1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/skbuff.h> 97 #include <linux/bpf.h> 98 #include <linux/bpf_trace.h> 99 #include <net/net_namespace.h> 100 #include <net/sock.h> 101 #include <net/busy_poll.h> 102 #include <linux/rtnetlink.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/dst_metadata.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <linux/highmem.h> 111 #include <linux/init.h> 112 #include <linux/module.h> 113 #include <linux/netpoll.h> 114 #include <linux/rcupdate.h> 115 #include <linux/delay.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <net/mpls.h> 127 #include <linux/ipv6.h> 128 #include <linux/in.h> 129 #include <linux/jhash.h> 130 #include <linux/random.h> 131 #include <trace/events/napi.h> 132 #include <trace/events/net.h> 133 #include <trace/events/skb.h> 134 #include <linux/inetdevice.h> 135 #include <linux/cpu_rmap.h> 136 #include <linux/static_key.h> 137 #include <linux/hashtable.h> 138 #include <linux/vmalloc.h> 139 #include <linux/if_macvlan.h> 140 #include <linux/errqueue.h> 141 #include <linux/hrtimer.h> 142 #include <linux/netfilter_ingress.h> 143 #include <linux/crash_dump.h> 144 #include <linux/sctp.h> 145 #include <net/udp_tunnel.h> 146 #include <linux/net_namespace.h> 147 #include <linux/indirect_call_wrapper.h> 148 #include <net/devlink.h> 149 150 #include "net-sysfs.h" 151 152 #define MAX_GRO_SKBS 8 153 154 /* This should be increased if a protocol with a bigger head is added. */ 155 #define GRO_MAX_HEAD (MAX_HEADER + 128) 156 157 static DEFINE_SPINLOCK(ptype_lock); 158 static DEFINE_SPINLOCK(offload_lock); 159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 160 struct list_head ptype_all __read_mostly; /* Taps */ 161 static struct list_head offload_base __read_mostly; 162 163 static int netif_rx_internal(struct sk_buff *skb); 164 static int call_netdevice_notifiers_info(unsigned long val, 165 struct netdev_notifier_info *info); 166 static int call_netdevice_notifiers_extack(unsigned long val, 167 struct net_device *dev, 168 struct netlink_ext_ack *extack); 169 static struct napi_struct *napi_by_id(unsigned int napi_id); 170 171 /* 172 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 173 * semaphore. 174 * 175 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 176 * 177 * Writers must hold the rtnl semaphore while they loop through the 178 * dev_base_head list, and hold dev_base_lock for writing when they do the 179 * actual updates. This allows pure readers to access the list even 180 * while a writer is preparing to update it. 181 * 182 * To put it another way, dev_base_lock is held for writing only to 183 * protect against pure readers; the rtnl semaphore provides the 184 * protection against other writers. 185 * 186 * See, for example usages, register_netdevice() and 187 * unregister_netdevice(), which must be called with the rtnl 188 * semaphore held. 189 */ 190 DEFINE_RWLOCK(dev_base_lock); 191 EXPORT_SYMBOL(dev_base_lock); 192 193 static DEFINE_MUTEX(ifalias_mutex); 194 195 /* protects napi_hash addition/deletion and napi_gen_id */ 196 static DEFINE_SPINLOCK(napi_hash_lock); 197 198 static unsigned int napi_gen_id = NR_CPUS; 199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 200 201 static seqcount_t devnet_rename_seq; 202 203 static inline void dev_base_seq_inc(struct net *net) 204 { 205 while (++net->dev_base_seq == 0) 206 ; 207 } 208 209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 210 { 211 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 212 213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 214 } 215 216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 217 { 218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 219 } 220 221 static inline void rps_lock(struct softnet_data *sd) 222 { 223 #ifdef CONFIG_RPS 224 spin_lock(&sd->input_pkt_queue.lock); 225 #endif 226 } 227 228 static inline void rps_unlock(struct softnet_data *sd) 229 { 230 #ifdef CONFIG_RPS 231 spin_unlock(&sd->input_pkt_queue.lock); 232 #endif 233 } 234 235 /* Device list insertion */ 236 static void list_netdevice(struct net_device *dev) 237 { 238 struct net *net = dev_net(dev); 239 240 ASSERT_RTNL(); 241 242 write_lock_bh(&dev_base_lock); 243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 245 hlist_add_head_rcu(&dev->index_hlist, 246 dev_index_hash(net, dev->ifindex)); 247 write_unlock_bh(&dev_base_lock); 248 249 dev_base_seq_inc(net); 250 } 251 252 /* Device list removal 253 * caller must respect a RCU grace period before freeing/reusing dev 254 */ 255 static void unlist_netdevice(struct net_device *dev) 256 { 257 ASSERT_RTNL(); 258 259 /* Unlink dev from the device chain */ 260 write_lock_bh(&dev_base_lock); 261 list_del_rcu(&dev->dev_list); 262 hlist_del_rcu(&dev->name_hlist); 263 hlist_del_rcu(&dev->index_hlist); 264 write_unlock_bh(&dev_base_lock); 265 266 dev_base_seq_inc(dev_net(dev)); 267 } 268 269 /* 270 * Our notifier list 271 */ 272 273 static RAW_NOTIFIER_HEAD(netdev_chain); 274 275 /* 276 * Device drivers call our routines to queue packets here. We empty the 277 * queue in the local softnet handler. 278 */ 279 280 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 281 EXPORT_PER_CPU_SYMBOL(softnet_data); 282 283 #ifdef CONFIG_LOCKDEP 284 /* 285 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 286 * according to dev->type 287 */ 288 static const unsigned short netdev_lock_type[] = { 289 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 290 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 291 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 292 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 293 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 294 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 295 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 296 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 297 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 298 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 299 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 300 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 301 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 302 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 303 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 304 305 static const char *const netdev_lock_name[] = { 306 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 307 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 308 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 309 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 310 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 311 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 312 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 313 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 314 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 315 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 316 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 317 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 318 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 319 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 320 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 321 322 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 323 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 324 325 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 326 { 327 int i; 328 329 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 330 if (netdev_lock_type[i] == dev_type) 331 return i; 332 /* the last key is used by default */ 333 return ARRAY_SIZE(netdev_lock_type) - 1; 334 } 335 336 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 337 unsigned short dev_type) 338 { 339 int i; 340 341 i = netdev_lock_pos(dev_type); 342 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 343 netdev_lock_name[i]); 344 } 345 346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 347 { 348 int i; 349 350 i = netdev_lock_pos(dev->type); 351 lockdep_set_class_and_name(&dev->addr_list_lock, 352 &netdev_addr_lock_key[i], 353 netdev_lock_name[i]); 354 } 355 #else 356 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 357 unsigned short dev_type) 358 { 359 } 360 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 361 { 362 } 363 #endif 364 365 /******************************************************************************* 366 * 367 * Protocol management and registration routines 368 * 369 *******************************************************************************/ 370 371 372 /* 373 * Add a protocol ID to the list. Now that the input handler is 374 * smarter we can dispense with all the messy stuff that used to be 375 * here. 376 * 377 * BEWARE!!! Protocol handlers, mangling input packets, 378 * MUST BE last in hash buckets and checking protocol handlers 379 * MUST start from promiscuous ptype_all chain in net_bh. 380 * It is true now, do not change it. 381 * Explanation follows: if protocol handler, mangling packet, will 382 * be the first on list, it is not able to sense, that packet 383 * is cloned and should be copied-on-write, so that it will 384 * change it and subsequent readers will get broken packet. 385 * --ANK (980803) 386 */ 387 388 static inline struct list_head *ptype_head(const struct packet_type *pt) 389 { 390 if (pt->type == htons(ETH_P_ALL)) 391 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 392 else 393 return pt->dev ? &pt->dev->ptype_specific : 394 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 395 } 396 397 /** 398 * dev_add_pack - add packet handler 399 * @pt: packet type declaration 400 * 401 * Add a protocol handler to the networking stack. The passed &packet_type 402 * is linked into kernel lists and may not be freed until it has been 403 * removed from the kernel lists. 404 * 405 * This call does not sleep therefore it can not 406 * guarantee all CPU's that are in middle of receiving packets 407 * will see the new packet type (until the next received packet). 408 */ 409 410 void dev_add_pack(struct packet_type *pt) 411 { 412 struct list_head *head = ptype_head(pt); 413 414 spin_lock(&ptype_lock); 415 list_add_rcu(&pt->list, head); 416 spin_unlock(&ptype_lock); 417 } 418 EXPORT_SYMBOL(dev_add_pack); 419 420 /** 421 * __dev_remove_pack - remove packet handler 422 * @pt: packet type declaration 423 * 424 * Remove a protocol handler that was previously added to the kernel 425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 426 * from the kernel lists and can be freed or reused once this function 427 * returns. 428 * 429 * The packet type might still be in use by receivers 430 * and must not be freed until after all the CPU's have gone 431 * through a quiescent state. 432 */ 433 void __dev_remove_pack(struct packet_type *pt) 434 { 435 struct list_head *head = ptype_head(pt); 436 struct packet_type *pt1; 437 438 spin_lock(&ptype_lock); 439 440 list_for_each_entry(pt1, head, list) { 441 if (pt == pt1) { 442 list_del_rcu(&pt->list); 443 goto out; 444 } 445 } 446 447 pr_warn("dev_remove_pack: %p not found\n", pt); 448 out: 449 spin_unlock(&ptype_lock); 450 } 451 EXPORT_SYMBOL(__dev_remove_pack); 452 453 /** 454 * dev_remove_pack - remove packet handler 455 * @pt: packet type declaration 456 * 457 * Remove a protocol handler that was previously added to the kernel 458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 459 * from the kernel lists and can be freed or reused once this function 460 * returns. 461 * 462 * This call sleeps to guarantee that no CPU is looking at the packet 463 * type after return. 464 */ 465 void dev_remove_pack(struct packet_type *pt) 466 { 467 __dev_remove_pack(pt); 468 469 synchronize_net(); 470 } 471 EXPORT_SYMBOL(dev_remove_pack); 472 473 474 /** 475 * dev_add_offload - register offload handlers 476 * @po: protocol offload declaration 477 * 478 * Add protocol offload handlers to the networking stack. The passed 479 * &proto_offload is linked into kernel lists and may not be freed until 480 * it has been removed from the kernel lists. 481 * 482 * This call does not sleep therefore it can not 483 * guarantee all CPU's that are in middle of receiving packets 484 * will see the new offload handlers (until the next received packet). 485 */ 486 void dev_add_offload(struct packet_offload *po) 487 { 488 struct packet_offload *elem; 489 490 spin_lock(&offload_lock); 491 list_for_each_entry(elem, &offload_base, list) { 492 if (po->priority < elem->priority) 493 break; 494 } 495 list_add_rcu(&po->list, elem->list.prev); 496 spin_unlock(&offload_lock); 497 } 498 EXPORT_SYMBOL(dev_add_offload); 499 500 /** 501 * __dev_remove_offload - remove offload handler 502 * @po: packet offload declaration 503 * 504 * Remove a protocol offload handler that was previously added to the 505 * kernel offload handlers by dev_add_offload(). The passed &offload_type 506 * is removed from the kernel lists and can be freed or reused once this 507 * function returns. 508 * 509 * The packet type might still be in use by receivers 510 * and must not be freed until after all the CPU's have gone 511 * through a quiescent state. 512 */ 513 static void __dev_remove_offload(struct packet_offload *po) 514 { 515 struct list_head *head = &offload_base; 516 struct packet_offload *po1; 517 518 spin_lock(&offload_lock); 519 520 list_for_each_entry(po1, head, list) { 521 if (po == po1) { 522 list_del_rcu(&po->list); 523 goto out; 524 } 525 } 526 527 pr_warn("dev_remove_offload: %p not found\n", po); 528 out: 529 spin_unlock(&offload_lock); 530 } 531 532 /** 533 * dev_remove_offload - remove packet offload handler 534 * @po: packet offload declaration 535 * 536 * Remove a packet offload handler that was previously added to the kernel 537 * offload handlers by dev_add_offload(). The passed &offload_type is 538 * removed from the kernel lists and can be freed or reused once this 539 * function returns. 540 * 541 * This call sleeps to guarantee that no CPU is looking at the packet 542 * type after return. 543 */ 544 void dev_remove_offload(struct packet_offload *po) 545 { 546 __dev_remove_offload(po); 547 548 synchronize_net(); 549 } 550 EXPORT_SYMBOL(dev_remove_offload); 551 552 /****************************************************************************** 553 * 554 * Device Boot-time Settings Routines 555 * 556 ******************************************************************************/ 557 558 /* Boot time configuration table */ 559 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 560 561 /** 562 * netdev_boot_setup_add - add new setup entry 563 * @name: name of the device 564 * @map: configured settings for the device 565 * 566 * Adds new setup entry to the dev_boot_setup list. The function 567 * returns 0 on error and 1 on success. This is a generic routine to 568 * all netdevices. 569 */ 570 static int netdev_boot_setup_add(char *name, struct ifmap *map) 571 { 572 struct netdev_boot_setup *s; 573 int i; 574 575 s = dev_boot_setup; 576 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 577 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 578 memset(s[i].name, 0, sizeof(s[i].name)); 579 strlcpy(s[i].name, name, IFNAMSIZ); 580 memcpy(&s[i].map, map, sizeof(s[i].map)); 581 break; 582 } 583 } 584 585 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 586 } 587 588 /** 589 * netdev_boot_setup_check - check boot time settings 590 * @dev: the netdevice 591 * 592 * Check boot time settings for the device. 593 * The found settings are set for the device to be used 594 * later in the device probing. 595 * Returns 0 if no settings found, 1 if they are. 596 */ 597 int netdev_boot_setup_check(struct net_device *dev) 598 { 599 struct netdev_boot_setup *s = dev_boot_setup; 600 int i; 601 602 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 603 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 604 !strcmp(dev->name, s[i].name)) { 605 dev->irq = s[i].map.irq; 606 dev->base_addr = s[i].map.base_addr; 607 dev->mem_start = s[i].map.mem_start; 608 dev->mem_end = s[i].map.mem_end; 609 return 1; 610 } 611 } 612 return 0; 613 } 614 EXPORT_SYMBOL(netdev_boot_setup_check); 615 616 617 /** 618 * netdev_boot_base - get address from boot time settings 619 * @prefix: prefix for network device 620 * @unit: id for network device 621 * 622 * Check boot time settings for the base address of device. 623 * The found settings are set for the device to be used 624 * later in the device probing. 625 * Returns 0 if no settings found. 626 */ 627 unsigned long netdev_boot_base(const char *prefix, int unit) 628 { 629 const struct netdev_boot_setup *s = dev_boot_setup; 630 char name[IFNAMSIZ]; 631 int i; 632 633 sprintf(name, "%s%d", prefix, unit); 634 635 /* 636 * If device already registered then return base of 1 637 * to indicate not to probe for this interface 638 */ 639 if (__dev_get_by_name(&init_net, name)) 640 return 1; 641 642 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 643 if (!strcmp(name, s[i].name)) 644 return s[i].map.base_addr; 645 return 0; 646 } 647 648 /* 649 * Saves at boot time configured settings for any netdevice. 650 */ 651 int __init netdev_boot_setup(char *str) 652 { 653 int ints[5]; 654 struct ifmap map; 655 656 str = get_options(str, ARRAY_SIZE(ints), ints); 657 if (!str || !*str) 658 return 0; 659 660 /* Save settings */ 661 memset(&map, 0, sizeof(map)); 662 if (ints[0] > 0) 663 map.irq = ints[1]; 664 if (ints[0] > 1) 665 map.base_addr = ints[2]; 666 if (ints[0] > 2) 667 map.mem_start = ints[3]; 668 if (ints[0] > 3) 669 map.mem_end = ints[4]; 670 671 /* Add new entry to the list */ 672 return netdev_boot_setup_add(str, &map); 673 } 674 675 __setup("netdev=", netdev_boot_setup); 676 677 /******************************************************************************* 678 * 679 * Device Interface Subroutines 680 * 681 *******************************************************************************/ 682 683 /** 684 * dev_get_iflink - get 'iflink' value of a interface 685 * @dev: targeted interface 686 * 687 * Indicates the ifindex the interface is linked to. 688 * Physical interfaces have the same 'ifindex' and 'iflink' values. 689 */ 690 691 int dev_get_iflink(const struct net_device *dev) 692 { 693 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 694 return dev->netdev_ops->ndo_get_iflink(dev); 695 696 return dev->ifindex; 697 } 698 EXPORT_SYMBOL(dev_get_iflink); 699 700 /** 701 * dev_fill_metadata_dst - Retrieve tunnel egress information. 702 * @dev: targeted interface 703 * @skb: The packet. 704 * 705 * For better visibility of tunnel traffic OVS needs to retrieve 706 * egress tunnel information for a packet. Following API allows 707 * user to get this info. 708 */ 709 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 710 { 711 struct ip_tunnel_info *info; 712 713 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 714 return -EINVAL; 715 716 info = skb_tunnel_info_unclone(skb); 717 if (!info) 718 return -ENOMEM; 719 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 720 return -EINVAL; 721 722 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 723 } 724 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 725 726 /** 727 * __dev_get_by_name - find a device by its name 728 * @net: the applicable net namespace 729 * @name: name to find 730 * 731 * Find an interface by name. Must be called under RTNL semaphore 732 * or @dev_base_lock. If the name is found a pointer to the device 733 * is returned. If the name is not found then %NULL is returned. The 734 * reference counters are not incremented so the caller must be 735 * careful with locks. 736 */ 737 738 struct net_device *__dev_get_by_name(struct net *net, const char *name) 739 { 740 struct net_device *dev; 741 struct hlist_head *head = dev_name_hash(net, name); 742 743 hlist_for_each_entry(dev, head, name_hlist) 744 if (!strncmp(dev->name, name, IFNAMSIZ)) 745 return dev; 746 747 return NULL; 748 } 749 EXPORT_SYMBOL(__dev_get_by_name); 750 751 /** 752 * dev_get_by_name_rcu - find a device by its name 753 * @net: the applicable net namespace 754 * @name: name to find 755 * 756 * Find an interface by name. 757 * If the name is found a pointer to the device is returned. 758 * If the name is not found then %NULL is returned. 759 * The reference counters are not incremented so the caller must be 760 * careful with locks. The caller must hold RCU lock. 761 */ 762 763 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 764 { 765 struct net_device *dev; 766 struct hlist_head *head = dev_name_hash(net, name); 767 768 hlist_for_each_entry_rcu(dev, head, name_hlist) 769 if (!strncmp(dev->name, name, IFNAMSIZ)) 770 return dev; 771 772 return NULL; 773 } 774 EXPORT_SYMBOL(dev_get_by_name_rcu); 775 776 /** 777 * dev_get_by_name - find a device by its name 778 * @net: the applicable net namespace 779 * @name: name to find 780 * 781 * Find an interface by name. This can be called from any 782 * context and does its own locking. The returned handle has 783 * the usage count incremented and the caller must use dev_put() to 784 * release it when it is no longer needed. %NULL is returned if no 785 * matching device is found. 786 */ 787 788 struct net_device *dev_get_by_name(struct net *net, const char *name) 789 { 790 struct net_device *dev; 791 792 rcu_read_lock(); 793 dev = dev_get_by_name_rcu(net, name); 794 if (dev) 795 dev_hold(dev); 796 rcu_read_unlock(); 797 return dev; 798 } 799 EXPORT_SYMBOL(dev_get_by_name); 800 801 /** 802 * __dev_get_by_index - find a device by its ifindex 803 * @net: the applicable net namespace 804 * @ifindex: index of device 805 * 806 * Search for an interface by index. Returns %NULL if the device 807 * is not found or a pointer to the device. The device has not 808 * had its reference counter increased so the caller must be careful 809 * about locking. The caller must hold either the RTNL semaphore 810 * or @dev_base_lock. 811 */ 812 813 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 814 { 815 struct net_device *dev; 816 struct hlist_head *head = dev_index_hash(net, ifindex); 817 818 hlist_for_each_entry(dev, head, index_hlist) 819 if (dev->ifindex == ifindex) 820 return dev; 821 822 return NULL; 823 } 824 EXPORT_SYMBOL(__dev_get_by_index); 825 826 /** 827 * dev_get_by_index_rcu - find a device by its ifindex 828 * @net: the applicable net namespace 829 * @ifindex: index of device 830 * 831 * Search for an interface by index. Returns %NULL if the device 832 * is not found or a pointer to the device. The device has not 833 * had its reference counter increased so the caller must be careful 834 * about locking. The caller must hold RCU lock. 835 */ 836 837 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 838 { 839 struct net_device *dev; 840 struct hlist_head *head = dev_index_hash(net, ifindex); 841 842 hlist_for_each_entry_rcu(dev, head, index_hlist) 843 if (dev->ifindex == ifindex) 844 return dev; 845 846 return NULL; 847 } 848 EXPORT_SYMBOL(dev_get_by_index_rcu); 849 850 851 /** 852 * dev_get_by_index - find a device by its ifindex 853 * @net: the applicable net namespace 854 * @ifindex: index of device 855 * 856 * Search for an interface by index. Returns NULL if the device 857 * is not found or a pointer to the device. The device returned has 858 * had a reference added and the pointer is safe until the user calls 859 * dev_put to indicate they have finished with it. 860 */ 861 862 struct net_device *dev_get_by_index(struct net *net, int ifindex) 863 { 864 struct net_device *dev; 865 866 rcu_read_lock(); 867 dev = dev_get_by_index_rcu(net, ifindex); 868 if (dev) 869 dev_hold(dev); 870 rcu_read_unlock(); 871 return dev; 872 } 873 EXPORT_SYMBOL(dev_get_by_index); 874 875 /** 876 * dev_get_by_napi_id - find a device by napi_id 877 * @napi_id: ID of the NAPI struct 878 * 879 * Search for an interface by NAPI ID. Returns %NULL if the device 880 * is not found or a pointer to the device. The device has not had 881 * its reference counter increased so the caller must be careful 882 * about locking. The caller must hold RCU lock. 883 */ 884 885 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 886 { 887 struct napi_struct *napi; 888 889 WARN_ON_ONCE(!rcu_read_lock_held()); 890 891 if (napi_id < MIN_NAPI_ID) 892 return NULL; 893 894 napi = napi_by_id(napi_id); 895 896 return napi ? napi->dev : NULL; 897 } 898 EXPORT_SYMBOL(dev_get_by_napi_id); 899 900 /** 901 * netdev_get_name - get a netdevice name, knowing its ifindex. 902 * @net: network namespace 903 * @name: a pointer to the buffer where the name will be stored. 904 * @ifindex: the ifindex of the interface to get the name from. 905 * 906 * The use of raw_seqcount_begin() and cond_resched() before 907 * retrying is required as we want to give the writers a chance 908 * to complete when CONFIG_PREEMPT is not set. 909 */ 910 int netdev_get_name(struct net *net, char *name, int ifindex) 911 { 912 struct net_device *dev; 913 unsigned int seq; 914 915 retry: 916 seq = raw_seqcount_begin(&devnet_rename_seq); 917 rcu_read_lock(); 918 dev = dev_get_by_index_rcu(net, ifindex); 919 if (!dev) { 920 rcu_read_unlock(); 921 return -ENODEV; 922 } 923 924 strcpy(name, dev->name); 925 rcu_read_unlock(); 926 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 927 cond_resched(); 928 goto retry; 929 } 930 931 return 0; 932 } 933 934 /** 935 * dev_getbyhwaddr_rcu - find a device by its hardware address 936 * @net: the applicable net namespace 937 * @type: media type of device 938 * @ha: hardware address 939 * 940 * Search for an interface by MAC address. Returns NULL if the device 941 * is not found or a pointer to the device. 942 * The caller must hold RCU or RTNL. 943 * The returned device has not had its ref count increased 944 * and the caller must therefore be careful about locking 945 * 946 */ 947 948 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 949 const char *ha) 950 { 951 struct net_device *dev; 952 953 for_each_netdev_rcu(net, dev) 954 if (dev->type == type && 955 !memcmp(dev->dev_addr, ha, dev->addr_len)) 956 return dev; 957 958 return NULL; 959 } 960 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 961 962 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 963 { 964 struct net_device *dev; 965 966 ASSERT_RTNL(); 967 for_each_netdev(net, dev) 968 if (dev->type == type) 969 return dev; 970 971 return NULL; 972 } 973 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 974 975 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 976 { 977 struct net_device *dev, *ret = NULL; 978 979 rcu_read_lock(); 980 for_each_netdev_rcu(net, dev) 981 if (dev->type == type) { 982 dev_hold(dev); 983 ret = dev; 984 break; 985 } 986 rcu_read_unlock(); 987 return ret; 988 } 989 EXPORT_SYMBOL(dev_getfirstbyhwtype); 990 991 /** 992 * __dev_get_by_flags - find any device with given flags 993 * @net: the applicable net namespace 994 * @if_flags: IFF_* values 995 * @mask: bitmask of bits in if_flags to check 996 * 997 * Search for any interface with the given flags. Returns NULL if a device 998 * is not found or a pointer to the device. Must be called inside 999 * rtnl_lock(), and result refcount is unchanged. 1000 */ 1001 1002 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1003 unsigned short mask) 1004 { 1005 struct net_device *dev, *ret; 1006 1007 ASSERT_RTNL(); 1008 1009 ret = NULL; 1010 for_each_netdev(net, dev) { 1011 if (((dev->flags ^ if_flags) & mask) == 0) { 1012 ret = dev; 1013 break; 1014 } 1015 } 1016 return ret; 1017 } 1018 EXPORT_SYMBOL(__dev_get_by_flags); 1019 1020 /** 1021 * dev_valid_name - check if name is okay for network device 1022 * @name: name string 1023 * 1024 * Network device names need to be valid file names to 1025 * to allow sysfs to work. We also disallow any kind of 1026 * whitespace. 1027 */ 1028 bool dev_valid_name(const char *name) 1029 { 1030 if (*name == '\0') 1031 return false; 1032 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1033 return false; 1034 if (!strcmp(name, ".") || !strcmp(name, "..")) 1035 return false; 1036 1037 while (*name) { 1038 if (*name == '/' || *name == ':' || isspace(*name)) 1039 return false; 1040 name++; 1041 } 1042 return true; 1043 } 1044 EXPORT_SYMBOL(dev_valid_name); 1045 1046 /** 1047 * __dev_alloc_name - allocate a name for a device 1048 * @net: network namespace to allocate the device name in 1049 * @name: name format string 1050 * @buf: scratch buffer and result name string 1051 * 1052 * Passed a format string - eg "lt%d" it will try and find a suitable 1053 * id. It scans list of devices to build up a free map, then chooses 1054 * the first empty slot. The caller must hold the dev_base or rtnl lock 1055 * while allocating the name and adding the device in order to avoid 1056 * duplicates. 1057 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1058 * Returns the number of the unit assigned or a negative errno code. 1059 */ 1060 1061 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1062 { 1063 int i = 0; 1064 const char *p; 1065 const int max_netdevices = 8*PAGE_SIZE; 1066 unsigned long *inuse; 1067 struct net_device *d; 1068 1069 if (!dev_valid_name(name)) 1070 return -EINVAL; 1071 1072 p = strchr(name, '%'); 1073 if (p) { 1074 /* 1075 * Verify the string as this thing may have come from 1076 * the user. There must be either one "%d" and no other "%" 1077 * characters. 1078 */ 1079 if (p[1] != 'd' || strchr(p + 2, '%')) 1080 return -EINVAL; 1081 1082 /* Use one page as a bit array of possible slots */ 1083 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1084 if (!inuse) 1085 return -ENOMEM; 1086 1087 for_each_netdev(net, d) { 1088 if (!sscanf(d->name, name, &i)) 1089 continue; 1090 if (i < 0 || i >= max_netdevices) 1091 continue; 1092 1093 /* avoid cases where sscanf is not exact inverse of printf */ 1094 snprintf(buf, IFNAMSIZ, name, i); 1095 if (!strncmp(buf, d->name, IFNAMSIZ)) 1096 set_bit(i, inuse); 1097 } 1098 1099 i = find_first_zero_bit(inuse, max_netdevices); 1100 free_page((unsigned long) inuse); 1101 } 1102 1103 snprintf(buf, IFNAMSIZ, name, i); 1104 if (!__dev_get_by_name(net, buf)) 1105 return i; 1106 1107 /* It is possible to run out of possible slots 1108 * when the name is long and there isn't enough space left 1109 * for the digits, or if all bits are used. 1110 */ 1111 return -ENFILE; 1112 } 1113 1114 static int dev_alloc_name_ns(struct net *net, 1115 struct net_device *dev, 1116 const char *name) 1117 { 1118 char buf[IFNAMSIZ]; 1119 int ret; 1120 1121 BUG_ON(!net); 1122 ret = __dev_alloc_name(net, name, buf); 1123 if (ret >= 0) 1124 strlcpy(dev->name, buf, IFNAMSIZ); 1125 return ret; 1126 } 1127 1128 /** 1129 * dev_alloc_name - allocate a name for a device 1130 * @dev: device 1131 * @name: name format string 1132 * 1133 * Passed a format string - eg "lt%d" it will try and find a suitable 1134 * id. It scans list of devices to build up a free map, then chooses 1135 * the first empty slot. The caller must hold the dev_base or rtnl lock 1136 * while allocating the name and adding the device in order to avoid 1137 * duplicates. 1138 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1139 * Returns the number of the unit assigned or a negative errno code. 1140 */ 1141 1142 int dev_alloc_name(struct net_device *dev, const char *name) 1143 { 1144 return dev_alloc_name_ns(dev_net(dev), dev, name); 1145 } 1146 EXPORT_SYMBOL(dev_alloc_name); 1147 1148 int dev_get_valid_name(struct net *net, struct net_device *dev, 1149 const char *name) 1150 { 1151 BUG_ON(!net); 1152 1153 if (!dev_valid_name(name)) 1154 return -EINVAL; 1155 1156 if (strchr(name, '%')) 1157 return dev_alloc_name_ns(net, dev, name); 1158 else if (__dev_get_by_name(net, name)) 1159 return -EEXIST; 1160 else if (dev->name != name) 1161 strlcpy(dev->name, name, IFNAMSIZ); 1162 1163 return 0; 1164 } 1165 EXPORT_SYMBOL(dev_get_valid_name); 1166 1167 /** 1168 * dev_change_name - change name of a device 1169 * @dev: device 1170 * @newname: name (or format string) must be at least IFNAMSIZ 1171 * 1172 * Change name of a device, can pass format strings "eth%d". 1173 * for wildcarding. 1174 */ 1175 int dev_change_name(struct net_device *dev, const char *newname) 1176 { 1177 unsigned char old_assign_type; 1178 char oldname[IFNAMSIZ]; 1179 int err = 0; 1180 int ret; 1181 struct net *net; 1182 1183 ASSERT_RTNL(); 1184 BUG_ON(!dev_net(dev)); 1185 1186 net = dev_net(dev); 1187 if (dev->flags & IFF_UP) 1188 return -EBUSY; 1189 1190 write_seqcount_begin(&devnet_rename_seq); 1191 1192 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1193 write_seqcount_end(&devnet_rename_seq); 1194 return 0; 1195 } 1196 1197 memcpy(oldname, dev->name, IFNAMSIZ); 1198 1199 err = dev_get_valid_name(net, dev, newname); 1200 if (err < 0) { 1201 write_seqcount_end(&devnet_rename_seq); 1202 return err; 1203 } 1204 1205 if (oldname[0] && !strchr(oldname, '%')) 1206 netdev_info(dev, "renamed from %s\n", oldname); 1207 1208 old_assign_type = dev->name_assign_type; 1209 dev->name_assign_type = NET_NAME_RENAMED; 1210 1211 rollback: 1212 ret = device_rename(&dev->dev, dev->name); 1213 if (ret) { 1214 memcpy(dev->name, oldname, IFNAMSIZ); 1215 dev->name_assign_type = old_assign_type; 1216 write_seqcount_end(&devnet_rename_seq); 1217 return ret; 1218 } 1219 1220 write_seqcount_end(&devnet_rename_seq); 1221 1222 netdev_adjacent_rename_links(dev, oldname); 1223 1224 write_lock_bh(&dev_base_lock); 1225 hlist_del_rcu(&dev->name_hlist); 1226 write_unlock_bh(&dev_base_lock); 1227 1228 synchronize_rcu(); 1229 1230 write_lock_bh(&dev_base_lock); 1231 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1232 write_unlock_bh(&dev_base_lock); 1233 1234 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1235 ret = notifier_to_errno(ret); 1236 1237 if (ret) { 1238 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1239 if (err >= 0) { 1240 err = ret; 1241 write_seqcount_begin(&devnet_rename_seq); 1242 memcpy(dev->name, oldname, IFNAMSIZ); 1243 memcpy(oldname, newname, IFNAMSIZ); 1244 dev->name_assign_type = old_assign_type; 1245 old_assign_type = NET_NAME_RENAMED; 1246 goto rollback; 1247 } else { 1248 pr_err("%s: name change rollback failed: %d\n", 1249 dev->name, ret); 1250 } 1251 } 1252 1253 return err; 1254 } 1255 1256 /** 1257 * dev_set_alias - change ifalias of a device 1258 * @dev: device 1259 * @alias: name up to IFALIASZ 1260 * @len: limit of bytes to copy from info 1261 * 1262 * Set ifalias for a device, 1263 */ 1264 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1265 { 1266 struct dev_ifalias *new_alias = NULL; 1267 1268 if (len >= IFALIASZ) 1269 return -EINVAL; 1270 1271 if (len) { 1272 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1273 if (!new_alias) 1274 return -ENOMEM; 1275 1276 memcpy(new_alias->ifalias, alias, len); 1277 new_alias->ifalias[len] = 0; 1278 } 1279 1280 mutex_lock(&ifalias_mutex); 1281 rcu_swap_protected(dev->ifalias, new_alias, 1282 mutex_is_locked(&ifalias_mutex)); 1283 mutex_unlock(&ifalias_mutex); 1284 1285 if (new_alias) 1286 kfree_rcu(new_alias, rcuhead); 1287 1288 return len; 1289 } 1290 EXPORT_SYMBOL(dev_set_alias); 1291 1292 /** 1293 * dev_get_alias - get ifalias of a device 1294 * @dev: device 1295 * @name: buffer to store name of ifalias 1296 * @len: size of buffer 1297 * 1298 * get ifalias for a device. Caller must make sure dev cannot go 1299 * away, e.g. rcu read lock or own a reference count to device. 1300 */ 1301 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1302 { 1303 const struct dev_ifalias *alias; 1304 int ret = 0; 1305 1306 rcu_read_lock(); 1307 alias = rcu_dereference(dev->ifalias); 1308 if (alias) 1309 ret = snprintf(name, len, "%s", alias->ifalias); 1310 rcu_read_unlock(); 1311 1312 return ret; 1313 } 1314 1315 /** 1316 * netdev_features_change - device changes features 1317 * @dev: device to cause notification 1318 * 1319 * Called to indicate a device has changed features. 1320 */ 1321 void netdev_features_change(struct net_device *dev) 1322 { 1323 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1324 } 1325 EXPORT_SYMBOL(netdev_features_change); 1326 1327 /** 1328 * netdev_state_change - device changes state 1329 * @dev: device to cause notification 1330 * 1331 * Called to indicate a device has changed state. This function calls 1332 * the notifier chains for netdev_chain and sends a NEWLINK message 1333 * to the routing socket. 1334 */ 1335 void netdev_state_change(struct net_device *dev) 1336 { 1337 if (dev->flags & IFF_UP) { 1338 struct netdev_notifier_change_info change_info = { 1339 .info.dev = dev, 1340 }; 1341 1342 call_netdevice_notifiers_info(NETDEV_CHANGE, 1343 &change_info.info); 1344 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1345 } 1346 } 1347 EXPORT_SYMBOL(netdev_state_change); 1348 1349 /** 1350 * netdev_notify_peers - notify network peers about existence of @dev 1351 * @dev: network device 1352 * 1353 * Generate traffic such that interested network peers are aware of 1354 * @dev, such as by generating a gratuitous ARP. This may be used when 1355 * a device wants to inform the rest of the network about some sort of 1356 * reconfiguration such as a failover event or virtual machine 1357 * migration. 1358 */ 1359 void netdev_notify_peers(struct net_device *dev) 1360 { 1361 rtnl_lock(); 1362 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1363 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1364 rtnl_unlock(); 1365 } 1366 EXPORT_SYMBOL(netdev_notify_peers); 1367 1368 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1369 { 1370 const struct net_device_ops *ops = dev->netdev_ops; 1371 int ret; 1372 1373 ASSERT_RTNL(); 1374 1375 if (!netif_device_present(dev)) 1376 return -ENODEV; 1377 1378 /* Block netpoll from trying to do any rx path servicing. 1379 * If we don't do this there is a chance ndo_poll_controller 1380 * or ndo_poll may be running while we open the device 1381 */ 1382 netpoll_poll_disable(dev); 1383 1384 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1385 ret = notifier_to_errno(ret); 1386 if (ret) 1387 return ret; 1388 1389 set_bit(__LINK_STATE_START, &dev->state); 1390 1391 if (ops->ndo_validate_addr) 1392 ret = ops->ndo_validate_addr(dev); 1393 1394 if (!ret && ops->ndo_open) 1395 ret = ops->ndo_open(dev); 1396 1397 netpoll_poll_enable(dev); 1398 1399 if (ret) 1400 clear_bit(__LINK_STATE_START, &dev->state); 1401 else { 1402 dev->flags |= IFF_UP; 1403 dev_set_rx_mode(dev); 1404 dev_activate(dev); 1405 add_device_randomness(dev->dev_addr, dev->addr_len); 1406 } 1407 1408 return ret; 1409 } 1410 1411 /** 1412 * dev_open - prepare an interface for use. 1413 * @dev: device to open 1414 * @extack: netlink extended ack 1415 * 1416 * Takes a device from down to up state. The device's private open 1417 * function is invoked and then the multicast lists are loaded. Finally 1418 * the device is moved into the up state and a %NETDEV_UP message is 1419 * sent to the netdev notifier chain. 1420 * 1421 * Calling this function on an active interface is a nop. On a failure 1422 * a negative errno code is returned. 1423 */ 1424 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1425 { 1426 int ret; 1427 1428 if (dev->flags & IFF_UP) 1429 return 0; 1430 1431 ret = __dev_open(dev, extack); 1432 if (ret < 0) 1433 return ret; 1434 1435 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1436 call_netdevice_notifiers(NETDEV_UP, dev); 1437 1438 return ret; 1439 } 1440 EXPORT_SYMBOL(dev_open); 1441 1442 static void __dev_close_many(struct list_head *head) 1443 { 1444 struct net_device *dev; 1445 1446 ASSERT_RTNL(); 1447 might_sleep(); 1448 1449 list_for_each_entry(dev, head, close_list) { 1450 /* Temporarily disable netpoll until the interface is down */ 1451 netpoll_poll_disable(dev); 1452 1453 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1454 1455 clear_bit(__LINK_STATE_START, &dev->state); 1456 1457 /* Synchronize to scheduled poll. We cannot touch poll list, it 1458 * can be even on different cpu. So just clear netif_running(). 1459 * 1460 * dev->stop() will invoke napi_disable() on all of it's 1461 * napi_struct instances on this device. 1462 */ 1463 smp_mb__after_atomic(); /* Commit netif_running(). */ 1464 } 1465 1466 dev_deactivate_many(head); 1467 1468 list_for_each_entry(dev, head, close_list) { 1469 const struct net_device_ops *ops = dev->netdev_ops; 1470 1471 /* 1472 * Call the device specific close. This cannot fail. 1473 * Only if device is UP 1474 * 1475 * We allow it to be called even after a DETACH hot-plug 1476 * event. 1477 */ 1478 if (ops->ndo_stop) 1479 ops->ndo_stop(dev); 1480 1481 dev->flags &= ~IFF_UP; 1482 netpoll_poll_enable(dev); 1483 } 1484 } 1485 1486 static void __dev_close(struct net_device *dev) 1487 { 1488 LIST_HEAD(single); 1489 1490 list_add(&dev->close_list, &single); 1491 __dev_close_many(&single); 1492 list_del(&single); 1493 } 1494 1495 void dev_close_many(struct list_head *head, bool unlink) 1496 { 1497 struct net_device *dev, *tmp; 1498 1499 /* Remove the devices that don't need to be closed */ 1500 list_for_each_entry_safe(dev, tmp, head, close_list) 1501 if (!(dev->flags & IFF_UP)) 1502 list_del_init(&dev->close_list); 1503 1504 __dev_close_many(head); 1505 1506 list_for_each_entry_safe(dev, tmp, head, close_list) { 1507 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1508 call_netdevice_notifiers(NETDEV_DOWN, dev); 1509 if (unlink) 1510 list_del_init(&dev->close_list); 1511 } 1512 } 1513 EXPORT_SYMBOL(dev_close_many); 1514 1515 /** 1516 * dev_close - shutdown an interface. 1517 * @dev: device to shutdown 1518 * 1519 * This function moves an active device into down state. A 1520 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1521 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1522 * chain. 1523 */ 1524 void dev_close(struct net_device *dev) 1525 { 1526 if (dev->flags & IFF_UP) { 1527 LIST_HEAD(single); 1528 1529 list_add(&dev->close_list, &single); 1530 dev_close_many(&single, true); 1531 list_del(&single); 1532 } 1533 } 1534 EXPORT_SYMBOL(dev_close); 1535 1536 1537 /** 1538 * dev_disable_lro - disable Large Receive Offload on a device 1539 * @dev: device 1540 * 1541 * Disable Large Receive Offload (LRO) on a net device. Must be 1542 * called under RTNL. This is needed if received packets may be 1543 * forwarded to another interface. 1544 */ 1545 void dev_disable_lro(struct net_device *dev) 1546 { 1547 struct net_device *lower_dev; 1548 struct list_head *iter; 1549 1550 dev->wanted_features &= ~NETIF_F_LRO; 1551 netdev_update_features(dev); 1552 1553 if (unlikely(dev->features & NETIF_F_LRO)) 1554 netdev_WARN(dev, "failed to disable LRO!\n"); 1555 1556 netdev_for_each_lower_dev(dev, lower_dev, iter) 1557 dev_disable_lro(lower_dev); 1558 } 1559 EXPORT_SYMBOL(dev_disable_lro); 1560 1561 /** 1562 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1563 * @dev: device 1564 * 1565 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1566 * called under RTNL. This is needed if Generic XDP is installed on 1567 * the device. 1568 */ 1569 static void dev_disable_gro_hw(struct net_device *dev) 1570 { 1571 dev->wanted_features &= ~NETIF_F_GRO_HW; 1572 netdev_update_features(dev); 1573 1574 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1575 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1576 } 1577 1578 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1579 { 1580 #define N(val) \ 1581 case NETDEV_##val: \ 1582 return "NETDEV_" __stringify(val); 1583 switch (cmd) { 1584 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1585 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1586 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1587 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1588 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1589 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1590 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1591 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1592 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1593 N(PRE_CHANGEADDR) 1594 } 1595 #undef N 1596 return "UNKNOWN_NETDEV_EVENT"; 1597 } 1598 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1599 1600 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1601 struct net_device *dev) 1602 { 1603 struct netdev_notifier_info info = { 1604 .dev = dev, 1605 }; 1606 1607 return nb->notifier_call(nb, val, &info); 1608 } 1609 1610 static int dev_boot_phase = 1; 1611 1612 /** 1613 * register_netdevice_notifier - register a network notifier block 1614 * @nb: notifier 1615 * 1616 * Register a notifier to be called when network device events occur. 1617 * The notifier passed is linked into the kernel structures and must 1618 * not be reused until it has been unregistered. A negative errno code 1619 * is returned on a failure. 1620 * 1621 * When registered all registration and up events are replayed 1622 * to the new notifier to allow device to have a race free 1623 * view of the network device list. 1624 */ 1625 1626 int register_netdevice_notifier(struct notifier_block *nb) 1627 { 1628 struct net_device *dev; 1629 struct net_device *last; 1630 struct net *net; 1631 int err; 1632 1633 /* Close race with setup_net() and cleanup_net() */ 1634 down_write(&pernet_ops_rwsem); 1635 rtnl_lock(); 1636 err = raw_notifier_chain_register(&netdev_chain, nb); 1637 if (err) 1638 goto unlock; 1639 if (dev_boot_phase) 1640 goto unlock; 1641 for_each_net(net) { 1642 for_each_netdev(net, dev) { 1643 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1644 err = notifier_to_errno(err); 1645 if (err) 1646 goto rollback; 1647 1648 if (!(dev->flags & IFF_UP)) 1649 continue; 1650 1651 call_netdevice_notifier(nb, NETDEV_UP, dev); 1652 } 1653 } 1654 1655 unlock: 1656 rtnl_unlock(); 1657 up_write(&pernet_ops_rwsem); 1658 return err; 1659 1660 rollback: 1661 last = dev; 1662 for_each_net(net) { 1663 for_each_netdev(net, dev) { 1664 if (dev == last) 1665 goto outroll; 1666 1667 if (dev->flags & IFF_UP) { 1668 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1669 dev); 1670 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1671 } 1672 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1673 } 1674 } 1675 1676 outroll: 1677 raw_notifier_chain_unregister(&netdev_chain, nb); 1678 goto unlock; 1679 } 1680 EXPORT_SYMBOL(register_netdevice_notifier); 1681 1682 /** 1683 * unregister_netdevice_notifier - unregister a network notifier block 1684 * @nb: notifier 1685 * 1686 * Unregister a notifier previously registered by 1687 * register_netdevice_notifier(). The notifier is unlinked into the 1688 * kernel structures and may then be reused. A negative errno code 1689 * is returned on a failure. 1690 * 1691 * After unregistering unregister and down device events are synthesized 1692 * for all devices on the device list to the removed notifier to remove 1693 * the need for special case cleanup code. 1694 */ 1695 1696 int unregister_netdevice_notifier(struct notifier_block *nb) 1697 { 1698 struct net_device *dev; 1699 struct net *net; 1700 int err; 1701 1702 /* Close race with setup_net() and cleanup_net() */ 1703 down_write(&pernet_ops_rwsem); 1704 rtnl_lock(); 1705 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1706 if (err) 1707 goto unlock; 1708 1709 for_each_net(net) { 1710 for_each_netdev(net, dev) { 1711 if (dev->flags & IFF_UP) { 1712 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1713 dev); 1714 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1715 } 1716 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1717 } 1718 } 1719 unlock: 1720 rtnl_unlock(); 1721 up_write(&pernet_ops_rwsem); 1722 return err; 1723 } 1724 EXPORT_SYMBOL(unregister_netdevice_notifier); 1725 1726 /** 1727 * call_netdevice_notifiers_info - call all network notifier blocks 1728 * @val: value passed unmodified to notifier function 1729 * @info: notifier information data 1730 * 1731 * Call all network notifier blocks. Parameters and return value 1732 * are as for raw_notifier_call_chain(). 1733 */ 1734 1735 static int call_netdevice_notifiers_info(unsigned long val, 1736 struct netdev_notifier_info *info) 1737 { 1738 ASSERT_RTNL(); 1739 return raw_notifier_call_chain(&netdev_chain, val, info); 1740 } 1741 1742 static int call_netdevice_notifiers_extack(unsigned long val, 1743 struct net_device *dev, 1744 struct netlink_ext_ack *extack) 1745 { 1746 struct netdev_notifier_info info = { 1747 .dev = dev, 1748 .extack = extack, 1749 }; 1750 1751 return call_netdevice_notifiers_info(val, &info); 1752 } 1753 1754 /** 1755 * call_netdevice_notifiers - call all network notifier blocks 1756 * @val: value passed unmodified to notifier function 1757 * @dev: net_device pointer passed unmodified to notifier function 1758 * 1759 * Call all network notifier blocks. Parameters and return value 1760 * are as for raw_notifier_call_chain(). 1761 */ 1762 1763 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1764 { 1765 return call_netdevice_notifiers_extack(val, dev, NULL); 1766 } 1767 EXPORT_SYMBOL(call_netdevice_notifiers); 1768 1769 /** 1770 * call_netdevice_notifiers_mtu - call all network notifier blocks 1771 * @val: value passed unmodified to notifier function 1772 * @dev: net_device pointer passed unmodified to notifier function 1773 * @arg: additional u32 argument passed to the notifier function 1774 * 1775 * Call all network notifier blocks. Parameters and return value 1776 * are as for raw_notifier_call_chain(). 1777 */ 1778 static int call_netdevice_notifiers_mtu(unsigned long val, 1779 struct net_device *dev, u32 arg) 1780 { 1781 struct netdev_notifier_info_ext info = { 1782 .info.dev = dev, 1783 .ext.mtu = arg, 1784 }; 1785 1786 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 1787 1788 return call_netdevice_notifiers_info(val, &info.info); 1789 } 1790 1791 #ifdef CONFIG_NET_INGRESS 1792 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 1793 1794 void net_inc_ingress_queue(void) 1795 { 1796 static_branch_inc(&ingress_needed_key); 1797 } 1798 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1799 1800 void net_dec_ingress_queue(void) 1801 { 1802 static_branch_dec(&ingress_needed_key); 1803 } 1804 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1805 #endif 1806 1807 #ifdef CONFIG_NET_EGRESS 1808 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 1809 1810 void net_inc_egress_queue(void) 1811 { 1812 static_branch_inc(&egress_needed_key); 1813 } 1814 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1815 1816 void net_dec_egress_queue(void) 1817 { 1818 static_branch_dec(&egress_needed_key); 1819 } 1820 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1821 #endif 1822 1823 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 1824 #ifdef CONFIG_JUMP_LABEL 1825 static atomic_t netstamp_needed_deferred; 1826 static atomic_t netstamp_wanted; 1827 static void netstamp_clear(struct work_struct *work) 1828 { 1829 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1830 int wanted; 1831 1832 wanted = atomic_add_return(deferred, &netstamp_wanted); 1833 if (wanted > 0) 1834 static_branch_enable(&netstamp_needed_key); 1835 else 1836 static_branch_disable(&netstamp_needed_key); 1837 } 1838 static DECLARE_WORK(netstamp_work, netstamp_clear); 1839 #endif 1840 1841 void net_enable_timestamp(void) 1842 { 1843 #ifdef CONFIG_JUMP_LABEL 1844 int wanted; 1845 1846 while (1) { 1847 wanted = atomic_read(&netstamp_wanted); 1848 if (wanted <= 0) 1849 break; 1850 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1851 return; 1852 } 1853 atomic_inc(&netstamp_needed_deferred); 1854 schedule_work(&netstamp_work); 1855 #else 1856 static_branch_inc(&netstamp_needed_key); 1857 #endif 1858 } 1859 EXPORT_SYMBOL(net_enable_timestamp); 1860 1861 void net_disable_timestamp(void) 1862 { 1863 #ifdef CONFIG_JUMP_LABEL 1864 int wanted; 1865 1866 while (1) { 1867 wanted = atomic_read(&netstamp_wanted); 1868 if (wanted <= 1) 1869 break; 1870 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1871 return; 1872 } 1873 atomic_dec(&netstamp_needed_deferred); 1874 schedule_work(&netstamp_work); 1875 #else 1876 static_branch_dec(&netstamp_needed_key); 1877 #endif 1878 } 1879 EXPORT_SYMBOL(net_disable_timestamp); 1880 1881 static inline void net_timestamp_set(struct sk_buff *skb) 1882 { 1883 skb->tstamp = 0; 1884 if (static_branch_unlikely(&netstamp_needed_key)) 1885 __net_timestamp(skb); 1886 } 1887 1888 #define net_timestamp_check(COND, SKB) \ 1889 if (static_branch_unlikely(&netstamp_needed_key)) { \ 1890 if ((COND) && !(SKB)->tstamp) \ 1891 __net_timestamp(SKB); \ 1892 } \ 1893 1894 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1895 { 1896 unsigned int len; 1897 1898 if (!(dev->flags & IFF_UP)) 1899 return false; 1900 1901 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1902 if (skb->len <= len) 1903 return true; 1904 1905 /* if TSO is enabled, we don't care about the length as the packet 1906 * could be forwarded without being segmented before 1907 */ 1908 if (skb_is_gso(skb)) 1909 return true; 1910 1911 return false; 1912 } 1913 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1914 1915 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1916 { 1917 int ret = ____dev_forward_skb(dev, skb); 1918 1919 if (likely(!ret)) { 1920 skb->protocol = eth_type_trans(skb, dev); 1921 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1922 } 1923 1924 return ret; 1925 } 1926 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1927 1928 /** 1929 * dev_forward_skb - loopback an skb to another netif 1930 * 1931 * @dev: destination network device 1932 * @skb: buffer to forward 1933 * 1934 * return values: 1935 * NET_RX_SUCCESS (no congestion) 1936 * NET_RX_DROP (packet was dropped, but freed) 1937 * 1938 * dev_forward_skb can be used for injecting an skb from the 1939 * start_xmit function of one device into the receive queue 1940 * of another device. 1941 * 1942 * The receiving device may be in another namespace, so 1943 * we have to clear all information in the skb that could 1944 * impact namespace isolation. 1945 */ 1946 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1947 { 1948 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1949 } 1950 EXPORT_SYMBOL_GPL(dev_forward_skb); 1951 1952 static inline int deliver_skb(struct sk_buff *skb, 1953 struct packet_type *pt_prev, 1954 struct net_device *orig_dev) 1955 { 1956 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1957 return -ENOMEM; 1958 refcount_inc(&skb->users); 1959 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1960 } 1961 1962 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1963 struct packet_type **pt, 1964 struct net_device *orig_dev, 1965 __be16 type, 1966 struct list_head *ptype_list) 1967 { 1968 struct packet_type *ptype, *pt_prev = *pt; 1969 1970 list_for_each_entry_rcu(ptype, ptype_list, list) { 1971 if (ptype->type != type) 1972 continue; 1973 if (pt_prev) 1974 deliver_skb(skb, pt_prev, orig_dev); 1975 pt_prev = ptype; 1976 } 1977 *pt = pt_prev; 1978 } 1979 1980 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1981 { 1982 if (!ptype->af_packet_priv || !skb->sk) 1983 return false; 1984 1985 if (ptype->id_match) 1986 return ptype->id_match(ptype, skb->sk); 1987 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1988 return true; 1989 1990 return false; 1991 } 1992 1993 /** 1994 * dev_nit_active - return true if any network interface taps are in use 1995 * 1996 * @dev: network device to check for the presence of taps 1997 */ 1998 bool dev_nit_active(struct net_device *dev) 1999 { 2000 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2001 } 2002 EXPORT_SYMBOL_GPL(dev_nit_active); 2003 2004 /* 2005 * Support routine. Sends outgoing frames to any network 2006 * taps currently in use. 2007 */ 2008 2009 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2010 { 2011 struct packet_type *ptype; 2012 struct sk_buff *skb2 = NULL; 2013 struct packet_type *pt_prev = NULL; 2014 struct list_head *ptype_list = &ptype_all; 2015 2016 rcu_read_lock(); 2017 again: 2018 list_for_each_entry_rcu(ptype, ptype_list, list) { 2019 if (ptype->ignore_outgoing) 2020 continue; 2021 2022 /* Never send packets back to the socket 2023 * they originated from - MvS (miquels@drinkel.ow.org) 2024 */ 2025 if (skb_loop_sk(ptype, skb)) 2026 continue; 2027 2028 if (pt_prev) { 2029 deliver_skb(skb2, pt_prev, skb->dev); 2030 pt_prev = ptype; 2031 continue; 2032 } 2033 2034 /* need to clone skb, done only once */ 2035 skb2 = skb_clone(skb, GFP_ATOMIC); 2036 if (!skb2) 2037 goto out_unlock; 2038 2039 net_timestamp_set(skb2); 2040 2041 /* skb->nh should be correctly 2042 * set by sender, so that the second statement is 2043 * just protection against buggy protocols. 2044 */ 2045 skb_reset_mac_header(skb2); 2046 2047 if (skb_network_header(skb2) < skb2->data || 2048 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2049 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2050 ntohs(skb2->protocol), 2051 dev->name); 2052 skb_reset_network_header(skb2); 2053 } 2054 2055 skb2->transport_header = skb2->network_header; 2056 skb2->pkt_type = PACKET_OUTGOING; 2057 pt_prev = ptype; 2058 } 2059 2060 if (ptype_list == &ptype_all) { 2061 ptype_list = &dev->ptype_all; 2062 goto again; 2063 } 2064 out_unlock: 2065 if (pt_prev) { 2066 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2067 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2068 else 2069 kfree_skb(skb2); 2070 } 2071 rcu_read_unlock(); 2072 } 2073 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2074 2075 /** 2076 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2077 * @dev: Network device 2078 * @txq: number of queues available 2079 * 2080 * If real_num_tx_queues is changed the tc mappings may no longer be 2081 * valid. To resolve this verify the tc mapping remains valid and if 2082 * not NULL the mapping. With no priorities mapping to this 2083 * offset/count pair it will no longer be used. In the worst case TC0 2084 * is invalid nothing can be done so disable priority mappings. If is 2085 * expected that drivers will fix this mapping if they can before 2086 * calling netif_set_real_num_tx_queues. 2087 */ 2088 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2089 { 2090 int i; 2091 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2092 2093 /* If TC0 is invalidated disable TC mapping */ 2094 if (tc->offset + tc->count > txq) { 2095 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2096 dev->num_tc = 0; 2097 return; 2098 } 2099 2100 /* Invalidated prio to tc mappings set to TC0 */ 2101 for (i = 1; i < TC_BITMASK + 1; i++) { 2102 int q = netdev_get_prio_tc_map(dev, i); 2103 2104 tc = &dev->tc_to_txq[q]; 2105 if (tc->offset + tc->count > txq) { 2106 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2107 i, q); 2108 netdev_set_prio_tc_map(dev, i, 0); 2109 } 2110 } 2111 } 2112 2113 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2114 { 2115 if (dev->num_tc) { 2116 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2117 int i; 2118 2119 /* walk through the TCs and see if it falls into any of them */ 2120 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2121 if ((txq - tc->offset) < tc->count) 2122 return i; 2123 } 2124 2125 /* didn't find it, just return -1 to indicate no match */ 2126 return -1; 2127 } 2128 2129 return 0; 2130 } 2131 EXPORT_SYMBOL(netdev_txq_to_tc); 2132 2133 #ifdef CONFIG_XPS 2134 struct static_key xps_needed __read_mostly; 2135 EXPORT_SYMBOL(xps_needed); 2136 struct static_key xps_rxqs_needed __read_mostly; 2137 EXPORT_SYMBOL(xps_rxqs_needed); 2138 static DEFINE_MUTEX(xps_map_mutex); 2139 #define xmap_dereference(P) \ 2140 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2141 2142 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2143 int tci, u16 index) 2144 { 2145 struct xps_map *map = NULL; 2146 int pos; 2147 2148 if (dev_maps) 2149 map = xmap_dereference(dev_maps->attr_map[tci]); 2150 if (!map) 2151 return false; 2152 2153 for (pos = map->len; pos--;) { 2154 if (map->queues[pos] != index) 2155 continue; 2156 2157 if (map->len > 1) { 2158 map->queues[pos] = map->queues[--map->len]; 2159 break; 2160 } 2161 2162 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2163 kfree_rcu(map, rcu); 2164 return false; 2165 } 2166 2167 return true; 2168 } 2169 2170 static bool remove_xps_queue_cpu(struct net_device *dev, 2171 struct xps_dev_maps *dev_maps, 2172 int cpu, u16 offset, u16 count) 2173 { 2174 int num_tc = dev->num_tc ? : 1; 2175 bool active = false; 2176 int tci; 2177 2178 for (tci = cpu * num_tc; num_tc--; tci++) { 2179 int i, j; 2180 2181 for (i = count, j = offset; i--; j++) { 2182 if (!remove_xps_queue(dev_maps, tci, j)) 2183 break; 2184 } 2185 2186 active |= i < 0; 2187 } 2188 2189 return active; 2190 } 2191 2192 static void reset_xps_maps(struct net_device *dev, 2193 struct xps_dev_maps *dev_maps, 2194 bool is_rxqs_map) 2195 { 2196 if (is_rxqs_map) { 2197 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2198 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2199 } else { 2200 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2201 } 2202 static_key_slow_dec_cpuslocked(&xps_needed); 2203 kfree_rcu(dev_maps, rcu); 2204 } 2205 2206 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2207 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2208 u16 offset, u16 count, bool is_rxqs_map) 2209 { 2210 bool active = false; 2211 int i, j; 2212 2213 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2214 j < nr_ids;) 2215 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2216 count); 2217 if (!active) 2218 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2219 2220 if (!is_rxqs_map) { 2221 for (i = offset + (count - 1); count--; i--) { 2222 netdev_queue_numa_node_write( 2223 netdev_get_tx_queue(dev, i), 2224 NUMA_NO_NODE); 2225 } 2226 } 2227 } 2228 2229 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2230 u16 count) 2231 { 2232 const unsigned long *possible_mask = NULL; 2233 struct xps_dev_maps *dev_maps; 2234 unsigned int nr_ids; 2235 2236 if (!static_key_false(&xps_needed)) 2237 return; 2238 2239 cpus_read_lock(); 2240 mutex_lock(&xps_map_mutex); 2241 2242 if (static_key_false(&xps_rxqs_needed)) { 2243 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2244 if (dev_maps) { 2245 nr_ids = dev->num_rx_queues; 2246 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2247 offset, count, true); 2248 } 2249 } 2250 2251 dev_maps = xmap_dereference(dev->xps_cpus_map); 2252 if (!dev_maps) 2253 goto out_no_maps; 2254 2255 if (num_possible_cpus() > 1) 2256 possible_mask = cpumask_bits(cpu_possible_mask); 2257 nr_ids = nr_cpu_ids; 2258 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2259 false); 2260 2261 out_no_maps: 2262 mutex_unlock(&xps_map_mutex); 2263 cpus_read_unlock(); 2264 } 2265 2266 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2267 { 2268 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2269 } 2270 2271 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2272 u16 index, bool is_rxqs_map) 2273 { 2274 struct xps_map *new_map; 2275 int alloc_len = XPS_MIN_MAP_ALLOC; 2276 int i, pos; 2277 2278 for (pos = 0; map && pos < map->len; pos++) { 2279 if (map->queues[pos] != index) 2280 continue; 2281 return map; 2282 } 2283 2284 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2285 if (map) { 2286 if (pos < map->alloc_len) 2287 return map; 2288 2289 alloc_len = map->alloc_len * 2; 2290 } 2291 2292 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2293 * map 2294 */ 2295 if (is_rxqs_map) 2296 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2297 else 2298 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2299 cpu_to_node(attr_index)); 2300 if (!new_map) 2301 return NULL; 2302 2303 for (i = 0; i < pos; i++) 2304 new_map->queues[i] = map->queues[i]; 2305 new_map->alloc_len = alloc_len; 2306 new_map->len = pos; 2307 2308 return new_map; 2309 } 2310 2311 /* Must be called under cpus_read_lock */ 2312 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2313 u16 index, bool is_rxqs_map) 2314 { 2315 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2316 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2317 int i, j, tci, numa_node_id = -2; 2318 int maps_sz, num_tc = 1, tc = 0; 2319 struct xps_map *map, *new_map; 2320 bool active = false; 2321 unsigned int nr_ids; 2322 2323 if (dev->num_tc) { 2324 /* Do not allow XPS on subordinate device directly */ 2325 num_tc = dev->num_tc; 2326 if (num_tc < 0) 2327 return -EINVAL; 2328 2329 /* If queue belongs to subordinate dev use its map */ 2330 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2331 2332 tc = netdev_txq_to_tc(dev, index); 2333 if (tc < 0) 2334 return -EINVAL; 2335 } 2336 2337 mutex_lock(&xps_map_mutex); 2338 if (is_rxqs_map) { 2339 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2340 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2341 nr_ids = dev->num_rx_queues; 2342 } else { 2343 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2344 if (num_possible_cpus() > 1) { 2345 online_mask = cpumask_bits(cpu_online_mask); 2346 possible_mask = cpumask_bits(cpu_possible_mask); 2347 } 2348 dev_maps = xmap_dereference(dev->xps_cpus_map); 2349 nr_ids = nr_cpu_ids; 2350 } 2351 2352 if (maps_sz < L1_CACHE_BYTES) 2353 maps_sz = L1_CACHE_BYTES; 2354 2355 /* allocate memory for queue storage */ 2356 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2357 j < nr_ids;) { 2358 if (!new_dev_maps) 2359 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2360 if (!new_dev_maps) { 2361 mutex_unlock(&xps_map_mutex); 2362 return -ENOMEM; 2363 } 2364 2365 tci = j * num_tc + tc; 2366 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2367 NULL; 2368 2369 map = expand_xps_map(map, j, index, is_rxqs_map); 2370 if (!map) 2371 goto error; 2372 2373 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2374 } 2375 2376 if (!new_dev_maps) 2377 goto out_no_new_maps; 2378 2379 if (!dev_maps) { 2380 /* Increment static keys at most once per type */ 2381 static_key_slow_inc_cpuslocked(&xps_needed); 2382 if (is_rxqs_map) 2383 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2384 } 2385 2386 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2387 j < nr_ids;) { 2388 /* copy maps belonging to foreign traffic classes */ 2389 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2390 /* fill in the new device map from the old device map */ 2391 map = xmap_dereference(dev_maps->attr_map[tci]); 2392 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2393 } 2394 2395 /* We need to explicitly update tci as prevous loop 2396 * could break out early if dev_maps is NULL. 2397 */ 2398 tci = j * num_tc + tc; 2399 2400 if (netif_attr_test_mask(j, mask, nr_ids) && 2401 netif_attr_test_online(j, online_mask, nr_ids)) { 2402 /* add tx-queue to CPU/rx-queue maps */ 2403 int pos = 0; 2404 2405 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2406 while ((pos < map->len) && (map->queues[pos] != index)) 2407 pos++; 2408 2409 if (pos == map->len) 2410 map->queues[map->len++] = index; 2411 #ifdef CONFIG_NUMA 2412 if (!is_rxqs_map) { 2413 if (numa_node_id == -2) 2414 numa_node_id = cpu_to_node(j); 2415 else if (numa_node_id != cpu_to_node(j)) 2416 numa_node_id = -1; 2417 } 2418 #endif 2419 } else if (dev_maps) { 2420 /* fill in the new device map from the old device map */ 2421 map = xmap_dereference(dev_maps->attr_map[tci]); 2422 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2423 } 2424 2425 /* copy maps belonging to foreign traffic classes */ 2426 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2427 /* fill in the new device map from the old device map */ 2428 map = xmap_dereference(dev_maps->attr_map[tci]); 2429 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2430 } 2431 } 2432 2433 if (is_rxqs_map) 2434 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2435 else 2436 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2437 2438 /* Cleanup old maps */ 2439 if (!dev_maps) 2440 goto out_no_old_maps; 2441 2442 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2443 j < nr_ids;) { 2444 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2445 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2446 map = xmap_dereference(dev_maps->attr_map[tci]); 2447 if (map && map != new_map) 2448 kfree_rcu(map, rcu); 2449 } 2450 } 2451 2452 kfree_rcu(dev_maps, rcu); 2453 2454 out_no_old_maps: 2455 dev_maps = new_dev_maps; 2456 active = true; 2457 2458 out_no_new_maps: 2459 if (!is_rxqs_map) { 2460 /* update Tx queue numa node */ 2461 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2462 (numa_node_id >= 0) ? 2463 numa_node_id : NUMA_NO_NODE); 2464 } 2465 2466 if (!dev_maps) 2467 goto out_no_maps; 2468 2469 /* removes tx-queue from unused CPUs/rx-queues */ 2470 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2471 j < nr_ids;) { 2472 for (i = tc, tci = j * num_tc; i--; tci++) 2473 active |= remove_xps_queue(dev_maps, tci, index); 2474 if (!netif_attr_test_mask(j, mask, nr_ids) || 2475 !netif_attr_test_online(j, online_mask, nr_ids)) 2476 active |= remove_xps_queue(dev_maps, tci, index); 2477 for (i = num_tc - tc, tci++; --i; tci++) 2478 active |= remove_xps_queue(dev_maps, tci, index); 2479 } 2480 2481 /* free map if not active */ 2482 if (!active) 2483 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2484 2485 out_no_maps: 2486 mutex_unlock(&xps_map_mutex); 2487 2488 return 0; 2489 error: 2490 /* remove any maps that we added */ 2491 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2492 j < nr_ids;) { 2493 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2494 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2495 map = dev_maps ? 2496 xmap_dereference(dev_maps->attr_map[tci]) : 2497 NULL; 2498 if (new_map && new_map != map) 2499 kfree(new_map); 2500 } 2501 } 2502 2503 mutex_unlock(&xps_map_mutex); 2504 2505 kfree(new_dev_maps); 2506 return -ENOMEM; 2507 } 2508 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2509 2510 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2511 u16 index) 2512 { 2513 int ret; 2514 2515 cpus_read_lock(); 2516 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2517 cpus_read_unlock(); 2518 2519 return ret; 2520 } 2521 EXPORT_SYMBOL(netif_set_xps_queue); 2522 2523 #endif 2524 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2525 { 2526 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2527 2528 /* Unbind any subordinate channels */ 2529 while (txq-- != &dev->_tx[0]) { 2530 if (txq->sb_dev) 2531 netdev_unbind_sb_channel(dev, txq->sb_dev); 2532 } 2533 } 2534 2535 void netdev_reset_tc(struct net_device *dev) 2536 { 2537 #ifdef CONFIG_XPS 2538 netif_reset_xps_queues_gt(dev, 0); 2539 #endif 2540 netdev_unbind_all_sb_channels(dev); 2541 2542 /* Reset TC configuration of device */ 2543 dev->num_tc = 0; 2544 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2545 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2546 } 2547 EXPORT_SYMBOL(netdev_reset_tc); 2548 2549 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2550 { 2551 if (tc >= dev->num_tc) 2552 return -EINVAL; 2553 2554 #ifdef CONFIG_XPS 2555 netif_reset_xps_queues(dev, offset, count); 2556 #endif 2557 dev->tc_to_txq[tc].count = count; 2558 dev->tc_to_txq[tc].offset = offset; 2559 return 0; 2560 } 2561 EXPORT_SYMBOL(netdev_set_tc_queue); 2562 2563 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2564 { 2565 if (num_tc > TC_MAX_QUEUE) 2566 return -EINVAL; 2567 2568 #ifdef CONFIG_XPS 2569 netif_reset_xps_queues_gt(dev, 0); 2570 #endif 2571 netdev_unbind_all_sb_channels(dev); 2572 2573 dev->num_tc = num_tc; 2574 return 0; 2575 } 2576 EXPORT_SYMBOL(netdev_set_num_tc); 2577 2578 void netdev_unbind_sb_channel(struct net_device *dev, 2579 struct net_device *sb_dev) 2580 { 2581 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2582 2583 #ifdef CONFIG_XPS 2584 netif_reset_xps_queues_gt(sb_dev, 0); 2585 #endif 2586 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2587 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2588 2589 while (txq-- != &dev->_tx[0]) { 2590 if (txq->sb_dev == sb_dev) 2591 txq->sb_dev = NULL; 2592 } 2593 } 2594 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2595 2596 int netdev_bind_sb_channel_queue(struct net_device *dev, 2597 struct net_device *sb_dev, 2598 u8 tc, u16 count, u16 offset) 2599 { 2600 /* Make certain the sb_dev and dev are already configured */ 2601 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2602 return -EINVAL; 2603 2604 /* We cannot hand out queues we don't have */ 2605 if ((offset + count) > dev->real_num_tx_queues) 2606 return -EINVAL; 2607 2608 /* Record the mapping */ 2609 sb_dev->tc_to_txq[tc].count = count; 2610 sb_dev->tc_to_txq[tc].offset = offset; 2611 2612 /* Provide a way for Tx queue to find the tc_to_txq map or 2613 * XPS map for itself. 2614 */ 2615 while (count--) 2616 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2617 2618 return 0; 2619 } 2620 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2621 2622 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2623 { 2624 /* Do not use a multiqueue device to represent a subordinate channel */ 2625 if (netif_is_multiqueue(dev)) 2626 return -ENODEV; 2627 2628 /* We allow channels 1 - 32767 to be used for subordinate channels. 2629 * Channel 0 is meant to be "native" mode and used only to represent 2630 * the main root device. We allow writing 0 to reset the device back 2631 * to normal mode after being used as a subordinate channel. 2632 */ 2633 if (channel > S16_MAX) 2634 return -EINVAL; 2635 2636 dev->num_tc = -channel; 2637 2638 return 0; 2639 } 2640 EXPORT_SYMBOL(netdev_set_sb_channel); 2641 2642 /* 2643 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2644 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2645 */ 2646 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2647 { 2648 bool disabling; 2649 int rc; 2650 2651 disabling = txq < dev->real_num_tx_queues; 2652 2653 if (txq < 1 || txq > dev->num_tx_queues) 2654 return -EINVAL; 2655 2656 if (dev->reg_state == NETREG_REGISTERED || 2657 dev->reg_state == NETREG_UNREGISTERING) { 2658 ASSERT_RTNL(); 2659 2660 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2661 txq); 2662 if (rc) 2663 return rc; 2664 2665 if (dev->num_tc) 2666 netif_setup_tc(dev, txq); 2667 2668 dev->real_num_tx_queues = txq; 2669 2670 if (disabling) { 2671 synchronize_net(); 2672 qdisc_reset_all_tx_gt(dev, txq); 2673 #ifdef CONFIG_XPS 2674 netif_reset_xps_queues_gt(dev, txq); 2675 #endif 2676 } 2677 } else { 2678 dev->real_num_tx_queues = txq; 2679 } 2680 2681 return 0; 2682 } 2683 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2684 2685 #ifdef CONFIG_SYSFS 2686 /** 2687 * netif_set_real_num_rx_queues - set actual number of RX queues used 2688 * @dev: Network device 2689 * @rxq: Actual number of RX queues 2690 * 2691 * This must be called either with the rtnl_lock held or before 2692 * registration of the net device. Returns 0 on success, or a 2693 * negative error code. If called before registration, it always 2694 * succeeds. 2695 */ 2696 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2697 { 2698 int rc; 2699 2700 if (rxq < 1 || rxq > dev->num_rx_queues) 2701 return -EINVAL; 2702 2703 if (dev->reg_state == NETREG_REGISTERED) { 2704 ASSERT_RTNL(); 2705 2706 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2707 rxq); 2708 if (rc) 2709 return rc; 2710 } 2711 2712 dev->real_num_rx_queues = rxq; 2713 return 0; 2714 } 2715 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2716 #endif 2717 2718 /** 2719 * netif_get_num_default_rss_queues - default number of RSS queues 2720 * 2721 * This routine should set an upper limit on the number of RSS queues 2722 * used by default by multiqueue devices. 2723 */ 2724 int netif_get_num_default_rss_queues(void) 2725 { 2726 return is_kdump_kernel() ? 2727 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2728 } 2729 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2730 2731 static void __netif_reschedule(struct Qdisc *q) 2732 { 2733 struct softnet_data *sd; 2734 unsigned long flags; 2735 2736 local_irq_save(flags); 2737 sd = this_cpu_ptr(&softnet_data); 2738 q->next_sched = NULL; 2739 *sd->output_queue_tailp = q; 2740 sd->output_queue_tailp = &q->next_sched; 2741 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2742 local_irq_restore(flags); 2743 } 2744 2745 void __netif_schedule(struct Qdisc *q) 2746 { 2747 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2748 __netif_reschedule(q); 2749 } 2750 EXPORT_SYMBOL(__netif_schedule); 2751 2752 struct dev_kfree_skb_cb { 2753 enum skb_free_reason reason; 2754 }; 2755 2756 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2757 { 2758 return (struct dev_kfree_skb_cb *)skb->cb; 2759 } 2760 2761 void netif_schedule_queue(struct netdev_queue *txq) 2762 { 2763 rcu_read_lock(); 2764 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2765 struct Qdisc *q = rcu_dereference(txq->qdisc); 2766 2767 __netif_schedule(q); 2768 } 2769 rcu_read_unlock(); 2770 } 2771 EXPORT_SYMBOL(netif_schedule_queue); 2772 2773 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2774 { 2775 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2776 struct Qdisc *q; 2777 2778 rcu_read_lock(); 2779 q = rcu_dereference(dev_queue->qdisc); 2780 __netif_schedule(q); 2781 rcu_read_unlock(); 2782 } 2783 } 2784 EXPORT_SYMBOL(netif_tx_wake_queue); 2785 2786 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2787 { 2788 unsigned long flags; 2789 2790 if (unlikely(!skb)) 2791 return; 2792 2793 if (likely(refcount_read(&skb->users) == 1)) { 2794 smp_rmb(); 2795 refcount_set(&skb->users, 0); 2796 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2797 return; 2798 } 2799 get_kfree_skb_cb(skb)->reason = reason; 2800 local_irq_save(flags); 2801 skb->next = __this_cpu_read(softnet_data.completion_queue); 2802 __this_cpu_write(softnet_data.completion_queue, skb); 2803 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2804 local_irq_restore(flags); 2805 } 2806 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2807 2808 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2809 { 2810 if (in_irq() || irqs_disabled()) 2811 __dev_kfree_skb_irq(skb, reason); 2812 else 2813 dev_kfree_skb(skb); 2814 } 2815 EXPORT_SYMBOL(__dev_kfree_skb_any); 2816 2817 2818 /** 2819 * netif_device_detach - mark device as removed 2820 * @dev: network device 2821 * 2822 * Mark device as removed from system and therefore no longer available. 2823 */ 2824 void netif_device_detach(struct net_device *dev) 2825 { 2826 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2827 netif_running(dev)) { 2828 netif_tx_stop_all_queues(dev); 2829 } 2830 } 2831 EXPORT_SYMBOL(netif_device_detach); 2832 2833 /** 2834 * netif_device_attach - mark device as attached 2835 * @dev: network device 2836 * 2837 * Mark device as attached from system and restart if needed. 2838 */ 2839 void netif_device_attach(struct net_device *dev) 2840 { 2841 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2842 netif_running(dev)) { 2843 netif_tx_wake_all_queues(dev); 2844 __netdev_watchdog_up(dev); 2845 } 2846 } 2847 EXPORT_SYMBOL(netif_device_attach); 2848 2849 /* 2850 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2851 * to be used as a distribution range. 2852 */ 2853 static u16 skb_tx_hash(const struct net_device *dev, 2854 const struct net_device *sb_dev, 2855 struct sk_buff *skb) 2856 { 2857 u32 hash; 2858 u16 qoffset = 0; 2859 u16 qcount = dev->real_num_tx_queues; 2860 2861 if (dev->num_tc) { 2862 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2863 2864 qoffset = sb_dev->tc_to_txq[tc].offset; 2865 qcount = sb_dev->tc_to_txq[tc].count; 2866 } 2867 2868 if (skb_rx_queue_recorded(skb)) { 2869 hash = skb_get_rx_queue(skb); 2870 while (unlikely(hash >= qcount)) 2871 hash -= qcount; 2872 return hash + qoffset; 2873 } 2874 2875 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2876 } 2877 2878 static void skb_warn_bad_offload(const struct sk_buff *skb) 2879 { 2880 static const netdev_features_t null_features; 2881 struct net_device *dev = skb->dev; 2882 const char *name = ""; 2883 2884 if (!net_ratelimit()) 2885 return; 2886 2887 if (dev) { 2888 if (dev->dev.parent) 2889 name = dev_driver_string(dev->dev.parent); 2890 else 2891 name = netdev_name(dev); 2892 } 2893 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2894 "gso_type=%d ip_summed=%d\n", 2895 name, dev ? &dev->features : &null_features, 2896 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2897 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2898 skb_shinfo(skb)->gso_type, skb->ip_summed); 2899 } 2900 2901 /* 2902 * Invalidate hardware checksum when packet is to be mangled, and 2903 * complete checksum manually on outgoing path. 2904 */ 2905 int skb_checksum_help(struct sk_buff *skb) 2906 { 2907 __wsum csum; 2908 int ret = 0, offset; 2909 2910 if (skb->ip_summed == CHECKSUM_COMPLETE) 2911 goto out_set_summed; 2912 2913 if (unlikely(skb_shinfo(skb)->gso_size)) { 2914 skb_warn_bad_offload(skb); 2915 return -EINVAL; 2916 } 2917 2918 /* Before computing a checksum, we should make sure no frag could 2919 * be modified by an external entity : checksum could be wrong. 2920 */ 2921 if (skb_has_shared_frag(skb)) { 2922 ret = __skb_linearize(skb); 2923 if (ret) 2924 goto out; 2925 } 2926 2927 offset = skb_checksum_start_offset(skb); 2928 BUG_ON(offset >= skb_headlen(skb)); 2929 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2930 2931 offset += skb->csum_offset; 2932 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2933 2934 if (skb_cloned(skb) && 2935 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2936 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2937 if (ret) 2938 goto out; 2939 } 2940 2941 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2942 out_set_summed: 2943 skb->ip_summed = CHECKSUM_NONE; 2944 out: 2945 return ret; 2946 } 2947 EXPORT_SYMBOL(skb_checksum_help); 2948 2949 int skb_crc32c_csum_help(struct sk_buff *skb) 2950 { 2951 __le32 crc32c_csum; 2952 int ret = 0, offset, start; 2953 2954 if (skb->ip_summed != CHECKSUM_PARTIAL) 2955 goto out; 2956 2957 if (unlikely(skb_is_gso(skb))) 2958 goto out; 2959 2960 /* Before computing a checksum, we should make sure no frag could 2961 * be modified by an external entity : checksum could be wrong. 2962 */ 2963 if (unlikely(skb_has_shared_frag(skb))) { 2964 ret = __skb_linearize(skb); 2965 if (ret) 2966 goto out; 2967 } 2968 start = skb_checksum_start_offset(skb); 2969 offset = start + offsetof(struct sctphdr, checksum); 2970 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2971 ret = -EINVAL; 2972 goto out; 2973 } 2974 if (skb_cloned(skb) && 2975 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2976 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2977 if (ret) 2978 goto out; 2979 } 2980 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2981 skb->len - start, ~(__u32)0, 2982 crc32c_csum_stub)); 2983 *(__le32 *)(skb->data + offset) = crc32c_csum; 2984 skb->ip_summed = CHECKSUM_NONE; 2985 skb->csum_not_inet = 0; 2986 out: 2987 return ret; 2988 } 2989 2990 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2991 { 2992 __be16 type = skb->protocol; 2993 2994 /* Tunnel gso handlers can set protocol to ethernet. */ 2995 if (type == htons(ETH_P_TEB)) { 2996 struct ethhdr *eth; 2997 2998 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2999 return 0; 3000 3001 eth = (struct ethhdr *)skb->data; 3002 type = eth->h_proto; 3003 } 3004 3005 return __vlan_get_protocol(skb, type, depth); 3006 } 3007 3008 /** 3009 * skb_mac_gso_segment - mac layer segmentation handler. 3010 * @skb: buffer to segment 3011 * @features: features for the output path (see dev->features) 3012 */ 3013 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3014 netdev_features_t features) 3015 { 3016 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3017 struct packet_offload *ptype; 3018 int vlan_depth = skb->mac_len; 3019 __be16 type = skb_network_protocol(skb, &vlan_depth); 3020 3021 if (unlikely(!type)) 3022 return ERR_PTR(-EINVAL); 3023 3024 __skb_pull(skb, vlan_depth); 3025 3026 rcu_read_lock(); 3027 list_for_each_entry_rcu(ptype, &offload_base, list) { 3028 if (ptype->type == type && ptype->callbacks.gso_segment) { 3029 segs = ptype->callbacks.gso_segment(skb, features); 3030 break; 3031 } 3032 } 3033 rcu_read_unlock(); 3034 3035 __skb_push(skb, skb->data - skb_mac_header(skb)); 3036 3037 return segs; 3038 } 3039 EXPORT_SYMBOL(skb_mac_gso_segment); 3040 3041 3042 /* openvswitch calls this on rx path, so we need a different check. 3043 */ 3044 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3045 { 3046 if (tx_path) 3047 return skb->ip_summed != CHECKSUM_PARTIAL && 3048 skb->ip_summed != CHECKSUM_UNNECESSARY; 3049 3050 return skb->ip_summed == CHECKSUM_NONE; 3051 } 3052 3053 /** 3054 * __skb_gso_segment - Perform segmentation on skb. 3055 * @skb: buffer to segment 3056 * @features: features for the output path (see dev->features) 3057 * @tx_path: whether it is called in TX path 3058 * 3059 * This function segments the given skb and returns a list of segments. 3060 * 3061 * It may return NULL if the skb requires no segmentation. This is 3062 * only possible when GSO is used for verifying header integrity. 3063 * 3064 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 3065 */ 3066 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3067 netdev_features_t features, bool tx_path) 3068 { 3069 struct sk_buff *segs; 3070 3071 if (unlikely(skb_needs_check(skb, tx_path))) { 3072 int err; 3073 3074 /* We're going to init ->check field in TCP or UDP header */ 3075 err = skb_cow_head(skb, 0); 3076 if (err < 0) 3077 return ERR_PTR(err); 3078 } 3079 3080 /* Only report GSO partial support if it will enable us to 3081 * support segmentation on this frame without needing additional 3082 * work. 3083 */ 3084 if (features & NETIF_F_GSO_PARTIAL) { 3085 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3086 struct net_device *dev = skb->dev; 3087 3088 partial_features |= dev->features & dev->gso_partial_features; 3089 if (!skb_gso_ok(skb, features | partial_features)) 3090 features &= ~NETIF_F_GSO_PARTIAL; 3091 } 3092 3093 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 3094 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3095 3096 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3097 SKB_GSO_CB(skb)->encap_level = 0; 3098 3099 skb_reset_mac_header(skb); 3100 skb_reset_mac_len(skb); 3101 3102 segs = skb_mac_gso_segment(skb, features); 3103 3104 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3105 skb_warn_bad_offload(skb); 3106 3107 return segs; 3108 } 3109 EXPORT_SYMBOL(__skb_gso_segment); 3110 3111 /* Take action when hardware reception checksum errors are detected. */ 3112 #ifdef CONFIG_BUG 3113 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3114 { 3115 if (net_ratelimit()) { 3116 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3117 if (dev) 3118 pr_err("dev features: %pNF\n", &dev->features); 3119 pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n", 3120 skb->len, skb->data_len, skb->pkt_type, 3121 skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type, 3122 skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum, 3123 skb->csum_complete_sw, skb->csum_valid, skb->csum_level); 3124 dump_stack(); 3125 } 3126 } 3127 EXPORT_SYMBOL(netdev_rx_csum_fault); 3128 #endif 3129 3130 /* XXX: check that highmem exists at all on the given machine. */ 3131 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3132 { 3133 #ifdef CONFIG_HIGHMEM 3134 int i; 3135 3136 if (!(dev->features & NETIF_F_HIGHDMA)) { 3137 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3138 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3139 3140 if (PageHighMem(skb_frag_page(frag))) 3141 return 1; 3142 } 3143 } 3144 #endif 3145 return 0; 3146 } 3147 3148 /* If MPLS offload request, verify we are testing hardware MPLS features 3149 * instead of standard features for the netdev. 3150 */ 3151 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3152 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3153 netdev_features_t features, 3154 __be16 type) 3155 { 3156 if (eth_p_mpls(type)) 3157 features &= skb->dev->mpls_features; 3158 3159 return features; 3160 } 3161 #else 3162 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3163 netdev_features_t features, 3164 __be16 type) 3165 { 3166 return features; 3167 } 3168 #endif 3169 3170 static netdev_features_t harmonize_features(struct sk_buff *skb, 3171 netdev_features_t features) 3172 { 3173 int tmp; 3174 __be16 type; 3175 3176 type = skb_network_protocol(skb, &tmp); 3177 features = net_mpls_features(skb, features, type); 3178 3179 if (skb->ip_summed != CHECKSUM_NONE && 3180 !can_checksum_protocol(features, type)) { 3181 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3182 } 3183 if (illegal_highdma(skb->dev, skb)) 3184 features &= ~NETIF_F_SG; 3185 3186 return features; 3187 } 3188 3189 netdev_features_t passthru_features_check(struct sk_buff *skb, 3190 struct net_device *dev, 3191 netdev_features_t features) 3192 { 3193 return features; 3194 } 3195 EXPORT_SYMBOL(passthru_features_check); 3196 3197 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3198 struct net_device *dev, 3199 netdev_features_t features) 3200 { 3201 return vlan_features_check(skb, features); 3202 } 3203 3204 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3205 struct net_device *dev, 3206 netdev_features_t features) 3207 { 3208 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3209 3210 if (gso_segs > dev->gso_max_segs) 3211 return features & ~NETIF_F_GSO_MASK; 3212 3213 /* Support for GSO partial features requires software 3214 * intervention before we can actually process the packets 3215 * so we need to strip support for any partial features now 3216 * and we can pull them back in after we have partially 3217 * segmented the frame. 3218 */ 3219 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3220 features &= ~dev->gso_partial_features; 3221 3222 /* Make sure to clear the IPv4 ID mangling feature if the 3223 * IPv4 header has the potential to be fragmented. 3224 */ 3225 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3226 struct iphdr *iph = skb->encapsulation ? 3227 inner_ip_hdr(skb) : ip_hdr(skb); 3228 3229 if (!(iph->frag_off & htons(IP_DF))) 3230 features &= ~NETIF_F_TSO_MANGLEID; 3231 } 3232 3233 return features; 3234 } 3235 3236 netdev_features_t netif_skb_features(struct sk_buff *skb) 3237 { 3238 struct net_device *dev = skb->dev; 3239 netdev_features_t features = dev->features; 3240 3241 if (skb_is_gso(skb)) 3242 features = gso_features_check(skb, dev, features); 3243 3244 /* If encapsulation offload request, verify we are testing 3245 * hardware encapsulation features instead of standard 3246 * features for the netdev 3247 */ 3248 if (skb->encapsulation) 3249 features &= dev->hw_enc_features; 3250 3251 if (skb_vlan_tagged(skb)) 3252 features = netdev_intersect_features(features, 3253 dev->vlan_features | 3254 NETIF_F_HW_VLAN_CTAG_TX | 3255 NETIF_F_HW_VLAN_STAG_TX); 3256 3257 if (dev->netdev_ops->ndo_features_check) 3258 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3259 features); 3260 else 3261 features &= dflt_features_check(skb, dev, features); 3262 3263 return harmonize_features(skb, features); 3264 } 3265 EXPORT_SYMBOL(netif_skb_features); 3266 3267 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3268 struct netdev_queue *txq, bool more) 3269 { 3270 unsigned int len; 3271 int rc; 3272 3273 if (dev_nit_active(dev)) 3274 dev_queue_xmit_nit(skb, dev); 3275 3276 len = skb->len; 3277 trace_net_dev_start_xmit(skb, dev); 3278 rc = netdev_start_xmit(skb, dev, txq, more); 3279 trace_net_dev_xmit(skb, rc, dev, len); 3280 3281 return rc; 3282 } 3283 3284 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3285 struct netdev_queue *txq, int *ret) 3286 { 3287 struct sk_buff *skb = first; 3288 int rc = NETDEV_TX_OK; 3289 3290 while (skb) { 3291 struct sk_buff *next = skb->next; 3292 3293 skb_mark_not_on_list(skb); 3294 rc = xmit_one(skb, dev, txq, next != NULL); 3295 if (unlikely(!dev_xmit_complete(rc))) { 3296 skb->next = next; 3297 goto out; 3298 } 3299 3300 skb = next; 3301 if (netif_tx_queue_stopped(txq) && skb) { 3302 rc = NETDEV_TX_BUSY; 3303 break; 3304 } 3305 } 3306 3307 out: 3308 *ret = rc; 3309 return skb; 3310 } 3311 3312 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3313 netdev_features_t features) 3314 { 3315 if (skb_vlan_tag_present(skb) && 3316 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3317 skb = __vlan_hwaccel_push_inside(skb); 3318 return skb; 3319 } 3320 3321 int skb_csum_hwoffload_help(struct sk_buff *skb, 3322 const netdev_features_t features) 3323 { 3324 if (unlikely(skb->csum_not_inet)) 3325 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3326 skb_crc32c_csum_help(skb); 3327 3328 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3329 } 3330 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3331 3332 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3333 { 3334 netdev_features_t features; 3335 3336 features = netif_skb_features(skb); 3337 skb = validate_xmit_vlan(skb, features); 3338 if (unlikely(!skb)) 3339 goto out_null; 3340 3341 skb = sk_validate_xmit_skb(skb, dev); 3342 if (unlikely(!skb)) 3343 goto out_null; 3344 3345 if (netif_needs_gso(skb, features)) { 3346 struct sk_buff *segs; 3347 3348 segs = skb_gso_segment(skb, features); 3349 if (IS_ERR(segs)) { 3350 goto out_kfree_skb; 3351 } else if (segs) { 3352 consume_skb(skb); 3353 skb = segs; 3354 } 3355 } else { 3356 if (skb_needs_linearize(skb, features) && 3357 __skb_linearize(skb)) 3358 goto out_kfree_skb; 3359 3360 /* If packet is not checksummed and device does not 3361 * support checksumming for this protocol, complete 3362 * checksumming here. 3363 */ 3364 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3365 if (skb->encapsulation) 3366 skb_set_inner_transport_header(skb, 3367 skb_checksum_start_offset(skb)); 3368 else 3369 skb_set_transport_header(skb, 3370 skb_checksum_start_offset(skb)); 3371 if (skb_csum_hwoffload_help(skb, features)) 3372 goto out_kfree_skb; 3373 } 3374 } 3375 3376 skb = validate_xmit_xfrm(skb, features, again); 3377 3378 return skb; 3379 3380 out_kfree_skb: 3381 kfree_skb(skb); 3382 out_null: 3383 atomic_long_inc(&dev->tx_dropped); 3384 return NULL; 3385 } 3386 3387 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3388 { 3389 struct sk_buff *next, *head = NULL, *tail; 3390 3391 for (; skb != NULL; skb = next) { 3392 next = skb->next; 3393 skb_mark_not_on_list(skb); 3394 3395 /* in case skb wont be segmented, point to itself */ 3396 skb->prev = skb; 3397 3398 skb = validate_xmit_skb(skb, dev, again); 3399 if (!skb) 3400 continue; 3401 3402 if (!head) 3403 head = skb; 3404 else 3405 tail->next = skb; 3406 /* If skb was segmented, skb->prev points to 3407 * the last segment. If not, it still contains skb. 3408 */ 3409 tail = skb->prev; 3410 } 3411 return head; 3412 } 3413 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3414 3415 static void qdisc_pkt_len_init(struct sk_buff *skb) 3416 { 3417 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3418 3419 qdisc_skb_cb(skb)->pkt_len = skb->len; 3420 3421 /* To get more precise estimation of bytes sent on wire, 3422 * we add to pkt_len the headers size of all segments 3423 */ 3424 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3425 unsigned int hdr_len; 3426 u16 gso_segs = shinfo->gso_segs; 3427 3428 /* mac layer + network layer */ 3429 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3430 3431 /* + transport layer */ 3432 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3433 const struct tcphdr *th; 3434 struct tcphdr _tcphdr; 3435 3436 th = skb_header_pointer(skb, skb_transport_offset(skb), 3437 sizeof(_tcphdr), &_tcphdr); 3438 if (likely(th)) 3439 hdr_len += __tcp_hdrlen(th); 3440 } else { 3441 struct udphdr _udphdr; 3442 3443 if (skb_header_pointer(skb, skb_transport_offset(skb), 3444 sizeof(_udphdr), &_udphdr)) 3445 hdr_len += sizeof(struct udphdr); 3446 } 3447 3448 if (shinfo->gso_type & SKB_GSO_DODGY) 3449 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3450 shinfo->gso_size); 3451 3452 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3453 } 3454 } 3455 3456 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3457 struct net_device *dev, 3458 struct netdev_queue *txq) 3459 { 3460 spinlock_t *root_lock = qdisc_lock(q); 3461 struct sk_buff *to_free = NULL; 3462 bool contended; 3463 int rc; 3464 3465 qdisc_calculate_pkt_len(skb, q); 3466 3467 if (q->flags & TCQ_F_NOLOCK) { 3468 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3469 __qdisc_drop(skb, &to_free); 3470 rc = NET_XMIT_DROP; 3471 } else if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty && 3472 qdisc_run_begin(q)) { 3473 qdisc_bstats_cpu_update(q, skb); 3474 3475 if (sch_direct_xmit(skb, q, dev, txq, NULL, true)) 3476 __qdisc_run(q); 3477 3478 qdisc_run_end(q); 3479 rc = NET_XMIT_SUCCESS; 3480 } else { 3481 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3482 qdisc_run(q); 3483 } 3484 3485 if (unlikely(to_free)) 3486 kfree_skb_list(to_free); 3487 return rc; 3488 } 3489 3490 /* 3491 * Heuristic to force contended enqueues to serialize on a 3492 * separate lock before trying to get qdisc main lock. 3493 * This permits qdisc->running owner to get the lock more 3494 * often and dequeue packets faster. 3495 */ 3496 contended = qdisc_is_running(q); 3497 if (unlikely(contended)) 3498 spin_lock(&q->busylock); 3499 3500 spin_lock(root_lock); 3501 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3502 __qdisc_drop(skb, &to_free); 3503 rc = NET_XMIT_DROP; 3504 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3505 qdisc_run_begin(q)) { 3506 /* 3507 * This is a work-conserving queue; there are no old skbs 3508 * waiting to be sent out; and the qdisc is not running - 3509 * xmit the skb directly. 3510 */ 3511 3512 qdisc_bstats_update(q, skb); 3513 3514 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3515 if (unlikely(contended)) { 3516 spin_unlock(&q->busylock); 3517 contended = false; 3518 } 3519 __qdisc_run(q); 3520 } 3521 3522 qdisc_run_end(q); 3523 rc = NET_XMIT_SUCCESS; 3524 } else { 3525 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3526 if (qdisc_run_begin(q)) { 3527 if (unlikely(contended)) { 3528 spin_unlock(&q->busylock); 3529 contended = false; 3530 } 3531 __qdisc_run(q); 3532 qdisc_run_end(q); 3533 } 3534 } 3535 spin_unlock(root_lock); 3536 if (unlikely(to_free)) 3537 kfree_skb_list(to_free); 3538 if (unlikely(contended)) 3539 spin_unlock(&q->busylock); 3540 return rc; 3541 } 3542 3543 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3544 static void skb_update_prio(struct sk_buff *skb) 3545 { 3546 const struct netprio_map *map; 3547 const struct sock *sk; 3548 unsigned int prioidx; 3549 3550 if (skb->priority) 3551 return; 3552 map = rcu_dereference_bh(skb->dev->priomap); 3553 if (!map) 3554 return; 3555 sk = skb_to_full_sk(skb); 3556 if (!sk) 3557 return; 3558 3559 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3560 3561 if (prioidx < map->priomap_len) 3562 skb->priority = map->priomap[prioidx]; 3563 } 3564 #else 3565 #define skb_update_prio(skb) 3566 #endif 3567 3568 /** 3569 * dev_loopback_xmit - loop back @skb 3570 * @net: network namespace this loopback is happening in 3571 * @sk: sk needed to be a netfilter okfn 3572 * @skb: buffer to transmit 3573 */ 3574 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3575 { 3576 skb_reset_mac_header(skb); 3577 __skb_pull(skb, skb_network_offset(skb)); 3578 skb->pkt_type = PACKET_LOOPBACK; 3579 skb->ip_summed = CHECKSUM_UNNECESSARY; 3580 WARN_ON(!skb_dst(skb)); 3581 skb_dst_force(skb); 3582 netif_rx_ni(skb); 3583 return 0; 3584 } 3585 EXPORT_SYMBOL(dev_loopback_xmit); 3586 3587 #ifdef CONFIG_NET_EGRESS 3588 static struct sk_buff * 3589 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3590 { 3591 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3592 struct tcf_result cl_res; 3593 3594 if (!miniq) 3595 return skb; 3596 3597 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3598 mini_qdisc_bstats_cpu_update(miniq, skb); 3599 3600 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3601 case TC_ACT_OK: 3602 case TC_ACT_RECLASSIFY: 3603 skb->tc_index = TC_H_MIN(cl_res.classid); 3604 break; 3605 case TC_ACT_SHOT: 3606 mini_qdisc_qstats_cpu_drop(miniq); 3607 *ret = NET_XMIT_DROP; 3608 kfree_skb(skb); 3609 return NULL; 3610 case TC_ACT_STOLEN: 3611 case TC_ACT_QUEUED: 3612 case TC_ACT_TRAP: 3613 *ret = NET_XMIT_SUCCESS; 3614 consume_skb(skb); 3615 return NULL; 3616 case TC_ACT_REDIRECT: 3617 /* No need to push/pop skb's mac_header here on egress! */ 3618 skb_do_redirect(skb); 3619 *ret = NET_XMIT_SUCCESS; 3620 return NULL; 3621 default: 3622 break; 3623 } 3624 3625 return skb; 3626 } 3627 #endif /* CONFIG_NET_EGRESS */ 3628 3629 #ifdef CONFIG_XPS 3630 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3631 struct xps_dev_maps *dev_maps, unsigned int tci) 3632 { 3633 struct xps_map *map; 3634 int queue_index = -1; 3635 3636 if (dev->num_tc) { 3637 tci *= dev->num_tc; 3638 tci += netdev_get_prio_tc_map(dev, skb->priority); 3639 } 3640 3641 map = rcu_dereference(dev_maps->attr_map[tci]); 3642 if (map) { 3643 if (map->len == 1) 3644 queue_index = map->queues[0]; 3645 else 3646 queue_index = map->queues[reciprocal_scale( 3647 skb_get_hash(skb), map->len)]; 3648 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3649 queue_index = -1; 3650 } 3651 return queue_index; 3652 } 3653 #endif 3654 3655 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3656 struct sk_buff *skb) 3657 { 3658 #ifdef CONFIG_XPS 3659 struct xps_dev_maps *dev_maps; 3660 struct sock *sk = skb->sk; 3661 int queue_index = -1; 3662 3663 if (!static_key_false(&xps_needed)) 3664 return -1; 3665 3666 rcu_read_lock(); 3667 if (!static_key_false(&xps_rxqs_needed)) 3668 goto get_cpus_map; 3669 3670 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3671 if (dev_maps) { 3672 int tci = sk_rx_queue_get(sk); 3673 3674 if (tci >= 0 && tci < dev->num_rx_queues) 3675 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3676 tci); 3677 } 3678 3679 get_cpus_map: 3680 if (queue_index < 0) { 3681 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3682 if (dev_maps) { 3683 unsigned int tci = skb->sender_cpu - 1; 3684 3685 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3686 tci); 3687 } 3688 } 3689 rcu_read_unlock(); 3690 3691 return queue_index; 3692 #else 3693 return -1; 3694 #endif 3695 } 3696 3697 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3698 struct net_device *sb_dev) 3699 { 3700 return 0; 3701 } 3702 EXPORT_SYMBOL(dev_pick_tx_zero); 3703 3704 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3705 struct net_device *sb_dev) 3706 { 3707 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3708 } 3709 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3710 3711 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3712 struct net_device *sb_dev) 3713 { 3714 struct sock *sk = skb->sk; 3715 int queue_index = sk_tx_queue_get(sk); 3716 3717 sb_dev = sb_dev ? : dev; 3718 3719 if (queue_index < 0 || skb->ooo_okay || 3720 queue_index >= dev->real_num_tx_queues) { 3721 int new_index = get_xps_queue(dev, sb_dev, skb); 3722 3723 if (new_index < 0) 3724 new_index = skb_tx_hash(dev, sb_dev, skb); 3725 3726 if (queue_index != new_index && sk && 3727 sk_fullsock(sk) && 3728 rcu_access_pointer(sk->sk_dst_cache)) 3729 sk_tx_queue_set(sk, new_index); 3730 3731 queue_index = new_index; 3732 } 3733 3734 return queue_index; 3735 } 3736 EXPORT_SYMBOL(netdev_pick_tx); 3737 3738 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 3739 struct sk_buff *skb, 3740 struct net_device *sb_dev) 3741 { 3742 int queue_index = 0; 3743 3744 #ifdef CONFIG_XPS 3745 u32 sender_cpu = skb->sender_cpu - 1; 3746 3747 if (sender_cpu >= (u32)NR_CPUS) 3748 skb->sender_cpu = raw_smp_processor_id() + 1; 3749 #endif 3750 3751 if (dev->real_num_tx_queues != 1) { 3752 const struct net_device_ops *ops = dev->netdev_ops; 3753 3754 if (ops->ndo_select_queue) 3755 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 3756 else 3757 queue_index = netdev_pick_tx(dev, skb, sb_dev); 3758 3759 queue_index = netdev_cap_txqueue(dev, queue_index); 3760 } 3761 3762 skb_set_queue_mapping(skb, queue_index); 3763 return netdev_get_tx_queue(dev, queue_index); 3764 } 3765 3766 /** 3767 * __dev_queue_xmit - transmit a buffer 3768 * @skb: buffer to transmit 3769 * @sb_dev: suboordinate device used for L2 forwarding offload 3770 * 3771 * Queue a buffer for transmission to a network device. The caller must 3772 * have set the device and priority and built the buffer before calling 3773 * this function. The function can be called from an interrupt. 3774 * 3775 * A negative errno code is returned on a failure. A success does not 3776 * guarantee the frame will be transmitted as it may be dropped due 3777 * to congestion or traffic shaping. 3778 * 3779 * ----------------------------------------------------------------------------------- 3780 * I notice this method can also return errors from the queue disciplines, 3781 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3782 * be positive. 3783 * 3784 * Regardless of the return value, the skb is consumed, so it is currently 3785 * difficult to retry a send to this method. (You can bump the ref count 3786 * before sending to hold a reference for retry if you are careful.) 3787 * 3788 * When calling this method, interrupts MUST be enabled. This is because 3789 * the BH enable code must have IRQs enabled so that it will not deadlock. 3790 * --BLG 3791 */ 3792 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 3793 { 3794 struct net_device *dev = skb->dev; 3795 struct netdev_queue *txq; 3796 struct Qdisc *q; 3797 int rc = -ENOMEM; 3798 bool again = false; 3799 3800 skb_reset_mac_header(skb); 3801 3802 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3803 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3804 3805 /* Disable soft irqs for various locks below. Also 3806 * stops preemption for RCU. 3807 */ 3808 rcu_read_lock_bh(); 3809 3810 skb_update_prio(skb); 3811 3812 qdisc_pkt_len_init(skb); 3813 #ifdef CONFIG_NET_CLS_ACT 3814 skb->tc_at_ingress = 0; 3815 # ifdef CONFIG_NET_EGRESS 3816 if (static_branch_unlikely(&egress_needed_key)) { 3817 skb = sch_handle_egress(skb, &rc, dev); 3818 if (!skb) 3819 goto out; 3820 } 3821 # endif 3822 #endif 3823 /* If device/qdisc don't need skb->dst, release it right now while 3824 * its hot in this cpu cache. 3825 */ 3826 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3827 skb_dst_drop(skb); 3828 else 3829 skb_dst_force(skb); 3830 3831 txq = netdev_core_pick_tx(dev, skb, sb_dev); 3832 q = rcu_dereference_bh(txq->qdisc); 3833 3834 trace_net_dev_queue(skb); 3835 if (q->enqueue) { 3836 rc = __dev_xmit_skb(skb, q, dev, txq); 3837 goto out; 3838 } 3839 3840 /* The device has no queue. Common case for software devices: 3841 * loopback, all the sorts of tunnels... 3842 3843 * Really, it is unlikely that netif_tx_lock protection is necessary 3844 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3845 * counters.) 3846 * However, it is possible, that they rely on protection 3847 * made by us here. 3848 3849 * Check this and shot the lock. It is not prone from deadlocks. 3850 *Either shot noqueue qdisc, it is even simpler 8) 3851 */ 3852 if (dev->flags & IFF_UP) { 3853 int cpu = smp_processor_id(); /* ok because BHs are off */ 3854 3855 if (txq->xmit_lock_owner != cpu) { 3856 if (dev_xmit_recursion()) 3857 goto recursion_alert; 3858 3859 skb = validate_xmit_skb(skb, dev, &again); 3860 if (!skb) 3861 goto out; 3862 3863 HARD_TX_LOCK(dev, txq, cpu); 3864 3865 if (!netif_xmit_stopped(txq)) { 3866 dev_xmit_recursion_inc(); 3867 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3868 dev_xmit_recursion_dec(); 3869 if (dev_xmit_complete(rc)) { 3870 HARD_TX_UNLOCK(dev, txq); 3871 goto out; 3872 } 3873 } 3874 HARD_TX_UNLOCK(dev, txq); 3875 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3876 dev->name); 3877 } else { 3878 /* Recursion is detected! It is possible, 3879 * unfortunately 3880 */ 3881 recursion_alert: 3882 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3883 dev->name); 3884 } 3885 } 3886 3887 rc = -ENETDOWN; 3888 rcu_read_unlock_bh(); 3889 3890 atomic_long_inc(&dev->tx_dropped); 3891 kfree_skb_list(skb); 3892 return rc; 3893 out: 3894 rcu_read_unlock_bh(); 3895 return rc; 3896 } 3897 3898 int dev_queue_xmit(struct sk_buff *skb) 3899 { 3900 return __dev_queue_xmit(skb, NULL); 3901 } 3902 EXPORT_SYMBOL(dev_queue_xmit); 3903 3904 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 3905 { 3906 return __dev_queue_xmit(skb, sb_dev); 3907 } 3908 EXPORT_SYMBOL(dev_queue_xmit_accel); 3909 3910 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3911 { 3912 struct net_device *dev = skb->dev; 3913 struct sk_buff *orig_skb = skb; 3914 struct netdev_queue *txq; 3915 int ret = NETDEV_TX_BUSY; 3916 bool again = false; 3917 3918 if (unlikely(!netif_running(dev) || 3919 !netif_carrier_ok(dev))) 3920 goto drop; 3921 3922 skb = validate_xmit_skb_list(skb, dev, &again); 3923 if (skb != orig_skb) 3924 goto drop; 3925 3926 skb_set_queue_mapping(skb, queue_id); 3927 txq = skb_get_tx_queue(dev, skb); 3928 3929 local_bh_disable(); 3930 3931 HARD_TX_LOCK(dev, txq, smp_processor_id()); 3932 if (!netif_xmit_frozen_or_drv_stopped(txq)) 3933 ret = netdev_start_xmit(skb, dev, txq, false); 3934 HARD_TX_UNLOCK(dev, txq); 3935 3936 local_bh_enable(); 3937 3938 if (!dev_xmit_complete(ret)) 3939 kfree_skb(skb); 3940 3941 return ret; 3942 drop: 3943 atomic_long_inc(&dev->tx_dropped); 3944 kfree_skb_list(skb); 3945 return NET_XMIT_DROP; 3946 } 3947 EXPORT_SYMBOL(dev_direct_xmit); 3948 3949 /************************************************************************* 3950 * Receiver routines 3951 *************************************************************************/ 3952 3953 int netdev_max_backlog __read_mostly = 1000; 3954 EXPORT_SYMBOL(netdev_max_backlog); 3955 3956 int netdev_tstamp_prequeue __read_mostly = 1; 3957 int netdev_budget __read_mostly = 300; 3958 unsigned int __read_mostly netdev_budget_usecs = 2000; 3959 int weight_p __read_mostly = 64; /* old backlog weight */ 3960 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3961 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3962 int dev_rx_weight __read_mostly = 64; 3963 int dev_tx_weight __read_mostly = 64; 3964 3965 /* Called with irq disabled */ 3966 static inline void ____napi_schedule(struct softnet_data *sd, 3967 struct napi_struct *napi) 3968 { 3969 list_add_tail(&napi->poll_list, &sd->poll_list); 3970 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3971 } 3972 3973 #ifdef CONFIG_RPS 3974 3975 /* One global table that all flow-based protocols share. */ 3976 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3977 EXPORT_SYMBOL(rps_sock_flow_table); 3978 u32 rps_cpu_mask __read_mostly; 3979 EXPORT_SYMBOL(rps_cpu_mask); 3980 3981 struct static_key_false rps_needed __read_mostly; 3982 EXPORT_SYMBOL(rps_needed); 3983 struct static_key_false rfs_needed __read_mostly; 3984 EXPORT_SYMBOL(rfs_needed); 3985 3986 static struct rps_dev_flow * 3987 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3988 struct rps_dev_flow *rflow, u16 next_cpu) 3989 { 3990 if (next_cpu < nr_cpu_ids) { 3991 #ifdef CONFIG_RFS_ACCEL 3992 struct netdev_rx_queue *rxqueue; 3993 struct rps_dev_flow_table *flow_table; 3994 struct rps_dev_flow *old_rflow; 3995 u32 flow_id; 3996 u16 rxq_index; 3997 int rc; 3998 3999 /* Should we steer this flow to a different hardware queue? */ 4000 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4001 !(dev->features & NETIF_F_NTUPLE)) 4002 goto out; 4003 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4004 if (rxq_index == skb_get_rx_queue(skb)) 4005 goto out; 4006 4007 rxqueue = dev->_rx + rxq_index; 4008 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4009 if (!flow_table) 4010 goto out; 4011 flow_id = skb_get_hash(skb) & flow_table->mask; 4012 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4013 rxq_index, flow_id); 4014 if (rc < 0) 4015 goto out; 4016 old_rflow = rflow; 4017 rflow = &flow_table->flows[flow_id]; 4018 rflow->filter = rc; 4019 if (old_rflow->filter == rflow->filter) 4020 old_rflow->filter = RPS_NO_FILTER; 4021 out: 4022 #endif 4023 rflow->last_qtail = 4024 per_cpu(softnet_data, next_cpu).input_queue_head; 4025 } 4026 4027 rflow->cpu = next_cpu; 4028 return rflow; 4029 } 4030 4031 /* 4032 * get_rps_cpu is called from netif_receive_skb and returns the target 4033 * CPU from the RPS map of the receiving queue for a given skb. 4034 * rcu_read_lock must be held on entry. 4035 */ 4036 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4037 struct rps_dev_flow **rflowp) 4038 { 4039 const struct rps_sock_flow_table *sock_flow_table; 4040 struct netdev_rx_queue *rxqueue = dev->_rx; 4041 struct rps_dev_flow_table *flow_table; 4042 struct rps_map *map; 4043 int cpu = -1; 4044 u32 tcpu; 4045 u32 hash; 4046 4047 if (skb_rx_queue_recorded(skb)) { 4048 u16 index = skb_get_rx_queue(skb); 4049 4050 if (unlikely(index >= dev->real_num_rx_queues)) { 4051 WARN_ONCE(dev->real_num_rx_queues > 1, 4052 "%s received packet on queue %u, but number " 4053 "of RX queues is %u\n", 4054 dev->name, index, dev->real_num_rx_queues); 4055 goto done; 4056 } 4057 rxqueue += index; 4058 } 4059 4060 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4061 4062 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4063 map = rcu_dereference(rxqueue->rps_map); 4064 if (!flow_table && !map) 4065 goto done; 4066 4067 skb_reset_network_header(skb); 4068 hash = skb_get_hash(skb); 4069 if (!hash) 4070 goto done; 4071 4072 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4073 if (flow_table && sock_flow_table) { 4074 struct rps_dev_flow *rflow; 4075 u32 next_cpu; 4076 u32 ident; 4077 4078 /* First check into global flow table if there is a match */ 4079 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4080 if ((ident ^ hash) & ~rps_cpu_mask) 4081 goto try_rps; 4082 4083 next_cpu = ident & rps_cpu_mask; 4084 4085 /* OK, now we know there is a match, 4086 * we can look at the local (per receive queue) flow table 4087 */ 4088 rflow = &flow_table->flows[hash & flow_table->mask]; 4089 tcpu = rflow->cpu; 4090 4091 /* 4092 * If the desired CPU (where last recvmsg was done) is 4093 * different from current CPU (one in the rx-queue flow 4094 * table entry), switch if one of the following holds: 4095 * - Current CPU is unset (>= nr_cpu_ids). 4096 * - Current CPU is offline. 4097 * - The current CPU's queue tail has advanced beyond the 4098 * last packet that was enqueued using this table entry. 4099 * This guarantees that all previous packets for the flow 4100 * have been dequeued, thus preserving in order delivery. 4101 */ 4102 if (unlikely(tcpu != next_cpu) && 4103 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4104 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4105 rflow->last_qtail)) >= 0)) { 4106 tcpu = next_cpu; 4107 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4108 } 4109 4110 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4111 *rflowp = rflow; 4112 cpu = tcpu; 4113 goto done; 4114 } 4115 } 4116 4117 try_rps: 4118 4119 if (map) { 4120 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4121 if (cpu_online(tcpu)) { 4122 cpu = tcpu; 4123 goto done; 4124 } 4125 } 4126 4127 done: 4128 return cpu; 4129 } 4130 4131 #ifdef CONFIG_RFS_ACCEL 4132 4133 /** 4134 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4135 * @dev: Device on which the filter was set 4136 * @rxq_index: RX queue index 4137 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4138 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4139 * 4140 * Drivers that implement ndo_rx_flow_steer() should periodically call 4141 * this function for each installed filter and remove the filters for 4142 * which it returns %true. 4143 */ 4144 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4145 u32 flow_id, u16 filter_id) 4146 { 4147 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4148 struct rps_dev_flow_table *flow_table; 4149 struct rps_dev_flow *rflow; 4150 bool expire = true; 4151 unsigned int cpu; 4152 4153 rcu_read_lock(); 4154 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4155 if (flow_table && flow_id <= flow_table->mask) { 4156 rflow = &flow_table->flows[flow_id]; 4157 cpu = READ_ONCE(rflow->cpu); 4158 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4159 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4160 rflow->last_qtail) < 4161 (int)(10 * flow_table->mask))) 4162 expire = false; 4163 } 4164 rcu_read_unlock(); 4165 return expire; 4166 } 4167 EXPORT_SYMBOL(rps_may_expire_flow); 4168 4169 #endif /* CONFIG_RFS_ACCEL */ 4170 4171 /* Called from hardirq (IPI) context */ 4172 static void rps_trigger_softirq(void *data) 4173 { 4174 struct softnet_data *sd = data; 4175 4176 ____napi_schedule(sd, &sd->backlog); 4177 sd->received_rps++; 4178 } 4179 4180 #endif /* CONFIG_RPS */ 4181 4182 /* 4183 * Check if this softnet_data structure is another cpu one 4184 * If yes, queue it to our IPI list and return 1 4185 * If no, return 0 4186 */ 4187 static int rps_ipi_queued(struct softnet_data *sd) 4188 { 4189 #ifdef CONFIG_RPS 4190 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4191 4192 if (sd != mysd) { 4193 sd->rps_ipi_next = mysd->rps_ipi_list; 4194 mysd->rps_ipi_list = sd; 4195 4196 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4197 return 1; 4198 } 4199 #endif /* CONFIG_RPS */ 4200 return 0; 4201 } 4202 4203 #ifdef CONFIG_NET_FLOW_LIMIT 4204 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4205 #endif 4206 4207 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4208 { 4209 #ifdef CONFIG_NET_FLOW_LIMIT 4210 struct sd_flow_limit *fl; 4211 struct softnet_data *sd; 4212 unsigned int old_flow, new_flow; 4213 4214 if (qlen < (netdev_max_backlog >> 1)) 4215 return false; 4216 4217 sd = this_cpu_ptr(&softnet_data); 4218 4219 rcu_read_lock(); 4220 fl = rcu_dereference(sd->flow_limit); 4221 if (fl) { 4222 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4223 old_flow = fl->history[fl->history_head]; 4224 fl->history[fl->history_head] = new_flow; 4225 4226 fl->history_head++; 4227 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4228 4229 if (likely(fl->buckets[old_flow])) 4230 fl->buckets[old_flow]--; 4231 4232 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4233 fl->count++; 4234 rcu_read_unlock(); 4235 return true; 4236 } 4237 } 4238 rcu_read_unlock(); 4239 #endif 4240 return false; 4241 } 4242 4243 /* 4244 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4245 * queue (may be a remote CPU queue). 4246 */ 4247 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4248 unsigned int *qtail) 4249 { 4250 struct softnet_data *sd; 4251 unsigned long flags; 4252 unsigned int qlen; 4253 4254 sd = &per_cpu(softnet_data, cpu); 4255 4256 local_irq_save(flags); 4257 4258 rps_lock(sd); 4259 if (!netif_running(skb->dev)) 4260 goto drop; 4261 qlen = skb_queue_len(&sd->input_pkt_queue); 4262 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4263 if (qlen) { 4264 enqueue: 4265 __skb_queue_tail(&sd->input_pkt_queue, skb); 4266 input_queue_tail_incr_save(sd, qtail); 4267 rps_unlock(sd); 4268 local_irq_restore(flags); 4269 return NET_RX_SUCCESS; 4270 } 4271 4272 /* Schedule NAPI for backlog device 4273 * We can use non atomic operation since we own the queue lock 4274 */ 4275 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4276 if (!rps_ipi_queued(sd)) 4277 ____napi_schedule(sd, &sd->backlog); 4278 } 4279 goto enqueue; 4280 } 4281 4282 drop: 4283 sd->dropped++; 4284 rps_unlock(sd); 4285 4286 local_irq_restore(flags); 4287 4288 atomic_long_inc(&skb->dev->rx_dropped); 4289 kfree_skb(skb); 4290 return NET_RX_DROP; 4291 } 4292 4293 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4294 { 4295 struct net_device *dev = skb->dev; 4296 struct netdev_rx_queue *rxqueue; 4297 4298 rxqueue = dev->_rx; 4299 4300 if (skb_rx_queue_recorded(skb)) { 4301 u16 index = skb_get_rx_queue(skb); 4302 4303 if (unlikely(index >= dev->real_num_rx_queues)) { 4304 WARN_ONCE(dev->real_num_rx_queues > 1, 4305 "%s received packet on queue %u, but number " 4306 "of RX queues is %u\n", 4307 dev->name, index, dev->real_num_rx_queues); 4308 4309 return rxqueue; /* Return first rxqueue */ 4310 } 4311 rxqueue += index; 4312 } 4313 return rxqueue; 4314 } 4315 4316 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4317 struct xdp_buff *xdp, 4318 struct bpf_prog *xdp_prog) 4319 { 4320 struct netdev_rx_queue *rxqueue; 4321 void *orig_data, *orig_data_end; 4322 u32 metalen, act = XDP_DROP; 4323 __be16 orig_eth_type; 4324 struct ethhdr *eth; 4325 bool orig_bcast; 4326 int hlen, off; 4327 u32 mac_len; 4328 4329 /* Reinjected packets coming from act_mirred or similar should 4330 * not get XDP generic processing. 4331 */ 4332 if (skb_cloned(skb) || skb_is_tc_redirected(skb)) 4333 return XDP_PASS; 4334 4335 /* XDP packets must be linear and must have sufficient headroom 4336 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4337 * native XDP provides, thus we need to do it here as well. 4338 */ 4339 if (skb_is_nonlinear(skb) || 4340 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4341 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4342 int troom = skb->tail + skb->data_len - skb->end; 4343 4344 /* In case we have to go down the path and also linearize, 4345 * then lets do the pskb_expand_head() work just once here. 4346 */ 4347 if (pskb_expand_head(skb, 4348 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4349 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4350 goto do_drop; 4351 if (skb_linearize(skb)) 4352 goto do_drop; 4353 } 4354 4355 /* The XDP program wants to see the packet starting at the MAC 4356 * header. 4357 */ 4358 mac_len = skb->data - skb_mac_header(skb); 4359 hlen = skb_headlen(skb) + mac_len; 4360 xdp->data = skb->data - mac_len; 4361 xdp->data_meta = xdp->data; 4362 xdp->data_end = xdp->data + hlen; 4363 xdp->data_hard_start = skb->data - skb_headroom(skb); 4364 orig_data_end = xdp->data_end; 4365 orig_data = xdp->data; 4366 eth = (struct ethhdr *)xdp->data; 4367 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4368 orig_eth_type = eth->h_proto; 4369 4370 rxqueue = netif_get_rxqueue(skb); 4371 xdp->rxq = &rxqueue->xdp_rxq; 4372 4373 act = bpf_prog_run_xdp(xdp_prog, xdp); 4374 4375 off = xdp->data - orig_data; 4376 if (off > 0) 4377 __skb_pull(skb, off); 4378 else if (off < 0) 4379 __skb_push(skb, -off); 4380 skb->mac_header += off; 4381 4382 /* check if bpf_xdp_adjust_tail was used. it can only "shrink" 4383 * pckt. 4384 */ 4385 off = orig_data_end - xdp->data_end; 4386 if (off != 0) { 4387 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4388 skb->len -= off; 4389 4390 } 4391 4392 /* check if XDP changed eth hdr such SKB needs update */ 4393 eth = (struct ethhdr *)xdp->data; 4394 if ((orig_eth_type != eth->h_proto) || 4395 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4396 __skb_push(skb, ETH_HLEN); 4397 skb->protocol = eth_type_trans(skb, skb->dev); 4398 } 4399 4400 switch (act) { 4401 case XDP_REDIRECT: 4402 case XDP_TX: 4403 __skb_push(skb, mac_len); 4404 break; 4405 case XDP_PASS: 4406 metalen = xdp->data - xdp->data_meta; 4407 if (metalen) 4408 skb_metadata_set(skb, metalen); 4409 break; 4410 default: 4411 bpf_warn_invalid_xdp_action(act); 4412 /* fall through */ 4413 case XDP_ABORTED: 4414 trace_xdp_exception(skb->dev, xdp_prog, act); 4415 /* fall through */ 4416 case XDP_DROP: 4417 do_drop: 4418 kfree_skb(skb); 4419 break; 4420 } 4421 4422 return act; 4423 } 4424 4425 /* When doing generic XDP we have to bypass the qdisc layer and the 4426 * network taps in order to match in-driver-XDP behavior. 4427 */ 4428 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4429 { 4430 struct net_device *dev = skb->dev; 4431 struct netdev_queue *txq; 4432 bool free_skb = true; 4433 int cpu, rc; 4434 4435 txq = netdev_core_pick_tx(dev, skb, NULL); 4436 cpu = smp_processor_id(); 4437 HARD_TX_LOCK(dev, txq, cpu); 4438 if (!netif_xmit_stopped(txq)) { 4439 rc = netdev_start_xmit(skb, dev, txq, 0); 4440 if (dev_xmit_complete(rc)) 4441 free_skb = false; 4442 } 4443 HARD_TX_UNLOCK(dev, txq); 4444 if (free_skb) { 4445 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4446 kfree_skb(skb); 4447 } 4448 } 4449 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4450 4451 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4452 4453 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4454 { 4455 if (xdp_prog) { 4456 struct xdp_buff xdp; 4457 u32 act; 4458 int err; 4459 4460 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4461 if (act != XDP_PASS) { 4462 switch (act) { 4463 case XDP_REDIRECT: 4464 err = xdp_do_generic_redirect(skb->dev, skb, 4465 &xdp, xdp_prog); 4466 if (err) 4467 goto out_redir; 4468 break; 4469 case XDP_TX: 4470 generic_xdp_tx(skb, xdp_prog); 4471 break; 4472 } 4473 return XDP_DROP; 4474 } 4475 } 4476 return XDP_PASS; 4477 out_redir: 4478 kfree_skb(skb); 4479 return XDP_DROP; 4480 } 4481 EXPORT_SYMBOL_GPL(do_xdp_generic); 4482 4483 static int netif_rx_internal(struct sk_buff *skb) 4484 { 4485 int ret; 4486 4487 net_timestamp_check(netdev_tstamp_prequeue, skb); 4488 4489 trace_netif_rx(skb); 4490 4491 if (static_branch_unlikely(&generic_xdp_needed_key)) { 4492 int ret; 4493 4494 preempt_disable(); 4495 rcu_read_lock(); 4496 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4497 rcu_read_unlock(); 4498 preempt_enable(); 4499 4500 /* Consider XDP consuming the packet a success from 4501 * the netdev point of view we do not want to count 4502 * this as an error. 4503 */ 4504 if (ret != XDP_PASS) 4505 return NET_RX_SUCCESS; 4506 } 4507 4508 #ifdef CONFIG_RPS 4509 if (static_branch_unlikely(&rps_needed)) { 4510 struct rps_dev_flow voidflow, *rflow = &voidflow; 4511 int cpu; 4512 4513 preempt_disable(); 4514 rcu_read_lock(); 4515 4516 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4517 if (cpu < 0) 4518 cpu = smp_processor_id(); 4519 4520 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4521 4522 rcu_read_unlock(); 4523 preempt_enable(); 4524 } else 4525 #endif 4526 { 4527 unsigned int qtail; 4528 4529 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4530 put_cpu(); 4531 } 4532 return ret; 4533 } 4534 4535 /** 4536 * netif_rx - post buffer to the network code 4537 * @skb: buffer to post 4538 * 4539 * This function receives a packet from a device driver and queues it for 4540 * the upper (protocol) levels to process. It always succeeds. The buffer 4541 * may be dropped during processing for congestion control or by the 4542 * protocol layers. 4543 * 4544 * return values: 4545 * NET_RX_SUCCESS (no congestion) 4546 * NET_RX_DROP (packet was dropped) 4547 * 4548 */ 4549 4550 int netif_rx(struct sk_buff *skb) 4551 { 4552 int ret; 4553 4554 trace_netif_rx_entry(skb); 4555 4556 ret = netif_rx_internal(skb); 4557 trace_netif_rx_exit(ret); 4558 4559 return ret; 4560 } 4561 EXPORT_SYMBOL(netif_rx); 4562 4563 int netif_rx_ni(struct sk_buff *skb) 4564 { 4565 int err; 4566 4567 trace_netif_rx_ni_entry(skb); 4568 4569 preempt_disable(); 4570 err = netif_rx_internal(skb); 4571 if (local_softirq_pending()) 4572 do_softirq(); 4573 preempt_enable(); 4574 trace_netif_rx_ni_exit(err); 4575 4576 return err; 4577 } 4578 EXPORT_SYMBOL(netif_rx_ni); 4579 4580 static __latent_entropy void net_tx_action(struct softirq_action *h) 4581 { 4582 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4583 4584 if (sd->completion_queue) { 4585 struct sk_buff *clist; 4586 4587 local_irq_disable(); 4588 clist = sd->completion_queue; 4589 sd->completion_queue = NULL; 4590 local_irq_enable(); 4591 4592 while (clist) { 4593 struct sk_buff *skb = clist; 4594 4595 clist = clist->next; 4596 4597 WARN_ON(refcount_read(&skb->users)); 4598 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4599 trace_consume_skb(skb); 4600 else 4601 trace_kfree_skb(skb, net_tx_action); 4602 4603 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4604 __kfree_skb(skb); 4605 else 4606 __kfree_skb_defer(skb); 4607 } 4608 4609 __kfree_skb_flush(); 4610 } 4611 4612 if (sd->output_queue) { 4613 struct Qdisc *head; 4614 4615 local_irq_disable(); 4616 head = sd->output_queue; 4617 sd->output_queue = NULL; 4618 sd->output_queue_tailp = &sd->output_queue; 4619 local_irq_enable(); 4620 4621 while (head) { 4622 struct Qdisc *q = head; 4623 spinlock_t *root_lock = NULL; 4624 4625 head = head->next_sched; 4626 4627 if (!(q->flags & TCQ_F_NOLOCK)) { 4628 root_lock = qdisc_lock(q); 4629 spin_lock(root_lock); 4630 } 4631 /* We need to make sure head->next_sched is read 4632 * before clearing __QDISC_STATE_SCHED 4633 */ 4634 smp_mb__before_atomic(); 4635 clear_bit(__QDISC_STATE_SCHED, &q->state); 4636 qdisc_run(q); 4637 if (root_lock) 4638 spin_unlock(root_lock); 4639 } 4640 } 4641 4642 xfrm_dev_backlog(sd); 4643 } 4644 4645 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4646 /* This hook is defined here for ATM LANE */ 4647 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4648 unsigned char *addr) __read_mostly; 4649 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4650 #endif 4651 4652 static inline struct sk_buff * 4653 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4654 struct net_device *orig_dev) 4655 { 4656 #ifdef CONFIG_NET_CLS_ACT 4657 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4658 struct tcf_result cl_res; 4659 4660 /* If there's at least one ingress present somewhere (so 4661 * we get here via enabled static key), remaining devices 4662 * that are not configured with an ingress qdisc will bail 4663 * out here. 4664 */ 4665 if (!miniq) 4666 return skb; 4667 4668 if (*pt_prev) { 4669 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4670 *pt_prev = NULL; 4671 } 4672 4673 qdisc_skb_cb(skb)->pkt_len = skb->len; 4674 skb->tc_at_ingress = 1; 4675 mini_qdisc_bstats_cpu_update(miniq, skb); 4676 4677 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4678 case TC_ACT_OK: 4679 case TC_ACT_RECLASSIFY: 4680 skb->tc_index = TC_H_MIN(cl_res.classid); 4681 break; 4682 case TC_ACT_SHOT: 4683 mini_qdisc_qstats_cpu_drop(miniq); 4684 kfree_skb(skb); 4685 return NULL; 4686 case TC_ACT_STOLEN: 4687 case TC_ACT_QUEUED: 4688 case TC_ACT_TRAP: 4689 consume_skb(skb); 4690 return NULL; 4691 case TC_ACT_REDIRECT: 4692 /* skb_mac_header check was done by cls/act_bpf, so 4693 * we can safely push the L2 header back before 4694 * redirecting to another netdev 4695 */ 4696 __skb_push(skb, skb->mac_len); 4697 skb_do_redirect(skb); 4698 return NULL; 4699 case TC_ACT_REINSERT: 4700 /* this does not scrub the packet, and updates stats on error */ 4701 skb_tc_reinsert(skb, &cl_res); 4702 return NULL; 4703 default: 4704 break; 4705 } 4706 #endif /* CONFIG_NET_CLS_ACT */ 4707 return skb; 4708 } 4709 4710 /** 4711 * netdev_is_rx_handler_busy - check if receive handler is registered 4712 * @dev: device to check 4713 * 4714 * Check if a receive handler is already registered for a given device. 4715 * Return true if there one. 4716 * 4717 * The caller must hold the rtnl_mutex. 4718 */ 4719 bool netdev_is_rx_handler_busy(struct net_device *dev) 4720 { 4721 ASSERT_RTNL(); 4722 return dev && rtnl_dereference(dev->rx_handler); 4723 } 4724 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4725 4726 /** 4727 * netdev_rx_handler_register - register receive handler 4728 * @dev: device to register a handler for 4729 * @rx_handler: receive handler to register 4730 * @rx_handler_data: data pointer that is used by rx handler 4731 * 4732 * Register a receive handler for a device. This handler will then be 4733 * called from __netif_receive_skb. A negative errno code is returned 4734 * on a failure. 4735 * 4736 * The caller must hold the rtnl_mutex. 4737 * 4738 * For a general description of rx_handler, see enum rx_handler_result. 4739 */ 4740 int netdev_rx_handler_register(struct net_device *dev, 4741 rx_handler_func_t *rx_handler, 4742 void *rx_handler_data) 4743 { 4744 if (netdev_is_rx_handler_busy(dev)) 4745 return -EBUSY; 4746 4747 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4748 return -EINVAL; 4749 4750 /* Note: rx_handler_data must be set before rx_handler */ 4751 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4752 rcu_assign_pointer(dev->rx_handler, rx_handler); 4753 4754 return 0; 4755 } 4756 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4757 4758 /** 4759 * netdev_rx_handler_unregister - unregister receive handler 4760 * @dev: device to unregister a handler from 4761 * 4762 * Unregister a receive handler from a device. 4763 * 4764 * The caller must hold the rtnl_mutex. 4765 */ 4766 void netdev_rx_handler_unregister(struct net_device *dev) 4767 { 4768 4769 ASSERT_RTNL(); 4770 RCU_INIT_POINTER(dev->rx_handler, NULL); 4771 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4772 * section has a guarantee to see a non NULL rx_handler_data 4773 * as well. 4774 */ 4775 synchronize_net(); 4776 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4777 } 4778 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4779 4780 /* 4781 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4782 * the special handling of PFMEMALLOC skbs. 4783 */ 4784 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4785 { 4786 switch (skb->protocol) { 4787 case htons(ETH_P_ARP): 4788 case htons(ETH_P_IP): 4789 case htons(ETH_P_IPV6): 4790 case htons(ETH_P_8021Q): 4791 case htons(ETH_P_8021AD): 4792 return true; 4793 default: 4794 return false; 4795 } 4796 } 4797 4798 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4799 int *ret, struct net_device *orig_dev) 4800 { 4801 #ifdef CONFIG_NETFILTER_INGRESS 4802 if (nf_hook_ingress_active(skb)) { 4803 int ingress_retval; 4804 4805 if (*pt_prev) { 4806 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4807 *pt_prev = NULL; 4808 } 4809 4810 rcu_read_lock(); 4811 ingress_retval = nf_hook_ingress(skb); 4812 rcu_read_unlock(); 4813 return ingress_retval; 4814 } 4815 #endif /* CONFIG_NETFILTER_INGRESS */ 4816 return 0; 4817 } 4818 4819 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc, 4820 struct packet_type **ppt_prev) 4821 { 4822 struct packet_type *ptype, *pt_prev; 4823 rx_handler_func_t *rx_handler; 4824 struct net_device *orig_dev; 4825 bool deliver_exact = false; 4826 int ret = NET_RX_DROP; 4827 __be16 type; 4828 4829 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4830 4831 trace_netif_receive_skb(skb); 4832 4833 orig_dev = skb->dev; 4834 4835 skb_reset_network_header(skb); 4836 if (!skb_transport_header_was_set(skb)) 4837 skb_reset_transport_header(skb); 4838 skb_reset_mac_len(skb); 4839 4840 pt_prev = NULL; 4841 4842 another_round: 4843 skb->skb_iif = skb->dev->ifindex; 4844 4845 __this_cpu_inc(softnet_data.processed); 4846 4847 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4848 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4849 skb = skb_vlan_untag(skb); 4850 if (unlikely(!skb)) 4851 goto out; 4852 } 4853 4854 if (skb_skip_tc_classify(skb)) 4855 goto skip_classify; 4856 4857 if (pfmemalloc) 4858 goto skip_taps; 4859 4860 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4861 if (pt_prev) 4862 ret = deliver_skb(skb, pt_prev, orig_dev); 4863 pt_prev = ptype; 4864 } 4865 4866 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4867 if (pt_prev) 4868 ret = deliver_skb(skb, pt_prev, orig_dev); 4869 pt_prev = ptype; 4870 } 4871 4872 skip_taps: 4873 #ifdef CONFIG_NET_INGRESS 4874 if (static_branch_unlikely(&ingress_needed_key)) { 4875 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4876 if (!skb) 4877 goto out; 4878 4879 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4880 goto out; 4881 } 4882 #endif 4883 skb_reset_tc(skb); 4884 skip_classify: 4885 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4886 goto drop; 4887 4888 if (skb_vlan_tag_present(skb)) { 4889 if (pt_prev) { 4890 ret = deliver_skb(skb, pt_prev, orig_dev); 4891 pt_prev = NULL; 4892 } 4893 if (vlan_do_receive(&skb)) 4894 goto another_round; 4895 else if (unlikely(!skb)) 4896 goto out; 4897 } 4898 4899 rx_handler = rcu_dereference(skb->dev->rx_handler); 4900 if (rx_handler) { 4901 if (pt_prev) { 4902 ret = deliver_skb(skb, pt_prev, orig_dev); 4903 pt_prev = NULL; 4904 } 4905 switch (rx_handler(&skb)) { 4906 case RX_HANDLER_CONSUMED: 4907 ret = NET_RX_SUCCESS; 4908 goto out; 4909 case RX_HANDLER_ANOTHER: 4910 goto another_round; 4911 case RX_HANDLER_EXACT: 4912 deliver_exact = true; 4913 case RX_HANDLER_PASS: 4914 break; 4915 default: 4916 BUG(); 4917 } 4918 } 4919 4920 if (unlikely(skb_vlan_tag_present(skb))) { 4921 if (skb_vlan_tag_get_id(skb)) 4922 skb->pkt_type = PACKET_OTHERHOST; 4923 /* Note: we might in the future use prio bits 4924 * and set skb->priority like in vlan_do_receive() 4925 * For the time being, just ignore Priority Code Point 4926 */ 4927 __vlan_hwaccel_clear_tag(skb); 4928 } 4929 4930 type = skb->protocol; 4931 4932 /* deliver only exact match when indicated */ 4933 if (likely(!deliver_exact)) { 4934 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4935 &ptype_base[ntohs(type) & 4936 PTYPE_HASH_MASK]); 4937 } 4938 4939 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4940 &orig_dev->ptype_specific); 4941 4942 if (unlikely(skb->dev != orig_dev)) { 4943 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4944 &skb->dev->ptype_specific); 4945 } 4946 4947 if (pt_prev) { 4948 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4949 goto drop; 4950 *ppt_prev = pt_prev; 4951 } else { 4952 drop: 4953 if (!deliver_exact) 4954 atomic_long_inc(&skb->dev->rx_dropped); 4955 else 4956 atomic_long_inc(&skb->dev->rx_nohandler); 4957 kfree_skb(skb); 4958 /* Jamal, now you will not able to escape explaining 4959 * me how you were going to use this. :-) 4960 */ 4961 ret = NET_RX_DROP; 4962 } 4963 4964 out: 4965 return ret; 4966 } 4967 4968 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 4969 { 4970 struct net_device *orig_dev = skb->dev; 4971 struct packet_type *pt_prev = NULL; 4972 int ret; 4973 4974 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 4975 if (pt_prev) 4976 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4977 return ret; 4978 } 4979 4980 /** 4981 * netif_receive_skb_core - special purpose version of netif_receive_skb 4982 * @skb: buffer to process 4983 * 4984 * More direct receive version of netif_receive_skb(). It should 4985 * only be used by callers that have a need to skip RPS and Generic XDP. 4986 * Caller must also take care of handling if (page_is_)pfmemalloc. 4987 * 4988 * This function may only be called from softirq context and interrupts 4989 * should be enabled. 4990 * 4991 * Return values (usually ignored): 4992 * NET_RX_SUCCESS: no congestion 4993 * NET_RX_DROP: packet was dropped 4994 */ 4995 int netif_receive_skb_core(struct sk_buff *skb) 4996 { 4997 int ret; 4998 4999 rcu_read_lock(); 5000 ret = __netif_receive_skb_one_core(skb, false); 5001 rcu_read_unlock(); 5002 5003 return ret; 5004 } 5005 EXPORT_SYMBOL(netif_receive_skb_core); 5006 5007 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5008 struct packet_type *pt_prev, 5009 struct net_device *orig_dev) 5010 { 5011 struct sk_buff *skb, *next; 5012 5013 if (!pt_prev) 5014 return; 5015 if (list_empty(head)) 5016 return; 5017 if (pt_prev->list_func != NULL) 5018 pt_prev->list_func(head, pt_prev, orig_dev); 5019 else 5020 list_for_each_entry_safe(skb, next, head, list) { 5021 skb_list_del_init(skb); 5022 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5023 } 5024 } 5025 5026 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5027 { 5028 /* Fast-path assumptions: 5029 * - There is no RX handler. 5030 * - Only one packet_type matches. 5031 * If either of these fails, we will end up doing some per-packet 5032 * processing in-line, then handling the 'last ptype' for the whole 5033 * sublist. This can't cause out-of-order delivery to any single ptype, 5034 * because the 'last ptype' must be constant across the sublist, and all 5035 * other ptypes are handled per-packet. 5036 */ 5037 /* Current (common) ptype of sublist */ 5038 struct packet_type *pt_curr = NULL; 5039 /* Current (common) orig_dev of sublist */ 5040 struct net_device *od_curr = NULL; 5041 struct list_head sublist; 5042 struct sk_buff *skb, *next; 5043 5044 INIT_LIST_HEAD(&sublist); 5045 list_for_each_entry_safe(skb, next, head, list) { 5046 struct net_device *orig_dev = skb->dev; 5047 struct packet_type *pt_prev = NULL; 5048 5049 skb_list_del_init(skb); 5050 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5051 if (!pt_prev) 5052 continue; 5053 if (pt_curr != pt_prev || od_curr != orig_dev) { 5054 /* dispatch old sublist */ 5055 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5056 /* start new sublist */ 5057 INIT_LIST_HEAD(&sublist); 5058 pt_curr = pt_prev; 5059 od_curr = orig_dev; 5060 } 5061 list_add_tail(&skb->list, &sublist); 5062 } 5063 5064 /* dispatch final sublist */ 5065 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5066 } 5067 5068 static int __netif_receive_skb(struct sk_buff *skb) 5069 { 5070 int ret; 5071 5072 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5073 unsigned int noreclaim_flag; 5074 5075 /* 5076 * PFMEMALLOC skbs are special, they should 5077 * - be delivered to SOCK_MEMALLOC sockets only 5078 * - stay away from userspace 5079 * - have bounded memory usage 5080 * 5081 * Use PF_MEMALLOC as this saves us from propagating the allocation 5082 * context down to all allocation sites. 5083 */ 5084 noreclaim_flag = memalloc_noreclaim_save(); 5085 ret = __netif_receive_skb_one_core(skb, true); 5086 memalloc_noreclaim_restore(noreclaim_flag); 5087 } else 5088 ret = __netif_receive_skb_one_core(skb, false); 5089 5090 return ret; 5091 } 5092 5093 static void __netif_receive_skb_list(struct list_head *head) 5094 { 5095 unsigned long noreclaim_flag = 0; 5096 struct sk_buff *skb, *next; 5097 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5098 5099 list_for_each_entry_safe(skb, next, head, list) { 5100 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5101 struct list_head sublist; 5102 5103 /* Handle the previous sublist */ 5104 list_cut_before(&sublist, head, &skb->list); 5105 if (!list_empty(&sublist)) 5106 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5107 pfmemalloc = !pfmemalloc; 5108 /* See comments in __netif_receive_skb */ 5109 if (pfmemalloc) 5110 noreclaim_flag = memalloc_noreclaim_save(); 5111 else 5112 memalloc_noreclaim_restore(noreclaim_flag); 5113 } 5114 } 5115 /* Handle the remaining sublist */ 5116 if (!list_empty(head)) 5117 __netif_receive_skb_list_core(head, pfmemalloc); 5118 /* Restore pflags */ 5119 if (pfmemalloc) 5120 memalloc_noreclaim_restore(noreclaim_flag); 5121 } 5122 5123 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5124 { 5125 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5126 struct bpf_prog *new = xdp->prog; 5127 int ret = 0; 5128 5129 switch (xdp->command) { 5130 case XDP_SETUP_PROG: 5131 rcu_assign_pointer(dev->xdp_prog, new); 5132 if (old) 5133 bpf_prog_put(old); 5134 5135 if (old && !new) { 5136 static_branch_dec(&generic_xdp_needed_key); 5137 } else if (new && !old) { 5138 static_branch_inc(&generic_xdp_needed_key); 5139 dev_disable_lro(dev); 5140 dev_disable_gro_hw(dev); 5141 } 5142 break; 5143 5144 case XDP_QUERY_PROG: 5145 xdp->prog_id = old ? old->aux->id : 0; 5146 break; 5147 5148 default: 5149 ret = -EINVAL; 5150 break; 5151 } 5152 5153 return ret; 5154 } 5155 5156 static int netif_receive_skb_internal(struct sk_buff *skb) 5157 { 5158 int ret; 5159 5160 net_timestamp_check(netdev_tstamp_prequeue, skb); 5161 5162 if (skb_defer_rx_timestamp(skb)) 5163 return NET_RX_SUCCESS; 5164 5165 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5166 int ret; 5167 5168 preempt_disable(); 5169 rcu_read_lock(); 5170 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5171 rcu_read_unlock(); 5172 preempt_enable(); 5173 5174 if (ret != XDP_PASS) 5175 return NET_RX_DROP; 5176 } 5177 5178 rcu_read_lock(); 5179 #ifdef CONFIG_RPS 5180 if (static_branch_unlikely(&rps_needed)) { 5181 struct rps_dev_flow voidflow, *rflow = &voidflow; 5182 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5183 5184 if (cpu >= 0) { 5185 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5186 rcu_read_unlock(); 5187 return ret; 5188 } 5189 } 5190 #endif 5191 ret = __netif_receive_skb(skb); 5192 rcu_read_unlock(); 5193 return ret; 5194 } 5195 5196 static void netif_receive_skb_list_internal(struct list_head *head) 5197 { 5198 struct bpf_prog *xdp_prog = NULL; 5199 struct sk_buff *skb, *next; 5200 struct list_head sublist; 5201 5202 INIT_LIST_HEAD(&sublist); 5203 list_for_each_entry_safe(skb, next, head, list) { 5204 net_timestamp_check(netdev_tstamp_prequeue, skb); 5205 skb_list_del_init(skb); 5206 if (!skb_defer_rx_timestamp(skb)) 5207 list_add_tail(&skb->list, &sublist); 5208 } 5209 list_splice_init(&sublist, head); 5210 5211 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5212 preempt_disable(); 5213 rcu_read_lock(); 5214 list_for_each_entry_safe(skb, next, head, list) { 5215 xdp_prog = rcu_dereference(skb->dev->xdp_prog); 5216 skb_list_del_init(skb); 5217 if (do_xdp_generic(xdp_prog, skb) == XDP_PASS) 5218 list_add_tail(&skb->list, &sublist); 5219 } 5220 rcu_read_unlock(); 5221 preempt_enable(); 5222 /* Put passed packets back on main list */ 5223 list_splice_init(&sublist, head); 5224 } 5225 5226 rcu_read_lock(); 5227 #ifdef CONFIG_RPS 5228 if (static_branch_unlikely(&rps_needed)) { 5229 list_for_each_entry_safe(skb, next, head, list) { 5230 struct rps_dev_flow voidflow, *rflow = &voidflow; 5231 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5232 5233 if (cpu >= 0) { 5234 /* Will be handled, remove from list */ 5235 skb_list_del_init(skb); 5236 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5237 } 5238 } 5239 } 5240 #endif 5241 __netif_receive_skb_list(head); 5242 rcu_read_unlock(); 5243 } 5244 5245 /** 5246 * netif_receive_skb - process receive buffer from network 5247 * @skb: buffer to process 5248 * 5249 * netif_receive_skb() is the main receive data processing function. 5250 * It always succeeds. The buffer may be dropped during processing 5251 * for congestion control or by the protocol layers. 5252 * 5253 * This function may only be called from softirq context and interrupts 5254 * should be enabled. 5255 * 5256 * Return values (usually ignored): 5257 * NET_RX_SUCCESS: no congestion 5258 * NET_RX_DROP: packet was dropped 5259 */ 5260 int netif_receive_skb(struct sk_buff *skb) 5261 { 5262 int ret; 5263 5264 trace_netif_receive_skb_entry(skb); 5265 5266 ret = netif_receive_skb_internal(skb); 5267 trace_netif_receive_skb_exit(ret); 5268 5269 return ret; 5270 } 5271 EXPORT_SYMBOL(netif_receive_skb); 5272 5273 /** 5274 * netif_receive_skb_list - process many receive buffers from network 5275 * @head: list of skbs to process. 5276 * 5277 * Since return value of netif_receive_skb() is normally ignored, and 5278 * wouldn't be meaningful for a list, this function returns void. 5279 * 5280 * This function may only be called from softirq context and interrupts 5281 * should be enabled. 5282 */ 5283 void netif_receive_skb_list(struct list_head *head) 5284 { 5285 struct sk_buff *skb; 5286 5287 if (list_empty(head)) 5288 return; 5289 if (trace_netif_receive_skb_list_entry_enabled()) { 5290 list_for_each_entry(skb, head, list) 5291 trace_netif_receive_skb_list_entry(skb); 5292 } 5293 netif_receive_skb_list_internal(head); 5294 trace_netif_receive_skb_list_exit(0); 5295 } 5296 EXPORT_SYMBOL(netif_receive_skb_list); 5297 5298 DEFINE_PER_CPU(struct work_struct, flush_works); 5299 5300 /* Network device is going away, flush any packets still pending */ 5301 static void flush_backlog(struct work_struct *work) 5302 { 5303 struct sk_buff *skb, *tmp; 5304 struct softnet_data *sd; 5305 5306 local_bh_disable(); 5307 sd = this_cpu_ptr(&softnet_data); 5308 5309 local_irq_disable(); 5310 rps_lock(sd); 5311 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5312 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5313 __skb_unlink(skb, &sd->input_pkt_queue); 5314 kfree_skb(skb); 5315 input_queue_head_incr(sd); 5316 } 5317 } 5318 rps_unlock(sd); 5319 local_irq_enable(); 5320 5321 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5322 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5323 __skb_unlink(skb, &sd->process_queue); 5324 kfree_skb(skb); 5325 input_queue_head_incr(sd); 5326 } 5327 } 5328 local_bh_enable(); 5329 } 5330 5331 static void flush_all_backlogs(void) 5332 { 5333 unsigned int cpu; 5334 5335 get_online_cpus(); 5336 5337 for_each_online_cpu(cpu) 5338 queue_work_on(cpu, system_highpri_wq, 5339 per_cpu_ptr(&flush_works, cpu)); 5340 5341 for_each_online_cpu(cpu) 5342 flush_work(per_cpu_ptr(&flush_works, cpu)); 5343 5344 put_online_cpus(); 5345 } 5346 5347 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int)); 5348 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int)); 5349 static int napi_gro_complete(struct sk_buff *skb) 5350 { 5351 struct packet_offload *ptype; 5352 __be16 type = skb->protocol; 5353 struct list_head *head = &offload_base; 5354 int err = -ENOENT; 5355 5356 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5357 5358 if (NAPI_GRO_CB(skb)->count == 1) { 5359 skb_shinfo(skb)->gso_size = 0; 5360 goto out; 5361 } 5362 5363 rcu_read_lock(); 5364 list_for_each_entry_rcu(ptype, head, list) { 5365 if (ptype->type != type || !ptype->callbacks.gro_complete) 5366 continue; 5367 5368 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5369 ipv6_gro_complete, inet_gro_complete, 5370 skb, 0); 5371 break; 5372 } 5373 rcu_read_unlock(); 5374 5375 if (err) { 5376 WARN_ON(&ptype->list == head); 5377 kfree_skb(skb); 5378 return NET_RX_SUCCESS; 5379 } 5380 5381 out: 5382 return netif_receive_skb_internal(skb); 5383 } 5384 5385 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5386 bool flush_old) 5387 { 5388 struct list_head *head = &napi->gro_hash[index].list; 5389 struct sk_buff *skb, *p; 5390 5391 list_for_each_entry_safe_reverse(skb, p, head, list) { 5392 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5393 return; 5394 skb_list_del_init(skb); 5395 napi_gro_complete(skb); 5396 napi->gro_hash[index].count--; 5397 } 5398 5399 if (!napi->gro_hash[index].count) 5400 __clear_bit(index, &napi->gro_bitmask); 5401 } 5402 5403 /* napi->gro_hash[].list contains packets ordered by age. 5404 * youngest packets at the head of it. 5405 * Complete skbs in reverse order to reduce latencies. 5406 */ 5407 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5408 { 5409 unsigned long bitmask = napi->gro_bitmask; 5410 unsigned int i, base = ~0U; 5411 5412 while ((i = ffs(bitmask)) != 0) { 5413 bitmask >>= i; 5414 base += i; 5415 __napi_gro_flush_chain(napi, base, flush_old); 5416 } 5417 } 5418 EXPORT_SYMBOL(napi_gro_flush); 5419 5420 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5421 struct sk_buff *skb) 5422 { 5423 unsigned int maclen = skb->dev->hard_header_len; 5424 u32 hash = skb_get_hash_raw(skb); 5425 struct list_head *head; 5426 struct sk_buff *p; 5427 5428 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5429 list_for_each_entry(p, head, list) { 5430 unsigned long diffs; 5431 5432 NAPI_GRO_CB(p)->flush = 0; 5433 5434 if (hash != skb_get_hash_raw(p)) { 5435 NAPI_GRO_CB(p)->same_flow = 0; 5436 continue; 5437 } 5438 5439 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5440 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5441 if (skb_vlan_tag_present(p)) 5442 diffs |= p->vlan_tci ^ skb->vlan_tci; 5443 diffs |= skb_metadata_dst_cmp(p, skb); 5444 diffs |= skb_metadata_differs(p, skb); 5445 if (maclen == ETH_HLEN) 5446 diffs |= compare_ether_header(skb_mac_header(p), 5447 skb_mac_header(skb)); 5448 else if (!diffs) 5449 diffs = memcmp(skb_mac_header(p), 5450 skb_mac_header(skb), 5451 maclen); 5452 NAPI_GRO_CB(p)->same_flow = !diffs; 5453 } 5454 5455 return head; 5456 } 5457 5458 static void skb_gro_reset_offset(struct sk_buff *skb) 5459 { 5460 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5461 const skb_frag_t *frag0 = &pinfo->frags[0]; 5462 5463 NAPI_GRO_CB(skb)->data_offset = 0; 5464 NAPI_GRO_CB(skb)->frag0 = NULL; 5465 NAPI_GRO_CB(skb)->frag0_len = 0; 5466 5467 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 5468 pinfo->nr_frags && 5469 !PageHighMem(skb_frag_page(frag0))) { 5470 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5471 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5472 skb_frag_size(frag0), 5473 skb->end - skb->tail); 5474 } 5475 } 5476 5477 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5478 { 5479 struct skb_shared_info *pinfo = skb_shinfo(skb); 5480 5481 BUG_ON(skb->end - skb->tail < grow); 5482 5483 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5484 5485 skb->data_len -= grow; 5486 skb->tail += grow; 5487 5488 pinfo->frags[0].page_offset += grow; 5489 skb_frag_size_sub(&pinfo->frags[0], grow); 5490 5491 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5492 skb_frag_unref(skb, 0); 5493 memmove(pinfo->frags, pinfo->frags + 1, 5494 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5495 } 5496 } 5497 5498 static void gro_flush_oldest(struct list_head *head) 5499 { 5500 struct sk_buff *oldest; 5501 5502 oldest = list_last_entry(head, struct sk_buff, list); 5503 5504 /* We are called with head length >= MAX_GRO_SKBS, so this is 5505 * impossible. 5506 */ 5507 if (WARN_ON_ONCE(!oldest)) 5508 return; 5509 5510 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5511 * SKB to the chain. 5512 */ 5513 skb_list_del_init(oldest); 5514 napi_gro_complete(oldest); 5515 } 5516 5517 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *, 5518 struct sk_buff *)); 5519 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *, 5520 struct sk_buff *)); 5521 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5522 { 5523 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5524 struct list_head *head = &offload_base; 5525 struct packet_offload *ptype; 5526 __be16 type = skb->protocol; 5527 struct list_head *gro_head; 5528 struct sk_buff *pp = NULL; 5529 enum gro_result ret; 5530 int same_flow; 5531 int grow; 5532 5533 if (netif_elide_gro(skb->dev)) 5534 goto normal; 5535 5536 gro_head = gro_list_prepare(napi, skb); 5537 5538 rcu_read_lock(); 5539 list_for_each_entry_rcu(ptype, head, list) { 5540 if (ptype->type != type || !ptype->callbacks.gro_receive) 5541 continue; 5542 5543 skb_set_network_header(skb, skb_gro_offset(skb)); 5544 skb_reset_mac_len(skb); 5545 NAPI_GRO_CB(skb)->same_flow = 0; 5546 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5547 NAPI_GRO_CB(skb)->free = 0; 5548 NAPI_GRO_CB(skb)->encap_mark = 0; 5549 NAPI_GRO_CB(skb)->recursion_counter = 0; 5550 NAPI_GRO_CB(skb)->is_fou = 0; 5551 NAPI_GRO_CB(skb)->is_atomic = 1; 5552 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5553 5554 /* Setup for GRO checksum validation */ 5555 switch (skb->ip_summed) { 5556 case CHECKSUM_COMPLETE: 5557 NAPI_GRO_CB(skb)->csum = skb->csum; 5558 NAPI_GRO_CB(skb)->csum_valid = 1; 5559 NAPI_GRO_CB(skb)->csum_cnt = 0; 5560 break; 5561 case CHECKSUM_UNNECESSARY: 5562 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5563 NAPI_GRO_CB(skb)->csum_valid = 0; 5564 break; 5565 default: 5566 NAPI_GRO_CB(skb)->csum_cnt = 0; 5567 NAPI_GRO_CB(skb)->csum_valid = 0; 5568 } 5569 5570 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 5571 ipv6_gro_receive, inet_gro_receive, 5572 gro_head, skb); 5573 break; 5574 } 5575 rcu_read_unlock(); 5576 5577 if (&ptype->list == head) 5578 goto normal; 5579 5580 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 5581 ret = GRO_CONSUMED; 5582 goto ok; 5583 } 5584 5585 same_flow = NAPI_GRO_CB(skb)->same_flow; 5586 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5587 5588 if (pp) { 5589 skb_list_del_init(pp); 5590 napi_gro_complete(pp); 5591 napi->gro_hash[hash].count--; 5592 } 5593 5594 if (same_flow) 5595 goto ok; 5596 5597 if (NAPI_GRO_CB(skb)->flush) 5598 goto normal; 5599 5600 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5601 gro_flush_oldest(gro_head); 5602 } else { 5603 napi->gro_hash[hash].count++; 5604 } 5605 NAPI_GRO_CB(skb)->count = 1; 5606 NAPI_GRO_CB(skb)->age = jiffies; 5607 NAPI_GRO_CB(skb)->last = skb; 5608 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5609 list_add(&skb->list, gro_head); 5610 ret = GRO_HELD; 5611 5612 pull: 5613 grow = skb_gro_offset(skb) - skb_headlen(skb); 5614 if (grow > 0) 5615 gro_pull_from_frag0(skb, grow); 5616 ok: 5617 if (napi->gro_hash[hash].count) { 5618 if (!test_bit(hash, &napi->gro_bitmask)) 5619 __set_bit(hash, &napi->gro_bitmask); 5620 } else if (test_bit(hash, &napi->gro_bitmask)) { 5621 __clear_bit(hash, &napi->gro_bitmask); 5622 } 5623 5624 return ret; 5625 5626 normal: 5627 ret = GRO_NORMAL; 5628 goto pull; 5629 } 5630 5631 struct packet_offload *gro_find_receive_by_type(__be16 type) 5632 { 5633 struct list_head *offload_head = &offload_base; 5634 struct packet_offload *ptype; 5635 5636 list_for_each_entry_rcu(ptype, offload_head, list) { 5637 if (ptype->type != type || !ptype->callbacks.gro_receive) 5638 continue; 5639 return ptype; 5640 } 5641 return NULL; 5642 } 5643 EXPORT_SYMBOL(gro_find_receive_by_type); 5644 5645 struct packet_offload *gro_find_complete_by_type(__be16 type) 5646 { 5647 struct list_head *offload_head = &offload_base; 5648 struct packet_offload *ptype; 5649 5650 list_for_each_entry_rcu(ptype, offload_head, list) { 5651 if (ptype->type != type || !ptype->callbacks.gro_complete) 5652 continue; 5653 return ptype; 5654 } 5655 return NULL; 5656 } 5657 EXPORT_SYMBOL(gro_find_complete_by_type); 5658 5659 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5660 { 5661 skb_dst_drop(skb); 5662 secpath_reset(skb); 5663 kmem_cache_free(skbuff_head_cache, skb); 5664 } 5665 5666 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 5667 { 5668 switch (ret) { 5669 case GRO_NORMAL: 5670 if (netif_receive_skb_internal(skb)) 5671 ret = GRO_DROP; 5672 break; 5673 5674 case GRO_DROP: 5675 kfree_skb(skb); 5676 break; 5677 5678 case GRO_MERGED_FREE: 5679 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5680 napi_skb_free_stolen_head(skb); 5681 else 5682 __kfree_skb(skb); 5683 break; 5684 5685 case GRO_HELD: 5686 case GRO_MERGED: 5687 case GRO_CONSUMED: 5688 break; 5689 } 5690 5691 return ret; 5692 } 5693 5694 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5695 { 5696 gro_result_t ret; 5697 5698 skb_mark_napi_id(skb, napi); 5699 trace_napi_gro_receive_entry(skb); 5700 5701 skb_gro_reset_offset(skb); 5702 5703 ret = napi_skb_finish(dev_gro_receive(napi, skb), skb); 5704 trace_napi_gro_receive_exit(ret); 5705 5706 return ret; 5707 } 5708 EXPORT_SYMBOL(napi_gro_receive); 5709 5710 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5711 { 5712 if (unlikely(skb->pfmemalloc)) { 5713 consume_skb(skb); 5714 return; 5715 } 5716 __skb_pull(skb, skb_headlen(skb)); 5717 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5718 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5719 __vlan_hwaccel_clear_tag(skb); 5720 skb->dev = napi->dev; 5721 skb->skb_iif = 0; 5722 5723 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 5724 skb->pkt_type = PACKET_HOST; 5725 5726 skb->encapsulation = 0; 5727 skb_shinfo(skb)->gso_type = 0; 5728 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5729 secpath_reset(skb); 5730 5731 napi->skb = skb; 5732 } 5733 5734 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5735 { 5736 struct sk_buff *skb = napi->skb; 5737 5738 if (!skb) { 5739 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5740 if (skb) { 5741 napi->skb = skb; 5742 skb_mark_napi_id(skb, napi); 5743 } 5744 } 5745 return skb; 5746 } 5747 EXPORT_SYMBOL(napi_get_frags); 5748 5749 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5750 struct sk_buff *skb, 5751 gro_result_t ret) 5752 { 5753 switch (ret) { 5754 case GRO_NORMAL: 5755 case GRO_HELD: 5756 __skb_push(skb, ETH_HLEN); 5757 skb->protocol = eth_type_trans(skb, skb->dev); 5758 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5759 ret = GRO_DROP; 5760 break; 5761 5762 case GRO_DROP: 5763 napi_reuse_skb(napi, skb); 5764 break; 5765 5766 case GRO_MERGED_FREE: 5767 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5768 napi_skb_free_stolen_head(skb); 5769 else 5770 napi_reuse_skb(napi, skb); 5771 break; 5772 5773 case GRO_MERGED: 5774 case GRO_CONSUMED: 5775 break; 5776 } 5777 5778 return ret; 5779 } 5780 5781 /* Upper GRO stack assumes network header starts at gro_offset=0 5782 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5783 * We copy ethernet header into skb->data to have a common layout. 5784 */ 5785 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5786 { 5787 struct sk_buff *skb = napi->skb; 5788 const struct ethhdr *eth; 5789 unsigned int hlen = sizeof(*eth); 5790 5791 napi->skb = NULL; 5792 5793 skb_reset_mac_header(skb); 5794 skb_gro_reset_offset(skb); 5795 5796 eth = skb_gro_header_fast(skb, 0); 5797 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5798 eth = skb_gro_header_slow(skb, hlen, 0); 5799 if (unlikely(!eth)) { 5800 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5801 __func__, napi->dev->name); 5802 napi_reuse_skb(napi, skb); 5803 return NULL; 5804 } 5805 } else { 5806 gro_pull_from_frag0(skb, hlen); 5807 NAPI_GRO_CB(skb)->frag0 += hlen; 5808 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5809 } 5810 __skb_pull(skb, hlen); 5811 5812 /* 5813 * This works because the only protocols we care about don't require 5814 * special handling. 5815 * We'll fix it up properly in napi_frags_finish() 5816 */ 5817 skb->protocol = eth->h_proto; 5818 5819 return skb; 5820 } 5821 5822 gro_result_t napi_gro_frags(struct napi_struct *napi) 5823 { 5824 gro_result_t ret; 5825 struct sk_buff *skb = napi_frags_skb(napi); 5826 5827 if (!skb) 5828 return GRO_DROP; 5829 5830 trace_napi_gro_frags_entry(skb); 5831 5832 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5833 trace_napi_gro_frags_exit(ret); 5834 5835 return ret; 5836 } 5837 EXPORT_SYMBOL(napi_gro_frags); 5838 5839 /* Compute the checksum from gro_offset and return the folded value 5840 * after adding in any pseudo checksum. 5841 */ 5842 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5843 { 5844 __wsum wsum; 5845 __sum16 sum; 5846 5847 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5848 5849 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5850 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5851 /* See comments in __skb_checksum_complete(). */ 5852 if (likely(!sum)) { 5853 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5854 !skb->csum_complete_sw) 5855 netdev_rx_csum_fault(skb->dev, skb); 5856 } 5857 5858 NAPI_GRO_CB(skb)->csum = wsum; 5859 NAPI_GRO_CB(skb)->csum_valid = 1; 5860 5861 return sum; 5862 } 5863 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5864 5865 static void net_rps_send_ipi(struct softnet_data *remsd) 5866 { 5867 #ifdef CONFIG_RPS 5868 while (remsd) { 5869 struct softnet_data *next = remsd->rps_ipi_next; 5870 5871 if (cpu_online(remsd->cpu)) 5872 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5873 remsd = next; 5874 } 5875 #endif 5876 } 5877 5878 /* 5879 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5880 * Note: called with local irq disabled, but exits with local irq enabled. 5881 */ 5882 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5883 { 5884 #ifdef CONFIG_RPS 5885 struct softnet_data *remsd = sd->rps_ipi_list; 5886 5887 if (remsd) { 5888 sd->rps_ipi_list = NULL; 5889 5890 local_irq_enable(); 5891 5892 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5893 net_rps_send_ipi(remsd); 5894 } else 5895 #endif 5896 local_irq_enable(); 5897 } 5898 5899 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5900 { 5901 #ifdef CONFIG_RPS 5902 return sd->rps_ipi_list != NULL; 5903 #else 5904 return false; 5905 #endif 5906 } 5907 5908 static int process_backlog(struct napi_struct *napi, int quota) 5909 { 5910 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5911 bool again = true; 5912 int work = 0; 5913 5914 /* Check if we have pending ipi, its better to send them now, 5915 * not waiting net_rx_action() end. 5916 */ 5917 if (sd_has_rps_ipi_waiting(sd)) { 5918 local_irq_disable(); 5919 net_rps_action_and_irq_enable(sd); 5920 } 5921 5922 napi->weight = dev_rx_weight; 5923 while (again) { 5924 struct sk_buff *skb; 5925 5926 while ((skb = __skb_dequeue(&sd->process_queue))) { 5927 rcu_read_lock(); 5928 __netif_receive_skb(skb); 5929 rcu_read_unlock(); 5930 input_queue_head_incr(sd); 5931 if (++work >= quota) 5932 return work; 5933 5934 } 5935 5936 local_irq_disable(); 5937 rps_lock(sd); 5938 if (skb_queue_empty(&sd->input_pkt_queue)) { 5939 /* 5940 * Inline a custom version of __napi_complete(). 5941 * only current cpu owns and manipulates this napi, 5942 * and NAPI_STATE_SCHED is the only possible flag set 5943 * on backlog. 5944 * We can use a plain write instead of clear_bit(), 5945 * and we dont need an smp_mb() memory barrier. 5946 */ 5947 napi->state = 0; 5948 again = false; 5949 } else { 5950 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5951 &sd->process_queue); 5952 } 5953 rps_unlock(sd); 5954 local_irq_enable(); 5955 } 5956 5957 return work; 5958 } 5959 5960 /** 5961 * __napi_schedule - schedule for receive 5962 * @n: entry to schedule 5963 * 5964 * The entry's receive function will be scheduled to run. 5965 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5966 */ 5967 void __napi_schedule(struct napi_struct *n) 5968 { 5969 unsigned long flags; 5970 5971 local_irq_save(flags); 5972 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5973 local_irq_restore(flags); 5974 } 5975 EXPORT_SYMBOL(__napi_schedule); 5976 5977 /** 5978 * napi_schedule_prep - check if napi can be scheduled 5979 * @n: napi context 5980 * 5981 * Test if NAPI routine is already running, and if not mark 5982 * it as running. This is used as a condition variable 5983 * insure only one NAPI poll instance runs. We also make 5984 * sure there is no pending NAPI disable. 5985 */ 5986 bool napi_schedule_prep(struct napi_struct *n) 5987 { 5988 unsigned long val, new; 5989 5990 do { 5991 val = READ_ONCE(n->state); 5992 if (unlikely(val & NAPIF_STATE_DISABLE)) 5993 return false; 5994 new = val | NAPIF_STATE_SCHED; 5995 5996 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5997 * This was suggested by Alexander Duyck, as compiler 5998 * emits better code than : 5999 * if (val & NAPIF_STATE_SCHED) 6000 * new |= NAPIF_STATE_MISSED; 6001 */ 6002 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6003 NAPIF_STATE_MISSED; 6004 } while (cmpxchg(&n->state, val, new) != val); 6005 6006 return !(val & NAPIF_STATE_SCHED); 6007 } 6008 EXPORT_SYMBOL(napi_schedule_prep); 6009 6010 /** 6011 * __napi_schedule_irqoff - schedule for receive 6012 * @n: entry to schedule 6013 * 6014 * Variant of __napi_schedule() assuming hard irqs are masked 6015 */ 6016 void __napi_schedule_irqoff(struct napi_struct *n) 6017 { 6018 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6019 } 6020 EXPORT_SYMBOL(__napi_schedule_irqoff); 6021 6022 bool napi_complete_done(struct napi_struct *n, int work_done) 6023 { 6024 unsigned long flags, val, new; 6025 6026 /* 6027 * 1) Don't let napi dequeue from the cpu poll list 6028 * just in case its running on a different cpu. 6029 * 2) If we are busy polling, do nothing here, we have 6030 * the guarantee we will be called later. 6031 */ 6032 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6033 NAPIF_STATE_IN_BUSY_POLL))) 6034 return false; 6035 6036 if (n->gro_bitmask) { 6037 unsigned long timeout = 0; 6038 6039 if (work_done) 6040 timeout = n->dev->gro_flush_timeout; 6041 6042 /* When the NAPI instance uses a timeout and keeps postponing 6043 * it, we need to bound somehow the time packets are kept in 6044 * the GRO layer 6045 */ 6046 napi_gro_flush(n, !!timeout); 6047 if (timeout) 6048 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6049 HRTIMER_MODE_REL_PINNED); 6050 } 6051 if (unlikely(!list_empty(&n->poll_list))) { 6052 /* If n->poll_list is not empty, we need to mask irqs */ 6053 local_irq_save(flags); 6054 list_del_init(&n->poll_list); 6055 local_irq_restore(flags); 6056 } 6057 6058 do { 6059 val = READ_ONCE(n->state); 6060 6061 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6062 6063 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 6064 6065 /* If STATE_MISSED was set, leave STATE_SCHED set, 6066 * because we will call napi->poll() one more time. 6067 * This C code was suggested by Alexander Duyck to help gcc. 6068 */ 6069 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6070 NAPIF_STATE_SCHED; 6071 } while (cmpxchg(&n->state, val, new) != val); 6072 6073 if (unlikely(val & NAPIF_STATE_MISSED)) { 6074 __napi_schedule(n); 6075 return false; 6076 } 6077 6078 return true; 6079 } 6080 EXPORT_SYMBOL(napi_complete_done); 6081 6082 /* must be called under rcu_read_lock(), as we dont take a reference */ 6083 static struct napi_struct *napi_by_id(unsigned int napi_id) 6084 { 6085 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6086 struct napi_struct *napi; 6087 6088 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6089 if (napi->napi_id == napi_id) 6090 return napi; 6091 6092 return NULL; 6093 } 6094 6095 #if defined(CONFIG_NET_RX_BUSY_POLL) 6096 6097 #define BUSY_POLL_BUDGET 8 6098 6099 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6100 { 6101 int rc; 6102 6103 /* Busy polling means there is a high chance device driver hard irq 6104 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6105 * set in napi_schedule_prep(). 6106 * Since we are about to call napi->poll() once more, we can safely 6107 * clear NAPI_STATE_MISSED. 6108 * 6109 * Note: x86 could use a single "lock and ..." instruction 6110 * to perform these two clear_bit() 6111 */ 6112 clear_bit(NAPI_STATE_MISSED, &napi->state); 6113 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6114 6115 local_bh_disable(); 6116 6117 /* All we really want here is to re-enable device interrupts. 6118 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6119 */ 6120 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6121 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6122 netpoll_poll_unlock(have_poll_lock); 6123 if (rc == BUSY_POLL_BUDGET) 6124 __napi_schedule(napi); 6125 local_bh_enable(); 6126 } 6127 6128 void napi_busy_loop(unsigned int napi_id, 6129 bool (*loop_end)(void *, unsigned long), 6130 void *loop_end_arg) 6131 { 6132 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6133 int (*napi_poll)(struct napi_struct *napi, int budget); 6134 void *have_poll_lock = NULL; 6135 struct napi_struct *napi; 6136 6137 restart: 6138 napi_poll = NULL; 6139 6140 rcu_read_lock(); 6141 6142 napi = napi_by_id(napi_id); 6143 if (!napi) 6144 goto out; 6145 6146 preempt_disable(); 6147 for (;;) { 6148 int work = 0; 6149 6150 local_bh_disable(); 6151 if (!napi_poll) { 6152 unsigned long val = READ_ONCE(napi->state); 6153 6154 /* If multiple threads are competing for this napi, 6155 * we avoid dirtying napi->state as much as we can. 6156 */ 6157 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6158 NAPIF_STATE_IN_BUSY_POLL)) 6159 goto count; 6160 if (cmpxchg(&napi->state, val, 6161 val | NAPIF_STATE_IN_BUSY_POLL | 6162 NAPIF_STATE_SCHED) != val) 6163 goto count; 6164 have_poll_lock = netpoll_poll_lock(napi); 6165 napi_poll = napi->poll; 6166 } 6167 work = napi_poll(napi, BUSY_POLL_BUDGET); 6168 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6169 count: 6170 if (work > 0) 6171 __NET_ADD_STATS(dev_net(napi->dev), 6172 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6173 local_bh_enable(); 6174 6175 if (!loop_end || loop_end(loop_end_arg, start_time)) 6176 break; 6177 6178 if (unlikely(need_resched())) { 6179 if (napi_poll) 6180 busy_poll_stop(napi, have_poll_lock); 6181 preempt_enable(); 6182 rcu_read_unlock(); 6183 cond_resched(); 6184 if (loop_end(loop_end_arg, start_time)) 6185 return; 6186 goto restart; 6187 } 6188 cpu_relax(); 6189 } 6190 if (napi_poll) 6191 busy_poll_stop(napi, have_poll_lock); 6192 preempt_enable(); 6193 out: 6194 rcu_read_unlock(); 6195 } 6196 EXPORT_SYMBOL(napi_busy_loop); 6197 6198 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6199 6200 static void napi_hash_add(struct napi_struct *napi) 6201 { 6202 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 6203 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 6204 return; 6205 6206 spin_lock(&napi_hash_lock); 6207 6208 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6209 do { 6210 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6211 napi_gen_id = MIN_NAPI_ID; 6212 } while (napi_by_id(napi_gen_id)); 6213 napi->napi_id = napi_gen_id; 6214 6215 hlist_add_head_rcu(&napi->napi_hash_node, 6216 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6217 6218 spin_unlock(&napi_hash_lock); 6219 } 6220 6221 /* Warning : caller is responsible to make sure rcu grace period 6222 * is respected before freeing memory containing @napi 6223 */ 6224 bool napi_hash_del(struct napi_struct *napi) 6225 { 6226 bool rcu_sync_needed = false; 6227 6228 spin_lock(&napi_hash_lock); 6229 6230 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 6231 rcu_sync_needed = true; 6232 hlist_del_rcu(&napi->napi_hash_node); 6233 } 6234 spin_unlock(&napi_hash_lock); 6235 return rcu_sync_needed; 6236 } 6237 EXPORT_SYMBOL_GPL(napi_hash_del); 6238 6239 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6240 { 6241 struct napi_struct *napi; 6242 6243 napi = container_of(timer, struct napi_struct, timer); 6244 6245 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6246 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6247 */ 6248 if (napi->gro_bitmask && !napi_disable_pending(napi) && 6249 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6250 __napi_schedule_irqoff(napi); 6251 6252 return HRTIMER_NORESTART; 6253 } 6254 6255 static void init_gro_hash(struct napi_struct *napi) 6256 { 6257 int i; 6258 6259 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6260 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6261 napi->gro_hash[i].count = 0; 6262 } 6263 napi->gro_bitmask = 0; 6264 } 6265 6266 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6267 int (*poll)(struct napi_struct *, int), int weight) 6268 { 6269 INIT_LIST_HEAD(&napi->poll_list); 6270 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6271 napi->timer.function = napi_watchdog; 6272 init_gro_hash(napi); 6273 napi->skb = NULL; 6274 napi->poll = poll; 6275 if (weight > NAPI_POLL_WEIGHT) 6276 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6277 weight); 6278 napi->weight = weight; 6279 list_add(&napi->dev_list, &dev->napi_list); 6280 napi->dev = dev; 6281 #ifdef CONFIG_NETPOLL 6282 napi->poll_owner = -1; 6283 #endif 6284 set_bit(NAPI_STATE_SCHED, &napi->state); 6285 napi_hash_add(napi); 6286 } 6287 EXPORT_SYMBOL(netif_napi_add); 6288 6289 void napi_disable(struct napi_struct *n) 6290 { 6291 might_sleep(); 6292 set_bit(NAPI_STATE_DISABLE, &n->state); 6293 6294 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6295 msleep(1); 6296 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6297 msleep(1); 6298 6299 hrtimer_cancel(&n->timer); 6300 6301 clear_bit(NAPI_STATE_DISABLE, &n->state); 6302 } 6303 EXPORT_SYMBOL(napi_disable); 6304 6305 static void flush_gro_hash(struct napi_struct *napi) 6306 { 6307 int i; 6308 6309 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6310 struct sk_buff *skb, *n; 6311 6312 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6313 kfree_skb(skb); 6314 napi->gro_hash[i].count = 0; 6315 } 6316 } 6317 6318 /* Must be called in process context */ 6319 void netif_napi_del(struct napi_struct *napi) 6320 { 6321 might_sleep(); 6322 if (napi_hash_del(napi)) 6323 synchronize_net(); 6324 list_del_init(&napi->dev_list); 6325 napi_free_frags(napi); 6326 6327 flush_gro_hash(napi); 6328 napi->gro_bitmask = 0; 6329 } 6330 EXPORT_SYMBOL(netif_napi_del); 6331 6332 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6333 { 6334 void *have; 6335 int work, weight; 6336 6337 list_del_init(&n->poll_list); 6338 6339 have = netpoll_poll_lock(n); 6340 6341 weight = n->weight; 6342 6343 /* This NAPI_STATE_SCHED test is for avoiding a race 6344 * with netpoll's poll_napi(). Only the entity which 6345 * obtains the lock and sees NAPI_STATE_SCHED set will 6346 * actually make the ->poll() call. Therefore we avoid 6347 * accidentally calling ->poll() when NAPI is not scheduled. 6348 */ 6349 work = 0; 6350 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6351 work = n->poll(n, weight); 6352 trace_napi_poll(n, work, weight); 6353 } 6354 6355 WARN_ON_ONCE(work > weight); 6356 6357 if (likely(work < weight)) 6358 goto out_unlock; 6359 6360 /* Drivers must not modify the NAPI state if they 6361 * consume the entire weight. In such cases this code 6362 * still "owns" the NAPI instance and therefore can 6363 * move the instance around on the list at-will. 6364 */ 6365 if (unlikely(napi_disable_pending(n))) { 6366 napi_complete(n); 6367 goto out_unlock; 6368 } 6369 6370 if (n->gro_bitmask) { 6371 /* flush too old packets 6372 * If HZ < 1000, flush all packets. 6373 */ 6374 napi_gro_flush(n, HZ >= 1000); 6375 } 6376 6377 /* Some drivers may have called napi_schedule 6378 * prior to exhausting their budget. 6379 */ 6380 if (unlikely(!list_empty(&n->poll_list))) { 6381 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6382 n->dev ? n->dev->name : "backlog"); 6383 goto out_unlock; 6384 } 6385 6386 list_add_tail(&n->poll_list, repoll); 6387 6388 out_unlock: 6389 netpoll_poll_unlock(have); 6390 6391 return work; 6392 } 6393 6394 static __latent_entropy void net_rx_action(struct softirq_action *h) 6395 { 6396 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6397 unsigned long time_limit = jiffies + 6398 usecs_to_jiffies(netdev_budget_usecs); 6399 int budget = netdev_budget; 6400 LIST_HEAD(list); 6401 LIST_HEAD(repoll); 6402 6403 local_irq_disable(); 6404 list_splice_init(&sd->poll_list, &list); 6405 local_irq_enable(); 6406 6407 for (;;) { 6408 struct napi_struct *n; 6409 6410 if (list_empty(&list)) { 6411 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6412 goto out; 6413 break; 6414 } 6415 6416 n = list_first_entry(&list, struct napi_struct, poll_list); 6417 budget -= napi_poll(n, &repoll); 6418 6419 /* If softirq window is exhausted then punt. 6420 * Allow this to run for 2 jiffies since which will allow 6421 * an average latency of 1.5/HZ. 6422 */ 6423 if (unlikely(budget <= 0 || 6424 time_after_eq(jiffies, time_limit))) { 6425 sd->time_squeeze++; 6426 break; 6427 } 6428 } 6429 6430 local_irq_disable(); 6431 6432 list_splice_tail_init(&sd->poll_list, &list); 6433 list_splice_tail(&repoll, &list); 6434 list_splice(&list, &sd->poll_list); 6435 if (!list_empty(&sd->poll_list)) 6436 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6437 6438 net_rps_action_and_irq_enable(sd); 6439 out: 6440 __kfree_skb_flush(); 6441 } 6442 6443 struct netdev_adjacent { 6444 struct net_device *dev; 6445 6446 /* upper master flag, there can only be one master device per list */ 6447 bool master; 6448 6449 /* counter for the number of times this device was added to us */ 6450 u16 ref_nr; 6451 6452 /* private field for the users */ 6453 void *private; 6454 6455 struct list_head list; 6456 struct rcu_head rcu; 6457 }; 6458 6459 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6460 struct list_head *adj_list) 6461 { 6462 struct netdev_adjacent *adj; 6463 6464 list_for_each_entry(adj, adj_list, list) { 6465 if (adj->dev == adj_dev) 6466 return adj; 6467 } 6468 return NULL; 6469 } 6470 6471 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 6472 { 6473 struct net_device *dev = data; 6474 6475 return upper_dev == dev; 6476 } 6477 6478 /** 6479 * netdev_has_upper_dev - Check if device is linked to an upper device 6480 * @dev: device 6481 * @upper_dev: upper device to check 6482 * 6483 * Find out if a device is linked to specified upper device and return true 6484 * in case it is. Note that this checks only immediate upper device, 6485 * not through a complete stack of devices. The caller must hold the RTNL lock. 6486 */ 6487 bool netdev_has_upper_dev(struct net_device *dev, 6488 struct net_device *upper_dev) 6489 { 6490 ASSERT_RTNL(); 6491 6492 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6493 upper_dev); 6494 } 6495 EXPORT_SYMBOL(netdev_has_upper_dev); 6496 6497 /** 6498 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6499 * @dev: device 6500 * @upper_dev: upper device to check 6501 * 6502 * Find out if a device is linked to specified upper device and return true 6503 * in case it is. Note that this checks the entire upper device chain. 6504 * The caller must hold rcu lock. 6505 */ 6506 6507 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6508 struct net_device *upper_dev) 6509 { 6510 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6511 upper_dev); 6512 } 6513 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6514 6515 /** 6516 * netdev_has_any_upper_dev - Check if device is linked to some device 6517 * @dev: device 6518 * 6519 * Find out if a device is linked to an upper device and return true in case 6520 * it is. The caller must hold the RTNL lock. 6521 */ 6522 bool netdev_has_any_upper_dev(struct net_device *dev) 6523 { 6524 ASSERT_RTNL(); 6525 6526 return !list_empty(&dev->adj_list.upper); 6527 } 6528 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6529 6530 /** 6531 * netdev_master_upper_dev_get - Get master upper device 6532 * @dev: device 6533 * 6534 * Find a master upper device and return pointer to it or NULL in case 6535 * it's not there. The caller must hold the RTNL lock. 6536 */ 6537 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6538 { 6539 struct netdev_adjacent *upper; 6540 6541 ASSERT_RTNL(); 6542 6543 if (list_empty(&dev->adj_list.upper)) 6544 return NULL; 6545 6546 upper = list_first_entry(&dev->adj_list.upper, 6547 struct netdev_adjacent, list); 6548 if (likely(upper->master)) 6549 return upper->dev; 6550 return NULL; 6551 } 6552 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6553 6554 /** 6555 * netdev_has_any_lower_dev - Check if device is linked to some device 6556 * @dev: device 6557 * 6558 * Find out if a device is linked to a lower device and return true in case 6559 * it is. The caller must hold the RTNL lock. 6560 */ 6561 static bool netdev_has_any_lower_dev(struct net_device *dev) 6562 { 6563 ASSERT_RTNL(); 6564 6565 return !list_empty(&dev->adj_list.lower); 6566 } 6567 6568 void *netdev_adjacent_get_private(struct list_head *adj_list) 6569 { 6570 struct netdev_adjacent *adj; 6571 6572 adj = list_entry(adj_list, struct netdev_adjacent, list); 6573 6574 return adj->private; 6575 } 6576 EXPORT_SYMBOL(netdev_adjacent_get_private); 6577 6578 /** 6579 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6580 * @dev: device 6581 * @iter: list_head ** of the current position 6582 * 6583 * Gets the next device from the dev's upper list, starting from iter 6584 * position. The caller must hold RCU read lock. 6585 */ 6586 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6587 struct list_head **iter) 6588 { 6589 struct netdev_adjacent *upper; 6590 6591 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6592 6593 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6594 6595 if (&upper->list == &dev->adj_list.upper) 6596 return NULL; 6597 6598 *iter = &upper->list; 6599 6600 return upper->dev; 6601 } 6602 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6603 6604 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6605 struct list_head **iter) 6606 { 6607 struct netdev_adjacent *upper; 6608 6609 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6610 6611 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6612 6613 if (&upper->list == &dev->adj_list.upper) 6614 return NULL; 6615 6616 *iter = &upper->list; 6617 6618 return upper->dev; 6619 } 6620 6621 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6622 int (*fn)(struct net_device *dev, 6623 void *data), 6624 void *data) 6625 { 6626 struct net_device *udev; 6627 struct list_head *iter; 6628 int ret; 6629 6630 for (iter = &dev->adj_list.upper, 6631 udev = netdev_next_upper_dev_rcu(dev, &iter); 6632 udev; 6633 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 6634 /* first is the upper device itself */ 6635 ret = fn(udev, data); 6636 if (ret) 6637 return ret; 6638 6639 /* then look at all of its upper devices */ 6640 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 6641 if (ret) 6642 return ret; 6643 } 6644 6645 return 0; 6646 } 6647 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6648 6649 /** 6650 * netdev_lower_get_next_private - Get the next ->private from the 6651 * lower neighbour list 6652 * @dev: device 6653 * @iter: list_head ** of the current position 6654 * 6655 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6656 * list, starting from iter position. The caller must hold either hold the 6657 * RTNL lock or its own locking that guarantees that the neighbour lower 6658 * list will remain unchanged. 6659 */ 6660 void *netdev_lower_get_next_private(struct net_device *dev, 6661 struct list_head **iter) 6662 { 6663 struct netdev_adjacent *lower; 6664 6665 lower = list_entry(*iter, struct netdev_adjacent, list); 6666 6667 if (&lower->list == &dev->adj_list.lower) 6668 return NULL; 6669 6670 *iter = lower->list.next; 6671 6672 return lower->private; 6673 } 6674 EXPORT_SYMBOL(netdev_lower_get_next_private); 6675 6676 /** 6677 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6678 * lower neighbour list, RCU 6679 * variant 6680 * @dev: device 6681 * @iter: list_head ** of the current position 6682 * 6683 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6684 * list, starting from iter position. The caller must hold RCU read lock. 6685 */ 6686 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6687 struct list_head **iter) 6688 { 6689 struct netdev_adjacent *lower; 6690 6691 WARN_ON_ONCE(!rcu_read_lock_held()); 6692 6693 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6694 6695 if (&lower->list == &dev->adj_list.lower) 6696 return NULL; 6697 6698 *iter = &lower->list; 6699 6700 return lower->private; 6701 } 6702 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6703 6704 /** 6705 * netdev_lower_get_next - Get the next device from the lower neighbour 6706 * list 6707 * @dev: device 6708 * @iter: list_head ** of the current position 6709 * 6710 * Gets the next netdev_adjacent from the dev's lower neighbour 6711 * list, starting from iter position. The caller must hold RTNL lock or 6712 * its own locking that guarantees that the neighbour lower 6713 * list will remain unchanged. 6714 */ 6715 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6716 { 6717 struct netdev_adjacent *lower; 6718 6719 lower = list_entry(*iter, struct netdev_adjacent, list); 6720 6721 if (&lower->list == &dev->adj_list.lower) 6722 return NULL; 6723 6724 *iter = lower->list.next; 6725 6726 return lower->dev; 6727 } 6728 EXPORT_SYMBOL(netdev_lower_get_next); 6729 6730 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6731 struct list_head **iter) 6732 { 6733 struct netdev_adjacent *lower; 6734 6735 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6736 6737 if (&lower->list == &dev->adj_list.lower) 6738 return NULL; 6739 6740 *iter = &lower->list; 6741 6742 return lower->dev; 6743 } 6744 6745 int netdev_walk_all_lower_dev(struct net_device *dev, 6746 int (*fn)(struct net_device *dev, 6747 void *data), 6748 void *data) 6749 { 6750 struct net_device *ldev; 6751 struct list_head *iter; 6752 int ret; 6753 6754 for (iter = &dev->adj_list.lower, 6755 ldev = netdev_next_lower_dev(dev, &iter); 6756 ldev; 6757 ldev = netdev_next_lower_dev(dev, &iter)) { 6758 /* first is the lower device itself */ 6759 ret = fn(ldev, data); 6760 if (ret) 6761 return ret; 6762 6763 /* then look at all of its lower devices */ 6764 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6765 if (ret) 6766 return ret; 6767 } 6768 6769 return 0; 6770 } 6771 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6772 6773 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6774 struct list_head **iter) 6775 { 6776 struct netdev_adjacent *lower; 6777 6778 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6779 if (&lower->list == &dev->adj_list.lower) 6780 return NULL; 6781 6782 *iter = &lower->list; 6783 6784 return lower->dev; 6785 } 6786 6787 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6788 int (*fn)(struct net_device *dev, 6789 void *data), 6790 void *data) 6791 { 6792 struct net_device *ldev; 6793 struct list_head *iter; 6794 int ret; 6795 6796 for (iter = &dev->adj_list.lower, 6797 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6798 ldev; 6799 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6800 /* first is the lower device itself */ 6801 ret = fn(ldev, data); 6802 if (ret) 6803 return ret; 6804 6805 /* then look at all of its lower devices */ 6806 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6807 if (ret) 6808 return ret; 6809 } 6810 6811 return 0; 6812 } 6813 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6814 6815 /** 6816 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6817 * lower neighbour list, RCU 6818 * variant 6819 * @dev: device 6820 * 6821 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6822 * list. The caller must hold RCU read lock. 6823 */ 6824 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6825 { 6826 struct netdev_adjacent *lower; 6827 6828 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6829 struct netdev_adjacent, list); 6830 if (lower) 6831 return lower->private; 6832 return NULL; 6833 } 6834 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6835 6836 /** 6837 * netdev_master_upper_dev_get_rcu - Get master upper device 6838 * @dev: device 6839 * 6840 * Find a master upper device and return pointer to it or NULL in case 6841 * it's not there. The caller must hold the RCU read lock. 6842 */ 6843 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6844 { 6845 struct netdev_adjacent *upper; 6846 6847 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6848 struct netdev_adjacent, list); 6849 if (upper && likely(upper->master)) 6850 return upper->dev; 6851 return NULL; 6852 } 6853 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6854 6855 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6856 struct net_device *adj_dev, 6857 struct list_head *dev_list) 6858 { 6859 char linkname[IFNAMSIZ+7]; 6860 6861 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6862 "upper_%s" : "lower_%s", adj_dev->name); 6863 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6864 linkname); 6865 } 6866 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6867 char *name, 6868 struct list_head *dev_list) 6869 { 6870 char linkname[IFNAMSIZ+7]; 6871 6872 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6873 "upper_%s" : "lower_%s", name); 6874 sysfs_remove_link(&(dev->dev.kobj), linkname); 6875 } 6876 6877 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6878 struct net_device *adj_dev, 6879 struct list_head *dev_list) 6880 { 6881 return (dev_list == &dev->adj_list.upper || 6882 dev_list == &dev->adj_list.lower) && 6883 net_eq(dev_net(dev), dev_net(adj_dev)); 6884 } 6885 6886 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6887 struct net_device *adj_dev, 6888 struct list_head *dev_list, 6889 void *private, bool master) 6890 { 6891 struct netdev_adjacent *adj; 6892 int ret; 6893 6894 adj = __netdev_find_adj(adj_dev, dev_list); 6895 6896 if (adj) { 6897 adj->ref_nr += 1; 6898 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6899 dev->name, adj_dev->name, adj->ref_nr); 6900 6901 return 0; 6902 } 6903 6904 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6905 if (!adj) 6906 return -ENOMEM; 6907 6908 adj->dev = adj_dev; 6909 adj->master = master; 6910 adj->ref_nr = 1; 6911 adj->private = private; 6912 dev_hold(adj_dev); 6913 6914 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6915 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6916 6917 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6918 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6919 if (ret) 6920 goto free_adj; 6921 } 6922 6923 /* Ensure that master link is always the first item in list. */ 6924 if (master) { 6925 ret = sysfs_create_link(&(dev->dev.kobj), 6926 &(adj_dev->dev.kobj), "master"); 6927 if (ret) 6928 goto remove_symlinks; 6929 6930 list_add_rcu(&adj->list, dev_list); 6931 } else { 6932 list_add_tail_rcu(&adj->list, dev_list); 6933 } 6934 6935 return 0; 6936 6937 remove_symlinks: 6938 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6939 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6940 free_adj: 6941 kfree(adj); 6942 dev_put(adj_dev); 6943 6944 return ret; 6945 } 6946 6947 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6948 struct net_device *adj_dev, 6949 u16 ref_nr, 6950 struct list_head *dev_list) 6951 { 6952 struct netdev_adjacent *adj; 6953 6954 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6955 dev->name, adj_dev->name, ref_nr); 6956 6957 adj = __netdev_find_adj(adj_dev, dev_list); 6958 6959 if (!adj) { 6960 pr_err("Adjacency does not exist for device %s from %s\n", 6961 dev->name, adj_dev->name); 6962 WARN_ON(1); 6963 return; 6964 } 6965 6966 if (adj->ref_nr > ref_nr) { 6967 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6968 dev->name, adj_dev->name, ref_nr, 6969 adj->ref_nr - ref_nr); 6970 adj->ref_nr -= ref_nr; 6971 return; 6972 } 6973 6974 if (adj->master) 6975 sysfs_remove_link(&(dev->dev.kobj), "master"); 6976 6977 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6978 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6979 6980 list_del_rcu(&adj->list); 6981 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6982 adj_dev->name, dev->name, adj_dev->name); 6983 dev_put(adj_dev); 6984 kfree_rcu(adj, rcu); 6985 } 6986 6987 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6988 struct net_device *upper_dev, 6989 struct list_head *up_list, 6990 struct list_head *down_list, 6991 void *private, bool master) 6992 { 6993 int ret; 6994 6995 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6996 private, master); 6997 if (ret) 6998 return ret; 6999 7000 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7001 private, false); 7002 if (ret) { 7003 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7004 return ret; 7005 } 7006 7007 return 0; 7008 } 7009 7010 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7011 struct net_device *upper_dev, 7012 u16 ref_nr, 7013 struct list_head *up_list, 7014 struct list_head *down_list) 7015 { 7016 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7017 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7018 } 7019 7020 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7021 struct net_device *upper_dev, 7022 void *private, bool master) 7023 { 7024 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7025 &dev->adj_list.upper, 7026 &upper_dev->adj_list.lower, 7027 private, master); 7028 } 7029 7030 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7031 struct net_device *upper_dev) 7032 { 7033 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7034 &dev->adj_list.upper, 7035 &upper_dev->adj_list.lower); 7036 } 7037 7038 static int __netdev_upper_dev_link(struct net_device *dev, 7039 struct net_device *upper_dev, bool master, 7040 void *upper_priv, void *upper_info, 7041 struct netlink_ext_ack *extack) 7042 { 7043 struct netdev_notifier_changeupper_info changeupper_info = { 7044 .info = { 7045 .dev = dev, 7046 .extack = extack, 7047 }, 7048 .upper_dev = upper_dev, 7049 .master = master, 7050 .linking = true, 7051 .upper_info = upper_info, 7052 }; 7053 struct net_device *master_dev; 7054 int ret = 0; 7055 7056 ASSERT_RTNL(); 7057 7058 if (dev == upper_dev) 7059 return -EBUSY; 7060 7061 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7062 if (netdev_has_upper_dev(upper_dev, dev)) 7063 return -EBUSY; 7064 7065 if (!master) { 7066 if (netdev_has_upper_dev(dev, upper_dev)) 7067 return -EEXIST; 7068 } else { 7069 master_dev = netdev_master_upper_dev_get(dev); 7070 if (master_dev) 7071 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7072 } 7073 7074 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7075 &changeupper_info.info); 7076 ret = notifier_to_errno(ret); 7077 if (ret) 7078 return ret; 7079 7080 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7081 master); 7082 if (ret) 7083 return ret; 7084 7085 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7086 &changeupper_info.info); 7087 ret = notifier_to_errno(ret); 7088 if (ret) 7089 goto rollback; 7090 7091 return 0; 7092 7093 rollback: 7094 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7095 7096 return ret; 7097 } 7098 7099 /** 7100 * netdev_upper_dev_link - Add a link to the upper device 7101 * @dev: device 7102 * @upper_dev: new upper device 7103 * @extack: netlink extended ack 7104 * 7105 * Adds a link to device which is upper to this one. The caller must hold 7106 * the RTNL lock. On a failure a negative errno code is returned. 7107 * On success the reference counts are adjusted and the function 7108 * returns zero. 7109 */ 7110 int netdev_upper_dev_link(struct net_device *dev, 7111 struct net_device *upper_dev, 7112 struct netlink_ext_ack *extack) 7113 { 7114 return __netdev_upper_dev_link(dev, upper_dev, false, 7115 NULL, NULL, extack); 7116 } 7117 EXPORT_SYMBOL(netdev_upper_dev_link); 7118 7119 /** 7120 * netdev_master_upper_dev_link - Add a master link to the upper device 7121 * @dev: device 7122 * @upper_dev: new upper device 7123 * @upper_priv: upper device private 7124 * @upper_info: upper info to be passed down via notifier 7125 * @extack: netlink extended ack 7126 * 7127 * Adds a link to device which is upper to this one. In this case, only 7128 * one master upper device can be linked, although other non-master devices 7129 * might be linked as well. The caller must hold the RTNL lock. 7130 * On a failure a negative errno code is returned. On success the reference 7131 * counts are adjusted and the function returns zero. 7132 */ 7133 int netdev_master_upper_dev_link(struct net_device *dev, 7134 struct net_device *upper_dev, 7135 void *upper_priv, void *upper_info, 7136 struct netlink_ext_ack *extack) 7137 { 7138 return __netdev_upper_dev_link(dev, upper_dev, true, 7139 upper_priv, upper_info, extack); 7140 } 7141 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7142 7143 /** 7144 * netdev_upper_dev_unlink - Removes a link to upper device 7145 * @dev: device 7146 * @upper_dev: new upper device 7147 * 7148 * Removes a link to device which is upper to this one. The caller must hold 7149 * the RTNL lock. 7150 */ 7151 void netdev_upper_dev_unlink(struct net_device *dev, 7152 struct net_device *upper_dev) 7153 { 7154 struct netdev_notifier_changeupper_info changeupper_info = { 7155 .info = { 7156 .dev = dev, 7157 }, 7158 .upper_dev = upper_dev, 7159 .linking = false, 7160 }; 7161 7162 ASSERT_RTNL(); 7163 7164 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7165 7166 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7167 &changeupper_info.info); 7168 7169 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7170 7171 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7172 &changeupper_info.info); 7173 } 7174 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7175 7176 /** 7177 * netdev_bonding_info_change - Dispatch event about slave change 7178 * @dev: device 7179 * @bonding_info: info to dispatch 7180 * 7181 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7182 * The caller must hold the RTNL lock. 7183 */ 7184 void netdev_bonding_info_change(struct net_device *dev, 7185 struct netdev_bonding_info *bonding_info) 7186 { 7187 struct netdev_notifier_bonding_info info = { 7188 .info.dev = dev, 7189 }; 7190 7191 memcpy(&info.bonding_info, bonding_info, 7192 sizeof(struct netdev_bonding_info)); 7193 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7194 &info.info); 7195 } 7196 EXPORT_SYMBOL(netdev_bonding_info_change); 7197 7198 static void netdev_adjacent_add_links(struct net_device *dev) 7199 { 7200 struct netdev_adjacent *iter; 7201 7202 struct net *net = dev_net(dev); 7203 7204 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7205 if (!net_eq(net, dev_net(iter->dev))) 7206 continue; 7207 netdev_adjacent_sysfs_add(iter->dev, dev, 7208 &iter->dev->adj_list.lower); 7209 netdev_adjacent_sysfs_add(dev, iter->dev, 7210 &dev->adj_list.upper); 7211 } 7212 7213 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7214 if (!net_eq(net, dev_net(iter->dev))) 7215 continue; 7216 netdev_adjacent_sysfs_add(iter->dev, dev, 7217 &iter->dev->adj_list.upper); 7218 netdev_adjacent_sysfs_add(dev, iter->dev, 7219 &dev->adj_list.lower); 7220 } 7221 } 7222 7223 static void netdev_adjacent_del_links(struct net_device *dev) 7224 { 7225 struct netdev_adjacent *iter; 7226 7227 struct net *net = dev_net(dev); 7228 7229 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7230 if (!net_eq(net, dev_net(iter->dev))) 7231 continue; 7232 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7233 &iter->dev->adj_list.lower); 7234 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7235 &dev->adj_list.upper); 7236 } 7237 7238 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7239 if (!net_eq(net, dev_net(iter->dev))) 7240 continue; 7241 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7242 &iter->dev->adj_list.upper); 7243 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7244 &dev->adj_list.lower); 7245 } 7246 } 7247 7248 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 7249 { 7250 struct netdev_adjacent *iter; 7251 7252 struct net *net = dev_net(dev); 7253 7254 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7255 if (!net_eq(net, dev_net(iter->dev))) 7256 continue; 7257 netdev_adjacent_sysfs_del(iter->dev, oldname, 7258 &iter->dev->adj_list.lower); 7259 netdev_adjacent_sysfs_add(iter->dev, dev, 7260 &iter->dev->adj_list.lower); 7261 } 7262 7263 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7264 if (!net_eq(net, dev_net(iter->dev))) 7265 continue; 7266 netdev_adjacent_sysfs_del(iter->dev, oldname, 7267 &iter->dev->adj_list.upper); 7268 netdev_adjacent_sysfs_add(iter->dev, dev, 7269 &iter->dev->adj_list.upper); 7270 } 7271 } 7272 7273 void *netdev_lower_dev_get_private(struct net_device *dev, 7274 struct net_device *lower_dev) 7275 { 7276 struct netdev_adjacent *lower; 7277 7278 if (!lower_dev) 7279 return NULL; 7280 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 7281 if (!lower) 7282 return NULL; 7283 7284 return lower->private; 7285 } 7286 EXPORT_SYMBOL(netdev_lower_dev_get_private); 7287 7288 7289 int dev_get_nest_level(struct net_device *dev) 7290 { 7291 struct net_device *lower = NULL; 7292 struct list_head *iter; 7293 int max_nest = -1; 7294 int nest; 7295 7296 ASSERT_RTNL(); 7297 7298 netdev_for_each_lower_dev(dev, lower, iter) { 7299 nest = dev_get_nest_level(lower); 7300 if (max_nest < nest) 7301 max_nest = nest; 7302 } 7303 7304 return max_nest + 1; 7305 } 7306 EXPORT_SYMBOL(dev_get_nest_level); 7307 7308 /** 7309 * netdev_lower_change - Dispatch event about lower device state change 7310 * @lower_dev: device 7311 * @lower_state_info: state to dispatch 7312 * 7313 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 7314 * The caller must hold the RTNL lock. 7315 */ 7316 void netdev_lower_state_changed(struct net_device *lower_dev, 7317 void *lower_state_info) 7318 { 7319 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 7320 .info.dev = lower_dev, 7321 }; 7322 7323 ASSERT_RTNL(); 7324 changelowerstate_info.lower_state_info = lower_state_info; 7325 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 7326 &changelowerstate_info.info); 7327 } 7328 EXPORT_SYMBOL(netdev_lower_state_changed); 7329 7330 static void dev_change_rx_flags(struct net_device *dev, int flags) 7331 { 7332 const struct net_device_ops *ops = dev->netdev_ops; 7333 7334 if (ops->ndo_change_rx_flags) 7335 ops->ndo_change_rx_flags(dev, flags); 7336 } 7337 7338 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 7339 { 7340 unsigned int old_flags = dev->flags; 7341 kuid_t uid; 7342 kgid_t gid; 7343 7344 ASSERT_RTNL(); 7345 7346 dev->flags |= IFF_PROMISC; 7347 dev->promiscuity += inc; 7348 if (dev->promiscuity == 0) { 7349 /* 7350 * Avoid overflow. 7351 * If inc causes overflow, untouch promisc and return error. 7352 */ 7353 if (inc < 0) 7354 dev->flags &= ~IFF_PROMISC; 7355 else { 7356 dev->promiscuity -= inc; 7357 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 7358 dev->name); 7359 return -EOVERFLOW; 7360 } 7361 } 7362 if (dev->flags != old_flags) { 7363 pr_info("device %s %s promiscuous mode\n", 7364 dev->name, 7365 dev->flags & IFF_PROMISC ? "entered" : "left"); 7366 if (audit_enabled) { 7367 current_uid_gid(&uid, &gid); 7368 audit_log(audit_context(), GFP_ATOMIC, 7369 AUDIT_ANOM_PROMISCUOUS, 7370 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 7371 dev->name, (dev->flags & IFF_PROMISC), 7372 (old_flags & IFF_PROMISC), 7373 from_kuid(&init_user_ns, audit_get_loginuid(current)), 7374 from_kuid(&init_user_ns, uid), 7375 from_kgid(&init_user_ns, gid), 7376 audit_get_sessionid(current)); 7377 } 7378 7379 dev_change_rx_flags(dev, IFF_PROMISC); 7380 } 7381 if (notify) 7382 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 7383 return 0; 7384 } 7385 7386 /** 7387 * dev_set_promiscuity - update promiscuity count on a device 7388 * @dev: device 7389 * @inc: modifier 7390 * 7391 * Add or remove promiscuity from a device. While the count in the device 7392 * remains above zero the interface remains promiscuous. Once it hits zero 7393 * the device reverts back to normal filtering operation. A negative inc 7394 * value is used to drop promiscuity on the device. 7395 * Return 0 if successful or a negative errno code on error. 7396 */ 7397 int dev_set_promiscuity(struct net_device *dev, int inc) 7398 { 7399 unsigned int old_flags = dev->flags; 7400 int err; 7401 7402 err = __dev_set_promiscuity(dev, inc, true); 7403 if (err < 0) 7404 return err; 7405 if (dev->flags != old_flags) 7406 dev_set_rx_mode(dev); 7407 return err; 7408 } 7409 EXPORT_SYMBOL(dev_set_promiscuity); 7410 7411 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 7412 { 7413 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 7414 7415 ASSERT_RTNL(); 7416 7417 dev->flags |= IFF_ALLMULTI; 7418 dev->allmulti += inc; 7419 if (dev->allmulti == 0) { 7420 /* 7421 * Avoid overflow. 7422 * If inc causes overflow, untouch allmulti and return error. 7423 */ 7424 if (inc < 0) 7425 dev->flags &= ~IFF_ALLMULTI; 7426 else { 7427 dev->allmulti -= inc; 7428 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 7429 dev->name); 7430 return -EOVERFLOW; 7431 } 7432 } 7433 if (dev->flags ^ old_flags) { 7434 dev_change_rx_flags(dev, IFF_ALLMULTI); 7435 dev_set_rx_mode(dev); 7436 if (notify) 7437 __dev_notify_flags(dev, old_flags, 7438 dev->gflags ^ old_gflags); 7439 } 7440 return 0; 7441 } 7442 7443 /** 7444 * dev_set_allmulti - update allmulti count on a device 7445 * @dev: device 7446 * @inc: modifier 7447 * 7448 * Add or remove reception of all multicast frames to a device. While the 7449 * count in the device remains above zero the interface remains listening 7450 * to all interfaces. Once it hits zero the device reverts back to normal 7451 * filtering operation. A negative @inc value is used to drop the counter 7452 * when releasing a resource needing all multicasts. 7453 * Return 0 if successful or a negative errno code on error. 7454 */ 7455 7456 int dev_set_allmulti(struct net_device *dev, int inc) 7457 { 7458 return __dev_set_allmulti(dev, inc, true); 7459 } 7460 EXPORT_SYMBOL(dev_set_allmulti); 7461 7462 /* 7463 * Upload unicast and multicast address lists to device and 7464 * configure RX filtering. When the device doesn't support unicast 7465 * filtering it is put in promiscuous mode while unicast addresses 7466 * are present. 7467 */ 7468 void __dev_set_rx_mode(struct net_device *dev) 7469 { 7470 const struct net_device_ops *ops = dev->netdev_ops; 7471 7472 /* dev_open will call this function so the list will stay sane. */ 7473 if (!(dev->flags&IFF_UP)) 7474 return; 7475 7476 if (!netif_device_present(dev)) 7477 return; 7478 7479 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 7480 /* Unicast addresses changes may only happen under the rtnl, 7481 * therefore calling __dev_set_promiscuity here is safe. 7482 */ 7483 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 7484 __dev_set_promiscuity(dev, 1, false); 7485 dev->uc_promisc = true; 7486 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 7487 __dev_set_promiscuity(dev, -1, false); 7488 dev->uc_promisc = false; 7489 } 7490 } 7491 7492 if (ops->ndo_set_rx_mode) 7493 ops->ndo_set_rx_mode(dev); 7494 } 7495 7496 void dev_set_rx_mode(struct net_device *dev) 7497 { 7498 netif_addr_lock_bh(dev); 7499 __dev_set_rx_mode(dev); 7500 netif_addr_unlock_bh(dev); 7501 } 7502 7503 /** 7504 * dev_get_flags - get flags reported to userspace 7505 * @dev: device 7506 * 7507 * Get the combination of flag bits exported through APIs to userspace. 7508 */ 7509 unsigned int dev_get_flags(const struct net_device *dev) 7510 { 7511 unsigned int flags; 7512 7513 flags = (dev->flags & ~(IFF_PROMISC | 7514 IFF_ALLMULTI | 7515 IFF_RUNNING | 7516 IFF_LOWER_UP | 7517 IFF_DORMANT)) | 7518 (dev->gflags & (IFF_PROMISC | 7519 IFF_ALLMULTI)); 7520 7521 if (netif_running(dev)) { 7522 if (netif_oper_up(dev)) 7523 flags |= IFF_RUNNING; 7524 if (netif_carrier_ok(dev)) 7525 flags |= IFF_LOWER_UP; 7526 if (netif_dormant(dev)) 7527 flags |= IFF_DORMANT; 7528 } 7529 7530 return flags; 7531 } 7532 EXPORT_SYMBOL(dev_get_flags); 7533 7534 int __dev_change_flags(struct net_device *dev, unsigned int flags, 7535 struct netlink_ext_ack *extack) 7536 { 7537 unsigned int old_flags = dev->flags; 7538 int ret; 7539 7540 ASSERT_RTNL(); 7541 7542 /* 7543 * Set the flags on our device. 7544 */ 7545 7546 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 7547 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 7548 IFF_AUTOMEDIA)) | 7549 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 7550 IFF_ALLMULTI)); 7551 7552 /* 7553 * Load in the correct multicast list now the flags have changed. 7554 */ 7555 7556 if ((old_flags ^ flags) & IFF_MULTICAST) 7557 dev_change_rx_flags(dev, IFF_MULTICAST); 7558 7559 dev_set_rx_mode(dev); 7560 7561 /* 7562 * Have we downed the interface. We handle IFF_UP ourselves 7563 * according to user attempts to set it, rather than blindly 7564 * setting it. 7565 */ 7566 7567 ret = 0; 7568 if ((old_flags ^ flags) & IFF_UP) { 7569 if (old_flags & IFF_UP) 7570 __dev_close(dev); 7571 else 7572 ret = __dev_open(dev, extack); 7573 } 7574 7575 if ((flags ^ dev->gflags) & IFF_PROMISC) { 7576 int inc = (flags & IFF_PROMISC) ? 1 : -1; 7577 unsigned int old_flags = dev->flags; 7578 7579 dev->gflags ^= IFF_PROMISC; 7580 7581 if (__dev_set_promiscuity(dev, inc, false) >= 0) 7582 if (dev->flags != old_flags) 7583 dev_set_rx_mode(dev); 7584 } 7585 7586 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 7587 * is important. Some (broken) drivers set IFF_PROMISC, when 7588 * IFF_ALLMULTI is requested not asking us and not reporting. 7589 */ 7590 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 7591 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 7592 7593 dev->gflags ^= IFF_ALLMULTI; 7594 __dev_set_allmulti(dev, inc, false); 7595 } 7596 7597 return ret; 7598 } 7599 7600 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 7601 unsigned int gchanges) 7602 { 7603 unsigned int changes = dev->flags ^ old_flags; 7604 7605 if (gchanges) 7606 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 7607 7608 if (changes & IFF_UP) { 7609 if (dev->flags & IFF_UP) 7610 call_netdevice_notifiers(NETDEV_UP, dev); 7611 else 7612 call_netdevice_notifiers(NETDEV_DOWN, dev); 7613 } 7614 7615 if (dev->flags & IFF_UP && 7616 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 7617 struct netdev_notifier_change_info change_info = { 7618 .info = { 7619 .dev = dev, 7620 }, 7621 .flags_changed = changes, 7622 }; 7623 7624 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 7625 } 7626 } 7627 7628 /** 7629 * dev_change_flags - change device settings 7630 * @dev: device 7631 * @flags: device state flags 7632 * @extack: netlink extended ack 7633 * 7634 * Change settings on device based state flags. The flags are 7635 * in the userspace exported format. 7636 */ 7637 int dev_change_flags(struct net_device *dev, unsigned int flags, 7638 struct netlink_ext_ack *extack) 7639 { 7640 int ret; 7641 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 7642 7643 ret = __dev_change_flags(dev, flags, extack); 7644 if (ret < 0) 7645 return ret; 7646 7647 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 7648 __dev_notify_flags(dev, old_flags, changes); 7649 return ret; 7650 } 7651 EXPORT_SYMBOL(dev_change_flags); 7652 7653 int __dev_set_mtu(struct net_device *dev, int new_mtu) 7654 { 7655 const struct net_device_ops *ops = dev->netdev_ops; 7656 7657 if (ops->ndo_change_mtu) 7658 return ops->ndo_change_mtu(dev, new_mtu); 7659 7660 dev->mtu = new_mtu; 7661 return 0; 7662 } 7663 EXPORT_SYMBOL(__dev_set_mtu); 7664 7665 /** 7666 * dev_set_mtu_ext - Change maximum transfer unit 7667 * @dev: device 7668 * @new_mtu: new transfer unit 7669 * @extack: netlink extended ack 7670 * 7671 * Change the maximum transfer size of the network device. 7672 */ 7673 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 7674 struct netlink_ext_ack *extack) 7675 { 7676 int err, orig_mtu; 7677 7678 if (new_mtu == dev->mtu) 7679 return 0; 7680 7681 /* MTU must be positive, and in range */ 7682 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 7683 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 7684 return -EINVAL; 7685 } 7686 7687 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 7688 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 7689 return -EINVAL; 7690 } 7691 7692 if (!netif_device_present(dev)) 7693 return -ENODEV; 7694 7695 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 7696 err = notifier_to_errno(err); 7697 if (err) 7698 return err; 7699 7700 orig_mtu = dev->mtu; 7701 err = __dev_set_mtu(dev, new_mtu); 7702 7703 if (!err) { 7704 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7705 orig_mtu); 7706 err = notifier_to_errno(err); 7707 if (err) { 7708 /* setting mtu back and notifying everyone again, 7709 * so that they have a chance to revert changes. 7710 */ 7711 __dev_set_mtu(dev, orig_mtu); 7712 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7713 new_mtu); 7714 } 7715 } 7716 return err; 7717 } 7718 7719 int dev_set_mtu(struct net_device *dev, int new_mtu) 7720 { 7721 struct netlink_ext_ack extack; 7722 int err; 7723 7724 memset(&extack, 0, sizeof(extack)); 7725 err = dev_set_mtu_ext(dev, new_mtu, &extack); 7726 if (err && extack._msg) 7727 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 7728 return err; 7729 } 7730 EXPORT_SYMBOL(dev_set_mtu); 7731 7732 /** 7733 * dev_change_tx_queue_len - Change TX queue length of a netdevice 7734 * @dev: device 7735 * @new_len: new tx queue length 7736 */ 7737 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 7738 { 7739 unsigned int orig_len = dev->tx_queue_len; 7740 int res; 7741 7742 if (new_len != (unsigned int)new_len) 7743 return -ERANGE; 7744 7745 if (new_len != orig_len) { 7746 dev->tx_queue_len = new_len; 7747 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 7748 res = notifier_to_errno(res); 7749 if (res) 7750 goto err_rollback; 7751 res = dev_qdisc_change_tx_queue_len(dev); 7752 if (res) 7753 goto err_rollback; 7754 } 7755 7756 return 0; 7757 7758 err_rollback: 7759 netdev_err(dev, "refused to change device tx_queue_len\n"); 7760 dev->tx_queue_len = orig_len; 7761 return res; 7762 } 7763 7764 /** 7765 * dev_set_group - Change group this device belongs to 7766 * @dev: device 7767 * @new_group: group this device should belong to 7768 */ 7769 void dev_set_group(struct net_device *dev, int new_group) 7770 { 7771 dev->group = new_group; 7772 } 7773 EXPORT_SYMBOL(dev_set_group); 7774 7775 /** 7776 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 7777 * @dev: device 7778 * @addr: new address 7779 * @extack: netlink extended ack 7780 */ 7781 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 7782 struct netlink_ext_ack *extack) 7783 { 7784 struct netdev_notifier_pre_changeaddr_info info = { 7785 .info.dev = dev, 7786 .info.extack = extack, 7787 .dev_addr = addr, 7788 }; 7789 int rc; 7790 7791 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 7792 return notifier_to_errno(rc); 7793 } 7794 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 7795 7796 /** 7797 * dev_set_mac_address - Change Media Access Control Address 7798 * @dev: device 7799 * @sa: new address 7800 * @extack: netlink extended ack 7801 * 7802 * Change the hardware (MAC) address of the device 7803 */ 7804 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 7805 struct netlink_ext_ack *extack) 7806 { 7807 const struct net_device_ops *ops = dev->netdev_ops; 7808 int err; 7809 7810 if (!ops->ndo_set_mac_address) 7811 return -EOPNOTSUPP; 7812 if (sa->sa_family != dev->type) 7813 return -EINVAL; 7814 if (!netif_device_present(dev)) 7815 return -ENODEV; 7816 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 7817 if (err) 7818 return err; 7819 err = ops->ndo_set_mac_address(dev, sa); 7820 if (err) 7821 return err; 7822 dev->addr_assign_type = NET_ADDR_SET; 7823 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7824 add_device_randomness(dev->dev_addr, dev->addr_len); 7825 return 0; 7826 } 7827 EXPORT_SYMBOL(dev_set_mac_address); 7828 7829 /** 7830 * dev_change_carrier - Change device carrier 7831 * @dev: device 7832 * @new_carrier: new value 7833 * 7834 * Change device carrier 7835 */ 7836 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7837 { 7838 const struct net_device_ops *ops = dev->netdev_ops; 7839 7840 if (!ops->ndo_change_carrier) 7841 return -EOPNOTSUPP; 7842 if (!netif_device_present(dev)) 7843 return -ENODEV; 7844 return ops->ndo_change_carrier(dev, new_carrier); 7845 } 7846 EXPORT_SYMBOL(dev_change_carrier); 7847 7848 /** 7849 * dev_get_phys_port_id - Get device physical port ID 7850 * @dev: device 7851 * @ppid: port ID 7852 * 7853 * Get device physical port ID 7854 */ 7855 int dev_get_phys_port_id(struct net_device *dev, 7856 struct netdev_phys_item_id *ppid) 7857 { 7858 const struct net_device_ops *ops = dev->netdev_ops; 7859 7860 if (!ops->ndo_get_phys_port_id) 7861 return -EOPNOTSUPP; 7862 return ops->ndo_get_phys_port_id(dev, ppid); 7863 } 7864 EXPORT_SYMBOL(dev_get_phys_port_id); 7865 7866 /** 7867 * dev_get_phys_port_name - Get device physical port name 7868 * @dev: device 7869 * @name: port name 7870 * @len: limit of bytes to copy to name 7871 * 7872 * Get device physical port name 7873 */ 7874 int dev_get_phys_port_name(struct net_device *dev, 7875 char *name, size_t len) 7876 { 7877 const struct net_device_ops *ops = dev->netdev_ops; 7878 int err; 7879 7880 if (ops->ndo_get_phys_port_name) { 7881 err = ops->ndo_get_phys_port_name(dev, name, len); 7882 if (err != -EOPNOTSUPP) 7883 return err; 7884 } 7885 return devlink_compat_phys_port_name_get(dev, name, len); 7886 } 7887 EXPORT_SYMBOL(dev_get_phys_port_name); 7888 7889 /** 7890 * dev_get_port_parent_id - Get the device's port parent identifier 7891 * @dev: network device 7892 * @ppid: pointer to a storage for the port's parent identifier 7893 * @recurse: allow/disallow recursion to lower devices 7894 * 7895 * Get the devices's port parent identifier 7896 */ 7897 int dev_get_port_parent_id(struct net_device *dev, 7898 struct netdev_phys_item_id *ppid, 7899 bool recurse) 7900 { 7901 const struct net_device_ops *ops = dev->netdev_ops; 7902 struct netdev_phys_item_id first = { }; 7903 struct net_device *lower_dev; 7904 struct list_head *iter; 7905 int err; 7906 7907 if (ops->ndo_get_port_parent_id) { 7908 err = ops->ndo_get_port_parent_id(dev, ppid); 7909 if (err != -EOPNOTSUPP) 7910 return err; 7911 } 7912 7913 err = devlink_compat_switch_id_get(dev, ppid); 7914 if (!err || err != -EOPNOTSUPP) 7915 return err; 7916 7917 if (!recurse) 7918 return -EOPNOTSUPP; 7919 7920 netdev_for_each_lower_dev(dev, lower_dev, iter) { 7921 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 7922 if (err) 7923 break; 7924 if (!first.id_len) 7925 first = *ppid; 7926 else if (memcmp(&first, ppid, sizeof(*ppid))) 7927 return -ENODATA; 7928 } 7929 7930 return err; 7931 } 7932 EXPORT_SYMBOL(dev_get_port_parent_id); 7933 7934 /** 7935 * netdev_port_same_parent_id - Indicate if two network devices have 7936 * the same port parent identifier 7937 * @a: first network device 7938 * @b: second network device 7939 */ 7940 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 7941 { 7942 struct netdev_phys_item_id a_id = { }; 7943 struct netdev_phys_item_id b_id = { }; 7944 7945 if (dev_get_port_parent_id(a, &a_id, true) || 7946 dev_get_port_parent_id(b, &b_id, true)) 7947 return false; 7948 7949 return netdev_phys_item_id_same(&a_id, &b_id); 7950 } 7951 EXPORT_SYMBOL(netdev_port_same_parent_id); 7952 7953 /** 7954 * dev_change_proto_down - update protocol port state information 7955 * @dev: device 7956 * @proto_down: new value 7957 * 7958 * This info can be used by switch drivers to set the phys state of the 7959 * port. 7960 */ 7961 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7962 { 7963 const struct net_device_ops *ops = dev->netdev_ops; 7964 7965 if (!ops->ndo_change_proto_down) 7966 return -EOPNOTSUPP; 7967 if (!netif_device_present(dev)) 7968 return -ENODEV; 7969 return ops->ndo_change_proto_down(dev, proto_down); 7970 } 7971 EXPORT_SYMBOL(dev_change_proto_down); 7972 7973 /** 7974 * dev_change_proto_down_generic - generic implementation for 7975 * ndo_change_proto_down that sets carrier according to 7976 * proto_down. 7977 * 7978 * @dev: device 7979 * @proto_down: new value 7980 */ 7981 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 7982 { 7983 if (proto_down) 7984 netif_carrier_off(dev); 7985 else 7986 netif_carrier_on(dev); 7987 dev->proto_down = proto_down; 7988 return 0; 7989 } 7990 EXPORT_SYMBOL(dev_change_proto_down_generic); 7991 7992 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 7993 enum bpf_netdev_command cmd) 7994 { 7995 struct netdev_bpf xdp; 7996 7997 if (!bpf_op) 7998 return 0; 7999 8000 memset(&xdp, 0, sizeof(xdp)); 8001 xdp.command = cmd; 8002 8003 /* Query must always succeed. */ 8004 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG); 8005 8006 return xdp.prog_id; 8007 } 8008 8009 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 8010 struct netlink_ext_ack *extack, u32 flags, 8011 struct bpf_prog *prog) 8012 { 8013 struct netdev_bpf xdp; 8014 8015 memset(&xdp, 0, sizeof(xdp)); 8016 if (flags & XDP_FLAGS_HW_MODE) 8017 xdp.command = XDP_SETUP_PROG_HW; 8018 else 8019 xdp.command = XDP_SETUP_PROG; 8020 xdp.extack = extack; 8021 xdp.flags = flags; 8022 xdp.prog = prog; 8023 8024 return bpf_op(dev, &xdp); 8025 } 8026 8027 static void dev_xdp_uninstall(struct net_device *dev) 8028 { 8029 struct netdev_bpf xdp; 8030 bpf_op_t ndo_bpf; 8031 8032 /* Remove generic XDP */ 8033 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 8034 8035 /* Remove from the driver */ 8036 ndo_bpf = dev->netdev_ops->ndo_bpf; 8037 if (!ndo_bpf) 8038 return; 8039 8040 memset(&xdp, 0, sizeof(xdp)); 8041 xdp.command = XDP_QUERY_PROG; 8042 WARN_ON(ndo_bpf(dev, &xdp)); 8043 if (xdp.prog_id) 8044 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8045 NULL)); 8046 8047 /* Remove HW offload */ 8048 memset(&xdp, 0, sizeof(xdp)); 8049 xdp.command = XDP_QUERY_PROG_HW; 8050 if (!ndo_bpf(dev, &xdp) && xdp.prog_id) 8051 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8052 NULL)); 8053 } 8054 8055 /** 8056 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 8057 * @dev: device 8058 * @extack: netlink extended ack 8059 * @fd: new program fd or negative value to clear 8060 * @flags: xdp-related flags 8061 * 8062 * Set or clear a bpf program for a device 8063 */ 8064 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 8065 int fd, u32 flags) 8066 { 8067 const struct net_device_ops *ops = dev->netdev_ops; 8068 enum bpf_netdev_command query; 8069 struct bpf_prog *prog = NULL; 8070 bpf_op_t bpf_op, bpf_chk; 8071 bool offload; 8072 int err; 8073 8074 ASSERT_RTNL(); 8075 8076 offload = flags & XDP_FLAGS_HW_MODE; 8077 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG; 8078 8079 bpf_op = bpf_chk = ops->ndo_bpf; 8080 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) { 8081 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode"); 8082 return -EOPNOTSUPP; 8083 } 8084 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 8085 bpf_op = generic_xdp_install; 8086 if (bpf_op == bpf_chk) 8087 bpf_chk = generic_xdp_install; 8088 8089 if (fd >= 0) { 8090 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) { 8091 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time"); 8092 return -EEXIST; 8093 } 8094 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 8095 __dev_xdp_query(dev, bpf_op, query)) { 8096 NL_SET_ERR_MSG(extack, "XDP program already attached"); 8097 return -EBUSY; 8098 } 8099 8100 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 8101 bpf_op == ops->ndo_bpf); 8102 if (IS_ERR(prog)) 8103 return PTR_ERR(prog); 8104 8105 if (!offload && bpf_prog_is_dev_bound(prog->aux)) { 8106 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 8107 bpf_prog_put(prog); 8108 return -EINVAL; 8109 } 8110 } 8111 8112 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 8113 if (err < 0 && prog) 8114 bpf_prog_put(prog); 8115 8116 return err; 8117 } 8118 8119 /** 8120 * dev_new_index - allocate an ifindex 8121 * @net: the applicable net namespace 8122 * 8123 * Returns a suitable unique value for a new device interface 8124 * number. The caller must hold the rtnl semaphore or the 8125 * dev_base_lock to be sure it remains unique. 8126 */ 8127 static int dev_new_index(struct net *net) 8128 { 8129 int ifindex = net->ifindex; 8130 8131 for (;;) { 8132 if (++ifindex <= 0) 8133 ifindex = 1; 8134 if (!__dev_get_by_index(net, ifindex)) 8135 return net->ifindex = ifindex; 8136 } 8137 } 8138 8139 /* Delayed registration/unregisteration */ 8140 static LIST_HEAD(net_todo_list); 8141 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 8142 8143 static void net_set_todo(struct net_device *dev) 8144 { 8145 list_add_tail(&dev->todo_list, &net_todo_list); 8146 dev_net(dev)->dev_unreg_count++; 8147 } 8148 8149 static void rollback_registered_many(struct list_head *head) 8150 { 8151 struct net_device *dev, *tmp; 8152 LIST_HEAD(close_head); 8153 8154 BUG_ON(dev_boot_phase); 8155 ASSERT_RTNL(); 8156 8157 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 8158 /* Some devices call without registering 8159 * for initialization unwind. Remove those 8160 * devices and proceed with the remaining. 8161 */ 8162 if (dev->reg_state == NETREG_UNINITIALIZED) { 8163 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 8164 dev->name, dev); 8165 8166 WARN_ON(1); 8167 list_del(&dev->unreg_list); 8168 continue; 8169 } 8170 dev->dismantle = true; 8171 BUG_ON(dev->reg_state != NETREG_REGISTERED); 8172 } 8173 8174 /* If device is running, close it first. */ 8175 list_for_each_entry(dev, head, unreg_list) 8176 list_add_tail(&dev->close_list, &close_head); 8177 dev_close_many(&close_head, true); 8178 8179 list_for_each_entry(dev, head, unreg_list) { 8180 /* And unlink it from device chain. */ 8181 unlist_netdevice(dev); 8182 8183 dev->reg_state = NETREG_UNREGISTERING; 8184 } 8185 flush_all_backlogs(); 8186 8187 synchronize_net(); 8188 8189 list_for_each_entry(dev, head, unreg_list) { 8190 struct sk_buff *skb = NULL; 8191 8192 /* Shutdown queueing discipline. */ 8193 dev_shutdown(dev); 8194 8195 dev_xdp_uninstall(dev); 8196 8197 /* Notify protocols, that we are about to destroy 8198 * this device. They should clean all the things. 8199 */ 8200 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8201 8202 if (!dev->rtnl_link_ops || 8203 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8204 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 8205 GFP_KERNEL, NULL, 0); 8206 8207 /* 8208 * Flush the unicast and multicast chains 8209 */ 8210 dev_uc_flush(dev); 8211 dev_mc_flush(dev); 8212 8213 if (dev->netdev_ops->ndo_uninit) 8214 dev->netdev_ops->ndo_uninit(dev); 8215 8216 if (skb) 8217 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 8218 8219 /* Notifier chain MUST detach us all upper devices. */ 8220 WARN_ON(netdev_has_any_upper_dev(dev)); 8221 WARN_ON(netdev_has_any_lower_dev(dev)); 8222 8223 /* Remove entries from kobject tree */ 8224 netdev_unregister_kobject(dev); 8225 #ifdef CONFIG_XPS 8226 /* Remove XPS queueing entries */ 8227 netif_reset_xps_queues_gt(dev, 0); 8228 #endif 8229 } 8230 8231 synchronize_net(); 8232 8233 list_for_each_entry(dev, head, unreg_list) 8234 dev_put(dev); 8235 } 8236 8237 static void rollback_registered(struct net_device *dev) 8238 { 8239 LIST_HEAD(single); 8240 8241 list_add(&dev->unreg_list, &single); 8242 rollback_registered_many(&single); 8243 list_del(&single); 8244 } 8245 8246 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 8247 struct net_device *upper, netdev_features_t features) 8248 { 8249 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8250 netdev_features_t feature; 8251 int feature_bit; 8252 8253 for_each_netdev_feature(upper_disables, feature_bit) { 8254 feature = __NETIF_F_BIT(feature_bit); 8255 if (!(upper->wanted_features & feature) 8256 && (features & feature)) { 8257 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 8258 &feature, upper->name); 8259 features &= ~feature; 8260 } 8261 } 8262 8263 return features; 8264 } 8265 8266 static void netdev_sync_lower_features(struct net_device *upper, 8267 struct net_device *lower, netdev_features_t features) 8268 { 8269 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8270 netdev_features_t feature; 8271 int feature_bit; 8272 8273 for_each_netdev_feature(upper_disables, feature_bit) { 8274 feature = __NETIF_F_BIT(feature_bit); 8275 if (!(features & feature) && (lower->features & feature)) { 8276 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 8277 &feature, lower->name); 8278 lower->wanted_features &= ~feature; 8279 netdev_update_features(lower); 8280 8281 if (unlikely(lower->features & feature)) 8282 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 8283 &feature, lower->name); 8284 } 8285 } 8286 } 8287 8288 static netdev_features_t netdev_fix_features(struct net_device *dev, 8289 netdev_features_t features) 8290 { 8291 /* Fix illegal checksum combinations */ 8292 if ((features & NETIF_F_HW_CSUM) && 8293 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 8294 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 8295 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 8296 } 8297 8298 /* TSO requires that SG is present as well. */ 8299 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 8300 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 8301 features &= ~NETIF_F_ALL_TSO; 8302 } 8303 8304 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 8305 !(features & NETIF_F_IP_CSUM)) { 8306 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 8307 features &= ~NETIF_F_TSO; 8308 features &= ~NETIF_F_TSO_ECN; 8309 } 8310 8311 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 8312 !(features & NETIF_F_IPV6_CSUM)) { 8313 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 8314 features &= ~NETIF_F_TSO6; 8315 } 8316 8317 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 8318 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 8319 features &= ~NETIF_F_TSO_MANGLEID; 8320 8321 /* TSO ECN requires that TSO is present as well. */ 8322 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 8323 features &= ~NETIF_F_TSO_ECN; 8324 8325 /* Software GSO depends on SG. */ 8326 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 8327 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 8328 features &= ~NETIF_F_GSO; 8329 } 8330 8331 /* GSO partial features require GSO partial be set */ 8332 if ((features & dev->gso_partial_features) && 8333 !(features & NETIF_F_GSO_PARTIAL)) { 8334 netdev_dbg(dev, 8335 "Dropping partially supported GSO features since no GSO partial.\n"); 8336 features &= ~dev->gso_partial_features; 8337 } 8338 8339 if (!(features & NETIF_F_RXCSUM)) { 8340 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 8341 * successfully merged by hardware must also have the 8342 * checksum verified by hardware. If the user does not 8343 * want to enable RXCSUM, logically, we should disable GRO_HW. 8344 */ 8345 if (features & NETIF_F_GRO_HW) { 8346 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 8347 features &= ~NETIF_F_GRO_HW; 8348 } 8349 } 8350 8351 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 8352 if (features & NETIF_F_RXFCS) { 8353 if (features & NETIF_F_LRO) { 8354 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 8355 features &= ~NETIF_F_LRO; 8356 } 8357 8358 if (features & NETIF_F_GRO_HW) { 8359 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 8360 features &= ~NETIF_F_GRO_HW; 8361 } 8362 } 8363 8364 return features; 8365 } 8366 8367 int __netdev_update_features(struct net_device *dev) 8368 { 8369 struct net_device *upper, *lower; 8370 netdev_features_t features; 8371 struct list_head *iter; 8372 int err = -1; 8373 8374 ASSERT_RTNL(); 8375 8376 features = netdev_get_wanted_features(dev); 8377 8378 if (dev->netdev_ops->ndo_fix_features) 8379 features = dev->netdev_ops->ndo_fix_features(dev, features); 8380 8381 /* driver might be less strict about feature dependencies */ 8382 features = netdev_fix_features(dev, features); 8383 8384 /* some features can't be enabled if they're off an an upper device */ 8385 netdev_for_each_upper_dev_rcu(dev, upper, iter) 8386 features = netdev_sync_upper_features(dev, upper, features); 8387 8388 if (dev->features == features) 8389 goto sync_lower; 8390 8391 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 8392 &dev->features, &features); 8393 8394 if (dev->netdev_ops->ndo_set_features) 8395 err = dev->netdev_ops->ndo_set_features(dev, features); 8396 else 8397 err = 0; 8398 8399 if (unlikely(err < 0)) { 8400 netdev_err(dev, 8401 "set_features() failed (%d); wanted %pNF, left %pNF\n", 8402 err, &features, &dev->features); 8403 /* return non-0 since some features might have changed and 8404 * it's better to fire a spurious notification than miss it 8405 */ 8406 return -1; 8407 } 8408 8409 sync_lower: 8410 /* some features must be disabled on lower devices when disabled 8411 * on an upper device (think: bonding master or bridge) 8412 */ 8413 netdev_for_each_lower_dev(dev, lower, iter) 8414 netdev_sync_lower_features(dev, lower, features); 8415 8416 if (!err) { 8417 netdev_features_t diff = features ^ dev->features; 8418 8419 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 8420 /* udp_tunnel_{get,drop}_rx_info both need 8421 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 8422 * device, or they won't do anything. 8423 * Thus we need to update dev->features 8424 * *before* calling udp_tunnel_get_rx_info, 8425 * but *after* calling udp_tunnel_drop_rx_info. 8426 */ 8427 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 8428 dev->features = features; 8429 udp_tunnel_get_rx_info(dev); 8430 } else { 8431 udp_tunnel_drop_rx_info(dev); 8432 } 8433 } 8434 8435 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 8436 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 8437 dev->features = features; 8438 err |= vlan_get_rx_ctag_filter_info(dev); 8439 } else { 8440 vlan_drop_rx_ctag_filter_info(dev); 8441 } 8442 } 8443 8444 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 8445 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 8446 dev->features = features; 8447 err |= vlan_get_rx_stag_filter_info(dev); 8448 } else { 8449 vlan_drop_rx_stag_filter_info(dev); 8450 } 8451 } 8452 8453 dev->features = features; 8454 } 8455 8456 return err < 0 ? 0 : 1; 8457 } 8458 8459 /** 8460 * netdev_update_features - recalculate device features 8461 * @dev: the device to check 8462 * 8463 * Recalculate dev->features set and send notifications if it 8464 * has changed. Should be called after driver or hardware dependent 8465 * conditions might have changed that influence the features. 8466 */ 8467 void netdev_update_features(struct net_device *dev) 8468 { 8469 if (__netdev_update_features(dev)) 8470 netdev_features_change(dev); 8471 } 8472 EXPORT_SYMBOL(netdev_update_features); 8473 8474 /** 8475 * netdev_change_features - recalculate device features 8476 * @dev: the device to check 8477 * 8478 * Recalculate dev->features set and send notifications even 8479 * if they have not changed. Should be called instead of 8480 * netdev_update_features() if also dev->vlan_features might 8481 * have changed to allow the changes to be propagated to stacked 8482 * VLAN devices. 8483 */ 8484 void netdev_change_features(struct net_device *dev) 8485 { 8486 __netdev_update_features(dev); 8487 netdev_features_change(dev); 8488 } 8489 EXPORT_SYMBOL(netdev_change_features); 8490 8491 /** 8492 * netif_stacked_transfer_operstate - transfer operstate 8493 * @rootdev: the root or lower level device to transfer state from 8494 * @dev: the device to transfer operstate to 8495 * 8496 * Transfer operational state from root to device. This is normally 8497 * called when a stacking relationship exists between the root 8498 * device and the device(a leaf device). 8499 */ 8500 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 8501 struct net_device *dev) 8502 { 8503 if (rootdev->operstate == IF_OPER_DORMANT) 8504 netif_dormant_on(dev); 8505 else 8506 netif_dormant_off(dev); 8507 8508 if (netif_carrier_ok(rootdev)) 8509 netif_carrier_on(dev); 8510 else 8511 netif_carrier_off(dev); 8512 } 8513 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 8514 8515 static int netif_alloc_rx_queues(struct net_device *dev) 8516 { 8517 unsigned int i, count = dev->num_rx_queues; 8518 struct netdev_rx_queue *rx; 8519 size_t sz = count * sizeof(*rx); 8520 int err = 0; 8521 8522 BUG_ON(count < 1); 8523 8524 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8525 if (!rx) 8526 return -ENOMEM; 8527 8528 dev->_rx = rx; 8529 8530 for (i = 0; i < count; i++) { 8531 rx[i].dev = dev; 8532 8533 /* XDP RX-queue setup */ 8534 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 8535 if (err < 0) 8536 goto err_rxq_info; 8537 } 8538 return 0; 8539 8540 err_rxq_info: 8541 /* Rollback successful reg's and free other resources */ 8542 while (i--) 8543 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 8544 kvfree(dev->_rx); 8545 dev->_rx = NULL; 8546 return err; 8547 } 8548 8549 static void netif_free_rx_queues(struct net_device *dev) 8550 { 8551 unsigned int i, count = dev->num_rx_queues; 8552 8553 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 8554 if (!dev->_rx) 8555 return; 8556 8557 for (i = 0; i < count; i++) 8558 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 8559 8560 kvfree(dev->_rx); 8561 } 8562 8563 static void netdev_init_one_queue(struct net_device *dev, 8564 struct netdev_queue *queue, void *_unused) 8565 { 8566 /* Initialize queue lock */ 8567 spin_lock_init(&queue->_xmit_lock); 8568 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 8569 queue->xmit_lock_owner = -1; 8570 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 8571 queue->dev = dev; 8572 #ifdef CONFIG_BQL 8573 dql_init(&queue->dql, HZ); 8574 #endif 8575 } 8576 8577 static void netif_free_tx_queues(struct net_device *dev) 8578 { 8579 kvfree(dev->_tx); 8580 } 8581 8582 static int netif_alloc_netdev_queues(struct net_device *dev) 8583 { 8584 unsigned int count = dev->num_tx_queues; 8585 struct netdev_queue *tx; 8586 size_t sz = count * sizeof(*tx); 8587 8588 if (count < 1 || count > 0xffff) 8589 return -EINVAL; 8590 8591 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8592 if (!tx) 8593 return -ENOMEM; 8594 8595 dev->_tx = tx; 8596 8597 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 8598 spin_lock_init(&dev->tx_global_lock); 8599 8600 return 0; 8601 } 8602 8603 void netif_tx_stop_all_queues(struct net_device *dev) 8604 { 8605 unsigned int i; 8606 8607 for (i = 0; i < dev->num_tx_queues; i++) { 8608 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 8609 8610 netif_tx_stop_queue(txq); 8611 } 8612 } 8613 EXPORT_SYMBOL(netif_tx_stop_all_queues); 8614 8615 /** 8616 * register_netdevice - register a network device 8617 * @dev: device to register 8618 * 8619 * Take a completed network device structure and add it to the kernel 8620 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8621 * chain. 0 is returned on success. A negative errno code is returned 8622 * on a failure to set up the device, or if the name is a duplicate. 8623 * 8624 * Callers must hold the rtnl semaphore. You may want 8625 * register_netdev() instead of this. 8626 * 8627 * BUGS: 8628 * The locking appears insufficient to guarantee two parallel registers 8629 * will not get the same name. 8630 */ 8631 8632 int register_netdevice(struct net_device *dev) 8633 { 8634 int ret; 8635 struct net *net = dev_net(dev); 8636 8637 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 8638 NETDEV_FEATURE_COUNT); 8639 BUG_ON(dev_boot_phase); 8640 ASSERT_RTNL(); 8641 8642 might_sleep(); 8643 8644 /* When net_device's are persistent, this will be fatal. */ 8645 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 8646 BUG_ON(!net); 8647 8648 spin_lock_init(&dev->addr_list_lock); 8649 netdev_set_addr_lockdep_class(dev); 8650 8651 ret = dev_get_valid_name(net, dev, dev->name); 8652 if (ret < 0) 8653 goto out; 8654 8655 /* Init, if this function is available */ 8656 if (dev->netdev_ops->ndo_init) { 8657 ret = dev->netdev_ops->ndo_init(dev); 8658 if (ret) { 8659 if (ret > 0) 8660 ret = -EIO; 8661 goto out; 8662 } 8663 } 8664 8665 if (((dev->hw_features | dev->features) & 8666 NETIF_F_HW_VLAN_CTAG_FILTER) && 8667 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 8668 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 8669 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 8670 ret = -EINVAL; 8671 goto err_uninit; 8672 } 8673 8674 ret = -EBUSY; 8675 if (!dev->ifindex) 8676 dev->ifindex = dev_new_index(net); 8677 else if (__dev_get_by_index(net, dev->ifindex)) 8678 goto err_uninit; 8679 8680 /* Transfer changeable features to wanted_features and enable 8681 * software offloads (GSO and GRO). 8682 */ 8683 dev->hw_features |= NETIF_F_SOFT_FEATURES; 8684 dev->features |= NETIF_F_SOFT_FEATURES; 8685 8686 if (dev->netdev_ops->ndo_udp_tunnel_add) { 8687 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8688 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8689 } 8690 8691 dev->wanted_features = dev->features & dev->hw_features; 8692 8693 if (!(dev->flags & IFF_LOOPBACK)) 8694 dev->hw_features |= NETIF_F_NOCACHE_COPY; 8695 8696 /* If IPv4 TCP segmentation offload is supported we should also 8697 * allow the device to enable segmenting the frame with the option 8698 * of ignoring a static IP ID value. This doesn't enable the 8699 * feature itself but allows the user to enable it later. 8700 */ 8701 if (dev->hw_features & NETIF_F_TSO) 8702 dev->hw_features |= NETIF_F_TSO_MANGLEID; 8703 if (dev->vlan_features & NETIF_F_TSO) 8704 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 8705 if (dev->mpls_features & NETIF_F_TSO) 8706 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 8707 if (dev->hw_enc_features & NETIF_F_TSO) 8708 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 8709 8710 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 8711 */ 8712 dev->vlan_features |= NETIF_F_HIGHDMA; 8713 8714 /* Make NETIF_F_SG inheritable to tunnel devices. 8715 */ 8716 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 8717 8718 /* Make NETIF_F_SG inheritable to MPLS. 8719 */ 8720 dev->mpls_features |= NETIF_F_SG; 8721 8722 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 8723 ret = notifier_to_errno(ret); 8724 if (ret) 8725 goto err_uninit; 8726 8727 ret = netdev_register_kobject(dev); 8728 if (ret) 8729 goto err_uninit; 8730 dev->reg_state = NETREG_REGISTERED; 8731 8732 __netdev_update_features(dev); 8733 8734 /* 8735 * Default initial state at registry is that the 8736 * device is present. 8737 */ 8738 8739 set_bit(__LINK_STATE_PRESENT, &dev->state); 8740 8741 linkwatch_init_dev(dev); 8742 8743 dev_init_scheduler(dev); 8744 dev_hold(dev); 8745 list_netdevice(dev); 8746 add_device_randomness(dev->dev_addr, dev->addr_len); 8747 8748 /* If the device has permanent device address, driver should 8749 * set dev_addr and also addr_assign_type should be set to 8750 * NET_ADDR_PERM (default value). 8751 */ 8752 if (dev->addr_assign_type == NET_ADDR_PERM) 8753 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 8754 8755 /* Notify protocols, that a new device appeared. */ 8756 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 8757 ret = notifier_to_errno(ret); 8758 if (ret) { 8759 rollback_registered(dev); 8760 dev->reg_state = NETREG_UNREGISTERED; 8761 } 8762 /* 8763 * Prevent userspace races by waiting until the network 8764 * device is fully setup before sending notifications. 8765 */ 8766 if (!dev->rtnl_link_ops || 8767 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8768 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8769 8770 out: 8771 return ret; 8772 8773 err_uninit: 8774 if (dev->netdev_ops->ndo_uninit) 8775 dev->netdev_ops->ndo_uninit(dev); 8776 if (dev->priv_destructor) 8777 dev->priv_destructor(dev); 8778 goto out; 8779 } 8780 EXPORT_SYMBOL(register_netdevice); 8781 8782 /** 8783 * init_dummy_netdev - init a dummy network device for NAPI 8784 * @dev: device to init 8785 * 8786 * This takes a network device structure and initialize the minimum 8787 * amount of fields so it can be used to schedule NAPI polls without 8788 * registering a full blown interface. This is to be used by drivers 8789 * that need to tie several hardware interfaces to a single NAPI 8790 * poll scheduler due to HW limitations. 8791 */ 8792 int init_dummy_netdev(struct net_device *dev) 8793 { 8794 /* Clear everything. Note we don't initialize spinlocks 8795 * are they aren't supposed to be taken by any of the 8796 * NAPI code and this dummy netdev is supposed to be 8797 * only ever used for NAPI polls 8798 */ 8799 memset(dev, 0, sizeof(struct net_device)); 8800 8801 /* make sure we BUG if trying to hit standard 8802 * register/unregister code path 8803 */ 8804 dev->reg_state = NETREG_DUMMY; 8805 8806 /* NAPI wants this */ 8807 INIT_LIST_HEAD(&dev->napi_list); 8808 8809 /* a dummy interface is started by default */ 8810 set_bit(__LINK_STATE_PRESENT, &dev->state); 8811 set_bit(__LINK_STATE_START, &dev->state); 8812 8813 /* napi_busy_loop stats accounting wants this */ 8814 dev_net_set(dev, &init_net); 8815 8816 /* Note : We dont allocate pcpu_refcnt for dummy devices, 8817 * because users of this 'device' dont need to change 8818 * its refcount. 8819 */ 8820 8821 return 0; 8822 } 8823 EXPORT_SYMBOL_GPL(init_dummy_netdev); 8824 8825 8826 /** 8827 * register_netdev - register a network device 8828 * @dev: device to register 8829 * 8830 * Take a completed network device structure and add it to the kernel 8831 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8832 * chain. 0 is returned on success. A negative errno code is returned 8833 * on a failure to set up the device, or if the name is a duplicate. 8834 * 8835 * This is a wrapper around register_netdevice that takes the rtnl semaphore 8836 * and expands the device name if you passed a format string to 8837 * alloc_netdev. 8838 */ 8839 int register_netdev(struct net_device *dev) 8840 { 8841 int err; 8842 8843 if (rtnl_lock_killable()) 8844 return -EINTR; 8845 err = register_netdevice(dev); 8846 rtnl_unlock(); 8847 return err; 8848 } 8849 EXPORT_SYMBOL(register_netdev); 8850 8851 int netdev_refcnt_read(const struct net_device *dev) 8852 { 8853 int i, refcnt = 0; 8854 8855 for_each_possible_cpu(i) 8856 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 8857 return refcnt; 8858 } 8859 EXPORT_SYMBOL(netdev_refcnt_read); 8860 8861 /** 8862 * netdev_wait_allrefs - wait until all references are gone. 8863 * @dev: target net_device 8864 * 8865 * This is called when unregistering network devices. 8866 * 8867 * Any protocol or device that holds a reference should register 8868 * for netdevice notification, and cleanup and put back the 8869 * reference if they receive an UNREGISTER event. 8870 * We can get stuck here if buggy protocols don't correctly 8871 * call dev_put. 8872 */ 8873 static void netdev_wait_allrefs(struct net_device *dev) 8874 { 8875 unsigned long rebroadcast_time, warning_time; 8876 int refcnt; 8877 8878 linkwatch_forget_dev(dev); 8879 8880 rebroadcast_time = warning_time = jiffies; 8881 refcnt = netdev_refcnt_read(dev); 8882 8883 while (refcnt != 0) { 8884 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 8885 rtnl_lock(); 8886 8887 /* Rebroadcast unregister notification */ 8888 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8889 8890 __rtnl_unlock(); 8891 rcu_barrier(); 8892 rtnl_lock(); 8893 8894 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 8895 &dev->state)) { 8896 /* We must not have linkwatch events 8897 * pending on unregister. If this 8898 * happens, we simply run the queue 8899 * unscheduled, resulting in a noop 8900 * for this device. 8901 */ 8902 linkwatch_run_queue(); 8903 } 8904 8905 __rtnl_unlock(); 8906 8907 rebroadcast_time = jiffies; 8908 } 8909 8910 msleep(250); 8911 8912 refcnt = netdev_refcnt_read(dev); 8913 8914 if (time_after(jiffies, warning_time + 10 * HZ)) { 8915 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 8916 dev->name, refcnt); 8917 warning_time = jiffies; 8918 } 8919 } 8920 } 8921 8922 /* The sequence is: 8923 * 8924 * rtnl_lock(); 8925 * ... 8926 * register_netdevice(x1); 8927 * register_netdevice(x2); 8928 * ... 8929 * unregister_netdevice(y1); 8930 * unregister_netdevice(y2); 8931 * ... 8932 * rtnl_unlock(); 8933 * free_netdev(y1); 8934 * free_netdev(y2); 8935 * 8936 * We are invoked by rtnl_unlock(). 8937 * This allows us to deal with problems: 8938 * 1) We can delete sysfs objects which invoke hotplug 8939 * without deadlocking with linkwatch via keventd. 8940 * 2) Since we run with the RTNL semaphore not held, we can sleep 8941 * safely in order to wait for the netdev refcnt to drop to zero. 8942 * 8943 * We must not return until all unregister events added during 8944 * the interval the lock was held have been completed. 8945 */ 8946 void netdev_run_todo(void) 8947 { 8948 struct list_head list; 8949 8950 /* Snapshot list, allow later requests */ 8951 list_replace_init(&net_todo_list, &list); 8952 8953 __rtnl_unlock(); 8954 8955 8956 /* Wait for rcu callbacks to finish before next phase */ 8957 if (!list_empty(&list)) 8958 rcu_barrier(); 8959 8960 while (!list_empty(&list)) { 8961 struct net_device *dev 8962 = list_first_entry(&list, struct net_device, todo_list); 8963 list_del(&dev->todo_list); 8964 8965 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 8966 pr_err("network todo '%s' but state %d\n", 8967 dev->name, dev->reg_state); 8968 dump_stack(); 8969 continue; 8970 } 8971 8972 dev->reg_state = NETREG_UNREGISTERED; 8973 8974 netdev_wait_allrefs(dev); 8975 8976 /* paranoia */ 8977 BUG_ON(netdev_refcnt_read(dev)); 8978 BUG_ON(!list_empty(&dev->ptype_all)); 8979 BUG_ON(!list_empty(&dev->ptype_specific)); 8980 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 8981 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 8982 #if IS_ENABLED(CONFIG_DECNET) 8983 WARN_ON(dev->dn_ptr); 8984 #endif 8985 if (dev->priv_destructor) 8986 dev->priv_destructor(dev); 8987 if (dev->needs_free_netdev) 8988 free_netdev(dev); 8989 8990 /* Report a network device has been unregistered */ 8991 rtnl_lock(); 8992 dev_net(dev)->dev_unreg_count--; 8993 __rtnl_unlock(); 8994 wake_up(&netdev_unregistering_wq); 8995 8996 /* Free network device */ 8997 kobject_put(&dev->dev.kobj); 8998 } 8999 } 9000 9001 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 9002 * all the same fields in the same order as net_device_stats, with only 9003 * the type differing, but rtnl_link_stats64 may have additional fields 9004 * at the end for newer counters. 9005 */ 9006 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 9007 const struct net_device_stats *netdev_stats) 9008 { 9009 #if BITS_PER_LONG == 64 9010 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 9011 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 9012 /* zero out counters that only exist in rtnl_link_stats64 */ 9013 memset((char *)stats64 + sizeof(*netdev_stats), 0, 9014 sizeof(*stats64) - sizeof(*netdev_stats)); 9015 #else 9016 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 9017 const unsigned long *src = (const unsigned long *)netdev_stats; 9018 u64 *dst = (u64 *)stats64; 9019 9020 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 9021 for (i = 0; i < n; i++) 9022 dst[i] = src[i]; 9023 /* zero out counters that only exist in rtnl_link_stats64 */ 9024 memset((char *)stats64 + n * sizeof(u64), 0, 9025 sizeof(*stats64) - n * sizeof(u64)); 9026 #endif 9027 } 9028 EXPORT_SYMBOL(netdev_stats_to_stats64); 9029 9030 /** 9031 * dev_get_stats - get network device statistics 9032 * @dev: device to get statistics from 9033 * @storage: place to store stats 9034 * 9035 * Get network statistics from device. Return @storage. 9036 * The device driver may provide its own method by setting 9037 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 9038 * otherwise the internal statistics structure is used. 9039 */ 9040 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 9041 struct rtnl_link_stats64 *storage) 9042 { 9043 const struct net_device_ops *ops = dev->netdev_ops; 9044 9045 if (ops->ndo_get_stats64) { 9046 memset(storage, 0, sizeof(*storage)); 9047 ops->ndo_get_stats64(dev, storage); 9048 } else if (ops->ndo_get_stats) { 9049 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 9050 } else { 9051 netdev_stats_to_stats64(storage, &dev->stats); 9052 } 9053 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 9054 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 9055 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 9056 return storage; 9057 } 9058 EXPORT_SYMBOL(dev_get_stats); 9059 9060 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 9061 { 9062 struct netdev_queue *queue = dev_ingress_queue(dev); 9063 9064 #ifdef CONFIG_NET_CLS_ACT 9065 if (queue) 9066 return queue; 9067 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 9068 if (!queue) 9069 return NULL; 9070 netdev_init_one_queue(dev, queue, NULL); 9071 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 9072 queue->qdisc_sleeping = &noop_qdisc; 9073 rcu_assign_pointer(dev->ingress_queue, queue); 9074 #endif 9075 return queue; 9076 } 9077 9078 static const struct ethtool_ops default_ethtool_ops; 9079 9080 void netdev_set_default_ethtool_ops(struct net_device *dev, 9081 const struct ethtool_ops *ops) 9082 { 9083 if (dev->ethtool_ops == &default_ethtool_ops) 9084 dev->ethtool_ops = ops; 9085 } 9086 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 9087 9088 void netdev_freemem(struct net_device *dev) 9089 { 9090 char *addr = (char *)dev - dev->padded; 9091 9092 kvfree(addr); 9093 } 9094 9095 /** 9096 * alloc_netdev_mqs - allocate network device 9097 * @sizeof_priv: size of private data to allocate space for 9098 * @name: device name format string 9099 * @name_assign_type: origin of device name 9100 * @setup: callback to initialize device 9101 * @txqs: the number of TX subqueues to allocate 9102 * @rxqs: the number of RX subqueues to allocate 9103 * 9104 * Allocates a struct net_device with private data area for driver use 9105 * and performs basic initialization. Also allocates subqueue structs 9106 * for each queue on the device. 9107 */ 9108 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 9109 unsigned char name_assign_type, 9110 void (*setup)(struct net_device *), 9111 unsigned int txqs, unsigned int rxqs) 9112 { 9113 struct net_device *dev; 9114 unsigned int alloc_size; 9115 struct net_device *p; 9116 9117 BUG_ON(strlen(name) >= sizeof(dev->name)); 9118 9119 if (txqs < 1) { 9120 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 9121 return NULL; 9122 } 9123 9124 if (rxqs < 1) { 9125 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 9126 return NULL; 9127 } 9128 9129 alloc_size = sizeof(struct net_device); 9130 if (sizeof_priv) { 9131 /* ensure 32-byte alignment of private area */ 9132 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 9133 alloc_size += sizeof_priv; 9134 } 9135 /* ensure 32-byte alignment of whole construct */ 9136 alloc_size += NETDEV_ALIGN - 1; 9137 9138 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9139 if (!p) 9140 return NULL; 9141 9142 dev = PTR_ALIGN(p, NETDEV_ALIGN); 9143 dev->padded = (char *)dev - (char *)p; 9144 9145 dev->pcpu_refcnt = alloc_percpu(int); 9146 if (!dev->pcpu_refcnt) 9147 goto free_dev; 9148 9149 if (dev_addr_init(dev)) 9150 goto free_pcpu; 9151 9152 dev_mc_init(dev); 9153 dev_uc_init(dev); 9154 9155 dev_net_set(dev, &init_net); 9156 9157 dev->gso_max_size = GSO_MAX_SIZE; 9158 dev->gso_max_segs = GSO_MAX_SEGS; 9159 9160 INIT_LIST_HEAD(&dev->napi_list); 9161 INIT_LIST_HEAD(&dev->unreg_list); 9162 INIT_LIST_HEAD(&dev->close_list); 9163 INIT_LIST_HEAD(&dev->link_watch_list); 9164 INIT_LIST_HEAD(&dev->adj_list.upper); 9165 INIT_LIST_HEAD(&dev->adj_list.lower); 9166 INIT_LIST_HEAD(&dev->ptype_all); 9167 INIT_LIST_HEAD(&dev->ptype_specific); 9168 #ifdef CONFIG_NET_SCHED 9169 hash_init(dev->qdisc_hash); 9170 #endif 9171 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 9172 setup(dev); 9173 9174 if (!dev->tx_queue_len) { 9175 dev->priv_flags |= IFF_NO_QUEUE; 9176 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 9177 } 9178 9179 dev->num_tx_queues = txqs; 9180 dev->real_num_tx_queues = txqs; 9181 if (netif_alloc_netdev_queues(dev)) 9182 goto free_all; 9183 9184 dev->num_rx_queues = rxqs; 9185 dev->real_num_rx_queues = rxqs; 9186 if (netif_alloc_rx_queues(dev)) 9187 goto free_all; 9188 9189 strcpy(dev->name, name); 9190 dev->name_assign_type = name_assign_type; 9191 dev->group = INIT_NETDEV_GROUP; 9192 if (!dev->ethtool_ops) 9193 dev->ethtool_ops = &default_ethtool_ops; 9194 9195 nf_hook_ingress_init(dev); 9196 9197 return dev; 9198 9199 free_all: 9200 free_netdev(dev); 9201 return NULL; 9202 9203 free_pcpu: 9204 free_percpu(dev->pcpu_refcnt); 9205 free_dev: 9206 netdev_freemem(dev); 9207 return NULL; 9208 } 9209 EXPORT_SYMBOL(alloc_netdev_mqs); 9210 9211 /** 9212 * free_netdev - free network device 9213 * @dev: device 9214 * 9215 * This function does the last stage of destroying an allocated device 9216 * interface. The reference to the device object is released. If this 9217 * is the last reference then it will be freed.Must be called in process 9218 * context. 9219 */ 9220 void free_netdev(struct net_device *dev) 9221 { 9222 struct napi_struct *p, *n; 9223 9224 might_sleep(); 9225 netif_free_tx_queues(dev); 9226 netif_free_rx_queues(dev); 9227 9228 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 9229 9230 /* Flush device addresses */ 9231 dev_addr_flush(dev); 9232 9233 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 9234 netif_napi_del(p); 9235 9236 free_percpu(dev->pcpu_refcnt); 9237 dev->pcpu_refcnt = NULL; 9238 9239 /* Compatibility with error handling in drivers */ 9240 if (dev->reg_state == NETREG_UNINITIALIZED) { 9241 netdev_freemem(dev); 9242 return; 9243 } 9244 9245 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 9246 dev->reg_state = NETREG_RELEASED; 9247 9248 /* will free via device release */ 9249 put_device(&dev->dev); 9250 } 9251 EXPORT_SYMBOL(free_netdev); 9252 9253 /** 9254 * synchronize_net - Synchronize with packet receive processing 9255 * 9256 * Wait for packets currently being received to be done. 9257 * Does not block later packets from starting. 9258 */ 9259 void synchronize_net(void) 9260 { 9261 might_sleep(); 9262 if (rtnl_is_locked()) 9263 synchronize_rcu_expedited(); 9264 else 9265 synchronize_rcu(); 9266 } 9267 EXPORT_SYMBOL(synchronize_net); 9268 9269 /** 9270 * unregister_netdevice_queue - remove device from the kernel 9271 * @dev: device 9272 * @head: list 9273 * 9274 * This function shuts down a device interface and removes it 9275 * from the kernel tables. 9276 * If head not NULL, device is queued to be unregistered later. 9277 * 9278 * Callers must hold the rtnl semaphore. You may want 9279 * unregister_netdev() instead of this. 9280 */ 9281 9282 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 9283 { 9284 ASSERT_RTNL(); 9285 9286 if (head) { 9287 list_move_tail(&dev->unreg_list, head); 9288 } else { 9289 rollback_registered(dev); 9290 /* Finish processing unregister after unlock */ 9291 net_set_todo(dev); 9292 } 9293 } 9294 EXPORT_SYMBOL(unregister_netdevice_queue); 9295 9296 /** 9297 * unregister_netdevice_many - unregister many devices 9298 * @head: list of devices 9299 * 9300 * Note: As most callers use a stack allocated list_head, 9301 * we force a list_del() to make sure stack wont be corrupted later. 9302 */ 9303 void unregister_netdevice_many(struct list_head *head) 9304 { 9305 struct net_device *dev; 9306 9307 if (!list_empty(head)) { 9308 rollback_registered_many(head); 9309 list_for_each_entry(dev, head, unreg_list) 9310 net_set_todo(dev); 9311 list_del(head); 9312 } 9313 } 9314 EXPORT_SYMBOL(unregister_netdevice_many); 9315 9316 /** 9317 * unregister_netdev - remove device from the kernel 9318 * @dev: device 9319 * 9320 * This function shuts down a device interface and removes it 9321 * from the kernel tables. 9322 * 9323 * This is just a wrapper for unregister_netdevice that takes 9324 * the rtnl semaphore. In general you want to use this and not 9325 * unregister_netdevice. 9326 */ 9327 void unregister_netdev(struct net_device *dev) 9328 { 9329 rtnl_lock(); 9330 unregister_netdevice(dev); 9331 rtnl_unlock(); 9332 } 9333 EXPORT_SYMBOL(unregister_netdev); 9334 9335 /** 9336 * dev_change_net_namespace - move device to different nethost namespace 9337 * @dev: device 9338 * @net: network namespace 9339 * @pat: If not NULL name pattern to try if the current device name 9340 * is already taken in the destination network namespace. 9341 * 9342 * This function shuts down a device interface and moves it 9343 * to a new network namespace. On success 0 is returned, on 9344 * a failure a netagive errno code is returned. 9345 * 9346 * Callers must hold the rtnl semaphore. 9347 */ 9348 9349 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 9350 { 9351 int err, new_nsid, new_ifindex; 9352 9353 ASSERT_RTNL(); 9354 9355 /* Don't allow namespace local devices to be moved. */ 9356 err = -EINVAL; 9357 if (dev->features & NETIF_F_NETNS_LOCAL) 9358 goto out; 9359 9360 /* Ensure the device has been registrered */ 9361 if (dev->reg_state != NETREG_REGISTERED) 9362 goto out; 9363 9364 /* Get out if there is nothing todo */ 9365 err = 0; 9366 if (net_eq(dev_net(dev), net)) 9367 goto out; 9368 9369 /* Pick the destination device name, and ensure 9370 * we can use it in the destination network namespace. 9371 */ 9372 err = -EEXIST; 9373 if (__dev_get_by_name(net, dev->name)) { 9374 /* We get here if we can't use the current device name */ 9375 if (!pat) 9376 goto out; 9377 err = dev_get_valid_name(net, dev, pat); 9378 if (err < 0) 9379 goto out; 9380 } 9381 9382 /* 9383 * And now a mini version of register_netdevice unregister_netdevice. 9384 */ 9385 9386 /* If device is running close it first. */ 9387 dev_close(dev); 9388 9389 /* And unlink it from device chain */ 9390 unlist_netdevice(dev); 9391 9392 synchronize_net(); 9393 9394 /* Shutdown queueing discipline. */ 9395 dev_shutdown(dev); 9396 9397 /* Notify protocols, that we are about to destroy 9398 * this device. They should clean all the things. 9399 * 9400 * Note that dev->reg_state stays at NETREG_REGISTERED. 9401 * This is wanted because this way 8021q and macvlan know 9402 * the device is just moving and can keep their slaves up. 9403 */ 9404 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9405 rcu_barrier(); 9406 9407 new_nsid = peernet2id_alloc(dev_net(dev), net); 9408 /* If there is an ifindex conflict assign a new one */ 9409 if (__dev_get_by_index(net, dev->ifindex)) 9410 new_ifindex = dev_new_index(net); 9411 else 9412 new_ifindex = dev->ifindex; 9413 9414 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 9415 new_ifindex); 9416 9417 /* 9418 * Flush the unicast and multicast chains 9419 */ 9420 dev_uc_flush(dev); 9421 dev_mc_flush(dev); 9422 9423 /* Send a netdev-removed uevent to the old namespace */ 9424 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 9425 netdev_adjacent_del_links(dev); 9426 9427 /* Actually switch the network namespace */ 9428 dev_net_set(dev, net); 9429 dev->ifindex = new_ifindex; 9430 9431 /* Send a netdev-add uevent to the new namespace */ 9432 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 9433 netdev_adjacent_add_links(dev); 9434 9435 /* Fixup kobjects */ 9436 err = device_rename(&dev->dev, dev->name); 9437 WARN_ON(err); 9438 9439 /* Add the device back in the hashes */ 9440 list_netdevice(dev); 9441 9442 /* Notify protocols, that a new device appeared. */ 9443 call_netdevice_notifiers(NETDEV_REGISTER, dev); 9444 9445 /* 9446 * Prevent userspace races by waiting until the network 9447 * device is fully setup before sending notifications. 9448 */ 9449 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9450 9451 synchronize_net(); 9452 err = 0; 9453 out: 9454 return err; 9455 } 9456 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 9457 9458 static int dev_cpu_dead(unsigned int oldcpu) 9459 { 9460 struct sk_buff **list_skb; 9461 struct sk_buff *skb; 9462 unsigned int cpu; 9463 struct softnet_data *sd, *oldsd, *remsd = NULL; 9464 9465 local_irq_disable(); 9466 cpu = smp_processor_id(); 9467 sd = &per_cpu(softnet_data, cpu); 9468 oldsd = &per_cpu(softnet_data, oldcpu); 9469 9470 /* Find end of our completion_queue. */ 9471 list_skb = &sd->completion_queue; 9472 while (*list_skb) 9473 list_skb = &(*list_skb)->next; 9474 /* Append completion queue from offline CPU. */ 9475 *list_skb = oldsd->completion_queue; 9476 oldsd->completion_queue = NULL; 9477 9478 /* Append output queue from offline CPU. */ 9479 if (oldsd->output_queue) { 9480 *sd->output_queue_tailp = oldsd->output_queue; 9481 sd->output_queue_tailp = oldsd->output_queue_tailp; 9482 oldsd->output_queue = NULL; 9483 oldsd->output_queue_tailp = &oldsd->output_queue; 9484 } 9485 /* Append NAPI poll list from offline CPU, with one exception : 9486 * process_backlog() must be called by cpu owning percpu backlog. 9487 * We properly handle process_queue & input_pkt_queue later. 9488 */ 9489 while (!list_empty(&oldsd->poll_list)) { 9490 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 9491 struct napi_struct, 9492 poll_list); 9493 9494 list_del_init(&napi->poll_list); 9495 if (napi->poll == process_backlog) 9496 napi->state = 0; 9497 else 9498 ____napi_schedule(sd, napi); 9499 } 9500 9501 raise_softirq_irqoff(NET_TX_SOFTIRQ); 9502 local_irq_enable(); 9503 9504 #ifdef CONFIG_RPS 9505 remsd = oldsd->rps_ipi_list; 9506 oldsd->rps_ipi_list = NULL; 9507 #endif 9508 /* send out pending IPI's on offline CPU */ 9509 net_rps_send_ipi(remsd); 9510 9511 /* Process offline CPU's input_pkt_queue */ 9512 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 9513 netif_rx_ni(skb); 9514 input_queue_head_incr(oldsd); 9515 } 9516 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 9517 netif_rx_ni(skb); 9518 input_queue_head_incr(oldsd); 9519 } 9520 9521 return 0; 9522 } 9523 9524 /** 9525 * netdev_increment_features - increment feature set by one 9526 * @all: current feature set 9527 * @one: new feature set 9528 * @mask: mask feature set 9529 * 9530 * Computes a new feature set after adding a device with feature set 9531 * @one to the master device with current feature set @all. Will not 9532 * enable anything that is off in @mask. Returns the new feature set. 9533 */ 9534 netdev_features_t netdev_increment_features(netdev_features_t all, 9535 netdev_features_t one, netdev_features_t mask) 9536 { 9537 if (mask & NETIF_F_HW_CSUM) 9538 mask |= NETIF_F_CSUM_MASK; 9539 mask |= NETIF_F_VLAN_CHALLENGED; 9540 9541 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 9542 all &= one | ~NETIF_F_ALL_FOR_ALL; 9543 9544 /* If one device supports hw checksumming, set for all. */ 9545 if (all & NETIF_F_HW_CSUM) 9546 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 9547 9548 return all; 9549 } 9550 EXPORT_SYMBOL(netdev_increment_features); 9551 9552 static struct hlist_head * __net_init netdev_create_hash(void) 9553 { 9554 int i; 9555 struct hlist_head *hash; 9556 9557 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 9558 if (hash != NULL) 9559 for (i = 0; i < NETDEV_HASHENTRIES; i++) 9560 INIT_HLIST_HEAD(&hash[i]); 9561 9562 return hash; 9563 } 9564 9565 /* Initialize per network namespace state */ 9566 static int __net_init netdev_init(struct net *net) 9567 { 9568 BUILD_BUG_ON(GRO_HASH_BUCKETS > 9569 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask)); 9570 9571 if (net != &init_net) 9572 INIT_LIST_HEAD(&net->dev_base_head); 9573 9574 net->dev_name_head = netdev_create_hash(); 9575 if (net->dev_name_head == NULL) 9576 goto err_name; 9577 9578 net->dev_index_head = netdev_create_hash(); 9579 if (net->dev_index_head == NULL) 9580 goto err_idx; 9581 9582 return 0; 9583 9584 err_idx: 9585 kfree(net->dev_name_head); 9586 err_name: 9587 return -ENOMEM; 9588 } 9589 9590 /** 9591 * netdev_drivername - network driver for the device 9592 * @dev: network device 9593 * 9594 * Determine network driver for device. 9595 */ 9596 const char *netdev_drivername(const struct net_device *dev) 9597 { 9598 const struct device_driver *driver; 9599 const struct device *parent; 9600 const char *empty = ""; 9601 9602 parent = dev->dev.parent; 9603 if (!parent) 9604 return empty; 9605 9606 driver = parent->driver; 9607 if (driver && driver->name) 9608 return driver->name; 9609 return empty; 9610 } 9611 9612 static void __netdev_printk(const char *level, const struct net_device *dev, 9613 struct va_format *vaf) 9614 { 9615 if (dev && dev->dev.parent) { 9616 dev_printk_emit(level[1] - '0', 9617 dev->dev.parent, 9618 "%s %s %s%s: %pV", 9619 dev_driver_string(dev->dev.parent), 9620 dev_name(dev->dev.parent), 9621 netdev_name(dev), netdev_reg_state(dev), 9622 vaf); 9623 } else if (dev) { 9624 printk("%s%s%s: %pV", 9625 level, netdev_name(dev), netdev_reg_state(dev), vaf); 9626 } else { 9627 printk("%s(NULL net_device): %pV", level, vaf); 9628 } 9629 } 9630 9631 void netdev_printk(const char *level, const struct net_device *dev, 9632 const char *format, ...) 9633 { 9634 struct va_format vaf; 9635 va_list args; 9636 9637 va_start(args, format); 9638 9639 vaf.fmt = format; 9640 vaf.va = &args; 9641 9642 __netdev_printk(level, dev, &vaf); 9643 9644 va_end(args); 9645 } 9646 EXPORT_SYMBOL(netdev_printk); 9647 9648 #define define_netdev_printk_level(func, level) \ 9649 void func(const struct net_device *dev, const char *fmt, ...) \ 9650 { \ 9651 struct va_format vaf; \ 9652 va_list args; \ 9653 \ 9654 va_start(args, fmt); \ 9655 \ 9656 vaf.fmt = fmt; \ 9657 vaf.va = &args; \ 9658 \ 9659 __netdev_printk(level, dev, &vaf); \ 9660 \ 9661 va_end(args); \ 9662 } \ 9663 EXPORT_SYMBOL(func); 9664 9665 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 9666 define_netdev_printk_level(netdev_alert, KERN_ALERT); 9667 define_netdev_printk_level(netdev_crit, KERN_CRIT); 9668 define_netdev_printk_level(netdev_err, KERN_ERR); 9669 define_netdev_printk_level(netdev_warn, KERN_WARNING); 9670 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 9671 define_netdev_printk_level(netdev_info, KERN_INFO); 9672 9673 static void __net_exit netdev_exit(struct net *net) 9674 { 9675 kfree(net->dev_name_head); 9676 kfree(net->dev_index_head); 9677 if (net != &init_net) 9678 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 9679 } 9680 9681 static struct pernet_operations __net_initdata netdev_net_ops = { 9682 .init = netdev_init, 9683 .exit = netdev_exit, 9684 }; 9685 9686 static void __net_exit default_device_exit(struct net *net) 9687 { 9688 struct net_device *dev, *aux; 9689 /* 9690 * Push all migratable network devices back to the 9691 * initial network namespace 9692 */ 9693 rtnl_lock(); 9694 for_each_netdev_safe(net, dev, aux) { 9695 int err; 9696 char fb_name[IFNAMSIZ]; 9697 9698 /* Ignore unmoveable devices (i.e. loopback) */ 9699 if (dev->features & NETIF_F_NETNS_LOCAL) 9700 continue; 9701 9702 /* Leave virtual devices for the generic cleanup */ 9703 if (dev->rtnl_link_ops) 9704 continue; 9705 9706 /* Push remaining network devices to init_net */ 9707 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 9708 err = dev_change_net_namespace(dev, &init_net, fb_name); 9709 if (err) { 9710 pr_emerg("%s: failed to move %s to init_net: %d\n", 9711 __func__, dev->name, err); 9712 BUG(); 9713 } 9714 } 9715 rtnl_unlock(); 9716 } 9717 9718 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 9719 { 9720 /* Return with the rtnl_lock held when there are no network 9721 * devices unregistering in any network namespace in net_list. 9722 */ 9723 struct net *net; 9724 bool unregistering; 9725 DEFINE_WAIT_FUNC(wait, woken_wake_function); 9726 9727 add_wait_queue(&netdev_unregistering_wq, &wait); 9728 for (;;) { 9729 unregistering = false; 9730 rtnl_lock(); 9731 list_for_each_entry(net, net_list, exit_list) { 9732 if (net->dev_unreg_count > 0) { 9733 unregistering = true; 9734 break; 9735 } 9736 } 9737 if (!unregistering) 9738 break; 9739 __rtnl_unlock(); 9740 9741 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 9742 } 9743 remove_wait_queue(&netdev_unregistering_wq, &wait); 9744 } 9745 9746 static void __net_exit default_device_exit_batch(struct list_head *net_list) 9747 { 9748 /* At exit all network devices most be removed from a network 9749 * namespace. Do this in the reverse order of registration. 9750 * Do this across as many network namespaces as possible to 9751 * improve batching efficiency. 9752 */ 9753 struct net_device *dev; 9754 struct net *net; 9755 LIST_HEAD(dev_kill_list); 9756 9757 /* To prevent network device cleanup code from dereferencing 9758 * loopback devices or network devices that have been freed 9759 * wait here for all pending unregistrations to complete, 9760 * before unregistring the loopback device and allowing the 9761 * network namespace be freed. 9762 * 9763 * The netdev todo list containing all network devices 9764 * unregistrations that happen in default_device_exit_batch 9765 * will run in the rtnl_unlock() at the end of 9766 * default_device_exit_batch. 9767 */ 9768 rtnl_lock_unregistering(net_list); 9769 list_for_each_entry(net, net_list, exit_list) { 9770 for_each_netdev_reverse(net, dev) { 9771 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 9772 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 9773 else 9774 unregister_netdevice_queue(dev, &dev_kill_list); 9775 } 9776 } 9777 unregister_netdevice_many(&dev_kill_list); 9778 rtnl_unlock(); 9779 } 9780 9781 static struct pernet_operations __net_initdata default_device_ops = { 9782 .exit = default_device_exit, 9783 .exit_batch = default_device_exit_batch, 9784 }; 9785 9786 /* 9787 * Initialize the DEV module. At boot time this walks the device list and 9788 * unhooks any devices that fail to initialise (normally hardware not 9789 * present) and leaves us with a valid list of present and active devices. 9790 * 9791 */ 9792 9793 /* 9794 * This is called single threaded during boot, so no need 9795 * to take the rtnl semaphore. 9796 */ 9797 static int __init net_dev_init(void) 9798 { 9799 int i, rc = -ENOMEM; 9800 9801 BUG_ON(!dev_boot_phase); 9802 9803 if (dev_proc_init()) 9804 goto out; 9805 9806 if (netdev_kobject_init()) 9807 goto out; 9808 9809 INIT_LIST_HEAD(&ptype_all); 9810 for (i = 0; i < PTYPE_HASH_SIZE; i++) 9811 INIT_LIST_HEAD(&ptype_base[i]); 9812 9813 INIT_LIST_HEAD(&offload_base); 9814 9815 if (register_pernet_subsys(&netdev_net_ops)) 9816 goto out; 9817 9818 /* 9819 * Initialise the packet receive queues. 9820 */ 9821 9822 for_each_possible_cpu(i) { 9823 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 9824 struct softnet_data *sd = &per_cpu(softnet_data, i); 9825 9826 INIT_WORK(flush, flush_backlog); 9827 9828 skb_queue_head_init(&sd->input_pkt_queue); 9829 skb_queue_head_init(&sd->process_queue); 9830 #ifdef CONFIG_XFRM_OFFLOAD 9831 skb_queue_head_init(&sd->xfrm_backlog); 9832 #endif 9833 INIT_LIST_HEAD(&sd->poll_list); 9834 sd->output_queue_tailp = &sd->output_queue; 9835 #ifdef CONFIG_RPS 9836 sd->csd.func = rps_trigger_softirq; 9837 sd->csd.info = sd; 9838 sd->cpu = i; 9839 #endif 9840 9841 init_gro_hash(&sd->backlog); 9842 sd->backlog.poll = process_backlog; 9843 sd->backlog.weight = weight_p; 9844 } 9845 9846 dev_boot_phase = 0; 9847 9848 /* The loopback device is special if any other network devices 9849 * is present in a network namespace the loopback device must 9850 * be present. Since we now dynamically allocate and free the 9851 * loopback device ensure this invariant is maintained by 9852 * keeping the loopback device as the first device on the 9853 * list of network devices. Ensuring the loopback devices 9854 * is the first device that appears and the last network device 9855 * that disappears. 9856 */ 9857 if (register_pernet_device(&loopback_net_ops)) 9858 goto out; 9859 9860 if (register_pernet_device(&default_device_ops)) 9861 goto out; 9862 9863 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 9864 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 9865 9866 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 9867 NULL, dev_cpu_dead); 9868 WARN_ON(rc < 0); 9869 rc = 0; 9870 out: 9871 return rc; 9872 } 9873 9874 subsys_initcall(net_dev_init); 9875