xref: /openbmc/linux/net/core/dev.c (revision b627b4ed)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 
130 #include "net-sysfs.h"
131 
132 /* Instead of increasing this, you should create a hash table. */
133 #define MAX_GRO_SKBS 8
134 
135 /* This should be increased if a protocol with a bigger head is added. */
136 #define GRO_MAX_HEAD (MAX_HEADER + 128)
137 
138 /*
139  *	The list of packet types we will receive (as opposed to discard)
140  *	and the routines to invoke.
141  *
142  *	Why 16. Because with 16 the only overlap we get on a hash of the
143  *	low nibble of the protocol value is RARP/SNAP/X.25.
144  *
145  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
146  *             sure which should go first, but I bet it won't make much
147  *             difference if we are running VLANs.  The good news is that
148  *             this protocol won't be in the list unless compiled in, so
149  *             the average user (w/out VLANs) will not be adversely affected.
150  *             --BLG
151  *
152  *		0800	IP
153  *		8100    802.1Q VLAN
154  *		0001	802.3
155  *		0002	AX.25
156  *		0004	802.2
157  *		8035	RARP
158  *		0005	SNAP
159  *		0805	X.25
160  *		0806	ARP
161  *		8137	IPX
162  *		0009	Localtalk
163  *		86DD	IPv6
164  */
165 
166 #define PTYPE_HASH_SIZE	(16)
167 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
168 
169 static DEFINE_SPINLOCK(ptype_lock);
170 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
171 static struct list_head ptype_all __read_mostly;	/* Taps */
172 
173 /*
174  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175  * semaphore.
176  *
177  * Pure readers hold dev_base_lock for reading.
178  *
179  * Writers must hold the rtnl semaphore while they loop through the
180  * dev_base_head list, and hold dev_base_lock for writing when they do the
181  * actual updates.  This allows pure readers to access the list even
182  * while a writer is preparing to update it.
183  *
184  * To put it another way, dev_base_lock is held for writing only to
185  * protect against pure readers; the rtnl semaphore provides the
186  * protection against other writers.
187  *
188  * See, for example usages, register_netdevice() and
189  * unregister_netdevice(), which must be called with the rtnl
190  * semaphore held.
191  */
192 DEFINE_RWLOCK(dev_base_lock);
193 
194 EXPORT_SYMBOL(dev_base_lock);
195 
196 #define NETDEV_HASHBITS	8
197 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
198 
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 	return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
203 }
204 
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 	return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
208 }
209 
210 /* Device list insertion */
211 static int list_netdevice(struct net_device *dev)
212 {
213 	struct net *net = dev_net(dev);
214 
215 	ASSERT_RTNL();
216 
217 	write_lock_bh(&dev_base_lock);
218 	list_add_tail(&dev->dev_list, &net->dev_base_head);
219 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
220 	hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
221 	write_unlock_bh(&dev_base_lock);
222 	return 0;
223 }
224 
225 /* Device list removal */
226 static void unlist_netdevice(struct net_device *dev)
227 {
228 	ASSERT_RTNL();
229 
230 	/* Unlink dev from the device chain */
231 	write_lock_bh(&dev_base_lock);
232 	list_del(&dev->dev_list);
233 	hlist_del(&dev->name_hlist);
234 	hlist_del(&dev->index_hlist);
235 	write_unlock_bh(&dev_base_lock);
236 }
237 
238 /*
239  *	Our notifier list
240  */
241 
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243 
244 /*
245  *	Device drivers call our routines to queue packets here. We empty the
246  *	queue in the local softnet handler.
247  */
248 
249 DEFINE_PER_CPU(struct softnet_data, softnet_data);
250 
251 #ifdef CONFIG_LOCKDEP
252 /*
253  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
254  * according to dev->type
255  */
256 static const unsigned short netdev_lock_type[] =
257 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
258 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
259 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
260 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
261 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
262 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
263 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
264 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
265 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
266 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
267 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
268 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
269 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
270 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
271 	 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE};
272 
273 static const char *netdev_lock_name[] =
274 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
275 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
276 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
277 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
278 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
279 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
280 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
281 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
282 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
283 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
284 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
285 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
286 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
287 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
288 	 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"};
289 
290 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
291 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
292 
293 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
294 {
295 	int i;
296 
297 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
298 		if (netdev_lock_type[i] == dev_type)
299 			return i;
300 	/* the last key is used by default */
301 	return ARRAY_SIZE(netdev_lock_type) - 1;
302 }
303 
304 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
305 						 unsigned short dev_type)
306 {
307 	int i;
308 
309 	i = netdev_lock_pos(dev_type);
310 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
311 				   netdev_lock_name[i]);
312 }
313 
314 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
315 {
316 	int i;
317 
318 	i = netdev_lock_pos(dev->type);
319 	lockdep_set_class_and_name(&dev->addr_list_lock,
320 				   &netdev_addr_lock_key[i],
321 				   netdev_lock_name[i]);
322 }
323 #else
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 						 unsigned short dev_type)
326 {
327 }
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 }
331 #endif
332 
333 /*******************************************************************************
334 
335 		Protocol management and registration routines
336 
337 *******************************************************************************/
338 
339 /*
340  *	Add a protocol ID to the list. Now that the input handler is
341  *	smarter we can dispense with all the messy stuff that used to be
342  *	here.
343  *
344  *	BEWARE!!! Protocol handlers, mangling input packets,
345  *	MUST BE last in hash buckets and checking protocol handlers
346  *	MUST start from promiscuous ptype_all chain in net_bh.
347  *	It is true now, do not change it.
348  *	Explanation follows: if protocol handler, mangling packet, will
349  *	be the first on list, it is not able to sense, that packet
350  *	is cloned and should be copied-on-write, so that it will
351  *	change it and subsequent readers will get broken packet.
352  *							--ANK (980803)
353  */
354 
355 /**
356  *	dev_add_pack - add packet handler
357  *	@pt: packet type declaration
358  *
359  *	Add a protocol handler to the networking stack. The passed &packet_type
360  *	is linked into kernel lists and may not be freed until it has been
361  *	removed from the kernel lists.
362  *
363  *	This call does not sleep therefore it can not
364  *	guarantee all CPU's that are in middle of receiving packets
365  *	will see the new packet type (until the next received packet).
366  */
367 
368 void dev_add_pack(struct packet_type *pt)
369 {
370 	int hash;
371 
372 	spin_lock_bh(&ptype_lock);
373 	if (pt->type == htons(ETH_P_ALL))
374 		list_add_rcu(&pt->list, &ptype_all);
375 	else {
376 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
377 		list_add_rcu(&pt->list, &ptype_base[hash]);
378 	}
379 	spin_unlock_bh(&ptype_lock);
380 }
381 
382 /**
383  *	__dev_remove_pack	 - remove packet handler
384  *	@pt: packet type declaration
385  *
386  *	Remove a protocol handler that was previously added to the kernel
387  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
388  *	from the kernel lists and can be freed or reused once this function
389  *	returns.
390  *
391  *      The packet type might still be in use by receivers
392  *	and must not be freed until after all the CPU's have gone
393  *	through a quiescent state.
394  */
395 void __dev_remove_pack(struct packet_type *pt)
396 {
397 	struct list_head *head;
398 	struct packet_type *pt1;
399 
400 	spin_lock_bh(&ptype_lock);
401 
402 	if (pt->type == htons(ETH_P_ALL))
403 		head = &ptype_all;
404 	else
405 		head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
406 
407 	list_for_each_entry(pt1, head, list) {
408 		if (pt == pt1) {
409 			list_del_rcu(&pt->list);
410 			goto out;
411 		}
412 	}
413 
414 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
415 out:
416 	spin_unlock_bh(&ptype_lock);
417 }
418 /**
419  *	dev_remove_pack	 - remove packet handler
420  *	@pt: packet type declaration
421  *
422  *	Remove a protocol handler that was previously added to the kernel
423  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *	from the kernel lists and can be freed or reused once this function
425  *	returns.
426  *
427  *	This call sleeps to guarantee that no CPU is looking at the packet
428  *	type after return.
429  */
430 void dev_remove_pack(struct packet_type *pt)
431 {
432 	__dev_remove_pack(pt);
433 
434 	synchronize_net();
435 }
436 
437 /******************************************************************************
438 
439 		      Device Boot-time Settings Routines
440 
441 *******************************************************************************/
442 
443 /* Boot time configuration table */
444 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
445 
446 /**
447  *	netdev_boot_setup_add	- add new setup entry
448  *	@name: name of the device
449  *	@map: configured settings for the device
450  *
451  *	Adds new setup entry to the dev_boot_setup list.  The function
452  *	returns 0 on error and 1 on success.  This is a generic routine to
453  *	all netdevices.
454  */
455 static int netdev_boot_setup_add(char *name, struct ifmap *map)
456 {
457 	struct netdev_boot_setup *s;
458 	int i;
459 
460 	s = dev_boot_setup;
461 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
462 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
463 			memset(s[i].name, 0, sizeof(s[i].name));
464 			strlcpy(s[i].name, name, IFNAMSIZ);
465 			memcpy(&s[i].map, map, sizeof(s[i].map));
466 			break;
467 		}
468 	}
469 
470 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
471 }
472 
473 /**
474  *	netdev_boot_setup_check	- check boot time settings
475  *	@dev: the netdevice
476  *
477  * 	Check boot time settings for the device.
478  *	The found settings are set for the device to be used
479  *	later in the device probing.
480  *	Returns 0 if no settings found, 1 if they are.
481  */
482 int netdev_boot_setup_check(struct net_device *dev)
483 {
484 	struct netdev_boot_setup *s = dev_boot_setup;
485 	int i;
486 
487 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
488 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
489 		    !strcmp(dev->name, s[i].name)) {
490 			dev->irq 	= s[i].map.irq;
491 			dev->base_addr 	= s[i].map.base_addr;
492 			dev->mem_start 	= s[i].map.mem_start;
493 			dev->mem_end 	= s[i].map.mem_end;
494 			return 1;
495 		}
496 	}
497 	return 0;
498 }
499 
500 
501 /**
502  *	netdev_boot_base	- get address from boot time settings
503  *	@prefix: prefix for network device
504  *	@unit: id for network device
505  *
506  * 	Check boot time settings for the base address of device.
507  *	The found settings are set for the device to be used
508  *	later in the device probing.
509  *	Returns 0 if no settings found.
510  */
511 unsigned long netdev_boot_base(const char *prefix, int unit)
512 {
513 	const struct netdev_boot_setup *s = dev_boot_setup;
514 	char name[IFNAMSIZ];
515 	int i;
516 
517 	sprintf(name, "%s%d", prefix, unit);
518 
519 	/*
520 	 * If device already registered then return base of 1
521 	 * to indicate not to probe for this interface
522 	 */
523 	if (__dev_get_by_name(&init_net, name))
524 		return 1;
525 
526 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
527 		if (!strcmp(name, s[i].name))
528 			return s[i].map.base_addr;
529 	return 0;
530 }
531 
532 /*
533  * Saves at boot time configured settings for any netdevice.
534  */
535 int __init netdev_boot_setup(char *str)
536 {
537 	int ints[5];
538 	struct ifmap map;
539 
540 	str = get_options(str, ARRAY_SIZE(ints), ints);
541 	if (!str || !*str)
542 		return 0;
543 
544 	/* Save settings */
545 	memset(&map, 0, sizeof(map));
546 	if (ints[0] > 0)
547 		map.irq = ints[1];
548 	if (ints[0] > 1)
549 		map.base_addr = ints[2];
550 	if (ints[0] > 2)
551 		map.mem_start = ints[3];
552 	if (ints[0] > 3)
553 		map.mem_end = ints[4];
554 
555 	/* Add new entry to the list */
556 	return netdev_boot_setup_add(str, &map);
557 }
558 
559 __setup("netdev=", netdev_boot_setup);
560 
561 /*******************************************************************************
562 
563 			    Device Interface Subroutines
564 
565 *******************************************************************************/
566 
567 /**
568  *	__dev_get_by_name	- find a device by its name
569  *	@net: the applicable net namespace
570  *	@name: name to find
571  *
572  *	Find an interface by name. Must be called under RTNL semaphore
573  *	or @dev_base_lock. If the name is found a pointer to the device
574  *	is returned. If the name is not found then %NULL is returned. The
575  *	reference counters are not incremented so the caller must be
576  *	careful with locks.
577  */
578 
579 struct net_device *__dev_get_by_name(struct net *net, const char *name)
580 {
581 	struct hlist_node *p;
582 
583 	hlist_for_each(p, dev_name_hash(net, name)) {
584 		struct net_device *dev
585 			= hlist_entry(p, struct net_device, name_hlist);
586 		if (!strncmp(dev->name, name, IFNAMSIZ))
587 			return dev;
588 	}
589 	return NULL;
590 }
591 
592 /**
593  *	dev_get_by_name		- find a device by its name
594  *	@net: the applicable net namespace
595  *	@name: name to find
596  *
597  *	Find an interface by name. This can be called from any
598  *	context and does its own locking. The returned handle has
599  *	the usage count incremented and the caller must use dev_put() to
600  *	release it when it is no longer needed. %NULL is returned if no
601  *	matching device is found.
602  */
603 
604 struct net_device *dev_get_by_name(struct net *net, const char *name)
605 {
606 	struct net_device *dev;
607 
608 	read_lock(&dev_base_lock);
609 	dev = __dev_get_by_name(net, name);
610 	if (dev)
611 		dev_hold(dev);
612 	read_unlock(&dev_base_lock);
613 	return dev;
614 }
615 
616 /**
617  *	__dev_get_by_index - find a device by its ifindex
618  *	@net: the applicable net namespace
619  *	@ifindex: index of device
620  *
621  *	Search for an interface by index. Returns %NULL if the device
622  *	is not found or a pointer to the device. The device has not
623  *	had its reference counter increased so the caller must be careful
624  *	about locking. The caller must hold either the RTNL semaphore
625  *	or @dev_base_lock.
626  */
627 
628 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
629 {
630 	struct hlist_node *p;
631 
632 	hlist_for_each(p, dev_index_hash(net, ifindex)) {
633 		struct net_device *dev
634 			= hlist_entry(p, struct net_device, index_hlist);
635 		if (dev->ifindex == ifindex)
636 			return dev;
637 	}
638 	return NULL;
639 }
640 
641 
642 /**
643  *	dev_get_by_index - find a device by its ifindex
644  *	@net: the applicable net namespace
645  *	@ifindex: index of device
646  *
647  *	Search for an interface by index. Returns NULL if the device
648  *	is not found or a pointer to the device. The device returned has
649  *	had a reference added and the pointer is safe until the user calls
650  *	dev_put to indicate they have finished with it.
651  */
652 
653 struct net_device *dev_get_by_index(struct net *net, int ifindex)
654 {
655 	struct net_device *dev;
656 
657 	read_lock(&dev_base_lock);
658 	dev = __dev_get_by_index(net, ifindex);
659 	if (dev)
660 		dev_hold(dev);
661 	read_unlock(&dev_base_lock);
662 	return dev;
663 }
664 
665 /**
666  *	dev_getbyhwaddr - find a device by its hardware address
667  *	@net: the applicable net namespace
668  *	@type: media type of device
669  *	@ha: hardware address
670  *
671  *	Search for an interface by MAC address. Returns NULL if the device
672  *	is not found or a pointer to the device. The caller must hold the
673  *	rtnl semaphore. The returned device has not had its ref count increased
674  *	and the caller must therefore be careful about locking
675  *
676  *	BUGS:
677  *	If the API was consistent this would be __dev_get_by_hwaddr
678  */
679 
680 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
681 {
682 	struct net_device *dev;
683 
684 	ASSERT_RTNL();
685 
686 	for_each_netdev(net, dev)
687 		if (dev->type == type &&
688 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
689 			return dev;
690 
691 	return NULL;
692 }
693 
694 EXPORT_SYMBOL(dev_getbyhwaddr);
695 
696 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
697 {
698 	struct net_device *dev;
699 
700 	ASSERT_RTNL();
701 	for_each_netdev(net, dev)
702 		if (dev->type == type)
703 			return dev;
704 
705 	return NULL;
706 }
707 
708 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
709 
710 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
711 {
712 	struct net_device *dev;
713 
714 	rtnl_lock();
715 	dev = __dev_getfirstbyhwtype(net, type);
716 	if (dev)
717 		dev_hold(dev);
718 	rtnl_unlock();
719 	return dev;
720 }
721 
722 EXPORT_SYMBOL(dev_getfirstbyhwtype);
723 
724 /**
725  *	dev_get_by_flags - find any device with given flags
726  *	@net: the applicable net namespace
727  *	@if_flags: IFF_* values
728  *	@mask: bitmask of bits in if_flags to check
729  *
730  *	Search for any interface with the given flags. Returns NULL if a device
731  *	is not found or a pointer to the device. The device returned has
732  *	had a reference added and the pointer is safe until the user calls
733  *	dev_put to indicate they have finished with it.
734  */
735 
736 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
737 {
738 	struct net_device *dev, *ret;
739 
740 	ret = NULL;
741 	read_lock(&dev_base_lock);
742 	for_each_netdev(net, dev) {
743 		if (((dev->flags ^ if_flags) & mask) == 0) {
744 			dev_hold(dev);
745 			ret = dev;
746 			break;
747 		}
748 	}
749 	read_unlock(&dev_base_lock);
750 	return ret;
751 }
752 
753 /**
754  *	dev_valid_name - check if name is okay for network device
755  *	@name: name string
756  *
757  *	Network device names need to be valid file names to
758  *	to allow sysfs to work.  We also disallow any kind of
759  *	whitespace.
760  */
761 int dev_valid_name(const char *name)
762 {
763 	if (*name == '\0')
764 		return 0;
765 	if (strlen(name) >= IFNAMSIZ)
766 		return 0;
767 	if (!strcmp(name, ".") || !strcmp(name, ".."))
768 		return 0;
769 
770 	while (*name) {
771 		if (*name == '/' || isspace(*name))
772 			return 0;
773 		name++;
774 	}
775 	return 1;
776 }
777 
778 /**
779  *	__dev_alloc_name - allocate a name for a device
780  *	@net: network namespace to allocate the device name in
781  *	@name: name format string
782  *	@buf:  scratch buffer and result name string
783  *
784  *	Passed a format string - eg "lt%d" it will try and find a suitable
785  *	id. It scans list of devices to build up a free map, then chooses
786  *	the first empty slot. The caller must hold the dev_base or rtnl lock
787  *	while allocating the name and adding the device in order to avoid
788  *	duplicates.
789  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
790  *	Returns the number of the unit assigned or a negative errno code.
791  */
792 
793 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
794 {
795 	int i = 0;
796 	const char *p;
797 	const int max_netdevices = 8*PAGE_SIZE;
798 	unsigned long *inuse;
799 	struct net_device *d;
800 
801 	p = strnchr(name, IFNAMSIZ-1, '%');
802 	if (p) {
803 		/*
804 		 * Verify the string as this thing may have come from
805 		 * the user.  There must be either one "%d" and no other "%"
806 		 * characters.
807 		 */
808 		if (p[1] != 'd' || strchr(p + 2, '%'))
809 			return -EINVAL;
810 
811 		/* Use one page as a bit array of possible slots */
812 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
813 		if (!inuse)
814 			return -ENOMEM;
815 
816 		for_each_netdev(net, d) {
817 			if (!sscanf(d->name, name, &i))
818 				continue;
819 			if (i < 0 || i >= max_netdevices)
820 				continue;
821 
822 			/*  avoid cases where sscanf is not exact inverse of printf */
823 			snprintf(buf, IFNAMSIZ, name, i);
824 			if (!strncmp(buf, d->name, IFNAMSIZ))
825 				set_bit(i, inuse);
826 		}
827 
828 		i = find_first_zero_bit(inuse, max_netdevices);
829 		free_page((unsigned long) inuse);
830 	}
831 
832 	snprintf(buf, IFNAMSIZ, name, i);
833 	if (!__dev_get_by_name(net, buf))
834 		return i;
835 
836 	/* It is possible to run out of possible slots
837 	 * when the name is long and there isn't enough space left
838 	 * for the digits, or if all bits are used.
839 	 */
840 	return -ENFILE;
841 }
842 
843 /**
844  *	dev_alloc_name - allocate a name for a device
845  *	@dev: device
846  *	@name: name format string
847  *
848  *	Passed a format string - eg "lt%d" it will try and find a suitable
849  *	id. It scans list of devices to build up a free map, then chooses
850  *	the first empty slot. The caller must hold the dev_base or rtnl lock
851  *	while allocating the name and adding the device in order to avoid
852  *	duplicates.
853  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
854  *	Returns the number of the unit assigned or a negative errno code.
855  */
856 
857 int dev_alloc_name(struct net_device *dev, const char *name)
858 {
859 	char buf[IFNAMSIZ];
860 	struct net *net;
861 	int ret;
862 
863 	BUG_ON(!dev_net(dev));
864 	net = dev_net(dev);
865 	ret = __dev_alloc_name(net, name, buf);
866 	if (ret >= 0)
867 		strlcpy(dev->name, buf, IFNAMSIZ);
868 	return ret;
869 }
870 
871 
872 /**
873  *	dev_change_name - change name of a device
874  *	@dev: device
875  *	@newname: name (or format string) must be at least IFNAMSIZ
876  *
877  *	Change name of a device, can pass format strings "eth%d".
878  *	for wildcarding.
879  */
880 int dev_change_name(struct net_device *dev, const char *newname)
881 {
882 	char oldname[IFNAMSIZ];
883 	int err = 0;
884 	int ret;
885 	struct net *net;
886 
887 	ASSERT_RTNL();
888 	BUG_ON(!dev_net(dev));
889 
890 	net = dev_net(dev);
891 	if (dev->flags & IFF_UP)
892 		return -EBUSY;
893 
894 	if (!dev_valid_name(newname))
895 		return -EINVAL;
896 
897 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
898 		return 0;
899 
900 	memcpy(oldname, dev->name, IFNAMSIZ);
901 
902 	if (strchr(newname, '%')) {
903 		err = dev_alloc_name(dev, newname);
904 		if (err < 0)
905 			return err;
906 	}
907 	else if (__dev_get_by_name(net, newname))
908 		return -EEXIST;
909 	else
910 		strlcpy(dev->name, newname, IFNAMSIZ);
911 
912 rollback:
913 	/* For now only devices in the initial network namespace
914 	 * are in sysfs.
915 	 */
916 	if (net == &init_net) {
917 		ret = device_rename(&dev->dev, dev->name);
918 		if (ret) {
919 			memcpy(dev->name, oldname, IFNAMSIZ);
920 			return ret;
921 		}
922 	}
923 
924 	write_lock_bh(&dev_base_lock);
925 	hlist_del(&dev->name_hlist);
926 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
927 	write_unlock_bh(&dev_base_lock);
928 
929 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
930 	ret = notifier_to_errno(ret);
931 
932 	if (ret) {
933 		if (err) {
934 			printk(KERN_ERR
935 			       "%s: name change rollback failed: %d.\n",
936 			       dev->name, ret);
937 		} else {
938 			err = ret;
939 			memcpy(dev->name, oldname, IFNAMSIZ);
940 			goto rollback;
941 		}
942 	}
943 
944 	return err;
945 }
946 
947 /**
948  *	dev_set_alias - change ifalias of a device
949  *	@dev: device
950  *	@alias: name up to IFALIASZ
951  *	@len: limit of bytes to copy from info
952  *
953  *	Set ifalias for a device,
954  */
955 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
956 {
957 	ASSERT_RTNL();
958 
959 	if (len >= IFALIASZ)
960 		return -EINVAL;
961 
962 	if (!len) {
963 		if (dev->ifalias) {
964 			kfree(dev->ifalias);
965 			dev->ifalias = NULL;
966 		}
967 		return 0;
968 	}
969 
970 	dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
971 	if (!dev->ifalias)
972 		return -ENOMEM;
973 
974 	strlcpy(dev->ifalias, alias, len+1);
975 	return len;
976 }
977 
978 
979 /**
980  *	netdev_features_change - device changes features
981  *	@dev: device to cause notification
982  *
983  *	Called to indicate a device has changed features.
984  */
985 void netdev_features_change(struct net_device *dev)
986 {
987 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
988 }
989 EXPORT_SYMBOL(netdev_features_change);
990 
991 /**
992  *	netdev_state_change - device changes state
993  *	@dev: device to cause notification
994  *
995  *	Called to indicate a device has changed state. This function calls
996  *	the notifier chains for netdev_chain and sends a NEWLINK message
997  *	to the routing socket.
998  */
999 void netdev_state_change(struct net_device *dev)
1000 {
1001 	if (dev->flags & IFF_UP) {
1002 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1003 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1004 	}
1005 }
1006 
1007 void netdev_bonding_change(struct net_device *dev)
1008 {
1009 	call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1010 }
1011 EXPORT_SYMBOL(netdev_bonding_change);
1012 
1013 /**
1014  *	dev_load 	- load a network module
1015  *	@net: the applicable net namespace
1016  *	@name: name of interface
1017  *
1018  *	If a network interface is not present and the process has suitable
1019  *	privileges this function loads the module. If module loading is not
1020  *	available in this kernel then it becomes a nop.
1021  */
1022 
1023 void dev_load(struct net *net, const char *name)
1024 {
1025 	struct net_device *dev;
1026 
1027 	read_lock(&dev_base_lock);
1028 	dev = __dev_get_by_name(net, name);
1029 	read_unlock(&dev_base_lock);
1030 
1031 	if (!dev && capable(CAP_SYS_MODULE))
1032 		request_module("%s", name);
1033 }
1034 
1035 /**
1036  *	dev_open	- prepare an interface for use.
1037  *	@dev:	device to open
1038  *
1039  *	Takes a device from down to up state. The device's private open
1040  *	function is invoked and then the multicast lists are loaded. Finally
1041  *	the device is moved into the up state and a %NETDEV_UP message is
1042  *	sent to the netdev notifier chain.
1043  *
1044  *	Calling this function on an active interface is a nop. On a failure
1045  *	a negative errno code is returned.
1046  */
1047 int dev_open(struct net_device *dev)
1048 {
1049 	const struct net_device_ops *ops = dev->netdev_ops;
1050 	int ret = 0;
1051 
1052 	ASSERT_RTNL();
1053 
1054 	/*
1055 	 *	Is it already up?
1056 	 */
1057 
1058 	if (dev->flags & IFF_UP)
1059 		return 0;
1060 
1061 	/*
1062 	 *	Is it even present?
1063 	 */
1064 	if (!netif_device_present(dev))
1065 		return -ENODEV;
1066 
1067 	/*
1068 	 *	Call device private open method
1069 	 */
1070 	set_bit(__LINK_STATE_START, &dev->state);
1071 
1072 	if (ops->ndo_validate_addr)
1073 		ret = ops->ndo_validate_addr(dev);
1074 
1075 	if (!ret && ops->ndo_open)
1076 		ret = ops->ndo_open(dev);
1077 
1078 	/*
1079 	 *	If it went open OK then:
1080 	 */
1081 
1082 	if (ret)
1083 		clear_bit(__LINK_STATE_START, &dev->state);
1084 	else {
1085 		/*
1086 		 *	Set the flags.
1087 		 */
1088 		dev->flags |= IFF_UP;
1089 
1090 		/*
1091 		 *	Enable NET_DMA
1092 		 */
1093 		net_dmaengine_get();
1094 
1095 		/*
1096 		 *	Initialize multicasting status
1097 		 */
1098 		dev_set_rx_mode(dev);
1099 
1100 		/*
1101 		 *	Wakeup transmit queue engine
1102 		 */
1103 		dev_activate(dev);
1104 
1105 		/*
1106 		 *	... and announce new interface.
1107 		 */
1108 		call_netdevice_notifiers(NETDEV_UP, dev);
1109 	}
1110 
1111 	return ret;
1112 }
1113 
1114 /**
1115  *	dev_close - shutdown an interface.
1116  *	@dev: device to shutdown
1117  *
1118  *	This function moves an active device into down state. A
1119  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1120  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1121  *	chain.
1122  */
1123 int dev_close(struct net_device *dev)
1124 {
1125 	const struct net_device_ops *ops = dev->netdev_ops;
1126 	ASSERT_RTNL();
1127 
1128 	might_sleep();
1129 
1130 	if (!(dev->flags & IFF_UP))
1131 		return 0;
1132 
1133 	/*
1134 	 *	Tell people we are going down, so that they can
1135 	 *	prepare to death, when device is still operating.
1136 	 */
1137 	call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1138 
1139 	clear_bit(__LINK_STATE_START, &dev->state);
1140 
1141 	/* Synchronize to scheduled poll. We cannot touch poll list,
1142 	 * it can be even on different cpu. So just clear netif_running().
1143 	 *
1144 	 * dev->stop() will invoke napi_disable() on all of it's
1145 	 * napi_struct instances on this device.
1146 	 */
1147 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
1148 
1149 	dev_deactivate(dev);
1150 
1151 	/*
1152 	 *	Call the device specific close. This cannot fail.
1153 	 *	Only if device is UP
1154 	 *
1155 	 *	We allow it to be called even after a DETACH hot-plug
1156 	 *	event.
1157 	 */
1158 	if (ops->ndo_stop)
1159 		ops->ndo_stop(dev);
1160 
1161 	/*
1162 	 *	Device is now down.
1163 	 */
1164 
1165 	dev->flags &= ~IFF_UP;
1166 
1167 	/*
1168 	 * Tell people we are down
1169 	 */
1170 	call_netdevice_notifiers(NETDEV_DOWN, dev);
1171 
1172 	/*
1173 	 *	Shutdown NET_DMA
1174 	 */
1175 	net_dmaengine_put();
1176 
1177 	return 0;
1178 }
1179 
1180 
1181 /**
1182  *	dev_disable_lro - disable Large Receive Offload on a device
1183  *	@dev: device
1184  *
1185  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1186  *	called under RTNL.  This is needed if received packets may be
1187  *	forwarded to another interface.
1188  */
1189 void dev_disable_lro(struct net_device *dev)
1190 {
1191 	if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1192 	    dev->ethtool_ops->set_flags) {
1193 		u32 flags = dev->ethtool_ops->get_flags(dev);
1194 		if (flags & ETH_FLAG_LRO) {
1195 			flags &= ~ETH_FLAG_LRO;
1196 			dev->ethtool_ops->set_flags(dev, flags);
1197 		}
1198 	}
1199 	WARN_ON(dev->features & NETIF_F_LRO);
1200 }
1201 EXPORT_SYMBOL(dev_disable_lro);
1202 
1203 
1204 static int dev_boot_phase = 1;
1205 
1206 /*
1207  *	Device change register/unregister. These are not inline or static
1208  *	as we export them to the world.
1209  */
1210 
1211 /**
1212  *	register_netdevice_notifier - register a network notifier block
1213  *	@nb: notifier
1214  *
1215  *	Register a notifier to be called when network device events occur.
1216  *	The notifier passed is linked into the kernel structures and must
1217  *	not be reused until it has been unregistered. A negative errno code
1218  *	is returned on a failure.
1219  *
1220  * 	When registered all registration and up events are replayed
1221  *	to the new notifier to allow device to have a race free
1222  *	view of the network device list.
1223  */
1224 
1225 int register_netdevice_notifier(struct notifier_block *nb)
1226 {
1227 	struct net_device *dev;
1228 	struct net_device *last;
1229 	struct net *net;
1230 	int err;
1231 
1232 	rtnl_lock();
1233 	err = raw_notifier_chain_register(&netdev_chain, nb);
1234 	if (err)
1235 		goto unlock;
1236 	if (dev_boot_phase)
1237 		goto unlock;
1238 	for_each_net(net) {
1239 		for_each_netdev(net, dev) {
1240 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1241 			err = notifier_to_errno(err);
1242 			if (err)
1243 				goto rollback;
1244 
1245 			if (!(dev->flags & IFF_UP))
1246 				continue;
1247 
1248 			nb->notifier_call(nb, NETDEV_UP, dev);
1249 		}
1250 	}
1251 
1252 unlock:
1253 	rtnl_unlock();
1254 	return err;
1255 
1256 rollback:
1257 	last = dev;
1258 	for_each_net(net) {
1259 		for_each_netdev(net, dev) {
1260 			if (dev == last)
1261 				break;
1262 
1263 			if (dev->flags & IFF_UP) {
1264 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1265 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1266 			}
1267 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1268 		}
1269 	}
1270 
1271 	raw_notifier_chain_unregister(&netdev_chain, nb);
1272 	goto unlock;
1273 }
1274 
1275 /**
1276  *	unregister_netdevice_notifier - unregister a network notifier block
1277  *	@nb: notifier
1278  *
1279  *	Unregister a notifier previously registered by
1280  *	register_netdevice_notifier(). The notifier is unlinked into the
1281  *	kernel structures and may then be reused. A negative errno code
1282  *	is returned on a failure.
1283  */
1284 
1285 int unregister_netdevice_notifier(struct notifier_block *nb)
1286 {
1287 	int err;
1288 
1289 	rtnl_lock();
1290 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1291 	rtnl_unlock();
1292 	return err;
1293 }
1294 
1295 /**
1296  *	call_netdevice_notifiers - call all network notifier blocks
1297  *      @val: value passed unmodified to notifier function
1298  *      @dev: net_device pointer passed unmodified to notifier function
1299  *
1300  *	Call all network notifier blocks.  Parameters and return value
1301  *	are as for raw_notifier_call_chain().
1302  */
1303 
1304 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1305 {
1306 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1307 }
1308 
1309 /* When > 0 there are consumers of rx skb time stamps */
1310 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1311 
1312 void net_enable_timestamp(void)
1313 {
1314 	atomic_inc(&netstamp_needed);
1315 }
1316 
1317 void net_disable_timestamp(void)
1318 {
1319 	atomic_dec(&netstamp_needed);
1320 }
1321 
1322 static inline void net_timestamp(struct sk_buff *skb)
1323 {
1324 	if (atomic_read(&netstamp_needed))
1325 		__net_timestamp(skb);
1326 	else
1327 		skb->tstamp.tv64 = 0;
1328 }
1329 
1330 /*
1331  *	Support routine. Sends outgoing frames to any network
1332  *	taps currently in use.
1333  */
1334 
1335 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1336 {
1337 	struct packet_type *ptype;
1338 
1339 	net_timestamp(skb);
1340 
1341 	rcu_read_lock();
1342 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1343 		/* Never send packets back to the socket
1344 		 * they originated from - MvS (miquels@drinkel.ow.org)
1345 		 */
1346 		if ((ptype->dev == dev || !ptype->dev) &&
1347 		    (ptype->af_packet_priv == NULL ||
1348 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1349 			struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1350 			if (!skb2)
1351 				break;
1352 
1353 			/* skb->nh should be correctly
1354 			   set by sender, so that the second statement is
1355 			   just protection against buggy protocols.
1356 			 */
1357 			skb_reset_mac_header(skb2);
1358 
1359 			if (skb_network_header(skb2) < skb2->data ||
1360 			    skb2->network_header > skb2->tail) {
1361 				if (net_ratelimit())
1362 					printk(KERN_CRIT "protocol %04x is "
1363 					       "buggy, dev %s\n",
1364 					       skb2->protocol, dev->name);
1365 				skb_reset_network_header(skb2);
1366 			}
1367 
1368 			skb2->transport_header = skb2->network_header;
1369 			skb2->pkt_type = PACKET_OUTGOING;
1370 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1371 		}
1372 	}
1373 	rcu_read_unlock();
1374 }
1375 
1376 
1377 static inline void __netif_reschedule(struct Qdisc *q)
1378 {
1379 	struct softnet_data *sd;
1380 	unsigned long flags;
1381 
1382 	local_irq_save(flags);
1383 	sd = &__get_cpu_var(softnet_data);
1384 	q->next_sched = sd->output_queue;
1385 	sd->output_queue = q;
1386 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1387 	local_irq_restore(flags);
1388 }
1389 
1390 void __netif_schedule(struct Qdisc *q)
1391 {
1392 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1393 		__netif_reschedule(q);
1394 }
1395 EXPORT_SYMBOL(__netif_schedule);
1396 
1397 void dev_kfree_skb_irq(struct sk_buff *skb)
1398 {
1399 	if (atomic_dec_and_test(&skb->users)) {
1400 		struct softnet_data *sd;
1401 		unsigned long flags;
1402 
1403 		local_irq_save(flags);
1404 		sd = &__get_cpu_var(softnet_data);
1405 		skb->next = sd->completion_queue;
1406 		sd->completion_queue = skb;
1407 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1408 		local_irq_restore(flags);
1409 	}
1410 }
1411 EXPORT_SYMBOL(dev_kfree_skb_irq);
1412 
1413 void dev_kfree_skb_any(struct sk_buff *skb)
1414 {
1415 	if (in_irq() || irqs_disabled())
1416 		dev_kfree_skb_irq(skb);
1417 	else
1418 		dev_kfree_skb(skb);
1419 }
1420 EXPORT_SYMBOL(dev_kfree_skb_any);
1421 
1422 
1423 /**
1424  * netif_device_detach - mark device as removed
1425  * @dev: network device
1426  *
1427  * Mark device as removed from system and therefore no longer available.
1428  */
1429 void netif_device_detach(struct net_device *dev)
1430 {
1431 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1432 	    netif_running(dev)) {
1433 		netif_stop_queue(dev);
1434 	}
1435 }
1436 EXPORT_SYMBOL(netif_device_detach);
1437 
1438 /**
1439  * netif_device_attach - mark device as attached
1440  * @dev: network device
1441  *
1442  * Mark device as attached from system and restart if needed.
1443  */
1444 void netif_device_attach(struct net_device *dev)
1445 {
1446 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1447 	    netif_running(dev)) {
1448 		netif_wake_queue(dev);
1449 		__netdev_watchdog_up(dev);
1450 	}
1451 }
1452 EXPORT_SYMBOL(netif_device_attach);
1453 
1454 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1455 {
1456 	return ((features & NETIF_F_GEN_CSUM) ||
1457 		((features & NETIF_F_IP_CSUM) &&
1458 		 protocol == htons(ETH_P_IP)) ||
1459 		((features & NETIF_F_IPV6_CSUM) &&
1460 		 protocol == htons(ETH_P_IPV6)) ||
1461 		((features & NETIF_F_FCOE_CRC) &&
1462 		 protocol == htons(ETH_P_FCOE)));
1463 }
1464 
1465 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1466 {
1467 	if (can_checksum_protocol(dev->features, skb->protocol))
1468 		return true;
1469 
1470 	if (skb->protocol == htons(ETH_P_8021Q)) {
1471 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1472 		if (can_checksum_protocol(dev->features & dev->vlan_features,
1473 					  veh->h_vlan_encapsulated_proto))
1474 			return true;
1475 	}
1476 
1477 	return false;
1478 }
1479 
1480 /*
1481  * Invalidate hardware checksum when packet is to be mangled, and
1482  * complete checksum manually on outgoing path.
1483  */
1484 int skb_checksum_help(struct sk_buff *skb)
1485 {
1486 	__wsum csum;
1487 	int ret = 0, offset;
1488 
1489 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1490 		goto out_set_summed;
1491 
1492 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1493 		/* Let GSO fix up the checksum. */
1494 		goto out_set_summed;
1495 	}
1496 
1497 	offset = skb->csum_start - skb_headroom(skb);
1498 	BUG_ON(offset >= skb_headlen(skb));
1499 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1500 
1501 	offset += skb->csum_offset;
1502 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1503 
1504 	if (skb_cloned(skb) &&
1505 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1506 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1507 		if (ret)
1508 			goto out;
1509 	}
1510 
1511 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1512 out_set_summed:
1513 	skb->ip_summed = CHECKSUM_NONE;
1514 out:
1515 	return ret;
1516 }
1517 
1518 /**
1519  *	skb_gso_segment - Perform segmentation on skb.
1520  *	@skb: buffer to segment
1521  *	@features: features for the output path (see dev->features)
1522  *
1523  *	This function segments the given skb and returns a list of segments.
1524  *
1525  *	It may return NULL if the skb requires no segmentation.  This is
1526  *	only possible when GSO is used for verifying header integrity.
1527  */
1528 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1529 {
1530 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1531 	struct packet_type *ptype;
1532 	__be16 type = skb->protocol;
1533 	int err;
1534 
1535 	skb_reset_mac_header(skb);
1536 	skb->mac_len = skb->network_header - skb->mac_header;
1537 	__skb_pull(skb, skb->mac_len);
1538 
1539 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1540 		struct net_device *dev = skb->dev;
1541 		struct ethtool_drvinfo info = {};
1542 
1543 		if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1544 			dev->ethtool_ops->get_drvinfo(dev, &info);
1545 
1546 		WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1547 			"ip_summed=%d",
1548 		     info.driver, dev ? dev->features : 0L,
1549 		     skb->sk ? skb->sk->sk_route_caps : 0L,
1550 		     skb->len, skb->data_len, skb->ip_summed);
1551 
1552 		if (skb_header_cloned(skb) &&
1553 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1554 			return ERR_PTR(err);
1555 	}
1556 
1557 	rcu_read_lock();
1558 	list_for_each_entry_rcu(ptype,
1559 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1560 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1561 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1562 				err = ptype->gso_send_check(skb);
1563 				segs = ERR_PTR(err);
1564 				if (err || skb_gso_ok(skb, features))
1565 					break;
1566 				__skb_push(skb, (skb->data -
1567 						 skb_network_header(skb)));
1568 			}
1569 			segs = ptype->gso_segment(skb, features);
1570 			break;
1571 		}
1572 	}
1573 	rcu_read_unlock();
1574 
1575 	__skb_push(skb, skb->data - skb_mac_header(skb));
1576 
1577 	return segs;
1578 }
1579 
1580 EXPORT_SYMBOL(skb_gso_segment);
1581 
1582 /* Take action when hardware reception checksum errors are detected. */
1583 #ifdef CONFIG_BUG
1584 void netdev_rx_csum_fault(struct net_device *dev)
1585 {
1586 	if (net_ratelimit()) {
1587 		printk(KERN_ERR "%s: hw csum failure.\n",
1588 			dev ? dev->name : "<unknown>");
1589 		dump_stack();
1590 	}
1591 }
1592 EXPORT_SYMBOL(netdev_rx_csum_fault);
1593 #endif
1594 
1595 /* Actually, we should eliminate this check as soon as we know, that:
1596  * 1. IOMMU is present and allows to map all the memory.
1597  * 2. No high memory really exists on this machine.
1598  */
1599 
1600 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1601 {
1602 #ifdef CONFIG_HIGHMEM
1603 	int i;
1604 
1605 	if (dev->features & NETIF_F_HIGHDMA)
1606 		return 0;
1607 
1608 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1609 		if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1610 			return 1;
1611 
1612 #endif
1613 	return 0;
1614 }
1615 
1616 struct dev_gso_cb {
1617 	void (*destructor)(struct sk_buff *skb);
1618 };
1619 
1620 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1621 
1622 static void dev_gso_skb_destructor(struct sk_buff *skb)
1623 {
1624 	struct dev_gso_cb *cb;
1625 
1626 	do {
1627 		struct sk_buff *nskb = skb->next;
1628 
1629 		skb->next = nskb->next;
1630 		nskb->next = NULL;
1631 		kfree_skb(nskb);
1632 	} while (skb->next);
1633 
1634 	cb = DEV_GSO_CB(skb);
1635 	if (cb->destructor)
1636 		cb->destructor(skb);
1637 }
1638 
1639 /**
1640  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1641  *	@skb: buffer to segment
1642  *
1643  *	This function segments the given skb and stores the list of segments
1644  *	in skb->next.
1645  */
1646 static int dev_gso_segment(struct sk_buff *skb)
1647 {
1648 	struct net_device *dev = skb->dev;
1649 	struct sk_buff *segs;
1650 	int features = dev->features & ~(illegal_highdma(dev, skb) ?
1651 					 NETIF_F_SG : 0);
1652 
1653 	segs = skb_gso_segment(skb, features);
1654 
1655 	/* Verifying header integrity only. */
1656 	if (!segs)
1657 		return 0;
1658 
1659 	if (IS_ERR(segs))
1660 		return PTR_ERR(segs);
1661 
1662 	skb->next = segs;
1663 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1664 	skb->destructor = dev_gso_skb_destructor;
1665 
1666 	return 0;
1667 }
1668 
1669 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1670 			struct netdev_queue *txq)
1671 {
1672 	const struct net_device_ops *ops = dev->netdev_ops;
1673 	int rc;
1674 
1675 	if (likely(!skb->next)) {
1676 		if (!list_empty(&ptype_all))
1677 			dev_queue_xmit_nit(skb, dev);
1678 
1679 		if (netif_needs_gso(dev, skb)) {
1680 			if (unlikely(dev_gso_segment(skb)))
1681 				goto out_kfree_skb;
1682 			if (skb->next)
1683 				goto gso;
1684 		}
1685 
1686 		rc = ops->ndo_start_xmit(skb, dev);
1687 		/*
1688 		 * TODO: if skb_orphan() was called by
1689 		 * dev->hard_start_xmit() (for example, the unmodified
1690 		 * igb driver does that; bnx2 doesn't), then
1691 		 * skb_tx_software_timestamp() will be unable to send
1692 		 * back the time stamp.
1693 		 *
1694 		 * How can this be prevented? Always create another
1695 		 * reference to the socket before calling
1696 		 * dev->hard_start_xmit()? Prevent that skb_orphan()
1697 		 * does anything in dev->hard_start_xmit() by clearing
1698 		 * the skb destructor before the call and restoring it
1699 		 * afterwards, then doing the skb_orphan() ourselves?
1700 		 */
1701 		return rc;
1702 	}
1703 
1704 gso:
1705 	do {
1706 		struct sk_buff *nskb = skb->next;
1707 
1708 		skb->next = nskb->next;
1709 		nskb->next = NULL;
1710 		rc = ops->ndo_start_xmit(nskb, dev);
1711 		if (unlikely(rc)) {
1712 			nskb->next = skb->next;
1713 			skb->next = nskb;
1714 			return rc;
1715 		}
1716 		if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1717 			return NETDEV_TX_BUSY;
1718 	} while (skb->next);
1719 
1720 	skb->destructor = DEV_GSO_CB(skb)->destructor;
1721 
1722 out_kfree_skb:
1723 	kfree_skb(skb);
1724 	return 0;
1725 }
1726 
1727 static u32 skb_tx_hashrnd;
1728 
1729 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1730 {
1731 	u32 hash;
1732 
1733 	if (skb_rx_queue_recorded(skb)) {
1734 		hash = skb_get_rx_queue(skb);
1735 	} else if (skb->sk && skb->sk->sk_hash) {
1736 		hash = skb->sk->sk_hash;
1737 	} else
1738 		hash = skb->protocol;
1739 
1740 	hash = jhash_1word(hash, skb_tx_hashrnd);
1741 
1742 	return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1743 }
1744 EXPORT_SYMBOL(skb_tx_hash);
1745 
1746 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1747 					struct sk_buff *skb)
1748 {
1749 	const struct net_device_ops *ops = dev->netdev_ops;
1750 	u16 queue_index = 0;
1751 
1752 	if (ops->ndo_select_queue)
1753 		queue_index = ops->ndo_select_queue(dev, skb);
1754 	else if (dev->real_num_tx_queues > 1)
1755 		queue_index = skb_tx_hash(dev, skb);
1756 
1757 	skb_set_queue_mapping(skb, queue_index);
1758 	return netdev_get_tx_queue(dev, queue_index);
1759 }
1760 
1761 /**
1762  *	dev_queue_xmit - transmit a buffer
1763  *	@skb: buffer to transmit
1764  *
1765  *	Queue a buffer for transmission to a network device. The caller must
1766  *	have set the device and priority and built the buffer before calling
1767  *	this function. The function can be called from an interrupt.
1768  *
1769  *	A negative errno code is returned on a failure. A success does not
1770  *	guarantee the frame will be transmitted as it may be dropped due
1771  *	to congestion or traffic shaping.
1772  *
1773  * -----------------------------------------------------------------------------------
1774  *      I notice this method can also return errors from the queue disciplines,
1775  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
1776  *      be positive.
1777  *
1778  *      Regardless of the return value, the skb is consumed, so it is currently
1779  *      difficult to retry a send to this method.  (You can bump the ref count
1780  *      before sending to hold a reference for retry if you are careful.)
1781  *
1782  *      When calling this method, interrupts MUST be enabled.  This is because
1783  *      the BH enable code must have IRQs enabled so that it will not deadlock.
1784  *          --BLG
1785  */
1786 int dev_queue_xmit(struct sk_buff *skb)
1787 {
1788 	struct net_device *dev = skb->dev;
1789 	struct netdev_queue *txq;
1790 	struct Qdisc *q;
1791 	int rc = -ENOMEM;
1792 
1793 	/* GSO will handle the following emulations directly. */
1794 	if (netif_needs_gso(dev, skb))
1795 		goto gso;
1796 
1797 	if (skb_shinfo(skb)->frag_list &&
1798 	    !(dev->features & NETIF_F_FRAGLIST) &&
1799 	    __skb_linearize(skb))
1800 		goto out_kfree_skb;
1801 
1802 	/* Fragmented skb is linearized if device does not support SG,
1803 	 * or if at least one of fragments is in highmem and device
1804 	 * does not support DMA from it.
1805 	 */
1806 	if (skb_shinfo(skb)->nr_frags &&
1807 	    (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1808 	    __skb_linearize(skb))
1809 		goto out_kfree_skb;
1810 
1811 	/* If packet is not checksummed and device does not support
1812 	 * checksumming for this protocol, complete checksumming here.
1813 	 */
1814 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1815 		skb_set_transport_header(skb, skb->csum_start -
1816 					      skb_headroom(skb));
1817 		if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1818 			goto out_kfree_skb;
1819 	}
1820 
1821 gso:
1822 	/* Disable soft irqs for various locks below. Also
1823 	 * stops preemption for RCU.
1824 	 */
1825 	rcu_read_lock_bh();
1826 
1827 	txq = dev_pick_tx(dev, skb);
1828 	q = rcu_dereference(txq->qdisc);
1829 
1830 #ifdef CONFIG_NET_CLS_ACT
1831 	skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1832 #endif
1833 	if (q->enqueue) {
1834 		spinlock_t *root_lock = qdisc_lock(q);
1835 
1836 		spin_lock(root_lock);
1837 
1838 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1839 			kfree_skb(skb);
1840 			rc = NET_XMIT_DROP;
1841 		} else {
1842 			rc = qdisc_enqueue_root(skb, q);
1843 			qdisc_run(q);
1844 		}
1845 		spin_unlock(root_lock);
1846 
1847 		goto out;
1848 	}
1849 
1850 	/* The device has no queue. Common case for software devices:
1851 	   loopback, all the sorts of tunnels...
1852 
1853 	   Really, it is unlikely that netif_tx_lock protection is necessary
1854 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
1855 	   counters.)
1856 	   However, it is possible, that they rely on protection
1857 	   made by us here.
1858 
1859 	   Check this and shot the lock. It is not prone from deadlocks.
1860 	   Either shot noqueue qdisc, it is even simpler 8)
1861 	 */
1862 	if (dev->flags & IFF_UP) {
1863 		int cpu = smp_processor_id(); /* ok because BHs are off */
1864 
1865 		if (txq->xmit_lock_owner != cpu) {
1866 
1867 			HARD_TX_LOCK(dev, txq, cpu);
1868 
1869 			if (!netif_tx_queue_stopped(txq)) {
1870 				rc = 0;
1871 				if (!dev_hard_start_xmit(skb, dev, txq)) {
1872 					HARD_TX_UNLOCK(dev, txq);
1873 					goto out;
1874 				}
1875 			}
1876 			HARD_TX_UNLOCK(dev, txq);
1877 			if (net_ratelimit())
1878 				printk(KERN_CRIT "Virtual device %s asks to "
1879 				       "queue packet!\n", dev->name);
1880 		} else {
1881 			/* Recursion is detected! It is possible,
1882 			 * unfortunately */
1883 			if (net_ratelimit())
1884 				printk(KERN_CRIT "Dead loop on virtual device "
1885 				       "%s, fix it urgently!\n", dev->name);
1886 		}
1887 	}
1888 
1889 	rc = -ENETDOWN;
1890 	rcu_read_unlock_bh();
1891 
1892 out_kfree_skb:
1893 	kfree_skb(skb);
1894 	return rc;
1895 out:
1896 	rcu_read_unlock_bh();
1897 	return rc;
1898 }
1899 
1900 
1901 /*=======================================================================
1902 			Receiver routines
1903   =======================================================================*/
1904 
1905 int netdev_max_backlog __read_mostly = 1000;
1906 int netdev_budget __read_mostly = 300;
1907 int weight_p __read_mostly = 64;            /* old backlog weight */
1908 
1909 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1910 
1911 
1912 /**
1913  *	netif_rx	-	post buffer to the network code
1914  *	@skb: buffer to post
1915  *
1916  *	This function receives a packet from a device driver and queues it for
1917  *	the upper (protocol) levels to process.  It always succeeds. The buffer
1918  *	may be dropped during processing for congestion control or by the
1919  *	protocol layers.
1920  *
1921  *	return values:
1922  *	NET_RX_SUCCESS	(no congestion)
1923  *	NET_RX_DROP     (packet was dropped)
1924  *
1925  */
1926 
1927 int netif_rx(struct sk_buff *skb)
1928 {
1929 	struct softnet_data *queue;
1930 	unsigned long flags;
1931 
1932 	/* if netpoll wants it, pretend we never saw it */
1933 	if (netpoll_rx(skb))
1934 		return NET_RX_DROP;
1935 
1936 	if (!skb->tstamp.tv64)
1937 		net_timestamp(skb);
1938 
1939 	/*
1940 	 * The code is rearranged so that the path is the most
1941 	 * short when CPU is congested, but is still operating.
1942 	 */
1943 	local_irq_save(flags);
1944 	queue = &__get_cpu_var(softnet_data);
1945 
1946 	__get_cpu_var(netdev_rx_stat).total++;
1947 	if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1948 		if (queue->input_pkt_queue.qlen) {
1949 enqueue:
1950 			__skb_queue_tail(&queue->input_pkt_queue, skb);
1951 			local_irq_restore(flags);
1952 			return NET_RX_SUCCESS;
1953 		}
1954 
1955 		napi_schedule(&queue->backlog);
1956 		goto enqueue;
1957 	}
1958 
1959 	__get_cpu_var(netdev_rx_stat).dropped++;
1960 	local_irq_restore(flags);
1961 
1962 	kfree_skb(skb);
1963 	return NET_RX_DROP;
1964 }
1965 
1966 int netif_rx_ni(struct sk_buff *skb)
1967 {
1968 	int err;
1969 
1970 	preempt_disable();
1971 	err = netif_rx(skb);
1972 	if (local_softirq_pending())
1973 		do_softirq();
1974 	preempt_enable();
1975 
1976 	return err;
1977 }
1978 
1979 EXPORT_SYMBOL(netif_rx_ni);
1980 
1981 static void net_tx_action(struct softirq_action *h)
1982 {
1983 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
1984 
1985 	if (sd->completion_queue) {
1986 		struct sk_buff *clist;
1987 
1988 		local_irq_disable();
1989 		clist = sd->completion_queue;
1990 		sd->completion_queue = NULL;
1991 		local_irq_enable();
1992 
1993 		while (clist) {
1994 			struct sk_buff *skb = clist;
1995 			clist = clist->next;
1996 
1997 			WARN_ON(atomic_read(&skb->users));
1998 			__kfree_skb(skb);
1999 		}
2000 	}
2001 
2002 	if (sd->output_queue) {
2003 		struct Qdisc *head;
2004 
2005 		local_irq_disable();
2006 		head = sd->output_queue;
2007 		sd->output_queue = NULL;
2008 		local_irq_enable();
2009 
2010 		while (head) {
2011 			struct Qdisc *q = head;
2012 			spinlock_t *root_lock;
2013 
2014 			head = head->next_sched;
2015 
2016 			root_lock = qdisc_lock(q);
2017 			if (spin_trylock(root_lock)) {
2018 				smp_mb__before_clear_bit();
2019 				clear_bit(__QDISC_STATE_SCHED,
2020 					  &q->state);
2021 				qdisc_run(q);
2022 				spin_unlock(root_lock);
2023 			} else {
2024 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
2025 					      &q->state)) {
2026 					__netif_reschedule(q);
2027 				} else {
2028 					smp_mb__before_clear_bit();
2029 					clear_bit(__QDISC_STATE_SCHED,
2030 						  &q->state);
2031 				}
2032 			}
2033 		}
2034 	}
2035 }
2036 
2037 static inline int deliver_skb(struct sk_buff *skb,
2038 			      struct packet_type *pt_prev,
2039 			      struct net_device *orig_dev)
2040 {
2041 	atomic_inc(&skb->users);
2042 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2043 }
2044 
2045 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2046 /* These hooks defined here for ATM */
2047 struct net_bridge;
2048 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2049 						unsigned char *addr);
2050 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2051 
2052 /*
2053  * If bridge module is loaded call bridging hook.
2054  *  returns NULL if packet was consumed.
2055  */
2056 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2057 					struct sk_buff *skb) __read_mostly;
2058 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2059 					    struct packet_type **pt_prev, int *ret,
2060 					    struct net_device *orig_dev)
2061 {
2062 	struct net_bridge_port *port;
2063 
2064 	if (skb->pkt_type == PACKET_LOOPBACK ||
2065 	    (port = rcu_dereference(skb->dev->br_port)) == NULL)
2066 		return skb;
2067 
2068 	if (*pt_prev) {
2069 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2070 		*pt_prev = NULL;
2071 	}
2072 
2073 	return br_handle_frame_hook(port, skb);
2074 }
2075 #else
2076 #define handle_bridge(skb, pt_prev, ret, orig_dev)	(skb)
2077 #endif
2078 
2079 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2080 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2081 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2082 
2083 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2084 					     struct packet_type **pt_prev,
2085 					     int *ret,
2086 					     struct net_device *orig_dev)
2087 {
2088 	if (skb->dev->macvlan_port == NULL)
2089 		return skb;
2090 
2091 	if (*pt_prev) {
2092 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2093 		*pt_prev = NULL;
2094 	}
2095 	return macvlan_handle_frame_hook(skb);
2096 }
2097 #else
2098 #define handle_macvlan(skb, pt_prev, ret, orig_dev)	(skb)
2099 #endif
2100 
2101 #ifdef CONFIG_NET_CLS_ACT
2102 /* TODO: Maybe we should just force sch_ingress to be compiled in
2103  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2104  * a compare and 2 stores extra right now if we dont have it on
2105  * but have CONFIG_NET_CLS_ACT
2106  * NOTE: This doesnt stop any functionality; if you dont have
2107  * the ingress scheduler, you just cant add policies on ingress.
2108  *
2109  */
2110 static int ing_filter(struct sk_buff *skb)
2111 {
2112 	struct net_device *dev = skb->dev;
2113 	u32 ttl = G_TC_RTTL(skb->tc_verd);
2114 	struct netdev_queue *rxq;
2115 	int result = TC_ACT_OK;
2116 	struct Qdisc *q;
2117 
2118 	if (MAX_RED_LOOP < ttl++) {
2119 		printk(KERN_WARNING
2120 		       "Redir loop detected Dropping packet (%d->%d)\n",
2121 		       skb->iif, dev->ifindex);
2122 		return TC_ACT_SHOT;
2123 	}
2124 
2125 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2126 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2127 
2128 	rxq = &dev->rx_queue;
2129 
2130 	q = rxq->qdisc;
2131 	if (q != &noop_qdisc) {
2132 		spin_lock(qdisc_lock(q));
2133 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2134 			result = qdisc_enqueue_root(skb, q);
2135 		spin_unlock(qdisc_lock(q));
2136 	}
2137 
2138 	return result;
2139 }
2140 
2141 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2142 					 struct packet_type **pt_prev,
2143 					 int *ret, struct net_device *orig_dev)
2144 {
2145 	if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2146 		goto out;
2147 
2148 	if (*pt_prev) {
2149 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2150 		*pt_prev = NULL;
2151 	} else {
2152 		/* Huh? Why does turning on AF_PACKET affect this? */
2153 		skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2154 	}
2155 
2156 	switch (ing_filter(skb)) {
2157 	case TC_ACT_SHOT:
2158 	case TC_ACT_STOLEN:
2159 		kfree_skb(skb);
2160 		return NULL;
2161 	}
2162 
2163 out:
2164 	skb->tc_verd = 0;
2165 	return skb;
2166 }
2167 #endif
2168 
2169 /*
2170  * 	netif_nit_deliver - deliver received packets to network taps
2171  * 	@skb: buffer
2172  *
2173  * 	This function is used to deliver incoming packets to network
2174  * 	taps. It should be used when the normal netif_receive_skb path
2175  * 	is bypassed, for example because of VLAN acceleration.
2176  */
2177 void netif_nit_deliver(struct sk_buff *skb)
2178 {
2179 	struct packet_type *ptype;
2180 
2181 	if (list_empty(&ptype_all))
2182 		return;
2183 
2184 	skb_reset_network_header(skb);
2185 	skb_reset_transport_header(skb);
2186 	skb->mac_len = skb->network_header - skb->mac_header;
2187 
2188 	rcu_read_lock();
2189 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2190 		if (!ptype->dev || ptype->dev == skb->dev)
2191 			deliver_skb(skb, ptype, skb->dev);
2192 	}
2193 	rcu_read_unlock();
2194 }
2195 
2196 /**
2197  *	netif_receive_skb - process receive buffer from network
2198  *	@skb: buffer to process
2199  *
2200  *	netif_receive_skb() is the main receive data processing function.
2201  *	It always succeeds. The buffer may be dropped during processing
2202  *	for congestion control or by the protocol layers.
2203  *
2204  *	This function may only be called from softirq context and interrupts
2205  *	should be enabled.
2206  *
2207  *	Return values (usually ignored):
2208  *	NET_RX_SUCCESS: no congestion
2209  *	NET_RX_DROP: packet was dropped
2210  */
2211 int netif_receive_skb(struct sk_buff *skb)
2212 {
2213 	struct packet_type *ptype, *pt_prev;
2214 	struct net_device *orig_dev;
2215 	struct net_device *null_or_orig;
2216 	int ret = NET_RX_DROP;
2217 	__be16 type;
2218 
2219 	if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2220 		return NET_RX_SUCCESS;
2221 
2222 	/* if we've gotten here through NAPI, check netpoll */
2223 	if (netpoll_receive_skb(skb))
2224 		return NET_RX_DROP;
2225 
2226 	if (!skb->tstamp.tv64)
2227 		net_timestamp(skb);
2228 
2229 	if (!skb->iif)
2230 		skb->iif = skb->dev->ifindex;
2231 
2232 	null_or_orig = NULL;
2233 	orig_dev = skb->dev;
2234 	if (orig_dev->master) {
2235 		if (skb_bond_should_drop(skb))
2236 			null_or_orig = orig_dev; /* deliver only exact match */
2237 		else
2238 			skb->dev = orig_dev->master;
2239 	}
2240 
2241 	__get_cpu_var(netdev_rx_stat).total++;
2242 
2243 	skb_reset_network_header(skb);
2244 	skb_reset_transport_header(skb);
2245 	skb->mac_len = skb->network_header - skb->mac_header;
2246 
2247 	pt_prev = NULL;
2248 
2249 	rcu_read_lock();
2250 
2251 #ifdef CONFIG_NET_CLS_ACT
2252 	if (skb->tc_verd & TC_NCLS) {
2253 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2254 		goto ncls;
2255 	}
2256 #endif
2257 
2258 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2259 		if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2260 		    ptype->dev == orig_dev) {
2261 			if (pt_prev)
2262 				ret = deliver_skb(skb, pt_prev, orig_dev);
2263 			pt_prev = ptype;
2264 		}
2265 	}
2266 
2267 #ifdef CONFIG_NET_CLS_ACT
2268 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2269 	if (!skb)
2270 		goto out;
2271 ncls:
2272 #endif
2273 
2274 	skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2275 	if (!skb)
2276 		goto out;
2277 	skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2278 	if (!skb)
2279 		goto out;
2280 
2281 	skb_orphan(skb);
2282 
2283 	type = skb->protocol;
2284 	list_for_each_entry_rcu(ptype,
2285 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2286 		if (ptype->type == type &&
2287 		    (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2288 		     ptype->dev == orig_dev)) {
2289 			if (pt_prev)
2290 				ret = deliver_skb(skb, pt_prev, orig_dev);
2291 			pt_prev = ptype;
2292 		}
2293 	}
2294 
2295 	if (pt_prev) {
2296 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2297 	} else {
2298 		kfree_skb(skb);
2299 		/* Jamal, now you will not able to escape explaining
2300 		 * me how you were going to use this. :-)
2301 		 */
2302 		ret = NET_RX_DROP;
2303 	}
2304 
2305 out:
2306 	rcu_read_unlock();
2307 	return ret;
2308 }
2309 
2310 /* Network device is going away, flush any packets still pending  */
2311 static void flush_backlog(void *arg)
2312 {
2313 	struct net_device *dev = arg;
2314 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2315 	struct sk_buff *skb, *tmp;
2316 
2317 	skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2318 		if (skb->dev == dev) {
2319 			__skb_unlink(skb, &queue->input_pkt_queue);
2320 			kfree_skb(skb);
2321 		}
2322 }
2323 
2324 static int napi_gro_complete(struct sk_buff *skb)
2325 {
2326 	struct packet_type *ptype;
2327 	__be16 type = skb->protocol;
2328 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2329 	int err = -ENOENT;
2330 
2331 	if (NAPI_GRO_CB(skb)->count == 1)
2332 		goto out;
2333 
2334 	rcu_read_lock();
2335 	list_for_each_entry_rcu(ptype, head, list) {
2336 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2337 			continue;
2338 
2339 		err = ptype->gro_complete(skb);
2340 		break;
2341 	}
2342 	rcu_read_unlock();
2343 
2344 	if (err) {
2345 		WARN_ON(&ptype->list == head);
2346 		kfree_skb(skb);
2347 		return NET_RX_SUCCESS;
2348 	}
2349 
2350 out:
2351 	skb_shinfo(skb)->gso_size = 0;
2352 	return netif_receive_skb(skb);
2353 }
2354 
2355 void napi_gro_flush(struct napi_struct *napi)
2356 {
2357 	struct sk_buff *skb, *next;
2358 
2359 	for (skb = napi->gro_list; skb; skb = next) {
2360 		next = skb->next;
2361 		skb->next = NULL;
2362 		napi_gro_complete(skb);
2363 	}
2364 
2365 	napi->gro_count = 0;
2366 	napi->gro_list = NULL;
2367 }
2368 EXPORT_SYMBOL(napi_gro_flush);
2369 
2370 void *skb_gro_header(struct sk_buff *skb, unsigned int hlen)
2371 {
2372 	unsigned int offset = skb_gro_offset(skb);
2373 
2374 	hlen += offset;
2375 	if (hlen <= skb_headlen(skb))
2376 		return skb->data + offset;
2377 
2378 	if (unlikely(!skb_shinfo(skb)->nr_frags ||
2379 		     skb_shinfo(skb)->frags[0].size <=
2380 		     hlen - skb_headlen(skb) ||
2381 		     PageHighMem(skb_shinfo(skb)->frags[0].page)))
2382 		return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
2383 
2384 	return page_address(skb_shinfo(skb)->frags[0].page) +
2385 	       skb_shinfo(skb)->frags[0].page_offset +
2386 	       offset - skb_headlen(skb);
2387 }
2388 EXPORT_SYMBOL(skb_gro_header);
2389 
2390 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2391 {
2392 	struct sk_buff **pp = NULL;
2393 	struct packet_type *ptype;
2394 	__be16 type = skb->protocol;
2395 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2396 	int same_flow;
2397 	int mac_len;
2398 	int ret;
2399 
2400 	if (!(skb->dev->features & NETIF_F_GRO))
2401 		goto normal;
2402 
2403 	if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list)
2404 		goto normal;
2405 
2406 	rcu_read_lock();
2407 	list_for_each_entry_rcu(ptype, head, list) {
2408 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2409 			continue;
2410 
2411 		skb_set_network_header(skb, skb_gro_offset(skb));
2412 		mac_len = skb->network_header - skb->mac_header;
2413 		skb->mac_len = mac_len;
2414 		NAPI_GRO_CB(skb)->same_flow = 0;
2415 		NAPI_GRO_CB(skb)->flush = 0;
2416 		NAPI_GRO_CB(skb)->free = 0;
2417 
2418 		pp = ptype->gro_receive(&napi->gro_list, skb);
2419 		break;
2420 	}
2421 	rcu_read_unlock();
2422 
2423 	if (&ptype->list == head)
2424 		goto normal;
2425 
2426 	same_flow = NAPI_GRO_CB(skb)->same_flow;
2427 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2428 
2429 	if (pp) {
2430 		struct sk_buff *nskb = *pp;
2431 
2432 		*pp = nskb->next;
2433 		nskb->next = NULL;
2434 		napi_gro_complete(nskb);
2435 		napi->gro_count--;
2436 	}
2437 
2438 	if (same_flow)
2439 		goto ok;
2440 
2441 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2442 		goto normal;
2443 
2444 	napi->gro_count++;
2445 	NAPI_GRO_CB(skb)->count = 1;
2446 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2447 	skb->next = napi->gro_list;
2448 	napi->gro_list = skb;
2449 	ret = GRO_HELD;
2450 
2451 pull:
2452 	if (unlikely(!pskb_may_pull(skb, skb_gro_offset(skb)))) {
2453 		if (napi->gro_list == skb)
2454 			napi->gro_list = skb->next;
2455 		ret = GRO_DROP;
2456 	}
2457 
2458 ok:
2459 	return ret;
2460 
2461 normal:
2462 	ret = GRO_NORMAL;
2463 	goto pull;
2464 }
2465 EXPORT_SYMBOL(dev_gro_receive);
2466 
2467 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2468 {
2469 	struct sk_buff *p;
2470 
2471 	if (netpoll_rx_on(skb))
2472 		return GRO_NORMAL;
2473 
2474 	for (p = napi->gro_list; p; p = p->next) {
2475 		NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev)
2476 			&& !compare_ether_header(skb_mac_header(p),
2477 						 skb_gro_mac_header(skb));
2478 		NAPI_GRO_CB(p)->flush = 0;
2479 	}
2480 
2481 	return dev_gro_receive(napi, skb);
2482 }
2483 
2484 int napi_skb_finish(int ret, struct sk_buff *skb)
2485 {
2486 	int err = NET_RX_SUCCESS;
2487 
2488 	switch (ret) {
2489 	case GRO_NORMAL:
2490 		return netif_receive_skb(skb);
2491 
2492 	case GRO_DROP:
2493 		err = NET_RX_DROP;
2494 		/* fall through */
2495 
2496 	case GRO_MERGED_FREE:
2497 		kfree_skb(skb);
2498 		break;
2499 	}
2500 
2501 	return err;
2502 }
2503 EXPORT_SYMBOL(napi_skb_finish);
2504 
2505 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2506 {
2507 	skb_gro_reset_offset(skb);
2508 
2509 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2510 }
2511 EXPORT_SYMBOL(napi_gro_receive);
2512 
2513 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2514 {
2515 	__skb_pull(skb, skb_headlen(skb));
2516 	skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2517 
2518 	napi->skb = skb;
2519 }
2520 EXPORT_SYMBOL(napi_reuse_skb);
2521 
2522 struct sk_buff *napi_fraginfo_skb(struct napi_struct *napi,
2523 				  struct napi_gro_fraginfo *info)
2524 {
2525 	struct net_device *dev = napi->dev;
2526 	struct sk_buff *skb = napi->skb;
2527 	struct ethhdr *eth;
2528 	skb_frag_t *frag;
2529 	int i;
2530 
2531 	napi->skb = NULL;
2532 
2533 	if (!skb) {
2534 		skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2535 		if (!skb)
2536 			goto out;
2537 
2538 		skb_reserve(skb, NET_IP_ALIGN);
2539 	}
2540 
2541 	BUG_ON(info->nr_frags > MAX_SKB_FRAGS);
2542 	frag = &info->frags[info->nr_frags - 1];
2543 
2544 	for (i = skb_shinfo(skb)->nr_frags; i < info->nr_frags; i++) {
2545 		skb_fill_page_desc(skb, i, frag->page, frag->page_offset,
2546 				   frag->size);
2547 		frag++;
2548 	}
2549 	skb_shinfo(skb)->nr_frags = info->nr_frags;
2550 
2551 	skb->data_len = info->len;
2552 	skb->len += info->len;
2553 	skb->truesize += info->len;
2554 
2555 	skb_reset_mac_header(skb);
2556 	skb_gro_reset_offset(skb);
2557 
2558 	eth = skb_gro_header(skb, sizeof(*eth));
2559 	if (!eth) {
2560 		napi_reuse_skb(napi, skb);
2561 		skb = NULL;
2562 		goto out;
2563 	}
2564 
2565 	skb_gro_pull(skb, sizeof(*eth));
2566 
2567 	/*
2568 	 * This works because the only protocols we care about don't require
2569 	 * special handling.  We'll fix it up properly at the end.
2570 	 */
2571 	skb->protocol = eth->h_proto;
2572 
2573 	skb->ip_summed = info->ip_summed;
2574 	skb->csum = info->csum;
2575 
2576 out:
2577 	return skb;
2578 }
2579 EXPORT_SYMBOL(napi_fraginfo_skb);
2580 
2581 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret)
2582 {
2583 	int err = NET_RX_SUCCESS;
2584 
2585 	switch (ret) {
2586 	case GRO_NORMAL:
2587 	case GRO_HELD:
2588 		skb->protocol = eth_type_trans(skb, napi->dev);
2589 
2590 		if (ret == GRO_NORMAL)
2591 			return netif_receive_skb(skb);
2592 
2593 		skb_gro_pull(skb, -ETH_HLEN);
2594 		break;
2595 
2596 	case GRO_DROP:
2597 		err = NET_RX_DROP;
2598 		/* fall through */
2599 
2600 	case GRO_MERGED_FREE:
2601 		napi_reuse_skb(napi, skb);
2602 		break;
2603 	}
2604 
2605 	return err;
2606 }
2607 EXPORT_SYMBOL(napi_frags_finish);
2608 
2609 int napi_gro_frags(struct napi_struct *napi, struct napi_gro_fraginfo *info)
2610 {
2611 	struct sk_buff *skb = napi_fraginfo_skb(napi, info);
2612 
2613 	if (!skb)
2614 		return NET_RX_DROP;
2615 
2616 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2617 }
2618 EXPORT_SYMBOL(napi_gro_frags);
2619 
2620 static int process_backlog(struct napi_struct *napi, int quota)
2621 {
2622 	int work = 0;
2623 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2624 	unsigned long start_time = jiffies;
2625 
2626 	napi->weight = weight_p;
2627 	do {
2628 		struct sk_buff *skb;
2629 
2630 		local_irq_disable();
2631 		skb = __skb_dequeue(&queue->input_pkt_queue);
2632 		if (!skb) {
2633 			__napi_complete(napi);
2634 			local_irq_enable();
2635 			break;
2636 		}
2637 		local_irq_enable();
2638 
2639 		netif_receive_skb(skb);
2640 	} while (++work < quota && jiffies == start_time);
2641 
2642 	return work;
2643 }
2644 
2645 /**
2646  * __napi_schedule - schedule for receive
2647  * @n: entry to schedule
2648  *
2649  * The entry's receive function will be scheduled to run
2650  */
2651 void __napi_schedule(struct napi_struct *n)
2652 {
2653 	unsigned long flags;
2654 
2655 	local_irq_save(flags);
2656 	list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2657 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2658 	local_irq_restore(flags);
2659 }
2660 EXPORT_SYMBOL(__napi_schedule);
2661 
2662 void __napi_complete(struct napi_struct *n)
2663 {
2664 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2665 	BUG_ON(n->gro_list);
2666 
2667 	list_del(&n->poll_list);
2668 	smp_mb__before_clear_bit();
2669 	clear_bit(NAPI_STATE_SCHED, &n->state);
2670 }
2671 EXPORT_SYMBOL(__napi_complete);
2672 
2673 void napi_complete(struct napi_struct *n)
2674 {
2675 	unsigned long flags;
2676 
2677 	/*
2678 	 * don't let napi dequeue from the cpu poll list
2679 	 * just in case its running on a different cpu
2680 	 */
2681 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2682 		return;
2683 
2684 	napi_gro_flush(n);
2685 	local_irq_save(flags);
2686 	__napi_complete(n);
2687 	local_irq_restore(flags);
2688 }
2689 EXPORT_SYMBOL(napi_complete);
2690 
2691 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2692 		    int (*poll)(struct napi_struct *, int), int weight)
2693 {
2694 	INIT_LIST_HEAD(&napi->poll_list);
2695 	napi->gro_count = 0;
2696 	napi->gro_list = NULL;
2697 	napi->skb = NULL;
2698 	napi->poll = poll;
2699 	napi->weight = weight;
2700 	list_add(&napi->dev_list, &dev->napi_list);
2701 	napi->dev = dev;
2702 #ifdef CONFIG_NETPOLL
2703 	spin_lock_init(&napi->poll_lock);
2704 	napi->poll_owner = -1;
2705 #endif
2706 	set_bit(NAPI_STATE_SCHED, &napi->state);
2707 }
2708 EXPORT_SYMBOL(netif_napi_add);
2709 
2710 void netif_napi_del(struct napi_struct *napi)
2711 {
2712 	struct sk_buff *skb, *next;
2713 
2714 	list_del_init(&napi->dev_list);
2715 	kfree_skb(napi->skb);
2716 
2717 	for (skb = napi->gro_list; skb; skb = next) {
2718 		next = skb->next;
2719 		skb->next = NULL;
2720 		kfree_skb(skb);
2721 	}
2722 
2723 	napi->gro_list = NULL;
2724 	napi->gro_count = 0;
2725 }
2726 EXPORT_SYMBOL(netif_napi_del);
2727 
2728 
2729 static void net_rx_action(struct softirq_action *h)
2730 {
2731 	struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2732 	unsigned long time_limit = jiffies + 2;
2733 	int budget = netdev_budget;
2734 	void *have;
2735 
2736 	local_irq_disable();
2737 
2738 	while (!list_empty(list)) {
2739 		struct napi_struct *n;
2740 		int work, weight;
2741 
2742 		/* If softirq window is exhuasted then punt.
2743 		 * Allow this to run for 2 jiffies since which will allow
2744 		 * an average latency of 1.5/HZ.
2745 		 */
2746 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2747 			goto softnet_break;
2748 
2749 		local_irq_enable();
2750 
2751 		/* Even though interrupts have been re-enabled, this
2752 		 * access is safe because interrupts can only add new
2753 		 * entries to the tail of this list, and only ->poll()
2754 		 * calls can remove this head entry from the list.
2755 		 */
2756 		n = list_entry(list->next, struct napi_struct, poll_list);
2757 
2758 		have = netpoll_poll_lock(n);
2759 
2760 		weight = n->weight;
2761 
2762 		/* This NAPI_STATE_SCHED test is for avoiding a race
2763 		 * with netpoll's poll_napi().  Only the entity which
2764 		 * obtains the lock and sees NAPI_STATE_SCHED set will
2765 		 * actually make the ->poll() call.  Therefore we avoid
2766 		 * accidently calling ->poll() when NAPI is not scheduled.
2767 		 */
2768 		work = 0;
2769 		if (test_bit(NAPI_STATE_SCHED, &n->state))
2770 			work = n->poll(n, weight);
2771 
2772 		WARN_ON_ONCE(work > weight);
2773 
2774 		budget -= work;
2775 
2776 		local_irq_disable();
2777 
2778 		/* Drivers must not modify the NAPI state if they
2779 		 * consume the entire weight.  In such cases this code
2780 		 * still "owns" the NAPI instance and therefore can
2781 		 * move the instance around on the list at-will.
2782 		 */
2783 		if (unlikely(work == weight)) {
2784 			if (unlikely(napi_disable_pending(n)))
2785 				__napi_complete(n);
2786 			else
2787 				list_move_tail(&n->poll_list, list);
2788 		}
2789 
2790 		netpoll_poll_unlock(have);
2791 	}
2792 out:
2793 	local_irq_enable();
2794 
2795 #ifdef CONFIG_NET_DMA
2796 	/*
2797 	 * There may not be any more sk_buffs coming right now, so push
2798 	 * any pending DMA copies to hardware
2799 	 */
2800 	dma_issue_pending_all();
2801 #endif
2802 
2803 	return;
2804 
2805 softnet_break:
2806 	__get_cpu_var(netdev_rx_stat).time_squeeze++;
2807 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2808 	goto out;
2809 }
2810 
2811 static gifconf_func_t * gifconf_list [NPROTO];
2812 
2813 /**
2814  *	register_gifconf	-	register a SIOCGIF handler
2815  *	@family: Address family
2816  *	@gifconf: Function handler
2817  *
2818  *	Register protocol dependent address dumping routines. The handler
2819  *	that is passed must not be freed or reused until it has been replaced
2820  *	by another handler.
2821  */
2822 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2823 {
2824 	if (family >= NPROTO)
2825 		return -EINVAL;
2826 	gifconf_list[family] = gifconf;
2827 	return 0;
2828 }
2829 
2830 
2831 /*
2832  *	Map an interface index to its name (SIOCGIFNAME)
2833  */
2834 
2835 /*
2836  *	We need this ioctl for efficient implementation of the
2837  *	if_indextoname() function required by the IPv6 API.  Without
2838  *	it, we would have to search all the interfaces to find a
2839  *	match.  --pb
2840  */
2841 
2842 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2843 {
2844 	struct net_device *dev;
2845 	struct ifreq ifr;
2846 
2847 	/*
2848 	 *	Fetch the caller's info block.
2849 	 */
2850 
2851 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2852 		return -EFAULT;
2853 
2854 	read_lock(&dev_base_lock);
2855 	dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2856 	if (!dev) {
2857 		read_unlock(&dev_base_lock);
2858 		return -ENODEV;
2859 	}
2860 
2861 	strcpy(ifr.ifr_name, dev->name);
2862 	read_unlock(&dev_base_lock);
2863 
2864 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2865 		return -EFAULT;
2866 	return 0;
2867 }
2868 
2869 /*
2870  *	Perform a SIOCGIFCONF call. This structure will change
2871  *	size eventually, and there is nothing I can do about it.
2872  *	Thus we will need a 'compatibility mode'.
2873  */
2874 
2875 static int dev_ifconf(struct net *net, char __user *arg)
2876 {
2877 	struct ifconf ifc;
2878 	struct net_device *dev;
2879 	char __user *pos;
2880 	int len;
2881 	int total;
2882 	int i;
2883 
2884 	/*
2885 	 *	Fetch the caller's info block.
2886 	 */
2887 
2888 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2889 		return -EFAULT;
2890 
2891 	pos = ifc.ifc_buf;
2892 	len = ifc.ifc_len;
2893 
2894 	/*
2895 	 *	Loop over the interfaces, and write an info block for each.
2896 	 */
2897 
2898 	total = 0;
2899 	for_each_netdev(net, dev) {
2900 		for (i = 0; i < NPROTO; i++) {
2901 			if (gifconf_list[i]) {
2902 				int done;
2903 				if (!pos)
2904 					done = gifconf_list[i](dev, NULL, 0);
2905 				else
2906 					done = gifconf_list[i](dev, pos + total,
2907 							       len - total);
2908 				if (done < 0)
2909 					return -EFAULT;
2910 				total += done;
2911 			}
2912 		}
2913 	}
2914 
2915 	/*
2916 	 *	All done.  Write the updated control block back to the caller.
2917 	 */
2918 	ifc.ifc_len = total;
2919 
2920 	/*
2921 	 * 	Both BSD and Solaris return 0 here, so we do too.
2922 	 */
2923 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2924 }
2925 
2926 #ifdef CONFIG_PROC_FS
2927 /*
2928  *	This is invoked by the /proc filesystem handler to display a device
2929  *	in detail.
2930  */
2931 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2932 	__acquires(dev_base_lock)
2933 {
2934 	struct net *net = seq_file_net(seq);
2935 	loff_t off;
2936 	struct net_device *dev;
2937 
2938 	read_lock(&dev_base_lock);
2939 	if (!*pos)
2940 		return SEQ_START_TOKEN;
2941 
2942 	off = 1;
2943 	for_each_netdev(net, dev)
2944 		if (off++ == *pos)
2945 			return dev;
2946 
2947 	return NULL;
2948 }
2949 
2950 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2951 {
2952 	struct net *net = seq_file_net(seq);
2953 	++*pos;
2954 	return v == SEQ_START_TOKEN ?
2955 		first_net_device(net) : next_net_device((struct net_device *)v);
2956 }
2957 
2958 void dev_seq_stop(struct seq_file *seq, void *v)
2959 	__releases(dev_base_lock)
2960 {
2961 	read_unlock(&dev_base_lock);
2962 }
2963 
2964 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2965 {
2966 	const struct net_device_stats *stats = dev_get_stats(dev);
2967 
2968 	seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2969 		   "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2970 		   dev->name, stats->rx_bytes, stats->rx_packets,
2971 		   stats->rx_errors,
2972 		   stats->rx_dropped + stats->rx_missed_errors,
2973 		   stats->rx_fifo_errors,
2974 		   stats->rx_length_errors + stats->rx_over_errors +
2975 		    stats->rx_crc_errors + stats->rx_frame_errors,
2976 		   stats->rx_compressed, stats->multicast,
2977 		   stats->tx_bytes, stats->tx_packets,
2978 		   stats->tx_errors, stats->tx_dropped,
2979 		   stats->tx_fifo_errors, stats->collisions,
2980 		   stats->tx_carrier_errors +
2981 		    stats->tx_aborted_errors +
2982 		    stats->tx_window_errors +
2983 		    stats->tx_heartbeat_errors,
2984 		   stats->tx_compressed);
2985 }
2986 
2987 /*
2988  *	Called from the PROCfs module. This now uses the new arbitrary sized
2989  *	/proc/net interface to create /proc/net/dev
2990  */
2991 static int dev_seq_show(struct seq_file *seq, void *v)
2992 {
2993 	if (v == SEQ_START_TOKEN)
2994 		seq_puts(seq, "Inter-|   Receive                            "
2995 			      "                    |  Transmit\n"
2996 			      " face |bytes    packets errs drop fifo frame "
2997 			      "compressed multicast|bytes    packets errs "
2998 			      "drop fifo colls carrier compressed\n");
2999 	else
3000 		dev_seq_printf_stats(seq, v);
3001 	return 0;
3002 }
3003 
3004 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3005 {
3006 	struct netif_rx_stats *rc = NULL;
3007 
3008 	while (*pos < nr_cpu_ids)
3009 		if (cpu_online(*pos)) {
3010 			rc = &per_cpu(netdev_rx_stat, *pos);
3011 			break;
3012 		} else
3013 			++*pos;
3014 	return rc;
3015 }
3016 
3017 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3018 {
3019 	return softnet_get_online(pos);
3020 }
3021 
3022 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3023 {
3024 	++*pos;
3025 	return softnet_get_online(pos);
3026 }
3027 
3028 static void softnet_seq_stop(struct seq_file *seq, void *v)
3029 {
3030 }
3031 
3032 static int softnet_seq_show(struct seq_file *seq, void *v)
3033 {
3034 	struct netif_rx_stats *s = v;
3035 
3036 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3037 		   s->total, s->dropped, s->time_squeeze, 0,
3038 		   0, 0, 0, 0, /* was fastroute */
3039 		   s->cpu_collision );
3040 	return 0;
3041 }
3042 
3043 static const struct seq_operations dev_seq_ops = {
3044 	.start = dev_seq_start,
3045 	.next  = dev_seq_next,
3046 	.stop  = dev_seq_stop,
3047 	.show  = dev_seq_show,
3048 };
3049 
3050 static int dev_seq_open(struct inode *inode, struct file *file)
3051 {
3052 	return seq_open_net(inode, file, &dev_seq_ops,
3053 			    sizeof(struct seq_net_private));
3054 }
3055 
3056 static const struct file_operations dev_seq_fops = {
3057 	.owner	 = THIS_MODULE,
3058 	.open    = dev_seq_open,
3059 	.read    = seq_read,
3060 	.llseek  = seq_lseek,
3061 	.release = seq_release_net,
3062 };
3063 
3064 static const struct seq_operations softnet_seq_ops = {
3065 	.start = softnet_seq_start,
3066 	.next  = softnet_seq_next,
3067 	.stop  = softnet_seq_stop,
3068 	.show  = softnet_seq_show,
3069 };
3070 
3071 static int softnet_seq_open(struct inode *inode, struct file *file)
3072 {
3073 	return seq_open(file, &softnet_seq_ops);
3074 }
3075 
3076 static const struct file_operations softnet_seq_fops = {
3077 	.owner	 = THIS_MODULE,
3078 	.open    = softnet_seq_open,
3079 	.read    = seq_read,
3080 	.llseek  = seq_lseek,
3081 	.release = seq_release,
3082 };
3083 
3084 static void *ptype_get_idx(loff_t pos)
3085 {
3086 	struct packet_type *pt = NULL;
3087 	loff_t i = 0;
3088 	int t;
3089 
3090 	list_for_each_entry_rcu(pt, &ptype_all, list) {
3091 		if (i == pos)
3092 			return pt;
3093 		++i;
3094 	}
3095 
3096 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3097 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3098 			if (i == pos)
3099 				return pt;
3100 			++i;
3101 		}
3102 	}
3103 	return NULL;
3104 }
3105 
3106 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3107 	__acquires(RCU)
3108 {
3109 	rcu_read_lock();
3110 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3111 }
3112 
3113 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3114 {
3115 	struct packet_type *pt;
3116 	struct list_head *nxt;
3117 	int hash;
3118 
3119 	++*pos;
3120 	if (v == SEQ_START_TOKEN)
3121 		return ptype_get_idx(0);
3122 
3123 	pt = v;
3124 	nxt = pt->list.next;
3125 	if (pt->type == htons(ETH_P_ALL)) {
3126 		if (nxt != &ptype_all)
3127 			goto found;
3128 		hash = 0;
3129 		nxt = ptype_base[0].next;
3130 	} else
3131 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3132 
3133 	while (nxt == &ptype_base[hash]) {
3134 		if (++hash >= PTYPE_HASH_SIZE)
3135 			return NULL;
3136 		nxt = ptype_base[hash].next;
3137 	}
3138 found:
3139 	return list_entry(nxt, struct packet_type, list);
3140 }
3141 
3142 static void ptype_seq_stop(struct seq_file *seq, void *v)
3143 	__releases(RCU)
3144 {
3145 	rcu_read_unlock();
3146 }
3147 
3148 static int ptype_seq_show(struct seq_file *seq, void *v)
3149 {
3150 	struct packet_type *pt = v;
3151 
3152 	if (v == SEQ_START_TOKEN)
3153 		seq_puts(seq, "Type Device      Function\n");
3154 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3155 		if (pt->type == htons(ETH_P_ALL))
3156 			seq_puts(seq, "ALL ");
3157 		else
3158 			seq_printf(seq, "%04x", ntohs(pt->type));
3159 
3160 		seq_printf(seq, " %-8s %pF\n",
3161 			   pt->dev ? pt->dev->name : "", pt->func);
3162 	}
3163 
3164 	return 0;
3165 }
3166 
3167 static const struct seq_operations ptype_seq_ops = {
3168 	.start = ptype_seq_start,
3169 	.next  = ptype_seq_next,
3170 	.stop  = ptype_seq_stop,
3171 	.show  = ptype_seq_show,
3172 };
3173 
3174 static int ptype_seq_open(struct inode *inode, struct file *file)
3175 {
3176 	return seq_open_net(inode, file, &ptype_seq_ops,
3177 			sizeof(struct seq_net_private));
3178 }
3179 
3180 static const struct file_operations ptype_seq_fops = {
3181 	.owner	 = THIS_MODULE,
3182 	.open    = ptype_seq_open,
3183 	.read    = seq_read,
3184 	.llseek  = seq_lseek,
3185 	.release = seq_release_net,
3186 };
3187 
3188 
3189 static int __net_init dev_proc_net_init(struct net *net)
3190 {
3191 	int rc = -ENOMEM;
3192 
3193 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3194 		goto out;
3195 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3196 		goto out_dev;
3197 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3198 		goto out_softnet;
3199 
3200 	if (wext_proc_init(net))
3201 		goto out_ptype;
3202 	rc = 0;
3203 out:
3204 	return rc;
3205 out_ptype:
3206 	proc_net_remove(net, "ptype");
3207 out_softnet:
3208 	proc_net_remove(net, "softnet_stat");
3209 out_dev:
3210 	proc_net_remove(net, "dev");
3211 	goto out;
3212 }
3213 
3214 static void __net_exit dev_proc_net_exit(struct net *net)
3215 {
3216 	wext_proc_exit(net);
3217 
3218 	proc_net_remove(net, "ptype");
3219 	proc_net_remove(net, "softnet_stat");
3220 	proc_net_remove(net, "dev");
3221 }
3222 
3223 static struct pernet_operations __net_initdata dev_proc_ops = {
3224 	.init = dev_proc_net_init,
3225 	.exit = dev_proc_net_exit,
3226 };
3227 
3228 static int __init dev_proc_init(void)
3229 {
3230 	return register_pernet_subsys(&dev_proc_ops);
3231 }
3232 #else
3233 #define dev_proc_init() 0
3234 #endif	/* CONFIG_PROC_FS */
3235 
3236 
3237 /**
3238  *	netdev_set_master	-	set up master/slave pair
3239  *	@slave: slave device
3240  *	@master: new master device
3241  *
3242  *	Changes the master device of the slave. Pass %NULL to break the
3243  *	bonding. The caller must hold the RTNL semaphore. On a failure
3244  *	a negative errno code is returned. On success the reference counts
3245  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3246  *	function returns zero.
3247  */
3248 int netdev_set_master(struct net_device *slave, struct net_device *master)
3249 {
3250 	struct net_device *old = slave->master;
3251 
3252 	ASSERT_RTNL();
3253 
3254 	if (master) {
3255 		if (old)
3256 			return -EBUSY;
3257 		dev_hold(master);
3258 	}
3259 
3260 	slave->master = master;
3261 
3262 	synchronize_net();
3263 
3264 	if (old)
3265 		dev_put(old);
3266 
3267 	if (master)
3268 		slave->flags |= IFF_SLAVE;
3269 	else
3270 		slave->flags &= ~IFF_SLAVE;
3271 
3272 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3273 	return 0;
3274 }
3275 
3276 static void dev_change_rx_flags(struct net_device *dev, int flags)
3277 {
3278 	const struct net_device_ops *ops = dev->netdev_ops;
3279 
3280 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3281 		ops->ndo_change_rx_flags(dev, flags);
3282 }
3283 
3284 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3285 {
3286 	unsigned short old_flags = dev->flags;
3287 	uid_t uid;
3288 	gid_t gid;
3289 
3290 	ASSERT_RTNL();
3291 
3292 	dev->flags |= IFF_PROMISC;
3293 	dev->promiscuity += inc;
3294 	if (dev->promiscuity == 0) {
3295 		/*
3296 		 * Avoid overflow.
3297 		 * If inc causes overflow, untouch promisc and return error.
3298 		 */
3299 		if (inc < 0)
3300 			dev->flags &= ~IFF_PROMISC;
3301 		else {
3302 			dev->promiscuity -= inc;
3303 			printk(KERN_WARNING "%s: promiscuity touches roof, "
3304 				"set promiscuity failed, promiscuity feature "
3305 				"of device might be broken.\n", dev->name);
3306 			return -EOVERFLOW;
3307 		}
3308 	}
3309 	if (dev->flags != old_flags) {
3310 		printk(KERN_INFO "device %s %s promiscuous mode\n",
3311 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3312 							       "left");
3313 		if (audit_enabled) {
3314 			current_uid_gid(&uid, &gid);
3315 			audit_log(current->audit_context, GFP_ATOMIC,
3316 				AUDIT_ANOM_PROMISCUOUS,
3317 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3318 				dev->name, (dev->flags & IFF_PROMISC),
3319 				(old_flags & IFF_PROMISC),
3320 				audit_get_loginuid(current),
3321 				uid, gid,
3322 				audit_get_sessionid(current));
3323 		}
3324 
3325 		dev_change_rx_flags(dev, IFF_PROMISC);
3326 	}
3327 	return 0;
3328 }
3329 
3330 /**
3331  *	dev_set_promiscuity	- update promiscuity count on a device
3332  *	@dev: device
3333  *	@inc: modifier
3334  *
3335  *	Add or remove promiscuity from a device. While the count in the device
3336  *	remains above zero the interface remains promiscuous. Once it hits zero
3337  *	the device reverts back to normal filtering operation. A negative inc
3338  *	value is used to drop promiscuity on the device.
3339  *	Return 0 if successful or a negative errno code on error.
3340  */
3341 int dev_set_promiscuity(struct net_device *dev, int inc)
3342 {
3343 	unsigned short old_flags = dev->flags;
3344 	int err;
3345 
3346 	err = __dev_set_promiscuity(dev, inc);
3347 	if (err < 0)
3348 		return err;
3349 	if (dev->flags != old_flags)
3350 		dev_set_rx_mode(dev);
3351 	return err;
3352 }
3353 
3354 /**
3355  *	dev_set_allmulti	- update allmulti count on a device
3356  *	@dev: device
3357  *	@inc: modifier
3358  *
3359  *	Add or remove reception of all multicast frames to a device. While the
3360  *	count in the device remains above zero the interface remains listening
3361  *	to all interfaces. Once it hits zero the device reverts back to normal
3362  *	filtering operation. A negative @inc value is used to drop the counter
3363  *	when releasing a resource needing all multicasts.
3364  *	Return 0 if successful or a negative errno code on error.
3365  */
3366 
3367 int dev_set_allmulti(struct net_device *dev, int inc)
3368 {
3369 	unsigned short old_flags = dev->flags;
3370 
3371 	ASSERT_RTNL();
3372 
3373 	dev->flags |= IFF_ALLMULTI;
3374 	dev->allmulti += inc;
3375 	if (dev->allmulti == 0) {
3376 		/*
3377 		 * Avoid overflow.
3378 		 * If inc causes overflow, untouch allmulti and return error.
3379 		 */
3380 		if (inc < 0)
3381 			dev->flags &= ~IFF_ALLMULTI;
3382 		else {
3383 			dev->allmulti -= inc;
3384 			printk(KERN_WARNING "%s: allmulti touches roof, "
3385 				"set allmulti failed, allmulti feature of "
3386 				"device might be broken.\n", dev->name);
3387 			return -EOVERFLOW;
3388 		}
3389 	}
3390 	if (dev->flags ^ old_flags) {
3391 		dev_change_rx_flags(dev, IFF_ALLMULTI);
3392 		dev_set_rx_mode(dev);
3393 	}
3394 	return 0;
3395 }
3396 
3397 /*
3398  *	Upload unicast and multicast address lists to device and
3399  *	configure RX filtering. When the device doesn't support unicast
3400  *	filtering it is put in promiscuous mode while unicast addresses
3401  *	are present.
3402  */
3403 void __dev_set_rx_mode(struct net_device *dev)
3404 {
3405 	const struct net_device_ops *ops = dev->netdev_ops;
3406 
3407 	/* dev_open will call this function so the list will stay sane. */
3408 	if (!(dev->flags&IFF_UP))
3409 		return;
3410 
3411 	if (!netif_device_present(dev))
3412 		return;
3413 
3414 	if (ops->ndo_set_rx_mode)
3415 		ops->ndo_set_rx_mode(dev);
3416 	else {
3417 		/* Unicast addresses changes may only happen under the rtnl,
3418 		 * therefore calling __dev_set_promiscuity here is safe.
3419 		 */
3420 		if (dev->uc_count > 0 && !dev->uc_promisc) {
3421 			__dev_set_promiscuity(dev, 1);
3422 			dev->uc_promisc = 1;
3423 		} else if (dev->uc_count == 0 && dev->uc_promisc) {
3424 			__dev_set_promiscuity(dev, -1);
3425 			dev->uc_promisc = 0;
3426 		}
3427 
3428 		if (ops->ndo_set_multicast_list)
3429 			ops->ndo_set_multicast_list(dev);
3430 	}
3431 }
3432 
3433 void dev_set_rx_mode(struct net_device *dev)
3434 {
3435 	netif_addr_lock_bh(dev);
3436 	__dev_set_rx_mode(dev);
3437 	netif_addr_unlock_bh(dev);
3438 }
3439 
3440 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3441 		      void *addr, int alen, int glbl)
3442 {
3443 	struct dev_addr_list *da;
3444 
3445 	for (; (da = *list) != NULL; list = &da->next) {
3446 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3447 		    alen == da->da_addrlen) {
3448 			if (glbl) {
3449 				int old_glbl = da->da_gusers;
3450 				da->da_gusers = 0;
3451 				if (old_glbl == 0)
3452 					break;
3453 			}
3454 			if (--da->da_users)
3455 				return 0;
3456 
3457 			*list = da->next;
3458 			kfree(da);
3459 			(*count)--;
3460 			return 0;
3461 		}
3462 	}
3463 	return -ENOENT;
3464 }
3465 
3466 int __dev_addr_add(struct dev_addr_list **list, int *count,
3467 		   void *addr, int alen, int glbl)
3468 {
3469 	struct dev_addr_list *da;
3470 
3471 	for (da = *list; da != NULL; da = da->next) {
3472 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3473 		    da->da_addrlen == alen) {
3474 			if (glbl) {
3475 				int old_glbl = da->da_gusers;
3476 				da->da_gusers = 1;
3477 				if (old_glbl)
3478 					return 0;
3479 			}
3480 			da->da_users++;
3481 			return 0;
3482 		}
3483 	}
3484 
3485 	da = kzalloc(sizeof(*da), GFP_ATOMIC);
3486 	if (da == NULL)
3487 		return -ENOMEM;
3488 	memcpy(da->da_addr, addr, alen);
3489 	da->da_addrlen = alen;
3490 	da->da_users = 1;
3491 	da->da_gusers = glbl ? 1 : 0;
3492 	da->next = *list;
3493 	*list = da;
3494 	(*count)++;
3495 	return 0;
3496 }
3497 
3498 /**
3499  *	dev_unicast_delete	- Release secondary unicast address.
3500  *	@dev: device
3501  *	@addr: address to delete
3502  *	@alen: length of @addr
3503  *
3504  *	Release reference to a secondary unicast address and remove it
3505  *	from the device if the reference count drops to zero.
3506  *
3507  * 	The caller must hold the rtnl_mutex.
3508  */
3509 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3510 {
3511 	int err;
3512 
3513 	ASSERT_RTNL();
3514 
3515 	netif_addr_lock_bh(dev);
3516 	err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3517 	if (!err)
3518 		__dev_set_rx_mode(dev);
3519 	netif_addr_unlock_bh(dev);
3520 	return err;
3521 }
3522 EXPORT_SYMBOL(dev_unicast_delete);
3523 
3524 /**
3525  *	dev_unicast_add		- add a secondary unicast address
3526  *	@dev: device
3527  *	@addr: address to add
3528  *	@alen: length of @addr
3529  *
3530  *	Add a secondary unicast address to the device or increase
3531  *	the reference count if it already exists.
3532  *
3533  *	The caller must hold the rtnl_mutex.
3534  */
3535 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3536 {
3537 	int err;
3538 
3539 	ASSERT_RTNL();
3540 
3541 	netif_addr_lock_bh(dev);
3542 	err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3543 	if (!err)
3544 		__dev_set_rx_mode(dev);
3545 	netif_addr_unlock_bh(dev);
3546 	return err;
3547 }
3548 EXPORT_SYMBOL(dev_unicast_add);
3549 
3550 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3551 		    struct dev_addr_list **from, int *from_count)
3552 {
3553 	struct dev_addr_list *da, *next;
3554 	int err = 0;
3555 
3556 	da = *from;
3557 	while (da != NULL) {
3558 		next = da->next;
3559 		if (!da->da_synced) {
3560 			err = __dev_addr_add(to, to_count,
3561 					     da->da_addr, da->da_addrlen, 0);
3562 			if (err < 0)
3563 				break;
3564 			da->da_synced = 1;
3565 			da->da_users++;
3566 		} else if (da->da_users == 1) {
3567 			__dev_addr_delete(to, to_count,
3568 					  da->da_addr, da->da_addrlen, 0);
3569 			__dev_addr_delete(from, from_count,
3570 					  da->da_addr, da->da_addrlen, 0);
3571 		}
3572 		da = next;
3573 	}
3574 	return err;
3575 }
3576 
3577 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3578 		       struct dev_addr_list **from, int *from_count)
3579 {
3580 	struct dev_addr_list *da, *next;
3581 
3582 	da = *from;
3583 	while (da != NULL) {
3584 		next = da->next;
3585 		if (da->da_synced) {
3586 			__dev_addr_delete(to, to_count,
3587 					  da->da_addr, da->da_addrlen, 0);
3588 			da->da_synced = 0;
3589 			__dev_addr_delete(from, from_count,
3590 					  da->da_addr, da->da_addrlen, 0);
3591 		}
3592 		da = next;
3593 	}
3594 }
3595 
3596 /**
3597  *	dev_unicast_sync - Synchronize device's unicast list to another device
3598  *	@to: destination device
3599  *	@from: source device
3600  *
3601  *	Add newly added addresses to the destination device and release
3602  *	addresses that have no users left. The source device must be
3603  *	locked by netif_tx_lock_bh.
3604  *
3605  *	This function is intended to be called from the dev->set_rx_mode
3606  *	function of layered software devices.
3607  */
3608 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3609 {
3610 	int err = 0;
3611 
3612 	netif_addr_lock_bh(to);
3613 	err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3614 			      &from->uc_list, &from->uc_count);
3615 	if (!err)
3616 		__dev_set_rx_mode(to);
3617 	netif_addr_unlock_bh(to);
3618 	return err;
3619 }
3620 EXPORT_SYMBOL(dev_unicast_sync);
3621 
3622 /**
3623  *	dev_unicast_unsync - Remove synchronized addresses from the destination device
3624  *	@to: destination device
3625  *	@from: source device
3626  *
3627  *	Remove all addresses that were added to the destination device by
3628  *	dev_unicast_sync(). This function is intended to be called from the
3629  *	dev->stop function of layered software devices.
3630  */
3631 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3632 {
3633 	netif_addr_lock_bh(from);
3634 	netif_addr_lock(to);
3635 
3636 	__dev_addr_unsync(&to->uc_list, &to->uc_count,
3637 			  &from->uc_list, &from->uc_count);
3638 	__dev_set_rx_mode(to);
3639 
3640 	netif_addr_unlock(to);
3641 	netif_addr_unlock_bh(from);
3642 }
3643 EXPORT_SYMBOL(dev_unicast_unsync);
3644 
3645 static void __dev_addr_discard(struct dev_addr_list **list)
3646 {
3647 	struct dev_addr_list *tmp;
3648 
3649 	while (*list != NULL) {
3650 		tmp = *list;
3651 		*list = tmp->next;
3652 		if (tmp->da_users > tmp->da_gusers)
3653 			printk("__dev_addr_discard: address leakage! "
3654 			       "da_users=%d\n", tmp->da_users);
3655 		kfree(tmp);
3656 	}
3657 }
3658 
3659 static void dev_addr_discard(struct net_device *dev)
3660 {
3661 	netif_addr_lock_bh(dev);
3662 
3663 	__dev_addr_discard(&dev->uc_list);
3664 	dev->uc_count = 0;
3665 
3666 	__dev_addr_discard(&dev->mc_list);
3667 	dev->mc_count = 0;
3668 
3669 	netif_addr_unlock_bh(dev);
3670 }
3671 
3672 /**
3673  *	dev_get_flags - get flags reported to userspace
3674  *	@dev: device
3675  *
3676  *	Get the combination of flag bits exported through APIs to userspace.
3677  */
3678 unsigned dev_get_flags(const struct net_device *dev)
3679 {
3680 	unsigned flags;
3681 
3682 	flags = (dev->flags & ~(IFF_PROMISC |
3683 				IFF_ALLMULTI |
3684 				IFF_RUNNING |
3685 				IFF_LOWER_UP |
3686 				IFF_DORMANT)) |
3687 		(dev->gflags & (IFF_PROMISC |
3688 				IFF_ALLMULTI));
3689 
3690 	if (netif_running(dev)) {
3691 		if (netif_oper_up(dev))
3692 			flags |= IFF_RUNNING;
3693 		if (netif_carrier_ok(dev))
3694 			flags |= IFF_LOWER_UP;
3695 		if (netif_dormant(dev))
3696 			flags |= IFF_DORMANT;
3697 	}
3698 
3699 	return flags;
3700 }
3701 
3702 /**
3703  *	dev_change_flags - change device settings
3704  *	@dev: device
3705  *	@flags: device state flags
3706  *
3707  *	Change settings on device based state flags. The flags are
3708  *	in the userspace exported format.
3709  */
3710 int dev_change_flags(struct net_device *dev, unsigned flags)
3711 {
3712 	int ret, changes;
3713 	int old_flags = dev->flags;
3714 
3715 	ASSERT_RTNL();
3716 
3717 	/*
3718 	 *	Set the flags on our device.
3719 	 */
3720 
3721 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3722 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3723 			       IFF_AUTOMEDIA)) |
3724 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3725 				    IFF_ALLMULTI));
3726 
3727 	/*
3728 	 *	Load in the correct multicast list now the flags have changed.
3729 	 */
3730 
3731 	if ((old_flags ^ flags) & IFF_MULTICAST)
3732 		dev_change_rx_flags(dev, IFF_MULTICAST);
3733 
3734 	dev_set_rx_mode(dev);
3735 
3736 	/*
3737 	 *	Have we downed the interface. We handle IFF_UP ourselves
3738 	 *	according to user attempts to set it, rather than blindly
3739 	 *	setting it.
3740 	 */
3741 
3742 	ret = 0;
3743 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
3744 		ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3745 
3746 		if (!ret)
3747 			dev_set_rx_mode(dev);
3748 	}
3749 
3750 	if (dev->flags & IFF_UP &&
3751 	    ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3752 					  IFF_VOLATILE)))
3753 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
3754 
3755 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
3756 		int inc = (flags & IFF_PROMISC) ? +1 : -1;
3757 		dev->gflags ^= IFF_PROMISC;
3758 		dev_set_promiscuity(dev, inc);
3759 	}
3760 
3761 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3762 	   is important. Some (broken) drivers set IFF_PROMISC, when
3763 	   IFF_ALLMULTI is requested not asking us and not reporting.
3764 	 */
3765 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3766 		int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3767 		dev->gflags ^= IFF_ALLMULTI;
3768 		dev_set_allmulti(dev, inc);
3769 	}
3770 
3771 	/* Exclude state transition flags, already notified */
3772 	changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3773 	if (changes)
3774 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3775 
3776 	return ret;
3777 }
3778 
3779 /**
3780  *	dev_set_mtu - Change maximum transfer unit
3781  *	@dev: device
3782  *	@new_mtu: new transfer unit
3783  *
3784  *	Change the maximum transfer size of the network device.
3785  */
3786 int dev_set_mtu(struct net_device *dev, int new_mtu)
3787 {
3788 	const struct net_device_ops *ops = dev->netdev_ops;
3789 	int err;
3790 
3791 	if (new_mtu == dev->mtu)
3792 		return 0;
3793 
3794 	/*	MTU must be positive.	 */
3795 	if (new_mtu < 0)
3796 		return -EINVAL;
3797 
3798 	if (!netif_device_present(dev))
3799 		return -ENODEV;
3800 
3801 	err = 0;
3802 	if (ops->ndo_change_mtu)
3803 		err = ops->ndo_change_mtu(dev, new_mtu);
3804 	else
3805 		dev->mtu = new_mtu;
3806 
3807 	if (!err && dev->flags & IFF_UP)
3808 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3809 	return err;
3810 }
3811 
3812 /**
3813  *	dev_set_mac_address - Change Media Access Control Address
3814  *	@dev: device
3815  *	@sa: new address
3816  *
3817  *	Change the hardware (MAC) address of the device
3818  */
3819 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3820 {
3821 	const struct net_device_ops *ops = dev->netdev_ops;
3822 	int err;
3823 
3824 	if (!ops->ndo_set_mac_address)
3825 		return -EOPNOTSUPP;
3826 	if (sa->sa_family != dev->type)
3827 		return -EINVAL;
3828 	if (!netif_device_present(dev))
3829 		return -ENODEV;
3830 	err = ops->ndo_set_mac_address(dev, sa);
3831 	if (!err)
3832 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3833 	return err;
3834 }
3835 
3836 /*
3837  *	Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3838  */
3839 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3840 {
3841 	int err;
3842 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3843 
3844 	if (!dev)
3845 		return -ENODEV;
3846 
3847 	switch (cmd) {
3848 		case SIOCGIFFLAGS:	/* Get interface flags */
3849 			ifr->ifr_flags = dev_get_flags(dev);
3850 			return 0;
3851 
3852 		case SIOCGIFMETRIC:	/* Get the metric on the interface
3853 					   (currently unused) */
3854 			ifr->ifr_metric = 0;
3855 			return 0;
3856 
3857 		case SIOCGIFMTU:	/* Get the MTU of a device */
3858 			ifr->ifr_mtu = dev->mtu;
3859 			return 0;
3860 
3861 		case SIOCGIFHWADDR:
3862 			if (!dev->addr_len)
3863 				memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3864 			else
3865 				memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3866 				       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3867 			ifr->ifr_hwaddr.sa_family = dev->type;
3868 			return 0;
3869 
3870 		case SIOCGIFSLAVE:
3871 			err = -EINVAL;
3872 			break;
3873 
3874 		case SIOCGIFMAP:
3875 			ifr->ifr_map.mem_start = dev->mem_start;
3876 			ifr->ifr_map.mem_end   = dev->mem_end;
3877 			ifr->ifr_map.base_addr = dev->base_addr;
3878 			ifr->ifr_map.irq       = dev->irq;
3879 			ifr->ifr_map.dma       = dev->dma;
3880 			ifr->ifr_map.port      = dev->if_port;
3881 			return 0;
3882 
3883 		case SIOCGIFINDEX:
3884 			ifr->ifr_ifindex = dev->ifindex;
3885 			return 0;
3886 
3887 		case SIOCGIFTXQLEN:
3888 			ifr->ifr_qlen = dev->tx_queue_len;
3889 			return 0;
3890 
3891 		default:
3892 			/* dev_ioctl() should ensure this case
3893 			 * is never reached
3894 			 */
3895 			WARN_ON(1);
3896 			err = -EINVAL;
3897 			break;
3898 
3899 	}
3900 	return err;
3901 }
3902 
3903 /*
3904  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
3905  */
3906 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3907 {
3908 	int err;
3909 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3910 	const struct net_device_ops *ops;
3911 
3912 	if (!dev)
3913 		return -ENODEV;
3914 
3915 	ops = dev->netdev_ops;
3916 
3917 	switch (cmd) {
3918 		case SIOCSIFFLAGS:	/* Set interface flags */
3919 			return dev_change_flags(dev, ifr->ifr_flags);
3920 
3921 		case SIOCSIFMETRIC:	/* Set the metric on the interface
3922 					   (currently unused) */
3923 			return -EOPNOTSUPP;
3924 
3925 		case SIOCSIFMTU:	/* Set the MTU of a device */
3926 			return dev_set_mtu(dev, ifr->ifr_mtu);
3927 
3928 		case SIOCSIFHWADDR:
3929 			return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3930 
3931 		case SIOCSIFHWBROADCAST:
3932 			if (ifr->ifr_hwaddr.sa_family != dev->type)
3933 				return -EINVAL;
3934 			memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3935 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3936 			call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3937 			return 0;
3938 
3939 		case SIOCSIFMAP:
3940 			if (ops->ndo_set_config) {
3941 				if (!netif_device_present(dev))
3942 					return -ENODEV;
3943 				return ops->ndo_set_config(dev, &ifr->ifr_map);
3944 			}
3945 			return -EOPNOTSUPP;
3946 
3947 		case SIOCADDMULTI:
3948 			if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3949 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3950 				return -EINVAL;
3951 			if (!netif_device_present(dev))
3952 				return -ENODEV;
3953 			return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3954 					  dev->addr_len, 1);
3955 
3956 		case SIOCDELMULTI:
3957 			if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3958 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3959 				return -EINVAL;
3960 			if (!netif_device_present(dev))
3961 				return -ENODEV;
3962 			return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3963 					     dev->addr_len, 1);
3964 
3965 		case SIOCSIFTXQLEN:
3966 			if (ifr->ifr_qlen < 0)
3967 				return -EINVAL;
3968 			dev->tx_queue_len = ifr->ifr_qlen;
3969 			return 0;
3970 
3971 		case SIOCSIFNAME:
3972 			ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3973 			return dev_change_name(dev, ifr->ifr_newname);
3974 
3975 		/*
3976 		 *	Unknown or private ioctl
3977 		 */
3978 
3979 		default:
3980 			if ((cmd >= SIOCDEVPRIVATE &&
3981 			    cmd <= SIOCDEVPRIVATE + 15) ||
3982 			    cmd == SIOCBONDENSLAVE ||
3983 			    cmd == SIOCBONDRELEASE ||
3984 			    cmd == SIOCBONDSETHWADDR ||
3985 			    cmd == SIOCBONDSLAVEINFOQUERY ||
3986 			    cmd == SIOCBONDINFOQUERY ||
3987 			    cmd == SIOCBONDCHANGEACTIVE ||
3988 			    cmd == SIOCGMIIPHY ||
3989 			    cmd == SIOCGMIIREG ||
3990 			    cmd == SIOCSMIIREG ||
3991 			    cmd == SIOCBRADDIF ||
3992 			    cmd == SIOCBRDELIF ||
3993 			    cmd == SIOCSHWTSTAMP ||
3994 			    cmd == SIOCWANDEV) {
3995 				err = -EOPNOTSUPP;
3996 				if (ops->ndo_do_ioctl) {
3997 					if (netif_device_present(dev))
3998 						err = ops->ndo_do_ioctl(dev, ifr, cmd);
3999 					else
4000 						err = -ENODEV;
4001 				}
4002 			} else
4003 				err = -EINVAL;
4004 
4005 	}
4006 	return err;
4007 }
4008 
4009 /*
4010  *	This function handles all "interface"-type I/O control requests. The actual
4011  *	'doing' part of this is dev_ifsioc above.
4012  */
4013 
4014 /**
4015  *	dev_ioctl	-	network device ioctl
4016  *	@net: the applicable net namespace
4017  *	@cmd: command to issue
4018  *	@arg: pointer to a struct ifreq in user space
4019  *
4020  *	Issue ioctl functions to devices. This is normally called by the
4021  *	user space syscall interfaces but can sometimes be useful for
4022  *	other purposes. The return value is the return from the syscall if
4023  *	positive or a negative errno code on error.
4024  */
4025 
4026 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4027 {
4028 	struct ifreq ifr;
4029 	int ret;
4030 	char *colon;
4031 
4032 	/* One special case: SIOCGIFCONF takes ifconf argument
4033 	   and requires shared lock, because it sleeps writing
4034 	   to user space.
4035 	 */
4036 
4037 	if (cmd == SIOCGIFCONF) {
4038 		rtnl_lock();
4039 		ret = dev_ifconf(net, (char __user *) arg);
4040 		rtnl_unlock();
4041 		return ret;
4042 	}
4043 	if (cmd == SIOCGIFNAME)
4044 		return dev_ifname(net, (struct ifreq __user *)arg);
4045 
4046 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4047 		return -EFAULT;
4048 
4049 	ifr.ifr_name[IFNAMSIZ-1] = 0;
4050 
4051 	colon = strchr(ifr.ifr_name, ':');
4052 	if (colon)
4053 		*colon = 0;
4054 
4055 	/*
4056 	 *	See which interface the caller is talking about.
4057 	 */
4058 
4059 	switch (cmd) {
4060 		/*
4061 		 *	These ioctl calls:
4062 		 *	- can be done by all.
4063 		 *	- atomic and do not require locking.
4064 		 *	- return a value
4065 		 */
4066 		case SIOCGIFFLAGS:
4067 		case SIOCGIFMETRIC:
4068 		case SIOCGIFMTU:
4069 		case SIOCGIFHWADDR:
4070 		case SIOCGIFSLAVE:
4071 		case SIOCGIFMAP:
4072 		case SIOCGIFINDEX:
4073 		case SIOCGIFTXQLEN:
4074 			dev_load(net, ifr.ifr_name);
4075 			read_lock(&dev_base_lock);
4076 			ret = dev_ifsioc_locked(net, &ifr, cmd);
4077 			read_unlock(&dev_base_lock);
4078 			if (!ret) {
4079 				if (colon)
4080 					*colon = ':';
4081 				if (copy_to_user(arg, &ifr,
4082 						 sizeof(struct ifreq)))
4083 					ret = -EFAULT;
4084 			}
4085 			return ret;
4086 
4087 		case SIOCETHTOOL:
4088 			dev_load(net, ifr.ifr_name);
4089 			rtnl_lock();
4090 			ret = dev_ethtool(net, &ifr);
4091 			rtnl_unlock();
4092 			if (!ret) {
4093 				if (colon)
4094 					*colon = ':';
4095 				if (copy_to_user(arg, &ifr,
4096 						 sizeof(struct ifreq)))
4097 					ret = -EFAULT;
4098 			}
4099 			return ret;
4100 
4101 		/*
4102 		 *	These ioctl calls:
4103 		 *	- require superuser power.
4104 		 *	- require strict serialization.
4105 		 *	- return a value
4106 		 */
4107 		case SIOCGMIIPHY:
4108 		case SIOCGMIIREG:
4109 		case SIOCSIFNAME:
4110 			if (!capable(CAP_NET_ADMIN))
4111 				return -EPERM;
4112 			dev_load(net, ifr.ifr_name);
4113 			rtnl_lock();
4114 			ret = dev_ifsioc(net, &ifr, cmd);
4115 			rtnl_unlock();
4116 			if (!ret) {
4117 				if (colon)
4118 					*colon = ':';
4119 				if (copy_to_user(arg, &ifr,
4120 						 sizeof(struct ifreq)))
4121 					ret = -EFAULT;
4122 			}
4123 			return ret;
4124 
4125 		/*
4126 		 *	These ioctl calls:
4127 		 *	- require superuser power.
4128 		 *	- require strict serialization.
4129 		 *	- do not return a value
4130 		 */
4131 		case SIOCSIFFLAGS:
4132 		case SIOCSIFMETRIC:
4133 		case SIOCSIFMTU:
4134 		case SIOCSIFMAP:
4135 		case SIOCSIFHWADDR:
4136 		case SIOCSIFSLAVE:
4137 		case SIOCADDMULTI:
4138 		case SIOCDELMULTI:
4139 		case SIOCSIFHWBROADCAST:
4140 		case SIOCSIFTXQLEN:
4141 		case SIOCSMIIREG:
4142 		case SIOCBONDENSLAVE:
4143 		case SIOCBONDRELEASE:
4144 		case SIOCBONDSETHWADDR:
4145 		case SIOCBONDCHANGEACTIVE:
4146 		case SIOCBRADDIF:
4147 		case SIOCBRDELIF:
4148 		case SIOCSHWTSTAMP:
4149 			if (!capable(CAP_NET_ADMIN))
4150 				return -EPERM;
4151 			/* fall through */
4152 		case SIOCBONDSLAVEINFOQUERY:
4153 		case SIOCBONDINFOQUERY:
4154 			dev_load(net, ifr.ifr_name);
4155 			rtnl_lock();
4156 			ret = dev_ifsioc(net, &ifr, cmd);
4157 			rtnl_unlock();
4158 			return ret;
4159 
4160 		case SIOCGIFMEM:
4161 			/* Get the per device memory space. We can add this but
4162 			 * currently do not support it */
4163 		case SIOCSIFMEM:
4164 			/* Set the per device memory buffer space.
4165 			 * Not applicable in our case */
4166 		case SIOCSIFLINK:
4167 			return -EINVAL;
4168 
4169 		/*
4170 		 *	Unknown or private ioctl.
4171 		 */
4172 		default:
4173 			if (cmd == SIOCWANDEV ||
4174 			    (cmd >= SIOCDEVPRIVATE &&
4175 			     cmd <= SIOCDEVPRIVATE + 15)) {
4176 				dev_load(net, ifr.ifr_name);
4177 				rtnl_lock();
4178 				ret = dev_ifsioc(net, &ifr, cmd);
4179 				rtnl_unlock();
4180 				if (!ret && copy_to_user(arg, &ifr,
4181 							 sizeof(struct ifreq)))
4182 					ret = -EFAULT;
4183 				return ret;
4184 			}
4185 			/* Take care of Wireless Extensions */
4186 			if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4187 				return wext_handle_ioctl(net, &ifr, cmd, arg);
4188 			return -EINVAL;
4189 	}
4190 }
4191 
4192 
4193 /**
4194  *	dev_new_index	-	allocate an ifindex
4195  *	@net: the applicable net namespace
4196  *
4197  *	Returns a suitable unique value for a new device interface
4198  *	number.  The caller must hold the rtnl semaphore or the
4199  *	dev_base_lock to be sure it remains unique.
4200  */
4201 static int dev_new_index(struct net *net)
4202 {
4203 	static int ifindex;
4204 	for (;;) {
4205 		if (++ifindex <= 0)
4206 			ifindex = 1;
4207 		if (!__dev_get_by_index(net, ifindex))
4208 			return ifindex;
4209 	}
4210 }
4211 
4212 /* Delayed registration/unregisteration */
4213 static LIST_HEAD(net_todo_list);
4214 
4215 static void net_set_todo(struct net_device *dev)
4216 {
4217 	list_add_tail(&dev->todo_list, &net_todo_list);
4218 }
4219 
4220 static void rollback_registered(struct net_device *dev)
4221 {
4222 	BUG_ON(dev_boot_phase);
4223 	ASSERT_RTNL();
4224 
4225 	/* Some devices call without registering for initialization unwind. */
4226 	if (dev->reg_state == NETREG_UNINITIALIZED) {
4227 		printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4228 				  "was registered\n", dev->name, dev);
4229 
4230 		WARN_ON(1);
4231 		return;
4232 	}
4233 
4234 	BUG_ON(dev->reg_state != NETREG_REGISTERED);
4235 
4236 	/* If device is running, close it first. */
4237 	dev_close(dev);
4238 
4239 	/* And unlink it from device chain. */
4240 	unlist_netdevice(dev);
4241 
4242 	dev->reg_state = NETREG_UNREGISTERING;
4243 
4244 	synchronize_net();
4245 
4246 	/* Shutdown queueing discipline. */
4247 	dev_shutdown(dev);
4248 
4249 
4250 	/* Notify protocols, that we are about to destroy
4251 	   this device. They should clean all the things.
4252 	*/
4253 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4254 
4255 	/*
4256 	 *	Flush the unicast and multicast chains
4257 	 */
4258 	dev_addr_discard(dev);
4259 
4260 	if (dev->netdev_ops->ndo_uninit)
4261 		dev->netdev_ops->ndo_uninit(dev);
4262 
4263 	/* Notifier chain MUST detach us from master device. */
4264 	WARN_ON(dev->master);
4265 
4266 	/* Remove entries from kobject tree */
4267 	netdev_unregister_kobject(dev);
4268 
4269 	synchronize_net();
4270 
4271 	dev_put(dev);
4272 }
4273 
4274 static void __netdev_init_queue_locks_one(struct net_device *dev,
4275 					  struct netdev_queue *dev_queue,
4276 					  void *_unused)
4277 {
4278 	spin_lock_init(&dev_queue->_xmit_lock);
4279 	netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4280 	dev_queue->xmit_lock_owner = -1;
4281 }
4282 
4283 static void netdev_init_queue_locks(struct net_device *dev)
4284 {
4285 	netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4286 	__netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4287 }
4288 
4289 unsigned long netdev_fix_features(unsigned long features, const char *name)
4290 {
4291 	/* Fix illegal SG+CSUM combinations. */
4292 	if ((features & NETIF_F_SG) &&
4293 	    !(features & NETIF_F_ALL_CSUM)) {
4294 		if (name)
4295 			printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4296 			       "checksum feature.\n", name);
4297 		features &= ~NETIF_F_SG;
4298 	}
4299 
4300 	/* TSO requires that SG is present as well. */
4301 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4302 		if (name)
4303 			printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4304 			       "SG feature.\n", name);
4305 		features &= ~NETIF_F_TSO;
4306 	}
4307 
4308 	if (features & NETIF_F_UFO) {
4309 		if (!(features & NETIF_F_GEN_CSUM)) {
4310 			if (name)
4311 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4312 				       "since no NETIF_F_HW_CSUM feature.\n",
4313 				       name);
4314 			features &= ~NETIF_F_UFO;
4315 		}
4316 
4317 		if (!(features & NETIF_F_SG)) {
4318 			if (name)
4319 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4320 				       "since no NETIF_F_SG feature.\n", name);
4321 			features &= ~NETIF_F_UFO;
4322 		}
4323 	}
4324 
4325 	return features;
4326 }
4327 EXPORT_SYMBOL(netdev_fix_features);
4328 
4329 /* Some devices need to (re-)set their netdev_ops inside
4330  * ->init() or similar.  If that happens, we have to setup
4331  * the compat pointers again.
4332  */
4333 void netdev_resync_ops(struct net_device *dev)
4334 {
4335 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4336 	const struct net_device_ops *ops = dev->netdev_ops;
4337 
4338 	dev->init = ops->ndo_init;
4339 	dev->uninit = ops->ndo_uninit;
4340 	dev->open = ops->ndo_open;
4341 	dev->change_rx_flags = ops->ndo_change_rx_flags;
4342 	dev->set_rx_mode = ops->ndo_set_rx_mode;
4343 	dev->set_multicast_list = ops->ndo_set_multicast_list;
4344 	dev->set_mac_address = ops->ndo_set_mac_address;
4345 	dev->validate_addr = ops->ndo_validate_addr;
4346 	dev->do_ioctl = ops->ndo_do_ioctl;
4347 	dev->set_config = ops->ndo_set_config;
4348 	dev->change_mtu = ops->ndo_change_mtu;
4349 	dev->neigh_setup = ops->ndo_neigh_setup;
4350 	dev->tx_timeout = ops->ndo_tx_timeout;
4351 	dev->get_stats = ops->ndo_get_stats;
4352 	dev->vlan_rx_register = ops->ndo_vlan_rx_register;
4353 	dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid;
4354 	dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid;
4355 #ifdef CONFIG_NET_POLL_CONTROLLER
4356 	dev->poll_controller = ops->ndo_poll_controller;
4357 #endif
4358 #endif
4359 }
4360 EXPORT_SYMBOL(netdev_resync_ops);
4361 
4362 /**
4363  *	register_netdevice	- register a network device
4364  *	@dev: device to register
4365  *
4366  *	Take a completed network device structure and add it to the kernel
4367  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4368  *	chain. 0 is returned on success. A negative errno code is returned
4369  *	on a failure to set up the device, or if the name is a duplicate.
4370  *
4371  *	Callers must hold the rtnl semaphore. You may want
4372  *	register_netdev() instead of this.
4373  *
4374  *	BUGS:
4375  *	The locking appears insufficient to guarantee two parallel registers
4376  *	will not get the same name.
4377  */
4378 
4379 int register_netdevice(struct net_device *dev)
4380 {
4381 	struct hlist_head *head;
4382 	struct hlist_node *p;
4383 	int ret;
4384 	struct net *net = dev_net(dev);
4385 
4386 	BUG_ON(dev_boot_phase);
4387 	ASSERT_RTNL();
4388 
4389 	might_sleep();
4390 
4391 	/* When net_device's are persistent, this will be fatal. */
4392 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4393 	BUG_ON(!net);
4394 
4395 	spin_lock_init(&dev->addr_list_lock);
4396 	netdev_set_addr_lockdep_class(dev);
4397 	netdev_init_queue_locks(dev);
4398 
4399 	dev->iflink = -1;
4400 
4401 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4402 	/* Netdevice_ops API compatiability support.
4403 	 * This is temporary until all network devices are converted.
4404 	 */
4405 	if (dev->netdev_ops) {
4406 		netdev_resync_ops(dev);
4407 	} else {
4408 		char drivername[64];
4409 		pr_info("%s (%s): not using net_device_ops yet\n",
4410 			dev->name, netdev_drivername(dev, drivername, 64));
4411 
4412 		/* This works only because net_device_ops and the
4413 		   compatiablity structure are the same. */
4414 		dev->netdev_ops = (void *) &(dev->init);
4415 	}
4416 #endif
4417 
4418 	/* Init, if this function is available */
4419 	if (dev->netdev_ops->ndo_init) {
4420 		ret = dev->netdev_ops->ndo_init(dev);
4421 		if (ret) {
4422 			if (ret > 0)
4423 				ret = -EIO;
4424 			goto out;
4425 		}
4426 	}
4427 
4428 	if (!dev_valid_name(dev->name)) {
4429 		ret = -EINVAL;
4430 		goto err_uninit;
4431 	}
4432 
4433 	dev->ifindex = dev_new_index(net);
4434 	if (dev->iflink == -1)
4435 		dev->iflink = dev->ifindex;
4436 
4437 	/* Check for existence of name */
4438 	head = dev_name_hash(net, dev->name);
4439 	hlist_for_each(p, head) {
4440 		struct net_device *d
4441 			= hlist_entry(p, struct net_device, name_hlist);
4442 		if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4443 			ret = -EEXIST;
4444 			goto err_uninit;
4445 		}
4446 	}
4447 
4448 	/* Fix illegal checksum combinations */
4449 	if ((dev->features & NETIF_F_HW_CSUM) &&
4450 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4451 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4452 		       dev->name);
4453 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4454 	}
4455 
4456 	if ((dev->features & NETIF_F_NO_CSUM) &&
4457 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4458 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4459 		       dev->name);
4460 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4461 	}
4462 
4463 	dev->features = netdev_fix_features(dev->features, dev->name);
4464 
4465 	/* Enable software GSO if SG is supported. */
4466 	if (dev->features & NETIF_F_SG)
4467 		dev->features |= NETIF_F_GSO;
4468 
4469 	netdev_initialize_kobject(dev);
4470 	ret = netdev_register_kobject(dev);
4471 	if (ret)
4472 		goto err_uninit;
4473 	dev->reg_state = NETREG_REGISTERED;
4474 
4475 	/*
4476 	 *	Default initial state at registry is that the
4477 	 *	device is present.
4478 	 */
4479 
4480 	set_bit(__LINK_STATE_PRESENT, &dev->state);
4481 
4482 	dev_init_scheduler(dev);
4483 	dev_hold(dev);
4484 	list_netdevice(dev);
4485 
4486 	/* Notify protocols, that a new device appeared. */
4487 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4488 	ret = notifier_to_errno(ret);
4489 	if (ret) {
4490 		rollback_registered(dev);
4491 		dev->reg_state = NETREG_UNREGISTERED;
4492 	}
4493 
4494 out:
4495 	return ret;
4496 
4497 err_uninit:
4498 	if (dev->netdev_ops->ndo_uninit)
4499 		dev->netdev_ops->ndo_uninit(dev);
4500 	goto out;
4501 }
4502 
4503 /**
4504  *	init_dummy_netdev	- init a dummy network device for NAPI
4505  *	@dev: device to init
4506  *
4507  *	This takes a network device structure and initialize the minimum
4508  *	amount of fields so it can be used to schedule NAPI polls without
4509  *	registering a full blown interface. This is to be used by drivers
4510  *	that need to tie several hardware interfaces to a single NAPI
4511  *	poll scheduler due to HW limitations.
4512  */
4513 int init_dummy_netdev(struct net_device *dev)
4514 {
4515 	/* Clear everything. Note we don't initialize spinlocks
4516 	 * are they aren't supposed to be taken by any of the
4517 	 * NAPI code and this dummy netdev is supposed to be
4518 	 * only ever used for NAPI polls
4519 	 */
4520 	memset(dev, 0, sizeof(struct net_device));
4521 
4522 	/* make sure we BUG if trying to hit standard
4523 	 * register/unregister code path
4524 	 */
4525 	dev->reg_state = NETREG_DUMMY;
4526 
4527 	/* initialize the ref count */
4528 	atomic_set(&dev->refcnt, 1);
4529 
4530 	/* NAPI wants this */
4531 	INIT_LIST_HEAD(&dev->napi_list);
4532 
4533 	/* a dummy interface is started by default */
4534 	set_bit(__LINK_STATE_PRESENT, &dev->state);
4535 	set_bit(__LINK_STATE_START, &dev->state);
4536 
4537 	return 0;
4538 }
4539 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4540 
4541 
4542 /**
4543  *	register_netdev	- register a network device
4544  *	@dev: device to register
4545  *
4546  *	Take a completed network device structure and add it to the kernel
4547  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4548  *	chain. 0 is returned on success. A negative errno code is returned
4549  *	on a failure to set up the device, or if the name is a duplicate.
4550  *
4551  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
4552  *	and expands the device name if you passed a format string to
4553  *	alloc_netdev.
4554  */
4555 int register_netdev(struct net_device *dev)
4556 {
4557 	int err;
4558 
4559 	rtnl_lock();
4560 
4561 	/*
4562 	 * If the name is a format string the caller wants us to do a
4563 	 * name allocation.
4564 	 */
4565 	if (strchr(dev->name, '%')) {
4566 		err = dev_alloc_name(dev, dev->name);
4567 		if (err < 0)
4568 			goto out;
4569 	}
4570 
4571 	err = register_netdevice(dev);
4572 out:
4573 	rtnl_unlock();
4574 	return err;
4575 }
4576 EXPORT_SYMBOL(register_netdev);
4577 
4578 /*
4579  * netdev_wait_allrefs - wait until all references are gone.
4580  *
4581  * This is called when unregistering network devices.
4582  *
4583  * Any protocol or device that holds a reference should register
4584  * for netdevice notification, and cleanup and put back the
4585  * reference if they receive an UNREGISTER event.
4586  * We can get stuck here if buggy protocols don't correctly
4587  * call dev_put.
4588  */
4589 static void netdev_wait_allrefs(struct net_device *dev)
4590 {
4591 	unsigned long rebroadcast_time, warning_time;
4592 
4593 	rebroadcast_time = warning_time = jiffies;
4594 	while (atomic_read(&dev->refcnt) != 0) {
4595 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4596 			rtnl_lock();
4597 
4598 			/* Rebroadcast unregister notification */
4599 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4600 
4601 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4602 				     &dev->state)) {
4603 				/* We must not have linkwatch events
4604 				 * pending on unregister. If this
4605 				 * happens, we simply run the queue
4606 				 * unscheduled, resulting in a noop
4607 				 * for this device.
4608 				 */
4609 				linkwatch_run_queue();
4610 			}
4611 
4612 			__rtnl_unlock();
4613 
4614 			rebroadcast_time = jiffies;
4615 		}
4616 
4617 		msleep(250);
4618 
4619 		if (time_after(jiffies, warning_time + 10 * HZ)) {
4620 			printk(KERN_EMERG "unregister_netdevice: "
4621 			       "waiting for %s to become free. Usage "
4622 			       "count = %d\n",
4623 			       dev->name, atomic_read(&dev->refcnt));
4624 			warning_time = jiffies;
4625 		}
4626 	}
4627 }
4628 
4629 /* The sequence is:
4630  *
4631  *	rtnl_lock();
4632  *	...
4633  *	register_netdevice(x1);
4634  *	register_netdevice(x2);
4635  *	...
4636  *	unregister_netdevice(y1);
4637  *	unregister_netdevice(y2);
4638  *      ...
4639  *	rtnl_unlock();
4640  *	free_netdev(y1);
4641  *	free_netdev(y2);
4642  *
4643  * We are invoked by rtnl_unlock().
4644  * This allows us to deal with problems:
4645  * 1) We can delete sysfs objects which invoke hotplug
4646  *    without deadlocking with linkwatch via keventd.
4647  * 2) Since we run with the RTNL semaphore not held, we can sleep
4648  *    safely in order to wait for the netdev refcnt to drop to zero.
4649  *
4650  * We must not return until all unregister events added during
4651  * the interval the lock was held have been completed.
4652  */
4653 void netdev_run_todo(void)
4654 {
4655 	struct list_head list;
4656 
4657 	/* Snapshot list, allow later requests */
4658 	list_replace_init(&net_todo_list, &list);
4659 
4660 	__rtnl_unlock();
4661 
4662 	while (!list_empty(&list)) {
4663 		struct net_device *dev
4664 			= list_entry(list.next, struct net_device, todo_list);
4665 		list_del(&dev->todo_list);
4666 
4667 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4668 			printk(KERN_ERR "network todo '%s' but state %d\n",
4669 			       dev->name, dev->reg_state);
4670 			dump_stack();
4671 			continue;
4672 		}
4673 
4674 		dev->reg_state = NETREG_UNREGISTERED;
4675 
4676 		on_each_cpu(flush_backlog, dev, 1);
4677 
4678 		netdev_wait_allrefs(dev);
4679 
4680 		/* paranoia */
4681 		BUG_ON(atomic_read(&dev->refcnt));
4682 		WARN_ON(dev->ip_ptr);
4683 		WARN_ON(dev->ip6_ptr);
4684 		WARN_ON(dev->dn_ptr);
4685 
4686 		if (dev->destructor)
4687 			dev->destructor(dev);
4688 
4689 		/* Free network device */
4690 		kobject_put(&dev->dev.kobj);
4691 	}
4692 }
4693 
4694 /**
4695  *	dev_get_stats	- get network device statistics
4696  *	@dev: device to get statistics from
4697  *
4698  *	Get network statistics from device. The device driver may provide
4699  *	its own method by setting dev->netdev_ops->get_stats; otherwise
4700  *	the internal statistics structure is used.
4701  */
4702 const struct net_device_stats *dev_get_stats(struct net_device *dev)
4703  {
4704 	const struct net_device_ops *ops = dev->netdev_ops;
4705 
4706 	if (ops->ndo_get_stats)
4707 		return ops->ndo_get_stats(dev);
4708 	else
4709 		return &dev->stats;
4710 }
4711 EXPORT_SYMBOL(dev_get_stats);
4712 
4713 static void netdev_init_one_queue(struct net_device *dev,
4714 				  struct netdev_queue *queue,
4715 				  void *_unused)
4716 {
4717 	queue->dev = dev;
4718 }
4719 
4720 static void netdev_init_queues(struct net_device *dev)
4721 {
4722 	netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4723 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4724 	spin_lock_init(&dev->tx_global_lock);
4725 }
4726 
4727 /**
4728  *	alloc_netdev_mq - allocate network device
4729  *	@sizeof_priv:	size of private data to allocate space for
4730  *	@name:		device name format string
4731  *	@setup:		callback to initialize device
4732  *	@queue_count:	the number of subqueues to allocate
4733  *
4734  *	Allocates a struct net_device with private data area for driver use
4735  *	and performs basic initialization.  Also allocates subquue structs
4736  *	for each queue on the device at the end of the netdevice.
4737  */
4738 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4739 		void (*setup)(struct net_device *), unsigned int queue_count)
4740 {
4741 	struct netdev_queue *tx;
4742 	struct net_device *dev;
4743 	size_t alloc_size;
4744 	void *p;
4745 
4746 	BUG_ON(strlen(name) >= sizeof(dev->name));
4747 
4748 	alloc_size = sizeof(struct net_device);
4749 	if (sizeof_priv) {
4750 		/* ensure 32-byte alignment of private area */
4751 		alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4752 		alloc_size += sizeof_priv;
4753 	}
4754 	/* ensure 32-byte alignment of whole construct */
4755 	alloc_size += NETDEV_ALIGN_CONST;
4756 
4757 	p = kzalloc(alloc_size, GFP_KERNEL);
4758 	if (!p) {
4759 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4760 		return NULL;
4761 	}
4762 
4763 	tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4764 	if (!tx) {
4765 		printk(KERN_ERR "alloc_netdev: Unable to allocate "
4766 		       "tx qdiscs.\n");
4767 		kfree(p);
4768 		return NULL;
4769 	}
4770 
4771 	dev = (struct net_device *)
4772 		(((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4773 	dev->padded = (char *)dev - (char *)p;
4774 	dev_net_set(dev, &init_net);
4775 
4776 	dev->_tx = tx;
4777 	dev->num_tx_queues = queue_count;
4778 	dev->real_num_tx_queues = queue_count;
4779 
4780 	dev->gso_max_size = GSO_MAX_SIZE;
4781 
4782 	netdev_init_queues(dev);
4783 
4784 	INIT_LIST_HEAD(&dev->napi_list);
4785 	setup(dev);
4786 	strcpy(dev->name, name);
4787 	return dev;
4788 }
4789 EXPORT_SYMBOL(alloc_netdev_mq);
4790 
4791 /**
4792  *	free_netdev - free network device
4793  *	@dev: device
4794  *
4795  *	This function does the last stage of destroying an allocated device
4796  * 	interface. The reference to the device object is released.
4797  *	If this is the last reference then it will be freed.
4798  */
4799 void free_netdev(struct net_device *dev)
4800 {
4801 	struct napi_struct *p, *n;
4802 
4803 	release_net(dev_net(dev));
4804 
4805 	kfree(dev->_tx);
4806 
4807 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
4808 		netif_napi_del(p);
4809 
4810 	/*  Compatibility with error handling in drivers */
4811 	if (dev->reg_state == NETREG_UNINITIALIZED) {
4812 		kfree((char *)dev - dev->padded);
4813 		return;
4814 	}
4815 
4816 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4817 	dev->reg_state = NETREG_RELEASED;
4818 
4819 	/* will free via device release */
4820 	put_device(&dev->dev);
4821 }
4822 
4823 /**
4824  *	synchronize_net -  Synchronize with packet receive processing
4825  *
4826  *	Wait for packets currently being received to be done.
4827  *	Does not block later packets from starting.
4828  */
4829 void synchronize_net(void)
4830 {
4831 	might_sleep();
4832 	synchronize_rcu();
4833 }
4834 
4835 /**
4836  *	unregister_netdevice - remove device from the kernel
4837  *	@dev: device
4838  *
4839  *	This function shuts down a device interface and removes it
4840  *	from the kernel tables.
4841  *
4842  *	Callers must hold the rtnl semaphore.  You may want
4843  *	unregister_netdev() instead of this.
4844  */
4845 
4846 void unregister_netdevice(struct net_device *dev)
4847 {
4848 	ASSERT_RTNL();
4849 
4850 	rollback_registered(dev);
4851 	/* Finish processing unregister after unlock */
4852 	net_set_todo(dev);
4853 }
4854 
4855 /**
4856  *	unregister_netdev - remove device from the kernel
4857  *	@dev: device
4858  *
4859  *	This function shuts down a device interface and removes it
4860  *	from the kernel tables.
4861  *
4862  *	This is just a wrapper for unregister_netdevice that takes
4863  *	the rtnl semaphore.  In general you want to use this and not
4864  *	unregister_netdevice.
4865  */
4866 void unregister_netdev(struct net_device *dev)
4867 {
4868 	rtnl_lock();
4869 	unregister_netdevice(dev);
4870 	rtnl_unlock();
4871 }
4872 
4873 EXPORT_SYMBOL(unregister_netdev);
4874 
4875 /**
4876  *	dev_change_net_namespace - move device to different nethost namespace
4877  *	@dev: device
4878  *	@net: network namespace
4879  *	@pat: If not NULL name pattern to try if the current device name
4880  *	      is already taken in the destination network namespace.
4881  *
4882  *	This function shuts down a device interface and moves it
4883  *	to a new network namespace. On success 0 is returned, on
4884  *	a failure a netagive errno code is returned.
4885  *
4886  *	Callers must hold the rtnl semaphore.
4887  */
4888 
4889 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4890 {
4891 	char buf[IFNAMSIZ];
4892 	const char *destname;
4893 	int err;
4894 
4895 	ASSERT_RTNL();
4896 
4897 	/* Don't allow namespace local devices to be moved. */
4898 	err = -EINVAL;
4899 	if (dev->features & NETIF_F_NETNS_LOCAL)
4900 		goto out;
4901 
4902 #ifdef CONFIG_SYSFS
4903 	/* Don't allow real devices to be moved when sysfs
4904 	 * is enabled.
4905 	 */
4906 	err = -EINVAL;
4907 	if (dev->dev.parent)
4908 		goto out;
4909 #endif
4910 
4911 	/* Ensure the device has been registrered */
4912 	err = -EINVAL;
4913 	if (dev->reg_state != NETREG_REGISTERED)
4914 		goto out;
4915 
4916 	/* Get out if there is nothing todo */
4917 	err = 0;
4918 	if (net_eq(dev_net(dev), net))
4919 		goto out;
4920 
4921 	/* Pick the destination device name, and ensure
4922 	 * we can use it in the destination network namespace.
4923 	 */
4924 	err = -EEXIST;
4925 	destname = dev->name;
4926 	if (__dev_get_by_name(net, destname)) {
4927 		/* We get here if we can't use the current device name */
4928 		if (!pat)
4929 			goto out;
4930 		if (!dev_valid_name(pat))
4931 			goto out;
4932 		if (strchr(pat, '%')) {
4933 			if (__dev_alloc_name(net, pat, buf) < 0)
4934 				goto out;
4935 			destname = buf;
4936 		} else
4937 			destname = pat;
4938 		if (__dev_get_by_name(net, destname))
4939 			goto out;
4940 	}
4941 
4942 	/*
4943 	 * And now a mini version of register_netdevice unregister_netdevice.
4944 	 */
4945 
4946 	/* If device is running close it first. */
4947 	dev_close(dev);
4948 
4949 	/* And unlink it from device chain */
4950 	err = -ENODEV;
4951 	unlist_netdevice(dev);
4952 
4953 	synchronize_net();
4954 
4955 	/* Shutdown queueing discipline. */
4956 	dev_shutdown(dev);
4957 
4958 	/* Notify protocols, that we are about to destroy
4959 	   this device. They should clean all the things.
4960 	*/
4961 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4962 
4963 	/*
4964 	 *	Flush the unicast and multicast chains
4965 	 */
4966 	dev_addr_discard(dev);
4967 
4968 	netdev_unregister_kobject(dev);
4969 
4970 	/* Actually switch the network namespace */
4971 	dev_net_set(dev, net);
4972 
4973 	/* Assign the new device name */
4974 	if (destname != dev->name)
4975 		strcpy(dev->name, destname);
4976 
4977 	/* If there is an ifindex conflict assign a new one */
4978 	if (__dev_get_by_index(net, dev->ifindex)) {
4979 		int iflink = (dev->iflink == dev->ifindex);
4980 		dev->ifindex = dev_new_index(net);
4981 		if (iflink)
4982 			dev->iflink = dev->ifindex;
4983 	}
4984 
4985 	/* Fixup kobjects */
4986 	err = netdev_register_kobject(dev);
4987 	WARN_ON(err);
4988 
4989 	/* Add the device back in the hashes */
4990 	list_netdevice(dev);
4991 
4992 	/* Notify protocols, that a new device appeared. */
4993 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
4994 
4995 	synchronize_net();
4996 	err = 0;
4997 out:
4998 	return err;
4999 }
5000 
5001 static int dev_cpu_callback(struct notifier_block *nfb,
5002 			    unsigned long action,
5003 			    void *ocpu)
5004 {
5005 	struct sk_buff **list_skb;
5006 	struct Qdisc **list_net;
5007 	struct sk_buff *skb;
5008 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
5009 	struct softnet_data *sd, *oldsd;
5010 
5011 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5012 		return NOTIFY_OK;
5013 
5014 	local_irq_disable();
5015 	cpu = smp_processor_id();
5016 	sd = &per_cpu(softnet_data, cpu);
5017 	oldsd = &per_cpu(softnet_data, oldcpu);
5018 
5019 	/* Find end of our completion_queue. */
5020 	list_skb = &sd->completion_queue;
5021 	while (*list_skb)
5022 		list_skb = &(*list_skb)->next;
5023 	/* Append completion queue from offline CPU. */
5024 	*list_skb = oldsd->completion_queue;
5025 	oldsd->completion_queue = NULL;
5026 
5027 	/* Find end of our output_queue. */
5028 	list_net = &sd->output_queue;
5029 	while (*list_net)
5030 		list_net = &(*list_net)->next_sched;
5031 	/* Append output queue from offline CPU. */
5032 	*list_net = oldsd->output_queue;
5033 	oldsd->output_queue = NULL;
5034 
5035 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
5036 	local_irq_enable();
5037 
5038 	/* Process offline CPU's input_pkt_queue */
5039 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5040 		netif_rx(skb);
5041 
5042 	return NOTIFY_OK;
5043 }
5044 
5045 
5046 /**
5047  *	netdev_increment_features - increment feature set by one
5048  *	@all: current feature set
5049  *	@one: new feature set
5050  *	@mask: mask feature set
5051  *
5052  *	Computes a new feature set after adding a device with feature set
5053  *	@one to the master device with current feature set @all.  Will not
5054  *	enable anything that is off in @mask. Returns the new feature set.
5055  */
5056 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5057 					unsigned long mask)
5058 {
5059 	/* If device needs checksumming, downgrade to it. */
5060         if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5061 		all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5062 	else if (mask & NETIF_F_ALL_CSUM) {
5063 		/* If one device supports v4/v6 checksumming, set for all. */
5064 		if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5065 		    !(all & NETIF_F_GEN_CSUM)) {
5066 			all &= ~NETIF_F_ALL_CSUM;
5067 			all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5068 		}
5069 
5070 		/* If one device supports hw checksumming, set for all. */
5071 		if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5072 			all &= ~NETIF_F_ALL_CSUM;
5073 			all |= NETIF_F_HW_CSUM;
5074 		}
5075 	}
5076 
5077 	one |= NETIF_F_ALL_CSUM;
5078 
5079 	one |= all & NETIF_F_ONE_FOR_ALL;
5080 	all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5081 	all |= one & mask & NETIF_F_ONE_FOR_ALL;
5082 
5083 	return all;
5084 }
5085 EXPORT_SYMBOL(netdev_increment_features);
5086 
5087 static struct hlist_head *netdev_create_hash(void)
5088 {
5089 	int i;
5090 	struct hlist_head *hash;
5091 
5092 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5093 	if (hash != NULL)
5094 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
5095 			INIT_HLIST_HEAD(&hash[i]);
5096 
5097 	return hash;
5098 }
5099 
5100 /* Initialize per network namespace state */
5101 static int __net_init netdev_init(struct net *net)
5102 {
5103 	INIT_LIST_HEAD(&net->dev_base_head);
5104 
5105 	net->dev_name_head = netdev_create_hash();
5106 	if (net->dev_name_head == NULL)
5107 		goto err_name;
5108 
5109 	net->dev_index_head = netdev_create_hash();
5110 	if (net->dev_index_head == NULL)
5111 		goto err_idx;
5112 
5113 	return 0;
5114 
5115 err_idx:
5116 	kfree(net->dev_name_head);
5117 err_name:
5118 	return -ENOMEM;
5119 }
5120 
5121 /**
5122  *	netdev_drivername - network driver for the device
5123  *	@dev: network device
5124  *	@buffer: buffer for resulting name
5125  *	@len: size of buffer
5126  *
5127  *	Determine network driver for device.
5128  */
5129 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5130 {
5131 	const struct device_driver *driver;
5132 	const struct device *parent;
5133 
5134 	if (len <= 0 || !buffer)
5135 		return buffer;
5136 	buffer[0] = 0;
5137 
5138 	parent = dev->dev.parent;
5139 
5140 	if (!parent)
5141 		return buffer;
5142 
5143 	driver = parent->driver;
5144 	if (driver && driver->name)
5145 		strlcpy(buffer, driver->name, len);
5146 	return buffer;
5147 }
5148 
5149 static void __net_exit netdev_exit(struct net *net)
5150 {
5151 	kfree(net->dev_name_head);
5152 	kfree(net->dev_index_head);
5153 }
5154 
5155 static struct pernet_operations __net_initdata netdev_net_ops = {
5156 	.init = netdev_init,
5157 	.exit = netdev_exit,
5158 };
5159 
5160 static void __net_exit default_device_exit(struct net *net)
5161 {
5162 	struct net_device *dev;
5163 	/*
5164 	 * Push all migratable of the network devices back to the
5165 	 * initial network namespace
5166 	 */
5167 	rtnl_lock();
5168 restart:
5169 	for_each_netdev(net, dev) {
5170 		int err;
5171 		char fb_name[IFNAMSIZ];
5172 
5173 		/* Ignore unmoveable devices (i.e. loopback) */
5174 		if (dev->features & NETIF_F_NETNS_LOCAL)
5175 			continue;
5176 
5177 		/* Delete virtual devices */
5178 		if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5179 			dev->rtnl_link_ops->dellink(dev);
5180 			goto restart;
5181 		}
5182 
5183 		/* Push remaing network devices to init_net */
5184 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5185 		err = dev_change_net_namespace(dev, &init_net, fb_name);
5186 		if (err) {
5187 			printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5188 				__func__, dev->name, err);
5189 			BUG();
5190 		}
5191 		goto restart;
5192 	}
5193 	rtnl_unlock();
5194 }
5195 
5196 static struct pernet_operations __net_initdata default_device_ops = {
5197 	.exit = default_device_exit,
5198 };
5199 
5200 /*
5201  *	Initialize the DEV module. At boot time this walks the device list and
5202  *	unhooks any devices that fail to initialise (normally hardware not
5203  *	present) and leaves us with a valid list of present and active devices.
5204  *
5205  */
5206 
5207 /*
5208  *       This is called single threaded during boot, so no need
5209  *       to take the rtnl semaphore.
5210  */
5211 static int __init net_dev_init(void)
5212 {
5213 	int i, rc = -ENOMEM;
5214 
5215 	BUG_ON(!dev_boot_phase);
5216 
5217 	if (dev_proc_init())
5218 		goto out;
5219 
5220 	if (netdev_kobject_init())
5221 		goto out;
5222 
5223 	INIT_LIST_HEAD(&ptype_all);
5224 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
5225 		INIT_LIST_HEAD(&ptype_base[i]);
5226 
5227 	if (register_pernet_subsys(&netdev_net_ops))
5228 		goto out;
5229 
5230 	/*
5231 	 *	Initialise the packet receive queues.
5232 	 */
5233 
5234 	for_each_possible_cpu(i) {
5235 		struct softnet_data *queue;
5236 
5237 		queue = &per_cpu(softnet_data, i);
5238 		skb_queue_head_init(&queue->input_pkt_queue);
5239 		queue->completion_queue = NULL;
5240 		INIT_LIST_HEAD(&queue->poll_list);
5241 
5242 		queue->backlog.poll = process_backlog;
5243 		queue->backlog.weight = weight_p;
5244 		queue->backlog.gro_list = NULL;
5245 		queue->backlog.gro_count = 0;
5246 	}
5247 
5248 	dev_boot_phase = 0;
5249 
5250 	/* The loopback device is special if any other network devices
5251 	 * is present in a network namespace the loopback device must
5252 	 * be present. Since we now dynamically allocate and free the
5253 	 * loopback device ensure this invariant is maintained by
5254 	 * keeping the loopback device as the first device on the
5255 	 * list of network devices.  Ensuring the loopback devices
5256 	 * is the first device that appears and the last network device
5257 	 * that disappears.
5258 	 */
5259 	if (register_pernet_device(&loopback_net_ops))
5260 		goto out;
5261 
5262 	if (register_pernet_device(&default_device_ops))
5263 		goto out;
5264 
5265 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5266 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5267 
5268 	hotcpu_notifier(dev_cpu_callback, 0);
5269 	dst_init();
5270 	dev_mcast_init();
5271 	rc = 0;
5272 out:
5273 	return rc;
5274 }
5275 
5276 subsys_initcall(net_dev_init);
5277 
5278 static int __init initialize_hashrnd(void)
5279 {
5280 	get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5281 	return 0;
5282 }
5283 
5284 late_initcall_sync(initialize_hashrnd);
5285 
5286 EXPORT_SYMBOL(__dev_get_by_index);
5287 EXPORT_SYMBOL(__dev_get_by_name);
5288 EXPORT_SYMBOL(__dev_remove_pack);
5289 EXPORT_SYMBOL(dev_valid_name);
5290 EXPORT_SYMBOL(dev_add_pack);
5291 EXPORT_SYMBOL(dev_alloc_name);
5292 EXPORT_SYMBOL(dev_close);
5293 EXPORT_SYMBOL(dev_get_by_flags);
5294 EXPORT_SYMBOL(dev_get_by_index);
5295 EXPORT_SYMBOL(dev_get_by_name);
5296 EXPORT_SYMBOL(dev_open);
5297 EXPORT_SYMBOL(dev_queue_xmit);
5298 EXPORT_SYMBOL(dev_remove_pack);
5299 EXPORT_SYMBOL(dev_set_allmulti);
5300 EXPORT_SYMBOL(dev_set_promiscuity);
5301 EXPORT_SYMBOL(dev_change_flags);
5302 EXPORT_SYMBOL(dev_set_mtu);
5303 EXPORT_SYMBOL(dev_set_mac_address);
5304 EXPORT_SYMBOL(free_netdev);
5305 EXPORT_SYMBOL(netdev_boot_setup_check);
5306 EXPORT_SYMBOL(netdev_set_master);
5307 EXPORT_SYMBOL(netdev_state_change);
5308 EXPORT_SYMBOL(netif_receive_skb);
5309 EXPORT_SYMBOL(netif_rx);
5310 EXPORT_SYMBOL(register_gifconf);
5311 EXPORT_SYMBOL(register_netdevice);
5312 EXPORT_SYMBOL(register_netdevice_notifier);
5313 EXPORT_SYMBOL(skb_checksum_help);
5314 EXPORT_SYMBOL(synchronize_net);
5315 EXPORT_SYMBOL(unregister_netdevice);
5316 EXPORT_SYMBOL(unregister_netdevice_notifier);
5317 EXPORT_SYMBOL(net_enable_timestamp);
5318 EXPORT_SYMBOL(net_disable_timestamp);
5319 EXPORT_SYMBOL(dev_get_flags);
5320 
5321 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5322 EXPORT_SYMBOL(br_handle_frame_hook);
5323 EXPORT_SYMBOL(br_fdb_get_hook);
5324 EXPORT_SYMBOL(br_fdb_put_hook);
5325 #endif
5326 
5327 EXPORT_SYMBOL(dev_load);
5328 
5329 EXPORT_PER_CPU_SYMBOL(softnet_data);
5330