xref: /openbmc/linux/net/core/dev.c (revision bd329f028f1cd51c7623c326147af07c6d832193)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149 
150 #include "net-sysfs.h"
151 
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154 
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;	/* Taps */
162 static struct list_head offload_base __read_mostly;
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166 					 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static seqcount_t devnet_rename_seq;
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 	spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232 
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236 	struct net *net = dev_net(dev);
237 
238 	ASSERT_RTNL();
239 
240 	write_lock_bh(&dev_base_lock);
241 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 	hlist_add_head_rcu(&dev->index_hlist,
244 			   dev_index_hash(net, dev->ifindex));
245 	write_unlock_bh(&dev_base_lock);
246 
247 	dev_base_seq_inc(net);
248 }
249 
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255 	ASSERT_RTNL();
256 
257 	/* Unlink dev from the device chain */
258 	write_lock_bh(&dev_base_lock);
259 	list_del_rcu(&dev->dev_list);
260 	hlist_del_rcu(&dev->name_hlist);
261 	hlist_del_rcu(&dev->index_hlist);
262 	write_unlock_bh(&dev_base_lock);
263 
264 	dev_base_seq_inc(dev_net(dev));
265 }
266 
267 /*
268  *	Our notifier list
269  */
270 
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272 
273 /*
274  *	Device drivers call our routines to queue packets here. We empty the
275  *	queue in the local softnet handler.
276  */
277 
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280 
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302 
303 static const char *const netdev_lock_name[] = {
304 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319 
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322 
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325 	int i;
326 
327 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 		if (netdev_lock_type[i] == dev_type)
329 			return i;
330 	/* the last key is used by default */
331 	return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333 
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 						 unsigned short dev_type)
336 {
337 	int i;
338 
339 	i = netdev_lock_pos(dev_type);
340 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 				   netdev_lock_name[i]);
342 }
343 
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 	int i;
347 
348 	i = netdev_lock_pos(dev->type);
349 	lockdep_set_class_and_name(&dev->addr_list_lock,
350 				   &netdev_addr_lock_key[i],
351 				   netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 						 unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362 
363 /*******************************************************************************
364  *
365  *		Protocol management and registration routines
366  *
367  *******************************************************************************/
368 
369 
370 /*
371  *	Add a protocol ID to the list. Now that the input handler is
372  *	smarter we can dispense with all the messy stuff that used to be
373  *	here.
374  *
375  *	BEWARE!!! Protocol handlers, mangling input packets,
376  *	MUST BE last in hash buckets and checking protocol handlers
377  *	MUST start from promiscuous ptype_all chain in net_bh.
378  *	It is true now, do not change it.
379  *	Explanation follows: if protocol handler, mangling packet, will
380  *	be the first on list, it is not able to sense, that packet
381  *	is cloned and should be copied-on-write, so that it will
382  *	change it and subsequent readers will get broken packet.
383  *							--ANK (980803)
384  */
385 
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388 	if (pt->type == htons(ETH_P_ALL))
389 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 	else
391 		return pt->dev ? &pt->dev->ptype_specific :
392 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394 
395 /**
396  *	dev_add_pack - add packet handler
397  *	@pt: packet type declaration
398  *
399  *	Add a protocol handler to the networking stack. The passed &packet_type
400  *	is linked into kernel lists and may not be freed until it has been
401  *	removed from the kernel lists.
402  *
403  *	This call does not sleep therefore it can not
404  *	guarantee all CPU's that are in middle of receiving packets
405  *	will see the new packet type (until the next received packet).
406  */
407 
408 void dev_add_pack(struct packet_type *pt)
409 {
410 	struct list_head *head = ptype_head(pt);
411 
412 	spin_lock(&ptype_lock);
413 	list_add_rcu(&pt->list, head);
414 	spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417 
418 /**
419  *	__dev_remove_pack	 - remove packet handler
420  *	@pt: packet type declaration
421  *
422  *	Remove a protocol handler that was previously added to the kernel
423  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *	from the kernel lists and can be freed or reused once this function
425  *	returns.
426  *
427  *      The packet type might still be in use by receivers
428  *	and must not be freed until after all the CPU's have gone
429  *	through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433 	struct list_head *head = ptype_head(pt);
434 	struct packet_type *pt1;
435 
436 	spin_lock(&ptype_lock);
437 
438 	list_for_each_entry(pt1, head, list) {
439 		if (pt == pt1) {
440 			list_del_rcu(&pt->list);
441 			goto out;
442 		}
443 	}
444 
445 	pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447 	spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450 
451 /**
452  *	dev_remove_pack	 - remove packet handler
453  *	@pt: packet type declaration
454  *
455  *	Remove a protocol handler that was previously added to the kernel
456  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *	from the kernel lists and can be freed or reused once this function
458  *	returns.
459  *
460  *	This call sleeps to guarantee that no CPU is looking at the packet
461  *	type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465 	__dev_remove_pack(pt);
466 
467 	synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470 
471 
472 /**
473  *	dev_add_offload - register offload handlers
474  *	@po: protocol offload declaration
475  *
476  *	Add protocol offload handlers to the networking stack. The passed
477  *	&proto_offload is linked into kernel lists and may not be freed until
478  *	it has been removed from the kernel lists.
479  *
480  *	This call does not sleep therefore it can not
481  *	guarantee all CPU's that are in middle of receiving packets
482  *	will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486 	struct packet_offload *elem;
487 
488 	spin_lock(&offload_lock);
489 	list_for_each_entry(elem, &offload_base, list) {
490 		if (po->priority < elem->priority)
491 			break;
492 	}
493 	list_add_rcu(&po->list, elem->list.prev);
494 	spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497 
498 /**
499  *	__dev_remove_offload	 - remove offload handler
500  *	@po: packet offload declaration
501  *
502  *	Remove a protocol offload handler that was previously added to the
503  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *	is removed from the kernel lists and can be freed or reused once this
505  *	function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *	and must not be freed until after all the CPU's have gone
509  *	through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513 	struct list_head *head = &offload_base;
514 	struct packet_offload *po1;
515 
516 	spin_lock(&offload_lock);
517 
518 	list_for_each_entry(po1, head, list) {
519 		if (po == po1) {
520 			list_del_rcu(&po->list);
521 			goto out;
522 		}
523 	}
524 
525 	pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 	spin_unlock(&offload_lock);
528 }
529 
530 /**
531  *	dev_remove_offload	 - remove packet offload handler
532  *	@po: packet offload declaration
533  *
534  *	Remove a packet offload handler that was previously added to the kernel
535  *	offload handlers by dev_add_offload(). The passed &offload_type is
536  *	removed from the kernel lists and can be freed or reused once this
537  *	function returns.
538  *
539  *	This call sleeps to guarantee that no CPU is looking at the packet
540  *	type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544 	__dev_remove_offload(po);
545 
546 	synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549 
550 /******************************************************************************
551  *
552  *		      Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555 
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558 
559 /**
560  *	netdev_boot_setup_add	- add new setup entry
561  *	@name: name of the device
562  *	@map: configured settings for the device
563  *
564  *	Adds new setup entry to the dev_boot_setup list.  The function
565  *	returns 0 on error and 1 on success.  This is a generic routine to
566  *	all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570 	struct netdev_boot_setup *s;
571 	int i;
572 
573 	s = dev_boot_setup;
574 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 			memset(s[i].name, 0, sizeof(s[i].name));
577 			strlcpy(s[i].name, name, IFNAMSIZ);
578 			memcpy(&s[i].map, map, sizeof(s[i].map));
579 			break;
580 		}
581 	}
582 
583 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585 
586 /**
587  * netdev_boot_setup_check	- check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597 	struct netdev_boot_setup *s = dev_boot_setup;
598 	int i;
599 
600 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 		    !strcmp(dev->name, s[i].name)) {
603 			dev->irq = s[i].map.irq;
604 			dev->base_addr = s[i].map.base_addr;
605 			dev->mem_start = s[i].map.mem_start;
606 			dev->mem_end = s[i].map.mem_end;
607 			return 1;
608 		}
609 	}
610 	return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613 
614 
615 /**
616  * netdev_boot_base	- get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627 	const struct netdev_boot_setup *s = dev_boot_setup;
628 	char name[IFNAMSIZ];
629 	int i;
630 
631 	sprintf(name, "%s%d", prefix, unit);
632 
633 	/*
634 	 * If device already registered then return base of 1
635 	 * to indicate not to probe for this interface
636 	 */
637 	if (__dev_get_by_name(&init_net, name))
638 		return 1;
639 
640 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 		if (!strcmp(name, s[i].name))
642 			return s[i].map.base_addr;
643 	return 0;
644 }
645 
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651 	int ints[5];
652 	struct ifmap map;
653 
654 	str = get_options(str, ARRAY_SIZE(ints), ints);
655 	if (!str || !*str)
656 		return 0;
657 
658 	/* Save settings */
659 	memset(&map, 0, sizeof(map));
660 	if (ints[0] > 0)
661 		map.irq = ints[1];
662 	if (ints[0] > 1)
663 		map.base_addr = ints[2];
664 	if (ints[0] > 2)
665 		map.mem_start = ints[3];
666 	if (ints[0] > 3)
667 		map.mem_end = ints[4];
668 
669 	/* Add new entry to the list */
670 	return netdev_boot_setup_add(str, &map);
671 }
672 
673 __setup("netdev=", netdev_boot_setup);
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
724 /**
725  *	__dev_get_by_name	- find a device by its name
726  *	@net: the applicable net namespace
727  *	@name: name to find
728  *
729  *	Find an interface by name. Must be called under RTNL semaphore
730  *	or @dev_base_lock. If the name is found a pointer to the device
731  *	is returned. If the name is not found then %NULL is returned. The
732  *	reference counters are not incremented so the caller must be
733  *	careful with locks.
734  */
735 
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738 	struct net_device *dev;
739 	struct hlist_head *head = dev_name_hash(net, name);
740 
741 	hlist_for_each_entry(dev, head, name_hlist)
742 		if (!strncmp(dev->name, name, IFNAMSIZ))
743 			return dev;
744 
745 	return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748 
749 /**
750  * dev_get_by_name_rcu	- find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760 
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763 	struct net_device *dev;
764 	struct hlist_head *head = dev_name_hash(net, name);
765 
766 	hlist_for_each_entry_rcu(dev, head, name_hlist)
767 		if (!strncmp(dev->name, name, IFNAMSIZ))
768 			return dev;
769 
770 	return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773 
774 /**
775  *	dev_get_by_name		- find a device by its name
776  *	@net: the applicable net namespace
777  *	@name: name to find
778  *
779  *	Find an interface by name. This can be called from any
780  *	context and does its own locking. The returned handle has
781  *	the usage count incremented and the caller must use dev_put() to
782  *	release it when it is no longer needed. %NULL is returned if no
783  *	matching device is found.
784  */
785 
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788 	struct net_device *dev;
789 
790 	rcu_read_lock();
791 	dev = dev_get_by_name_rcu(net, name);
792 	if (dev)
793 		dev_hold(dev);
794 	rcu_read_unlock();
795 	return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798 
799 /**
800  *	__dev_get_by_index - find a device by its ifindex
801  *	@net: the applicable net namespace
802  *	@ifindex: index of device
803  *
804  *	Search for an interface by index. Returns %NULL if the device
805  *	is not found or a pointer to the device. The device has not
806  *	had its reference counter increased so the caller must be careful
807  *	about locking. The caller must hold either the RTNL semaphore
808  *	or @dev_base_lock.
809  */
810 
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813 	struct net_device *dev;
814 	struct hlist_head *head = dev_index_hash(net, ifindex);
815 
816 	hlist_for_each_entry(dev, head, index_hlist)
817 		if (dev->ifindex == ifindex)
818 			return dev;
819 
820 	return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823 
824 /**
825  *	dev_get_by_index_rcu - find a device by its ifindex
826  *	@net: the applicable net namespace
827  *	@ifindex: index of device
828  *
829  *	Search for an interface by index. Returns %NULL if the device
830  *	is not found or a pointer to the device. The device has not
831  *	had its reference counter increased so the caller must be careful
832  *	about locking. The caller must hold RCU lock.
833  */
834 
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837 	struct net_device *dev;
838 	struct hlist_head *head = dev_index_hash(net, ifindex);
839 
840 	hlist_for_each_entry_rcu(dev, head, index_hlist)
841 		if (dev->ifindex == ifindex)
842 			return dev;
843 
844 	return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847 
848 
849 /**
850  *	dev_get_by_index - find a device by its ifindex
851  *	@net: the applicable net namespace
852  *	@ifindex: index of device
853  *
854  *	Search for an interface by index. Returns NULL if the device
855  *	is not found or a pointer to the device. The device returned has
856  *	had a reference added and the pointer is safe until the user calls
857  *	dev_put to indicate they have finished with it.
858  */
859 
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862 	struct net_device *dev;
863 
864 	rcu_read_lock();
865 	dev = dev_get_by_index_rcu(net, ifindex);
866 	if (dev)
867 		dev_hold(dev);
868 	rcu_read_unlock();
869 	return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872 
873 /**
874  *	dev_get_by_napi_id - find a device by napi_id
875  *	@napi_id: ID of the NAPI struct
876  *
877  *	Search for an interface by NAPI ID. Returns %NULL if the device
878  *	is not found or a pointer to the device. The device has not had
879  *	its reference counter increased so the caller must be careful
880  *	about locking. The caller must hold RCU lock.
881  */
882 
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885 	struct napi_struct *napi;
886 
887 	WARN_ON_ONCE(!rcu_read_lock_held());
888 
889 	if (napi_id < MIN_NAPI_ID)
890 		return NULL;
891 
892 	napi = napi_by_id(napi_id);
893 
894 	return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897 
898 /**
899  *	netdev_get_name - get a netdevice name, knowing its ifindex.
900  *	@net: network namespace
901  *	@name: a pointer to the buffer where the name will be stored.
902  *	@ifindex: the ifindex of the interface to get the name from.
903  *
904  *	The use of raw_seqcount_begin() and cond_resched() before
905  *	retrying is required as we want to give the writers a chance
906  *	to complete when CONFIG_PREEMPT is not set.
907  */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910 	struct net_device *dev;
911 	unsigned int seq;
912 
913 retry:
914 	seq = raw_seqcount_begin(&devnet_rename_seq);
915 	rcu_read_lock();
916 	dev = dev_get_by_index_rcu(net, ifindex);
917 	if (!dev) {
918 		rcu_read_unlock();
919 		return -ENODEV;
920 	}
921 
922 	strcpy(name, dev->name);
923 	rcu_read_unlock();
924 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 		cond_resched();
926 		goto retry;
927 	}
928 
929 	return 0;
930 }
931 
932 /**
933  *	dev_getbyhwaddr_rcu - find a device by its hardware address
934  *	@net: the applicable net namespace
935  *	@type: media type of device
936  *	@ha: hardware address
937  *
938  *	Search for an interface by MAC address. Returns NULL if the device
939  *	is not found or a pointer to the device.
940  *	The caller must hold RCU or RTNL.
941  *	The returned device has not had its ref count increased
942  *	and the caller must therefore be careful about locking
943  *
944  */
945 
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 				       const char *ha)
948 {
949 	struct net_device *dev;
950 
951 	for_each_netdev_rcu(net, dev)
952 		if (dev->type == type &&
953 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
954 			return dev;
955 
956 	return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959 
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962 	struct net_device *dev;
963 
964 	ASSERT_RTNL();
965 	for_each_netdev(net, dev)
966 		if (dev->type == type)
967 			return dev;
968 
969 	return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972 
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975 	struct net_device *dev, *ret = NULL;
976 
977 	rcu_read_lock();
978 	for_each_netdev_rcu(net, dev)
979 		if (dev->type == type) {
980 			dev_hold(dev);
981 			ret = dev;
982 			break;
983 		}
984 	rcu_read_unlock();
985 	return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988 
989 /**
990  *	__dev_get_by_flags - find any device with given flags
991  *	@net: the applicable net namespace
992  *	@if_flags: IFF_* values
993  *	@mask: bitmask of bits in if_flags to check
994  *
995  *	Search for any interface with the given flags. Returns NULL if a device
996  *	is not found or a pointer to the device. Must be called inside
997  *	rtnl_lock(), and result refcount is unchanged.
998  */
999 
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 				      unsigned short mask)
1002 {
1003 	struct net_device *dev, *ret;
1004 
1005 	ASSERT_RTNL();
1006 
1007 	ret = NULL;
1008 	for_each_netdev(net, dev) {
1009 		if (((dev->flags ^ if_flags) & mask) == 0) {
1010 			ret = dev;
1011 			break;
1012 		}
1013 	}
1014 	return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017 
1018 /**
1019  *	dev_valid_name - check if name is okay for network device
1020  *	@name: name string
1021  *
1022  *	Network device names need to be valid file names to
1023  *	to allow sysfs to work.  We also disallow any kind of
1024  *	whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028 	if (*name == '\0')
1029 		return false;
1030 	if (strlen(name) >= IFNAMSIZ)
1031 		return false;
1032 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 		return false;
1034 
1035 	while (*name) {
1036 		if (*name == '/' || *name == ':' || isspace(*name))
1037 			return false;
1038 		name++;
1039 	}
1040 	return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043 
1044 /**
1045  *	__dev_alloc_name - allocate a name for a device
1046  *	@net: network namespace to allocate the device name in
1047  *	@name: name format string
1048  *	@buf:  scratch buffer and result name string
1049  *
1050  *	Passed a format string - eg "lt%d" it will try and find a suitable
1051  *	id. It scans list of devices to build up a free map, then chooses
1052  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *	while allocating the name and adding the device in order to avoid
1054  *	duplicates.
1055  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *	Returns the number of the unit assigned or a negative errno code.
1057  */
1058 
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061 	int i = 0;
1062 	const char *p;
1063 	const int max_netdevices = 8*PAGE_SIZE;
1064 	unsigned long *inuse;
1065 	struct net_device *d;
1066 
1067 	if (!dev_valid_name(name))
1068 		return -EINVAL;
1069 
1070 	p = strchr(name, '%');
1071 	if (p) {
1072 		/*
1073 		 * Verify the string as this thing may have come from
1074 		 * the user.  There must be either one "%d" and no other "%"
1075 		 * characters.
1076 		 */
1077 		if (p[1] != 'd' || strchr(p + 2, '%'))
1078 			return -EINVAL;
1079 
1080 		/* Use one page as a bit array of possible slots */
1081 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082 		if (!inuse)
1083 			return -ENOMEM;
1084 
1085 		for_each_netdev(net, d) {
1086 			if (!sscanf(d->name, name, &i))
1087 				continue;
1088 			if (i < 0 || i >= max_netdevices)
1089 				continue;
1090 
1091 			/*  avoid cases where sscanf is not exact inverse of printf */
1092 			snprintf(buf, IFNAMSIZ, name, i);
1093 			if (!strncmp(buf, d->name, IFNAMSIZ))
1094 				set_bit(i, inuse);
1095 		}
1096 
1097 		i = find_first_zero_bit(inuse, max_netdevices);
1098 		free_page((unsigned long) inuse);
1099 	}
1100 
1101 	snprintf(buf, IFNAMSIZ, name, i);
1102 	if (!__dev_get_by_name(net, buf))
1103 		return i;
1104 
1105 	/* It is possible to run out of possible slots
1106 	 * when the name is long and there isn't enough space left
1107 	 * for the digits, or if all bits are used.
1108 	 */
1109 	return -ENFILE;
1110 }
1111 
1112 static int dev_alloc_name_ns(struct net *net,
1113 			     struct net_device *dev,
1114 			     const char *name)
1115 {
1116 	char buf[IFNAMSIZ];
1117 	int ret;
1118 
1119 	BUG_ON(!net);
1120 	ret = __dev_alloc_name(net, name, buf);
1121 	if (ret >= 0)
1122 		strlcpy(dev->name, buf, IFNAMSIZ);
1123 	return ret;
1124 }
1125 
1126 /**
1127  *	dev_alloc_name - allocate a name for a device
1128  *	@dev: device
1129  *	@name: name format string
1130  *
1131  *	Passed a format string - eg "lt%d" it will try and find a suitable
1132  *	id. It scans list of devices to build up a free map, then chooses
1133  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1134  *	while allocating the name and adding the device in order to avoid
1135  *	duplicates.
1136  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137  *	Returns the number of the unit assigned or a negative errno code.
1138  */
1139 
1140 int dev_alloc_name(struct net_device *dev, const char *name)
1141 {
1142 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1143 }
1144 EXPORT_SYMBOL(dev_alloc_name);
1145 
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 		       const char *name)
1148 {
1149 	BUG_ON(!net);
1150 
1151 	if (!dev_valid_name(name))
1152 		return -EINVAL;
1153 
1154 	if (strchr(name, '%'))
1155 		return dev_alloc_name_ns(net, dev, name);
1156 	else if (__dev_get_by_name(net, name))
1157 		return -EEXIST;
1158 	else if (dev->name != name)
1159 		strlcpy(dev->name, name, IFNAMSIZ);
1160 
1161 	return 0;
1162 }
1163 EXPORT_SYMBOL(dev_get_valid_name);
1164 
1165 /**
1166  *	dev_change_name - change name of a device
1167  *	@dev: device
1168  *	@newname: name (or format string) must be at least IFNAMSIZ
1169  *
1170  *	Change name of a device, can pass format strings "eth%d".
1171  *	for wildcarding.
1172  */
1173 int dev_change_name(struct net_device *dev, const char *newname)
1174 {
1175 	unsigned char old_assign_type;
1176 	char oldname[IFNAMSIZ];
1177 	int err = 0;
1178 	int ret;
1179 	struct net *net;
1180 
1181 	ASSERT_RTNL();
1182 	BUG_ON(!dev_net(dev));
1183 
1184 	net = dev_net(dev);
1185 	if (dev->flags & IFF_UP)
1186 		return -EBUSY;
1187 
1188 	write_seqcount_begin(&devnet_rename_seq);
1189 
1190 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191 		write_seqcount_end(&devnet_rename_seq);
1192 		return 0;
1193 	}
1194 
1195 	memcpy(oldname, dev->name, IFNAMSIZ);
1196 
1197 	err = dev_get_valid_name(net, dev, newname);
1198 	if (err < 0) {
1199 		write_seqcount_end(&devnet_rename_seq);
1200 		return err;
1201 	}
1202 
1203 	if (oldname[0] && !strchr(oldname, '%'))
1204 		netdev_info(dev, "renamed from %s\n", oldname);
1205 
1206 	old_assign_type = dev->name_assign_type;
1207 	dev->name_assign_type = NET_NAME_RENAMED;
1208 
1209 rollback:
1210 	ret = device_rename(&dev->dev, dev->name);
1211 	if (ret) {
1212 		memcpy(dev->name, oldname, IFNAMSIZ);
1213 		dev->name_assign_type = old_assign_type;
1214 		write_seqcount_end(&devnet_rename_seq);
1215 		return ret;
1216 	}
1217 
1218 	write_seqcount_end(&devnet_rename_seq);
1219 
1220 	netdev_adjacent_rename_links(dev, oldname);
1221 
1222 	write_lock_bh(&dev_base_lock);
1223 	hlist_del_rcu(&dev->name_hlist);
1224 	write_unlock_bh(&dev_base_lock);
1225 
1226 	synchronize_rcu();
1227 
1228 	write_lock_bh(&dev_base_lock);
1229 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230 	write_unlock_bh(&dev_base_lock);
1231 
1232 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233 	ret = notifier_to_errno(ret);
1234 
1235 	if (ret) {
1236 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1237 		if (err >= 0) {
1238 			err = ret;
1239 			write_seqcount_begin(&devnet_rename_seq);
1240 			memcpy(dev->name, oldname, IFNAMSIZ);
1241 			memcpy(oldname, newname, IFNAMSIZ);
1242 			dev->name_assign_type = old_assign_type;
1243 			old_assign_type = NET_NAME_RENAMED;
1244 			goto rollback;
1245 		} else {
1246 			pr_err("%s: name change rollback failed: %d\n",
1247 			       dev->name, ret);
1248 		}
1249 	}
1250 
1251 	return err;
1252 }
1253 
1254 /**
1255  *	dev_set_alias - change ifalias of a device
1256  *	@dev: device
1257  *	@alias: name up to IFALIASZ
1258  *	@len: limit of bytes to copy from info
1259  *
1260  *	Set ifalias for a device,
1261  */
1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263 {
1264 	struct dev_ifalias *new_alias = NULL;
1265 
1266 	if (len >= IFALIASZ)
1267 		return -EINVAL;
1268 
1269 	if (len) {
1270 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271 		if (!new_alias)
1272 			return -ENOMEM;
1273 
1274 		memcpy(new_alias->ifalias, alias, len);
1275 		new_alias->ifalias[len] = 0;
1276 	}
1277 
1278 	mutex_lock(&ifalias_mutex);
1279 	rcu_swap_protected(dev->ifalias, new_alias,
1280 			   mutex_is_locked(&ifalias_mutex));
1281 	mutex_unlock(&ifalias_mutex);
1282 
1283 	if (new_alias)
1284 		kfree_rcu(new_alias, rcuhead);
1285 
1286 	return len;
1287 }
1288 
1289 /**
1290  *	dev_get_alias - get ifalias of a device
1291  *	@dev: device
1292  *	@name: buffer to store name of ifalias
1293  *	@len: size of buffer
1294  *
1295  *	get ifalias for a device.  Caller must make sure dev cannot go
1296  *	away,  e.g. rcu read lock or own a reference count to device.
1297  */
1298 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299 {
1300 	const struct dev_ifalias *alias;
1301 	int ret = 0;
1302 
1303 	rcu_read_lock();
1304 	alias = rcu_dereference(dev->ifalias);
1305 	if (alias)
1306 		ret = snprintf(name, len, "%s", alias->ifalias);
1307 	rcu_read_unlock();
1308 
1309 	return ret;
1310 }
1311 
1312 /**
1313  *	netdev_features_change - device changes features
1314  *	@dev: device to cause notification
1315  *
1316  *	Called to indicate a device has changed features.
1317  */
1318 void netdev_features_change(struct net_device *dev)
1319 {
1320 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1321 }
1322 EXPORT_SYMBOL(netdev_features_change);
1323 
1324 /**
1325  *	netdev_state_change - device changes state
1326  *	@dev: device to cause notification
1327  *
1328  *	Called to indicate a device has changed state. This function calls
1329  *	the notifier chains for netdev_chain and sends a NEWLINK message
1330  *	to the routing socket.
1331  */
1332 void netdev_state_change(struct net_device *dev)
1333 {
1334 	if (dev->flags & IFF_UP) {
1335 		struct netdev_notifier_change_info change_info = {
1336 			.info.dev = dev,
1337 		};
1338 
1339 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1340 					      &change_info.info);
1341 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1342 	}
1343 }
1344 EXPORT_SYMBOL(netdev_state_change);
1345 
1346 /**
1347  * netdev_notify_peers - notify network peers about existence of @dev
1348  * @dev: network device
1349  *
1350  * Generate traffic such that interested network peers are aware of
1351  * @dev, such as by generating a gratuitous ARP. This may be used when
1352  * a device wants to inform the rest of the network about some sort of
1353  * reconfiguration such as a failover event or virtual machine
1354  * migration.
1355  */
1356 void netdev_notify_peers(struct net_device *dev)
1357 {
1358 	rtnl_lock();
1359 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361 	rtnl_unlock();
1362 }
1363 EXPORT_SYMBOL(netdev_notify_peers);
1364 
1365 static int __dev_open(struct net_device *dev)
1366 {
1367 	const struct net_device_ops *ops = dev->netdev_ops;
1368 	int ret;
1369 
1370 	ASSERT_RTNL();
1371 
1372 	if (!netif_device_present(dev))
1373 		return -ENODEV;
1374 
1375 	/* Block netpoll from trying to do any rx path servicing.
1376 	 * If we don't do this there is a chance ndo_poll_controller
1377 	 * or ndo_poll may be running while we open the device
1378 	 */
1379 	netpoll_poll_disable(dev);
1380 
1381 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382 	ret = notifier_to_errno(ret);
1383 	if (ret)
1384 		return ret;
1385 
1386 	set_bit(__LINK_STATE_START, &dev->state);
1387 
1388 	if (ops->ndo_validate_addr)
1389 		ret = ops->ndo_validate_addr(dev);
1390 
1391 	if (!ret && ops->ndo_open)
1392 		ret = ops->ndo_open(dev);
1393 
1394 	netpoll_poll_enable(dev);
1395 
1396 	if (ret)
1397 		clear_bit(__LINK_STATE_START, &dev->state);
1398 	else {
1399 		dev->flags |= IFF_UP;
1400 		dev_set_rx_mode(dev);
1401 		dev_activate(dev);
1402 		add_device_randomness(dev->dev_addr, dev->addr_len);
1403 	}
1404 
1405 	return ret;
1406 }
1407 
1408 /**
1409  *	dev_open	- prepare an interface for use.
1410  *	@dev:	device to open
1411  *
1412  *	Takes a device from down to up state. The device's private open
1413  *	function is invoked and then the multicast lists are loaded. Finally
1414  *	the device is moved into the up state and a %NETDEV_UP message is
1415  *	sent to the netdev notifier chain.
1416  *
1417  *	Calling this function on an active interface is a nop. On a failure
1418  *	a negative errno code is returned.
1419  */
1420 int dev_open(struct net_device *dev)
1421 {
1422 	int ret;
1423 
1424 	if (dev->flags & IFF_UP)
1425 		return 0;
1426 
1427 	ret = __dev_open(dev);
1428 	if (ret < 0)
1429 		return ret;
1430 
1431 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432 	call_netdevice_notifiers(NETDEV_UP, dev);
1433 
1434 	return ret;
1435 }
1436 EXPORT_SYMBOL(dev_open);
1437 
1438 static void __dev_close_many(struct list_head *head)
1439 {
1440 	struct net_device *dev;
1441 
1442 	ASSERT_RTNL();
1443 	might_sleep();
1444 
1445 	list_for_each_entry(dev, head, close_list) {
1446 		/* Temporarily disable netpoll until the interface is down */
1447 		netpoll_poll_disable(dev);
1448 
1449 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450 
1451 		clear_bit(__LINK_STATE_START, &dev->state);
1452 
1453 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1454 		 * can be even on different cpu. So just clear netif_running().
1455 		 *
1456 		 * dev->stop() will invoke napi_disable() on all of it's
1457 		 * napi_struct instances on this device.
1458 		 */
1459 		smp_mb__after_atomic(); /* Commit netif_running(). */
1460 	}
1461 
1462 	dev_deactivate_many(head);
1463 
1464 	list_for_each_entry(dev, head, close_list) {
1465 		const struct net_device_ops *ops = dev->netdev_ops;
1466 
1467 		/*
1468 		 *	Call the device specific close. This cannot fail.
1469 		 *	Only if device is UP
1470 		 *
1471 		 *	We allow it to be called even after a DETACH hot-plug
1472 		 *	event.
1473 		 */
1474 		if (ops->ndo_stop)
1475 			ops->ndo_stop(dev);
1476 
1477 		dev->flags &= ~IFF_UP;
1478 		netpoll_poll_enable(dev);
1479 	}
1480 }
1481 
1482 static void __dev_close(struct net_device *dev)
1483 {
1484 	LIST_HEAD(single);
1485 
1486 	list_add(&dev->close_list, &single);
1487 	__dev_close_many(&single);
1488 	list_del(&single);
1489 }
1490 
1491 void dev_close_many(struct list_head *head, bool unlink)
1492 {
1493 	struct net_device *dev, *tmp;
1494 
1495 	/* Remove the devices that don't need to be closed */
1496 	list_for_each_entry_safe(dev, tmp, head, close_list)
1497 		if (!(dev->flags & IFF_UP))
1498 			list_del_init(&dev->close_list);
1499 
1500 	__dev_close_many(head);
1501 
1502 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1503 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1505 		if (unlink)
1506 			list_del_init(&dev->close_list);
1507 	}
1508 }
1509 EXPORT_SYMBOL(dev_close_many);
1510 
1511 /**
1512  *	dev_close - shutdown an interface.
1513  *	@dev: device to shutdown
1514  *
1515  *	This function moves an active device into down state. A
1516  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518  *	chain.
1519  */
1520 void dev_close(struct net_device *dev)
1521 {
1522 	if (dev->flags & IFF_UP) {
1523 		LIST_HEAD(single);
1524 
1525 		list_add(&dev->close_list, &single);
1526 		dev_close_many(&single, true);
1527 		list_del(&single);
1528 	}
1529 }
1530 EXPORT_SYMBOL(dev_close);
1531 
1532 
1533 /**
1534  *	dev_disable_lro - disable Large Receive Offload on a device
1535  *	@dev: device
1536  *
1537  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1538  *	called under RTNL.  This is needed if received packets may be
1539  *	forwarded to another interface.
1540  */
1541 void dev_disable_lro(struct net_device *dev)
1542 {
1543 	struct net_device *lower_dev;
1544 	struct list_head *iter;
1545 
1546 	dev->wanted_features &= ~NETIF_F_LRO;
1547 	netdev_update_features(dev);
1548 
1549 	if (unlikely(dev->features & NETIF_F_LRO))
1550 		netdev_WARN(dev, "failed to disable LRO!\n");
1551 
1552 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1553 		dev_disable_lro(lower_dev);
1554 }
1555 EXPORT_SYMBOL(dev_disable_lro);
1556 
1557 /**
1558  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559  *	@dev: device
1560  *
1561  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1562  *	called under RTNL.  This is needed if Generic XDP is installed on
1563  *	the device.
1564  */
1565 static void dev_disable_gro_hw(struct net_device *dev)
1566 {
1567 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1568 	netdev_update_features(dev);
1569 
1570 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1571 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1572 }
1573 
1574 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1575 				   struct net_device *dev)
1576 {
1577 	struct netdev_notifier_info info = {
1578 		.dev = dev,
1579 	};
1580 
1581 	return nb->notifier_call(nb, val, &info);
1582 }
1583 
1584 static int dev_boot_phase = 1;
1585 
1586 /**
1587  * register_netdevice_notifier - register a network notifier block
1588  * @nb: notifier
1589  *
1590  * Register a notifier to be called when network device events occur.
1591  * The notifier passed is linked into the kernel structures and must
1592  * not be reused until it has been unregistered. A negative errno code
1593  * is returned on a failure.
1594  *
1595  * When registered all registration and up events are replayed
1596  * to the new notifier to allow device to have a race free
1597  * view of the network device list.
1598  */
1599 
1600 int register_netdevice_notifier(struct notifier_block *nb)
1601 {
1602 	struct net_device *dev;
1603 	struct net_device *last;
1604 	struct net *net;
1605 	int err;
1606 
1607 	rtnl_lock();
1608 	err = raw_notifier_chain_register(&netdev_chain, nb);
1609 	if (err)
1610 		goto unlock;
1611 	if (dev_boot_phase)
1612 		goto unlock;
1613 	for_each_net(net) {
1614 		for_each_netdev(net, dev) {
1615 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1616 			err = notifier_to_errno(err);
1617 			if (err)
1618 				goto rollback;
1619 
1620 			if (!(dev->flags & IFF_UP))
1621 				continue;
1622 
1623 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1624 		}
1625 	}
1626 
1627 unlock:
1628 	rtnl_unlock();
1629 	return err;
1630 
1631 rollback:
1632 	last = dev;
1633 	for_each_net(net) {
1634 		for_each_netdev(net, dev) {
1635 			if (dev == last)
1636 				goto outroll;
1637 
1638 			if (dev->flags & IFF_UP) {
1639 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1640 							dev);
1641 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1642 			}
1643 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1644 		}
1645 	}
1646 
1647 outroll:
1648 	raw_notifier_chain_unregister(&netdev_chain, nb);
1649 	goto unlock;
1650 }
1651 EXPORT_SYMBOL(register_netdevice_notifier);
1652 
1653 /**
1654  * unregister_netdevice_notifier - unregister a network notifier block
1655  * @nb: notifier
1656  *
1657  * Unregister a notifier previously registered by
1658  * register_netdevice_notifier(). The notifier is unlinked into the
1659  * kernel structures and may then be reused. A negative errno code
1660  * is returned on a failure.
1661  *
1662  * After unregistering unregister and down device events are synthesized
1663  * for all devices on the device list to the removed notifier to remove
1664  * the need for special case cleanup code.
1665  */
1666 
1667 int unregister_netdevice_notifier(struct notifier_block *nb)
1668 {
1669 	struct net_device *dev;
1670 	struct net *net;
1671 	int err;
1672 
1673 	rtnl_lock();
1674 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1675 	if (err)
1676 		goto unlock;
1677 
1678 	for_each_net(net) {
1679 		for_each_netdev(net, dev) {
1680 			if (dev->flags & IFF_UP) {
1681 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1682 							dev);
1683 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1684 			}
1685 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1686 		}
1687 	}
1688 unlock:
1689 	rtnl_unlock();
1690 	return err;
1691 }
1692 EXPORT_SYMBOL(unregister_netdevice_notifier);
1693 
1694 /**
1695  *	call_netdevice_notifiers_info - call all network notifier blocks
1696  *	@val: value passed unmodified to notifier function
1697  *	@info: notifier information data
1698  *
1699  *	Call all network notifier blocks.  Parameters and return value
1700  *	are as for raw_notifier_call_chain().
1701  */
1702 
1703 static int call_netdevice_notifiers_info(unsigned long val,
1704 					 struct netdev_notifier_info *info)
1705 {
1706 	ASSERT_RTNL();
1707 	return raw_notifier_call_chain(&netdev_chain, val, info);
1708 }
1709 
1710 /**
1711  *	call_netdevice_notifiers - call all network notifier blocks
1712  *      @val: value passed unmodified to notifier function
1713  *      @dev: net_device pointer passed unmodified to notifier function
1714  *
1715  *	Call all network notifier blocks.  Parameters and return value
1716  *	are as for raw_notifier_call_chain().
1717  */
1718 
1719 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1720 {
1721 	struct netdev_notifier_info info = {
1722 		.dev = dev,
1723 	};
1724 
1725 	return call_netdevice_notifiers_info(val, &info);
1726 }
1727 EXPORT_SYMBOL(call_netdevice_notifiers);
1728 
1729 #ifdef CONFIG_NET_INGRESS
1730 static struct static_key ingress_needed __read_mostly;
1731 
1732 void net_inc_ingress_queue(void)
1733 {
1734 	static_key_slow_inc(&ingress_needed);
1735 }
1736 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1737 
1738 void net_dec_ingress_queue(void)
1739 {
1740 	static_key_slow_dec(&ingress_needed);
1741 }
1742 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1743 #endif
1744 
1745 #ifdef CONFIG_NET_EGRESS
1746 static struct static_key egress_needed __read_mostly;
1747 
1748 void net_inc_egress_queue(void)
1749 {
1750 	static_key_slow_inc(&egress_needed);
1751 }
1752 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1753 
1754 void net_dec_egress_queue(void)
1755 {
1756 	static_key_slow_dec(&egress_needed);
1757 }
1758 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1759 #endif
1760 
1761 static struct static_key netstamp_needed __read_mostly;
1762 #ifdef HAVE_JUMP_LABEL
1763 static atomic_t netstamp_needed_deferred;
1764 static atomic_t netstamp_wanted;
1765 static void netstamp_clear(struct work_struct *work)
1766 {
1767 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1768 	int wanted;
1769 
1770 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1771 	if (wanted > 0)
1772 		static_key_enable(&netstamp_needed);
1773 	else
1774 		static_key_disable(&netstamp_needed);
1775 }
1776 static DECLARE_WORK(netstamp_work, netstamp_clear);
1777 #endif
1778 
1779 void net_enable_timestamp(void)
1780 {
1781 #ifdef HAVE_JUMP_LABEL
1782 	int wanted;
1783 
1784 	while (1) {
1785 		wanted = atomic_read(&netstamp_wanted);
1786 		if (wanted <= 0)
1787 			break;
1788 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1789 			return;
1790 	}
1791 	atomic_inc(&netstamp_needed_deferred);
1792 	schedule_work(&netstamp_work);
1793 #else
1794 	static_key_slow_inc(&netstamp_needed);
1795 #endif
1796 }
1797 EXPORT_SYMBOL(net_enable_timestamp);
1798 
1799 void net_disable_timestamp(void)
1800 {
1801 #ifdef HAVE_JUMP_LABEL
1802 	int wanted;
1803 
1804 	while (1) {
1805 		wanted = atomic_read(&netstamp_wanted);
1806 		if (wanted <= 1)
1807 			break;
1808 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1809 			return;
1810 	}
1811 	atomic_dec(&netstamp_needed_deferred);
1812 	schedule_work(&netstamp_work);
1813 #else
1814 	static_key_slow_dec(&netstamp_needed);
1815 #endif
1816 }
1817 EXPORT_SYMBOL(net_disable_timestamp);
1818 
1819 static inline void net_timestamp_set(struct sk_buff *skb)
1820 {
1821 	skb->tstamp = 0;
1822 	if (static_key_false(&netstamp_needed))
1823 		__net_timestamp(skb);
1824 }
1825 
1826 #define net_timestamp_check(COND, SKB)			\
1827 	if (static_key_false(&netstamp_needed)) {		\
1828 		if ((COND) && !(SKB)->tstamp)	\
1829 			__net_timestamp(SKB);		\
1830 	}						\
1831 
1832 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1833 {
1834 	unsigned int len;
1835 
1836 	if (!(dev->flags & IFF_UP))
1837 		return false;
1838 
1839 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1840 	if (skb->len <= len)
1841 		return true;
1842 
1843 	/* if TSO is enabled, we don't care about the length as the packet
1844 	 * could be forwarded without being segmented before
1845 	 */
1846 	if (skb_is_gso(skb))
1847 		return true;
1848 
1849 	return false;
1850 }
1851 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1852 
1853 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1854 {
1855 	int ret = ____dev_forward_skb(dev, skb);
1856 
1857 	if (likely(!ret)) {
1858 		skb->protocol = eth_type_trans(skb, dev);
1859 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1860 	}
1861 
1862 	return ret;
1863 }
1864 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1865 
1866 /**
1867  * dev_forward_skb - loopback an skb to another netif
1868  *
1869  * @dev: destination network device
1870  * @skb: buffer to forward
1871  *
1872  * return values:
1873  *	NET_RX_SUCCESS	(no congestion)
1874  *	NET_RX_DROP     (packet was dropped, but freed)
1875  *
1876  * dev_forward_skb can be used for injecting an skb from the
1877  * start_xmit function of one device into the receive queue
1878  * of another device.
1879  *
1880  * The receiving device may be in another namespace, so
1881  * we have to clear all information in the skb that could
1882  * impact namespace isolation.
1883  */
1884 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1885 {
1886 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1887 }
1888 EXPORT_SYMBOL_GPL(dev_forward_skb);
1889 
1890 static inline int deliver_skb(struct sk_buff *skb,
1891 			      struct packet_type *pt_prev,
1892 			      struct net_device *orig_dev)
1893 {
1894 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1895 		return -ENOMEM;
1896 	refcount_inc(&skb->users);
1897 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1898 }
1899 
1900 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1901 					  struct packet_type **pt,
1902 					  struct net_device *orig_dev,
1903 					  __be16 type,
1904 					  struct list_head *ptype_list)
1905 {
1906 	struct packet_type *ptype, *pt_prev = *pt;
1907 
1908 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1909 		if (ptype->type != type)
1910 			continue;
1911 		if (pt_prev)
1912 			deliver_skb(skb, pt_prev, orig_dev);
1913 		pt_prev = ptype;
1914 	}
1915 	*pt = pt_prev;
1916 }
1917 
1918 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1919 {
1920 	if (!ptype->af_packet_priv || !skb->sk)
1921 		return false;
1922 
1923 	if (ptype->id_match)
1924 		return ptype->id_match(ptype, skb->sk);
1925 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1926 		return true;
1927 
1928 	return false;
1929 }
1930 
1931 /*
1932  *	Support routine. Sends outgoing frames to any network
1933  *	taps currently in use.
1934  */
1935 
1936 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1937 {
1938 	struct packet_type *ptype;
1939 	struct sk_buff *skb2 = NULL;
1940 	struct packet_type *pt_prev = NULL;
1941 	struct list_head *ptype_list = &ptype_all;
1942 
1943 	rcu_read_lock();
1944 again:
1945 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1946 		/* Never send packets back to the socket
1947 		 * they originated from - MvS (miquels@drinkel.ow.org)
1948 		 */
1949 		if (skb_loop_sk(ptype, skb))
1950 			continue;
1951 
1952 		if (pt_prev) {
1953 			deliver_skb(skb2, pt_prev, skb->dev);
1954 			pt_prev = ptype;
1955 			continue;
1956 		}
1957 
1958 		/* need to clone skb, done only once */
1959 		skb2 = skb_clone(skb, GFP_ATOMIC);
1960 		if (!skb2)
1961 			goto out_unlock;
1962 
1963 		net_timestamp_set(skb2);
1964 
1965 		/* skb->nh should be correctly
1966 		 * set by sender, so that the second statement is
1967 		 * just protection against buggy protocols.
1968 		 */
1969 		skb_reset_mac_header(skb2);
1970 
1971 		if (skb_network_header(skb2) < skb2->data ||
1972 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1973 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1974 					     ntohs(skb2->protocol),
1975 					     dev->name);
1976 			skb_reset_network_header(skb2);
1977 		}
1978 
1979 		skb2->transport_header = skb2->network_header;
1980 		skb2->pkt_type = PACKET_OUTGOING;
1981 		pt_prev = ptype;
1982 	}
1983 
1984 	if (ptype_list == &ptype_all) {
1985 		ptype_list = &dev->ptype_all;
1986 		goto again;
1987 	}
1988 out_unlock:
1989 	if (pt_prev) {
1990 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1991 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1992 		else
1993 			kfree_skb(skb2);
1994 	}
1995 	rcu_read_unlock();
1996 }
1997 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1998 
1999 /**
2000  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2001  * @dev: Network device
2002  * @txq: number of queues available
2003  *
2004  * If real_num_tx_queues is changed the tc mappings may no longer be
2005  * valid. To resolve this verify the tc mapping remains valid and if
2006  * not NULL the mapping. With no priorities mapping to this
2007  * offset/count pair it will no longer be used. In the worst case TC0
2008  * is invalid nothing can be done so disable priority mappings. If is
2009  * expected that drivers will fix this mapping if they can before
2010  * calling netif_set_real_num_tx_queues.
2011  */
2012 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2013 {
2014 	int i;
2015 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2016 
2017 	/* If TC0 is invalidated disable TC mapping */
2018 	if (tc->offset + tc->count > txq) {
2019 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2020 		dev->num_tc = 0;
2021 		return;
2022 	}
2023 
2024 	/* Invalidated prio to tc mappings set to TC0 */
2025 	for (i = 1; i < TC_BITMASK + 1; i++) {
2026 		int q = netdev_get_prio_tc_map(dev, i);
2027 
2028 		tc = &dev->tc_to_txq[q];
2029 		if (tc->offset + tc->count > txq) {
2030 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2031 				i, q);
2032 			netdev_set_prio_tc_map(dev, i, 0);
2033 		}
2034 	}
2035 }
2036 
2037 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2038 {
2039 	if (dev->num_tc) {
2040 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2041 		int i;
2042 
2043 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2044 			if ((txq - tc->offset) < tc->count)
2045 				return i;
2046 		}
2047 
2048 		return -1;
2049 	}
2050 
2051 	return 0;
2052 }
2053 EXPORT_SYMBOL(netdev_txq_to_tc);
2054 
2055 #ifdef CONFIG_XPS
2056 static DEFINE_MUTEX(xps_map_mutex);
2057 #define xmap_dereference(P)		\
2058 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2059 
2060 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2061 			     int tci, u16 index)
2062 {
2063 	struct xps_map *map = NULL;
2064 	int pos;
2065 
2066 	if (dev_maps)
2067 		map = xmap_dereference(dev_maps->cpu_map[tci]);
2068 	if (!map)
2069 		return false;
2070 
2071 	for (pos = map->len; pos--;) {
2072 		if (map->queues[pos] != index)
2073 			continue;
2074 
2075 		if (map->len > 1) {
2076 			map->queues[pos] = map->queues[--map->len];
2077 			break;
2078 		}
2079 
2080 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2081 		kfree_rcu(map, rcu);
2082 		return false;
2083 	}
2084 
2085 	return true;
2086 }
2087 
2088 static bool remove_xps_queue_cpu(struct net_device *dev,
2089 				 struct xps_dev_maps *dev_maps,
2090 				 int cpu, u16 offset, u16 count)
2091 {
2092 	int num_tc = dev->num_tc ? : 1;
2093 	bool active = false;
2094 	int tci;
2095 
2096 	for (tci = cpu * num_tc; num_tc--; tci++) {
2097 		int i, j;
2098 
2099 		for (i = count, j = offset; i--; j++) {
2100 			if (!remove_xps_queue(dev_maps, cpu, j))
2101 				break;
2102 		}
2103 
2104 		active |= i < 0;
2105 	}
2106 
2107 	return active;
2108 }
2109 
2110 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2111 				   u16 count)
2112 {
2113 	struct xps_dev_maps *dev_maps;
2114 	int cpu, i;
2115 	bool active = false;
2116 
2117 	mutex_lock(&xps_map_mutex);
2118 	dev_maps = xmap_dereference(dev->xps_maps);
2119 
2120 	if (!dev_maps)
2121 		goto out_no_maps;
2122 
2123 	for_each_possible_cpu(cpu)
2124 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2125 					       offset, count);
2126 
2127 	if (!active) {
2128 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2129 		kfree_rcu(dev_maps, rcu);
2130 	}
2131 
2132 	for (i = offset + (count - 1); count--; i--)
2133 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2134 					     NUMA_NO_NODE);
2135 
2136 out_no_maps:
2137 	mutex_unlock(&xps_map_mutex);
2138 }
2139 
2140 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2141 {
2142 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2143 }
2144 
2145 static struct xps_map *expand_xps_map(struct xps_map *map,
2146 				      int cpu, u16 index)
2147 {
2148 	struct xps_map *new_map;
2149 	int alloc_len = XPS_MIN_MAP_ALLOC;
2150 	int i, pos;
2151 
2152 	for (pos = 0; map && pos < map->len; pos++) {
2153 		if (map->queues[pos] != index)
2154 			continue;
2155 		return map;
2156 	}
2157 
2158 	/* Need to add queue to this CPU's existing map */
2159 	if (map) {
2160 		if (pos < map->alloc_len)
2161 			return map;
2162 
2163 		alloc_len = map->alloc_len * 2;
2164 	}
2165 
2166 	/* Need to allocate new map to store queue on this CPU's map */
2167 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2168 			       cpu_to_node(cpu));
2169 	if (!new_map)
2170 		return NULL;
2171 
2172 	for (i = 0; i < pos; i++)
2173 		new_map->queues[i] = map->queues[i];
2174 	new_map->alloc_len = alloc_len;
2175 	new_map->len = pos;
2176 
2177 	return new_map;
2178 }
2179 
2180 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2181 			u16 index)
2182 {
2183 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2184 	int i, cpu, tci, numa_node_id = -2;
2185 	int maps_sz, num_tc = 1, tc = 0;
2186 	struct xps_map *map, *new_map;
2187 	bool active = false;
2188 
2189 	if (dev->num_tc) {
2190 		num_tc = dev->num_tc;
2191 		tc = netdev_txq_to_tc(dev, index);
2192 		if (tc < 0)
2193 			return -EINVAL;
2194 	}
2195 
2196 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2197 	if (maps_sz < L1_CACHE_BYTES)
2198 		maps_sz = L1_CACHE_BYTES;
2199 
2200 	mutex_lock(&xps_map_mutex);
2201 
2202 	dev_maps = xmap_dereference(dev->xps_maps);
2203 
2204 	/* allocate memory for queue storage */
2205 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2206 		if (!new_dev_maps)
2207 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2208 		if (!new_dev_maps) {
2209 			mutex_unlock(&xps_map_mutex);
2210 			return -ENOMEM;
2211 		}
2212 
2213 		tci = cpu * num_tc + tc;
2214 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2215 				 NULL;
2216 
2217 		map = expand_xps_map(map, cpu, index);
2218 		if (!map)
2219 			goto error;
2220 
2221 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2222 	}
2223 
2224 	if (!new_dev_maps)
2225 		goto out_no_new_maps;
2226 
2227 	for_each_possible_cpu(cpu) {
2228 		/* copy maps belonging to foreign traffic classes */
2229 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2230 			/* fill in the new device map from the old device map */
2231 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2232 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2233 		}
2234 
2235 		/* We need to explicitly update tci as prevous loop
2236 		 * could break out early if dev_maps is NULL.
2237 		 */
2238 		tci = cpu * num_tc + tc;
2239 
2240 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2241 			/* add queue to CPU maps */
2242 			int pos = 0;
2243 
2244 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2245 			while ((pos < map->len) && (map->queues[pos] != index))
2246 				pos++;
2247 
2248 			if (pos == map->len)
2249 				map->queues[map->len++] = index;
2250 #ifdef CONFIG_NUMA
2251 			if (numa_node_id == -2)
2252 				numa_node_id = cpu_to_node(cpu);
2253 			else if (numa_node_id != cpu_to_node(cpu))
2254 				numa_node_id = -1;
2255 #endif
2256 		} else if (dev_maps) {
2257 			/* fill in the new device map from the old device map */
2258 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2259 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2260 		}
2261 
2262 		/* copy maps belonging to foreign traffic classes */
2263 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2264 			/* fill in the new device map from the old device map */
2265 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2266 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2267 		}
2268 	}
2269 
2270 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2271 
2272 	/* Cleanup old maps */
2273 	if (!dev_maps)
2274 		goto out_no_old_maps;
2275 
2276 	for_each_possible_cpu(cpu) {
2277 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2278 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2279 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2280 			if (map && map != new_map)
2281 				kfree_rcu(map, rcu);
2282 		}
2283 	}
2284 
2285 	kfree_rcu(dev_maps, rcu);
2286 
2287 out_no_old_maps:
2288 	dev_maps = new_dev_maps;
2289 	active = true;
2290 
2291 out_no_new_maps:
2292 	/* update Tx queue numa node */
2293 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2294 				     (numa_node_id >= 0) ? numa_node_id :
2295 				     NUMA_NO_NODE);
2296 
2297 	if (!dev_maps)
2298 		goto out_no_maps;
2299 
2300 	/* removes queue from unused CPUs */
2301 	for_each_possible_cpu(cpu) {
2302 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2303 			active |= remove_xps_queue(dev_maps, tci, index);
2304 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2305 			active |= remove_xps_queue(dev_maps, tci, index);
2306 		for (i = num_tc - tc, tci++; --i; tci++)
2307 			active |= remove_xps_queue(dev_maps, tci, index);
2308 	}
2309 
2310 	/* free map if not active */
2311 	if (!active) {
2312 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2313 		kfree_rcu(dev_maps, rcu);
2314 	}
2315 
2316 out_no_maps:
2317 	mutex_unlock(&xps_map_mutex);
2318 
2319 	return 0;
2320 error:
2321 	/* remove any maps that we added */
2322 	for_each_possible_cpu(cpu) {
2323 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2324 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2325 			map = dev_maps ?
2326 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2327 			      NULL;
2328 			if (new_map && new_map != map)
2329 				kfree(new_map);
2330 		}
2331 	}
2332 
2333 	mutex_unlock(&xps_map_mutex);
2334 
2335 	kfree(new_dev_maps);
2336 	return -ENOMEM;
2337 }
2338 EXPORT_SYMBOL(netif_set_xps_queue);
2339 
2340 #endif
2341 void netdev_reset_tc(struct net_device *dev)
2342 {
2343 #ifdef CONFIG_XPS
2344 	netif_reset_xps_queues_gt(dev, 0);
2345 #endif
2346 	dev->num_tc = 0;
2347 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2348 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2349 }
2350 EXPORT_SYMBOL(netdev_reset_tc);
2351 
2352 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2353 {
2354 	if (tc >= dev->num_tc)
2355 		return -EINVAL;
2356 
2357 #ifdef CONFIG_XPS
2358 	netif_reset_xps_queues(dev, offset, count);
2359 #endif
2360 	dev->tc_to_txq[tc].count = count;
2361 	dev->tc_to_txq[tc].offset = offset;
2362 	return 0;
2363 }
2364 EXPORT_SYMBOL(netdev_set_tc_queue);
2365 
2366 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2367 {
2368 	if (num_tc > TC_MAX_QUEUE)
2369 		return -EINVAL;
2370 
2371 #ifdef CONFIG_XPS
2372 	netif_reset_xps_queues_gt(dev, 0);
2373 #endif
2374 	dev->num_tc = num_tc;
2375 	return 0;
2376 }
2377 EXPORT_SYMBOL(netdev_set_num_tc);
2378 
2379 /*
2380  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2381  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2382  */
2383 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2384 {
2385 	bool disabling;
2386 	int rc;
2387 
2388 	disabling = txq < dev->real_num_tx_queues;
2389 
2390 	if (txq < 1 || txq > dev->num_tx_queues)
2391 		return -EINVAL;
2392 
2393 	if (dev->reg_state == NETREG_REGISTERED ||
2394 	    dev->reg_state == NETREG_UNREGISTERING) {
2395 		ASSERT_RTNL();
2396 
2397 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2398 						  txq);
2399 		if (rc)
2400 			return rc;
2401 
2402 		if (dev->num_tc)
2403 			netif_setup_tc(dev, txq);
2404 
2405 		dev->real_num_tx_queues = txq;
2406 
2407 		if (disabling) {
2408 			synchronize_net();
2409 			qdisc_reset_all_tx_gt(dev, txq);
2410 #ifdef CONFIG_XPS
2411 			netif_reset_xps_queues_gt(dev, txq);
2412 #endif
2413 		}
2414 	} else {
2415 		dev->real_num_tx_queues = txq;
2416 	}
2417 
2418 	return 0;
2419 }
2420 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2421 
2422 #ifdef CONFIG_SYSFS
2423 /**
2424  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2425  *	@dev: Network device
2426  *	@rxq: Actual number of RX queues
2427  *
2428  *	This must be called either with the rtnl_lock held or before
2429  *	registration of the net device.  Returns 0 on success, or a
2430  *	negative error code.  If called before registration, it always
2431  *	succeeds.
2432  */
2433 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2434 {
2435 	int rc;
2436 
2437 	if (rxq < 1 || rxq > dev->num_rx_queues)
2438 		return -EINVAL;
2439 
2440 	if (dev->reg_state == NETREG_REGISTERED) {
2441 		ASSERT_RTNL();
2442 
2443 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2444 						  rxq);
2445 		if (rc)
2446 			return rc;
2447 	}
2448 
2449 	dev->real_num_rx_queues = rxq;
2450 	return 0;
2451 }
2452 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2453 #endif
2454 
2455 /**
2456  * netif_get_num_default_rss_queues - default number of RSS queues
2457  *
2458  * This routine should set an upper limit on the number of RSS queues
2459  * used by default by multiqueue devices.
2460  */
2461 int netif_get_num_default_rss_queues(void)
2462 {
2463 	return is_kdump_kernel() ?
2464 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2465 }
2466 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2467 
2468 static void __netif_reschedule(struct Qdisc *q)
2469 {
2470 	struct softnet_data *sd;
2471 	unsigned long flags;
2472 
2473 	local_irq_save(flags);
2474 	sd = this_cpu_ptr(&softnet_data);
2475 	q->next_sched = NULL;
2476 	*sd->output_queue_tailp = q;
2477 	sd->output_queue_tailp = &q->next_sched;
2478 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2479 	local_irq_restore(flags);
2480 }
2481 
2482 void __netif_schedule(struct Qdisc *q)
2483 {
2484 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2485 		__netif_reschedule(q);
2486 }
2487 EXPORT_SYMBOL(__netif_schedule);
2488 
2489 struct dev_kfree_skb_cb {
2490 	enum skb_free_reason reason;
2491 };
2492 
2493 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2494 {
2495 	return (struct dev_kfree_skb_cb *)skb->cb;
2496 }
2497 
2498 void netif_schedule_queue(struct netdev_queue *txq)
2499 {
2500 	rcu_read_lock();
2501 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2502 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2503 
2504 		__netif_schedule(q);
2505 	}
2506 	rcu_read_unlock();
2507 }
2508 EXPORT_SYMBOL(netif_schedule_queue);
2509 
2510 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2511 {
2512 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2513 		struct Qdisc *q;
2514 
2515 		rcu_read_lock();
2516 		q = rcu_dereference(dev_queue->qdisc);
2517 		__netif_schedule(q);
2518 		rcu_read_unlock();
2519 	}
2520 }
2521 EXPORT_SYMBOL(netif_tx_wake_queue);
2522 
2523 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2524 {
2525 	unsigned long flags;
2526 
2527 	if (unlikely(!skb))
2528 		return;
2529 
2530 	if (likely(refcount_read(&skb->users) == 1)) {
2531 		smp_rmb();
2532 		refcount_set(&skb->users, 0);
2533 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2534 		return;
2535 	}
2536 	get_kfree_skb_cb(skb)->reason = reason;
2537 	local_irq_save(flags);
2538 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2539 	__this_cpu_write(softnet_data.completion_queue, skb);
2540 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2541 	local_irq_restore(flags);
2542 }
2543 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2544 
2545 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2546 {
2547 	if (in_irq() || irqs_disabled())
2548 		__dev_kfree_skb_irq(skb, reason);
2549 	else
2550 		dev_kfree_skb(skb);
2551 }
2552 EXPORT_SYMBOL(__dev_kfree_skb_any);
2553 
2554 
2555 /**
2556  * netif_device_detach - mark device as removed
2557  * @dev: network device
2558  *
2559  * Mark device as removed from system and therefore no longer available.
2560  */
2561 void netif_device_detach(struct net_device *dev)
2562 {
2563 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2564 	    netif_running(dev)) {
2565 		netif_tx_stop_all_queues(dev);
2566 	}
2567 }
2568 EXPORT_SYMBOL(netif_device_detach);
2569 
2570 /**
2571  * netif_device_attach - mark device as attached
2572  * @dev: network device
2573  *
2574  * Mark device as attached from system and restart if needed.
2575  */
2576 void netif_device_attach(struct net_device *dev)
2577 {
2578 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2579 	    netif_running(dev)) {
2580 		netif_tx_wake_all_queues(dev);
2581 		__netdev_watchdog_up(dev);
2582 	}
2583 }
2584 EXPORT_SYMBOL(netif_device_attach);
2585 
2586 /*
2587  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2588  * to be used as a distribution range.
2589  */
2590 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2591 		  unsigned int num_tx_queues)
2592 {
2593 	u32 hash;
2594 	u16 qoffset = 0;
2595 	u16 qcount = num_tx_queues;
2596 
2597 	if (skb_rx_queue_recorded(skb)) {
2598 		hash = skb_get_rx_queue(skb);
2599 		while (unlikely(hash >= num_tx_queues))
2600 			hash -= num_tx_queues;
2601 		return hash;
2602 	}
2603 
2604 	if (dev->num_tc) {
2605 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2606 
2607 		qoffset = dev->tc_to_txq[tc].offset;
2608 		qcount = dev->tc_to_txq[tc].count;
2609 	}
2610 
2611 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2612 }
2613 EXPORT_SYMBOL(__skb_tx_hash);
2614 
2615 static void skb_warn_bad_offload(const struct sk_buff *skb)
2616 {
2617 	static const netdev_features_t null_features;
2618 	struct net_device *dev = skb->dev;
2619 	const char *name = "";
2620 
2621 	if (!net_ratelimit())
2622 		return;
2623 
2624 	if (dev) {
2625 		if (dev->dev.parent)
2626 			name = dev_driver_string(dev->dev.parent);
2627 		else
2628 			name = netdev_name(dev);
2629 	}
2630 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2631 	     "gso_type=%d ip_summed=%d\n",
2632 	     name, dev ? &dev->features : &null_features,
2633 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2634 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2635 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2636 }
2637 
2638 /*
2639  * Invalidate hardware checksum when packet is to be mangled, and
2640  * complete checksum manually on outgoing path.
2641  */
2642 int skb_checksum_help(struct sk_buff *skb)
2643 {
2644 	__wsum csum;
2645 	int ret = 0, offset;
2646 
2647 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2648 		goto out_set_summed;
2649 
2650 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2651 		skb_warn_bad_offload(skb);
2652 		return -EINVAL;
2653 	}
2654 
2655 	/* Before computing a checksum, we should make sure no frag could
2656 	 * be modified by an external entity : checksum could be wrong.
2657 	 */
2658 	if (skb_has_shared_frag(skb)) {
2659 		ret = __skb_linearize(skb);
2660 		if (ret)
2661 			goto out;
2662 	}
2663 
2664 	offset = skb_checksum_start_offset(skb);
2665 	BUG_ON(offset >= skb_headlen(skb));
2666 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2667 
2668 	offset += skb->csum_offset;
2669 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2670 
2671 	if (skb_cloned(skb) &&
2672 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2673 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2674 		if (ret)
2675 			goto out;
2676 	}
2677 
2678 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2679 out_set_summed:
2680 	skb->ip_summed = CHECKSUM_NONE;
2681 out:
2682 	return ret;
2683 }
2684 EXPORT_SYMBOL(skb_checksum_help);
2685 
2686 int skb_crc32c_csum_help(struct sk_buff *skb)
2687 {
2688 	__le32 crc32c_csum;
2689 	int ret = 0, offset, start;
2690 
2691 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2692 		goto out;
2693 
2694 	if (unlikely(skb_is_gso(skb)))
2695 		goto out;
2696 
2697 	/* Before computing a checksum, we should make sure no frag could
2698 	 * be modified by an external entity : checksum could be wrong.
2699 	 */
2700 	if (unlikely(skb_has_shared_frag(skb))) {
2701 		ret = __skb_linearize(skb);
2702 		if (ret)
2703 			goto out;
2704 	}
2705 	start = skb_checksum_start_offset(skb);
2706 	offset = start + offsetof(struct sctphdr, checksum);
2707 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2708 		ret = -EINVAL;
2709 		goto out;
2710 	}
2711 	if (skb_cloned(skb) &&
2712 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2713 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2714 		if (ret)
2715 			goto out;
2716 	}
2717 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2718 						  skb->len - start, ~(__u32)0,
2719 						  crc32c_csum_stub));
2720 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2721 	skb->ip_summed = CHECKSUM_NONE;
2722 	skb->csum_not_inet = 0;
2723 out:
2724 	return ret;
2725 }
2726 
2727 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2728 {
2729 	__be16 type = skb->protocol;
2730 
2731 	/* Tunnel gso handlers can set protocol to ethernet. */
2732 	if (type == htons(ETH_P_TEB)) {
2733 		struct ethhdr *eth;
2734 
2735 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2736 			return 0;
2737 
2738 		eth = (struct ethhdr *)skb_mac_header(skb);
2739 		type = eth->h_proto;
2740 	}
2741 
2742 	return __vlan_get_protocol(skb, type, depth);
2743 }
2744 
2745 /**
2746  *	skb_mac_gso_segment - mac layer segmentation handler.
2747  *	@skb: buffer to segment
2748  *	@features: features for the output path (see dev->features)
2749  */
2750 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2751 				    netdev_features_t features)
2752 {
2753 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2754 	struct packet_offload *ptype;
2755 	int vlan_depth = skb->mac_len;
2756 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2757 
2758 	if (unlikely(!type))
2759 		return ERR_PTR(-EINVAL);
2760 
2761 	__skb_pull(skb, vlan_depth);
2762 
2763 	rcu_read_lock();
2764 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2765 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2766 			segs = ptype->callbacks.gso_segment(skb, features);
2767 			break;
2768 		}
2769 	}
2770 	rcu_read_unlock();
2771 
2772 	__skb_push(skb, skb->data - skb_mac_header(skb));
2773 
2774 	return segs;
2775 }
2776 EXPORT_SYMBOL(skb_mac_gso_segment);
2777 
2778 
2779 /* openvswitch calls this on rx path, so we need a different check.
2780  */
2781 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2782 {
2783 	if (tx_path)
2784 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2785 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
2786 
2787 	return skb->ip_summed == CHECKSUM_NONE;
2788 }
2789 
2790 /**
2791  *	__skb_gso_segment - Perform segmentation on skb.
2792  *	@skb: buffer to segment
2793  *	@features: features for the output path (see dev->features)
2794  *	@tx_path: whether it is called in TX path
2795  *
2796  *	This function segments the given skb and returns a list of segments.
2797  *
2798  *	It may return NULL if the skb requires no segmentation.  This is
2799  *	only possible when GSO is used for verifying header integrity.
2800  *
2801  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2802  */
2803 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2804 				  netdev_features_t features, bool tx_path)
2805 {
2806 	struct sk_buff *segs;
2807 
2808 	if (unlikely(skb_needs_check(skb, tx_path))) {
2809 		int err;
2810 
2811 		/* We're going to init ->check field in TCP or UDP header */
2812 		err = skb_cow_head(skb, 0);
2813 		if (err < 0)
2814 			return ERR_PTR(err);
2815 	}
2816 
2817 	/* Only report GSO partial support if it will enable us to
2818 	 * support segmentation on this frame without needing additional
2819 	 * work.
2820 	 */
2821 	if (features & NETIF_F_GSO_PARTIAL) {
2822 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2823 		struct net_device *dev = skb->dev;
2824 
2825 		partial_features |= dev->features & dev->gso_partial_features;
2826 		if (!skb_gso_ok(skb, features | partial_features))
2827 			features &= ~NETIF_F_GSO_PARTIAL;
2828 	}
2829 
2830 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2831 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2832 
2833 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2834 	SKB_GSO_CB(skb)->encap_level = 0;
2835 
2836 	skb_reset_mac_header(skb);
2837 	skb_reset_mac_len(skb);
2838 
2839 	segs = skb_mac_gso_segment(skb, features);
2840 
2841 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2842 		skb_warn_bad_offload(skb);
2843 
2844 	return segs;
2845 }
2846 EXPORT_SYMBOL(__skb_gso_segment);
2847 
2848 /* Take action when hardware reception checksum errors are detected. */
2849 #ifdef CONFIG_BUG
2850 void netdev_rx_csum_fault(struct net_device *dev)
2851 {
2852 	if (net_ratelimit()) {
2853 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2854 		dump_stack();
2855 	}
2856 }
2857 EXPORT_SYMBOL(netdev_rx_csum_fault);
2858 #endif
2859 
2860 /* Actually, we should eliminate this check as soon as we know, that:
2861  * 1. IOMMU is present and allows to map all the memory.
2862  * 2. No high memory really exists on this machine.
2863  */
2864 
2865 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2866 {
2867 #ifdef CONFIG_HIGHMEM
2868 	int i;
2869 
2870 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2871 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2872 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2873 
2874 			if (PageHighMem(skb_frag_page(frag)))
2875 				return 1;
2876 		}
2877 	}
2878 
2879 	if (PCI_DMA_BUS_IS_PHYS) {
2880 		struct device *pdev = dev->dev.parent;
2881 
2882 		if (!pdev)
2883 			return 0;
2884 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2885 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2886 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2887 
2888 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2889 				return 1;
2890 		}
2891 	}
2892 #endif
2893 	return 0;
2894 }
2895 
2896 /* If MPLS offload request, verify we are testing hardware MPLS features
2897  * instead of standard features for the netdev.
2898  */
2899 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2900 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2901 					   netdev_features_t features,
2902 					   __be16 type)
2903 {
2904 	if (eth_p_mpls(type))
2905 		features &= skb->dev->mpls_features;
2906 
2907 	return features;
2908 }
2909 #else
2910 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2911 					   netdev_features_t features,
2912 					   __be16 type)
2913 {
2914 	return features;
2915 }
2916 #endif
2917 
2918 static netdev_features_t harmonize_features(struct sk_buff *skb,
2919 	netdev_features_t features)
2920 {
2921 	int tmp;
2922 	__be16 type;
2923 
2924 	type = skb_network_protocol(skb, &tmp);
2925 	features = net_mpls_features(skb, features, type);
2926 
2927 	if (skb->ip_summed != CHECKSUM_NONE &&
2928 	    !can_checksum_protocol(features, type)) {
2929 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2930 	}
2931 	if (illegal_highdma(skb->dev, skb))
2932 		features &= ~NETIF_F_SG;
2933 
2934 	return features;
2935 }
2936 
2937 netdev_features_t passthru_features_check(struct sk_buff *skb,
2938 					  struct net_device *dev,
2939 					  netdev_features_t features)
2940 {
2941 	return features;
2942 }
2943 EXPORT_SYMBOL(passthru_features_check);
2944 
2945 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2946 					     struct net_device *dev,
2947 					     netdev_features_t features)
2948 {
2949 	return vlan_features_check(skb, features);
2950 }
2951 
2952 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2953 					    struct net_device *dev,
2954 					    netdev_features_t features)
2955 {
2956 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2957 
2958 	if (gso_segs > dev->gso_max_segs)
2959 		return features & ~NETIF_F_GSO_MASK;
2960 
2961 	/* Support for GSO partial features requires software
2962 	 * intervention before we can actually process the packets
2963 	 * so we need to strip support for any partial features now
2964 	 * and we can pull them back in after we have partially
2965 	 * segmented the frame.
2966 	 */
2967 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2968 		features &= ~dev->gso_partial_features;
2969 
2970 	/* Make sure to clear the IPv4 ID mangling feature if the
2971 	 * IPv4 header has the potential to be fragmented.
2972 	 */
2973 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2974 		struct iphdr *iph = skb->encapsulation ?
2975 				    inner_ip_hdr(skb) : ip_hdr(skb);
2976 
2977 		if (!(iph->frag_off & htons(IP_DF)))
2978 			features &= ~NETIF_F_TSO_MANGLEID;
2979 	}
2980 
2981 	return features;
2982 }
2983 
2984 netdev_features_t netif_skb_features(struct sk_buff *skb)
2985 {
2986 	struct net_device *dev = skb->dev;
2987 	netdev_features_t features = dev->features;
2988 
2989 	if (skb_is_gso(skb))
2990 		features = gso_features_check(skb, dev, features);
2991 
2992 	/* If encapsulation offload request, verify we are testing
2993 	 * hardware encapsulation features instead of standard
2994 	 * features for the netdev
2995 	 */
2996 	if (skb->encapsulation)
2997 		features &= dev->hw_enc_features;
2998 
2999 	if (skb_vlan_tagged(skb))
3000 		features = netdev_intersect_features(features,
3001 						     dev->vlan_features |
3002 						     NETIF_F_HW_VLAN_CTAG_TX |
3003 						     NETIF_F_HW_VLAN_STAG_TX);
3004 
3005 	if (dev->netdev_ops->ndo_features_check)
3006 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3007 								features);
3008 	else
3009 		features &= dflt_features_check(skb, dev, features);
3010 
3011 	return harmonize_features(skb, features);
3012 }
3013 EXPORT_SYMBOL(netif_skb_features);
3014 
3015 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3016 		    struct netdev_queue *txq, bool more)
3017 {
3018 	unsigned int len;
3019 	int rc;
3020 
3021 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3022 		dev_queue_xmit_nit(skb, dev);
3023 
3024 	len = skb->len;
3025 	trace_net_dev_start_xmit(skb, dev);
3026 	rc = netdev_start_xmit(skb, dev, txq, more);
3027 	trace_net_dev_xmit(skb, rc, dev, len);
3028 
3029 	return rc;
3030 }
3031 
3032 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3033 				    struct netdev_queue *txq, int *ret)
3034 {
3035 	struct sk_buff *skb = first;
3036 	int rc = NETDEV_TX_OK;
3037 
3038 	while (skb) {
3039 		struct sk_buff *next = skb->next;
3040 
3041 		skb->next = NULL;
3042 		rc = xmit_one(skb, dev, txq, next != NULL);
3043 		if (unlikely(!dev_xmit_complete(rc))) {
3044 			skb->next = next;
3045 			goto out;
3046 		}
3047 
3048 		skb = next;
3049 		if (netif_xmit_stopped(txq) && skb) {
3050 			rc = NETDEV_TX_BUSY;
3051 			break;
3052 		}
3053 	}
3054 
3055 out:
3056 	*ret = rc;
3057 	return skb;
3058 }
3059 
3060 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3061 					  netdev_features_t features)
3062 {
3063 	if (skb_vlan_tag_present(skb) &&
3064 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3065 		skb = __vlan_hwaccel_push_inside(skb);
3066 	return skb;
3067 }
3068 
3069 int skb_csum_hwoffload_help(struct sk_buff *skb,
3070 			    const netdev_features_t features)
3071 {
3072 	if (unlikely(skb->csum_not_inet))
3073 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3074 			skb_crc32c_csum_help(skb);
3075 
3076 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3077 }
3078 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3079 
3080 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3081 {
3082 	netdev_features_t features;
3083 
3084 	features = netif_skb_features(skb);
3085 	skb = validate_xmit_vlan(skb, features);
3086 	if (unlikely(!skb))
3087 		goto out_null;
3088 
3089 	if (netif_needs_gso(skb, features)) {
3090 		struct sk_buff *segs;
3091 
3092 		segs = skb_gso_segment(skb, features);
3093 		if (IS_ERR(segs)) {
3094 			goto out_kfree_skb;
3095 		} else if (segs) {
3096 			consume_skb(skb);
3097 			skb = segs;
3098 		}
3099 	} else {
3100 		if (skb_needs_linearize(skb, features) &&
3101 		    __skb_linearize(skb))
3102 			goto out_kfree_skb;
3103 
3104 		/* If packet is not checksummed and device does not
3105 		 * support checksumming for this protocol, complete
3106 		 * checksumming here.
3107 		 */
3108 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3109 			if (skb->encapsulation)
3110 				skb_set_inner_transport_header(skb,
3111 							       skb_checksum_start_offset(skb));
3112 			else
3113 				skb_set_transport_header(skb,
3114 							 skb_checksum_start_offset(skb));
3115 			if (skb_csum_hwoffload_help(skb, features))
3116 				goto out_kfree_skb;
3117 		}
3118 	}
3119 
3120 	skb = validate_xmit_xfrm(skb, features, again);
3121 
3122 	return skb;
3123 
3124 out_kfree_skb:
3125 	kfree_skb(skb);
3126 out_null:
3127 	atomic_long_inc(&dev->tx_dropped);
3128 	return NULL;
3129 }
3130 
3131 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3132 {
3133 	struct sk_buff *next, *head = NULL, *tail;
3134 
3135 	for (; skb != NULL; skb = next) {
3136 		next = skb->next;
3137 		skb->next = NULL;
3138 
3139 		/* in case skb wont be segmented, point to itself */
3140 		skb->prev = skb;
3141 
3142 		skb = validate_xmit_skb(skb, dev, again);
3143 		if (!skb)
3144 			continue;
3145 
3146 		if (!head)
3147 			head = skb;
3148 		else
3149 			tail->next = skb;
3150 		/* If skb was segmented, skb->prev points to
3151 		 * the last segment. If not, it still contains skb.
3152 		 */
3153 		tail = skb->prev;
3154 	}
3155 	return head;
3156 }
3157 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3158 
3159 static void qdisc_pkt_len_init(struct sk_buff *skb)
3160 {
3161 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3162 
3163 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3164 
3165 	/* To get more precise estimation of bytes sent on wire,
3166 	 * we add to pkt_len the headers size of all segments
3167 	 */
3168 	if (shinfo->gso_size)  {
3169 		unsigned int hdr_len;
3170 		u16 gso_segs = shinfo->gso_segs;
3171 
3172 		/* mac layer + network layer */
3173 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3174 
3175 		/* + transport layer */
3176 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3177 			const struct tcphdr *th;
3178 			struct tcphdr _tcphdr;
3179 
3180 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3181 						sizeof(_tcphdr), &_tcphdr);
3182 			if (likely(th))
3183 				hdr_len += __tcp_hdrlen(th);
3184 		} else {
3185 			struct udphdr _udphdr;
3186 
3187 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3188 					       sizeof(_udphdr), &_udphdr))
3189 				hdr_len += sizeof(struct udphdr);
3190 		}
3191 
3192 		if (shinfo->gso_type & SKB_GSO_DODGY)
3193 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3194 						shinfo->gso_size);
3195 
3196 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3197 	}
3198 }
3199 
3200 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3201 				 struct net_device *dev,
3202 				 struct netdev_queue *txq)
3203 {
3204 	spinlock_t *root_lock = qdisc_lock(q);
3205 	struct sk_buff *to_free = NULL;
3206 	bool contended;
3207 	int rc;
3208 
3209 	qdisc_calculate_pkt_len(skb, q);
3210 
3211 	if (q->flags & TCQ_F_NOLOCK) {
3212 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3213 			__qdisc_drop(skb, &to_free);
3214 			rc = NET_XMIT_DROP;
3215 		} else {
3216 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3217 			__qdisc_run(q);
3218 		}
3219 
3220 		if (unlikely(to_free))
3221 			kfree_skb_list(to_free);
3222 		return rc;
3223 	}
3224 
3225 	/*
3226 	 * Heuristic to force contended enqueues to serialize on a
3227 	 * separate lock before trying to get qdisc main lock.
3228 	 * This permits qdisc->running owner to get the lock more
3229 	 * often and dequeue packets faster.
3230 	 */
3231 	contended = qdisc_is_running(q);
3232 	if (unlikely(contended))
3233 		spin_lock(&q->busylock);
3234 
3235 	spin_lock(root_lock);
3236 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3237 		__qdisc_drop(skb, &to_free);
3238 		rc = NET_XMIT_DROP;
3239 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3240 		   qdisc_run_begin(q)) {
3241 		/*
3242 		 * This is a work-conserving queue; there are no old skbs
3243 		 * waiting to be sent out; and the qdisc is not running -
3244 		 * xmit the skb directly.
3245 		 */
3246 
3247 		qdisc_bstats_update(q, skb);
3248 
3249 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3250 			if (unlikely(contended)) {
3251 				spin_unlock(&q->busylock);
3252 				contended = false;
3253 			}
3254 			__qdisc_run(q);
3255 		}
3256 
3257 		qdisc_run_end(q);
3258 		rc = NET_XMIT_SUCCESS;
3259 	} else {
3260 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3261 		if (qdisc_run_begin(q)) {
3262 			if (unlikely(contended)) {
3263 				spin_unlock(&q->busylock);
3264 				contended = false;
3265 			}
3266 			__qdisc_run(q);
3267 			qdisc_run_end(q);
3268 		}
3269 	}
3270 	spin_unlock(root_lock);
3271 	if (unlikely(to_free))
3272 		kfree_skb_list(to_free);
3273 	if (unlikely(contended))
3274 		spin_unlock(&q->busylock);
3275 	return rc;
3276 }
3277 
3278 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3279 static void skb_update_prio(struct sk_buff *skb)
3280 {
3281 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3282 
3283 	if (!skb->priority && skb->sk && map) {
3284 		unsigned int prioidx =
3285 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3286 
3287 		if (prioidx < map->priomap_len)
3288 			skb->priority = map->priomap[prioidx];
3289 	}
3290 }
3291 #else
3292 #define skb_update_prio(skb)
3293 #endif
3294 
3295 DEFINE_PER_CPU(int, xmit_recursion);
3296 EXPORT_SYMBOL(xmit_recursion);
3297 
3298 /**
3299  *	dev_loopback_xmit - loop back @skb
3300  *	@net: network namespace this loopback is happening in
3301  *	@sk:  sk needed to be a netfilter okfn
3302  *	@skb: buffer to transmit
3303  */
3304 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3305 {
3306 	skb_reset_mac_header(skb);
3307 	__skb_pull(skb, skb_network_offset(skb));
3308 	skb->pkt_type = PACKET_LOOPBACK;
3309 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3310 	WARN_ON(!skb_dst(skb));
3311 	skb_dst_force(skb);
3312 	netif_rx_ni(skb);
3313 	return 0;
3314 }
3315 EXPORT_SYMBOL(dev_loopback_xmit);
3316 
3317 #ifdef CONFIG_NET_EGRESS
3318 static struct sk_buff *
3319 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3320 {
3321 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3322 	struct tcf_result cl_res;
3323 
3324 	if (!miniq)
3325 		return skb;
3326 
3327 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3328 	mini_qdisc_bstats_cpu_update(miniq, skb);
3329 
3330 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3331 	case TC_ACT_OK:
3332 	case TC_ACT_RECLASSIFY:
3333 		skb->tc_index = TC_H_MIN(cl_res.classid);
3334 		break;
3335 	case TC_ACT_SHOT:
3336 		mini_qdisc_qstats_cpu_drop(miniq);
3337 		*ret = NET_XMIT_DROP;
3338 		kfree_skb(skb);
3339 		return NULL;
3340 	case TC_ACT_STOLEN:
3341 	case TC_ACT_QUEUED:
3342 	case TC_ACT_TRAP:
3343 		*ret = NET_XMIT_SUCCESS;
3344 		consume_skb(skb);
3345 		return NULL;
3346 	case TC_ACT_REDIRECT:
3347 		/* No need to push/pop skb's mac_header here on egress! */
3348 		skb_do_redirect(skb);
3349 		*ret = NET_XMIT_SUCCESS;
3350 		return NULL;
3351 	default:
3352 		break;
3353 	}
3354 
3355 	return skb;
3356 }
3357 #endif /* CONFIG_NET_EGRESS */
3358 
3359 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3360 {
3361 #ifdef CONFIG_XPS
3362 	struct xps_dev_maps *dev_maps;
3363 	struct xps_map *map;
3364 	int queue_index = -1;
3365 
3366 	rcu_read_lock();
3367 	dev_maps = rcu_dereference(dev->xps_maps);
3368 	if (dev_maps) {
3369 		unsigned int tci = skb->sender_cpu - 1;
3370 
3371 		if (dev->num_tc) {
3372 			tci *= dev->num_tc;
3373 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3374 		}
3375 
3376 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3377 		if (map) {
3378 			if (map->len == 1)
3379 				queue_index = map->queues[0];
3380 			else
3381 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3382 									   map->len)];
3383 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3384 				queue_index = -1;
3385 		}
3386 	}
3387 	rcu_read_unlock();
3388 
3389 	return queue_index;
3390 #else
3391 	return -1;
3392 #endif
3393 }
3394 
3395 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3396 {
3397 	struct sock *sk = skb->sk;
3398 	int queue_index = sk_tx_queue_get(sk);
3399 
3400 	if (queue_index < 0 || skb->ooo_okay ||
3401 	    queue_index >= dev->real_num_tx_queues) {
3402 		int new_index = get_xps_queue(dev, skb);
3403 
3404 		if (new_index < 0)
3405 			new_index = skb_tx_hash(dev, skb);
3406 
3407 		if (queue_index != new_index && sk &&
3408 		    sk_fullsock(sk) &&
3409 		    rcu_access_pointer(sk->sk_dst_cache))
3410 			sk_tx_queue_set(sk, new_index);
3411 
3412 		queue_index = new_index;
3413 	}
3414 
3415 	return queue_index;
3416 }
3417 
3418 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3419 				    struct sk_buff *skb,
3420 				    void *accel_priv)
3421 {
3422 	int queue_index = 0;
3423 
3424 #ifdef CONFIG_XPS
3425 	u32 sender_cpu = skb->sender_cpu - 1;
3426 
3427 	if (sender_cpu >= (u32)NR_CPUS)
3428 		skb->sender_cpu = raw_smp_processor_id() + 1;
3429 #endif
3430 
3431 	if (dev->real_num_tx_queues != 1) {
3432 		const struct net_device_ops *ops = dev->netdev_ops;
3433 
3434 		if (ops->ndo_select_queue)
3435 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3436 							    __netdev_pick_tx);
3437 		else
3438 			queue_index = __netdev_pick_tx(dev, skb);
3439 
3440 		queue_index = netdev_cap_txqueue(dev, queue_index);
3441 	}
3442 
3443 	skb_set_queue_mapping(skb, queue_index);
3444 	return netdev_get_tx_queue(dev, queue_index);
3445 }
3446 
3447 /**
3448  *	__dev_queue_xmit - transmit a buffer
3449  *	@skb: buffer to transmit
3450  *	@accel_priv: private data used for L2 forwarding offload
3451  *
3452  *	Queue a buffer for transmission to a network device. The caller must
3453  *	have set the device and priority and built the buffer before calling
3454  *	this function. The function can be called from an interrupt.
3455  *
3456  *	A negative errno code is returned on a failure. A success does not
3457  *	guarantee the frame will be transmitted as it may be dropped due
3458  *	to congestion or traffic shaping.
3459  *
3460  * -----------------------------------------------------------------------------------
3461  *      I notice this method can also return errors from the queue disciplines,
3462  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3463  *      be positive.
3464  *
3465  *      Regardless of the return value, the skb is consumed, so it is currently
3466  *      difficult to retry a send to this method.  (You can bump the ref count
3467  *      before sending to hold a reference for retry if you are careful.)
3468  *
3469  *      When calling this method, interrupts MUST be enabled.  This is because
3470  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3471  *          --BLG
3472  */
3473 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3474 {
3475 	struct net_device *dev = skb->dev;
3476 	struct netdev_queue *txq;
3477 	struct Qdisc *q;
3478 	int rc = -ENOMEM;
3479 	bool again = false;
3480 
3481 	skb_reset_mac_header(skb);
3482 
3483 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3484 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3485 
3486 	/* Disable soft irqs for various locks below. Also
3487 	 * stops preemption for RCU.
3488 	 */
3489 	rcu_read_lock_bh();
3490 
3491 	skb_update_prio(skb);
3492 
3493 	qdisc_pkt_len_init(skb);
3494 #ifdef CONFIG_NET_CLS_ACT
3495 	skb->tc_at_ingress = 0;
3496 # ifdef CONFIG_NET_EGRESS
3497 	if (static_key_false(&egress_needed)) {
3498 		skb = sch_handle_egress(skb, &rc, dev);
3499 		if (!skb)
3500 			goto out;
3501 	}
3502 # endif
3503 #endif
3504 	/* If device/qdisc don't need skb->dst, release it right now while
3505 	 * its hot in this cpu cache.
3506 	 */
3507 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3508 		skb_dst_drop(skb);
3509 	else
3510 		skb_dst_force(skb);
3511 
3512 	txq = netdev_pick_tx(dev, skb, accel_priv);
3513 	q = rcu_dereference_bh(txq->qdisc);
3514 
3515 	trace_net_dev_queue(skb);
3516 	if (q->enqueue) {
3517 		rc = __dev_xmit_skb(skb, q, dev, txq);
3518 		goto out;
3519 	}
3520 
3521 	/* The device has no queue. Common case for software devices:
3522 	 * loopback, all the sorts of tunnels...
3523 
3524 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3525 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3526 	 * counters.)
3527 	 * However, it is possible, that they rely on protection
3528 	 * made by us here.
3529 
3530 	 * Check this and shot the lock. It is not prone from deadlocks.
3531 	 *Either shot noqueue qdisc, it is even simpler 8)
3532 	 */
3533 	if (dev->flags & IFF_UP) {
3534 		int cpu = smp_processor_id(); /* ok because BHs are off */
3535 
3536 		if (txq->xmit_lock_owner != cpu) {
3537 			if (unlikely(__this_cpu_read(xmit_recursion) >
3538 				     XMIT_RECURSION_LIMIT))
3539 				goto recursion_alert;
3540 
3541 			skb = validate_xmit_skb(skb, dev, &again);
3542 			if (!skb)
3543 				goto out;
3544 
3545 			HARD_TX_LOCK(dev, txq, cpu);
3546 
3547 			if (!netif_xmit_stopped(txq)) {
3548 				__this_cpu_inc(xmit_recursion);
3549 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3550 				__this_cpu_dec(xmit_recursion);
3551 				if (dev_xmit_complete(rc)) {
3552 					HARD_TX_UNLOCK(dev, txq);
3553 					goto out;
3554 				}
3555 			}
3556 			HARD_TX_UNLOCK(dev, txq);
3557 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3558 					     dev->name);
3559 		} else {
3560 			/* Recursion is detected! It is possible,
3561 			 * unfortunately
3562 			 */
3563 recursion_alert:
3564 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3565 					     dev->name);
3566 		}
3567 	}
3568 
3569 	rc = -ENETDOWN;
3570 	rcu_read_unlock_bh();
3571 
3572 	atomic_long_inc(&dev->tx_dropped);
3573 	kfree_skb_list(skb);
3574 	return rc;
3575 out:
3576 	rcu_read_unlock_bh();
3577 	return rc;
3578 }
3579 
3580 int dev_queue_xmit(struct sk_buff *skb)
3581 {
3582 	return __dev_queue_xmit(skb, NULL);
3583 }
3584 EXPORT_SYMBOL(dev_queue_xmit);
3585 
3586 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3587 {
3588 	return __dev_queue_xmit(skb, accel_priv);
3589 }
3590 EXPORT_SYMBOL(dev_queue_xmit_accel);
3591 
3592 
3593 /*************************************************************************
3594  *			Receiver routines
3595  *************************************************************************/
3596 
3597 int netdev_max_backlog __read_mostly = 1000;
3598 EXPORT_SYMBOL(netdev_max_backlog);
3599 
3600 int netdev_tstamp_prequeue __read_mostly = 1;
3601 int netdev_budget __read_mostly = 300;
3602 unsigned int __read_mostly netdev_budget_usecs = 2000;
3603 int weight_p __read_mostly = 64;           /* old backlog weight */
3604 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3605 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3606 int dev_rx_weight __read_mostly = 64;
3607 int dev_tx_weight __read_mostly = 64;
3608 
3609 /* Called with irq disabled */
3610 static inline void ____napi_schedule(struct softnet_data *sd,
3611 				     struct napi_struct *napi)
3612 {
3613 	list_add_tail(&napi->poll_list, &sd->poll_list);
3614 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3615 }
3616 
3617 #ifdef CONFIG_RPS
3618 
3619 /* One global table that all flow-based protocols share. */
3620 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3621 EXPORT_SYMBOL(rps_sock_flow_table);
3622 u32 rps_cpu_mask __read_mostly;
3623 EXPORT_SYMBOL(rps_cpu_mask);
3624 
3625 struct static_key rps_needed __read_mostly;
3626 EXPORT_SYMBOL(rps_needed);
3627 struct static_key rfs_needed __read_mostly;
3628 EXPORT_SYMBOL(rfs_needed);
3629 
3630 static struct rps_dev_flow *
3631 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3632 	    struct rps_dev_flow *rflow, u16 next_cpu)
3633 {
3634 	if (next_cpu < nr_cpu_ids) {
3635 #ifdef CONFIG_RFS_ACCEL
3636 		struct netdev_rx_queue *rxqueue;
3637 		struct rps_dev_flow_table *flow_table;
3638 		struct rps_dev_flow *old_rflow;
3639 		u32 flow_id;
3640 		u16 rxq_index;
3641 		int rc;
3642 
3643 		/* Should we steer this flow to a different hardware queue? */
3644 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3645 		    !(dev->features & NETIF_F_NTUPLE))
3646 			goto out;
3647 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3648 		if (rxq_index == skb_get_rx_queue(skb))
3649 			goto out;
3650 
3651 		rxqueue = dev->_rx + rxq_index;
3652 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3653 		if (!flow_table)
3654 			goto out;
3655 		flow_id = skb_get_hash(skb) & flow_table->mask;
3656 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3657 							rxq_index, flow_id);
3658 		if (rc < 0)
3659 			goto out;
3660 		old_rflow = rflow;
3661 		rflow = &flow_table->flows[flow_id];
3662 		rflow->filter = rc;
3663 		if (old_rflow->filter == rflow->filter)
3664 			old_rflow->filter = RPS_NO_FILTER;
3665 	out:
3666 #endif
3667 		rflow->last_qtail =
3668 			per_cpu(softnet_data, next_cpu).input_queue_head;
3669 	}
3670 
3671 	rflow->cpu = next_cpu;
3672 	return rflow;
3673 }
3674 
3675 /*
3676  * get_rps_cpu is called from netif_receive_skb and returns the target
3677  * CPU from the RPS map of the receiving queue for a given skb.
3678  * rcu_read_lock must be held on entry.
3679  */
3680 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3681 		       struct rps_dev_flow **rflowp)
3682 {
3683 	const struct rps_sock_flow_table *sock_flow_table;
3684 	struct netdev_rx_queue *rxqueue = dev->_rx;
3685 	struct rps_dev_flow_table *flow_table;
3686 	struct rps_map *map;
3687 	int cpu = -1;
3688 	u32 tcpu;
3689 	u32 hash;
3690 
3691 	if (skb_rx_queue_recorded(skb)) {
3692 		u16 index = skb_get_rx_queue(skb);
3693 
3694 		if (unlikely(index >= dev->real_num_rx_queues)) {
3695 			WARN_ONCE(dev->real_num_rx_queues > 1,
3696 				  "%s received packet on queue %u, but number "
3697 				  "of RX queues is %u\n",
3698 				  dev->name, index, dev->real_num_rx_queues);
3699 			goto done;
3700 		}
3701 		rxqueue += index;
3702 	}
3703 
3704 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3705 
3706 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3707 	map = rcu_dereference(rxqueue->rps_map);
3708 	if (!flow_table && !map)
3709 		goto done;
3710 
3711 	skb_reset_network_header(skb);
3712 	hash = skb_get_hash(skb);
3713 	if (!hash)
3714 		goto done;
3715 
3716 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3717 	if (flow_table && sock_flow_table) {
3718 		struct rps_dev_flow *rflow;
3719 		u32 next_cpu;
3720 		u32 ident;
3721 
3722 		/* First check into global flow table if there is a match */
3723 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3724 		if ((ident ^ hash) & ~rps_cpu_mask)
3725 			goto try_rps;
3726 
3727 		next_cpu = ident & rps_cpu_mask;
3728 
3729 		/* OK, now we know there is a match,
3730 		 * we can look at the local (per receive queue) flow table
3731 		 */
3732 		rflow = &flow_table->flows[hash & flow_table->mask];
3733 		tcpu = rflow->cpu;
3734 
3735 		/*
3736 		 * If the desired CPU (where last recvmsg was done) is
3737 		 * different from current CPU (one in the rx-queue flow
3738 		 * table entry), switch if one of the following holds:
3739 		 *   - Current CPU is unset (>= nr_cpu_ids).
3740 		 *   - Current CPU is offline.
3741 		 *   - The current CPU's queue tail has advanced beyond the
3742 		 *     last packet that was enqueued using this table entry.
3743 		 *     This guarantees that all previous packets for the flow
3744 		 *     have been dequeued, thus preserving in order delivery.
3745 		 */
3746 		if (unlikely(tcpu != next_cpu) &&
3747 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3748 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3749 		      rflow->last_qtail)) >= 0)) {
3750 			tcpu = next_cpu;
3751 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3752 		}
3753 
3754 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3755 			*rflowp = rflow;
3756 			cpu = tcpu;
3757 			goto done;
3758 		}
3759 	}
3760 
3761 try_rps:
3762 
3763 	if (map) {
3764 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3765 		if (cpu_online(tcpu)) {
3766 			cpu = tcpu;
3767 			goto done;
3768 		}
3769 	}
3770 
3771 done:
3772 	return cpu;
3773 }
3774 
3775 #ifdef CONFIG_RFS_ACCEL
3776 
3777 /**
3778  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3779  * @dev: Device on which the filter was set
3780  * @rxq_index: RX queue index
3781  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3782  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3783  *
3784  * Drivers that implement ndo_rx_flow_steer() should periodically call
3785  * this function for each installed filter and remove the filters for
3786  * which it returns %true.
3787  */
3788 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3789 			 u32 flow_id, u16 filter_id)
3790 {
3791 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3792 	struct rps_dev_flow_table *flow_table;
3793 	struct rps_dev_flow *rflow;
3794 	bool expire = true;
3795 	unsigned int cpu;
3796 
3797 	rcu_read_lock();
3798 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3799 	if (flow_table && flow_id <= flow_table->mask) {
3800 		rflow = &flow_table->flows[flow_id];
3801 		cpu = READ_ONCE(rflow->cpu);
3802 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3803 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3804 			   rflow->last_qtail) <
3805 		     (int)(10 * flow_table->mask)))
3806 			expire = false;
3807 	}
3808 	rcu_read_unlock();
3809 	return expire;
3810 }
3811 EXPORT_SYMBOL(rps_may_expire_flow);
3812 
3813 #endif /* CONFIG_RFS_ACCEL */
3814 
3815 /* Called from hardirq (IPI) context */
3816 static void rps_trigger_softirq(void *data)
3817 {
3818 	struct softnet_data *sd = data;
3819 
3820 	____napi_schedule(sd, &sd->backlog);
3821 	sd->received_rps++;
3822 }
3823 
3824 #endif /* CONFIG_RPS */
3825 
3826 /*
3827  * Check if this softnet_data structure is another cpu one
3828  * If yes, queue it to our IPI list and return 1
3829  * If no, return 0
3830  */
3831 static int rps_ipi_queued(struct softnet_data *sd)
3832 {
3833 #ifdef CONFIG_RPS
3834 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3835 
3836 	if (sd != mysd) {
3837 		sd->rps_ipi_next = mysd->rps_ipi_list;
3838 		mysd->rps_ipi_list = sd;
3839 
3840 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3841 		return 1;
3842 	}
3843 #endif /* CONFIG_RPS */
3844 	return 0;
3845 }
3846 
3847 #ifdef CONFIG_NET_FLOW_LIMIT
3848 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3849 #endif
3850 
3851 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3852 {
3853 #ifdef CONFIG_NET_FLOW_LIMIT
3854 	struct sd_flow_limit *fl;
3855 	struct softnet_data *sd;
3856 	unsigned int old_flow, new_flow;
3857 
3858 	if (qlen < (netdev_max_backlog >> 1))
3859 		return false;
3860 
3861 	sd = this_cpu_ptr(&softnet_data);
3862 
3863 	rcu_read_lock();
3864 	fl = rcu_dereference(sd->flow_limit);
3865 	if (fl) {
3866 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3867 		old_flow = fl->history[fl->history_head];
3868 		fl->history[fl->history_head] = new_flow;
3869 
3870 		fl->history_head++;
3871 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3872 
3873 		if (likely(fl->buckets[old_flow]))
3874 			fl->buckets[old_flow]--;
3875 
3876 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3877 			fl->count++;
3878 			rcu_read_unlock();
3879 			return true;
3880 		}
3881 	}
3882 	rcu_read_unlock();
3883 #endif
3884 	return false;
3885 }
3886 
3887 /*
3888  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3889  * queue (may be a remote CPU queue).
3890  */
3891 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3892 			      unsigned int *qtail)
3893 {
3894 	struct softnet_data *sd;
3895 	unsigned long flags;
3896 	unsigned int qlen;
3897 
3898 	sd = &per_cpu(softnet_data, cpu);
3899 
3900 	local_irq_save(flags);
3901 
3902 	rps_lock(sd);
3903 	if (!netif_running(skb->dev))
3904 		goto drop;
3905 	qlen = skb_queue_len(&sd->input_pkt_queue);
3906 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3907 		if (qlen) {
3908 enqueue:
3909 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3910 			input_queue_tail_incr_save(sd, qtail);
3911 			rps_unlock(sd);
3912 			local_irq_restore(flags);
3913 			return NET_RX_SUCCESS;
3914 		}
3915 
3916 		/* Schedule NAPI for backlog device
3917 		 * We can use non atomic operation since we own the queue lock
3918 		 */
3919 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3920 			if (!rps_ipi_queued(sd))
3921 				____napi_schedule(sd, &sd->backlog);
3922 		}
3923 		goto enqueue;
3924 	}
3925 
3926 drop:
3927 	sd->dropped++;
3928 	rps_unlock(sd);
3929 
3930 	local_irq_restore(flags);
3931 
3932 	atomic_long_inc(&skb->dev->rx_dropped);
3933 	kfree_skb(skb);
3934 	return NET_RX_DROP;
3935 }
3936 
3937 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
3938 {
3939 	struct net_device *dev = skb->dev;
3940 	struct netdev_rx_queue *rxqueue;
3941 
3942 	rxqueue = dev->_rx;
3943 
3944 	if (skb_rx_queue_recorded(skb)) {
3945 		u16 index = skb_get_rx_queue(skb);
3946 
3947 		if (unlikely(index >= dev->real_num_rx_queues)) {
3948 			WARN_ONCE(dev->real_num_rx_queues > 1,
3949 				  "%s received packet on queue %u, but number "
3950 				  "of RX queues is %u\n",
3951 				  dev->name, index, dev->real_num_rx_queues);
3952 
3953 			return rxqueue; /* Return first rxqueue */
3954 		}
3955 		rxqueue += index;
3956 	}
3957 	return rxqueue;
3958 }
3959 
3960 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3961 				     struct bpf_prog *xdp_prog)
3962 {
3963 	struct netdev_rx_queue *rxqueue;
3964 	u32 metalen, act = XDP_DROP;
3965 	struct xdp_buff xdp;
3966 	void *orig_data;
3967 	int hlen, off;
3968 	u32 mac_len;
3969 
3970 	/* Reinjected packets coming from act_mirred or similar should
3971 	 * not get XDP generic processing.
3972 	 */
3973 	if (skb_cloned(skb))
3974 		return XDP_PASS;
3975 
3976 	/* XDP packets must be linear and must have sufficient headroom
3977 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3978 	 * native XDP provides, thus we need to do it here as well.
3979 	 */
3980 	if (skb_is_nonlinear(skb) ||
3981 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3982 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3983 		int troom = skb->tail + skb->data_len - skb->end;
3984 
3985 		/* In case we have to go down the path and also linearize,
3986 		 * then lets do the pskb_expand_head() work just once here.
3987 		 */
3988 		if (pskb_expand_head(skb,
3989 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3990 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3991 			goto do_drop;
3992 		if (skb_linearize(skb))
3993 			goto do_drop;
3994 	}
3995 
3996 	/* The XDP program wants to see the packet starting at the MAC
3997 	 * header.
3998 	 */
3999 	mac_len = skb->data - skb_mac_header(skb);
4000 	hlen = skb_headlen(skb) + mac_len;
4001 	xdp.data = skb->data - mac_len;
4002 	xdp.data_meta = xdp.data;
4003 	xdp.data_end = xdp.data + hlen;
4004 	xdp.data_hard_start = skb->data - skb_headroom(skb);
4005 	orig_data = xdp.data;
4006 
4007 	rxqueue = netif_get_rxqueue(skb);
4008 	xdp.rxq = &rxqueue->xdp_rxq;
4009 
4010 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
4011 
4012 	off = xdp.data - orig_data;
4013 	if (off > 0)
4014 		__skb_pull(skb, off);
4015 	else if (off < 0)
4016 		__skb_push(skb, -off);
4017 	skb->mac_header += off;
4018 
4019 	switch (act) {
4020 	case XDP_REDIRECT:
4021 	case XDP_TX:
4022 		__skb_push(skb, mac_len);
4023 		break;
4024 	case XDP_PASS:
4025 		metalen = xdp.data - xdp.data_meta;
4026 		if (metalen)
4027 			skb_metadata_set(skb, metalen);
4028 		break;
4029 	default:
4030 		bpf_warn_invalid_xdp_action(act);
4031 		/* fall through */
4032 	case XDP_ABORTED:
4033 		trace_xdp_exception(skb->dev, xdp_prog, act);
4034 		/* fall through */
4035 	case XDP_DROP:
4036 	do_drop:
4037 		kfree_skb(skb);
4038 		break;
4039 	}
4040 
4041 	return act;
4042 }
4043 
4044 /* When doing generic XDP we have to bypass the qdisc layer and the
4045  * network taps in order to match in-driver-XDP behavior.
4046  */
4047 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4048 {
4049 	struct net_device *dev = skb->dev;
4050 	struct netdev_queue *txq;
4051 	bool free_skb = true;
4052 	int cpu, rc;
4053 
4054 	txq = netdev_pick_tx(dev, skb, NULL);
4055 	cpu = smp_processor_id();
4056 	HARD_TX_LOCK(dev, txq, cpu);
4057 	if (!netif_xmit_stopped(txq)) {
4058 		rc = netdev_start_xmit(skb, dev, txq, 0);
4059 		if (dev_xmit_complete(rc))
4060 			free_skb = false;
4061 	}
4062 	HARD_TX_UNLOCK(dev, txq);
4063 	if (free_skb) {
4064 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4065 		kfree_skb(skb);
4066 	}
4067 }
4068 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4069 
4070 static struct static_key generic_xdp_needed __read_mostly;
4071 
4072 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4073 {
4074 	if (xdp_prog) {
4075 		u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4076 		int err;
4077 
4078 		if (act != XDP_PASS) {
4079 			switch (act) {
4080 			case XDP_REDIRECT:
4081 				err = xdp_do_generic_redirect(skb->dev, skb,
4082 							      xdp_prog);
4083 				if (err)
4084 					goto out_redir;
4085 			/* fallthru to submit skb */
4086 			case XDP_TX:
4087 				generic_xdp_tx(skb, xdp_prog);
4088 				break;
4089 			}
4090 			return XDP_DROP;
4091 		}
4092 	}
4093 	return XDP_PASS;
4094 out_redir:
4095 	kfree_skb(skb);
4096 	return XDP_DROP;
4097 }
4098 EXPORT_SYMBOL_GPL(do_xdp_generic);
4099 
4100 static int netif_rx_internal(struct sk_buff *skb)
4101 {
4102 	int ret;
4103 
4104 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4105 
4106 	trace_netif_rx(skb);
4107 
4108 	if (static_key_false(&generic_xdp_needed)) {
4109 		int ret;
4110 
4111 		preempt_disable();
4112 		rcu_read_lock();
4113 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4114 		rcu_read_unlock();
4115 		preempt_enable();
4116 
4117 		/* Consider XDP consuming the packet a success from
4118 		 * the netdev point of view we do not want to count
4119 		 * this as an error.
4120 		 */
4121 		if (ret != XDP_PASS)
4122 			return NET_RX_SUCCESS;
4123 	}
4124 
4125 #ifdef CONFIG_RPS
4126 	if (static_key_false(&rps_needed)) {
4127 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4128 		int cpu;
4129 
4130 		preempt_disable();
4131 		rcu_read_lock();
4132 
4133 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4134 		if (cpu < 0)
4135 			cpu = smp_processor_id();
4136 
4137 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4138 
4139 		rcu_read_unlock();
4140 		preempt_enable();
4141 	} else
4142 #endif
4143 	{
4144 		unsigned int qtail;
4145 
4146 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4147 		put_cpu();
4148 	}
4149 	return ret;
4150 }
4151 
4152 /**
4153  *	netif_rx	-	post buffer to the network code
4154  *	@skb: buffer to post
4155  *
4156  *	This function receives a packet from a device driver and queues it for
4157  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4158  *	may be dropped during processing for congestion control or by the
4159  *	protocol layers.
4160  *
4161  *	return values:
4162  *	NET_RX_SUCCESS	(no congestion)
4163  *	NET_RX_DROP     (packet was dropped)
4164  *
4165  */
4166 
4167 int netif_rx(struct sk_buff *skb)
4168 {
4169 	trace_netif_rx_entry(skb);
4170 
4171 	return netif_rx_internal(skb);
4172 }
4173 EXPORT_SYMBOL(netif_rx);
4174 
4175 int netif_rx_ni(struct sk_buff *skb)
4176 {
4177 	int err;
4178 
4179 	trace_netif_rx_ni_entry(skb);
4180 
4181 	preempt_disable();
4182 	err = netif_rx_internal(skb);
4183 	if (local_softirq_pending())
4184 		do_softirq();
4185 	preempt_enable();
4186 
4187 	return err;
4188 }
4189 EXPORT_SYMBOL(netif_rx_ni);
4190 
4191 static __latent_entropy void net_tx_action(struct softirq_action *h)
4192 {
4193 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4194 
4195 	if (sd->completion_queue) {
4196 		struct sk_buff *clist;
4197 
4198 		local_irq_disable();
4199 		clist = sd->completion_queue;
4200 		sd->completion_queue = NULL;
4201 		local_irq_enable();
4202 
4203 		while (clist) {
4204 			struct sk_buff *skb = clist;
4205 
4206 			clist = clist->next;
4207 
4208 			WARN_ON(refcount_read(&skb->users));
4209 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4210 				trace_consume_skb(skb);
4211 			else
4212 				trace_kfree_skb(skb, net_tx_action);
4213 
4214 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4215 				__kfree_skb(skb);
4216 			else
4217 				__kfree_skb_defer(skb);
4218 		}
4219 
4220 		__kfree_skb_flush();
4221 	}
4222 
4223 	if (sd->output_queue) {
4224 		struct Qdisc *head;
4225 
4226 		local_irq_disable();
4227 		head = sd->output_queue;
4228 		sd->output_queue = NULL;
4229 		sd->output_queue_tailp = &sd->output_queue;
4230 		local_irq_enable();
4231 
4232 		while (head) {
4233 			struct Qdisc *q = head;
4234 			spinlock_t *root_lock = NULL;
4235 
4236 			head = head->next_sched;
4237 
4238 			if (!(q->flags & TCQ_F_NOLOCK)) {
4239 				root_lock = qdisc_lock(q);
4240 				spin_lock(root_lock);
4241 			}
4242 			/* We need to make sure head->next_sched is read
4243 			 * before clearing __QDISC_STATE_SCHED
4244 			 */
4245 			smp_mb__before_atomic();
4246 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4247 			qdisc_run(q);
4248 			if (root_lock)
4249 				spin_unlock(root_lock);
4250 		}
4251 	}
4252 
4253 	xfrm_dev_backlog(sd);
4254 }
4255 
4256 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4257 /* This hook is defined here for ATM LANE */
4258 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4259 			     unsigned char *addr) __read_mostly;
4260 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4261 #endif
4262 
4263 static inline struct sk_buff *
4264 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4265 		   struct net_device *orig_dev)
4266 {
4267 #ifdef CONFIG_NET_CLS_ACT
4268 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4269 	struct tcf_result cl_res;
4270 
4271 	/* If there's at least one ingress present somewhere (so
4272 	 * we get here via enabled static key), remaining devices
4273 	 * that are not configured with an ingress qdisc will bail
4274 	 * out here.
4275 	 */
4276 	if (!miniq)
4277 		return skb;
4278 
4279 	if (*pt_prev) {
4280 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4281 		*pt_prev = NULL;
4282 	}
4283 
4284 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4285 	skb->tc_at_ingress = 1;
4286 	mini_qdisc_bstats_cpu_update(miniq, skb);
4287 
4288 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4289 	case TC_ACT_OK:
4290 	case TC_ACT_RECLASSIFY:
4291 		skb->tc_index = TC_H_MIN(cl_res.classid);
4292 		break;
4293 	case TC_ACT_SHOT:
4294 		mini_qdisc_qstats_cpu_drop(miniq);
4295 		kfree_skb(skb);
4296 		return NULL;
4297 	case TC_ACT_STOLEN:
4298 	case TC_ACT_QUEUED:
4299 	case TC_ACT_TRAP:
4300 		consume_skb(skb);
4301 		return NULL;
4302 	case TC_ACT_REDIRECT:
4303 		/* skb_mac_header check was done by cls/act_bpf, so
4304 		 * we can safely push the L2 header back before
4305 		 * redirecting to another netdev
4306 		 */
4307 		__skb_push(skb, skb->mac_len);
4308 		skb_do_redirect(skb);
4309 		return NULL;
4310 	default:
4311 		break;
4312 	}
4313 #endif /* CONFIG_NET_CLS_ACT */
4314 	return skb;
4315 }
4316 
4317 /**
4318  *	netdev_is_rx_handler_busy - check if receive handler is registered
4319  *	@dev: device to check
4320  *
4321  *	Check if a receive handler is already registered for a given device.
4322  *	Return true if there one.
4323  *
4324  *	The caller must hold the rtnl_mutex.
4325  */
4326 bool netdev_is_rx_handler_busy(struct net_device *dev)
4327 {
4328 	ASSERT_RTNL();
4329 	return dev && rtnl_dereference(dev->rx_handler);
4330 }
4331 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4332 
4333 /**
4334  *	netdev_rx_handler_register - register receive handler
4335  *	@dev: device to register a handler for
4336  *	@rx_handler: receive handler to register
4337  *	@rx_handler_data: data pointer that is used by rx handler
4338  *
4339  *	Register a receive handler for a device. This handler will then be
4340  *	called from __netif_receive_skb. A negative errno code is returned
4341  *	on a failure.
4342  *
4343  *	The caller must hold the rtnl_mutex.
4344  *
4345  *	For a general description of rx_handler, see enum rx_handler_result.
4346  */
4347 int netdev_rx_handler_register(struct net_device *dev,
4348 			       rx_handler_func_t *rx_handler,
4349 			       void *rx_handler_data)
4350 {
4351 	if (netdev_is_rx_handler_busy(dev))
4352 		return -EBUSY;
4353 
4354 	/* Note: rx_handler_data must be set before rx_handler */
4355 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4356 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4357 
4358 	return 0;
4359 }
4360 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4361 
4362 /**
4363  *	netdev_rx_handler_unregister - unregister receive handler
4364  *	@dev: device to unregister a handler from
4365  *
4366  *	Unregister a receive handler from a device.
4367  *
4368  *	The caller must hold the rtnl_mutex.
4369  */
4370 void netdev_rx_handler_unregister(struct net_device *dev)
4371 {
4372 
4373 	ASSERT_RTNL();
4374 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4375 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4376 	 * section has a guarantee to see a non NULL rx_handler_data
4377 	 * as well.
4378 	 */
4379 	synchronize_net();
4380 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4381 }
4382 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4383 
4384 /*
4385  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4386  * the special handling of PFMEMALLOC skbs.
4387  */
4388 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4389 {
4390 	switch (skb->protocol) {
4391 	case htons(ETH_P_ARP):
4392 	case htons(ETH_P_IP):
4393 	case htons(ETH_P_IPV6):
4394 	case htons(ETH_P_8021Q):
4395 	case htons(ETH_P_8021AD):
4396 		return true;
4397 	default:
4398 		return false;
4399 	}
4400 }
4401 
4402 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4403 			     int *ret, struct net_device *orig_dev)
4404 {
4405 #ifdef CONFIG_NETFILTER_INGRESS
4406 	if (nf_hook_ingress_active(skb)) {
4407 		int ingress_retval;
4408 
4409 		if (*pt_prev) {
4410 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4411 			*pt_prev = NULL;
4412 		}
4413 
4414 		rcu_read_lock();
4415 		ingress_retval = nf_hook_ingress(skb);
4416 		rcu_read_unlock();
4417 		return ingress_retval;
4418 	}
4419 #endif /* CONFIG_NETFILTER_INGRESS */
4420 	return 0;
4421 }
4422 
4423 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4424 {
4425 	struct packet_type *ptype, *pt_prev;
4426 	rx_handler_func_t *rx_handler;
4427 	struct net_device *orig_dev;
4428 	bool deliver_exact = false;
4429 	int ret = NET_RX_DROP;
4430 	__be16 type;
4431 
4432 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4433 
4434 	trace_netif_receive_skb(skb);
4435 
4436 	orig_dev = skb->dev;
4437 
4438 	skb_reset_network_header(skb);
4439 	if (!skb_transport_header_was_set(skb))
4440 		skb_reset_transport_header(skb);
4441 	skb_reset_mac_len(skb);
4442 
4443 	pt_prev = NULL;
4444 
4445 another_round:
4446 	skb->skb_iif = skb->dev->ifindex;
4447 
4448 	__this_cpu_inc(softnet_data.processed);
4449 
4450 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4451 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4452 		skb = skb_vlan_untag(skb);
4453 		if (unlikely(!skb))
4454 			goto out;
4455 	}
4456 
4457 	if (skb_skip_tc_classify(skb))
4458 		goto skip_classify;
4459 
4460 	if (pfmemalloc)
4461 		goto skip_taps;
4462 
4463 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4464 		if (pt_prev)
4465 			ret = deliver_skb(skb, pt_prev, orig_dev);
4466 		pt_prev = ptype;
4467 	}
4468 
4469 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4470 		if (pt_prev)
4471 			ret = deliver_skb(skb, pt_prev, orig_dev);
4472 		pt_prev = ptype;
4473 	}
4474 
4475 skip_taps:
4476 #ifdef CONFIG_NET_INGRESS
4477 	if (static_key_false(&ingress_needed)) {
4478 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4479 		if (!skb)
4480 			goto out;
4481 
4482 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4483 			goto out;
4484 	}
4485 #endif
4486 	skb_reset_tc(skb);
4487 skip_classify:
4488 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4489 		goto drop;
4490 
4491 	if (skb_vlan_tag_present(skb)) {
4492 		if (pt_prev) {
4493 			ret = deliver_skb(skb, pt_prev, orig_dev);
4494 			pt_prev = NULL;
4495 		}
4496 		if (vlan_do_receive(&skb))
4497 			goto another_round;
4498 		else if (unlikely(!skb))
4499 			goto out;
4500 	}
4501 
4502 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4503 	if (rx_handler) {
4504 		if (pt_prev) {
4505 			ret = deliver_skb(skb, pt_prev, orig_dev);
4506 			pt_prev = NULL;
4507 		}
4508 		switch (rx_handler(&skb)) {
4509 		case RX_HANDLER_CONSUMED:
4510 			ret = NET_RX_SUCCESS;
4511 			goto out;
4512 		case RX_HANDLER_ANOTHER:
4513 			goto another_round;
4514 		case RX_HANDLER_EXACT:
4515 			deliver_exact = true;
4516 		case RX_HANDLER_PASS:
4517 			break;
4518 		default:
4519 			BUG();
4520 		}
4521 	}
4522 
4523 	if (unlikely(skb_vlan_tag_present(skb))) {
4524 		if (skb_vlan_tag_get_id(skb))
4525 			skb->pkt_type = PACKET_OTHERHOST;
4526 		/* Note: we might in the future use prio bits
4527 		 * and set skb->priority like in vlan_do_receive()
4528 		 * For the time being, just ignore Priority Code Point
4529 		 */
4530 		skb->vlan_tci = 0;
4531 	}
4532 
4533 	type = skb->protocol;
4534 
4535 	/* deliver only exact match when indicated */
4536 	if (likely(!deliver_exact)) {
4537 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4538 				       &ptype_base[ntohs(type) &
4539 						   PTYPE_HASH_MASK]);
4540 	}
4541 
4542 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4543 			       &orig_dev->ptype_specific);
4544 
4545 	if (unlikely(skb->dev != orig_dev)) {
4546 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4547 				       &skb->dev->ptype_specific);
4548 	}
4549 
4550 	if (pt_prev) {
4551 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4552 			goto drop;
4553 		else
4554 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4555 	} else {
4556 drop:
4557 		if (!deliver_exact)
4558 			atomic_long_inc(&skb->dev->rx_dropped);
4559 		else
4560 			atomic_long_inc(&skb->dev->rx_nohandler);
4561 		kfree_skb(skb);
4562 		/* Jamal, now you will not able to escape explaining
4563 		 * me how you were going to use this. :-)
4564 		 */
4565 		ret = NET_RX_DROP;
4566 	}
4567 
4568 out:
4569 	return ret;
4570 }
4571 
4572 /**
4573  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4574  *	@skb: buffer to process
4575  *
4576  *	More direct receive version of netif_receive_skb().  It should
4577  *	only be used by callers that have a need to skip RPS and Generic XDP.
4578  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4579  *
4580  *	This function may only be called from softirq context and interrupts
4581  *	should be enabled.
4582  *
4583  *	Return values (usually ignored):
4584  *	NET_RX_SUCCESS: no congestion
4585  *	NET_RX_DROP: packet was dropped
4586  */
4587 int netif_receive_skb_core(struct sk_buff *skb)
4588 {
4589 	int ret;
4590 
4591 	rcu_read_lock();
4592 	ret = __netif_receive_skb_core(skb, false);
4593 	rcu_read_unlock();
4594 
4595 	return ret;
4596 }
4597 EXPORT_SYMBOL(netif_receive_skb_core);
4598 
4599 static int __netif_receive_skb(struct sk_buff *skb)
4600 {
4601 	int ret;
4602 
4603 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4604 		unsigned int noreclaim_flag;
4605 
4606 		/*
4607 		 * PFMEMALLOC skbs are special, they should
4608 		 * - be delivered to SOCK_MEMALLOC sockets only
4609 		 * - stay away from userspace
4610 		 * - have bounded memory usage
4611 		 *
4612 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4613 		 * context down to all allocation sites.
4614 		 */
4615 		noreclaim_flag = memalloc_noreclaim_save();
4616 		ret = __netif_receive_skb_core(skb, true);
4617 		memalloc_noreclaim_restore(noreclaim_flag);
4618 	} else
4619 		ret = __netif_receive_skb_core(skb, false);
4620 
4621 	return ret;
4622 }
4623 
4624 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4625 {
4626 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4627 	struct bpf_prog *new = xdp->prog;
4628 	int ret = 0;
4629 
4630 	switch (xdp->command) {
4631 	case XDP_SETUP_PROG:
4632 		rcu_assign_pointer(dev->xdp_prog, new);
4633 		if (old)
4634 			bpf_prog_put(old);
4635 
4636 		if (old && !new) {
4637 			static_key_slow_dec(&generic_xdp_needed);
4638 		} else if (new && !old) {
4639 			static_key_slow_inc(&generic_xdp_needed);
4640 			dev_disable_lro(dev);
4641 			dev_disable_gro_hw(dev);
4642 		}
4643 		break;
4644 
4645 	case XDP_QUERY_PROG:
4646 		xdp->prog_attached = !!old;
4647 		xdp->prog_id = old ? old->aux->id : 0;
4648 		break;
4649 
4650 	default:
4651 		ret = -EINVAL;
4652 		break;
4653 	}
4654 
4655 	return ret;
4656 }
4657 
4658 static int netif_receive_skb_internal(struct sk_buff *skb)
4659 {
4660 	int ret;
4661 
4662 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4663 
4664 	if (skb_defer_rx_timestamp(skb))
4665 		return NET_RX_SUCCESS;
4666 
4667 	if (static_key_false(&generic_xdp_needed)) {
4668 		int ret;
4669 
4670 		preempt_disable();
4671 		rcu_read_lock();
4672 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4673 		rcu_read_unlock();
4674 		preempt_enable();
4675 
4676 		if (ret != XDP_PASS)
4677 			return NET_RX_DROP;
4678 	}
4679 
4680 	rcu_read_lock();
4681 #ifdef CONFIG_RPS
4682 	if (static_key_false(&rps_needed)) {
4683 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4684 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4685 
4686 		if (cpu >= 0) {
4687 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4688 			rcu_read_unlock();
4689 			return ret;
4690 		}
4691 	}
4692 #endif
4693 	ret = __netif_receive_skb(skb);
4694 	rcu_read_unlock();
4695 	return ret;
4696 }
4697 
4698 /**
4699  *	netif_receive_skb - process receive buffer from network
4700  *	@skb: buffer to process
4701  *
4702  *	netif_receive_skb() is the main receive data processing function.
4703  *	It always succeeds. The buffer may be dropped during processing
4704  *	for congestion control or by the protocol layers.
4705  *
4706  *	This function may only be called from softirq context and interrupts
4707  *	should be enabled.
4708  *
4709  *	Return values (usually ignored):
4710  *	NET_RX_SUCCESS: no congestion
4711  *	NET_RX_DROP: packet was dropped
4712  */
4713 int netif_receive_skb(struct sk_buff *skb)
4714 {
4715 	trace_netif_receive_skb_entry(skb);
4716 
4717 	return netif_receive_skb_internal(skb);
4718 }
4719 EXPORT_SYMBOL(netif_receive_skb);
4720 
4721 DEFINE_PER_CPU(struct work_struct, flush_works);
4722 
4723 /* Network device is going away, flush any packets still pending */
4724 static void flush_backlog(struct work_struct *work)
4725 {
4726 	struct sk_buff *skb, *tmp;
4727 	struct softnet_data *sd;
4728 
4729 	local_bh_disable();
4730 	sd = this_cpu_ptr(&softnet_data);
4731 
4732 	local_irq_disable();
4733 	rps_lock(sd);
4734 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4735 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4736 			__skb_unlink(skb, &sd->input_pkt_queue);
4737 			kfree_skb(skb);
4738 			input_queue_head_incr(sd);
4739 		}
4740 	}
4741 	rps_unlock(sd);
4742 	local_irq_enable();
4743 
4744 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4745 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4746 			__skb_unlink(skb, &sd->process_queue);
4747 			kfree_skb(skb);
4748 			input_queue_head_incr(sd);
4749 		}
4750 	}
4751 	local_bh_enable();
4752 }
4753 
4754 static void flush_all_backlogs(void)
4755 {
4756 	unsigned int cpu;
4757 
4758 	get_online_cpus();
4759 
4760 	for_each_online_cpu(cpu)
4761 		queue_work_on(cpu, system_highpri_wq,
4762 			      per_cpu_ptr(&flush_works, cpu));
4763 
4764 	for_each_online_cpu(cpu)
4765 		flush_work(per_cpu_ptr(&flush_works, cpu));
4766 
4767 	put_online_cpus();
4768 }
4769 
4770 static int napi_gro_complete(struct sk_buff *skb)
4771 {
4772 	struct packet_offload *ptype;
4773 	__be16 type = skb->protocol;
4774 	struct list_head *head = &offload_base;
4775 	int err = -ENOENT;
4776 
4777 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4778 
4779 	if (NAPI_GRO_CB(skb)->count == 1) {
4780 		skb_shinfo(skb)->gso_size = 0;
4781 		goto out;
4782 	}
4783 
4784 	rcu_read_lock();
4785 	list_for_each_entry_rcu(ptype, head, list) {
4786 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4787 			continue;
4788 
4789 		err = ptype->callbacks.gro_complete(skb, 0);
4790 		break;
4791 	}
4792 	rcu_read_unlock();
4793 
4794 	if (err) {
4795 		WARN_ON(&ptype->list == head);
4796 		kfree_skb(skb);
4797 		return NET_RX_SUCCESS;
4798 	}
4799 
4800 out:
4801 	return netif_receive_skb_internal(skb);
4802 }
4803 
4804 /* napi->gro_list contains packets ordered by age.
4805  * youngest packets at the head of it.
4806  * Complete skbs in reverse order to reduce latencies.
4807  */
4808 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4809 {
4810 	struct sk_buff *skb, *prev = NULL;
4811 
4812 	/* scan list and build reverse chain */
4813 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4814 		skb->prev = prev;
4815 		prev = skb;
4816 	}
4817 
4818 	for (skb = prev; skb; skb = prev) {
4819 		skb->next = NULL;
4820 
4821 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4822 			return;
4823 
4824 		prev = skb->prev;
4825 		napi_gro_complete(skb);
4826 		napi->gro_count--;
4827 	}
4828 
4829 	napi->gro_list = NULL;
4830 }
4831 EXPORT_SYMBOL(napi_gro_flush);
4832 
4833 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4834 {
4835 	struct sk_buff *p;
4836 	unsigned int maclen = skb->dev->hard_header_len;
4837 	u32 hash = skb_get_hash_raw(skb);
4838 
4839 	for (p = napi->gro_list; p; p = p->next) {
4840 		unsigned long diffs;
4841 
4842 		NAPI_GRO_CB(p)->flush = 0;
4843 
4844 		if (hash != skb_get_hash_raw(p)) {
4845 			NAPI_GRO_CB(p)->same_flow = 0;
4846 			continue;
4847 		}
4848 
4849 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4850 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4851 		diffs |= skb_metadata_dst_cmp(p, skb);
4852 		diffs |= skb_metadata_differs(p, skb);
4853 		if (maclen == ETH_HLEN)
4854 			diffs |= compare_ether_header(skb_mac_header(p),
4855 						      skb_mac_header(skb));
4856 		else if (!diffs)
4857 			diffs = memcmp(skb_mac_header(p),
4858 				       skb_mac_header(skb),
4859 				       maclen);
4860 		NAPI_GRO_CB(p)->same_flow = !diffs;
4861 	}
4862 }
4863 
4864 static void skb_gro_reset_offset(struct sk_buff *skb)
4865 {
4866 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4867 	const skb_frag_t *frag0 = &pinfo->frags[0];
4868 
4869 	NAPI_GRO_CB(skb)->data_offset = 0;
4870 	NAPI_GRO_CB(skb)->frag0 = NULL;
4871 	NAPI_GRO_CB(skb)->frag0_len = 0;
4872 
4873 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4874 	    pinfo->nr_frags &&
4875 	    !PageHighMem(skb_frag_page(frag0))) {
4876 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4877 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4878 						    skb_frag_size(frag0),
4879 						    skb->end - skb->tail);
4880 	}
4881 }
4882 
4883 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4884 {
4885 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4886 
4887 	BUG_ON(skb->end - skb->tail < grow);
4888 
4889 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4890 
4891 	skb->data_len -= grow;
4892 	skb->tail += grow;
4893 
4894 	pinfo->frags[0].page_offset += grow;
4895 	skb_frag_size_sub(&pinfo->frags[0], grow);
4896 
4897 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4898 		skb_frag_unref(skb, 0);
4899 		memmove(pinfo->frags, pinfo->frags + 1,
4900 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4901 	}
4902 }
4903 
4904 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4905 {
4906 	struct sk_buff **pp = NULL;
4907 	struct packet_offload *ptype;
4908 	__be16 type = skb->protocol;
4909 	struct list_head *head = &offload_base;
4910 	int same_flow;
4911 	enum gro_result ret;
4912 	int grow;
4913 
4914 	if (netif_elide_gro(skb->dev))
4915 		goto normal;
4916 
4917 	gro_list_prepare(napi, skb);
4918 
4919 	rcu_read_lock();
4920 	list_for_each_entry_rcu(ptype, head, list) {
4921 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4922 			continue;
4923 
4924 		skb_set_network_header(skb, skb_gro_offset(skb));
4925 		skb_reset_mac_len(skb);
4926 		NAPI_GRO_CB(skb)->same_flow = 0;
4927 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4928 		NAPI_GRO_CB(skb)->free = 0;
4929 		NAPI_GRO_CB(skb)->encap_mark = 0;
4930 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4931 		NAPI_GRO_CB(skb)->is_fou = 0;
4932 		NAPI_GRO_CB(skb)->is_atomic = 1;
4933 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4934 
4935 		/* Setup for GRO checksum validation */
4936 		switch (skb->ip_summed) {
4937 		case CHECKSUM_COMPLETE:
4938 			NAPI_GRO_CB(skb)->csum = skb->csum;
4939 			NAPI_GRO_CB(skb)->csum_valid = 1;
4940 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4941 			break;
4942 		case CHECKSUM_UNNECESSARY:
4943 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4944 			NAPI_GRO_CB(skb)->csum_valid = 0;
4945 			break;
4946 		default:
4947 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4948 			NAPI_GRO_CB(skb)->csum_valid = 0;
4949 		}
4950 
4951 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4952 		break;
4953 	}
4954 	rcu_read_unlock();
4955 
4956 	if (&ptype->list == head)
4957 		goto normal;
4958 
4959 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4960 		ret = GRO_CONSUMED;
4961 		goto ok;
4962 	}
4963 
4964 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4965 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4966 
4967 	if (pp) {
4968 		struct sk_buff *nskb = *pp;
4969 
4970 		*pp = nskb->next;
4971 		nskb->next = NULL;
4972 		napi_gro_complete(nskb);
4973 		napi->gro_count--;
4974 	}
4975 
4976 	if (same_flow)
4977 		goto ok;
4978 
4979 	if (NAPI_GRO_CB(skb)->flush)
4980 		goto normal;
4981 
4982 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4983 		struct sk_buff *nskb = napi->gro_list;
4984 
4985 		/* locate the end of the list to select the 'oldest' flow */
4986 		while (nskb->next) {
4987 			pp = &nskb->next;
4988 			nskb = *pp;
4989 		}
4990 		*pp = NULL;
4991 		nskb->next = NULL;
4992 		napi_gro_complete(nskb);
4993 	} else {
4994 		napi->gro_count++;
4995 	}
4996 	NAPI_GRO_CB(skb)->count = 1;
4997 	NAPI_GRO_CB(skb)->age = jiffies;
4998 	NAPI_GRO_CB(skb)->last = skb;
4999 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5000 	skb->next = napi->gro_list;
5001 	napi->gro_list = skb;
5002 	ret = GRO_HELD;
5003 
5004 pull:
5005 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5006 	if (grow > 0)
5007 		gro_pull_from_frag0(skb, grow);
5008 ok:
5009 	return ret;
5010 
5011 normal:
5012 	ret = GRO_NORMAL;
5013 	goto pull;
5014 }
5015 
5016 struct packet_offload *gro_find_receive_by_type(__be16 type)
5017 {
5018 	struct list_head *offload_head = &offload_base;
5019 	struct packet_offload *ptype;
5020 
5021 	list_for_each_entry_rcu(ptype, offload_head, list) {
5022 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5023 			continue;
5024 		return ptype;
5025 	}
5026 	return NULL;
5027 }
5028 EXPORT_SYMBOL(gro_find_receive_by_type);
5029 
5030 struct packet_offload *gro_find_complete_by_type(__be16 type)
5031 {
5032 	struct list_head *offload_head = &offload_base;
5033 	struct packet_offload *ptype;
5034 
5035 	list_for_each_entry_rcu(ptype, offload_head, list) {
5036 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5037 			continue;
5038 		return ptype;
5039 	}
5040 	return NULL;
5041 }
5042 EXPORT_SYMBOL(gro_find_complete_by_type);
5043 
5044 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5045 {
5046 	skb_dst_drop(skb);
5047 	secpath_reset(skb);
5048 	kmem_cache_free(skbuff_head_cache, skb);
5049 }
5050 
5051 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5052 {
5053 	switch (ret) {
5054 	case GRO_NORMAL:
5055 		if (netif_receive_skb_internal(skb))
5056 			ret = GRO_DROP;
5057 		break;
5058 
5059 	case GRO_DROP:
5060 		kfree_skb(skb);
5061 		break;
5062 
5063 	case GRO_MERGED_FREE:
5064 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5065 			napi_skb_free_stolen_head(skb);
5066 		else
5067 			__kfree_skb(skb);
5068 		break;
5069 
5070 	case GRO_HELD:
5071 	case GRO_MERGED:
5072 	case GRO_CONSUMED:
5073 		break;
5074 	}
5075 
5076 	return ret;
5077 }
5078 
5079 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5080 {
5081 	skb_mark_napi_id(skb, napi);
5082 	trace_napi_gro_receive_entry(skb);
5083 
5084 	skb_gro_reset_offset(skb);
5085 
5086 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5087 }
5088 EXPORT_SYMBOL(napi_gro_receive);
5089 
5090 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5091 {
5092 	if (unlikely(skb->pfmemalloc)) {
5093 		consume_skb(skb);
5094 		return;
5095 	}
5096 	__skb_pull(skb, skb_headlen(skb));
5097 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5098 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5099 	skb->vlan_tci = 0;
5100 	skb->dev = napi->dev;
5101 	skb->skb_iif = 0;
5102 	skb->encapsulation = 0;
5103 	skb_shinfo(skb)->gso_type = 0;
5104 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5105 	secpath_reset(skb);
5106 
5107 	napi->skb = skb;
5108 }
5109 
5110 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5111 {
5112 	struct sk_buff *skb = napi->skb;
5113 
5114 	if (!skb) {
5115 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5116 		if (skb) {
5117 			napi->skb = skb;
5118 			skb_mark_napi_id(skb, napi);
5119 		}
5120 	}
5121 	return skb;
5122 }
5123 EXPORT_SYMBOL(napi_get_frags);
5124 
5125 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5126 				      struct sk_buff *skb,
5127 				      gro_result_t ret)
5128 {
5129 	switch (ret) {
5130 	case GRO_NORMAL:
5131 	case GRO_HELD:
5132 		__skb_push(skb, ETH_HLEN);
5133 		skb->protocol = eth_type_trans(skb, skb->dev);
5134 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5135 			ret = GRO_DROP;
5136 		break;
5137 
5138 	case GRO_DROP:
5139 		napi_reuse_skb(napi, skb);
5140 		break;
5141 
5142 	case GRO_MERGED_FREE:
5143 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5144 			napi_skb_free_stolen_head(skb);
5145 		else
5146 			napi_reuse_skb(napi, skb);
5147 		break;
5148 
5149 	case GRO_MERGED:
5150 	case GRO_CONSUMED:
5151 		break;
5152 	}
5153 
5154 	return ret;
5155 }
5156 
5157 /* Upper GRO stack assumes network header starts at gro_offset=0
5158  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5159  * We copy ethernet header into skb->data to have a common layout.
5160  */
5161 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5162 {
5163 	struct sk_buff *skb = napi->skb;
5164 	const struct ethhdr *eth;
5165 	unsigned int hlen = sizeof(*eth);
5166 
5167 	napi->skb = NULL;
5168 
5169 	skb_reset_mac_header(skb);
5170 	skb_gro_reset_offset(skb);
5171 
5172 	eth = skb_gro_header_fast(skb, 0);
5173 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5174 		eth = skb_gro_header_slow(skb, hlen, 0);
5175 		if (unlikely(!eth)) {
5176 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5177 					     __func__, napi->dev->name);
5178 			napi_reuse_skb(napi, skb);
5179 			return NULL;
5180 		}
5181 	} else {
5182 		gro_pull_from_frag0(skb, hlen);
5183 		NAPI_GRO_CB(skb)->frag0 += hlen;
5184 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5185 	}
5186 	__skb_pull(skb, hlen);
5187 
5188 	/*
5189 	 * This works because the only protocols we care about don't require
5190 	 * special handling.
5191 	 * We'll fix it up properly in napi_frags_finish()
5192 	 */
5193 	skb->protocol = eth->h_proto;
5194 
5195 	return skb;
5196 }
5197 
5198 gro_result_t napi_gro_frags(struct napi_struct *napi)
5199 {
5200 	struct sk_buff *skb = napi_frags_skb(napi);
5201 
5202 	if (!skb)
5203 		return GRO_DROP;
5204 
5205 	trace_napi_gro_frags_entry(skb);
5206 
5207 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5208 }
5209 EXPORT_SYMBOL(napi_gro_frags);
5210 
5211 /* Compute the checksum from gro_offset and return the folded value
5212  * after adding in any pseudo checksum.
5213  */
5214 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5215 {
5216 	__wsum wsum;
5217 	__sum16 sum;
5218 
5219 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5220 
5221 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5222 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5223 	if (likely(!sum)) {
5224 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5225 		    !skb->csum_complete_sw)
5226 			netdev_rx_csum_fault(skb->dev);
5227 	}
5228 
5229 	NAPI_GRO_CB(skb)->csum = wsum;
5230 	NAPI_GRO_CB(skb)->csum_valid = 1;
5231 
5232 	return sum;
5233 }
5234 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5235 
5236 static void net_rps_send_ipi(struct softnet_data *remsd)
5237 {
5238 #ifdef CONFIG_RPS
5239 	while (remsd) {
5240 		struct softnet_data *next = remsd->rps_ipi_next;
5241 
5242 		if (cpu_online(remsd->cpu))
5243 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5244 		remsd = next;
5245 	}
5246 #endif
5247 }
5248 
5249 /*
5250  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5251  * Note: called with local irq disabled, but exits with local irq enabled.
5252  */
5253 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5254 {
5255 #ifdef CONFIG_RPS
5256 	struct softnet_data *remsd = sd->rps_ipi_list;
5257 
5258 	if (remsd) {
5259 		sd->rps_ipi_list = NULL;
5260 
5261 		local_irq_enable();
5262 
5263 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5264 		net_rps_send_ipi(remsd);
5265 	} else
5266 #endif
5267 		local_irq_enable();
5268 }
5269 
5270 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5271 {
5272 #ifdef CONFIG_RPS
5273 	return sd->rps_ipi_list != NULL;
5274 #else
5275 	return false;
5276 #endif
5277 }
5278 
5279 static int process_backlog(struct napi_struct *napi, int quota)
5280 {
5281 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5282 	bool again = true;
5283 	int work = 0;
5284 
5285 	/* Check if we have pending ipi, its better to send them now,
5286 	 * not waiting net_rx_action() end.
5287 	 */
5288 	if (sd_has_rps_ipi_waiting(sd)) {
5289 		local_irq_disable();
5290 		net_rps_action_and_irq_enable(sd);
5291 	}
5292 
5293 	napi->weight = dev_rx_weight;
5294 	while (again) {
5295 		struct sk_buff *skb;
5296 
5297 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5298 			rcu_read_lock();
5299 			__netif_receive_skb(skb);
5300 			rcu_read_unlock();
5301 			input_queue_head_incr(sd);
5302 			if (++work >= quota)
5303 				return work;
5304 
5305 		}
5306 
5307 		local_irq_disable();
5308 		rps_lock(sd);
5309 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5310 			/*
5311 			 * Inline a custom version of __napi_complete().
5312 			 * only current cpu owns and manipulates this napi,
5313 			 * and NAPI_STATE_SCHED is the only possible flag set
5314 			 * on backlog.
5315 			 * We can use a plain write instead of clear_bit(),
5316 			 * and we dont need an smp_mb() memory barrier.
5317 			 */
5318 			napi->state = 0;
5319 			again = false;
5320 		} else {
5321 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5322 						   &sd->process_queue);
5323 		}
5324 		rps_unlock(sd);
5325 		local_irq_enable();
5326 	}
5327 
5328 	return work;
5329 }
5330 
5331 /**
5332  * __napi_schedule - schedule for receive
5333  * @n: entry to schedule
5334  *
5335  * The entry's receive function will be scheduled to run.
5336  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5337  */
5338 void __napi_schedule(struct napi_struct *n)
5339 {
5340 	unsigned long flags;
5341 
5342 	local_irq_save(flags);
5343 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5344 	local_irq_restore(flags);
5345 }
5346 EXPORT_SYMBOL(__napi_schedule);
5347 
5348 /**
5349  *	napi_schedule_prep - check if napi can be scheduled
5350  *	@n: napi context
5351  *
5352  * Test if NAPI routine is already running, and if not mark
5353  * it as running.  This is used as a condition variable
5354  * insure only one NAPI poll instance runs.  We also make
5355  * sure there is no pending NAPI disable.
5356  */
5357 bool napi_schedule_prep(struct napi_struct *n)
5358 {
5359 	unsigned long val, new;
5360 
5361 	do {
5362 		val = READ_ONCE(n->state);
5363 		if (unlikely(val & NAPIF_STATE_DISABLE))
5364 			return false;
5365 		new = val | NAPIF_STATE_SCHED;
5366 
5367 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5368 		 * This was suggested by Alexander Duyck, as compiler
5369 		 * emits better code than :
5370 		 * if (val & NAPIF_STATE_SCHED)
5371 		 *     new |= NAPIF_STATE_MISSED;
5372 		 */
5373 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5374 						   NAPIF_STATE_MISSED;
5375 	} while (cmpxchg(&n->state, val, new) != val);
5376 
5377 	return !(val & NAPIF_STATE_SCHED);
5378 }
5379 EXPORT_SYMBOL(napi_schedule_prep);
5380 
5381 /**
5382  * __napi_schedule_irqoff - schedule for receive
5383  * @n: entry to schedule
5384  *
5385  * Variant of __napi_schedule() assuming hard irqs are masked
5386  */
5387 void __napi_schedule_irqoff(struct napi_struct *n)
5388 {
5389 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5390 }
5391 EXPORT_SYMBOL(__napi_schedule_irqoff);
5392 
5393 bool napi_complete_done(struct napi_struct *n, int work_done)
5394 {
5395 	unsigned long flags, val, new;
5396 
5397 	/*
5398 	 * 1) Don't let napi dequeue from the cpu poll list
5399 	 *    just in case its running on a different cpu.
5400 	 * 2) If we are busy polling, do nothing here, we have
5401 	 *    the guarantee we will be called later.
5402 	 */
5403 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5404 				 NAPIF_STATE_IN_BUSY_POLL)))
5405 		return false;
5406 
5407 	if (n->gro_list) {
5408 		unsigned long timeout = 0;
5409 
5410 		if (work_done)
5411 			timeout = n->dev->gro_flush_timeout;
5412 
5413 		if (timeout)
5414 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5415 				      HRTIMER_MODE_REL_PINNED);
5416 		else
5417 			napi_gro_flush(n, false);
5418 	}
5419 	if (unlikely(!list_empty(&n->poll_list))) {
5420 		/* If n->poll_list is not empty, we need to mask irqs */
5421 		local_irq_save(flags);
5422 		list_del_init(&n->poll_list);
5423 		local_irq_restore(flags);
5424 	}
5425 
5426 	do {
5427 		val = READ_ONCE(n->state);
5428 
5429 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5430 
5431 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5432 
5433 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5434 		 * because we will call napi->poll() one more time.
5435 		 * This C code was suggested by Alexander Duyck to help gcc.
5436 		 */
5437 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5438 						    NAPIF_STATE_SCHED;
5439 	} while (cmpxchg(&n->state, val, new) != val);
5440 
5441 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5442 		__napi_schedule(n);
5443 		return false;
5444 	}
5445 
5446 	return true;
5447 }
5448 EXPORT_SYMBOL(napi_complete_done);
5449 
5450 /* must be called under rcu_read_lock(), as we dont take a reference */
5451 static struct napi_struct *napi_by_id(unsigned int napi_id)
5452 {
5453 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5454 	struct napi_struct *napi;
5455 
5456 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5457 		if (napi->napi_id == napi_id)
5458 			return napi;
5459 
5460 	return NULL;
5461 }
5462 
5463 #if defined(CONFIG_NET_RX_BUSY_POLL)
5464 
5465 #define BUSY_POLL_BUDGET 8
5466 
5467 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5468 {
5469 	int rc;
5470 
5471 	/* Busy polling means there is a high chance device driver hard irq
5472 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5473 	 * set in napi_schedule_prep().
5474 	 * Since we are about to call napi->poll() once more, we can safely
5475 	 * clear NAPI_STATE_MISSED.
5476 	 *
5477 	 * Note: x86 could use a single "lock and ..." instruction
5478 	 * to perform these two clear_bit()
5479 	 */
5480 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5481 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5482 
5483 	local_bh_disable();
5484 
5485 	/* All we really want here is to re-enable device interrupts.
5486 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5487 	 */
5488 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5489 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5490 	netpoll_poll_unlock(have_poll_lock);
5491 	if (rc == BUSY_POLL_BUDGET)
5492 		__napi_schedule(napi);
5493 	local_bh_enable();
5494 }
5495 
5496 void napi_busy_loop(unsigned int napi_id,
5497 		    bool (*loop_end)(void *, unsigned long),
5498 		    void *loop_end_arg)
5499 {
5500 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5501 	int (*napi_poll)(struct napi_struct *napi, int budget);
5502 	void *have_poll_lock = NULL;
5503 	struct napi_struct *napi;
5504 
5505 restart:
5506 	napi_poll = NULL;
5507 
5508 	rcu_read_lock();
5509 
5510 	napi = napi_by_id(napi_id);
5511 	if (!napi)
5512 		goto out;
5513 
5514 	preempt_disable();
5515 	for (;;) {
5516 		int work = 0;
5517 
5518 		local_bh_disable();
5519 		if (!napi_poll) {
5520 			unsigned long val = READ_ONCE(napi->state);
5521 
5522 			/* If multiple threads are competing for this napi,
5523 			 * we avoid dirtying napi->state as much as we can.
5524 			 */
5525 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5526 				   NAPIF_STATE_IN_BUSY_POLL))
5527 				goto count;
5528 			if (cmpxchg(&napi->state, val,
5529 				    val | NAPIF_STATE_IN_BUSY_POLL |
5530 					  NAPIF_STATE_SCHED) != val)
5531 				goto count;
5532 			have_poll_lock = netpoll_poll_lock(napi);
5533 			napi_poll = napi->poll;
5534 		}
5535 		work = napi_poll(napi, BUSY_POLL_BUDGET);
5536 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5537 count:
5538 		if (work > 0)
5539 			__NET_ADD_STATS(dev_net(napi->dev),
5540 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
5541 		local_bh_enable();
5542 
5543 		if (!loop_end || loop_end(loop_end_arg, start_time))
5544 			break;
5545 
5546 		if (unlikely(need_resched())) {
5547 			if (napi_poll)
5548 				busy_poll_stop(napi, have_poll_lock);
5549 			preempt_enable();
5550 			rcu_read_unlock();
5551 			cond_resched();
5552 			if (loop_end(loop_end_arg, start_time))
5553 				return;
5554 			goto restart;
5555 		}
5556 		cpu_relax();
5557 	}
5558 	if (napi_poll)
5559 		busy_poll_stop(napi, have_poll_lock);
5560 	preempt_enable();
5561 out:
5562 	rcu_read_unlock();
5563 }
5564 EXPORT_SYMBOL(napi_busy_loop);
5565 
5566 #endif /* CONFIG_NET_RX_BUSY_POLL */
5567 
5568 static void napi_hash_add(struct napi_struct *napi)
5569 {
5570 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5571 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5572 		return;
5573 
5574 	spin_lock(&napi_hash_lock);
5575 
5576 	/* 0..NR_CPUS range is reserved for sender_cpu use */
5577 	do {
5578 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5579 			napi_gen_id = MIN_NAPI_ID;
5580 	} while (napi_by_id(napi_gen_id));
5581 	napi->napi_id = napi_gen_id;
5582 
5583 	hlist_add_head_rcu(&napi->napi_hash_node,
5584 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5585 
5586 	spin_unlock(&napi_hash_lock);
5587 }
5588 
5589 /* Warning : caller is responsible to make sure rcu grace period
5590  * is respected before freeing memory containing @napi
5591  */
5592 bool napi_hash_del(struct napi_struct *napi)
5593 {
5594 	bool rcu_sync_needed = false;
5595 
5596 	spin_lock(&napi_hash_lock);
5597 
5598 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5599 		rcu_sync_needed = true;
5600 		hlist_del_rcu(&napi->napi_hash_node);
5601 	}
5602 	spin_unlock(&napi_hash_lock);
5603 	return rcu_sync_needed;
5604 }
5605 EXPORT_SYMBOL_GPL(napi_hash_del);
5606 
5607 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5608 {
5609 	struct napi_struct *napi;
5610 
5611 	napi = container_of(timer, struct napi_struct, timer);
5612 
5613 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5614 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5615 	 */
5616 	if (napi->gro_list && !napi_disable_pending(napi) &&
5617 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5618 		__napi_schedule_irqoff(napi);
5619 
5620 	return HRTIMER_NORESTART;
5621 }
5622 
5623 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5624 		    int (*poll)(struct napi_struct *, int), int weight)
5625 {
5626 	INIT_LIST_HEAD(&napi->poll_list);
5627 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5628 	napi->timer.function = napi_watchdog;
5629 	napi->gro_count = 0;
5630 	napi->gro_list = NULL;
5631 	napi->skb = NULL;
5632 	napi->poll = poll;
5633 	if (weight > NAPI_POLL_WEIGHT)
5634 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5635 			    weight, dev->name);
5636 	napi->weight = weight;
5637 	list_add(&napi->dev_list, &dev->napi_list);
5638 	napi->dev = dev;
5639 #ifdef CONFIG_NETPOLL
5640 	napi->poll_owner = -1;
5641 #endif
5642 	set_bit(NAPI_STATE_SCHED, &napi->state);
5643 	napi_hash_add(napi);
5644 }
5645 EXPORT_SYMBOL(netif_napi_add);
5646 
5647 void napi_disable(struct napi_struct *n)
5648 {
5649 	might_sleep();
5650 	set_bit(NAPI_STATE_DISABLE, &n->state);
5651 
5652 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5653 		msleep(1);
5654 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5655 		msleep(1);
5656 
5657 	hrtimer_cancel(&n->timer);
5658 
5659 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5660 }
5661 EXPORT_SYMBOL(napi_disable);
5662 
5663 /* Must be called in process context */
5664 void netif_napi_del(struct napi_struct *napi)
5665 {
5666 	might_sleep();
5667 	if (napi_hash_del(napi))
5668 		synchronize_net();
5669 	list_del_init(&napi->dev_list);
5670 	napi_free_frags(napi);
5671 
5672 	kfree_skb_list(napi->gro_list);
5673 	napi->gro_list = NULL;
5674 	napi->gro_count = 0;
5675 }
5676 EXPORT_SYMBOL(netif_napi_del);
5677 
5678 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5679 {
5680 	void *have;
5681 	int work, weight;
5682 
5683 	list_del_init(&n->poll_list);
5684 
5685 	have = netpoll_poll_lock(n);
5686 
5687 	weight = n->weight;
5688 
5689 	/* This NAPI_STATE_SCHED test is for avoiding a race
5690 	 * with netpoll's poll_napi().  Only the entity which
5691 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5692 	 * actually make the ->poll() call.  Therefore we avoid
5693 	 * accidentally calling ->poll() when NAPI is not scheduled.
5694 	 */
5695 	work = 0;
5696 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5697 		work = n->poll(n, weight);
5698 		trace_napi_poll(n, work, weight);
5699 	}
5700 
5701 	WARN_ON_ONCE(work > weight);
5702 
5703 	if (likely(work < weight))
5704 		goto out_unlock;
5705 
5706 	/* Drivers must not modify the NAPI state if they
5707 	 * consume the entire weight.  In such cases this code
5708 	 * still "owns" the NAPI instance and therefore can
5709 	 * move the instance around on the list at-will.
5710 	 */
5711 	if (unlikely(napi_disable_pending(n))) {
5712 		napi_complete(n);
5713 		goto out_unlock;
5714 	}
5715 
5716 	if (n->gro_list) {
5717 		/* flush too old packets
5718 		 * If HZ < 1000, flush all packets.
5719 		 */
5720 		napi_gro_flush(n, HZ >= 1000);
5721 	}
5722 
5723 	/* Some drivers may have called napi_schedule
5724 	 * prior to exhausting their budget.
5725 	 */
5726 	if (unlikely(!list_empty(&n->poll_list))) {
5727 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5728 			     n->dev ? n->dev->name : "backlog");
5729 		goto out_unlock;
5730 	}
5731 
5732 	list_add_tail(&n->poll_list, repoll);
5733 
5734 out_unlock:
5735 	netpoll_poll_unlock(have);
5736 
5737 	return work;
5738 }
5739 
5740 static __latent_entropy void net_rx_action(struct softirq_action *h)
5741 {
5742 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5743 	unsigned long time_limit = jiffies +
5744 		usecs_to_jiffies(netdev_budget_usecs);
5745 	int budget = netdev_budget;
5746 	LIST_HEAD(list);
5747 	LIST_HEAD(repoll);
5748 
5749 	local_irq_disable();
5750 	list_splice_init(&sd->poll_list, &list);
5751 	local_irq_enable();
5752 
5753 	for (;;) {
5754 		struct napi_struct *n;
5755 
5756 		if (list_empty(&list)) {
5757 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5758 				goto out;
5759 			break;
5760 		}
5761 
5762 		n = list_first_entry(&list, struct napi_struct, poll_list);
5763 		budget -= napi_poll(n, &repoll);
5764 
5765 		/* If softirq window is exhausted then punt.
5766 		 * Allow this to run for 2 jiffies since which will allow
5767 		 * an average latency of 1.5/HZ.
5768 		 */
5769 		if (unlikely(budget <= 0 ||
5770 			     time_after_eq(jiffies, time_limit))) {
5771 			sd->time_squeeze++;
5772 			break;
5773 		}
5774 	}
5775 
5776 	local_irq_disable();
5777 
5778 	list_splice_tail_init(&sd->poll_list, &list);
5779 	list_splice_tail(&repoll, &list);
5780 	list_splice(&list, &sd->poll_list);
5781 	if (!list_empty(&sd->poll_list))
5782 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5783 
5784 	net_rps_action_and_irq_enable(sd);
5785 out:
5786 	__kfree_skb_flush();
5787 }
5788 
5789 struct netdev_adjacent {
5790 	struct net_device *dev;
5791 
5792 	/* upper master flag, there can only be one master device per list */
5793 	bool master;
5794 
5795 	/* counter for the number of times this device was added to us */
5796 	u16 ref_nr;
5797 
5798 	/* private field for the users */
5799 	void *private;
5800 
5801 	struct list_head list;
5802 	struct rcu_head rcu;
5803 };
5804 
5805 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5806 						 struct list_head *adj_list)
5807 {
5808 	struct netdev_adjacent *adj;
5809 
5810 	list_for_each_entry(adj, adj_list, list) {
5811 		if (adj->dev == adj_dev)
5812 			return adj;
5813 	}
5814 	return NULL;
5815 }
5816 
5817 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5818 {
5819 	struct net_device *dev = data;
5820 
5821 	return upper_dev == dev;
5822 }
5823 
5824 /**
5825  * netdev_has_upper_dev - Check if device is linked to an upper device
5826  * @dev: device
5827  * @upper_dev: upper device to check
5828  *
5829  * Find out if a device is linked to specified upper device and return true
5830  * in case it is. Note that this checks only immediate upper device,
5831  * not through a complete stack of devices. The caller must hold the RTNL lock.
5832  */
5833 bool netdev_has_upper_dev(struct net_device *dev,
5834 			  struct net_device *upper_dev)
5835 {
5836 	ASSERT_RTNL();
5837 
5838 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5839 					     upper_dev);
5840 }
5841 EXPORT_SYMBOL(netdev_has_upper_dev);
5842 
5843 /**
5844  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5845  * @dev: device
5846  * @upper_dev: upper device to check
5847  *
5848  * Find out if a device is linked to specified upper device and return true
5849  * in case it is. Note that this checks the entire upper device chain.
5850  * The caller must hold rcu lock.
5851  */
5852 
5853 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5854 				  struct net_device *upper_dev)
5855 {
5856 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5857 					       upper_dev);
5858 }
5859 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5860 
5861 /**
5862  * netdev_has_any_upper_dev - Check if device is linked to some device
5863  * @dev: device
5864  *
5865  * Find out if a device is linked to an upper device and return true in case
5866  * it is. The caller must hold the RTNL lock.
5867  */
5868 bool netdev_has_any_upper_dev(struct net_device *dev)
5869 {
5870 	ASSERT_RTNL();
5871 
5872 	return !list_empty(&dev->adj_list.upper);
5873 }
5874 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5875 
5876 /**
5877  * netdev_master_upper_dev_get - Get master upper device
5878  * @dev: device
5879  *
5880  * Find a master upper device and return pointer to it or NULL in case
5881  * it's not there. The caller must hold the RTNL lock.
5882  */
5883 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5884 {
5885 	struct netdev_adjacent *upper;
5886 
5887 	ASSERT_RTNL();
5888 
5889 	if (list_empty(&dev->adj_list.upper))
5890 		return NULL;
5891 
5892 	upper = list_first_entry(&dev->adj_list.upper,
5893 				 struct netdev_adjacent, list);
5894 	if (likely(upper->master))
5895 		return upper->dev;
5896 	return NULL;
5897 }
5898 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5899 
5900 /**
5901  * netdev_has_any_lower_dev - Check if device is linked to some device
5902  * @dev: device
5903  *
5904  * Find out if a device is linked to a lower device and return true in case
5905  * it is. The caller must hold the RTNL lock.
5906  */
5907 static bool netdev_has_any_lower_dev(struct net_device *dev)
5908 {
5909 	ASSERT_RTNL();
5910 
5911 	return !list_empty(&dev->adj_list.lower);
5912 }
5913 
5914 void *netdev_adjacent_get_private(struct list_head *adj_list)
5915 {
5916 	struct netdev_adjacent *adj;
5917 
5918 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5919 
5920 	return adj->private;
5921 }
5922 EXPORT_SYMBOL(netdev_adjacent_get_private);
5923 
5924 /**
5925  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5926  * @dev: device
5927  * @iter: list_head ** of the current position
5928  *
5929  * Gets the next device from the dev's upper list, starting from iter
5930  * position. The caller must hold RCU read lock.
5931  */
5932 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5933 						 struct list_head **iter)
5934 {
5935 	struct netdev_adjacent *upper;
5936 
5937 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5938 
5939 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5940 
5941 	if (&upper->list == &dev->adj_list.upper)
5942 		return NULL;
5943 
5944 	*iter = &upper->list;
5945 
5946 	return upper->dev;
5947 }
5948 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5949 
5950 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5951 						    struct list_head **iter)
5952 {
5953 	struct netdev_adjacent *upper;
5954 
5955 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5956 
5957 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5958 
5959 	if (&upper->list == &dev->adj_list.upper)
5960 		return NULL;
5961 
5962 	*iter = &upper->list;
5963 
5964 	return upper->dev;
5965 }
5966 
5967 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5968 				  int (*fn)(struct net_device *dev,
5969 					    void *data),
5970 				  void *data)
5971 {
5972 	struct net_device *udev;
5973 	struct list_head *iter;
5974 	int ret;
5975 
5976 	for (iter = &dev->adj_list.upper,
5977 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
5978 	     udev;
5979 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5980 		/* first is the upper device itself */
5981 		ret = fn(udev, data);
5982 		if (ret)
5983 			return ret;
5984 
5985 		/* then look at all of its upper devices */
5986 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5987 		if (ret)
5988 			return ret;
5989 	}
5990 
5991 	return 0;
5992 }
5993 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5994 
5995 /**
5996  * netdev_lower_get_next_private - Get the next ->private from the
5997  *				   lower neighbour list
5998  * @dev: device
5999  * @iter: list_head ** of the current position
6000  *
6001  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6002  * list, starting from iter position. The caller must hold either hold the
6003  * RTNL lock or its own locking that guarantees that the neighbour lower
6004  * list will remain unchanged.
6005  */
6006 void *netdev_lower_get_next_private(struct net_device *dev,
6007 				    struct list_head **iter)
6008 {
6009 	struct netdev_adjacent *lower;
6010 
6011 	lower = list_entry(*iter, struct netdev_adjacent, list);
6012 
6013 	if (&lower->list == &dev->adj_list.lower)
6014 		return NULL;
6015 
6016 	*iter = lower->list.next;
6017 
6018 	return lower->private;
6019 }
6020 EXPORT_SYMBOL(netdev_lower_get_next_private);
6021 
6022 /**
6023  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6024  *				       lower neighbour list, RCU
6025  *				       variant
6026  * @dev: device
6027  * @iter: list_head ** of the current position
6028  *
6029  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6030  * list, starting from iter position. The caller must hold RCU read lock.
6031  */
6032 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6033 					struct list_head **iter)
6034 {
6035 	struct netdev_adjacent *lower;
6036 
6037 	WARN_ON_ONCE(!rcu_read_lock_held());
6038 
6039 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6040 
6041 	if (&lower->list == &dev->adj_list.lower)
6042 		return NULL;
6043 
6044 	*iter = &lower->list;
6045 
6046 	return lower->private;
6047 }
6048 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6049 
6050 /**
6051  * netdev_lower_get_next - Get the next device from the lower neighbour
6052  *                         list
6053  * @dev: device
6054  * @iter: list_head ** of the current position
6055  *
6056  * Gets the next netdev_adjacent from the dev's lower neighbour
6057  * list, starting from iter position. The caller must hold RTNL lock or
6058  * its own locking that guarantees that the neighbour lower
6059  * list will remain unchanged.
6060  */
6061 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6062 {
6063 	struct netdev_adjacent *lower;
6064 
6065 	lower = list_entry(*iter, struct netdev_adjacent, list);
6066 
6067 	if (&lower->list == &dev->adj_list.lower)
6068 		return NULL;
6069 
6070 	*iter = lower->list.next;
6071 
6072 	return lower->dev;
6073 }
6074 EXPORT_SYMBOL(netdev_lower_get_next);
6075 
6076 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6077 						struct list_head **iter)
6078 {
6079 	struct netdev_adjacent *lower;
6080 
6081 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6082 
6083 	if (&lower->list == &dev->adj_list.lower)
6084 		return NULL;
6085 
6086 	*iter = &lower->list;
6087 
6088 	return lower->dev;
6089 }
6090 
6091 int netdev_walk_all_lower_dev(struct net_device *dev,
6092 			      int (*fn)(struct net_device *dev,
6093 					void *data),
6094 			      void *data)
6095 {
6096 	struct net_device *ldev;
6097 	struct list_head *iter;
6098 	int ret;
6099 
6100 	for (iter = &dev->adj_list.lower,
6101 	     ldev = netdev_next_lower_dev(dev, &iter);
6102 	     ldev;
6103 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6104 		/* first is the lower device itself */
6105 		ret = fn(ldev, data);
6106 		if (ret)
6107 			return ret;
6108 
6109 		/* then look at all of its lower devices */
6110 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6111 		if (ret)
6112 			return ret;
6113 	}
6114 
6115 	return 0;
6116 }
6117 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6118 
6119 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6120 						    struct list_head **iter)
6121 {
6122 	struct netdev_adjacent *lower;
6123 
6124 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6125 	if (&lower->list == &dev->adj_list.lower)
6126 		return NULL;
6127 
6128 	*iter = &lower->list;
6129 
6130 	return lower->dev;
6131 }
6132 
6133 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6134 				  int (*fn)(struct net_device *dev,
6135 					    void *data),
6136 				  void *data)
6137 {
6138 	struct net_device *ldev;
6139 	struct list_head *iter;
6140 	int ret;
6141 
6142 	for (iter = &dev->adj_list.lower,
6143 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6144 	     ldev;
6145 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6146 		/* first is the lower device itself */
6147 		ret = fn(ldev, data);
6148 		if (ret)
6149 			return ret;
6150 
6151 		/* then look at all of its lower devices */
6152 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6153 		if (ret)
6154 			return ret;
6155 	}
6156 
6157 	return 0;
6158 }
6159 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6160 
6161 /**
6162  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6163  *				       lower neighbour list, RCU
6164  *				       variant
6165  * @dev: device
6166  *
6167  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6168  * list. The caller must hold RCU read lock.
6169  */
6170 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6171 {
6172 	struct netdev_adjacent *lower;
6173 
6174 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6175 			struct netdev_adjacent, list);
6176 	if (lower)
6177 		return lower->private;
6178 	return NULL;
6179 }
6180 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6181 
6182 /**
6183  * netdev_master_upper_dev_get_rcu - Get master upper device
6184  * @dev: device
6185  *
6186  * Find a master upper device and return pointer to it or NULL in case
6187  * it's not there. The caller must hold the RCU read lock.
6188  */
6189 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6190 {
6191 	struct netdev_adjacent *upper;
6192 
6193 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6194 				       struct netdev_adjacent, list);
6195 	if (upper && likely(upper->master))
6196 		return upper->dev;
6197 	return NULL;
6198 }
6199 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6200 
6201 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6202 			      struct net_device *adj_dev,
6203 			      struct list_head *dev_list)
6204 {
6205 	char linkname[IFNAMSIZ+7];
6206 
6207 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6208 		"upper_%s" : "lower_%s", adj_dev->name);
6209 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6210 				 linkname);
6211 }
6212 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6213 			       char *name,
6214 			       struct list_head *dev_list)
6215 {
6216 	char linkname[IFNAMSIZ+7];
6217 
6218 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6219 		"upper_%s" : "lower_%s", name);
6220 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6221 }
6222 
6223 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6224 						 struct net_device *adj_dev,
6225 						 struct list_head *dev_list)
6226 {
6227 	return (dev_list == &dev->adj_list.upper ||
6228 		dev_list == &dev->adj_list.lower) &&
6229 		net_eq(dev_net(dev), dev_net(adj_dev));
6230 }
6231 
6232 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6233 					struct net_device *adj_dev,
6234 					struct list_head *dev_list,
6235 					void *private, bool master)
6236 {
6237 	struct netdev_adjacent *adj;
6238 	int ret;
6239 
6240 	adj = __netdev_find_adj(adj_dev, dev_list);
6241 
6242 	if (adj) {
6243 		adj->ref_nr += 1;
6244 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6245 			 dev->name, adj_dev->name, adj->ref_nr);
6246 
6247 		return 0;
6248 	}
6249 
6250 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6251 	if (!adj)
6252 		return -ENOMEM;
6253 
6254 	adj->dev = adj_dev;
6255 	adj->master = master;
6256 	adj->ref_nr = 1;
6257 	adj->private = private;
6258 	dev_hold(adj_dev);
6259 
6260 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6261 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6262 
6263 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6264 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6265 		if (ret)
6266 			goto free_adj;
6267 	}
6268 
6269 	/* Ensure that master link is always the first item in list. */
6270 	if (master) {
6271 		ret = sysfs_create_link(&(dev->dev.kobj),
6272 					&(adj_dev->dev.kobj), "master");
6273 		if (ret)
6274 			goto remove_symlinks;
6275 
6276 		list_add_rcu(&adj->list, dev_list);
6277 	} else {
6278 		list_add_tail_rcu(&adj->list, dev_list);
6279 	}
6280 
6281 	return 0;
6282 
6283 remove_symlinks:
6284 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6285 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6286 free_adj:
6287 	kfree(adj);
6288 	dev_put(adj_dev);
6289 
6290 	return ret;
6291 }
6292 
6293 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6294 					 struct net_device *adj_dev,
6295 					 u16 ref_nr,
6296 					 struct list_head *dev_list)
6297 {
6298 	struct netdev_adjacent *adj;
6299 
6300 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6301 		 dev->name, adj_dev->name, ref_nr);
6302 
6303 	adj = __netdev_find_adj(adj_dev, dev_list);
6304 
6305 	if (!adj) {
6306 		pr_err("Adjacency does not exist for device %s from %s\n",
6307 		       dev->name, adj_dev->name);
6308 		WARN_ON(1);
6309 		return;
6310 	}
6311 
6312 	if (adj->ref_nr > ref_nr) {
6313 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6314 			 dev->name, adj_dev->name, ref_nr,
6315 			 adj->ref_nr - ref_nr);
6316 		adj->ref_nr -= ref_nr;
6317 		return;
6318 	}
6319 
6320 	if (adj->master)
6321 		sysfs_remove_link(&(dev->dev.kobj), "master");
6322 
6323 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6324 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6325 
6326 	list_del_rcu(&adj->list);
6327 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6328 		 adj_dev->name, dev->name, adj_dev->name);
6329 	dev_put(adj_dev);
6330 	kfree_rcu(adj, rcu);
6331 }
6332 
6333 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6334 					    struct net_device *upper_dev,
6335 					    struct list_head *up_list,
6336 					    struct list_head *down_list,
6337 					    void *private, bool master)
6338 {
6339 	int ret;
6340 
6341 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6342 					   private, master);
6343 	if (ret)
6344 		return ret;
6345 
6346 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6347 					   private, false);
6348 	if (ret) {
6349 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6350 		return ret;
6351 	}
6352 
6353 	return 0;
6354 }
6355 
6356 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6357 					       struct net_device *upper_dev,
6358 					       u16 ref_nr,
6359 					       struct list_head *up_list,
6360 					       struct list_head *down_list)
6361 {
6362 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6363 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6364 }
6365 
6366 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6367 						struct net_device *upper_dev,
6368 						void *private, bool master)
6369 {
6370 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6371 						&dev->adj_list.upper,
6372 						&upper_dev->adj_list.lower,
6373 						private, master);
6374 }
6375 
6376 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6377 						   struct net_device *upper_dev)
6378 {
6379 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6380 					   &dev->adj_list.upper,
6381 					   &upper_dev->adj_list.lower);
6382 }
6383 
6384 static int __netdev_upper_dev_link(struct net_device *dev,
6385 				   struct net_device *upper_dev, bool master,
6386 				   void *upper_priv, void *upper_info,
6387 				   struct netlink_ext_ack *extack)
6388 {
6389 	struct netdev_notifier_changeupper_info changeupper_info = {
6390 		.info = {
6391 			.dev = dev,
6392 			.extack = extack,
6393 		},
6394 		.upper_dev = upper_dev,
6395 		.master = master,
6396 		.linking = true,
6397 		.upper_info = upper_info,
6398 	};
6399 	int ret = 0;
6400 
6401 	ASSERT_RTNL();
6402 
6403 	if (dev == upper_dev)
6404 		return -EBUSY;
6405 
6406 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6407 	if (netdev_has_upper_dev(upper_dev, dev))
6408 		return -EBUSY;
6409 
6410 	if (netdev_has_upper_dev(dev, upper_dev))
6411 		return -EEXIST;
6412 
6413 	if (master && netdev_master_upper_dev_get(dev))
6414 		return -EBUSY;
6415 
6416 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6417 					    &changeupper_info.info);
6418 	ret = notifier_to_errno(ret);
6419 	if (ret)
6420 		return ret;
6421 
6422 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6423 						   master);
6424 	if (ret)
6425 		return ret;
6426 
6427 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6428 					    &changeupper_info.info);
6429 	ret = notifier_to_errno(ret);
6430 	if (ret)
6431 		goto rollback;
6432 
6433 	return 0;
6434 
6435 rollback:
6436 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6437 
6438 	return ret;
6439 }
6440 
6441 /**
6442  * netdev_upper_dev_link - Add a link to the upper device
6443  * @dev: device
6444  * @upper_dev: new upper device
6445  * @extack: netlink extended ack
6446  *
6447  * Adds a link to device which is upper to this one. The caller must hold
6448  * the RTNL lock. On a failure a negative errno code is returned.
6449  * On success the reference counts are adjusted and the function
6450  * returns zero.
6451  */
6452 int netdev_upper_dev_link(struct net_device *dev,
6453 			  struct net_device *upper_dev,
6454 			  struct netlink_ext_ack *extack)
6455 {
6456 	return __netdev_upper_dev_link(dev, upper_dev, false,
6457 				       NULL, NULL, extack);
6458 }
6459 EXPORT_SYMBOL(netdev_upper_dev_link);
6460 
6461 /**
6462  * netdev_master_upper_dev_link - Add a master link to the upper device
6463  * @dev: device
6464  * @upper_dev: new upper device
6465  * @upper_priv: upper device private
6466  * @upper_info: upper info to be passed down via notifier
6467  * @extack: netlink extended ack
6468  *
6469  * Adds a link to device which is upper to this one. In this case, only
6470  * one master upper device can be linked, although other non-master devices
6471  * might be linked as well. The caller must hold the RTNL lock.
6472  * On a failure a negative errno code is returned. On success the reference
6473  * counts are adjusted and the function returns zero.
6474  */
6475 int netdev_master_upper_dev_link(struct net_device *dev,
6476 				 struct net_device *upper_dev,
6477 				 void *upper_priv, void *upper_info,
6478 				 struct netlink_ext_ack *extack)
6479 {
6480 	return __netdev_upper_dev_link(dev, upper_dev, true,
6481 				       upper_priv, upper_info, extack);
6482 }
6483 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6484 
6485 /**
6486  * netdev_upper_dev_unlink - Removes a link to upper device
6487  * @dev: device
6488  * @upper_dev: new upper device
6489  *
6490  * Removes a link to device which is upper to this one. The caller must hold
6491  * the RTNL lock.
6492  */
6493 void netdev_upper_dev_unlink(struct net_device *dev,
6494 			     struct net_device *upper_dev)
6495 {
6496 	struct netdev_notifier_changeupper_info changeupper_info = {
6497 		.info = {
6498 			.dev = dev,
6499 		},
6500 		.upper_dev = upper_dev,
6501 		.linking = false,
6502 	};
6503 
6504 	ASSERT_RTNL();
6505 
6506 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6507 
6508 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6509 				      &changeupper_info.info);
6510 
6511 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6512 
6513 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6514 				      &changeupper_info.info);
6515 }
6516 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6517 
6518 /**
6519  * netdev_bonding_info_change - Dispatch event about slave change
6520  * @dev: device
6521  * @bonding_info: info to dispatch
6522  *
6523  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6524  * The caller must hold the RTNL lock.
6525  */
6526 void netdev_bonding_info_change(struct net_device *dev,
6527 				struct netdev_bonding_info *bonding_info)
6528 {
6529 	struct netdev_notifier_bonding_info info = {
6530 		.info.dev = dev,
6531 	};
6532 
6533 	memcpy(&info.bonding_info, bonding_info,
6534 	       sizeof(struct netdev_bonding_info));
6535 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6536 				      &info.info);
6537 }
6538 EXPORT_SYMBOL(netdev_bonding_info_change);
6539 
6540 static void netdev_adjacent_add_links(struct net_device *dev)
6541 {
6542 	struct netdev_adjacent *iter;
6543 
6544 	struct net *net = dev_net(dev);
6545 
6546 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6547 		if (!net_eq(net, dev_net(iter->dev)))
6548 			continue;
6549 		netdev_adjacent_sysfs_add(iter->dev, dev,
6550 					  &iter->dev->adj_list.lower);
6551 		netdev_adjacent_sysfs_add(dev, iter->dev,
6552 					  &dev->adj_list.upper);
6553 	}
6554 
6555 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6556 		if (!net_eq(net, dev_net(iter->dev)))
6557 			continue;
6558 		netdev_adjacent_sysfs_add(iter->dev, dev,
6559 					  &iter->dev->adj_list.upper);
6560 		netdev_adjacent_sysfs_add(dev, iter->dev,
6561 					  &dev->adj_list.lower);
6562 	}
6563 }
6564 
6565 static void netdev_adjacent_del_links(struct net_device *dev)
6566 {
6567 	struct netdev_adjacent *iter;
6568 
6569 	struct net *net = dev_net(dev);
6570 
6571 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6572 		if (!net_eq(net, dev_net(iter->dev)))
6573 			continue;
6574 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6575 					  &iter->dev->adj_list.lower);
6576 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6577 					  &dev->adj_list.upper);
6578 	}
6579 
6580 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6581 		if (!net_eq(net, dev_net(iter->dev)))
6582 			continue;
6583 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6584 					  &iter->dev->adj_list.upper);
6585 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6586 					  &dev->adj_list.lower);
6587 	}
6588 }
6589 
6590 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6591 {
6592 	struct netdev_adjacent *iter;
6593 
6594 	struct net *net = dev_net(dev);
6595 
6596 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6597 		if (!net_eq(net, dev_net(iter->dev)))
6598 			continue;
6599 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6600 					  &iter->dev->adj_list.lower);
6601 		netdev_adjacent_sysfs_add(iter->dev, dev,
6602 					  &iter->dev->adj_list.lower);
6603 	}
6604 
6605 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6606 		if (!net_eq(net, dev_net(iter->dev)))
6607 			continue;
6608 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6609 					  &iter->dev->adj_list.upper);
6610 		netdev_adjacent_sysfs_add(iter->dev, dev,
6611 					  &iter->dev->adj_list.upper);
6612 	}
6613 }
6614 
6615 void *netdev_lower_dev_get_private(struct net_device *dev,
6616 				   struct net_device *lower_dev)
6617 {
6618 	struct netdev_adjacent *lower;
6619 
6620 	if (!lower_dev)
6621 		return NULL;
6622 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6623 	if (!lower)
6624 		return NULL;
6625 
6626 	return lower->private;
6627 }
6628 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6629 
6630 
6631 int dev_get_nest_level(struct net_device *dev)
6632 {
6633 	struct net_device *lower = NULL;
6634 	struct list_head *iter;
6635 	int max_nest = -1;
6636 	int nest;
6637 
6638 	ASSERT_RTNL();
6639 
6640 	netdev_for_each_lower_dev(dev, lower, iter) {
6641 		nest = dev_get_nest_level(lower);
6642 		if (max_nest < nest)
6643 			max_nest = nest;
6644 	}
6645 
6646 	return max_nest + 1;
6647 }
6648 EXPORT_SYMBOL(dev_get_nest_level);
6649 
6650 /**
6651  * netdev_lower_change - Dispatch event about lower device state change
6652  * @lower_dev: device
6653  * @lower_state_info: state to dispatch
6654  *
6655  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6656  * The caller must hold the RTNL lock.
6657  */
6658 void netdev_lower_state_changed(struct net_device *lower_dev,
6659 				void *lower_state_info)
6660 {
6661 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6662 		.info.dev = lower_dev,
6663 	};
6664 
6665 	ASSERT_RTNL();
6666 	changelowerstate_info.lower_state_info = lower_state_info;
6667 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6668 				      &changelowerstate_info.info);
6669 }
6670 EXPORT_SYMBOL(netdev_lower_state_changed);
6671 
6672 static void dev_change_rx_flags(struct net_device *dev, int flags)
6673 {
6674 	const struct net_device_ops *ops = dev->netdev_ops;
6675 
6676 	if (ops->ndo_change_rx_flags)
6677 		ops->ndo_change_rx_flags(dev, flags);
6678 }
6679 
6680 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6681 {
6682 	unsigned int old_flags = dev->flags;
6683 	kuid_t uid;
6684 	kgid_t gid;
6685 
6686 	ASSERT_RTNL();
6687 
6688 	dev->flags |= IFF_PROMISC;
6689 	dev->promiscuity += inc;
6690 	if (dev->promiscuity == 0) {
6691 		/*
6692 		 * Avoid overflow.
6693 		 * If inc causes overflow, untouch promisc and return error.
6694 		 */
6695 		if (inc < 0)
6696 			dev->flags &= ~IFF_PROMISC;
6697 		else {
6698 			dev->promiscuity -= inc;
6699 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6700 				dev->name);
6701 			return -EOVERFLOW;
6702 		}
6703 	}
6704 	if (dev->flags != old_flags) {
6705 		pr_info("device %s %s promiscuous mode\n",
6706 			dev->name,
6707 			dev->flags & IFF_PROMISC ? "entered" : "left");
6708 		if (audit_enabled) {
6709 			current_uid_gid(&uid, &gid);
6710 			audit_log(current->audit_context, GFP_ATOMIC,
6711 				AUDIT_ANOM_PROMISCUOUS,
6712 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6713 				dev->name, (dev->flags & IFF_PROMISC),
6714 				(old_flags & IFF_PROMISC),
6715 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6716 				from_kuid(&init_user_ns, uid),
6717 				from_kgid(&init_user_ns, gid),
6718 				audit_get_sessionid(current));
6719 		}
6720 
6721 		dev_change_rx_flags(dev, IFF_PROMISC);
6722 	}
6723 	if (notify)
6724 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6725 	return 0;
6726 }
6727 
6728 /**
6729  *	dev_set_promiscuity	- update promiscuity count on a device
6730  *	@dev: device
6731  *	@inc: modifier
6732  *
6733  *	Add or remove promiscuity from a device. While the count in the device
6734  *	remains above zero the interface remains promiscuous. Once it hits zero
6735  *	the device reverts back to normal filtering operation. A negative inc
6736  *	value is used to drop promiscuity on the device.
6737  *	Return 0 if successful or a negative errno code on error.
6738  */
6739 int dev_set_promiscuity(struct net_device *dev, int inc)
6740 {
6741 	unsigned int old_flags = dev->flags;
6742 	int err;
6743 
6744 	err = __dev_set_promiscuity(dev, inc, true);
6745 	if (err < 0)
6746 		return err;
6747 	if (dev->flags != old_flags)
6748 		dev_set_rx_mode(dev);
6749 	return err;
6750 }
6751 EXPORT_SYMBOL(dev_set_promiscuity);
6752 
6753 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6754 {
6755 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6756 
6757 	ASSERT_RTNL();
6758 
6759 	dev->flags |= IFF_ALLMULTI;
6760 	dev->allmulti += inc;
6761 	if (dev->allmulti == 0) {
6762 		/*
6763 		 * Avoid overflow.
6764 		 * If inc causes overflow, untouch allmulti and return error.
6765 		 */
6766 		if (inc < 0)
6767 			dev->flags &= ~IFF_ALLMULTI;
6768 		else {
6769 			dev->allmulti -= inc;
6770 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6771 				dev->name);
6772 			return -EOVERFLOW;
6773 		}
6774 	}
6775 	if (dev->flags ^ old_flags) {
6776 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6777 		dev_set_rx_mode(dev);
6778 		if (notify)
6779 			__dev_notify_flags(dev, old_flags,
6780 					   dev->gflags ^ old_gflags);
6781 	}
6782 	return 0;
6783 }
6784 
6785 /**
6786  *	dev_set_allmulti	- update allmulti count on a device
6787  *	@dev: device
6788  *	@inc: modifier
6789  *
6790  *	Add or remove reception of all multicast frames to a device. While the
6791  *	count in the device remains above zero the interface remains listening
6792  *	to all interfaces. Once it hits zero the device reverts back to normal
6793  *	filtering operation. A negative @inc value is used to drop the counter
6794  *	when releasing a resource needing all multicasts.
6795  *	Return 0 if successful or a negative errno code on error.
6796  */
6797 
6798 int dev_set_allmulti(struct net_device *dev, int inc)
6799 {
6800 	return __dev_set_allmulti(dev, inc, true);
6801 }
6802 EXPORT_SYMBOL(dev_set_allmulti);
6803 
6804 /*
6805  *	Upload unicast and multicast address lists to device and
6806  *	configure RX filtering. When the device doesn't support unicast
6807  *	filtering it is put in promiscuous mode while unicast addresses
6808  *	are present.
6809  */
6810 void __dev_set_rx_mode(struct net_device *dev)
6811 {
6812 	const struct net_device_ops *ops = dev->netdev_ops;
6813 
6814 	/* dev_open will call this function so the list will stay sane. */
6815 	if (!(dev->flags&IFF_UP))
6816 		return;
6817 
6818 	if (!netif_device_present(dev))
6819 		return;
6820 
6821 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6822 		/* Unicast addresses changes may only happen under the rtnl,
6823 		 * therefore calling __dev_set_promiscuity here is safe.
6824 		 */
6825 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6826 			__dev_set_promiscuity(dev, 1, false);
6827 			dev->uc_promisc = true;
6828 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6829 			__dev_set_promiscuity(dev, -1, false);
6830 			dev->uc_promisc = false;
6831 		}
6832 	}
6833 
6834 	if (ops->ndo_set_rx_mode)
6835 		ops->ndo_set_rx_mode(dev);
6836 }
6837 
6838 void dev_set_rx_mode(struct net_device *dev)
6839 {
6840 	netif_addr_lock_bh(dev);
6841 	__dev_set_rx_mode(dev);
6842 	netif_addr_unlock_bh(dev);
6843 }
6844 
6845 /**
6846  *	dev_get_flags - get flags reported to userspace
6847  *	@dev: device
6848  *
6849  *	Get the combination of flag bits exported through APIs to userspace.
6850  */
6851 unsigned int dev_get_flags(const struct net_device *dev)
6852 {
6853 	unsigned int flags;
6854 
6855 	flags = (dev->flags & ~(IFF_PROMISC |
6856 				IFF_ALLMULTI |
6857 				IFF_RUNNING |
6858 				IFF_LOWER_UP |
6859 				IFF_DORMANT)) |
6860 		(dev->gflags & (IFF_PROMISC |
6861 				IFF_ALLMULTI));
6862 
6863 	if (netif_running(dev)) {
6864 		if (netif_oper_up(dev))
6865 			flags |= IFF_RUNNING;
6866 		if (netif_carrier_ok(dev))
6867 			flags |= IFF_LOWER_UP;
6868 		if (netif_dormant(dev))
6869 			flags |= IFF_DORMANT;
6870 	}
6871 
6872 	return flags;
6873 }
6874 EXPORT_SYMBOL(dev_get_flags);
6875 
6876 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6877 {
6878 	unsigned int old_flags = dev->flags;
6879 	int ret;
6880 
6881 	ASSERT_RTNL();
6882 
6883 	/*
6884 	 *	Set the flags on our device.
6885 	 */
6886 
6887 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6888 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6889 			       IFF_AUTOMEDIA)) |
6890 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6891 				    IFF_ALLMULTI));
6892 
6893 	/*
6894 	 *	Load in the correct multicast list now the flags have changed.
6895 	 */
6896 
6897 	if ((old_flags ^ flags) & IFF_MULTICAST)
6898 		dev_change_rx_flags(dev, IFF_MULTICAST);
6899 
6900 	dev_set_rx_mode(dev);
6901 
6902 	/*
6903 	 *	Have we downed the interface. We handle IFF_UP ourselves
6904 	 *	according to user attempts to set it, rather than blindly
6905 	 *	setting it.
6906 	 */
6907 
6908 	ret = 0;
6909 	if ((old_flags ^ flags) & IFF_UP) {
6910 		if (old_flags & IFF_UP)
6911 			__dev_close(dev);
6912 		else
6913 			ret = __dev_open(dev);
6914 	}
6915 
6916 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6917 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6918 		unsigned int old_flags = dev->flags;
6919 
6920 		dev->gflags ^= IFF_PROMISC;
6921 
6922 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6923 			if (dev->flags != old_flags)
6924 				dev_set_rx_mode(dev);
6925 	}
6926 
6927 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6928 	 * is important. Some (broken) drivers set IFF_PROMISC, when
6929 	 * IFF_ALLMULTI is requested not asking us and not reporting.
6930 	 */
6931 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6932 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6933 
6934 		dev->gflags ^= IFF_ALLMULTI;
6935 		__dev_set_allmulti(dev, inc, false);
6936 	}
6937 
6938 	return ret;
6939 }
6940 
6941 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6942 			unsigned int gchanges)
6943 {
6944 	unsigned int changes = dev->flags ^ old_flags;
6945 
6946 	if (gchanges)
6947 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6948 
6949 	if (changes & IFF_UP) {
6950 		if (dev->flags & IFF_UP)
6951 			call_netdevice_notifiers(NETDEV_UP, dev);
6952 		else
6953 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6954 	}
6955 
6956 	if (dev->flags & IFF_UP &&
6957 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6958 		struct netdev_notifier_change_info change_info = {
6959 			.info = {
6960 				.dev = dev,
6961 			},
6962 			.flags_changed = changes,
6963 		};
6964 
6965 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
6966 	}
6967 }
6968 
6969 /**
6970  *	dev_change_flags - change device settings
6971  *	@dev: device
6972  *	@flags: device state flags
6973  *
6974  *	Change settings on device based state flags. The flags are
6975  *	in the userspace exported format.
6976  */
6977 int dev_change_flags(struct net_device *dev, unsigned int flags)
6978 {
6979 	int ret;
6980 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6981 
6982 	ret = __dev_change_flags(dev, flags);
6983 	if (ret < 0)
6984 		return ret;
6985 
6986 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6987 	__dev_notify_flags(dev, old_flags, changes);
6988 	return ret;
6989 }
6990 EXPORT_SYMBOL(dev_change_flags);
6991 
6992 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6993 {
6994 	const struct net_device_ops *ops = dev->netdev_ops;
6995 
6996 	if (ops->ndo_change_mtu)
6997 		return ops->ndo_change_mtu(dev, new_mtu);
6998 
6999 	dev->mtu = new_mtu;
7000 	return 0;
7001 }
7002 EXPORT_SYMBOL(__dev_set_mtu);
7003 
7004 /**
7005  *	dev_set_mtu - Change maximum transfer unit
7006  *	@dev: device
7007  *	@new_mtu: new transfer unit
7008  *
7009  *	Change the maximum transfer size of the network device.
7010  */
7011 int dev_set_mtu(struct net_device *dev, int new_mtu)
7012 {
7013 	int err, orig_mtu;
7014 
7015 	if (new_mtu == dev->mtu)
7016 		return 0;
7017 
7018 	/* MTU must be positive, and in range */
7019 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7020 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7021 				    dev->name, new_mtu, dev->min_mtu);
7022 		return -EINVAL;
7023 	}
7024 
7025 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7026 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7027 				    dev->name, new_mtu, dev->max_mtu);
7028 		return -EINVAL;
7029 	}
7030 
7031 	if (!netif_device_present(dev))
7032 		return -ENODEV;
7033 
7034 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7035 	err = notifier_to_errno(err);
7036 	if (err)
7037 		return err;
7038 
7039 	orig_mtu = dev->mtu;
7040 	err = __dev_set_mtu(dev, new_mtu);
7041 
7042 	if (!err) {
7043 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7044 		err = notifier_to_errno(err);
7045 		if (err) {
7046 			/* setting mtu back and notifying everyone again,
7047 			 * so that they have a chance to revert changes.
7048 			 */
7049 			__dev_set_mtu(dev, orig_mtu);
7050 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7051 		}
7052 	}
7053 	return err;
7054 }
7055 EXPORT_SYMBOL(dev_set_mtu);
7056 
7057 /**
7058  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7059  *	@dev: device
7060  *	@new_len: new tx queue length
7061  */
7062 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7063 {
7064 	unsigned int orig_len = dev->tx_queue_len;
7065 	int res;
7066 
7067 	if (new_len != (unsigned int)new_len)
7068 		return -ERANGE;
7069 
7070 	if (new_len != orig_len) {
7071 		dev->tx_queue_len = new_len;
7072 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7073 		res = notifier_to_errno(res);
7074 		if (res) {
7075 			netdev_err(dev,
7076 				   "refused to change device tx_queue_len\n");
7077 			dev->tx_queue_len = orig_len;
7078 			return res;
7079 		}
7080 		return dev_qdisc_change_tx_queue_len(dev);
7081 	}
7082 
7083 	return 0;
7084 }
7085 
7086 /**
7087  *	dev_set_group - Change group this device belongs to
7088  *	@dev: device
7089  *	@new_group: group this device should belong to
7090  */
7091 void dev_set_group(struct net_device *dev, int new_group)
7092 {
7093 	dev->group = new_group;
7094 }
7095 EXPORT_SYMBOL(dev_set_group);
7096 
7097 /**
7098  *	dev_set_mac_address - Change Media Access Control Address
7099  *	@dev: device
7100  *	@sa: new address
7101  *
7102  *	Change the hardware (MAC) address of the device
7103  */
7104 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7105 {
7106 	const struct net_device_ops *ops = dev->netdev_ops;
7107 	int err;
7108 
7109 	if (!ops->ndo_set_mac_address)
7110 		return -EOPNOTSUPP;
7111 	if (sa->sa_family != dev->type)
7112 		return -EINVAL;
7113 	if (!netif_device_present(dev))
7114 		return -ENODEV;
7115 	err = ops->ndo_set_mac_address(dev, sa);
7116 	if (err)
7117 		return err;
7118 	dev->addr_assign_type = NET_ADDR_SET;
7119 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7120 	add_device_randomness(dev->dev_addr, dev->addr_len);
7121 	return 0;
7122 }
7123 EXPORT_SYMBOL(dev_set_mac_address);
7124 
7125 /**
7126  *	dev_change_carrier - Change device carrier
7127  *	@dev: device
7128  *	@new_carrier: new value
7129  *
7130  *	Change device carrier
7131  */
7132 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7133 {
7134 	const struct net_device_ops *ops = dev->netdev_ops;
7135 
7136 	if (!ops->ndo_change_carrier)
7137 		return -EOPNOTSUPP;
7138 	if (!netif_device_present(dev))
7139 		return -ENODEV;
7140 	return ops->ndo_change_carrier(dev, new_carrier);
7141 }
7142 EXPORT_SYMBOL(dev_change_carrier);
7143 
7144 /**
7145  *	dev_get_phys_port_id - Get device physical port ID
7146  *	@dev: device
7147  *	@ppid: port ID
7148  *
7149  *	Get device physical port ID
7150  */
7151 int dev_get_phys_port_id(struct net_device *dev,
7152 			 struct netdev_phys_item_id *ppid)
7153 {
7154 	const struct net_device_ops *ops = dev->netdev_ops;
7155 
7156 	if (!ops->ndo_get_phys_port_id)
7157 		return -EOPNOTSUPP;
7158 	return ops->ndo_get_phys_port_id(dev, ppid);
7159 }
7160 EXPORT_SYMBOL(dev_get_phys_port_id);
7161 
7162 /**
7163  *	dev_get_phys_port_name - Get device physical port name
7164  *	@dev: device
7165  *	@name: port name
7166  *	@len: limit of bytes to copy to name
7167  *
7168  *	Get device physical port name
7169  */
7170 int dev_get_phys_port_name(struct net_device *dev,
7171 			   char *name, size_t len)
7172 {
7173 	const struct net_device_ops *ops = dev->netdev_ops;
7174 
7175 	if (!ops->ndo_get_phys_port_name)
7176 		return -EOPNOTSUPP;
7177 	return ops->ndo_get_phys_port_name(dev, name, len);
7178 }
7179 EXPORT_SYMBOL(dev_get_phys_port_name);
7180 
7181 /**
7182  *	dev_change_proto_down - update protocol port state information
7183  *	@dev: device
7184  *	@proto_down: new value
7185  *
7186  *	This info can be used by switch drivers to set the phys state of the
7187  *	port.
7188  */
7189 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7190 {
7191 	const struct net_device_ops *ops = dev->netdev_ops;
7192 
7193 	if (!ops->ndo_change_proto_down)
7194 		return -EOPNOTSUPP;
7195 	if (!netif_device_present(dev))
7196 		return -ENODEV;
7197 	return ops->ndo_change_proto_down(dev, proto_down);
7198 }
7199 EXPORT_SYMBOL(dev_change_proto_down);
7200 
7201 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7202 		     struct netdev_bpf *xdp)
7203 {
7204 	memset(xdp, 0, sizeof(*xdp));
7205 	xdp->command = XDP_QUERY_PROG;
7206 
7207 	/* Query must always succeed. */
7208 	WARN_ON(bpf_op(dev, xdp) < 0);
7209 }
7210 
7211 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7212 {
7213 	struct netdev_bpf xdp;
7214 
7215 	__dev_xdp_query(dev, bpf_op, &xdp);
7216 
7217 	return xdp.prog_attached;
7218 }
7219 
7220 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7221 			   struct netlink_ext_ack *extack, u32 flags,
7222 			   struct bpf_prog *prog)
7223 {
7224 	struct netdev_bpf xdp;
7225 
7226 	memset(&xdp, 0, sizeof(xdp));
7227 	if (flags & XDP_FLAGS_HW_MODE)
7228 		xdp.command = XDP_SETUP_PROG_HW;
7229 	else
7230 		xdp.command = XDP_SETUP_PROG;
7231 	xdp.extack = extack;
7232 	xdp.flags = flags;
7233 	xdp.prog = prog;
7234 
7235 	return bpf_op(dev, &xdp);
7236 }
7237 
7238 static void dev_xdp_uninstall(struct net_device *dev)
7239 {
7240 	struct netdev_bpf xdp;
7241 	bpf_op_t ndo_bpf;
7242 
7243 	/* Remove generic XDP */
7244 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7245 
7246 	/* Remove from the driver */
7247 	ndo_bpf = dev->netdev_ops->ndo_bpf;
7248 	if (!ndo_bpf)
7249 		return;
7250 
7251 	__dev_xdp_query(dev, ndo_bpf, &xdp);
7252 	if (xdp.prog_attached == XDP_ATTACHED_NONE)
7253 		return;
7254 
7255 	/* Program removal should always succeed */
7256 	WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7257 }
7258 
7259 /**
7260  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7261  *	@dev: device
7262  *	@extack: netlink extended ack
7263  *	@fd: new program fd or negative value to clear
7264  *	@flags: xdp-related flags
7265  *
7266  *	Set or clear a bpf program for a device
7267  */
7268 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7269 		      int fd, u32 flags)
7270 {
7271 	const struct net_device_ops *ops = dev->netdev_ops;
7272 	struct bpf_prog *prog = NULL;
7273 	bpf_op_t bpf_op, bpf_chk;
7274 	int err;
7275 
7276 	ASSERT_RTNL();
7277 
7278 	bpf_op = bpf_chk = ops->ndo_bpf;
7279 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7280 		return -EOPNOTSUPP;
7281 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7282 		bpf_op = generic_xdp_install;
7283 	if (bpf_op == bpf_chk)
7284 		bpf_chk = generic_xdp_install;
7285 
7286 	if (fd >= 0) {
7287 		if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7288 			return -EEXIST;
7289 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7290 		    __dev_xdp_attached(dev, bpf_op))
7291 			return -EBUSY;
7292 
7293 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7294 					     bpf_op == ops->ndo_bpf);
7295 		if (IS_ERR(prog))
7296 			return PTR_ERR(prog);
7297 
7298 		if (!(flags & XDP_FLAGS_HW_MODE) &&
7299 		    bpf_prog_is_dev_bound(prog->aux)) {
7300 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7301 			bpf_prog_put(prog);
7302 			return -EINVAL;
7303 		}
7304 	}
7305 
7306 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7307 	if (err < 0 && prog)
7308 		bpf_prog_put(prog);
7309 
7310 	return err;
7311 }
7312 
7313 /**
7314  *	dev_new_index	-	allocate an ifindex
7315  *	@net: the applicable net namespace
7316  *
7317  *	Returns a suitable unique value for a new device interface
7318  *	number.  The caller must hold the rtnl semaphore or the
7319  *	dev_base_lock to be sure it remains unique.
7320  */
7321 static int dev_new_index(struct net *net)
7322 {
7323 	int ifindex = net->ifindex;
7324 
7325 	for (;;) {
7326 		if (++ifindex <= 0)
7327 			ifindex = 1;
7328 		if (!__dev_get_by_index(net, ifindex))
7329 			return net->ifindex = ifindex;
7330 	}
7331 }
7332 
7333 /* Delayed registration/unregisteration */
7334 static LIST_HEAD(net_todo_list);
7335 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7336 
7337 static void net_set_todo(struct net_device *dev)
7338 {
7339 	list_add_tail(&dev->todo_list, &net_todo_list);
7340 	dev_net(dev)->dev_unreg_count++;
7341 }
7342 
7343 static void rollback_registered_many(struct list_head *head)
7344 {
7345 	struct net_device *dev, *tmp;
7346 	LIST_HEAD(close_head);
7347 
7348 	BUG_ON(dev_boot_phase);
7349 	ASSERT_RTNL();
7350 
7351 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7352 		/* Some devices call without registering
7353 		 * for initialization unwind. Remove those
7354 		 * devices and proceed with the remaining.
7355 		 */
7356 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7357 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7358 				 dev->name, dev);
7359 
7360 			WARN_ON(1);
7361 			list_del(&dev->unreg_list);
7362 			continue;
7363 		}
7364 		dev->dismantle = true;
7365 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7366 	}
7367 
7368 	/* If device is running, close it first. */
7369 	list_for_each_entry(dev, head, unreg_list)
7370 		list_add_tail(&dev->close_list, &close_head);
7371 	dev_close_many(&close_head, true);
7372 
7373 	list_for_each_entry(dev, head, unreg_list) {
7374 		/* And unlink it from device chain. */
7375 		unlist_netdevice(dev);
7376 
7377 		dev->reg_state = NETREG_UNREGISTERING;
7378 	}
7379 	flush_all_backlogs();
7380 
7381 	synchronize_net();
7382 
7383 	list_for_each_entry(dev, head, unreg_list) {
7384 		struct sk_buff *skb = NULL;
7385 
7386 		/* Shutdown queueing discipline. */
7387 		dev_shutdown(dev);
7388 
7389 		dev_xdp_uninstall(dev);
7390 
7391 		/* Notify protocols, that we are about to destroy
7392 		 * this device. They should clean all the things.
7393 		 */
7394 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7395 
7396 		if (!dev->rtnl_link_ops ||
7397 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7398 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7399 						     GFP_KERNEL, NULL, 0);
7400 
7401 		/*
7402 		 *	Flush the unicast and multicast chains
7403 		 */
7404 		dev_uc_flush(dev);
7405 		dev_mc_flush(dev);
7406 
7407 		if (dev->netdev_ops->ndo_uninit)
7408 			dev->netdev_ops->ndo_uninit(dev);
7409 
7410 		if (skb)
7411 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7412 
7413 		/* Notifier chain MUST detach us all upper devices. */
7414 		WARN_ON(netdev_has_any_upper_dev(dev));
7415 		WARN_ON(netdev_has_any_lower_dev(dev));
7416 
7417 		/* Remove entries from kobject tree */
7418 		netdev_unregister_kobject(dev);
7419 #ifdef CONFIG_XPS
7420 		/* Remove XPS queueing entries */
7421 		netif_reset_xps_queues_gt(dev, 0);
7422 #endif
7423 	}
7424 
7425 	synchronize_net();
7426 
7427 	list_for_each_entry(dev, head, unreg_list)
7428 		dev_put(dev);
7429 }
7430 
7431 static void rollback_registered(struct net_device *dev)
7432 {
7433 	LIST_HEAD(single);
7434 
7435 	list_add(&dev->unreg_list, &single);
7436 	rollback_registered_many(&single);
7437 	list_del(&single);
7438 }
7439 
7440 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7441 	struct net_device *upper, netdev_features_t features)
7442 {
7443 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7444 	netdev_features_t feature;
7445 	int feature_bit;
7446 
7447 	for_each_netdev_feature(&upper_disables, feature_bit) {
7448 		feature = __NETIF_F_BIT(feature_bit);
7449 		if (!(upper->wanted_features & feature)
7450 		    && (features & feature)) {
7451 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7452 				   &feature, upper->name);
7453 			features &= ~feature;
7454 		}
7455 	}
7456 
7457 	return features;
7458 }
7459 
7460 static void netdev_sync_lower_features(struct net_device *upper,
7461 	struct net_device *lower, netdev_features_t features)
7462 {
7463 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7464 	netdev_features_t feature;
7465 	int feature_bit;
7466 
7467 	for_each_netdev_feature(&upper_disables, feature_bit) {
7468 		feature = __NETIF_F_BIT(feature_bit);
7469 		if (!(features & feature) && (lower->features & feature)) {
7470 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7471 				   &feature, lower->name);
7472 			lower->wanted_features &= ~feature;
7473 			netdev_update_features(lower);
7474 
7475 			if (unlikely(lower->features & feature))
7476 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7477 					    &feature, lower->name);
7478 		}
7479 	}
7480 }
7481 
7482 static netdev_features_t netdev_fix_features(struct net_device *dev,
7483 	netdev_features_t features)
7484 {
7485 	/* Fix illegal checksum combinations */
7486 	if ((features & NETIF_F_HW_CSUM) &&
7487 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7488 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7489 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7490 	}
7491 
7492 	/* TSO requires that SG is present as well. */
7493 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7494 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7495 		features &= ~NETIF_F_ALL_TSO;
7496 	}
7497 
7498 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7499 					!(features & NETIF_F_IP_CSUM)) {
7500 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7501 		features &= ~NETIF_F_TSO;
7502 		features &= ~NETIF_F_TSO_ECN;
7503 	}
7504 
7505 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7506 					 !(features & NETIF_F_IPV6_CSUM)) {
7507 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7508 		features &= ~NETIF_F_TSO6;
7509 	}
7510 
7511 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7512 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7513 		features &= ~NETIF_F_TSO_MANGLEID;
7514 
7515 	/* TSO ECN requires that TSO is present as well. */
7516 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7517 		features &= ~NETIF_F_TSO_ECN;
7518 
7519 	/* Software GSO depends on SG. */
7520 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7521 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7522 		features &= ~NETIF_F_GSO;
7523 	}
7524 
7525 	/* GSO partial features require GSO partial be set */
7526 	if ((features & dev->gso_partial_features) &&
7527 	    !(features & NETIF_F_GSO_PARTIAL)) {
7528 		netdev_dbg(dev,
7529 			   "Dropping partially supported GSO features since no GSO partial.\n");
7530 		features &= ~dev->gso_partial_features;
7531 	}
7532 
7533 	if (!(features & NETIF_F_RXCSUM)) {
7534 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7535 		 * successfully merged by hardware must also have the
7536 		 * checksum verified by hardware.  If the user does not
7537 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
7538 		 */
7539 		if (features & NETIF_F_GRO_HW) {
7540 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7541 			features &= ~NETIF_F_GRO_HW;
7542 		}
7543 	}
7544 
7545 	return features;
7546 }
7547 
7548 int __netdev_update_features(struct net_device *dev)
7549 {
7550 	struct net_device *upper, *lower;
7551 	netdev_features_t features;
7552 	struct list_head *iter;
7553 	int err = -1;
7554 
7555 	ASSERT_RTNL();
7556 
7557 	features = netdev_get_wanted_features(dev);
7558 
7559 	if (dev->netdev_ops->ndo_fix_features)
7560 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7561 
7562 	/* driver might be less strict about feature dependencies */
7563 	features = netdev_fix_features(dev, features);
7564 
7565 	/* some features can't be enabled if they're off an an upper device */
7566 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7567 		features = netdev_sync_upper_features(dev, upper, features);
7568 
7569 	if (dev->features == features)
7570 		goto sync_lower;
7571 
7572 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7573 		&dev->features, &features);
7574 
7575 	if (dev->netdev_ops->ndo_set_features)
7576 		err = dev->netdev_ops->ndo_set_features(dev, features);
7577 	else
7578 		err = 0;
7579 
7580 	if (unlikely(err < 0)) {
7581 		netdev_err(dev,
7582 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7583 			err, &features, &dev->features);
7584 		/* return non-0 since some features might have changed and
7585 		 * it's better to fire a spurious notification than miss it
7586 		 */
7587 		return -1;
7588 	}
7589 
7590 sync_lower:
7591 	/* some features must be disabled on lower devices when disabled
7592 	 * on an upper device (think: bonding master or bridge)
7593 	 */
7594 	netdev_for_each_lower_dev(dev, lower, iter)
7595 		netdev_sync_lower_features(dev, lower, features);
7596 
7597 	if (!err) {
7598 		netdev_features_t diff = features ^ dev->features;
7599 
7600 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7601 			/* udp_tunnel_{get,drop}_rx_info both need
7602 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7603 			 * device, or they won't do anything.
7604 			 * Thus we need to update dev->features
7605 			 * *before* calling udp_tunnel_get_rx_info,
7606 			 * but *after* calling udp_tunnel_drop_rx_info.
7607 			 */
7608 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7609 				dev->features = features;
7610 				udp_tunnel_get_rx_info(dev);
7611 			} else {
7612 				udp_tunnel_drop_rx_info(dev);
7613 			}
7614 		}
7615 
7616 		dev->features = features;
7617 	}
7618 
7619 	return err < 0 ? 0 : 1;
7620 }
7621 
7622 /**
7623  *	netdev_update_features - recalculate device features
7624  *	@dev: the device to check
7625  *
7626  *	Recalculate dev->features set and send notifications if it
7627  *	has changed. Should be called after driver or hardware dependent
7628  *	conditions might have changed that influence the features.
7629  */
7630 void netdev_update_features(struct net_device *dev)
7631 {
7632 	if (__netdev_update_features(dev))
7633 		netdev_features_change(dev);
7634 }
7635 EXPORT_SYMBOL(netdev_update_features);
7636 
7637 /**
7638  *	netdev_change_features - recalculate device features
7639  *	@dev: the device to check
7640  *
7641  *	Recalculate dev->features set and send notifications even
7642  *	if they have not changed. Should be called instead of
7643  *	netdev_update_features() if also dev->vlan_features might
7644  *	have changed to allow the changes to be propagated to stacked
7645  *	VLAN devices.
7646  */
7647 void netdev_change_features(struct net_device *dev)
7648 {
7649 	__netdev_update_features(dev);
7650 	netdev_features_change(dev);
7651 }
7652 EXPORT_SYMBOL(netdev_change_features);
7653 
7654 /**
7655  *	netif_stacked_transfer_operstate -	transfer operstate
7656  *	@rootdev: the root or lower level device to transfer state from
7657  *	@dev: the device to transfer operstate to
7658  *
7659  *	Transfer operational state from root to device. This is normally
7660  *	called when a stacking relationship exists between the root
7661  *	device and the device(a leaf device).
7662  */
7663 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7664 					struct net_device *dev)
7665 {
7666 	if (rootdev->operstate == IF_OPER_DORMANT)
7667 		netif_dormant_on(dev);
7668 	else
7669 		netif_dormant_off(dev);
7670 
7671 	if (netif_carrier_ok(rootdev))
7672 		netif_carrier_on(dev);
7673 	else
7674 		netif_carrier_off(dev);
7675 }
7676 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7677 
7678 static int netif_alloc_rx_queues(struct net_device *dev)
7679 {
7680 	unsigned int i, count = dev->num_rx_queues;
7681 	struct netdev_rx_queue *rx;
7682 	size_t sz = count * sizeof(*rx);
7683 	int err = 0;
7684 
7685 	BUG_ON(count < 1);
7686 
7687 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7688 	if (!rx)
7689 		return -ENOMEM;
7690 
7691 	dev->_rx = rx;
7692 
7693 	for (i = 0; i < count; i++) {
7694 		rx[i].dev = dev;
7695 
7696 		/* XDP RX-queue setup */
7697 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7698 		if (err < 0)
7699 			goto err_rxq_info;
7700 	}
7701 	return 0;
7702 
7703 err_rxq_info:
7704 	/* Rollback successful reg's and free other resources */
7705 	while (i--)
7706 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7707 	kvfree(dev->_rx);
7708 	dev->_rx = NULL;
7709 	return err;
7710 }
7711 
7712 static void netif_free_rx_queues(struct net_device *dev)
7713 {
7714 	unsigned int i, count = dev->num_rx_queues;
7715 
7716 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7717 	if (!dev->_rx)
7718 		return;
7719 
7720 	for (i = 0; i < count; i++)
7721 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
7722 
7723 	kvfree(dev->_rx);
7724 }
7725 
7726 static void netdev_init_one_queue(struct net_device *dev,
7727 				  struct netdev_queue *queue, void *_unused)
7728 {
7729 	/* Initialize queue lock */
7730 	spin_lock_init(&queue->_xmit_lock);
7731 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7732 	queue->xmit_lock_owner = -1;
7733 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7734 	queue->dev = dev;
7735 #ifdef CONFIG_BQL
7736 	dql_init(&queue->dql, HZ);
7737 #endif
7738 }
7739 
7740 static void netif_free_tx_queues(struct net_device *dev)
7741 {
7742 	kvfree(dev->_tx);
7743 }
7744 
7745 static int netif_alloc_netdev_queues(struct net_device *dev)
7746 {
7747 	unsigned int count = dev->num_tx_queues;
7748 	struct netdev_queue *tx;
7749 	size_t sz = count * sizeof(*tx);
7750 
7751 	if (count < 1 || count > 0xffff)
7752 		return -EINVAL;
7753 
7754 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7755 	if (!tx)
7756 		return -ENOMEM;
7757 
7758 	dev->_tx = tx;
7759 
7760 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7761 	spin_lock_init(&dev->tx_global_lock);
7762 
7763 	return 0;
7764 }
7765 
7766 void netif_tx_stop_all_queues(struct net_device *dev)
7767 {
7768 	unsigned int i;
7769 
7770 	for (i = 0; i < dev->num_tx_queues; i++) {
7771 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7772 
7773 		netif_tx_stop_queue(txq);
7774 	}
7775 }
7776 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7777 
7778 /**
7779  *	register_netdevice	- register a network device
7780  *	@dev: device to register
7781  *
7782  *	Take a completed network device structure and add it to the kernel
7783  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7784  *	chain. 0 is returned on success. A negative errno code is returned
7785  *	on a failure to set up the device, or if the name is a duplicate.
7786  *
7787  *	Callers must hold the rtnl semaphore. You may want
7788  *	register_netdev() instead of this.
7789  *
7790  *	BUGS:
7791  *	The locking appears insufficient to guarantee two parallel registers
7792  *	will not get the same name.
7793  */
7794 
7795 int register_netdevice(struct net_device *dev)
7796 {
7797 	int ret;
7798 	struct net *net = dev_net(dev);
7799 
7800 	BUG_ON(dev_boot_phase);
7801 	ASSERT_RTNL();
7802 
7803 	might_sleep();
7804 
7805 	/* When net_device's are persistent, this will be fatal. */
7806 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7807 	BUG_ON(!net);
7808 
7809 	spin_lock_init(&dev->addr_list_lock);
7810 	netdev_set_addr_lockdep_class(dev);
7811 
7812 	ret = dev_get_valid_name(net, dev, dev->name);
7813 	if (ret < 0)
7814 		goto out;
7815 
7816 	/* Init, if this function is available */
7817 	if (dev->netdev_ops->ndo_init) {
7818 		ret = dev->netdev_ops->ndo_init(dev);
7819 		if (ret) {
7820 			if (ret > 0)
7821 				ret = -EIO;
7822 			goto out;
7823 		}
7824 	}
7825 
7826 	if (((dev->hw_features | dev->features) &
7827 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7828 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7829 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7830 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7831 		ret = -EINVAL;
7832 		goto err_uninit;
7833 	}
7834 
7835 	ret = -EBUSY;
7836 	if (!dev->ifindex)
7837 		dev->ifindex = dev_new_index(net);
7838 	else if (__dev_get_by_index(net, dev->ifindex))
7839 		goto err_uninit;
7840 
7841 	/* Transfer changeable features to wanted_features and enable
7842 	 * software offloads (GSO and GRO).
7843 	 */
7844 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7845 	dev->features |= NETIF_F_SOFT_FEATURES;
7846 
7847 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
7848 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7849 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7850 	}
7851 
7852 	dev->wanted_features = dev->features & dev->hw_features;
7853 
7854 	if (!(dev->flags & IFF_LOOPBACK))
7855 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7856 
7857 	/* If IPv4 TCP segmentation offload is supported we should also
7858 	 * allow the device to enable segmenting the frame with the option
7859 	 * of ignoring a static IP ID value.  This doesn't enable the
7860 	 * feature itself but allows the user to enable it later.
7861 	 */
7862 	if (dev->hw_features & NETIF_F_TSO)
7863 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7864 	if (dev->vlan_features & NETIF_F_TSO)
7865 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7866 	if (dev->mpls_features & NETIF_F_TSO)
7867 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7868 	if (dev->hw_enc_features & NETIF_F_TSO)
7869 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7870 
7871 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7872 	 */
7873 	dev->vlan_features |= NETIF_F_HIGHDMA;
7874 
7875 	/* Make NETIF_F_SG inheritable to tunnel devices.
7876 	 */
7877 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7878 
7879 	/* Make NETIF_F_SG inheritable to MPLS.
7880 	 */
7881 	dev->mpls_features |= NETIF_F_SG;
7882 
7883 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7884 	ret = notifier_to_errno(ret);
7885 	if (ret)
7886 		goto err_uninit;
7887 
7888 	ret = netdev_register_kobject(dev);
7889 	if (ret)
7890 		goto err_uninit;
7891 	dev->reg_state = NETREG_REGISTERED;
7892 
7893 	__netdev_update_features(dev);
7894 
7895 	/*
7896 	 *	Default initial state at registry is that the
7897 	 *	device is present.
7898 	 */
7899 
7900 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7901 
7902 	linkwatch_init_dev(dev);
7903 
7904 	dev_init_scheduler(dev);
7905 	dev_hold(dev);
7906 	list_netdevice(dev);
7907 	add_device_randomness(dev->dev_addr, dev->addr_len);
7908 
7909 	/* If the device has permanent device address, driver should
7910 	 * set dev_addr and also addr_assign_type should be set to
7911 	 * NET_ADDR_PERM (default value).
7912 	 */
7913 	if (dev->addr_assign_type == NET_ADDR_PERM)
7914 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7915 
7916 	/* Notify protocols, that a new device appeared. */
7917 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7918 	ret = notifier_to_errno(ret);
7919 	if (ret) {
7920 		rollback_registered(dev);
7921 		dev->reg_state = NETREG_UNREGISTERED;
7922 	}
7923 	/*
7924 	 *	Prevent userspace races by waiting until the network
7925 	 *	device is fully setup before sending notifications.
7926 	 */
7927 	if (!dev->rtnl_link_ops ||
7928 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7929 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7930 
7931 out:
7932 	return ret;
7933 
7934 err_uninit:
7935 	if (dev->netdev_ops->ndo_uninit)
7936 		dev->netdev_ops->ndo_uninit(dev);
7937 	if (dev->priv_destructor)
7938 		dev->priv_destructor(dev);
7939 	goto out;
7940 }
7941 EXPORT_SYMBOL(register_netdevice);
7942 
7943 /**
7944  *	init_dummy_netdev	- init a dummy network device for NAPI
7945  *	@dev: device to init
7946  *
7947  *	This takes a network device structure and initialize the minimum
7948  *	amount of fields so it can be used to schedule NAPI polls without
7949  *	registering a full blown interface. This is to be used by drivers
7950  *	that need to tie several hardware interfaces to a single NAPI
7951  *	poll scheduler due to HW limitations.
7952  */
7953 int init_dummy_netdev(struct net_device *dev)
7954 {
7955 	/* Clear everything. Note we don't initialize spinlocks
7956 	 * are they aren't supposed to be taken by any of the
7957 	 * NAPI code and this dummy netdev is supposed to be
7958 	 * only ever used for NAPI polls
7959 	 */
7960 	memset(dev, 0, sizeof(struct net_device));
7961 
7962 	/* make sure we BUG if trying to hit standard
7963 	 * register/unregister code path
7964 	 */
7965 	dev->reg_state = NETREG_DUMMY;
7966 
7967 	/* NAPI wants this */
7968 	INIT_LIST_HEAD(&dev->napi_list);
7969 
7970 	/* a dummy interface is started by default */
7971 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7972 	set_bit(__LINK_STATE_START, &dev->state);
7973 
7974 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7975 	 * because users of this 'device' dont need to change
7976 	 * its refcount.
7977 	 */
7978 
7979 	return 0;
7980 }
7981 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7982 
7983 
7984 /**
7985  *	register_netdev	- register a network device
7986  *	@dev: device to register
7987  *
7988  *	Take a completed network device structure and add it to the kernel
7989  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7990  *	chain. 0 is returned on success. A negative errno code is returned
7991  *	on a failure to set up the device, or if the name is a duplicate.
7992  *
7993  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7994  *	and expands the device name if you passed a format string to
7995  *	alloc_netdev.
7996  */
7997 int register_netdev(struct net_device *dev)
7998 {
7999 	int err;
8000 
8001 	rtnl_lock();
8002 	err = register_netdevice(dev);
8003 	rtnl_unlock();
8004 	return err;
8005 }
8006 EXPORT_SYMBOL(register_netdev);
8007 
8008 int netdev_refcnt_read(const struct net_device *dev)
8009 {
8010 	int i, refcnt = 0;
8011 
8012 	for_each_possible_cpu(i)
8013 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8014 	return refcnt;
8015 }
8016 EXPORT_SYMBOL(netdev_refcnt_read);
8017 
8018 /**
8019  * netdev_wait_allrefs - wait until all references are gone.
8020  * @dev: target net_device
8021  *
8022  * This is called when unregistering network devices.
8023  *
8024  * Any protocol or device that holds a reference should register
8025  * for netdevice notification, and cleanup and put back the
8026  * reference if they receive an UNREGISTER event.
8027  * We can get stuck here if buggy protocols don't correctly
8028  * call dev_put.
8029  */
8030 static void netdev_wait_allrefs(struct net_device *dev)
8031 {
8032 	unsigned long rebroadcast_time, warning_time;
8033 	int refcnt;
8034 
8035 	linkwatch_forget_dev(dev);
8036 
8037 	rebroadcast_time = warning_time = jiffies;
8038 	refcnt = netdev_refcnt_read(dev);
8039 
8040 	while (refcnt != 0) {
8041 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8042 			rtnl_lock();
8043 
8044 			/* Rebroadcast unregister notification */
8045 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8046 
8047 			__rtnl_unlock();
8048 			rcu_barrier();
8049 			rtnl_lock();
8050 
8051 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8052 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8053 				     &dev->state)) {
8054 				/* We must not have linkwatch events
8055 				 * pending on unregister. If this
8056 				 * happens, we simply run the queue
8057 				 * unscheduled, resulting in a noop
8058 				 * for this device.
8059 				 */
8060 				linkwatch_run_queue();
8061 			}
8062 
8063 			__rtnl_unlock();
8064 
8065 			rebroadcast_time = jiffies;
8066 		}
8067 
8068 		msleep(250);
8069 
8070 		refcnt = netdev_refcnt_read(dev);
8071 
8072 		if (time_after(jiffies, warning_time + 10 * HZ)) {
8073 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8074 				 dev->name, refcnt);
8075 			warning_time = jiffies;
8076 		}
8077 	}
8078 }
8079 
8080 /* The sequence is:
8081  *
8082  *	rtnl_lock();
8083  *	...
8084  *	register_netdevice(x1);
8085  *	register_netdevice(x2);
8086  *	...
8087  *	unregister_netdevice(y1);
8088  *	unregister_netdevice(y2);
8089  *      ...
8090  *	rtnl_unlock();
8091  *	free_netdev(y1);
8092  *	free_netdev(y2);
8093  *
8094  * We are invoked by rtnl_unlock().
8095  * This allows us to deal with problems:
8096  * 1) We can delete sysfs objects which invoke hotplug
8097  *    without deadlocking with linkwatch via keventd.
8098  * 2) Since we run with the RTNL semaphore not held, we can sleep
8099  *    safely in order to wait for the netdev refcnt to drop to zero.
8100  *
8101  * We must not return until all unregister events added during
8102  * the interval the lock was held have been completed.
8103  */
8104 void netdev_run_todo(void)
8105 {
8106 	struct list_head list;
8107 
8108 	/* Snapshot list, allow later requests */
8109 	list_replace_init(&net_todo_list, &list);
8110 
8111 	__rtnl_unlock();
8112 
8113 
8114 	/* Wait for rcu callbacks to finish before next phase */
8115 	if (!list_empty(&list))
8116 		rcu_barrier();
8117 
8118 	while (!list_empty(&list)) {
8119 		struct net_device *dev
8120 			= list_first_entry(&list, struct net_device, todo_list);
8121 		list_del(&dev->todo_list);
8122 
8123 		rtnl_lock();
8124 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8125 		__rtnl_unlock();
8126 
8127 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8128 			pr_err("network todo '%s' but state %d\n",
8129 			       dev->name, dev->reg_state);
8130 			dump_stack();
8131 			continue;
8132 		}
8133 
8134 		dev->reg_state = NETREG_UNREGISTERED;
8135 
8136 		netdev_wait_allrefs(dev);
8137 
8138 		/* paranoia */
8139 		BUG_ON(netdev_refcnt_read(dev));
8140 		BUG_ON(!list_empty(&dev->ptype_all));
8141 		BUG_ON(!list_empty(&dev->ptype_specific));
8142 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8143 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8144 		WARN_ON(dev->dn_ptr);
8145 
8146 		if (dev->priv_destructor)
8147 			dev->priv_destructor(dev);
8148 		if (dev->needs_free_netdev)
8149 			free_netdev(dev);
8150 
8151 		/* Report a network device has been unregistered */
8152 		rtnl_lock();
8153 		dev_net(dev)->dev_unreg_count--;
8154 		__rtnl_unlock();
8155 		wake_up(&netdev_unregistering_wq);
8156 
8157 		/* Free network device */
8158 		kobject_put(&dev->dev.kobj);
8159 	}
8160 }
8161 
8162 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8163  * all the same fields in the same order as net_device_stats, with only
8164  * the type differing, but rtnl_link_stats64 may have additional fields
8165  * at the end for newer counters.
8166  */
8167 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8168 			     const struct net_device_stats *netdev_stats)
8169 {
8170 #if BITS_PER_LONG == 64
8171 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8172 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8173 	/* zero out counters that only exist in rtnl_link_stats64 */
8174 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
8175 	       sizeof(*stats64) - sizeof(*netdev_stats));
8176 #else
8177 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8178 	const unsigned long *src = (const unsigned long *)netdev_stats;
8179 	u64 *dst = (u64 *)stats64;
8180 
8181 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8182 	for (i = 0; i < n; i++)
8183 		dst[i] = src[i];
8184 	/* zero out counters that only exist in rtnl_link_stats64 */
8185 	memset((char *)stats64 + n * sizeof(u64), 0,
8186 	       sizeof(*stats64) - n * sizeof(u64));
8187 #endif
8188 }
8189 EXPORT_SYMBOL(netdev_stats_to_stats64);
8190 
8191 /**
8192  *	dev_get_stats	- get network device statistics
8193  *	@dev: device to get statistics from
8194  *	@storage: place to store stats
8195  *
8196  *	Get network statistics from device. Return @storage.
8197  *	The device driver may provide its own method by setting
8198  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8199  *	otherwise the internal statistics structure is used.
8200  */
8201 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8202 					struct rtnl_link_stats64 *storage)
8203 {
8204 	const struct net_device_ops *ops = dev->netdev_ops;
8205 
8206 	if (ops->ndo_get_stats64) {
8207 		memset(storage, 0, sizeof(*storage));
8208 		ops->ndo_get_stats64(dev, storage);
8209 	} else if (ops->ndo_get_stats) {
8210 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8211 	} else {
8212 		netdev_stats_to_stats64(storage, &dev->stats);
8213 	}
8214 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8215 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8216 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8217 	return storage;
8218 }
8219 EXPORT_SYMBOL(dev_get_stats);
8220 
8221 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8222 {
8223 	struct netdev_queue *queue = dev_ingress_queue(dev);
8224 
8225 #ifdef CONFIG_NET_CLS_ACT
8226 	if (queue)
8227 		return queue;
8228 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8229 	if (!queue)
8230 		return NULL;
8231 	netdev_init_one_queue(dev, queue, NULL);
8232 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8233 	queue->qdisc_sleeping = &noop_qdisc;
8234 	rcu_assign_pointer(dev->ingress_queue, queue);
8235 #endif
8236 	return queue;
8237 }
8238 
8239 static const struct ethtool_ops default_ethtool_ops;
8240 
8241 void netdev_set_default_ethtool_ops(struct net_device *dev,
8242 				    const struct ethtool_ops *ops)
8243 {
8244 	if (dev->ethtool_ops == &default_ethtool_ops)
8245 		dev->ethtool_ops = ops;
8246 }
8247 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8248 
8249 void netdev_freemem(struct net_device *dev)
8250 {
8251 	char *addr = (char *)dev - dev->padded;
8252 
8253 	kvfree(addr);
8254 }
8255 
8256 /**
8257  * alloc_netdev_mqs - allocate network device
8258  * @sizeof_priv: size of private data to allocate space for
8259  * @name: device name format string
8260  * @name_assign_type: origin of device name
8261  * @setup: callback to initialize device
8262  * @txqs: the number of TX subqueues to allocate
8263  * @rxqs: the number of RX subqueues to allocate
8264  *
8265  * Allocates a struct net_device with private data area for driver use
8266  * and performs basic initialization.  Also allocates subqueue structs
8267  * for each queue on the device.
8268  */
8269 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8270 		unsigned char name_assign_type,
8271 		void (*setup)(struct net_device *),
8272 		unsigned int txqs, unsigned int rxqs)
8273 {
8274 	struct net_device *dev;
8275 	unsigned int alloc_size;
8276 	struct net_device *p;
8277 
8278 	BUG_ON(strlen(name) >= sizeof(dev->name));
8279 
8280 	if (txqs < 1) {
8281 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8282 		return NULL;
8283 	}
8284 
8285 	if (rxqs < 1) {
8286 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8287 		return NULL;
8288 	}
8289 
8290 	alloc_size = sizeof(struct net_device);
8291 	if (sizeof_priv) {
8292 		/* ensure 32-byte alignment of private area */
8293 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8294 		alloc_size += sizeof_priv;
8295 	}
8296 	/* ensure 32-byte alignment of whole construct */
8297 	alloc_size += NETDEV_ALIGN - 1;
8298 
8299 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8300 	if (!p)
8301 		return NULL;
8302 
8303 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8304 	dev->padded = (char *)dev - (char *)p;
8305 
8306 	dev->pcpu_refcnt = alloc_percpu(int);
8307 	if (!dev->pcpu_refcnt)
8308 		goto free_dev;
8309 
8310 	if (dev_addr_init(dev))
8311 		goto free_pcpu;
8312 
8313 	dev_mc_init(dev);
8314 	dev_uc_init(dev);
8315 
8316 	dev_net_set(dev, &init_net);
8317 
8318 	dev->gso_max_size = GSO_MAX_SIZE;
8319 	dev->gso_max_segs = GSO_MAX_SEGS;
8320 
8321 	INIT_LIST_HEAD(&dev->napi_list);
8322 	INIT_LIST_HEAD(&dev->unreg_list);
8323 	INIT_LIST_HEAD(&dev->close_list);
8324 	INIT_LIST_HEAD(&dev->link_watch_list);
8325 	INIT_LIST_HEAD(&dev->adj_list.upper);
8326 	INIT_LIST_HEAD(&dev->adj_list.lower);
8327 	INIT_LIST_HEAD(&dev->ptype_all);
8328 	INIT_LIST_HEAD(&dev->ptype_specific);
8329 #ifdef CONFIG_NET_SCHED
8330 	hash_init(dev->qdisc_hash);
8331 #endif
8332 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8333 	setup(dev);
8334 
8335 	if (!dev->tx_queue_len) {
8336 		dev->priv_flags |= IFF_NO_QUEUE;
8337 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8338 	}
8339 
8340 	dev->num_tx_queues = txqs;
8341 	dev->real_num_tx_queues = txqs;
8342 	if (netif_alloc_netdev_queues(dev))
8343 		goto free_all;
8344 
8345 	dev->num_rx_queues = rxqs;
8346 	dev->real_num_rx_queues = rxqs;
8347 	if (netif_alloc_rx_queues(dev))
8348 		goto free_all;
8349 
8350 	strcpy(dev->name, name);
8351 	dev->name_assign_type = name_assign_type;
8352 	dev->group = INIT_NETDEV_GROUP;
8353 	if (!dev->ethtool_ops)
8354 		dev->ethtool_ops = &default_ethtool_ops;
8355 
8356 	nf_hook_ingress_init(dev);
8357 
8358 	return dev;
8359 
8360 free_all:
8361 	free_netdev(dev);
8362 	return NULL;
8363 
8364 free_pcpu:
8365 	free_percpu(dev->pcpu_refcnt);
8366 free_dev:
8367 	netdev_freemem(dev);
8368 	return NULL;
8369 }
8370 EXPORT_SYMBOL(alloc_netdev_mqs);
8371 
8372 /**
8373  * free_netdev - free network device
8374  * @dev: device
8375  *
8376  * This function does the last stage of destroying an allocated device
8377  * interface. The reference to the device object is released. If this
8378  * is the last reference then it will be freed.Must be called in process
8379  * context.
8380  */
8381 void free_netdev(struct net_device *dev)
8382 {
8383 	struct napi_struct *p, *n;
8384 
8385 	might_sleep();
8386 	netif_free_tx_queues(dev);
8387 	netif_free_rx_queues(dev);
8388 
8389 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8390 
8391 	/* Flush device addresses */
8392 	dev_addr_flush(dev);
8393 
8394 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8395 		netif_napi_del(p);
8396 
8397 	free_percpu(dev->pcpu_refcnt);
8398 	dev->pcpu_refcnt = NULL;
8399 
8400 	/*  Compatibility with error handling in drivers */
8401 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8402 		netdev_freemem(dev);
8403 		return;
8404 	}
8405 
8406 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8407 	dev->reg_state = NETREG_RELEASED;
8408 
8409 	/* will free via device release */
8410 	put_device(&dev->dev);
8411 }
8412 EXPORT_SYMBOL(free_netdev);
8413 
8414 /**
8415  *	synchronize_net -  Synchronize with packet receive processing
8416  *
8417  *	Wait for packets currently being received to be done.
8418  *	Does not block later packets from starting.
8419  */
8420 void synchronize_net(void)
8421 {
8422 	might_sleep();
8423 	if (rtnl_is_locked())
8424 		synchronize_rcu_expedited();
8425 	else
8426 		synchronize_rcu();
8427 }
8428 EXPORT_SYMBOL(synchronize_net);
8429 
8430 /**
8431  *	unregister_netdevice_queue - remove device from the kernel
8432  *	@dev: device
8433  *	@head: list
8434  *
8435  *	This function shuts down a device interface and removes it
8436  *	from the kernel tables.
8437  *	If head not NULL, device is queued to be unregistered later.
8438  *
8439  *	Callers must hold the rtnl semaphore.  You may want
8440  *	unregister_netdev() instead of this.
8441  */
8442 
8443 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8444 {
8445 	ASSERT_RTNL();
8446 
8447 	if (head) {
8448 		list_move_tail(&dev->unreg_list, head);
8449 	} else {
8450 		rollback_registered(dev);
8451 		/* Finish processing unregister after unlock */
8452 		net_set_todo(dev);
8453 	}
8454 }
8455 EXPORT_SYMBOL(unregister_netdevice_queue);
8456 
8457 /**
8458  *	unregister_netdevice_many - unregister many devices
8459  *	@head: list of devices
8460  *
8461  *  Note: As most callers use a stack allocated list_head,
8462  *  we force a list_del() to make sure stack wont be corrupted later.
8463  */
8464 void unregister_netdevice_many(struct list_head *head)
8465 {
8466 	struct net_device *dev;
8467 
8468 	if (!list_empty(head)) {
8469 		rollback_registered_many(head);
8470 		list_for_each_entry(dev, head, unreg_list)
8471 			net_set_todo(dev);
8472 		list_del(head);
8473 	}
8474 }
8475 EXPORT_SYMBOL(unregister_netdevice_many);
8476 
8477 /**
8478  *	unregister_netdev - remove device from the kernel
8479  *	@dev: device
8480  *
8481  *	This function shuts down a device interface and removes it
8482  *	from the kernel tables.
8483  *
8484  *	This is just a wrapper for unregister_netdevice that takes
8485  *	the rtnl semaphore.  In general you want to use this and not
8486  *	unregister_netdevice.
8487  */
8488 void unregister_netdev(struct net_device *dev)
8489 {
8490 	rtnl_lock();
8491 	unregister_netdevice(dev);
8492 	rtnl_unlock();
8493 }
8494 EXPORT_SYMBOL(unregister_netdev);
8495 
8496 /**
8497  *	dev_change_net_namespace - move device to different nethost namespace
8498  *	@dev: device
8499  *	@net: network namespace
8500  *	@pat: If not NULL name pattern to try if the current device name
8501  *	      is already taken in the destination network namespace.
8502  *
8503  *	This function shuts down a device interface and moves it
8504  *	to a new network namespace. On success 0 is returned, on
8505  *	a failure a netagive errno code is returned.
8506  *
8507  *	Callers must hold the rtnl semaphore.
8508  */
8509 
8510 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8511 {
8512 	int err, new_nsid, new_ifindex;
8513 
8514 	ASSERT_RTNL();
8515 
8516 	/* Don't allow namespace local devices to be moved. */
8517 	err = -EINVAL;
8518 	if (dev->features & NETIF_F_NETNS_LOCAL)
8519 		goto out;
8520 
8521 	/* Ensure the device has been registrered */
8522 	if (dev->reg_state != NETREG_REGISTERED)
8523 		goto out;
8524 
8525 	/* Get out if there is nothing todo */
8526 	err = 0;
8527 	if (net_eq(dev_net(dev), net))
8528 		goto out;
8529 
8530 	/* Pick the destination device name, and ensure
8531 	 * we can use it in the destination network namespace.
8532 	 */
8533 	err = -EEXIST;
8534 	if (__dev_get_by_name(net, dev->name)) {
8535 		/* We get here if we can't use the current device name */
8536 		if (!pat)
8537 			goto out;
8538 		if (dev_get_valid_name(net, dev, pat) < 0)
8539 			goto out;
8540 	}
8541 
8542 	/*
8543 	 * And now a mini version of register_netdevice unregister_netdevice.
8544 	 */
8545 
8546 	/* If device is running close it first. */
8547 	dev_close(dev);
8548 
8549 	/* And unlink it from device chain */
8550 	err = -ENODEV;
8551 	unlist_netdevice(dev);
8552 
8553 	synchronize_net();
8554 
8555 	/* Shutdown queueing discipline. */
8556 	dev_shutdown(dev);
8557 
8558 	/* Notify protocols, that we are about to destroy
8559 	 * this device. They should clean all the things.
8560 	 *
8561 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
8562 	 * This is wanted because this way 8021q and macvlan know
8563 	 * the device is just moving and can keep their slaves up.
8564 	 */
8565 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8566 	rcu_barrier();
8567 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8568 
8569 	new_nsid = peernet2id_alloc(dev_net(dev), net);
8570 	/* If there is an ifindex conflict assign a new one */
8571 	if (__dev_get_by_index(net, dev->ifindex))
8572 		new_ifindex = dev_new_index(net);
8573 	else
8574 		new_ifindex = dev->ifindex;
8575 
8576 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8577 			    new_ifindex);
8578 
8579 	/*
8580 	 *	Flush the unicast and multicast chains
8581 	 */
8582 	dev_uc_flush(dev);
8583 	dev_mc_flush(dev);
8584 
8585 	/* Send a netdev-removed uevent to the old namespace */
8586 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8587 	netdev_adjacent_del_links(dev);
8588 
8589 	/* Actually switch the network namespace */
8590 	dev_net_set(dev, net);
8591 	dev->ifindex = new_ifindex;
8592 
8593 	/* Send a netdev-add uevent to the new namespace */
8594 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8595 	netdev_adjacent_add_links(dev);
8596 
8597 	/* Fixup kobjects */
8598 	err = device_rename(&dev->dev, dev->name);
8599 	WARN_ON(err);
8600 
8601 	/* Add the device back in the hashes */
8602 	list_netdevice(dev);
8603 
8604 	/* Notify protocols, that a new device appeared. */
8605 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8606 
8607 	/*
8608 	 *	Prevent userspace races by waiting until the network
8609 	 *	device is fully setup before sending notifications.
8610 	 */
8611 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8612 
8613 	synchronize_net();
8614 	err = 0;
8615 out:
8616 	return err;
8617 }
8618 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8619 
8620 static int dev_cpu_dead(unsigned int oldcpu)
8621 {
8622 	struct sk_buff **list_skb;
8623 	struct sk_buff *skb;
8624 	unsigned int cpu;
8625 	struct softnet_data *sd, *oldsd, *remsd = NULL;
8626 
8627 	local_irq_disable();
8628 	cpu = smp_processor_id();
8629 	sd = &per_cpu(softnet_data, cpu);
8630 	oldsd = &per_cpu(softnet_data, oldcpu);
8631 
8632 	/* Find end of our completion_queue. */
8633 	list_skb = &sd->completion_queue;
8634 	while (*list_skb)
8635 		list_skb = &(*list_skb)->next;
8636 	/* Append completion queue from offline CPU. */
8637 	*list_skb = oldsd->completion_queue;
8638 	oldsd->completion_queue = NULL;
8639 
8640 	/* Append output queue from offline CPU. */
8641 	if (oldsd->output_queue) {
8642 		*sd->output_queue_tailp = oldsd->output_queue;
8643 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8644 		oldsd->output_queue = NULL;
8645 		oldsd->output_queue_tailp = &oldsd->output_queue;
8646 	}
8647 	/* Append NAPI poll list from offline CPU, with one exception :
8648 	 * process_backlog() must be called by cpu owning percpu backlog.
8649 	 * We properly handle process_queue & input_pkt_queue later.
8650 	 */
8651 	while (!list_empty(&oldsd->poll_list)) {
8652 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8653 							    struct napi_struct,
8654 							    poll_list);
8655 
8656 		list_del_init(&napi->poll_list);
8657 		if (napi->poll == process_backlog)
8658 			napi->state = 0;
8659 		else
8660 			____napi_schedule(sd, napi);
8661 	}
8662 
8663 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8664 	local_irq_enable();
8665 
8666 #ifdef CONFIG_RPS
8667 	remsd = oldsd->rps_ipi_list;
8668 	oldsd->rps_ipi_list = NULL;
8669 #endif
8670 	/* send out pending IPI's on offline CPU */
8671 	net_rps_send_ipi(remsd);
8672 
8673 	/* Process offline CPU's input_pkt_queue */
8674 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8675 		netif_rx_ni(skb);
8676 		input_queue_head_incr(oldsd);
8677 	}
8678 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8679 		netif_rx_ni(skb);
8680 		input_queue_head_incr(oldsd);
8681 	}
8682 
8683 	return 0;
8684 }
8685 
8686 /**
8687  *	netdev_increment_features - increment feature set by one
8688  *	@all: current feature set
8689  *	@one: new feature set
8690  *	@mask: mask feature set
8691  *
8692  *	Computes a new feature set after adding a device with feature set
8693  *	@one to the master device with current feature set @all.  Will not
8694  *	enable anything that is off in @mask. Returns the new feature set.
8695  */
8696 netdev_features_t netdev_increment_features(netdev_features_t all,
8697 	netdev_features_t one, netdev_features_t mask)
8698 {
8699 	if (mask & NETIF_F_HW_CSUM)
8700 		mask |= NETIF_F_CSUM_MASK;
8701 	mask |= NETIF_F_VLAN_CHALLENGED;
8702 
8703 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8704 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8705 
8706 	/* If one device supports hw checksumming, set for all. */
8707 	if (all & NETIF_F_HW_CSUM)
8708 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8709 
8710 	return all;
8711 }
8712 EXPORT_SYMBOL(netdev_increment_features);
8713 
8714 static struct hlist_head * __net_init netdev_create_hash(void)
8715 {
8716 	int i;
8717 	struct hlist_head *hash;
8718 
8719 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8720 	if (hash != NULL)
8721 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8722 			INIT_HLIST_HEAD(&hash[i]);
8723 
8724 	return hash;
8725 }
8726 
8727 /* Initialize per network namespace state */
8728 static int __net_init netdev_init(struct net *net)
8729 {
8730 	if (net != &init_net)
8731 		INIT_LIST_HEAD(&net->dev_base_head);
8732 
8733 	net->dev_name_head = netdev_create_hash();
8734 	if (net->dev_name_head == NULL)
8735 		goto err_name;
8736 
8737 	net->dev_index_head = netdev_create_hash();
8738 	if (net->dev_index_head == NULL)
8739 		goto err_idx;
8740 
8741 	return 0;
8742 
8743 err_idx:
8744 	kfree(net->dev_name_head);
8745 err_name:
8746 	return -ENOMEM;
8747 }
8748 
8749 /**
8750  *	netdev_drivername - network driver for the device
8751  *	@dev: network device
8752  *
8753  *	Determine network driver for device.
8754  */
8755 const char *netdev_drivername(const struct net_device *dev)
8756 {
8757 	const struct device_driver *driver;
8758 	const struct device *parent;
8759 	const char *empty = "";
8760 
8761 	parent = dev->dev.parent;
8762 	if (!parent)
8763 		return empty;
8764 
8765 	driver = parent->driver;
8766 	if (driver && driver->name)
8767 		return driver->name;
8768 	return empty;
8769 }
8770 
8771 static void __netdev_printk(const char *level, const struct net_device *dev,
8772 			    struct va_format *vaf)
8773 {
8774 	if (dev && dev->dev.parent) {
8775 		dev_printk_emit(level[1] - '0',
8776 				dev->dev.parent,
8777 				"%s %s %s%s: %pV",
8778 				dev_driver_string(dev->dev.parent),
8779 				dev_name(dev->dev.parent),
8780 				netdev_name(dev), netdev_reg_state(dev),
8781 				vaf);
8782 	} else if (dev) {
8783 		printk("%s%s%s: %pV",
8784 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8785 	} else {
8786 		printk("%s(NULL net_device): %pV", level, vaf);
8787 	}
8788 }
8789 
8790 void netdev_printk(const char *level, const struct net_device *dev,
8791 		   const char *format, ...)
8792 {
8793 	struct va_format vaf;
8794 	va_list args;
8795 
8796 	va_start(args, format);
8797 
8798 	vaf.fmt = format;
8799 	vaf.va = &args;
8800 
8801 	__netdev_printk(level, dev, &vaf);
8802 
8803 	va_end(args);
8804 }
8805 EXPORT_SYMBOL(netdev_printk);
8806 
8807 #define define_netdev_printk_level(func, level)			\
8808 void func(const struct net_device *dev, const char *fmt, ...)	\
8809 {								\
8810 	struct va_format vaf;					\
8811 	va_list args;						\
8812 								\
8813 	va_start(args, fmt);					\
8814 								\
8815 	vaf.fmt = fmt;						\
8816 	vaf.va = &args;						\
8817 								\
8818 	__netdev_printk(level, dev, &vaf);			\
8819 								\
8820 	va_end(args);						\
8821 }								\
8822 EXPORT_SYMBOL(func);
8823 
8824 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8825 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8826 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8827 define_netdev_printk_level(netdev_err, KERN_ERR);
8828 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8829 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8830 define_netdev_printk_level(netdev_info, KERN_INFO);
8831 
8832 static void __net_exit netdev_exit(struct net *net)
8833 {
8834 	kfree(net->dev_name_head);
8835 	kfree(net->dev_index_head);
8836 	if (net != &init_net)
8837 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8838 }
8839 
8840 static struct pernet_operations __net_initdata netdev_net_ops = {
8841 	.init = netdev_init,
8842 	.exit = netdev_exit,
8843 };
8844 
8845 static void __net_exit default_device_exit(struct net *net)
8846 {
8847 	struct net_device *dev, *aux;
8848 	/*
8849 	 * Push all migratable network devices back to the
8850 	 * initial network namespace
8851 	 */
8852 	rtnl_lock();
8853 	for_each_netdev_safe(net, dev, aux) {
8854 		int err;
8855 		char fb_name[IFNAMSIZ];
8856 
8857 		/* Ignore unmoveable devices (i.e. loopback) */
8858 		if (dev->features & NETIF_F_NETNS_LOCAL)
8859 			continue;
8860 
8861 		/* Leave virtual devices for the generic cleanup */
8862 		if (dev->rtnl_link_ops)
8863 			continue;
8864 
8865 		/* Push remaining network devices to init_net */
8866 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8867 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8868 		if (err) {
8869 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8870 				 __func__, dev->name, err);
8871 			BUG();
8872 		}
8873 	}
8874 	rtnl_unlock();
8875 }
8876 
8877 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8878 {
8879 	/* Return with the rtnl_lock held when there are no network
8880 	 * devices unregistering in any network namespace in net_list.
8881 	 */
8882 	struct net *net;
8883 	bool unregistering;
8884 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8885 
8886 	add_wait_queue(&netdev_unregistering_wq, &wait);
8887 	for (;;) {
8888 		unregistering = false;
8889 		rtnl_lock();
8890 		list_for_each_entry(net, net_list, exit_list) {
8891 			if (net->dev_unreg_count > 0) {
8892 				unregistering = true;
8893 				break;
8894 			}
8895 		}
8896 		if (!unregistering)
8897 			break;
8898 		__rtnl_unlock();
8899 
8900 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8901 	}
8902 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8903 }
8904 
8905 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8906 {
8907 	/* At exit all network devices most be removed from a network
8908 	 * namespace.  Do this in the reverse order of registration.
8909 	 * Do this across as many network namespaces as possible to
8910 	 * improve batching efficiency.
8911 	 */
8912 	struct net_device *dev;
8913 	struct net *net;
8914 	LIST_HEAD(dev_kill_list);
8915 
8916 	/* To prevent network device cleanup code from dereferencing
8917 	 * loopback devices or network devices that have been freed
8918 	 * wait here for all pending unregistrations to complete,
8919 	 * before unregistring the loopback device and allowing the
8920 	 * network namespace be freed.
8921 	 *
8922 	 * The netdev todo list containing all network devices
8923 	 * unregistrations that happen in default_device_exit_batch
8924 	 * will run in the rtnl_unlock() at the end of
8925 	 * default_device_exit_batch.
8926 	 */
8927 	rtnl_lock_unregistering(net_list);
8928 	list_for_each_entry(net, net_list, exit_list) {
8929 		for_each_netdev_reverse(net, dev) {
8930 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8931 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8932 			else
8933 				unregister_netdevice_queue(dev, &dev_kill_list);
8934 		}
8935 	}
8936 	unregister_netdevice_many(&dev_kill_list);
8937 	rtnl_unlock();
8938 }
8939 
8940 static struct pernet_operations __net_initdata default_device_ops = {
8941 	.exit = default_device_exit,
8942 	.exit_batch = default_device_exit_batch,
8943 };
8944 
8945 /*
8946  *	Initialize the DEV module. At boot time this walks the device list and
8947  *	unhooks any devices that fail to initialise (normally hardware not
8948  *	present) and leaves us with a valid list of present and active devices.
8949  *
8950  */
8951 
8952 /*
8953  *       This is called single threaded during boot, so no need
8954  *       to take the rtnl semaphore.
8955  */
8956 static int __init net_dev_init(void)
8957 {
8958 	int i, rc = -ENOMEM;
8959 
8960 	BUG_ON(!dev_boot_phase);
8961 
8962 	if (dev_proc_init())
8963 		goto out;
8964 
8965 	if (netdev_kobject_init())
8966 		goto out;
8967 
8968 	INIT_LIST_HEAD(&ptype_all);
8969 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8970 		INIT_LIST_HEAD(&ptype_base[i]);
8971 
8972 	INIT_LIST_HEAD(&offload_base);
8973 
8974 	if (register_pernet_subsys(&netdev_net_ops))
8975 		goto out;
8976 
8977 	/*
8978 	 *	Initialise the packet receive queues.
8979 	 */
8980 
8981 	for_each_possible_cpu(i) {
8982 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8983 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8984 
8985 		INIT_WORK(flush, flush_backlog);
8986 
8987 		skb_queue_head_init(&sd->input_pkt_queue);
8988 		skb_queue_head_init(&sd->process_queue);
8989 #ifdef CONFIG_XFRM_OFFLOAD
8990 		skb_queue_head_init(&sd->xfrm_backlog);
8991 #endif
8992 		INIT_LIST_HEAD(&sd->poll_list);
8993 		sd->output_queue_tailp = &sd->output_queue;
8994 #ifdef CONFIG_RPS
8995 		sd->csd.func = rps_trigger_softirq;
8996 		sd->csd.info = sd;
8997 		sd->cpu = i;
8998 #endif
8999 
9000 		sd->backlog.poll = process_backlog;
9001 		sd->backlog.weight = weight_p;
9002 	}
9003 
9004 	dev_boot_phase = 0;
9005 
9006 	/* The loopback device is special if any other network devices
9007 	 * is present in a network namespace the loopback device must
9008 	 * be present. Since we now dynamically allocate and free the
9009 	 * loopback device ensure this invariant is maintained by
9010 	 * keeping the loopback device as the first device on the
9011 	 * list of network devices.  Ensuring the loopback devices
9012 	 * is the first device that appears and the last network device
9013 	 * that disappears.
9014 	 */
9015 	if (register_pernet_device(&loopback_net_ops))
9016 		goto out;
9017 
9018 	if (register_pernet_device(&default_device_ops))
9019 		goto out;
9020 
9021 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9022 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9023 
9024 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9025 				       NULL, dev_cpu_dead);
9026 	WARN_ON(rc < 0);
9027 	rc = 0;
9028 out:
9029 	return rc;
9030 }
9031 
9032 subsys_initcall(net_dev_init);
9033