1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/ethtool.h> 94 #include <linux/notifier.h> 95 #include <linux/skbuff.h> 96 #include <net/net_namespace.h> 97 #include <net/sock.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/stat.h> 102 #include <linux/if_bridge.h> 103 #include <linux/if_macvlan.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 #include <linux/if_vlan.h> 123 #include <linux/ip.h> 124 #include <net/ip.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 130 #include "net-sysfs.h" 131 132 /* Instead of increasing this, you should create a hash table. */ 133 #define MAX_GRO_SKBS 8 134 135 /* This should be increased if a protocol with a bigger head is added. */ 136 #define GRO_MAX_HEAD (MAX_HEADER + 128) 137 138 /* 139 * The list of packet types we will receive (as opposed to discard) 140 * and the routines to invoke. 141 * 142 * Why 16. Because with 16 the only overlap we get on a hash of the 143 * low nibble of the protocol value is RARP/SNAP/X.25. 144 * 145 * NOTE: That is no longer true with the addition of VLAN tags. Not 146 * sure which should go first, but I bet it won't make much 147 * difference if we are running VLANs. The good news is that 148 * this protocol won't be in the list unless compiled in, so 149 * the average user (w/out VLANs) will not be adversely affected. 150 * --BLG 151 * 152 * 0800 IP 153 * 8100 802.1Q VLAN 154 * 0001 802.3 155 * 0002 AX.25 156 * 0004 802.2 157 * 8035 RARP 158 * 0005 SNAP 159 * 0805 X.25 160 * 0806 ARP 161 * 8137 IPX 162 * 0009 Localtalk 163 * 86DD IPv6 164 */ 165 166 #define PTYPE_HASH_SIZE (16) 167 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 168 169 static DEFINE_SPINLOCK(ptype_lock); 170 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 171 static struct list_head ptype_all __read_mostly; /* Taps */ 172 173 /* 174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 175 * semaphore. 176 * 177 * Pure readers hold dev_base_lock for reading. 178 * 179 * Writers must hold the rtnl semaphore while they loop through the 180 * dev_base_head list, and hold dev_base_lock for writing when they do the 181 * actual updates. This allows pure readers to access the list even 182 * while a writer is preparing to update it. 183 * 184 * To put it another way, dev_base_lock is held for writing only to 185 * protect against pure readers; the rtnl semaphore provides the 186 * protection against other writers. 187 * 188 * See, for example usages, register_netdevice() and 189 * unregister_netdevice(), which must be called with the rtnl 190 * semaphore held. 191 */ 192 DEFINE_RWLOCK(dev_base_lock); 193 194 EXPORT_SYMBOL(dev_base_lock); 195 196 #define NETDEV_HASHBITS 8 197 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 198 199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 200 { 201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 203 } 204 205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 206 { 207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 208 } 209 210 /* Device list insertion */ 211 static int list_netdevice(struct net_device *dev) 212 { 213 struct net *net = dev_net(dev); 214 215 ASSERT_RTNL(); 216 217 write_lock_bh(&dev_base_lock); 218 list_add_tail(&dev->dev_list, &net->dev_base_head); 219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 221 write_unlock_bh(&dev_base_lock); 222 return 0; 223 } 224 225 /* Device list removal */ 226 static void unlist_netdevice(struct net_device *dev) 227 { 228 ASSERT_RTNL(); 229 230 /* Unlink dev from the device chain */ 231 write_lock_bh(&dev_base_lock); 232 list_del(&dev->dev_list); 233 hlist_del(&dev->name_hlist); 234 hlist_del(&dev->index_hlist); 235 write_unlock_bh(&dev_base_lock); 236 } 237 238 /* 239 * Our notifier list 240 */ 241 242 static RAW_NOTIFIER_HEAD(netdev_chain); 243 244 /* 245 * Device drivers call our routines to queue packets here. We empty the 246 * queue in the local softnet handler. 247 */ 248 249 DEFINE_PER_CPU(struct softnet_data, softnet_data); 250 251 #ifdef CONFIG_LOCKDEP 252 /* 253 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 254 * according to dev->type 255 */ 256 static const unsigned short netdev_lock_type[] = 257 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 258 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 259 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 260 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 261 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 262 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 263 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 264 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 265 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 266 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 267 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 268 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 269 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 270 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 271 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE}; 272 273 static const char *netdev_lock_name[] = 274 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 275 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 276 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 277 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 278 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 279 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 280 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 281 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 282 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 283 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 284 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 285 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 286 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 287 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 288 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"}; 289 290 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 291 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 292 293 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 294 { 295 int i; 296 297 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 298 if (netdev_lock_type[i] == dev_type) 299 return i; 300 /* the last key is used by default */ 301 return ARRAY_SIZE(netdev_lock_type) - 1; 302 } 303 304 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 305 unsigned short dev_type) 306 { 307 int i; 308 309 i = netdev_lock_pos(dev_type); 310 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 311 netdev_lock_name[i]); 312 } 313 314 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 315 { 316 int i; 317 318 i = netdev_lock_pos(dev->type); 319 lockdep_set_class_and_name(&dev->addr_list_lock, 320 &netdev_addr_lock_key[i], 321 netdev_lock_name[i]); 322 } 323 #else 324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 325 unsigned short dev_type) 326 { 327 } 328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 329 { 330 } 331 #endif 332 333 /******************************************************************************* 334 335 Protocol management and registration routines 336 337 *******************************************************************************/ 338 339 /* 340 * Add a protocol ID to the list. Now that the input handler is 341 * smarter we can dispense with all the messy stuff that used to be 342 * here. 343 * 344 * BEWARE!!! Protocol handlers, mangling input packets, 345 * MUST BE last in hash buckets and checking protocol handlers 346 * MUST start from promiscuous ptype_all chain in net_bh. 347 * It is true now, do not change it. 348 * Explanation follows: if protocol handler, mangling packet, will 349 * be the first on list, it is not able to sense, that packet 350 * is cloned and should be copied-on-write, so that it will 351 * change it and subsequent readers will get broken packet. 352 * --ANK (980803) 353 */ 354 355 /** 356 * dev_add_pack - add packet handler 357 * @pt: packet type declaration 358 * 359 * Add a protocol handler to the networking stack. The passed &packet_type 360 * is linked into kernel lists and may not be freed until it has been 361 * removed from the kernel lists. 362 * 363 * This call does not sleep therefore it can not 364 * guarantee all CPU's that are in middle of receiving packets 365 * will see the new packet type (until the next received packet). 366 */ 367 368 void dev_add_pack(struct packet_type *pt) 369 { 370 int hash; 371 372 spin_lock_bh(&ptype_lock); 373 if (pt->type == htons(ETH_P_ALL)) 374 list_add_rcu(&pt->list, &ptype_all); 375 else { 376 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 377 list_add_rcu(&pt->list, &ptype_base[hash]); 378 } 379 spin_unlock_bh(&ptype_lock); 380 } 381 382 /** 383 * __dev_remove_pack - remove packet handler 384 * @pt: packet type declaration 385 * 386 * Remove a protocol handler that was previously added to the kernel 387 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 388 * from the kernel lists and can be freed or reused once this function 389 * returns. 390 * 391 * The packet type might still be in use by receivers 392 * and must not be freed until after all the CPU's have gone 393 * through a quiescent state. 394 */ 395 void __dev_remove_pack(struct packet_type *pt) 396 { 397 struct list_head *head; 398 struct packet_type *pt1; 399 400 spin_lock_bh(&ptype_lock); 401 402 if (pt->type == htons(ETH_P_ALL)) 403 head = &ptype_all; 404 else 405 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 406 407 list_for_each_entry(pt1, head, list) { 408 if (pt == pt1) { 409 list_del_rcu(&pt->list); 410 goto out; 411 } 412 } 413 414 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 415 out: 416 spin_unlock_bh(&ptype_lock); 417 } 418 /** 419 * dev_remove_pack - remove packet handler 420 * @pt: packet type declaration 421 * 422 * Remove a protocol handler that was previously added to the kernel 423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 424 * from the kernel lists and can be freed or reused once this function 425 * returns. 426 * 427 * This call sleeps to guarantee that no CPU is looking at the packet 428 * type after return. 429 */ 430 void dev_remove_pack(struct packet_type *pt) 431 { 432 __dev_remove_pack(pt); 433 434 synchronize_net(); 435 } 436 437 /****************************************************************************** 438 439 Device Boot-time Settings Routines 440 441 *******************************************************************************/ 442 443 /* Boot time configuration table */ 444 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 445 446 /** 447 * netdev_boot_setup_add - add new setup entry 448 * @name: name of the device 449 * @map: configured settings for the device 450 * 451 * Adds new setup entry to the dev_boot_setup list. The function 452 * returns 0 on error and 1 on success. This is a generic routine to 453 * all netdevices. 454 */ 455 static int netdev_boot_setup_add(char *name, struct ifmap *map) 456 { 457 struct netdev_boot_setup *s; 458 int i; 459 460 s = dev_boot_setup; 461 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 462 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 463 memset(s[i].name, 0, sizeof(s[i].name)); 464 strlcpy(s[i].name, name, IFNAMSIZ); 465 memcpy(&s[i].map, map, sizeof(s[i].map)); 466 break; 467 } 468 } 469 470 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 471 } 472 473 /** 474 * netdev_boot_setup_check - check boot time settings 475 * @dev: the netdevice 476 * 477 * Check boot time settings for the device. 478 * The found settings are set for the device to be used 479 * later in the device probing. 480 * Returns 0 if no settings found, 1 if they are. 481 */ 482 int netdev_boot_setup_check(struct net_device *dev) 483 { 484 struct netdev_boot_setup *s = dev_boot_setup; 485 int i; 486 487 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 488 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 489 !strcmp(dev->name, s[i].name)) { 490 dev->irq = s[i].map.irq; 491 dev->base_addr = s[i].map.base_addr; 492 dev->mem_start = s[i].map.mem_start; 493 dev->mem_end = s[i].map.mem_end; 494 return 1; 495 } 496 } 497 return 0; 498 } 499 500 501 /** 502 * netdev_boot_base - get address from boot time settings 503 * @prefix: prefix for network device 504 * @unit: id for network device 505 * 506 * Check boot time settings for the base address of device. 507 * The found settings are set for the device to be used 508 * later in the device probing. 509 * Returns 0 if no settings found. 510 */ 511 unsigned long netdev_boot_base(const char *prefix, int unit) 512 { 513 const struct netdev_boot_setup *s = dev_boot_setup; 514 char name[IFNAMSIZ]; 515 int i; 516 517 sprintf(name, "%s%d", prefix, unit); 518 519 /* 520 * If device already registered then return base of 1 521 * to indicate not to probe for this interface 522 */ 523 if (__dev_get_by_name(&init_net, name)) 524 return 1; 525 526 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 527 if (!strcmp(name, s[i].name)) 528 return s[i].map.base_addr; 529 return 0; 530 } 531 532 /* 533 * Saves at boot time configured settings for any netdevice. 534 */ 535 int __init netdev_boot_setup(char *str) 536 { 537 int ints[5]; 538 struct ifmap map; 539 540 str = get_options(str, ARRAY_SIZE(ints), ints); 541 if (!str || !*str) 542 return 0; 543 544 /* Save settings */ 545 memset(&map, 0, sizeof(map)); 546 if (ints[0] > 0) 547 map.irq = ints[1]; 548 if (ints[0] > 1) 549 map.base_addr = ints[2]; 550 if (ints[0] > 2) 551 map.mem_start = ints[3]; 552 if (ints[0] > 3) 553 map.mem_end = ints[4]; 554 555 /* Add new entry to the list */ 556 return netdev_boot_setup_add(str, &map); 557 } 558 559 __setup("netdev=", netdev_boot_setup); 560 561 /******************************************************************************* 562 563 Device Interface Subroutines 564 565 *******************************************************************************/ 566 567 /** 568 * __dev_get_by_name - find a device by its name 569 * @net: the applicable net namespace 570 * @name: name to find 571 * 572 * Find an interface by name. Must be called under RTNL semaphore 573 * or @dev_base_lock. If the name is found a pointer to the device 574 * is returned. If the name is not found then %NULL is returned. The 575 * reference counters are not incremented so the caller must be 576 * careful with locks. 577 */ 578 579 struct net_device *__dev_get_by_name(struct net *net, const char *name) 580 { 581 struct hlist_node *p; 582 583 hlist_for_each(p, dev_name_hash(net, name)) { 584 struct net_device *dev 585 = hlist_entry(p, struct net_device, name_hlist); 586 if (!strncmp(dev->name, name, IFNAMSIZ)) 587 return dev; 588 } 589 return NULL; 590 } 591 592 /** 593 * dev_get_by_name - find a device by its name 594 * @net: the applicable net namespace 595 * @name: name to find 596 * 597 * Find an interface by name. This can be called from any 598 * context and does its own locking. The returned handle has 599 * the usage count incremented and the caller must use dev_put() to 600 * release it when it is no longer needed. %NULL is returned if no 601 * matching device is found. 602 */ 603 604 struct net_device *dev_get_by_name(struct net *net, const char *name) 605 { 606 struct net_device *dev; 607 608 read_lock(&dev_base_lock); 609 dev = __dev_get_by_name(net, name); 610 if (dev) 611 dev_hold(dev); 612 read_unlock(&dev_base_lock); 613 return dev; 614 } 615 616 /** 617 * __dev_get_by_index - find a device by its ifindex 618 * @net: the applicable net namespace 619 * @ifindex: index of device 620 * 621 * Search for an interface by index. Returns %NULL if the device 622 * is not found or a pointer to the device. The device has not 623 * had its reference counter increased so the caller must be careful 624 * about locking. The caller must hold either the RTNL semaphore 625 * or @dev_base_lock. 626 */ 627 628 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 629 { 630 struct hlist_node *p; 631 632 hlist_for_each(p, dev_index_hash(net, ifindex)) { 633 struct net_device *dev 634 = hlist_entry(p, struct net_device, index_hlist); 635 if (dev->ifindex == ifindex) 636 return dev; 637 } 638 return NULL; 639 } 640 641 642 /** 643 * dev_get_by_index - find a device by its ifindex 644 * @net: the applicable net namespace 645 * @ifindex: index of device 646 * 647 * Search for an interface by index. Returns NULL if the device 648 * is not found or a pointer to the device. The device returned has 649 * had a reference added and the pointer is safe until the user calls 650 * dev_put to indicate they have finished with it. 651 */ 652 653 struct net_device *dev_get_by_index(struct net *net, int ifindex) 654 { 655 struct net_device *dev; 656 657 read_lock(&dev_base_lock); 658 dev = __dev_get_by_index(net, ifindex); 659 if (dev) 660 dev_hold(dev); 661 read_unlock(&dev_base_lock); 662 return dev; 663 } 664 665 /** 666 * dev_getbyhwaddr - find a device by its hardware address 667 * @net: the applicable net namespace 668 * @type: media type of device 669 * @ha: hardware address 670 * 671 * Search for an interface by MAC address. Returns NULL if the device 672 * is not found or a pointer to the device. The caller must hold the 673 * rtnl semaphore. The returned device has not had its ref count increased 674 * and the caller must therefore be careful about locking 675 * 676 * BUGS: 677 * If the API was consistent this would be __dev_get_by_hwaddr 678 */ 679 680 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 681 { 682 struct net_device *dev; 683 684 ASSERT_RTNL(); 685 686 for_each_netdev(net, dev) 687 if (dev->type == type && 688 !memcmp(dev->dev_addr, ha, dev->addr_len)) 689 return dev; 690 691 return NULL; 692 } 693 694 EXPORT_SYMBOL(dev_getbyhwaddr); 695 696 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 697 { 698 struct net_device *dev; 699 700 ASSERT_RTNL(); 701 for_each_netdev(net, dev) 702 if (dev->type == type) 703 return dev; 704 705 return NULL; 706 } 707 708 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 709 710 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 711 { 712 struct net_device *dev; 713 714 rtnl_lock(); 715 dev = __dev_getfirstbyhwtype(net, type); 716 if (dev) 717 dev_hold(dev); 718 rtnl_unlock(); 719 return dev; 720 } 721 722 EXPORT_SYMBOL(dev_getfirstbyhwtype); 723 724 /** 725 * dev_get_by_flags - find any device with given flags 726 * @net: the applicable net namespace 727 * @if_flags: IFF_* values 728 * @mask: bitmask of bits in if_flags to check 729 * 730 * Search for any interface with the given flags. Returns NULL if a device 731 * is not found or a pointer to the device. The device returned has 732 * had a reference added and the pointer is safe until the user calls 733 * dev_put to indicate they have finished with it. 734 */ 735 736 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) 737 { 738 struct net_device *dev, *ret; 739 740 ret = NULL; 741 read_lock(&dev_base_lock); 742 for_each_netdev(net, dev) { 743 if (((dev->flags ^ if_flags) & mask) == 0) { 744 dev_hold(dev); 745 ret = dev; 746 break; 747 } 748 } 749 read_unlock(&dev_base_lock); 750 return ret; 751 } 752 753 /** 754 * dev_valid_name - check if name is okay for network device 755 * @name: name string 756 * 757 * Network device names need to be valid file names to 758 * to allow sysfs to work. We also disallow any kind of 759 * whitespace. 760 */ 761 int dev_valid_name(const char *name) 762 { 763 if (*name == '\0') 764 return 0; 765 if (strlen(name) >= IFNAMSIZ) 766 return 0; 767 if (!strcmp(name, ".") || !strcmp(name, "..")) 768 return 0; 769 770 while (*name) { 771 if (*name == '/' || isspace(*name)) 772 return 0; 773 name++; 774 } 775 return 1; 776 } 777 778 /** 779 * __dev_alloc_name - allocate a name for a device 780 * @net: network namespace to allocate the device name in 781 * @name: name format string 782 * @buf: scratch buffer and result name string 783 * 784 * Passed a format string - eg "lt%d" it will try and find a suitable 785 * id. It scans list of devices to build up a free map, then chooses 786 * the first empty slot. The caller must hold the dev_base or rtnl lock 787 * while allocating the name and adding the device in order to avoid 788 * duplicates. 789 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 790 * Returns the number of the unit assigned or a negative errno code. 791 */ 792 793 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 794 { 795 int i = 0; 796 const char *p; 797 const int max_netdevices = 8*PAGE_SIZE; 798 unsigned long *inuse; 799 struct net_device *d; 800 801 p = strnchr(name, IFNAMSIZ-1, '%'); 802 if (p) { 803 /* 804 * Verify the string as this thing may have come from 805 * the user. There must be either one "%d" and no other "%" 806 * characters. 807 */ 808 if (p[1] != 'd' || strchr(p + 2, '%')) 809 return -EINVAL; 810 811 /* Use one page as a bit array of possible slots */ 812 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 813 if (!inuse) 814 return -ENOMEM; 815 816 for_each_netdev(net, d) { 817 if (!sscanf(d->name, name, &i)) 818 continue; 819 if (i < 0 || i >= max_netdevices) 820 continue; 821 822 /* avoid cases where sscanf is not exact inverse of printf */ 823 snprintf(buf, IFNAMSIZ, name, i); 824 if (!strncmp(buf, d->name, IFNAMSIZ)) 825 set_bit(i, inuse); 826 } 827 828 i = find_first_zero_bit(inuse, max_netdevices); 829 free_page((unsigned long) inuse); 830 } 831 832 snprintf(buf, IFNAMSIZ, name, i); 833 if (!__dev_get_by_name(net, buf)) 834 return i; 835 836 /* It is possible to run out of possible slots 837 * when the name is long and there isn't enough space left 838 * for the digits, or if all bits are used. 839 */ 840 return -ENFILE; 841 } 842 843 /** 844 * dev_alloc_name - allocate a name for a device 845 * @dev: device 846 * @name: name format string 847 * 848 * Passed a format string - eg "lt%d" it will try and find a suitable 849 * id. It scans list of devices to build up a free map, then chooses 850 * the first empty slot. The caller must hold the dev_base or rtnl lock 851 * while allocating the name and adding the device in order to avoid 852 * duplicates. 853 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 854 * Returns the number of the unit assigned or a negative errno code. 855 */ 856 857 int dev_alloc_name(struct net_device *dev, const char *name) 858 { 859 char buf[IFNAMSIZ]; 860 struct net *net; 861 int ret; 862 863 BUG_ON(!dev_net(dev)); 864 net = dev_net(dev); 865 ret = __dev_alloc_name(net, name, buf); 866 if (ret >= 0) 867 strlcpy(dev->name, buf, IFNAMSIZ); 868 return ret; 869 } 870 871 872 /** 873 * dev_change_name - change name of a device 874 * @dev: device 875 * @newname: name (or format string) must be at least IFNAMSIZ 876 * 877 * Change name of a device, can pass format strings "eth%d". 878 * for wildcarding. 879 */ 880 int dev_change_name(struct net_device *dev, const char *newname) 881 { 882 char oldname[IFNAMSIZ]; 883 int err = 0; 884 int ret; 885 struct net *net; 886 887 ASSERT_RTNL(); 888 BUG_ON(!dev_net(dev)); 889 890 net = dev_net(dev); 891 if (dev->flags & IFF_UP) 892 return -EBUSY; 893 894 if (!dev_valid_name(newname)) 895 return -EINVAL; 896 897 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 898 return 0; 899 900 memcpy(oldname, dev->name, IFNAMSIZ); 901 902 if (strchr(newname, '%')) { 903 err = dev_alloc_name(dev, newname); 904 if (err < 0) 905 return err; 906 } 907 else if (__dev_get_by_name(net, newname)) 908 return -EEXIST; 909 else 910 strlcpy(dev->name, newname, IFNAMSIZ); 911 912 rollback: 913 /* For now only devices in the initial network namespace 914 * are in sysfs. 915 */ 916 if (net == &init_net) { 917 ret = device_rename(&dev->dev, dev->name); 918 if (ret) { 919 memcpy(dev->name, oldname, IFNAMSIZ); 920 return ret; 921 } 922 } 923 924 write_lock_bh(&dev_base_lock); 925 hlist_del(&dev->name_hlist); 926 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 927 write_unlock_bh(&dev_base_lock); 928 929 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 930 ret = notifier_to_errno(ret); 931 932 if (ret) { 933 if (err) { 934 printk(KERN_ERR 935 "%s: name change rollback failed: %d.\n", 936 dev->name, ret); 937 } else { 938 err = ret; 939 memcpy(dev->name, oldname, IFNAMSIZ); 940 goto rollback; 941 } 942 } 943 944 return err; 945 } 946 947 /** 948 * dev_set_alias - change ifalias of a device 949 * @dev: device 950 * @alias: name up to IFALIASZ 951 * @len: limit of bytes to copy from info 952 * 953 * Set ifalias for a device, 954 */ 955 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 956 { 957 ASSERT_RTNL(); 958 959 if (len >= IFALIASZ) 960 return -EINVAL; 961 962 if (!len) { 963 if (dev->ifalias) { 964 kfree(dev->ifalias); 965 dev->ifalias = NULL; 966 } 967 return 0; 968 } 969 970 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL); 971 if (!dev->ifalias) 972 return -ENOMEM; 973 974 strlcpy(dev->ifalias, alias, len+1); 975 return len; 976 } 977 978 979 /** 980 * netdev_features_change - device changes features 981 * @dev: device to cause notification 982 * 983 * Called to indicate a device has changed features. 984 */ 985 void netdev_features_change(struct net_device *dev) 986 { 987 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 988 } 989 EXPORT_SYMBOL(netdev_features_change); 990 991 /** 992 * netdev_state_change - device changes state 993 * @dev: device to cause notification 994 * 995 * Called to indicate a device has changed state. This function calls 996 * the notifier chains for netdev_chain and sends a NEWLINK message 997 * to the routing socket. 998 */ 999 void netdev_state_change(struct net_device *dev) 1000 { 1001 if (dev->flags & IFF_UP) { 1002 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1003 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1004 } 1005 } 1006 1007 void netdev_bonding_change(struct net_device *dev) 1008 { 1009 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev); 1010 } 1011 EXPORT_SYMBOL(netdev_bonding_change); 1012 1013 /** 1014 * dev_load - load a network module 1015 * @net: the applicable net namespace 1016 * @name: name of interface 1017 * 1018 * If a network interface is not present and the process has suitable 1019 * privileges this function loads the module. If module loading is not 1020 * available in this kernel then it becomes a nop. 1021 */ 1022 1023 void dev_load(struct net *net, const char *name) 1024 { 1025 struct net_device *dev; 1026 1027 read_lock(&dev_base_lock); 1028 dev = __dev_get_by_name(net, name); 1029 read_unlock(&dev_base_lock); 1030 1031 if (!dev && capable(CAP_SYS_MODULE)) 1032 request_module("%s", name); 1033 } 1034 1035 /** 1036 * dev_open - prepare an interface for use. 1037 * @dev: device to open 1038 * 1039 * Takes a device from down to up state. The device's private open 1040 * function is invoked and then the multicast lists are loaded. Finally 1041 * the device is moved into the up state and a %NETDEV_UP message is 1042 * sent to the netdev notifier chain. 1043 * 1044 * Calling this function on an active interface is a nop. On a failure 1045 * a negative errno code is returned. 1046 */ 1047 int dev_open(struct net_device *dev) 1048 { 1049 const struct net_device_ops *ops = dev->netdev_ops; 1050 int ret = 0; 1051 1052 ASSERT_RTNL(); 1053 1054 /* 1055 * Is it already up? 1056 */ 1057 1058 if (dev->flags & IFF_UP) 1059 return 0; 1060 1061 /* 1062 * Is it even present? 1063 */ 1064 if (!netif_device_present(dev)) 1065 return -ENODEV; 1066 1067 /* 1068 * Call device private open method 1069 */ 1070 set_bit(__LINK_STATE_START, &dev->state); 1071 1072 if (ops->ndo_validate_addr) 1073 ret = ops->ndo_validate_addr(dev); 1074 1075 if (!ret && ops->ndo_open) 1076 ret = ops->ndo_open(dev); 1077 1078 /* 1079 * If it went open OK then: 1080 */ 1081 1082 if (ret) 1083 clear_bit(__LINK_STATE_START, &dev->state); 1084 else { 1085 /* 1086 * Set the flags. 1087 */ 1088 dev->flags |= IFF_UP; 1089 1090 /* 1091 * Enable NET_DMA 1092 */ 1093 net_dmaengine_get(); 1094 1095 /* 1096 * Initialize multicasting status 1097 */ 1098 dev_set_rx_mode(dev); 1099 1100 /* 1101 * Wakeup transmit queue engine 1102 */ 1103 dev_activate(dev); 1104 1105 /* 1106 * ... and announce new interface. 1107 */ 1108 call_netdevice_notifiers(NETDEV_UP, dev); 1109 } 1110 1111 return ret; 1112 } 1113 1114 /** 1115 * dev_close - shutdown an interface. 1116 * @dev: device to shutdown 1117 * 1118 * This function moves an active device into down state. A 1119 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1120 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1121 * chain. 1122 */ 1123 int dev_close(struct net_device *dev) 1124 { 1125 const struct net_device_ops *ops = dev->netdev_ops; 1126 ASSERT_RTNL(); 1127 1128 might_sleep(); 1129 1130 if (!(dev->flags & IFF_UP)) 1131 return 0; 1132 1133 /* 1134 * Tell people we are going down, so that they can 1135 * prepare to death, when device is still operating. 1136 */ 1137 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1138 1139 clear_bit(__LINK_STATE_START, &dev->state); 1140 1141 /* Synchronize to scheduled poll. We cannot touch poll list, 1142 * it can be even on different cpu. So just clear netif_running(). 1143 * 1144 * dev->stop() will invoke napi_disable() on all of it's 1145 * napi_struct instances on this device. 1146 */ 1147 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1148 1149 dev_deactivate(dev); 1150 1151 /* 1152 * Call the device specific close. This cannot fail. 1153 * Only if device is UP 1154 * 1155 * We allow it to be called even after a DETACH hot-plug 1156 * event. 1157 */ 1158 if (ops->ndo_stop) 1159 ops->ndo_stop(dev); 1160 1161 /* 1162 * Device is now down. 1163 */ 1164 1165 dev->flags &= ~IFF_UP; 1166 1167 /* 1168 * Tell people we are down 1169 */ 1170 call_netdevice_notifiers(NETDEV_DOWN, dev); 1171 1172 /* 1173 * Shutdown NET_DMA 1174 */ 1175 net_dmaengine_put(); 1176 1177 return 0; 1178 } 1179 1180 1181 /** 1182 * dev_disable_lro - disable Large Receive Offload on a device 1183 * @dev: device 1184 * 1185 * Disable Large Receive Offload (LRO) on a net device. Must be 1186 * called under RTNL. This is needed if received packets may be 1187 * forwarded to another interface. 1188 */ 1189 void dev_disable_lro(struct net_device *dev) 1190 { 1191 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1192 dev->ethtool_ops->set_flags) { 1193 u32 flags = dev->ethtool_ops->get_flags(dev); 1194 if (flags & ETH_FLAG_LRO) { 1195 flags &= ~ETH_FLAG_LRO; 1196 dev->ethtool_ops->set_flags(dev, flags); 1197 } 1198 } 1199 WARN_ON(dev->features & NETIF_F_LRO); 1200 } 1201 EXPORT_SYMBOL(dev_disable_lro); 1202 1203 1204 static int dev_boot_phase = 1; 1205 1206 /* 1207 * Device change register/unregister. These are not inline or static 1208 * as we export them to the world. 1209 */ 1210 1211 /** 1212 * register_netdevice_notifier - register a network notifier block 1213 * @nb: notifier 1214 * 1215 * Register a notifier to be called when network device events occur. 1216 * The notifier passed is linked into the kernel structures and must 1217 * not be reused until it has been unregistered. A negative errno code 1218 * is returned on a failure. 1219 * 1220 * When registered all registration and up events are replayed 1221 * to the new notifier to allow device to have a race free 1222 * view of the network device list. 1223 */ 1224 1225 int register_netdevice_notifier(struct notifier_block *nb) 1226 { 1227 struct net_device *dev; 1228 struct net_device *last; 1229 struct net *net; 1230 int err; 1231 1232 rtnl_lock(); 1233 err = raw_notifier_chain_register(&netdev_chain, nb); 1234 if (err) 1235 goto unlock; 1236 if (dev_boot_phase) 1237 goto unlock; 1238 for_each_net(net) { 1239 for_each_netdev(net, dev) { 1240 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1241 err = notifier_to_errno(err); 1242 if (err) 1243 goto rollback; 1244 1245 if (!(dev->flags & IFF_UP)) 1246 continue; 1247 1248 nb->notifier_call(nb, NETDEV_UP, dev); 1249 } 1250 } 1251 1252 unlock: 1253 rtnl_unlock(); 1254 return err; 1255 1256 rollback: 1257 last = dev; 1258 for_each_net(net) { 1259 for_each_netdev(net, dev) { 1260 if (dev == last) 1261 break; 1262 1263 if (dev->flags & IFF_UP) { 1264 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1265 nb->notifier_call(nb, NETDEV_DOWN, dev); 1266 } 1267 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1268 } 1269 } 1270 1271 raw_notifier_chain_unregister(&netdev_chain, nb); 1272 goto unlock; 1273 } 1274 1275 /** 1276 * unregister_netdevice_notifier - unregister a network notifier block 1277 * @nb: notifier 1278 * 1279 * Unregister a notifier previously registered by 1280 * register_netdevice_notifier(). The notifier is unlinked into the 1281 * kernel structures and may then be reused. A negative errno code 1282 * is returned on a failure. 1283 */ 1284 1285 int unregister_netdevice_notifier(struct notifier_block *nb) 1286 { 1287 int err; 1288 1289 rtnl_lock(); 1290 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1291 rtnl_unlock(); 1292 return err; 1293 } 1294 1295 /** 1296 * call_netdevice_notifiers - call all network notifier blocks 1297 * @val: value passed unmodified to notifier function 1298 * @dev: net_device pointer passed unmodified to notifier function 1299 * 1300 * Call all network notifier blocks. Parameters and return value 1301 * are as for raw_notifier_call_chain(). 1302 */ 1303 1304 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1305 { 1306 return raw_notifier_call_chain(&netdev_chain, val, dev); 1307 } 1308 1309 /* When > 0 there are consumers of rx skb time stamps */ 1310 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1311 1312 void net_enable_timestamp(void) 1313 { 1314 atomic_inc(&netstamp_needed); 1315 } 1316 1317 void net_disable_timestamp(void) 1318 { 1319 atomic_dec(&netstamp_needed); 1320 } 1321 1322 static inline void net_timestamp(struct sk_buff *skb) 1323 { 1324 if (atomic_read(&netstamp_needed)) 1325 __net_timestamp(skb); 1326 else 1327 skb->tstamp.tv64 = 0; 1328 } 1329 1330 /* 1331 * Support routine. Sends outgoing frames to any network 1332 * taps currently in use. 1333 */ 1334 1335 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1336 { 1337 struct packet_type *ptype; 1338 1339 net_timestamp(skb); 1340 1341 rcu_read_lock(); 1342 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1343 /* Never send packets back to the socket 1344 * they originated from - MvS (miquels@drinkel.ow.org) 1345 */ 1346 if ((ptype->dev == dev || !ptype->dev) && 1347 (ptype->af_packet_priv == NULL || 1348 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1349 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1350 if (!skb2) 1351 break; 1352 1353 /* skb->nh should be correctly 1354 set by sender, so that the second statement is 1355 just protection against buggy protocols. 1356 */ 1357 skb_reset_mac_header(skb2); 1358 1359 if (skb_network_header(skb2) < skb2->data || 1360 skb2->network_header > skb2->tail) { 1361 if (net_ratelimit()) 1362 printk(KERN_CRIT "protocol %04x is " 1363 "buggy, dev %s\n", 1364 skb2->protocol, dev->name); 1365 skb_reset_network_header(skb2); 1366 } 1367 1368 skb2->transport_header = skb2->network_header; 1369 skb2->pkt_type = PACKET_OUTGOING; 1370 ptype->func(skb2, skb->dev, ptype, skb->dev); 1371 } 1372 } 1373 rcu_read_unlock(); 1374 } 1375 1376 1377 static inline void __netif_reschedule(struct Qdisc *q) 1378 { 1379 struct softnet_data *sd; 1380 unsigned long flags; 1381 1382 local_irq_save(flags); 1383 sd = &__get_cpu_var(softnet_data); 1384 q->next_sched = sd->output_queue; 1385 sd->output_queue = q; 1386 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1387 local_irq_restore(flags); 1388 } 1389 1390 void __netif_schedule(struct Qdisc *q) 1391 { 1392 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1393 __netif_reschedule(q); 1394 } 1395 EXPORT_SYMBOL(__netif_schedule); 1396 1397 void dev_kfree_skb_irq(struct sk_buff *skb) 1398 { 1399 if (atomic_dec_and_test(&skb->users)) { 1400 struct softnet_data *sd; 1401 unsigned long flags; 1402 1403 local_irq_save(flags); 1404 sd = &__get_cpu_var(softnet_data); 1405 skb->next = sd->completion_queue; 1406 sd->completion_queue = skb; 1407 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1408 local_irq_restore(flags); 1409 } 1410 } 1411 EXPORT_SYMBOL(dev_kfree_skb_irq); 1412 1413 void dev_kfree_skb_any(struct sk_buff *skb) 1414 { 1415 if (in_irq() || irqs_disabled()) 1416 dev_kfree_skb_irq(skb); 1417 else 1418 dev_kfree_skb(skb); 1419 } 1420 EXPORT_SYMBOL(dev_kfree_skb_any); 1421 1422 1423 /** 1424 * netif_device_detach - mark device as removed 1425 * @dev: network device 1426 * 1427 * Mark device as removed from system and therefore no longer available. 1428 */ 1429 void netif_device_detach(struct net_device *dev) 1430 { 1431 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1432 netif_running(dev)) { 1433 netif_stop_queue(dev); 1434 } 1435 } 1436 EXPORT_SYMBOL(netif_device_detach); 1437 1438 /** 1439 * netif_device_attach - mark device as attached 1440 * @dev: network device 1441 * 1442 * Mark device as attached from system and restart if needed. 1443 */ 1444 void netif_device_attach(struct net_device *dev) 1445 { 1446 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1447 netif_running(dev)) { 1448 netif_wake_queue(dev); 1449 __netdev_watchdog_up(dev); 1450 } 1451 } 1452 EXPORT_SYMBOL(netif_device_attach); 1453 1454 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1455 { 1456 return ((features & NETIF_F_GEN_CSUM) || 1457 ((features & NETIF_F_IP_CSUM) && 1458 protocol == htons(ETH_P_IP)) || 1459 ((features & NETIF_F_IPV6_CSUM) && 1460 protocol == htons(ETH_P_IPV6)) || 1461 ((features & NETIF_F_FCOE_CRC) && 1462 protocol == htons(ETH_P_FCOE))); 1463 } 1464 1465 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1466 { 1467 if (can_checksum_protocol(dev->features, skb->protocol)) 1468 return true; 1469 1470 if (skb->protocol == htons(ETH_P_8021Q)) { 1471 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1472 if (can_checksum_protocol(dev->features & dev->vlan_features, 1473 veh->h_vlan_encapsulated_proto)) 1474 return true; 1475 } 1476 1477 return false; 1478 } 1479 1480 /* 1481 * Invalidate hardware checksum when packet is to be mangled, and 1482 * complete checksum manually on outgoing path. 1483 */ 1484 int skb_checksum_help(struct sk_buff *skb) 1485 { 1486 __wsum csum; 1487 int ret = 0, offset; 1488 1489 if (skb->ip_summed == CHECKSUM_COMPLETE) 1490 goto out_set_summed; 1491 1492 if (unlikely(skb_shinfo(skb)->gso_size)) { 1493 /* Let GSO fix up the checksum. */ 1494 goto out_set_summed; 1495 } 1496 1497 offset = skb->csum_start - skb_headroom(skb); 1498 BUG_ON(offset >= skb_headlen(skb)); 1499 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1500 1501 offset += skb->csum_offset; 1502 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1503 1504 if (skb_cloned(skb) && 1505 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1506 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1507 if (ret) 1508 goto out; 1509 } 1510 1511 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1512 out_set_summed: 1513 skb->ip_summed = CHECKSUM_NONE; 1514 out: 1515 return ret; 1516 } 1517 1518 /** 1519 * skb_gso_segment - Perform segmentation on skb. 1520 * @skb: buffer to segment 1521 * @features: features for the output path (see dev->features) 1522 * 1523 * This function segments the given skb and returns a list of segments. 1524 * 1525 * It may return NULL if the skb requires no segmentation. This is 1526 * only possible when GSO is used for verifying header integrity. 1527 */ 1528 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1529 { 1530 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1531 struct packet_type *ptype; 1532 __be16 type = skb->protocol; 1533 int err; 1534 1535 skb_reset_mac_header(skb); 1536 skb->mac_len = skb->network_header - skb->mac_header; 1537 __skb_pull(skb, skb->mac_len); 1538 1539 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1540 struct net_device *dev = skb->dev; 1541 struct ethtool_drvinfo info = {}; 1542 1543 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1544 dev->ethtool_ops->get_drvinfo(dev, &info); 1545 1546 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d " 1547 "ip_summed=%d", 1548 info.driver, dev ? dev->features : 0L, 1549 skb->sk ? skb->sk->sk_route_caps : 0L, 1550 skb->len, skb->data_len, skb->ip_summed); 1551 1552 if (skb_header_cloned(skb) && 1553 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1554 return ERR_PTR(err); 1555 } 1556 1557 rcu_read_lock(); 1558 list_for_each_entry_rcu(ptype, 1559 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1560 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1561 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1562 err = ptype->gso_send_check(skb); 1563 segs = ERR_PTR(err); 1564 if (err || skb_gso_ok(skb, features)) 1565 break; 1566 __skb_push(skb, (skb->data - 1567 skb_network_header(skb))); 1568 } 1569 segs = ptype->gso_segment(skb, features); 1570 break; 1571 } 1572 } 1573 rcu_read_unlock(); 1574 1575 __skb_push(skb, skb->data - skb_mac_header(skb)); 1576 1577 return segs; 1578 } 1579 1580 EXPORT_SYMBOL(skb_gso_segment); 1581 1582 /* Take action when hardware reception checksum errors are detected. */ 1583 #ifdef CONFIG_BUG 1584 void netdev_rx_csum_fault(struct net_device *dev) 1585 { 1586 if (net_ratelimit()) { 1587 printk(KERN_ERR "%s: hw csum failure.\n", 1588 dev ? dev->name : "<unknown>"); 1589 dump_stack(); 1590 } 1591 } 1592 EXPORT_SYMBOL(netdev_rx_csum_fault); 1593 #endif 1594 1595 /* Actually, we should eliminate this check as soon as we know, that: 1596 * 1. IOMMU is present and allows to map all the memory. 1597 * 2. No high memory really exists on this machine. 1598 */ 1599 1600 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1601 { 1602 #ifdef CONFIG_HIGHMEM 1603 int i; 1604 1605 if (dev->features & NETIF_F_HIGHDMA) 1606 return 0; 1607 1608 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1609 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1610 return 1; 1611 1612 #endif 1613 return 0; 1614 } 1615 1616 struct dev_gso_cb { 1617 void (*destructor)(struct sk_buff *skb); 1618 }; 1619 1620 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1621 1622 static void dev_gso_skb_destructor(struct sk_buff *skb) 1623 { 1624 struct dev_gso_cb *cb; 1625 1626 do { 1627 struct sk_buff *nskb = skb->next; 1628 1629 skb->next = nskb->next; 1630 nskb->next = NULL; 1631 kfree_skb(nskb); 1632 } while (skb->next); 1633 1634 cb = DEV_GSO_CB(skb); 1635 if (cb->destructor) 1636 cb->destructor(skb); 1637 } 1638 1639 /** 1640 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1641 * @skb: buffer to segment 1642 * 1643 * This function segments the given skb and stores the list of segments 1644 * in skb->next. 1645 */ 1646 static int dev_gso_segment(struct sk_buff *skb) 1647 { 1648 struct net_device *dev = skb->dev; 1649 struct sk_buff *segs; 1650 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1651 NETIF_F_SG : 0); 1652 1653 segs = skb_gso_segment(skb, features); 1654 1655 /* Verifying header integrity only. */ 1656 if (!segs) 1657 return 0; 1658 1659 if (IS_ERR(segs)) 1660 return PTR_ERR(segs); 1661 1662 skb->next = segs; 1663 DEV_GSO_CB(skb)->destructor = skb->destructor; 1664 skb->destructor = dev_gso_skb_destructor; 1665 1666 return 0; 1667 } 1668 1669 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1670 struct netdev_queue *txq) 1671 { 1672 const struct net_device_ops *ops = dev->netdev_ops; 1673 int rc; 1674 1675 if (likely(!skb->next)) { 1676 if (!list_empty(&ptype_all)) 1677 dev_queue_xmit_nit(skb, dev); 1678 1679 if (netif_needs_gso(dev, skb)) { 1680 if (unlikely(dev_gso_segment(skb))) 1681 goto out_kfree_skb; 1682 if (skb->next) 1683 goto gso; 1684 } 1685 1686 rc = ops->ndo_start_xmit(skb, dev); 1687 /* 1688 * TODO: if skb_orphan() was called by 1689 * dev->hard_start_xmit() (for example, the unmodified 1690 * igb driver does that; bnx2 doesn't), then 1691 * skb_tx_software_timestamp() will be unable to send 1692 * back the time stamp. 1693 * 1694 * How can this be prevented? Always create another 1695 * reference to the socket before calling 1696 * dev->hard_start_xmit()? Prevent that skb_orphan() 1697 * does anything in dev->hard_start_xmit() by clearing 1698 * the skb destructor before the call and restoring it 1699 * afterwards, then doing the skb_orphan() ourselves? 1700 */ 1701 return rc; 1702 } 1703 1704 gso: 1705 do { 1706 struct sk_buff *nskb = skb->next; 1707 1708 skb->next = nskb->next; 1709 nskb->next = NULL; 1710 rc = ops->ndo_start_xmit(nskb, dev); 1711 if (unlikely(rc)) { 1712 nskb->next = skb->next; 1713 skb->next = nskb; 1714 return rc; 1715 } 1716 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1717 return NETDEV_TX_BUSY; 1718 } while (skb->next); 1719 1720 skb->destructor = DEV_GSO_CB(skb)->destructor; 1721 1722 out_kfree_skb: 1723 kfree_skb(skb); 1724 return 0; 1725 } 1726 1727 static u32 skb_tx_hashrnd; 1728 1729 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb) 1730 { 1731 u32 hash; 1732 1733 if (skb_rx_queue_recorded(skb)) { 1734 hash = skb_get_rx_queue(skb); 1735 } else if (skb->sk && skb->sk->sk_hash) { 1736 hash = skb->sk->sk_hash; 1737 } else 1738 hash = skb->protocol; 1739 1740 hash = jhash_1word(hash, skb_tx_hashrnd); 1741 1742 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 1743 } 1744 EXPORT_SYMBOL(skb_tx_hash); 1745 1746 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 1747 struct sk_buff *skb) 1748 { 1749 const struct net_device_ops *ops = dev->netdev_ops; 1750 u16 queue_index = 0; 1751 1752 if (ops->ndo_select_queue) 1753 queue_index = ops->ndo_select_queue(dev, skb); 1754 else if (dev->real_num_tx_queues > 1) 1755 queue_index = skb_tx_hash(dev, skb); 1756 1757 skb_set_queue_mapping(skb, queue_index); 1758 return netdev_get_tx_queue(dev, queue_index); 1759 } 1760 1761 /** 1762 * dev_queue_xmit - transmit a buffer 1763 * @skb: buffer to transmit 1764 * 1765 * Queue a buffer for transmission to a network device. The caller must 1766 * have set the device and priority and built the buffer before calling 1767 * this function. The function can be called from an interrupt. 1768 * 1769 * A negative errno code is returned on a failure. A success does not 1770 * guarantee the frame will be transmitted as it may be dropped due 1771 * to congestion or traffic shaping. 1772 * 1773 * ----------------------------------------------------------------------------------- 1774 * I notice this method can also return errors from the queue disciplines, 1775 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1776 * be positive. 1777 * 1778 * Regardless of the return value, the skb is consumed, so it is currently 1779 * difficult to retry a send to this method. (You can bump the ref count 1780 * before sending to hold a reference for retry if you are careful.) 1781 * 1782 * When calling this method, interrupts MUST be enabled. This is because 1783 * the BH enable code must have IRQs enabled so that it will not deadlock. 1784 * --BLG 1785 */ 1786 int dev_queue_xmit(struct sk_buff *skb) 1787 { 1788 struct net_device *dev = skb->dev; 1789 struct netdev_queue *txq; 1790 struct Qdisc *q; 1791 int rc = -ENOMEM; 1792 1793 /* GSO will handle the following emulations directly. */ 1794 if (netif_needs_gso(dev, skb)) 1795 goto gso; 1796 1797 if (skb_shinfo(skb)->frag_list && 1798 !(dev->features & NETIF_F_FRAGLIST) && 1799 __skb_linearize(skb)) 1800 goto out_kfree_skb; 1801 1802 /* Fragmented skb is linearized if device does not support SG, 1803 * or if at least one of fragments is in highmem and device 1804 * does not support DMA from it. 1805 */ 1806 if (skb_shinfo(skb)->nr_frags && 1807 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1808 __skb_linearize(skb)) 1809 goto out_kfree_skb; 1810 1811 /* If packet is not checksummed and device does not support 1812 * checksumming for this protocol, complete checksumming here. 1813 */ 1814 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1815 skb_set_transport_header(skb, skb->csum_start - 1816 skb_headroom(skb)); 1817 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 1818 goto out_kfree_skb; 1819 } 1820 1821 gso: 1822 /* Disable soft irqs for various locks below. Also 1823 * stops preemption for RCU. 1824 */ 1825 rcu_read_lock_bh(); 1826 1827 txq = dev_pick_tx(dev, skb); 1828 q = rcu_dereference(txq->qdisc); 1829 1830 #ifdef CONFIG_NET_CLS_ACT 1831 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1832 #endif 1833 if (q->enqueue) { 1834 spinlock_t *root_lock = qdisc_lock(q); 1835 1836 spin_lock(root_lock); 1837 1838 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 1839 kfree_skb(skb); 1840 rc = NET_XMIT_DROP; 1841 } else { 1842 rc = qdisc_enqueue_root(skb, q); 1843 qdisc_run(q); 1844 } 1845 spin_unlock(root_lock); 1846 1847 goto out; 1848 } 1849 1850 /* The device has no queue. Common case for software devices: 1851 loopback, all the sorts of tunnels... 1852 1853 Really, it is unlikely that netif_tx_lock protection is necessary 1854 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1855 counters.) 1856 However, it is possible, that they rely on protection 1857 made by us here. 1858 1859 Check this and shot the lock. It is not prone from deadlocks. 1860 Either shot noqueue qdisc, it is even simpler 8) 1861 */ 1862 if (dev->flags & IFF_UP) { 1863 int cpu = smp_processor_id(); /* ok because BHs are off */ 1864 1865 if (txq->xmit_lock_owner != cpu) { 1866 1867 HARD_TX_LOCK(dev, txq, cpu); 1868 1869 if (!netif_tx_queue_stopped(txq)) { 1870 rc = 0; 1871 if (!dev_hard_start_xmit(skb, dev, txq)) { 1872 HARD_TX_UNLOCK(dev, txq); 1873 goto out; 1874 } 1875 } 1876 HARD_TX_UNLOCK(dev, txq); 1877 if (net_ratelimit()) 1878 printk(KERN_CRIT "Virtual device %s asks to " 1879 "queue packet!\n", dev->name); 1880 } else { 1881 /* Recursion is detected! It is possible, 1882 * unfortunately */ 1883 if (net_ratelimit()) 1884 printk(KERN_CRIT "Dead loop on virtual device " 1885 "%s, fix it urgently!\n", dev->name); 1886 } 1887 } 1888 1889 rc = -ENETDOWN; 1890 rcu_read_unlock_bh(); 1891 1892 out_kfree_skb: 1893 kfree_skb(skb); 1894 return rc; 1895 out: 1896 rcu_read_unlock_bh(); 1897 return rc; 1898 } 1899 1900 1901 /*======================================================================= 1902 Receiver routines 1903 =======================================================================*/ 1904 1905 int netdev_max_backlog __read_mostly = 1000; 1906 int netdev_budget __read_mostly = 300; 1907 int weight_p __read_mostly = 64; /* old backlog weight */ 1908 1909 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1910 1911 1912 /** 1913 * netif_rx - post buffer to the network code 1914 * @skb: buffer to post 1915 * 1916 * This function receives a packet from a device driver and queues it for 1917 * the upper (protocol) levels to process. It always succeeds. The buffer 1918 * may be dropped during processing for congestion control or by the 1919 * protocol layers. 1920 * 1921 * return values: 1922 * NET_RX_SUCCESS (no congestion) 1923 * NET_RX_DROP (packet was dropped) 1924 * 1925 */ 1926 1927 int netif_rx(struct sk_buff *skb) 1928 { 1929 struct softnet_data *queue; 1930 unsigned long flags; 1931 1932 /* if netpoll wants it, pretend we never saw it */ 1933 if (netpoll_rx(skb)) 1934 return NET_RX_DROP; 1935 1936 if (!skb->tstamp.tv64) 1937 net_timestamp(skb); 1938 1939 /* 1940 * The code is rearranged so that the path is the most 1941 * short when CPU is congested, but is still operating. 1942 */ 1943 local_irq_save(flags); 1944 queue = &__get_cpu_var(softnet_data); 1945 1946 __get_cpu_var(netdev_rx_stat).total++; 1947 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1948 if (queue->input_pkt_queue.qlen) { 1949 enqueue: 1950 __skb_queue_tail(&queue->input_pkt_queue, skb); 1951 local_irq_restore(flags); 1952 return NET_RX_SUCCESS; 1953 } 1954 1955 napi_schedule(&queue->backlog); 1956 goto enqueue; 1957 } 1958 1959 __get_cpu_var(netdev_rx_stat).dropped++; 1960 local_irq_restore(flags); 1961 1962 kfree_skb(skb); 1963 return NET_RX_DROP; 1964 } 1965 1966 int netif_rx_ni(struct sk_buff *skb) 1967 { 1968 int err; 1969 1970 preempt_disable(); 1971 err = netif_rx(skb); 1972 if (local_softirq_pending()) 1973 do_softirq(); 1974 preempt_enable(); 1975 1976 return err; 1977 } 1978 1979 EXPORT_SYMBOL(netif_rx_ni); 1980 1981 static void net_tx_action(struct softirq_action *h) 1982 { 1983 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1984 1985 if (sd->completion_queue) { 1986 struct sk_buff *clist; 1987 1988 local_irq_disable(); 1989 clist = sd->completion_queue; 1990 sd->completion_queue = NULL; 1991 local_irq_enable(); 1992 1993 while (clist) { 1994 struct sk_buff *skb = clist; 1995 clist = clist->next; 1996 1997 WARN_ON(atomic_read(&skb->users)); 1998 __kfree_skb(skb); 1999 } 2000 } 2001 2002 if (sd->output_queue) { 2003 struct Qdisc *head; 2004 2005 local_irq_disable(); 2006 head = sd->output_queue; 2007 sd->output_queue = NULL; 2008 local_irq_enable(); 2009 2010 while (head) { 2011 struct Qdisc *q = head; 2012 spinlock_t *root_lock; 2013 2014 head = head->next_sched; 2015 2016 root_lock = qdisc_lock(q); 2017 if (spin_trylock(root_lock)) { 2018 smp_mb__before_clear_bit(); 2019 clear_bit(__QDISC_STATE_SCHED, 2020 &q->state); 2021 qdisc_run(q); 2022 spin_unlock(root_lock); 2023 } else { 2024 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2025 &q->state)) { 2026 __netif_reschedule(q); 2027 } else { 2028 smp_mb__before_clear_bit(); 2029 clear_bit(__QDISC_STATE_SCHED, 2030 &q->state); 2031 } 2032 } 2033 } 2034 } 2035 } 2036 2037 static inline int deliver_skb(struct sk_buff *skb, 2038 struct packet_type *pt_prev, 2039 struct net_device *orig_dev) 2040 { 2041 atomic_inc(&skb->users); 2042 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2043 } 2044 2045 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2046 /* These hooks defined here for ATM */ 2047 struct net_bridge; 2048 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 2049 unsigned char *addr); 2050 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 2051 2052 /* 2053 * If bridge module is loaded call bridging hook. 2054 * returns NULL if packet was consumed. 2055 */ 2056 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2057 struct sk_buff *skb) __read_mostly; 2058 static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2059 struct packet_type **pt_prev, int *ret, 2060 struct net_device *orig_dev) 2061 { 2062 struct net_bridge_port *port; 2063 2064 if (skb->pkt_type == PACKET_LOOPBACK || 2065 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2066 return skb; 2067 2068 if (*pt_prev) { 2069 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2070 *pt_prev = NULL; 2071 } 2072 2073 return br_handle_frame_hook(port, skb); 2074 } 2075 #else 2076 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2077 #endif 2078 2079 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2080 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 2081 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2082 2083 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2084 struct packet_type **pt_prev, 2085 int *ret, 2086 struct net_device *orig_dev) 2087 { 2088 if (skb->dev->macvlan_port == NULL) 2089 return skb; 2090 2091 if (*pt_prev) { 2092 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2093 *pt_prev = NULL; 2094 } 2095 return macvlan_handle_frame_hook(skb); 2096 } 2097 #else 2098 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2099 #endif 2100 2101 #ifdef CONFIG_NET_CLS_ACT 2102 /* TODO: Maybe we should just force sch_ingress to be compiled in 2103 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2104 * a compare and 2 stores extra right now if we dont have it on 2105 * but have CONFIG_NET_CLS_ACT 2106 * NOTE: This doesnt stop any functionality; if you dont have 2107 * the ingress scheduler, you just cant add policies on ingress. 2108 * 2109 */ 2110 static int ing_filter(struct sk_buff *skb) 2111 { 2112 struct net_device *dev = skb->dev; 2113 u32 ttl = G_TC_RTTL(skb->tc_verd); 2114 struct netdev_queue *rxq; 2115 int result = TC_ACT_OK; 2116 struct Qdisc *q; 2117 2118 if (MAX_RED_LOOP < ttl++) { 2119 printk(KERN_WARNING 2120 "Redir loop detected Dropping packet (%d->%d)\n", 2121 skb->iif, dev->ifindex); 2122 return TC_ACT_SHOT; 2123 } 2124 2125 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2126 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2127 2128 rxq = &dev->rx_queue; 2129 2130 q = rxq->qdisc; 2131 if (q != &noop_qdisc) { 2132 spin_lock(qdisc_lock(q)); 2133 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2134 result = qdisc_enqueue_root(skb, q); 2135 spin_unlock(qdisc_lock(q)); 2136 } 2137 2138 return result; 2139 } 2140 2141 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2142 struct packet_type **pt_prev, 2143 int *ret, struct net_device *orig_dev) 2144 { 2145 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2146 goto out; 2147 2148 if (*pt_prev) { 2149 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2150 *pt_prev = NULL; 2151 } else { 2152 /* Huh? Why does turning on AF_PACKET affect this? */ 2153 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2154 } 2155 2156 switch (ing_filter(skb)) { 2157 case TC_ACT_SHOT: 2158 case TC_ACT_STOLEN: 2159 kfree_skb(skb); 2160 return NULL; 2161 } 2162 2163 out: 2164 skb->tc_verd = 0; 2165 return skb; 2166 } 2167 #endif 2168 2169 /* 2170 * netif_nit_deliver - deliver received packets to network taps 2171 * @skb: buffer 2172 * 2173 * This function is used to deliver incoming packets to network 2174 * taps. It should be used when the normal netif_receive_skb path 2175 * is bypassed, for example because of VLAN acceleration. 2176 */ 2177 void netif_nit_deliver(struct sk_buff *skb) 2178 { 2179 struct packet_type *ptype; 2180 2181 if (list_empty(&ptype_all)) 2182 return; 2183 2184 skb_reset_network_header(skb); 2185 skb_reset_transport_header(skb); 2186 skb->mac_len = skb->network_header - skb->mac_header; 2187 2188 rcu_read_lock(); 2189 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2190 if (!ptype->dev || ptype->dev == skb->dev) 2191 deliver_skb(skb, ptype, skb->dev); 2192 } 2193 rcu_read_unlock(); 2194 } 2195 2196 /** 2197 * netif_receive_skb - process receive buffer from network 2198 * @skb: buffer to process 2199 * 2200 * netif_receive_skb() is the main receive data processing function. 2201 * It always succeeds. The buffer may be dropped during processing 2202 * for congestion control or by the protocol layers. 2203 * 2204 * This function may only be called from softirq context and interrupts 2205 * should be enabled. 2206 * 2207 * Return values (usually ignored): 2208 * NET_RX_SUCCESS: no congestion 2209 * NET_RX_DROP: packet was dropped 2210 */ 2211 int netif_receive_skb(struct sk_buff *skb) 2212 { 2213 struct packet_type *ptype, *pt_prev; 2214 struct net_device *orig_dev; 2215 struct net_device *null_or_orig; 2216 int ret = NET_RX_DROP; 2217 __be16 type; 2218 2219 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb)) 2220 return NET_RX_SUCCESS; 2221 2222 /* if we've gotten here through NAPI, check netpoll */ 2223 if (netpoll_receive_skb(skb)) 2224 return NET_RX_DROP; 2225 2226 if (!skb->tstamp.tv64) 2227 net_timestamp(skb); 2228 2229 if (!skb->iif) 2230 skb->iif = skb->dev->ifindex; 2231 2232 null_or_orig = NULL; 2233 orig_dev = skb->dev; 2234 if (orig_dev->master) { 2235 if (skb_bond_should_drop(skb)) 2236 null_or_orig = orig_dev; /* deliver only exact match */ 2237 else 2238 skb->dev = orig_dev->master; 2239 } 2240 2241 __get_cpu_var(netdev_rx_stat).total++; 2242 2243 skb_reset_network_header(skb); 2244 skb_reset_transport_header(skb); 2245 skb->mac_len = skb->network_header - skb->mac_header; 2246 2247 pt_prev = NULL; 2248 2249 rcu_read_lock(); 2250 2251 #ifdef CONFIG_NET_CLS_ACT 2252 if (skb->tc_verd & TC_NCLS) { 2253 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2254 goto ncls; 2255 } 2256 #endif 2257 2258 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2259 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2260 ptype->dev == orig_dev) { 2261 if (pt_prev) 2262 ret = deliver_skb(skb, pt_prev, orig_dev); 2263 pt_prev = ptype; 2264 } 2265 } 2266 2267 #ifdef CONFIG_NET_CLS_ACT 2268 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2269 if (!skb) 2270 goto out; 2271 ncls: 2272 #endif 2273 2274 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2275 if (!skb) 2276 goto out; 2277 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2278 if (!skb) 2279 goto out; 2280 2281 skb_orphan(skb); 2282 2283 type = skb->protocol; 2284 list_for_each_entry_rcu(ptype, 2285 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2286 if (ptype->type == type && 2287 (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2288 ptype->dev == orig_dev)) { 2289 if (pt_prev) 2290 ret = deliver_skb(skb, pt_prev, orig_dev); 2291 pt_prev = ptype; 2292 } 2293 } 2294 2295 if (pt_prev) { 2296 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2297 } else { 2298 kfree_skb(skb); 2299 /* Jamal, now you will not able to escape explaining 2300 * me how you were going to use this. :-) 2301 */ 2302 ret = NET_RX_DROP; 2303 } 2304 2305 out: 2306 rcu_read_unlock(); 2307 return ret; 2308 } 2309 2310 /* Network device is going away, flush any packets still pending */ 2311 static void flush_backlog(void *arg) 2312 { 2313 struct net_device *dev = arg; 2314 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2315 struct sk_buff *skb, *tmp; 2316 2317 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp) 2318 if (skb->dev == dev) { 2319 __skb_unlink(skb, &queue->input_pkt_queue); 2320 kfree_skb(skb); 2321 } 2322 } 2323 2324 static int napi_gro_complete(struct sk_buff *skb) 2325 { 2326 struct packet_type *ptype; 2327 __be16 type = skb->protocol; 2328 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2329 int err = -ENOENT; 2330 2331 if (NAPI_GRO_CB(skb)->count == 1) 2332 goto out; 2333 2334 rcu_read_lock(); 2335 list_for_each_entry_rcu(ptype, head, list) { 2336 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 2337 continue; 2338 2339 err = ptype->gro_complete(skb); 2340 break; 2341 } 2342 rcu_read_unlock(); 2343 2344 if (err) { 2345 WARN_ON(&ptype->list == head); 2346 kfree_skb(skb); 2347 return NET_RX_SUCCESS; 2348 } 2349 2350 out: 2351 skb_shinfo(skb)->gso_size = 0; 2352 return netif_receive_skb(skb); 2353 } 2354 2355 void napi_gro_flush(struct napi_struct *napi) 2356 { 2357 struct sk_buff *skb, *next; 2358 2359 for (skb = napi->gro_list; skb; skb = next) { 2360 next = skb->next; 2361 skb->next = NULL; 2362 napi_gro_complete(skb); 2363 } 2364 2365 napi->gro_count = 0; 2366 napi->gro_list = NULL; 2367 } 2368 EXPORT_SYMBOL(napi_gro_flush); 2369 2370 void *skb_gro_header(struct sk_buff *skb, unsigned int hlen) 2371 { 2372 unsigned int offset = skb_gro_offset(skb); 2373 2374 hlen += offset; 2375 if (hlen <= skb_headlen(skb)) 2376 return skb->data + offset; 2377 2378 if (unlikely(!skb_shinfo(skb)->nr_frags || 2379 skb_shinfo(skb)->frags[0].size <= 2380 hlen - skb_headlen(skb) || 2381 PageHighMem(skb_shinfo(skb)->frags[0].page))) 2382 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL; 2383 2384 return page_address(skb_shinfo(skb)->frags[0].page) + 2385 skb_shinfo(skb)->frags[0].page_offset + 2386 offset - skb_headlen(skb); 2387 } 2388 EXPORT_SYMBOL(skb_gro_header); 2389 2390 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2391 { 2392 struct sk_buff **pp = NULL; 2393 struct packet_type *ptype; 2394 __be16 type = skb->protocol; 2395 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2396 int same_flow; 2397 int mac_len; 2398 int ret; 2399 2400 if (!(skb->dev->features & NETIF_F_GRO)) 2401 goto normal; 2402 2403 if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list) 2404 goto normal; 2405 2406 rcu_read_lock(); 2407 list_for_each_entry_rcu(ptype, head, list) { 2408 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 2409 continue; 2410 2411 skb_set_network_header(skb, skb_gro_offset(skb)); 2412 mac_len = skb->network_header - skb->mac_header; 2413 skb->mac_len = mac_len; 2414 NAPI_GRO_CB(skb)->same_flow = 0; 2415 NAPI_GRO_CB(skb)->flush = 0; 2416 NAPI_GRO_CB(skb)->free = 0; 2417 2418 pp = ptype->gro_receive(&napi->gro_list, skb); 2419 break; 2420 } 2421 rcu_read_unlock(); 2422 2423 if (&ptype->list == head) 2424 goto normal; 2425 2426 same_flow = NAPI_GRO_CB(skb)->same_flow; 2427 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 2428 2429 if (pp) { 2430 struct sk_buff *nskb = *pp; 2431 2432 *pp = nskb->next; 2433 nskb->next = NULL; 2434 napi_gro_complete(nskb); 2435 napi->gro_count--; 2436 } 2437 2438 if (same_flow) 2439 goto ok; 2440 2441 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 2442 goto normal; 2443 2444 napi->gro_count++; 2445 NAPI_GRO_CB(skb)->count = 1; 2446 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 2447 skb->next = napi->gro_list; 2448 napi->gro_list = skb; 2449 ret = GRO_HELD; 2450 2451 pull: 2452 if (unlikely(!pskb_may_pull(skb, skb_gro_offset(skb)))) { 2453 if (napi->gro_list == skb) 2454 napi->gro_list = skb->next; 2455 ret = GRO_DROP; 2456 } 2457 2458 ok: 2459 return ret; 2460 2461 normal: 2462 ret = GRO_NORMAL; 2463 goto pull; 2464 } 2465 EXPORT_SYMBOL(dev_gro_receive); 2466 2467 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2468 { 2469 struct sk_buff *p; 2470 2471 if (netpoll_rx_on(skb)) 2472 return GRO_NORMAL; 2473 2474 for (p = napi->gro_list; p; p = p->next) { 2475 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev) 2476 && !compare_ether_header(skb_mac_header(p), 2477 skb_gro_mac_header(skb)); 2478 NAPI_GRO_CB(p)->flush = 0; 2479 } 2480 2481 return dev_gro_receive(napi, skb); 2482 } 2483 2484 int napi_skb_finish(int ret, struct sk_buff *skb) 2485 { 2486 int err = NET_RX_SUCCESS; 2487 2488 switch (ret) { 2489 case GRO_NORMAL: 2490 return netif_receive_skb(skb); 2491 2492 case GRO_DROP: 2493 err = NET_RX_DROP; 2494 /* fall through */ 2495 2496 case GRO_MERGED_FREE: 2497 kfree_skb(skb); 2498 break; 2499 } 2500 2501 return err; 2502 } 2503 EXPORT_SYMBOL(napi_skb_finish); 2504 2505 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2506 { 2507 skb_gro_reset_offset(skb); 2508 2509 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 2510 } 2511 EXPORT_SYMBOL(napi_gro_receive); 2512 2513 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 2514 { 2515 __skb_pull(skb, skb_headlen(skb)); 2516 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 2517 2518 napi->skb = skb; 2519 } 2520 EXPORT_SYMBOL(napi_reuse_skb); 2521 2522 struct sk_buff *napi_fraginfo_skb(struct napi_struct *napi, 2523 struct napi_gro_fraginfo *info) 2524 { 2525 struct net_device *dev = napi->dev; 2526 struct sk_buff *skb = napi->skb; 2527 struct ethhdr *eth; 2528 skb_frag_t *frag; 2529 int i; 2530 2531 napi->skb = NULL; 2532 2533 if (!skb) { 2534 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN); 2535 if (!skb) 2536 goto out; 2537 2538 skb_reserve(skb, NET_IP_ALIGN); 2539 } 2540 2541 BUG_ON(info->nr_frags > MAX_SKB_FRAGS); 2542 frag = &info->frags[info->nr_frags - 1]; 2543 2544 for (i = skb_shinfo(skb)->nr_frags; i < info->nr_frags; i++) { 2545 skb_fill_page_desc(skb, i, frag->page, frag->page_offset, 2546 frag->size); 2547 frag++; 2548 } 2549 skb_shinfo(skb)->nr_frags = info->nr_frags; 2550 2551 skb->data_len = info->len; 2552 skb->len += info->len; 2553 skb->truesize += info->len; 2554 2555 skb_reset_mac_header(skb); 2556 skb_gro_reset_offset(skb); 2557 2558 eth = skb_gro_header(skb, sizeof(*eth)); 2559 if (!eth) { 2560 napi_reuse_skb(napi, skb); 2561 skb = NULL; 2562 goto out; 2563 } 2564 2565 skb_gro_pull(skb, sizeof(*eth)); 2566 2567 /* 2568 * This works because the only protocols we care about don't require 2569 * special handling. We'll fix it up properly at the end. 2570 */ 2571 skb->protocol = eth->h_proto; 2572 2573 skb->ip_summed = info->ip_summed; 2574 skb->csum = info->csum; 2575 2576 out: 2577 return skb; 2578 } 2579 EXPORT_SYMBOL(napi_fraginfo_skb); 2580 2581 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret) 2582 { 2583 int err = NET_RX_SUCCESS; 2584 2585 switch (ret) { 2586 case GRO_NORMAL: 2587 case GRO_HELD: 2588 skb->protocol = eth_type_trans(skb, napi->dev); 2589 2590 if (ret == GRO_NORMAL) 2591 return netif_receive_skb(skb); 2592 2593 skb_gro_pull(skb, -ETH_HLEN); 2594 break; 2595 2596 case GRO_DROP: 2597 err = NET_RX_DROP; 2598 /* fall through */ 2599 2600 case GRO_MERGED_FREE: 2601 napi_reuse_skb(napi, skb); 2602 break; 2603 } 2604 2605 return err; 2606 } 2607 EXPORT_SYMBOL(napi_frags_finish); 2608 2609 int napi_gro_frags(struct napi_struct *napi, struct napi_gro_fraginfo *info) 2610 { 2611 struct sk_buff *skb = napi_fraginfo_skb(napi, info); 2612 2613 if (!skb) 2614 return NET_RX_DROP; 2615 2616 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 2617 } 2618 EXPORT_SYMBOL(napi_gro_frags); 2619 2620 static int process_backlog(struct napi_struct *napi, int quota) 2621 { 2622 int work = 0; 2623 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2624 unsigned long start_time = jiffies; 2625 2626 napi->weight = weight_p; 2627 do { 2628 struct sk_buff *skb; 2629 2630 local_irq_disable(); 2631 skb = __skb_dequeue(&queue->input_pkt_queue); 2632 if (!skb) { 2633 __napi_complete(napi); 2634 local_irq_enable(); 2635 break; 2636 } 2637 local_irq_enable(); 2638 2639 netif_receive_skb(skb); 2640 } while (++work < quota && jiffies == start_time); 2641 2642 return work; 2643 } 2644 2645 /** 2646 * __napi_schedule - schedule for receive 2647 * @n: entry to schedule 2648 * 2649 * The entry's receive function will be scheduled to run 2650 */ 2651 void __napi_schedule(struct napi_struct *n) 2652 { 2653 unsigned long flags; 2654 2655 local_irq_save(flags); 2656 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2657 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2658 local_irq_restore(flags); 2659 } 2660 EXPORT_SYMBOL(__napi_schedule); 2661 2662 void __napi_complete(struct napi_struct *n) 2663 { 2664 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 2665 BUG_ON(n->gro_list); 2666 2667 list_del(&n->poll_list); 2668 smp_mb__before_clear_bit(); 2669 clear_bit(NAPI_STATE_SCHED, &n->state); 2670 } 2671 EXPORT_SYMBOL(__napi_complete); 2672 2673 void napi_complete(struct napi_struct *n) 2674 { 2675 unsigned long flags; 2676 2677 /* 2678 * don't let napi dequeue from the cpu poll list 2679 * just in case its running on a different cpu 2680 */ 2681 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 2682 return; 2683 2684 napi_gro_flush(n); 2685 local_irq_save(flags); 2686 __napi_complete(n); 2687 local_irq_restore(flags); 2688 } 2689 EXPORT_SYMBOL(napi_complete); 2690 2691 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2692 int (*poll)(struct napi_struct *, int), int weight) 2693 { 2694 INIT_LIST_HEAD(&napi->poll_list); 2695 napi->gro_count = 0; 2696 napi->gro_list = NULL; 2697 napi->skb = NULL; 2698 napi->poll = poll; 2699 napi->weight = weight; 2700 list_add(&napi->dev_list, &dev->napi_list); 2701 napi->dev = dev; 2702 #ifdef CONFIG_NETPOLL 2703 spin_lock_init(&napi->poll_lock); 2704 napi->poll_owner = -1; 2705 #endif 2706 set_bit(NAPI_STATE_SCHED, &napi->state); 2707 } 2708 EXPORT_SYMBOL(netif_napi_add); 2709 2710 void netif_napi_del(struct napi_struct *napi) 2711 { 2712 struct sk_buff *skb, *next; 2713 2714 list_del_init(&napi->dev_list); 2715 kfree_skb(napi->skb); 2716 2717 for (skb = napi->gro_list; skb; skb = next) { 2718 next = skb->next; 2719 skb->next = NULL; 2720 kfree_skb(skb); 2721 } 2722 2723 napi->gro_list = NULL; 2724 napi->gro_count = 0; 2725 } 2726 EXPORT_SYMBOL(netif_napi_del); 2727 2728 2729 static void net_rx_action(struct softirq_action *h) 2730 { 2731 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2732 unsigned long time_limit = jiffies + 2; 2733 int budget = netdev_budget; 2734 void *have; 2735 2736 local_irq_disable(); 2737 2738 while (!list_empty(list)) { 2739 struct napi_struct *n; 2740 int work, weight; 2741 2742 /* If softirq window is exhuasted then punt. 2743 * Allow this to run for 2 jiffies since which will allow 2744 * an average latency of 1.5/HZ. 2745 */ 2746 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 2747 goto softnet_break; 2748 2749 local_irq_enable(); 2750 2751 /* Even though interrupts have been re-enabled, this 2752 * access is safe because interrupts can only add new 2753 * entries to the tail of this list, and only ->poll() 2754 * calls can remove this head entry from the list. 2755 */ 2756 n = list_entry(list->next, struct napi_struct, poll_list); 2757 2758 have = netpoll_poll_lock(n); 2759 2760 weight = n->weight; 2761 2762 /* This NAPI_STATE_SCHED test is for avoiding a race 2763 * with netpoll's poll_napi(). Only the entity which 2764 * obtains the lock and sees NAPI_STATE_SCHED set will 2765 * actually make the ->poll() call. Therefore we avoid 2766 * accidently calling ->poll() when NAPI is not scheduled. 2767 */ 2768 work = 0; 2769 if (test_bit(NAPI_STATE_SCHED, &n->state)) 2770 work = n->poll(n, weight); 2771 2772 WARN_ON_ONCE(work > weight); 2773 2774 budget -= work; 2775 2776 local_irq_disable(); 2777 2778 /* Drivers must not modify the NAPI state if they 2779 * consume the entire weight. In such cases this code 2780 * still "owns" the NAPI instance and therefore can 2781 * move the instance around on the list at-will. 2782 */ 2783 if (unlikely(work == weight)) { 2784 if (unlikely(napi_disable_pending(n))) 2785 __napi_complete(n); 2786 else 2787 list_move_tail(&n->poll_list, list); 2788 } 2789 2790 netpoll_poll_unlock(have); 2791 } 2792 out: 2793 local_irq_enable(); 2794 2795 #ifdef CONFIG_NET_DMA 2796 /* 2797 * There may not be any more sk_buffs coming right now, so push 2798 * any pending DMA copies to hardware 2799 */ 2800 dma_issue_pending_all(); 2801 #endif 2802 2803 return; 2804 2805 softnet_break: 2806 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2807 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2808 goto out; 2809 } 2810 2811 static gifconf_func_t * gifconf_list [NPROTO]; 2812 2813 /** 2814 * register_gifconf - register a SIOCGIF handler 2815 * @family: Address family 2816 * @gifconf: Function handler 2817 * 2818 * Register protocol dependent address dumping routines. The handler 2819 * that is passed must not be freed or reused until it has been replaced 2820 * by another handler. 2821 */ 2822 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2823 { 2824 if (family >= NPROTO) 2825 return -EINVAL; 2826 gifconf_list[family] = gifconf; 2827 return 0; 2828 } 2829 2830 2831 /* 2832 * Map an interface index to its name (SIOCGIFNAME) 2833 */ 2834 2835 /* 2836 * We need this ioctl for efficient implementation of the 2837 * if_indextoname() function required by the IPv6 API. Without 2838 * it, we would have to search all the interfaces to find a 2839 * match. --pb 2840 */ 2841 2842 static int dev_ifname(struct net *net, struct ifreq __user *arg) 2843 { 2844 struct net_device *dev; 2845 struct ifreq ifr; 2846 2847 /* 2848 * Fetch the caller's info block. 2849 */ 2850 2851 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2852 return -EFAULT; 2853 2854 read_lock(&dev_base_lock); 2855 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2856 if (!dev) { 2857 read_unlock(&dev_base_lock); 2858 return -ENODEV; 2859 } 2860 2861 strcpy(ifr.ifr_name, dev->name); 2862 read_unlock(&dev_base_lock); 2863 2864 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2865 return -EFAULT; 2866 return 0; 2867 } 2868 2869 /* 2870 * Perform a SIOCGIFCONF call. This structure will change 2871 * size eventually, and there is nothing I can do about it. 2872 * Thus we will need a 'compatibility mode'. 2873 */ 2874 2875 static int dev_ifconf(struct net *net, char __user *arg) 2876 { 2877 struct ifconf ifc; 2878 struct net_device *dev; 2879 char __user *pos; 2880 int len; 2881 int total; 2882 int i; 2883 2884 /* 2885 * Fetch the caller's info block. 2886 */ 2887 2888 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2889 return -EFAULT; 2890 2891 pos = ifc.ifc_buf; 2892 len = ifc.ifc_len; 2893 2894 /* 2895 * Loop over the interfaces, and write an info block for each. 2896 */ 2897 2898 total = 0; 2899 for_each_netdev(net, dev) { 2900 for (i = 0; i < NPROTO; i++) { 2901 if (gifconf_list[i]) { 2902 int done; 2903 if (!pos) 2904 done = gifconf_list[i](dev, NULL, 0); 2905 else 2906 done = gifconf_list[i](dev, pos + total, 2907 len - total); 2908 if (done < 0) 2909 return -EFAULT; 2910 total += done; 2911 } 2912 } 2913 } 2914 2915 /* 2916 * All done. Write the updated control block back to the caller. 2917 */ 2918 ifc.ifc_len = total; 2919 2920 /* 2921 * Both BSD and Solaris return 0 here, so we do too. 2922 */ 2923 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2924 } 2925 2926 #ifdef CONFIG_PROC_FS 2927 /* 2928 * This is invoked by the /proc filesystem handler to display a device 2929 * in detail. 2930 */ 2931 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2932 __acquires(dev_base_lock) 2933 { 2934 struct net *net = seq_file_net(seq); 2935 loff_t off; 2936 struct net_device *dev; 2937 2938 read_lock(&dev_base_lock); 2939 if (!*pos) 2940 return SEQ_START_TOKEN; 2941 2942 off = 1; 2943 for_each_netdev(net, dev) 2944 if (off++ == *pos) 2945 return dev; 2946 2947 return NULL; 2948 } 2949 2950 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2951 { 2952 struct net *net = seq_file_net(seq); 2953 ++*pos; 2954 return v == SEQ_START_TOKEN ? 2955 first_net_device(net) : next_net_device((struct net_device *)v); 2956 } 2957 2958 void dev_seq_stop(struct seq_file *seq, void *v) 2959 __releases(dev_base_lock) 2960 { 2961 read_unlock(&dev_base_lock); 2962 } 2963 2964 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2965 { 2966 const struct net_device_stats *stats = dev_get_stats(dev); 2967 2968 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2969 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2970 dev->name, stats->rx_bytes, stats->rx_packets, 2971 stats->rx_errors, 2972 stats->rx_dropped + stats->rx_missed_errors, 2973 stats->rx_fifo_errors, 2974 stats->rx_length_errors + stats->rx_over_errors + 2975 stats->rx_crc_errors + stats->rx_frame_errors, 2976 stats->rx_compressed, stats->multicast, 2977 stats->tx_bytes, stats->tx_packets, 2978 stats->tx_errors, stats->tx_dropped, 2979 stats->tx_fifo_errors, stats->collisions, 2980 stats->tx_carrier_errors + 2981 stats->tx_aborted_errors + 2982 stats->tx_window_errors + 2983 stats->tx_heartbeat_errors, 2984 stats->tx_compressed); 2985 } 2986 2987 /* 2988 * Called from the PROCfs module. This now uses the new arbitrary sized 2989 * /proc/net interface to create /proc/net/dev 2990 */ 2991 static int dev_seq_show(struct seq_file *seq, void *v) 2992 { 2993 if (v == SEQ_START_TOKEN) 2994 seq_puts(seq, "Inter-| Receive " 2995 " | Transmit\n" 2996 " face |bytes packets errs drop fifo frame " 2997 "compressed multicast|bytes packets errs " 2998 "drop fifo colls carrier compressed\n"); 2999 else 3000 dev_seq_printf_stats(seq, v); 3001 return 0; 3002 } 3003 3004 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 3005 { 3006 struct netif_rx_stats *rc = NULL; 3007 3008 while (*pos < nr_cpu_ids) 3009 if (cpu_online(*pos)) { 3010 rc = &per_cpu(netdev_rx_stat, *pos); 3011 break; 3012 } else 3013 ++*pos; 3014 return rc; 3015 } 3016 3017 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 3018 { 3019 return softnet_get_online(pos); 3020 } 3021 3022 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3023 { 3024 ++*pos; 3025 return softnet_get_online(pos); 3026 } 3027 3028 static void softnet_seq_stop(struct seq_file *seq, void *v) 3029 { 3030 } 3031 3032 static int softnet_seq_show(struct seq_file *seq, void *v) 3033 { 3034 struct netif_rx_stats *s = v; 3035 3036 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 3037 s->total, s->dropped, s->time_squeeze, 0, 3038 0, 0, 0, 0, /* was fastroute */ 3039 s->cpu_collision ); 3040 return 0; 3041 } 3042 3043 static const struct seq_operations dev_seq_ops = { 3044 .start = dev_seq_start, 3045 .next = dev_seq_next, 3046 .stop = dev_seq_stop, 3047 .show = dev_seq_show, 3048 }; 3049 3050 static int dev_seq_open(struct inode *inode, struct file *file) 3051 { 3052 return seq_open_net(inode, file, &dev_seq_ops, 3053 sizeof(struct seq_net_private)); 3054 } 3055 3056 static const struct file_operations dev_seq_fops = { 3057 .owner = THIS_MODULE, 3058 .open = dev_seq_open, 3059 .read = seq_read, 3060 .llseek = seq_lseek, 3061 .release = seq_release_net, 3062 }; 3063 3064 static const struct seq_operations softnet_seq_ops = { 3065 .start = softnet_seq_start, 3066 .next = softnet_seq_next, 3067 .stop = softnet_seq_stop, 3068 .show = softnet_seq_show, 3069 }; 3070 3071 static int softnet_seq_open(struct inode *inode, struct file *file) 3072 { 3073 return seq_open(file, &softnet_seq_ops); 3074 } 3075 3076 static const struct file_operations softnet_seq_fops = { 3077 .owner = THIS_MODULE, 3078 .open = softnet_seq_open, 3079 .read = seq_read, 3080 .llseek = seq_lseek, 3081 .release = seq_release, 3082 }; 3083 3084 static void *ptype_get_idx(loff_t pos) 3085 { 3086 struct packet_type *pt = NULL; 3087 loff_t i = 0; 3088 int t; 3089 3090 list_for_each_entry_rcu(pt, &ptype_all, list) { 3091 if (i == pos) 3092 return pt; 3093 ++i; 3094 } 3095 3096 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 3097 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 3098 if (i == pos) 3099 return pt; 3100 ++i; 3101 } 3102 } 3103 return NULL; 3104 } 3105 3106 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 3107 __acquires(RCU) 3108 { 3109 rcu_read_lock(); 3110 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 3111 } 3112 3113 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3114 { 3115 struct packet_type *pt; 3116 struct list_head *nxt; 3117 int hash; 3118 3119 ++*pos; 3120 if (v == SEQ_START_TOKEN) 3121 return ptype_get_idx(0); 3122 3123 pt = v; 3124 nxt = pt->list.next; 3125 if (pt->type == htons(ETH_P_ALL)) { 3126 if (nxt != &ptype_all) 3127 goto found; 3128 hash = 0; 3129 nxt = ptype_base[0].next; 3130 } else 3131 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 3132 3133 while (nxt == &ptype_base[hash]) { 3134 if (++hash >= PTYPE_HASH_SIZE) 3135 return NULL; 3136 nxt = ptype_base[hash].next; 3137 } 3138 found: 3139 return list_entry(nxt, struct packet_type, list); 3140 } 3141 3142 static void ptype_seq_stop(struct seq_file *seq, void *v) 3143 __releases(RCU) 3144 { 3145 rcu_read_unlock(); 3146 } 3147 3148 static int ptype_seq_show(struct seq_file *seq, void *v) 3149 { 3150 struct packet_type *pt = v; 3151 3152 if (v == SEQ_START_TOKEN) 3153 seq_puts(seq, "Type Device Function\n"); 3154 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 3155 if (pt->type == htons(ETH_P_ALL)) 3156 seq_puts(seq, "ALL "); 3157 else 3158 seq_printf(seq, "%04x", ntohs(pt->type)); 3159 3160 seq_printf(seq, " %-8s %pF\n", 3161 pt->dev ? pt->dev->name : "", pt->func); 3162 } 3163 3164 return 0; 3165 } 3166 3167 static const struct seq_operations ptype_seq_ops = { 3168 .start = ptype_seq_start, 3169 .next = ptype_seq_next, 3170 .stop = ptype_seq_stop, 3171 .show = ptype_seq_show, 3172 }; 3173 3174 static int ptype_seq_open(struct inode *inode, struct file *file) 3175 { 3176 return seq_open_net(inode, file, &ptype_seq_ops, 3177 sizeof(struct seq_net_private)); 3178 } 3179 3180 static const struct file_operations ptype_seq_fops = { 3181 .owner = THIS_MODULE, 3182 .open = ptype_seq_open, 3183 .read = seq_read, 3184 .llseek = seq_lseek, 3185 .release = seq_release_net, 3186 }; 3187 3188 3189 static int __net_init dev_proc_net_init(struct net *net) 3190 { 3191 int rc = -ENOMEM; 3192 3193 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 3194 goto out; 3195 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 3196 goto out_dev; 3197 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 3198 goto out_softnet; 3199 3200 if (wext_proc_init(net)) 3201 goto out_ptype; 3202 rc = 0; 3203 out: 3204 return rc; 3205 out_ptype: 3206 proc_net_remove(net, "ptype"); 3207 out_softnet: 3208 proc_net_remove(net, "softnet_stat"); 3209 out_dev: 3210 proc_net_remove(net, "dev"); 3211 goto out; 3212 } 3213 3214 static void __net_exit dev_proc_net_exit(struct net *net) 3215 { 3216 wext_proc_exit(net); 3217 3218 proc_net_remove(net, "ptype"); 3219 proc_net_remove(net, "softnet_stat"); 3220 proc_net_remove(net, "dev"); 3221 } 3222 3223 static struct pernet_operations __net_initdata dev_proc_ops = { 3224 .init = dev_proc_net_init, 3225 .exit = dev_proc_net_exit, 3226 }; 3227 3228 static int __init dev_proc_init(void) 3229 { 3230 return register_pernet_subsys(&dev_proc_ops); 3231 } 3232 #else 3233 #define dev_proc_init() 0 3234 #endif /* CONFIG_PROC_FS */ 3235 3236 3237 /** 3238 * netdev_set_master - set up master/slave pair 3239 * @slave: slave device 3240 * @master: new master device 3241 * 3242 * Changes the master device of the slave. Pass %NULL to break the 3243 * bonding. The caller must hold the RTNL semaphore. On a failure 3244 * a negative errno code is returned. On success the reference counts 3245 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 3246 * function returns zero. 3247 */ 3248 int netdev_set_master(struct net_device *slave, struct net_device *master) 3249 { 3250 struct net_device *old = slave->master; 3251 3252 ASSERT_RTNL(); 3253 3254 if (master) { 3255 if (old) 3256 return -EBUSY; 3257 dev_hold(master); 3258 } 3259 3260 slave->master = master; 3261 3262 synchronize_net(); 3263 3264 if (old) 3265 dev_put(old); 3266 3267 if (master) 3268 slave->flags |= IFF_SLAVE; 3269 else 3270 slave->flags &= ~IFF_SLAVE; 3271 3272 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 3273 return 0; 3274 } 3275 3276 static void dev_change_rx_flags(struct net_device *dev, int flags) 3277 { 3278 const struct net_device_ops *ops = dev->netdev_ops; 3279 3280 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 3281 ops->ndo_change_rx_flags(dev, flags); 3282 } 3283 3284 static int __dev_set_promiscuity(struct net_device *dev, int inc) 3285 { 3286 unsigned short old_flags = dev->flags; 3287 uid_t uid; 3288 gid_t gid; 3289 3290 ASSERT_RTNL(); 3291 3292 dev->flags |= IFF_PROMISC; 3293 dev->promiscuity += inc; 3294 if (dev->promiscuity == 0) { 3295 /* 3296 * Avoid overflow. 3297 * If inc causes overflow, untouch promisc and return error. 3298 */ 3299 if (inc < 0) 3300 dev->flags &= ~IFF_PROMISC; 3301 else { 3302 dev->promiscuity -= inc; 3303 printk(KERN_WARNING "%s: promiscuity touches roof, " 3304 "set promiscuity failed, promiscuity feature " 3305 "of device might be broken.\n", dev->name); 3306 return -EOVERFLOW; 3307 } 3308 } 3309 if (dev->flags != old_flags) { 3310 printk(KERN_INFO "device %s %s promiscuous mode\n", 3311 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 3312 "left"); 3313 if (audit_enabled) { 3314 current_uid_gid(&uid, &gid); 3315 audit_log(current->audit_context, GFP_ATOMIC, 3316 AUDIT_ANOM_PROMISCUOUS, 3317 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 3318 dev->name, (dev->flags & IFF_PROMISC), 3319 (old_flags & IFF_PROMISC), 3320 audit_get_loginuid(current), 3321 uid, gid, 3322 audit_get_sessionid(current)); 3323 } 3324 3325 dev_change_rx_flags(dev, IFF_PROMISC); 3326 } 3327 return 0; 3328 } 3329 3330 /** 3331 * dev_set_promiscuity - update promiscuity count on a device 3332 * @dev: device 3333 * @inc: modifier 3334 * 3335 * Add or remove promiscuity from a device. While the count in the device 3336 * remains above zero the interface remains promiscuous. Once it hits zero 3337 * the device reverts back to normal filtering operation. A negative inc 3338 * value is used to drop promiscuity on the device. 3339 * Return 0 if successful or a negative errno code on error. 3340 */ 3341 int dev_set_promiscuity(struct net_device *dev, int inc) 3342 { 3343 unsigned short old_flags = dev->flags; 3344 int err; 3345 3346 err = __dev_set_promiscuity(dev, inc); 3347 if (err < 0) 3348 return err; 3349 if (dev->flags != old_flags) 3350 dev_set_rx_mode(dev); 3351 return err; 3352 } 3353 3354 /** 3355 * dev_set_allmulti - update allmulti count on a device 3356 * @dev: device 3357 * @inc: modifier 3358 * 3359 * Add or remove reception of all multicast frames to a device. While the 3360 * count in the device remains above zero the interface remains listening 3361 * to all interfaces. Once it hits zero the device reverts back to normal 3362 * filtering operation. A negative @inc value is used to drop the counter 3363 * when releasing a resource needing all multicasts. 3364 * Return 0 if successful or a negative errno code on error. 3365 */ 3366 3367 int dev_set_allmulti(struct net_device *dev, int inc) 3368 { 3369 unsigned short old_flags = dev->flags; 3370 3371 ASSERT_RTNL(); 3372 3373 dev->flags |= IFF_ALLMULTI; 3374 dev->allmulti += inc; 3375 if (dev->allmulti == 0) { 3376 /* 3377 * Avoid overflow. 3378 * If inc causes overflow, untouch allmulti and return error. 3379 */ 3380 if (inc < 0) 3381 dev->flags &= ~IFF_ALLMULTI; 3382 else { 3383 dev->allmulti -= inc; 3384 printk(KERN_WARNING "%s: allmulti touches roof, " 3385 "set allmulti failed, allmulti feature of " 3386 "device might be broken.\n", dev->name); 3387 return -EOVERFLOW; 3388 } 3389 } 3390 if (dev->flags ^ old_flags) { 3391 dev_change_rx_flags(dev, IFF_ALLMULTI); 3392 dev_set_rx_mode(dev); 3393 } 3394 return 0; 3395 } 3396 3397 /* 3398 * Upload unicast and multicast address lists to device and 3399 * configure RX filtering. When the device doesn't support unicast 3400 * filtering it is put in promiscuous mode while unicast addresses 3401 * are present. 3402 */ 3403 void __dev_set_rx_mode(struct net_device *dev) 3404 { 3405 const struct net_device_ops *ops = dev->netdev_ops; 3406 3407 /* dev_open will call this function so the list will stay sane. */ 3408 if (!(dev->flags&IFF_UP)) 3409 return; 3410 3411 if (!netif_device_present(dev)) 3412 return; 3413 3414 if (ops->ndo_set_rx_mode) 3415 ops->ndo_set_rx_mode(dev); 3416 else { 3417 /* Unicast addresses changes may only happen under the rtnl, 3418 * therefore calling __dev_set_promiscuity here is safe. 3419 */ 3420 if (dev->uc_count > 0 && !dev->uc_promisc) { 3421 __dev_set_promiscuity(dev, 1); 3422 dev->uc_promisc = 1; 3423 } else if (dev->uc_count == 0 && dev->uc_promisc) { 3424 __dev_set_promiscuity(dev, -1); 3425 dev->uc_promisc = 0; 3426 } 3427 3428 if (ops->ndo_set_multicast_list) 3429 ops->ndo_set_multicast_list(dev); 3430 } 3431 } 3432 3433 void dev_set_rx_mode(struct net_device *dev) 3434 { 3435 netif_addr_lock_bh(dev); 3436 __dev_set_rx_mode(dev); 3437 netif_addr_unlock_bh(dev); 3438 } 3439 3440 int __dev_addr_delete(struct dev_addr_list **list, int *count, 3441 void *addr, int alen, int glbl) 3442 { 3443 struct dev_addr_list *da; 3444 3445 for (; (da = *list) != NULL; list = &da->next) { 3446 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3447 alen == da->da_addrlen) { 3448 if (glbl) { 3449 int old_glbl = da->da_gusers; 3450 da->da_gusers = 0; 3451 if (old_glbl == 0) 3452 break; 3453 } 3454 if (--da->da_users) 3455 return 0; 3456 3457 *list = da->next; 3458 kfree(da); 3459 (*count)--; 3460 return 0; 3461 } 3462 } 3463 return -ENOENT; 3464 } 3465 3466 int __dev_addr_add(struct dev_addr_list **list, int *count, 3467 void *addr, int alen, int glbl) 3468 { 3469 struct dev_addr_list *da; 3470 3471 for (da = *list; da != NULL; da = da->next) { 3472 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3473 da->da_addrlen == alen) { 3474 if (glbl) { 3475 int old_glbl = da->da_gusers; 3476 da->da_gusers = 1; 3477 if (old_glbl) 3478 return 0; 3479 } 3480 da->da_users++; 3481 return 0; 3482 } 3483 } 3484 3485 da = kzalloc(sizeof(*da), GFP_ATOMIC); 3486 if (da == NULL) 3487 return -ENOMEM; 3488 memcpy(da->da_addr, addr, alen); 3489 da->da_addrlen = alen; 3490 da->da_users = 1; 3491 da->da_gusers = glbl ? 1 : 0; 3492 da->next = *list; 3493 *list = da; 3494 (*count)++; 3495 return 0; 3496 } 3497 3498 /** 3499 * dev_unicast_delete - Release secondary unicast address. 3500 * @dev: device 3501 * @addr: address to delete 3502 * @alen: length of @addr 3503 * 3504 * Release reference to a secondary unicast address and remove it 3505 * from the device if the reference count drops to zero. 3506 * 3507 * The caller must hold the rtnl_mutex. 3508 */ 3509 int dev_unicast_delete(struct net_device *dev, void *addr, int alen) 3510 { 3511 int err; 3512 3513 ASSERT_RTNL(); 3514 3515 netif_addr_lock_bh(dev); 3516 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3517 if (!err) 3518 __dev_set_rx_mode(dev); 3519 netif_addr_unlock_bh(dev); 3520 return err; 3521 } 3522 EXPORT_SYMBOL(dev_unicast_delete); 3523 3524 /** 3525 * dev_unicast_add - add a secondary unicast address 3526 * @dev: device 3527 * @addr: address to add 3528 * @alen: length of @addr 3529 * 3530 * Add a secondary unicast address to the device or increase 3531 * the reference count if it already exists. 3532 * 3533 * The caller must hold the rtnl_mutex. 3534 */ 3535 int dev_unicast_add(struct net_device *dev, void *addr, int alen) 3536 { 3537 int err; 3538 3539 ASSERT_RTNL(); 3540 3541 netif_addr_lock_bh(dev); 3542 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3543 if (!err) 3544 __dev_set_rx_mode(dev); 3545 netif_addr_unlock_bh(dev); 3546 return err; 3547 } 3548 EXPORT_SYMBOL(dev_unicast_add); 3549 3550 int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 3551 struct dev_addr_list **from, int *from_count) 3552 { 3553 struct dev_addr_list *da, *next; 3554 int err = 0; 3555 3556 da = *from; 3557 while (da != NULL) { 3558 next = da->next; 3559 if (!da->da_synced) { 3560 err = __dev_addr_add(to, to_count, 3561 da->da_addr, da->da_addrlen, 0); 3562 if (err < 0) 3563 break; 3564 da->da_synced = 1; 3565 da->da_users++; 3566 } else if (da->da_users == 1) { 3567 __dev_addr_delete(to, to_count, 3568 da->da_addr, da->da_addrlen, 0); 3569 __dev_addr_delete(from, from_count, 3570 da->da_addr, da->da_addrlen, 0); 3571 } 3572 da = next; 3573 } 3574 return err; 3575 } 3576 3577 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 3578 struct dev_addr_list **from, int *from_count) 3579 { 3580 struct dev_addr_list *da, *next; 3581 3582 da = *from; 3583 while (da != NULL) { 3584 next = da->next; 3585 if (da->da_synced) { 3586 __dev_addr_delete(to, to_count, 3587 da->da_addr, da->da_addrlen, 0); 3588 da->da_synced = 0; 3589 __dev_addr_delete(from, from_count, 3590 da->da_addr, da->da_addrlen, 0); 3591 } 3592 da = next; 3593 } 3594 } 3595 3596 /** 3597 * dev_unicast_sync - Synchronize device's unicast list to another device 3598 * @to: destination device 3599 * @from: source device 3600 * 3601 * Add newly added addresses to the destination device and release 3602 * addresses that have no users left. The source device must be 3603 * locked by netif_tx_lock_bh. 3604 * 3605 * This function is intended to be called from the dev->set_rx_mode 3606 * function of layered software devices. 3607 */ 3608 int dev_unicast_sync(struct net_device *to, struct net_device *from) 3609 { 3610 int err = 0; 3611 3612 netif_addr_lock_bh(to); 3613 err = __dev_addr_sync(&to->uc_list, &to->uc_count, 3614 &from->uc_list, &from->uc_count); 3615 if (!err) 3616 __dev_set_rx_mode(to); 3617 netif_addr_unlock_bh(to); 3618 return err; 3619 } 3620 EXPORT_SYMBOL(dev_unicast_sync); 3621 3622 /** 3623 * dev_unicast_unsync - Remove synchronized addresses from the destination device 3624 * @to: destination device 3625 * @from: source device 3626 * 3627 * Remove all addresses that were added to the destination device by 3628 * dev_unicast_sync(). This function is intended to be called from the 3629 * dev->stop function of layered software devices. 3630 */ 3631 void dev_unicast_unsync(struct net_device *to, struct net_device *from) 3632 { 3633 netif_addr_lock_bh(from); 3634 netif_addr_lock(to); 3635 3636 __dev_addr_unsync(&to->uc_list, &to->uc_count, 3637 &from->uc_list, &from->uc_count); 3638 __dev_set_rx_mode(to); 3639 3640 netif_addr_unlock(to); 3641 netif_addr_unlock_bh(from); 3642 } 3643 EXPORT_SYMBOL(dev_unicast_unsync); 3644 3645 static void __dev_addr_discard(struct dev_addr_list **list) 3646 { 3647 struct dev_addr_list *tmp; 3648 3649 while (*list != NULL) { 3650 tmp = *list; 3651 *list = tmp->next; 3652 if (tmp->da_users > tmp->da_gusers) 3653 printk("__dev_addr_discard: address leakage! " 3654 "da_users=%d\n", tmp->da_users); 3655 kfree(tmp); 3656 } 3657 } 3658 3659 static void dev_addr_discard(struct net_device *dev) 3660 { 3661 netif_addr_lock_bh(dev); 3662 3663 __dev_addr_discard(&dev->uc_list); 3664 dev->uc_count = 0; 3665 3666 __dev_addr_discard(&dev->mc_list); 3667 dev->mc_count = 0; 3668 3669 netif_addr_unlock_bh(dev); 3670 } 3671 3672 /** 3673 * dev_get_flags - get flags reported to userspace 3674 * @dev: device 3675 * 3676 * Get the combination of flag bits exported through APIs to userspace. 3677 */ 3678 unsigned dev_get_flags(const struct net_device *dev) 3679 { 3680 unsigned flags; 3681 3682 flags = (dev->flags & ~(IFF_PROMISC | 3683 IFF_ALLMULTI | 3684 IFF_RUNNING | 3685 IFF_LOWER_UP | 3686 IFF_DORMANT)) | 3687 (dev->gflags & (IFF_PROMISC | 3688 IFF_ALLMULTI)); 3689 3690 if (netif_running(dev)) { 3691 if (netif_oper_up(dev)) 3692 flags |= IFF_RUNNING; 3693 if (netif_carrier_ok(dev)) 3694 flags |= IFF_LOWER_UP; 3695 if (netif_dormant(dev)) 3696 flags |= IFF_DORMANT; 3697 } 3698 3699 return flags; 3700 } 3701 3702 /** 3703 * dev_change_flags - change device settings 3704 * @dev: device 3705 * @flags: device state flags 3706 * 3707 * Change settings on device based state flags. The flags are 3708 * in the userspace exported format. 3709 */ 3710 int dev_change_flags(struct net_device *dev, unsigned flags) 3711 { 3712 int ret, changes; 3713 int old_flags = dev->flags; 3714 3715 ASSERT_RTNL(); 3716 3717 /* 3718 * Set the flags on our device. 3719 */ 3720 3721 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 3722 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 3723 IFF_AUTOMEDIA)) | 3724 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 3725 IFF_ALLMULTI)); 3726 3727 /* 3728 * Load in the correct multicast list now the flags have changed. 3729 */ 3730 3731 if ((old_flags ^ flags) & IFF_MULTICAST) 3732 dev_change_rx_flags(dev, IFF_MULTICAST); 3733 3734 dev_set_rx_mode(dev); 3735 3736 /* 3737 * Have we downed the interface. We handle IFF_UP ourselves 3738 * according to user attempts to set it, rather than blindly 3739 * setting it. 3740 */ 3741 3742 ret = 0; 3743 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 3744 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 3745 3746 if (!ret) 3747 dev_set_rx_mode(dev); 3748 } 3749 3750 if (dev->flags & IFF_UP && 3751 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 3752 IFF_VOLATILE))) 3753 call_netdevice_notifiers(NETDEV_CHANGE, dev); 3754 3755 if ((flags ^ dev->gflags) & IFF_PROMISC) { 3756 int inc = (flags & IFF_PROMISC) ? +1 : -1; 3757 dev->gflags ^= IFF_PROMISC; 3758 dev_set_promiscuity(dev, inc); 3759 } 3760 3761 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 3762 is important. Some (broken) drivers set IFF_PROMISC, when 3763 IFF_ALLMULTI is requested not asking us and not reporting. 3764 */ 3765 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 3766 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 3767 dev->gflags ^= IFF_ALLMULTI; 3768 dev_set_allmulti(dev, inc); 3769 } 3770 3771 /* Exclude state transition flags, already notified */ 3772 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 3773 if (changes) 3774 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 3775 3776 return ret; 3777 } 3778 3779 /** 3780 * dev_set_mtu - Change maximum transfer unit 3781 * @dev: device 3782 * @new_mtu: new transfer unit 3783 * 3784 * Change the maximum transfer size of the network device. 3785 */ 3786 int dev_set_mtu(struct net_device *dev, int new_mtu) 3787 { 3788 const struct net_device_ops *ops = dev->netdev_ops; 3789 int err; 3790 3791 if (new_mtu == dev->mtu) 3792 return 0; 3793 3794 /* MTU must be positive. */ 3795 if (new_mtu < 0) 3796 return -EINVAL; 3797 3798 if (!netif_device_present(dev)) 3799 return -ENODEV; 3800 3801 err = 0; 3802 if (ops->ndo_change_mtu) 3803 err = ops->ndo_change_mtu(dev, new_mtu); 3804 else 3805 dev->mtu = new_mtu; 3806 3807 if (!err && dev->flags & IFF_UP) 3808 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 3809 return err; 3810 } 3811 3812 /** 3813 * dev_set_mac_address - Change Media Access Control Address 3814 * @dev: device 3815 * @sa: new address 3816 * 3817 * Change the hardware (MAC) address of the device 3818 */ 3819 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 3820 { 3821 const struct net_device_ops *ops = dev->netdev_ops; 3822 int err; 3823 3824 if (!ops->ndo_set_mac_address) 3825 return -EOPNOTSUPP; 3826 if (sa->sa_family != dev->type) 3827 return -EINVAL; 3828 if (!netif_device_present(dev)) 3829 return -ENODEV; 3830 err = ops->ndo_set_mac_address(dev, sa); 3831 if (!err) 3832 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3833 return err; 3834 } 3835 3836 /* 3837 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 3838 */ 3839 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 3840 { 3841 int err; 3842 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3843 3844 if (!dev) 3845 return -ENODEV; 3846 3847 switch (cmd) { 3848 case SIOCGIFFLAGS: /* Get interface flags */ 3849 ifr->ifr_flags = dev_get_flags(dev); 3850 return 0; 3851 3852 case SIOCGIFMETRIC: /* Get the metric on the interface 3853 (currently unused) */ 3854 ifr->ifr_metric = 0; 3855 return 0; 3856 3857 case SIOCGIFMTU: /* Get the MTU of a device */ 3858 ifr->ifr_mtu = dev->mtu; 3859 return 0; 3860 3861 case SIOCGIFHWADDR: 3862 if (!dev->addr_len) 3863 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 3864 else 3865 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 3866 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3867 ifr->ifr_hwaddr.sa_family = dev->type; 3868 return 0; 3869 3870 case SIOCGIFSLAVE: 3871 err = -EINVAL; 3872 break; 3873 3874 case SIOCGIFMAP: 3875 ifr->ifr_map.mem_start = dev->mem_start; 3876 ifr->ifr_map.mem_end = dev->mem_end; 3877 ifr->ifr_map.base_addr = dev->base_addr; 3878 ifr->ifr_map.irq = dev->irq; 3879 ifr->ifr_map.dma = dev->dma; 3880 ifr->ifr_map.port = dev->if_port; 3881 return 0; 3882 3883 case SIOCGIFINDEX: 3884 ifr->ifr_ifindex = dev->ifindex; 3885 return 0; 3886 3887 case SIOCGIFTXQLEN: 3888 ifr->ifr_qlen = dev->tx_queue_len; 3889 return 0; 3890 3891 default: 3892 /* dev_ioctl() should ensure this case 3893 * is never reached 3894 */ 3895 WARN_ON(1); 3896 err = -EINVAL; 3897 break; 3898 3899 } 3900 return err; 3901 } 3902 3903 /* 3904 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 3905 */ 3906 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 3907 { 3908 int err; 3909 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3910 const struct net_device_ops *ops; 3911 3912 if (!dev) 3913 return -ENODEV; 3914 3915 ops = dev->netdev_ops; 3916 3917 switch (cmd) { 3918 case SIOCSIFFLAGS: /* Set interface flags */ 3919 return dev_change_flags(dev, ifr->ifr_flags); 3920 3921 case SIOCSIFMETRIC: /* Set the metric on the interface 3922 (currently unused) */ 3923 return -EOPNOTSUPP; 3924 3925 case SIOCSIFMTU: /* Set the MTU of a device */ 3926 return dev_set_mtu(dev, ifr->ifr_mtu); 3927 3928 case SIOCSIFHWADDR: 3929 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 3930 3931 case SIOCSIFHWBROADCAST: 3932 if (ifr->ifr_hwaddr.sa_family != dev->type) 3933 return -EINVAL; 3934 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 3935 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3936 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3937 return 0; 3938 3939 case SIOCSIFMAP: 3940 if (ops->ndo_set_config) { 3941 if (!netif_device_present(dev)) 3942 return -ENODEV; 3943 return ops->ndo_set_config(dev, &ifr->ifr_map); 3944 } 3945 return -EOPNOTSUPP; 3946 3947 case SIOCADDMULTI: 3948 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 3949 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3950 return -EINVAL; 3951 if (!netif_device_present(dev)) 3952 return -ENODEV; 3953 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 3954 dev->addr_len, 1); 3955 3956 case SIOCDELMULTI: 3957 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 3958 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3959 return -EINVAL; 3960 if (!netif_device_present(dev)) 3961 return -ENODEV; 3962 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 3963 dev->addr_len, 1); 3964 3965 case SIOCSIFTXQLEN: 3966 if (ifr->ifr_qlen < 0) 3967 return -EINVAL; 3968 dev->tx_queue_len = ifr->ifr_qlen; 3969 return 0; 3970 3971 case SIOCSIFNAME: 3972 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 3973 return dev_change_name(dev, ifr->ifr_newname); 3974 3975 /* 3976 * Unknown or private ioctl 3977 */ 3978 3979 default: 3980 if ((cmd >= SIOCDEVPRIVATE && 3981 cmd <= SIOCDEVPRIVATE + 15) || 3982 cmd == SIOCBONDENSLAVE || 3983 cmd == SIOCBONDRELEASE || 3984 cmd == SIOCBONDSETHWADDR || 3985 cmd == SIOCBONDSLAVEINFOQUERY || 3986 cmd == SIOCBONDINFOQUERY || 3987 cmd == SIOCBONDCHANGEACTIVE || 3988 cmd == SIOCGMIIPHY || 3989 cmd == SIOCGMIIREG || 3990 cmd == SIOCSMIIREG || 3991 cmd == SIOCBRADDIF || 3992 cmd == SIOCBRDELIF || 3993 cmd == SIOCSHWTSTAMP || 3994 cmd == SIOCWANDEV) { 3995 err = -EOPNOTSUPP; 3996 if (ops->ndo_do_ioctl) { 3997 if (netif_device_present(dev)) 3998 err = ops->ndo_do_ioctl(dev, ifr, cmd); 3999 else 4000 err = -ENODEV; 4001 } 4002 } else 4003 err = -EINVAL; 4004 4005 } 4006 return err; 4007 } 4008 4009 /* 4010 * This function handles all "interface"-type I/O control requests. The actual 4011 * 'doing' part of this is dev_ifsioc above. 4012 */ 4013 4014 /** 4015 * dev_ioctl - network device ioctl 4016 * @net: the applicable net namespace 4017 * @cmd: command to issue 4018 * @arg: pointer to a struct ifreq in user space 4019 * 4020 * Issue ioctl functions to devices. This is normally called by the 4021 * user space syscall interfaces but can sometimes be useful for 4022 * other purposes. The return value is the return from the syscall if 4023 * positive or a negative errno code on error. 4024 */ 4025 4026 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4027 { 4028 struct ifreq ifr; 4029 int ret; 4030 char *colon; 4031 4032 /* One special case: SIOCGIFCONF takes ifconf argument 4033 and requires shared lock, because it sleeps writing 4034 to user space. 4035 */ 4036 4037 if (cmd == SIOCGIFCONF) { 4038 rtnl_lock(); 4039 ret = dev_ifconf(net, (char __user *) arg); 4040 rtnl_unlock(); 4041 return ret; 4042 } 4043 if (cmd == SIOCGIFNAME) 4044 return dev_ifname(net, (struct ifreq __user *)arg); 4045 4046 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4047 return -EFAULT; 4048 4049 ifr.ifr_name[IFNAMSIZ-1] = 0; 4050 4051 colon = strchr(ifr.ifr_name, ':'); 4052 if (colon) 4053 *colon = 0; 4054 4055 /* 4056 * See which interface the caller is talking about. 4057 */ 4058 4059 switch (cmd) { 4060 /* 4061 * These ioctl calls: 4062 * - can be done by all. 4063 * - atomic and do not require locking. 4064 * - return a value 4065 */ 4066 case SIOCGIFFLAGS: 4067 case SIOCGIFMETRIC: 4068 case SIOCGIFMTU: 4069 case SIOCGIFHWADDR: 4070 case SIOCGIFSLAVE: 4071 case SIOCGIFMAP: 4072 case SIOCGIFINDEX: 4073 case SIOCGIFTXQLEN: 4074 dev_load(net, ifr.ifr_name); 4075 read_lock(&dev_base_lock); 4076 ret = dev_ifsioc_locked(net, &ifr, cmd); 4077 read_unlock(&dev_base_lock); 4078 if (!ret) { 4079 if (colon) 4080 *colon = ':'; 4081 if (copy_to_user(arg, &ifr, 4082 sizeof(struct ifreq))) 4083 ret = -EFAULT; 4084 } 4085 return ret; 4086 4087 case SIOCETHTOOL: 4088 dev_load(net, ifr.ifr_name); 4089 rtnl_lock(); 4090 ret = dev_ethtool(net, &ifr); 4091 rtnl_unlock(); 4092 if (!ret) { 4093 if (colon) 4094 *colon = ':'; 4095 if (copy_to_user(arg, &ifr, 4096 sizeof(struct ifreq))) 4097 ret = -EFAULT; 4098 } 4099 return ret; 4100 4101 /* 4102 * These ioctl calls: 4103 * - require superuser power. 4104 * - require strict serialization. 4105 * - return a value 4106 */ 4107 case SIOCGMIIPHY: 4108 case SIOCGMIIREG: 4109 case SIOCSIFNAME: 4110 if (!capable(CAP_NET_ADMIN)) 4111 return -EPERM; 4112 dev_load(net, ifr.ifr_name); 4113 rtnl_lock(); 4114 ret = dev_ifsioc(net, &ifr, cmd); 4115 rtnl_unlock(); 4116 if (!ret) { 4117 if (colon) 4118 *colon = ':'; 4119 if (copy_to_user(arg, &ifr, 4120 sizeof(struct ifreq))) 4121 ret = -EFAULT; 4122 } 4123 return ret; 4124 4125 /* 4126 * These ioctl calls: 4127 * - require superuser power. 4128 * - require strict serialization. 4129 * - do not return a value 4130 */ 4131 case SIOCSIFFLAGS: 4132 case SIOCSIFMETRIC: 4133 case SIOCSIFMTU: 4134 case SIOCSIFMAP: 4135 case SIOCSIFHWADDR: 4136 case SIOCSIFSLAVE: 4137 case SIOCADDMULTI: 4138 case SIOCDELMULTI: 4139 case SIOCSIFHWBROADCAST: 4140 case SIOCSIFTXQLEN: 4141 case SIOCSMIIREG: 4142 case SIOCBONDENSLAVE: 4143 case SIOCBONDRELEASE: 4144 case SIOCBONDSETHWADDR: 4145 case SIOCBONDCHANGEACTIVE: 4146 case SIOCBRADDIF: 4147 case SIOCBRDELIF: 4148 case SIOCSHWTSTAMP: 4149 if (!capable(CAP_NET_ADMIN)) 4150 return -EPERM; 4151 /* fall through */ 4152 case SIOCBONDSLAVEINFOQUERY: 4153 case SIOCBONDINFOQUERY: 4154 dev_load(net, ifr.ifr_name); 4155 rtnl_lock(); 4156 ret = dev_ifsioc(net, &ifr, cmd); 4157 rtnl_unlock(); 4158 return ret; 4159 4160 case SIOCGIFMEM: 4161 /* Get the per device memory space. We can add this but 4162 * currently do not support it */ 4163 case SIOCSIFMEM: 4164 /* Set the per device memory buffer space. 4165 * Not applicable in our case */ 4166 case SIOCSIFLINK: 4167 return -EINVAL; 4168 4169 /* 4170 * Unknown or private ioctl. 4171 */ 4172 default: 4173 if (cmd == SIOCWANDEV || 4174 (cmd >= SIOCDEVPRIVATE && 4175 cmd <= SIOCDEVPRIVATE + 15)) { 4176 dev_load(net, ifr.ifr_name); 4177 rtnl_lock(); 4178 ret = dev_ifsioc(net, &ifr, cmd); 4179 rtnl_unlock(); 4180 if (!ret && copy_to_user(arg, &ifr, 4181 sizeof(struct ifreq))) 4182 ret = -EFAULT; 4183 return ret; 4184 } 4185 /* Take care of Wireless Extensions */ 4186 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4187 return wext_handle_ioctl(net, &ifr, cmd, arg); 4188 return -EINVAL; 4189 } 4190 } 4191 4192 4193 /** 4194 * dev_new_index - allocate an ifindex 4195 * @net: the applicable net namespace 4196 * 4197 * Returns a suitable unique value for a new device interface 4198 * number. The caller must hold the rtnl semaphore or the 4199 * dev_base_lock to be sure it remains unique. 4200 */ 4201 static int dev_new_index(struct net *net) 4202 { 4203 static int ifindex; 4204 for (;;) { 4205 if (++ifindex <= 0) 4206 ifindex = 1; 4207 if (!__dev_get_by_index(net, ifindex)) 4208 return ifindex; 4209 } 4210 } 4211 4212 /* Delayed registration/unregisteration */ 4213 static LIST_HEAD(net_todo_list); 4214 4215 static void net_set_todo(struct net_device *dev) 4216 { 4217 list_add_tail(&dev->todo_list, &net_todo_list); 4218 } 4219 4220 static void rollback_registered(struct net_device *dev) 4221 { 4222 BUG_ON(dev_boot_phase); 4223 ASSERT_RTNL(); 4224 4225 /* Some devices call without registering for initialization unwind. */ 4226 if (dev->reg_state == NETREG_UNINITIALIZED) { 4227 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 4228 "was registered\n", dev->name, dev); 4229 4230 WARN_ON(1); 4231 return; 4232 } 4233 4234 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4235 4236 /* If device is running, close it first. */ 4237 dev_close(dev); 4238 4239 /* And unlink it from device chain. */ 4240 unlist_netdevice(dev); 4241 4242 dev->reg_state = NETREG_UNREGISTERING; 4243 4244 synchronize_net(); 4245 4246 /* Shutdown queueing discipline. */ 4247 dev_shutdown(dev); 4248 4249 4250 /* Notify protocols, that we are about to destroy 4251 this device. They should clean all the things. 4252 */ 4253 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4254 4255 /* 4256 * Flush the unicast and multicast chains 4257 */ 4258 dev_addr_discard(dev); 4259 4260 if (dev->netdev_ops->ndo_uninit) 4261 dev->netdev_ops->ndo_uninit(dev); 4262 4263 /* Notifier chain MUST detach us from master device. */ 4264 WARN_ON(dev->master); 4265 4266 /* Remove entries from kobject tree */ 4267 netdev_unregister_kobject(dev); 4268 4269 synchronize_net(); 4270 4271 dev_put(dev); 4272 } 4273 4274 static void __netdev_init_queue_locks_one(struct net_device *dev, 4275 struct netdev_queue *dev_queue, 4276 void *_unused) 4277 { 4278 spin_lock_init(&dev_queue->_xmit_lock); 4279 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 4280 dev_queue->xmit_lock_owner = -1; 4281 } 4282 4283 static void netdev_init_queue_locks(struct net_device *dev) 4284 { 4285 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 4286 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 4287 } 4288 4289 unsigned long netdev_fix_features(unsigned long features, const char *name) 4290 { 4291 /* Fix illegal SG+CSUM combinations. */ 4292 if ((features & NETIF_F_SG) && 4293 !(features & NETIF_F_ALL_CSUM)) { 4294 if (name) 4295 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 4296 "checksum feature.\n", name); 4297 features &= ~NETIF_F_SG; 4298 } 4299 4300 /* TSO requires that SG is present as well. */ 4301 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 4302 if (name) 4303 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 4304 "SG feature.\n", name); 4305 features &= ~NETIF_F_TSO; 4306 } 4307 4308 if (features & NETIF_F_UFO) { 4309 if (!(features & NETIF_F_GEN_CSUM)) { 4310 if (name) 4311 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4312 "since no NETIF_F_HW_CSUM feature.\n", 4313 name); 4314 features &= ~NETIF_F_UFO; 4315 } 4316 4317 if (!(features & NETIF_F_SG)) { 4318 if (name) 4319 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4320 "since no NETIF_F_SG feature.\n", name); 4321 features &= ~NETIF_F_UFO; 4322 } 4323 } 4324 4325 return features; 4326 } 4327 EXPORT_SYMBOL(netdev_fix_features); 4328 4329 /* Some devices need to (re-)set their netdev_ops inside 4330 * ->init() or similar. If that happens, we have to setup 4331 * the compat pointers again. 4332 */ 4333 void netdev_resync_ops(struct net_device *dev) 4334 { 4335 #ifdef CONFIG_COMPAT_NET_DEV_OPS 4336 const struct net_device_ops *ops = dev->netdev_ops; 4337 4338 dev->init = ops->ndo_init; 4339 dev->uninit = ops->ndo_uninit; 4340 dev->open = ops->ndo_open; 4341 dev->change_rx_flags = ops->ndo_change_rx_flags; 4342 dev->set_rx_mode = ops->ndo_set_rx_mode; 4343 dev->set_multicast_list = ops->ndo_set_multicast_list; 4344 dev->set_mac_address = ops->ndo_set_mac_address; 4345 dev->validate_addr = ops->ndo_validate_addr; 4346 dev->do_ioctl = ops->ndo_do_ioctl; 4347 dev->set_config = ops->ndo_set_config; 4348 dev->change_mtu = ops->ndo_change_mtu; 4349 dev->neigh_setup = ops->ndo_neigh_setup; 4350 dev->tx_timeout = ops->ndo_tx_timeout; 4351 dev->get_stats = ops->ndo_get_stats; 4352 dev->vlan_rx_register = ops->ndo_vlan_rx_register; 4353 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid; 4354 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid; 4355 #ifdef CONFIG_NET_POLL_CONTROLLER 4356 dev->poll_controller = ops->ndo_poll_controller; 4357 #endif 4358 #endif 4359 } 4360 EXPORT_SYMBOL(netdev_resync_ops); 4361 4362 /** 4363 * register_netdevice - register a network device 4364 * @dev: device to register 4365 * 4366 * Take a completed network device structure and add it to the kernel 4367 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4368 * chain. 0 is returned on success. A negative errno code is returned 4369 * on a failure to set up the device, or if the name is a duplicate. 4370 * 4371 * Callers must hold the rtnl semaphore. You may want 4372 * register_netdev() instead of this. 4373 * 4374 * BUGS: 4375 * The locking appears insufficient to guarantee two parallel registers 4376 * will not get the same name. 4377 */ 4378 4379 int register_netdevice(struct net_device *dev) 4380 { 4381 struct hlist_head *head; 4382 struct hlist_node *p; 4383 int ret; 4384 struct net *net = dev_net(dev); 4385 4386 BUG_ON(dev_boot_phase); 4387 ASSERT_RTNL(); 4388 4389 might_sleep(); 4390 4391 /* When net_device's are persistent, this will be fatal. */ 4392 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 4393 BUG_ON(!net); 4394 4395 spin_lock_init(&dev->addr_list_lock); 4396 netdev_set_addr_lockdep_class(dev); 4397 netdev_init_queue_locks(dev); 4398 4399 dev->iflink = -1; 4400 4401 #ifdef CONFIG_COMPAT_NET_DEV_OPS 4402 /* Netdevice_ops API compatiability support. 4403 * This is temporary until all network devices are converted. 4404 */ 4405 if (dev->netdev_ops) { 4406 netdev_resync_ops(dev); 4407 } else { 4408 char drivername[64]; 4409 pr_info("%s (%s): not using net_device_ops yet\n", 4410 dev->name, netdev_drivername(dev, drivername, 64)); 4411 4412 /* This works only because net_device_ops and the 4413 compatiablity structure are the same. */ 4414 dev->netdev_ops = (void *) &(dev->init); 4415 } 4416 #endif 4417 4418 /* Init, if this function is available */ 4419 if (dev->netdev_ops->ndo_init) { 4420 ret = dev->netdev_ops->ndo_init(dev); 4421 if (ret) { 4422 if (ret > 0) 4423 ret = -EIO; 4424 goto out; 4425 } 4426 } 4427 4428 if (!dev_valid_name(dev->name)) { 4429 ret = -EINVAL; 4430 goto err_uninit; 4431 } 4432 4433 dev->ifindex = dev_new_index(net); 4434 if (dev->iflink == -1) 4435 dev->iflink = dev->ifindex; 4436 4437 /* Check for existence of name */ 4438 head = dev_name_hash(net, dev->name); 4439 hlist_for_each(p, head) { 4440 struct net_device *d 4441 = hlist_entry(p, struct net_device, name_hlist); 4442 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 4443 ret = -EEXIST; 4444 goto err_uninit; 4445 } 4446 } 4447 4448 /* Fix illegal checksum combinations */ 4449 if ((dev->features & NETIF_F_HW_CSUM) && 4450 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4451 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 4452 dev->name); 4453 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4454 } 4455 4456 if ((dev->features & NETIF_F_NO_CSUM) && 4457 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4458 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 4459 dev->name); 4460 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 4461 } 4462 4463 dev->features = netdev_fix_features(dev->features, dev->name); 4464 4465 /* Enable software GSO if SG is supported. */ 4466 if (dev->features & NETIF_F_SG) 4467 dev->features |= NETIF_F_GSO; 4468 4469 netdev_initialize_kobject(dev); 4470 ret = netdev_register_kobject(dev); 4471 if (ret) 4472 goto err_uninit; 4473 dev->reg_state = NETREG_REGISTERED; 4474 4475 /* 4476 * Default initial state at registry is that the 4477 * device is present. 4478 */ 4479 4480 set_bit(__LINK_STATE_PRESENT, &dev->state); 4481 4482 dev_init_scheduler(dev); 4483 dev_hold(dev); 4484 list_netdevice(dev); 4485 4486 /* Notify protocols, that a new device appeared. */ 4487 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 4488 ret = notifier_to_errno(ret); 4489 if (ret) { 4490 rollback_registered(dev); 4491 dev->reg_state = NETREG_UNREGISTERED; 4492 } 4493 4494 out: 4495 return ret; 4496 4497 err_uninit: 4498 if (dev->netdev_ops->ndo_uninit) 4499 dev->netdev_ops->ndo_uninit(dev); 4500 goto out; 4501 } 4502 4503 /** 4504 * init_dummy_netdev - init a dummy network device for NAPI 4505 * @dev: device to init 4506 * 4507 * This takes a network device structure and initialize the minimum 4508 * amount of fields so it can be used to schedule NAPI polls without 4509 * registering a full blown interface. This is to be used by drivers 4510 * that need to tie several hardware interfaces to a single NAPI 4511 * poll scheduler due to HW limitations. 4512 */ 4513 int init_dummy_netdev(struct net_device *dev) 4514 { 4515 /* Clear everything. Note we don't initialize spinlocks 4516 * are they aren't supposed to be taken by any of the 4517 * NAPI code and this dummy netdev is supposed to be 4518 * only ever used for NAPI polls 4519 */ 4520 memset(dev, 0, sizeof(struct net_device)); 4521 4522 /* make sure we BUG if trying to hit standard 4523 * register/unregister code path 4524 */ 4525 dev->reg_state = NETREG_DUMMY; 4526 4527 /* initialize the ref count */ 4528 atomic_set(&dev->refcnt, 1); 4529 4530 /* NAPI wants this */ 4531 INIT_LIST_HEAD(&dev->napi_list); 4532 4533 /* a dummy interface is started by default */ 4534 set_bit(__LINK_STATE_PRESENT, &dev->state); 4535 set_bit(__LINK_STATE_START, &dev->state); 4536 4537 return 0; 4538 } 4539 EXPORT_SYMBOL_GPL(init_dummy_netdev); 4540 4541 4542 /** 4543 * register_netdev - register a network device 4544 * @dev: device to register 4545 * 4546 * Take a completed network device structure and add it to the kernel 4547 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4548 * chain. 0 is returned on success. A negative errno code is returned 4549 * on a failure to set up the device, or if the name is a duplicate. 4550 * 4551 * This is a wrapper around register_netdevice that takes the rtnl semaphore 4552 * and expands the device name if you passed a format string to 4553 * alloc_netdev. 4554 */ 4555 int register_netdev(struct net_device *dev) 4556 { 4557 int err; 4558 4559 rtnl_lock(); 4560 4561 /* 4562 * If the name is a format string the caller wants us to do a 4563 * name allocation. 4564 */ 4565 if (strchr(dev->name, '%')) { 4566 err = dev_alloc_name(dev, dev->name); 4567 if (err < 0) 4568 goto out; 4569 } 4570 4571 err = register_netdevice(dev); 4572 out: 4573 rtnl_unlock(); 4574 return err; 4575 } 4576 EXPORT_SYMBOL(register_netdev); 4577 4578 /* 4579 * netdev_wait_allrefs - wait until all references are gone. 4580 * 4581 * This is called when unregistering network devices. 4582 * 4583 * Any protocol or device that holds a reference should register 4584 * for netdevice notification, and cleanup and put back the 4585 * reference if they receive an UNREGISTER event. 4586 * We can get stuck here if buggy protocols don't correctly 4587 * call dev_put. 4588 */ 4589 static void netdev_wait_allrefs(struct net_device *dev) 4590 { 4591 unsigned long rebroadcast_time, warning_time; 4592 4593 rebroadcast_time = warning_time = jiffies; 4594 while (atomic_read(&dev->refcnt) != 0) { 4595 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 4596 rtnl_lock(); 4597 4598 /* Rebroadcast unregister notification */ 4599 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4600 4601 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 4602 &dev->state)) { 4603 /* We must not have linkwatch events 4604 * pending on unregister. If this 4605 * happens, we simply run the queue 4606 * unscheduled, resulting in a noop 4607 * for this device. 4608 */ 4609 linkwatch_run_queue(); 4610 } 4611 4612 __rtnl_unlock(); 4613 4614 rebroadcast_time = jiffies; 4615 } 4616 4617 msleep(250); 4618 4619 if (time_after(jiffies, warning_time + 10 * HZ)) { 4620 printk(KERN_EMERG "unregister_netdevice: " 4621 "waiting for %s to become free. Usage " 4622 "count = %d\n", 4623 dev->name, atomic_read(&dev->refcnt)); 4624 warning_time = jiffies; 4625 } 4626 } 4627 } 4628 4629 /* The sequence is: 4630 * 4631 * rtnl_lock(); 4632 * ... 4633 * register_netdevice(x1); 4634 * register_netdevice(x2); 4635 * ... 4636 * unregister_netdevice(y1); 4637 * unregister_netdevice(y2); 4638 * ... 4639 * rtnl_unlock(); 4640 * free_netdev(y1); 4641 * free_netdev(y2); 4642 * 4643 * We are invoked by rtnl_unlock(). 4644 * This allows us to deal with problems: 4645 * 1) We can delete sysfs objects which invoke hotplug 4646 * without deadlocking with linkwatch via keventd. 4647 * 2) Since we run with the RTNL semaphore not held, we can sleep 4648 * safely in order to wait for the netdev refcnt to drop to zero. 4649 * 4650 * We must not return until all unregister events added during 4651 * the interval the lock was held have been completed. 4652 */ 4653 void netdev_run_todo(void) 4654 { 4655 struct list_head list; 4656 4657 /* Snapshot list, allow later requests */ 4658 list_replace_init(&net_todo_list, &list); 4659 4660 __rtnl_unlock(); 4661 4662 while (!list_empty(&list)) { 4663 struct net_device *dev 4664 = list_entry(list.next, struct net_device, todo_list); 4665 list_del(&dev->todo_list); 4666 4667 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 4668 printk(KERN_ERR "network todo '%s' but state %d\n", 4669 dev->name, dev->reg_state); 4670 dump_stack(); 4671 continue; 4672 } 4673 4674 dev->reg_state = NETREG_UNREGISTERED; 4675 4676 on_each_cpu(flush_backlog, dev, 1); 4677 4678 netdev_wait_allrefs(dev); 4679 4680 /* paranoia */ 4681 BUG_ON(atomic_read(&dev->refcnt)); 4682 WARN_ON(dev->ip_ptr); 4683 WARN_ON(dev->ip6_ptr); 4684 WARN_ON(dev->dn_ptr); 4685 4686 if (dev->destructor) 4687 dev->destructor(dev); 4688 4689 /* Free network device */ 4690 kobject_put(&dev->dev.kobj); 4691 } 4692 } 4693 4694 /** 4695 * dev_get_stats - get network device statistics 4696 * @dev: device to get statistics from 4697 * 4698 * Get network statistics from device. The device driver may provide 4699 * its own method by setting dev->netdev_ops->get_stats; otherwise 4700 * the internal statistics structure is used. 4701 */ 4702 const struct net_device_stats *dev_get_stats(struct net_device *dev) 4703 { 4704 const struct net_device_ops *ops = dev->netdev_ops; 4705 4706 if (ops->ndo_get_stats) 4707 return ops->ndo_get_stats(dev); 4708 else 4709 return &dev->stats; 4710 } 4711 EXPORT_SYMBOL(dev_get_stats); 4712 4713 static void netdev_init_one_queue(struct net_device *dev, 4714 struct netdev_queue *queue, 4715 void *_unused) 4716 { 4717 queue->dev = dev; 4718 } 4719 4720 static void netdev_init_queues(struct net_device *dev) 4721 { 4722 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 4723 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 4724 spin_lock_init(&dev->tx_global_lock); 4725 } 4726 4727 /** 4728 * alloc_netdev_mq - allocate network device 4729 * @sizeof_priv: size of private data to allocate space for 4730 * @name: device name format string 4731 * @setup: callback to initialize device 4732 * @queue_count: the number of subqueues to allocate 4733 * 4734 * Allocates a struct net_device with private data area for driver use 4735 * and performs basic initialization. Also allocates subquue structs 4736 * for each queue on the device at the end of the netdevice. 4737 */ 4738 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 4739 void (*setup)(struct net_device *), unsigned int queue_count) 4740 { 4741 struct netdev_queue *tx; 4742 struct net_device *dev; 4743 size_t alloc_size; 4744 void *p; 4745 4746 BUG_ON(strlen(name) >= sizeof(dev->name)); 4747 4748 alloc_size = sizeof(struct net_device); 4749 if (sizeof_priv) { 4750 /* ensure 32-byte alignment of private area */ 4751 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 4752 alloc_size += sizeof_priv; 4753 } 4754 /* ensure 32-byte alignment of whole construct */ 4755 alloc_size += NETDEV_ALIGN_CONST; 4756 4757 p = kzalloc(alloc_size, GFP_KERNEL); 4758 if (!p) { 4759 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 4760 return NULL; 4761 } 4762 4763 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 4764 if (!tx) { 4765 printk(KERN_ERR "alloc_netdev: Unable to allocate " 4766 "tx qdiscs.\n"); 4767 kfree(p); 4768 return NULL; 4769 } 4770 4771 dev = (struct net_device *) 4772 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 4773 dev->padded = (char *)dev - (char *)p; 4774 dev_net_set(dev, &init_net); 4775 4776 dev->_tx = tx; 4777 dev->num_tx_queues = queue_count; 4778 dev->real_num_tx_queues = queue_count; 4779 4780 dev->gso_max_size = GSO_MAX_SIZE; 4781 4782 netdev_init_queues(dev); 4783 4784 INIT_LIST_HEAD(&dev->napi_list); 4785 setup(dev); 4786 strcpy(dev->name, name); 4787 return dev; 4788 } 4789 EXPORT_SYMBOL(alloc_netdev_mq); 4790 4791 /** 4792 * free_netdev - free network device 4793 * @dev: device 4794 * 4795 * This function does the last stage of destroying an allocated device 4796 * interface. The reference to the device object is released. 4797 * If this is the last reference then it will be freed. 4798 */ 4799 void free_netdev(struct net_device *dev) 4800 { 4801 struct napi_struct *p, *n; 4802 4803 release_net(dev_net(dev)); 4804 4805 kfree(dev->_tx); 4806 4807 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 4808 netif_napi_del(p); 4809 4810 /* Compatibility with error handling in drivers */ 4811 if (dev->reg_state == NETREG_UNINITIALIZED) { 4812 kfree((char *)dev - dev->padded); 4813 return; 4814 } 4815 4816 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 4817 dev->reg_state = NETREG_RELEASED; 4818 4819 /* will free via device release */ 4820 put_device(&dev->dev); 4821 } 4822 4823 /** 4824 * synchronize_net - Synchronize with packet receive processing 4825 * 4826 * Wait for packets currently being received to be done. 4827 * Does not block later packets from starting. 4828 */ 4829 void synchronize_net(void) 4830 { 4831 might_sleep(); 4832 synchronize_rcu(); 4833 } 4834 4835 /** 4836 * unregister_netdevice - remove device from the kernel 4837 * @dev: device 4838 * 4839 * This function shuts down a device interface and removes it 4840 * from the kernel tables. 4841 * 4842 * Callers must hold the rtnl semaphore. You may want 4843 * unregister_netdev() instead of this. 4844 */ 4845 4846 void unregister_netdevice(struct net_device *dev) 4847 { 4848 ASSERT_RTNL(); 4849 4850 rollback_registered(dev); 4851 /* Finish processing unregister after unlock */ 4852 net_set_todo(dev); 4853 } 4854 4855 /** 4856 * unregister_netdev - remove device from the kernel 4857 * @dev: device 4858 * 4859 * This function shuts down a device interface and removes it 4860 * from the kernel tables. 4861 * 4862 * This is just a wrapper for unregister_netdevice that takes 4863 * the rtnl semaphore. In general you want to use this and not 4864 * unregister_netdevice. 4865 */ 4866 void unregister_netdev(struct net_device *dev) 4867 { 4868 rtnl_lock(); 4869 unregister_netdevice(dev); 4870 rtnl_unlock(); 4871 } 4872 4873 EXPORT_SYMBOL(unregister_netdev); 4874 4875 /** 4876 * dev_change_net_namespace - move device to different nethost namespace 4877 * @dev: device 4878 * @net: network namespace 4879 * @pat: If not NULL name pattern to try if the current device name 4880 * is already taken in the destination network namespace. 4881 * 4882 * This function shuts down a device interface and moves it 4883 * to a new network namespace. On success 0 is returned, on 4884 * a failure a netagive errno code is returned. 4885 * 4886 * Callers must hold the rtnl semaphore. 4887 */ 4888 4889 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 4890 { 4891 char buf[IFNAMSIZ]; 4892 const char *destname; 4893 int err; 4894 4895 ASSERT_RTNL(); 4896 4897 /* Don't allow namespace local devices to be moved. */ 4898 err = -EINVAL; 4899 if (dev->features & NETIF_F_NETNS_LOCAL) 4900 goto out; 4901 4902 #ifdef CONFIG_SYSFS 4903 /* Don't allow real devices to be moved when sysfs 4904 * is enabled. 4905 */ 4906 err = -EINVAL; 4907 if (dev->dev.parent) 4908 goto out; 4909 #endif 4910 4911 /* Ensure the device has been registrered */ 4912 err = -EINVAL; 4913 if (dev->reg_state != NETREG_REGISTERED) 4914 goto out; 4915 4916 /* Get out if there is nothing todo */ 4917 err = 0; 4918 if (net_eq(dev_net(dev), net)) 4919 goto out; 4920 4921 /* Pick the destination device name, and ensure 4922 * we can use it in the destination network namespace. 4923 */ 4924 err = -EEXIST; 4925 destname = dev->name; 4926 if (__dev_get_by_name(net, destname)) { 4927 /* We get here if we can't use the current device name */ 4928 if (!pat) 4929 goto out; 4930 if (!dev_valid_name(pat)) 4931 goto out; 4932 if (strchr(pat, '%')) { 4933 if (__dev_alloc_name(net, pat, buf) < 0) 4934 goto out; 4935 destname = buf; 4936 } else 4937 destname = pat; 4938 if (__dev_get_by_name(net, destname)) 4939 goto out; 4940 } 4941 4942 /* 4943 * And now a mini version of register_netdevice unregister_netdevice. 4944 */ 4945 4946 /* If device is running close it first. */ 4947 dev_close(dev); 4948 4949 /* And unlink it from device chain */ 4950 err = -ENODEV; 4951 unlist_netdevice(dev); 4952 4953 synchronize_net(); 4954 4955 /* Shutdown queueing discipline. */ 4956 dev_shutdown(dev); 4957 4958 /* Notify protocols, that we are about to destroy 4959 this device. They should clean all the things. 4960 */ 4961 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4962 4963 /* 4964 * Flush the unicast and multicast chains 4965 */ 4966 dev_addr_discard(dev); 4967 4968 netdev_unregister_kobject(dev); 4969 4970 /* Actually switch the network namespace */ 4971 dev_net_set(dev, net); 4972 4973 /* Assign the new device name */ 4974 if (destname != dev->name) 4975 strcpy(dev->name, destname); 4976 4977 /* If there is an ifindex conflict assign a new one */ 4978 if (__dev_get_by_index(net, dev->ifindex)) { 4979 int iflink = (dev->iflink == dev->ifindex); 4980 dev->ifindex = dev_new_index(net); 4981 if (iflink) 4982 dev->iflink = dev->ifindex; 4983 } 4984 4985 /* Fixup kobjects */ 4986 err = netdev_register_kobject(dev); 4987 WARN_ON(err); 4988 4989 /* Add the device back in the hashes */ 4990 list_netdevice(dev); 4991 4992 /* Notify protocols, that a new device appeared. */ 4993 call_netdevice_notifiers(NETDEV_REGISTER, dev); 4994 4995 synchronize_net(); 4996 err = 0; 4997 out: 4998 return err; 4999 } 5000 5001 static int dev_cpu_callback(struct notifier_block *nfb, 5002 unsigned long action, 5003 void *ocpu) 5004 { 5005 struct sk_buff **list_skb; 5006 struct Qdisc **list_net; 5007 struct sk_buff *skb; 5008 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5009 struct softnet_data *sd, *oldsd; 5010 5011 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5012 return NOTIFY_OK; 5013 5014 local_irq_disable(); 5015 cpu = smp_processor_id(); 5016 sd = &per_cpu(softnet_data, cpu); 5017 oldsd = &per_cpu(softnet_data, oldcpu); 5018 5019 /* Find end of our completion_queue. */ 5020 list_skb = &sd->completion_queue; 5021 while (*list_skb) 5022 list_skb = &(*list_skb)->next; 5023 /* Append completion queue from offline CPU. */ 5024 *list_skb = oldsd->completion_queue; 5025 oldsd->completion_queue = NULL; 5026 5027 /* Find end of our output_queue. */ 5028 list_net = &sd->output_queue; 5029 while (*list_net) 5030 list_net = &(*list_net)->next_sched; 5031 /* Append output queue from offline CPU. */ 5032 *list_net = oldsd->output_queue; 5033 oldsd->output_queue = NULL; 5034 5035 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5036 local_irq_enable(); 5037 5038 /* Process offline CPU's input_pkt_queue */ 5039 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 5040 netif_rx(skb); 5041 5042 return NOTIFY_OK; 5043 } 5044 5045 5046 /** 5047 * netdev_increment_features - increment feature set by one 5048 * @all: current feature set 5049 * @one: new feature set 5050 * @mask: mask feature set 5051 * 5052 * Computes a new feature set after adding a device with feature set 5053 * @one to the master device with current feature set @all. Will not 5054 * enable anything that is off in @mask. Returns the new feature set. 5055 */ 5056 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 5057 unsigned long mask) 5058 { 5059 /* If device needs checksumming, downgrade to it. */ 5060 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 5061 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 5062 else if (mask & NETIF_F_ALL_CSUM) { 5063 /* If one device supports v4/v6 checksumming, set for all. */ 5064 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 5065 !(all & NETIF_F_GEN_CSUM)) { 5066 all &= ~NETIF_F_ALL_CSUM; 5067 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 5068 } 5069 5070 /* If one device supports hw checksumming, set for all. */ 5071 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 5072 all &= ~NETIF_F_ALL_CSUM; 5073 all |= NETIF_F_HW_CSUM; 5074 } 5075 } 5076 5077 one |= NETIF_F_ALL_CSUM; 5078 5079 one |= all & NETIF_F_ONE_FOR_ALL; 5080 all &= one | NETIF_F_LLTX | NETIF_F_GSO; 5081 all |= one & mask & NETIF_F_ONE_FOR_ALL; 5082 5083 return all; 5084 } 5085 EXPORT_SYMBOL(netdev_increment_features); 5086 5087 static struct hlist_head *netdev_create_hash(void) 5088 { 5089 int i; 5090 struct hlist_head *hash; 5091 5092 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5093 if (hash != NULL) 5094 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5095 INIT_HLIST_HEAD(&hash[i]); 5096 5097 return hash; 5098 } 5099 5100 /* Initialize per network namespace state */ 5101 static int __net_init netdev_init(struct net *net) 5102 { 5103 INIT_LIST_HEAD(&net->dev_base_head); 5104 5105 net->dev_name_head = netdev_create_hash(); 5106 if (net->dev_name_head == NULL) 5107 goto err_name; 5108 5109 net->dev_index_head = netdev_create_hash(); 5110 if (net->dev_index_head == NULL) 5111 goto err_idx; 5112 5113 return 0; 5114 5115 err_idx: 5116 kfree(net->dev_name_head); 5117 err_name: 5118 return -ENOMEM; 5119 } 5120 5121 /** 5122 * netdev_drivername - network driver for the device 5123 * @dev: network device 5124 * @buffer: buffer for resulting name 5125 * @len: size of buffer 5126 * 5127 * Determine network driver for device. 5128 */ 5129 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 5130 { 5131 const struct device_driver *driver; 5132 const struct device *parent; 5133 5134 if (len <= 0 || !buffer) 5135 return buffer; 5136 buffer[0] = 0; 5137 5138 parent = dev->dev.parent; 5139 5140 if (!parent) 5141 return buffer; 5142 5143 driver = parent->driver; 5144 if (driver && driver->name) 5145 strlcpy(buffer, driver->name, len); 5146 return buffer; 5147 } 5148 5149 static void __net_exit netdev_exit(struct net *net) 5150 { 5151 kfree(net->dev_name_head); 5152 kfree(net->dev_index_head); 5153 } 5154 5155 static struct pernet_operations __net_initdata netdev_net_ops = { 5156 .init = netdev_init, 5157 .exit = netdev_exit, 5158 }; 5159 5160 static void __net_exit default_device_exit(struct net *net) 5161 { 5162 struct net_device *dev; 5163 /* 5164 * Push all migratable of the network devices back to the 5165 * initial network namespace 5166 */ 5167 rtnl_lock(); 5168 restart: 5169 for_each_netdev(net, dev) { 5170 int err; 5171 char fb_name[IFNAMSIZ]; 5172 5173 /* Ignore unmoveable devices (i.e. loopback) */ 5174 if (dev->features & NETIF_F_NETNS_LOCAL) 5175 continue; 5176 5177 /* Delete virtual devices */ 5178 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) { 5179 dev->rtnl_link_ops->dellink(dev); 5180 goto restart; 5181 } 5182 5183 /* Push remaing network devices to init_net */ 5184 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 5185 err = dev_change_net_namespace(dev, &init_net, fb_name); 5186 if (err) { 5187 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 5188 __func__, dev->name, err); 5189 BUG(); 5190 } 5191 goto restart; 5192 } 5193 rtnl_unlock(); 5194 } 5195 5196 static struct pernet_operations __net_initdata default_device_ops = { 5197 .exit = default_device_exit, 5198 }; 5199 5200 /* 5201 * Initialize the DEV module. At boot time this walks the device list and 5202 * unhooks any devices that fail to initialise (normally hardware not 5203 * present) and leaves us with a valid list of present and active devices. 5204 * 5205 */ 5206 5207 /* 5208 * This is called single threaded during boot, so no need 5209 * to take the rtnl semaphore. 5210 */ 5211 static int __init net_dev_init(void) 5212 { 5213 int i, rc = -ENOMEM; 5214 5215 BUG_ON(!dev_boot_phase); 5216 5217 if (dev_proc_init()) 5218 goto out; 5219 5220 if (netdev_kobject_init()) 5221 goto out; 5222 5223 INIT_LIST_HEAD(&ptype_all); 5224 for (i = 0; i < PTYPE_HASH_SIZE; i++) 5225 INIT_LIST_HEAD(&ptype_base[i]); 5226 5227 if (register_pernet_subsys(&netdev_net_ops)) 5228 goto out; 5229 5230 /* 5231 * Initialise the packet receive queues. 5232 */ 5233 5234 for_each_possible_cpu(i) { 5235 struct softnet_data *queue; 5236 5237 queue = &per_cpu(softnet_data, i); 5238 skb_queue_head_init(&queue->input_pkt_queue); 5239 queue->completion_queue = NULL; 5240 INIT_LIST_HEAD(&queue->poll_list); 5241 5242 queue->backlog.poll = process_backlog; 5243 queue->backlog.weight = weight_p; 5244 queue->backlog.gro_list = NULL; 5245 queue->backlog.gro_count = 0; 5246 } 5247 5248 dev_boot_phase = 0; 5249 5250 /* The loopback device is special if any other network devices 5251 * is present in a network namespace the loopback device must 5252 * be present. Since we now dynamically allocate and free the 5253 * loopback device ensure this invariant is maintained by 5254 * keeping the loopback device as the first device on the 5255 * list of network devices. Ensuring the loopback devices 5256 * is the first device that appears and the last network device 5257 * that disappears. 5258 */ 5259 if (register_pernet_device(&loopback_net_ops)) 5260 goto out; 5261 5262 if (register_pernet_device(&default_device_ops)) 5263 goto out; 5264 5265 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 5266 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 5267 5268 hotcpu_notifier(dev_cpu_callback, 0); 5269 dst_init(); 5270 dev_mcast_init(); 5271 rc = 0; 5272 out: 5273 return rc; 5274 } 5275 5276 subsys_initcall(net_dev_init); 5277 5278 static int __init initialize_hashrnd(void) 5279 { 5280 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd)); 5281 return 0; 5282 } 5283 5284 late_initcall_sync(initialize_hashrnd); 5285 5286 EXPORT_SYMBOL(__dev_get_by_index); 5287 EXPORT_SYMBOL(__dev_get_by_name); 5288 EXPORT_SYMBOL(__dev_remove_pack); 5289 EXPORT_SYMBOL(dev_valid_name); 5290 EXPORT_SYMBOL(dev_add_pack); 5291 EXPORT_SYMBOL(dev_alloc_name); 5292 EXPORT_SYMBOL(dev_close); 5293 EXPORT_SYMBOL(dev_get_by_flags); 5294 EXPORT_SYMBOL(dev_get_by_index); 5295 EXPORT_SYMBOL(dev_get_by_name); 5296 EXPORT_SYMBOL(dev_open); 5297 EXPORT_SYMBOL(dev_queue_xmit); 5298 EXPORT_SYMBOL(dev_remove_pack); 5299 EXPORT_SYMBOL(dev_set_allmulti); 5300 EXPORT_SYMBOL(dev_set_promiscuity); 5301 EXPORT_SYMBOL(dev_change_flags); 5302 EXPORT_SYMBOL(dev_set_mtu); 5303 EXPORT_SYMBOL(dev_set_mac_address); 5304 EXPORT_SYMBOL(free_netdev); 5305 EXPORT_SYMBOL(netdev_boot_setup_check); 5306 EXPORT_SYMBOL(netdev_set_master); 5307 EXPORT_SYMBOL(netdev_state_change); 5308 EXPORT_SYMBOL(netif_receive_skb); 5309 EXPORT_SYMBOL(netif_rx); 5310 EXPORT_SYMBOL(register_gifconf); 5311 EXPORT_SYMBOL(register_netdevice); 5312 EXPORT_SYMBOL(register_netdevice_notifier); 5313 EXPORT_SYMBOL(skb_checksum_help); 5314 EXPORT_SYMBOL(synchronize_net); 5315 EXPORT_SYMBOL(unregister_netdevice); 5316 EXPORT_SYMBOL(unregister_netdevice_notifier); 5317 EXPORT_SYMBOL(net_enable_timestamp); 5318 EXPORT_SYMBOL(net_disable_timestamp); 5319 EXPORT_SYMBOL(dev_get_flags); 5320 5321 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 5322 EXPORT_SYMBOL(br_handle_frame_hook); 5323 EXPORT_SYMBOL(br_fdb_get_hook); 5324 EXPORT_SYMBOL(br_fdb_put_hook); 5325 #endif 5326 5327 EXPORT_SYMBOL(dev_load); 5328 5329 EXPORT_PER_CPU_SYMBOL(softnet_data); 5330