *	@mask: bitmask of bits in if_flags to check
996  *
997  *	Search for any interface with the given flags. Returns NULL if a device
998  *	is not found or a pointer to the device. Must be called inside
999  *	rtnl_lock(), and result refcount is unchanged.
1000  */
1001 
1002 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1003 				      unsigned short mask)
1004 {
1005 	struct net_device *dev, *ret;
1006 
1007 	ASSERT_RTNL();
1008 
1009 	ret = NULL;
1010 	for_each_netdev(net, dev) {
1011 		if (((dev->flags ^ if_flags) & mask) == 0) {
1012 			ret = dev;
1013 			break;
1014 		}
1015 	}
1016 	return ret;
1017 }
1018 EXPORT_SYMBOL(__dev_get_by_flags);
1019 
1020 /**
1021  *	dev_valid_name - check if name is okay for network device
1022  *	@name: name string
1023  *
1024  *	Network device names need to be valid file names to
1025  *	to allow sysfs to work.  We also disallow any kind of
1026  *	whitespace.
1027  */
1028 bool dev_valid_name(const char *name)
1029 {
1030 	if (*name == '\0')
1031 		return false;
1032 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1033 		return false;
1034 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1035 		return false;
1036 
1037 	while (*name) {
1038 		if (*name == '/' || *name == ':' || isspace(*name))
1039 			return false;
1040 		name++;
1041 	}
1042 	return true;
1043 }
1044 EXPORT_SYMBOL(dev_valid_name);
1045 
1046 /**
1047  *	__dev_alloc_name - allocate a name for a device
1048  *	@net: network namespace to allocate the device name in
1049  *	@name: name format string
1050  *	@buf:  scratch buffer and result name string
1051  *
1052  *	Passed a format string - eg "lt%d" it will try and find a suitable
1053  *	id. It scans list of devices to build up a free map, then chooses
1054  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1055  *	while allocating the name and adding the device in order to avoid
1056  *	duplicates.
1057  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1058  *	Returns the number of the unit assigned or a negative errno code.
1059  */
1060 
1061 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1062 {
1063 	int i = 0;
1064 	const char *p;
1065 	const int max_netdevices = 8*PAGE_SIZE;
1066 	unsigned long *inuse;
1067 	struct net_device *d;
1068 
1069 	if (!dev_valid_name(name))
1070 		return -EINVAL;
1071 
1072 	p = strchr(name, '%');
1073 	if (p) {
1074 		/*
1075 		 * Verify the string as this thing may have come from
1076 		 * the user.  There must be either one "%d" and no other "%"
1077 		 * characters.
1078 		 */
1079 		if (p[1] != 'd' || strchr(p + 2, '%'))
1080 			return -EINVAL;
1081 
1082 		/* Use one page as a bit array of possible slots */
1083 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1084 		if (!inuse)
1085 			return -ENOMEM;
1086 
1087 		for_each_netdev(net, d) {
1088 			if (!sscanf(d->name, name, &i))
1089 				continue;
1090 			if (i < 0 || i >= max_netdevices)
1091 				continue;
1092 
1093 			/*  avoid cases where sscanf is not exact inverse of printf */
1094 			snprintf(buf, IFNAMSIZ, name, i);
1095 			if (!strncmp(buf, d->name, IFNAMSIZ))
1096 				set_bit(i, inuse);
1097 		}
1098 
1099 		i = find_first_zero_bit(inuse, max_netdevices);
1100 		free_page((unsigned long) inuse);
1101 	}
1102 
1103 	snprintf(buf, IFNAMSIZ, name, i);
1104 	if (!__dev_get_by_name(net, buf))
1105 		return i;
1106 
1107 	/* It is possible to run out of possible slots
1108 	 * when the name is long and there isn't enough space left
1109 	 * for the digits, or if all bits are used.
1110 	 */
1111 	return -ENFILE;
1112 }
1113 
1114 static int dev_alloc_name_ns(struct net *net,
1115 			     struct net_device *dev,
1116 			     const char *name)
1117 {
1118 	char buf[IFNAMSIZ];
1119 	int ret;
1120 
1121 	BUG_ON(!net);
1122 	ret = __dev_alloc_name(net, name, buf);
1123 	if (ret >= 0)
1124 		strlcpy(dev->name, buf, IFNAMSIZ);
1125 	return ret;
1126 }
1127 
1128 /**
1129  *	dev_alloc_name - allocate a name for a device
1130  *	@dev: device
1131  *	@name: name format string
1132  *
1133  *	Passed a format string - eg "lt%d" it will try and find a suitable
1134  *	id. It scans list of devices to build up a free map, then chooses
1135  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1136  *	while allocating the name and adding the device in order to avoid
1137  *	duplicates.
1138  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1139  *	Returns the number of the unit assigned or a negative errno code.
1140  */
1141 
1142 int dev_alloc_name(struct net_device *dev, const char *name)
1143 {
1144 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1145 }
1146 EXPORT_SYMBOL(dev_alloc_name);
1147 
1148 int dev_get_valid_name(struct net *net, struct net_device *dev,
1149 		       const char *name)
1150 {
1151 	BUG_ON(!net);
1152 
1153 	if (!dev_valid_name(name))
1154 		return -EINVAL;
1155 
1156 	if (strchr(name, '%'))
1157 		return dev_alloc_name_ns(net, dev, name);
1158 	else if (__dev_get_by_name(net, name))
1159 		return -EEXIST;
1160 	else if (dev->name != name)
1161 		strlcpy(dev->name, name, IFNAMSIZ);
1162 
1163 	return 0;
1164 }
1165 EXPORT_SYMBOL(dev_get_valid_name);
1166 
1167 /**
1168  *	dev_change_name - change name of a device
1169  *	@dev: device
1170  *	@newname: name (or format string) must be at least IFNAMSIZ
1171  *
1172  *	Change name of a device, can pass format strings "eth%d".
1173  *	for wildcarding.
1174  */
1175 int dev_change_name(struct net_device *dev, const char *newname)
1176 {
1177 	unsigned char old_assign_type;
1178 	char oldname[IFNAMSIZ];
1179 	int err = 0;
1180 	int ret;
1181 	struct net *net;
1182 
1183 	ASSERT_RTNL();
1184 	BUG_ON(!dev_net(dev));
1185 
1186 	net = dev_net(dev);
1187 	if (dev->flags & IFF_UP)
1188 		return -EBUSY;
1189 
1190 	write_seqcount_begin(&devnet_rename_seq);
1191 
1192 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1193 		write_seqcount_end(&devnet_rename_seq);
1194 		return 0;
1195 	}
1196 
1197 	memcpy(oldname, dev->name, IFNAMSIZ);
1198 
1199 	err = dev_get_valid_name(net, dev, newname);
1200 	if (err < 0) {
1201 		write_seqcount_end(&devnet_rename_seq);
1202 		return err;
1203 	}
1204 
1205 	if (oldname[0] && !strchr(oldname, '%'))
1206 		netdev_info(dev, "renamed from %s\n", oldname);
1207 
1208 	old_assign_type = dev->name_assign_type;
1209 	dev->name_assign_type = NET_NAME_RENAMED;
1210 
1211 rollback:
1212 	ret = device_rename(&dev->dev, dev->name);
1213 	if (ret) {
1214 		memcpy(dev->name, oldname, IFNAMSIZ);
1215 		dev->name_assign_type = old_assign_type;
1216 		write_seqcount_end(&devnet_rename_seq);
1217 		return ret;
1218 	}
1219 
1220 	write_seqcount_end(&devnet_rename_seq);
1221 
1222 	netdev_adjacent_rename_links(dev, oldname);
1223 
1224 	write_lock_bh(&dev_base_lock);
1225 	hlist_del_rcu(&dev->name_hlist);
1226 	write_unlock_bh(&dev_base_lock);
1227 
1228 	synchronize_rcu();
1229 
1230 	write_lock_bh(&dev_base_lock);
1231 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1232 	write_unlock_bh(&dev_base_lock);
1233 
1234 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1235 	ret = notifier_to_errno(ret);
1236 
1237 	if (ret) {
1238 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1239 		if (err >= 0) {
1240 			err = ret;
1241 			write_seqcount_begin(&devnet_rename_seq);
1242 			memcpy(dev->name, oldname, IFNAMSIZ);
1243 			memcpy(oldname, newname, IFNAMSIZ);
1244 			dev->name_assign_type = old_assign_type;
1245 			old_assign_type = NET_NAME_RENAMED;
1246 			goto rollback;
1247 		} else {
1248 			pr_err("%s: name change rollback failed: %d\n",
1249 			       dev->name, ret);
1250 		}
1251 	}
1252 
1253 	return err;
1254 }
1255 
1256 /**
1257  *	dev_set_alias - change ifalias of a device
1258  *	@dev: device
1259  *	@alias: name up to IFALIASZ
1260  *	@len: limit of bytes to copy from info
1261  *
1262  *	Set ifalias for a device,
1263  */
1264 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1265 {
1266 	struct dev_ifalias *new_alias = NULL;
1267 
1268 	if (len >= IFALIASZ)
1269 		return -EINVAL;
1270 
1271 	if (len) {
1272 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1273 		if (!new_alias)
1274 			return -ENOMEM;
1275 
1276 		memcpy(new_alias->ifalias, alias, len);
1277 		new_alias->ifalias[len] = 0;
1278 	}
1279 
1280 	mutex_lock(&ifalias_mutex);
1281 	rcu_swap_protected(dev->ifalias, new_alias,
1282 			   mutex_is_locked(&ifalias_mutex));
1283 	mutex_unlock(&ifalias_mutex);
1284 
1285 	if (new_alias)
1286 		kfree_rcu(new_alias, rcuhead);
1287 
1288 	return len;
1289 }
1290 EXPORT_SYMBOL(dev_set_alias);
1291 
1292 /**
1293  *	dev_get_alias - get ifalias of a device
1294  *	@dev: device
1295  *	@name: buffer to store name of ifalias
1296  *	@len: size of buffer
1297  *
1298  *	get ifalias for a device.  Caller must make sure dev cannot go
1299  *	away,  e.g. rcu read lock or own a reference count to device.
1300  */
1301 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1302 {
1303 	const struct dev_ifalias *alias;
1304 	int ret = 0;
1305 
1306 	rcu_read_lock();
1307 	alias = rcu_dereference(dev->ifalias);
1308 	if (alias)
1309 		ret = snprintf(name, len, "%s", alias->ifalias);
1310 	rcu_read_unlock();
1311 
1312 	return ret;
1313 }
1314 
1315 /**
1316  *	netdev_features_change - device changes features
1317  *	@dev: device to cause notification
1318  *
1319  *	Called to indicate a device has changed features.
1320  */
1321 void netdev_features_change(struct net_device *dev)
1322 {
1323 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1324 }
1325 EXPORT_SYMBOL(netdev_features_change);
1326 
1327 /**
1328  *	netdev_state_change - device changes state
1329  *	@dev: device to cause notification
1330  *
1331  *	Called to indicate a device has changed state. This function calls
1332  *	the notifier chains for netdev_chain and sends a NEWLINK message
1333  *	to the routing socket.
1334  */
1335 void netdev_state_change(struct net_device *dev)
1336 {
1337 	if (dev->flags & IFF_UP) {
1338 		struct netdev_notifier_change_info change_info = {
1339 			.info.dev = dev,
1340 		};
1341 
1342 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1343 					      &change_info.info);
1344 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1345 	}
1346 }
1347 EXPORT_SYMBOL(netdev_state_change);
1348 
1349 /**
1350  * netdev_notify_peers - notify network peers about existence of @dev
1351  * @dev: network device
1352  *
1353  * Generate traffic such that interested network peers are aware of
1354  * @dev, such as by generating a gratuitous ARP. This may be used when
1355  * a device wants to inform the rest of the network about some sort of
1356  * reconfiguration such as a failover event or virtual machine
1357  * migration.
1358  */
1359 void netdev_notify_peers(struct net_device *dev)
1360 {
1361 	rtnl_lock();
1362 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1363 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1364 	rtnl_unlock();
1365 }
1366 EXPORT_SYMBOL(netdev_notify_peers);
1367 
1368 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1369 {
1370 	const struct net_device_ops *ops = dev->netdev_ops;
1371 	int ret;
1372 
1373 	ASSERT_RTNL();
1374 
1375 	if (!netif_device_present(dev))
1376 		return -ENODEV;
1377 
1378 	/* Block netpoll from trying to do any rx path servicing.
1379 	 * If we don't do this there is a chance ndo_poll_controller
1380 	 * or ndo_poll may be running while we open the device
1381 	 */
1382 	netpoll_poll_disable(dev);
1383 
1384 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1385 	ret = notifier_to_errno(ret);
1386 	if (ret)
1387 		return ret;
1388 
1389 	set_bit(__LINK_STATE_START, &dev->state);
1390 
1391 	if (ops->ndo_validate_addr)
1392 		ret = ops->ndo_validate_addr(dev);
1393 
1394 	if (!ret && ops->ndo_open)
1395 		ret = ops->ndo_open(dev);
1396 
1397 	netpoll_poll_enable(dev);
1398 
1399 	if (ret)
1400 		clear_bit(__LINK_STATE_START, &dev->state);
1401 	else {
1402 		dev->flags |= IFF_UP;
1403 		dev_set_rx_mode(dev);
1404 		dev_activate(dev);
1405 		add_device_randomness(dev->dev_addr, dev->addr_len);
1406 	}
1407 
1408 	return ret;
1409 }
1410 
1411 /**
1412  *	dev_open	- prepare an interface for use.
1413  *	@dev: device to open
1414  *	@extack: netlink extended ack
1415  *
1416  *	Takes a device from down to up state. The device's private open
1417  *	function is invoked and then the multicast lists are loaded. Finally
1418  *	the device is moved into the up state and a %NETDEV_UP message is
1419  *	sent to the netdev notifier chain.
1420  *
1421  *	Calling this function on an active interface is a nop. On a failure
1422  *	a negative errno code is returned.
1423  */
1424 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1425 {
1426 	int ret;
1427 
1428 	if (dev->flags & IFF_UP)
1429 		return 0;
1430 
1431 	ret = __dev_open(dev, extack);
1432 	if (ret < 0)
1433 		return ret;
1434 
1435 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1436 	call_netdevice_notifiers(NETDEV_UP, dev);
1437 
1438 	return ret;
1439 }
1440 EXPORT_SYMBOL(dev_open);
1441 
1442 static void __dev_close_many(struct list_head *head)
1443 {
1444 	struct net_device *dev;
1445 
1446 	ASSERT_RTNL();
1447 	might_sleep();
1448 
1449 	list_for_each_entry(dev, head, close_list) {
1450 		/* Temporarily disable netpoll until the interface is down */
1451 		netpoll_poll_disable(dev);
1452 
1453 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1454 
1455 		clear_bit(__LINK_STATE_START, &dev->state);
1456 
1457 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1458 		 * can be even on different cpu. So just clear netif_running().
1459 		 *
1460 		 * dev->stop() will invoke napi_disable() on all of it's
1461 		 * napi_struct instances on this device.
1462 		 */
1463 		smp_mb__after_atomic(); /* Commit netif_running(). */
1464 	}
1465 
1466 	dev_deactivate_many(head);
1467 
1468 	list_for_each_entry(dev, head, close_list) {
1469 		const struct net_device_ops *ops = dev->netdev_ops;
1470 
1471 		/*
1472 		 *	Call the device specific close. This cannot fail.
1473 		 *	Only if device is UP
1474 		 *
1475 		 *	We allow it to be called even after a DETACH hot-plug
1476 		 *	event.
1477 		 */
1478 		if (ops->ndo_stop)
1479 			ops->ndo_stop(dev);
1480 
1481 		dev->flags &= ~IFF_UP;
1482 		netpoll_poll_enable(dev);
1483 	}
1484 }
1485 
1486 static void __dev_close(struct net_device *dev)
1487 {
1488 	LIST_HEAD(single);
1489 
1490 	list_add(&dev->close_list, &single);
1491 	__dev_close_many(&single);
1492 	list_del(&single);
1493 }
1494 
1495 void dev_close_many(struct list_head *head, bool unlink)
1496 {
1497 	struct net_device *dev, *tmp;
1498 
1499 	/* Remove the devices that don't need to be closed */
1500 	list_for_each_entry_safe(dev, tmp, head, close_list)
1501 		if (!(dev->flags & IFF_UP))
1502 			list_del_init(&dev->close_list);
1503 
1504 	__dev_close_many(head);
1505 
1506 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1507 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1508 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1509 		if (unlink)
1510 			list_del_init(&dev->close_list);
1511 	}
1512 }
1513 EXPORT_SYMBOL(dev_close_many);
1514 
1515 /**
1516  *	dev_close - shutdown an interface.
1517  *	@dev: device to shutdown
1518  *
1519  *	This function moves an active device into down state. A
1520  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1521  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1522  *	chain.
1523  */
1524 void dev_close(struct net_device *dev)
1525 {
1526 	if (dev->flags & IFF_UP) {
1527 		LIST_HEAD(single);
1528 
1529 		list_add(&dev->close_list, &single);
1530 		dev_close_many(&single, true);
1531 		list_del(&single);
1532 	}
1533 }
1534 EXPORT_SYMBOL(dev_close);
1535 
1536 
1537 /**
1538  *	dev_disable_lro - disable Large Receive Offload on a device
1539  *	@dev: device
1540  *
1541  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1542  *	called under RTNL.  This is needed if received packets may be
1543  *	forwarded to another interface.
1544  */
1545 void dev_disable_lro(struct net_device *dev)
1546 {
1547 	struct net_device *lower_dev;
1548 	struct list_head *iter;
1549 
1550 	dev->wanted_features &= ~NETIF_F_LRO;
1551 	netdev_update_features(dev);
1552 
1553 	if (unlikely(dev->features & NETIF_F_LRO))
1554 		netdev_WARN(dev, "failed to disable LRO!\n");
1555 
1556 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1557 		dev_disable_lro(lower_dev);
1558 }
1559 EXPORT_SYMBOL(dev_disable_lro);
1560 
1561 /**
1562  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1563  *	@dev: device
1564  *
1565  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1566  *	called under RTNL.  This is needed if Generic XDP is installed on
1567  *	the device.
1568  */
1569 static void dev_disable_gro_hw(struct net_device *dev)
1570 {
1571 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1572 	netdev_update_features(dev);
1573 
1574 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1575 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1576 }
1577 
1578 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1579 {
1580 #define N(val) 						\
1581 	case NETDEV_##val:				\
1582 		return "NETDEV_" __stringify(val);
1583 	switch (cmd) {
1584 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1585 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1586 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1587 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1588 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1589 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1590 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1591 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1592 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1593 	N(PRE_CHANGEADDR)
1594 	}
1595 #undef N
1596 	return "UNKNOWN_NETDEV_EVENT";
1597 }
1598 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1599 
1600 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1601 				   struct net_device *dev)
1602 {
1603 	struct netdev_notifier_info info = {
1604 		.dev = dev,
1605 	};
1606 
1607 	return nb->notifier_call(nb, val, &info);
1608 }
1609 
1610 static int dev_boot_phase = 1;
1611 
1612 /**
1613  * register_netdevice_notifier - register a network notifier block
1614  * @nb: notifier
1615  *
1616  * Register a notifier to be called when network device events occur.
1617  * The notifier passed is linked into the kernel structures and must
1618  * not be reused until it has been unregistered. A negative errno code
1619  * is returned on a failure.
1620  *
1621  * When registered all registration and up events are replayed
1622  * to the new notifier to allow device to have a race free
1623  * view of the network device list.
1624  */
1625 
1626 int register_netdevice_notifier(struct notifier_block *nb)
1627 {
1628 	struct net_device *dev;
1629 	struct net_device *last;
1630 	struct net *net;
1631 	int err;
1632 
1633 	/* Close race with setup_net() and cleanup_net() */
1634 	down_write(&pernet_ops_rwsem);
1635 	rtnl_lock();
1636 	err = raw_notifier_chain_register(&netdev_chain, nb);
1637 	if (err)
1638 		goto unlock;
1639 	if (dev_boot_phase)
1640 		goto unlock;
1641 	for_each_net(net) {
1642 		for_each_netdev(net, dev) {
1643 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1644 			err = notifier_to_errno(err);
1645 			if (err)
1646 				goto rollback;
1647 
1648 			if (!(dev->flags & IFF_UP))
1649 				continue;
1650 
1651 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1652 		}
1653 	}
1654 
1655 unlock:
1656 	rtnl_unlock();
1657 	up_write(&pernet_ops_rwsem);
1658 	return err;
1659 
1660 rollback:
1661 	last = dev;
1662 	for_each_net(net) {
1663 		for_each_netdev(net, dev) {
1664 			if (dev == last)
1665 				goto outroll;
1666 
1667 			if (dev->flags & IFF_UP) {
1668 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1669 							dev);
1670 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1671 			}
1672 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1673 		}
1674 	}
1675 
1676 outroll:
1677 	raw_notifier_chain_unregister(&netdev_chain, nb);
1678 	goto unlock;
1679 }
1680 EXPORT_SYMBOL(register_netdevice_notifier);
1681 
1682 /**
1683  * unregister_netdevice_notifier - unregister a network notifier block
1684  * @nb: notifier
1685  *
1686  * Unregister a notifier previously registered by
1687  * register_netdevice_notifier(). The notifier is unlinked into the
1688  * kernel structures and may then be reused. A negative errno code
1689  * is returned on a failure.
1690  *
1691  * After unregistering unregister and down device events are synthesized
1692  * for all devices on the device list to the removed notifier to remove
1693  * the need for special case cleanup code.
1694  */
1695 
1696 int unregister_netdevice_notifier(struct notifier_block *nb)
1697 {
1698 	struct net_device *dev;
1699 	struct net *net;
1700 	int err;
1701 
1702 	/* Close race with setup_net() and cleanup_net() */
1703 	down_write(&pernet_ops_rwsem);
1704 	rtnl_lock();
1705 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1706 	if (err)
1707 		goto unlock;
1708 
1709 	for_each_net(net) {
1710 		for_each_netdev(net, dev) {
1711 			if (dev->flags & IFF_UP) {
1712 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1713 							dev);
1714 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1715 			}
1716 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1717 		}
1718 	}
1719 unlock:
1720 	rtnl_unlock();
1721 	up_write(&pernet_ops_rwsem);
1722 	return err;
1723 }
1724 EXPORT_SYMBOL(unregister_netdevice_notifier);
1725 
1726 /**
1727  *	call_netdevice_notifiers_info - call all network notifier blocks
1728  *	@val: value passed unmodified to notifier function
1729  *	@info: notifier information data
1730  *
1731  *	Call all network notifier blocks.  Parameters and return value
1732  *	are as for raw_notifier_call_chain().
1733  */
1734 
1735 static int call_netdevice_notifiers_info(unsigned long val,
1736 					 struct netdev_notifier_info *info)
1737 {
1738 	ASSERT_RTNL();
1739 	return raw_notifier_call_chain(&netdev_chain, val, info);
1740 }
1741 
1742 static int call_netdevice_notifiers_extack(unsigned long val,
1743 					   struct net_device *dev,
1744 					   struct netlink_ext_ack *extack)
1745 {
1746 	struct netdev_notifier_info info = {
1747 		.dev = dev,
1748 		.extack = extack,
1749 	};
1750 
1751 	return call_netdevice_notifiers_info(val, &info);
1752 }
1753 
1754 /**
1755  *	call_netdevice_notifiers - call all network notifier blocks
1756  *      @val: value passed unmodified to notifier function
1757  *      @dev: net_device pointer passed unmodified to notifier function
1758  *
1759  *	Call all network notifier blocks.  Parameters and return value
1760  *	are as for raw_notifier_call_chain().
1761  */
1762 
1763 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1764 {
1765 	return call_netdevice_notifiers_extack(val, dev, NULL);
1766 }
1767 EXPORT_SYMBOL(call_netdevice_notifiers);
1768 
1769 /**
1770  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1771  *	@val: value passed unmodified to notifier function
1772  *	@dev: net_device pointer passed unmodified to notifier function
1773  *	@arg: additional u32 argument passed to the notifier function
1774  *
1775  *	Call all network notifier blocks.  Parameters and return value
1776  *	are as for raw_notifier_call_chain().
1777  */
1778 static int call_netdevice_notifiers_mtu(unsigned long val,
1779 					struct net_device *dev, u32 arg)
1780 {
1781 	struct netdev_notifier_info_ext info = {
1782 		.info.dev = dev,
1783 		.ext.mtu = arg,
1784 	};
1785 
1786 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1787 
1788 	return call_netdevice_notifiers_info(val, &info.info);
1789 }
1790 
1791 #ifdef CONFIG_NET_INGRESS
1792 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1793 
1794 void net_inc_ingress_queue(void)
1795 {
1796 	static_branch_inc(&ingress_needed_key);
1797 }
1798 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1799 
1800 void net_dec_ingress_queue(void)
1801 {
1802 	static_branch_dec(&ingress_needed_key);
1803 }
1804 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1805 #endif
1806 
1807 #ifdef CONFIG_NET_EGRESS
1808 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1809 
1810 void net_inc_egress_queue(void)
1811 {
1812 	static_branch_inc(&egress_needed_key);
1813 }
1814 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1815 
1816 void net_dec_egress_queue(void)
1817 {
1818 	static_branch_dec(&egress_needed_key);
1819 }
1820 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1821 #endif
1822 
1823 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1824 #ifdef CONFIG_JUMP_LABEL
1825 static atomic_t netstamp_needed_deferred;
1826 static atomic_t netstamp_wanted;
1827 static void netstamp_clear(struct work_struct *work)
1828 {
1829 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1830 	int wanted;
1831 
1832 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1833 	if (wanted > 0)
1834 		static_branch_enable(&netstamp_needed_key);
1835 	else
1836 		static_branch_disable(&netstamp_needed_key);
1837 }
1838 static DECLARE_WORK(netstamp_work, netstamp_clear);
1839 #endif
1840 
1841 void net_enable_timestamp(void)
1842 {
1843 #ifdef CONFIG_JUMP_LABEL
1844 	int wanted;
1845 
1846 	while (1) {
1847 		wanted = atomic_read(&netstamp_wanted);
1848 		if (wanted <= 0)
1849 			break;
1850 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1851 			return;
1852 	}
1853 	atomic_inc(&netstamp_needed_deferred);
1854 	schedule_work(&netstamp_work);
1855 #else
1856 	static_branch_inc(&netstamp_needed_key);
1857 #endif
1858 }
1859 EXPORT_SYMBOL(net_enable_timestamp);
1860 
1861 void net_disable_timestamp(void)
1862 {
1863 #ifdef CONFIG_JUMP_LABEL
1864 	int wanted;
1865 
1866 	while (1) {
1867 		wanted = atomic_read(&netstamp_wanted);
1868 		if (wanted <= 1)
1869 			break;
1870 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1871 			return;
1872 	}
1873 	atomic_dec(&netstamp_needed_deferred);
1874 	schedule_work(&netstamp_work);
1875 #else
1876 	static_branch_dec(&netstamp_needed_key);
1877 #endif
1878 }
1879 EXPORT_SYMBOL(net_disable_timestamp);
1880 
1881 static inline void net_timestamp_set(struct sk_buff *skb)
1882 {
1883 	skb->tstamp = 0;
1884 	if (static_branch_unlikely(&netstamp_needed_key))
1885 		__net_timestamp(skb);
1886 }
1887 
1888 #define net_timestamp_check(COND, SKB)				\
1889 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
1890 		if ((COND) && !(SKB)->tstamp)			\
1891 			__net_timestamp(SKB);			\
1892 	}							\
1893 
1894 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1895 {
1896 	unsigned int len;
1897 
1898 	if (!(dev->flags & IFF_UP))
1899 		return false;
1900 
1901 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1902 	if (skb->len <= len)
1903 		return true;
1904 
1905 	/* if TSO is enabled, we don't care about the length as the packet
1906 	 * could be forwarded without being segmented before
1907 	 */
1908 	if (skb_is_gso(skb))
1909 		return true;
1910 
1911 	return false;
1912 }
1913 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1914 
1915 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1916 {
1917 	int ret = ____dev_forward_skb(dev, skb);
1918 
1919 	if (likely(!ret)) {
1920 		skb->protocol = eth_type_trans(skb, dev);
1921 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1922 	}
1923 
1924 	return ret;
1925 }
1926 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1927 
1928 /**
1929  * dev_forward_skb - loopback an skb to another netif
1930  *
1931  * @dev: destination network device
1932  * @skb: buffer to forward
1933  *
1934  * return values:
1935  *	NET_RX_SUCCESS	(no congestion)
1936  *	NET_RX_DROP     (packet was dropped, but freed)
1937  *
1938  * dev_forward_skb can be used for injecting an skb from the
1939  * start_xmit function of one device into the receive queue
1940  * of another device.
1941  *
1942  * The receiving device may be in another namespace, so
1943  * we have to clear all information in the skb that could
1944  * impact namespace isolation.
1945  */
1946 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1947 {
1948 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1949 }
1950 EXPORT_SYMBOL_GPL(dev_forward_skb);
1951 
1952 static inline int deliver_skb(struct sk_buff *skb,
1953 			      struct packet_type *pt_prev,
1954 			      struct net_device *orig_dev)
1955 {
1956 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1957 		return -ENOMEM;
1958 	refcount_inc(&skb->users);
1959 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1960 }
1961 
1962 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1963 					  struct packet_type **pt,
1964 					  struct net_device *orig_dev,
1965 					  __be16 type,
1966 					  struct list_head *ptype_list)
1967 {
1968 	struct packet_type *ptype, *pt_prev = *pt;
1969 
1970 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1971 		if (ptype->type != type)
1972 			continue;
1973 		if (pt_prev)
1974 			deliver_skb(skb, pt_prev, orig_dev);
1975 		pt_prev = ptype;
1976 	}
1977 	*pt = pt_prev;
1978 }
1979 
1980 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1981 {
1982 	if (!ptype->af_packet_priv || !skb->sk)
1983 		return false;
1984 
1985 	if (ptype->id_match)
1986 		return ptype->id_match(ptype, skb->sk);
1987 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1988 		return true;
1989 
1990 	return false;
1991 }
1992 
1993 /**
1994  * dev_nit_active - return true if any network interface taps are in use
1995  *
1996  * @dev: network device to check for the presence of taps
1997  */
1998 bool dev_nit_active(struct net_device *dev)
1999 {
2000 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2001 }
2002 EXPORT_SYMBOL_GPL(dev_nit_active);
2003 
2004 /*
2005  *	Support routine. Sends outgoing frames to any network
2006  *	taps currently in use.
2007  */
2008 
2009 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2010 {
2011 	struct packet_type *ptype;
2012 	struct sk_buff *skb2 = NULL;
2013 	struct packet_type *pt_prev = NULL;
2014 	struct list_head *ptype_list = &ptype_all;
2015 
2016 	rcu_read_lock();
2017 again:
2018 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2019 		if (ptype->ignore_outgoing)
2020 			continue;
2021 
2022 		/* Never send packets back to the socket
2023 		 * they originated from - MvS (miquels@drinkel.ow.org)
2024 		 */
2025 		if (skb_loop_sk(ptype, skb))
2026 			continue;
2027 
2028 		if (pt_prev) {
2029 			deliver_skb(skb2, pt_prev, skb->dev);
2030 			pt_prev = ptype;
2031 			continue;
2032 		}
2033 
2034 		/* need to clone skb, done only once */
2035 		skb2 = skb_clone(skb, GFP_ATOMIC);
2036 		if (!skb2)
2037 			goto out_unlock;
2038 
2039 		net_timestamp_set(skb2);
2040 
2041 		/* skb->nh should be correctly
2042 		 * set by sender, so that the second statement is
2043 		 * just protection against buggy protocols.
2044 		 */
2045 		skb_reset_mac_header(skb2);
2046 
2047 		if (skb_network_header(skb2) < skb2->data ||
2048 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2049 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2050 					     ntohs(skb2->protocol),
2051 					     dev->name);
2052 			skb_reset_network_header(skb2);
2053 		}
2054 
2055 		skb2->transport_header = skb2->network_header;
2056 		skb2->pkt_type = PACKET_OUTGOING;
2057 		pt_prev = ptype;
2058 	}
2059 
2060 	if (ptype_list == &ptype_all) {
2061 		ptype_list = &dev->ptype_all;
2062 		goto again;
2063 	}
2064 out_unlock:
2065 	if (pt_prev) {
2066 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2067 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2068 		else
2069 			kfree_skb(skb2);
2070 	}
2071 	rcu_read_unlock();
2072 }
2073 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2074 
2075 /**
2076  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2077  * @dev: Network device
2078  * @txq: number of queues available
2079  *
2080  * If real_num_tx_queues is changed the tc mappings may no longer be
2081  * valid. To resolve this verify the tc mapping remains valid and if
2082  * not NULL the mapping. With no priorities mapping to this
2083  * offset/count pair it will no longer be used. In the worst case TC0
2084  * is invalid nothing can be done so disable priority mappings. If is
2085  * expected that drivers will fix this mapping if they can before
2086  * calling netif_set_real_num_tx_queues.
2087  */
2088 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2089 {
2090 	int i;
2091 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2092 
2093 	/* If TC0 is invalidated disable TC mapping */
2094 	if (tc->offset + tc->count > txq) {
2095 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2096 		dev->num_tc = 0;
2097 		return;
2098 	}
2099 
2100 	/* Invalidated prio to tc mappings set to TC0 */
2101 	for (i = 1; i < TC_BITMASK + 1; i++) {
2102 		int q = netdev_get_prio_tc_map(dev, i);
2103 
2104 		tc = &dev->tc_to_txq[q];
2105 		if (tc->offset + tc->count > txq) {
2106 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2107 				i, q);
2108 			netdev_set_prio_tc_map(dev, i, 0);
2109 		}
2110 	}
2111 }
2112 
2113 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2114 {
2115 	if (dev->num_tc) {
2116 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2117 		int i;
2118 
2119 		/* walk through the TCs and see if it falls into any of them */
2120 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2121 			if ((txq - tc->offset) < tc->count)
2122 				return i;
2123 		}
2124 
2125 		/* didn't find it, just return -1 to indicate no match */
2126 		return -1;
2127 	}
2128 
2129 	return 0;
2130 }
2131 EXPORT_SYMBOL(netdev_txq_to_tc);
2132 
2133 #ifdef CONFIG_XPS
2134 struct static_key xps_needed __read_mostly;
2135 EXPORT_SYMBOL(xps_needed);
2136 struct static_key xps_rxqs_needed __read_mostly;
2137 EXPORT_SYMBOL(xps_rxqs_needed);
2138 static DEFINE_MUTEX(xps_map_mutex);
2139 #define xmap_dereference(P)		\
2140 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2141 
2142 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2143 			     int tci, u16 index)
2144 {
2145 	struct xps_map *map = NULL;
2146 	int pos;
2147 
2148 	if (dev_maps)
2149 		map = xmap_dereference(dev_maps->attr_map[tci]);
2150 	if (!map)
2151 		return false;
2152 
2153 	for (pos = map->len; pos--;) {
2154 		if (map->queues[pos] != index)
2155 			continue;
2156 
2157 		if (map->len > 1) {
2158 			map->queues[pos] = map->queues[--map->len];
2159 			break;
2160 		}
2161 
2162 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2163 		kfree_rcu(map, rcu);
2164 		return false;
2165 	}
2166 
2167 	return true;
2168 }
2169 
2170 static bool remove_xps_queue_cpu(struct net_device *dev,
2171 				 struct xps_dev_maps *dev_maps,
2172 				 int cpu, u16 offset, u16 count)
2173 {
2174 	int num_tc = dev->num_tc ? : 1;
2175 	bool active = false;
2176 	int tci;
2177 
2178 	for (tci = cpu * num_tc; num_tc--; tci++) {
2179 		int i, j;
2180 
2181 		for (i = count, j = offset; i--; j++) {
2182 			if (!remove_xps_queue(dev_maps, tci, j))
2183 				break;
2184 		}
2185 
2186 		active |= i < 0;
2187 	}
2188 
2189 	return active;
2190 }
2191 
2192 static void reset_xps_maps(struct net_device *dev,
2193 			   struct xps_dev_maps *dev_maps,
2194 			   bool is_rxqs_map)
2195 {
2196 	if (is_rxqs_map) {
2197 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2198 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2199 	} else {
2200 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2201 	}
2202 	static_key_slow_dec_cpuslocked(&xps_needed);
2203 	kfree_rcu(dev_maps, rcu);
2204 }
2205 
2206 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2207 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2208 			   u16 offset, u16 count, bool is_rxqs_map)
2209 {
2210 	bool active = false;
2211 	int i, j;
2212 
2213 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2214 	     j < nr_ids;)
2215 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2216 					       count);
2217 	if (!active)
2218 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2219 
2220 	if (!is_rxqs_map) {
2221 		for (i = offset + (count - 1); count--; i--) {
2222 			netdev_queue_numa_node_write(
2223 				netdev_get_tx_queue(dev, i),
2224 				NUMA_NO_NODE);
2225 		}
2226 	}
2227 }
2228 
2229 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2230 				   u16 count)
2231 {
2232 	const unsigned long *possible_mask = NULL;
2233 	struct xps_dev_maps *dev_maps;
2234 	unsigned int nr_ids;
2235 
2236 	if (!static_key_false(&xps_needed))
2237 		return;
2238 
2239 	cpus_read_lock();
2240 	mutex_lock(&xps_map_mutex);
2241 
2242 	if (static_key_false(&xps_rxqs_needed)) {
2243 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2244 		if (dev_maps) {
2245 			nr_ids = dev->num_rx_queues;
2246 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2247 				       offset, count, true);
2248 		}
2249 	}
2250 
2251 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2252 	if (!dev_maps)
2253 		goto out_no_maps;
2254 
2255 	if (num_possible_cpus() > 1)
2256 		possible_mask = cpumask_bits(cpu_possible_mask);
2257 	nr_ids = nr_cpu_ids;
2258 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2259 		       false);
2260 
2261 out_no_maps:
2262 	mutex_unlock(&xps_map_mutex);
2263 	cpus_read_unlock();
2264 }
2265 
2266 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2267 {
2268 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2269 }
2270 
2271 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2272 				      u16 index, bool is_rxqs_map)
2273 {
2274 	struct xps_map *new_map;
2275 	int alloc_len = XPS_MIN_MAP_ALLOC;
2276 	int i, pos;
2277 
2278 	for (pos = 0; map && pos < map->len; pos++) {
2279 		if (map->queues[pos] != index)
2280 			continue;
2281 		return map;
2282 	}
2283 
2284 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2285 	if (map) {
2286 		if (pos < map->alloc_len)
2287 			return map;
2288 
2289 		alloc_len = map->alloc_len * 2;
2290 	}
2291 
2292 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2293 	 *  map
2294 	 */
2295 	if (is_rxqs_map)
2296 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2297 	else
2298 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2299 				       cpu_to_node(attr_index));
2300 	if (!new_map)
2301 		return NULL;
2302 
2303 	for (i = 0; i < pos; i++)
2304 		new_map->queues[i] = map->queues[i];
2305 	new_map->alloc_len = alloc_len;
2306 	new_map->len = pos;
2307 
2308 	return new_map;
2309 }
2310 
2311 /* Must be called under cpus_read_lock */
2312 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2313 			  u16 index, bool is_rxqs_map)
2314 {
2315 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2316 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2317 	int i, j, tci, numa_node_id = -2;
2318 	int maps_sz, num_tc = 1, tc = 0;
2319 	struct xps_map *map, *new_map;
2320 	bool active = false;
2321 	unsigned int nr_ids;
2322 
2323 	if (dev->num_tc) {
2324 		/* Do not allow XPS on subordinate device directly */
2325 		num_tc = dev->num_tc;
2326 		if (num_tc < 0)
2327 			return -EINVAL;
2328 
2329 		/* If queue belongs to subordinate dev use its map */
2330 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2331 
2332 		tc = netdev_txq_to_tc(dev, index);
2333 		if (tc < 0)
2334 			return -EINVAL;
2335 	}
2336 
2337 	mutex_lock(&xps_map_mutex);
2338 	if (is_rxqs_map) {
2339 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2340 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2341 		nr_ids = dev->num_rx_queues;
2342 	} else {
2343 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2344 		if (num_possible_cpus() > 1) {
2345 			online_mask = cpumask_bits(cpu_online_mask);
2346 			possible_mask = cpumask_bits(cpu_possible_mask);
2347 		}
2348 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2349 		nr_ids = nr_cpu_ids;
2350 	}
2351 
2352 	if (maps_sz < L1_CACHE_BYTES)
2353 		maps_sz = L1_CACHE_BYTES;
2354 
2355 	/* allocate memory for queue storage */
2356 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2357 	     j < nr_ids;) {
2358 		if (!new_dev_maps)
2359 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2360 		if (!new_dev_maps) {
2361 			mutex_unlock(&xps_map_mutex);
2362 			return -ENOMEM;
2363 		}
2364 
2365 		tci = j * num_tc + tc;
2366 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2367 				 NULL;
2368 
2369 		map = expand_xps_map(map, j, index, is_rxqs_map);
2370 		if (!map)
2371 			goto error;
2372 
2373 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2374 	}
2375 
2376 	if (!new_dev_maps)
2377 		goto out_no_new_maps;
2378 
2379 	if (!dev_maps) {
2380 		/* Increment static keys at most once per type */
2381 		static_key_slow_inc_cpuslocked(&xps_needed);
2382 		if (is_rxqs_map)
2383 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2384 	}
2385 
2386 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2387 	     j < nr_ids;) {
2388 		/* copy maps belonging to foreign traffic classes */
2389 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2390 			/* fill in the new device map from the old device map */
2391 			map = xmap_dereference(dev_maps->attr_map[tci]);
2392 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2393 		}
2394 
2395 		/* We need to explicitly update tci as prevous loop
2396 		 * could break out early if dev_maps is NULL.
2397 		 */
2398 		tci = j * num_tc + tc;
2399 
2400 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2401 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2402 			/* add tx-queue to CPU/rx-queue maps */
2403 			int pos = 0;
2404 
2405 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2406 			while ((pos < map->len) && (map->queues[pos] != index))
2407 				pos++;
2408 
2409 			if (pos == map->len)
2410 				map->queues[map->len++] = index;
2411 #ifdef CONFIG_NUMA
2412 			if (!is_rxqs_map) {
2413 				if (numa_node_id == -2)
2414 					numa_node_id = cpu_to_node(j);
2415 				else if (numa_node_id != cpu_to_node(j))
2416 					numa_node_id = -1;
2417 			}
2418 #endif
2419 		} else if (dev_maps) {
2420 			/* fill in the new device map from the old device map */
2421 			map = xmap_dereference(dev_maps->attr_map[tci]);
2422 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2423 		}
2424 
2425 		/* copy maps belonging to foreign traffic classes */
2426 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2427 			/* fill in the new device map from the old device map */
2428 			map = xmap_dereference(dev_maps->attr_map[tci]);
2429 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2430 		}
2431 	}
2432 
2433 	if (is_rxqs_map)
2434 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2435 	else
2436 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2437 
2438 	/* Cleanup old maps */
2439 	if (!dev_maps)
2440 		goto out_no_old_maps;
2441 
2442 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2443 	     j < nr_ids;) {
2444 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2445 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2446 			map = xmap_dereference(dev_maps->attr_map[tci]);
2447 			if (map && map != new_map)
2448 				kfree_rcu(map, rcu);
2449 		}
2450 	}
2451 
2452 	kfree_rcu(dev_maps, rcu);
2453 
2454 out_no_old_maps:
2455 	dev_maps = new_dev_maps;
2456 	active = true;
2457 
2458 out_no_new_maps:
2459 	if (!is_rxqs_map) {
2460 		/* update Tx queue numa node */
2461 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2462 					     (numa_node_id >= 0) ?
2463 					     numa_node_id : NUMA_NO_NODE);
2464 	}
2465 
2466 	if (!dev_maps)
2467 		goto out_no_maps;
2468 
2469 	/* removes tx-queue from unused CPUs/rx-queues */
2470 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2471 	     j < nr_ids;) {
2472 		for (i = tc, tci = j * num_tc; i--; tci++)
2473 			active |= remove_xps_queue(dev_maps, tci, index);
2474 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2475 		    !netif_attr_test_online(j, online_mask, nr_ids))
2476 			active |= remove_xps_queue(dev_maps, tci, index);
2477 		for (i = num_tc - tc, tci++; --i; tci++)
2478 			active |= remove_xps_queue(dev_maps, tci, index);
2479 	}
2480 
2481 	/* free map if not active */
2482 	if (!active)
2483 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2484 
2485 out_no_maps:
2486 	mutex_unlock(&xps_map_mutex);
2487 
2488 	return 0;
2489 error:
2490 	/* remove any maps that we added */
2491 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2492 	     j < nr_ids;) {
2493 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2494 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2495 			map = dev_maps ?
2496 			      xmap_dereference(dev_maps->attr_map[tci]) :
2497 			      NULL;
2498 			if (new_map && new_map != map)
2499 				kfree(new_map);
2500 		}
2501 	}
2502 
2503 	mutex_unlock(&xps_map_mutex);
2504 
2505 	kfree(new_dev_maps);
2506 	return -ENOMEM;
2507 }
2508 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2509 
2510 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2511 			u16 index)
2512 {
2513 	int ret;
2514 
2515 	cpus_read_lock();
2516 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2517 	cpus_read_unlock();
2518 
2519 	return ret;
2520 }
2521 EXPORT_SYMBOL(netif_set_xps_queue);
2522 
2523 #endif
2524 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2525 {
2526 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2527 
2528 	/* Unbind any subordinate channels */
2529 	while (txq-- != &dev->_tx[0]) {
2530 		if (txq->sb_dev)
2531 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2532 	}
2533 }
2534 
2535 void netdev_reset_tc(struct net_device *dev)
2536 {
2537 #ifdef CONFIG_XPS
2538 	netif_reset_xps_queues_gt(dev, 0);
2539 #endif
2540 	netdev_unbind_all_sb_channels(dev);
2541 
2542 	/* Reset TC configuration of device */
2543 	dev->num_tc = 0;
2544 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2545 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2546 }
2547 EXPORT_SYMBOL(netdev_reset_tc);
2548 
2549 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2550 {
2551 	if (tc >= dev->num_tc)
2552 		return -EINVAL;
2553 
2554 #ifdef CONFIG_XPS
2555 	netif_reset_xps_queues(dev, offset, count);
2556 #endif
2557 	dev->tc_to_txq[tc].count = count;
2558 	dev->tc_to_txq[tc].offset = offset;
2559 	return 0;
2560 }
2561 EXPORT_SYMBOL(netdev_set_tc_queue);
2562 
2563 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2564 {
2565 	if (num_tc > TC_MAX_QUEUE)
2566 		return -EINVAL;
2567 
2568 #ifdef CONFIG_XPS
2569 	netif_reset_xps_queues_gt(dev, 0);
2570 #endif
2571 	netdev_unbind_all_sb_channels(dev);
2572 
2573 	dev->num_tc = num_tc;
2574 	return 0;
2575 }
2576 EXPORT_SYMBOL(netdev_set_num_tc);
2577 
2578 void netdev_unbind_sb_channel(struct net_device *dev,
2579 			      struct net_device *sb_dev)
2580 {
2581 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2582 
2583 #ifdef CONFIG_XPS
2584 	netif_reset_xps_queues_gt(sb_dev, 0);
2585 #endif
2586 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2587 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2588 
2589 	while (txq-- != &dev->_tx[0]) {
2590 		if (txq->sb_dev == sb_dev)
2591 			txq->sb_dev = NULL;
2592 	}
2593 }
2594 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2595 
2596 int netdev_bind_sb_channel_queue(struct net_device *dev,
2597 				 struct net_device *sb_dev,
2598 				 u8 tc, u16 count, u16 offset)
2599 {
2600 	/* Make certain the sb_dev and dev are already configured */
2601 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2602 		return -EINVAL;
2603 
2604 	/* We cannot hand out queues we don't have */
2605 	if ((offset + count) > dev->real_num_tx_queues)
2606 		return -EINVAL;
2607 
2608 	/* Record the mapping */
2609 	sb_dev->tc_to_txq[tc].count = count;
2610 	sb_dev->tc_to_txq[tc].offset = offset;
2611 
2612 	/* Provide a way for Tx queue to find the tc_to_txq map or
2613 	 * XPS map for itself.
2614 	 */
2615 	while (count--)
2616 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2617 
2618 	return 0;
2619 }
2620 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2621 
2622 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2623 {
2624 	/* Do not use a multiqueue device to represent a subordinate channel */
2625 	if (netif_is_multiqueue(dev))
2626 		return -ENODEV;
2627 
2628 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2629 	 * Channel 0 is meant to be "native" mode and used only to represent
2630 	 * the main root device. We allow writing 0 to reset the device back
2631 	 * to normal mode after being used as a subordinate channel.
2632 	 */
2633 	if (channel > S16_MAX)
2634 		return -EINVAL;
2635 
2636 	dev->num_tc = -channel;
2637 
2638 	return 0;
2639 }
2640 EXPORT_SYMBOL(netdev_set_sb_channel);
2641 
2642 /*
2643  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2644  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2645  */
2646 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2647 {
2648 	bool disabling;
2649 	int rc;
2650 
2651 	disabling = txq < dev->real_num_tx_queues;
2652 
2653 	if (txq < 1 || txq > dev->num_tx_queues)
2654 		return -EINVAL;
2655 
2656 	if (dev->reg_state == NETREG_REGISTERED ||
2657 	    dev->reg_state == NETREG_UNREGISTERING) {
2658 		ASSERT_RTNL();
2659 
2660 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2661 						  txq);
2662 		if (rc)
2663 			return rc;
2664 
2665 		if (dev->num_tc)
2666 			netif_setup_tc(dev, txq);
2667 
2668 		dev->real_num_tx_queues = txq;
2669 
2670 		if (disabling) {
2671 			synchronize_net();
2672 			qdisc_reset_all_tx_gt(dev, txq);
2673 #ifdef CONFIG_XPS
2674 			netif_reset_xps_queues_gt(dev, txq);
2675 #endif
2676 		}
2677 	} else {
2678 		dev->real_num_tx_queues = txq;
2679 	}
2680 
2681 	return 0;
2682 }
2683 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2684 
2685 #ifdef CONFIG_SYSFS
2686 /**
2687  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2688  *	@dev: Network device
2689  *	@rxq: Actual number of RX queues
2690  *
2691  *	This must be called either with the rtnl_lock held or before
2692  *	registration of the net device.  Returns 0 on success, or a
2693  *	negative error code.  If called before registration, it always
2694  *	succeeds.
2695  */
2696 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2697 {
2698 	int rc;
2699 
2700 	if (rxq < 1 || rxq > dev->num_rx_queues)
2701 		return -EINVAL;
2702 
2703 	if (dev->reg_state == NETREG_REGISTERED) {
2704 		ASSERT_RTNL();
2705 
2706 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2707 						  rxq);
2708 		if (rc)
2709 			return rc;
2710 	}
2711 
2712 	dev->real_num_rx_queues = rxq;
2713 	return 0;
2714 }
2715 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2716 #endif
2717 
2718 /**
2719  * netif_get_num_default_rss_queues - default number of RSS queues
2720  *
2721  * This routine should set an upper limit on the number of RSS queues
2722  * used by default by multiqueue devices.
2723  */
2724 int netif_get_num_default_rss_queues(void)
2725 {
2726 	return is_kdump_kernel() ?
2727 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2728 }
2729 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2730 
2731 static void __netif_reschedule(struct Qdisc *q)
2732 {
2733 	struct softnet_data *sd;
2734 	unsigned long flags;
2735 
2736 	local_irq_save(flags);
2737 	sd = this_cpu_ptr(&softnet_data);
2738 	q->next_sched = NULL;
2739 	*sd->output_queue_tailp = q;
2740 	sd->output_queue_tailp = &q->next_sched;
2741 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2742 	local_irq_restore(flags);
2743 }
2744 
2745 void __netif_schedule(struct Qdisc *q)
2746 {
2747 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2748 		__netif_reschedule(q);
2749 }
2750 EXPORT_SYMBOL(__netif_schedule);
2751 
2752 struct dev_kfree_skb_cb {
2753 	enum skb_free_reason reason;
2754 };
2755 
2756 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2757 {
2758 	return (struct dev_kfree_skb_cb *)skb->cb;
2759 }
2760 
2761 void netif_schedule_queue(struct netdev_queue *txq)
2762 {
2763 	rcu_read_lock();
2764 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2765 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2766 
2767 		__netif_schedule(q);
2768 	}
2769 	rcu_read_unlock();
2770 }
2771 EXPORT_SYMBOL(netif_schedule_queue);
2772 
2773 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2774 {
2775 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2776 		struct Qdisc *q;
2777 
2778 		rcu_read_lock();
2779 		q = rcu_dereference(dev_queue->qdisc);
2780 		__netif_schedule(q);
2781 		rcu_read_unlock();
2782 	}
2783 }
2784 EXPORT_SYMBOL(netif_tx_wake_queue);
2785 
2786 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2787 {
2788 	unsigned long flags;
2789 
2790 	if (unlikely(!skb))
2791 		return;
2792 
2793 	if (likely(refcount_read(&skb->users) == 1)) {
2794 		smp_rmb();
2795 		refcount_set(&skb->users, 0);
2796 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2797 		return;
2798 	}
2799 	get_kfree_skb_cb(skb)->reason = reason;
2800 	local_irq_save(flags);
2801 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2802 	__this_cpu_write(softnet_data.completion_queue, skb);
2803 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2804 	local_irq_restore(flags);
2805 }
2806 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2807 
2808 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2809 {
2810 	if (in_irq() || irqs_disabled())
2811 		__dev_kfree_skb_irq(skb, reason);
2812 	else
2813 		dev_kfree_skb(skb);
2814 }
2815 EXPORT_SYMBOL(__dev_kfree_skb_any);
2816 
2817 
2818 /**
2819  * netif_device_detach - mark device as removed
2820  * @dev: network device
2821  *
2822  * Mark device as removed from system and therefore no longer available.
2823  */
2824 void netif_device_detach(struct net_device *dev)
2825 {
2826 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2827 	    netif_running(dev)) {
2828 		netif_tx_stop_all_queues(dev);
2829 	}
2830 }
2831 EXPORT_SYMBOL(netif_device_detach);
2832 
2833 /**
2834  * netif_device_attach - mark device as attached
2835  * @dev: network device
2836  *
2837  * Mark device as attached from system and restart if needed.
2838  */
2839 void netif_device_attach(struct net_device *dev)
2840 {
2841 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2842 	    netif_running(dev)) {
2843 		netif_tx_wake_all_queues(dev);
2844 		__netdev_watchdog_up(dev);
2845 	}
2846 }
2847 EXPORT_SYMBOL(netif_device_attach);
2848 
2849 /*
2850  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2851  * to be used as a distribution range.
2852  */
2853 static u16 skb_tx_hash(const struct net_device *dev,
2854 		       const struct net_device *sb_dev,
2855 		       struct sk_buff *skb)
2856 {
2857 	u32 hash;
2858 	u16 qoffset = 0;
2859 	u16 qcount = dev->real_num_tx_queues;
2860 
2861 	if (dev->num_tc) {
2862 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2863 
2864 		qoffset = sb_dev->tc_to_txq[tc].offset;
2865 		qcount = sb_dev->tc_to_txq[tc].count;
2866 	}
2867 
2868 	if (skb_rx_queue_recorded(skb)) {
2869 		hash = skb_get_rx_queue(skb);
2870 		while (unlikely(hash >= qcount))
2871 			hash -= qcount;
2872 		return hash + qoffset;
2873 	}
2874 
2875 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2876 }
2877 
2878 static void skb_warn_bad_offload(const struct sk_buff *skb)
2879 {
2880 	static const netdev_features_t null_features;
2881 	struct net_device *dev = skb->dev;
2882 	const char *name = "";
2883 
2884 	if (!net_ratelimit())
2885 		return;
2886 
2887 	if (dev) {
2888 		if (dev->dev.parent)
2889 			name = dev_driver_string(dev->dev.parent);
2890 		else
2891 			name = netdev_name(dev);
2892 	}
2893 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2894 	     "gso_type=%d ip_summed=%d\n",
2895 	     name, dev ? &dev->features : &null_features,
2896 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2897 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2898 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2899 }
2900 
2901 /*
2902  * Invalidate hardware checksum when packet is to be mangled, and
2903  * complete checksum manually on outgoing path.
2904  */
2905 int skb_checksum_help(struct sk_buff *skb)
2906 {
2907 	__wsum csum;
2908 	int ret = 0, offset;
2909 
2910 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2911 		goto out_set_summed;
2912 
2913 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2914 		skb_warn_bad_offload(skb);
2915 		return -EINVAL;
2916 	}
2917 
2918 	/* Before computing a checksum, we should make sure no frag could
2919 	 * be modified by an external entity : checksum could be wrong.
2920 	 */
2921 	if (skb_has_shared_frag(skb)) {
2922 		ret = __skb_linearize(skb);
2923 		if (ret)
2924 			goto out;
2925 	}
2926 
2927 	offset = skb_checksum_start_offset(skb);
2928 	BUG_ON(offset >= skb_headlen(skb));
2929 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2930 
2931 	offset += skb->csum_offset;
2932 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2933 
2934 	if (skb_cloned(skb) &&
2935 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2936 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2937 		if (ret)
2938 			goto out;
2939 	}
2940 
2941 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2942 out_set_summed:
2943 	skb->ip_summed = CHECKSUM_NONE;
2944 out:
2945 	return ret;
2946 }
2947 EXPORT_SYMBOL(skb_checksum_help);
2948 
2949 int skb_crc32c_csum_help(struct sk_buff *skb)
2950 {
2951 	__le32 crc32c_csum;
2952 	int ret = 0, offset, start;
2953 
2954 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2955 		goto out;
2956 
2957 	if (unlikely(skb_is_gso(skb)))
2958 		goto out;
2959 
2960 	/* Before computing a checksum, we should make sure no frag could
2961 	 * be modified by an external entity : checksum could be wrong.
2962 	 */
2963 	if (unlikely(skb_has_shared_frag(skb))) {
2964 		ret = __skb_linearize(skb);
2965 		if (ret)
2966 			goto out;
2967 	}
2968 	start = skb_checksum_start_offset(skb);
2969 	offset = start + offsetof(struct sctphdr, checksum);
2970 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2971 		ret = -EINVAL;
2972 		goto out;
2973 	}
2974 	if (skb_cloned(skb) &&
2975 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2976 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2977 		if (ret)
2978 			goto out;
2979 	}
2980 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2981 						  skb->len - start, ~(__u32)0,
2982 						  crc32c_csum_stub));
2983 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2984 	skb->ip_summed = CHECKSUM_NONE;
2985 	skb->csum_not_inet = 0;
2986 out:
2987 	return ret;
2988 }
2989 
2990 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2991 {
2992 	__be16 type = skb->protocol;
2993 
2994 	/* Tunnel gso handlers can set protocol to ethernet. */
2995 	if (type == htons(ETH_P_TEB)) {
2996 		struct ethhdr *eth;
2997 
2998 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2999 			return 0;
3000 
3001 		eth = (struct ethhdr *)skb->data;
3002 		type = eth->h_proto;
3003 	}
3004 
3005 	return __vlan_get_protocol(skb, type, depth);
3006 }
3007 
3008 /**
3009  *	skb_mac_gso_segment - mac layer segmentation handler.
3010  *	@skb: buffer to segment
3011  *	@features: features for the output path (see dev->features)
3012  */
3013 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3014 				    netdev_features_t features)
3015 {
3016 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3017 	struct packet_offload *ptype;
3018 	int vlan_depth = skb->mac_len;
3019 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3020 
3021 	if (unlikely(!type))
3022 		return ERR_PTR(-EINVAL);
3023 
3024 	__skb_pull(skb, vlan_depth);
3025 
3026 	rcu_read_lock();
3027 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3028 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3029 			segs = ptype->callbacks.gso_segment(skb, features);
3030 			break;
3031 		}
3032 	}
3033 	rcu_read_unlock();
3034 
3035 	__skb_push(skb, skb->data - skb_mac_header(skb));
3036 
3037 	return segs;
3038 }
3039 EXPORT_SYMBOL(skb_mac_gso_segment);
3040 
3041 
3042 /* openvswitch calls this on rx path, so we need a different check.
3043  */
3044 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3045 {
3046 	if (tx_path)
3047 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3048 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3049 
3050 	return skb->ip_summed == CHECKSUM_NONE;
3051 }
3052 
3053 /**
3054  *	__skb_gso_segment - Perform segmentation on skb.
3055  *	@skb: buffer to segment
3056  *	@features: features for the output path (see dev->features)
3057  *	@tx_path: whether it is called in TX path
3058  *
3059  *	This function segments the given skb and returns a list of segments.
3060  *
3061  *	It may return NULL if the skb requires no segmentation.  This is
3062  *	only possible when GSO is used for verifying header integrity.
3063  *
3064  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3065  */
3066 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3067 				  netdev_features_t features, bool tx_path)
3068 {
3069 	struct sk_buff *segs;
3070 
3071 	if (unlikely(skb_needs_check(skb, tx_path))) {
3072 		int err;
3073 
3074 		/* We're going to init ->check field in TCP or UDP header */
3075 		err = skb_cow_head(skb, 0);
3076 		if (err < 0)
3077 			return ERR_PTR(err);
3078 	}
3079 
3080 	/* Only report GSO partial support if it will enable us to
3081 	 * support segmentation on this frame without needing additional
3082 	 * work.
3083 	 */
3084 	if (features & NETIF_F_GSO_PARTIAL) {
3085 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3086 		struct net_device *dev = skb->dev;
3087 
3088 		partial_features |= dev->features & dev->gso_partial_features;
3089 		if (!skb_gso_ok(skb, features | partial_features))
3090 			features &= ~NETIF_F_GSO_PARTIAL;
3091 	}
3092 
3093 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3094 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3095 
3096 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3097 	SKB_GSO_CB(skb)->encap_level = 0;
3098 
3099 	skb_reset_mac_header(skb);
3100 	skb_reset_mac_len(skb);
3101 
3102 	segs = skb_mac_gso_segment(skb, features);
3103 
3104 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3105 		skb_warn_bad_offload(skb);
3106 
3107 	return segs;
3108 }
3109 EXPORT_SYMBOL(__skb_gso_segment);
3110 
3111 /* Take action when hardware reception checksum errors are detected. */
3112 #ifdef CONFIG_BUG
3113 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3114 {
3115 	if (net_ratelimit()) {
3116 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3117 		if (dev)
3118 			pr_err("dev features: %pNF\n", &dev->features);
3119 		pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n",
3120 		       skb->len, skb->data_len, skb->pkt_type,
3121 		       skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type,
3122 		       skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum,
3123 		       skb->csum_complete_sw, skb->csum_valid, skb->csum_level);
3124 		dump_stack();
3125 	}
3126 }
3127 EXPORT_SYMBOL(netdev_rx_csum_fault);
3128 #endif
3129 
3130 /* XXX: check that highmem exists at all on the given machine. */
3131 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3132 {
3133 #ifdef CONFIG_HIGHMEM
3134 	int i;
3135 
3136 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3137 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3138 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3139 
3140 			if (PageHighMem(skb_frag_page(frag)))
3141 				return 1;
3142 		}
3143 	}
3144 #endif
3145 	return 0;
3146 }
3147 
3148 /* If MPLS offload request, verify we are testing hardware MPLS features
3149  * instead of standard features for the netdev.
3150  */
3151 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3152 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3153 					   netdev_features_t features,
3154 					   __be16 type)
3155 {
3156 	if (eth_p_mpls(type))
3157 		features &= skb->dev->mpls_features;
3158 
3159 	return features;
3160 }
3161 #else
3162 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3163 					   netdev_features_t features,
3164 					   __be16 type)
3165 {
3166 	return features;
3167 }
3168 #endif
3169 
3170 static netdev_features_t harmonize_features(struct sk_buff *skb,
3171 	netdev_features_t features)
3172 {
3173 	int tmp;
3174 	__be16 type;
3175 
3176 	type = skb_network_protocol(skb, &tmp);
3177 	features = net_mpls_features(skb, features, type);
3178 
3179 	if (skb->ip_summed != CHECKSUM_NONE &&
3180 	    !can_checksum_protocol(features, type)) {
3181 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3182 	}
3183 	if (illegal_highdma(skb->dev, skb))
3184 		features &= ~NETIF_F_SG;
3185 
3186 	return features;
3187 }
3188 
3189 netdev_features_t passthru_features_check(struct sk_buff *skb,
3190 					  struct net_device *dev,
3191 					  netdev_features_t features)
3192 {
3193 	return features;
3194 }
3195 EXPORT_SYMBOL(passthru_features_check);
3196 
3197 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3198 					     struct net_device *dev,
3199 					     netdev_features_t features)
3200 {
3201 	return vlan_features_check(skb, features);
3202 }
3203 
3204 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3205 					    struct net_device *dev,
3206 					    netdev_features_t features)
3207 {
3208 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3209 
3210 	if (gso_segs > dev->gso_max_segs)
3211 		return features & ~NETIF_F_GSO_MASK;
3212 
3213 	/* Support for GSO partial features requires software
3214 	 * intervention before we can actually process the packets
3215 	 * so we need to strip support for any partial features now
3216 	 * and we can pull them back in after we have partially
3217 	 * segmented the frame.
3218 	 */
3219 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3220 		features &= ~dev->gso_partial_features;
3221 
3222 	/* Make sure to clear the IPv4 ID mangling feature if the
3223 	 * IPv4 header has the potential to be fragmented.
3224 	 */
3225 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3226 		struct iphdr *iph = skb->encapsulation ?
3227 				    inner_ip_hdr(skb) : ip_hdr(skb);
3228 
3229 		if (!(iph->frag_off & htons(IP_DF)))
3230 			features &= ~NETIF_F_TSO_MANGLEID;
3231 	}
3232 
3233 	return features;
3234 }
3235 
3236 netdev_features_t netif_skb_features(struct sk_buff *skb)
3237 {
3238 	struct net_device *dev = skb->dev;
3239 	netdev_features_t features = dev->features;
3240 
3241 	if (skb_is_gso(skb))
3242 		features = gso_features_check(skb, dev, features);
3243 
3244 	/* If encapsulation offload request, verify we are testing
3245 	 * hardware encapsulation features instead of standard
3246 	 * features for the netdev
3247 	 */
3248 	if (skb->encapsulation)
3249 		features &= dev->hw_enc_features;
3250 
3251 	if (skb_vlan_tagged(skb))
3252 		features = netdev_intersect_features(features,
3253 						     dev->vlan_features |
3254 						     NETIF_F_HW_VLAN_CTAG_TX |
3255 						     NETIF_F_HW_VLAN_STAG_TX);
3256 
3257 	if (dev->netdev_ops->ndo_features_check)
3258 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3259 								features);
3260 	else
3261 		features &= dflt_features_check(skb, dev, features);
3262 
3263 	return harmonize_features(skb, features);
3264 }
3265 EXPORT_SYMBOL(netif_skb_features);
3266 
3267 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3268 		    struct netdev_queue *txq, bool more)
3269 {
3270 	unsigned int len;
3271 	int rc;
3272 
3273 	if (dev_nit_active(dev))
3274 		dev_queue_xmit_nit(skb, dev);
3275 
3276 	len = skb->len;
3277 	trace_net_dev_start_xmit(skb, dev);
3278 	rc = netdev_start_xmit(skb, dev, txq, more);
3279 	trace_net_dev_xmit(skb, rc, dev, len);
3280 
3281 	return rc;
3282 }
3283 
3284 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3285 				    struct netdev_queue *txq, int *ret)
3286 {
3287 	struct sk_buff *skb = first;
3288 	int rc = NETDEV_TX_OK;
3289 
3290 	while (skb) {
3291 		struct sk_buff *next = skb->next;
3292 
3293 		skb_mark_not_on_list(skb);
3294 		rc = xmit_one(skb, dev, txq, next != NULL);
3295 		if (unlikely(!dev_xmit_complete(rc))) {
3296 			skb->next = next;
3297 			goto out;
3298 		}
3299 
3300 		skb = next;
3301 		if (netif_tx_queue_stopped(txq) && skb) {
3302 			rc = NETDEV_TX_BUSY;
3303 			break;
3304 		}
3305 	}
3306 
3307 out:
3308 	*ret = rc;
3309 	return skb;
3310 }
3311 
3312 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3313 					  netdev_features_t features)
3314 {
3315 	if (skb_vlan_tag_present(skb) &&
3316 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3317 		skb = __vlan_hwaccel_push_inside(skb);
3318 	return skb;
3319 }
3320 
3321 int skb_csum_hwoffload_help(struct sk_buff *skb,
3322 			    const netdev_features_t features)
3323 {
3324 	if (unlikely(skb->csum_not_inet))
3325 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3326 			skb_crc32c_csum_help(skb);
3327 
3328 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3329 }
3330 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3331 
3332 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3333 {
3334 	netdev_features_t features;
3335 
3336 	features = netif_skb_features(skb);
3337 	skb = validate_xmit_vlan(skb, features);
3338 	if (unlikely(!skb))
3339 		goto out_null;
3340 
3341 	skb = sk_validate_xmit_skb(skb, dev);
3342 	if (unlikely(!skb))
3343 		goto out_null;
3344 
3345 	if (netif_needs_gso(skb, features)) {
3346 		struct sk_buff *segs;
3347 
3348 		segs = skb_gso_segment(skb, features);
3349 		if (IS_ERR(segs)) {
3350 			goto out_kfree_skb;
3351 		} else if (segs) {
3352 			consume_skb(skb);
3353 			skb = segs;
3354 		}
3355 	} else {
3356 		if (skb_needs_linearize(skb, features) &&
3357 		    __skb_linearize(skb))
3358 			goto out_kfree_skb;
3359 
3360 		/* If packet is not checksummed and device does not
3361 		 * support checksumming for this protocol, complete
3362 		 * checksumming here.
3363 		 */
3364 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3365 			if (skb->encapsulation)
3366 				skb_set_inner_transport_header(skb,
3367 							       skb_checksum_start_offset(skb));
3368 			else
3369 				skb_set_transport_header(skb,
3370 							 skb_checksum_start_offset(skb));
3371 			if (skb_csum_hwoffload_help(skb, features))
3372 				goto out_kfree_skb;
3373 		}
3374 	}
3375 
3376 	skb = validate_xmit_xfrm(skb, features, again);
3377 
3378 	return skb;
3379 
3380 out_kfree_skb:
3381 	kfree_skb(skb);
3382 out_null:
3383 	atomic_long_inc(&dev->tx_dropped);
3384 	return NULL;
3385 }
3386 
3387 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3388 {
3389 	struct sk_buff *next, *head = NULL, *tail;
3390 
3391 	for (; skb != NULL; skb = next) {
3392 		next = skb->next;
3393 		skb_mark_not_on_list(skb);
3394 
3395 		/* in case skb wont be segmented, point to itself */
3396 		skb->prev = skb;
3397 
3398 		skb = validate_xmit_skb(skb, dev, again);
3399 		if (!skb)
3400 			continue;
3401 
3402 		if (!head)
3403 			head = skb;
3404 		else
3405 			tail->next = skb;
3406 		/* If skb was segmented, skb->prev points to
3407 		 * the last segment. If not, it still contains skb.
3408 		 */
3409 		tail = skb->prev;
3410 	}
3411 	return head;
3412 }
3413 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3414 
3415 static void qdisc_pkt_len_init(struct sk_buff *skb)
3416 {
3417 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3418 
3419 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3420 
3421 	/* To get more precise estimation of bytes sent on wire,
3422 	 * we add to pkt_len the headers size of all segments
3423 	 */
3424 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3425 		unsigned int hdr_len;
3426 		u16 gso_segs = shinfo->gso_segs;
3427 
3428 		/* mac layer + network layer */
3429 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3430 
3431 		/* + transport layer */
3432 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3433 			const struct tcphdr *th;
3434 			struct tcphdr _tcphdr;
3435 
3436 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3437 						sizeof(_tcphdr), &_tcphdr);
3438 			if (likely(th))
3439 				hdr_len += __tcp_hdrlen(th);
3440 		} else {
3441 			struct udphdr _udphdr;
3442 
3443 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3444 					       sizeof(_udphdr), &_udphdr))
3445 				hdr_len += sizeof(struct udphdr);
3446 		}
3447 
3448 		if (shinfo->gso_type & SKB_GSO_DODGY)
3449 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3450 						shinfo->gso_size);
3451 
3452 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3453 	}
3454 }
3455 
3456 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3457 				 struct net_device *dev,
3458 				 struct netdev_queue *txq)
3459 {
3460 	spinlock_t *root_lock = qdisc_lock(q);
3461 	struct sk_buff *to_free = NULL;
3462 	bool contended;
3463 	int rc;
3464 
3465 	qdisc_calculate_pkt_len(skb, q);
3466 
3467 	if (q->flags & TCQ_F_NOLOCK) {
3468 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3469 			__qdisc_drop(skb, &to_free);
3470 			rc = NET_XMIT_DROP;
3471 		} else if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3472 			   qdisc_run_begin(q)) {
3473 			qdisc_bstats_cpu_update(q, skb);
3474 
3475 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3476 				__qdisc_run(q);
3477 
3478 			qdisc_run_end(q);
3479 			rc = NET_XMIT_SUCCESS;
3480 		} else {
3481 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3482 			qdisc_run(q);
3483 		}
3484 
3485 		if (unlikely(to_free))
3486 			kfree_skb_list(to_free);
3487 		return rc;
3488 	}
3489 
3490 	/*
3491 	 * Heuristic to force contended enqueues to serialize on a
3492 	 * separate lock before trying to get qdisc main lock.
3493 	 * This permits qdisc->running owner to get the lock more
3494 	 * often and dequeue packets faster.
3495 	 */
3496 	contended = qdisc_is_running(q);
3497 	if (unlikely(contended))
3498 		spin_lock(&q->busylock);
3499 
3500 	spin_lock(root_lock);
3501 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3502 		__qdisc_drop(skb, &to_free);
3503 		rc = NET_XMIT_DROP;
3504 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3505 		   qdisc_run_begin(q)) {
3506 		/*
3507 		 * This is a work-conserving queue; there are no old skbs
3508 		 * waiting to be sent out; and the qdisc is not running -
3509 		 * xmit the skb directly.
3510 		 */
3511 
3512 		qdisc_bstats_update(q, skb);
3513 
3514 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3515 			if (unlikely(contended)) {
3516 				spin_unlock(&q->busylock);
3517 				contended = false;
3518 			}
3519 			__qdisc_run(q);
3520 		}
3521 
3522 		qdisc_run_end(q);
3523 		rc = NET_XMIT_SUCCESS;
3524 	} else {
3525 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3526 		if (qdisc_run_begin(q)) {
3527 			if (unlikely(contended)) {
3528 				spin_unlock(&q->busylock);
3529 				contended = false;
3530 			}
3531 			__qdisc_run(q);
3532 			qdisc_run_end(q);
3533 		}
3534 	}
3535 	spin_unlock(root_lock);
3536 	if (unlikely(to_free))
3537 		kfree_skb_list(to_free);
3538 	if (unlikely(contended))
3539 		spin_unlock(&q->busylock);
3540 	return rc;
3541 }
3542 
3543 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3544 static void skb_update_prio(struct sk_buff *skb)
3545 {
3546 	const struct netprio_map *map;
3547 	const struct sock *sk;
3548 	unsigned int prioidx;
3549 
3550 	if (skb->priority)
3551 		return;
3552 	map = rcu_dereference_bh(skb->dev->priomap);
3553 	if (!map)
3554 		return;
3555 	sk = skb_to_full_sk(skb);
3556 	if (!sk)
3557 		return;
3558 
3559 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3560 
3561 	if (prioidx < map->priomap_len)
3562 		skb->priority = map->priomap[prioidx];
3563 }
3564 #else
3565 #define skb_update_prio(skb)
3566 #endif
3567 
3568 /**
3569  *	dev_loopback_xmit - loop back @skb
3570  *	@net: network namespace this loopback is happening in
3571  *	@sk:  sk needed to be a netfilter okfn
3572  *	@skb: buffer to transmit
3573  */
3574 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3575 {
3576 	skb_reset_mac_header(skb);
3577 	__skb_pull(skb, skb_network_offset(skb));
3578 	skb->pkt_type = PACKET_LOOPBACK;
3579 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3580 	WARN_ON(!skb_dst(skb));
3581 	skb_dst_force(skb);
3582 	netif_rx_ni(skb);
3583 	return 0;
3584 }
3585 EXPORT_SYMBOL(dev_loopback_xmit);
3586 
3587 #ifdef CONFIG_NET_EGRESS
3588 static struct sk_buff *
3589 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3590 {
3591 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3592 	struct tcf_result cl_res;
3593 
3594 	if (!miniq)
3595 		return skb;
3596 
3597 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3598 	mini_qdisc_bstats_cpu_update(miniq, skb);
3599 
3600 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3601 	case TC_ACT_OK:
3602 	case TC_ACT_RECLASSIFY:
3603 		skb->tc_index = TC_H_MIN(cl_res.classid);
3604 		break;
3605 	case TC_ACT_SHOT:
3606 		mini_qdisc_qstats_cpu_drop(miniq);
3607 		*ret = NET_XMIT_DROP;
3608 		kfree_skb(skb);
3609 		return NULL;
3610 	case TC_ACT_STOLEN:
3611 	case TC_ACT_QUEUED:
3612 	case TC_ACT_TRAP:
3613 		*ret = NET_XMIT_SUCCESS;
3614 		consume_skb(skb);
3615 		return NULL;
3616 	case TC_ACT_REDIRECT:
3617 		/* No need to push/pop skb's mac_header here on egress! */
3618 		skb_do_redirect(skb);
3619 		*ret = NET_XMIT_SUCCESS;
3620 		return NULL;
3621 	default:
3622 		break;
3623 	}
3624 
3625 	return skb;
3626 }
3627 #endif /* CONFIG_NET_EGRESS */
3628 
3629 #ifdef CONFIG_XPS
3630 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3631 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3632 {
3633 	struct xps_map *map;
3634 	int queue_index = -1;
3635 
3636 	if (dev->num_tc) {
3637 		tci *= dev->num_tc;
3638 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3639 	}
3640 
3641 	map = rcu_dereference(dev_maps->attr_map[tci]);
3642 	if (map) {
3643 		if (map->len == 1)
3644 			queue_index = map->queues[0];
3645 		else
3646 			queue_index = map->queues[reciprocal_scale(
3647 						skb_get_hash(skb), map->len)];
3648 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3649 			queue_index = -1;
3650 	}
3651 	return queue_index;
3652 }
3653 #endif
3654 
3655 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3656 			 struct sk_buff *skb)
3657 {
3658 #ifdef CONFIG_XPS
3659 	struct xps_dev_maps *dev_maps;
3660 	struct sock *sk = skb->sk;
3661 	int queue_index = -1;
3662 
3663 	if (!static_key_false(&xps_needed))
3664 		return -1;
3665 
3666 	rcu_read_lock();
3667 	if (!static_key_false(&xps_rxqs_needed))
3668 		goto get_cpus_map;
3669 
3670 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3671 	if (dev_maps) {
3672 		int tci = sk_rx_queue_get(sk);
3673 
3674 		if (tci >= 0 && tci < dev->num_rx_queues)
3675 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3676 							  tci);
3677 	}
3678 
3679 get_cpus_map:
3680 	if (queue_index < 0) {
3681 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3682 		if (dev_maps) {
3683 			unsigned int tci = skb->sender_cpu - 1;
3684 
3685 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3686 							  tci);
3687 		}
3688 	}
3689 	rcu_read_unlock();
3690 
3691 	return queue_index;
3692 #else
3693 	return -1;
3694 #endif
3695 }
3696 
3697 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3698 		     struct net_device *sb_dev)
3699 {
3700 	return 0;
3701 }
3702 EXPORT_SYMBOL(dev_pick_tx_zero);
3703 
3704 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3705 		       struct net_device *sb_dev)
3706 {
3707 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3708 }
3709 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3710 
3711 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3712 		     struct net_device *sb_dev)
3713 {
3714 	struct sock *sk = skb->sk;
3715 	int queue_index = sk_tx_queue_get(sk);
3716 
3717 	sb_dev = sb_dev ? : dev;
3718 
3719 	if (queue_index < 0 || skb->ooo_okay ||
3720 	    queue_index >= dev->real_num_tx_queues) {
3721 		int new_index = get_xps_queue(dev, sb_dev, skb);
3722 
3723 		if (new_index < 0)
3724 			new_index = skb_tx_hash(dev, sb_dev, skb);
3725 
3726 		if (queue_index != new_index && sk &&
3727 		    sk_fullsock(sk) &&
3728 		    rcu_access_pointer(sk->sk_dst_cache))
3729 			sk_tx_queue_set(sk, new_index);
3730 
3731 		queue_index = new_index;
3732 	}
3733 
3734 	return queue_index;
3735 }
3736 EXPORT_SYMBOL(netdev_pick_tx);
3737 
3738 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3739 					 struct sk_buff *skb,
3740 					 struct net_device *sb_dev)
3741 {
3742 	int queue_index = 0;
3743 
3744 #ifdef CONFIG_XPS
3745 	u32 sender_cpu = skb->sender_cpu - 1;
3746 
3747 	if (sender_cpu >= (u32)NR_CPUS)
3748 		skb->sender_cpu = raw_smp_processor_id() + 1;
3749 #endif
3750 
3751 	if (dev->real_num_tx_queues != 1) {
3752 		const struct net_device_ops *ops = dev->netdev_ops;
3753 
3754 		if (ops->ndo_select_queue)
3755 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3756 		else
3757 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
3758 
3759 		queue_index = netdev_cap_txqueue(dev, queue_index);
3760 	}
3761 
3762 	skb_set_queue_mapping(skb, queue_index);
3763 	return netdev_get_tx_queue(dev, queue_index);
3764 }
3765 
3766 /**
3767  *	__dev_queue_xmit - transmit a buffer
3768  *	@skb: buffer to transmit
3769  *	@sb_dev: suboordinate device used for L2 forwarding offload
3770  *
3771  *	Queue a buffer for transmission to a network device. The caller must
3772  *	have set the device and priority and built the buffer before calling
3773  *	this function. The function can be called from an interrupt.
3774  *
3775  *	A negative errno code is returned on a failure. A success does not
3776  *	guarantee the frame will be transmitted as it may be dropped due
3777  *	to congestion or traffic shaping.
3778  *
3779  * -----------------------------------------------------------------------------------
3780  *      I notice this method can also return errors from the queue disciplines,
3781  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3782  *      be positive.
3783  *
3784  *      Regardless of the return value, the skb is consumed, so it is currently
3785  *      difficult to retry a send to this method.  (You can bump the ref count
3786  *      before sending to hold a reference for retry if you are careful.)
3787  *
3788  *      When calling this method, interrupts MUST be enabled.  This is because
3789  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3790  *          --BLG
3791  */
3792 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3793 {
3794 	struct net_device *dev = skb->dev;
3795 	struct netdev_queue *txq;
3796 	struct Qdisc *q;
3797 	int rc = -ENOMEM;
3798 	bool again = false;
3799 
3800 	skb_reset_mac_header(skb);
3801 
3802 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3803 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3804 
3805 	/* Disable soft irqs for various locks below. Also
3806 	 * stops preemption for RCU.
3807 	 */
3808 	rcu_read_lock_bh();
3809 
3810 	skb_update_prio(skb);
3811 
3812 	qdisc_pkt_len_init(skb);
3813 #ifdef CONFIG_NET_CLS_ACT
3814 	skb->tc_at_ingress = 0;
3815 # ifdef CONFIG_NET_EGRESS
3816 	if (static_branch_unlikely(&egress_needed_key)) {
3817 		skb = sch_handle_egress(skb, &rc, dev);
3818 		if (!skb)
3819 			goto out;
3820 	}
3821 # endif
3822 #endif
3823 	/* If device/qdisc don't need skb->dst, release it right now while
3824 	 * its hot in this cpu cache.
3825 	 */
3826 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3827 		skb_dst_drop(skb);
3828 	else
3829 		skb_dst_force(skb);
3830 
3831 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
3832 	q = rcu_dereference_bh(txq->qdisc);
3833 
3834 	trace_net_dev_queue(skb);
3835 	if (q->enqueue) {
3836 		rc = __dev_xmit_skb(skb, q, dev, txq);
3837 		goto out;
3838 	}
3839 
3840 	/* The device has no queue. Common case for software devices:
3841 	 * loopback, all the sorts of tunnels...
3842 
3843 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3844 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3845 	 * counters.)
3846 	 * However, it is possible, that they rely on protection
3847 	 * made by us here.
3848 
3849 	 * Check this and shot the lock. It is not prone from deadlocks.
3850 	 *Either shot noqueue qdisc, it is even simpler 8)
3851 	 */
3852 	if (dev->flags & IFF_UP) {
3853 		int cpu = smp_processor_id(); /* ok because BHs are off */
3854 
3855 		if (txq->xmit_lock_owner != cpu) {
3856 			if (dev_xmit_recursion())
3857 				goto recursion_alert;
3858 
3859 			skb = validate_xmit_skb(skb, dev, &again);
3860 			if (!skb)
3861 				goto out;
3862 
3863 			HARD_TX_LOCK(dev, txq, cpu);
3864 
3865 			if (!netif_xmit_stopped(txq)) {
3866 				dev_xmit_recursion_inc();
3867 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3868 				dev_xmit_recursion_dec();
3869 				if (dev_xmit_complete(rc)) {
3870 					HARD_TX_UNLOCK(dev, txq);
3871 					goto out;
3872 				}
3873 			}
3874 			HARD_TX_UNLOCK(dev, txq);
3875 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3876 					     dev->name);
3877 		} else {
3878 			/* Recursion is detected! It is possible,
3879 			 * unfortunately
3880 			 */
3881 recursion_alert:
3882 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3883 					     dev->name);
3884 		}
3885 	}
3886 
3887 	rc = -ENETDOWN;
3888 	rcu_read_unlock_bh();
3889 
3890 	atomic_long_inc(&dev->tx_dropped);
3891 	kfree_skb_list(skb);
3892 	return rc;
3893 out:
3894 	rcu_read_unlock_bh();
3895 	return rc;
3896 }
3897 
3898 int dev_queue_xmit(struct sk_buff *skb)
3899 {
3900 	return __dev_queue_xmit(skb, NULL);
3901 }
3902 EXPORT_SYMBOL(dev_queue_xmit);
3903 
3904 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3905 {
3906 	return __dev_queue_xmit(skb, sb_dev);
3907 }
3908 EXPORT_SYMBOL(dev_queue_xmit_accel);
3909 
3910 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3911 {
3912 	struct net_device *dev = skb->dev;
3913 	struct sk_buff *orig_skb = skb;
3914 	struct netdev_queue *txq;
3915 	int ret = NETDEV_TX_BUSY;
3916 	bool again = false;
3917 
3918 	if (unlikely(!netif_running(dev) ||
3919 		     !netif_carrier_ok(dev)))
3920 		goto drop;
3921 
3922 	skb = validate_xmit_skb_list(skb, dev, &again);
3923 	if (skb != orig_skb)
3924 		goto drop;
3925 
3926 	skb_set_queue_mapping(skb, queue_id);
3927 	txq = skb_get_tx_queue(dev, skb);
3928 
3929 	local_bh_disable();
3930 
3931 	HARD_TX_LOCK(dev, txq, smp_processor_id());
3932 	if (!netif_xmit_frozen_or_drv_stopped(txq))
3933 		ret = netdev_start_xmit(skb, dev, txq, false);
3934 	HARD_TX_UNLOCK(dev, txq);
3935 
3936 	local_bh_enable();
3937 
3938 	if (!dev_xmit_complete(ret))
3939 		kfree_skb(skb);
3940 
3941 	return ret;
3942 drop:
3943 	atomic_long_inc(&dev->tx_dropped);
3944 	kfree_skb_list(skb);
3945 	return NET_XMIT_DROP;
3946 }
3947 EXPORT_SYMBOL(dev_direct_xmit);
3948 
3949 /*************************************************************************
3950  *			Receiver routines
3951  *************************************************************************/
3952 
3953 int netdev_max_backlog __read_mostly = 1000;
3954 EXPORT_SYMBOL(netdev_max_backlog);
3955 
3956 int netdev_tstamp_prequeue __read_mostly = 1;
3957 int netdev_budget __read_mostly = 300;
3958 unsigned int __read_mostly netdev_budget_usecs = 2000;
3959 int weight_p __read_mostly = 64;           /* old backlog weight */
3960 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3961 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3962 int dev_rx_weight __read_mostly = 64;
3963 int dev_tx_weight __read_mostly = 64;
3964 
3965 /* Called with irq disabled */
3966 static inline void ____napi_schedule(struct softnet_data *sd,
3967 				     struct napi_struct *napi)
3968 {
3969 	list_add_tail(&napi->poll_list, &sd->poll_list);
3970 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3971 }
3972 
3973 #ifdef CONFIG_RPS
3974 
3975 /* One global table that all flow-based protocols share. */
3976 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3977 EXPORT_SYMBOL(rps_sock_flow_table);
3978 u32 rps_cpu_mask __read_mostly;
3979 EXPORT_SYMBOL(rps_cpu_mask);
3980 
3981 struct static_key_false rps_needed __read_mostly;
3982 EXPORT_SYMBOL(rps_needed);
3983 struct static_key_false rfs_needed __read_mostly;
3984 EXPORT_SYMBOL(rfs_needed);
3985 
3986 static struct rps_dev_flow *
3987 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3988 	    struct rps_dev_flow *rflow, u16 next_cpu)
3989 {
3990 	if (next_cpu < nr_cpu_ids) {
3991 #ifdef CONFIG_RFS_ACCEL
3992 		struct netdev_rx_queue *rxqueue;
3993 		struct rps_dev_flow_table *flow_table;
3994 		struct rps_dev_flow *old_rflow;
3995 		u32 flow_id;
3996 		u16 rxq_index;
3997 		int rc;
3998 
3999 		/* Should we steer this flow to a different hardware queue? */
4000 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4001 		    !(dev->features & NETIF_F_NTUPLE))
4002 			goto out;
4003 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4004 		if (rxq_index == skb_get_rx_queue(skb))
4005 			goto out;
4006 
4007 		rxqueue = dev->_rx + rxq_index;
4008 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4009 		if (!flow_table)
4010 			goto out;
4011 		flow_id = skb_get_hash(skb) & flow_table->mask;
4012 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4013 							rxq_index, flow_id);
4014 		if (rc < 0)
4015 			goto out;
4016 		old_rflow = rflow;
4017 		rflow = &flow_table->flows[flow_id];
4018 		rflow->filter = rc;
4019 		if (old_rflow->filter == rflow->filter)
4020 			old_rflow->filter = RPS_NO_FILTER;
4021 	out:
4022 #endif
4023 		rflow->last_qtail =
4024 			per_cpu(softnet_data, next_cpu).input_queue_head;
4025 	}
4026 
4027 	rflow->cpu = next_cpu;
4028 	return rflow;
4029 }
4030 
4031 /*
4032  * get_rps_cpu is called from netif_receive_skb and returns the target
4033  * CPU from the RPS map of the receiving queue for a given skb.
4034  * rcu_read_lock must be held on entry.
4035  */
4036 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4037 		       struct rps_dev_flow **rflowp)
4038 {
4039 	const struct rps_sock_flow_table *sock_flow_table;
4040 	struct netdev_rx_queue *rxqueue = dev->_rx;
4041 	struct rps_dev_flow_table *flow_table;
4042 	struct rps_map *map;
4043 	int cpu = -1;
4044 	u32 tcpu;
4045 	u32 hash;
4046 
4047 	if (skb_rx_queue_recorded(skb)) {
4048 		u16 index = skb_get_rx_queue(skb);
4049 
4050 		if (unlikely(index >= dev->real_num_rx_queues)) {
4051 			WARN_ONCE(dev->real_num_rx_queues > 1,
4052 				  "%s received packet on queue %u, but number "
4053 				  "of RX queues is %u\n",
4054 				  dev->name, index, dev->real_num_rx_queues);
4055 			goto done;
4056 		}
4057 		rxqueue += index;
4058 	}
4059 
4060 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4061 
4062 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4063 	map = rcu_dereference(rxqueue->rps_map);
4064 	if (!flow_table && !map)
4065 		goto done;
4066 
4067 	skb_reset_network_header(skb);
4068 	hash = skb_get_hash(skb);
4069 	if (!hash)
4070 		goto done;
4071 
4072 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4073 	if (flow_table && sock_flow_table) {
4074 		struct rps_dev_flow *rflow;
4075 		u32 next_cpu;
4076 		u32 ident;
4077 
4078 		/* First check into global flow table if there is a match */
4079 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4080 		if ((ident ^ hash) & ~rps_cpu_mask)
4081 			goto try_rps;
4082 
4083 		next_cpu = ident & rps_cpu_mask;
4084 
4085 		/* OK, now we know there is a match,
4086 		 * we can look at the local (per receive queue) flow table
4087 		 */
4088 		rflow = &flow_table->flows[hash & flow_table->mask];
4089 		tcpu = rflow->cpu;
4090 
4091 		/*
4092 		 * If the desired CPU (where last recvmsg was done) is
4093 		 * different from current CPU (one in the rx-queue flow
4094 		 * table entry), switch if one of the following holds:
4095 		 *   - Current CPU is unset (>= nr_cpu_ids).
4096 		 *   - Current CPU is offline.
4097 		 *   - The current CPU's queue tail has advanced beyond the
4098 		 *     last packet that was enqueued using this table entry.
4099 		 *     This guarantees that all previous packets for the flow
4100 		 *     have been dequeued, thus preserving in order delivery.
4101 		 */
4102 		if (unlikely(tcpu != next_cpu) &&
4103 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4104 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4105 		      rflow->last_qtail)) >= 0)) {
4106 			tcpu = next_cpu;
4107 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4108 		}
4109 
4110 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4111 			*rflowp = rflow;
4112 			cpu = tcpu;
4113 			goto done;
4114 		}
4115 	}
4116 
4117 try_rps:
4118 
4119 	if (map) {
4120 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4121 		if (cpu_online(tcpu)) {
4122 			cpu = tcpu;
4123 			goto done;
4124 		}
4125 	}
4126 
4127 done:
4128 	return cpu;
4129 }
4130 
4131 #ifdef CONFIG_RFS_ACCEL
4132 
4133 /**
4134  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4135  * @dev: Device on which the filter was set
4136  * @rxq_index: RX queue index
4137  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4138  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4139  *
4140  * Drivers that implement ndo_rx_flow_steer() should periodically call
4141  * this function for each installed filter and remove the filters for
4142  * which it returns %true.
4143  */
4144 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4145 			 u32 flow_id, u16 filter_id)
4146 {
4147 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4148 	struct rps_dev_flow_table *flow_table;
4149 	struct rps_dev_flow *rflow;
4150 	bool expire = true;
4151 	unsigned int cpu;
4152 
4153 	rcu_read_lock();
4154 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4155 	if (flow_table && flow_id <= flow_table->mask) {
4156 		rflow = &flow_table->flows[flow_id];
4157 		cpu = READ_ONCE(rflow->cpu);
4158 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4159 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4160 			   rflow->last_qtail) <
4161 		     (int)(10 * flow_table->mask)))
4162 			expire = false;
4163 	}
4164 	rcu_read_unlock();
4165 	return expire;
4166 }
4167 EXPORT_SYMBOL(rps_may_expire_flow);
4168 
4169 #endif /* CONFIG_RFS_ACCEL */
4170 
4171 /* Called from hardirq (IPI) context */
4172 static void rps_trigger_softirq(void *data)
4173 {
4174 	struct softnet_data *sd = data;
4175 
4176 	____napi_schedule(sd, &sd->backlog);
4177 	sd->received_rps++;
4178 }
4179 
4180 #endif /* CONFIG_RPS */
4181 
4182 /*
4183  * Check if this softnet_data structure is another cpu one
4184  * If yes, queue it to our IPI list and return 1
4185  * If no, return 0
4186  */
4187 static int rps_ipi_queued(struct softnet_data *sd)
4188 {
4189 #ifdef CONFIG_RPS
4190 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4191 
4192 	if (sd != mysd) {
4193 		sd->rps_ipi_next = mysd->rps_ipi_list;
4194 		mysd->rps_ipi_list = sd;
4195 
4196 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4197 		return 1;
4198 	}
4199 #endif /* CONFIG_RPS */
4200 	return 0;
4201 }
4202 
4203 #ifdef CONFIG_NET_FLOW_LIMIT
4204 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4205 #endif
4206 
4207 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4208 {
4209 #ifdef CONFIG_NET_FLOW_LIMIT
4210 	struct sd_flow_limit *fl;
4211 	struct softnet_data *sd;
4212 	unsigned int old_flow, new_flow;
4213 
4214 	if (qlen < (netdev_max_backlog >> 1))
4215 		return false;
4216 
4217 	sd = this_cpu_ptr(&softnet_data);
4218 
4219 	rcu_read_lock();
4220 	fl = rcu_dereference(sd->flow_limit);
4221 	if (fl) {
4222 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4223 		old_flow = fl->history[fl->history_head];
4224 		fl->history[fl->history_head] = new_flow;
4225 
4226 		fl->history_head++;
4227 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4228 
4229 		if (likely(fl->buckets[old_flow]))
4230 			fl->buckets[old_flow]--;
4231 
4232 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4233 			fl->count++;
4234 			rcu_read_unlock();
4235 			return true;
4236 		}
4237 	}
4238 	rcu_read_unlock();
4239 #endif
4240 	return false;
4241 }
4242 
4243 /*
4244  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4245  * queue (may be a remote CPU queue).
4246  */
4247 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4248 			      unsigned int *qtail)
4249 {
4250 	struct softnet_data *sd;
4251 	unsigned long flags;
4252 	unsigned int qlen;
4253 
4254 	sd = &per_cpu(softnet_data, cpu);
4255 
4256 	local_irq_save(flags);
4257 
4258 	rps_lock(sd);
4259 	if (!netif_running(skb->dev))
4260 		goto drop;
4261 	qlen = skb_queue_len(&sd->input_pkt_queue);
4262 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4263 		if (qlen) {
4264 enqueue:
4265 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4266 			input_queue_tail_incr_save(sd, qtail);
4267 			rps_unlock(sd);
4268 			local_irq_restore(flags);
4269 			return NET_RX_SUCCESS;
4270 		}
4271 
4272 		/* Schedule NAPI for backlog device
4273 		 * We can use non atomic operation since we own the queue lock
4274 		 */
4275 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4276 			if (!rps_ipi_queued(sd))
4277 				____napi_schedule(sd, &sd->backlog);
4278 		}
4279 		goto enqueue;
4280 	}
4281 
4282 drop:
4283 	sd->dropped++;
4284 	rps_unlock(sd);
4285 
4286 	local_irq_restore(flags);
4287 
4288 	atomic_long_inc(&skb->dev->rx_dropped);
4289 	kfree_skb(skb);
4290 	return NET_RX_DROP;
4291 }
4292 
4293 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4294 {
4295 	struct net_device *dev = skb->dev;
4296 	struct netdev_rx_queue *rxqueue;
4297 
4298 	rxqueue = dev->_rx;
4299 
4300 	if (skb_rx_queue_recorded(skb)) {
4301 		u16 index = skb_get_rx_queue(skb);
4302 
4303 		if (unlikely(index >= dev->real_num_rx_queues)) {
4304 			WARN_ONCE(dev->real_num_rx_queues > 1,
4305 				  "%s received packet on queue %u, but number "
4306 				  "of RX queues is %u\n",
4307 				  dev->name, index, dev->real_num_rx_queues);
4308 
4309 			return rxqueue; /* Return first rxqueue */
4310 		}
4311 		rxqueue += index;
4312 	}
4313 	return rxqueue;
4314 }
4315 
4316 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4317 				     struct xdp_buff *xdp,
4318 				     struct bpf_prog *xdp_prog)
4319 {
4320 	struct netdev_rx_queue *rxqueue;
4321 	void *orig_data, *orig_data_end;
4322 	u32 metalen, act = XDP_DROP;
4323 	__be16 orig_eth_type;
4324 	struct ethhdr *eth;
4325 	bool orig_bcast;
4326 	int hlen, off;
4327 	u32 mac_len;
4328 
4329 	/* Reinjected packets coming from act_mirred or similar should
4330 	 * not get XDP generic processing.
4331 	 */
4332 	if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4333 		return XDP_PASS;
4334 
4335 	/* XDP packets must be linear and must have sufficient headroom
4336 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4337 	 * native XDP provides, thus we need to do it here as well.
4338 	 */
4339 	if (skb_is_nonlinear(skb) ||
4340 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4341 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4342 		int troom = skb->tail + skb->data_len - skb->end;
4343 
4344 		/* In case we have to go down the path and also linearize,
4345 		 * then lets do the pskb_expand_head() work just once here.
4346 		 */
4347 		if (pskb_expand_head(skb,
4348 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4349 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4350 			goto do_drop;
4351 		if (skb_linearize(skb))
4352 			goto do_drop;
4353 	}
4354 
4355 	/* The XDP program wants to see the packet starting at the MAC
4356 	 * header.
4357 	 */
4358 	mac_len = skb->data - skb_mac_header(skb);
4359 	hlen = skb_headlen(skb) + mac_len;
4360 	xdp->data = skb->data - mac_len;
4361 	xdp->data_meta = xdp->data;
4362 	xdp->data_end = xdp->data + hlen;
4363 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4364 	orig_data_end = xdp->data_end;
4365 	orig_data = xdp->data;
4366 	eth = (struct ethhdr *)xdp->data;
4367 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4368 	orig_eth_type = eth->h_proto;
4369 
4370 	rxqueue = netif_get_rxqueue(skb);
4371 	xdp->rxq = &rxqueue->xdp_rxq;
4372 
4373 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4374 
4375 	off = xdp->data - orig_data;
4376 	if (off > 0)
4377 		__skb_pull(skb, off);
4378 	else if (off < 0)
4379 		__skb_push(skb, -off);
4380 	skb->mac_header += off;
4381 
4382 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4383 	 * pckt.
4384 	 */
4385 	off = orig_data_end - xdp->data_end;
4386 	if (off != 0) {
4387 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4388 		skb->len -= off;
4389 
4390 	}
4391 
4392 	/* check if XDP changed eth hdr such SKB needs update */
4393 	eth = (struct ethhdr *)xdp->data;
4394 	if ((orig_eth_type != eth->h_proto) ||
4395 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4396 		__skb_push(skb, ETH_HLEN);
4397 		skb->protocol = eth_type_trans(skb, skb->dev);
4398 	}
4399 
4400 	switch (act) {
4401 	case XDP_REDIRECT:
4402 	case XDP_TX:
4403 		__skb_push(skb, mac_len);
4404 		break;
4405 	case XDP_PASS:
4406 		metalen = xdp->data - xdp->data_meta;
4407 		if (metalen)
4408 			skb_metadata_set(skb, metalen);
4409 		break;
4410 	default:
4411 		bpf_warn_invalid_xdp_action(act);
4412 		/* fall through */
4413 	case XDP_ABORTED:
4414 		trace_xdp_exception(skb->dev, xdp_prog, act);
4415 		/* fall through */
4416 	case XDP_DROP:
4417 	do_drop:
4418 		kfree_skb(skb);
4419 		break;
4420 	}
4421 
4422 	return act;
4423 }
4424 
4425 /* When doing generic XDP we have to bypass the qdisc layer and the
4426  * network taps in order to match in-driver-XDP behavior.
4427  */
4428 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4429 {
4430 	struct net_device *dev = skb->dev;
4431 	struct netdev_queue *txq;
4432 	bool free_skb = true;
4433 	int cpu, rc;
4434 
4435 	txq = netdev_core_pick_tx(dev, skb, NULL);
4436 	cpu = smp_processor_id();
4437 	HARD_TX_LOCK(dev, txq, cpu);
4438 	if (!netif_xmit_stopped(txq)) {
4439 		rc = netdev_start_xmit(skb, dev, txq, 0);
4440 		if (dev_xmit_complete(rc))
4441 			free_skb = false;
4442 	}
4443 	HARD_TX_UNLOCK(dev, txq);
4444 	if (free_skb) {
4445 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4446 		kfree_skb(skb);
4447 	}
4448 }
4449 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4450 
4451 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4452 
4453 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4454 {
4455 	if (xdp_prog) {
4456 		struct xdp_buff xdp;
4457 		u32 act;
4458 		int err;
4459 
4460 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4461 		if (act != XDP_PASS) {
4462 			switch (act) {
4463 			case XDP_REDIRECT:
4464 				err = xdp_do_generic_redirect(skb->dev, skb,
4465 							      &xdp, xdp_prog);
4466 				if (err)
4467 					goto out_redir;
4468 				break;
4469 			case XDP_TX:
4470 				generic_xdp_tx(skb, xdp_prog);
4471 				break;
4472 			}
4473 			return XDP_DROP;
4474 		}
4475 	}
4476 	return XDP_PASS;
4477 out_redir:
4478 	kfree_skb(skb);
4479 	return XDP_DROP;
4480 }
4481 EXPORT_SYMBOL_GPL(do_xdp_generic);
4482 
4483 static int netif_rx_internal(struct sk_buff *skb)
4484 {
4485 	int ret;
4486 
4487 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4488 
4489 	trace_netif_rx(skb);
4490 
4491 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4492 		int ret;
4493 
4494 		preempt_disable();
4495 		rcu_read_lock();
4496 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4497 		rcu_read_unlock();
4498 		preempt_enable();
4499 
4500 		/* Consider XDP consuming the packet a success from
4501 		 * the netdev point of view we do not want to count
4502 		 * this as an error.
4503 		 */
4504 		if (ret != XDP_PASS)
4505 			return NET_RX_SUCCESS;
4506 	}
4507 
4508 #ifdef CONFIG_RPS
4509 	if (static_branch_unlikely(&rps_needed)) {
4510 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4511 		int cpu;
4512 
4513 		preempt_disable();
4514 		rcu_read_lock();
4515 
4516 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4517 		if (cpu < 0)
4518 			cpu = smp_processor_id();
4519 
4520 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4521 
4522 		rcu_read_unlock();
4523 		preempt_enable();
4524 	} else
4525 #endif
4526 	{
4527 		unsigned int qtail;
4528 
4529 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4530 		put_cpu();
4531 	}
4532 	return ret;
4533 }
4534 
4535 /**
4536  *	netif_rx	-	post buffer to the network code
4537  *	@skb: buffer to post
4538  *
4539  *	This function receives a packet from a device driver and queues it for
4540  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4541  *	may be dropped during processing for congestion control or by the
4542  *	protocol layers.
4543  *
4544  *	return values:
4545  *	NET_RX_SUCCESS	(no congestion)
4546  *	NET_RX_DROP     (packet was dropped)
4547  *
4548  */
4549 
4550 int netif_rx(struct sk_buff *skb)
4551 {
4552 	int ret;
4553 
4554 	trace_netif_rx_entry(skb);
4555 
4556 	ret = netif_rx_internal(skb);
4557 	trace_netif_rx_exit(ret);
4558 
4559 	return ret;
4560 }
4561 EXPORT_SYMBOL(netif_rx);
4562 
4563 int netif_rx_ni(struct sk_buff *skb)
4564 {
4565 	int err;
4566 
4567 	trace_netif_rx_ni_entry(skb);
4568 
4569 	preempt_disable();
4570 	err = netif_rx_internal(skb);
4571 	if (local_softirq_pending())
4572 		do_softirq();
4573 	preempt_enable();
4574 	trace_netif_rx_ni_exit(err);
4575 
4576 	return err;
4577 }
4578 EXPORT_SYMBOL(netif_rx_ni);
4579 
4580 static __latent_entropy void net_tx_action(struct softirq_action *h)
4581 {
4582 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4583 
4584 	if (sd->completion_queue) {
4585 		struct sk_buff *clist;
4586 
4587 		local_irq_disable();
4588 		clist = sd->completion_queue;
4589 		sd->completion_queue = NULL;
4590 		local_irq_enable();
4591 
4592 		while (clist) {
4593 			struct sk_buff *skb = clist;
4594 
4595 			clist = clist->next;
4596 
4597 			WARN_ON(refcount_read(&skb->users));
4598 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4599 				trace_consume_skb(skb);
4600 			else
4601 				trace_kfree_skb(skb, net_tx_action);
4602 
4603 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4604 				__kfree_skb(skb);
4605 			else
4606 				__kfree_skb_defer(skb);
4607 		}
4608 
4609 		__kfree_skb_flush();
4610 	}
4611 
4612 	if (sd->output_queue) {
4613 		struct Qdisc *head;
4614 
4615 		local_irq_disable();
4616 		head = sd->output_queue;
4617 		sd->output_queue = NULL;
4618 		sd->output_queue_tailp = &sd->output_queue;
4619 		local_irq_enable();
4620 
4621 		while (head) {
4622 			struct Qdisc *q = head;
4623 			spinlock_t *root_lock = NULL;
4624 
4625 			head = head->next_sched;
4626 
4627 			if (!(q->flags & TCQ_F_NOLOCK)) {
4628 				root_lock = qdisc_lock(q);
4629 				spin_lock(root_lock);
4630 			}
4631 			/* We need to make sure head->next_sched is read
4632 			 * before clearing __QDISC_STATE_SCHED
4633 			 */
4634 			smp_mb__before_atomic();
4635 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4636 			qdisc_run(q);
4637 			if (root_lock)
4638 				spin_unlock(root_lock);
4639 		}
4640 	}
4641 
4642 	xfrm_dev_backlog(sd);
4643 }
4644 
4645 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4646 /* This hook is defined here for ATM LANE */
4647 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4648 			     unsigned char *addr) __read_mostly;
4649 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4650 #endif
4651 
4652 static inline struct sk_buff *
4653 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4654 		   struct net_device *orig_dev)
4655 {
4656 #ifdef CONFIG_NET_CLS_ACT
4657 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4658 	struct tcf_result cl_res;
4659 
4660 	/* If there's at least one ingress present somewhere (so
4661 	 * we get here via enabled static key), remaining devices
4662 	 * that are not configured with an ingress qdisc will bail
4663 	 * out here.
4664 	 */
4665 	if (!miniq)
4666 		return skb;
4667 
4668 	if (*pt_prev) {
4669 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4670 		*pt_prev = NULL;
4671 	}
4672 
4673 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4674 	skb->tc_at_ingress = 1;
4675 	mini_qdisc_bstats_cpu_update(miniq, skb);
4676 
4677 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4678 	case TC_ACT_OK:
4679 	case TC_ACT_RECLASSIFY:
4680 		skb->tc_index = TC_H_MIN(cl_res.classid);
4681 		break;
4682 	case TC_ACT_SHOT:
4683 		mini_qdisc_qstats_cpu_drop(miniq);
4684 		kfree_skb(skb);
4685 		return NULL;
4686 	case TC_ACT_STOLEN:
4687 	case TC_ACT_QUEUED:
4688 	case TC_ACT_TRAP:
4689 		consume_skb(skb);
4690 		return NULL;
4691 	case TC_ACT_REDIRECT:
4692 		/* skb_mac_header check was done by cls/act_bpf, so
4693 		 * we can safely push the L2 header back before
4694 		 * redirecting to another netdev
4695 		 */
4696 		__skb_push(skb, skb->mac_len);
4697 		skb_do_redirect(skb);
4698 		return NULL;
4699 	case TC_ACT_REINSERT:
4700 		/* this does not scrub the packet, and updates stats on error */
4701 		skb_tc_reinsert(skb, &cl_res);
4702 		return NULL;
4703 	default:
4704 		break;
4705 	}
4706 #endif /* CONFIG_NET_CLS_ACT */
4707 	return skb;
4708 }
4709 
4710 /**
4711  *	netdev_is_rx_handler_busy - check if receive handler is registered
4712  *	@dev: device to check
4713  *
4714  *	Check if a receive handler is already registered for a given device.
4715  *	Return true if there one.
4716  *
4717  *	The caller must hold the rtnl_mutex.
4718  */
4719 bool netdev_is_rx_handler_busy(struct net_device *dev)
4720 {
4721 	ASSERT_RTNL();
4722 	return dev && rtnl_dereference(dev->rx_handler);
4723 }
4724 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4725 
4726 /**
4727  *	netdev_rx_handler_register - register receive handler
4728  *	@dev: device to register a handler for
4729  *	@rx_handler: receive handler to register
4730  *	@rx_handler_data: data pointer that is used by rx handler
4731  *
4732  *	Register a receive handler for a device. This handler will then be
4733  *	called from __netif_receive_skb. A negative errno code is returned
4734  *	on a failure.
4735  *
4736  *	The caller must hold the rtnl_mutex.
4737  *
4738  *	For a general description of rx_handler, see enum rx_handler_result.
4739  */
4740 int netdev_rx_handler_register(struct net_device *dev,
4741 			       rx_handler_func_t *rx_handler,
4742 			       void *rx_handler_data)
4743 {
4744 	if (netdev_is_rx_handler_busy(dev))
4745 		return -EBUSY;
4746 
4747 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4748 		return -EINVAL;
4749 
4750 	/* Note: rx_handler_data must be set before rx_handler */
4751 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4752 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4753 
4754 	return 0;
4755 }
4756 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4757 
4758 /**
4759  *	netdev_rx_handler_unregister - unregister receive handler
4760  *	@dev: device to unregister a handler from
4761  *
4762  *	Unregister a receive handler from a device.
4763  *
4764  *	The caller must hold the rtnl_mutex.
4765  */
4766 void netdev_rx_handler_unregister(struct net_device *dev)
4767 {
4768 
4769 	ASSERT_RTNL();
4770 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4771 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4772 	 * section has a guarantee to see a non NULL rx_handler_data
4773 	 * as well.
4774 	 */
4775 	synchronize_net();
4776 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4777 }
4778 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4779 
4780 /*
4781  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4782  * the special handling of PFMEMALLOC skbs.
4783  */
4784 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4785 {
4786 	switch (skb->protocol) {
4787 	case htons(ETH_P_ARP):
4788 	case htons(ETH_P_IP):
4789 	case htons(ETH_P_IPV6):
4790 	case htons(ETH_P_8021Q):
4791 	case htons(ETH_P_8021AD):
4792 		return true;
4793 	default:
4794 		return false;
4795 	}
4796 }
4797 
4798 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4799 			     int *ret, struct net_device *orig_dev)
4800 {
4801 #ifdef CONFIG_NETFILTER_INGRESS
4802 	if (nf_hook_ingress_active(skb)) {
4803 		int ingress_retval;
4804 
4805 		if (*pt_prev) {
4806 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4807 			*pt_prev = NULL;
4808 		}
4809 
4810 		rcu_read_lock();
4811 		ingress_retval = nf_hook_ingress(skb);
4812 		rcu_read_unlock();
4813 		return ingress_retval;
4814 	}
4815 #endif /* CONFIG_NETFILTER_INGRESS */
4816 	return 0;
4817 }
4818 
4819 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4820 				    struct packet_type **ppt_prev)
4821 {
4822 	struct packet_type *ptype, *pt_prev;
4823 	rx_handler_func_t *rx_handler;
4824 	struct net_device *orig_dev;
4825 	bool deliver_exact = false;
4826 	int ret = NET_RX_DROP;
4827 	__be16 type;
4828 
4829 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4830 
4831 	trace_netif_receive_skb(skb);
4832 
4833 	orig_dev = skb->dev;
4834 
4835 	skb_reset_network_header(skb);
4836 	if (!skb_transport_header_was_set(skb))
4837 		skb_reset_transport_header(skb);
4838 	skb_reset_mac_len(skb);
4839 
4840 	pt_prev = NULL;
4841 
4842 another_round:
4843 	skb->skb_iif = skb->dev->ifindex;
4844 
4845 	__this_cpu_inc(softnet_data.processed);
4846 
4847 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4848 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4849 		skb = skb_vlan_untag(skb);
4850 		if (unlikely(!skb))
4851 			goto out;
4852 	}
4853 
4854 	if (skb_skip_tc_classify(skb))
4855 		goto skip_classify;
4856 
4857 	if (pfmemalloc)
4858 		goto skip_taps;
4859 
4860 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4861 		if (pt_prev)
4862 			ret = deliver_skb(skb, pt_prev, orig_dev);
4863 		pt_prev = ptype;
4864 	}
4865 
4866 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4867 		if (pt_prev)
4868 			ret = deliver_skb(skb, pt_prev, orig_dev);
4869 		pt_prev = ptype;
4870 	}
4871 
4872 skip_taps:
4873 #ifdef CONFIG_NET_INGRESS
4874 	if (static_branch_unlikely(&ingress_needed_key)) {
4875 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4876 		if (!skb)
4877 			goto out;
4878 
4879 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4880 			goto out;
4881 	}
4882 #endif
4883 	skb_reset_tc(skb);
4884 skip_classify:
4885 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4886 		goto drop;
4887 
4888 	if (skb_vlan_tag_present(skb)) {
4889 		if (pt_prev) {
4890 			ret = deliver_skb(skb, pt_prev, orig_dev);
4891 			pt_prev = NULL;
4892 		}
4893 		if (vlan_do_receive(&skb))
4894 			goto another_round;
4895 		else if (unlikely(!skb))
4896 			goto out;
4897 	}
4898 
4899 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4900 	if (rx_handler) {
4901 		if (pt_prev) {
4902 			ret = deliver_skb(skb, pt_prev, orig_dev);
4903 			pt_prev = NULL;
4904 		}
4905 		switch (rx_handler(&skb)) {
4906 		case RX_HANDLER_CONSUMED:
4907 			ret = NET_RX_SUCCESS;
4908 			goto out;
4909 		case RX_HANDLER_ANOTHER:
4910 			goto another_round;
4911 		case RX_HANDLER_EXACT:
4912 			deliver_exact = true;
4913 		case RX_HANDLER_PASS:
4914 			break;
4915 		default:
4916 			BUG();
4917 		}
4918 	}
4919 
4920 	if (unlikely(skb_vlan_tag_present(skb))) {
4921 		if (skb_vlan_tag_get_id(skb))
4922 			skb->pkt_type = PACKET_OTHERHOST;
4923 		/* Note: we might in the future use prio bits
4924 		 * and set skb->priority like in vlan_do_receive()
4925 		 * For the time being, just ignore Priority Code Point
4926 		 */
4927 		__vlan_hwaccel_clear_tag(skb);
4928 	}
4929 
4930 	type = skb->protocol;
4931 
4932 	/* deliver only exact match when indicated */
4933 	if (likely(!deliver_exact)) {
4934 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4935 				       &ptype_base[ntohs(type) &
4936 						   PTYPE_HASH_MASK]);
4937 	}
4938 
4939 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4940 			       &orig_dev->ptype_specific);
4941 
4942 	if (unlikely(skb->dev != orig_dev)) {
4943 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4944 				       &skb->dev->ptype_specific);
4945 	}
4946 
4947 	if (pt_prev) {
4948 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4949 			goto drop;
4950 		*ppt_prev = pt_prev;
4951 	} else {
4952 drop:
4953 		if (!deliver_exact)
4954 			atomic_long_inc(&skb->dev->rx_dropped);
4955 		else
4956 			atomic_long_inc(&skb->dev->rx_nohandler);
4957 		kfree_skb(skb);
4958 		/* Jamal, now you will not able to escape explaining
4959 		 * me how you were going to use this. :-)
4960 		 */
4961 		ret = NET_RX_DROP;
4962 	}
4963 
4964 out:
4965 	return ret;
4966 }
4967 
4968 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4969 {
4970 	struct net_device *orig_dev = skb->dev;
4971 	struct packet_type *pt_prev = NULL;
4972 	int ret;
4973 
4974 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4975 	if (pt_prev)
4976 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4977 	return ret;
4978 }
4979 
4980 /**
4981  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4982  *	@skb: buffer to process
4983  *
4984  *	More direct receive version of netif_receive_skb().  It should
4985  *	only be used by callers that have a need to skip RPS and Generic XDP.
4986  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4987  *
4988  *	This function may only be called from softirq context and interrupts
4989  *	should be enabled.
4990  *
4991  *	Return values (usually ignored):
4992  *	NET_RX_SUCCESS: no congestion
4993  *	NET_RX_DROP: packet was dropped
4994  */
4995 int netif_receive_skb_core(struct sk_buff *skb)
4996 {
4997 	int ret;
4998 
4999 	rcu_read_lock();
5000 	ret = __netif_receive_skb_one_core(skb, false);
5001 	rcu_read_unlock();
5002 
5003 	return ret;
5004 }
5005 EXPORT_SYMBOL(netif_receive_skb_core);
5006 
5007 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5008 						  struct packet_type *pt_prev,
5009 						  struct net_device *orig_dev)
5010 {
5011 	struct sk_buff *skb, *next;
5012 
5013 	if (!pt_prev)
5014 		return;
5015 	if (list_empty(head))
5016 		return;
5017 	if (pt_prev->list_func != NULL)
5018 		pt_prev->list_func(head, pt_prev, orig_dev);
5019 	else
5020 		list_for_each_entry_safe(skb, next, head, list) {
5021 			skb_list_del_init(skb);
5022 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5023 		}
5024 }
5025 
5026 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5027 {
5028 	/* Fast-path assumptions:
5029 	 * - There is no RX handler.
5030 	 * - Only one packet_type matches.
5031 	 * If either of these fails, we will end up doing some per-packet
5032 	 * processing in-line, then handling the 'last ptype' for the whole
5033 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5034 	 * because the 'last ptype' must be constant across the sublist, and all
5035 	 * other ptypes are handled per-packet.
5036 	 */
5037 	/* Current (common) ptype of sublist */
5038 	struct packet_type *pt_curr = NULL;
5039 	/* Current (common) orig_dev of sublist */
5040 	struct net_device *od_curr = NULL;
5041 	struct list_head sublist;
5042 	struct sk_buff *skb, *next;
5043 
5044 	INIT_LIST_HEAD(&sublist);
5045 	list_for_each_entry_safe(skb, next, head, list) {
5046 		struct net_device *orig_dev = skb->dev;
5047 		struct packet_type *pt_prev = NULL;
5048 
5049 		skb_list_del_init(skb);
5050 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5051 		if (!pt_prev)
5052 			continue;
5053 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5054 			/* dispatch old sublist */
5055 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5056 			/* start new sublist */
5057 			INIT_LIST_HEAD(&sublist);
5058 			pt_curr = pt_prev;
5059 			od_curr = orig_dev;
5060 		}
5061 		list_add_tail(&skb->list, &sublist);
5062 	}
5063 
5064 	/* dispatch final sublist */
5065 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5066 }
5067 
5068 static int __netif_receive_skb(struct sk_buff *skb)
5069 {
5070 	int ret;
5071 
5072 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5073 		unsigned int noreclaim_flag;
5074 
5075 		/*
5076 		 * PFMEMALLOC skbs are special, they should
5077 		 * - be delivered to SOCK_MEMALLOC sockets only
5078 		 * - stay away from userspace
5079 		 * - have bounded memory usage
5080 		 *
5081 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5082 		 * context down to all allocation sites.
5083 		 */
5084 		noreclaim_flag = memalloc_noreclaim_save();
5085 		ret = __netif_receive_skb_one_core(skb, true);
5086 		memalloc_noreclaim_restore(noreclaim_flag);
5087 	} else
5088 		ret = __netif_receive_skb_one_core(skb, false);
5089 
5090 	return ret;
5091 }
5092 
5093 static void __netif_receive_skb_list(struct list_head *head)
5094 {
5095 	unsigned long noreclaim_flag = 0;
5096 	struct sk_buff *skb, *next;
5097 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5098 
5099 	list_for_each_entry_safe(skb, next, head, list) {
5100 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5101 			struct list_head sublist;
5102 
5103 			/* Handle the previous sublist */
5104 			list_cut_before(&sublist, head, &skb->list);
5105 			if (!list_empty(&sublist))
5106 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5107 			pfmemalloc = !pfmemalloc;
5108 			/* See comments in __netif_receive_skb */
5109 			if (pfmemalloc)
5110 				noreclaim_flag = memalloc_noreclaim_save();
5111 			else
5112 				memalloc_noreclaim_restore(noreclaim_flag);
5113 		}
5114 	}
5115 	/* Handle the remaining sublist */
5116 	if (!list_empty(head))
5117 		__netif_receive_skb_list_core(head, pfmemalloc);
5118 	/* Restore pflags */
5119 	if (pfmemalloc)
5120 		memalloc_noreclaim_restore(noreclaim_flag);
5121 }
5122 
5123 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5124 {
5125 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5126 	struct bpf_prog *new = xdp->prog;
5127 	int ret = 0;
5128 
5129 	switch (xdp->command) {
5130 	case XDP_SETUP_PROG:
5131 		rcu_assign_pointer(dev->xdp_prog, new);
5132 		if (old)
5133 			bpf_prog_put(old);
5134 
5135 		if (old && !new) {
5136 			static_branch_dec(&generic_xdp_needed_key);
5137 		} else if (new && !old) {
5138 			static_branch_inc(&generic_xdp_needed_key);
5139 			dev_disable_lro(dev);
5140 			dev_disable_gro_hw(dev);
5141 		}
5142 		break;
5143 
5144 	case XDP_QUERY_PROG:
5145 		xdp->prog_id = old ? old->aux->id : 0;
5146 		break;
5147 
5148 	default:
5149 		ret = -EINVAL;
5150 		break;
5151 	}
5152 
5153 	return ret;
5154 }
5155 
5156 static int netif_receive_skb_internal(struct sk_buff *skb)
5157 {
5158 	int ret;
5159 
5160 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5161 
5162 	if (skb_defer_rx_timestamp(skb))
5163 		return NET_RX_SUCCESS;
5164 
5165 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5166 		int ret;
5167 
5168 		preempt_disable();
5169 		rcu_read_lock();
5170 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5171 		rcu_read_unlock();
5172 		preempt_enable();
5173 
5174 		if (ret != XDP_PASS)
5175 			return NET_RX_DROP;
5176 	}
5177 
5178 	rcu_read_lock();
5179 #ifdef CONFIG_RPS
5180 	if (static_branch_unlikely(&rps_needed)) {
5181 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5182 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5183 
5184 		if (cpu >= 0) {
5185 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5186 			rcu_read_unlock();
5187 			return ret;
5188 		}
5189 	}
5190 #endif
5191 	ret = __netif_receive_skb(skb);
5192 	rcu_read_unlock();
5193 	return ret;
5194 }
5195 
5196 static void netif_receive_skb_list_internal(struct list_head *head)
5197 {
5198 	struct bpf_prog *xdp_prog = NULL;
5199 	struct sk_buff *skb, *next;
5200 	struct list_head sublist;
5201 
5202 	INIT_LIST_HEAD(&sublist);
5203 	list_for_each_entry_safe(skb, next, head, list) {
5204 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5205 		skb_list_del_init(skb);
5206 		if (!skb_defer_rx_timestamp(skb))
5207 			list_add_tail(&skb->list, &sublist);
5208 	}
5209 	list_splice_init(&sublist, head);
5210 
5211 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5212 		preempt_disable();
5213 		rcu_read_lock();
5214 		list_for_each_entry_safe(skb, next, head, list) {
5215 			xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5216 			skb_list_del_init(skb);
5217 			if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5218 				list_add_tail(&skb->list, &sublist);
5219 		}
5220 		rcu_read_unlock();
5221 		preempt_enable();
5222 		/* Put passed packets back on main list */
5223 		list_splice_init(&sublist, head);
5224 	}
5225 
5226 	rcu_read_lock();
5227 #ifdef CONFIG_RPS
5228 	if (static_branch_unlikely(&rps_needed)) {
5229 		list_for_each_entry_safe(skb, next, head, list) {
5230 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5231 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5232 
5233 			if (cpu >= 0) {
5234 				/* Will be handled, remove from list */
5235 				skb_list_del_init(skb);
5236 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5237 			}
5238 		}
5239 	}
5240 #endif
5241 	__netif_receive_skb_list(head);
5242 	rcu_read_unlock();
5243 }
5244 
5245 /**
5246  *	netif_receive_skb - process receive buffer from network
5247  *	@skb: buffer to process
5248  *
5249  *	netif_receive_skb() is the main receive data processing function.
5250  *	It always succeeds. The buffer may be dropped during processing
5251  *	for congestion control or by the protocol layers.
5252  *
5253  *	This function may only be called from softirq context and interrupts
5254  *	should be enabled.
5255  *
5256  *	Return values (usually ignored):
5257  *	NET_RX_SUCCESS: no congestion
5258  *	NET_RX_DROP: packet was dropped
5259  */
5260 int netif_receive_skb(struct sk_buff *skb)
5261 {
5262 	int ret;
5263 
5264 	trace_netif_receive_skb_entry(skb);
5265 
5266 	ret = netif_receive_skb_internal(skb);
5267 	trace_netif_receive_skb_exit(ret);
5268 
5269 	return ret;
5270 }
5271 EXPORT_SYMBOL(netif_receive_skb);
5272 
5273 /**
5274  *	netif_receive_skb_list - process many receive buffers from network
5275  *	@head: list of skbs to process.
5276  *
5277  *	Since return value of netif_receive_skb() is normally ignored, and
5278  *	wouldn't be meaningful for a list, this function returns void.
5279  *
5280  *	This function may only be called from softirq context and interrupts
5281  *	should be enabled.
5282  */
5283 void netif_receive_skb_list(struct list_head *head)
5284 {
5285 	struct sk_buff *skb;
5286 
5287 	if (list_empty(head))
5288 		return;
5289 	if (trace_netif_receive_skb_list_entry_enabled()) {
5290 		list_for_each_entry(skb, head, list)
5291 			trace_netif_receive_skb_list_entry(skb);
5292 	}
5293 	netif_receive_skb_list_internal(head);
5294 	trace_netif_receive_skb_list_exit(0);
5295 }
5296 EXPORT_SYMBOL(netif_receive_skb_list);
5297 
5298 DEFINE_PER_CPU(struct work_struct, flush_works);
5299 
5300 /* Network device is going away, flush any packets still pending */
5301 static void flush_backlog(struct work_struct *work)
5302 {
5303 	struct sk_buff *skb, *tmp;
5304 	struct softnet_data *sd;
5305 
5306 	local_bh_disable();
5307 	sd = this_cpu_ptr(&softnet_data);
5308 
5309 	local_irq_disable();
5310 	rps_lock(sd);
5311 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5312 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5313 			__skb_unlink(skb, &sd->input_pkt_queue);
5314 			kfree_skb(skb);
5315 			input_queue_head_incr(sd);
5316 		}
5317 	}
5318 	rps_unlock(sd);
5319 	local_irq_enable();
5320 
5321 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5322 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5323 			__skb_unlink(skb, &sd->process_queue);
5324 			kfree_skb(skb);
5325 			input_queue_head_incr(sd);
5326 		}
5327 	}
5328 	local_bh_enable();
5329 }
5330 
5331 static void flush_all_backlogs(void)
5332 {
5333 	unsigned int cpu;
5334 
5335 	get_online_cpus();
5336 
5337 	for_each_online_cpu(cpu)
5338 		queue_work_on(cpu, system_highpri_wq,
5339 			      per_cpu_ptr(&flush_works, cpu));
5340 
5341 	for_each_online_cpu(cpu)
5342 		flush_work(per_cpu_ptr(&flush_works, cpu));
5343 
5344 	put_online_cpus();
5345 }
5346 
5347 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5348 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5349 static int napi_gro_complete(struct sk_buff *skb)
5350 {
5351 	struct packet_offload *ptype;
5352 	__be16 type = skb->protocol;
5353 	struct list_head *head = &offload_base;
5354 	int err = -ENOENT;
5355 
5356 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5357 
5358 	if (NAPI_GRO_CB(skb)->count == 1) {
5359 		skb_shinfo(skb)->gso_size = 0;
5360 		goto out;
5361 	}
5362 
5363 	rcu_read_lock();
5364 	list_for_each_entry_rcu(ptype, head, list) {
5365 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5366 			continue;
5367 
5368 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5369 					 ipv6_gro_complete, inet_gro_complete,
5370 					 skb, 0);
5371 		break;
5372 	}
5373 	rcu_read_unlock();
5374 
5375 	if (err) {
5376 		WARN_ON(&ptype->list == head);
5377 		kfree_skb(skb);
5378 		return NET_RX_SUCCESS;
5379 	}
5380 
5381 out:
5382 	return netif_receive_skb_internal(skb);
5383 }
5384 
5385 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5386 				   bool flush_old)
5387 {
5388 	struct list_head *head = &napi->gro_hash[index].list;
5389 	struct sk_buff *skb, *p;
5390 
5391 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5392 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5393 			return;
5394 		skb_list_del_init(skb);
5395 		napi_gro_complete(skb);
5396 		napi->gro_hash[index].count--;
5397 	}
5398 
5399 	if (!napi->gro_hash[index].count)
5400 		__clear_bit(index, &napi->gro_bitmask);
5401 }
5402 
5403 /* napi->gro_hash[].list contains packets ordered by age.
5404  * youngest packets at the head of it.
5405  * Complete skbs in reverse order to reduce latencies.
5406  */
5407 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5408 {
5409 	unsigned long bitmask = napi->gro_bitmask;
5410 	unsigned int i, base = ~0U;
5411 
5412 	while ((i = ffs(bitmask)) != 0) {
5413 		bitmask >>= i;
5414 		base += i;
5415 		__napi_gro_flush_chain(napi, base, flush_old);
5416 	}
5417 }
5418 EXPORT_SYMBOL(napi_gro_flush);
5419 
5420 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5421 					  struct sk_buff *skb)
5422 {
5423 	unsigned int maclen = skb->dev->hard_header_len;
5424 	u32 hash = skb_get_hash_raw(skb);
5425 	struct list_head *head;
5426 	struct sk_buff *p;
5427 
5428 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5429 	list_for_each_entry(p, head, list) {
5430 		unsigned long diffs;
5431 
5432 		NAPI_GRO_CB(p)->flush = 0;
5433 
5434 		if (hash != skb_get_hash_raw(p)) {
5435 			NAPI_GRO_CB(p)->same_flow = 0;
5436 			continue;
5437 		}
5438 
5439 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5440 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5441 		if (skb_vlan_tag_present(p))
5442 			diffs |= p->vlan_tci ^ skb->vlan_tci;
5443 		diffs |= skb_metadata_dst_cmp(p, skb);
5444 		diffs |= skb_metadata_differs(p, skb);
5445 		if (maclen == ETH_HLEN)
5446 			diffs |= compare_ether_header(skb_mac_header(p),
5447 						      skb_mac_header(skb));
5448 		else if (!diffs)
5449 			diffs = memcmp(skb_mac_header(p),
5450 				       skb_mac_header(skb),
5451 				       maclen);
5452 		NAPI_GRO_CB(p)->same_flow = !diffs;
5453 	}
5454 
5455 	return head;
5456 }
5457 
5458 static void skb_gro_reset_offset(struct sk_buff *skb)
5459 {
5460 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5461 	const skb_frag_t *frag0 = &pinfo->frags[0];
5462 
5463 	NAPI_GRO_CB(skb)->data_offset = 0;
5464 	NAPI_GRO_CB(skb)->frag0 = NULL;
5465 	NAPI_GRO_CB(skb)->frag0_len = 0;
5466 
5467 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5468 	    pinfo->nr_frags &&
5469 	    !PageHighMem(skb_frag_page(frag0))) {
5470 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5471 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5472 						    skb_frag_size(frag0),
5473 						    skb->end - skb->tail);
5474 	}
5475 }
5476 
5477 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5478 {
5479 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5480 
5481 	BUG_ON(skb->end - skb->tail < grow);
5482 
5483 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5484 
5485 	skb->data_len -= grow;
5486 	skb->tail += grow;
5487 
5488 	pinfo->frags[0].page_offset += grow;
5489 	skb_frag_size_sub(&pinfo->frags[0], grow);
5490 
5491 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5492 		skb_frag_unref(skb, 0);
5493 		memmove(pinfo->frags, pinfo->frags + 1,
5494 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5495 	}
5496 }
5497 
5498 static void gro_flush_oldest(struct list_head *head)
5499 {
5500 	struct sk_buff *oldest;
5501 
5502 	oldest = list_last_entry(head, struct sk_buff, list);
5503 
5504 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5505 	 * impossible.
5506 	 */
5507 	if (WARN_ON_ONCE(!oldest))
5508 		return;
5509 
5510 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5511 	 * SKB to the chain.
5512 	 */
5513 	skb_list_del_init(oldest);
5514 	napi_gro_complete(oldest);
5515 }
5516 
5517 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5518 							   struct sk_buff *));
5519 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5520 							   struct sk_buff *));
5521 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5522 {
5523 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5524 	struct list_head *head = &offload_base;
5525 	struct packet_offload *ptype;
5526 	__be16 type = skb->protocol;
5527 	struct list_head *gro_head;
5528 	struct sk_buff *pp = NULL;
5529 	enum gro_result ret;
5530 	int same_flow;
5531 	int grow;
5532 
5533 	if (netif_elide_gro(skb->dev))
5534 		goto normal;
5535 
5536 	gro_head = gro_list_prepare(napi, skb);
5537 
5538 	rcu_read_lock();
5539 	list_for_each_entry_rcu(ptype, head, list) {
5540 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5541 			continue;
5542 
5543 		skb_set_network_header(skb, skb_gro_offset(skb));
5544 		skb_reset_mac_len(skb);
5545 		NAPI_GRO_CB(skb)->same_flow = 0;
5546 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5547 		NAPI_GRO_CB(skb)->free = 0;
5548 		NAPI_GRO_CB(skb)->encap_mark = 0;
5549 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5550 		NAPI_GRO_CB(skb)->is_fou = 0;
5551 		NAPI_GRO_CB(skb)->is_atomic = 1;
5552 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5553 
5554 		/* Setup for GRO checksum validation */
5555 		switch (skb->ip_summed) {
5556 		case CHECKSUM_COMPLETE:
5557 			NAPI_GRO_CB(skb)->csum = skb->csum;
5558 			NAPI_GRO_CB(skb)->csum_valid = 1;
5559 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5560 			break;
5561 		case CHECKSUM_UNNECESSARY:
5562 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5563 			NAPI_GRO_CB(skb)->csum_valid = 0;
5564 			break;
5565 		default:
5566 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5567 			NAPI_GRO_CB(skb)->csum_valid = 0;
5568 		}
5569 
5570 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5571 					ipv6_gro_receive, inet_gro_receive,
5572 					gro_head, skb);
5573 		break;
5574 	}
5575 	rcu_read_unlock();
5576 
5577 	if (&ptype->list == head)
5578 		goto normal;
5579 
5580 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5581 		ret = GRO_CONSUMED;
5582 		goto ok;
5583 	}
5584 
5585 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5586 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5587 
5588 	if (pp) {
5589 		skb_list_del_init(pp);
5590 		napi_gro_complete(pp);
5591 		napi->gro_hash[hash].count--;
5592 	}
5593 
5594 	if (same_flow)
5595 		goto ok;
5596 
5597 	if (NAPI_GRO_CB(skb)->flush)
5598 		goto normal;
5599 
5600 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5601 		gro_flush_oldest(gro_head);
5602 	} else {
5603 		napi->gro_hash[hash].count++;
5604 	}
5605 	NAPI_GRO_CB(skb)->count = 1;
5606 	NAPI_GRO_CB(skb)->age = jiffies;
5607 	NAPI_GRO_CB(skb)->last = skb;
5608 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5609 	list_add(&skb->list, gro_head);
5610 	ret = GRO_HELD;
5611 
5612 pull:
5613 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5614 	if (grow > 0)
5615 		gro_pull_from_frag0(skb, grow);
5616 ok:
5617 	if (napi->gro_hash[hash].count) {
5618 		if (!test_bit(hash, &napi->gro_bitmask))
5619 			__set_bit(hash, &napi->gro_bitmask);
5620 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5621 		__clear_bit(hash, &napi->gro_bitmask);
5622 	}
5623 
5624 	return ret;
5625 
5626 normal:
5627 	ret = GRO_NORMAL;
5628 	goto pull;
5629 }
5630 
5631 struct packet_offload *gro_find_receive_by_type(__be16 type)
5632 {
5633 	struct list_head *offload_head = &offload_base;
5634 	struct packet_offload *ptype;
5635 
5636 	list_for_each_entry_rcu(ptype, offload_head, list) {
5637 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5638 			continue;
5639 		return ptype;
5640 	}
5641 	return NULL;
5642 }
5643 EXPORT_SYMBOL(gro_find_receive_by_type);
5644 
5645 struct packet_offload *gro_find_complete_by_type(__be16 type)
5646 {
5647 	struct list_head *offload_head = &offload_base;
5648 	struct packet_offload *ptype;
5649 
5650 	list_for_each_entry_rcu(ptype, offload_head, list) {
5651 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5652 			continue;
5653 		return ptype;
5654 	}
5655 	return NULL;
5656 }
5657 EXPORT_SYMBOL(gro_find_complete_by_type);
5658 
5659 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5660 {
5661 	skb_dst_drop(skb);
5662 	secpath_reset(skb);
5663 	kmem_cache_free(skbuff_head_cache, skb);
5664 }
5665 
5666 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5667 {
5668 	switch (ret) {
5669 	case GRO_NORMAL:
5670 		if (netif_receive_skb_internal(skb))
5671 			ret = GRO_DROP;
5672 		break;
5673 
5674 	case GRO_DROP:
5675 		kfree_skb(skb);
5676 		break;
5677 
5678 	case GRO_MERGED_FREE:
5679 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5680 			napi_skb_free_stolen_head(skb);
5681 		else
5682 			__kfree_skb(skb);
5683 		break;
5684 
5685 	case GRO_HELD:
5686 	case GRO_MERGED:
5687 	case GRO_CONSUMED:
5688 		break;
5689 	}
5690 
5691 	return ret;
5692 }
5693 
5694 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5695 {
5696 	gro_result_t ret;
5697 
5698 	skb_mark_napi_id(skb, napi);
5699 	trace_napi_gro_receive_entry(skb);
5700 
5701 	skb_gro_reset_offset(skb);
5702 
5703 	ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5704 	trace_napi_gro_receive_exit(ret);
5705 
5706 	return ret;
5707 }
5708 EXPORT_SYMBOL(napi_gro_receive);
5709 
5710 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5711 {
5712 	if (unlikely(skb->pfmemalloc)) {
5713 		consume_skb(skb);
5714 		return;
5715 	}
5716 	__skb_pull(skb, skb_headlen(skb));
5717 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5718 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5719 	__vlan_hwaccel_clear_tag(skb);
5720 	skb->dev = napi->dev;
5721 	skb->skb_iif = 0;
5722 
5723 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
5724 	skb->pkt_type = PACKET_HOST;
5725 
5726 	skb->encapsulation = 0;
5727 	skb_shinfo(skb)->gso_type = 0;
5728 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5729 	secpath_reset(skb);
5730 
5731 	napi->skb = skb;
5732 }
5733 
5734 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5735 {
5736 	struct sk_buff *skb = napi->skb;
5737 
5738 	if (!skb) {
5739 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5740 		if (skb) {
5741 			napi->skb = skb;
5742 			skb_mark_napi_id(skb, napi);
5743 		}
5744 	}
5745 	return skb;
5746 }
5747 EXPORT_SYMBOL(napi_get_frags);
5748 
5749 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5750 				      struct sk_buff *skb,
5751 				      gro_result_t ret)
5752 {
5753 	switch (ret) {
5754 	case GRO_NORMAL:
5755 	case GRO_HELD:
5756 		__skb_push(skb, ETH_HLEN);
5757 		skb->protocol = eth_type_trans(skb, skb->dev);
5758 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5759 			ret = GRO_DROP;
5760 		break;
5761 
5762 	case GRO_DROP:
5763 		napi_reuse_skb(napi, skb);
5764 		break;
5765 
5766 	case GRO_MERGED_FREE:
5767 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5768 			napi_skb_free_stolen_head(skb);
5769 		else
5770 			napi_reuse_skb(napi, skb);
5771 		break;
5772 
5773 	case GRO_MERGED:
5774 	case GRO_CONSUMED:
5775 		break;
5776 	}
5777 
5778 	return ret;
5779 }
5780 
5781 /* Upper GRO stack assumes network header starts at gro_offset=0
5782  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5783  * We copy ethernet header into skb->data to have a common layout.
5784  */
5785 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5786 {
5787 	struct sk_buff *skb = napi->skb;
5788 	const struct ethhdr *eth;
5789 	unsigned int hlen = sizeof(*eth);
5790 
5791 	napi->skb = NULL;
5792 
5793 	skb_reset_mac_header(skb);
5794 	skb_gro_reset_offset(skb);
5795 
5796 	eth = skb_gro_header_fast(skb, 0);
5797 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5798 		eth = skb_gro_header_slow(skb, hlen, 0);
5799 		if (unlikely(!eth)) {
5800 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5801 					     __func__, napi->dev->name);
5802 			napi_reuse_skb(napi, skb);
5803 			return NULL;
5804 		}
5805 	} else {
5806 		gro_pull_from_frag0(skb, hlen);
5807 		NAPI_GRO_CB(skb)->frag0 += hlen;
5808 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5809 	}
5810 	__skb_pull(skb, hlen);
5811 
5812 	/*
5813 	 * This works because the only protocols we care about don't require
5814 	 * special handling.
5815 	 * We'll fix it up properly in napi_frags_finish()
5816 	 */
5817 	skb->protocol = eth->h_proto;
5818 
5819 	return skb;
5820 }
5821 
5822 gro_result_t napi_gro_frags(struct napi_struct *napi)
5823 {
5824 	gro_result_t ret;
5825 	struct sk_buff *skb = napi_frags_skb(napi);
5826 
5827 	if (!skb)
5828 		return GRO_DROP;
5829 
5830 	trace_napi_gro_frags_entry(skb);
5831 
5832 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5833 	trace_napi_gro_frags_exit(ret);
5834 
5835 	return ret;
5836 }
5837 EXPORT_SYMBOL(napi_gro_frags);
5838 
5839 /* Compute the checksum from gro_offset and return the folded value
5840  * after adding in any pseudo checksum.
5841  */
5842 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5843 {
5844 	__wsum wsum;
5845 	__sum16 sum;
5846 
5847 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5848 
5849 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5850 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5851 	/* See comments in __skb_checksum_complete(). */
5852 	if (likely(!sum)) {
5853 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5854 		    !skb->csum_complete_sw)
5855 			netdev_rx_csum_fault(skb->dev, skb);
5856 	}
5857 
5858 	NAPI_GRO_CB(skb)->csum = wsum;
5859 	NAPI_GRO_CB(skb)->csum_valid = 1;
5860 
5861 	return sum;
5862 }
5863 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5864 
5865 static void net_rps_send_ipi(struct softnet_data *remsd)
5866 {
5867 #ifdef CONFIG_RPS
5868 	while (remsd) {
5869 		struct softnet_data *next = remsd->rps_ipi_next;
5870 
5871 		if (cpu_online(remsd->cpu))
5872 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5873 		remsd = next;
5874 	}
5875 #endif
5876 }
5877 
5878 /*
5879  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5880  * Note: called with local irq disabled, but exits with local irq enabled.
5881  */
5882 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5883 {
5884 #ifdef CONFIG_RPS
5885 	struct softnet_data *remsd = sd->rps_ipi_list;
5886 
5887 	if (remsd) {
5888 		sd->rps_ipi_list = NULL;
5889 
5890 		local_irq_enable();
5891 
5892 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5893 		net_rps_send_ipi(remsd);
5894 	} else
5895 #endif
5896 		local_irq_enable();
5897 }
5898 
5899 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5900 {
5901 #ifdef CONFIG_RPS
5902 	return sd->rps_ipi_list != NULL;
5903 #else
5904 	return false;
5905 #endif
5906 }
5907 
5908 static int process_backlog(struct napi_struct *napi, int quota)
5909 {
5910 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5911 	bool again = true;
5912 	int work = 0;
5913 
5914 	/* Check if we have pending ipi, its better to send them now,
5915 	 * not waiting net_rx_action() end.
5916 	 */
5917 	if (sd_has_rps_ipi_waiting(sd)) {
5918 		local_irq_disable();
5919 		net_rps_action_and_irq_enable(sd);
5920 	}
5921 
5922 	napi->weight = dev_rx_weight;
5923 	while (again) {
5924 		struct sk_buff *skb;
5925 
5926 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5927 			rcu_read_lock();
5928 			__netif_receive_skb(skb);
5929 			rcu_read_unlock();
5930 			input_queue_head_incr(sd);
5931 			if (++work >= quota)
5932 				return work;
5933 
5934 		}
5935 
5936 		local_irq_disable();
5937 		rps_lock(sd);
5938 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5939 			/*
5940 			 * Inline a custom version of __napi_complete().
5941 			 * only current cpu owns and manipulates this napi,
5942 			 * and NAPI_STATE_SCHED is the only possible flag set
5943 			 * on backlog.
5944 			 * We can use a plain write instead of clear_bit(),
5945 			 * and we dont need an smp_mb() memory barrier.
5946 			 */
5947 			napi->state = 0;
5948 			again = false;
5949 		} else {
5950 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5951 						   &sd->process_queue);
5952 		}
5953 		rps_unlock(sd);
5954 		local_irq_enable();
5955 	}
5956 
5957 	return work;
5958 }
5959 
5960 /**
5961  * __napi_schedule - schedule for receive
5962  * @n: entry to schedule
5963  *
5964  * The entry's receive function will be scheduled to run.
5965  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5966  */
5967 void __napi_schedule(struct napi_struct *n)
5968 {
5969 	unsigned long flags;
5970 
5971 	local_irq_save(flags);
5972 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5973 	local_irq_restore(flags);
5974 }
5975 EXPORT_SYMBOL(__napi_schedule);
5976 
5977 /**
5978  *	napi_schedule_prep - check if napi can be scheduled
5979  *	@n: napi context
5980  *
5981  * Test if NAPI routine is already running, and if not mark
5982  * it as running.  This is used as a condition variable
5983  * insure only one NAPI poll instance runs.  We also make
5984  * sure there is no pending NAPI disable.
5985  */
5986 bool napi_schedule_prep(struct napi_struct *n)
5987 {
5988 	unsigned long val, new;
5989 
5990 	do {
5991 		val = READ_ONCE(n->state);
5992 		if (unlikely(val & NAPIF_STATE_DISABLE))
5993 			return false;
5994 		new = val | NAPIF_STATE_SCHED;
5995 
5996 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5997 		 * This was suggested by Alexander Duyck, as compiler
5998 		 * emits better code than :
5999 		 * if (val & NAPIF_STATE_SCHED)
6000 		 *     new |= NAPIF_STATE_MISSED;
6001 		 */
6002 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6003 						   NAPIF_STATE_MISSED;
6004 	} while (cmpxchg(&n->state, val, new) != val);
6005 
6006 	return !(val & NAPIF_STATE_SCHED);
6007 }
6008 EXPORT_SYMBOL(napi_schedule_prep);
6009 
6010 /**
6011  * __napi_schedule_irqoff - schedule for receive
6012  * @n: entry to schedule
6013  *
6014  * Variant of __napi_schedule() assuming hard irqs are masked
6015  */
6016 void __napi_schedule_irqoff(struct napi_struct *n)
6017 {
6018 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6019 }
6020 EXPORT_SYMBOL(__napi_schedule_irqoff);
6021 
6022 bool napi_complete_done(struct napi_struct *n, int work_done)
6023 {
6024 	unsigned long flags, val, new;
6025 
6026 	/*
6027 	 * 1) Don't let napi dequeue from the cpu poll list
6028 	 *    just in case its running on a different cpu.
6029 	 * 2) If we are busy polling, do nothing here, we have
6030 	 *    the guarantee we will be called later.
6031 	 */
6032 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6033 				 NAPIF_STATE_IN_BUSY_POLL)))
6034 		return false;
6035 
6036 	if (n->gro_bitmask) {
6037 		unsigned long timeout = 0;
6038 
6039 		if (work_done)
6040 			timeout = n->dev->gro_flush_timeout;
6041 
6042 		/* When the NAPI instance uses a timeout and keeps postponing
6043 		 * it, we need to bound somehow the time packets are kept in
6044 		 * the GRO layer
6045 		 */
6046 		napi_gro_flush(n, !!timeout);
6047 		if (timeout)
6048 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
6049 				      HRTIMER_MODE_REL_PINNED);
6050 	}
6051 	if (unlikely(!list_empty(&n->poll_list))) {
6052 		/* If n->poll_list is not empty, we need to mask irqs */
6053 		local_irq_save(flags);
6054 		list_del_init(&n->poll_list);
6055 		local_irq_restore(flags);
6056 	}
6057 
6058 	do {
6059 		val = READ_ONCE(n->state);
6060 
6061 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6062 
6063 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6064 
6065 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6066 		 * because we will call napi->poll() one more time.
6067 		 * This C code was suggested by Alexander Duyck to help gcc.
6068 		 */
6069 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6070 						    NAPIF_STATE_SCHED;
6071 	} while (cmpxchg(&n->state, val, new) != val);
6072 
6073 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6074 		__napi_schedule(n);
6075 		return false;
6076 	}
6077 
6078 	return true;
6079 }
6080 EXPORT_SYMBOL(napi_complete_done);
6081 
6082 /* must be called under rcu_read_lock(), as we dont take a reference */
6083 static struct napi_struct *napi_by_id(unsigned int napi_id)
6084 {
6085 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6086 	struct napi_struct *napi;
6087 
6088 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6089 		if (napi->napi_id == napi_id)
6090 			return napi;
6091 
6092 	return NULL;
6093 }
6094 
6095 #if defined(CONFIG_NET_RX_BUSY_POLL)
6096 
6097 #define BUSY_POLL_BUDGET 8
6098 
6099 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6100 {
6101 	int rc;
6102 
6103 	/* Busy polling means there is a high chance device driver hard irq
6104 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6105 	 * set in napi_schedule_prep().
6106 	 * Since we are about to call napi->poll() once more, we can safely
6107 	 * clear NAPI_STATE_MISSED.
6108 	 *
6109 	 * Note: x86 could use a single "lock and ..." instruction
6110 	 * to perform these two clear_bit()
6111 	 */
6112 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6113 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6114 
6115 	local_bh_disable();
6116 
6117 	/* All we really want here is to re-enable device interrupts.
6118 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6119 	 */
6120 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6121 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6122 	netpoll_poll_unlock(have_poll_lock);
6123 	if (rc == BUSY_POLL_BUDGET)
6124 		__napi_schedule(napi);
6125 	local_bh_enable();
6126 }
6127 
6128 void napi_busy_loop(unsigned int napi_id,
6129 		    bool (*loop_end)(void *, unsigned long),
6130 		    void *loop_end_arg)
6131 {
6132 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6133 	int (*napi_poll)(struct napi_struct *napi, int budget);
6134 	void *have_poll_lock = NULL;
6135 	struct napi_struct *napi;
6136 
6137 restart:
6138 	napi_poll = NULL;
6139 
6140 	rcu_read_lock();
6141 
6142 	napi = napi_by_id(napi_id);
6143 	if (!napi)
6144 		goto out;
6145 
6146 	preempt_disable();
6147 	for (;;) {
6148 		int work = 0;
6149 
6150 		local_bh_disable();
6151 		if (!napi_poll) {
6152 			unsigned long val = READ_ONCE(napi->state);
6153 
6154 			/* If multiple threads are competing for this napi,
6155 			 * we avoid dirtying napi->state as much as we can.
6156 			 */
6157 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6158 				   NAPIF_STATE_IN_BUSY_POLL))
6159 				goto count;
6160 			if (cmpxchg(&napi->state, val,
6161 				    val | NAPIF_STATE_IN_BUSY_POLL |
6162 					  NAPIF_STATE_SCHED) != val)
6163 				goto count;
6164 			have_poll_lock = netpoll_poll_lock(napi);
6165 			napi_poll = napi->poll;
6166 		}
6167 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6168 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6169 count:
6170 		if (work > 0)
6171 			__NET_ADD_STATS(dev_net(napi->dev),
6172 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6173 		local_bh_enable();
6174 
6175 		if (!loop_end || loop_end(loop_end_arg, start_time))
6176 			break;
6177 
6178 		if (unlikely(need_resched())) {
6179 			if (napi_poll)
6180 				busy_poll_stop(napi, have_poll_lock);
6181 			preempt_enable();
6182 			rcu_read_unlock();
6183 			cond_resched();
6184 			if (loop_end(loop_end_arg, start_time))
6185 				return;
6186 			goto restart;
6187 		}
6188 		cpu_relax();
6189 	}
6190 	if (napi_poll)
6191 		busy_poll_stop(napi, have_poll_lock);
6192 	preempt_enable();
6193 out:
6194 	rcu_read_unlock();
6195 }
6196 EXPORT_SYMBOL(napi_busy_loop);
6197 
6198 #endif /* CONFIG_NET_RX_BUSY_POLL */
6199 
6200 static void napi_hash_add(struct napi_struct *napi)
6201 {
6202 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6203 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6204 		return;
6205 
6206 	spin_lock(&napi_hash_lock);
6207 
6208 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6209 	do {
6210 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6211 			napi_gen_id = MIN_NAPI_ID;
6212 	} while (napi_by_id(napi_gen_id));
6213 	napi->napi_id = napi_gen_id;
6214 
6215 	hlist_add_head_rcu(&napi->napi_hash_node,
6216 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6217 
6218 	spin_unlock(&napi_hash_lock);
6219 }
6220 
6221 /* Warning : caller is responsible to make sure rcu grace period
6222  * is respected before freeing memory containing @napi
6223  */
6224 bool napi_hash_del(struct napi_struct *napi)
6225 {
6226 	bool rcu_sync_needed = false;
6227 
6228 	spin_lock(&napi_hash_lock);
6229 
6230 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6231 		rcu_sync_needed = true;
6232 		hlist_del_rcu(&napi->napi_hash_node);
6233 	}
6234 	spin_unlock(&napi_hash_lock);
6235 	return rcu_sync_needed;
6236 }
6237 EXPORT_SYMBOL_GPL(napi_hash_del);
6238 
6239 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6240 {
6241 	struct napi_struct *napi;
6242 
6243 	napi = container_of(timer, struct napi_struct, timer);
6244 
6245 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6246 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6247 	 */
6248 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6249 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6250 		__napi_schedule_irqoff(napi);
6251 
6252 	return HRTIMER_NORESTART;
6253 }
6254 
6255 static void init_gro_hash(struct napi_struct *napi)
6256 {
6257 	int i;
6258 
6259 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6260 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6261 		napi->gro_hash[i].count = 0;
6262 	}
6263 	napi->gro_bitmask = 0;
6264 }
6265 
6266 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6267 		    int (*poll)(struct napi_struct *, int), int weight)
6268 {
6269 	INIT_LIST_HEAD(&napi->poll_list);
6270 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6271 	napi->timer.function = napi_watchdog;
6272 	init_gro_hash(napi);
6273 	napi->skb = NULL;
6274 	napi->poll = poll;
6275 	if (weight > NAPI_POLL_WEIGHT)
6276 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6277 				weight);
6278 	napi->weight = weight;
6279 	list_add(&napi->dev_list, &dev->napi_list);
6280 	napi->dev = dev;
6281 #ifdef CONFIG_NETPOLL
6282 	napi->poll_owner = -1;
6283 #endif
6284 	set_bit(NAPI_STATE_SCHED, &napi->state);
6285 	napi_hash_add(napi);
6286 }
6287 EXPORT_SYMBOL(netif_napi_add);
6288 
6289 void napi_disable(struct napi_struct *n)
6290 {
6291 	might_sleep();
6292 	set_bit(NAPI_STATE_DISABLE, &n->state);
6293 
6294 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6295 		msleep(1);
6296 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6297 		msleep(1);
6298 
6299 	hrtimer_cancel(&n->timer);
6300 
6301 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6302 }
6303 EXPORT_SYMBOL(napi_disable);
6304 
6305 static void flush_gro_hash(struct napi_struct *napi)
6306 {
6307 	int i;
6308 
6309 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6310 		struct sk_buff *skb, *n;
6311 
6312 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6313 			kfree_skb(skb);
6314 		napi->gro_hash[i].count = 0;
6315 	}
6316 }
6317 
6318 /* Must be called in process context */
6319 void netif_napi_del(struct napi_struct *napi)
6320 {
6321 	might_sleep();
6322 	if (napi_hash_del(napi))
6323 		synchronize_net();
6324 	list_del_init(&napi->dev_list);
6325 	napi_free_frags(napi);
6326 
6327 	flush_gro_hash(napi);
6328 	napi->gro_bitmask = 0;
6329 }
6330 EXPORT_SYMBOL(netif_napi_del);
6331 
6332 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6333 {
6334 	void *have;
6335 	int work, weight;
6336 
6337 	list_del_init(&n->poll_list);
6338 
6339 	have = netpoll_poll_lock(n);
6340 
6341 	weight = n->weight;
6342 
6343 	/* This NAPI_STATE_SCHED test is for avoiding a race
6344 	 * with netpoll's poll_napi().  Only the entity which
6345 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6346 	 * actually make the ->poll() call.  Therefore we avoid
6347 	 * accidentally calling ->poll() when NAPI is not scheduled.
6348 	 */
6349 	work = 0;
6350 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6351 		work = n->poll(n, weight);
6352 		trace_napi_poll(n, work, weight);
6353 	}
6354 
6355 	WARN_ON_ONCE(work > weight);
6356 
6357 	if (likely(work < weight))
6358 		goto out_unlock;
6359 
6360 	/* Drivers must not modify the NAPI state if they
6361 	 * consume the entire weight.  In such cases this code
6362 	 * still "owns" the NAPI instance and therefore can
6363 	 * move the instance around on the list at-will.
6364 	 */
6365 	if (unlikely(napi_disable_pending(n))) {
6366 		napi_complete(n);
6367 		goto out_unlock;
6368 	}
6369 
6370 	if (n->gro_bitmask) {
6371 		/* flush too old packets
6372 		 * If HZ < 1000, flush all packets.
6373 		 */
6374 		napi_gro_flush(n, HZ >= 1000);
6375 	}
6376 
6377 	/* Some drivers may have called napi_schedule
6378 	 * prior to exhausting their budget.
6379 	 */
6380 	if (unlikely(!list_empty(&n->poll_list))) {
6381 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6382 			     n->dev ? n->dev->name : "backlog");
6383 		goto out_unlock;
6384 	}
6385 
6386 	list_add_tail(&n->poll_list, repoll);
6387 
6388 out_unlock:
6389 	netpoll_poll_unlock(have);
6390 
6391 	return work;
6392 }
6393 
6394 static __latent_entropy void net_rx_action(struct softirq_action *h)
6395 {
6396 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6397 	unsigned long time_limit = jiffies +
6398 		usecs_to_jiffies(netdev_budget_usecs);
6399 	int budget = netdev_budget;
6400 	LIST_HEAD(list);
6401 	LIST_HEAD(repoll);
6402 
6403 	local_irq_disable();
6404 	list_splice_init(&sd->poll_list, &list);
6405 	local_irq_enable();
6406 
6407 	for (;;) {
6408 		struct napi_struct *n;
6409 
6410 		if (list_empty(&list)) {
6411 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6412 				goto out;
6413 			break;
6414 		}
6415 
6416 		n = list_first_entry(&list, struct napi_struct, poll_list);
6417 		budget -= napi_poll(n, &repoll);
6418 
6419 		/* If softirq window is exhausted then punt.
6420 		 * Allow this to run for 2 jiffies since which will allow
6421 		 * an average latency of 1.5/HZ.
6422 		 */
6423 		if (unlikely(budget <= 0 ||
6424 			     time_after_eq(jiffies, time_limit))) {
6425 			sd->time_squeeze++;
6426 			break;
6427 		}
6428 	}
6429 
6430 	local_irq_disable();
6431 
6432 	list_splice_tail_init(&sd->poll_list, &list);
6433 	list_splice_tail(&repoll, &list);
6434 	list_splice(&list, &sd->poll_list);
6435 	if (!list_empty(&sd->poll_list))
6436 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6437 
6438 	net_rps_action_and_irq_enable(sd);
6439 out:
6440 	__kfree_skb_flush();
6441 }
6442 
6443 struct netdev_adjacent {
6444 	struct net_device *dev;
6445 
6446 	/* upper master flag, there can only be one master device per list */
6447 	bool master;
6448 
6449 	/* counter for the number of times this device was added to us */
6450 	u16 ref_nr;
6451 
6452 	/* private field for the users */
6453 	void *private;
6454 
6455 	struct list_head list;
6456 	struct rcu_head rcu;
6457 };
6458 
6459 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6460 						 struct list_head *adj_list)
6461 {
6462 	struct netdev_adjacent *adj;
6463 
6464 	list_for_each_entry(adj, adj_list, list) {
6465 		if (adj->dev == adj_dev)
6466 			return adj;
6467 	}
6468 	return NULL;
6469 }
6470 
6471 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6472 {
6473 	struct net_device *dev = data;
6474 
6475 	return upper_dev == dev;
6476 }
6477 
6478 /**
6479  * netdev_has_upper_dev - Check if device is linked to an upper device
6480  * @dev: device
6481  * @upper_dev: upper device to check
6482  *
6483  * Find out if a device is linked to specified upper device and return true
6484  * in case it is. Note that this checks only immediate upper device,
6485  * not through a complete stack of devices. The caller must hold the RTNL lock.
6486  */
6487 bool netdev_has_upper_dev(struct net_device *dev,
6488 			  struct net_device *upper_dev)
6489 {
6490 	ASSERT_RTNL();
6491 
6492 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6493 					     upper_dev);
6494 }
6495 EXPORT_SYMBOL(netdev_has_upper_dev);
6496 
6497 /**
6498  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6499  * @dev: device
6500  * @upper_dev: upper device to check
6501  *
6502  * Find out if a device is linked to specified upper device and return true
6503  * in case it is. Note that this checks the entire upper device chain.
6504  * The caller must hold rcu lock.
6505  */
6506 
6507 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6508 				  struct net_device *upper_dev)
6509 {
6510 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6511 					       upper_dev);
6512 }
6513 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6514 
6515 /**
6516  * netdev_has_any_upper_dev - Check if device is linked to some device
6517  * @dev: device
6518  *
6519  * Find out if a device is linked to an upper device and return true in case
6520  * it is. The caller must hold the RTNL lock.
6521  */
6522 bool netdev_has_any_upper_dev(struct net_device *dev)
6523 {
6524 	ASSERT_RTNL();
6525 
6526 	return !list_empty(&dev->adj_list.upper);
6527 }
6528 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6529 
6530 /**
6531  * netdev_master_upper_dev_get - Get master upper device
6532  * @dev: device
6533  *
6534  * Find a master upper device and return pointer to it or NULL in case
6535  * it's not there. The caller must hold the RTNL lock.
6536  */
6537 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6538 {
6539 	struct netdev_adjacent *upper;
6540 
6541 	ASSERT_RTNL();
6542 
6543 	if (list_empty(&dev->adj_list.upper))
6544 		return NULL;
6545 
6546 	upper = list_first_entry(&dev->adj_list.upper,
6547 				 struct netdev_adjacent, list);
6548 	if (likely(upper->master))
6549 		return upper->dev;
6550 	return NULL;
6551 }
6552 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6553 
6554 /**
6555  * netdev_has_any_lower_dev - Check if device is linked to some device
6556  * @dev: device
6557  *
6558  * Find out if a device is linked to a lower device and return true in case
6559  * it is. The caller must hold the RTNL lock.
6560  */
6561 static bool netdev_has_any_lower_dev(struct net_device *dev)
6562 {
6563 	ASSERT_RTNL();
6564 
6565 	return !list_empty(&dev->adj_list.lower);
6566 }
6567 
6568 void *netdev_adjacent_get_private(struct list_head *adj_list)
6569 {
6570 	struct netdev_adjacent *adj;
6571 
6572 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6573 
6574 	return adj->private;
6575 }
6576 EXPORT_SYMBOL(netdev_adjacent_get_private);
6577 
6578 /**
6579  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6580  * @dev: device
6581  * @iter: list_head ** of the current position
6582  *
6583  * Gets the next device from the dev's upper list, starting from iter
6584  * position. The caller must hold RCU read lock.
6585  */
6586 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6587 						 struct list_head **iter)
6588 {
6589 	struct netdev_adjacent *upper;
6590 
6591 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6592 
6593 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6594 
6595 	if (&upper->list == &dev->adj_list.upper)
6596 		return NULL;
6597 
6598 	*iter = &upper->list;
6599 
6600 	return upper->dev;
6601 }
6602 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6603 
6604 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6605 						    struct list_head **iter)
6606 {
6607 	struct netdev_adjacent *upper;
6608 
6609 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6610 
6611 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6612 
6613 	if (&upper->list == &dev->adj_list.upper)
6614 		return NULL;
6615 
6616 	*iter = &upper->list;
6617 
6618 	return upper->dev;
6619 }
6620 
6621 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6622 				  int (*fn)(struct net_device *dev,
6623 					    void *data),
6624 				  void *data)
6625 {
6626 	struct net_device *udev;
6627 	struct list_head *iter;
6628 	int ret;
6629 
6630 	for (iter = &dev->adj_list.upper,
6631 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
6632 	     udev;
6633 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6634 		/* first is the upper device itself */
6635 		ret = fn(udev, data);
6636 		if (ret)
6637 			return ret;
6638 
6639 		/* then look at all of its upper devices */
6640 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6641 		if (ret)
6642 			return ret;
6643 	}
6644 
6645 	return 0;
6646 }
6647 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6648 
6649 /**
6650  * netdev_lower_get_next_private - Get the next ->private from the
6651  *				   lower neighbour list
6652  * @dev: device
6653  * @iter: list_head ** of the current position
6654  *
6655  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6656  * list, starting from iter position. The caller must hold either hold the
6657  * RTNL lock or its own locking that guarantees that the neighbour lower
6658  * list will remain unchanged.
6659  */
6660 void *netdev_lower_get_next_private(struct net_device *dev,
6661 				    struct list_head **iter)
6662 {
6663 	struct netdev_adjacent *lower;
6664 
6665 	lower = list_entry(*iter, struct netdev_adjacent, list);
6666 
6667 	if (&lower->list == &dev->adj_list.lower)
6668 		return NULL;
6669 
6670 	*iter = lower->list.next;
6671 
6672 	return lower->private;
6673 }
6674 EXPORT_SYMBOL(netdev_lower_get_next_private);
6675 
6676 /**
6677  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6678  *				       lower neighbour list, RCU
6679  *				       variant
6680  * @dev: device
6681  * @iter: list_head ** of the current position
6682  *
6683  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6684  * list, starting from iter position. The caller must hold RCU read lock.
6685  */
6686 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6687 					struct list_head **iter)
6688 {
6689 	struct netdev_adjacent *lower;
6690 
6691 	WARN_ON_ONCE(!rcu_read_lock_held());
6692 
6693 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6694 
6695 	if (&lower->list == &dev->adj_list.lower)
6696 		return NULL;
6697 
6698 	*iter = &lower->list;
6699 
6700 	return lower->private;
6701 }
6702 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6703 
6704 /**
6705  * netdev_lower_get_next - Get the next device from the lower neighbour
6706  *                         list
6707  * @dev: device
6708  * @iter: list_head ** of the current position
6709  *
6710  * Gets the next netdev_adjacent from the dev's lower neighbour
6711  * list, starting from iter position. The caller must hold RTNL lock or
6712  * its own locking that guarantees that the neighbour lower
6713  * list will remain unchanged.
6714  */
6715 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6716 {
6717 	struct netdev_adjacent *lower;
6718 
6719 	lower = list_entry(*iter, struct netdev_adjacent, list);
6720 
6721 	if (&lower->list == &dev->adj_list.lower)
6722 		return NULL;
6723 
6724 	*iter = lower->list.next;
6725 
6726 	return lower->dev;
6727 }
6728 EXPORT_SYMBOL(netdev_lower_get_next);
6729 
6730 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6731 						struct list_head **iter)
6732 {
6733 	struct netdev_adjacent *lower;
6734 
6735 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6736 
6737 	if (&lower->list == &dev->adj_list.lower)
6738 		return NULL;
6739 
6740 	*iter = &lower->list;
6741 
6742 	return lower->dev;
6743 }
6744 
6745 int netdev_walk_all_lower_dev(struct net_device *dev,
6746 			      int (*fn)(struct net_device *dev,
6747 					void *data),
6748 			      void *data)
6749 {
6750 	struct net_device *ldev;
6751 	struct list_head *iter;
6752 	int ret;
6753 
6754 	for (iter = &dev->adj_list.lower,
6755 	     ldev = netdev_next_lower_dev(dev, &iter);
6756 	     ldev;
6757 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6758 		/* first is the lower device itself */
6759 		ret = fn(ldev, data);
6760 		if (ret)
6761 			return ret;
6762 
6763 		/* then look at all of its lower devices */
6764 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6765 		if (ret)
6766 			return ret;
6767 	}
6768 
6769 	return 0;
6770 }
6771 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6772 
6773 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6774 						    struct list_head **iter)
6775 {
6776 	struct netdev_adjacent *lower;
6777 
6778 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6779 	if (&lower->list == &dev->adj_list.lower)
6780 		return NULL;
6781 
6782 	*iter = &lower->list;
6783 
6784 	return lower->dev;
6785 }
6786 
6787 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6788 				  int (*fn)(struct net_device *dev,
6789 					    void *data),
6790 				  void *data)
6791 {
6792 	struct net_device *ldev;
6793 	struct list_head *iter;
6794 	int ret;
6795 
6796 	for (iter = &dev->adj_list.lower,
6797 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6798 	     ldev;
6799 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6800 		/* first is the lower device itself */
6801 		ret = fn(ldev, data);
6802 		if (ret)
6803 			return ret;
6804 
6805 		/* then look at all of its lower devices */
6806 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6807 		if (ret)
6808 			return ret;
6809 	}
6810 
6811 	return 0;
6812 }
6813 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6814 
6815 /**
6816  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6817  *				       lower neighbour list, RCU
6818  *				       variant
6819  * @dev: device
6820  *
6821  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6822  * list. The caller must hold RCU read lock.
6823  */
6824 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6825 {
6826 	struct netdev_adjacent *lower;
6827 
6828 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6829 			struct netdev_adjacent, list);
6830 	if (lower)
6831 		return lower->private;
6832 	return NULL;
6833 }
6834 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6835 
6836 /**
6837  * netdev_master_upper_dev_get_rcu - Get master upper device
6838  * @dev: device
6839  *
6840  * Find a master upper device and return pointer to it or NULL in case
6841  * it's not there. The caller must hold the RCU read lock.
6842  */
6843 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6844 {
6845 	struct netdev_adjacent *upper;
6846 
6847 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6848 				       struct netdev_adjacent, list);
6849 	if (upper && likely(upper->master))
6850 		return upper->dev;
6851 	return NULL;
6852 }
6853 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6854 
6855 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6856 			      struct net_device *adj_dev,
6857 			      struct list_head *dev_list)
6858 {
6859 	char linkname[IFNAMSIZ+7];
6860 
6861 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6862 		"upper_%s" : "lower_%s", adj_dev->name);
6863 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6864 				 linkname);
6865 }
6866 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6867 			       char *name,
6868 			       struct list_head *dev_list)
6869 {
6870 	char linkname[IFNAMSIZ+7];
6871 
6872 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6873 		"upper_%s" : "lower_%s", name);
6874 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6875 }
6876 
6877 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6878 						 struct net_device *adj_dev,
6879 						 struct list_head *dev_list)
6880 {
6881 	return (dev_list == &dev->adj_list.upper ||
6882 		dev_list == &dev->adj_list.lower) &&
6883 		net_eq(dev_net(dev), dev_net(adj_dev));
6884 }
6885 
6886 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6887 					struct net_device *adj_dev,
6888 					struct list_head *dev_list,
6889 					void *private, bool master)
6890 {
6891 	struct netdev_adjacent *adj;
6892 	int ret;
6893 
6894 	adj = __netdev_find_adj(adj_dev, dev_list);
6895 
6896 	if (adj) {
6897 		adj->ref_nr += 1;
6898 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6899 			 dev->name, adj_dev->name, adj->ref_nr);
6900 
6901 		return 0;
6902 	}
6903 
6904 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6905 	if (!adj)
6906 		return -ENOMEM;
6907 
6908 	adj->dev = adj_dev;
6909 	adj->master = master;
6910 	adj->ref_nr = 1;
6911 	adj->private = private;
6912 	dev_hold(adj_dev);
6913 
6914 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6915 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6916 
6917 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6918 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6919 		if (ret)
6920 			goto free_adj;
6921 	}
6922 
6923 	/* Ensure that master link is always the first item in list. */
6924 	if (master) {
6925 		ret = sysfs_create_link(&(dev->dev.kobj),
6926 					&(adj_dev->dev.kobj), "master");
6927 		if (ret)
6928 			goto remove_symlinks;
6929 
6930 		list_add_rcu(&adj->list, dev_list);
6931 	} else {
6932 		list_add_tail_rcu(&adj->list, dev_list);
6933 	}
6934 
6935 	return 0;
6936 
6937 remove_symlinks:
6938 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6939 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6940 free_adj:
6941 	kfree(adj);
6942 	dev_put(adj_dev);
6943 
6944 	return ret;
6945 }
6946 
6947 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6948 					 struct net_device *adj_dev,
6949 					 u16 ref_nr,
6950 					 struct list_head *dev_list)
6951 {
6952 	struct netdev_adjacent *adj;
6953 
6954 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6955 		 dev->name, adj_dev->name, ref_nr);
6956 
6957 	adj = __netdev_find_adj(adj_dev, dev_list);
6958 
6959 	if (!adj) {
6960 		pr_err("Adjacency does not exist for device %s from %s\n",
6961 		       dev->name, adj_dev->name);
6962 		WARN_ON(1);
6963 		return;
6964 	}
6965 
6966 	if (adj->ref_nr > ref_nr) {
6967 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6968 			 dev->name, adj_dev->name, ref_nr,
6969 			 adj->ref_nr - ref_nr);
6970 		adj->ref_nr -= ref_nr;
6971 		return;
6972 	}
6973 
6974 	if (adj->master)
6975 		sysfs_remove_link(&(dev->dev.kobj), "master");
6976 
6977 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6978 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6979 
6980 	list_del_rcu(&adj->list);
6981 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6982 		 adj_dev->name, dev->name, adj_dev->name);
6983 	dev_put(adj_dev);
6984 	kfree_rcu(adj, rcu);
6985 }
6986 
6987 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6988 					    struct net_device *upper_dev,
6989 					    struct list_head *up_list,
6990 					    struct list_head *down_list,
6991 					    void *private, bool master)
6992 {
6993 	int ret;
6994 
6995 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6996 					   private, master);
6997 	if (ret)
6998 		return ret;
6999 
7000 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7001 					   private, false);
7002 	if (ret) {
7003 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7004 		return ret;
7005 	}
7006 
7007 	return 0;
7008 }
7009 
7010 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7011 					       struct net_device *upper_dev,
7012 					       u16 ref_nr,
7013 					       struct list_head *up_list,
7014 					       struct list_head *down_list)
7015 {
7016 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7017 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7018 }
7019 
7020 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7021 						struct net_device *upper_dev,
7022 						void *private, bool master)
7023 {
7024 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7025 						&dev->adj_list.upper,
7026 						&upper_dev->adj_list.lower,
7027 						private, master);
7028 }
7029 
7030 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7031 						   struct net_device *upper_dev)
7032 {
7033 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7034 					   &dev->adj_list.upper,
7035 					   &upper_dev->adj_list.lower);
7036 }
7037 
7038 static int __netdev_upper_dev_link(struct net_device *dev,
7039 				   struct net_device *upper_dev, bool master,
7040 				   void *upper_priv, void *upper_info,
7041 				   struct netlink_ext_ack *extack)
7042 {
7043 	struct netdev_notifier_changeupper_info changeupper_info = {
7044 		.info = {
7045 			.dev = dev,
7046 			.extack = extack,
7047 		},
7048 		.upper_dev = upper_dev,
7049 		.master = master,
7050 		.linking = true,
7051 		.upper_info = upper_info,
7052 	};
7053 	struct net_device *master_dev;
7054 	int ret = 0;
7055 
7056 	ASSERT_RTNL();
7057 
7058 	if (dev == upper_dev)
7059 		return -EBUSY;
7060 
7061 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7062 	if (netdev_has_upper_dev(upper_dev, dev))
7063 		return -EBUSY;
7064 
7065 	if (!master) {
7066 		if (netdev_has_upper_dev(dev, upper_dev))
7067 			return -EEXIST;
7068 	} else {
7069 		master_dev = netdev_master_upper_dev_get(dev);
7070 		if (master_dev)
7071 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7072 	}
7073 
7074 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7075 					    &changeupper_info.info);
7076 	ret = notifier_to_errno(ret);
7077 	if (ret)
7078 		return ret;
7079 
7080 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7081 						   master);
7082 	if (ret)
7083 		return ret;
7084 
7085 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7086 					    &changeupper_info.info);
7087 	ret = notifier_to_errno(ret);
7088 	if (ret)
7089 		goto rollback;
7090 
7091 	return 0;
7092 
7093 rollback:
7094 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7095 
7096 	return ret;
7097 }
7098 
7099 /**
7100  * netdev_upper_dev_link - Add a link to the upper device
7101  * @dev: device
7102  * @upper_dev: new upper device
7103  * @extack: netlink extended ack
7104  *
7105  * Adds a link to device which is upper to this one. The caller must hold
7106  * the RTNL lock. On a failure a negative errno code is returned.
7107  * On success the reference counts are adjusted and the function
7108  * returns zero.
7109  */
7110 int netdev_upper_dev_link(struct net_device *dev,
7111 			  struct net_device *upper_dev,
7112 			  struct netlink_ext_ack *extack)
7113 {
7114 	return __netdev_upper_dev_link(dev, upper_dev, false,
7115 				       NULL, NULL, extack);
7116 }
7117 EXPORT_SYMBOL(netdev_upper_dev_link);
7118 
7119 /**
7120  * netdev_master_upper_dev_link - Add a master link to the upper device
7121  * @dev: device
7122  * @upper_dev: new upper device
7123  * @upper_priv: upper device private
7124  * @upper_info: upper info to be passed down via notifier
7125  * @extack: netlink extended ack
7126  *
7127  * Adds a link to device which is upper to this one. In this case, only
7128  * one master upper device can be linked, although other non-master devices
7129  * might be linked as well. The caller must hold the RTNL lock.
7130  * On a failure a negative errno code is returned. On success the reference
7131  * counts are adjusted and the function returns zero.
7132  */
7133 int netdev_master_upper_dev_link(struct net_device *dev,
7134 				 struct net_device *upper_dev,
7135 				 void *upper_priv, void *upper_info,
7136 				 struct netlink_ext_ack *extack)
7137 {
7138 	return __netdev_upper_dev_link(dev, upper_dev, true,
7139 				       upper_priv, upper_info, extack);
7140 }
7141 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7142 
7143 /**
7144  * netdev_upper_dev_unlink - Removes a link to upper device
7145  * @dev: device
7146  * @upper_dev: new upper device
7147  *
7148  * Removes a link to device which is upper to this one. The caller must hold
7149  * the RTNL lock.
7150  */
7151 void netdev_upper_dev_unlink(struct net_device *dev,
7152 			     struct net_device *upper_dev)
7153 {
7154 	struct netdev_notifier_changeupper_info changeupper_info = {
7155 		.info = {
7156 			.dev = dev,
7157 		},
7158 		.upper_dev = upper_dev,
7159 		.linking = false,
7160 	};
7161 
7162 	ASSERT_RTNL();
7163 
7164 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7165 
7166 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7167 				      &changeupper_info.info);
7168 
7169 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7170 
7171 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7172 				      &changeupper_info.info);
7173 }
7174 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7175 
7176 /**
7177  * netdev_bonding_info_change - Dispatch event about slave change
7178  * @dev: device
7179  * @bonding_info: info to dispatch
7180  *
7181  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7182  * The caller must hold the RTNL lock.
7183  */
7184 void netdev_bonding_info_change(struct net_device *dev,
7185 				struct netdev_bonding_info *bonding_info)
7186 {
7187 	struct netdev_notifier_bonding_info info = {
7188 		.info.dev = dev,
7189 	};
7190 
7191 	memcpy(&info.bonding_info, bonding_info,
7192 	       sizeof(struct netdev_bonding_info));
7193 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7194 				      &info.info);
7195 }
7196 EXPORT_SYMBOL(netdev_bonding_info_change);
7197 
7198 static void netdev_adjacent_add_links(struct net_device *dev)
7199 {
7200 	struct netdev_adjacent *iter;
7201 
7202 	struct net *net = dev_net(dev);
7203 
7204 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7205 		if (!net_eq(net, dev_net(iter->dev)))
7206 			continue;
7207 		netdev_adjacent_sysfs_add(iter->dev, dev,
7208 					  &iter->dev->adj_list.lower);
7209 		netdev_adjacent_sysfs_add(dev, iter->dev,
7210 					  &dev->adj_list.upper);
7211 	}
7212 
7213 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7214 		if (!net_eq(net, dev_net(iter->dev)))
7215 			continue;
7216 		netdev_adjacent_sysfs_add(iter->dev, dev,
7217 					  &iter->dev->adj_list.upper);
7218 		netdev_adjacent_sysfs_add(dev, iter->dev,
7219 					  &dev->adj_list.lower);
7220 	}
7221 }
7222 
7223 static void netdev_adjacent_del_links(struct net_device *dev)
7224 {
7225 	struct netdev_adjacent *iter;
7226 
7227 	struct net *net = dev_net(dev);
7228 
7229 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7230 		if (!net_eq(net, dev_net(iter->dev)))
7231 			continue;
7232 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7233 					  &iter->dev->adj_list.lower);
7234 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7235 					  &dev->adj_list.upper);
7236 	}
7237 
7238 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7239 		if (!net_eq(net, dev_net(iter->dev)))
7240 			continue;
7241 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7242 					  &iter->dev->adj_list.upper);
7243 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7244 					  &dev->adj_list.lower);
7245 	}
7246 }
7247 
7248 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7249 {
7250 	struct netdev_adjacent *iter;
7251 
7252 	struct net *net = dev_net(dev);
7253 
7254 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7255 		if (!net_eq(net, dev_net(iter->dev)))
7256 			continue;
7257 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7258 					  &iter->dev->adj_list.lower);
7259 		netdev_adjacent_sysfs_add(iter->dev, dev,
7260 					  &iter->dev->adj_list.lower);
7261 	}
7262 
7263 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7264 		if (!net_eq(net, dev_net(iter->dev)))
7265 			continue;
7266 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7267 					  &iter->dev->adj_list.upper);
7268 		netdev_adjacent_sysfs_add(iter->dev, dev,
7269 					  &iter->dev->adj_list.upper);
7270 	}
7271 }
7272 
7273 void *netdev_lower_dev_get_private(struct net_device *dev,
7274 				   struct net_device *lower_dev)
7275 {
7276 	struct netdev_adjacent *lower;
7277 
7278 	if (!lower_dev)
7279 		return NULL;
7280 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7281 	if (!lower)
7282 		return NULL;
7283 
7284 	return lower->private;
7285 }
7286 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7287 
7288 
7289 int dev_get_nest_level(struct net_device *dev)
7290 {
7291 	struct net_device *lower = NULL;
7292 	struct list_head *iter;
7293 	int max_nest = -1;
7294 	int nest;
7295 
7296 	ASSERT_RTNL();
7297 
7298 	netdev_for_each_lower_dev(dev, lower, iter) {
7299 		nest = dev_get_nest_level(lower);
7300 		if (max_nest < nest)
7301 			max_nest = nest;
7302 	}
7303 
7304 	return max_nest + 1;
7305 }
7306 EXPORT_SYMBOL(dev_get_nest_level);
7307 
7308 /**
7309  * netdev_lower_change - Dispatch event about lower device state change
7310  * @lower_dev: device
7311  * @lower_state_info: state to dispatch
7312  *
7313  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7314  * The caller must hold the RTNL lock.
7315  */
7316 void netdev_lower_state_changed(struct net_device *lower_dev,
7317 				void *lower_state_info)
7318 {
7319 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7320 		.info.dev = lower_dev,
7321 	};
7322 
7323 	ASSERT_RTNL();
7324 	changelowerstate_info.lower_state_info = lower_state_info;
7325 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7326 				      &changelowerstate_info.info);
7327 }
7328 EXPORT_SYMBOL(netdev_lower_state_changed);
7329 
7330 static void dev_change_rx_flags(struct net_device *dev, int flags)
7331 {
7332 	const struct net_device_ops *ops = dev->netdev_ops;
7333 
7334 	if (ops->ndo_change_rx_flags)
7335 		ops->ndo_change_rx_flags(dev, flags);
7336 }
7337 
7338 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7339 {
7340 	unsigned int old_flags = dev->flags;
7341 	kuid_t uid;
7342 	kgid_t gid;
7343 
7344 	ASSERT_RTNL();
7345 
7346 	dev->flags |= IFF_PROMISC;
7347 	dev->promiscuity += inc;
7348 	if (dev->promiscuity == 0) {
7349 		/*
7350 		 * Avoid overflow.
7351 		 * If inc causes overflow, untouch promisc and return error.
7352 		 */
7353 		if (inc < 0)
7354 			dev->flags &= ~IFF_PROMISC;
7355 		else {
7356 			dev->promiscuity -= inc;
7357 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7358 				dev->name);
7359 			return -EOVERFLOW;
7360 		}
7361 	}
7362 	if (dev->flags != old_flags) {
7363 		pr_info("device %s %s promiscuous mode\n",
7364 			dev->name,
7365 			dev->flags & IFF_PROMISC ? "entered" : "left");
7366 		if (audit_enabled) {
7367 			current_uid_gid(&uid, &gid);
7368 			audit_log(audit_context(), GFP_ATOMIC,
7369 				  AUDIT_ANOM_PROMISCUOUS,
7370 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7371 				  dev->name, (dev->flags & IFF_PROMISC),
7372 				  (old_flags & IFF_PROMISC),
7373 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7374 				  from_kuid(&init_user_ns, uid),
7375 				  from_kgid(&init_user_ns, gid),
7376 				  audit_get_sessionid(current));
7377 		}
7378 
7379 		dev_change_rx_flags(dev, IFF_PROMISC);
7380 	}
7381 	if (notify)
7382 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7383 	return 0;
7384 }
7385 
7386 /**
7387  *	dev_set_promiscuity	- update promiscuity count on a device
7388  *	@dev: device
7389  *	@inc: modifier
7390  *
7391  *	Add or remove promiscuity from a device. While the count in the device
7392  *	remains above zero the interface remains promiscuous. Once it hits zero
7393  *	the device reverts back to normal filtering operation. A negative inc
7394  *	value is used to drop promiscuity on the device.
7395  *	Return 0 if successful or a negative errno code on error.
7396  */
7397 int dev_set_promiscuity(struct net_device *dev, int inc)
7398 {
7399 	unsigned int old_flags = dev->flags;
7400 	int err;
7401 
7402 	err = __dev_set_promiscuity(dev, inc, true);
7403 	if (err < 0)
7404 		return err;
7405 	if (dev->flags != old_flags)
7406 		dev_set_rx_mode(dev);
7407 	return err;
7408 }
7409 EXPORT_SYMBOL(dev_set_promiscuity);
7410 
7411 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7412 {
7413 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7414 
7415 	ASSERT_RTNL();
7416 
7417 	dev->flags |= IFF_ALLMULTI;
7418 	dev->allmulti += inc;
7419 	if (dev->allmulti == 0) {
7420 		/*
7421 		 * Avoid overflow.
7422 		 * If inc causes overflow, untouch allmulti and return error.
7423 		 */
7424 		if (inc < 0)
7425 			dev->flags &= ~IFF_ALLMULTI;
7426 		else {
7427 			dev->allmulti -= inc;
7428 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7429 				dev->name);
7430 			return -EOVERFLOW;
7431 		}
7432 	}
7433 	if (dev->flags ^ old_flags) {
7434 		dev_change_rx_flags(dev, IFF_ALLMULTI);
7435 		dev_set_rx_mode(dev);
7436 		if (notify)
7437 			__dev_notify_flags(dev, old_flags,
7438 					   dev->gflags ^ old_gflags);
7439 	}
7440 	return 0;
7441 }
7442 
7443 /**
7444  *	dev_set_allmulti	- update allmulti count on a device
7445  *	@dev: device
7446  *	@inc: modifier
7447  *
7448  *	Add or remove reception of all multicast frames to a device. While the
7449  *	count in the device remains above zero the interface remains listening
7450  *	to all interfaces. Once it hits zero the device reverts back to normal
7451  *	filtering operation. A negative @inc value is used to drop the counter
7452  *	when releasing a resource needing all multicasts.
7453  *	Return 0 if successful or a negative errno code on error.
7454  */
7455 
7456 int dev_set_allmulti(struct net_device *dev, int inc)
7457 {
7458 	return __dev_set_allmulti(dev, inc, true);
7459 }
7460 EXPORT_SYMBOL(dev_set_allmulti);
7461 
7462 /*
7463  *	Upload unicast and multicast address lists to device and
7464  *	configure RX filtering. When the device doesn't support unicast
7465  *	filtering it is put in promiscuous mode while unicast addresses
7466  *	are present.
7467  */
7468 void __dev_set_rx_mode(struct net_device *dev)
7469 {
7470 	const struct net_device_ops *ops = dev->netdev_ops;
7471 
7472 	/* dev_open will call this function so the list will stay sane. */
7473 	if (!(dev->flags&IFF_UP))
7474 		return;
7475 
7476 	if (!netif_device_present(dev))
7477 		return;
7478 
7479 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7480 		/* Unicast addresses changes may only happen under the rtnl,
7481 		 * therefore calling __dev_set_promiscuity here is safe.
7482 		 */
7483 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7484 			__dev_set_promiscuity(dev, 1, false);
7485 			dev->uc_promisc = true;
7486 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7487 			__dev_set_promiscuity(dev, -1, false);
7488 			dev->uc_promisc = false;
7489 		}
7490 	}
7491 
7492 	if (ops->ndo_set_rx_mode)
7493 		ops->ndo_set_rx_mode(dev);
7494 }
7495 
7496 void dev_set_rx_mode(struct net_device *dev)
7497 {
7498 	netif_addr_lock_bh(dev);
7499 	__dev_set_rx_mode(dev);
7500 	netif_addr_unlock_bh(dev);
7501 }
7502 
7503 /**
7504  *	dev_get_flags - get flags reported to userspace
7505  *	@dev: device
7506  *
7507  *	Get the combination of flag bits exported through APIs to userspace.
7508  */
7509 unsigned int dev_get_flags(const struct net_device *dev)
7510 {
7511 	unsigned int flags;
7512 
7513 	flags = (dev->flags & ~(IFF_PROMISC |
7514 				IFF_ALLMULTI |
7515 				IFF_RUNNING |
7516 				IFF_LOWER_UP |
7517 				IFF_DORMANT)) |
7518 		(dev->gflags & (IFF_PROMISC |
7519 				IFF_ALLMULTI));
7520 
7521 	if (netif_running(dev)) {
7522 		if (netif_oper_up(dev))
7523 			flags |= IFF_RUNNING;
7524 		if (netif_carrier_ok(dev))
7525 			flags |= IFF_LOWER_UP;
7526 		if (netif_dormant(dev))
7527 			flags |= IFF_DORMANT;
7528 	}
7529 
7530 	return flags;
7531 }
7532 EXPORT_SYMBOL(dev_get_flags);
7533 
7534 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7535 		       struct netlink_ext_ack *extack)
7536 {
7537 	unsigned int old_flags = dev->flags;
7538 	int ret;
7539 
7540 	ASSERT_RTNL();
7541 
7542 	/*
7543 	 *	Set the flags on our device.
7544 	 */
7545 
7546 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7547 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7548 			       IFF_AUTOMEDIA)) |
7549 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7550 				    IFF_ALLMULTI));
7551 
7552 	/*
7553 	 *	Load in the correct multicast list now the flags have changed.
7554 	 */
7555 
7556 	if ((old_flags ^ flags) & IFF_MULTICAST)
7557 		dev_change_rx_flags(dev, IFF_MULTICAST);
7558 
7559 	dev_set_rx_mode(dev);
7560 
7561 	/*
7562 	 *	Have we downed the interface. We handle IFF_UP ourselves
7563 	 *	according to user attempts to set it, rather than blindly
7564 	 *	setting it.
7565 	 */
7566 
7567 	ret = 0;
7568 	if ((old_flags ^ flags) & IFF_UP) {
7569 		if (old_flags & IFF_UP)
7570 			__dev_close(dev);
7571 		else
7572 			ret = __dev_open(dev, extack);
7573 	}
7574 
7575 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
7576 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
7577 		unsigned int old_flags = dev->flags;
7578 
7579 		dev->gflags ^= IFF_PROMISC;
7580 
7581 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
7582 			if (dev->flags != old_flags)
7583 				dev_set_rx_mode(dev);
7584 	}
7585 
7586 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7587 	 * is important. Some (broken) drivers set IFF_PROMISC, when
7588 	 * IFF_ALLMULTI is requested not asking us and not reporting.
7589 	 */
7590 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7591 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7592 
7593 		dev->gflags ^= IFF_ALLMULTI;
7594 		__dev_set_allmulti(dev, inc, false);
7595 	}
7596 
7597 	return ret;
7598 }
7599 
7600 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7601 			unsigned int gchanges)
7602 {
7603 	unsigned int changes = dev->flags ^ old_flags;
7604 
7605 	if (gchanges)
7606 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7607 
7608 	if (changes & IFF_UP) {
7609 		if (dev->flags & IFF_UP)
7610 			call_netdevice_notifiers(NETDEV_UP, dev);
7611 		else
7612 			call_netdevice_notifiers(NETDEV_DOWN, dev);
7613 	}
7614 
7615 	if (dev->flags & IFF_UP &&
7616 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7617 		struct netdev_notifier_change_info change_info = {
7618 			.info = {
7619 				.dev = dev,
7620 			},
7621 			.flags_changed = changes,
7622 		};
7623 
7624 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7625 	}
7626 }
7627 
7628 /**
7629  *	dev_change_flags - change device settings
7630  *	@dev: device
7631  *	@flags: device state flags
7632  *	@extack: netlink extended ack
7633  *
7634  *	Change settings on device based state flags. The flags are
7635  *	in the userspace exported format.
7636  */
7637 int dev_change_flags(struct net_device *dev, unsigned int flags,
7638 		     struct netlink_ext_ack *extack)
7639 {
7640 	int ret;
7641 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7642 
7643 	ret = __dev_change_flags(dev, flags, extack);
7644 	if (ret < 0)
7645 		return ret;
7646 
7647 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7648 	__dev_notify_flags(dev, old_flags, changes);
7649 	return ret;
7650 }
7651 EXPORT_SYMBOL(dev_change_flags);
7652 
7653 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7654 {
7655 	const struct net_device_ops *ops = dev->netdev_ops;
7656 
7657 	if (ops->ndo_change_mtu)
7658 		return ops->ndo_change_mtu(dev, new_mtu);
7659 
7660 	dev->mtu = new_mtu;
7661 	return 0;
7662 }
7663 EXPORT_SYMBOL(__dev_set_mtu);
7664 
7665 /**
7666  *	dev_set_mtu_ext - Change maximum transfer unit
7667  *	@dev: device
7668  *	@new_mtu: new transfer unit
7669  *	@extack: netlink extended ack
7670  *
7671  *	Change the maximum transfer size of the network device.
7672  */
7673 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7674 		    struct netlink_ext_ack *extack)
7675 {
7676 	int err, orig_mtu;
7677 
7678 	if (new_mtu == dev->mtu)
7679 		return 0;
7680 
7681 	/* MTU must be positive, and in range */
7682 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7683 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7684 		return -EINVAL;
7685 	}
7686 
7687 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7688 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7689 		return -EINVAL;
7690 	}
7691 
7692 	if (!netif_device_present(dev))
7693 		return -ENODEV;
7694 
7695 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7696 	err = notifier_to_errno(err);
7697 	if (err)
7698 		return err;
7699 
7700 	orig_mtu = dev->mtu;
7701 	err = __dev_set_mtu(dev, new_mtu);
7702 
7703 	if (!err) {
7704 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7705 						   orig_mtu);
7706 		err = notifier_to_errno(err);
7707 		if (err) {
7708 			/* setting mtu back and notifying everyone again,
7709 			 * so that they have a chance to revert changes.
7710 			 */
7711 			__dev_set_mtu(dev, orig_mtu);
7712 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7713 						     new_mtu);
7714 		}
7715 	}
7716 	return err;
7717 }
7718 
7719 int dev_set_mtu(struct net_device *dev, int new_mtu)
7720 {
7721 	struct netlink_ext_ack extack;
7722 	int err;
7723 
7724 	memset(&extack, 0, sizeof(extack));
7725 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
7726 	if (err && extack._msg)
7727 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7728 	return err;
7729 }
7730 EXPORT_SYMBOL(dev_set_mtu);
7731 
7732 /**
7733  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7734  *	@dev: device
7735  *	@new_len: new tx queue length
7736  */
7737 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7738 {
7739 	unsigned int orig_len = dev->tx_queue_len;
7740 	int res;
7741 
7742 	if (new_len != (unsigned int)new_len)
7743 		return -ERANGE;
7744 
7745 	if (new_len != orig_len) {
7746 		dev->tx_queue_len = new_len;
7747 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7748 		res = notifier_to_errno(res);
7749 		if (res)
7750 			goto err_rollback;
7751 		res = dev_qdisc_change_tx_queue_len(dev);
7752 		if (res)
7753 			goto err_rollback;
7754 	}
7755 
7756 	return 0;
7757 
7758 err_rollback:
7759 	netdev_err(dev, "refused to change device tx_queue_len\n");
7760 	dev->tx_queue_len = orig_len;
7761 	return res;
7762 }
7763 
7764 /**
7765  *	dev_set_group - Change group this device belongs to
7766  *	@dev: device
7767  *	@new_group: group this device should belong to
7768  */
7769 void dev_set_group(struct net_device *dev, int new_group)
7770 {
7771 	dev->group = new_group;
7772 }
7773 EXPORT_SYMBOL(dev_set_group);
7774 
7775 /**
7776  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7777  *	@dev: device
7778  *	@addr: new address
7779  *	@extack: netlink extended ack
7780  */
7781 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7782 			      struct netlink_ext_ack *extack)
7783 {
7784 	struct netdev_notifier_pre_changeaddr_info info = {
7785 		.info.dev = dev,
7786 		.info.extack = extack,
7787 		.dev_addr = addr,
7788 	};
7789 	int rc;
7790 
7791 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7792 	return notifier_to_errno(rc);
7793 }
7794 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7795 
7796 /**
7797  *	dev_set_mac_address - Change Media Access Control Address
7798  *	@dev: device
7799  *	@sa: new address
7800  *	@extack: netlink extended ack
7801  *
7802  *	Change the hardware (MAC) address of the device
7803  */
7804 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7805 			struct netlink_ext_ack *extack)
7806 {
7807 	const struct net_device_ops *ops = dev->netdev_ops;
7808 	int err;
7809 
7810 	if (!ops->ndo_set_mac_address)
7811 		return -EOPNOTSUPP;
7812 	if (sa->sa_family != dev->type)
7813 		return -EINVAL;
7814 	if (!netif_device_present(dev))
7815 		return -ENODEV;
7816 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7817 	if (err)
7818 		return err;
7819 	err = ops->ndo_set_mac_address(dev, sa);
7820 	if (err)
7821 		return err;
7822 	dev->addr_assign_type = NET_ADDR_SET;
7823 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7824 	add_device_randomness(dev->dev_addr, dev->addr_len);
7825 	return 0;
7826 }
7827 EXPORT_SYMBOL(dev_set_mac_address);
7828 
7829 /**
7830  *	dev_change_carrier - Change device carrier
7831  *	@dev: device
7832  *	@new_carrier: new value
7833  *
7834  *	Change device carrier
7835  */
7836 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7837 {
7838 	const struct net_device_ops *ops = dev->netdev_ops;
7839 
7840 	if (!ops->ndo_change_carrier)
7841 		return -EOPNOTSUPP;
7842 	if (!netif_device_present(dev))
7843 		return -ENODEV;
7844 	return ops->ndo_change_carrier(dev, new_carrier);
7845 }
7846 EXPORT_SYMBOL(dev_change_carrier);
7847 
7848 /**
7849  *	dev_get_phys_port_id - Get device physical port ID
7850  *	@dev: device
7851  *	@ppid: port ID
7852  *
7853  *	Get device physical port ID
7854  */
7855 int dev_get_phys_port_id(struct net_device *dev,
7856 			 struct netdev_phys_item_id *ppid)
7857 {
7858 	const struct net_device_ops *ops = dev->netdev_ops;
7859 
7860 	if (!ops->ndo_get_phys_port_id)
7861 		return -EOPNOTSUPP;
7862 	return ops->ndo_get_phys_port_id(dev, ppid);
7863 }
7864 EXPORT_SYMBOL(dev_get_phys_port_id);
7865 
7866 /**
7867  *	dev_get_phys_port_name - Get device physical port name
7868  *	@dev: device
7869  *	@name: port name
7870  *	@len: limit of bytes to copy to name
7871  *
7872  *	Get device physical port name
7873  */
7874 int dev_get_phys_port_name(struct net_device *dev,
7875 			   char *name, size_t len)
7876 {
7877 	const struct net_device_ops *ops = dev->netdev_ops;
7878 	int err;
7879 
7880 	if (ops->ndo_get_phys_port_name) {
7881 		err = ops->ndo_get_phys_port_name(dev, name, len);
7882 		if (err != -EOPNOTSUPP)
7883 			return err;
7884 	}
7885 	return devlink_compat_phys_port_name_get(dev, name, len);
7886 }
7887 EXPORT_SYMBOL(dev_get_phys_port_name);
7888 
7889 /**
7890  *	dev_get_port_parent_id - Get the device's port parent identifier
7891  *	@dev: network device
7892  *	@ppid: pointer to a storage for the port's parent identifier
7893  *	@recurse: allow/disallow recursion to lower devices
7894  *
7895  *	Get the devices's port parent identifier
7896  */
7897 int dev_get_port_parent_id(struct net_device *dev,
7898 			   struct netdev_phys_item_id *ppid,
7899 			   bool recurse)
7900 {
7901 	const struct net_device_ops *ops = dev->netdev_ops;
7902 	struct netdev_phys_item_id first = { };
7903 	struct net_device *lower_dev;
7904 	struct list_head *iter;
7905 	int err;
7906 
7907 	if (ops->ndo_get_port_parent_id) {
7908 		err = ops->ndo_get_port_parent_id(dev, ppid);
7909 		if (err != -EOPNOTSUPP)
7910 			return err;
7911 	}
7912 
7913 	err = devlink_compat_switch_id_get(dev, ppid);
7914 	if (!err || err != -EOPNOTSUPP)
7915 		return err;
7916 
7917 	if (!recurse)
7918 		return -EOPNOTSUPP;
7919 
7920 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
7921 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7922 		if (err)
7923 			break;
7924 		if (!first.id_len)
7925 			first = *ppid;
7926 		else if (memcmp(&first, ppid, sizeof(*ppid)))
7927 			return -ENODATA;
7928 	}
7929 
7930 	return err;
7931 }
7932 EXPORT_SYMBOL(dev_get_port_parent_id);
7933 
7934 /**
7935  *	netdev_port_same_parent_id - Indicate if two network devices have
7936  *	the same port parent identifier
7937  *	@a: first network device
7938  *	@b: second network device
7939  */
7940 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7941 {
7942 	struct netdev_phys_item_id a_id = { };
7943 	struct netdev_phys_item_id b_id = { };
7944 
7945 	if (dev_get_port_parent_id(a, &a_id, true) ||
7946 	    dev_get_port_parent_id(b, &b_id, true))
7947 		return false;
7948 
7949 	return netdev_phys_item_id_same(&a_id, &b_id);
7950 }
7951 EXPORT_SYMBOL(netdev_port_same_parent_id);
7952 
7953 /**
7954  *	dev_change_proto_down - update protocol port state information
7955  *	@dev: device
7956  *	@proto_down: new value
7957  *
7958  *	This info can be used by switch drivers to set the phys state of the
7959  *	port.
7960  */
7961 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7962 {
7963 	const struct net_device_ops *ops = dev->netdev_ops;
7964 
7965 	if (!ops->ndo_change_proto_down)
7966 		return -EOPNOTSUPP;
7967 	if (!netif_device_present(dev))
7968 		return -ENODEV;
7969 	return ops->ndo_change_proto_down(dev, proto_down);
7970 }
7971 EXPORT_SYMBOL(dev_change_proto_down);
7972 
7973 /**
7974  *	dev_change_proto_down_generic - generic implementation for
7975  * 	ndo_change_proto_down that sets carrier according to
7976  * 	proto_down.
7977  *
7978  *	@dev: device
7979  *	@proto_down: new value
7980  */
7981 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
7982 {
7983 	if (proto_down)
7984 		netif_carrier_off(dev);
7985 	else
7986 		netif_carrier_on(dev);
7987 	dev->proto_down = proto_down;
7988 	return 0;
7989 }
7990 EXPORT_SYMBOL(dev_change_proto_down_generic);
7991 
7992 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7993 		    enum bpf_netdev_command cmd)
7994 {
7995 	struct netdev_bpf xdp;
7996 
7997 	if (!bpf_op)
7998 		return 0;
7999 
8000 	memset(&xdp, 0, sizeof(xdp));
8001 	xdp.command = cmd;
8002 
8003 	/* Query must always succeed. */
8004 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8005 
8006 	return xdp.prog_id;
8007 }
8008 
8009 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8010 			   struct netlink_ext_ack *extack, u32 flags,
8011 			   struct bpf_prog *prog)
8012 {
8013 	struct netdev_bpf xdp;
8014 
8015 	memset(&xdp, 0, sizeof(xdp));
8016 	if (flags & XDP_FLAGS_HW_MODE)
8017 		xdp.command = XDP_SETUP_PROG_HW;
8018 	else
8019 		xdp.command = XDP_SETUP_PROG;
8020 	xdp.extack = extack;
8021 	xdp.flags = flags;
8022 	xdp.prog = prog;
8023 
8024 	return bpf_op(dev, &xdp);
8025 }
8026 
8027 static void dev_xdp_uninstall(struct net_device *dev)
8028 {
8029 	struct netdev_bpf xdp;
8030 	bpf_op_t ndo_bpf;
8031 
8032 	/* Remove generic XDP */
8033 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8034 
8035 	/* Remove from the driver */
8036 	ndo_bpf = dev->netdev_ops->ndo_bpf;
8037 	if (!ndo_bpf)
8038 		return;
8039 
8040 	memset(&xdp, 0, sizeof(xdp));
8041 	xdp.command = XDP_QUERY_PROG;
8042 	WARN_ON(ndo_bpf(dev, &xdp));
8043 	if (xdp.prog_id)
8044 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8045 					NULL));
8046 
8047 	/* Remove HW offload */
8048 	memset(&xdp, 0, sizeof(xdp));
8049 	xdp.command = XDP_QUERY_PROG_HW;
8050 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8051 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8052 					NULL));
8053 }
8054 
8055 /**
8056  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
8057  *	@dev: device
8058  *	@extack: netlink extended ack
8059  *	@fd: new program fd or negative value to clear
8060  *	@flags: xdp-related flags
8061  *
8062  *	Set or clear a bpf program for a device
8063  */
8064 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8065 		      int fd, u32 flags)
8066 {
8067 	const struct net_device_ops *ops = dev->netdev_ops;
8068 	enum bpf_netdev_command query;
8069 	struct bpf_prog *prog = NULL;
8070 	bpf_op_t bpf_op, bpf_chk;
8071 	bool offload;
8072 	int err;
8073 
8074 	ASSERT_RTNL();
8075 
8076 	offload = flags & XDP_FLAGS_HW_MODE;
8077 	query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8078 
8079 	bpf_op = bpf_chk = ops->ndo_bpf;
8080 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8081 		NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8082 		return -EOPNOTSUPP;
8083 	}
8084 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8085 		bpf_op = generic_xdp_install;
8086 	if (bpf_op == bpf_chk)
8087 		bpf_chk = generic_xdp_install;
8088 
8089 	if (fd >= 0) {
8090 		if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8091 			NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8092 			return -EEXIST;
8093 		}
8094 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
8095 		    __dev_xdp_query(dev, bpf_op, query)) {
8096 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8097 			return -EBUSY;
8098 		}
8099 
8100 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8101 					     bpf_op == ops->ndo_bpf);
8102 		if (IS_ERR(prog))
8103 			return PTR_ERR(prog);
8104 
8105 		if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8106 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8107 			bpf_prog_put(prog);
8108 			return -EINVAL;
8109 		}
8110 	}
8111 
8112 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8113 	if (err < 0 && prog)
8114 		bpf_prog_put(prog);
8115 
8116 	return err;
8117 }
8118 
8119 /**
8120  *	dev_new_index	-	allocate an ifindex
8121  *	@net: the applicable net namespace
8122  *
8123  *	Returns a suitable unique value for a new device interface
8124  *	number.  The caller must hold the rtnl semaphore or the
8125  *	dev_base_lock to be sure it remains unique.
8126  */
8127 static int dev_new_index(struct net *net)
8128 {
8129 	int ifindex = net->ifindex;
8130 
8131 	for (;;) {
8132 		if (++ifindex <= 0)
8133 			ifindex = 1;
8134 		if (!__dev_get_by_index(net, ifindex))
8135 			return net->ifindex = ifindex;
8136 	}
8137 }
8138 
8139 /* Delayed registration/unregisteration */
8140 static LIST_HEAD(net_todo_list);
8141 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8142 
8143 static void net_set_todo(struct net_device *dev)
8144 {
8145 	list_add_tail(&dev->todo_list, &net_todo_list);
8146 	dev_net(dev)->dev_unreg_count++;
8147 }
8148 
8149 static void rollback_registered_many(struct list_head *head)
8150 {
8151 	struct net_device *dev, *tmp;
8152 	LIST_HEAD(close_head);
8153 
8154 	BUG_ON(dev_boot_phase);
8155 	ASSERT_RTNL();
8156 
8157 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8158 		/* Some devices call without registering
8159 		 * for initialization unwind. Remove those
8160 		 * devices and proceed with the remaining.
8161 		 */
8162 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8163 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8164 				 dev->name, dev);
8165 
8166 			WARN_ON(1);
8167 			list_del(&dev->unreg_list);
8168 			continue;
8169 		}
8170 		dev->dismantle = true;
8171 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8172 	}
8173 
8174 	/* If device is running, close it first. */
8175 	list_for_each_entry(dev, head, unreg_list)
8176 		list_add_tail(&dev->close_list, &close_head);
8177 	dev_close_many(&close_head, true);
8178 
8179 	list_for_each_entry(dev, head, unreg_list) {
8180 		/* And unlink it from device chain. */
8181 		unlist_netdevice(dev);
8182 
8183 		dev->reg_state = NETREG_UNREGISTERING;
8184 	}
8185 	flush_all_backlogs();
8186 
8187 	synchronize_net();
8188 
8189 	list_for_each_entry(dev, head, unreg_list) {
8190 		struct sk_buff *skb = NULL;
8191 
8192 		/* Shutdown queueing discipline. */
8193 		dev_shutdown(dev);
8194 
8195 		dev_xdp_uninstall(dev);
8196 
8197 		/* Notify protocols, that we are about to destroy
8198 		 * this device. They should clean all the things.
8199 		 */
8200 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8201 
8202 		if (!dev->rtnl_link_ops ||
8203 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8204 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8205 						     GFP_KERNEL, NULL, 0);
8206 
8207 		/*
8208 		 *	Flush the unicast and multicast chains
8209 		 */
8210 		dev_uc_flush(dev);
8211 		dev_mc_flush(dev);
8212 
8213 		if (dev->netdev_ops->ndo_uninit)
8214 			dev->netdev_ops->ndo_uninit(dev);
8215 
8216 		if (skb)
8217 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8218 
8219 		/* Notifier chain MUST detach us all upper devices. */
8220 		WARN_ON(netdev_has_any_upper_dev(dev));
8221 		WARN_ON(netdev_has_any_lower_dev(dev));
8222 
8223 		/* Remove entries from kobject tree */
8224 		netdev_unregister_kobject(dev);
8225 #ifdef CONFIG_XPS
8226 		/* Remove XPS queueing entries */
8227 		netif_reset_xps_queues_gt(dev, 0);
8228 #endif
8229 	}
8230 
8231 	synchronize_net();
8232 
8233 	list_for_each_entry(dev, head, unreg_list)
8234 		dev_put(dev);
8235 }
8236 
8237 static void rollback_registered(struct net_device *dev)
8238 {
8239 	LIST_HEAD(single);
8240 
8241 	list_add(&dev->unreg_list, &single);
8242 	rollback_registered_many(&single);
8243 	list_del(&single);
8244 }
8245 
8246 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8247 	struct net_device *upper, netdev_features_t features)
8248 {
8249 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8250 	netdev_features_t feature;
8251 	int feature_bit;
8252 
8253 	for_each_netdev_feature(upper_disables, feature_bit) {
8254 		feature = __NETIF_F_BIT(feature_bit);
8255 		if (!(upper->wanted_features & feature)
8256 		    && (features & feature)) {
8257 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8258 				   &feature, upper->name);
8259 			features &= ~feature;
8260 		}
8261 	}
8262 
8263 	return features;
8264 }
8265 
8266 static void netdev_sync_lower_features(struct net_device *upper,
8267 	struct net_device *lower, netdev_features_t features)
8268 {
8269 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8270 	netdev_features_t feature;
8271 	int feature_bit;
8272 
8273 	for_each_netdev_feature(upper_disables, feature_bit) {
8274 		feature = __NETIF_F_BIT(feature_bit);
8275 		if (!(features & feature) && (lower->features & feature)) {
8276 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8277 				   &feature, lower->name);
8278 			lower->wanted_features &= ~feature;
8279 			netdev_update_features(lower);
8280 
8281 			if (unlikely(lower->features & feature))
8282 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8283 					    &feature, lower->name);
8284 		}
8285 	}
8286 }
8287 
8288 static netdev_features_t netdev_fix_features(struct net_device *dev,
8289 	netdev_features_t features)
8290 {
8291 	/* Fix illegal checksum combinations */
8292 	if ((features & NETIF_F_HW_CSUM) &&
8293 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8294 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8295 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8296 	}
8297 
8298 	/* TSO requires that SG is present as well. */
8299 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8300 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8301 		features &= ~NETIF_F_ALL_TSO;
8302 	}
8303 
8304 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8305 					!(features & NETIF_F_IP_CSUM)) {
8306 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8307 		features &= ~NETIF_F_TSO;
8308 		features &= ~NETIF_F_TSO_ECN;
8309 	}
8310 
8311 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8312 					 !(features & NETIF_F_IPV6_CSUM)) {
8313 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8314 		features &= ~NETIF_F_TSO6;
8315 	}
8316 
8317 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8318 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8319 		features &= ~NETIF_F_TSO_MANGLEID;
8320 
8321 	/* TSO ECN requires that TSO is present as well. */
8322 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8323 		features &= ~NETIF_F_TSO_ECN;
8324 
8325 	/* Software GSO depends on SG. */
8326 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8327 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8328 		features &= ~NETIF_F_GSO;
8329 	}
8330 
8331 	/* GSO partial features require GSO partial be set */
8332 	if ((features & dev->gso_partial_features) &&
8333 	    !(features & NETIF_F_GSO_PARTIAL)) {
8334 		netdev_dbg(dev,
8335 			   "Dropping partially supported GSO features since no GSO partial.\n");
8336 		features &= ~dev->gso_partial_features;
8337 	}
8338 
8339 	if (!(features & NETIF_F_RXCSUM)) {
8340 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8341 		 * successfully merged by hardware must also have the
8342 		 * checksum verified by hardware.  If the user does not
8343 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8344 		 */
8345 		if (features & NETIF_F_GRO_HW) {
8346 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8347 			features &= ~NETIF_F_GRO_HW;
8348 		}
8349 	}
8350 
8351 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8352 	if (features & NETIF_F_RXFCS) {
8353 		if (features & NETIF_F_LRO) {
8354 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8355 			features &= ~NETIF_F_LRO;
8356 		}
8357 
8358 		if (features & NETIF_F_GRO_HW) {
8359 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8360 			features &= ~NETIF_F_GRO_HW;
8361 		}
8362 	}
8363 
8364 	return features;
8365 }
8366 
8367 int __netdev_update_features(struct net_device *dev)
8368 {
8369 	struct net_device *upper, *lower;
8370 	netdev_features_t features;
8371 	struct list_head *iter;
8372 	int err = -1;
8373 
8374 	ASSERT_RTNL();
8375 
8376 	features = netdev_get_wanted_features(dev);
8377 
8378 	if (dev->netdev_ops->ndo_fix_features)
8379 		features = dev->netdev_ops->ndo_fix_features(dev, features);
8380 
8381 	/* driver might be less strict about feature dependencies */
8382 	features = netdev_fix_features(dev, features);
8383 
8384 	/* some features can't be enabled if they're off an an upper device */
8385 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
8386 		features = netdev_sync_upper_features(dev, upper, features);
8387 
8388 	if (dev->features == features)
8389 		goto sync_lower;
8390 
8391 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8392 		&dev->features, &features);
8393 
8394 	if (dev->netdev_ops->ndo_set_features)
8395 		err = dev->netdev_ops->ndo_set_features(dev, features);
8396 	else
8397 		err = 0;
8398 
8399 	if (unlikely(err < 0)) {
8400 		netdev_err(dev,
8401 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
8402 			err, &features, &dev->features);
8403 		/* return non-0 since some features might have changed and
8404 		 * it's better to fire a spurious notification than miss it
8405 		 */
8406 		return -1;
8407 	}
8408 
8409 sync_lower:
8410 	/* some features must be disabled on lower devices when disabled
8411 	 * on an upper device (think: bonding master or bridge)
8412 	 */
8413 	netdev_for_each_lower_dev(dev, lower, iter)
8414 		netdev_sync_lower_features(dev, lower, features);
8415 
8416 	if (!err) {
8417 		netdev_features_t diff = features ^ dev->features;
8418 
8419 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8420 			/* udp_tunnel_{get,drop}_rx_info both need
8421 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8422 			 * device, or they won't do anything.
8423 			 * Thus we need to update dev->features
8424 			 * *before* calling udp_tunnel_get_rx_info,
8425 			 * but *after* calling udp_tunnel_drop_rx_info.
8426 			 */
8427 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8428 				dev->features = features;
8429 				udp_tunnel_get_rx_info(dev);
8430 			} else {
8431 				udp_tunnel_drop_rx_info(dev);
8432 			}
8433 		}
8434 
8435 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8436 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8437 				dev->features = features;
8438 				err |= vlan_get_rx_ctag_filter_info(dev);
8439 			} else {
8440 				vlan_drop_rx_ctag_filter_info(dev);
8441 			}
8442 		}
8443 
8444 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8445 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8446 				dev->features = features;
8447 				err |= vlan_get_rx_stag_filter_info(dev);
8448 			} else {
8449 				vlan_drop_rx_stag_filter_info(dev);
8450 			}
8451 		}
8452 
8453 		dev->features = features;
8454 	}
8455 
8456 	return err < 0 ? 0 : 1;
8457 }
8458 
8459 /**
8460  *	netdev_update_features - recalculate device features
8461  *	@dev: the device to check
8462  *
8463  *	Recalculate dev->features set and send notifications if it
8464  *	has changed. Should be called after driver or hardware dependent
8465  *	conditions might have changed that influence the features.
8466  */
8467 void netdev_update_features(struct net_device *dev)
8468 {
8469 	if (__netdev_update_features(dev))
8470 		netdev_features_change(dev);
8471 }
8472 EXPORT_SYMBOL(netdev_update_features);
8473 
8474 /**
8475  *	netdev_change_features - recalculate device features
8476  *	@dev: the device to check
8477  *
8478  *	Recalculate dev->features set and send notifications even
8479  *	if they have not changed. Should be called instead of
8480  *	netdev_update_features() if also dev->vlan_features might
8481  *	have changed to allow the changes to be propagated to stacked
8482  *	VLAN devices.
8483  */
8484 void netdev_change_features(struct net_device *dev)
8485 {
8486 	__netdev_update_features(dev);
8487 	netdev_features_change(dev);
8488 }
8489 EXPORT_SYMBOL(netdev_change_features);
8490 
8491 /**
8492  *	netif_stacked_transfer_operstate -	transfer operstate
8493  *	@rootdev: the root or lower level device to transfer state from
8494  *	@dev: the device to transfer operstate to
8495  *
8496  *	Transfer operational state from root to device. This is normally
8497  *	called when a stacking relationship exists between the root
8498  *	device and the device(a leaf device).
8499  */
8500 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8501 					struct net_device *dev)
8502 {
8503 	if (rootdev->operstate == IF_OPER_DORMANT)
8504 		netif_dormant_on(dev);
8505 	else
8506 		netif_dormant_off(dev);
8507 
8508 	if (netif_carrier_ok(rootdev))
8509 		netif_carrier_on(dev);
8510 	else
8511 		netif_carrier_off(dev);
8512 }
8513 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8514 
8515 static int netif_alloc_rx_queues(struct net_device *dev)
8516 {
8517 	unsigned int i, count = dev->num_rx_queues;
8518 	struct netdev_rx_queue *rx;
8519 	size_t sz = count * sizeof(*rx);
8520 	int err = 0;
8521 
8522 	BUG_ON(count < 1);
8523 
8524 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8525 	if (!rx)
8526 		return -ENOMEM;
8527 
8528 	dev->_rx = rx;
8529 
8530 	for (i = 0; i < count; i++) {
8531 		rx[i].dev = dev;
8532 
8533 		/* XDP RX-queue setup */
8534 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8535 		if (err < 0)
8536 			goto err_rxq_info;
8537 	}
8538 	return 0;
8539 
8540 err_rxq_info:
8541 	/* Rollback successful reg's and free other resources */
8542 	while (i--)
8543 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8544 	kvfree(dev->_rx);
8545 	dev->_rx = NULL;
8546 	return err;
8547 }
8548 
8549 static void netif_free_rx_queues(struct net_device *dev)
8550 {
8551 	unsigned int i, count = dev->num_rx_queues;
8552 
8553 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8554 	if (!dev->_rx)
8555 		return;
8556 
8557 	for (i = 0; i < count; i++)
8558 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8559 
8560 	kvfree(dev->_rx);
8561 }
8562 
8563 static void netdev_init_one_queue(struct net_device *dev,
8564 				  struct netdev_queue *queue, void *_unused)
8565 {
8566 	/* Initialize queue lock */
8567 	spin_lock_init(&queue->_xmit_lock);
8568 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8569 	queue->xmit_lock_owner = -1;
8570 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8571 	queue->dev = dev;
8572 #ifdef CONFIG_BQL
8573 	dql_init(&queue->dql, HZ);
8574 #endif
8575 }
8576 
8577 static void netif_free_tx_queues(struct net_device *dev)
8578 {
8579 	kvfree(dev->_tx);
8580 }
8581 
8582 static int netif_alloc_netdev_queues(struct net_device *dev)
8583 {
8584 	unsigned int count = dev->num_tx_queues;
8585 	struct netdev_queue *tx;
8586 	size_t sz = count * sizeof(*tx);
8587 
8588 	if (count < 1 || count > 0xffff)
8589 		return -EINVAL;
8590 
8591 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8592 	if (!tx)
8593 		return -ENOMEM;
8594 
8595 	dev->_tx = tx;
8596 
8597 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8598 	spin_lock_init(&dev->tx_global_lock);
8599 
8600 	return 0;
8601 }
8602 
8603 void netif_tx_stop_all_queues(struct net_device *dev)
8604 {
8605 	unsigned int i;
8606 
8607 	for (i = 0; i < dev->num_tx_queues; i++) {
8608 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8609 
8610 		netif_tx_stop_queue(txq);
8611 	}
8612 }
8613 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8614 
8615 /**
8616  *	register_netdevice	- register a network device
8617  *	@dev: device to register
8618  *
8619  *	Take a completed network device structure and add it to the kernel
8620  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8621  *	chain. 0 is returned on success. A negative errno code is returned
8622  *	on a failure to set up the device, or if the name is a duplicate.
8623  *
8624  *	Callers must hold the rtnl semaphore. You may want
8625  *	register_netdev() instead of this.
8626  *
8627  *	BUGS:
8628  *	The locking appears insufficient to guarantee two parallel registers
8629  *	will not get the same name.
8630  */
8631 
8632 int register_netdevice(struct net_device *dev)
8633 {
8634 	int ret;
8635 	struct net *net = dev_net(dev);
8636 
8637 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8638 		     NETDEV_FEATURE_COUNT);
8639 	BUG_ON(dev_boot_phase);
8640 	ASSERT_RTNL();
8641 
8642 	might_sleep();
8643 
8644 	/* When net_device's are persistent, this will be fatal. */
8645 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8646 	BUG_ON(!net);
8647 
8648 	spin_lock_init(&dev->addr_list_lock);
8649 	netdev_set_addr_lockdep_class(dev);
8650 
8651 	ret = dev_get_valid_name(net, dev, dev->name);
8652 	if (ret < 0)
8653 		goto out;
8654 
8655 	/* Init, if this function is available */
8656 	if (dev->netdev_ops->ndo_init) {
8657 		ret = dev->netdev_ops->ndo_init(dev);
8658 		if (ret) {
8659 			if (ret > 0)
8660 				ret = -EIO;
8661 			goto out;
8662 		}
8663 	}
8664 
8665 	if (((dev->hw_features | dev->features) &
8666 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
8667 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8668 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8669 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8670 		ret = -EINVAL;
8671 		goto err_uninit;
8672 	}
8673 
8674 	ret = -EBUSY;
8675 	if (!dev->ifindex)
8676 		dev->ifindex = dev_new_index(net);
8677 	else if (__dev_get_by_index(net, dev->ifindex))
8678 		goto err_uninit;
8679 
8680 	/* Transfer changeable features to wanted_features and enable
8681 	 * software offloads (GSO and GRO).
8682 	 */
8683 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
8684 	dev->features |= NETIF_F_SOFT_FEATURES;
8685 
8686 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
8687 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8688 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8689 	}
8690 
8691 	dev->wanted_features = dev->features & dev->hw_features;
8692 
8693 	if (!(dev->flags & IFF_LOOPBACK))
8694 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
8695 
8696 	/* If IPv4 TCP segmentation offload is supported we should also
8697 	 * allow the device to enable segmenting the frame with the option
8698 	 * of ignoring a static IP ID value.  This doesn't enable the
8699 	 * feature itself but allows the user to enable it later.
8700 	 */
8701 	if (dev->hw_features & NETIF_F_TSO)
8702 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
8703 	if (dev->vlan_features & NETIF_F_TSO)
8704 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8705 	if (dev->mpls_features & NETIF_F_TSO)
8706 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8707 	if (dev->hw_enc_features & NETIF_F_TSO)
8708 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8709 
8710 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8711 	 */
8712 	dev->vlan_features |= NETIF_F_HIGHDMA;
8713 
8714 	/* Make NETIF_F_SG inheritable to tunnel devices.
8715 	 */
8716 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8717 
8718 	/* Make NETIF_F_SG inheritable to MPLS.
8719 	 */
8720 	dev->mpls_features |= NETIF_F_SG;
8721 
8722 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8723 	ret = notifier_to_errno(ret);
8724 	if (ret)
8725 		goto err_uninit;
8726 
8727 	ret = netdev_register_kobject(dev);
8728 	if (ret)
8729 		goto err_uninit;
8730 	dev->reg_state = NETREG_REGISTERED;
8731 
8732 	__netdev_update_features(dev);
8733 
8734 	/*
8735 	 *	Default initial state at registry is that the
8736 	 *	device is present.
8737 	 */
8738 
8739 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8740 
8741 	linkwatch_init_dev(dev);
8742 
8743 	dev_init_scheduler(dev);
8744 	dev_hold(dev);
8745 	list_netdevice(dev);
8746 	add_device_randomness(dev->dev_addr, dev->addr_len);
8747 
8748 	/* If the device has permanent device address, driver should
8749 	 * set dev_addr and also addr_assign_type should be set to
8750 	 * NET_ADDR_PERM (default value).
8751 	 */
8752 	if (dev->addr_assign_type == NET_ADDR_PERM)
8753 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8754 
8755 	/* Notify protocols, that a new device appeared. */
8756 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8757 	ret = notifier_to_errno(ret);
8758 	if (ret) {
8759 		rollback_registered(dev);
8760 		dev->reg_state = NETREG_UNREGISTERED;
8761 	}
8762 	/*
8763 	 *	Prevent userspace races by waiting until the network
8764 	 *	device is fully setup before sending notifications.
8765 	 */
8766 	if (!dev->rtnl_link_ops ||
8767 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8768 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8769 
8770 out:
8771 	return ret;
8772 
8773 err_uninit:
8774 	if (dev->netdev_ops->ndo_uninit)
8775 		dev->netdev_ops->ndo_uninit(dev);
8776 	if (dev->priv_destructor)
8777 		dev->priv_destructor(dev);
8778 	goto out;
8779 }
8780 EXPORT_SYMBOL(register_netdevice);
8781 
8782 /**
8783  *	init_dummy_netdev	- init a dummy network device for NAPI
8784  *	@dev: device to init
8785  *
8786  *	This takes a network device structure and initialize the minimum
8787  *	amount of fields so it can be used to schedule NAPI polls without
8788  *	registering a full blown interface. This is to be used by drivers
8789  *	that need to tie several hardware interfaces to a single NAPI
8790  *	poll scheduler due to HW limitations.
8791  */
8792 int init_dummy_netdev(struct net_device *dev)
8793 {
8794 	/* Clear everything. Note we don't initialize spinlocks
8795 	 * are they aren't supposed to be taken by any of the
8796 	 * NAPI code and this dummy netdev is supposed to be
8797 	 * only ever used for NAPI polls
8798 	 */
8799 	memset(dev, 0, sizeof(struct net_device));
8800 
8801 	/* make sure we BUG if trying to hit standard
8802 	 * register/unregister code path
8803 	 */
8804 	dev->reg_state = NETREG_DUMMY;
8805 
8806 	/* NAPI wants this */
8807 	INIT_LIST_HEAD(&dev->napi_list);
8808 
8809 	/* a dummy interface is started by default */
8810 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8811 	set_bit(__LINK_STATE_START, &dev->state);
8812 
8813 	/* napi_busy_loop stats accounting wants this */
8814 	dev_net_set(dev, &init_net);
8815 
8816 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8817 	 * because users of this 'device' dont need to change
8818 	 * its refcount.
8819 	 */
8820 
8821 	return 0;
8822 }
8823 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8824 
8825 
8826 /**
8827  *	register_netdev	- register a network device
8828  *	@dev: device to register
8829  *
8830  *	Take a completed network device structure and add it to the kernel
8831  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8832  *	chain. 0 is returned on success. A negative errno code is returned
8833  *	on a failure to set up the device, or if the name is a duplicate.
8834  *
8835  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8836  *	and expands the device name if you passed a format string to
8837  *	alloc_netdev.
8838  */
8839 int register_netdev(struct net_device *dev)
8840 {
8841 	int err;
8842 
8843 	if (rtnl_lock_killable())
8844 		return -EINTR;
8845 	err = register_netdevice(dev);
8846 	rtnl_unlock();
8847 	return err;
8848 }
8849 EXPORT_SYMBOL(register_netdev);
8850 
8851 int netdev_refcnt_read(const struct net_device *dev)
8852 {
8853 	int i, refcnt = 0;
8854 
8855 	for_each_possible_cpu(i)
8856 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8857 	return refcnt;
8858 }
8859 EXPORT_SYMBOL(netdev_refcnt_read);
8860 
8861 /**
8862  * netdev_wait_allrefs - wait until all references are gone.
8863  * @dev: target net_device
8864  *
8865  * This is called when unregistering network devices.
8866  *
8867  * Any protocol or device that holds a reference should register
8868  * for netdevice notification, and cleanup and put back the
8869  * reference if they receive an UNREGISTER event.
8870  * We can get stuck here if buggy protocols don't correctly
8871  * call dev_put.
8872  */
8873 static void netdev_wait_allrefs(struct net_device *dev)
8874 {
8875 	unsigned long rebroadcast_time, warning_time;
8876 	int refcnt;
8877 
8878 	linkwatch_forget_dev(dev);
8879 
8880 	rebroadcast_time = warning_time = jiffies;
8881 	refcnt = netdev_refcnt_read(dev);
8882 
8883 	while (refcnt != 0) {
8884 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8885 			rtnl_lock();
8886 
8887 			/* Rebroadcast unregister notification */
8888 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8889 
8890 			__rtnl_unlock();
8891 			rcu_barrier();
8892 			rtnl_lock();
8893 
8894 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8895 				     &dev->state)) {
8896 				/* We must not have linkwatch events
8897 				 * pending on unregister. If this
8898 				 * happens, we simply run the queue
8899 				 * unscheduled, resulting in a noop
8900 				 * for this device.
8901 				 */
8902 				linkwatch_run_queue();
8903 			}
8904 
8905 			__rtnl_unlock();
8906 
8907 			rebroadcast_time = jiffies;
8908 		}
8909 
8910 		msleep(250);
8911 
8912 		refcnt = netdev_refcnt_read(dev);
8913 
8914 		if (time_after(jiffies, warning_time + 10 * HZ)) {
8915 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8916 				 dev->name, refcnt);
8917 			warning_time = jiffies;
8918 		}
8919 	}
8920 }
8921 
8922 /* The sequence is:
8923  *
8924  *	rtnl_lock();
8925  *	...
8926  *	register_netdevice(x1);
8927  *	register_netdevice(x2);
8928  *	...
8929  *	unregister_netdevice(y1);
8930  *	unregister_netdevice(y2);
8931  *      ...
8932  *	rtnl_unlock();
8933  *	free_netdev(y1);
8934  *	free_netdev(y2);
8935  *
8936  * We are invoked by rtnl_unlock().
8937  * This allows us to deal with problems:
8938  * 1) We can delete sysfs objects which invoke hotplug
8939  *    without deadlocking with linkwatch via keventd.
8940  * 2) Since we run with the RTNL semaphore not held, we can sleep
8941  *    safely in order to wait for the netdev refcnt to drop to zero.
8942  *
8943  * We must not return until all unregister events added during
8944  * the interval the lock was held have been completed.
8945  */
8946 void netdev_run_todo(void)
8947 {
8948 	struct list_head list;
8949 
8950 	/* Snapshot list, allow later requests */
8951 	list_replace_init(&net_todo_list, &list);
8952 
8953 	__rtnl_unlock();
8954 
8955 
8956 	/* Wait for rcu callbacks to finish before next phase */
8957 	if (!list_empty(&list))
8958 		rcu_barrier();
8959 
8960 	while (!list_empty(&list)) {
8961 		struct net_device *dev
8962 			= list_first_entry(&list, struct net_device, todo_list);
8963 		list_del(&dev->todo_list);
8964 
8965 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8966 			pr_err("network todo '%s' but state %d\n",
8967 			       dev->name, dev->reg_state);
8968 			dump_stack();
8969 			continue;
8970 		}
8971 
8972 		dev->reg_state = NETREG_UNREGISTERED;
8973 
8974 		netdev_wait_allrefs(dev);
8975 
8976 		/* paranoia */
8977 		BUG_ON(netdev_refcnt_read(dev));
8978 		BUG_ON(!list_empty(&dev->ptype_all));
8979 		BUG_ON(!list_empty(&dev->ptype_specific));
8980 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8981 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8982 #if IS_ENABLED(CONFIG_DECNET)
8983 		WARN_ON(dev->dn_ptr);
8984 #endif
8985 		if (dev->priv_destructor)
8986 			dev->priv_destructor(dev);
8987 		if (dev->needs_free_netdev)
8988 			free_netdev(dev);
8989 
8990 		/* Report a network device has been unregistered */
8991 		rtnl_lock();
8992 		dev_net(dev)->dev_unreg_count--;
8993 		__rtnl_unlock();
8994 		wake_up(&netdev_unregistering_wq);
8995 
8996 		/* Free network device */
8997 		kobject_put(&dev->dev.kobj);
8998 	}
8999 }
9000 
9001 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9002  * all the same fields in the same order as net_device_stats, with only
9003  * the type differing, but rtnl_link_stats64 may have additional fields
9004  * at the end for newer counters.
9005  */
9006 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9007 			     const struct net_device_stats *netdev_stats)
9008 {
9009 #if BITS_PER_LONG == 64
9010 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9011 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9012 	/* zero out counters that only exist in rtnl_link_stats64 */
9013 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9014 	       sizeof(*stats64) - sizeof(*netdev_stats));
9015 #else
9016 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9017 	const unsigned long *src = (const unsigned long *)netdev_stats;
9018 	u64 *dst = (u64 *)stats64;
9019 
9020 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9021 	for (i = 0; i < n; i++)
9022 		dst[i] = src[i];
9023 	/* zero out counters that only exist in rtnl_link_stats64 */
9024 	memset((char *)stats64 + n * sizeof(u64), 0,
9025 	       sizeof(*stats64) - n * sizeof(u64));
9026 #endif
9027 }
9028 EXPORT_SYMBOL(netdev_stats_to_stats64);
9029 
9030 /**
9031  *	dev_get_stats	- get network device statistics
9032  *	@dev: device to get statistics from
9033  *	@storage: place to store stats
9034  *
9035  *	Get network statistics from device. Return @storage.
9036  *	The device driver may provide its own method by setting
9037  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9038  *	otherwise the internal statistics structure is used.
9039  */
9040 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9041 					struct rtnl_link_stats64 *storage)
9042 {
9043 	const struct net_device_ops *ops = dev->netdev_ops;
9044 
9045 	if (ops->ndo_get_stats64) {
9046 		memset(storage, 0, sizeof(*storage));
9047 		ops->ndo_get_stats64(dev, storage);
9048 	} else if (ops->ndo_get_stats) {
9049 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9050 	} else {
9051 		netdev_stats_to_stats64(storage, &dev->stats);
9052 	}
9053 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9054 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9055 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9056 	return storage;
9057 }
9058 EXPORT_SYMBOL(dev_get_stats);
9059 
9060 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9061 {
9062 	struct netdev_queue *queue = dev_ingress_queue(dev);
9063 
9064 #ifdef CONFIG_NET_CLS_ACT
9065 	if (queue)
9066 		return queue;
9067 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9068 	if (!queue)
9069 		return NULL;
9070 	netdev_init_one_queue(dev, queue, NULL);
9071 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9072 	queue->qdisc_sleeping = &noop_qdisc;
9073 	rcu_assign_pointer(dev->ingress_queue, queue);
9074 #endif
9075 	return queue;
9076 }
9077 
9078 static const struct ethtool_ops default_ethtool_ops;
9079 
9080 void netdev_set_default_ethtool_ops(struct net_device *dev,
9081 				    const struct ethtool_ops *ops)
9082 {
9083 	if (dev->ethtool_ops == &default_ethtool_ops)
9084 		dev->ethtool_ops = ops;
9085 }
9086 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9087 
9088 void netdev_freemem(struct net_device *dev)
9089 {
9090 	char *addr = (char *)dev - dev->padded;
9091 
9092 	kvfree(addr);
9093 }
9094 
9095 /**
9096  * alloc_netdev_mqs - allocate network device
9097  * @sizeof_priv: size of private data to allocate space for
9098  * @name: device name format string
9099  * @name_assign_type: origin of device name
9100  * @setup: callback to initialize device
9101  * @txqs: the number of TX subqueues to allocate
9102  * @rxqs: the number of RX subqueues to allocate
9103  *
9104  * Allocates a struct net_device with private data area for driver use
9105  * and performs basic initialization.  Also allocates subqueue structs
9106  * for each queue on the device.
9107  */
9108 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9109 		unsigned char name_assign_type,
9110 		void (*setup)(struct net_device *),
9111 		unsigned int txqs, unsigned int rxqs)
9112 {
9113 	struct net_device *dev;
9114 	unsigned int alloc_size;
9115 	struct net_device *p;
9116 
9117 	BUG_ON(strlen(name) >= sizeof(dev->name));
9118 
9119 	if (txqs < 1) {
9120 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9121 		return NULL;
9122 	}
9123 
9124 	if (rxqs < 1) {
9125 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9126 		return NULL;
9127 	}
9128 
9129 	alloc_size = sizeof(struct net_device);
9130 	if (sizeof_priv) {
9131 		/* ensure 32-byte alignment of private area */
9132 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9133 		alloc_size += sizeof_priv;
9134 	}
9135 	/* ensure 32-byte alignment of whole construct */
9136 	alloc_size += NETDEV_ALIGN - 1;
9137 
9138 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9139 	if (!p)
9140 		return NULL;
9141 
9142 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
9143 	dev->padded = (char *)dev - (char *)p;
9144 
9145 	dev->pcpu_refcnt = alloc_percpu(int);
9146 	if (!dev->pcpu_refcnt)
9147 		goto free_dev;
9148 
9149 	if (dev_addr_init(dev))
9150 		goto free_pcpu;
9151 
9152 	dev_mc_init(dev);
9153 	dev_uc_init(dev);
9154 
9155 	dev_net_set(dev, &init_net);
9156 
9157 	dev->gso_max_size = GSO_MAX_SIZE;
9158 	dev->gso_max_segs = GSO_MAX_SEGS;
9159 
9160 	INIT_LIST_HEAD(&dev->napi_list);
9161 	INIT_LIST_HEAD(&dev->unreg_list);
9162 	INIT_LIST_HEAD(&dev->close_list);
9163 	INIT_LIST_HEAD(&dev->link_watch_list);
9164 	INIT_LIST_HEAD(&dev->adj_list.upper);
9165 	INIT_LIST_HEAD(&dev->adj_list.lower);
9166 	INIT_LIST_HEAD(&dev->ptype_all);
9167 	INIT_LIST_HEAD(&dev->ptype_specific);
9168 #ifdef CONFIG_NET_SCHED
9169 	hash_init(dev->qdisc_hash);
9170 #endif
9171 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9172 	setup(dev);
9173 
9174 	if (!dev->tx_queue_len) {
9175 		dev->priv_flags |= IFF_NO_QUEUE;
9176 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9177 	}
9178 
9179 	dev->num_tx_queues = txqs;
9180 	dev->real_num_tx_queues = txqs;
9181 	if (netif_alloc_netdev_queues(dev))
9182 		goto free_all;
9183 
9184 	dev->num_rx_queues = rxqs;
9185 	dev->real_num_rx_queues = rxqs;
9186 	if (netif_alloc_rx_queues(dev))
9187 		goto free_all;
9188 
9189 	strcpy(dev->name, name);
9190 	dev->name_assign_type = name_assign_type;
9191 	dev->group = INIT_NETDEV_GROUP;
9192 	if (!dev->ethtool_ops)
9193 		dev->ethtool_ops = &default_ethtool_ops;
9194 
9195 	nf_hook_ingress_init(dev);
9196 
9197 	return dev;
9198 
9199 free_all:
9200 	free_netdev(dev);
9201 	return NULL;
9202 
9203 free_pcpu:
9204 	free_percpu(dev->pcpu_refcnt);
9205 free_dev:
9206 	netdev_freemem(dev);
9207 	return NULL;
9208 }
9209 EXPORT_SYMBOL(alloc_netdev_mqs);
9210 
9211 /**
9212  * free_netdev - free network device
9213  * @dev: device
9214  *
9215  * This function does the last stage of destroying an allocated device
9216  * interface. The reference to the device object is released. If this
9217  * is the last reference then it will be freed.Must be called in process
9218  * context.
9219  */
9220 void free_netdev(struct net_device *dev)
9221 {
9222 	struct napi_struct *p, *n;
9223 
9224 	might_sleep();
9225 	netif_free_tx_queues(dev);
9226 	netif_free_rx_queues(dev);
9227 
9228 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9229 
9230 	/* Flush device addresses */
9231 	dev_addr_flush(dev);
9232 
9233 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9234 		netif_napi_del(p);
9235 
9236 	free_percpu(dev->pcpu_refcnt);
9237 	dev->pcpu_refcnt = NULL;
9238 
9239 	/*  Compatibility with error handling in drivers */
9240 	if (dev->reg_state == NETREG_UNINITIALIZED) {
9241 		netdev_freemem(dev);
9242 		return;
9243 	}
9244 
9245 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9246 	dev->reg_state = NETREG_RELEASED;
9247 
9248 	/* will free via device release */
9249 	put_device(&dev->dev);
9250 }
9251 EXPORT_SYMBOL(free_netdev);
9252 
9253 /**
9254  *	synchronize_net -  Synchronize with packet receive processing
9255  *
9256  *	Wait for packets currently being received to be done.
9257  *	Does not block later packets from starting.
9258  */
9259 void synchronize_net(void)
9260 {
9261 	might_sleep();
9262 	if (rtnl_is_locked())
9263 		synchronize_rcu_expedited();
9264 	else
9265 		synchronize_rcu();
9266 }
9267 EXPORT_SYMBOL(synchronize_net);
9268 
9269 /**
9270  *	unregister_netdevice_queue - remove device from the kernel
9271  *	@dev: device
9272  *	@head: list
9273  *
9274  *	This function shuts down a device interface and removes it
9275  *	from the kernel tables.
9276  *	If head not NULL, device is queued to be unregistered later.
9277  *
9278  *	Callers must hold the rtnl semaphore.  You may want
9279  *	unregister_netdev() instead of this.
9280  */
9281 
9282 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9283 {
9284 	ASSERT_RTNL();
9285 
9286 	if (head) {
9287 		list_move_tail(&dev->unreg_list, head);
9288 	} else {
9289 		rollback_registered(dev);
9290 		/* Finish processing unregister after unlock */
9291 		net_set_todo(dev);
9292 	}
9293 }
9294 EXPORT_SYMBOL(unregister_netdevice_queue);
9295 
9296 /**
9297  *	unregister_netdevice_many - unregister many devices
9298  *	@head: list of devices
9299  *
9300  *  Note: As most callers use a stack allocated list_head,
9301  *  we force a list_del() to make sure stack wont be corrupted later.
9302  */
9303 void unregister_netdevice_many(struct list_head *head)
9304 {
9305 	struct net_device *dev;
9306 
9307 	if (!list_empty(head)) {
9308 		rollback_registered_many(head);
9309 		list_for_each_entry(dev, head, unreg_list)
9310 			net_set_todo(dev);
9311 		list_del(head);
9312 	}
9313 }
9314 EXPORT_SYMBOL(unregister_netdevice_many);
9315 
9316 /**
9317  *	unregister_netdev - remove device from the kernel
9318  *	@dev: device
9319  *
9320  *	This function shuts down a device interface and removes it
9321  *	from the kernel tables.
9322  *
9323  *	This is just a wrapper for unregister_netdevice that takes
9324  *	the rtnl semaphore.  In general you want to use this and not
9325  *	unregister_netdevice.
9326  */
9327 void unregister_netdev(struct net_device *dev)
9328 {
9329 	rtnl_lock();
9330 	unregister_netdevice(dev);
9331 	rtnl_unlock();
9332 }
9333 EXPORT_SYMBOL(unregister_netdev);
9334 
9335 /**
9336  *	dev_change_net_namespace - move device to different nethost namespace
9337  *	@dev: device
9338  *	@net: network namespace
9339  *	@pat: If not NULL name pattern to try if the current device name
9340  *	      is already taken in the destination network namespace.
9341  *
9342  *	This function shuts down a device interface and moves it
9343  *	to a new network namespace. On success 0 is returned, on
9344  *	a failure a netagive errno code is returned.
9345  *
9346  *	Callers must hold the rtnl semaphore.
9347  */
9348 
9349 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9350 {
9351 	int err, new_nsid, new_ifindex;
9352 
9353 	ASSERT_RTNL();
9354 
9355 	/* Don't allow namespace local devices to be moved. */
9356 	err = -EINVAL;
9357 	if (dev->features & NETIF_F_NETNS_LOCAL)
9358 		goto out;
9359 
9360 	/* Ensure the device has been registrered */
9361 	if (dev->reg_state != NETREG_REGISTERED)
9362 		goto out;
9363 
9364 	/* Get out if there is nothing todo */
9365 	err = 0;
9366 	if (net_eq(dev_net(dev), net))
9367 		goto out;
9368 
9369 	/* Pick the destination device name, and ensure
9370 	 * we can use it in the destination network namespace.
9371 	 */
9372 	err = -EEXIST;
9373 	if (__dev_get_by_name(net, dev->name)) {
9374 		/* We get here if we can't use the current device name */
9375 		if (!pat)
9376 			goto out;
9377 		err = dev_get_valid_name(net, dev, pat);
9378 		if (err < 0)
9379 			goto out;
9380 	}
9381 
9382 	/*
9383 	 * And now a mini version of register_netdevice unregister_netdevice.
9384 	 */
9385 
9386 	/* If device is running close it first. */
9387 	dev_close(dev);
9388 
9389 	/* And unlink it from device chain */
9390 	unlist_netdevice(dev);
9391 
9392 	synchronize_net();
9393 
9394 	/* Shutdown queueing discipline. */
9395 	dev_shutdown(dev);
9396 
9397 	/* Notify protocols, that we are about to destroy
9398 	 * this device. They should clean all the things.
9399 	 *
9400 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
9401 	 * This is wanted because this way 8021q and macvlan know
9402 	 * the device is just moving and can keep their slaves up.
9403 	 */
9404 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9405 	rcu_barrier();
9406 
9407 	new_nsid = peernet2id_alloc(dev_net(dev), net);
9408 	/* If there is an ifindex conflict assign a new one */
9409 	if (__dev_get_by_index(net, dev->ifindex))
9410 		new_ifindex = dev_new_index(net);
9411 	else
9412 		new_ifindex = dev->ifindex;
9413 
9414 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9415 			    new_ifindex);
9416 
9417 	/*
9418 	 *	Flush the unicast and multicast chains
9419 	 */
9420 	dev_uc_flush(dev);
9421 	dev_mc_flush(dev);
9422 
9423 	/* Send a netdev-removed uevent to the old namespace */
9424 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9425 	netdev_adjacent_del_links(dev);
9426 
9427 	/* Actually switch the network namespace */
9428 	dev_net_set(dev, net);
9429 	dev->ifindex = new_ifindex;
9430 
9431 	/* Send a netdev-add uevent to the new namespace */
9432 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9433 	netdev_adjacent_add_links(dev);
9434 
9435 	/* Fixup kobjects */
9436 	err = device_rename(&dev->dev, dev->name);
9437 	WARN_ON(err);
9438 
9439 	/* Add the device back in the hashes */
9440 	list_netdevice(dev);
9441 
9442 	/* Notify protocols, that a new device appeared. */
9443 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
9444 
9445 	/*
9446 	 *	Prevent userspace races by waiting until the network
9447 	 *	device is fully setup before sending notifications.
9448 	 */
9449 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9450 
9451 	synchronize_net();
9452 	err = 0;
9453 out:
9454 	return err;
9455 }
9456 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9457 
9458 static int dev_cpu_dead(unsigned int oldcpu)
9459 {
9460 	struct sk_buff **list_skb;
9461 	struct sk_buff *skb;
9462 	unsigned int cpu;
9463 	struct softnet_data *sd, *oldsd, *remsd = NULL;
9464 
9465 	local_irq_disable();
9466 	cpu = smp_processor_id();
9467 	sd = &per_cpu(softnet_data, cpu);
9468 	oldsd = &per_cpu(softnet_data, oldcpu);
9469 
9470 	/* Find end of our completion_queue. */
9471 	list_skb = &sd->completion_queue;
9472 	while (*list_skb)
9473 		list_skb = &(*list_skb)->next;
9474 	/* Append completion queue from offline CPU. */
9475 	*list_skb = oldsd->completion_queue;
9476 	oldsd->completion_queue = NULL;
9477 
9478 	/* Append output queue from offline CPU. */
9479 	if (oldsd->output_queue) {
9480 		*sd->output_queue_tailp = oldsd->output_queue;
9481 		sd->output_queue_tailp = oldsd->output_queue_tailp;
9482 		oldsd->output_queue = NULL;
9483 		oldsd->output_queue_tailp = &oldsd->output_queue;
9484 	}
9485 	/* Append NAPI poll list from offline CPU, with one exception :
9486 	 * process_backlog() must be called by cpu owning percpu backlog.
9487 	 * We properly handle process_queue & input_pkt_queue later.
9488 	 */
9489 	while (!list_empty(&oldsd->poll_list)) {
9490 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9491 							    struct napi_struct,
9492 							    poll_list);
9493 
9494 		list_del_init(&napi->poll_list);
9495 		if (napi->poll == process_backlog)
9496 			napi->state = 0;
9497 		else
9498 			____napi_schedule(sd, napi);
9499 	}
9500 
9501 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
9502 	local_irq_enable();
9503 
9504 #ifdef CONFIG_RPS
9505 	remsd = oldsd->rps_ipi_list;
9506 	oldsd->rps_ipi_list = NULL;
9507 #endif
9508 	/* send out pending IPI's on offline CPU */
9509 	net_rps_send_ipi(remsd);
9510 
9511 	/* Process offline CPU's input_pkt_queue */
9512 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9513 		netif_rx_ni(skb);
9514 		input_queue_head_incr(oldsd);
9515 	}
9516 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9517 		netif_rx_ni(skb);
9518 		input_queue_head_incr(oldsd);
9519 	}
9520 
9521 	return 0;
9522 }
9523 
9524 /**
9525  *	netdev_increment_features - increment feature set by one
9526  *	@all: current feature set
9527  *	@one: new feature set
9528  *	@mask: mask feature set
9529  *
9530  *	Computes a new feature set after adding a device with feature set
9531  *	@one to the master device with current feature set @all.  Will not
9532  *	enable anything that is off in @mask. Returns the new feature set.
9533  */
9534 netdev_features_t netdev_increment_features(netdev_features_t all,
9535 	netdev_features_t one, netdev_features_t mask)
9536 {
9537 	if (mask & NETIF_F_HW_CSUM)
9538 		mask |= NETIF_F_CSUM_MASK;
9539 	mask |= NETIF_F_VLAN_CHALLENGED;
9540 
9541 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9542 	all &= one | ~NETIF_F_ALL_FOR_ALL;
9543 
9544 	/* If one device supports hw checksumming, set for all. */
9545 	if (all & NETIF_F_HW_CSUM)
9546 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9547 
9548 	return all;
9549 }
9550 EXPORT_SYMBOL(netdev_increment_features);
9551 
9552 static struct hlist_head * __net_init netdev_create_hash(void)
9553 {
9554 	int i;
9555 	struct hlist_head *hash;
9556 
9557 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9558 	if (hash != NULL)
9559 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
9560 			INIT_HLIST_HEAD(&hash[i]);
9561 
9562 	return hash;
9563 }
9564 
9565 /* Initialize per network namespace state */
9566 static int __net_init netdev_init(struct net *net)
9567 {
9568 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
9569 		     8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9570 
9571 	if (net != &init_net)
9572 		INIT_LIST_HEAD(&net->dev_base_head);
9573 
9574 	net->dev_name_head = netdev_create_hash();
9575 	if (net->dev_name_head == NULL)
9576 		goto err_name;
9577 
9578 	net->dev_index_head = netdev_create_hash();
9579 	if (net->dev_index_head == NULL)
9580 		goto err_idx;
9581 
9582 	return 0;
9583 
9584 err_idx:
9585 	kfree(net->dev_name_head);
9586 err_name:
9587 	return -ENOMEM;
9588 }
9589 
9590 /**
9591  *	netdev_drivername - network driver for the device
9592  *	@dev: network device
9593  *
9594  *	Determine network driver for device.
9595  */
9596 const char *netdev_drivername(const struct net_device *dev)
9597 {
9598 	const struct device_driver *driver;
9599 	const struct device *parent;
9600 	const char *empty = "";
9601 
9602 	parent = dev->dev.parent;
9603 	if (!parent)
9604 		return empty;
9605 
9606 	driver = parent->driver;
9607 	if (driver && driver->name)
9608 		return driver->name;
9609 	return empty;
9610 }
9611 
9612 static void __netdev_printk(const char *level, const struct net_device *dev,
9613 			    struct va_format *vaf)
9614 {
9615 	if (dev && dev->dev.parent) {
9616 		dev_printk_emit(level[1] - '0',
9617 				dev->dev.parent,
9618 				"%s %s %s%s: %pV",
9619 				dev_driver_string(dev->dev.parent),
9620 				dev_name(dev->dev.parent),
9621 				netdev_name(dev), netdev_reg_state(dev),
9622 				vaf);
9623 	} else if (dev) {
9624 		printk("%s%s%s: %pV",
9625 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
9626 	} else {
9627 		printk("%s(NULL net_device): %pV", level, vaf);
9628 	}
9629 }
9630 
9631 void netdev_printk(const char *level, const struct net_device *dev,
9632 		   const char *format, ...)
9633 {
9634 	struct va_format vaf;
9635 	va_list args;
9636 
9637 	va_start(args, format);
9638 
9639 	vaf.fmt = format;
9640 	vaf.va = &args;
9641 
9642 	__netdev_printk(level, dev, &vaf);
9643 
9644 	va_end(args);
9645 }
9646 EXPORT_SYMBOL(netdev_printk);
9647 
9648 #define define_netdev_printk_level(func, level)			\
9649 void func(const struct net_device *dev, const char *fmt, ...)	\
9650 {								\
9651 	struct va_format vaf;					\
9652 	va_list args;						\
9653 								\
9654 	va_start(args, fmt);					\
9655 								\
9656 	vaf.fmt = fmt;						\
9657 	vaf.va = &args;						\
9658 								\
9659 	__netdev_printk(level, dev, &vaf);			\
9660 								\
9661 	va_end(args);						\
9662 }								\
9663 EXPORT_SYMBOL(func);
9664 
9665 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9666 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9667 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9668 define_netdev_printk_level(netdev_err, KERN_ERR);
9669 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9670 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9671 define_netdev_printk_level(netdev_info, KERN_INFO);
9672 
9673 static void __net_exit netdev_exit(struct net *net)
9674 {
9675 	kfree(net->dev_name_head);
9676 	kfree(net->dev_index_head);
9677 	if (net != &init_net)
9678 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9679 }
9680 
9681 static struct pernet_operations __net_initdata netdev_net_ops = {
9682 	.init = netdev_init,
9683 	.exit = netdev_exit,
9684 };
9685 
9686 static void __net_exit default_device_exit(struct net *net)
9687 {
9688 	struct net_device *dev, *aux;
9689 	/*
9690 	 * Push all migratable network devices back to the
9691 	 * initial network namespace
9692 	 */
9693 	rtnl_lock();
9694 	for_each_netdev_safe(net, dev, aux) {
9695 		int err;
9696 		char fb_name[IFNAMSIZ];
9697 
9698 		/* Ignore unmoveable devices (i.e. loopback) */
9699 		if (dev->features & NETIF_F_NETNS_LOCAL)
9700 			continue;
9701 
9702 		/* Leave virtual devices for the generic cleanup */
9703 		if (dev->rtnl_link_ops)
9704 			continue;
9705 
9706 		/* Push remaining network devices to init_net */
9707 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9708 		err = dev_change_net_namespace(dev, &init_net, fb_name);
9709 		if (err) {
9710 			pr_emerg("%s: failed to move %s to init_net: %d\n",
9711 				 __func__, dev->name, err);
9712 			BUG();
9713 		}
9714 	}
9715 	rtnl_unlock();
9716 }
9717 
9718 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9719 {
9720 	/* Return with the rtnl_lock held when there are no network
9721 	 * devices unregistering in any network namespace in net_list.
9722 	 */
9723 	struct net *net;
9724 	bool unregistering;
9725 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
9726 
9727 	add_wait_queue(&netdev_unregistering_wq, &wait);
9728 	for (;;) {
9729 		unregistering = false;
9730 		rtnl_lock();
9731 		list_for_each_entry(net, net_list, exit_list) {
9732 			if (net->dev_unreg_count > 0) {
9733 				unregistering = true;
9734 				break;
9735 			}
9736 		}
9737 		if (!unregistering)
9738 			break;
9739 		__rtnl_unlock();
9740 
9741 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9742 	}
9743 	remove_wait_queue(&netdev_unregistering_wq, &wait);
9744 }
9745 
9746 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9747 {
9748 	/* At exit all network devices most be removed from a network
9749 	 * namespace.  Do this in the reverse order of registration.
9750 	 * Do this across as many network namespaces as possible to
9751 	 * improve batching efficiency.
9752 	 */
9753 	struct net_device *dev;
9754 	struct net *net;
9755 	LIST_HEAD(dev_kill_list);
9756 
9757 	/* To prevent network device cleanup code from dereferencing
9758 	 * loopback devices or network devices that have been freed
9759 	 * wait here for all pending unregistrations to complete,
9760 	 * before unregistring the loopback device and allowing the
9761 	 * network namespace be freed.
9762 	 *
9763 	 * The netdev todo list containing all network devices
9764 	 * unregistrations that happen in default_device_exit_batch
9765 	 * will run in the rtnl_unlock() at the end of
9766 	 * default_device_exit_batch.
9767 	 */
9768 	rtnl_lock_unregistering(net_list);
9769 	list_for_each_entry(net, net_list, exit_list) {
9770 		for_each_netdev_reverse(net, dev) {
9771 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9772 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9773 			else
9774 				unregister_netdevice_queue(dev, &dev_kill_list);
9775 		}
9776 	}
9777 	unregister_netdevice_many(&dev_kill_list);
9778 	rtnl_unlock();
9779 }
9780 
9781 static struct pernet_operations __net_initdata default_device_ops = {
9782 	.exit = default_device_exit,
9783 	.exit_batch = default_device_exit_batch,
9784 };
9785 
9786 /*
9787  *	Initialize the DEV module. At boot time this walks the device list and
9788  *	unhooks any devices that fail to initialise (normally hardware not
9789  *	present) and leaves us with a valid list of present and active devices.
9790  *
9791  */
9792 
9793 /*
9794  *       This is called single threaded during boot, so no need
9795  *       to take the rtnl semaphore.
9796  */
9797 static int __init net_dev_init(void)
9798 {
9799 	int i, rc = -ENOMEM;
9800 
9801 	BUG_ON(!dev_boot_phase);
9802 
9803 	if (dev_proc_init())
9804 		goto out;
9805 
9806 	if (netdev_kobject_init())
9807 		goto out;
9808 
9809 	INIT_LIST_HEAD(&ptype_all);
9810 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9811 		INIT_LIST_HEAD(&ptype_base[i]);
9812 
9813 	INIT_LIST_HEAD(&offload_base);
9814 
9815 	if (register_pernet_subsys(&netdev_net_ops))
9816 		goto out;
9817 
9818 	/*
9819 	 *	Initialise the packet receive queues.
9820 	 */
9821 
9822 	for_each_possible_cpu(i) {
9823 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9824 		struct softnet_data *sd = &per_cpu(softnet_data, i);
9825 
9826 		INIT_WORK(flush, flush_backlog);
9827 
9828 		skb_queue_head_init(&sd->input_pkt_queue);
9829 		skb_queue_head_init(&sd->process_queue);
9830 #ifdef CONFIG_XFRM_OFFLOAD
9831 		skb_queue_head_init(&sd->xfrm_backlog);
9832 #endif
9833 		INIT_LIST_HEAD(&sd->poll_list);
9834 		sd->output_queue_tailp = &sd->output_queue;
9835 #ifdef CONFIG_RPS
9836 		sd->csd.func = rps_trigger_softirq;
9837 		sd->csd.info = sd;
9838 		sd->cpu = i;
9839 #endif
9840 
9841 		init_gro_hash(&sd->backlog);
9842 		sd->backlog.poll = process_backlog;
9843 		sd->backlog.weight = weight_p;
9844 	}
9845 
9846 	dev_boot_phase = 0;
9847 
9848 	/* The loopback device is special if any other network devices
9849 	 * is present in a network namespace the loopback device must
9850 	 * be present. Since we now dynamically allocate and free the
9851 	 * loopback device ensure this invariant is maintained by
9852 	 * keeping the loopback device as the first device on the
9853 	 * list of network devices.  Ensuring the loopback devices
9854 	 * is the first device that appears and the last network device
9855 	 * that disappears.
9856 	 */
9857 	if (register_pernet_device(&loopback_net_ops))
9858 		goto out;
9859 
9860 	if (register_pernet_device(&default_device_ops))
9861 		goto out;
9862 
9863 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9864 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9865 
9866 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9867 				       NULL, dev_cpu_dead);
9868 	WARN_ON(rc < 0);
9869 	rc = 0;
9870 out:
9871 	return rc;
9872 }
9873 
9874 subsys_initcall(net_dev_init);
9875