1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <linux/ipv6.h> 122 #include <linux/in.h> 123 #include <linux/jhash.h> 124 #include <linux/random.h> 125 #include <trace/events/napi.h> 126 #include <trace/events/net.h> 127 #include <trace/events/skb.h> 128 #include <linux/pci.h> 129 #include <linux/inetdevice.h> 130 #include <linux/cpu_rmap.h> 131 #include <linux/static_key.h> 132 #include <linux/hashtable.h> 133 #include <linux/vmalloc.h> 134 #include <linux/if_macvlan.h> 135 136 #include "net-sysfs.h" 137 138 /* Instead of increasing this, you should create a hash table. */ 139 #define MAX_GRO_SKBS 8 140 141 /* This should be increased if a protocol with a bigger head is added. */ 142 #define GRO_MAX_HEAD (MAX_HEADER + 128) 143 144 static DEFINE_SPINLOCK(ptype_lock); 145 static DEFINE_SPINLOCK(offload_lock); 146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 147 struct list_head ptype_all __read_mostly; /* Taps */ 148 static struct list_head offload_base __read_mostly; 149 150 /* 151 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 152 * semaphore. 153 * 154 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 155 * 156 * Writers must hold the rtnl semaphore while they loop through the 157 * dev_base_head list, and hold dev_base_lock for writing when they do the 158 * actual updates. This allows pure readers to access the list even 159 * while a writer is preparing to update it. 160 * 161 * To put it another way, dev_base_lock is held for writing only to 162 * protect against pure readers; the rtnl semaphore provides the 163 * protection against other writers. 164 * 165 * See, for example usages, register_netdevice() and 166 * unregister_netdevice(), which must be called with the rtnl 167 * semaphore held. 168 */ 169 DEFINE_RWLOCK(dev_base_lock); 170 EXPORT_SYMBOL(dev_base_lock); 171 172 /* protects napi_hash addition/deletion and napi_gen_id */ 173 static DEFINE_SPINLOCK(napi_hash_lock); 174 175 static unsigned int napi_gen_id; 176 static DEFINE_HASHTABLE(napi_hash, 8); 177 178 static seqcount_t devnet_rename_seq; 179 180 static inline void dev_base_seq_inc(struct net *net) 181 { 182 while (++net->dev_base_seq == 0); 183 } 184 185 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 186 { 187 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 188 189 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 190 } 191 192 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 193 { 194 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 195 } 196 197 static inline void rps_lock(struct softnet_data *sd) 198 { 199 #ifdef CONFIG_RPS 200 spin_lock(&sd->input_pkt_queue.lock); 201 #endif 202 } 203 204 static inline void rps_unlock(struct softnet_data *sd) 205 { 206 #ifdef CONFIG_RPS 207 spin_unlock(&sd->input_pkt_queue.lock); 208 #endif 209 } 210 211 /* Device list insertion */ 212 static void list_netdevice(struct net_device *dev) 213 { 214 struct net *net = dev_net(dev); 215 216 ASSERT_RTNL(); 217 218 write_lock_bh(&dev_base_lock); 219 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 220 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 221 hlist_add_head_rcu(&dev->index_hlist, 222 dev_index_hash(net, dev->ifindex)); 223 write_unlock_bh(&dev_base_lock); 224 225 dev_base_seq_inc(net); 226 } 227 228 /* Device list removal 229 * caller must respect a RCU grace period before freeing/reusing dev 230 */ 231 static void unlist_netdevice(struct net_device *dev) 232 { 233 ASSERT_RTNL(); 234 235 /* Unlink dev from the device chain */ 236 write_lock_bh(&dev_base_lock); 237 list_del_rcu(&dev->dev_list); 238 hlist_del_rcu(&dev->name_hlist); 239 hlist_del_rcu(&dev->index_hlist); 240 write_unlock_bh(&dev_base_lock); 241 242 dev_base_seq_inc(dev_net(dev)); 243 } 244 245 /* 246 * Our notifier list 247 */ 248 249 static RAW_NOTIFIER_HEAD(netdev_chain); 250 251 /* 252 * Device drivers call our routines to queue packets here. We empty the 253 * queue in the local softnet handler. 254 */ 255 256 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 257 EXPORT_PER_CPU_SYMBOL(softnet_data); 258 259 #ifdef CONFIG_LOCKDEP 260 /* 261 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 262 * according to dev->type 263 */ 264 static const unsigned short netdev_lock_type[] = 265 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 266 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 267 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 268 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 269 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 270 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 271 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 272 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 273 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 274 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 275 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 276 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 277 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 278 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 279 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 280 281 static const char *const netdev_lock_name[] = 282 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 283 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 284 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 285 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 286 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 287 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 288 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 289 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 290 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 291 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 292 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 293 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 294 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 295 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 296 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 297 298 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 299 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 300 301 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 302 { 303 int i; 304 305 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 306 if (netdev_lock_type[i] == dev_type) 307 return i; 308 /* the last key is used by default */ 309 return ARRAY_SIZE(netdev_lock_type) - 1; 310 } 311 312 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 313 unsigned short dev_type) 314 { 315 int i; 316 317 i = netdev_lock_pos(dev_type); 318 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 319 netdev_lock_name[i]); 320 } 321 322 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 323 { 324 int i; 325 326 i = netdev_lock_pos(dev->type); 327 lockdep_set_class_and_name(&dev->addr_list_lock, 328 &netdev_addr_lock_key[i], 329 netdev_lock_name[i]); 330 } 331 #else 332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 333 unsigned short dev_type) 334 { 335 } 336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 337 { 338 } 339 #endif 340 341 /******************************************************************************* 342 343 Protocol management and registration routines 344 345 *******************************************************************************/ 346 347 /* 348 * Add a protocol ID to the list. Now that the input handler is 349 * smarter we can dispense with all the messy stuff that used to be 350 * here. 351 * 352 * BEWARE!!! Protocol handlers, mangling input packets, 353 * MUST BE last in hash buckets and checking protocol handlers 354 * MUST start from promiscuous ptype_all chain in net_bh. 355 * It is true now, do not change it. 356 * Explanation follows: if protocol handler, mangling packet, will 357 * be the first on list, it is not able to sense, that packet 358 * is cloned and should be copied-on-write, so that it will 359 * change it and subsequent readers will get broken packet. 360 * --ANK (980803) 361 */ 362 363 static inline struct list_head *ptype_head(const struct packet_type *pt) 364 { 365 if (pt->type == htons(ETH_P_ALL)) 366 return &ptype_all; 367 else 368 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 369 } 370 371 /** 372 * dev_add_pack - add packet handler 373 * @pt: packet type declaration 374 * 375 * Add a protocol handler to the networking stack. The passed &packet_type 376 * is linked into kernel lists and may not be freed until it has been 377 * removed from the kernel lists. 378 * 379 * This call does not sleep therefore it can not 380 * guarantee all CPU's that are in middle of receiving packets 381 * will see the new packet type (until the next received packet). 382 */ 383 384 void dev_add_pack(struct packet_type *pt) 385 { 386 struct list_head *head = ptype_head(pt); 387 388 spin_lock(&ptype_lock); 389 list_add_rcu(&pt->list, head); 390 spin_unlock(&ptype_lock); 391 } 392 EXPORT_SYMBOL(dev_add_pack); 393 394 /** 395 * __dev_remove_pack - remove packet handler 396 * @pt: packet type declaration 397 * 398 * Remove a protocol handler that was previously added to the kernel 399 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 400 * from the kernel lists and can be freed or reused once this function 401 * returns. 402 * 403 * The packet type might still be in use by receivers 404 * and must not be freed until after all the CPU's have gone 405 * through a quiescent state. 406 */ 407 void __dev_remove_pack(struct packet_type *pt) 408 { 409 struct list_head *head = ptype_head(pt); 410 struct packet_type *pt1; 411 412 spin_lock(&ptype_lock); 413 414 list_for_each_entry(pt1, head, list) { 415 if (pt == pt1) { 416 list_del_rcu(&pt->list); 417 goto out; 418 } 419 } 420 421 pr_warn("dev_remove_pack: %p not found\n", pt); 422 out: 423 spin_unlock(&ptype_lock); 424 } 425 EXPORT_SYMBOL(__dev_remove_pack); 426 427 /** 428 * dev_remove_pack - remove packet handler 429 * @pt: packet type declaration 430 * 431 * Remove a protocol handler that was previously added to the kernel 432 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 433 * from the kernel lists and can be freed or reused once this function 434 * returns. 435 * 436 * This call sleeps to guarantee that no CPU is looking at the packet 437 * type after return. 438 */ 439 void dev_remove_pack(struct packet_type *pt) 440 { 441 __dev_remove_pack(pt); 442 443 synchronize_net(); 444 } 445 EXPORT_SYMBOL(dev_remove_pack); 446 447 448 /** 449 * dev_add_offload - register offload handlers 450 * @po: protocol offload declaration 451 * 452 * Add protocol offload handlers to the networking stack. The passed 453 * &proto_offload is linked into kernel lists and may not be freed until 454 * it has been removed from the kernel lists. 455 * 456 * This call does not sleep therefore it can not 457 * guarantee all CPU's that are in middle of receiving packets 458 * will see the new offload handlers (until the next received packet). 459 */ 460 void dev_add_offload(struct packet_offload *po) 461 { 462 struct list_head *head = &offload_base; 463 464 spin_lock(&offload_lock); 465 list_add_rcu(&po->list, head); 466 spin_unlock(&offload_lock); 467 } 468 EXPORT_SYMBOL(dev_add_offload); 469 470 /** 471 * __dev_remove_offload - remove offload handler 472 * @po: packet offload declaration 473 * 474 * Remove a protocol offload handler that was previously added to the 475 * kernel offload handlers by dev_add_offload(). The passed &offload_type 476 * is removed from the kernel lists and can be freed or reused once this 477 * function returns. 478 * 479 * The packet type might still be in use by receivers 480 * and must not be freed until after all the CPU's have gone 481 * through a quiescent state. 482 */ 483 void __dev_remove_offload(struct packet_offload *po) 484 { 485 struct list_head *head = &offload_base; 486 struct packet_offload *po1; 487 488 spin_lock(&offload_lock); 489 490 list_for_each_entry(po1, head, list) { 491 if (po == po1) { 492 list_del_rcu(&po->list); 493 goto out; 494 } 495 } 496 497 pr_warn("dev_remove_offload: %p not found\n", po); 498 out: 499 spin_unlock(&offload_lock); 500 } 501 EXPORT_SYMBOL(__dev_remove_offload); 502 503 /** 504 * dev_remove_offload - remove packet offload handler 505 * @po: packet offload declaration 506 * 507 * Remove a packet offload handler that was previously added to the kernel 508 * offload handlers by dev_add_offload(). The passed &offload_type is 509 * removed from the kernel lists and can be freed or reused once this 510 * function returns. 511 * 512 * This call sleeps to guarantee that no CPU is looking at the packet 513 * type after return. 514 */ 515 void dev_remove_offload(struct packet_offload *po) 516 { 517 __dev_remove_offload(po); 518 519 synchronize_net(); 520 } 521 EXPORT_SYMBOL(dev_remove_offload); 522 523 /****************************************************************************** 524 525 Device Boot-time Settings Routines 526 527 *******************************************************************************/ 528 529 /* Boot time configuration table */ 530 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 531 532 /** 533 * netdev_boot_setup_add - add new setup entry 534 * @name: name of the device 535 * @map: configured settings for the device 536 * 537 * Adds new setup entry to the dev_boot_setup list. The function 538 * returns 0 on error and 1 on success. This is a generic routine to 539 * all netdevices. 540 */ 541 static int netdev_boot_setup_add(char *name, struct ifmap *map) 542 { 543 struct netdev_boot_setup *s; 544 int i; 545 546 s = dev_boot_setup; 547 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 548 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 549 memset(s[i].name, 0, sizeof(s[i].name)); 550 strlcpy(s[i].name, name, IFNAMSIZ); 551 memcpy(&s[i].map, map, sizeof(s[i].map)); 552 break; 553 } 554 } 555 556 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 557 } 558 559 /** 560 * netdev_boot_setup_check - check boot time settings 561 * @dev: the netdevice 562 * 563 * Check boot time settings for the device. 564 * The found settings are set for the device to be used 565 * later in the device probing. 566 * Returns 0 if no settings found, 1 if they are. 567 */ 568 int netdev_boot_setup_check(struct net_device *dev) 569 { 570 struct netdev_boot_setup *s = dev_boot_setup; 571 int i; 572 573 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 574 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 575 !strcmp(dev->name, s[i].name)) { 576 dev->irq = s[i].map.irq; 577 dev->base_addr = s[i].map.base_addr; 578 dev->mem_start = s[i].map.mem_start; 579 dev->mem_end = s[i].map.mem_end; 580 return 1; 581 } 582 } 583 return 0; 584 } 585 EXPORT_SYMBOL(netdev_boot_setup_check); 586 587 588 /** 589 * netdev_boot_base - get address from boot time settings 590 * @prefix: prefix for network device 591 * @unit: id for network device 592 * 593 * Check boot time settings for the base address of device. 594 * The found settings are set for the device to be used 595 * later in the device probing. 596 * Returns 0 if no settings found. 597 */ 598 unsigned long netdev_boot_base(const char *prefix, int unit) 599 { 600 const struct netdev_boot_setup *s = dev_boot_setup; 601 char name[IFNAMSIZ]; 602 int i; 603 604 sprintf(name, "%s%d", prefix, unit); 605 606 /* 607 * If device already registered then return base of 1 608 * to indicate not to probe for this interface 609 */ 610 if (__dev_get_by_name(&init_net, name)) 611 return 1; 612 613 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 614 if (!strcmp(name, s[i].name)) 615 return s[i].map.base_addr; 616 return 0; 617 } 618 619 /* 620 * Saves at boot time configured settings for any netdevice. 621 */ 622 int __init netdev_boot_setup(char *str) 623 { 624 int ints[5]; 625 struct ifmap map; 626 627 str = get_options(str, ARRAY_SIZE(ints), ints); 628 if (!str || !*str) 629 return 0; 630 631 /* Save settings */ 632 memset(&map, 0, sizeof(map)); 633 if (ints[0] > 0) 634 map.irq = ints[1]; 635 if (ints[0] > 1) 636 map.base_addr = ints[2]; 637 if (ints[0] > 2) 638 map.mem_start = ints[3]; 639 if (ints[0] > 3) 640 map.mem_end = ints[4]; 641 642 /* Add new entry to the list */ 643 return netdev_boot_setup_add(str, &map); 644 } 645 646 __setup("netdev=", netdev_boot_setup); 647 648 /******************************************************************************* 649 650 Device Interface Subroutines 651 652 *******************************************************************************/ 653 654 /** 655 * __dev_get_by_name - find a device by its name 656 * @net: the applicable net namespace 657 * @name: name to find 658 * 659 * Find an interface by name. Must be called under RTNL semaphore 660 * or @dev_base_lock. If the name is found a pointer to the device 661 * is returned. If the name is not found then %NULL is returned. The 662 * reference counters are not incremented so the caller must be 663 * careful with locks. 664 */ 665 666 struct net_device *__dev_get_by_name(struct net *net, const char *name) 667 { 668 struct net_device *dev; 669 struct hlist_head *head = dev_name_hash(net, name); 670 671 hlist_for_each_entry(dev, head, name_hlist) 672 if (!strncmp(dev->name, name, IFNAMSIZ)) 673 return dev; 674 675 return NULL; 676 } 677 EXPORT_SYMBOL(__dev_get_by_name); 678 679 /** 680 * dev_get_by_name_rcu - find a device by its name 681 * @net: the applicable net namespace 682 * @name: name to find 683 * 684 * Find an interface by name. 685 * If the name is found a pointer to the device is returned. 686 * If the name is not found then %NULL is returned. 687 * The reference counters are not incremented so the caller must be 688 * careful with locks. The caller must hold RCU lock. 689 */ 690 691 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 692 { 693 struct net_device *dev; 694 struct hlist_head *head = dev_name_hash(net, name); 695 696 hlist_for_each_entry_rcu(dev, head, name_hlist) 697 if (!strncmp(dev->name, name, IFNAMSIZ)) 698 return dev; 699 700 return NULL; 701 } 702 EXPORT_SYMBOL(dev_get_by_name_rcu); 703 704 /** 705 * dev_get_by_name - find a device by its name 706 * @net: the applicable net namespace 707 * @name: name to find 708 * 709 * Find an interface by name. This can be called from any 710 * context and does its own locking. The returned handle has 711 * the usage count incremented and the caller must use dev_put() to 712 * release it when it is no longer needed. %NULL is returned if no 713 * matching device is found. 714 */ 715 716 struct net_device *dev_get_by_name(struct net *net, const char *name) 717 { 718 struct net_device *dev; 719 720 rcu_read_lock(); 721 dev = dev_get_by_name_rcu(net, name); 722 if (dev) 723 dev_hold(dev); 724 rcu_read_unlock(); 725 return dev; 726 } 727 EXPORT_SYMBOL(dev_get_by_name); 728 729 /** 730 * __dev_get_by_index - find a device by its ifindex 731 * @net: the applicable net namespace 732 * @ifindex: index of device 733 * 734 * Search for an interface by index. Returns %NULL if the device 735 * is not found or a pointer to the device. The device has not 736 * had its reference counter increased so the caller must be careful 737 * about locking. The caller must hold either the RTNL semaphore 738 * or @dev_base_lock. 739 */ 740 741 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 742 { 743 struct net_device *dev; 744 struct hlist_head *head = dev_index_hash(net, ifindex); 745 746 hlist_for_each_entry(dev, head, index_hlist) 747 if (dev->ifindex == ifindex) 748 return dev; 749 750 return NULL; 751 } 752 EXPORT_SYMBOL(__dev_get_by_index); 753 754 /** 755 * dev_get_by_index_rcu - find a device by its ifindex 756 * @net: the applicable net namespace 757 * @ifindex: index of device 758 * 759 * Search for an interface by index. Returns %NULL if the device 760 * is not found or a pointer to the device. The device has not 761 * had its reference counter increased so the caller must be careful 762 * about locking. The caller must hold RCU lock. 763 */ 764 765 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 766 { 767 struct net_device *dev; 768 struct hlist_head *head = dev_index_hash(net, ifindex); 769 770 hlist_for_each_entry_rcu(dev, head, index_hlist) 771 if (dev->ifindex == ifindex) 772 return dev; 773 774 return NULL; 775 } 776 EXPORT_SYMBOL(dev_get_by_index_rcu); 777 778 779 /** 780 * dev_get_by_index - find a device by its ifindex 781 * @net: the applicable net namespace 782 * @ifindex: index of device 783 * 784 * Search for an interface by index. Returns NULL if the device 785 * is not found or a pointer to the device. The device returned has 786 * had a reference added and the pointer is safe until the user calls 787 * dev_put to indicate they have finished with it. 788 */ 789 790 struct net_device *dev_get_by_index(struct net *net, int ifindex) 791 { 792 struct net_device *dev; 793 794 rcu_read_lock(); 795 dev = dev_get_by_index_rcu(net, ifindex); 796 if (dev) 797 dev_hold(dev); 798 rcu_read_unlock(); 799 return dev; 800 } 801 EXPORT_SYMBOL(dev_get_by_index); 802 803 /** 804 * netdev_get_name - get a netdevice name, knowing its ifindex. 805 * @net: network namespace 806 * @name: a pointer to the buffer where the name will be stored. 807 * @ifindex: the ifindex of the interface to get the name from. 808 * 809 * The use of raw_seqcount_begin() and cond_resched() before 810 * retrying is required as we want to give the writers a chance 811 * to complete when CONFIG_PREEMPT is not set. 812 */ 813 int netdev_get_name(struct net *net, char *name, int ifindex) 814 { 815 struct net_device *dev; 816 unsigned int seq; 817 818 retry: 819 seq = raw_seqcount_begin(&devnet_rename_seq); 820 rcu_read_lock(); 821 dev = dev_get_by_index_rcu(net, ifindex); 822 if (!dev) { 823 rcu_read_unlock(); 824 return -ENODEV; 825 } 826 827 strcpy(name, dev->name); 828 rcu_read_unlock(); 829 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 830 cond_resched(); 831 goto retry; 832 } 833 834 return 0; 835 } 836 837 /** 838 * dev_getbyhwaddr_rcu - find a device by its hardware address 839 * @net: the applicable net namespace 840 * @type: media type of device 841 * @ha: hardware address 842 * 843 * Search for an interface by MAC address. Returns NULL if the device 844 * is not found or a pointer to the device. 845 * The caller must hold RCU or RTNL. 846 * The returned device has not had its ref count increased 847 * and the caller must therefore be careful about locking 848 * 849 */ 850 851 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 852 const char *ha) 853 { 854 struct net_device *dev; 855 856 for_each_netdev_rcu(net, dev) 857 if (dev->type == type && 858 !memcmp(dev->dev_addr, ha, dev->addr_len)) 859 return dev; 860 861 return NULL; 862 } 863 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 864 865 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 866 { 867 struct net_device *dev; 868 869 ASSERT_RTNL(); 870 for_each_netdev(net, dev) 871 if (dev->type == type) 872 return dev; 873 874 return NULL; 875 } 876 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 877 878 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 879 { 880 struct net_device *dev, *ret = NULL; 881 882 rcu_read_lock(); 883 for_each_netdev_rcu(net, dev) 884 if (dev->type == type) { 885 dev_hold(dev); 886 ret = dev; 887 break; 888 } 889 rcu_read_unlock(); 890 return ret; 891 } 892 EXPORT_SYMBOL(dev_getfirstbyhwtype); 893 894 /** 895 * dev_get_by_flags_rcu - find any device with given flags 896 * @net: the applicable net namespace 897 * @if_flags: IFF_* values 898 * @mask: bitmask of bits in if_flags to check 899 * 900 * Search for any interface with the given flags. Returns NULL if a device 901 * is not found or a pointer to the device. Must be called inside 902 * rcu_read_lock(), and result refcount is unchanged. 903 */ 904 905 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 906 unsigned short mask) 907 { 908 struct net_device *dev, *ret; 909 910 ret = NULL; 911 for_each_netdev_rcu(net, dev) { 912 if (((dev->flags ^ if_flags) & mask) == 0) { 913 ret = dev; 914 break; 915 } 916 } 917 return ret; 918 } 919 EXPORT_SYMBOL(dev_get_by_flags_rcu); 920 921 /** 922 * dev_valid_name - check if name is okay for network device 923 * @name: name string 924 * 925 * Network device names need to be valid file names to 926 * to allow sysfs to work. We also disallow any kind of 927 * whitespace. 928 */ 929 bool dev_valid_name(const char *name) 930 { 931 if (*name == '\0') 932 return false; 933 if (strlen(name) >= IFNAMSIZ) 934 return false; 935 if (!strcmp(name, ".") || !strcmp(name, "..")) 936 return false; 937 938 while (*name) { 939 if (*name == '/' || isspace(*name)) 940 return false; 941 name++; 942 } 943 return true; 944 } 945 EXPORT_SYMBOL(dev_valid_name); 946 947 /** 948 * __dev_alloc_name - allocate a name for a device 949 * @net: network namespace to allocate the device name in 950 * @name: name format string 951 * @buf: scratch buffer and result name string 952 * 953 * Passed a format string - eg "lt%d" it will try and find a suitable 954 * id. It scans list of devices to build up a free map, then chooses 955 * the first empty slot. The caller must hold the dev_base or rtnl lock 956 * while allocating the name and adding the device in order to avoid 957 * duplicates. 958 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 959 * Returns the number of the unit assigned or a negative errno code. 960 */ 961 962 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 963 { 964 int i = 0; 965 const char *p; 966 const int max_netdevices = 8*PAGE_SIZE; 967 unsigned long *inuse; 968 struct net_device *d; 969 970 p = strnchr(name, IFNAMSIZ-1, '%'); 971 if (p) { 972 /* 973 * Verify the string as this thing may have come from 974 * the user. There must be either one "%d" and no other "%" 975 * characters. 976 */ 977 if (p[1] != 'd' || strchr(p + 2, '%')) 978 return -EINVAL; 979 980 /* Use one page as a bit array of possible slots */ 981 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 982 if (!inuse) 983 return -ENOMEM; 984 985 for_each_netdev(net, d) { 986 if (!sscanf(d->name, name, &i)) 987 continue; 988 if (i < 0 || i >= max_netdevices) 989 continue; 990 991 /* avoid cases where sscanf is not exact inverse of printf */ 992 snprintf(buf, IFNAMSIZ, name, i); 993 if (!strncmp(buf, d->name, IFNAMSIZ)) 994 set_bit(i, inuse); 995 } 996 997 i = find_first_zero_bit(inuse, max_netdevices); 998 free_page((unsigned long) inuse); 999 } 1000 1001 if (buf != name) 1002 snprintf(buf, IFNAMSIZ, name, i); 1003 if (!__dev_get_by_name(net, buf)) 1004 return i; 1005 1006 /* It is possible to run out of possible slots 1007 * when the name is long and there isn't enough space left 1008 * for the digits, or if all bits are used. 1009 */ 1010 return -ENFILE; 1011 } 1012 1013 /** 1014 * dev_alloc_name - allocate a name for a device 1015 * @dev: device 1016 * @name: name format string 1017 * 1018 * Passed a format string - eg "lt%d" it will try and find a suitable 1019 * id. It scans list of devices to build up a free map, then chooses 1020 * the first empty slot. The caller must hold the dev_base or rtnl lock 1021 * while allocating the name and adding the device in order to avoid 1022 * duplicates. 1023 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1024 * Returns the number of the unit assigned or a negative errno code. 1025 */ 1026 1027 int dev_alloc_name(struct net_device *dev, const char *name) 1028 { 1029 char buf[IFNAMSIZ]; 1030 struct net *net; 1031 int ret; 1032 1033 BUG_ON(!dev_net(dev)); 1034 net = dev_net(dev); 1035 ret = __dev_alloc_name(net, name, buf); 1036 if (ret >= 0) 1037 strlcpy(dev->name, buf, IFNAMSIZ); 1038 return ret; 1039 } 1040 EXPORT_SYMBOL(dev_alloc_name); 1041 1042 static int dev_alloc_name_ns(struct net *net, 1043 struct net_device *dev, 1044 const char *name) 1045 { 1046 char buf[IFNAMSIZ]; 1047 int ret; 1048 1049 ret = __dev_alloc_name(net, name, buf); 1050 if (ret >= 0) 1051 strlcpy(dev->name, buf, IFNAMSIZ); 1052 return ret; 1053 } 1054 1055 static int dev_get_valid_name(struct net *net, 1056 struct net_device *dev, 1057 const char *name) 1058 { 1059 BUG_ON(!net); 1060 1061 if (!dev_valid_name(name)) 1062 return -EINVAL; 1063 1064 if (strchr(name, '%')) 1065 return dev_alloc_name_ns(net, dev, name); 1066 else if (__dev_get_by_name(net, name)) 1067 return -EEXIST; 1068 else if (dev->name != name) 1069 strlcpy(dev->name, name, IFNAMSIZ); 1070 1071 return 0; 1072 } 1073 1074 /** 1075 * dev_change_name - change name of a device 1076 * @dev: device 1077 * @newname: name (or format string) must be at least IFNAMSIZ 1078 * 1079 * Change name of a device, can pass format strings "eth%d". 1080 * for wildcarding. 1081 */ 1082 int dev_change_name(struct net_device *dev, const char *newname) 1083 { 1084 char oldname[IFNAMSIZ]; 1085 int err = 0; 1086 int ret; 1087 struct net *net; 1088 1089 ASSERT_RTNL(); 1090 BUG_ON(!dev_net(dev)); 1091 1092 net = dev_net(dev); 1093 if (dev->flags & IFF_UP) 1094 return -EBUSY; 1095 1096 write_seqcount_begin(&devnet_rename_seq); 1097 1098 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1099 write_seqcount_end(&devnet_rename_seq); 1100 return 0; 1101 } 1102 1103 memcpy(oldname, dev->name, IFNAMSIZ); 1104 1105 err = dev_get_valid_name(net, dev, newname); 1106 if (err < 0) { 1107 write_seqcount_end(&devnet_rename_seq); 1108 return err; 1109 } 1110 1111 rollback: 1112 ret = device_rename(&dev->dev, dev->name); 1113 if (ret) { 1114 memcpy(dev->name, oldname, IFNAMSIZ); 1115 write_seqcount_end(&devnet_rename_seq); 1116 return ret; 1117 } 1118 1119 write_seqcount_end(&devnet_rename_seq); 1120 1121 write_lock_bh(&dev_base_lock); 1122 hlist_del_rcu(&dev->name_hlist); 1123 write_unlock_bh(&dev_base_lock); 1124 1125 synchronize_rcu(); 1126 1127 write_lock_bh(&dev_base_lock); 1128 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1129 write_unlock_bh(&dev_base_lock); 1130 1131 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1132 ret = notifier_to_errno(ret); 1133 1134 if (ret) { 1135 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1136 if (err >= 0) { 1137 err = ret; 1138 write_seqcount_begin(&devnet_rename_seq); 1139 memcpy(dev->name, oldname, IFNAMSIZ); 1140 goto rollback; 1141 } else { 1142 pr_err("%s: name change rollback failed: %d\n", 1143 dev->name, ret); 1144 } 1145 } 1146 1147 return err; 1148 } 1149 1150 /** 1151 * dev_set_alias - change ifalias of a device 1152 * @dev: device 1153 * @alias: name up to IFALIASZ 1154 * @len: limit of bytes to copy from info 1155 * 1156 * Set ifalias for a device, 1157 */ 1158 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1159 { 1160 char *new_ifalias; 1161 1162 ASSERT_RTNL(); 1163 1164 if (len >= IFALIASZ) 1165 return -EINVAL; 1166 1167 if (!len) { 1168 kfree(dev->ifalias); 1169 dev->ifalias = NULL; 1170 return 0; 1171 } 1172 1173 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1174 if (!new_ifalias) 1175 return -ENOMEM; 1176 dev->ifalias = new_ifalias; 1177 1178 strlcpy(dev->ifalias, alias, len+1); 1179 return len; 1180 } 1181 1182 1183 /** 1184 * netdev_features_change - device changes features 1185 * @dev: device to cause notification 1186 * 1187 * Called to indicate a device has changed features. 1188 */ 1189 void netdev_features_change(struct net_device *dev) 1190 { 1191 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1192 } 1193 EXPORT_SYMBOL(netdev_features_change); 1194 1195 /** 1196 * netdev_state_change - device changes state 1197 * @dev: device to cause notification 1198 * 1199 * Called to indicate a device has changed state. This function calls 1200 * the notifier chains for netdev_chain and sends a NEWLINK message 1201 * to the routing socket. 1202 */ 1203 void netdev_state_change(struct net_device *dev) 1204 { 1205 if (dev->flags & IFF_UP) { 1206 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1207 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1208 } 1209 } 1210 EXPORT_SYMBOL(netdev_state_change); 1211 1212 /** 1213 * netdev_notify_peers - notify network peers about existence of @dev 1214 * @dev: network device 1215 * 1216 * Generate traffic such that interested network peers are aware of 1217 * @dev, such as by generating a gratuitous ARP. This may be used when 1218 * a device wants to inform the rest of the network about some sort of 1219 * reconfiguration such as a failover event or virtual machine 1220 * migration. 1221 */ 1222 void netdev_notify_peers(struct net_device *dev) 1223 { 1224 rtnl_lock(); 1225 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1226 rtnl_unlock(); 1227 } 1228 EXPORT_SYMBOL(netdev_notify_peers); 1229 1230 static int __dev_open(struct net_device *dev) 1231 { 1232 const struct net_device_ops *ops = dev->netdev_ops; 1233 int ret; 1234 1235 ASSERT_RTNL(); 1236 1237 if (!netif_device_present(dev)) 1238 return -ENODEV; 1239 1240 /* Block netpoll from trying to do any rx path servicing. 1241 * If we don't do this there is a chance ndo_poll_controller 1242 * or ndo_poll may be running while we open the device 1243 */ 1244 netpoll_rx_disable(dev); 1245 1246 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1247 ret = notifier_to_errno(ret); 1248 if (ret) 1249 return ret; 1250 1251 set_bit(__LINK_STATE_START, &dev->state); 1252 1253 if (ops->ndo_validate_addr) 1254 ret = ops->ndo_validate_addr(dev); 1255 1256 if (!ret && ops->ndo_open) 1257 ret = ops->ndo_open(dev); 1258 1259 netpoll_rx_enable(dev); 1260 1261 if (ret) 1262 clear_bit(__LINK_STATE_START, &dev->state); 1263 else { 1264 dev->flags |= IFF_UP; 1265 net_dmaengine_get(); 1266 dev_set_rx_mode(dev); 1267 dev_activate(dev); 1268 add_device_randomness(dev->dev_addr, dev->addr_len); 1269 } 1270 1271 return ret; 1272 } 1273 1274 /** 1275 * dev_open - prepare an interface for use. 1276 * @dev: device to open 1277 * 1278 * Takes a device from down to up state. The device's private open 1279 * function is invoked and then the multicast lists are loaded. Finally 1280 * the device is moved into the up state and a %NETDEV_UP message is 1281 * sent to the netdev notifier chain. 1282 * 1283 * Calling this function on an active interface is a nop. On a failure 1284 * a negative errno code is returned. 1285 */ 1286 int dev_open(struct net_device *dev) 1287 { 1288 int ret; 1289 1290 if (dev->flags & IFF_UP) 1291 return 0; 1292 1293 ret = __dev_open(dev); 1294 if (ret < 0) 1295 return ret; 1296 1297 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1298 call_netdevice_notifiers(NETDEV_UP, dev); 1299 1300 return ret; 1301 } 1302 EXPORT_SYMBOL(dev_open); 1303 1304 static int __dev_close_many(struct list_head *head) 1305 { 1306 struct net_device *dev; 1307 1308 ASSERT_RTNL(); 1309 might_sleep(); 1310 1311 list_for_each_entry(dev, head, close_list) { 1312 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1313 1314 clear_bit(__LINK_STATE_START, &dev->state); 1315 1316 /* Synchronize to scheduled poll. We cannot touch poll list, it 1317 * can be even on different cpu. So just clear netif_running(). 1318 * 1319 * dev->stop() will invoke napi_disable() on all of it's 1320 * napi_struct instances on this device. 1321 */ 1322 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1323 } 1324 1325 dev_deactivate_many(head); 1326 1327 list_for_each_entry(dev, head, close_list) { 1328 const struct net_device_ops *ops = dev->netdev_ops; 1329 1330 /* 1331 * Call the device specific close. This cannot fail. 1332 * Only if device is UP 1333 * 1334 * We allow it to be called even after a DETACH hot-plug 1335 * event. 1336 */ 1337 if (ops->ndo_stop) 1338 ops->ndo_stop(dev); 1339 1340 dev->flags &= ~IFF_UP; 1341 net_dmaengine_put(); 1342 } 1343 1344 return 0; 1345 } 1346 1347 static int __dev_close(struct net_device *dev) 1348 { 1349 int retval; 1350 LIST_HEAD(single); 1351 1352 /* Temporarily disable netpoll until the interface is down */ 1353 netpoll_rx_disable(dev); 1354 1355 list_add(&dev->close_list, &single); 1356 retval = __dev_close_many(&single); 1357 list_del(&single); 1358 1359 netpoll_rx_enable(dev); 1360 return retval; 1361 } 1362 1363 static int dev_close_many(struct list_head *head) 1364 { 1365 struct net_device *dev, *tmp; 1366 1367 /* Remove the devices that don't need to be closed */ 1368 list_for_each_entry_safe(dev, tmp, head, close_list) 1369 if (!(dev->flags & IFF_UP)) 1370 list_del_init(&dev->close_list); 1371 1372 __dev_close_many(head); 1373 1374 list_for_each_entry_safe(dev, tmp, head, close_list) { 1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1376 call_netdevice_notifiers(NETDEV_DOWN, dev); 1377 list_del_init(&dev->close_list); 1378 } 1379 1380 return 0; 1381 } 1382 1383 /** 1384 * dev_close - shutdown an interface. 1385 * @dev: device to shutdown 1386 * 1387 * This function moves an active device into down state. A 1388 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1389 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1390 * chain. 1391 */ 1392 int dev_close(struct net_device *dev) 1393 { 1394 if (dev->flags & IFF_UP) { 1395 LIST_HEAD(single); 1396 1397 /* Block netpoll rx while the interface is going down */ 1398 netpoll_rx_disable(dev); 1399 1400 list_add(&dev->close_list, &single); 1401 dev_close_many(&single); 1402 list_del(&single); 1403 1404 netpoll_rx_enable(dev); 1405 } 1406 return 0; 1407 } 1408 EXPORT_SYMBOL(dev_close); 1409 1410 1411 /** 1412 * dev_disable_lro - disable Large Receive Offload on a device 1413 * @dev: device 1414 * 1415 * Disable Large Receive Offload (LRO) on a net device. Must be 1416 * called under RTNL. This is needed if received packets may be 1417 * forwarded to another interface. 1418 */ 1419 void dev_disable_lro(struct net_device *dev) 1420 { 1421 /* 1422 * If we're trying to disable lro on a vlan device 1423 * use the underlying physical device instead 1424 */ 1425 if (is_vlan_dev(dev)) 1426 dev = vlan_dev_real_dev(dev); 1427 1428 /* the same for macvlan devices */ 1429 if (netif_is_macvlan(dev)) 1430 dev = macvlan_dev_real_dev(dev); 1431 1432 dev->wanted_features &= ~NETIF_F_LRO; 1433 netdev_update_features(dev); 1434 1435 if (unlikely(dev->features & NETIF_F_LRO)) 1436 netdev_WARN(dev, "failed to disable LRO!\n"); 1437 } 1438 EXPORT_SYMBOL(dev_disable_lro); 1439 1440 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1441 struct net_device *dev) 1442 { 1443 struct netdev_notifier_info info; 1444 1445 netdev_notifier_info_init(&info, dev); 1446 return nb->notifier_call(nb, val, &info); 1447 } 1448 1449 static int dev_boot_phase = 1; 1450 1451 /** 1452 * register_netdevice_notifier - register a network notifier block 1453 * @nb: notifier 1454 * 1455 * Register a notifier to be called when network device events occur. 1456 * The notifier passed is linked into the kernel structures and must 1457 * not be reused until it has been unregistered. A negative errno code 1458 * is returned on a failure. 1459 * 1460 * When registered all registration and up events are replayed 1461 * to the new notifier to allow device to have a race free 1462 * view of the network device list. 1463 */ 1464 1465 int register_netdevice_notifier(struct notifier_block *nb) 1466 { 1467 struct net_device *dev; 1468 struct net_device *last; 1469 struct net *net; 1470 int err; 1471 1472 rtnl_lock(); 1473 err = raw_notifier_chain_register(&netdev_chain, nb); 1474 if (err) 1475 goto unlock; 1476 if (dev_boot_phase) 1477 goto unlock; 1478 for_each_net(net) { 1479 for_each_netdev(net, dev) { 1480 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1481 err = notifier_to_errno(err); 1482 if (err) 1483 goto rollback; 1484 1485 if (!(dev->flags & IFF_UP)) 1486 continue; 1487 1488 call_netdevice_notifier(nb, NETDEV_UP, dev); 1489 } 1490 } 1491 1492 unlock: 1493 rtnl_unlock(); 1494 return err; 1495 1496 rollback: 1497 last = dev; 1498 for_each_net(net) { 1499 for_each_netdev(net, dev) { 1500 if (dev == last) 1501 goto outroll; 1502 1503 if (dev->flags & IFF_UP) { 1504 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1505 dev); 1506 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1507 } 1508 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1509 } 1510 } 1511 1512 outroll: 1513 raw_notifier_chain_unregister(&netdev_chain, nb); 1514 goto unlock; 1515 } 1516 EXPORT_SYMBOL(register_netdevice_notifier); 1517 1518 /** 1519 * unregister_netdevice_notifier - unregister a network notifier block 1520 * @nb: notifier 1521 * 1522 * Unregister a notifier previously registered by 1523 * register_netdevice_notifier(). The notifier is unlinked into the 1524 * kernel structures and may then be reused. A negative errno code 1525 * is returned on a failure. 1526 * 1527 * After unregistering unregister and down device events are synthesized 1528 * for all devices on the device list to the removed notifier to remove 1529 * the need for special case cleanup code. 1530 */ 1531 1532 int unregister_netdevice_notifier(struct notifier_block *nb) 1533 { 1534 struct net_device *dev; 1535 struct net *net; 1536 int err; 1537 1538 rtnl_lock(); 1539 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1540 if (err) 1541 goto unlock; 1542 1543 for_each_net(net) { 1544 for_each_netdev(net, dev) { 1545 if (dev->flags & IFF_UP) { 1546 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1547 dev); 1548 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1549 } 1550 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1551 } 1552 } 1553 unlock: 1554 rtnl_unlock(); 1555 return err; 1556 } 1557 EXPORT_SYMBOL(unregister_netdevice_notifier); 1558 1559 /** 1560 * call_netdevice_notifiers_info - call all network notifier blocks 1561 * @val: value passed unmodified to notifier function 1562 * @dev: net_device pointer passed unmodified to notifier function 1563 * @info: notifier information data 1564 * 1565 * Call all network notifier blocks. Parameters and return value 1566 * are as for raw_notifier_call_chain(). 1567 */ 1568 1569 int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev, 1570 struct netdev_notifier_info *info) 1571 { 1572 ASSERT_RTNL(); 1573 netdev_notifier_info_init(info, dev); 1574 return raw_notifier_call_chain(&netdev_chain, val, info); 1575 } 1576 EXPORT_SYMBOL(call_netdevice_notifiers_info); 1577 1578 /** 1579 * call_netdevice_notifiers - call all network notifier blocks 1580 * @val: value passed unmodified to notifier function 1581 * @dev: net_device pointer passed unmodified to notifier function 1582 * 1583 * Call all network notifier blocks. Parameters and return value 1584 * are as for raw_notifier_call_chain(). 1585 */ 1586 1587 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1588 { 1589 struct netdev_notifier_info info; 1590 1591 return call_netdevice_notifiers_info(val, dev, &info); 1592 } 1593 EXPORT_SYMBOL(call_netdevice_notifiers); 1594 1595 static struct static_key netstamp_needed __read_mostly; 1596 #ifdef HAVE_JUMP_LABEL 1597 /* We are not allowed to call static_key_slow_dec() from irq context 1598 * If net_disable_timestamp() is called from irq context, defer the 1599 * static_key_slow_dec() calls. 1600 */ 1601 static atomic_t netstamp_needed_deferred; 1602 #endif 1603 1604 void net_enable_timestamp(void) 1605 { 1606 #ifdef HAVE_JUMP_LABEL 1607 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1608 1609 if (deferred) { 1610 while (--deferred) 1611 static_key_slow_dec(&netstamp_needed); 1612 return; 1613 } 1614 #endif 1615 static_key_slow_inc(&netstamp_needed); 1616 } 1617 EXPORT_SYMBOL(net_enable_timestamp); 1618 1619 void net_disable_timestamp(void) 1620 { 1621 #ifdef HAVE_JUMP_LABEL 1622 if (in_interrupt()) { 1623 atomic_inc(&netstamp_needed_deferred); 1624 return; 1625 } 1626 #endif 1627 static_key_slow_dec(&netstamp_needed); 1628 } 1629 EXPORT_SYMBOL(net_disable_timestamp); 1630 1631 static inline void net_timestamp_set(struct sk_buff *skb) 1632 { 1633 skb->tstamp.tv64 = 0; 1634 if (static_key_false(&netstamp_needed)) 1635 __net_timestamp(skb); 1636 } 1637 1638 #define net_timestamp_check(COND, SKB) \ 1639 if (static_key_false(&netstamp_needed)) { \ 1640 if ((COND) && !(SKB)->tstamp.tv64) \ 1641 __net_timestamp(SKB); \ 1642 } \ 1643 1644 static inline bool is_skb_forwardable(struct net_device *dev, 1645 struct sk_buff *skb) 1646 { 1647 unsigned int len; 1648 1649 if (!(dev->flags & IFF_UP)) 1650 return false; 1651 1652 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1653 if (skb->len <= len) 1654 return true; 1655 1656 /* if TSO is enabled, we don't care about the length as the packet 1657 * could be forwarded without being segmented before 1658 */ 1659 if (skb_is_gso(skb)) 1660 return true; 1661 1662 return false; 1663 } 1664 1665 /** 1666 * dev_forward_skb - loopback an skb to another netif 1667 * 1668 * @dev: destination network device 1669 * @skb: buffer to forward 1670 * 1671 * return values: 1672 * NET_RX_SUCCESS (no congestion) 1673 * NET_RX_DROP (packet was dropped, but freed) 1674 * 1675 * dev_forward_skb can be used for injecting an skb from the 1676 * start_xmit function of one device into the receive queue 1677 * of another device. 1678 * 1679 * The receiving device may be in another namespace, so 1680 * we have to clear all information in the skb that could 1681 * impact namespace isolation. 1682 */ 1683 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1684 { 1685 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1686 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1687 atomic_long_inc(&dev->rx_dropped); 1688 kfree_skb(skb); 1689 return NET_RX_DROP; 1690 } 1691 } 1692 1693 if (unlikely(!is_skb_forwardable(dev, skb))) { 1694 atomic_long_inc(&dev->rx_dropped); 1695 kfree_skb(skb); 1696 return NET_RX_DROP; 1697 } 1698 1699 skb_scrub_packet(skb, true); 1700 skb->protocol = eth_type_trans(skb, dev); 1701 1702 return netif_rx(skb); 1703 } 1704 EXPORT_SYMBOL_GPL(dev_forward_skb); 1705 1706 static inline int deliver_skb(struct sk_buff *skb, 1707 struct packet_type *pt_prev, 1708 struct net_device *orig_dev) 1709 { 1710 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1711 return -ENOMEM; 1712 atomic_inc(&skb->users); 1713 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1714 } 1715 1716 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1717 { 1718 if (!ptype->af_packet_priv || !skb->sk) 1719 return false; 1720 1721 if (ptype->id_match) 1722 return ptype->id_match(ptype, skb->sk); 1723 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1724 return true; 1725 1726 return false; 1727 } 1728 1729 /* 1730 * Support routine. Sends outgoing frames to any network 1731 * taps currently in use. 1732 */ 1733 1734 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1735 { 1736 struct packet_type *ptype; 1737 struct sk_buff *skb2 = NULL; 1738 struct packet_type *pt_prev = NULL; 1739 1740 rcu_read_lock(); 1741 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1742 /* Never send packets back to the socket 1743 * they originated from - MvS (miquels@drinkel.ow.org) 1744 */ 1745 if ((ptype->dev == dev || !ptype->dev) && 1746 (!skb_loop_sk(ptype, skb))) { 1747 if (pt_prev) { 1748 deliver_skb(skb2, pt_prev, skb->dev); 1749 pt_prev = ptype; 1750 continue; 1751 } 1752 1753 skb2 = skb_clone(skb, GFP_ATOMIC); 1754 if (!skb2) 1755 break; 1756 1757 net_timestamp_set(skb2); 1758 1759 /* skb->nh should be correctly 1760 set by sender, so that the second statement is 1761 just protection against buggy protocols. 1762 */ 1763 skb_reset_mac_header(skb2); 1764 1765 if (skb_network_header(skb2) < skb2->data || 1766 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1767 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1768 ntohs(skb2->protocol), 1769 dev->name); 1770 skb_reset_network_header(skb2); 1771 } 1772 1773 skb2->transport_header = skb2->network_header; 1774 skb2->pkt_type = PACKET_OUTGOING; 1775 pt_prev = ptype; 1776 } 1777 } 1778 if (pt_prev) 1779 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1780 rcu_read_unlock(); 1781 } 1782 1783 /** 1784 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1785 * @dev: Network device 1786 * @txq: number of queues available 1787 * 1788 * If real_num_tx_queues is changed the tc mappings may no longer be 1789 * valid. To resolve this verify the tc mapping remains valid and if 1790 * not NULL the mapping. With no priorities mapping to this 1791 * offset/count pair it will no longer be used. In the worst case TC0 1792 * is invalid nothing can be done so disable priority mappings. If is 1793 * expected that drivers will fix this mapping if they can before 1794 * calling netif_set_real_num_tx_queues. 1795 */ 1796 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1797 { 1798 int i; 1799 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1800 1801 /* If TC0 is invalidated disable TC mapping */ 1802 if (tc->offset + tc->count > txq) { 1803 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1804 dev->num_tc = 0; 1805 return; 1806 } 1807 1808 /* Invalidated prio to tc mappings set to TC0 */ 1809 for (i = 1; i < TC_BITMASK + 1; i++) { 1810 int q = netdev_get_prio_tc_map(dev, i); 1811 1812 tc = &dev->tc_to_txq[q]; 1813 if (tc->offset + tc->count > txq) { 1814 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1815 i, q); 1816 netdev_set_prio_tc_map(dev, i, 0); 1817 } 1818 } 1819 } 1820 1821 #ifdef CONFIG_XPS 1822 static DEFINE_MUTEX(xps_map_mutex); 1823 #define xmap_dereference(P) \ 1824 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1825 1826 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1827 int cpu, u16 index) 1828 { 1829 struct xps_map *map = NULL; 1830 int pos; 1831 1832 if (dev_maps) 1833 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1834 1835 for (pos = 0; map && pos < map->len; pos++) { 1836 if (map->queues[pos] == index) { 1837 if (map->len > 1) { 1838 map->queues[pos] = map->queues[--map->len]; 1839 } else { 1840 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1841 kfree_rcu(map, rcu); 1842 map = NULL; 1843 } 1844 break; 1845 } 1846 } 1847 1848 return map; 1849 } 1850 1851 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1852 { 1853 struct xps_dev_maps *dev_maps; 1854 int cpu, i; 1855 bool active = false; 1856 1857 mutex_lock(&xps_map_mutex); 1858 dev_maps = xmap_dereference(dev->xps_maps); 1859 1860 if (!dev_maps) 1861 goto out_no_maps; 1862 1863 for_each_possible_cpu(cpu) { 1864 for (i = index; i < dev->num_tx_queues; i++) { 1865 if (!remove_xps_queue(dev_maps, cpu, i)) 1866 break; 1867 } 1868 if (i == dev->num_tx_queues) 1869 active = true; 1870 } 1871 1872 if (!active) { 1873 RCU_INIT_POINTER(dev->xps_maps, NULL); 1874 kfree_rcu(dev_maps, rcu); 1875 } 1876 1877 for (i = index; i < dev->num_tx_queues; i++) 1878 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1879 NUMA_NO_NODE); 1880 1881 out_no_maps: 1882 mutex_unlock(&xps_map_mutex); 1883 } 1884 1885 static struct xps_map *expand_xps_map(struct xps_map *map, 1886 int cpu, u16 index) 1887 { 1888 struct xps_map *new_map; 1889 int alloc_len = XPS_MIN_MAP_ALLOC; 1890 int i, pos; 1891 1892 for (pos = 0; map && pos < map->len; pos++) { 1893 if (map->queues[pos] != index) 1894 continue; 1895 return map; 1896 } 1897 1898 /* Need to add queue to this CPU's existing map */ 1899 if (map) { 1900 if (pos < map->alloc_len) 1901 return map; 1902 1903 alloc_len = map->alloc_len * 2; 1904 } 1905 1906 /* Need to allocate new map to store queue on this CPU's map */ 1907 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1908 cpu_to_node(cpu)); 1909 if (!new_map) 1910 return NULL; 1911 1912 for (i = 0; i < pos; i++) 1913 new_map->queues[i] = map->queues[i]; 1914 new_map->alloc_len = alloc_len; 1915 new_map->len = pos; 1916 1917 return new_map; 1918 } 1919 1920 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 1921 u16 index) 1922 { 1923 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1924 struct xps_map *map, *new_map; 1925 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1926 int cpu, numa_node_id = -2; 1927 bool active = false; 1928 1929 mutex_lock(&xps_map_mutex); 1930 1931 dev_maps = xmap_dereference(dev->xps_maps); 1932 1933 /* allocate memory for queue storage */ 1934 for_each_online_cpu(cpu) { 1935 if (!cpumask_test_cpu(cpu, mask)) 1936 continue; 1937 1938 if (!new_dev_maps) 1939 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1940 if (!new_dev_maps) { 1941 mutex_unlock(&xps_map_mutex); 1942 return -ENOMEM; 1943 } 1944 1945 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1946 NULL; 1947 1948 map = expand_xps_map(map, cpu, index); 1949 if (!map) 1950 goto error; 1951 1952 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1953 } 1954 1955 if (!new_dev_maps) 1956 goto out_no_new_maps; 1957 1958 for_each_possible_cpu(cpu) { 1959 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 1960 /* add queue to CPU maps */ 1961 int pos = 0; 1962 1963 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1964 while ((pos < map->len) && (map->queues[pos] != index)) 1965 pos++; 1966 1967 if (pos == map->len) 1968 map->queues[map->len++] = index; 1969 #ifdef CONFIG_NUMA 1970 if (numa_node_id == -2) 1971 numa_node_id = cpu_to_node(cpu); 1972 else if (numa_node_id != cpu_to_node(cpu)) 1973 numa_node_id = -1; 1974 #endif 1975 } else if (dev_maps) { 1976 /* fill in the new device map from the old device map */ 1977 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1978 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1979 } 1980 1981 } 1982 1983 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 1984 1985 /* Cleanup old maps */ 1986 if (dev_maps) { 1987 for_each_possible_cpu(cpu) { 1988 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1989 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1990 if (map && map != new_map) 1991 kfree_rcu(map, rcu); 1992 } 1993 1994 kfree_rcu(dev_maps, rcu); 1995 } 1996 1997 dev_maps = new_dev_maps; 1998 active = true; 1999 2000 out_no_new_maps: 2001 /* update Tx queue numa node */ 2002 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2003 (numa_node_id >= 0) ? numa_node_id : 2004 NUMA_NO_NODE); 2005 2006 if (!dev_maps) 2007 goto out_no_maps; 2008 2009 /* removes queue from unused CPUs */ 2010 for_each_possible_cpu(cpu) { 2011 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2012 continue; 2013 2014 if (remove_xps_queue(dev_maps, cpu, index)) 2015 active = true; 2016 } 2017 2018 /* free map if not active */ 2019 if (!active) { 2020 RCU_INIT_POINTER(dev->xps_maps, NULL); 2021 kfree_rcu(dev_maps, rcu); 2022 } 2023 2024 out_no_maps: 2025 mutex_unlock(&xps_map_mutex); 2026 2027 return 0; 2028 error: 2029 /* remove any maps that we added */ 2030 for_each_possible_cpu(cpu) { 2031 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2032 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2033 NULL; 2034 if (new_map && new_map != map) 2035 kfree(new_map); 2036 } 2037 2038 mutex_unlock(&xps_map_mutex); 2039 2040 kfree(new_dev_maps); 2041 return -ENOMEM; 2042 } 2043 EXPORT_SYMBOL(netif_set_xps_queue); 2044 2045 #endif 2046 /* 2047 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2048 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2049 */ 2050 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2051 { 2052 int rc; 2053 2054 if (txq < 1 || txq > dev->num_tx_queues) 2055 return -EINVAL; 2056 2057 if (dev->reg_state == NETREG_REGISTERED || 2058 dev->reg_state == NETREG_UNREGISTERING) { 2059 ASSERT_RTNL(); 2060 2061 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2062 txq); 2063 if (rc) 2064 return rc; 2065 2066 if (dev->num_tc) 2067 netif_setup_tc(dev, txq); 2068 2069 if (txq < dev->real_num_tx_queues) { 2070 qdisc_reset_all_tx_gt(dev, txq); 2071 #ifdef CONFIG_XPS 2072 netif_reset_xps_queues_gt(dev, txq); 2073 #endif 2074 } 2075 } 2076 2077 dev->real_num_tx_queues = txq; 2078 return 0; 2079 } 2080 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2081 2082 #ifdef CONFIG_RPS 2083 /** 2084 * netif_set_real_num_rx_queues - set actual number of RX queues used 2085 * @dev: Network device 2086 * @rxq: Actual number of RX queues 2087 * 2088 * This must be called either with the rtnl_lock held or before 2089 * registration of the net device. Returns 0 on success, or a 2090 * negative error code. If called before registration, it always 2091 * succeeds. 2092 */ 2093 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2094 { 2095 int rc; 2096 2097 if (rxq < 1 || rxq > dev->num_rx_queues) 2098 return -EINVAL; 2099 2100 if (dev->reg_state == NETREG_REGISTERED) { 2101 ASSERT_RTNL(); 2102 2103 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2104 rxq); 2105 if (rc) 2106 return rc; 2107 } 2108 2109 dev->real_num_rx_queues = rxq; 2110 return 0; 2111 } 2112 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2113 #endif 2114 2115 /** 2116 * netif_get_num_default_rss_queues - default number of RSS queues 2117 * 2118 * This routine should set an upper limit on the number of RSS queues 2119 * used by default by multiqueue devices. 2120 */ 2121 int netif_get_num_default_rss_queues(void) 2122 { 2123 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2124 } 2125 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2126 2127 static inline void __netif_reschedule(struct Qdisc *q) 2128 { 2129 struct softnet_data *sd; 2130 unsigned long flags; 2131 2132 local_irq_save(flags); 2133 sd = &__get_cpu_var(softnet_data); 2134 q->next_sched = NULL; 2135 *sd->output_queue_tailp = q; 2136 sd->output_queue_tailp = &q->next_sched; 2137 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2138 local_irq_restore(flags); 2139 } 2140 2141 void __netif_schedule(struct Qdisc *q) 2142 { 2143 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2144 __netif_reschedule(q); 2145 } 2146 EXPORT_SYMBOL(__netif_schedule); 2147 2148 void dev_kfree_skb_irq(struct sk_buff *skb) 2149 { 2150 if (atomic_dec_and_test(&skb->users)) { 2151 struct softnet_data *sd; 2152 unsigned long flags; 2153 2154 local_irq_save(flags); 2155 sd = &__get_cpu_var(softnet_data); 2156 skb->next = sd->completion_queue; 2157 sd->completion_queue = skb; 2158 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2159 local_irq_restore(flags); 2160 } 2161 } 2162 EXPORT_SYMBOL(dev_kfree_skb_irq); 2163 2164 void dev_kfree_skb_any(struct sk_buff *skb) 2165 { 2166 if (in_irq() || irqs_disabled()) 2167 dev_kfree_skb_irq(skb); 2168 else 2169 dev_kfree_skb(skb); 2170 } 2171 EXPORT_SYMBOL(dev_kfree_skb_any); 2172 2173 2174 /** 2175 * netif_device_detach - mark device as removed 2176 * @dev: network device 2177 * 2178 * Mark device as removed from system and therefore no longer available. 2179 */ 2180 void netif_device_detach(struct net_device *dev) 2181 { 2182 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2183 netif_running(dev)) { 2184 netif_tx_stop_all_queues(dev); 2185 } 2186 } 2187 EXPORT_SYMBOL(netif_device_detach); 2188 2189 /** 2190 * netif_device_attach - mark device as attached 2191 * @dev: network device 2192 * 2193 * Mark device as attached from system and restart if needed. 2194 */ 2195 void netif_device_attach(struct net_device *dev) 2196 { 2197 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2198 netif_running(dev)) { 2199 netif_tx_wake_all_queues(dev); 2200 __netdev_watchdog_up(dev); 2201 } 2202 } 2203 EXPORT_SYMBOL(netif_device_attach); 2204 2205 static void skb_warn_bad_offload(const struct sk_buff *skb) 2206 { 2207 static const netdev_features_t null_features = 0; 2208 struct net_device *dev = skb->dev; 2209 const char *driver = ""; 2210 2211 if (!net_ratelimit()) 2212 return; 2213 2214 if (dev && dev->dev.parent) 2215 driver = dev_driver_string(dev->dev.parent); 2216 2217 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2218 "gso_type=%d ip_summed=%d\n", 2219 driver, dev ? &dev->features : &null_features, 2220 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2221 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2222 skb_shinfo(skb)->gso_type, skb->ip_summed); 2223 } 2224 2225 /* 2226 * Invalidate hardware checksum when packet is to be mangled, and 2227 * complete checksum manually on outgoing path. 2228 */ 2229 int skb_checksum_help(struct sk_buff *skb) 2230 { 2231 __wsum csum; 2232 int ret = 0, offset; 2233 2234 if (skb->ip_summed == CHECKSUM_COMPLETE) 2235 goto out_set_summed; 2236 2237 if (unlikely(skb_shinfo(skb)->gso_size)) { 2238 skb_warn_bad_offload(skb); 2239 return -EINVAL; 2240 } 2241 2242 /* Before computing a checksum, we should make sure no frag could 2243 * be modified by an external entity : checksum could be wrong. 2244 */ 2245 if (skb_has_shared_frag(skb)) { 2246 ret = __skb_linearize(skb); 2247 if (ret) 2248 goto out; 2249 } 2250 2251 offset = skb_checksum_start_offset(skb); 2252 BUG_ON(offset >= skb_headlen(skb)); 2253 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2254 2255 offset += skb->csum_offset; 2256 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2257 2258 if (skb_cloned(skb) && 2259 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2260 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2261 if (ret) 2262 goto out; 2263 } 2264 2265 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2266 out_set_summed: 2267 skb->ip_summed = CHECKSUM_NONE; 2268 out: 2269 return ret; 2270 } 2271 EXPORT_SYMBOL(skb_checksum_help); 2272 2273 __be16 skb_network_protocol(struct sk_buff *skb) 2274 { 2275 __be16 type = skb->protocol; 2276 int vlan_depth = ETH_HLEN; 2277 2278 /* Tunnel gso handlers can set protocol to ethernet. */ 2279 if (type == htons(ETH_P_TEB)) { 2280 struct ethhdr *eth; 2281 2282 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2283 return 0; 2284 2285 eth = (struct ethhdr *)skb_mac_header(skb); 2286 type = eth->h_proto; 2287 } 2288 2289 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) { 2290 struct vlan_hdr *vh; 2291 2292 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 2293 return 0; 2294 2295 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2296 type = vh->h_vlan_encapsulated_proto; 2297 vlan_depth += VLAN_HLEN; 2298 } 2299 2300 return type; 2301 } 2302 2303 /** 2304 * skb_mac_gso_segment - mac layer segmentation handler. 2305 * @skb: buffer to segment 2306 * @features: features for the output path (see dev->features) 2307 */ 2308 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2309 netdev_features_t features) 2310 { 2311 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2312 struct packet_offload *ptype; 2313 __be16 type = skb_network_protocol(skb); 2314 2315 if (unlikely(!type)) 2316 return ERR_PTR(-EINVAL); 2317 2318 __skb_pull(skb, skb->mac_len); 2319 2320 rcu_read_lock(); 2321 list_for_each_entry_rcu(ptype, &offload_base, list) { 2322 if (ptype->type == type && ptype->callbacks.gso_segment) { 2323 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2324 int err; 2325 2326 err = ptype->callbacks.gso_send_check(skb); 2327 segs = ERR_PTR(err); 2328 if (err || skb_gso_ok(skb, features)) 2329 break; 2330 __skb_push(skb, (skb->data - 2331 skb_network_header(skb))); 2332 } 2333 segs = ptype->callbacks.gso_segment(skb, features); 2334 break; 2335 } 2336 } 2337 rcu_read_unlock(); 2338 2339 __skb_push(skb, skb->data - skb_mac_header(skb)); 2340 2341 return segs; 2342 } 2343 EXPORT_SYMBOL(skb_mac_gso_segment); 2344 2345 2346 /* openvswitch calls this on rx path, so we need a different check. 2347 */ 2348 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2349 { 2350 if (tx_path) 2351 return skb->ip_summed != CHECKSUM_PARTIAL; 2352 else 2353 return skb->ip_summed == CHECKSUM_NONE; 2354 } 2355 2356 /** 2357 * __skb_gso_segment - Perform segmentation on skb. 2358 * @skb: buffer to segment 2359 * @features: features for the output path (see dev->features) 2360 * @tx_path: whether it is called in TX path 2361 * 2362 * This function segments the given skb and returns a list of segments. 2363 * 2364 * It may return NULL if the skb requires no segmentation. This is 2365 * only possible when GSO is used for verifying header integrity. 2366 */ 2367 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2368 netdev_features_t features, bool tx_path) 2369 { 2370 if (unlikely(skb_needs_check(skb, tx_path))) { 2371 int err; 2372 2373 skb_warn_bad_offload(skb); 2374 2375 if (skb_header_cloned(skb) && 2376 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 2377 return ERR_PTR(err); 2378 } 2379 2380 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2381 SKB_GSO_CB(skb)->encap_level = 0; 2382 2383 skb_reset_mac_header(skb); 2384 skb_reset_mac_len(skb); 2385 2386 return skb_mac_gso_segment(skb, features); 2387 } 2388 EXPORT_SYMBOL(__skb_gso_segment); 2389 2390 /* Take action when hardware reception checksum errors are detected. */ 2391 #ifdef CONFIG_BUG 2392 void netdev_rx_csum_fault(struct net_device *dev) 2393 { 2394 if (net_ratelimit()) { 2395 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2396 dump_stack(); 2397 } 2398 } 2399 EXPORT_SYMBOL(netdev_rx_csum_fault); 2400 #endif 2401 2402 /* Actually, we should eliminate this check as soon as we know, that: 2403 * 1. IOMMU is present and allows to map all the memory. 2404 * 2. No high memory really exists on this machine. 2405 */ 2406 2407 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2408 { 2409 #ifdef CONFIG_HIGHMEM 2410 int i; 2411 if (!(dev->features & NETIF_F_HIGHDMA)) { 2412 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2413 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2414 if (PageHighMem(skb_frag_page(frag))) 2415 return 1; 2416 } 2417 } 2418 2419 if (PCI_DMA_BUS_IS_PHYS) { 2420 struct device *pdev = dev->dev.parent; 2421 2422 if (!pdev) 2423 return 0; 2424 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2425 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2426 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2427 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2428 return 1; 2429 } 2430 } 2431 #endif 2432 return 0; 2433 } 2434 2435 struct dev_gso_cb { 2436 void (*destructor)(struct sk_buff *skb); 2437 }; 2438 2439 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2440 2441 static void dev_gso_skb_destructor(struct sk_buff *skb) 2442 { 2443 struct dev_gso_cb *cb; 2444 2445 do { 2446 struct sk_buff *nskb = skb->next; 2447 2448 skb->next = nskb->next; 2449 nskb->next = NULL; 2450 kfree_skb(nskb); 2451 } while (skb->next); 2452 2453 cb = DEV_GSO_CB(skb); 2454 if (cb->destructor) 2455 cb->destructor(skb); 2456 } 2457 2458 /** 2459 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2460 * @skb: buffer to segment 2461 * @features: device features as applicable to this skb 2462 * 2463 * This function segments the given skb and stores the list of segments 2464 * in skb->next. 2465 */ 2466 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2467 { 2468 struct sk_buff *segs; 2469 2470 segs = skb_gso_segment(skb, features); 2471 2472 /* Verifying header integrity only. */ 2473 if (!segs) 2474 return 0; 2475 2476 if (IS_ERR(segs)) 2477 return PTR_ERR(segs); 2478 2479 skb->next = segs; 2480 DEV_GSO_CB(skb)->destructor = skb->destructor; 2481 skb->destructor = dev_gso_skb_destructor; 2482 2483 return 0; 2484 } 2485 2486 static netdev_features_t harmonize_features(struct sk_buff *skb, 2487 netdev_features_t features) 2488 { 2489 if (skb->ip_summed != CHECKSUM_NONE && 2490 !can_checksum_protocol(features, skb_network_protocol(skb))) { 2491 features &= ~NETIF_F_ALL_CSUM; 2492 } else if (illegal_highdma(skb->dev, skb)) { 2493 features &= ~NETIF_F_SG; 2494 } 2495 2496 return features; 2497 } 2498 2499 netdev_features_t netif_skb_features(struct sk_buff *skb) 2500 { 2501 __be16 protocol = skb->protocol; 2502 netdev_features_t features = skb->dev->features; 2503 2504 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs) 2505 features &= ~NETIF_F_GSO_MASK; 2506 2507 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) { 2508 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2509 protocol = veh->h_vlan_encapsulated_proto; 2510 } else if (!vlan_tx_tag_present(skb)) { 2511 return harmonize_features(skb, features); 2512 } 2513 2514 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX | 2515 NETIF_F_HW_VLAN_STAG_TX); 2516 2517 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) 2518 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2519 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX | 2520 NETIF_F_HW_VLAN_STAG_TX; 2521 2522 return harmonize_features(skb, features); 2523 } 2524 EXPORT_SYMBOL(netif_skb_features); 2525 2526 /* 2527 * Returns true if either: 2528 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2529 * 2. skb is fragmented and the device does not support SG. 2530 */ 2531 static inline int skb_needs_linearize(struct sk_buff *skb, 2532 netdev_features_t features) 2533 { 2534 return skb_is_nonlinear(skb) && 2535 ((skb_has_frag_list(skb) && 2536 !(features & NETIF_F_FRAGLIST)) || 2537 (skb_shinfo(skb)->nr_frags && 2538 !(features & NETIF_F_SG))); 2539 } 2540 2541 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2542 struct netdev_queue *txq, void *accel_priv) 2543 { 2544 const struct net_device_ops *ops = dev->netdev_ops; 2545 int rc = NETDEV_TX_OK; 2546 unsigned int skb_len; 2547 2548 if (likely(!skb->next)) { 2549 netdev_features_t features; 2550 2551 /* 2552 * If device doesn't need skb->dst, release it right now while 2553 * its hot in this cpu cache 2554 */ 2555 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2556 skb_dst_drop(skb); 2557 2558 features = netif_skb_features(skb); 2559 2560 if (vlan_tx_tag_present(skb) && 2561 !vlan_hw_offload_capable(features, skb->vlan_proto)) { 2562 skb = __vlan_put_tag(skb, skb->vlan_proto, 2563 vlan_tx_tag_get(skb)); 2564 if (unlikely(!skb)) 2565 goto out; 2566 2567 skb->vlan_tci = 0; 2568 } 2569 2570 /* If encapsulation offload request, verify we are testing 2571 * hardware encapsulation features instead of standard 2572 * features for the netdev 2573 */ 2574 if (skb->encapsulation) 2575 features &= dev->hw_enc_features; 2576 2577 if (netif_needs_gso(skb, features)) { 2578 if (unlikely(dev_gso_segment(skb, features))) 2579 goto out_kfree_skb; 2580 if (skb->next) 2581 goto gso; 2582 } else { 2583 if (skb_needs_linearize(skb, features) && 2584 __skb_linearize(skb)) 2585 goto out_kfree_skb; 2586 2587 /* If packet is not checksummed and device does not 2588 * support checksumming for this protocol, complete 2589 * checksumming here. 2590 */ 2591 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2592 if (skb->encapsulation) 2593 skb_set_inner_transport_header(skb, 2594 skb_checksum_start_offset(skb)); 2595 else 2596 skb_set_transport_header(skb, 2597 skb_checksum_start_offset(skb)); 2598 if (!(features & NETIF_F_ALL_CSUM) && 2599 skb_checksum_help(skb)) 2600 goto out_kfree_skb; 2601 } 2602 } 2603 2604 if (!list_empty(&ptype_all)) 2605 dev_queue_xmit_nit(skb, dev); 2606 2607 skb_len = skb->len; 2608 if (accel_priv) 2609 rc = ops->ndo_dfwd_start_xmit(skb, dev, accel_priv); 2610 else 2611 rc = ops->ndo_start_xmit(skb, dev); 2612 2613 trace_net_dev_xmit(skb, rc, dev, skb_len); 2614 if (rc == NETDEV_TX_OK && txq) 2615 txq_trans_update(txq); 2616 return rc; 2617 } 2618 2619 gso: 2620 do { 2621 struct sk_buff *nskb = skb->next; 2622 2623 skb->next = nskb->next; 2624 nskb->next = NULL; 2625 2626 if (!list_empty(&ptype_all)) 2627 dev_queue_xmit_nit(nskb, dev); 2628 2629 skb_len = nskb->len; 2630 if (accel_priv) 2631 rc = ops->ndo_dfwd_start_xmit(nskb, dev, accel_priv); 2632 else 2633 rc = ops->ndo_start_xmit(nskb, dev); 2634 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2635 if (unlikely(rc != NETDEV_TX_OK)) { 2636 if (rc & ~NETDEV_TX_MASK) 2637 goto out_kfree_gso_skb; 2638 nskb->next = skb->next; 2639 skb->next = nskb; 2640 return rc; 2641 } 2642 txq_trans_update(txq); 2643 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2644 return NETDEV_TX_BUSY; 2645 } while (skb->next); 2646 2647 out_kfree_gso_skb: 2648 if (likely(skb->next == NULL)) { 2649 skb->destructor = DEV_GSO_CB(skb)->destructor; 2650 consume_skb(skb); 2651 return rc; 2652 } 2653 out_kfree_skb: 2654 kfree_skb(skb); 2655 out: 2656 return rc; 2657 } 2658 EXPORT_SYMBOL_GPL(dev_hard_start_xmit); 2659 2660 static void qdisc_pkt_len_init(struct sk_buff *skb) 2661 { 2662 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2663 2664 qdisc_skb_cb(skb)->pkt_len = skb->len; 2665 2666 /* To get more precise estimation of bytes sent on wire, 2667 * we add to pkt_len the headers size of all segments 2668 */ 2669 if (shinfo->gso_size) { 2670 unsigned int hdr_len; 2671 u16 gso_segs = shinfo->gso_segs; 2672 2673 /* mac layer + network layer */ 2674 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2675 2676 /* + transport layer */ 2677 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2678 hdr_len += tcp_hdrlen(skb); 2679 else 2680 hdr_len += sizeof(struct udphdr); 2681 2682 if (shinfo->gso_type & SKB_GSO_DODGY) 2683 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2684 shinfo->gso_size); 2685 2686 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2687 } 2688 } 2689 2690 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2691 struct net_device *dev, 2692 struct netdev_queue *txq) 2693 { 2694 spinlock_t *root_lock = qdisc_lock(q); 2695 bool contended; 2696 int rc; 2697 2698 qdisc_pkt_len_init(skb); 2699 qdisc_calculate_pkt_len(skb, q); 2700 /* 2701 * Heuristic to force contended enqueues to serialize on a 2702 * separate lock before trying to get qdisc main lock. 2703 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2704 * and dequeue packets faster. 2705 */ 2706 contended = qdisc_is_running(q); 2707 if (unlikely(contended)) 2708 spin_lock(&q->busylock); 2709 2710 spin_lock(root_lock); 2711 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2712 kfree_skb(skb); 2713 rc = NET_XMIT_DROP; 2714 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2715 qdisc_run_begin(q)) { 2716 /* 2717 * This is a work-conserving queue; there are no old skbs 2718 * waiting to be sent out; and the qdisc is not running - 2719 * xmit the skb directly. 2720 */ 2721 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2722 skb_dst_force(skb); 2723 2724 qdisc_bstats_update(q, skb); 2725 2726 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2727 if (unlikely(contended)) { 2728 spin_unlock(&q->busylock); 2729 contended = false; 2730 } 2731 __qdisc_run(q); 2732 } else 2733 qdisc_run_end(q); 2734 2735 rc = NET_XMIT_SUCCESS; 2736 } else { 2737 skb_dst_force(skb); 2738 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2739 if (qdisc_run_begin(q)) { 2740 if (unlikely(contended)) { 2741 spin_unlock(&q->busylock); 2742 contended = false; 2743 } 2744 __qdisc_run(q); 2745 } 2746 } 2747 spin_unlock(root_lock); 2748 if (unlikely(contended)) 2749 spin_unlock(&q->busylock); 2750 return rc; 2751 } 2752 2753 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2754 static void skb_update_prio(struct sk_buff *skb) 2755 { 2756 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2757 2758 if (!skb->priority && skb->sk && map) { 2759 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2760 2761 if (prioidx < map->priomap_len) 2762 skb->priority = map->priomap[prioidx]; 2763 } 2764 } 2765 #else 2766 #define skb_update_prio(skb) 2767 #endif 2768 2769 static DEFINE_PER_CPU(int, xmit_recursion); 2770 #define RECURSION_LIMIT 10 2771 2772 /** 2773 * dev_loopback_xmit - loop back @skb 2774 * @skb: buffer to transmit 2775 */ 2776 int dev_loopback_xmit(struct sk_buff *skb) 2777 { 2778 skb_reset_mac_header(skb); 2779 __skb_pull(skb, skb_network_offset(skb)); 2780 skb->pkt_type = PACKET_LOOPBACK; 2781 skb->ip_summed = CHECKSUM_UNNECESSARY; 2782 WARN_ON(!skb_dst(skb)); 2783 skb_dst_force(skb); 2784 netif_rx_ni(skb); 2785 return 0; 2786 } 2787 EXPORT_SYMBOL(dev_loopback_xmit); 2788 2789 /** 2790 * dev_queue_xmit - transmit a buffer 2791 * @skb: buffer to transmit 2792 * 2793 * Queue a buffer for transmission to a network device. The caller must 2794 * have set the device and priority and built the buffer before calling 2795 * this function. The function can be called from an interrupt. 2796 * 2797 * A negative errno code is returned on a failure. A success does not 2798 * guarantee the frame will be transmitted as it may be dropped due 2799 * to congestion or traffic shaping. 2800 * 2801 * ----------------------------------------------------------------------------------- 2802 * I notice this method can also return errors from the queue disciplines, 2803 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2804 * be positive. 2805 * 2806 * Regardless of the return value, the skb is consumed, so it is currently 2807 * difficult to retry a send to this method. (You can bump the ref count 2808 * before sending to hold a reference for retry if you are careful.) 2809 * 2810 * When calling this method, interrupts MUST be enabled. This is because 2811 * the BH enable code must have IRQs enabled so that it will not deadlock. 2812 * --BLG 2813 */ 2814 int dev_queue_xmit(struct sk_buff *skb) 2815 { 2816 struct net_device *dev = skb->dev; 2817 struct netdev_queue *txq; 2818 struct Qdisc *q; 2819 int rc = -ENOMEM; 2820 2821 skb_reset_mac_header(skb); 2822 2823 /* Disable soft irqs for various locks below. Also 2824 * stops preemption for RCU. 2825 */ 2826 rcu_read_lock_bh(); 2827 2828 skb_update_prio(skb); 2829 2830 txq = netdev_pick_tx(dev, skb); 2831 q = rcu_dereference_bh(txq->qdisc); 2832 2833 #ifdef CONFIG_NET_CLS_ACT 2834 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2835 #endif 2836 trace_net_dev_queue(skb); 2837 if (q->enqueue) { 2838 rc = __dev_xmit_skb(skb, q, dev, txq); 2839 goto out; 2840 } 2841 2842 /* The device has no queue. Common case for software devices: 2843 loopback, all the sorts of tunnels... 2844 2845 Really, it is unlikely that netif_tx_lock protection is necessary 2846 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2847 counters.) 2848 However, it is possible, that they rely on protection 2849 made by us here. 2850 2851 Check this and shot the lock. It is not prone from deadlocks. 2852 Either shot noqueue qdisc, it is even simpler 8) 2853 */ 2854 if (dev->flags & IFF_UP) { 2855 int cpu = smp_processor_id(); /* ok because BHs are off */ 2856 2857 if (txq->xmit_lock_owner != cpu) { 2858 2859 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2860 goto recursion_alert; 2861 2862 HARD_TX_LOCK(dev, txq, cpu); 2863 2864 if (!netif_xmit_stopped(txq)) { 2865 __this_cpu_inc(xmit_recursion); 2866 rc = dev_hard_start_xmit(skb, dev, txq, NULL); 2867 __this_cpu_dec(xmit_recursion); 2868 if (dev_xmit_complete(rc)) { 2869 HARD_TX_UNLOCK(dev, txq); 2870 goto out; 2871 } 2872 } 2873 HARD_TX_UNLOCK(dev, txq); 2874 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2875 dev->name); 2876 } else { 2877 /* Recursion is detected! It is possible, 2878 * unfortunately 2879 */ 2880 recursion_alert: 2881 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2882 dev->name); 2883 } 2884 } 2885 2886 rc = -ENETDOWN; 2887 rcu_read_unlock_bh(); 2888 2889 kfree_skb(skb); 2890 return rc; 2891 out: 2892 rcu_read_unlock_bh(); 2893 return rc; 2894 } 2895 EXPORT_SYMBOL(dev_queue_xmit); 2896 2897 2898 /*======================================================================= 2899 Receiver routines 2900 =======================================================================*/ 2901 2902 int netdev_max_backlog __read_mostly = 1000; 2903 EXPORT_SYMBOL(netdev_max_backlog); 2904 2905 int netdev_tstamp_prequeue __read_mostly = 1; 2906 int netdev_budget __read_mostly = 300; 2907 int weight_p __read_mostly = 64; /* old backlog weight */ 2908 2909 /* Called with irq disabled */ 2910 static inline void ____napi_schedule(struct softnet_data *sd, 2911 struct napi_struct *napi) 2912 { 2913 list_add_tail(&napi->poll_list, &sd->poll_list); 2914 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2915 } 2916 2917 #ifdef CONFIG_RPS 2918 2919 /* One global table that all flow-based protocols share. */ 2920 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2921 EXPORT_SYMBOL(rps_sock_flow_table); 2922 2923 struct static_key rps_needed __read_mostly; 2924 2925 static struct rps_dev_flow * 2926 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2927 struct rps_dev_flow *rflow, u16 next_cpu) 2928 { 2929 if (next_cpu != RPS_NO_CPU) { 2930 #ifdef CONFIG_RFS_ACCEL 2931 struct netdev_rx_queue *rxqueue; 2932 struct rps_dev_flow_table *flow_table; 2933 struct rps_dev_flow *old_rflow; 2934 u32 flow_id; 2935 u16 rxq_index; 2936 int rc; 2937 2938 /* Should we steer this flow to a different hardware queue? */ 2939 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2940 !(dev->features & NETIF_F_NTUPLE)) 2941 goto out; 2942 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2943 if (rxq_index == skb_get_rx_queue(skb)) 2944 goto out; 2945 2946 rxqueue = dev->_rx + rxq_index; 2947 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2948 if (!flow_table) 2949 goto out; 2950 flow_id = skb->rxhash & flow_table->mask; 2951 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2952 rxq_index, flow_id); 2953 if (rc < 0) 2954 goto out; 2955 old_rflow = rflow; 2956 rflow = &flow_table->flows[flow_id]; 2957 rflow->filter = rc; 2958 if (old_rflow->filter == rflow->filter) 2959 old_rflow->filter = RPS_NO_FILTER; 2960 out: 2961 #endif 2962 rflow->last_qtail = 2963 per_cpu(softnet_data, next_cpu).input_queue_head; 2964 } 2965 2966 rflow->cpu = next_cpu; 2967 return rflow; 2968 } 2969 2970 /* 2971 * get_rps_cpu is called from netif_receive_skb and returns the target 2972 * CPU from the RPS map of the receiving queue for a given skb. 2973 * rcu_read_lock must be held on entry. 2974 */ 2975 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2976 struct rps_dev_flow **rflowp) 2977 { 2978 struct netdev_rx_queue *rxqueue; 2979 struct rps_map *map; 2980 struct rps_dev_flow_table *flow_table; 2981 struct rps_sock_flow_table *sock_flow_table; 2982 int cpu = -1; 2983 u16 tcpu; 2984 2985 if (skb_rx_queue_recorded(skb)) { 2986 u16 index = skb_get_rx_queue(skb); 2987 if (unlikely(index >= dev->real_num_rx_queues)) { 2988 WARN_ONCE(dev->real_num_rx_queues > 1, 2989 "%s received packet on queue %u, but number " 2990 "of RX queues is %u\n", 2991 dev->name, index, dev->real_num_rx_queues); 2992 goto done; 2993 } 2994 rxqueue = dev->_rx + index; 2995 } else 2996 rxqueue = dev->_rx; 2997 2998 map = rcu_dereference(rxqueue->rps_map); 2999 if (map) { 3000 if (map->len == 1 && 3001 !rcu_access_pointer(rxqueue->rps_flow_table)) { 3002 tcpu = map->cpus[0]; 3003 if (cpu_online(tcpu)) 3004 cpu = tcpu; 3005 goto done; 3006 } 3007 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 3008 goto done; 3009 } 3010 3011 skb_reset_network_header(skb); 3012 if (!skb_get_rxhash(skb)) 3013 goto done; 3014 3015 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3016 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3017 if (flow_table && sock_flow_table) { 3018 u16 next_cpu; 3019 struct rps_dev_flow *rflow; 3020 3021 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 3022 tcpu = rflow->cpu; 3023 3024 next_cpu = sock_flow_table->ents[skb->rxhash & 3025 sock_flow_table->mask]; 3026 3027 /* 3028 * If the desired CPU (where last recvmsg was done) is 3029 * different from current CPU (one in the rx-queue flow 3030 * table entry), switch if one of the following holds: 3031 * - Current CPU is unset (equal to RPS_NO_CPU). 3032 * - Current CPU is offline. 3033 * - The current CPU's queue tail has advanced beyond the 3034 * last packet that was enqueued using this table entry. 3035 * This guarantees that all previous packets for the flow 3036 * have been dequeued, thus preserving in order delivery. 3037 */ 3038 if (unlikely(tcpu != next_cpu) && 3039 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 3040 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3041 rflow->last_qtail)) >= 0)) { 3042 tcpu = next_cpu; 3043 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3044 } 3045 3046 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 3047 *rflowp = rflow; 3048 cpu = tcpu; 3049 goto done; 3050 } 3051 } 3052 3053 if (map) { 3054 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 3055 3056 if (cpu_online(tcpu)) { 3057 cpu = tcpu; 3058 goto done; 3059 } 3060 } 3061 3062 done: 3063 return cpu; 3064 } 3065 3066 #ifdef CONFIG_RFS_ACCEL 3067 3068 /** 3069 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3070 * @dev: Device on which the filter was set 3071 * @rxq_index: RX queue index 3072 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3073 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3074 * 3075 * Drivers that implement ndo_rx_flow_steer() should periodically call 3076 * this function for each installed filter and remove the filters for 3077 * which it returns %true. 3078 */ 3079 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3080 u32 flow_id, u16 filter_id) 3081 { 3082 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3083 struct rps_dev_flow_table *flow_table; 3084 struct rps_dev_flow *rflow; 3085 bool expire = true; 3086 int cpu; 3087 3088 rcu_read_lock(); 3089 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3090 if (flow_table && flow_id <= flow_table->mask) { 3091 rflow = &flow_table->flows[flow_id]; 3092 cpu = ACCESS_ONCE(rflow->cpu); 3093 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3094 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3095 rflow->last_qtail) < 3096 (int)(10 * flow_table->mask))) 3097 expire = false; 3098 } 3099 rcu_read_unlock(); 3100 return expire; 3101 } 3102 EXPORT_SYMBOL(rps_may_expire_flow); 3103 3104 #endif /* CONFIG_RFS_ACCEL */ 3105 3106 /* Called from hardirq (IPI) context */ 3107 static void rps_trigger_softirq(void *data) 3108 { 3109 struct softnet_data *sd = data; 3110 3111 ____napi_schedule(sd, &sd->backlog); 3112 sd->received_rps++; 3113 } 3114 3115 #endif /* CONFIG_RPS */ 3116 3117 /* 3118 * Check if this softnet_data structure is another cpu one 3119 * If yes, queue it to our IPI list and return 1 3120 * If no, return 0 3121 */ 3122 static int rps_ipi_queued(struct softnet_data *sd) 3123 { 3124 #ifdef CONFIG_RPS 3125 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 3126 3127 if (sd != mysd) { 3128 sd->rps_ipi_next = mysd->rps_ipi_list; 3129 mysd->rps_ipi_list = sd; 3130 3131 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3132 return 1; 3133 } 3134 #endif /* CONFIG_RPS */ 3135 return 0; 3136 } 3137 3138 #ifdef CONFIG_NET_FLOW_LIMIT 3139 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3140 #endif 3141 3142 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3143 { 3144 #ifdef CONFIG_NET_FLOW_LIMIT 3145 struct sd_flow_limit *fl; 3146 struct softnet_data *sd; 3147 unsigned int old_flow, new_flow; 3148 3149 if (qlen < (netdev_max_backlog >> 1)) 3150 return false; 3151 3152 sd = &__get_cpu_var(softnet_data); 3153 3154 rcu_read_lock(); 3155 fl = rcu_dereference(sd->flow_limit); 3156 if (fl) { 3157 new_flow = skb_get_rxhash(skb) & (fl->num_buckets - 1); 3158 old_flow = fl->history[fl->history_head]; 3159 fl->history[fl->history_head] = new_flow; 3160 3161 fl->history_head++; 3162 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3163 3164 if (likely(fl->buckets[old_flow])) 3165 fl->buckets[old_flow]--; 3166 3167 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3168 fl->count++; 3169 rcu_read_unlock(); 3170 return true; 3171 } 3172 } 3173 rcu_read_unlock(); 3174 #endif 3175 return false; 3176 } 3177 3178 /* 3179 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3180 * queue (may be a remote CPU queue). 3181 */ 3182 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3183 unsigned int *qtail) 3184 { 3185 struct softnet_data *sd; 3186 unsigned long flags; 3187 unsigned int qlen; 3188 3189 sd = &per_cpu(softnet_data, cpu); 3190 3191 local_irq_save(flags); 3192 3193 rps_lock(sd); 3194 qlen = skb_queue_len(&sd->input_pkt_queue); 3195 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3196 if (skb_queue_len(&sd->input_pkt_queue)) { 3197 enqueue: 3198 __skb_queue_tail(&sd->input_pkt_queue, skb); 3199 input_queue_tail_incr_save(sd, qtail); 3200 rps_unlock(sd); 3201 local_irq_restore(flags); 3202 return NET_RX_SUCCESS; 3203 } 3204 3205 /* Schedule NAPI for backlog device 3206 * We can use non atomic operation since we own the queue lock 3207 */ 3208 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3209 if (!rps_ipi_queued(sd)) 3210 ____napi_schedule(sd, &sd->backlog); 3211 } 3212 goto enqueue; 3213 } 3214 3215 sd->dropped++; 3216 rps_unlock(sd); 3217 3218 local_irq_restore(flags); 3219 3220 atomic_long_inc(&skb->dev->rx_dropped); 3221 kfree_skb(skb); 3222 return NET_RX_DROP; 3223 } 3224 3225 /** 3226 * netif_rx - post buffer to the network code 3227 * @skb: buffer to post 3228 * 3229 * This function receives a packet from a device driver and queues it for 3230 * the upper (protocol) levels to process. It always succeeds. The buffer 3231 * may be dropped during processing for congestion control or by the 3232 * protocol layers. 3233 * 3234 * return values: 3235 * NET_RX_SUCCESS (no congestion) 3236 * NET_RX_DROP (packet was dropped) 3237 * 3238 */ 3239 3240 int netif_rx(struct sk_buff *skb) 3241 { 3242 int ret; 3243 3244 /* if netpoll wants it, pretend we never saw it */ 3245 if (netpoll_rx(skb)) 3246 return NET_RX_DROP; 3247 3248 net_timestamp_check(netdev_tstamp_prequeue, skb); 3249 3250 trace_netif_rx(skb); 3251 #ifdef CONFIG_RPS 3252 if (static_key_false(&rps_needed)) { 3253 struct rps_dev_flow voidflow, *rflow = &voidflow; 3254 int cpu; 3255 3256 preempt_disable(); 3257 rcu_read_lock(); 3258 3259 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3260 if (cpu < 0) 3261 cpu = smp_processor_id(); 3262 3263 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3264 3265 rcu_read_unlock(); 3266 preempt_enable(); 3267 } else 3268 #endif 3269 { 3270 unsigned int qtail; 3271 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3272 put_cpu(); 3273 } 3274 return ret; 3275 } 3276 EXPORT_SYMBOL(netif_rx); 3277 3278 int netif_rx_ni(struct sk_buff *skb) 3279 { 3280 int err; 3281 3282 preempt_disable(); 3283 err = netif_rx(skb); 3284 if (local_softirq_pending()) 3285 do_softirq(); 3286 preempt_enable(); 3287 3288 return err; 3289 } 3290 EXPORT_SYMBOL(netif_rx_ni); 3291 3292 static void net_tx_action(struct softirq_action *h) 3293 { 3294 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3295 3296 if (sd->completion_queue) { 3297 struct sk_buff *clist; 3298 3299 local_irq_disable(); 3300 clist = sd->completion_queue; 3301 sd->completion_queue = NULL; 3302 local_irq_enable(); 3303 3304 while (clist) { 3305 struct sk_buff *skb = clist; 3306 clist = clist->next; 3307 3308 WARN_ON(atomic_read(&skb->users)); 3309 trace_kfree_skb(skb, net_tx_action); 3310 __kfree_skb(skb); 3311 } 3312 } 3313 3314 if (sd->output_queue) { 3315 struct Qdisc *head; 3316 3317 local_irq_disable(); 3318 head = sd->output_queue; 3319 sd->output_queue = NULL; 3320 sd->output_queue_tailp = &sd->output_queue; 3321 local_irq_enable(); 3322 3323 while (head) { 3324 struct Qdisc *q = head; 3325 spinlock_t *root_lock; 3326 3327 head = head->next_sched; 3328 3329 root_lock = qdisc_lock(q); 3330 if (spin_trylock(root_lock)) { 3331 smp_mb__before_clear_bit(); 3332 clear_bit(__QDISC_STATE_SCHED, 3333 &q->state); 3334 qdisc_run(q); 3335 spin_unlock(root_lock); 3336 } else { 3337 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3338 &q->state)) { 3339 __netif_reschedule(q); 3340 } else { 3341 smp_mb__before_clear_bit(); 3342 clear_bit(__QDISC_STATE_SCHED, 3343 &q->state); 3344 } 3345 } 3346 } 3347 } 3348 } 3349 3350 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3351 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3352 /* This hook is defined here for ATM LANE */ 3353 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3354 unsigned char *addr) __read_mostly; 3355 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3356 #endif 3357 3358 #ifdef CONFIG_NET_CLS_ACT 3359 /* TODO: Maybe we should just force sch_ingress to be compiled in 3360 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3361 * a compare and 2 stores extra right now if we dont have it on 3362 * but have CONFIG_NET_CLS_ACT 3363 * NOTE: This doesn't stop any functionality; if you dont have 3364 * the ingress scheduler, you just can't add policies on ingress. 3365 * 3366 */ 3367 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3368 { 3369 struct net_device *dev = skb->dev; 3370 u32 ttl = G_TC_RTTL(skb->tc_verd); 3371 int result = TC_ACT_OK; 3372 struct Qdisc *q; 3373 3374 if (unlikely(MAX_RED_LOOP < ttl++)) { 3375 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3376 skb->skb_iif, dev->ifindex); 3377 return TC_ACT_SHOT; 3378 } 3379 3380 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3381 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3382 3383 q = rxq->qdisc; 3384 if (q != &noop_qdisc) { 3385 spin_lock(qdisc_lock(q)); 3386 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3387 result = qdisc_enqueue_root(skb, q); 3388 spin_unlock(qdisc_lock(q)); 3389 } 3390 3391 return result; 3392 } 3393 3394 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3395 struct packet_type **pt_prev, 3396 int *ret, struct net_device *orig_dev) 3397 { 3398 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3399 3400 if (!rxq || rxq->qdisc == &noop_qdisc) 3401 goto out; 3402 3403 if (*pt_prev) { 3404 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3405 *pt_prev = NULL; 3406 } 3407 3408 switch (ing_filter(skb, rxq)) { 3409 case TC_ACT_SHOT: 3410 case TC_ACT_STOLEN: 3411 kfree_skb(skb); 3412 return NULL; 3413 } 3414 3415 out: 3416 skb->tc_verd = 0; 3417 return skb; 3418 } 3419 #endif 3420 3421 /** 3422 * netdev_rx_handler_register - register receive handler 3423 * @dev: device to register a handler for 3424 * @rx_handler: receive handler to register 3425 * @rx_handler_data: data pointer that is used by rx handler 3426 * 3427 * Register a receive hander for a device. This handler will then be 3428 * called from __netif_receive_skb. A negative errno code is returned 3429 * on a failure. 3430 * 3431 * The caller must hold the rtnl_mutex. 3432 * 3433 * For a general description of rx_handler, see enum rx_handler_result. 3434 */ 3435 int netdev_rx_handler_register(struct net_device *dev, 3436 rx_handler_func_t *rx_handler, 3437 void *rx_handler_data) 3438 { 3439 ASSERT_RTNL(); 3440 3441 if (dev->rx_handler) 3442 return -EBUSY; 3443 3444 /* Note: rx_handler_data must be set before rx_handler */ 3445 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3446 rcu_assign_pointer(dev->rx_handler, rx_handler); 3447 3448 return 0; 3449 } 3450 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3451 3452 /** 3453 * netdev_rx_handler_unregister - unregister receive handler 3454 * @dev: device to unregister a handler from 3455 * 3456 * Unregister a receive handler from a device. 3457 * 3458 * The caller must hold the rtnl_mutex. 3459 */ 3460 void netdev_rx_handler_unregister(struct net_device *dev) 3461 { 3462 3463 ASSERT_RTNL(); 3464 RCU_INIT_POINTER(dev->rx_handler, NULL); 3465 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3466 * section has a guarantee to see a non NULL rx_handler_data 3467 * as well. 3468 */ 3469 synchronize_net(); 3470 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3471 } 3472 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3473 3474 /* 3475 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3476 * the special handling of PFMEMALLOC skbs. 3477 */ 3478 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3479 { 3480 switch (skb->protocol) { 3481 case __constant_htons(ETH_P_ARP): 3482 case __constant_htons(ETH_P_IP): 3483 case __constant_htons(ETH_P_IPV6): 3484 case __constant_htons(ETH_P_8021Q): 3485 case __constant_htons(ETH_P_8021AD): 3486 return true; 3487 default: 3488 return false; 3489 } 3490 } 3491 3492 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3493 { 3494 struct packet_type *ptype, *pt_prev; 3495 rx_handler_func_t *rx_handler; 3496 struct net_device *orig_dev; 3497 struct net_device *null_or_dev; 3498 bool deliver_exact = false; 3499 int ret = NET_RX_DROP; 3500 __be16 type; 3501 3502 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3503 3504 trace_netif_receive_skb(skb); 3505 3506 /* if we've gotten here through NAPI, check netpoll */ 3507 if (netpoll_receive_skb(skb)) 3508 goto out; 3509 3510 orig_dev = skb->dev; 3511 3512 skb_reset_network_header(skb); 3513 if (!skb_transport_header_was_set(skb)) 3514 skb_reset_transport_header(skb); 3515 skb_reset_mac_len(skb); 3516 3517 pt_prev = NULL; 3518 3519 rcu_read_lock(); 3520 3521 another_round: 3522 skb->skb_iif = skb->dev->ifindex; 3523 3524 __this_cpu_inc(softnet_data.processed); 3525 3526 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3527 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3528 skb = vlan_untag(skb); 3529 if (unlikely(!skb)) 3530 goto unlock; 3531 } 3532 3533 #ifdef CONFIG_NET_CLS_ACT 3534 if (skb->tc_verd & TC_NCLS) { 3535 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3536 goto ncls; 3537 } 3538 #endif 3539 3540 if (pfmemalloc) 3541 goto skip_taps; 3542 3543 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3544 if (!ptype->dev || ptype->dev == skb->dev) { 3545 if (pt_prev) 3546 ret = deliver_skb(skb, pt_prev, orig_dev); 3547 pt_prev = ptype; 3548 } 3549 } 3550 3551 skip_taps: 3552 #ifdef CONFIG_NET_CLS_ACT 3553 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3554 if (!skb) 3555 goto unlock; 3556 ncls: 3557 #endif 3558 3559 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3560 goto drop; 3561 3562 if (vlan_tx_tag_present(skb)) { 3563 if (pt_prev) { 3564 ret = deliver_skb(skb, pt_prev, orig_dev); 3565 pt_prev = NULL; 3566 } 3567 if (vlan_do_receive(&skb)) 3568 goto another_round; 3569 else if (unlikely(!skb)) 3570 goto unlock; 3571 } 3572 3573 rx_handler = rcu_dereference(skb->dev->rx_handler); 3574 if (rx_handler) { 3575 if (pt_prev) { 3576 ret = deliver_skb(skb, pt_prev, orig_dev); 3577 pt_prev = NULL; 3578 } 3579 switch (rx_handler(&skb)) { 3580 case RX_HANDLER_CONSUMED: 3581 ret = NET_RX_SUCCESS; 3582 goto unlock; 3583 case RX_HANDLER_ANOTHER: 3584 goto another_round; 3585 case RX_HANDLER_EXACT: 3586 deliver_exact = true; 3587 case RX_HANDLER_PASS: 3588 break; 3589 default: 3590 BUG(); 3591 } 3592 } 3593 3594 if (unlikely(vlan_tx_tag_present(skb))) { 3595 if (vlan_tx_tag_get_id(skb)) 3596 skb->pkt_type = PACKET_OTHERHOST; 3597 /* Note: we might in the future use prio bits 3598 * and set skb->priority like in vlan_do_receive() 3599 * For the time being, just ignore Priority Code Point 3600 */ 3601 skb->vlan_tci = 0; 3602 } 3603 3604 /* deliver only exact match when indicated */ 3605 null_or_dev = deliver_exact ? skb->dev : NULL; 3606 3607 type = skb->protocol; 3608 list_for_each_entry_rcu(ptype, 3609 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3610 if (ptype->type == type && 3611 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3612 ptype->dev == orig_dev)) { 3613 if (pt_prev) 3614 ret = deliver_skb(skb, pt_prev, orig_dev); 3615 pt_prev = ptype; 3616 } 3617 } 3618 3619 if (pt_prev) { 3620 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3621 goto drop; 3622 else 3623 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3624 } else { 3625 drop: 3626 atomic_long_inc(&skb->dev->rx_dropped); 3627 kfree_skb(skb); 3628 /* Jamal, now you will not able to escape explaining 3629 * me how you were going to use this. :-) 3630 */ 3631 ret = NET_RX_DROP; 3632 } 3633 3634 unlock: 3635 rcu_read_unlock(); 3636 out: 3637 return ret; 3638 } 3639 3640 static int __netif_receive_skb(struct sk_buff *skb) 3641 { 3642 int ret; 3643 3644 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3645 unsigned long pflags = current->flags; 3646 3647 /* 3648 * PFMEMALLOC skbs are special, they should 3649 * - be delivered to SOCK_MEMALLOC sockets only 3650 * - stay away from userspace 3651 * - have bounded memory usage 3652 * 3653 * Use PF_MEMALLOC as this saves us from propagating the allocation 3654 * context down to all allocation sites. 3655 */ 3656 current->flags |= PF_MEMALLOC; 3657 ret = __netif_receive_skb_core(skb, true); 3658 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3659 } else 3660 ret = __netif_receive_skb_core(skb, false); 3661 3662 return ret; 3663 } 3664 3665 /** 3666 * netif_receive_skb - process receive buffer from network 3667 * @skb: buffer to process 3668 * 3669 * netif_receive_skb() is the main receive data processing function. 3670 * It always succeeds. The buffer may be dropped during processing 3671 * for congestion control or by the protocol layers. 3672 * 3673 * This function may only be called from softirq context and interrupts 3674 * should be enabled. 3675 * 3676 * Return values (usually ignored): 3677 * NET_RX_SUCCESS: no congestion 3678 * NET_RX_DROP: packet was dropped 3679 */ 3680 int netif_receive_skb(struct sk_buff *skb) 3681 { 3682 net_timestamp_check(netdev_tstamp_prequeue, skb); 3683 3684 if (skb_defer_rx_timestamp(skb)) 3685 return NET_RX_SUCCESS; 3686 3687 #ifdef CONFIG_RPS 3688 if (static_key_false(&rps_needed)) { 3689 struct rps_dev_flow voidflow, *rflow = &voidflow; 3690 int cpu, ret; 3691 3692 rcu_read_lock(); 3693 3694 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3695 3696 if (cpu >= 0) { 3697 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3698 rcu_read_unlock(); 3699 return ret; 3700 } 3701 rcu_read_unlock(); 3702 } 3703 #endif 3704 return __netif_receive_skb(skb); 3705 } 3706 EXPORT_SYMBOL(netif_receive_skb); 3707 3708 /* Network device is going away, flush any packets still pending 3709 * Called with irqs disabled. 3710 */ 3711 static void flush_backlog(void *arg) 3712 { 3713 struct net_device *dev = arg; 3714 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3715 struct sk_buff *skb, *tmp; 3716 3717 rps_lock(sd); 3718 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3719 if (skb->dev == dev) { 3720 __skb_unlink(skb, &sd->input_pkt_queue); 3721 kfree_skb(skb); 3722 input_queue_head_incr(sd); 3723 } 3724 } 3725 rps_unlock(sd); 3726 3727 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3728 if (skb->dev == dev) { 3729 __skb_unlink(skb, &sd->process_queue); 3730 kfree_skb(skb); 3731 input_queue_head_incr(sd); 3732 } 3733 } 3734 } 3735 3736 static int napi_gro_complete(struct sk_buff *skb) 3737 { 3738 struct packet_offload *ptype; 3739 __be16 type = skb->protocol; 3740 struct list_head *head = &offload_base; 3741 int err = -ENOENT; 3742 3743 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3744 3745 if (NAPI_GRO_CB(skb)->count == 1) { 3746 skb_shinfo(skb)->gso_size = 0; 3747 goto out; 3748 } 3749 3750 rcu_read_lock(); 3751 list_for_each_entry_rcu(ptype, head, list) { 3752 if (ptype->type != type || !ptype->callbacks.gro_complete) 3753 continue; 3754 3755 err = ptype->callbacks.gro_complete(skb); 3756 break; 3757 } 3758 rcu_read_unlock(); 3759 3760 if (err) { 3761 WARN_ON(&ptype->list == head); 3762 kfree_skb(skb); 3763 return NET_RX_SUCCESS; 3764 } 3765 3766 out: 3767 return netif_receive_skb(skb); 3768 } 3769 3770 /* napi->gro_list contains packets ordered by age. 3771 * youngest packets at the head of it. 3772 * Complete skbs in reverse order to reduce latencies. 3773 */ 3774 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3775 { 3776 struct sk_buff *skb, *prev = NULL; 3777 3778 /* scan list and build reverse chain */ 3779 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3780 skb->prev = prev; 3781 prev = skb; 3782 } 3783 3784 for (skb = prev; skb; skb = prev) { 3785 skb->next = NULL; 3786 3787 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3788 return; 3789 3790 prev = skb->prev; 3791 napi_gro_complete(skb); 3792 napi->gro_count--; 3793 } 3794 3795 napi->gro_list = NULL; 3796 } 3797 EXPORT_SYMBOL(napi_gro_flush); 3798 3799 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3800 { 3801 struct sk_buff *p; 3802 unsigned int maclen = skb->dev->hard_header_len; 3803 3804 for (p = napi->gro_list; p; p = p->next) { 3805 unsigned long diffs; 3806 3807 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3808 diffs |= p->vlan_tci ^ skb->vlan_tci; 3809 if (maclen == ETH_HLEN) 3810 diffs |= compare_ether_header(skb_mac_header(p), 3811 skb_gro_mac_header(skb)); 3812 else if (!diffs) 3813 diffs = memcmp(skb_mac_header(p), 3814 skb_gro_mac_header(skb), 3815 maclen); 3816 NAPI_GRO_CB(p)->same_flow = !diffs; 3817 NAPI_GRO_CB(p)->flush = 0; 3818 } 3819 } 3820 3821 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3822 { 3823 struct sk_buff **pp = NULL; 3824 struct packet_offload *ptype; 3825 __be16 type = skb->protocol; 3826 struct list_head *head = &offload_base; 3827 int same_flow; 3828 enum gro_result ret; 3829 3830 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3831 goto normal; 3832 3833 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3834 goto normal; 3835 3836 gro_list_prepare(napi, skb); 3837 3838 rcu_read_lock(); 3839 list_for_each_entry_rcu(ptype, head, list) { 3840 if (ptype->type != type || !ptype->callbacks.gro_receive) 3841 continue; 3842 3843 skb_set_network_header(skb, skb_gro_offset(skb)); 3844 skb_reset_mac_len(skb); 3845 NAPI_GRO_CB(skb)->same_flow = 0; 3846 NAPI_GRO_CB(skb)->flush = 0; 3847 NAPI_GRO_CB(skb)->free = 0; 3848 3849 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 3850 break; 3851 } 3852 rcu_read_unlock(); 3853 3854 if (&ptype->list == head) 3855 goto normal; 3856 3857 same_flow = NAPI_GRO_CB(skb)->same_flow; 3858 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3859 3860 if (pp) { 3861 struct sk_buff *nskb = *pp; 3862 3863 *pp = nskb->next; 3864 nskb->next = NULL; 3865 napi_gro_complete(nskb); 3866 napi->gro_count--; 3867 } 3868 3869 if (same_flow) 3870 goto ok; 3871 3872 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3873 goto normal; 3874 3875 napi->gro_count++; 3876 NAPI_GRO_CB(skb)->count = 1; 3877 NAPI_GRO_CB(skb)->age = jiffies; 3878 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3879 skb->next = napi->gro_list; 3880 napi->gro_list = skb; 3881 ret = GRO_HELD; 3882 3883 pull: 3884 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3885 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3886 3887 BUG_ON(skb->end - skb->tail < grow); 3888 3889 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3890 3891 skb->tail += grow; 3892 skb->data_len -= grow; 3893 3894 skb_shinfo(skb)->frags[0].page_offset += grow; 3895 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3896 3897 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3898 skb_frag_unref(skb, 0); 3899 memmove(skb_shinfo(skb)->frags, 3900 skb_shinfo(skb)->frags + 1, 3901 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3902 } 3903 } 3904 3905 ok: 3906 return ret; 3907 3908 normal: 3909 ret = GRO_NORMAL; 3910 goto pull; 3911 } 3912 3913 3914 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3915 { 3916 switch (ret) { 3917 case GRO_NORMAL: 3918 if (netif_receive_skb(skb)) 3919 ret = GRO_DROP; 3920 break; 3921 3922 case GRO_DROP: 3923 kfree_skb(skb); 3924 break; 3925 3926 case GRO_MERGED_FREE: 3927 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 3928 kmem_cache_free(skbuff_head_cache, skb); 3929 else 3930 __kfree_skb(skb); 3931 break; 3932 3933 case GRO_HELD: 3934 case GRO_MERGED: 3935 break; 3936 } 3937 3938 return ret; 3939 } 3940 3941 static void skb_gro_reset_offset(struct sk_buff *skb) 3942 { 3943 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3944 const skb_frag_t *frag0 = &pinfo->frags[0]; 3945 3946 NAPI_GRO_CB(skb)->data_offset = 0; 3947 NAPI_GRO_CB(skb)->frag0 = NULL; 3948 NAPI_GRO_CB(skb)->frag0_len = 0; 3949 3950 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 3951 pinfo->nr_frags && 3952 !PageHighMem(skb_frag_page(frag0))) { 3953 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3954 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3955 } 3956 } 3957 3958 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3959 { 3960 skb_gro_reset_offset(skb); 3961 3962 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 3963 } 3964 EXPORT_SYMBOL(napi_gro_receive); 3965 3966 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3967 { 3968 __skb_pull(skb, skb_headlen(skb)); 3969 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3970 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3971 skb->vlan_tci = 0; 3972 skb->dev = napi->dev; 3973 skb->skb_iif = 0; 3974 3975 napi->skb = skb; 3976 } 3977 3978 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3979 { 3980 struct sk_buff *skb = napi->skb; 3981 3982 if (!skb) { 3983 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3984 if (skb) 3985 napi->skb = skb; 3986 } 3987 return skb; 3988 } 3989 EXPORT_SYMBOL(napi_get_frags); 3990 3991 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3992 gro_result_t ret) 3993 { 3994 switch (ret) { 3995 case GRO_NORMAL: 3996 case GRO_HELD: 3997 skb->protocol = eth_type_trans(skb, skb->dev); 3998 3999 if (ret == GRO_HELD) 4000 skb_gro_pull(skb, -ETH_HLEN); 4001 else if (netif_receive_skb(skb)) 4002 ret = GRO_DROP; 4003 break; 4004 4005 case GRO_DROP: 4006 case GRO_MERGED_FREE: 4007 napi_reuse_skb(napi, skb); 4008 break; 4009 4010 case GRO_MERGED: 4011 break; 4012 } 4013 4014 return ret; 4015 } 4016 4017 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4018 { 4019 struct sk_buff *skb = napi->skb; 4020 struct ethhdr *eth; 4021 unsigned int hlen; 4022 unsigned int off; 4023 4024 napi->skb = NULL; 4025 4026 skb_reset_mac_header(skb); 4027 skb_gro_reset_offset(skb); 4028 4029 off = skb_gro_offset(skb); 4030 hlen = off + sizeof(*eth); 4031 eth = skb_gro_header_fast(skb, off); 4032 if (skb_gro_header_hard(skb, hlen)) { 4033 eth = skb_gro_header_slow(skb, hlen, off); 4034 if (unlikely(!eth)) { 4035 napi_reuse_skb(napi, skb); 4036 skb = NULL; 4037 goto out; 4038 } 4039 } 4040 4041 skb_gro_pull(skb, sizeof(*eth)); 4042 4043 /* 4044 * This works because the only protocols we care about don't require 4045 * special handling. We'll fix it up properly at the end. 4046 */ 4047 skb->protocol = eth->h_proto; 4048 4049 out: 4050 return skb; 4051 } 4052 4053 gro_result_t napi_gro_frags(struct napi_struct *napi) 4054 { 4055 struct sk_buff *skb = napi_frags_skb(napi); 4056 4057 if (!skb) 4058 return GRO_DROP; 4059 4060 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4061 } 4062 EXPORT_SYMBOL(napi_gro_frags); 4063 4064 /* 4065 * net_rps_action sends any pending IPI's for rps. 4066 * Note: called with local irq disabled, but exits with local irq enabled. 4067 */ 4068 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4069 { 4070 #ifdef CONFIG_RPS 4071 struct softnet_data *remsd = sd->rps_ipi_list; 4072 4073 if (remsd) { 4074 sd->rps_ipi_list = NULL; 4075 4076 local_irq_enable(); 4077 4078 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4079 while (remsd) { 4080 struct softnet_data *next = remsd->rps_ipi_next; 4081 4082 if (cpu_online(remsd->cpu)) 4083 __smp_call_function_single(remsd->cpu, 4084 &remsd->csd, 0); 4085 remsd = next; 4086 } 4087 } else 4088 #endif 4089 local_irq_enable(); 4090 } 4091 4092 static int process_backlog(struct napi_struct *napi, int quota) 4093 { 4094 int work = 0; 4095 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4096 4097 #ifdef CONFIG_RPS 4098 /* Check if we have pending ipi, its better to send them now, 4099 * not waiting net_rx_action() end. 4100 */ 4101 if (sd->rps_ipi_list) { 4102 local_irq_disable(); 4103 net_rps_action_and_irq_enable(sd); 4104 } 4105 #endif 4106 napi->weight = weight_p; 4107 local_irq_disable(); 4108 while (work < quota) { 4109 struct sk_buff *skb; 4110 unsigned int qlen; 4111 4112 while ((skb = __skb_dequeue(&sd->process_queue))) { 4113 local_irq_enable(); 4114 __netif_receive_skb(skb); 4115 local_irq_disable(); 4116 input_queue_head_incr(sd); 4117 if (++work >= quota) { 4118 local_irq_enable(); 4119 return work; 4120 } 4121 } 4122 4123 rps_lock(sd); 4124 qlen = skb_queue_len(&sd->input_pkt_queue); 4125 if (qlen) 4126 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4127 &sd->process_queue); 4128 4129 if (qlen < quota - work) { 4130 /* 4131 * Inline a custom version of __napi_complete(). 4132 * only current cpu owns and manipulates this napi, 4133 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 4134 * we can use a plain write instead of clear_bit(), 4135 * and we dont need an smp_mb() memory barrier. 4136 */ 4137 list_del(&napi->poll_list); 4138 napi->state = 0; 4139 4140 quota = work + qlen; 4141 } 4142 rps_unlock(sd); 4143 } 4144 local_irq_enable(); 4145 4146 return work; 4147 } 4148 4149 /** 4150 * __napi_schedule - schedule for receive 4151 * @n: entry to schedule 4152 * 4153 * The entry's receive function will be scheduled to run 4154 */ 4155 void __napi_schedule(struct napi_struct *n) 4156 { 4157 unsigned long flags; 4158 4159 local_irq_save(flags); 4160 ____napi_schedule(&__get_cpu_var(softnet_data), n); 4161 local_irq_restore(flags); 4162 } 4163 EXPORT_SYMBOL(__napi_schedule); 4164 4165 void __napi_complete(struct napi_struct *n) 4166 { 4167 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4168 BUG_ON(n->gro_list); 4169 4170 list_del(&n->poll_list); 4171 smp_mb__before_clear_bit(); 4172 clear_bit(NAPI_STATE_SCHED, &n->state); 4173 } 4174 EXPORT_SYMBOL(__napi_complete); 4175 4176 void napi_complete(struct napi_struct *n) 4177 { 4178 unsigned long flags; 4179 4180 /* 4181 * don't let napi dequeue from the cpu poll list 4182 * just in case its running on a different cpu 4183 */ 4184 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4185 return; 4186 4187 napi_gro_flush(n, false); 4188 local_irq_save(flags); 4189 __napi_complete(n); 4190 local_irq_restore(flags); 4191 } 4192 EXPORT_SYMBOL(napi_complete); 4193 4194 /* must be called under rcu_read_lock(), as we dont take a reference */ 4195 struct napi_struct *napi_by_id(unsigned int napi_id) 4196 { 4197 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4198 struct napi_struct *napi; 4199 4200 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4201 if (napi->napi_id == napi_id) 4202 return napi; 4203 4204 return NULL; 4205 } 4206 EXPORT_SYMBOL_GPL(napi_by_id); 4207 4208 void napi_hash_add(struct napi_struct *napi) 4209 { 4210 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4211 4212 spin_lock(&napi_hash_lock); 4213 4214 /* 0 is not a valid id, we also skip an id that is taken 4215 * we expect both events to be extremely rare 4216 */ 4217 napi->napi_id = 0; 4218 while (!napi->napi_id) { 4219 napi->napi_id = ++napi_gen_id; 4220 if (napi_by_id(napi->napi_id)) 4221 napi->napi_id = 0; 4222 } 4223 4224 hlist_add_head_rcu(&napi->napi_hash_node, 4225 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4226 4227 spin_unlock(&napi_hash_lock); 4228 } 4229 } 4230 EXPORT_SYMBOL_GPL(napi_hash_add); 4231 4232 /* Warning : caller is responsible to make sure rcu grace period 4233 * is respected before freeing memory containing @napi 4234 */ 4235 void napi_hash_del(struct napi_struct *napi) 4236 { 4237 spin_lock(&napi_hash_lock); 4238 4239 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4240 hlist_del_rcu(&napi->napi_hash_node); 4241 4242 spin_unlock(&napi_hash_lock); 4243 } 4244 EXPORT_SYMBOL_GPL(napi_hash_del); 4245 4246 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4247 int (*poll)(struct napi_struct *, int), int weight) 4248 { 4249 INIT_LIST_HEAD(&napi->poll_list); 4250 napi->gro_count = 0; 4251 napi->gro_list = NULL; 4252 napi->skb = NULL; 4253 napi->poll = poll; 4254 if (weight > NAPI_POLL_WEIGHT) 4255 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4256 weight, dev->name); 4257 napi->weight = weight; 4258 list_add(&napi->dev_list, &dev->napi_list); 4259 napi->dev = dev; 4260 #ifdef CONFIG_NETPOLL 4261 spin_lock_init(&napi->poll_lock); 4262 napi->poll_owner = -1; 4263 #endif 4264 set_bit(NAPI_STATE_SCHED, &napi->state); 4265 } 4266 EXPORT_SYMBOL(netif_napi_add); 4267 4268 void netif_napi_del(struct napi_struct *napi) 4269 { 4270 struct sk_buff *skb, *next; 4271 4272 list_del_init(&napi->dev_list); 4273 napi_free_frags(napi); 4274 4275 for (skb = napi->gro_list; skb; skb = next) { 4276 next = skb->next; 4277 skb->next = NULL; 4278 kfree_skb(skb); 4279 } 4280 4281 napi->gro_list = NULL; 4282 napi->gro_count = 0; 4283 } 4284 EXPORT_SYMBOL(netif_napi_del); 4285 4286 static void net_rx_action(struct softirq_action *h) 4287 { 4288 struct softnet_data *sd = &__get_cpu_var(softnet_data); 4289 unsigned long time_limit = jiffies + 2; 4290 int budget = netdev_budget; 4291 void *have; 4292 4293 local_irq_disable(); 4294 4295 while (!list_empty(&sd->poll_list)) { 4296 struct napi_struct *n; 4297 int work, weight; 4298 4299 /* If softirq window is exhuasted then punt. 4300 * Allow this to run for 2 jiffies since which will allow 4301 * an average latency of 1.5/HZ. 4302 */ 4303 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit))) 4304 goto softnet_break; 4305 4306 local_irq_enable(); 4307 4308 /* Even though interrupts have been re-enabled, this 4309 * access is safe because interrupts can only add new 4310 * entries to the tail of this list, and only ->poll() 4311 * calls can remove this head entry from the list. 4312 */ 4313 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 4314 4315 have = netpoll_poll_lock(n); 4316 4317 weight = n->weight; 4318 4319 /* This NAPI_STATE_SCHED test is for avoiding a race 4320 * with netpoll's poll_napi(). Only the entity which 4321 * obtains the lock and sees NAPI_STATE_SCHED set will 4322 * actually make the ->poll() call. Therefore we avoid 4323 * accidentally calling ->poll() when NAPI is not scheduled. 4324 */ 4325 work = 0; 4326 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4327 work = n->poll(n, weight); 4328 trace_napi_poll(n); 4329 } 4330 4331 WARN_ON_ONCE(work > weight); 4332 4333 budget -= work; 4334 4335 local_irq_disable(); 4336 4337 /* Drivers must not modify the NAPI state if they 4338 * consume the entire weight. In such cases this code 4339 * still "owns" the NAPI instance and therefore can 4340 * move the instance around on the list at-will. 4341 */ 4342 if (unlikely(work == weight)) { 4343 if (unlikely(napi_disable_pending(n))) { 4344 local_irq_enable(); 4345 napi_complete(n); 4346 local_irq_disable(); 4347 } else { 4348 if (n->gro_list) { 4349 /* flush too old packets 4350 * If HZ < 1000, flush all packets. 4351 */ 4352 local_irq_enable(); 4353 napi_gro_flush(n, HZ >= 1000); 4354 local_irq_disable(); 4355 } 4356 list_move_tail(&n->poll_list, &sd->poll_list); 4357 } 4358 } 4359 4360 netpoll_poll_unlock(have); 4361 } 4362 out: 4363 net_rps_action_and_irq_enable(sd); 4364 4365 #ifdef CONFIG_NET_DMA 4366 /* 4367 * There may not be any more sk_buffs coming right now, so push 4368 * any pending DMA copies to hardware 4369 */ 4370 dma_issue_pending_all(); 4371 #endif 4372 4373 return; 4374 4375 softnet_break: 4376 sd->time_squeeze++; 4377 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4378 goto out; 4379 } 4380 4381 struct netdev_adjacent { 4382 struct net_device *dev; 4383 4384 /* upper master flag, there can only be one master device per list */ 4385 bool master; 4386 4387 /* counter for the number of times this device was added to us */ 4388 u16 ref_nr; 4389 4390 /* private field for the users */ 4391 void *private; 4392 4393 struct list_head list; 4394 struct rcu_head rcu; 4395 }; 4396 4397 static struct netdev_adjacent *__netdev_find_adj_rcu(struct net_device *dev, 4398 struct net_device *adj_dev, 4399 struct list_head *adj_list) 4400 { 4401 struct netdev_adjacent *adj; 4402 4403 list_for_each_entry_rcu(adj, adj_list, list) { 4404 if (adj->dev == adj_dev) 4405 return adj; 4406 } 4407 return NULL; 4408 } 4409 4410 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev, 4411 struct net_device *adj_dev, 4412 struct list_head *adj_list) 4413 { 4414 struct netdev_adjacent *adj; 4415 4416 list_for_each_entry(adj, adj_list, list) { 4417 if (adj->dev == adj_dev) 4418 return adj; 4419 } 4420 return NULL; 4421 } 4422 4423 /** 4424 * netdev_has_upper_dev - Check if device is linked to an upper device 4425 * @dev: device 4426 * @upper_dev: upper device to check 4427 * 4428 * Find out if a device is linked to specified upper device and return true 4429 * in case it is. Note that this checks only immediate upper device, 4430 * not through a complete stack of devices. The caller must hold the RTNL lock. 4431 */ 4432 bool netdev_has_upper_dev(struct net_device *dev, 4433 struct net_device *upper_dev) 4434 { 4435 ASSERT_RTNL(); 4436 4437 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper); 4438 } 4439 EXPORT_SYMBOL(netdev_has_upper_dev); 4440 4441 /** 4442 * netdev_has_any_upper_dev - Check if device is linked to some device 4443 * @dev: device 4444 * 4445 * Find out if a device is linked to an upper device and return true in case 4446 * it is. The caller must hold the RTNL lock. 4447 */ 4448 bool netdev_has_any_upper_dev(struct net_device *dev) 4449 { 4450 ASSERT_RTNL(); 4451 4452 return !list_empty(&dev->all_adj_list.upper); 4453 } 4454 EXPORT_SYMBOL(netdev_has_any_upper_dev); 4455 4456 /** 4457 * netdev_master_upper_dev_get - Get master upper device 4458 * @dev: device 4459 * 4460 * Find a master upper device and return pointer to it or NULL in case 4461 * it's not there. The caller must hold the RTNL lock. 4462 */ 4463 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4464 { 4465 struct netdev_adjacent *upper; 4466 4467 ASSERT_RTNL(); 4468 4469 if (list_empty(&dev->adj_list.upper)) 4470 return NULL; 4471 4472 upper = list_first_entry(&dev->adj_list.upper, 4473 struct netdev_adjacent, list); 4474 if (likely(upper->master)) 4475 return upper->dev; 4476 return NULL; 4477 } 4478 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4479 4480 void *netdev_adjacent_get_private(struct list_head *adj_list) 4481 { 4482 struct netdev_adjacent *adj; 4483 4484 adj = list_entry(adj_list, struct netdev_adjacent, list); 4485 4486 return adj->private; 4487 } 4488 EXPORT_SYMBOL(netdev_adjacent_get_private); 4489 4490 /** 4491 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 4492 * @dev: device 4493 * @iter: list_head ** of the current position 4494 * 4495 * Gets the next device from the dev's upper list, starting from iter 4496 * position. The caller must hold RCU read lock. 4497 */ 4498 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4499 struct list_head **iter) 4500 { 4501 struct netdev_adjacent *upper; 4502 4503 WARN_ON_ONCE(!rcu_read_lock_held()); 4504 4505 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4506 4507 if (&upper->list == &dev->all_adj_list.upper) 4508 return NULL; 4509 4510 *iter = &upper->list; 4511 4512 return upper->dev; 4513 } 4514 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 4515 4516 /** 4517 * netdev_lower_get_next_private - Get the next ->private from the 4518 * lower neighbour list 4519 * @dev: device 4520 * @iter: list_head ** of the current position 4521 * 4522 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4523 * list, starting from iter position. The caller must hold either hold the 4524 * RTNL lock or its own locking that guarantees that the neighbour lower 4525 * list will remain unchainged. 4526 */ 4527 void *netdev_lower_get_next_private(struct net_device *dev, 4528 struct list_head **iter) 4529 { 4530 struct netdev_adjacent *lower; 4531 4532 lower = list_entry(*iter, struct netdev_adjacent, list); 4533 4534 if (&lower->list == &dev->adj_list.lower) 4535 return NULL; 4536 4537 if (iter) 4538 *iter = lower->list.next; 4539 4540 return lower->private; 4541 } 4542 EXPORT_SYMBOL(netdev_lower_get_next_private); 4543 4544 /** 4545 * netdev_lower_get_next_private_rcu - Get the next ->private from the 4546 * lower neighbour list, RCU 4547 * variant 4548 * @dev: device 4549 * @iter: list_head ** of the current position 4550 * 4551 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4552 * list, starting from iter position. The caller must hold RCU read lock. 4553 */ 4554 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4555 struct list_head **iter) 4556 { 4557 struct netdev_adjacent *lower; 4558 4559 WARN_ON_ONCE(!rcu_read_lock_held()); 4560 4561 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4562 4563 if (&lower->list == &dev->adj_list.lower) 4564 return NULL; 4565 4566 if (iter) 4567 *iter = &lower->list; 4568 4569 return lower->private; 4570 } 4571 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 4572 4573 /** 4574 * netdev_master_upper_dev_get_rcu - Get master upper device 4575 * @dev: device 4576 * 4577 * Find a master upper device and return pointer to it or NULL in case 4578 * it's not there. The caller must hold the RCU read lock. 4579 */ 4580 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4581 { 4582 struct netdev_adjacent *upper; 4583 4584 upper = list_first_or_null_rcu(&dev->adj_list.upper, 4585 struct netdev_adjacent, list); 4586 if (upper && likely(upper->master)) 4587 return upper->dev; 4588 return NULL; 4589 } 4590 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4591 4592 static int __netdev_adjacent_dev_insert(struct net_device *dev, 4593 struct net_device *adj_dev, 4594 struct list_head *dev_list, 4595 void *private, bool master) 4596 { 4597 struct netdev_adjacent *adj; 4598 char linkname[IFNAMSIZ+7]; 4599 int ret; 4600 4601 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4602 4603 if (adj) { 4604 adj->ref_nr++; 4605 return 0; 4606 } 4607 4608 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 4609 if (!adj) 4610 return -ENOMEM; 4611 4612 adj->dev = adj_dev; 4613 adj->master = master; 4614 adj->ref_nr = 1; 4615 adj->private = private; 4616 dev_hold(adj_dev); 4617 4618 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 4619 adj_dev->name, dev->name, adj_dev->name); 4620 4621 if (dev_list == &dev->adj_list.lower) { 4622 sprintf(linkname, "lower_%s", adj_dev->name); 4623 ret = sysfs_create_link(&(dev->dev.kobj), 4624 &(adj_dev->dev.kobj), linkname); 4625 if (ret) 4626 goto free_adj; 4627 } else if (dev_list == &dev->adj_list.upper) { 4628 sprintf(linkname, "upper_%s", adj_dev->name); 4629 ret = sysfs_create_link(&(dev->dev.kobj), 4630 &(adj_dev->dev.kobj), linkname); 4631 if (ret) 4632 goto free_adj; 4633 } 4634 4635 /* Ensure that master link is always the first item in list. */ 4636 if (master) { 4637 ret = sysfs_create_link(&(dev->dev.kobj), 4638 &(adj_dev->dev.kobj), "master"); 4639 if (ret) 4640 goto remove_symlinks; 4641 4642 list_add_rcu(&adj->list, dev_list); 4643 } else { 4644 list_add_tail_rcu(&adj->list, dev_list); 4645 } 4646 4647 return 0; 4648 4649 remove_symlinks: 4650 if (dev_list == &dev->adj_list.lower) { 4651 sprintf(linkname, "lower_%s", adj_dev->name); 4652 sysfs_remove_link(&(dev->dev.kobj), linkname); 4653 } else if (dev_list == &dev->adj_list.upper) { 4654 sprintf(linkname, "upper_%s", adj_dev->name); 4655 sysfs_remove_link(&(dev->dev.kobj), linkname); 4656 } 4657 4658 free_adj: 4659 kfree(adj); 4660 dev_put(adj_dev); 4661 4662 return ret; 4663 } 4664 4665 void __netdev_adjacent_dev_remove(struct net_device *dev, 4666 struct net_device *adj_dev, 4667 struct list_head *dev_list) 4668 { 4669 struct netdev_adjacent *adj; 4670 char linkname[IFNAMSIZ+7]; 4671 4672 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4673 4674 if (!adj) { 4675 pr_err("tried to remove device %s from %s\n", 4676 dev->name, adj_dev->name); 4677 BUG(); 4678 } 4679 4680 if (adj->ref_nr > 1) { 4681 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 4682 adj->ref_nr-1); 4683 adj->ref_nr--; 4684 return; 4685 } 4686 4687 if (adj->master) 4688 sysfs_remove_link(&(dev->dev.kobj), "master"); 4689 4690 if (dev_list == &dev->adj_list.lower) { 4691 sprintf(linkname, "lower_%s", adj_dev->name); 4692 sysfs_remove_link(&(dev->dev.kobj), linkname); 4693 } else if (dev_list == &dev->adj_list.upper) { 4694 sprintf(linkname, "upper_%s", adj_dev->name); 4695 sysfs_remove_link(&(dev->dev.kobj), linkname); 4696 } 4697 4698 list_del_rcu(&adj->list); 4699 pr_debug("dev_put for %s, because link removed from %s to %s\n", 4700 adj_dev->name, dev->name, adj_dev->name); 4701 dev_put(adj_dev); 4702 kfree_rcu(adj, rcu); 4703 } 4704 4705 int __netdev_adjacent_dev_link_lists(struct net_device *dev, 4706 struct net_device *upper_dev, 4707 struct list_head *up_list, 4708 struct list_head *down_list, 4709 void *private, bool master) 4710 { 4711 int ret; 4712 4713 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 4714 master); 4715 if (ret) 4716 return ret; 4717 4718 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 4719 false); 4720 if (ret) { 4721 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 4722 return ret; 4723 } 4724 4725 return 0; 4726 } 4727 4728 int __netdev_adjacent_dev_link(struct net_device *dev, 4729 struct net_device *upper_dev) 4730 { 4731 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 4732 &dev->all_adj_list.upper, 4733 &upper_dev->all_adj_list.lower, 4734 NULL, false); 4735 } 4736 4737 void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 4738 struct net_device *upper_dev, 4739 struct list_head *up_list, 4740 struct list_head *down_list) 4741 { 4742 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 4743 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 4744 } 4745 4746 void __netdev_adjacent_dev_unlink(struct net_device *dev, 4747 struct net_device *upper_dev) 4748 { 4749 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 4750 &dev->all_adj_list.upper, 4751 &upper_dev->all_adj_list.lower); 4752 } 4753 4754 int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 4755 struct net_device *upper_dev, 4756 void *private, bool master) 4757 { 4758 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 4759 4760 if (ret) 4761 return ret; 4762 4763 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 4764 &dev->adj_list.upper, 4765 &upper_dev->adj_list.lower, 4766 private, master); 4767 if (ret) { 4768 __netdev_adjacent_dev_unlink(dev, upper_dev); 4769 return ret; 4770 } 4771 4772 return 0; 4773 } 4774 4775 void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 4776 struct net_device *upper_dev) 4777 { 4778 __netdev_adjacent_dev_unlink(dev, upper_dev); 4779 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 4780 &dev->adj_list.upper, 4781 &upper_dev->adj_list.lower); 4782 } 4783 4784 static int __netdev_upper_dev_link(struct net_device *dev, 4785 struct net_device *upper_dev, bool master, 4786 void *private) 4787 { 4788 struct netdev_adjacent *i, *j, *to_i, *to_j; 4789 int ret = 0; 4790 4791 ASSERT_RTNL(); 4792 4793 if (dev == upper_dev) 4794 return -EBUSY; 4795 4796 /* To prevent loops, check if dev is not upper device to upper_dev. */ 4797 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper)) 4798 return -EBUSY; 4799 4800 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper)) 4801 return -EEXIST; 4802 4803 if (master && netdev_master_upper_dev_get(dev)) 4804 return -EBUSY; 4805 4806 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private, 4807 master); 4808 if (ret) 4809 return ret; 4810 4811 /* Now that we linked these devs, make all the upper_dev's 4812 * all_adj_list.upper visible to every dev's all_adj_list.lower an 4813 * versa, and don't forget the devices itself. All of these 4814 * links are non-neighbours. 4815 */ 4816 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4817 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 4818 pr_debug("Interlinking %s with %s, non-neighbour\n", 4819 i->dev->name, j->dev->name); 4820 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 4821 if (ret) 4822 goto rollback_mesh; 4823 } 4824 } 4825 4826 /* add dev to every upper_dev's upper device */ 4827 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 4828 pr_debug("linking %s's upper device %s with %s\n", 4829 upper_dev->name, i->dev->name, dev->name); 4830 ret = __netdev_adjacent_dev_link(dev, i->dev); 4831 if (ret) 4832 goto rollback_upper_mesh; 4833 } 4834 4835 /* add upper_dev to every dev's lower device */ 4836 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4837 pr_debug("linking %s's lower device %s with %s\n", dev->name, 4838 i->dev->name, upper_dev->name); 4839 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 4840 if (ret) 4841 goto rollback_lower_mesh; 4842 } 4843 4844 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 4845 return 0; 4846 4847 rollback_lower_mesh: 4848 to_i = i; 4849 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4850 if (i == to_i) 4851 break; 4852 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 4853 } 4854 4855 i = NULL; 4856 4857 rollback_upper_mesh: 4858 to_i = i; 4859 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 4860 if (i == to_i) 4861 break; 4862 __netdev_adjacent_dev_unlink(dev, i->dev); 4863 } 4864 4865 i = j = NULL; 4866 4867 rollback_mesh: 4868 to_i = i; 4869 to_j = j; 4870 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4871 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 4872 if (i == to_i && j == to_j) 4873 break; 4874 __netdev_adjacent_dev_unlink(i->dev, j->dev); 4875 } 4876 if (i == to_i) 4877 break; 4878 } 4879 4880 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 4881 4882 return ret; 4883 } 4884 4885 /** 4886 * netdev_upper_dev_link - Add a link to the upper device 4887 * @dev: device 4888 * @upper_dev: new upper device 4889 * 4890 * Adds a link to device which is upper to this one. The caller must hold 4891 * the RTNL lock. On a failure a negative errno code is returned. 4892 * On success the reference counts are adjusted and the function 4893 * returns zero. 4894 */ 4895 int netdev_upper_dev_link(struct net_device *dev, 4896 struct net_device *upper_dev) 4897 { 4898 return __netdev_upper_dev_link(dev, upper_dev, false, NULL); 4899 } 4900 EXPORT_SYMBOL(netdev_upper_dev_link); 4901 4902 /** 4903 * netdev_master_upper_dev_link - Add a master link to the upper device 4904 * @dev: device 4905 * @upper_dev: new upper device 4906 * 4907 * Adds a link to device which is upper to this one. In this case, only 4908 * one master upper device can be linked, although other non-master devices 4909 * might be linked as well. The caller must hold the RTNL lock. 4910 * On a failure a negative errno code is returned. On success the reference 4911 * counts are adjusted and the function returns zero. 4912 */ 4913 int netdev_master_upper_dev_link(struct net_device *dev, 4914 struct net_device *upper_dev) 4915 { 4916 return __netdev_upper_dev_link(dev, upper_dev, true, NULL); 4917 } 4918 EXPORT_SYMBOL(netdev_master_upper_dev_link); 4919 4920 int netdev_master_upper_dev_link_private(struct net_device *dev, 4921 struct net_device *upper_dev, 4922 void *private) 4923 { 4924 return __netdev_upper_dev_link(dev, upper_dev, true, private); 4925 } 4926 EXPORT_SYMBOL(netdev_master_upper_dev_link_private); 4927 4928 /** 4929 * netdev_upper_dev_unlink - Removes a link to upper device 4930 * @dev: device 4931 * @upper_dev: new upper device 4932 * 4933 * Removes a link to device which is upper to this one. The caller must hold 4934 * the RTNL lock. 4935 */ 4936 void netdev_upper_dev_unlink(struct net_device *dev, 4937 struct net_device *upper_dev) 4938 { 4939 struct netdev_adjacent *i, *j; 4940 ASSERT_RTNL(); 4941 4942 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 4943 4944 /* Here is the tricky part. We must remove all dev's lower 4945 * devices from all upper_dev's upper devices and vice 4946 * versa, to maintain the graph relationship. 4947 */ 4948 list_for_each_entry(i, &dev->all_adj_list.lower, list) 4949 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 4950 __netdev_adjacent_dev_unlink(i->dev, j->dev); 4951 4952 /* remove also the devices itself from lower/upper device 4953 * list 4954 */ 4955 list_for_each_entry(i, &dev->all_adj_list.lower, list) 4956 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 4957 4958 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 4959 __netdev_adjacent_dev_unlink(dev, i->dev); 4960 4961 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 4962 } 4963 EXPORT_SYMBOL(netdev_upper_dev_unlink); 4964 4965 void *netdev_lower_dev_get_private_rcu(struct net_device *dev, 4966 struct net_device *lower_dev) 4967 { 4968 struct netdev_adjacent *lower; 4969 4970 if (!lower_dev) 4971 return NULL; 4972 lower = __netdev_find_adj_rcu(dev, lower_dev, &dev->adj_list.lower); 4973 if (!lower) 4974 return NULL; 4975 4976 return lower->private; 4977 } 4978 EXPORT_SYMBOL(netdev_lower_dev_get_private_rcu); 4979 4980 void *netdev_lower_dev_get_private(struct net_device *dev, 4981 struct net_device *lower_dev) 4982 { 4983 struct netdev_adjacent *lower; 4984 4985 if (!lower_dev) 4986 return NULL; 4987 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower); 4988 if (!lower) 4989 return NULL; 4990 4991 return lower->private; 4992 } 4993 EXPORT_SYMBOL(netdev_lower_dev_get_private); 4994 4995 static void dev_change_rx_flags(struct net_device *dev, int flags) 4996 { 4997 const struct net_device_ops *ops = dev->netdev_ops; 4998 4999 if (ops->ndo_change_rx_flags) 5000 ops->ndo_change_rx_flags(dev, flags); 5001 } 5002 5003 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 5004 { 5005 unsigned int old_flags = dev->flags; 5006 kuid_t uid; 5007 kgid_t gid; 5008 5009 ASSERT_RTNL(); 5010 5011 dev->flags |= IFF_PROMISC; 5012 dev->promiscuity += inc; 5013 if (dev->promiscuity == 0) { 5014 /* 5015 * Avoid overflow. 5016 * If inc causes overflow, untouch promisc and return error. 5017 */ 5018 if (inc < 0) 5019 dev->flags &= ~IFF_PROMISC; 5020 else { 5021 dev->promiscuity -= inc; 5022 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 5023 dev->name); 5024 return -EOVERFLOW; 5025 } 5026 } 5027 if (dev->flags != old_flags) { 5028 pr_info("device %s %s promiscuous mode\n", 5029 dev->name, 5030 dev->flags & IFF_PROMISC ? "entered" : "left"); 5031 if (audit_enabled) { 5032 current_uid_gid(&uid, &gid); 5033 audit_log(current->audit_context, GFP_ATOMIC, 5034 AUDIT_ANOM_PROMISCUOUS, 5035 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 5036 dev->name, (dev->flags & IFF_PROMISC), 5037 (old_flags & IFF_PROMISC), 5038 from_kuid(&init_user_ns, audit_get_loginuid(current)), 5039 from_kuid(&init_user_ns, uid), 5040 from_kgid(&init_user_ns, gid), 5041 audit_get_sessionid(current)); 5042 } 5043 5044 dev_change_rx_flags(dev, IFF_PROMISC); 5045 } 5046 if (notify) 5047 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 5048 return 0; 5049 } 5050 5051 /** 5052 * dev_set_promiscuity - update promiscuity count on a device 5053 * @dev: device 5054 * @inc: modifier 5055 * 5056 * Add or remove promiscuity from a device. While the count in the device 5057 * remains above zero the interface remains promiscuous. Once it hits zero 5058 * the device reverts back to normal filtering operation. A negative inc 5059 * value is used to drop promiscuity on the device. 5060 * Return 0 if successful or a negative errno code on error. 5061 */ 5062 int dev_set_promiscuity(struct net_device *dev, int inc) 5063 { 5064 unsigned int old_flags = dev->flags; 5065 int err; 5066 5067 err = __dev_set_promiscuity(dev, inc, true); 5068 if (err < 0) 5069 return err; 5070 if (dev->flags != old_flags) 5071 dev_set_rx_mode(dev); 5072 return err; 5073 } 5074 EXPORT_SYMBOL(dev_set_promiscuity); 5075 5076 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 5077 { 5078 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 5079 5080 ASSERT_RTNL(); 5081 5082 dev->flags |= IFF_ALLMULTI; 5083 dev->allmulti += inc; 5084 if (dev->allmulti == 0) { 5085 /* 5086 * Avoid overflow. 5087 * If inc causes overflow, untouch allmulti and return error. 5088 */ 5089 if (inc < 0) 5090 dev->flags &= ~IFF_ALLMULTI; 5091 else { 5092 dev->allmulti -= inc; 5093 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 5094 dev->name); 5095 return -EOVERFLOW; 5096 } 5097 } 5098 if (dev->flags ^ old_flags) { 5099 dev_change_rx_flags(dev, IFF_ALLMULTI); 5100 dev_set_rx_mode(dev); 5101 if (notify) 5102 __dev_notify_flags(dev, old_flags, 5103 dev->gflags ^ old_gflags); 5104 } 5105 return 0; 5106 } 5107 5108 /** 5109 * dev_set_allmulti - update allmulti count on a device 5110 * @dev: device 5111 * @inc: modifier 5112 * 5113 * Add or remove reception of all multicast frames to a device. While the 5114 * count in the device remains above zero the interface remains listening 5115 * to all interfaces. Once it hits zero the device reverts back to normal 5116 * filtering operation. A negative @inc value is used to drop the counter 5117 * when releasing a resource needing all multicasts. 5118 * Return 0 if successful or a negative errno code on error. 5119 */ 5120 5121 int dev_set_allmulti(struct net_device *dev, int inc) 5122 { 5123 return __dev_set_allmulti(dev, inc, true); 5124 } 5125 EXPORT_SYMBOL(dev_set_allmulti); 5126 5127 /* 5128 * Upload unicast and multicast address lists to device and 5129 * configure RX filtering. When the device doesn't support unicast 5130 * filtering it is put in promiscuous mode while unicast addresses 5131 * are present. 5132 */ 5133 void __dev_set_rx_mode(struct net_device *dev) 5134 { 5135 const struct net_device_ops *ops = dev->netdev_ops; 5136 5137 /* dev_open will call this function so the list will stay sane. */ 5138 if (!(dev->flags&IFF_UP)) 5139 return; 5140 5141 if (!netif_device_present(dev)) 5142 return; 5143 5144 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 5145 /* Unicast addresses changes may only happen under the rtnl, 5146 * therefore calling __dev_set_promiscuity here is safe. 5147 */ 5148 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 5149 __dev_set_promiscuity(dev, 1, false); 5150 dev->uc_promisc = true; 5151 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 5152 __dev_set_promiscuity(dev, -1, false); 5153 dev->uc_promisc = false; 5154 } 5155 } 5156 5157 if (ops->ndo_set_rx_mode) 5158 ops->ndo_set_rx_mode(dev); 5159 } 5160 5161 void dev_set_rx_mode(struct net_device *dev) 5162 { 5163 netif_addr_lock_bh(dev); 5164 __dev_set_rx_mode(dev); 5165 netif_addr_unlock_bh(dev); 5166 } 5167 5168 /** 5169 * dev_get_flags - get flags reported to userspace 5170 * @dev: device 5171 * 5172 * Get the combination of flag bits exported through APIs to userspace. 5173 */ 5174 unsigned int dev_get_flags(const struct net_device *dev) 5175 { 5176 unsigned int flags; 5177 5178 flags = (dev->flags & ~(IFF_PROMISC | 5179 IFF_ALLMULTI | 5180 IFF_RUNNING | 5181 IFF_LOWER_UP | 5182 IFF_DORMANT)) | 5183 (dev->gflags & (IFF_PROMISC | 5184 IFF_ALLMULTI)); 5185 5186 if (netif_running(dev)) { 5187 if (netif_oper_up(dev)) 5188 flags |= IFF_RUNNING; 5189 if (netif_carrier_ok(dev)) 5190 flags |= IFF_LOWER_UP; 5191 if (netif_dormant(dev)) 5192 flags |= IFF_DORMANT; 5193 } 5194 5195 return flags; 5196 } 5197 EXPORT_SYMBOL(dev_get_flags); 5198 5199 int __dev_change_flags(struct net_device *dev, unsigned int flags) 5200 { 5201 unsigned int old_flags = dev->flags; 5202 int ret; 5203 5204 ASSERT_RTNL(); 5205 5206 /* 5207 * Set the flags on our device. 5208 */ 5209 5210 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5211 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5212 IFF_AUTOMEDIA)) | 5213 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5214 IFF_ALLMULTI)); 5215 5216 /* 5217 * Load in the correct multicast list now the flags have changed. 5218 */ 5219 5220 if ((old_flags ^ flags) & IFF_MULTICAST) 5221 dev_change_rx_flags(dev, IFF_MULTICAST); 5222 5223 dev_set_rx_mode(dev); 5224 5225 /* 5226 * Have we downed the interface. We handle IFF_UP ourselves 5227 * according to user attempts to set it, rather than blindly 5228 * setting it. 5229 */ 5230 5231 ret = 0; 5232 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 5233 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5234 5235 if (!ret) 5236 dev_set_rx_mode(dev); 5237 } 5238 5239 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5240 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5241 unsigned int old_flags = dev->flags; 5242 5243 dev->gflags ^= IFF_PROMISC; 5244 5245 if (__dev_set_promiscuity(dev, inc, false) >= 0) 5246 if (dev->flags != old_flags) 5247 dev_set_rx_mode(dev); 5248 } 5249 5250 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5251 is important. Some (broken) drivers set IFF_PROMISC, when 5252 IFF_ALLMULTI is requested not asking us and not reporting. 5253 */ 5254 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5255 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5256 5257 dev->gflags ^= IFF_ALLMULTI; 5258 __dev_set_allmulti(dev, inc, false); 5259 } 5260 5261 return ret; 5262 } 5263 5264 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 5265 unsigned int gchanges) 5266 { 5267 unsigned int changes = dev->flags ^ old_flags; 5268 5269 if (gchanges) 5270 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 5271 5272 if (changes & IFF_UP) { 5273 if (dev->flags & IFF_UP) 5274 call_netdevice_notifiers(NETDEV_UP, dev); 5275 else 5276 call_netdevice_notifiers(NETDEV_DOWN, dev); 5277 } 5278 5279 if (dev->flags & IFF_UP && 5280 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5281 struct netdev_notifier_change_info change_info; 5282 5283 change_info.flags_changed = changes; 5284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5285 &change_info.info); 5286 } 5287 } 5288 5289 /** 5290 * dev_change_flags - change device settings 5291 * @dev: device 5292 * @flags: device state flags 5293 * 5294 * Change settings on device based state flags. The flags are 5295 * in the userspace exported format. 5296 */ 5297 int dev_change_flags(struct net_device *dev, unsigned int flags) 5298 { 5299 int ret; 5300 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 5301 5302 ret = __dev_change_flags(dev, flags); 5303 if (ret < 0) 5304 return ret; 5305 5306 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 5307 __dev_notify_flags(dev, old_flags, changes); 5308 return ret; 5309 } 5310 EXPORT_SYMBOL(dev_change_flags); 5311 5312 /** 5313 * dev_set_mtu - Change maximum transfer unit 5314 * @dev: device 5315 * @new_mtu: new transfer unit 5316 * 5317 * Change the maximum transfer size of the network device. 5318 */ 5319 int dev_set_mtu(struct net_device *dev, int new_mtu) 5320 { 5321 const struct net_device_ops *ops = dev->netdev_ops; 5322 int err; 5323 5324 if (new_mtu == dev->mtu) 5325 return 0; 5326 5327 /* MTU must be positive. */ 5328 if (new_mtu < 0) 5329 return -EINVAL; 5330 5331 if (!netif_device_present(dev)) 5332 return -ENODEV; 5333 5334 err = 0; 5335 if (ops->ndo_change_mtu) 5336 err = ops->ndo_change_mtu(dev, new_mtu); 5337 else 5338 dev->mtu = new_mtu; 5339 5340 if (!err) 5341 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5342 return err; 5343 } 5344 EXPORT_SYMBOL(dev_set_mtu); 5345 5346 /** 5347 * dev_set_group - Change group this device belongs to 5348 * @dev: device 5349 * @new_group: group this device should belong to 5350 */ 5351 void dev_set_group(struct net_device *dev, int new_group) 5352 { 5353 dev->group = new_group; 5354 } 5355 EXPORT_SYMBOL(dev_set_group); 5356 5357 /** 5358 * dev_set_mac_address - Change Media Access Control Address 5359 * @dev: device 5360 * @sa: new address 5361 * 5362 * Change the hardware (MAC) address of the device 5363 */ 5364 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 5365 { 5366 const struct net_device_ops *ops = dev->netdev_ops; 5367 int err; 5368 5369 if (!ops->ndo_set_mac_address) 5370 return -EOPNOTSUPP; 5371 if (sa->sa_family != dev->type) 5372 return -EINVAL; 5373 if (!netif_device_present(dev)) 5374 return -ENODEV; 5375 err = ops->ndo_set_mac_address(dev, sa); 5376 if (err) 5377 return err; 5378 dev->addr_assign_type = NET_ADDR_SET; 5379 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5380 add_device_randomness(dev->dev_addr, dev->addr_len); 5381 return 0; 5382 } 5383 EXPORT_SYMBOL(dev_set_mac_address); 5384 5385 /** 5386 * dev_change_carrier - Change device carrier 5387 * @dev: device 5388 * @new_carrier: new value 5389 * 5390 * Change device carrier 5391 */ 5392 int dev_change_carrier(struct net_device *dev, bool new_carrier) 5393 { 5394 const struct net_device_ops *ops = dev->netdev_ops; 5395 5396 if (!ops->ndo_change_carrier) 5397 return -EOPNOTSUPP; 5398 if (!netif_device_present(dev)) 5399 return -ENODEV; 5400 return ops->ndo_change_carrier(dev, new_carrier); 5401 } 5402 EXPORT_SYMBOL(dev_change_carrier); 5403 5404 /** 5405 * dev_get_phys_port_id - Get device physical port ID 5406 * @dev: device 5407 * @ppid: port ID 5408 * 5409 * Get device physical port ID 5410 */ 5411 int dev_get_phys_port_id(struct net_device *dev, 5412 struct netdev_phys_port_id *ppid) 5413 { 5414 const struct net_device_ops *ops = dev->netdev_ops; 5415 5416 if (!ops->ndo_get_phys_port_id) 5417 return -EOPNOTSUPP; 5418 return ops->ndo_get_phys_port_id(dev, ppid); 5419 } 5420 EXPORT_SYMBOL(dev_get_phys_port_id); 5421 5422 /** 5423 * dev_new_index - allocate an ifindex 5424 * @net: the applicable net namespace 5425 * 5426 * Returns a suitable unique value for a new device interface 5427 * number. The caller must hold the rtnl semaphore or the 5428 * dev_base_lock to be sure it remains unique. 5429 */ 5430 static int dev_new_index(struct net *net) 5431 { 5432 int ifindex = net->ifindex; 5433 for (;;) { 5434 if (++ifindex <= 0) 5435 ifindex = 1; 5436 if (!__dev_get_by_index(net, ifindex)) 5437 return net->ifindex = ifindex; 5438 } 5439 } 5440 5441 /* Delayed registration/unregisteration */ 5442 static LIST_HEAD(net_todo_list); 5443 static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 5444 5445 static void net_set_todo(struct net_device *dev) 5446 { 5447 list_add_tail(&dev->todo_list, &net_todo_list); 5448 dev_net(dev)->dev_unreg_count++; 5449 } 5450 5451 static void rollback_registered_many(struct list_head *head) 5452 { 5453 struct net_device *dev, *tmp; 5454 LIST_HEAD(close_head); 5455 5456 BUG_ON(dev_boot_phase); 5457 ASSERT_RTNL(); 5458 5459 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5460 /* Some devices call without registering 5461 * for initialization unwind. Remove those 5462 * devices and proceed with the remaining. 5463 */ 5464 if (dev->reg_state == NETREG_UNINITIALIZED) { 5465 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5466 dev->name, dev); 5467 5468 WARN_ON(1); 5469 list_del(&dev->unreg_list); 5470 continue; 5471 } 5472 dev->dismantle = true; 5473 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5474 } 5475 5476 /* If device is running, close it first. */ 5477 list_for_each_entry(dev, head, unreg_list) 5478 list_add_tail(&dev->close_list, &close_head); 5479 dev_close_many(&close_head); 5480 5481 list_for_each_entry(dev, head, unreg_list) { 5482 /* And unlink it from device chain. */ 5483 unlist_netdevice(dev); 5484 5485 dev->reg_state = NETREG_UNREGISTERING; 5486 } 5487 5488 synchronize_net(); 5489 5490 list_for_each_entry(dev, head, unreg_list) { 5491 /* Shutdown queueing discipline. */ 5492 dev_shutdown(dev); 5493 5494 5495 /* Notify protocols, that we are about to destroy 5496 this device. They should clean all the things. 5497 */ 5498 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5499 5500 if (!dev->rtnl_link_ops || 5501 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5502 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 5503 5504 /* 5505 * Flush the unicast and multicast chains 5506 */ 5507 dev_uc_flush(dev); 5508 dev_mc_flush(dev); 5509 5510 if (dev->netdev_ops->ndo_uninit) 5511 dev->netdev_ops->ndo_uninit(dev); 5512 5513 /* Notifier chain MUST detach us all upper devices. */ 5514 WARN_ON(netdev_has_any_upper_dev(dev)); 5515 5516 /* Remove entries from kobject tree */ 5517 netdev_unregister_kobject(dev); 5518 #ifdef CONFIG_XPS 5519 /* Remove XPS queueing entries */ 5520 netif_reset_xps_queues_gt(dev, 0); 5521 #endif 5522 } 5523 5524 synchronize_net(); 5525 5526 list_for_each_entry(dev, head, unreg_list) 5527 dev_put(dev); 5528 } 5529 5530 static void rollback_registered(struct net_device *dev) 5531 { 5532 LIST_HEAD(single); 5533 5534 list_add(&dev->unreg_list, &single); 5535 rollback_registered_many(&single); 5536 list_del(&single); 5537 } 5538 5539 static netdev_features_t netdev_fix_features(struct net_device *dev, 5540 netdev_features_t features) 5541 { 5542 /* Fix illegal checksum combinations */ 5543 if ((features & NETIF_F_HW_CSUM) && 5544 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5545 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5546 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5547 } 5548 5549 /* TSO requires that SG is present as well. */ 5550 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5551 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5552 features &= ~NETIF_F_ALL_TSO; 5553 } 5554 5555 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 5556 !(features & NETIF_F_IP_CSUM)) { 5557 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 5558 features &= ~NETIF_F_TSO; 5559 features &= ~NETIF_F_TSO_ECN; 5560 } 5561 5562 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 5563 !(features & NETIF_F_IPV6_CSUM)) { 5564 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 5565 features &= ~NETIF_F_TSO6; 5566 } 5567 5568 /* TSO ECN requires that TSO is present as well. */ 5569 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5570 features &= ~NETIF_F_TSO_ECN; 5571 5572 /* Software GSO depends on SG. */ 5573 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5574 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5575 features &= ~NETIF_F_GSO; 5576 } 5577 5578 /* UFO needs SG and checksumming */ 5579 if (features & NETIF_F_UFO) { 5580 /* maybe split UFO into V4 and V6? */ 5581 if (!((features & NETIF_F_GEN_CSUM) || 5582 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5583 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5584 netdev_dbg(dev, 5585 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5586 features &= ~NETIF_F_UFO; 5587 } 5588 5589 if (!(features & NETIF_F_SG)) { 5590 netdev_dbg(dev, 5591 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5592 features &= ~NETIF_F_UFO; 5593 } 5594 } 5595 5596 return features; 5597 } 5598 5599 int __netdev_update_features(struct net_device *dev) 5600 { 5601 netdev_features_t features; 5602 int err = 0; 5603 5604 ASSERT_RTNL(); 5605 5606 features = netdev_get_wanted_features(dev); 5607 5608 if (dev->netdev_ops->ndo_fix_features) 5609 features = dev->netdev_ops->ndo_fix_features(dev, features); 5610 5611 /* driver might be less strict about feature dependencies */ 5612 features = netdev_fix_features(dev, features); 5613 5614 if (dev->features == features) 5615 return 0; 5616 5617 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5618 &dev->features, &features); 5619 5620 if (dev->netdev_ops->ndo_set_features) 5621 err = dev->netdev_ops->ndo_set_features(dev, features); 5622 5623 if (unlikely(err < 0)) { 5624 netdev_err(dev, 5625 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5626 err, &features, &dev->features); 5627 return -1; 5628 } 5629 5630 if (!err) 5631 dev->features = features; 5632 5633 return 1; 5634 } 5635 5636 /** 5637 * netdev_update_features - recalculate device features 5638 * @dev: the device to check 5639 * 5640 * Recalculate dev->features set and send notifications if it 5641 * has changed. Should be called after driver or hardware dependent 5642 * conditions might have changed that influence the features. 5643 */ 5644 void netdev_update_features(struct net_device *dev) 5645 { 5646 if (__netdev_update_features(dev)) 5647 netdev_features_change(dev); 5648 } 5649 EXPORT_SYMBOL(netdev_update_features); 5650 5651 /** 5652 * netdev_change_features - recalculate device features 5653 * @dev: the device to check 5654 * 5655 * Recalculate dev->features set and send notifications even 5656 * if they have not changed. Should be called instead of 5657 * netdev_update_features() if also dev->vlan_features might 5658 * have changed to allow the changes to be propagated to stacked 5659 * VLAN devices. 5660 */ 5661 void netdev_change_features(struct net_device *dev) 5662 { 5663 __netdev_update_features(dev); 5664 netdev_features_change(dev); 5665 } 5666 EXPORT_SYMBOL(netdev_change_features); 5667 5668 /** 5669 * netif_stacked_transfer_operstate - transfer operstate 5670 * @rootdev: the root or lower level device to transfer state from 5671 * @dev: the device to transfer operstate to 5672 * 5673 * Transfer operational state from root to device. This is normally 5674 * called when a stacking relationship exists between the root 5675 * device and the device(a leaf device). 5676 */ 5677 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5678 struct net_device *dev) 5679 { 5680 if (rootdev->operstate == IF_OPER_DORMANT) 5681 netif_dormant_on(dev); 5682 else 5683 netif_dormant_off(dev); 5684 5685 if (netif_carrier_ok(rootdev)) { 5686 if (!netif_carrier_ok(dev)) 5687 netif_carrier_on(dev); 5688 } else { 5689 if (netif_carrier_ok(dev)) 5690 netif_carrier_off(dev); 5691 } 5692 } 5693 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5694 5695 #ifdef CONFIG_RPS 5696 static int netif_alloc_rx_queues(struct net_device *dev) 5697 { 5698 unsigned int i, count = dev->num_rx_queues; 5699 struct netdev_rx_queue *rx; 5700 5701 BUG_ON(count < 1); 5702 5703 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5704 if (!rx) 5705 return -ENOMEM; 5706 5707 dev->_rx = rx; 5708 5709 for (i = 0; i < count; i++) 5710 rx[i].dev = dev; 5711 return 0; 5712 } 5713 #endif 5714 5715 static void netdev_init_one_queue(struct net_device *dev, 5716 struct netdev_queue *queue, void *_unused) 5717 { 5718 /* Initialize queue lock */ 5719 spin_lock_init(&queue->_xmit_lock); 5720 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5721 queue->xmit_lock_owner = -1; 5722 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5723 queue->dev = dev; 5724 #ifdef CONFIG_BQL 5725 dql_init(&queue->dql, HZ); 5726 #endif 5727 } 5728 5729 static void netif_free_tx_queues(struct net_device *dev) 5730 { 5731 if (is_vmalloc_addr(dev->_tx)) 5732 vfree(dev->_tx); 5733 else 5734 kfree(dev->_tx); 5735 } 5736 5737 static int netif_alloc_netdev_queues(struct net_device *dev) 5738 { 5739 unsigned int count = dev->num_tx_queues; 5740 struct netdev_queue *tx; 5741 size_t sz = count * sizeof(*tx); 5742 5743 BUG_ON(count < 1 || count > 0xffff); 5744 5745 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 5746 if (!tx) { 5747 tx = vzalloc(sz); 5748 if (!tx) 5749 return -ENOMEM; 5750 } 5751 dev->_tx = tx; 5752 5753 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5754 spin_lock_init(&dev->tx_global_lock); 5755 5756 return 0; 5757 } 5758 5759 /** 5760 * register_netdevice - register a network device 5761 * @dev: device to register 5762 * 5763 * Take a completed network device structure and add it to the kernel 5764 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5765 * chain. 0 is returned on success. A negative errno code is returned 5766 * on a failure to set up the device, or if the name is a duplicate. 5767 * 5768 * Callers must hold the rtnl semaphore. You may want 5769 * register_netdev() instead of this. 5770 * 5771 * BUGS: 5772 * The locking appears insufficient to guarantee two parallel registers 5773 * will not get the same name. 5774 */ 5775 5776 int register_netdevice(struct net_device *dev) 5777 { 5778 int ret; 5779 struct net *net = dev_net(dev); 5780 5781 BUG_ON(dev_boot_phase); 5782 ASSERT_RTNL(); 5783 5784 might_sleep(); 5785 5786 /* When net_device's are persistent, this will be fatal. */ 5787 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5788 BUG_ON(!net); 5789 5790 spin_lock_init(&dev->addr_list_lock); 5791 netdev_set_addr_lockdep_class(dev); 5792 5793 dev->iflink = -1; 5794 5795 ret = dev_get_valid_name(net, dev, dev->name); 5796 if (ret < 0) 5797 goto out; 5798 5799 /* Init, if this function is available */ 5800 if (dev->netdev_ops->ndo_init) { 5801 ret = dev->netdev_ops->ndo_init(dev); 5802 if (ret) { 5803 if (ret > 0) 5804 ret = -EIO; 5805 goto out; 5806 } 5807 } 5808 5809 if (((dev->hw_features | dev->features) & 5810 NETIF_F_HW_VLAN_CTAG_FILTER) && 5811 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 5812 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 5813 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 5814 ret = -EINVAL; 5815 goto err_uninit; 5816 } 5817 5818 ret = -EBUSY; 5819 if (!dev->ifindex) 5820 dev->ifindex = dev_new_index(net); 5821 else if (__dev_get_by_index(net, dev->ifindex)) 5822 goto err_uninit; 5823 5824 if (dev->iflink == -1) 5825 dev->iflink = dev->ifindex; 5826 5827 /* Transfer changeable features to wanted_features and enable 5828 * software offloads (GSO and GRO). 5829 */ 5830 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5831 dev->features |= NETIF_F_SOFT_FEATURES; 5832 dev->wanted_features = dev->features & dev->hw_features; 5833 5834 /* Turn on no cache copy if HW is doing checksum */ 5835 if (!(dev->flags & IFF_LOOPBACK)) { 5836 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5837 if (dev->features & NETIF_F_ALL_CSUM) { 5838 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5839 dev->features |= NETIF_F_NOCACHE_COPY; 5840 } 5841 } 5842 5843 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5844 */ 5845 dev->vlan_features |= NETIF_F_HIGHDMA; 5846 5847 /* Make NETIF_F_SG inheritable to tunnel devices. 5848 */ 5849 dev->hw_enc_features |= NETIF_F_SG; 5850 5851 /* Make NETIF_F_SG inheritable to MPLS. 5852 */ 5853 dev->mpls_features |= NETIF_F_SG; 5854 5855 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5856 ret = notifier_to_errno(ret); 5857 if (ret) 5858 goto err_uninit; 5859 5860 ret = netdev_register_kobject(dev); 5861 if (ret) 5862 goto err_uninit; 5863 dev->reg_state = NETREG_REGISTERED; 5864 5865 __netdev_update_features(dev); 5866 5867 /* 5868 * Default initial state at registry is that the 5869 * device is present. 5870 */ 5871 5872 set_bit(__LINK_STATE_PRESENT, &dev->state); 5873 5874 linkwatch_init_dev(dev); 5875 5876 dev_init_scheduler(dev); 5877 dev_hold(dev); 5878 list_netdevice(dev); 5879 add_device_randomness(dev->dev_addr, dev->addr_len); 5880 5881 /* If the device has permanent device address, driver should 5882 * set dev_addr and also addr_assign_type should be set to 5883 * NET_ADDR_PERM (default value). 5884 */ 5885 if (dev->addr_assign_type == NET_ADDR_PERM) 5886 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 5887 5888 /* Notify protocols, that a new device appeared. */ 5889 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5890 ret = notifier_to_errno(ret); 5891 if (ret) { 5892 rollback_registered(dev); 5893 dev->reg_state = NETREG_UNREGISTERED; 5894 } 5895 /* 5896 * Prevent userspace races by waiting until the network 5897 * device is fully setup before sending notifications. 5898 */ 5899 if (!dev->rtnl_link_ops || 5900 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5901 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 5902 5903 out: 5904 return ret; 5905 5906 err_uninit: 5907 if (dev->netdev_ops->ndo_uninit) 5908 dev->netdev_ops->ndo_uninit(dev); 5909 goto out; 5910 } 5911 EXPORT_SYMBOL(register_netdevice); 5912 5913 /** 5914 * init_dummy_netdev - init a dummy network device for NAPI 5915 * @dev: device to init 5916 * 5917 * This takes a network device structure and initialize the minimum 5918 * amount of fields so it can be used to schedule NAPI polls without 5919 * registering a full blown interface. This is to be used by drivers 5920 * that need to tie several hardware interfaces to a single NAPI 5921 * poll scheduler due to HW limitations. 5922 */ 5923 int init_dummy_netdev(struct net_device *dev) 5924 { 5925 /* Clear everything. Note we don't initialize spinlocks 5926 * are they aren't supposed to be taken by any of the 5927 * NAPI code and this dummy netdev is supposed to be 5928 * only ever used for NAPI polls 5929 */ 5930 memset(dev, 0, sizeof(struct net_device)); 5931 5932 /* make sure we BUG if trying to hit standard 5933 * register/unregister code path 5934 */ 5935 dev->reg_state = NETREG_DUMMY; 5936 5937 /* NAPI wants this */ 5938 INIT_LIST_HEAD(&dev->napi_list); 5939 5940 /* a dummy interface is started by default */ 5941 set_bit(__LINK_STATE_PRESENT, &dev->state); 5942 set_bit(__LINK_STATE_START, &dev->state); 5943 5944 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5945 * because users of this 'device' dont need to change 5946 * its refcount. 5947 */ 5948 5949 return 0; 5950 } 5951 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5952 5953 5954 /** 5955 * register_netdev - register a network device 5956 * @dev: device to register 5957 * 5958 * Take a completed network device structure and add it to the kernel 5959 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5960 * chain. 0 is returned on success. A negative errno code is returned 5961 * on a failure to set up the device, or if the name is a duplicate. 5962 * 5963 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5964 * and expands the device name if you passed a format string to 5965 * alloc_netdev. 5966 */ 5967 int register_netdev(struct net_device *dev) 5968 { 5969 int err; 5970 5971 rtnl_lock(); 5972 err = register_netdevice(dev); 5973 rtnl_unlock(); 5974 return err; 5975 } 5976 EXPORT_SYMBOL(register_netdev); 5977 5978 int netdev_refcnt_read(const struct net_device *dev) 5979 { 5980 int i, refcnt = 0; 5981 5982 for_each_possible_cpu(i) 5983 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5984 return refcnt; 5985 } 5986 EXPORT_SYMBOL(netdev_refcnt_read); 5987 5988 /** 5989 * netdev_wait_allrefs - wait until all references are gone. 5990 * @dev: target net_device 5991 * 5992 * This is called when unregistering network devices. 5993 * 5994 * Any protocol or device that holds a reference should register 5995 * for netdevice notification, and cleanup and put back the 5996 * reference if they receive an UNREGISTER event. 5997 * We can get stuck here if buggy protocols don't correctly 5998 * call dev_put. 5999 */ 6000 static void netdev_wait_allrefs(struct net_device *dev) 6001 { 6002 unsigned long rebroadcast_time, warning_time; 6003 int refcnt; 6004 6005 linkwatch_forget_dev(dev); 6006 6007 rebroadcast_time = warning_time = jiffies; 6008 refcnt = netdev_refcnt_read(dev); 6009 6010 while (refcnt != 0) { 6011 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 6012 rtnl_lock(); 6013 6014 /* Rebroadcast unregister notification */ 6015 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6016 6017 __rtnl_unlock(); 6018 rcu_barrier(); 6019 rtnl_lock(); 6020 6021 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6022 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 6023 &dev->state)) { 6024 /* We must not have linkwatch events 6025 * pending on unregister. If this 6026 * happens, we simply run the queue 6027 * unscheduled, resulting in a noop 6028 * for this device. 6029 */ 6030 linkwatch_run_queue(); 6031 } 6032 6033 __rtnl_unlock(); 6034 6035 rebroadcast_time = jiffies; 6036 } 6037 6038 msleep(250); 6039 6040 refcnt = netdev_refcnt_read(dev); 6041 6042 if (time_after(jiffies, warning_time + 10 * HZ)) { 6043 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 6044 dev->name, refcnt); 6045 warning_time = jiffies; 6046 } 6047 } 6048 } 6049 6050 /* The sequence is: 6051 * 6052 * rtnl_lock(); 6053 * ... 6054 * register_netdevice(x1); 6055 * register_netdevice(x2); 6056 * ... 6057 * unregister_netdevice(y1); 6058 * unregister_netdevice(y2); 6059 * ... 6060 * rtnl_unlock(); 6061 * free_netdev(y1); 6062 * free_netdev(y2); 6063 * 6064 * We are invoked by rtnl_unlock(). 6065 * This allows us to deal with problems: 6066 * 1) We can delete sysfs objects which invoke hotplug 6067 * without deadlocking with linkwatch via keventd. 6068 * 2) Since we run with the RTNL semaphore not held, we can sleep 6069 * safely in order to wait for the netdev refcnt to drop to zero. 6070 * 6071 * We must not return until all unregister events added during 6072 * the interval the lock was held have been completed. 6073 */ 6074 void netdev_run_todo(void) 6075 { 6076 struct list_head list; 6077 6078 /* Snapshot list, allow later requests */ 6079 list_replace_init(&net_todo_list, &list); 6080 6081 __rtnl_unlock(); 6082 6083 6084 /* Wait for rcu callbacks to finish before next phase */ 6085 if (!list_empty(&list)) 6086 rcu_barrier(); 6087 6088 while (!list_empty(&list)) { 6089 struct net_device *dev 6090 = list_first_entry(&list, struct net_device, todo_list); 6091 list_del(&dev->todo_list); 6092 6093 rtnl_lock(); 6094 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6095 __rtnl_unlock(); 6096 6097 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6098 pr_err("network todo '%s' but state %d\n", 6099 dev->name, dev->reg_state); 6100 dump_stack(); 6101 continue; 6102 } 6103 6104 dev->reg_state = NETREG_UNREGISTERED; 6105 6106 on_each_cpu(flush_backlog, dev, 1); 6107 6108 netdev_wait_allrefs(dev); 6109 6110 /* paranoia */ 6111 BUG_ON(netdev_refcnt_read(dev)); 6112 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6113 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6114 WARN_ON(dev->dn_ptr); 6115 6116 if (dev->destructor) 6117 dev->destructor(dev); 6118 6119 /* Report a network device has been unregistered */ 6120 rtnl_lock(); 6121 dev_net(dev)->dev_unreg_count--; 6122 __rtnl_unlock(); 6123 wake_up(&netdev_unregistering_wq); 6124 6125 /* Free network device */ 6126 kobject_put(&dev->dev.kobj); 6127 } 6128 } 6129 6130 /* Convert net_device_stats to rtnl_link_stats64. They have the same 6131 * fields in the same order, with only the type differing. 6132 */ 6133 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6134 const struct net_device_stats *netdev_stats) 6135 { 6136 #if BITS_PER_LONG == 64 6137 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6138 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6139 #else 6140 size_t i, n = sizeof(*stats64) / sizeof(u64); 6141 const unsigned long *src = (const unsigned long *)netdev_stats; 6142 u64 *dst = (u64 *)stats64; 6143 6144 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6145 sizeof(*stats64) / sizeof(u64)); 6146 for (i = 0; i < n; i++) 6147 dst[i] = src[i]; 6148 #endif 6149 } 6150 EXPORT_SYMBOL(netdev_stats_to_stats64); 6151 6152 /** 6153 * dev_get_stats - get network device statistics 6154 * @dev: device to get statistics from 6155 * @storage: place to store stats 6156 * 6157 * Get network statistics from device. Return @storage. 6158 * The device driver may provide its own method by setting 6159 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6160 * otherwise the internal statistics structure is used. 6161 */ 6162 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6163 struct rtnl_link_stats64 *storage) 6164 { 6165 const struct net_device_ops *ops = dev->netdev_ops; 6166 6167 if (ops->ndo_get_stats64) { 6168 memset(storage, 0, sizeof(*storage)); 6169 ops->ndo_get_stats64(dev, storage); 6170 } else if (ops->ndo_get_stats) { 6171 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6172 } else { 6173 netdev_stats_to_stats64(storage, &dev->stats); 6174 } 6175 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 6176 return storage; 6177 } 6178 EXPORT_SYMBOL(dev_get_stats); 6179 6180 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 6181 { 6182 struct netdev_queue *queue = dev_ingress_queue(dev); 6183 6184 #ifdef CONFIG_NET_CLS_ACT 6185 if (queue) 6186 return queue; 6187 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 6188 if (!queue) 6189 return NULL; 6190 netdev_init_one_queue(dev, queue, NULL); 6191 queue->qdisc = &noop_qdisc; 6192 queue->qdisc_sleeping = &noop_qdisc; 6193 rcu_assign_pointer(dev->ingress_queue, queue); 6194 #endif 6195 return queue; 6196 } 6197 6198 static const struct ethtool_ops default_ethtool_ops; 6199 6200 void netdev_set_default_ethtool_ops(struct net_device *dev, 6201 const struct ethtool_ops *ops) 6202 { 6203 if (dev->ethtool_ops == &default_ethtool_ops) 6204 dev->ethtool_ops = ops; 6205 } 6206 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 6207 6208 void netdev_freemem(struct net_device *dev) 6209 { 6210 char *addr = (char *)dev - dev->padded; 6211 6212 if (is_vmalloc_addr(addr)) 6213 vfree(addr); 6214 else 6215 kfree(addr); 6216 } 6217 6218 /** 6219 * alloc_netdev_mqs - allocate network device 6220 * @sizeof_priv: size of private data to allocate space for 6221 * @name: device name format string 6222 * @setup: callback to initialize device 6223 * @txqs: the number of TX subqueues to allocate 6224 * @rxqs: the number of RX subqueues to allocate 6225 * 6226 * Allocates a struct net_device with private data area for driver use 6227 * and performs basic initialization. Also allocates subquue structs 6228 * for each queue on the device. 6229 */ 6230 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6231 void (*setup)(struct net_device *), 6232 unsigned int txqs, unsigned int rxqs) 6233 { 6234 struct net_device *dev; 6235 size_t alloc_size; 6236 struct net_device *p; 6237 6238 BUG_ON(strlen(name) >= sizeof(dev->name)); 6239 6240 if (txqs < 1) { 6241 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6242 return NULL; 6243 } 6244 6245 #ifdef CONFIG_RPS 6246 if (rxqs < 1) { 6247 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6248 return NULL; 6249 } 6250 #endif 6251 6252 alloc_size = sizeof(struct net_device); 6253 if (sizeof_priv) { 6254 /* ensure 32-byte alignment of private area */ 6255 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6256 alloc_size += sizeof_priv; 6257 } 6258 /* ensure 32-byte alignment of whole construct */ 6259 alloc_size += NETDEV_ALIGN - 1; 6260 6261 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6262 if (!p) 6263 p = vzalloc(alloc_size); 6264 if (!p) 6265 return NULL; 6266 6267 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6268 dev->padded = (char *)dev - (char *)p; 6269 6270 dev->pcpu_refcnt = alloc_percpu(int); 6271 if (!dev->pcpu_refcnt) 6272 goto free_dev; 6273 6274 if (dev_addr_init(dev)) 6275 goto free_pcpu; 6276 6277 dev_mc_init(dev); 6278 dev_uc_init(dev); 6279 6280 dev_net_set(dev, &init_net); 6281 6282 dev->gso_max_size = GSO_MAX_SIZE; 6283 dev->gso_max_segs = GSO_MAX_SEGS; 6284 6285 INIT_LIST_HEAD(&dev->napi_list); 6286 INIT_LIST_HEAD(&dev->unreg_list); 6287 INIT_LIST_HEAD(&dev->close_list); 6288 INIT_LIST_HEAD(&dev->link_watch_list); 6289 INIT_LIST_HEAD(&dev->adj_list.upper); 6290 INIT_LIST_HEAD(&dev->adj_list.lower); 6291 INIT_LIST_HEAD(&dev->all_adj_list.upper); 6292 INIT_LIST_HEAD(&dev->all_adj_list.lower); 6293 dev->priv_flags = IFF_XMIT_DST_RELEASE; 6294 setup(dev); 6295 6296 dev->num_tx_queues = txqs; 6297 dev->real_num_tx_queues = txqs; 6298 if (netif_alloc_netdev_queues(dev)) 6299 goto free_all; 6300 6301 #ifdef CONFIG_RPS 6302 dev->num_rx_queues = rxqs; 6303 dev->real_num_rx_queues = rxqs; 6304 if (netif_alloc_rx_queues(dev)) 6305 goto free_all; 6306 #endif 6307 6308 strcpy(dev->name, name); 6309 dev->group = INIT_NETDEV_GROUP; 6310 if (!dev->ethtool_ops) 6311 dev->ethtool_ops = &default_ethtool_ops; 6312 return dev; 6313 6314 free_all: 6315 free_netdev(dev); 6316 return NULL; 6317 6318 free_pcpu: 6319 free_percpu(dev->pcpu_refcnt); 6320 netif_free_tx_queues(dev); 6321 #ifdef CONFIG_RPS 6322 kfree(dev->_rx); 6323 #endif 6324 6325 free_dev: 6326 netdev_freemem(dev); 6327 return NULL; 6328 } 6329 EXPORT_SYMBOL(alloc_netdev_mqs); 6330 6331 /** 6332 * free_netdev - free network device 6333 * @dev: device 6334 * 6335 * This function does the last stage of destroying an allocated device 6336 * interface. The reference to the device object is released. 6337 * If this is the last reference then it will be freed. 6338 */ 6339 void free_netdev(struct net_device *dev) 6340 { 6341 struct napi_struct *p, *n; 6342 6343 release_net(dev_net(dev)); 6344 6345 netif_free_tx_queues(dev); 6346 #ifdef CONFIG_RPS 6347 kfree(dev->_rx); 6348 #endif 6349 6350 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6351 6352 /* Flush device addresses */ 6353 dev_addr_flush(dev); 6354 6355 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6356 netif_napi_del(p); 6357 6358 free_percpu(dev->pcpu_refcnt); 6359 dev->pcpu_refcnt = NULL; 6360 6361 /* Compatibility with error handling in drivers */ 6362 if (dev->reg_state == NETREG_UNINITIALIZED) { 6363 netdev_freemem(dev); 6364 return; 6365 } 6366 6367 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6368 dev->reg_state = NETREG_RELEASED; 6369 6370 /* will free via device release */ 6371 put_device(&dev->dev); 6372 } 6373 EXPORT_SYMBOL(free_netdev); 6374 6375 /** 6376 * synchronize_net - Synchronize with packet receive processing 6377 * 6378 * Wait for packets currently being received to be done. 6379 * Does not block later packets from starting. 6380 */ 6381 void synchronize_net(void) 6382 { 6383 might_sleep(); 6384 if (rtnl_is_locked()) 6385 synchronize_rcu_expedited(); 6386 else 6387 synchronize_rcu(); 6388 } 6389 EXPORT_SYMBOL(synchronize_net); 6390 6391 /** 6392 * unregister_netdevice_queue - remove device from the kernel 6393 * @dev: device 6394 * @head: list 6395 * 6396 * This function shuts down a device interface and removes it 6397 * from the kernel tables. 6398 * If head not NULL, device is queued to be unregistered later. 6399 * 6400 * Callers must hold the rtnl semaphore. You may want 6401 * unregister_netdev() instead of this. 6402 */ 6403 6404 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6405 { 6406 ASSERT_RTNL(); 6407 6408 if (head) { 6409 list_move_tail(&dev->unreg_list, head); 6410 } else { 6411 rollback_registered(dev); 6412 /* Finish processing unregister after unlock */ 6413 net_set_todo(dev); 6414 } 6415 } 6416 EXPORT_SYMBOL(unregister_netdevice_queue); 6417 6418 /** 6419 * unregister_netdevice_many - unregister many devices 6420 * @head: list of devices 6421 */ 6422 void unregister_netdevice_many(struct list_head *head) 6423 { 6424 struct net_device *dev; 6425 6426 if (!list_empty(head)) { 6427 rollback_registered_many(head); 6428 list_for_each_entry(dev, head, unreg_list) 6429 net_set_todo(dev); 6430 } 6431 } 6432 EXPORT_SYMBOL(unregister_netdevice_many); 6433 6434 /** 6435 * unregister_netdev - remove device from the kernel 6436 * @dev: device 6437 * 6438 * This function shuts down a device interface and removes it 6439 * from the kernel tables. 6440 * 6441 * This is just a wrapper for unregister_netdevice that takes 6442 * the rtnl semaphore. In general you want to use this and not 6443 * unregister_netdevice. 6444 */ 6445 void unregister_netdev(struct net_device *dev) 6446 { 6447 rtnl_lock(); 6448 unregister_netdevice(dev); 6449 rtnl_unlock(); 6450 } 6451 EXPORT_SYMBOL(unregister_netdev); 6452 6453 /** 6454 * dev_change_net_namespace - move device to different nethost namespace 6455 * @dev: device 6456 * @net: network namespace 6457 * @pat: If not NULL name pattern to try if the current device name 6458 * is already taken in the destination network namespace. 6459 * 6460 * This function shuts down a device interface and moves it 6461 * to a new network namespace. On success 0 is returned, on 6462 * a failure a netagive errno code is returned. 6463 * 6464 * Callers must hold the rtnl semaphore. 6465 */ 6466 6467 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6468 { 6469 int err; 6470 6471 ASSERT_RTNL(); 6472 6473 /* Don't allow namespace local devices to be moved. */ 6474 err = -EINVAL; 6475 if (dev->features & NETIF_F_NETNS_LOCAL) 6476 goto out; 6477 6478 /* Ensure the device has been registrered */ 6479 if (dev->reg_state != NETREG_REGISTERED) 6480 goto out; 6481 6482 /* Get out if there is nothing todo */ 6483 err = 0; 6484 if (net_eq(dev_net(dev), net)) 6485 goto out; 6486 6487 /* Pick the destination device name, and ensure 6488 * we can use it in the destination network namespace. 6489 */ 6490 err = -EEXIST; 6491 if (__dev_get_by_name(net, dev->name)) { 6492 /* We get here if we can't use the current device name */ 6493 if (!pat) 6494 goto out; 6495 if (dev_get_valid_name(net, dev, pat) < 0) 6496 goto out; 6497 } 6498 6499 /* 6500 * And now a mini version of register_netdevice unregister_netdevice. 6501 */ 6502 6503 /* If device is running close it first. */ 6504 dev_close(dev); 6505 6506 /* And unlink it from device chain */ 6507 err = -ENODEV; 6508 unlist_netdevice(dev); 6509 6510 synchronize_net(); 6511 6512 /* Shutdown queueing discipline. */ 6513 dev_shutdown(dev); 6514 6515 /* Notify protocols, that we are about to destroy 6516 this device. They should clean all the things. 6517 6518 Note that dev->reg_state stays at NETREG_REGISTERED. 6519 This is wanted because this way 8021q and macvlan know 6520 the device is just moving and can keep their slaves up. 6521 */ 6522 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6523 rcu_barrier(); 6524 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6525 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 6526 6527 /* 6528 * Flush the unicast and multicast chains 6529 */ 6530 dev_uc_flush(dev); 6531 dev_mc_flush(dev); 6532 6533 /* Send a netdev-removed uevent to the old namespace */ 6534 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 6535 6536 /* Actually switch the network namespace */ 6537 dev_net_set(dev, net); 6538 6539 /* If there is an ifindex conflict assign a new one */ 6540 if (__dev_get_by_index(net, dev->ifindex)) { 6541 int iflink = (dev->iflink == dev->ifindex); 6542 dev->ifindex = dev_new_index(net); 6543 if (iflink) 6544 dev->iflink = dev->ifindex; 6545 } 6546 6547 /* Send a netdev-add uevent to the new namespace */ 6548 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 6549 6550 /* Fixup kobjects */ 6551 err = device_rename(&dev->dev, dev->name); 6552 WARN_ON(err); 6553 6554 /* Add the device back in the hashes */ 6555 list_netdevice(dev); 6556 6557 /* Notify protocols, that a new device appeared. */ 6558 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6559 6560 /* 6561 * Prevent userspace races by waiting until the network 6562 * device is fully setup before sending notifications. 6563 */ 6564 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6565 6566 synchronize_net(); 6567 err = 0; 6568 out: 6569 return err; 6570 } 6571 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6572 6573 static int dev_cpu_callback(struct notifier_block *nfb, 6574 unsigned long action, 6575 void *ocpu) 6576 { 6577 struct sk_buff **list_skb; 6578 struct sk_buff *skb; 6579 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6580 struct softnet_data *sd, *oldsd; 6581 6582 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6583 return NOTIFY_OK; 6584 6585 local_irq_disable(); 6586 cpu = smp_processor_id(); 6587 sd = &per_cpu(softnet_data, cpu); 6588 oldsd = &per_cpu(softnet_data, oldcpu); 6589 6590 /* Find end of our completion_queue. */ 6591 list_skb = &sd->completion_queue; 6592 while (*list_skb) 6593 list_skb = &(*list_skb)->next; 6594 /* Append completion queue from offline CPU. */ 6595 *list_skb = oldsd->completion_queue; 6596 oldsd->completion_queue = NULL; 6597 6598 /* Append output queue from offline CPU. */ 6599 if (oldsd->output_queue) { 6600 *sd->output_queue_tailp = oldsd->output_queue; 6601 sd->output_queue_tailp = oldsd->output_queue_tailp; 6602 oldsd->output_queue = NULL; 6603 oldsd->output_queue_tailp = &oldsd->output_queue; 6604 } 6605 /* Append NAPI poll list from offline CPU. */ 6606 if (!list_empty(&oldsd->poll_list)) { 6607 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6608 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6609 } 6610 6611 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6612 local_irq_enable(); 6613 6614 /* Process offline CPU's input_pkt_queue */ 6615 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6616 netif_rx(skb); 6617 input_queue_head_incr(oldsd); 6618 } 6619 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6620 netif_rx(skb); 6621 input_queue_head_incr(oldsd); 6622 } 6623 6624 return NOTIFY_OK; 6625 } 6626 6627 6628 /** 6629 * netdev_increment_features - increment feature set by one 6630 * @all: current feature set 6631 * @one: new feature set 6632 * @mask: mask feature set 6633 * 6634 * Computes a new feature set after adding a device with feature set 6635 * @one to the master device with current feature set @all. Will not 6636 * enable anything that is off in @mask. Returns the new feature set. 6637 */ 6638 netdev_features_t netdev_increment_features(netdev_features_t all, 6639 netdev_features_t one, netdev_features_t mask) 6640 { 6641 if (mask & NETIF_F_GEN_CSUM) 6642 mask |= NETIF_F_ALL_CSUM; 6643 mask |= NETIF_F_VLAN_CHALLENGED; 6644 6645 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6646 all &= one | ~NETIF_F_ALL_FOR_ALL; 6647 6648 /* If one device supports hw checksumming, set for all. */ 6649 if (all & NETIF_F_GEN_CSUM) 6650 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6651 6652 return all; 6653 } 6654 EXPORT_SYMBOL(netdev_increment_features); 6655 6656 static struct hlist_head * __net_init netdev_create_hash(void) 6657 { 6658 int i; 6659 struct hlist_head *hash; 6660 6661 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6662 if (hash != NULL) 6663 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6664 INIT_HLIST_HEAD(&hash[i]); 6665 6666 return hash; 6667 } 6668 6669 /* Initialize per network namespace state */ 6670 static int __net_init netdev_init(struct net *net) 6671 { 6672 if (net != &init_net) 6673 INIT_LIST_HEAD(&net->dev_base_head); 6674 6675 net->dev_name_head = netdev_create_hash(); 6676 if (net->dev_name_head == NULL) 6677 goto err_name; 6678 6679 net->dev_index_head = netdev_create_hash(); 6680 if (net->dev_index_head == NULL) 6681 goto err_idx; 6682 6683 return 0; 6684 6685 err_idx: 6686 kfree(net->dev_name_head); 6687 err_name: 6688 return -ENOMEM; 6689 } 6690 6691 /** 6692 * netdev_drivername - network driver for the device 6693 * @dev: network device 6694 * 6695 * Determine network driver for device. 6696 */ 6697 const char *netdev_drivername(const struct net_device *dev) 6698 { 6699 const struct device_driver *driver; 6700 const struct device *parent; 6701 const char *empty = ""; 6702 6703 parent = dev->dev.parent; 6704 if (!parent) 6705 return empty; 6706 6707 driver = parent->driver; 6708 if (driver && driver->name) 6709 return driver->name; 6710 return empty; 6711 } 6712 6713 static int __netdev_printk(const char *level, const struct net_device *dev, 6714 struct va_format *vaf) 6715 { 6716 int r; 6717 6718 if (dev && dev->dev.parent) { 6719 r = dev_printk_emit(level[1] - '0', 6720 dev->dev.parent, 6721 "%s %s %s: %pV", 6722 dev_driver_string(dev->dev.parent), 6723 dev_name(dev->dev.parent), 6724 netdev_name(dev), vaf); 6725 } else if (dev) { 6726 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6727 } else { 6728 r = printk("%s(NULL net_device): %pV", level, vaf); 6729 } 6730 6731 return r; 6732 } 6733 6734 int netdev_printk(const char *level, const struct net_device *dev, 6735 const char *format, ...) 6736 { 6737 struct va_format vaf; 6738 va_list args; 6739 int r; 6740 6741 va_start(args, format); 6742 6743 vaf.fmt = format; 6744 vaf.va = &args; 6745 6746 r = __netdev_printk(level, dev, &vaf); 6747 6748 va_end(args); 6749 6750 return r; 6751 } 6752 EXPORT_SYMBOL(netdev_printk); 6753 6754 #define define_netdev_printk_level(func, level) \ 6755 int func(const struct net_device *dev, const char *fmt, ...) \ 6756 { \ 6757 int r; \ 6758 struct va_format vaf; \ 6759 va_list args; \ 6760 \ 6761 va_start(args, fmt); \ 6762 \ 6763 vaf.fmt = fmt; \ 6764 vaf.va = &args; \ 6765 \ 6766 r = __netdev_printk(level, dev, &vaf); \ 6767 \ 6768 va_end(args); \ 6769 \ 6770 return r; \ 6771 } \ 6772 EXPORT_SYMBOL(func); 6773 6774 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6775 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6776 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6777 define_netdev_printk_level(netdev_err, KERN_ERR); 6778 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6779 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6780 define_netdev_printk_level(netdev_info, KERN_INFO); 6781 6782 static void __net_exit netdev_exit(struct net *net) 6783 { 6784 kfree(net->dev_name_head); 6785 kfree(net->dev_index_head); 6786 } 6787 6788 static struct pernet_operations __net_initdata netdev_net_ops = { 6789 .init = netdev_init, 6790 .exit = netdev_exit, 6791 }; 6792 6793 static void __net_exit default_device_exit(struct net *net) 6794 { 6795 struct net_device *dev, *aux; 6796 /* 6797 * Push all migratable network devices back to the 6798 * initial network namespace 6799 */ 6800 rtnl_lock(); 6801 for_each_netdev_safe(net, dev, aux) { 6802 int err; 6803 char fb_name[IFNAMSIZ]; 6804 6805 /* Ignore unmoveable devices (i.e. loopback) */ 6806 if (dev->features & NETIF_F_NETNS_LOCAL) 6807 continue; 6808 6809 /* Leave virtual devices for the generic cleanup */ 6810 if (dev->rtnl_link_ops) 6811 continue; 6812 6813 /* Push remaining network devices to init_net */ 6814 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6815 err = dev_change_net_namespace(dev, &init_net, fb_name); 6816 if (err) { 6817 pr_emerg("%s: failed to move %s to init_net: %d\n", 6818 __func__, dev->name, err); 6819 BUG(); 6820 } 6821 } 6822 rtnl_unlock(); 6823 } 6824 6825 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 6826 { 6827 /* Return with the rtnl_lock held when there are no network 6828 * devices unregistering in any network namespace in net_list. 6829 */ 6830 struct net *net; 6831 bool unregistering; 6832 DEFINE_WAIT(wait); 6833 6834 for (;;) { 6835 prepare_to_wait(&netdev_unregistering_wq, &wait, 6836 TASK_UNINTERRUPTIBLE); 6837 unregistering = false; 6838 rtnl_lock(); 6839 list_for_each_entry(net, net_list, exit_list) { 6840 if (net->dev_unreg_count > 0) { 6841 unregistering = true; 6842 break; 6843 } 6844 } 6845 if (!unregistering) 6846 break; 6847 __rtnl_unlock(); 6848 schedule(); 6849 } 6850 finish_wait(&netdev_unregistering_wq, &wait); 6851 } 6852 6853 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6854 { 6855 /* At exit all network devices most be removed from a network 6856 * namespace. Do this in the reverse order of registration. 6857 * Do this across as many network namespaces as possible to 6858 * improve batching efficiency. 6859 */ 6860 struct net_device *dev; 6861 struct net *net; 6862 LIST_HEAD(dev_kill_list); 6863 6864 /* To prevent network device cleanup code from dereferencing 6865 * loopback devices or network devices that have been freed 6866 * wait here for all pending unregistrations to complete, 6867 * before unregistring the loopback device and allowing the 6868 * network namespace be freed. 6869 * 6870 * The netdev todo list containing all network devices 6871 * unregistrations that happen in default_device_exit_batch 6872 * will run in the rtnl_unlock() at the end of 6873 * default_device_exit_batch. 6874 */ 6875 rtnl_lock_unregistering(net_list); 6876 list_for_each_entry(net, net_list, exit_list) { 6877 for_each_netdev_reverse(net, dev) { 6878 if (dev->rtnl_link_ops) 6879 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6880 else 6881 unregister_netdevice_queue(dev, &dev_kill_list); 6882 } 6883 } 6884 unregister_netdevice_many(&dev_kill_list); 6885 list_del(&dev_kill_list); 6886 rtnl_unlock(); 6887 } 6888 6889 static struct pernet_operations __net_initdata default_device_ops = { 6890 .exit = default_device_exit, 6891 .exit_batch = default_device_exit_batch, 6892 }; 6893 6894 /* 6895 * Initialize the DEV module. At boot time this walks the device list and 6896 * unhooks any devices that fail to initialise (normally hardware not 6897 * present) and leaves us with a valid list of present and active devices. 6898 * 6899 */ 6900 6901 /* 6902 * This is called single threaded during boot, so no need 6903 * to take the rtnl semaphore. 6904 */ 6905 static int __init net_dev_init(void) 6906 { 6907 int i, rc = -ENOMEM; 6908 6909 BUG_ON(!dev_boot_phase); 6910 6911 if (dev_proc_init()) 6912 goto out; 6913 6914 if (netdev_kobject_init()) 6915 goto out; 6916 6917 INIT_LIST_HEAD(&ptype_all); 6918 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6919 INIT_LIST_HEAD(&ptype_base[i]); 6920 6921 INIT_LIST_HEAD(&offload_base); 6922 6923 if (register_pernet_subsys(&netdev_net_ops)) 6924 goto out; 6925 6926 /* 6927 * Initialise the packet receive queues. 6928 */ 6929 6930 for_each_possible_cpu(i) { 6931 struct softnet_data *sd = &per_cpu(softnet_data, i); 6932 6933 memset(sd, 0, sizeof(*sd)); 6934 skb_queue_head_init(&sd->input_pkt_queue); 6935 skb_queue_head_init(&sd->process_queue); 6936 sd->completion_queue = NULL; 6937 INIT_LIST_HEAD(&sd->poll_list); 6938 sd->output_queue = NULL; 6939 sd->output_queue_tailp = &sd->output_queue; 6940 #ifdef CONFIG_RPS 6941 sd->csd.func = rps_trigger_softirq; 6942 sd->csd.info = sd; 6943 sd->csd.flags = 0; 6944 sd->cpu = i; 6945 #endif 6946 6947 sd->backlog.poll = process_backlog; 6948 sd->backlog.weight = weight_p; 6949 sd->backlog.gro_list = NULL; 6950 sd->backlog.gro_count = 0; 6951 6952 #ifdef CONFIG_NET_FLOW_LIMIT 6953 sd->flow_limit = NULL; 6954 #endif 6955 } 6956 6957 dev_boot_phase = 0; 6958 6959 /* The loopback device is special if any other network devices 6960 * is present in a network namespace the loopback device must 6961 * be present. Since we now dynamically allocate and free the 6962 * loopback device ensure this invariant is maintained by 6963 * keeping the loopback device as the first device on the 6964 * list of network devices. Ensuring the loopback devices 6965 * is the first device that appears and the last network device 6966 * that disappears. 6967 */ 6968 if (register_pernet_device(&loopback_net_ops)) 6969 goto out; 6970 6971 if (register_pernet_device(&default_device_ops)) 6972 goto out; 6973 6974 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6975 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6976 6977 hotcpu_notifier(dev_cpu_callback, 0); 6978 dst_init(); 6979 rc = 0; 6980 out: 6981 return rc; 6982 } 6983 6984 subsys_initcall(net_dev_init); 6985