1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <net/mpls.h> 122 #include <linux/ipv6.h> 123 #include <linux/in.h> 124 #include <linux/jhash.h> 125 #include <linux/random.h> 126 #include <trace/events/napi.h> 127 #include <trace/events/net.h> 128 #include <trace/events/skb.h> 129 #include <linux/pci.h> 130 #include <linux/inetdevice.h> 131 #include <linux/cpu_rmap.h> 132 #include <linux/static_key.h> 133 #include <linux/hashtable.h> 134 #include <linux/vmalloc.h> 135 #include <linux/if_macvlan.h> 136 #include <linux/errqueue.h> 137 #include <linux/hrtimer.h> 138 #include <linux/netfilter_ingress.h> 139 140 #include "net-sysfs.h" 141 142 /* Instead of increasing this, you should create a hash table. */ 143 #define MAX_GRO_SKBS 8 144 145 /* This should be increased if a protocol with a bigger head is added. */ 146 #define GRO_MAX_HEAD (MAX_HEADER + 128) 147 148 static DEFINE_SPINLOCK(ptype_lock); 149 static DEFINE_SPINLOCK(offload_lock); 150 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 151 struct list_head ptype_all __read_mostly; /* Taps */ 152 static struct list_head offload_base __read_mostly; 153 154 static int netif_rx_internal(struct sk_buff *skb); 155 static int call_netdevice_notifiers_info(unsigned long val, 156 struct net_device *dev, 157 struct netdev_notifier_info *info); 158 159 /* 160 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 161 * semaphore. 162 * 163 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 164 * 165 * Writers must hold the rtnl semaphore while they loop through the 166 * dev_base_head list, and hold dev_base_lock for writing when they do the 167 * actual updates. This allows pure readers to access the list even 168 * while a writer is preparing to update it. 169 * 170 * To put it another way, dev_base_lock is held for writing only to 171 * protect against pure readers; the rtnl semaphore provides the 172 * protection against other writers. 173 * 174 * See, for example usages, register_netdevice() and 175 * unregister_netdevice(), which must be called with the rtnl 176 * semaphore held. 177 */ 178 DEFINE_RWLOCK(dev_base_lock); 179 EXPORT_SYMBOL(dev_base_lock); 180 181 /* protects napi_hash addition/deletion and napi_gen_id */ 182 static DEFINE_SPINLOCK(napi_hash_lock); 183 184 static unsigned int napi_gen_id; 185 static DEFINE_HASHTABLE(napi_hash, 8); 186 187 static seqcount_t devnet_rename_seq; 188 189 static inline void dev_base_seq_inc(struct net *net) 190 { 191 while (++net->dev_base_seq == 0); 192 } 193 194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 195 { 196 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 197 198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 199 } 200 201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 202 { 203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 204 } 205 206 static inline void rps_lock(struct softnet_data *sd) 207 { 208 #ifdef CONFIG_RPS 209 spin_lock(&sd->input_pkt_queue.lock); 210 #endif 211 } 212 213 static inline void rps_unlock(struct softnet_data *sd) 214 { 215 #ifdef CONFIG_RPS 216 spin_unlock(&sd->input_pkt_queue.lock); 217 #endif 218 } 219 220 /* Device list insertion */ 221 static void list_netdevice(struct net_device *dev) 222 { 223 struct net *net = dev_net(dev); 224 225 ASSERT_RTNL(); 226 227 write_lock_bh(&dev_base_lock); 228 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 230 hlist_add_head_rcu(&dev->index_hlist, 231 dev_index_hash(net, dev->ifindex)); 232 write_unlock_bh(&dev_base_lock); 233 234 dev_base_seq_inc(net); 235 } 236 237 /* Device list removal 238 * caller must respect a RCU grace period before freeing/reusing dev 239 */ 240 static void unlist_netdevice(struct net_device *dev) 241 { 242 ASSERT_RTNL(); 243 244 /* Unlink dev from the device chain */ 245 write_lock_bh(&dev_base_lock); 246 list_del_rcu(&dev->dev_list); 247 hlist_del_rcu(&dev->name_hlist); 248 hlist_del_rcu(&dev->index_hlist); 249 write_unlock_bh(&dev_base_lock); 250 251 dev_base_seq_inc(dev_net(dev)); 252 } 253 254 /* 255 * Our notifier list 256 */ 257 258 static RAW_NOTIFIER_HEAD(netdev_chain); 259 260 /* 261 * Device drivers call our routines to queue packets here. We empty the 262 * queue in the local softnet handler. 263 */ 264 265 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 266 EXPORT_PER_CPU_SYMBOL(softnet_data); 267 268 #ifdef CONFIG_LOCKDEP 269 /* 270 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 271 * according to dev->type 272 */ 273 static const unsigned short netdev_lock_type[] = 274 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 275 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 276 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 277 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 278 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 279 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 280 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 281 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 282 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 283 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 284 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 285 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 286 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 287 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 288 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 289 290 static const char *const netdev_lock_name[] = 291 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 292 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 293 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 294 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 295 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 296 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 297 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 298 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 299 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 300 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 301 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 302 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 303 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 304 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 305 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 306 307 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 308 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 309 310 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 311 { 312 int i; 313 314 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 315 if (netdev_lock_type[i] == dev_type) 316 return i; 317 /* the last key is used by default */ 318 return ARRAY_SIZE(netdev_lock_type) - 1; 319 } 320 321 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 322 unsigned short dev_type) 323 { 324 int i; 325 326 i = netdev_lock_pos(dev_type); 327 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 328 netdev_lock_name[i]); 329 } 330 331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 332 { 333 int i; 334 335 i = netdev_lock_pos(dev->type); 336 lockdep_set_class_and_name(&dev->addr_list_lock, 337 &netdev_addr_lock_key[i], 338 netdev_lock_name[i]); 339 } 340 #else 341 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 342 unsigned short dev_type) 343 { 344 } 345 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 346 { 347 } 348 #endif 349 350 /******************************************************************************* 351 352 Protocol management and registration routines 353 354 *******************************************************************************/ 355 356 /* 357 * Add a protocol ID to the list. Now that the input handler is 358 * smarter we can dispense with all the messy stuff that used to be 359 * here. 360 * 361 * BEWARE!!! Protocol handlers, mangling input packets, 362 * MUST BE last in hash buckets and checking protocol handlers 363 * MUST start from promiscuous ptype_all chain in net_bh. 364 * It is true now, do not change it. 365 * Explanation follows: if protocol handler, mangling packet, will 366 * be the first on list, it is not able to sense, that packet 367 * is cloned and should be copied-on-write, so that it will 368 * change it and subsequent readers will get broken packet. 369 * --ANK (980803) 370 */ 371 372 static inline struct list_head *ptype_head(const struct packet_type *pt) 373 { 374 if (pt->type == htons(ETH_P_ALL)) 375 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 376 else 377 return pt->dev ? &pt->dev->ptype_specific : 378 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 379 } 380 381 /** 382 * dev_add_pack - add packet handler 383 * @pt: packet type declaration 384 * 385 * Add a protocol handler to the networking stack. The passed &packet_type 386 * is linked into kernel lists and may not be freed until it has been 387 * removed from the kernel lists. 388 * 389 * This call does not sleep therefore it can not 390 * guarantee all CPU's that are in middle of receiving packets 391 * will see the new packet type (until the next received packet). 392 */ 393 394 void dev_add_pack(struct packet_type *pt) 395 { 396 struct list_head *head = ptype_head(pt); 397 398 spin_lock(&ptype_lock); 399 list_add_rcu(&pt->list, head); 400 spin_unlock(&ptype_lock); 401 } 402 EXPORT_SYMBOL(dev_add_pack); 403 404 /** 405 * __dev_remove_pack - remove packet handler 406 * @pt: packet type declaration 407 * 408 * Remove a protocol handler that was previously added to the kernel 409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 410 * from the kernel lists and can be freed or reused once this function 411 * returns. 412 * 413 * The packet type might still be in use by receivers 414 * and must not be freed until after all the CPU's have gone 415 * through a quiescent state. 416 */ 417 void __dev_remove_pack(struct packet_type *pt) 418 { 419 struct list_head *head = ptype_head(pt); 420 struct packet_type *pt1; 421 422 spin_lock(&ptype_lock); 423 424 list_for_each_entry(pt1, head, list) { 425 if (pt == pt1) { 426 list_del_rcu(&pt->list); 427 goto out; 428 } 429 } 430 431 pr_warn("dev_remove_pack: %p not found\n", pt); 432 out: 433 spin_unlock(&ptype_lock); 434 } 435 EXPORT_SYMBOL(__dev_remove_pack); 436 437 /** 438 * dev_remove_pack - remove packet handler 439 * @pt: packet type declaration 440 * 441 * Remove a protocol handler that was previously added to the kernel 442 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 443 * from the kernel lists and can be freed or reused once this function 444 * returns. 445 * 446 * This call sleeps to guarantee that no CPU is looking at the packet 447 * type after return. 448 */ 449 void dev_remove_pack(struct packet_type *pt) 450 { 451 __dev_remove_pack(pt); 452 453 synchronize_net(); 454 } 455 EXPORT_SYMBOL(dev_remove_pack); 456 457 458 /** 459 * dev_add_offload - register offload handlers 460 * @po: protocol offload declaration 461 * 462 * Add protocol offload handlers to the networking stack. The passed 463 * &proto_offload is linked into kernel lists and may not be freed until 464 * it has been removed from the kernel lists. 465 * 466 * This call does not sleep therefore it can not 467 * guarantee all CPU's that are in middle of receiving packets 468 * will see the new offload handlers (until the next received packet). 469 */ 470 void dev_add_offload(struct packet_offload *po) 471 { 472 struct packet_offload *elem; 473 474 spin_lock(&offload_lock); 475 list_for_each_entry(elem, &offload_base, list) { 476 if (po->priority < elem->priority) 477 break; 478 } 479 list_add_rcu(&po->list, elem->list.prev); 480 spin_unlock(&offload_lock); 481 } 482 EXPORT_SYMBOL(dev_add_offload); 483 484 /** 485 * __dev_remove_offload - remove offload handler 486 * @po: packet offload declaration 487 * 488 * Remove a protocol offload handler that was previously added to the 489 * kernel offload handlers by dev_add_offload(). The passed &offload_type 490 * is removed from the kernel lists and can be freed or reused once this 491 * function returns. 492 * 493 * The packet type might still be in use by receivers 494 * and must not be freed until after all the CPU's have gone 495 * through a quiescent state. 496 */ 497 static void __dev_remove_offload(struct packet_offload *po) 498 { 499 struct list_head *head = &offload_base; 500 struct packet_offload *po1; 501 502 spin_lock(&offload_lock); 503 504 list_for_each_entry(po1, head, list) { 505 if (po == po1) { 506 list_del_rcu(&po->list); 507 goto out; 508 } 509 } 510 511 pr_warn("dev_remove_offload: %p not found\n", po); 512 out: 513 spin_unlock(&offload_lock); 514 } 515 516 /** 517 * dev_remove_offload - remove packet offload handler 518 * @po: packet offload declaration 519 * 520 * Remove a packet offload handler that was previously added to the kernel 521 * offload handlers by dev_add_offload(). The passed &offload_type is 522 * removed from the kernel lists and can be freed or reused once this 523 * function returns. 524 * 525 * This call sleeps to guarantee that no CPU is looking at the packet 526 * type after return. 527 */ 528 void dev_remove_offload(struct packet_offload *po) 529 { 530 __dev_remove_offload(po); 531 532 synchronize_net(); 533 } 534 EXPORT_SYMBOL(dev_remove_offload); 535 536 /****************************************************************************** 537 538 Device Boot-time Settings Routines 539 540 *******************************************************************************/ 541 542 /* Boot time configuration table */ 543 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 544 545 /** 546 * netdev_boot_setup_add - add new setup entry 547 * @name: name of the device 548 * @map: configured settings for the device 549 * 550 * Adds new setup entry to the dev_boot_setup list. The function 551 * returns 0 on error and 1 on success. This is a generic routine to 552 * all netdevices. 553 */ 554 static int netdev_boot_setup_add(char *name, struct ifmap *map) 555 { 556 struct netdev_boot_setup *s; 557 int i; 558 559 s = dev_boot_setup; 560 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 561 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 562 memset(s[i].name, 0, sizeof(s[i].name)); 563 strlcpy(s[i].name, name, IFNAMSIZ); 564 memcpy(&s[i].map, map, sizeof(s[i].map)); 565 break; 566 } 567 } 568 569 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 570 } 571 572 /** 573 * netdev_boot_setup_check - check boot time settings 574 * @dev: the netdevice 575 * 576 * Check boot time settings for the device. 577 * The found settings are set for the device to be used 578 * later in the device probing. 579 * Returns 0 if no settings found, 1 if they are. 580 */ 581 int netdev_boot_setup_check(struct net_device *dev) 582 { 583 struct netdev_boot_setup *s = dev_boot_setup; 584 int i; 585 586 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 587 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 588 !strcmp(dev->name, s[i].name)) { 589 dev->irq = s[i].map.irq; 590 dev->base_addr = s[i].map.base_addr; 591 dev->mem_start = s[i].map.mem_start; 592 dev->mem_end = s[i].map.mem_end; 593 return 1; 594 } 595 } 596 return 0; 597 } 598 EXPORT_SYMBOL(netdev_boot_setup_check); 599 600 601 /** 602 * netdev_boot_base - get address from boot time settings 603 * @prefix: prefix for network device 604 * @unit: id for network device 605 * 606 * Check boot time settings for the base address of device. 607 * The found settings are set for the device to be used 608 * later in the device probing. 609 * Returns 0 if no settings found. 610 */ 611 unsigned long netdev_boot_base(const char *prefix, int unit) 612 { 613 const struct netdev_boot_setup *s = dev_boot_setup; 614 char name[IFNAMSIZ]; 615 int i; 616 617 sprintf(name, "%s%d", prefix, unit); 618 619 /* 620 * If device already registered then return base of 1 621 * to indicate not to probe for this interface 622 */ 623 if (__dev_get_by_name(&init_net, name)) 624 return 1; 625 626 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 627 if (!strcmp(name, s[i].name)) 628 return s[i].map.base_addr; 629 return 0; 630 } 631 632 /* 633 * Saves at boot time configured settings for any netdevice. 634 */ 635 int __init netdev_boot_setup(char *str) 636 { 637 int ints[5]; 638 struct ifmap map; 639 640 str = get_options(str, ARRAY_SIZE(ints), ints); 641 if (!str || !*str) 642 return 0; 643 644 /* Save settings */ 645 memset(&map, 0, sizeof(map)); 646 if (ints[0] > 0) 647 map.irq = ints[1]; 648 if (ints[0] > 1) 649 map.base_addr = ints[2]; 650 if (ints[0] > 2) 651 map.mem_start = ints[3]; 652 if (ints[0] > 3) 653 map.mem_end = ints[4]; 654 655 /* Add new entry to the list */ 656 return netdev_boot_setup_add(str, &map); 657 } 658 659 __setup("netdev=", netdev_boot_setup); 660 661 /******************************************************************************* 662 663 Device Interface Subroutines 664 665 *******************************************************************************/ 666 667 /** 668 * dev_get_iflink - get 'iflink' value of a interface 669 * @dev: targeted interface 670 * 671 * Indicates the ifindex the interface is linked to. 672 * Physical interfaces have the same 'ifindex' and 'iflink' values. 673 */ 674 675 int dev_get_iflink(const struct net_device *dev) 676 { 677 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 678 return dev->netdev_ops->ndo_get_iflink(dev); 679 680 return dev->ifindex; 681 } 682 EXPORT_SYMBOL(dev_get_iflink); 683 684 /** 685 * __dev_get_by_name - find a device by its name 686 * @net: the applicable net namespace 687 * @name: name to find 688 * 689 * Find an interface by name. Must be called under RTNL semaphore 690 * or @dev_base_lock. If the name is found a pointer to the device 691 * is returned. If the name is not found then %NULL is returned. The 692 * reference counters are not incremented so the caller must be 693 * careful with locks. 694 */ 695 696 struct net_device *__dev_get_by_name(struct net *net, const char *name) 697 { 698 struct net_device *dev; 699 struct hlist_head *head = dev_name_hash(net, name); 700 701 hlist_for_each_entry(dev, head, name_hlist) 702 if (!strncmp(dev->name, name, IFNAMSIZ)) 703 return dev; 704 705 return NULL; 706 } 707 EXPORT_SYMBOL(__dev_get_by_name); 708 709 /** 710 * dev_get_by_name_rcu - find a device by its name 711 * @net: the applicable net namespace 712 * @name: name to find 713 * 714 * Find an interface by name. 715 * If the name is found a pointer to the device is returned. 716 * If the name is not found then %NULL is returned. 717 * The reference counters are not incremented so the caller must be 718 * careful with locks. The caller must hold RCU lock. 719 */ 720 721 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 722 { 723 struct net_device *dev; 724 struct hlist_head *head = dev_name_hash(net, name); 725 726 hlist_for_each_entry_rcu(dev, head, name_hlist) 727 if (!strncmp(dev->name, name, IFNAMSIZ)) 728 return dev; 729 730 return NULL; 731 } 732 EXPORT_SYMBOL(dev_get_by_name_rcu); 733 734 /** 735 * dev_get_by_name - find a device by its name 736 * @net: the applicable net namespace 737 * @name: name to find 738 * 739 * Find an interface by name. This can be called from any 740 * context and does its own locking. The returned handle has 741 * the usage count incremented and the caller must use dev_put() to 742 * release it when it is no longer needed. %NULL is returned if no 743 * matching device is found. 744 */ 745 746 struct net_device *dev_get_by_name(struct net *net, const char *name) 747 { 748 struct net_device *dev; 749 750 rcu_read_lock(); 751 dev = dev_get_by_name_rcu(net, name); 752 if (dev) 753 dev_hold(dev); 754 rcu_read_unlock(); 755 return dev; 756 } 757 EXPORT_SYMBOL(dev_get_by_name); 758 759 /** 760 * __dev_get_by_index - find a device by its ifindex 761 * @net: the applicable net namespace 762 * @ifindex: index of device 763 * 764 * Search for an interface by index. Returns %NULL if the device 765 * is not found or a pointer to the device. The device has not 766 * had its reference counter increased so the caller must be careful 767 * about locking. The caller must hold either the RTNL semaphore 768 * or @dev_base_lock. 769 */ 770 771 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 772 { 773 struct net_device *dev; 774 struct hlist_head *head = dev_index_hash(net, ifindex); 775 776 hlist_for_each_entry(dev, head, index_hlist) 777 if (dev->ifindex == ifindex) 778 return dev; 779 780 return NULL; 781 } 782 EXPORT_SYMBOL(__dev_get_by_index); 783 784 /** 785 * dev_get_by_index_rcu - find a device by its ifindex 786 * @net: the applicable net namespace 787 * @ifindex: index of device 788 * 789 * Search for an interface by index. Returns %NULL if the device 790 * is not found or a pointer to the device. The device has not 791 * had its reference counter increased so the caller must be careful 792 * about locking. The caller must hold RCU lock. 793 */ 794 795 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 796 { 797 struct net_device *dev; 798 struct hlist_head *head = dev_index_hash(net, ifindex); 799 800 hlist_for_each_entry_rcu(dev, head, index_hlist) 801 if (dev->ifindex == ifindex) 802 return dev; 803 804 return NULL; 805 } 806 EXPORT_SYMBOL(dev_get_by_index_rcu); 807 808 809 /** 810 * dev_get_by_index - find a device by its ifindex 811 * @net: the applicable net namespace 812 * @ifindex: index of device 813 * 814 * Search for an interface by index. Returns NULL if the device 815 * is not found or a pointer to the device. The device returned has 816 * had a reference added and the pointer is safe until the user calls 817 * dev_put to indicate they have finished with it. 818 */ 819 820 struct net_device *dev_get_by_index(struct net *net, int ifindex) 821 { 822 struct net_device *dev; 823 824 rcu_read_lock(); 825 dev = dev_get_by_index_rcu(net, ifindex); 826 if (dev) 827 dev_hold(dev); 828 rcu_read_unlock(); 829 return dev; 830 } 831 EXPORT_SYMBOL(dev_get_by_index); 832 833 /** 834 * netdev_get_name - get a netdevice name, knowing its ifindex. 835 * @net: network namespace 836 * @name: a pointer to the buffer where the name will be stored. 837 * @ifindex: the ifindex of the interface to get the name from. 838 * 839 * The use of raw_seqcount_begin() and cond_resched() before 840 * retrying is required as we want to give the writers a chance 841 * to complete when CONFIG_PREEMPT is not set. 842 */ 843 int netdev_get_name(struct net *net, char *name, int ifindex) 844 { 845 struct net_device *dev; 846 unsigned int seq; 847 848 retry: 849 seq = raw_seqcount_begin(&devnet_rename_seq); 850 rcu_read_lock(); 851 dev = dev_get_by_index_rcu(net, ifindex); 852 if (!dev) { 853 rcu_read_unlock(); 854 return -ENODEV; 855 } 856 857 strcpy(name, dev->name); 858 rcu_read_unlock(); 859 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 860 cond_resched(); 861 goto retry; 862 } 863 864 return 0; 865 } 866 867 /** 868 * dev_getbyhwaddr_rcu - find a device by its hardware address 869 * @net: the applicable net namespace 870 * @type: media type of device 871 * @ha: hardware address 872 * 873 * Search for an interface by MAC address. Returns NULL if the device 874 * is not found or a pointer to the device. 875 * The caller must hold RCU or RTNL. 876 * The returned device has not had its ref count increased 877 * and the caller must therefore be careful about locking 878 * 879 */ 880 881 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 882 const char *ha) 883 { 884 struct net_device *dev; 885 886 for_each_netdev_rcu(net, dev) 887 if (dev->type == type && 888 !memcmp(dev->dev_addr, ha, dev->addr_len)) 889 return dev; 890 891 return NULL; 892 } 893 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 894 895 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 896 { 897 struct net_device *dev; 898 899 ASSERT_RTNL(); 900 for_each_netdev(net, dev) 901 if (dev->type == type) 902 return dev; 903 904 return NULL; 905 } 906 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 907 908 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 909 { 910 struct net_device *dev, *ret = NULL; 911 912 rcu_read_lock(); 913 for_each_netdev_rcu(net, dev) 914 if (dev->type == type) { 915 dev_hold(dev); 916 ret = dev; 917 break; 918 } 919 rcu_read_unlock(); 920 return ret; 921 } 922 EXPORT_SYMBOL(dev_getfirstbyhwtype); 923 924 /** 925 * __dev_get_by_flags - find any device with given flags 926 * @net: the applicable net namespace 927 * @if_flags: IFF_* values 928 * @mask: bitmask of bits in if_flags to check 929 * 930 * Search for any interface with the given flags. Returns NULL if a device 931 * is not found or a pointer to the device. Must be called inside 932 * rtnl_lock(), and result refcount is unchanged. 933 */ 934 935 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 936 unsigned short mask) 937 { 938 struct net_device *dev, *ret; 939 940 ASSERT_RTNL(); 941 942 ret = NULL; 943 for_each_netdev(net, dev) { 944 if (((dev->flags ^ if_flags) & mask) == 0) { 945 ret = dev; 946 break; 947 } 948 } 949 return ret; 950 } 951 EXPORT_SYMBOL(__dev_get_by_flags); 952 953 /** 954 * dev_valid_name - check if name is okay for network device 955 * @name: name string 956 * 957 * Network device names need to be valid file names to 958 * to allow sysfs to work. We also disallow any kind of 959 * whitespace. 960 */ 961 bool dev_valid_name(const char *name) 962 { 963 if (*name == '\0') 964 return false; 965 if (strlen(name) >= IFNAMSIZ) 966 return false; 967 if (!strcmp(name, ".") || !strcmp(name, "..")) 968 return false; 969 970 while (*name) { 971 if (*name == '/' || *name == ':' || isspace(*name)) 972 return false; 973 name++; 974 } 975 return true; 976 } 977 EXPORT_SYMBOL(dev_valid_name); 978 979 /** 980 * __dev_alloc_name - allocate a name for a device 981 * @net: network namespace to allocate the device name in 982 * @name: name format string 983 * @buf: scratch buffer and result name string 984 * 985 * Passed a format string - eg "lt%d" it will try and find a suitable 986 * id. It scans list of devices to build up a free map, then chooses 987 * the first empty slot. The caller must hold the dev_base or rtnl lock 988 * while allocating the name and adding the device in order to avoid 989 * duplicates. 990 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 991 * Returns the number of the unit assigned or a negative errno code. 992 */ 993 994 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 995 { 996 int i = 0; 997 const char *p; 998 const int max_netdevices = 8*PAGE_SIZE; 999 unsigned long *inuse; 1000 struct net_device *d; 1001 1002 p = strnchr(name, IFNAMSIZ-1, '%'); 1003 if (p) { 1004 /* 1005 * Verify the string as this thing may have come from 1006 * the user. There must be either one "%d" and no other "%" 1007 * characters. 1008 */ 1009 if (p[1] != 'd' || strchr(p + 2, '%')) 1010 return -EINVAL; 1011 1012 /* Use one page as a bit array of possible slots */ 1013 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1014 if (!inuse) 1015 return -ENOMEM; 1016 1017 for_each_netdev(net, d) { 1018 if (!sscanf(d->name, name, &i)) 1019 continue; 1020 if (i < 0 || i >= max_netdevices) 1021 continue; 1022 1023 /* avoid cases where sscanf is not exact inverse of printf */ 1024 snprintf(buf, IFNAMSIZ, name, i); 1025 if (!strncmp(buf, d->name, IFNAMSIZ)) 1026 set_bit(i, inuse); 1027 } 1028 1029 i = find_first_zero_bit(inuse, max_netdevices); 1030 free_page((unsigned long) inuse); 1031 } 1032 1033 if (buf != name) 1034 snprintf(buf, IFNAMSIZ, name, i); 1035 if (!__dev_get_by_name(net, buf)) 1036 return i; 1037 1038 /* It is possible to run out of possible slots 1039 * when the name is long and there isn't enough space left 1040 * for the digits, or if all bits are used. 1041 */ 1042 return -ENFILE; 1043 } 1044 1045 /** 1046 * dev_alloc_name - allocate a name for a device 1047 * @dev: device 1048 * @name: name format string 1049 * 1050 * Passed a format string - eg "lt%d" it will try and find a suitable 1051 * id. It scans list of devices to build up a free map, then chooses 1052 * the first empty slot. The caller must hold the dev_base or rtnl lock 1053 * while allocating the name and adding the device in order to avoid 1054 * duplicates. 1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1056 * Returns the number of the unit assigned or a negative errno code. 1057 */ 1058 1059 int dev_alloc_name(struct net_device *dev, const char *name) 1060 { 1061 char buf[IFNAMSIZ]; 1062 struct net *net; 1063 int ret; 1064 1065 BUG_ON(!dev_net(dev)); 1066 net = dev_net(dev); 1067 ret = __dev_alloc_name(net, name, buf); 1068 if (ret >= 0) 1069 strlcpy(dev->name, buf, IFNAMSIZ); 1070 return ret; 1071 } 1072 EXPORT_SYMBOL(dev_alloc_name); 1073 1074 static int dev_alloc_name_ns(struct net *net, 1075 struct net_device *dev, 1076 const char *name) 1077 { 1078 char buf[IFNAMSIZ]; 1079 int ret; 1080 1081 ret = __dev_alloc_name(net, name, buf); 1082 if (ret >= 0) 1083 strlcpy(dev->name, buf, IFNAMSIZ); 1084 return ret; 1085 } 1086 1087 static int dev_get_valid_name(struct net *net, 1088 struct net_device *dev, 1089 const char *name) 1090 { 1091 BUG_ON(!net); 1092 1093 if (!dev_valid_name(name)) 1094 return -EINVAL; 1095 1096 if (strchr(name, '%')) 1097 return dev_alloc_name_ns(net, dev, name); 1098 else if (__dev_get_by_name(net, name)) 1099 return -EEXIST; 1100 else if (dev->name != name) 1101 strlcpy(dev->name, name, IFNAMSIZ); 1102 1103 return 0; 1104 } 1105 1106 /** 1107 * dev_change_name - change name of a device 1108 * @dev: device 1109 * @newname: name (or format string) must be at least IFNAMSIZ 1110 * 1111 * Change name of a device, can pass format strings "eth%d". 1112 * for wildcarding. 1113 */ 1114 int dev_change_name(struct net_device *dev, const char *newname) 1115 { 1116 unsigned char old_assign_type; 1117 char oldname[IFNAMSIZ]; 1118 int err = 0; 1119 int ret; 1120 struct net *net; 1121 1122 ASSERT_RTNL(); 1123 BUG_ON(!dev_net(dev)); 1124 1125 net = dev_net(dev); 1126 if (dev->flags & IFF_UP) 1127 return -EBUSY; 1128 1129 write_seqcount_begin(&devnet_rename_seq); 1130 1131 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1132 write_seqcount_end(&devnet_rename_seq); 1133 return 0; 1134 } 1135 1136 memcpy(oldname, dev->name, IFNAMSIZ); 1137 1138 err = dev_get_valid_name(net, dev, newname); 1139 if (err < 0) { 1140 write_seqcount_end(&devnet_rename_seq); 1141 return err; 1142 } 1143 1144 if (oldname[0] && !strchr(oldname, '%')) 1145 netdev_info(dev, "renamed from %s\n", oldname); 1146 1147 old_assign_type = dev->name_assign_type; 1148 dev->name_assign_type = NET_NAME_RENAMED; 1149 1150 rollback: 1151 ret = device_rename(&dev->dev, dev->name); 1152 if (ret) { 1153 memcpy(dev->name, oldname, IFNAMSIZ); 1154 dev->name_assign_type = old_assign_type; 1155 write_seqcount_end(&devnet_rename_seq); 1156 return ret; 1157 } 1158 1159 write_seqcount_end(&devnet_rename_seq); 1160 1161 netdev_adjacent_rename_links(dev, oldname); 1162 1163 write_lock_bh(&dev_base_lock); 1164 hlist_del_rcu(&dev->name_hlist); 1165 write_unlock_bh(&dev_base_lock); 1166 1167 synchronize_rcu(); 1168 1169 write_lock_bh(&dev_base_lock); 1170 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1171 write_unlock_bh(&dev_base_lock); 1172 1173 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1174 ret = notifier_to_errno(ret); 1175 1176 if (ret) { 1177 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1178 if (err >= 0) { 1179 err = ret; 1180 write_seqcount_begin(&devnet_rename_seq); 1181 memcpy(dev->name, oldname, IFNAMSIZ); 1182 memcpy(oldname, newname, IFNAMSIZ); 1183 dev->name_assign_type = old_assign_type; 1184 old_assign_type = NET_NAME_RENAMED; 1185 goto rollback; 1186 } else { 1187 pr_err("%s: name change rollback failed: %d\n", 1188 dev->name, ret); 1189 } 1190 } 1191 1192 return err; 1193 } 1194 1195 /** 1196 * dev_set_alias - change ifalias of a device 1197 * @dev: device 1198 * @alias: name up to IFALIASZ 1199 * @len: limit of bytes to copy from info 1200 * 1201 * Set ifalias for a device, 1202 */ 1203 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1204 { 1205 char *new_ifalias; 1206 1207 ASSERT_RTNL(); 1208 1209 if (len >= IFALIASZ) 1210 return -EINVAL; 1211 1212 if (!len) { 1213 kfree(dev->ifalias); 1214 dev->ifalias = NULL; 1215 return 0; 1216 } 1217 1218 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1219 if (!new_ifalias) 1220 return -ENOMEM; 1221 dev->ifalias = new_ifalias; 1222 1223 strlcpy(dev->ifalias, alias, len+1); 1224 return len; 1225 } 1226 1227 1228 /** 1229 * netdev_features_change - device changes features 1230 * @dev: device to cause notification 1231 * 1232 * Called to indicate a device has changed features. 1233 */ 1234 void netdev_features_change(struct net_device *dev) 1235 { 1236 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1237 } 1238 EXPORT_SYMBOL(netdev_features_change); 1239 1240 /** 1241 * netdev_state_change - device changes state 1242 * @dev: device to cause notification 1243 * 1244 * Called to indicate a device has changed state. This function calls 1245 * the notifier chains for netdev_chain and sends a NEWLINK message 1246 * to the routing socket. 1247 */ 1248 void netdev_state_change(struct net_device *dev) 1249 { 1250 if (dev->flags & IFF_UP) { 1251 struct netdev_notifier_change_info change_info; 1252 1253 change_info.flags_changed = 0; 1254 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1255 &change_info.info); 1256 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1257 } 1258 } 1259 EXPORT_SYMBOL(netdev_state_change); 1260 1261 /** 1262 * netdev_notify_peers - notify network peers about existence of @dev 1263 * @dev: network device 1264 * 1265 * Generate traffic such that interested network peers are aware of 1266 * @dev, such as by generating a gratuitous ARP. This may be used when 1267 * a device wants to inform the rest of the network about some sort of 1268 * reconfiguration such as a failover event or virtual machine 1269 * migration. 1270 */ 1271 void netdev_notify_peers(struct net_device *dev) 1272 { 1273 rtnl_lock(); 1274 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1275 rtnl_unlock(); 1276 } 1277 EXPORT_SYMBOL(netdev_notify_peers); 1278 1279 static int __dev_open(struct net_device *dev) 1280 { 1281 const struct net_device_ops *ops = dev->netdev_ops; 1282 int ret; 1283 1284 ASSERT_RTNL(); 1285 1286 if (!netif_device_present(dev)) 1287 return -ENODEV; 1288 1289 /* Block netpoll from trying to do any rx path servicing. 1290 * If we don't do this there is a chance ndo_poll_controller 1291 * or ndo_poll may be running while we open the device 1292 */ 1293 netpoll_poll_disable(dev); 1294 1295 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1296 ret = notifier_to_errno(ret); 1297 if (ret) 1298 return ret; 1299 1300 set_bit(__LINK_STATE_START, &dev->state); 1301 1302 if (ops->ndo_validate_addr) 1303 ret = ops->ndo_validate_addr(dev); 1304 1305 if (!ret && ops->ndo_open) 1306 ret = ops->ndo_open(dev); 1307 1308 netpoll_poll_enable(dev); 1309 1310 if (ret) 1311 clear_bit(__LINK_STATE_START, &dev->state); 1312 else { 1313 dev->flags |= IFF_UP; 1314 dev_set_rx_mode(dev); 1315 dev_activate(dev); 1316 add_device_randomness(dev->dev_addr, dev->addr_len); 1317 } 1318 1319 return ret; 1320 } 1321 1322 /** 1323 * dev_open - prepare an interface for use. 1324 * @dev: device to open 1325 * 1326 * Takes a device from down to up state. The device's private open 1327 * function is invoked and then the multicast lists are loaded. Finally 1328 * the device is moved into the up state and a %NETDEV_UP message is 1329 * sent to the netdev notifier chain. 1330 * 1331 * Calling this function on an active interface is a nop. On a failure 1332 * a negative errno code is returned. 1333 */ 1334 int dev_open(struct net_device *dev) 1335 { 1336 int ret; 1337 1338 if (dev->flags & IFF_UP) 1339 return 0; 1340 1341 ret = __dev_open(dev); 1342 if (ret < 0) 1343 return ret; 1344 1345 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1346 call_netdevice_notifiers(NETDEV_UP, dev); 1347 1348 return ret; 1349 } 1350 EXPORT_SYMBOL(dev_open); 1351 1352 static int __dev_close_many(struct list_head *head) 1353 { 1354 struct net_device *dev; 1355 1356 ASSERT_RTNL(); 1357 might_sleep(); 1358 1359 list_for_each_entry(dev, head, close_list) { 1360 /* Temporarily disable netpoll until the interface is down */ 1361 netpoll_poll_disable(dev); 1362 1363 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1364 1365 clear_bit(__LINK_STATE_START, &dev->state); 1366 1367 /* Synchronize to scheduled poll. We cannot touch poll list, it 1368 * can be even on different cpu. So just clear netif_running(). 1369 * 1370 * dev->stop() will invoke napi_disable() on all of it's 1371 * napi_struct instances on this device. 1372 */ 1373 smp_mb__after_atomic(); /* Commit netif_running(). */ 1374 } 1375 1376 dev_deactivate_many(head); 1377 1378 list_for_each_entry(dev, head, close_list) { 1379 const struct net_device_ops *ops = dev->netdev_ops; 1380 1381 /* 1382 * Call the device specific close. This cannot fail. 1383 * Only if device is UP 1384 * 1385 * We allow it to be called even after a DETACH hot-plug 1386 * event. 1387 */ 1388 if (ops->ndo_stop) 1389 ops->ndo_stop(dev); 1390 1391 dev->flags &= ~IFF_UP; 1392 netpoll_poll_enable(dev); 1393 } 1394 1395 return 0; 1396 } 1397 1398 static int __dev_close(struct net_device *dev) 1399 { 1400 int retval; 1401 LIST_HEAD(single); 1402 1403 list_add(&dev->close_list, &single); 1404 retval = __dev_close_many(&single); 1405 list_del(&single); 1406 1407 return retval; 1408 } 1409 1410 int dev_close_many(struct list_head *head, bool unlink) 1411 { 1412 struct net_device *dev, *tmp; 1413 1414 /* Remove the devices that don't need to be closed */ 1415 list_for_each_entry_safe(dev, tmp, head, close_list) 1416 if (!(dev->flags & IFF_UP)) 1417 list_del_init(&dev->close_list); 1418 1419 __dev_close_many(head); 1420 1421 list_for_each_entry_safe(dev, tmp, head, close_list) { 1422 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1423 call_netdevice_notifiers(NETDEV_DOWN, dev); 1424 if (unlink) 1425 list_del_init(&dev->close_list); 1426 } 1427 1428 return 0; 1429 } 1430 EXPORT_SYMBOL(dev_close_many); 1431 1432 /** 1433 * dev_close - shutdown an interface. 1434 * @dev: device to shutdown 1435 * 1436 * This function moves an active device into down state. A 1437 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1438 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1439 * chain. 1440 */ 1441 int dev_close(struct net_device *dev) 1442 { 1443 if (dev->flags & IFF_UP) { 1444 LIST_HEAD(single); 1445 1446 list_add(&dev->close_list, &single); 1447 dev_close_many(&single, true); 1448 list_del(&single); 1449 } 1450 return 0; 1451 } 1452 EXPORT_SYMBOL(dev_close); 1453 1454 1455 /** 1456 * dev_disable_lro - disable Large Receive Offload on a device 1457 * @dev: device 1458 * 1459 * Disable Large Receive Offload (LRO) on a net device. Must be 1460 * called under RTNL. This is needed if received packets may be 1461 * forwarded to another interface. 1462 */ 1463 void dev_disable_lro(struct net_device *dev) 1464 { 1465 struct net_device *lower_dev; 1466 struct list_head *iter; 1467 1468 dev->wanted_features &= ~NETIF_F_LRO; 1469 netdev_update_features(dev); 1470 1471 if (unlikely(dev->features & NETIF_F_LRO)) 1472 netdev_WARN(dev, "failed to disable LRO!\n"); 1473 1474 netdev_for_each_lower_dev(dev, lower_dev, iter) 1475 dev_disable_lro(lower_dev); 1476 } 1477 EXPORT_SYMBOL(dev_disable_lro); 1478 1479 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1480 struct net_device *dev) 1481 { 1482 struct netdev_notifier_info info; 1483 1484 netdev_notifier_info_init(&info, dev); 1485 return nb->notifier_call(nb, val, &info); 1486 } 1487 1488 static int dev_boot_phase = 1; 1489 1490 /** 1491 * register_netdevice_notifier - register a network notifier block 1492 * @nb: notifier 1493 * 1494 * Register a notifier to be called when network device events occur. 1495 * The notifier passed is linked into the kernel structures and must 1496 * not be reused until it has been unregistered. A negative errno code 1497 * is returned on a failure. 1498 * 1499 * When registered all registration and up events are replayed 1500 * to the new notifier to allow device to have a race free 1501 * view of the network device list. 1502 */ 1503 1504 int register_netdevice_notifier(struct notifier_block *nb) 1505 { 1506 struct net_device *dev; 1507 struct net_device *last; 1508 struct net *net; 1509 int err; 1510 1511 rtnl_lock(); 1512 err = raw_notifier_chain_register(&netdev_chain, nb); 1513 if (err) 1514 goto unlock; 1515 if (dev_boot_phase) 1516 goto unlock; 1517 for_each_net(net) { 1518 for_each_netdev(net, dev) { 1519 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1520 err = notifier_to_errno(err); 1521 if (err) 1522 goto rollback; 1523 1524 if (!(dev->flags & IFF_UP)) 1525 continue; 1526 1527 call_netdevice_notifier(nb, NETDEV_UP, dev); 1528 } 1529 } 1530 1531 unlock: 1532 rtnl_unlock(); 1533 return err; 1534 1535 rollback: 1536 last = dev; 1537 for_each_net(net) { 1538 for_each_netdev(net, dev) { 1539 if (dev == last) 1540 goto outroll; 1541 1542 if (dev->flags & IFF_UP) { 1543 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1544 dev); 1545 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1546 } 1547 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1548 } 1549 } 1550 1551 outroll: 1552 raw_notifier_chain_unregister(&netdev_chain, nb); 1553 goto unlock; 1554 } 1555 EXPORT_SYMBOL(register_netdevice_notifier); 1556 1557 /** 1558 * unregister_netdevice_notifier - unregister a network notifier block 1559 * @nb: notifier 1560 * 1561 * Unregister a notifier previously registered by 1562 * register_netdevice_notifier(). The notifier is unlinked into the 1563 * kernel structures and may then be reused. A negative errno code 1564 * is returned on a failure. 1565 * 1566 * After unregistering unregister and down device events are synthesized 1567 * for all devices on the device list to the removed notifier to remove 1568 * the need for special case cleanup code. 1569 */ 1570 1571 int unregister_netdevice_notifier(struct notifier_block *nb) 1572 { 1573 struct net_device *dev; 1574 struct net *net; 1575 int err; 1576 1577 rtnl_lock(); 1578 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1579 if (err) 1580 goto unlock; 1581 1582 for_each_net(net) { 1583 for_each_netdev(net, dev) { 1584 if (dev->flags & IFF_UP) { 1585 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1586 dev); 1587 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1588 } 1589 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1590 } 1591 } 1592 unlock: 1593 rtnl_unlock(); 1594 return err; 1595 } 1596 EXPORT_SYMBOL(unregister_netdevice_notifier); 1597 1598 /** 1599 * call_netdevice_notifiers_info - call all network notifier blocks 1600 * @val: value passed unmodified to notifier function 1601 * @dev: net_device pointer passed unmodified to notifier function 1602 * @info: notifier information data 1603 * 1604 * Call all network notifier blocks. Parameters and return value 1605 * are as for raw_notifier_call_chain(). 1606 */ 1607 1608 static int call_netdevice_notifiers_info(unsigned long val, 1609 struct net_device *dev, 1610 struct netdev_notifier_info *info) 1611 { 1612 ASSERT_RTNL(); 1613 netdev_notifier_info_init(info, dev); 1614 return raw_notifier_call_chain(&netdev_chain, val, info); 1615 } 1616 1617 /** 1618 * call_netdevice_notifiers - call all network notifier blocks 1619 * @val: value passed unmodified to notifier function 1620 * @dev: net_device pointer passed unmodified to notifier function 1621 * 1622 * Call all network notifier blocks. Parameters and return value 1623 * are as for raw_notifier_call_chain(). 1624 */ 1625 1626 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1627 { 1628 struct netdev_notifier_info info; 1629 1630 return call_netdevice_notifiers_info(val, dev, &info); 1631 } 1632 EXPORT_SYMBOL(call_netdevice_notifiers); 1633 1634 #ifdef CONFIG_NET_INGRESS 1635 static struct static_key ingress_needed __read_mostly; 1636 1637 void net_inc_ingress_queue(void) 1638 { 1639 static_key_slow_inc(&ingress_needed); 1640 } 1641 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1642 1643 void net_dec_ingress_queue(void) 1644 { 1645 static_key_slow_dec(&ingress_needed); 1646 } 1647 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1648 #endif 1649 1650 static struct static_key netstamp_needed __read_mostly; 1651 #ifdef HAVE_JUMP_LABEL 1652 /* We are not allowed to call static_key_slow_dec() from irq context 1653 * If net_disable_timestamp() is called from irq context, defer the 1654 * static_key_slow_dec() calls. 1655 */ 1656 static atomic_t netstamp_needed_deferred; 1657 #endif 1658 1659 void net_enable_timestamp(void) 1660 { 1661 #ifdef HAVE_JUMP_LABEL 1662 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1663 1664 if (deferred) { 1665 while (--deferred) 1666 static_key_slow_dec(&netstamp_needed); 1667 return; 1668 } 1669 #endif 1670 static_key_slow_inc(&netstamp_needed); 1671 } 1672 EXPORT_SYMBOL(net_enable_timestamp); 1673 1674 void net_disable_timestamp(void) 1675 { 1676 #ifdef HAVE_JUMP_LABEL 1677 if (in_interrupt()) { 1678 atomic_inc(&netstamp_needed_deferred); 1679 return; 1680 } 1681 #endif 1682 static_key_slow_dec(&netstamp_needed); 1683 } 1684 EXPORT_SYMBOL(net_disable_timestamp); 1685 1686 static inline void net_timestamp_set(struct sk_buff *skb) 1687 { 1688 skb->tstamp.tv64 = 0; 1689 if (static_key_false(&netstamp_needed)) 1690 __net_timestamp(skb); 1691 } 1692 1693 #define net_timestamp_check(COND, SKB) \ 1694 if (static_key_false(&netstamp_needed)) { \ 1695 if ((COND) && !(SKB)->tstamp.tv64) \ 1696 __net_timestamp(SKB); \ 1697 } \ 1698 1699 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb) 1700 { 1701 unsigned int len; 1702 1703 if (!(dev->flags & IFF_UP)) 1704 return false; 1705 1706 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1707 if (skb->len <= len) 1708 return true; 1709 1710 /* if TSO is enabled, we don't care about the length as the packet 1711 * could be forwarded without being segmented before 1712 */ 1713 if (skb_is_gso(skb)) 1714 return true; 1715 1716 return false; 1717 } 1718 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1719 1720 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1721 { 1722 if (skb_orphan_frags(skb, GFP_ATOMIC) || 1723 unlikely(!is_skb_forwardable(dev, skb))) { 1724 atomic_long_inc(&dev->rx_dropped); 1725 kfree_skb(skb); 1726 return NET_RX_DROP; 1727 } 1728 1729 skb_scrub_packet(skb, true); 1730 skb->priority = 0; 1731 skb->protocol = eth_type_trans(skb, dev); 1732 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1733 1734 return 0; 1735 } 1736 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1737 1738 /** 1739 * dev_forward_skb - loopback an skb to another netif 1740 * 1741 * @dev: destination network device 1742 * @skb: buffer to forward 1743 * 1744 * return values: 1745 * NET_RX_SUCCESS (no congestion) 1746 * NET_RX_DROP (packet was dropped, but freed) 1747 * 1748 * dev_forward_skb can be used for injecting an skb from the 1749 * start_xmit function of one device into the receive queue 1750 * of another device. 1751 * 1752 * The receiving device may be in another namespace, so 1753 * we have to clear all information in the skb that could 1754 * impact namespace isolation. 1755 */ 1756 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1757 { 1758 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1759 } 1760 EXPORT_SYMBOL_GPL(dev_forward_skb); 1761 1762 static inline int deliver_skb(struct sk_buff *skb, 1763 struct packet_type *pt_prev, 1764 struct net_device *orig_dev) 1765 { 1766 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1767 return -ENOMEM; 1768 atomic_inc(&skb->users); 1769 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1770 } 1771 1772 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1773 struct packet_type **pt, 1774 struct net_device *orig_dev, 1775 __be16 type, 1776 struct list_head *ptype_list) 1777 { 1778 struct packet_type *ptype, *pt_prev = *pt; 1779 1780 list_for_each_entry_rcu(ptype, ptype_list, list) { 1781 if (ptype->type != type) 1782 continue; 1783 if (pt_prev) 1784 deliver_skb(skb, pt_prev, orig_dev); 1785 pt_prev = ptype; 1786 } 1787 *pt = pt_prev; 1788 } 1789 1790 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1791 { 1792 if (!ptype->af_packet_priv || !skb->sk) 1793 return false; 1794 1795 if (ptype->id_match) 1796 return ptype->id_match(ptype, skb->sk); 1797 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1798 return true; 1799 1800 return false; 1801 } 1802 1803 /* 1804 * Support routine. Sends outgoing frames to any network 1805 * taps currently in use. 1806 */ 1807 1808 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1809 { 1810 struct packet_type *ptype; 1811 struct sk_buff *skb2 = NULL; 1812 struct packet_type *pt_prev = NULL; 1813 struct list_head *ptype_list = &ptype_all; 1814 1815 rcu_read_lock(); 1816 again: 1817 list_for_each_entry_rcu(ptype, ptype_list, list) { 1818 /* Never send packets back to the socket 1819 * they originated from - MvS (miquels@drinkel.ow.org) 1820 */ 1821 if (skb_loop_sk(ptype, skb)) 1822 continue; 1823 1824 if (pt_prev) { 1825 deliver_skb(skb2, pt_prev, skb->dev); 1826 pt_prev = ptype; 1827 continue; 1828 } 1829 1830 /* need to clone skb, done only once */ 1831 skb2 = skb_clone(skb, GFP_ATOMIC); 1832 if (!skb2) 1833 goto out_unlock; 1834 1835 net_timestamp_set(skb2); 1836 1837 /* skb->nh should be correctly 1838 * set by sender, so that the second statement is 1839 * just protection against buggy protocols. 1840 */ 1841 skb_reset_mac_header(skb2); 1842 1843 if (skb_network_header(skb2) < skb2->data || 1844 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1845 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1846 ntohs(skb2->protocol), 1847 dev->name); 1848 skb_reset_network_header(skb2); 1849 } 1850 1851 skb2->transport_header = skb2->network_header; 1852 skb2->pkt_type = PACKET_OUTGOING; 1853 pt_prev = ptype; 1854 } 1855 1856 if (ptype_list == &ptype_all) { 1857 ptype_list = &dev->ptype_all; 1858 goto again; 1859 } 1860 out_unlock: 1861 if (pt_prev) 1862 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1863 rcu_read_unlock(); 1864 } 1865 1866 /** 1867 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1868 * @dev: Network device 1869 * @txq: number of queues available 1870 * 1871 * If real_num_tx_queues is changed the tc mappings may no longer be 1872 * valid. To resolve this verify the tc mapping remains valid and if 1873 * not NULL the mapping. With no priorities mapping to this 1874 * offset/count pair it will no longer be used. In the worst case TC0 1875 * is invalid nothing can be done so disable priority mappings. If is 1876 * expected that drivers will fix this mapping if they can before 1877 * calling netif_set_real_num_tx_queues. 1878 */ 1879 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1880 { 1881 int i; 1882 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1883 1884 /* If TC0 is invalidated disable TC mapping */ 1885 if (tc->offset + tc->count > txq) { 1886 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1887 dev->num_tc = 0; 1888 return; 1889 } 1890 1891 /* Invalidated prio to tc mappings set to TC0 */ 1892 for (i = 1; i < TC_BITMASK + 1; i++) { 1893 int q = netdev_get_prio_tc_map(dev, i); 1894 1895 tc = &dev->tc_to_txq[q]; 1896 if (tc->offset + tc->count > txq) { 1897 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1898 i, q); 1899 netdev_set_prio_tc_map(dev, i, 0); 1900 } 1901 } 1902 } 1903 1904 #ifdef CONFIG_XPS 1905 static DEFINE_MUTEX(xps_map_mutex); 1906 #define xmap_dereference(P) \ 1907 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1908 1909 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1910 int cpu, u16 index) 1911 { 1912 struct xps_map *map = NULL; 1913 int pos; 1914 1915 if (dev_maps) 1916 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1917 1918 for (pos = 0; map && pos < map->len; pos++) { 1919 if (map->queues[pos] == index) { 1920 if (map->len > 1) { 1921 map->queues[pos] = map->queues[--map->len]; 1922 } else { 1923 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1924 kfree_rcu(map, rcu); 1925 map = NULL; 1926 } 1927 break; 1928 } 1929 } 1930 1931 return map; 1932 } 1933 1934 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1935 { 1936 struct xps_dev_maps *dev_maps; 1937 int cpu, i; 1938 bool active = false; 1939 1940 mutex_lock(&xps_map_mutex); 1941 dev_maps = xmap_dereference(dev->xps_maps); 1942 1943 if (!dev_maps) 1944 goto out_no_maps; 1945 1946 for_each_possible_cpu(cpu) { 1947 for (i = index; i < dev->num_tx_queues; i++) { 1948 if (!remove_xps_queue(dev_maps, cpu, i)) 1949 break; 1950 } 1951 if (i == dev->num_tx_queues) 1952 active = true; 1953 } 1954 1955 if (!active) { 1956 RCU_INIT_POINTER(dev->xps_maps, NULL); 1957 kfree_rcu(dev_maps, rcu); 1958 } 1959 1960 for (i = index; i < dev->num_tx_queues; i++) 1961 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1962 NUMA_NO_NODE); 1963 1964 out_no_maps: 1965 mutex_unlock(&xps_map_mutex); 1966 } 1967 1968 static struct xps_map *expand_xps_map(struct xps_map *map, 1969 int cpu, u16 index) 1970 { 1971 struct xps_map *new_map; 1972 int alloc_len = XPS_MIN_MAP_ALLOC; 1973 int i, pos; 1974 1975 for (pos = 0; map && pos < map->len; pos++) { 1976 if (map->queues[pos] != index) 1977 continue; 1978 return map; 1979 } 1980 1981 /* Need to add queue to this CPU's existing map */ 1982 if (map) { 1983 if (pos < map->alloc_len) 1984 return map; 1985 1986 alloc_len = map->alloc_len * 2; 1987 } 1988 1989 /* Need to allocate new map to store queue on this CPU's map */ 1990 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1991 cpu_to_node(cpu)); 1992 if (!new_map) 1993 return NULL; 1994 1995 for (i = 0; i < pos; i++) 1996 new_map->queues[i] = map->queues[i]; 1997 new_map->alloc_len = alloc_len; 1998 new_map->len = pos; 1999 2000 return new_map; 2001 } 2002 2003 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2004 u16 index) 2005 { 2006 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2007 struct xps_map *map, *new_map; 2008 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 2009 int cpu, numa_node_id = -2; 2010 bool active = false; 2011 2012 mutex_lock(&xps_map_mutex); 2013 2014 dev_maps = xmap_dereference(dev->xps_maps); 2015 2016 /* allocate memory for queue storage */ 2017 for_each_online_cpu(cpu) { 2018 if (!cpumask_test_cpu(cpu, mask)) 2019 continue; 2020 2021 if (!new_dev_maps) 2022 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2023 if (!new_dev_maps) { 2024 mutex_unlock(&xps_map_mutex); 2025 return -ENOMEM; 2026 } 2027 2028 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2029 NULL; 2030 2031 map = expand_xps_map(map, cpu, index); 2032 if (!map) 2033 goto error; 2034 2035 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2036 } 2037 2038 if (!new_dev_maps) 2039 goto out_no_new_maps; 2040 2041 for_each_possible_cpu(cpu) { 2042 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2043 /* add queue to CPU maps */ 2044 int pos = 0; 2045 2046 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2047 while ((pos < map->len) && (map->queues[pos] != index)) 2048 pos++; 2049 2050 if (pos == map->len) 2051 map->queues[map->len++] = index; 2052 #ifdef CONFIG_NUMA 2053 if (numa_node_id == -2) 2054 numa_node_id = cpu_to_node(cpu); 2055 else if (numa_node_id != cpu_to_node(cpu)) 2056 numa_node_id = -1; 2057 #endif 2058 } else if (dev_maps) { 2059 /* fill in the new device map from the old device map */ 2060 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2061 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2062 } 2063 2064 } 2065 2066 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2067 2068 /* Cleanup old maps */ 2069 if (dev_maps) { 2070 for_each_possible_cpu(cpu) { 2071 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2072 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2073 if (map && map != new_map) 2074 kfree_rcu(map, rcu); 2075 } 2076 2077 kfree_rcu(dev_maps, rcu); 2078 } 2079 2080 dev_maps = new_dev_maps; 2081 active = true; 2082 2083 out_no_new_maps: 2084 /* update Tx queue numa node */ 2085 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2086 (numa_node_id >= 0) ? numa_node_id : 2087 NUMA_NO_NODE); 2088 2089 if (!dev_maps) 2090 goto out_no_maps; 2091 2092 /* removes queue from unused CPUs */ 2093 for_each_possible_cpu(cpu) { 2094 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2095 continue; 2096 2097 if (remove_xps_queue(dev_maps, cpu, index)) 2098 active = true; 2099 } 2100 2101 /* free map if not active */ 2102 if (!active) { 2103 RCU_INIT_POINTER(dev->xps_maps, NULL); 2104 kfree_rcu(dev_maps, rcu); 2105 } 2106 2107 out_no_maps: 2108 mutex_unlock(&xps_map_mutex); 2109 2110 return 0; 2111 error: 2112 /* remove any maps that we added */ 2113 for_each_possible_cpu(cpu) { 2114 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2115 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2116 NULL; 2117 if (new_map && new_map != map) 2118 kfree(new_map); 2119 } 2120 2121 mutex_unlock(&xps_map_mutex); 2122 2123 kfree(new_dev_maps); 2124 return -ENOMEM; 2125 } 2126 EXPORT_SYMBOL(netif_set_xps_queue); 2127 2128 #endif 2129 /* 2130 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2131 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2132 */ 2133 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2134 { 2135 int rc; 2136 2137 if (txq < 1 || txq > dev->num_tx_queues) 2138 return -EINVAL; 2139 2140 if (dev->reg_state == NETREG_REGISTERED || 2141 dev->reg_state == NETREG_UNREGISTERING) { 2142 ASSERT_RTNL(); 2143 2144 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2145 txq); 2146 if (rc) 2147 return rc; 2148 2149 if (dev->num_tc) 2150 netif_setup_tc(dev, txq); 2151 2152 if (txq < dev->real_num_tx_queues) { 2153 qdisc_reset_all_tx_gt(dev, txq); 2154 #ifdef CONFIG_XPS 2155 netif_reset_xps_queues_gt(dev, txq); 2156 #endif 2157 } 2158 } 2159 2160 dev->real_num_tx_queues = txq; 2161 return 0; 2162 } 2163 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2164 2165 #ifdef CONFIG_SYSFS 2166 /** 2167 * netif_set_real_num_rx_queues - set actual number of RX queues used 2168 * @dev: Network device 2169 * @rxq: Actual number of RX queues 2170 * 2171 * This must be called either with the rtnl_lock held or before 2172 * registration of the net device. Returns 0 on success, or a 2173 * negative error code. If called before registration, it always 2174 * succeeds. 2175 */ 2176 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2177 { 2178 int rc; 2179 2180 if (rxq < 1 || rxq > dev->num_rx_queues) 2181 return -EINVAL; 2182 2183 if (dev->reg_state == NETREG_REGISTERED) { 2184 ASSERT_RTNL(); 2185 2186 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2187 rxq); 2188 if (rc) 2189 return rc; 2190 } 2191 2192 dev->real_num_rx_queues = rxq; 2193 return 0; 2194 } 2195 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2196 #endif 2197 2198 /** 2199 * netif_get_num_default_rss_queues - default number of RSS queues 2200 * 2201 * This routine should set an upper limit on the number of RSS queues 2202 * used by default by multiqueue devices. 2203 */ 2204 int netif_get_num_default_rss_queues(void) 2205 { 2206 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2207 } 2208 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2209 2210 static inline void __netif_reschedule(struct Qdisc *q) 2211 { 2212 struct softnet_data *sd; 2213 unsigned long flags; 2214 2215 local_irq_save(flags); 2216 sd = this_cpu_ptr(&softnet_data); 2217 q->next_sched = NULL; 2218 *sd->output_queue_tailp = q; 2219 sd->output_queue_tailp = &q->next_sched; 2220 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2221 local_irq_restore(flags); 2222 } 2223 2224 void __netif_schedule(struct Qdisc *q) 2225 { 2226 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2227 __netif_reschedule(q); 2228 } 2229 EXPORT_SYMBOL(__netif_schedule); 2230 2231 struct dev_kfree_skb_cb { 2232 enum skb_free_reason reason; 2233 }; 2234 2235 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2236 { 2237 return (struct dev_kfree_skb_cb *)skb->cb; 2238 } 2239 2240 void netif_schedule_queue(struct netdev_queue *txq) 2241 { 2242 rcu_read_lock(); 2243 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2244 struct Qdisc *q = rcu_dereference(txq->qdisc); 2245 2246 __netif_schedule(q); 2247 } 2248 rcu_read_unlock(); 2249 } 2250 EXPORT_SYMBOL(netif_schedule_queue); 2251 2252 /** 2253 * netif_wake_subqueue - allow sending packets on subqueue 2254 * @dev: network device 2255 * @queue_index: sub queue index 2256 * 2257 * Resume individual transmit queue of a device with multiple transmit queues. 2258 */ 2259 void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2260 { 2261 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2262 2263 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) { 2264 struct Qdisc *q; 2265 2266 rcu_read_lock(); 2267 q = rcu_dereference(txq->qdisc); 2268 __netif_schedule(q); 2269 rcu_read_unlock(); 2270 } 2271 } 2272 EXPORT_SYMBOL(netif_wake_subqueue); 2273 2274 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2275 { 2276 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2277 struct Qdisc *q; 2278 2279 rcu_read_lock(); 2280 q = rcu_dereference(dev_queue->qdisc); 2281 __netif_schedule(q); 2282 rcu_read_unlock(); 2283 } 2284 } 2285 EXPORT_SYMBOL(netif_tx_wake_queue); 2286 2287 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2288 { 2289 unsigned long flags; 2290 2291 if (likely(atomic_read(&skb->users) == 1)) { 2292 smp_rmb(); 2293 atomic_set(&skb->users, 0); 2294 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2295 return; 2296 } 2297 get_kfree_skb_cb(skb)->reason = reason; 2298 local_irq_save(flags); 2299 skb->next = __this_cpu_read(softnet_data.completion_queue); 2300 __this_cpu_write(softnet_data.completion_queue, skb); 2301 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2302 local_irq_restore(flags); 2303 } 2304 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2305 2306 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2307 { 2308 if (in_irq() || irqs_disabled()) 2309 __dev_kfree_skb_irq(skb, reason); 2310 else 2311 dev_kfree_skb(skb); 2312 } 2313 EXPORT_SYMBOL(__dev_kfree_skb_any); 2314 2315 2316 /** 2317 * netif_device_detach - mark device as removed 2318 * @dev: network device 2319 * 2320 * Mark device as removed from system and therefore no longer available. 2321 */ 2322 void netif_device_detach(struct net_device *dev) 2323 { 2324 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2325 netif_running(dev)) { 2326 netif_tx_stop_all_queues(dev); 2327 } 2328 } 2329 EXPORT_SYMBOL(netif_device_detach); 2330 2331 /** 2332 * netif_device_attach - mark device as attached 2333 * @dev: network device 2334 * 2335 * Mark device as attached from system and restart if needed. 2336 */ 2337 void netif_device_attach(struct net_device *dev) 2338 { 2339 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2340 netif_running(dev)) { 2341 netif_tx_wake_all_queues(dev); 2342 __netdev_watchdog_up(dev); 2343 } 2344 } 2345 EXPORT_SYMBOL(netif_device_attach); 2346 2347 /* 2348 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2349 * to be used as a distribution range. 2350 */ 2351 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2352 unsigned int num_tx_queues) 2353 { 2354 u32 hash; 2355 u16 qoffset = 0; 2356 u16 qcount = num_tx_queues; 2357 2358 if (skb_rx_queue_recorded(skb)) { 2359 hash = skb_get_rx_queue(skb); 2360 while (unlikely(hash >= num_tx_queues)) 2361 hash -= num_tx_queues; 2362 return hash; 2363 } 2364 2365 if (dev->num_tc) { 2366 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2367 qoffset = dev->tc_to_txq[tc].offset; 2368 qcount = dev->tc_to_txq[tc].count; 2369 } 2370 2371 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2372 } 2373 EXPORT_SYMBOL(__skb_tx_hash); 2374 2375 static void skb_warn_bad_offload(const struct sk_buff *skb) 2376 { 2377 static const netdev_features_t null_features = 0; 2378 struct net_device *dev = skb->dev; 2379 const char *driver = ""; 2380 2381 if (!net_ratelimit()) 2382 return; 2383 2384 if (dev && dev->dev.parent) 2385 driver = dev_driver_string(dev->dev.parent); 2386 2387 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2388 "gso_type=%d ip_summed=%d\n", 2389 driver, dev ? &dev->features : &null_features, 2390 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2391 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2392 skb_shinfo(skb)->gso_type, skb->ip_summed); 2393 } 2394 2395 /* 2396 * Invalidate hardware checksum when packet is to be mangled, and 2397 * complete checksum manually on outgoing path. 2398 */ 2399 int skb_checksum_help(struct sk_buff *skb) 2400 { 2401 __wsum csum; 2402 int ret = 0, offset; 2403 2404 if (skb->ip_summed == CHECKSUM_COMPLETE) 2405 goto out_set_summed; 2406 2407 if (unlikely(skb_shinfo(skb)->gso_size)) { 2408 skb_warn_bad_offload(skb); 2409 return -EINVAL; 2410 } 2411 2412 /* Before computing a checksum, we should make sure no frag could 2413 * be modified by an external entity : checksum could be wrong. 2414 */ 2415 if (skb_has_shared_frag(skb)) { 2416 ret = __skb_linearize(skb); 2417 if (ret) 2418 goto out; 2419 } 2420 2421 offset = skb_checksum_start_offset(skb); 2422 BUG_ON(offset >= skb_headlen(skb)); 2423 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2424 2425 offset += skb->csum_offset; 2426 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2427 2428 if (skb_cloned(skb) && 2429 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2430 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2431 if (ret) 2432 goto out; 2433 } 2434 2435 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2436 out_set_summed: 2437 skb->ip_summed = CHECKSUM_NONE; 2438 out: 2439 return ret; 2440 } 2441 EXPORT_SYMBOL(skb_checksum_help); 2442 2443 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2444 { 2445 __be16 type = skb->protocol; 2446 2447 /* Tunnel gso handlers can set protocol to ethernet. */ 2448 if (type == htons(ETH_P_TEB)) { 2449 struct ethhdr *eth; 2450 2451 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2452 return 0; 2453 2454 eth = (struct ethhdr *)skb_mac_header(skb); 2455 type = eth->h_proto; 2456 } 2457 2458 return __vlan_get_protocol(skb, type, depth); 2459 } 2460 2461 /** 2462 * skb_mac_gso_segment - mac layer segmentation handler. 2463 * @skb: buffer to segment 2464 * @features: features for the output path (see dev->features) 2465 */ 2466 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2467 netdev_features_t features) 2468 { 2469 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2470 struct packet_offload *ptype; 2471 int vlan_depth = skb->mac_len; 2472 __be16 type = skb_network_protocol(skb, &vlan_depth); 2473 2474 if (unlikely(!type)) 2475 return ERR_PTR(-EINVAL); 2476 2477 __skb_pull(skb, vlan_depth); 2478 2479 rcu_read_lock(); 2480 list_for_each_entry_rcu(ptype, &offload_base, list) { 2481 if (ptype->type == type && ptype->callbacks.gso_segment) { 2482 segs = ptype->callbacks.gso_segment(skb, features); 2483 break; 2484 } 2485 } 2486 rcu_read_unlock(); 2487 2488 __skb_push(skb, skb->data - skb_mac_header(skb)); 2489 2490 return segs; 2491 } 2492 EXPORT_SYMBOL(skb_mac_gso_segment); 2493 2494 2495 /* openvswitch calls this on rx path, so we need a different check. 2496 */ 2497 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2498 { 2499 if (tx_path) 2500 return skb->ip_summed != CHECKSUM_PARTIAL; 2501 else 2502 return skb->ip_summed == CHECKSUM_NONE; 2503 } 2504 2505 /** 2506 * __skb_gso_segment - Perform segmentation on skb. 2507 * @skb: buffer to segment 2508 * @features: features for the output path (see dev->features) 2509 * @tx_path: whether it is called in TX path 2510 * 2511 * This function segments the given skb and returns a list of segments. 2512 * 2513 * It may return NULL if the skb requires no segmentation. This is 2514 * only possible when GSO is used for verifying header integrity. 2515 */ 2516 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2517 netdev_features_t features, bool tx_path) 2518 { 2519 if (unlikely(skb_needs_check(skb, tx_path))) { 2520 int err; 2521 2522 skb_warn_bad_offload(skb); 2523 2524 err = skb_cow_head(skb, 0); 2525 if (err < 0) 2526 return ERR_PTR(err); 2527 } 2528 2529 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2530 SKB_GSO_CB(skb)->encap_level = 0; 2531 2532 skb_reset_mac_header(skb); 2533 skb_reset_mac_len(skb); 2534 2535 return skb_mac_gso_segment(skb, features); 2536 } 2537 EXPORT_SYMBOL(__skb_gso_segment); 2538 2539 /* Take action when hardware reception checksum errors are detected. */ 2540 #ifdef CONFIG_BUG 2541 void netdev_rx_csum_fault(struct net_device *dev) 2542 { 2543 if (net_ratelimit()) { 2544 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2545 dump_stack(); 2546 } 2547 } 2548 EXPORT_SYMBOL(netdev_rx_csum_fault); 2549 #endif 2550 2551 /* Actually, we should eliminate this check as soon as we know, that: 2552 * 1. IOMMU is present and allows to map all the memory. 2553 * 2. No high memory really exists on this machine. 2554 */ 2555 2556 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2557 { 2558 #ifdef CONFIG_HIGHMEM 2559 int i; 2560 if (!(dev->features & NETIF_F_HIGHDMA)) { 2561 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2562 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2563 if (PageHighMem(skb_frag_page(frag))) 2564 return 1; 2565 } 2566 } 2567 2568 if (PCI_DMA_BUS_IS_PHYS) { 2569 struct device *pdev = dev->dev.parent; 2570 2571 if (!pdev) 2572 return 0; 2573 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2574 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2575 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2576 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2577 return 1; 2578 } 2579 } 2580 #endif 2581 return 0; 2582 } 2583 2584 /* If MPLS offload request, verify we are testing hardware MPLS features 2585 * instead of standard features for the netdev. 2586 */ 2587 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2588 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2589 netdev_features_t features, 2590 __be16 type) 2591 { 2592 if (eth_p_mpls(type)) 2593 features &= skb->dev->mpls_features; 2594 2595 return features; 2596 } 2597 #else 2598 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2599 netdev_features_t features, 2600 __be16 type) 2601 { 2602 return features; 2603 } 2604 #endif 2605 2606 static netdev_features_t harmonize_features(struct sk_buff *skb, 2607 netdev_features_t features) 2608 { 2609 int tmp; 2610 __be16 type; 2611 2612 type = skb_network_protocol(skb, &tmp); 2613 features = net_mpls_features(skb, features, type); 2614 2615 if (skb->ip_summed != CHECKSUM_NONE && 2616 !can_checksum_protocol(features, type)) { 2617 features &= ~NETIF_F_ALL_CSUM; 2618 } else if (illegal_highdma(skb->dev, skb)) { 2619 features &= ~NETIF_F_SG; 2620 } 2621 2622 return features; 2623 } 2624 2625 netdev_features_t passthru_features_check(struct sk_buff *skb, 2626 struct net_device *dev, 2627 netdev_features_t features) 2628 { 2629 return features; 2630 } 2631 EXPORT_SYMBOL(passthru_features_check); 2632 2633 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2634 struct net_device *dev, 2635 netdev_features_t features) 2636 { 2637 return vlan_features_check(skb, features); 2638 } 2639 2640 netdev_features_t netif_skb_features(struct sk_buff *skb) 2641 { 2642 struct net_device *dev = skb->dev; 2643 netdev_features_t features = dev->features; 2644 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2645 2646 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs) 2647 features &= ~NETIF_F_GSO_MASK; 2648 2649 /* If encapsulation offload request, verify we are testing 2650 * hardware encapsulation features instead of standard 2651 * features for the netdev 2652 */ 2653 if (skb->encapsulation) 2654 features &= dev->hw_enc_features; 2655 2656 if (skb_vlan_tagged(skb)) 2657 features = netdev_intersect_features(features, 2658 dev->vlan_features | 2659 NETIF_F_HW_VLAN_CTAG_TX | 2660 NETIF_F_HW_VLAN_STAG_TX); 2661 2662 if (dev->netdev_ops->ndo_features_check) 2663 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2664 features); 2665 else 2666 features &= dflt_features_check(skb, dev, features); 2667 2668 return harmonize_features(skb, features); 2669 } 2670 EXPORT_SYMBOL(netif_skb_features); 2671 2672 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2673 struct netdev_queue *txq, bool more) 2674 { 2675 unsigned int len; 2676 int rc; 2677 2678 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2679 dev_queue_xmit_nit(skb, dev); 2680 2681 len = skb->len; 2682 trace_net_dev_start_xmit(skb, dev); 2683 rc = netdev_start_xmit(skb, dev, txq, more); 2684 trace_net_dev_xmit(skb, rc, dev, len); 2685 2686 return rc; 2687 } 2688 2689 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2690 struct netdev_queue *txq, int *ret) 2691 { 2692 struct sk_buff *skb = first; 2693 int rc = NETDEV_TX_OK; 2694 2695 while (skb) { 2696 struct sk_buff *next = skb->next; 2697 2698 skb->next = NULL; 2699 rc = xmit_one(skb, dev, txq, next != NULL); 2700 if (unlikely(!dev_xmit_complete(rc))) { 2701 skb->next = next; 2702 goto out; 2703 } 2704 2705 skb = next; 2706 if (netif_xmit_stopped(txq) && skb) { 2707 rc = NETDEV_TX_BUSY; 2708 break; 2709 } 2710 } 2711 2712 out: 2713 *ret = rc; 2714 return skb; 2715 } 2716 2717 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2718 netdev_features_t features) 2719 { 2720 if (skb_vlan_tag_present(skb) && 2721 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2722 skb = __vlan_hwaccel_push_inside(skb); 2723 return skb; 2724 } 2725 2726 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2727 { 2728 netdev_features_t features; 2729 2730 if (skb->next) 2731 return skb; 2732 2733 features = netif_skb_features(skb); 2734 skb = validate_xmit_vlan(skb, features); 2735 if (unlikely(!skb)) 2736 goto out_null; 2737 2738 if (netif_needs_gso(skb, features)) { 2739 struct sk_buff *segs; 2740 2741 segs = skb_gso_segment(skb, features); 2742 if (IS_ERR(segs)) { 2743 goto out_kfree_skb; 2744 } else if (segs) { 2745 consume_skb(skb); 2746 skb = segs; 2747 } 2748 } else { 2749 if (skb_needs_linearize(skb, features) && 2750 __skb_linearize(skb)) 2751 goto out_kfree_skb; 2752 2753 /* If packet is not checksummed and device does not 2754 * support checksumming for this protocol, complete 2755 * checksumming here. 2756 */ 2757 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2758 if (skb->encapsulation) 2759 skb_set_inner_transport_header(skb, 2760 skb_checksum_start_offset(skb)); 2761 else 2762 skb_set_transport_header(skb, 2763 skb_checksum_start_offset(skb)); 2764 if (!(features & NETIF_F_ALL_CSUM) && 2765 skb_checksum_help(skb)) 2766 goto out_kfree_skb; 2767 } 2768 } 2769 2770 return skb; 2771 2772 out_kfree_skb: 2773 kfree_skb(skb); 2774 out_null: 2775 return NULL; 2776 } 2777 2778 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 2779 { 2780 struct sk_buff *next, *head = NULL, *tail; 2781 2782 for (; skb != NULL; skb = next) { 2783 next = skb->next; 2784 skb->next = NULL; 2785 2786 /* in case skb wont be segmented, point to itself */ 2787 skb->prev = skb; 2788 2789 skb = validate_xmit_skb(skb, dev); 2790 if (!skb) 2791 continue; 2792 2793 if (!head) 2794 head = skb; 2795 else 2796 tail->next = skb; 2797 /* If skb was segmented, skb->prev points to 2798 * the last segment. If not, it still contains skb. 2799 */ 2800 tail = skb->prev; 2801 } 2802 return head; 2803 } 2804 2805 static void qdisc_pkt_len_init(struct sk_buff *skb) 2806 { 2807 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2808 2809 qdisc_skb_cb(skb)->pkt_len = skb->len; 2810 2811 /* To get more precise estimation of bytes sent on wire, 2812 * we add to pkt_len the headers size of all segments 2813 */ 2814 if (shinfo->gso_size) { 2815 unsigned int hdr_len; 2816 u16 gso_segs = shinfo->gso_segs; 2817 2818 /* mac layer + network layer */ 2819 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2820 2821 /* + transport layer */ 2822 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2823 hdr_len += tcp_hdrlen(skb); 2824 else 2825 hdr_len += sizeof(struct udphdr); 2826 2827 if (shinfo->gso_type & SKB_GSO_DODGY) 2828 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2829 shinfo->gso_size); 2830 2831 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2832 } 2833 } 2834 2835 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2836 struct net_device *dev, 2837 struct netdev_queue *txq) 2838 { 2839 spinlock_t *root_lock = qdisc_lock(q); 2840 bool contended; 2841 int rc; 2842 2843 qdisc_pkt_len_init(skb); 2844 qdisc_calculate_pkt_len(skb, q); 2845 /* 2846 * Heuristic to force contended enqueues to serialize on a 2847 * separate lock before trying to get qdisc main lock. 2848 * This permits __QDISC___STATE_RUNNING owner to get the lock more 2849 * often and dequeue packets faster. 2850 */ 2851 contended = qdisc_is_running(q); 2852 if (unlikely(contended)) 2853 spin_lock(&q->busylock); 2854 2855 spin_lock(root_lock); 2856 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2857 kfree_skb(skb); 2858 rc = NET_XMIT_DROP; 2859 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2860 qdisc_run_begin(q)) { 2861 /* 2862 * This is a work-conserving queue; there are no old skbs 2863 * waiting to be sent out; and the qdisc is not running - 2864 * xmit the skb directly. 2865 */ 2866 2867 qdisc_bstats_update(q, skb); 2868 2869 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 2870 if (unlikely(contended)) { 2871 spin_unlock(&q->busylock); 2872 contended = false; 2873 } 2874 __qdisc_run(q); 2875 } else 2876 qdisc_run_end(q); 2877 2878 rc = NET_XMIT_SUCCESS; 2879 } else { 2880 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2881 if (qdisc_run_begin(q)) { 2882 if (unlikely(contended)) { 2883 spin_unlock(&q->busylock); 2884 contended = false; 2885 } 2886 __qdisc_run(q); 2887 } 2888 } 2889 spin_unlock(root_lock); 2890 if (unlikely(contended)) 2891 spin_unlock(&q->busylock); 2892 return rc; 2893 } 2894 2895 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2896 static void skb_update_prio(struct sk_buff *skb) 2897 { 2898 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2899 2900 if (!skb->priority && skb->sk && map) { 2901 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2902 2903 if (prioidx < map->priomap_len) 2904 skb->priority = map->priomap[prioidx]; 2905 } 2906 } 2907 #else 2908 #define skb_update_prio(skb) 2909 #endif 2910 2911 DEFINE_PER_CPU(int, xmit_recursion); 2912 EXPORT_SYMBOL(xmit_recursion); 2913 2914 #define RECURSION_LIMIT 10 2915 2916 /** 2917 * dev_loopback_xmit - loop back @skb 2918 * @skb: buffer to transmit 2919 */ 2920 int dev_loopback_xmit(struct sock *sk, struct sk_buff *skb) 2921 { 2922 skb_reset_mac_header(skb); 2923 __skb_pull(skb, skb_network_offset(skb)); 2924 skb->pkt_type = PACKET_LOOPBACK; 2925 skb->ip_summed = CHECKSUM_UNNECESSARY; 2926 WARN_ON(!skb_dst(skb)); 2927 skb_dst_force(skb); 2928 netif_rx_ni(skb); 2929 return 0; 2930 } 2931 EXPORT_SYMBOL(dev_loopback_xmit); 2932 2933 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2934 { 2935 #ifdef CONFIG_XPS 2936 struct xps_dev_maps *dev_maps; 2937 struct xps_map *map; 2938 int queue_index = -1; 2939 2940 rcu_read_lock(); 2941 dev_maps = rcu_dereference(dev->xps_maps); 2942 if (dev_maps) { 2943 map = rcu_dereference( 2944 dev_maps->cpu_map[skb->sender_cpu - 1]); 2945 if (map) { 2946 if (map->len == 1) 2947 queue_index = map->queues[0]; 2948 else 2949 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 2950 map->len)]; 2951 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2952 queue_index = -1; 2953 } 2954 } 2955 rcu_read_unlock(); 2956 2957 return queue_index; 2958 #else 2959 return -1; 2960 #endif 2961 } 2962 2963 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 2964 { 2965 struct sock *sk = skb->sk; 2966 int queue_index = sk_tx_queue_get(sk); 2967 2968 if (queue_index < 0 || skb->ooo_okay || 2969 queue_index >= dev->real_num_tx_queues) { 2970 int new_index = get_xps_queue(dev, skb); 2971 if (new_index < 0) 2972 new_index = skb_tx_hash(dev, skb); 2973 2974 if (queue_index != new_index && sk && 2975 rcu_access_pointer(sk->sk_dst_cache)) 2976 sk_tx_queue_set(sk, new_index); 2977 2978 queue_index = new_index; 2979 } 2980 2981 return queue_index; 2982 } 2983 2984 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 2985 struct sk_buff *skb, 2986 void *accel_priv) 2987 { 2988 int queue_index = 0; 2989 2990 #ifdef CONFIG_XPS 2991 if (skb->sender_cpu == 0) 2992 skb->sender_cpu = raw_smp_processor_id() + 1; 2993 #endif 2994 2995 if (dev->real_num_tx_queues != 1) { 2996 const struct net_device_ops *ops = dev->netdev_ops; 2997 if (ops->ndo_select_queue) 2998 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 2999 __netdev_pick_tx); 3000 else 3001 queue_index = __netdev_pick_tx(dev, skb); 3002 3003 if (!accel_priv) 3004 queue_index = netdev_cap_txqueue(dev, queue_index); 3005 } 3006 3007 skb_set_queue_mapping(skb, queue_index); 3008 return netdev_get_tx_queue(dev, queue_index); 3009 } 3010 3011 /** 3012 * __dev_queue_xmit - transmit a buffer 3013 * @skb: buffer to transmit 3014 * @accel_priv: private data used for L2 forwarding offload 3015 * 3016 * Queue a buffer for transmission to a network device. The caller must 3017 * have set the device and priority and built the buffer before calling 3018 * this function. The function can be called from an interrupt. 3019 * 3020 * A negative errno code is returned on a failure. A success does not 3021 * guarantee the frame will be transmitted as it may be dropped due 3022 * to congestion or traffic shaping. 3023 * 3024 * ----------------------------------------------------------------------------------- 3025 * I notice this method can also return errors from the queue disciplines, 3026 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3027 * be positive. 3028 * 3029 * Regardless of the return value, the skb is consumed, so it is currently 3030 * difficult to retry a send to this method. (You can bump the ref count 3031 * before sending to hold a reference for retry if you are careful.) 3032 * 3033 * When calling this method, interrupts MUST be enabled. This is because 3034 * the BH enable code must have IRQs enabled so that it will not deadlock. 3035 * --BLG 3036 */ 3037 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3038 { 3039 struct net_device *dev = skb->dev; 3040 struct netdev_queue *txq; 3041 struct Qdisc *q; 3042 int rc = -ENOMEM; 3043 3044 skb_reset_mac_header(skb); 3045 3046 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3047 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3048 3049 /* Disable soft irqs for various locks below. Also 3050 * stops preemption for RCU. 3051 */ 3052 rcu_read_lock_bh(); 3053 3054 skb_update_prio(skb); 3055 3056 /* If device/qdisc don't need skb->dst, release it right now while 3057 * its hot in this cpu cache. 3058 */ 3059 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3060 skb_dst_drop(skb); 3061 else 3062 skb_dst_force(skb); 3063 3064 #ifdef CONFIG_NET_SWITCHDEV 3065 /* Don't forward if offload device already forwarded */ 3066 if (skb->offload_fwd_mark && 3067 skb->offload_fwd_mark == dev->offload_fwd_mark) { 3068 consume_skb(skb); 3069 rc = NET_XMIT_SUCCESS; 3070 goto out; 3071 } 3072 #endif 3073 3074 txq = netdev_pick_tx(dev, skb, accel_priv); 3075 q = rcu_dereference_bh(txq->qdisc); 3076 3077 #ifdef CONFIG_NET_CLS_ACT 3078 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 3079 #endif 3080 trace_net_dev_queue(skb); 3081 if (q->enqueue) { 3082 rc = __dev_xmit_skb(skb, q, dev, txq); 3083 goto out; 3084 } 3085 3086 /* The device has no queue. Common case for software devices: 3087 loopback, all the sorts of tunnels... 3088 3089 Really, it is unlikely that netif_tx_lock protection is necessary 3090 here. (f.e. loopback and IP tunnels are clean ignoring statistics 3091 counters.) 3092 However, it is possible, that they rely on protection 3093 made by us here. 3094 3095 Check this and shot the lock. It is not prone from deadlocks. 3096 Either shot noqueue qdisc, it is even simpler 8) 3097 */ 3098 if (dev->flags & IFF_UP) { 3099 int cpu = smp_processor_id(); /* ok because BHs are off */ 3100 3101 if (txq->xmit_lock_owner != cpu) { 3102 3103 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 3104 goto recursion_alert; 3105 3106 skb = validate_xmit_skb(skb, dev); 3107 if (!skb) 3108 goto drop; 3109 3110 HARD_TX_LOCK(dev, txq, cpu); 3111 3112 if (!netif_xmit_stopped(txq)) { 3113 __this_cpu_inc(xmit_recursion); 3114 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3115 __this_cpu_dec(xmit_recursion); 3116 if (dev_xmit_complete(rc)) { 3117 HARD_TX_UNLOCK(dev, txq); 3118 goto out; 3119 } 3120 } 3121 HARD_TX_UNLOCK(dev, txq); 3122 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3123 dev->name); 3124 } else { 3125 /* Recursion is detected! It is possible, 3126 * unfortunately 3127 */ 3128 recursion_alert: 3129 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3130 dev->name); 3131 } 3132 } 3133 3134 rc = -ENETDOWN; 3135 drop: 3136 rcu_read_unlock_bh(); 3137 3138 atomic_long_inc(&dev->tx_dropped); 3139 kfree_skb_list(skb); 3140 return rc; 3141 out: 3142 rcu_read_unlock_bh(); 3143 return rc; 3144 } 3145 3146 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb) 3147 { 3148 return __dev_queue_xmit(skb, NULL); 3149 } 3150 EXPORT_SYMBOL(dev_queue_xmit_sk); 3151 3152 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3153 { 3154 return __dev_queue_xmit(skb, accel_priv); 3155 } 3156 EXPORT_SYMBOL(dev_queue_xmit_accel); 3157 3158 3159 /*======================================================================= 3160 Receiver routines 3161 =======================================================================*/ 3162 3163 int netdev_max_backlog __read_mostly = 1000; 3164 EXPORT_SYMBOL(netdev_max_backlog); 3165 3166 int netdev_tstamp_prequeue __read_mostly = 1; 3167 int netdev_budget __read_mostly = 300; 3168 int weight_p __read_mostly = 64; /* old backlog weight */ 3169 3170 /* Called with irq disabled */ 3171 static inline void ____napi_schedule(struct softnet_data *sd, 3172 struct napi_struct *napi) 3173 { 3174 list_add_tail(&napi->poll_list, &sd->poll_list); 3175 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3176 } 3177 3178 #ifdef CONFIG_RPS 3179 3180 /* One global table that all flow-based protocols share. */ 3181 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3182 EXPORT_SYMBOL(rps_sock_flow_table); 3183 u32 rps_cpu_mask __read_mostly; 3184 EXPORT_SYMBOL(rps_cpu_mask); 3185 3186 struct static_key rps_needed __read_mostly; 3187 3188 static struct rps_dev_flow * 3189 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3190 struct rps_dev_flow *rflow, u16 next_cpu) 3191 { 3192 if (next_cpu < nr_cpu_ids) { 3193 #ifdef CONFIG_RFS_ACCEL 3194 struct netdev_rx_queue *rxqueue; 3195 struct rps_dev_flow_table *flow_table; 3196 struct rps_dev_flow *old_rflow; 3197 u32 flow_id; 3198 u16 rxq_index; 3199 int rc; 3200 3201 /* Should we steer this flow to a different hardware queue? */ 3202 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3203 !(dev->features & NETIF_F_NTUPLE)) 3204 goto out; 3205 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3206 if (rxq_index == skb_get_rx_queue(skb)) 3207 goto out; 3208 3209 rxqueue = dev->_rx + rxq_index; 3210 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3211 if (!flow_table) 3212 goto out; 3213 flow_id = skb_get_hash(skb) & flow_table->mask; 3214 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3215 rxq_index, flow_id); 3216 if (rc < 0) 3217 goto out; 3218 old_rflow = rflow; 3219 rflow = &flow_table->flows[flow_id]; 3220 rflow->filter = rc; 3221 if (old_rflow->filter == rflow->filter) 3222 old_rflow->filter = RPS_NO_FILTER; 3223 out: 3224 #endif 3225 rflow->last_qtail = 3226 per_cpu(softnet_data, next_cpu).input_queue_head; 3227 } 3228 3229 rflow->cpu = next_cpu; 3230 return rflow; 3231 } 3232 3233 /* 3234 * get_rps_cpu is called from netif_receive_skb and returns the target 3235 * CPU from the RPS map of the receiving queue for a given skb. 3236 * rcu_read_lock must be held on entry. 3237 */ 3238 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3239 struct rps_dev_flow **rflowp) 3240 { 3241 const struct rps_sock_flow_table *sock_flow_table; 3242 struct netdev_rx_queue *rxqueue = dev->_rx; 3243 struct rps_dev_flow_table *flow_table; 3244 struct rps_map *map; 3245 int cpu = -1; 3246 u32 tcpu; 3247 u32 hash; 3248 3249 if (skb_rx_queue_recorded(skb)) { 3250 u16 index = skb_get_rx_queue(skb); 3251 3252 if (unlikely(index >= dev->real_num_rx_queues)) { 3253 WARN_ONCE(dev->real_num_rx_queues > 1, 3254 "%s received packet on queue %u, but number " 3255 "of RX queues is %u\n", 3256 dev->name, index, dev->real_num_rx_queues); 3257 goto done; 3258 } 3259 rxqueue += index; 3260 } 3261 3262 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3263 3264 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3265 map = rcu_dereference(rxqueue->rps_map); 3266 if (!flow_table && !map) 3267 goto done; 3268 3269 skb_reset_network_header(skb); 3270 hash = skb_get_hash(skb); 3271 if (!hash) 3272 goto done; 3273 3274 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3275 if (flow_table && sock_flow_table) { 3276 struct rps_dev_flow *rflow; 3277 u32 next_cpu; 3278 u32 ident; 3279 3280 /* First check into global flow table if there is a match */ 3281 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3282 if ((ident ^ hash) & ~rps_cpu_mask) 3283 goto try_rps; 3284 3285 next_cpu = ident & rps_cpu_mask; 3286 3287 /* OK, now we know there is a match, 3288 * we can look at the local (per receive queue) flow table 3289 */ 3290 rflow = &flow_table->flows[hash & flow_table->mask]; 3291 tcpu = rflow->cpu; 3292 3293 /* 3294 * If the desired CPU (where last recvmsg was done) is 3295 * different from current CPU (one in the rx-queue flow 3296 * table entry), switch if one of the following holds: 3297 * - Current CPU is unset (>= nr_cpu_ids). 3298 * - Current CPU is offline. 3299 * - The current CPU's queue tail has advanced beyond the 3300 * last packet that was enqueued using this table entry. 3301 * This guarantees that all previous packets for the flow 3302 * have been dequeued, thus preserving in order delivery. 3303 */ 3304 if (unlikely(tcpu != next_cpu) && 3305 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3306 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3307 rflow->last_qtail)) >= 0)) { 3308 tcpu = next_cpu; 3309 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3310 } 3311 3312 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3313 *rflowp = rflow; 3314 cpu = tcpu; 3315 goto done; 3316 } 3317 } 3318 3319 try_rps: 3320 3321 if (map) { 3322 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3323 if (cpu_online(tcpu)) { 3324 cpu = tcpu; 3325 goto done; 3326 } 3327 } 3328 3329 done: 3330 return cpu; 3331 } 3332 3333 #ifdef CONFIG_RFS_ACCEL 3334 3335 /** 3336 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3337 * @dev: Device on which the filter was set 3338 * @rxq_index: RX queue index 3339 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3340 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3341 * 3342 * Drivers that implement ndo_rx_flow_steer() should periodically call 3343 * this function for each installed filter and remove the filters for 3344 * which it returns %true. 3345 */ 3346 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3347 u32 flow_id, u16 filter_id) 3348 { 3349 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3350 struct rps_dev_flow_table *flow_table; 3351 struct rps_dev_flow *rflow; 3352 bool expire = true; 3353 unsigned int cpu; 3354 3355 rcu_read_lock(); 3356 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3357 if (flow_table && flow_id <= flow_table->mask) { 3358 rflow = &flow_table->flows[flow_id]; 3359 cpu = ACCESS_ONCE(rflow->cpu); 3360 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3361 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3362 rflow->last_qtail) < 3363 (int)(10 * flow_table->mask))) 3364 expire = false; 3365 } 3366 rcu_read_unlock(); 3367 return expire; 3368 } 3369 EXPORT_SYMBOL(rps_may_expire_flow); 3370 3371 #endif /* CONFIG_RFS_ACCEL */ 3372 3373 /* Called from hardirq (IPI) context */ 3374 static void rps_trigger_softirq(void *data) 3375 { 3376 struct softnet_data *sd = data; 3377 3378 ____napi_schedule(sd, &sd->backlog); 3379 sd->received_rps++; 3380 } 3381 3382 #endif /* CONFIG_RPS */ 3383 3384 /* 3385 * Check if this softnet_data structure is another cpu one 3386 * If yes, queue it to our IPI list and return 1 3387 * If no, return 0 3388 */ 3389 static int rps_ipi_queued(struct softnet_data *sd) 3390 { 3391 #ifdef CONFIG_RPS 3392 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3393 3394 if (sd != mysd) { 3395 sd->rps_ipi_next = mysd->rps_ipi_list; 3396 mysd->rps_ipi_list = sd; 3397 3398 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3399 return 1; 3400 } 3401 #endif /* CONFIG_RPS */ 3402 return 0; 3403 } 3404 3405 #ifdef CONFIG_NET_FLOW_LIMIT 3406 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3407 #endif 3408 3409 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3410 { 3411 #ifdef CONFIG_NET_FLOW_LIMIT 3412 struct sd_flow_limit *fl; 3413 struct softnet_data *sd; 3414 unsigned int old_flow, new_flow; 3415 3416 if (qlen < (netdev_max_backlog >> 1)) 3417 return false; 3418 3419 sd = this_cpu_ptr(&softnet_data); 3420 3421 rcu_read_lock(); 3422 fl = rcu_dereference(sd->flow_limit); 3423 if (fl) { 3424 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3425 old_flow = fl->history[fl->history_head]; 3426 fl->history[fl->history_head] = new_flow; 3427 3428 fl->history_head++; 3429 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3430 3431 if (likely(fl->buckets[old_flow])) 3432 fl->buckets[old_flow]--; 3433 3434 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3435 fl->count++; 3436 rcu_read_unlock(); 3437 return true; 3438 } 3439 } 3440 rcu_read_unlock(); 3441 #endif 3442 return false; 3443 } 3444 3445 /* 3446 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3447 * queue (may be a remote CPU queue). 3448 */ 3449 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3450 unsigned int *qtail) 3451 { 3452 struct softnet_data *sd; 3453 unsigned long flags; 3454 unsigned int qlen; 3455 3456 sd = &per_cpu(softnet_data, cpu); 3457 3458 local_irq_save(flags); 3459 3460 rps_lock(sd); 3461 if (!netif_running(skb->dev)) 3462 goto drop; 3463 qlen = skb_queue_len(&sd->input_pkt_queue); 3464 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3465 if (qlen) { 3466 enqueue: 3467 __skb_queue_tail(&sd->input_pkt_queue, skb); 3468 input_queue_tail_incr_save(sd, qtail); 3469 rps_unlock(sd); 3470 local_irq_restore(flags); 3471 return NET_RX_SUCCESS; 3472 } 3473 3474 /* Schedule NAPI for backlog device 3475 * We can use non atomic operation since we own the queue lock 3476 */ 3477 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3478 if (!rps_ipi_queued(sd)) 3479 ____napi_schedule(sd, &sd->backlog); 3480 } 3481 goto enqueue; 3482 } 3483 3484 drop: 3485 sd->dropped++; 3486 rps_unlock(sd); 3487 3488 local_irq_restore(flags); 3489 3490 atomic_long_inc(&skb->dev->rx_dropped); 3491 kfree_skb(skb); 3492 return NET_RX_DROP; 3493 } 3494 3495 static int netif_rx_internal(struct sk_buff *skb) 3496 { 3497 int ret; 3498 3499 net_timestamp_check(netdev_tstamp_prequeue, skb); 3500 3501 trace_netif_rx(skb); 3502 #ifdef CONFIG_RPS 3503 if (static_key_false(&rps_needed)) { 3504 struct rps_dev_flow voidflow, *rflow = &voidflow; 3505 int cpu; 3506 3507 preempt_disable(); 3508 rcu_read_lock(); 3509 3510 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3511 if (cpu < 0) 3512 cpu = smp_processor_id(); 3513 3514 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3515 3516 rcu_read_unlock(); 3517 preempt_enable(); 3518 } else 3519 #endif 3520 { 3521 unsigned int qtail; 3522 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3523 put_cpu(); 3524 } 3525 return ret; 3526 } 3527 3528 /** 3529 * netif_rx - post buffer to the network code 3530 * @skb: buffer to post 3531 * 3532 * This function receives a packet from a device driver and queues it for 3533 * the upper (protocol) levels to process. It always succeeds. The buffer 3534 * may be dropped during processing for congestion control or by the 3535 * protocol layers. 3536 * 3537 * return values: 3538 * NET_RX_SUCCESS (no congestion) 3539 * NET_RX_DROP (packet was dropped) 3540 * 3541 */ 3542 3543 int netif_rx(struct sk_buff *skb) 3544 { 3545 trace_netif_rx_entry(skb); 3546 3547 return netif_rx_internal(skb); 3548 } 3549 EXPORT_SYMBOL(netif_rx); 3550 3551 int netif_rx_ni(struct sk_buff *skb) 3552 { 3553 int err; 3554 3555 trace_netif_rx_ni_entry(skb); 3556 3557 preempt_disable(); 3558 err = netif_rx_internal(skb); 3559 if (local_softirq_pending()) 3560 do_softirq(); 3561 preempt_enable(); 3562 3563 return err; 3564 } 3565 EXPORT_SYMBOL(netif_rx_ni); 3566 3567 static void net_tx_action(struct softirq_action *h) 3568 { 3569 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3570 3571 if (sd->completion_queue) { 3572 struct sk_buff *clist; 3573 3574 local_irq_disable(); 3575 clist = sd->completion_queue; 3576 sd->completion_queue = NULL; 3577 local_irq_enable(); 3578 3579 while (clist) { 3580 struct sk_buff *skb = clist; 3581 clist = clist->next; 3582 3583 WARN_ON(atomic_read(&skb->users)); 3584 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3585 trace_consume_skb(skb); 3586 else 3587 trace_kfree_skb(skb, net_tx_action); 3588 __kfree_skb(skb); 3589 } 3590 } 3591 3592 if (sd->output_queue) { 3593 struct Qdisc *head; 3594 3595 local_irq_disable(); 3596 head = sd->output_queue; 3597 sd->output_queue = NULL; 3598 sd->output_queue_tailp = &sd->output_queue; 3599 local_irq_enable(); 3600 3601 while (head) { 3602 struct Qdisc *q = head; 3603 spinlock_t *root_lock; 3604 3605 head = head->next_sched; 3606 3607 root_lock = qdisc_lock(q); 3608 if (spin_trylock(root_lock)) { 3609 smp_mb__before_atomic(); 3610 clear_bit(__QDISC_STATE_SCHED, 3611 &q->state); 3612 qdisc_run(q); 3613 spin_unlock(root_lock); 3614 } else { 3615 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3616 &q->state)) { 3617 __netif_reschedule(q); 3618 } else { 3619 smp_mb__before_atomic(); 3620 clear_bit(__QDISC_STATE_SCHED, 3621 &q->state); 3622 } 3623 } 3624 } 3625 } 3626 } 3627 3628 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3629 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3630 /* This hook is defined here for ATM LANE */ 3631 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3632 unsigned char *addr) __read_mostly; 3633 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3634 #endif 3635 3636 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3637 struct packet_type **pt_prev, 3638 int *ret, struct net_device *orig_dev) 3639 { 3640 #ifdef CONFIG_NET_CLS_ACT 3641 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 3642 struct tcf_result cl_res; 3643 3644 /* If there's at least one ingress present somewhere (so 3645 * we get here via enabled static key), remaining devices 3646 * that are not configured with an ingress qdisc will bail 3647 * out here. 3648 */ 3649 if (!cl) 3650 return skb; 3651 if (*pt_prev) { 3652 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3653 *pt_prev = NULL; 3654 } 3655 3656 qdisc_skb_cb(skb)->pkt_len = skb->len; 3657 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3658 qdisc_bstats_cpu_update(cl->q, skb); 3659 3660 switch (tc_classify(skb, cl, &cl_res)) { 3661 case TC_ACT_OK: 3662 case TC_ACT_RECLASSIFY: 3663 skb->tc_index = TC_H_MIN(cl_res.classid); 3664 break; 3665 case TC_ACT_SHOT: 3666 qdisc_qstats_cpu_drop(cl->q); 3667 case TC_ACT_STOLEN: 3668 case TC_ACT_QUEUED: 3669 kfree_skb(skb); 3670 return NULL; 3671 default: 3672 break; 3673 } 3674 #endif /* CONFIG_NET_CLS_ACT */ 3675 return skb; 3676 } 3677 3678 /** 3679 * netdev_rx_handler_register - register receive handler 3680 * @dev: device to register a handler for 3681 * @rx_handler: receive handler to register 3682 * @rx_handler_data: data pointer that is used by rx handler 3683 * 3684 * Register a receive handler for a device. This handler will then be 3685 * called from __netif_receive_skb. A negative errno code is returned 3686 * on a failure. 3687 * 3688 * The caller must hold the rtnl_mutex. 3689 * 3690 * For a general description of rx_handler, see enum rx_handler_result. 3691 */ 3692 int netdev_rx_handler_register(struct net_device *dev, 3693 rx_handler_func_t *rx_handler, 3694 void *rx_handler_data) 3695 { 3696 ASSERT_RTNL(); 3697 3698 if (dev->rx_handler) 3699 return -EBUSY; 3700 3701 /* Note: rx_handler_data must be set before rx_handler */ 3702 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3703 rcu_assign_pointer(dev->rx_handler, rx_handler); 3704 3705 return 0; 3706 } 3707 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3708 3709 /** 3710 * netdev_rx_handler_unregister - unregister receive handler 3711 * @dev: device to unregister a handler from 3712 * 3713 * Unregister a receive handler from a device. 3714 * 3715 * The caller must hold the rtnl_mutex. 3716 */ 3717 void netdev_rx_handler_unregister(struct net_device *dev) 3718 { 3719 3720 ASSERT_RTNL(); 3721 RCU_INIT_POINTER(dev->rx_handler, NULL); 3722 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3723 * section has a guarantee to see a non NULL rx_handler_data 3724 * as well. 3725 */ 3726 synchronize_net(); 3727 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3728 } 3729 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3730 3731 /* 3732 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3733 * the special handling of PFMEMALLOC skbs. 3734 */ 3735 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3736 { 3737 switch (skb->protocol) { 3738 case htons(ETH_P_ARP): 3739 case htons(ETH_P_IP): 3740 case htons(ETH_P_IPV6): 3741 case htons(ETH_P_8021Q): 3742 case htons(ETH_P_8021AD): 3743 return true; 3744 default: 3745 return false; 3746 } 3747 } 3748 3749 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 3750 int *ret, struct net_device *orig_dev) 3751 { 3752 #ifdef CONFIG_NETFILTER_INGRESS 3753 if (nf_hook_ingress_active(skb)) { 3754 if (*pt_prev) { 3755 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3756 *pt_prev = NULL; 3757 } 3758 3759 return nf_hook_ingress(skb); 3760 } 3761 #endif /* CONFIG_NETFILTER_INGRESS */ 3762 return 0; 3763 } 3764 3765 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3766 { 3767 struct packet_type *ptype, *pt_prev; 3768 rx_handler_func_t *rx_handler; 3769 struct net_device *orig_dev; 3770 bool deliver_exact = false; 3771 int ret = NET_RX_DROP; 3772 __be16 type; 3773 3774 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3775 3776 trace_netif_receive_skb(skb); 3777 3778 orig_dev = skb->dev; 3779 3780 skb_reset_network_header(skb); 3781 if (!skb_transport_header_was_set(skb)) 3782 skb_reset_transport_header(skb); 3783 skb_reset_mac_len(skb); 3784 3785 pt_prev = NULL; 3786 3787 another_round: 3788 skb->skb_iif = skb->dev->ifindex; 3789 3790 __this_cpu_inc(softnet_data.processed); 3791 3792 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3793 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3794 skb = skb_vlan_untag(skb); 3795 if (unlikely(!skb)) 3796 goto out; 3797 } 3798 3799 #ifdef CONFIG_NET_CLS_ACT 3800 if (skb->tc_verd & TC_NCLS) { 3801 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3802 goto ncls; 3803 } 3804 #endif 3805 3806 if (pfmemalloc) 3807 goto skip_taps; 3808 3809 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3810 if (pt_prev) 3811 ret = deliver_skb(skb, pt_prev, orig_dev); 3812 pt_prev = ptype; 3813 } 3814 3815 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 3816 if (pt_prev) 3817 ret = deliver_skb(skb, pt_prev, orig_dev); 3818 pt_prev = ptype; 3819 } 3820 3821 skip_taps: 3822 #ifdef CONFIG_NET_INGRESS 3823 if (static_key_false(&ingress_needed)) { 3824 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3825 if (!skb) 3826 goto out; 3827 3828 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 3829 goto out; 3830 } 3831 #endif 3832 #ifdef CONFIG_NET_CLS_ACT 3833 skb->tc_verd = 0; 3834 ncls: 3835 #endif 3836 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3837 goto drop; 3838 3839 if (skb_vlan_tag_present(skb)) { 3840 if (pt_prev) { 3841 ret = deliver_skb(skb, pt_prev, orig_dev); 3842 pt_prev = NULL; 3843 } 3844 if (vlan_do_receive(&skb)) 3845 goto another_round; 3846 else if (unlikely(!skb)) 3847 goto out; 3848 } 3849 3850 rx_handler = rcu_dereference(skb->dev->rx_handler); 3851 if (rx_handler) { 3852 if (pt_prev) { 3853 ret = deliver_skb(skb, pt_prev, orig_dev); 3854 pt_prev = NULL; 3855 } 3856 switch (rx_handler(&skb)) { 3857 case RX_HANDLER_CONSUMED: 3858 ret = NET_RX_SUCCESS; 3859 goto out; 3860 case RX_HANDLER_ANOTHER: 3861 goto another_round; 3862 case RX_HANDLER_EXACT: 3863 deliver_exact = true; 3864 case RX_HANDLER_PASS: 3865 break; 3866 default: 3867 BUG(); 3868 } 3869 } 3870 3871 if (unlikely(skb_vlan_tag_present(skb))) { 3872 if (skb_vlan_tag_get_id(skb)) 3873 skb->pkt_type = PACKET_OTHERHOST; 3874 /* Note: we might in the future use prio bits 3875 * and set skb->priority like in vlan_do_receive() 3876 * For the time being, just ignore Priority Code Point 3877 */ 3878 skb->vlan_tci = 0; 3879 } 3880 3881 type = skb->protocol; 3882 3883 /* deliver only exact match when indicated */ 3884 if (likely(!deliver_exact)) { 3885 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3886 &ptype_base[ntohs(type) & 3887 PTYPE_HASH_MASK]); 3888 } 3889 3890 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3891 &orig_dev->ptype_specific); 3892 3893 if (unlikely(skb->dev != orig_dev)) { 3894 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3895 &skb->dev->ptype_specific); 3896 } 3897 3898 if (pt_prev) { 3899 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3900 goto drop; 3901 else 3902 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3903 } else { 3904 drop: 3905 atomic_long_inc(&skb->dev->rx_dropped); 3906 kfree_skb(skb); 3907 /* Jamal, now you will not able to escape explaining 3908 * me how you were going to use this. :-) 3909 */ 3910 ret = NET_RX_DROP; 3911 } 3912 3913 out: 3914 return ret; 3915 } 3916 3917 static int __netif_receive_skb(struct sk_buff *skb) 3918 { 3919 int ret; 3920 3921 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3922 unsigned long pflags = current->flags; 3923 3924 /* 3925 * PFMEMALLOC skbs are special, they should 3926 * - be delivered to SOCK_MEMALLOC sockets only 3927 * - stay away from userspace 3928 * - have bounded memory usage 3929 * 3930 * Use PF_MEMALLOC as this saves us from propagating the allocation 3931 * context down to all allocation sites. 3932 */ 3933 current->flags |= PF_MEMALLOC; 3934 ret = __netif_receive_skb_core(skb, true); 3935 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3936 } else 3937 ret = __netif_receive_skb_core(skb, false); 3938 3939 return ret; 3940 } 3941 3942 static int netif_receive_skb_internal(struct sk_buff *skb) 3943 { 3944 int ret; 3945 3946 net_timestamp_check(netdev_tstamp_prequeue, skb); 3947 3948 if (skb_defer_rx_timestamp(skb)) 3949 return NET_RX_SUCCESS; 3950 3951 rcu_read_lock(); 3952 3953 #ifdef CONFIG_RPS 3954 if (static_key_false(&rps_needed)) { 3955 struct rps_dev_flow voidflow, *rflow = &voidflow; 3956 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 3957 3958 if (cpu >= 0) { 3959 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3960 rcu_read_unlock(); 3961 return ret; 3962 } 3963 } 3964 #endif 3965 ret = __netif_receive_skb(skb); 3966 rcu_read_unlock(); 3967 return ret; 3968 } 3969 3970 /** 3971 * netif_receive_skb - process receive buffer from network 3972 * @skb: buffer to process 3973 * 3974 * netif_receive_skb() is the main receive data processing function. 3975 * It always succeeds. The buffer may be dropped during processing 3976 * for congestion control or by the protocol layers. 3977 * 3978 * This function may only be called from softirq context and interrupts 3979 * should be enabled. 3980 * 3981 * Return values (usually ignored): 3982 * NET_RX_SUCCESS: no congestion 3983 * NET_RX_DROP: packet was dropped 3984 */ 3985 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb) 3986 { 3987 trace_netif_receive_skb_entry(skb); 3988 3989 return netif_receive_skb_internal(skb); 3990 } 3991 EXPORT_SYMBOL(netif_receive_skb_sk); 3992 3993 /* Network device is going away, flush any packets still pending 3994 * Called with irqs disabled. 3995 */ 3996 static void flush_backlog(void *arg) 3997 { 3998 struct net_device *dev = arg; 3999 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4000 struct sk_buff *skb, *tmp; 4001 4002 rps_lock(sd); 4003 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4004 if (skb->dev == dev) { 4005 __skb_unlink(skb, &sd->input_pkt_queue); 4006 kfree_skb(skb); 4007 input_queue_head_incr(sd); 4008 } 4009 } 4010 rps_unlock(sd); 4011 4012 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4013 if (skb->dev == dev) { 4014 __skb_unlink(skb, &sd->process_queue); 4015 kfree_skb(skb); 4016 input_queue_head_incr(sd); 4017 } 4018 } 4019 } 4020 4021 static int napi_gro_complete(struct sk_buff *skb) 4022 { 4023 struct packet_offload *ptype; 4024 __be16 type = skb->protocol; 4025 struct list_head *head = &offload_base; 4026 int err = -ENOENT; 4027 4028 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4029 4030 if (NAPI_GRO_CB(skb)->count == 1) { 4031 skb_shinfo(skb)->gso_size = 0; 4032 goto out; 4033 } 4034 4035 rcu_read_lock(); 4036 list_for_each_entry_rcu(ptype, head, list) { 4037 if (ptype->type != type || !ptype->callbacks.gro_complete) 4038 continue; 4039 4040 err = ptype->callbacks.gro_complete(skb, 0); 4041 break; 4042 } 4043 rcu_read_unlock(); 4044 4045 if (err) { 4046 WARN_ON(&ptype->list == head); 4047 kfree_skb(skb); 4048 return NET_RX_SUCCESS; 4049 } 4050 4051 out: 4052 return netif_receive_skb_internal(skb); 4053 } 4054 4055 /* napi->gro_list contains packets ordered by age. 4056 * youngest packets at the head of it. 4057 * Complete skbs in reverse order to reduce latencies. 4058 */ 4059 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4060 { 4061 struct sk_buff *skb, *prev = NULL; 4062 4063 /* scan list and build reverse chain */ 4064 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4065 skb->prev = prev; 4066 prev = skb; 4067 } 4068 4069 for (skb = prev; skb; skb = prev) { 4070 skb->next = NULL; 4071 4072 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4073 return; 4074 4075 prev = skb->prev; 4076 napi_gro_complete(skb); 4077 napi->gro_count--; 4078 } 4079 4080 napi->gro_list = NULL; 4081 } 4082 EXPORT_SYMBOL(napi_gro_flush); 4083 4084 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4085 { 4086 struct sk_buff *p; 4087 unsigned int maclen = skb->dev->hard_header_len; 4088 u32 hash = skb_get_hash_raw(skb); 4089 4090 for (p = napi->gro_list; p; p = p->next) { 4091 unsigned long diffs; 4092 4093 NAPI_GRO_CB(p)->flush = 0; 4094 4095 if (hash != skb_get_hash_raw(p)) { 4096 NAPI_GRO_CB(p)->same_flow = 0; 4097 continue; 4098 } 4099 4100 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4101 diffs |= p->vlan_tci ^ skb->vlan_tci; 4102 if (maclen == ETH_HLEN) 4103 diffs |= compare_ether_header(skb_mac_header(p), 4104 skb_mac_header(skb)); 4105 else if (!diffs) 4106 diffs = memcmp(skb_mac_header(p), 4107 skb_mac_header(skb), 4108 maclen); 4109 NAPI_GRO_CB(p)->same_flow = !diffs; 4110 } 4111 } 4112 4113 static void skb_gro_reset_offset(struct sk_buff *skb) 4114 { 4115 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4116 const skb_frag_t *frag0 = &pinfo->frags[0]; 4117 4118 NAPI_GRO_CB(skb)->data_offset = 0; 4119 NAPI_GRO_CB(skb)->frag0 = NULL; 4120 NAPI_GRO_CB(skb)->frag0_len = 0; 4121 4122 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4123 pinfo->nr_frags && 4124 !PageHighMem(skb_frag_page(frag0))) { 4125 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4126 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 4127 } 4128 } 4129 4130 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4131 { 4132 struct skb_shared_info *pinfo = skb_shinfo(skb); 4133 4134 BUG_ON(skb->end - skb->tail < grow); 4135 4136 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4137 4138 skb->data_len -= grow; 4139 skb->tail += grow; 4140 4141 pinfo->frags[0].page_offset += grow; 4142 skb_frag_size_sub(&pinfo->frags[0], grow); 4143 4144 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4145 skb_frag_unref(skb, 0); 4146 memmove(pinfo->frags, pinfo->frags + 1, 4147 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4148 } 4149 } 4150 4151 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4152 { 4153 struct sk_buff **pp = NULL; 4154 struct packet_offload *ptype; 4155 __be16 type = skb->protocol; 4156 struct list_head *head = &offload_base; 4157 int same_flow; 4158 enum gro_result ret; 4159 int grow; 4160 4161 if (!(skb->dev->features & NETIF_F_GRO)) 4162 goto normal; 4163 4164 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad) 4165 goto normal; 4166 4167 gro_list_prepare(napi, skb); 4168 4169 rcu_read_lock(); 4170 list_for_each_entry_rcu(ptype, head, list) { 4171 if (ptype->type != type || !ptype->callbacks.gro_receive) 4172 continue; 4173 4174 skb_set_network_header(skb, skb_gro_offset(skb)); 4175 skb_reset_mac_len(skb); 4176 NAPI_GRO_CB(skb)->same_flow = 0; 4177 NAPI_GRO_CB(skb)->flush = 0; 4178 NAPI_GRO_CB(skb)->free = 0; 4179 NAPI_GRO_CB(skb)->udp_mark = 0; 4180 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4181 4182 /* Setup for GRO checksum validation */ 4183 switch (skb->ip_summed) { 4184 case CHECKSUM_COMPLETE: 4185 NAPI_GRO_CB(skb)->csum = skb->csum; 4186 NAPI_GRO_CB(skb)->csum_valid = 1; 4187 NAPI_GRO_CB(skb)->csum_cnt = 0; 4188 break; 4189 case CHECKSUM_UNNECESSARY: 4190 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4191 NAPI_GRO_CB(skb)->csum_valid = 0; 4192 break; 4193 default: 4194 NAPI_GRO_CB(skb)->csum_cnt = 0; 4195 NAPI_GRO_CB(skb)->csum_valid = 0; 4196 } 4197 4198 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4199 break; 4200 } 4201 rcu_read_unlock(); 4202 4203 if (&ptype->list == head) 4204 goto normal; 4205 4206 same_flow = NAPI_GRO_CB(skb)->same_flow; 4207 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4208 4209 if (pp) { 4210 struct sk_buff *nskb = *pp; 4211 4212 *pp = nskb->next; 4213 nskb->next = NULL; 4214 napi_gro_complete(nskb); 4215 napi->gro_count--; 4216 } 4217 4218 if (same_flow) 4219 goto ok; 4220 4221 if (NAPI_GRO_CB(skb)->flush) 4222 goto normal; 4223 4224 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4225 struct sk_buff *nskb = napi->gro_list; 4226 4227 /* locate the end of the list to select the 'oldest' flow */ 4228 while (nskb->next) { 4229 pp = &nskb->next; 4230 nskb = *pp; 4231 } 4232 *pp = NULL; 4233 nskb->next = NULL; 4234 napi_gro_complete(nskb); 4235 } else { 4236 napi->gro_count++; 4237 } 4238 NAPI_GRO_CB(skb)->count = 1; 4239 NAPI_GRO_CB(skb)->age = jiffies; 4240 NAPI_GRO_CB(skb)->last = skb; 4241 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4242 skb->next = napi->gro_list; 4243 napi->gro_list = skb; 4244 ret = GRO_HELD; 4245 4246 pull: 4247 grow = skb_gro_offset(skb) - skb_headlen(skb); 4248 if (grow > 0) 4249 gro_pull_from_frag0(skb, grow); 4250 ok: 4251 return ret; 4252 4253 normal: 4254 ret = GRO_NORMAL; 4255 goto pull; 4256 } 4257 4258 struct packet_offload *gro_find_receive_by_type(__be16 type) 4259 { 4260 struct list_head *offload_head = &offload_base; 4261 struct packet_offload *ptype; 4262 4263 list_for_each_entry_rcu(ptype, offload_head, list) { 4264 if (ptype->type != type || !ptype->callbacks.gro_receive) 4265 continue; 4266 return ptype; 4267 } 4268 return NULL; 4269 } 4270 EXPORT_SYMBOL(gro_find_receive_by_type); 4271 4272 struct packet_offload *gro_find_complete_by_type(__be16 type) 4273 { 4274 struct list_head *offload_head = &offload_base; 4275 struct packet_offload *ptype; 4276 4277 list_for_each_entry_rcu(ptype, offload_head, list) { 4278 if (ptype->type != type || !ptype->callbacks.gro_complete) 4279 continue; 4280 return ptype; 4281 } 4282 return NULL; 4283 } 4284 EXPORT_SYMBOL(gro_find_complete_by_type); 4285 4286 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4287 { 4288 switch (ret) { 4289 case GRO_NORMAL: 4290 if (netif_receive_skb_internal(skb)) 4291 ret = GRO_DROP; 4292 break; 4293 4294 case GRO_DROP: 4295 kfree_skb(skb); 4296 break; 4297 4298 case GRO_MERGED_FREE: 4299 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4300 kmem_cache_free(skbuff_head_cache, skb); 4301 else 4302 __kfree_skb(skb); 4303 break; 4304 4305 case GRO_HELD: 4306 case GRO_MERGED: 4307 break; 4308 } 4309 4310 return ret; 4311 } 4312 4313 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4314 { 4315 trace_napi_gro_receive_entry(skb); 4316 4317 skb_gro_reset_offset(skb); 4318 4319 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4320 } 4321 EXPORT_SYMBOL(napi_gro_receive); 4322 4323 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4324 { 4325 if (unlikely(skb->pfmemalloc)) { 4326 consume_skb(skb); 4327 return; 4328 } 4329 __skb_pull(skb, skb_headlen(skb)); 4330 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4331 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4332 skb->vlan_tci = 0; 4333 skb->dev = napi->dev; 4334 skb->skb_iif = 0; 4335 skb->encapsulation = 0; 4336 skb_shinfo(skb)->gso_type = 0; 4337 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4338 4339 napi->skb = skb; 4340 } 4341 4342 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4343 { 4344 struct sk_buff *skb = napi->skb; 4345 4346 if (!skb) { 4347 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4348 napi->skb = skb; 4349 } 4350 return skb; 4351 } 4352 EXPORT_SYMBOL(napi_get_frags); 4353 4354 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4355 struct sk_buff *skb, 4356 gro_result_t ret) 4357 { 4358 switch (ret) { 4359 case GRO_NORMAL: 4360 case GRO_HELD: 4361 __skb_push(skb, ETH_HLEN); 4362 skb->protocol = eth_type_trans(skb, skb->dev); 4363 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4364 ret = GRO_DROP; 4365 break; 4366 4367 case GRO_DROP: 4368 case GRO_MERGED_FREE: 4369 napi_reuse_skb(napi, skb); 4370 break; 4371 4372 case GRO_MERGED: 4373 break; 4374 } 4375 4376 return ret; 4377 } 4378 4379 /* Upper GRO stack assumes network header starts at gro_offset=0 4380 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4381 * We copy ethernet header into skb->data to have a common layout. 4382 */ 4383 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4384 { 4385 struct sk_buff *skb = napi->skb; 4386 const struct ethhdr *eth; 4387 unsigned int hlen = sizeof(*eth); 4388 4389 napi->skb = NULL; 4390 4391 skb_reset_mac_header(skb); 4392 skb_gro_reset_offset(skb); 4393 4394 eth = skb_gro_header_fast(skb, 0); 4395 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4396 eth = skb_gro_header_slow(skb, hlen, 0); 4397 if (unlikely(!eth)) { 4398 napi_reuse_skb(napi, skb); 4399 return NULL; 4400 } 4401 } else { 4402 gro_pull_from_frag0(skb, hlen); 4403 NAPI_GRO_CB(skb)->frag0 += hlen; 4404 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4405 } 4406 __skb_pull(skb, hlen); 4407 4408 /* 4409 * This works because the only protocols we care about don't require 4410 * special handling. 4411 * We'll fix it up properly in napi_frags_finish() 4412 */ 4413 skb->protocol = eth->h_proto; 4414 4415 return skb; 4416 } 4417 4418 gro_result_t napi_gro_frags(struct napi_struct *napi) 4419 { 4420 struct sk_buff *skb = napi_frags_skb(napi); 4421 4422 if (!skb) 4423 return GRO_DROP; 4424 4425 trace_napi_gro_frags_entry(skb); 4426 4427 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4428 } 4429 EXPORT_SYMBOL(napi_gro_frags); 4430 4431 /* Compute the checksum from gro_offset and return the folded value 4432 * after adding in any pseudo checksum. 4433 */ 4434 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4435 { 4436 __wsum wsum; 4437 __sum16 sum; 4438 4439 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4440 4441 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4442 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4443 if (likely(!sum)) { 4444 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4445 !skb->csum_complete_sw) 4446 netdev_rx_csum_fault(skb->dev); 4447 } 4448 4449 NAPI_GRO_CB(skb)->csum = wsum; 4450 NAPI_GRO_CB(skb)->csum_valid = 1; 4451 4452 return sum; 4453 } 4454 EXPORT_SYMBOL(__skb_gro_checksum_complete); 4455 4456 /* 4457 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4458 * Note: called with local irq disabled, but exits with local irq enabled. 4459 */ 4460 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4461 { 4462 #ifdef CONFIG_RPS 4463 struct softnet_data *remsd = sd->rps_ipi_list; 4464 4465 if (remsd) { 4466 sd->rps_ipi_list = NULL; 4467 4468 local_irq_enable(); 4469 4470 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4471 while (remsd) { 4472 struct softnet_data *next = remsd->rps_ipi_next; 4473 4474 if (cpu_online(remsd->cpu)) 4475 smp_call_function_single_async(remsd->cpu, 4476 &remsd->csd); 4477 remsd = next; 4478 } 4479 } else 4480 #endif 4481 local_irq_enable(); 4482 } 4483 4484 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4485 { 4486 #ifdef CONFIG_RPS 4487 return sd->rps_ipi_list != NULL; 4488 #else 4489 return false; 4490 #endif 4491 } 4492 4493 static int process_backlog(struct napi_struct *napi, int quota) 4494 { 4495 int work = 0; 4496 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4497 4498 /* Check if we have pending ipi, its better to send them now, 4499 * not waiting net_rx_action() end. 4500 */ 4501 if (sd_has_rps_ipi_waiting(sd)) { 4502 local_irq_disable(); 4503 net_rps_action_and_irq_enable(sd); 4504 } 4505 4506 napi->weight = weight_p; 4507 local_irq_disable(); 4508 while (1) { 4509 struct sk_buff *skb; 4510 4511 while ((skb = __skb_dequeue(&sd->process_queue))) { 4512 rcu_read_lock(); 4513 local_irq_enable(); 4514 __netif_receive_skb(skb); 4515 rcu_read_unlock(); 4516 local_irq_disable(); 4517 input_queue_head_incr(sd); 4518 if (++work >= quota) { 4519 local_irq_enable(); 4520 return work; 4521 } 4522 } 4523 4524 rps_lock(sd); 4525 if (skb_queue_empty(&sd->input_pkt_queue)) { 4526 /* 4527 * Inline a custom version of __napi_complete(). 4528 * only current cpu owns and manipulates this napi, 4529 * and NAPI_STATE_SCHED is the only possible flag set 4530 * on backlog. 4531 * We can use a plain write instead of clear_bit(), 4532 * and we dont need an smp_mb() memory barrier. 4533 */ 4534 napi->state = 0; 4535 rps_unlock(sd); 4536 4537 break; 4538 } 4539 4540 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4541 &sd->process_queue); 4542 rps_unlock(sd); 4543 } 4544 local_irq_enable(); 4545 4546 return work; 4547 } 4548 4549 /** 4550 * __napi_schedule - schedule for receive 4551 * @n: entry to schedule 4552 * 4553 * The entry's receive function will be scheduled to run. 4554 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 4555 */ 4556 void __napi_schedule(struct napi_struct *n) 4557 { 4558 unsigned long flags; 4559 4560 local_irq_save(flags); 4561 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4562 local_irq_restore(flags); 4563 } 4564 EXPORT_SYMBOL(__napi_schedule); 4565 4566 /** 4567 * __napi_schedule_irqoff - schedule for receive 4568 * @n: entry to schedule 4569 * 4570 * Variant of __napi_schedule() assuming hard irqs are masked 4571 */ 4572 void __napi_schedule_irqoff(struct napi_struct *n) 4573 { 4574 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4575 } 4576 EXPORT_SYMBOL(__napi_schedule_irqoff); 4577 4578 void __napi_complete(struct napi_struct *n) 4579 { 4580 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4581 4582 list_del_init(&n->poll_list); 4583 smp_mb__before_atomic(); 4584 clear_bit(NAPI_STATE_SCHED, &n->state); 4585 } 4586 EXPORT_SYMBOL(__napi_complete); 4587 4588 void napi_complete_done(struct napi_struct *n, int work_done) 4589 { 4590 unsigned long flags; 4591 4592 /* 4593 * don't let napi dequeue from the cpu poll list 4594 * just in case its running on a different cpu 4595 */ 4596 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4597 return; 4598 4599 if (n->gro_list) { 4600 unsigned long timeout = 0; 4601 4602 if (work_done) 4603 timeout = n->dev->gro_flush_timeout; 4604 4605 if (timeout) 4606 hrtimer_start(&n->timer, ns_to_ktime(timeout), 4607 HRTIMER_MODE_REL_PINNED); 4608 else 4609 napi_gro_flush(n, false); 4610 } 4611 if (likely(list_empty(&n->poll_list))) { 4612 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state)); 4613 } else { 4614 /* If n->poll_list is not empty, we need to mask irqs */ 4615 local_irq_save(flags); 4616 __napi_complete(n); 4617 local_irq_restore(flags); 4618 } 4619 } 4620 EXPORT_SYMBOL(napi_complete_done); 4621 4622 /* must be called under rcu_read_lock(), as we dont take a reference */ 4623 struct napi_struct *napi_by_id(unsigned int napi_id) 4624 { 4625 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4626 struct napi_struct *napi; 4627 4628 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4629 if (napi->napi_id == napi_id) 4630 return napi; 4631 4632 return NULL; 4633 } 4634 EXPORT_SYMBOL_GPL(napi_by_id); 4635 4636 void napi_hash_add(struct napi_struct *napi) 4637 { 4638 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4639 4640 spin_lock(&napi_hash_lock); 4641 4642 /* 0 is not a valid id, we also skip an id that is taken 4643 * we expect both events to be extremely rare 4644 */ 4645 napi->napi_id = 0; 4646 while (!napi->napi_id) { 4647 napi->napi_id = ++napi_gen_id; 4648 if (napi_by_id(napi->napi_id)) 4649 napi->napi_id = 0; 4650 } 4651 4652 hlist_add_head_rcu(&napi->napi_hash_node, 4653 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4654 4655 spin_unlock(&napi_hash_lock); 4656 } 4657 } 4658 EXPORT_SYMBOL_GPL(napi_hash_add); 4659 4660 /* Warning : caller is responsible to make sure rcu grace period 4661 * is respected before freeing memory containing @napi 4662 */ 4663 void napi_hash_del(struct napi_struct *napi) 4664 { 4665 spin_lock(&napi_hash_lock); 4666 4667 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4668 hlist_del_rcu(&napi->napi_hash_node); 4669 4670 spin_unlock(&napi_hash_lock); 4671 } 4672 EXPORT_SYMBOL_GPL(napi_hash_del); 4673 4674 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 4675 { 4676 struct napi_struct *napi; 4677 4678 napi = container_of(timer, struct napi_struct, timer); 4679 if (napi->gro_list) 4680 napi_schedule(napi); 4681 4682 return HRTIMER_NORESTART; 4683 } 4684 4685 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4686 int (*poll)(struct napi_struct *, int), int weight) 4687 { 4688 INIT_LIST_HEAD(&napi->poll_list); 4689 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 4690 napi->timer.function = napi_watchdog; 4691 napi->gro_count = 0; 4692 napi->gro_list = NULL; 4693 napi->skb = NULL; 4694 napi->poll = poll; 4695 if (weight > NAPI_POLL_WEIGHT) 4696 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4697 weight, dev->name); 4698 napi->weight = weight; 4699 list_add(&napi->dev_list, &dev->napi_list); 4700 napi->dev = dev; 4701 #ifdef CONFIG_NETPOLL 4702 spin_lock_init(&napi->poll_lock); 4703 napi->poll_owner = -1; 4704 #endif 4705 set_bit(NAPI_STATE_SCHED, &napi->state); 4706 } 4707 EXPORT_SYMBOL(netif_napi_add); 4708 4709 void napi_disable(struct napi_struct *n) 4710 { 4711 might_sleep(); 4712 set_bit(NAPI_STATE_DISABLE, &n->state); 4713 4714 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 4715 msleep(1); 4716 4717 hrtimer_cancel(&n->timer); 4718 4719 clear_bit(NAPI_STATE_DISABLE, &n->state); 4720 } 4721 EXPORT_SYMBOL(napi_disable); 4722 4723 void netif_napi_del(struct napi_struct *napi) 4724 { 4725 list_del_init(&napi->dev_list); 4726 napi_free_frags(napi); 4727 4728 kfree_skb_list(napi->gro_list); 4729 napi->gro_list = NULL; 4730 napi->gro_count = 0; 4731 } 4732 EXPORT_SYMBOL(netif_napi_del); 4733 4734 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 4735 { 4736 void *have; 4737 int work, weight; 4738 4739 list_del_init(&n->poll_list); 4740 4741 have = netpoll_poll_lock(n); 4742 4743 weight = n->weight; 4744 4745 /* This NAPI_STATE_SCHED test is for avoiding a race 4746 * with netpoll's poll_napi(). Only the entity which 4747 * obtains the lock and sees NAPI_STATE_SCHED set will 4748 * actually make the ->poll() call. Therefore we avoid 4749 * accidentally calling ->poll() when NAPI is not scheduled. 4750 */ 4751 work = 0; 4752 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4753 work = n->poll(n, weight); 4754 trace_napi_poll(n); 4755 } 4756 4757 WARN_ON_ONCE(work > weight); 4758 4759 if (likely(work < weight)) 4760 goto out_unlock; 4761 4762 /* Drivers must not modify the NAPI state if they 4763 * consume the entire weight. In such cases this code 4764 * still "owns" the NAPI instance and therefore can 4765 * move the instance around on the list at-will. 4766 */ 4767 if (unlikely(napi_disable_pending(n))) { 4768 napi_complete(n); 4769 goto out_unlock; 4770 } 4771 4772 if (n->gro_list) { 4773 /* flush too old packets 4774 * If HZ < 1000, flush all packets. 4775 */ 4776 napi_gro_flush(n, HZ >= 1000); 4777 } 4778 4779 /* Some drivers may have called napi_schedule 4780 * prior to exhausting their budget. 4781 */ 4782 if (unlikely(!list_empty(&n->poll_list))) { 4783 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 4784 n->dev ? n->dev->name : "backlog"); 4785 goto out_unlock; 4786 } 4787 4788 list_add_tail(&n->poll_list, repoll); 4789 4790 out_unlock: 4791 netpoll_poll_unlock(have); 4792 4793 return work; 4794 } 4795 4796 static void net_rx_action(struct softirq_action *h) 4797 { 4798 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4799 unsigned long time_limit = jiffies + 2; 4800 int budget = netdev_budget; 4801 LIST_HEAD(list); 4802 LIST_HEAD(repoll); 4803 4804 local_irq_disable(); 4805 list_splice_init(&sd->poll_list, &list); 4806 local_irq_enable(); 4807 4808 for (;;) { 4809 struct napi_struct *n; 4810 4811 if (list_empty(&list)) { 4812 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 4813 return; 4814 break; 4815 } 4816 4817 n = list_first_entry(&list, struct napi_struct, poll_list); 4818 budget -= napi_poll(n, &repoll); 4819 4820 /* If softirq window is exhausted then punt. 4821 * Allow this to run for 2 jiffies since which will allow 4822 * an average latency of 1.5/HZ. 4823 */ 4824 if (unlikely(budget <= 0 || 4825 time_after_eq(jiffies, time_limit))) { 4826 sd->time_squeeze++; 4827 break; 4828 } 4829 } 4830 4831 local_irq_disable(); 4832 4833 list_splice_tail_init(&sd->poll_list, &list); 4834 list_splice_tail(&repoll, &list); 4835 list_splice(&list, &sd->poll_list); 4836 if (!list_empty(&sd->poll_list)) 4837 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4838 4839 net_rps_action_and_irq_enable(sd); 4840 } 4841 4842 struct netdev_adjacent { 4843 struct net_device *dev; 4844 4845 /* upper master flag, there can only be one master device per list */ 4846 bool master; 4847 4848 /* counter for the number of times this device was added to us */ 4849 u16 ref_nr; 4850 4851 /* private field for the users */ 4852 void *private; 4853 4854 struct list_head list; 4855 struct rcu_head rcu; 4856 }; 4857 4858 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev, 4859 struct net_device *adj_dev, 4860 struct list_head *adj_list) 4861 { 4862 struct netdev_adjacent *adj; 4863 4864 list_for_each_entry(adj, adj_list, list) { 4865 if (adj->dev == adj_dev) 4866 return adj; 4867 } 4868 return NULL; 4869 } 4870 4871 /** 4872 * netdev_has_upper_dev - Check if device is linked to an upper device 4873 * @dev: device 4874 * @upper_dev: upper device to check 4875 * 4876 * Find out if a device is linked to specified upper device and return true 4877 * in case it is. Note that this checks only immediate upper device, 4878 * not through a complete stack of devices. The caller must hold the RTNL lock. 4879 */ 4880 bool netdev_has_upper_dev(struct net_device *dev, 4881 struct net_device *upper_dev) 4882 { 4883 ASSERT_RTNL(); 4884 4885 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper); 4886 } 4887 EXPORT_SYMBOL(netdev_has_upper_dev); 4888 4889 /** 4890 * netdev_has_any_upper_dev - Check if device is linked to some device 4891 * @dev: device 4892 * 4893 * Find out if a device is linked to an upper device and return true in case 4894 * it is. The caller must hold the RTNL lock. 4895 */ 4896 static bool netdev_has_any_upper_dev(struct net_device *dev) 4897 { 4898 ASSERT_RTNL(); 4899 4900 return !list_empty(&dev->all_adj_list.upper); 4901 } 4902 4903 /** 4904 * netdev_master_upper_dev_get - Get master upper device 4905 * @dev: device 4906 * 4907 * Find a master upper device and return pointer to it or NULL in case 4908 * it's not there. The caller must hold the RTNL lock. 4909 */ 4910 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4911 { 4912 struct netdev_adjacent *upper; 4913 4914 ASSERT_RTNL(); 4915 4916 if (list_empty(&dev->adj_list.upper)) 4917 return NULL; 4918 4919 upper = list_first_entry(&dev->adj_list.upper, 4920 struct netdev_adjacent, list); 4921 if (likely(upper->master)) 4922 return upper->dev; 4923 return NULL; 4924 } 4925 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4926 4927 void *netdev_adjacent_get_private(struct list_head *adj_list) 4928 { 4929 struct netdev_adjacent *adj; 4930 4931 adj = list_entry(adj_list, struct netdev_adjacent, list); 4932 4933 return adj->private; 4934 } 4935 EXPORT_SYMBOL(netdev_adjacent_get_private); 4936 4937 /** 4938 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 4939 * @dev: device 4940 * @iter: list_head ** of the current position 4941 * 4942 * Gets the next device from the dev's upper list, starting from iter 4943 * position. The caller must hold RCU read lock. 4944 */ 4945 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4946 struct list_head **iter) 4947 { 4948 struct netdev_adjacent *upper; 4949 4950 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4951 4952 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4953 4954 if (&upper->list == &dev->adj_list.upper) 4955 return NULL; 4956 4957 *iter = &upper->list; 4958 4959 return upper->dev; 4960 } 4961 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 4962 4963 /** 4964 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 4965 * @dev: device 4966 * @iter: list_head ** of the current position 4967 * 4968 * Gets the next device from the dev's upper list, starting from iter 4969 * position. The caller must hold RCU read lock. 4970 */ 4971 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4972 struct list_head **iter) 4973 { 4974 struct netdev_adjacent *upper; 4975 4976 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4977 4978 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4979 4980 if (&upper->list == &dev->all_adj_list.upper) 4981 return NULL; 4982 4983 *iter = &upper->list; 4984 4985 return upper->dev; 4986 } 4987 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 4988 4989 /** 4990 * netdev_lower_get_next_private - Get the next ->private from the 4991 * lower neighbour list 4992 * @dev: device 4993 * @iter: list_head ** of the current position 4994 * 4995 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4996 * list, starting from iter position. The caller must hold either hold the 4997 * RTNL lock or its own locking that guarantees that the neighbour lower 4998 * list will remain unchanged. 4999 */ 5000 void *netdev_lower_get_next_private(struct net_device *dev, 5001 struct list_head **iter) 5002 { 5003 struct netdev_adjacent *lower; 5004 5005 lower = list_entry(*iter, struct netdev_adjacent, list); 5006 5007 if (&lower->list == &dev->adj_list.lower) 5008 return NULL; 5009 5010 *iter = lower->list.next; 5011 5012 return lower->private; 5013 } 5014 EXPORT_SYMBOL(netdev_lower_get_next_private); 5015 5016 /** 5017 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5018 * lower neighbour list, RCU 5019 * variant 5020 * @dev: device 5021 * @iter: list_head ** of the current position 5022 * 5023 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5024 * list, starting from iter position. The caller must hold RCU read lock. 5025 */ 5026 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5027 struct list_head **iter) 5028 { 5029 struct netdev_adjacent *lower; 5030 5031 WARN_ON_ONCE(!rcu_read_lock_held()); 5032 5033 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5034 5035 if (&lower->list == &dev->adj_list.lower) 5036 return NULL; 5037 5038 *iter = &lower->list; 5039 5040 return lower->private; 5041 } 5042 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5043 5044 /** 5045 * netdev_lower_get_next - Get the next device from the lower neighbour 5046 * list 5047 * @dev: device 5048 * @iter: list_head ** of the current position 5049 * 5050 * Gets the next netdev_adjacent from the dev's lower neighbour 5051 * list, starting from iter position. The caller must hold RTNL lock or 5052 * its own locking that guarantees that the neighbour lower 5053 * list will remain unchanged. 5054 */ 5055 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5056 { 5057 struct netdev_adjacent *lower; 5058 5059 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 5060 5061 if (&lower->list == &dev->adj_list.lower) 5062 return NULL; 5063 5064 *iter = &lower->list; 5065 5066 return lower->dev; 5067 } 5068 EXPORT_SYMBOL(netdev_lower_get_next); 5069 5070 /** 5071 * netdev_lower_get_first_private_rcu - Get the first ->private from the 5072 * lower neighbour list, RCU 5073 * variant 5074 * @dev: device 5075 * 5076 * Gets the first netdev_adjacent->private from the dev's lower neighbour 5077 * list. The caller must hold RCU read lock. 5078 */ 5079 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 5080 { 5081 struct netdev_adjacent *lower; 5082 5083 lower = list_first_or_null_rcu(&dev->adj_list.lower, 5084 struct netdev_adjacent, list); 5085 if (lower) 5086 return lower->private; 5087 return NULL; 5088 } 5089 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 5090 5091 /** 5092 * netdev_master_upper_dev_get_rcu - Get master upper device 5093 * @dev: device 5094 * 5095 * Find a master upper device and return pointer to it or NULL in case 5096 * it's not there. The caller must hold the RCU read lock. 5097 */ 5098 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 5099 { 5100 struct netdev_adjacent *upper; 5101 5102 upper = list_first_or_null_rcu(&dev->adj_list.upper, 5103 struct netdev_adjacent, list); 5104 if (upper && likely(upper->master)) 5105 return upper->dev; 5106 return NULL; 5107 } 5108 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 5109 5110 static int netdev_adjacent_sysfs_add(struct net_device *dev, 5111 struct net_device *adj_dev, 5112 struct list_head *dev_list) 5113 { 5114 char linkname[IFNAMSIZ+7]; 5115 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5116 "upper_%s" : "lower_%s", adj_dev->name); 5117 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 5118 linkname); 5119 } 5120 static void netdev_adjacent_sysfs_del(struct net_device *dev, 5121 char *name, 5122 struct list_head *dev_list) 5123 { 5124 char linkname[IFNAMSIZ+7]; 5125 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5126 "upper_%s" : "lower_%s", name); 5127 sysfs_remove_link(&(dev->dev.kobj), linkname); 5128 } 5129 5130 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 5131 struct net_device *adj_dev, 5132 struct list_head *dev_list) 5133 { 5134 return (dev_list == &dev->adj_list.upper || 5135 dev_list == &dev->adj_list.lower) && 5136 net_eq(dev_net(dev), dev_net(adj_dev)); 5137 } 5138 5139 static int __netdev_adjacent_dev_insert(struct net_device *dev, 5140 struct net_device *adj_dev, 5141 struct list_head *dev_list, 5142 void *private, bool master) 5143 { 5144 struct netdev_adjacent *adj; 5145 int ret; 5146 5147 adj = __netdev_find_adj(dev, adj_dev, dev_list); 5148 5149 if (adj) { 5150 adj->ref_nr++; 5151 return 0; 5152 } 5153 5154 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 5155 if (!adj) 5156 return -ENOMEM; 5157 5158 adj->dev = adj_dev; 5159 adj->master = master; 5160 adj->ref_nr = 1; 5161 adj->private = private; 5162 dev_hold(adj_dev); 5163 5164 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 5165 adj_dev->name, dev->name, adj_dev->name); 5166 5167 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 5168 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 5169 if (ret) 5170 goto free_adj; 5171 } 5172 5173 /* Ensure that master link is always the first item in list. */ 5174 if (master) { 5175 ret = sysfs_create_link(&(dev->dev.kobj), 5176 &(adj_dev->dev.kobj), "master"); 5177 if (ret) 5178 goto remove_symlinks; 5179 5180 list_add_rcu(&adj->list, dev_list); 5181 } else { 5182 list_add_tail_rcu(&adj->list, dev_list); 5183 } 5184 5185 return 0; 5186 5187 remove_symlinks: 5188 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5189 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5190 free_adj: 5191 kfree(adj); 5192 dev_put(adj_dev); 5193 5194 return ret; 5195 } 5196 5197 static void __netdev_adjacent_dev_remove(struct net_device *dev, 5198 struct net_device *adj_dev, 5199 struct list_head *dev_list) 5200 { 5201 struct netdev_adjacent *adj; 5202 5203 adj = __netdev_find_adj(dev, adj_dev, dev_list); 5204 5205 if (!adj) { 5206 pr_err("tried to remove device %s from %s\n", 5207 dev->name, adj_dev->name); 5208 BUG(); 5209 } 5210 5211 if (adj->ref_nr > 1) { 5212 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 5213 adj->ref_nr-1); 5214 adj->ref_nr--; 5215 return; 5216 } 5217 5218 if (adj->master) 5219 sysfs_remove_link(&(dev->dev.kobj), "master"); 5220 5221 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5222 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5223 5224 list_del_rcu(&adj->list); 5225 pr_debug("dev_put for %s, because link removed from %s to %s\n", 5226 adj_dev->name, dev->name, adj_dev->name); 5227 dev_put(adj_dev); 5228 kfree_rcu(adj, rcu); 5229 } 5230 5231 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 5232 struct net_device *upper_dev, 5233 struct list_head *up_list, 5234 struct list_head *down_list, 5235 void *private, bool master) 5236 { 5237 int ret; 5238 5239 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 5240 master); 5241 if (ret) 5242 return ret; 5243 5244 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 5245 false); 5246 if (ret) { 5247 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5248 return ret; 5249 } 5250 5251 return 0; 5252 } 5253 5254 static int __netdev_adjacent_dev_link(struct net_device *dev, 5255 struct net_device *upper_dev) 5256 { 5257 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 5258 &dev->all_adj_list.upper, 5259 &upper_dev->all_adj_list.lower, 5260 NULL, false); 5261 } 5262 5263 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 5264 struct net_device *upper_dev, 5265 struct list_head *up_list, 5266 struct list_head *down_list) 5267 { 5268 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5269 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 5270 } 5271 5272 static void __netdev_adjacent_dev_unlink(struct net_device *dev, 5273 struct net_device *upper_dev) 5274 { 5275 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5276 &dev->all_adj_list.upper, 5277 &upper_dev->all_adj_list.lower); 5278 } 5279 5280 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 5281 struct net_device *upper_dev, 5282 void *private, bool master) 5283 { 5284 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 5285 5286 if (ret) 5287 return ret; 5288 5289 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 5290 &dev->adj_list.upper, 5291 &upper_dev->adj_list.lower, 5292 private, master); 5293 if (ret) { 5294 __netdev_adjacent_dev_unlink(dev, upper_dev); 5295 return ret; 5296 } 5297 5298 return 0; 5299 } 5300 5301 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 5302 struct net_device *upper_dev) 5303 { 5304 __netdev_adjacent_dev_unlink(dev, upper_dev); 5305 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5306 &dev->adj_list.upper, 5307 &upper_dev->adj_list.lower); 5308 } 5309 5310 static int __netdev_upper_dev_link(struct net_device *dev, 5311 struct net_device *upper_dev, bool master, 5312 void *private) 5313 { 5314 struct netdev_adjacent *i, *j, *to_i, *to_j; 5315 int ret = 0; 5316 5317 ASSERT_RTNL(); 5318 5319 if (dev == upper_dev) 5320 return -EBUSY; 5321 5322 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5323 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper)) 5324 return -EBUSY; 5325 5326 if (__netdev_find_adj(dev, upper_dev, &dev->adj_list.upper)) 5327 return -EEXIST; 5328 5329 if (master && netdev_master_upper_dev_get(dev)) 5330 return -EBUSY; 5331 5332 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private, 5333 master); 5334 if (ret) 5335 return ret; 5336 5337 /* Now that we linked these devs, make all the upper_dev's 5338 * all_adj_list.upper visible to every dev's all_adj_list.lower an 5339 * versa, and don't forget the devices itself. All of these 5340 * links are non-neighbours. 5341 */ 5342 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5343 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5344 pr_debug("Interlinking %s with %s, non-neighbour\n", 5345 i->dev->name, j->dev->name); 5346 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 5347 if (ret) 5348 goto rollback_mesh; 5349 } 5350 } 5351 5352 /* add dev to every upper_dev's upper device */ 5353 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5354 pr_debug("linking %s's upper device %s with %s\n", 5355 upper_dev->name, i->dev->name, dev->name); 5356 ret = __netdev_adjacent_dev_link(dev, i->dev); 5357 if (ret) 5358 goto rollback_upper_mesh; 5359 } 5360 5361 /* add upper_dev to every dev's lower device */ 5362 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5363 pr_debug("linking %s's lower device %s with %s\n", dev->name, 5364 i->dev->name, upper_dev->name); 5365 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 5366 if (ret) 5367 goto rollback_lower_mesh; 5368 } 5369 5370 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5371 return 0; 5372 5373 rollback_lower_mesh: 5374 to_i = i; 5375 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5376 if (i == to_i) 5377 break; 5378 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5379 } 5380 5381 i = NULL; 5382 5383 rollback_upper_mesh: 5384 to_i = i; 5385 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5386 if (i == to_i) 5387 break; 5388 __netdev_adjacent_dev_unlink(dev, i->dev); 5389 } 5390 5391 i = j = NULL; 5392 5393 rollback_mesh: 5394 to_i = i; 5395 to_j = j; 5396 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5397 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5398 if (i == to_i && j == to_j) 5399 break; 5400 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5401 } 5402 if (i == to_i) 5403 break; 5404 } 5405 5406 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5407 5408 return ret; 5409 } 5410 5411 /** 5412 * netdev_upper_dev_link - Add a link to the upper device 5413 * @dev: device 5414 * @upper_dev: new upper device 5415 * 5416 * Adds a link to device which is upper to this one. The caller must hold 5417 * the RTNL lock. On a failure a negative errno code is returned. 5418 * On success the reference counts are adjusted and the function 5419 * returns zero. 5420 */ 5421 int netdev_upper_dev_link(struct net_device *dev, 5422 struct net_device *upper_dev) 5423 { 5424 return __netdev_upper_dev_link(dev, upper_dev, false, NULL); 5425 } 5426 EXPORT_SYMBOL(netdev_upper_dev_link); 5427 5428 /** 5429 * netdev_master_upper_dev_link - Add a master link to the upper device 5430 * @dev: device 5431 * @upper_dev: new upper device 5432 * 5433 * Adds a link to device which is upper to this one. In this case, only 5434 * one master upper device can be linked, although other non-master devices 5435 * might be linked as well. The caller must hold the RTNL lock. 5436 * On a failure a negative errno code is returned. On success the reference 5437 * counts are adjusted and the function returns zero. 5438 */ 5439 int netdev_master_upper_dev_link(struct net_device *dev, 5440 struct net_device *upper_dev) 5441 { 5442 return __netdev_upper_dev_link(dev, upper_dev, true, NULL); 5443 } 5444 EXPORT_SYMBOL(netdev_master_upper_dev_link); 5445 5446 int netdev_master_upper_dev_link_private(struct net_device *dev, 5447 struct net_device *upper_dev, 5448 void *private) 5449 { 5450 return __netdev_upper_dev_link(dev, upper_dev, true, private); 5451 } 5452 EXPORT_SYMBOL(netdev_master_upper_dev_link_private); 5453 5454 /** 5455 * netdev_upper_dev_unlink - Removes a link to upper device 5456 * @dev: device 5457 * @upper_dev: new upper device 5458 * 5459 * Removes a link to device which is upper to this one. The caller must hold 5460 * the RTNL lock. 5461 */ 5462 void netdev_upper_dev_unlink(struct net_device *dev, 5463 struct net_device *upper_dev) 5464 { 5465 struct netdev_adjacent *i, *j; 5466 ASSERT_RTNL(); 5467 5468 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5469 5470 /* Here is the tricky part. We must remove all dev's lower 5471 * devices from all upper_dev's upper devices and vice 5472 * versa, to maintain the graph relationship. 5473 */ 5474 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5475 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 5476 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5477 5478 /* remove also the devices itself from lower/upper device 5479 * list 5480 */ 5481 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5482 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5483 5484 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 5485 __netdev_adjacent_dev_unlink(dev, i->dev); 5486 5487 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5488 } 5489 EXPORT_SYMBOL(netdev_upper_dev_unlink); 5490 5491 /** 5492 * netdev_bonding_info_change - Dispatch event about slave change 5493 * @dev: device 5494 * @bonding_info: info to dispatch 5495 * 5496 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 5497 * The caller must hold the RTNL lock. 5498 */ 5499 void netdev_bonding_info_change(struct net_device *dev, 5500 struct netdev_bonding_info *bonding_info) 5501 { 5502 struct netdev_notifier_bonding_info info; 5503 5504 memcpy(&info.bonding_info, bonding_info, 5505 sizeof(struct netdev_bonding_info)); 5506 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 5507 &info.info); 5508 } 5509 EXPORT_SYMBOL(netdev_bonding_info_change); 5510 5511 static void netdev_adjacent_add_links(struct net_device *dev) 5512 { 5513 struct netdev_adjacent *iter; 5514 5515 struct net *net = dev_net(dev); 5516 5517 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5518 if (!net_eq(net,dev_net(iter->dev))) 5519 continue; 5520 netdev_adjacent_sysfs_add(iter->dev, dev, 5521 &iter->dev->adj_list.lower); 5522 netdev_adjacent_sysfs_add(dev, iter->dev, 5523 &dev->adj_list.upper); 5524 } 5525 5526 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5527 if (!net_eq(net,dev_net(iter->dev))) 5528 continue; 5529 netdev_adjacent_sysfs_add(iter->dev, dev, 5530 &iter->dev->adj_list.upper); 5531 netdev_adjacent_sysfs_add(dev, iter->dev, 5532 &dev->adj_list.lower); 5533 } 5534 } 5535 5536 static void netdev_adjacent_del_links(struct net_device *dev) 5537 { 5538 struct netdev_adjacent *iter; 5539 5540 struct net *net = dev_net(dev); 5541 5542 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5543 if (!net_eq(net,dev_net(iter->dev))) 5544 continue; 5545 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5546 &iter->dev->adj_list.lower); 5547 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5548 &dev->adj_list.upper); 5549 } 5550 5551 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5552 if (!net_eq(net,dev_net(iter->dev))) 5553 continue; 5554 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5555 &iter->dev->adj_list.upper); 5556 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5557 &dev->adj_list.lower); 5558 } 5559 } 5560 5561 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 5562 { 5563 struct netdev_adjacent *iter; 5564 5565 struct net *net = dev_net(dev); 5566 5567 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5568 if (!net_eq(net,dev_net(iter->dev))) 5569 continue; 5570 netdev_adjacent_sysfs_del(iter->dev, oldname, 5571 &iter->dev->adj_list.lower); 5572 netdev_adjacent_sysfs_add(iter->dev, dev, 5573 &iter->dev->adj_list.lower); 5574 } 5575 5576 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5577 if (!net_eq(net,dev_net(iter->dev))) 5578 continue; 5579 netdev_adjacent_sysfs_del(iter->dev, oldname, 5580 &iter->dev->adj_list.upper); 5581 netdev_adjacent_sysfs_add(iter->dev, dev, 5582 &iter->dev->adj_list.upper); 5583 } 5584 } 5585 5586 void *netdev_lower_dev_get_private(struct net_device *dev, 5587 struct net_device *lower_dev) 5588 { 5589 struct netdev_adjacent *lower; 5590 5591 if (!lower_dev) 5592 return NULL; 5593 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower); 5594 if (!lower) 5595 return NULL; 5596 5597 return lower->private; 5598 } 5599 EXPORT_SYMBOL(netdev_lower_dev_get_private); 5600 5601 5602 int dev_get_nest_level(struct net_device *dev, 5603 bool (*type_check)(struct net_device *dev)) 5604 { 5605 struct net_device *lower = NULL; 5606 struct list_head *iter; 5607 int max_nest = -1; 5608 int nest; 5609 5610 ASSERT_RTNL(); 5611 5612 netdev_for_each_lower_dev(dev, lower, iter) { 5613 nest = dev_get_nest_level(lower, type_check); 5614 if (max_nest < nest) 5615 max_nest = nest; 5616 } 5617 5618 if (type_check(dev)) 5619 max_nest++; 5620 5621 return max_nest; 5622 } 5623 EXPORT_SYMBOL(dev_get_nest_level); 5624 5625 static void dev_change_rx_flags(struct net_device *dev, int flags) 5626 { 5627 const struct net_device_ops *ops = dev->netdev_ops; 5628 5629 if (ops->ndo_change_rx_flags) 5630 ops->ndo_change_rx_flags(dev, flags); 5631 } 5632 5633 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 5634 { 5635 unsigned int old_flags = dev->flags; 5636 kuid_t uid; 5637 kgid_t gid; 5638 5639 ASSERT_RTNL(); 5640 5641 dev->flags |= IFF_PROMISC; 5642 dev->promiscuity += inc; 5643 if (dev->promiscuity == 0) { 5644 /* 5645 * Avoid overflow. 5646 * If inc causes overflow, untouch promisc and return error. 5647 */ 5648 if (inc < 0) 5649 dev->flags &= ~IFF_PROMISC; 5650 else { 5651 dev->promiscuity -= inc; 5652 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 5653 dev->name); 5654 return -EOVERFLOW; 5655 } 5656 } 5657 if (dev->flags != old_flags) { 5658 pr_info("device %s %s promiscuous mode\n", 5659 dev->name, 5660 dev->flags & IFF_PROMISC ? "entered" : "left"); 5661 if (audit_enabled) { 5662 current_uid_gid(&uid, &gid); 5663 audit_log(current->audit_context, GFP_ATOMIC, 5664 AUDIT_ANOM_PROMISCUOUS, 5665 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 5666 dev->name, (dev->flags & IFF_PROMISC), 5667 (old_flags & IFF_PROMISC), 5668 from_kuid(&init_user_ns, audit_get_loginuid(current)), 5669 from_kuid(&init_user_ns, uid), 5670 from_kgid(&init_user_ns, gid), 5671 audit_get_sessionid(current)); 5672 } 5673 5674 dev_change_rx_flags(dev, IFF_PROMISC); 5675 } 5676 if (notify) 5677 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 5678 return 0; 5679 } 5680 5681 /** 5682 * dev_set_promiscuity - update promiscuity count on a device 5683 * @dev: device 5684 * @inc: modifier 5685 * 5686 * Add or remove promiscuity from a device. While the count in the device 5687 * remains above zero the interface remains promiscuous. Once it hits zero 5688 * the device reverts back to normal filtering operation. A negative inc 5689 * value is used to drop promiscuity on the device. 5690 * Return 0 if successful or a negative errno code on error. 5691 */ 5692 int dev_set_promiscuity(struct net_device *dev, int inc) 5693 { 5694 unsigned int old_flags = dev->flags; 5695 int err; 5696 5697 err = __dev_set_promiscuity(dev, inc, true); 5698 if (err < 0) 5699 return err; 5700 if (dev->flags != old_flags) 5701 dev_set_rx_mode(dev); 5702 return err; 5703 } 5704 EXPORT_SYMBOL(dev_set_promiscuity); 5705 5706 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 5707 { 5708 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 5709 5710 ASSERT_RTNL(); 5711 5712 dev->flags |= IFF_ALLMULTI; 5713 dev->allmulti += inc; 5714 if (dev->allmulti == 0) { 5715 /* 5716 * Avoid overflow. 5717 * If inc causes overflow, untouch allmulti and return error. 5718 */ 5719 if (inc < 0) 5720 dev->flags &= ~IFF_ALLMULTI; 5721 else { 5722 dev->allmulti -= inc; 5723 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 5724 dev->name); 5725 return -EOVERFLOW; 5726 } 5727 } 5728 if (dev->flags ^ old_flags) { 5729 dev_change_rx_flags(dev, IFF_ALLMULTI); 5730 dev_set_rx_mode(dev); 5731 if (notify) 5732 __dev_notify_flags(dev, old_flags, 5733 dev->gflags ^ old_gflags); 5734 } 5735 return 0; 5736 } 5737 5738 /** 5739 * dev_set_allmulti - update allmulti count on a device 5740 * @dev: device 5741 * @inc: modifier 5742 * 5743 * Add or remove reception of all multicast frames to a device. While the 5744 * count in the device remains above zero the interface remains listening 5745 * to all interfaces. Once it hits zero the device reverts back to normal 5746 * filtering operation. A negative @inc value is used to drop the counter 5747 * when releasing a resource needing all multicasts. 5748 * Return 0 if successful or a negative errno code on error. 5749 */ 5750 5751 int dev_set_allmulti(struct net_device *dev, int inc) 5752 { 5753 return __dev_set_allmulti(dev, inc, true); 5754 } 5755 EXPORT_SYMBOL(dev_set_allmulti); 5756 5757 /* 5758 * Upload unicast and multicast address lists to device and 5759 * configure RX filtering. When the device doesn't support unicast 5760 * filtering it is put in promiscuous mode while unicast addresses 5761 * are present. 5762 */ 5763 void __dev_set_rx_mode(struct net_device *dev) 5764 { 5765 const struct net_device_ops *ops = dev->netdev_ops; 5766 5767 /* dev_open will call this function so the list will stay sane. */ 5768 if (!(dev->flags&IFF_UP)) 5769 return; 5770 5771 if (!netif_device_present(dev)) 5772 return; 5773 5774 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 5775 /* Unicast addresses changes may only happen under the rtnl, 5776 * therefore calling __dev_set_promiscuity here is safe. 5777 */ 5778 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 5779 __dev_set_promiscuity(dev, 1, false); 5780 dev->uc_promisc = true; 5781 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 5782 __dev_set_promiscuity(dev, -1, false); 5783 dev->uc_promisc = false; 5784 } 5785 } 5786 5787 if (ops->ndo_set_rx_mode) 5788 ops->ndo_set_rx_mode(dev); 5789 } 5790 5791 void dev_set_rx_mode(struct net_device *dev) 5792 { 5793 netif_addr_lock_bh(dev); 5794 __dev_set_rx_mode(dev); 5795 netif_addr_unlock_bh(dev); 5796 } 5797 5798 /** 5799 * dev_get_flags - get flags reported to userspace 5800 * @dev: device 5801 * 5802 * Get the combination of flag bits exported through APIs to userspace. 5803 */ 5804 unsigned int dev_get_flags(const struct net_device *dev) 5805 { 5806 unsigned int flags; 5807 5808 flags = (dev->flags & ~(IFF_PROMISC | 5809 IFF_ALLMULTI | 5810 IFF_RUNNING | 5811 IFF_LOWER_UP | 5812 IFF_DORMANT)) | 5813 (dev->gflags & (IFF_PROMISC | 5814 IFF_ALLMULTI)); 5815 5816 if (netif_running(dev)) { 5817 if (netif_oper_up(dev)) 5818 flags |= IFF_RUNNING; 5819 if (netif_carrier_ok(dev)) 5820 flags |= IFF_LOWER_UP; 5821 if (netif_dormant(dev)) 5822 flags |= IFF_DORMANT; 5823 } 5824 5825 return flags; 5826 } 5827 EXPORT_SYMBOL(dev_get_flags); 5828 5829 int __dev_change_flags(struct net_device *dev, unsigned int flags) 5830 { 5831 unsigned int old_flags = dev->flags; 5832 int ret; 5833 5834 ASSERT_RTNL(); 5835 5836 /* 5837 * Set the flags on our device. 5838 */ 5839 5840 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5841 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5842 IFF_AUTOMEDIA)) | 5843 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5844 IFF_ALLMULTI)); 5845 5846 /* 5847 * Load in the correct multicast list now the flags have changed. 5848 */ 5849 5850 if ((old_flags ^ flags) & IFF_MULTICAST) 5851 dev_change_rx_flags(dev, IFF_MULTICAST); 5852 5853 dev_set_rx_mode(dev); 5854 5855 /* 5856 * Have we downed the interface. We handle IFF_UP ourselves 5857 * according to user attempts to set it, rather than blindly 5858 * setting it. 5859 */ 5860 5861 ret = 0; 5862 if ((old_flags ^ flags) & IFF_UP) 5863 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5864 5865 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5866 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5867 unsigned int old_flags = dev->flags; 5868 5869 dev->gflags ^= IFF_PROMISC; 5870 5871 if (__dev_set_promiscuity(dev, inc, false) >= 0) 5872 if (dev->flags != old_flags) 5873 dev_set_rx_mode(dev); 5874 } 5875 5876 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5877 is important. Some (broken) drivers set IFF_PROMISC, when 5878 IFF_ALLMULTI is requested not asking us and not reporting. 5879 */ 5880 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5881 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5882 5883 dev->gflags ^= IFF_ALLMULTI; 5884 __dev_set_allmulti(dev, inc, false); 5885 } 5886 5887 return ret; 5888 } 5889 5890 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 5891 unsigned int gchanges) 5892 { 5893 unsigned int changes = dev->flags ^ old_flags; 5894 5895 if (gchanges) 5896 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 5897 5898 if (changes & IFF_UP) { 5899 if (dev->flags & IFF_UP) 5900 call_netdevice_notifiers(NETDEV_UP, dev); 5901 else 5902 call_netdevice_notifiers(NETDEV_DOWN, dev); 5903 } 5904 5905 if (dev->flags & IFF_UP && 5906 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5907 struct netdev_notifier_change_info change_info; 5908 5909 change_info.flags_changed = changes; 5910 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5911 &change_info.info); 5912 } 5913 } 5914 5915 /** 5916 * dev_change_flags - change device settings 5917 * @dev: device 5918 * @flags: device state flags 5919 * 5920 * Change settings on device based state flags. The flags are 5921 * in the userspace exported format. 5922 */ 5923 int dev_change_flags(struct net_device *dev, unsigned int flags) 5924 { 5925 int ret; 5926 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 5927 5928 ret = __dev_change_flags(dev, flags); 5929 if (ret < 0) 5930 return ret; 5931 5932 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 5933 __dev_notify_flags(dev, old_flags, changes); 5934 return ret; 5935 } 5936 EXPORT_SYMBOL(dev_change_flags); 5937 5938 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 5939 { 5940 const struct net_device_ops *ops = dev->netdev_ops; 5941 5942 if (ops->ndo_change_mtu) 5943 return ops->ndo_change_mtu(dev, new_mtu); 5944 5945 dev->mtu = new_mtu; 5946 return 0; 5947 } 5948 5949 /** 5950 * dev_set_mtu - Change maximum transfer unit 5951 * @dev: device 5952 * @new_mtu: new transfer unit 5953 * 5954 * Change the maximum transfer size of the network device. 5955 */ 5956 int dev_set_mtu(struct net_device *dev, int new_mtu) 5957 { 5958 int err, orig_mtu; 5959 5960 if (new_mtu == dev->mtu) 5961 return 0; 5962 5963 /* MTU must be positive. */ 5964 if (new_mtu < 0) 5965 return -EINVAL; 5966 5967 if (!netif_device_present(dev)) 5968 return -ENODEV; 5969 5970 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 5971 err = notifier_to_errno(err); 5972 if (err) 5973 return err; 5974 5975 orig_mtu = dev->mtu; 5976 err = __dev_set_mtu(dev, new_mtu); 5977 5978 if (!err) { 5979 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5980 err = notifier_to_errno(err); 5981 if (err) { 5982 /* setting mtu back and notifying everyone again, 5983 * so that they have a chance to revert changes. 5984 */ 5985 __dev_set_mtu(dev, orig_mtu); 5986 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5987 } 5988 } 5989 return err; 5990 } 5991 EXPORT_SYMBOL(dev_set_mtu); 5992 5993 /** 5994 * dev_set_group - Change group this device belongs to 5995 * @dev: device 5996 * @new_group: group this device should belong to 5997 */ 5998 void dev_set_group(struct net_device *dev, int new_group) 5999 { 6000 dev->group = new_group; 6001 } 6002 EXPORT_SYMBOL(dev_set_group); 6003 6004 /** 6005 * dev_set_mac_address - Change Media Access Control Address 6006 * @dev: device 6007 * @sa: new address 6008 * 6009 * Change the hardware (MAC) address of the device 6010 */ 6011 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6012 { 6013 const struct net_device_ops *ops = dev->netdev_ops; 6014 int err; 6015 6016 if (!ops->ndo_set_mac_address) 6017 return -EOPNOTSUPP; 6018 if (sa->sa_family != dev->type) 6019 return -EINVAL; 6020 if (!netif_device_present(dev)) 6021 return -ENODEV; 6022 err = ops->ndo_set_mac_address(dev, sa); 6023 if (err) 6024 return err; 6025 dev->addr_assign_type = NET_ADDR_SET; 6026 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6027 add_device_randomness(dev->dev_addr, dev->addr_len); 6028 return 0; 6029 } 6030 EXPORT_SYMBOL(dev_set_mac_address); 6031 6032 /** 6033 * dev_change_carrier - Change device carrier 6034 * @dev: device 6035 * @new_carrier: new value 6036 * 6037 * Change device carrier 6038 */ 6039 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6040 { 6041 const struct net_device_ops *ops = dev->netdev_ops; 6042 6043 if (!ops->ndo_change_carrier) 6044 return -EOPNOTSUPP; 6045 if (!netif_device_present(dev)) 6046 return -ENODEV; 6047 return ops->ndo_change_carrier(dev, new_carrier); 6048 } 6049 EXPORT_SYMBOL(dev_change_carrier); 6050 6051 /** 6052 * dev_get_phys_port_id - Get device physical port ID 6053 * @dev: device 6054 * @ppid: port ID 6055 * 6056 * Get device physical port ID 6057 */ 6058 int dev_get_phys_port_id(struct net_device *dev, 6059 struct netdev_phys_item_id *ppid) 6060 { 6061 const struct net_device_ops *ops = dev->netdev_ops; 6062 6063 if (!ops->ndo_get_phys_port_id) 6064 return -EOPNOTSUPP; 6065 return ops->ndo_get_phys_port_id(dev, ppid); 6066 } 6067 EXPORT_SYMBOL(dev_get_phys_port_id); 6068 6069 /** 6070 * dev_get_phys_port_name - Get device physical port name 6071 * @dev: device 6072 * @name: port name 6073 * 6074 * Get device physical port name 6075 */ 6076 int dev_get_phys_port_name(struct net_device *dev, 6077 char *name, size_t len) 6078 { 6079 const struct net_device_ops *ops = dev->netdev_ops; 6080 6081 if (!ops->ndo_get_phys_port_name) 6082 return -EOPNOTSUPP; 6083 return ops->ndo_get_phys_port_name(dev, name, len); 6084 } 6085 EXPORT_SYMBOL(dev_get_phys_port_name); 6086 6087 /** 6088 * dev_change_proto_down - update protocol port state information 6089 * @dev: device 6090 * @proto_down: new value 6091 * 6092 * This info can be used by switch drivers to set the phys state of the 6093 * port. 6094 */ 6095 int dev_change_proto_down(struct net_device *dev, bool proto_down) 6096 { 6097 const struct net_device_ops *ops = dev->netdev_ops; 6098 6099 if (!ops->ndo_change_proto_down) 6100 return -EOPNOTSUPP; 6101 if (!netif_device_present(dev)) 6102 return -ENODEV; 6103 return ops->ndo_change_proto_down(dev, proto_down); 6104 } 6105 EXPORT_SYMBOL(dev_change_proto_down); 6106 6107 /** 6108 * dev_new_index - allocate an ifindex 6109 * @net: the applicable net namespace 6110 * 6111 * Returns a suitable unique value for a new device interface 6112 * number. The caller must hold the rtnl semaphore or the 6113 * dev_base_lock to be sure it remains unique. 6114 */ 6115 static int dev_new_index(struct net *net) 6116 { 6117 int ifindex = net->ifindex; 6118 for (;;) { 6119 if (++ifindex <= 0) 6120 ifindex = 1; 6121 if (!__dev_get_by_index(net, ifindex)) 6122 return net->ifindex = ifindex; 6123 } 6124 } 6125 6126 /* Delayed registration/unregisteration */ 6127 static LIST_HEAD(net_todo_list); 6128 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 6129 6130 static void net_set_todo(struct net_device *dev) 6131 { 6132 list_add_tail(&dev->todo_list, &net_todo_list); 6133 dev_net(dev)->dev_unreg_count++; 6134 } 6135 6136 static void rollback_registered_many(struct list_head *head) 6137 { 6138 struct net_device *dev, *tmp; 6139 LIST_HEAD(close_head); 6140 6141 BUG_ON(dev_boot_phase); 6142 ASSERT_RTNL(); 6143 6144 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 6145 /* Some devices call without registering 6146 * for initialization unwind. Remove those 6147 * devices and proceed with the remaining. 6148 */ 6149 if (dev->reg_state == NETREG_UNINITIALIZED) { 6150 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 6151 dev->name, dev); 6152 6153 WARN_ON(1); 6154 list_del(&dev->unreg_list); 6155 continue; 6156 } 6157 dev->dismantle = true; 6158 BUG_ON(dev->reg_state != NETREG_REGISTERED); 6159 } 6160 6161 /* If device is running, close it first. */ 6162 list_for_each_entry(dev, head, unreg_list) 6163 list_add_tail(&dev->close_list, &close_head); 6164 dev_close_many(&close_head, true); 6165 6166 list_for_each_entry(dev, head, unreg_list) { 6167 /* And unlink it from device chain. */ 6168 unlist_netdevice(dev); 6169 6170 dev->reg_state = NETREG_UNREGISTERING; 6171 on_each_cpu(flush_backlog, dev, 1); 6172 } 6173 6174 synchronize_net(); 6175 6176 list_for_each_entry(dev, head, unreg_list) { 6177 struct sk_buff *skb = NULL; 6178 6179 /* Shutdown queueing discipline. */ 6180 dev_shutdown(dev); 6181 6182 6183 /* Notify protocols, that we are about to destroy 6184 this device. They should clean all the things. 6185 */ 6186 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6187 6188 if (!dev->rtnl_link_ops || 6189 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6190 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 6191 GFP_KERNEL); 6192 6193 /* 6194 * Flush the unicast and multicast chains 6195 */ 6196 dev_uc_flush(dev); 6197 dev_mc_flush(dev); 6198 6199 if (dev->netdev_ops->ndo_uninit) 6200 dev->netdev_ops->ndo_uninit(dev); 6201 6202 if (skb) 6203 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 6204 6205 /* Notifier chain MUST detach us all upper devices. */ 6206 WARN_ON(netdev_has_any_upper_dev(dev)); 6207 6208 /* Remove entries from kobject tree */ 6209 netdev_unregister_kobject(dev); 6210 #ifdef CONFIG_XPS 6211 /* Remove XPS queueing entries */ 6212 netif_reset_xps_queues_gt(dev, 0); 6213 #endif 6214 } 6215 6216 synchronize_net(); 6217 6218 list_for_each_entry(dev, head, unreg_list) 6219 dev_put(dev); 6220 } 6221 6222 static void rollback_registered(struct net_device *dev) 6223 { 6224 LIST_HEAD(single); 6225 6226 list_add(&dev->unreg_list, &single); 6227 rollback_registered_many(&single); 6228 list_del(&single); 6229 } 6230 6231 static netdev_features_t netdev_fix_features(struct net_device *dev, 6232 netdev_features_t features) 6233 { 6234 /* Fix illegal checksum combinations */ 6235 if ((features & NETIF_F_HW_CSUM) && 6236 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6237 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 6238 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 6239 } 6240 6241 /* TSO requires that SG is present as well. */ 6242 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 6243 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 6244 features &= ~NETIF_F_ALL_TSO; 6245 } 6246 6247 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 6248 !(features & NETIF_F_IP_CSUM)) { 6249 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 6250 features &= ~NETIF_F_TSO; 6251 features &= ~NETIF_F_TSO_ECN; 6252 } 6253 6254 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 6255 !(features & NETIF_F_IPV6_CSUM)) { 6256 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 6257 features &= ~NETIF_F_TSO6; 6258 } 6259 6260 /* TSO ECN requires that TSO is present as well. */ 6261 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 6262 features &= ~NETIF_F_TSO_ECN; 6263 6264 /* Software GSO depends on SG. */ 6265 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 6266 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 6267 features &= ~NETIF_F_GSO; 6268 } 6269 6270 /* UFO needs SG and checksumming */ 6271 if (features & NETIF_F_UFO) { 6272 /* maybe split UFO into V4 and V6? */ 6273 if (!((features & NETIF_F_GEN_CSUM) || 6274 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 6275 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6276 netdev_dbg(dev, 6277 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 6278 features &= ~NETIF_F_UFO; 6279 } 6280 6281 if (!(features & NETIF_F_SG)) { 6282 netdev_dbg(dev, 6283 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 6284 features &= ~NETIF_F_UFO; 6285 } 6286 } 6287 6288 #ifdef CONFIG_NET_RX_BUSY_POLL 6289 if (dev->netdev_ops->ndo_busy_poll) 6290 features |= NETIF_F_BUSY_POLL; 6291 else 6292 #endif 6293 features &= ~NETIF_F_BUSY_POLL; 6294 6295 return features; 6296 } 6297 6298 int __netdev_update_features(struct net_device *dev) 6299 { 6300 netdev_features_t features; 6301 int err = 0; 6302 6303 ASSERT_RTNL(); 6304 6305 features = netdev_get_wanted_features(dev); 6306 6307 if (dev->netdev_ops->ndo_fix_features) 6308 features = dev->netdev_ops->ndo_fix_features(dev, features); 6309 6310 /* driver might be less strict about feature dependencies */ 6311 features = netdev_fix_features(dev, features); 6312 6313 if (dev->features == features) 6314 return 0; 6315 6316 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 6317 &dev->features, &features); 6318 6319 if (dev->netdev_ops->ndo_set_features) 6320 err = dev->netdev_ops->ndo_set_features(dev, features); 6321 6322 if (unlikely(err < 0)) { 6323 netdev_err(dev, 6324 "set_features() failed (%d); wanted %pNF, left %pNF\n", 6325 err, &features, &dev->features); 6326 return -1; 6327 } 6328 6329 if (!err) 6330 dev->features = features; 6331 6332 return 1; 6333 } 6334 6335 /** 6336 * netdev_update_features - recalculate device features 6337 * @dev: the device to check 6338 * 6339 * Recalculate dev->features set and send notifications if it 6340 * has changed. Should be called after driver or hardware dependent 6341 * conditions might have changed that influence the features. 6342 */ 6343 void netdev_update_features(struct net_device *dev) 6344 { 6345 if (__netdev_update_features(dev)) 6346 netdev_features_change(dev); 6347 } 6348 EXPORT_SYMBOL(netdev_update_features); 6349 6350 /** 6351 * netdev_change_features - recalculate device features 6352 * @dev: the device to check 6353 * 6354 * Recalculate dev->features set and send notifications even 6355 * if they have not changed. Should be called instead of 6356 * netdev_update_features() if also dev->vlan_features might 6357 * have changed to allow the changes to be propagated to stacked 6358 * VLAN devices. 6359 */ 6360 void netdev_change_features(struct net_device *dev) 6361 { 6362 __netdev_update_features(dev); 6363 netdev_features_change(dev); 6364 } 6365 EXPORT_SYMBOL(netdev_change_features); 6366 6367 /** 6368 * netif_stacked_transfer_operstate - transfer operstate 6369 * @rootdev: the root or lower level device to transfer state from 6370 * @dev: the device to transfer operstate to 6371 * 6372 * Transfer operational state from root to device. This is normally 6373 * called when a stacking relationship exists between the root 6374 * device and the device(a leaf device). 6375 */ 6376 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 6377 struct net_device *dev) 6378 { 6379 if (rootdev->operstate == IF_OPER_DORMANT) 6380 netif_dormant_on(dev); 6381 else 6382 netif_dormant_off(dev); 6383 6384 if (netif_carrier_ok(rootdev)) { 6385 if (!netif_carrier_ok(dev)) 6386 netif_carrier_on(dev); 6387 } else { 6388 if (netif_carrier_ok(dev)) 6389 netif_carrier_off(dev); 6390 } 6391 } 6392 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 6393 6394 #ifdef CONFIG_SYSFS 6395 static int netif_alloc_rx_queues(struct net_device *dev) 6396 { 6397 unsigned int i, count = dev->num_rx_queues; 6398 struct netdev_rx_queue *rx; 6399 size_t sz = count * sizeof(*rx); 6400 6401 BUG_ON(count < 1); 6402 6403 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6404 if (!rx) { 6405 rx = vzalloc(sz); 6406 if (!rx) 6407 return -ENOMEM; 6408 } 6409 dev->_rx = rx; 6410 6411 for (i = 0; i < count; i++) 6412 rx[i].dev = dev; 6413 return 0; 6414 } 6415 #endif 6416 6417 static void netdev_init_one_queue(struct net_device *dev, 6418 struct netdev_queue *queue, void *_unused) 6419 { 6420 /* Initialize queue lock */ 6421 spin_lock_init(&queue->_xmit_lock); 6422 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 6423 queue->xmit_lock_owner = -1; 6424 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 6425 queue->dev = dev; 6426 #ifdef CONFIG_BQL 6427 dql_init(&queue->dql, HZ); 6428 #endif 6429 } 6430 6431 static void netif_free_tx_queues(struct net_device *dev) 6432 { 6433 kvfree(dev->_tx); 6434 } 6435 6436 static int netif_alloc_netdev_queues(struct net_device *dev) 6437 { 6438 unsigned int count = dev->num_tx_queues; 6439 struct netdev_queue *tx; 6440 size_t sz = count * sizeof(*tx); 6441 6442 if (count < 1 || count > 0xffff) 6443 return -EINVAL; 6444 6445 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6446 if (!tx) { 6447 tx = vzalloc(sz); 6448 if (!tx) 6449 return -ENOMEM; 6450 } 6451 dev->_tx = tx; 6452 6453 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 6454 spin_lock_init(&dev->tx_global_lock); 6455 6456 return 0; 6457 } 6458 6459 void netif_tx_stop_all_queues(struct net_device *dev) 6460 { 6461 unsigned int i; 6462 6463 for (i = 0; i < dev->num_tx_queues; i++) { 6464 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 6465 netif_tx_stop_queue(txq); 6466 } 6467 } 6468 EXPORT_SYMBOL(netif_tx_stop_all_queues); 6469 6470 /** 6471 * register_netdevice - register a network device 6472 * @dev: device to register 6473 * 6474 * Take a completed network device structure and add it to the kernel 6475 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6476 * chain. 0 is returned on success. A negative errno code is returned 6477 * on a failure to set up the device, or if the name is a duplicate. 6478 * 6479 * Callers must hold the rtnl semaphore. You may want 6480 * register_netdev() instead of this. 6481 * 6482 * BUGS: 6483 * The locking appears insufficient to guarantee two parallel registers 6484 * will not get the same name. 6485 */ 6486 6487 int register_netdevice(struct net_device *dev) 6488 { 6489 int ret; 6490 struct net *net = dev_net(dev); 6491 6492 BUG_ON(dev_boot_phase); 6493 ASSERT_RTNL(); 6494 6495 might_sleep(); 6496 6497 /* When net_device's are persistent, this will be fatal. */ 6498 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 6499 BUG_ON(!net); 6500 6501 spin_lock_init(&dev->addr_list_lock); 6502 netdev_set_addr_lockdep_class(dev); 6503 6504 ret = dev_get_valid_name(net, dev, dev->name); 6505 if (ret < 0) 6506 goto out; 6507 6508 /* Init, if this function is available */ 6509 if (dev->netdev_ops->ndo_init) { 6510 ret = dev->netdev_ops->ndo_init(dev); 6511 if (ret) { 6512 if (ret > 0) 6513 ret = -EIO; 6514 goto out; 6515 } 6516 } 6517 6518 if (((dev->hw_features | dev->features) & 6519 NETIF_F_HW_VLAN_CTAG_FILTER) && 6520 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 6521 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 6522 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 6523 ret = -EINVAL; 6524 goto err_uninit; 6525 } 6526 6527 ret = -EBUSY; 6528 if (!dev->ifindex) 6529 dev->ifindex = dev_new_index(net); 6530 else if (__dev_get_by_index(net, dev->ifindex)) 6531 goto err_uninit; 6532 6533 /* Transfer changeable features to wanted_features and enable 6534 * software offloads (GSO and GRO). 6535 */ 6536 dev->hw_features |= NETIF_F_SOFT_FEATURES; 6537 dev->features |= NETIF_F_SOFT_FEATURES; 6538 dev->wanted_features = dev->features & dev->hw_features; 6539 6540 if (!(dev->flags & IFF_LOOPBACK)) { 6541 dev->hw_features |= NETIF_F_NOCACHE_COPY; 6542 } 6543 6544 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 6545 */ 6546 dev->vlan_features |= NETIF_F_HIGHDMA; 6547 6548 /* Make NETIF_F_SG inheritable to tunnel devices. 6549 */ 6550 dev->hw_enc_features |= NETIF_F_SG; 6551 6552 /* Make NETIF_F_SG inheritable to MPLS. 6553 */ 6554 dev->mpls_features |= NETIF_F_SG; 6555 6556 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 6557 ret = notifier_to_errno(ret); 6558 if (ret) 6559 goto err_uninit; 6560 6561 ret = netdev_register_kobject(dev); 6562 if (ret) 6563 goto err_uninit; 6564 dev->reg_state = NETREG_REGISTERED; 6565 6566 __netdev_update_features(dev); 6567 6568 /* 6569 * Default initial state at registry is that the 6570 * device is present. 6571 */ 6572 6573 set_bit(__LINK_STATE_PRESENT, &dev->state); 6574 6575 linkwatch_init_dev(dev); 6576 6577 dev_init_scheduler(dev); 6578 dev_hold(dev); 6579 list_netdevice(dev); 6580 add_device_randomness(dev->dev_addr, dev->addr_len); 6581 6582 /* If the device has permanent device address, driver should 6583 * set dev_addr and also addr_assign_type should be set to 6584 * NET_ADDR_PERM (default value). 6585 */ 6586 if (dev->addr_assign_type == NET_ADDR_PERM) 6587 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 6588 6589 /* Notify protocols, that a new device appeared. */ 6590 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 6591 ret = notifier_to_errno(ret); 6592 if (ret) { 6593 rollback_registered(dev); 6594 dev->reg_state = NETREG_UNREGISTERED; 6595 } 6596 /* 6597 * Prevent userspace races by waiting until the network 6598 * device is fully setup before sending notifications. 6599 */ 6600 if (!dev->rtnl_link_ops || 6601 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6602 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6603 6604 out: 6605 return ret; 6606 6607 err_uninit: 6608 if (dev->netdev_ops->ndo_uninit) 6609 dev->netdev_ops->ndo_uninit(dev); 6610 goto out; 6611 } 6612 EXPORT_SYMBOL(register_netdevice); 6613 6614 /** 6615 * init_dummy_netdev - init a dummy network device for NAPI 6616 * @dev: device to init 6617 * 6618 * This takes a network device structure and initialize the minimum 6619 * amount of fields so it can be used to schedule NAPI polls without 6620 * registering a full blown interface. This is to be used by drivers 6621 * that need to tie several hardware interfaces to a single NAPI 6622 * poll scheduler due to HW limitations. 6623 */ 6624 int init_dummy_netdev(struct net_device *dev) 6625 { 6626 /* Clear everything. Note we don't initialize spinlocks 6627 * are they aren't supposed to be taken by any of the 6628 * NAPI code and this dummy netdev is supposed to be 6629 * only ever used for NAPI polls 6630 */ 6631 memset(dev, 0, sizeof(struct net_device)); 6632 6633 /* make sure we BUG if trying to hit standard 6634 * register/unregister code path 6635 */ 6636 dev->reg_state = NETREG_DUMMY; 6637 6638 /* NAPI wants this */ 6639 INIT_LIST_HEAD(&dev->napi_list); 6640 6641 /* a dummy interface is started by default */ 6642 set_bit(__LINK_STATE_PRESENT, &dev->state); 6643 set_bit(__LINK_STATE_START, &dev->state); 6644 6645 /* Note : We dont allocate pcpu_refcnt for dummy devices, 6646 * because users of this 'device' dont need to change 6647 * its refcount. 6648 */ 6649 6650 return 0; 6651 } 6652 EXPORT_SYMBOL_GPL(init_dummy_netdev); 6653 6654 6655 /** 6656 * register_netdev - register a network device 6657 * @dev: device to register 6658 * 6659 * Take a completed network device structure and add it to the kernel 6660 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6661 * chain. 0 is returned on success. A negative errno code is returned 6662 * on a failure to set up the device, or if the name is a duplicate. 6663 * 6664 * This is a wrapper around register_netdevice that takes the rtnl semaphore 6665 * and expands the device name if you passed a format string to 6666 * alloc_netdev. 6667 */ 6668 int register_netdev(struct net_device *dev) 6669 { 6670 int err; 6671 6672 rtnl_lock(); 6673 err = register_netdevice(dev); 6674 rtnl_unlock(); 6675 return err; 6676 } 6677 EXPORT_SYMBOL(register_netdev); 6678 6679 int netdev_refcnt_read(const struct net_device *dev) 6680 { 6681 int i, refcnt = 0; 6682 6683 for_each_possible_cpu(i) 6684 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 6685 return refcnt; 6686 } 6687 EXPORT_SYMBOL(netdev_refcnt_read); 6688 6689 /** 6690 * netdev_wait_allrefs - wait until all references are gone. 6691 * @dev: target net_device 6692 * 6693 * This is called when unregistering network devices. 6694 * 6695 * Any protocol or device that holds a reference should register 6696 * for netdevice notification, and cleanup and put back the 6697 * reference if they receive an UNREGISTER event. 6698 * We can get stuck here if buggy protocols don't correctly 6699 * call dev_put. 6700 */ 6701 static void netdev_wait_allrefs(struct net_device *dev) 6702 { 6703 unsigned long rebroadcast_time, warning_time; 6704 int refcnt; 6705 6706 linkwatch_forget_dev(dev); 6707 6708 rebroadcast_time = warning_time = jiffies; 6709 refcnt = netdev_refcnt_read(dev); 6710 6711 while (refcnt != 0) { 6712 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 6713 rtnl_lock(); 6714 6715 /* Rebroadcast unregister notification */ 6716 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6717 6718 __rtnl_unlock(); 6719 rcu_barrier(); 6720 rtnl_lock(); 6721 6722 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6723 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 6724 &dev->state)) { 6725 /* We must not have linkwatch events 6726 * pending on unregister. If this 6727 * happens, we simply run the queue 6728 * unscheduled, resulting in a noop 6729 * for this device. 6730 */ 6731 linkwatch_run_queue(); 6732 } 6733 6734 __rtnl_unlock(); 6735 6736 rebroadcast_time = jiffies; 6737 } 6738 6739 msleep(250); 6740 6741 refcnt = netdev_refcnt_read(dev); 6742 6743 if (time_after(jiffies, warning_time + 10 * HZ)) { 6744 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 6745 dev->name, refcnt); 6746 warning_time = jiffies; 6747 } 6748 } 6749 } 6750 6751 /* The sequence is: 6752 * 6753 * rtnl_lock(); 6754 * ... 6755 * register_netdevice(x1); 6756 * register_netdevice(x2); 6757 * ... 6758 * unregister_netdevice(y1); 6759 * unregister_netdevice(y2); 6760 * ... 6761 * rtnl_unlock(); 6762 * free_netdev(y1); 6763 * free_netdev(y2); 6764 * 6765 * We are invoked by rtnl_unlock(). 6766 * This allows us to deal with problems: 6767 * 1) We can delete sysfs objects which invoke hotplug 6768 * without deadlocking with linkwatch via keventd. 6769 * 2) Since we run with the RTNL semaphore not held, we can sleep 6770 * safely in order to wait for the netdev refcnt to drop to zero. 6771 * 6772 * We must not return until all unregister events added during 6773 * the interval the lock was held have been completed. 6774 */ 6775 void netdev_run_todo(void) 6776 { 6777 struct list_head list; 6778 6779 /* Snapshot list, allow later requests */ 6780 list_replace_init(&net_todo_list, &list); 6781 6782 __rtnl_unlock(); 6783 6784 6785 /* Wait for rcu callbacks to finish before next phase */ 6786 if (!list_empty(&list)) 6787 rcu_barrier(); 6788 6789 while (!list_empty(&list)) { 6790 struct net_device *dev 6791 = list_first_entry(&list, struct net_device, todo_list); 6792 list_del(&dev->todo_list); 6793 6794 rtnl_lock(); 6795 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6796 __rtnl_unlock(); 6797 6798 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6799 pr_err("network todo '%s' but state %d\n", 6800 dev->name, dev->reg_state); 6801 dump_stack(); 6802 continue; 6803 } 6804 6805 dev->reg_state = NETREG_UNREGISTERED; 6806 6807 netdev_wait_allrefs(dev); 6808 6809 /* paranoia */ 6810 BUG_ON(netdev_refcnt_read(dev)); 6811 BUG_ON(!list_empty(&dev->ptype_all)); 6812 BUG_ON(!list_empty(&dev->ptype_specific)); 6813 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6814 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6815 WARN_ON(dev->dn_ptr); 6816 6817 if (dev->destructor) 6818 dev->destructor(dev); 6819 6820 /* Report a network device has been unregistered */ 6821 rtnl_lock(); 6822 dev_net(dev)->dev_unreg_count--; 6823 __rtnl_unlock(); 6824 wake_up(&netdev_unregistering_wq); 6825 6826 /* Free network device */ 6827 kobject_put(&dev->dev.kobj); 6828 } 6829 } 6830 6831 /* Convert net_device_stats to rtnl_link_stats64. They have the same 6832 * fields in the same order, with only the type differing. 6833 */ 6834 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6835 const struct net_device_stats *netdev_stats) 6836 { 6837 #if BITS_PER_LONG == 64 6838 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6839 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6840 #else 6841 size_t i, n = sizeof(*stats64) / sizeof(u64); 6842 const unsigned long *src = (const unsigned long *)netdev_stats; 6843 u64 *dst = (u64 *)stats64; 6844 6845 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6846 sizeof(*stats64) / sizeof(u64)); 6847 for (i = 0; i < n; i++) 6848 dst[i] = src[i]; 6849 #endif 6850 } 6851 EXPORT_SYMBOL(netdev_stats_to_stats64); 6852 6853 /** 6854 * dev_get_stats - get network device statistics 6855 * @dev: device to get statistics from 6856 * @storage: place to store stats 6857 * 6858 * Get network statistics from device. Return @storage. 6859 * The device driver may provide its own method by setting 6860 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6861 * otherwise the internal statistics structure is used. 6862 */ 6863 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6864 struct rtnl_link_stats64 *storage) 6865 { 6866 const struct net_device_ops *ops = dev->netdev_ops; 6867 6868 if (ops->ndo_get_stats64) { 6869 memset(storage, 0, sizeof(*storage)); 6870 ops->ndo_get_stats64(dev, storage); 6871 } else if (ops->ndo_get_stats) { 6872 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6873 } else { 6874 netdev_stats_to_stats64(storage, &dev->stats); 6875 } 6876 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 6877 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 6878 return storage; 6879 } 6880 EXPORT_SYMBOL(dev_get_stats); 6881 6882 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 6883 { 6884 struct netdev_queue *queue = dev_ingress_queue(dev); 6885 6886 #ifdef CONFIG_NET_CLS_ACT 6887 if (queue) 6888 return queue; 6889 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 6890 if (!queue) 6891 return NULL; 6892 netdev_init_one_queue(dev, queue, NULL); 6893 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 6894 queue->qdisc_sleeping = &noop_qdisc; 6895 rcu_assign_pointer(dev->ingress_queue, queue); 6896 #endif 6897 return queue; 6898 } 6899 6900 static const struct ethtool_ops default_ethtool_ops; 6901 6902 void netdev_set_default_ethtool_ops(struct net_device *dev, 6903 const struct ethtool_ops *ops) 6904 { 6905 if (dev->ethtool_ops == &default_ethtool_ops) 6906 dev->ethtool_ops = ops; 6907 } 6908 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 6909 6910 void netdev_freemem(struct net_device *dev) 6911 { 6912 char *addr = (char *)dev - dev->padded; 6913 6914 kvfree(addr); 6915 } 6916 6917 /** 6918 * alloc_netdev_mqs - allocate network device 6919 * @sizeof_priv: size of private data to allocate space for 6920 * @name: device name format string 6921 * @name_assign_type: origin of device name 6922 * @setup: callback to initialize device 6923 * @txqs: the number of TX subqueues to allocate 6924 * @rxqs: the number of RX subqueues to allocate 6925 * 6926 * Allocates a struct net_device with private data area for driver use 6927 * and performs basic initialization. Also allocates subqueue structs 6928 * for each queue on the device. 6929 */ 6930 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6931 unsigned char name_assign_type, 6932 void (*setup)(struct net_device *), 6933 unsigned int txqs, unsigned int rxqs) 6934 { 6935 struct net_device *dev; 6936 size_t alloc_size; 6937 struct net_device *p; 6938 6939 BUG_ON(strlen(name) >= sizeof(dev->name)); 6940 6941 if (txqs < 1) { 6942 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6943 return NULL; 6944 } 6945 6946 #ifdef CONFIG_SYSFS 6947 if (rxqs < 1) { 6948 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6949 return NULL; 6950 } 6951 #endif 6952 6953 alloc_size = sizeof(struct net_device); 6954 if (sizeof_priv) { 6955 /* ensure 32-byte alignment of private area */ 6956 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6957 alloc_size += sizeof_priv; 6958 } 6959 /* ensure 32-byte alignment of whole construct */ 6960 alloc_size += NETDEV_ALIGN - 1; 6961 6962 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6963 if (!p) 6964 p = vzalloc(alloc_size); 6965 if (!p) 6966 return NULL; 6967 6968 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6969 dev->padded = (char *)dev - (char *)p; 6970 6971 dev->pcpu_refcnt = alloc_percpu(int); 6972 if (!dev->pcpu_refcnt) 6973 goto free_dev; 6974 6975 if (dev_addr_init(dev)) 6976 goto free_pcpu; 6977 6978 dev_mc_init(dev); 6979 dev_uc_init(dev); 6980 6981 dev_net_set(dev, &init_net); 6982 6983 dev->gso_max_size = GSO_MAX_SIZE; 6984 dev->gso_max_segs = GSO_MAX_SEGS; 6985 dev->gso_min_segs = 0; 6986 6987 INIT_LIST_HEAD(&dev->napi_list); 6988 INIT_LIST_HEAD(&dev->unreg_list); 6989 INIT_LIST_HEAD(&dev->close_list); 6990 INIT_LIST_HEAD(&dev->link_watch_list); 6991 INIT_LIST_HEAD(&dev->adj_list.upper); 6992 INIT_LIST_HEAD(&dev->adj_list.lower); 6993 INIT_LIST_HEAD(&dev->all_adj_list.upper); 6994 INIT_LIST_HEAD(&dev->all_adj_list.lower); 6995 INIT_LIST_HEAD(&dev->ptype_all); 6996 INIT_LIST_HEAD(&dev->ptype_specific); 6997 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 6998 setup(dev); 6999 7000 dev->num_tx_queues = txqs; 7001 dev->real_num_tx_queues = txqs; 7002 if (netif_alloc_netdev_queues(dev)) 7003 goto free_all; 7004 7005 #ifdef CONFIG_SYSFS 7006 dev->num_rx_queues = rxqs; 7007 dev->real_num_rx_queues = rxqs; 7008 if (netif_alloc_rx_queues(dev)) 7009 goto free_all; 7010 #endif 7011 7012 strcpy(dev->name, name); 7013 dev->name_assign_type = name_assign_type; 7014 dev->group = INIT_NETDEV_GROUP; 7015 if (!dev->ethtool_ops) 7016 dev->ethtool_ops = &default_ethtool_ops; 7017 7018 nf_hook_ingress_init(dev); 7019 7020 return dev; 7021 7022 free_all: 7023 free_netdev(dev); 7024 return NULL; 7025 7026 free_pcpu: 7027 free_percpu(dev->pcpu_refcnt); 7028 free_dev: 7029 netdev_freemem(dev); 7030 return NULL; 7031 } 7032 EXPORT_SYMBOL(alloc_netdev_mqs); 7033 7034 /** 7035 * free_netdev - free network device 7036 * @dev: device 7037 * 7038 * This function does the last stage of destroying an allocated device 7039 * interface. The reference to the device object is released. 7040 * If this is the last reference then it will be freed. 7041 */ 7042 void free_netdev(struct net_device *dev) 7043 { 7044 struct napi_struct *p, *n; 7045 7046 netif_free_tx_queues(dev); 7047 #ifdef CONFIG_SYSFS 7048 kvfree(dev->_rx); 7049 #endif 7050 7051 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 7052 7053 /* Flush device addresses */ 7054 dev_addr_flush(dev); 7055 7056 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 7057 netif_napi_del(p); 7058 7059 free_percpu(dev->pcpu_refcnt); 7060 dev->pcpu_refcnt = NULL; 7061 7062 /* Compatibility with error handling in drivers */ 7063 if (dev->reg_state == NETREG_UNINITIALIZED) { 7064 netdev_freemem(dev); 7065 return; 7066 } 7067 7068 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 7069 dev->reg_state = NETREG_RELEASED; 7070 7071 /* will free via device release */ 7072 put_device(&dev->dev); 7073 } 7074 EXPORT_SYMBOL(free_netdev); 7075 7076 /** 7077 * synchronize_net - Synchronize with packet receive processing 7078 * 7079 * Wait for packets currently being received to be done. 7080 * Does not block later packets from starting. 7081 */ 7082 void synchronize_net(void) 7083 { 7084 might_sleep(); 7085 if (rtnl_is_locked()) 7086 synchronize_rcu_expedited(); 7087 else 7088 synchronize_rcu(); 7089 } 7090 EXPORT_SYMBOL(synchronize_net); 7091 7092 /** 7093 * unregister_netdevice_queue - remove device from the kernel 7094 * @dev: device 7095 * @head: list 7096 * 7097 * This function shuts down a device interface and removes it 7098 * from the kernel tables. 7099 * If head not NULL, device is queued to be unregistered later. 7100 * 7101 * Callers must hold the rtnl semaphore. You may want 7102 * unregister_netdev() instead of this. 7103 */ 7104 7105 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 7106 { 7107 ASSERT_RTNL(); 7108 7109 if (head) { 7110 list_move_tail(&dev->unreg_list, head); 7111 } else { 7112 rollback_registered(dev); 7113 /* Finish processing unregister after unlock */ 7114 net_set_todo(dev); 7115 } 7116 } 7117 EXPORT_SYMBOL(unregister_netdevice_queue); 7118 7119 /** 7120 * unregister_netdevice_many - unregister many devices 7121 * @head: list of devices 7122 * 7123 * Note: As most callers use a stack allocated list_head, 7124 * we force a list_del() to make sure stack wont be corrupted later. 7125 */ 7126 void unregister_netdevice_many(struct list_head *head) 7127 { 7128 struct net_device *dev; 7129 7130 if (!list_empty(head)) { 7131 rollback_registered_many(head); 7132 list_for_each_entry(dev, head, unreg_list) 7133 net_set_todo(dev); 7134 list_del(head); 7135 } 7136 } 7137 EXPORT_SYMBOL(unregister_netdevice_many); 7138 7139 /** 7140 * unregister_netdev - remove device from the kernel 7141 * @dev: device 7142 * 7143 * This function shuts down a device interface and removes it 7144 * from the kernel tables. 7145 * 7146 * This is just a wrapper for unregister_netdevice that takes 7147 * the rtnl semaphore. In general you want to use this and not 7148 * unregister_netdevice. 7149 */ 7150 void unregister_netdev(struct net_device *dev) 7151 { 7152 rtnl_lock(); 7153 unregister_netdevice(dev); 7154 rtnl_unlock(); 7155 } 7156 EXPORT_SYMBOL(unregister_netdev); 7157 7158 /** 7159 * dev_change_net_namespace - move device to different nethost namespace 7160 * @dev: device 7161 * @net: network namespace 7162 * @pat: If not NULL name pattern to try if the current device name 7163 * is already taken in the destination network namespace. 7164 * 7165 * This function shuts down a device interface and moves it 7166 * to a new network namespace. On success 0 is returned, on 7167 * a failure a netagive errno code is returned. 7168 * 7169 * Callers must hold the rtnl semaphore. 7170 */ 7171 7172 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 7173 { 7174 int err; 7175 7176 ASSERT_RTNL(); 7177 7178 /* Don't allow namespace local devices to be moved. */ 7179 err = -EINVAL; 7180 if (dev->features & NETIF_F_NETNS_LOCAL) 7181 goto out; 7182 7183 /* Ensure the device has been registrered */ 7184 if (dev->reg_state != NETREG_REGISTERED) 7185 goto out; 7186 7187 /* Get out if there is nothing todo */ 7188 err = 0; 7189 if (net_eq(dev_net(dev), net)) 7190 goto out; 7191 7192 /* Pick the destination device name, and ensure 7193 * we can use it in the destination network namespace. 7194 */ 7195 err = -EEXIST; 7196 if (__dev_get_by_name(net, dev->name)) { 7197 /* We get here if we can't use the current device name */ 7198 if (!pat) 7199 goto out; 7200 if (dev_get_valid_name(net, dev, pat) < 0) 7201 goto out; 7202 } 7203 7204 /* 7205 * And now a mini version of register_netdevice unregister_netdevice. 7206 */ 7207 7208 /* If device is running close it first. */ 7209 dev_close(dev); 7210 7211 /* And unlink it from device chain */ 7212 err = -ENODEV; 7213 unlist_netdevice(dev); 7214 7215 synchronize_net(); 7216 7217 /* Shutdown queueing discipline. */ 7218 dev_shutdown(dev); 7219 7220 /* Notify protocols, that we are about to destroy 7221 this device. They should clean all the things. 7222 7223 Note that dev->reg_state stays at NETREG_REGISTERED. 7224 This is wanted because this way 8021q and macvlan know 7225 the device is just moving and can keep their slaves up. 7226 */ 7227 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7228 rcu_barrier(); 7229 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7230 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 7231 7232 /* 7233 * Flush the unicast and multicast chains 7234 */ 7235 dev_uc_flush(dev); 7236 dev_mc_flush(dev); 7237 7238 /* Send a netdev-removed uevent to the old namespace */ 7239 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 7240 netdev_adjacent_del_links(dev); 7241 7242 /* Actually switch the network namespace */ 7243 dev_net_set(dev, net); 7244 7245 /* If there is an ifindex conflict assign a new one */ 7246 if (__dev_get_by_index(net, dev->ifindex)) 7247 dev->ifindex = dev_new_index(net); 7248 7249 /* Send a netdev-add uevent to the new namespace */ 7250 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 7251 netdev_adjacent_add_links(dev); 7252 7253 /* Fixup kobjects */ 7254 err = device_rename(&dev->dev, dev->name); 7255 WARN_ON(err); 7256 7257 /* Add the device back in the hashes */ 7258 list_netdevice(dev); 7259 7260 /* Notify protocols, that a new device appeared. */ 7261 call_netdevice_notifiers(NETDEV_REGISTER, dev); 7262 7263 /* 7264 * Prevent userspace races by waiting until the network 7265 * device is fully setup before sending notifications. 7266 */ 7267 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7268 7269 synchronize_net(); 7270 err = 0; 7271 out: 7272 return err; 7273 } 7274 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 7275 7276 static int dev_cpu_callback(struct notifier_block *nfb, 7277 unsigned long action, 7278 void *ocpu) 7279 { 7280 struct sk_buff **list_skb; 7281 struct sk_buff *skb; 7282 unsigned int cpu, oldcpu = (unsigned long)ocpu; 7283 struct softnet_data *sd, *oldsd; 7284 7285 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 7286 return NOTIFY_OK; 7287 7288 local_irq_disable(); 7289 cpu = smp_processor_id(); 7290 sd = &per_cpu(softnet_data, cpu); 7291 oldsd = &per_cpu(softnet_data, oldcpu); 7292 7293 /* Find end of our completion_queue. */ 7294 list_skb = &sd->completion_queue; 7295 while (*list_skb) 7296 list_skb = &(*list_skb)->next; 7297 /* Append completion queue from offline CPU. */ 7298 *list_skb = oldsd->completion_queue; 7299 oldsd->completion_queue = NULL; 7300 7301 /* Append output queue from offline CPU. */ 7302 if (oldsd->output_queue) { 7303 *sd->output_queue_tailp = oldsd->output_queue; 7304 sd->output_queue_tailp = oldsd->output_queue_tailp; 7305 oldsd->output_queue = NULL; 7306 oldsd->output_queue_tailp = &oldsd->output_queue; 7307 } 7308 /* Append NAPI poll list from offline CPU, with one exception : 7309 * process_backlog() must be called by cpu owning percpu backlog. 7310 * We properly handle process_queue & input_pkt_queue later. 7311 */ 7312 while (!list_empty(&oldsd->poll_list)) { 7313 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 7314 struct napi_struct, 7315 poll_list); 7316 7317 list_del_init(&napi->poll_list); 7318 if (napi->poll == process_backlog) 7319 napi->state = 0; 7320 else 7321 ____napi_schedule(sd, napi); 7322 } 7323 7324 raise_softirq_irqoff(NET_TX_SOFTIRQ); 7325 local_irq_enable(); 7326 7327 /* Process offline CPU's input_pkt_queue */ 7328 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 7329 netif_rx_ni(skb); 7330 input_queue_head_incr(oldsd); 7331 } 7332 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 7333 netif_rx_ni(skb); 7334 input_queue_head_incr(oldsd); 7335 } 7336 7337 return NOTIFY_OK; 7338 } 7339 7340 7341 /** 7342 * netdev_increment_features - increment feature set by one 7343 * @all: current feature set 7344 * @one: new feature set 7345 * @mask: mask feature set 7346 * 7347 * Computes a new feature set after adding a device with feature set 7348 * @one to the master device with current feature set @all. Will not 7349 * enable anything that is off in @mask. Returns the new feature set. 7350 */ 7351 netdev_features_t netdev_increment_features(netdev_features_t all, 7352 netdev_features_t one, netdev_features_t mask) 7353 { 7354 if (mask & NETIF_F_GEN_CSUM) 7355 mask |= NETIF_F_ALL_CSUM; 7356 mask |= NETIF_F_VLAN_CHALLENGED; 7357 7358 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 7359 all &= one | ~NETIF_F_ALL_FOR_ALL; 7360 7361 /* If one device supports hw checksumming, set for all. */ 7362 if (all & NETIF_F_GEN_CSUM) 7363 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 7364 7365 return all; 7366 } 7367 EXPORT_SYMBOL(netdev_increment_features); 7368 7369 static struct hlist_head * __net_init netdev_create_hash(void) 7370 { 7371 int i; 7372 struct hlist_head *hash; 7373 7374 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 7375 if (hash != NULL) 7376 for (i = 0; i < NETDEV_HASHENTRIES; i++) 7377 INIT_HLIST_HEAD(&hash[i]); 7378 7379 return hash; 7380 } 7381 7382 /* Initialize per network namespace state */ 7383 static int __net_init netdev_init(struct net *net) 7384 { 7385 if (net != &init_net) 7386 INIT_LIST_HEAD(&net->dev_base_head); 7387 7388 net->dev_name_head = netdev_create_hash(); 7389 if (net->dev_name_head == NULL) 7390 goto err_name; 7391 7392 net->dev_index_head = netdev_create_hash(); 7393 if (net->dev_index_head == NULL) 7394 goto err_idx; 7395 7396 return 0; 7397 7398 err_idx: 7399 kfree(net->dev_name_head); 7400 err_name: 7401 return -ENOMEM; 7402 } 7403 7404 /** 7405 * netdev_drivername - network driver for the device 7406 * @dev: network device 7407 * 7408 * Determine network driver for device. 7409 */ 7410 const char *netdev_drivername(const struct net_device *dev) 7411 { 7412 const struct device_driver *driver; 7413 const struct device *parent; 7414 const char *empty = ""; 7415 7416 parent = dev->dev.parent; 7417 if (!parent) 7418 return empty; 7419 7420 driver = parent->driver; 7421 if (driver && driver->name) 7422 return driver->name; 7423 return empty; 7424 } 7425 7426 static void __netdev_printk(const char *level, const struct net_device *dev, 7427 struct va_format *vaf) 7428 { 7429 if (dev && dev->dev.parent) { 7430 dev_printk_emit(level[1] - '0', 7431 dev->dev.parent, 7432 "%s %s %s%s: %pV", 7433 dev_driver_string(dev->dev.parent), 7434 dev_name(dev->dev.parent), 7435 netdev_name(dev), netdev_reg_state(dev), 7436 vaf); 7437 } else if (dev) { 7438 printk("%s%s%s: %pV", 7439 level, netdev_name(dev), netdev_reg_state(dev), vaf); 7440 } else { 7441 printk("%s(NULL net_device): %pV", level, vaf); 7442 } 7443 } 7444 7445 void netdev_printk(const char *level, const struct net_device *dev, 7446 const char *format, ...) 7447 { 7448 struct va_format vaf; 7449 va_list args; 7450 7451 va_start(args, format); 7452 7453 vaf.fmt = format; 7454 vaf.va = &args; 7455 7456 __netdev_printk(level, dev, &vaf); 7457 7458 va_end(args); 7459 } 7460 EXPORT_SYMBOL(netdev_printk); 7461 7462 #define define_netdev_printk_level(func, level) \ 7463 void func(const struct net_device *dev, const char *fmt, ...) \ 7464 { \ 7465 struct va_format vaf; \ 7466 va_list args; \ 7467 \ 7468 va_start(args, fmt); \ 7469 \ 7470 vaf.fmt = fmt; \ 7471 vaf.va = &args; \ 7472 \ 7473 __netdev_printk(level, dev, &vaf); \ 7474 \ 7475 va_end(args); \ 7476 } \ 7477 EXPORT_SYMBOL(func); 7478 7479 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 7480 define_netdev_printk_level(netdev_alert, KERN_ALERT); 7481 define_netdev_printk_level(netdev_crit, KERN_CRIT); 7482 define_netdev_printk_level(netdev_err, KERN_ERR); 7483 define_netdev_printk_level(netdev_warn, KERN_WARNING); 7484 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 7485 define_netdev_printk_level(netdev_info, KERN_INFO); 7486 7487 static void __net_exit netdev_exit(struct net *net) 7488 { 7489 kfree(net->dev_name_head); 7490 kfree(net->dev_index_head); 7491 } 7492 7493 static struct pernet_operations __net_initdata netdev_net_ops = { 7494 .init = netdev_init, 7495 .exit = netdev_exit, 7496 }; 7497 7498 static void __net_exit default_device_exit(struct net *net) 7499 { 7500 struct net_device *dev, *aux; 7501 /* 7502 * Push all migratable network devices back to the 7503 * initial network namespace 7504 */ 7505 rtnl_lock(); 7506 for_each_netdev_safe(net, dev, aux) { 7507 int err; 7508 char fb_name[IFNAMSIZ]; 7509 7510 /* Ignore unmoveable devices (i.e. loopback) */ 7511 if (dev->features & NETIF_F_NETNS_LOCAL) 7512 continue; 7513 7514 /* Leave virtual devices for the generic cleanup */ 7515 if (dev->rtnl_link_ops) 7516 continue; 7517 7518 /* Push remaining network devices to init_net */ 7519 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 7520 err = dev_change_net_namespace(dev, &init_net, fb_name); 7521 if (err) { 7522 pr_emerg("%s: failed to move %s to init_net: %d\n", 7523 __func__, dev->name, err); 7524 BUG(); 7525 } 7526 } 7527 rtnl_unlock(); 7528 } 7529 7530 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 7531 { 7532 /* Return with the rtnl_lock held when there are no network 7533 * devices unregistering in any network namespace in net_list. 7534 */ 7535 struct net *net; 7536 bool unregistering; 7537 DEFINE_WAIT_FUNC(wait, woken_wake_function); 7538 7539 add_wait_queue(&netdev_unregistering_wq, &wait); 7540 for (;;) { 7541 unregistering = false; 7542 rtnl_lock(); 7543 list_for_each_entry(net, net_list, exit_list) { 7544 if (net->dev_unreg_count > 0) { 7545 unregistering = true; 7546 break; 7547 } 7548 } 7549 if (!unregistering) 7550 break; 7551 __rtnl_unlock(); 7552 7553 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 7554 } 7555 remove_wait_queue(&netdev_unregistering_wq, &wait); 7556 } 7557 7558 static void __net_exit default_device_exit_batch(struct list_head *net_list) 7559 { 7560 /* At exit all network devices most be removed from a network 7561 * namespace. Do this in the reverse order of registration. 7562 * Do this across as many network namespaces as possible to 7563 * improve batching efficiency. 7564 */ 7565 struct net_device *dev; 7566 struct net *net; 7567 LIST_HEAD(dev_kill_list); 7568 7569 /* To prevent network device cleanup code from dereferencing 7570 * loopback devices or network devices that have been freed 7571 * wait here for all pending unregistrations to complete, 7572 * before unregistring the loopback device and allowing the 7573 * network namespace be freed. 7574 * 7575 * The netdev todo list containing all network devices 7576 * unregistrations that happen in default_device_exit_batch 7577 * will run in the rtnl_unlock() at the end of 7578 * default_device_exit_batch. 7579 */ 7580 rtnl_lock_unregistering(net_list); 7581 list_for_each_entry(net, net_list, exit_list) { 7582 for_each_netdev_reverse(net, dev) { 7583 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 7584 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 7585 else 7586 unregister_netdevice_queue(dev, &dev_kill_list); 7587 } 7588 } 7589 unregister_netdevice_many(&dev_kill_list); 7590 rtnl_unlock(); 7591 } 7592 7593 static struct pernet_operations __net_initdata default_device_ops = { 7594 .exit = default_device_exit, 7595 .exit_batch = default_device_exit_batch, 7596 }; 7597 7598 /* 7599 * Initialize the DEV module. At boot time this walks the device list and 7600 * unhooks any devices that fail to initialise (normally hardware not 7601 * present) and leaves us with a valid list of present and active devices. 7602 * 7603 */ 7604 7605 /* 7606 * This is called single threaded during boot, so no need 7607 * to take the rtnl semaphore. 7608 */ 7609 static int __init net_dev_init(void) 7610 { 7611 int i, rc = -ENOMEM; 7612 7613 BUG_ON(!dev_boot_phase); 7614 7615 if (dev_proc_init()) 7616 goto out; 7617 7618 if (netdev_kobject_init()) 7619 goto out; 7620 7621 INIT_LIST_HEAD(&ptype_all); 7622 for (i = 0; i < PTYPE_HASH_SIZE; i++) 7623 INIT_LIST_HEAD(&ptype_base[i]); 7624 7625 INIT_LIST_HEAD(&offload_base); 7626 7627 if (register_pernet_subsys(&netdev_net_ops)) 7628 goto out; 7629 7630 /* 7631 * Initialise the packet receive queues. 7632 */ 7633 7634 for_each_possible_cpu(i) { 7635 struct softnet_data *sd = &per_cpu(softnet_data, i); 7636 7637 skb_queue_head_init(&sd->input_pkt_queue); 7638 skb_queue_head_init(&sd->process_queue); 7639 INIT_LIST_HEAD(&sd->poll_list); 7640 sd->output_queue_tailp = &sd->output_queue; 7641 #ifdef CONFIG_RPS 7642 sd->csd.func = rps_trigger_softirq; 7643 sd->csd.info = sd; 7644 sd->cpu = i; 7645 #endif 7646 7647 sd->backlog.poll = process_backlog; 7648 sd->backlog.weight = weight_p; 7649 } 7650 7651 dev_boot_phase = 0; 7652 7653 /* The loopback device is special if any other network devices 7654 * is present in a network namespace the loopback device must 7655 * be present. Since we now dynamically allocate and free the 7656 * loopback device ensure this invariant is maintained by 7657 * keeping the loopback device as the first device on the 7658 * list of network devices. Ensuring the loopback devices 7659 * is the first device that appears and the last network device 7660 * that disappears. 7661 */ 7662 if (register_pernet_device(&loopback_net_ops)) 7663 goto out; 7664 7665 if (register_pernet_device(&default_device_ops)) 7666 goto out; 7667 7668 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 7669 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 7670 7671 hotcpu_notifier(dev_cpu_callback, 0); 7672 dst_subsys_init(); 7673 rc = 0; 7674 out: 7675 return rc; 7676 } 7677 7678 subsys_initcall(net_dev_init); 7679