xref: /openbmc/linux/net/core/dev.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 
136 #include "net-sysfs.h"
137 
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140 
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143 
144 /*
145  *	The list of packet types we will receive (as opposed to discard)
146  *	and the routines to invoke.
147  *
148  *	Why 16. Because with 16 the only overlap we get on a hash of the
149  *	low nibble of the protocol value is RARP/SNAP/X.25.
150  *
151  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
152  *             sure which should go first, but I bet it won't make much
153  *             difference if we are running VLANs.  The good news is that
154  *             this protocol won't be in the list unless compiled in, so
155  *             the average user (w/out VLANs) will not be adversely affected.
156  *             --BLG
157  *
158  *		0800	IP
159  *		8100    802.1Q VLAN
160  *		0001	802.3
161  *		0002	AX.25
162  *		0004	802.2
163  *		8035	RARP
164  *		0005	SNAP
165  *		0805	X.25
166  *		0806	ARP
167  *		8137	IPX
168  *		0009	Localtalk
169  *		86DD	IPv6
170  */
171 
172 #define PTYPE_HASH_SIZE	(16)
173 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
174 
175 static DEFINE_SPINLOCK(ptype_lock);
176 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
177 static struct list_head ptype_all __read_mostly;	/* Taps */
178 
179 /*
180  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181  * semaphore.
182  *
183  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
184  *
185  * Writers must hold the rtnl semaphore while they loop through the
186  * dev_base_head list, and hold dev_base_lock for writing when they do the
187  * actual updates.  This allows pure readers to access the list even
188  * while a writer is preparing to update it.
189  *
190  * To put it another way, dev_base_lock is held for writing only to
191  * protect against pure readers; the rtnl semaphore provides the
192  * protection against other writers.
193  *
194  * See, for example usages, register_netdevice() and
195  * unregister_netdevice(), which must be called with the rtnl
196  * semaphore held.
197  */
198 DEFINE_RWLOCK(dev_base_lock);
199 EXPORT_SYMBOL(dev_base_lock);
200 
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 {
203 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
204 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
205 }
206 
207 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 {
209 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
210 }
211 
212 static inline void rps_lock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 	spin_lock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218 
219 static inline void rps_unlock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_unlock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
226 /* Device list insertion */
227 static int list_netdevice(struct net_device *dev)
228 {
229 	struct net *net = dev_net(dev);
230 
231 	ASSERT_RTNL();
232 
233 	write_lock_bh(&dev_base_lock);
234 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
235 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
236 	hlist_add_head_rcu(&dev->index_hlist,
237 			   dev_index_hash(net, dev->ifindex));
238 	write_unlock_bh(&dev_base_lock);
239 	return 0;
240 }
241 
242 /* Device list removal
243  * caller must respect a RCU grace period before freeing/reusing dev
244  */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 	ASSERT_RTNL();
248 
249 	/* Unlink dev from the device chain */
250 	write_lock_bh(&dev_base_lock);
251 	list_del_rcu(&dev->dev_list);
252 	hlist_del_rcu(&dev->name_hlist);
253 	hlist_del_rcu(&dev->index_hlist);
254 	write_unlock_bh(&dev_base_lock);
255 }
256 
257 /*
258  *	Our notifier list
259  */
260 
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262 
263 /*
264  *	Device drivers call our routines to queue packets here. We empty the
265  *	queue in the local softnet handler.
266  */
267 
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270 
271 #ifdef CONFIG_LOCKDEP
272 /*
273  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274  * according to dev->type
275  */
276 static const unsigned short netdev_lock_type[] =
277 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
290 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
291 	 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
292 	 ARPHRD_VOID, ARPHRD_NONE};
293 
294 static const char *const netdev_lock_name[] =
295 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
308 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
309 	 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
310 	 "_xmit_VOID", "_xmit_NONE"};
311 
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 	int i;
318 
319 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 		if (netdev_lock_type[i] == dev_type)
321 			return i;
322 	/* the last key is used by default */
323 	return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325 
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 						 unsigned short dev_type)
328 {
329 	int i;
330 
331 	i = netdev_lock_pos(dev_type);
332 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 				   netdev_lock_name[i]);
334 }
335 
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 	int i;
339 
340 	i = netdev_lock_pos(dev->type);
341 	lockdep_set_class_and_name(&dev->addr_list_lock,
342 				   &netdev_addr_lock_key[i],
343 				   netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 						 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354 
355 /*******************************************************************************
356 
357 		Protocol management and registration routines
358 
359 *******************************************************************************/
360 
361 /*
362  *	Add a protocol ID to the list. Now that the input handler is
363  *	smarter we can dispense with all the messy stuff that used to be
364  *	here.
365  *
366  *	BEWARE!!! Protocol handlers, mangling input packets,
367  *	MUST BE last in hash buckets and checking protocol handlers
368  *	MUST start from promiscuous ptype_all chain in net_bh.
369  *	It is true now, do not change it.
370  *	Explanation follows: if protocol handler, mangling packet, will
371  *	be the first on list, it is not able to sense, that packet
372  *	is cloned and should be copied-on-write, so that it will
373  *	change it and subsequent readers will get broken packet.
374  *							--ANK (980803)
375  */
376 
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 	if (pt->type == htons(ETH_P_ALL))
380 		return &ptype_all;
381 	else
382 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384 
385 /**
386  *	dev_add_pack - add packet handler
387  *	@pt: packet type declaration
388  *
389  *	Add a protocol handler to the networking stack. The passed &packet_type
390  *	is linked into kernel lists and may not be freed until it has been
391  *	removed from the kernel lists.
392  *
393  *	This call does not sleep therefore it can not
394  *	guarantee all CPU's that are in middle of receiving packets
395  *	will see the new packet type (until the next received packet).
396  */
397 
398 void dev_add_pack(struct packet_type *pt)
399 {
400 	struct list_head *head = ptype_head(pt);
401 
402 	spin_lock(&ptype_lock);
403 	list_add_rcu(&pt->list, head);
404 	spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407 
408 /**
409  *	__dev_remove_pack	 - remove packet handler
410  *	@pt: packet type declaration
411  *
412  *	Remove a protocol handler that was previously added to the kernel
413  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
414  *	from the kernel lists and can be freed or reused once this function
415  *	returns.
416  *
417  *      The packet type might still be in use by receivers
418  *	and must not be freed until after all the CPU's have gone
419  *	through a quiescent state.
420  */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 	struct list_head *head = ptype_head(pt);
424 	struct packet_type *pt1;
425 
426 	spin_lock(&ptype_lock);
427 
428 	list_for_each_entry(pt1, head, list) {
429 		if (pt == pt1) {
430 			list_del_rcu(&pt->list);
431 			goto out;
432 		}
433 	}
434 
435 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
436 out:
437 	spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440 
441 /**
442  *	dev_remove_pack	 - remove packet handler
443  *	@pt: packet type declaration
444  *
445  *	Remove a protocol handler that was previously added to the kernel
446  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
447  *	from the kernel lists and can be freed or reused once this function
448  *	returns.
449  *
450  *	This call sleeps to guarantee that no CPU is looking at the packet
451  *	type after return.
452  */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 	__dev_remove_pack(pt);
456 
457 	synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460 
461 /******************************************************************************
462 
463 		      Device Boot-time Settings Routines
464 
465 *******************************************************************************/
466 
467 /* Boot time configuration table */
468 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
469 
470 /**
471  *	netdev_boot_setup_add	- add new setup entry
472  *	@name: name of the device
473  *	@map: configured settings for the device
474  *
475  *	Adds new setup entry to the dev_boot_setup list.  The function
476  *	returns 0 on error and 1 on success.  This is a generic routine to
477  *	all netdevices.
478  */
479 static int netdev_boot_setup_add(char *name, struct ifmap *map)
480 {
481 	struct netdev_boot_setup *s;
482 	int i;
483 
484 	s = dev_boot_setup;
485 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
486 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
487 			memset(s[i].name, 0, sizeof(s[i].name));
488 			strlcpy(s[i].name, name, IFNAMSIZ);
489 			memcpy(&s[i].map, map, sizeof(s[i].map));
490 			break;
491 		}
492 	}
493 
494 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
495 }
496 
497 /**
498  *	netdev_boot_setup_check	- check boot time settings
499  *	@dev: the netdevice
500  *
501  * 	Check boot time settings for the device.
502  *	The found settings are set for the device to be used
503  *	later in the device probing.
504  *	Returns 0 if no settings found, 1 if they are.
505  */
506 int netdev_boot_setup_check(struct net_device *dev)
507 {
508 	struct netdev_boot_setup *s = dev_boot_setup;
509 	int i;
510 
511 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
512 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
513 		    !strcmp(dev->name, s[i].name)) {
514 			dev->irq 	= s[i].map.irq;
515 			dev->base_addr 	= s[i].map.base_addr;
516 			dev->mem_start 	= s[i].map.mem_start;
517 			dev->mem_end 	= s[i].map.mem_end;
518 			return 1;
519 		}
520 	}
521 	return 0;
522 }
523 EXPORT_SYMBOL(netdev_boot_setup_check);
524 
525 
526 /**
527  *	netdev_boot_base	- get address from boot time settings
528  *	@prefix: prefix for network device
529  *	@unit: id for network device
530  *
531  * 	Check boot time settings for the base address of device.
532  *	The found settings are set for the device to be used
533  *	later in the device probing.
534  *	Returns 0 if no settings found.
535  */
536 unsigned long netdev_boot_base(const char *prefix, int unit)
537 {
538 	const struct netdev_boot_setup *s = dev_boot_setup;
539 	char name[IFNAMSIZ];
540 	int i;
541 
542 	sprintf(name, "%s%d", prefix, unit);
543 
544 	/*
545 	 * If device already registered then return base of 1
546 	 * to indicate not to probe for this interface
547 	 */
548 	if (__dev_get_by_name(&init_net, name))
549 		return 1;
550 
551 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
552 		if (!strcmp(name, s[i].name))
553 			return s[i].map.base_addr;
554 	return 0;
555 }
556 
557 /*
558  * Saves at boot time configured settings for any netdevice.
559  */
560 int __init netdev_boot_setup(char *str)
561 {
562 	int ints[5];
563 	struct ifmap map;
564 
565 	str = get_options(str, ARRAY_SIZE(ints), ints);
566 	if (!str || !*str)
567 		return 0;
568 
569 	/* Save settings */
570 	memset(&map, 0, sizeof(map));
571 	if (ints[0] > 0)
572 		map.irq = ints[1];
573 	if (ints[0] > 1)
574 		map.base_addr = ints[2];
575 	if (ints[0] > 2)
576 		map.mem_start = ints[3];
577 	if (ints[0] > 3)
578 		map.mem_end = ints[4];
579 
580 	/* Add new entry to the list */
581 	return netdev_boot_setup_add(str, &map);
582 }
583 
584 __setup("netdev=", netdev_boot_setup);
585 
586 /*******************************************************************************
587 
588 			    Device Interface Subroutines
589 
590 *******************************************************************************/
591 
592 /**
593  *	__dev_get_by_name	- find a device by its name
594  *	@net: the applicable net namespace
595  *	@name: name to find
596  *
597  *	Find an interface by name. Must be called under RTNL semaphore
598  *	or @dev_base_lock. If the name is found a pointer to the device
599  *	is returned. If the name is not found then %NULL is returned. The
600  *	reference counters are not incremented so the caller must be
601  *	careful with locks.
602  */
603 
604 struct net_device *__dev_get_by_name(struct net *net, const char *name)
605 {
606 	struct hlist_node *p;
607 	struct net_device *dev;
608 	struct hlist_head *head = dev_name_hash(net, name);
609 
610 	hlist_for_each_entry(dev, p, head, name_hlist)
611 		if (!strncmp(dev->name, name, IFNAMSIZ))
612 			return dev;
613 
614 	return NULL;
615 }
616 EXPORT_SYMBOL(__dev_get_by_name);
617 
618 /**
619  *	dev_get_by_name_rcu	- find a device by its name
620  *	@net: the applicable net namespace
621  *	@name: name to find
622  *
623  *	Find an interface by name.
624  *	If the name is found a pointer to the device is returned.
625  * 	If the name is not found then %NULL is returned.
626  *	The reference counters are not incremented so the caller must be
627  *	careful with locks. The caller must hold RCU lock.
628  */
629 
630 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
631 {
632 	struct hlist_node *p;
633 	struct net_device *dev;
634 	struct hlist_head *head = dev_name_hash(net, name);
635 
636 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
637 		if (!strncmp(dev->name, name, IFNAMSIZ))
638 			return dev;
639 
640 	return NULL;
641 }
642 EXPORT_SYMBOL(dev_get_by_name_rcu);
643 
644 /**
645  *	dev_get_by_name		- find a device by its name
646  *	@net: the applicable net namespace
647  *	@name: name to find
648  *
649  *	Find an interface by name. This can be called from any
650  *	context and does its own locking. The returned handle has
651  *	the usage count incremented and the caller must use dev_put() to
652  *	release it when it is no longer needed. %NULL is returned if no
653  *	matching device is found.
654  */
655 
656 struct net_device *dev_get_by_name(struct net *net, const char *name)
657 {
658 	struct net_device *dev;
659 
660 	rcu_read_lock();
661 	dev = dev_get_by_name_rcu(net, name);
662 	if (dev)
663 		dev_hold(dev);
664 	rcu_read_unlock();
665 	return dev;
666 }
667 EXPORT_SYMBOL(dev_get_by_name);
668 
669 /**
670  *	__dev_get_by_index - find a device by its ifindex
671  *	@net: the applicable net namespace
672  *	@ifindex: index of device
673  *
674  *	Search for an interface by index. Returns %NULL if the device
675  *	is not found or a pointer to the device. The device has not
676  *	had its reference counter increased so the caller must be careful
677  *	about locking. The caller must hold either the RTNL semaphore
678  *	or @dev_base_lock.
679  */
680 
681 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
682 {
683 	struct hlist_node *p;
684 	struct net_device *dev;
685 	struct hlist_head *head = dev_index_hash(net, ifindex);
686 
687 	hlist_for_each_entry(dev, p, head, index_hlist)
688 		if (dev->ifindex == ifindex)
689 			return dev;
690 
691 	return NULL;
692 }
693 EXPORT_SYMBOL(__dev_get_by_index);
694 
695 /**
696  *	dev_get_by_index_rcu - find a device by its ifindex
697  *	@net: the applicable net namespace
698  *	@ifindex: index of device
699  *
700  *	Search for an interface by index. Returns %NULL if the device
701  *	is not found or a pointer to the device. The device has not
702  *	had its reference counter increased so the caller must be careful
703  *	about locking. The caller must hold RCU lock.
704  */
705 
706 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
707 {
708 	struct hlist_node *p;
709 	struct net_device *dev;
710 	struct hlist_head *head = dev_index_hash(net, ifindex);
711 
712 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
713 		if (dev->ifindex == ifindex)
714 			return dev;
715 
716 	return NULL;
717 }
718 EXPORT_SYMBOL(dev_get_by_index_rcu);
719 
720 
721 /**
722  *	dev_get_by_index - find a device by its ifindex
723  *	@net: the applicable net namespace
724  *	@ifindex: index of device
725  *
726  *	Search for an interface by index. Returns NULL if the device
727  *	is not found or a pointer to the device. The device returned has
728  *	had a reference added and the pointer is safe until the user calls
729  *	dev_put to indicate they have finished with it.
730  */
731 
732 struct net_device *dev_get_by_index(struct net *net, int ifindex)
733 {
734 	struct net_device *dev;
735 
736 	rcu_read_lock();
737 	dev = dev_get_by_index_rcu(net, ifindex);
738 	if (dev)
739 		dev_hold(dev);
740 	rcu_read_unlock();
741 	return dev;
742 }
743 EXPORT_SYMBOL(dev_get_by_index);
744 
745 /**
746  *	dev_getbyhwaddr_rcu - find a device by its hardware address
747  *	@net: the applicable net namespace
748  *	@type: media type of device
749  *	@ha: hardware address
750  *
751  *	Search for an interface by MAC address. Returns NULL if the device
752  *	is not found or a pointer to the device. The caller must hold RCU
753  *	The returned device has not had its ref count increased
754  *	and the caller must therefore be careful about locking
755  *
756  */
757 
758 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
759 				       const char *ha)
760 {
761 	struct net_device *dev;
762 
763 	for_each_netdev_rcu(net, dev)
764 		if (dev->type == type &&
765 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
766 			return dev;
767 
768 	return NULL;
769 }
770 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
771 
772 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
773 {
774 	struct net_device *dev;
775 
776 	ASSERT_RTNL();
777 	for_each_netdev(net, dev)
778 		if (dev->type == type)
779 			return dev;
780 
781 	return NULL;
782 }
783 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
784 
785 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 	struct net_device *dev, *ret = NULL;
788 
789 	rcu_read_lock();
790 	for_each_netdev_rcu(net, dev)
791 		if (dev->type == type) {
792 			dev_hold(dev);
793 			ret = dev;
794 			break;
795 		}
796 	rcu_read_unlock();
797 	return ret;
798 }
799 EXPORT_SYMBOL(dev_getfirstbyhwtype);
800 
801 /**
802  *	dev_get_by_flags_rcu - find any device with given flags
803  *	@net: the applicable net namespace
804  *	@if_flags: IFF_* values
805  *	@mask: bitmask of bits in if_flags to check
806  *
807  *	Search for any interface with the given flags. Returns NULL if a device
808  *	is not found or a pointer to the device. Must be called inside
809  *	rcu_read_lock(), and result refcount is unchanged.
810  */
811 
812 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
813 				    unsigned short mask)
814 {
815 	struct net_device *dev, *ret;
816 
817 	ret = NULL;
818 	for_each_netdev_rcu(net, dev) {
819 		if (((dev->flags ^ if_flags) & mask) == 0) {
820 			ret = dev;
821 			break;
822 		}
823 	}
824 	return ret;
825 }
826 EXPORT_SYMBOL(dev_get_by_flags_rcu);
827 
828 /**
829  *	dev_valid_name - check if name is okay for network device
830  *	@name: name string
831  *
832  *	Network device names need to be valid file names to
833  *	to allow sysfs to work.  We also disallow any kind of
834  *	whitespace.
835  */
836 int dev_valid_name(const char *name)
837 {
838 	if (*name == '\0')
839 		return 0;
840 	if (strlen(name) >= IFNAMSIZ)
841 		return 0;
842 	if (!strcmp(name, ".") || !strcmp(name, ".."))
843 		return 0;
844 
845 	while (*name) {
846 		if (*name == '/' || isspace(*name))
847 			return 0;
848 		name++;
849 	}
850 	return 1;
851 }
852 EXPORT_SYMBOL(dev_valid_name);
853 
854 /**
855  *	__dev_alloc_name - allocate a name for a device
856  *	@net: network namespace to allocate the device name in
857  *	@name: name format string
858  *	@buf:  scratch buffer and result name string
859  *
860  *	Passed a format string - eg "lt%d" it will try and find a suitable
861  *	id. It scans list of devices to build up a free map, then chooses
862  *	the first empty slot. The caller must hold the dev_base or rtnl lock
863  *	while allocating the name and adding the device in order to avoid
864  *	duplicates.
865  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
866  *	Returns the number of the unit assigned or a negative errno code.
867  */
868 
869 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
870 {
871 	int i = 0;
872 	const char *p;
873 	const int max_netdevices = 8*PAGE_SIZE;
874 	unsigned long *inuse;
875 	struct net_device *d;
876 
877 	p = strnchr(name, IFNAMSIZ-1, '%');
878 	if (p) {
879 		/*
880 		 * Verify the string as this thing may have come from
881 		 * the user.  There must be either one "%d" and no other "%"
882 		 * characters.
883 		 */
884 		if (p[1] != 'd' || strchr(p + 2, '%'))
885 			return -EINVAL;
886 
887 		/* Use one page as a bit array of possible slots */
888 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
889 		if (!inuse)
890 			return -ENOMEM;
891 
892 		for_each_netdev(net, d) {
893 			if (!sscanf(d->name, name, &i))
894 				continue;
895 			if (i < 0 || i >= max_netdevices)
896 				continue;
897 
898 			/*  avoid cases where sscanf is not exact inverse of printf */
899 			snprintf(buf, IFNAMSIZ, name, i);
900 			if (!strncmp(buf, d->name, IFNAMSIZ))
901 				set_bit(i, inuse);
902 		}
903 
904 		i = find_first_zero_bit(inuse, max_netdevices);
905 		free_page((unsigned long) inuse);
906 	}
907 
908 	if (buf != name)
909 		snprintf(buf, IFNAMSIZ, name, i);
910 	if (!__dev_get_by_name(net, buf))
911 		return i;
912 
913 	/* It is possible to run out of possible slots
914 	 * when the name is long and there isn't enough space left
915 	 * for the digits, or if all bits are used.
916 	 */
917 	return -ENFILE;
918 }
919 
920 /**
921  *	dev_alloc_name - allocate a name for a device
922  *	@dev: device
923  *	@name: name format string
924  *
925  *	Passed a format string - eg "lt%d" it will try and find a suitable
926  *	id. It scans list of devices to build up a free map, then chooses
927  *	the first empty slot. The caller must hold the dev_base or rtnl lock
928  *	while allocating the name and adding the device in order to avoid
929  *	duplicates.
930  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
931  *	Returns the number of the unit assigned or a negative errno code.
932  */
933 
934 int dev_alloc_name(struct net_device *dev, const char *name)
935 {
936 	char buf[IFNAMSIZ];
937 	struct net *net;
938 	int ret;
939 
940 	BUG_ON(!dev_net(dev));
941 	net = dev_net(dev);
942 	ret = __dev_alloc_name(net, name, buf);
943 	if (ret >= 0)
944 		strlcpy(dev->name, buf, IFNAMSIZ);
945 	return ret;
946 }
947 EXPORT_SYMBOL(dev_alloc_name);
948 
949 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
950 {
951 	struct net *net;
952 
953 	BUG_ON(!dev_net(dev));
954 	net = dev_net(dev);
955 
956 	if (!dev_valid_name(name))
957 		return -EINVAL;
958 
959 	if (fmt && strchr(name, '%'))
960 		return dev_alloc_name(dev, name);
961 	else if (__dev_get_by_name(net, name))
962 		return -EEXIST;
963 	else if (dev->name != name)
964 		strlcpy(dev->name, name, IFNAMSIZ);
965 
966 	return 0;
967 }
968 
969 /**
970  *	dev_change_name - change name of a device
971  *	@dev: device
972  *	@newname: name (or format string) must be at least IFNAMSIZ
973  *
974  *	Change name of a device, can pass format strings "eth%d".
975  *	for wildcarding.
976  */
977 int dev_change_name(struct net_device *dev, const char *newname)
978 {
979 	char oldname[IFNAMSIZ];
980 	int err = 0;
981 	int ret;
982 	struct net *net;
983 
984 	ASSERT_RTNL();
985 	BUG_ON(!dev_net(dev));
986 
987 	net = dev_net(dev);
988 	if (dev->flags & IFF_UP)
989 		return -EBUSY;
990 
991 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
992 		return 0;
993 
994 	memcpy(oldname, dev->name, IFNAMSIZ);
995 
996 	err = dev_get_valid_name(dev, newname, 1);
997 	if (err < 0)
998 		return err;
999 
1000 rollback:
1001 	ret = device_rename(&dev->dev, dev->name);
1002 	if (ret) {
1003 		memcpy(dev->name, oldname, IFNAMSIZ);
1004 		return ret;
1005 	}
1006 
1007 	write_lock_bh(&dev_base_lock);
1008 	hlist_del(&dev->name_hlist);
1009 	write_unlock_bh(&dev_base_lock);
1010 
1011 	synchronize_rcu();
1012 
1013 	write_lock_bh(&dev_base_lock);
1014 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1015 	write_unlock_bh(&dev_base_lock);
1016 
1017 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1018 	ret = notifier_to_errno(ret);
1019 
1020 	if (ret) {
1021 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1022 		if (err >= 0) {
1023 			err = ret;
1024 			memcpy(dev->name, oldname, IFNAMSIZ);
1025 			goto rollback;
1026 		} else {
1027 			printk(KERN_ERR
1028 			       "%s: name change rollback failed: %d.\n",
1029 			       dev->name, ret);
1030 		}
1031 	}
1032 
1033 	return err;
1034 }
1035 
1036 /**
1037  *	dev_set_alias - change ifalias of a device
1038  *	@dev: device
1039  *	@alias: name up to IFALIASZ
1040  *	@len: limit of bytes to copy from info
1041  *
1042  *	Set ifalias for a device,
1043  */
1044 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1045 {
1046 	ASSERT_RTNL();
1047 
1048 	if (len >= IFALIASZ)
1049 		return -EINVAL;
1050 
1051 	if (!len) {
1052 		if (dev->ifalias) {
1053 			kfree(dev->ifalias);
1054 			dev->ifalias = NULL;
1055 		}
1056 		return 0;
1057 	}
1058 
1059 	dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1060 	if (!dev->ifalias)
1061 		return -ENOMEM;
1062 
1063 	strlcpy(dev->ifalias, alias, len+1);
1064 	return len;
1065 }
1066 
1067 
1068 /**
1069  *	netdev_features_change - device changes features
1070  *	@dev: device to cause notification
1071  *
1072  *	Called to indicate a device has changed features.
1073  */
1074 void netdev_features_change(struct net_device *dev)
1075 {
1076 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1077 }
1078 EXPORT_SYMBOL(netdev_features_change);
1079 
1080 /**
1081  *	netdev_state_change - device changes state
1082  *	@dev: device to cause notification
1083  *
1084  *	Called to indicate a device has changed state. This function calls
1085  *	the notifier chains for netdev_chain and sends a NEWLINK message
1086  *	to the routing socket.
1087  */
1088 void netdev_state_change(struct net_device *dev)
1089 {
1090 	if (dev->flags & IFF_UP) {
1091 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1092 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1093 	}
1094 }
1095 EXPORT_SYMBOL(netdev_state_change);
1096 
1097 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1098 {
1099 	return call_netdevice_notifiers(event, dev);
1100 }
1101 EXPORT_SYMBOL(netdev_bonding_change);
1102 
1103 /**
1104  *	dev_load 	- load a network module
1105  *	@net: the applicable net namespace
1106  *	@name: name of interface
1107  *
1108  *	If a network interface is not present and the process has suitable
1109  *	privileges this function loads the module. If module loading is not
1110  *	available in this kernel then it becomes a nop.
1111  */
1112 
1113 void dev_load(struct net *net, const char *name)
1114 {
1115 	struct net_device *dev;
1116 
1117 	rcu_read_lock();
1118 	dev = dev_get_by_name_rcu(net, name);
1119 	rcu_read_unlock();
1120 
1121 	if (!dev && capable(CAP_NET_ADMIN))
1122 		request_module("%s", name);
1123 }
1124 EXPORT_SYMBOL(dev_load);
1125 
1126 static int __dev_open(struct net_device *dev)
1127 {
1128 	const struct net_device_ops *ops = dev->netdev_ops;
1129 	int ret;
1130 
1131 	ASSERT_RTNL();
1132 
1133 	/*
1134 	 *	Is it even present?
1135 	 */
1136 	if (!netif_device_present(dev))
1137 		return -ENODEV;
1138 
1139 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1140 	ret = notifier_to_errno(ret);
1141 	if (ret)
1142 		return ret;
1143 
1144 	/*
1145 	 *	Call device private open method
1146 	 */
1147 	set_bit(__LINK_STATE_START, &dev->state);
1148 
1149 	if (ops->ndo_validate_addr)
1150 		ret = ops->ndo_validate_addr(dev);
1151 
1152 	if (!ret && ops->ndo_open)
1153 		ret = ops->ndo_open(dev);
1154 
1155 	/*
1156 	 *	If it went open OK then:
1157 	 */
1158 
1159 	if (ret)
1160 		clear_bit(__LINK_STATE_START, &dev->state);
1161 	else {
1162 		/*
1163 		 *	Set the flags.
1164 		 */
1165 		dev->flags |= IFF_UP;
1166 
1167 		/*
1168 		 *	Enable NET_DMA
1169 		 */
1170 		net_dmaengine_get();
1171 
1172 		/*
1173 		 *	Initialize multicasting status
1174 		 */
1175 		dev_set_rx_mode(dev);
1176 
1177 		/*
1178 		 *	Wakeup transmit queue engine
1179 		 */
1180 		dev_activate(dev);
1181 	}
1182 
1183 	return ret;
1184 }
1185 
1186 /**
1187  *	dev_open	- prepare an interface for use.
1188  *	@dev:	device to open
1189  *
1190  *	Takes a device from down to up state. The device's private open
1191  *	function is invoked and then the multicast lists are loaded. Finally
1192  *	the device is moved into the up state and a %NETDEV_UP message is
1193  *	sent to the netdev notifier chain.
1194  *
1195  *	Calling this function on an active interface is a nop. On a failure
1196  *	a negative errno code is returned.
1197  */
1198 int dev_open(struct net_device *dev)
1199 {
1200 	int ret;
1201 
1202 	/*
1203 	 *	Is it already up?
1204 	 */
1205 	if (dev->flags & IFF_UP)
1206 		return 0;
1207 
1208 	/*
1209 	 *	Open device
1210 	 */
1211 	ret = __dev_open(dev);
1212 	if (ret < 0)
1213 		return ret;
1214 
1215 	/*
1216 	 *	... and announce new interface.
1217 	 */
1218 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1219 	call_netdevice_notifiers(NETDEV_UP, dev);
1220 
1221 	return ret;
1222 }
1223 EXPORT_SYMBOL(dev_open);
1224 
1225 static int __dev_close_many(struct list_head *head)
1226 {
1227 	struct net_device *dev;
1228 
1229 	ASSERT_RTNL();
1230 	might_sleep();
1231 
1232 	list_for_each_entry(dev, head, unreg_list) {
1233 		/*
1234 		 *	Tell people we are going down, so that they can
1235 		 *	prepare to death, when device is still operating.
1236 		 */
1237 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1238 
1239 		clear_bit(__LINK_STATE_START, &dev->state);
1240 
1241 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1242 		 * can be even on different cpu. So just clear netif_running().
1243 		 *
1244 		 * dev->stop() will invoke napi_disable() on all of it's
1245 		 * napi_struct instances on this device.
1246 		 */
1247 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1248 	}
1249 
1250 	dev_deactivate_many(head);
1251 
1252 	list_for_each_entry(dev, head, unreg_list) {
1253 		const struct net_device_ops *ops = dev->netdev_ops;
1254 
1255 		/*
1256 		 *	Call the device specific close. This cannot fail.
1257 		 *	Only if device is UP
1258 		 *
1259 		 *	We allow it to be called even after a DETACH hot-plug
1260 		 *	event.
1261 		 */
1262 		if (ops->ndo_stop)
1263 			ops->ndo_stop(dev);
1264 
1265 		/*
1266 		 *	Device is now down.
1267 		 */
1268 
1269 		dev->flags &= ~IFF_UP;
1270 
1271 		/*
1272 		 *	Shutdown NET_DMA
1273 		 */
1274 		net_dmaengine_put();
1275 	}
1276 
1277 	return 0;
1278 }
1279 
1280 static int __dev_close(struct net_device *dev)
1281 {
1282 	LIST_HEAD(single);
1283 
1284 	list_add(&dev->unreg_list, &single);
1285 	return __dev_close_many(&single);
1286 }
1287 
1288 int dev_close_many(struct list_head *head)
1289 {
1290 	struct net_device *dev, *tmp;
1291 	LIST_HEAD(tmp_list);
1292 
1293 	list_for_each_entry_safe(dev, tmp, head, unreg_list)
1294 		if (!(dev->flags & IFF_UP))
1295 			list_move(&dev->unreg_list, &tmp_list);
1296 
1297 	__dev_close_many(head);
1298 
1299 	/*
1300 	 * Tell people we are down
1301 	 */
1302 	list_for_each_entry(dev, head, unreg_list) {
1303 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1304 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1305 	}
1306 
1307 	/* rollback_registered_many needs the complete original list */
1308 	list_splice(&tmp_list, head);
1309 	return 0;
1310 }
1311 
1312 /**
1313  *	dev_close - shutdown an interface.
1314  *	@dev: device to shutdown
1315  *
1316  *	This function moves an active device into down state. A
1317  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1318  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1319  *	chain.
1320  */
1321 int dev_close(struct net_device *dev)
1322 {
1323 	LIST_HEAD(single);
1324 
1325 	list_add(&dev->unreg_list, &single);
1326 	dev_close_many(&single);
1327 
1328 	return 0;
1329 }
1330 EXPORT_SYMBOL(dev_close);
1331 
1332 
1333 /**
1334  *	dev_disable_lro - disable Large Receive Offload on a device
1335  *	@dev: device
1336  *
1337  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1338  *	called under RTNL.  This is needed if received packets may be
1339  *	forwarded to another interface.
1340  */
1341 void dev_disable_lro(struct net_device *dev)
1342 {
1343 	if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1344 	    dev->ethtool_ops->set_flags) {
1345 		u32 flags = dev->ethtool_ops->get_flags(dev);
1346 		if (flags & ETH_FLAG_LRO) {
1347 			flags &= ~ETH_FLAG_LRO;
1348 			dev->ethtool_ops->set_flags(dev, flags);
1349 		}
1350 	}
1351 	WARN_ON(dev->features & NETIF_F_LRO);
1352 }
1353 EXPORT_SYMBOL(dev_disable_lro);
1354 
1355 
1356 static int dev_boot_phase = 1;
1357 
1358 /*
1359  *	Device change register/unregister. These are not inline or static
1360  *	as we export them to the world.
1361  */
1362 
1363 /**
1364  *	register_netdevice_notifier - register a network notifier block
1365  *	@nb: notifier
1366  *
1367  *	Register a notifier to be called when network device events occur.
1368  *	The notifier passed is linked into the kernel structures and must
1369  *	not be reused until it has been unregistered. A negative errno code
1370  *	is returned on a failure.
1371  *
1372  * 	When registered all registration and up events are replayed
1373  *	to the new notifier to allow device to have a race free
1374  *	view of the network device list.
1375  */
1376 
1377 int register_netdevice_notifier(struct notifier_block *nb)
1378 {
1379 	struct net_device *dev;
1380 	struct net_device *last;
1381 	struct net *net;
1382 	int err;
1383 
1384 	rtnl_lock();
1385 	err = raw_notifier_chain_register(&netdev_chain, nb);
1386 	if (err)
1387 		goto unlock;
1388 	if (dev_boot_phase)
1389 		goto unlock;
1390 	for_each_net(net) {
1391 		for_each_netdev(net, dev) {
1392 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1393 			err = notifier_to_errno(err);
1394 			if (err)
1395 				goto rollback;
1396 
1397 			if (!(dev->flags & IFF_UP))
1398 				continue;
1399 
1400 			nb->notifier_call(nb, NETDEV_UP, dev);
1401 		}
1402 	}
1403 
1404 unlock:
1405 	rtnl_unlock();
1406 	return err;
1407 
1408 rollback:
1409 	last = dev;
1410 	for_each_net(net) {
1411 		for_each_netdev(net, dev) {
1412 			if (dev == last)
1413 				break;
1414 
1415 			if (dev->flags & IFF_UP) {
1416 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1417 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1418 			}
1419 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1420 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1421 		}
1422 	}
1423 
1424 	raw_notifier_chain_unregister(&netdev_chain, nb);
1425 	goto unlock;
1426 }
1427 EXPORT_SYMBOL(register_netdevice_notifier);
1428 
1429 /**
1430  *	unregister_netdevice_notifier - unregister a network notifier block
1431  *	@nb: notifier
1432  *
1433  *	Unregister a notifier previously registered by
1434  *	register_netdevice_notifier(). The notifier is unlinked into the
1435  *	kernel structures and may then be reused. A negative errno code
1436  *	is returned on a failure.
1437  */
1438 
1439 int unregister_netdevice_notifier(struct notifier_block *nb)
1440 {
1441 	int err;
1442 
1443 	rtnl_lock();
1444 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1445 	rtnl_unlock();
1446 	return err;
1447 }
1448 EXPORT_SYMBOL(unregister_netdevice_notifier);
1449 
1450 /**
1451  *	call_netdevice_notifiers - call all network notifier blocks
1452  *      @val: value passed unmodified to notifier function
1453  *      @dev: net_device pointer passed unmodified to notifier function
1454  *
1455  *	Call all network notifier blocks.  Parameters and return value
1456  *	are as for raw_notifier_call_chain().
1457  */
1458 
1459 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1460 {
1461 	ASSERT_RTNL();
1462 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1463 }
1464 
1465 /* When > 0 there are consumers of rx skb time stamps */
1466 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1467 
1468 void net_enable_timestamp(void)
1469 {
1470 	atomic_inc(&netstamp_needed);
1471 }
1472 EXPORT_SYMBOL(net_enable_timestamp);
1473 
1474 void net_disable_timestamp(void)
1475 {
1476 	atomic_dec(&netstamp_needed);
1477 }
1478 EXPORT_SYMBOL(net_disable_timestamp);
1479 
1480 static inline void net_timestamp_set(struct sk_buff *skb)
1481 {
1482 	if (atomic_read(&netstamp_needed))
1483 		__net_timestamp(skb);
1484 	else
1485 		skb->tstamp.tv64 = 0;
1486 }
1487 
1488 static inline void net_timestamp_check(struct sk_buff *skb)
1489 {
1490 	if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1491 		__net_timestamp(skb);
1492 }
1493 
1494 /**
1495  * dev_forward_skb - loopback an skb to another netif
1496  *
1497  * @dev: destination network device
1498  * @skb: buffer to forward
1499  *
1500  * return values:
1501  *	NET_RX_SUCCESS	(no congestion)
1502  *	NET_RX_DROP     (packet was dropped, but freed)
1503  *
1504  * dev_forward_skb can be used for injecting an skb from the
1505  * start_xmit function of one device into the receive queue
1506  * of another device.
1507  *
1508  * The receiving device may be in another namespace, so
1509  * we have to clear all information in the skb that could
1510  * impact namespace isolation.
1511  */
1512 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1513 {
1514 	skb_orphan(skb);
1515 	nf_reset(skb);
1516 
1517 	if (unlikely(!(dev->flags & IFF_UP) ||
1518 		     (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1519 		atomic_long_inc(&dev->rx_dropped);
1520 		kfree_skb(skb);
1521 		return NET_RX_DROP;
1522 	}
1523 	skb_set_dev(skb, dev);
1524 	skb->tstamp.tv64 = 0;
1525 	skb->pkt_type = PACKET_HOST;
1526 	skb->protocol = eth_type_trans(skb, dev);
1527 	return netif_rx(skb);
1528 }
1529 EXPORT_SYMBOL_GPL(dev_forward_skb);
1530 
1531 static inline int deliver_skb(struct sk_buff *skb,
1532 			      struct packet_type *pt_prev,
1533 			      struct net_device *orig_dev)
1534 {
1535 	atomic_inc(&skb->users);
1536 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1537 }
1538 
1539 /*
1540  *	Support routine. Sends outgoing frames to any network
1541  *	taps currently in use.
1542  */
1543 
1544 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1545 {
1546 	struct packet_type *ptype;
1547 	struct sk_buff *skb2 = NULL;
1548 	struct packet_type *pt_prev = NULL;
1549 
1550 	rcu_read_lock();
1551 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1552 		/* Never send packets back to the socket
1553 		 * they originated from - MvS (miquels@drinkel.ow.org)
1554 		 */
1555 		if ((ptype->dev == dev || !ptype->dev) &&
1556 		    (ptype->af_packet_priv == NULL ||
1557 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1558 			if (pt_prev) {
1559 				deliver_skb(skb2, pt_prev, skb->dev);
1560 				pt_prev = ptype;
1561 				continue;
1562 			}
1563 
1564 			skb2 = skb_clone(skb, GFP_ATOMIC);
1565 			if (!skb2)
1566 				break;
1567 
1568 			net_timestamp_set(skb2);
1569 
1570 			/* skb->nh should be correctly
1571 			   set by sender, so that the second statement is
1572 			   just protection against buggy protocols.
1573 			 */
1574 			skb_reset_mac_header(skb2);
1575 
1576 			if (skb_network_header(skb2) < skb2->data ||
1577 			    skb2->network_header > skb2->tail) {
1578 				if (net_ratelimit())
1579 					printk(KERN_CRIT "protocol %04x is "
1580 					       "buggy, dev %s\n",
1581 					       ntohs(skb2->protocol),
1582 					       dev->name);
1583 				skb_reset_network_header(skb2);
1584 			}
1585 
1586 			skb2->transport_header = skb2->network_header;
1587 			skb2->pkt_type = PACKET_OUTGOING;
1588 			pt_prev = ptype;
1589 		}
1590 	}
1591 	if (pt_prev)
1592 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1593 	rcu_read_unlock();
1594 }
1595 
1596 /*
1597  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1598  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1599  */
1600 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1601 {
1602 	int rc;
1603 
1604 	if (txq < 1 || txq > dev->num_tx_queues)
1605 		return -EINVAL;
1606 
1607 	if (dev->reg_state == NETREG_REGISTERED) {
1608 		ASSERT_RTNL();
1609 
1610 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1611 						  txq);
1612 		if (rc)
1613 			return rc;
1614 
1615 		if (txq < dev->real_num_tx_queues)
1616 			qdisc_reset_all_tx_gt(dev, txq);
1617 	}
1618 
1619 	dev->real_num_tx_queues = txq;
1620 	return 0;
1621 }
1622 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1623 
1624 #ifdef CONFIG_RPS
1625 /**
1626  *	netif_set_real_num_rx_queues - set actual number of RX queues used
1627  *	@dev: Network device
1628  *	@rxq: Actual number of RX queues
1629  *
1630  *	This must be called either with the rtnl_lock held or before
1631  *	registration of the net device.  Returns 0 on success, or a
1632  *	negative error code.  If called before registration, it always
1633  *	succeeds.
1634  */
1635 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1636 {
1637 	int rc;
1638 
1639 	if (rxq < 1 || rxq > dev->num_rx_queues)
1640 		return -EINVAL;
1641 
1642 	if (dev->reg_state == NETREG_REGISTERED) {
1643 		ASSERT_RTNL();
1644 
1645 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1646 						  rxq);
1647 		if (rc)
1648 			return rc;
1649 	}
1650 
1651 	dev->real_num_rx_queues = rxq;
1652 	return 0;
1653 }
1654 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1655 #endif
1656 
1657 static inline void __netif_reschedule(struct Qdisc *q)
1658 {
1659 	struct softnet_data *sd;
1660 	unsigned long flags;
1661 
1662 	local_irq_save(flags);
1663 	sd = &__get_cpu_var(softnet_data);
1664 	q->next_sched = NULL;
1665 	*sd->output_queue_tailp = q;
1666 	sd->output_queue_tailp = &q->next_sched;
1667 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1668 	local_irq_restore(flags);
1669 }
1670 
1671 void __netif_schedule(struct Qdisc *q)
1672 {
1673 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1674 		__netif_reschedule(q);
1675 }
1676 EXPORT_SYMBOL(__netif_schedule);
1677 
1678 void dev_kfree_skb_irq(struct sk_buff *skb)
1679 {
1680 	if (atomic_dec_and_test(&skb->users)) {
1681 		struct softnet_data *sd;
1682 		unsigned long flags;
1683 
1684 		local_irq_save(flags);
1685 		sd = &__get_cpu_var(softnet_data);
1686 		skb->next = sd->completion_queue;
1687 		sd->completion_queue = skb;
1688 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1689 		local_irq_restore(flags);
1690 	}
1691 }
1692 EXPORT_SYMBOL(dev_kfree_skb_irq);
1693 
1694 void dev_kfree_skb_any(struct sk_buff *skb)
1695 {
1696 	if (in_irq() || irqs_disabled())
1697 		dev_kfree_skb_irq(skb);
1698 	else
1699 		dev_kfree_skb(skb);
1700 }
1701 EXPORT_SYMBOL(dev_kfree_skb_any);
1702 
1703 
1704 /**
1705  * netif_device_detach - mark device as removed
1706  * @dev: network device
1707  *
1708  * Mark device as removed from system and therefore no longer available.
1709  */
1710 void netif_device_detach(struct net_device *dev)
1711 {
1712 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1713 	    netif_running(dev)) {
1714 		netif_tx_stop_all_queues(dev);
1715 	}
1716 }
1717 EXPORT_SYMBOL(netif_device_detach);
1718 
1719 /**
1720  * netif_device_attach - mark device as attached
1721  * @dev: network device
1722  *
1723  * Mark device as attached from system and restart if needed.
1724  */
1725 void netif_device_attach(struct net_device *dev)
1726 {
1727 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1728 	    netif_running(dev)) {
1729 		netif_tx_wake_all_queues(dev);
1730 		__netdev_watchdog_up(dev);
1731 	}
1732 }
1733 EXPORT_SYMBOL(netif_device_attach);
1734 
1735 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1736 {
1737 	return ((features & NETIF_F_NO_CSUM) ||
1738 		((features & NETIF_F_V4_CSUM) &&
1739 		 protocol == htons(ETH_P_IP)) ||
1740 		((features & NETIF_F_V6_CSUM) &&
1741 		 protocol == htons(ETH_P_IPV6)) ||
1742 		((features & NETIF_F_FCOE_CRC) &&
1743 		 protocol == htons(ETH_P_FCOE)));
1744 }
1745 
1746 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1747 {
1748 	__be16 protocol = skb->protocol;
1749 	int features = dev->features;
1750 
1751 	if (vlan_tx_tag_present(skb)) {
1752 		features &= dev->vlan_features;
1753 	} else if (protocol == htons(ETH_P_8021Q)) {
1754 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1755 		protocol = veh->h_vlan_encapsulated_proto;
1756 		features &= dev->vlan_features;
1757 	}
1758 
1759 	return can_checksum_protocol(features, protocol);
1760 }
1761 
1762 /**
1763  * skb_dev_set -- assign a new device to a buffer
1764  * @skb: buffer for the new device
1765  * @dev: network device
1766  *
1767  * If an skb is owned by a device already, we have to reset
1768  * all data private to the namespace a device belongs to
1769  * before assigning it a new device.
1770  */
1771 #ifdef CONFIG_NET_NS
1772 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1773 {
1774 	skb_dst_drop(skb);
1775 	if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1776 		secpath_reset(skb);
1777 		nf_reset(skb);
1778 		skb_init_secmark(skb);
1779 		skb->mark = 0;
1780 		skb->priority = 0;
1781 		skb->nf_trace = 0;
1782 		skb->ipvs_property = 0;
1783 #ifdef CONFIG_NET_SCHED
1784 		skb->tc_index = 0;
1785 #endif
1786 	}
1787 	skb->dev = dev;
1788 }
1789 EXPORT_SYMBOL(skb_set_dev);
1790 #endif /* CONFIG_NET_NS */
1791 
1792 /*
1793  * Invalidate hardware checksum when packet is to be mangled, and
1794  * complete checksum manually on outgoing path.
1795  */
1796 int skb_checksum_help(struct sk_buff *skb)
1797 {
1798 	__wsum csum;
1799 	int ret = 0, offset;
1800 
1801 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1802 		goto out_set_summed;
1803 
1804 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1805 		/* Let GSO fix up the checksum. */
1806 		goto out_set_summed;
1807 	}
1808 
1809 	offset = skb_checksum_start_offset(skb);
1810 	BUG_ON(offset >= skb_headlen(skb));
1811 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1812 
1813 	offset += skb->csum_offset;
1814 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1815 
1816 	if (skb_cloned(skb) &&
1817 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1818 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1819 		if (ret)
1820 			goto out;
1821 	}
1822 
1823 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1824 out_set_summed:
1825 	skb->ip_summed = CHECKSUM_NONE;
1826 out:
1827 	return ret;
1828 }
1829 EXPORT_SYMBOL(skb_checksum_help);
1830 
1831 /**
1832  *	skb_gso_segment - Perform segmentation on skb.
1833  *	@skb: buffer to segment
1834  *	@features: features for the output path (see dev->features)
1835  *
1836  *	This function segments the given skb and returns a list of segments.
1837  *
1838  *	It may return NULL if the skb requires no segmentation.  This is
1839  *	only possible when GSO is used for verifying header integrity.
1840  */
1841 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1842 {
1843 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1844 	struct packet_type *ptype;
1845 	__be16 type = skb->protocol;
1846 	int vlan_depth = ETH_HLEN;
1847 	int err;
1848 
1849 	while (type == htons(ETH_P_8021Q)) {
1850 		struct vlan_hdr *vh;
1851 
1852 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1853 			return ERR_PTR(-EINVAL);
1854 
1855 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1856 		type = vh->h_vlan_encapsulated_proto;
1857 		vlan_depth += VLAN_HLEN;
1858 	}
1859 
1860 	skb_reset_mac_header(skb);
1861 	skb->mac_len = skb->network_header - skb->mac_header;
1862 	__skb_pull(skb, skb->mac_len);
1863 
1864 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1865 		struct net_device *dev = skb->dev;
1866 		struct ethtool_drvinfo info = {};
1867 
1868 		if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1869 			dev->ethtool_ops->get_drvinfo(dev, &info);
1870 
1871 		WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1872 		     info.driver, dev ? dev->features : 0L,
1873 		     skb->sk ? skb->sk->sk_route_caps : 0L,
1874 		     skb->len, skb->data_len, skb->ip_summed);
1875 
1876 		if (skb_header_cloned(skb) &&
1877 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1878 			return ERR_PTR(err);
1879 	}
1880 
1881 	rcu_read_lock();
1882 	list_for_each_entry_rcu(ptype,
1883 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1884 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1885 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1886 				err = ptype->gso_send_check(skb);
1887 				segs = ERR_PTR(err);
1888 				if (err || skb_gso_ok(skb, features))
1889 					break;
1890 				__skb_push(skb, (skb->data -
1891 						 skb_network_header(skb)));
1892 			}
1893 			segs = ptype->gso_segment(skb, features);
1894 			break;
1895 		}
1896 	}
1897 	rcu_read_unlock();
1898 
1899 	__skb_push(skb, skb->data - skb_mac_header(skb));
1900 
1901 	return segs;
1902 }
1903 EXPORT_SYMBOL(skb_gso_segment);
1904 
1905 /* Take action when hardware reception checksum errors are detected. */
1906 #ifdef CONFIG_BUG
1907 void netdev_rx_csum_fault(struct net_device *dev)
1908 {
1909 	if (net_ratelimit()) {
1910 		printk(KERN_ERR "%s: hw csum failure.\n",
1911 			dev ? dev->name : "<unknown>");
1912 		dump_stack();
1913 	}
1914 }
1915 EXPORT_SYMBOL(netdev_rx_csum_fault);
1916 #endif
1917 
1918 /* Actually, we should eliminate this check as soon as we know, that:
1919  * 1. IOMMU is present and allows to map all the memory.
1920  * 2. No high memory really exists on this machine.
1921  */
1922 
1923 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1924 {
1925 #ifdef CONFIG_HIGHMEM
1926 	int i;
1927 	if (!(dev->features & NETIF_F_HIGHDMA)) {
1928 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1929 			if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1930 				return 1;
1931 	}
1932 
1933 	if (PCI_DMA_BUS_IS_PHYS) {
1934 		struct device *pdev = dev->dev.parent;
1935 
1936 		if (!pdev)
1937 			return 0;
1938 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1939 			dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1940 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1941 				return 1;
1942 		}
1943 	}
1944 #endif
1945 	return 0;
1946 }
1947 
1948 struct dev_gso_cb {
1949 	void (*destructor)(struct sk_buff *skb);
1950 };
1951 
1952 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1953 
1954 static void dev_gso_skb_destructor(struct sk_buff *skb)
1955 {
1956 	struct dev_gso_cb *cb;
1957 
1958 	do {
1959 		struct sk_buff *nskb = skb->next;
1960 
1961 		skb->next = nskb->next;
1962 		nskb->next = NULL;
1963 		kfree_skb(nskb);
1964 	} while (skb->next);
1965 
1966 	cb = DEV_GSO_CB(skb);
1967 	if (cb->destructor)
1968 		cb->destructor(skb);
1969 }
1970 
1971 /**
1972  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1973  *	@skb: buffer to segment
1974  *
1975  *	This function segments the given skb and stores the list of segments
1976  *	in skb->next.
1977  */
1978 static int dev_gso_segment(struct sk_buff *skb)
1979 {
1980 	struct net_device *dev = skb->dev;
1981 	struct sk_buff *segs;
1982 	int features = dev->features & ~(illegal_highdma(dev, skb) ?
1983 					 NETIF_F_SG : 0);
1984 
1985 	segs = skb_gso_segment(skb, features);
1986 
1987 	/* Verifying header integrity only. */
1988 	if (!segs)
1989 		return 0;
1990 
1991 	if (IS_ERR(segs))
1992 		return PTR_ERR(segs);
1993 
1994 	skb->next = segs;
1995 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1996 	skb->destructor = dev_gso_skb_destructor;
1997 
1998 	return 0;
1999 }
2000 
2001 /*
2002  * Try to orphan skb early, right before transmission by the device.
2003  * We cannot orphan skb if tx timestamp is requested or the sk-reference
2004  * is needed on driver level for other reasons, e.g. see net/can/raw.c
2005  */
2006 static inline void skb_orphan_try(struct sk_buff *skb)
2007 {
2008 	struct sock *sk = skb->sk;
2009 
2010 	if (sk && !skb_shinfo(skb)->tx_flags) {
2011 		/* skb_tx_hash() wont be able to get sk.
2012 		 * We copy sk_hash into skb->rxhash
2013 		 */
2014 		if (!skb->rxhash)
2015 			skb->rxhash = sk->sk_hash;
2016 		skb_orphan(skb);
2017 	}
2018 }
2019 
2020 int netif_get_vlan_features(struct sk_buff *skb, struct net_device *dev)
2021 {
2022 	__be16 protocol = skb->protocol;
2023 
2024 	if (protocol == htons(ETH_P_8021Q)) {
2025 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2026 		protocol = veh->h_vlan_encapsulated_proto;
2027 	} else if (!skb->vlan_tci)
2028 		return dev->features;
2029 
2030 	if (protocol != htons(ETH_P_8021Q))
2031 		return dev->features & dev->vlan_features;
2032 	else
2033 		return 0;
2034 }
2035 EXPORT_SYMBOL(netif_get_vlan_features);
2036 
2037 /*
2038  * Returns true if either:
2039  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2040  *	2. skb is fragmented and the device does not support SG, or if
2041  *	   at least one of fragments is in highmem and device does not
2042  *	   support DMA from it.
2043  */
2044 static inline int skb_needs_linearize(struct sk_buff *skb,
2045 				      struct net_device *dev)
2046 {
2047 	if (skb_is_nonlinear(skb)) {
2048 		int features = dev->features;
2049 
2050 		if (vlan_tx_tag_present(skb))
2051 			features &= dev->vlan_features;
2052 
2053 		return (skb_has_frag_list(skb) &&
2054 			!(features & NETIF_F_FRAGLIST)) ||
2055 			(skb_shinfo(skb)->nr_frags &&
2056 			(!(features & NETIF_F_SG) ||
2057 			illegal_highdma(dev, skb)));
2058 	}
2059 
2060 	return 0;
2061 }
2062 
2063 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2064 			struct netdev_queue *txq)
2065 {
2066 	const struct net_device_ops *ops = dev->netdev_ops;
2067 	int rc = NETDEV_TX_OK;
2068 
2069 	if (likely(!skb->next)) {
2070 		/*
2071 		 * If device doesnt need skb->dst, release it right now while
2072 		 * its hot in this cpu cache
2073 		 */
2074 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2075 			skb_dst_drop(skb);
2076 
2077 		if (!list_empty(&ptype_all))
2078 			dev_queue_xmit_nit(skb, dev);
2079 
2080 		skb_orphan_try(skb);
2081 
2082 		if (vlan_tx_tag_present(skb) &&
2083 		    !(dev->features & NETIF_F_HW_VLAN_TX)) {
2084 			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2085 			if (unlikely(!skb))
2086 				goto out;
2087 
2088 			skb->vlan_tci = 0;
2089 		}
2090 
2091 		if (netif_needs_gso(dev, skb)) {
2092 			if (unlikely(dev_gso_segment(skb)))
2093 				goto out_kfree_skb;
2094 			if (skb->next)
2095 				goto gso;
2096 		} else {
2097 			if (skb_needs_linearize(skb, dev) &&
2098 			    __skb_linearize(skb))
2099 				goto out_kfree_skb;
2100 
2101 			/* If packet is not checksummed and device does not
2102 			 * support checksumming for this protocol, complete
2103 			 * checksumming here.
2104 			 */
2105 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2106 				skb_set_transport_header(skb,
2107 					skb_checksum_start_offset(skb));
2108 				if (!dev_can_checksum(dev, skb) &&
2109 				     skb_checksum_help(skb))
2110 					goto out_kfree_skb;
2111 			}
2112 		}
2113 
2114 		rc = ops->ndo_start_xmit(skb, dev);
2115 		trace_net_dev_xmit(skb, rc);
2116 		if (rc == NETDEV_TX_OK)
2117 			txq_trans_update(txq);
2118 		return rc;
2119 	}
2120 
2121 gso:
2122 	do {
2123 		struct sk_buff *nskb = skb->next;
2124 
2125 		skb->next = nskb->next;
2126 		nskb->next = NULL;
2127 
2128 		/*
2129 		 * If device doesnt need nskb->dst, release it right now while
2130 		 * its hot in this cpu cache
2131 		 */
2132 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2133 			skb_dst_drop(nskb);
2134 
2135 		rc = ops->ndo_start_xmit(nskb, dev);
2136 		trace_net_dev_xmit(nskb, rc);
2137 		if (unlikely(rc != NETDEV_TX_OK)) {
2138 			if (rc & ~NETDEV_TX_MASK)
2139 				goto out_kfree_gso_skb;
2140 			nskb->next = skb->next;
2141 			skb->next = nskb;
2142 			return rc;
2143 		}
2144 		txq_trans_update(txq);
2145 		if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2146 			return NETDEV_TX_BUSY;
2147 	} while (skb->next);
2148 
2149 out_kfree_gso_skb:
2150 	if (likely(skb->next == NULL))
2151 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2152 out_kfree_skb:
2153 	kfree_skb(skb);
2154 out:
2155 	return rc;
2156 }
2157 
2158 static u32 hashrnd __read_mostly;
2159 
2160 /*
2161  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2162  * to be used as a distribution range.
2163  */
2164 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2165 		  unsigned int num_tx_queues)
2166 {
2167 	u32 hash;
2168 
2169 	if (skb_rx_queue_recorded(skb)) {
2170 		hash = skb_get_rx_queue(skb);
2171 		while (unlikely(hash >= num_tx_queues))
2172 			hash -= num_tx_queues;
2173 		return hash;
2174 	}
2175 
2176 	if (skb->sk && skb->sk->sk_hash)
2177 		hash = skb->sk->sk_hash;
2178 	else
2179 		hash = (__force u16) skb->protocol ^ skb->rxhash;
2180 	hash = jhash_1word(hash, hashrnd);
2181 
2182 	return (u16) (((u64) hash * num_tx_queues) >> 32);
2183 }
2184 EXPORT_SYMBOL(__skb_tx_hash);
2185 
2186 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2187 {
2188 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2189 		if (net_ratelimit()) {
2190 			pr_warning("%s selects TX queue %d, but "
2191 				"real number of TX queues is %d\n",
2192 				dev->name, queue_index, dev->real_num_tx_queues);
2193 		}
2194 		return 0;
2195 	}
2196 	return queue_index;
2197 }
2198 
2199 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2200 {
2201 #ifdef CONFIG_XPS
2202 	struct xps_dev_maps *dev_maps;
2203 	struct xps_map *map;
2204 	int queue_index = -1;
2205 
2206 	rcu_read_lock();
2207 	dev_maps = rcu_dereference(dev->xps_maps);
2208 	if (dev_maps) {
2209 		map = rcu_dereference(
2210 		    dev_maps->cpu_map[raw_smp_processor_id()]);
2211 		if (map) {
2212 			if (map->len == 1)
2213 				queue_index = map->queues[0];
2214 			else {
2215 				u32 hash;
2216 				if (skb->sk && skb->sk->sk_hash)
2217 					hash = skb->sk->sk_hash;
2218 				else
2219 					hash = (__force u16) skb->protocol ^
2220 					    skb->rxhash;
2221 				hash = jhash_1word(hash, hashrnd);
2222 				queue_index = map->queues[
2223 				    ((u64)hash * map->len) >> 32];
2224 			}
2225 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2226 				queue_index = -1;
2227 		}
2228 	}
2229 	rcu_read_unlock();
2230 
2231 	return queue_index;
2232 #else
2233 	return -1;
2234 #endif
2235 }
2236 
2237 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2238 					struct sk_buff *skb)
2239 {
2240 	int queue_index;
2241 	const struct net_device_ops *ops = dev->netdev_ops;
2242 
2243 	if (dev->real_num_tx_queues == 1)
2244 		queue_index = 0;
2245 	else if (ops->ndo_select_queue) {
2246 		queue_index = ops->ndo_select_queue(dev, skb);
2247 		queue_index = dev_cap_txqueue(dev, queue_index);
2248 	} else {
2249 		struct sock *sk = skb->sk;
2250 		queue_index = sk_tx_queue_get(sk);
2251 
2252 		if (queue_index < 0 || skb->ooo_okay ||
2253 		    queue_index >= dev->real_num_tx_queues) {
2254 			int old_index = queue_index;
2255 
2256 			queue_index = get_xps_queue(dev, skb);
2257 			if (queue_index < 0)
2258 				queue_index = skb_tx_hash(dev, skb);
2259 
2260 			if (queue_index != old_index && sk) {
2261 				struct dst_entry *dst =
2262 				    rcu_dereference_check(sk->sk_dst_cache, 1);
2263 
2264 				if (dst && skb_dst(skb) == dst)
2265 					sk_tx_queue_set(sk, queue_index);
2266 			}
2267 		}
2268 	}
2269 
2270 	skb_set_queue_mapping(skb, queue_index);
2271 	return netdev_get_tx_queue(dev, queue_index);
2272 }
2273 
2274 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2275 				 struct net_device *dev,
2276 				 struct netdev_queue *txq)
2277 {
2278 	spinlock_t *root_lock = qdisc_lock(q);
2279 	bool contended = qdisc_is_running(q);
2280 	int rc;
2281 
2282 	/*
2283 	 * Heuristic to force contended enqueues to serialize on a
2284 	 * separate lock before trying to get qdisc main lock.
2285 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2286 	 * and dequeue packets faster.
2287 	 */
2288 	if (unlikely(contended))
2289 		spin_lock(&q->busylock);
2290 
2291 	spin_lock(root_lock);
2292 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2293 		kfree_skb(skb);
2294 		rc = NET_XMIT_DROP;
2295 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2296 		   qdisc_run_begin(q)) {
2297 		/*
2298 		 * This is a work-conserving queue; there are no old skbs
2299 		 * waiting to be sent out; and the qdisc is not running -
2300 		 * xmit the skb directly.
2301 		 */
2302 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2303 			skb_dst_force(skb);
2304 		__qdisc_update_bstats(q, skb->len);
2305 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2306 			if (unlikely(contended)) {
2307 				spin_unlock(&q->busylock);
2308 				contended = false;
2309 			}
2310 			__qdisc_run(q);
2311 		} else
2312 			qdisc_run_end(q);
2313 
2314 		rc = NET_XMIT_SUCCESS;
2315 	} else {
2316 		skb_dst_force(skb);
2317 		rc = qdisc_enqueue_root(skb, q);
2318 		if (qdisc_run_begin(q)) {
2319 			if (unlikely(contended)) {
2320 				spin_unlock(&q->busylock);
2321 				contended = false;
2322 			}
2323 			__qdisc_run(q);
2324 		}
2325 	}
2326 	spin_unlock(root_lock);
2327 	if (unlikely(contended))
2328 		spin_unlock(&q->busylock);
2329 	return rc;
2330 }
2331 
2332 static DEFINE_PER_CPU(int, xmit_recursion);
2333 #define RECURSION_LIMIT 10
2334 
2335 /**
2336  *	dev_queue_xmit - transmit a buffer
2337  *	@skb: buffer to transmit
2338  *
2339  *	Queue a buffer for transmission to a network device. The caller must
2340  *	have set the device and priority and built the buffer before calling
2341  *	this function. The function can be called from an interrupt.
2342  *
2343  *	A negative errno code is returned on a failure. A success does not
2344  *	guarantee the frame will be transmitted as it may be dropped due
2345  *	to congestion or traffic shaping.
2346  *
2347  * -----------------------------------------------------------------------------------
2348  *      I notice this method can also return errors from the queue disciplines,
2349  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2350  *      be positive.
2351  *
2352  *      Regardless of the return value, the skb is consumed, so it is currently
2353  *      difficult to retry a send to this method.  (You can bump the ref count
2354  *      before sending to hold a reference for retry if you are careful.)
2355  *
2356  *      When calling this method, interrupts MUST be enabled.  This is because
2357  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2358  *          --BLG
2359  */
2360 int dev_queue_xmit(struct sk_buff *skb)
2361 {
2362 	struct net_device *dev = skb->dev;
2363 	struct netdev_queue *txq;
2364 	struct Qdisc *q;
2365 	int rc = -ENOMEM;
2366 
2367 	/* Disable soft irqs for various locks below. Also
2368 	 * stops preemption for RCU.
2369 	 */
2370 	rcu_read_lock_bh();
2371 
2372 	txq = dev_pick_tx(dev, skb);
2373 	q = rcu_dereference_bh(txq->qdisc);
2374 
2375 #ifdef CONFIG_NET_CLS_ACT
2376 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2377 #endif
2378 	trace_net_dev_queue(skb);
2379 	if (q->enqueue) {
2380 		rc = __dev_xmit_skb(skb, q, dev, txq);
2381 		goto out;
2382 	}
2383 
2384 	/* The device has no queue. Common case for software devices:
2385 	   loopback, all the sorts of tunnels...
2386 
2387 	   Really, it is unlikely that netif_tx_lock protection is necessary
2388 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2389 	   counters.)
2390 	   However, it is possible, that they rely on protection
2391 	   made by us here.
2392 
2393 	   Check this and shot the lock. It is not prone from deadlocks.
2394 	   Either shot noqueue qdisc, it is even simpler 8)
2395 	 */
2396 	if (dev->flags & IFF_UP) {
2397 		int cpu = smp_processor_id(); /* ok because BHs are off */
2398 
2399 		if (txq->xmit_lock_owner != cpu) {
2400 
2401 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2402 				goto recursion_alert;
2403 
2404 			HARD_TX_LOCK(dev, txq, cpu);
2405 
2406 			if (!netif_tx_queue_stopped(txq)) {
2407 				__this_cpu_inc(xmit_recursion);
2408 				rc = dev_hard_start_xmit(skb, dev, txq);
2409 				__this_cpu_dec(xmit_recursion);
2410 				if (dev_xmit_complete(rc)) {
2411 					HARD_TX_UNLOCK(dev, txq);
2412 					goto out;
2413 				}
2414 			}
2415 			HARD_TX_UNLOCK(dev, txq);
2416 			if (net_ratelimit())
2417 				printk(KERN_CRIT "Virtual device %s asks to "
2418 				       "queue packet!\n", dev->name);
2419 		} else {
2420 			/* Recursion is detected! It is possible,
2421 			 * unfortunately
2422 			 */
2423 recursion_alert:
2424 			if (net_ratelimit())
2425 				printk(KERN_CRIT "Dead loop on virtual device "
2426 				       "%s, fix it urgently!\n", dev->name);
2427 		}
2428 	}
2429 
2430 	rc = -ENETDOWN;
2431 	rcu_read_unlock_bh();
2432 
2433 	kfree_skb(skb);
2434 	return rc;
2435 out:
2436 	rcu_read_unlock_bh();
2437 	return rc;
2438 }
2439 EXPORT_SYMBOL(dev_queue_xmit);
2440 
2441 
2442 /*=======================================================================
2443 			Receiver routines
2444   =======================================================================*/
2445 
2446 int netdev_max_backlog __read_mostly = 1000;
2447 int netdev_tstamp_prequeue __read_mostly = 1;
2448 int netdev_budget __read_mostly = 300;
2449 int weight_p __read_mostly = 64;            /* old backlog weight */
2450 
2451 /* Called with irq disabled */
2452 static inline void ____napi_schedule(struct softnet_data *sd,
2453 				     struct napi_struct *napi)
2454 {
2455 	list_add_tail(&napi->poll_list, &sd->poll_list);
2456 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2457 }
2458 
2459 /*
2460  * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2461  * and src/dst port numbers. Returns a non-zero hash number on success
2462  * and 0 on failure.
2463  */
2464 __u32 __skb_get_rxhash(struct sk_buff *skb)
2465 {
2466 	int nhoff, hash = 0, poff;
2467 	struct ipv6hdr *ip6;
2468 	struct iphdr *ip;
2469 	u8 ip_proto;
2470 	u32 addr1, addr2, ihl;
2471 	union {
2472 		u32 v32;
2473 		u16 v16[2];
2474 	} ports;
2475 
2476 	nhoff = skb_network_offset(skb);
2477 
2478 	switch (skb->protocol) {
2479 	case __constant_htons(ETH_P_IP):
2480 		if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2481 			goto done;
2482 
2483 		ip = (struct iphdr *) (skb->data + nhoff);
2484 		if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2485 			ip_proto = 0;
2486 		else
2487 			ip_proto = ip->protocol;
2488 		addr1 = (__force u32) ip->saddr;
2489 		addr2 = (__force u32) ip->daddr;
2490 		ihl = ip->ihl;
2491 		break;
2492 	case __constant_htons(ETH_P_IPV6):
2493 		if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2494 			goto done;
2495 
2496 		ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2497 		ip_proto = ip6->nexthdr;
2498 		addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2499 		addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2500 		ihl = (40 >> 2);
2501 		break;
2502 	default:
2503 		goto done;
2504 	}
2505 
2506 	ports.v32 = 0;
2507 	poff = proto_ports_offset(ip_proto);
2508 	if (poff >= 0) {
2509 		nhoff += ihl * 4 + poff;
2510 		if (pskb_may_pull(skb, nhoff + 4)) {
2511 			ports.v32 = * (__force u32 *) (skb->data + nhoff);
2512 			if (ports.v16[1] < ports.v16[0])
2513 				swap(ports.v16[0], ports.v16[1]);
2514 		}
2515 	}
2516 
2517 	/* get a consistent hash (same value on both flow directions) */
2518 	if (addr2 < addr1)
2519 		swap(addr1, addr2);
2520 
2521 	hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2522 	if (!hash)
2523 		hash = 1;
2524 
2525 done:
2526 	return hash;
2527 }
2528 EXPORT_SYMBOL(__skb_get_rxhash);
2529 
2530 #ifdef CONFIG_RPS
2531 
2532 /* One global table that all flow-based protocols share. */
2533 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2534 EXPORT_SYMBOL(rps_sock_flow_table);
2535 
2536 /*
2537  * get_rps_cpu is called from netif_receive_skb and returns the target
2538  * CPU from the RPS map of the receiving queue for a given skb.
2539  * rcu_read_lock must be held on entry.
2540  */
2541 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2542 		       struct rps_dev_flow **rflowp)
2543 {
2544 	struct netdev_rx_queue *rxqueue;
2545 	struct rps_map *map;
2546 	struct rps_dev_flow_table *flow_table;
2547 	struct rps_sock_flow_table *sock_flow_table;
2548 	int cpu = -1;
2549 	u16 tcpu;
2550 
2551 	if (skb_rx_queue_recorded(skb)) {
2552 		u16 index = skb_get_rx_queue(skb);
2553 		if (unlikely(index >= dev->real_num_rx_queues)) {
2554 			WARN_ONCE(dev->real_num_rx_queues > 1,
2555 				  "%s received packet on queue %u, but number "
2556 				  "of RX queues is %u\n",
2557 				  dev->name, index, dev->real_num_rx_queues);
2558 			goto done;
2559 		}
2560 		rxqueue = dev->_rx + index;
2561 	} else
2562 		rxqueue = dev->_rx;
2563 
2564 	map = rcu_dereference(rxqueue->rps_map);
2565 	if (map) {
2566 		if (map->len == 1) {
2567 			tcpu = map->cpus[0];
2568 			if (cpu_online(tcpu))
2569 				cpu = tcpu;
2570 			goto done;
2571 		}
2572 	} else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2573 		goto done;
2574 	}
2575 
2576 	skb_reset_network_header(skb);
2577 	if (!skb_get_rxhash(skb))
2578 		goto done;
2579 
2580 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2581 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2582 	if (flow_table && sock_flow_table) {
2583 		u16 next_cpu;
2584 		struct rps_dev_flow *rflow;
2585 
2586 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2587 		tcpu = rflow->cpu;
2588 
2589 		next_cpu = sock_flow_table->ents[skb->rxhash &
2590 		    sock_flow_table->mask];
2591 
2592 		/*
2593 		 * If the desired CPU (where last recvmsg was done) is
2594 		 * different from current CPU (one in the rx-queue flow
2595 		 * table entry), switch if one of the following holds:
2596 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2597 		 *   - Current CPU is offline.
2598 		 *   - The current CPU's queue tail has advanced beyond the
2599 		 *     last packet that was enqueued using this table entry.
2600 		 *     This guarantees that all previous packets for the flow
2601 		 *     have been dequeued, thus preserving in order delivery.
2602 		 */
2603 		if (unlikely(tcpu != next_cpu) &&
2604 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2605 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2606 		      rflow->last_qtail)) >= 0)) {
2607 			tcpu = rflow->cpu = next_cpu;
2608 			if (tcpu != RPS_NO_CPU)
2609 				rflow->last_qtail = per_cpu(softnet_data,
2610 				    tcpu).input_queue_head;
2611 		}
2612 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2613 			*rflowp = rflow;
2614 			cpu = tcpu;
2615 			goto done;
2616 		}
2617 	}
2618 
2619 	if (map) {
2620 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2621 
2622 		if (cpu_online(tcpu)) {
2623 			cpu = tcpu;
2624 			goto done;
2625 		}
2626 	}
2627 
2628 done:
2629 	return cpu;
2630 }
2631 
2632 /* Called from hardirq (IPI) context */
2633 static void rps_trigger_softirq(void *data)
2634 {
2635 	struct softnet_data *sd = data;
2636 
2637 	____napi_schedule(sd, &sd->backlog);
2638 	sd->received_rps++;
2639 }
2640 
2641 #endif /* CONFIG_RPS */
2642 
2643 /*
2644  * Check if this softnet_data structure is another cpu one
2645  * If yes, queue it to our IPI list and return 1
2646  * If no, return 0
2647  */
2648 static int rps_ipi_queued(struct softnet_data *sd)
2649 {
2650 #ifdef CONFIG_RPS
2651 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2652 
2653 	if (sd != mysd) {
2654 		sd->rps_ipi_next = mysd->rps_ipi_list;
2655 		mysd->rps_ipi_list = sd;
2656 
2657 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2658 		return 1;
2659 	}
2660 #endif /* CONFIG_RPS */
2661 	return 0;
2662 }
2663 
2664 /*
2665  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2666  * queue (may be a remote CPU queue).
2667  */
2668 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2669 			      unsigned int *qtail)
2670 {
2671 	struct softnet_data *sd;
2672 	unsigned long flags;
2673 
2674 	sd = &per_cpu(softnet_data, cpu);
2675 
2676 	local_irq_save(flags);
2677 
2678 	rps_lock(sd);
2679 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2680 		if (skb_queue_len(&sd->input_pkt_queue)) {
2681 enqueue:
2682 			__skb_queue_tail(&sd->input_pkt_queue, skb);
2683 			input_queue_tail_incr_save(sd, qtail);
2684 			rps_unlock(sd);
2685 			local_irq_restore(flags);
2686 			return NET_RX_SUCCESS;
2687 		}
2688 
2689 		/* Schedule NAPI for backlog device
2690 		 * We can use non atomic operation since we own the queue lock
2691 		 */
2692 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2693 			if (!rps_ipi_queued(sd))
2694 				____napi_schedule(sd, &sd->backlog);
2695 		}
2696 		goto enqueue;
2697 	}
2698 
2699 	sd->dropped++;
2700 	rps_unlock(sd);
2701 
2702 	local_irq_restore(flags);
2703 
2704 	atomic_long_inc(&skb->dev->rx_dropped);
2705 	kfree_skb(skb);
2706 	return NET_RX_DROP;
2707 }
2708 
2709 /**
2710  *	netif_rx	-	post buffer to the network code
2711  *	@skb: buffer to post
2712  *
2713  *	This function receives a packet from a device driver and queues it for
2714  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2715  *	may be dropped during processing for congestion control or by the
2716  *	protocol layers.
2717  *
2718  *	return values:
2719  *	NET_RX_SUCCESS	(no congestion)
2720  *	NET_RX_DROP     (packet was dropped)
2721  *
2722  */
2723 
2724 int netif_rx(struct sk_buff *skb)
2725 {
2726 	int ret;
2727 
2728 	/* if netpoll wants it, pretend we never saw it */
2729 	if (netpoll_rx(skb))
2730 		return NET_RX_DROP;
2731 
2732 	if (netdev_tstamp_prequeue)
2733 		net_timestamp_check(skb);
2734 
2735 	trace_netif_rx(skb);
2736 #ifdef CONFIG_RPS
2737 	{
2738 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2739 		int cpu;
2740 
2741 		preempt_disable();
2742 		rcu_read_lock();
2743 
2744 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2745 		if (cpu < 0)
2746 			cpu = smp_processor_id();
2747 
2748 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2749 
2750 		rcu_read_unlock();
2751 		preempt_enable();
2752 	}
2753 #else
2754 	{
2755 		unsigned int qtail;
2756 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2757 		put_cpu();
2758 	}
2759 #endif
2760 	return ret;
2761 }
2762 EXPORT_SYMBOL(netif_rx);
2763 
2764 int netif_rx_ni(struct sk_buff *skb)
2765 {
2766 	int err;
2767 
2768 	preempt_disable();
2769 	err = netif_rx(skb);
2770 	if (local_softirq_pending())
2771 		do_softirq();
2772 	preempt_enable();
2773 
2774 	return err;
2775 }
2776 EXPORT_SYMBOL(netif_rx_ni);
2777 
2778 static void net_tx_action(struct softirq_action *h)
2779 {
2780 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2781 
2782 	if (sd->completion_queue) {
2783 		struct sk_buff *clist;
2784 
2785 		local_irq_disable();
2786 		clist = sd->completion_queue;
2787 		sd->completion_queue = NULL;
2788 		local_irq_enable();
2789 
2790 		while (clist) {
2791 			struct sk_buff *skb = clist;
2792 			clist = clist->next;
2793 
2794 			WARN_ON(atomic_read(&skb->users));
2795 			trace_kfree_skb(skb, net_tx_action);
2796 			__kfree_skb(skb);
2797 		}
2798 	}
2799 
2800 	if (sd->output_queue) {
2801 		struct Qdisc *head;
2802 
2803 		local_irq_disable();
2804 		head = sd->output_queue;
2805 		sd->output_queue = NULL;
2806 		sd->output_queue_tailp = &sd->output_queue;
2807 		local_irq_enable();
2808 
2809 		while (head) {
2810 			struct Qdisc *q = head;
2811 			spinlock_t *root_lock;
2812 
2813 			head = head->next_sched;
2814 
2815 			root_lock = qdisc_lock(q);
2816 			if (spin_trylock(root_lock)) {
2817 				smp_mb__before_clear_bit();
2818 				clear_bit(__QDISC_STATE_SCHED,
2819 					  &q->state);
2820 				qdisc_run(q);
2821 				spin_unlock(root_lock);
2822 			} else {
2823 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
2824 					      &q->state)) {
2825 					__netif_reschedule(q);
2826 				} else {
2827 					smp_mb__before_clear_bit();
2828 					clear_bit(__QDISC_STATE_SCHED,
2829 						  &q->state);
2830 				}
2831 			}
2832 		}
2833 	}
2834 }
2835 
2836 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2837     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2838 /* This hook is defined here for ATM LANE */
2839 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2840 			     unsigned char *addr) __read_mostly;
2841 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2842 #endif
2843 
2844 #ifdef CONFIG_NET_CLS_ACT
2845 /* TODO: Maybe we should just force sch_ingress to be compiled in
2846  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2847  * a compare and 2 stores extra right now if we dont have it on
2848  * but have CONFIG_NET_CLS_ACT
2849  * NOTE: This doesnt stop any functionality; if you dont have
2850  * the ingress scheduler, you just cant add policies on ingress.
2851  *
2852  */
2853 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2854 {
2855 	struct net_device *dev = skb->dev;
2856 	u32 ttl = G_TC_RTTL(skb->tc_verd);
2857 	int result = TC_ACT_OK;
2858 	struct Qdisc *q;
2859 
2860 	if (unlikely(MAX_RED_LOOP < ttl++)) {
2861 		if (net_ratelimit())
2862 			pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2863 			       skb->skb_iif, dev->ifindex);
2864 		return TC_ACT_SHOT;
2865 	}
2866 
2867 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2868 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2869 
2870 	q = rxq->qdisc;
2871 	if (q != &noop_qdisc) {
2872 		spin_lock(qdisc_lock(q));
2873 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2874 			result = qdisc_enqueue_root(skb, q);
2875 		spin_unlock(qdisc_lock(q));
2876 	}
2877 
2878 	return result;
2879 }
2880 
2881 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2882 					 struct packet_type **pt_prev,
2883 					 int *ret, struct net_device *orig_dev)
2884 {
2885 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2886 
2887 	if (!rxq || rxq->qdisc == &noop_qdisc)
2888 		goto out;
2889 
2890 	if (*pt_prev) {
2891 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2892 		*pt_prev = NULL;
2893 	}
2894 
2895 	switch (ing_filter(skb, rxq)) {
2896 	case TC_ACT_SHOT:
2897 	case TC_ACT_STOLEN:
2898 		kfree_skb(skb);
2899 		return NULL;
2900 	}
2901 
2902 out:
2903 	skb->tc_verd = 0;
2904 	return skb;
2905 }
2906 #endif
2907 
2908 /**
2909  *	netdev_rx_handler_register - register receive handler
2910  *	@dev: device to register a handler for
2911  *	@rx_handler: receive handler to register
2912  *	@rx_handler_data: data pointer that is used by rx handler
2913  *
2914  *	Register a receive hander for a device. This handler will then be
2915  *	called from __netif_receive_skb. A negative errno code is returned
2916  *	on a failure.
2917  *
2918  *	The caller must hold the rtnl_mutex.
2919  */
2920 int netdev_rx_handler_register(struct net_device *dev,
2921 			       rx_handler_func_t *rx_handler,
2922 			       void *rx_handler_data)
2923 {
2924 	ASSERT_RTNL();
2925 
2926 	if (dev->rx_handler)
2927 		return -EBUSY;
2928 
2929 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2930 	rcu_assign_pointer(dev->rx_handler, rx_handler);
2931 
2932 	return 0;
2933 }
2934 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2935 
2936 /**
2937  *	netdev_rx_handler_unregister - unregister receive handler
2938  *	@dev: device to unregister a handler from
2939  *
2940  *	Unregister a receive hander from a device.
2941  *
2942  *	The caller must hold the rtnl_mutex.
2943  */
2944 void netdev_rx_handler_unregister(struct net_device *dev)
2945 {
2946 
2947 	ASSERT_RTNL();
2948 	rcu_assign_pointer(dev->rx_handler, NULL);
2949 	rcu_assign_pointer(dev->rx_handler_data, NULL);
2950 }
2951 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2952 
2953 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2954 					      struct net_device *master)
2955 {
2956 	if (skb->pkt_type == PACKET_HOST) {
2957 		u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2958 
2959 		memcpy(dest, master->dev_addr, ETH_ALEN);
2960 	}
2961 }
2962 
2963 /* On bonding slaves other than the currently active slave, suppress
2964  * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2965  * ARP on active-backup slaves with arp_validate enabled.
2966  */
2967 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2968 {
2969 	struct net_device *dev = skb->dev;
2970 
2971 	if (master->priv_flags & IFF_MASTER_ARPMON)
2972 		dev->last_rx = jiffies;
2973 
2974 	if ((master->priv_flags & IFF_MASTER_ALB) &&
2975 	    (master->priv_flags & IFF_BRIDGE_PORT)) {
2976 		/* Do address unmangle. The local destination address
2977 		 * will be always the one master has. Provides the right
2978 		 * functionality in a bridge.
2979 		 */
2980 		skb_bond_set_mac_by_master(skb, master);
2981 	}
2982 
2983 	if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2984 		if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2985 		    skb->protocol == __cpu_to_be16(ETH_P_ARP))
2986 			return 0;
2987 
2988 		if (master->priv_flags & IFF_MASTER_ALB) {
2989 			if (skb->pkt_type != PACKET_BROADCAST &&
2990 			    skb->pkt_type != PACKET_MULTICAST)
2991 				return 0;
2992 		}
2993 		if (master->priv_flags & IFF_MASTER_8023AD &&
2994 		    skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2995 			return 0;
2996 
2997 		return 1;
2998 	}
2999 	return 0;
3000 }
3001 EXPORT_SYMBOL(__skb_bond_should_drop);
3002 
3003 static int __netif_receive_skb(struct sk_buff *skb)
3004 {
3005 	struct packet_type *ptype, *pt_prev;
3006 	rx_handler_func_t *rx_handler;
3007 	struct net_device *orig_dev;
3008 	struct net_device *master;
3009 	struct net_device *null_or_orig;
3010 	struct net_device *orig_or_bond;
3011 	int ret = NET_RX_DROP;
3012 	__be16 type;
3013 
3014 	if (!netdev_tstamp_prequeue)
3015 		net_timestamp_check(skb);
3016 
3017 	trace_netif_receive_skb(skb);
3018 
3019 	/* if we've gotten here through NAPI, check netpoll */
3020 	if (netpoll_receive_skb(skb))
3021 		return NET_RX_DROP;
3022 
3023 	if (!skb->skb_iif)
3024 		skb->skb_iif = skb->dev->ifindex;
3025 
3026 	/*
3027 	 * bonding note: skbs received on inactive slaves should only
3028 	 * be delivered to pkt handlers that are exact matches.  Also
3029 	 * the deliver_no_wcard flag will be set.  If packet handlers
3030 	 * are sensitive to duplicate packets these skbs will need to
3031 	 * be dropped at the handler.
3032 	 */
3033 	null_or_orig = NULL;
3034 	orig_dev = skb->dev;
3035 	master = ACCESS_ONCE(orig_dev->master);
3036 	if (skb->deliver_no_wcard)
3037 		null_or_orig = orig_dev;
3038 	else if (master) {
3039 		if (skb_bond_should_drop(skb, master)) {
3040 			skb->deliver_no_wcard = 1;
3041 			null_or_orig = orig_dev; /* deliver only exact match */
3042 		} else
3043 			skb->dev = master;
3044 	}
3045 
3046 	__this_cpu_inc(softnet_data.processed);
3047 	skb_reset_network_header(skb);
3048 	skb_reset_transport_header(skb);
3049 	skb->mac_len = skb->network_header - skb->mac_header;
3050 
3051 	pt_prev = NULL;
3052 
3053 	rcu_read_lock();
3054 
3055 #ifdef CONFIG_NET_CLS_ACT
3056 	if (skb->tc_verd & TC_NCLS) {
3057 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3058 		goto ncls;
3059 	}
3060 #endif
3061 
3062 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3063 		if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
3064 		    ptype->dev == orig_dev) {
3065 			if (pt_prev)
3066 				ret = deliver_skb(skb, pt_prev, orig_dev);
3067 			pt_prev = ptype;
3068 		}
3069 	}
3070 
3071 #ifdef CONFIG_NET_CLS_ACT
3072 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3073 	if (!skb)
3074 		goto out;
3075 ncls:
3076 #endif
3077 
3078 	/* Handle special case of bridge or macvlan */
3079 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3080 	if (rx_handler) {
3081 		if (pt_prev) {
3082 			ret = deliver_skb(skb, pt_prev, orig_dev);
3083 			pt_prev = NULL;
3084 		}
3085 		skb = rx_handler(skb);
3086 		if (!skb)
3087 			goto out;
3088 	}
3089 
3090 	if (vlan_tx_tag_present(skb)) {
3091 		if (pt_prev) {
3092 			ret = deliver_skb(skb, pt_prev, orig_dev);
3093 			pt_prev = NULL;
3094 		}
3095 		if (vlan_hwaccel_do_receive(&skb)) {
3096 			ret = __netif_receive_skb(skb);
3097 			goto out;
3098 		} else if (unlikely(!skb))
3099 			goto out;
3100 	}
3101 
3102 	/*
3103 	 * Make sure frames received on VLAN interfaces stacked on
3104 	 * bonding interfaces still make their way to any base bonding
3105 	 * device that may have registered for a specific ptype.  The
3106 	 * handler may have to adjust skb->dev and orig_dev.
3107 	 */
3108 	orig_or_bond = orig_dev;
3109 	if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
3110 	    (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
3111 		orig_or_bond = vlan_dev_real_dev(skb->dev);
3112 	}
3113 
3114 	type = skb->protocol;
3115 	list_for_each_entry_rcu(ptype,
3116 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3117 		if (ptype->type == type && (ptype->dev == null_or_orig ||
3118 		     ptype->dev == skb->dev || ptype->dev == orig_dev ||
3119 		     ptype->dev == orig_or_bond)) {
3120 			if (pt_prev)
3121 				ret = deliver_skb(skb, pt_prev, orig_dev);
3122 			pt_prev = ptype;
3123 		}
3124 	}
3125 
3126 	if (pt_prev) {
3127 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3128 	} else {
3129 		atomic_long_inc(&skb->dev->rx_dropped);
3130 		kfree_skb(skb);
3131 		/* Jamal, now you will not able to escape explaining
3132 		 * me how you were going to use this. :-)
3133 		 */
3134 		ret = NET_RX_DROP;
3135 	}
3136 
3137 out:
3138 	rcu_read_unlock();
3139 	return ret;
3140 }
3141 
3142 /**
3143  *	netif_receive_skb - process receive buffer from network
3144  *	@skb: buffer to process
3145  *
3146  *	netif_receive_skb() is the main receive data processing function.
3147  *	It always succeeds. The buffer may be dropped during processing
3148  *	for congestion control or by the protocol layers.
3149  *
3150  *	This function may only be called from softirq context and interrupts
3151  *	should be enabled.
3152  *
3153  *	Return values (usually ignored):
3154  *	NET_RX_SUCCESS: no congestion
3155  *	NET_RX_DROP: packet was dropped
3156  */
3157 int netif_receive_skb(struct sk_buff *skb)
3158 {
3159 	if (netdev_tstamp_prequeue)
3160 		net_timestamp_check(skb);
3161 
3162 	if (skb_defer_rx_timestamp(skb))
3163 		return NET_RX_SUCCESS;
3164 
3165 #ifdef CONFIG_RPS
3166 	{
3167 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3168 		int cpu, ret;
3169 
3170 		rcu_read_lock();
3171 
3172 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3173 
3174 		if (cpu >= 0) {
3175 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3176 			rcu_read_unlock();
3177 		} else {
3178 			rcu_read_unlock();
3179 			ret = __netif_receive_skb(skb);
3180 		}
3181 
3182 		return ret;
3183 	}
3184 #else
3185 	return __netif_receive_skb(skb);
3186 #endif
3187 }
3188 EXPORT_SYMBOL(netif_receive_skb);
3189 
3190 /* Network device is going away, flush any packets still pending
3191  * Called with irqs disabled.
3192  */
3193 static void flush_backlog(void *arg)
3194 {
3195 	struct net_device *dev = arg;
3196 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3197 	struct sk_buff *skb, *tmp;
3198 
3199 	rps_lock(sd);
3200 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3201 		if (skb->dev == dev) {
3202 			__skb_unlink(skb, &sd->input_pkt_queue);
3203 			kfree_skb(skb);
3204 			input_queue_head_incr(sd);
3205 		}
3206 	}
3207 	rps_unlock(sd);
3208 
3209 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3210 		if (skb->dev == dev) {
3211 			__skb_unlink(skb, &sd->process_queue);
3212 			kfree_skb(skb);
3213 			input_queue_head_incr(sd);
3214 		}
3215 	}
3216 }
3217 
3218 static int napi_gro_complete(struct sk_buff *skb)
3219 {
3220 	struct packet_type *ptype;
3221 	__be16 type = skb->protocol;
3222 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3223 	int err = -ENOENT;
3224 
3225 	if (NAPI_GRO_CB(skb)->count == 1) {
3226 		skb_shinfo(skb)->gso_size = 0;
3227 		goto out;
3228 	}
3229 
3230 	rcu_read_lock();
3231 	list_for_each_entry_rcu(ptype, head, list) {
3232 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3233 			continue;
3234 
3235 		err = ptype->gro_complete(skb);
3236 		break;
3237 	}
3238 	rcu_read_unlock();
3239 
3240 	if (err) {
3241 		WARN_ON(&ptype->list == head);
3242 		kfree_skb(skb);
3243 		return NET_RX_SUCCESS;
3244 	}
3245 
3246 out:
3247 	return netif_receive_skb(skb);
3248 }
3249 
3250 inline void napi_gro_flush(struct napi_struct *napi)
3251 {
3252 	struct sk_buff *skb, *next;
3253 
3254 	for (skb = napi->gro_list; skb; skb = next) {
3255 		next = skb->next;
3256 		skb->next = NULL;
3257 		napi_gro_complete(skb);
3258 	}
3259 
3260 	napi->gro_count = 0;
3261 	napi->gro_list = NULL;
3262 }
3263 EXPORT_SYMBOL(napi_gro_flush);
3264 
3265 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3266 {
3267 	struct sk_buff **pp = NULL;
3268 	struct packet_type *ptype;
3269 	__be16 type = skb->protocol;
3270 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3271 	int same_flow;
3272 	int mac_len;
3273 	enum gro_result ret;
3274 
3275 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3276 		goto normal;
3277 
3278 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3279 		goto normal;
3280 
3281 	rcu_read_lock();
3282 	list_for_each_entry_rcu(ptype, head, list) {
3283 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3284 			continue;
3285 
3286 		skb_set_network_header(skb, skb_gro_offset(skb));
3287 		mac_len = skb->network_header - skb->mac_header;
3288 		skb->mac_len = mac_len;
3289 		NAPI_GRO_CB(skb)->same_flow = 0;
3290 		NAPI_GRO_CB(skb)->flush = 0;
3291 		NAPI_GRO_CB(skb)->free = 0;
3292 
3293 		pp = ptype->gro_receive(&napi->gro_list, skb);
3294 		break;
3295 	}
3296 	rcu_read_unlock();
3297 
3298 	if (&ptype->list == head)
3299 		goto normal;
3300 
3301 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3302 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3303 
3304 	if (pp) {
3305 		struct sk_buff *nskb = *pp;
3306 
3307 		*pp = nskb->next;
3308 		nskb->next = NULL;
3309 		napi_gro_complete(nskb);
3310 		napi->gro_count--;
3311 	}
3312 
3313 	if (same_flow)
3314 		goto ok;
3315 
3316 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3317 		goto normal;
3318 
3319 	napi->gro_count++;
3320 	NAPI_GRO_CB(skb)->count = 1;
3321 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3322 	skb->next = napi->gro_list;
3323 	napi->gro_list = skb;
3324 	ret = GRO_HELD;
3325 
3326 pull:
3327 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3328 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3329 
3330 		BUG_ON(skb->end - skb->tail < grow);
3331 
3332 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3333 
3334 		skb->tail += grow;
3335 		skb->data_len -= grow;
3336 
3337 		skb_shinfo(skb)->frags[0].page_offset += grow;
3338 		skb_shinfo(skb)->frags[0].size -= grow;
3339 
3340 		if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3341 			put_page(skb_shinfo(skb)->frags[0].page);
3342 			memmove(skb_shinfo(skb)->frags,
3343 				skb_shinfo(skb)->frags + 1,
3344 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3345 		}
3346 	}
3347 
3348 ok:
3349 	return ret;
3350 
3351 normal:
3352 	ret = GRO_NORMAL;
3353 	goto pull;
3354 }
3355 EXPORT_SYMBOL(dev_gro_receive);
3356 
3357 static inline gro_result_t
3358 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3359 {
3360 	struct sk_buff *p;
3361 
3362 	for (p = napi->gro_list; p; p = p->next) {
3363 		unsigned long diffs;
3364 
3365 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3366 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3367 		diffs |= compare_ether_header(skb_mac_header(p),
3368 					      skb_gro_mac_header(skb));
3369 		NAPI_GRO_CB(p)->same_flow = !diffs;
3370 		NAPI_GRO_CB(p)->flush = 0;
3371 	}
3372 
3373 	return dev_gro_receive(napi, skb);
3374 }
3375 
3376 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3377 {
3378 	switch (ret) {
3379 	case GRO_NORMAL:
3380 		if (netif_receive_skb(skb))
3381 			ret = GRO_DROP;
3382 		break;
3383 
3384 	case GRO_DROP:
3385 	case GRO_MERGED_FREE:
3386 		kfree_skb(skb);
3387 		break;
3388 
3389 	case GRO_HELD:
3390 	case GRO_MERGED:
3391 		break;
3392 	}
3393 
3394 	return ret;
3395 }
3396 EXPORT_SYMBOL(napi_skb_finish);
3397 
3398 void skb_gro_reset_offset(struct sk_buff *skb)
3399 {
3400 	NAPI_GRO_CB(skb)->data_offset = 0;
3401 	NAPI_GRO_CB(skb)->frag0 = NULL;
3402 	NAPI_GRO_CB(skb)->frag0_len = 0;
3403 
3404 	if (skb->mac_header == skb->tail &&
3405 	    !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3406 		NAPI_GRO_CB(skb)->frag0 =
3407 			page_address(skb_shinfo(skb)->frags[0].page) +
3408 			skb_shinfo(skb)->frags[0].page_offset;
3409 		NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3410 	}
3411 }
3412 EXPORT_SYMBOL(skb_gro_reset_offset);
3413 
3414 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3415 {
3416 	skb_gro_reset_offset(skb);
3417 
3418 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3419 }
3420 EXPORT_SYMBOL(napi_gro_receive);
3421 
3422 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3423 {
3424 	__skb_pull(skb, skb_headlen(skb));
3425 	skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3426 	skb->vlan_tci = 0;
3427 
3428 	napi->skb = skb;
3429 }
3430 
3431 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3432 {
3433 	struct sk_buff *skb = napi->skb;
3434 
3435 	if (!skb) {
3436 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3437 		if (skb)
3438 			napi->skb = skb;
3439 	}
3440 	return skb;
3441 }
3442 EXPORT_SYMBOL(napi_get_frags);
3443 
3444 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3445 			       gro_result_t ret)
3446 {
3447 	switch (ret) {
3448 	case GRO_NORMAL:
3449 	case GRO_HELD:
3450 		skb->protocol = eth_type_trans(skb, skb->dev);
3451 
3452 		if (ret == GRO_HELD)
3453 			skb_gro_pull(skb, -ETH_HLEN);
3454 		else if (netif_receive_skb(skb))
3455 			ret = GRO_DROP;
3456 		break;
3457 
3458 	case GRO_DROP:
3459 	case GRO_MERGED_FREE:
3460 		napi_reuse_skb(napi, skb);
3461 		break;
3462 
3463 	case GRO_MERGED:
3464 		break;
3465 	}
3466 
3467 	return ret;
3468 }
3469 EXPORT_SYMBOL(napi_frags_finish);
3470 
3471 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3472 {
3473 	struct sk_buff *skb = napi->skb;
3474 	struct ethhdr *eth;
3475 	unsigned int hlen;
3476 	unsigned int off;
3477 
3478 	napi->skb = NULL;
3479 
3480 	skb_reset_mac_header(skb);
3481 	skb_gro_reset_offset(skb);
3482 
3483 	off = skb_gro_offset(skb);
3484 	hlen = off + sizeof(*eth);
3485 	eth = skb_gro_header_fast(skb, off);
3486 	if (skb_gro_header_hard(skb, hlen)) {
3487 		eth = skb_gro_header_slow(skb, hlen, off);
3488 		if (unlikely(!eth)) {
3489 			napi_reuse_skb(napi, skb);
3490 			skb = NULL;
3491 			goto out;
3492 		}
3493 	}
3494 
3495 	skb_gro_pull(skb, sizeof(*eth));
3496 
3497 	/*
3498 	 * This works because the only protocols we care about don't require
3499 	 * special handling.  We'll fix it up properly at the end.
3500 	 */
3501 	skb->protocol = eth->h_proto;
3502 
3503 out:
3504 	return skb;
3505 }
3506 EXPORT_SYMBOL(napi_frags_skb);
3507 
3508 gro_result_t napi_gro_frags(struct napi_struct *napi)
3509 {
3510 	struct sk_buff *skb = napi_frags_skb(napi);
3511 
3512 	if (!skb)
3513 		return GRO_DROP;
3514 
3515 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3516 }
3517 EXPORT_SYMBOL(napi_gro_frags);
3518 
3519 /*
3520  * net_rps_action sends any pending IPI's for rps.
3521  * Note: called with local irq disabled, but exits with local irq enabled.
3522  */
3523 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3524 {
3525 #ifdef CONFIG_RPS
3526 	struct softnet_data *remsd = sd->rps_ipi_list;
3527 
3528 	if (remsd) {
3529 		sd->rps_ipi_list = NULL;
3530 
3531 		local_irq_enable();
3532 
3533 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3534 		while (remsd) {
3535 			struct softnet_data *next = remsd->rps_ipi_next;
3536 
3537 			if (cpu_online(remsd->cpu))
3538 				__smp_call_function_single(remsd->cpu,
3539 							   &remsd->csd, 0);
3540 			remsd = next;
3541 		}
3542 	} else
3543 #endif
3544 		local_irq_enable();
3545 }
3546 
3547 static int process_backlog(struct napi_struct *napi, int quota)
3548 {
3549 	int work = 0;
3550 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3551 
3552 #ifdef CONFIG_RPS
3553 	/* Check if we have pending ipi, its better to send them now,
3554 	 * not waiting net_rx_action() end.
3555 	 */
3556 	if (sd->rps_ipi_list) {
3557 		local_irq_disable();
3558 		net_rps_action_and_irq_enable(sd);
3559 	}
3560 #endif
3561 	napi->weight = weight_p;
3562 	local_irq_disable();
3563 	while (work < quota) {
3564 		struct sk_buff *skb;
3565 		unsigned int qlen;
3566 
3567 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3568 			local_irq_enable();
3569 			__netif_receive_skb(skb);
3570 			local_irq_disable();
3571 			input_queue_head_incr(sd);
3572 			if (++work >= quota) {
3573 				local_irq_enable();
3574 				return work;
3575 			}
3576 		}
3577 
3578 		rps_lock(sd);
3579 		qlen = skb_queue_len(&sd->input_pkt_queue);
3580 		if (qlen)
3581 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3582 						   &sd->process_queue);
3583 
3584 		if (qlen < quota - work) {
3585 			/*
3586 			 * Inline a custom version of __napi_complete().
3587 			 * only current cpu owns and manipulates this napi,
3588 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3589 			 * we can use a plain write instead of clear_bit(),
3590 			 * and we dont need an smp_mb() memory barrier.
3591 			 */
3592 			list_del(&napi->poll_list);
3593 			napi->state = 0;
3594 
3595 			quota = work + qlen;
3596 		}
3597 		rps_unlock(sd);
3598 	}
3599 	local_irq_enable();
3600 
3601 	return work;
3602 }
3603 
3604 /**
3605  * __napi_schedule - schedule for receive
3606  * @n: entry to schedule
3607  *
3608  * The entry's receive function will be scheduled to run
3609  */
3610 void __napi_schedule(struct napi_struct *n)
3611 {
3612 	unsigned long flags;
3613 
3614 	local_irq_save(flags);
3615 	____napi_schedule(&__get_cpu_var(softnet_data), n);
3616 	local_irq_restore(flags);
3617 }
3618 EXPORT_SYMBOL(__napi_schedule);
3619 
3620 void __napi_complete(struct napi_struct *n)
3621 {
3622 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3623 	BUG_ON(n->gro_list);
3624 
3625 	list_del(&n->poll_list);
3626 	smp_mb__before_clear_bit();
3627 	clear_bit(NAPI_STATE_SCHED, &n->state);
3628 }
3629 EXPORT_SYMBOL(__napi_complete);
3630 
3631 void napi_complete(struct napi_struct *n)
3632 {
3633 	unsigned long flags;
3634 
3635 	/*
3636 	 * don't let napi dequeue from the cpu poll list
3637 	 * just in case its running on a different cpu
3638 	 */
3639 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3640 		return;
3641 
3642 	napi_gro_flush(n);
3643 	local_irq_save(flags);
3644 	__napi_complete(n);
3645 	local_irq_restore(flags);
3646 }
3647 EXPORT_SYMBOL(napi_complete);
3648 
3649 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3650 		    int (*poll)(struct napi_struct *, int), int weight)
3651 {
3652 	INIT_LIST_HEAD(&napi->poll_list);
3653 	napi->gro_count = 0;
3654 	napi->gro_list = NULL;
3655 	napi->skb = NULL;
3656 	napi->poll = poll;
3657 	napi->weight = weight;
3658 	list_add(&napi->dev_list, &dev->napi_list);
3659 	napi->dev = dev;
3660 #ifdef CONFIG_NETPOLL
3661 	spin_lock_init(&napi->poll_lock);
3662 	napi->poll_owner = -1;
3663 #endif
3664 	set_bit(NAPI_STATE_SCHED, &napi->state);
3665 }
3666 EXPORT_SYMBOL(netif_napi_add);
3667 
3668 void netif_napi_del(struct napi_struct *napi)
3669 {
3670 	struct sk_buff *skb, *next;
3671 
3672 	list_del_init(&napi->dev_list);
3673 	napi_free_frags(napi);
3674 
3675 	for (skb = napi->gro_list; skb; skb = next) {
3676 		next = skb->next;
3677 		skb->next = NULL;
3678 		kfree_skb(skb);
3679 	}
3680 
3681 	napi->gro_list = NULL;
3682 	napi->gro_count = 0;
3683 }
3684 EXPORT_SYMBOL(netif_napi_del);
3685 
3686 static void net_rx_action(struct softirq_action *h)
3687 {
3688 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3689 	unsigned long time_limit = jiffies + 2;
3690 	int budget = netdev_budget;
3691 	void *have;
3692 
3693 	local_irq_disable();
3694 
3695 	while (!list_empty(&sd->poll_list)) {
3696 		struct napi_struct *n;
3697 		int work, weight;
3698 
3699 		/* If softirq window is exhuasted then punt.
3700 		 * Allow this to run for 2 jiffies since which will allow
3701 		 * an average latency of 1.5/HZ.
3702 		 */
3703 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3704 			goto softnet_break;
3705 
3706 		local_irq_enable();
3707 
3708 		/* Even though interrupts have been re-enabled, this
3709 		 * access is safe because interrupts can only add new
3710 		 * entries to the tail of this list, and only ->poll()
3711 		 * calls can remove this head entry from the list.
3712 		 */
3713 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3714 
3715 		have = netpoll_poll_lock(n);
3716 
3717 		weight = n->weight;
3718 
3719 		/* This NAPI_STATE_SCHED test is for avoiding a race
3720 		 * with netpoll's poll_napi().  Only the entity which
3721 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3722 		 * actually make the ->poll() call.  Therefore we avoid
3723 		 * accidently calling ->poll() when NAPI is not scheduled.
3724 		 */
3725 		work = 0;
3726 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3727 			work = n->poll(n, weight);
3728 			trace_napi_poll(n);
3729 		}
3730 
3731 		WARN_ON_ONCE(work > weight);
3732 
3733 		budget -= work;
3734 
3735 		local_irq_disable();
3736 
3737 		/* Drivers must not modify the NAPI state if they
3738 		 * consume the entire weight.  In such cases this code
3739 		 * still "owns" the NAPI instance and therefore can
3740 		 * move the instance around on the list at-will.
3741 		 */
3742 		if (unlikely(work == weight)) {
3743 			if (unlikely(napi_disable_pending(n))) {
3744 				local_irq_enable();
3745 				napi_complete(n);
3746 				local_irq_disable();
3747 			} else
3748 				list_move_tail(&n->poll_list, &sd->poll_list);
3749 		}
3750 
3751 		netpoll_poll_unlock(have);
3752 	}
3753 out:
3754 	net_rps_action_and_irq_enable(sd);
3755 
3756 #ifdef CONFIG_NET_DMA
3757 	/*
3758 	 * There may not be any more sk_buffs coming right now, so push
3759 	 * any pending DMA copies to hardware
3760 	 */
3761 	dma_issue_pending_all();
3762 #endif
3763 
3764 	return;
3765 
3766 softnet_break:
3767 	sd->time_squeeze++;
3768 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3769 	goto out;
3770 }
3771 
3772 static gifconf_func_t *gifconf_list[NPROTO];
3773 
3774 /**
3775  *	register_gifconf	-	register a SIOCGIF handler
3776  *	@family: Address family
3777  *	@gifconf: Function handler
3778  *
3779  *	Register protocol dependent address dumping routines. The handler
3780  *	that is passed must not be freed or reused until it has been replaced
3781  *	by another handler.
3782  */
3783 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3784 {
3785 	if (family >= NPROTO)
3786 		return -EINVAL;
3787 	gifconf_list[family] = gifconf;
3788 	return 0;
3789 }
3790 EXPORT_SYMBOL(register_gifconf);
3791 
3792 
3793 /*
3794  *	Map an interface index to its name (SIOCGIFNAME)
3795  */
3796 
3797 /*
3798  *	We need this ioctl for efficient implementation of the
3799  *	if_indextoname() function required by the IPv6 API.  Without
3800  *	it, we would have to search all the interfaces to find a
3801  *	match.  --pb
3802  */
3803 
3804 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3805 {
3806 	struct net_device *dev;
3807 	struct ifreq ifr;
3808 
3809 	/*
3810 	 *	Fetch the caller's info block.
3811 	 */
3812 
3813 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3814 		return -EFAULT;
3815 
3816 	rcu_read_lock();
3817 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3818 	if (!dev) {
3819 		rcu_read_unlock();
3820 		return -ENODEV;
3821 	}
3822 
3823 	strcpy(ifr.ifr_name, dev->name);
3824 	rcu_read_unlock();
3825 
3826 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3827 		return -EFAULT;
3828 	return 0;
3829 }
3830 
3831 /*
3832  *	Perform a SIOCGIFCONF call. This structure will change
3833  *	size eventually, and there is nothing I can do about it.
3834  *	Thus we will need a 'compatibility mode'.
3835  */
3836 
3837 static int dev_ifconf(struct net *net, char __user *arg)
3838 {
3839 	struct ifconf ifc;
3840 	struct net_device *dev;
3841 	char __user *pos;
3842 	int len;
3843 	int total;
3844 	int i;
3845 
3846 	/*
3847 	 *	Fetch the caller's info block.
3848 	 */
3849 
3850 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3851 		return -EFAULT;
3852 
3853 	pos = ifc.ifc_buf;
3854 	len = ifc.ifc_len;
3855 
3856 	/*
3857 	 *	Loop over the interfaces, and write an info block for each.
3858 	 */
3859 
3860 	total = 0;
3861 	for_each_netdev(net, dev) {
3862 		for (i = 0; i < NPROTO; i++) {
3863 			if (gifconf_list[i]) {
3864 				int done;
3865 				if (!pos)
3866 					done = gifconf_list[i](dev, NULL, 0);
3867 				else
3868 					done = gifconf_list[i](dev, pos + total,
3869 							       len - total);
3870 				if (done < 0)
3871 					return -EFAULT;
3872 				total += done;
3873 			}
3874 		}
3875 	}
3876 
3877 	/*
3878 	 *	All done.  Write the updated control block back to the caller.
3879 	 */
3880 	ifc.ifc_len = total;
3881 
3882 	/*
3883 	 * 	Both BSD and Solaris return 0 here, so we do too.
3884 	 */
3885 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3886 }
3887 
3888 #ifdef CONFIG_PROC_FS
3889 /*
3890  *	This is invoked by the /proc filesystem handler to display a device
3891  *	in detail.
3892  */
3893 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3894 	__acquires(RCU)
3895 {
3896 	struct net *net = seq_file_net(seq);
3897 	loff_t off;
3898 	struct net_device *dev;
3899 
3900 	rcu_read_lock();
3901 	if (!*pos)
3902 		return SEQ_START_TOKEN;
3903 
3904 	off = 1;
3905 	for_each_netdev_rcu(net, dev)
3906 		if (off++ == *pos)
3907 			return dev;
3908 
3909 	return NULL;
3910 }
3911 
3912 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3913 {
3914 	struct net_device *dev = (v == SEQ_START_TOKEN) ?
3915 				  first_net_device(seq_file_net(seq)) :
3916 				  next_net_device((struct net_device *)v);
3917 
3918 	++*pos;
3919 	return rcu_dereference(dev);
3920 }
3921 
3922 void dev_seq_stop(struct seq_file *seq, void *v)
3923 	__releases(RCU)
3924 {
3925 	rcu_read_unlock();
3926 }
3927 
3928 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3929 {
3930 	struct rtnl_link_stats64 temp;
3931 	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3932 
3933 	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3934 		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3935 		   dev->name, stats->rx_bytes, stats->rx_packets,
3936 		   stats->rx_errors,
3937 		   stats->rx_dropped + stats->rx_missed_errors,
3938 		   stats->rx_fifo_errors,
3939 		   stats->rx_length_errors + stats->rx_over_errors +
3940 		    stats->rx_crc_errors + stats->rx_frame_errors,
3941 		   stats->rx_compressed, stats->multicast,
3942 		   stats->tx_bytes, stats->tx_packets,
3943 		   stats->tx_errors, stats->tx_dropped,
3944 		   stats->tx_fifo_errors, stats->collisions,
3945 		   stats->tx_carrier_errors +
3946 		    stats->tx_aborted_errors +
3947 		    stats->tx_window_errors +
3948 		    stats->tx_heartbeat_errors,
3949 		   stats->tx_compressed);
3950 }
3951 
3952 /*
3953  *	Called from the PROCfs module. This now uses the new arbitrary sized
3954  *	/proc/net interface to create /proc/net/dev
3955  */
3956 static int dev_seq_show(struct seq_file *seq, void *v)
3957 {
3958 	if (v == SEQ_START_TOKEN)
3959 		seq_puts(seq, "Inter-|   Receive                            "
3960 			      "                    |  Transmit\n"
3961 			      " face |bytes    packets errs drop fifo frame "
3962 			      "compressed multicast|bytes    packets errs "
3963 			      "drop fifo colls carrier compressed\n");
3964 	else
3965 		dev_seq_printf_stats(seq, v);
3966 	return 0;
3967 }
3968 
3969 static struct softnet_data *softnet_get_online(loff_t *pos)
3970 {
3971 	struct softnet_data *sd = NULL;
3972 
3973 	while (*pos < nr_cpu_ids)
3974 		if (cpu_online(*pos)) {
3975 			sd = &per_cpu(softnet_data, *pos);
3976 			break;
3977 		} else
3978 			++*pos;
3979 	return sd;
3980 }
3981 
3982 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3983 {
3984 	return softnet_get_online(pos);
3985 }
3986 
3987 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3988 {
3989 	++*pos;
3990 	return softnet_get_online(pos);
3991 }
3992 
3993 static void softnet_seq_stop(struct seq_file *seq, void *v)
3994 {
3995 }
3996 
3997 static int softnet_seq_show(struct seq_file *seq, void *v)
3998 {
3999 	struct softnet_data *sd = v;
4000 
4001 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4002 		   sd->processed, sd->dropped, sd->time_squeeze, 0,
4003 		   0, 0, 0, 0, /* was fastroute */
4004 		   sd->cpu_collision, sd->received_rps);
4005 	return 0;
4006 }
4007 
4008 static const struct seq_operations dev_seq_ops = {
4009 	.start = dev_seq_start,
4010 	.next  = dev_seq_next,
4011 	.stop  = dev_seq_stop,
4012 	.show  = dev_seq_show,
4013 };
4014 
4015 static int dev_seq_open(struct inode *inode, struct file *file)
4016 {
4017 	return seq_open_net(inode, file, &dev_seq_ops,
4018 			    sizeof(struct seq_net_private));
4019 }
4020 
4021 static const struct file_operations dev_seq_fops = {
4022 	.owner	 = THIS_MODULE,
4023 	.open    = dev_seq_open,
4024 	.read    = seq_read,
4025 	.llseek  = seq_lseek,
4026 	.release = seq_release_net,
4027 };
4028 
4029 static const struct seq_operations softnet_seq_ops = {
4030 	.start = softnet_seq_start,
4031 	.next  = softnet_seq_next,
4032 	.stop  = softnet_seq_stop,
4033 	.show  = softnet_seq_show,
4034 };
4035 
4036 static int softnet_seq_open(struct inode *inode, struct file *file)
4037 {
4038 	return seq_open(file, &softnet_seq_ops);
4039 }
4040 
4041 static const struct file_operations softnet_seq_fops = {
4042 	.owner	 = THIS_MODULE,
4043 	.open    = softnet_seq_open,
4044 	.read    = seq_read,
4045 	.llseek  = seq_lseek,
4046 	.release = seq_release,
4047 };
4048 
4049 static void *ptype_get_idx(loff_t pos)
4050 {
4051 	struct packet_type *pt = NULL;
4052 	loff_t i = 0;
4053 	int t;
4054 
4055 	list_for_each_entry_rcu(pt, &ptype_all, list) {
4056 		if (i == pos)
4057 			return pt;
4058 		++i;
4059 	}
4060 
4061 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4062 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4063 			if (i == pos)
4064 				return pt;
4065 			++i;
4066 		}
4067 	}
4068 	return NULL;
4069 }
4070 
4071 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4072 	__acquires(RCU)
4073 {
4074 	rcu_read_lock();
4075 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4076 }
4077 
4078 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4079 {
4080 	struct packet_type *pt;
4081 	struct list_head *nxt;
4082 	int hash;
4083 
4084 	++*pos;
4085 	if (v == SEQ_START_TOKEN)
4086 		return ptype_get_idx(0);
4087 
4088 	pt = v;
4089 	nxt = pt->list.next;
4090 	if (pt->type == htons(ETH_P_ALL)) {
4091 		if (nxt != &ptype_all)
4092 			goto found;
4093 		hash = 0;
4094 		nxt = ptype_base[0].next;
4095 	} else
4096 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4097 
4098 	while (nxt == &ptype_base[hash]) {
4099 		if (++hash >= PTYPE_HASH_SIZE)
4100 			return NULL;
4101 		nxt = ptype_base[hash].next;
4102 	}
4103 found:
4104 	return list_entry(nxt, struct packet_type, list);
4105 }
4106 
4107 static void ptype_seq_stop(struct seq_file *seq, void *v)
4108 	__releases(RCU)
4109 {
4110 	rcu_read_unlock();
4111 }
4112 
4113 static int ptype_seq_show(struct seq_file *seq, void *v)
4114 {
4115 	struct packet_type *pt = v;
4116 
4117 	if (v == SEQ_START_TOKEN)
4118 		seq_puts(seq, "Type Device      Function\n");
4119 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4120 		if (pt->type == htons(ETH_P_ALL))
4121 			seq_puts(seq, "ALL ");
4122 		else
4123 			seq_printf(seq, "%04x", ntohs(pt->type));
4124 
4125 		seq_printf(seq, " %-8s %pF\n",
4126 			   pt->dev ? pt->dev->name : "", pt->func);
4127 	}
4128 
4129 	return 0;
4130 }
4131 
4132 static const struct seq_operations ptype_seq_ops = {
4133 	.start = ptype_seq_start,
4134 	.next  = ptype_seq_next,
4135 	.stop  = ptype_seq_stop,
4136 	.show  = ptype_seq_show,
4137 };
4138 
4139 static int ptype_seq_open(struct inode *inode, struct file *file)
4140 {
4141 	return seq_open_net(inode, file, &ptype_seq_ops,
4142 			sizeof(struct seq_net_private));
4143 }
4144 
4145 static const struct file_operations ptype_seq_fops = {
4146 	.owner	 = THIS_MODULE,
4147 	.open    = ptype_seq_open,
4148 	.read    = seq_read,
4149 	.llseek  = seq_lseek,
4150 	.release = seq_release_net,
4151 };
4152 
4153 
4154 static int __net_init dev_proc_net_init(struct net *net)
4155 {
4156 	int rc = -ENOMEM;
4157 
4158 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4159 		goto out;
4160 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4161 		goto out_dev;
4162 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4163 		goto out_softnet;
4164 
4165 	if (wext_proc_init(net))
4166 		goto out_ptype;
4167 	rc = 0;
4168 out:
4169 	return rc;
4170 out_ptype:
4171 	proc_net_remove(net, "ptype");
4172 out_softnet:
4173 	proc_net_remove(net, "softnet_stat");
4174 out_dev:
4175 	proc_net_remove(net, "dev");
4176 	goto out;
4177 }
4178 
4179 static void __net_exit dev_proc_net_exit(struct net *net)
4180 {
4181 	wext_proc_exit(net);
4182 
4183 	proc_net_remove(net, "ptype");
4184 	proc_net_remove(net, "softnet_stat");
4185 	proc_net_remove(net, "dev");
4186 }
4187 
4188 static struct pernet_operations __net_initdata dev_proc_ops = {
4189 	.init = dev_proc_net_init,
4190 	.exit = dev_proc_net_exit,
4191 };
4192 
4193 static int __init dev_proc_init(void)
4194 {
4195 	return register_pernet_subsys(&dev_proc_ops);
4196 }
4197 #else
4198 #define dev_proc_init() 0
4199 #endif	/* CONFIG_PROC_FS */
4200 
4201 
4202 /**
4203  *	netdev_set_master	-	set up master/slave pair
4204  *	@slave: slave device
4205  *	@master: new master device
4206  *
4207  *	Changes the master device of the slave. Pass %NULL to break the
4208  *	bonding. The caller must hold the RTNL semaphore. On a failure
4209  *	a negative errno code is returned. On success the reference counts
4210  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4211  *	function returns zero.
4212  */
4213 int netdev_set_master(struct net_device *slave, struct net_device *master)
4214 {
4215 	struct net_device *old = slave->master;
4216 
4217 	ASSERT_RTNL();
4218 
4219 	if (master) {
4220 		if (old)
4221 			return -EBUSY;
4222 		dev_hold(master);
4223 	}
4224 
4225 	slave->master = master;
4226 
4227 	if (old) {
4228 		synchronize_net();
4229 		dev_put(old);
4230 	}
4231 	if (master)
4232 		slave->flags |= IFF_SLAVE;
4233 	else
4234 		slave->flags &= ~IFF_SLAVE;
4235 
4236 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4237 	return 0;
4238 }
4239 EXPORT_SYMBOL(netdev_set_master);
4240 
4241 static void dev_change_rx_flags(struct net_device *dev, int flags)
4242 {
4243 	const struct net_device_ops *ops = dev->netdev_ops;
4244 
4245 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4246 		ops->ndo_change_rx_flags(dev, flags);
4247 }
4248 
4249 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4250 {
4251 	unsigned short old_flags = dev->flags;
4252 	uid_t uid;
4253 	gid_t gid;
4254 
4255 	ASSERT_RTNL();
4256 
4257 	dev->flags |= IFF_PROMISC;
4258 	dev->promiscuity += inc;
4259 	if (dev->promiscuity == 0) {
4260 		/*
4261 		 * Avoid overflow.
4262 		 * If inc causes overflow, untouch promisc and return error.
4263 		 */
4264 		if (inc < 0)
4265 			dev->flags &= ~IFF_PROMISC;
4266 		else {
4267 			dev->promiscuity -= inc;
4268 			printk(KERN_WARNING "%s: promiscuity touches roof, "
4269 				"set promiscuity failed, promiscuity feature "
4270 				"of device might be broken.\n", dev->name);
4271 			return -EOVERFLOW;
4272 		}
4273 	}
4274 	if (dev->flags != old_flags) {
4275 		printk(KERN_INFO "device %s %s promiscuous mode\n",
4276 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4277 							       "left");
4278 		if (audit_enabled) {
4279 			current_uid_gid(&uid, &gid);
4280 			audit_log(current->audit_context, GFP_ATOMIC,
4281 				AUDIT_ANOM_PROMISCUOUS,
4282 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4283 				dev->name, (dev->flags & IFF_PROMISC),
4284 				(old_flags & IFF_PROMISC),
4285 				audit_get_loginuid(current),
4286 				uid, gid,
4287 				audit_get_sessionid(current));
4288 		}
4289 
4290 		dev_change_rx_flags(dev, IFF_PROMISC);
4291 	}
4292 	return 0;
4293 }
4294 
4295 /**
4296  *	dev_set_promiscuity	- update promiscuity count on a device
4297  *	@dev: device
4298  *	@inc: modifier
4299  *
4300  *	Add or remove promiscuity from a device. While the count in the device
4301  *	remains above zero the interface remains promiscuous. Once it hits zero
4302  *	the device reverts back to normal filtering operation. A negative inc
4303  *	value is used to drop promiscuity on the device.
4304  *	Return 0 if successful or a negative errno code on error.
4305  */
4306 int dev_set_promiscuity(struct net_device *dev, int inc)
4307 {
4308 	unsigned short old_flags = dev->flags;
4309 	int err;
4310 
4311 	err = __dev_set_promiscuity(dev, inc);
4312 	if (err < 0)
4313 		return err;
4314 	if (dev->flags != old_flags)
4315 		dev_set_rx_mode(dev);
4316 	return err;
4317 }
4318 EXPORT_SYMBOL(dev_set_promiscuity);
4319 
4320 /**
4321  *	dev_set_allmulti	- update allmulti count on a device
4322  *	@dev: device
4323  *	@inc: modifier
4324  *
4325  *	Add or remove reception of all multicast frames to a device. While the
4326  *	count in the device remains above zero the interface remains listening
4327  *	to all interfaces. Once it hits zero the device reverts back to normal
4328  *	filtering operation. A negative @inc value is used to drop the counter
4329  *	when releasing a resource needing all multicasts.
4330  *	Return 0 if successful or a negative errno code on error.
4331  */
4332 
4333 int dev_set_allmulti(struct net_device *dev, int inc)
4334 {
4335 	unsigned short old_flags = dev->flags;
4336 
4337 	ASSERT_RTNL();
4338 
4339 	dev->flags |= IFF_ALLMULTI;
4340 	dev->allmulti += inc;
4341 	if (dev->allmulti == 0) {
4342 		/*
4343 		 * Avoid overflow.
4344 		 * If inc causes overflow, untouch allmulti and return error.
4345 		 */
4346 		if (inc < 0)
4347 			dev->flags &= ~IFF_ALLMULTI;
4348 		else {
4349 			dev->allmulti -= inc;
4350 			printk(KERN_WARNING "%s: allmulti touches roof, "
4351 				"set allmulti failed, allmulti feature of "
4352 				"device might be broken.\n", dev->name);
4353 			return -EOVERFLOW;
4354 		}
4355 	}
4356 	if (dev->flags ^ old_flags) {
4357 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4358 		dev_set_rx_mode(dev);
4359 	}
4360 	return 0;
4361 }
4362 EXPORT_SYMBOL(dev_set_allmulti);
4363 
4364 /*
4365  *	Upload unicast and multicast address lists to device and
4366  *	configure RX filtering. When the device doesn't support unicast
4367  *	filtering it is put in promiscuous mode while unicast addresses
4368  *	are present.
4369  */
4370 void __dev_set_rx_mode(struct net_device *dev)
4371 {
4372 	const struct net_device_ops *ops = dev->netdev_ops;
4373 
4374 	/* dev_open will call this function so the list will stay sane. */
4375 	if (!(dev->flags&IFF_UP))
4376 		return;
4377 
4378 	if (!netif_device_present(dev))
4379 		return;
4380 
4381 	if (ops->ndo_set_rx_mode)
4382 		ops->ndo_set_rx_mode(dev);
4383 	else {
4384 		/* Unicast addresses changes may only happen under the rtnl,
4385 		 * therefore calling __dev_set_promiscuity here is safe.
4386 		 */
4387 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4388 			__dev_set_promiscuity(dev, 1);
4389 			dev->uc_promisc = 1;
4390 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4391 			__dev_set_promiscuity(dev, -1);
4392 			dev->uc_promisc = 0;
4393 		}
4394 
4395 		if (ops->ndo_set_multicast_list)
4396 			ops->ndo_set_multicast_list(dev);
4397 	}
4398 }
4399 
4400 void dev_set_rx_mode(struct net_device *dev)
4401 {
4402 	netif_addr_lock_bh(dev);
4403 	__dev_set_rx_mode(dev);
4404 	netif_addr_unlock_bh(dev);
4405 }
4406 
4407 /**
4408  *	dev_get_flags - get flags reported to userspace
4409  *	@dev: device
4410  *
4411  *	Get the combination of flag bits exported through APIs to userspace.
4412  */
4413 unsigned dev_get_flags(const struct net_device *dev)
4414 {
4415 	unsigned flags;
4416 
4417 	flags = (dev->flags & ~(IFF_PROMISC |
4418 				IFF_ALLMULTI |
4419 				IFF_RUNNING |
4420 				IFF_LOWER_UP |
4421 				IFF_DORMANT)) |
4422 		(dev->gflags & (IFF_PROMISC |
4423 				IFF_ALLMULTI));
4424 
4425 	if (netif_running(dev)) {
4426 		if (netif_oper_up(dev))
4427 			flags |= IFF_RUNNING;
4428 		if (netif_carrier_ok(dev))
4429 			flags |= IFF_LOWER_UP;
4430 		if (netif_dormant(dev))
4431 			flags |= IFF_DORMANT;
4432 	}
4433 
4434 	return flags;
4435 }
4436 EXPORT_SYMBOL(dev_get_flags);
4437 
4438 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4439 {
4440 	int old_flags = dev->flags;
4441 	int ret;
4442 
4443 	ASSERT_RTNL();
4444 
4445 	/*
4446 	 *	Set the flags on our device.
4447 	 */
4448 
4449 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4450 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4451 			       IFF_AUTOMEDIA)) |
4452 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4453 				    IFF_ALLMULTI));
4454 
4455 	/*
4456 	 *	Load in the correct multicast list now the flags have changed.
4457 	 */
4458 
4459 	if ((old_flags ^ flags) & IFF_MULTICAST)
4460 		dev_change_rx_flags(dev, IFF_MULTICAST);
4461 
4462 	dev_set_rx_mode(dev);
4463 
4464 	/*
4465 	 *	Have we downed the interface. We handle IFF_UP ourselves
4466 	 *	according to user attempts to set it, rather than blindly
4467 	 *	setting it.
4468 	 */
4469 
4470 	ret = 0;
4471 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4472 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4473 
4474 		if (!ret)
4475 			dev_set_rx_mode(dev);
4476 	}
4477 
4478 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4479 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4480 
4481 		dev->gflags ^= IFF_PROMISC;
4482 		dev_set_promiscuity(dev, inc);
4483 	}
4484 
4485 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4486 	   is important. Some (broken) drivers set IFF_PROMISC, when
4487 	   IFF_ALLMULTI is requested not asking us and not reporting.
4488 	 */
4489 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4490 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4491 
4492 		dev->gflags ^= IFF_ALLMULTI;
4493 		dev_set_allmulti(dev, inc);
4494 	}
4495 
4496 	return ret;
4497 }
4498 
4499 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4500 {
4501 	unsigned int changes = dev->flags ^ old_flags;
4502 
4503 	if (changes & IFF_UP) {
4504 		if (dev->flags & IFF_UP)
4505 			call_netdevice_notifiers(NETDEV_UP, dev);
4506 		else
4507 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4508 	}
4509 
4510 	if (dev->flags & IFF_UP &&
4511 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4512 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4513 }
4514 
4515 /**
4516  *	dev_change_flags - change device settings
4517  *	@dev: device
4518  *	@flags: device state flags
4519  *
4520  *	Change settings on device based state flags. The flags are
4521  *	in the userspace exported format.
4522  */
4523 int dev_change_flags(struct net_device *dev, unsigned flags)
4524 {
4525 	int ret, changes;
4526 	int old_flags = dev->flags;
4527 
4528 	ret = __dev_change_flags(dev, flags);
4529 	if (ret < 0)
4530 		return ret;
4531 
4532 	changes = old_flags ^ dev->flags;
4533 	if (changes)
4534 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4535 
4536 	__dev_notify_flags(dev, old_flags);
4537 	return ret;
4538 }
4539 EXPORT_SYMBOL(dev_change_flags);
4540 
4541 /**
4542  *	dev_set_mtu - Change maximum transfer unit
4543  *	@dev: device
4544  *	@new_mtu: new transfer unit
4545  *
4546  *	Change the maximum transfer size of the network device.
4547  */
4548 int dev_set_mtu(struct net_device *dev, int new_mtu)
4549 {
4550 	const struct net_device_ops *ops = dev->netdev_ops;
4551 	int err;
4552 
4553 	if (new_mtu == dev->mtu)
4554 		return 0;
4555 
4556 	/*	MTU must be positive.	 */
4557 	if (new_mtu < 0)
4558 		return -EINVAL;
4559 
4560 	if (!netif_device_present(dev))
4561 		return -ENODEV;
4562 
4563 	err = 0;
4564 	if (ops->ndo_change_mtu)
4565 		err = ops->ndo_change_mtu(dev, new_mtu);
4566 	else
4567 		dev->mtu = new_mtu;
4568 
4569 	if (!err && dev->flags & IFF_UP)
4570 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4571 	return err;
4572 }
4573 EXPORT_SYMBOL(dev_set_mtu);
4574 
4575 /**
4576  *	dev_set_mac_address - Change Media Access Control Address
4577  *	@dev: device
4578  *	@sa: new address
4579  *
4580  *	Change the hardware (MAC) address of the device
4581  */
4582 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4583 {
4584 	const struct net_device_ops *ops = dev->netdev_ops;
4585 	int err;
4586 
4587 	if (!ops->ndo_set_mac_address)
4588 		return -EOPNOTSUPP;
4589 	if (sa->sa_family != dev->type)
4590 		return -EINVAL;
4591 	if (!netif_device_present(dev))
4592 		return -ENODEV;
4593 	err = ops->ndo_set_mac_address(dev, sa);
4594 	if (!err)
4595 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4596 	return err;
4597 }
4598 EXPORT_SYMBOL(dev_set_mac_address);
4599 
4600 /*
4601  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4602  */
4603 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4604 {
4605 	int err;
4606 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4607 
4608 	if (!dev)
4609 		return -ENODEV;
4610 
4611 	switch (cmd) {
4612 	case SIOCGIFFLAGS:	/* Get interface flags */
4613 		ifr->ifr_flags = (short) dev_get_flags(dev);
4614 		return 0;
4615 
4616 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4617 				   (currently unused) */
4618 		ifr->ifr_metric = 0;
4619 		return 0;
4620 
4621 	case SIOCGIFMTU:	/* Get the MTU of a device */
4622 		ifr->ifr_mtu = dev->mtu;
4623 		return 0;
4624 
4625 	case SIOCGIFHWADDR:
4626 		if (!dev->addr_len)
4627 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4628 		else
4629 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4630 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4631 		ifr->ifr_hwaddr.sa_family = dev->type;
4632 		return 0;
4633 
4634 	case SIOCGIFSLAVE:
4635 		err = -EINVAL;
4636 		break;
4637 
4638 	case SIOCGIFMAP:
4639 		ifr->ifr_map.mem_start = dev->mem_start;
4640 		ifr->ifr_map.mem_end   = dev->mem_end;
4641 		ifr->ifr_map.base_addr = dev->base_addr;
4642 		ifr->ifr_map.irq       = dev->irq;
4643 		ifr->ifr_map.dma       = dev->dma;
4644 		ifr->ifr_map.port      = dev->if_port;
4645 		return 0;
4646 
4647 	case SIOCGIFINDEX:
4648 		ifr->ifr_ifindex = dev->ifindex;
4649 		return 0;
4650 
4651 	case SIOCGIFTXQLEN:
4652 		ifr->ifr_qlen = dev->tx_queue_len;
4653 		return 0;
4654 
4655 	default:
4656 		/* dev_ioctl() should ensure this case
4657 		 * is never reached
4658 		 */
4659 		WARN_ON(1);
4660 		err = -EINVAL;
4661 		break;
4662 
4663 	}
4664 	return err;
4665 }
4666 
4667 /*
4668  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4669  */
4670 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4671 {
4672 	int err;
4673 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4674 	const struct net_device_ops *ops;
4675 
4676 	if (!dev)
4677 		return -ENODEV;
4678 
4679 	ops = dev->netdev_ops;
4680 
4681 	switch (cmd) {
4682 	case SIOCSIFFLAGS:	/* Set interface flags */
4683 		return dev_change_flags(dev, ifr->ifr_flags);
4684 
4685 	case SIOCSIFMETRIC:	/* Set the metric on the interface
4686 				   (currently unused) */
4687 		return -EOPNOTSUPP;
4688 
4689 	case SIOCSIFMTU:	/* Set the MTU of a device */
4690 		return dev_set_mtu(dev, ifr->ifr_mtu);
4691 
4692 	case SIOCSIFHWADDR:
4693 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4694 
4695 	case SIOCSIFHWBROADCAST:
4696 		if (ifr->ifr_hwaddr.sa_family != dev->type)
4697 			return -EINVAL;
4698 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4699 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4700 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4701 		return 0;
4702 
4703 	case SIOCSIFMAP:
4704 		if (ops->ndo_set_config) {
4705 			if (!netif_device_present(dev))
4706 				return -ENODEV;
4707 			return ops->ndo_set_config(dev, &ifr->ifr_map);
4708 		}
4709 		return -EOPNOTSUPP;
4710 
4711 	case SIOCADDMULTI:
4712 		if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4713 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4714 			return -EINVAL;
4715 		if (!netif_device_present(dev))
4716 			return -ENODEV;
4717 		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4718 
4719 	case SIOCDELMULTI:
4720 		if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4721 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4722 			return -EINVAL;
4723 		if (!netif_device_present(dev))
4724 			return -ENODEV;
4725 		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4726 
4727 	case SIOCSIFTXQLEN:
4728 		if (ifr->ifr_qlen < 0)
4729 			return -EINVAL;
4730 		dev->tx_queue_len = ifr->ifr_qlen;
4731 		return 0;
4732 
4733 	case SIOCSIFNAME:
4734 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4735 		return dev_change_name(dev, ifr->ifr_newname);
4736 
4737 	/*
4738 	 *	Unknown or private ioctl
4739 	 */
4740 	default:
4741 		if ((cmd >= SIOCDEVPRIVATE &&
4742 		    cmd <= SIOCDEVPRIVATE + 15) ||
4743 		    cmd == SIOCBONDENSLAVE ||
4744 		    cmd == SIOCBONDRELEASE ||
4745 		    cmd == SIOCBONDSETHWADDR ||
4746 		    cmd == SIOCBONDSLAVEINFOQUERY ||
4747 		    cmd == SIOCBONDINFOQUERY ||
4748 		    cmd == SIOCBONDCHANGEACTIVE ||
4749 		    cmd == SIOCGMIIPHY ||
4750 		    cmd == SIOCGMIIREG ||
4751 		    cmd == SIOCSMIIREG ||
4752 		    cmd == SIOCBRADDIF ||
4753 		    cmd == SIOCBRDELIF ||
4754 		    cmd == SIOCSHWTSTAMP ||
4755 		    cmd == SIOCWANDEV) {
4756 			err = -EOPNOTSUPP;
4757 			if (ops->ndo_do_ioctl) {
4758 				if (netif_device_present(dev))
4759 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
4760 				else
4761 					err = -ENODEV;
4762 			}
4763 		} else
4764 			err = -EINVAL;
4765 
4766 	}
4767 	return err;
4768 }
4769 
4770 /*
4771  *	This function handles all "interface"-type I/O control requests. The actual
4772  *	'doing' part of this is dev_ifsioc above.
4773  */
4774 
4775 /**
4776  *	dev_ioctl	-	network device ioctl
4777  *	@net: the applicable net namespace
4778  *	@cmd: command to issue
4779  *	@arg: pointer to a struct ifreq in user space
4780  *
4781  *	Issue ioctl functions to devices. This is normally called by the
4782  *	user space syscall interfaces but can sometimes be useful for
4783  *	other purposes. The return value is the return from the syscall if
4784  *	positive or a negative errno code on error.
4785  */
4786 
4787 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4788 {
4789 	struct ifreq ifr;
4790 	int ret;
4791 	char *colon;
4792 
4793 	/* One special case: SIOCGIFCONF takes ifconf argument
4794 	   and requires shared lock, because it sleeps writing
4795 	   to user space.
4796 	 */
4797 
4798 	if (cmd == SIOCGIFCONF) {
4799 		rtnl_lock();
4800 		ret = dev_ifconf(net, (char __user *) arg);
4801 		rtnl_unlock();
4802 		return ret;
4803 	}
4804 	if (cmd == SIOCGIFNAME)
4805 		return dev_ifname(net, (struct ifreq __user *)arg);
4806 
4807 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4808 		return -EFAULT;
4809 
4810 	ifr.ifr_name[IFNAMSIZ-1] = 0;
4811 
4812 	colon = strchr(ifr.ifr_name, ':');
4813 	if (colon)
4814 		*colon = 0;
4815 
4816 	/*
4817 	 *	See which interface the caller is talking about.
4818 	 */
4819 
4820 	switch (cmd) {
4821 	/*
4822 	 *	These ioctl calls:
4823 	 *	- can be done by all.
4824 	 *	- atomic and do not require locking.
4825 	 *	- return a value
4826 	 */
4827 	case SIOCGIFFLAGS:
4828 	case SIOCGIFMETRIC:
4829 	case SIOCGIFMTU:
4830 	case SIOCGIFHWADDR:
4831 	case SIOCGIFSLAVE:
4832 	case SIOCGIFMAP:
4833 	case SIOCGIFINDEX:
4834 	case SIOCGIFTXQLEN:
4835 		dev_load(net, ifr.ifr_name);
4836 		rcu_read_lock();
4837 		ret = dev_ifsioc_locked(net, &ifr, cmd);
4838 		rcu_read_unlock();
4839 		if (!ret) {
4840 			if (colon)
4841 				*colon = ':';
4842 			if (copy_to_user(arg, &ifr,
4843 					 sizeof(struct ifreq)))
4844 				ret = -EFAULT;
4845 		}
4846 		return ret;
4847 
4848 	case SIOCETHTOOL:
4849 		dev_load(net, ifr.ifr_name);
4850 		rtnl_lock();
4851 		ret = dev_ethtool(net, &ifr);
4852 		rtnl_unlock();
4853 		if (!ret) {
4854 			if (colon)
4855 				*colon = ':';
4856 			if (copy_to_user(arg, &ifr,
4857 					 sizeof(struct ifreq)))
4858 				ret = -EFAULT;
4859 		}
4860 		return ret;
4861 
4862 	/*
4863 	 *	These ioctl calls:
4864 	 *	- require superuser power.
4865 	 *	- require strict serialization.
4866 	 *	- return a value
4867 	 */
4868 	case SIOCGMIIPHY:
4869 	case SIOCGMIIREG:
4870 	case SIOCSIFNAME:
4871 		if (!capable(CAP_NET_ADMIN))
4872 			return -EPERM;
4873 		dev_load(net, ifr.ifr_name);
4874 		rtnl_lock();
4875 		ret = dev_ifsioc(net, &ifr, cmd);
4876 		rtnl_unlock();
4877 		if (!ret) {
4878 			if (colon)
4879 				*colon = ':';
4880 			if (copy_to_user(arg, &ifr,
4881 					 sizeof(struct ifreq)))
4882 				ret = -EFAULT;
4883 		}
4884 		return ret;
4885 
4886 	/*
4887 	 *	These ioctl calls:
4888 	 *	- require superuser power.
4889 	 *	- require strict serialization.
4890 	 *	- do not return a value
4891 	 */
4892 	case SIOCSIFFLAGS:
4893 	case SIOCSIFMETRIC:
4894 	case SIOCSIFMTU:
4895 	case SIOCSIFMAP:
4896 	case SIOCSIFHWADDR:
4897 	case SIOCSIFSLAVE:
4898 	case SIOCADDMULTI:
4899 	case SIOCDELMULTI:
4900 	case SIOCSIFHWBROADCAST:
4901 	case SIOCSIFTXQLEN:
4902 	case SIOCSMIIREG:
4903 	case SIOCBONDENSLAVE:
4904 	case SIOCBONDRELEASE:
4905 	case SIOCBONDSETHWADDR:
4906 	case SIOCBONDCHANGEACTIVE:
4907 	case SIOCBRADDIF:
4908 	case SIOCBRDELIF:
4909 	case SIOCSHWTSTAMP:
4910 		if (!capable(CAP_NET_ADMIN))
4911 			return -EPERM;
4912 		/* fall through */
4913 	case SIOCBONDSLAVEINFOQUERY:
4914 	case SIOCBONDINFOQUERY:
4915 		dev_load(net, ifr.ifr_name);
4916 		rtnl_lock();
4917 		ret = dev_ifsioc(net, &ifr, cmd);
4918 		rtnl_unlock();
4919 		return ret;
4920 
4921 	case SIOCGIFMEM:
4922 		/* Get the per device memory space. We can add this but
4923 		 * currently do not support it */
4924 	case SIOCSIFMEM:
4925 		/* Set the per device memory buffer space.
4926 		 * Not applicable in our case */
4927 	case SIOCSIFLINK:
4928 		return -EINVAL;
4929 
4930 	/*
4931 	 *	Unknown or private ioctl.
4932 	 */
4933 	default:
4934 		if (cmd == SIOCWANDEV ||
4935 		    (cmd >= SIOCDEVPRIVATE &&
4936 		     cmd <= SIOCDEVPRIVATE + 15)) {
4937 			dev_load(net, ifr.ifr_name);
4938 			rtnl_lock();
4939 			ret = dev_ifsioc(net, &ifr, cmd);
4940 			rtnl_unlock();
4941 			if (!ret && copy_to_user(arg, &ifr,
4942 						 sizeof(struct ifreq)))
4943 				ret = -EFAULT;
4944 			return ret;
4945 		}
4946 		/* Take care of Wireless Extensions */
4947 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4948 			return wext_handle_ioctl(net, &ifr, cmd, arg);
4949 		return -EINVAL;
4950 	}
4951 }
4952 
4953 
4954 /**
4955  *	dev_new_index	-	allocate an ifindex
4956  *	@net: the applicable net namespace
4957  *
4958  *	Returns a suitable unique value for a new device interface
4959  *	number.  The caller must hold the rtnl semaphore or the
4960  *	dev_base_lock to be sure it remains unique.
4961  */
4962 static int dev_new_index(struct net *net)
4963 {
4964 	static int ifindex;
4965 	for (;;) {
4966 		if (++ifindex <= 0)
4967 			ifindex = 1;
4968 		if (!__dev_get_by_index(net, ifindex))
4969 			return ifindex;
4970 	}
4971 }
4972 
4973 /* Delayed registration/unregisteration */
4974 static LIST_HEAD(net_todo_list);
4975 
4976 static void net_set_todo(struct net_device *dev)
4977 {
4978 	list_add_tail(&dev->todo_list, &net_todo_list);
4979 }
4980 
4981 static void rollback_registered_many(struct list_head *head)
4982 {
4983 	struct net_device *dev, *tmp;
4984 
4985 	BUG_ON(dev_boot_phase);
4986 	ASSERT_RTNL();
4987 
4988 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4989 		/* Some devices call without registering
4990 		 * for initialization unwind. Remove those
4991 		 * devices and proceed with the remaining.
4992 		 */
4993 		if (dev->reg_state == NETREG_UNINITIALIZED) {
4994 			pr_debug("unregister_netdevice: device %s/%p never "
4995 				 "was registered\n", dev->name, dev);
4996 
4997 			WARN_ON(1);
4998 			list_del(&dev->unreg_list);
4999 			continue;
5000 		}
5001 
5002 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5003 	}
5004 
5005 	/* If device is running, close it first. */
5006 	dev_close_many(head);
5007 
5008 	list_for_each_entry(dev, head, unreg_list) {
5009 		/* And unlink it from device chain. */
5010 		unlist_netdevice(dev);
5011 
5012 		dev->reg_state = NETREG_UNREGISTERING;
5013 	}
5014 
5015 	synchronize_net();
5016 
5017 	list_for_each_entry(dev, head, unreg_list) {
5018 		/* Shutdown queueing discipline. */
5019 		dev_shutdown(dev);
5020 
5021 
5022 		/* Notify protocols, that we are about to destroy
5023 		   this device. They should clean all the things.
5024 		*/
5025 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5026 
5027 		if (!dev->rtnl_link_ops ||
5028 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5029 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5030 
5031 		/*
5032 		 *	Flush the unicast and multicast chains
5033 		 */
5034 		dev_uc_flush(dev);
5035 		dev_mc_flush(dev);
5036 
5037 		if (dev->netdev_ops->ndo_uninit)
5038 			dev->netdev_ops->ndo_uninit(dev);
5039 
5040 		/* Notifier chain MUST detach us from master device. */
5041 		WARN_ON(dev->master);
5042 
5043 		/* Remove entries from kobject tree */
5044 		netdev_unregister_kobject(dev);
5045 	}
5046 
5047 	/* Process any work delayed until the end of the batch */
5048 	dev = list_first_entry(head, struct net_device, unreg_list);
5049 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5050 
5051 	rcu_barrier();
5052 
5053 	list_for_each_entry(dev, head, unreg_list)
5054 		dev_put(dev);
5055 }
5056 
5057 static void rollback_registered(struct net_device *dev)
5058 {
5059 	LIST_HEAD(single);
5060 
5061 	list_add(&dev->unreg_list, &single);
5062 	rollback_registered_many(&single);
5063 }
5064 
5065 unsigned long netdev_fix_features(unsigned long features, const char *name)
5066 {
5067 	/* Fix illegal SG+CSUM combinations. */
5068 	if ((features & NETIF_F_SG) &&
5069 	    !(features & NETIF_F_ALL_CSUM)) {
5070 		if (name)
5071 			printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
5072 			       "checksum feature.\n", name);
5073 		features &= ~NETIF_F_SG;
5074 	}
5075 
5076 	/* TSO requires that SG is present as well. */
5077 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5078 		if (name)
5079 			printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
5080 			       "SG feature.\n", name);
5081 		features &= ~NETIF_F_TSO;
5082 	}
5083 
5084 	if (features & NETIF_F_UFO) {
5085 		/* maybe split UFO into V4 and V6? */
5086 		if (!((features & NETIF_F_GEN_CSUM) ||
5087 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5088 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5089 			if (name)
5090 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5091 				       "since no checksum offload features.\n",
5092 				       name);
5093 			features &= ~NETIF_F_UFO;
5094 		}
5095 
5096 		if (!(features & NETIF_F_SG)) {
5097 			if (name)
5098 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5099 				       "since no NETIF_F_SG feature.\n", name);
5100 			features &= ~NETIF_F_UFO;
5101 		}
5102 	}
5103 
5104 	return features;
5105 }
5106 EXPORT_SYMBOL(netdev_fix_features);
5107 
5108 /**
5109  *	netif_stacked_transfer_operstate -	transfer operstate
5110  *	@rootdev: the root or lower level device to transfer state from
5111  *	@dev: the device to transfer operstate to
5112  *
5113  *	Transfer operational state from root to device. This is normally
5114  *	called when a stacking relationship exists between the root
5115  *	device and the device(a leaf device).
5116  */
5117 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5118 					struct net_device *dev)
5119 {
5120 	if (rootdev->operstate == IF_OPER_DORMANT)
5121 		netif_dormant_on(dev);
5122 	else
5123 		netif_dormant_off(dev);
5124 
5125 	if (netif_carrier_ok(rootdev)) {
5126 		if (!netif_carrier_ok(dev))
5127 			netif_carrier_on(dev);
5128 	} else {
5129 		if (netif_carrier_ok(dev))
5130 			netif_carrier_off(dev);
5131 	}
5132 }
5133 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5134 
5135 #ifdef CONFIG_RPS
5136 static int netif_alloc_rx_queues(struct net_device *dev)
5137 {
5138 	unsigned int i, count = dev->num_rx_queues;
5139 	struct netdev_rx_queue *rx;
5140 
5141 	BUG_ON(count < 1);
5142 
5143 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5144 	if (!rx) {
5145 		pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5146 		return -ENOMEM;
5147 	}
5148 	dev->_rx = rx;
5149 
5150 	for (i = 0; i < count; i++)
5151 		rx[i].dev = dev;
5152 	return 0;
5153 }
5154 #endif
5155 
5156 static void netdev_init_one_queue(struct net_device *dev,
5157 				  struct netdev_queue *queue, void *_unused)
5158 {
5159 	/* Initialize queue lock */
5160 	spin_lock_init(&queue->_xmit_lock);
5161 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5162 	queue->xmit_lock_owner = -1;
5163 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5164 	queue->dev = dev;
5165 }
5166 
5167 static int netif_alloc_netdev_queues(struct net_device *dev)
5168 {
5169 	unsigned int count = dev->num_tx_queues;
5170 	struct netdev_queue *tx;
5171 
5172 	BUG_ON(count < 1);
5173 
5174 	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5175 	if (!tx) {
5176 		pr_err("netdev: Unable to allocate %u tx queues.\n",
5177 		       count);
5178 		return -ENOMEM;
5179 	}
5180 	dev->_tx = tx;
5181 
5182 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5183 	spin_lock_init(&dev->tx_global_lock);
5184 
5185 	return 0;
5186 }
5187 
5188 /**
5189  *	register_netdevice	- register a network device
5190  *	@dev: device to register
5191  *
5192  *	Take a completed network device structure and add it to the kernel
5193  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5194  *	chain. 0 is returned on success. A negative errno code is returned
5195  *	on a failure to set up the device, or if the name is a duplicate.
5196  *
5197  *	Callers must hold the rtnl semaphore. You may want
5198  *	register_netdev() instead of this.
5199  *
5200  *	BUGS:
5201  *	The locking appears insufficient to guarantee two parallel registers
5202  *	will not get the same name.
5203  */
5204 
5205 int register_netdevice(struct net_device *dev)
5206 {
5207 	int ret;
5208 	struct net *net = dev_net(dev);
5209 
5210 	BUG_ON(dev_boot_phase);
5211 	ASSERT_RTNL();
5212 
5213 	might_sleep();
5214 
5215 	/* When net_device's are persistent, this will be fatal. */
5216 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5217 	BUG_ON(!net);
5218 
5219 	spin_lock_init(&dev->addr_list_lock);
5220 	netdev_set_addr_lockdep_class(dev);
5221 
5222 	dev->iflink = -1;
5223 
5224 	/* Init, if this function is available */
5225 	if (dev->netdev_ops->ndo_init) {
5226 		ret = dev->netdev_ops->ndo_init(dev);
5227 		if (ret) {
5228 			if (ret > 0)
5229 				ret = -EIO;
5230 			goto out;
5231 		}
5232 	}
5233 
5234 	ret = dev_get_valid_name(dev, dev->name, 0);
5235 	if (ret)
5236 		goto err_uninit;
5237 
5238 	dev->ifindex = dev_new_index(net);
5239 	if (dev->iflink == -1)
5240 		dev->iflink = dev->ifindex;
5241 
5242 	/* Fix illegal checksum combinations */
5243 	if ((dev->features & NETIF_F_HW_CSUM) &&
5244 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5245 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5246 		       dev->name);
5247 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5248 	}
5249 
5250 	if ((dev->features & NETIF_F_NO_CSUM) &&
5251 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5252 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5253 		       dev->name);
5254 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5255 	}
5256 
5257 	dev->features = netdev_fix_features(dev->features, dev->name);
5258 
5259 	/* Enable software GSO if SG is supported. */
5260 	if (dev->features & NETIF_F_SG)
5261 		dev->features |= NETIF_F_GSO;
5262 
5263 	/* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5264 	 * vlan_dev_init() will do the dev->features check, so these features
5265 	 * are enabled only if supported by underlying device.
5266 	 */
5267 	dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5268 
5269 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5270 	ret = notifier_to_errno(ret);
5271 	if (ret)
5272 		goto err_uninit;
5273 
5274 	ret = netdev_register_kobject(dev);
5275 	if (ret)
5276 		goto err_uninit;
5277 	dev->reg_state = NETREG_REGISTERED;
5278 
5279 	/*
5280 	 *	Default initial state at registry is that the
5281 	 *	device is present.
5282 	 */
5283 
5284 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5285 
5286 	dev_init_scheduler(dev);
5287 	dev_hold(dev);
5288 	list_netdevice(dev);
5289 
5290 	/* Notify protocols, that a new device appeared. */
5291 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5292 	ret = notifier_to_errno(ret);
5293 	if (ret) {
5294 		rollback_registered(dev);
5295 		dev->reg_state = NETREG_UNREGISTERED;
5296 	}
5297 	/*
5298 	 *	Prevent userspace races by waiting until the network
5299 	 *	device is fully setup before sending notifications.
5300 	 */
5301 	if (!dev->rtnl_link_ops ||
5302 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5303 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5304 
5305 out:
5306 	return ret;
5307 
5308 err_uninit:
5309 	if (dev->netdev_ops->ndo_uninit)
5310 		dev->netdev_ops->ndo_uninit(dev);
5311 	goto out;
5312 }
5313 EXPORT_SYMBOL(register_netdevice);
5314 
5315 /**
5316  *	init_dummy_netdev	- init a dummy network device for NAPI
5317  *	@dev: device to init
5318  *
5319  *	This takes a network device structure and initialize the minimum
5320  *	amount of fields so it can be used to schedule NAPI polls without
5321  *	registering a full blown interface. This is to be used by drivers
5322  *	that need to tie several hardware interfaces to a single NAPI
5323  *	poll scheduler due to HW limitations.
5324  */
5325 int init_dummy_netdev(struct net_device *dev)
5326 {
5327 	/* Clear everything. Note we don't initialize spinlocks
5328 	 * are they aren't supposed to be taken by any of the
5329 	 * NAPI code and this dummy netdev is supposed to be
5330 	 * only ever used for NAPI polls
5331 	 */
5332 	memset(dev, 0, sizeof(struct net_device));
5333 
5334 	/* make sure we BUG if trying to hit standard
5335 	 * register/unregister code path
5336 	 */
5337 	dev->reg_state = NETREG_DUMMY;
5338 
5339 	/* NAPI wants this */
5340 	INIT_LIST_HEAD(&dev->napi_list);
5341 
5342 	/* a dummy interface is started by default */
5343 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5344 	set_bit(__LINK_STATE_START, &dev->state);
5345 
5346 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5347 	 * because users of this 'device' dont need to change
5348 	 * its refcount.
5349 	 */
5350 
5351 	return 0;
5352 }
5353 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5354 
5355 
5356 /**
5357  *	register_netdev	- register a network device
5358  *	@dev: device to register
5359  *
5360  *	Take a completed network device structure and add it to the kernel
5361  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5362  *	chain. 0 is returned on success. A negative errno code is returned
5363  *	on a failure to set up the device, or if the name is a duplicate.
5364  *
5365  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5366  *	and expands the device name if you passed a format string to
5367  *	alloc_netdev.
5368  */
5369 int register_netdev(struct net_device *dev)
5370 {
5371 	int err;
5372 
5373 	rtnl_lock();
5374 
5375 	/*
5376 	 * If the name is a format string the caller wants us to do a
5377 	 * name allocation.
5378 	 */
5379 	if (strchr(dev->name, '%')) {
5380 		err = dev_alloc_name(dev, dev->name);
5381 		if (err < 0)
5382 			goto out;
5383 	}
5384 
5385 	err = register_netdevice(dev);
5386 out:
5387 	rtnl_unlock();
5388 	return err;
5389 }
5390 EXPORT_SYMBOL(register_netdev);
5391 
5392 int netdev_refcnt_read(const struct net_device *dev)
5393 {
5394 	int i, refcnt = 0;
5395 
5396 	for_each_possible_cpu(i)
5397 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5398 	return refcnt;
5399 }
5400 EXPORT_SYMBOL(netdev_refcnt_read);
5401 
5402 /*
5403  * netdev_wait_allrefs - wait until all references are gone.
5404  *
5405  * This is called when unregistering network devices.
5406  *
5407  * Any protocol or device that holds a reference should register
5408  * for netdevice notification, and cleanup and put back the
5409  * reference if they receive an UNREGISTER event.
5410  * We can get stuck here if buggy protocols don't correctly
5411  * call dev_put.
5412  */
5413 static void netdev_wait_allrefs(struct net_device *dev)
5414 {
5415 	unsigned long rebroadcast_time, warning_time;
5416 	int refcnt;
5417 
5418 	linkwatch_forget_dev(dev);
5419 
5420 	rebroadcast_time = warning_time = jiffies;
5421 	refcnt = netdev_refcnt_read(dev);
5422 
5423 	while (refcnt != 0) {
5424 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5425 			rtnl_lock();
5426 
5427 			/* Rebroadcast unregister notification */
5428 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5429 			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5430 			 * should have already handle it the first time */
5431 
5432 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5433 				     &dev->state)) {
5434 				/* We must not have linkwatch events
5435 				 * pending on unregister. If this
5436 				 * happens, we simply run the queue
5437 				 * unscheduled, resulting in a noop
5438 				 * for this device.
5439 				 */
5440 				linkwatch_run_queue();
5441 			}
5442 
5443 			__rtnl_unlock();
5444 
5445 			rebroadcast_time = jiffies;
5446 		}
5447 
5448 		msleep(250);
5449 
5450 		refcnt = netdev_refcnt_read(dev);
5451 
5452 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5453 			printk(KERN_EMERG "unregister_netdevice: "
5454 			       "waiting for %s to become free. Usage "
5455 			       "count = %d\n",
5456 			       dev->name, refcnt);
5457 			warning_time = jiffies;
5458 		}
5459 	}
5460 }
5461 
5462 /* The sequence is:
5463  *
5464  *	rtnl_lock();
5465  *	...
5466  *	register_netdevice(x1);
5467  *	register_netdevice(x2);
5468  *	...
5469  *	unregister_netdevice(y1);
5470  *	unregister_netdevice(y2);
5471  *      ...
5472  *	rtnl_unlock();
5473  *	free_netdev(y1);
5474  *	free_netdev(y2);
5475  *
5476  * We are invoked by rtnl_unlock().
5477  * This allows us to deal with problems:
5478  * 1) We can delete sysfs objects which invoke hotplug
5479  *    without deadlocking with linkwatch via keventd.
5480  * 2) Since we run with the RTNL semaphore not held, we can sleep
5481  *    safely in order to wait for the netdev refcnt to drop to zero.
5482  *
5483  * We must not return until all unregister events added during
5484  * the interval the lock was held have been completed.
5485  */
5486 void netdev_run_todo(void)
5487 {
5488 	struct list_head list;
5489 
5490 	/* Snapshot list, allow later requests */
5491 	list_replace_init(&net_todo_list, &list);
5492 
5493 	__rtnl_unlock();
5494 
5495 	while (!list_empty(&list)) {
5496 		struct net_device *dev
5497 			= list_first_entry(&list, struct net_device, todo_list);
5498 		list_del(&dev->todo_list);
5499 
5500 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5501 			printk(KERN_ERR "network todo '%s' but state %d\n",
5502 			       dev->name, dev->reg_state);
5503 			dump_stack();
5504 			continue;
5505 		}
5506 
5507 		dev->reg_state = NETREG_UNREGISTERED;
5508 
5509 		on_each_cpu(flush_backlog, dev, 1);
5510 
5511 		netdev_wait_allrefs(dev);
5512 
5513 		/* paranoia */
5514 		BUG_ON(netdev_refcnt_read(dev));
5515 		WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5516 		WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5517 		WARN_ON(dev->dn_ptr);
5518 
5519 		if (dev->destructor)
5520 			dev->destructor(dev);
5521 
5522 		/* Free network device */
5523 		kobject_put(&dev->dev.kobj);
5524 	}
5525 }
5526 
5527 /**
5528  *	dev_txq_stats_fold - fold tx_queues stats
5529  *	@dev: device to get statistics from
5530  *	@stats: struct rtnl_link_stats64 to hold results
5531  */
5532 void dev_txq_stats_fold(const struct net_device *dev,
5533 			struct rtnl_link_stats64 *stats)
5534 {
5535 	u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5536 	unsigned int i;
5537 	struct netdev_queue *txq;
5538 
5539 	for (i = 0; i < dev->num_tx_queues; i++) {
5540 		txq = netdev_get_tx_queue(dev, i);
5541 		spin_lock_bh(&txq->_xmit_lock);
5542 		tx_bytes   += txq->tx_bytes;
5543 		tx_packets += txq->tx_packets;
5544 		tx_dropped += txq->tx_dropped;
5545 		spin_unlock_bh(&txq->_xmit_lock);
5546 	}
5547 	if (tx_bytes || tx_packets || tx_dropped) {
5548 		stats->tx_bytes   = tx_bytes;
5549 		stats->tx_packets = tx_packets;
5550 		stats->tx_dropped = tx_dropped;
5551 	}
5552 }
5553 EXPORT_SYMBOL(dev_txq_stats_fold);
5554 
5555 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5556  * fields in the same order, with only the type differing.
5557  */
5558 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5559 				    const struct net_device_stats *netdev_stats)
5560 {
5561 #if BITS_PER_LONG == 64
5562         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5563         memcpy(stats64, netdev_stats, sizeof(*stats64));
5564 #else
5565 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5566 	const unsigned long *src = (const unsigned long *)netdev_stats;
5567 	u64 *dst = (u64 *)stats64;
5568 
5569 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5570 		     sizeof(*stats64) / sizeof(u64));
5571 	for (i = 0; i < n; i++)
5572 		dst[i] = src[i];
5573 #endif
5574 }
5575 
5576 /**
5577  *	dev_get_stats	- get network device statistics
5578  *	@dev: device to get statistics from
5579  *	@storage: place to store stats
5580  *
5581  *	Get network statistics from device. Return @storage.
5582  *	The device driver may provide its own method by setting
5583  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5584  *	otherwise the internal statistics structure is used.
5585  */
5586 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5587 					struct rtnl_link_stats64 *storage)
5588 {
5589 	const struct net_device_ops *ops = dev->netdev_ops;
5590 
5591 	if (ops->ndo_get_stats64) {
5592 		memset(storage, 0, sizeof(*storage));
5593 		ops->ndo_get_stats64(dev, storage);
5594 	} else if (ops->ndo_get_stats) {
5595 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5596 	} else {
5597 		netdev_stats_to_stats64(storage, &dev->stats);
5598 		dev_txq_stats_fold(dev, storage);
5599 	}
5600 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5601 	return storage;
5602 }
5603 EXPORT_SYMBOL(dev_get_stats);
5604 
5605 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5606 {
5607 	struct netdev_queue *queue = dev_ingress_queue(dev);
5608 
5609 #ifdef CONFIG_NET_CLS_ACT
5610 	if (queue)
5611 		return queue;
5612 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5613 	if (!queue)
5614 		return NULL;
5615 	netdev_init_one_queue(dev, queue, NULL);
5616 	queue->qdisc = &noop_qdisc;
5617 	queue->qdisc_sleeping = &noop_qdisc;
5618 	rcu_assign_pointer(dev->ingress_queue, queue);
5619 #endif
5620 	return queue;
5621 }
5622 
5623 /**
5624  *	alloc_netdev_mq - allocate network device
5625  *	@sizeof_priv:	size of private data to allocate space for
5626  *	@name:		device name format string
5627  *	@setup:		callback to initialize device
5628  *	@queue_count:	the number of subqueues to allocate
5629  *
5630  *	Allocates a struct net_device with private data area for driver use
5631  *	and performs basic initialization.  Also allocates subquue structs
5632  *	for each queue on the device at the end of the netdevice.
5633  */
5634 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5635 		void (*setup)(struct net_device *), unsigned int queue_count)
5636 {
5637 	struct net_device *dev;
5638 	size_t alloc_size;
5639 	struct net_device *p;
5640 
5641 	BUG_ON(strlen(name) >= sizeof(dev->name));
5642 
5643 	if (queue_count < 1) {
5644 		pr_err("alloc_netdev: Unable to allocate device "
5645 		       "with zero queues.\n");
5646 		return NULL;
5647 	}
5648 
5649 	alloc_size = sizeof(struct net_device);
5650 	if (sizeof_priv) {
5651 		/* ensure 32-byte alignment of private area */
5652 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5653 		alloc_size += sizeof_priv;
5654 	}
5655 	/* ensure 32-byte alignment of whole construct */
5656 	alloc_size += NETDEV_ALIGN - 1;
5657 
5658 	p = kzalloc(alloc_size, GFP_KERNEL);
5659 	if (!p) {
5660 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5661 		return NULL;
5662 	}
5663 
5664 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5665 	dev->padded = (char *)dev - (char *)p;
5666 
5667 	dev->pcpu_refcnt = alloc_percpu(int);
5668 	if (!dev->pcpu_refcnt)
5669 		goto free_p;
5670 
5671 	if (dev_addr_init(dev))
5672 		goto free_pcpu;
5673 
5674 	dev_mc_init(dev);
5675 	dev_uc_init(dev);
5676 
5677 	dev_net_set(dev, &init_net);
5678 
5679 	dev->num_tx_queues = queue_count;
5680 	dev->real_num_tx_queues = queue_count;
5681 	if (netif_alloc_netdev_queues(dev))
5682 		goto free_pcpu;
5683 
5684 #ifdef CONFIG_RPS
5685 	dev->num_rx_queues = queue_count;
5686 	dev->real_num_rx_queues = queue_count;
5687 	if (netif_alloc_rx_queues(dev))
5688 		goto free_pcpu;
5689 #endif
5690 
5691 	dev->gso_max_size = GSO_MAX_SIZE;
5692 
5693 	INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5694 	dev->ethtool_ntuple_list.count = 0;
5695 	INIT_LIST_HEAD(&dev->napi_list);
5696 	INIT_LIST_HEAD(&dev->unreg_list);
5697 	INIT_LIST_HEAD(&dev->link_watch_list);
5698 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
5699 	setup(dev);
5700 	strcpy(dev->name, name);
5701 	return dev;
5702 
5703 free_pcpu:
5704 	free_percpu(dev->pcpu_refcnt);
5705 	kfree(dev->_tx);
5706 #ifdef CONFIG_RPS
5707 	kfree(dev->_rx);
5708 #endif
5709 
5710 free_p:
5711 	kfree(p);
5712 	return NULL;
5713 }
5714 EXPORT_SYMBOL(alloc_netdev_mq);
5715 
5716 /**
5717  *	free_netdev - free network device
5718  *	@dev: device
5719  *
5720  *	This function does the last stage of destroying an allocated device
5721  * 	interface. The reference to the device object is released.
5722  *	If this is the last reference then it will be freed.
5723  */
5724 void free_netdev(struct net_device *dev)
5725 {
5726 	struct napi_struct *p, *n;
5727 
5728 	release_net(dev_net(dev));
5729 
5730 	kfree(dev->_tx);
5731 #ifdef CONFIG_RPS
5732 	kfree(dev->_rx);
5733 #endif
5734 
5735 	kfree(rcu_dereference_raw(dev->ingress_queue));
5736 
5737 	/* Flush device addresses */
5738 	dev_addr_flush(dev);
5739 
5740 	/* Clear ethtool n-tuple list */
5741 	ethtool_ntuple_flush(dev);
5742 
5743 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5744 		netif_napi_del(p);
5745 
5746 	free_percpu(dev->pcpu_refcnt);
5747 	dev->pcpu_refcnt = NULL;
5748 
5749 	/*  Compatibility with error handling in drivers */
5750 	if (dev->reg_state == NETREG_UNINITIALIZED) {
5751 		kfree((char *)dev - dev->padded);
5752 		return;
5753 	}
5754 
5755 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5756 	dev->reg_state = NETREG_RELEASED;
5757 
5758 	/* will free via device release */
5759 	put_device(&dev->dev);
5760 }
5761 EXPORT_SYMBOL(free_netdev);
5762 
5763 /**
5764  *	synchronize_net -  Synchronize with packet receive processing
5765  *
5766  *	Wait for packets currently being received to be done.
5767  *	Does not block later packets from starting.
5768  */
5769 void synchronize_net(void)
5770 {
5771 	might_sleep();
5772 	synchronize_rcu();
5773 }
5774 EXPORT_SYMBOL(synchronize_net);
5775 
5776 /**
5777  *	unregister_netdevice_queue - remove device from the kernel
5778  *	@dev: device
5779  *	@head: list
5780  *
5781  *	This function shuts down a device interface and removes it
5782  *	from the kernel tables.
5783  *	If head not NULL, device is queued to be unregistered later.
5784  *
5785  *	Callers must hold the rtnl semaphore.  You may want
5786  *	unregister_netdev() instead of this.
5787  */
5788 
5789 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5790 {
5791 	ASSERT_RTNL();
5792 
5793 	if (head) {
5794 		list_move_tail(&dev->unreg_list, head);
5795 	} else {
5796 		rollback_registered(dev);
5797 		/* Finish processing unregister after unlock */
5798 		net_set_todo(dev);
5799 	}
5800 }
5801 EXPORT_SYMBOL(unregister_netdevice_queue);
5802 
5803 /**
5804  *	unregister_netdevice_many - unregister many devices
5805  *	@head: list of devices
5806  */
5807 void unregister_netdevice_many(struct list_head *head)
5808 {
5809 	struct net_device *dev;
5810 
5811 	if (!list_empty(head)) {
5812 		rollback_registered_many(head);
5813 		list_for_each_entry(dev, head, unreg_list)
5814 			net_set_todo(dev);
5815 	}
5816 }
5817 EXPORT_SYMBOL(unregister_netdevice_many);
5818 
5819 /**
5820  *	unregister_netdev - remove device from the kernel
5821  *	@dev: device
5822  *
5823  *	This function shuts down a device interface and removes it
5824  *	from the kernel tables.
5825  *
5826  *	This is just a wrapper for unregister_netdevice that takes
5827  *	the rtnl semaphore.  In general you want to use this and not
5828  *	unregister_netdevice.
5829  */
5830 void unregister_netdev(struct net_device *dev)
5831 {
5832 	rtnl_lock();
5833 	unregister_netdevice(dev);
5834 	rtnl_unlock();
5835 }
5836 EXPORT_SYMBOL(unregister_netdev);
5837 
5838 /**
5839  *	dev_change_net_namespace - move device to different nethost namespace
5840  *	@dev: device
5841  *	@net: network namespace
5842  *	@pat: If not NULL name pattern to try if the current device name
5843  *	      is already taken in the destination network namespace.
5844  *
5845  *	This function shuts down a device interface and moves it
5846  *	to a new network namespace. On success 0 is returned, on
5847  *	a failure a netagive errno code is returned.
5848  *
5849  *	Callers must hold the rtnl semaphore.
5850  */
5851 
5852 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5853 {
5854 	int err;
5855 
5856 	ASSERT_RTNL();
5857 
5858 	/* Don't allow namespace local devices to be moved. */
5859 	err = -EINVAL;
5860 	if (dev->features & NETIF_F_NETNS_LOCAL)
5861 		goto out;
5862 
5863 	/* Ensure the device has been registrered */
5864 	err = -EINVAL;
5865 	if (dev->reg_state != NETREG_REGISTERED)
5866 		goto out;
5867 
5868 	/* Get out if there is nothing todo */
5869 	err = 0;
5870 	if (net_eq(dev_net(dev), net))
5871 		goto out;
5872 
5873 	/* Pick the destination device name, and ensure
5874 	 * we can use it in the destination network namespace.
5875 	 */
5876 	err = -EEXIST;
5877 	if (__dev_get_by_name(net, dev->name)) {
5878 		/* We get here if we can't use the current device name */
5879 		if (!pat)
5880 			goto out;
5881 		if (dev_get_valid_name(dev, pat, 1))
5882 			goto out;
5883 	}
5884 
5885 	/*
5886 	 * And now a mini version of register_netdevice unregister_netdevice.
5887 	 */
5888 
5889 	/* If device is running close it first. */
5890 	dev_close(dev);
5891 
5892 	/* And unlink it from device chain */
5893 	err = -ENODEV;
5894 	unlist_netdevice(dev);
5895 
5896 	synchronize_net();
5897 
5898 	/* Shutdown queueing discipline. */
5899 	dev_shutdown(dev);
5900 
5901 	/* Notify protocols, that we are about to destroy
5902 	   this device. They should clean all the things.
5903 
5904 	   Note that dev->reg_state stays at NETREG_REGISTERED.
5905 	   This is wanted because this way 8021q and macvlan know
5906 	   the device is just moving and can keep their slaves up.
5907 	*/
5908 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5909 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5910 
5911 	/*
5912 	 *	Flush the unicast and multicast chains
5913 	 */
5914 	dev_uc_flush(dev);
5915 	dev_mc_flush(dev);
5916 
5917 	/* Actually switch the network namespace */
5918 	dev_net_set(dev, net);
5919 
5920 	/* If there is an ifindex conflict assign a new one */
5921 	if (__dev_get_by_index(net, dev->ifindex)) {
5922 		int iflink = (dev->iflink == dev->ifindex);
5923 		dev->ifindex = dev_new_index(net);
5924 		if (iflink)
5925 			dev->iflink = dev->ifindex;
5926 	}
5927 
5928 	/* Fixup kobjects */
5929 	err = device_rename(&dev->dev, dev->name);
5930 	WARN_ON(err);
5931 
5932 	/* Add the device back in the hashes */
5933 	list_netdevice(dev);
5934 
5935 	/* Notify protocols, that a new device appeared. */
5936 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
5937 
5938 	/*
5939 	 *	Prevent userspace races by waiting until the network
5940 	 *	device is fully setup before sending notifications.
5941 	 */
5942 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5943 
5944 	synchronize_net();
5945 	err = 0;
5946 out:
5947 	return err;
5948 }
5949 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5950 
5951 static int dev_cpu_callback(struct notifier_block *nfb,
5952 			    unsigned long action,
5953 			    void *ocpu)
5954 {
5955 	struct sk_buff **list_skb;
5956 	struct sk_buff *skb;
5957 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
5958 	struct softnet_data *sd, *oldsd;
5959 
5960 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5961 		return NOTIFY_OK;
5962 
5963 	local_irq_disable();
5964 	cpu = smp_processor_id();
5965 	sd = &per_cpu(softnet_data, cpu);
5966 	oldsd = &per_cpu(softnet_data, oldcpu);
5967 
5968 	/* Find end of our completion_queue. */
5969 	list_skb = &sd->completion_queue;
5970 	while (*list_skb)
5971 		list_skb = &(*list_skb)->next;
5972 	/* Append completion queue from offline CPU. */
5973 	*list_skb = oldsd->completion_queue;
5974 	oldsd->completion_queue = NULL;
5975 
5976 	/* Append output queue from offline CPU. */
5977 	if (oldsd->output_queue) {
5978 		*sd->output_queue_tailp = oldsd->output_queue;
5979 		sd->output_queue_tailp = oldsd->output_queue_tailp;
5980 		oldsd->output_queue = NULL;
5981 		oldsd->output_queue_tailp = &oldsd->output_queue;
5982 	}
5983 
5984 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
5985 	local_irq_enable();
5986 
5987 	/* Process offline CPU's input_pkt_queue */
5988 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5989 		netif_rx(skb);
5990 		input_queue_head_incr(oldsd);
5991 	}
5992 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5993 		netif_rx(skb);
5994 		input_queue_head_incr(oldsd);
5995 	}
5996 
5997 	return NOTIFY_OK;
5998 }
5999 
6000 
6001 /**
6002  *	netdev_increment_features - increment feature set by one
6003  *	@all: current feature set
6004  *	@one: new feature set
6005  *	@mask: mask feature set
6006  *
6007  *	Computes a new feature set after adding a device with feature set
6008  *	@one to the master device with current feature set @all.  Will not
6009  *	enable anything that is off in @mask. Returns the new feature set.
6010  */
6011 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
6012 					unsigned long mask)
6013 {
6014 	/* If device needs checksumming, downgrade to it. */
6015 	if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6016 		all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6017 	else if (mask & NETIF_F_ALL_CSUM) {
6018 		/* If one device supports v4/v6 checksumming, set for all. */
6019 		if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6020 		    !(all & NETIF_F_GEN_CSUM)) {
6021 			all &= ~NETIF_F_ALL_CSUM;
6022 			all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6023 		}
6024 
6025 		/* If one device supports hw checksumming, set for all. */
6026 		if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6027 			all &= ~NETIF_F_ALL_CSUM;
6028 			all |= NETIF_F_HW_CSUM;
6029 		}
6030 	}
6031 
6032 	one |= NETIF_F_ALL_CSUM;
6033 
6034 	one |= all & NETIF_F_ONE_FOR_ALL;
6035 	all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6036 	all |= one & mask & NETIF_F_ONE_FOR_ALL;
6037 
6038 	return all;
6039 }
6040 EXPORT_SYMBOL(netdev_increment_features);
6041 
6042 static struct hlist_head *netdev_create_hash(void)
6043 {
6044 	int i;
6045 	struct hlist_head *hash;
6046 
6047 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6048 	if (hash != NULL)
6049 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6050 			INIT_HLIST_HEAD(&hash[i]);
6051 
6052 	return hash;
6053 }
6054 
6055 /* Initialize per network namespace state */
6056 static int __net_init netdev_init(struct net *net)
6057 {
6058 	INIT_LIST_HEAD(&net->dev_base_head);
6059 
6060 	net->dev_name_head = netdev_create_hash();
6061 	if (net->dev_name_head == NULL)
6062 		goto err_name;
6063 
6064 	net->dev_index_head = netdev_create_hash();
6065 	if (net->dev_index_head == NULL)
6066 		goto err_idx;
6067 
6068 	return 0;
6069 
6070 err_idx:
6071 	kfree(net->dev_name_head);
6072 err_name:
6073 	return -ENOMEM;
6074 }
6075 
6076 /**
6077  *	netdev_drivername - network driver for the device
6078  *	@dev: network device
6079  *	@buffer: buffer for resulting name
6080  *	@len: size of buffer
6081  *
6082  *	Determine network driver for device.
6083  */
6084 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6085 {
6086 	const struct device_driver *driver;
6087 	const struct device *parent;
6088 
6089 	if (len <= 0 || !buffer)
6090 		return buffer;
6091 	buffer[0] = 0;
6092 
6093 	parent = dev->dev.parent;
6094 
6095 	if (!parent)
6096 		return buffer;
6097 
6098 	driver = parent->driver;
6099 	if (driver && driver->name)
6100 		strlcpy(buffer, driver->name, len);
6101 	return buffer;
6102 }
6103 
6104 static int __netdev_printk(const char *level, const struct net_device *dev,
6105 			   struct va_format *vaf)
6106 {
6107 	int r;
6108 
6109 	if (dev && dev->dev.parent)
6110 		r = dev_printk(level, dev->dev.parent, "%s: %pV",
6111 			       netdev_name(dev), vaf);
6112 	else if (dev)
6113 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6114 	else
6115 		r = printk("%s(NULL net_device): %pV", level, vaf);
6116 
6117 	return r;
6118 }
6119 
6120 int netdev_printk(const char *level, const struct net_device *dev,
6121 		  const char *format, ...)
6122 {
6123 	struct va_format vaf;
6124 	va_list args;
6125 	int r;
6126 
6127 	va_start(args, format);
6128 
6129 	vaf.fmt = format;
6130 	vaf.va = &args;
6131 
6132 	r = __netdev_printk(level, dev, &vaf);
6133 	va_end(args);
6134 
6135 	return r;
6136 }
6137 EXPORT_SYMBOL(netdev_printk);
6138 
6139 #define define_netdev_printk_level(func, level)			\
6140 int func(const struct net_device *dev, const char *fmt, ...)	\
6141 {								\
6142 	int r;							\
6143 	struct va_format vaf;					\
6144 	va_list args;						\
6145 								\
6146 	va_start(args, fmt);					\
6147 								\
6148 	vaf.fmt = fmt;						\
6149 	vaf.va = &args;						\
6150 								\
6151 	r = __netdev_printk(level, dev, &vaf);			\
6152 	va_end(args);						\
6153 								\
6154 	return r;						\
6155 }								\
6156 EXPORT_SYMBOL(func);
6157 
6158 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6159 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6160 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6161 define_netdev_printk_level(netdev_err, KERN_ERR);
6162 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6163 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6164 define_netdev_printk_level(netdev_info, KERN_INFO);
6165 
6166 static void __net_exit netdev_exit(struct net *net)
6167 {
6168 	kfree(net->dev_name_head);
6169 	kfree(net->dev_index_head);
6170 }
6171 
6172 static struct pernet_operations __net_initdata netdev_net_ops = {
6173 	.init = netdev_init,
6174 	.exit = netdev_exit,
6175 };
6176 
6177 static void __net_exit default_device_exit(struct net *net)
6178 {
6179 	struct net_device *dev, *aux;
6180 	/*
6181 	 * Push all migratable network devices back to the
6182 	 * initial network namespace
6183 	 */
6184 	rtnl_lock();
6185 	for_each_netdev_safe(net, dev, aux) {
6186 		int err;
6187 		char fb_name[IFNAMSIZ];
6188 
6189 		/* Ignore unmoveable devices (i.e. loopback) */
6190 		if (dev->features & NETIF_F_NETNS_LOCAL)
6191 			continue;
6192 
6193 		/* Leave virtual devices for the generic cleanup */
6194 		if (dev->rtnl_link_ops)
6195 			continue;
6196 
6197 		/* Push remaing network devices to init_net */
6198 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6199 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6200 		if (err) {
6201 			printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6202 				__func__, dev->name, err);
6203 			BUG();
6204 		}
6205 	}
6206 	rtnl_unlock();
6207 }
6208 
6209 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6210 {
6211 	/* At exit all network devices most be removed from a network
6212 	 * namespace.  Do this in the reverse order of registeration.
6213 	 * Do this across as many network namespaces as possible to
6214 	 * improve batching efficiency.
6215 	 */
6216 	struct net_device *dev;
6217 	struct net *net;
6218 	LIST_HEAD(dev_kill_list);
6219 
6220 	rtnl_lock();
6221 	list_for_each_entry(net, net_list, exit_list) {
6222 		for_each_netdev_reverse(net, dev) {
6223 			if (dev->rtnl_link_ops)
6224 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6225 			else
6226 				unregister_netdevice_queue(dev, &dev_kill_list);
6227 		}
6228 	}
6229 	unregister_netdevice_many(&dev_kill_list);
6230 	rtnl_unlock();
6231 }
6232 
6233 static struct pernet_operations __net_initdata default_device_ops = {
6234 	.exit = default_device_exit,
6235 	.exit_batch = default_device_exit_batch,
6236 };
6237 
6238 /*
6239  *	Initialize the DEV module. At boot time this walks the device list and
6240  *	unhooks any devices that fail to initialise (normally hardware not
6241  *	present) and leaves us with a valid list of present and active devices.
6242  *
6243  */
6244 
6245 /*
6246  *       This is called single threaded during boot, so no need
6247  *       to take the rtnl semaphore.
6248  */
6249 static int __init net_dev_init(void)
6250 {
6251 	int i, rc = -ENOMEM;
6252 
6253 	BUG_ON(!dev_boot_phase);
6254 
6255 	if (dev_proc_init())
6256 		goto out;
6257 
6258 	if (netdev_kobject_init())
6259 		goto out;
6260 
6261 	INIT_LIST_HEAD(&ptype_all);
6262 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6263 		INIT_LIST_HEAD(&ptype_base[i]);
6264 
6265 	if (register_pernet_subsys(&netdev_net_ops))
6266 		goto out;
6267 
6268 	/*
6269 	 *	Initialise the packet receive queues.
6270 	 */
6271 
6272 	for_each_possible_cpu(i) {
6273 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6274 
6275 		memset(sd, 0, sizeof(*sd));
6276 		skb_queue_head_init(&sd->input_pkt_queue);
6277 		skb_queue_head_init(&sd->process_queue);
6278 		sd->completion_queue = NULL;
6279 		INIT_LIST_HEAD(&sd->poll_list);
6280 		sd->output_queue = NULL;
6281 		sd->output_queue_tailp = &sd->output_queue;
6282 #ifdef CONFIG_RPS
6283 		sd->csd.func = rps_trigger_softirq;
6284 		sd->csd.info = sd;
6285 		sd->csd.flags = 0;
6286 		sd->cpu = i;
6287 #endif
6288 
6289 		sd->backlog.poll = process_backlog;
6290 		sd->backlog.weight = weight_p;
6291 		sd->backlog.gro_list = NULL;
6292 		sd->backlog.gro_count = 0;
6293 	}
6294 
6295 	dev_boot_phase = 0;
6296 
6297 	/* The loopback device is special if any other network devices
6298 	 * is present in a network namespace the loopback device must
6299 	 * be present. Since we now dynamically allocate and free the
6300 	 * loopback device ensure this invariant is maintained by
6301 	 * keeping the loopback device as the first device on the
6302 	 * list of network devices.  Ensuring the loopback devices
6303 	 * is the first device that appears and the last network device
6304 	 * that disappears.
6305 	 */
6306 	if (register_pernet_device(&loopback_net_ops))
6307 		goto out;
6308 
6309 	if (register_pernet_device(&default_device_ops))
6310 		goto out;
6311 
6312 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6313 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6314 
6315 	hotcpu_notifier(dev_cpu_callback, 0);
6316 	dst_init();
6317 	dev_mcast_init();
6318 	rc = 0;
6319 out:
6320 	return rc;
6321 }
6322 
6323 subsys_initcall(net_dev_init);
6324 
6325 static int __init initialize_hashrnd(void)
6326 {
6327 	get_random_bytes(&hashrnd, sizeof(hashrnd));
6328 	return 0;
6329 }
6330 
6331 late_initcall_sync(initialize_hashrnd);
6332 
6333