xref: /openbmc/linux/net/core/dev.c (revision bcb84fb4)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
143 
144 #include "net-sysfs.h"
145 
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
148 
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151 
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly;	/* Taps */
156 static struct list_head offload_base __read_mostly;
157 
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160 					 struct net_device *dev,
161 					 struct netdev_notifier_info *info);
162 
163 /*
164  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165  * semaphore.
166  *
167  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168  *
169  * Writers must hold the rtnl semaphore while they loop through the
170  * dev_base_head list, and hold dev_base_lock for writing when they do the
171  * actual updates.  This allows pure readers to access the list even
172  * while a writer is preparing to update it.
173  *
174  * To put it another way, dev_base_lock is held for writing only to
175  * protect against pure readers; the rtnl semaphore provides the
176  * protection against other writers.
177  *
178  * See, for example usages, register_netdevice() and
179  * unregister_netdevice(), which must be called with the rtnl
180  * semaphore held.
181  */
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
184 
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
187 
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190 
191 static seqcount_t devnet_rename_seq;
192 
193 static inline void dev_base_seq_inc(struct net *net)
194 {
195 	while (++net->dev_base_seq == 0)
196 		;
197 }
198 
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202 
203 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205 
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210 
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 	spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217 
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 	spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224 
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
227 {
228 	struct net *net = dev_net(dev);
229 
230 	ASSERT_RTNL();
231 
232 	write_lock_bh(&dev_base_lock);
233 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 	hlist_add_head_rcu(&dev->index_hlist,
236 			   dev_index_hash(net, dev->ifindex));
237 	write_unlock_bh(&dev_base_lock);
238 
239 	dev_base_seq_inc(net);
240 }
241 
242 /* Device list removal
243  * caller must respect a RCU grace period before freeing/reusing dev
244  */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 	ASSERT_RTNL();
248 
249 	/* Unlink dev from the device chain */
250 	write_lock_bh(&dev_base_lock);
251 	list_del_rcu(&dev->dev_list);
252 	hlist_del_rcu(&dev->name_hlist);
253 	hlist_del_rcu(&dev->index_hlist);
254 	write_unlock_bh(&dev_base_lock);
255 
256 	dev_base_seq_inc(dev_net(dev));
257 }
258 
259 /*
260  *	Our notifier list
261  */
262 
263 static RAW_NOTIFIER_HEAD(netdev_chain);
264 
265 /*
266  *	Device drivers call our routines to queue packets here. We empty the
267  *	queue in the local softnet handler.
268  */
269 
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
272 
273 #ifdef CONFIG_LOCKDEP
274 /*
275  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276  * according to dev->type
277  */
278 static const unsigned short netdev_lock_type[] = {
279 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294 
295 static const char *const netdev_lock_name[] = {
296 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311 
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 	int i;
318 
319 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 		if (netdev_lock_type[i] == dev_type)
321 			return i;
322 	/* the last key is used by default */
323 	return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325 
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 						 unsigned short dev_type)
328 {
329 	int i;
330 
331 	i = netdev_lock_pos(dev_type);
332 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 				   netdev_lock_name[i]);
334 }
335 
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 	int i;
339 
340 	i = netdev_lock_pos(dev->type);
341 	lockdep_set_class_and_name(&dev->addr_list_lock,
342 				   &netdev_addr_lock_key[i],
343 				   netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 						 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354 
355 /*******************************************************************************
356  *
357  *		Protocol management and registration routines
358  *
359  *******************************************************************************/
360 
361 
362 /*
363  *	Add a protocol ID to the list. Now that the input handler is
364  *	smarter we can dispense with all the messy stuff that used to be
365  *	here.
366  *
367  *	BEWARE!!! Protocol handlers, mangling input packets,
368  *	MUST BE last in hash buckets and checking protocol handlers
369  *	MUST start from promiscuous ptype_all chain in net_bh.
370  *	It is true now, do not change it.
371  *	Explanation follows: if protocol handler, mangling packet, will
372  *	be the first on list, it is not able to sense, that packet
373  *	is cloned and should be copied-on-write, so that it will
374  *	change it and subsequent readers will get broken packet.
375  *							--ANK (980803)
376  */
377 
378 static inline struct list_head *ptype_head(const struct packet_type *pt)
379 {
380 	if (pt->type == htons(ETH_P_ALL))
381 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
382 	else
383 		return pt->dev ? &pt->dev->ptype_specific :
384 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
385 }
386 
387 /**
388  *	dev_add_pack - add packet handler
389  *	@pt: packet type declaration
390  *
391  *	Add a protocol handler to the networking stack. The passed &packet_type
392  *	is linked into kernel lists and may not be freed until it has been
393  *	removed from the kernel lists.
394  *
395  *	This call does not sleep therefore it can not
396  *	guarantee all CPU's that are in middle of receiving packets
397  *	will see the new packet type (until the next received packet).
398  */
399 
400 void dev_add_pack(struct packet_type *pt)
401 {
402 	struct list_head *head = ptype_head(pt);
403 
404 	spin_lock(&ptype_lock);
405 	list_add_rcu(&pt->list, head);
406 	spin_unlock(&ptype_lock);
407 }
408 EXPORT_SYMBOL(dev_add_pack);
409 
410 /**
411  *	__dev_remove_pack	 - remove packet handler
412  *	@pt: packet type declaration
413  *
414  *	Remove a protocol handler that was previously added to the kernel
415  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
416  *	from the kernel lists and can be freed or reused once this function
417  *	returns.
418  *
419  *      The packet type might still be in use by receivers
420  *	and must not be freed until after all the CPU's have gone
421  *	through a quiescent state.
422  */
423 void __dev_remove_pack(struct packet_type *pt)
424 {
425 	struct list_head *head = ptype_head(pt);
426 	struct packet_type *pt1;
427 
428 	spin_lock(&ptype_lock);
429 
430 	list_for_each_entry(pt1, head, list) {
431 		if (pt == pt1) {
432 			list_del_rcu(&pt->list);
433 			goto out;
434 		}
435 	}
436 
437 	pr_warn("dev_remove_pack: %p not found\n", pt);
438 out:
439 	spin_unlock(&ptype_lock);
440 }
441 EXPORT_SYMBOL(__dev_remove_pack);
442 
443 /**
444  *	dev_remove_pack	 - remove packet handler
445  *	@pt: packet type declaration
446  *
447  *	Remove a protocol handler that was previously added to the kernel
448  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
449  *	from the kernel lists and can be freed or reused once this function
450  *	returns.
451  *
452  *	This call sleeps to guarantee that no CPU is looking at the packet
453  *	type after return.
454  */
455 void dev_remove_pack(struct packet_type *pt)
456 {
457 	__dev_remove_pack(pt);
458 
459 	synchronize_net();
460 }
461 EXPORT_SYMBOL(dev_remove_pack);
462 
463 
464 /**
465  *	dev_add_offload - register offload handlers
466  *	@po: protocol offload declaration
467  *
468  *	Add protocol offload handlers to the networking stack. The passed
469  *	&proto_offload is linked into kernel lists and may not be freed until
470  *	it has been removed from the kernel lists.
471  *
472  *	This call does not sleep therefore it can not
473  *	guarantee all CPU's that are in middle of receiving packets
474  *	will see the new offload handlers (until the next received packet).
475  */
476 void dev_add_offload(struct packet_offload *po)
477 {
478 	struct packet_offload *elem;
479 
480 	spin_lock(&offload_lock);
481 	list_for_each_entry(elem, &offload_base, list) {
482 		if (po->priority < elem->priority)
483 			break;
484 	}
485 	list_add_rcu(&po->list, elem->list.prev);
486 	spin_unlock(&offload_lock);
487 }
488 EXPORT_SYMBOL(dev_add_offload);
489 
490 /**
491  *	__dev_remove_offload	 - remove offload handler
492  *	@po: packet offload declaration
493  *
494  *	Remove a protocol offload handler that was previously added to the
495  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
496  *	is removed from the kernel lists and can be freed or reused once this
497  *	function returns.
498  *
499  *      The packet type might still be in use by receivers
500  *	and must not be freed until after all the CPU's have gone
501  *	through a quiescent state.
502  */
503 static void __dev_remove_offload(struct packet_offload *po)
504 {
505 	struct list_head *head = &offload_base;
506 	struct packet_offload *po1;
507 
508 	spin_lock(&offload_lock);
509 
510 	list_for_each_entry(po1, head, list) {
511 		if (po == po1) {
512 			list_del_rcu(&po->list);
513 			goto out;
514 		}
515 	}
516 
517 	pr_warn("dev_remove_offload: %p not found\n", po);
518 out:
519 	spin_unlock(&offload_lock);
520 }
521 
522 /**
523  *	dev_remove_offload	 - remove packet offload handler
524  *	@po: packet offload declaration
525  *
526  *	Remove a packet offload handler that was previously added to the kernel
527  *	offload handlers by dev_add_offload(). The passed &offload_type is
528  *	removed from the kernel lists and can be freed or reused once this
529  *	function returns.
530  *
531  *	This call sleeps to guarantee that no CPU is looking at the packet
532  *	type after return.
533  */
534 void dev_remove_offload(struct packet_offload *po)
535 {
536 	__dev_remove_offload(po);
537 
538 	synchronize_net();
539 }
540 EXPORT_SYMBOL(dev_remove_offload);
541 
542 /******************************************************************************
543  *
544  *		      Device Boot-time Settings Routines
545  *
546  ******************************************************************************/
547 
548 /* Boot time configuration table */
549 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
550 
551 /**
552  *	netdev_boot_setup_add	- add new setup entry
553  *	@name: name of the device
554  *	@map: configured settings for the device
555  *
556  *	Adds new setup entry to the dev_boot_setup list.  The function
557  *	returns 0 on error and 1 on success.  This is a generic routine to
558  *	all netdevices.
559  */
560 static int netdev_boot_setup_add(char *name, struct ifmap *map)
561 {
562 	struct netdev_boot_setup *s;
563 	int i;
564 
565 	s = dev_boot_setup;
566 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
568 			memset(s[i].name, 0, sizeof(s[i].name));
569 			strlcpy(s[i].name, name, IFNAMSIZ);
570 			memcpy(&s[i].map, map, sizeof(s[i].map));
571 			break;
572 		}
573 	}
574 
575 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
576 }
577 
578 /**
579  * netdev_boot_setup_check	- check boot time settings
580  * @dev: the netdevice
581  *
582  * Check boot time settings for the device.
583  * The found settings are set for the device to be used
584  * later in the device probing.
585  * Returns 0 if no settings found, 1 if they are.
586  */
587 int netdev_boot_setup_check(struct net_device *dev)
588 {
589 	struct netdev_boot_setup *s = dev_boot_setup;
590 	int i;
591 
592 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
593 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
594 		    !strcmp(dev->name, s[i].name)) {
595 			dev->irq = s[i].map.irq;
596 			dev->base_addr = s[i].map.base_addr;
597 			dev->mem_start = s[i].map.mem_start;
598 			dev->mem_end = s[i].map.mem_end;
599 			return 1;
600 		}
601 	}
602 	return 0;
603 }
604 EXPORT_SYMBOL(netdev_boot_setup_check);
605 
606 
607 /**
608  * netdev_boot_base	- get address from boot time settings
609  * @prefix: prefix for network device
610  * @unit: id for network device
611  *
612  * Check boot time settings for the base address of device.
613  * The found settings are set for the device to be used
614  * later in the device probing.
615  * Returns 0 if no settings found.
616  */
617 unsigned long netdev_boot_base(const char *prefix, int unit)
618 {
619 	const struct netdev_boot_setup *s = dev_boot_setup;
620 	char name[IFNAMSIZ];
621 	int i;
622 
623 	sprintf(name, "%s%d", prefix, unit);
624 
625 	/*
626 	 * If device already registered then return base of 1
627 	 * to indicate not to probe for this interface
628 	 */
629 	if (__dev_get_by_name(&init_net, name))
630 		return 1;
631 
632 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
633 		if (!strcmp(name, s[i].name))
634 			return s[i].map.base_addr;
635 	return 0;
636 }
637 
638 /*
639  * Saves at boot time configured settings for any netdevice.
640  */
641 int __init netdev_boot_setup(char *str)
642 {
643 	int ints[5];
644 	struct ifmap map;
645 
646 	str = get_options(str, ARRAY_SIZE(ints), ints);
647 	if (!str || !*str)
648 		return 0;
649 
650 	/* Save settings */
651 	memset(&map, 0, sizeof(map));
652 	if (ints[0] > 0)
653 		map.irq = ints[1];
654 	if (ints[0] > 1)
655 		map.base_addr = ints[2];
656 	if (ints[0] > 2)
657 		map.mem_start = ints[3];
658 	if (ints[0] > 3)
659 		map.mem_end = ints[4];
660 
661 	/* Add new entry to the list */
662 	return netdev_boot_setup_add(str, &map);
663 }
664 
665 __setup("netdev=", netdev_boot_setup);
666 
667 /*******************************************************************************
668  *
669  *			    Device Interface Subroutines
670  *
671  *******************************************************************************/
672 
673 /**
674  *	dev_get_iflink	- get 'iflink' value of a interface
675  *	@dev: targeted interface
676  *
677  *	Indicates the ifindex the interface is linked to.
678  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
679  */
680 
681 int dev_get_iflink(const struct net_device *dev)
682 {
683 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
684 		return dev->netdev_ops->ndo_get_iflink(dev);
685 
686 	return dev->ifindex;
687 }
688 EXPORT_SYMBOL(dev_get_iflink);
689 
690 /**
691  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
692  *	@dev: targeted interface
693  *	@skb: The packet.
694  *
695  *	For better visibility of tunnel traffic OVS needs to retrieve
696  *	egress tunnel information for a packet. Following API allows
697  *	user to get this info.
698  */
699 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
700 {
701 	struct ip_tunnel_info *info;
702 
703 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
704 		return -EINVAL;
705 
706 	info = skb_tunnel_info_unclone(skb);
707 	if (!info)
708 		return -ENOMEM;
709 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
710 		return -EINVAL;
711 
712 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
713 }
714 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
715 
716 /**
717  *	__dev_get_by_name	- find a device by its name
718  *	@net: the applicable net namespace
719  *	@name: name to find
720  *
721  *	Find an interface by name. Must be called under RTNL semaphore
722  *	or @dev_base_lock. If the name is found a pointer to the device
723  *	is returned. If the name is not found then %NULL is returned. The
724  *	reference counters are not incremented so the caller must be
725  *	careful with locks.
726  */
727 
728 struct net_device *__dev_get_by_name(struct net *net, const char *name)
729 {
730 	struct net_device *dev;
731 	struct hlist_head *head = dev_name_hash(net, name);
732 
733 	hlist_for_each_entry(dev, head, name_hlist)
734 		if (!strncmp(dev->name, name, IFNAMSIZ))
735 			return dev;
736 
737 	return NULL;
738 }
739 EXPORT_SYMBOL(__dev_get_by_name);
740 
741 /**
742  * dev_get_by_name_rcu	- find a device by its name
743  * @net: the applicable net namespace
744  * @name: name to find
745  *
746  * Find an interface by name.
747  * If the name is found a pointer to the device is returned.
748  * If the name is not found then %NULL is returned.
749  * The reference counters are not incremented so the caller must be
750  * careful with locks. The caller must hold RCU lock.
751  */
752 
753 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
754 {
755 	struct net_device *dev;
756 	struct hlist_head *head = dev_name_hash(net, name);
757 
758 	hlist_for_each_entry_rcu(dev, head, name_hlist)
759 		if (!strncmp(dev->name, name, IFNAMSIZ))
760 			return dev;
761 
762 	return NULL;
763 }
764 EXPORT_SYMBOL(dev_get_by_name_rcu);
765 
766 /**
767  *	dev_get_by_name		- find a device by its name
768  *	@net: the applicable net namespace
769  *	@name: name to find
770  *
771  *	Find an interface by name. This can be called from any
772  *	context and does its own locking. The returned handle has
773  *	the usage count incremented and the caller must use dev_put() to
774  *	release it when it is no longer needed. %NULL is returned if no
775  *	matching device is found.
776  */
777 
778 struct net_device *dev_get_by_name(struct net *net, const char *name)
779 {
780 	struct net_device *dev;
781 
782 	rcu_read_lock();
783 	dev = dev_get_by_name_rcu(net, name);
784 	if (dev)
785 		dev_hold(dev);
786 	rcu_read_unlock();
787 	return dev;
788 }
789 EXPORT_SYMBOL(dev_get_by_name);
790 
791 /**
792  *	__dev_get_by_index - find a device by its ifindex
793  *	@net: the applicable net namespace
794  *	@ifindex: index of device
795  *
796  *	Search for an interface by index. Returns %NULL if the device
797  *	is not found or a pointer to the device. The device has not
798  *	had its reference counter increased so the caller must be careful
799  *	about locking. The caller must hold either the RTNL semaphore
800  *	or @dev_base_lock.
801  */
802 
803 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
804 {
805 	struct net_device *dev;
806 	struct hlist_head *head = dev_index_hash(net, ifindex);
807 
808 	hlist_for_each_entry(dev, head, index_hlist)
809 		if (dev->ifindex == ifindex)
810 			return dev;
811 
812 	return NULL;
813 }
814 EXPORT_SYMBOL(__dev_get_by_index);
815 
816 /**
817  *	dev_get_by_index_rcu - find a device by its ifindex
818  *	@net: the applicable net namespace
819  *	@ifindex: index of device
820  *
821  *	Search for an interface by index. Returns %NULL if the device
822  *	is not found or a pointer to the device. The device has not
823  *	had its reference counter increased so the caller must be careful
824  *	about locking. The caller must hold RCU lock.
825  */
826 
827 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
828 {
829 	struct net_device *dev;
830 	struct hlist_head *head = dev_index_hash(net, ifindex);
831 
832 	hlist_for_each_entry_rcu(dev, head, index_hlist)
833 		if (dev->ifindex == ifindex)
834 			return dev;
835 
836 	return NULL;
837 }
838 EXPORT_SYMBOL(dev_get_by_index_rcu);
839 
840 
841 /**
842  *	dev_get_by_index - find a device by its ifindex
843  *	@net: the applicable net namespace
844  *	@ifindex: index of device
845  *
846  *	Search for an interface by index. Returns NULL if the device
847  *	is not found or a pointer to the device. The device returned has
848  *	had a reference added and the pointer is safe until the user calls
849  *	dev_put to indicate they have finished with it.
850  */
851 
852 struct net_device *dev_get_by_index(struct net *net, int ifindex)
853 {
854 	struct net_device *dev;
855 
856 	rcu_read_lock();
857 	dev = dev_get_by_index_rcu(net, ifindex);
858 	if (dev)
859 		dev_hold(dev);
860 	rcu_read_unlock();
861 	return dev;
862 }
863 EXPORT_SYMBOL(dev_get_by_index);
864 
865 /**
866  *	netdev_get_name - get a netdevice name, knowing its ifindex.
867  *	@net: network namespace
868  *	@name: a pointer to the buffer where the name will be stored.
869  *	@ifindex: the ifindex of the interface to get the name from.
870  *
871  *	The use of raw_seqcount_begin() and cond_resched() before
872  *	retrying is required as we want to give the writers a chance
873  *	to complete when CONFIG_PREEMPT is not set.
874  */
875 int netdev_get_name(struct net *net, char *name, int ifindex)
876 {
877 	struct net_device *dev;
878 	unsigned int seq;
879 
880 retry:
881 	seq = raw_seqcount_begin(&devnet_rename_seq);
882 	rcu_read_lock();
883 	dev = dev_get_by_index_rcu(net, ifindex);
884 	if (!dev) {
885 		rcu_read_unlock();
886 		return -ENODEV;
887 	}
888 
889 	strcpy(name, dev->name);
890 	rcu_read_unlock();
891 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
892 		cond_resched();
893 		goto retry;
894 	}
895 
896 	return 0;
897 }
898 
899 /**
900  *	dev_getbyhwaddr_rcu - find a device by its hardware address
901  *	@net: the applicable net namespace
902  *	@type: media type of device
903  *	@ha: hardware address
904  *
905  *	Search for an interface by MAC address. Returns NULL if the device
906  *	is not found or a pointer to the device.
907  *	The caller must hold RCU or RTNL.
908  *	The returned device has not had its ref count increased
909  *	and the caller must therefore be careful about locking
910  *
911  */
912 
913 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
914 				       const char *ha)
915 {
916 	struct net_device *dev;
917 
918 	for_each_netdev_rcu(net, dev)
919 		if (dev->type == type &&
920 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
921 			return dev;
922 
923 	return NULL;
924 }
925 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
926 
927 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
928 {
929 	struct net_device *dev;
930 
931 	ASSERT_RTNL();
932 	for_each_netdev(net, dev)
933 		if (dev->type == type)
934 			return dev;
935 
936 	return NULL;
937 }
938 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
939 
940 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
941 {
942 	struct net_device *dev, *ret = NULL;
943 
944 	rcu_read_lock();
945 	for_each_netdev_rcu(net, dev)
946 		if (dev->type == type) {
947 			dev_hold(dev);
948 			ret = dev;
949 			break;
950 		}
951 	rcu_read_unlock();
952 	return ret;
953 }
954 EXPORT_SYMBOL(dev_getfirstbyhwtype);
955 
956 /**
957  *	__dev_get_by_flags - find any device with given flags
958  *	@net: the applicable net namespace
959  *	@if_flags: IFF_* values
960  *	@mask: bitmask of bits in if_flags to check
961  *
962  *	Search for any interface with the given flags. Returns NULL if a device
963  *	is not found or a pointer to the device. Must be called inside
964  *	rtnl_lock(), and result refcount is unchanged.
965  */
966 
967 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
968 				      unsigned short mask)
969 {
970 	struct net_device *dev, *ret;
971 
972 	ASSERT_RTNL();
973 
974 	ret = NULL;
975 	for_each_netdev(net, dev) {
976 		if (((dev->flags ^ if_flags) & mask) == 0) {
977 			ret = dev;
978 			break;
979 		}
980 	}
981 	return ret;
982 }
983 EXPORT_SYMBOL(__dev_get_by_flags);
984 
985 /**
986  *	dev_valid_name - check if name is okay for network device
987  *	@name: name string
988  *
989  *	Network device names need to be valid file names to
990  *	to allow sysfs to work.  We also disallow any kind of
991  *	whitespace.
992  */
993 bool dev_valid_name(const char *name)
994 {
995 	if (*name == '\0')
996 		return false;
997 	if (strlen(name) >= IFNAMSIZ)
998 		return false;
999 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1000 		return false;
1001 
1002 	while (*name) {
1003 		if (*name == '/' || *name == ':' || isspace(*name))
1004 			return false;
1005 		name++;
1006 	}
1007 	return true;
1008 }
1009 EXPORT_SYMBOL(dev_valid_name);
1010 
1011 /**
1012  *	__dev_alloc_name - allocate a name for a device
1013  *	@net: network namespace to allocate the device name in
1014  *	@name: name format string
1015  *	@buf:  scratch buffer and result name string
1016  *
1017  *	Passed a format string - eg "lt%d" it will try and find a suitable
1018  *	id. It scans list of devices to build up a free map, then chooses
1019  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1020  *	while allocating the name and adding the device in order to avoid
1021  *	duplicates.
1022  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023  *	Returns the number of the unit assigned or a negative errno code.
1024  */
1025 
1026 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1027 {
1028 	int i = 0;
1029 	const char *p;
1030 	const int max_netdevices = 8*PAGE_SIZE;
1031 	unsigned long *inuse;
1032 	struct net_device *d;
1033 
1034 	p = strnchr(name, IFNAMSIZ-1, '%');
1035 	if (p) {
1036 		/*
1037 		 * Verify the string as this thing may have come from
1038 		 * the user.  There must be either one "%d" and no other "%"
1039 		 * characters.
1040 		 */
1041 		if (p[1] != 'd' || strchr(p + 2, '%'))
1042 			return -EINVAL;
1043 
1044 		/* Use one page as a bit array of possible slots */
1045 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1046 		if (!inuse)
1047 			return -ENOMEM;
1048 
1049 		for_each_netdev(net, d) {
1050 			if (!sscanf(d->name, name, &i))
1051 				continue;
1052 			if (i < 0 || i >= max_netdevices)
1053 				continue;
1054 
1055 			/*  avoid cases where sscanf is not exact inverse of printf */
1056 			snprintf(buf, IFNAMSIZ, name, i);
1057 			if (!strncmp(buf, d->name, IFNAMSIZ))
1058 				set_bit(i, inuse);
1059 		}
1060 
1061 		i = find_first_zero_bit(inuse, max_netdevices);
1062 		free_page((unsigned long) inuse);
1063 	}
1064 
1065 	if (buf != name)
1066 		snprintf(buf, IFNAMSIZ, name, i);
1067 	if (!__dev_get_by_name(net, buf))
1068 		return i;
1069 
1070 	/* It is possible to run out of possible slots
1071 	 * when the name is long and there isn't enough space left
1072 	 * for the digits, or if all bits are used.
1073 	 */
1074 	return -ENFILE;
1075 }
1076 
1077 /**
1078  *	dev_alloc_name - allocate a name for a device
1079  *	@dev: device
1080  *	@name: name format string
1081  *
1082  *	Passed a format string - eg "lt%d" it will try and find a suitable
1083  *	id. It scans list of devices to build up a free map, then chooses
1084  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1085  *	while allocating the name and adding the device in order to avoid
1086  *	duplicates.
1087  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1088  *	Returns the number of the unit assigned or a negative errno code.
1089  */
1090 
1091 int dev_alloc_name(struct net_device *dev, const char *name)
1092 {
1093 	char buf[IFNAMSIZ];
1094 	struct net *net;
1095 	int ret;
1096 
1097 	BUG_ON(!dev_net(dev));
1098 	net = dev_net(dev);
1099 	ret = __dev_alloc_name(net, name, buf);
1100 	if (ret >= 0)
1101 		strlcpy(dev->name, buf, IFNAMSIZ);
1102 	return ret;
1103 }
1104 EXPORT_SYMBOL(dev_alloc_name);
1105 
1106 static int dev_alloc_name_ns(struct net *net,
1107 			     struct net_device *dev,
1108 			     const char *name)
1109 {
1110 	char buf[IFNAMSIZ];
1111 	int ret;
1112 
1113 	ret = __dev_alloc_name(net, name, buf);
1114 	if (ret >= 0)
1115 		strlcpy(dev->name, buf, IFNAMSIZ);
1116 	return ret;
1117 }
1118 
1119 static int dev_get_valid_name(struct net *net,
1120 			      struct net_device *dev,
1121 			      const char *name)
1122 {
1123 	BUG_ON(!net);
1124 
1125 	if (!dev_valid_name(name))
1126 		return -EINVAL;
1127 
1128 	if (strchr(name, '%'))
1129 		return dev_alloc_name_ns(net, dev, name);
1130 	else if (__dev_get_by_name(net, name))
1131 		return -EEXIST;
1132 	else if (dev->name != name)
1133 		strlcpy(dev->name, name, IFNAMSIZ);
1134 
1135 	return 0;
1136 }
1137 
1138 /**
1139  *	dev_change_name - change name of a device
1140  *	@dev: device
1141  *	@newname: name (or format string) must be at least IFNAMSIZ
1142  *
1143  *	Change name of a device, can pass format strings "eth%d".
1144  *	for wildcarding.
1145  */
1146 int dev_change_name(struct net_device *dev, const char *newname)
1147 {
1148 	unsigned char old_assign_type;
1149 	char oldname[IFNAMSIZ];
1150 	int err = 0;
1151 	int ret;
1152 	struct net *net;
1153 
1154 	ASSERT_RTNL();
1155 	BUG_ON(!dev_net(dev));
1156 
1157 	net = dev_net(dev);
1158 	if (dev->flags & IFF_UP)
1159 		return -EBUSY;
1160 
1161 	write_seqcount_begin(&devnet_rename_seq);
1162 
1163 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1164 		write_seqcount_end(&devnet_rename_seq);
1165 		return 0;
1166 	}
1167 
1168 	memcpy(oldname, dev->name, IFNAMSIZ);
1169 
1170 	err = dev_get_valid_name(net, dev, newname);
1171 	if (err < 0) {
1172 		write_seqcount_end(&devnet_rename_seq);
1173 		return err;
1174 	}
1175 
1176 	if (oldname[0] && !strchr(oldname, '%'))
1177 		netdev_info(dev, "renamed from %s\n", oldname);
1178 
1179 	old_assign_type = dev->name_assign_type;
1180 	dev->name_assign_type = NET_NAME_RENAMED;
1181 
1182 rollback:
1183 	ret = device_rename(&dev->dev, dev->name);
1184 	if (ret) {
1185 		memcpy(dev->name, oldname, IFNAMSIZ);
1186 		dev->name_assign_type = old_assign_type;
1187 		write_seqcount_end(&devnet_rename_seq);
1188 		return ret;
1189 	}
1190 
1191 	write_seqcount_end(&devnet_rename_seq);
1192 
1193 	netdev_adjacent_rename_links(dev, oldname);
1194 
1195 	write_lock_bh(&dev_base_lock);
1196 	hlist_del_rcu(&dev->name_hlist);
1197 	write_unlock_bh(&dev_base_lock);
1198 
1199 	synchronize_rcu();
1200 
1201 	write_lock_bh(&dev_base_lock);
1202 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1203 	write_unlock_bh(&dev_base_lock);
1204 
1205 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1206 	ret = notifier_to_errno(ret);
1207 
1208 	if (ret) {
1209 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1210 		if (err >= 0) {
1211 			err = ret;
1212 			write_seqcount_begin(&devnet_rename_seq);
1213 			memcpy(dev->name, oldname, IFNAMSIZ);
1214 			memcpy(oldname, newname, IFNAMSIZ);
1215 			dev->name_assign_type = old_assign_type;
1216 			old_assign_type = NET_NAME_RENAMED;
1217 			goto rollback;
1218 		} else {
1219 			pr_err("%s: name change rollback failed: %d\n",
1220 			       dev->name, ret);
1221 		}
1222 	}
1223 
1224 	return err;
1225 }
1226 
1227 /**
1228  *	dev_set_alias - change ifalias of a device
1229  *	@dev: device
1230  *	@alias: name up to IFALIASZ
1231  *	@len: limit of bytes to copy from info
1232  *
1233  *	Set ifalias for a device,
1234  */
1235 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1236 {
1237 	char *new_ifalias;
1238 
1239 	ASSERT_RTNL();
1240 
1241 	if (len >= IFALIASZ)
1242 		return -EINVAL;
1243 
1244 	if (!len) {
1245 		kfree(dev->ifalias);
1246 		dev->ifalias = NULL;
1247 		return 0;
1248 	}
1249 
1250 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1251 	if (!new_ifalias)
1252 		return -ENOMEM;
1253 	dev->ifalias = new_ifalias;
1254 
1255 	strlcpy(dev->ifalias, alias, len+1);
1256 	return len;
1257 }
1258 
1259 
1260 /**
1261  *	netdev_features_change - device changes features
1262  *	@dev: device to cause notification
1263  *
1264  *	Called to indicate a device has changed features.
1265  */
1266 void netdev_features_change(struct net_device *dev)
1267 {
1268 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1269 }
1270 EXPORT_SYMBOL(netdev_features_change);
1271 
1272 /**
1273  *	netdev_state_change - device changes state
1274  *	@dev: device to cause notification
1275  *
1276  *	Called to indicate a device has changed state. This function calls
1277  *	the notifier chains for netdev_chain and sends a NEWLINK message
1278  *	to the routing socket.
1279  */
1280 void netdev_state_change(struct net_device *dev)
1281 {
1282 	if (dev->flags & IFF_UP) {
1283 		struct netdev_notifier_change_info change_info;
1284 
1285 		change_info.flags_changed = 0;
1286 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1287 					      &change_info.info);
1288 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1289 	}
1290 }
1291 EXPORT_SYMBOL(netdev_state_change);
1292 
1293 /**
1294  * netdev_notify_peers - notify network peers about existence of @dev
1295  * @dev: network device
1296  *
1297  * Generate traffic such that interested network peers are aware of
1298  * @dev, such as by generating a gratuitous ARP. This may be used when
1299  * a device wants to inform the rest of the network about some sort of
1300  * reconfiguration such as a failover event or virtual machine
1301  * migration.
1302  */
1303 void netdev_notify_peers(struct net_device *dev)
1304 {
1305 	rtnl_lock();
1306 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1307 	rtnl_unlock();
1308 }
1309 EXPORT_SYMBOL(netdev_notify_peers);
1310 
1311 static int __dev_open(struct net_device *dev)
1312 {
1313 	const struct net_device_ops *ops = dev->netdev_ops;
1314 	int ret;
1315 
1316 	ASSERT_RTNL();
1317 
1318 	if (!netif_device_present(dev))
1319 		return -ENODEV;
1320 
1321 	/* Block netpoll from trying to do any rx path servicing.
1322 	 * If we don't do this there is a chance ndo_poll_controller
1323 	 * or ndo_poll may be running while we open the device
1324 	 */
1325 	netpoll_poll_disable(dev);
1326 
1327 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1328 	ret = notifier_to_errno(ret);
1329 	if (ret)
1330 		return ret;
1331 
1332 	set_bit(__LINK_STATE_START, &dev->state);
1333 
1334 	if (ops->ndo_validate_addr)
1335 		ret = ops->ndo_validate_addr(dev);
1336 
1337 	if (!ret && ops->ndo_open)
1338 		ret = ops->ndo_open(dev);
1339 
1340 	netpoll_poll_enable(dev);
1341 
1342 	if (ret)
1343 		clear_bit(__LINK_STATE_START, &dev->state);
1344 	else {
1345 		dev->flags |= IFF_UP;
1346 		dev_set_rx_mode(dev);
1347 		dev_activate(dev);
1348 		add_device_randomness(dev->dev_addr, dev->addr_len);
1349 	}
1350 
1351 	return ret;
1352 }
1353 
1354 /**
1355  *	dev_open	- prepare an interface for use.
1356  *	@dev:	device to open
1357  *
1358  *	Takes a device from down to up state. The device's private open
1359  *	function is invoked and then the multicast lists are loaded. Finally
1360  *	the device is moved into the up state and a %NETDEV_UP message is
1361  *	sent to the netdev notifier chain.
1362  *
1363  *	Calling this function on an active interface is a nop. On a failure
1364  *	a negative errno code is returned.
1365  */
1366 int dev_open(struct net_device *dev)
1367 {
1368 	int ret;
1369 
1370 	if (dev->flags & IFF_UP)
1371 		return 0;
1372 
1373 	ret = __dev_open(dev);
1374 	if (ret < 0)
1375 		return ret;
1376 
1377 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1378 	call_netdevice_notifiers(NETDEV_UP, dev);
1379 
1380 	return ret;
1381 }
1382 EXPORT_SYMBOL(dev_open);
1383 
1384 static int __dev_close_many(struct list_head *head)
1385 {
1386 	struct net_device *dev;
1387 
1388 	ASSERT_RTNL();
1389 	might_sleep();
1390 
1391 	list_for_each_entry(dev, head, close_list) {
1392 		/* Temporarily disable netpoll until the interface is down */
1393 		netpoll_poll_disable(dev);
1394 
1395 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1396 
1397 		clear_bit(__LINK_STATE_START, &dev->state);
1398 
1399 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1400 		 * can be even on different cpu. So just clear netif_running().
1401 		 *
1402 		 * dev->stop() will invoke napi_disable() on all of it's
1403 		 * napi_struct instances on this device.
1404 		 */
1405 		smp_mb__after_atomic(); /* Commit netif_running(). */
1406 	}
1407 
1408 	dev_deactivate_many(head);
1409 
1410 	list_for_each_entry(dev, head, close_list) {
1411 		const struct net_device_ops *ops = dev->netdev_ops;
1412 
1413 		/*
1414 		 *	Call the device specific close. This cannot fail.
1415 		 *	Only if device is UP
1416 		 *
1417 		 *	We allow it to be called even after a DETACH hot-plug
1418 		 *	event.
1419 		 */
1420 		if (ops->ndo_stop)
1421 			ops->ndo_stop(dev);
1422 
1423 		dev->flags &= ~IFF_UP;
1424 		netpoll_poll_enable(dev);
1425 	}
1426 
1427 	return 0;
1428 }
1429 
1430 static int __dev_close(struct net_device *dev)
1431 {
1432 	int retval;
1433 	LIST_HEAD(single);
1434 
1435 	list_add(&dev->close_list, &single);
1436 	retval = __dev_close_many(&single);
1437 	list_del(&single);
1438 
1439 	return retval;
1440 }
1441 
1442 int dev_close_many(struct list_head *head, bool unlink)
1443 {
1444 	struct net_device *dev, *tmp;
1445 
1446 	/* Remove the devices that don't need to be closed */
1447 	list_for_each_entry_safe(dev, tmp, head, close_list)
1448 		if (!(dev->flags & IFF_UP))
1449 			list_del_init(&dev->close_list);
1450 
1451 	__dev_close_many(head);
1452 
1453 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1454 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1455 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1456 		if (unlink)
1457 			list_del_init(&dev->close_list);
1458 	}
1459 
1460 	return 0;
1461 }
1462 EXPORT_SYMBOL(dev_close_many);
1463 
1464 /**
1465  *	dev_close - shutdown an interface.
1466  *	@dev: device to shutdown
1467  *
1468  *	This function moves an active device into down state. A
1469  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1470  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1471  *	chain.
1472  */
1473 int dev_close(struct net_device *dev)
1474 {
1475 	if (dev->flags & IFF_UP) {
1476 		LIST_HEAD(single);
1477 
1478 		list_add(&dev->close_list, &single);
1479 		dev_close_many(&single, true);
1480 		list_del(&single);
1481 	}
1482 	return 0;
1483 }
1484 EXPORT_SYMBOL(dev_close);
1485 
1486 
1487 /**
1488  *	dev_disable_lro - disable Large Receive Offload on a device
1489  *	@dev: device
1490  *
1491  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1492  *	called under RTNL.  This is needed if received packets may be
1493  *	forwarded to another interface.
1494  */
1495 void dev_disable_lro(struct net_device *dev)
1496 {
1497 	struct net_device *lower_dev;
1498 	struct list_head *iter;
1499 
1500 	dev->wanted_features &= ~NETIF_F_LRO;
1501 	netdev_update_features(dev);
1502 
1503 	if (unlikely(dev->features & NETIF_F_LRO))
1504 		netdev_WARN(dev, "failed to disable LRO!\n");
1505 
1506 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1507 		dev_disable_lro(lower_dev);
1508 }
1509 EXPORT_SYMBOL(dev_disable_lro);
1510 
1511 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1512 				   struct net_device *dev)
1513 {
1514 	struct netdev_notifier_info info;
1515 
1516 	netdev_notifier_info_init(&info, dev);
1517 	return nb->notifier_call(nb, val, &info);
1518 }
1519 
1520 static int dev_boot_phase = 1;
1521 
1522 /**
1523  * register_netdevice_notifier - register a network notifier block
1524  * @nb: notifier
1525  *
1526  * Register a notifier to be called when network device events occur.
1527  * The notifier passed is linked into the kernel structures and must
1528  * not be reused until it has been unregistered. A negative errno code
1529  * is returned on a failure.
1530  *
1531  * When registered all registration and up events are replayed
1532  * to the new notifier to allow device to have a race free
1533  * view of the network device list.
1534  */
1535 
1536 int register_netdevice_notifier(struct notifier_block *nb)
1537 {
1538 	struct net_device *dev;
1539 	struct net_device *last;
1540 	struct net *net;
1541 	int err;
1542 
1543 	rtnl_lock();
1544 	err = raw_notifier_chain_register(&netdev_chain, nb);
1545 	if (err)
1546 		goto unlock;
1547 	if (dev_boot_phase)
1548 		goto unlock;
1549 	for_each_net(net) {
1550 		for_each_netdev(net, dev) {
1551 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1552 			err = notifier_to_errno(err);
1553 			if (err)
1554 				goto rollback;
1555 
1556 			if (!(dev->flags & IFF_UP))
1557 				continue;
1558 
1559 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1560 		}
1561 	}
1562 
1563 unlock:
1564 	rtnl_unlock();
1565 	return err;
1566 
1567 rollback:
1568 	last = dev;
1569 	for_each_net(net) {
1570 		for_each_netdev(net, dev) {
1571 			if (dev == last)
1572 				goto outroll;
1573 
1574 			if (dev->flags & IFF_UP) {
1575 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1576 							dev);
1577 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1578 			}
1579 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1580 		}
1581 	}
1582 
1583 outroll:
1584 	raw_notifier_chain_unregister(&netdev_chain, nb);
1585 	goto unlock;
1586 }
1587 EXPORT_SYMBOL(register_netdevice_notifier);
1588 
1589 /**
1590  * unregister_netdevice_notifier - unregister a network notifier block
1591  * @nb: notifier
1592  *
1593  * Unregister a notifier previously registered by
1594  * register_netdevice_notifier(). The notifier is unlinked into the
1595  * kernel structures and may then be reused. A negative errno code
1596  * is returned on a failure.
1597  *
1598  * After unregistering unregister and down device events are synthesized
1599  * for all devices on the device list to the removed notifier to remove
1600  * the need for special case cleanup code.
1601  */
1602 
1603 int unregister_netdevice_notifier(struct notifier_block *nb)
1604 {
1605 	struct net_device *dev;
1606 	struct net *net;
1607 	int err;
1608 
1609 	rtnl_lock();
1610 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1611 	if (err)
1612 		goto unlock;
1613 
1614 	for_each_net(net) {
1615 		for_each_netdev(net, dev) {
1616 			if (dev->flags & IFF_UP) {
1617 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1618 							dev);
1619 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1620 			}
1621 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1622 		}
1623 	}
1624 unlock:
1625 	rtnl_unlock();
1626 	return err;
1627 }
1628 EXPORT_SYMBOL(unregister_netdevice_notifier);
1629 
1630 /**
1631  *	call_netdevice_notifiers_info - call all network notifier blocks
1632  *	@val: value passed unmodified to notifier function
1633  *	@dev: net_device pointer passed unmodified to notifier function
1634  *	@info: notifier information data
1635  *
1636  *	Call all network notifier blocks.  Parameters and return value
1637  *	are as for raw_notifier_call_chain().
1638  */
1639 
1640 static int call_netdevice_notifiers_info(unsigned long val,
1641 					 struct net_device *dev,
1642 					 struct netdev_notifier_info *info)
1643 {
1644 	ASSERT_RTNL();
1645 	netdev_notifier_info_init(info, dev);
1646 	return raw_notifier_call_chain(&netdev_chain, val, info);
1647 }
1648 
1649 /**
1650  *	call_netdevice_notifiers - call all network notifier blocks
1651  *      @val: value passed unmodified to notifier function
1652  *      @dev: net_device pointer passed unmodified to notifier function
1653  *
1654  *	Call all network notifier blocks.  Parameters and return value
1655  *	are as for raw_notifier_call_chain().
1656  */
1657 
1658 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1659 {
1660 	struct netdev_notifier_info info;
1661 
1662 	return call_netdevice_notifiers_info(val, dev, &info);
1663 }
1664 EXPORT_SYMBOL(call_netdevice_notifiers);
1665 
1666 #ifdef CONFIG_NET_INGRESS
1667 static struct static_key ingress_needed __read_mostly;
1668 
1669 void net_inc_ingress_queue(void)
1670 {
1671 	static_key_slow_inc(&ingress_needed);
1672 }
1673 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1674 
1675 void net_dec_ingress_queue(void)
1676 {
1677 	static_key_slow_dec(&ingress_needed);
1678 }
1679 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1680 #endif
1681 
1682 #ifdef CONFIG_NET_EGRESS
1683 static struct static_key egress_needed __read_mostly;
1684 
1685 void net_inc_egress_queue(void)
1686 {
1687 	static_key_slow_inc(&egress_needed);
1688 }
1689 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1690 
1691 void net_dec_egress_queue(void)
1692 {
1693 	static_key_slow_dec(&egress_needed);
1694 }
1695 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1696 #endif
1697 
1698 static struct static_key netstamp_needed __read_mostly;
1699 #ifdef HAVE_JUMP_LABEL
1700 static atomic_t netstamp_needed_deferred;
1701 static atomic_t netstamp_wanted;
1702 static void netstamp_clear(struct work_struct *work)
1703 {
1704 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1705 	int wanted;
1706 
1707 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1708 	if (wanted > 0)
1709 		static_key_enable(&netstamp_needed);
1710 	else
1711 		static_key_disable(&netstamp_needed);
1712 }
1713 static DECLARE_WORK(netstamp_work, netstamp_clear);
1714 #endif
1715 
1716 void net_enable_timestamp(void)
1717 {
1718 #ifdef HAVE_JUMP_LABEL
1719 	int wanted;
1720 
1721 	while (1) {
1722 		wanted = atomic_read(&netstamp_wanted);
1723 		if (wanted <= 0)
1724 			break;
1725 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1726 			return;
1727 	}
1728 	atomic_inc(&netstamp_needed_deferred);
1729 	schedule_work(&netstamp_work);
1730 #else
1731 	static_key_slow_inc(&netstamp_needed);
1732 #endif
1733 }
1734 EXPORT_SYMBOL(net_enable_timestamp);
1735 
1736 void net_disable_timestamp(void)
1737 {
1738 #ifdef HAVE_JUMP_LABEL
1739 	int wanted;
1740 
1741 	while (1) {
1742 		wanted = atomic_read(&netstamp_wanted);
1743 		if (wanted <= 1)
1744 			break;
1745 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1746 			return;
1747 	}
1748 	atomic_dec(&netstamp_needed_deferred);
1749 	schedule_work(&netstamp_work);
1750 #else
1751 	static_key_slow_dec(&netstamp_needed);
1752 #endif
1753 }
1754 EXPORT_SYMBOL(net_disable_timestamp);
1755 
1756 static inline void net_timestamp_set(struct sk_buff *skb)
1757 {
1758 	skb->tstamp = 0;
1759 	if (static_key_false(&netstamp_needed))
1760 		__net_timestamp(skb);
1761 }
1762 
1763 #define net_timestamp_check(COND, SKB)			\
1764 	if (static_key_false(&netstamp_needed)) {		\
1765 		if ((COND) && !(SKB)->tstamp)	\
1766 			__net_timestamp(SKB);		\
1767 	}						\
1768 
1769 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1770 {
1771 	unsigned int len;
1772 
1773 	if (!(dev->flags & IFF_UP))
1774 		return false;
1775 
1776 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1777 	if (skb->len <= len)
1778 		return true;
1779 
1780 	/* if TSO is enabled, we don't care about the length as the packet
1781 	 * could be forwarded without being segmented before
1782 	 */
1783 	if (skb_is_gso(skb))
1784 		return true;
1785 
1786 	return false;
1787 }
1788 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1789 
1790 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1791 {
1792 	int ret = ____dev_forward_skb(dev, skb);
1793 
1794 	if (likely(!ret)) {
1795 		skb->protocol = eth_type_trans(skb, dev);
1796 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1797 	}
1798 
1799 	return ret;
1800 }
1801 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1802 
1803 /**
1804  * dev_forward_skb - loopback an skb to another netif
1805  *
1806  * @dev: destination network device
1807  * @skb: buffer to forward
1808  *
1809  * return values:
1810  *	NET_RX_SUCCESS	(no congestion)
1811  *	NET_RX_DROP     (packet was dropped, but freed)
1812  *
1813  * dev_forward_skb can be used for injecting an skb from the
1814  * start_xmit function of one device into the receive queue
1815  * of another device.
1816  *
1817  * The receiving device may be in another namespace, so
1818  * we have to clear all information in the skb that could
1819  * impact namespace isolation.
1820  */
1821 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1822 {
1823 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1824 }
1825 EXPORT_SYMBOL_GPL(dev_forward_skb);
1826 
1827 static inline int deliver_skb(struct sk_buff *skb,
1828 			      struct packet_type *pt_prev,
1829 			      struct net_device *orig_dev)
1830 {
1831 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1832 		return -ENOMEM;
1833 	atomic_inc(&skb->users);
1834 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1835 }
1836 
1837 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1838 					  struct packet_type **pt,
1839 					  struct net_device *orig_dev,
1840 					  __be16 type,
1841 					  struct list_head *ptype_list)
1842 {
1843 	struct packet_type *ptype, *pt_prev = *pt;
1844 
1845 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1846 		if (ptype->type != type)
1847 			continue;
1848 		if (pt_prev)
1849 			deliver_skb(skb, pt_prev, orig_dev);
1850 		pt_prev = ptype;
1851 	}
1852 	*pt = pt_prev;
1853 }
1854 
1855 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1856 {
1857 	if (!ptype->af_packet_priv || !skb->sk)
1858 		return false;
1859 
1860 	if (ptype->id_match)
1861 		return ptype->id_match(ptype, skb->sk);
1862 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1863 		return true;
1864 
1865 	return false;
1866 }
1867 
1868 /*
1869  *	Support routine. Sends outgoing frames to any network
1870  *	taps currently in use.
1871  */
1872 
1873 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1874 {
1875 	struct packet_type *ptype;
1876 	struct sk_buff *skb2 = NULL;
1877 	struct packet_type *pt_prev = NULL;
1878 	struct list_head *ptype_list = &ptype_all;
1879 
1880 	rcu_read_lock();
1881 again:
1882 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1883 		/* Never send packets back to the socket
1884 		 * they originated from - MvS (miquels@drinkel.ow.org)
1885 		 */
1886 		if (skb_loop_sk(ptype, skb))
1887 			continue;
1888 
1889 		if (pt_prev) {
1890 			deliver_skb(skb2, pt_prev, skb->dev);
1891 			pt_prev = ptype;
1892 			continue;
1893 		}
1894 
1895 		/* need to clone skb, done only once */
1896 		skb2 = skb_clone(skb, GFP_ATOMIC);
1897 		if (!skb2)
1898 			goto out_unlock;
1899 
1900 		net_timestamp_set(skb2);
1901 
1902 		/* skb->nh should be correctly
1903 		 * set by sender, so that the second statement is
1904 		 * just protection against buggy protocols.
1905 		 */
1906 		skb_reset_mac_header(skb2);
1907 
1908 		if (skb_network_header(skb2) < skb2->data ||
1909 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1910 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1911 					     ntohs(skb2->protocol),
1912 					     dev->name);
1913 			skb_reset_network_header(skb2);
1914 		}
1915 
1916 		skb2->transport_header = skb2->network_header;
1917 		skb2->pkt_type = PACKET_OUTGOING;
1918 		pt_prev = ptype;
1919 	}
1920 
1921 	if (ptype_list == &ptype_all) {
1922 		ptype_list = &dev->ptype_all;
1923 		goto again;
1924 	}
1925 out_unlock:
1926 	if (pt_prev)
1927 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1928 	rcu_read_unlock();
1929 }
1930 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1931 
1932 /**
1933  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1934  * @dev: Network device
1935  * @txq: number of queues available
1936  *
1937  * If real_num_tx_queues is changed the tc mappings may no longer be
1938  * valid. To resolve this verify the tc mapping remains valid and if
1939  * not NULL the mapping. With no priorities mapping to this
1940  * offset/count pair it will no longer be used. In the worst case TC0
1941  * is invalid nothing can be done so disable priority mappings. If is
1942  * expected that drivers will fix this mapping if they can before
1943  * calling netif_set_real_num_tx_queues.
1944  */
1945 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1946 {
1947 	int i;
1948 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1949 
1950 	/* If TC0 is invalidated disable TC mapping */
1951 	if (tc->offset + tc->count > txq) {
1952 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1953 		dev->num_tc = 0;
1954 		return;
1955 	}
1956 
1957 	/* Invalidated prio to tc mappings set to TC0 */
1958 	for (i = 1; i < TC_BITMASK + 1; i++) {
1959 		int q = netdev_get_prio_tc_map(dev, i);
1960 
1961 		tc = &dev->tc_to_txq[q];
1962 		if (tc->offset + tc->count > txq) {
1963 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1964 				i, q);
1965 			netdev_set_prio_tc_map(dev, i, 0);
1966 		}
1967 	}
1968 }
1969 
1970 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1971 {
1972 	if (dev->num_tc) {
1973 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1974 		int i;
1975 
1976 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1977 			if ((txq - tc->offset) < tc->count)
1978 				return i;
1979 		}
1980 
1981 		return -1;
1982 	}
1983 
1984 	return 0;
1985 }
1986 
1987 #ifdef CONFIG_XPS
1988 static DEFINE_MUTEX(xps_map_mutex);
1989 #define xmap_dereference(P)		\
1990 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1991 
1992 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1993 			     int tci, u16 index)
1994 {
1995 	struct xps_map *map = NULL;
1996 	int pos;
1997 
1998 	if (dev_maps)
1999 		map = xmap_dereference(dev_maps->cpu_map[tci]);
2000 	if (!map)
2001 		return false;
2002 
2003 	for (pos = map->len; pos--;) {
2004 		if (map->queues[pos] != index)
2005 			continue;
2006 
2007 		if (map->len > 1) {
2008 			map->queues[pos] = map->queues[--map->len];
2009 			break;
2010 		}
2011 
2012 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2013 		kfree_rcu(map, rcu);
2014 		return false;
2015 	}
2016 
2017 	return true;
2018 }
2019 
2020 static bool remove_xps_queue_cpu(struct net_device *dev,
2021 				 struct xps_dev_maps *dev_maps,
2022 				 int cpu, u16 offset, u16 count)
2023 {
2024 	int num_tc = dev->num_tc ? : 1;
2025 	bool active = false;
2026 	int tci;
2027 
2028 	for (tci = cpu * num_tc; num_tc--; tci++) {
2029 		int i, j;
2030 
2031 		for (i = count, j = offset; i--; j++) {
2032 			if (!remove_xps_queue(dev_maps, cpu, j))
2033 				break;
2034 		}
2035 
2036 		active |= i < 0;
2037 	}
2038 
2039 	return active;
2040 }
2041 
2042 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2043 				   u16 count)
2044 {
2045 	struct xps_dev_maps *dev_maps;
2046 	int cpu, i;
2047 	bool active = false;
2048 
2049 	mutex_lock(&xps_map_mutex);
2050 	dev_maps = xmap_dereference(dev->xps_maps);
2051 
2052 	if (!dev_maps)
2053 		goto out_no_maps;
2054 
2055 	for_each_possible_cpu(cpu)
2056 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2057 					       offset, count);
2058 
2059 	if (!active) {
2060 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2061 		kfree_rcu(dev_maps, rcu);
2062 	}
2063 
2064 	for (i = offset + (count - 1); count--; i--)
2065 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2066 					     NUMA_NO_NODE);
2067 
2068 out_no_maps:
2069 	mutex_unlock(&xps_map_mutex);
2070 }
2071 
2072 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2073 {
2074 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2075 }
2076 
2077 static struct xps_map *expand_xps_map(struct xps_map *map,
2078 				      int cpu, u16 index)
2079 {
2080 	struct xps_map *new_map;
2081 	int alloc_len = XPS_MIN_MAP_ALLOC;
2082 	int i, pos;
2083 
2084 	for (pos = 0; map && pos < map->len; pos++) {
2085 		if (map->queues[pos] != index)
2086 			continue;
2087 		return map;
2088 	}
2089 
2090 	/* Need to add queue to this CPU's existing map */
2091 	if (map) {
2092 		if (pos < map->alloc_len)
2093 			return map;
2094 
2095 		alloc_len = map->alloc_len * 2;
2096 	}
2097 
2098 	/* Need to allocate new map to store queue on this CPU's map */
2099 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2100 			       cpu_to_node(cpu));
2101 	if (!new_map)
2102 		return NULL;
2103 
2104 	for (i = 0; i < pos; i++)
2105 		new_map->queues[i] = map->queues[i];
2106 	new_map->alloc_len = alloc_len;
2107 	new_map->len = pos;
2108 
2109 	return new_map;
2110 }
2111 
2112 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2113 			u16 index)
2114 {
2115 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2116 	int i, cpu, tci, numa_node_id = -2;
2117 	int maps_sz, num_tc = 1, tc = 0;
2118 	struct xps_map *map, *new_map;
2119 	bool active = false;
2120 
2121 	if (dev->num_tc) {
2122 		num_tc = dev->num_tc;
2123 		tc = netdev_txq_to_tc(dev, index);
2124 		if (tc < 0)
2125 			return -EINVAL;
2126 	}
2127 
2128 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2129 	if (maps_sz < L1_CACHE_BYTES)
2130 		maps_sz = L1_CACHE_BYTES;
2131 
2132 	mutex_lock(&xps_map_mutex);
2133 
2134 	dev_maps = xmap_dereference(dev->xps_maps);
2135 
2136 	/* allocate memory for queue storage */
2137 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2138 		if (!new_dev_maps)
2139 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2140 		if (!new_dev_maps) {
2141 			mutex_unlock(&xps_map_mutex);
2142 			return -ENOMEM;
2143 		}
2144 
2145 		tci = cpu * num_tc + tc;
2146 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2147 				 NULL;
2148 
2149 		map = expand_xps_map(map, cpu, index);
2150 		if (!map)
2151 			goto error;
2152 
2153 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2154 	}
2155 
2156 	if (!new_dev_maps)
2157 		goto out_no_new_maps;
2158 
2159 	for_each_possible_cpu(cpu) {
2160 		/* copy maps belonging to foreign traffic classes */
2161 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2162 			/* fill in the new device map from the old device map */
2163 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2164 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2165 		}
2166 
2167 		/* We need to explicitly update tci as prevous loop
2168 		 * could break out early if dev_maps is NULL.
2169 		 */
2170 		tci = cpu * num_tc + tc;
2171 
2172 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2173 			/* add queue to CPU maps */
2174 			int pos = 0;
2175 
2176 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2177 			while ((pos < map->len) && (map->queues[pos] != index))
2178 				pos++;
2179 
2180 			if (pos == map->len)
2181 				map->queues[map->len++] = index;
2182 #ifdef CONFIG_NUMA
2183 			if (numa_node_id == -2)
2184 				numa_node_id = cpu_to_node(cpu);
2185 			else if (numa_node_id != cpu_to_node(cpu))
2186 				numa_node_id = -1;
2187 #endif
2188 		} else if (dev_maps) {
2189 			/* fill in the new device map from the old device map */
2190 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2191 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2192 		}
2193 
2194 		/* copy maps belonging to foreign traffic classes */
2195 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2196 			/* fill in the new device map from the old device map */
2197 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2198 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2199 		}
2200 	}
2201 
2202 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2203 
2204 	/* Cleanup old maps */
2205 	if (!dev_maps)
2206 		goto out_no_old_maps;
2207 
2208 	for_each_possible_cpu(cpu) {
2209 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2210 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2211 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2212 			if (map && map != new_map)
2213 				kfree_rcu(map, rcu);
2214 		}
2215 	}
2216 
2217 	kfree_rcu(dev_maps, rcu);
2218 
2219 out_no_old_maps:
2220 	dev_maps = new_dev_maps;
2221 	active = true;
2222 
2223 out_no_new_maps:
2224 	/* update Tx queue numa node */
2225 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2226 				     (numa_node_id >= 0) ? numa_node_id :
2227 				     NUMA_NO_NODE);
2228 
2229 	if (!dev_maps)
2230 		goto out_no_maps;
2231 
2232 	/* removes queue from unused CPUs */
2233 	for_each_possible_cpu(cpu) {
2234 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2235 			active |= remove_xps_queue(dev_maps, tci, index);
2236 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2237 			active |= remove_xps_queue(dev_maps, tci, index);
2238 		for (i = num_tc - tc, tci++; --i; tci++)
2239 			active |= remove_xps_queue(dev_maps, tci, index);
2240 	}
2241 
2242 	/* free map if not active */
2243 	if (!active) {
2244 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2245 		kfree_rcu(dev_maps, rcu);
2246 	}
2247 
2248 out_no_maps:
2249 	mutex_unlock(&xps_map_mutex);
2250 
2251 	return 0;
2252 error:
2253 	/* remove any maps that we added */
2254 	for_each_possible_cpu(cpu) {
2255 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2256 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2257 			map = dev_maps ?
2258 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2259 			      NULL;
2260 			if (new_map && new_map != map)
2261 				kfree(new_map);
2262 		}
2263 	}
2264 
2265 	mutex_unlock(&xps_map_mutex);
2266 
2267 	kfree(new_dev_maps);
2268 	return -ENOMEM;
2269 }
2270 EXPORT_SYMBOL(netif_set_xps_queue);
2271 
2272 #endif
2273 void netdev_reset_tc(struct net_device *dev)
2274 {
2275 #ifdef CONFIG_XPS
2276 	netif_reset_xps_queues_gt(dev, 0);
2277 #endif
2278 	dev->num_tc = 0;
2279 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2280 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2281 }
2282 EXPORT_SYMBOL(netdev_reset_tc);
2283 
2284 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2285 {
2286 	if (tc >= dev->num_tc)
2287 		return -EINVAL;
2288 
2289 #ifdef CONFIG_XPS
2290 	netif_reset_xps_queues(dev, offset, count);
2291 #endif
2292 	dev->tc_to_txq[tc].count = count;
2293 	dev->tc_to_txq[tc].offset = offset;
2294 	return 0;
2295 }
2296 EXPORT_SYMBOL(netdev_set_tc_queue);
2297 
2298 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2299 {
2300 	if (num_tc > TC_MAX_QUEUE)
2301 		return -EINVAL;
2302 
2303 #ifdef CONFIG_XPS
2304 	netif_reset_xps_queues_gt(dev, 0);
2305 #endif
2306 	dev->num_tc = num_tc;
2307 	return 0;
2308 }
2309 EXPORT_SYMBOL(netdev_set_num_tc);
2310 
2311 /*
2312  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2313  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2314  */
2315 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2316 {
2317 	int rc;
2318 
2319 	if (txq < 1 || txq > dev->num_tx_queues)
2320 		return -EINVAL;
2321 
2322 	if (dev->reg_state == NETREG_REGISTERED ||
2323 	    dev->reg_state == NETREG_UNREGISTERING) {
2324 		ASSERT_RTNL();
2325 
2326 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2327 						  txq);
2328 		if (rc)
2329 			return rc;
2330 
2331 		if (dev->num_tc)
2332 			netif_setup_tc(dev, txq);
2333 
2334 		if (txq < dev->real_num_tx_queues) {
2335 			qdisc_reset_all_tx_gt(dev, txq);
2336 #ifdef CONFIG_XPS
2337 			netif_reset_xps_queues_gt(dev, txq);
2338 #endif
2339 		}
2340 	}
2341 
2342 	dev->real_num_tx_queues = txq;
2343 	return 0;
2344 }
2345 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2346 
2347 #ifdef CONFIG_SYSFS
2348 /**
2349  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2350  *	@dev: Network device
2351  *	@rxq: Actual number of RX queues
2352  *
2353  *	This must be called either with the rtnl_lock held or before
2354  *	registration of the net device.  Returns 0 on success, or a
2355  *	negative error code.  If called before registration, it always
2356  *	succeeds.
2357  */
2358 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2359 {
2360 	int rc;
2361 
2362 	if (rxq < 1 || rxq > dev->num_rx_queues)
2363 		return -EINVAL;
2364 
2365 	if (dev->reg_state == NETREG_REGISTERED) {
2366 		ASSERT_RTNL();
2367 
2368 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2369 						  rxq);
2370 		if (rc)
2371 			return rc;
2372 	}
2373 
2374 	dev->real_num_rx_queues = rxq;
2375 	return 0;
2376 }
2377 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2378 #endif
2379 
2380 /**
2381  * netif_get_num_default_rss_queues - default number of RSS queues
2382  *
2383  * This routine should set an upper limit on the number of RSS queues
2384  * used by default by multiqueue devices.
2385  */
2386 int netif_get_num_default_rss_queues(void)
2387 {
2388 	return is_kdump_kernel() ?
2389 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2390 }
2391 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2392 
2393 static void __netif_reschedule(struct Qdisc *q)
2394 {
2395 	struct softnet_data *sd;
2396 	unsigned long flags;
2397 
2398 	local_irq_save(flags);
2399 	sd = this_cpu_ptr(&softnet_data);
2400 	q->next_sched = NULL;
2401 	*sd->output_queue_tailp = q;
2402 	sd->output_queue_tailp = &q->next_sched;
2403 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2404 	local_irq_restore(flags);
2405 }
2406 
2407 void __netif_schedule(struct Qdisc *q)
2408 {
2409 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2410 		__netif_reschedule(q);
2411 }
2412 EXPORT_SYMBOL(__netif_schedule);
2413 
2414 struct dev_kfree_skb_cb {
2415 	enum skb_free_reason reason;
2416 };
2417 
2418 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2419 {
2420 	return (struct dev_kfree_skb_cb *)skb->cb;
2421 }
2422 
2423 void netif_schedule_queue(struct netdev_queue *txq)
2424 {
2425 	rcu_read_lock();
2426 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2427 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2428 
2429 		__netif_schedule(q);
2430 	}
2431 	rcu_read_unlock();
2432 }
2433 EXPORT_SYMBOL(netif_schedule_queue);
2434 
2435 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2436 {
2437 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2438 		struct Qdisc *q;
2439 
2440 		rcu_read_lock();
2441 		q = rcu_dereference(dev_queue->qdisc);
2442 		__netif_schedule(q);
2443 		rcu_read_unlock();
2444 	}
2445 }
2446 EXPORT_SYMBOL(netif_tx_wake_queue);
2447 
2448 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2449 {
2450 	unsigned long flags;
2451 
2452 	if (likely(atomic_read(&skb->users) == 1)) {
2453 		smp_rmb();
2454 		atomic_set(&skb->users, 0);
2455 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2456 		return;
2457 	}
2458 	get_kfree_skb_cb(skb)->reason = reason;
2459 	local_irq_save(flags);
2460 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2461 	__this_cpu_write(softnet_data.completion_queue, skb);
2462 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2463 	local_irq_restore(flags);
2464 }
2465 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2466 
2467 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2468 {
2469 	if (in_irq() || irqs_disabled())
2470 		__dev_kfree_skb_irq(skb, reason);
2471 	else
2472 		dev_kfree_skb(skb);
2473 }
2474 EXPORT_SYMBOL(__dev_kfree_skb_any);
2475 
2476 
2477 /**
2478  * netif_device_detach - mark device as removed
2479  * @dev: network device
2480  *
2481  * Mark device as removed from system and therefore no longer available.
2482  */
2483 void netif_device_detach(struct net_device *dev)
2484 {
2485 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2486 	    netif_running(dev)) {
2487 		netif_tx_stop_all_queues(dev);
2488 	}
2489 }
2490 EXPORT_SYMBOL(netif_device_detach);
2491 
2492 /**
2493  * netif_device_attach - mark device as attached
2494  * @dev: network device
2495  *
2496  * Mark device as attached from system and restart if needed.
2497  */
2498 void netif_device_attach(struct net_device *dev)
2499 {
2500 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2501 	    netif_running(dev)) {
2502 		netif_tx_wake_all_queues(dev);
2503 		__netdev_watchdog_up(dev);
2504 	}
2505 }
2506 EXPORT_SYMBOL(netif_device_attach);
2507 
2508 /*
2509  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2510  * to be used as a distribution range.
2511  */
2512 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2513 		  unsigned int num_tx_queues)
2514 {
2515 	u32 hash;
2516 	u16 qoffset = 0;
2517 	u16 qcount = num_tx_queues;
2518 
2519 	if (skb_rx_queue_recorded(skb)) {
2520 		hash = skb_get_rx_queue(skb);
2521 		while (unlikely(hash >= num_tx_queues))
2522 			hash -= num_tx_queues;
2523 		return hash;
2524 	}
2525 
2526 	if (dev->num_tc) {
2527 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2528 
2529 		qoffset = dev->tc_to_txq[tc].offset;
2530 		qcount = dev->tc_to_txq[tc].count;
2531 	}
2532 
2533 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2534 }
2535 EXPORT_SYMBOL(__skb_tx_hash);
2536 
2537 static void skb_warn_bad_offload(const struct sk_buff *skb)
2538 {
2539 	static const netdev_features_t null_features;
2540 	struct net_device *dev = skb->dev;
2541 	const char *name = "";
2542 
2543 	if (!net_ratelimit())
2544 		return;
2545 
2546 	if (dev) {
2547 		if (dev->dev.parent)
2548 			name = dev_driver_string(dev->dev.parent);
2549 		else
2550 			name = netdev_name(dev);
2551 	}
2552 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2553 	     "gso_type=%d ip_summed=%d\n",
2554 	     name, dev ? &dev->features : &null_features,
2555 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2556 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2557 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2558 }
2559 
2560 /*
2561  * Invalidate hardware checksum when packet is to be mangled, and
2562  * complete checksum manually on outgoing path.
2563  */
2564 int skb_checksum_help(struct sk_buff *skb)
2565 {
2566 	__wsum csum;
2567 	int ret = 0, offset;
2568 
2569 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2570 		goto out_set_summed;
2571 
2572 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2573 		skb_warn_bad_offload(skb);
2574 		return -EINVAL;
2575 	}
2576 
2577 	/* Before computing a checksum, we should make sure no frag could
2578 	 * be modified by an external entity : checksum could be wrong.
2579 	 */
2580 	if (skb_has_shared_frag(skb)) {
2581 		ret = __skb_linearize(skb);
2582 		if (ret)
2583 			goto out;
2584 	}
2585 
2586 	offset = skb_checksum_start_offset(skb);
2587 	BUG_ON(offset >= skb_headlen(skb));
2588 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2589 
2590 	offset += skb->csum_offset;
2591 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2592 
2593 	if (skb_cloned(skb) &&
2594 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2595 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2596 		if (ret)
2597 			goto out;
2598 	}
2599 
2600 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2601 out_set_summed:
2602 	skb->ip_summed = CHECKSUM_NONE;
2603 out:
2604 	return ret;
2605 }
2606 EXPORT_SYMBOL(skb_checksum_help);
2607 
2608 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2609 {
2610 	__be16 type = skb->protocol;
2611 
2612 	/* Tunnel gso handlers can set protocol to ethernet. */
2613 	if (type == htons(ETH_P_TEB)) {
2614 		struct ethhdr *eth;
2615 
2616 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2617 			return 0;
2618 
2619 		eth = (struct ethhdr *)skb_mac_header(skb);
2620 		type = eth->h_proto;
2621 	}
2622 
2623 	return __vlan_get_protocol(skb, type, depth);
2624 }
2625 
2626 /**
2627  *	skb_mac_gso_segment - mac layer segmentation handler.
2628  *	@skb: buffer to segment
2629  *	@features: features for the output path (see dev->features)
2630  */
2631 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2632 				    netdev_features_t features)
2633 {
2634 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2635 	struct packet_offload *ptype;
2636 	int vlan_depth = skb->mac_len;
2637 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2638 
2639 	if (unlikely(!type))
2640 		return ERR_PTR(-EINVAL);
2641 
2642 	__skb_pull(skb, vlan_depth);
2643 
2644 	rcu_read_lock();
2645 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2646 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2647 			segs = ptype->callbacks.gso_segment(skb, features);
2648 			break;
2649 		}
2650 	}
2651 	rcu_read_unlock();
2652 
2653 	__skb_push(skb, skb->data - skb_mac_header(skb));
2654 
2655 	return segs;
2656 }
2657 EXPORT_SYMBOL(skb_mac_gso_segment);
2658 
2659 
2660 /* openvswitch calls this on rx path, so we need a different check.
2661  */
2662 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2663 {
2664 	if (tx_path)
2665 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2666 		       skb->ip_summed != CHECKSUM_NONE;
2667 
2668 	return skb->ip_summed == CHECKSUM_NONE;
2669 }
2670 
2671 /**
2672  *	__skb_gso_segment - Perform segmentation on skb.
2673  *	@skb: buffer to segment
2674  *	@features: features for the output path (see dev->features)
2675  *	@tx_path: whether it is called in TX path
2676  *
2677  *	This function segments the given skb and returns a list of segments.
2678  *
2679  *	It may return NULL if the skb requires no segmentation.  This is
2680  *	only possible when GSO is used for verifying header integrity.
2681  *
2682  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2683  */
2684 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2685 				  netdev_features_t features, bool tx_path)
2686 {
2687 	struct sk_buff *segs;
2688 
2689 	if (unlikely(skb_needs_check(skb, tx_path))) {
2690 		int err;
2691 
2692 		/* We're going to init ->check field in TCP or UDP header */
2693 		err = skb_cow_head(skb, 0);
2694 		if (err < 0)
2695 			return ERR_PTR(err);
2696 	}
2697 
2698 	/* Only report GSO partial support if it will enable us to
2699 	 * support segmentation on this frame without needing additional
2700 	 * work.
2701 	 */
2702 	if (features & NETIF_F_GSO_PARTIAL) {
2703 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2704 		struct net_device *dev = skb->dev;
2705 
2706 		partial_features |= dev->features & dev->gso_partial_features;
2707 		if (!skb_gso_ok(skb, features | partial_features))
2708 			features &= ~NETIF_F_GSO_PARTIAL;
2709 	}
2710 
2711 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2712 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2713 
2714 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2715 	SKB_GSO_CB(skb)->encap_level = 0;
2716 
2717 	skb_reset_mac_header(skb);
2718 	skb_reset_mac_len(skb);
2719 
2720 	segs = skb_mac_gso_segment(skb, features);
2721 
2722 	if (unlikely(skb_needs_check(skb, tx_path)))
2723 		skb_warn_bad_offload(skb);
2724 
2725 	return segs;
2726 }
2727 EXPORT_SYMBOL(__skb_gso_segment);
2728 
2729 /* Take action when hardware reception checksum errors are detected. */
2730 #ifdef CONFIG_BUG
2731 void netdev_rx_csum_fault(struct net_device *dev)
2732 {
2733 	if (net_ratelimit()) {
2734 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2735 		dump_stack();
2736 	}
2737 }
2738 EXPORT_SYMBOL(netdev_rx_csum_fault);
2739 #endif
2740 
2741 /* Actually, we should eliminate this check as soon as we know, that:
2742  * 1. IOMMU is present and allows to map all the memory.
2743  * 2. No high memory really exists on this machine.
2744  */
2745 
2746 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2747 {
2748 #ifdef CONFIG_HIGHMEM
2749 	int i;
2750 
2751 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2752 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2753 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2754 
2755 			if (PageHighMem(skb_frag_page(frag)))
2756 				return 1;
2757 		}
2758 	}
2759 
2760 	if (PCI_DMA_BUS_IS_PHYS) {
2761 		struct device *pdev = dev->dev.parent;
2762 
2763 		if (!pdev)
2764 			return 0;
2765 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2766 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2767 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2768 
2769 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2770 				return 1;
2771 		}
2772 	}
2773 #endif
2774 	return 0;
2775 }
2776 
2777 /* If MPLS offload request, verify we are testing hardware MPLS features
2778  * instead of standard features for the netdev.
2779  */
2780 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2781 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2782 					   netdev_features_t features,
2783 					   __be16 type)
2784 {
2785 	if (eth_p_mpls(type))
2786 		features &= skb->dev->mpls_features;
2787 
2788 	return features;
2789 }
2790 #else
2791 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2792 					   netdev_features_t features,
2793 					   __be16 type)
2794 {
2795 	return features;
2796 }
2797 #endif
2798 
2799 static netdev_features_t harmonize_features(struct sk_buff *skb,
2800 	netdev_features_t features)
2801 {
2802 	int tmp;
2803 	__be16 type;
2804 
2805 	type = skb_network_protocol(skb, &tmp);
2806 	features = net_mpls_features(skb, features, type);
2807 
2808 	if (skb->ip_summed != CHECKSUM_NONE &&
2809 	    !can_checksum_protocol(features, type)) {
2810 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2811 	}
2812 	if (illegal_highdma(skb->dev, skb))
2813 		features &= ~NETIF_F_SG;
2814 
2815 	return features;
2816 }
2817 
2818 netdev_features_t passthru_features_check(struct sk_buff *skb,
2819 					  struct net_device *dev,
2820 					  netdev_features_t features)
2821 {
2822 	return features;
2823 }
2824 EXPORT_SYMBOL(passthru_features_check);
2825 
2826 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2827 					     struct net_device *dev,
2828 					     netdev_features_t features)
2829 {
2830 	return vlan_features_check(skb, features);
2831 }
2832 
2833 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2834 					    struct net_device *dev,
2835 					    netdev_features_t features)
2836 {
2837 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2838 
2839 	if (gso_segs > dev->gso_max_segs)
2840 		return features & ~NETIF_F_GSO_MASK;
2841 
2842 	/* Support for GSO partial features requires software
2843 	 * intervention before we can actually process the packets
2844 	 * so we need to strip support for any partial features now
2845 	 * and we can pull them back in after we have partially
2846 	 * segmented the frame.
2847 	 */
2848 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2849 		features &= ~dev->gso_partial_features;
2850 
2851 	/* Make sure to clear the IPv4 ID mangling feature if the
2852 	 * IPv4 header has the potential to be fragmented.
2853 	 */
2854 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2855 		struct iphdr *iph = skb->encapsulation ?
2856 				    inner_ip_hdr(skb) : ip_hdr(skb);
2857 
2858 		if (!(iph->frag_off & htons(IP_DF)))
2859 			features &= ~NETIF_F_TSO_MANGLEID;
2860 	}
2861 
2862 	return features;
2863 }
2864 
2865 netdev_features_t netif_skb_features(struct sk_buff *skb)
2866 {
2867 	struct net_device *dev = skb->dev;
2868 	netdev_features_t features = dev->features;
2869 
2870 	if (skb_is_gso(skb))
2871 		features = gso_features_check(skb, dev, features);
2872 
2873 	/* If encapsulation offload request, verify we are testing
2874 	 * hardware encapsulation features instead of standard
2875 	 * features for the netdev
2876 	 */
2877 	if (skb->encapsulation)
2878 		features &= dev->hw_enc_features;
2879 
2880 	if (skb_vlan_tagged(skb))
2881 		features = netdev_intersect_features(features,
2882 						     dev->vlan_features |
2883 						     NETIF_F_HW_VLAN_CTAG_TX |
2884 						     NETIF_F_HW_VLAN_STAG_TX);
2885 
2886 	if (dev->netdev_ops->ndo_features_check)
2887 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2888 								features);
2889 	else
2890 		features &= dflt_features_check(skb, dev, features);
2891 
2892 	return harmonize_features(skb, features);
2893 }
2894 EXPORT_SYMBOL(netif_skb_features);
2895 
2896 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2897 		    struct netdev_queue *txq, bool more)
2898 {
2899 	unsigned int len;
2900 	int rc;
2901 
2902 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2903 		dev_queue_xmit_nit(skb, dev);
2904 
2905 	len = skb->len;
2906 	trace_net_dev_start_xmit(skb, dev);
2907 	rc = netdev_start_xmit(skb, dev, txq, more);
2908 	trace_net_dev_xmit(skb, rc, dev, len);
2909 
2910 	return rc;
2911 }
2912 
2913 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2914 				    struct netdev_queue *txq, int *ret)
2915 {
2916 	struct sk_buff *skb = first;
2917 	int rc = NETDEV_TX_OK;
2918 
2919 	while (skb) {
2920 		struct sk_buff *next = skb->next;
2921 
2922 		skb->next = NULL;
2923 		rc = xmit_one(skb, dev, txq, next != NULL);
2924 		if (unlikely(!dev_xmit_complete(rc))) {
2925 			skb->next = next;
2926 			goto out;
2927 		}
2928 
2929 		skb = next;
2930 		if (netif_xmit_stopped(txq) && skb) {
2931 			rc = NETDEV_TX_BUSY;
2932 			break;
2933 		}
2934 	}
2935 
2936 out:
2937 	*ret = rc;
2938 	return skb;
2939 }
2940 
2941 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2942 					  netdev_features_t features)
2943 {
2944 	if (skb_vlan_tag_present(skb) &&
2945 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2946 		skb = __vlan_hwaccel_push_inside(skb);
2947 	return skb;
2948 }
2949 
2950 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2951 {
2952 	netdev_features_t features;
2953 
2954 	features = netif_skb_features(skb);
2955 	skb = validate_xmit_vlan(skb, features);
2956 	if (unlikely(!skb))
2957 		goto out_null;
2958 
2959 	if (netif_needs_gso(skb, features)) {
2960 		struct sk_buff *segs;
2961 
2962 		segs = skb_gso_segment(skb, features);
2963 		if (IS_ERR(segs)) {
2964 			goto out_kfree_skb;
2965 		} else if (segs) {
2966 			consume_skb(skb);
2967 			skb = segs;
2968 		}
2969 	} else {
2970 		if (skb_needs_linearize(skb, features) &&
2971 		    __skb_linearize(skb))
2972 			goto out_kfree_skb;
2973 
2974 		/* If packet is not checksummed and device does not
2975 		 * support checksumming for this protocol, complete
2976 		 * checksumming here.
2977 		 */
2978 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2979 			if (skb->encapsulation)
2980 				skb_set_inner_transport_header(skb,
2981 							       skb_checksum_start_offset(skb));
2982 			else
2983 				skb_set_transport_header(skb,
2984 							 skb_checksum_start_offset(skb));
2985 			if (!(features & NETIF_F_CSUM_MASK) &&
2986 			    skb_checksum_help(skb))
2987 				goto out_kfree_skb;
2988 		}
2989 	}
2990 
2991 	return skb;
2992 
2993 out_kfree_skb:
2994 	kfree_skb(skb);
2995 out_null:
2996 	atomic_long_inc(&dev->tx_dropped);
2997 	return NULL;
2998 }
2999 
3000 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3001 {
3002 	struct sk_buff *next, *head = NULL, *tail;
3003 
3004 	for (; skb != NULL; skb = next) {
3005 		next = skb->next;
3006 		skb->next = NULL;
3007 
3008 		/* in case skb wont be segmented, point to itself */
3009 		skb->prev = skb;
3010 
3011 		skb = validate_xmit_skb(skb, dev);
3012 		if (!skb)
3013 			continue;
3014 
3015 		if (!head)
3016 			head = skb;
3017 		else
3018 			tail->next = skb;
3019 		/* If skb was segmented, skb->prev points to
3020 		 * the last segment. If not, it still contains skb.
3021 		 */
3022 		tail = skb->prev;
3023 	}
3024 	return head;
3025 }
3026 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3027 
3028 static void qdisc_pkt_len_init(struct sk_buff *skb)
3029 {
3030 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3031 
3032 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3033 
3034 	/* To get more precise estimation of bytes sent on wire,
3035 	 * we add to pkt_len the headers size of all segments
3036 	 */
3037 	if (shinfo->gso_size)  {
3038 		unsigned int hdr_len;
3039 		u16 gso_segs = shinfo->gso_segs;
3040 
3041 		/* mac layer + network layer */
3042 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3043 
3044 		/* + transport layer */
3045 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3046 			hdr_len += tcp_hdrlen(skb);
3047 		else
3048 			hdr_len += sizeof(struct udphdr);
3049 
3050 		if (shinfo->gso_type & SKB_GSO_DODGY)
3051 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3052 						shinfo->gso_size);
3053 
3054 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3055 	}
3056 }
3057 
3058 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3059 				 struct net_device *dev,
3060 				 struct netdev_queue *txq)
3061 {
3062 	spinlock_t *root_lock = qdisc_lock(q);
3063 	struct sk_buff *to_free = NULL;
3064 	bool contended;
3065 	int rc;
3066 
3067 	qdisc_calculate_pkt_len(skb, q);
3068 	/*
3069 	 * Heuristic to force contended enqueues to serialize on a
3070 	 * separate lock before trying to get qdisc main lock.
3071 	 * This permits qdisc->running owner to get the lock more
3072 	 * often and dequeue packets faster.
3073 	 */
3074 	contended = qdisc_is_running(q);
3075 	if (unlikely(contended))
3076 		spin_lock(&q->busylock);
3077 
3078 	spin_lock(root_lock);
3079 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3080 		__qdisc_drop(skb, &to_free);
3081 		rc = NET_XMIT_DROP;
3082 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3083 		   qdisc_run_begin(q)) {
3084 		/*
3085 		 * This is a work-conserving queue; there are no old skbs
3086 		 * waiting to be sent out; and the qdisc is not running -
3087 		 * xmit the skb directly.
3088 		 */
3089 
3090 		qdisc_bstats_update(q, skb);
3091 
3092 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3093 			if (unlikely(contended)) {
3094 				spin_unlock(&q->busylock);
3095 				contended = false;
3096 			}
3097 			__qdisc_run(q);
3098 		} else
3099 			qdisc_run_end(q);
3100 
3101 		rc = NET_XMIT_SUCCESS;
3102 	} else {
3103 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3104 		if (qdisc_run_begin(q)) {
3105 			if (unlikely(contended)) {
3106 				spin_unlock(&q->busylock);
3107 				contended = false;
3108 			}
3109 			__qdisc_run(q);
3110 		}
3111 	}
3112 	spin_unlock(root_lock);
3113 	if (unlikely(to_free))
3114 		kfree_skb_list(to_free);
3115 	if (unlikely(contended))
3116 		spin_unlock(&q->busylock);
3117 	return rc;
3118 }
3119 
3120 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3121 static void skb_update_prio(struct sk_buff *skb)
3122 {
3123 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3124 
3125 	if (!skb->priority && skb->sk && map) {
3126 		unsigned int prioidx =
3127 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3128 
3129 		if (prioidx < map->priomap_len)
3130 			skb->priority = map->priomap[prioidx];
3131 	}
3132 }
3133 #else
3134 #define skb_update_prio(skb)
3135 #endif
3136 
3137 DEFINE_PER_CPU(int, xmit_recursion);
3138 EXPORT_SYMBOL(xmit_recursion);
3139 
3140 /**
3141  *	dev_loopback_xmit - loop back @skb
3142  *	@net: network namespace this loopback is happening in
3143  *	@sk:  sk needed to be a netfilter okfn
3144  *	@skb: buffer to transmit
3145  */
3146 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3147 {
3148 	skb_reset_mac_header(skb);
3149 	__skb_pull(skb, skb_network_offset(skb));
3150 	skb->pkt_type = PACKET_LOOPBACK;
3151 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3152 	WARN_ON(!skb_dst(skb));
3153 	skb_dst_force(skb);
3154 	netif_rx_ni(skb);
3155 	return 0;
3156 }
3157 EXPORT_SYMBOL(dev_loopback_xmit);
3158 
3159 #ifdef CONFIG_NET_EGRESS
3160 static struct sk_buff *
3161 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3162 {
3163 	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3164 	struct tcf_result cl_res;
3165 
3166 	if (!cl)
3167 		return skb;
3168 
3169 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3170 	qdisc_bstats_cpu_update(cl->q, skb);
3171 
3172 	switch (tc_classify(skb, cl, &cl_res, false)) {
3173 	case TC_ACT_OK:
3174 	case TC_ACT_RECLASSIFY:
3175 		skb->tc_index = TC_H_MIN(cl_res.classid);
3176 		break;
3177 	case TC_ACT_SHOT:
3178 		qdisc_qstats_cpu_drop(cl->q);
3179 		*ret = NET_XMIT_DROP;
3180 		kfree_skb(skb);
3181 		return NULL;
3182 	case TC_ACT_STOLEN:
3183 	case TC_ACT_QUEUED:
3184 		*ret = NET_XMIT_SUCCESS;
3185 		consume_skb(skb);
3186 		return NULL;
3187 	case TC_ACT_REDIRECT:
3188 		/* No need to push/pop skb's mac_header here on egress! */
3189 		skb_do_redirect(skb);
3190 		*ret = NET_XMIT_SUCCESS;
3191 		return NULL;
3192 	default:
3193 		break;
3194 	}
3195 
3196 	return skb;
3197 }
3198 #endif /* CONFIG_NET_EGRESS */
3199 
3200 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3201 {
3202 #ifdef CONFIG_XPS
3203 	struct xps_dev_maps *dev_maps;
3204 	struct xps_map *map;
3205 	int queue_index = -1;
3206 
3207 	rcu_read_lock();
3208 	dev_maps = rcu_dereference(dev->xps_maps);
3209 	if (dev_maps) {
3210 		unsigned int tci = skb->sender_cpu - 1;
3211 
3212 		if (dev->num_tc) {
3213 			tci *= dev->num_tc;
3214 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3215 		}
3216 
3217 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3218 		if (map) {
3219 			if (map->len == 1)
3220 				queue_index = map->queues[0];
3221 			else
3222 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3223 									   map->len)];
3224 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3225 				queue_index = -1;
3226 		}
3227 	}
3228 	rcu_read_unlock();
3229 
3230 	return queue_index;
3231 #else
3232 	return -1;
3233 #endif
3234 }
3235 
3236 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3237 {
3238 	struct sock *sk = skb->sk;
3239 	int queue_index = sk_tx_queue_get(sk);
3240 
3241 	if (queue_index < 0 || skb->ooo_okay ||
3242 	    queue_index >= dev->real_num_tx_queues) {
3243 		int new_index = get_xps_queue(dev, skb);
3244 
3245 		if (new_index < 0)
3246 			new_index = skb_tx_hash(dev, skb);
3247 
3248 		if (queue_index != new_index && sk &&
3249 		    sk_fullsock(sk) &&
3250 		    rcu_access_pointer(sk->sk_dst_cache))
3251 			sk_tx_queue_set(sk, new_index);
3252 
3253 		queue_index = new_index;
3254 	}
3255 
3256 	return queue_index;
3257 }
3258 
3259 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3260 				    struct sk_buff *skb,
3261 				    void *accel_priv)
3262 {
3263 	int queue_index = 0;
3264 
3265 #ifdef CONFIG_XPS
3266 	u32 sender_cpu = skb->sender_cpu - 1;
3267 
3268 	if (sender_cpu >= (u32)NR_CPUS)
3269 		skb->sender_cpu = raw_smp_processor_id() + 1;
3270 #endif
3271 
3272 	if (dev->real_num_tx_queues != 1) {
3273 		const struct net_device_ops *ops = dev->netdev_ops;
3274 
3275 		if (ops->ndo_select_queue)
3276 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3277 							    __netdev_pick_tx);
3278 		else
3279 			queue_index = __netdev_pick_tx(dev, skb);
3280 
3281 		if (!accel_priv)
3282 			queue_index = netdev_cap_txqueue(dev, queue_index);
3283 	}
3284 
3285 	skb_set_queue_mapping(skb, queue_index);
3286 	return netdev_get_tx_queue(dev, queue_index);
3287 }
3288 
3289 /**
3290  *	__dev_queue_xmit - transmit a buffer
3291  *	@skb: buffer to transmit
3292  *	@accel_priv: private data used for L2 forwarding offload
3293  *
3294  *	Queue a buffer for transmission to a network device. The caller must
3295  *	have set the device and priority and built the buffer before calling
3296  *	this function. The function can be called from an interrupt.
3297  *
3298  *	A negative errno code is returned on a failure. A success does not
3299  *	guarantee the frame will be transmitted as it may be dropped due
3300  *	to congestion or traffic shaping.
3301  *
3302  * -----------------------------------------------------------------------------------
3303  *      I notice this method can also return errors from the queue disciplines,
3304  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3305  *      be positive.
3306  *
3307  *      Regardless of the return value, the skb is consumed, so it is currently
3308  *      difficult to retry a send to this method.  (You can bump the ref count
3309  *      before sending to hold a reference for retry if you are careful.)
3310  *
3311  *      When calling this method, interrupts MUST be enabled.  This is because
3312  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3313  *          --BLG
3314  */
3315 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3316 {
3317 	struct net_device *dev = skb->dev;
3318 	struct netdev_queue *txq;
3319 	struct Qdisc *q;
3320 	int rc = -ENOMEM;
3321 
3322 	skb_reset_mac_header(skb);
3323 
3324 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3325 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3326 
3327 	/* Disable soft irqs for various locks below. Also
3328 	 * stops preemption for RCU.
3329 	 */
3330 	rcu_read_lock_bh();
3331 
3332 	skb_update_prio(skb);
3333 
3334 	qdisc_pkt_len_init(skb);
3335 #ifdef CONFIG_NET_CLS_ACT
3336 	skb->tc_at_ingress = 0;
3337 # ifdef CONFIG_NET_EGRESS
3338 	if (static_key_false(&egress_needed)) {
3339 		skb = sch_handle_egress(skb, &rc, dev);
3340 		if (!skb)
3341 			goto out;
3342 	}
3343 # endif
3344 #endif
3345 	/* If device/qdisc don't need skb->dst, release it right now while
3346 	 * its hot in this cpu cache.
3347 	 */
3348 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3349 		skb_dst_drop(skb);
3350 	else
3351 		skb_dst_force(skb);
3352 
3353 	txq = netdev_pick_tx(dev, skb, accel_priv);
3354 	q = rcu_dereference_bh(txq->qdisc);
3355 
3356 	trace_net_dev_queue(skb);
3357 	if (q->enqueue) {
3358 		rc = __dev_xmit_skb(skb, q, dev, txq);
3359 		goto out;
3360 	}
3361 
3362 	/* The device has no queue. Common case for software devices:
3363 	 * loopback, all the sorts of tunnels...
3364 
3365 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3366 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3367 	 * counters.)
3368 	 * However, it is possible, that they rely on protection
3369 	 * made by us here.
3370 
3371 	 * Check this and shot the lock. It is not prone from deadlocks.
3372 	 *Either shot noqueue qdisc, it is even simpler 8)
3373 	 */
3374 	if (dev->flags & IFF_UP) {
3375 		int cpu = smp_processor_id(); /* ok because BHs are off */
3376 
3377 		if (txq->xmit_lock_owner != cpu) {
3378 			if (unlikely(__this_cpu_read(xmit_recursion) >
3379 				     XMIT_RECURSION_LIMIT))
3380 				goto recursion_alert;
3381 
3382 			skb = validate_xmit_skb(skb, dev);
3383 			if (!skb)
3384 				goto out;
3385 
3386 			HARD_TX_LOCK(dev, txq, cpu);
3387 
3388 			if (!netif_xmit_stopped(txq)) {
3389 				__this_cpu_inc(xmit_recursion);
3390 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3391 				__this_cpu_dec(xmit_recursion);
3392 				if (dev_xmit_complete(rc)) {
3393 					HARD_TX_UNLOCK(dev, txq);
3394 					goto out;
3395 				}
3396 			}
3397 			HARD_TX_UNLOCK(dev, txq);
3398 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3399 					     dev->name);
3400 		} else {
3401 			/* Recursion is detected! It is possible,
3402 			 * unfortunately
3403 			 */
3404 recursion_alert:
3405 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3406 					     dev->name);
3407 		}
3408 	}
3409 
3410 	rc = -ENETDOWN;
3411 	rcu_read_unlock_bh();
3412 
3413 	atomic_long_inc(&dev->tx_dropped);
3414 	kfree_skb_list(skb);
3415 	return rc;
3416 out:
3417 	rcu_read_unlock_bh();
3418 	return rc;
3419 }
3420 
3421 int dev_queue_xmit(struct sk_buff *skb)
3422 {
3423 	return __dev_queue_xmit(skb, NULL);
3424 }
3425 EXPORT_SYMBOL(dev_queue_xmit);
3426 
3427 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3428 {
3429 	return __dev_queue_xmit(skb, accel_priv);
3430 }
3431 EXPORT_SYMBOL(dev_queue_xmit_accel);
3432 
3433 
3434 /*************************************************************************
3435  *			Receiver routines
3436  *************************************************************************/
3437 
3438 int netdev_max_backlog __read_mostly = 1000;
3439 EXPORT_SYMBOL(netdev_max_backlog);
3440 
3441 int netdev_tstamp_prequeue __read_mostly = 1;
3442 int netdev_budget __read_mostly = 300;
3443 int weight_p __read_mostly = 64;           /* old backlog weight */
3444 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3445 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3446 int dev_rx_weight __read_mostly = 64;
3447 int dev_tx_weight __read_mostly = 64;
3448 
3449 /* Called with irq disabled */
3450 static inline void ____napi_schedule(struct softnet_data *sd,
3451 				     struct napi_struct *napi)
3452 {
3453 	list_add_tail(&napi->poll_list, &sd->poll_list);
3454 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3455 }
3456 
3457 #ifdef CONFIG_RPS
3458 
3459 /* One global table that all flow-based protocols share. */
3460 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3461 EXPORT_SYMBOL(rps_sock_flow_table);
3462 u32 rps_cpu_mask __read_mostly;
3463 EXPORT_SYMBOL(rps_cpu_mask);
3464 
3465 struct static_key rps_needed __read_mostly;
3466 EXPORT_SYMBOL(rps_needed);
3467 struct static_key rfs_needed __read_mostly;
3468 EXPORT_SYMBOL(rfs_needed);
3469 
3470 static struct rps_dev_flow *
3471 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3472 	    struct rps_dev_flow *rflow, u16 next_cpu)
3473 {
3474 	if (next_cpu < nr_cpu_ids) {
3475 #ifdef CONFIG_RFS_ACCEL
3476 		struct netdev_rx_queue *rxqueue;
3477 		struct rps_dev_flow_table *flow_table;
3478 		struct rps_dev_flow *old_rflow;
3479 		u32 flow_id;
3480 		u16 rxq_index;
3481 		int rc;
3482 
3483 		/* Should we steer this flow to a different hardware queue? */
3484 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3485 		    !(dev->features & NETIF_F_NTUPLE))
3486 			goto out;
3487 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3488 		if (rxq_index == skb_get_rx_queue(skb))
3489 			goto out;
3490 
3491 		rxqueue = dev->_rx + rxq_index;
3492 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3493 		if (!flow_table)
3494 			goto out;
3495 		flow_id = skb_get_hash(skb) & flow_table->mask;
3496 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3497 							rxq_index, flow_id);
3498 		if (rc < 0)
3499 			goto out;
3500 		old_rflow = rflow;
3501 		rflow = &flow_table->flows[flow_id];
3502 		rflow->filter = rc;
3503 		if (old_rflow->filter == rflow->filter)
3504 			old_rflow->filter = RPS_NO_FILTER;
3505 	out:
3506 #endif
3507 		rflow->last_qtail =
3508 			per_cpu(softnet_data, next_cpu).input_queue_head;
3509 	}
3510 
3511 	rflow->cpu = next_cpu;
3512 	return rflow;
3513 }
3514 
3515 /*
3516  * get_rps_cpu is called from netif_receive_skb and returns the target
3517  * CPU from the RPS map of the receiving queue for a given skb.
3518  * rcu_read_lock must be held on entry.
3519  */
3520 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3521 		       struct rps_dev_flow **rflowp)
3522 {
3523 	const struct rps_sock_flow_table *sock_flow_table;
3524 	struct netdev_rx_queue *rxqueue = dev->_rx;
3525 	struct rps_dev_flow_table *flow_table;
3526 	struct rps_map *map;
3527 	int cpu = -1;
3528 	u32 tcpu;
3529 	u32 hash;
3530 
3531 	if (skb_rx_queue_recorded(skb)) {
3532 		u16 index = skb_get_rx_queue(skb);
3533 
3534 		if (unlikely(index >= dev->real_num_rx_queues)) {
3535 			WARN_ONCE(dev->real_num_rx_queues > 1,
3536 				  "%s received packet on queue %u, but number "
3537 				  "of RX queues is %u\n",
3538 				  dev->name, index, dev->real_num_rx_queues);
3539 			goto done;
3540 		}
3541 		rxqueue += index;
3542 	}
3543 
3544 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3545 
3546 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3547 	map = rcu_dereference(rxqueue->rps_map);
3548 	if (!flow_table && !map)
3549 		goto done;
3550 
3551 	skb_reset_network_header(skb);
3552 	hash = skb_get_hash(skb);
3553 	if (!hash)
3554 		goto done;
3555 
3556 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3557 	if (flow_table && sock_flow_table) {
3558 		struct rps_dev_flow *rflow;
3559 		u32 next_cpu;
3560 		u32 ident;
3561 
3562 		/* First check into global flow table if there is a match */
3563 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3564 		if ((ident ^ hash) & ~rps_cpu_mask)
3565 			goto try_rps;
3566 
3567 		next_cpu = ident & rps_cpu_mask;
3568 
3569 		/* OK, now we know there is a match,
3570 		 * we can look at the local (per receive queue) flow table
3571 		 */
3572 		rflow = &flow_table->flows[hash & flow_table->mask];
3573 		tcpu = rflow->cpu;
3574 
3575 		/*
3576 		 * If the desired CPU (where last recvmsg was done) is
3577 		 * different from current CPU (one in the rx-queue flow
3578 		 * table entry), switch if one of the following holds:
3579 		 *   - Current CPU is unset (>= nr_cpu_ids).
3580 		 *   - Current CPU is offline.
3581 		 *   - The current CPU's queue tail has advanced beyond the
3582 		 *     last packet that was enqueued using this table entry.
3583 		 *     This guarantees that all previous packets for the flow
3584 		 *     have been dequeued, thus preserving in order delivery.
3585 		 */
3586 		if (unlikely(tcpu != next_cpu) &&
3587 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3588 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3589 		      rflow->last_qtail)) >= 0)) {
3590 			tcpu = next_cpu;
3591 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3592 		}
3593 
3594 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3595 			*rflowp = rflow;
3596 			cpu = tcpu;
3597 			goto done;
3598 		}
3599 	}
3600 
3601 try_rps:
3602 
3603 	if (map) {
3604 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3605 		if (cpu_online(tcpu)) {
3606 			cpu = tcpu;
3607 			goto done;
3608 		}
3609 	}
3610 
3611 done:
3612 	return cpu;
3613 }
3614 
3615 #ifdef CONFIG_RFS_ACCEL
3616 
3617 /**
3618  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3619  * @dev: Device on which the filter was set
3620  * @rxq_index: RX queue index
3621  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3622  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3623  *
3624  * Drivers that implement ndo_rx_flow_steer() should periodically call
3625  * this function for each installed filter and remove the filters for
3626  * which it returns %true.
3627  */
3628 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3629 			 u32 flow_id, u16 filter_id)
3630 {
3631 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3632 	struct rps_dev_flow_table *flow_table;
3633 	struct rps_dev_flow *rflow;
3634 	bool expire = true;
3635 	unsigned int cpu;
3636 
3637 	rcu_read_lock();
3638 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3639 	if (flow_table && flow_id <= flow_table->mask) {
3640 		rflow = &flow_table->flows[flow_id];
3641 		cpu = ACCESS_ONCE(rflow->cpu);
3642 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3643 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3644 			   rflow->last_qtail) <
3645 		     (int)(10 * flow_table->mask)))
3646 			expire = false;
3647 	}
3648 	rcu_read_unlock();
3649 	return expire;
3650 }
3651 EXPORT_SYMBOL(rps_may_expire_flow);
3652 
3653 #endif /* CONFIG_RFS_ACCEL */
3654 
3655 /* Called from hardirq (IPI) context */
3656 static void rps_trigger_softirq(void *data)
3657 {
3658 	struct softnet_data *sd = data;
3659 
3660 	____napi_schedule(sd, &sd->backlog);
3661 	sd->received_rps++;
3662 }
3663 
3664 #endif /* CONFIG_RPS */
3665 
3666 /*
3667  * Check if this softnet_data structure is another cpu one
3668  * If yes, queue it to our IPI list and return 1
3669  * If no, return 0
3670  */
3671 static int rps_ipi_queued(struct softnet_data *sd)
3672 {
3673 #ifdef CONFIG_RPS
3674 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3675 
3676 	if (sd != mysd) {
3677 		sd->rps_ipi_next = mysd->rps_ipi_list;
3678 		mysd->rps_ipi_list = sd;
3679 
3680 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3681 		return 1;
3682 	}
3683 #endif /* CONFIG_RPS */
3684 	return 0;
3685 }
3686 
3687 #ifdef CONFIG_NET_FLOW_LIMIT
3688 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3689 #endif
3690 
3691 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3692 {
3693 #ifdef CONFIG_NET_FLOW_LIMIT
3694 	struct sd_flow_limit *fl;
3695 	struct softnet_data *sd;
3696 	unsigned int old_flow, new_flow;
3697 
3698 	if (qlen < (netdev_max_backlog >> 1))
3699 		return false;
3700 
3701 	sd = this_cpu_ptr(&softnet_data);
3702 
3703 	rcu_read_lock();
3704 	fl = rcu_dereference(sd->flow_limit);
3705 	if (fl) {
3706 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3707 		old_flow = fl->history[fl->history_head];
3708 		fl->history[fl->history_head] = new_flow;
3709 
3710 		fl->history_head++;
3711 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3712 
3713 		if (likely(fl->buckets[old_flow]))
3714 			fl->buckets[old_flow]--;
3715 
3716 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3717 			fl->count++;
3718 			rcu_read_unlock();
3719 			return true;
3720 		}
3721 	}
3722 	rcu_read_unlock();
3723 #endif
3724 	return false;
3725 }
3726 
3727 /*
3728  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3729  * queue (may be a remote CPU queue).
3730  */
3731 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3732 			      unsigned int *qtail)
3733 {
3734 	struct softnet_data *sd;
3735 	unsigned long flags;
3736 	unsigned int qlen;
3737 
3738 	sd = &per_cpu(softnet_data, cpu);
3739 
3740 	local_irq_save(flags);
3741 
3742 	rps_lock(sd);
3743 	if (!netif_running(skb->dev))
3744 		goto drop;
3745 	qlen = skb_queue_len(&sd->input_pkt_queue);
3746 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3747 		if (qlen) {
3748 enqueue:
3749 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3750 			input_queue_tail_incr_save(sd, qtail);
3751 			rps_unlock(sd);
3752 			local_irq_restore(flags);
3753 			return NET_RX_SUCCESS;
3754 		}
3755 
3756 		/* Schedule NAPI for backlog device
3757 		 * We can use non atomic operation since we own the queue lock
3758 		 */
3759 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3760 			if (!rps_ipi_queued(sd))
3761 				____napi_schedule(sd, &sd->backlog);
3762 		}
3763 		goto enqueue;
3764 	}
3765 
3766 drop:
3767 	sd->dropped++;
3768 	rps_unlock(sd);
3769 
3770 	local_irq_restore(flags);
3771 
3772 	atomic_long_inc(&skb->dev->rx_dropped);
3773 	kfree_skb(skb);
3774 	return NET_RX_DROP;
3775 }
3776 
3777 static int netif_rx_internal(struct sk_buff *skb)
3778 {
3779 	int ret;
3780 
3781 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3782 
3783 	trace_netif_rx(skb);
3784 #ifdef CONFIG_RPS
3785 	if (static_key_false(&rps_needed)) {
3786 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3787 		int cpu;
3788 
3789 		preempt_disable();
3790 		rcu_read_lock();
3791 
3792 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3793 		if (cpu < 0)
3794 			cpu = smp_processor_id();
3795 
3796 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3797 
3798 		rcu_read_unlock();
3799 		preempt_enable();
3800 	} else
3801 #endif
3802 	{
3803 		unsigned int qtail;
3804 
3805 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3806 		put_cpu();
3807 	}
3808 	return ret;
3809 }
3810 
3811 /**
3812  *	netif_rx	-	post buffer to the network code
3813  *	@skb: buffer to post
3814  *
3815  *	This function receives a packet from a device driver and queues it for
3816  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3817  *	may be dropped during processing for congestion control or by the
3818  *	protocol layers.
3819  *
3820  *	return values:
3821  *	NET_RX_SUCCESS	(no congestion)
3822  *	NET_RX_DROP     (packet was dropped)
3823  *
3824  */
3825 
3826 int netif_rx(struct sk_buff *skb)
3827 {
3828 	trace_netif_rx_entry(skb);
3829 
3830 	return netif_rx_internal(skb);
3831 }
3832 EXPORT_SYMBOL(netif_rx);
3833 
3834 int netif_rx_ni(struct sk_buff *skb)
3835 {
3836 	int err;
3837 
3838 	trace_netif_rx_ni_entry(skb);
3839 
3840 	preempt_disable();
3841 	err = netif_rx_internal(skb);
3842 	if (local_softirq_pending())
3843 		do_softirq();
3844 	preempt_enable();
3845 
3846 	return err;
3847 }
3848 EXPORT_SYMBOL(netif_rx_ni);
3849 
3850 static __latent_entropy void net_tx_action(struct softirq_action *h)
3851 {
3852 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3853 
3854 	if (sd->completion_queue) {
3855 		struct sk_buff *clist;
3856 
3857 		local_irq_disable();
3858 		clist = sd->completion_queue;
3859 		sd->completion_queue = NULL;
3860 		local_irq_enable();
3861 
3862 		while (clist) {
3863 			struct sk_buff *skb = clist;
3864 
3865 			clist = clist->next;
3866 
3867 			WARN_ON(atomic_read(&skb->users));
3868 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3869 				trace_consume_skb(skb);
3870 			else
3871 				trace_kfree_skb(skb, net_tx_action);
3872 
3873 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3874 				__kfree_skb(skb);
3875 			else
3876 				__kfree_skb_defer(skb);
3877 		}
3878 
3879 		__kfree_skb_flush();
3880 	}
3881 
3882 	if (sd->output_queue) {
3883 		struct Qdisc *head;
3884 
3885 		local_irq_disable();
3886 		head = sd->output_queue;
3887 		sd->output_queue = NULL;
3888 		sd->output_queue_tailp = &sd->output_queue;
3889 		local_irq_enable();
3890 
3891 		while (head) {
3892 			struct Qdisc *q = head;
3893 			spinlock_t *root_lock;
3894 
3895 			head = head->next_sched;
3896 
3897 			root_lock = qdisc_lock(q);
3898 			spin_lock(root_lock);
3899 			/* We need to make sure head->next_sched is read
3900 			 * before clearing __QDISC_STATE_SCHED
3901 			 */
3902 			smp_mb__before_atomic();
3903 			clear_bit(__QDISC_STATE_SCHED, &q->state);
3904 			qdisc_run(q);
3905 			spin_unlock(root_lock);
3906 		}
3907 	}
3908 }
3909 
3910 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3911 /* This hook is defined here for ATM LANE */
3912 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3913 			     unsigned char *addr) __read_mostly;
3914 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3915 #endif
3916 
3917 static inline struct sk_buff *
3918 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3919 		   struct net_device *orig_dev)
3920 {
3921 #ifdef CONFIG_NET_CLS_ACT
3922 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3923 	struct tcf_result cl_res;
3924 
3925 	/* If there's at least one ingress present somewhere (so
3926 	 * we get here via enabled static key), remaining devices
3927 	 * that are not configured with an ingress qdisc will bail
3928 	 * out here.
3929 	 */
3930 	if (!cl)
3931 		return skb;
3932 	if (*pt_prev) {
3933 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3934 		*pt_prev = NULL;
3935 	}
3936 
3937 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3938 	skb->tc_at_ingress = 1;
3939 	qdisc_bstats_cpu_update(cl->q, skb);
3940 
3941 	switch (tc_classify(skb, cl, &cl_res, false)) {
3942 	case TC_ACT_OK:
3943 	case TC_ACT_RECLASSIFY:
3944 		skb->tc_index = TC_H_MIN(cl_res.classid);
3945 		break;
3946 	case TC_ACT_SHOT:
3947 		qdisc_qstats_cpu_drop(cl->q);
3948 		kfree_skb(skb);
3949 		return NULL;
3950 	case TC_ACT_STOLEN:
3951 	case TC_ACT_QUEUED:
3952 		consume_skb(skb);
3953 		return NULL;
3954 	case TC_ACT_REDIRECT:
3955 		/* skb_mac_header check was done by cls/act_bpf, so
3956 		 * we can safely push the L2 header back before
3957 		 * redirecting to another netdev
3958 		 */
3959 		__skb_push(skb, skb->mac_len);
3960 		skb_do_redirect(skb);
3961 		return NULL;
3962 	default:
3963 		break;
3964 	}
3965 #endif /* CONFIG_NET_CLS_ACT */
3966 	return skb;
3967 }
3968 
3969 /**
3970  *	netdev_is_rx_handler_busy - check if receive handler is registered
3971  *	@dev: device to check
3972  *
3973  *	Check if a receive handler is already registered for a given device.
3974  *	Return true if there one.
3975  *
3976  *	The caller must hold the rtnl_mutex.
3977  */
3978 bool netdev_is_rx_handler_busy(struct net_device *dev)
3979 {
3980 	ASSERT_RTNL();
3981 	return dev && rtnl_dereference(dev->rx_handler);
3982 }
3983 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3984 
3985 /**
3986  *	netdev_rx_handler_register - register receive handler
3987  *	@dev: device to register a handler for
3988  *	@rx_handler: receive handler to register
3989  *	@rx_handler_data: data pointer that is used by rx handler
3990  *
3991  *	Register a receive handler for a device. This handler will then be
3992  *	called from __netif_receive_skb. A negative errno code is returned
3993  *	on a failure.
3994  *
3995  *	The caller must hold the rtnl_mutex.
3996  *
3997  *	For a general description of rx_handler, see enum rx_handler_result.
3998  */
3999 int netdev_rx_handler_register(struct net_device *dev,
4000 			       rx_handler_func_t *rx_handler,
4001 			       void *rx_handler_data)
4002 {
4003 	if (netdev_is_rx_handler_busy(dev))
4004 		return -EBUSY;
4005 
4006 	/* Note: rx_handler_data must be set before rx_handler */
4007 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4008 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4009 
4010 	return 0;
4011 }
4012 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4013 
4014 /**
4015  *	netdev_rx_handler_unregister - unregister receive handler
4016  *	@dev: device to unregister a handler from
4017  *
4018  *	Unregister a receive handler from a device.
4019  *
4020  *	The caller must hold the rtnl_mutex.
4021  */
4022 void netdev_rx_handler_unregister(struct net_device *dev)
4023 {
4024 
4025 	ASSERT_RTNL();
4026 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4027 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4028 	 * section has a guarantee to see a non NULL rx_handler_data
4029 	 * as well.
4030 	 */
4031 	synchronize_net();
4032 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4033 }
4034 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4035 
4036 /*
4037  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4038  * the special handling of PFMEMALLOC skbs.
4039  */
4040 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4041 {
4042 	switch (skb->protocol) {
4043 	case htons(ETH_P_ARP):
4044 	case htons(ETH_P_IP):
4045 	case htons(ETH_P_IPV6):
4046 	case htons(ETH_P_8021Q):
4047 	case htons(ETH_P_8021AD):
4048 		return true;
4049 	default:
4050 		return false;
4051 	}
4052 }
4053 
4054 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4055 			     int *ret, struct net_device *orig_dev)
4056 {
4057 #ifdef CONFIG_NETFILTER_INGRESS
4058 	if (nf_hook_ingress_active(skb)) {
4059 		int ingress_retval;
4060 
4061 		if (*pt_prev) {
4062 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4063 			*pt_prev = NULL;
4064 		}
4065 
4066 		rcu_read_lock();
4067 		ingress_retval = nf_hook_ingress(skb);
4068 		rcu_read_unlock();
4069 		return ingress_retval;
4070 	}
4071 #endif /* CONFIG_NETFILTER_INGRESS */
4072 	return 0;
4073 }
4074 
4075 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4076 {
4077 	struct packet_type *ptype, *pt_prev;
4078 	rx_handler_func_t *rx_handler;
4079 	struct net_device *orig_dev;
4080 	bool deliver_exact = false;
4081 	int ret = NET_RX_DROP;
4082 	__be16 type;
4083 
4084 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4085 
4086 	trace_netif_receive_skb(skb);
4087 
4088 	orig_dev = skb->dev;
4089 
4090 	skb_reset_network_header(skb);
4091 	if (!skb_transport_header_was_set(skb))
4092 		skb_reset_transport_header(skb);
4093 	skb_reset_mac_len(skb);
4094 
4095 	pt_prev = NULL;
4096 
4097 another_round:
4098 	skb->skb_iif = skb->dev->ifindex;
4099 
4100 	__this_cpu_inc(softnet_data.processed);
4101 
4102 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4103 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4104 		skb = skb_vlan_untag(skb);
4105 		if (unlikely(!skb))
4106 			goto out;
4107 	}
4108 
4109 	if (skb_skip_tc_classify(skb))
4110 		goto skip_classify;
4111 
4112 	if (pfmemalloc)
4113 		goto skip_taps;
4114 
4115 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4116 		if (pt_prev)
4117 			ret = deliver_skb(skb, pt_prev, orig_dev);
4118 		pt_prev = ptype;
4119 	}
4120 
4121 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4122 		if (pt_prev)
4123 			ret = deliver_skb(skb, pt_prev, orig_dev);
4124 		pt_prev = ptype;
4125 	}
4126 
4127 skip_taps:
4128 #ifdef CONFIG_NET_INGRESS
4129 	if (static_key_false(&ingress_needed)) {
4130 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4131 		if (!skb)
4132 			goto out;
4133 
4134 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4135 			goto out;
4136 	}
4137 #endif
4138 	skb_reset_tc(skb);
4139 skip_classify:
4140 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4141 		goto drop;
4142 
4143 	if (skb_vlan_tag_present(skb)) {
4144 		if (pt_prev) {
4145 			ret = deliver_skb(skb, pt_prev, orig_dev);
4146 			pt_prev = NULL;
4147 		}
4148 		if (vlan_do_receive(&skb))
4149 			goto another_round;
4150 		else if (unlikely(!skb))
4151 			goto out;
4152 	}
4153 
4154 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4155 	if (rx_handler) {
4156 		if (pt_prev) {
4157 			ret = deliver_skb(skb, pt_prev, orig_dev);
4158 			pt_prev = NULL;
4159 		}
4160 		switch (rx_handler(&skb)) {
4161 		case RX_HANDLER_CONSUMED:
4162 			ret = NET_RX_SUCCESS;
4163 			goto out;
4164 		case RX_HANDLER_ANOTHER:
4165 			goto another_round;
4166 		case RX_HANDLER_EXACT:
4167 			deliver_exact = true;
4168 		case RX_HANDLER_PASS:
4169 			break;
4170 		default:
4171 			BUG();
4172 		}
4173 	}
4174 
4175 	if (unlikely(skb_vlan_tag_present(skb))) {
4176 		if (skb_vlan_tag_get_id(skb))
4177 			skb->pkt_type = PACKET_OTHERHOST;
4178 		/* Note: we might in the future use prio bits
4179 		 * and set skb->priority like in vlan_do_receive()
4180 		 * For the time being, just ignore Priority Code Point
4181 		 */
4182 		skb->vlan_tci = 0;
4183 	}
4184 
4185 	type = skb->protocol;
4186 
4187 	/* deliver only exact match when indicated */
4188 	if (likely(!deliver_exact)) {
4189 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4190 				       &ptype_base[ntohs(type) &
4191 						   PTYPE_HASH_MASK]);
4192 	}
4193 
4194 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4195 			       &orig_dev->ptype_specific);
4196 
4197 	if (unlikely(skb->dev != orig_dev)) {
4198 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4199 				       &skb->dev->ptype_specific);
4200 	}
4201 
4202 	if (pt_prev) {
4203 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4204 			goto drop;
4205 		else
4206 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4207 	} else {
4208 drop:
4209 		if (!deliver_exact)
4210 			atomic_long_inc(&skb->dev->rx_dropped);
4211 		else
4212 			atomic_long_inc(&skb->dev->rx_nohandler);
4213 		kfree_skb(skb);
4214 		/* Jamal, now you will not able to escape explaining
4215 		 * me how you were going to use this. :-)
4216 		 */
4217 		ret = NET_RX_DROP;
4218 	}
4219 
4220 out:
4221 	return ret;
4222 }
4223 
4224 static int __netif_receive_skb(struct sk_buff *skb)
4225 {
4226 	int ret;
4227 
4228 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4229 		unsigned long pflags = current->flags;
4230 
4231 		/*
4232 		 * PFMEMALLOC skbs are special, they should
4233 		 * - be delivered to SOCK_MEMALLOC sockets only
4234 		 * - stay away from userspace
4235 		 * - have bounded memory usage
4236 		 *
4237 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4238 		 * context down to all allocation sites.
4239 		 */
4240 		current->flags |= PF_MEMALLOC;
4241 		ret = __netif_receive_skb_core(skb, true);
4242 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
4243 	} else
4244 		ret = __netif_receive_skb_core(skb, false);
4245 
4246 	return ret;
4247 }
4248 
4249 static int netif_receive_skb_internal(struct sk_buff *skb)
4250 {
4251 	int ret;
4252 
4253 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4254 
4255 	if (skb_defer_rx_timestamp(skb))
4256 		return NET_RX_SUCCESS;
4257 
4258 	rcu_read_lock();
4259 
4260 #ifdef CONFIG_RPS
4261 	if (static_key_false(&rps_needed)) {
4262 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4263 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4264 
4265 		if (cpu >= 0) {
4266 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4267 			rcu_read_unlock();
4268 			return ret;
4269 		}
4270 	}
4271 #endif
4272 	ret = __netif_receive_skb(skb);
4273 	rcu_read_unlock();
4274 	return ret;
4275 }
4276 
4277 /**
4278  *	netif_receive_skb - process receive buffer from network
4279  *	@skb: buffer to process
4280  *
4281  *	netif_receive_skb() is the main receive data processing function.
4282  *	It always succeeds. The buffer may be dropped during processing
4283  *	for congestion control or by the protocol layers.
4284  *
4285  *	This function may only be called from softirq context and interrupts
4286  *	should be enabled.
4287  *
4288  *	Return values (usually ignored):
4289  *	NET_RX_SUCCESS: no congestion
4290  *	NET_RX_DROP: packet was dropped
4291  */
4292 int netif_receive_skb(struct sk_buff *skb)
4293 {
4294 	trace_netif_receive_skb_entry(skb);
4295 
4296 	return netif_receive_skb_internal(skb);
4297 }
4298 EXPORT_SYMBOL(netif_receive_skb);
4299 
4300 DEFINE_PER_CPU(struct work_struct, flush_works);
4301 
4302 /* Network device is going away, flush any packets still pending */
4303 static void flush_backlog(struct work_struct *work)
4304 {
4305 	struct sk_buff *skb, *tmp;
4306 	struct softnet_data *sd;
4307 
4308 	local_bh_disable();
4309 	sd = this_cpu_ptr(&softnet_data);
4310 
4311 	local_irq_disable();
4312 	rps_lock(sd);
4313 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4314 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4315 			__skb_unlink(skb, &sd->input_pkt_queue);
4316 			kfree_skb(skb);
4317 			input_queue_head_incr(sd);
4318 		}
4319 	}
4320 	rps_unlock(sd);
4321 	local_irq_enable();
4322 
4323 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4324 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4325 			__skb_unlink(skb, &sd->process_queue);
4326 			kfree_skb(skb);
4327 			input_queue_head_incr(sd);
4328 		}
4329 	}
4330 	local_bh_enable();
4331 }
4332 
4333 static void flush_all_backlogs(void)
4334 {
4335 	unsigned int cpu;
4336 
4337 	get_online_cpus();
4338 
4339 	for_each_online_cpu(cpu)
4340 		queue_work_on(cpu, system_highpri_wq,
4341 			      per_cpu_ptr(&flush_works, cpu));
4342 
4343 	for_each_online_cpu(cpu)
4344 		flush_work(per_cpu_ptr(&flush_works, cpu));
4345 
4346 	put_online_cpus();
4347 }
4348 
4349 static int napi_gro_complete(struct sk_buff *skb)
4350 {
4351 	struct packet_offload *ptype;
4352 	__be16 type = skb->protocol;
4353 	struct list_head *head = &offload_base;
4354 	int err = -ENOENT;
4355 
4356 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4357 
4358 	if (NAPI_GRO_CB(skb)->count == 1) {
4359 		skb_shinfo(skb)->gso_size = 0;
4360 		goto out;
4361 	}
4362 
4363 	rcu_read_lock();
4364 	list_for_each_entry_rcu(ptype, head, list) {
4365 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4366 			continue;
4367 
4368 		err = ptype->callbacks.gro_complete(skb, 0);
4369 		break;
4370 	}
4371 	rcu_read_unlock();
4372 
4373 	if (err) {
4374 		WARN_ON(&ptype->list == head);
4375 		kfree_skb(skb);
4376 		return NET_RX_SUCCESS;
4377 	}
4378 
4379 out:
4380 	return netif_receive_skb_internal(skb);
4381 }
4382 
4383 /* napi->gro_list contains packets ordered by age.
4384  * youngest packets at the head of it.
4385  * Complete skbs in reverse order to reduce latencies.
4386  */
4387 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4388 {
4389 	struct sk_buff *skb, *prev = NULL;
4390 
4391 	/* scan list and build reverse chain */
4392 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4393 		skb->prev = prev;
4394 		prev = skb;
4395 	}
4396 
4397 	for (skb = prev; skb; skb = prev) {
4398 		skb->next = NULL;
4399 
4400 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4401 			return;
4402 
4403 		prev = skb->prev;
4404 		napi_gro_complete(skb);
4405 		napi->gro_count--;
4406 	}
4407 
4408 	napi->gro_list = NULL;
4409 }
4410 EXPORT_SYMBOL(napi_gro_flush);
4411 
4412 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4413 {
4414 	struct sk_buff *p;
4415 	unsigned int maclen = skb->dev->hard_header_len;
4416 	u32 hash = skb_get_hash_raw(skb);
4417 
4418 	for (p = napi->gro_list; p; p = p->next) {
4419 		unsigned long diffs;
4420 
4421 		NAPI_GRO_CB(p)->flush = 0;
4422 
4423 		if (hash != skb_get_hash_raw(p)) {
4424 			NAPI_GRO_CB(p)->same_flow = 0;
4425 			continue;
4426 		}
4427 
4428 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4429 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4430 		diffs |= skb_metadata_dst_cmp(p, skb);
4431 		if (maclen == ETH_HLEN)
4432 			diffs |= compare_ether_header(skb_mac_header(p),
4433 						      skb_mac_header(skb));
4434 		else if (!diffs)
4435 			diffs = memcmp(skb_mac_header(p),
4436 				       skb_mac_header(skb),
4437 				       maclen);
4438 		NAPI_GRO_CB(p)->same_flow = !diffs;
4439 	}
4440 }
4441 
4442 static void skb_gro_reset_offset(struct sk_buff *skb)
4443 {
4444 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4445 	const skb_frag_t *frag0 = &pinfo->frags[0];
4446 
4447 	NAPI_GRO_CB(skb)->data_offset = 0;
4448 	NAPI_GRO_CB(skb)->frag0 = NULL;
4449 	NAPI_GRO_CB(skb)->frag0_len = 0;
4450 
4451 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4452 	    pinfo->nr_frags &&
4453 	    !PageHighMem(skb_frag_page(frag0))) {
4454 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4455 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4456 						    skb_frag_size(frag0),
4457 						    skb->end - skb->tail);
4458 	}
4459 }
4460 
4461 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4462 {
4463 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4464 
4465 	BUG_ON(skb->end - skb->tail < grow);
4466 
4467 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4468 
4469 	skb->data_len -= grow;
4470 	skb->tail += grow;
4471 
4472 	pinfo->frags[0].page_offset += grow;
4473 	skb_frag_size_sub(&pinfo->frags[0], grow);
4474 
4475 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4476 		skb_frag_unref(skb, 0);
4477 		memmove(pinfo->frags, pinfo->frags + 1,
4478 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4479 	}
4480 }
4481 
4482 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4483 {
4484 	struct sk_buff **pp = NULL;
4485 	struct packet_offload *ptype;
4486 	__be16 type = skb->protocol;
4487 	struct list_head *head = &offload_base;
4488 	int same_flow;
4489 	enum gro_result ret;
4490 	int grow;
4491 
4492 	if (!(skb->dev->features & NETIF_F_GRO))
4493 		goto normal;
4494 
4495 	if (skb->csum_bad)
4496 		goto normal;
4497 
4498 	gro_list_prepare(napi, skb);
4499 
4500 	rcu_read_lock();
4501 	list_for_each_entry_rcu(ptype, head, list) {
4502 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4503 			continue;
4504 
4505 		skb_set_network_header(skb, skb_gro_offset(skb));
4506 		skb_reset_mac_len(skb);
4507 		NAPI_GRO_CB(skb)->same_flow = 0;
4508 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4509 		NAPI_GRO_CB(skb)->free = 0;
4510 		NAPI_GRO_CB(skb)->encap_mark = 0;
4511 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4512 		NAPI_GRO_CB(skb)->is_fou = 0;
4513 		NAPI_GRO_CB(skb)->is_atomic = 1;
4514 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4515 
4516 		/* Setup for GRO checksum validation */
4517 		switch (skb->ip_summed) {
4518 		case CHECKSUM_COMPLETE:
4519 			NAPI_GRO_CB(skb)->csum = skb->csum;
4520 			NAPI_GRO_CB(skb)->csum_valid = 1;
4521 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4522 			break;
4523 		case CHECKSUM_UNNECESSARY:
4524 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4525 			NAPI_GRO_CB(skb)->csum_valid = 0;
4526 			break;
4527 		default:
4528 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4529 			NAPI_GRO_CB(skb)->csum_valid = 0;
4530 		}
4531 
4532 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4533 		break;
4534 	}
4535 	rcu_read_unlock();
4536 
4537 	if (&ptype->list == head)
4538 		goto normal;
4539 
4540 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4541 		ret = GRO_CONSUMED;
4542 		goto ok;
4543 	}
4544 
4545 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4546 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4547 
4548 	if (pp) {
4549 		struct sk_buff *nskb = *pp;
4550 
4551 		*pp = nskb->next;
4552 		nskb->next = NULL;
4553 		napi_gro_complete(nskb);
4554 		napi->gro_count--;
4555 	}
4556 
4557 	if (same_flow)
4558 		goto ok;
4559 
4560 	if (NAPI_GRO_CB(skb)->flush)
4561 		goto normal;
4562 
4563 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4564 		struct sk_buff *nskb = napi->gro_list;
4565 
4566 		/* locate the end of the list to select the 'oldest' flow */
4567 		while (nskb->next) {
4568 			pp = &nskb->next;
4569 			nskb = *pp;
4570 		}
4571 		*pp = NULL;
4572 		nskb->next = NULL;
4573 		napi_gro_complete(nskb);
4574 	} else {
4575 		napi->gro_count++;
4576 	}
4577 	NAPI_GRO_CB(skb)->count = 1;
4578 	NAPI_GRO_CB(skb)->age = jiffies;
4579 	NAPI_GRO_CB(skb)->last = skb;
4580 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4581 	skb->next = napi->gro_list;
4582 	napi->gro_list = skb;
4583 	ret = GRO_HELD;
4584 
4585 pull:
4586 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4587 	if (grow > 0)
4588 		gro_pull_from_frag0(skb, grow);
4589 ok:
4590 	return ret;
4591 
4592 normal:
4593 	ret = GRO_NORMAL;
4594 	goto pull;
4595 }
4596 
4597 struct packet_offload *gro_find_receive_by_type(__be16 type)
4598 {
4599 	struct list_head *offload_head = &offload_base;
4600 	struct packet_offload *ptype;
4601 
4602 	list_for_each_entry_rcu(ptype, offload_head, list) {
4603 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4604 			continue;
4605 		return ptype;
4606 	}
4607 	return NULL;
4608 }
4609 EXPORT_SYMBOL(gro_find_receive_by_type);
4610 
4611 struct packet_offload *gro_find_complete_by_type(__be16 type)
4612 {
4613 	struct list_head *offload_head = &offload_base;
4614 	struct packet_offload *ptype;
4615 
4616 	list_for_each_entry_rcu(ptype, offload_head, list) {
4617 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4618 			continue;
4619 		return ptype;
4620 	}
4621 	return NULL;
4622 }
4623 EXPORT_SYMBOL(gro_find_complete_by_type);
4624 
4625 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4626 {
4627 	switch (ret) {
4628 	case GRO_NORMAL:
4629 		if (netif_receive_skb_internal(skb))
4630 			ret = GRO_DROP;
4631 		break;
4632 
4633 	case GRO_DROP:
4634 		kfree_skb(skb);
4635 		break;
4636 
4637 	case GRO_MERGED_FREE:
4638 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4639 			skb_dst_drop(skb);
4640 			secpath_reset(skb);
4641 			kmem_cache_free(skbuff_head_cache, skb);
4642 		} else {
4643 			__kfree_skb(skb);
4644 		}
4645 		break;
4646 
4647 	case GRO_HELD:
4648 	case GRO_MERGED:
4649 	case GRO_CONSUMED:
4650 		break;
4651 	}
4652 
4653 	return ret;
4654 }
4655 
4656 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4657 {
4658 	skb_mark_napi_id(skb, napi);
4659 	trace_napi_gro_receive_entry(skb);
4660 
4661 	skb_gro_reset_offset(skb);
4662 
4663 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4664 }
4665 EXPORT_SYMBOL(napi_gro_receive);
4666 
4667 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4668 {
4669 	if (unlikely(skb->pfmemalloc)) {
4670 		consume_skb(skb);
4671 		return;
4672 	}
4673 	__skb_pull(skb, skb_headlen(skb));
4674 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4675 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4676 	skb->vlan_tci = 0;
4677 	skb->dev = napi->dev;
4678 	skb->skb_iif = 0;
4679 	skb->encapsulation = 0;
4680 	skb_shinfo(skb)->gso_type = 0;
4681 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4682 	secpath_reset(skb);
4683 
4684 	napi->skb = skb;
4685 }
4686 
4687 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4688 {
4689 	struct sk_buff *skb = napi->skb;
4690 
4691 	if (!skb) {
4692 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4693 		if (skb) {
4694 			napi->skb = skb;
4695 			skb_mark_napi_id(skb, napi);
4696 		}
4697 	}
4698 	return skb;
4699 }
4700 EXPORT_SYMBOL(napi_get_frags);
4701 
4702 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4703 				      struct sk_buff *skb,
4704 				      gro_result_t ret)
4705 {
4706 	switch (ret) {
4707 	case GRO_NORMAL:
4708 	case GRO_HELD:
4709 		__skb_push(skb, ETH_HLEN);
4710 		skb->protocol = eth_type_trans(skb, skb->dev);
4711 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4712 			ret = GRO_DROP;
4713 		break;
4714 
4715 	case GRO_DROP:
4716 	case GRO_MERGED_FREE:
4717 		napi_reuse_skb(napi, skb);
4718 		break;
4719 
4720 	case GRO_MERGED:
4721 	case GRO_CONSUMED:
4722 		break;
4723 	}
4724 
4725 	return ret;
4726 }
4727 
4728 /* Upper GRO stack assumes network header starts at gro_offset=0
4729  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4730  * We copy ethernet header into skb->data to have a common layout.
4731  */
4732 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4733 {
4734 	struct sk_buff *skb = napi->skb;
4735 	const struct ethhdr *eth;
4736 	unsigned int hlen = sizeof(*eth);
4737 
4738 	napi->skb = NULL;
4739 
4740 	skb_reset_mac_header(skb);
4741 	skb_gro_reset_offset(skb);
4742 
4743 	eth = skb_gro_header_fast(skb, 0);
4744 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4745 		eth = skb_gro_header_slow(skb, hlen, 0);
4746 		if (unlikely(!eth)) {
4747 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4748 					     __func__, napi->dev->name);
4749 			napi_reuse_skb(napi, skb);
4750 			return NULL;
4751 		}
4752 	} else {
4753 		gro_pull_from_frag0(skb, hlen);
4754 		NAPI_GRO_CB(skb)->frag0 += hlen;
4755 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4756 	}
4757 	__skb_pull(skb, hlen);
4758 
4759 	/*
4760 	 * This works because the only protocols we care about don't require
4761 	 * special handling.
4762 	 * We'll fix it up properly in napi_frags_finish()
4763 	 */
4764 	skb->protocol = eth->h_proto;
4765 
4766 	return skb;
4767 }
4768 
4769 gro_result_t napi_gro_frags(struct napi_struct *napi)
4770 {
4771 	struct sk_buff *skb = napi_frags_skb(napi);
4772 
4773 	if (!skb)
4774 		return GRO_DROP;
4775 
4776 	trace_napi_gro_frags_entry(skb);
4777 
4778 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4779 }
4780 EXPORT_SYMBOL(napi_gro_frags);
4781 
4782 /* Compute the checksum from gro_offset and return the folded value
4783  * after adding in any pseudo checksum.
4784  */
4785 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4786 {
4787 	__wsum wsum;
4788 	__sum16 sum;
4789 
4790 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4791 
4792 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4793 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4794 	if (likely(!sum)) {
4795 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4796 		    !skb->csum_complete_sw)
4797 			netdev_rx_csum_fault(skb->dev);
4798 	}
4799 
4800 	NAPI_GRO_CB(skb)->csum = wsum;
4801 	NAPI_GRO_CB(skb)->csum_valid = 1;
4802 
4803 	return sum;
4804 }
4805 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4806 
4807 /*
4808  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4809  * Note: called with local irq disabled, but exits with local irq enabled.
4810  */
4811 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4812 {
4813 #ifdef CONFIG_RPS
4814 	struct softnet_data *remsd = sd->rps_ipi_list;
4815 
4816 	if (remsd) {
4817 		sd->rps_ipi_list = NULL;
4818 
4819 		local_irq_enable();
4820 
4821 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4822 		while (remsd) {
4823 			struct softnet_data *next = remsd->rps_ipi_next;
4824 
4825 			if (cpu_online(remsd->cpu))
4826 				smp_call_function_single_async(remsd->cpu,
4827 							   &remsd->csd);
4828 			remsd = next;
4829 		}
4830 	} else
4831 #endif
4832 		local_irq_enable();
4833 }
4834 
4835 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4836 {
4837 #ifdef CONFIG_RPS
4838 	return sd->rps_ipi_list != NULL;
4839 #else
4840 	return false;
4841 #endif
4842 }
4843 
4844 static int process_backlog(struct napi_struct *napi, int quota)
4845 {
4846 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4847 	bool again = true;
4848 	int work = 0;
4849 
4850 	/* Check if we have pending ipi, its better to send them now,
4851 	 * not waiting net_rx_action() end.
4852 	 */
4853 	if (sd_has_rps_ipi_waiting(sd)) {
4854 		local_irq_disable();
4855 		net_rps_action_and_irq_enable(sd);
4856 	}
4857 
4858 	napi->weight = dev_rx_weight;
4859 	while (again) {
4860 		struct sk_buff *skb;
4861 
4862 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4863 			rcu_read_lock();
4864 			__netif_receive_skb(skb);
4865 			rcu_read_unlock();
4866 			input_queue_head_incr(sd);
4867 			if (++work >= quota)
4868 				return work;
4869 
4870 		}
4871 
4872 		local_irq_disable();
4873 		rps_lock(sd);
4874 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4875 			/*
4876 			 * Inline a custom version of __napi_complete().
4877 			 * only current cpu owns and manipulates this napi,
4878 			 * and NAPI_STATE_SCHED is the only possible flag set
4879 			 * on backlog.
4880 			 * We can use a plain write instead of clear_bit(),
4881 			 * and we dont need an smp_mb() memory barrier.
4882 			 */
4883 			napi->state = 0;
4884 			again = false;
4885 		} else {
4886 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
4887 						   &sd->process_queue);
4888 		}
4889 		rps_unlock(sd);
4890 		local_irq_enable();
4891 	}
4892 
4893 	return work;
4894 }
4895 
4896 /**
4897  * __napi_schedule - schedule for receive
4898  * @n: entry to schedule
4899  *
4900  * The entry's receive function will be scheduled to run.
4901  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4902  */
4903 void __napi_schedule(struct napi_struct *n)
4904 {
4905 	unsigned long flags;
4906 
4907 	local_irq_save(flags);
4908 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4909 	local_irq_restore(flags);
4910 }
4911 EXPORT_SYMBOL(__napi_schedule);
4912 
4913 /**
4914  *	napi_schedule_prep - check if napi can be scheduled
4915  *	@n: napi context
4916  *
4917  * Test if NAPI routine is already running, and if not mark
4918  * it as running.  This is used as a condition variable
4919  * insure only one NAPI poll instance runs.  We also make
4920  * sure there is no pending NAPI disable.
4921  */
4922 bool napi_schedule_prep(struct napi_struct *n)
4923 {
4924 	unsigned long val, new;
4925 
4926 	do {
4927 		val = READ_ONCE(n->state);
4928 		if (unlikely(val & NAPIF_STATE_DISABLE))
4929 			return false;
4930 		new = val | NAPIF_STATE_SCHED;
4931 
4932 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
4933 		 * This was suggested by Alexander Duyck, as compiler
4934 		 * emits better code than :
4935 		 * if (val & NAPIF_STATE_SCHED)
4936 		 *     new |= NAPIF_STATE_MISSED;
4937 		 */
4938 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
4939 						   NAPIF_STATE_MISSED;
4940 	} while (cmpxchg(&n->state, val, new) != val);
4941 
4942 	return !(val & NAPIF_STATE_SCHED);
4943 }
4944 EXPORT_SYMBOL(napi_schedule_prep);
4945 
4946 /**
4947  * __napi_schedule_irqoff - schedule for receive
4948  * @n: entry to schedule
4949  *
4950  * Variant of __napi_schedule() assuming hard irqs are masked
4951  */
4952 void __napi_schedule_irqoff(struct napi_struct *n)
4953 {
4954 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4955 }
4956 EXPORT_SYMBOL(__napi_schedule_irqoff);
4957 
4958 bool napi_complete_done(struct napi_struct *n, int work_done)
4959 {
4960 	unsigned long flags, val, new;
4961 
4962 	/*
4963 	 * 1) Don't let napi dequeue from the cpu poll list
4964 	 *    just in case its running on a different cpu.
4965 	 * 2) If we are busy polling, do nothing here, we have
4966 	 *    the guarantee we will be called later.
4967 	 */
4968 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4969 				 NAPIF_STATE_IN_BUSY_POLL)))
4970 		return false;
4971 
4972 	if (n->gro_list) {
4973 		unsigned long timeout = 0;
4974 
4975 		if (work_done)
4976 			timeout = n->dev->gro_flush_timeout;
4977 
4978 		if (timeout)
4979 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4980 				      HRTIMER_MODE_REL_PINNED);
4981 		else
4982 			napi_gro_flush(n, false);
4983 	}
4984 	if (unlikely(!list_empty(&n->poll_list))) {
4985 		/* If n->poll_list is not empty, we need to mask irqs */
4986 		local_irq_save(flags);
4987 		list_del_init(&n->poll_list);
4988 		local_irq_restore(flags);
4989 	}
4990 
4991 	do {
4992 		val = READ_ONCE(n->state);
4993 
4994 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
4995 
4996 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
4997 
4998 		/* If STATE_MISSED was set, leave STATE_SCHED set,
4999 		 * because we will call napi->poll() one more time.
5000 		 * This C code was suggested by Alexander Duyck to help gcc.
5001 		 */
5002 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5003 						    NAPIF_STATE_SCHED;
5004 	} while (cmpxchg(&n->state, val, new) != val);
5005 
5006 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5007 		__napi_schedule(n);
5008 		return false;
5009 	}
5010 
5011 	return true;
5012 }
5013 EXPORT_SYMBOL(napi_complete_done);
5014 
5015 /* must be called under rcu_read_lock(), as we dont take a reference */
5016 static struct napi_struct *napi_by_id(unsigned int napi_id)
5017 {
5018 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5019 	struct napi_struct *napi;
5020 
5021 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5022 		if (napi->napi_id == napi_id)
5023 			return napi;
5024 
5025 	return NULL;
5026 }
5027 
5028 #if defined(CONFIG_NET_RX_BUSY_POLL)
5029 
5030 #define BUSY_POLL_BUDGET 8
5031 
5032 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5033 {
5034 	int rc;
5035 
5036 	/* Busy polling means there is a high chance device driver hard irq
5037 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5038 	 * set in napi_schedule_prep().
5039 	 * Since we are about to call napi->poll() once more, we can safely
5040 	 * clear NAPI_STATE_MISSED.
5041 	 *
5042 	 * Note: x86 could use a single "lock and ..." instruction
5043 	 * to perform these two clear_bit()
5044 	 */
5045 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5046 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5047 
5048 	local_bh_disable();
5049 
5050 	/* All we really want here is to re-enable device interrupts.
5051 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5052 	 */
5053 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5054 	netpoll_poll_unlock(have_poll_lock);
5055 	if (rc == BUSY_POLL_BUDGET)
5056 		__napi_schedule(napi);
5057 	local_bh_enable();
5058 	if (local_softirq_pending())
5059 		do_softirq();
5060 }
5061 
5062 bool sk_busy_loop(struct sock *sk, int nonblock)
5063 {
5064 	unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
5065 	int (*napi_poll)(struct napi_struct *napi, int budget);
5066 	void *have_poll_lock = NULL;
5067 	struct napi_struct *napi;
5068 	int rc;
5069 
5070 restart:
5071 	rc = false;
5072 	napi_poll = NULL;
5073 
5074 	rcu_read_lock();
5075 
5076 	napi = napi_by_id(sk->sk_napi_id);
5077 	if (!napi)
5078 		goto out;
5079 
5080 	preempt_disable();
5081 	for (;;) {
5082 		rc = 0;
5083 		local_bh_disable();
5084 		if (!napi_poll) {
5085 			unsigned long val = READ_ONCE(napi->state);
5086 
5087 			/* If multiple threads are competing for this napi,
5088 			 * we avoid dirtying napi->state as much as we can.
5089 			 */
5090 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5091 				   NAPIF_STATE_IN_BUSY_POLL))
5092 				goto count;
5093 			if (cmpxchg(&napi->state, val,
5094 				    val | NAPIF_STATE_IN_BUSY_POLL |
5095 					  NAPIF_STATE_SCHED) != val)
5096 				goto count;
5097 			have_poll_lock = netpoll_poll_lock(napi);
5098 			napi_poll = napi->poll;
5099 		}
5100 		rc = napi_poll(napi, BUSY_POLL_BUDGET);
5101 		trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5102 count:
5103 		if (rc > 0)
5104 			__NET_ADD_STATS(sock_net(sk),
5105 					LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5106 		local_bh_enable();
5107 
5108 		if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5109 		    busy_loop_timeout(end_time))
5110 			break;
5111 
5112 		if (unlikely(need_resched())) {
5113 			if (napi_poll)
5114 				busy_poll_stop(napi, have_poll_lock);
5115 			preempt_enable();
5116 			rcu_read_unlock();
5117 			cond_resched();
5118 			rc = !skb_queue_empty(&sk->sk_receive_queue);
5119 			if (rc || busy_loop_timeout(end_time))
5120 				return rc;
5121 			goto restart;
5122 		}
5123 		cpu_relax();
5124 	}
5125 	if (napi_poll)
5126 		busy_poll_stop(napi, have_poll_lock);
5127 	preempt_enable();
5128 	rc = !skb_queue_empty(&sk->sk_receive_queue);
5129 out:
5130 	rcu_read_unlock();
5131 	return rc;
5132 }
5133 EXPORT_SYMBOL(sk_busy_loop);
5134 
5135 #endif /* CONFIG_NET_RX_BUSY_POLL */
5136 
5137 static void napi_hash_add(struct napi_struct *napi)
5138 {
5139 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5140 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5141 		return;
5142 
5143 	spin_lock(&napi_hash_lock);
5144 
5145 	/* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5146 	do {
5147 		if (unlikely(++napi_gen_id < NR_CPUS + 1))
5148 			napi_gen_id = NR_CPUS + 1;
5149 	} while (napi_by_id(napi_gen_id));
5150 	napi->napi_id = napi_gen_id;
5151 
5152 	hlist_add_head_rcu(&napi->napi_hash_node,
5153 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5154 
5155 	spin_unlock(&napi_hash_lock);
5156 }
5157 
5158 /* Warning : caller is responsible to make sure rcu grace period
5159  * is respected before freeing memory containing @napi
5160  */
5161 bool napi_hash_del(struct napi_struct *napi)
5162 {
5163 	bool rcu_sync_needed = false;
5164 
5165 	spin_lock(&napi_hash_lock);
5166 
5167 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5168 		rcu_sync_needed = true;
5169 		hlist_del_rcu(&napi->napi_hash_node);
5170 	}
5171 	spin_unlock(&napi_hash_lock);
5172 	return rcu_sync_needed;
5173 }
5174 EXPORT_SYMBOL_GPL(napi_hash_del);
5175 
5176 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5177 {
5178 	struct napi_struct *napi;
5179 
5180 	napi = container_of(timer, struct napi_struct, timer);
5181 
5182 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5183 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5184 	 */
5185 	if (napi->gro_list && !napi_disable_pending(napi) &&
5186 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5187 		__napi_schedule_irqoff(napi);
5188 
5189 	return HRTIMER_NORESTART;
5190 }
5191 
5192 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5193 		    int (*poll)(struct napi_struct *, int), int weight)
5194 {
5195 	INIT_LIST_HEAD(&napi->poll_list);
5196 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5197 	napi->timer.function = napi_watchdog;
5198 	napi->gro_count = 0;
5199 	napi->gro_list = NULL;
5200 	napi->skb = NULL;
5201 	napi->poll = poll;
5202 	if (weight > NAPI_POLL_WEIGHT)
5203 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5204 			    weight, dev->name);
5205 	napi->weight = weight;
5206 	list_add(&napi->dev_list, &dev->napi_list);
5207 	napi->dev = dev;
5208 #ifdef CONFIG_NETPOLL
5209 	napi->poll_owner = -1;
5210 #endif
5211 	set_bit(NAPI_STATE_SCHED, &napi->state);
5212 	napi_hash_add(napi);
5213 }
5214 EXPORT_SYMBOL(netif_napi_add);
5215 
5216 void napi_disable(struct napi_struct *n)
5217 {
5218 	might_sleep();
5219 	set_bit(NAPI_STATE_DISABLE, &n->state);
5220 
5221 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5222 		msleep(1);
5223 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5224 		msleep(1);
5225 
5226 	hrtimer_cancel(&n->timer);
5227 
5228 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5229 }
5230 EXPORT_SYMBOL(napi_disable);
5231 
5232 /* Must be called in process context */
5233 void netif_napi_del(struct napi_struct *napi)
5234 {
5235 	might_sleep();
5236 	if (napi_hash_del(napi))
5237 		synchronize_net();
5238 	list_del_init(&napi->dev_list);
5239 	napi_free_frags(napi);
5240 
5241 	kfree_skb_list(napi->gro_list);
5242 	napi->gro_list = NULL;
5243 	napi->gro_count = 0;
5244 }
5245 EXPORT_SYMBOL(netif_napi_del);
5246 
5247 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5248 {
5249 	void *have;
5250 	int work, weight;
5251 
5252 	list_del_init(&n->poll_list);
5253 
5254 	have = netpoll_poll_lock(n);
5255 
5256 	weight = n->weight;
5257 
5258 	/* This NAPI_STATE_SCHED test is for avoiding a race
5259 	 * with netpoll's poll_napi().  Only the entity which
5260 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5261 	 * actually make the ->poll() call.  Therefore we avoid
5262 	 * accidentally calling ->poll() when NAPI is not scheduled.
5263 	 */
5264 	work = 0;
5265 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5266 		work = n->poll(n, weight);
5267 		trace_napi_poll(n, work, weight);
5268 	}
5269 
5270 	WARN_ON_ONCE(work > weight);
5271 
5272 	if (likely(work < weight))
5273 		goto out_unlock;
5274 
5275 	/* Drivers must not modify the NAPI state if they
5276 	 * consume the entire weight.  In such cases this code
5277 	 * still "owns" the NAPI instance and therefore can
5278 	 * move the instance around on the list at-will.
5279 	 */
5280 	if (unlikely(napi_disable_pending(n))) {
5281 		napi_complete(n);
5282 		goto out_unlock;
5283 	}
5284 
5285 	if (n->gro_list) {
5286 		/* flush too old packets
5287 		 * If HZ < 1000, flush all packets.
5288 		 */
5289 		napi_gro_flush(n, HZ >= 1000);
5290 	}
5291 
5292 	/* Some drivers may have called napi_schedule
5293 	 * prior to exhausting their budget.
5294 	 */
5295 	if (unlikely(!list_empty(&n->poll_list))) {
5296 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5297 			     n->dev ? n->dev->name : "backlog");
5298 		goto out_unlock;
5299 	}
5300 
5301 	list_add_tail(&n->poll_list, repoll);
5302 
5303 out_unlock:
5304 	netpoll_poll_unlock(have);
5305 
5306 	return work;
5307 }
5308 
5309 static __latent_entropy void net_rx_action(struct softirq_action *h)
5310 {
5311 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5312 	unsigned long time_limit = jiffies + 2;
5313 	int budget = netdev_budget;
5314 	LIST_HEAD(list);
5315 	LIST_HEAD(repoll);
5316 
5317 	local_irq_disable();
5318 	list_splice_init(&sd->poll_list, &list);
5319 	local_irq_enable();
5320 
5321 	for (;;) {
5322 		struct napi_struct *n;
5323 
5324 		if (list_empty(&list)) {
5325 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5326 				goto out;
5327 			break;
5328 		}
5329 
5330 		n = list_first_entry(&list, struct napi_struct, poll_list);
5331 		budget -= napi_poll(n, &repoll);
5332 
5333 		/* If softirq window is exhausted then punt.
5334 		 * Allow this to run for 2 jiffies since which will allow
5335 		 * an average latency of 1.5/HZ.
5336 		 */
5337 		if (unlikely(budget <= 0 ||
5338 			     time_after_eq(jiffies, time_limit))) {
5339 			sd->time_squeeze++;
5340 			break;
5341 		}
5342 	}
5343 
5344 	local_irq_disable();
5345 
5346 	list_splice_tail_init(&sd->poll_list, &list);
5347 	list_splice_tail(&repoll, &list);
5348 	list_splice(&list, &sd->poll_list);
5349 	if (!list_empty(&sd->poll_list))
5350 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5351 
5352 	net_rps_action_and_irq_enable(sd);
5353 out:
5354 	__kfree_skb_flush();
5355 }
5356 
5357 struct netdev_adjacent {
5358 	struct net_device *dev;
5359 
5360 	/* upper master flag, there can only be one master device per list */
5361 	bool master;
5362 
5363 	/* counter for the number of times this device was added to us */
5364 	u16 ref_nr;
5365 
5366 	/* private field for the users */
5367 	void *private;
5368 
5369 	struct list_head list;
5370 	struct rcu_head rcu;
5371 };
5372 
5373 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5374 						 struct list_head *adj_list)
5375 {
5376 	struct netdev_adjacent *adj;
5377 
5378 	list_for_each_entry(adj, adj_list, list) {
5379 		if (adj->dev == adj_dev)
5380 			return adj;
5381 	}
5382 	return NULL;
5383 }
5384 
5385 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5386 {
5387 	struct net_device *dev = data;
5388 
5389 	return upper_dev == dev;
5390 }
5391 
5392 /**
5393  * netdev_has_upper_dev - Check if device is linked to an upper device
5394  * @dev: device
5395  * @upper_dev: upper device to check
5396  *
5397  * Find out if a device is linked to specified upper device and return true
5398  * in case it is. Note that this checks only immediate upper device,
5399  * not through a complete stack of devices. The caller must hold the RTNL lock.
5400  */
5401 bool netdev_has_upper_dev(struct net_device *dev,
5402 			  struct net_device *upper_dev)
5403 {
5404 	ASSERT_RTNL();
5405 
5406 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5407 					     upper_dev);
5408 }
5409 EXPORT_SYMBOL(netdev_has_upper_dev);
5410 
5411 /**
5412  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5413  * @dev: device
5414  * @upper_dev: upper device to check
5415  *
5416  * Find out if a device is linked to specified upper device and return true
5417  * in case it is. Note that this checks the entire upper device chain.
5418  * The caller must hold rcu lock.
5419  */
5420 
5421 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5422 				  struct net_device *upper_dev)
5423 {
5424 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5425 					       upper_dev);
5426 }
5427 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5428 
5429 /**
5430  * netdev_has_any_upper_dev - Check if device is linked to some device
5431  * @dev: device
5432  *
5433  * Find out if a device is linked to an upper device and return true in case
5434  * it is. The caller must hold the RTNL lock.
5435  */
5436 static bool netdev_has_any_upper_dev(struct net_device *dev)
5437 {
5438 	ASSERT_RTNL();
5439 
5440 	return !list_empty(&dev->adj_list.upper);
5441 }
5442 
5443 /**
5444  * netdev_master_upper_dev_get - Get master upper device
5445  * @dev: device
5446  *
5447  * Find a master upper device and return pointer to it or NULL in case
5448  * it's not there. The caller must hold the RTNL lock.
5449  */
5450 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5451 {
5452 	struct netdev_adjacent *upper;
5453 
5454 	ASSERT_RTNL();
5455 
5456 	if (list_empty(&dev->adj_list.upper))
5457 		return NULL;
5458 
5459 	upper = list_first_entry(&dev->adj_list.upper,
5460 				 struct netdev_adjacent, list);
5461 	if (likely(upper->master))
5462 		return upper->dev;
5463 	return NULL;
5464 }
5465 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5466 
5467 /**
5468  * netdev_has_any_lower_dev - Check if device is linked to some device
5469  * @dev: device
5470  *
5471  * Find out if a device is linked to a lower device and return true in case
5472  * it is. The caller must hold the RTNL lock.
5473  */
5474 static bool netdev_has_any_lower_dev(struct net_device *dev)
5475 {
5476 	ASSERT_RTNL();
5477 
5478 	return !list_empty(&dev->adj_list.lower);
5479 }
5480 
5481 void *netdev_adjacent_get_private(struct list_head *adj_list)
5482 {
5483 	struct netdev_adjacent *adj;
5484 
5485 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5486 
5487 	return adj->private;
5488 }
5489 EXPORT_SYMBOL(netdev_adjacent_get_private);
5490 
5491 /**
5492  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5493  * @dev: device
5494  * @iter: list_head ** of the current position
5495  *
5496  * Gets the next device from the dev's upper list, starting from iter
5497  * position. The caller must hold RCU read lock.
5498  */
5499 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5500 						 struct list_head **iter)
5501 {
5502 	struct netdev_adjacent *upper;
5503 
5504 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5505 
5506 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5507 
5508 	if (&upper->list == &dev->adj_list.upper)
5509 		return NULL;
5510 
5511 	*iter = &upper->list;
5512 
5513 	return upper->dev;
5514 }
5515 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5516 
5517 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5518 						    struct list_head **iter)
5519 {
5520 	struct netdev_adjacent *upper;
5521 
5522 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5523 
5524 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5525 
5526 	if (&upper->list == &dev->adj_list.upper)
5527 		return NULL;
5528 
5529 	*iter = &upper->list;
5530 
5531 	return upper->dev;
5532 }
5533 
5534 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5535 				  int (*fn)(struct net_device *dev,
5536 					    void *data),
5537 				  void *data)
5538 {
5539 	struct net_device *udev;
5540 	struct list_head *iter;
5541 	int ret;
5542 
5543 	for (iter = &dev->adj_list.upper,
5544 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
5545 	     udev;
5546 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5547 		/* first is the upper device itself */
5548 		ret = fn(udev, data);
5549 		if (ret)
5550 			return ret;
5551 
5552 		/* then look at all of its upper devices */
5553 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5554 		if (ret)
5555 			return ret;
5556 	}
5557 
5558 	return 0;
5559 }
5560 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5561 
5562 /**
5563  * netdev_lower_get_next_private - Get the next ->private from the
5564  *				   lower neighbour list
5565  * @dev: device
5566  * @iter: list_head ** of the current position
5567  *
5568  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5569  * list, starting from iter position. The caller must hold either hold the
5570  * RTNL lock or its own locking that guarantees that the neighbour lower
5571  * list will remain unchanged.
5572  */
5573 void *netdev_lower_get_next_private(struct net_device *dev,
5574 				    struct list_head **iter)
5575 {
5576 	struct netdev_adjacent *lower;
5577 
5578 	lower = list_entry(*iter, struct netdev_adjacent, list);
5579 
5580 	if (&lower->list == &dev->adj_list.lower)
5581 		return NULL;
5582 
5583 	*iter = lower->list.next;
5584 
5585 	return lower->private;
5586 }
5587 EXPORT_SYMBOL(netdev_lower_get_next_private);
5588 
5589 /**
5590  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5591  *				       lower neighbour list, RCU
5592  *				       variant
5593  * @dev: device
5594  * @iter: list_head ** of the current position
5595  *
5596  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5597  * list, starting from iter position. The caller must hold RCU read lock.
5598  */
5599 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5600 					struct list_head **iter)
5601 {
5602 	struct netdev_adjacent *lower;
5603 
5604 	WARN_ON_ONCE(!rcu_read_lock_held());
5605 
5606 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5607 
5608 	if (&lower->list == &dev->adj_list.lower)
5609 		return NULL;
5610 
5611 	*iter = &lower->list;
5612 
5613 	return lower->private;
5614 }
5615 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5616 
5617 /**
5618  * netdev_lower_get_next - Get the next device from the lower neighbour
5619  *                         list
5620  * @dev: device
5621  * @iter: list_head ** of the current position
5622  *
5623  * Gets the next netdev_adjacent from the dev's lower neighbour
5624  * list, starting from iter position. The caller must hold RTNL lock or
5625  * its own locking that guarantees that the neighbour lower
5626  * list will remain unchanged.
5627  */
5628 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5629 {
5630 	struct netdev_adjacent *lower;
5631 
5632 	lower = list_entry(*iter, struct netdev_adjacent, list);
5633 
5634 	if (&lower->list == &dev->adj_list.lower)
5635 		return NULL;
5636 
5637 	*iter = lower->list.next;
5638 
5639 	return lower->dev;
5640 }
5641 EXPORT_SYMBOL(netdev_lower_get_next);
5642 
5643 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5644 						struct list_head **iter)
5645 {
5646 	struct netdev_adjacent *lower;
5647 
5648 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5649 
5650 	if (&lower->list == &dev->adj_list.lower)
5651 		return NULL;
5652 
5653 	*iter = &lower->list;
5654 
5655 	return lower->dev;
5656 }
5657 
5658 int netdev_walk_all_lower_dev(struct net_device *dev,
5659 			      int (*fn)(struct net_device *dev,
5660 					void *data),
5661 			      void *data)
5662 {
5663 	struct net_device *ldev;
5664 	struct list_head *iter;
5665 	int ret;
5666 
5667 	for (iter = &dev->adj_list.lower,
5668 	     ldev = netdev_next_lower_dev(dev, &iter);
5669 	     ldev;
5670 	     ldev = netdev_next_lower_dev(dev, &iter)) {
5671 		/* first is the lower device itself */
5672 		ret = fn(ldev, data);
5673 		if (ret)
5674 			return ret;
5675 
5676 		/* then look at all of its lower devices */
5677 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
5678 		if (ret)
5679 			return ret;
5680 	}
5681 
5682 	return 0;
5683 }
5684 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5685 
5686 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5687 						    struct list_head **iter)
5688 {
5689 	struct netdev_adjacent *lower;
5690 
5691 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5692 	if (&lower->list == &dev->adj_list.lower)
5693 		return NULL;
5694 
5695 	*iter = &lower->list;
5696 
5697 	return lower->dev;
5698 }
5699 
5700 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5701 				  int (*fn)(struct net_device *dev,
5702 					    void *data),
5703 				  void *data)
5704 {
5705 	struct net_device *ldev;
5706 	struct list_head *iter;
5707 	int ret;
5708 
5709 	for (iter = &dev->adj_list.lower,
5710 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
5711 	     ldev;
5712 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5713 		/* first is the lower device itself */
5714 		ret = fn(ldev, data);
5715 		if (ret)
5716 			return ret;
5717 
5718 		/* then look at all of its lower devices */
5719 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5720 		if (ret)
5721 			return ret;
5722 	}
5723 
5724 	return 0;
5725 }
5726 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5727 
5728 /**
5729  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5730  *				       lower neighbour list, RCU
5731  *				       variant
5732  * @dev: device
5733  *
5734  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5735  * list. The caller must hold RCU read lock.
5736  */
5737 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5738 {
5739 	struct netdev_adjacent *lower;
5740 
5741 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5742 			struct netdev_adjacent, list);
5743 	if (lower)
5744 		return lower->private;
5745 	return NULL;
5746 }
5747 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5748 
5749 /**
5750  * netdev_master_upper_dev_get_rcu - Get master upper device
5751  * @dev: device
5752  *
5753  * Find a master upper device and return pointer to it or NULL in case
5754  * it's not there. The caller must hold the RCU read lock.
5755  */
5756 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5757 {
5758 	struct netdev_adjacent *upper;
5759 
5760 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5761 				       struct netdev_adjacent, list);
5762 	if (upper && likely(upper->master))
5763 		return upper->dev;
5764 	return NULL;
5765 }
5766 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5767 
5768 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5769 			      struct net_device *adj_dev,
5770 			      struct list_head *dev_list)
5771 {
5772 	char linkname[IFNAMSIZ+7];
5773 
5774 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5775 		"upper_%s" : "lower_%s", adj_dev->name);
5776 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5777 				 linkname);
5778 }
5779 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5780 			       char *name,
5781 			       struct list_head *dev_list)
5782 {
5783 	char linkname[IFNAMSIZ+7];
5784 
5785 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5786 		"upper_%s" : "lower_%s", name);
5787 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5788 }
5789 
5790 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5791 						 struct net_device *adj_dev,
5792 						 struct list_head *dev_list)
5793 {
5794 	return (dev_list == &dev->adj_list.upper ||
5795 		dev_list == &dev->adj_list.lower) &&
5796 		net_eq(dev_net(dev), dev_net(adj_dev));
5797 }
5798 
5799 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5800 					struct net_device *adj_dev,
5801 					struct list_head *dev_list,
5802 					void *private, bool master)
5803 {
5804 	struct netdev_adjacent *adj;
5805 	int ret;
5806 
5807 	adj = __netdev_find_adj(adj_dev, dev_list);
5808 
5809 	if (adj) {
5810 		adj->ref_nr += 1;
5811 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5812 			 dev->name, adj_dev->name, adj->ref_nr);
5813 
5814 		return 0;
5815 	}
5816 
5817 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5818 	if (!adj)
5819 		return -ENOMEM;
5820 
5821 	adj->dev = adj_dev;
5822 	adj->master = master;
5823 	adj->ref_nr = 1;
5824 	adj->private = private;
5825 	dev_hold(adj_dev);
5826 
5827 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5828 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5829 
5830 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5831 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5832 		if (ret)
5833 			goto free_adj;
5834 	}
5835 
5836 	/* Ensure that master link is always the first item in list. */
5837 	if (master) {
5838 		ret = sysfs_create_link(&(dev->dev.kobj),
5839 					&(adj_dev->dev.kobj), "master");
5840 		if (ret)
5841 			goto remove_symlinks;
5842 
5843 		list_add_rcu(&adj->list, dev_list);
5844 	} else {
5845 		list_add_tail_rcu(&adj->list, dev_list);
5846 	}
5847 
5848 	return 0;
5849 
5850 remove_symlinks:
5851 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5852 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5853 free_adj:
5854 	kfree(adj);
5855 	dev_put(adj_dev);
5856 
5857 	return ret;
5858 }
5859 
5860 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5861 					 struct net_device *adj_dev,
5862 					 u16 ref_nr,
5863 					 struct list_head *dev_list)
5864 {
5865 	struct netdev_adjacent *adj;
5866 
5867 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5868 		 dev->name, adj_dev->name, ref_nr);
5869 
5870 	adj = __netdev_find_adj(adj_dev, dev_list);
5871 
5872 	if (!adj) {
5873 		pr_err("Adjacency does not exist for device %s from %s\n",
5874 		       dev->name, adj_dev->name);
5875 		WARN_ON(1);
5876 		return;
5877 	}
5878 
5879 	if (adj->ref_nr > ref_nr) {
5880 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5881 			 dev->name, adj_dev->name, ref_nr,
5882 			 adj->ref_nr - ref_nr);
5883 		adj->ref_nr -= ref_nr;
5884 		return;
5885 	}
5886 
5887 	if (adj->master)
5888 		sysfs_remove_link(&(dev->dev.kobj), "master");
5889 
5890 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5891 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5892 
5893 	list_del_rcu(&adj->list);
5894 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5895 		 adj_dev->name, dev->name, adj_dev->name);
5896 	dev_put(adj_dev);
5897 	kfree_rcu(adj, rcu);
5898 }
5899 
5900 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5901 					    struct net_device *upper_dev,
5902 					    struct list_head *up_list,
5903 					    struct list_head *down_list,
5904 					    void *private, bool master)
5905 {
5906 	int ret;
5907 
5908 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5909 					   private, master);
5910 	if (ret)
5911 		return ret;
5912 
5913 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5914 					   private, false);
5915 	if (ret) {
5916 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5917 		return ret;
5918 	}
5919 
5920 	return 0;
5921 }
5922 
5923 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5924 					       struct net_device *upper_dev,
5925 					       u16 ref_nr,
5926 					       struct list_head *up_list,
5927 					       struct list_head *down_list)
5928 {
5929 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5930 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5931 }
5932 
5933 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5934 						struct net_device *upper_dev,
5935 						void *private, bool master)
5936 {
5937 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5938 						&dev->adj_list.upper,
5939 						&upper_dev->adj_list.lower,
5940 						private, master);
5941 }
5942 
5943 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5944 						   struct net_device *upper_dev)
5945 {
5946 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5947 					   &dev->adj_list.upper,
5948 					   &upper_dev->adj_list.lower);
5949 }
5950 
5951 static int __netdev_upper_dev_link(struct net_device *dev,
5952 				   struct net_device *upper_dev, bool master,
5953 				   void *upper_priv, void *upper_info)
5954 {
5955 	struct netdev_notifier_changeupper_info changeupper_info;
5956 	int ret = 0;
5957 
5958 	ASSERT_RTNL();
5959 
5960 	if (dev == upper_dev)
5961 		return -EBUSY;
5962 
5963 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5964 	if (netdev_has_upper_dev(upper_dev, dev))
5965 		return -EBUSY;
5966 
5967 	if (netdev_has_upper_dev(dev, upper_dev))
5968 		return -EEXIST;
5969 
5970 	if (master && netdev_master_upper_dev_get(dev))
5971 		return -EBUSY;
5972 
5973 	changeupper_info.upper_dev = upper_dev;
5974 	changeupper_info.master = master;
5975 	changeupper_info.linking = true;
5976 	changeupper_info.upper_info = upper_info;
5977 
5978 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5979 					    &changeupper_info.info);
5980 	ret = notifier_to_errno(ret);
5981 	if (ret)
5982 		return ret;
5983 
5984 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5985 						   master);
5986 	if (ret)
5987 		return ret;
5988 
5989 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5990 					    &changeupper_info.info);
5991 	ret = notifier_to_errno(ret);
5992 	if (ret)
5993 		goto rollback;
5994 
5995 	return 0;
5996 
5997 rollback:
5998 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5999 
6000 	return ret;
6001 }
6002 
6003 /**
6004  * netdev_upper_dev_link - Add a link to the upper device
6005  * @dev: device
6006  * @upper_dev: new upper device
6007  *
6008  * Adds a link to device which is upper to this one. The caller must hold
6009  * the RTNL lock. On a failure a negative errno code is returned.
6010  * On success the reference counts are adjusted and the function
6011  * returns zero.
6012  */
6013 int netdev_upper_dev_link(struct net_device *dev,
6014 			  struct net_device *upper_dev)
6015 {
6016 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6017 }
6018 EXPORT_SYMBOL(netdev_upper_dev_link);
6019 
6020 /**
6021  * netdev_master_upper_dev_link - Add a master link to the upper device
6022  * @dev: device
6023  * @upper_dev: new upper device
6024  * @upper_priv: upper device private
6025  * @upper_info: upper info to be passed down via notifier
6026  *
6027  * Adds a link to device which is upper to this one. In this case, only
6028  * one master upper device can be linked, although other non-master devices
6029  * might be linked as well. The caller must hold the RTNL lock.
6030  * On a failure a negative errno code is returned. On success the reference
6031  * counts are adjusted and the function returns zero.
6032  */
6033 int netdev_master_upper_dev_link(struct net_device *dev,
6034 				 struct net_device *upper_dev,
6035 				 void *upper_priv, void *upper_info)
6036 {
6037 	return __netdev_upper_dev_link(dev, upper_dev, true,
6038 				       upper_priv, upper_info);
6039 }
6040 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6041 
6042 /**
6043  * netdev_upper_dev_unlink - Removes a link to upper device
6044  * @dev: device
6045  * @upper_dev: new upper device
6046  *
6047  * Removes a link to device which is upper to this one. The caller must hold
6048  * the RTNL lock.
6049  */
6050 void netdev_upper_dev_unlink(struct net_device *dev,
6051 			     struct net_device *upper_dev)
6052 {
6053 	struct netdev_notifier_changeupper_info changeupper_info;
6054 
6055 	ASSERT_RTNL();
6056 
6057 	changeupper_info.upper_dev = upper_dev;
6058 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6059 	changeupper_info.linking = false;
6060 
6061 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6062 				      &changeupper_info.info);
6063 
6064 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6065 
6066 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6067 				      &changeupper_info.info);
6068 }
6069 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6070 
6071 /**
6072  * netdev_bonding_info_change - Dispatch event about slave change
6073  * @dev: device
6074  * @bonding_info: info to dispatch
6075  *
6076  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6077  * The caller must hold the RTNL lock.
6078  */
6079 void netdev_bonding_info_change(struct net_device *dev,
6080 				struct netdev_bonding_info *bonding_info)
6081 {
6082 	struct netdev_notifier_bonding_info	info;
6083 
6084 	memcpy(&info.bonding_info, bonding_info,
6085 	       sizeof(struct netdev_bonding_info));
6086 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6087 				      &info.info);
6088 }
6089 EXPORT_SYMBOL(netdev_bonding_info_change);
6090 
6091 static void netdev_adjacent_add_links(struct net_device *dev)
6092 {
6093 	struct netdev_adjacent *iter;
6094 
6095 	struct net *net = dev_net(dev);
6096 
6097 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6098 		if (!net_eq(net, dev_net(iter->dev)))
6099 			continue;
6100 		netdev_adjacent_sysfs_add(iter->dev, dev,
6101 					  &iter->dev->adj_list.lower);
6102 		netdev_adjacent_sysfs_add(dev, iter->dev,
6103 					  &dev->adj_list.upper);
6104 	}
6105 
6106 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6107 		if (!net_eq(net, dev_net(iter->dev)))
6108 			continue;
6109 		netdev_adjacent_sysfs_add(iter->dev, dev,
6110 					  &iter->dev->adj_list.upper);
6111 		netdev_adjacent_sysfs_add(dev, iter->dev,
6112 					  &dev->adj_list.lower);
6113 	}
6114 }
6115 
6116 static void netdev_adjacent_del_links(struct net_device *dev)
6117 {
6118 	struct netdev_adjacent *iter;
6119 
6120 	struct net *net = dev_net(dev);
6121 
6122 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6123 		if (!net_eq(net, dev_net(iter->dev)))
6124 			continue;
6125 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6126 					  &iter->dev->adj_list.lower);
6127 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6128 					  &dev->adj_list.upper);
6129 	}
6130 
6131 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6132 		if (!net_eq(net, dev_net(iter->dev)))
6133 			continue;
6134 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6135 					  &iter->dev->adj_list.upper);
6136 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6137 					  &dev->adj_list.lower);
6138 	}
6139 }
6140 
6141 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6142 {
6143 	struct netdev_adjacent *iter;
6144 
6145 	struct net *net = dev_net(dev);
6146 
6147 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6148 		if (!net_eq(net, dev_net(iter->dev)))
6149 			continue;
6150 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6151 					  &iter->dev->adj_list.lower);
6152 		netdev_adjacent_sysfs_add(iter->dev, dev,
6153 					  &iter->dev->adj_list.lower);
6154 	}
6155 
6156 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6157 		if (!net_eq(net, dev_net(iter->dev)))
6158 			continue;
6159 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6160 					  &iter->dev->adj_list.upper);
6161 		netdev_adjacent_sysfs_add(iter->dev, dev,
6162 					  &iter->dev->adj_list.upper);
6163 	}
6164 }
6165 
6166 void *netdev_lower_dev_get_private(struct net_device *dev,
6167 				   struct net_device *lower_dev)
6168 {
6169 	struct netdev_adjacent *lower;
6170 
6171 	if (!lower_dev)
6172 		return NULL;
6173 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6174 	if (!lower)
6175 		return NULL;
6176 
6177 	return lower->private;
6178 }
6179 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6180 
6181 
6182 int dev_get_nest_level(struct net_device *dev)
6183 {
6184 	struct net_device *lower = NULL;
6185 	struct list_head *iter;
6186 	int max_nest = -1;
6187 	int nest;
6188 
6189 	ASSERT_RTNL();
6190 
6191 	netdev_for_each_lower_dev(dev, lower, iter) {
6192 		nest = dev_get_nest_level(lower);
6193 		if (max_nest < nest)
6194 			max_nest = nest;
6195 	}
6196 
6197 	return max_nest + 1;
6198 }
6199 EXPORT_SYMBOL(dev_get_nest_level);
6200 
6201 /**
6202  * netdev_lower_change - Dispatch event about lower device state change
6203  * @lower_dev: device
6204  * @lower_state_info: state to dispatch
6205  *
6206  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6207  * The caller must hold the RTNL lock.
6208  */
6209 void netdev_lower_state_changed(struct net_device *lower_dev,
6210 				void *lower_state_info)
6211 {
6212 	struct netdev_notifier_changelowerstate_info changelowerstate_info;
6213 
6214 	ASSERT_RTNL();
6215 	changelowerstate_info.lower_state_info = lower_state_info;
6216 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6217 				      &changelowerstate_info.info);
6218 }
6219 EXPORT_SYMBOL(netdev_lower_state_changed);
6220 
6221 static void dev_change_rx_flags(struct net_device *dev, int flags)
6222 {
6223 	const struct net_device_ops *ops = dev->netdev_ops;
6224 
6225 	if (ops->ndo_change_rx_flags)
6226 		ops->ndo_change_rx_flags(dev, flags);
6227 }
6228 
6229 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6230 {
6231 	unsigned int old_flags = dev->flags;
6232 	kuid_t uid;
6233 	kgid_t gid;
6234 
6235 	ASSERT_RTNL();
6236 
6237 	dev->flags |= IFF_PROMISC;
6238 	dev->promiscuity += inc;
6239 	if (dev->promiscuity == 0) {
6240 		/*
6241 		 * Avoid overflow.
6242 		 * If inc causes overflow, untouch promisc and return error.
6243 		 */
6244 		if (inc < 0)
6245 			dev->flags &= ~IFF_PROMISC;
6246 		else {
6247 			dev->promiscuity -= inc;
6248 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6249 				dev->name);
6250 			return -EOVERFLOW;
6251 		}
6252 	}
6253 	if (dev->flags != old_flags) {
6254 		pr_info("device %s %s promiscuous mode\n",
6255 			dev->name,
6256 			dev->flags & IFF_PROMISC ? "entered" : "left");
6257 		if (audit_enabled) {
6258 			current_uid_gid(&uid, &gid);
6259 			audit_log(current->audit_context, GFP_ATOMIC,
6260 				AUDIT_ANOM_PROMISCUOUS,
6261 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6262 				dev->name, (dev->flags & IFF_PROMISC),
6263 				(old_flags & IFF_PROMISC),
6264 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6265 				from_kuid(&init_user_ns, uid),
6266 				from_kgid(&init_user_ns, gid),
6267 				audit_get_sessionid(current));
6268 		}
6269 
6270 		dev_change_rx_flags(dev, IFF_PROMISC);
6271 	}
6272 	if (notify)
6273 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6274 	return 0;
6275 }
6276 
6277 /**
6278  *	dev_set_promiscuity	- update promiscuity count on a device
6279  *	@dev: device
6280  *	@inc: modifier
6281  *
6282  *	Add or remove promiscuity from a device. While the count in the device
6283  *	remains above zero the interface remains promiscuous. Once it hits zero
6284  *	the device reverts back to normal filtering operation. A negative inc
6285  *	value is used to drop promiscuity on the device.
6286  *	Return 0 if successful or a negative errno code on error.
6287  */
6288 int dev_set_promiscuity(struct net_device *dev, int inc)
6289 {
6290 	unsigned int old_flags = dev->flags;
6291 	int err;
6292 
6293 	err = __dev_set_promiscuity(dev, inc, true);
6294 	if (err < 0)
6295 		return err;
6296 	if (dev->flags != old_flags)
6297 		dev_set_rx_mode(dev);
6298 	return err;
6299 }
6300 EXPORT_SYMBOL(dev_set_promiscuity);
6301 
6302 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6303 {
6304 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6305 
6306 	ASSERT_RTNL();
6307 
6308 	dev->flags |= IFF_ALLMULTI;
6309 	dev->allmulti += inc;
6310 	if (dev->allmulti == 0) {
6311 		/*
6312 		 * Avoid overflow.
6313 		 * If inc causes overflow, untouch allmulti and return error.
6314 		 */
6315 		if (inc < 0)
6316 			dev->flags &= ~IFF_ALLMULTI;
6317 		else {
6318 			dev->allmulti -= inc;
6319 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6320 				dev->name);
6321 			return -EOVERFLOW;
6322 		}
6323 	}
6324 	if (dev->flags ^ old_flags) {
6325 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6326 		dev_set_rx_mode(dev);
6327 		if (notify)
6328 			__dev_notify_flags(dev, old_flags,
6329 					   dev->gflags ^ old_gflags);
6330 	}
6331 	return 0;
6332 }
6333 
6334 /**
6335  *	dev_set_allmulti	- update allmulti count on a device
6336  *	@dev: device
6337  *	@inc: modifier
6338  *
6339  *	Add or remove reception of all multicast frames to a device. While the
6340  *	count in the device remains above zero the interface remains listening
6341  *	to all interfaces. Once it hits zero the device reverts back to normal
6342  *	filtering operation. A negative @inc value is used to drop the counter
6343  *	when releasing a resource needing all multicasts.
6344  *	Return 0 if successful or a negative errno code on error.
6345  */
6346 
6347 int dev_set_allmulti(struct net_device *dev, int inc)
6348 {
6349 	return __dev_set_allmulti(dev, inc, true);
6350 }
6351 EXPORT_SYMBOL(dev_set_allmulti);
6352 
6353 /*
6354  *	Upload unicast and multicast address lists to device and
6355  *	configure RX filtering. When the device doesn't support unicast
6356  *	filtering it is put in promiscuous mode while unicast addresses
6357  *	are present.
6358  */
6359 void __dev_set_rx_mode(struct net_device *dev)
6360 {
6361 	const struct net_device_ops *ops = dev->netdev_ops;
6362 
6363 	/* dev_open will call this function so the list will stay sane. */
6364 	if (!(dev->flags&IFF_UP))
6365 		return;
6366 
6367 	if (!netif_device_present(dev))
6368 		return;
6369 
6370 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6371 		/* Unicast addresses changes may only happen under the rtnl,
6372 		 * therefore calling __dev_set_promiscuity here is safe.
6373 		 */
6374 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6375 			__dev_set_promiscuity(dev, 1, false);
6376 			dev->uc_promisc = true;
6377 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6378 			__dev_set_promiscuity(dev, -1, false);
6379 			dev->uc_promisc = false;
6380 		}
6381 	}
6382 
6383 	if (ops->ndo_set_rx_mode)
6384 		ops->ndo_set_rx_mode(dev);
6385 }
6386 
6387 void dev_set_rx_mode(struct net_device *dev)
6388 {
6389 	netif_addr_lock_bh(dev);
6390 	__dev_set_rx_mode(dev);
6391 	netif_addr_unlock_bh(dev);
6392 }
6393 
6394 /**
6395  *	dev_get_flags - get flags reported to userspace
6396  *	@dev: device
6397  *
6398  *	Get the combination of flag bits exported through APIs to userspace.
6399  */
6400 unsigned int dev_get_flags(const struct net_device *dev)
6401 {
6402 	unsigned int flags;
6403 
6404 	flags = (dev->flags & ~(IFF_PROMISC |
6405 				IFF_ALLMULTI |
6406 				IFF_RUNNING |
6407 				IFF_LOWER_UP |
6408 				IFF_DORMANT)) |
6409 		(dev->gflags & (IFF_PROMISC |
6410 				IFF_ALLMULTI));
6411 
6412 	if (netif_running(dev)) {
6413 		if (netif_oper_up(dev))
6414 			flags |= IFF_RUNNING;
6415 		if (netif_carrier_ok(dev))
6416 			flags |= IFF_LOWER_UP;
6417 		if (netif_dormant(dev))
6418 			flags |= IFF_DORMANT;
6419 	}
6420 
6421 	return flags;
6422 }
6423 EXPORT_SYMBOL(dev_get_flags);
6424 
6425 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6426 {
6427 	unsigned int old_flags = dev->flags;
6428 	int ret;
6429 
6430 	ASSERT_RTNL();
6431 
6432 	/*
6433 	 *	Set the flags on our device.
6434 	 */
6435 
6436 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6437 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6438 			       IFF_AUTOMEDIA)) |
6439 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6440 				    IFF_ALLMULTI));
6441 
6442 	/*
6443 	 *	Load in the correct multicast list now the flags have changed.
6444 	 */
6445 
6446 	if ((old_flags ^ flags) & IFF_MULTICAST)
6447 		dev_change_rx_flags(dev, IFF_MULTICAST);
6448 
6449 	dev_set_rx_mode(dev);
6450 
6451 	/*
6452 	 *	Have we downed the interface. We handle IFF_UP ourselves
6453 	 *	according to user attempts to set it, rather than blindly
6454 	 *	setting it.
6455 	 */
6456 
6457 	ret = 0;
6458 	if ((old_flags ^ flags) & IFF_UP)
6459 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6460 
6461 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6462 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6463 		unsigned int old_flags = dev->flags;
6464 
6465 		dev->gflags ^= IFF_PROMISC;
6466 
6467 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6468 			if (dev->flags != old_flags)
6469 				dev_set_rx_mode(dev);
6470 	}
6471 
6472 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6473 	 * is important. Some (broken) drivers set IFF_PROMISC, when
6474 	 * IFF_ALLMULTI is requested not asking us and not reporting.
6475 	 */
6476 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6477 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6478 
6479 		dev->gflags ^= IFF_ALLMULTI;
6480 		__dev_set_allmulti(dev, inc, false);
6481 	}
6482 
6483 	return ret;
6484 }
6485 
6486 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6487 			unsigned int gchanges)
6488 {
6489 	unsigned int changes = dev->flags ^ old_flags;
6490 
6491 	if (gchanges)
6492 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6493 
6494 	if (changes & IFF_UP) {
6495 		if (dev->flags & IFF_UP)
6496 			call_netdevice_notifiers(NETDEV_UP, dev);
6497 		else
6498 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6499 	}
6500 
6501 	if (dev->flags & IFF_UP &&
6502 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6503 		struct netdev_notifier_change_info change_info;
6504 
6505 		change_info.flags_changed = changes;
6506 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6507 					      &change_info.info);
6508 	}
6509 }
6510 
6511 /**
6512  *	dev_change_flags - change device settings
6513  *	@dev: device
6514  *	@flags: device state flags
6515  *
6516  *	Change settings on device based state flags. The flags are
6517  *	in the userspace exported format.
6518  */
6519 int dev_change_flags(struct net_device *dev, unsigned int flags)
6520 {
6521 	int ret;
6522 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6523 
6524 	ret = __dev_change_flags(dev, flags);
6525 	if (ret < 0)
6526 		return ret;
6527 
6528 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6529 	__dev_notify_flags(dev, old_flags, changes);
6530 	return ret;
6531 }
6532 EXPORT_SYMBOL(dev_change_flags);
6533 
6534 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6535 {
6536 	const struct net_device_ops *ops = dev->netdev_ops;
6537 
6538 	if (ops->ndo_change_mtu)
6539 		return ops->ndo_change_mtu(dev, new_mtu);
6540 
6541 	dev->mtu = new_mtu;
6542 	return 0;
6543 }
6544 
6545 /**
6546  *	dev_set_mtu - Change maximum transfer unit
6547  *	@dev: device
6548  *	@new_mtu: new transfer unit
6549  *
6550  *	Change the maximum transfer size of the network device.
6551  */
6552 int dev_set_mtu(struct net_device *dev, int new_mtu)
6553 {
6554 	int err, orig_mtu;
6555 
6556 	if (new_mtu == dev->mtu)
6557 		return 0;
6558 
6559 	/* MTU must be positive, and in range */
6560 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6561 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6562 				    dev->name, new_mtu, dev->min_mtu);
6563 		return -EINVAL;
6564 	}
6565 
6566 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6567 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6568 				    dev->name, new_mtu, dev->max_mtu);
6569 		return -EINVAL;
6570 	}
6571 
6572 	if (!netif_device_present(dev))
6573 		return -ENODEV;
6574 
6575 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6576 	err = notifier_to_errno(err);
6577 	if (err)
6578 		return err;
6579 
6580 	orig_mtu = dev->mtu;
6581 	err = __dev_set_mtu(dev, new_mtu);
6582 
6583 	if (!err) {
6584 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6585 		err = notifier_to_errno(err);
6586 		if (err) {
6587 			/* setting mtu back and notifying everyone again,
6588 			 * so that they have a chance to revert changes.
6589 			 */
6590 			__dev_set_mtu(dev, orig_mtu);
6591 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6592 		}
6593 	}
6594 	return err;
6595 }
6596 EXPORT_SYMBOL(dev_set_mtu);
6597 
6598 /**
6599  *	dev_set_group - Change group this device belongs to
6600  *	@dev: device
6601  *	@new_group: group this device should belong to
6602  */
6603 void dev_set_group(struct net_device *dev, int new_group)
6604 {
6605 	dev->group = new_group;
6606 }
6607 EXPORT_SYMBOL(dev_set_group);
6608 
6609 /**
6610  *	dev_set_mac_address - Change Media Access Control Address
6611  *	@dev: device
6612  *	@sa: new address
6613  *
6614  *	Change the hardware (MAC) address of the device
6615  */
6616 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6617 {
6618 	const struct net_device_ops *ops = dev->netdev_ops;
6619 	int err;
6620 
6621 	if (!ops->ndo_set_mac_address)
6622 		return -EOPNOTSUPP;
6623 	if (sa->sa_family != dev->type)
6624 		return -EINVAL;
6625 	if (!netif_device_present(dev))
6626 		return -ENODEV;
6627 	err = ops->ndo_set_mac_address(dev, sa);
6628 	if (err)
6629 		return err;
6630 	dev->addr_assign_type = NET_ADDR_SET;
6631 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6632 	add_device_randomness(dev->dev_addr, dev->addr_len);
6633 	return 0;
6634 }
6635 EXPORT_SYMBOL(dev_set_mac_address);
6636 
6637 /**
6638  *	dev_change_carrier - Change device carrier
6639  *	@dev: device
6640  *	@new_carrier: new value
6641  *
6642  *	Change device carrier
6643  */
6644 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6645 {
6646 	const struct net_device_ops *ops = dev->netdev_ops;
6647 
6648 	if (!ops->ndo_change_carrier)
6649 		return -EOPNOTSUPP;
6650 	if (!netif_device_present(dev))
6651 		return -ENODEV;
6652 	return ops->ndo_change_carrier(dev, new_carrier);
6653 }
6654 EXPORT_SYMBOL(dev_change_carrier);
6655 
6656 /**
6657  *	dev_get_phys_port_id - Get device physical port ID
6658  *	@dev: device
6659  *	@ppid: port ID
6660  *
6661  *	Get device physical port ID
6662  */
6663 int dev_get_phys_port_id(struct net_device *dev,
6664 			 struct netdev_phys_item_id *ppid)
6665 {
6666 	const struct net_device_ops *ops = dev->netdev_ops;
6667 
6668 	if (!ops->ndo_get_phys_port_id)
6669 		return -EOPNOTSUPP;
6670 	return ops->ndo_get_phys_port_id(dev, ppid);
6671 }
6672 EXPORT_SYMBOL(dev_get_phys_port_id);
6673 
6674 /**
6675  *	dev_get_phys_port_name - Get device physical port name
6676  *	@dev: device
6677  *	@name: port name
6678  *	@len: limit of bytes to copy to name
6679  *
6680  *	Get device physical port name
6681  */
6682 int dev_get_phys_port_name(struct net_device *dev,
6683 			   char *name, size_t len)
6684 {
6685 	const struct net_device_ops *ops = dev->netdev_ops;
6686 
6687 	if (!ops->ndo_get_phys_port_name)
6688 		return -EOPNOTSUPP;
6689 	return ops->ndo_get_phys_port_name(dev, name, len);
6690 }
6691 EXPORT_SYMBOL(dev_get_phys_port_name);
6692 
6693 /**
6694  *	dev_change_proto_down - update protocol port state information
6695  *	@dev: device
6696  *	@proto_down: new value
6697  *
6698  *	This info can be used by switch drivers to set the phys state of the
6699  *	port.
6700  */
6701 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6702 {
6703 	const struct net_device_ops *ops = dev->netdev_ops;
6704 
6705 	if (!ops->ndo_change_proto_down)
6706 		return -EOPNOTSUPP;
6707 	if (!netif_device_present(dev))
6708 		return -ENODEV;
6709 	return ops->ndo_change_proto_down(dev, proto_down);
6710 }
6711 EXPORT_SYMBOL(dev_change_proto_down);
6712 
6713 /**
6714  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
6715  *	@dev: device
6716  *	@fd: new program fd or negative value to clear
6717  *	@flags: xdp-related flags
6718  *
6719  *	Set or clear a bpf program for a device
6720  */
6721 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
6722 {
6723 	const struct net_device_ops *ops = dev->netdev_ops;
6724 	struct bpf_prog *prog = NULL;
6725 	struct netdev_xdp xdp;
6726 	int err;
6727 
6728 	ASSERT_RTNL();
6729 
6730 	if (!ops->ndo_xdp)
6731 		return -EOPNOTSUPP;
6732 	if (fd >= 0) {
6733 		if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6734 			memset(&xdp, 0, sizeof(xdp));
6735 			xdp.command = XDP_QUERY_PROG;
6736 
6737 			err = ops->ndo_xdp(dev, &xdp);
6738 			if (err < 0)
6739 				return err;
6740 			if (xdp.prog_attached)
6741 				return -EBUSY;
6742 		}
6743 
6744 		prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6745 		if (IS_ERR(prog))
6746 			return PTR_ERR(prog);
6747 	}
6748 
6749 	memset(&xdp, 0, sizeof(xdp));
6750 	xdp.command = XDP_SETUP_PROG;
6751 	xdp.prog = prog;
6752 
6753 	err = ops->ndo_xdp(dev, &xdp);
6754 	if (err < 0 && prog)
6755 		bpf_prog_put(prog);
6756 
6757 	return err;
6758 }
6759 EXPORT_SYMBOL(dev_change_xdp_fd);
6760 
6761 /**
6762  *	dev_new_index	-	allocate an ifindex
6763  *	@net: the applicable net namespace
6764  *
6765  *	Returns a suitable unique value for a new device interface
6766  *	number.  The caller must hold the rtnl semaphore or the
6767  *	dev_base_lock to be sure it remains unique.
6768  */
6769 static int dev_new_index(struct net *net)
6770 {
6771 	int ifindex = net->ifindex;
6772 
6773 	for (;;) {
6774 		if (++ifindex <= 0)
6775 			ifindex = 1;
6776 		if (!__dev_get_by_index(net, ifindex))
6777 			return net->ifindex = ifindex;
6778 	}
6779 }
6780 
6781 /* Delayed registration/unregisteration */
6782 static LIST_HEAD(net_todo_list);
6783 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6784 
6785 static void net_set_todo(struct net_device *dev)
6786 {
6787 	list_add_tail(&dev->todo_list, &net_todo_list);
6788 	dev_net(dev)->dev_unreg_count++;
6789 }
6790 
6791 static void rollback_registered_many(struct list_head *head)
6792 {
6793 	struct net_device *dev, *tmp;
6794 	LIST_HEAD(close_head);
6795 
6796 	BUG_ON(dev_boot_phase);
6797 	ASSERT_RTNL();
6798 
6799 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6800 		/* Some devices call without registering
6801 		 * for initialization unwind. Remove those
6802 		 * devices and proceed with the remaining.
6803 		 */
6804 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6805 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6806 				 dev->name, dev);
6807 
6808 			WARN_ON(1);
6809 			list_del(&dev->unreg_list);
6810 			continue;
6811 		}
6812 		dev->dismantle = true;
6813 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6814 	}
6815 
6816 	/* If device is running, close it first. */
6817 	list_for_each_entry(dev, head, unreg_list)
6818 		list_add_tail(&dev->close_list, &close_head);
6819 	dev_close_many(&close_head, true);
6820 
6821 	list_for_each_entry(dev, head, unreg_list) {
6822 		/* And unlink it from device chain. */
6823 		unlist_netdevice(dev);
6824 
6825 		dev->reg_state = NETREG_UNREGISTERING;
6826 	}
6827 	flush_all_backlogs();
6828 
6829 	synchronize_net();
6830 
6831 	list_for_each_entry(dev, head, unreg_list) {
6832 		struct sk_buff *skb = NULL;
6833 
6834 		/* Shutdown queueing discipline. */
6835 		dev_shutdown(dev);
6836 
6837 
6838 		/* Notify protocols, that we are about to destroy
6839 		 * this device. They should clean all the things.
6840 		 */
6841 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6842 
6843 		if (!dev->rtnl_link_ops ||
6844 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6845 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6846 						     GFP_KERNEL);
6847 
6848 		/*
6849 		 *	Flush the unicast and multicast chains
6850 		 */
6851 		dev_uc_flush(dev);
6852 		dev_mc_flush(dev);
6853 
6854 		if (dev->netdev_ops->ndo_uninit)
6855 			dev->netdev_ops->ndo_uninit(dev);
6856 
6857 		if (skb)
6858 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6859 
6860 		/* Notifier chain MUST detach us all upper devices. */
6861 		WARN_ON(netdev_has_any_upper_dev(dev));
6862 		WARN_ON(netdev_has_any_lower_dev(dev));
6863 
6864 		/* Remove entries from kobject tree */
6865 		netdev_unregister_kobject(dev);
6866 #ifdef CONFIG_XPS
6867 		/* Remove XPS queueing entries */
6868 		netif_reset_xps_queues_gt(dev, 0);
6869 #endif
6870 	}
6871 
6872 	synchronize_net();
6873 
6874 	list_for_each_entry(dev, head, unreg_list)
6875 		dev_put(dev);
6876 }
6877 
6878 static void rollback_registered(struct net_device *dev)
6879 {
6880 	LIST_HEAD(single);
6881 
6882 	list_add(&dev->unreg_list, &single);
6883 	rollback_registered_many(&single);
6884 	list_del(&single);
6885 }
6886 
6887 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6888 	struct net_device *upper, netdev_features_t features)
6889 {
6890 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6891 	netdev_features_t feature;
6892 	int feature_bit;
6893 
6894 	for_each_netdev_feature(&upper_disables, feature_bit) {
6895 		feature = __NETIF_F_BIT(feature_bit);
6896 		if (!(upper->wanted_features & feature)
6897 		    && (features & feature)) {
6898 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6899 				   &feature, upper->name);
6900 			features &= ~feature;
6901 		}
6902 	}
6903 
6904 	return features;
6905 }
6906 
6907 static void netdev_sync_lower_features(struct net_device *upper,
6908 	struct net_device *lower, netdev_features_t features)
6909 {
6910 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6911 	netdev_features_t feature;
6912 	int feature_bit;
6913 
6914 	for_each_netdev_feature(&upper_disables, feature_bit) {
6915 		feature = __NETIF_F_BIT(feature_bit);
6916 		if (!(features & feature) && (lower->features & feature)) {
6917 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6918 				   &feature, lower->name);
6919 			lower->wanted_features &= ~feature;
6920 			netdev_update_features(lower);
6921 
6922 			if (unlikely(lower->features & feature))
6923 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6924 					    &feature, lower->name);
6925 		}
6926 	}
6927 }
6928 
6929 static netdev_features_t netdev_fix_features(struct net_device *dev,
6930 	netdev_features_t features)
6931 {
6932 	/* Fix illegal checksum combinations */
6933 	if ((features & NETIF_F_HW_CSUM) &&
6934 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6935 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6936 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6937 	}
6938 
6939 	/* TSO requires that SG is present as well. */
6940 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6941 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6942 		features &= ~NETIF_F_ALL_TSO;
6943 	}
6944 
6945 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6946 					!(features & NETIF_F_IP_CSUM)) {
6947 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6948 		features &= ~NETIF_F_TSO;
6949 		features &= ~NETIF_F_TSO_ECN;
6950 	}
6951 
6952 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6953 					 !(features & NETIF_F_IPV6_CSUM)) {
6954 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6955 		features &= ~NETIF_F_TSO6;
6956 	}
6957 
6958 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6959 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6960 		features &= ~NETIF_F_TSO_MANGLEID;
6961 
6962 	/* TSO ECN requires that TSO is present as well. */
6963 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6964 		features &= ~NETIF_F_TSO_ECN;
6965 
6966 	/* Software GSO depends on SG. */
6967 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6968 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6969 		features &= ~NETIF_F_GSO;
6970 	}
6971 
6972 	/* UFO needs SG and checksumming */
6973 	if (features & NETIF_F_UFO) {
6974 		/* maybe split UFO into V4 and V6? */
6975 		if (!(features & NETIF_F_HW_CSUM) &&
6976 		    ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6977 		     (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6978 			netdev_dbg(dev,
6979 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6980 			features &= ~NETIF_F_UFO;
6981 		}
6982 
6983 		if (!(features & NETIF_F_SG)) {
6984 			netdev_dbg(dev,
6985 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6986 			features &= ~NETIF_F_UFO;
6987 		}
6988 	}
6989 
6990 	/* GSO partial features require GSO partial be set */
6991 	if ((features & dev->gso_partial_features) &&
6992 	    !(features & NETIF_F_GSO_PARTIAL)) {
6993 		netdev_dbg(dev,
6994 			   "Dropping partially supported GSO features since no GSO partial.\n");
6995 		features &= ~dev->gso_partial_features;
6996 	}
6997 
6998 	return features;
6999 }
7000 
7001 int __netdev_update_features(struct net_device *dev)
7002 {
7003 	struct net_device *upper, *lower;
7004 	netdev_features_t features;
7005 	struct list_head *iter;
7006 	int err = -1;
7007 
7008 	ASSERT_RTNL();
7009 
7010 	features = netdev_get_wanted_features(dev);
7011 
7012 	if (dev->netdev_ops->ndo_fix_features)
7013 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7014 
7015 	/* driver might be less strict about feature dependencies */
7016 	features = netdev_fix_features(dev, features);
7017 
7018 	/* some features can't be enabled if they're off an an upper device */
7019 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7020 		features = netdev_sync_upper_features(dev, upper, features);
7021 
7022 	if (dev->features == features)
7023 		goto sync_lower;
7024 
7025 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7026 		&dev->features, &features);
7027 
7028 	if (dev->netdev_ops->ndo_set_features)
7029 		err = dev->netdev_ops->ndo_set_features(dev, features);
7030 	else
7031 		err = 0;
7032 
7033 	if (unlikely(err < 0)) {
7034 		netdev_err(dev,
7035 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7036 			err, &features, &dev->features);
7037 		/* return non-0 since some features might have changed and
7038 		 * it's better to fire a spurious notification than miss it
7039 		 */
7040 		return -1;
7041 	}
7042 
7043 sync_lower:
7044 	/* some features must be disabled on lower devices when disabled
7045 	 * on an upper device (think: bonding master or bridge)
7046 	 */
7047 	netdev_for_each_lower_dev(dev, lower, iter)
7048 		netdev_sync_lower_features(dev, lower, features);
7049 
7050 	if (!err)
7051 		dev->features = features;
7052 
7053 	return err < 0 ? 0 : 1;
7054 }
7055 
7056 /**
7057  *	netdev_update_features - recalculate device features
7058  *	@dev: the device to check
7059  *
7060  *	Recalculate dev->features set and send notifications if it
7061  *	has changed. Should be called after driver or hardware dependent
7062  *	conditions might have changed that influence the features.
7063  */
7064 void netdev_update_features(struct net_device *dev)
7065 {
7066 	if (__netdev_update_features(dev))
7067 		netdev_features_change(dev);
7068 }
7069 EXPORT_SYMBOL(netdev_update_features);
7070 
7071 /**
7072  *	netdev_change_features - recalculate device features
7073  *	@dev: the device to check
7074  *
7075  *	Recalculate dev->features set and send notifications even
7076  *	if they have not changed. Should be called instead of
7077  *	netdev_update_features() if also dev->vlan_features might
7078  *	have changed to allow the changes to be propagated to stacked
7079  *	VLAN devices.
7080  */
7081 void netdev_change_features(struct net_device *dev)
7082 {
7083 	__netdev_update_features(dev);
7084 	netdev_features_change(dev);
7085 }
7086 EXPORT_SYMBOL(netdev_change_features);
7087 
7088 /**
7089  *	netif_stacked_transfer_operstate -	transfer operstate
7090  *	@rootdev: the root or lower level device to transfer state from
7091  *	@dev: the device to transfer operstate to
7092  *
7093  *	Transfer operational state from root to device. This is normally
7094  *	called when a stacking relationship exists between the root
7095  *	device and the device(a leaf device).
7096  */
7097 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7098 					struct net_device *dev)
7099 {
7100 	if (rootdev->operstate == IF_OPER_DORMANT)
7101 		netif_dormant_on(dev);
7102 	else
7103 		netif_dormant_off(dev);
7104 
7105 	if (netif_carrier_ok(rootdev)) {
7106 		if (!netif_carrier_ok(dev))
7107 			netif_carrier_on(dev);
7108 	} else {
7109 		if (netif_carrier_ok(dev))
7110 			netif_carrier_off(dev);
7111 	}
7112 }
7113 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7114 
7115 #ifdef CONFIG_SYSFS
7116 static int netif_alloc_rx_queues(struct net_device *dev)
7117 {
7118 	unsigned int i, count = dev->num_rx_queues;
7119 	struct netdev_rx_queue *rx;
7120 	size_t sz = count * sizeof(*rx);
7121 
7122 	BUG_ON(count < 1);
7123 
7124 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7125 	if (!rx) {
7126 		rx = vzalloc(sz);
7127 		if (!rx)
7128 			return -ENOMEM;
7129 	}
7130 	dev->_rx = rx;
7131 
7132 	for (i = 0; i < count; i++)
7133 		rx[i].dev = dev;
7134 	return 0;
7135 }
7136 #endif
7137 
7138 static void netdev_init_one_queue(struct net_device *dev,
7139 				  struct netdev_queue *queue, void *_unused)
7140 {
7141 	/* Initialize queue lock */
7142 	spin_lock_init(&queue->_xmit_lock);
7143 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7144 	queue->xmit_lock_owner = -1;
7145 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7146 	queue->dev = dev;
7147 #ifdef CONFIG_BQL
7148 	dql_init(&queue->dql, HZ);
7149 #endif
7150 }
7151 
7152 static void netif_free_tx_queues(struct net_device *dev)
7153 {
7154 	kvfree(dev->_tx);
7155 }
7156 
7157 static int netif_alloc_netdev_queues(struct net_device *dev)
7158 {
7159 	unsigned int count = dev->num_tx_queues;
7160 	struct netdev_queue *tx;
7161 	size_t sz = count * sizeof(*tx);
7162 
7163 	if (count < 1 || count > 0xffff)
7164 		return -EINVAL;
7165 
7166 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7167 	if (!tx) {
7168 		tx = vzalloc(sz);
7169 		if (!tx)
7170 			return -ENOMEM;
7171 	}
7172 	dev->_tx = tx;
7173 
7174 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7175 	spin_lock_init(&dev->tx_global_lock);
7176 
7177 	return 0;
7178 }
7179 
7180 void netif_tx_stop_all_queues(struct net_device *dev)
7181 {
7182 	unsigned int i;
7183 
7184 	for (i = 0; i < dev->num_tx_queues; i++) {
7185 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7186 
7187 		netif_tx_stop_queue(txq);
7188 	}
7189 }
7190 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7191 
7192 /**
7193  *	register_netdevice	- register a network device
7194  *	@dev: device to register
7195  *
7196  *	Take a completed network device structure and add it to the kernel
7197  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7198  *	chain. 0 is returned on success. A negative errno code is returned
7199  *	on a failure to set up the device, or if the name is a duplicate.
7200  *
7201  *	Callers must hold the rtnl semaphore. You may want
7202  *	register_netdev() instead of this.
7203  *
7204  *	BUGS:
7205  *	The locking appears insufficient to guarantee two parallel registers
7206  *	will not get the same name.
7207  */
7208 
7209 int register_netdevice(struct net_device *dev)
7210 {
7211 	int ret;
7212 	struct net *net = dev_net(dev);
7213 
7214 	BUG_ON(dev_boot_phase);
7215 	ASSERT_RTNL();
7216 
7217 	might_sleep();
7218 
7219 	/* When net_device's are persistent, this will be fatal. */
7220 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7221 	BUG_ON(!net);
7222 
7223 	spin_lock_init(&dev->addr_list_lock);
7224 	netdev_set_addr_lockdep_class(dev);
7225 
7226 	ret = dev_get_valid_name(net, dev, dev->name);
7227 	if (ret < 0)
7228 		goto out;
7229 
7230 	/* Init, if this function is available */
7231 	if (dev->netdev_ops->ndo_init) {
7232 		ret = dev->netdev_ops->ndo_init(dev);
7233 		if (ret) {
7234 			if (ret > 0)
7235 				ret = -EIO;
7236 			goto out;
7237 		}
7238 	}
7239 
7240 	if (((dev->hw_features | dev->features) &
7241 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7242 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7243 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7244 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7245 		ret = -EINVAL;
7246 		goto err_uninit;
7247 	}
7248 
7249 	ret = -EBUSY;
7250 	if (!dev->ifindex)
7251 		dev->ifindex = dev_new_index(net);
7252 	else if (__dev_get_by_index(net, dev->ifindex))
7253 		goto err_uninit;
7254 
7255 	/* Transfer changeable features to wanted_features and enable
7256 	 * software offloads (GSO and GRO).
7257 	 */
7258 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7259 	dev->features |= NETIF_F_SOFT_FEATURES;
7260 	dev->wanted_features = dev->features & dev->hw_features;
7261 
7262 	if (!(dev->flags & IFF_LOOPBACK))
7263 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7264 
7265 	/* If IPv4 TCP segmentation offload is supported we should also
7266 	 * allow the device to enable segmenting the frame with the option
7267 	 * of ignoring a static IP ID value.  This doesn't enable the
7268 	 * feature itself but allows the user to enable it later.
7269 	 */
7270 	if (dev->hw_features & NETIF_F_TSO)
7271 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7272 	if (dev->vlan_features & NETIF_F_TSO)
7273 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7274 	if (dev->mpls_features & NETIF_F_TSO)
7275 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7276 	if (dev->hw_enc_features & NETIF_F_TSO)
7277 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7278 
7279 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7280 	 */
7281 	dev->vlan_features |= NETIF_F_HIGHDMA;
7282 
7283 	/* Make NETIF_F_SG inheritable to tunnel devices.
7284 	 */
7285 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7286 
7287 	/* Make NETIF_F_SG inheritable to MPLS.
7288 	 */
7289 	dev->mpls_features |= NETIF_F_SG;
7290 
7291 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7292 	ret = notifier_to_errno(ret);
7293 	if (ret)
7294 		goto err_uninit;
7295 
7296 	ret = netdev_register_kobject(dev);
7297 	if (ret)
7298 		goto err_uninit;
7299 	dev->reg_state = NETREG_REGISTERED;
7300 
7301 	__netdev_update_features(dev);
7302 
7303 	/*
7304 	 *	Default initial state at registry is that the
7305 	 *	device is present.
7306 	 */
7307 
7308 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7309 
7310 	linkwatch_init_dev(dev);
7311 
7312 	dev_init_scheduler(dev);
7313 	dev_hold(dev);
7314 	list_netdevice(dev);
7315 	add_device_randomness(dev->dev_addr, dev->addr_len);
7316 
7317 	/* If the device has permanent device address, driver should
7318 	 * set dev_addr and also addr_assign_type should be set to
7319 	 * NET_ADDR_PERM (default value).
7320 	 */
7321 	if (dev->addr_assign_type == NET_ADDR_PERM)
7322 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7323 
7324 	/* Notify protocols, that a new device appeared. */
7325 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7326 	ret = notifier_to_errno(ret);
7327 	if (ret) {
7328 		rollback_registered(dev);
7329 		dev->reg_state = NETREG_UNREGISTERED;
7330 	}
7331 	/*
7332 	 *	Prevent userspace races by waiting until the network
7333 	 *	device is fully setup before sending notifications.
7334 	 */
7335 	if (!dev->rtnl_link_ops ||
7336 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7337 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7338 
7339 out:
7340 	return ret;
7341 
7342 err_uninit:
7343 	if (dev->netdev_ops->ndo_uninit)
7344 		dev->netdev_ops->ndo_uninit(dev);
7345 	goto out;
7346 }
7347 EXPORT_SYMBOL(register_netdevice);
7348 
7349 /**
7350  *	init_dummy_netdev	- init a dummy network device for NAPI
7351  *	@dev: device to init
7352  *
7353  *	This takes a network device structure and initialize the minimum
7354  *	amount of fields so it can be used to schedule NAPI polls without
7355  *	registering a full blown interface. This is to be used by drivers
7356  *	that need to tie several hardware interfaces to a single NAPI
7357  *	poll scheduler due to HW limitations.
7358  */
7359 int init_dummy_netdev(struct net_device *dev)
7360 {
7361 	/* Clear everything. Note we don't initialize spinlocks
7362 	 * are they aren't supposed to be taken by any of the
7363 	 * NAPI code and this dummy netdev is supposed to be
7364 	 * only ever used for NAPI polls
7365 	 */
7366 	memset(dev, 0, sizeof(struct net_device));
7367 
7368 	/* make sure we BUG if trying to hit standard
7369 	 * register/unregister code path
7370 	 */
7371 	dev->reg_state = NETREG_DUMMY;
7372 
7373 	/* NAPI wants this */
7374 	INIT_LIST_HEAD(&dev->napi_list);
7375 
7376 	/* a dummy interface is started by default */
7377 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7378 	set_bit(__LINK_STATE_START, &dev->state);
7379 
7380 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7381 	 * because users of this 'device' dont need to change
7382 	 * its refcount.
7383 	 */
7384 
7385 	return 0;
7386 }
7387 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7388 
7389 
7390 /**
7391  *	register_netdev	- register a network device
7392  *	@dev: device to register
7393  *
7394  *	Take a completed network device structure and add it to the kernel
7395  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7396  *	chain. 0 is returned on success. A negative errno code is returned
7397  *	on a failure to set up the device, or if the name is a duplicate.
7398  *
7399  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7400  *	and expands the device name if you passed a format string to
7401  *	alloc_netdev.
7402  */
7403 int register_netdev(struct net_device *dev)
7404 {
7405 	int err;
7406 
7407 	rtnl_lock();
7408 	err = register_netdevice(dev);
7409 	rtnl_unlock();
7410 	return err;
7411 }
7412 EXPORT_SYMBOL(register_netdev);
7413 
7414 int netdev_refcnt_read(const struct net_device *dev)
7415 {
7416 	int i, refcnt = 0;
7417 
7418 	for_each_possible_cpu(i)
7419 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7420 	return refcnt;
7421 }
7422 EXPORT_SYMBOL(netdev_refcnt_read);
7423 
7424 /**
7425  * netdev_wait_allrefs - wait until all references are gone.
7426  * @dev: target net_device
7427  *
7428  * This is called when unregistering network devices.
7429  *
7430  * Any protocol or device that holds a reference should register
7431  * for netdevice notification, and cleanup and put back the
7432  * reference if they receive an UNREGISTER event.
7433  * We can get stuck here if buggy protocols don't correctly
7434  * call dev_put.
7435  */
7436 static void netdev_wait_allrefs(struct net_device *dev)
7437 {
7438 	unsigned long rebroadcast_time, warning_time;
7439 	int refcnt;
7440 
7441 	linkwatch_forget_dev(dev);
7442 
7443 	rebroadcast_time = warning_time = jiffies;
7444 	refcnt = netdev_refcnt_read(dev);
7445 
7446 	while (refcnt != 0) {
7447 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7448 			rtnl_lock();
7449 
7450 			/* Rebroadcast unregister notification */
7451 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7452 
7453 			__rtnl_unlock();
7454 			rcu_barrier();
7455 			rtnl_lock();
7456 
7457 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7458 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7459 				     &dev->state)) {
7460 				/* We must not have linkwatch events
7461 				 * pending on unregister. If this
7462 				 * happens, we simply run the queue
7463 				 * unscheduled, resulting in a noop
7464 				 * for this device.
7465 				 */
7466 				linkwatch_run_queue();
7467 			}
7468 
7469 			__rtnl_unlock();
7470 
7471 			rebroadcast_time = jiffies;
7472 		}
7473 
7474 		msleep(250);
7475 
7476 		refcnt = netdev_refcnt_read(dev);
7477 
7478 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7479 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7480 				 dev->name, refcnt);
7481 			warning_time = jiffies;
7482 		}
7483 	}
7484 }
7485 
7486 /* The sequence is:
7487  *
7488  *	rtnl_lock();
7489  *	...
7490  *	register_netdevice(x1);
7491  *	register_netdevice(x2);
7492  *	...
7493  *	unregister_netdevice(y1);
7494  *	unregister_netdevice(y2);
7495  *      ...
7496  *	rtnl_unlock();
7497  *	free_netdev(y1);
7498  *	free_netdev(y2);
7499  *
7500  * We are invoked by rtnl_unlock().
7501  * This allows us to deal with problems:
7502  * 1) We can delete sysfs objects which invoke hotplug
7503  *    without deadlocking with linkwatch via keventd.
7504  * 2) Since we run with the RTNL semaphore not held, we can sleep
7505  *    safely in order to wait for the netdev refcnt to drop to zero.
7506  *
7507  * We must not return until all unregister events added during
7508  * the interval the lock was held have been completed.
7509  */
7510 void netdev_run_todo(void)
7511 {
7512 	struct list_head list;
7513 
7514 	/* Snapshot list, allow later requests */
7515 	list_replace_init(&net_todo_list, &list);
7516 
7517 	__rtnl_unlock();
7518 
7519 
7520 	/* Wait for rcu callbacks to finish before next phase */
7521 	if (!list_empty(&list))
7522 		rcu_barrier();
7523 
7524 	while (!list_empty(&list)) {
7525 		struct net_device *dev
7526 			= list_first_entry(&list, struct net_device, todo_list);
7527 		list_del(&dev->todo_list);
7528 
7529 		rtnl_lock();
7530 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7531 		__rtnl_unlock();
7532 
7533 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7534 			pr_err("network todo '%s' but state %d\n",
7535 			       dev->name, dev->reg_state);
7536 			dump_stack();
7537 			continue;
7538 		}
7539 
7540 		dev->reg_state = NETREG_UNREGISTERED;
7541 
7542 		netdev_wait_allrefs(dev);
7543 
7544 		/* paranoia */
7545 		BUG_ON(netdev_refcnt_read(dev));
7546 		BUG_ON(!list_empty(&dev->ptype_all));
7547 		BUG_ON(!list_empty(&dev->ptype_specific));
7548 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7549 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7550 		WARN_ON(dev->dn_ptr);
7551 
7552 		if (dev->destructor)
7553 			dev->destructor(dev);
7554 
7555 		/* Report a network device has been unregistered */
7556 		rtnl_lock();
7557 		dev_net(dev)->dev_unreg_count--;
7558 		__rtnl_unlock();
7559 		wake_up(&netdev_unregistering_wq);
7560 
7561 		/* Free network device */
7562 		kobject_put(&dev->dev.kobj);
7563 	}
7564 }
7565 
7566 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7567  * all the same fields in the same order as net_device_stats, with only
7568  * the type differing, but rtnl_link_stats64 may have additional fields
7569  * at the end for newer counters.
7570  */
7571 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7572 			     const struct net_device_stats *netdev_stats)
7573 {
7574 #if BITS_PER_LONG == 64
7575 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7576 	memcpy(stats64, netdev_stats, sizeof(*stats64));
7577 	/* zero out counters that only exist in rtnl_link_stats64 */
7578 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7579 	       sizeof(*stats64) - sizeof(*netdev_stats));
7580 #else
7581 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7582 	const unsigned long *src = (const unsigned long *)netdev_stats;
7583 	u64 *dst = (u64 *)stats64;
7584 
7585 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7586 	for (i = 0; i < n; i++)
7587 		dst[i] = src[i];
7588 	/* zero out counters that only exist in rtnl_link_stats64 */
7589 	memset((char *)stats64 + n * sizeof(u64), 0,
7590 	       sizeof(*stats64) - n * sizeof(u64));
7591 #endif
7592 }
7593 EXPORT_SYMBOL(netdev_stats_to_stats64);
7594 
7595 /**
7596  *	dev_get_stats	- get network device statistics
7597  *	@dev: device to get statistics from
7598  *	@storage: place to store stats
7599  *
7600  *	Get network statistics from device. Return @storage.
7601  *	The device driver may provide its own method by setting
7602  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7603  *	otherwise the internal statistics structure is used.
7604  */
7605 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7606 					struct rtnl_link_stats64 *storage)
7607 {
7608 	const struct net_device_ops *ops = dev->netdev_ops;
7609 
7610 	if (ops->ndo_get_stats64) {
7611 		memset(storage, 0, sizeof(*storage));
7612 		ops->ndo_get_stats64(dev, storage);
7613 	} else if (ops->ndo_get_stats) {
7614 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7615 	} else {
7616 		netdev_stats_to_stats64(storage, &dev->stats);
7617 	}
7618 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7619 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7620 	storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7621 	return storage;
7622 }
7623 EXPORT_SYMBOL(dev_get_stats);
7624 
7625 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7626 {
7627 	struct netdev_queue *queue = dev_ingress_queue(dev);
7628 
7629 #ifdef CONFIG_NET_CLS_ACT
7630 	if (queue)
7631 		return queue;
7632 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7633 	if (!queue)
7634 		return NULL;
7635 	netdev_init_one_queue(dev, queue, NULL);
7636 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7637 	queue->qdisc_sleeping = &noop_qdisc;
7638 	rcu_assign_pointer(dev->ingress_queue, queue);
7639 #endif
7640 	return queue;
7641 }
7642 
7643 static const struct ethtool_ops default_ethtool_ops;
7644 
7645 void netdev_set_default_ethtool_ops(struct net_device *dev,
7646 				    const struct ethtool_ops *ops)
7647 {
7648 	if (dev->ethtool_ops == &default_ethtool_ops)
7649 		dev->ethtool_ops = ops;
7650 }
7651 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7652 
7653 void netdev_freemem(struct net_device *dev)
7654 {
7655 	char *addr = (char *)dev - dev->padded;
7656 
7657 	kvfree(addr);
7658 }
7659 
7660 /**
7661  * alloc_netdev_mqs - allocate network device
7662  * @sizeof_priv: size of private data to allocate space for
7663  * @name: device name format string
7664  * @name_assign_type: origin of device name
7665  * @setup: callback to initialize device
7666  * @txqs: the number of TX subqueues to allocate
7667  * @rxqs: the number of RX subqueues to allocate
7668  *
7669  * Allocates a struct net_device with private data area for driver use
7670  * and performs basic initialization.  Also allocates subqueue structs
7671  * for each queue on the device.
7672  */
7673 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7674 		unsigned char name_assign_type,
7675 		void (*setup)(struct net_device *),
7676 		unsigned int txqs, unsigned int rxqs)
7677 {
7678 	struct net_device *dev;
7679 	size_t alloc_size;
7680 	struct net_device *p;
7681 
7682 	BUG_ON(strlen(name) >= sizeof(dev->name));
7683 
7684 	if (txqs < 1) {
7685 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7686 		return NULL;
7687 	}
7688 
7689 #ifdef CONFIG_SYSFS
7690 	if (rxqs < 1) {
7691 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7692 		return NULL;
7693 	}
7694 #endif
7695 
7696 	alloc_size = sizeof(struct net_device);
7697 	if (sizeof_priv) {
7698 		/* ensure 32-byte alignment of private area */
7699 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7700 		alloc_size += sizeof_priv;
7701 	}
7702 	/* ensure 32-byte alignment of whole construct */
7703 	alloc_size += NETDEV_ALIGN - 1;
7704 
7705 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7706 	if (!p)
7707 		p = vzalloc(alloc_size);
7708 	if (!p)
7709 		return NULL;
7710 
7711 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
7712 	dev->padded = (char *)dev - (char *)p;
7713 
7714 	dev->pcpu_refcnt = alloc_percpu(int);
7715 	if (!dev->pcpu_refcnt)
7716 		goto free_dev;
7717 
7718 	if (dev_addr_init(dev))
7719 		goto free_pcpu;
7720 
7721 	dev_mc_init(dev);
7722 	dev_uc_init(dev);
7723 
7724 	dev_net_set(dev, &init_net);
7725 
7726 	dev->gso_max_size = GSO_MAX_SIZE;
7727 	dev->gso_max_segs = GSO_MAX_SEGS;
7728 
7729 	INIT_LIST_HEAD(&dev->napi_list);
7730 	INIT_LIST_HEAD(&dev->unreg_list);
7731 	INIT_LIST_HEAD(&dev->close_list);
7732 	INIT_LIST_HEAD(&dev->link_watch_list);
7733 	INIT_LIST_HEAD(&dev->adj_list.upper);
7734 	INIT_LIST_HEAD(&dev->adj_list.lower);
7735 	INIT_LIST_HEAD(&dev->ptype_all);
7736 	INIT_LIST_HEAD(&dev->ptype_specific);
7737 #ifdef CONFIG_NET_SCHED
7738 	hash_init(dev->qdisc_hash);
7739 #endif
7740 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7741 	setup(dev);
7742 
7743 	if (!dev->tx_queue_len) {
7744 		dev->priv_flags |= IFF_NO_QUEUE;
7745 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7746 	}
7747 
7748 	dev->num_tx_queues = txqs;
7749 	dev->real_num_tx_queues = txqs;
7750 	if (netif_alloc_netdev_queues(dev))
7751 		goto free_all;
7752 
7753 #ifdef CONFIG_SYSFS
7754 	dev->num_rx_queues = rxqs;
7755 	dev->real_num_rx_queues = rxqs;
7756 	if (netif_alloc_rx_queues(dev))
7757 		goto free_all;
7758 #endif
7759 
7760 	strcpy(dev->name, name);
7761 	dev->name_assign_type = name_assign_type;
7762 	dev->group = INIT_NETDEV_GROUP;
7763 	if (!dev->ethtool_ops)
7764 		dev->ethtool_ops = &default_ethtool_ops;
7765 
7766 	nf_hook_ingress_init(dev);
7767 
7768 	return dev;
7769 
7770 free_all:
7771 	free_netdev(dev);
7772 	return NULL;
7773 
7774 free_pcpu:
7775 	free_percpu(dev->pcpu_refcnt);
7776 free_dev:
7777 	netdev_freemem(dev);
7778 	return NULL;
7779 }
7780 EXPORT_SYMBOL(alloc_netdev_mqs);
7781 
7782 /**
7783  * free_netdev - free network device
7784  * @dev: device
7785  *
7786  * This function does the last stage of destroying an allocated device
7787  * interface. The reference to the device object is released. If this
7788  * is the last reference then it will be freed.Must be called in process
7789  * context.
7790  */
7791 void free_netdev(struct net_device *dev)
7792 {
7793 	struct napi_struct *p, *n;
7794 
7795 	might_sleep();
7796 	netif_free_tx_queues(dev);
7797 #ifdef CONFIG_SYSFS
7798 	kvfree(dev->_rx);
7799 #endif
7800 
7801 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7802 
7803 	/* Flush device addresses */
7804 	dev_addr_flush(dev);
7805 
7806 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7807 		netif_napi_del(p);
7808 
7809 	free_percpu(dev->pcpu_refcnt);
7810 	dev->pcpu_refcnt = NULL;
7811 
7812 	/*  Compatibility with error handling in drivers */
7813 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7814 		netdev_freemem(dev);
7815 		return;
7816 	}
7817 
7818 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7819 	dev->reg_state = NETREG_RELEASED;
7820 
7821 	/* will free via device release */
7822 	put_device(&dev->dev);
7823 }
7824 EXPORT_SYMBOL(free_netdev);
7825 
7826 /**
7827  *	synchronize_net -  Synchronize with packet receive processing
7828  *
7829  *	Wait for packets currently being received to be done.
7830  *	Does not block later packets from starting.
7831  */
7832 void synchronize_net(void)
7833 {
7834 	might_sleep();
7835 	if (rtnl_is_locked())
7836 		synchronize_rcu_expedited();
7837 	else
7838 		synchronize_rcu();
7839 }
7840 EXPORT_SYMBOL(synchronize_net);
7841 
7842 /**
7843  *	unregister_netdevice_queue - remove device from the kernel
7844  *	@dev: device
7845  *	@head: list
7846  *
7847  *	This function shuts down a device interface and removes it
7848  *	from the kernel tables.
7849  *	If head not NULL, device is queued to be unregistered later.
7850  *
7851  *	Callers must hold the rtnl semaphore.  You may want
7852  *	unregister_netdev() instead of this.
7853  */
7854 
7855 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7856 {
7857 	ASSERT_RTNL();
7858 
7859 	if (head) {
7860 		list_move_tail(&dev->unreg_list, head);
7861 	} else {
7862 		rollback_registered(dev);
7863 		/* Finish processing unregister after unlock */
7864 		net_set_todo(dev);
7865 	}
7866 }
7867 EXPORT_SYMBOL(unregister_netdevice_queue);
7868 
7869 /**
7870  *	unregister_netdevice_many - unregister many devices
7871  *	@head: list of devices
7872  *
7873  *  Note: As most callers use a stack allocated list_head,
7874  *  we force a list_del() to make sure stack wont be corrupted later.
7875  */
7876 void unregister_netdevice_many(struct list_head *head)
7877 {
7878 	struct net_device *dev;
7879 
7880 	if (!list_empty(head)) {
7881 		rollback_registered_many(head);
7882 		list_for_each_entry(dev, head, unreg_list)
7883 			net_set_todo(dev);
7884 		list_del(head);
7885 	}
7886 }
7887 EXPORT_SYMBOL(unregister_netdevice_many);
7888 
7889 /**
7890  *	unregister_netdev - remove device from the kernel
7891  *	@dev: device
7892  *
7893  *	This function shuts down a device interface and removes it
7894  *	from the kernel tables.
7895  *
7896  *	This is just a wrapper for unregister_netdevice that takes
7897  *	the rtnl semaphore.  In general you want to use this and not
7898  *	unregister_netdevice.
7899  */
7900 void unregister_netdev(struct net_device *dev)
7901 {
7902 	rtnl_lock();
7903 	unregister_netdevice(dev);
7904 	rtnl_unlock();
7905 }
7906 EXPORT_SYMBOL(unregister_netdev);
7907 
7908 /**
7909  *	dev_change_net_namespace - move device to different nethost namespace
7910  *	@dev: device
7911  *	@net: network namespace
7912  *	@pat: If not NULL name pattern to try if the current device name
7913  *	      is already taken in the destination network namespace.
7914  *
7915  *	This function shuts down a device interface and moves it
7916  *	to a new network namespace. On success 0 is returned, on
7917  *	a failure a netagive errno code is returned.
7918  *
7919  *	Callers must hold the rtnl semaphore.
7920  */
7921 
7922 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7923 {
7924 	int err;
7925 
7926 	ASSERT_RTNL();
7927 
7928 	/* Don't allow namespace local devices to be moved. */
7929 	err = -EINVAL;
7930 	if (dev->features & NETIF_F_NETNS_LOCAL)
7931 		goto out;
7932 
7933 	/* Ensure the device has been registrered */
7934 	if (dev->reg_state != NETREG_REGISTERED)
7935 		goto out;
7936 
7937 	/* Get out if there is nothing todo */
7938 	err = 0;
7939 	if (net_eq(dev_net(dev), net))
7940 		goto out;
7941 
7942 	/* Pick the destination device name, and ensure
7943 	 * we can use it in the destination network namespace.
7944 	 */
7945 	err = -EEXIST;
7946 	if (__dev_get_by_name(net, dev->name)) {
7947 		/* We get here if we can't use the current device name */
7948 		if (!pat)
7949 			goto out;
7950 		if (dev_get_valid_name(net, dev, pat) < 0)
7951 			goto out;
7952 	}
7953 
7954 	/*
7955 	 * And now a mini version of register_netdevice unregister_netdevice.
7956 	 */
7957 
7958 	/* If device is running close it first. */
7959 	dev_close(dev);
7960 
7961 	/* And unlink it from device chain */
7962 	err = -ENODEV;
7963 	unlist_netdevice(dev);
7964 
7965 	synchronize_net();
7966 
7967 	/* Shutdown queueing discipline. */
7968 	dev_shutdown(dev);
7969 
7970 	/* Notify protocols, that we are about to destroy
7971 	 * this device. They should clean all the things.
7972 	 *
7973 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
7974 	 * This is wanted because this way 8021q and macvlan know
7975 	 * the device is just moving and can keep their slaves up.
7976 	 */
7977 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7978 	rcu_barrier();
7979 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7980 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7981 
7982 	/*
7983 	 *	Flush the unicast and multicast chains
7984 	 */
7985 	dev_uc_flush(dev);
7986 	dev_mc_flush(dev);
7987 
7988 	/* Send a netdev-removed uevent to the old namespace */
7989 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7990 	netdev_adjacent_del_links(dev);
7991 
7992 	/* Actually switch the network namespace */
7993 	dev_net_set(dev, net);
7994 
7995 	/* If there is an ifindex conflict assign a new one */
7996 	if (__dev_get_by_index(net, dev->ifindex))
7997 		dev->ifindex = dev_new_index(net);
7998 
7999 	/* Send a netdev-add uevent to the new namespace */
8000 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8001 	netdev_adjacent_add_links(dev);
8002 
8003 	/* Fixup kobjects */
8004 	err = device_rename(&dev->dev, dev->name);
8005 	WARN_ON(err);
8006 
8007 	/* Add the device back in the hashes */
8008 	list_netdevice(dev);
8009 
8010 	/* Notify protocols, that a new device appeared. */
8011 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8012 
8013 	/*
8014 	 *	Prevent userspace races by waiting until the network
8015 	 *	device is fully setup before sending notifications.
8016 	 */
8017 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8018 
8019 	synchronize_net();
8020 	err = 0;
8021 out:
8022 	return err;
8023 }
8024 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8025 
8026 static int dev_cpu_dead(unsigned int oldcpu)
8027 {
8028 	struct sk_buff **list_skb;
8029 	struct sk_buff *skb;
8030 	unsigned int cpu;
8031 	struct softnet_data *sd, *oldsd;
8032 
8033 	local_irq_disable();
8034 	cpu = smp_processor_id();
8035 	sd = &per_cpu(softnet_data, cpu);
8036 	oldsd = &per_cpu(softnet_data, oldcpu);
8037 
8038 	/* Find end of our completion_queue. */
8039 	list_skb = &sd->completion_queue;
8040 	while (*list_skb)
8041 		list_skb = &(*list_skb)->next;
8042 	/* Append completion queue from offline CPU. */
8043 	*list_skb = oldsd->completion_queue;
8044 	oldsd->completion_queue = NULL;
8045 
8046 	/* Append output queue from offline CPU. */
8047 	if (oldsd->output_queue) {
8048 		*sd->output_queue_tailp = oldsd->output_queue;
8049 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8050 		oldsd->output_queue = NULL;
8051 		oldsd->output_queue_tailp = &oldsd->output_queue;
8052 	}
8053 	/* Append NAPI poll list from offline CPU, with one exception :
8054 	 * process_backlog() must be called by cpu owning percpu backlog.
8055 	 * We properly handle process_queue & input_pkt_queue later.
8056 	 */
8057 	while (!list_empty(&oldsd->poll_list)) {
8058 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8059 							    struct napi_struct,
8060 							    poll_list);
8061 
8062 		list_del_init(&napi->poll_list);
8063 		if (napi->poll == process_backlog)
8064 			napi->state = 0;
8065 		else
8066 			____napi_schedule(sd, napi);
8067 	}
8068 
8069 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8070 	local_irq_enable();
8071 
8072 	/* Process offline CPU's input_pkt_queue */
8073 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8074 		netif_rx_ni(skb);
8075 		input_queue_head_incr(oldsd);
8076 	}
8077 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8078 		netif_rx_ni(skb);
8079 		input_queue_head_incr(oldsd);
8080 	}
8081 
8082 	return 0;
8083 }
8084 
8085 /**
8086  *	netdev_increment_features - increment feature set by one
8087  *	@all: current feature set
8088  *	@one: new feature set
8089  *	@mask: mask feature set
8090  *
8091  *	Computes a new feature set after adding a device with feature set
8092  *	@one to the master device with current feature set @all.  Will not
8093  *	enable anything that is off in @mask. Returns the new feature set.
8094  */
8095 netdev_features_t netdev_increment_features(netdev_features_t all,
8096 	netdev_features_t one, netdev_features_t mask)
8097 {
8098 	if (mask & NETIF_F_HW_CSUM)
8099 		mask |= NETIF_F_CSUM_MASK;
8100 	mask |= NETIF_F_VLAN_CHALLENGED;
8101 
8102 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8103 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8104 
8105 	/* If one device supports hw checksumming, set for all. */
8106 	if (all & NETIF_F_HW_CSUM)
8107 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8108 
8109 	return all;
8110 }
8111 EXPORT_SYMBOL(netdev_increment_features);
8112 
8113 static struct hlist_head * __net_init netdev_create_hash(void)
8114 {
8115 	int i;
8116 	struct hlist_head *hash;
8117 
8118 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8119 	if (hash != NULL)
8120 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8121 			INIT_HLIST_HEAD(&hash[i]);
8122 
8123 	return hash;
8124 }
8125 
8126 /* Initialize per network namespace state */
8127 static int __net_init netdev_init(struct net *net)
8128 {
8129 	if (net != &init_net)
8130 		INIT_LIST_HEAD(&net->dev_base_head);
8131 
8132 	net->dev_name_head = netdev_create_hash();
8133 	if (net->dev_name_head == NULL)
8134 		goto err_name;
8135 
8136 	net->dev_index_head = netdev_create_hash();
8137 	if (net->dev_index_head == NULL)
8138 		goto err_idx;
8139 
8140 	return 0;
8141 
8142 err_idx:
8143 	kfree(net->dev_name_head);
8144 err_name:
8145 	return -ENOMEM;
8146 }
8147 
8148 /**
8149  *	netdev_drivername - network driver for the device
8150  *	@dev: network device
8151  *
8152  *	Determine network driver for device.
8153  */
8154 const char *netdev_drivername(const struct net_device *dev)
8155 {
8156 	const struct device_driver *driver;
8157 	const struct device *parent;
8158 	const char *empty = "";
8159 
8160 	parent = dev->dev.parent;
8161 	if (!parent)
8162 		return empty;
8163 
8164 	driver = parent->driver;
8165 	if (driver && driver->name)
8166 		return driver->name;
8167 	return empty;
8168 }
8169 
8170 static void __netdev_printk(const char *level, const struct net_device *dev,
8171 			    struct va_format *vaf)
8172 {
8173 	if (dev && dev->dev.parent) {
8174 		dev_printk_emit(level[1] - '0',
8175 				dev->dev.parent,
8176 				"%s %s %s%s: %pV",
8177 				dev_driver_string(dev->dev.parent),
8178 				dev_name(dev->dev.parent),
8179 				netdev_name(dev), netdev_reg_state(dev),
8180 				vaf);
8181 	} else if (dev) {
8182 		printk("%s%s%s: %pV",
8183 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8184 	} else {
8185 		printk("%s(NULL net_device): %pV", level, vaf);
8186 	}
8187 }
8188 
8189 void netdev_printk(const char *level, const struct net_device *dev,
8190 		   const char *format, ...)
8191 {
8192 	struct va_format vaf;
8193 	va_list args;
8194 
8195 	va_start(args, format);
8196 
8197 	vaf.fmt = format;
8198 	vaf.va = &args;
8199 
8200 	__netdev_printk(level, dev, &vaf);
8201 
8202 	va_end(args);
8203 }
8204 EXPORT_SYMBOL(netdev_printk);
8205 
8206 #define define_netdev_printk_level(func, level)			\
8207 void func(const struct net_device *dev, const char *fmt, ...)	\
8208 {								\
8209 	struct va_format vaf;					\
8210 	va_list args;						\
8211 								\
8212 	va_start(args, fmt);					\
8213 								\
8214 	vaf.fmt = fmt;						\
8215 	vaf.va = &args;						\
8216 								\
8217 	__netdev_printk(level, dev, &vaf);			\
8218 								\
8219 	va_end(args);						\
8220 }								\
8221 EXPORT_SYMBOL(func);
8222 
8223 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8224 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8225 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8226 define_netdev_printk_level(netdev_err, KERN_ERR);
8227 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8228 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8229 define_netdev_printk_level(netdev_info, KERN_INFO);
8230 
8231 static void __net_exit netdev_exit(struct net *net)
8232 {
8233 	kfree(net->dev_name_head);
8234 	kfree(net->dev_index_head);
8235 }
8236 
8237 static struct pernet_operations __net_initdata netdev_net_ops = {
8238 	.init = netdev_init,
8239 	.exit = netdev_exit,
8240 };
8241 
8242 static void __net_exit default_device_exit(struct net *net)
8243 {
8244 	struct net_device *dev, *aux;
8245 	/*
8246 	 * Push all migratable network devices back to the
8247 	 * initial network namespace
8248 	 */
8249 	rtnl_lock();
8250 	for_each_netdev_safe(net, dev, aux) {
8251 		int err;
8252 		char fb_name[IFNAMSIZ];
8253 
8254 		/* Ignore unmoveable devices (i.e. loopback) */
8255 		if (dev->features & NETIF_F_NETNS_LOCAL)
8256 			continue;
8257 
8258 		/* Leave virtual devices for the generic cleanup */
8259 		if (dev->rtnl_link_ops)
8260 			continue;
8261 
8262 		/* Push remaining network devices to init_net */
8263 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8264 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8265 		if (err) {
8266 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8267 				 __func__, dev->name, err);
8268 			BUG();
8269 		}
8270 	}
8271 	rtnl_unlock();
8272 }
8273 
8274 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8275 {
8276 	/* Return with the rtnl_lock held when there are no network
8277 	 * devices unregistering in any network namespace in net_list.
8278 	 */
8279 	struct net *net;
8280 	bool unregistering;
8281 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8282 
8283 	add_wait_queue(&netdev_unregistering_wq, &wait);
8284 	for (;;) {
8285 		unregistering = false;
8286 		rtnl_lock();
8287 		list_for_each_entry(net, net_list, exit_list) {
8288 			if (net->dev_unreg_count > 0) {
8289 				unregistering = true;
8290 				break;
8291 			}
8292 		}
8293 		if (!unregistering)
8294 			break;
8295 		__rtnl_unlock();
8296 
8297 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8298 	}
8299 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8300 }
8301 
8302 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8303 {
8304 	/* At exit all network devices most be removed from a network
8305 	 * namespace.  Do this in the reverse order of registration.
8306 	 * Do this across as many network namespaces as possible to
8307 	 * improve batching efficiency.
8308 	 */
8309 	struct net_device *dev;
8310 	struct net *net;
8311 	LIST_HEAD(dev_kill_list);
8312 
8313 	/* To prevent network device cleanup code from dereferencing
8314 	 * loopback devices or network devices that have been freed
8315 	 * wait here for all pending unregistrations to complete,
8316 	 * before unregistring the loopback device and allowing the
8317 	 * network namespace be freed.
8318 	 *
8319 	 * The netdev todo list containing all network devices
8320 	 * unregistrations that happen in default_device_exit_batch
8321 	 * will run in the rtnl_unlock() at the end of
8322 	 * default_device_exit_batch.
8323 	 */
8324 	rtnl_lock_unregistering(net_list);
8325 	list_for_each_entry(net, net_list, exit_list) {
8326 		for_each_netdev_reverse(net, dev) {
8327 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8328 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8329 			else
8330 				unregister_netdevice_queue(dev, &dev_kill_list);
8331 		}
8332 	}
8333 	unregister_netdevice_many(&dev_kill_list);
8334 	rtnl_unlock();
8335 }
8336 
8337 static struct pernet_operations __net_initdata default_device_ops = {
8338 	.exit = default_device_exit,
8339 	.exit_batch = default_device_exit_batch,
8340 };
8341 
8342 /*
8343  *	Initialize the DEV module. At boot time this walks the device list and
8344  *	unhooks any devices that fail to initialise (normally hardware not
8345  *	present) and leaves us with a valid list of present and active devices.
8346  *
8347  */
8348 
8349 /*
8350  *       This is called single threaded during boot, so no need
8351  *       to take the rtnl semaphore.
8352  */
8353 static int __init net_dev_init(void)
8354 {
8355 	int i, rc = -ENOMEM;
8356 
8357 	BUG_ON(!dev_boot_phase);
8358 
8359 	if (dev_proc_init())
8360 		goto out;
8361 
8362 	if (netdev_kobject_init())
8363 		goto out;
8364 
8365 	INIT_LIST_HEAD(&ptype_all);
8366 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8367 		INIT_LIST_HEAD(&ptype_base[i]);
8368 
8369 	INIT_LIST_HEAD(&offload_base);
8370 
8371 	if (register_pernet_subsys(&netdev_net_ops))
8372 		goto out;
8373 
8374 	/*
8375 	 *	Initialise the packet receive queues.
8376 	 */
8377 
8378 	for_each_possible_cpu(i) {
8379 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8380 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8381 
8382 		INIT_WORK(flush, flush_backlog);
8383 
8384 		skb_queue_head_init(&sd->input_pkt_queue);
8385 		skb_queue_head_init(&sd->process_queue);
8386 		INIT_LIST_HEAD(&sd->poll_list);
8387 		sd->output_queue_tailp = &sd->output_queue;
8388 #ifdef CONFIG_RPS
8389 		sd->csd.func = rps_trigger_softirq;
8390 		sd->csd.info = sd;
8391 		sd->cpu = i;
8392 #endif
8393 
8394 		sd->backlog.poll = process_backlog;
8395 		sd->backlog.weight = weight_p;
8396 	}
8397 
8398 	dev_boot_phase = 0;
8399 
8400 	/* The loopback device is special if any other network devices
8401 	 * is present in a network namespace the loopback device must
8402 	 * be present. Since we now dynamically allocate and free the
8403 	 * loopback device ensure this invariant is maintained by
8404 	 * keeping the loopback device as the first device on the
8405 	 * list of network devices.  Ensuring the loopback devices
8406 	 * is the first device that appears and the last network device
8407 	 * that disappears.
8408 	 */
8409 	if (register_pernet_device(&loopback_net_ops))
8410 		goto out;
8411 
8412 	if (register_pernet_device(&default_device_ops))
8413 		goto out;
8414 
8415 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8416 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8417 
8418 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8419 				       NULL, dev_cpu_dead);
8420 	WARN_ON(rc < 0);
8421 	dst_subsys_init();
8422 	rc = 0;
8423 out:
8424 	return rc;
8425 }
8426 
8427 subsys_initcall(net_dev_init);
8428