1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <linux/bpf.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <net/busy_poll.h> 101 #include <linux/rtnetlink.h> 102 #include <linux/stat.h> 103 #include <net/dst.h> 104 #include <net/dst_metadata.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/iw_handler.h> 115 #include <asm/current.h> 116 #include <linux/audit.h> 117 #include <linux/dmaengine.h> 118 #include <linux/err.h> 119 #include <linux/ctype.h> 120 #include <linux/if_arp.h> 121 #include <linux/if_vlan.h> 122 #include <linux/ip.h> 123 #include <net/ip.h> 124 #include <net/mpls.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/pci.h> 133 #include <linux/inetdevice.h> 134 #include <linux/cpu_rmap.h> 135 #include <linux/static_key.h> 136 #include <linux/hashtable.h> 137 #include <linux/vmalloc.h> 138 #include <linux/if_macvlan.h> 139 #include <linux/errqueue.h> 140 #include <linux/hrtimer.h> 141 #include <linux/netfilter_ingress.h> 142 #include <linux/sctp.h> 143 #include <linux/crash_dump.h> 144 145 #include "net-sysfs.h" 146 147 /* Instead of increasing this, you should create a hash table. */ 148 #define MAX_GRO_SKBS 8 149 150 /* This should be increased if a protocol with a bigger head is added. */ 151 #define GRO_MAX_HEAD (MAX_HEADER + 128) 152 153 static DEFINE_SPINLOCK(ptype_lock); 154 static DEFINE_SPINLOCK(offload_lock); 155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 156 struct list_head ptype_all __read_mostly; /* Taps */ 157 static struct list_head offload_base __read_mostly; 158 159 static int netif_rx_internal(struct sk_buff *skb); 160 static int call_netdevice_notifiers_info(unsigned long val, 161 struct net_device *dev, 162 struct netdev_notifier_info *info); 163 164 /* 165 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 166 * semaphore. 167 * 168 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 169 * 170 * Writers must hold the rtnl semaphore while they loop through the 171 * dev_base_head list, and hold dev_base_lock for writing when they do the 172 * actual updates. This allows pure readers to access the list even 173 * while a writer is preparing to update it. 174 * 175 * To put it another way, dev_base_lock is held for writing only to 176 * protect against pure readers; the rtnl semaphore provides the 177 * protection against other writers. 178 * 179 * See, for example usages, register_netdevice() and 180 * unregister_netdevice(), which must be called with the rtnl 181 * semaphore held. 182 */ 183 DEFINE_RWLOCK(dev_base_lock); 184 EXPORT_SYMBOL(dev_base_lock); 185 186 /* protects napi_hash addition/deletion and napi_gen_id */ 187 static DEFINE_SPINLOCK(napi_hash_lock); 188 189 static unsigned int napi_gen_id = NR_CPUS; 190 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 191 192 static seqcount_t devnet_rename_seq; 193 194 static inline void dev_base_seq_inc(struct net *net) 195 { 196 while (++net->dev_base_seq == 0); 197 } 198 199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 200 { 201 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 202 203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 204 } 205 206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 207 { 208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 209 } 210 211 static inline void rps_lock(struct softnet_data *sd) 212 { 213 #ifdef CONFIG_RPS 214 spin_lock(&sd->input_pkt_queue.lock); 215 #endif 216 } 217 218 static inline void rps_unlock(struct softnet_data *sd) 219 { 220 #ifdef CONFIG_RPS 221 spin_unlock(&sd->input_pkt_queue.lock); 222 #endif 223 } 224 225 /* Device list insertion */ 226 static void list_netdevice(struct net_device *dev) 227 { 228 struct net *net = dev_net(dev); 229 230 ASSERT_RTNL(); 231 232 write_lock_bh(&dev_base_lock); 233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 235 hlist_add_head_rcu(&dev->index_hlist, 236 dev_index_hash(net, dev->ifindex)); 237 write_unlock_bh(&dev_base_lock); 238 239 dev_base_seq_inc(net); 240 } 241 242 /* Device list removal 243 * caller must respect a RCU grace period before freeing/reusing dev 244 */ 245 static void unlist_netdevice(struct net_device *dev) 246 { 247 ASSERT_RTNL(); 248 249 /* Unlink dev from the device chain */ 250 write_lock_bh(&dev_base_lock); 251 list_del_rcu(&dev->dev_list); 252 hlist_del_rcu(&dev->name_hlist); 253 hlist_del_rcu(&dev->index_hlist); 254 write_unlock_bh(&dev_base_lock); 255 256 dev_base_seq_inc(dev_net(dev)); 257 } 258 259 /* 260 * Our notifier list 261 */ 262 263 static RAW_NOTIFIER_HEAD(netdev_chain); 264 265 /* 266 * Device drivers call our routines to queue packets here. We empty the 267 * queue in the local softnet handler. 268 */ 269 270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 271 EXPORT_PER_CPU_SYMBOL(softnet_data); 272 273 #ifdef CONFIG_LOCKDEP 274 /* 275 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 276 * according to dev->type 277 */ 278 static const unsigned short netdev_lock_type[] = 279 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 280 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 281 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 282 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 283 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 284 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 285 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 286 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 287 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 288 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 289 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 290 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 291 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 292 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 293 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 294 295 static const char *const netdev_lock_name[] = 296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 308 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 309 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 310 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 311 312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 314 315 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 316 { 317 int i; 318 319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 320 if (netdev_lock_type[i] == dev_type) 321 return i; 322 /* the last key is used by default */ 323 return ARRAY_SIZE(netdev_lock_type) - 1; 324 } 325 326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 327 unsigned short dev_type) 328 { 329 int i; 330 331 i = netdev_lock_pos(dev_type); 332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 333 netdev_lock_name[i]); 334 } 335 336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 337 { 338 int i; 339 340 i = netdev_lock_pos(dev->type); 341 lockdep_set_class_and_name(&dev->addr_list_lock, 342 &netdev_addr_lock_key[i], 343 netdev_lock_name[i]); 344 } 345 #else 346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 347 unsigned short dev_type) 348 { 349 } 350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 351 { 352 } 353 #endif 354 355 /******************************************************************************* 356 357 Protocol management and registration routines 358 359 *******************************************************************************/ 360 361 /* 362 * Add a protocol ID to the list. Now that the input handler is 363 * smarter we can dispense with all the messy stuff that used to be 364 * here. 365 * 366 * BEWARE!!! Protocol handlers, mangling input packets, 367 * MUST BE last in hash buckets and checking protocol handlers 368 * MUST start from promiscuous ptype_all chain in net_bh. 369 * It is true now, do not change it. 370 * Explanation follows: if protocol handler, mangling packet, will 371 * be the first on list, it is not able to sense, that packet 372 * is cloned and should be copied-on-write, so that it will 373 * change it and subsequent readers will get broken packet. 374 * --ANK (980803) 375 */ 376 377 static inline struct list_head *ptype_head(const struct packet_type *pt) 378 { 379 if (pt->type == htons(ETH_P_ALL)) 380 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 381 else 382 return pt->dev ? &pt->dev->ptype_specific : 383 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 384 } 385 386 /** 387 * dev_add_pack - add packet handler 388 * @pt: packet type declaration 389 * 390 * Add a protocol handler to the networking stack. The passed &packet_type 391 * is linked into kernel lists and may not be freed until it has been 392 * removed from the kernel lists. 393 * 394 * This call does not sleep therefore it can not 395 * guarantee all CPU's that are in middle of receiving packets 396 * will see the new packet type (until the next received packet). 397 */ 398 399 void dev_add_pack(struct packet_type *pt) 400 { 401 struct list_head *head = ptype_head(pt); 402 403 spin_lock(&ptype_lock); 404 list_add_rcu(&pt->list, head); 405 spin_unlock(&ptype_lock); 406 } 407 EXPORT_SYMBOL(dev_add_pack); 408 409 /** 410 * __dev_remove_pack - remove packet handler 411 * @pt: packet type declaration 412 * 413 * Remove a protocol handler that was previously added to the kernel 414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 415 * from the kernel lists and can be freed or reused once this function 416 * returns. 417 * 418 * The packet type might still be in use by receivers 419 * and must not be freed until after all the CPU's have gone 420 * through a quiescent state. 421 */ 422 void __dev_remove_pack(struct packet_type *pt) 423 { 424 struct list_head *head = ptype_head(pt); 425 struct packet_type *pt1; 426 427 spin_lock(&ptype_lock); 428 429 list_for_each_entry(pt1, head, list) { 430 if (pt == pt1) { 431 list_del_rcu(&pt->list); 432 goto out; 433 } 434 } 435 436 pr_warn("dev_remove_pack: %p not found\n", pt); 437 out: 438 spin_unlock(&ptype_lock); 439 } 440 EXPORT_SYMBOL(__dev_remove_pack); 441 442 /** 443 * dev_remove_pack - remove packet handler 444 * @pt: packet type declaration 445 * 446 * Remove a protocol handler that was previously added to the kernel 447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 448 * from the kernel lists and can be freed or reused once this function 449 * returns. 450 * 451 * This call sleeps to guarantee that no CPU is looking at the packet 452 * type after return. 453 */ 454 void dev_remove_pack(struct packet_type *pt) 455 { 456 __dev_remove_pack(pt); 457 458 synchronize_net(); 459 } 460 EXPORT_SYMBOL(dev_remove_pack); 461 462 463 /** 464 * dev_add_offload - register offload handlers 465 * @po: protocol offload declaration 466 * 467 * Add protocol offload handlers to the networking stack. The passed 468 * &proto_offload is linked into kernel lists and may not be freed until 469 * it has been removed from the kernel lists. 470 * 471 * This call does not sleep therefore it can not 472 * guarantee all CPU's that are in middle of receiving packets 473 * will see the new offload handlers (until the next received packet). 474 */ 475 void dev_add_offload(struct packet_offload *po) 476 { 477 struct packet_offload *elem; 478 479 spin_lock(&offload_lock); 480 list_for_each_entry(elem, &offload_base, list) { 481 if (po->priority < elem->priority) 482 break; 483 } 484 list_add_rcu(&po->list, elem->list.prev); 485 spin_unlock(&offload_lock); 486 } 487 EXPORT_SYMBOL(dev_add_offload); 488 489 /** 490 * __dev_remove_offload - remove offload handler 491 * @po: packet offload declaration 492 * 493 * Remove a protocol offload handler that was previously added to the 494 * kernel offload handlers by dev_add_offload(). The passed &offload_type 495 * is removed from the kernel lists and can be freed or reused once this 496 * function returns. 497 * 498 * The packet type might still be in use by receivers 499 * and must not be freed until after all the CPU's have gone 500 * through a quiescent state. 501 */ 502 static void __dev_remove_offload(struct packet_offload *po) 503 { 504 struct list_head *head = &offload_base; 505 struct packet_offload *po1; 506 507 spin_lock(&offload_lock); 508 509 list_for_each_entry(po1, head, list) { 510 if (po == po1) { 511 list_del_rcu(&po->list); 512 goto out; 513 } 514 } 515 516 pr_warn("dev_remove_offload: %p not found\n", po); 517 out: 518 spin_unlock(&offload_lock); 519 } 520 521 /** 522 * dev_remove_offload - remove packet offload handler 523 * @po: packet offload declaration 524 * 525 * Remove a packet offload handler that was previously added to the kernel 526 * offload handlers by dev_add_offload(). The passed &offload_type is 527 * removed from the kernel lists and can be freed or reused once this 528 * function returns. 529 * 530 * This call sleeps to guarantee that no CPU is looking at the packet 531 * type after return. 532 */ 533 void dev_remove_offload(struct packet_offload *po) 534 { 535 __dev_remove_offload(po); 536 537 synchronize_net(); 538 } 539 EXPORT_SYMBOL(dev_remove_offload); 540 541 /****************************************************************************** 542 543 Device Boot-time Settings Routines 544 545 *******************************************************************************/ 546 547 /* Boot time configuration table */ 548 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 549 550 /** 551 * netdev_boot_setup_add - add new setup entry 552 * @name: name of the device 553 * @map: configured settings for the device 554 * 555 * Adds new setup entry to the dev_boot_setup list. The function 556 * returns 0 on error and 1 on success. This is a generic routine to 557 * all netdevices. 558 */ 559 static int netdev_boot_setup_add(char *name, struct ifmap *map) 560 { 561 struct netdev_boot_setup *s; 562 int i; 563 564 s = dev_boot_setup; 565 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 566 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 567 memset(s[i].name, 0, sizeof(s[i].name)); 568 strlcpy(s[i].name, name, IFNAMSIZ); 569 memcpy(&s[i].map, map, sizeof(s[i].map)); 570 break; 571 } 572 } 573 574 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 575 } 576 577 /** 578 * netdev_boot_setup_check - check boot time settings 579 * @dev: the netdevice 580 * 581 * Check boot time settings for the device. 582 * The found settings are set for the device to be used 583 * later in the device probing. 584 * Returns 0 if no settings found, 1 if they are. 585 */ 586 int netdev_boot_setup_check(struct net_device *dev) 587 { 588 struct netdev_boot_setup *s = dev_boot_setup; 589 int i; 590 591 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 592 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 593 !strcmp(dev->name, s[i].name)) { 594 dev->irq = s[i].map.irq; 595 dev->base_addr = s[i].map.base_addr; 596 dev->mem_start = s[i].map.mem_start; 597 dev->mem_end = s[i].map.mem_end; 598 return 1; 599 } 600 } 601 return 0; 602 } 603 EXPORT_SYMBOL(netdev_boot_setup_check); 604 605 606 /** 607 * netdev_boot_base - get address from boot time settings 608 * @prefix: prefix for network device 609 * @unit: id for network device 610 * 611 * Check boot time settings for the base address of device. 612 * The found settings are set for the device to be used 613 * later in the device probing. 614 * Returns 0 if no settings found. 615 */ 616 unsigned long netdev_boot_base(const char *prefix, int unit) 617 { 618 const struct netdev_boot_setup *s = dev_boot_setup; 619 char name[IFNAMSIZ]; 620 int i; 621 622 sprintf(name, "%s%d", prefix, unit); 623 624 /* 625 * If device already registered then return base of 1 626 * to indicate not to probe for this interface 627 */ 628 if (__dev_get_by_name(&init_net, name)) 629 return 1; 630 631 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 632 if (!strcmp(name, s[i].name)) 633 return s[i].map.base_addr; 634 return 0; 635 } 636 637 /* 638 * Saves at boot time configured settings for any netdevice. 639 */ 640 int __init netdev_boot_setup(char *str) 641 { 642 int ints[5]; 643 struct ifmap map; 644 645 str = get_options(str, ARRAY_SIZE(ints), ints); 646 if (!str || !*str) 647 return 0; 648 649 /* Save settings */ 650 memset(&map, 0, sizeof(map)); 651 if (ints[0] > 0) 652 map.irq = ints[1]; 653 if (ints[0] > 1) 654 map.base_addr = ints[2]; 655 if (ints[0] > 2) 656 map.mem_start = ints[3]; 657 if (ints[0] > 3) 658 map.mem_end = ints[4]; 659 660 /* Add new entry to the list */ 661 return netdev_boot_setup_add(str, &map); 662 } 663 664 __setup("netdev=", netdev_boot_setup); 665 666 /******************************************************************************* 667 668 Device Interface Subroutines 669 670 *******************************************************************************/ 671 672 /** 673 * dev_get_iflink - get 'iflink' value of a interface 674 * @dev: targeted interface 675 * 676 * Indicates the ifindex the interface is linked to. 677 * Physical interfaces have the same 'ifindex' and 'iflink' values. 678 */ 679 680 int dev_get_iflink(const struct net_device *dev) 681 { 682 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 683 return dev->netdev_ops->ndo_get_iflink(dev); 684 685 return dev->ifindex; 686 } 687 EXPORT_SYMBOL(dev_get_iflink); 688 689 /** 690 * dev_fill_metadata_dst - Retrieve tunnel egress information. 691 * @dev: targeted interface 692 * @skb: The packet. 693 * 694 * For better visibility of tunnel traffic OVS needs to retrieve 695 * egress tunnel information for a packet. Following API allows 696 * user to get this info. 697 */ 698 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 699 { 700 struct ip_tunnel_info *info; 701 702 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 703 return -EINVAL; 704 705 info = skb_tunnel_info_unclone(skb); 706 if (!info) 707 return -ENOMEM; 708 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 709 return -EINVAL; 710 711 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 712 } 713 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 714 715 /** 716 * __dev_get_by_name - find a device by its name 717 * @net: the applicable net namespace 718 * @name: name to find 719 * 720 * Find an interface by name. Must be called under RTNL semaphore 721 * or @dev_base_lock. If the name is found a pointer to the device 722 * is returned. If the name is not found then %NULL is returned. The 723 * reference counters are not incremented so the caller must be 724 * careful with locks. 725 */ 726 727 struct net_device *__dev_get_by_name(struct net *net, const char *name) 728 { 729 struct net_device *dev; 730 struct hlist_head *head = dev_name_hash(net, name); 731 732 hlist_for_each_entry(dev, head, name_hlist) 733 if (!strncmp(dev->name, name, IFNAMSIZ)) 734 return dev; 735 736 return NULL; 737 } 738 EXPORT_SYMBOL(__dev_get_by_name); 739 740 /** 741 * dev_get_by_name_rcu - find a device by its name 742 * @net: the applicable net namespace 743 * @name: name to find 744 * 745 * Find an interface by name. 746 * If the name is found a pointer to the device is returned. 747 * If the name is not found then %NULL is returned. 748 * The reference counters are not incremented so the caller must be 749 * careful with locks. The caller must hold RCU lock. 750 */ 751 752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 753 { 754 struct net_device *dev; 755 struct hlist_head *head = dev_name_hash(net, name); 756 757 hlist_for_each_entry_rcu(dev, head, name_hlist) 758 if (!strncmp(dev->name, name, IFNAMSIZ)) 759 return dev; 760 761 return NULL; 762 } 763 EXPORT_SYMBOL(dev_get_by_name_rcu); 764 765 /** 766 * dev_get_by_name - find a device by its name 767 * @net: the applicable net namespace 768 * @name: name to find 769 * 770 * Find an interface by name. This can be called from any 771 * context and does its own locking. The returned handle has 772 * the usage count incremented and the caller must use dev_put() to 773 * release it when it is no longer needed. %NULL is returned if no 774 * matching device is found. 775 */ 776 777 struct net_device *dev_get_by_name(struct net *net, const char *name) 778 { 779 struct net_device *dev; 780 781 rcu_read_lock(); 782 dev = dev_get_by_name_rcu(net, name); 783 if (dev) 784 dev_hold(dev); 785 rcu_read_unlock(); 786 return dev; 787 } 788 EXPORT_SYMBOL(dev_get_by_name); 789 790 /** 791 * __dev_get_by_index - find a device by its ifindex 792 * @net: the applicable net namespace 793 * @ifindex: index of device 794 * 795 * Search for an interface by index. Returns %NULL if the device 796 * is not found or a pointer to the device. The device has not 797 * had its reference counter increased so the caller must be careful 798 * about locking. The caller must hold either the RTNL semaphore 799 * or @dev_base_lock. 800 */ 801 802 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 803 { 804 struct net_device *dev; 805 struct hlist_head *head = dev_index_hash(net, ifindex); 806 807 hlist_for_each_entry(dev, head, index_hlist) 808 if (dev->ifindex == ifindex) 809 return dev; 810 811 return NULL; 812 } 813 EXPORT_SYMBOL(__dev_get_by_index); 814 815 /** 816 * dev_get_by_index_rcu - find a device by its ifindex 817 * @net: the applicable net namespace 818 * @ifindex: index of device 819 * 820 * Search for an interface by index. Returns %NULL if the device 821 * is not found or a pointer to the device. The device has not 822 * had its reference counter increased so the caller must be careful 823 * about locking. The caller must hold RCU lock. 824 */ 825 826 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 827 { 828 struct net_device *dev; 829 struct hlist_head *head = dev_index_hash(net, ifindex); 830 831 hlist_for_each_entry_rcu(dev, head, index_hlist) 832 if (dev->ifindex == ifindex) 833 return dev; 834 835 return NULL; 836 } 837 EXPORT_SYMBOL(dev_get_by_index_rcu); 838 839 840 /** 841 * dev_get_by_index - find a device by its ifindex 842 * @net: the applicable net namespace 843 * @ifindex: index of device 844 * 845 * Search for an interface by index. Returns NULL if the device 846 * is not found or a pointer to the device. The device returned has 847 * had a reference added and the pointer is safe until the user calls 848 * dev_put to indicate they have finished with it. 849 */ 850 851 struct net_device *dev_get_by_index(struct net *net, int ifindex) 852 { 853 struct net_device *dev; 854 855 rcu_read_lock(); 856 dev = dev_get_by_index_rcu(net, ifindex); 857 if (dev) 858 dev_hold(dev); 859 rcu_read_unlock(); 860 return dev; 861 } 862 EXPORT_SYMBOL(dev_get_by_index); 863 864 /** 865 * netdev_get_name - get a netdevice name, knowing its ifindex. 866 * @net: network namespace 867 * @name: a pointer to the buffer where the name will be stored. 868 * @ifindex: the ifindex of the interface to get the name from. 869 * 870 * The use of raw_seqcount_begin() and cond_resched() before 871 * retrying is required as we want to give the writers a chance 872 * to complete when CONFIG_PREEMPT is not set. 873 */ 874 int netdev_get_name(struct net *net, char *name, int ifindex) 875 { 876 struct net_device *dev; 877 unsigned int seq; 878 879 retry: 880 seq = raw_seqcount_begin(&devnet_rename_seq); 881 rcu_read_lock(); 882 dev = dev_get_by_index_rcu(net, ifindex); 883 if (!dev) { 884 rcu_read_unlock(); 885 return -ENODEV; 886 } 887 888 strcpy(name, dev->name); 889 rcu_read_unlock(); 890 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 891 cond_resched(); 892 goto retry; 893 } 894 895 return 0; 896 } 897 898 /** 899 * dev_getbyhwaddr_rcu - find a device by its hardware address 900 * @net: the applicable net namespace 901 * @type: media type of device 902 * @ha: hardware address 903 * 904 * Search for an interface by MAC address. Returns NULL if the device 905 * is not found or a pointer to the device. 906 * The caller must hold RCU or RTNL. 907 * The returned device has not had its ref count increased 908 * and the caller must therefore be careful about locking 909 * 910 */ 911 912 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 913 const char *ha) 914 { 915 struct net_device *dev; 916 917 for_each_netdev_rcu(net, dev) 918 if (dev->type == type && 919 !memcmp(dev->dev_addr, ha, dev->addr_len)) 920 return dev; 921 922 return NULL; 923 } 924 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 925 926 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 927 { 928 struct net_device *dev; 929 930 ASSERT_RTNL(); 931 for_each_netdev(net, dev) 932 if (dev->type == type) 933 return dev; 934 935 return NULL; 936 } 937 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 938 939 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 940 { 941 struct net_device *dev, *ret = NULL; 942 943 rcu_read_lock(); 944 for_each_netdev_rcu(net, dev) 945 if (dev->type == type) { 946 dev_hold(dev); 947 ret = dev; 948 break; 949 } 950 rcu_read_unlock(); 951 return ret; 952 } 953 EXPORT_SYMBOL(dev_getfirstbyhwtype); 954 955 /** 956 * __dev_get_by_flags - find any device with given flags 957 * @net: the applicable net namespace 958 * @if_flags: IFF_* values 959 * @mask: bitmask of bits in if_flags to check 960 * 961 * Search for any interface with the given flags. Returns NULL if a device 962 * is not found or a pointer to the device. Must be called inside 963 * rtnl_lock(), and result refcount is unchanged. 964 */ 965 966 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 967 unsigned short mask) 968 { 969 struct net_device *dev, *ret; 970 971 ASSERT_RTNL(); 972 973 ret = NULL; 974 for_each_netdev(net, dev) { 975 if (((dev->flags ^ if_flags) & mask) == 0) { 976 ret = dev; 977 break; 978 } 979 } 980 return ret; 981 } 982 EXPORT_SYMBOL(__dev_get_by_flags); 983 984 /** 985 * dev_valid_name - check if name is okay for network device 986 * @name: name string 987 * 988 * Network device names need to be valid file names to 989 * to allow sysfs to work. We also disallow any kind of 990 * whitespace. 991 */ 992 bool dev_valid_name(const char *name) 993 { 994 if (*name == '\0') 995 return false; 996 if (strlen(name) >= IFNAMSIZ) 997 return false; 998 if (!strcmp(name, ".") || !strcmp(name, "..")) 999 return false; 1000 1001 while (*name) { 1002 if (*name == '/' || *name == ':' || isspace(*name)) 1003 return false; 1004 name++; 1005 } 1006 return true; 1007 } 1008 EXPORT_SYMBOL(dev_valid_name); 1009 1010 /** 1011 * __dev_alloc_name - allocate a name for a device 1012 * @net: network namespace to allocate the device name in 1013 * @name: name format string 1014 * @buf: scratch buffer and result name string 1015 * 1016 * Passed a format string - eg "lt%d" it will try and find a suitable 1017 * id. It scans list of devices to build up a free map, then chooses 1018 * the first empty slot. The caller must hold the dev_base or rtnl lock 1019 * while allocating the name and adding the device in order to avoid 1020 * duplicates. 1021 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1022 * Returns the number of the unit assigned or a negative errno code. 1023 */ 1024 1025 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1026 { 1027 int i = 0; 1028 const char *p; 1029 const int max_netdevices = 8*PAGE_SIZE; 1030 unsigned long *inuse; 1031 struct net_device *d; 1032 1033 p = strnchr(name, IFNAMSIZ-1, '%'); 1034 if (p) { 1035 /* 1036 * Verify the string as this thing may have come from 1037 * the user. There must be either one "%d" and no other "%" 1038 * characters. 1039 */ 1040 if (p[1] != 'd' || strchr(p + 2, '%')) 1041 return -EINVAL; 1042 1043 /* Use one page as a bit array of possible slots */ 1044 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1045 if (!inuse) 1046 return -ENOMEM; 1047 1048 for_each_netdev(net, d) { 1049 if (!sscanf(d->name, name, &i)) 1050 continue; 1051 if (i < 0 || i >= max_netdevices) 1052 continue; 1053 1054 /* avoid cases where sscanf is not exact inverse of printf */ 1055 snprintf(buf, IFNAMSIZ, name, i); 1056 if (!strncmp(buf, d->name, IFNAMSIZ)) 1057 set_bit(i, inuse); 1058 } 1059 1060 i = find_first_zero_bit(inuse, max_netdevices); 1061 free_page((unsigned long) inuse); 1062 } 1063 1064 if (buf != name) 1065 snprintf(buf, IFNAMSIZ, name, i); 1066 if (!__dev_get_by_name(net, buf)) 1067 return i; 1068 1069 /* It is possible to run out of possible slots 1070 * when the name is long and there isn't enough space left 1071 * for the digits, or if all bits are used. 1072 */ 1073 return -ENFILE; 1074 } 1075 1076 /** 1077 * dev_alloc_name - allocate a name for a device 1078 * @dev: device 1079 * @name: name format string 1080 * 1081 * Passed a format string - eg "lt%d" it will try and find a suitable 1082 * id. It scans list of devices to build up a free map, then chooses 1083 * the first empty slot. The caller must hold the dev_base or rtnl lock 1084 * while allocating the name and adding the device in order to avoid 1085 * duplicates. 1086 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1087 * Returns the number of the unit assigned or a negative errno code. 1088 */ 1089 1090 int dev_alloc_name(struct net_device *dev, const char *name) 1091 { 1092 char buf[IFNAMSIZ]; 1093 struct net *net; 1094 int ret; 1095 1096 BUG_ON(!dev_net(dev)); 1097 net = dev_net(dev); 1098 ret = __dev_alloc_name(net, name, buf); 1099 if (ret >= 0) 1100 strlcpy(dev->name, buf, IFNAMSIZ); 1101 return ret; 1102 } 1103 EXPORT_SYMBOL(dev_alloc_name); 1104 1105 static int dev_alloc_name_ns(struct net *net, 1106 struct net_device *dev, 1107 const char *name) 1108 { 1109 char buf[IFNAMSIZ]; 1110 int ret; 1111 1112 ret = __dev_alloc_name(net, name, buf); 1113 if (ret >= 0) 1114 strlcpy(dev->name, buf, IFNAMSIZ); 1115 return ret; 1116 } 1117 1118 static int dev_get_valid_name(struct net *net, 1119 struct net_device *dev, 1120 const char *name) 1121 { 1122 BUG_ON(!net); 1123 1124 if (!dev_valid_name(name)) 1125 return -EINVAL; 1126 1127 if (strchr(name, '%')) 1128 return dev_alloc_name_ns(net, dev, name); 1129 else if (__dev_get_by_name(net, name)) 1130 return -EEXIST; 1131 else if (dev->name != name) 1132 strlcpy(dev->name, name, IFNAMSIZ); 1133 1134 return 0; 1135 } 1136 1137 /** 1138 * dev_change_name - change name of a device 1139 * @dev: device 1140 * @newname: name (or format string) must be at least IFNAMSIZ 1141 * 1142 * Change name of a device, can pass format strings "eth%d". 1143 * for wildcarding. 1144 */ 1145 int dev_change_name(struct net_device *dev, const char *newname) 1146 { 1147 unsigned char old_assign_type; 1148 char oldname[IFNAMSIZ]; 1149 int err = 0; 1150 int ret; 1151 struct net *net; 1152 1153 ASSERT_RTNL(); 1154 BUG_ON(!dev_net(dev)); 1155 1156 net = dev_net(dev); 1157 if (dev->flags & IFF_UP) 1158 return -EBUSY; 1159 1160 write_seqcount_begin(&devnet_rename_seq); 1161 1162 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1163 write_seqcount_end(&devnet_rename_seq); 1164 return 0; 1165 } 1166 1167 memcpy(oldname, dev->name, IFNAMSIZ); 1168 1169 err = dev_get_valid_name(net, dev, newname); 1170 if (err < 0) { 1171 write_seqcount_end(&devnet_rename_seq); 1172 return err; 1173 } 1174 1175 if (oldname[0] && !strchr(oldname, '%')) 1176 netdev_info(dev, "renamed from %s\n", oldname); 1177 1178 old_assign_type = dev->name_assign_type; 1179 dev->name_assign_type = NET_NAME_RENAMED; 1180 1181 rollback: 1182 ret = device_rename(&dev->dev, dev->name); 1183 if (ret) { 1184 memcpy(dev->name, oldname, IFNAMSIZ); 1185 dev->name_assign_type = old_assign_type; 1186 write_seqcount_end(&devnet_rename_seq); 1187 return ret; 1188 } 1189 1190 write_seqcount_end(&devnet_rename_seq); 1191 1192 netdev_adjacent_rename_links(dev, oldname); 1193 1194 write_lock_bh(&dev_base_lock); 1195 hlist_del_rcu(&dev->name_hlist); 1196 write_unlock_bh(&dev_base_lock); 1197 1198 synchronize_rcu(); 1199 1200 write_lock_bh(&dev_base_lock); 1201 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1202 write_unlock_bh(&dev_base_lock); 1203 1204 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1205 ret = notifier_to_errno(ret); 1206 1207 if (ret) { 1208 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1209 if (err >= 0) { 1210 err = ret; 1211 write_seqcount_begin(&devnet_rename_seq); 1212 memcpy(dev->name, oldname, IFNAMSIZ); 1213 memcpy(oldname, newname, IFNAMSIZ); 1214 dev->name_assign_type = old_assign_type; 1215 old_assign_type = NET_NAME_RENAMED; 1216 goto rollback; 1217 } else { 1218 pr_err("%s: name change rollback failed: %d\n", 1219 dev->name, ret); 1220 } 1221 } 1222 1223 return err; 1224 } 1225 1226 /** 1227 * dev_set_alias - change ifalias of a device 1228 * @dev: device 1229 * @alias: name up to IFALIASZ 1230 * @len: limit of bytes to copy from info 1231 * 1232 * Set ifalias for a device, 1233 */ 1234 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1235 { 1236 char *new_ifalias; 1237 1238 ASSERT_RTNL(); 1239 1240 if (len >= IFALIASZ) 1241 return -EINVAL; 1242 1243 if (!len) { 1244 kfree(dev->ifalias); 1245 dev->ifalias = NULL; 1246 return 0; 1247 } 1248 1249 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1250 if (!new_ifalias) 1251 return -ENOMEM; 1252 dev->ifalias = new_ifalias; 1253 1254 strlcpy(dev->ifalias, alias, len+1); 1255 return len; 1256 } 1257 1258 1259 /** 1260 * netdev_features_change - device changes features 1261 * @dev: device to cause notification 1262 * 1263 * Called to indicate a device has changed features. 1264 */ 1265 void netdev_features_change(struct net_device *dev) 1266 { 1267 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1268 } 1269 EXPORT_SYMBOL(netdev_features_change); 1270 1271 /** 1272 * netdev_state_change - device changes state 1273 * @dev: device to cause notification 1274 * 1275 * Called to indicate a device has changed state. This function calls 1276 * the notifier chains for netdev_chain and sends a NEWLINK message 1277 * to the routing socket. 1278 */ 1279 void netdev_state_change(struct net_device *dev) 1280 { 1281 if (dev->flags & IFF_UP) { 1282 struct netdev_notifier_change_info change_info; 1283 1284 change_info.flags_changed = 0; 1285 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1286 &change_info.info); 1287 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1288 } 1289 } 1290 EXPORT_SYMBOL(netdev_state_change); 1291 1292 /** 1293 * netdev_notify_peers - notify network peers about existence of @dev 1294 * @dev: network device 1295 * 1296 * Generate traffic such that interested network peers are aware of 1297 * @dev, such as by generating a gratuitous ARP. This may be used when 1298 * a device wants to inform the rest of the network about some sort of 1299 * reconfiguration such as a failover event or virtual machine 1300 * migration. 1301 */ 1302 void netdev_notify_peers(struct net_device *dev) 1303 { 1304 rtnl_lock(); 1305 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1306 rtnl_unlock(); 1307 } 1308 EXPORT_SYMBOL(netdev_notify_peers); 1309 1310 static int __dev_open(struct net_device *dev) 1311 { 1312 const struct net_device_ops *ops = dev->netdev_ops; 1313 int ret; 1314 1315 ASSERT_RTNL(); 1316 1317 if (!netif_device_present(dev)) 1318 return -ENODEV; 1319 1320 /* Block netpoll from trying to do any rx path servicing. 1321 * If we don't do this there is a chance ndo_poll_controller 1322 * or ndo_poll may be running while we open the device 1323 */ 1324 netpoll_poll_disable(dev); 1325 1326 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1327 ret = notifier_to_errno(ret); 1328 if (ret) 1329 return ret; 1330 1331 set_bit(__LINK_STATE_START, &dev->state); 1332 1333 if (ops->ndo_validate_addr) 1334 ret = ops->ndo_validate_addr(dev); 1335 1336 if (!ret && ops->ndo_open) 1337 ret = ops->ndo_open(dev); 1338 1339 netpoll_poll_enable(dev); 1340 1341 if (ret) 1342 clear_bit(__LINK_STATE_START, &dev->state); 1343 else { 1344 dev->flags |= IFF_UP; 1345 dev_set_rx_mode(dev); 1346 dev_activate(dev); 1347 add_device_randomness(dev->dev_addr, dev->addr_len); 1348 } 1349 1350 return ret; 1351 } 1352 1353 /** 1354 * dev_open - prepare an interface for use. 1355 * @dev: device to open 1356 * 1357 * Takes a device from down to up state. The device's private open 1358 * function is invoked and then the multicast lists are loaded. Finally 1359 * the device is moved into the up state and a %NETDEV_UP message is 1360 * sent to the netdev notifier chain. 1361 * 1362 * Calling this function on an active interface is a nop. On a failure 1363 * a negative errno code is returned. 1364 */ 1365 int dev_open(struct net_device *dev) 1366 { 1367 int ret; 1368 1369 if (dev->flags & IFF_UP) 1370 return 0; 1371 1372 ret = __dev_open(dev); 1373 if (ret < 0) 1374 return ret; 1375 1376 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1377 call_netdevice_notifiers(NETDEV_UP, dev); 1378 1379 return ret; 1380 } 1381 EXPORT_SYMBOL(dev_open); 1382 1383 static int __dev_close_many(struct list_head *head) 1384 { 1385 struct net_device *dev; 1386 1387 ASSERT_RTNL(); 1388 might_sleep(); 1389 1390 list_for_each_entry(dev, head, close_list) { 1391 /* Temporarily disable netpoll until the interface is down */ 1392 netpoll_poll_disable(dev); 1393 1394 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1395 1396 clear_bit(__LINK_STATE_START, &dev->state); 1397 1398 /* Synchronize to scheduled poll. We cannot touch poll list, it 1399 * can be even on different cpu. So just clear netif_running(). 1400 * 1401 * dev->stop() will invoke napi_disable() on all of it's 1402 * napi_struct instances on this device. 1403 */ 1404 smp_mb__after_atomic(); /* Commit netif_running(). */ 1405 } 1406 1407 dev_deactivate_many(head); 1408 1409 list_for_each_entry(dev, head, close_list) { 1410 const struct net_device_ops *ops = dev->netdev_ops; 1411 1412 /* 1413 * Call the device specific close. This cannot fail. 1414 * Only if device is UP 1415 * 1416 * We allow it to be called even after a DETACH hot-plug 1417 * event. 1418 */ 1419 if (ops->ndo_stop) 1420 ops->ndo_stop(dev); 1421 1422 dev->flags &= ~IFF_UP; 1423 netpoll_poll_enable(dev); 1424 } 1425 1426 return 0; 1427 } 1428 1429 static int __dev_close(struct net_device *dev) 1430 { 1431 int retval; 1432 LIST_HEAD(single); 1433 1434 list_add(&dev->close_list, &single); 1435 retval = __dev_close_many(&single); 1436 list_del(&single); 1437 1438 return retval; 1439 } 1440 1441 int dev_close_many(struct list_head *head, bool unlink) 1442 { 1443 struct net_device *dev, *tmp; 1444 1445 /* Remove the devices that don't need to be closed */ 1446 list_for_each_entry_safe(dev, tmp, head, close_list) 1447 if (!(dev->flags & IFF_UP)) 1448 list_del_init(&dev->close_list); 1449 1450 __dev_close_many(head); 1451 1452 list_for_each_entry_safe(dev, tmp, head, close_list) { 1453 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1454 call_netdevice_notifiers(NETDEV_DOWN, dev); 1455 if (unlink) 1456 list_del_init(&dev->close_list); 1457 } 1458 1459 return 0; 1460 } 1461 EXPORT_SYMBOL(dev_close_many); 1462 1463 /** 1464 * dev_close - shutdown an interface. 1465 * @dev: device to shutdown 1466 * 1467 * This function moves an active device into down state. A 1468 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1469 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1470 * chain. 1471 */ 1472 int dev_close(struct net_device *dev) 1473 { 1474 if (dev->flags & IFF_UP) { 1475 LIST_HEAD(single); 1476 1477 list_add(&dev->close_list, &single); 1478 dev_close_many(&single, true); 1479 list_del(&single); 1480 } 1481 return 0; 1482 } 1483 EXPORT_SYMBOL(dev_close); 1484 1485 1486 /** 1487 * dev_disable_lro - disable Large Receive Offload on a device 1488 * @dev: device 1489 * 1490 * Disable Large Receive Offload (LRO) on a net device. Must be 1491 * called under RTNL. This is needed if received packets may be 1492 * forwarded to another interface. 1493 */ 1494 void dev_disable_lro(struct net_device *dev) 1495 { 1496 struct net_device *lower_dev; 1497 struct list_head *iter; 1498 1499 dev->wanted_features &= ~NETIF_F_LRO; 1500 netdev_update_features(dev); 1501 1502 if (unlikely(dev->features & NETIF_F_LRO)) 1503 netdev_WARN(dev, "failed to disable LRO!\n"); 1504 1505 netdev_for_each_lower_dev(dev, lower_dev, iter) 1506 dev_disable_lro(lower_dev); 1507 } 1508 EXPORT_SYMBOL(dev_disable_lro); 1509 1510 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1511 struct net_device *dev) 1512 { 1513 struct netdev_notifier_info info; 1514 1515 netdev_notifier_info_init(&info, dev); 1516 return nb->notifier_call(nb, val, &info); 1517 } 1518 1519 static int dev_boot_phase = 1; 1520 1521 /** 1522 * register_netdevice_notifier - register a network notifier block 1523 * @nb: notifier 1524 * 1525 * Register a notifier to be called when network device events occur. 1526 * The notifier passed is linked into the kernel structures and must 1527 * not be reused until it has been unregistered. A negative errno code 1528 * is returned on a failure. 1529 * 1530 * When registered all registration and up events are replayed 1531 * to the new notifier to allow device to have a race free 1532 * view of the network device list. 1533 */ 1534 1535 int register_netdevice_notifier(struct notifier_block *nb) 1536 { 1537 struct net_device *dev; 1538 struct net_device *last; 1539 struct net *net; 1540 int err; 1541 1542 rtnl_lock(); 1543 err = raw_notifier_chain_register(&netdev_chain, nb); 1544 if (err) 1545 goto unlock; 1546 if (dev_boot_phase) 1547 goto unlock; 1548 for_each_net(net) { 1549 for_each_netdev(net, dev) { 1550 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1551 err = notifier_to_errno(err); 1552 if (err) 1553 goto rollback; 1554 1555 if (!(dev->flags & IFF_UP)) 1556 continue; 1557 1558 call_netdevice_notifier(nb, NETDEV_UP, dev); 1559 } 1560 } 1561 1562 unlock: 1563 rtnl_unlock(); 1564 return err; 1565 1566 rollback: 1567 last = dev; 1568 for_each_net(net) { 1569 for_each_netdev(net, dev) { 1570 if (dev == last) 1571 goto outroll; 1572 1573 if (dev->flags & IFF_UP) { 1574 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1575 dev); 1576 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1577 } 1578 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1579 } 1580 } 1581 1582 outroll: 1583 raw_notifier_chain_unregister(&netdev_chain, nb); 1584 goto unlock; 1585 } 1586 EXPORT_SYMBOL(register_netdevice_notifier); 1587 1588 /** 1589 * unregister_netdevice_notifier - unregister a network notifier block 1590 * @nb: notifier 1591 * 1592 * Unregister a notifier previously registered by 1593 * register_netdevice_notifier(). The notifier is unlinked into the 1594 * kernel structures and may then be reused. A negative errno code 1595 * is returned on a failure. 1596 * 1597 * After unregistering unregister and down device events are synthesized 1598 * for all devices on the device list to the removed notifier to remove 1599 * the need for special case cleanup code. 1600 */ 1601 1602 int unregister_netdevice_notifier(struct notifier_block *nb) 1603 { 1604 struct net_device *dev; 1605 struct net *net; 1606 int err; 1607 1608 rtnl_lock(); 1609 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1610 if (err) 1611 goto unlock; 1612 1613 for_each_net(net) { 1614 for_each_netdev(net, dev) { 1615 if (dev->flags & IFF_UP) { 1616 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1617 dev); 1618 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1619 } 1620 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1621 } 1622 } 1623 unlock: 1624 rtnl_unlock(); 1625 return err; 1626 } 1627 EXPORT_SYMBOL(unregister_netdevice_notifier); 1628 1629 /** 1630 * call_netdevice_notifiers_info - call all network notifier blocks 1631 * @val: value passed unmodified to notifier function 1632 * @dev: net_device pointer passed unmodified to notifier function 1633 * @info: notifier information data 1634 * 1635 * Call all network notifier blocks. Parameters and return value 1636 * are as for raw_notifier_call_chain(). 1637 */ 1638 1639 static int call_netdevice_notifiers_info(unsigned long val, 1640 struct net_device *dev, 1641 struct netdev_notifier_info *info) 1642 { 1643 ASSERT_RTNL(); 1644 netdev_notifier_info_init(info, dev); 1645 return raw_notifier_call_chain(&netdev_chain, val, info); 1646 } 1647 1648 /** 1649 * call_netdevice_notifiers - call all network notifier blocks 1650 * @val: value passed unmodified to notifier function 1651 * @dev: net_device pointer passed unmodified to notifier function 1652 * 1653 * Call all network notifier blocks. Parameters and return value 1654 * are as for raw_notifier_call_chain(). 1655 */ 1656 1657 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1658 { 1659 struct netdev_notifier_info info; 1660 1661 return call_netdevice_notifiers_info(val, dev, &info); 1662 } 1663 EXPORT_SYMBOL(call_netdevice_notifiers); 1664 1665 #ifdef CONFIG_NET_INGRESS 1666 static struct static_key ingress_needed __read_mostly; 1667 1668 void net_inc_ingress_queue(void) 1669 { 1670 static_key_slow_inc(&ingress_needed); 1671 } 1672 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1673 1674 void net_dec_ingress_queue(void) 1675 { 1676 static_key_slow_dec(&ingress_needed); 1677 } 1678 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1679 #endif 1680 1681 #ifdef CONFIG_NET_EGRESS 1682 static struct static_key egress_needed __read_mostly; 1683 1684 void net_inc_egress_queue(void) 1685 { 1686 static_key_slow_inc(&egress_needed); 1687 } 1688 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1689 1690 void net_dec_egress_queue(void) 1691 { 1692 static_key_slow_dec(&egress_needed); 1693 } 1694 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1695 #endif 1696 1697 static struct static_key netstamp_needed __read_mostly; 1698 #ifdef HAVE_JUMP_LABEL 1699 /* We are not allowed to call static_key_slow_dec() from irq context 1700 * If net_disable_timestamp() is called from irq context, defer the 1701 * static_key_slow_dec() calls. 1702 */ 1703 static atomic_t netstamp_needed_deferred; 1704 #endif 1705 1706 void net_enable_timestamp(void) 1707 { 1708 #ifdef HAVE_JUMP_LABEL 1709 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1710 1711 if (deferred) { 1712 while (--deferred) 1713 static_key_slow_dec(&netstamp_needed); 1714 return; 1715 } 1716 #endif 1717 static_key_slow_inc(&netstamp_needed); 1718 } 1719 EXPORT_SYMBOL(net_enable_timestamp); 1720 1721 void net_disable_timestamp(void) 1722 { 1723 #ifdef HAVE_JUMP_LABEL 1724 if (in_interrupt()) { 1725 atomic_inc(&netstamp_needed_deferred); 1726 return; 1727 } 1728 #endif 1729 static_key_slow_dec(&netstamp_needed); 1730 } 1731 EXPORT_SYMBOL(net_disable_timestamp); 1732 1733 static inline void net_timestamp_set(struct sk_buff *skb) 1734 { 1735 skb->tstamp.tv64 = 0; 1736 if (static_key_false(&netstamp_needed)) 1737 __net_timestamp(skb); 1738 } 1739 1740 #define net_timestamp_check(COND, SKB) \ 1741 if (static_key_false(&netstamp_needed)) { \ 1742 if ((COND) && !(SKB)->tstamp.tv64) \ 1743 __net_timestamp(SKB); \ 1744 } \ 1745 1746 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1747 { 1748 unsigned int len; 1749 1750 if (!(dev->flags & IFF_UP)) 1751 return false; 1752 1753 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1754 if (skb->len <= len) 1755 return true; 1756 1757 /* if TSO is enabled, we don't care about the length as the packet 1758 * could be forwarded without being segmented before 1759 */ 1760 if (skb_is_gso(skb)) 1761 return true; 1762 1763 return false; 1764 } 1765 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1766 1767 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1768 { 1769 if (skb_orphan_frags(skb, GFP_ATOMIC) || 1770 unlikely(!is_skb_forwardable(dev, skb))) { 1771 atomic_long_inc(&dev->rx_dropped); 1772 kfree_skb(skb); 1773 return NET_RX_DROP; 1774 } 1775 1776 skb_scrub_packet(skb, true); 1777 skb->priority = 0; 1778 skb->protocol = eth_type_trans(skb, dev); 1779 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1780 1781 return 0; 1782 } 1783 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1784 1785 /** 1786 * dev_forward_skb - loopback an skb to another netif 1787 * 1788 * @dev: destination network device 1789 * @skb: buffer to forward 1790 * 1791 * return values: 1792 * NET_RX_SUCCESS (no congestion) 1793 * NET_RX_DROP (packet was dropped, but freed) 1794 * 1795 * dev_forward_skb can be used for injecting an skb from the 1796 * start_xmit function of one device into the receive queue 1797 * of another device. 1798 * 1799 * The receiving device may be in another namespace, so 1800 * we have to clear all information in the skb that could 1801 * impact namespace isolation. 1802 */ 1803 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1804 { 1805 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1806 } 1807 EXPORT_SYMBOL_GPL(dev_forward_skb); 1808 1809 static inline int deliver_skb(struct sk_buff *skb, 1810 struct packet_type *pt_prev, 1811 struct net_device *orig_dev) 1812 { 1813 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1814 return -ENOMEM; 1815 atomic_inc(&skb->users); 1816 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1817 } 1818 1819 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1820 struct packet_type **pt, 1821 struct net_device *orig_dev, 1822 __be16 type, 1823 struct list_head *ptype_list) 1824 { 1825 struct packet_type *ptype, *pt_prev = *pt; 1826 1827 list_for_each_entry_rcu(ptype, ptype_list, list) { 1828 if (ptype->type != type) 1829 continue; 1830 if (pt_prev) 1831 deliver_skb(skb, pt_prev, orig_dev); 1832 pt_prev = ptype; 1833 } 1834 *pt = pt_prev; 1835 } 1836 1837 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1838 { 1839 if (!ptype->af_packet_priv || !skb->sk) 1840 return false; 1841 1842 if (ptype->id_match) 1843 return ptype->id_match(ptype, skb->sk); 1844 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1845 return true; 1846 1847 return false; 1848 } 1849 1850 /* 1851 * Support routine. Sends outgoing frames to any network 1852 * taps currently in use. 1853 */ 1854 1855 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1856 { 1857 struct packet_type *ptype; 1858 struct sk_buff *skb2 = NULL; 1859 struct packet_type *pt_prev = NULL; 1860 struct list_head *ptype_list = &ptype_all; 1861 1862 rcu_read_lock(); 1863 again: 1864 list_for_each_entry_rcu(ptype, ptype_list, list) { 1865 /* Never send packets back to the socket 1866 * they originated from - MvS (miquels@drinkel.ow.org) 1867 */ 1868 if (skb_loop_sk(ptype, skb)) 1869 continue; 1870 1871 if (pt_prev) { 1872 deliver_skb(skb2, pt_prev, skb->dev); 1873 pt_prev = ptype; 1874 continue; 1875 } 1876 1877 /* need to clone skb, done only once */ 1878 skb2 = skb_clone(skb, GFP_ATOMIC); 1879 if (!skb2) 1880 goto out_unlock; 1881 1882 net_timestamp_set(skb2); 1883 1884 /* skb->nh should be correctly 1885 * set by sender, so that the second statement is 1886 * just protection against buggy protocols. 1887 */ 1888 skb_reset_mac_header(skb2); 1889 1890 if (skb_network_header(skb2) < skb2->data || 1891 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1892 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1893 ntohs(skb2->protocol), 1894 dev->name); 1895 skb_reset_network_header(skb2); 1896 } 1897 1898 skb2->transport_header = skb2->network_header; 1899 skb2->pkt_type = PACKET_OUTGOING; 1900 pt_prev = ptype; 1901 } 1902 1903 if (ptype_list == &ptype_all) { 1904 ptype_list = &dev->ptype_all; 1905 goto again; 1906 } 1907 out_unlock: 1908 if (pt_prev) 1909 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1910 rcu_read_unlock(); 1911 } 1912 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1913 1914 /** 1915 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1916 * @dev: Network device 1917 * @txq: number of queues available 1918 * 1919 * If real_num_tx_queues is changed the tc mappings may no longer be 1920 * valid. To resolve this verify the tc mapping remains valid and if 1921 * not NULL the mapping. With no priorities mapping to this 1922 * offset/count pair it will no longer be used. In the worst case TC0 1923 * is invalid nothing can be done so disable priority mappings. If is 1924 * expected that drivers will fix this mapping if they can before 1925 * calling netif_set_real_num_tx_queues. 1926 */ 1927 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1928 { 1929 int i; 1930 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1931 1932 /* If TC0 is invalidated disable TC mapping */ 1933 if (tc->offset + tc->count > txq) { 1934 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1935 dev->num_tc = 0; 1936 return; 1937 } 1938 1939 /* Invalidated prio to tc mappings set to TC0 */ 1940 for (i = 1; i < TC_BITMASK + 1; i++) { 1941 int q = netdev_get_prio_tc_map(dev, i); 1942 1943 tc = &dev->tc_to_txq[q]; 1944 if (tc->offset + tc->count > txq) { 1945 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1946 i, q); 1947 netdev_set_prio_tc_map(dev, i, 0); 1948 } 1949 } 1950 } 1951 1952 #ifdef CONFIG_XPS 1953 static DEFINE_MUTEX(xps_map_mutex); 1954 #define xmap_dereference(P) \ 1955 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1956 1957 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1958 int cpu, u16 index) 1959 { 1960 struct xps_map *map = NULL; 1961 int pos; 1962 1963 if (dev_maps) 1964 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1965 1966 for (pos = 0; map && pos < map->len; pos++) { 1967 if (map->queues[pos] == index) { 1968 if (map->len > 1) { 1969 map->queues[pos] = map->queues[--map->len]; 1970 } else { 1971 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1972 kfree_rcu(map, rcu); 1973 map = NULL; 1974 } 1975 break; 1976 } 1977 } 1978 1979 return map; 1980 } 1981 1982 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1983 { 1984 struct xps_dev_maps *dev_maps; 1985 int cpu, i; 1986 bool active = false; 1987 1988 mutex_lock(&xps_map_mutex); 1989 dev_maps = xmap_dereference(dev->xps_maps); 1990 1991 if (!dev_maps) 1992 goto out_no_maps; 1993 1994 for_each_possible_cpu(cpu) { 1995 for (i = index; i < dev->num_tx_queues; i++) { 1996 if (!remove_xps_queue(dev_maps, cpu, i)) 1997 break; 1998 } 1999 if (i == dev->num_tx_queues) 2000 active = true; 2001 } 2002 2003 if (!active) { 2004 RCU_INIT_POINTER(dev->xps_maps, NULL); 2005 kfree_rcu(dev_maps, rcu); 2006 } 2007 2008 for (i = index; i < dev->num_tx_queues; i++) 2009 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2010 NUMA_NO_NODE); 2011 2012 out_no_maps: 2013 mutex_unlock(&xps_map_mutex); 2014 } 2015 2016 static struct xps_map *expand_xps_map(struct xps_map *map, 2017 int cpu, u16 index) 2018 { 2019 struct xps_map *new_map; 2020 int alloc_len = XPS_MIN_MAP_ALLOC; 2021 int i, pos; 2022 2023 for (pos = 0; map && pos < map->len; pos++) { 2024 if (map->queues[pos] != index) 2025 continue; 2026 return map; 2027 } 2028 2029 /* Need to add queue to this CPU's existing map */ 2030 if (map) { 2031 if (pos < map->alloc_len) 2032 return map; 2033 2034 alloc_len = map->alloc_len * 2; 2035 } 2036 2037 /* Need to allocate new map to store queue on this CPU's map */ 2038 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2039 cpu_to_node(cpu)); 2040 if (!new_map) 2041 return NULL; 2042 2043 for (i = 0; i < pos; i++) 2044 new_map->queues[i] = map->queues[i]; 2045 new_map->alloc_len = alloc_len; 2046 new_map->len = pos; 2047 2048 return new_map; 2049 } 2050 2051 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2052 u16 index) 2053 { 2054 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2055 struct xps_map *map, *new_map; 2056 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 2057 int cpu, numa_node_id = -2; 2058 bool active = false; 2059 2060 mutex_lock(&xps_map_mutex); 2061 2062 dev_maps = xmap_dereference(dev->xps_maps); 2063 2064 /* allocate memory for queue storage */ 2065 for_each_online_cpu(cpu) { 2066 if (!cpumask_test_cpu(cpu, mask)) 2067 continue; 2068 2069 if (!new_dev_maps) 2070 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2071 if (!new_dev_maps) { 2072 mutex_unlock(&xps_map_mutex); 2073 return -ENOMEM; 2074 } 2075 2076 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2077 NULL; 2078 2079 map = expand_xps_map(map, cpu, index); 2080 if (!map) 2081 goto error; 2082 2083 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2084 } 2085 2086 if (!new_dev_maps) 2087 goto out_no_new_maps; 2088 2089 for_each_possible_cpu(cpu) { 2090 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2091 /* add queue to CPU maps */ 2092 int pos = 0; 2093 2094 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2095 while ((pos < map->len) && (map->queues[pos] != index)) 2096 pos++; 2097 2098 if (pos == map->len) 2099 map->queues[map->len++] = index; 2100 #ifdef CONFIG_NUMA 2101 if (numa_node_id == -2) 2102 numa_node_id = cpu_to_node(cpu); 2103 else if (numa_node_id != cpu_to_node(cpu)) 2104 numa_node_id = -1; 2105 #endif 2106 } else if (dev_maps) { 2107 /* fill in the new device map from the old device map */ 2108 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2109 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2110 } 2111 2112 } 2113 2114 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2115 2116 /* Cleanup old maps */ 2117 if (dev_maps) { 2118 for_each_possible_cpu(cpu) { 2119 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2120 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2121 if (map && map != new_map) 2122 kfree_rcu(map, rcu); 2123 } 2124 2125 kfree_rcu(dev_maps, rcu); 2126 } 2127 2128 dev_maps = new_dev_maps; 2129 active = true; 2130 2131 out_no_new_maps: 2132 /* update Tx queue numa node */ 2133 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2134 (numa_node_id >= 0) ? numa_node_id : 2135 NUMA_NO_NODE); 2136 2137 if (!dev_maps) 2138 goto out_no_maps; 2139 2140 /* removes queue from unused CPUs */ 2141 for_each_possible_cpu(cpu) { 2142 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2143 continue; 2144 2145 if (remove_xps_queue(dev_maps, cpu, index)) 2146 active = true; 2147 } 2148 2149 /* free map if not active */ 2150 if (!active) { 2151 RCU_INIT_POINTER(dev->xps_maps, NULL); 2152 kfree_rcu(dev_maps, rcu); 2153 } 2154 2155 out_no_maps: 2156 mutex_unlock(&xps_map_mutex); 2157 2158 return 0; 2159 error: 2160 /* remove any maps that we added */ 2161 for_each_possible_cpu(cpu) { 2162 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2163 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2164 NULL; 2165 if (new_map && new_map != map) 2166 kfree(new_map); 2167 } 2168 2169 mutex_unlock(&xps_map_mutex); 2170 2171 kfree(new_dev_maps); 2172 return -ENOMEM; 2173 } 2174 EXPORT_SYMBOL(netif_set_xps_queue); 2175 2176 #endif 2177 /* 2178 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2179 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2180 */ 2181 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2182 { 2183 int rc; 2184 2185 if (txq < 1 || txq > dev->num_tx_queues) 2186 return -EINVAL; 2187 2188 if (dev->reg_state == NETREG_REGISTERED || 2189 dev->reg_state == NETREG_UNREGISTERING) { 2190 ASSERT_RTNL(); 2191 2192 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2193 txq); 2194 if (rc) 2195 return rc; 2196 2197 if (dev->num_tc) 2198 netif_setup_tc(dev, txq); 2199 2200 if (txq < dev->real_num_tx_queues) { 2201 qdisc_reset_all_tx_gt(dev, txq); 2202 #ifdef CONFIG_XPS 2203 netif_reset_xps_queues_gt(dev, txq); 2204 #endif 2205 } 2206 } 2207 2208 dev->real_num_tx_queues = txq; 2209 return 0; 2210 } 2211 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2212 2213 #ifdef CONFIG_SYSFS 2214 /** 2215 * netif_set_real_num_rx_queues - set actual number of RX queues used 2216 * @dev: Network device 2217 * @rxq: Actual number of RX queues 2218 * 2219 * This must be called either with the rtnl_lock held or before 2220 * registration of the net device. Returns 0 on success, or a 2221 * negative error code. If called before registration, it always 2222 * succeeds. 2223 */ 2224 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2225 { 2226 int rc; 2227 2228 if (rxq < 1 || rxq > dev->num_rx_queues) 2229 return -EINVAL; 2230 2231 if (dev->reg_state == NETREG_REGISTERED) { 2232 ASSERT_RTNL(); 2233 2234 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2235 rxq); 2236 if (rc) 2237 return rc; 2238 } 2239 2240 dev->real_num_rx_queues = rxq; 2241 return 0; 2242 } 2243 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2244 #endif 2245 2246 /** 2247 * netif_get_num_default_rss_queues - default number of RSS queues 2248 * 2249 * This routine should set an upper limit on the number of RSS queues 2250 * used by default by multiqueue devices. 2251 */ 2252 int netif_get_num_default_rss_queues(void) 2253 { 2254 return is_kdump_kernel() ? 2255 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2256 } 2257 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2258 2259 static void __netif_reschedule(struct Qdisc *q) 2260 { 2261 struct softnet_data *sd; 2262 unsigned long flags; 2263 2264 local_irq_save(flags); 2265 sd = this_cpu_ptr(&softnet_data); 2266 q->next_sched = NULL; 2267 *sd->output_queue_tailp = q; 2268 sd->output_queue_tailp = &q->next_sched; 2269 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2270 local_irq_restore(flags); 2271 } 2272 2273 void __netif_schedule(struct Qdisc *q) 2274 { 2275 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2276 __netif_reschedule(q); 2277 } 2278 EXPORT_SYMBOL(__netif_schedule); 2279 2280 struct dev_kfree_skb_cb { 2281 enum skb_free_reason reason; 2282 }; 2283 2284 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2285 { 2286 return (struct dev_kfree_skb_cb *)skb->cb; 2287 } 2288 2289 void netif_schedule_queue(struct netdev_queue *txq) 2290 { 2291 rcu_read_lock(); 2292 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2293 struct Qdisc *q = rcu_dereference(txq->qdisc); 2294 2295 __netif_schedule(q); 2296 } 2297 rcu_read_unlock(); 2298 } 2299 EXPORT_SYMBOL(netif_schedule_queue); 2300 2301 /** 2302 * netif_wake_subqueue - allow sending packets on subqueue 2303 * @dev: network device 2304 * @queue_index: sub queue index 2305 * 2306 * Resume individual transmit queue of a device with multiple transmit queues. 2307 */ 2308 void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2309 { 2310 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2311 2312 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) { 2313 struct Qdisc *q; 2314 2315 rcu_read_lock(); 2316 q = rcu_dereference(txq->qdisc); 2317 __netif_schedule(q); 2318 rcu_read_unlock(); 2319 } 2320 } 2321 EXPORT_SYMBOL(netif_wake_subqueue); 2322 2323 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2324 { 2325 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2326 struct Qdisc *q; 2327 2328 rcu_read_lock(); 2329 q = rcu_dereference(dev_queue->qdisc); 2330 __netif_schedule(q); 2331 rcu_read_unlock(); 2332 } 2333 } 2334 EXPORT_SYMBOL(netif_tx_wake_queue); 2335 2336 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2337 { 2338 unsigned long flags; 2339 2340 if (likely(atomic_read(&skb->users) == 1)) { 2341 smp_rmb(); 2342 atomic_set(&skb->users, 0); 2343 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2344 return; 2345 } 2346 get_kfree_skb_cb(skb)->reason = reason; 2347 local_irq_save(flags); 2348 skb->next = __this_cpu_read(softnet_data.completion_queue); 2349 __this_cpu_write(softnet_data.completion_queue, skb); 2350 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2351 local_irq_restore(flags); 2352 } 2353 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2354 2355 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2356 { 2357 if (in_irq() || irqs_disabled()) 2358 __dev_kfree_skb_irq(skb, reason); 2359 else 2360 dev_kfree_skb(skb); 2361 } 2362 EXPORT_SYMBOL(__dev_kfree_skb_any); 2363 2364 2365 /** 2366 * netif_device_detach - mark device as removed 2367 * @dev: network device 2368 * 2369 * Mark device as removed from system and therefore no longer available. 2370 */ 2371 void netif_device_detach(struct net_device *dev) 2372 { 2373 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2374 netif_running(dev)) { 2375 netif_tx_stop_all_queues(dev); 2376 } 2377 } 2378 EXPORT_SYMBOL(netif_device_detach); 2379 2380 /** 2381 * netif_device_attach - mark device as attached 2382 * @dev: network device 2383 * 2384 * Mark device as attached from system and restart if needed. 2385 */ 2386 void netif_device_attach(struct net_device *dev) 2387 { 2388 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2389 netif_running(dev)) { 2390 netif_tx_wake_all_queues(dev); 2391 __netdev_watchdog_up(dev); 2392 } 2393 } 2394 EXPORT_SYMBOL(netif_device_attach); 2395 2396 /* 2397 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2398 * to be used as a distribution range. 2399 */ 2400 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2401 unsigned int num_tx_queues) 2402 { 2403 u32 hash; 2404 u16 qoffset = 0; 2405 u16 qcount = num_tx_queues; 2406 2407 if (skb_rx_queue_recorded(skb)) { 2408 hash = skb_get_rx_queue(skb); 2409 while (unlikely(hash >= num_tx_queues)) 2410 hash -= num_tx_queues; 2411 return hash; 2412 } 2413 2414 if (dev->num_tc) { 2415 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2416 qoffset = dev->tc_to_txq[tc].offset; 2417 qcount = dev->tc_to_txq[tc].count; 2418 } 2419 2420 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2421 } 2422 EXPORT_SYMBOL(__skb_tx_hash); 2423 2424 static void skb_warn_bad_offload(const struct sk_buff *skb) 2425 { 2426 static const netdev_features_t null_features; 2427 struct net_device *dev = skb->dev; 2428 const char *name = ""; 2429 2430 if (!net_ratelimit()) 2431 return; 2432 2433 if (dev) { 2434 if (dev->dev.parent) 2435 name = dev_driver_string(dev->dev.parent); 2436 else 2437 name = netdev_name(dev); 2438 } 2439 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2440 "gso_type=%d ip_summed=%d\n", 2441 name, dev ? &dev->features : &null_features, 2442 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2443 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2444 skb_shinfo(skb)->gso_type, skb->ip_summed); 2445 } 2446 2447 /* 2448 * Invalidate hardware checksum when packet is to be mangled, and 2449 * complete checksum manually on outgoing path. 2450 */ 2451 int skb_checksum_help(struct sk_buff *skb) 2452 { 2453 __wsum csum; 2454 int ret = 0, offset; 2455 2456 if (skb->ip_summed == CHECKSUM_COMPLETE) 2457 goto out_set_summed; 2458 2459 if (unlikely(skb_shinfo(skb)->gso_size)) { 2460 skb_warn_bad_offload(skb); 2461 return -EINVAL; 2462 } 2463 2464 /* Before computing a checksum, we should make sure no frag could 2465 * be modified by an external entity : checksum could be wrong. 2466 */ 2467 if (skb_has_shared_frag(skb)) { 2468 ret = __skb_linearize(skb); 2469 if (ret) 2470 goto out; 2471 } 2472 2473 offset = skb_checksum_start_offset(skb); 2474 BUG_ON(offset >= skb_headlen(skb)); 2475 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2476 2477 offset += skb->csum_offset; 2478 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2479 2480 if (skb_cloned(skb) && 2481 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2482 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2483 if (ret) 2484 goto out; 2485 } 2486 2487 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2488 out_set_summed: 2489 skb->ip_summed = CHECKSUM_NONE; 2490 out: 2491 return ret; 2492 } 2493 EXPORT_SYMBOL(skb_checksum_help); 2494 2495 /* skb_csum_offload_check - Driver helper function to determine if a device 2496 * with limited checksum offload capabilities is able to offload the checksum 2497 * for a given packet. 2498 * 2499 * Arguments: 2500 * skb - sk_buff for the packet in question 2501 * spec - contains the description of what device can offload 2502 * csum_encapped - returns true if the checksum being offloaded is 2503 * encpasulated. That is it is checksum for the transport header 2504 * in the inner headers. 2505 * checksum_help - when set indicates that helper function should 2506 * call skb_checksum_help if offload checks fail 2507 * 2508 * Returns: 2509 * true: Packet has passed the checksum checks and should be offloadable to 2510 * the device (a driver may still need to check for additional 2511 * restrictions of its device) 2512 * false: Checksum is not offloadable. If checksum_help was set then 2513 * skb_checksum_help was called to resolve checksum for non-GSO 2514 * packets and when IP protocol is not SCTP 2515 */ 2516 bool __skb_csum_offload_chk(struct sk_buff *skb, 2517 const struct skb_csum_offl_spec *spec, 2518 bool *csum_encapped, 2519 bool csum_help) 2520 { 2521 struct iphdr *iph; 2522 struct ipv6hdr *ipv6; 2523 void *nhdr; 2524 int protocol; 2525 u8 ip_proto; 2526 2527 if (skb->protocol == htons(ETH_P_8021Q) || 2528 skb->protocol == htons(ETH_P_8021AD)) { 2529 if (!spec->vlan_okay) 2530 goto need_help; 2531 } 2532 2533 /* We check whether the checksum refers to a transport layer checksum in 2534 * the outermost header or an encapsulated transport layer checksum that 2535 * corresponds to the inner headers of the skb. If the checksum is for 2536 * something else in the packet we need help. 2537 */ 2538 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) { 2539 /* Non-encapsulated checksum */ 2540 protocol = eproto_to_ipproto(vlan_get_protocol(skb)); 2541 nhdr = skb_network_header(skb); 2542 *csum_encapped = false; 2543 if (spec->no_not_encapped) 2544 goto need_help; 2545 } else if (skb->encapsulation && spec->encap_okay && 2546 skb_checksum_start_offset(skb) == 2547 skb_inner_transport_offset(skb)) { 2548 /* Encapsulated checksum */ 2549 *csum_encapped = true; 2550 switch (skb->inner_protocol_type) { 2551 case ENCAP_TYPE_ETHER: 2552 protocol = eproto_to_ipproto(skb->inner_protocol); 2553 break; 2554 case ENCAP_TYPE_IPPROTO: 2555 protocol = skb->inner_protocol; 2556 break; 2557 } 2558 nhdr = skb_inner_network_header(skb); 2559 } else { 2560 goto need_help; 2561 } 2562 2563 switch (protocol) { 2564 case IPPROTO_IP: 2565 if (!spec->ipv4_okay) 2566 goto need_help; 2567 iph = nhdr; 2568 ip_proto = iph->protocol; 2569 if (iph->ihl != 5 && !spec->ip_options_okay) 2570 goto need_help; 2571 break; 2572 case IPPROTO_IPV6: 2573 if (!spec->ipv6_okay) 2574 goto need_help; 2575 if (spec->no_encapped_ipv6 && *csum_encapped) 2576 goto need_help; 2577 ipv6 = nhdr; 2578 nhdr += sizeof(*ipv6); 2579 ip_proto = ipv6->nexthdr; 2580 break; 2581 default: 2582 goto need_help; 2583 } 2584 2585 ip_proto_again: 2586 switch (ip_proto) { 2587 case IPPROTO_TCP: 2588 if (!spec->tcp_okay || 2589 skb->csum_offset != offsetof(struct tcphdr, check)) 2590 goto need_help; 2591 break; 2592 case IPPROTO_UDP: 2593 if (!spec->udp_okay || 2594 skb->csum_offset != offsetof(struct udphdr, check)) 2595 goto need_help; 2596 break; 2597 case IPPROTO_SCTP: 2598 if (!spec->sctp_okay || 2599 skb->csum_offset != offsetof(struct sctphdr, checksum)) 2600 goto cant_help; 2601 break; 2602 case NEXTHDR_HOP: 2603 case NEXTHDR_ROUTING: 2604 case NEXTHDR_DEST: { 2605 u8 *opthdr = nhdr; 2606 2607 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay) 2608 goto need_help; 2609 2610 ip_proto = opthdr[0]; 2611 nhdr += (opthdr[1] + 1) << 3; 2612 2613 goto ip_proto_again; 2614 } 2615 default: 2616 goto need_help; 2617 } 2618 2619 /* Passed the tests for offloading checksum */ 2620 return true; 2621 2622 need_help: 2623 if (csum_help && !skb_shinfo(skb)->gso_size) 2624 skb_checksum_help(skb); 2625 cant_help: 2626 return false; 2627 } 2628 EXPORT_SYMBOL(__skb_csum_offload_chk); 2629 2630 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2631 { 2632 __be16 type = skb->protocol; 2633 2634 /* Tunnel gso handlers can set protocol to ethernet. */ 2635 if (type == htons(ETH_P_TEB)) { 2636 struct ethhdr *eth; 2637 2638 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2639 return 0; 2640 2641 eth = (struct ethhdr *)skb_mac_header(skb); 2642 type = eth->h_proto; 2643 } 2644 2645 return __vlan_get_protocol(skb, type, depth); 2646 } 2647 2648 /** 2649 * skb_mac_gso_segment - mac layer segmentation handler. 2650 * @skb: buffer to segment 2651 * @features: features for the output path (see dev->features) 2652 */ 2653 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2654 netdev_features_t features) 2655 { 2656 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2657 struct packet_offload *ptype; 2658 int vlan_depth = skb->mac_len; 2659 __be16 type = skb_network_protocol(skb, &vlan_depth); 2660 2661 if (unlikely(!type)) 2662 return ERR_PTR(-EINVAL); 2663 2664 __skb_pull(skb, vlan_depth); 2665 2666 rcu_read_lock(); 2667 list_for_each_entry_rcu(ptype, &offload_base, list) { 2668 if (ptype->type == type && ptype->callbacks.gso_segment) { 2669 segs = ptype->callbacks.gso_segment(skb, features); 2670 break; 2671 } 2672 } 2673 rcu_read_unlock(); 2674 2675 __skb_push(skb, skb->data - skb_mac_header(skb)); 2676 2677 return segs; 2678 } 2679 EXPORT_SYMBOL(skb_mac_gso_segment); 2680 2681 2682 /* openvswitch calls this on rx path, so we need a different check. 2683 */ 2684 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2685 { 2686 if (tx_path) 2687 return skb->ip_summed != CHECKSUM_PARTIAL; 2688 else 2689 return skb->ip_summed == CHECKSUM_NONE; 2690 } 2691 2692 /** 2693 * __skb_gso_segment - Perform segmentation on skb. 2694 * @skb: buffer to segment 2695 * @features: features for the output path (see dev->features) 2696 * @tx_path: whether it is called in TX path 2697 * 2698 * This function segments the given skb and returns a list of segments. 2699 * 2700 * It may return NULL if the skb requires no segmentation. This is 2701 * only possible when GSO is used for verifying header integrity. 2702 * 2703 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2704 */ 2705 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2706 netdev_features_t features, bool tx_path) 2707 { 2708 if (unlikely(skb_needs_check(skb, tx_path))) { 2709 int err; 2710 2711 skb_warn_bad_offload(skb); 2712 2713 err = skb_cow_head(skb, 0); 2714 if (err < 0) 2715 return ERR_PTR(err); 2716 } 2717 2718 /* Only report GSO partial support if it will enable us to 2719 * support segmentation on this frame without needing additional 2720 * work. 2721 */ 2722 if (features & NETIF_F_GSO_PARTIAL) { 2723 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2724 struct net_device *dev = skb->dev; 2725 2726 partial_features |= dev->features & dev->gso_partial_features; 2727 if (!skb_gso_ok(skb, features | partial_features)) 2728 features &= ~NETIF_F_GSO_PARTIAL; 2729 } 2730 2731 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2732 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2733 2734 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2735 SKB_GSO_CB(skb)->encap_level = 0; 2736 2737 skb_reset_mac_header(skb); 2738 skb_reset_mac_len(skb); 2739 2740 return skb_mac_gso_segment(skb, features); 2741 } 2742 EXPORT_SYMBOL(__skb_gso_segment); 2743 2744 /* Take action when hardware reception checksum errors are detected. */ 2745 #ifdef CONFIG_BUG 2746 void netdev_rx_csum_fault(struct net_device *dev) 2747 { 2748 if (net_ratelimit()) { 2749 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2750 dump_stack(); 2751 } 2752 } 2753 EXPORT_SYMBOL(netdev_rx_csum_fault); 2754 #endif 2755 2756 /* Actually, we should eliminate this check as soon as we know, that: 2757 * 1. IOMMU is present and allows to map all the memory. 2758 * 2. No high memory really exists on this machine. 2759 */ 2760 2761 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2762 { 2763 #ifdef CONFIG_HIGHMEM 2764 int i; 2765 if (!(dev->features & NETIF_F_HIGHDMA)) { 2766 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2767 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2768 if (PageHighMem(skb_frag_page(frag))) 2769 return 1; 2770 } 2771 } 2772 2773 if (PCI_DMA_BUS_IS_PHYS) { 2774 struct device *pdev = dev->dev.parent; 2775 2776 if (!pdev) 2777 return 0; 2778 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2779 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2780 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2781 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2782 return 1; 2783 } 2784 } 2785 #endif 2786 return 0; 2787 } 2788 2789 /* If MPLS offload request, verify we are testing hardware MPLS features 2790 * instead of standard features for the netdev. 2791 */ 2792 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2793 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2794 netdev_features_t features, 2795 __be16 type) 2796 { 2797 if (eth_p_mpls(type)) 2798 features &= skb->dev->mpls_features; 2799 2800 return features; 2801 } 2802 #else 2803 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2804 netdev_features_t features, 2805 __be16 type) 2806 { 2807 return features; 2808 } 2809 #endif 2810 2811 static netdev_features_t harmonize_features(struct sk_buff *skb, 2812 netdev_features_t features) 2813 { 2814 int tmp; 2815 __be16 type; 2816 2817 type = skb_network_protocol(skb, &tmp); 2818 features = net_mpls_features(skb, features, type); 2819 2820 if (skb->ip_summed != CHECKSUM_NONE && 2821 !can_checksum_protocol(features, type)) { 2822 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2823 } else if (illegal_highdma(skb->dev, skb)) { 2824 features &= ~NETIF_F_SG; 2825 } 2826 2827 return features; 2828 } 2829 2830 netdev_features_t passthru_features_check(struct sk_buff *skb, 2831 struct net_device *dev, 2832 netdev_features_t features) 2833 { 2834 return features; 2835 } 2836 EXPORT_SYMBOL(passthru_features_check); 2837 2838 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2839 struct net_device *dev, 2840 netdev_features_t features) 2841 { 2842 return vlan_features_check(skb, features); 2843 } 2844 2845 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2846 struct net_device *dev, 2847 netdev_features_t features) 2848 { 2849 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2850 2851 if (gso_segs > dev->gso_max_segs) 2852 return features & ~NETIF_F_GSO_MASK; 2853 2854 /* Support for GSO partial features requires software 2855 * intervention before we can actually process the packets 2856 * so we need to strip support for any partial features now 2857 * and we can pull them back in after we have partially 2858 * segmented the frame. 2859 */ 2860 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2861 features &= ~dev->gso_partial_features; 2862 2863 /* Make sure to clear the IPv4 ID mangling feature if the 2864 * IPv4 header has the potential to be fragmented. 2865 */ 2866 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2867 struct iphdr *iph = skb->encapsulation ? 2868 inner_ip_hdr(skb) : ip_hdr(skb); 2869 2870 if (!(iph->frag_off & htons(IP_DF))) 2871 features &= ~NETIF_F_TSO_MANGLEID; 2872 } 2873 2874 return features; 2875 } 2876 2877 netdev_features_t netif_skb_features(struct sk_buff *skb) 2878 { 2879 struct net_device *dev = skb->dev; 2880 netdev_features_t features = dev->features; 2881 2882 if (skb_is_gso(skb)) 2883 features = gso_features_check(skb, dev, features); 2884 2885 /* If encapsulation offload request, verify we are testing 2886 * hardware encapsulation features instead of standard 2887 * features for the netdev 2888 */ 2889 if (skb->encapsulation) 2890 features &= dev->hw_enc_features; 2891 2892 if (skb_vlan_tagged(skb)) 2893 features = netdev_intersect_features(features, 2894 dev->vlan_features | 2895 NETIF_F_HW_VLAN_CTAG_TX | 2896 NETIF_F_HW_VLAN_STAG_TX); 2897 2898 if (dev->netdev_ops->ndo_features_check) 2899 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2900 features); 2901 else 2902 features &= dflt_features_check(skb, dev, features); 2903 2904 return harmonize_features(skb, features); 2905 } 2906 EXPORT_SYMBOL(netif_skb_features); 2907 2908 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2909 struct netdev_queue *txq, bool more) 2910 { 2911 unsigned int len; 2912 int rc; 2913 2914 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2915 dev_queue_xmit_nit(skb, dev); 2916 2917 len = skb->len; 2918 trace_net_dev_start_xmit(skb, dev); 2919 rc = netdev_start_xmit(skb, dev, txq, more); 2920 trace_net_dev_xmit(skb, rc, dev, len); 2921 2922 return rc; 2923 } 2924 2925 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2926 struct netdev_queue *txq, int *ret) 2927 { 2928 struct sk_buff *skb = first; 2929 int rc = NETDEV_TX_OK; 2930 2931 while (skb) { 2932 struct sk_buff *next = skb->next; 2933 2934 skb->next = NULL; 2935 rc = xmit_one(skb, dev, txq, next != NULL); 2936 if (unlikely(!dev_xmit_complete(rc))) { 2937 skb->next = next; 2938 goto out; 2939 } 2940 2941 skb = next; 2942 if (netif_xmit_stopped(txq) && skb) { 2943 rc = NETDEV_TX_BUSY; 2944 break; 2945 } 2946 } 2947 2948 out: 2949 *ret = rc; 2950 return skb; 2951 } 2952 2953 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2954 netdev_features_t features) 2955 { 2956 if (skb_vlan_tag_present(skb) && 2957 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2958 skb = __vlan_hwaccel_push_inside(skb); 2959 return skb; 2960 } 2961 2962 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2963 { 2964 netdev_features_t features; 2965 2966 features = netif_skb_features(skb); 2967 skb = validate_xmit_vlan(skb, features); 2968 if (unlikely(!skb)) 2969 goto out_null; 2970 2971 if (netif_needs_gso(skb, features)) { 2972 struct sk_buff *segs; 2973 2974 segs = skb_gso_segment(skb, features); 2975 if (IS_ERR(segs)) { 2976 goto out_kfree_skb; 2977 } else if (segs) { 2978 consume_skb(skb); 2979 skb = segs; 2980 } 2981 } else { 2982 if (skb_needs_linearize(skb, features) && 2983 __skb_linearize(skb)) 2984 goto out_kfree_skb; 2985 2986 /* If packet is not checksummed and device does not 2987 * support checksumming for this protocol, complete 2988 * checksumming here. 2989 */ 2990 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2991 if (skb->encapsulation) 2992 skb_set_inner_transport_header(skb, 2993 skb_checksum_start_offset(skb)); 2994 else 2995 skb_set_transport_header(skb, 2996 skb_checksum_start_offset(skb)); 2997 if (!(features & NETIF_F_CSUM_MASK) && 2998 skb_checksum_help(skb)) 2999 goto out_kfree_skb; 3000 } 3001 } 3002 3003 return skb; 3004 3005 out_kfree_skb: 3006 kfree_skb(skb); 3007 out_null: 3008 atomic_long_inc(&dev->tx_dropped); 3009 return NULL; 3010 } 3011 3012 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 3013 { 3014 struct sk_buff *next, *head = NULL, *tail; 3015 3016 for (; skb != NULL; skb = next) { 3017 next = skb->next; 3018 skb->next = NULL; 3019 3020 /* in case skb wont be segmented, point to itself */ 3021 skb->prev = skb; 3022 3023 skb = validate_xmit_skb(skb, dev); 3024 if (!skb) 3025 continue; 3026 3027 if (!head) 3028 head = skb; 3029 else 3030 tail->next = skb; 3031 /* If skb was segmented, skb->prev points to 3032 * the last segment. If not, it still contains skb. 3033 */ 3034 tail = skb->prev; 3035 } 3036 return head; 3037 } 3038 3039 static void qdisc_pkt_len_init(struct sk_buff *skb) 3040 { 3041 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3042 3043 qdisc_skb_cb(skb)->pkt_len = skb->len; 3044 3045 /* To get more precise estimation of bytes sent on wire, 3046 * we add to pkt_len the headers size of all segments 3047 */ 3048 if (shinfo->gso_size) { 3049 unsigned int hdr_len; 3050 u16 gso_segs = shinfo->gso_segs; 3051 3052 /* mac layer + network layer */ 3053 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3054 3055 /* + transport layer */ 3056 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3057 hdr_len += tcp_hdrlen(skb); 3058 else 3059 hdr_len += sizeof(struct udphdr); 3060 3061 if (shinfo->gso_type & SKB_GSO_DODGY) 3062 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3063 shinfo->gso_size); 3064 3065 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3066 } 3067 } 3068 3069 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3070 struct net_device *dev, 3071 struct netdev_queue *txq) 3072 { 3073 spinlock_t *root_lock = qdisc_lock(q); 3074 struct sk_buff *to_free = NULL; 3075 bool contended; 3076 int rc; 3077 3078 qdisc_calculate_pkt_len(skb, q); 3079 /* 3080 * Heuristic to force contended enqueues to serialize on a 3081 * separate lock before trying to get qdisc main lock. 3082 * This permits qdisc->running owner to get the lock more 3083 * often and dequeue packets faster. 3084 */ 3085 contended = qdisc_is_running(q); 3086 if (unlikely(contended)) 3087 spin_lock(&q->busylock); 3088 3089 spin_lock(root_lock); 3090 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3091 __qdisc_drop(skb, &to_free); 3092 rc = NET_XMIT_DROP; 3093 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3094 qdisc_run_begin(q)) { 3095 /* 3096 * This is a work-conserving queue; there are no old skbs 3097 * waiting to be sent out; and the qdisc is not running - 3098 * xmit the skb directly. 3099 */ 3100 3101 qdisc_bstats_update(q, skb); 3102 3103 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3104 if (unlikely(contended)) { 3105 spin_unlock(&q->busylock); 3106 contended = false; 3107 } 3108 __qdisc_run(q); 3109 } else 3110 qdisc_run_end(q); 3111 3112 rc = NET_XMIT_SUCCESS; 3113 } else { 3114 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3115 if (qdisc_run_begin(q)) { 3116 if (unlikely(contended)) { 3117 spin_unlock(&q->busylock); 3118 contended = false; 3119 } 3120 __qdisc_run(q); 3121 } 3122 } 3123 spin_unlock(root_lock); 3124 if (unlikely(to_free)) 3125 kfree_skb_list(to_free); 3126 if (unlikely(contended)) 3127 spin_unlock(&q->busylock); 3128 return rc; 3129 } 3130 3131 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3132 static void skb_update_prio(struct sk_buff *skb) 3133 { 3134 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3135 3136 if (!skb->priority && skb->sk && map) { 3137 unsigned int prioidx = 3138 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3139 3140 if (prioidx < map->priomap_len) 3141 skb->priority = map->priomap[prioidx]; 3142 } 3143 } 3144 #else 3145 #define skb_update_prio(skb) 3146 #endif 3147 3148 DEFINE_PER_CPU(int, xmit_recursion); 3149 EXPORT_SYMBOL(xmit_recursion); 3150 3151 /** 3152 * dev_loopback_xmit - loop back @skb 3153 * @net: network namespace this loopback is happening in 3154 * @sk: sk needed to be a netfilter okfn 3155 * @skb: buffer to transmit 3156 */ 3157 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3158 { 3159 skb_reset_mac_header(skb); 3160 __skb_pull(skb, skb_network_offset(skb)); 3161 skb->pkt_type = PACKET_LOOPBACK; 3162 skb->ip_summed = CHECKSUM_UNNECESSARY; 3163 WARN_ON(!skb_dst(skb)); 3164 skb_dst_force(skb); 3165 netif_rx_ni(skb); 3166 return 0; 3167 } 3168 EXPORT_SYMBOL(dev_loopback_xmit); 3169 3170 #ifdef CONFIG_NET_EGRESS 3171 static struct sk_buff * 3172 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3173 { 3174 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list); 3175 struct tcf_result cl_res; 3176 3177 if (!cl) 3178 return skb; 3179 3180 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set 3181 * earlier by the caller. 3182 */ 3183 qdisc_bstats_cpu_update(cl->q, skb); 3184 3185 switch (tc_classify(skb, cl, &cl_res, false)) { 3186 case TC_ACT_OK: 3187 case TC_ACT_RECLASSIFY: 3188 skb->tc_index = TC_H_MIN(cl_res.classid); 3189 break; 3190 case TC_ACT_SHOT: 3191 qdisc_qstats_cpu_drop(cl->q); 3192 *ret = NET_XMIT_DROP; 3193 kfree_skb(skb); 3194 return NULL; 3195 case TC_ACT_STOLEN: 3196 case TC_ACT_QUEUED: 3197 *ret = NET_XMIT_SUCCESS; 3198 consume_skb(skb); 3199 return NULL; 3200 case TC_ACT_REDIRECT: 3201 /* No need to push/pop skb's mac_header here on egress! */ 3202 skb_do_redirect(skb); 3203 *ret = NET_XMIT_SUCCESS; 3204 return NULL; 3205 default: 3206 break; 3207 } 3208 3209 return skb; 3210 } 3211 #endif /* CONFIG_NET_EGRESS */ 3212 3213 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3214 { 3215 #ifdef CONFIG_XPS 3216 struct xps_dev_maps *dev_maps; 3217 struct xps_map *map; 3218 int queue_index = -1; 3219 3220 rcu_read_lock(); 3221 dev_maps = rcu_dereference(dev->xps_maps); 3222 if (dev_maps) { 3223 map = rcu_dereference( 3224 dev_maps->cpu_map[skb->sender_cpu - 1]); 3225 if (map) { 3226 if (map->len == 1) 3227 queue_index = map->queues[0]; 3228 else 3229 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3230 map->len)]; 3231 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3232 queue_index = -1; 3233 } 3234 } 3235 rcu_read_unlock(); 3236 3237 return queue_index; 3238 #else 3239 return -1; 3240 #endif 3241 } 3242 3243 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3244 { 3245 struct sock *sk = skb->sk; 3246 int queue_index = sk_tx_queue_get(sk); 3247 3248 if (queue_index < 0 || skb->ooo_okay || 3249 queue_index >= dev->real_num_tx_queues) { 3250 int new_index = get_xps_queue(dev, skb); 3251 if (new_index < 0) 3252 new_index = skb_tx_hash(dev, skb); 3253 3254 if (queue_index != new_index && sk && 3255 sk_fullsock(sk) && 3256 rcu_access_pointer(sk->sk_dst_cache)) 3257 sk_tx_queue_set(sk, new_index); 3258 3259 queue_index = new_index; 3260 } 3261 3262 return queue_index; 3263 } 3264 3265 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3266 struct sk_buff *skb, 3267 void *accel_priv) 3268 { 3269 int queue_index = 0; 3270 3271 #ifdef CONFIG_XPS 3272 u32 sender_cpu = skb->sender_cpu - 1; 3273 3274 if (sender_cpu >= (u32)NR_CPUS) 3275 skb->sender_cpu = raw_smp_processor_id() + 1; 3276 #endif 3277 3278 if (dev->real_num_tx_queues != 1) { 3279 const struct net_device_ops *ops = dev->netdev_ops; 3280 if (ops->ndo_select_queue) 3281 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3282 __netdev_pick_tx); 3283 else 3284 queue_index = __netdev_pick_tx(dev, skb); 3285 3286 if (!accel_priv) 3287 queue_index = netdev_cap_txqueue(dev, queue_index); 3288 } 3289 3290 skb_set_queue_mapping(skb, queue_index); 3291 return netdev_get_tx_queue(dev, queue_index); 3292 } 3293 3294 /** 3295 * __dev_queue_xmit - transmit a buffer 3296 * @skb: buffer to transmit 3297 * @accel_priv: private data used for L2 forwarding offload 3298 * 3299 * Queue a buffer for transmission to a network device. The caller must 3300 * have set the device and priority and built the buffer before calling 3301 * this function. The function can be called from an interrupt. 3302 * 3303 * A negative errno code is returned on a failure. A success does not 3304 * guarantee the frame will be transmitted as it may be dropped due 3305 * to congestion or traffic shaping. 3306 * 3307 * ----------------------------------------------------------------------------------- 3308 * I notice this method can also return errors from the queue disciplines, 3309 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3310 * be positive. 3311 * 3312 * Regardless of the return value, the skb is consumed, so it is currently 3313 * difficult to retry a send to this method. (You can bump the ref count 3314 * before sending to hold a reference for retry if you are careful.) 3315 * 3316 * When calling this method, interrupts MUST be enabled. This is because 3317 * the BH enable code must have IRQs enabled so that it will not deadlock. 3318 * --BLG 3319 */ 3320 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3321 { 3322 struct net_device *dev = skb->dev; 3323 struct netdev_queue *txq; 3324 struct Qdisc *q; 3325 int rc = -ENOMEM; 3326 3327 skb_reset_mac_header(skb); 3328 3329 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3330 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3331 3332 /* Disable soft irqs for various locks below. Also 3333 * stops preemption for RCU. 3334 */ 3335 rcu_read_lock_bh(); 3336 3337 skb_update_prio(skb); 3338 3339 qdisc_pkt_len_init(skb); 3340 #ifdef CONFIG_NET_CLS_ACT 3341 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 3342 # ifdef CONFIG_NET_EGRESS 3343 if (static_key_false(&egress_needed)) { 3344 skb = sch_handle_egress(skb, &rc, dev); 3345 if (!skb) 3346 goto out; 3347 } 3348 # endif 3349 #endif 3350 /* If device/qdisc don't need skb->dst, release it right now while 3351 * its hot in this cpu cache. 3352 */ 3353 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3354 skb_dst_drop(skb); 3355 else 3356 skb_dst_force(skb); 3357 3358 #ifdef CONFIG_NET_SWITCHDEV 3359 /* Don't forward if offload device already forwarded */ 3360 if (skb->offload_fwd_mark && 3361 skb->offload_fwd_mark == dev->offload_fwd_mark) { 3362 consume_skb(skb); 3363 rc = NET_XMIT_SUCCESS; 3364 goto out; 3365 } 3366 #endif 3367 3368 txq = netdev_pick_tx(dev, skb, accel_priv); 3369 q = rcu_dereference_bh(txq->qdisc); 3370 3371 trace_net_dev_queue(skb); 3372 if (q->enqueue) { 3373 rc = __dev_xmit_skb(skb, q, dev, txq); 3374 goto out; 3375 } 3376 3377 /* The device has no queue. Common case for software devices: 3378 loopback, all the sorts of tunnels... 3379 3380 Really, it is unlikely that netif_tx_lock protection is necessary 3381 here. (f.e. loopback and IP tunnels are clean ignoring statistics 3382 counters.) 3383 However, it is possible, that they rely on protection 3384 made by us here. 3385 3386 Check this and shot the lock. It is not prone from deadlocks. 3387 Either shot noqueue qdisc, it is even simpler 8) 3388 */ 3389 if (dev->flags & IFF_UP) { 3390 int cpu = smp_processor_id(); /* ok because BHs are off */ 3391 3392 if (txq->xmit_lock_owner != cpu) { 3393 if (unlikely(__this_cpu_read(xmit_recursion) > 3394 XMIT_RECURSION_LIMIT)) 3395 goto recursion_alert; 3396 3397 skb = validate_xmit_skb(skb, dev); 3398 if (!skb) 3399 goto out; 3400 3401 HARD_TX_LOCK(dev, txq, cpu); 3402 3403 if (!netif_xmit_stopped(txq)) { 3404 __this_cpu_inc(xmit_recursion); 3405 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3406 __this_cpu_dec(xmit_recursion); 3407 if (dev_xmit_complete(rc)) { 3408 HARD_TX_UNLOCK(dev, txq); 3409 goto out; 3410 } 3411 } 3412 HARD_TX_UNLOCK(dev, txq); 3413 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3414 dev->name); 3415 } else { 3416 /* Recursion is detected! It is possible, 3417 * unfortunately 3418 */ 3419 recursion_alert: 3420 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3421 dev->name); 3422 } 3423 } 3424 3425 rc = -ENETDOWN; 3426 rcu_read_unlock_bh(); 3427 3428 atomic_long_inc(&dev->tx_dropped); 3429 kfree_skb_list(skb); 3430 return rc; 3431 out: 3432 rcu_read_unlock_bh(); 3433 return rc; 3434 } 3435 3436 int dev_queue_xmit(struct sk_buff *skb) 3437 { 3438 return __dev_queue_xmit(skb, NULL); 3439 } 3440 EXPORT_SYMBOL(dev_queue_xmit); 3441 3442 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3443 { 3444 return __dev_queue_xmit(skb, accel_priv); 3445 } 3446 EXPORT_SYMBOL(dev_queue_xmit_accel); 3447 3448 3449 /*======================================================================= 3450 Receiver routines 3451 =======================================================================*/ 3452 3453 int netdev_max_backlog __read_mostly = 1000; 3454 EXPORT_SYMBOL(netdev_max_backlog); 3455 3456 int netdev_tstamp_prequeue __read_mostly = 1; 3457 int netdev_budget __read_mostly = 300; 3458 int weight_p __read_mostly = 64; /* old backlog weight */ 3459 3460 /* Called with irq disabled */ 3461 static inline void ____napi_schedule(struct softnet_data *sd, 3462 struct napi_struct *napi) 3463 { 3464 list_add_tail(&napi->poll_list, &sd->poll_list); 3465 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3466 } 3467 3468 #ifdef CONFIG_RPS 3469 3470 /* One global table that all flow-based protocols share. */ 3471 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3472 EXPORT_SYMBOL(rps_sock_flow_table); 3473 u32 rps_cpu_mask __read_mostly; 3474 EXPORT_SYMBOL(rps_cpu_mask); 3475 3476 struct static_key rps_needed __read_mostly; 3477 EXPORT_SYMBOL(rps_needed); 3478 3479 static struct rps_dev_flow * 3480 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3481 struct rps_dev_flow *rflow, u16 next_cpu) 3482 { 3483 if (next_cpu < nr_cpu_ids) { 3484 #ifdef CONFIG_RFS_ACCEL 3485 struct netdev_rx_queue *rxqueue; 3486 struct rps_dev_flow_table *flow_table; 3487 struct rps_dev_flow *old_rflow; 3488 u32 flow_id; 3489 u16 rxq_index; 3490 int rc; 3491 3492 /* Should we steer this flow to a different hardware queue? */ 3493 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3494 !(dev->features & NETIF_F_NTUPLE)) 3495 goto out; 3496 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3497 if (rxq_index == skb_get_rx_queue(skb)) 3498 goto out; 3499 3500 rxqueue = dev->_rx + rxq_index; 3501 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3502 if (!flow_table) 3503 goto out; 3504 flow_id = skb_get_hash(skb) & flow_table->mask; 3505 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3506 rxq_index, flow_id); 3507 if (rc < 0) 3508 goto out; 3509 old_rflow = rflow; 3510 rflow = &flow_table->flows[flow_id]; 3511 rflow->filter = rc; 3512 if (old_rflow->filter == rflow->filter) 3513 old_rflow->filter = RPS_NO_FILTER; 3514 out: 3515 #endif 3516 rflow->last_qtail = 3517 per_cpu(softnet_data, next_cpu).input_queue_head; 3518 } 3519 3520 rflow->cpu = next_cpu; 3521 return rflow; 3522 } 3523 3524 /* 3525 * get_rps_cpu is called from netif_receive_skb and returns the target 3526 * CPU from the RPS map of the receiving queue for a given skb. 3527 * rcu_read_lock must be held on entry. 3528 */ 3529 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3530 struct rps_dev_flow **rflowp) 3531 { 3532 const struct rps_sock_flow_table *sock_flow_table; 3533 struct netdev_rx_queue *rxqueue = dev->_rx; 3534 struct rps_dev_flow_table *flow_table; 3535 struct rps_map *map; 3536 int cpu = -1; 3537 u32 tcpu; 3538 u32 hash; 3539 3540 if (skb_rx_queue_recorded(skb)) { 3541 u16 index = skb_get_rx_queue(skb); 3542 3543 if (unlikely(index >= dev->real_num_rx_queues)) { 3544 WARN_ONCE(dev->real_num_rx_queues > 1, 3545 "%s received packet on queue %u, but number " 3546 "of RX queues is %u\n", 3547 dev->name, index, dev->real_num_rx_queues); 3548 goto done; 3549 } 3550 rxqueue += index; 3551 } 3552 3553 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3554 3555 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3556 map = rcu_dereference(rxqueue->rps_map); 3557 if (!flow_table && !map) 3558 goto done; 3559 3560 skb_reset_network_header(skb); 3561 hash = skb_get_hash(skb); 3562 if (!hash) 3563 goto done; 3564 3565 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3566 if (flow_table && sock_flow_table) { 3567 struct rps_dev_flow *rflow; 3568 u32 next_cpu; 3569 u32 ident; 3570 3571 /* First check into global flow table if there is a match */ 3572 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3573 if ((ident ^ hash) & ~rps_cpu_mask) 3574 goto try_rps; 3575 3576 next_cpu = ident & rps_cpu_mask; 3577 3578 /* OK, now we know there is a match, 3579 * we can look at the local (per receive queue) flow table 3580 */ 3581 rflow = &flow_table->flows[hash & flow_table->mask]; 3582 tcpu = rflow->cpu; 3583 3584 /* 3585 * If the desired CPU (where last recvmsg was done) is 3586 * different from current CPU (one in the rx-queue flow 3587 * table entry), switch if one of the following holds: 3588 * - Current CPU is unset (>= nr_cpu_ids). 3589 * - Current CPU is offline. 3590 * - The current CPU's queue tail has advanced beyond the 3591 * last packet that was enqueued using this table entry. 3592 * This guarantees that all previous packets for the flow 3593 * have been dequeued, thus preserving in order delivery. 3594 */ 3595 if (unlikely(tcpu != next_cpu) && 3596 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3597 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3598 rflow->last_qtail)) >= 0)) { 3599 tcpu = next_cpu; 3600 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3601 } 3602 3603 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3604 *rflowp = rflow; 3605 cpu = tcpu; 3606 goto done; 3607 } 3608 } 3609 3610 try_rps: 3611 3612 if (map) { 3613 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3614 if (cpu_online(tcpu)) { 3615 cpu = tcpu; 3616 goto done; 3617 } 3618 } 3619 3620 done: 3621 return cpu; 3622 } 3623 3624 #ifdef CONFIG_RFS_ACCEL 3625 3626 /** 3627 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3628 * @dev: Device on which the filter was set 3629 * @rxq_index: RX queue index 3630 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3631 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3632 * 3633 * Drivers that implement ndo_rx_flow_steer() should periodically call 3634 * this function for each installed filter and remove the filters for 3635 * which it returns %true. 3636 */ 3637 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3638 u32 flow_id, u16 filter_id) 3639 { 3640 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3641 struct rps_dev_flow_table *flow_table; 3642 struct rps_dev_flow *rflow; 3643 bool expire = true; 3644 unsigned int cpu; 3645 3646 rcu_read_lock(); 3647 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3648 if (flow_table && flow_id <= flow_table->mask) { 3649 rflow = &flow_table->flows[flow_id]; 3650 cpu = ACCESS_ONCE(rflow->cpu); 3651 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3652 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3653 rflow->last_qtail) < 3654 (int)(10 * flow_table->mask))) 3655 expire = false; 3656 } 3657 rcu_read_unlock(); 3658 return expire; 3659 } 3660 EXPORT_SYMBOL(rps_may_expire_flow); 3661 3662 #endif /* CONFIG_RFS_ACCEL */ 3663 3664 /* Called from hardirq (IPI) context */ 3665 static void rps_trigger_softirq(void *data) 3666 { 3667 struct softnet_data *sd = data; 3668 3669 ____napi_schedule(sd, &sd->backlog); 3670 sd->received_rps++; 3671 } 3672 3673 #endif /* CONFIG_RPS */ 3674 3675 /* 3676 * Check if this softnet_data structure is another cpu one 3677 * If yes, queue it to our IPI list and return 1 3678 * If no, return 0 3679 */ 3680 static int rps_ipi_queued(struct softnet_data *sd) 3681 { 3682 #ifdef CONFIG_RPS 3683 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3684 3685 if (sd != mysd) { 3686 sd->rps_ipi_next = mysd->rps_ipi_list; 3687 mysd->rps_ipi_list = sd; 3688 3689 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3690 return 1; 3691 } 3692 #endif /* CONFIG_RPS */ 3693 return 0; 3694 } 3695 3696 #ifdef CONFIG_NET_FLOW_LIMIT 3697 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3698 #endif 3699 3700 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3701 { 3702 #ifdef CONFIG_NET_FLOW_LIMIT 3703 struct sd_flow_limit *fl; 3704 struct softnet_data *sd; 3705 unsigned int old_flow, new_flow; 3706 3707 if (qlen < (netdev_max_backlog >> 1)) 3708 return false; 3709 3710 sd = this_cpu_ptr(&softnet_data); 3711 3712 rcu_read_lock(); 3713 fl = rcu_dereference(sd->flow_limit); 3714 if (fl) { 3715 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3716 old_flow = fl->history[fl->history_head]; 3717 fl->history[fl->history_head] = new_flow; 3718 3719 fl->history_head++; 3720 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3721 3722 if (likely(fl->buckets[old_flow])) 3723 fl->buckets[old_flow]--; 3724 3725 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3726 fl->count++; 3727 rcu_read_unlock(); 3728 return true; 3729 } 3730 } 3731 rcu_read_unlock(); 3732 #endif 3733 return false; 3734 } 3735 3736 /* 3737 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3738 * queue (may be a remote CPU queue). 3739 */ 3740 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3741 unsigned int *qtail) 3742 { 3743 struct softnet_data *sd; 3744 unsigned long flags; 3745 unsigned int qlen; 3746 3747 sd = &per_cpu(softnet_data, cpu); 3748 3749 local_irq_save(flags); 3750 3751 rps_lock(sd); 3752 if (!netif_running(skb->dev)) 3753 goto drop; 3754 qlen = skb_queue_len(&sd->input_pkt_queue); 3755 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3756 if (qlen) { 3757 enqueue: 3758 __skb_queue_tail(&sd->input_pkt_queue, skb); 3759 input_queue_tail_incr_save(sd, qtail); 3760 rps_unlock(sd); 3761 local_irq_restore(flags); 3762 return NET_RX_SUCCESS; 3763 } 3764 3765 /* Schedule NAPI for backlog device 3766 * We can use non atomic operation since we own the queue lock 3767 */ 3768 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3769 if (!rps_ipi_queued(sd)) 3770 ____napi_schedule(sd, &sd->backlog); 3771 } 3772 goto enqueue; 3773 } 3774 3775 drop: 3776 sd->dropped++; 3777 rps_unlock(sd); 3778 3779 local_irq_restore(flags); 3780 3781 atomic_long_inc(&skb->dev->rx_dropped); 3782 kfree_skb(skb); 3783 return NET_RX_DROP; 3784 } 3785 3786 static int netif_rx_internal(struct sk_buff *skb) 3787 { 3788 int ret; 3789 3790 net_timestamp_check(netdev_tstamp_prequeue, skb); 3791 3792 trace_netif_rx(skb); 3793 #ifdef CONFIG_RPS 3794 if (static_key_false(&rps_needed)) { 3795 struct rps_dev_flow voidflow, *rflow = &voidflow; 3796 int cpu; 3797 3798 preempt_disable(); 3799 rcu_read_lock(); 3800 3801 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3802 if (cpu < 0) 3803 cpu = smp_processor_id(); 3804 3805 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3806 3807 rcu_read_unlock(); 3808 preempt_enable(); 3809 } else 3810 #endif 3811 { 3812 unsigned int qtail; 3813 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3814 put_cpu(); 3815 } 3816 return ret; 3817 } 3818 3819 /** 3820 * netif_rx - post buffer to the network code 3821 * @skb: buffer to post 3822 * 3823 * This function receives a packet from a device driver and queues it for 3824 * the upper (protocol) levels to process. It always succeeds. The buffer 3825 * may be dropped during processing for congestion control or by the 3826 * protocol layers. 3827 * 3828 * return values: 3829 * NET_RX_SUCCESS (no congestion) 3830 * NET_RX_DROP (packet was dropped) 3831 * 3832 */ 3833 3834 int netif_rx(struct sk_buff *skb) 3835 { 3836 trace_netif_rx_entry(skb); 3837 3838 return netif_rx_internal(skb); 3839 } 3840 EXPORT_SYMBOL(netif_rx); 3841 3842 int netif_rx_ni(struct sk_buff *skb) 3843 { 3844 int err; 3845 3846 trace_netif_rx_ni_entry(skb); 3847 3848 preempt_disable(); 3849 err = netif_rx_internal(skb); 3850 if (local_softirq_pending()) 3851 do_softirq(); 3852 preempt_enable(); 3853 3854 return err; 3855 } 3856 EXPORT_SYMBOL(netif_rx_ni); 3857 3858 static void net_tx_action(struct softirq_action *h) 3859 { 3860 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3861 3862 if (sd->completion_queue) { 3863 struct sk_buff *clist; 3864 3865 local_irq_disable(); 3866 clist = sd->completion_queue; 3867 sd->completion_queue = NULL; 3868 local_irq_enable(); 3869 3870 while (clist) { 3871 struct sk_buff *skb = clist; 3872 clist = clist->next; 3873 3874 WARN_ON(atomic_read(&skb->users)); 3875 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3876 trace_consume_skb(skb); 3877 else 3878 trace_kfree_skb(skb, net_tx_action); 3879 3880 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 3881 __kfree_skb(skb); 3882 else 3883 __kfree_skb_defer(skb); 3884 } 3885 3886 __kfree_skb_flush(); 3887 } 3888 3889 if (sd->output_queue) { 3890 struct Qdisc *head; 3891 3892 local_irq_disable(); 3893 head = sd->output_queue; 3894 sd->output_queue = NULL; 3895 sd->output_queue_tailp = &sd->output_queue; 3896 local_irq_enable(); 3897 3898 while (head) { 3899 struct Qdisc *q = head; 3900 spinlock_t *root_lock; 3901 3902 head = head->next_sched; 3903 3904 root_lock = qdisc_lock(q); 3905 spin_lock(root_lock); 3906 /* We need to make sure head->next_sched is read 3907 * before clearing __QDISC_STATE_SCHED 3908 */ 3909 smp_mb__before_atomic(); 3910 clear_bit(__QDISC_STATE_SCHED, &q->state); 3911 qdisc_run(q); 3912 spin_unlock(root_lock); 3913 } 3914 } 3915 } 3916 3917 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3918 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3919 /* This hook is defined here for ATM LANE */ 3920 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3921 unsigned char *addr) __read_mostly; 3922 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3923 #endif 3924 3925 static inline struct sk_buff * 3926 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 3927 struct net_device *orig_dev) 3928 { 3929 #ifdef CONFIG_NET_CLS_ACT 3930 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 3931 struct tcf_result cl_res; 3932 3933 /* If there's at least one ingress present somewhere (so 3934 * we get here via enabled static key), remaining devices 3935 * that are not configured with an ingress qdisc will bail 3936 * out here. 3937 */ 3938 if (!cl) 3939 return skb; 3940 if (*pt_prev) { 3941 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3942 *pt_prev = NULL; 3943 } 3944 3945 qdisc_skb_cb(skb)->pkt_len = skb->len; 3946 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3947 qdisc_bstats_cpu_update(cl->q, skb); 3948 3949 switch (tc_classify(skb, cl, &cl_res, false)) { 3950 case TC_ACT_OK: 3951 case TC_ACT_RECLASSIFY: 3952 skb->tc_index = TC_H_MIN(cl_res.classid); 3953 break; 3954 case TC_ACT_SHOT: 3955 qdisc_qstats_cpu_drop(cl->q); 3956 kfree_skb(skb); 3957 return NULL; 3958 case TC_ACT_STOLEN: 3959 case TC_ACT_QUEUED: 3960 consume_skb(skb); 3961 return NULL; 3962 case TC_ACT_REDIRECT: 3963 /* skb_mac_header check was done by cls/act_bpf, so 3964 * we can safely push the L2 header back before 3965 * redirecting to another netdev 3966 */ 3967 __skb_push(skb, skb->mac_len); 3968 skb_do_redirect(skb); 3969 return NULL; 3970 default: 3971 break; 3972 } 3973 #endif /* CONFIG_NET_CLS_ACT */ 3974 return skb; 3975 } 3976 3977 /** 3978 * netdev_rx_handler_register - register receive handler 3979 * @dev: device to register a handler for 3980 * @rx_handler: receive handler to register 3981 * @rx_handler_data: data pointer that is used by rx handler 3982 * 3983 * Register a receive handler for a device. This handler will then be 3984 * called from __netif_receive_skb. A negative errno code is returned 3985 * on a failure. 3986 * 3987 * The caller must hold the rtnl_mutex. 3988 * 3989 * For a general description of rx_handler, see enum rx_handler_result. 3990 */ 3991 int netdev_rx_handler_register(struct net_device *dev, 3992 rx_handler_func_t *rx_handler, 3993 void *rx_handler_data) 3994 { 3995 ASSERT_RTNL(); 3996 3997 if (dev->rx_handler) 3998 return -EBUSY; 3999 4000 /* Note: rx_handler_data must be set before rx_handler */ 4001 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4002 rcu_assign_pointer(dev->rx_handler, rx_handler); 4003 4004 return 0; 4005 } 4006 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4007 4008 /** 4009 * netdev_rx_handler_unregister - unregister receive handler 4010 * @dev: device to unregister a handler from 4011 * 4012 * Unregister a receive handler from a device. 4013 * 4014 * The caller must hold the rtnl_mutex. 4015 */ 4016 void netdev_rx_handler_unregister(struct net_device *dev) 4017 { 4018 4019 ASSERT_RTNL(); 4020 RCU_INIT_POINTER(dev->rx_handler, NULL); 4021 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4022 * section has a guarantee to see a non NULL rx_handler_data 4023 * as well. 4024 */ 4025 synchronize_net(); 4026 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4027 } 4028 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4029 4030 /* 4031 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4032 * the special handling of PFMEMALLOC skbs. 4033 */ 4034 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4035 { 4036 switch (skb->protocol) { 4037 case htons(ETH_P_ARP): 4038 case htons(ETH_P_IP): 4039 case htons(ETH_P_IPV6): 4040 case htons(ETH_P_8021Q): 4041 case htons(ETH_P_8021AD): 4042 return true; 4043 default: 4044 return false; 4045 } 4046 } 4047 4048 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4049 int *ret, struct net_device *orig_dev) 4050 { 4051 #ifdef CONFIG_NETFILTER_INGRESS 4052 if (nf_hook_ingress_active(skb)) { 4053 if (*pt_prev) { 4054 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4055 *pt_prev = NULL; 4056 } 4057 4058 return nf_hook_ingress(skb); 4059 } 4060 #endif /* CONFIG_NETFILTER_INGRESS */ 4061 return 0; 4062 } 4063 4064 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4065 { 4066 struct packet_type *ptype, *pt_prev; 4067 rx_handler_func_t *rx_handler; 4068 struct net_device *orig_dev; 4069 bool deliver_exact = false; 4070 int ret = NET_RX_DROP; 4071 __be16 type; 4072 4073 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4074 4075 trace_netif_receive_skb(skb); 4076 4077 orig_dev = skb->dev; 4078 4079 skb_reset_network_header(skb); 4080 if (!skb_transport_header_was_set(skb)) 4081 skb_reset_transport_header(skb); 4082 skb_reset_mac_len(skb); 4083 4084 pt_prev = NULL; 4085 4086 another_round: 4087 skb->skb_iif = skb->dev->ifindex; 4088 4089 __this_cpu_inc(softnet_data.processed); 4090 4091 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4092 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4093 skb = skb_vlan_untag(skb); 4094 if (unlikely(!skb)) 4095 goto out; 4096 } 4097 4098 #ifdef CONFIG_NET_CLS_ACT 4099 if (skb->tc_verd & TC_NCLS) { 4100 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 4101 goto ncls; 4102 } 4103 #endif 4104 4105 if (pfmemalloc) 4106 goto skip_taps; 4107 4108 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4109 if (pt_prev) 4110 ret = deliver_skb(skb, pt_prev, orig_dev); 4111 pt_prev = ptype; 4112 } 4113 4114 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4115 if (pt_prev) 4116 ret = deliver_skb(skb, pt_prev, orig_dev); 4117 pt_prev = ptype; 4118 } 4119 4120 skip_taps: 4121 #ifdef CONFIG_NET_INGRESS 4122 if (static_key_false(&ingress_needed)) { 4123 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4124 if (!skb) 4125 goto out; 4126 4127 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4128 goto out; 4129 } 4130 #endif 4131 #ifdef CONFIG_NET_CLS_ACT 4132 skb->tc_verd = 0; 4133 ncls: 4134 #endif 4135 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4136 goto drop; 4137 4138 if (skb_vlan_tag_present(skb)) { 4139 if (pt_prev) { 4140 ret = deliver_skb(skb, pt_prev, orig_dev); 4141 pt_prev = NULL; 4142 } 4143 if (vlan_do_receive(&skb)) 4144 goto another_round; 4145 else if (unlikely(!skb)) 4146 goto out; 4147 } 4148 4149 rx_handler = rcu_dereference(skb->dev->rx_handler); 4150 if (rx_handler) { 4151 if (pt_prev) { 4152 ret = deliver_skb(skb, pt_prev, orig_dev); 4153 pt_prev = NULL; 4154 } 4155 switch (rx_handler(&skb)) { 4156 case RX_HANDLER_CONSUMED: 4157 ret = NET_RX_SUCCESS; 4158 goto out; 4159 case RX_HANDLER_ANOTHER: 4160 goto another_round; 4161 case RX_HANDLER_EXACT: 4162 deliver_exact = true; 4163 case RX_HANDLER_PASS: 4164 break; 4165 default: 4166 BUG(); 4167 } 4168 } 4169 4170 if (unlikely(skb_vlan_tag_present(skb))) { 4171 if (skb_vlan_tag_get_id(skb)) 4172 skb->pkt_type = PACKET_OTHERHOST; 4173 /* Note: we might in the future use prio bits 4174 * and set skb->priority like in vlan_do_receive() 4175 * For the time being, just ignore Priority Code Point 4176 */ 4177 skb->vlan_tci = 0; 4178 } 4179 4180 type = skb->protocol; 4181 4182 /* deliver only exact match when indicated */ 4183 if (likely(!deliver_exact)) { 4184 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4185 &ptype_base[ntohs(type) & 4186 PTYPE_HASH_MASK]); 4187 } 4188 4189 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4190 &orig_dev->ptype_specific); 4191 4192 if (unlikely(skb->dev != orig_dev)) { 4193 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4194 &skb->dev->ptype_specific); 4195 } 4196 4197 if (pt_prev) { 4198 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 4199 goto drop; 4200 else 4201 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4202 } else { 4203 drop: 4204 if (!deliver_exact) 4205 atomic_long_inc(&skb->dev->rx_dropped); 4206 else 4207 atomic_long_inc(&skb->dev->rx_nohandler); 4208 kfree_skb(skb); 4209 /* Jamal, now you will not able to escape explaining 4210 * me how you were going to use this. :-) 4211 */ 4212 ret = NET_RX_DROP; 4213 } 4214 4215 out: 4216 return ret; 4217 } 4218 4219 static int __netif_receive_skb(struct sk_buff *skb) 4220 { 4221 int ret; 4222 4223 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4224 unsigned long pflags = current->flags; 4225 4226 /* 4227 * PFMEMALLOC skbs are special, they should 4228 * - be delivered to SOCK_MEMALLOC sockets only 4229 * - stay away from userspace 4230 * - have bounded memory usage 4231 * 4232 * Use PF_MEMALLOC as this saves us from propagating the allocation 4233 * context down to all allocation sites. 4234 */ 4235 current->flags |= PF_MEMALLOC; 4236 ret = __netif_receive_skb_core(skb, true); 4237 tsk_restore_flags(current, pflags, PF_MEMALLOC); 4238 } else 4239 ret = __netif_receive_skb_core(skb, false); 4240 4241 return ret; 4242 } 4243 4244 static int netif_receive_skb_internal(struct sk_buff *skb) 4245 { 4246 int ret; 4247 4248 net_timestamp_check(netdev_tstamp_prequeue, skb); 4249 4250 if (skb_defer_rx_timestamp(skb)) 4251 return NET_RX_SUCCESS; 4252 4253 rcu_read_lock(); 4254 4255 #ifdef CONFIG_RPS 4256 if (static_key_false(&rps_needed)) { 4257 struct rps_dev_flow voidflow, *rflow = &voidflow; 4258 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4259 4260 if (cpu >= 0) { 4261 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4262 rcu_read_unlock(); 4263 return ret; 4264 } 4265 } 4266 #endif 4267 ret = __netif_receive_skb(skb); 4268 rcu_read_unlock(); 4269 return ret; 4270 } 4271 4272 /** 4273 * netif_receive_skb - process receive buffer from network 4274 * @skb: buffer to process 4275 * 4276 * netif_receive_skb() is the main receive data processing function. 4277 * It always succeeds. The buffer may be dropped during processing 4278 * for congestion control or by the protocol layers. 4279 * 4280 * This function may only be called from softirq context and interrupts 4281 * should be enabled. 4282 * 4283 * Return values (usually ignored): 4284 * NET_RX_SUCCESS: no congestion 4285 * NET_RX_DROP: packet was dropped 4286 */ 4287 int netif_receive_skb(struct sk_buff *skb) 4288 { 4289 trace_netif_receive_skb_entry(skb); 4290 4291 return netif_receive_skb_internal(skb); 4292 } 4293 EXPORT_SYMBOL(netif_receive_skb); 4294 4295 /* Network device is going away, flush any packets still pending 4296 * Called with irqs disabled. 4297 */ 4298 static void flush_backlog(void *arg) 4299 { 4300 struct net_device *dev = arg; 4301 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4302 struct sk_buff *skb, *tmp; 4303 4304 rps_lock(sd); 4305 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4306 if (skb->dev == dev) { 4307 __skb_unlink(skb, &sd->input_pkt_queue); 4308 kfree_skb(skb); 4309 input_queue_head_incr(sd); 4310 } 4311 } 4312 rps_unlock(sd); 4313 4314 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4315 if (skb->dev == dev) { 4316 __skb_unlink(skb, &sd->process_queue); 4317 kfree_skb(skb); 4318 input_queue_head_incr(sd); 4319 } 4320 } 4321 } 4322 4323 static int napi_gro_complete(struct sk_buff *skb) 4324 { 4325 struct packet_offload *ptype; 4326 __be16 type = skb->protocol; 4327 struct list_head *head = &offload_base; 4328 int err = -ENOENT; 4329 4330 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4331 4332 if (NAPI_GRO_CB(skb)->count == 1) { 4333 skb_shinfo(skb)->gso_size = 0; 4334 goto out; 4335 } 4336 4337 rcu_read_lock(); 4338 list_for_each_entry_rcu(ptype, head, list) { 4339 if (ptype->type != type || !ptype->callbacks.gro_complete) 4340 continue; 4341 4342 err = ptype->callbacks.gro_complete(skb, 0); 4343 break; 4344 } 4345 rcu_read_unlock(); 4346 4347 if (err) { 4348 WARN_ON(&ptype->list == head); 4349 kfree_skb(skb); 4350 return NET_RX_SUCCESS; 4351 } 4352 4353 out: 4354 return netif_receive_skb_internal(skb); 4355 } 4356 4357 /* napi->gro_list contains packets ordered by age. 4358 * youngest packets at the head of it. 4359 * Complete skbs in reverse order to reduce latencies. 4360 */ 4361 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4362 { 4363 struct sk_buff *skb, *prev = NULL; 4364 4365 /* scan list and build reverse chain */ 4366 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4367 skb->prev = prev; 4368 prev = skb; 4369 } 4370 4371 for (skb = prev; skb; skb = prev) { 4372 skb->next = NULL; 4373 4374 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4375 return; 4376 4377 prev = skb->prev; 4378 napi_gro_complete(skb); 4379 napi->gro_count--; 4380 } 4381 4382 napi->gro_list = NULL; 4383 } 4384 EXPORT_SYMBOL(napi_gro_flush); 4385 4386 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4387 { 4388 struct sk_buff *p; 4389 unsigned int maclen = skb->dev->hard_header_len; 4390 u32 hash = skb_get_hash_raw(skb); 4391 4392 for (p = napi->gro_list; p; p = p->next) { 4393 unsigned long diffs; 4394 4395 NAPI_GRO_CB(p)->flush = 0; 4396 4397 if (hash != skb_get_hash_raw(p)) { 4398 NAPI_GRO_CB(p)->same_flow = 0; 4399 continue; 4400 } 4401 4402 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4403 diffs |= p->vlan_tci ^ skb->vlan_tci; 4404 diffs |= skb_metadata_dst_cmp(p, skb); 4405 if (maclen == ETH_HLEN) 4406 diffs |= compare_ether_header(skb_mac_header(p), 4407 skb_mac_header(skb)); 4408 else if (!diffs) 4409 diffs = memcmp(skb_mac_header(p), 4410 skb_mac_header(skb), 4411 maclen); 4412 NAPI_GRO_CB(p)->same_flow = !diffs; 4413 } 4414 } 4415 4416 static void skb_gro_reset_offset(struct sk_buff *skb) 4417 { 4418 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4419 const skb_frag_t *frag0 = &pinfo->frags[0]; 4420 4421 NAPI_GRO_CB(skb)->data_offset = 0; 4422 NAPI_GRO_CB(skb)->frag0 = NULL; 4423 NAPI_GRO_CB(skb)->frag0_len = 0; 4424 4425 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4426 pinfo->nr_frags && 4427 !PageHighMem(skb_frag_page(frag0))) { 4428 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4429 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 4430 } 4431 } 4432 4433 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4434 { 4435 struct skb_shared_info *pinfo = skb_shinfo(skb); 4436 4437 BUG_ON(skb->end - skb->tail < grow); 4438 4439 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4440 4441 skb->data_len -= grow; 4442 skb->tail += grow; 4443 4444 pinfo->frags[0].page_offset += grow; 4445 skb_frag_size_sub(&pinfo->frags[0], grow); 4446 4447 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4448 skb_frag_unref(skb, 0); 4449 memmove(pinfo->frags, pinfo->frags + 1, 4450 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4451 } 4452 } 4453 4454 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4455 { 4456 struct sk_buff **pp = NULL; 4457 struct packet_offload *ptype; 4458 __be16 type = skb->protocol; 4459 struct list_head *head = &offload_base; 4460 int same_flow; 4461 enum gro_result ret; 4462 int grow; 4463 4464 if (!(skb->dev->features & NETIF_F_GRO)) 4465 goto normal; 4466 4467 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad) 4468 goto normal; 4469 4470 gro_list_prepare(napi, skb); 4471 4472 rcu_read_lock(); 4473 list_for_each_entry_rcu(ptype, head, list) { 4474 if (ptype->type != type || !ptype->callbacks.gro_receive) 4475 continue; 4476 4477 skb_set_network_header(skb, skb_gro_offset(skb)); 4478 skb_reset_mac_len(skb); 4479 NAPI_GRO_CB(skb)->same_flow = 0; 4480 NAPI_GRO_CB(skb)->flush = 0; 4481 NAPI_GRO_CB(skb)->free = 0; 4482 NAPI_GRO_CB(skb)->encap_mark = 0; 4483 NAPI_GRO_CB(skb)->is_fou = 0; 4484 NAPI_GRO_CB(skb)->is_atomic = 1; 4485 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4486 4487 /* Setup for GRO checksum validation */ 4488 switch (skb->ip_summed) { 4489 case CHECKSUM_COMPLETE: 4490 NAPI_GRO_CB(skb)->csum = skb->csum; 4491 NAPI_GRO_CB(skb)->csum_valid = 1; 4492 NAPI_GRO_CB(skb)->csum_cnt = 0; 4493 break; 4494 case CHECKSUM_UNNECESSARY: 4495 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4496 NAPI_GRO_CB(skb)->csum_valid = 0; 4497 break; 4498 default: 4499 NAPI_GRO_CB(skb)->csum_cnt = 0; 4500 NAPI_GRO_CB(skb)->csum_valid = 0; 4501 } 4502 4503 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4504 break; 4505 } 4506 rcu_read_unlock(); 4507 4508 if (&ptype->list == head) 4509 goto normal; 4510 4511 same_flow = NAPI_GRO_CB(skb)->same_flow; 4512 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4513 4514 if (pp) { 4515 struct sk_buff *nskb = *pp; 4516 4517 *pp = nskb->next; 4518 nskb->next = NULL; 4519 napi_gro_complete(nskb); 4520 napi->gro_count--; 4521 } 4522 4523 if (same_flow) 4524 goto ok; 4525 4526 if (NAPI_GRO_CB(skb)->flush) 4527 goto normal; 4528 4529 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4530 struct sk_buff *nskb = napi->gro_list; 4531 4532 /* locate the end of the list to select the 'oldest' flow */ 4533 while (nskb->next) { 4534 pp = &nskb->next; 4535 nskb = *pp; 4536 } 4537 *pp = NULL; 4538 nskb->next = NULL; 4539 napi_gro_complete(nskb); 4540 } else { 4541 napi->gro_count++; 4542 } 4543 NAPI_GRO_CB(skb)->count = 1; 4544 NAPI_GRO_CB(skb)->age = jiffies; 4545 NAPI_GRO_CB(skb)->last = skb; 4546 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4547 skb->next = napi->gro_list; 4548 napi->gro_list = skb; 4549 ret = GRO_HELD; 4550 4551 pull: 4552 grow = skb_gro_offset(skb) - skb_headlen(skb); 4553 if (grow > 0) 4554 gro_pull_from_frag0(skb, grow); 4555 ok: 4556 return ret; 4557 4558 normal: 4559 ret = GRO_NORMAL; 4560 goto pull; 4561 } 4562 4563 struct packet_offload *gro_find_receive_by_type(__be16 type) 4564 { 4565 struct list_head *offload_head = &offload_base; 4566 struct packet_offload *ptype; 4567 4568 list_for_each_entry_rcu(ptype, offload_head, list) { 4569 if (ptype->type != type || !ptype->callbacks.gro_receive) 4570 continue; 4571 return ptype; 4572 } 4573 return NULL; 4574 } 4575 EXPORT_SYMBOL(gro_find_receive_by_type); 4576 4577 struct packet_offload *gro_find_complete_by_type(__be16 type) 4578 { 4579 struct list_head *offload_head = &offload_base; 4580 struct packet_offload *ptype; 4581 4582 list_for_each_entry_rcu(ptype, offload_head, list) { 4583 if (ptype->type != type || !ptype->callbacks.gro_complete) 4584 continue; 4585 return ptype; 4586 } 4587 return NULL; 4588 } 4589 EXPORT_SYMBOL(gro_find_complete_by_type); 4590 4591 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4592 { 4593 switch (ret) { 4594 case GRO_NORMAL: 4595 if (netif_receive_skb_internal(skb)) 4596 ret = GRO_DROP; 4597 break; 4598 4599 case GRO_DROP: 4600 kfree_skb(skb); 4601 break; 4602 4603 case GRO_MERGED_FREE: 4604 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) { 4605 skb_dst_drop(skb); 4606 kmem_cache_free(skbuff_head_cache, skb); 4607 } else { 4608 __kfree_skb(skb); 4609 } 4610 break; 4611 4612 case GRO_HELD: 4613 case GRO_MERGED: 4614 break; 4615 } 4616 4617 return ret; 4618 } 4619 4620 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4621 { 4622 skb_mark_napi_id(skb, napi); 4623 trace_napi_gro_receive_entry(skb); 4624 4625 skb_gro_reset_offset(skb); 4626 4627 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4628 } 4629 EXPORT_SYMBOL(napi_gro_receive); 4630 4631 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4632 { 4633 if (unlikely(skb->pfmemalloc)) { 4634 consume_skb(skb); 4635 return; 4636 } 4637 __skb_pull(skb, skb_headlen(skb)); 4638 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4639 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4640 skb->vlan_tci = 0; 4641 skb->dev = napi->dev; 4642 skb->skb_iif = 0; 4643 skb->encapsulation = 0; 4644 skb_shinfo(skb)->gso_type = 0; 4645 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4646 4647 napi->skb = skb; 4648 } 4649 4650 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4651 { 4652 struct sk_buff *skb = napi->skb; 4653 4654 if (!skb) { 4655 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4656 if (skb) { 4657 napi->skb = skb; 4658 skb_mark_napi_id(skb, napi); 4659 } 4660 } 4661 return skb; 4662 } 4663 EXPORT_SYMBOL(napi_get_frags); 4664 4665 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4666 struct sk_buff *skb, 4667 gro_result_t ret) 4668 { 4669 switch (ret) { 4670 case GRO_NORMAL: 4671 case GRO_HELD: 4672 __skb_push(skb, ETH_HLEN); 4673 skb->protocol = eth_type_trans(skb, skb->dev); 4674 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4675 ret = GRO_DROP; 4676 break; 4677 4678 case GRO_DROP: 4679 case GRO_MERGED_FREE: 4680 napi_reuse_skb(napi, skb); 4681 break; 4682 4683 case GRO_MERGED: 4684 break; 4685 } 4686 4687 return ret; 4688 } 4689 4690 /* Upper GRO stack assumes network header starts at gro_offset=0 4691 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4692 * We copy ethernet header into skb->data to have a common layout. 4693 */ 4694 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4695 { 4696 struct sk_buff *skb = napi->skb; 4697 const struct ethhdr *eth; 4698 unsigned int hlen = sizeof(*eth); 4699 4700 napi->skb = NULL; 4701 4702 skb_reset_mac_header(skb); 4703 skb_gro_reset_offset(skb); 4704 4705 eth = skb_gro_header_fast(skb, 0); 4706 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4707 eth = skb_gro_header_slow(skb, hlen, 0); 4708 if (unlikely(!eth)) { 4709 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 4710 __func__, napi->dev->name); 4711 napi_reuse_skb(napi, skb); 4712 return NULL; 4713 } 4714 } else { 4715 gro_pull_from_frag0(skb, hlen); 4716 NAPI_GRO_CB(skb)->frag0 += hlen; 4717 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4718 } 4719 __skb_pull(skb, hlen); 4720 4721 /* 4722 * This works because the only protocols we care about don't require 4723 * special handling. 4724 * We'll fix it up properly in napi_frags_finish() 4725 */ 4726 skb->protocol = eth->h_proto; 4727 4728 return skb; 4729 } 4730 4731 gro_result_t napi_gro_frags(struct napi_struct *napi) 4732 { 4733 struct sk_buff *skb = napi_frags_skb(napi); 4734 4735 if (!skb) 4736 return GRO_DROP; 4737 4738 trace_napi_gro_frags_entry(skb); 4739 4740 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4741 } 4742 EXPORT_SYMBOL(napi_gro_frags); 4743 4744 /* Compute the checksum from gro_offset and return the folded value 4745 * after adding in any pseudo checksum. 4746 */ 4747 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4748 { 4749 __wsum wsum; 4750 __sum16 sum; 4751 4752 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4753 4754 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4755 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4756 if (likely(!sum)) { 4757 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4758 !skb->csum_complete_sw) 4759 netdev_rx_csum_fault(skb->dev); 4760 } 4761 4762 NAPI_GRO_CB(skb)->csum = wsum; 4763 NAPI_GRO_CB(skb)->csum_valid = 1; 4764 4765 return sum; 4766 } 4767 EXPORT_SYMBOL(__skb_gro_checksum_complete); 4768 4769 /* 4770 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4771 * Note: called with local irq disabled, but exits with local irq enabled. 4772 */ 4773 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4774 { 4775 #ifdef CONFIG_RPS 4776 struct softnet_data *remsd = sd->rps_ipi_list; 4777 4778 if (remsd) { 4779 sd->rps_ipi_list = NULL; 4780 4781 local_irq_enable(); 4782 4783 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4784 while (remsd) { 4785 struct softnet_data *next = remsd->rps_ipi_next; 4786 4787 if (cpu_online(remsd->cpu)) 4788 smp_call_function_single_async(remsd->cpu, 4789 &remsd->csd); 4790 remsd = next; 4791 } 4792 } else 4793 #endif 4794 local_irq_enable(); 4795 } 4796 4797 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4798 { 4799 #ifdef CONFIG_RPS 4800 return sd->rps_ipi_list != NULL; 4801 #else 4802 return false; 4803 #endif 4804 } 4805 4806 static int process_backlog(struct napi_struct *napi, int quota) 4807 { 4808 int work = 0; 4809 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4810 4811 /* Check if we have pending ipi, its better to send them now, 4812 * not waiting net_rx_action() end. 4813 */ 4814 if (sd_has_rps_ipi_waiting(sd)) { 4815 local_irq_disable(); 4816 net_rps_action_and_irq_enable(sd); 4817 } 4818 4819 napi->weight = weight_p; 4820 local_irq_disable(); 4821 while (1) { 4822 struct sk_buff *skb; 4823 4824 while ((skb = __skb_dequeue(&sd->process_queue))) { 4825 rcu_read_lock(); 4826 local_irq_enable(); 4827 __netif_receive_skb(skb); 4828 rcu_read_unlock(); 4829 local_irq_disable(); 4830 input_queue_head_incr(sd); 4831 if (++work >= quota) { 4832 local_irq_enable(); 4833 return work; 4834 } 4835 } 4836 4837 rps_lock(sd); 4838 if (skb_queue_empty(&sd->input_pkt_queue)) { 4839 /* 4840 * Inline a custom version of __napi_complete(). 4841 * only current cpu owns and manipulates this napi, 4842 * and NAPI_STATE_SCHED is the only possible flag set 4843 * on backlog. 4844 * We can use a plain write instead of clear_bit(), 4845 * and we dont need an smp_mb() memory barrier. 4846 */ 4847 napi->state = 0; 4848 rps_unlock(sd); 4849 4850 break; 4851 } 4852 4853 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4854 &sd->process_queue); 4855 rps_unlock(sd); 4856 } 4857 local_irq_enable(); 4858 4859 return work; 4860 } 4861 4862 /** 4863 * __napi_schedule - schedule for receive 4864 * @n: entry to schedule 4865 * 4866 * The entry's receive function will be scheduled to run. 4867 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 4868 */ 4869 void __napi_schedule(struct napi_struct *n) 4870 { 4871 unsigned long flags; 4872 4873 local_irq_save(flags); 4874 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4875 local_irq_restore(flags); 4876 } 4877 EXPORT_SYMBOL(__napi_schedule); 4878 4879 /** 4880 * __napi_schedule_irqoff - schedule for receive 4881 * @n: entry to schedule 4882 * 4883 * Variant of __napi_schedule() assuming hard irqs are masked 4884 */ 4885 void __napi_schedule_irqoff(struct napi_struct *n) 4886 { 4887 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4888 } 4889 EXPORT_SYMBOL(__napi_schedule_irqoff); 4890 4891 void __napi_complete(struct napi_struct *n) 4892 { 4893 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4894 4895 list_del_init(&n->poll_list); 4896 smp_mb__before_atomic(); 4897 clear_bit(NAPI_STATE_SCHED, &n->state); 4898 } 4899 EXPORT_SYMBOL(__napi_complete); 4900 4901 void napi_complete_done(struct napi_struct *n, int work_done) 4902 { 4903 unsigned long flags; 4904 4905 /* 4906 * don't let napi dequeue from the cpu poll list 4907 * just in case its running on a different cpu 4908 */ 4909 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4910 return; 4911 4912 if (n->gro_list) { 4913 unsigned long timeout = 0; 4914 4915 if (work_done) 4916 timeout = n->dev->gro_flush_timeout; 4917 4918 if (timeout) 4919 hrtimer_start(&n->timer, ns_to_ktime(timeout), 4920 HRTIMER_MODE_REL_PINNED); 4921 else 4922 napi_gro_flush(n, false); 4923 } 4924 if (likely(list_empty(&n->poll_list))) { 4925 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state)); 4926 } else { 4927 /* If n->poll_list is not empty, we need to mask irqs */ 4928 local_irq_save(flags); 4929 __napi_complete(n); 4930 local_irq_restore(flags); 4931 } 4932 } 4933 EXPORT_SYMBOL(napi_complete_done); 4934 4935 /* must be called under rcu_read_lock(), as we dont take a reference */ 4936 static struct napi_struct *napi_by_id(unsigned int napi_id) 4937 { 4938 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4939 struct napi_struct *napi; 4940 4941 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4942 if (napi->napi_id == napi_id) 4943 return napi; 4944 4945 return NULL; 4946 } 4947 4948 #if defined(CONFIG_NET_RX_BUSY_POLL) 4949 #define BUSY_POLL_BUDGET 8 4950 bool sk_busy_loop(struct sock *sk, int nonblock) 4951 { 4952 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0; 4953 int (*busy_poll)(struct napi_struct *dev); 4954 struct napi_struct *napi; 4955 int rc = false; 4956 4957 rcu_read_lock(); 4958 4959 napi = napi_by_id(sk->sk_napi_id); 4960 if (!napi) 4961 goto out; 4962 4963 /* Note: ndo_busy_poll method is optional in linux-4.5 */ 4964 busy_poll = napi->dev->netdev_ops->ndo_busy_poll; 4965 4966 do { 4967 rc = 0; 4968 local_bh_disable(); 4969 if (busy_poll) { 4970 rc = busy_poll(napi); 4971 } else if (napi_schedule_prep(napi)) { 4972 void *have = netpoll_poll_lock(napi); 4973 4974 if (test_bit(NAPI_STATE_SCHED, &napi->state)) { 4975 rc = napi->poll(napi, BUSY_POLL_BUDGET); 4976 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 4977 if (rc == BUSY_POLL_BUDGET) { 4978 napi_complete_done(napi, rc); 4979 napi_schedule(napi); 4980 } 4981 } 4982 netpoll_poll_unlock(have); 4983 } 4984 if (rc > 0) 4985 __NET_ADD_STATS(sock_net(sk), 4986 LINUX_MIB_BUSYPOLLRXPACKETS, rc); 4987 local_bh_enable(); 4988 4989 if (rc == LL_FLUSH_FAILED) 4990 break; /* permanent failure */ 4991 4992 cpu_relax(); 4993 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) && 4994 !need_resched() && !busy_loop_timeout(end_time)); 4995 4996 rc = !skb_queue_empty(&sk->sk_receive_queue); 4997 out: 4998 rcu_read_unlock(); 4999 return rc; 5000 } 5001 EXPORT_SYMBOL(sk_busy_loop); 5002 5003 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5004 5005 void napi_hash_add(struct napi_struct *napi) 5006 { 5007 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5008 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5009 return; 5010 5011 spin_lock(&napi_hash_lock); 5012 5013 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */ 5014 do { 5015 if (unlikely(++napi_gen_id < NR_CPUS + 1)) 5016 napi_gen_id = NR_CPUS + 1; 5017 } while (napi_by_id(napi_gen_id)); 5018 napi->napi_id = napi_gen_id; 5019 5020 hlist_add_head_rcu(&napi->napi_hash_node, 5021 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5022 5023 spin_unlock(&napi_hash_lock); 5024 } 5025 EXPORT_SYMBOL_GPL(napi_hash_add); 5026 5027 /* Warning : caller is responsible to make sure rcu grace period 5028 * is respected before freeing memory containing @napi 5029 */ 5030 bool napi_hash_del(struct napi_struct *napi) 5031 { 5032 bool rcu_sync_needed = false; 5033 5034 spin_lock(&napi_hash_lock); 5035 5036 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5037 rcu_sync_needed = true; 5038 hlist_del_rcu(&napi->napi_hash_node); 5039 } 5040 spin_unlock(&napi_hash_lock); 5041 return rcu_sync_needed; 5042 } 5043 EXPORT_SYMBOL_GPL(napi_hash_del); 5044 5045 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5046 { 5047 struct napi_struct *napi; 5048 5049 napi = container_of(timer, struct napi_struct, timer); 5050 if (napi->gro_list) 5051 napi_schedule(napi); 5052 5053 return HRTIMER_NORESTART; 5054 } 5055 5056 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5057 int (*poll)(struct napi_struct *, int), int weight) 5058 { 5059 INIT_LIST_HEAD(&napi->poll_list); 5060 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5061 napi->timer.function = napi_watchdog; 5062 napi->gro_count = 0; 5063 napi->gro_list = NULL; 5064 napi->skb = NULL; 5065 napi->poll = poll; 5066 if (weight > NAPI_POLL_WEIGHT) 5067 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5068 weight, dev->name); 5069 napi->weight = weight; 5070 list_add(&napi->dev_list, &dev->napi_list); 5071 napi->dev = dev; 5072 #ifdef CONFIG_NETPOLL 5073 spin_lock_init(&napi->poll_lock); 5074 napi->poll_owner = -1; 5075 #endif 5076 set_bit(NAPI_STATE_SCHED, &napi->state); 5077 napi_hash_add(napi); 5078 } 5079 EXPORT_SYMBOL(netif_napi_add); 5080 5081 void napi_disable(struct napi_struct *n) 5082 { 5083 might_sleep(); 5084 set_bit(NAPI_STATE_DISABLE, &n->state); 5085 5086 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5087 msleep(1); 5088 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5089 msleep(1); 5090 5091 hrtimer_cancel(&n->timer); 5092 5093 clear_bit(NAPI_STATE_DISABLE, &n->state); 5094 } 5095 EXPORT_SYMBOL(napi_disable); 5096 5097 /* Must be called in process context */ 5098 void netif_napi_del(struct napi_struct *napi) 5099 { 5100 might_sleep(); 5101 if (napi_hash_del(napi)) 5102 synchronize_net(); 5103 list_del_init(&napi->dev_list); 5104 napi_free_frags(napi); 5105 5106 kfree_skb_list(napi->gro_list); 5107 napi->gro_list = NULL; 5108 napi->gro_count = 0; 5109 } 5110 EXPORT_SYMBOL(netif_napi_del); 5111 5112 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5113 { 5114 void *have; 5115 int work, weight; 5116 5117 list_del_init(&n->poll_list); 5118 5119 have = netpoll_poll_lock(n); 5120 5121 weight = n->weight; 5122 5123 /* This NAPI_STATE_SCHED test is for avoiding a race 5124 * with netpoll's poll_napi(). Only the entity which 5125 * obtains the lock and sees NAPI_STATE_SCHED set will 5126 * actually make the ->poll() call. Therefore we avoid 5127 * accidentally calling ->poll() when NAPI is not scheduled. 5128 */ 5129 work = 0; 5130 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5131 work = n->poll(n, weight); 5132 trace_napi_poll(n, work, weight); 5133 } 5134 5135 WARN_ON_ONCE(work > weight); 5136 5137 if (likely(work < weight)) 5138 goto out_unlock; 5139 5140 /* Drivers must not modify the NAPI state if they 5141 * consume the entire weight. In such cases this code 5142 * still "owns" the NAPI instance and therefore can 5143 * move the instance around on the list at-will. 5144 */ 5145 if (unlikely(napi_disable_pending(n))) { 5146 napi_complete(n); 5147 goto out_unlock; 5148 } 5149 5150 if (n->gro_list) { 5151 /* flush too old packets 5152 * If HZ < 1000, flush all packets. 5153 */ 5154 napi_gro_flush(n, HZ >= 1000); 5155 } 5156 5157 /* Some drivers may have called napi_schedule 5158 * prior to exhausting their budget. 5159 */ 5160 if (unlikely(!list_empty(&n->poll_list))) { 5161 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5162 n->dev ? n->dev->name : "backlog"); 5163 goto out_unlock; 5164 } 5165 5166 list_add_tail(&n->poll_list, repoll); 5167 5168 out_unlock: 5169 netpoll_poll_unlock(have); 5170 5171 return work; 5172 } 5173 5174 static void net_rx_action(struct softirq_action *h) 5175 { 5176 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5177 unsigned long time_limit = jiffies + 2; 5178 int budget = netdev_budget; 5179 LIST_HEAD(list); 5180 LIST_HEAD(repoll); 5181 5182 local_irq_disable(); 5183 list_splice_init(&sd->poll_list, &list); 5184 local_irq_enable(); 5185 5186 for (;;) { 5187 struct napi_struct *n; 5188 5189 if (list_empty(&list)) { 5190 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5191 return; 5192 break; 5193 } 5194 5195 n = list_first_entry(&list, struct napi_struct, poll_list); 5196 budget -= napi_poll(n, &repoll); 5197 5198 /* If softirq window is exhausted then punt. 5199 * Allow this to run for 2 jiffies since which will allow 5200 * an average latency of 1.5/HZ. 5201 */ 5202 if (unlikely(budget <= 0 || 5203 time_after_eq(jiffies, time_limit))) { 5204 sd->time_squeeze++; 5205 break; 5206 } 5207 } 5208 5209 __kfree_skb_flush(); 5210 local_irq_disable(); 5211 5212 list_splice_tail_init(&sd->poll_list, &list); 5213 list_splice_tail(&repoll, &list); 5214 list_splice(&list, &sd->poll_list); 5215 if (!list_empty(&sd->poll_list)) 5216 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5217 5218 net_rps_action_and_irq_enable(sd); 5219 } 5220 5221 struct netdev_adjacent { 5222 struct net_device *dev; 5223 5224 /* upper master flag, there can only be one master device per list */ 5225 bool master; 5226 5227 /* counter for the number of times this device was added to us */ 5228 u16 ref_nr; 5229 5230 /* private field for the users */ 5231 void *private; 5232 5233 struct list_head list; 5234 struct rcu_head rcu; 5235 }; 5236 5237 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5238 struct list_head *adj_list) 5239 { 5240 struct netdev_adjacent *adj; 5241 5242 list_for_each_entry(adj, adj_list, list) { 5243 if (adj->dev == adj_dev) 5244 return adj; 5245 } 5246 return NULL; 5247 } 5248 5249 /** 5250 * netdev_has_upper_dev - Check if device is linked to an upper device 5251 * @dev: device 5252 * @upper_dev: upper device to check 5253 * 5254 * Find out if a device is linked to specified upper device and return true 5255 * in case it is. Note that this checks only immediate upper device, 5256 * not through a complete stack of devices. The caller must hold the RTNL lock. 5257 */ 5258 bool netdev_has_upper_dev(struct net_device *dev, 5259 struct net_device *upper_dev) 5260 { 5261 ASSERT_RTNL(); 5262 5263 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper); 5264 } 5265 EXPORT_SYMBOL(netdev_has_upper_dev); 5266 5267 /** 5268 * netdev_has_any_upper_dev - Check if device is linked to some device 5269 * @dev: device 5270 * 5271 * Find out if a device is linked to an upper device and return true in case 5272 * it is. The caller must hold the RTNL lock. 5273 */ 5274 static bool netdev_has_any_upper_dev(struct net_device *dev) 5275 { 5276 ASSERT_RTNL(); 5277 5278 return !list_empty(&dev->all_adj_list.upper); 5279 } 5280 5281 /** 5282 * netdev_master_upper_dev_get - Get master upper device 5283 * @dev: device 5284 * 5285 * Find a master upper device and return pointer to it or NULL in case 5286 * it's not there. The caller must hold the RTNL lock. 5287 */ 5288 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5289 { 5290 struct netdev_adjacent *upper; 5291 5292 ASSERT_RTNL(); 5293 5294 if (list_empty(&dev->adj_list.upper)) 5295 return NULL; 5296 5297 upper = list_first_entry(&dev->adj_list.upper, 5298 struct netdev_adjacent, list); 5299 if (likely(upper->master)) 5300 return upper->dev; 5301 return NULL; 5302 } 5303 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5304 5305 void *netdev_adjacent_get_private(struct list_head *adj_list) 5306 { 5307 struct netdev_adjacent *adj; 5308 5309 adj = list_entry(adj_list, struct netdev_adjacent, list); 5310 5311 return adj->private; 5312 } 5313 EXPORT_SYMBOL(netdev_adjacent_get_private); 5314 5315 /** 5316 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5317 * @dev: device 5318 * @iter: list_head ** of the current position 5319 * 5320 * Gets the next device from the dev's upper list, starting from iter 5321 * position. The caller must hold RCU read lock. 5322 */ 5323 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5324 struct list_head **iter) 5325 { 5326 struct netdev_adjacent *upper; 5327 5328 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5329 5330 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5331 5332 if (&upper->list == &dev->adj_list.upper) 5333 return NULL; 5334 5335 *iter = &upper->list; 5336 5337 return upper->dev; 5338 } 5339 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5340 5341 /** 5342 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 5343 * @dev: device 5344 * @iter: list_head ** of the current position 5345 * 5346 * Gets the next device from the dev's upper list, starting from iter 5347 * position. The caller must hold RCU read lock. 5348 */ 5349 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 5350 struct list_head **iter) 5351 { 5352 struct netdev_adjacent *upper; 5353 5354 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5355 5356 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5357 5358 if (&upper->list == &dev->all_adj_list.upper) 5359 return NULL; 5360 5361 *iter = &upper->list; 5362 5363 return upper->dev; 5364 } 5365 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 5366 5367 /** 5368 * netdev_lower_get_next_private - Get the next ->private from the 5369 * lower neighbour list 5370 * @dev: device 5371 * @iter: list_head ** of the current position 5372 * 5373 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5374 * list, starting from iter position. The caller must hold either hold the 5375 * RTNL lock or its own locking that guarantees that the neighbour lower 5376 * list will remain unchanged. 5377 */ 5378 void *netdev_lower_get_next_private(struct net_device *dev, 5379 struct list_head **iter) 5380 { 5381 struct netdev_adjacent *lower; 5382 5383 lower = list_entry(*iter, struct netdev_adjacent, list); 5384 5385 if (&lower->list == &dev->adj_list.lower) 5386 return NULL; 5387 5388 *iter = lower->list.next; 5389 5390 return lower->private; 5391 } 5392 EXPORT_SYMBOL(netdev_lower_get_next_private); 5393 5394 /** 5395 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5396 * lower neighbour list, RCU 5397 * variant 5398 * @dev: device 5399 * @iter: list_head ** of the current position 5400 * 5401 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5402 * list, starting from iter position. The caller must hold RCU read lock. 5403 */ 5404 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5405 struct list_head **iter) 5406 { 5407 struct netdev_adjacent *lower; 5408 5409 WARN_ON_ONCE(!rcu_read_lock_held()); 5410 5411 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5412 5413 if (&lower->list == &dev->adj_list.lower) 5414 return NULL; 5415 5416 *iter = &lower->list; 5417 5418 return lower->private; 5419 } 5420 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5421 5422 /** 5423 * netdev_lower_get_next - Get the next device from the lower neighbour 5424 * list 5425 * @dev: device 5426 * @iter: list_head ** of the current position 5427 * 5428 * Gets the next netdev_adjacent from the dev's lower neighbour 5429 * list, starting from iter position. The caller must hold RTNL lock or 5430 * its own locking that guarantees that the neighbour lower 5431 * list will remain unchanged. 5432 */ 5433 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5434 { 5435 struct netdev_adjacent *lower; 5436 5437 lower = list_entry(*iter, struct netdev_adjacent, list); 5438 5439 if (&lower->list == &dev->adj_list.lower) 5440 return NULL; 5441 5442 *iter = lower->list.next; 5443 5444 return lower->dev; 5445 } 5446 EXPORT_SYMBOL(netdev_lower_get_next); 5447 5448 /** 5449 * netdev_all_lower_get_next - Get the next device from all lower neighbour list 5450 * @dev: device 5451 * @iter: list_head ** of the current position 5452 * 5453 * Gets the next netdev_adjacent from the dev's all lower neighbour 5454 * list, starting from iter position. The caller must hold RTNL lock or 5455 * its own locking that guarantees that the neighbour all lower 5456 * list will remain unchanged. 5457 */ 5458 struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter) 5459 { 5460 struct netdev_adjacent *lower; 5461 5462 lower = list_entry(*iter, struct netdev_adjacent, list); 5463 5464 if (&lower->list == &dev->all_adj_list.lower) 5465 return NULL; 5466 5467 *iter = lower->list.next; 5468 5469 return lower->dev; 5470 } 5471 EXPORT_SYMBOL(netdev_all_lower_get_next); 5472 5473 /** 5474 * netdev_all_lower_get_next_rcu - Get the next device from all 5475 * lower neighbour list, RCU variant 5476 * @dev: device 5477 * @iter: list_head ** of the current position 5478 * 5479 * Gets the next netdev_adjacent from the dev's all lower neighbour 5480 * list, starting from iter position. The caller must hold RCU read lock. 5481 */ 5482 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 5483 struct list_head **iter) 5484 { 5485 struct netdev_adjacent *lower; 5486 5487 lower = list_first_or_null_rcu(&dev->all_adj_list.lower, 5488 struct netdev_adjacent, list); 5489 5490 return lower ? lower->dev : NULL; 5491 } 5492 EXPORT_SYMBOL(netdev_all_lower_get_next_rcu); 5493 5494 /** 5495 * netdev_lower_get_first_private_rcu - Get the first ->private from the 5496 * lower neighbour list, RCU 5497 * variant 5498 * @dev: device 5499 * 5500 * Gets the first netdev_adjacent->private from the dev's lower neighbour 5501 * list. The caller must hold RCU read lock. 5502 */ 5503 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 5504 { 5505 struct netdev_adjacent *lower; 5506 5507 lower = list_first_or_null_rcu(&dev->adj_list.lower, 5508 struct netdev_adjacent, list); 5509 if (lower) 5510 return lower->private; 5511 return NULL; 5512 } 5513 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 5514 5515 /** 5516 * netdev_master_upper_dev_get_rcu - Get master upper device 5517 * @dev: device 5518 * 5519 * Find a master upper device and return pointer to it or NULL in case 5520 * it's not there. The caller must hold the RCU read lock. 5521 */ 5522 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 5523 { 5524 struct netdev_adjacent *upper; 5525 5526 upper = list_first_or_null_rcu(&dev->adj_list.upper, 5527 struct netdev_adjacent, list); 5528 if (upper && likely(upper->master)) 5529 return upper->dev; 5530 return NULL; 5531 } 5532 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 5533 5534 static int netdev_adjacent_sysfs_add(struct net_device *dev, 5535 struct net_device *adj_dev, 5536 struct list_head *dev_list) 5537 { 5538 char linkname[IFNAMSIZ+7]; 5539 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5540 "upper_%s" : "lower_%s", adj_dev->name); 5541 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 5542 linkname); 5543 } 5544 static void netdev_adjacent_sysfs_del(struct net_device *dev, 5545 char *name, 5546 struct list_head *dev_list) 5547 { 5548 char linkname[IFNAMSIZ+7]; 5549 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5550 "upper_%s" : "lower_%s", name); 5551 sysfs_remove_link(&(dev->dev.kobj), linkname); 5552 } 5553 5554 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 5555 struct net_device *adj_dev, 5556 struct list_head *dev_list) 5557 { 5558 return (dev_list == &dev->adj_list.upper || 5559 dev_list == &dev->adj_list.lower) && 5560 net_eq(dev_net(dev), dev_net(adj_dev)); 5561 } 5562 5563 static int __netdev_adjacent_dev_insert(struct net_device *dev, 5564 struct net_device *adj_dev, 5565 struct list_head *dev_list, 5566 void *private, bool master) 5567 { 5568 struct netdev_adjacent *adj; 5569 int ret; 5570 5571 adj = __netdev_find_adj(adj_dev, dev_list); 5572 5573 if (adj) { 5574 adj->ref_nr++; 5575 return 0; 5576 } 5577 5578 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 5579 if (!adj) 5580 return -ENOMEM; 5581 5582 adj->dev = adj_dev; 5583 adj->master = master; 5584 adj->ref_nr = 1; 5585 adj->private = private; 5586 dev_hold(adj_dev); 5587 5588 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 5589 adj_dev->name, dev->name, adj_dev->name); 5590 5591 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 5592 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 5593 if (ret) 5594 goto free_adj; 5595 } 5596 5597 /* Ensure that master link is always the first item in list. */ 5598 if (master) { 5599 ret = sysfs_create_link(&(dev->dev.kobj), 5600 &(adj_dev->dev.kobj), "master"); 5601 if (ret) 5602 goto remove_symlinks; 5603 5604 list_add_rcu(&adj->list, dev_list); 5605 } else { 5606 list_add_tail_rcu(&adj->list, dev_list); 5607 } 5608 5609 return 0; 5610 5611 remove_symlinks: 5612 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5613 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5614 free_adj: 5615 kfree(adj); 5616 dev_put(adj_dev); 5617 5618 return ret; 5619 } 5620 5621 static void __netdev_adjacent_dev_remove(struct net_device *dev, 5622 struct net_device *adj_dev, 5623 struct list_head *dev_list) 5624 { 5625 struct netdev_adjacent *adj; 5626 5627 adj = __netdev_find_adj(adj_dev, dev_list); 5628 5629 if (!adj) { 5630 pr_err("tried to remove device %s from %s\n", 5631 dev->name, adj_dev->name); 5632 BUG(); 5633 } 5634 5635 if (adj->ref_nr > 1) { 5636 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 5637 adj->ref_nr-1); 5638 adj->ref_nr--; 5639 return; 5640 } 5641 5642 if (adj->master) 5643 sysfs_remove_link(&(dev->dev.kobj), "master"); 5644 5645 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5646 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5647 5648 list_del_rcu(&adj->list); 5649 pr_debug("dev_put for %s, because link removed from %s to %s\n", 5650 adj_dev->name, dev->name, adj_dev->name); 5651 dev_put(adj_dev); 5652 kfree_rcu(adj, rcu); 5653 } 5654 5655 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 5656 struct net_device *upper_dev, 5657 struct list_head *up_list, 5658 struct list_head *down_list, 5659 void *private, bool master) 5660 { 5661 int ret; 5662 5663 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 5664 master); 5665 if (ret) 5666 return ret; 5667 5668 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 5669 false); 5670 if (ret) { 5671 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5672 return ret; 5673 } 5674 5675 return 0; 5676 } 5677 5678 static int __netdev_adjacent_dev_link(struct net_device *dev, 5679 struct net_device *upper_dev) 5680 { 5681 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 5682 &dev->all_adj_list.upper, 5683 &upper_dev->all_adj_list.lower, 5684 NULL, false); 5685 } 5686 5687 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 5688 struct net_device *upper_dev, 5689 struct list_head *up_list, 5690 struct list_head *down_list) 5691 { 5692 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5693 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 5694 } 5695 5696 static void __netdev_adjacent_dev_unlink(struct net_device *dev, 5697 struct net_device *upper_dev) 5698 { 5699 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5700 &dev->all_adj_list.upper, 5701 &upper_dev->all_adj_list.lower); 5702 } 5703 5704 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 5705 struct net_device *upper_dev, 5706 void *private, bool master) 5707 { 5708 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 5709 5710 if (ret) 5711 return ret; 5712 5713 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 5714 &dev->adj_list.upper, 5715 &upper_dev->adj_list.lower, 5716 private, master); 5717 if (ret) { 5718 __netdev_adjacent_dev_unlink(dev, upper_dev); 5719 return ret; 5720 } 5721 5722 return 0; 5723 } 5724 5725 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 5726 struct net_device *upper_dev) 5727 { 5728 __netdev_adjacent_dev_unlink(dev, upper_dev); 5729 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5730 &dev->adj_list.upper, 5731 &upper_dev->adj_list.lower); 5732 } 5733 5734 static int __netdev_upper_dev_link(struct net_device *dev, 5735 struct net_device *upper_dev, bool master, 5736 void *upper_priv, void *upper_info) 5737 { 5738 struct netdev_notifier_changeupper_info changeupper_info; 5739 struct netdev_adjacent *i, *j, *to_i, *to_j; 5740 int ret = 0; 5741 5742 ASSERT_RTNL(); 5743 5744 if (dev == upper_dev) 5745 return -EBUSY; 5746 5747 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5748 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper)) 5749 return -EBUSY; 5750 5751 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper)) 5752 return -EEXIST; 5753 5754 if (master && netdev_master_upper_dev_get(dev)) 5755 return -EBUSY; 5756 5757 changeupper_info.upper_dev = upper_dev; 5758 changeupper_info.master = master; 5759 changeupper_info.linking = true; 5760 changeupper_info.upper_info = upper_info; 5761 5762 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 5763 &changeupper_info.info); 5764 ret = notifier_to_errno(ret); 5765 if (ret) 5766 return ret; 5767 5768 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 5769 master); 5770 if (ret) 5771 return ret; 5772 5773 /* Now that we linked these devs, make all the upper_dev's 5774 * all_adj_list.upper visible to every dev's all_adj_list.lower an 5775 * versa, and don't forget the devices itself. All of these 5776 * links are non-neighbours. 5777 */ 5778 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5779 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5780 pr_debug("Interlinking %s with %s, non-neighbour\n", 5781 i->dev->name, j->dev->name); 5782 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 5783 if (ret) 5784 goto rollback_mesh; 5785 } 5786 } 5787 5788 /* add dev to every upper_dev's upper device */ 5789 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5790 pr_debug("linking %s's upper device %s with %s\n", 5791 upper_dev->name, i->dev->name, dev->name); 5792 ret = __netdev_adjacent_dev_link(dev, i->dev); 5793 if (ret) 5794 goto rollback_upper_mesh; 5795 } 5796 5797 /* add upper_dev to every dev's lower device */ 5798 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5799 pr_debug("linking %s's lower device %s with %s\n", dev->name, 5800 i->dev->name, upper_dev->name); 5801 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 5802 if (ret) 5803 goto rollback_lower_mesh; 5804 } 5805 5806 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5807 &changeupper_info.info); 5808 ret = notifier_to_errno(ret); 5809 if (ret) 5810 goto rollback_lower_mesh; 5811 5812 return 0; 5813 5814 rollback_lower_mesh: 5815 to_i = i; 5816 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5817 if (i == to_i) 5818 break; 5819 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5820 } 5821 5822 i = NULL; 5823 5824 rollback_upper_mesh: 5825 to_i = i; 5826 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5827 if (i == to_i) 5828 break; 5829 __netdev_adjacent_dev_unlink(dev, i->dev); 5830 } 5831 5832 i = j = NULL; 5833 5834 rollback_mesh: 5835 to_i = i; 5836 to_j = j; 5837 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5838 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5839 if (i == to_i && j == to_j) 5840 break; 5841 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5842 } 5843 if (i == to_i) 5844 break; 5845 } 5846 5847 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5848 5849 return ret; 5850 } 5851 5852 /** 5853 * netdev_upper_dev_link - Add a link to the upper device 5854 * @dev: device 5855 * @upper_dev: new upper device 5856 * 5857 * Adds a link to device which is upper to this one. The caller must hold 5858 * the RTNL lock. On a failure a negative errno code is returned. 5859 * On success the reference counts are adjusted and the function 5860 * returns zero. 5861 */ 5862 int netdev_upper_dev_link(struct net_device *dev, 5863 struct net_device *upper_dev) 5864 { 5865 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL); 5866 } 5867 EXPORT_SYMBOL(netdev_upper_dev_link); 5868 5869 /** 5870 * netdev_master_upper_dev_link - Add a master link to the upper device 5871 * @dev: device 5872 * @upper_dev: new upper device 5873 * @upper_priv: upper device private 5874 * @upper_info: upper info to be passed down via notifier 5875 * 5876 * Adds a link to device which is upper to this one. In this case, only 5877 * one master upper device can be linked, although other non-master devices 5878 * might be linked as well. The caller must hold the RTNL lock. 5879 * On a failure a negative errno code is returned. On success the reference 5880 * counts are adjusted and the function returns zero. 5881 */ 5882 int netdev_master_upper_dev_link(struct net_device *dev, 5883 struct net_device *upper_dev, 5884 void *upper_priv, void *upper_info) 5885 { 5886 return __netdev_upper_dev_link(dev, upper_dev, true, 5887 upper_priv, upper_info); 5888 } 5889 EXPORT_SYMBOL(netdev_master_upper_dev_link); 5890 5891 /** 5892 * netdev_upper_dev_unlink - Removes a link to upper device 5893 * @dev: device 5894 * @upper_dev: new upper device 5895 * 5896 * Removes a link to device which is upper to this one. The caller must hold 5897 * the RTNL lock. 5898 */ 5899 void netdev_upper_dev_unlink(struct net_device *dev, 5900 struct net_device *upper_dev) 5901 { 5902 struct netdev_notifier_changeupper_info changeupper_info; 5903 struct netdev_adjacent *i, *j; 5904 ASSERT_RTNL(); 5905 5906 changeupper_info.upper_dev = upper_dev; 5907 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 5908 changeupper_info.linking = false; 5909 5910 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 5911 &changeupper_info.info); 5912 5913 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5914 5915 /* Here is the tricky part. We must remove all dev's lower 5916 * devices from all upper_dev's upper devices and vice 5917 * versa, to maintain the graph relationship. 5918 */ 5919 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5920 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 5921 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5922 5923 /* remove also the devices itself from lower/upper device 5924 * list 5925 */ 5926 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5927 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5928 5929 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 5930 __netdev_adjacent_dev_unlink(dev, i->dev); 5931 5932 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5933 &changeupper_info.info); 5934 } 5935 EXPORT_SYMBOL(netdev_upper_dev_unlink); 5936 5937 /** 5938 * netdev_bonding_info_change - Dispatch event about slave change 5939 * @dev: device 5940 * @bonding_info: info to dispatch 5941 * 5942 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 5943 * The caller must hold the RTNL lock. 5944 */ 5945 void netdev_bonding_info_change(struct net_device *dev, 5946 struct netdev_bonding_info *bonding_info) 5947 { 5948 struct netdev_notifier_bonding_info info; 5949 5950 memcpy(&info.bonding_info, bonding_info, 5951 sizeof(struct netdev_bonding_info)); 5952 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 5953 &info.info); 5954 } 5955 EXPORT_SYMBOL(netdev_bonding_info_change); 5956 5957 static void netdev_adjacent_add_links(struct net_device *dev) 5958 { 5959 struct netdev_adjacent *iter; 5960 5961 struct net *net = dev_net(dev); 5962 5963 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5964 if (!net_eq(net, dev_net(iter->dev))) 5965 continue; 5966 netdev_adjacent_sysfs_add(iter->dev, dev, 5967 &iter->dev->adj_list.lower); 5968 netdev_adjacent_sysfs_add(dev, iter->dev, 5969 &dev->adj_list.upper); 5970 } 5971 5972 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5973 if (!net_eq(net, dev_net(iter->dev))) 5974 continue; 5975 netdev_adjacent_sysfs_add(iter->dev, dev, 5976 &iter->dev->adj_list.upper); 5977 netdev_adjacent_sysfs_add(dev, iter->dev, 5978 &dev->adj_list.lower); 5979 } 5980 } 5981 5982 static void netdev_adjacent_del_links(struct net_device *dev) 5983 { 5984 struct netdev_adjacent *iter; 5985 5986 struct net *net = dev_net(dev); 5987 5988 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5989 if (!net_eq(net, dev_net(iter->dev))) 5990 continue; 5991 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5992 &iter->dev->adj_list.lower); 5993 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5994 &dev->adj_list.upper); 5995 } 5996 5997 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5998 if (!net_eq(net, dev_net(iter->dev))) 5999 continue; 6000 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6001 &iter->dev->adj_list.upper); 6002 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6003 &dev->adj_list.lower); 6004 } 6005 } 6006 6007 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6008 { 6009 struct netdev_adjacent *iter; 6010 6011 struct net *net = dev_net(dev); 6012 6013 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6014 if (!net_eq(net, dev_net(iter->dev))) 6015 continue; 6016 netdev_adjacent_sysfs_del(iter->dev, oldname, 6017 &iter->dev->adj_list.lower); 6018 netdev_adjacent_sysfs_add(iter->dev, dev, 6019 &iter->dev->adj_list.lower); 6020 } 6021 6022 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6023 if (!net_eq(net, dev_net(iter->dev))) 6024 continue; 6025 netdev_adjacent_sysfs_del(iter->dev, oldname, 6026 &iter->dev->adj_list.upper); 6027 netdev_adjacent_sysfs_add(iter->dev, dev, 6028 &iter->dev->adj_list.upper); 6029 } 6030 } 6031 6032 void *netdev_lower_dev_get_private(struct net_device *dev, 6033 struct net_device *lower_dev) 6034 { 6035 struct netdev_adjacent *lower; 6036 6037 if (!lower_dev) 6038 return NULL; 6039 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6040 if (!lower) 6041 return NULL; 6042 6043 return lower->private; 6044 } 6045 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6046 6047 6048 int dev_get_nest_level(struct net_device *dev) 6049 { 6050 struct net_device *lower = NULL; 6051 struct list_head *iter; 6052 int max_nest = -1; 6053 int nest; 6054 6055 ASSERT_RTNL(); 6056 6057 netdev_for_each_lower_dev(dev, lower, iter) { 6058 nest = dev_get_nest_level(lower); 6059 if (max_nest < nest) 6060 max_nest = nest; 6061 } 6062 6063 return max_nest + 1; 6064 } 6065 EXPORT_SYMBOL(dev_get_nest_level); 6066 6067 /** 6068 * netdev_lower_change - Dispatch event about lower device state change 6069 * @lower_dev: device 6070 * @lower_state_info: state to dispatch 6071 * 6072 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6073 * The caller must hold the RTNL lock. 6074 */ 6075 void netdev_lower_state_changed(struct net_device *lower_dev, 6076 void *lower_state_info) 6077 { 6078 struct netdev_notifier_changelowerstate_info changelowerstate_info; 6079 6080 ASSERT_RTNL(); 6081 changelowerstate_info.lower_state_info = lower_state_info; 6082 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev, 6083 &changelowerstate_info.info); 6084 } 6085 EXPORT_SYMBOL(netdev_lower_state_changed); 6086 6087 int netdev_default_l2upper_neigh_construct(struct net_device *dev, 6088 struct neighbour *n) 6089 { 6090 struct net_device *lower_dev, *stop_dev; 6091 struct list_head *iter; 6092 int err; 6093 6094 netdev_for_each_lower_dev(dev, lower_dev, iter) { 6095 if (!lower_dev->netdev_ops->ndo_neigh_construct) 6096 continue; 6097 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n); 6098 if (err) { 6099 stop_dev = lower_dev; 6100 goto rollback; 6101 } 6102 } 6103 return 0; 6104 6105 rollback: 6106 netdev_for_each_lower_dev(dev, lower_dev, iter) { 6107 if (lower_dev == stop_dev) 6108 break; 6109 if (!lower_dev->netdev_ops->ndo_neigh_destroy) 6110 continue; 6111 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n); 6112 } 6113 return err; 6114 } 6115 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct); 6116 6117 void netdev_default_l2upper_neigh_destroy(struct net_device *dev, 6118 struct neighbour *n) 6119 { 6120 struct net_device *lower_dev; 6121 struct list_head *iter; 6122 6123 netdev_for_each_lower_dev(dev, lower_dev, iter) { 6124 if (!lower_dev->netdev_ops->ndo_neigh_destroy) 6125 continue; 6126 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n); 6127 } 6128 } 6129 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy); 6130 6131 static void dev_change_rx_flags(struct net_device *dev, int flags) 6132 { 6133 const struct net_device_ops *ops = dev->netdev_ops; 6134 6135 if (ops->ndo_change_rx_flags) 6136 ops->ndo_change_rx_flags(dev, flags); 6137 } 6138 6139 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6140 { 6141 unsigned int old_flags = dev->flags; 6142 kuid_t uid; 6143 kgid_t gid; 6144 6145 ASSERT_RTNL(); 6146 6147 dev->flags |= IFF_PROMISC; 6148 dev->promiscuity += inc; 6149 if (dev->promiscuity == 0) { 6150 /* 6151 * Avoid overflow. 6152 * If inc causes overflow, untouch promisc and return error. 6153 */ 6154 if (inc < 0) 6155 dev->flags &= ~IFF_PROMISC; 6156 else { 6157 dev->promiscuity -= inc; 6158 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6159 dev->name); 6160 return -EOVERFLOW; 6161 } 6162 } 6163 if (dev->flags != old_flags) { 6164 pr_info("device %s %s promiscuous mode\n", 6165 dev->name, 6166 dev->flags & IFF_PROMISC ? "entered" : "left"); 6167 if (audit_enabled) { 6168 current_uid_gid(&uid, &gid); 6169 audit_log(current->audit_context, GFP_ATOMIC, 6170 AUDIT_ANOM_PROMISCUOUS, 6171 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6172 dev->name, (dev->flags & IFF_PROMISC), 6173 (old_flags & IFF_PROMISC), 6174 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6175 from_kuid(&init_user_ns, uid), 6176 from_kgid(&init_user_ns, gid), 6177 audit_get_sessionid(current)); 6178 } 6179 6180 dev_change_rx_flags(dev, IFF_PROMISC); 6181 } 6182 if (notify) 6183 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6184 return 0; 6185 } 6186 6187 /** 6188 * dev_set_promiscuity - update promiscuity count on a device 6189 * @dev: device 6190 * @inc: modifier 6191 * 6192 * Add or remove promiscuity from a device. While the count in the device 6193 * remains above zero the interface remains promiscuous. Once it hits zero 6194 * the device reverts back to normal filtering operation. A negative inc 6195 * value is used to drop promiscuity on the device. 6196 * Return 0 if successful or a negative errno code on error. 6197 */ 6198 int dev_set_promiscuity(struct net_device *dev, int inc) 6199 { 6200 unsigned int old_flags = dev->flags; 6201 int err; 6202 6203 err = __dev_set_promiscuity(dev, inc, true); 6204 if (err < 0) 6205 return err; 6206 if (dev->flags != old_flags) 6207 dev_set_rx_mode(dev); 6208 return err; 6209 } 6210 EXPORT_SYMBOL(dev_set_promiscuity); 6211 6212 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6213 { 6214 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6215 6216 ASSERT_RTNL(); 6217 6218 dev->flags |= IFF_ALLMULTI; 6219 dev->allmulti += inc; 6220 if (dev->allmulti == 0) { 6221 /* 6222 * Avoid overflow. 6223 * If inc causes overflow, untouch allmulti and return error. 6224 */ 6225 if (inc < 0) 6226 dev->flags &= ~IFF_ALLMULTI; 6227 else { 6228 dev->allmulti -= inc; 6229 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6230 dev->name); 6231 return -EOVERFLOW; 6232 } 6233 } 6234 if (dev->flags ^ old_flags) { 6235 dev_change_rx_flags(dev, IFF_ALLMULTI); 6236 dev_set_rx_mode(dev); 6237 if (notify) 6238 __dev_notify_flags(dev, old_flags, 6239 dev->gflags ^ old_gflags); 6240 } 6241 return 0; 6242 } 6243 6244 /** 6245 * dev_set_allmulti - update allmulti count on a device 6246 * @dev: device 6247 * @inc: modifier 6248 * 6249 * Add or remove reception of all multicast frames to a device. While the 6250 * count in the device remains above zero the interface remains listening 6251 * to all interfaces. Once it hits zero the device reverts back to normal 6252 * filtering operation. A negative @inc value is used to drop the counter 6253 * when releasing a resource needing all multicasts. 6254 * Return 0 if successful or a negative errno code on error. 6255 */ 6256 6257 int dev_set_allmulti(struct net_device *dev, int inc) 6258 { 6259 return __dev_set_allmulti(dev, inc, true); 6260 } 6261 EXPORT_SYMBOL(dev_set_allmulti); 6262 6263 /* 6264 * Upload unicast and multicast address lists to device and 6265 * configure RX filtering. When the device doesn't support unicast 6266 * filtering it is put in promiscuous mode while unicast addresses 6267 * are present. 6268 */ 6269 void __dev_set_rx_mode(struct net_device *dev) 6270 { 6271 const struct net_device_ops *ops = dev->netdev_ops; 6272 6273 /* dev_open will call this function so the list will stay sane. */ 6274 if (!(dev->flags&IFF_UP)) 6275 return; 6276 6277 if (!netif_device_present(dev)) 6278 return; 6279 6280 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6281 /* Unicast addresses changes may only happen under the rtnl, 6282 * therefore calling __dev_set_promiscuity here is safe. 6283 */ 6284 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6285 __dev_set_promiscuity(dev, 1, false); 6286 dev->uc_promisc = true; 6287 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6288 __dev_set_promiscuity(dev, -1, false); 6289 dev->uc_promisc = false; 6290 } 6291 } 6292 6293 if (ops->ndo_set_rx_mode) 6294 ops->ndo_set_rx_mode(dev); 6295 } 6296 6297 void dev_set_rx_mode(struct net_device *dev) 6298 { 6299 netif_addr_lock_bh(dev); 6300 __dev_set_rx_mode(dev); 6301 netif_addr_unlock_bh(dev); 6302 } 6303 6304 /** 6305 * dev_get_flags - get flags reported to userspace 6306 * @dev: device 6307 * 6308 * Get the combination of flag bits exported through APIs to userspace. 6309 */ 6310 unsigned int dev_get_flags(const struct net_device *dev) 6311 { 6312 unsigned int flags; 6313 6314 flags = (dev->flags & ~(IFF_PROMISC | 6315 IFF_ALLMULTI | 6316 IFF_RUNNING | 6317 IFF_LOWER_UP | 6318 IFF_DORMANT)) | 6319 (dev->gflags & (IFF_PROMISC | 6320 IFF_ALLMULTI)); 6321 6322 if (netif_running(dev)) { 6323 if (netif_oper_up(dev)) 6324 flags |= IFF_RUNNING; 6325 if (netif_carrier_ok(dev)) 6326 flags |= IFF_LOWER_UP; 6327 if (netif_dormant(dev)) 6328 flags |= IFF_DORMANT; 6329 } 6330 6331 return flags; 6332 } 6333 EXPORT_SYMBOL(dev_get_flags); 6334 6335 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6336 { 6337 unsigned int old_flags = dev->flags; 6338 int ret; 6339 6340 ASSERT_RTNL(); 6341 6342 /* 6343 * Set the flags on our device. 6344 */ 6345 6346 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6347 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6348 IFF_AUTOMEDIA)) | 6349 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6350 IFF_ALLMULTI)); 6351 6352 /* 6353 * Load in the correct multicast list now the flags have changed. 6354 */ 6355 6356 if ((old_flags ^ flags) & IFF_MULTICAST) 6357 dev_change_rx_flags(dev, IFF_MULTICAST); 6358 6359 dev_set_rx_mode(dev); 6360 6361 /* 6362 * Have we downed the interface. We handle IFF_UP ourselves 6363 * according to user attempts to set it, rather than blindly 6364 * setting it. 6365 */ 6366 6367 ret = 0; 6368 if ((old_flags ^ flags) & IFF_UP) 6369 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 6370 6371 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6372 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6373 unsigned int old_flags = dev->flags; 6374 6375 dev->gflags ^= IFF_PROMISC; 6376 6377 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6378 if (dev->flags != old_flags) 6379 dev_set_rx_mode(dev); 6380 } 6381 6382 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6383 is important. Some (broken) drivers set IFF_PROMISC, when 6384 IFF_ALLMULTI is requested not asking us and not reporting. 6385 */ 6386 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6387 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6388 6389 dev->gflags ^= IFF_ALLMULTI; 6390 __dev_set_allmulti(dev, inc, false); 6391 } 6392 6393 return ret; 6394 } 6395 6396 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6397 unsigned int gchanges) 6398 { 6399 unsigned int changes = dev->flags ^ old_flags; 6400 6401 if (gchanges) 6402 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6403 6404 if (changes & IFF_UP) { 6405 if (dev->flags & IFF_UP) 6406 call_netdevice_notifiers(NETDEV_UP, dev); 6407 else 6408 call_netdevice_notifiers(NETDEV_DOWN, dev); 6409 } 6410 6411 if (dev->flags & IFF_UP && 6412 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6413 struct netdev_notifier_change_info change_info; 6414 6415 change_info.flags_changed = changes; 6416 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 6417 &change_info.info); 6418 } 6419 } 6420 6421 /** 6422 * dev_change_flags - change device settings 6423 * @dev: device 6424 * @flags: device state flags 6425 * 6426 * Change settings on device based state flags. The flags are 6427 * in the userspace exported format. 6428 */ 6429 int dev_change_flags(struct net_device *dev, unsigned int flags) 6430 { 6431 int ret; 6432 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6433 6434 ret = __dev_change_flags(dev, flags); 6435 if (ret < 0) 6436 return ret; 6437 6438 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6439 __dev_notify_flags(dev, old_flags, changes); 6440 return ret; 6441 } 6442 EXPORT_SYMBOL(dev_change_flags); 6443 6444 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 6445 { 6446 const struct net_device_ops *ops = dev->netdev_ops; 6447 6448 if (ops->ndo_change_mtu) 6449 return ops->ndo_change_mtu(dev, new_mtu); 6450 6451 dev->mtu = new_mtu; 6452 return 0; 6453 } 6454 6455 /** 6456 * dev_set_mtu - Change maximum transfer unit 6457 * @dev: device 6458 * @new_mtu: new transfer unit 6459 * 6460 * Change the maximum transfer size of the network device. 6461 */ 6462 int dev_set_mtu(struct net_device *dev, int new_mtu) 6463 { 6464 int err, orig_mtu; 6465 6466 if (new_mtu == dev->mtu) 6467 return 0; 6468 6469 /* MTU must be positive. */ 6470 if (new_mtu < 0) 6471 return -EINVAL; 6472 6473 if (!netif_device_present(dev)) 6474 return -ENODEV; 6475 6476 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6477 err = notifier_to_errno(err); 6478 if (err) 6479 return err; 6480 6481 orig_mtu = dev->mtu; 6482 err = __dev_set_mtu(dev, new_mtu); 6483 6484 if (!err) { 6485 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6486 err = notifier_to_errno(err); 6487 if (err) { 6488 /* setting mtu back and notifying everyone again, 6489 * so that they have a chance to revert changes. 6490 */ 6491 __dev_set_mtu(dev, orig_mtu); 6492 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6493 } 6494 } 6495 return err; 6496 } 6497 EXPORT_SYMBOL(dev_set_mtu); 6498 6499 /** 6500 * dev_set_group - Change group this device belongs to 6501 * @dev: device 6502 * @new_group: group this device should belong to 6503 */ 6504 void dev_set_group(struct net_device *dev, int new_group) 6505 { 6506 dev->group = new_group; 6507 } 6508 EXPORT_SYMBOL(dev_set_group); 6509 6510 /** 6511 * dev_set_mac_address - Change Media Access Control Address 6512 * @dev: device 6513 * @sa: new address 6514 * 6515 * Change the hardware (MAC) address of the device 6516 */ 6517 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6518 { 6519 const struct net_device_ops *ops = dev->netdev_ops; 6520 int err; 6521 6522 if (!ops->ndo_set_mac_address) 6523 return -EOPNOTSUPP; 6524 if (sa->sa_family != dev->type) 6525 return -EINVAL; 6526 if (!netif_device_present(dev)) 6527 return -ENODEV; 6528 err = ops->ndo_set_mac_address(dev, sa); 6529 if (err) 6530 return err; 6531 dev->addr_assign_type = NET_ADDR_SET; 6532 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6533 add_device_randomness(dev->dev_addr, dev->addr_len); 6534 return 0; 6535 } 6536 EXPORT_SYMBOL(dev_set_mac_address); 6537 6538 /** 6539 * dev_change_carrier - Change device carrier 6540 * @dev: device 6541 * @new_carrier: new value 6542 * 6543 * Change device carrier 6544 */ 6545 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6546 { 6547 const struct net_device_ops *ops = dev->netdev_ops; 6548 6549 if (!ops->ndo_change_carrier) 6550 return -EOPNOTSUPP; 6551 if (!netif_device_present(dev)) 6552 return -ENODEV; 6553 return ops->ndo_change_carrier(dev, new_carrier); 6554 } 6555 EXPORT_SYMBOL(dev_change_carrier); 6556 6557 /** 6558 * dev_get_phys_port_id - Get device physical port ID 6559 * @dev: device 6560 * @ppid: port ID 6561 * 6562 * Get device physical port ID 6563 */ 6564 int dev_get_phys_port_id(struct net_device *dev, 6565 struct netdev_phys_item_id *ppid) 6566 { 6567 const struct net_device_ops *ops = dev->netdev_ops; 6568 6569 if (!ops->ndo_get_phys_port_id) 6570 return -EOPNOTSUPP; 6571 return ops->ndo_get_phys_port_id(dev, ppid); 6572 } 6573 EXPORT_SYMBOL(dev_get_phys_port_id); 6574 6575 /** 6576 * dev_get_phys_port_name - Get device physical port name 6577 * @dev: device 6578 * @name: port name 6579 * @len: limit of bytes to copy to name 6580 * 6581 * Get device physical port name 6582 */ 6583 int dev_get_phys_port_name(struct net_device *dev, 6584 char *name, size_t len) 6585 { 6586 const struct net_device_ops *ops = dev->netdev_ops; 6587 6588 if (!ops->ndo_get_phys_port_name) 6589 return -EOPNOTSUPP; 6590 return ops->ndo_get_phys_port_name(dev, name, len); 6591 } 6592 EXPORT_SYMBOL(dev_get_phys_port_name); 6593 6594 /** 6595 * dev_change_proto_down - update protocol port state information 6596 * @dev: device 6597 * @proto_down: new value 6598 * 6599 * This info can be used by switch drivers to set the phys state of the 6600 * port. 6601 */ 6602 int dev_change_proto_down(struct net_device *dev, bool proto_down) 6603 { 6604 const struct net_device_ops *ops = dev->netdev_ops; 6605 6606 if (!ops->ndo_change_proto_down) 6607 return -EOPNOTSUPP; 6608 if (!netif_device_present(dev)) 6609 return -ENODEV; 6610 return ops->ndo_change_proto_down(dev, proto_down); 6611 } 6612 EXPORT_SYMBOL(dev_change_proto_down); 6613 6614 /** 6615 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 6616 * @dev: device 6617 * @fd: new program fd or negative value to clear 6618 * 6619 * Set or clear a bpf program for a device 6620 */ 6621 int dev_change_xdp_fd(struct net_device *dev, int fd) 6622 { 6623 const struct net_device_ops *ops = dev->netdev_ops; 6624 struct bpf_prog *prog = NULL; 6625 struct netdev_xdp xdp = {}; 6626 int err; 6627 6628 if (!ops->ndo_xdp) 6629 return -EOPNOTSUPP; 6630 if (fd >= 0) { 6631 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 6632 if (IS_ERR(prog)) 6633 return PTR_ERR(prog); 6634 } 6635 6636 xdp.command = XDP_SETUP_PROG; 6637 xdp.prog = prog; 6638 err = ops->ndo_xdp(dev, &xdp); 6639 if (err < 0 && prog) 6640 bpf_prog_put(prog); 6641 6642 return err; 6643 } 6644 EXPORT_SYMBOL(dev_change_xdp_fd); 6645 6646 /** 6647 * dev_new_index - allocate an ifindex 6648 * @net: the applicable net namespace 6649 * 6650 * Returns a suitable unique value for a new device interface 6651 * number. The caller must hold the rtnl semaphore or the 6652 * dev_base_lock to be sure it remains unique. 6653 */ 6654 static int dev_new_index(struct net *net) 6655 { 6656 int ifindex = net->ifindex; 6657 for (;;) { 6658 if (++ifindex <= 0) 6659 ifindex = 1; 6660 if (!__dev_get_by_index(net, ifindex)) 6661 return net->ifindex = ifindex; 6662 } 6663 } 6664 6665 /* Delayed registration/unregisteration */ 6666 static LIST_HEAD(net_todo_list); 6667 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 6668 6669 static void net_set_todo(struct net_device *dev) 6670 { 6671 list_add_tail(&dev->todo_list, &net_todo_list); 6672 dev_net(dev)->dev_unreg_count++; 6673 } 6674 6675 static void rollback_registered_many(struct list_head *head) 6676 { 6677 struct net_device *dev, *tmp; 6678 LIST_HEAD(close_head); 6679 6680 BUG_ON(dev_boot_phase); 6681 ASSERT_RTNL(); 6682 6683 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 6684 /* Some devices call without registering 6685 * for initialization unwind. Remove those 6686 * devices and proceed with the remaining. 6687 */ 6688 if (dev->reg_state == NETREG_UNINITIALIZED) { 6689 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 6690 dev->name, dev); 6691 6692 WARN_ON(1); 6693 list_del(&dev->unreg_list); 6694 continue; 6695 } 6696 dev->dismantle = true; 6697 BUG_ON(dev->reg_state != NETREG_REGISTERED); 6698 } 6699 6700 /* If device is running, close it first. */ 6701 list_for_each_entry(dev, head, unreg_list) 6702 list_add_tail(&dev->close_list, &close_head); 6703 dev_close_many(&close_head, true); 6704 6705 list_for_each_entry(dev, head, unreg_list) { 6706 /* And unlink it from device chain. */ 6707 unlist_netdevice(dev); 6708 6709 dev->reg_state = NETREG_UNREGISTERING; 6710 on_each_cpu(flush_backlog, dev, 1); 6711 } 6712 6713 synchronize_net(); 6714 6715 list_for_each_entry(dev, head, unreg_list) { 6716 struct sk_buff *skb = NULL; 6717 6718 /* Shutdown queueing discipline. */ 6719 dev_shutdown(dev); 6720 6721 6722 /* Notify protocols, that we are about to destroy 6723 this device. They should clean all the things. 6724 */ 6725 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6726 6727 if (!dev->rtnl_link_ops || 6728 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6729 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 6730 GFP_KERNEL); 6731 6732 /* 6733 * Flush the unicast and multicast chains 6734 */ 6735 dev_uc_flush(dev); 6736 dev_mc_flush(dev); 6737 6738 if (dev->netdev_ops->ndo_uninit) 6739 dev->netdev_ops->ndo_uninit(dev); 6740 6741 if (skb) 6742 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 6743 6744 /* Notifier chain MUST detach us all upper devices. */ 6745 WARN_ON(netdev_has_any_upper_dev(dev)); 6746 6747 /* Remove entries from kobject tree */ 6748 netdev_unregister_kobject(dev); 6749 #ifdef CONFIG_XPS 6750 /* Remove XPS queueing entries */ 6751 netif_reset_xps_queues_gt(dev, 0); 6752 #endif 6753 } 6754 6755 synchronize_net(); 6756 6757 list_for_each_entry(dev, head, unreg_list) 6758 dev_put(dev); 6759 } 6760 6761 static void rollback_registered(struct net_device *dev) 6762 { 6763 LIST_HEAD(single); 6764 6765 list_add(&dev->unreg_list, &single); 6766 rollback_registered_many(&single); 6767 list_del(&single); 6768 } 6769 6770 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 6771 struct net_device *upper, netdev_features_t features) 6772 { 6773 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6774 netdev_features_t feature; 6775 int feature_bit; 6776 6777 for_each_netdev_feature(&upper_disables, feature_bit) { 6778 feature = __NETIF_F_BIT(feature_bit); 6779 if (!(upper->wanted_features & feature) 6780 && (features & feature)) { 6781 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 6782 &feature, upper->name); 6783 features &= ~feature; 6784 } 6785 } 6786 6787 return features; 6788 } 6789 6790 static void netdev_sync_lower_features(struct net_device *upper, 6791 struct net_device *lower, netdev_features_t features) 6792 { 6793 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6794 netdev_features_t feature; 6795 int feature_bit; 6796 6797 for_each_netdev_feature(&upper_disables, feature_bit) { 6798 feature = __NETIF_F_BIT(feature_bit); 6799 if (!(features & feature) && (lower->features & feature)) { 6800 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 6801 &feature, lower->name); 6802 lower->wanted_features &= ~feature; 6803 netdev_update_features(lower); 6804 6805 if (unlikely(lower->features & feature)) 6806 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 6807 &feature, lower->name); 6808 } 6809 } 6810 } 6811 6812 static netdev_features_t netdev_fix_features(struct net_device *dev, 6813 netdev_features_t features) 6814 { 6815 /* Fix illegal checksum combinations */ 6816 if ((features & NETIF_F_HW_CSUM) && 6817 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6818 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 6819 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 6820 } 6821 6822 /* TSO requires that SG is present as well. */ 6823 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 6824 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 6825 features &= ~NETIF_F_ALL_TSO; 6826 } 6827 6828 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 6829 !(features & NETIF_F_IP_CSUM)) { 6830 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 6831 features &= ~NETIF_F_TSO; 6832 features &= ~NETIF_F_TSO_ECN; 6833 } 6834 6835 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 6836 !(features & NETIF_F_IPV6_CSUM)) { 6837 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 6838 features &= ~NETIF_F_TSO6; 6839 } 6840 6841 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 6842 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 6843 features &= ~NETIF_F_TSO_MANGLEID; 6844 6845 /* TSO ECN requires that TSO is present as well. */ 6846 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 6847 features &= ~NETIF_F_TSO_ECN; 6848 6849 /* Software GSO depends on SG. */ 6850 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 6851 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 6852 features &= ~NETIF_F_GSO; 6853 } 6854 6855 /* UFO needs SG and checksumming */ 6856 if (features & NETIF_F_UFO) { 6857 /* maybe split UFO into V4 and V6? */ 6858 if (!(features & NETIF_F_HW_CSUM) && 6859 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) != 6860 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) { 6861 netdev_dbg(dev, 6862 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 6863 features &= ~NETIF_F_UFO; 6864 } 6865 6866 if (!(features & NETIF_F_SG)) { 6867 netdev_dbg(dev, 6868 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 6869 features &= ~NETIF_F_UFO; 6870 } 6871 } 6872 6873 /* GSO partial features require GSO partial be set */ 6874 if ((features & dev->gso_partial_features) && 6875 !(features & NETIF_F_GSO_PARTIAL)) { 6876 netdev_dbg(dev, 6877 "Dropping partially supported GSO features since no GSO partial.\n"); 6878 features &= ~dev->gso_partial_features; 6879 } 6880 6881 #ifdef CONFIG_NET_RX_BUSY_POLL 6882 if (dev->netdev_ops->ndo_busy_poll) 6883 features |= NETIF_F_BUSY_POLL; 6884 else 6885 #endif 6886 features &= ~NETIF_F_BUSY_POLL; 6887 6888 return features; 6889 } 6890 6891 int __netdev_update_features(struct net_device *dev) 6892 { 6893 struct net_device *upper, *lower; 6894 netdev_features_t features; 6895 struct list_head *iter; 6896 int err = -1; 6897 6898 ASSERT_RTNL(); 6899 6900 features = netdev_get_wanted_features(dev); 6901 6902 if (dev->netdev_ops->ndo_fix_features) 6903 features = dev->netdev_ops->ndo_fix_features(dev, features); 6904 6905 /* driver might be less strict about feature dependencies */ 6906 features = netdev_fix_features(dev, features); 6907 6908 /* some features can't be enabled if they're off an an upper device */ 6909 netdev_for_each_upper_dev_rcu(dev, upper, iter) 6910 features = netdev_sync_upper_features(dev, upper, features); 6911 6912 if (dev->features == features) 6913 goto sync_lower; 6914 6915 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 6916 &dev->features, &features); 6917 6918 if (dev->netdev_ops->ndo_set_features) 6919 err = dev->netdev_ops->ndo_set_features(dev, features); 6920 else 6921 err = 0; 6922 6923 if (unlikely(err < 0)) { 6924 netdev_err(dev, 6925 "set_features() failed (%d); wanted %pNF, left %pNF\n", 6926 err, &features, &dev->features); 6927 /* return non-0 since some features might have changed and 6928 * it's better to fire a spurious notification than miss it 6929 */ 6930 return -1; 6931 } 6932 6933 sync_lower: 6934 /* some features must be disabled on lower devices when disabled 6935 * on an upper device (think: bonding master or bridge) 6936 */ 6937 netdev_for_each_lower_dev(dev, lower, iter) 6938 netdev_sync_lower_features(dev, lower, features); 6939 6940 if (!err) 6941 dev->features = features; 6942 6943 return err < 0 ? 0 : 1; 6944 } 6945 6946 /** 6947 * netdev_update_features - recalculate device features 6948 * @dev: the device to check 6949 * 6950 * Recalculate dev->features set and send notifications if it 6951 * has changed. Should be called after driver or hardware dependent 6952 * conditions might have changed that influence the features. 6953 */ 6954 void netdev_update_features(struct net_device *dev) 6955 { 6956 if (__netdev_update_features(dev)) 6957 netdev_features_change(dev); 6958 } 6959 EXPORT_SYMBOL(netdev_update_features); 6960 6961 /** 6962 * netdev_change_features - recalculate device features 6963 * @dev: the device to check 6964 * 6965 * Recalculate dev->features set and send notifications even 6966 * if they have not changed. Should be called instead of 6967 * netdev_update_features() if also dev->vlan_features might 6968 * have changed to allow the changes to be propagated to stacked 6969 * VLAN devices. 6970 */ 6971 void netdev_change_features(struct net_device *dev) 6972 { 6973 __netdev_update_features(dev); 6974 netdev_features_change(dev); 6975 } 6976 EXPORT_SYMBOL(netdev_change_features); 6977 6978 /** 6979 * netif_stacked_transfer_operstate - transfer operstate 6980 * @rootdev: the root or lower level device to transfer state from 6981 * @dev: the device to transfer operstate to 6982 * 6983 * Transfer operational state from root to device. This is normally 6984 * called when a stacking relationship exists between the root 6985 * device and the device(a leaf device). 6986 */ 6987 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 6988 struct net_device *dev) 6989 { 6990 if (rootdev->operstate == IF_OPER_DORMANT) 6991 netif_dormant_on(dev); 6992 else 6993 netif_dormant_off(dev); 6994 6995 if (netif_carrier_ok(rootdev)) { 6996 if (!netif_carrier_ok(dev)) 6997 netif_carrier_on(dev); 6998 } else { 6999 if (netif_carrier_ok(dev)) 7000 netif_carrier_off(dev); 7001 } 7002 } 7003 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7004 7005 #ifdef CONFIG_SYSFS 7006 static int netif_alloc_rx_queues(struct net_device *dev) 7007 { 7008 unsigned int i, count = dev->num_rx_queues; 7009 struct netdev_rx_queue *rx; 7010 size_t sz = count * sizeof(*rx); 7011 7012 BUG_ON(count < 1); 7013 7014 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7015 if (!rx) { 7016 rx = vzalloc(sz); 7017 if (!rx) 7018 return -ENOMEM; 7019 } 7020 dev->_rx = rx; 7021 7022 for (i = 0; i < count; i++) 7023 rx[i].dev = dev; 7024 return 0; 7025 } 7026 #endif 7027 7028 static void netdev_init_one_queue(struct net_device *dev, 7029 struct netdev_queue *queue, void *_unused) 7030 { 7031 /* Initialize queue lock */ 7032 spin_lock_init(&queue->_xmit_lock); 7033 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7034 queue->xmit_lock_owner = -1; 7035 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7036 queue->dev = dev; 7037 #ifdef CONFIG_BQL 7038 dql_init(&queue->dql, HZ); 7039 #endif 7040 } 7041 7042 static void netif_free_tx_queues(struct net_device *dev) 7043 { 7044 kvfree(dev->_tx); 7045 } 7046 7047 static int netif_alloc_netdev_queues(struct net_device *dev) 7048 { 7049 unsigned int count = dev->num_tx_queues; 7050 struct netdev_queue *tx; 7051 size_t sz = count * sizeof(*tx); 7052 7053 if (count < 1 || count > 0xffff) 7054 return -EINVAL; 7055 7056 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7057 if (!tx) { 7058 tx = vzalloc(sz); 7059 if (!tx) 7060 return -ENOMEM; 7061 } 7062 dev->_tx = tx; 7063 7064 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7065 spin_lock_init(&dev->tx_global_lock); 7066 7067 return 0; 7068 } 7069 7070 void netif_tx_stop_all_queues(struct net_device *dev) 7071 { 7072 unsigned int i; 7073 7074 for (i = 0; i < dev->num_tx_queues; i++) { 7075 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7076 netif_tx_stop_queue(txq); 7077 } 7078 } 7079 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7080 7081 /** 7082 * register_netdevice - register a network device 7083 * @dev: device to register 7084 * 7085 * Take a completed network device structure and add it to the kernel 7086 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7087 * chain. 0 is returned on success. A negative errno code is returned 7088 * on a failure to set up the device, or if the name is a duplicate. 7089 * 7090 * Callers must hold the rtnl semaphore. You may want 7091 * register_netdev() instead of this. 7092 * 7093 * BUGS: 7094 * The locking appears insufficient to guarantee two parallel registers 7095 * will not get the same name. 7096 */ 7097 7098 int register_netdevice(struct net_device *dev) 7099 { 7100 int ret; 7101 struct net *net = dev_net(dev); 7102 7103 BUG_ON(dev_boot_phase); 7104 ASSERT_RTNL(); 7105 7106 might_sleep(); 7107 7108 /* When net_device's are persistent, this will be fatal. */ 7109 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7110 BUG_ON(!net); 7111 7112 spin_lock_init(&dev->addr_list_lock); 7113 netdev_set_addr_lockdep_class(dev); 7114 7115 ret = dev_get_valid_name(net, dev, dev->name); 7116 if (ret < 0) 7117 goto out; 7118 7119 /* Init, if this function is available */ 7120 if (dev->netdev_ops->ndo_init) { 7121 ret = dev->netdev_ops->ndo_init(dev); 7122 if (ret) { 7123 if (ret > 0) 7124 ret = -EIO; 7125 goto out; 7126 } 7127 } 7128 7129 if (((dev->hw_features | dev->features) & 7130 NETIF_F_HW_VLAN_CTAG_FILTER) && 7131 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7132 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7133 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7134 ret = -EINVAL; 7135 goto err_uninit; 7136 } 7137 7138 ret = -EBUSY; 7139 if (!dev->ifindex) 7140 dev->ifindex = dev_new_index(net); 7141 else if (__dev_get_by_index(net, dev->ifindex)) 7142 goto err_uninit; 7143 7144 /* Transfer changeable features to wanted_features and enable 7145 * software offloads (GSO and GRO). 7146 */ 7147 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7148 dev->features |= NETIF_F_SOFT_FEATURES; 7149 dev->wanted_features = dev->features & dev->hw_features; 7150 7151 if (!(dev->flags & IFF_LOOPBACK)) 7152 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7153 7154 /* If IPv4 TCP segmentation offload is supported we should also 7155 * allow the device to enable segmenting the frame with the option 7156 * of ignoring a static IP ID value. This doesn't enable the 7157 * feature itself but allows the user to enable it later. 7158 */ 7159 if (dev->hw_features & NETIF_F_TSO) 7160 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7161 if (dev->vlan_features & NETIF_F_TSO) 7162 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7163 if (dev->mpls_features & NETIF_F_TSO) 7164 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7165 if (dev->hw_enc_features & NETIF_F_TSO) 7166 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7167 7168 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7169 */ 7170 dev->vlan_features |= NETIF_F_HIGHDMA; 7171 7172 /* Make NETIF_F_SG inheritable to tunnel devices. 7173 */ 7174 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7175 7176 /* Make NETIF_F_SG inheritable to MPLS. 7177 */ 7178 dev->mpls_features |= NETIF_F_SG; 7179 7180 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7181 ret = notifier_to_errno(ret); 7182 if (ret) 7183 goto err_uninit; 7184 7185 ret = netdev_register_kobject(dev); 7186 if (ret) 7187 goto err_uninit; 7188 dev->reg_state = NETREG_REGISTERED; 7189 7190 __netdev_update_features(dev); 7191 7192 /* 7193 * Default initial state at registry is that the 7194 * device is present. 7195 */ 7196 7197 set_bit(__LINK_STATE_PRESENT, &dev->state); 7198 7199 linkwatch_init_dev(dev); 7200 7201 dev_init_scheduler(dev); 7202 dev_hold(dev); 7203 list_netdevice(dev); 7204 add_device_randomness(dev->dev_addr, dev->addr_len); 7205 7206 /* If the device has permanent device address, driver should 7207 * set dev_addr and also addr_assign_type should be set to 7208 * NET_ADDR_PERM (default value). 7209 */ 7210 if (dev->addr_assign_type == NET_ADDR_PERM) 7211 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7212 7213 /* Notify protocols, that a new device appeared. */ 7214 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7215 ret = notifier_to_errno(ret); 7216 if (ret) { 7217 rollback_registered(dev); 7218 dev->reg_state = NETREG_UNREGISTERED; 7219 } 7220 /* 7221 * Prevent userspace races by waiting until the network 7222 * device is fully setup before sending notifications. 7223 */ 7224 if (!dev->rtnl_link_ops || 7225 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7226 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7227 7228 out: 7229 return ret; 7230 7231 err_uninit: 7232 if (dev->netdev_ops->ndo_uninit) 7233 dev->netdev_ops->ndo_uninit(dev); 7234 goto out; 7235 } 7236 EXPORT_SYMBOL(register_netdevice); 7237 7238 /** 7239 * init_dummy_netdev - init a dummy network device for NAPI 7240 * @dev: device to init 7241 * 7242 * This takes a network device structure and initialize the minimum 7243 * amount of fields so it can be used to schedule NAPI polls without 7244 * registering a full blown interface. This is to be used by drivers 7245 * that need to tie several hardware interfaces to a single NAPI 7246 * poll scheduler due to HW limitations. 7247 */ 7248 int init_dummy_netdev(struct net_device *dev) 7249 { 7250 /* Clear everything. Note we don't initialize spinlocks 7251 * are they aren't supposed to be taken by any of the 7252 * NAPI code and this dummy netdev is supposed to be 7253 * only ever used for NAPI polls 7254 */ 7255 memset(dev, 0, sizeof(struct net_device)); 7256 7257 /* make sure we BUG if trying to hit standard 7258 * register/unregister code path 7259 */ 7260 dev->reg_state = NETREG_DUMMY; 7261 7262 /* NAPI wants this */ 7263 INIT_LIST_HEAD(&dev->napi_list); 7264 7265 /* a dummy interface is started by default */ 7266 set_bit(__LINK_STATE_PRESENT, &dev->state); 7267 set_bit(__LINK_STATE_START, &dev->state); 7268 7269 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7270 * because users of this 'device' dont need to change 7271 * its refcount. 7272 */ 7273 7274 return 0; 7275 } 7276 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7277 7278 7279 /** 7280 * register_netdev - register a network device 7281 * @dev: device to register 7282 * 7283 * Take a completed network device structure and add it to the kernel 7284 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7285 * chain. 0 is returned on success. A negative errno code is returned 7286 * on a failure to set up the device, or if the name is a duplicate. 7287 * 7288 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7289 * and expands the device name if you passed a format string to 7290 * alloc_netdev. 7291 */ 7292 int register_netdev(struct net_device *dev) 7293 { 7294 int err; 7295 7296 rtnl_lock(); 7297 err = register_netdevice(dev); 7298 rtnl_unlock(); 7299 return err; 7300 } 7301 EXPORT_SYMBOL(register_netdev); 7302 7303 int netdev_refcnt_read(const struct net_device *dev) 7304 { 7305 int i, refcnt = 0; 7306 7307 for_each_possible_cpu(i) 7308 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7309 return refcnt; 7310 } 7311 EXPORT_SYMBOL(netdev_refcnt_read); 7312 7313 /** 7314 * netdev_wait_allrefs - wait until all references are gone. 7315 * @dev: target net_device 7316 * 7317 * This is called when unregistering network devices. 7318 * 7319 * Any protocol or device that holds a reference should register 7320 * for netdevice notification, and cleanup and put back the 7321 * reference if they receive an UNREGISTER event. 7322 * We can get stuck here if buggy protocols don't correctly 7323 * call dev_put. 7324 */ 7325 static void netdev_wait_allrefs(struct net_device *dev) 7326 { 7327 unsigned long rebroadcast_time, warning_time; 7328 int refcnt; 7329 7330 linkwatch_forget_dev(dev); 7331 7332 rebroadcast_time = warning_time = jiffies; 7333 refcnt = netdev_refcnt_read(dev); 7334 7335 while (refcnt != 0) { 7336 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7337 rtnl_lock(); 7338 7339 /* Rebroadcast unregister notification */ 7340 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7341 7342 __rtnl_unlock(); 7343 rcu_barrier(); 7344 rtnl_lock(); 7345 7346 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7347 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7348 &dev->state)) { 7349 /* We must not have linkwatch events 7350 * pending on unregister. If this 7351 * happens, we simply run the queue 7352 * unscheduled, resulting in a noop 7353 * for this device. 7354 */ 7355 linkwatch_run_queue(); 7356 } 7357 7358 __rtnl_unlock(); 7359 7360 rebroadcast_time = jiffies; 7361 } 7362 7363 msleep(250); 7364 7365 refcnt = netdev_refcnt_read(dev); 7366 7367 if (time_after(jiffies, warning_time + 10 * HZ)) { 7368 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7369 dev->name, refcnt); 7370 warning_time = jiffies; 7371 } 7372 } 7373 } 7374 7375 /* The sequence is: 7376 * 7377 * rtnl_lock(); 7378 * ... 7379 * register_netdevice(x1); 7380 * register_netdevice(x2); 7381 * ... 7382 * unregister_netdevice(y1); 7383 * unregister_netdevice(y2); 7384 * ... 7385 * rtnl_unlock(); 7386 * free_netdev(y1); 7387 * free_netdev(y2); 7388 * 7389 * We are invoked by rtnl_unlock(). 7390 * This allows us to deal with problems: 7391 * 1) We can delete sysfs objects which invoke hotplug 7392 * without deadlocking with linkwatch via keventd. 7393 * 2) Since we run with the RTNL semaphore not held, we can sleep 7394 * safely in order to wait for the netdev refcnt to drop to zero. 7395 * 7396 * We must not return until all unregister events added during 7397 * the interval the lock was held have been completed. 7398 */ 7399 void netdev_run_todo(void) 7400 { 7401 struct list_head list; 7402 7403 /* Snapshot list, allow later requests */ 7404 list_replace_init(&net_todo_list, &list); 7405 7406 __rtnl_unlock(); 7407 7408 7409 /* Wait for rcu callbacks to finish before next phase */ 7410 if (!list_empty(&list)) 7411 rcu_barrier(); 7412 7413 while (!list_empty(&list)) { 7414 struct net_device *dev 7415 = list_first_entry(&list, struct net_device, todo_list); 7416 list_del(&dev->todo_list); 7417 7418 rtnl_lock(); 7419 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7420 __rtnl_unlock(); 7421 7422 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 7423 pr_err("network todo '%s' but state %d\n", 7424 dev->name, dev->reg_state); 7425 dump_stack(); 7426 continue; 7427 } 7428 7429 dev->reg_state = NETREG_UNREGISTERED; 7430 7431 netdev_wait_allrefs(dev); 7432 7433 /* paranoia */ 7434 BUG_ON(netdev_refcnt_read(dev)); 7435 BUG_ON(!list_empty(&dev->ptype_all)); 7436 BUG_ON(!list_empty(&dev->ptype_specific)); 7437 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 7438 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 7439 WARN_ON(dev->dn_ptr); 7440 7441 if (dev->destructor) 7442 dev->destructor(dev); 7443 7444 /* Report a network device has been unregistered */ 7445 rtnl_lock(); 7446 dev_net(dev)->dev_unreg_count--; 7447 __rtnl_unlock(); 7448 wake_up(&netdev_unregistering_wq); 7449 7450 /* Free network device */ 7451 kobject_put(&dev->dev.kobj); 7452 } 7453 } 7454 7455 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 7456 * all the same fields in the same order as net_device_stats, with only 7457 * the type differing, but rtnl_link_stats64 may have additional fields 7458 * at the end for newer counters. 7459 */ 7460 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 7461 const struct net_device_stats *netdev_stats) 7462 { 7463 #if BITS_PER_LONG == 64 7464 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 7465 memcpy(stats64, netdev_stats, sizeof(*stats64)); 7466 /* zero out counters that only exist in rtnl_link_stats64 */ 7467 memset((char *)stats64 + sizeof(*netdev_stats), 0, 7468 sizeof(*stats64) - sizeof(*netdev_stats)); 7469 #else 7470 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 7471 const unsigned long *src = (const unsigned long *)netdev_stats; 7472 u64 *dst = (u64 *)stats64; 7473 7474 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 7475 for (i = 0; i < n; i++) 7476 dst[i] = src[i]; 7477 /* zero out counters that only exist in rtnl_link_stats64 */ 7478 memset((char *)stats64 + n * sizeof(u64), 0, 7479 sizeof(*stats64) - n * sizeof(u64)); 7480 #endif 7481 } 7482 EXPORT_SYMBOL(netdev_stats_to_stats64); 7483 7484 /** 7485 * dev_get_stats - get network device statistics 7486 * @dev: device to get statistics from 7487 * @storage: place to store stats 7488 * 7489 * Get network statistics from device. Return @storage. 7490 * The device driver may provide its own method by setting 7491 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 7492 * otherwise the internal statistics structure is used. 7493 */ 7494 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 7495 struct rtnl_link_stats64 *storage) 7496 { 7497 const struct net_device_ops *ops = dev->netdev_ops; 7498 7499 if (ops->ndo_get_stats64) { 7500 memset(storage, 0, sizeof(*storage)); 7501 ops->ndo_get_stats64(dev, storage); 7502 } else if (ops->ndo_get_stats) { 7503 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 7504 } else { 7505 netdev_stats_to_stats64(storage, &dev->stats); 7506 } 7507 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 7508 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 7509 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler); 7510 return storage; 7511 } 7512 EXPORT_SYMBOL(dev_get_stats); 7513 7514 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 7515 { 7516 struct netdev_queue *queue = dev_ingress_queue(dev); 7517 7518 #ifdef CONFIG_NET_CLS_ACT 7519 if (queue) 7520 return queue; 7521 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 7522 if (!queue) 7523 return NULL; 7524 netdev_init_one_queue(dev, queue, NULL); 7525 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 7526 queue->qdisc_sleeping = &noop_qdisc; 7527 rcu_assign_pointer(dev->ingress_queue, queue); 7528 #endif 7529 return queue; 7530 } 7531 7532 static const struct ethtool_ops default_ethtool_ops; 7533 7534 void netdev_set_default_ethtool_ops(struct net_device *dev, 7535 const struct ethtool_ops *ops) 7536 { 7537 if (dev->ethtool_ops == &default_ethtool_ops) 7538 dev->ethtool_ops = ops; 7539 } 7540 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 7541 7542 void netdev_freemem(struct net_device *dev) 7543 { 7544 char *addr = (char *)dev - dev->padded; 7545 7546 kvfree(addr); 7547 } 7548 7549 /** 7550 * alloc_netdev_mqs - allocate network device 7551 * @sizeof_priv: size of private data to allocate space for 7552 * @name: device name format string 7553 * @name_assign_type: origin of device name 7554 * @setup: callback to initialize device 7555 * @txqs: the number of TX subqueues to allocate 7556 * @rxqs: the number of RX subqueues to allocate 7557 * 7558 * Allocates a struct net_device with private data area for driver use 7559 * and performs basic initialization. Also allocates subqueue structs 7560 * for each queue on the device. 7561 */ 7562 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 7563 unsigned char name_assign_type, 7564 void (*setup)(struct net_device *), 7565 unsigned int txqs, unsigned int rxqs) 7566 { 7567 struct net_device *dev; 7568 size_t alloc_size; 7569 struct net_device *p; 7570 7571 BUG_ON(strlen(name) >= sizeof(dev->name)); 7572 7573 if (txqs < 1) { 7574 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 7575 return NULL; 7576 } 7577 7578 #ifdef CONFIG_SYSFS 7579 if (rxqs < 1) { 7580 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 7581 return NULL; 7582 } 7583 #endif 7584 7585 alloc_size = sizeof(struct net_device); 7586 if (sizeof_priv) { 7587 /* ensure 32-byte alignment of private area */ 7588 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 7589 alloc_size += sizeof_priv; 7590 } 7591 /* ensure 32-byte alignment of whole construct */ 7592 alloc_size += NETDEV_ALIGN - 1; 7593 7594 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7595 if (!p) 7596 p = vzalloc(alloc_size); 7597 if (!p) 7598 return NULL; 7599 7600 dev = PTR_ALIGN(p, NETDEV_ALIGN); 7601 dev->padded = (char *)dev - (char *)p; 7602 7603 dev->pcpu_refcnt = alloc_percpu(int); 7604 if (!dev->pcpu_refcnt) 7605 goto free_dev; 7606 7607 if (dev_addr_init(dev)) 7608 goto free_pcpu; 7609 7610 dev_mc_init(dev); 7611 dev_uc_init(dev); 7612 7613 dev_net_set(dev, &init_net); 7614 7615 dev->gso_max_size = GSO_MAX_SIZE; 7616 dev->gso_max_segs = GSO_MAX_SEGS; 7617 7618 INIT_LIST_HEAD(&dev->napi_list); 7619 INIT_LIST_HEAD(&dev->unreg_list); 7620 INIT_LIST_HEAD(&dev->close_list); 7621 INIT_LIST_HEAD(&dev->link_watch_list); 7622 INIT_LIST_HEAD(&dev->adj_list.upper); 7623 INIT_LIST_HEAD(&dev->adj_list.lower); 7624 INIT_LIST_HEAD(&dev->all_adj_list.upper); 7625 INIT_LIST_HEAD(&dev->all_adj_list.lower); 7626 INIT_LIST_HEAD(&dev->ptype_all); 7627 INIT_LIST_HEAD(&dev->ptype_specific); 7628 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 7629 setup(dev); 7630 7631 if (!dev->tx_queue_len) { 7632 dev->priv_flags |= IFF_NO_QUEUE; 7633 dev->tx_queue_len = 1; 7634 } 7635 7636 dev->num_tx_queues = txqs; 7637 dev->real_num_tx_queues = txqs; 7638 if (netif_alloc_netdev_queues(dev)) 7639 goto free_all; 7640 7641 #ifdef CONFIG_SYSFS 7642 dev->num_rx_queues = rxqs; 7643 dev->real_num_rx_queues = rxqs; 7644 if (netif_alloc_rx_queues(dev)) 7645 goto free_all; 7646 #endif 7647 7648 strcpy(dev->name, name); 7649 dev->name_assign_type = name_assign_type; 7650 dev->group = INIT_NETDEV_GROUP; 7651 if (!dev->ethtool_ops) 7652 dev->ethtool_ops = &default_ethtool_ops; 7653 7654 nf_hook_ingress_init(dev); 7655 7656 return dev; 7657 7658 free_all: 7659 free_netdev(dev); 7660 return NULL; 7661 7662 free_pcpu: 7663 free_percpu(dev->pcpu_refcnt); 7664 free_dev: 7665 netdev_freemem(dev); 7666 return NULL; 7667 } 7668 EXPORT_SYMBOL(alloc_netdev_mqs); 7669 7670 /** 7671 * free_netdev - free network device 7672 * @dev: device 7673 * 7674 * This function does the last stage of destroying an allocated device 7675 * interface. The reference to the device object is released. 7676 * If this is the last reference then it will be freed. 7677 * Must be called in process context. 7678 */ 7679 void free_netdev(struct net_device *dev) 7680 { 7681 struct napi_struct *p, *n; 7682 7683 might_sleep(); 7684 netif_free_tx_queues(dev); 7685 #ifdef CONFIG_SYSFS 7686 kvfree(dev->_rx); 7687 #endif 7688 7689 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 7690 7691 /* Flush device addresses */ 7692 dev_addr_flush(dev); 7693 7694 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 7695 netif_napi_del(p); 7696 7697 free_percpu(dev->pcpu_refcnt); 7698 dev->pcpu_refcnt = NULL; 7699 7700 /* Compatibility with error handling in drivers */ 7701 if (dev->reg_state == NETREG_UNINITIALIZED) { 7702 netdev_freemem(dev); 7703 return; 7704 } 7705 7706 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 7707 dev->reg_state = NETREG_RELEASED; 7708 7709 /* will free via device release */ 7710 put_device(&dev->dev); 7711 } 7712 EXPORT_SYMBOL(free_netdev); 7713 7714 /** 7715 * synchronize_net - Synchronize with packet receive processing 7716 * 7717 * Wait for packets currently being received to be done. 7718 * Does not block later packets from starting. 7719 */ 7720 void synchronize_net(void) 7721 { 7722 might_sleep(); 7723 if (rtnl_is_locked()) 7724 synchronize_rcu_expedited(); 7725 else 7726 synchronize_rcu(); 7727 } 7728 EXPORT_SYMBOL(synchronize_net); 7729 7730 /** 7731 * unregister_netdevice_queue - remove device from the kernel 7732 * @dev: device 7733 * @head: list 7734 * 7735 * This function shuts down a device interface and removes it 7736 * from the kernel tables. 7737 * If head not NULL, device is queued to be unregistered later. 7738 * 7739 * Callers must hold the rtnl semaphore. You may want 7740 * unregister_netdev() instead of this. 7741 */ 7742 7743 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 7744 { 7745 ASSERT_RTNL(); 7746 7747 if (head) { 7748 list_move_tail(&dev->unreg_list, head); 7749 } else { 7750 rollback_registered(dev); 7751 /* Finish processing unregister after unlock */ 7752 net_set_todo(dev); 7753 } 7754 } 7755 EXPORT_SYMBOL(unregister_netdevice_queue); 7756 7757 /** 7758 * unregister_netdevice_many - unregister many devices 7759 * @head: list of devices 7760 * 7761 * Note: As most callers use a stack allocated list_head, 7762 * we force a list_del() to make sure stack wont be corrupted later. 7763 */ 7764 void unregister_netdevice_many(struct list_head *head) 7765 { 7766 struct net_device *dev; 7767 7768 if (!list_empty(head)) { 7769 rollback_registered_many(head); 7770 list_for_each_entry(dev, head, unreg_list) 7771 net_set_todo(dev); 7772 list_del(head); 7773 } 7774 } 7775 EXPORT_SYMBOL(unregister_netdevice_many); 7776 7777 /** 7778 * unregister_netdev - remove device from the kernel 7779 * @dev: device 7780 * 7781 * This function shuts down a device interface and removes it 7782 * from the kernel tables. 7783 * 7784 * This is just a wrapper for unregister_netdevice that takes 7785 * the rtnl semaphore. In general you want to use this and not 7786 * unregister_netdevice. 7787 */ 7788 void unregister_netdev(struct net_device *dev) 7789 { 7790 rtnl_lock(); 7791 unregister_netdevice(dev); 7792 rtnl_unlock(); 7793 } 7794 EXPORT_SYMBOL(unregister_netdev); 7795 7796 /** 7797 * dev_change_net_namespace - move device to different nethost namespace 7798 * @dev: device 7799 * @net: network namespace 7800 * @pat: If not NULL name pattern to try if the current device name 7801 * is already taken in the destination network namespace. 7802 * 7803 * This function shuts down a device interface and moves it 7804 * to a new network namespace. On success 0 is returned, on 7805 * a failure a netagive errno code is returned. 7806 * 7807 * Callers must hold the rtnl semaphore. 7808 */ 7809 7810 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 7811 { 7812 int err; 7813 7814 ASSERT_RTNL(); 7815 7816 /* Don't allow namespace local devices to be moved. */ 7817 err = -EINVAL; 7818 if (dev->features & NETIF_F_NETNS_LOCAL) 7819 goto out; 7820 7821 /* Ensure the device has been registrered */ 7822 if (dev->reg_state != NETREG_REGISTERED) 7823 goto out; 7824 7825 /* Get out if there is nothing todo */ 7826 err = 0; 7827 if (net_eq(dev_net(dev), net)) 7828 goto out; 7829 7830 /* Pick the destination device name, and ensure 7831 * we can use it in the destination network namespace. 7832 */ 7833 err = -EEXIST; 7834 if (__dev_get_by_name(net, dev->name)) { 7835 /* We get here if we can't use the current device name */ 7836 if (!pat) 7837 goto out; 7838 if (dev_get_valid_name(net, dev, pat) < 0) 7839 goto out; 7840 } 7841 7842 /* 7843 * And now a mini version of register_netdevice unregister_netdevice. 7844 */ 7845 7846 /* If device is running close it first. */ 7847 dev_close(dev); 7848 7849 /* And unlink it from device chain */ 7850 err = -ENODEV; 7851 unlist_netdevice(dev); 7852 7853 synchronize_net(); 7854 7855 /* Shutdown queueing discipline. */ 7856 dev_shutdown(dev); 7857 7858 /* Notify protocols, that we are about to destroy 7859 this device. They should clean all the things. 7860 7861 Note that dev->reg_state stays at NETREG_REGISTERED. 7862 This is wanted because this way 8021q and macvlan know 7863 the device is just moving and can keep their slaves up. 7864 */ 7865 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7866 rcu_barrier(); 7867 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7868 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 7869 7870 /* 7871 * Flush the unicast and multicast chains 7872 */ 7873 dev_uc_flush(dev); 7874 dev_mc_flush(dev); 7875 7876 /* Send a netdev-removed uevent to the old namespace */ 7877 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 7878 netdev_adjacent_del_links(dev); 7879 7880 /* Actually switch the network namespace */ 7881 dev_net_set(dev, net); 7882 7883 /* If there is an ifindex conflict assign a new one */ 7884 if (__dev_get_by_index(net, dev->ifindex)) 7885 dev->ifindex = dev_new_index(net); 7886 7887 /* Send a netdev-add uevent to the new namespace */ 7888 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 7889 netdev_adjacent_add_links(dev); 7890 7891 /* Fixup kobjects */ 7892 err = device_rename(&dev->dev, dev->name); 7893 WARN_ON(err); 7894 7895 /* Add the device back in the hashes */ 7896 list_netdevice(dev); 7897 7898 /* Notify protocols, that a new device appeared. */ 7899 call_netdevice_notifiers(NETDEV_REGISTER, dev); 7900 7901 /* 7902 * Prevent userspace races by waiting until the network 7903 * device is fully setup before sending notifications. 7904 */ 7905 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7906 7907 synchronize_net(); 7908 err = 0; 7909 out: 7910 return err; 7911 } 7912 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 7913 7914 static int dev_cpu_callback(struct notifier_block *nfb, 7915 unsigned long action, 7916 void *ocpu) 7917 { 7918 struct sk_buff **list_skb; 7919 struct sk_buff *skb; 7920 unsigned int cpu, oldcpu = (unsigned long)ocpu; 7921 struct softnet_data *sd, *oldsd; 7922 7923 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 7924 return NOTIFY_OK; 7925 7926 local_irq_disable(); 7927 cpu = smp_processor_id(); 7928 sd = &per_cpu(softnet_data, cpu); 7929 oldsd = &per_cpu(softnet_data, oldcpu); 7930 7931 /* Find end of our completion_queue. */ 7932 list_skb = &sd->completion_queue; 7933 while (*list_skb) 7934 list_skb = &(*list_skb)->next; 7935 /* Append completion queue from offline CPU. */ 7936 *list_skb = oldsd->completion_queue; 7937 oldsd->completion_queue = NULL; 7938 7939 /* Append output queue from offline CPU. */ 7940 if (oldsd->output_queue) { 7941 *sd->output_queue_tailp = oldsd->output_queue; 7942 sd->output_queue_tailp = oldsd->output_queue_tailp; 7943 oldsd->output_queue = NULL; 7944 oldsd->output_queue_tailp = &oldsd->output_queue; 7945 } 7946 /* Append NAPI poll list from offline CPU, with one exception : 7947 * process_backlog() must be called by cpu owning percpu backlog. 7948 * We properly handle process_queue & input_pkt_queue later. 7949 */ 7950 while (!list_empty(&oldsd->poll_list)) { 7951 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 7952 struct napi_struct, 7953 poll_list); 7954 7955 list_del_init(&napi->poll_list); 7956 if (napi->poll == process_backlog) 7957 napi->state = 0; 7958 else 7959 ____napi_schedule(sd, napi); 7960 } 7961 7962 raise_softirq_irqoff(NET_TX_SOFTIRQ); 7963 local_irq_enable(); 7964 7965 /* Process offline CPU's input_pkt_queue */ 7966 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 7967 netif_rx_ni(skb); 7968 input_queue_head_incr(oldsd); 7969 } 7970 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 7971 netif_rx_ni(skb); 7972 input_queue_head_incr(oldsd); 7973 } 7974 7975 return NOTIFY_OK; 7976 } 7977 7978 7979 /** 7980 * netdev_increment_features - increment feature set by one 7981 * @all: current feature set 7982 * @one: new feature set 7983 * @mask: mask feature set 7984 * 7985 * Computes a new feature set after adding a device with feature set 7986 * @one to the master device with current feature set @all. Will not 7987 * enable anything that is off in @mask. Returns the new feature set. 7988 */ 7989 netdev_features_t netdev_increment_features(netdev_features_t all, 7990 netdev_features_t one, netdev_features_t mask) 7991 { 7992 if (mask & NETIF_F_HW_CSUM) 7993 mask |= NETIF_F_CSUM_MASK; 7994 mask |= NETIF_F_VLAN_CHALLENGED; 7995 7996 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 7997 all &= one | ~NETIF_F_ALL_FOR_ALL; 7998 7999 /* If one device supports hw checksumming, set for all. */ 8000 if (all & NETIF_F_HW_CSUM) 8001 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8002 8003 return all; 8004 } 8005 EXPORT_SYMBOL(netdev_increment_features); 8006 8007 static struct hlist_head * __net_init netdev_create_hash(void) 8008 { 8009 int i; 8010 struct hlist_head *hash; 8011 8012 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8013 if (hash != NULL) 8014 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8015 INIT_HLIST_HEAD(&hash[i]); 8016 8017 return hash; 8018 } 8019 8020 /* Initialize per network namespace state */ 8021 static int __net_init netdev_init(struct net *net) 8022 { 8023 if (net != &init_net) 8024 INIT_LIST_HEAD(&net->dev_base_head); 8025 8026 net->dev_name_head = netdev_create_hash(); 8027 if (net->dev_name_head == NULL) 8028 goto err_name; 8029 8030 net->dev_index_head = netdev_create_hash(); 8031 if (net->dev_index_head == NULL) 8032 goto err_idx; 8033 8034 return 0; 8035 8036 err_idx: 8037 kfree(net->dev_name_head); 8038 err_name: 8039 return -ENOMEM; 8040 } 8041 8042 /** 8043 * netdev_drivername - network driver for the device 8044 * @dev: network device 8045 * 8046 * Determine network driver for device. 8047 */ 8048 const char *netdev_drivername(const struct net_device *dev) 8049 { 8050 const struct device_driver *driver; 8051 const struct device *parent; 8052 const char *empty = ""; 8053 8054 parent = dev->dev.parent; 8055 if (!parent) 8056 return empty; 8057 8058 driver = parent->driver; 8059 if (driver && driver->name) 8060 return driver->name; 8061 return empty; 8062 } 8063 8064 static void __netdev_printk(const char *level, const struct net_device *dev, 8065 struct va_format *vaf) 8066 { 8067 if (dev && dev->dev.parent) { 8068 dev_printk_emit(level[1] - '0', 8069 dev->dev.parent, 8070 "%s %s %s%s: %pV", 8071 dev_driver_string(dev->dev.parent), 8072 dev_name(dev->dev.parent), 8073 netdev_name(dev), netdev_reg_state(dev), 8074 vaf); 8075 } else if (dev) { 8076 printk("%s%s%s: %pV", 8077 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8078 } else { 8079 printk("%s(NULL net_device): %pV", level, vaf); 8080 } 8081 } 8082 8083 void netdev_printk(const char *level, const struct net_device *dev, 8084 const char *format, ...) 8085 { 8086 struct va_format vaf; 8087 va_list args; 8088 8089 va_start(args, format); 8090 8091 vaf.fmt = format; 8092 vaf.va = &args; 8093 8094 __netdev_printk(level, dev, &vaf); 8095 8096 va_end(args); 8097 } 8098 EXPORT_SYMBOL(netdev_printk); 8099 8100 #define define_netdev_printk_level(func, level) \ 8101 void func(const struct net_device *dev, const char *fmt, ...) \ 8102 { \ 8103 struct va_format vaf; \ 8104 va_list args; \ 8105 \ 8106 va_start(args, fmt); \ 8107 \ 8108 vaf.fmt = fmt; \ 8109 vaf.va = &args; \ 8110 \ 8111 __netdev_printk(level, dev, &vaf); \ 8112 \ 8113 va_end(args); \ 8114 } \ 8115 EXPORT_SYMBOL(func); 8116 8117 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8118 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8119 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8120 define_netdev_printk_level(netdev_err, KERN_ERR); 8121 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8122 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8123 define_netdev_printk_level(netdev_info, KERN_INFO); 8124 8125 static void __net_exit netdev_exit(struct net *net) 8126 { 8127 kfree(net->dev_name_head); 8128 kfree(net->dev_index_head); 8129 } 8130 8131 static struct pernet_operations __net_initdata netdev_net_ops = { 8132 .init = netdev_init, 8133 .exit = netdev_exit, 8134 }; 8135 8136 static void __net_exit default_device_exit(struct net *net) 8137 { 8138 struct net_device *dev, *aux; 8139 /* 8140 * Push all migratable network devices back to the 8141 * initial network namespace 8142 */ 8143 rtnl_lock(); 8144 for_each_netdev_safe(net, dev, aux) { 8145 int err; 8146 char fb_name[IFNAMSIZ]; 8147 8148 /* Ignore unmoveable devices (i.e. loopback) */ 8149 if (dev->features & NETIF_F_NETNS_LOCAL) 8150 continue; 8151 8152 /* Leave virtual devices for the generic cleanup */ 8153 if (dev->rtnl_link_ops) 8154 continue; 8155 8156 /* Push remaining network devices to init_net */ 8157 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8158 err = dev_change_net_namespace(dev, &init_net, fb_name); 8159 if (err) { 8160 pr_emerg("%s: failed to move %s to init_net: %d\n", 8161 __func__, dev->name, err); 8162 BUG(); 8163 } 8164 } 8165 rtnl_unlock(); 8166 } 8167 8168 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8169 { 8170 /* Return with the rtnl_lock held when there are no network 8171 * devices unregistering in any network namespace in net_list. 8172 */ 8173 struct net *net; 8174 bool unregistering; 8175 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8176 8177 add_wait_queue(&netdev_unregistering_wq, &wait); 8178 for (;;) { 8179 unregistering = false; 8180 rtnl_lock(); 8181 list_for_each_entry(net, net_list, exit_list) { 8182 if (net->dev_unreg_count > 0) { 8183 unregistering = true; 8184 break; 8185 } 8186 } 8187 if (!unregistering) 8188 break; 8189 __rtnl_unlock(); 8190 8191 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8192 } 8193 remove_wait_queue(&netdev_unregistering_wq, &wait); 8194 } 8195 8196 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8197 { 8198 /* At exit all network devices most be removed from a network 8199 * namespace. Do this in the reverse order of registration. 8200 * Do this across as many network namespaces as possible to 8201 * improve batching efficiency. 8202 */ 8203 struct net_device *dev; 8204 struct net *net; 8205 LIST_HEAD(dev_kill_list); 8206 8207 /* To prevent network device cleanup code from dereferencing 8208 * loopback devices or network devices that have been freed 8209 * wait here for all pending unregistrations to complete, 8210 * before unregistring the loopback device and allowing the 8211 * network namespace be freed. 8212 * 8213 * The netdev todo list containing all network devices 8214 * unregistrations that happen in default_device_exit_batch 8215 * will run in the rtnl_unlock() at the end of 8216 * default_device_exit_batch. 8217 */ 8218 rtnl_lock_unregistering(net_list); 8219 list_for_each_entry(net, net_list, exit_list) { 8220 for_each_netdev_reverse(net, dev) { 8221 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8222 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8223 else 8224 unregister_netdevice_queue(dev, &dev_kill_list); 8225 } 8226 } 8227 unregister_netdevice_many(&dev_kill_list); 8228 rtnl_unlock(); 8229 } 8230 8231 static struct pernet_operations __net_initdata default_device_ops = { 8232 .exit = default_device_exit, 8233 .exit_batch = default_device_exit_batch, 8234 }; 8235 8236 /* 8237 * Initialize the DEV module. At boot time this walks the device list and 8238 * unhooks any devices that fail to initialise (normally hardware not 8239 * present) and leaves us with a valid list of present and active devices. 8240 * 8241 */ 8242 8243 /* 8244 * This is called single threaded during boot, so no need 8245 * to take the rtnl semaphore. 8246 */ 8247 static int __init net_dev_init(void) 8248 { 8249 int i, rc = -ENOMEM; 8250 8251 BUG_ON(!dev_boot_phase); 8252 8253 if (dev_proc_init()) 8254 goto out; 8255 8256 if (netdev_kobject_init()) 8257 goto out; 8258 8259 INIT_LIST_HEAD(&ptype_all); 8260 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8261 INIT_LIST_HEAD(&ptype_base[i]); 8262 8263 INIT_LIST_HEAD(&offload_base); 8264 8265 if (register_pernet_subsys(&netdev_net_ops)) 8266 goto out; 8267 8268 /* 8269 * Initialise the packet receive queues. 8270 */ 8271 8272 for_each_possible_cpu(i) { 8273 struct softnet_data *sd = &per_cpu(softnet_data, i); 8274 8275 skb_queue_head_init(&sd->input_pkt_queue); 8276 skb_queue_head_init(&sd->process_queue); 8277 INIT_LIST_HEAD(&sd->poll_list); 8278 sd->output_queue_tailp = &sd->output_queue; 8279 #ifdef CONFIG_RPS 8280 sd->csd.func = rps_trigger_softirq; 8281 sd->csd.info = sd; 8282 sd->cpu = i; 8283 #endif 8284 8285 sd->backlog.poll = process_backlog; 8286 sd->backlog.weight = weight_p; 8287 } 8288 8289 dev_boot_phase = 0; 8290 8291 /* The loopback device is special if any other network devices 8292 * is present in a network namespace the loopback device must 8293 * be present. Since we now dynamically allocate and free the 8294 * loopback device ensure this invariant is maintained by 8295 * keeping the loopback device as the first device on the 8296 * list of network devices. Ensuring the loopback devices 8297 * is the first device that appears and the last network device 8298 * that disappears. 8299 */ 8300 if (register_pernet_device(&loopback_net_ops)) 8301 goto out; 8302 8303 if (register_pernet_device(&default_device_ops)) 8304 goto out; 8305 8306 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8307 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8308 8309 hotcpu_notifier(dev_cpu_callback, 0); 8310 dst_subsys_init(); 8311 rc = 0; 8312 out: 8313 return rc; 8314 } 8315 8316 subsys_initcall(net_dev_init); 8317