xref: /openbmc/linux/net/core/dev.c (revision b1c8ea3c09db24a55ff84ac047cb2e9d9f644bf9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 
154 #include "dev.h"
155 #include "net-sysfs.h"
156 
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_extack(unsigned long val,
164 					   struct net_device *dev,
165 					   struct netlink_ext_ack *extack);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167 
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189 
190 static DEFINE_MUTEX(ifalias_mutex);
191 
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194 
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197 
198 static DECLARE_RWSEM(devnet_rename_sem);
199 
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202 	while (++net->dev_base_seq == 0)
203 		;
204 }
205 
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209 
210 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212 
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217 
218 static inline void rps_lock_irqsave(struct softnet_data *sd,
219 				    unsigned long *flags)
220 {
221 	if (IS_ENABLED(CONFIG_RPS))
222 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
223 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
224 		local_irq_save(*flags);
225 }
226 
227 static inline void rps_lock_irq_disable(struct softnet_data *sd)
228 {
229 	if (IS_ENABLED(CONFIG_RPS))
230 		spin_lock_irq(&sd->input_pkt_queue.lock);
231 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
232 		local_irq_disable();
233 }
234 
235 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
236 					  unsigned long *flags)
237 {
238 	if (IS_ENABLED(CONFIG_RPS))
239 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
240 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
241 		local_irq_restore(*flags);
242 }
243 
244 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
245 {
246 	if (IS_ENABLED(CONFIG_RPS))
247 		spin_unlock_irq(&sd->input_pkt_queue.lock);
248 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
249 		local_irq_enable();
250 }
251 
252 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
253 						       const char *name)
254 {
255 	struct netdev_name_node *name_node;
256 
257 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
258 	if (!name_node)
259 		return NULL;
260 	INIT_HLIST_NODE(&name_node->hlist);
261 	name_node->dev = dev;
262 	name_node->name = name;
263 	return name_node;
264 }
265 
266 static struct netdev_name_node *
267 netdev_name_node_head_alloc(struct net_device *dev)
268 {
269 	struct netdev_name_node *name_node;
270 
271 	name_node = netdev_name_node_alloc(dev, dev->name);
272 	if (!name_node)
273 		return NULL;
274 	INIT_LIST_HEAD(&name_node->list);
275 	return name_node;
276 }
277 
278 static void netdev_name_node_free(struct netdev_name_node *name_node)
279 {
280 	kfree(name_node);
281 }
282 
283 static void netdev_name_node_add(struct net *net,
284 				 struct netdev_name_node *name_node)
285 {
286 	hlist_add_head_rcu(&name_node->hlist,
287 			   dev_name_hash(net, name_node->name));
288 }
289 
290 static void netdev_name_node_del(struct netdev_name_node *name_node)
291 {
292 	hlist_del_rcu(&name_node->hlist);
293 }
294 
295 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
296 							const char *name)
297 {
298 	struct hlist_head *head = dev_name_hash(net, name);
299 	struct netdev_name_node *name_node;
300 
301 	hlist_for_each_entry(name_node, head, hlist)
302 		if (!strcmp(name_node->name, name))
303 			return name_node;
304 	return NULL;
305 }
306 
307 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
308 							    const char *name)
309 {
310 	struct hlist_head *head = dev_name_hash(net, name);
311 	struct netdev_name_node *name_node;
312 
313 	hlist_for_each_entry_rcu(name_node, head, hlist)
314 		if (!strcmp(name_node->name, name))
315 			return name_node;
316 	return NULL;
317 }
318 
319 bool netdev_name_in_use(struct net *net, const char *name)
320 {
321 	return netdev_name_node_lookup(net, name);
322 }
323 EXPORT_SYMBOL(netdev_name_in_use);
324 
325 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
326 {
327 	struct netdev_name_node *name_node;
328 	struct net *net = dev_net(dev);
329 
330 	name_node = netdev_name_node_lookup(net, name);
331 	if (name_node)
332 		return -EEXIST;
333 	name_node = netdev_name_node_alloc(dev, name);
334 	if (!name_node)
335 		return -ENOMEM;
336 	netdev_name_node_add(net, name_node);
337 	/* The node that holds dev->name acts as a head of per-device list. */
338 	list_add_tail(&name_node->list, &dev->name_node->list);
339 
340 	return 0;
341 }
342 
343 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
344 {
345 	list_del(&name_node->list);
346 	netdev_name_node_del(name_node);
347 	kfree(name_node->name);
348 	netdev_name_node_free(name_node);
349 }
350 
351 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
352 {
353 	struct netdev_name_node *name_node;
354 	struct net *net = dev_net(dev);
355 
356 	name_node = netdev_name_node_lookup(net, name);
357 	if (!name_node)
358 		return -ENOENT;
359 	/* lookup might have found our primary name or a name belonging
360 	 * to another device.
361 	 */
362 	if (name_node == dev->name_node || name_node->dev != dev)
363 		return -EINVAL;
364 
365 	__netdev_name_node_alt_destroy(name_node);
366 
367 	return 0;
368 }
369 
370 static void netdev_name_node_alt_flush(struct net_device *dev)
371 {
372 	struct netdev_name_node *name_node, *tmp;
373 
374 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
375 		__netdev_name_node_alt_destroy(name_node);
376 }
377 
378 /* Device list insertion */
379 static void list_netdevice(struct net_device *dev)
380 {
381 	struct net *net = dev_net(dev);
382 
383 	ASSERT_RTNL();
384 
385 	write_lock(&dev_base_lock);
386 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
387 	netdev_name_node_add(net, dev->name_node);
388 	hlist_add_head_rcu(&dev->index_hlist,
389 			   dev_index_hash(net, dev->ifindex));
390 	write_unlock(&dev_base_lock);
391 
392 	dev_base_seq_inc(net);
393 }
394 
395 /* Device list removal
396  * caller must respect a RCU grace period before freeing/reusing dev
397  */
398 static void unlist_netdevice(struct net_device *dev, bool lock)
399 {
400 	ASSERT_RTNL();
401 
402 	/* Unlink dev from the device chain */
403 	if (lock)
404 		write_lock(&dev_base_lock);
405 	list_del_rcu(&dev->dev_list);
406 	netdev_name_node_del(dev->name_node);
407 	hlist_del_rcu(&dev->index_hlist);
408 	if (lock)
409 		write_unlock(&dev_base_lock);
410 
411 	dev_base_seq_inc(dev_net(dev));
412 }
413 
414 /*
415  *	Our notifier list
416  */
417 
418 static RAW_NOTIFIER_HEAD(netdev_chain);
419 
420 /*
421  *	Device drivers call our routines to queue packets here. We empty the
422  *	queue in the local softnet handler.
423  */
424 
425 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
426 EXPORT_PER_CPU_SYMBOL(softnet_data);
427 
428 #ifdef CONFIG_LOCKDEP
429 /*
430  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
431  * according to dev->type
432  */
433 static const unsigned short netdev_lock_type[] = {
434 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
435 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
436 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
437 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
438 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
439 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
440 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
441 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
442 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
443 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
444 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
445 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
446 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
447 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
448 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
449 
450 static const char *const netdev_lock_name[] = {
451 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
452 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
453 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
454 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
455 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
456 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
457 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
458 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
459 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
460 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
461 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
462 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
463 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
464 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
465 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
466 
467 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
468 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
469 
470 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
471 {
472 	int i;
473 
474 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
475 		if (netdev_lock_type[i] == dev_type)
476 			return i;
477 	/* the last key is used by default */
478 	return ARRAY_SIZE(netdev_lock_type) - 1;
479 }
480 
481 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
482 						 unsigned short dev_type)
483 {
484 	int i;
485 
486 	i = netdev_lock_pos(dev_type);
487 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
488 				   netdev_lock_name[i]);
489 }
490 
491 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
492 {
493 	int i;
494 
495 	i = netdev_lock_pos(dev->type);
496 	lockdep_set_class_and_name(&dev->addr_list_lock,
497 				   &netdev_addr_lock_key[i],
498 				   netdev_lock_name[i]);
499 }
500 #else
501 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
502 						 unsigned short dev_type)
503 {
504 }
505 
506 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
507 {
508 }
509 #endif
510 
511 /*******************************************************************************
512  *
513  *		Protocol management and registration routines
514  *
515  *******************************************************************************/
516 
517 
518 /*
519  *	Add a protocol ID to the list. Now that the input handler is
520  *	smarter we can dispense with all the messy stuff that used to be
521  *	here.
522  *
523  *	BEWARE!!! Protocol handlers, mangling input packets,
524  *	MUST BE last in hash buckets and checking protocol handlers
525  *	MUST start from promiscuous ptype_all chain in net_bh.
526  *	It is true now, do not change it.
527  *	Explanation follows: if protocol handler, mangling packet, will
528  *	be the first on list, it is not able to sense, that packet
529  *	is cloned and should be copied-on-write, so that it will
530  *	change it and subsequent readers will get broken packet.
531  *							--ANK (980803)
532  */
533 
534 static inline struct list_head *ptype_head(const struct packet_type *pt)
535 {
536 	if (pt->type == htons(ETH_P_ALL))
537 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
538 	else
539 		return pt->dev ? &pt->dev->ptype_specific :
540 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
541 }
542 
543 /**
544  *	dev_add_pack - add packet handler
545  *	@pt: packet type declaration
546  *
547  *	Add a protocol handler to the networking stack. The passed &packet_type
548  *	is linked into kernel lists and may not be freed until it has been
549  *	removed from the kernel lists.
550  *
551  *	This call does not sleep therefore it can not
552  *	guarantee all CPU's that are in middle of receiving packets
553  *	will see the new packet type (until the next received packet).
554  */
555 
556 void dev_add_pack(struct packet_type *pt)
557 {
558 	struct list_head *head = ptype_head(pt);
559 
560 	spin_lock(&ptype_lock);
561 	list_add_rcu(&pt->list, head);
562 	spin_unlock(&ptype_lock);
563 }
564 EXPORT_SYMBOL(dev_add_pack);
565 
566 /**
567  *	__dev_remove_pack	 - remove packet handler
568  *	@pt: packet type declaration
569  *
570  *	Remove a protocol handler that was previously added to the kernel
571  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
572  *	from the kernel lists and can be freed or reused once this function
573  *	returns.
574  *
575  *      The packet type might still be in use by receivers
576  *	and must not be freed until after all the CPU's have gone
577  *	through a quiescent state.
578  */
579 void __dev_remove_pack(struct packet_type *pt)
580 {
581 	struct list_head *head = ptype_head(pt);
582 	struct packet_type *pt1;
583 
584 	spin_lock(&ptype_lock);
585 
586 	list_for_each_entry(pt1, head, list) {
587 		if (pt == pt1) {
588 			list_del_rcu(&pt->list);
589 			goto out;
590 		}
591 	}
592 
593 	pr_warn("dev_remove_pack: %p not found\n", pt);
594 out:
595 	spin_unlock(&ptype_lock);
596 }
597 EXPORT_SYMBOL(__dev_remove_pack);
598 
599 /**
600  *	dev_remove_pack	 - remove packet handler
601  *	@pt: packet type declaration
602  *
603  *	Remove a protocol handler that was previously added to the kernel
604  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
605  *	from the kernel lists and can be freed or reused once this function
606  *	returns.
607  *
608  *	This call sleeps to guarantee that no CPU is looking at the packet
609  *	type after return.
610  */
611 void dev_remove_pack(struct packet_type *pt)
612 {
613 	__dev_remove_pack(pt);
614 
615 	synchronize_net();
616 }
617 EXPORT_SYMBOL(dev_remove_pack);
618 
619 
620 /*******************************************************************************
621  *
622  *			    Device Interface Subroutines
623  *
624  *******************************************************************************/
625 
626 /**
627  *	dev_get_iflink	- get 'iflink' value of a interface
628  *	@dev: targeted interface
629  *
630  *	Indicates the ifindex the interface is linked to.
631  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
632  */
633 
634 int dev_get_iflink(const struct net_device *dev)
635 {
636 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
637 		return dev->netdev_ops->ndo_get_iflink(dev);
638 
639 	return dev->ifindex;
640 }
641 EXPORT_SYMBOL(dev_get_iflink);
642 
643 /**
644  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
645  *	@dev: targeted interface
646  *	@skb: The packet.
647  *
648  *	For better visibility of tunnel traffic OVS needs to retrieve
649  *	egress tunnel information for a packet. Following API allows
650  *	user to get this info.
651  */
652 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
653 {
654 	struct ip_tunnel_info *info;
655 
656 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
657 		return -EINVAL;
658 
659 	info = skb_tunnel_info_unclone(skb);
660 	if (!info)
661 		return -ENOMEM;
662 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
663 		return -EINVAL;
664 
665 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
666 }
667 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
668 
669 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
670 {
671 	int k = stack->num_paths++;
672 
673 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
674 		return NULL;
675 
676 	return &stack->path[k];
677 }
678 
679 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
680 			  struct net_device_path_stack *stack)
681 {
682 	const struct net_device *last_dev;
683 	struct net_device_path_ctx ctx = {
684 		.dev	= dev,
685 	};
686 	struct net_device_path *path;
687 	int ret = 0;
688 
689 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
690 	stack->num_paths = 0;
691 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
692 		last_dev = ctx.dev;
693 		path = dev_fwd_path(stack);
694 		if (!path)
695 			return -1;
696 
697 		memset(path, 0, sizeof(struct net_device_path));
698 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
699 		if (ret < 0)
700 			return -1;
701 
702 		if (WARN_ON_ONCE(last_dev == ctx.dev))
703 			return -1;
704 	}
705 
706 	if (!ctx.dev)
707 		return ret;
708 
709 	path = dev_fwd_path(stack);
710 	if (!path)
711 		return -1;
712 	path->type = DEV_PATH_ETHERNET;
713 	path->dev = ctx.dev;
714 
715 	return ret;
716 }
717 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
718 
719 /**
720  *	__dev_get_by_name	- find a device by its name
721  *	@net: the applicable net namespace
722  *	@name: name to find
723  *
724  *	Find an interface by name. Must be called under RTNL semaphore
725  *	or @dev_base_lock. If the name is found a pointer to the device
726  *	is returned. If the name is not found then %NULL is returned. The
727  *	reference counters are not incremented so the caller must be
728  *	careful with locks.
729  */
730 
731 struct net_device *__dev_get_by_name(struct net *net, const char *name)
732 {
733 	struct netdev_name_node *node_name;
734 
735 	node_name = netdev_name_node_lookup(net, name);
736 	return node_name ? node_name->dev : NULL;
737 }
738 EXPORT_SYMBOL(__dev_get_by_name);
739 
740 /**
741  * dev_get_by_name_rcu	- find a device by its name
742  * @net: the applicable net namespace
743  * @name: name to find
744  *
745  * Find an interface by name.
746  * If the name is found a pointer to the device is returned.
747  * If the name is not found then %NULL is returned.
748  * The reference counters are not incremented so the caller must be
749  * careful with locks. The caller must hold RCU lock.
750  */
751 
752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 {
754 	struct netdev_name_node *node_name;
755 
756 	node_name = netdev_name_node_lookup_rcu(net, name);
757 	return node_name ? node_name->dev : NULL;
758 }
759 EXPORT_SYMBOL(dev_get_by_name_rcu);
760 
761 /**
762  *	dev_get_by_name		- find a device by its name
763  *	@net: the applicable net namespace
764  *	@name: name to find
765  *
766  *	Find an interface by name. This can be called from any
767  *	context and does its own locking. The returned handle has
768  *	the usage count incremented and the caller must use dev_put() to
769  *	release it when it is no longer needed. %NULL is returned if no
770  *	matching device is found.
771  */
772 
773 struct net_device *dev_get_by_name(struct net *net, const char *name)
774 {
775 	struct net_device *dev;
776 
777 	rcu_read_lock();
778 	dev = dev_get_by_name_rcu(net, name);
779 	dev_hold(dev);
780 	rcu_read_unlock();
781 	return dev;
782 }
783 EXPORT_SYMBOL(dev_get_by_name);
784 
785 /**
786  *	__dev_get_by_index - find a device by its ifindex
787  *	@net: the applicable net namespace
788  *	@ifindex: index of device
789  *
790  *	Search for an interface by index. Returns %NULL if the device
791  *	is not found or a pointer to the device. The device has not
792  *	had its reference counter increased so the caller must be careful
793  *	about locking. The caller must hold either the RTNL semaphore
794  *	or @dev_base_lock.
795  */
796 
797 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
798 {
799 	struct net_device *dev;
800 	struct hlist_head *head = dev_index_hash(net, ifindex);
801 
802 	hlist_for_each_entry(dev, head, index_hlist)
803 		if (dev->ifindex == ifindex)
804 			return dev;
805 
806 	return NULL;
807 }
808 EXPORT_SYMBOL(__dev_get_by_index);
809 
810 /**
811  *	dev_get_by_index_rcu - find a device by its ifindex
812  *	@net: the applicable net namespace
813  *	@ifindex: index of device
814  *
815  *	Search for an interface by index. Returns %NULL if the device
816  *	is not found or a pointer to the device. The device has not
817  *	had its reference counter increased so the caller must be careful
818  *	about locking. The caller must hold RCU lock.
819  */
820 
821 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
822 {
823 	struct net_device *dev;
824 	struct hlist_head *head = dev_index_hash(net, ifindex);
825 
826 	hlist_for_each_entry_rcu(dev, head, index_hlist)
827 		if (dev->ifindex == ifindex)
828 			return dev;
829 
830 	return NULL;
831 }
832 EXPORT_SYMBOL(dev_get_by_index_rcu);
833 
834 
835 /**
836  *	dev_get_by_index - find a device by its ifindex
837  *	@net: the applicable net namespace
838  *	@ifindex: index of device
839  *
840  *	Search for an interface by index. Returns NULL if the device
841  *	is not found or a pointer to the device. The device returned has
842  *	had a reference added and the pointer is safe until the user calls
843  *	dev_put to indicate they have finished with it.
844  */
845 
846 struct net_device *dev_get_by_index(struct net *net, int ifindex)
847 {
848 	struct net_device *dev;
849 
850 	rcu_read_lock();
851 	dev = dev_get_by_index_rcu(net, ifindex);
852 	dev_hold(dev);
853 	rcu_read_unlock();
854 	return dev;
855 }
856 EXPORT_SYMBOL(dev_get_by_index);
857 
858 /**
859  *	dev_get_by_napi_id - find a device by napi_id
860  *	@napi_id: ID of the NAPI struct
861  *
862  *	Search for an interface by NAPI ID. Returns %NULL if the device
863  *	is not found or a pointer to the device. The device has not had
864  *	its reference counter increased so the caller must be careful
865  *	about locking. The caller must hold RCU lock.
866  */
867 
868 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
869 {
870 	struct napi_struct *napi;
871 
872 	WARN_ON_ONCE(!rcu_read_lock_held());
873 
874 	if (napi_id < MIN_NAPI_ID)
875 		return NULL;
876 
877 	napi = napi_by_id(napi_id);
878 
879 	return napi ? napi->dev : NULL;
880 }
881 EXPORT_SYMBOL(dev_get_by_napi_id);
882 
883 /**
884  *	netdev_get_name - get a netdevice name, knowing its ifindex.
885  *	@net: network namespace
886  *	@name: a pointer to the buffer where the name will be stored.
887  *	@ifindex: the ifindex of the interface to get the name from.
888  */
889 int netdev_get_name(struct net *net, char *name, int ifindex)
890 {
891 	struct net_device *dev;
892 	int ret;
893 
894 	down_read(&devnet_rename_sem);
895 	rcu_read_lock();
896 
897 	dev = dev_get_by_index_rcu(net, ifindex);
898 	if (!dev) {
899 		ret = -ENODEV;
900 		goto out;
901 	}
902 
903 	strcpy(name, dev->name);
904 
905 	ret = 0;
906 out:
907 	rcu_read_unlock();
908 	up_read(&devnet_rename_sem);
909 	return ret;
910 }
911 
912 /**
913  *	dev_getbyhwaddr_rcu - find a device by its hardware address
914  *	@net: the applicable net namespace
915  *	@type: media type of device
916  *	@ha: hardware address
917  *
918  *	Search for an interface by MAC address. Returns NULL if the device
919  *	is not found or a pointer to the device.
920  *	The caller must hold RCU or RTNL.
921  *	The returned device has not had its ref count increased
922  *	and the caller must therefore be careful about locking
923  *
924  */
925 
926 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
927 				       const char *ha)
928 {
929 	struct net_device *dev;
930 
931 	for_each_netdev_rcu(net, dev)
932 		if (dev->type == type &&
933 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
934 			return dev;
935 
936 	return NULL;
937 }
938 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
939 
940 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
941 {
942 	struct net_device *dev, *ret = NULL;
943 
944 	rcu_read_lock();
945 	for_each_netdev_rcu(net, dev)
946 		if (dev->type == type) {
947 			dev_hold(dev);
948 			ret = dev;
949 			break;
950 		}
951 	rcu_read_unlock();
952 	return ret;
953 }
954 EXPORT_SYMBOL(dev_getfirstbyhwtype);
955 
956 /**
957  *	__dev_get_by_flags - find any device with given flags
958  *	@net: the applicable net namespace
959  *	@if_flags: IFF_* values
960  *	@mask: bitmask of bits in if_flags to check
961  *
962  *	Search for any interface with the given flags. Returns NULL if a device
963  *	is not found or a pointer to the device. Must be called inside
964  *	rtnl_lock(), and result refcount is unchanged.
965  */
966 
967 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
968 				      unsigned short mask)
969 {
970 	struct net_device *dev, *ret;
971 
972 	ASSERT_RTNL();
973 
974 	ret = NULL;
975 	for_each_netdev(net, dev) {
976 		if (((dev->flags ^ if_flags) & mask) == 0) {
977 			ret = dev;
978 			break;
979 		}
980 	}
981 	return ret;
982 }
983 EXPORT_SYMBOL(__dev_get_by_flags);
984 
985 /**
986  *	dev_valid_name - check if name is okay for network device
987  *	@name: name string
988  *
989  *	Network device names need to be valid file names to
990  *	allow sysfs to work.  We also disallow any kind of
991  *	whitespace.
992  */
993 bool dev_valid_name(const char *name)
994 {
995 	if (*name == '\0')
996 		return false;
997 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
998 		return false;
999 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1000 		return false;
1001 
1002 	while (*name) {
1003 		if (*name == '/' || *name == ':' || isspace(*name))
1004 			return false;
1005 		name++;
1006 	}
1007 	return true;
1008 }
1009 EXPORT_SYMBOL(dev_valid_name);
1010 
1011 /**
1012  *	__dev_alloc_name - allocate a name for a device
1013  *	@net: network namespace to allocate the device name in
1014  *	@name: name format string
1015  *	@buf:  scratch buffer and result name string
1016  *
1017  *	Passed a format string - eg "lt%d" it will try and find a suitable
1018  *	id. It scans list of devices to build up a free map, then chooses
1019  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1020  *	while allocating the name and adding the device in order to avoid
1021  *	duplicates.
1022  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023  *	Returns the number of the unit assigned or a negative errno code.
1024  */
1025 
1026 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1027 {
1028 	int i = 0;
1029 	const char *p;
1030 	const int max_netdevices = 8*PAGE_SIZE;
1031 	unsigned long *inuse;
1032 	struct net_device *d;
1033 
1034 	if (!dev_valid_name(name))
1035 		return -EINVAL;
1036 
1037 	p = strchr(name, '%');
1038 	if (p) {
1039 		/*
1040 		 * Verify the string as this thing may have come from
1041 		 * the user.  There must be either one "%d" and no other "%"
1042 		 * characters.
1043 		 */
1044 		if (p[1] != 'd' || strchr(p + 2, '%'))
1045 			return -EINVAL;
1046 
1047 		/* Use one page as a bit array of possible slots */
1048 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1049 		if (!inuse)
1050 			return -ENOMEM;
1051 
1052 		for_each_netdev(net, d) {
1053 			struct netdev_name_node *name_node;
1054 			list_for_each_entry(name_node, &d->name_node->list, list) {
1055 				if (!sscanf(name_node->name, name, &i))
1056 					continue;
1057 				if (i < 0 || i >= max_netdevices)
1058 					continue;
1059 
1060 				/*  avoid cases where sscanf is not exact inverse of printf */
1061 				snprintf(buf, IFNAMSIZ, name, i);
1062 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1063 					__set_bit(i, inuse);
1064 			}
1065 			if (!sscanf(d->name, name, &i))
1066 				continue;
1067 			if (i < 0 || i >= max_netdevices)
1068 				continue;
1069 
1070 			/*  avoid cases where sscanf is not exact inverse of printf */
1071 			snprintf(buf, IFNAMSIZ, name, i);
1072 			if (!strncmp(buf, d->name, IFNAMSIZ))
1073 				__set_bit(i, inuse);
1074 		}
1075 
1076 		i = find_first_zero_bit(inuse, max_netdevices);
1077 		free_page((unsigned long) inuse);
1078 	}
1079 
1080 	snprintf(buf, IFNAMSIZ, name, i);
1081 	if (!netdev_name_in_use(net, buf))
1082 		return i;
1083 
1084 	/* It is possible to run out of possible slots
1085 	 * when the name is long and there isn't enough space left
1086 	 * for the digits, or if all bits are used.
1087 	 */
1088 	return -ENFILE;
1089 }
1090 
1091 static int dev_alloc_name_ns(struct net *net,
1092 			     struct net_device *dev,
1093 			     const char *name)
1094 {
1095 	char buf[IFNAMSIZ];
1096 	int ret;
1097 
1098 	BUG_ON(!net);
1099 	ret = __dev_alloc_name(net, name, buf);
1100 	if (ret >= 0)
1101 		strscpy(dev->name, buf, IFNAMSIZ);
1102 	return ret;
1103 }
1104 
1105 /**
1106  *	dev_alloc_name - allocate a name for a device
1107  *	@dev: device
1108  *	@name: name format string
1109  *
1110  *	Passed a format string - eg "lt%d" it will try and find a suitable
1111  *	id. It scans list of devices to build up a free map, then chooses
1112  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1113  *	while allocating the name and adding the device in order to avoid
1114  *	duplicates.
1115  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1116  *	Returns the number of the unit assigned or a negative errno code.
1117  */
1118 
1119 int dev_alloc_name(struct net_device *dev, const char *name)
1120 {
1121 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1122 }
1123 EXPORT_SYMBOL(dev_alloc_name);
1124 
1125 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1126 			      const char *name)
1127 {
1128 	BUG_ON(!net);
1129 
1130 	if (!dev_valid_name(name))
1131 		return -EINVAL;
1132 
1133 	if (strchr(name, '%'))
1134 		return dev_alloc_name_ns(net, dev, name);
1135 	else if (netdev_name_in_use(net, name))
1136 		return -EEXIST;
1137 	else if (dev->name != name)
1138 		strscpy(dev->name, name, IFNAMSIZ);
1139 
1140 	return 0;
1141 }
1142 
1143 /**
1144  *	dev_change_name - change name of a device
1145  *	@dev: device
1146  *	@newname: name (or format string) must be at least IFNAMSIZ
1147  *
1148  *	Change name of a device, can pass format strings "eth%d".
1149  *	for wildcarding.
1150  */
1151 int dev_change_name(struct net_device *dev, const char *newname)
1152 {
1153 	unsigned char old_assign_type;
1154 	char oldname[IFNAMSIZ];
1155 	int err = 0;
1156 	int ret;
1157 	struct net *net;
1158 
1159 	ASSERT_RTNL();
1160 	BUG_ON(!dev_net(dev));
1161 
1162 	net = dev_net(dev);
1163 
1164 	down_write(&devnet_rename_sem);
1165 
1166 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1167 		up_write(&devnet_rename_sem);
1168 		return 0;
1169 	}
1170 
1171 	memcpy(oldname, dev->name, IFNAMSIZ);
1172 
1173 	err = dev_get_valid_name(net, dev, newname);
1174 	if (err < 0) {
1175 		up_write(&devnet_rename_sem);
1176 		return err;
1177 	}
1178 
1179 	if (oldname[0] && !strchr(oldname, '%'))
1180 		netdev_info(dev, "renamed from %s%s\n", oldname,
1181 			    dev->flags & IFF_UP ? " (while UP)" : "");
1182 
1183 	old_assign_type = dev->name_assign_type;
1184 	dev->name_assign_type = NET_NAME_RENAMED;
1185 
1186 rollback:
1187 	ret = device_rename(&dev->dev, dev->name);
1188 	if (ret) {
1189 		memcpy(dev->name, oldname, IFNAMSIZ);
1190 		dev->name_assign_type = old_assign_type;
1191 		up_write(&devnet_rename_sem);
1192 		return ret;
1193 	}
1194 
1195 	up_write(&devnet_rename_sem);
1196 
1197 	netdev_adjacent_rename_links(dev, oldname);
1198 
1199 	write_lock(&dev_base_lock);
1200 	netdev_name_node_del(dev->name_node);
1201 	write_unlock(&dev_base_lock);
1202 
1203 	synchronize_rcu();
1204 
1205 	write_lock(&dev_base_lock);
1206 	netdev_name_node_add(net, dev->name_node);
1207 	write_unlock(&dev_base_lock);
1208 
1209 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1210 	ret = notifier_to_errno(ret);
1211 
1212 	if (ret) {
1213 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1214 		if (err >= 0) {
1215 			err = ret;
1216 			down_write(&devnet_rename_sem);
1217 			memcpy(dev->name, oldname, IFNAMSIZ);
1218 			memcpy(oldname, newname, IFNAMSIZ);
1219 			dev->name_assign_type = old_assign_type;
1220 			old_assign_type = NET_NAME_RENAMED;
1221 			goto rollback;
1222 		} else {
1223 			netdev_err(dev, "name change rollback failed: %d\n",
1224 				   ret);
1225 		}
1226 	}
1227 
1228 	return err;
1229 }
1230 
1231 /**
1232  *	dev_set_alias - change ifalias of a device
1233  *	@dev: device
1234  *	@alias: name up to IFALIASZ
1235  *	@len: limit of bytes to copy from info
1236  *
1237  *	Set ifalias for a device,
1238  */
1239 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1240 {
1241 	struct dev_ifalias *new_alias = NULL;
1242 
1243 	if (len >= IFALIASZ)
1244 		return -EINVAL;
1245 
1246 	if (len) {
1247 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1248 		if (!new_alias)
1249 			return -ENOMEM;
1250 
1251 		memcpy(new_alias->ifalias, alias, len);
1252 		new_alias->ifalias[len] = 0;
1253 	}
1254 
1255 	mutex_lock(&ifalias_mutex);
1256 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1257 					mutex_is_locked(&ifalias_mutex));
1258 	mutex_unlock(&ifalias_mutex);
1259 
1260 	if (new_alias)
1261 		kfree_rcu(new_alias, rcuhead);
1262 
1263 	return len;
1264 }
1265 EXPORT_SYMBOL(dev_set_alias);
1266 
1267 /**
1268  *	dev_get_alias - get ifalias of a device
1269  *	@dev: device
1270  *	@name: buffer to store name of ifalias
1271  *	@len: size of buffer
1272  *
1273  *	get ifalias for a device.  Caller must make sure dev cannot go
1274  *	away,  e.g. rcu read lock or own a reference count to device.
1275  */
1276 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1277 {
1278 	const struct dev_ifalias *alias;
1279 	int ret = 0;
1280 
1281 	rcu_read_lock();
1282 	alias = rcu_dereference(dev->ifalias);
1283 	if (alias)
1284 		ret = snprintf(name, len, "%s", alias->ifalias);
1285 	rcu_read_unlock();
1286 
1287 	return ret;
1288 }
1289 
1290 /**
1291  *	netdev_features_change - device changes features
1292  *	@dev: device to cause notification
1293  *
1294  *	Called to indicate a device has changed features.
1295  */
1296 void netdev_features_change(struct net_device *dev)
1297 {
1298 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1299 }
1300 EXPORT_SYMBOL(netdev_features_change);
1301 
1302 /**
1303  *	netdev_state_change - device changes state
1304  *	@dev: device to cause notification
1305  *
1306  *	Called to indicate a device has changed state. This function calls
1307  *	the notifier chains for netdev_chain and sends a NEWLINK message
1308  *	to the routing socket.
1309  */
1310 void netdev_state_change(struct net_device *dev)
1311 {
1312 	if (dev->flags & IFF_UP) {
1313 		struct netdev_notifier_change_info change_info = {
1314 			.info.dev = dev,
1315 		};
1316 
1317 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1318 					      &change_info.info);
1319 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1320 	}
1321 }
1322 EXPORT_SYMBOL(netdev_state_change);
1323 
1324 /**
1325  * __netdev_notify_peers - notify network peers about existence of @dev,
1326  * to be called when rtnl lock is already held.
1327  * @dev: network device
1328  *
1329  * Generate traffic such that interested network peers are aware of
1330  * @dev, such as by generating a gratuitous ARP. This may be used when
1331  * a device wants to inform the rest of the network about some sort of
1332  * reconfiguration such as a failover event or virtual machine
1333  * migration.
1334  */
1335 void __netdev_notify_peers(struct net_device *dev)
1336 {
1337 	ASSERT_RTNL();
1338 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1339 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1340 }
1341 EXPORT_SYMBOL(__netdev_notify_peers);
1342 
1343 /**
1344  * netdev_notify_peers - notify network peers about existence of @dev
1345  * @dev: network device
1346  *
1347  * Generate traffic such that interested network peers are aware of
1348  * @dev, such as by generating a gratuitous ARP. This may be used when
1349  * a device wants to inform the rest of the network about some sort of
1350  * reconfiguration such as a failover event or virtual machine
1351  * migration.
1352  */
1353 void netdev_notify_peers(struct net_device *dev)
1354 {
1355 	rtnl_lock();
1356 	__netdev_notify_peers(dev);
1357 	rtnl_unlock();
1358 }
1359 EXPORT_SYMBOL(netdev_notify_peers);
1360 
1361 static int napi_threaded_poll(void *data);
1362 
1363 static int napi_kthread_create(struct napi_struct *n)
1364 {
1365 	int err = 0;
1366 
1367 	/* Create and wake up the kthread once to put it in
1368 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1369 	 * warning and work with loadavg.
1370 	 */
1371 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1372 				n->dev->name, n->napi_id);
1373 	if (IS_ERR(n->thread)) {
1374 		err = PTR_ERR(n->thread);
1375 		pr_err("kthread_run failed with err %d\n", err);
1376 		n->thread = NULL;
1377 	}
1378 
1379 	return err;
1380 }
1381 
1382 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1383 {
1384 	const struct net_device_ops *ops = dev->netdev_ops;
1385 	int ret;
1386 
1387 	ASSERT_RTNL();
1388 	dev_addr_check(dev);
1389 
1390 	if (!netif_device_present(dev)) {
1391 		/* may be detached because parent is runtime-suspended */
1392 		if (dev->dev.parent)
1393 			pm_runtime_resume(dev->dev.parent);
1394 		if (!netif_device_present(dev))
1395 			return -ENODEV;
1396 	}
1397 
1398 	/* Block netpoll from trying to do any rx path servicing.
1399 	 * If we don't do this there is a chance ndo_poll_controller
1400 	 * or ndo_poll may be running while we open the device
1401 	 */
1402 	netpoll_poll_disable(dev);
1403 
1404 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1405 	ret = notifier_to_errno(ret);
1406 	if (ret)
1407 		return ret;
1408 
1409 	set_bit(__LINK_STATE_START, &dev->state);
1410 
1411 	if (ops->ndo_validate_addr)
1412 		ret = ops->ndo_validate_addr(dev);
1413 
1414 	if (!ret && ops->ndo_open)
1415 		ret = ops->ndo_open(dev);
1416 
1417 	netpoll_poll_enable(dev);
1418 
1419 	if (ret)
1420 		clear_bit(__LINK_STATE_START, &dev->state);
1421 	else {
1422 		dev->flags |= IFF_UP;
1423 		dev_set_rx_mode(dev);
1424 		dev_activate(dev);
1425 		add_device_randomness(dev->dev_addr, dev->addr_len);
1426 	}
1427 
1428 	return ret;
1429 }
1430 
1431 /**
1432  *	dev_open	- prepare an interface for use.
1433  *	@dev: device to open
1434  *	@extack: netlink extended ack
1435  *
1436  *	Takes a device from down to up state. The device's private open
1437  *	function is invoked and then the multicast lists are loaded. Finally
1438  *	the device is moved into the up state and a %NETDEV_UP message is
1439  *	sent to the netdev notifier chain.
1440  *
1441  *	Calling this function on an active interface is a nop. On a failure
1442  *	a negative errno code is returned.
1443  */
1444 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1445 {
1446 	int ret;
1447 
1448 	if (dev->flags & IFF_UP)
1449 		return 0;
1450 
1451 	ret = __dev_open(dev, extack);
1452 	if (ret < 0)
1453 		return ret;
1454 
1455 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1456 	call_netdevice_notifiers(NETDEV_UP, dev);
1457 
1458 	return ret;
1459 }
1460 EXPORT_SYMBOL(dev_open);
1461 
1462 static void __dev_close_many(struct list_head *head)
1463 {
1464 	struct net_device *dev;
1465 
1466 	ASSERT_RTNL();
1467 	might_sleep();
1468 
1469 	list_for_each_entry(dev, head, close_list) {
1470 		/* Temporarily disable netpoll until the interface is down */
1471 		netpoll_poll_disable(dev);
1472 
1473 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1474 
1475 		clear_bit(__LINK_STATE_START, &dev->state);
1476 
1477 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1478 		 * can be even on different cpu. So just clear netif_running().
1479 		 *
1480 		 * dev->stop() will invoke napi_disable() on all of it's
1481 		 * napi_struct instances on this device.
1482 		 */
1483 		smp_mb__after_atomic(); /* Commit netif_running(). */
1484 	}
1485 
1486 	dev_deactivate_many(head);
1487 
1488 	list_for_each_entry(dev, head, close_list) {
1489 		const struct net_device_ops *ops = dev->netdev_ops;
1490 
1491 		/*
1492 		 *	Call the device specific close. This cannot fail.
1493 		 *	Only if device is UP
1494 		 *
1495 		 *	We allow it to be called even after a DETACH hot-plug
1496 		 *	event.
1497 		 */
1498 		if (ops->ndo_stop)
1499 			ops->ndo_stop(dev);
1500 
1501 		dev->flags &= ~IFF_UP;
1502 		netpoll_poll_enable(dev);
1503 	}
1504 }
1505 
1506 static void __dev_close(struct net_device *dev)
1507 {
1508 	LIST_HEAD(single);
1509 
1510 	list_add(&dev->close_list, &single);
1511 	__dev_close_many(&single);
1512 	list_del(&single);
1513 }
1514 
1515 void dev_close_many(struct list_head *head, bool unlink)
1516 {
1517 	struct net_device *dev, *tmp;
1518 
1519 	/* Remove the devices that don't need to be closed */
1520 	list_for_each_entry_safe(dev, tmp, head, close_list)
1521 		if (!(dev->flags & IFF_UP))
1522 			list_del_init(&dev->close_list);
1523 
1524 	__dev_close_many(head);
1525 
1526 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1527 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1528 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1529 		if (unlink)
1530 			list_del_init(&dev->close_list);
1531 	}
1532 }
1533 EXPORT_SYMBOL(dev_close_many);
1534 
1535 /**
1536  *	dev_close - shutdown an interface.
1537  *	@dev: device to shutdown
1538  *
1539  *	This function moves an active device into down state. A
1540  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1541  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1542  *	chain.
1543  */
1544 void dev_close(struct net_device *dev)
1545 {
1546 	if (dev->flags & IFF_UP) {
1547 		LIST_HEAD(single);
1548 
1549 		list_add(&dev->close_list, &single);
1550 		dev_close_many(&single, true);
1551 		list_del(&single);
1552 	}
1553 }
1554 EXPORT_SYMBOL(dev_close);
1555 
1556 
1557 /**
1558  *	dev_disable_lro - disable Large Receive Offload on a device
1559  *	@dev: device
1560  *
1561  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1562  *	called under RTNL.  This is needed if received packets may be
1563  *	forwarded to another interface.
1564  */
1565 void dev_disable_lro(struct net_device *dev)
1566 {
1567 	struct net_device *lower_dev;
1568 	struct list_head *iter;
1569 
1570 	dev->wanted_features &= ~NETIF_F_LRO;
1571 	netdev_update_features(dev);
1572 
1573 	if (unlikely(dev->features & NETIF_F_LRO))
1574 		netdev_WARN(dev, "failed to disable LRO!\n");
1575 
1576 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1577 		dev_disable_lro(lower_dev);
1578 }
1579 EXPORT_SYMBOL(dev_disable_lro);
1580 
1581 /**
1582  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1583  *	@dev: device
1584  *
1585  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1586  *	called under RTNL.  This is needed if Generic XDP is installed on
1587  *	the device.
1588  */
1589 static void dev_disable_gro_hw(struct net_device *dev)
1590 {
1591 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1592 	netdev_update_features(dev);
1593 
1594 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1595 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1596 }
1597 
1598 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1599 {
1600 #define N(val) 						\
1601 	case NETDEV_##val:				\
1602 		return "NETDEV_" __stringify(val);
1603 	switch (cmd) {
1604 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1605 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1606 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1607 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1608 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1609 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1610 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1611 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1612 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1613 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1614 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1615 	N(XDP_FEAT_CHANGE)
1616 	}
1617 #undef N
1618 	return "UNKNOWN_NETDEV_EVENT";
1619 }
1620 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1621 
1622 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1623 				   struct net_device *dev)
1624 {
1625 	struct netdev_notifier_info info = {
1626 		.dev = dev,
1627 	};
1628 
1629 	return nb->notifier_call(nb, val, &info);
1630 }
1631 
1632 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1633 					     struct net_device *dev)
1634 {
1635 	int err;
1636 
1637 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1638 	err = notifier_to_errno(err);
1639 	if (err)
1640 		return err;
1641 
1642 	if (!(dev->flags & IFF_UP))
1643 		return 0;
1644 
1645 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1646 	return 0;
1647 }
1648 
1649 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1650 						struct net_device *dev)
1651 {
1652 	if (dev->flags & IFF_UP) {
1653 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1654 					dev);
1655 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1656 	}
1657 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1658 }
1659 
1660 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1661 						 struct net *net)
1662 {
1663 	struct net_device *dev;
1664 	int err;
1665 
1666 	for_each_netdev(net, dev) {
1667 		err = call_netdevice_register_notifiers(nb, dev);
1668 		if (err)
1669 			goto rollback;
1670 	}
1671 	return 0;
1672 
1673 rollback:
1674 	for_each_netdev_continue_reverse(net, dev)
1675 		call_netdevice_unregister_notifiers(nb, dev);
1676 	return err;
1677 }
1678 
1679 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1680 						    struct net *net)
1681 {
1682 	struct net_device *dev;
1683 
1684 	for_each_netdev(net, dev)
1685 		call_netdevice_unregister_notifiers(nb, dev);
1686 }
1687 
1688 static int dev_boot_phase = 1;
1689 
1690 /**
1691  * register_netdevice_notifier - register a network notifier block
1692  * @nb: notifier
1693  *
1694  * Register a notifier to be called when network device events occur.
1695  * The notifier passed is linked into the kernel structures and must
1696  * not be reused until it has been unregistered. A negative errno code
1697  * is returned on a failure.
1698  *
1699  * When registered all registration and up events are replayed
1700  * to the new notifier to allow device to have a race free
1701  * view of the network device list.
1702  */
1703 
1704 int register_netdevice_notifier(struct notifier_block *nb)
1705 {
1706 	struct net *net;
1707 	int err;
1708 
1709 	/* Close race with setup_net() and cleanup_net() */
1710 	down_write(&pernet_ops_rwsem);
1711 	rtnl_lock();
1712 	err = raw_notifier_chain_register(&netdev_chain, nb);
1713 	if (err)
1714 		goto unlock;
1715 	if (dev_boot_phase)
1716 		goto unlock;
1717 	for_each_net(net) {
1718 		err = call_netdevice_register_net_notifiers(nb, net);
1719 		if (err)
1720 			goto rollback;
1721 	}
1722 
1723 unlock:
1724 	rtnl_unlock();
1725 	up_write(&pernet_ops_rwsem);
1726 	return err;
1727 
1728 rollback:
1729 	for_each_net_continue_reverse(net)
1730 		call_netdevice_unregister_net_notifiers(nb, net);
1731 
1732 	raw_notifier_chain_unregister(&netdev_chain, nb);
1733 	goto unlock;
1734 }
1735 EXPORT_SYMBOL(register_netdevice_notifier);
1736 
1737 /**
1738  * unregister_netdevice_notifier - unregister a network notifier block
1739  * @nb: notifier
1740  *
1741  * Unregister a notifier previously registered by
1742  * register_netdevice_notifier(). The notifier is unlinked into the
1743  * kernel structures and may then be reused. A negative errno code
1744  * is returned on a failure.
1745  *
1746  * After unregistering unregister and down device events are synthesized
1747  * for all devices on the device list to the removed notifier to remove
1748  * the need for special case cleanup code.
1749  */
1750 
1751 int unregister_netdevice_notifier(struct notifier_block *nb)
1752 {
1753 	struct net *net;
1754 	int err;
1755 
1756 	/* Close race with setup_net() and cleanup_net() */
1757 	down_write(&pernet_ops_rwsem);
1758 	rtnl_lock();
1759 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1760 	if (err)
1761 		goto unlock;
1762 
1763 	for_each_net(net)
1764 		call_netdevice_unregister_net_notifiers(nb, net);
1765 
1766 unlock:
1767 	rtnl_unlock();
1768 	up_write(&pernet_ops_rwsem);
1769 	return err;
1770 }
1771 EXPORT_SYMBOL(unregister_netdevice_notifier);
1772 
1773 static int __register_netdevice_notifier_net(struct net *net,
1774 					     struct notifier_block *nb,
1775 					     bool ignore_call_fail)
1776 {
1777 	int err;
1778 
1779 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1780 	if (err)
1781 		return err;
1782 	if (dev_boot_phase)
1783 		return 0;
1784 
1785 	err = call_netdevice_register_net_notifiers(nb, net);
1786 	if (err && !ignore_call_fail)
1787 		goto chain_unregister;
1788 
1789 	return 0;
1790 
1791 chain_unregister:
1792 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1793 	return err;
1794 }
1795 
1796 static int __unregister_netdevice_notifier_net(struct net *net,
1797 					       struct notifier_block *nb)
1798 {
1799 	int err;
1800 
1801 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1802 	if (err)
1803 		return err;
1804 
1805 	call_netdevice_unregister_net_notifiers(nb, net);
1806 	return 0;
1807 }
1808 
1809 /**
1810  * register_netdevice_notifier_net - register a per-netns network notifier block
1811  * @net: network namespace
1812  * @nb: notifier
1813  *
1814  * Register a notifier to be called when network device events occur.
1815  * The notifier passed is linked into the kernel structures and must
1816  * not be reused until it has been unregistered. A negative errno code
1817  * is returned on a failure.
1818  *
1819  * When registered all registration and up events are replayed
1820  * to the new notifier to allow device to have a race free
1821  * view of the network device list.
1822  */
1823 
1824 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1825 {
1826 	int err;
1827 
1828 	rtnl_lock();
1829 	err = __register_netdevice_notifier_net(net, nb, false);
1830 	rtnl_unlock();
1831 	return err;
1832 }
1833 EXPORT_SYMBOL(register_netdevice_notifier_net);
1834 
1835 /**
1836  * unregister_netdevice_notifier_net - unregister a per-netns
1837  *                                     network notifier block
1838  * @net: network namespace
1839  * @nb: notifier
1840  *
1841  * Unregister a notifier previously registered by
1842  * register_netdevice_notifier_net(). The notifier is unlinked from the
1843  * kernel structures and may then be reused. A negative errno code
1844  * is returned on a failure.
1845  *
1846  * After unregistering unregister and down device events are synthesized
1847  * for all devices on the device list to the removed notifier to remove
1848  * the need for special case cleanup code.
1849  */
1850 
1851 int unregister_netdevice_notifier_net(struct net *net,
1852 				      struct notifier_block *nb)
1853 {
1854 	int err;
1855 
1856 	rtnl_lock();
1857 	err = __unregister_netdevice_notifier_net(net, nb);
1858 	rtnl_unlock();
1859 	return err;
1860 }
1861 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1862 
1863 static void __move_netdevice_notifier_net(struct net *src_net,
1864 					  struct net *dst_net,
1865 					  struct notifier_block *nb)
1866 {
1867 	__unregister_netdevice_notifier_net(src_net, nb);
1868 	__register_netdevice_notifier_net(dst_net, nb, true);
1869 }
1870 
1871 int register_netdevice_notifier_dev_net(struct net_device *dev,
1872 					struct notifier_block *nb,
1873 					struct netdev_net_notifier *nn)
1874 {
1875 	int err;
1876 
1877 	rtnl_lock();
1878 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1879 	if (!err) {
1880 		nn->nb = nb;
1881 		list_add(&nn->list, &dev->net_notifier_list);
1882 	}
1883 	rtnl_unlock();
1884 	return err;
1885 }
1886 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1887 
1888 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1889 					  struct notifier_block *nb,
1890 					  struct netdev_net_notifier *nn)
1891 {
1892 	int err;
1893 
1894 	rtnl_lock();
1895 	list_del(&nn->list);
1896 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1897 	rtnl_unlock();
1898 	return err;
1899 }
1900 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1901 
1902 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1903 					     struct net *net)
1904 {
1905 	struct netdev_net_notifier *nn;
1906 
1907 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1908 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1909 }
1910 
1911 /**
1912  *	call_netdevice_notifiers_info - call all network notifier blocks
1913  *	@val: value passed unmodified to notifier function
1914  *	@info: notifier information data
1915  *
1916  *	Call all network notifier blocks.  Parameters and return value
1917  *	are as for raw_notifier_call_chain().
1918  */
1919 
1920 int call_netdevice_notifiers_info(unsigned long val,
1921 				  struct netdev_notifier_info *info)
1922 {
1923 	struct net *net = dev_net(info->dev);
1924 	int ret;
1925 
1926 	ASSERT_RTNL();
1927 
1928 	/* Run per-netns notifier block chain first, then run the global one.
1929 	 * Hopefully, one day, the global one is going to be removed after
1930 	 * all notifier block registrators get converted to be per-netns.
1931 	 */
1932 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1933 	if (ret & NOTIFY_STOP_MASK)
1934 		return ret;
1935 	return raw_notifier_call_chain(&netdev_chain, val, info);
1936 }
1937 
1938 /**
1939  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1940  *	                                       for and rollback on error
1941  *	@val_up: value passed unmodified to notifier function
1942  *	@val_down: value passed unmodified to the notifier function when
1943  *	           recovering from an error on @val_up
1944  *	@info: notifier information data
1945  *
1946  *	Call all per-netns network notifier blocks, but not notifier blocks on
1947  *	the global notifier chain. Parameters and return value are as for
1948  *	raw_notifier_call_chain_robust().
1949  */
1950 
1951 static int
1952 call_netdevice_notifiers_info_robust(unsigned long val_up,
1953 				     unsigned long val_down,
1954 				     struct netdev_notifier_info *info)
1955 {
1956 	struct net *net = dev_net(info->dev);
1957 
1958 	ASSERT_RTNL();
1959 
1960 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1961 					      val_up, val_down, info);
1962 }
1963 
1964 static int call_netdevice_notifiers_extack(unsigned long val,
1965 					   struct net_device *dev,
1966 					   struct netlink_ext_ack *extack)
1967 {
1968 	struct netdev_notifier_info info = {
1969 		.dev = dev,
1970 		.extack = extack,
1971 	};
1972 
1973 	return call_netdevice_notifiers_info(val, &info);
1974 }
1975 
1976 /**
1977  *	call_netdevice_notifiers - call all network notifier blocks
1978  *      @val: value passed unmodified to notifier function
1979  *      @dev: net_device pointer passed unmodified to notifier function
1980  *
1981  *	Call all network notifier blocks.  Parameters and return value
1982  *	are as for raw_notifier_call_chain().
1983  */
1984 
1985 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1986 {
1987 	return call_netdevice_notifiers_extack(val, dev, NULL);
1988 }
1989 EXPORT_SYMBOL(call_netdevice_notifiers);
1990 
1991 /**
1992  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1993  *	@val: value passed unmodified to notifier function
1994  *	@dev: net_device pointer passed unmodified to notifier function
1995  *	@arg: additional u32 argument passed to the notifier function
1996  *
1997  *	Call all network notifier blocks.  Parameters and return value
1998  *	are as for raw_notifier_call_chain().
1999  */
2000 static int call_netdevice_notifiers_mtu(unsigned long val,
2001 					struct net_device *dev, u32 arg)
2002 {
2003 	struct netdev_notifier_info_ext info = {
2004 		.info.dev = dev,
2005 		.ext.mtu = arg,
2006 	};
2007 
2008 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2009 
2010 	return call_netdevice_notifiers_info(val, &info.info);
2011 }
2012 
2013 #ifdef CONFIG_NET_INGRESS
2014 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2015 
2016 void net_inc_ingress_queue(void)
2017 {
2018 	static_branch_inc(&ingress_needed_key);
2019 }
2020 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2021 
2022 void net_dec_ingress_queue(void)
2023 {
2024 	static_branch_dec(&ingress_needed_key);
2025 }
2026 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2027 #endif
2028 
2029 #ifdef CONFIG_NET_EGRESS
2030 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2031 
2032 void net_inc_egress_queue(void)
2033 {
2034 	static_branch_inc(&egress_needed_key);
2035 }
2036 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2037 
2038 void net_dec_egress_queue(void)
2039 {
2040 	static_branch_dec(&egress_needed_key);
2041 }
2042 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2043 #endif
2044 
2045 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2046 EXPORT_SYMBOL(netstamp_needed_key);
2047 #ifdef CONFIG_JUMP_LABEL
2048 static atomic_t netstamp_needed_deferred;
2049 static atomic_t netstamp_wanted;
2050 static void netstamp_clear(struct work_struct *work)
2051 {
2052 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2053 	int wanted;
2054 
2055 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2056 	if (wanted > 0)
2057 		static_branch_enable(&netstamp_needed_key);
2058 	else
2059 		static_branch_disable(&netstamp_needed_key);
2060 }
2061 static DECLARE_WORK(netstamp_work, netstamp_clear);
2062 #endif
2063 
2064 void net_enable_timestamp(void)
2065 {
2066 #ifdef CONFIG_JUMP_LABEL
2067 	int wanted = atomic_read(&netstamp_wanted);
2068 
2069 	while (wanted > 0) {
2070 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2071 			return;
2072 	}
2073 	atomic_inc(&netstamp_needed_deferred);
2074 	schedule_work(&netstamp_work);
2075 #else
2076 	static_branch_inc(&netstamp_needed_key);
2077 #endif
2078 }
2079 EXPORT_SYMBOL(net_enable_timestamp);
2080 
2081 void net_disable_timestamp(void)
2082 {
2083 #ifdef CONFIG_JUMP_LABEL
2084 	int wanted = atomic_read(&netstamp_wanted);
2085 
2086 	while (wanted > 1) {
2087 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2088 			return;
2089 	}
2090 	atomic_dec(&netstamp_needed_deferred);
2091 	schedule_work(&netstamp_work);
2092 #else
2093 	static_branch_dec(&netstamp_needed_key);
2094 #endif
2095 }
2096 EXPORT_SYMBOL(net_disable_timestamp);
2097 
2098 static inline void net_timestamp_set(struct sk_buff *skb)
2099 {
2100 	skb->tstamp = 0;
2101 	skb->mono_delivery_time = 0;
2102 	if (static_branch_unlikely(&netstamp_needed_key))
2103 		skb->tstamp = ktime_get_real();
2104 }
2105 
2106 #define net_timestamp_check(COND, SKB)				\
2107 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2108 		if ((COND) && !(SKB)->tstamp)			\
2109 			(SKB)->tstamp = ktime_get_real();	\
2110 	}							\
2111 
2112 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2113 {
2114 	return __is_skb_forwardable(dev, skb, true);
2115 }
2116 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2117 
2118 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2119 			      bool check_mtu)
2120 {
2121 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2122 
2123 	if (likely(!ret)) {
2124 		skb->protocol = eth_type_trans(skb, dev);
2125 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2126 	}
2127 
2128 	return ret;
2129 }
2130 
2131 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2132 {
2133 	return __dev_forward_skb2(dev, skb, true);
2134 }
2135 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2136 
2137 /**
2138  * dev_forward_skb - loopback an skb to another netif
2139  *
2140  * @dev: destination network device
2141  * @skb: buffer to forward
2142  *
2143  * return values:
2144  *	NET_RX_SUCCESS	(no congestion)
2145  *	NET_RX_DROP     (packet was dropped, but freed)
2146  *
2147  * dev_forward_skb can be used for injecting an skb from the
2148  * start_xmit function of one device into the receive queue
2149  * of another device.
2150  *
2151  * The receiving device may be in another namespace, so
2152  * we have to clear all information in the skb that could
2153  * impact namespace isolation.
2154  */
2155 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2156 {
2157 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2158 }
2159 EXPORT_SYMBOL_GPL(dev_forward_skb);
2160 
2161 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2162 {
2163 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2164 }
2165 
2166 static inline int deliver_skb(struct sk_buff *skb,
2167 			      struct packet_type *pt_prev,
2168 			      struct net_device *orig_dev)
2169 {
2170 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2171 		return -ENOMEM;
2172 	refcount_inc(&skb->users);
2173 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2174 }
2175 
2176 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2177 					  struct packet_type **pt,
2178 					  struct net_device *orig_dev,
2179 					  __be16 type,
2180 					  struct list_head *ptype_list)
2181 {
2182 	struct packet_type *ptype, *pt_prev = *pt;
2183 
2184 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2185 		if (ptype->type != type)
2186 			continue;
2187 		if (pt_prev)
2188 			deliver_skb(skb, pt_prev, orig_dev);
2189 		pt_prev = ptype;
2190 	}
2191 	*pt = pt_prev;
2192 }
2193 
2194 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2195 {
2196 	if (!ptype->af_packet_priv || !skb->sk)
2197 		return false;
2198 
2199 	if (ptype->id_match)
2200 		return ptype->id_match(ptype, skb->sk);
2201 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2202 		return true;
2203 
2204 	return false;
2205 }
2206 
2207 /**
2208  * dev_nit_active - return true if any network interface taps are in use
2209  *
2210  * @dev: network device to check for the presence of taps
2211  */
2212 bool dev_nit_active(struct net_device *dev)
2213 {
2214 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2215 }
2216 EXPORT_SYMBOL_GPL(dev_nit_active);
2217 
2218 /*
2219  *	Support routine. Sends outgoing frames to any network
2220  *	taps currently in use.
2221  */
2222 
2223 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2224 {
2225 	struct packet_type *ptype;
2226 	struct sk_buff *skb2 = NULL;
2227 	struct packet_type *pt_prev = NULL;
2228 	struct list_head *ptype_list = &ptype_all;
2229 
2230 	rcu_read_lock();
2231 again:
2232 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2233 		if (ptype->ignore_outgoing)
2234 			continue;
2235 
2236 		/* Never send packets back to the socket
2237 		 * they originated from - MvS (miquels@drinkel.ow.org)
2238 		 */
2239 		if (skb_loop_sk(ptype, skb))
2240 			continue;
2241 
2242 		if (pt_prev) {
2243 			deliver_skb(skb2, pt_prev, skb->dev);
2244 			pt_prev = ptype;
2245 			continue;
2246 		}
2247 
2248 		/* need to clone skb, done only once */
2249 		skb2 = skb_clone(skb, GFP_ATOMIC);
2250 		if (!skb2)
2251 			goto out_unlock;
2252 
2253 		net_timestamp_set(skb2);
2254 
2255 		/* skb->nh should be correctly
2256 		 * set by sender, so that the second statement is
2257 		 * just protection against buggy protocols.
2258 		 */
2259 		skb_reset_mac_header(skb2);
2260 
2261 		if (skb_network_header(skb2) < skb2->data ||
2262 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2263 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2264 					     ntohs(skb2->protocol),
2265 					     dev->name);
2266 			skb_reset_network_header(skb2);
2267 		}
2268 
2269 		skb2->transport_header = skb2->network_header;
2270 		skb2->pkt_type = PACKET_OUTGOING;
2271 		pt_prev = ptype;
2272 	}
2273 
2274 	if (ptype_list == &ptype_all) {
2275 		ptype_list = &dev->ptype_all;
2276 		goto again;
2277 	}
2278 out_unlock:
2279 	if (pt_prev) {
2280 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2281 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2282 		else
2283 			kfree_skb(skb2);
2284 	}
2285 	rcu_read_unlock();
2286 }
2287 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2288 
2289 /**
2290  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2291  * @dev: Network device
2292  * @txq: number of queues available
2293  *
2294  * If real_num_tx_queues is changed the tc mappings may no longer be
2295  * valid. To resolve this verify the tc mapping remains valid and if
2296  * not NULL the mapping. With no priorities mapping to this
2297  * offset/count pair it will no longer be used. In the worst case TC0
2298  * is invalid nothing can be done so disable priority mappings. If is
2299  * expected that drivers will fix this mapping if they can before
2300  * calling netif_set_real_num_tx_queues.
2301  */
2302 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2303 {
2304 	int i;
2305 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2306 
2307 	/* If TC0 is invalidated disable TC mapping */
2308 	if (tc->offset + tc->count > txq) {
2309 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2310 		dev->num_tc = 0;
2311 		return;
2312 	}
2313 
2314 	/* Invalidated prio to tc mappings set to TC0 */
2315 	for (i = 1; i < TC_BITMASK + 1; i++) {
2316 		int q = netdev_get_prio_tc_map(dev, i);
2317 
2318 		tc = &dev->tc_to_txq[q];
2319 		if (tc->offset + tc->count > txq) {
2320 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2321 				    i, q);
2322 			netdev_set_prio_tc_map(dev, i, 0);
2323 		}
2324 	}
2325 }
2326 
2327 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2328 {
2329 	if (dev->num_tc) {
2330 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2331 		int i;
2332 
2333 		/* walk through the TCs and see if it falls into any of them */
2334 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2335 			if ((txq - tc->offset) < tc->count)
2336 				return i;
2337 		}
2338 
2339 		/* didn't find it, just return -1 to indicate no match */
2340 		return -1;
2341 	}
2342 
2343 	return 0;
2344 }
2345 EXPORT_SYMBOL(netdev_txq_to_tc);
2346 
2347 #ifdef CONFIG_XPS
2348 static struct static_key xps_needed __read_mostly;
2349 static struct static_key xps_rxqs_needed __read_mostly;
2350 static DEFINE_MUTEX(xps_map_mutex);
2351 #define xmap_dereference(P)		\
2352 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2353 
2354 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2355 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2356 {
2357 	struct xps_map *map = NULL;
2358 	int pos;
2359 
2360 	if (dev_maps)
2361 		map = xmap_dereference(dev_maps->attr_map[tci]);
2362 	if (!map)
2363 		return false;
2364 
2365 	for (pos = map->len; pos--;) {
2366 		if (map->queues[pos] != index)
2367 			continue;
2368 
2369 		if (map->len > 1) {
2370 			map->queues[pos] = map->queues[--map->len];
2371 			break;
2372 		}
2373 
2374 		if (old_maps)
2375 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2376 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2377 		kfree_rcu(map, rcu);
2378 		return false;
2379 	}
2380 
2381 	return true;
2382 }
2383 
2384 static bool remove_xps_queue_cpu(struct net_device *dev,
2385 				 struct xps_dev_maps *dev_maps,
2386 				 int cpu, u16 offset, u16 count)
2387 {
2388 	int num_tc = dev_maps->num_tc;
2389 	bool active = false;
2390 	int tci;
2391 
2392 	for (tci = cpu * num_tc; num_tc--; tci++) {
2393 		int i, j;
2394 
2395 		for (i = count, j = offset; i--; j++) {
2396 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2397 				break;
2398 		}
2399 
2400 		active |= i < 0;
2401 	}
2402 
2403 	return active;
2404 }
2405 
2406 static void reset_xps_maps(struct net_device *dev,
2407 			   struct xps_dev_maps *dev_maps,
2408 			   enum xps_map_type type)
2409 {
2410 	static_key_slow_dec_cpuslocked(&xps_needed);
2411 	if (type == XPS_RXQS)
2412 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2413 
2414 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2415 
2416 	kfree_rcu(dev_maps, rcu);
2417 }
2418 
2419 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2420 			   u16 offset, u16 count)
2421 {
2422 	struct xps_dev_maps *dev_maps;
2423 	bool active = false;
2424 	int i, j;
2425 
2426 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2427 	if (!dev_maps)
2428 		return;
2429 
2430 	for (j = 0; j < dev_maps->nr_ids; j++)
2431 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2432 	if (!active)
2433 		reset_xps_maps(dev, dev_maps, type);
2434 
2435 	if (type == XPS_CPUS) {
2436 		for (i = offset + (count - 1); count--; i--)
2437 			netdev_queue_numa_node_write(
2438 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2439 	}
2440 }
2441 
2442 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2443 				   u16 count)
2444 {
2445 	if (!static_key_false(&xps_needed))
2446 		return;
2447 
2448 	cpus_read_lock();
2449 	mutex_lock(&xps_map_mutex);
2450 
2451 	if (static_key_false(&xps_rxqs_needed))
2452 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2453 
2454 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2455 
2456 	mutex_unlock(&xps_map_mutex);
2457 	cpus_read_unlock();
2458 }
2459 
2460 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2461 {
2462 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2463 }
2464 
2465 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2466 				      u16 index, bool is_rxqs_map)
2467 {
2468 	struct xps_map *new_map;
2469 	int alloc_len = XPS_MIN_MAP_ALLOC;
2470 	int i, pos;
2471 
2472 	for (pos = 0; map && pos < map->len; pos++) {
2473 		if (map->queues[pos] != index)
2474 			continue;
2475 		return map;
2476 	}
2477 
2478 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2479 	if (map) {
2480 		if (pos < map->alloc_len)
2481 			return map;
2482 
2483 		alloc_len = map->alloc_len * 2;
2484 	}
2485 
2486 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2487 	 *  map
2488 	 */
2489 	if (is_rxqs_map)
2490 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2491 	else
2492 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2493 				       cpu_to_node(attr_index));
2494 	if (!new_map)
2495 		return NULL;
2496 
2497 	for (i = 0; i < pos; i++)
2498 		new_map->queues[i] = map->queues[i];
2499 	new_map->alloc_len = alloc_len;
2500 	new_map->len = pos;
2501 
2502 	return new_map;
2503 }
2504 
2505 /* Copy xps maps at a given index */
2506 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2507 			      struct xps_dev_maps *new_dev_maps, int index,
2508 			      int tc, bool skip_tc)
2509 {
2510 	int i, tci = index * dev_maps->num_tc;
2511 	struct xps_map *map;
2512 
2513 	/* copy maps belonging to foreign traffic classes */
2514 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2515 		if (i == tc && skip_tc)
2516 			continue;
2517 
2518 		/* fill in the new device map from the old device map */
2519 		map = xmap_dereference(dev_maps->attr_map[tci]);
2520 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2521 	}
2522 }
2523 
2524 /* Must be called under cpus_read_lock */
2525 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2526 			  u16 index, enum xps_map_type type)
2527 {
2528 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2529 	const unsigned long *online_mask = NULL;
2530 	bool active = false, copy = false;
2531 	int i, j, tci, numa_node_id = -2;
2532 	int maps_sz, num_tc = 1, tc = 0;
2533 	struct xps_map *map, *new_map;
2534 	unsigned int nr_ids;
2535 
2536 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2537 
2538 	if (dev->num_tc) {
2539 		/* Do not allow XPS on subordinate device directly */
2540 		num_tc = dev->num_tc;
2541 		if (num_tc < 0)
2542 			return -EINVAL;
2543 
2544 		/* If queue belongs to subordinate dev use its map */
2545 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2546 
2547 		tc = netdev_txq_to_tc(dev, index);
2548 		if (tc < 0)
2549 			return -EINVAL;
2550 	}
2551 
2552 	mutex_lock(&xps_map_mutex);
2553 
2554 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2555 	if (type == XPS_RXQS) {
2556 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2557 		nr_ids = dev->num_rx_queues;
2558 	} else {
2559 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2560 		if (num_possible_cpus() > 1)
2561 			online_mask = cpumask_bits(cpu_online_mask);
2562 		nr_ids = nr_cpu_ids;
2563 	}
2564 
2565 	if (maps_sz < L1_CACHE_BYTES)
2566 		maps_sz = L1_CACHE_BYTES;
2567 
2568 	/* The old dev_maps could be larger or smaller than the one we're
2569 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2570 	 * between. We could try to be smart, but let's be safe instead and only
2571 	 * copy foreign traffic classes if the two map sizes match.
2572 	 */
2573 	if (dev_maps &&
2574 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2575 		copy = true;
2576 
2577 	/* allocate memory for queue storage */
2578 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2579 	     j < nr_ids;) {
2580 		if (!new_dev_maps) {
2581 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2582 			if (!new_dev_maps) {
2583 				mutex_unlock(&xps_map_mutex);
2584 				return -ENOMEM;
2585 			}
2586 
2587 			new_dev_maps->nr_ids = nr_ids;
2588 			new_dev_maps->num_tc = num_tc;
2589 		}
2590 
2591 		tci = j * num_tc + tc;
2592 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2593 
2594 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2595 		if (!map)
2596 			goto error;
2597 
2598 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2599 	}
2600 
2601 	if (!new_dev_maps)
2602 		goto out_no_new_maps;
2603 
2604 	if (!dev_maps) {
2605 		/* Increment static keys at most once per type */
2606 		static_key_slow_inc_cpuslocked(&xps_needed);
2607 		if (type == XPS_RXQS)
2608 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2609 	}
2610 
2611 	for (j = 0; j < nr_ids; j++) {
2612 		bool skip_tc = false;
2613 
2614 		tci = j * num_tc + tc;
2615 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2616 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2617 			/* add tx-queue to CPU/rx-queue maps */
2618 			int pos = 0;
2619 
2620 			skip_tc = true;
2621 
2622 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2623 			while ((pos < map->len) && (map->queues[pos] != index))
2624 				pos++;
2625 
2626 			if (pos == map->len)
2627 				map->queues[map->len++] = index;
2628 #ifdef CONFIG_NUMA
2629 			if (type == XPS_CPUS) {
2630 				if (numa_node_id == -2)
2631 					numa_node_id = cpu_to_node(j);
2632 				else if (numa_node_id != cpu_to_node(j))
2633 					numa_node_id = -1;
2634 			}
2635 #endif
2636 		}
2637 
2638 		if (copy)
2639 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2640 					  skip_tc);
2641 	}
2642 
2643 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2644 
2645 	/* Cleanup old maps */
2646 	if (!dev_maps)
2647 		goto out_no_old_maps;
2648 
2649 	for (j = 0; j < dev_maps->nr_ids; j++) {
2650 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2651 			map = xmap_dereference(dev_maps->attr_map[tci]);
2652 			if (!map)
2653 				continue;
2654 
2655 			if (copy) {
2656 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2657 				if (map == new_map)
2658 					continue;
2659 			}
2660 
2661 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2662 			kfree_rcu(map, rcu);
2663 		}
2664 	}
2665 
2666 	old_dev_maps = dev_maps;
2667 
2668 out_no_old_maps:
2669 	dev_maps = new_dev_maps;
2670 	active = true;
2671 
2672 out_no_new_maps:
2673 	if (type == XPS_CPUS)
2674 		/* update Tx queue numa node */
2675 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2676 					     (numa_node_id >= 0) ?
2677 					     numa_node_id : NUMA_NO_NODE);
2678 
2679 	if (!dev_maps)
2680 		goto out_no_maps;
2681 
2682 	/* removes tx-queue from unused CPUs/rx-queues */
2683 	for (j = 0; j < dev_maps->nr_ids; j++) {
2684 		tci = j * dev_maps->num_tc;
2685 
2686 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2687 			if (i == tc &&
2688 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2689 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2690 				continue;
2691 
2692 			active |= remove_xps_queue(dev_maps,
2693 						   copy ? old_dev_maps : NULL,
2694 						   tci, index);
2695 		}
2696 	}
2697 
2698 	if (old_dev_maps)
2699 		kfree_rcu(old_dev_maps, rcu);
2700 
2701 	/* free map if not active */
2702 	if (!active)
2703 		reset_xps_maps(dev, dev_maps, type);
2704 
2705 out_no_maps:
2706 	mutex_unlock(&xps_map_mutex);
2707 
2708 	return 0;
2709 error:
2710 	/* remove any maps that we added */
2711 	for (j = 0; j < nr_ids; j++) {
2712 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2713 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2714 			map = copy ?
2715 			      xmap_dereference(dev_maps->attr_map[tci]) :
2716 			      NULL;
2717 			if (new_map && new_map != map)
2718 				kfree(new_map);
2719 		}
2720 	}
2721 
2722 	mutex_unlock(&xps_map_mutex);
2723 
2724 	kfree(new_dev_maps);
2725 	return -ENOMEM;
2726 }
2727 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2728 
2729 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2730 			u16 index)
2731 {
2732 	int ret;
2733 
2734 	cpus_read_lock();
2735 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2736 	cpus_read_unlock();
2737 
2738 	return ret;
2739 }
2740 EXPORT_SYMBOL(netif_set_xps_queue);
2741 
2742 #endif
2743 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2744 {
2745 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2746 
2747 	/* Unbind any subordinate channels */
2748 	while (txq-- != &dev->_tx[0]) {
2749 		if (txq->sb_dev)
2750 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2751 	}
2752 }
2753 
2754 void netdev_reset_tc(struct net_device *dev)
2755 {
2756 #ifdef CONFIG_XPS
2757 	netif_reset_xps_queues_gt(dev, 0);
2758 #endif
2759 	netdev_unbind_all_sb_channels(dev);
2760 
2761 	/* Reset TC configuration of device */
2762 	dev->num_tc = 0;
2763 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2764 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2765 }
2766 EXPORT_SYMBOL(netdev_reset_tc);
2767 
2768 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2769 {
2770 	if (tc >= dev->num_tc)
2771 		return -EINVAL;
2772 
2773 #ifdef CONFIG_XPS
2774 	netif_reset_xps_queues(dev, offset, count);
2775 #endif
2776 	dev->tc_to_txq[tc].count = count;
2777 	dev->tc_to_txq[tc].offset = offset;
2778 	return 0;
2779 }
2780 EXPORT_SYMBOL(netdev_set_tc_queue);
2781 
2782 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2783 {
2784 	if (num_tc > TC_MAX_QUEUE)
2785 		return -EINVAL;
2786 
2787 #ifdef CONFIG_XPS
2788 	netif_reset_xps_queues_gt(dev, 0);
2789 #endif
2790 	netdev_unbind_all_sb_channels(dev);
2791 
2792 	dev->num_tc = num_tc;
2793 	return 0;
2794 }
2795 EXPORT_SYMBOL(netdev_set_num_tc);
2796 
2797 void netdev_unbind_sb_channel(struct net_device *dev,
2798 			      struct net_device *sb_dev)
2799 {
2800 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2801 
2802 #ifdef CONFIG_XPS
2803 	netif_reset_xps_queues_gt(sb_dev, 0);
2804 #endif
2805 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2806 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2807 
2808 	while (txq-- != &dev->_tx[0]) {
2809 		if (txq->sb_dev == sb_dev)
2810 			txq->sb_dev = NULL;
2811 	}
2812 }
2813 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2814 
2815 int netdev_bind_sb_channel_queue(struct net_device *dev,
2816 				 struct net_device *sb_dev,
2817 				 u8 tc, u16 count, u16 offset)
2818 {
2819 	/* Make certain the sb_dev and dev are already configured */
2820 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2821 		return -EINVAL;
2822 
2823 	/* We cannot hand out queues we don't have */
2824 	if ((offset + count) > dev->real_num_tx_queues)
2825 		return -EINVAL;
2826 
2827 	/* Record the mapping */
2828 	sb_dev->tc_to_txq[tc].count = count;
2829 	sb_dev->tc_to_txq[tc].offset = offset;
2830 
2831 	/* Provide a way for Tx queue to find the tc_to_txq map or
2832 	 * XPS map for itself.
2833 	 */
2834 	while (count--)
2835 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2836 
2837 	return 0;
2838 }
2839 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2840 
2841 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2842 {
2843 	/* Do not use a multiqueue device to represent a subordinate channel */
2844 	if (netif_is_multiqueue(dev))
2845 		return -ENODEV;
2846 
2847 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2848 	 * Channel 0 is meant to be "native" mode and used only to represent
2849 	 * the main root device. We allow writing 0 to reset the device back
2850 	 * to normal mode after being used as a subordinate channel.
2851 	 */
2852 	if (channel > S16_MAX)
2853 		return -EINVAL;
2854 
2855 	dev->num_tc = -channel;
2856 
2857 	return 0;
2858 }
2859 EXPORT_SYMBOL(netdev_set_sb_channel);
2860 
2861 /*
2862  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2863  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2864  */
2865 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2866 {
2867 	bool disabling;
2868 	int rc;
2869 
2870 	disabling = txq < dev->real_num_tx_queues;
2871 
2872 	if (txq < 1 || txq > dev->num_tx_queues)
2873 		return -EINVAL;
2874 
2875 	if (dev->reg_state == NETREG_REGISTERED ||
2876 	    dev->reg_state == NETREG_UNREGISTERING) {
2877 		ASSERT_RTNL();
2878 
2879 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2880 						  txq);
2881 		if (rc)
2882 			return rc;
2883 
2884 		if (dev->num_tc)
2885 			netif_setup_tc(dev, txq);
2886 
2887 		dev_qdisc_change_real_num_tx(dev, txq);
2888 
2889 		dev->real_num_tx_queues = txq;
2890 
2891 		if (disabling) {
2892 			synchronize_net();
2893 			qdisc_reset_all_tx_gt(dev, txq);
2894 #ifdef CONFIG_XPS
2895 			netif_reset_xps_queues_gt(dev, txq);
2896 #endif
2897 		}
2898 	} else {
2899 		dev->real_num_tx_queues = txq;
2900 	}
2901 
2902 	return 0;
2903 }
2904 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2905 
2906 #ifdef CONFIG_SYSFS
2907 /**
2908  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2909  *	@dev: Network device
2910  *	@rxq: Actual number of RX queues
2911  *
2912  *	This must be called either with the rtnl_lock held or before
2913  *	registration of the net device.  Returns 0 on success, or a
2914  *	negative error code.  If called before registration, it always
2915  *	succeeds.
2916  */
2917 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2918 {
2919 	int rc;
2920 
2921 	if (rxq < 1 || rxq > dev->num_rx_queues)
2922 		return -EINVAL;
2923 
2924 	if (dev->reg_state == NETREG_REGISTERED) {
2925 		ASSERT_RTNL();
2926 
2927 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2928 						  rxq);
2929 		if (rc)
2930 			return rc;
2931 	}
2932 
2933 	dev->real_num_rx_queues = rxq;
2934 	return 0;
2935 }
2936 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2937 #endif
2938 
2939 /**
2940  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2941  *	@dev: Network device
2942  *	@txq: Actual number of TX queues
2943  *	@rxq: Actual number of RX queues
2944  *
2945  *	Set the real number of both TX and RX queues.
2946  *	Does nothing if the number of queues is already correct.
2947  */
2948 int netif_set_real_num_queues(struct net_device *dev,
2949 			      unsigned int txq, unsigned int rxq)
2950 {
2951 	unsigned int old_rxq = dev->real_num_rx_queues;
2952 	int err;
2953 
2954 	if (txq < 1 || txq > dev->num_tx_queues ||
2955 	    rxq < 1 || rxq > dev->num_rx_queues)
2956 		return -EINVAL;
2957 
2958 	/* Start from increases, so the error path only does decreases -
2959 	 * decreases can't fail.
2960 	 */
2961 	if (rxq > dev->real_num_rx_queues) {
2962 		err = netif_set_real_num_rx_queues(dev, rxq);
2963 		if (err)
2964 			return err;
2965 	}
2966 	if (txq > dev->real_num_tx_queues) {
2967 		err = netif_set_real_num_tx_queues(dev, txq);
2968 		if (err)
2969 			goto undo_rx;
2970 	}
2971 	if (rxq < dev->real_num_rx_queues)
2972 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2973 	if (txq < dev->real_num_tx_queues)
2974 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2975 
2976 	return 0;
2977 undo_rx:
2978 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2979 	return err;
2980 }
2981 EXPORT_SYMBOL(netif_set_real_num_queues);
2982 
2983 /**
2984  * netif_set_tso_max_size() - set the max size of TSO frames supported
2985  * @dev:	netdev to update
2986  * @size:	max skb->len of a TSO frame
2987  *
2988  * Set the limit on the size of TSO super-frames the device can handle.
2989  * Unless explicitly set the stack will assume the value of
2990  * %GSO_LEGACY_MAX_SIZE.
2991  */
2992 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
2993 {
2994 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
2995 	if (size < READ_ONCE(dev->gso_max_size))
2996 		netif_set_gso_max_size(dev, size);
2997 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
2998 		netif_set_gso_ipv4_max_size(dev, size);
2999 }
3000 EXPORT_SYMBOL(netif_set_tso_max_size);
3001 
3002 /**
3003  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3004  * @dev:	netdev to update
3005  * @segs:	max number of TCP segments
3006  *
3007  * Set the limit on the number of TCP segments the device can generate from
3008  * a single TSO super-frame.
3009  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3010  */
3011 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3012 {
3013 	dev->tso_max_segs = segs;
3014 	if (segs < READ_ONCE(dev->gso_max_segs))
3015 		netif_set_gso_max_segs(dev, segs);
3016 }
3017 EXPORT_SYMBOL(netif_set_tso_max_segs);
3018 
3019 /**
3020  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3021  * @to:		netdev to update
3022  * @from:	netdev from which to copy the limits
3023  */
3024 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3025 {
3026 	netif_set_tso_max_size(to, from->tso_max_size);
3027 	netif_set_tso_max_segs(to, from->tso_max_segs);
3028 }
3029 EXPORT_SYMBOL(netif_inherit_tso_max);
3030 
3031 /**
3032  * netif_get_num_default_rss_queues - default number of RSS queues
3033  *
3034  * Default value is the number of physical cores if there are only 1 or 2, or
3035  * divided by 2 if there are more.
3036  */
3037 int netif_get_num_default_rss_queues(void)
3038 {
3039 	cpumask_var_t cpus;
3040 	int cpu, count = 0;
3041 
3042 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3043 		return 1;
3044 
3045 	cpumask_copy(cpus, cpu_online_mask);
3046 	for_each_cpu(cpu, cpus) {
3047 		++count;
3048 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3049 	}
3050 	free_cpumask_var(cpus);
3051 
3052 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3053 }
3054 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3055 
3056 static void __netif_reschedule(struct Qdisc *q)
3057 {
3058 	struct softnet_data *sd;
3059 	unsigned long flags;
3060 
3061 	local_irq_save(flags);
3062 	sd = this_cpu_ptr(&softnet_data);
3063 	q->next_sched = NULL;
3064 	*sd->output_queue_tailp = q;
3065 	sd->output_queue_tailp = &q->next_sched;
3066 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3067 	local_irq_restore(flags);
3068 }
3069 
3070 void __netif_schedule(struct Qdisc *q)
3071 {
3072 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3073 		__netif_reschedule(q);
3074 }
3075 EXPORT_SYMBOL(__netif_schedule);
3076 
3077 struct dev_kfree_skb_cb {
3078 	enum skb_drop_reason reason;
3079 };
3080 
3081 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3082 {
3083 	return (struct dev_kfree_skb_cb *)skb->cb;
3084 }
3085 
3086 void netif_schedule_queue(struct netdev_queue *txq)
3087 {
3088 	rcu_read_lock();
3089 	if (!netif_xmit_stopped(txq)) {
3090 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3091 
3092 		__netif_schedule(q);
3093 	}
3094 	rcu_read_unlock();
3095 }
3096 EXPORT_SYMBOL(netif_schedule_queue);
3097 
3098 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3099 {
3100 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3101 		struct Qdisc *q;
3102 
3103 		rcu_read_lock();
3104 		q = rcu_dereference(dev_queue->qdisc);
3105 		__netif_schedule(q);
3106 		rcu_read_unlock();
3107 	}
3108 }
3109 EXPORT_SYMBOL(netif_tx_wake_queue);
3110 
3111 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3112 {
3113 	unsigned long flags;
3114 
3115 	if (unlikely(!skb))
3116 		return;
3117 
3118 	if (likely(refcount_read(&skb->users) == 1)) {
3119 		smp_rmb();
3120 		refcount_set(&skb->users, 0);
3121 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3122 		return;
3123 	}
3124 	get_kfree_skb_cb(skb)->reason = reason;
3125 	local_irq_save(flags);
3126 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3127 	__this_cpu_write(softnet_data.completion_queue, skb);
3128 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3129 	local_irq_restore(flags);
3130 }
3131 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3132 
3133 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3134 {
3135 	if (in_hardirq() || irqs_disabled())
3136 		dev_kfree_skb_irq_reason(skb, reason);
3137 	else
3138 		kfree_skb_reason(skb, reason);
3139 }
3140 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3141 
3142 
3143 /**
3144  * netif_device_detach - mark device as removed
3145  * @dev: network device
3146  *
3147  * Mark device as removed from system and therefore no longer available.
3148  */
3149 void netif_device_detach(struct net_device *dev)
3150 {
3151 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3152 	    netif_running(dev)) {
3153 		netif_tx_stop_all_queues(dev);
3154 	}
3155 }
3156 EXPORT_SYMBOL(netif_device_detach);
3157 
3158 /**
3159  * netif_device_attach - mark device as attached
3160  * @dev: network device
3161  *
3162  * Mark device as attached from system and restart if needed.
3163  */
3164 void netif_device_attach(struct net_device *dev)
3165 {
3166 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3167 	    netif_running(dev)) {
3168 		netif_tx_wake_all_queues(dev);
3169 		__netdev_watchdog_up(dev);
3170 	}
3171 }
3172 EXPORT_SYMBOL(netif_device_attach);
3173 
3174 /*
3175  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3176  * to be used as a distribution range.
3177  */
3178 static u16 skb_tx_hash(const struct net_device *dev,
3179 		       const struct net_device *sb_dev,
3180 		       struct sk_buff *skb)
3181 {
3182 	u32 hash;
3183 	u16 qoffset = 0;
3184 	u16 qcount = dev->real_num_tx_queues;
3185 
3186 	if (dev->num_tc) {
3187 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3188 
3189 		qoffset = sb_dev->tc_to_txq[tc].offset;
3190 		qcount = sb_dev->tc_to_txq[tc].count;
3191 		if (unlikely(!qcount)) {
3192 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3193 					     sb_dev->name, qoffset, tc);
3194 			qoffset = 0;
3195 			qcount = dev->real_num_tx_queues;
3196 		}
3197 	}
3198 
3199 	if (skb_rx_queue_recorded(skb)) {
3200 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3201 		hash = skb_get_rx_queue(skb);
3202 		if (hash >= qoffset)
3203 			hash -= qoffset;
3204 		while (unlikely(hash >= qcount))
3205 			hash -= qcount;
3206 		return hash + qoffset;
3207 	}
3208 
3209 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3210 }
3211 
3212 static void skb_warn_bad_offload(const struct sk_buff *skb)
3213 {
3214 	static const netdev_features_t null_features;
3215 	struct net_device *dev = skb->dev;
3216 	const char *name = "";
3217 
3218 	if (!net_ratelimit())
3219 		return;
3220 
3221 	if (dev) {
3222 		if (dev->dev.parent)
3223 			name = dev_driver_string(dev->dev.parent);
3224 		else
3225 			name = netdev_name(dev);
3226 	}
3227 	skb_dump(KERN_WARNING, skb, false);
3228 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3229 	     name, dev ? &dev->features : &null_features,
3230 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3231 }
3232 
3233 /*
3234  * Invalidate hardware checksum when packet is to be mangled, and
3235  * complete checksum manually on outgoing path.
3236  */
3237 int skb_checksum_help(struct sk_buff *skb)
3238 {
3239 	__wsum csum;
3240 	int ret = 0, offset;
3241 
3242 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3243 		goto out_set_summed;
3244 
3245 	if (unlikely(skb_is_gso(skb))) {
3246 		skb_warn_bad_offload(skb);
3247 		return -EINVAL;
3248 	}
3249 
3250 	/* Before computing a checksum, we should make sure no frag could
3251 	 * be modified by an external entity : checksum could be wrong.
3252 	 */
3253 	if (skb_has_shared_frag(skb)) {
3254 		ret = __skb_linearize(skb);
3255 		if (ret)
3256 			goto out;
3257 	}
3258 
3259 	offset = skb_checksum_start_offset(skb);
3260 	ret = -EINVAL;
3261 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3262 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3263 		goto out;
3264 	}
3265 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3266 
3267 	offset += skb->csum_offset;
3268 	if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3269 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3270 		goto out;
3271 	}
3272 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3273 	if (ret)
3274 		goto out;
3275 
3276 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3277 out_set_summed:
3278 	skb->ip_summed = CHECKSUM_NONE;
3279 out:
3280 	return ret;
3281 }
3282 EXPORT_SYMBOL(skb_checksum_help);
3283 
3284 int skb_crc32c_csum_help(struct sk_buff *skb)
3285 {
3286 	__le32 crc32c_csum;
3287 	int ret = 0, offset, start;
3288 
3289 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3290 		goto out;
3291 
3292 	if (unlikely(skb_is_gso(skb)))
3293 		goto out;
3294 
3295 	/* Before computing a checksum, we should make sure no frag could
3296 	 * be modified by an external entity : checksum could be wrong.
3297 	 */
3298 	if (unlikely(skb_has_shared_frag(skb))) {
3299 		ret = __skb_linearize(skb);
3300 		if (ret)
3301 			goto out;
3302 	}
3303 	start = skb_checksum_start_offset(skb);
3304 	offset = start + offsetof(struct sctphdr, checksum);
3305 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3306 		ret = -EINVAL;
3307 		goto out;
3308 	}
3309 
3310 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3311 	if (ret)
3312 		goto out;
3313 
3314 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3315 						  skb->len - start, ~(__u32)0,
3316 						  crc32c_csum_stub));
3317 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3318 	skb_reset_csum_not_inet(skb);
3319 out:
3320 	return ret;
3321 }
3322 
3323 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3324 {
3325 	__be16 type = skb->protocol;
3326 
3327 	/* Tunnel gso handlers can set protocol to ethernet. */
3328 	if (type == htons(ETH_P_TEB)) {
3329 		struct ethhdr *eth;
3330 
3331 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3332 			return 0;
3333 
3334 		eth = (struct ethhdr *)skb->data;
3335 		type = eth->h_proto;
3336 	}
3337 
3338 	return vlan_get_protocol_and_depth(skb, type, depth);
3339 }
3340 
3341 /* openvswitch calls this on rx path, so we need a different check.
3342  */
3343 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3344 {
3345 	if (tx_path)
3346 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3347 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3348 
3349 	return skb->ip_summed == CHECKSUM_NONE;
3350 }
3351 
3352 /**
3353  *	__skb_gso_segment - Perform segmentation on skb.
3354  *	@skb: buffer to segment
3355  *	@features: features for the output path (see dev->features)
3356  *	@tx_path: whether it is called in TX path
3357  *
3358  *	This function segments the given skb and returns a list of segments.
3359  *
3360  *	It may return NULL if the skb requires no segmentation.  This is
3361  *	only possible when GSO is used for verifying header integrity.
3362  *
3363  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3364  */
3365 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3366 				  netdev_features_t features, bool tx_path)
3367 {
3368 	struct sk_buff *segs;
3369 
3370 	if (unlikely(skb_needs_check(skb, tx_path))) {
3371 		int err;
3372 
3373 		/* We're going to init ->check field in TCP or UDP header */
3374 		err = skb_cow_head(skb, 0);
3375 		if (err < 0)
3376 			return ERR_PTR(err);
3377 	}
3378 
3379 	/* Only report GSO partial support if it will enable us to
3380 	 * support segmentation on this frame without needing additional
3381 	 * work.
3382 	 */
3383 	if (features & NETIF_F_GSO_PARTIAL) {
3384 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3385 		struct net_device *dev = skb->dev;
3386 
3387 		partial_features |= dev->features & dev->gso_partial_features;
3388 		if (!skb_gso_ok(skb, features | partial_features))
3389 			features &= ~NETIF_F_GSO_PARTIAL;
3390 	}
3391 
3392 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3393 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3394 
3395 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3396 	SKB_GSO_CB(skb)->encap_level = 0;
3397 
3398 	skb_reset_mac_header(skb);
3399 	skb_reset_mac_len(skb);
3400 
3401 	segs = skb_mac_gso_segment(skb, features);
3402 
3403 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3404 		skb_warn_bad_offload(skb);
3405 
3406 	return segs;
3407 }
3408 EXPORT_SYMBOL(__skb_gso_segment);
3409 
3410 /* Take action when hardware reception checksum errors are detected. */
3411 #ifdef CONFIG_BUG
3412 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3413 {
3414 	netdev_err(dev, "hw csum failure\n");
3415 	skb_dump(KERN_ERR, skb, true);
3416 	dump_stack();
3417 }
3418 
3419 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3420 {
3421 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3422 }
3423 EXPORT_SYMBOL(netdev_rx_csum_fault);
3424 #endif
3425 
3426 /* XXX: check that highmem exists at all on the given machine. */
3427 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3428 {
3429 #ifdef CONFIG_HIGHMEM
3430 	int i;
3431 
3432 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3433 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3434 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3435 
3436 			if (PageHighMem(skb_frag_page(frag)))
3437 				return 1;
3438 		}
3439 	}
3440 #endif
3441 	return 0;
3442 }
3443 
3444 /* If MPLS offload request, verify we are testing hardware MPLS features
3445  * instead of standard features for the netdev.
3446  */
3447 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3448 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3449 					   netdev_features_t features,
3450 					   __be16 type)
3451 {
3452 	if (eth_p_mpls(type))
3453 		features &= skb->dev->mpls_features;
3454 
3455 	return features;
3456 }
3457 #else
3458 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3459 					   netdev_features_t features,
3460 					   __be16 type)
3461 {
3462 	return features;
3463 }
3464 #endif
3465 
3466 static netdev_features_t harmonize_features(struct sk_buff *skb,
3467 	netdev_features_t features)
3468 {
3469 	__be16 type;
3470 
3471 	type = skb_network_protocol(skb, NULL);
3472 	features = net_mpls_features(skb, features, type);
3473 
3474 	if (skb->ip_summed != CHECKSUM_NONE &&
3475 	    !can_checksum_protocol(features, type)) {
3476 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3477 	}
3478 	if (illegal_highdma(skb->dev, skb))
3479 		features &= ~NETIF_F_SG;
3480 
3481 	return features;
3482 }
3483 
3484 netdev_features_t passthru_features_check(struct sk_buff *skb,
3485 					  struct net_device *dev,
3486 					  netdev_features_t features)
3487 {
3488 	return features;
3489 }
3490 EXPORT_SYMBOL(passthru_features_check);
3491 
3492 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3493 					     struct net_device *dev,
3494 					     netdev_features_t features)
3495 {
3496 	return vlan_features_check(skb, features);
3497 }
3498 
3499 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3500 					    struct net_device *dev,
3501 					    netdev_features_t features)
3502 {
3503 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3504 
3505 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3506 		return features & ~NETIF_F_GSO_MASK;
3507 
3508 	if (!skb_shinfo(skb)->gso_type) {
3509 		skb_warn_bad_offload(skb);
3510 		return features & ~NETIF_F_GSO_MASK;
3511 	}
3512 
3513 	/* Support for GSO partial features requires software
3514 	 * intervention before we can actually process the packets
3515 	 * so we need to strip support for any partial features now
3516 	 * and we can pull them back in after we have partially
3517 	 * segmented the frame.
3518 	 */
3519 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3520 		features &= ~dev->gso_partial_features;
3521 
3522 	/* Make sure to clear the IPv4 ID mangling feature if the
3523 	 * IPv4 header has the potential to be fragmented.
3524 	 */
3525 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3526 		struct iphdr *iph = skb->encapsulation ?
3527 				    inner_ip_hdr(skb) : ip_hdr(skb);
3528 
3529 		if (!(iph->frag_off & htons(IP_DF)))
3530 			features &= ~NETIF_F_TSO_MANGLEID;
3531 	}
3532 
3533 	return features;
3534 }
3535 
3536 netdev_features_t netif_skb_features(struct sk_buff *skb)
3537 {
3538 	struct net_device *dev = skb->dev;
3539 	netdev_features_t features = dev->features;
3540 
3541 	if (skb_is_gso(skb))
3542 		features = gso_features_check(skb, dev, features);
3543 
3544 	/* If encapsulation offload request, verify we are testing
3545 	 * hardware encapsulation features instead of standard
3546 	 * features for the netdev
3547 	 */
3548 	if (skb->encapsulation)
3549 		features &= dev->hw_enc_features;
3550 
3551 	if (skb_vlan_tagged(skb))
3552 		features = netdev_intersect_features(features,
3553 						     dev->vlan_features |
3554 						     NETIF_F_HW_VLAN_CTAG_TX |
3555 						     NETIF_F_HW_VLAN_STAG_TX);
3556 
3557 	if (dev->netdev_ops->ndo_features_check)
3558 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3559 								features);
3560 	else
3561 		features &= dflt_features_check(skb, dev, features);
3562 
3563 	return harmonize_features(skb, features);
3564 }
3565 EXPORT_SYMBOL(netif_skb_features);
3566 
3567 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3568 		    struct netdev_queue *txq, bool more)
3569 {
3570 	unsigned int len;
3571 	int rc;
3572 
3573 	if (dev_nit_active(dev))
3574 		dev_queue_xmit_nit(skb, dev);
3575 
3576 	len = skb->len;
3577 	trace_net_dev_start_xmit(skb, dev);
3578 	rc = netdev_start_xmit(skb, dev, txq, more);
3579 	trace_net_dev_xmit(skb, rc, dev, len);
3580 
3581 	return rc;
3582 }
3583 
3584 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3585 				    struct netdev_queue *txq, int *ret)
3586 {
3587 	struct sk_buff *skb = first;
3588 	int rc = NETDEV_TX_OK;
3589 
3590 	while (skb) {
3591 		struct sk_buff *next = skb->next;
3592 
3593 		skb_mark_not_on_list(skb);
3594 		rc = xmit_one(skb, dev, txq, next != NULL);
3595 		if (unlikely(!dev_xmit_complete(rc))) {
3596 			skb->next = next;
3597 			goto out;
3598 		}
3599 
3600 		skb = next;
3601 		if (netif_tx_queue_stopped(txq) && skb) {
3602 			rc = NETDEV_TX_BUSY;
3603 			break;
3604 		}
3605 	}
3606 
3607 out:
3608 	*ret = rc;
3609 	return skb;
3610 }
3611 
3612 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3613 					  netdev_features_t features)
3614 {
3615 	if (skb_vlan_tag_present(skb) &&
3616 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3617 		skb = __vlan_hwaccel_push_inside(skb);
3618 	return skb;
3619 }
3620 
3621 int skb_csum_hwoffload_help(struct sk_buff *skb,
3622 			    const netdev_features_t features)
3623 {
3624 	if (unlikely(skb_csum_is_sctp(skb)))
3625 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3626 			skb_crc32c_csum_help(skb);
3627 
3628 	if (features & NETIF_F_HW_CSUM)
3629 		return 0;
3630 
3631 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3632 		switch (skb->csum_offset) {
3633 		case offsetof(struct tcphdr, check):
3634 		case offsetof(struct udphdr, check):
3635 			return 0;
3636 		}
3637 	}
3638 
3639 	return skb_checksum_help(skb);
3640 }
3641 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3642 
3643 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3644 {
3645 	netdev_features_t features;
3646 
3647 	features = netif_skb_features(skb);
3648 	skb = validate_xmit_vlan(skb, features);
3649 	if (unlikely(!skb))
3650 		goto out_null;
3651 
3652 	skb = sk_validate_xmit_skb(skb, dev);
3653 	if (unlikely(!skb))
3654 		goto out_null;
3655 
3656 	if (netif_needs_gso(skb, features)) {
3657 		struct sk_buff *segs;
3658 
3659 		segs = skb_gso_segment(skb, features);
3660 		if (IS_ERR(segs)) {
3661 			goto out_kfree_skb;
3662 		} else if (segs) {
3663 			consume_skb(skb);
3664 			skb = segs;
3665 		}
3666 	} else {
3667 		if (skb_needs_linearize(skb, features) &&
3668 		    __skb_linearize(skb))
3669 			goto out_kfree_skb;
3670 
3671 		/* If packet is not checksummed and device does not
3672 		 * support checksumming for this protocol, complete
3673 		 * checksumming here.
3674 		 */
3675 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3676 			if (skb->encapsulation)
3677 				skb_set_inner_transport_header(skb,
3678 							       skb_checksum_start_offset(skb));
3679 			else
3680 				skb_set_transport_header(skb,
3681 							 skb_checksum_start_offset(skb));
3682 			if (skb_csum_hwoffload_help(skb, features))
3683 				goto out_kfree_skb;
3684 		}
3685 	}
3686 
3687 	skb = validate_xmit_xfrm(skb, features, again);
3688 
3689 	return skb;
3690 
3691 out_kfree_skb:
3692 	kfree_skb(skb);
3693 out_null:
3694 	dev_core_stats_tx_dropped_inc(dev);
3695 	return NULL;
3696 }
3697 
3698 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3699 {
3700 	struct sk_buff *next, *head = NULL, *tail;
3701 
3702 	for (; skb != NULL; skb = next) {
3703 		next = skb->next;
3704 		skb_mark_not_on_list(skb);
3705 
3706 		/* in case skb wont be segmented, point to itself */
3707 		skb->prev = skb;
3708 
3709 		skb = validate_xmit_skb(skb, dev, again);
3710 		if (!skb)
3711 			continue;
3712 
3713 		if (!head)
3714 			head = skb;
3715 		else
3716 			tail->next = skb;
3717 		/* If skb was segmented, skb->prev points to
3718 		 * the last segment. If not, it still contains skb.
3719 		 */
3720 		tail = skb->prev;
3721 	}
3722 	return head;
3723 }
3724 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3725 
3726 static void qdisc_pkt_len_init(struct sk_buff *skb)
3727 {
3728 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3729 
3730 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3731 
3732 	/* To get more precise estimation of bytes sent on wire,
3733 	 * we add to pkt_len the headers size of all segments
3734 	 */
3735 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3736 		u16 gso_segs = shinfo->gso_segs;
3737 		unsigned int hdr_len;
3738 
3739 		/* mac layer + network layer */
3740 		hdr_len = skb_transport_offset(skb);
3741 
3742 		/* + transport layer */
3743 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3744 			const struct tcphdr *th;
3745 			struct tcphdr _tcphdr;
3746 
3747 			th = skb_header_pointer(skb, hdr_len,
3748 						sizeof(_tcphdr), &_tcphdr);
3749 			if (likely(th))
3750 				hdr_len += __tcp_hdrlen(th);
3751 		} else {
3752 			struct udphdr _udphdr;
3753 
3754 			if (skb_header_pointer(skb, hdr_len,
3755 					       sizeof(_udphdr), &_udphdr))
3756 				hdr_len += sizeof(struct udphdr);
3757 		}
3758 
3759 		if (shinfo->gso_type & SKB_GSO_DODGY)
3760 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3761 						shinfo->gso_size);
3762 
3763 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3764 	}
3765 }
3766 
3767 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3768 			     struct sk_buff **to_free,
3769 			     struct netdev_queue *txq)
3770 {
3771 	int rc;
3772 
3773 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3774 	if (rc == NET_XMIT_SUCCESS)
3775 		trace_qdisc_enqueue(q, txq, skb);
3776 	return rc;
3777 }
3778 
3779 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3780 				 struct net_device *dev,
3781 				 struct netdev_queue *txq)
3782 {
3783 	spinlock_t *root_lock = qdisc_lock(q);
3784 	struct sk_buff *to_free = NULL;
3785 	bool contended;
3786 	int rc;
3787 
3788 	qdisc_calculate_pkt_len(skb, q);
3789 
3790 	if (q->flags & TCQ_F_NOLOCK) {
3791 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3792 		    qdisc_run_begin(q)) {
3793 			/* Retest nolock_qdisc_is_empty() within the protection
3794 			 * of q->seqlock to protect from racing with requeuing.
3795 			 */
3796 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3797 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3798 				__qdisc_run(q);
3799 				qdisc_run_end(q);
3800 
3801 				goto no_lock_out;
3802 			}
3803 
3804 			qdisc_bstats_cpu_update(q, skb);
3805 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3806 			    !nolock_qdisc_is_empty(q))
3807 				__qdisc_run(q);
3808 
3809 			qdisc_run_end(q);
3810 			return NET_XMIT_SUCCESS;
3811 		}
3812 
3813 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3814 		qdisc_run(q);
3815 
3816 no_lock_out:
3817 		if (unlikely(to_free))
3818 			kfree_skb_list_reason(to_free,
3819 					      SKB_DROP_REASON_QDISC_DROP);
3820 		return rc;
3821 	}
3822 
3823 	/*
3824 	 * Heuristic to force contended enqueues to serialize on a
3825 	 * separate lock before trying to get qdisc main lock.
3826 	 * This permits qdisc->running owner to get the lock more
3827 	 * often and dequeue packets faster.
3828 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3829 	 * and then other tasks will only enqueue packets. The packets will be
3830 	 * sent after the qdisc owner is scheduled again. To prevent this
3831 	 * scenario the task always serialize on the lock.
3832 	 */
3833 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3834 	if (unlikely(contended))
3835 		spin_lock(&q->busylock);
3836 
3837 	spin_lock(root_lock);
3838 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3839 		__qdisc_drop(skb, &to_free);
3840 		rc = NET_XMIT_DROP;
3841 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3842 		   qdisc_run_begin(q)) {
3843 		/*
3844 		 * This is a work-conserving queue; there are no old skbs
3845 		 * waiting to be sent out; and the qdisc is not running -
3846 		 * xmit the skb directly.
3847 		 */
3848 
3849 		qdisc_bstats_update(q, skb);
3850 
3851 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3852 			if (unlikely(contended)) {
3853 				spin_unlock(&q->busylock);
3854 				contended = false;
3855 			}
3856 			__qdisc_run(q);
3857 		}
3858 
3859 		qdisc_run_end(q);
3860 		rc = NET_XMIT_SUCCESS;
3861 	} else {
3862 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3863 		if (qdisc_run_begin(q)) {
3864 			if (unlikely(contended)) {
3865 				spin_unlock(&q->busylock);
3866 				contended = false;
3867 			}
3868 			__qdisc_run(q);
3869 			qdisc_run_end(q);
3870 		}
3871 	}
3872 	spin_unlock(root_lock);
3873 	if (unlikely(to_free))
3874 		kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3875 	if (unlikely(contended))
3876 		spin_unlock(&q->busylock);
3877 	return rc;
3878 }
3879 
3880 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3881 static void skb_update_prio(struct sk_buff *skb)
3882 {
3883 	const struct netprio_map *map;
3884 	const struct sock *sk;
3885 	unsigned int prioidx;
3886 
3887 	if (skb->priority)
3888 		return;
3889 	map = rcu_dereference_bh(skb->dev->priomap);
3890 	if (!map)
3891 		return;
3892 	sk = skb_to_full_sk(skb);
3893 	if (!sk)
3894 		return;
3895 
3896 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3897 
3898 	if (prioidx < map->priomap_len)
3899 		skb->priority = map->priomap[prioidx];
3900 }
3901 #else
3902 #define skb_update_prio(skb)
3903 #endif
3904 
3905 /**
3906  *	dev_loopback_xmit - loop back @skb
3907  *	@net: network namespace this loopback is happening in
3908  *	@sk:  sk needed to be a netfilter okfn
3909  *	@skb: buffer to transmit
3910  */
3911 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3912 {
3913 	skb_reset_mac_header(skb);
3914 	__skb_pull(skb, skb_network_offset(skb));
3915 	skb->pkt_type = PACKET_LOOPBACK;
3916 	if (skb->ip_summed == CHECKSUM_NONE)
3917 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3918 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3919 	skb_dst_force(skb);
3920 	netif_rx(skb);
3921 	return 0;
3922 }
3923 EXPORT_SYMBOL(dev_loopback_xmit);
3924 
3925 #ifdef CONFIG_NET_EGRESS
3926 static struct sk_buff *
3927 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3928 {
3929 #ifdef CONFIG_NET_CLS_ACT
3930 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3931 	struct tcf_result cl_res;
3932 
3933 	if (!miniq)
3934 		return skb;
3935 
3936 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3937 	tc_skb_cb(skb)->mru = 0;
3938 	tc_skb_cb(skb)->post_ct = false;
3939 	mini_qdisc_bstats_cpu_update(miniq, skb);
3940 
3941 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3942 	case TC_ACT_OK:
3943 	case TC_ACT_RECLASSIFY:
3944 		skb->tc_index = TC_H_MIN(cl_res.classid);
3945 		break;
3946 	case TC_ACT_SHOT:
3947 		mini_qdisc_qstats_cpu_drop(miniq);
3948 		*ret = NET_XMIT_DROP;
3949 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3950 		return NULL;
3951 	case TC_ACT_STOLEN:
3952 	case TC_ACT_QUEUED:
3953 	case TC_ACT_TRAP:
3954 		*ret = NET_XMIT_SUCCESS;
3955 		consume_skb(skb);
3956 		return NULL;
3957 	case TC_ACT_REDIRECT:
3958 		/* No need to push/pop skb's mac_header here on egress! */
3959 		skb_do_redirect(skb);
3960 		*ret = NET_XMIT_SUCCESS;
3961 		return NULL;
3962 	default:
3963 		break;
3964 	}
3965 #endif /* CONFIG_NET_CLS_ACT */
3966 
3967 	return skb;
3968 }
3969 
3970 static struct netdev_queue *
3971 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3972 {
3973 	int qm = skb_get_queue_mapping(skb);
3974 
3975 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3976 }
3977 
3978 static bool netdev_xmit_txqueue_skipped(void)
3979 {
3980 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3981 }
3982 
3983 void netdev_xmit_skip_txqueue(bool skip)
3984 {
3985 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3986 }
3987 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3988 #endif /* CONFIG_NET_EGRESS */
3989 
3990 #ifdef CONFIG_XPS
3991 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3992 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3993 {
3994 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
3995 	struct xps_map *map;
3996 	int queue_index = -1;
3997 
3998 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3999 		return queue_index;
4000 
4001 	tci *= dev_maps->num_tc;
4002 	tci += tc;
4003 
4004 	map = rcu_dereference(dev_maps->attr_map[tci]);
4005 	if (map) {
4006 		if (map->len == 1)
4007 			queue_index = map->queues[0];
4008 		else
4009 			queue_index = map->queues[reciprocal_scale(
4010 						skb_get_hash(skb), map->len)];
4011 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4012 			queue_index = -1;
4013 	}
4014 	return queue_index;
4015 }
4016 #endif
4017 
4018 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4019 			 struct sk_buff *skb)
4020 {
4021 #ifdef CONFIG_XPS
4022 	struct xps_dev_maps *dev_maps;
4023 	struct sock *sk = skb->sk;
4024 	int queue_index = -1;
4025 
4026 	if (!static_key_false(&xps_needed))
4027 		return -1;
4028 
4029 	rcu_read_lock();
4030 	if (!static_key_false(&xps_rxqs_needed))
4031 		goto get_cpus_map;
4032 
4033 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4034 	if (dev_maps) {
4035 		int tci = sk_rx_queue_get(sk);
4036 
4037 		if (tci >= 0)
4038 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4039 							  tci);
4040 	}
4041 
4042 get_cpus_map:
4043 	if (queue_index < 0) {
4044 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4045 		if (dev_maps) {
4046 			unsigned int tci = skb->sender_cpu - 1;
4047 
4048 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4049 							  tci);
4050 		}
4051 	}
4052 	rcu_read_unlock();
4053 
4054 	return queue_index;
4055 #else
4056 	return -1;
4057 #endif
4058 }
4059 
4060 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4061 		     struct net_device *sb_dev)
4062 {
4063 	return 0;
4064 }
4065 EXPORT_SYMBOL(dev_pick_tx_zero);
4066 
4067 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4068 		       struct net_device *sb_dev)
4069 {
4070 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4071 }
4072 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4073 
4074 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4075 		     struct net_device *sb_dev)
4076 {
4077 	struct sock *sk = skb->sk;
4078 	int queue_index = sk_tx_queue_get(sk);
4079 
4080 	sb_dev = sb_dev ? : dev;
4081 
4082 	if (queue_index < 0 || skb->ooo_okay ||
4083 	    queue_index >= dev->real_num_tx_queues) {
4084 		int new_index = get_xps_queue(dev, sb_dev, skb);
4085 
4086 		if (new_index < 0)
4087 			new_index = skb_tx_hash(dev, sb_dev, skb);
4088 
4089 		if (queue_index != new_index && sk &&
4090 		    sk_fullsock(sk) &&
4091 		    rcu_access_pointer(sk->sk_dst_cache))
4092 			sk_tx_queue_set(sk, new_index);
4093 
4094 		queue_index = new_index;
4095 	}
4096 
4097 	return queue_index;
4098 }
4099 EXPORT_SYMBOL(netdev_pick_tx);
4100 
4101 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4102 					 struct sk_buff *skb,
4103 					 struct net_device *sb_dev)
4104 {
4105 	int queue_index = 0;
4106 
4107 #ifdef CONFIG_XPS
4108 	u32 sender_cpu = skb->sender_cpu - 1;
4109 
4110 	if (sender_cpu >= (u32)NR_CPUS)
4111 		skb->sender_cpu = raw_smp_processor_id() + 1;
4112 #endif
4113 
4114 	if (dev->real_num_tx_queues != 1) {
4115 		const struct net_device_ops *ops = dev->netdev_ops;
4116 
4117 		if (ops->ndo_select_queue)
4118 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4119 		else
4120 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4121 
4122 		queue_index = netdev_cap_txqueue(dev, queue_index);
4123 	}
4124 
4125 	skb_set_queue_mapping(skb, queue_index);
4126 	return netdev_get_tx_queue(dev, queue_index);
4127 }
4128 
4129 /**
4130  * __dev_queue_xmit() - transmit a buffer
4131  * @skb:	buffer to transmit
4132  * @sb_dev:	suboordinate device used for L2 forwarding offload
4133  *
4134  * Queue a buffer for transmission to a network device. The caller must
4135  * have set the device and priority and built the buffer before calling
4136  * this function. The function can be called from an interrupt.
4137  *
4138  * When calling this method, interrupts MUST be enabled. This is because
4139  * the BH enable code must have IRQs enabled so that it will not deadlock.
4140  *
4141  * Regardless of the return value, the skb is consumed, so it is currently
4142  * difficult to retry a send to this method. (You can bump the ref count
4143  * before sending to hold a reference for retry if you are careful.)
4144  *
4145  * Return:
4146  * * 0				- buffer successfully transmitted
4147  * * positive qdisc return code	- NET_XMIT_DROP etc.
4148  * * negative errno		- other errors
4149  */
4150 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4151 {
4152 	struct net_device *dev = skb->dev;
4153 	struct netdev_queue *txq = NULL;
4154 	struct Qdisc *q;
4155 	int rc = -ENOMEM;
4156 	bool again = false;
4157 
4158 	skb_reset_mac_header(skb);
4159 	skb_assert_len(skb);
4160 
4161 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4162 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4163 
4164 	/* Disable soft irqs for various locks below. Also
4165 	 * stops preemption for RCU.
4166 	 */
4167 	rcu_read_lock_bh();
4168 
4169 	skb_update_prio(skb);
4170 
4171 	qdisc_pkt_len_init(skb);
4172 #ifdef CONFIG_NET_CLS_ACT
4173 	skb->tc_at_ingress = 0;
4174 #endif
4175 #ifdef CONFIG_NET_EGRESS
4176 	if (static_branch_unlikely(&egress_needed_key)) {
4177 		if (nf_hook_egress_active()) {
4178 			skb = nf_hook_egress(skb, &rc, dev);
4179 			if (!skb)
4180 				goto out;
4181 		}
4182 
4183 		netdev_xmit_skip_txqueue(false);
4184 
4185 		nf_skip_egress(skb, true);
4186 		skb = sch_handle_egress(skb, &rc, dev);
4187 		if (!skb)
4188 			goto out;
4189 		nf_skip_egress(skb, false);
4190 
4191 		if (netdev_xmit_txqueue_skipped())
4192 			txq = netdev_tx_queue_mapping(dev, skb);
4193 	}
4194 #endif
4195 	/* If device/qdisc don't need skb->dst, release it right now while
4196 	 * its hot in this cpu cache.
4197 	 */
4198 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4199 		skb_dst_drop(skb);
4200 	else
4201 		skb_dst_force(skb);
4202 
4203 	if (!txq)
4204 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4205 
4206 	q = rcu_dereference_bh(txq->qdisc);
4207 
4208 	trace_net_dev_queue(skb);
4209 	if (q->enqueue) {
4210 		rc = __dev_xmit_skb(skb, q, dev, txq);
4211 		goto out;
4212 	}
4213 
4214 	/* The device has no queue. Common case for software devices:
4215 	 * loopback, all the sorts of tunnels...
4216 
4217 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4218 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4219 	 * counters.)
4220 	 * However, it is possible, that they rely on protection
4221 	 * made by us here.
4222 
4223 	 * Check this and shot the lock. It is not prone from deadlocks.
4224 	 *Either shot noqueue qdisc, it is even simpler 8)
4225 	 */
4226 	if (dev->flags & IFF_UP) {
4227 		int cpu = smp_processor_id(); /* ok because BHs are off */
4228 
4229 		/* Other cpus might concurrently change txq->xmit_lock_owner
4230 		 * to -1 or to their cpu id, but not to our id.
4231 		 */
4232 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4233 			if (dev_xmit_recursion())
4234 				goto recursion_alert;
4235 
4236 			skb = validate_xmit_skb(skb, dev, &again);
4237 			if (!skb)
4238 				goto out;
4239 
4240 			HARD_TX_LOCK(dev, txq, cpu);
4241 
4242 			if (!netif_xmit_stopped(txq)) {
4243 				dev_xmit_recursion_inc();
4244 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4245 				dev_xmit_recursion_dec();
4246 				if (dev_xmit_complete(rc)) {
4247 					HARD_TX_UNLOCK(dev, txq);
4248 					goto out;
4249 				}
4250 			}
4251 			HARD_TX_UNLOCK(dev, txq);
4252 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4253 					     dev->name);
4254 		} else {
4255 			/* Recursion is detected! It is possible,
4256 			 * unfortunately
4257 			 */
4258 recursion_alert:
4259 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4260 					     dev->name);
4261 		}
4262 	}
4263 
4264 	rc = -ENETDOWN;
4265 	rcu_read_unlock_bh();
4266 
4267 	dev_core_stats_tx_dropped_inc(dev);
4268 	kfree_skb_list(skb);
4269 	return rc;
4270 out:
4271 	rcu_read_unlock_bh();
4272 	return rc;
4273 }
4274 EXPORT_SYMBOL(__dev_queue_xmit);
4275 
4276 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4277 {
4278 	struct net_device *dev = skb->dev;
4279 	struct sk_buff *orig_skb = skb;
4280 	struct netdev_queue *txq;
4281 	int ret = NETDEV_TX_BUSY;
4282 	bool again = false;
4283 
4284 	if (unlikely(!netif_running(dev) ||
4285 		     !netif_carrier_ok(dev)))
4286 		goto drop;
4287 
4288 	skb = validate_xmit_skb_list(skb, dev, &again);
4289 	if (skb != orig_skb)
4290 		goto drop;
4291 
4292 	skb_set_queue_mapping(skb, queue_id);
4293 	txq = skb_get_tx_queue(dev, skb);
4294 
4295 	local_bh_disable();
4296 
4297 	dev_xmit_recursion_inc();
4298 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4299 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4300 		ret = netdev_start_xmit(skb, dev, txq, false);
4301 	HARD_TX_UNLOCK(dev, txq);
4302 	dev_xmit_recursion_dec();
4303 
4304 	local_bh_enable();
4305 	return ret;
4306 drop:
4307 	dev_core_stats_tx_dropped_inc(dev);
4308 	kfree_skb_list(skb);
4309 	return NET_XMIT_DROP;
4310 }
4311 EXPORT_SYMBOL(__dev_direct_xmit);
4312 
4313 /*************************************************************************
4314  *			Receiver routines
4315  *************************************************************************/
4316 
4317 int netdev_max_backlog __read_mostly = 1000;
4318 EXPORT_SYMBOL(netdev_max_backlog);
4319 
4320 int netdev_tstamp_prequeue __read_mostly = 1;
4321 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4322 int netdev_budget __read_mostly = 300;
4323 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4324 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4325 int weight_p __read_mostly = 64;           /* old backlog weight */
4326 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4327 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4328 int dev_rx_weight __read_mostly = 64;
4329 int dev_tx_weight __read_mostly = 64;
4330 
4331 /* Called with irq disabled */
4332 static inline void ____napi_schedule(struct softnet_data *sd,
4333 				     struct napi_struct *napi)
4334 {
4335 	struct task_struct *thread;
4336 
4337 	lockdep_assert_irqs_disabled();
4338 
4339 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4340 		/* Paired with smp_mb__before_atomic() in
4341 		 * napi_enable()/dev_set_threaded().
4342 		 * Use READ_ONCE() to guarantee a complete
4343 		 * read on napi->thread. Only call
4344 		 * wake_up_process() when it's not NULL.
4345 		 */
4346 		thread = READ_ONCE(napi->thread);
4347 		if (thread) {
4348 			/* Avoid doing set_bit() if the thread is in
4349 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4350 			 * makes sure to proceed with napi polling
4351 			 * if the thread is explicitly woken from here.
4352 			 */
4353 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4354 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4355 			wake_up_process(thread);
4356 			return;
4357 		}
4358 	}
4359 
4360 	list_add_tail(&napi->poll_list, &sd->poll_list);
4361 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4362 	/* If not called from net_rx_action()
4363 	 * we have to raise NET_RX_SOFTIRQ.
4364 	 */
4365 	if (!sd->in_net_rx_action)
4366 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4367 }
4368 
4369 #ifdef CONFIG_RPS
4370 
4371 /* One global table that all flow-based protocols share. */
4372 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4373 EXPORT_SYMBOL(rps_sock_flow_table);
4374 u32 rps_cpu_mask __read_mostly;
4375 EXPORT_SYMBOL(rps_cpu_mask);
4376 
4377 struct static_key_false rps_needed __read_mostly;
4378 EXPORT_SYMBOL(rps_needed);
4379 struct static_key_false rfs_needed __read_mostly;
4380 EXPORT_SYMBOL(rfs_needed);
4381 
4382 static struct rps_dev_flow *
4383 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4384 	    struct rps_dev_flow *rflow, u16 next_cpu)
4385 {
4386 	if (next_cpu < nr_cpu_ids) {
4387 #ifdef CONFIG_RFS_ACCEL
4388 		struct netdev_rx_queue *rxqueue;
4389 		struct rps_dev_flow_table *flow_table;
4390 		struct rps_dev_flow *old_rflow;
4391 		u32 flow_id;
4392 		u16 rxq_index;
4393 		int rc;
4394 
4395 		/* Should we steer this flow to a different hardware queue? */
4396 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4397 		    !(dev->features & NETIF_F_NTUPLE))
4398 			goto out;
4399 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4400 		if (rxq_index == skb_get_rx_queue(skb))
4401 			goto out;
4402 
4403 		rxqueue = dev->_rx + rxq_index;
4404 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4405 		if (!flow_table)
4406 			goto out;
4407 		flow_id = skb_get_hash(skb) & flow_table->mask;
4408 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4409 							rxq_index, flow_id);
4410 		if (rc < 0)
4411 			goto out;
4412 		old_rflow = rflow;
4413 		rflow = &flow_table->flows[flow_id];
4414 		rflow->filter = rc;
4415 		if (old_rflow->filter == rflow->filter)
4416 			old_rflow->filter = RPS_NO_FILTER;
4417 	out:
4418 #endif
4419 		rflow->last_qtail =
4420 			per_cpu(softnet_data, next_cpu).input_queue_head;
4421 	}
4422 
4423 	rflow->cpu = next_cpu;
4424 	return rflow;
4425 }
4426 
4427 /*
4428  * get_rps_cpu is called from netif_receive_skb and returns the target
4429  * CPU from the RPS map of the receiving queue for a given skb.
4430  * rcu_read_lock must be held on entry.
4431  */
4432 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4433 		       struct rps_dev_flow **rflowp)
4434 {
4435 	const struct rps_sock_flow_table *sock_flow_table;
4436 	struct netdev_rx_queue *rxqueue = dev->_rx;
4437 	struct rps_dev_flow_table *flow_table;
4438 	struct rps_map *map;
4439 	int cpu = -1;
4440 	u32 tcpu;
4441 	u32 hash;
4442 
4443 	if (skb_rx_queue_recorded(skb)) {
4444 		u16 index = skb_get_rx_queue(skb);
4445 
4446 		if (unlikely(index >= dev->real_num_rx_queues)) {
4447 			WARN_ONCE(dev->real_num_rx_queues > 1,
4448 				  "%s received packet on queue %u, but number "
4449 				  "of RX queues is %u\n",
4450 				  dev->name, index, dev->real_num_rx_queues);
4451 			goto done;
4452 		}
4453 		rxqueue += index;
4454 	}
4455 
4456 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4457 
4458 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4459 	map = rcu_dereference(rxqueue->rps_map);
4460 	if (!flow_table && !map)
4461 		goto done;
4462 
4463 	skb_reset_network_header(skb);
4464 	hash = skb_get_hash(skb);
4465 	if (!hash)
4466 		goto done;
4467 
4468 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4469 	if (flow_table && sock_flow_table) {
4470 		struct rps_dev_flow *rflow;
4471 		u32 next_cpu;
4472 		u32 ident;
4473 
4474 		/* First check into global flow table if there is a match */
4475 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4476 		if ((ident ^ hash) & ~rps_cpu_mask)
4477 			goto try_rps;
4478 
4479 		next_cpu = ident & rps_cpu_mask;
4480 
4481 		/* OK, now we know there is a match,
4482 		 * we can look at the local (per receive queue) flow table
4483 		 */
4484 		rflow = &flow_table->flows[hash & flow_table->mask];
4485 		tcpu = rflow->cpu;
4486 
4487 		/*
4488 		 * If the desired CPU (where last recvmsg was done) is
4489 		 * different from current CPU (one in the rx-queue flow
4490 		 * table entry), switch if one of the following holds:
4491 		 *   - Current CPU is unset (>= nr_cpu_ids).
4492 		 *   - Current CPU is offline.
4493 		 *   - The current CPU's queue tail has advanced beyond the
4494 		 *     last packet that was enqueued using this table entry.
4495 		 *     This guarantees that all previous packets for the flow
4496 		 *     have been dequeued, thus preserving in order delivery.
4497 		 */
4498 		if (unlikely(tcpu != next_cpu) &&
4499 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4500 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4501 		      rflow->last_qtail)) >= 0)) {
4502 			tcpu = next_cpu;
4503 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4504 		}
4505 
4506 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4507 			*rflowp = rflow;
4508 			cpu = tcpu;
4509 			goto done;
4510 		}
4511 	}
4512 
4513 try_rps:
4514 
4515 	if (map) {
4516 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4517 		if (cpu_online(tcpu)) {
4518 			cpu = tcpu;
4519 			goto done;
4520 		}
4521 	}
4522 
4523 done:
4524 	return cpu;
4525 }
4526 
4527 #ifdef CONFIG_RFS_ACCEL
4528 
4529 /**
4530  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4531  * @dev: Device on which the filter was set
4532  * @rxq_index: RX queue index
4533  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4534  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4535  *
4536  * Drivers that implement ndo_rx_flow_steer() should periodically call
4537  * this function for each installed filter and remove the filters for
4538  * which it returns %true.
4539  */
4540 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4541 			 u32 flow_id, u16 filter_id)
4542 {
4543 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4544 	struct rps_dev_flow_table *flow_table;
4545 	struct rps_dev_flow *rflow;
4546 	bool expire = true;
4547 	unsigned int cpu;
4548 
4549 	rcu_read_lock();
4550 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4551 	if (flow_table && flow_id <= flow_table->mask) {
4552 		rflow = &flow_table->flows[flow_id];
4553 		cpu = READ_ONCE(rflow->cpu);
4554 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4555 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4556 			   rflow->last_qtail) <
4557 		     (int)(10 * flow_table->mask)))
4558 			expire = false;
4559 	}
4560 	rcu_read_unlock();
4561 	return expire;
4562 }
4563 EXPORT_SYMBOL(rps_may_expire_flow);
4564 
4565 #endif /* CONFIG_RFS_ACCEL */
4566 
4567 /* Called from hardirq (IPI) context */
4568 static void rps_trigger_softirq(void *data)
4569 {
4570 	struct softnet_data *sd = data;
4571 
4572 	____napi_schedule(sd, &sd->backlog);
4573 	sd->received_rps++;
4574 }
4575 
4576 #endif /* CONFIG_RPS */
4577 
4578 /* Called from hardirq (IPI) context */
4579 static void trigger_rx_softirq(void *data)
4580 {
4581 	struct softnet_data *sd = data;
4582 
4583 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4584 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4585 }
4586 
4587 /*
4588  * After we queued a packet into sd->input_pkt_queue,
4589  * we need to make sure this queue is serviced soon.
4590  *
4591  * - If this is another cpu queue, link it to our rps_ipi_list,
4592  *   and make sure we will process rps_ipi_list from net_rx_action().
4593  *
4594  * - If this is our own queue, NAPI schedule our backlog.
4595  *   Note that this also raises NET_RX_SOFTIRQ.
4596  */
4597 static void napi_schedule_rps(struct softnet_data *sd)
4598 {
4599 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4600 
4601 #ifdef CONFIG_RPS
4602 	if (sd != mysd) {
4603 		sd->rps_ipi_next = mysd->rps_ipi_list;
4604 		mysd->rps_ipi_list = sd;
4605 
4606 		/* If not called from net_rx_action() or napi_threaded_poll()
4607 		 * we have to raise NET_RX_SOFTIRQ.
4608 		 */
4609 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4610 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4611 		return;
4612 	}
4613 #endif /* CONFIG_RPS */
4614 	__napi_schedule_irqoff(&mysd->backlog);
4615 }
4616 
4617 #ifdef CONFIG_NET_FLOW_LIMIT
4618 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4619 #endif
4620 
4621 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4622 {
4623 #ifdef CONFIG_NET_FLOW_LIMIT
4624 	struct sd_flow_limit *fl;
4625 	struct softnet_data *sd;
4626 	unsigned int old_flow, new_flow;
4627 
4628 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4629 		return false;
4630 
4631 	sd = this_cpu_ptr(&softnet_data);
4632 
4633 	rcu_read_lock();
4634 	fl = rcu_dereference(sd->flow_limit);
4635 	if (fl) {
4636 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4637 		old_flow = fl->history[fl->history_head];
4638 		fl->history[fl->history_head] = new_flow;
4639 
4640 		fl->history_head++;
4641 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4642 
4643 		if (likely(fl->buckets[old_flow]))
4644 			fl->buckets[old_flow]--;
4645 
4646 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4647 			fl->count++;
4648 			rcu_read_unlock();
4649 			return true;
4650 		}
4651 	}
4652 	rcu_read_unlock();
4653 #endif
4654 	return false;
4655 }
4656 
4657 /*
4658  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4659  * queue (may be a remote CPU queue).
4660  */
4661 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4662 			      unsigned int *qtail)
4663 {
4664 	enum skb_drop_reason reason;
4665 	struct softnet_data *sd;
4666 	unsigned long flags;
4667 	unsigned int qlen;
4668 
4669 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4670 	sd = &per_cpu(softnet_data, cpu);
4671 
4672 	rps_lock_irqsave(sd, &flags);
4673 	if (!netif_running(skb->dev))
4674 		goto drop;
4675 	qlen = skb_queue_len(&sd->input_pkt_queue);
4676 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4677 		if (qlen) {
4678 enqueue:
4679 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4680 			input_queue_tail_incr_save(sd, qtail);
4681 			rps_unlock_irq_restore(sd, &flags);
4682 			return NET_RX_SUCCESS;
4683 		}
4684 
4685 		/* Schedule NAPI for backlog device
4686 		 * We can use non atomic operation since we own the queue lock
4687 		 */
4688 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4689 			napi_schedule_rps(sd);
4690 		goto enqueue;
4691 	}
4692 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4693 
4694 drop:
4695 	sd->dropped++;
4696 	rps_unlock_irq_restore(sd, &flags);
4697 
4698 	dev_core_stats_rx_dropped_inc(skb->dev);
4699 	kfree_skb_reason(skb, reason);
4700 	return NET_RX_DROP;
4701 }
4702 
4703 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4704 {
4705 	struct net_device *dev = skb->dev;
4706 	struct netdev_rx_queue *rxqueue;
4707 
4708 	rxqueue = dev->_rx;
4709 
4710 	if (skb_rx_queue_recorded(skb)) {
4711 		u16 index = skb_get_rx_queue(skb);
4712 
4713 		if (unlikely(index >= dev->real_num_rx_queues)) {
4714 			WARN_ONCE(dev->real_num_rx_queues > 1,
4715 				  "%s received packet on queue %u, but number "
4716 				  "of RX queues is %u\n",
4717 				  dev->name, index, dev->real_num_rx_queues);
4718 
4719 			return rxqueue; /* Return first rxqueue */
4720 		}
4721 		rxqueue += index;
4722 	}
4723 	return rxqueue;
4724 }
4725 
4726 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4727 			     struct bpf_prog *xdp_prog)
4728 {
4729 	void *orig_data, *orig_data_end, *hard_start;
4730 	struct netdev_rx_queue *rxqueue;
4731 	bool orig_bcast, orig_host;
4732 	u32 mac_len, frame_sz;
4733 	__be16 orig_eth_type;
4734 	struct ethhdr *eth;
4735 	u32 metalen, act;
4736 	int off;
4737 
4738 	/* The XDP program wants to see the packet starting at the MAC
4739 	 * header.
4740 	 */
4741 	mac_len = skb->data - skb_mac_header(skb);
4742 	hard_start = skb->data - skb_headroom(skb);
4743 
4744 	/* SKB "head" area always have tailroom for skb_shared_info */
4745 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4746 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4747 
4748 	rxqueue = netif_get_rxqueue(skb);
4749 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4750 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4751 			 skb_headlen(skb) + mac_len, true);
4752 
4753 	orig_data_end = xdp->data_end;
4754 	orig_data = xdp->data;
4755 	eth = (struct ethhdr *)xdp->data;
4756 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4757 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4758 	orig_eth_type = eth->h_proto;
4759 
4760 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4761 
4762 	/* check if bpf_xdp_adjust_head was used */
4763 	off = xdp->data - orig_data;
4764 	if (off) {
4765 		if (off > 0)
4766 			__skb_pull(skb, off);
4767 		else if (off < 0)
4768 			__skb_push(skb, -off);
4769 
4770 		skb->mac_header += off;
4771 		skb_reset_network_header(skb);
4772 	}
4773 
4774 	/* check if bpf_xdp_adjust_tail was used */
4775 	off = xdp->data_end - orig_data_end;
4776 	if (off != 0) {
4777 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4778 		skb->len += off; /* positive on grow, negative on shrink */
4779 	}
4780 
4781 	/* check if XDP changed eth hdr such SKB needs update */
4782 	eth = (struct ethhdr *)xdp->data;
4783 	if ((orig_eth_type != eth->h_proto) ||
4784 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4785 						  skb->dev->dev_addr)) ||
4786 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4787 		__skb_push(skb, ETH_HLEN);
4788 		skb->pkt_type = PACKET_HOST;
4789 		skb->protocol = eth_type_trans(skb, skb->dev);
4790 	}
4791 
4792 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4793 	 * before calling us again on redirect path. We do not call do_redirect
4794 	 * as we leave that up to the caller.
4795 	 *
4796 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4797 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4798 	 */
4799 	switch (act) {
4800 	case XDP_REDIRECT:
4801 	case XDP_TX:
4802 		__skb_push(skb, mac_len);
4803 		break;
4804 	case XDP_PASS:
4805 		metalen = xdp->data - xdp->data_meta;
4806 		if (metalen)
4807 			skb_metadata_set(skb, metalen);
4808 		break;
4809 	}
4810 
4811 	return act;
4812 }
4813 
4814 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4815 				     struct xdp_buff *xdp,
4816 				     struct bpf_prog *xdp_prog)
4817 {
4818 	u32 act = XDP_DROP;
4819 
4820 	/* Reinjected packets coming from act_mirred or similar should
4821 	 * not get XDP generic processing.
4822 	 */
4823 	if (skb_is_redirected(skb))
4824 		return XDP_PASS;
4825 
4826 	/* XDP packets must be linear and must have sufficient headroom
4827 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4828 	 * native XDP provides, thus we need to do it here as well.
4829 	 */
4830 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4831 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4832 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4833 		int troom = skb->tail + skb->data_len - skb->end;
4834 
4835 		/* In case we have to go down the path and also linearize,
4836 		 * then lets do the pskb_expand_head() work just once here.
4837 		 */
4838 		if (pskb_expand_head(skb,
4839 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4840 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4841 			goto do_drop;
4842 		if (skb_linearize(skb))
4843 			goto do_drop;
4844 	}
4845 
4846 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4847 	switch (act) {
4848 	case XDP_REDIRECT:
4849 	case XDP_TX:
4850 	case XDP_PASS:
4851 		break;
4852 	default:
4853 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4854 		fallthrough;
4855 	case XDP_ABORTED:
4856 		trace_xdp_exception(skb->dev, xdp_prog, act);
4857 		fallthrough;
4858 	case XDP_DROP:
4859 	do_drop:
4860 		kfree_skb(skb);
4861 		break;
4862 	}
4863 
4864 	return act;
4865 }
4866 
4867 /* When doing generic XDP we have to bypass the qdisc layer and the
4868  * network taps in order to match in-driver-XDP behavior. This also means
4869  * that XDP packets are able to starve other packets going through a qdisc,
4870  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4871  * queues, so they do not have this starvation issue.
4872  */
4873 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4874 {
4875 	struct net_device *dev = skb->dev;
4876 	struct netdev_queue *txq;
4877 	bool free_skb = true;
4878 	int cpu, rc;
4879 
4880 	txq = netdev_core_pick_tx(dev, skb, NULL);
4881 	cpu = smp_processor_id();
4882 	HARD_TX_LOCK(dev, txq, cpu);
4883 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4884 		rc = netdev_start_xmit(skb, dev, txq, 0);
4885 		if (dev_xmit_complete(rc))
4886 			free_skb = false;
4887 	}
4888 	HARD_TX_UNLOCK(dev, txq);
4889 	if (free_skb) {
4890 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4891 		dev_core_stats_tx_dropped_inc(dev);
4892 		kfree_skb(skb);
4893 	}
4894 }
4895 
4896 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4897 
4898 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4899 {
4900 	if (xdp_prog) {
4901 		struct xdp_buff xdp;
4902 		u32 act;
4903 		int err;
4904 
4905 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4906 		if (act != XDP_PASS) {
4907 			switch (act) {
4908 			case XDP_REDIRECT:
4909 				err = xdp_do_generic_redirect(skb->dev, skb,
4910 							      &xdp, xdp_prog);
4911 				if (err)
4912 					goto out_redir;
4913 				break;
4914 			case XDP_TX:
4915 				generic_xdp_tx(skb, xdp_prog);
4916 				break;
4917 			}
4918 			return XDP_DROP;
4919 		}
4920 	}
4921 	return XDP_PASS;
4922 out_redir:
4923 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4924 	return XDP_DROP;
4925 }
4926 EXPORT_SYMBOL_GPL(do_xdp_generic);
4927 
4928 static int netif_rx_internal(struct sk_buff *skb)
4929 {
4930 	int ret;
4931 
4932 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4933 
4934 	trace_netif_rx(skb);
4935 
4936 #ifdef CONFIG_RPS
4937 	if (static_branch_unlikely(&rps_needed)) {
4938 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4939 		int cpu;
4940 
4941 		rcu_read_lock();
4942 
4943 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4944 		if (cpu < 0)
4945 			cpu = smp_processor_id();
4946 
4947 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4948 
4949 		rcu_read_unlock();
4950 	} else
4951 #endif
4952 	{
4953 		unsigned int qtail;
4954 
4955 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4956 	}
4957 	return ret;
4958 }
4959 
4960 /**
4961  *	__netif_rx	-	Slightly optimized version of netif_rx
4962  *	@skb: buffer to post
4963  *
4964  *	This behaves as netif_rx except that it does not disable bottom halves.
4965  *	As a result this function may only be invoked from the interrupt context
4966  *	(either hard or soft interrupt).
4967  */
4968 int __netif_rx(struct sk_buff *skb)
4969 {
4970 	int ret;
4971 
4972 	lockdep_assert_once(hardirq_count() | softirq_count());
4973 
4974 	trace_netif_rx_entry(skb);
4975 	ret = netif_rx_internal(skb);
4976 	trace_netif_rx_exit(ret);
4977 	return ret;
4978 }
4979 EXPORT_SYMBOL(__netif_rx);
4980 
4981 /**
4982  *	netif_rx	-	post buffer to the network code
4983  *	@skb: buffer to post
4984  *
4985  *	This function receives a packet from a device driver and queues it for
4986  *	the upper (protocol) levels to process via the backlog NAPI device. It
4987  *	always succeeds. The buffer may be dropped during processing for
4988  *	congestion control or by the protocol layers.
4989  *	The network buffer is passed via the backlog NAPI device. Modern NIC
4990  *	driver should use NAPI and GRO.
4991  *	This function can used from interrupt and from process context. The
4992  *	caller from process context must not disable interrupts before invoking
4993  *	this function.
4994  *
4995  *	return values:
4996  *	NET_RX_SUCCESS	(no congestion)
4997  *	NET_RX_DROP     (packet was dropped)
4998  *
4999  */
5000 int netif_rx(struct sk_buff *skb)
5001 {
5002 	bool need_bh_off = !(hardirq_count() | softirq_count());
5003 	int ret;
5004 
5005 	if (need_bh_off)
5006 		local_bh_disable();
5007 	trace_netif_rx_entry(skb);
5008 	ret = netif_rx_internal(skb);
5009 	trace_netif_rx_exit(ret);
5010 	if (need_bh_off)
5011 		local_bh_enable();
5012 	return ret;
5013 }
5014 EXPORT_SYMBOL(netif_rx);
5015 
5016 static __latent_entropy void net_tx_action(struct softirq_action *h)
5017 {
5018 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5019 
5020 	if (sd->completion_queue) {
5021 		struct sk_buff *clist;
5022 
5023 		local_irq_disable();
5024 		clist = sd->completion_queue;
5025 		sd->completion_queue = NULL;
5026 		local_irq_enable();
5027 
5028 		while (clist) {
5029 			struct sk_buff *skb = clist;
5030 
5031 			clist = clist->next;
5032 
5033 			WARN_ON(refcount_read(&skb->users));
5034 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5035 				trace_consume_skb(skb, net_tx_action);
5036 			else
5037 				trace_kfree_skb(skb, net_tx_action,
5038 						get_kfree_skb_cb(skb)->reason);
5039 
5040 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5041 				__kfree_skb(skb);
5042 			else
5043 				__napi_kfree_skb(skb,
5044 						 get_kfree_skb_cb(skb)->reason);
5045 		}
5046 	}
5047 
5048 	if (sd->output_queue) {
5049 		struct Qdisc *head;
5050 
5051 		local_irq_disable();
5052 		head = sd->output_queue;
5053 		sd->output_queue = NULL;
5054 		sd->output_queue_tailp = &sd->output_queue;
5055 		local_irq_enable();
5056 
5057 		rcu_read_lock();
5058 
5059 		while (head) {
5060 			struct Qdisc *q = head;
5061 			spinlock_t *root_lock = NULL;
5062 
5063 			head = head->next_sched;
5064 
5065 			/* We need to make sure head->next_sched is read
5066 			 * before clearing __QDISC_STATE_SCHED
5067 			 */
5068 			smp_mb__before_atomic();
5069 
5070 			if (!(q->flags & TCQ_F_NOLOCK)) {
5071 				root_lock = qdisc_lock(q);
5072 				spin_lock(root_lock);
5073 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5074 						     &q->state))) {
5075 				/* There is a synchronize_net() between
5076 				 * STATE_DEACTIVATED flag being set and
5077 				 * qdisc_reset()/some_qdisc_is_busy() in
5078 				 * dev_deactivate(), so we can safely bail out
5079 				 * early here to avoid data race between
5080 				 * qdisc_deactivate() and some_qdisc_is_busy()
5081 				 * for lockless qdisc.
5082 				 */
5083 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5084 				continue;
5085 			}
5086 
5087 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5088 			qdisc_run(q);
5089 			if (root_lock)
5090 				spin_unlock(root_lock);
5091 		}
5092 
5093 		rcu_read_unlock();
5094 	}
5095 
5096 	xfrm_dev_backlog(sd);
5097 }
5098 
5099 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5100 /* This hook is defined here for ATM LANE */
5101 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5102 			     unsigned char *addr) __read_mostly;
5103 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5104 #endif
5105 
5106 static inline struct sk_buff *
5107 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5108 		   struct net_device *orig_dev, bool *another)
5109 {
5110 #ifdef CONFIG_NET_CLS_ACT
5111 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5112 	struct tcf_result cl_res;
5113 
5114 	/* If there's at least one ingress present somewhere (so
5115 	 * we get here via enabled static key), remaining devices
5116 	 * that are not configured with an ingress qdisc will bail
5117 	 * out here.
5118 	 */
5119 	if (!miniq)
5120 		return skb;
5121 
5122 	if (*pt_prev) {
5123 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5124 		*pt_prev = NULL;
5125 	}
5126 
5127 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5128 	tc_skb_cb(skb)->mru = 0;
5129 	tc_skb_cb(skb)->post_ct = false;
5130 	skb->tc_at_ingress = 1;
5131 	mini_qdisc_bstats_cpu_update(miniq, skb);
5132 
5133 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5134 	case TC_ACT_OK:
5135 	case TC_ACT_RECLASSIFY:
5136 		skb->tc_index = TC_H_MIN(cl_res.classid);
5137 		break;
5138 	case TC_ACT_SHOT:
5139 		mini_qdisc_qstats_cpu_drop(miniq);
5140 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5141 		*ret = NET_RX_DROP;
5142 		return NULL;
5143 	case TC_ACT_STOLEN:
5144 	case TC_ACT_QUEUED:
5145 	case TC_ACT_TRAP:
5146 		consume_skb(skb);
5147 		*ret = NET_RX_SUCCESS;
5148 		return NULL;
5149 	case TC_ACT_REDIRECT:
5150 		/* skb_mac_header check was done by cls/act_bpf, so
5151 		 * we can safely push the L2 header back before
5152 		 * redirecting to another netdev
5153 		 */
5154 		__skb_push(skb, skb->mac_len);
5155 		if (skb_do_redirect(skb) == -EAGAIN) {
5156 			__skb_pull(skb, skb->mac_len);
5157 			*another = true;
5158 			break;
5159 		}
5160 		*ret = NET_RX_SUCCESS;
5161 		return NULL;
5162 	case TC_ACT_CONSUMED:
5163 		*ret = NET_RX_SUCCESS;
5164 		return NULL;
5165 	default:
5166 		break;
5167 	}
5168 #endif /* CONFIG_NET_CLS_ACT */
5169 	return skb;
5170 }
5171 
5172 /**
5173  *	netdev_is_rx_handler_busy - check if receive handler is registered
5174  *	@dev: device to check
5175  *
5176  *	Check if a receive handler is already registered for a given device.
5177  *	Return true if there one.
5178  *
5179  *	The caller must hold the rtnl_mutex.
5180  */
5181 bool netdev_is_rx_handler_busy(struct net_device *dev)
5182 {
5183 	ASSERT_RTNL();
5184 	return dev && rtnl_dereference(dev->rx_handler);
5185 }
5186 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5187 
5188 /**
5189  *	netdev_rx_handler_register - register receive handler
5190  *	@dev: device to register a handler for
5191  *	@rx_handler: receive handler to register
5192  *	@rx_handler_data: data pointer that is used by rx handler
5193  *
5194  *	Register a receive handler for a device. This handler will then be
5195  *	called from __netif_receive_skb. A negative errno code is returned
5196  *	on a failure.
5197  *
5198  *	The caller must hold the rtnl_mutex.
5199  *
5200  *	For a general description of rx_handler, see enum rx_handler_result.
5201  */
5202 int netdev_rx_handler_register(struct net_device *dev,
5203 			       rx_handler_func_t *rx_handler,
5204 			       void *rx_handler_data)
5205 {
5206 	if (netdev_is_rx_handler_busy(dev))
5207 		return -EBUSY;
5208 
5209 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5210 		return -EINVAL;
5211 
5212 	/* Note: rx_handler_data must be set before rx_handler */
5213 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5214 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5215 
5216 	return 0;
5217 }
5218 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5219 
5220 /**
5221  *	netdev_rx_handler_unregister - unregister receive handler
5222  *	@dev: device to unregister a handler from
5223  *
5224  *	Unregister a receive handler from a device.
5225  *
5226  *	The caller must hold the rtnl_mutex.
5227  */
5228 void netdev_rx_handler_unregister(struct net_device *dev)
5229 {
5230 
5231 	ASSERT_RTNL();
5232 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5233 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5234 	 * section has a guarantee to see a non NULL rx_handler_data
5235 	 * as well.
5236 	 */
5237 	synchronize_net();
5238 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5239 }
5240 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5241 
5242 /*
5243  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5244  * the special handling of PFMEMALLOC skbs.
5245  */
5246 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5247 {
5248 	switch (skb->protocol) {
5249 	case htons(ETH_P_ARP):
5250 	case htons(ETH_P_IP):
5251 	case htons(ETH_P_IPV6):
5252 	case htons(ETH_P_8021Q):
5253 	case htons(ETH_P_8021AD):
5254 		return true;
5255 	default:
5256 		return false;
5257 	}
5258 }
5259 
5260 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5261 			     int *ret, struct net_device *orig_dev)
5262 {
5263 	if (nf_hook_ingress_active(skb)) {
5264 		int ingress_retval;
5265 
5266 		if (*pt_prev) {
5267 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5268 			*pt_prev = NULL;
5269 		}
5270 
5271 		rcu_read_lock();
5272 		ingress_retval = nf_hook_ingress(skb);
5273 		rcu_read_unlock();
5274 		return ingress_retval;
5275 	}
5276 	return 0;
5277 }
5278 
5279 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5280 				    struct packet_type **ppt_prev)
5281 {
5282 	struct packet_type *ptype, *pt_prev;
5283 	rx_handler_func_t *rx_handler;
5284 	struct sk_buff *skb = *pskb;
5285 	struct net_device *orig_dev;
5286 	bool deliver_exact = false;
5287 	int ret = NET_RX_DROP;
5288 	__be16 type;
5289 
5290 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5291 
5292 	trace_netif_receive_skb(skb);
5293 
5294 	orig_dev = skb->dev;
5295 
5296 	skb_reset_network_header(skb);
5297 	if (!skb_transport_header_was_set(skb))
5298 		skb_reset_transport_header(skb);
5299 	skb_reset_mac_len(skb);
5300 
5301 	pt_prev = NULL;
5302 
5303 another_round:
5304 	skb->skb_iif = skb->dev->ifindex;
5305 
5306 	__this_cpu_inc(softnet_data.processed);
5307 
5308 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5309 		int ret2;
5310 
5311 		migrate_disable();
5312 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5313 		migrate_enable();
5314 
5315 		if (ret2 != XDP_PASS) {
5316 			ret = NET_RX_DROP;
5317 			goto out;
5318 		}
5319 	}
5320 
5321 	if (eth_type_vlan(skb->protocol)) {
5322 		skb = skb_vlan_untag(skb);
5323 		if (unlikely(!skb))
5324 			goto out;
5325 	}
5326 
5327 	if (skb_skip_tc_classify(skb))
5328 		goto skip_classify;
5329 
5330 	if (pfmemalloc)
5331 		goto skip_taps;
5332 
5333 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5334 		if (pt_prev)
5335 			ret = deliver_skb(skb, pt_prev, orig_dev);
5336 		pt_prev = ptype;
5337 	}
5338 
5339 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5340 		if (pt_prev)
5341 			ret = deliver_skb(skb, pt_prev, orig_dev);
5342 		pt_prev = ptype;
5343 	}
5344 
5345 skip_taps:
5346 #ifdef CONFIG_NET_INGRESS
5347 	if (static_branch_unlikely(&ingress_needed_key)) {
5348 		bool another = false;
5349 
5350 		nf_skip_egress(skb, true);
5351 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5352 					 &another);
5353 		if (another)
5354 			goto another_round;
5355 		if (!skb)
5356 			goto out;
5357 
5358 		nf_skip_egress(skb, false);
5359 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5360 			goto out;
5361 	}
5362 #endif
5363 	skb_reset_redirect(skb);
5364 skip_classify:
5365 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5366 		goto drop;
5367 
5368 	if (skb_vlan_tag_present(skb)) {
5369 		if (pt_prev) {
5370 			ret = deliver_skb(skb, pt_prev, orig_dev);
5371 			pt_prev = NULL;
5372 		}
5373 		if (vlan_do_receive(&skb))
5374 			goto another_round;
5375 		else if (unlikely(!skb))
5376 			goto out;
5377 	}
5378 
5379 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5380 	if (rx_handler) {
5381 		if (pt_prev) {
5382 			ret = deliver_skb(skb, pt_prev, orig_dev);
5383 			pt_prev = NULL;
5384 		}
5385 		switch (rx_handler(&skb)) {
5386 		case RX_HANDLER_CONSUMED:
5387 			ret = NET_RX_SUCCESS;
5388 			goto out;
5389 		case RX_HANDLER_ANOTHER:
5390 			goto another_round;
5391 		case RX_HANDLER_EXACT:
5392 			deliver_exact = true;
5393 			break;
5394 		case RX_HANDLER_PASS:
5395 			break;
5396 		default:
5397 			BUG();
5398 		}
5399 	}
5400 
5401 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5402 check_vlan_id:
5403 		if (skb_vlan_tag_get_id(skb)) {
5404 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5405 			 * find vlan device.
5406 			 */
5407 			skb->pkt_type = PACKET_OTHERHOST;
5408 		} else if (eth_type_vlan(skb->protocol)) {
5409 			/* Outer header is 802.1P with vlan 0, inner header is
5410 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5411 			 * not find vlan dev for vlan id 0.
5412 			 */
5413 			__vlan_hwaccel_clear_tag(skb);
5414 			skb = skb_vlan_untag(skb);
5415 			if (unlikely(!skb))
5416 				goto out;
5417 			if (vlan_do_receive(&skb))
5418 				/* After stripping off 802.1P header with vlan 0
5419 				 * vlan dev is found for inner header.
5420 				 */
5421 				goto another_round;
5422 			else if (unlikely(!skb))
5423 				goto out;
5424 			else
5425 				/* We have stripped outer 802.1P vlan 0 header.
5426 				 * But could not find vlan dev.
5427 				 * check again for vlan id to set OTHERHOST.
5428 				 */
5429 				goto check_vlan_id;
5430 		}
5431 		/* Note: we might in the future use prio bits
5432 		 * and set skb->priority like in vlan_do_receive()
5433 		 * For the time being, just ignore Priority Code Point
5434 		 */
5435 		__vlan_hwaccel_clear_tag(skb);
5436 	}
5437 
5438 	type = skb->protocol;
5439 
5440 	/* deliver only exact match when indicated */
5441 	if (likely(!deliver_exact)) {
5442 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5443 				       &ptype_base[ntohs(type) &
5444 						   PTYPE_HASH_MASK]);
5445 	}
5446 
5447 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5448 			       &orig_dev->ptype_specific);
5449 
5450 	if (unlikely(skb->dev != orig_dev)) {
5451 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5452 				       &skb->dev->ptype_specific);
5453 	}
5454 
5455 	if (pt_prev) {
5456 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5457 			goto drop;
5458 		*ppt_prev = pt_prev;
5459 	} else {
5460 drop:
5461 		if (!deliver_exact)
5462 			dev_core_stats_rx_dropped_inc(skb->dev);
5463 		else
5464 			dev_core_stats_rx_nohandler_inc(skb->dev);
5465 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5466 		/* Jamal, now you will not able to escape explaining
5467 		 * me how you were going to use this. :-)
5468 		 */
5469 		ret = NET_RX_DROP;
5470 	}
5471 
5472 out:
5473 	/* The invariant here is that if *ppt_prev is not NULL
5474 	 * then skb should also be non-NULL.
5475 	 *
5476 	 * Apparently *ppt_prev assignment above holds this invariant due to
5477 	 * skb dereferencing near it.
5478 	 */
5479 	*pskb = skb;
5480 	return ret;
5481 }
5482 
5483 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5484 {
5485 	struct net_device *orig_dev = skb->dev;
5486 	struct packet_type *pt_prev = NULL;
5487 	int ret;
5488 
5489 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5490 	if (pt_prev)
5491 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5492 					 skb->dev, pt_prev, orig_dev);
5493 	return ret;
5494 }
5495 
5496 /**
5497  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5498  *	@skb: buffer to process
5499  *
5500  *	More direct receive version of netif_receive_skb().  It should
5501  *	only be used by callers that have a need to skip RPS and Generic XDP.
5502  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5503  *
5504  *	This function may only be called from softirq context and interrupts
5505  *	should be enabled.
5506  *
5507  *	Return values (usually ignored):
5508  *	NET_RX_SUCCESS: no congestion
5509  *	NET_RX_DROP: packet was dropped
5510  */
5511 int netif_receive_skb_core(struct sk_buff *skb)
5512 {
5513 	int ret;
5514 
5515 	rcu_read_lock();
5516 	ret = __netif_receive_skb_one_core(skb, false);
5517 	rcu_read_unlock();
5518 
5519 	return ret;
5520 }
5521 EXPORT_SYMBOL(netif_receive_skb_core);
5522 
5523 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5524 						  struct packet_type *pt_prev,
5525 						  struct net_device *orig_dev)
5526 {
5527 	struct sk_buff *skb, *next;
5528 
5529 	if (!pt_prev)
5530 		return;
5531 	if (list_empty(head))
5532 		return;
5533 	if (pt_prev->list_func != NULL)
5534 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5535 				   ip_list_rcv, head, pt_prev, orig_dev);
5536 	else
5537 		list_for_each_entry_safe(skb, next, head, list) {
5538 			skb_list_del_init(skb);
5539 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5540 		}
5541 }
5542 
5543 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5544 {
5545 	/* Fast-path assumptions:
5546 	 * - There is no RX handler.
5547 	 * - Only one packet_type matches.
5548 	 * If either of these fails, we will end up doing some per-packet
5549 	 * processing in-line, then handling the 'last ptype' for the whole
5550 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5551 	 * because the 'last ptype' must be constant across the sublist, and all
5552 	 * other ptypes are handled per-packet.
5553 	 */
5554 	/* Current (common) ptype of sublist */
5555 	struct packet_type *pt_curr = NULL;
5556 	/* Current (common) orig_dev of sublist */
5557 	struct net_device *od_curr = NULL;
5558 	struct list_head sublist;
5559 	struct sk_buff *skb, *next;
5560 
5561 	INIT_LIST_HEAD(&sublist);
5562 	list_for_each_entry_safe(skb, next, head, list) {
5563 		struct net_device *orig_dev = skb->dev;
5564 		struct packet_type *pt_prev = NULL;
5565 
5566 		skb_list_del_init(skb);
5567 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5568 		if (!pt_prev)
5569 			continue;
5570 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5571 			/* dispatch old sublist */
5572 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5573 			/* start new sublist */
5574 			INIT_LIST_HEAD(&sublist);
5575 			pt_curr = pt_prev;
5576 			od_curr = orig_dev;
5577 		}
5578 		list_add_tail(&skb->list, &sublist);
5579 	}
5580 
5581 	/* dispatch final sublist */
5582 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5583 }
5584 
5585 static int __netif_receive_skb(struct sk_buff *skb)
5586 {
5587 	int ret;
5588 
5589 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5590 		unsigned int noreclaim_flag;
5591 
5592 		/*
5593 		 * PFMEMALLOC skbs are special, they should
5594 		 * - be delivered to SOCK_MEMALLOC sockets only
5595 		 * - stay away from userspace
5596 		 * - have bounded memory usage
5597 		 *
5598 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5599 		 * context down to all allocation sites.
5600 		 */
5601 		noreclaim_flag = memalloc_noreclaim_save();
5602 		ret = __netif_receive_skb_one_core(skb, true);
5603 		memalloc_noreclaim_restore(noreclaim_flag);
5604 	} else
5605 		ret = __netif_receive_skb_one_core(skb, false);
5606 
5607 	return ret;
5608 }
5609 
5610 static void __netif_receive_skb_list(struct list_head *head)
5611 {
5612 	unsigned long noreclaim_flag = 0;
5613 	struct sk_buff *skb, *next;
5614 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5615 
5616 	list_for_each_entry_safe(skb, next, head, list) {
5617 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5618 			struct list_head sublist;
5619 
5620 			/* Handle the previous sublist */
5621 			list_cut_before(&sublist, head, &skb->list);
5622 			if (!list_empty(&sublist))
5623 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5624 			pfmemalloc = !pfmemalloc;
5625 			/* See comments in __netif_receive_skb */
5626 			if (pfmemalloc)
5627 				noreclaim_flag = memalloc_noreclaim_save();
5628 			else
5629 				memalloc_noreclaim_restore(noreclaim_flag);
5630 		}
5631 	}
5632 	/* Handle the remaining sublist */
5633 	if (!list_empty(head))
5634 		__netif_receive_skb_list_core(head, pfmemalloc);
5635 	/* Restore pflags */
5636 	if (pfmemalloc)
5637 		memalloc_noreclaim_restore(noreclaim_flag);
5638 }
5639 
5640 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5641 {
5642 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5643 	struct bpf_prog *new = xdp->prog;
5644 	int ret = 0;
5645 
5646 	switch (xdp->command) {
5647 	case XDP_SETUP_PROG:
5648 		rcu_assign_pointer(dev->xdp_prog, new);
5649 		if (old)
5650 			bpf_prog_put(old);
5651 
5652 		if (old && !new) {
5653 			static_branch_dec(&generic_xdp_needed_key);
5654 		} else if (new && !old) {
5655 			static_branch_inc(&generic_xdp_needed_key);
5656 			dev_disable_lro(dev);
5657 			dev_disable_gro_hw(dev);
5658 		}
5659 		break;
5660 
5661 	default:
5662 		ret = -EINVAL;
5663 		break;
5664 	}
5665 
5666 	return ret;
5667 }
5668 
5669 static int netif_receive_skb_internal(struct sk_buff *skb)
5670 {
5671 	int ret;
5672 
5673 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5674 
5675 	if (skb_defer_rx_timestamp(skb))
5676 		return NET_RX_SUCCESS;
5677 
5678 	rcu_read_lock();
5679 #ifdef CONFIG_RPS
5680 	if (static_branch_unlikely(&rps_needed)) {
5681 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5682 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5683 
5684 		if (cpu >= 0) {
5685 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5686 			rcu_read_unlock();
5687 			return ret;
5688 		}
5689 	}
5690 #endif
5691 	ret = __netif_receive_skb(skb);
5692 	rcu_read_unlock();
5693 	return ret;
5694 }
5695 
5696 void netif_receive_skb_list_internal(struct list_head *head)
5697 {
5698 	struct sk_buff *skb, *next;
5699 	struct list_head sublist;
5700 
5701 	INIT_LIST_HEAD(&sublist);
5702 	list_for_each_entry_safe(skb, next, head, list) {
5703 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5704 		skb_list_del_init(skb);
5705 		if (!skb_defer_rx_timestamp(skb))
5706 			list_add_tail(&skb->list, &sublist);
5707 	}
5708 	list_splice_init(&sublist, head);
5709 
5710 	rcu_read_lock();
5711 #ifdef CONFIG_RPS
5712 	if (static_branch_unlikely(&rps_needed)) {
5713 		list_for_each_entry_safe(skb, next, head, list) {
5714 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5715 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5716 
5717 			if (cpu >= 0) {
5718 				/* Will be handled, remove from list */
5719 				skb_list_del_init(skb);
5720 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5721 			}
5722 		}
5723 	}
5724 #endif
5725 	__netif_receive_skb_list(head);
5726 	rcu_read_unlock();
5727 }
5728 
5729 /**
5730  *	netif_receive_skb - process receive buffer from network
5731  *	@skb: buffer to process
5732  *
5733  *	netif_receive_skb() is the main receive data processing function.
5734  *	It always succeeds. The buffer may be dropped during processing
5735  *	for congestion control or by the protocol layers.
5736  *
5737  *	This function may only be called from softirq context and interrupts
5738  *	should be enabled.
5739  *
5740  *	Return values (usually ignored):
5741  *	NET_RX_SUCCESS: no congestion
5742  *	NET_RX_DROP: packet was dropped
5743  */
5744 int netif_receive_skb(struct sk_buff *skb)
5745 {
5746 	int ret;
5747 
5748 	trace_netif_receive_skb_entry(skb);
5749 
5750 	ret = netif_receive_skb_internal(skb);
5751 	trace_netif_receive_skb_exit(ret);
5752 
5753 	return ret;
5754 }
5755 EXPORT_SYMBOL(netif_receive_skb);
5756 
5757 /**
5758  *	netif_receive_skb_list - process many receive buffers from network
5759  *	@head: list of skbs to process.
5760  *
5761  *	Since return value of netif_receive_skb() is normally ignored, and
5762  *	wouldn't be meaningful for a list, this function returns void.
5763  *
5764  *	This function may only be called from softirq context and interrupts
5765  *	should be enabled.
5766  */
5767 void netif_receive_skb_list(struct list_head *head)
5768 {
5769 	struct sk_buff *skb;
5770 
5771 	if (list_empty(head))
5772 		return;
5773 	if (trace_netif_receive_skb_list_entry_enabled()) {
5774 		list_for_each_entry(skb, head, list)
5775 			trace_netif_receive_skb_list_entry(skb);
5776 	}
5777 	netif_receive_skb_list_internal(head);
5778 	trace_netif_receive_skb_list_exit(0);
5779 }
5780 EXPORT_SYMBOL(netif_receive_skb_list);
5781 
5782 static DEFINE_PER_CPU(struct work_struct, flush_works);
5783 
5784 /* Network device is going away, flush any packets still pending */
5785 static void flush_backlog(struct work_struct *work)
5786 {
5787 	struct sk_buff *skb, *tmp;
5788 	struct softnet_data *sd;
5789 
5790 	local_bh_disable();
5791 	sd = this_cpu_ptr(&softnet_data);
5792 
5793 	rps_lock_irq_disable(sd);
5794 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5795 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5796 			__skb_unlink(skb, &sd->input_pkt_queue);
5797 			dev_kfree_skb_irq(skb);
5798 			input_queue_head_incr(sd);
5799 		}
5800 	}
5801 	rps_unlock_irq_enable(sd);
5802 
5803 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5804 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5805 			__skb_unlink(skb, &sd->process_queue);
5806 			kfree_skb(skb);
5807 			input_queue_head_incr(sd);
5808 		}
5809 	}
5810 	local_bh_enable();
5811 }
5812 
5813 static bool flush_required(int cpu)
5814 {
5815 #if IS_ENABLED(CONFIG_RPS)
5816 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5817 	bool do_flush;
5818 
5819 	rps_lock_irq_disable(sd);
5820 
5821 	/* as insertion into process_queue happens with the rps lock held,
5822 	 * process_queue access may race only with dequeue
5823 	 */
5824 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5825 		   !skb_queue_empty_lockless(&sd->process_queue);
5826 	rps_unlock_irq_enable(sd);
5827 
5828 	return do_flush;
5829 #endif
5830 	/* without RPS we can't safely check input_pkt_queue: during a
5831 	 * concurrent remote skb_queue_splice() we can detect as empty both
5832 	 * input_pkt_queue and process_queue even if the latter could end-up
5833 	 * containing a lot of packets.
5834 	 */
5835 	return true;
5836 }
5837 
5838 static void flush_all_backlogs(void)
5839 {
5840 	static cpumask_t flush_cpus;
5841 	unsigned int cpu;
5842 
5843 	/* since we are under rtnl lock protection we can use static data
5844 	 * for the cpumask and avoid allocating on stack the possibly
5845 	 * large mask
5846 	 */
5847 	ASSERT_RTNL();
5848 
5849 	cpus_read_lock();
5850 
5851 	cpumask_clear(&flush_cpus);
5852 	for_each_online_cpu(cpu) {
5853 		if (flush_required(cpu)) {
5854 			queue_work_on(cpu, system_highpri_wq,
5855 				      per_cpu_ptr(&flush_works, cpu));
5856 			cpumask_set_cpu(cpu, &flush_cpus);
5857 		}
5858 	}
5859 
5860 	/* we can have in flight packet[s] on the cpus we are not flushing,
5861 	 * synchronize_net() in unregister_netdevice_many() will take care of
5862 	 * them
5863 	 */
5864 	for_each_cpu(cpu, &flush_cpus)
5865 		flush_work(per_cpu_ptr(&flush_works, cpu));
5866 
5867 	cpus_read_unlock();
5868 }
5869 
5870 static void net_rps_send_ipi(struct softnet_data *remsd)
5871 {
5872 #ifdef CONFIG_RPS
5873 	while (remsd) {
5874 		struct softnet_data *next = remsd->rps_ipi_next;
5875 
5876 		if (cpu_online(remsd->cpu))
5877 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5878 		remsd = next;
5879 	}
5880 #endif
5881 }
5882 
5883 /*
5884  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5885  * Note: called with local irq disabled, but exits with local irq enabled.
5886  */
5887 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5888 {
5889 #ifdef CONFIG_RPS
5890 	struct softnet_data *remsd = sd->rps_ipi_list;
5891 
5892 	if (remsd) {
5893 		sd->rps_ipi_list = NULL;
5894 
5895 		local_irq_enable();
5896 
5897 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5898 		net_rps_send_ipi(remsd);
5899 	} else
5900 #endif
5901 		local_irq_enable();
5902 }
5903 
5904 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5905 {
5906 #ifdef CONFIG_RPS
5907 	return sd->rps_ipi_list != NULL;
5908 #else
5909 	return false;
5910 #endif
5911 }
5912 
5913 static int process_backlog(struct napi_struct *napi, int quota)
5914 {
5915 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5916 	bool again = true;
5917 	int work = 0;
5918 
5919 	/* Check if we have pending ipi, its better to send them now,
5920 	 * not waiting net_rx_action() end.
5921 	 */
5922 	if (sd_has_rps_ipi_waiting(sd)) {
5923 		local_irq_disable();
5924 		net_rps_action_and_irq_enable(sd);
5925 	}
5926 
5927 	napi->weight = READ_ONCE(dev_rx_weight);
5928 	while (again) {
5929 		struct sk_buff *skb;
5930 
5931 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5932 			rcu_read_lock();
5933 			__netif_receive_skb(skb);
5934 			rcu_read_unlock();
5935 			input_queue_head_incr(sd);
5936 			if (++work >= quota)
5937 				return work;
5938 
5939 		}
5940 
5941 		rps_lock_irq_disable(sd);
5942 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5943 			/*
5944 			 * Inline a custom version of __napi_complete().
5945 			 * only current cpu owns and manipulates this napi,
5946 			 * and NAPI_STATE_SCHED is the only possible flag set
5947 			 * on backlog.
5948 			 * We can use a plain write instead of clear_bit(),
5949 			 * and we dont need an smp_mb() memory barrier.
5950 			 */
5951 			napi->state = 0;
5952 			again = false;
5953 		} else {
5954 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5955 						   &sd->process_queue);
5956 		}
5957 		rps_unlock_irq_enable(sd);
5958 	}
5959 
5960 	return work;
5961 }
5962 
5963 /**
5964  * __napi_schedule - schedule for receive
5965  * @n: entry to schedule
5966  *
5967  * The entry's receive function will be scheduled to run.
5968  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5969  */
5970 void __napi_schedule(struct napi_struct *n)
5971 {
5972 	unsigned long flags;
5973 
5974 	local_irq_save(flags);
5975 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5976 	local_irq_restore(flags);
5977 }
5978 EXPORT_SYMBOL(__napi_schedule);
5979 
5980 /**
5981  *	napi_schedule_prep - check if napi can be scheduled
5982  *	@n: napi context
5983  *
5984  * Test if NAPI routine is already running, and if not mark
5985  * it as running.  This is used as a condition variable to
5986  * insure only one NAPI poll instance runs.  We also make
5987  * sure there is no pending NAPI disable.
5988  */
5989 bool napi_schedule_prep(struct napi_struct *n)
5990 {
5991 	unsigned long new, val = READ_ONCE(n->state);
5992 
5993 	do {
5994 		if (unlikely(val & NAPIF_STATE_DISABLE))
5995 			return false;
5996 		new = val | NAPIF_STATE_SCHED;
5997 
5998 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5999 		 * This was suggested by Alexander Duyck, as compiler
6000 		 * emits better code than :
6001 		 * if (val & NAPIF_STATE_SCHED)
6002 		 *     new |= NAPIF_STATE_MISSED;
6003 		 */
6004 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6005 						   NAPIF_STATE_MISSED;
6006 	} while (!try_cmpxchg(&n->state, &val, new));
6007 
6008 	return !(val & NAPIF_STATE_SCHED);
6009 }
6010 EXPORT_SYMBOL(napi_schedule_prep);
6011 
6012 /**
6013  * __napi_schedule_irqoff - schedule for receive
6014  * @n: entry to schedule
6015  *
6016  * Variant of __napi_schedule() assuming hard irqs are masked.
6017  *
6018  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6019  * because the interrupt disabled assumption might not be true
6020  * due to force-threaded interrupts and spinlock substitution.
6021  */
6022 void __napi_schedule_irqoff(struct napi_struct *n)
6023 {
6024 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6025 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6026 	else
6027 		__napi_schedule(n);
6028 }
6029 EXPORT_SYMBOL(__napi_schedule_irqoff);
6030 
6031 bool napi_complete_done(struct napi_struct *n, int work_done)
6032 {
6033 	unsigned long flags, val, new, timeout = 0;
6034 	bool ret = true;
6035 
6036 	/*
6037 	 * 1) Don't let napi dequeue from the cpu poll list
6038 	 *    just in case its running on a different cpu.
6039 	 * 2) If we are busy polling, do nothing here, we have
6040 	 *    the guarantee we will be called later.
6041 	 */
6042 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6043 				 NAPIF_STATE_IN_BUSY_POLL)))
6044 		return false;
6045 
6046 	if (work_done) {
6047 		if (n->gro_bitmask)
6048 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6049 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6050 	}
6051 	if (n->defer_hard_irqs_count > 0) {
6052 		n->defer_hard_irqs_count--;
6053 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6054 		if (timeout)
6055 			ret = false;
6056 	}
6057 	if (n->gro_bitmask) {
6058 		/* When the NAPI instance uses a timeout and keeps postponing
6059 		 * it, we need to bound somehow the time packets are kept in
6060 		 * the GRO layer
6061 		 */
6062 		napi_gro_flush(n, !!timeout);
6063 	}
6064 
6065 	gro_normal_list(n);
6066 
6067 	if (unlikely(!list_empty(&n->poll_list))) {
6068 		/* If n->poll_list is not empty, we need to mask irqs */
6069 		local_irq_save(flags);
6070 		list_del_init(&n->poll_list);
6071 		local_irq_restore(flags);
6072 	}
6073 	WRITE_ONCE(n->list_owner, -1);
6074 
6075 	val = READ_ONCE(n->state);
6076 	do {
6077 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6078 
6079 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6080 			      NAPIF_STATE_SCHED_THREADED |
6081 			      NAPIF_STATE_PREFER_BUSY_POLL);
6082 
6083 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6084 		 * because we will call napi->poll() one more time.
6085 		 * This C code was suggested by Alexander Duyck to help gcc.
6086 		 */
6087 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6088 						    NAPIF_STATE_SCHED;
6089 	} while (!try_cmpxchg(&n->state, &val, new));
6090 
6091 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6092 		__napi_schedule(n);
6093 		return false;
6094 	}
6095 
6096 	if (timeout)
6097 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6098 			      HRTIMER_MODE_REL_PINNED);
6099 	return ret;
6100 }
6101 EXPORT_SYMBOL(napi_complete_done);
6102 
6103 /* must be called under rcu_read_lock(), as we dont take a reference */
6104 static struct napi_struct *napi_by_id(unsigned int napi_id)
6105 {
6106 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6107 	struct napi_struct *napi;
6108 
6109 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6110 		if (napi->napi_id == napi_id)
6111 			return napi;
6112 
6113 	return NULL;
6114 }
6115 
6116 #if defined(CONFIG_NET_RX_BUSY_POLL)
6117 
6118 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6119 {
6120 	if (!skip_schedule) {
6121 		gro_normal_list(napi);
6122 		__napi_schedule(napi);
6123 		return;
6124 	}
6125 
6126 	if (napi->gro_bitmask) {
6127 		/* flush too old packets
6128 		 * If HZ < 1000, flush all packets.
6129 		 */
6130 		napi_gro_flush(napi, HZ >= 1000);
6131 	}
6132 
6133 	gro_normal_list(napi);
6134 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6135 }
6136 
6137 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6138 			   u16 budget)
6139 {
6140 	bool skip_schedule = false;
6141 	unsigned long timeout;
6142 	int rc;
6143 
6144 	/* Busy polling means there is a high chance device driver hard irq
6145 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6146 	 * set in napi_schedule_prep().
6147 	 * Since we are about to call napi->poll() once more, we can safely
6148 	 * clear NAPI_STATE_MISSED.
6149 	 *
6150 	 * Note: x86 could use a single "lock and ..." instruction
6151 	 * to perform these two clear_bit()
6152 	 */
6153 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6154 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6155 
6156 	local_bh_disable();
6157 
6158 	if (prefer_busy_poll) {
6159 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6160 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6161 		if (napi->defer_hard_irqs_count && timeout) {
6162 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6163 			skip_schedule = true;
6164 		}
6165 	}
6166 
6167 	/* All we really want here is to re-enable device interrupts.
6168 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6169 	 */
6170 	rc = napi->poll(napi, budget);
6171 	/* We can't gro_normal_list() here, because napi->poll() might have
6172 	 * rearmed the napi (napi_complete_done()) in which case it could
6173 	 * already be running on another CPU.
6174 	 */
6175 	trace_napi_poll(napi, rc, budget);
6176 	netpoll_poll_unlock(have_poll_lock);
6177 	if (rc == budget)
6178 		__busy_poll_stop(napi, skip_schedule);
6179 	local_bh_enable();
6180 }
6181 
6182 void napi_busy_loop(unsigned int napi_id,
6183 		    bool (*loop_end)(void *, unsigned long),
6184 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6185 {
6186 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6187 	int (*napi_poll)(struct napi_struct *napi, int budget);
6188 	void *have_poll_lock = NULL;
6189 	struct napi_struct *napi;
6190 
6191 restart:
6192 	napi_poll = NULL;
6193 
6194 	rcu_read_lock();
6195 
6196 	napi = napi_by_id(napi_id);
6197 	if (!napi)
6198 		goto out;
6199 
6200 	preempt_disable();
6201 	for (;;) {
6202 		int work = 0;
6203 
6204 		local_bh_disable();
6205 		if (!napi_poll) {
6206 			unsigned long val = READ_ONCE(napi->state);
6207 
6208 			/* If multiple threads are competing for this napi,
6209 			 * we avoid dirtying napi->state as much as we can.
6210 			 */
6211 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6212 				   NAPIF_STATE_IN_BUSY_POLL)) {
6213 				if (prefer_busy_poll)
6214 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6215 				goto count;
6216 			}
6217 			if (cmpxchg(&napi->state, val,
6218 				    val | NAPIF_STATE_IN_BUSY_POLL |
6219 					  NAPIF_STATE_SCHED) != val) {
6220 				if (prefer_busy_poll)
6221 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6222 				goto count;
6223 			}
6224 			have_poll_lock = netpoll_poll_lock(napi);
6225 			napi_poll = napi->poll;
6226 		}
6227 		work = napi_poll(napi, budget);
6228 		trace_napi_poll(napi, work, budget);
6229 		gro_normal_list(napi);
6230 count:
6231 		if (work > 0)
6232 			__NET_ADD_STATS(dev_net(napi->dev),
6233 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6234 		local_bh_enable();
6235 
6236 		if (!loop_end || loop_end(loop_end_arg, start_time))
6237 			break;
6238 
6239 		if (unlikely(need_resched())) {
6240 			if (napi_poll)
6241 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6242 			preempt_enable();
6243 			rcu_read_unlock();
6244 			cond_resched();
6245 			if (loop_end(loop_end_arg, start_time))
6246 				return;
6247 			goto restart;
6248 		}
6249 		cpu_relax();
6250 	}
6251 	if (napi_poll)
6252 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6253 	preempt_enable();
6254 out:
6255 	rcu_read_unlock();
6256 }
6257 EXPORT_SYMBOL(napi_busy_loop);
6258 
6259 #endif /* CONFIG_NET_RX_BUSY_POLL */
6260 
6261 static void napi_hash_add(struct napi_struct *napi)
6262 {
6263 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6264 		return;
6265 
6266 	spin_lock(&napi_hash_lock);
6267 
6268 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6269 	do {
6270 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6271 			napi_gen_id = MIN_NAPI_ID;
6272 	} while (napi_by_id(napi_gen_id));
6273 	napi->napi_id = napi_gen_id;
6274 
6275 	hlist_add_head_rcu(&napi->napi_hash_node,
6276 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6277 
6278 	spin_unlock(&napi_hash_lock);
6279 }
6280 
6281 /* Warning : caller is responsible to make sure rcu grace period
6282  * is respected before freeing memory containing @napi
6283  */
6284 static void napi_hash_del(struct napi_struct *napi)
6285 {
6286 	spin_lock(&napi_hash_lock);
6287 
6288 	hlist_del_init_rcu(&napi->napi_hash_node);
6289 
6290 	spin_unlock(&napi_hash_lock);
6291 }
6292 
6293 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6294 {
6295 	struct napi_struct *napi;
6296 
6297 	napi = container_of(timer, struct napi_struct, timer);
6298 
6299 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6300 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6301 	 */
6302 	if (!napi_disable_pending(napi) &&
6303 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6304 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6305 		__napi_schedule_irqoff(napi);
6306 	}
6307 
6308 	return HRTIMER_NORESTART;
6309 }
6310 
6311 static void init_gro_hash(struct napi_struct *napi)
6312 {
6313 	int i;
6314 
6315 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6316 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6317 		napi->gro_hash[i].count = 0;
6318 	}
6319 	napi->gro_bitmask = 0;
6320 }
6321 
6322 int dev_set_threaded(struct net_device *dev, bool threaded)
6323 {
6324 	struct napi_struct *napi;
6325 	int err = 0;
6326 
6327 	if (dev->threaded == threaded)
6328 		return 0;
6329 
6330 	if (threaded) {
6331 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6332 			if (!napi->thread) {
6333 				err = napi_kthread_create(napi);
6334 				if (err) {
6335 					threaded = false;
6336 					break;
6337 				}
6338 			}
6339 		}
6340 	}
6341 
6342 	dev->threaded = threaded;
6343 
6344 	/* Make sure kthread is created before THREADED bit
6345 	 * is set.
6346 	 */
6347 	smp_mb__before_atomic();
6348 
6349 	/* Setting/unsetting threaded mode on a napi might not immediately
6350 	 * take effect, if the current napi instance is actively being
6351 	 * polled. In this case, the switch between threaded mode and
6352 	 * softirq mode will happen in the next round of napi_schedule().
6353 	 * This should not cause hiccups/stalls to the live traffic.
6354 	 */
6355 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6356 		if (threaded)
6357 			set_bit(NAPI_STATE_THREADED, &napi->state);
6358 		else
6359 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6360 	}
6361 
6362 	return err;
6363 }
6364 EXPORT_SYMBOL(dev_set_threaded);
6365 
6366 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6367 			   int (*poll)(struct napi_struct *, int), int weight)
6368 {
6369 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6370 		return;
6371 
6372 	INIT_LIST_HEAD(&napi->poll_list);
6373 	INIT_HLIST_NODE(&napi->napi_hash_node);
6374 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6375 	napi->timer.function = napi_watchdog;
6376 	init_gro_hash(napi);
6377 	napi->skb = NULL;
6378 	INIT_LIST_HEAD(&napi->rx_list);
6379 	napi->rx_count = 0;
6380 	napi->poll = poll;
6381 	if (weight > NAPI_POLL_WEIGHT)
6382 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6383 				weight);
6384 	napi->weight = weight;
6385 	napi->dev = dev;
6386 #ifdef CONFIG_NETPOLL
6387 	napi->poll_owner = -1;
6388 #endif
6389 	napi->list_owner = -1;
6390 	set_bit(NAPI_STATE_SCHED, &napi->state);
6391 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6392 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6393 	napi_hash_add(napi);
6394 	napi_get_frags_check(napi);
6395 	/* Create kthread for this napi if dev->threaded is set.
6396 	 * Clear dev->threaded if kthread creation failed so that
6397 	 * threaded mode will not be enabled in napi_enable().
6398 	 */
6399 	if (dev->threaded && napi_kthread_create(napi))
6400 		dev->threaded = 0;
6401 }
6402 EXPORT_SYMBOL(netif_napi_add_weight);
6403 
6404 void napi_disable(struct napi_struct *n)
6405 {
6406 	unsigned long val, new;
6407 
6408 	might_sleep();
6409 	set_bit(NAPI_STATE_DISABLE, &n->state);
6410 
6411 	val = READ_ONCE(n->state);
6412 	do {
6413 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6414 			usleep_range(20, 200);
6415 			val = READ_ONCE(n->state);
6416 		}
6417 
6418 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6419 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6420 	} while (!try_cmpxchg(&n->state, &val, new));
6421 
6422 	hrtimer_cancel(&n->timer);
6423 
6424 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6425 }
6426 EXPORT_SYMBOL(napi_disable);
6427 
6428 /**
6429  *	napi_enable - enable NAPI scheduling
6430  *	@n: NAPI context
6431  *
6432  * Resume NAPI from being scheduled on this context.
6433  * Must be paired with napi_disable.
6434  */
6435 void napi_enable(struct napi_struct *n)
6436 {
6437 	unsigned long new, val = READ_ONCE(n->state);
6438 
6439 	do {
6440 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6441 
6442 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6443 		if (n->dev->threaded && n->thread)
6444 			new |= NAPIF_STATE_THREADED;
6445 	} while (!try_cmpxchg(&n->state, &val, new));
6446 }
6447 EXPORT_SYMBOL(napi_enable);
6448 
6449 static void flush_gro_hash(struct napi_struct *napi)
6450 {
6451 	int i;
6452 
6453 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6454 		struct sk_buff *skb, *n;
6455 
6456 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6457 			kfree_skb(skb);
6458 		napi->gro_hash[i].count = 0;
6459 	}
6460 }
6461 
6462 /* Must be called in process context */
6463 void __netif_napi_del(struct napi_struct *napi)
6464 {
6465 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6466 		return;
6467 
6468 	napi_hash_del(napi);
6469 	list_del_rcu(&napi->dev_list);
6470 	napi_free_frags(napi);
6471 
6472 	flush_gro_hash(napi);
6473 	napi->gro_bitmask = 0;
6474 
6475 	if (napi->thread) {
6476 		kthread_stop(napi->thread);
6477 		napi->thread = NULL;
6478 	}
6479 }
6480 EXPORT_SYMBOL(__netif_napi_del);
6481 
6482 static int __napi_poll(struct napi_struct *n, bool *repoll)
6483 {
6484 	int work, weight;
6485 
6486 	weight = n->weight;
6487 
6488 	/* This NAPI_STATE_SCHED test is for avoiding a race
6489 	 * with netpoll's poll_napi().  Only the entity which
6490 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6491 	 * actually make the ->poll() call.  Therefore we avoid
6492 	 * accidentally calling ->poll() when NAPI is not scheduled.
6493 	 */
6494 	work = 0;
6495 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6496 		work = n->poll(n, weight);
6497 		trace_napi_poll(n, work, weight);
6498 	}
6499 
6500 	if (unlikely(work > weight))
6501 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6502 				n->poll, work, weight);
6503 
6504 	if (likely(work < weight))
6505 		return work;
6506 
6507 	/* Drivers must not modify the NAPI state if they
6508 	 * consume the entire weight.  In such cases this code
6509 	 * still "owns" the NAPI instance and therefore can
6510 	 * move the instance around on the list at-will.
6511 	 */
6512 	if (unlikely(napi_disable_pending(n))) {
6513 		napi_complete(n);
6514 		return work;
6515 	}
6516 
6517 	/* The NAPI context has more processing work, but busy-polling
6518 	 * is preferred. Exit early.
6519 	 */
6520 	if (napi_prefer_busy_poll(n)) {
6521 		if (napi_complete_done(n, work)) {
6522 			/* If timeout is not set, we need to make sure
6523 			 * that the NAPI is re-scheduled.
6524 			 */
6525 			napi_schedule(n);
6526 		}
6527 		return work;
6528 	}
6529 
6530 	if (n->gro_bitmask) {
6531 		/* flush too old packets
6532 		 * If HZ < 1000, flush all packets.
6533 		 */
6534 		napi_gro_flush(n, HZ >= 1000);
6535 	}
6536 
6537 	gro_normal_list(n);
6538 
6539 	/* Some drivers may have called napi_schedule
6540 	 * prior to exhausting their budget.
6541 	 */
6542 	if (unlikely(!list_empty(&n->poll_list))) {
6543 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6544 			     n->dev ? n->dev->name : "backlog");
6545 		return work;
6546 	}
6547 
6548 	*repoll = true;
6549 
6550 	return work;
6551 }
6552 
6553 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6554 {
6555 	bool do_repoll = false;
6556 	void *have;
6557 	int work;
6558 
6559 	list_del_init(&n->poll_list);
6560 
6561 	have = netpoll_poll_lock(n);
6562 
6563 	work = __napi_poll(n, &do_repoll);
6564 
6565 	if (do_repoll)
6566 		list_add_tail(&n->poll_list, repoll);
6567 
6568 	netpoll_poll_unlock(have);
6569 
6570 	return work;
6571 }
6572 
6573 static int napi_thread_wait(struct napi_struct *napi)
6574 {
6575 	bool woken = false;
6576 
6577 	set_current_state(TASK_INTERRUPTIBLE);
6578 
6579 	while (!kthread_should_stop()) {
6580 		/* Testing SCHED_THREADED bit here to make sure the current
6581 		 * kthread owns this napi and could poll on this napi.
6582 		 * Testing SCHED bit is not enough because SCHED bit might be
6583 		 * set by some other busy poll thread or by napi_disable().
6584 		 */
6585 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6586 			WARN_ON(!list_empty(&napi->poll_list));
6587 			__set_current_state(TASK_RUNNING);
6588 			return 0;
6589 		}
6590 
6591 		schedule();
6592 		/* woken being true indicates this thread owns this napi. */
6593 		woken = true;
6594 		set_current_state(TASK_INTERRUPTIBLE);
6595 	}
6596 	__set_current_state(TASK_RUNNING);
6597 
6598 	return -1;
6599 }
6600 
6601 static void skb_defer_free_flush(struct softnet_data *sd)
6602 {
6603 	struct sk_buff *skb, *next;
6604 
6605 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6606 	if (!READ_ONCE(sd->defer_list))
6607 		return;
6608 
6609 	spin_lock(&sd->defer_lock);
6610 	skb = sd->defer_list;
6611 	sd->defer_list = NULL;
6612 	sd->defer_count = 0;
6613 	spin_unlock(&sd->defer_lock);
6614 
6615 	while (skb != NULL) {
6616 		next = skb->next;
6617 		napi_consume_skb(skb, 1);
6618 		skb = next;
6619 	}
6620 }
6621 
6622 static int napi_threaded_poll(void *data)
6623 {
6624 	struct napi_struct *napi = data;
6625 	struct softnet_data *sd;
6626 	void *have;
6627 
6628 	while (!napi_thread_wait(napi)) {
6629 		for (;;) {
6630 			bool repoll = false;
6631 
6632 			local_bh_disable();
6633 			sd = this_cpu_ptr(&softnet_data);
6634 			sd->in_napi_threaded_poll = true;
6635 
6636 			have = netpoll_poll_lock(napi);
6637 			__napi_poll(napi, &repoll);
6638 			netpoll_poll_unlock(have);
6639 
6640 			sd->in_napi_threaded_poll = false;
6641 			barrier();
6642 
6643 			if (sd_has_rps_ipi_waiting(sd)) {
6644 				local_irq_disable();
6645 				net_rps_action_and_irq_enable(sd);
6646 			}
6647 			skb_defer_free_flush(sd);
6648 			local_bh_enable();
6649 
6650 			if (!repoll)
6651 				break;
6652 
6653 			cond_resched();
6654 		}
6655 	}
6656 	return 0;
6657 }
6658 
6659 static __latent_entropy void net_rx_action(struct softirq_action *h)
6660 {
6661 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6662 	unsigned long time_limit = jiffies +
6663 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6664 	int budget = READ_ONCE(netdev_budget);
6665 	LIST_HEAD(list);
6666 	LIST_HEAD(repoll);
6667 
6668 start:
6669 	sd->in_net_rx_action = true;
6670 	local_irq_disable();
6671 	list_splice_init(&sd->poll_list, &list);
6672 	local_irq_enable();
6673 
6674 	for (;;) {
6675 		struct napi_struct *n;
6676 
6677 		skb_defer_free_flush(sd);
6678 
6679 		if (list_empty(&list)) {
6680 			if (list_empty(&repoll)) {
6681 				sd->in_net_rx_action = false;
6682 				barrier();
6683 				/* We need to check if ____napi_schedule()
6684 				 * had refilled poll_list while
6685 				 * sd->in_net_rx_action was true.
6686 				 */
6687 				if (!list_empty(&sd->poll_list))
6688 					goto start;
6689 				if (!sd_has_rps_ipi_waiting(sd))
6690 					goto end;
6691 			}
6692 			break;
6693 		}
6694 
6695 		n = list_first_entry(&list, struct napi_struct, poll_list);
6696 		budget -= napi_poll(n, &repoll);
6697 
6698 		/* If softirq window is exhausted then punt.
6699 		 * Allow this to run for 2 jiffies since which will allow
6700 		 * an average latency of 1.5/HZ.
6701 		 */
6702 		if (unlikely(budget <= 0 ||
6703 			     time_after_eq(jiffies, time_limit))) {
6704 			sd->time_squeeze++;
6705 			break;
6706 		}
6707 	}
6708 
6709 	local_irq_disable();
6710 
6711 	list_splice_tail_init(&sd->poll_list, &list);
6712 	list_splice_tail(&repoll, &list);
6713 	list_splice(&list, &sd->poll_list);
6714 	if (!list_empty(&sd->poll_list))
6715 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6716 	else
6717 		sd->in_net_rx_action = false;
6718 
6719 	net_rps_action_and_irq_enable(sd);
6720 end:;
6721 }
6722 
6723 struct netdev_adjacent {
6724 	struct net_device *dev;
6725 	netdevice_tracker dev_tracker;
6726 
6727 	/* upper master flag, there can only be one master device per list */
6728 	bool master;
6729 
6730 	/* lookup ignore flag */
6731 	bool ignore;
6732 
6733 	/* counter for the number of times this device was added to us */
6734 	u16 ref_nr;
6735 
6736 	/* private field for the users */
6737 	void *private;
6738 
6739 	struct list_head list;
6740 	struct rcu_head rcu;
6741 };
6742 
6743 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6744 						 struct list_head *adj_list)
6745 {
6746 	struct netdev_adjacent *adj;
6747 
6748 	list_for_each_entry(adj, adj_list, list) {
6749 		if (adj->dev == adj_dev)
6750 			return adj;
6751 	}
6752 	return NULL;
6753 }
6754 
6755 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6756 				    struct netdev_nested_priv *priv)
6757 {
6758 	struct net_device *dev = (struct net_device *)priv->data;
6759 
6760 	return upper_dev == dev;
6761 }
6762 
6763 /**
6764  * netdev_has_upper_dev - Check if device is linked to an upper device
6765  * @dev: device
6766  * @upper_dev: upper device to check
6767  *
6768  * Find out if a device is linked to specified upper device and return true
6769  * in case it is. Note that this checks only immediate upper device,
6770  * not through a complete stack of devices. The caller must hold the RTNL lock.
6771  */
6772 bool netdev_has_upper_dev(struct net_device *dev,
6773 			  struct net_device *upper_dev)
6774 {
6775 	struct netdev_nested_priv priv = {
6776 		.data = (void *)upper_dev,
6777 	};
6778 
6779 	ASSERT_RTNL();
6780 
6781 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6782 					     &priv);
6783 }
6784 EXPORT_SYMBOL(netdev_has_upper_dev);
6785 
6786 /**
6787  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6788  * @dev: device
6789  * @upper_dev: upper device to check
6790  *
6791  * Find out if a device is linked to specified upper device and return true
6792  * in case it is. Note that this checks the entire upper device chain.
6793  * The caller must hold rcu lock.
6794  */
6795 
6796 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6797 				  struct net_device *upper_dev)
6798 {
6799 	struct netdev_nested_priv priv = {
6800 		.data = (void *)upper_dev,
6801 	};
6802 
6803 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6804 					       &priv);
6805 }
6806 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6807 
6808 /**
6809  * netdev_has_any_upper_dev - Check if device is linked to some device
6810  * @dev: device
6811  *
6812  * Find out if a device is linked to an upper device and return true in case
6813  * it is. The caller must hold the RTNL lock.
6814  */
6815 bool netdev_has_any_upper_dev(struct net_device *dev)
6816 {
6817 	ASSERT_RTNL();
6818 
6819 	return !list_empty(&dev->adj_list.upper);
6820 }
6821 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6822 
6823 /**
6824  * netdev_master_upper_dev_get - Get master upper device
6825  * @dev: device
6826  *
6827  * Find a master upper device and return pointer to it or NULL in case
6828  * it's not there. The caller must hold the RTNL lock.
6829  */
6830 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6831 {
6832 	struct netdev_adjacent *upper;
6833 
6834 	ASSERT_RTNL();
6835 
6836 	if (list_empty(&dev->adj_list.upper))
6837 		return NULL;
6838 
6839 	upper = list_first_entry(&dev->adj_list.upper,
6840 				 struct netdev_adjacent, list);
6841 	if (likely(upper->master))
6842 		return upper->dev;
6843 	return NULL;
6844 }
6845 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6846 
6847 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6848 {
6849 	struct netdev_adjacent *upper;
6850 
6851 	ASSERT_RTNL();
6852 
6853 	if (list_empty(&dev->adj_list.upper))
6854 		return NULL;
6855 
6856 	upper = list_first_entry(&dev->adj_list.upper,
6857 				 struct netdev_adjacent, list);
6858 	if (likely(upper->master) && !upper->ignore)
6859 		return upper->dev;
6860 	return NULL;
6861 }
6862 
6863 /**
6864  * netdev_has_any_lower_dev - Check if device is linked to some device
6865  * @dev: device
6866  *
6867  * Find out if a device is linked to a lower device and return true in case
6868  * it is. The caller must hold the RTNL lock.
6869  */
6870 static bool netdev_has_any_lower_dev(struct net_device *dev)
6871 {
6872 	ASSERT_RTNL();
6873 
6874 	return !list_empty(&dev->adj_list.lower);
6875 }
6876 
6877 void *netdev_adjacent_get_private(struct list_head *adj_list)
6878 {
6879 	struct netdev_adjacent *adj;
6880 
6881 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6882 
6883 	return adj->private;
6884 }
6885 EXPORT_SYMBOL(netdev_adjacent_get_private);
6886 
6887 /**
6888  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6889  * @dev: device
6890  * @iter: list_head ** of the current position
6891  *
6892  * Gets the next device from the dev's upper list, starting from iter
6893  * position. The caller must hold RCU read lock.
6894  */
6895 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6896 						 struct list_head **iter)
6897 {
6898 	struct netdev_adjacent *upper;
6899 
6900 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6901 
6902 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6903 
6904 	if (&upper->list == &dev->adj_list.upper)
6905 		return NULL;
6906 
6907 	*iter = &upper->list;
6908 
6909 	return upper->dev;
6910 }
6911 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6912 
6913 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6914 						  struct list_head **iter,
6915 						  bool *ignore)
6916 {
6917 	struct netdev_adjacent *upper;
6918 
6919 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6920 
6921 	if (&upper->list == &dev->adj_list.upper)
6922 		return NULL;
6923 
6924 	*iter = &upper->list;
6925 	*ignore = upper->ignore;
6926 
6927 	return upper->dev;
6928 }
6929 
6930 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6931 						    struct list_head **iter)
6932 {
6933 	struct netdev_adjacent *upper;
6934 
6935 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6936 
6937 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6938 
6939 	if (&upper->list == &dev->adj_list.upper)
6940 		return NULL;
6941 
6942 	*iter = &upper->list;
6943 
6944 	return upper->dev;
6945 }
6946 
6947 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6948 				       int (*fn)(struct net_device *dev,
6949 					 struct netdev_nested_priv *priv),
6950 				       struct netdev_nested_priv *priv)
6951 {
6952 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6953 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6954 	int ret, cur = 0;
6955 	bool ignore;
6956 
6957 	now = dev;
6958 	iter = &dev->adj_list.upper;
6959 
6960 	while (1) {
6961 		if (now != dev) {
6962 			ret = fn(now, priv);
6963 			if (ret)
6964 				return ret;
6965 		}
6966 
6967 		next = NULL;
6968 		while (1) {
6969 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6970 			if (!udev)
6971 				break;
6972 			if (ignore)
6973 				continue;
6974 
6975 			next = udev;
6976 			niter = &udev->adj_list.upper;
6977 			dev_stack[cur] = now;
6978 			iter_stack[cur++] = iter;
6979 			break;
6980 		}
6981 
6982 		if (!next) {
6983 			if (!cur)
6984 				return 0;
6985 			next = dev_stack[--cur];
6986 			niter = iter_stack[cur];
6987 		}
6988 
6989 		now = next;
6990 		iter = niter;
6991 	}
6992 
6993 	return 0;
6994 }
6995 
6996 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6997 				  int (*fn)(struct net_device *dev,
6998 					    struct netdev_nested_priv *priv),
6999 				  struct netdev_nested_priv *priv)
7000 {
7001 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7002 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7003 	int ret, cur = 0;
7004 
7005 	now = dev;
7006 	iter = &dev->adj_list.upper;
7007 
7008 	while (1) {
7009 		if (now != dev) {
7010 			ret = fn(now, priv);
7011 			if (ret)
7012 				return ret;
7013 		}
7014 
7015 		next = NULL;
7016 		while (1) {
7017 			udev = netdev_next_upper_dev_rcu(now, &iter);
7018 			if (!udev)
7019 				break;
7020 
7021 			next = udev;
7022 			niter = &udev->adj_list.upper;
7023 			dev_stack[cur] = now;
7024 			iter_stack[cur++] = iter;
7025 			break;
7026 		}
7027 
7028 		if (!next) {
7029 			if (!cur)
7030 				return 0;
7031 			next = dev_stack[--cur];
7032 			niter = iter_stack[cur];
7033 		}
7034 
7035 		now = next;
7036 		iter = niter;
7037 	}
7038 
7039 	return 0;
7040 }
7041 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7042 
7043 static bool __netdev_has_upper_dev(struct net_device *dev,
7044 				   struct net_device *upper_dev)
7045 {
7046 	struct netdev_nested_priv priv = {
7047 		.flags = 0,
7048 		.data = (void *)upper_dev,
7049 	};
7050 
7051 	ASSERT_RTNL();
7052 
7053 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7054 					   &priv);
7055 }
7056 
7057 /**
7058  * netdev_lower_get_next_private - Get the next ->private from the
7059  *				   lower neighbour list
7060  * @dev: device
7061  * @iter: list_head ** of the current position
7062  *
7063  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7064  * list, starting from iter position. The caller must hold either hold the
7065  * RTNL lock or its own locking that guarantees that the neighbour lower
7066  * list will remain unchanged.
7067  */
7068 void *netdev_lower_get_next_private(struct net_device *dev,
7069 				    struct list_head **iter)
7070 {
7071 	struct netdev_adjacent *lower;
7072 
7073 	lower = list_entry(*iter, struct netdev_adjacent, list);
7074 
7075 	if (&lower->list == &dev->adj_list.lower)
7076 		return NULL;
7077 
7078 	*iter = lower->list.next;
7079 
7080 	return lower->private;
7081 }
7082 EXPORT_SYMBOL(netdev_lower_get_next_private);
7083 
7084 /**
7085  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7086  *				       lower neighbour list, RCU
7087  *				       variant
7088  * @dev: device
7089  * @iter: list_head ** of the current position
7090  *
7091  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7092  * list, starting from iter position. The caller must hold RCU read lock.
7093  */
7094 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7095 					struct list_head **iter)
7096 {
7097 	struct netdev_adjacent *lower;
7098 
7099 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7100 
7101 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7102 
7103 	if (&lower->list == &dev->adj_list.lower)
7104 		return NULL;
7105 
7106 	*iter = &lower->list;
7107 
7108 	return lower->private;
7109 }
7110 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7111 
7112 /**
7113  * netdev_lower_get_next - Get the next device from the lower neighbour
7114  *                         list
7115  * @dev: device
7116  * @iter: list_head ** of the current position
7117  *
7118  * Gets the next netdev_adjacent from the dev's lower neighbour
7119  * list, starting from iter position. The caller must hold RTNL lock or
7120  * its own locking that guarantees that the neighbour lower
7121  * list will remain unchanged.
7122  */
7123 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7124 {
7125 	struct netdev_adjacent *lower;
7126 
7127 	lower = list_entry(*iter, struct netdev_adjacent, list);
7128 
7129 	if (&lower->list == &dev->adj_list.lower)
7130 		return NULL;
7131 
7132 	*iter = lower->list.next;
7133 
7134 	return lower->dev;
7135 }
7136 EXPORT_SYMBOL(netdev_lower_get_next);
7137 
7138 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7139 						struct list_head **iter)
7140 {
7141 	struct netdev_adjacent *lower;
7142 
7143 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7144 
7145 	if (&lower->list == &dev->adj_list.lower)
7146 		return NULL;
7147 
7148 	*iter = &lower->list;
7149 
7150 	return lower->dev;
7151 }
7152 
7153 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7154 						  struct list_head **iter,
7155 						  bool *ignore)
7156 {
7157 	struct netdev_adjacent *lower;
7158 
7159 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7160 
7161 	if (&lower->list == &dev->adj_list.lower)
7162 		return NULL;
7163 
7164 	*iter = &lower->list;
7165 	*ignore = lower->ignore;
7166 
7167 	return lower->dev;
7168 }
7169 
7170 int netdev_walk_all_lower_dev(struct net_device *dev,
7171 			      int (*fn)(struct net_device *dev,
7172 					struct netdev_nested_priv *priv),
7173 			      struct netdev_nested_priv *priv)
7174 {
7175 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7176 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7177 	int ret, cur = 0;
7178 
7179 	now = dev;
7180 	iter = &dev->adj_list.lower;
7181 
7182 	while (1) {
7183 		if (now != dev) {
7184 			ret = fn(now, priv);
7185 			if (ret)
7186 				return ret;
7187 		}
7188 
7189 		next = NULL;
7190 		while (1) {
7191 			ldev = netdev_next_lower_dev(now, &iter);
7192 			if (!ldev)
7193 				break;
7194 
7195 			next = ldev;
7196 			niter = &ldev->adj_list.lower;
7197 			dev_stack[cur] = now;
7198 			iter_stack[cur++] = iter;
7199 			break;
7200 		}
7201 
7202 		if (!next) {
7203 			if (!cur)
7204 				return 0;
7205 			next = dev_stack[--cur];
7206 			niter = iter_stack[cur];
7207 		}
7208 
7209 		now = next;
7210 		iter = niter;
7211 	}
7212 
7213 	return 0;
7214 }
7215 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7216 
7217 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7218 				       int (*fn)(struct net_device *dev,
7219 					 struct netdev_nested_priv *priv),
7220 				       struct netdev_nested_priv *priv)
7221 {
7222 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7223 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7224 	int ret, cur = 0;
7225 	bool ignore;
7226 
7227 	now = dev;
7228 	iter = &dev->adj_list.lower;
7229 
7230 	while (1) {
7231 		if (now != dev) {
7232 			ret = fn(now, priv);
7233 			if (ret)
7234 				return ret;
7235 		}
7236 
7237 		next = NULL;
7238 		while (1) {
7239 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7240 			if (!ldev)
7241 				break;
7242 			if (ignore)
7243 				continue;
7244 
7245 			next = ldev;
7246 			niter = &ldev->adj_list.lower;
7247 			dev_stack[cur] = now;
7248 			iter_stack[cur++] = iter;
7249 			break;
7250 		}
7251 
7252 		if (!next) {
7253 			if (!cur)
7254 				return 0;
7255 			next = dev_stack[--cur];
7256 			niter = iter_stack[cur];
7257 		}
7258 
7259 		now = next;
7260 		iter = niter;
7261 	}
7262 
7263 	return 0;
7264 }
7265 
7266 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7267 					     struct list_head **iter)
7268 {
7269 	struct netdev_adjacent *lower;
7270 
7271 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7272 	if (&lower->list == &dev->adj_list.lower)
7273 		return NULL;
7274 
7275 	*iter = &lower->list;
7276 
7277 	return lower->dev;
7278 }
7279 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7280 
7281 static u8 __netdev_upper_depth(struct net_device *dev)
7282 {
7283 	struct net_device *udev;
7284 	struct list_head *iter;
7285 	u8 max_depth = 0;
7286 	bool ignore;
7287 
7288 	for (iter = &dev->adj_list.upper,
7289 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7290 	     udev;
7291 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7292 		if (ignore)
7293 			continue;
7294 		if (max_depth < udev->upper_level)
7295 			max_depth = udev->upper_level;
7296 	}
7297 
7298 	return max_depth;
7299 }
7300 
7301 static u8 __netdev_lower_depth(struct net_device *dev)
7302 {
7303 	struct net_device *ldev;
7304 	struct list_head *iter;
7305 	u8 max_depth = 0;
7306 	bool ignore;
7307 
7308 	for (iter = &dev->adj_list.lower,
7309 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7310 	     ldev;
7311 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7312 		if (ignore)
7313 			continue;
7314 		if (max_depth < ldev->lower_level)
7315 			max_depth = ldev->lower_level;
7316 	}
7317 
7318 	return max_depth;
7319 }
7320 
7321 static int __netdev_update_upper_level(struct net_device *dev,
7322 				       struct netdev_nested_priv *__unused)
7323 {
7324 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7325 	return 0;
7326 }
7327 
7328 #ifdef CONFIG_LOCKDEP
7329 static LIST_HEAD(net_unlink_list);
7330 
7331 static void net_unlink_todo(struct net_device *dev)
7332 {
7333 	if (list_empty(&dev->unlink_list))
7334 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7335 }
7336 #endif
7337 
7338 static int __netdev_update_lower_level(struct net_device *dev,
7339 				       struct netdev_nested_priv *priv)
7340 {
7341 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7342 
7343 #ifdef CONFIG_LOCKDEP
7344 	if (!priv)
7345 		return 0;
7346 
7347 	if (priv->flags & NESTED_SYNC_IMM)
7348 		dev->nested_level = dev->lower_level - 1;
7349 	if (priv->flags & NESTED_SYNC_TODO)
7350 		net_unlink_todo(dev);
7351 #endif
7352 	return 0;
7353 }
7354 
7355 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7356 				  int (*fn)(struct net_device *dev,
7357 					    struct netdev_nested_priv *priv),
7358 				  struct netdev_nested_priv *priv)
7359 {
7360 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7361 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7362 	int ret, cur = 0;
7363 
7364 	now = dev;
7365 	iter = &dev->adj_list.lower;
7366 
7367 	while (1) {
7368 		if (now != dev) {
7369 			ret = fn(now, priv);
7370 			if (ret)
7371 				return ret;
7372 		}
7373 
7374 		next = NULL;
7375 		while (1) {
7376 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7377 			if (!ldev)
7378 				break;
7379 
7380 			next = ldev;
7381 			niter = &ldev->adj_list.lower;
7382 			dev_stack[cur] = now;
7383 			iter_stack[cur++] = iter;
7384 			break;
7385 		}
7386 
7387 		if (!next) {
7388 			if (!cur)
7389 				return 0;
7390 			next = dev_stack[--cur];
7391 			niter = iter_stack[cur];
7392 		}
7393 
7394 		now = next;
7395 		iter = niter;
7396 	}
7397 
7398 	return 0;
7399 }
7400 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7401 
7402 /**
7403  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7404  *				       lower neighbour list, RCU
7405  *				       variant
7406  * @dev: device
7407  *
7408  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7409  * list. The caller must hold RCU read lock.
7410  */
7411 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7412 {
7413 	struct netdev_adjacent *lower;
7414 
7415 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7416 			struct netdev_adjacent, list);
7417 	if (lower)
7418 		return lower->private;
7419 	return NULL;
7420 }
7421 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7422 
7423 /**
7424  * netdev_master_upper_dev_get_rcu - Get master upper device
7425  * @dev: device
7426  *
7427  * Find a master upper device and return pointer to it or NULL in case
7428  * it's not there. The caller must hold the RCU read lock.
7429  */
7430 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7431 {
7432 	struct netdev_adjacent *upper;
7433 
7434 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7435 				       struct netdev_adjacent, list);
7436 	if (upper && likely(upper->master))
7437 		return upper->dev;
7438 	return NULL;
7439 }
7440 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7441 
7442 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7443 			      struct net_device *adj_dev,
7444 			      struct list_head *dev_list)
7445 {
7446 	char linkname[IFNAMSIZ+7];
7447 
7448 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7449 		"upper_%s" : "lower_%s", adj_dev->name);
7450 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7451 				 linkname);
7452 }
7453 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7454 			       char *name,
7455 			       struct list_head *dev_list)
7456 {
7457 	char linkname[IFNAMSIZ+7];
7458 
7459 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7460 		"upper_%s" : "lower_%s", name);
7461 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7462 }
7463 
7464 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7465 						 struct net_device *adj_dev,
7466 						 struct list_head *dev_list)
7467 {
7468 	return (dev_list == &dev->adj_list.upper ||
7469 		dev_list == &dev->adj_list.lower) &&
7470 		net_eq(dev_net(dev), dev_net(adj_dev));
7471 }
7472 
7473 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7474 					struct net_device *adj_dev,
7475 					struct list_head *dev_list,
7476 					void *private, bool master)
7477 {
7478 	struct netdev_adjacent *adj;
7479 	int ret;
7480 
7481 	adj = __netdev_find_adj(adj_dev, dev_list);
7482 
7483 	if (adj) {
7484 		adj->ref_nr += 1;
7485 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7486 			 dev->name, adj_dev->name, adj->ref_nr);
7487 
7488 		return 0;
7489 	}
7490 
7491 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7492 	if (!adj)
7493 		return -ENOMEM;
7494 
7495 	adj->dev = adj_dev;
7496 	adj->master = master;
7497 	adj->ref_nr = 1;
7498 	adj->private = private;
7499 	adj->ignore = false;
7500 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7501 
7502 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7503 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7504 
7505 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7506 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7507 		if (ret)
7508 			goto free_adj;
7509 	}
7510 
7511 	/* Ensure that master link is always the first item in list. */
7512 	if (master) {
7513 		ret = sysfs_create_link(&(dev->dev.kobj),
7514 					&(adj_dev->dev.kobj), "master");
7515 		if (ret)
7516 			goto remove_symlinks;
7517 
7518 		list_add_rcu(&adj->list, dev_list);
7519 	} else {
7520 		list_add_tail_rcu(&adj->list, dev_list);
7521 	}
7522 
7523 	return 0;
7524 
7525 remove_symlinks:
7526 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7527 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7528 free_adj:
7529 	netdev_put(adj_dev, &adj->dev_tracker);
7530 	kfree(adj);
7531 
7532 	return ret;
7533 }
7534 
7535 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7536 					 struct net_device *adj_dev,
7537 					 u16 ref_nr,
7538 					 struct list_head *dev_list)
7539 {
7540 	struct netdev_adjacent *adj;
7541 
7542 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7543 		 dev->name, adj_dev->name, ref_nr);
7544 
7545 	adj = __netdev_find_adj(adj_dev, dev_list);
7546 
7547 	if (!adj) {
7548 		pr_err("Adjacency does not exist for device %s from %s\n",
7549 		       dev->name, adj_dev->name);
7550 		WARN_ON(1);
7551 		return;
7552 	}
7553 
7554 	if (adj->ref_nr > ref_nr) {
7555 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7556 			 dev->name, adj_dev->name, ref_nr,
7557 			 adj->ref_nr - ref_nr);
7558 		adj->ref_nr -= ref_nr;
7559 		return;
7560 	}
7561 
7562 	if (adj->master)
7563 		sysfs_remove_link(&(dev->dev.kobj), "master");
7564 
7565 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7566 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7567 
7568 	list_del_rcu(&adj->list);
7569 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7570 		 adj_dev->name, dev->name, adj_dev->name);
7571 	netdev_put(adj_dev, &adj->dev_tracker);
7572 	kfree_rcu(adj, rcu);
7573 }
7574 
7575 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7576 					    struct net_device *upper_dev,
7577 					    struct list_head *up_list,
7578 					    struct list_head *down_list,
7579 					    void *private, bool master)
7580 {
7581 	int ret;
7582 
7583 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7584 					   private, master);
7585 	if (ret)
7586 		return ret;
7587 
7588 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7589 					   private, false);
7590 	if (ret) {
7591 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7592 		return ret;
7593 	}
7594 
7595 	return 0;
7596 }
7597 
7598 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7599 					       struct net_device *upper_dev,
7600 					       u16 ref_nr,
7601 					       struct list_head *up_list,
7602 					       struct list_head *down_list)
7603 {
7604 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7605 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7606 }
7607 
7608 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7609 						struct net_device *upper_dev,
7610 						void *private, bool master)
7611 {
7612 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7613 						&dev->adj_list.upper,
7614 						&upper_dev->adj_list.lower,
7615 						private, master);
7616 }
7617 
7618 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7619 						   struct net_device *upper_dev)
7620 {
7621 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7622 					   &dev->adj_list.upper,
7623 					   &upper_dev->adj_list.lower);
7624 }
7625 
7626 static int __netdev_upper_dev_link(struct net_device *dev,
7627 				   struct net_device *upper_dev, bool master,
7628 				   void *upper_priv, void *upper_info,
7629 				   struct netdev_nested_priv *priv,
7630 				   struct netlink_ext_ack *extack)
7631 {
7632 	struct netdev_notifier_changeupper_info changeupper_info = {
7633 		.info = {
7634 			.dev = dev,
7635 			.extack = extack,
7636 		},
7637 		.upper_dev = upper_dev,
7638 		.master = master,
7639 		.linking = true,
7640 		.upper_info = upper_info,
7641 	};
7642 	struct net_device *master_dev;
7643 	int ret = 0;
7644 
7645 	ASSERT_RTNL();
7646 
7647 	if (dev == upper_dev)
7648 		return -EBUSY;
7649 
7650 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7651 	if (__netdev_has_upper_dev(upper_dev, dev))
7652 		return -EBUSY;
7653 
7654 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7655 		return -EMLINK;
7656 
7657 	if (!master) {
7658 		if (__netdev_has_upper_dev(dev, upper_dev))
7659 			return -EEXIST;
7660 	} else {
7661 		master_dev = __netdev_master_upper_dev_get(dev);
7662 		if (master_dev)
7663 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7664 	}
7665 
7666 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7667 					    &changeupper_info.info);
7668 	ret = notifier_to_errno(ret);
7669 	if (ret)
7670 		return ret;
7671 
7672 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7673 						   master);
7674 	if (ret)
7675 		return ret;
7676 
7677 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7678 					    &changeupper_info.info);
7679 	ret = notifier_to_errno(ret);
7680 	if (ret)
7681 		goto rollback;
7682 
7683 	__netdev_update_upper_level(dev, NULL);
7684 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7685 
7686 	__netdev_update_lower_level(upper_dev, priv);
7687 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7688 				    priv);
7689 
7690 	return 0;
7691 
7692 rollback:
7693 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7694 
7695 	return ret;
7696 }
7697 
7698 /**
7699  * netdev_upper_dev_link - Add a link to the upper device
7700  * @dev: device
7701  * @upper_dev: new upper device
7702  * @extack: netlink extended ack
7703  *
7704  * Adds a link to device which is upper to this one. The caller must hold
7705  * the RTNL lock. On a failure a negative errno code is returned.
7706  * On success the reference counts are adjusted and the function
7707  * returns zero.
7708  */
7709 int netdev_upper_dev_link(struct net_device *dev,
7710 			  struct net_device *upper_dev,
7711 			  struct netlink_ext_ack *extack)
7712 {
7713 	struct netdev_nested_priv priv = {
7714 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7715 		.data = NULL,
7716 	};
7717 
7718 	return __netdev_upper_dev_link(dev, upper_dev, false,
7719 				       NULL, NULL, &priv, extack);
7720 }
7721 EXPORT_SYMBOL(netdev_upper_dev_link);
7722 
7723 /**
7724  * netdev_master_upper_dev_link - Add a master link to the upper device
7725  * @dev: device
7726  * @upper_dev: new upper device
7727  * @upper_priv: upper device private
7728  * @upper_info: upper info to be passed down via notifier
7729  * @extack: netlink extended ack
7730  *
7731  * Adds a link to device which is upper to this one. In this case, only
7732  * one master upper device can be linked, although other non-master devices
7733  * might be linked as well. The caller must hold the RTNL lock.
7734  * On a failure a negative errno code is returned. On success the reference
7735  * counts are adjusted and the function returns zero.
7736  */
7737 int netdev_master_upper_dev_link(struct net_device *dev,
7738 				 struct net_device *upper_dev,
7739 				 void *upper_priv, void *upper_info,
7740 				 struct netlink_ext_ack *extack)
7741 {
7742 	struct netdev_nested_priv priv = {
7743 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7744 		.data = NULL,
7745 	};
7746 
7747 	return __netdev_upper_dev_link(dev, upper_dev, true,
7748 				       upper_priv, upper_info, &priv, extack);
7749 }
7750 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7751 
7752 static void __netdev_upper_dev_unlink(struct net_device *dev,
7753 				      struct net_device *upper_dev,
7754 				      struct netdev_nested_priv *priv)
7755 {
7756 	struct netdev_notifier_changeupper_info changeupper_info = {
7757 		.info = {
7758 			.dev = dev,
7759 		},
7760 		.upper_dev = upper_dev,
7761 		.linking = false,
7762 	};
7763 
7764 	ASSERT_RTNL();
7765 
7766 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7767 
7768 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7769 				      &changeupper_info.info);
7770 
7771 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7772 
7773 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7774 				      &changeupper_info.info);
7775 
7776 	__netdev_update_upper_level(dev, NULL);
7777 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7778 
7779 	__netdev_update_lower_level(upper_dev, priv);
7780 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7781 				    priv);
7782 }
7783 
7784 /**
7785  * netdev_upper_dev_unlink - Removes a link to upper device
7786  * @dev: device
7787  * @upper_dev: new upper device
7788  *
7789  * Removes a link to device which is upper to this one. The caller must hold
7790  * the RTNL lock.
7791  */
7792 void netdev_upper_dev_unlink(struct net_device *dev,
7793 			     struct net_device *upper_dev)
7794 {
7795 	struct netdev_nested_priv priv = {
7796 		.flags = NESTED_SYNC_TODO,
7797 		.data = NULL,
7798 	};
7799 
7800 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7801 }
7802 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7803 
7804 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7805 				      struct net_device *lower_dev,
7806 				      bool val)
7807 {
7808 	struct netdev_adjacent *adj;
7809 
7810 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7811 	if (adj)
7812 		adj->ignore = val;
7813 
7814 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7815 	if (adj)
7816 		adj->ignore = val;
7817 }
7818 
7819 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7820 					struct net_device *lower_dev)
7821 {
7822 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7823 }
7824 
7825 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7826 				       struct net_device *lower_dev)
7827 {
7828 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7829 }
7830 
7831 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7832 				   struct net_device *new_dev,
7833 				   struct net_device *dev,
7834 				   struct netlink_ext_ack *extack)
7835 {
7836 	struct netdev_nested_priv priv = {
7837 		.flags = 0,
7838 		.data = NULL,
7839 	};
7840 	int err;
7841 
7842 	if (!new_dev)
7843 		return 0;
7844 
7845 	if (old_dev && new_dev != old_dev)
7846 		netdev_adjacent_dev_disable(dev, old_dev);
7847 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7848 				      extack);
7849 	if (err) {
7850 		if (old_dev && new_dev != old_dev)
7851 			netdev_adjacent_dev_enable(dev, old_dev);
7852 		return err;
7853 	}
7854 
7855 	return 0;
7856 }
7857 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7858 
7859 void netdev_adjacent_change_commit(struct net_device *old_dev,
7860 				   struct net_device *new_dev,
7861 				   struct net_device *dev)
7862 {
7863 	struct netdev_nested_priv priv = {
7864 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7865 		.data = NULL,
7866 	};
7867 
7868 	if (!new_dev || !old_dev)
7869 		return;
7870 
7871 	if (new_dev == old_dev)
7872 		return;
7873 
7874 	netdev_adjacent_dev_enable(dev, old_dev);
7875 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7876 }
7877 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7878 
7879 void netdev_adjacent_change_abort(struct net_device *old_dev,
7880 				  struct net_device *new_dev,
7881 				  struct net_device *dev)
7882 {
7883 	struct netdev_nested_priv priv = {
7884 		.flags = 0,
7885 		.data = NULL,
7886 	};
7887 
7888 	if (!new_dev)
7889 		return;
7890 
7891 	if (old_dev && new_dev != old_dev)
7892 		netdev_adjacent_dev_enable(dev, old_dev);
7893 
7894 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7895 }
7896 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7897 
7898 /**
7899  * netdev_bonding_info_change - Dispatch event about slave change
7900  * @dev: device
7901  * @bonding_info: info to dispatch
7902  *
7903  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7904  * The caller must hold the RTNL lock.
7905  */
7906 void netdev_bonding_info_change(struct net_device *dev,
7907 				struct netdev_bonding_info *bonding_info)
7908 {
7909 	struct netdev_notifier_bonding_info info = {
7910 		.info.dev = dev,
7911 	};
7912 
7913 	memcpy(&info.bonding_info, bonding_info,
7914 	       sizeof(struct netdev_bonding_info));
7915 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7916 				      &info.info);
7917 }
7918 EXPORT_SYMBOL(netdev_bonding_info_change);
7919 
7920 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7921 					   struct netlink_ext_ack *extack)
7922 {
7923 	struct netdev_notifier_offload_xstats_info info = {
7924 		.info.dev = dev,
7925 		.info.extack = extack,
7926 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7927 	};
7928 	int err;
7929 	int rc;
7930 
7931 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7932 					 GFP_KERNEL);
7933 	if (!dev->offload_xstats_l3)
7934 		return -ENOMEM;
7935 
7936 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7937 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
7938 						  &info.info);
7939 	err = notifier_to_errno(rc);
7940 	if (err)
7941 		goto free_stats;
7942 
7943 	return 0;
7944 
7945 free_stats:
7946 	kfree(dev->offload_xstats_l3);
7947 	dev->offload_xstats_l3 = NULL;
7948 	return err;
7949 }
7950 
7951 int netdev_offload_xstats_enable(struct net_device *dev,
7952 				 enum netdev_offload_xstats_type type,
7953 				 struct netlink_ext_ack *extack)
7954 {
7955 	ASSERT_RTNL();
7956 
7957 	if (netdev_offload_xstats_enabled(dev, type))
7958 		return -EALREADY;
7959 
7960 	switch (type) {
7961 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7962 		return netdev_offload_xstats_enable_l3(dev, extack);
7963 	}
7964 
7965 	WARN_ON(1);
7966 	return -EINVAL;
7967 }
7968 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7969 
7970 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7971 {
7972 	struct netdev_notifier_offload_xstats_info info = {
7973 		.info.dev = dev,
7974 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7975 	};
7976 
7977 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7978 				      &info.info);
7979 	kfree(dev->offload_xstats_l3);
7980 	dev->offload_xstats_l3 = NULL;
7981 }
7982 
7983 int netdev_offload_xstats_disable(struct net_device *dev,
7984 				  enum netdev_offload_xstats_type type)
7985 {
7986 	ASSERT_RTNL();
7987 
7988 	if (!netdev_offload_xstats_enabled(dev, type))
7989 		return -EALREADY;
7990 
7991 	switch (type) {
7992 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7993 		netdev_offload_xstats_disable_l3(dev);
7994 		return 0;
7995 	}
7996 
7997 	WARN_ON(1);
7998 	return -EINVAL;
7999 }
8000 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8001 
8002 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8003 {
8004 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8005 }
8006 
8007 static struct rtnl_hw_stats64 *
8008 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8009 			      enum netdev_offload_xstats_type type)
8010 {
8011 	switch (type) {
8012 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8013 		return dev->offload_xstats_l3;
8014 	}
8015 
8016 	WARN_ON(1);
8017 	return NULL;
8018 }
8019 
8020 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8021 				   enum netdev_offload_xstats_type type)
8022 {
8023 	ASSERT_RTNL();
8024 
8025 	return netdev_offload_xstats_get_ptr(dev, type);
8026 }
8027 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8028 
8029 struct netdev_notifier_offload_xstats_ru {
8030 	bool used;
8031 };
8032 
8033 struct netdev_notifier_offload_xstats_rd {
8034 	struct rtnl_hw_stats64 stats;
8035 	bool used;
8036 };
8037 
8038 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8039 				  const struct rtnl_hw_stats64 *src)
8040 {
8041 	dest->rx_packets	  += src->rx_packets;
8042 	dest->tx_packets	  += src->tx_packets;
8043 	dest->rx_bytes		  += src->rx_bytes;
8044 	dest->tx_bytes		  += src->tx_bytes;
8045 	dest->rx_errors		  += src->rx_errors;
8046 	dest->tx_errors		  += src->tx_errors;
8047 	dest->rx_dropped	  += src->rx_dropped;
8048 	dest->tx_dropped	  += src->tx_dropped;
8049 	dest->multicast		  += src->multicast;
8050 }
8051 
8052 static int netdev_offload_xstats_get_used(struct net_device *dev,
8053 					  enum netdev_offload_xstats_type type,
8054 					  bool *p_used,
8055 					  struct netlink_ext_ack *extack)
8056 {
8057 	struct netdev_notifier_offload_xstats_ru report_used = {};
8058 	struct netdev_notifier_offload_xstats_info info = {
8059 		.info.dev = dev,
8060 		.info.extack = extack,
8061 		.type = type,
8062 		.report_used = &report_used,
8063 	};
8064 	int rc;
8065 
8066 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8067 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8068 					   &info.info);
8069 	*p_used = report_used.used;
8070 	return notifier_to_errno(rc);
8071 }
8072 
8073 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8074 					   enum netdev_offload_xstats_type type,
8075 					   struct rtnl_hw_stats64 *p_stats,
8076 					   bool *p_used,
8077 					   struct netlink_ext_ack *extack)
8078 {
8079 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8080 	struct netdev_notifier_offload_xstats_info info = {
8081 		.info.dev = dev,
8082 		.info.extack = extack,
8083 		.type = type,
8084 		.report_delta = &report_delta,
8085 	};
8086 	struct rtnl_hw_stats64 *stats;
8087 	int rc;
8088 
8089 	stats = netdev_offload_xstats_get_ptr(dev, type);
8090 	if (WARN_ON(!stats))
8091 		return -EINVAL;
8092 
8093 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8094 					   &info.info);
8095 
8096 	/* Cache whatever we got, even if there was an error, otherwise the
8097 	 * successful stats retrievals would get lost.
8098 	 */
8099 	netdev_hw_stats64_add(stats, &report_delta.stats);
8100 
8101 	if (p_stats)
8102 		*p_stats = *stats;
8103 	*p_used = report_delta.used;
8104 
8105 	return notifier_to_errno(rc);
8106 }
8107 
8108 int netdev_offload_xstats_get(struct net_device *dev,
8109 			      enum netdev_offload_xstats_type type,
8110 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8111 			      struct netlink_ext_ack *extack)
8112 {
8113 	ASSERT_RTNL();
8114 
8115 	if (p_stats)
8116 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8117 						       p_used, extack);
8118 	else
8119 		return netdev_offload_xstats_get_used(dev, type, p_used,
8120 						      extack);
8121 }
8122 EXPORT_SYMBOL(netdev_offload_xstats_get);
8123 
8124 void
8125 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8126 				   const struct rtnl_hw_stats64 *stats)
8127 {
8128 	report_delta->used = true;
8129 	netdev_hw_stats64_add(&report_delta->stats, stats);
8130 }
8131 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8132 
8133 void
8134 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8135 {
8136 	report_used->used = true;
8137 }
8138 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8139 
8140 void netdev_offload_xstats_push_delta(struct net_device *dev,
8141 				      enum netdev_offload_xstats_type type,
8142 				      const struct rtnl_hw_stats64 *p_stats)
8143 {
8144 	struct rtnl_hw_stats64 *stats;
8145 
8146 	ASSERT_RTNL();
8147 
8148 	stats = netdev_offload_xstats_get_ptr(dev, type);
8149 	if (WARN_ON(!stats))
8150 		return;
8151 
8152 	netdev_hw_stats64_add(stats, p_stats);
8153 }
8154 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8155 
8156 /**
8157  * netdev_get_xmit_slave - Get the xmit slave of master device
8158  * @dev: device
8159  * @skb: The packet
8160  * @all_slaves: assume all the slaves are active
8161  *
8162  * The reference counters are not incremented so the caller must be
8163  * careful with locks. The caller must hold RCU lock.
8164  * %NULL is returned if no slave is found.
8165  */
8166 
8167 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8168 					 struct sk_buff *skb,
8169 					 bool all_slaves)
8170 {
8171 	const struct net_device_ops *ops = dev->netdev_ops;
8172 
8173 	if (!ops->ndo_get_xmit_slave)
8174 		return NULL;
8175 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8176 }
8177 EXPORT_SYMBOL(netdev_get_xmit_slave);
8178 
8179 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8180 						  struct sock *sk)
8181 {
8182 	const struct net_device_ops *ops = dev->netdev_ops;
8183 
8184 	if (!ops->ndo_sk_get_lower_dev)
8185 		return NULL;
8186 	return ops->ndo_sk_get_lower_dev(dev, sk);
8187 }
8188 
8189 /**
8190  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8191  * @dev: device
8192  * @sk: the socket
8193  *
8194  * %NULL is returned if no lower device is found.
8195  */
8196 
8197 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8198 					    struct sock *sk)
8199 {
8200 	struct net_device *lower;
8201 
8202 	lower = netdev_sk_get_lower_dev(dev, sk);
8203 	while (lower) {
8204 		dev = lower;
8205 		lower = netdev_sk_get_lower_dev(dev, sk);
8206 	}
8207 
8208 	return dev;
8209 }
8210 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8211 
8212 static void netdev_adjacent_add_links(struct net_device *dev)
8213 {
8214 	struct netdev_adjacent *iter;
8215 
8216 	struct net *net = dev_net(dev);
8217 
8218 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8219 		if (!net_eq(net, dev_net(iter->dev)))
8220 			continue;
8221 		netdev_adjacent_sysfs_add(iter->dev, dev,
8222 					  &iter->dev->adj_list.lower);
8223 		netdev_adjacent_sysfs_add(dev, iter->dev,
8224 					  &dev->adj_list.upper);
8225 	}
8226 
8227 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8228 		if (!net_eq(net, dev_net(iter->dev)))
8229 			continue;
8230 		netdev_adjacent_sysfs_add(iter->dev, dev,
8231 					  &iter->dev->adj_list.upper);
8232 		netdev_adjacent_sysfs_add(dev, iter->dev,
8233 					  &dev->adj_list.lower);
8234 	}
8235 }
8236 
8237 static void netdev_adjacent_del_links(struct net_device *dev)
8238 {
8239 	struct netdev_adjacent *iter;
8240 
8241 	struct net *net = dev_net(dev);
8242 
8243 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8244 		if (!net_eq(net, dev_net(iter->dev)))
8245 			continue;
8246 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8247 					  &iter->dev->adj_list.lower);
8248 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8249 					  &dev->adj_list.upper);
8250 	}
8251 
8252 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8253 		if (!net_eq(net, dev_net(iter->dev)))
8254 			continue;
8255 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8256 					  &iter->dev->adj_list.upper);
8257 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8258 					  &dev->adj_list.lower);
8259 	}
8260 }
8261 
8262 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8263 {
8264 	struct netdev_adjacent *iter;
8265 
8266 	struct net *net = dev_net(dev);
8267 
8268 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8269 		if (!net_eq(net, dev_net(iter->dev)))
8270 			continue;
8271 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8272 					  &iter->dev->adj_list.lower);
8273 		netdev_adjacent_sysfs_add(iter->dev, dev,
8274 					  &iter->dev->adj_list.lower);
8275 	}
8276 
8277 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8278 		if (!net_eq(net, dev_net(iter->dev)))
8279 			continue;
8280 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8281 					  &iter->dev->adj_list.upper);
8282 		netdev_adjacent_sysfs_add(iter->dev, dev,
8283 					  &iter->dev->adj_list.upper);
8284 	}
8285 }
8286 
8287 void *netdev_lower_dev_get_private(struct net_device *dev,
8288 				   struct net_device *lower_dev)
8289 {
8290 	struct netdev_adjacent *lower;
8291 
8292 	if (!lower_dev)
8293 		return NULL;
8294 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8295 	if (!lower)
8296 		return NULL;
8297 
8298 	return lower->private;
8299 }
8300 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8301 
8302 
8303 /**
8304  * netdev_lower_state_changed - Dispatch event about lower device state change
8305  * @lower_dev: device
8306  * @lower_state_info: state to dispatch
8307  *
8308  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8309  * The caller must hold the RTNL lock.
8310  */
8311 void netdev_lower_state_changed(struct net_device *lower_dev,
8312 				void *lower_state_info)
8313 {
8314 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8315 		.info.dev = lower_dev,
8316 	};
8317 
8318 	ASSERT_RTNL();
8319 	changelowerstate_info.lower_state_info = lower_state_info;
8320 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8321 				      &changelowerstate_info.info);
8322 }
8323 EXPORT_SYMBOL(netdev_lower_state_changed);
8324 
8325 static void dev_change_rx_flags(struct net_device *dev, int flags)
8326 {
8327 	const struct net_device_ops *ops = dev->netdev_ops;
8328 
8329 	if (ops->ndo_change_rx_flags)
8330 		ops->ndo_change_rx_flags(dev, flags);
8331 }
8332 
8333 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8334 {
8335 	unsigned int old_flags = dev->flags;
8336 	kuid_t uid;
8337 	kgid_t gid;
8338 
8339 	ASSERT_RTNL();
8340 
8341 	dev->flags |= IFF_PROMISC;
8342 	dev->promiscuity += inc;
8343 	if (dev->promiscuity == 0) {
8344 		/*
8345 		 * Avoid overflow.
8346 		 * If inc causes overflow, untouch promisc and return error.
8347 		 */
8348 		if (inc < 0)
8349 			dev->flags &= ~IFF_PROMISC;
8350 		else {
8351 			dev->promiscuity -= inc;
8352 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8353 			return -EOVERFLOW;
8354 		}
8355 	}
8356 	if (dev->flags != old_flags) {
8357 		netdev_info(dev, "%s promiscuous mode\n",
8358 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8359 		if (audit_enabled) {
8360 			current_uid_gid(&uid, &gid);
8361 			audit_log(audit_context(), GFP_ATOMIC,
8362 				  AUDIT_ANOM_PROMISCUOUS,
8363 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8364 				  dev->name, (dev->flags & IFF_PROMISC),
8365 				  (old_flags & IFF_PROMISC),
8366 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8367 				  from_kuid(&init_user_ns, uid),
8368 				  from_kgid(&init_user_ns, gid),
8369 				  audit_get_sessionid(current));
8370 		}
8371 
8372 		dev_change_rx_flags(dev, IFF_PROMISC);
8373 	}
8374 	if (notify)
8375 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8376 	return 0;
8377 }
8378 
8379 /**
8380  *	dev_set_promiscuity	- update promiscuity count on a device
8381  *	@dev: device
8382  *	@inc: modifier
8383  *
8384  *	Add or remove promiscuity from a device. While the count in the device
8385  *	remains above zero the interface remains promiscuous. Once it hits zero
8386  *	the device reverts back to normal filtering operation. A negative inc
8387  *	value is used to drop promiscuity on the device.
8388  *	Return 0 if successful or a negative errno code on error.
8389  */
8390 int dev_set_promiscuity(struct net_device *dev, int inc)
8391 {
8392 	unsigned int old_flags = dev->flags;
8393 	int err;
8394 
8395 	err = __dev_set_promiscuity(dev, inc, true);
8396 	if (err < 0)
8397 		return err;
8398 	if (dev->flags != old_flags)
8399 		dev_set_rx_mode(dev);
8400 	return err;
8401 }
8402 EXPORT_SYMBOL(dev_set_promiscuity);
8403 
8404 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8405 {
8406 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8407 
8408 	ASSERT_RTNL();
8409 
8410 	dev->flags |= IFF_ALLMULTI;
8411 	dev->allmulti += inc;
8412 	if (dev->allmulti == 0) {
8413 		/*
8414 		 * Avoid overflow.
8415 		 * If inc causes overflow, untouch allmulti and return error.
8416 		 */
8417 		if (inc < 0)
8418 			dev->flags &= ~IFF_ALLMULTI;
8419 		else {
8420 			dev->allmulti -= inc;
8421 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8422 			return -EOVERFLOW;
8423 		}
8424 	}
8425 	if (dev->flags ^ old_flags) {
8426 		netdev_info(dev, "%s allmulticast mode\n",
8427 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8428 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8429 		dev_set_rx_mode(dev);
8430 		if (notify)
8431 			__dev_notify_flags(dev, old_flags,
8432 					   dev->gflags ^ old_gflags, 0, NULL);
8433 	}
8434 	return 0;
8435 }
8436 
8437 /**
8438  *	dev_set_allmulti	- update allmulti count on a device
8439  *	@dev: device
8440  *	@inc: modifier
8441  *
8442  *	Add or remove reception of all multicast frames to a device. While the
8443  *	count in the device remains above zero the interface remains listening
8444  *	to all interfaces. Once it hits zero the device reverts back to normal
8445  *	filtering operation. A negative @inc value is used to drop the counter
8446  *	when releasing a resource needing all multicasts.
8447  *	Return 0 if successful or a negative errno code on error.
8448  */
8449 
8450 int dev_set_allmulti(struct net_device *dev, int inc)
8451 {
8452 	return __dev_set_allmulti(dev, inc, true);
8453 }
8454 EXPORT_SYMBOL(dev_set_allmulti);
8455 
8456 /*
8457  *	Upload unicast and multicast address lists to device and
8458  *	configure RX filtering. When the device doesn't support unicast
8459  *	filtering it is put in promiscuous mode while unicast addresses
8460  *	are present.
8461  */
8462 void __dev_set_rx_mode(struct net_device *dev)
8463 {
8464 	const struct net_device_ops *ops = dev->netdev_ops;
8465 
8466 	/* dev_open will call this function so the list will stay sane. */
8467 	if (!(dev->flags&IFF_UP))
8468 		return;
8469 
8470 	if (!netif_device_present(dev))
8471 		return;
8472 
8473 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8474 		/* Unicast addresses changes may only happen under the rtnl,
8475 		 * therefore calling __dev_set_promiscuity here is safe.
8476 		 */
8477 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8478 			__dev_set_promiscuity(dev, 1, false);
8479 			dev->uc_promisc = true;
8480 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8481 			__dev_set_promiscuity(dev, -1, false);
8482 			dev->uc_promisc = false;
8483 		}
8484 	}
8485 
8486 	if (ops->ndo_set_rx_mode)
8487 		ops->ndo_set_rx_mode(dev);
8488 }
8489 
8490 void dev_set_rx_mode(struct net_device *dev)
8491 {
8492 	netif_addr_lock_bh(dev);
8493 	__dev_set_rx_mode(dev);
8494 	netif_addr_unlock_bh(dev);
8495 }
8496 
8497 /**
8498  *	dev_get_flags - get flags reported to userspace
8499  *	@dev: device
8500  *
8501  *	Get the combination of flag bits exported through APIs to userspace.
8502  */
8503 unsigned int dev_get_flags(const struct net_device *dev)
8504 {
8505 	unsigned int flags;
8506 
8507 	flags = (dev->flags & ~(IFF_PROMISC |
8508 				IFF_ALLMULTI |
8509 				IFF_RUNNING |
8510 				IFF_LOWER_UP |
8511 				IFF_DORMANT)) |
8512 		(dev->gflags & (IFF_PROMISC |
8513 				IFF_ALLMULTI));
8514 
8515 	if (netif_running(dev)) {
8516 		if (netif_oper_up(dev))
8517 			flags |= IFF_RUNNING;
8518 		if (netif_carrier_ok(dev))
8519 			flags |= IFF_LOWER_UP;
8520 		if (netif_dormant(dev))
8521 			flags |= IFF_DORMANT;
8522 	}
8523 
8524 	return flags;
8525 }
8526 EXPORT_SYMBOL(dev_get_flags);
8527 
8528 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8529 		       struct netlink_ext_ack *extack)
8530 {
8531 	unsigned int old_flags = dev->flags;
8532 	int ret;
8533 
8534 	ASSERT_RTNL();
8535 
8536 	/*
8537 	 *	Set the flags on our device.
8538 	 */
8539 
8540 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8541 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8542 			       IFF_AUTOMEDIA)) |
8543 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8544 				    IFF_ALLMULTI));
8545 
8546 	/*
8547 	 *	Load in the correct multicast list now the flags have changed.
8548 	 */
8549 
8550 	if ((old_flags ^ flags) & IFF_MULTICAST)
8551 		dev_change_rx_flags(dev, IFF_MULTICAST);
8552 
8553 	dev_set_rx_mode(dev);
8554 
8555 	/*
8556 	 *	Have we downed the interface. We handle IFF_UP ourselves
8557 	 *	according to user attempts to set it, rather than blindly
8558 	 *	setting it.
8559 	 */
8560 
8561 	ret = 0;
8562 	if ((old_flags ^ flags) & IFF_UP) {
8563 		if (old_flags & IFF_UP)
8564 			__dev_close(dev);
8565 		else
8566 			ret = __dev_open(dev, extack);
8567 	}
8568 
8569 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8570 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8571 		unsigned int old_flags = dev->flags;
8572 
8573 		dev->gflags ^= IFF_PROMISC;
8574 
8575 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8576 			if (dev->flags != old_flags)
8577 				dev_set_rx_mode(dev);
8578 	}
8579 
8580 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8581 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8582 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8583 	 */
8584 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8585 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8586 
8587 		dev->gflags ^= IFF_ALLMULTI;
8588 		__dev_set_allmulti(dev, inc, false);
8589 	}
8590 
8591 	return ret;
8592 }
8593 
8594 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8595 			unsigned int gchanges, u32 portid,
8596 			const struct nlmsghdr *nlh)
8597 {
8598 	unsigned int changes = dev->flags ^ old_flags;
8599 
8600 	if (gchanges)
8601 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8602 
8603 	if (changes & IFF_UP) {
8604 		if (dev->flags & IFF_UP)
8605 			call_netdevice_notifiers(NETDEV_UP, dev);
8606 		else
8607 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8608 	}
8609 
8610 	if (dev->flags & IFF_UP &&
8611 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8612 		struct netdev_notifier_change_info change_info = {
8613 			.info = {
8614 				.dev = dev,
8615 			},
8616 			.flags_changed = changes,
8617 		};
8618 
8619 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8620 	}
8621 }
8622 
8623 /**
8624  *	dev_change_flags - change device settings
8625  *	@dev: device
8626  *	@flags: device state flags
8627  *	@extack: netlink extended ack
8628  *
8629  *	Change settings on device based state flags. The flags are
8630  *	in the userspace exported format.
8631  */
8632 int dev_change_flags(struct net_device *dev, unsigned int flags,
8633 		     struct netlink_ext_ack *extack)
8634 {
8635 	int ret;
8636 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8637 
8638 	ret = __dev_change_flags(dev, flags, extack);
8639 	if (ret < 0)
8640 		return ret;
8641 
8642 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8643 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8644 	return ret;
8645 }
8646 EXPORT_SYMBOL(dev_change_flags);
8647 
8648 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8649 {
8650 	const struct net_device_ops *ops = dev->netdev_ops;
8651 
8652 	if (ops->ndo_change_mtu)
8653 		return ops->ndo_change_mtu(dev, new_mtu);
8654 
8655 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8656 	WRITE_ONCE(dev->mtu, new_mtu);
8657 	return 0;
8658 }
8659 EXPORT_SYMBOL(__dev_set_mtu);
8660 
8661 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8662 		     struct netlink_ext_ack *extack)
8663 {
8664 	/* MTU must be positive, and in range */
8665 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8666 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8667 		return -EINVAL;
8668 	}
8669 
8670 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8671 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8672 		return -EINVAL;
8673 	}
8674 	return 0;
8675 }
8676 
8677 /**
8678  *	dev_set_mtu_ext - Change maximum transfer unit
8679  *	@dev: device
8680  *	@new_mtu: new transfer unit
8681  *	@extack: netlink extended ack
8682  *
8683  *	Change the maximum transfer size of the network device.
8684  */
8685 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8686 		    struct netlink_ext_ack *extack)
8687 {
8688 	int err, orig_mtu;
8689 
8690 	if (new_mtu == dev->mtu)
8691 		return 0;
8692 
8693 	err = dev_validate_mtu(dev, new_mtu, extack);
8694 	if (err)
8695 		return err;
8696 
8697 	if (!netif_device_present(dev))
8698 		return -ENODEV;
8699 
8700 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8701 	err = notifier_to_errno(err);
8702 	if (err)
8703 		return err;
8704 
8705 	orig_mtu = dev->mtu;
8706 	err = __dev_set_mtu(dev, new_mtu);
8707 
8708 	if (!err) {
8709 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8710 						   orig_mtu);
8711 		err = notifier_to_errno(err);
8712 		if (err) {
8713 			/* setting mtu back and notifying everyone again,
8714 			 * so that they have a chance to revert changes.
8715 			 */
8716 			__dev_set_mtu(dev, orig_mtu);
8717 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8718 						     new_mtu);
8719 		}
8720 	}
8721 	return err;
8722 }
8723 
8724 int dev_set_mtu(struct net_device *dev, int new_mtu)
8725 {
8726 	struct netlink_ext_ack extack;
8727 	int err;
8728 
8729 	memset(&extack, 0, sizeof(extack));
8730 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8731 	if (err && extack._msg)
8732 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8733 	return err;
8734 }
8735 EXPORT_SYMBOL(dev_set_mtu);
8736 
8737 /**
8738  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8739  *	@dev: device
8740  *	@new_len: new tx queue length
8741  */
8742 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8743 {
8744 	unsigned int orig_len = dev->tx_queue_len;
8745 	int res;
8746 
8747 	if (new_len != (unsigned int)new_len)
8748 		return -ERANGE;
8749 
8750 	if (new_len != orig_len) {
8751 		dev->tx_queue_len = new_len;
8752 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8753 		res = notifier_to_errno(res);
8754 		if (res)
8755 			goto err_rollback;
8756 		res = dev_qdisc_change_tx_queue_len(dev);
8757 		if (res)
8758 			goto err_rollback;
8759 	}
8760 
8761 	return 0;
8762 
8763 err_rollback:
8764 	netdev_err(dev, "refused to change device tx_queue_len\n");
8765 	dev->tx_queue_len = orig_len;
8766 	return res;
8767 }
8768 
8769 /**
8770  *	dev_set_group - Change group this device belongs to
8771  *	@dev: device
8772  *	@new_group: group this device should belong to
8773  */
8774 void dev_set_group(struct net_device *dev, int new_group)
8775 {
8776 	dev->group = new_group;
8777 }
8778 
8779 /**
8780  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8781  *	@dev: device
8782  *	@addr: new address
8783  *	@extack: netlink extended ack
8784  */
8785 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8786 			      struct netlink_ext_ack *extack)
8787 {
8788 	struct netdev_notifier_pre_changeaddr_info info = {
8789 		.info.dev = dev,
8790 		.info.extack = extack,
8791 		.dev_addr = addr,
8792 	};
8793 	int rc;
8794 
8795 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8796 	return notifier_to_errno(rc);
8797 }
8798 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8799 
8800 /**
8801  *	dev_set_mac_address - Change Media Access Control Address
8802  *	@dev: device
8803  *	@sa: new address
8804  *	@extack: netlink extended ack
8805  *
8806  *	Change the hardware (MAC) address of the device
8807  */
8808 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8809 			struct netlink_ext_ack *extack)
8810 {
8811 	const struct net_device_ops *ops = dev->netdev_ops;
8812 	int err;
8813 
8814 	if (!ops->ndo_set_mac_address)
8815 		return -EOPNOTSUPP;
8816 	if (sa->sa_family != dev->type)
8817 		return -EINVAL;
8818 	if (!netif_device_present(dev))
8819 		return -ENODEV;
8820 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8821 	if (err)
8822 		return err;
8823 	err = ops->ndo_set_mac_address(dev, sa);
8824 	if (err)
8825 		return err;
8826 	dev->addr_assign_type = NET_ADDR_SET;
8827 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8828 	add_device_randomness(dev->dev_addr, dev->addr_len);
8829 	return 0;
8830 }
8831 EXPORT_SYMBOL(dev_set_mac_address);
8832 
8833 static DECLARE_RWSEM(dev_addr_sem);
8834 
8835 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8836 			     struct netlink_ext_ack *extack)
8837 {
8838 	int ret;
8839 
8840 	down_write(&dev_addr_sem);
8841 	ret = dev_set_mac_address(dev, sa, extack);
8842 	up_write(&dev_addr_sem);
8843 	return ret;
8844 }
8845 EXPORT_SYMBOL(dev_set_mac_address_user);
8846 
8847 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8848 {
8849 	size_t size = sizeof(sa->sa_data_min);
8850 	struct net_device *dev;
8851 	int ret = 0;
8852 
8853 	down_read(&dev_addr_sem);
8854 	rcu_read_lock();
8855 
8856 	dev = dev_get_by_name_rcu(net, dev_name);
8857 	if (!dev) {
8858 		ret = -ENODEV;
8859 		goto unlock;
8860 	}
8861 	if (!dev->addr_len)
8862 		memset(sa->sa_data, 0, size);
8863 	else
8864 		memcpy(sa->sa_data, dev->dev_addr,
8865 		       min_t(size_t, size, dev->addr_len));
8866 	sa->sa_family = dev->type;
8867 
8868 unlock:
8869 	rcu_read_unlock();
8870 	up_read(&dev_addr_sem);
8871 	return ret;
8872 }
8873 EXPORT_SYMBOL(dev_get_mac_address);
8874 
8875 /**
8876  *	dev_change_carrier - Change device carrier
8877  *	@dev: device
8878  *	@new_carrier: new value
8879  *
8880  *	Change device carrier
8881  */
8882 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8883 {
8884 	const struct net_device_ops *ops = dev->netdev_ops;
8885 
8886 	if (!ops->ndo_change_carrier)
8887 		return -EOPNOTSUPP;
8888 	if (!netif_device_present(dev))
8889 		return -ENODEV;
8890 	return ops->ndo_change_carrier(dev, new_carrier);
8891 }
8892 
8893 /**
8894  *	dev_get_phys_port_id - Get device physical port ID
8895  *	@dev: device
8896  *	@ppid: port ID
8897  *
8898  *	Get device physical port ID
8899  */
8900 int dev_get_phys_port_id(struct net_device *dev,
8901 			 struct netdev_phys_item_id *ppid)
8902 {
8903 	const struct net_device_ops *ops = dev->netdev_ops;
8904 
8905 	if (!ops->ndo_get_phys_port_id)
8906 		return -EOPNOTSUPP;
8907 	return ops->ndo_get_phys_port_id(dev, ppid);
8908 }
8909 
8910 /**
8911  *	dev_get_phys_port_name - Get device physical port name
8912  *	@dev: device
8913  *	@name: port name
8914  *	@len: limit of bytes to copy to name
8915  *
8916  *	Get device physical port name
8917  */
8918 int dev_get_phys_port_name(struct net_device *dev,
8919 			   char *name, size_t len)
8920 {
8921 	const struct net_device_ops *ops = dev->netdev_ops;
8922 	int err;
8923 
8924 	if (ops->ndo_get_phys_port_name) {
8925 		err = ops->ndo_get_phys_port_name(dev, name, len);
8926 		if (err != -EOPNOTSUPP)
8927 			return err;
8928 	}
8929 	return devlink_compat_phys_port_name_get(dev, name, len);
8930 }
8931 
8932 /**
8933  *	dev_get_port_parent_id - Get the device's port parent identifier
8934  *	@dev: network device
8935  *	@ppid: pointer to a storage for the port's parent identifier
8936  *	@recurse: allow/disallow recursion to lower devices
8937  *
8938  *	Get the devices's port parent identifier
8939  */
8940 int dev_get_port_parent_id(struct net_device *dev,
8941 			   struct netdev_phys_item_id *ppid,
8942 			   bool recurse)
8943 {
8944 	const struct net_device_ops *ops = dev->netdev_ops;
8945 	struct netdev_phys_item_id first = { };
8946 	struct net_device *lower_dev;
8947 	struct list_head *iter;
8948 	int err;
8949 
8950 	if (ops->ndo_get_port_parent_id) {
8951 		err = ops->ndo_get_port_parent_id(dev, ppid);
8952 		if (err != -EOPNOTSUPP)
8953 			return err;
8954 	}
8955 
8956 	err = devlink_compat_switch_id_get(dev, ppid);
8957 	if (!recurse || err != -EOPNOTSUPP)
8958 		return err;
8959 
8960 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8961 		err = dev_get_port_parent_id(lower_dev, ppid, true);
8962 		if (err)
8963 			break;
8964 		if (!first.id_len)
8965 			first = *ppid;
8966 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8967 			return -EOPNOTSUPP;
8968 	}
8969 
8970 	return err;
8971 }
8972 EXPORT_SYMBOL(dev_get_port_parent_id);
8973 
8974 /**
8975  *	netdev_port_same_parent_id - Indicate if two network devices have
8976  *	the same port parent identifier
8977  *	@a: first network device
8978  *	@b: second network device
8979  */
8980 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8981 {
8982 	struct netdev_phys_item_id a_id = { };
8983 	struct netdev_phys_item_id b_id = { };
8984 
8985 	if (dev_get_port_parent_id(a, &a_id, true) ||
8986 	    dev_get_port_parent_id(b, &b_id, true))
8987 		return false;
8988 
8989 	return netdev_phys_item_id_same(&a_id, &b_id);
8990 }
8991 EXPORT_SYMBOL(netdev_port_same_parent_id);
8992 
8993 /**
8994  *	dev_change_proto_down - set carrier according to proto_down.
8995  *
8996  *	@dev: device
8997  *	@proto_down: new value
8998  */
8999 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9000 {
9001 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9002 		return -EOPNOTSUPP;
9003 	if (!netif_device_present(dev))
9004 		return -ENODEV;
9005 	if (proto_down)
9006 		netif_carrier_off(dev);
9007 	else
9008 		netif_carrier_on(dev);
9009 	dev->proto_down = proto_down;
9010 	return 0;
9011 }
9012 
9013 /**
9014  *	dev_change_proto_down_reason - proto down reason
9015  *
9016  *	@dev: device
9017  *	@mask: proto down mask
9018  *	@value: proto down value
9019  */
9020 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9021 				  u32 value)
9022 {
9023 	int b;
9024 
9025 	if (!mask) {
9026 		dev->proto_down_reason = value;
9027 	} else {
9028 		for_each_set_bit(b, &mask, 32) {
9029 			if (value & (1 << b))
9030 				dev->proto_down_reason |= BIT(b);
9031 			else
9032 				dev->proto_down_reason &= ~BIT(b);
9033 		}
9034 	}
9035 }
9036 
9037 struct bpf_xdp_link {
9038 	struct bpf_link link;
9039 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9040 	int flags;
9041 };
9042 
9043 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9044 {
9045 	if (flags & XDP_FLAGS_HW_MODE)
9046 		return XDP_MODE_HW;
9047 	if (flags & XDP_FLAGS_DRV_MODE)
9048 		return XDP_MODE_DRV;
9049 	if (flags & XDP_FLAGS_SKB_MODE)
9050 		return XDP_MODE_SKB;
9051 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9052 }
9053 
9054 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9055 {
9056 	switch (mode) {
9057 	case XDP_MODE_SKB:
9058 		return generic_xdp_install;
9059 	case XDP_MODE_DRV:
9060 	case XDP_MODE_HW:
9061 		return dev->netdev_ops->ndo_bpf;
9062 	default:
9063 		return NULL;
9064 	}
9065 }
9066 
9067 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9068 					 enum bpf_xdp_mode mode)
9069 {
9070 	return dev->xdp_state[mode].link;
9071 }
9072 
9073 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9074 				     enum bpf_xdp_mode mode)
9075 {
9076 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9077 
9078 	if (link)
9079 		return link->link.prog;
9080 	return dev->xdp_state[mode].prog;
9081 }
9082 
9083 u8 dev_xdp_prog_count(struct net_device *dev)
9084 {
9085 	u8 count = 0;
9086 	int i;
9087 
9088 	for (i = 0; i < __MAX_XDP_MODE; i++)
9089 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9090 			count++;
9091 	return count;
9092 }
9093 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9094 
9095 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9096 {
9097 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9098 
9099 	return prog ? prog->aux->id : 0;
9100 }
9101 
9102 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9103 			     struct bpf_xdp_link *link)
9104 {
9105 	dev->xdp_state[mode].link = link;
9106 	dev->xdp_state[mode].prog = NULL;
9107 }
9108 
9109 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9110 			     struct bpf_prog *prog)
9111 {
9112 	dev->xdp_state[mode].link = NULL;
9113 	dev->xdp_state[mode].prog = prog;
9114 }
9115 
9116 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9117 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9118 			   u32 flags, struct bpf_prog *prog)
9119 {
9120 	struct netdev_bpf xdp;
9121 	int err;
9122 
9123 	memset(&xdp, 0, sizeof(xdp));
9124 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9125 	xdp.extack = extack;
9126 	xdp.flags = flags;
9127 	xdp.prog = prog;
9128 
9129 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9130 	 * "moved" into driver), so they don't increment it on their own, but
9131 	 * they do decrement refcnt when program is detached or replaced.
9132 	 * Given net_device also owns link/prog, we need to bump refcnt here
9133 	 * to prevent drivers from underflowing it.
9134 	 */
9135 	if (prog)
9136 		bpf_prog_inc(prog);
9137 	err = bpf_op(dev, &xdp);
9138 	if (err) {
9139 		if (prog)
9140 			bpf_prog_put(prog);
9141 		return err;
9142 	}
9143 
9144 	if (mode != XDP_MODE_HW)
9145 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9146 
9147 	return 0;
9148 }
9149 
9150 static void dev_xdp_uninstall(struct net_device *dev)
9151 {
9152 	struct bpf_xdp_link *link;
9153 	struct bpf_prog *prog;
9154 	enum bpf_xdp_mode mode;
9155 	bpf_op_t bpf_op;
9156 
9157 	ASSERT_RTNL();
9158 
9159 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9160 		prog = dev_xdp_prog(dev, mode);
9161 		if (!prog)
9162 			continue;
9163 
9164 		bpf_op = dev_xdp_bpf_op(dev, mode);
9165 		if (!bpf_op)
9166 			continue;
9167 
9168 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9169 
9170 		/* auto-detach link from net device */
9171 		link = dev_xdp_link(dev, mode);
9172 		if (link)
9173 			link->dev = NULL;
9174 		else
9175 			bpf_prog_put(prog);
9176 
9177 		dev_xdp_set_link(dev, mode, NULL);
9178 	}
9179 }
9180 
9181 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9182 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9183 			  struct bpf_prog *old_prog, u32 flags)
9184 {
9185 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9186 	struct bpf_prog *cur_prog;
9187 	struct net_device *upper;
9188 	struct list_head *iter;
9189 	enum bpf_xdp_mode mode;
9190 	bpf_op_t bpf_op;
9191 	int err;
9192 
9193 	ASSERT_RTNL();
9194 
9195 	/* either link or prog attachment, never both */
9196 	if (link && (new_prog || old_prog))
9197 		return -EINVAL;
9198 	/* link supports only XDP mode flags */
9199 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9200 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9201 		return -EINVAL;
9202 	}
9203 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9204 	if (num_modes > 1) {
9205 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9206 		return -EINVAL;
9207 	}
9208 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9209 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9210 		NL_SET_ERR_MSG(extack,
9211 			       "More than one program loaded, unset mode is ambiguous");
9212 		return -EINVAL;
9213 	}
9214 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9215 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9216 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9217 		return -EINVAL;
9218 	}
9219 
9220 	mode = dev_xdp_mode(dev, flags);
9221 	/* can't replace attached link */
9222 	if (dev_xdp_link(dev, mode)) {
9223 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9224 		return -EBUSY;
9225 	}
9226 
9227 	/* don't allow if an upper device already has a program */
9228 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9229 		if (dev_xdp_prog_count(upper) > 0) {
9230 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9231 			return -EEXIST;
9232 		}
9233 	}
9234 
9235 	cur_prog = dev_xdp_prog(dev, mode);
9236 	/* can't replace attached prog with link */
9237 	if (link && cur_prog) {
9238 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9239 		return -EBUSY;
9240 	}
9241 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9242 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9243 		return -EEXIST;
9244 	}
9245 
9246 	/* put effective new program into new_prog */
9247 	if (link)
9248 		new_prog = link->link.prog;
9249 
9250 	if (new_prog) {
9251 		bool offload = mode == XDP_MODE_HW;
9252 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9253 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9254 
9255 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9256 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9257 			return -EBUSY;
9258 		}
9259 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9260 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9261 			return -EEXIST;
9262 		}
9263 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9264 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9265 			return -EINVAL;
9266 		}
9267 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9268 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9269 			return -EINVAL;
9270 		}
9271 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9272 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9273 			return -EINVAL;
9274 		}
9275 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9276 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9277 			return -EINVAL;
9278 		}
9279 	}
9280 
9281 	/* don't call drivers if the effective program didn't change */
9282 	if (new_prog != cur_prog) {
9283 		bpf_op = dev_xdp_bpf_op(dev, mode);
9284 		if (!bpf_op) {
9285 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9286 			return -EOPNOTSUPP;
9287 		}
9288 
9289 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9290 		if (err)
9291 			return err;
9292 	}
9293 
9294 	if (link)
9295 		dev_xdp_set_link(dev, mode, link);
9296 	else
9297 		dev_xdp_set_prog(dev, mode, new_prog);
9298 	if (cur_prog)
9299 		bpf_prog_put(cur_prog);
9300 
9301 	return 0;
9302 }
9303 
9304 static int dev_xdp_attach_link(struct net_device *dev,
9305 			       struct netlink_ext_ack *extack,
9306 			       struct bpf_xdp_link *link)
9307 {
9308 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9309 }
9310 
9311 static int dev_xdp_detach_link(struct net_device *dev,
9312 			       struct netlink_ext_ack *extack,
9313 			       struct bpf_xdp_link *link)
9314 {
9315 	enum bpf_xdp_mode mode;
9316 	bpf_op_t bpf_op;
9317 
9318 	ASSERT_RTNL();
9319 
9320 	mode = dev_xdp_mode(dev, link->flags);
9321 	if (dev_xdp_link(dev, mode) != link)
9322 		return -EINVAL;
9323 
9324 	bpf_op = dev_xdp_bpf_op(dev, mode);
9325 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9326 	dev_xdp_set_link(dev, mode, NULL);
9327 	return 0;
9328 }
9329 
9330 static void bpf_xdp_link_release(struct bpf_link *link)
9331 {
9332 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9333 
9334 	rtnl_lock();
9335 
9336 	/* if racing with net_device's tear down, xdp_link->dev might be
9337 	 * already NULL, in which case link was already auto-detached
9338 	 */
9339 	if (xdp_link->dev) {
9340 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9341 		xdp_link->dev = NULL;
9342 	}
9343 
9344 	rtnl_unlock();
9345 }
9346 
9347 static int bpf_xdp_link_detach(struct bpf_link *link)
9348 {
9349 	bpf_xdp_link_release(link);
9350 	return 0;
9351 }
9352 
9353 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9354 {
9355 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9356 
9357 	kfree(xdp_link);
9358 }
9359 
9360 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9361 				     struct seq_file *seq)
9362 {
9363 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9364 	u32 ifindex = 0;
9365 
9366 	rtnl_lock();
9367 	if (xdp_link->dev)
9368 		ifindex = xdp_link->dev->ifindex;
9369 	rtnl_unlock();
9370 
9371 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9372 }
9373 
9374 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9375 				       struct bpf_link_info *info)
9376 {
9377 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9378 	u32 ifindex = 0;
9379 
9380 	rtnl_lock();
9381 	if (xdp_link->dev)
9382 		ifindex = xdp_link->dev->ifindex;
9383 	rtnl_unlock();
9384 
9385 	info->xdp.ifindex = ifindex;
9386 	return 0;
9387 }
9388 
9389 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9390 			       struct bpf_prog *old_prog)
9391 {
9392 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9393 	enum bpf_xdp_mode mode;
9394 	bpf_op_t bpf_op;
9395 	int err = 0;
9396 
9397 	rtnl_lock();
9398 
9399 	/* link might have been auto-released already, so fail */
9400 	if (!xdp_link->dev) {
9401 		err = -ENOLINK;
9402 		goto out_unlock;
9403 	}
9404 
9405 	if (old_prog && link->prog != old_prog) {
9406 		err = -EPERM;
9407 		goto out_unlock;
9408 	}
9409 	old_prog = link->prog;
9410 	if (old_prog->type != new_prog->type ||
9411 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9412 		err = -EINVAL;
9413 		goto out_unlock;
9414 	}
9415 
9416 	if (old_prog == new_prog) {
9417 		/* no-op, don't disturb drivers */
9418 		bpf_prog_put(new_prog);
9419 		goto out_unlock;
9420 	}
9421 
9422 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9423 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9424 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9425 			      xdp_link->flags, new_prog);
9426 	if (err)
9427 		goto out_unlock;
9428 
9429 	old_prog = xchg(&link->prog, new_prog);
9430 	bpf_prog_put(old_prog);
9431 
9432 out_unlock:
9433 	rtnl_unlock();
9434 	return err;
9435 }
9436 
9437 static const struct bpf_link_ops bpf_xdp_link_lops = {
9438 	.release = bpf_xdp_link_release,
9439 	.dealloc = bpf_xdp_link_dealloc,
9440 	.detach = bpf_xdp_link_detach,
9441 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9442 	.fill_link_info = bpf_xdp_link_fill_link_info,
9443 	.update_prog = bpf_xdp_link_update,
9444 };
9445 
9446 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9447 {
9448 	struct net *net = current->nsproxy->net_ns;
9449 	struct bpf_link_primer link_primer;
9450 	struct bpf_xdp_link *link;
9451 	struct net_device *dev;
9452 	int err, fd;
9453 
9454 	rtnl_lock();
9455 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9456 	if (!dev) {
9457 		rtnl_unlock();
9458 		return -EINVAL;
9459 	}
9460 
9461 	link = kzalloc(sizeof(*link), GFP_USER);
9462 	if (!link) {
9463 		err = -ENOMEM;
9464 		goto unlock;
9465 	}
9466 
9467 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9468 	link->dev = dev;
9469 	link->flags = attr->link_create.flags;
9470 
9471 	err = bpf_link_prime(&link->link, &link_primer);
9472 	if (err) {
9473 		kfree(link);
9474 		goto unlock;
9475 	}
9476 
9477 	err = dev_xdp_attach_link(dev, NULL, link);
9478 	rtnl_unlock();
9479 
9480 	if (err) {
9481 		link->dev = NULL;
9482 		bpf_link_cleanup(&link_primer);
9483 		goto out_put_dev;
9484 	}
9485 
9486 	fd = bpf_link_settle(&link_primer);
9487 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9488 	dev_put(dev);
9489 	return fd;
9490 
9491 unlock:
9492 	rtnl_unlock();
9493 
9494 out_put_dev:
9495 	dev_put(dev);
9496 	return err;
9497 }
9498 
9499 /**
9500  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9501  *	@dev: device
9502  *	@extack: netlink extended ack
9503  *	@fd: new program fd or negative value to clear
9504  *	@expected_fd: old program fd that userspace expects to replace or clear
9505  *	@flags: xdp-related flags
9506  *
9507  *	Set or clear a bpf program for a device
9508  */
9509 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9510 		      int fd, int expected_fd, u32 flags)
9511 {
9512 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9513 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9514 	int err;
9515 
9516 	ASSERT_RTNL();
9517 
9518 	if (fd >= 0) {
9519 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9520 						 mode != XDP_MODE_SKB);
9521 		if (IS_ERR(new_prog))
9522 			return PTR_ERR(new_prog);
9523 	}
9524 
9525 	if (expected_fd >= 0) {
9526 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9527 						 mode != XDP_MODE_SKB);
9528 		if (IS_ERR(old_prog)) {
9529 			err = PTR_ERR(old_prog);
9530 			old_prog = NULL;
9531 			goto err_out;
9532 		}
9533 	}
9534 
9535 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9536 
9537 err_out:
9538 	if (err && new_prog)
9539 		bpf_prog_put(new_prog);
9540 	if (old_prog)
9541 		bpf_prog_put(old_prog);
9542 	return err;
9543 }
9544 
9545 /**
9546  *	dev_new_index	-	allocate an ifindex
9547  *	@net: the applicable net namespace
9548  *
9549  *	Returns a suitable unique value for a new device interface
9550  *	number.  The caller must hold the rtnl semaphore or the
9551  *	dev_base_lock to be sure it remains unique.
9552  */
9553 static int dev_new_index(struct net *net)
9554 {
9555 	int ifindex = net->ifindex;
9556 
9557 	for (;;) {
9558 		if (++ifindex <= 0)
9559 			ifindex = 1;
9560 		if (!__dev_get_by_index(net, ifindex))
9561 			return net->ifindex = ifindex;
9562 	}
9563 }
9564 
9565 /* Delayed registration/unregisteration */
9566 LIST_HEAD(net_todo_list);
9567 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9568 
9569 static void net_set_todo(struct net_device *dev)
9570 {
9571 	list_add_tail(&dev->todo_list, &net_todo_list);
9572 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9573 }
9574 
9575 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9576 	struct net_device *upper, netdev_features_t features)
9577 {
9578 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9579 	netdev_features_t feature;
9580 	int feature_bit;
9581 
9582 	for_each_netdev_feature(upper_disables, feature_bit) {
9583 		feature = __NETIF_F_BIT(feature_bit);
9584 		if (!(upper->wanted_features & feature)
9585 		    && (features & feature)) {
9586 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9587 				   &feature, upper->name);
9588 			features &= ~feature;
9589 		}
9590 	}
9591 
9592 	return features;
9593 }
9594 
9595 static void netdev_sync_lower_features(struct net_device *upper,
9596 	struct net_device *lower, netdev_features_t features)
9597 {
9598 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9599 	netdev_features_t feature;
9600 	int feature_bit;
9601 
9602 	for_each_netdev_feature(upper_disables, feature_bit) {
9603 		feature = __NETIF_F_BIT(feature_bit);
9604 		if (!(features & feature) && (lower->features & feature)) {
9605 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9606 				   &feature, lower->name);
9607 			lower->wanted_features &= ~feature;
9608 			__netdev_update_features(lower);
9609 
9610 			if (unlikely(lower->features & feature))
9611 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9612 					    &feature, lower->name);
9613 			else
9614 				netdev_features_change(lower);
9615 		}
9616 	}
9617 }
9618 
9619 static netdev_features_t netdev_fix_features(struct net_device *dev,
9620 	netdev_features_t features)
9621 {
9622 	/* Fix illegal checksum combinations */
9623 	if ((features & NETIF_F_HW_CSUM) &&
9624 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9625 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9626 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9627 	}
9628 
9629 	/* TSO requires that SG is present as well. */
9630 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9631 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9632 		features &= ~NETIF_F_ALL_TSO;
9633 	}
9634 
9635 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9636 					!(features & NETIF_F_IP_CSUM)) {
9637 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9638 		features &= ~NETIF_F_TSO;
9639 		features &= ~NETIF_F_TSO_ECN;
9640 	}
9641 
9642 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9643 					 !(features & NETIF_F_IPV6_CSUM)) {
9644 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9645 		features &= ~NETIF_F_TSO6;
9646 	}
9647 
9648 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9649 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9650 		features &= ~NETIF_F_TSO_MANGLEID;
9651 
9652 	/* TSO ECN requires that TSO is present as well. */
9653 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9654 		features &= ~NETIF_F_TSO_ECN;
9655 
9656 	/* Software GSO depends on SG. */
9657 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9658 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9659 		features &= ~NETIF_F_GSO;
9660 	}
9661 
9662 	/* GSO partial features require GSO partial be set */
9663 	if ((features & dev->gso_partial_features) &&
9664 	    !(features & NETIF_F_GSO_PARTIAL)) {
9665 		netdev_dbg(dev,
9666 			   "Dropping partially supported GSO features since no GSO partial.\n");
9667 		features &= ~dev->gso_partial_features;
9668 	}
9669 
9670 	if (!(features & NETIF_F_RXCSUM)) {
9671 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9672 		 * successfully merged by hardware must also have the
9673 		 * checksum verified by hardware.  If the user does not
9674 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9675 		 */
9676 		if (features & NETIF_F_GRO_HW) {
9677 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9678 			features &= ~NETIF_F_GRO_HW;
9679 		}
9680 	}
9681 
9682 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9683 	if (features & NETIF_F_RXFCS) {
9684 		if (features & NETIF_F_LRO) {
9685 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9686 			features &= ~NETIF_F_LRO;
9687 		}
9688 
9689 		if (features & NETIF_F_GRO_HW) {
9690 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9691 			features &= ~NETIF_F_GRO_HW;
9692 		}
9693 	}
9694 
9695 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9696 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9697 		features &= ~NETIF_F_LRO;
9698 	}
9699 
9700 	if (features & NETIF_F_HW_TLS_TX) {
9701 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9702 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9703 		bool hw_csum = features & NETIF_F_HW_CSUM;
9704 
9705 		if (!ip_csum && !hw_csum) {
9706 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9707 			features &= ~NETIF_F_HW_TLS_TX;
9708 		}
9709 	}
9710 
9711 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9712 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9713 		features &= ~NETIF_F_HW_TLS_RX;
9714 	}
9715 
9716 	return features;
9717 }
9718 
9719 int __netdev_update_features(struct net_device *dev)
9720 {
9721 	struct net_device *upper, *lower;
9722 	netdev_features_t features;
9723 	struct list_head *iter;
9724 	int err = -1;
9725 
9726 	ASSERT_RTNL();
9727 
9728 	features = netdev_get_wanted_features(dev);
9729 
9730 	if (dev->netdev_ops->ndo_fix_features)
9731 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9732 
9733 	/* driver might be less strict about feature dependencies */
9734 	features = netdev_fix_features(dev, features);
9735 
9736 	/* some features can't be enabled if they're off on an upper device */
9737 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9738 		features = netdev_sync_upper_features(dev, upper, features);
9739 
9740 	if (dev->features == features)
9741 		goto sync_lower;
9742 
9743 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9744 		&dev->features, &features);
9745 
9746 	if (dev->netdev_ops->ndo_set_features)
9747 		err = dev->netdev_ops->ndo_set_features(dev, features);
9748 	else
9749 		err = 0;
9750 
9751 	if (unlikely(err < 0)) {
9752 		netdev_err(dev,
9753 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9754 			err, &features, &dev->features);
9755 		/* return non-0 since some features might have changed and
9756 		 * it's better to fire a spurious notification than miss it
9757 		 */
9758 		return -1;
9759 	}
9760 
9761 sync_lower:
9762 	/* some features must be disabled on lower devices when disabled
9763 	 * on an upper device (think: bonding master or bridge)
9764 	 */
9765 	netdev_for_each_lower_dev(dev, lower, iter)
9766 		netdev_sync_lower_features(dev, lower, features);
9767 
9768 	if (!err) {
9769 		netdev_features_t diff = features ^ dev->features;
9770 
9771 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9772 			/* udp_tunnel_{get,drop}_rx_info both need
9773 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9774 			 * device, or they won't do anything.
9775 			 * Thus we need to update dev->features
9776 			 * *before* calling udp_tunnel_get_rx_info,
9777 			 * but *after* calling udp_tunnel_drop_rx_info.
9778 			 */
9779 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9780 				dev->features = features;
9781 				udp_tunnel_get_rx_info(dev);
9782 			} else {
9783 				udp_tunnel_drop_rx_info(dev);
9784 			}
9785 		}
9786 
9787 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9788 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9789 				dev->features = features;
9790 				err |= vlan_get_rx_ctag_filter_info(dev);
9791 			} else {
9792 				vlan_drop_rx_ctag_filter_info(dev);
9793 			}
9794 		}
9795 
9796 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9797 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9798 				dev->features = features;
9799 				err |= vlan_get_rx_stag_filter_info(dev);
9800 			} else {
9801 				vlan_drop_rx_stag_filter_info(dev);
9802 			}
9803 		}
9804 
9805 		dev->features = features;
9806 	}
9807 
9808 	return err < 0 ? 0 : 1;
9809 }
9810 
9811 /**
9812  *	netdev_update_features - recalculate device features
9813  *	@dev: the device to check
9814  *
9815  *	Recalculate dev->features set and send notifications if it
9816  *	has changed. Should be called after driver or hardware dependent
9817  *	conditions might have changed that influence the features.
9818  */
9819 void netdev_update_features(struct net_device *dev)
9820 {
9821 	if (__netdev_update_features(dev))
9822 		netdev_features_change(dev);
9823 }
9824 EXPORT_SYMBOL(netdev_update_features);
9825 
9826 /**
9827  *	netdev_change_features - recalculate device features
9828  *	@dev: the device to check
9829  *
9830  *	Recalculate dev->features set and send notifications even
9831  *	if they have not changed. Should be called instead of
9832  *	netdev_update_features() if also dev->vlan_features might
9833  *	have changed to allow the changes to be propagated to stacked
9834  *	VLAN devices.
9835  */
9836 void netdev_change_features(struct net_device *dev)
9837 {
9838 	__netdev_update_features(dev);
9839 	netdev_features_change(dev);
9840 }
9841 EXPORT_SYMBOL(netdev_change_features);
9842 
9843 /**
9844  *	netif_stacked_transfer_operstate -	transfer operstate
9845  *	@rootdev: the root or lower level device to transfer state from
9846  *	@dev: the device to transfer operstate to
9847  *
9848  *	Transfer operational state from root to device. This is normally
9849  *	called when a stacking relationship exists between the root
9850  *	device and the device(a leaf device).
9851  */
9852 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9853 					struct net_device *dev)
9854 {
9855 	if (rootdev->operstate == IF_OPER_DORMANT)
9856 		netif_dormant_on(dev);
9857 	else
9858 		netif_dormant_off(dev);
9859 
9860 	if (rootdev->operstate == IF_OPER_TESTING)
9861 		netif_testing_on(dev);
9862 	else
9863 		netif_testing_off(dev);
9864 
9865 	if (netif_carrier_ok(rootdev))
9866 		netif_carrier_on(dev);
9867 	else
9868 		netif_carrier_off(dev);
9869 }
9870 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9871 
9872 static int netif_alloc_rx_queues(struct net_device *dev)
9873 {
9874 	unsigned int i, count = dev->num_rx_queues;
9875 	struct netdev_rx_queue *rx;
9876 	size_t sz = count * sizeof(*rx);
9877 	int err = 0;
9878 
9879 	BUG_ON(count < 1);
9880 
9881 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9882 	if (!rx)
9883 		return -ENOMEM;
9884 
9885 	dev->_rx = rx;
9886 
9887 	for (i = 0; i < count; i++) {
9888 		rx[i].dev = dev;
9889 
9890 		/* XDP RX-queue setup */
9891 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9892 		if (err < 0)
9893 			goto err_rxq_info;
9894 	}
9895 	return 0;
9896 
9897 err_rxq_info:
9898 	/* Rollback successful reg's and free other resources */
9899 	while (i--)
9900 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9901 	kvfree(dev->_rx);
9902 	dev->_rx = NULL;
9903 	return err;
9904 }
9905 
9906 static void netif_free_rx_queues(struct net_device *dev)
9907 {
9908 	unsigned int i, count = dev->num_rx_queues;
9909 
9910 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9911 	if (!dev->_rx)
9912 		return;
9913 
9914 	for (i = 0; i < count; i++)
9915 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9916 
9917 	kvfree(dev->_rx);
9918 }
9919 
9920 static void netdev_init_one_queue(struct net_device *dev,
9921 				  struct netdev_queue *queue, void *_unused)
9922 {
9923 	/* Initialize queue lock */
9924 	spin_lock_init(&queue->_xmit_lock);
9925 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9926 	queue->xmit_lock_owner = -1;
9927 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9928 	queue->dev = dev;
9929 #ifdef CONFIG_BQL
9930 	dql_init(&queue->dql, HZ);
9931 #endif
9932 }
9933 
9934 static void netif_free_tx_queues(struct net_device *dev)
9935 {
9936 	kvfree(dev->_tx);
9937 }
9938 
9939 static int netif_alloc_netdev_queues(struct net_device *dev)
9940 {
9941 	unsigned int count = dev->num_tx_queues;
9942 	struct netdev_queue *tx;
9943 	size_t sz = count * sizeof(*tx);
9944 
9945 	if (count < 1 || count > 0xffff)
9946 		return -EINVAL;
9947 
9948 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9949 	if (!tx)
9950 		return -ENOMEM;
9951 
9952 	dev->_tx = tx;
9953 
9954 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9955 	spin_lock_init(&dev->tx_global_lock);
9956 
9957 	return 0;
9958 }
9959 
9960 void netif_tx_stop_all_queues(struct net_device *dev)
9961 {
9962 	unsigned int i;
9963 
9964 	for (i = 0; i < dev->num_tx_queues; i++) {
9965 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9966 
9967 		netif_tx_stop_queue(txq);
9968 	}
9969 }
9970 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9971 
9972 /**
9973  * register_netdevice() - register a network device
9974  * @dev: device to register
9975  *
9976  * Take a prepared network device structure and make it externally accessible.
9977  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9978  * Callers must hold the rtnl lock - you may want register_netdev()
9979  * instead of this.
9980  */
9981 int register_netdevice(struct net_device *dev)
9982 {
9983 	int ret;
9984 	struct net *net = dev_net(dev);
9985 
9986 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9987 		     NETDEV_FEATURE_COUNT);
9988 	BUG_ON(dev_boot_phase);
9989 	ASSERT_RTNL();
9990 
9991 	might_sleep();
9992 
9993 	/* When net_device's are persistent, this will be fatal. */
9994 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9995 	BUG_ON(!net);
9996 
9997 	ret = ethtool_check_ops(dev->ethtool_ops);
9998 	if (ret)
9999 		return ret;
10000 
10001 	spin_lock_init(&dev->addr_list_lock);
10002 	netdev_set_addr_lockdep_class(dev);
10003 
10004 	ret = dev_get_valid_name(net, dev, dev->name);
10005 	if (ret < 0)
10006 		goto out;
10007 
10008 	ret = -ENOMEM;
10009 	dev->name_node = netdev_name_node_head_alloc(dev);
10010 	if (!dev->name_node)
10011 		goto out;
10012 
10013 	/* Init, if this function is available */
10014 	if (dev->netdev_ops->ndo_init) {
10015 		ret = dev->netdev_ops->ndo_init(dev);
10016 		if (ret) {
10017 			if (ret > 0)
10018 				ret = -EIO;
10019 			goto err_free_name;
10020 		}
10021 	}
10022 
10023 	if (((dev->hw_features | dev->features) &
10024 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10025 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10026 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10027 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10028 		ret = -EINVAL;
10029 		goto err_uninit;
10030 	}
10031 
10032 	ret = -EBUSY;
10033 	if (!dev->ifindex)
10034 		dev->ifindex = dev_new_index(net);
10035 	else if (__dev_get_by_index(net, dev->ifindex))
10036 		goto err_uninit;
10037 
10038 	/* Transfer changeable features to wanted_features and enable
10039 	 * software offloads (GSO and GRO).
10040 	 */
10041 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10042 	dev->features |= NETIF_F_SOFT_FEATURES;
10043 
10044 	if (dev->udp_tunnel_nic_info) {
10045 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10046 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10047 	}
10048 
10049 	dev->wanted_features = dev->features & dev->hw_features;
10050 
10051 	if (!(dev->flags & IFF_LOOPBACK))
10052 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10053 
10054 	/* If IPv4 TCP segmentation offload is supported we should also
10055 	 * allow the device to enable segmenting the frame with the option
10056 	 * of ignoring a static IP ID value.  This doesn't enable the
10057 	 * feature itself but allows the user to enable it later.
10058 	 */
10059 	if (dev->hw_features & NETIF_F_TSO)
10060 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10061 	if (dev->vlan_features & NETIF_F_TSO)
10062 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10063 	if (dev->mpls_features & NETIF_F_TSO)
10064 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10065 	if (dev->hw_enc_features & NETIF_F_TSO)
10066 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10067 
10068 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10069 	 */
10070 	dev->vlan_features |= NETIF_F_HIGHDMA;
10071 
10072 	/* Make NETIF_F_SG inheritable to tunnel devices.
10073 	 */
10074 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10075 
10076 	/* Make NETIF_F_SG inheritable to MPLS.
10077 	 */
10078 	dev->mpls_features |= NETIF_F_SG;
10079 
10080 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10081 	ret = notifier_to_errno(ret);
10082 	if (ret)
10083 		goto err_uninit;
10084 
10085 	ret = netdev_register_kobject(dev);
10086 	write_lock(&dev_base_lock);
10087 	dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10088 	write_unlock(&dev_base_lock);
10089 	if (ret)
10090 		goto err_uninit_notify;
10091 
10092 	__netdev_update_features(dev);
10093 
10094 	/*
10095 	 *	Default initial state at registry is that the
10096 	 *	device is present.
10097 	 */
10098 
10099 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10100 
10101 	linkwatch_init_dev(dev);
10102 
10103 	dev_init_scheduler(dev);
10104 
10105 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10106 	list_netdevice(dev);
10107 
10108 	add_device_randomness(dev->dev_addr, dev->addr_len);
10109 
10110 	/* If the device has permanent device address, driver should
10111 	 * set dev_addr and also addr_assign_type should be set to
10112 	 * NET_ADDR_PERM (default value).
10113 	 */
10114 	if (dev->addr_assign_type == NET_ADDR_PERM)
10115 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10116 
10117 	/* Notify protocols, that a new device appeared. */
10118 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10119 	ret = notifier_to_errno(ret);
10120 	if (ret) {
10121 		/* Expect explicit free_netdev() on failure */
10122 		dev->needs_free_netdev = false;
10123 		unregister_netdevice_queue(dev, NULL);
10124 		goto out;
10125 	}
10126 	/*
10127 	 *	Prevent userspace races by waiting until the network
10128 	 *	device is fully setup before sending notifications.
10129 	 */
10130 	if (!dev->rtnl_link_ops ||
10131 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10132 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10133 
10134 out:
10135 	return ret;
10136 
10137 err_uninit_notify:
10138 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10139 err_uninit:
10140 	if (dev->netdev_ops->ndo_uninit)
10141 		dev->netdev_ops->ndo_uninit(dev);
10142 	if (dev->priv_destructor)
10143 		dev->priv_destructor(dev);
10144 err_free_name:
10145 	netdev_name_node_free(dev->name_node);
10146 	goto out;
10147 }
10148 EXPORT_SYMBOL(register_netdevice);
10149 
10150 /**
10151  *	init_dummy_netdev	- init a dummy network device for NAPI
10152  *	@dev: device to init
10153  *
10154  *	This takes a network device structure and initialize the minimum
10155  *	amount of fields so it can be used to schedule NAPI polls without
10156  *	registering a full blown interface. This is to be used by drivers
10157  *	that need to tie several hardware interfaces to a single NAPI
10158  *	poll scheduler due to HW limitations.
10159  */
10160 int init_dummy_netdev(struct net_device *dev)
10161 {
10162 	/* Clear everything. Note we don't initialize spinlocks
10163 	 * are they aren't supposed to be taken by any of the
10164 	 * NAPI code and this dummy netdev is supposed to be
10165 	 * only ever used for NAPI polls
10166 	 */
10167 	memset(dev, 0, sizeof(struct net_device));
10168 
10169 	/* make sure we BUG if trying to hit standard
10170 	 * register/unregister code path
10171 	 */
10172 	dev->reg_state = NETREG_DUMMY;
10173 
10174 	/* NAPI wants this */
10175 	INIT_LIST_HEAD(&dev->napi_list);
10176 
10177 	/* a dummy interface is started by default */
10178 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10179 	set_bit(__LINK_STATE_START, &dev->state);
10180 
10181 	/* napi_busy_loop stats accounting wants this */
10182 	dev_net_set(dev, &init_net);
10183 
10184 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10185 	 * because users of this 'device' dont need to change
10186 	 * its refcount.
10187 	 */
10188 
10189 	return 0;
10190 }
10191 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10192 
10193 
10194 /**
10195  *	register_netdev	- register a network device
10196  *	@dev: device to register
10197  *
10198  *	Take a completed network device structure and add it to the kernel
10199  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10200  *	chain. 0 is returned on success. A negative errno code is returned
10201  *	on a failure to set up the device, or if the name is a duplicate.
10202  *
10203  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10204  *	and expands the device name if you passed a format string to
10205  *	alloc_netdev.
10206  */
10207 int register_netdev(struct net_device *dev)
10208 {
10209 	int err;
10210 
10211 	if (rtnl_lock_killable())
10212 		return -EINTR;
10213 	err = register_netdevice(dev);
10214 	rtnl_unlock();
10215 	return err;
10216 }
10217 EXPORT_SYMBOL(register_netdev);
10218 
10219 int netdev_refcnt_read(const struct net_device *dev)
10220 {
10221 #ifdef CONFIG_PCPU_DEV_REFCNT
10222 	int i, refcnt = 0;
10223 
10224 	for_each_possible_cpu(i)
10225 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10226 	return refcnt;
10227 #else
10228 	return refcount_read(&dev->dev_refcnt);
10229 #endif
10230 }
10231 EXPORT_SYMBOL(netdev_refcnt_read);
10232 
10233 int netdev_unregister_timeout_secs __read_mostly = 10;
10234 
10235 #define WAIT_REFS_MIN_MSECS 1
10236 #define WAIT_REFS_MAX_MSECS 250
10237 /**
10238  * netdev_wait_allrefs_any - wait until all references are gone.
10239  * @list: list of net_devices to wait on
10240  *
10241  * This is called when unregistering network devices.
10242  *
10243  * Any protocol or device that holds a reference should register
10244  * for netdevice notification, and cleanup and put back the
10245  * reference if they receive an UNREGISTER event.
10246  * We can get stuck here if buggy protocols don't correctly
10247  * call dev_put.
10248  */
10249 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10250 {
10251 	unsigned long rebroadcast_time, warning_time;
10252 	struct net_device *dev;
10253 	int wait = 0;
10254 
10255 	rebroadcast_time = warning_time = jiffies;
10256 
10257 	list_for_each_entry(dev, list, todo_list)
10258 		if (netdev_refcnt_read(dev) == 1)
10259 			return dev;
10260 
10261 	while (true) {
10262 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10263 			rtnl_lock();
10264 
10265 			/* Rebroadcast unregister notification */
10266 			list_for_each_entry(dev, list, todo_list)
10267 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10268 
10269 			__rtnl_unlock();
10270 			rcu_barrier();
10271 			rtnl_lock();
10272 
10273 			list_for_each_entry(dev, list, todo_list)
10274 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10275 					     &dev->state)) {
10276 					/* We must not have linkwatch events
10277 					 * pending on unregister. If this
10278 					 * happens, we simply run the queue
10279 					 * unscheduled, resulting in a noop
10280 					 * for this device.
10281 					 */
10282 					linkwatch_run_queue();
10283 					break;
10284 				}
10285 
10286 			__rtnl_unlock();
10287 
10288 			rebroadcast_time = jiffies;
10289 		}
10290 
10291 		if (!wait) {
10292 			rcu_barrier();
10293 			wait = WAIT_REFS_MIN_MSECS;
10294 		} else {
10295 			msleep(wait);
10296 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10297 		}
10298 
10299 		list_for_each_entry(dev, list, todo_list)
10300 			if (netdev_refcnt_read(dev) == 1)
10301 				return dev;
10302 
10303 		if (time_after(jiffies, warning_time +
10304 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10305 			list_for_each_entry(dev, list, todo_list) {
10306 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10307 					 dev->name, netdev_refcnt_read(dev));
10308 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10309 			}
10310 
10311 			warning_time = jiffies;
10312 		}
10313 	}
10314 }
10315 
10316 /* The sequence is:
10317  *
10318  *	rtnl_lock();
10319  *	...
10320  *	register_netdevice(x1);
10321  *	register_netdevice(x2);
10322  *	...
10323  *	unregister_netdevice(y1);
10324  *	unregister_netdevice(y2);
10325  *      ...
10326  *	rtnl_unlock();
10327  *	free_netdev(y1);
10328  *	free_netdev(y2);
10329  *
10330  * We are invoked by rtnl_unlock().
10331  * This allows us to deal with problems:
10332  * 1) We can delete sysfs objects which invoke hotplug
10333  *    without deadlocking with linkwatch via keventd.
10334  * 2) Since we run with the RTNL semaphore not held, we can sleep
10335  *    safely in order to wait for the netdev refcnt to drop to zero.
10336  *
10337  * We must not return until all unregister events added during
10338  * the interval the lock was held have been completed.
10339  */
10340 void netdev_run_todo(void)
10341 {
10342 	struct net_device *dev, *tmp;
10343 	struct list_head list;
10344 #ifdef CONFIG_LOCKDEP
10345 	struct list_head unlink_list;
10346 
10347 	list_replace_init(&net_unlink_list, &unlink_list);
10348 
10349 	while (!list_empty(&unlink_list)) {
10350 		struct net_device *dev = list_first_entry(&unlink_list,
10351 							  struct net_device,
10352 							  unlink_list);
10353 		list_del_init(&dev->unlink_list);
10354 		dev->nested_level = dev->lower_level - 1;
10355 	}
10356 #endif
10357 
10358 	/* Snapshot list, allow later requests */
10359 	list_replace_init(&net_todo_list, &list);
10360 
10361 	__rtnl_unlock();
10362 
10363 	/* Wait for rcu callbacks to finish before next phase */
10364 	if (!list_empty(&list))
10365 		rcu_barrier();
10366 
10367 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10368 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10369 			netdev_WARN(dev, "run_todo but not unregistering\n");
10370 			list_del(&dev->todo_list);
10371 			continue;
10372 		}
10373 
10374 		write_lock(&dev_base_lock);
10375 		dev->reg_state = NETREG_UNREGISTERED;
10376 		write_unlock(&dev_base_lock);
10377 		linkwatch_forget_dev(dev);
10378 	}
10379 
10380 	while (!list_empty(&list)) {
10381 		dev = netdev_wait_allrefs_any(&list);
10382 		list_del(&dev->todo_list);
10383 
10384 		/* paranoia */
10385 		BUG_ON(netdev_refcnt_read(dev) != 1);
10386 		BUG_ON(!list_empty(&dev->ptype_all));
10387 		BUG_ON(!list_empty(&dev->ptype_specific));
10388 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10389 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10390 
10391 		if (dev->priv_destructor)
10392 			dev->priv_destructor(dev);
10393 		if (dev->needs_free_netdev)
10394 			free_netdev(dev);
10395 
10396 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10397 			wake_up(&netdev_unregistering_wq);
10398 
10399 		/* Free network device */
10400 		kobject_put(&dev->dev.kobj);
10401 	}
10402 }
10403 
10404 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10405  * all the same fields in the same order as net_device_stats, with only
10406  * the type differing, but rtnl_link_stats64 may have additional fields
10407  * at the end for newer counters.
10408  */
10409 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10410 			     const struct net_device_stats *netdev_stats)
10411 {
10412 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10413 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10414 	u64 *dst = (u64 *)stats64;
10415 
10416 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10417 	for (i = 0; i < n; i++)
10418 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10419 	/* zero out counters that only exist in rtnl_link_stats64 */
10420 	memset((char *)stats64 + n * sizeof(u64), 0,
10421 	       sizeof(*stats64) - n * sizeof(u64));
10422 }
10423 EXPORT_SYMBOL(netdev_stats_to_stats64);
10424 
10425 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10426 {
10427 	struct net_device_core_stats __percpu *p;
10428 
10429 	p = alloc_percpu_gfp(struct net_device_core_stats,
10430 			     GFP_ATOMIC | __GFP_NOWARN);
10431 
10432 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10433 		free_percpu(p);
10434 
10435 	/* This READ_ONCE() pairs with the cmpxchg() above */
10436 	return READ_ONCE(dev->core_stats);
10437 }
10438 EXPORT_SYMBOL(netdev_core_stats_alloc);
10439 
10440 /**
10441  *	dev_get_stats	- get network device statistics
10442  *	@dev: device to get statistics from
10443  *	@storage: place to store stats
10444  *
10445  *	Get network statistics from device. Return @storage.
10446  *	The device driver may provide its own method by setting
10447  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10448  *	otherwise the internal statistics structure is used.
10449  */
10450 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10451 					struct rtnl_link_stats64 *storage)
10452 {
10453 	const struct net_device_ops *ops = dev->netdev_ops;
10454 	const struct net_device_core_stats __percpu *p;
10455 
10456 	if (ops->ndo_get_stats64) {
10457 		memset(storage, 0, sizeof(*storage));
10458 		ops->ndo_get_stats64(dev, storage);
10459 	} else if (ops->ndo_get_stats) {
10460 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10461 	} else {
10462 		netdev_stats_to_stats64(storage, &dev->stats);
10463 	}
10464 
10465 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10466 	p = READ_ONCE(dev->core_stats);
10467 	if (p) {
10468 		const struct net_device_core_stats *core_stats;
10469 		int i;
10470 
10471 		for_each_possible_cpu(i) {
10472 			core_stats = per_cpu_ptr(p, i);
10473 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10474 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10475 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10476 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10477 		}
10478 	}
10479 	return storage;
10480 }
10481 EXPORT_SYMBOL(dev_get_stats);
10482 
10483 /**
10484  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10485  *	@s: place to store stats
10486  *	@netstats: per-cpu network stats to read from
10487  *
10488  *	Read per-cpu network statistics and populate the related fields in @s.
10489  */
10490 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10491 			   const struct pcpu_sw_netstats __percpu *netstats)
10492 {
10493 	int cpu;
10494 
10495 	for_each_possible_cpu(cpu) {
10496 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10497 		const struct pcpu_sw_netstats *stats;
10498 		unsigned int start;
10499 
10500 		stats = per_cpu_ptr(netstats, cpu);
10501 		do {
10502 			start = u64_stats_fetch_begin(&stats->syncp);
10503 			rx_packets = u64_stats_read(&stats->rx_packets);
10504 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10505 			tx_packets = u64_stats_read(&stats->tx_packets);
10506 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10507 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10508 
10509 		s->rx_packets += rx_packets;
10510 		s->rx_bytes   += rx_bytes;
10511 		s->tx_packets += tx_packets;
10512 		s->tx_bytes   += tx_bytes;
10513 	}
10514 }
10515 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10516 
10517 /**
10518  *	dev_get_tstats64 - ndo_get_stats64 implementation
10519  *	@dev: device to get statistics from
10520  *	@s: place to store stats
10521  *
10522  *	Populate @s from dev->stats and dev->tstats. Can be used as
10523  *	ndo_get_stats64() callback.
10524  */
10525 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10526 {
10527 	netdev_stats_to_stats64(s, &dev->stats);
10528 	dev_fetch_sw_netstats(s, dev->tstats);
10529 }
10530 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10531 
10532 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10533 {
10534 	struct netdev_queue *queue = dev_ingress_queue(dev);
10535 
10536 #ifdef CONFIG_NET_CLS_ACT
10537 	if (queue)
10538 		return queue;
10539 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10540 	if (!queue)
10541 		return NULL;
10542 	netdev_init_one_queue(dev, queue, NULL);
10543 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10544 	queue->qdisc_sleeping = &noop_qdisc;
10545 	rcu_assign_pointer(dev->ingress_queue, queue);
10546 #endif
10547 	return queue;
10548 }
10549 
10550 static const struct ethtool_ops default_ethtool_ops;
10551 
10552 void netdev_set_default_ethtool_ops(struct net_device *dev,
10553 				    const struct ethtool_ops *ops)
10554 {
10555 	if (dev->ethtool_ops == &default_ethtool_ops)
10556 		dev->ethtool_ops = ops;
10557 }
10558 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10559 
10560 /**
10561  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10562  * @dev: netdev to enable the IRQ coalescing on
10563  *
10564  * Sets a conservative default for SW IRQ coalescing. Users can use
10565  * sysfs attributes to override the default values.
10566  */
10567 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10568 {
10569 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10570 
10571 	dev->gro_flush_timeout = 20000;
10572 	dev->napi_defer_hard_irqs = 1;
10573 }
10574 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10575 
10576 void netdev_freemem(struct net_device *dev)
10577 {
10578 	char *addr = (char *)dev - dev->padded;
10579 
10580 	kvfree(addr);
10581 }
10582 
10583 /**
10584  * alloc_netdev_mqs - allocate network device
10585  * @sizeof_priv: size of private data to allocate space for
10586  * @name: device name format string
10587  * @name_assign_type: origin of device name
10588  * @setup: callback to initialize device
10589  * @txqs: the number of TX subqueues to allocate
10590  * @rxqs: the number of RX subqueues to allocate
10591  *
10592  * Allocates a struct net_device with private data area for driver use
10593  * and performs basic initialization.  Also allocates subqueue structs
10594  * for each queue on the device.
10595  */
10596 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10597 		unsigned char name_assign_type,
10598 		void (*setup)(struct net_device *),
10599 		unsigned int txqs, unsigned int rxqs)
10600 {
10601 	struct net_device *dev;
10602 	unsigned int alloc_size;
10603 	struct net_device *p;
10604 
10605 	BUG_ON(strlen(name) >= sizeof(dev->name));
10606 
10607 	if (txqs < 1) {
10608 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10609 		return NULL;
10610 	}
10611 
10612 	if (rxqs < 1) {
10613 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10614 		return NULL;
10615 	}
10616 
10617 	alloc_size = sizeof(struct net_device);
10618 	if (sizeof_priv) {
10619 		/* ensure 32-byte alignment of private area */
10620 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10621 		alloc_size += sizeof_priv;
10622 	}
10623 	/* ensure 32-byte alignment of whole construct */
10624 	alloc_size += NETDEV_ALIGN - 1;
10625 
10626 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10627 	if (!p)
10628 		return NULL;
10629 
10630 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10631 	dev->padded = (char *)dev - (char *)p;
10632 
10633 	ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10634 #ifdef CONFIG_PCPU_DEV_REFCNT
10635 	dev->pcpu_refcnt = alloc_percpu(int);
10636 	if (!dev->pcpu_refcnt)
10637 		goto free_dev;
10638 	__dev_hold(dev);
10639 #else
10640 	refcount_set(&dev->dev_refcnt, 1);
10641 #endif
10642 
10643 	if (dev_addr_init(dev))
10644 		goto free_pcpu;
10645 
10646 	dev_mc_init(dev);
10647 	dev_uc_init(dev);
10648 
10649 	dev_net_set(dev, &init_net);
10650 
10651 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10652 	dev->gso_max_segs = GSO_MAX_SEGS;
10653 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10654 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10655 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10656 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10657 	dev->tso_max_segs = TSO_MAX_SEGS;
10658 	dev->upper_level = 1;
10659 	dev->lower_level = 1;
10660 #ifdef CONFIG_LOCKDEP
10661 	dev->nested_level = 0;
10662 	INIT_LIST_HEAD(&dev->unlink_list);
10663 #endif
10664 
10665 	INIT_LIST_HEAD(&dev->napi_list);
10666 	INIT_LIST_HEAD(&dev->unreg_list);
10667 	INIT_LIST_HEAD(&dev->close_list);
10668 	INIT_LIST_HEAD(&dev->link_watch_list);
10669 	INIT_LIST_HEAD(&dev->adj_list.upper);
10670 	INIT_LIST_HEAD(&dev->adj_list.lower);
10671 	INIT_LIST_HEAD(&dev->ptype_all);
10672 	INIT_LIST_HEAD(&dev->ptype_specific);
10673 	INIT_LIST_HEAD(&dev->net_notifier_list);
10674 #ifdef CONFIG_NET_SCHED
10675 	hash_init(dev->qdisc_hash);
10676 #endif
10677 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10678 	setup(dev);
10679 
10680 	if (!dev->tx_queue_len) {
10681 		dev->priv_flags |= IFF_NO_QUEUE;
10682 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10683 	}
10684 
10685 	dev->num_tx_queues = txqs;
10686 	dev->real_num_tx_queues = txqs;
10687 	if (netif_alloc_netdev_queues(dev))
10688 		goto free_all;
10689 
10690 	dev->num_rx_queues = rxqs;
10691 	dev->real_num_rx_queues = rxqs;
10692 	if (netif_alloc_rx_queues(dev))
10693 		goto free_all;
10694 
10695 	strcpy(dev->name, name);
10696 	dev->name_assign_type = name_assign_type;
10697 	dev->group = INIT_NETDEV_GROUP;
10698 	if (!dev->ethtool_ops)
10699 		dev->ethtool_ops = &default_ethtool_ops;
10700 
10701 	nf_hook_netdev_init(dev);
10702 
10703 	return dev;
10704 
10705 free_all:
10706 	free_netdev(dev);
10707 	return NULL;
10708 
10709 free_pcpu:
10710 #ifdef CONFIG_PCPU_DEV_REFCNT
10711 	free_percpu(dev->pcpu_refcnt);
10712 free_dev:
10713 #endif
10714 	netdev_freemem(dev);
10715 	return NULL;
10716 }
10717 EXPORT_SYMBOL(alloc_netdev_mqs);
10718 
10719 /**
10720  * free_netdev - free network device
10721  * @dev: device
10722  *
10723  * This function does the last stage of destroying an allocated device
10724  * interface. The reference to the device object is released. If this
10725  * is the last reference then it will be freed.Must be called in process
10726  * context.
10727  */
10728 void free_netdev(struct net_device *dev)
10729 {
10730 	struct napi_struct *p, *n;
10731 
10732 	might_sleep();
10733 
10734 	/* When called immediately after register_netdevice() failed the unwind
10735 	 * handling may still be dismantling the device. Handle that case by
10736 	 * deferring the free.
10737 	 */
10738 	if (dev->reg_state == NETREG_UNREGISTERING) {
10739 		ASSERT_RTNL();
10740 		dev->needs_free_netdev = true;
10741 		return;
10742 	}
10743 
10744 	netif_free_tx_queues(dev);
10745 	netif_free_rx_queues(dev);
10746 
10747 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10748 
10749 	/* Flush device addresses */
10750 	dev_addr_flush(dev);
10751 
10752 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10753 		netif_napi_del(p);
10754 
10755 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10756 #ifdef CONFIG_PCPU_DEV_REFCNT
10757 	free_percpu(dev->pcpu_refcnt);
10758 	dev->pcpu_refcnt = NULL;
10759 #endif
10760 	free_percpu(dev->core_stats);
10761 	dev->core_stats = NULL;
10762 	free_percpu(dev->xdp_bulkq);
10763 	dev->xdp_bulkq = NULL;
10764 
10765 	/*  Compatibility with error handling in drivers */
10766 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10767 		netdev_freemem(dev);
10768 		return;
10769 	}
10770 
10771 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10772 	dev->reg_state = NETREG_RELEASED;
10773 
10774 	/* will free via device release */
10775 	put_device(&dev->dev);
10776 }
10777 EXPORT_SYMBOL(free_netdev);
10778 
10779 /**
10780  *	synchronize_net -  Synchronize with packet receive processing
10781  *
10782  *	Wait for packets currently being received to be done.
10783  *	Does not block later packets from starting.
10784  */
10785 void synchronize_net(void)
10786 {
10787 	might_sleep();
10788 	if (rtnl_is_locked())
10789 		synchronize_rcu_expedited();
10790 	else
10791 		synchronize_rcu();
10792 }
10793 EXPORT_SYMBOL(synchronize_net);
10794 
10795 /**
10796  *	unregister_netdevice_queue - remove device from the kernel
10797  *	@dev: device
10798  *	@head: list
10799  *
10800  *	This function shuts down a device interface and removes it
10801  *	from the kernel tables.
10802  *	If head not NULL, device is queued to be unregistered later.
10803  *
10804  *	Callers must hold the rtnl semaphore.  You may want
10805  *	unregister_netdev() instead of this.
10806  */
10807 
10808 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10809 {
10810 	ASSERT_RTNL();
10811 
10812 	if (head) {
10813 		list_move_tail(&dev->unreg_list, head);
10814 	} else {
10815 		LIST_HEAD(single);
10816 
10817 		list_add(&dev->unreg_list, &single);
10818 		unregister_netdevice_many(&single);
10819 	}
10820 }
10821 EXPORT_SYMBOL(unregister_netdevice_queue);
10822 
10823 void unregister_netdevice_many_notify(struct list_head *head,
10824 				      u32 portid, const struct nlmsghdr *nlh)
10825 {
10826 	struct net_device *dev, *tmp;
10827 	LIST_HEAD(close_head);
10828 
10829 	BUG_ON(dev_boot_phase);
10830 	ASSERT_RTNL();
10831 
10832 	if (list_empty(head))
10833 		return;
10834 
10835 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10836 		/* Some devices call without registering
10837 		 * for initialization unwind. Remove those
10838 		 * devices and proceed with the remaining.
10839 		 */
10840 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10841 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10842 				 dev->name, dev);
10843 
10844 			WARN_ON(1);
10845 			list_del(&dev->unreg_list);
10846 			continue;
10847 		}
10848 		dev->dismantle = true;
10849 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10850 	}
10851 
10852 	/* If device is running, close it first. */
10853 	list_for_each_entry(dev, head, unreg_list)
10854 		list_add_tail(&dev->close_list, &close_head);
10855 	dev_close_many(&close_head, true);
10856 
10857 	list_for_each_entry(dev, head, unreg_list) {
10858 		/* And unlink it from device chain. */
10859 		write_lock(&dev_base_lock);
10860 		unlist_netdevice(dev, false);
10861 		dev->reg_state = NETREG_UNREGISTERING;
10862 		write_unlock(&dev_base_lock);
10863 	}
10864 	flush_all_backlogs();
10865 
10866 	synchronize_net();
10867 
10868 	list_for_each_entry(dev, head, unreg_list) {
10869 		struct sk_buff *skb = NULL;
10870 
10871 		/* Shutdown queueing discipline. */
10872 		dev_shutdown(dev);
10873 
10874 		dev_xdp_uninstall(dev);
10875 		bpf_dev_bound_netdev_unregister(dev);
10876 
10877 		netdev_offload_xstats_disable_all(dev);
10878 
10879 		/* Notify protocols, that we are about to destroy
10880 		 * this device. They should clean all the things.
10881 		 */
10882 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10883 
10884 		if (!dev->rtnl_link_ops ||
10885 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10886 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10887 						     GFP_KERNEL, NULL, 0,
10888 						     portid, nlh);
10889 
10890 		/*
10891 		 *	Flush the unicast and multicast chains
10892 		 */
10893 		dev_uc_flush(dev);
10894 		dev_mc_flush(dev);
10895 
10896 		netdev_name_node_alt_flush(dev);
10897 		netdev_name_node_free(dev->name_node);
10898 
10899 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10900 
10901 		if (dev->netdev_ops->ndo_uninit)
10902 			dev->netdev_ops->ndo_uninit(dev);
10903 
10904 		if (skb)
10905 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10906 
10907 		/* Notifier chain MUST detach us all upper devices. */
10908 		WARN_ON(netdev_has_any_upper_dev(dev));
10909 		WARN_ON(netdev_has_any_lower_dev(dev));
10910 
10911 		/* Remove entries from kobject tree */
10912 		netdev_unregister_kobject(dev);
10913 #ifdef CONFIG_XPS
10914 		/* Remove XPS queueing entries */
10915 		netif_reset_xps_queues_gt(dev, 0);
10916 #endif
10917 	}
10918 
10919 	synchronize_net();
10920 
10921 	list_for_each_entry(dev, head, unreg_list) {
10922 		netdev_put(dev, &dev->dev_registered_tracker);
10923 		net_set_todo(dev);
10924 	}
10925 
10926 	list_del(head);
10927 }
10928 
10929 /**
10930  *	unregister_netdevice_many - unregister many devices
10931  *	@head: list of devices
10932  *
10933  *  Note: As most callers use a stack allocated list_head,
10934  *  we force a list_del() to make sure stack wont be corrupted later.
10935  */
10936 void unregister_netdevice_many(struct list_head *head)
10937 {
10938 	unregister_netdevice_many_notify(head, 0, NULL);
10939 }
10940 EXPORT_SYMBOL(unregister_netdevice_many);
10941 
10942 /**
10943  *	unregister_netdev - remove device from the kernel
10944  *	@dev: device
10945  *
10946  *	This function shuts down a device interface and removes it
10947  *	from the kernel tables.
10948  *
10949  *	This is just a wrapper for unregister_netdevice that takes
10950  *	the rtnl semaphore.  In general you want to use this and not
10951  *	unregister_netdevice.
10952  */
10953 void unregister_netdev(struct net_device *dev)
10954 {
10955 	rtnl_lock();
10956 	unregister_netdevice(dev);
10957 	rtnl_unlock();
10958 }
10959 EXPORT_SYMBOL(unregister_netdev);
10960 
10961 /**
10962  *	__dev_change_net_namespace - move device to different nethost namespace
10963  *	@dev: device
10964  *	@net: network namespace
10965  *	@pat: If not NULL name pattern to try if the current device name
10966  *	      is already taken in the destination network namespace.
10967  *	@new_ifindex: If not zero, specifies device index in the target
10968  *	              namespace.
10969  *
10970  *	This function shuts down a device interface and moves it
10971  *	to a new network namespace. On success 0 is returned, on
10972  *	a failure a netagive errno code is returned.
10973  *
10974  *	Callers must hold the rtnl semaphore.
10975  */
10976 
10977 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10978 			       const char *pat, int new_ifindex)
10979 {
10980 	struct net *net_old = dev_net(dev);
10981 	int err, new_nsid;
10982 
10983 	ASSERT_RTNL();
10984 
10985 	/* Don't allow namespace local devices to be moved. */
10986 	err = -EINVAL;
10987 	if (dev->features & NETIF_F_NETNS_LOCAL)
10988 		goto out;
10989 
10990 	/* Ensure the device has been registrered */
10991 	if (dev->reg_state != NETREG_REGISTERED)
10992 		goto out;
10993 
10994 	/* Get out if there is nothing todo */
10995 	err = 0;
10996 	if (net_eq(net_old, net))
10997 		goto out;
10998 
10999 	/* Pick the destination device name, and ensure
11000 	 * we can use it in the destination network namespace.
11001 	 */
11002 	err = -EEXIST;
11003 	if (netdev_name_in_use(net, dev->name)) {
11004 		/* We get here if we can't use the current device name */
11005 		if (!pat)
11006 			goto out;
11007 		err = dev_get_valid_name(net, dev, pat);
11008 		if (err < 0)
11009 			goto out;
11010 	}
11011 
11012 	/* Check that new_ifindex isn't used yet. */
11013 	err = -EBUSY;
11014 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11015 		goto out;
11016 
11017 	/*
11018 	 * And now a mini version of register_netdevice unregister_netdevice.
11019 	 */
11020 
11021 	/* If device is running close it first. */
11022 	dev_close(dev);
11023 
11024 	/* And unlink it from device chain */
11025 	unlist_netdevice(dev, true);
11026 
11027 	synchronize_net();
11028 
11029 	/* Shutdown queueing discipline. */
11030 	dev_shutdown(dev);
11031 
11032 	/* Notify protocols, that we are about to destroy
11033 	 * this device. They should clean all the things.
11034 	 *
11035 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11036 	 * This is wanted because this way 8021q and macvlan know
11037 	 * the device is just moving and can keep their slaves up.
11038 	 */
11039 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11040 	rcu_barrier();
11041 
11042 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11043 	/* If there is an ifindex conflict assign a new one */
11044 	if (!new_ifindex) {
11045 		if (__dev_get_by_index(net, dev->ifindex))
11046 			new_ifindex = dev_new_index(net);
11047 		else
11048 			new_ifindex = dev->ifindex;
11049 	}
11050 
11051 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11052 			    new_ifindex);
11053 
11054 	/*
11055 	 *	Flush the unicast and multicast chains
11056 	 */
11057 	dev_uc_flush(dev);
11058 	dev_mc_flush(dev);
11059 
11060 	/* Send a netdev-removed uevent to the old namespace */
11061 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11062 	netdev_adjacent_del_links(dev);
11063 
11064 	/* Move per-net netdevice notifiers that are following the netdevice */
11065 	move_netdevice_notifiers_dev_net(dev, net);
11066 
11067 	/* Actually switch the network namespace */
11068 	dev_net_set(dev, net);
11069 	dev->ifindex = new_ifindex;
11070 
11071 	/* Send a netdev-add uevent to the new namespace */
11072 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11073 	netdev_adjacent_add_links(dev);
11074 
11075 	/* Fixup kobjects */
11076 	err = device_rename(&dev->dev, dev->name);
11077 	WARN_ON(err);
11078 
11079 	/* Adapt owner in case owning user namespace of target network
11080 	 * namespace is different from the original one.
11081 	 */
11082 	err = netdev_change_owner(dev, net_old, net);
11083 	WARN_ON(err);
11084 
11085 	/* Add the device back in the hashes */
11086 	list_netdevice(dev);
11087 
11088 	/* Notify protocols, that a new device appeared. */
11089 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11090 
11091 	/*
11092 	 *	Prevent userspace races by waiting until the network
11093 	 *	device is fully setup before sending notifications.
11094 	 */
11095 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11096 
11097 	synchronize_net();
11098 	err = 0;
11099 out:
11100 	return err;
11101 }
11102 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11103 
11104 static int dev_cpu_dead(unsigned int oldcpu)
11105 {
11106 	struct sk_buff **list_skb;
11107 	struct sk_buff *skb;
11108 	unsigned int cpu;
11109 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11110 
11111 	local_irq_disable();
11112 	cpu = smp_processor_id();
11113 	sd = &per_cpu(softnet_data, cpu);
11114 	oldsd = &per_cpu(softnet_data, oldcpu);
11115 
11116 	/* Find end of our completion_queue. */
11117 	list_skb = &sd->completion_queue;
11118 	while (*list_skb)
11119 		list_skb = &(*list_skb)->next;
11120 	/* Append completion queue from offline CPU. */
11121 	*list_skb = oldsd->completion_queue;
11122 	oldsd->completion_queue = NULL;
11123 
11124 	/* Append output queue from offline CPU. */
11125 	if (oldsd->output_queue) {
11126 		*sd->output_queue_tailp = oldsd->output_queue;
11127 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11128 		oldsd->output_queue = NULL;
11129 		oldsd->output_queue_tailp = &oldsd->output_queue;
11130 	}
11131 	/* Append NAPI poll list from offline CPU, with one exception :
11132 	 * process_backlog() must be called by cpu owning percpu backlog.
11133 	 * We properly handle process_queue & input_pkt_queue later.
11134 	 */
11135 	while (!list_empty(&oldsd->poll_list)) {
11136 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11137 							    struct napi_struct,
11138 							    poll_list);
11139 
11140 		list_del_init(&napi->poll_list);
11141 		if (napi->poll == process_backlog)
11142 			napi->state = 0;
11143 		else
11144 			____napi_schedule(sd, napi);
11145 	}
11146 
11147 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11148 	local_irq_enable();
11149 
11150 #ifdef CONFIG_RPS
11151 	remsd = oldsd->rps_ipi_list;
11152 	oldsd->rps_ipi_list = NULL;
11153 #endif
11154 	/* send out pending IPI's on offline CPU */
11155 	net_rps_send_ipi(remsd);
11156 
11157 	/* Process offline CPU's input_pkt_queue */
11158 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11159 		netif_rx(skb);
11160 		input_queue_head_incr(oldsd);
11161 	}
11162 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11163 		netif_rx(skb);
11164 		input_queue_head_incr(oldsd);
11165 	}
11166 
11167 	return 0;
11168 }
11169 
11170 /**
11171  *	netdev_increment_features - increment feature set by one
11172  *	@all: current feature set
11173  *	@one: new feature set
11174  *	@mask: mask feature set
11175  *
11176  *	Computes a new feature set after adding a device with feature set
11177  *	@one to the master device with current feature set @all.  Will not
11178  *	enable anything that is off in @mask. Returns the new feature set.
11179  */
11180 netdev_features_t netdev_increment_features(netdev_features_t all,
11181 	netdev_features_t one, netdev_features_t mask)
11182 {
11183 	if (mask & NETIF_F_HW_CSUM)
11184 		mask |= NETIF_F_CSUM_MASK;
11185 	mask |= NETIF_F_VLAN_CHALLENGED;
11186 
11187 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11188 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11189 
11190 	/* If one device supports hw checksumming, set for all. */
11191 	if (all & NETIF_F_HW_CSUM)
11192 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11193 
11194 	return all;
11195 }
11196 EXPORT_SYMBOL(netdev_increment_features);
11197 
11198 static struct hlist_head * __net_init netdev_create_hash(void)
11199 {
11200 	int i;
11201 	struct hlist_head *hash;
11202 
11203 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11204 	if (hash != NULL)
11205 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11206 			INIT_HLIST_HEAD(&hash[i]);
11207 
11208 	return hash;
11209 }
11210 
11211 /* Initialize per network namespace state */
11212 static int __net_init netdev_init(struct net *net)
11213 {
11214 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11215 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11216 
11217 	INIT_LIST_HEAD(&net->dev_base_head);
11218 
11219 	net->dev_name_head = netdev_create_hash();
11220 	if (net->dev_name_head == NULL)
11221 		goto err_name;
11222 
11223 	net->dev_index_head = netdev_create_hash();
11224 	if (net->dev_index_head == NULL)
11225 		goto err_idx;
11226 
11227 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11228 
11229 	return 0;
11230 
11231 err_idx:
11232 	kfree(net->dev_name_head);
11233 err_name:
11234 	return -ENOMEM;
11235 }
11236 
11237 /**
11238  *	netdev_drivername - network driver for the device
11239  *	@dev: network device
11240  *
11241  *	Determine network driver for device.
11242  */
11243 const char *netdev_drivername(const struct net_device *dev)
11244 {
11245 	const struct device_driver *driver;
11246 	const struct device *parent;
11247 	const char *empty = "";
11248 
11249 	parent = dev->dev.parent;
11250 	if (!parent)
11251 		return empty;
11252 
11253 	driver = parent->driver;
11254 	if (driver && driver->name)
11255 		return driver->name;
11256 	return empty;
11257 }
11258 
11259 static void __netdev_printk(const char *level, const struct net_device *dev,
11260 			    struct va_format *vaf)
11261 {
11262 	if (dev && dev->dev.parent) {
11263 		dev_printk_emit(level[1] - '0',
11264 				dev->dev.parent,
11265 				"%s %s %s%s: %pV",
11266 				dev_driver_string(dev->dev.parent),
11267 				dev_name(dev->dev.parent),
11268 				netdev_name(dev), netdev_reg_state(dev),
11269 				vaf);
11270 	} else if (dev) {
11271 		printk("%s%s%s: %pV",
11272 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11273 	} else {
11274 		printk("%s(NULL net_device): %pV", level, vaf);
11275 	}
11276 }
11277 
11278 void netdev_printk(const char *level, const struct net_device *dev,
11279 		   const char *format, ...)
11280 {
11281 	struct va_format vaf;
11282 	va_list args;
11283 
11284 	va_start(args, format);
11285 
11286 	vaf.fmt = format;
11287 	vaf.va = &args;
11288 
11289 	__netdev_printk(level, dev, &vaf);
11290 
11291 	va_end(args);
11292 }
11293 EXPORT_SYMBOL(netdev_printk);
11294 
11295 #define define_netdev_printk_level(func, level)			\
11296 void func(const struct net_device *dev, const char *fmt, ...)	\
11297 {								\
11298 	struct va_format vaf;					\
11299 	va_list args;						\
11300 								\
11301 	va_start(args, fmt);					\
11302 								\
11303 	vaf.fmt = fmt;						\
11304 	vaf.va = &args;						\
11305 								\
11306 	__netdev_printk(level, dev, &vaf);			\
11307 								\
11308 	va_end(args);						\
11309 }								\
11310 EXPORT_SYMBOL(func);
11311 
11312 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11313 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11314 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11315 define_netdev_printk_level(netdev_err, KERN_ERR);
11316 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11317 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11318 define_netdev_printk_level(netdev_info, KERN_INFO);
11319 
11320 static void __net_exit netdev_exit(struct net *net)
11321 {
11322 	kfree(net->dev_name_head);
11323 	kfree(net->dev_index_head);
11324 	if (net != &init_net)
11325 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11326 }
11327 
11328 static struct pernet_operations __net_initdata netdev_net_ops = {
11329 	.init = netdev_init,
11330 	.exit = netdev_exit,
11331 };
11332 
11333 static void __net_exit default_device_exit_net(struct net *net)
11334 {
11335 	struct net_device *dev, *aux;
11336 	/*
11337 	 * Push all migratable network devices back to the
11338 	 * initial network namespace
11339 	 */
11340 	ASSERT_RTNL();
11341 	for_each_netdev_safe(net, dev, aux) {
11342 		int err;
11343 		char fb_name[IFNAMSIZ];
11344 
11345 		/* Ignore unmoveable devices (i.e. loopback) */
11346 		if (dev->features & NETIF_F_NETNS_LOCAL)
11347 			continue;
11348 
11349 		/* Leave virtual devices for the generic cleanup */
11350 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11351 			continue;
11352 
11353 		/* Push remaining network devices to init_net */
11354 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11355 		if (netdev_name_in_use(&init_net, fb_name))
11356 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11357 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11358 		if (err) {
11359 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11360 				 __func__, dev->name, err);
11361 			BUG();
11362 		}
11363 	}
11364 }
11365 
11366 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11367 {
11368 	/* At exit all network devices most be removed from a network
11369 	 * namespace.  Do this in the reverse order of registration.
11370 	 * Do this across as many network namespaces as possible to
11371 	 * improve batching efficiency.
11372 	 */
11373 	struct net_device *dev;
11374 	struct net *net;
11375 	LIST_HEAD(dev_kill_list);
11376 
11377 	rtnl_lock();
11378 	list_for_each_entry(net, net_list, exit_list) {
11379 		default_device_exit_net(net);
11380 		cond_resched();
11381 	}
11382 
11383 	list_for_each_entry(net, net_list, exit_list) {
11384 		for_each_netdev_reverse(net, dev) {
11385 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11386 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11387 			else
11388 				unregister_netdevice_queue(dev, &dev_kill_list);
11389 		}
11390 	}
11391 	unregister_netdevice_many(&dev_kill_list);
11392 	rtnl_unlock();
11393 }
11394 
11395 static struct pernet_operations __net_initdata default_device_ops = {
11396 	.exit_batch = default_device_exit_batch,
11397 };
11398 
11399 /*
11400  *	Initialize the DEV module. At boot time this walks the device list and
11401  *	unhooks any devices that fail to initialise (normally hardware not
11402  *	present) and leaves us with a valid list of present and active devices.
11403  *
11404  */
11405 
11406 /*
11407  *       This is called single threaded during boot, so no need
11408  *       to take the rtnl semaphore.
11409  */
11410 static int __init net_dev_init(void)
11411 {
11412 	int i, rc = -ENOMEM;
11413 
11414 	BUG_ON(!dev_boot_phase);
11415 
11416 	if (dev_proc_init())
11417 		goto out;
11418 
11419 	if (netdev_kobject_init())
11420 		goto out;
11421 
11422 	INIT_LIST_HEAD(&ptype_all);
11423 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11424 		INIT_LIST_HEAD(&ptype_base[i]);
11425 
11426 	if (register_pernet_subsys(&netdev_net_ops))
11427 		goto out;
11428 
11429 	/*
11430 	 *	Initialise the packet receive queues.
11431 	 */
11432 
11433 	for_each_possible_cpu(i) {
11434 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11435 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11436 
11437 		INIT_WORK(flush, flush_backlog);
11438 
11439 		skb_queue_head_init(&sd->input_pkt_queue);
11440 		skb_queue_head_init(&sd->process_queue);
11441 #ifdef CONFIG_XFRM_OFFLOAD
11442 		skb_queue_head_init(&sd->xfrm_backlog);
11443 #endif
11444 		INIT_LIST_HEAD(&sd->poll_list);
11445 		sd->output_queue_tailp = &sd->output_queue;
11446 #ifdef CONFIG_RPS
11447 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11448 		sd->cpu = i;
11449 #endif
11450 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11451 		spin_lock_init(&sd->defer_lock);
11452 
11453 		init_gro_hash(&sd->backlog);
11454 		sd->backlog.poll = process_backlog;
11455 		sd->backlog.weight = weight_p;
11456 	}
11457 
11458 	dev_boot_phase = 0;
11459 
11460 	/* The loopback device is special if any other network devices
11461 	 * is present in a network namespace the loopback device must
11462 	 * be present. Since we now dynamically allocate and free the
11463 	 * loopback device ensure this invariant is maintained by
11464 	 * keeping the loopback device as the first device on the
11465 	 * list of network devices.  Ensuring the loopback devices
11466 	 * is the first device that appears and the last network device
11467 	 * that disappears.
11468 	 */
11469 	if (register_pernet_device(&loopback_net_ops))
11470 		goto out;
11471 
11472 	if (register_pernet_device(&default_device_ops))
11473 		goto out;
11474 
11475 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11476 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11477 
11478 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11479 				       NULL, dev_cpu_dead);
11480 	WARN_ON(rc < 0);
11481 	rc = 0;
11482 out:
11483 	return rc;
11484 }
11485 
11486 subsys_initcall(net_dev_init);
11487