xref: /openbmc/linux/net/core/dev.c (revision afc98d90)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135 
136 #include "net-sysfs.h"
137 
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140 
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143 
144 static DEFINE_SPINLOCK(ptype_lock);
145 static DEFINE_SPINLOCK(offload_lock);
146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
147 struct list_head ptype_all __read_mostly;	/* Taps */
148 static struct list_head offload_base __read_mostly;
149 
150 static int netif_rx_internal(struct sk_buff *skb);
151 
152 /*
153  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
154  * semaphore.
155  *
156  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
157  *
158  * Writers must hold the rtnl semaphore while they loop through the
159  * dev_base_head list, and hold dev_base_lock for writing when they do the
160  * actual updates.  This allows pure readers to access the list even
161  * while a writer is preparing to update it.
162  *
163  * To put it another way, dev_base_lock is held for writing only to
164  * protect against pure readers; the rtnl semaphore provides the
165  * protection against other writers.
166  *
167  * See, for example usages, register_netdevice() and
168  * unregister_netdevice(), which must be called with the rtnl
169  * semaphore held.
170  */
171 DEFINE_RWLOCK(dev_base_lock);
172 EXPORT_SYMBOL(dev_base_lock);
173 
174 /* protects napi_hash addition/deletion and napi_gen_id */
175 static DEFINE_SPINLOCK(napi_hash_lock);
176 
177 static unsigned int napi_gen_id;
178 static DEFINE_HASHTABLE(napi_hash, 8);
179 
180 static seqcount_t devnet_rename_seq;
181 
182 static inline void dev_base_seq_inc(struct net *net)
183 {
184 	while (++net->dev_base_seq == 0);
185 }
186 
187 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
188 {
189 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
190 
191 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
192 }
193 
194 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
195 {
196 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
197 }
198 
199 static inline void rps_lock(struct softnet_data *sd)
200 {
201 #ifdef CONFIG_RPS
202 	spin_lock(&sd->input_pkt_queue.lock);
203 #endif
204 }
205 
206 static inline void rps_unlock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209 	spin_unlock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212 
213 /* Device list insertion */
214 static void list_netdevice(struct net_device *dev)
215 {
216 	struct net *net = dev_net(dev);
217 
218 	ASSERT_RTNL();
219 
220 	write_lock_bh(&dev_base_lock);
221 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
222 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
223 	hlist_add_head_rcu(&dev->index_hlist,
224 			   dev_index_hash(net, dev->ifindex));
225 	write_unlock_bh(&dev_base_lock);
226 
227 	dev_base_seq_inc(net);
228 }
229 
230 /* Device list removal
231  * caller must respect a RCU grace period before freeing/reusing dev
232  */
233 static void unlist_netdevice(struct net_device *dev)
234 {
235 	ASSERT_RTNL();
236 
237 	/* Unlink dev from the device chain */
238 	write_lock_bh(&dev_base_lock);
239 	list_del_rcu(&dev->dev_list);
240 	hlist_del_rcu(&dev->name_hlist);
241 	hlist_del_rcu(&dev->index_hlist);
242 	write_unlock_bh(&dev_base_lock);
243 
244 	dev_base_seq_inc(dev_net(dev));
245 }
246 
247 /*
248  *	Our notifier list
249  */
250 
251 static RAW_NOTIFIER_HEAD(netdev_chain);
252 
253 /*
254  *	Device drivers call our routines to queue packets here. We empty the
255  *	queue in the local softnet handler.
256  */
257 
258 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
259 EXPORT_PER_CPU_SYMBOL(softnet_data);
260 
261 #ifdef CONFIG_LOCKDEP
262 /*
263  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
264  * according to dev->type
265  */
266 static const unsigned short netdev_lock_type[] =
267 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
268 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
269 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
270 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
271 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
272 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
273 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
274 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
275 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
276 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
277 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
278 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
279 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
280 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
281 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
282 
283 static const char *const netdev_lock_name[] =
284 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
285 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
286 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
287 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
288 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
289 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
290 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
291 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
292 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
293 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
294 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
295 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
296 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
297 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
298 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
299 
300 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
301 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
302 
303 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
304 {
305 	int i;
306 
307 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
308 		if (netdev_lock_type[i] == dev_type)
309 			return i;
310 	/* the last key is used by default */
311 	return ARRAY_SIZE(netdev_lock_type) - 1;
312 }
313 
314 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
315 						 unsigned short dev_type)
316 {
317 	int i;
318 
319 	i = netdev_lock_pos(dev_type);
320 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
321 				   netdev_lock_name[i]);
322 }
323 
324 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
325 {
326 	int i;
327 
328 	i = netdev_lock_pos(dev->type);
329 	lockdep_set_class_and_name(&dev->addr_list_lock,
330 				   &netdev_addr_lock_key[i],
331 				   netdev_lock_name[i]);
332 }
333 #else
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 						 unsigned short dev_type)
336 {
337 }
338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339 {
340 }
341 #endif
342 
343 /*******************************************************************************
344 
345 		Protocol management and registration routines
346 
347 *******************************************************************************/
348 
349 /*
350  *	Add a protocol ID to the list. Now that the input handler is
351  *	smarter we can dispense with all the messy stuff that used to be
352  *	here.
353  *
354  *	BEWARE!!! Protocol handlers, mangling input packets,
355  *	MUST BE last in hash buckets and checking protocol handlers
356  *	MUST start from promiscuous ptype_all chain in net_bh.
357  *	It is true now, do not change it.
358  *	Explanation follows: if protocol handler, mangling packet, will
359  *	be the first on list, it is not able to sense, that packet
360  *	is cloned and should be copied-on-write, so that it will
361  *	change it and subsequent readers will get broken packet.
362  *							--ANK (980803)
363  */
364 
365 static inline struct list_head *ptype_head(const struct packet_type *pt)
366 {
367 	if (pt->type == htons(ETH_P_ALL))
368 		return &ptype_all;
369 	else
370 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
371 }
372 
373 /**
374  *	dev_add_pack - add packet handler
375  *	@pt: packet type declaration
376  *
377  *	Add a protocol handler to the networking stack. The passed &packet_type
378  *	is linked into kernel lists and may not be freed until it has been
379  *	removed from the kernel lists.
380  *
381  *	This call does not sleep therefore it can not
382  *	guarantee all CPU's that are in middle of receiving packets
383  *	will see the new packet type (until the next received packet).
384  */
385 
386 void dev_add_pack(struct packet_type *pt)
387 {
388 	struct list_head *head = ptype_head(pt);
389 
390 	spin_lock(&ptype_lock);
391 	list_add_rcu(&pt->list, head);
392 	spin_unlock(&ptype_lock);
393 }
394 EXPORT_SYMBOL(dev_add_pack);
395 
396 /**
397  *	__dev_remove_pack	 - remove packet handler
398  *	@pt: packet type declaration
399  *
400  *	Remove a protocol handler that was previously added to the kernel
401  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
402  *	from the kernel lists and can be freed or reused once this function
403  *	returns.
404  *
405  *      The packet type might still be in use by receivers
406  *	and must not be freed until after all the CPU's have gone
407  *	through a quiescent state.
408  */
409 void __dev_remove_pack(struct packet_type *pt)
410 {
411 	struct list_head *head = ptype_head(pt);
412 	struct packet_type *pt1;
413 
414 	spin_lock(&ptype_lock);
415 
416 	list_for_each_entry(pt1, head, list) {
417 		if (pt == pt1) {
418 			list_del_rcu(&pt->list);
419 			goto out;
420 		}
421 	}
422 
423 	pr_warn("dev_remove_pack: %p not found\n", pt);
424 out:
425 	spin_unlock(&ptype_lock);
426 }
427 EXPORT_SYMBOL(__dev_remove_pack);
428 
429 /**
430  *	dev_remove_pack	 - remove packet handler
431  *	@pt: packet type declaration
432  *
433  *	Remove a protocol handler that was previously added to the kernel
434  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
435  *	from the kernel lists and can be freed or reused once this function
436  *	returns.
437  *
438  *	This call sleeps to guarantee that no CPU is looking at the packet
439  *	type after return.
440  */
441 void dev_remove_pack(struct packet_type *pt)
442 {
443 	__dev_remove_pack(pt);
444 
445 	synchronize_net();
446 }
447 EXPORT_SYMBOL(dev_remove_pack);
448 
449 
450 /**
451  *	dev_add_offload - register offload handlers
452  *	@po: protocol offload declaration
453  *
454  *	Add protocol offload handlers to the networking stack. The passed
455  *	&proto_offload is linked into kernel lists and may not be freed until
456  *	it has been removed from the kernel lists.
457  *
458  *	This call does not sleep therefore it can not
459  *	guarantee all CPU's that are in middle of receiving packets
460  *	will see the new offload handlers (until the next received packet).
461  */
462 void dev_add_offload(struct packet_offload *po)
463 {
464 	struct list_head *head = &offload_base;
465 
466 	spin_lock(&offload_lock);
467 	list_add_rcu(&po->list, head);
468 	spin_unlock(&offload_lock);
469 }
470 EXPORT_SYMBOL(dev_add_offload);
471 
472 /**
473  *	__dev_remove_offload	 - remove offload handler
474  *	@po: packet offload declaration
475  *
476  *	Remove a protocol offload handler that was previously added to the
477  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
478  *	is removed from the kernel lists and can be freed or reused once this
479  *	function returns.
480  *
481  *      The packet type might still be in use by receivers
482  *	and must not be freed until after all the CPU's have gone
483  *	through a quiescent state.
484  */
485 static void __dev_remove_offload(struct packet_offload *po)
486 {
487 	struct list_head *head = &offload_base;
488 	struct packet_offload *po1;
489 
490 	spin_lock(&offload_lock);
491 
492 	list_for_each_entry(po1, head, list) {
493 		if (po == po1) {
494 			list_del_rcu(&po->list);
495 			goto out;
496 		}
497 	}
498 
499 	pr_warn("dev_remove_offload: %p not found\n", po);
500 out:
501 	spin_unlock(&offload_lock);
502 }
503 
504 /**
505  *	dev_remove_offload	 - remove packet offload handler
506  *	@po: packet offload declaration
507  *
508  *	Remove a packet offload handler that was previously added to the kernel
509  *	offload handlers by dev_add_offload(). The passed &offload_type is
510  *	removed from the kernel lists and can be freed or reused once this
511  *	function returns.
512  *
513  *	This call sleeps to guarantee that no CPU is looking at the packet
514  *	type after return.
515  */
516 void dev_remove_offload(struct packet_offload *po)
517 {
518 	__dev_remove_offload(po);
519 
520 	synchronize_net();
521 }
522 EXPORT_SYMBOL(dev_remove_offload);
523 
524 /******************************************************************************
525 
526 		      Device Boot-time Settings Routines
527 
528 *******************************************************************************/
529 
530 /* Boot time configuration table */
531 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
532 
533 /**
534  *	netdev_boot_setup_add	- add new setup entry
535  *	@name: name of the device
536  *	@map: configured settings for the device
537  *
538  *	Adds new setup entry to the dev_boot_setup list.  The function
539  *	returns 0 on error and 1 on success.  This is a generic routine to
540  *	all netdevices.
541  */
542 static int netdev_boot_setup_add(char *name, struct ifmap *map)
543 {
544 	struct netdev_boot_setup *s;
545 	int i;
546 
547 	s = dev_boot_setup;
548 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
549 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
550 			memset(s[i].name, 0, sizeof(s[i].name));
551 			strlcpy(s[i].name, name, IFNAMSIZ);
552 			memcpy(&s[i].map, map, sizeof(s[i].map));
553 			break;
554 		}
555 	}
556 
557 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
558 }
559 
560 /**
561  *	netdev_boot_setup_check	- check boot time settings
562  *	@dev: the netdevice
563  *
564  * 	Check boot time settings for the device.
565  *	The found settings are set for the device to be used
566  *	later in the device probing.
567  *	Returns 0 if no settings found, 1 if they are.
568  */
569 int netdev_boot_setup_check(struct net_device *dev)
570 {
571 	struct netdev_boot_setup *s = dev_boot_setup;
572 	int i;
573 
574 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
576 		    !strcmp(dev->name, s[i].name)) {
577 			dev->irq 	= s[i].map.irq;
578 			dev->base_addr 	= s[i].map.base_addr;
579 			dev->mem_start 	= s[i].map.mem_start;
580 			dev->mem_end 	= s[i].map.mem_end;
581 			return 1;
582 		}
583 	}
584 	return 0;
585 }
586 EXPORT_SYMBOL(netdev_boot_setup_check);
587 
588 
589 /**
590  *	netdev_boot_base	- get address from boot time settings
591  *	@prefix: prefix for network device
592  *	@unit: id for network device
593  *
594  * 	Check boot time settings for the base address of device.
595  *	The found settings are set for the device to be used
596  *	later in the device probing.
597  *	Returns 0 if no settings found.
598  */
599 unsigned long netdev_boot_base(const char *prefix, int unit)
600 {
601 	const struct netdev_boot_setup *s = dev_boot_setup;
602 	char name[IFNAMSIZ];
603 	int i;
604 
605 	sprintf(name, "%s%d", prefix, unit);
606 
607 	/*
608 	 * If device already registered then return base of 1
609 	 * to indicate not to probe for this interface
610 	 */
611 	if (__dev_get_by_name(&init_net, name))
612 		return 1;
613 
614 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
615 		if (!strcmp(name, s[i].name))
616 			return s[i].map.base_addr;
617 	return 0;
618 }
619 
620 /*
621  * Saves at boot time configured settings for any netdevice.
622  */
623 int __init netdev_boot_setup(char *str)
624 {
625 	int ints[5];
626 	struct ifmap map;
627 
628 	str = get_options(str, ARRAY_SIZE(ints), ints);
629 	if (!str || !*str)
630 		return 0;
631 
632 	/* Save settings */
633 	memset(&map, 0, sizeof(map));
634 	if (ints[0] > 0)
635 		map.irq = ints[1];
636 	if (ints[0] > 1)
637 		map.base_addr = ints[2];
638 	if (ints[0] > 2)
639 		map.mem_start = ints[3];
640 	if (ints[0] > 3)
641 		map.mem_end = ints[4];
642 
643 	/* Add new entry to the list */
644 	return netdev_boot_setup_add(str, &map);
645 }
646 
647 __setup("netdev=", netdev_boot_setup);
648 
649 /*******************************************************************************
650 
651 			    Device Interface Subroutines
652 
653 *******************************************************************************/
654 
655 /**
656  *	__dev_get_by_name	- find a device by its name
657  *	@net: the applicable net namespace
658  *	@name: name to find
659  *
660  *	Find an interface by name. Must be called under RTNL semaphore
661  *	or @dev_base_lock. If the name is found a pointer to the device
662  *	is returned. If the name is not found then %NULL is returned. The
663  *	reference counters are not incremented so the caller must be
664  *	careful with locks.
665  */
666 
667 struct net_device *__dev_get_by_name(struct net *net, const char *name)
668 {
669 	struct net_device *dev;
670 	struct hlist_head *head = dev_name_hash(net, name);
671 
672 	hlist_for_each_entry(dev, head, name_hlist)
673 		if (!strncmp(dev->name, name, IFNAMSIZ))
674 			return dev;
675 
676 	return NULL;
677 }
678 EXPORT_SYMBOL(__dev_get_by_name);
679 
680 /**
681  *	dev_get_by_name_rcu	- find a device by its name
682  *	@net: the applicable net namespace
683  *	@name: name to find
684  *
685  *	Find an interface by name.
686  *	If the name is found a pointer to the device is returned.
687  * 	If the name is not found then %NULL is returned.
688  *	The reference counters are not incremented so the caller must be
689  *	careful with locks. The caller must hold RCU lock.
690  */
691 
692 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
693 {
694 	struct net_device *dev;
695 	struct hlist_head *head = dev_name_hash(net, name);
696 
697 	hlist_for_each_entry_rcu(dev, head, name_hlist)
698 		if (!strncmp(dev->name, name, IFNAMSIZ))
699 			return dev;
700 
701 	return NULL;
702 }
703 EXPORT_SYMBOL(dev_get_by_name_rcu);
704 
705 /**
706  *	dev_get_by_name		- find a device by its name
707  *	@net: the applicable net namespace
708  *	@name: name to find
709  *
710  *	Find an interface by name. This can be called from any
711  *	context and does its own locking. The returned handle has
712  *	the usage count incremented and the caller must use dev_put() to
713  *	release it when it is no longer needed. %NULL is returned if no
714  *	matching device is found.
715  */
716 
717 struct net_device *dev_get_by_name(struct net *net, const char *name)
718 {
719 	struct net_device *dev;
720 
721 	rcu_read_lock();
722 	dev = dev_get_by_name_rcu(net, name);
723 	if (dev)
724 		dev_hold(dev);
725 	rcu_read_unlock();
726 	return dev;
727 }
728 EXPORT_SYMBOL(dev_get_by_name);
729 
730 /**
731  *	__dev_get_by_index - find a device by its ifindex
732  *	@net: the applicable net namespace
733  *	@ifindex: index of device
734  *
735  *	Search for an interface by index. Returns %NULL if the device
736  *	is not found or a pointer to the device. The device has not
737  *	had its reference counter increased so the caller must be careful
738  *	about locking. The caller must hold either the RTNL semaphore
739  *	or @dev_base_lock.
740  */
741 
742 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
743 {
744 	struct net_device *dev;
745 	struct hlist_head *head = dev_index_hash(net, ifindex);
746 
747 	hlist_for_each_entry(dev, head, index_hlist)
748 		if (dev->ifindex == ifindex)
749 			return dev;
750 
751 	return NULL;
752 }
753 EXPORT_SYMBOL(__dev_get_by_index);
754 
755 /**
756  *	dev_get_by_index_rcu - find a device by its ifindex
757  *	@net: the applicable net namespace
758  *	@ifindex: index of device
759  *
760  *	Search for an interface by index. Returns %NULL if the device
761  *	is not found or a pointer to the device. The device has not
762  *	had its reference counter increased so the caller must be careful
763  *	about locking. The caller must hold RCU lock.
764  */
765 
766 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
767 {
768 	struct net_device *dev;
769 	struct hlist_head *head = dev_index_hash(net, ifindex);
770 
771 	hlist_for_each_entry_rcu(dev, head, index_hlist)
772 		if (dev->ifindex == ifindex)
773 			return dev;
774 
775 	return NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_index_rcu);
778 
779 
780 /**
781  *	dev_get_by_index - find a device by its ifindex
782  *	@net: the applicable net namespace
783  *	@ifindex: index of device
784  *
785  *	Search for an interface by index. Returns NULL if the device
786  *	is not found or a pointer to the device. The device returned has
787  *	had a reference added and the pointer is safe until the user calls
788  *	dev_put to indicate they have finished with it.
789  */
790 
791 struct net_device *dev_get_by_index(struct net *net, int ifindex)
792 {
793 	struct net_device *dev;
794 
795 	rcu_read_lock();
796 	dev = dev_get_by_index_rcu(net, ifindex);
797 	if (dev)
798 		dev_hold(dev);
799 	rcu_read_unlock();
800 	return dev;
801 }
802 EXPORT_SYMBOL(dev_get_by_index);
803 
804 /**
805  *	netdev_get_name - get a netdevice name, knowing its ifindex.
806  *	@net: network namespace
807  *	@name: a pointer to the buffer where the name will be stored.
808  *	@ifindex: the ifindex of the interface to get the name from.
809  *
810  *	The use of raw_seqcount_begin() and cond_resched() before
811  *	retrying is required as we want to give the writers a chance
812  *	to complete when CONFIG_PREEMPT is not set.
813  */
814 int netdev_get_name(struct net *net, char *name, int ifindex)
815 {
816 	struct net_device *dev;
817 	unsigned int seq;
818 
819 retry:
820 	seq = raw_seqcount_begin(&devnet_rename_seq);
821 	rcu_read_lock();
822 	dev = dev_get_by_index_rcu(net, ifindex);
823 	if (!dev) {
824 		rcu_read_unlock();
825 		return -ENODEV;
826 	}
827 
828 	strcpy(name, dev->name);
829 	rcu_read_unlock();
830 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
831 		cond_resched();
832 		goto retry;
833 	}
834 
835 	return 0;
836 }
837 
838 /**
839  *	dev_getbyhwaddr_rcu - find a device by its hardware address
840  *	@net: the applicable net namespace
841  *	@type: media type of device
842  *	@ha: hardware address
843  *
844  *	Search for an interface by MAC address. Returns NULL if the device
845  *	is not found or a pointer to the device.
846  *	The caller must hold RCU or RTNL.
847  *	The returned device has not had its ref count increased
848  *	and the caller must therefore be careful about locking
849  *
850  */
851 
852 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
853 				       const char *ha)
854 {
855 	struct net_device *dev;
856 
857 	for_each_netdev_rcu(net, dev)
858 		if (dev->type == type &&
859 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
860 			return dev;
861 
862 	return NULL;
863 }
864 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
865 
866 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
867 {
868 	struct net_device *dev;
869 
870 	ASSERT_RTNL();
871 	for_each_netdev(net, dev)
872 		if (dev->type == type)
873 			return dev;
874 
875 	return NULL;
876 }
877 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
878 
879 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
880 {
881 	struct net_device *dev, *ret = NULL;
882 
883 	rcu_read_lock();
884 	for_each_netdev_rcu(net, dev)
885 		if (dev->type == type) {
886 			dev_hold(dev);
887 			ret = dev;
888 			break;
889 		}
890 	rcu_read_unlock();
891 	return ret;
892 }
893 EXPORT_SYMBOL(dev_getfirstbyhwtype);
894 
895 /**
896  *	dev_get_by_flags_rcu - find any device with given flags
897  *	@net: the applicable net namespace
898  *	@if_flags: IFF_* values
899  *	@mask: bitmask of bits in if_flags to check
900  *
901  *	Search for any interface with the given flags. Returns NULL if a device
902  *	is not found or a pointer to the device. Must be called inside
903  *	rcu_read_lock(), and result refcount is unchanged.
904  */
905 
906 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
907 				    unsigned short mask)
908 {
909 	struct net_device *dev, *ret;
910 
911 	ret = NULL;
912 	for_each_netdev_rcu(net, dev) {
913 		if (((dev->flags ^ if_flags) & mask) == 0) {
914 			ret = dev;
915 			break;
916 		}
917 	}
918 	return ret;
919 }
920 EXPORT_SYMBOL(dev_get_by_flags_rcu);
921 
922 /**
923  *	dev_valid_name - check if name is okay for network device
924  *	@name: name string
925  *
926  *	Network device names need to be valid file names to
927  *	to allow sysfs to work.  We also disallow any kind of
928  *	whitespace.
929  */
930 bool dev_valid_name(const char *name)
931 {
932 	if (*name == '\0')
933 		return false;
934 	if (strlen(name) >= IFNAMSIZ)
935 		return false;
936 	if (!strcmp(name, ".") || !strcmp(name, ".."))
937 		return false;
938 
939 	while (*name) {
940 		if (*name == '/' || isspace(*name))
941 			return false;
942 		name++;
943 	}
944 	return true;
945 }
946 EXPORT_SYMBOL(dev_valid_name);
947 
948 /**
949  *	__dev_alloc_name - allocate a name for a device
950  *	@net: network namespace to allocate the device name in
951  *	@name: name format string
952  *	@buf:  scratch buffer and result name string
953  *
954  *	Passed a format string - eg "lt%d" it will try and find a suitable
955  *	id. It scans list of devices to build up a free map, then chooses
956  *	the first empty slot. The caller must hold the dev_base or rtnl lock
957  *	while allocating the name and adding the device in order to avoid
958  *	duplicates.
959  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
960  *	Returns the number of the unit assigned or a negative errno code.
961  */
962 
963 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
964 {
965 	int i = 0;
966 	const char *p;
967 	const int max_netdevices = 8*PAGE_SIZE;
968 	unsigned long *inuse;
969 	struct net_device *d;
970 
971 	p = strnchr(name, IFNAMSIZ-1, '%');
972 	if (p) {
973 		/*
974 		 * Verify the string as this thing may have come from
975 		 * the user.  There must be either one "%d" and no other "%"
976 		 * characters.
977 		 */
978 		if (p[1] != 'd' || strchr(p + 2, '%'))
979 			return -EINVAL;
980 
981 		/* Use one page as a bit array of possible slots */
982 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
983 		if (!inuse)
984 			return -ENOMEM;
985 
986 		for_each_netdev(net, d) {
987 			if (!sscanf(d->name, name, &i))
988 				continue;
989 			if (i < 0 || i >= max_netdevices)
990 				continue;
991 
992 			/*  avoid cases where sscanf is not exact inverse of printf */
993 			snprintf(buf, IFNAMSIZ, name, i);
994 			if (!strncmp(buf, d->name, IFNAMSIZ))
995 				set_bit(i, inuse);
996 		}
997 
998 		i = find_first_zero_bit(inuse, max_netdevices);
999 		free_page((unsigned long) inuse);
1000 	}
1001 
1002 	if (buf != name)
1003 		snprintf(buf, IFNAMSIZ, name, i);
1004 	if (!__dev_get_by_name(net, buf))
1005 		return i;
1006 
1007 	/* It is possible to run out of possible slots
1008 	 * when the name is long and there isn't enough space left
1009 	 * for the digits, or if all bits are used.
1010 	 */
1011 	return -ENFILE;
1012 }
1013 
1014 /**
1015  *	dev_alloc_name - allocate a name for a device
1016  *	@dev: device
1017  *	@name: name format string
1018  *
1019  *	Passed a format string - eg "lt%d" it will try and find a suitable
1020  *	id. It scans list of devices to build up a free map, then chooses
1021  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *	while allocating the name and adding the device in order to avoid
1023  *	duplicates.
1024  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *	Returns the number of the unit assigned or a negative errno code.
1026  */
1027 
1028 int dev_alloc_name(struct net_device *dev, const char *name)
1029 {
1030 	char buf[IFNAMSIZ];
1031 	struct net *net;
1032 	int ret;
1033 
1034 	BUG_ON(!dev_net(dev));
1035 	net = dev_net(dev);
1036 	ret = __dev_alloc_name(net, name, buf);
1037 	if (ret >= 0)
1038 		strlcpy(dev->name, buf, IFNAMSIZ);
1039 	return ret;
1040 }
1041 EXPORT_SYMBOL(dev_alloc_name);
1042 
1043 static int dev_alloc_name_ns(struct net *net,
1044 			     struct net_device *dev,
1045 			     const char *name)
1046 {
1047 	char buf[IFNAMSIZ];
1048 	int ret;
1049 
1050 	ret = __dev_alloc_name(net, name, buf);
1051 	if (ret >= 0)
1052 		strlcpy(dev->name, buf, IFNAMSIZ);
1053 	return ret;
1054 }
1055 
1056 static int dev_get_valid_name(struct net *net,
1057 			      struct net_device *dev,
1058 			      const char *name)
1059 {
1060 	BUG_ON(!net);
1061 
1062 	if (!dev_valid_name(name))
1063 		return -EINVAL;
1064 
1065 	if (strchr(name, '%'))
1066 		return dev_alloc_name_ns(net, dev, name);
1067 	else if (__dev_get_by_name(net, name))
1068 		return -EEXIST;
1069 	else if (dev->name != name)
1070 		strlcpy(dev->name, name, IFNAMSIZ);
1071 
1072 	return 0;
1073 }
1074 
1075 /**
1076  *	dev_change_name - change name of a device
1077  *	@dev: device
1078  *	@newname: name (or format string) must be at least IFNAMSIZ
1079  *
1080  *	Change name of a device, can pass format strings "eth%d".
1081  *	for wildcarding.
1082  */
1083 int dev_change_name(struct net_device *dev, const char *newname)
1084 {
1085 	char oldname[IFNAMSIZ];
1086 	int err = 0;
1087 	int ret;
1088 	struct net *net;
1089 
1090 	ASSERT_RTNL();
1091 	BUG_ON(!dev_net(dev));
1092 
1093 	net = dev_net(dev);
1094 	if (dev->flags & IFF_UP)
1095 		return -EBUSY;
1096 
1097 	write_seqcount_begin(&devnet_rename_seq);
1098 
1099 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1100 		write_seqcount_end(&devnet_rename_seq);
1101 		return 0;
1102 	}
1103 
1104 	memcpy(oldname, dev->name, IFNAMSIZ);
1105 
1106 	err = dev_get_valid_name(net, dev, newname);
1107 	if (err < 0) {
1108 		write_seqcount_end(&devnet_rename_seq);
1109 		return err;
1110 	}
1111 
1112 rollback:
1113 	ret = device_rename(&dev->dev, dev->name);
1114 	if (ret) {
1115 		memcpy(dev->name, oldname, IFNAMSIZ);
1116 		write_seqcount_end(&devnet_rename_seq);
1117 		return ret;
1118 	}
1119 
1120 	write_seqcount_end(&devnet_rename_seq);
1121 
1122 	netdev_adjacent_rename_links(dev, oldname);
1123 
1124 	write_lock_bh(&dev_base_lock);
1125 	hlist_del_rcu(&dev->name_hlist);
1126 	write_unlock_bh(&dev_base_lock);
1127 
1128 	synchronize_rcu();
1129 
1130 	write_lock_bh(&dev_base_lock);
1131 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1132 	write_unlock_bh(&dev_base_lock);
1133 
1134 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1135 	ret = notifier_to_errno(ret);
1136 
1137 	if (ret) {
1138 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1139 		if (err >= 0) {
1140 			err = ret;
1141 			write_seqcount_begin(&devnet_rename_seq);
1142 			memcpy(dev->name, oldname, IFNAMSIZ);
1143 			memcpy(oldname, newname, IFNAMSIZ);
1144 			goto rollback;
1145 		} else {
1146 			pr_err("%s: name change rollback failed: %d\n",
1147 			       dev->name, ret);
1148 		}
1149 	}
1150 
1151 	return err;
1152 }
1153 
1154 /**
1155  *	dev_set_alias - change ifalias of a device
1156  *	@dev: device
1157  *	@alias: name up to IFALIASZ
1158  *	@len: limit of bytes to copy from info
1159  *
1160  *	Set ifalias for a device,
1161  */
1162 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1163 {
1164 	char *new_ifalias;
1165 
1166 	ASSERT_RTNL();
1167 
1168 	if (len >= IFALIASZ)
1169 		return -EINVAL;
1170 
1171 	if (!len) {
1172 		kfree(dev->ifalias);
1173 		dev->ifalias = NULL;
1174 		return 0;
1175 	}
1176 
1177 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1178 	if (!new_ifalias)
1179 		return -ENOMEM;
1180 	dev->ifalias = new_ifalias;
1181 
1182 	strlcpy(dev->ifalias, alias, len+1);
1183 	return len;
1184 }
1185 
1186 
1187 /**
1188  *	netdev_features_change - device changes features
1189  *	@dev: device to cause notification
1190  *
1191  *	Called to indicate a device has changed features.
1192  */
1193 void netdev_features_change(struct net_device *dev)
1194 {
1195 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1196 }
1197 EXPORT_SYMBOL(netdev_features_change);
1198 
1199 /**
1200  *	netdev_state_change - device changes state
1201  *	@dev: device to cause notification
1202  *
1203  *	Called to indicate a device has changed state. This function calls
1204  *	the notifier chains for netdev_chain and sends a NEWLINK message
1205  *	to the routing socket.
1206  */
1207 void netdev_state_change(struct net_device *dev)
1208 {
1209 	if (dev->flags & IFF_UP) {
1210 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1211 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1212 	}
1213 }
1214 EXPORT_SYMBOL(netdev_state_change);
1215 
1216 /**
1217  * 	netdev_notify_peers - notify network peers about existence of @dev
1218  * 	@dev: network device
1219  *
1220  * Generate traffic such that interested network peers are aware of
1221  * @dev, such as by generating a gratuitous ARP. This may be used when
1222  * a device wants to inform the rest of the network about some sort of
1223  * reconfiguration such as a failover event or virtual machine
1224  * migration.
1225  */
1226 void netdev_notify_peers(struct net_device *dev)
1227 {
1228 	rtnl_lock();
1229 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1230 	rtnl_unlock();
1231 }
1232 EXPORT_SYMBOL(netdev_notify_peers);
1233 
1234 static int __dev_open(struct net_device *dev)
1235 {
1236 	const struct net_device_ops *ops = dev->netdev_ops;
1237 	int ret;
1238 
1239 	ASSERT_RTNL();
1240 
1241 	if (!netif_device_present(dev))
1242 		return -ENODEV;
1243 
1244 	/* Block netpoll from trying to do any rx path servicing.
1245 	 * If we don't do this there is a chance ndo_poll_controller
1246 	 * or ndo_poll may be running while we open the device
1247 	 */
1248 	netpoll_rx_disable(dev);
1249 
1250 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1251 	ret = notifier_to_errno(ret);
1252 	if (ret)
1253 		return ret;
1254 
1255 	set_bit(__LINK_STATE_START, &dev->state);
1256 
1257 	if (ops->ndo_validate_addr)
1258 		ret = ops->ndo_validate_addr(dev);
1259 
1260 	if (!ret && ops->ndo_open)
1261 		ret = ops->ndo_open(dev);
1262 
1263 	netpoll_rx_enable(dev);
1264 
1265 	if (ret)
1266 		clear_bit(__LINK_STATE_START, &dev->state);
1267 	else {
1268 		dev->flags |= IFF_UP;
1269 		net_dmaengine_get();
1270 		dev_set_rx_mode(dev);
1271 		dev_activate(dev);
1272 		add_device_randomness(dev->dev_addr, dev->addr_len);
1273 	}
1274 
1275 	return ret;
1276 }
1277 
1278 /**
1279  *	dev_open	- prepare an interface for use.
1280  *	@dev:	device to open
1281  *
1282  *	Takes a device from down to up state. The device's private open
1283  *	function is invoked and then the multicast lists are loaded. Finally
1284  *	the device is moved into the up state and a %NETDEV_UP message is
1285  *	sent to the netdev notifier chain.
1286  *
1287  *	Calling this function on an active interface is a nop. On a failure
1288  *	a negative errno code is returned.
1289  */
1290 int dev_open(struct net_device *dev)
1291 {
1292 	int ret;
1293 
1294 	if (dev->flags & IFF_UP)
1295 		return 0;
1296 
1297 	ret = __dev_open(dev);
1298 	if (ret < 0)
1299 		return ret;
1300 
1301 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1302 	call_netdevice_notifiers(NETDEV_UP, dev);
1303 
1304 	return ret;
1305 }
1306 EXPORT_SYMBOL(dev_open);
1307 
1308 static int __dev_close_many(struct list_head *head)
1309 {
1310 	struct net_device *dev;
1311 
1312 	ASSERT_RTNL();
1313 	might_sleep();
1314 
1315 	list_for_each_entry(dev, head, close_list) {
1316 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1317 
1318 		clear_bit(__LINK_STATE_START, &dev->state);
1319 
1320 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1321 		 * can be even on different cpu. So just clear netif_running().
1322 		 *
1323 		 * dev->stop() will invoke napi_disable() on all of it's
1324 		 * napi_struct instances on this device.
1325 		 */
1326 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1327 	}
1328 
1329 	dev_deactivate_many(head);
1330 
1331 	list_for_each_entry(dev, head, close_list) {
1332 		const struct net_device_ops *ops = dev->netdev_ops;
1333 
1334 		/*
1335 		 *	Call the device specific close. This cannot fail.
1336 		 *	Only if device is UP
1337 		 *
1338 		 *	We allow it to be called even after a DETACH hot-plug
1339 		 *	event.
1340 		 */
1341 		if (ops->ndo_stop)
1342 			ops->ndo_stop(dev);
1343 
1344 		dev->flags &= ~IFF_UP;
1345 		net_dmaengine_put();
1346 	}
1347 
1348 	return 0;
1349 }
1350 
1351 static int __dev_close(struct net_device *dev)
1352 {
1353 	int retval;
1354 	LIST_HEAD(single);
1355 
1356 	/* Temporarily disable netpoll until the interface is down */
1357 	netpoll_rx_disable(dev);
1358 
1359 	list_add(&dev->close_list, &single);
1360 	retval = __dev_close_many(&single);
1361 	list_del(&single);
1362 
1363 	netpoll_rx_enable(dev);
1364 	return retval;
1365 }
1366 
1367 static int dev_close_many(struct list_head *head)
1368 {
1369 	struct net_device *dev, *tmp;
1370 
1371 	/* Remove the devices that don't need to be closed */
1372 	list_for_each_entry_safe(dev, tmp, head, close_list)
1373 		if (!(dev->flags & IFF_UP))
1374 			list_del_init(&dev->close_list);
1375 
1376 	__dev_close_many(head);
1377 
1378 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1379 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1380 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1381 		list_del_init(&dev->close_list);
1382 	}
1383 
1384 	return 0;
1385 }
1386 
1387 /**
1388  *	dev_close - shutdown an interface.
1389  *	@dev: device to shutdown
1390  *
1391  *	This function moves an active device into down state. A
1392  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1393  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1394  *	chain.
1395  */
1396 int dev_close(struct net_device *dev)
1397 {
1398 	if (dev->flags & IFF_UP) {
1399 		LIST_HEAD(single);
1400 
1401 		/* Block netpoll rx while the interface is going down */
1402 		netpoll_rx_disable(dev);
1403 
1404 		list_add(&dev->close_list, &single);
1405 		dev_close_many(&single);
1406 		list_del(&single);
1407 
1408 		netpoll_rx_enable(dev);
1409 	}
1410 	return 0;
1411 }
1412 EXPORT_SYMBOL(dev_close);
1413 
1414 
1415 /**
1416  *	dev_disable_lro - disable Large Receive Offload on a device
1417  *	@dev: device
1418  *
1419  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1420  *	called under RTNL.  This is needed if received packets may be
1421  *	forwarded to another interface.
1422  */
1423 void dev_disable_lro(struct net_device *dev)
1424 {
1425 	/*
1426 	 * If we're trying to disable lro on a vlan device
1427 	 * use the underlying physical device instead
1428 	 */
1429 	if (is_vlan_dev(dev))
1430 		dev = vlan_dev_real_dev(dev);
1431 
1432 	/* the same for macvlan devices */
1433 	if (netif_is_macvlan(dev))
1434 		dev = macvlan_dev_real_dev(dev);
1435 
1436 	dev->wanted_features &= ~NETIF_F_LRO;
1437 	netdev_update_features(dev);
1438 
1439 	if (unlikely(dev->features & NETIF_F_LRO))
1440 		netdev_WARN(dev, "failed to disable LRO!\n");
1441 }
1442 EXPORT_SYMBOL(dev_disable_lro);
1443 
1444 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1445 				   struct net_device *dev)
1446 {
1447 	struct netdev_notifier_info info;
1448 
1449 	netdev_notifier_info_init(&info, dev);
1450 	return nb->notifier_call(nb, val, &info);
1451 }
1452 
1453 static int dev_boot_phase = 1;
1454 
1455 /**
1456  *	register_netdevice_notifier - register a network notifier block
1457  *	@nb: notifier
1458  *
1459  *	Register a notifier to be called when network device events occur.
1460  *	The notifier passed is linked into the kernel structures and must
1461  *	not be reused until it has been unregistered. A negative errno code
1462  *	is returned on a failure.
1463  *
1464  * 	When registered all registration and up events are replayed
1465  *	to the new notifier to allow device to have a race free
1466  *	view of the network device list.
1467  */
1468 
1469 int register_netdevice_notifier(struct notifier_block *nb)
1470 {
1471 	struct net_device *dev;
1472 	struct net_device *last;
1473 	struct net *net;
1474 	int err;
1475 
1476 	rtnl_lock();
1477 	err = raw_notifier_chain_register(&netdev_chain, nb);
1478 	if (err)
1479 		goto unlock;
1480 	if (dev_boot_phase)
1481 		goto unlock;
1482 	for_each_net(net) {
1483 		for_each_netdev(net, dev) {
1484 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1485 			err = notifier_to_errno(err);
1486 			if (err)
1487 				goto rollback;
1488 
1489 			if (!(dev->flags & IFF_UP))
1490 				continue;
1491 
1492 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1493 		}
1494 	}
1495 
1496 unlock:
1497 	rtnl_unlock();
1498 	return err;
1499 
1500 rollback:
1501 	last = dev;
1502 	for_each_net(net) {
1503 		for_each_netdev(net, dev) {
1504 			if (dev == last)
1505 				goto outroll;
1506 
1507 			if (dev->flags & IFF_UP) {
1508 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1509 							dev);
1510 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1511 			}
1512 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1513 		}
1514 	}
1515 
1516 outroll:
1517 	raw_notifier_chain_unregister(&netdev_chain, nb);
1518 	goto unlock;
1519 }
1520 EXPORT_SYMBOL(register_netdevice_notifier);
1521 
1522 /**
1523  *	unregister_netdevice_notifier - unregister a network notifier block
1524  *	@nb: notifier
1525  *
1526  *	Unregister a notifier previously registered by
1527  *	register_netdevice_notifier(). The notifier is unlinked into the
1528  *	kernel structures and may then be reused. A negative errno code
1529  *	is returned on a failure.
1530  *
1531  * 	After unregistering unregister and down device events are synthesized
1532  *	for all devices on the device list to the removed notifier to remove
1533  *	the need for special case cleanup code.
1534  */
1535 
1536 int unregister_netdevice_notifier(struct notifier_block *nb)
1537 {
1538 	struct net_device *dev;
1539 	struct net *net;
1540 	int err;
1541 
1542 	rtnl_lock();
1543 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1544 	if (err)
1545 		goto unlock;
1546 
1547 	for_each_net(net) {
1548 		for_each_netdev(net, dev) {
1549 			if (dev->flags & IFF_UP) {
1550 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1551 							dev);
1552 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1553 			}
1554 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1555 		}
1556 	}
1557 unlock:
1558 	rtnl_unlock();
1559 	return err;
1560 }
1561 EXPORT_SYMBOL(unregister_netdevice_notifier);
1562 
1563 /**
1564  *	call_netdevice_notifiers_info - call all network notifier blocks
1565  *	@val: value passed unmodified to notifier function
1566  *	@dev: net_device pointer passed unmodified to notifier function
1567  *	@info: notifier information data
1568  *
1569  *	Call all network notifier blocks.  Parameters and return value
1570  *	are as for raw_notifier_call_chain().
1571  */
1572 
1573 static int call_netdevice_notifiers_info(unsigned long val,
1574 					 struct net_device *dev,
1575 					 struct netdev_notifier_info *info)
1576 {
1577 	ASSERT_RTNL();
1578 	netdev_notifier_info_init(info, dev);
1579 	return raw_notifier_call_chain(&netdev_chain, val, info);
1580 }
1581 
1582 /**
1583  *	call_netdevice_notifiers - call all network notifier blocks
1584  *      @val: value passed unmodified to notifier function
1585  *      @dev: net_device pointer passed unmodified to notifier function
1586  *
1587  *	Call all network notifier blocks.  Parameters and return value
1588  *	are as for raw_notifier_call_chain().
1589  */
1590 
1591 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1592 {
1593 	struct netdev_notifier_info info;
1594 
1595 	return call_netdevice_notifiers_info(val, dev, &info);
1596 }
1597 EXPORT_SYMBOL(call_netdevice_notifiers);
1598 
1599 static struct static_key netstamp_needed __read_mostly;
1600 #ifdef HAVE_JUMP_LABEL
1601 /* We are not allowed to call static_key_slow_dec() from irq context
1602  * If net_disable_timestamp() is called from irq context, defer the
1603  * static_key_slow_dec() calls.
1604  */
1605 static atomic_t netstamp_needed_deferred;
1606 #endif
1607 
1608 void net_enable_timestamp(void)
1609 {
1610 #ifdef HAVE_JUMP_LABEL
1611 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1612 
1613 	if (deferred) {
1614 		while (--deferred)
1615 			static_key_slow_dec(&netstamp_needed);
1616 		return;
1617 	}
1618 #endif
1619 	static_key_slow_inc(&netstamp_needed);
1620 }
1621 EXPORT_SYMBOL(net_enable_timestamp);
1622 
1623 void net_disable_timestamp(void)
1624 {
1625 #ifdef HAVE_JUMP_LABEL
1626 	if (in_interrupt()) {
1627 		atomic_inc(&netstamp_needed_deferred);
1628 		return;
1629 	}
1630 #endif
1631 	static_key_slow_dec(&netstamp_needed);
1632 }
1633 EXPORT_SYMBOL(net_disable_timestamp);
1634 
1635 static inline void net_timestamp_set(struct sk_buff *skb)
1636 {
1637 	skb->tstamp.tv64 = 0;
1638 	if (static_key_false(&netstamp_needed))
1639 		__net_timestamp(skb);
1640 }
1641 
1642 #define net_timestamp_check(COND, SKB)			\
1643 	if (static_key_false(&netstamp_needed)) {		\
1644 		if ((COND) && !(SKB)->tstamp.tv64)	\
1645 			__net_timestamp(SKB);		\
1646 	}						\
1647 
1648 static inline bool is_skb_forwardable(struct net_device *dev,
1649 				      struct sk_buff *skb)
1650 {
1651 	unsigned int len;
1652 
1653 	if (!(dev->flags & IFF_UP))
1654 		return false;
1655 
1656 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1657 	if (skb->len <= len)
1658 		return true;
1659 
1660 	/* if TSO is enabled, we don't care about the length as the packet
1661 	 * could be forwarded without being segmented before
1662 	 */
1663 	if (skb_is_gso(skb))
1664 		return true;
1665 
1666 	return false;
1667 }
1668 
1669 /**
1670  * dev_forward_skb - loopback an skb to another netif
1671  *
1672  * @dev: destination network device
1673  * @skb: buffer to forward
1674  *
1675  * return values:
1676  *	NET_RX_SUCCESS	(no congestion)
1677  *	NET_RX_DROP     (packet was dropped, but freed)
1678  *
1679  * dev_forward_skb can be used for injecting an skb from the
1680  * start_xmit function of one device into the receive queue
1681  * of another device.
1682  *
1683  * The receiving device may be in another namespace, so
1684  * we have to clear all information in the skb that could
1685  * impact namespace isolation.
1686  */
1687 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1688 {
1689 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1690 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1691 			atomic_long_inc(&dev->rx_dropped);
1692 			kfree_skb(skb);
1693 			return NET_RX_DROP;
1694 		}
1695 	}
1696 
1697 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1698 		atomic_long_inc(&dev->rx_dropped);
1699 		kfree_skb(skb);
1700 		return NET_RX_DROP;
1701 	}
1702 
1703 	skb_scrub_packet(skb, true);
1704 	skb->protocol = eth_type_trans(skb, dev);
1705 
1706 	return netif_rx_internal(skb);
1707 }
1708 EXPORT_SYMBOL_GPL(dev_forward_skb);
1709 
1710 static inline int deliver_skb(struct sk_buff *skb,
1711 			      struct packet_type *pt_prev,
1712 			      struct net_device *orig_dev)
1713 {
1714 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1715 		return -ENOMEM;
1716 	atomic_inc(&skb->users);
1717 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1718 }
1719 
1720 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1721 {
1722 	if (!ptype->af_packet_priv || !skb->sk)
1723 		return false;
1724 
1725 	if (ptype->id_match)
1726 		return ptype->id_match(ptype, skb->sk);
1727 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1728 		return true;
1729 
1730 	return false;
1731 }
1732 
1733 /*
1734  *	Support routine. Sends outgoing frames to any network
1735  *	taps currently in use.
1736  */
1737 
1738 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1739 {
1740 	struct packet_type *ptype;
1741 	struct sk_buff *skb2 = NULL;
1742 	struct packet_type *pt_prev = NULL;
1743 
1744 	rcu_read_lock();
1745 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1746 		/* Never send packets back to the socket
1747 		 * they originated from - MvS (miquels@drinkel.ow.org)
1748 		 */
1749 		if ((ptype->dev == dev || !ptype->dev) &&
1750 		    (!skb_loop_sk(ptype, skb))) {
1751 			if (pt_prev) {
1752 				deliver_skb(skb2, pt_prev, skb->dev);
1753 				pt_prev = ptype;
1754 				continue;
1755 			}
1756 
1757 			skb2 = skb_clone(skb, GFP_ATOMIC);
1758 			if (!skb2)
1759 				break;
1760 
1761 			net_timestamp_set(skb2);
1762 
1763 			/* skb->nh should be correctly
1764 			   set by sender, so that the second statement is
1765 			   just protection against buggy protocols.
1766 			 */
1767 			skb_reset_mac_header(skb2);
1768 
1769 			if (skb_network_header(skb2) < skb2->data ||
1770 			    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1771 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1772 						     ntohs(skb2->protocol),
1773 						     dev->name);
1774 				skb_reset_network_header(skb2);
1775 			}
1776 
1777 			skb2->transport_header = skb2->network_header;
1778 			skb2->pkt_type = PACKET_OUTGOING;
1779 			pt_prev = ptype;
1780 		}
1781 	}
1782 	if (pt_prev)
1783 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1784 	rcu_read_unlock();
1785 }
1786 
1787 /**
1788  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1789  * @dev: Network device
1790  * @txq: number of queues available
1791  *
1792  * If real_num_tx_queues is changed the tc mappings may no longer be
1793  * valid. To resolve this verify the tc mapping remains valid and if
1794  * not NULL the mapping. With no priorities mapping to this
1795  * offset/count pair it will no longer be used. In the worst case TC0
1796  * is invalid nothing can be done so disable priority mappings. If is
1797  * expected that drivers will fix this mapping if they can before
1798  * calling netif_set_real_num_tx_queues.
1799  */
1800 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1801 {
1802 	int i;
1803 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1804 
1805 	/* If TC0 is invalidated disable TC mapping */
1806 	if (tc->offset + tc->count > txq) {
1807 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1808 		dev->num_tc = 0;
1809 		return;
1810 	}
1811 
1812 	/* Invalidated prio to tc mappings set to TC0 */
1813 	for (i = 1; i < TC_BITMASK + 1; i++) {
1814 		int q = netdev_get_prio_tc_map(dev, i);
1815 
1816 		tc = &dev->tc_to_txq[q];
1817 		if (tc->offset + tc->count > txq) {
1818 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1819 				i, q);
1820 			netdev_set_prio_tc_map(dev, i, 0);
1821 		}
1822 	}
1823 }
1824 
1825 #ifdef CONFIG_XPS
1826 static DEFINE_MUTEX(xps_map_mutex);
1827 #define xmap_dereference(P)		\
1828 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1829 
1830 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1831 					int cpu, u16 index)
1832 {
1833 	struct xps_map *map = NULL;
1834 	int pos;
1835 
1836 	if (dev_maps)
1837 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1838 
1839 	for (pos = 0; map && pos < map->len; pos++) {
1840 		if (map->queues[pos] == index) {
1841 			if (map->len > 1) {
1842 				map->queues[pos] = map->queues[--map->len];
1843 			} else {
1844 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1845 				kfree_rcu(map, rcu);
1846 				map = NULL;
1847 			}
1848 			break;
1849 		}
1850 	}
1851 
1852 	return map;
1853 }
1854 
1855 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1856 {
1857 	struct xps_dev_maps *dev_maps;
1858 	int cpu, i;
1859 	bool active = false;
1860 
1861 	mutex_lock(&xps_map_mutex);
1862 	dev_maps = xmap_dereference(dev->xps_maps);
1863 
1864 	if (!dev_maps)
1865 		goto out_no_maps;
1866 
1867 	for_each_possible_cpu(cpu) {
1868 		for (i = index; i < dev->num_tx_queues; i++) {
1869 			if (!remove_xps_queue(dev_maps, cpu, i))
1870 				break;
1871 		}
1872 		if (i == dev->num_tx_queues)
1873 			active = true;
1874 	}
1875 
1876 	if (!active) {
1877 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1878 		kfree_rcu(dev_maps, rcu);
1879 	}
1880 
1881 	for (i = index; i < dev->num_tx_queues; i++)
1882 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1883 					     NUMA_NO_NODE);
1884 
1885 out_no_maps:
1886 	mutex_unlock(&xps_map_mutex);
1887 }
1888 
1889 static struct xps_map *expand_xps_map(struct xps_map *map,
1890 				      int cpu, u16 index)
1891 {
1892 	struct xps_map *new_map;
1893 	int alloc_len = XPS_MIN_MAP_ALLOC;
1894 	int i, pos;
1895 
1896 	for (pos = 0; map && pos < map->len; pos++) {
1897 		if (map->queues[pos] != index)
1898 			continue;
1899 		return map;
1900 	}
1901 
1902 	/* Need to add queue to this CPU's existing map */
1903 	if (map) {
1904 		if (pos < map->alloc_len)
1905 			return map;
1906 
1907 		alloc_len = map->alloc_len * 2;
1908 	}
1909 
1910 	/* Need to allocate new map to store queue on this CPU's map */
1911 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1912 			       cpu_to_node(cpu));
1913 	if (!new_map)
1914 		return NULL;
1915 
1916 	for (i = 0; i < pos; i++)
1917 		new_map->queues[i] = map->queues[i];
1918 	new_map->alloc_len = alloc_len;
1919 	new_map->len = pos;
1920 
1921 	return new_map;
1922 }
1923 
1924 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1925 			u16 index)
1926 {
1927 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1928 	struct xps_map *map, *new_map;
1929 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1930 	int cpu, numa_node_id = -2;
1931 	bool active = false;
1932 
1933 	mutex_lock(&xps_map_mutex);
1934 
1935 	dev_maps = xmap_dereference(dev->xps_maps);
1936 
1937 	/* allocate memory for queue storage */
1938 	for_each_online_cpu(cpu) {
1939 		if (!cpumask_test_cpu(cpu, mask))
1940 			continue;
1941 
1942 		if (!new_dev_maps)
1943 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1944 		if (!new_dev_maps) {
1945 			mutex_unlock(&xps_map_mutex);
1946 			return -ENOMEM;
1947 		}
1948 
1949 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1950 				 NULL;
1951 
1952 		map = expand_xps_map(map, cpu, index);
1953 		if (!map)
1954 			goto error;
1955 
1956 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1957 	}
1958 
1959 	if (!new_dev_maps)
1960 		goto out_no_new_maps;
1961 
1962 	for_each_possible_cpu(cpu) {
1963 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1964 			/* add queue to CPU maps */
1965 			int pos = 0;
1966 
1967 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1968 			while ((pos < map->len) && (map->queues[pos] != index))
1969 				pos++;
1970 
1971 			if (pos == map->len)
1972 				map->queues[map->len++] = index;
1973 #ifdef CONFIG_NUMA
1974 			if (numa_node_id == -2)
1975 				numa_node_id = cpu_to_node(cpu);
1976 			else if (numa_node_id != cpu_to_node(cpu))
1977 				numa_node_id = -1;
1978 #endif
1979 		} else if (dev_maps) {
1980 			/* fill in the new device map from the old device map */
1981 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1982 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1983 		}
1984 
1985 	}
1986 
1987 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1988 
1989 	/* Cleanup old maps */
1990 	if (dev_maps) {
1991 		for_each_possible_cpu(cpu) {
1992 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1993 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1994 			if (map && map != new_map)
1995 				kfree_rcu(map, rcu);
1996 		}
1997 
1998 		kfree_rcu(dev_maps, rcu);
1999 	}
2000 
2001 	dev_maps = new_dev_maps;
2002 	active = true;
2003 
2004 out_no_new_maps:
2005 	/* update Tx queue numa node */
2006 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2007 				     (numa_node_id >= 0) ? numa_node_id :
2008 				     NUMA_NO_NODE);
2009 
2010 	if (!dev_maps)
2011 		goto out_no_maps;
2012 
2013 	/* removes queue from unused CPUs */
2014 	for_each_possible_cpu(cpu) {
2015 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2016 			continue;
2017 
2018 		if (remove_xps_queue(dev_maps, cpu, index))
2019 			active = true;
2020 	}
2021 
2022 	/* free map if not active */
2023 	if (!active) {
2024 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2025 		kfree_rcu(dev_maps, rcu);
2026 	}
2027 
2028 out_no_maps:
2029 	mutex_unlock(&xps_map_mutex);
2030 
2031 	return 0;
2032 error:
2033 	/* remove any maps that we added */
2034 	for_each_possible_cpu(cpu) {
2035 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2036 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2037 				 NULL;
2038 		if (new_map && new_map != map)
2039 			kfree(new_map);
2040 	}
2041 
2042 	mutex_unlock(&xps_map_mutex);
2043 
2044 	kfree(new_dev_maps);
2045 	return -ENOMEM;
2046 }
2047 EXPORT_SYMBOL(netif_set_xps_queue);
2048 
2049 #endif
2050 /*
2051  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2052  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2053  */
2054 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2055 {
2056 	int rc;
2057 
2058 	if (txq < 1 || txq > dev->num_tx_queues)
2059 		return -EINVAL;
2060 
2061 	if (dev->reg_state == NETREG_REGISTERED ||
2062 	    dev->reg_state == NETREG_UNREGISTERING) {
2063 		ASSERT_RTNL();
2064 
2065 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2066 						  txq);
2067 		if (rc)
2068 			return rc;
2069 
2070 		if (dev->num_tc)
2071 			netif_setup_tc(dev, txq);
2072 
2073 		if (txq < dev->real_num_tx_queues) {
2074 			qdisc_reset_all_tx_gt(dev, txq);
2075 #ifdef CONFIG_XPS
2076 			netif_reset_xps_queues_gt(dev, txq);
2077 #endif
2078 		}
2079 	}
2080 
2081 	dev->real_num_tx_queues = txq;
2082 	return 0;
2083 }
2084 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2085 
2086 #ifdef CONFIG_SYSFS
2087 /**
2088  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2089  *	@dev: Network device
2090  *	@rxq: Actual number of RX queues
2091  *
2092  *	This must be called either with the rtnl_lock held or before
2093  *	registration of the net device.  Returns 0 on success, or a
2094  *	negative error code.  If called before registration, it always
2095  *	succeeds.
2096  */
2097 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2098 {
2099 	int rc;
2100 
2101 	if (rxq < 1 || rxq > dev->num_rx_queues)
2102 		return -EINVAL;
2103 
2104 	if (dev->reg_state == NETREG_REGISTERED) {
2105 		ASSERT_RTNL();
2106 
2107 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2108 						  rxq);
2109 		if (rc)
2110 			return rc;
2111 	}
2112 
2113 	dev->real_num_rx_queues = rxq;
2114 	return 0;
2115 }
2116 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2117 #endif
2118 
2119 /**
2120  * netif_get_num_default_rss_queues - default number of RSS queues
2121  *
2122  * This routine should set an upper limit on the number of RSS queues
2123  * used by default by multiqueue devices.
2124  */
2125 int netif_get_num_default_rss_queues(void)
2126 {
2127 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2128 }
2129 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2130 
2131 static inline void __netif_reschedule(struct Qdisc *q)
2132 {
2133 	struct softnet_data *sd;
2134 	unsigned long flags;
2135 
2136 	local_irq_save(flags);
2137 	sd = &__get_cpu_var(softnet_data);
2138 	q->next_sched = NULL;
2139 	*sd->output_queue_tailp = q;
2140 	sd->output_queue_tailp = &q->next_sched;
2141 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2142 	local_irq_restore(flags);
2143 }
2144 
2145 void __netif_schedule(struct Qdisc *q)
2146 {
2147 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2148 		__netif_reschedule(q);
2149 }
2150 EXPORT_SYMBOL(__netif_schedule);
2151 
2152 struct dev_kfree_skb_cb {
2153 	enum skb_free_reason reason;
2154 };
2155 
2156 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2157 {
2158 	return (struct dev_kfree_skb_cb *)skb->cb;
2159 }
2160 
2161 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2162 {
2163 	unsigned long flags;
2164 
2165 	if (likely(atomic_read(&skb->users) == 1)) {
2166 		smp_rmb();
2167 		atomic_set(&skb->users, 0);
2168 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2169 		return;
2170 	}
2171 	get_kfree_skb_cb(skb)->reason = reason;
2172 	local_irq_save(flags);
2173 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2174 	__this_cpu_write(softnet_data.completion_queue, skb);
2175 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2176 	local_irq_restore(flags);
2177 }
2178 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2179 
2180 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2181 {
2182 	if (in_irq() || irqs_disabled())
2183 		__dev_kfree_skb_irq(skb, reason);
2184 	else
2185 		dev_kfree_skb(skb);
2186 }
2187 EXPORT_SYMBOL(__dev_kfree_skb_any);
2188 
2189 
2190 /**
2191  * netif_device_detach - mark device as removed
2192  * @dev: network device
2193  *
2194  * Mark device as removed from system and therefore no longer available.
2195  */
2196 void netif_device_detach(struct net_device *dev)
2197 {
2198 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2199 	    netif_running(dev)) {
2200 		netif_tx_stop_all_queues(dev);
2201 	}
2202 }
2203 EXPORT_SYMBOL(netif_device_detach);
2204 
2205 /**
2206  * netif_device_attach - mark device as attached
2207  * @dev: network device
2208  *
2209  * Mark device as attached from system and restart if needed.
2210  */
2211 void netif_device_attach(struct net_device *dev)
2212 {
2213 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2214 	    netif_running(dev)) {
2215 		netif_tx_wake_all_queues(dev);
2216 		__netdev_watchdog_up(dev);
2217 	}
2218 }
2219 EXPORT_SYMBOL(netif_device_attach);
2220 
2221 static void skb_warn_bad_offload(const struct sk_buff *skb)
2222 {
2223 	static const netdev_features_t null_features = 0;
2224 	struct net_device *dev = skb->dev;
2225 	const char *driver = "";
2226 
2227 	if (!net_ratelimit())
2228 		return;
2229 
2230 	if (dev && dev->dev.parent)
2231 		driver = dev_driver_string(dev->dev.parent);
2232 
2233 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2234 	     "gso_type=%d ip_summed=%d\n",
2235 	     driver, dev ? &dev->features : &null_features,
2236 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2237 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2238 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2239 }
2240 
2241 /*
2242  * Invalidate hardware checksum when packet is to be mangled, and
2243  * complete checksum manually on outgoing path.
2244  */
2245 int skb_checksum_help(struct sk_buff *skb)
2246 {
2247 	__wsum csum;
2248 	int ret = 0, offset;
2249 
2250 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2251 		goto out_set_summed;
2252 
2253 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2254 		skb_warn_bad_offload(skb);
2255 		return -EINVAL;
2256 	}
2257 
2258 	/* Before computing a checksum, we should make sure no frag could
2259 	 * be modified by an external entity : checksum could be wrong.
2260 	 */
2261 	if (skb_has_shared_frag(skb)) {
2262 		ret = __skb_linearize(skb);
2263 		if (ret)
2264 			goto out;
2265 	}
2266 
2267 	offset = skb_checksum_start_offset(skb);
2268 	BUG_ON(offset >= skb_headlen(skb));
2269 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2270 
2271 	offset += skb->csum_offset;
2272 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2273 
2274 	if (skb_cloned(skb) &&
2275 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2276 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2277 		if (ret)
2278 			goto out;
2279 	}
2280 
2281 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2282 out_set_summed:
2283 	skb->ip_summed = CHECKSUM_NONE;
2284 out:
2285 	return ret;
2286 }
2287 EXPORT_SYMBOL(skb_checksum_help);
2288 
2289 __be16 skb_network_protocol(struct sk_buff *skb)
2290 {
2291 	__be16 type = skb->protocol;
2292 	int vlan_depth = ETH_HLEN;
2293 
2294 	/* Tunnel gso handlers can set protocol to ethernet. */
2295 	if (type == htons(ETH_P_TEB)) {
2296 		struct ethhdr *eth;
2297 
2298 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2299 			return 0;
2300 
2301 		eth = (struct ethhdr *)skb_mac_header(skb);
2302 		type = eth->h_proto;
2303 	}
2304 
2305 	while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2306 		struct vlan_hdr *vh;
2307 
2308 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2309 			return 0;
2310 
2311 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2312 		type = vh->h_vlan_encapsulated_proto;
2313 		vlan_depth += VLAN_HLEN;
2314 	}
2315 
2316 	return type;
2317 }
2318 
2319 /**
2320  *	skb_mac_gso_segment - mac layer segmentation handler.
2321  *	@skb: buffer to segment
2322  *	@features: features for the output path (see dev->features)
2323  */
2324 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2325 				    netdev_features_t features)
2326 {
2327 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2328 	struct packet_offload *ptype;
2329 	__be16 type = skb_network_protocol(skb);
2330 
2331 	if (unlikely(!type))
2332 		return ERR_PTR(-EINVAL);
2333 
2334 	__skb_pull(skb, skb->mac_len);
2335 
2336 	rcu_read_lock();
2337 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2338 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2339 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2340 				int err;
2341 
2342 				err = ptype->callbacks.gso_send_check(skb);
2343 				segs = ERR_PTR(err);
2344 				if (err || skb_gso_ok(skb, features))
2345 					break;
2346 				__skb_push(skb, (skb->data -
2347 						 skb_network_header(skb)));
2348 			}
2349 			segs = ptype->callbacks.gso_segment(skb, features);
2350 			break;
2351 		}
2352 	}
2353 	rcu_read_unlock();
2354 
2355 	__skb_push(skb, skb->data - skb_mac_header(skb));
2356 
2357 	return segs;
2358 }
2359 EXPORT_SYMBOL(skb_mac_gso_segment);
2360 
2361 
2362 /* openvswitch calls this on rx path, so we need a different check.
2363  */
2364 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2365 {
2366 	if (tx_path)
2367 		return skb->ip_summed != CHECKSUM_PARTIAL;
2368 	else
2369 		return skb->ip_summed == CHECKSUM_NONE;
2370 }
2371 
2372 /**
2373  *	__skb_gso_segment - Perform segmentation on skb.
2374  *	@skb: buffer to segment
2375  *	@features: features for the output path (see dev->features)
2376  *	@tx_path: whether it is called in TX path
2377  *
2378  *	This function segments the given skb and returns a list of segments.
2379  *
2380  *	It may return NULL if the skb requires no segmentation.  This is
2381  *	only possible when GSO is used for verifying header integrity.
2382  */
2383 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2384 				  netdev_features_t features, bool tx_path)
2385 {
2386 	if (unlikely(skb_needs_check(skb, tx_path))) {
2387 		int err;
2388 
2389 		skb_warn_bad_offload(skb);
2390 
2391 		if (skb_header_cloned(skb) &&
2392 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2393 			return ERR_PTR(err);
2394 	}
2395 
2396 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2397 	SKB_GSO_CB(skb)->encap_level = 0;
2398 
2399 	skb_reset_mac_header(skb);
2400 	skb_reset_mac_len(skb);
2401 
2402 	return skb_mac_gso_segment(skb, features);
2403 }
2404 EXPORT_SYMBOL(__skb_gso_segment);
2405 
2406 /* Take action when hardware reception checksum errors are detected. */
2407 #ifdef CONFIG_BUG
2408 void netdev_rx_csum_fault(struct net_device *dev)
2409 {
2410 	if (net_ratelimit()) {
2411 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2412 		dump_stack();
2413 	}
2414 }
2415 EXPORT_SYMBOL(netdev_rx_csum_fault);
2416 #endif
2417 
2418 /* Actually, we should eliminate this check as soon as we know, that:
2419  * 1. IOMMU is present and allows to map all the memory.
2420  * 2. No high memory really exists on this machine.
2421  */
2422 
2423 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2424 {
2425 #ifdef CONFIG_HIGHMEM
2426 	int i;
2427 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2428 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2429 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2430 			if (PageHighMem(skb_frag_page(frag)))
2431 				return 1;
2432 		}
2433 	}
2434 
2435 	if (PCI_DMA_BUS_IS_PHYS) {
2436 		struct device *pdev = dev->dev.parent;
2437 
2438 		if (!pdev)
2439 			return 0;
2440 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2441 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2442 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2443 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2444 				return 1;
2445 		}
2446 	}
2447 #endif
2448 	return 0;
2449 }
2450 
2451 struct dev_gso_cb {
2452 	void (*destructor)(struct sk_buff *skb);
2453 };
2454 
2455 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2456 
2457 static void dev_gso_skb_destructor(struct sk_buff *skb)
2458 {
2459 	struct dev_gso_cb *cb;
2460 
2461 	kfree_skb_list(skb->next);
2462 	skb->next = NULL;
2463 
2464 	cb = DEV_GSO_CB(skb);
2465 	if (cb->destructor)
2466 		cb->destructor(skb);
2467 }
2468 
2469 /**
2470  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2471  *	@skb: buffer to segment
2472  *	@features: device features as applicable to this skb
2473  *
2474  *	This function segments the given skb and stores the list of segments
2475  *	in skb->next.
2476  */
2477 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2478 {
2479 	struct sk_buff *segs;
2480 
2481 	segs = skb_gso_segment(skb, features);
2482 
2483 	/* Verifying header integrity only. */
2484 	if (!segs)
2485 		return 0;
2486 
2487 	if (IS_ERR(segs))
2488 		return PTR_ERR(segs);
2489 
2490 	skb->next = segs;
2491 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2492 	skb->destructor = dev_gso_skb_destructor;
2493 
2494 	return 0;
2495 }
2496 
2497 static netdev_features_t harmonize_features(struct sk_buff *skb,
2498 	netdev_features_t features)
2499 {
2500 	if (skb->ip_summed != CHECKSUM_NONE &&
2501 	    !can_checksum_protocol(features, skb_network_protocol(skb))) {
2502 		features &= ~NETIF_F_ALL_CSUM;
2503 	} else if (illegal_highdma(skb->dev, skb)) {
2504 		features &= ~NETIF_F_SG;
2505 	}
2506 
2507 	return features;
2508 }
2509 
2510 netdev_features_t netif_skb_features(struct sk_buff *skb)
2511 {
2512 	__be16 protocol = skb->protocol;
2513 	netdev_features_t features = skb->dev->features;
2514 
2515 	if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2516 		features &= ~NETIF_F_GSO_MASK;
2517 
2518 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2519 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2520 		protocol = veh->h_vlan_encapsulated_proto;
2521 	} else if (!vlan_tx_tag_present(skb)) {
2522 		return harmonize_features(skb, features);
2523 	}
2524 
2525 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2526 					       NETIF_F_HW_VLAN_STAG_TX);
2527 
2528 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2529 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2530 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2531 				NETIF_F_HW_VLAN_STAG_TX;
2532 
2533 	return harmonize_features(skb, features);
2534 }
2535 EXPORT_SYMBOL(netif_skb_features);
2536 
2537 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2538 			struct netdev_queue *txq)
2539 {
2540 	const struct net_device_ops *ops = dev->netdev_ops;
2541 	int rc = NETDEV_TX_OK;
2542 	unsigned int skb_len;
2543 
2544 	if (likely(!skb->next)) {
2545 		netdev_features_t features;
2546 
2547 		/*
2548 		 * If device doesn't need skb->dst, release it right now while
2549 		 * its hot in this cpu cache
2550 		 */
2551 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2552 			skb_dst_drop(skb);
2553 
2554 		features = netif_skb_features(skb);
2555 
2556 		if (vlan_tx_tag_present(skb) &&
2557 		    !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2558 			skb = __vlan_put_tag(skb, skb->vlan_proto,
2559 					     vlan_tx_tag_get(skb));
2560 			if (unlikely(!skb))
2561 				goto out;
2562 
2563 			skb->vlan_tci = 0;
2564 		}
2565 
2566 		/* If encapsulation offload request, verify we are testing
2567 		 * hardware encapsulation features instead of standard
2568 		 * features for the netdev
2569 		 */
2570 		if (skb->encapsulation)
2571 			features &= dev->hw_enc_features;
2572 
2573 		if (netif_needs_gso(skb, features)) {
2574 			if (unlikely(dev_gso_segment(skb, features)))
2575 				goto out_kfree_skb;
2576 			if (skb->next)
2577 				goto gso;
2578 		} else {
2579 			if (skb_needs_linearize(skb, features) &&
2580 			    __skb_linearize(skb))
2581 				goto out_kfree_skb;
2582 
2583 			/* If packet is not checksummed and device does not
2584 			 * support checksumming for this protocol, complete
2585 			 * checksumming here.
2586 			 */
2587 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2588 				if (skb->encapsulation)
2589 					skb_set_inner_transport_header(skb,
2590 						skb_checksum_start_offset(skb));
2591 				else
2592 					skb_set_transport_header(skb,
2593 						skb_checksum_start_offset(skb));
2594 				if (!(features & NETIF_F_ALL_CSUM) &&
2595 				     skb_checksum_help(skb))
2596 					goto out_kfree_skb;
2597 			}
2598 		}
2599 
2600 		if (!list_empty(&ptype_all))
2601 			dev_queue_xmit_nit(skb, dev);
2602 
2603 		skb_len = skb->len;
2604 		trace_net_dev_start_xmit(skb, dev);
2605 		rc = ops->ndo_start_xmit(skb, dev);
2606 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2607 		if (rc == NETDEV_TX_OK)
2608 			txq_trans_update(txq);
2609 		return rc;
2610 	}
2611 
2612 gso:
2613 	do {
2614 		struct sk_buff *nskb = skb->next;
2615 
2616 		skb->next = nskb->next;
2617 		nskb->next = NULL;
2618 
2619 		if (!list_empty(&ptype_all))
2620 			dev_queue_xmit_nit(nskb, dev);
2621 
2622 		skb_len = nskb->len;
2623 		trace_net_dev_start_xmit(nskb, dev);
2624 		rc = ops->ndo_start_xmit(nskb, dev);
2625 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2626 		if (unlikely(rc != NETDEV_TX_OK)) {
2627 			if (rc & ~NETDEV_TX_MASK)
2628 				goto out_kfree_gso_skb;
2629 			nskb->next = skb->next;
2630 			skb->next = nskb;
2631 			return rc;
2632 		}
2633 		txq_trans_update(txq);
2634 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2635 			return NETDEV_TX_BUSY;
2636 	} while (skb->next);
2637 
2638 out_kfree_gso_skb:
2639 	if (likely(skb->next == NULL)) {
2640 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2641 		consume_skb(skb);
2642 		return rc;
2643 	}
2644 out_kfree_skb:
2645 	kfree_skb(skb);
2646 out:
2647 	return rc;
2648 }
2649 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2650 
2651 static void qdisc_pkt_len_init(struct sk_buff *skb)
2652 {
2653 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2654 
2655 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2656 
2657 	/* To get more precise estimation of bytes sent on wire,
2658 	 * we add to pkt_len the headers size of all segments
2659 	 */
2660 	if (shinfo->gso_size)  {
2661 		unsigned int hdr_len;
2662 		u16 gso_segs = shinfo->gso_segs;
2663 
2664 		/* mac layer + network layer */
2665 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2666 
2667 		/* + transport layer */
2668 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2669 			hdr_len += tcp_hdrlen(skb);
2670 		else
2671 			hdr_len += sizeof(struct udphdr);
2672 
2673 		if (shinfo->gso_type & SKB_GSO_DODGY)
2674 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2675 						shinfo->gso_size);
2676 
2677 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2678 	}
2679 }
2680 
2681 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2682 				 struct net_device *dev,
2683 				 struct netdev_queue *txq)
2684 {
2685 	spinlock_t *root_lock = qdisc_lock(q);
2686 	bool contended;
2687 	int rc;
2688 
2689 	qdisc_pkt_len_init(skb);
2690 	qdisc_calculate_pkt_len(skb, q);
2691 	/*
2692 	 * Heuristic to force contended enqueues to serialize on a
2693 	 * separate lock before trying to get qdisc main lock.
2694 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2695 	 * and dequeue packets faster.
2696 	 */
2697 	contended = qdisc_is_running(q);
2698 	if (unlikely(contended))
2699 		spin_lock(&q->busylock);
2700 
2701 	spin_lock(root_lock);
2702 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2703 		kfree_skb(skb);
2704 		rc = NET_XMIT_DROP;
2705 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2706 		   qdisc_run_begin(q)) {
2707 		/*
2708 		 * This is a work-conserving queue; there are no old skbs
2709 		 * waiting to be sent out; and the qdisc is not running -
2710 		 * xmit the skb directly.
2711 		 */
2712 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2713 			skb_dst_force(skb);
2714 
2715 		qdisc_bstats_update(q, skb);
2716 
2717 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2718 			if (unlikely(contended)) {
2719 				spin_unlock(&q->busylock);
2720 				contended = false;
2721 			}
2722 			__qdisc_run(q);
2723 		} else
2724 			qdisc_run_end(q);
2725 
2726 		rc = NET_XMIT_SUCCESS;
2727 	} else {
2728 		skb_dst_force(skb);
2729 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2730 		if (qdisc_run_begin(q)) {
2731 			if (unlikely(contended)) {
2732 				spin_unlock(&q->busylock);
2733 				contended = false;
2734 			}
2735 			__qdisc_run(q);
2736 		}
2737 	}
2738 	spin_unlock(root_lock);
2739 	if (unlikely(contended))
2740 		spin_unlock(&q->busylock);
2741 	return rc;
2742 }
2743 
2744 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2745 static void skb_update_prio(struct sk_buff *skb)
2746 {
2747 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2748 
2749 	if (!skb->priority && skb->sk && map) {
2750 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2751 
2752 		if (prioidx < map->priomap_len)
2753 			skb->priority = map->priomap[prioidx];
2754 	}
2755 }
2756 #else
2757 #define skb_update_prio(skb)
2758 #endif
2759 
2760 static DEFINE_PER_CPU(int, xmit_recursion);
2761 #define RECURSION_LIMIT 10
2762 
2763 /**
2764  *	dev_loopback_xmit - loop back @skb
2765  *	@skb: buffer to transmit
2766  */
2767 int dev_loopback_xmit(struct sk_buff *skb)
2768 {
2769 	skb_reset_mac_header(skb);
2770 	__skb_pull(skb, skb_network_offset(skb));
2771 	skb->pkt_type = PACKET_LOOPBACK;
2772 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2773 	WARN_ON(!skb_dst(skb));
2774 	skb_dst_force(skb);
2775 	netif_rx_ni(skb);
2776 	return 0;
2777 }
2778 EXPORT_SYMBOL(dev_loopback_xmit);
2779 
2780 /**
2781  *	__dev_queue_xmit - transmit a buffer
2782  *	@skb: buffer to transmit
2783  *	@accel_priv: private data used for L2 forwarding offload
2784  *
2785  *	Queue a buffer for transmission to a network device. The caller must
2786  *	have set the device and priority and built the buffer before calling
2787  *	this function. The function can be called from an interrupt.
2788  *
2789  *	A negative errno code is returned on a failure. A success does not
2790  *	guarantee the frame will be transmitted as it may be dropped due
2791  *	to congestion or traffic shaping.
2792  *
2793  * -----------------------------------------------------------------------------------
2794  *      I notice this method can also return errors from the queue disciplines,
2795  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2796  *      be positive.
2797  *
2798  *      Regardless of the return value, the skb is consumed, so it is currently
2799  *      difficult to retry a send to this method.  (You can bump the ref count
2800  *      before sending to hold a reference for retry if you are careful.)
2801  *
2802  *      When calling this method, interrupts MUST be enabled.  This is because
2803  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2804  *          --BLG
2805  */
2806 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2807 {
2808 	struct net_device *dev = skb->dev;
2809 	struct netdev_queue *txq;
2810 	struct Qdisc *q;
2811 	int rc = -ENOMEM;
2812 
2813 	skb_reset_mac_header(skb);
2814 
2815 	/* Disable soft irqs for various locks below. Also
2816 	 * stops preemption for RCU.
2817 	 */
2818 	rcu_read_lock_bh();
2819 
2820 	skb_update_prio(skb);
2821 
2822 	txq = netdev_pick_tx(dev, skb, accel_priv);
2823 	q = rcu_dereference_bh(txq->qdisc);
2824 
2825 #ifdef CONFIG_NET_CLS_ACT
2826 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2827 #endif
2828 	trace_net_dev_queue(skb);
2829 	if (q->enqueue) {
2830 		rc = __dev_xmit_skb(skb, q, dev, txq);
2831 		goto out;
2832 	}
2833 
2834 	/* The device has no queue. Common case for software devices:
2835 	   loopback, all the sorts of tunnels...
2836 
2837 	   Really, it is unlikely that netif_tx_lock protection is necessary
2838 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2839 	   counters.)
2840 	   However, it is possible, that they rely on protection
2841 	   made by us here.
2842 
2843 	   Check this and shot the lock. It is not prone from deadlocks.
2844 	   Either shot noqueue qdisc, it is even simpler 8)
2845 	 */
2846 	if (dev->flags & IFF_UP) {
2847 		int cpu = smp_processor_id(); /* ok because BHs are off */
2848 
2849 		if (txq->xmit_lock_owner != cpu) {
2850 
2851 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2852 				goto recursion_alert;
2853 
2854 			HARD_TX_LOCK(dev, txq, cpu);
2855 
2856 			if (!netif_xmit_stopped(txq)) {
2857 				__this_cpu_inc(xmit_recursion);
2858 				rc = dev_hard_start_xmit(skb, dev, txq);
2859 				__this_cpu_dec(xmit_recursion);
2860 				if (dev_xmit_complete(rc)) {
2861 					HARD_TX_UNLOCK(dev, txq);
2862 					goto out;
2863 				}
2864 			}
2865 			HARD_TX_UNLOCK(dev, txq);
2866 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2867 					     dev->name);
2868 		} else {
2869 			/* Recursion is detected! It is possible,
2870 			 * unfortunately
2871 			 */
2872 recursion_alert:
2873 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2874 					     dev->name);
2875 		}
2876 	}
2877 
2878 	rc = -ENETDOWN;
2879 	rcu_read_unlock_bh();
2880 
2881 	kfree_skb(skb);
2882 	return rc;
2883 out:
2884 	rcu_read_unlock_bh();
2885 	return rc;
2886 }
2887 
2888 int dev_queue_xmit(struct sk_buff *skb)
2889 {
2890 	return __dev_queue_xmit(skb, NULL);
2891 }
2892 EXPORT_SYMBOL(dev_queue_xmit);
2893 
2894 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2895 {
2896 	return __dev_queue_xmit(skb, accel_priv);
2897 }
2898 EXPORT_SYMBOL(dev_queue_xmit_accel);
2899 
2900 
2901 /*=======================================================================
2902 			Receiver routines
2903   =======================================================================*/
2904 
2905 int netdev_max_backlog __read_mostly = 1000;
2906 EXPORT_SYMBOL(netdev_max_backlog);
2907 
2908 int netdev_tstamp_prequeue __read_mostly = 1;
2909 int netdev_budget __read_mostly = 300;
2910 int weight_p __read_mostly = 64;            /* old backlog weight */
2911 
2912 /* Called with irq disabled */
2913 static inline void ____napi_schedule(struct softnet_data *sd,
2914 				     struct napi_struct *napi)
2915 {
2916 	list_add_tail(&napi->poll_list, &sd->poll_list);
2917 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2918 }
2919 
2920 #ifdef CONFIG_RPS
2921 
2922 /* One global table that all flow-based protocols share. */
2923 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2924 EXPORT_SYMBOL(rps_sock_flow_table);
2925 
2926 struct static_key rps_needed __read_mostly;
2927 
2928 static struct rps_dev_flow *
2929 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2930 	    struct rps_dev_flow *rflow, u16 next_cpu)
2931 {
2932 	if (next_cpu != RPS_NO_CPU) {
2933 #ifdef CONFIG_RFS_ACCEL
2934 		struct netdev_rx_queue *rxqueue;
2935 		struct rps_dev_flow_table *flow_table;
2936 		struct rps_dev_flow *old_rflow;
2937 		u32 flow_id;
2938 		u16 rxq_index;
2939 		int rc;
2940 
2941 		/* Should we steer this flow to a different hardware queue? */
2942 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2943 		    !(dev->features & NETIF_F_NTUPLE))
2944 			goto out;
2945 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2946 		if (rxq_index == skb_get_rx_queue(skb))
2947 			goto out;
2948 
2949 		rxqueue = dev->_rx + rxq_index;
2950 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2951 		if (!flow_table)
2952 			goto out;
2953 		flow_id = skb->rxhash & flow_table->mask;
2954 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2955 							rxq_index, flow_id);
2956 		if (rc < 0)
2957 			goto out;
2958 		old_rflow = rflow;
2959 		rflow = &flow_table->flows[flow_id];
2960 		rflow->filter = rc;
2961 		if (old_rflow->filter == rflow->filter)
2962 			old_rflow->filter = RPS_NO_FILTER;
2963 	out:
2964 #endif
2965 		rflow->last_qtail =
2966 			per_cpu(softnet_data, next_cpu).input_queue_head;
2967 	}
2968 
2969 	rflow->cpu = next_cpu;
2970 	return rflow;
2971 }
2972 
2973 /*
2974  * get_rps_cpu is called from netif_receive_skb and returns the target
2975  * CPU from the RPS map of the receiving queue for a given skb.
2976  * rcu_read_lock must be held on entry.
2977  */
2978 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2979 		       struct rps_dev_flow **rflowp)
2980 {
2981 	struct netdev_rx_queue *rxqueue;
2982 	struct rps_map *map;
2983 	struct rps_dev_flow_table *flow_table;
2984 	struct rps_sock_flow_table *sock_flow_table;
2985 	int cpu = -1;
2986 	u16 tcpu;
2987 
2988 	if (skb_rx_queue_recorded(skb)) {
2989 		u16 index = skb_get_rx_queue(skb);
2990 		if (unlikely(index >= dev->real_num_rx_queues)) {
2991 			WARN_ONCE(dev->real_num_rx_queues > 1,
2992 				  "%s received packet on queue %u, but number "
2993 				  "of RX queues is %u\n",
2994 				  dev->name, index, dev->real_num_rx_queues);
2995 			goto done;
2996 		}
2997 		rxqueue = dev->_rx + index;
2998 	} else
2999 		rxqueue = dev->_rx;
3000 
3001 	map = rcu_dereference(rxqueue->rps_map);
3002 	if (map) {
3003 		if (map->len == 1 &&
3004 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
3005 			tcpu = map->cpus[0];
3006 			if (cpu_online(tcpu))
3007 				cpu = tcpu;
3008 			goto done;
3009 		}
3010 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3011 		goto done;
3012 	}
3013 
3014 	skb_reset_network_header(skb);
3015 	if (!skb_get_hash(skb))
3016 		goto done;
3017 
3018 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3019 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3020 	if (flow_table && sock_flow_table) {
3021 		u16 next_cpu;
3022 		struct rps_dev_flow *rflow;
3023 
3024 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
3025 		tcpu = rflow->cpu;
3026 
3027 		next_cpu = sock_flow_table->ents[skb->rxhash &
3028 		    sock_flow_table->mask];
3029 
3030 		/*
3031 		 * If the desired CPU (where last recvmsg was done) is
3032 		 * different from current CPU (one in the rx-queue flow
3033 		 * table entry), switch if one of the following holds:
3034 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
3035 		 *   - Current CPU is offline.
3036 		 *   - The current CPU's queue tail has advanced beyond the
3037 		 *     last packet that was enqueued using this table entry.
3038 		 *     This guarantees that all previous packets for the flow
3039 		 *     have been dequeued, thus preserving in order delivery.
3040 		 */
3041 		if (unlikely(tcpu != next_cpu) &&
3042 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3043 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3044 		      rflow->last_qtail)) >= 0)) {
3045 			tcpu = next_cpu;
3046 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3047 		}
3048 
3049 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3050 			*rflowp = rflow;
3051 			cpu = tcpu;
3052 			goto done;
3053 		}
3054 	}
3055 
3056 	if (map) {
3057 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
3058 
3059 		if (cpu_online(tcpu)) {
3060 			cpu = tcpu;
3061 			goto done;
3062 		}
3063 	}
3064 
3065 done:
3066 	return cpu;
3067 }
3068 
3069 #ifdef CONFIG_RFS_ACCEL
3070 
3071 /**
3072  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3073  * @dev: Device on which the filter was set
3074  * @rxq_index: RX queue index
3075  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3076  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3077  *
3078  * Drivers that implement ndo_rx_flow_steer() should periodically call
3079  * this function for each installed filter and remove the filters for
3080  * which it returns %true.
3081  */
3082 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3083 			 u32 flow_id, u16 filter_id)
3084 {
3085 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3086 	struct rps_dev_flow_table *flow_table;
3087 	struct rps_dev_flow *rflow;
3088 	bool expire = true;
3089 	int cpu;
3090 
3091 	rcu_read_lock();
3092 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3093 	if (flow_table && flow_id <= flow_table->mask) {
3094 		rflow = &flow_table->flows[flow_id];
3095 		cpu = ACCESS_ONCE(rflow->cpu);
3096 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3097 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3098 			   rflow->last_qtail) <
3099 		     (int)(10 * flow_table->mask)))
3100 			expire = false;
3101 	}
3102 	rcu_read_unlock();
3103 	return expire;
3104 }
3105 EXPORT_SYMBOL(rps_may_expire_flow);
3106 
3107 #endif /* CONFIG_RFS_ACCEL */
3108 
3109 /* Called from hardirq (IPI) context */
3110 static void rps_trigger_softirq(void *data)
3111 {
3112 	struct softnet_data *sd = data;
3113 
3114 	____napi_schedule(sd, &sd->backlog);
3115 	sd->received_rps++;
3116 }
3117 
3118 #endif /* CONFIG_RPS */
3119 
3120 /*
3121  * Check if this softnet_data structure is another cpu one
3122  * If yes, queue it to our IPI list and return 1
3123  * If no, return 0
3124  */
3125 static int rps_ipi_queued(struct softnet_data *sd)
3126 {
3127 #ifdef CONFIG_RPS
3128 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3129 
3130 	if (sd != mysd) {
3131 		sd->rps_ipi_next = mysd->rps_ipi_list;
3132 		mysd->rps_ipi_list = sd;
3133 
3134 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3135 		return 1;
3136 	}
3137 #endif /* CONFIG_RPS */
3138 	return 0;
3139 }
3140 
3141 #ifdef CONFIG_NET_FLOW_LIMIT
3142 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3143 #endif
3144 
3145 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3146 {
3147 #ifdef CONFIG_NET_FLOW_LIMIT
3148 	struct sd_flow_limit *fl;
3149 	struct softnet_data *sd;
3150 	unsigned int old_flow, new_flow;
3151 
3152 	if (qlen < (netdev_max_backlog >> 1))
3153 		return false;
3154 
3155 	sd = &__get_cpu_var(softnet_data);
3156 
3157 	rcu_read_lock();
3158 	fl = rcu_dereference(sd->flow_limit);
3159 	if (fl) {
3160 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3161 		old_flow = fl->history[fl->history_head];
3162 		fl->history[fl->history_head] = new_flow;
3163 
3164 		fl->history_head++;
3165 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3166 
3167 		if (likely(fl->buckets[old_flow]))
3168 			fl->buckets[old_flow]--;
3169 
3170 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3171 			fl->count++;
3172 			rcu_read_unlock();
3173 			return true;
3174 		}
3175 	}
3176 	rcu_read_unlock();
3177 #endif
3178 	return false;
3179 }
3180 
3181 /*
3182  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3183  * queue (may be a remote CPU queue).
3184  */
3185 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3186 			      unsigned int *qtail)
3187 {
3188 	struct softnet_data *sd;
3189 	unsigned long flags;
3190 	unsigned int qlen;
3191 
3192 	sd = &per_cpu(softnet_data, cpu);
3193 
3194 	local_irq_save(flags);
3195 
3196 	rps_lock(sd);
3197 	qlen = skb_queue_len(&sd->input_pkt_queue);
3198 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3199 		if (skb_queue_len(&sd->input_pkt_queue)) {
3200 enqueue:
3201 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3202 			input_queue_tail_incr_save(sd, qtail);
3203 			rps_unlock(sd);
3204 			local_irq_restore(flags);
3205 			return NET_RX_SUCCESS;
3206 		}
3207 
3208 		/* Schedule NAPI for backlog device
3209 		 * We can use non atomic operation since we own the queue lock
3210 		 */
3211 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3212 			if (!rps_ipi_queued(sd))
3213 				____napi_schedule(sd, &sd->backlog);
3214 		}
3215 		goto enqueue;
3216 	}
3217 
3218 	sd->dropped++;
3219 	rps_unlock(sd);
3220 
3221 	local_irq_restore(flags);
3222 
3223 	atomic_long_inc(&skb->dev->rx_dropped);
3224 	kfree_skb(skb);
3225 	return NET_RX_DROP;
3226 }
3227 
3228 static int netif_rx_internal(struct sk_buff *skb)
3229 {
3230 	int ret;
3231 
3232 	/* if netpoll wants it, pretend we never saw it */
3233 	if (netpoll_rx(skb))
3234 		return NET_RX_DROP;
3235 
3236 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3237 
3238 	trace_netif_rx(skb);
3239 #ifdef CONFIG_RPS
3240 	if (static_key_false(&rps_needed)) {
3241 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3242 		int cpu;
3243 
3244 		preempt_disable();
3245 		rcu_read_lock();
3246 
3247 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3248 		if (cpu < 0)
3249 			cpu = smp_processor_id();
3250 
3251 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3252 
3253 		rcu_read_unlock();
3254 		preempt_enable();
3255 	} else
3256 #endif
3257 	{
3258 		unsigned int qtail;
3259 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3260 		put_cpu();
3261 	}
3262 	return ret;
3263 }
3264 
3265 /**
3266  *	netif_rx	-	post buffer to the network code
3267  *	@skb: buffer to post
3268  *
3269  *	This function receives a packet from a device driver and queues it for
3270  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3271  *	may be dropped during processing for congestion control or by the
3272  *	protocol layers.
3273  *
3274  *	return values:
3275  *	NET_RX_SUCCESS	(no congestion)
3276  *	NET_RX_DROP     (packet was dropped)
3277  *
3278  */
3279 
3280 int netif_rx(struct sk_buff *skb)
3281 {
3282 	trace_netif_rx_entry(skb);
3283 
3284 	return netif_rx_internal(skb);
3285 }
3286 EXPORT_SYMBOL(netif_rx);
3287 
3288 int netif_rx_ni(struct sk_buff *skb)
3289 {
3290 	int err;
3291 
3292 	trace_netif_rx_ni_entry(skb);
3293 
3294 	preempt_disable();
3295 	err = netif_rx_internal(skb);
3296 	if (local_softirq_pending())
3297 		do_softirq();
3298 	preempt_enable();
3299 
3300 	return err;
3301 }
3302 EXPORT_SYMBOL(netif_rx_ni);
3303 
3304 static void net_tx_action(struct softirq_action *h)
3305 {
3306 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3307 
3308 	if (sd->completion_queue) {
3309 		struct sk_buff *clist;
3310 
3311 		local_irq_disable();
3312 		clist = sd->completion_queue;
3313 		sd->completion_queue = NULL;
3314 		local_irq_enable();
3315 
3316 		while (clist) {
3317 			struct sk_buff *skb = clist;
3318 			clist = clist->next;
3319 
3320 			WARN_ON(atomic_read(&skb->users));
3321 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3322 				trace_consume_skb(skb);
3323 			else
3324 				trace_kfree_skb(skb, net_tx_action);
3325 			__kfree_skb(skb);
3326 		}
3327 	}
3328 
3329 	if (sd->output_queue) {
3330 		struct Qdisc *head;
3331 
3332 		local_irq_disable();
3333 		head = sd->output_queue;
3334 		sd->output_queue = NULL;
3335 		sd->output_queue_tailp = &sd->output_queue;
3336 		local_irq_enable();
3337 
3338 		while (head) {
3339 			struct Qdisc *q = head;
3340 			spinlock_t *root_lock;
3341 
3342 			head = head->next_sched;
3343 
3344 			root_lock = qdisc_lock(q);
3345 			if (spin_trylock(root_lock)) {
3346 				smp_mb__before_clear_bit();
3347 				clear_bit(__QDISC_STATE_SCHED,
3348 					  &q->state);
3349 				qdisc_run(q);
3350 				spin_unlock(root_lock);
3351 			} else {
3352 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3353 					      &q->state)) {
3354 					__netif_reschedule(q);
3355 				} else {
3356 					smp_mb__before_clear_bit();
3357 					clear_bit(__QDISC_STATE_SCHED,
3358 						  &q->state);
3359 				}
3360 			}
3361 		}
3362 	}
3363 }
3364 
3365 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3366     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3367 /* This hook is defined here for ATM LANE */
3368 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3369 			     unsigned char *addr) __read_mostly;
3370 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3371 #endif
3372 
3373 #ifdef CONFIG_NET_CLS_ACT
3374 /* TODO: Maybe we should just force sch_ingress to be compiled in
3375  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3376  * a compare and 2 stores extra right now if we dont have it on
3377  * but have CONFIG_NET_CLS_ACT
3378  * NOTE: This doesn't stop any functionality; if you dont have
3379  * the ingress scheduler, you just can't add policies on ingress.
3380  *
3381  */
3382 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3383 {
3384 	struct net_device *dev = skb->dev;
3385 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3386 	int result = TC_ACT_OK;
3387 	struct Qdisc *q;
3388 
3389 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3390 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3391 				     skb->skb_iif, dev->ifindex);
3392 		return TC_ACT_SHOT;
3393 	}
3394 
3395 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3396 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3397 
3398 	q = rxq->qdisc;
3399 	if (q != &noop_qdisc) {
3400 		spin_lock(qdisc_lock(q));
3401 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3402 			result = qdisc_enqueue_root(skb, q);
3403 		spin_unlock(qdisc_lock(q));
3404 	}
3405 
3406 	return result;
3407 }
3408 
3409 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3410 					 struct packet_type **pt_prev,
3411 					 int *ret, struct net_device *orig_dev)
3412 {
3413 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3414 
3415 	if (!rxq || rxq->qdisc == &noop_qdisc)
3416 		goto out;
3417 
3418 	if (*pt_prev) {
3419 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3420 		*pt_prev = NULL;
3421 	}
3422 
3423 	switch (ing_filter(skb, rxq)) {
3424 	case TC_ACT_SHOT:
3425 	case TC_ACT_STOLEN:
3426 		kfree_skb(skb);
3427 		return NULL;
3428 	}
3429 
3430 out:
3431 	skb->tc_verd = 0;
3432 	return skb;
3433 }
3434 #endif
3435 
3436 /**
3437  *	netdev_rx_handler_register - register receive handler
3438  *	@dev: device to register a handler for
3439  *	@rx_handler: receive handler to register
3440  *	@rx_handler_data: data pointer that is used by rx handler
3441  *
3442  *	Register a receive hander for a device. This handler will then be
3443  *	called from __netif_receive_skb. A negative errno code is returned
3444  *	on a failure.
3445  *
3446  *	The caller must hold the rtnl_mutex.
3447  *
3448  *	For a general description of rx_handler, see enum rx_handler_result.
3449  */
3450 int netdev_rx_handler_register(struct net_device *dev,
3451 			       rx_handler_func_t *rx_handler,
3452 			       void *rx_handler_data)
3453 {
3454 	ASSERT_RTNL();
3455 
3456 	if (dev->rx_handler)
3457 		return -EBUSY;
3458 
3459 	/* Note: rx_handler_data must be set before rx_handler */
3460 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3461 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3462 
3463 	return 0;
3464 }
3465 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3466 
3467 /**
3468  *	netdev_rx_handler_unregister - unregister receive handler
3469  *	@dev: device to unregister a handler from
3470  *
3471  *	Unregister a receive handler from a device.
3472  *
3473  *	The caller must hold the rtnl_mutex.
3474  */
3475 void netdev_rx_handler_unregister(struct net_device *dev)
3476 {
3477 
3478 	ASSERT_RTNL();
3479 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3480 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3481 	 * section has a guarantee to see a non NULL rx_handler_data
3482 	 * as well.
3483 	 */
3484 	synchronize_net();
3485 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3486 }
3487 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3488 
3489 /*
3490  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3491  * the special handling of PFMEMALLOC skbs.
3492  */
3493 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3494 {
3495 	switch (skb->protocol) {
3496 	case __constant_htons(ETH_P_ARP):
3497 	case __constant_htons(ETH_P_IP):
3498 	case __constant_htons(ETH_P_IPV6):
3499 	case __constant_htons(ETH_P_8021Q):
3500 	case __constant_htons(ETH_P_8021AD):
3501 		return true;
3502 	default:
3503 		return false;
3504 	}
3505 }
3506 
3507 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3508 {
3509 	struct packet_type *ptype, *pt_prev;
3510 	rx_handler_func_t *rx_handler;
3511 	struct net_device *orig_dev;
3512 	struct net_device *null_or_dev;
3513 	bool deliver_exact = false;
3514 	int ret = NET_RX_DROP;
3515 	__be16 type;
3516 
3517 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3518 
3519 	trace_netif_receive_skb(skb);
3520 
3521 	/* if we've gotten here through NAPI, check netpoll */
3522 	if (netpoll_receive_skb(skb))
3523 		goto out;
3524 
3525 	orig_dev = skb->dev;
3526 
3527 	skb_reset_network_header(skb);
3528 	if (!skb_transport_header_was_set(skb))
3529 		skb_reset_transport_header(skb);
3530 	skb_reset_mac_len(skb);
3531 
3532 	pt_prev = NULL;
3533 
3534 	rcu_read_lock();
3535 
3536 another_round:
3537 	skb->skb_iif = skb->dev->ifindex;
3538 
3539 	__this_cpu_inc(softnet_data.processed);
3540 
3541 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3542 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3543 		skb = vlan_untag(skb);
3544 		if (unlikely(!skb))
3545 			goto unlock;
3546 	}
3547 
3548 #ifdef CONFIG_NET_CLS_ACT
3549 	if (skb->tc_verd & TC_NCLS) {
3550 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3551 		goto ncls;
3552 	}
3553 #endif
3554 
3555 	if (pfmemalloc)
3556 		goto skip_taps;
3557 
3558 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3559 		if (!ptype->dev || ptype->dev == skb->dev) {
3560 			if (pt_prev)
3561 				ret = deliver_skb(skb, pt_prev, orig_dev);
3562 			pt_prev = ptype;
3563 		}
3564 	}
3565 
3566 skip_taps:
3567 #ifdef CONFIG_NET_CLS_ACT
3568 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3569 	if (!skb)
3570 		goto unlock;
3571 ncls:
3572 #endif
3573 
3574 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3575 		goto drop;
3576 
3577 	if (vlan_tx_tag_present(skb)) {
3578 		if (pt_prev) {
3579 			ret = deliver_skb(skb, pt_prev, orig_dev);
3580 			pt_prev = NULL;
3581 		}
3582 		if (vlan_do_receive(&skb))
3583 			goto another_round;
3584 		else if (unlikely(!skb))
3585 			goto unlock;
3586 	}
3587 
3588 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3589 	if (rx_handler) {
3590 		if (pt_prev) {
3591 			ret = deliver_skb(skb, pt_prev, orig_dev);
3592 			pt_prev = NULL;
3593 		}
3594 		switch (rx_handler(&skb)) {
3595 		case RX_HANDLER_CONSUMED:
3596 			ret = NET_RX_SUCCESS;
3597 			goto unlock;
3598 		case RX_HANDLER_ANOTHER:
3599 			goto another_round;
3600 		case RX_HANDLER_EXACT:
3601 			deliver_exact = true;
3602 		case RX_HANDLER_PASS:
3603 			break;
3604 		default:
3605 			BUG();
3606 		}
3607 	}
3608 
3609 	if (unlikely(vlan_tx_tag_present(skb))) {
3610 		if (vlan_tx_tag_get_id(skb))
3611 			skb->pkt_type = PACKET_OTHERHOST;
3612 		/* Note: we might in the future use prio bits
3613 		 * and set skb->priority like in vlan_do_receive()
3614 		 * For the time being, just ignore Priority Code Point
3615 		 */
3616 		skb->vlan_tci = 0;
3617 	}
3618 
3619 	/* deliver only exact match when indicated */
3620 	null_or_dev = deliver_exact ? skb->dev : NULL;
3621 
3622 	type = skb->protocol;
3623 	list_for_each_entry_rcu(ptype,
3624 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3625 		if (ptype->type == type &&
3626 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3627 		     ptype->dev == orig_dev)) {
3628 			if (pt_prev)
3629 				ret = deliver_skb(skb, pt_prev, orig_dev);
3630 			pt_prev = ptype;
3631 		}
3632 	}
3633 
3634 	if (pt_prev) {
3635 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3636 			goto drop;
3637 		else
3638 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3639 	} else {
3640 drop:
3641 		atomic_long_inc(&skb->dev->rx_dropped);
3642 		kfree_skb(skb);
3643 		/* Jamal, now you will not able to escape explaining
3644 		 * me how you were going to use this. :-)
3645 		 */
3646 		ret = NET_RX_DROP;
3647 	}
3648 
3649 unlock:
3650 	rcu_read_unlock();
3651 out:
3652 	return ret;
3653 }
3654 
3655 static int __netif_receive_skb(struct sk_buff *skb)
3656 {
3657 	int ret;
3658 
3659 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3660 		unsigned long pflags = current->flags;
3661 
3662 		/*
3663 		 * PFMEMALLOC skbs are special, they should
3664 		 * - be delivered to SOCK_MEMALLOC sockets only
3665 		 * - stay away from userspace
3666 		 * - have bounded memory usage
3667 		 *
3668 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3669 		 * context down to all allocation sites.
3670 		 */
3671 		current->flags |= PF_MEMALLOC;
3672 		ret = __netif_receive_skb_core(skb, true);
3673 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3674 	} else
3675 		ret = __netif_receive_skb_core(skb, false);
3676 
3677 	return ret;
3678 }
3679 
3680 static int netif_receive_skb_internal(struct sk_buff *skb)
3681 {
3682 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3683 
3684 	if (skb_defer_rx_timestamp(skb))
3685 		return NET_RX_SUCCESS;
3686 
3687 #ifdef CONFIG_RPS
3688 	if (static_key_false(&rps_needed)) {
3689 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3690 		int cpu, ret;
3691 
3692 		rcu_read_lock();
3693 
3694 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3695 
3696 		if (cpu >= 0) {
3697 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3698 			rcu_read_unlock();
3699 			return ret;
3700 		}
3701 		rcu_read_unlock();
3702 	}
3703 #endif
3704 	return __netif_receive_skb(skb);
3705 }
3706 
3707 /**
3708  *	netif_receive_skb - process receive buffer from network
3709  *	@skb: buffer to process
3710  *
3711  *	netif_receive_skb() is the main receive data processing function.
3712  *	It always succeeds. The buffer may be dropped during processing
3713  *	for congestion control or by the protocol layers.
3714  *
3715  *	This function may only be called from softirq context and interrupts
3716  *	should be enabled.
3717  *
3718  *	Return values (usually ignored):
3719  *	NET_RX_SUCCESS: no congestion
3720  *	NET_RX_DROP: packet was dropped
3721  */
3722 int netif_receive_skb(struct sk_buff *skb)
3723 {
3724 	trace_netif_receive_skb_entry(skb);
3725 
3726 	return netif_receive_skb_internal(skb);
3727 }
3728 EXPORT_SYMBOL(netif_receive_skb);
3729 
3730 /* Network device is going away, flush any packets still pending
3731  * Called with irqs disabled.
3732  */
3733 static void flush_backlog(void *arg)
3734 {
3735 	struct net_device *dev = arg;
3736 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3737 	struct sk_buff *skb, *tmp;
3738 
3739 	rps_lock(sd);
3740 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3741 		if (skb->dev == dev) {
3742 			__skb_unlink(skb, &sd->input_pkt_queue);
3743 			kfree_skb(skb);
3744 			input_queue_head_incr(sd);
3745 		}
3746 	}
3747 	rps_unlock(sd);
3748 
3749 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3750 		if (skb->dev == dev) {
3751 			__skb_unlink(skb, &sd->process_queue);
3752 			kfree_skb(skb);
3753 			input_queue_head_incr(sd);
3754 		}
3755 	}
3756 }
3757 
3758 static int napi_gro_complete(struct sk_buff *skb)
3759 {
3760 	struct packet_offload *ptype;
3761 	__be16 type = skb->protocol;
3762 	struct list_head *head = &offload_base;
3763 	int err = -ENOENT;
3764 
3765 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3766 
3767 	if (NAPI_GRO_CB(skb)->count == 1) {
3768 		skb_shinfo(skb)->gso_size = 0;
3769 		goto out;
3770 	}
3771 
3772 	rcu_read_lock();
3773 	list_for_each_entry_rcu(ptype, head, list) {
3774 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3775 			continue;
3776 
3777 		err = ptype->callbacks.gro_complete(skb, 0);
3778 		break;
3779 	}
3780 	rcu_read_unlock();
3781 
3782 	if (err) {
3783 		WARN_ON(&ptype->list == head);
3784 		kfree_skb(skb);
3785 		return NET_RX_SUCCESS;
3786 	}
3787 
3788 out:
3789 	return netif_receive_skb_internal(skb);
3790 }
3791 
3792 /* napi->gro_list contains packets ordered by age.
3793  * youngest packets at the head of it.
3794  * Complete skbs in reverse order to reduce latencies.
3795  */
3796 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3797 {
3798 	struct sk_buff *skb, *prev = NULL;
3799 
3800 	/* scan list and build reverse chain */
3801 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3802 		skb->prev = prev;
3803 		prev = skb;
3804 	}
3805 
3806 	for (skb = prev; skb; skb = prev) {
3807 		skb->next = NULL;
3808 
3809 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3810 			return;
3811 
3812 		prev = skb->prev;
3813 		napi_gro_complete(skb);
3814 		napi->gro_count--;
3815 	}
3816 
3817 	napi->gro_list = NULL;
3818 }
3819 EXPORT_SYMBOL(napi_gro_flush);
3820 
3821 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3822 {
3823 	struct sk_buff *p;
3824 	unsigned int maclen = skb->dev->hard_header_len;
3825 	u32 hash = skb_get_hash_raw(skb);
3826 
3827 	for (p = napi->gro_list; p; p = p->next) {
3828 		unsigned long diffs;
3829 
3830 		NAPI_GRO_CB(p)->flush = 0;
3831 
3832 		if (hash != skb_get_hash_raw(p)) {
3833 			NAPI_GRO_CB(p)->same_flow = 0;
3834 			continue;
3835 		}
3836 
3837 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3838 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3839 		if (maclen == ETH_HLEN)
3840 			diffs |= compare_ether_header(skb_mac_header(p),
3841 						      skb_gro_mac_header(skb));
3842 		else if (!diffs)
3843 			diffs = memcmp(skb_mac_header(p),
3844 				       skb_gro_mac_header(skb),
3845 				       maclen);
3846 		NAPI_GRO_CB(p)->same_flow = !diffs;
3847 	}
3848 }
3849 
3850 static void skb_gro_reset_offset(struct sk_buff *skb)
3851 {
3852 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3853 	const skb_frag_t *frag0 = &pinfo->frags[0];
3854 
3855 	NAPI_GRO_CB(skb)->data_offset = 0;
3856 	NAPI_GRO_CB(skb)->frag0 = NULL;
3857 	NAPI_GRO_CB(skb)->frag0_len = 0;
3858 
3859 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3860 	    pinfo->nr_frags &&
3861 	    !PageHighMem(skb_frag_page(frag0))) {
3862 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3863 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3864 	}
3865 }
3866 
3867 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3868 {
3869 	struct sk_buff **pp = NULL;
3870 	struct packet_offload *ptype;
3871 	__be16 type = skb->protocol;
3872 	struct list_head *head = &offload_base;
3873 	int same_flow;
3874 	enum gro_result ret;
3875 
3876 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3877 		goto normal;
3878 
3879 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3880 		goto normal;
3881 
3882 	skb_gro_reset_offset(skb);
3883 	gro_list_prepare(napi, skb);
3884 	NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3885 
3886 	rcu_read_lock();
3887 	list_for_each_entry_rcu(ptype, head, list) {
3888 		if (ptype->type != type || !ptype->callbacks.gro_receive)
3889 			continue;
3890 
3891 		skb_set_network_header(skb, skb_gro_offset(skb));
3892 		skb_reset_mac_len(skb);
3893 		NAPI_GRO_CB(skb)->same_flow = 0;
3894 		NAPI_GRO_CB(skb)->flush = 0;
3895 		NAPI_GRO_CB(skb)->free = 0;
3896 		NAPI_GRO_CB(skb)->udp_mark = 0;
3897 
3898 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3899 		break;
3900 	}
3901 	rcu_read_unlock();
3902 
3903 	if (&ptype->list == head)
3904 		goto normal;
3905 
3906 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3907 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3908 
3909 	if (pp) {
3910 		struct sk_buff *nskb = *pp;
3911 
3912 		*pp = nskb->next;
3913 		nskb->next = NULL;
3914 		napi_gro_complete(nskb);
3915 		napi->gro_count--;
3916 	}
3917 
3918 	if (same_flow)
3919 		goto ok;
3920 
3921 	if (NAPI_GRO_CB(skb)->flush)
3922 		goto normal;
3923 
3924 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
3925 		struct sk_buff *nskb = napi->gro_list;
3926 
3927 		/* locate the end of the list to select the 'oldest' flow */
3928 		while (nskb->next) {
3929 			pp = &nskb->next;
3930 			nskb = *pp;
3931 		}
3932 		*pp = NULL;
3933 		nskb->next = NULL;
3934 		napi_gro_complete(nskb);
3935 	} else {
3936 		napi->gro_count++;
3937 	}
3938 	NAPI_GRO_CB(skb)->count = 1;
3939 	NAPI_GRO_CB(skb)->age = jiffies;
3940 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3941 	skb->next = napi->gro_list;
3942 	napi->gro_list = skb;
3943 	ret = GRO_HELD;
3944 
3945 pull:
3946 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3947 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3948 
3949 		BUG_ON(skb->end - skb->tail < grow);
3950 
3951 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3952 
3953 		skb->tail += grow;
3954 		skb->data_len -= grow;
3955 
3956 		skb_shinfo(skb)->frags[0].page_offset += grow;
3957 		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3958 
3959 		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3960 			skb_frag_unref(skb, 0);
3961 			memmove(skb_shinfo(skb)->frags,
3962 				skb_shinfo(skb)->frags + 1,
3963 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3964 		}
3965 	}
3966 
3967 ok:
3968 	return ret;
3969 
3970 normal:
3971 	ret = GRO_NORMAL;
3972 	goto pull;
3973 }
3974 
3975 struct packet_offload *gro_find_receive_by_type(__be16 type)
3976 {
3977 	struct list_head *offload_head = &offload_base;
3978 	struct packet_offload *ptype;
3979 
3980 	list_for_each_entry_rcu(ptype, offload_head, list) {
3981 		if (ptype->type != type || !ptype->callbacks.gro_receive)
3982 			continue;
3983 		return ptype;
3984 	}
3985 	return NULL;
3986 }
3987 EXPORT_SYMBOL(gro_find_receive_by_type);
3988 
3989 struct packet_offload *gro_find_complete_by_type(__be16 type)
3990 {
3991 	struct list_head *offload_head = &offload_base;
3992 	struct packet_offload *ptype;
3993 
3994 	list_for_each_entry_rcu(ptype, offload_head, list) {
3995 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3996 			continue;
3997 		return ptype;
3998 	}
3999 	return NULL;
4000 }
4001 EXPORT_SYMBOL(gro_find_complete_by_type);
4002 
4003 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4004 {
4005 	switch (ret) {
4006 	case GRO_NORMAL:
4007 		if (netif_receive_skb_internal(skb))
4008 			ret = GRO_DROP;
4009 		break;
4010 
4011 	case GRO_DROP:
4012 		kfree_skb(skb);
4013 		break;
4014 
4015 	case GRO_MERGED_FREE:
4016 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4017 			kmem_cache_free(skbuff_head_cache, skb);
4018 		else
4019 			__kfree_skb(skb);
4020 		break;
4021 
4022 	case GRO_HELD:
4023 	case GRO_MERGED:
4024 		break;
4025 	}
4026 
4027 	return ret;
4028 }
4029 
4030 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4031 {
4032 	trace_napi_gro_receive_entry(skb);
4033 
4034 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4035 }
4036 EXPORT_SYMBOL(napi_gro_receive);
4037 
4038 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4039 {
4040 	__skb_pull(skb, skb_headlen(skb));
4041 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4042 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4043 	skb->vlan_tci = 0;
4044 	skb->dev = napi->dev;
4045 	skb->skb_iif = 0;
4046 
4047 	napi->skb = skb;
4048 }
4049 
4050 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4051 {
4052 	struct sk_buff *skb = napi->skb;
4053 
4054 	if (!skb) {
4055 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4056 		napi->skb = skb;
4057 	}
4058 	return skb;
4059 }
4060 EXPORT_SYMBOL(napi_get_frags);
4061 
4062 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
4063 			       gro_result_t ret)
4064 {
4065 	switch (ret) {
4066 	case GRO_NORMAL:
4067 		if (netif_receive_skb_internal(skb))
4068 			ret = GRO_DROP;
4069 		break;
4070 
4071 	case GRO_DROP:
4072 	case GRO_MERGED_FREE:
4073 		napi_reuse_skb(napi, skb);
4074 		break;
4075 
4076 	case GRO_HELD:
4077 	case GRO_MERGED:
4078 		break;
4079 	}
4080 
4081 	return ret;
4082 }
4083 
4084 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4085 {
4086 	struct sk_buff *skb = napi->skb;
4087 
4088 	napi->skb = NULL;
4089 
4090 	if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) {
4091 		napi_reuse_skb(napi, skb);
4092 		return NULL;
4093 	}
4094 	skb->protocol = eth_type_trans(skb, skb->dev);
4095 
4096 	return skb;
4097 }
4098 
4099 gro_result_t napi_gro_frags(struct napi_struct *napi)
4100 {
4101 	struct sk_buff *skb = napi_frags_skb(napi);
4102 
4103 	if (!skb)
4104 		return GRO_DROP;
4105 
4106 	trace_napi_gro_frags_entry(skb);
4107 
4108 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4109 }
4110 EXPORT_SYMBOL(napi_gro_frags);
4111 
4112 /*
4113  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4114  * Note: called with local irq disabled, but exits with local irq enabled.
4115  */
4116 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4117 {
4118 #ifdef CONFIG_RPS
4119 	struct softnet_data *remsd = sd->rps_ipi_list;
4120 
4121 	if (remsd) {
4122 		sd->rps_ipi_list = NULL;
4123 
4124 		local_irq_enable();
4125 
4126 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4127 		while (remsd) {
4128 			struct softnet_data *next = remsd->rps_ipi_next;
4129 
4130 			if (cpu_online(remsd->cpu))
4131 				__smp_call_function_single(remsd->cpu,
4132 							   &remsd->csd, 0);
4133 			remsd = next;
4134 		}
4135 	} else
4136 #endif
4137 		local_irq_enable();
4138 }
4139 
4140 static int process_backlog(struct napi_struct *napi, int quota)
4141 {
4142 	int work = 0;
4143 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4144 
4145 #ifdef CONFIG_RPS
4146 	/* Check if we have pending ipi, its better to send them now,
4147 	 * not waiting net_rx_action() end.
4148 	 */
4149 	if (sd->rps_ipi_list) {
4150 		local_irq_disable();
4151 		net_rps_action_and_irq_enable(sd);
4152 	}
4153 #endif
4154 	napi->weight = weight_p;
4155 	local_irq_disable();
4156 	while (work < quota) {
4157 		struct sk_buff *skb;
4158 		unsigned int qlen;
4159 
4160 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4161 			local_irq_enable();
4162 			__netif_receive_skb(skb);
4163 			local_irq_disable();
4164 			input_queue_head_incr(sd);
4165 			if (++work >= quota) {
4166 				local_irq_enable();
4167 				return work;
4168 			}
4169 		}
4170 
4171 		rps_lock(sd);
4172 		qlen = skb_queue_len(&sd->input_pkt_queue);
4173 		if (qlen)
4174 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
4175 						   &sd->process_queue);
4176 
4177 		if (qlen < quota - work) {
4178 			/*
4179 			 * Inline a custom version of __napi_complete().
4180 			 * only current cpu owns and manipulates this napi,
4181 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4182 			 * we can use a plain write instead of clear_bit(),
4183 			 * and we dont need an smp_mb() memory barrier.
4184 			 */
4185 			list_del(&napi->poll_list);
4186 			napi->state = 0;
4187 
4188 			quota = work + qlen;
4189 		}
4190 		rps_unlock(sd);
4191 	}
4192 	local_irq_enable();
4193 
4194 	return work;
4195 }
4196 
4197 /**
4198  * __napi_schedule - schedule for receive
4199  * @n: entry to schedule
4200  *
4201  * The entry's receive function will be scheduled to run
4202  */
4203 void __napi_schedule(struct napi_struct *n)
4204 {
4205 	unsigned long flags;
4206 
4207 	local_irq_save(flags);
4208 	____napi_schedule(&__get_cpu_var(softnet_data), n);
4209 	local_irq_restore(flags);
4210 }
4211 EXPORT_SYMBOL(__napi_schedule);
4212 
4213 void __napi_complete(struct napi_struct *n)
4214 {
4215 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4216 	BUG_ON(n->gro_list);
4217 
4218 	list_del(&n->poll_list);
4219 	smp_mb__before_clear_bit();
4220 	clear_bit(NAPI_STATE_SCHED, &n->state);
4221 }
4222 EXPORT_SYMBOL(__napi_complete);
4223 
4224 void napi_complete(struct napi_struct *n)
4225 {
4226 	unsigned long flags;
4227 
4228 	/*
4229 	 * don't let napi dequeue from the cpu poll list
4230 	 * just in case its running on a different cpu
4231 	 */
4232 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4233 		return;
4234 
4235 	napi_gro_flush(n, false);
4236 	local_irq_save(flags);
4237 	__napi_complete(n);
4238 	local_irq_restore(flags);
4239 }
4240 EXPORT_SYMBOL(napi_complete);
4241 
4242 /* must be called under rcu_read_lock(), as we dont take a reference */
4243 struct napi_struct *napi_by_id(unsigned int napi_id)
4244 {
4245 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4246 	struct napi_struct *napi;
4247 
4248 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4249 		if (napi->napi_id == napi_id)
4250 			return napi;
4251 
4252 	return NULL;
4253 }
4254 EXPORT_SYMBOL_GPL(napi_by_id);
4255 
4256 void napi_hash_add(struct napi_struct *napi)
4257 {
4258 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4259 
4260 		spin_lock(&napi_hash_lock);
4261 
4262 		/* 0 is not a valid id, we also skip an id that is taken
4263 		 * we expect both events to be extremely rare
4264 		 */
4265 		napi->napi_id = 0;
4266 		while (!napi->napi_id) {
4267 			napi->napi_id = ++napi_gen_id;
4268 			if (napi_by_id(napi->napi_id))
4269 				napi->napi_id = 0;
4270 		}
4271 
4272 		hlist_add_head_rcu(&napi->napi_hash_node,
4273 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4274 
4275 		spin_unlock(&napi_hash_lock);
4276 	}
4277 }
4278 EXPORT_SYMBOL_GPL(napi_hash_add);
4279 
4280 /* Warning : caller is responsible to make sure rcu grace period
4281  * is respected before freeing memory containing @napi
4282  */
4283 void napi_hash_del(struct napi_struct *napi)
4284 {
4285 	spin_lock(&napi_hash_lock);
4286 
4287 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4288 		hlist_del_rcu(&napi->napi_hash_node);
4289 
4290 	spin_unlock(&napi_hash_lock);
4291 }
4292 EXPORT_SYMBOL_GPL(napi_hash_del);
4293 
4294 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4295 		    int (*poll)(struct napi_struct *, int), int weight)
4296 {
4297 	INIT_LIST_HEAD(&napi->poll_list);
4298 	napi->gro_count = 0;
4299 	napi->gro_list = NULL;
4300 	napi->skb = NULL;
4301 	napi->poll = poll;
4302 	if (weight > NAPI_POLL_WEIGHT)
4303 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4304 			    weight, dev->name);
4305 	napi->weight = weight;
4306 	list_add(&napi->dev_list, &dev->napi_list);
4307 	napi->dev = dev;
4308 #ifdef CONFIG_NETPOLL
4309 	spin_lock_init(&napi->poll_lock);
4310 	napi->poll_owner = -1;
4311 #endif
4312 	set_bit(NAPI_STATE_SCHED, &napi->state);
4313 }
4314 EXPORT_SYMBOL(netif_napi_add);
4315 
4316 void netif_napi_del(struct napi_struct *napi)
4317 {
4318 	list_del_init(&napi->dev_list);
4319 	napi_free_frags(napi);
4320 
4321 	kfree_skb_list(napi->gro_list);
4322 	napi->gro_list = NULL;
4323 	napi->gro_count = 0;
4324 }
4325 EXPORT_SYMBOL(netif_napi_del);
4326 
4327 static void net_rx_action(struct softirq_action *h)
4328 {
4329 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
4330 	unsigned long time_limit = jiffies + 2;
4331 	int budget = netdev_budget;
4332 	void *have;
4333 
4334 	local_irq_disable();
4335 
4336 	while (!list_empty(&sd->poll_list)) {
4337 		struct napi_struct *n;
4338 		int work, weight;
4339 
4340 		/* If softirq window is exhuasted then punt.
4341 		 * Allow this to run for 2 jiffies since which will allow
4342 		 * an average latency of 1.5/HZ.
4343 		 */
4344 		if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4345 			goto softnet_break;
4346 
4347 		local_irq_enable();
4348 
4349 		/* Even though interrupts have been re-enabled, this
4350 		 * access is safe because interrupts can only add new
4351 		 * entries to the tail of this list, and only ->poll()
4352 		 * calls can remove this head entry from the list.
4353 		 */
4354 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4355 
4356 		have = netpoll_poll_lock(n);
4357 
4358 		weight = n->weight;
4359 
4360 		/* This NAPI_STATE_SCHED test is for avoiding a race
4361 		 * with netpoll's poll_napi().  Only the entity which
4362 		 * obtains the lock and sees NAPI_STATE_SCHED set will
4363 		 * actually make the ->poll() call.  Therefore we avoid
4364 		 * accidentally calling ->poll() when NAPI is not scheduled.
4365 		 */
4366 		work = 0;
4367 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4368 			work = n->poll(n, weight);
4369 			trace_napi_poll(n);
4370 		}
4371 
4372 		WARN_ON_ONCE(work > weight);
4373 
4374 		budget -= work;
4375 
4376 		local_irq_disable();
4377 
4378 		/* Drivers must not modify the NAPI state if they
4379 		 * consume the entire weight.  In such cases this code
4380 		 * still "owns" the NAPI instance and therefore can
4381 		 * move the instance around on the list at-will.
4382 		 */
4383 		if (unlikely(work == weight)) {
4384 			if (unlikely(napi_disable_pending(n))) {
4385 				local_irq_enable();
4386 				napi_complete(n);
4387 				local_irq_disable();
4388 			} else {
4389 				if (n->gro_list) {
4390 					/* flush too old packets
4391 					 * If HZ < 1000, flush all packets.
4392 					 */
4393 					local_irq_enable();
4394 					napi_gro_flush(n, HZ >= 1000);
4395 					local_irq_disable();
4396 				}
4397 				list_move_tail(&n->poll_list, &sd->poll_list);
4398 			}
4399 		}
4400 
4401 		netpoll_poll_unlock(have);
4402 	}
4403 out:
4404 	net_rps_action_and_irq_enable(sd);
4405 
4406 #ifdef CONFIG_NET_DMA
4407 	/*
4408 	 * There may not be any more sk_buffs coming right now, so push
4409 	 * any pending DMA copies to hardware
4410 	 */
4411 	dma_issue_pending_all();
4412 #endif
4413 
4414 	return;
4415 
4416 softnet_break:
4417 	sd->time_squeeze++;
4418 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4419 	goto out;
4420 }
4421 
4422 struct netdev_adjacent {
4423 	struct net_device *dev;
4424 
4425 	/* upper master flag, there can only be one master device per list */
4426 	bool master;
4427 
4428 	/* counter for the number of times this device was added to us */
4429 	u16 ref_nr;
4430 
4431 	/* private field for the users */
4432 	void *private;
4433 
4434 	struct list_head list;
4435 	struct rcu_head rcu;
4436 };
4437 
4438 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4439 						 struct net_device *adj_dev,
4440 						 struct list_head *adj_list)
4441 {
4442 	struct netdev_adjacent *adj;
4443 
4444 	list_for_each_entry(adj, adj_list, list) {
4445 		if (adj->dev == adj_dev)
4446 			return adj;
4447 	}
4448 	return NULL;
4449 }
4450 
4451 /**
4452  * netdev_has_upper_dev - Check if device is linked to an upper device
4453  * @dev: device
4454  * @upper_dev: upper device to check
4455  *
4456  * Find out if a device is linked to specified upper device and return true
4457  * in case it is. Note that this checks only immediate upper device,
4458  * not through a complete stack of devices. The caller must hold the RTNL lock.
4459  */
4460 bool netdev_has_upper_dev(struct net_device *dev,
4461 			  struct net_device *upper_dev)
4462 {
4463 	ASSERT_RTNL();
4464 
4465 	return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4466 }
4467 EXPORT_SYMBOL(netdev_has_upper_dev);
4468 
4469 /**
4470  * netdev_has_any_upper_dev - Check if device is linked to some device
4471  * @dev: device
4472  *
4473  * Find out if a device is linked to an upper device and return true in case
4474  * it is. The caller must hold the RTNL lock.
4475  */
4476 static bool netdev_has_any_upper_dev(struct net_device *dev)
4477 {
4478 	ASSERT_RTNL();
4479 
4480 	return !list_empty(&dev->all_adj_list.upper);
4481 }
4482 
4483 /**
4484  * netdev_master_upper_dev_get - Get master upper device
4485  * @dev: device
4486  *
4487  * Find a master upper device and return pointer to it or NULL in case
4488  * it's not there. The caller must hold the RTNL lock.
4489  */
4490 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4491 {
4492 	struct netdev_adjacent *upper;
4493 
4494 	ASSERT_RTNL();
4495 
4496 	if (list_empty(&dev->adj_list.upper))
4497 		return NULL;
4498 
4499 	upper = list_first_entry(&dev->adj_list.upper,
4500 				 struct netdev_adjacent, list);
4501 	if (likely(upper->master))
4502 		return upper->dev;
4503 	return NULL;
4504 }
4505 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4506 
4507 void *netdev_adjacent_get_private(struct list_head *adj_list)
4508 {
4509 	struct netdev_adjacent *adj;
4510 
4511 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4512 
4513 	return adj->private;
4514 }
4515 EXPORT_SYMBOL(netdev_adjacent_get_private);
4516 
4517 /**
4518  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4519  * @dev: device
4520  * @iter: list_head ** of the current position
4521  *
4522  * Gets the next device from the dev's upper list, starting from iter
4523  * position. The caller must hold RCU read lock.
4524  */
4525 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4526 						     struct list_head **iter)
4527 {
4528 	struct netdev_adjacent *upper;
4529 
4530 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4531 
4532 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4533 
4534 	if (&upper->list == &dev->all_adj_list.upper)
4535 		return NULL;
4536 
4537 	*iter = &upper->list;
4538 
4539 	return upper->dev;
4540 }
4541 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4542 
4543 /**
4544  * netdev_lower_get_next_private - Get the next ->private from the
4545  *				   lower neighbour list
4546  * @dev: device
4547  * @iter: list_head ** of the current position
4548  *
4549  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4550  * list, starting from iter position. The caller must hold either hold the
4551  * RTNL lock or its own locking that guarantees that the neighbour lower
4552  * list will remain unchainged.
4553  */
4554 void *netdev_lower_get_next_private(struct net_device *dev,
4555 				    struct list_head **iter)
4556 {
4557 	struct netdev_adjacent *lower;
4558 
4559 	lower = list_entry(*iter, struct netdev_adjacent, list);
4560 
4561 	if (&lower->list == &dev->adj_list.lower)
4562 		return NULL;
4563 
4564 	if (iter)
4565 		*iter = lower->list.next;
4566 
4567 	return lower->private;
4568 }
4569 EXPORT_SYMBOL(netdev_lower_get_next_private);
4570 
4571 /**
4572  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4573  *				       lower neighbour list, RCU
4574  *				       variant
4575  * @dev: device
4576  * @iter: list_head ** of the current position
4577  *
4578  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4579  * list, starting from iter position. The caller must hold RCU read lock.
4580  */
4581 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4582 					struct list_head **iter)
4583 {
4584 	struct netdev_adjacent *lower;
4585 
4586 	WARN_ON_ONCE(!rcu_read_lock_held());
4587 
4588 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4589 
4590 	if (&lower->list == &dev->adj_list.lower)
4591 		return NULL;
4592 
4593 	if (iter)
4594 		*iter = &lower->list;
4595 
4596 	return lower->private;
4597 }
4598 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4599 
4600 /**
4601  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4602  *				       lower neighbour list, RCU
4603  *				       variant
4604  * @dev: device
4605  *
4606  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4607  * list. The caller must hold RCU read lock.
4608  */
4609 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4610 {
4611 	struct netdev_adjacent *lower;
4612 
4613 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
4614 			struct netdev_adjacent, list);
4615 	if (lower)
4616 		return lower->private;
4617 	return NULL;
4618 }
4619 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4620 
4621 /**
4622  * netdev_master_upper_dev_get_rcu - Get master upper device
4623  * @dev: device
4624  *
4625  * Find a master upper device and return pointer to it or NULL in case
4626  * it's not there. The caller must hold the RCU read lock.
4627  */
4628 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4629 {
4630 	struct netdev_adjacent *upper;
4631 
4632 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
4633 				       struct netdev_adjacent, list);
4634 	if (upper && likely(upper->master))
4635 		return upper->dev;
4636 	return NULL;
4637 }
4638 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4639 
4640 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4641 			      struct net_device *adj_dev,
4642 			      struct list_head *dev_list)
4643 {
4644 	char linkname[IFNAMSIZ+7];
4645 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4646 		"upper_%s" : "lower_%s", adj_dev->name);
4647 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4648 				 linkname);
4649 }
4650 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4651 			       char *name,
4652 			       struct list_head *dev_list)
4653 {
4654 	char linkname[IFNAMSIZ+7];
4655 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4656 		"upper_%s" : "lower_%s", name);
4657 	sysfs_remove_link(&(dev->dev.kobj), linkname);
4658 }
4659 
4660 #define netdev_adjacent_is_neigh_list(dev, dev_list) \
4661 		(dev_list == &dev->adj_list.upper || \
4662 		 dev_list == &dev->adj_list.lower)
4663 
4664 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4665 					struct net_device *adj_dev,
4666 					struct list_head *dev_list,
4667 					void *private, bool master)
4668 {
4669 	struct netdev_adjacent *adj;
4670 	int ret;
4671 
4672 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4673 
4674 	if (adj) {
4675 		adj->ref_nr++;
4676 		return 0;
4677 	}
4678 
4679 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4680 	if (!adj)
4681 		return -ENOMEM;
4682 
4683 	adj->dev = adj_dev;
4684 	adj->master = master;
4685 	adj->ref_nr = 1;
4686 	adj->private = private;
4687 	dev_hold(adj_dev);
4688 
4689 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4690 		 adj_dev->name, dev->name, adj_dev->name);
4691 
4692 	if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4693 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4694 		if (ret)
4695 			goto free_adj;
4696 	}
4697 
4698 	/* Ensure that master link is always the first item in list. */
4699 	if (master) {
4700 		ret = sysfs_create_link(&(dev->dev.kobj),
4701 					&(adj_dev->dev.kobj), "master");
4702 		if (ret)
4703 			goto remove_symlinks;
4704 
4705 		list_add_rcu(&adj->list, dev_list);
4706 	} else {
4707 		list_add_tail_rcu(&adj->list, dev_list);
4708 	}
4709 
4710 	return 0;
4711 
4712 remove_symlinks:
4713 	if (netdev_adjacent_is_neigh_list(dev, dev_list))
4714 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4715 free_adj:
4716 	kfree(adj);
4717 	dev_put(adj_dev);
4718 
4719 	return ret;
4720 }
4721 
4722 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4723 					 struct net_device *adj_dev,
4724 					 struct list_head *dev_list)
4725 {
4726 	struct netdev_adjacent *adj;
4727 
4728 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4729 
4730 	if (!adj) {
4731 		pr_err("tried to remove device %s from %s\n",
4732 		       dev->name, adj_dev->name);
4733 		BUG();
4734 	}
4735 
4736 	if (adj->ref_nr > 1) {
4737 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4738 			 adj->ref_nr-1);
4739 		adj->ref_nr--;
4740 		return;
4741 	}
4742 
4743 	if (adj->master)
4744 		sysfs_remove_link(&(dev->dev.kobj), "master");
4745 
4746 	if (netdev_adjacent_is_neigh_list(dev, dev_list))
4747 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4748 
4749 	list_del_rcu(&adj->list);
4750 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
4751 		 adj_dev->name, dev->name, adj_dev->name);
4752 	dev_put(adj_dev);
4753 	kfree_rcu(adj, rcu);
4754 }
4755 
4756 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4757 					    struct net_device *upper_dev,
4758 					    struct list_head *up_list,
4759 					    struct list_head *down_list,
4760 					    void *private, bool master)
4761 {
4762 	int ret;
4763 
4764 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4765 					   master);
4766 	if (ret)
4767 		return ret;
4768 
4769 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4770 					   false);
4771 	if (ret) {
4772 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4773 		return ret;
4774 	}
4775 
4776 	return 0;
4777 }
4778 
4779 static int __netdev_adjacent_dev_link(struct net_device *dev,
4780 				      struct net_device *upper_dev)
4781 {
4782 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4783 						&dev->all_adj_list.upper,
4784 						&upper_dev->all_adj_list.lower,
4785 						NULL, false);
4786 }
4787 
4788 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4789 					       struct net_device *upper_dev,
4790 					       struct list_head *up_list,
4791 					       struct list_head *down_list)
4792 {
4793 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4794 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4795 }
4796 
4797 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4798 					 struct net_device *upper_dev)
4799 {
4800 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4801 					   &dev->all_adj_list.upper,
4802 					   &upper_dev->all_adj_list.lower);
4803 }
4804 
4805 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4806 						struct net_device *upper_dev,
4807 						void *private, bool master)
4808 {
4809 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4810 
4811 	if (ret)
4812 		return ret;
4813 
4814 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4815 					       &dev->adj_list.upper,
4816 					       &upper_dev->adj_list.lower,
4817 					       private, master);
4818 	if (ret) {
4819 		__netdev_adjacent_dev_unlink(dev, upper_dev);
4820 		return ret;
4821 	}
4822 
4823 	return 0;
4824 }
4825 
4826 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4827 						   struct net_device *upper_dev)
4828 {
4829 	__netdev_adjacent_dev_unlink(dev, upper_dev);
4830 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4831 					   &dev->adj_list.upper,
4832 					   &upper_dev->adj_list.lower);
4833 }
4834 
4835 static int __netdev_upper_dev_link(struct net_device *dev,
4836 				   struct net_device *upper_dev, bool master,
4837 				   void *private)
4838 {
4839 	struct netdev_adjacent *i, *j, *to_i, *to_j;
4840 	int ret = 0;
4841 
4842 	ASSERT_RTNL();
4843 
4844 	if (dev == upper_dev)
4845 		return -EBUSY;
4846 
4847 	/* To prevent loops, check if dev is not upper device to upper_dev. */
4848 	if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4849 		return -EBUSY;
4850 
4851 	if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4852 		return -EEXIST;
4853 
4854 	if (master && netdev_master_upper_dev_get(dev))
4855 		return -EBUSY;
4856 
4857 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4858 						   master);
4859 	if (ret)
4860 		return ret;
4861 
4862 	/* Now that we linked these devs, make all the upper_dev's
4863 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4864 	 * versa, and don't forget the devices itself. All of these
4865 	 * links are non-neighbours.
4866 	 */
4867 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4868 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4869 			pr_debug("Interlinking %s with %s, non-neighbour\n",
4870 				 i->dev->name, j->dev->name);
4871 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4872 			if (ret)
4873 				goto rollback_mesh;
4874 		}
4875 	}
4876 
4877 	/* add dev to every upper_dev's upper device */
4878 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4879 		pr_debug("linking %s's upper device %s with %s\n",
4880 			 upper_dev->name, i->dev->name, dev->name);
4881 		ret = __netdev_adjacent_dev_link(dev, i->dev);
4882 		if (ret)
4883 			goto rollback_upper_mesh;
4884 	}
4885 
4886 	/* add upper_dev to every dev's lower device */
4887 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4888 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
4889 			 i->dev->name, upper_dev->name);
4890 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4891 		if (ret)
4892 			goto rollback_lower_mesh;
4893 	}
4894 
4895 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4896 	return 0;
4897 
4898 rollback_lower_mesh:
4899 	to_i = i;
4900 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4901 		if (i == to_i)
4902 			break;
4903 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
4904 	}
4905 
4906 	i = NULL;
4907 
4908 rollback_upper_mesh:
4909 	to_i = i;
4910 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4911 		if (i == to_i)
4912 			break;
4913 		__netdev_adjacent_dev_unlink(dev, i->dev);
4914 	}
4915 
4916 	i = j = NULL;
4917 
4918 rollback_mesh:
4919 	to_i = i;
4920 	to_j = j;
4921 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4922 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4923 			if (i == to_i && j == to_j)
4924 				break;
4925 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
4926 		}
4927 		if (i == to_i)
4928 			break;
4929 	}
4930 
4931 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4932 
4933 	return ret;
4934 }
4935 
4936 /**
4937  * netdev_upper_dev_link - Add a link to the upper device
4938  * @dev: device
4939  * @upper_dev: new upper device
4940  *
4941  * Adds a link to device which is upper to this one. The caller must hold
4942  * the RTNL lock. On a failure a negative errno code is returned.
4943  * On success the reference counts are adjusted and the function
4944  * returns zero.
4945  */
4946 int netdev_upper_dev_link(struct net_device *dev,
4947 			  struct net_device *upper_dev)
4948 {
4949 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
4950 }
4951 EXPORT_SYMBOL(netdev_upper_dev_link);
4952 
4953 /**
4954  * netdev_master_upper_dev_link - Add a master link to the upper device
4955  * @dev: device
4956  * @upper_dev: new upper device
4957  *
4958  * Adds a link to device which is upper to this one. In this case, only
4959  * one master upper device can be linked, although other non-master devices
4960  * might be linked as well. The caller must hold the RTNL lock.
4961  * On a failure a negative errno code is returned. On success the reference
4962  * counts are adjusted and the function returns zero.
4963  */
4964 int netdev_master_upper_dev_link(struct net_device *dev,
4965 				 struct net_device *upper_dev)
4966 {
4967 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
4968 }
4969 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4970 
4971 int netdev_master_upper_dev_link_private(struct net_device *dev,
4972 					 struct net_device *upper_dev,
4973 					 void *private)
4974 {
4975 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
4976 }
4977 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
4978 
4979 /**
4980  * netdev_upper_dev_unlink - Removes a link to upper device
4981  * @dev: device
4982  * @upper_dev: new upper device
4983  *
4984  * Removes a link to device which is upper to this one. The caller must hold
4985  * the RTNL lock.
4986  */
4987 void netdev_upper_dev_unlink(struct net_device *dev,
4988 			     struct net_device *upper_dev)
4989 {
4990 	struct netdev_adjacent *i, *j;
4991 	ASSERT_RTNL();
4992 
4993 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4994 
4995 	/* Here is the tricky part. We must remove all dev's lower
4996 	 * devices from all upper_dev's upper devices and vice
4997 	 * versa, to maintain the graph relationship.
4998 	 */
4999 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5000 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5001 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5002 
5003 	/* remove also the devices itself from lower/upper device
5004 	 * list
5005 	 */
5006 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5007 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5008 
5009 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5010 		__netdev_adjacent_dev_unlink(dev, i->dev);
5011 
5012 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5013 }
5014 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5015 
5016 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5017 {
5018 	struct netdev_adjacent *iter;
5019 
5020 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5021 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5022 					  &iter->dev->adj_list.lower);
5023 		netdev_adjacent_sysfs_add(iter->dev, dev,
5024 					  &iter->dev->adj_list.lower);
5025 	}
5026 
5027 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5028 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5029 					  &iter->dev->adj_list.upper);
5030 		netdev_adjacent_sysfs_add(iter->dev, dev,
5031 					  &iter->dev->adj_list.upper);
5032 	}
5033 }
5034 
5035 void *netdev_lower_dev_get_private(struct net_device *dev,
5036 				   struct net_device *lower_dev)
5037 {
5038 	struct netdev_adjacent *lower;
5039 
5040 	if (!lower_dev)
5041 		return NULL;
5042 	lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5043 	if (!lower)
5044 		return NULL;
5045 
5046 	return lower->private;
5047 }
5048 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5049 
5050 static void dev_change_rx_flags(struct net_device *dev, int flags)
5051 {
5052 	const struct net_device_ops *ops = dev->netdev_ops;
5053 
5054 	if (ops->ndo_change_rx_flags)
5055 		ops->ndo_change_rx_flags(dev, flags);
5056 }
5057 
5058 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5059 {
5060 	unsigned int old_flags = dev->flags;
5061 	kuid_t uid;
5062 	kgid_t gid;
5063 
5064 	ASSERT_RTNL();
5065 
5066 	dev->flags |= IFF_PROMISC;
5067 	dev->promiscuity += inc;
5068 	if (dev->promiscuity == 0) {
5069 		/*
5070 		 * Avoid overflow.
5071 		 * If inc causes overflow, untouch promisc and return error.
5072 		 */
5073 		if (inc < 0)
5074 			dev->flags &= ~IFF_PROMISC;
5075 		else {
5076 			dev->promiscuity -= inc;
5077 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5078 				dev->name);
5079 			return -EOVERFLOW;
5080 		}
5081 	}
5082 	if (dev->flags != old_flags) {
5083 		pr_info("device %s %s promiscuous mode\n",
5084 			dev->name,
5085 			dev->flags & IFF_PROMISC ? "entered" : "left");
5086 		if (audit_enabled) {
5087 			current_uid_gid(&uid, &gid);
5088 			audit_log(current->audit_context, GFP_ATOMIC,
5089 				AUDIT_ANOM_PROMISCUOUS,
5090 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5091 				dev->name, (dev->flags & IFF_PROMISC),
5092 				(old_flags & IFF_PROMISC),
5093 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5094 				from_kuid(&init_user_ns, uid),
5095 				from_kgid(&init_user_ns, gid),
5096 				audit_get_sessionid(current));
5097 		}
5098 
5099 		dev_change_rx_flags(dev, IFF_PROMISC);
5100 	}
5101 	if (notify)
5102 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5103 	return 0;
5104 }
5105 
5106 /**
5107  *	dev_set_promiscuity	- update promiscuity count on a device
5108  *	@dev: device
5109  *	@inc: modifier
5110  *
5111  *	Add or remove promiscuity from a device. While the count in the device
5112  *	remains above zero the interface remains promiscuous. Once it hits zero
5113  *	the device reverts back to normal filtering operation. A negative inc
5114  *	value is used to drop promiscuity on the device.
5115  *	Return 0 if successful or a negative errno code on error.
5116  */
5117 int dev_set_promiscuity(struct net_device *dev, int inc)
5118 {
5119 	unsigned int old_flags = dev->flags;
5120 	int err;
5121 
5122 	err = __dev_set_promiscuity(dev, inc, true);
5123 	if (err < 0)
5124 		return err;
5125 	if (dev->flags != old_flags)
5126 		dev_set_rx_mode(dev);
5127 	return err;
5128 }
5129 EXPORT_SYMBOL(dev_set_promiscuity);
5130 
5131 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5132 {
5133 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5134 
5135 	ASSERT_RTNL();
5136 
5137 	dev->flags |= IFF_ALLMULTI;
5138 	dev->allmulti += inc;
5139 	if (dev->allmulti == 0) {
5140 		/*
5141 		 * Avoid overflow.
5142 		 * If inc causes overflow, untouch allmulti and return error.
5143 		 */
5144 		if (inc < 0)
5145 			dev->flags &= ~IFF_ALLMULTI;
5146 		else {
5147 			dev->allmulti -= inc;
5148 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5149 				dev->name);
5150 			return -EOVERFLOW;
5151 		}
5152 	}
5153 	if (dev->flags ^ old_flags) {
5154 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5155 		dev_set_rx_mode(dev);
5156 		if (notify)
5157 			__dev_notify_flags(dev, old_flags,
5158 					   dev->gflags ^ old_gflags);
5159 	}
5160 	return 0;
5161 }
5162 
5163 /**
5164  *	dev_set_allmulti	- update allmulti count on a device
5165  *	@dev: device
5166  *	@inc: modifier
5167  *
5168  *	Add or remove reception of all multicast frames to a device. While the
5169  *	count in the device remains above zero the interface remains listening
5170  *	to all interfaces. Once it hits zero the device reverts back to normal
5171  *	filtering operation. A negative @inc value is used to drop the counter
5172  *	when releasing a resource needing all multicasts.
5173  *	Return 0 if successful or a negative errno code on error.
5174  */
5175 
5176 int dev_set_allmulti(struct net_device *dev, int inc)
5177 {
5178 	return __dev_set_allmulti(dev, inc, true);
5179 }
5180 EXPORT_SYMBOL(dev_set_allmulti);
5181 
5182 /*
5183  *	Upload unicast and multicast address lists to device and
5184  *	configure RX filtering. When the device doesn't support unicast
5185  *	filtering it is put in promiscuous mode while unicast addresses
5186  *	are present.
5187  */
5188 void __dev_set_rx_mode(struct net_device *dev)
5189 {
5190 	const struct net_device_ops *ops = dev->netdev_ops;
5191 
5192 	/* dev_open will call this function so the list will stay sane. */
5193 	if (!(dev->flags&IFF_UP))
5194 		return;
5195 
5196 	if (!netif_device_present(dev))
5197 		return;
5198 
5199 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5200 		/* Unicast addresses changes may only happen under the rtnl,
5201 		 * therefore calling __dev_set_promiscuity here is safe.
5202 		 */
5203 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5204 			__dev_set_promiscuity(dev, 1, false);
5205 			dev->uc_promisc = true;
5206 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5207 			__dev_set_promiscuity(dev, -1, false);
5208 			dev->uc_promisc = false;
5209 		}
5210 	}
5211 
5212 	if (ops->ndo_set_rx_mode)
5213 		ops->ndo_set_rx_mode(dev);
5214 }
5215 
5216 void dev_set_rx_mode(struct net_device *dev)
5217 {
5218 	netif_addr_lock_bh(dev);
5219 	__dev_set_rx_mode(dev);
5220 	netif_addr_unlock_bh(dev);
5221 }
5222 
5223 /**
5224  *	dev_get_flags - get flags reported to userspace
5225  *	@dev: device
5226  *
5227  *	Get the combination of flag bits exported through APIs to userspace.
5228  */
5229 unsigned int dev_get_flags(const struct net_device *dev)
5230 {
5231 	unsigned int flags;
5232 
5233 	flags = (dev->flags & ~(IFF_PROMISC |
5234 				IFF_ALLMULTI |
5235 				IFF_RUNNING |
5236 				IFF_LOWER_UP |
5237 				IFF_DORMANT)) |
5238 		(dev->gflags & (IFF_PROMISC |
5239 				IFF_ALLMULTI));
5240 
5241 	if (netif_running(dev)) {
5242 		if (netif_oper_up(dev))
5243 			flags |= IFF_RUNNING;
5244 		if (netif_carrier_ok(dev))
5245 			flags |= IFF_LOWER_UP;
5246 		if (netif_dormant(dev))
5247 			flags |= IFF_DORMANT;
5248 	}
5249 
5250 	return flags;
5251 }
5252 EXPORT_SYMBOL(dev_get_flags);
5253 
5254 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5255 {
5256 	unsigned int old_flags = dev->flags;
5257 	int ret;
5258 
5259 	ASSERT_RTNL();
5260 
5261 	/*
5262 	 *	Set the flags on our device.
5263 	 */
5264 
5265 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5266 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5267 			       IFF_AUTOMEDIA)) |
5268 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5269 				    IFF_ALLMULTI));
5270 
5271 	/*
5272 	 *	Load in the correct multicast list now the flags have changed.
5273 	 */
5274 
5275 	if ((old_flags ^ flags) & IFF_MULTICAST)
5276 		dev_change_rx_flags(dev, IFF_MULTICAST);
5277 
5278 	dev_set_rx_mode(dev);
5279 
5280 	/*
5281 	 *	Have we downed the interface. We handle IFF_UP ourselves
5282 	 *	according to user attempts to set it, rather than blindly
5283 	 *	setting it.
5284 	 */
5285 
5286 	ret = 0;
5287 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
5288 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5289 
5290 		if (!ret)
5291 			dev_set_rx_mode(dev);
5292 	}
5293 
5294 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5295 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5296 		unsigned int old_flags = dev->flags;
5297 
5298 		dev->gflags ^= IFF_PROMISC;
5299 
5300 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5301 			if (dev->flags != old_flags)
5302 				dev_set_rx_mode(dev);
5303 	}
5304 
5305 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5306 	   is important. Some (broken) drivers set IFF_PROMISC, when
5307 	   IFF_ALLMULTI is requested not asking us and not reporting.
5308 	 */
5309 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5310 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5311 
5312 		dev->gflags ^= IFF_ALLMULTI;
5313 		__dev_set_allmulti(dev, inc, false);
5314 	}
5315 
5316 	return ret;
5317 }
5318 
5319 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5320 			unsigned int gchanges)
5321 {
5322 	unsigned int changes = dev->flags ^ old_flags;
5323 
5324 	if (gchanges)
5325 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5326 
5327 	if (changes & IFF_UP) {
5328 		if (dev->flags & IFF_UP)
5329 			call_netdevice_notifiers(NETDEV_UP, dev);
5330 		else
5331 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5332 	}
5333 
5334 	if (dev->flags & IFF_UP &&
5335 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5336 		struct netdev_notifier_change_info change_info;
5337 
5338 		change_info.flags_changed = changes;
5339 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5340 					      &change_info.info);
5341 	}
5342 }
5343 
5344 /**
5345  *	dev_change_flags - change device settings
5346  *	@dev: device
5347  *	@flags: device state flags
5348  *
5349  *	Change settings on device based state flags. The flags are
5350  *	in the userspace exported format.
5351  */
5352 int dev_change_flags(struct net_device *dev, unsigned int flags)
5353 {
5354 	int ret;
5355 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5356 
5357 	ret = __dev_change_flags(dev, flags);
5358 	if (ret < 0)
5359 		return ret;
5360 
5361 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5362 	__dev_notify_flags(dev, old_flags, changes);
5363 	return ret;
5364 }
5365 EXPORT_SYMBOL(dev_change_flags);
5366 
5367 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5368 {
5369 	const struct net_device_ops *ops = dev->netdev_ops;
5370 
5371 	if (ops->ndo_change_mtu)
5372 		return ops->ndo_change_mtu(dev, new_mtu);
5373 
5374 	dev->mtu = new_mtu;
5375 	return 0;
5376 }
5377 
5378 /**
5379  *	dev_set_mtu - Change maximum transfer unit
5380  *	@dev: device
5381  *	@new_mtu: new transfer unit
5382  *
5383  *	Change the maximum transfer size of the network device.
5384  */
5385 int dev_set_mtu(struct net_device *dev, int new_mtu)
5386 {
5387 	int err, orig_mtu;
5388 
5389 	if (new_mtu == dev->mtu)
5390 		return 0;
5391 
5392 	/*	MTU must be positive.	 */
5393 	if (new_mtu < 0)
5394 		return -EINVAL;
5395 
5396 	if (!netif_device_present(dev))
5397 		return -ENODEV;
5398 
5399 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5400 	err = notifier_to_errno(err);
5401 	if (err)
5402 		return err;
5403 
5404 	orig_mtu = dev->mtu;
5405 	err = __dev_set_mtu(dev, new_mtu);
5406 
5407 	if (!err) {
5408 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5409 		err = notifier_to_errno(err);
5410 		if (err) {
5411 			/* setting mtu back and notifying everyone again,
5412 			 * so that they have a chance to revert changes.
5413 			 */
5414 			__dev_set_mtu(dev, orig_mtu);
5415 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5416 		}
5417 	}
5418 	return err;
5419 }
5420 EXPORT_SYMBOL(dev_set_mtu);
5421 
5422 /**
5423  *	dev_set_group - Change group this device belongs to
5424  *	@dev: device
5425  *	@new_group: group this device should belong to
5426  */
5427 void dev_set_group(struct net_device *dev, int new_group)
5428 {
5429 	dev->group = new_group;
5430 }
5431 EXPORT_SYMBOL(dev_set_group);
5432 
5433 /**
5434  *	dev_set_mac_address - Change Media Access Control Address
5435  *	@dev: device
5436  *	@sa: new address
5437  *
5438  *	Change the hardware (MAC) address of the device
5439  */
5440 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5441 {
5442 	const struct net_device_ops *ops = dev->netdev_ops;
5443 	int err;
5444 
5445 	if (!ops->ndo_set_mac_address)
5446 		return -EOPNOTSUPP;
5447 	if (sa->sa_family != dev->type)
5448 		return -EINVAL;
5449 	if (!netif_device_present(dev))
5450 		return -ENODEV;
5451 	err = ops->ndo_set_mac_address(dev, sa);
5452 	if (err)
5453 		return err;
5454 	dev->addr_assign_type = NET_ADDR_SET;
5455 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5456 	add_device_randomness(dev->dev_addr, dev->addr_len);
5457 	return 0;
5458 }
5459 EXPORT_SYMBOL(dev_set_mac_address);
5460 
5461 /**
5462  *	dev_change_carrier - Change device carrier
5463  *	@dev: device
5464  *	@new_carrier: new value
5465  *
5466  *	Change device carrier
5467  */
5468 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5469 {
5470 	const struct net_device_ops *ops = dev->netdev_ops;
5471 
5472 	if (!ops->ndo_change_carrier)
5473 		return -EOPNOTSUPP;
5474 	if (!netif_device_present(dev))
5475 		return -ENODEV;
5476 	return ops->ndo_change_carrier(dev, new_carrier);
5477 }
5478 EXPORT_SYMBOL(dev_change_carrier);
5479 
5480 /**
5481  *	dev_get_phys_port_id - Get device physical port ID
5482  *	@dev: device
5483  *	@ppid: port ID
5484  *
5485  *	Get device physical port ID
5486  */
5487 int dev_get_phys_port_id(struct net_device *dev,
5488 			 struct netdev_phys_port_id *ppid)
5489 {
5490 	const struct net_device_ops *ops = dev->netdev_ops;
5491 
5492 	if (!ops->ndo_get_phys_port_id)
5493 		return -EOPNOTSUPP;
5494 	return ops->ndo_get_phys_port_id(dev, ppid);
5495 }
5496 EXPORT_SYMBOL(dev_get_phys_port_id);
5497 
5498 /**
5499  *	dev_new_index	-	allocate an ifindex
5500  *	@net: the applicable net namespace
5501  *
5502  *	Returns a suitable unique value for a new device interface
5503  *	number.  The caller must hold the rtnl semaphore or the
5504  *	dev_base_lock to be sure it remains unique.
5505  */
5506 static int dev_new_index(struct net *net)
5507 {
5508 	int ifindex = net->ifindex;
5509 	for (;;) {
5510 		if (++ifindex <= 0)
5511 			ifindex = 1;
5512 		if (!__dev_get_by_index(net, ifindex))
5513 			return net->ifindex = ifindex;
5514 	}
5515 }
5516 
5517 /* Delayed registration/unregisteration */
5518 static LIST_HEAD(net_todo_list);
5519 static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5520 
5521 static void net_set_todo(struct net_device *dev)
5522 {
5523 	list_add_tail(&dev->todo_list, &net_todo_list);
5524 	dev_net(dev)->dev_unreg_count++;
5525 }
5526 
5527 static void rollback_registered_many(struct list_head *head)
5528 {
5529 	struct net_device *dev, *tmp;
5530 	LIST_HEAD(close_head);
5531 
5532 	BUG_ON(dev_boot_phase);
5533 	ASSERT_RTNL();
5534 
5535 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5536 		/* Some devices call without registering
5537 		 * for initialization unwind. Remove those
5538 		 * devices and proceed with the remaining.
5539 		 */
5540 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5541 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5542 				 dev->name, dev);
5543 
5544 			WARN_ON(1);
5545 			list_del(&dev->unreg_list);
5546 			continue;
5547 		}
5548 		dev->dismantle = true;
5549 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5550 	}
5551 
5552 	/* If device is running, close it first. */
5553 	list_for_each_entry(dev, head, unreg_list)
5554 		list_add_tail(&dev->close_list, &close_head);
5555 	dev_close_many(&close_head);
5556 
5557 	list_for_each_entry(dev, head, unreg_list) {
5558 		/* And unlink it from device chain. */
5559 		unlist_netdevice(dev);
5560 
5561 		dev->reg_state = NETREG_UNREGISTERING;
5562 	}
5563 
5564 	synchronize_net();
5565 
5566 	list_for_each_entry(dev, head, unreg_list) {
5567 		/* Shutdown queueing discipline. */
5568 		dev_shutdown(dev);
5569 
5570 
5571 		/* Notify protocols, that we are about to destroy
5572 		   this device. They should clean all the things.
5573 		*/
5574 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5575 
5576 		if (!dev->rtnl_link_ops ||
5577 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5578 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5579 
5580 		/*
5581 		 *	Flush the unicast and multicast chains
5582 		 */
5583 		dev_uc_flush(dev);
5584 		dev_mc_flush(dev);
5585 
5586 		if (dev->netdev_ops->ndo_uninit)
5587 			dev->netdev_ops->ndo_uninit(dev);
5588 
5589 		/* Notifier chain MUST detach us all upper devices. */
5590 		WARN_ON(netdev_has_any_upper_dev(dev));
5591 
5592 		/* Remove entries from kobject tree */
5593 		netdev_unregister_kobject(dev);
5594 #ifdef CONFIG_XPS
5595 		/* Remove XPS queueing entries */
5596 		netif_reset_xps_queues_gt(dev, 0);
5597 #endif
5598 	}
5599 
5600 	synchronize_net();
5601 
5602 	list_for_each_entry(dev, head, unreg_list)
5603 		dev_put(dev);
5604 }
5605 
5606 static void rollback_registered(struct net_device *dev)
5607 {
5608 	LIST_HEAD(single);
5609 
5610 	list_add(&dev->unreg_list, &single);
5611 	rollback_registered_many(&single);
5612 	list_del(&single);
5613 }
5614 
5615 static netdev_features_t netdev_fix_features(struct net_device *dev,
5616 	netdev_features_t features)
5617 {
5618 	/* Fix illegal checksum combinations */
5619 	if ((features & NETIF_F_HW_CSUM) &&
5620 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5621 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5622 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5623 	}
5624 
5625 	/* TSO requires that SG is present as well. */
5626 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5627 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5628 		features &= ~NETIF_F_ALL_TSO;
5629 	}
5630 
5631 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5632 					!(features & NETIF_F_IP_CSUM)) {
5633 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5634 		features &= ~NETIF_F_TSO;
5635 		features &= ~NETIF_F_TSO_ECN;
5636 	}
5637 
5638 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5639 					 !(features & NETIF_F_IPV6_CSUM)) {
5640 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5641 		features &= ~NETIF_F_TSO6;
5642 	}
5643 
5644 	/* TSO ECN requires that TSO is present as well. */
5645 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5646 		features &= ~NETIF_F_TSO_ECN;
5647 
5648 	/* Software GSO depends on SG. */
5649 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5650 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5651 		features &= ~NETIF_F_GSO;
5652 	}
5653 
5654 	/* UFO needs SG and checksumming */
5655 	if (features & NETIF_F_UFO) {
5656 		/* maybe split UFO into V4 and V6? */
5657 		if (!((features & NETIF_F_GEN_CSUM) ||
5658 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5659 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5660 			netdev_dbg(dev,
5661 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5662 			features &= ~NETIF_F_UFO;
5663 		}
5664 
5665 		if (!(features & NETIF_F_SG)) {
5666 			netdev_dbg(dev,
5667 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5668 			features &= ~NETIF_F_UFO;
5669 		}
5670 	}
5671 
5672 	return features;
5673 }
5674 
5675 int __netdev_update_features(struct net_device *dev)
5676 {
5677 	netdev_features_t features;
5678 	int err = 0;
5679 
5680 	ASSERT_RTNL();
5681 
5682 	features = netdev_get_wanted_features(dev);
5683 
5684 	if (dev->netdev_ops->ndo_fix_features)
5685 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5686 
5687 	/* driver might be less strict about feature dependencies */
5688 	features = netdev_fix_features(dev, features);
5689 
5690 	if (dev->features == features)
5691 		return 0;
5692 
5693 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5694 		&dev->features, &features);
5695 
5696 	if (dev->netdev_ops->ndo_set_features)
5697 		err = dev->netdev_ops->ndo_set_features(dev, features);
5698 
5699 	if (unlikely(err < 0)) {
5700 		netdev_err(dev,
5701 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5702 			err, &features, &dev->features);
5703 		return -1;
5704 	}
5705 
5706 	if (!err)
5707 		dev->features = features;
5708 
5709 	return 1;
5710 }
5711 
5712 /**
5713  *	netdev_update_features - recalculate device features
5714  *	@dev: the device to check
5715  *
5716  *	Recalculate dev->features set and send notifications if it
5717  *	has changed. Should be called after driver or hardware dependent
5718  *	conditions might have changed that influence the features.
5719  */
5720 void netdev_update_features(struct net_device *dev)
5721 {
5722 	if (__netdev_update_features(dev))
5723 		netdev_features_change(dev);
5724 }
5725 EXPORT_SYMBOL(netdev_update_features);
5726 
5727 /**
5728  *	netdev_change_features - recalculate device features
5729  *	@dev: the device to check
5730  *
5731  *	Recalculate dev->features set and send notifications even
5732  *	if they have not changed. Should be called instead of
5733  *	netdev_update_features() if also dev->vlan_features might
5734  *	have changed to allow the changes to be propagated to stacked
5735  *	VLAN devices.
5736  */
5737 void netdev_change_features(struct net_device *dev)
5738 {
5739 	__netdev_update_features(dev);
5740 	netdev_features_change(dev);
5741 }
5742 EXPORT_SYMBOL(netdev_change_features);
5743 
5744 /**
5745  *	netif_stacked_transfer_operstate -	transfer operstate
5746  *	@rootdev: the root or lower level device to transfer state from
5747  *	@dev: the device to transfer operstate to
5748  *
5749  *	Transfer operational state from root to device. This is normally
5750  *	called when a stacking relationship exists between the root
5751  *	device and the device(a leaf device).
5752  */
5753 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5754 					struct net_device *dev)
5755 {
5756 	if (rootdev->operstate == IF_OPER_DORMANT)
5757 		netif_dormant_on(dev);
5758 	else
5759 		netif_dormant_off(dev);
5760 
5761 	if (netif_carrier_ok(rootdev)) {
5762 		if (!netif_carrier_ok(dev))
5763 			netif_carrier_on(dev);
5764 	} else {
5765 		if (netif_carrier_ok(dev))
5766 			netif_carrier_off(dev);
5767 	}
5768 }
5769 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5770 
5771 #ifdef CONFIG_SYSFS
5772 static int netif_alloc_rx_queues(struct net_device *dev)
5773 {
5774 	unsigned int i, count = dev->num_rx_queues;
5775 	struct netdev_rx_queue *rx;
5776 
5777 	BUG_ON(count < 1);
5778 
5779 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5780 	if (!rx)
5781 		return -ENOMEM;
5782 
5783 	dev->_rx = rx;
5784 
5785 	for (i = 0; i < count; i++)
5786 		rx[i].dev = dev;
5787 	return 0;
5788 }
5789 #endif
5790 
5791 static void netdev_init_one_queue(struct net_device *dev,
5792 				  struct netdev_queue *queue, void *_unused)
5793 {
5794 	/* Initialize queue lock */
5795 	spin_lock_init(&queue->_xmit_lock);
5796 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5797 	queue->xmit_lock_owner = -1;
5798 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5799 	queue->dev = dev;
5800 #ifdef CONFIG_BQL
5801 	dql_init(&queue->dql, HZ);
5802 #endif
5803 }
5804 
5805 static void netif_free_tx_queues(struct net_device *dev)
5806 {
5807 	if (is_vmalloc_addr(dev->_tx))
5808 		vfree(dev->_tx);
5809 	else
5810 		kfree(dev->_tx);
5811 }
5812 
5813 static int netif_alloc_netdev_queues(struct net_device *dev)
5814 {
5815 	unsigned int count = dev->num_tx_queues;
5816 	struct netdev_queue *tx;
5817 	size_t sz = count * sizeof(*tx);
5818 
5819 	BUG_ON(count < 1 || count > 0xffff);
5820 
5821 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5822 	if (!tx) {
5823 		tx = vzalloc(sz);
5824 		if (!tx)
5825 			return -ENOMEM;
5826 	}
5827 	dev->_tx = tx;
5828 
5829 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5830 	spin_lock_init(&dev->tx_global_lock);
5831 
5832 	return 0;
5833 }
5834 
5835 /**
5836  *	register_netdevice	- register a network device
5837  *	@dev: device to register
5838  *
5839  *	Take a completed network device structure and add it to the kernel
5840  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5841  *	chain. 0 is returned on success. A negative errno code is returned
5842  *	on a failure to set up the device, or if the name is a duplicate.
5843  *
5844  *	Callers must hold the rtnl semaphore. You may want
5845  *	register_netdev() instead of this.
5846  *
5847  *	BUGS:
5848  *	The locking appears insufficient to guarantee two parallel registers
5849  *	will not get the same name.
5850  */
5851 
5852 int register_netdevice(struct net_device *dev)
5853 {
5854 	int ret;
5855 	struct net *net = dev_net(dev);
5856 
5857 	BUG_ON(dev_boot_phase);
5858 	ASSERT_RTNL();
5859 
5860 	might_sleep();
5861 
5862 	/* When net_device's are persistent, this will be fatal. */
5863 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5864 	BUG_ON(!net);
5865 
5866 	spin_lock_init(&dev->addr_list_lock);
5867 	netdev_set_addr_lockdep_class(dev);
5868 
5869 	dev->iflink = -1;
5870 
5871 	ret = dev_get_valid_name(net, dev, dev->name);
5872 	if (ret < 0)
5873 		goto out;
5874 
5875 	/* Init, if this function is available */
5876 	if (dev->netdev_ops->ndo_init) {
5877 		ret = dev->netdev_ops->ndo_init(dev);
5878 		if (ret) {
5879 			if (ret > 0)
5880 				ret = -EIO;
5881 			goto out;
5882 		}
5883 	}
5884 
5885 	if (((dev->hw_features | dev->features) &
5886 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
5887 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5888 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5889 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5890 		ret = -EINVAL;
5891 		goto err_uninit;
5892 	}
5893 
5894 	ret = -EBUSY;
5895 	if (!dev->ifindex)
5896 		dev->ifindex = dev_new_index(net);
5897 	else if (__dev_get_by_index(net, dev->ifindex))
5898 		goto err_uninit;
5899 
5900 	if (dev->iflink == -1)
5901 		dev->iflink = dev->ifindex;
5902 
5903 	/* Transfer changeable features to wanted_features and enable
5904 	 * software offloads (GSO and GRO).
5905 	 */
5906 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5907 	dev->features |= NETIF_F_SOFT_FEATURES;
5908 	dev->wanted_features = dev->features & dev->hw_features;
5909 
5910 	if (!(dev->flags & IFF_LOOPBACK)) {
5911 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5912 	}
5913 
5914 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5915 	 */
5916 	dev->vlan_features |= NETIF_F_HIGHDMA;
5917 
5918 	/* Make NETIF_F_SG inheritable to tunnel devices.
5919 	 */
5920 	dev->hw_enc_features |= NETIF_F_SG;
5921 
5922 	/* Make NETIF_F_SG inheritable to MPLS.
5923 	 */
5924 	dev->mpls_features |= NETIF_F_SG;
5925 
5926 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5927 	ret = notifier_to_errno(ret);
5928 	if (ret)
5929 		goto err_uninit;
5930 
5931 	ret = netdev_register_kobject(dev);
5932 	if (ret)
5933 		goto err_uninit;
5934 	dev->reg_state = NETREG_REGISTERED;
5935 
5936 	__netdev_update_features(dev);
5937 
5938 	/*
5939 	 *	Default initial state at registry is that the
5940 	 *	device is present.
5941 	 */
5942 
5943 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5944 
5945 	linkwatch_init_dev(dev);
5946 
5947 	dev_init_scheduler(dev);
5948 	dev_hold(dev);
5949 	list_netdevice(dev);
5950 	add_device_randomness(dev->dev_addr, dev->addr_len);
5951 
5952 	/* If the device has permanent device address, driver should
5953 	 * set dev_addr and also addr_assign_type should be set to
5954 	 * NET_ADDR_PERM (default value).
5955 	 */
5956 	if (dev->addr_assign_type == NET_ADDR_PERM)
5957 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5958 
5959 	/* Notify protocols, that a new device appeared. */
5960 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5961 	ret = notifier_to_errno(ret);
5962 	if (ret) {
5963 		rollback_registered(dev);
5964 		dev->reg_state = NETREG_UNREGISTERED;
5965 	}
5966 	/*
5967 	 *	Prevent userspace races by waiting until the network
5968 	 *	device is fully setup before sending notifications.
5969 	 */
5970 	if (!dev->rtnl_link_ops ||
5971 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5972 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
5973 
5974 out:
5975 	return ret;
5976 
5977 err_uninit:
5978 	if (dev->netdev_ops->ndo_uninit)
5979 		dev->netdev_ops->ndo_uninit(dev);
5980 	goto out;
5981 }
5982 EXPORT_SYMBOL(register_netdevice);
5983 
5984 /**
5985  *	init_dummy_netdev	- init a dummy network device for NAPI
5986  *	@dev: device to init
5987  *
5988  *	This takes a network device structure and initialize the minimum
5989  *	amount of fields so it can be used to schedule NAPI polls without
5990  *	registering a full blown interface. This is to be used by drivers
5991  *	that need to tie several hardware interfaces to a single NAPI
5992  *	poll scheduler due to HW limitations.
5993  */
5994 int init_dummy_netdev(struct net_device *dev)
5995 {
5996 	/* Clear everything. Note we don't initialize spinlocks
5997 	 * are they aren't supposed to be taken by any of the
5998 	 * NAPI code and this dummy netdev is supposed to be
5999 	 * only ever used for NAPI polls
6000 	 */
6001 	memset(dev, 0, sizeof(struct net_device));
6002 
6003 	/* make sure we BUG if trying to hit standard
6004 	 * register/unregister code path
6005 	 */
6006 	dev->reg_state = NETREG_DUMMY;
6007 
6008 	/* NAPI wants this */
6009 	INIT_LIST_HEAD(&dev->napi_list);
6010 
6011 	/* a dummy interface is started by default */
6012 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6013 	set_bit(__LINK_STATE_START, &dev->state);
6014 
6015 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6016 	 * because users of this 'device' dont need to change
6017 	 * its refcount.
6018 	 */
6019 
6020 	return 0;
6021 }
6022 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6023 
6024 
6025 /**
6026  *	register_netdev	- register a network device
6027  *	@dev: device to register
6028  *
6029  *	Take a completed network device structure and add it to the kernel
6030  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6031  *	chain. 0 is returned on success. A negative errno code is returned
6032  *	on a failure to set up the device, or if the name is a duplicate.
6033  *
6034  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6035  *	and expands the device name if you passed a format string to
6036  *	alloc_netdev.
6037  */
6038 int register_netdev(struct net_device *dev)
6039 {
6040 	int err;
6041 
6042 	rtnl_lock();
6043 	err = register_netdevice(dev);
6044 	rtnl_unlock();
6045 	return err;
6046 }
6047 EXPORT_SYMBOL(register_netdev);
6048 
6049 int netdev_refcnt_read(const struct net_device *dev)
6050 {
6051 	int i, refcnt = 0;
6052 
6053 	for_each_possible_cpu(i)
6054 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6055 	return refcnt;
6056 }
6057 EXPORT_SYMBOL(netdev_refcnt_read);
6058 
6059 /**
6060  * netdev_wait_allrefs - wait until all references are gone.
6061  * @dev: target net_device
6062  *
6063  * This is called when unregistering network devices.
6064  *
6065  * Any protocol or device that holds a reference should register
6066  * for netdevice notification, and cleanup and put back the
6067  * reference if they receive an UNREGISTER event.
6068  * We can get stuck here if buggy protocols don't correctly
6069  * call dev_put.
6070  */
6071 static void netdev_wait_allrefs(struct net_device *dev)
6072 {
6073 	unsigned long rebroadcast_time, warning_time;
6074 	int refcnt;
6075 
6076 	linkwatch_forget_dev(dev);
6077 
6078 	rebroadcast_time = warning_time = jiffies;
6079 	refcnt = netdev_refcnt_read(dev);
6080 
6081 	while (refcnt != 0) {
6082 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6083 			rtnl_lock();
6084 
6085 			/* Rebroadcast unregister notification */
6086 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6087 
6088 			__rtnl_unlock();
6089 			rcu_barrier();
6090 			rtnl_lock();
6091 
6092 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6093 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6094 				     &dev->state)) {
6095 				/* We must not have linkwatch events
6096 				 * pending on unregister. If this
6097 				 * happens, we simply run the queue
6098 				 * unscheduled, resulting in a noop
6099 				 * for this device.
6100 				 */
6101 				linkwatch_run_queue();
6102 			}
6103 
6104 			__rtnl_unlock();
6105 
6106 			rebroadcast_time = jiffies;
6107 		}
6108 
6109 		msleep(250);
6110 
6111 		refcnt = netdev_refcnt_read(dev);
6112 
6113 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6114 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6115 				 dev->name, refcnt);
6116 			warning_time = jiffies;
6117 		}
6118 	}
6119 }
6120 
6121 /* The sequence is:
6122  *
6123  *	rtnl_lock();
6124  *	...
6125  *	register_netdevice(x1);
6126  *	register_netdevice(x2);
6127  *	...
6128  *	unregister_netdevice(y1);
6129  *	unregister_netdevice(y2);
6130  *      ...
6131  *	rtnl_unlock();
6132  *	free_netdev(y1);
6133  *	free_netdev(y2);
6134  *
6135  * We are invoked by rtnl_unlock().
6136  * This allows us to deal with problems:
6137  * 1) We can delete sysfs objects which invoke hotplug
6138  *    without deadlocking with linkwatch via keventd.
6139  * 2) Since we run with the RTNL semaphore not held, we can sleep
6140  *    safely in order to wait for the netdev refcnt to drop to zero.
6141  *
6142  * We must not return until all unregister events added during
6143  * the interval the lock was held have been completed.
6144  */
6145 void netdev_run_todo(void)
6146 {
6147 	struct list_head list;
6148 
6149 	/* Snapshot list, allow later requests */
6150 	list_replace_init(&net_todo_list, &list);
6151 
6152 	__rtnl_unlock();
6153 
6154 
6155 	/* Wait for rcu callbacks to finish before next phase */
6156 	if (!list_empty(&list))
6157 		rcu_barrier();
6158 
6159 	while (!list_empty(&list)) {
6160 		struct net_device *dev
6161 			= list_first_entry(&list, struct net_device, todo_list);
6162 		list_del(&dev->todo_list);
6163 
6164 		rtnl_lock();
6165 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6166 		__rtnl_unlock();
6167 
6168 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6169 			pr_err("network todo '%s' but state %d\n",
6170 			       dev->name, dev->reg_state);
6171 			dump_stack();
6172 			continue;
6173 		}
6174 
6175 		dev->reg_state = NETREG_UNREGISTERED;
6176 
6177 		on_each_cpu(flush_backlog, dev, 1);
6178 
6179 		netdev_wait_allrefs(dev);
6180 
6181 		/* paranoia */
6182 		BUG_ON(netdev_refcnt_read(dev));
6183 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6184 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6185 		WARN_ON(dev->dn_ptr);
6186 
6187 		if (dev->destructor)
6188 			dev->destructor(dev);
6189 
6190 		/* Report a network device has been unregistered */
6191 		rtnl_lock();
6192 		dev_net(dev)->dev_unreg_count--;
6193 		__rtnl_unlock();
6194 		wake_up(&netdev_unregistering_wq);
6195 
6196 		/* Free network device */
6197 		kobject_put(&dev->dev.kobj);
6198 	}
6199 }
6200 
6201 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6202  * fields in the same order, with only the type differing.
6203  */
6204 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6205 			     const struct net_device_stats *netdev_stats)
6206 {
6207 #if BITS_PER_LONG == 64
6208 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6209 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6210 #else
6211 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6212 	const unsigned long *src = (const unsigned long *)netdev_stats;
6213 	u64 *dst = (u64 *)stats64;
6214 
6215 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6216 		     sizeof(*stats64) / sizeof(u64));
6217 	for (i = 0; i < n; i++)
6218 		dst[i] = src[i];
6219 #endif
6220 }
6221 EXPORT_SYMBOL(netdev_stats_to_stats64);
6222 
6223 /**
6224  *	dev_get_stats	- get network device statistics
6225  *	@dev: device to get statistics from
6226  *	@storage: place to store stats
6227  *
6228  *	Get network statistics from device. Return @storage.
6229  *	The device driver may provide its own method by setting
6230  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6231  *	otherwise the internal statistics structure is used.
6232  */
6233 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6234 					struct rtnl_link_stats64 *storage)
6235 {
6236 	const struct net_device_ops *ops = dev->netdev_ops;
6237 
6238 	if (ops->ndo_get_stats64) {
6239 		memset(storage, 0, sizeof(*storage));
6240 		ops->ndo_get_stats64(dev, storage);
6241 	} else if (ops->ndo_get_stats) {
6242 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6243 	} else {
6244 		netdev_stats_to_stats64(storage, &dev->stats);
6245 	}
6246 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6247 	return storage;
6248 }
6249 EXPORT_SYMBOL(dev_get_stats);
6250 
6251 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6252 {
6253 	struct netdev_queue *queue = dev_ingress_queue(dev);
6254 
6255 #ifdef CONFIG_NET_CLS_ACT
6256 	if (queue)
6257 		return queue;
6258 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6259 	if (!queue)
6260 		return NULL;
6261 	netdev_init_one_queue(dev, queue, NULL);
6262 	queue->qdisc = &noop_qdisc;
6263 	queue->qdisc_sleeping = &noop_qdisc;
6264 	rcu_assign_pointer(dev->ingress_queue, queue);
6265 #endif
6266 	return queue;
6267 }
6268 
6269 static const struct ethtool_ops default_ethtool_ops;
6270 
6271 void netdev_set_default_ethtool_ops(struct net_device *dev,
6272 				    const struct ethtool_ops *ops)
6273 {
6274 	if (dev->ethtool_ops == &default_ethtool_ops)
6275 		dev->ethtool_ops = ops;
6276 }
6277 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6278 
6279 void netdev_freemem(struct net_device *dev)
6280 {
6281 	char *addr = (char *)dev - dev->padded;
6282 
6283 	if (is_vmalloc_addr(addr))
6284 		vfree(addr);
6285 	else
6286 		kfree(addr);
6287 }
6288 
6289 /**
6290  *	alloc_netdev_mqs - allocate network device
6291  *	@sizeof_priv:	size of private data to allocate space for
6292  *	@name:		device name format string
6293  *	@setup:		callback to initialize device
6294  *	@txqs:		the number of TX subqueues to allocate
6295  *	@rxqs:		the number of RX subqueues to allocate
6296  *
6297  *	Allocates a struct net_device with private data area for driver use
6298  *	and performs basic initialization.  Also allocates subqueue structs
6299  *	for each queue on the device.
6300  */
6301 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6302 		void (*setup)(struct net_device *),
6303 		unsigned int txqs, unsigned int rxqs)
6304 {
6305 	struct net_device *dev;
6306 	size_t alloc_size;
6307 	struct net_device *p;
6308 
6309 	BUG_ON(strlen(name) >= sizeof(dev->name));
6310 
6311 	if (txqs < 1) {
6312 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6313 		return NULL;
6314 	}
6315 
6316 #ifdef CONFIG_SYSFS
6317 	if (rxqs < 1) {
6318 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6319 		return NULL;
6320 	}
6321 #endif
6322 
6323 	alloc_size = sizeof(struct net_device);
6324 	if (sizeof_priv) {
6325 		/* ensure 32-byte alignment of private area */
6326 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6327 		alloc_size += sizeof_priv;
6328 	}
6329 	/* ensure 32-byte alignment of whole construct */
6330 	alloc_size += NETDEV_ALIGN - 1;
6331 
6332 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6333 	if (!p)
6334 		p = vzalloc(alloc_size);
6335 	if (!p)
6336 		return NULL;
6337 
6338 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6339 	dev->padded = (char *)dev - (char *)p;
6340 
6341 	dev->pcpu_refcnt = alloc_percpu(int);
6342 	if (!dev->pcpu_refcnt)
6343 		goto free_dev;
6344 
6345 	if (dev_addr_init(dev))
6346 		goto free_pcpu;
6347 
6348 	dev_mc_init(dev);
6349 	dev_uc_init(dev);
6350 
6351 	dev_net_set(dev, &init_net);
6352 
6353 	dev->gso_max_size = GSO_MAX_SIZE;
6354 	dev->gso_max_segs = GSO_MAX_SEGS;
6355 
6356 	INIT_LIST_HEAD(&dev->napi_list);
6357 	INIT_LIST_HEAD(&dev->unreg_list);
6358 	INIT_LIST_HEAD(&dev->close_list);
6359 	INIT_LIST_HEAD(&dev->link_watch_list);
6360 	INIT_LIST_HEAD(&dev->adj_list.upper);
6361 	INIT_LIST_HEAD(&dev->adj_list.lower);
6362 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
6363 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
6364 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
6365 	setup(dev);
6366 
6367 	dev->num_tx_queues = txqs;
6368 	dev->real_num_tx_queues = txqs;
6369 	if (netif_alloc_netdev_queues(dev))
6370 		goto free_all;
6371 
6372 #ifdef CONFIG_SYSFS
6373 	dev->num_rx_queues = rxqs;
6374 	dev->real_num_rx_queues = rxqs;
6375 	if (netif_alloc_rx_queues(dev))
6376 		goto free_all;
6377 #endif
6378 
6379 	strcpy(dev->name, name);
6380 	dev->group = INIT_NETDEV_GROUP;
6381 	if (!dev->ethtool_ops)
6382 		dev->ethtool_ops = &default_ethtool_ops;
6383 	return dev;
6384 
6385 free_all:
6386 	free_netdev(dev);
6387 	return NULL;
6388 
6389 free_pcpu:
6390 	free_percpu(dev->pcpu_refcnt);
6391 	netif_free_tx_queues(dev);
6392 #ifdef CONFIG_SYSFS
6393 	kfree(dev->_rx);
6394 #endif
6395 
6396 free_dev:
6397 	netdev_freemem(dev);
6398 	return NULL;
6399 }
6400 EXPORT_SYMBOL(alloc_netdev_mqs);
6401 
6402 /**
6403  *	free_netdev - free network device
6404  *	@dev: device
6405  *
6406  *	This function does the last stage of destroying an allocated device
6407  * 	interface. The reference to the device object is released.
6408  *	If this is the last reference then it will be freed.
6409  */
6410 void free_netdev(struct net_device *dev)
6411 {
6412 	struct napi_struct *p, *n;
6413 
6414 	release_net(dev_net(dev));
6415 
6416 	netif_free_tx_queues(dev);
6417 #ifdef CONFIG_SYSFS
6418 	kfree(dev->_rx);
6419 #endif
6420 
6421 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6422 
6423 	/* Flush device addresses */
6424 	dev_addr_flush(dev);
6425 
6426 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6427 		netif_napi_del(p);
6428 
6429 	free_percpu(dev->pcpu_refcnt);
6430 	dev->pcpu_refcnt = NULL;
6431 
6432 	/*  Compatibility with error handling in drivers */
6433 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6434 		netdev_freemem(dev);
6435 		return;
6436 	}
6437 
6438 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6439 	dev->reg_state = NETREG_RELEASED;
6440 
6441 	/* will free via device release */
6442 	put_device(&dev->dev);
6443 }
6444 EXPORT_SYMBOL(free_netdev);
6445 
6446 /**
6447  *	synchronize_net -  Synchronize with packet receive processing
6448  *
6449  *	Wait for packets currently being received to be done.
6450  *	Does not block later packets from starting.
6451  */
6452 void synchronize_net(void)
6453 {
6454 	might_sleep();
6455 	if (rtnl_is_locked())
6456 		synchronize_rcu_expedited();
6457 	else
6458 		synchronize_rcu();
6459 }
6460 EXPORT_SYMBOL(synchronize_net);
6461 
6462 /**
6463  *	unregister_netdevice_queue - remove device from the kernel
6464  *	@dev: device
6465  *	@head: list
6466  *
6467  *	This function shuts down a device interface and removes it
6468  *	from the kernel tables.
6469  *	If head not NULL, device is queued to be unregistered later.
6470  *
6471  *	Callers must hold the rtnl semaphore.  You may want
6472  *	unregister_netdev() instead of this.
6473  */
6474 
6475 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6476 {
6477 	ASSERT_RTNL();
6478 
6479 	if (head) {
6480 		list_move_tail(&dev->unreg_list, head);
6481 	} else {
6482 		rollback_registered(dev);
6483 		/* Finish processing unregister after unlock */
6484 		net_set_todo(dev);
6485 	}
6486 }
6487 EXPORT_SYMBOL(unregister_netdevice_queue);
6488 
6489 /**
6490  *	unregister_netdevice_many - unregister many devices
6491  *	@head: list of devices
6492  */
6493 void unregister_netdevice_many(struct list_head *head)
6494 {
6495 	struct net_device *dev;
6496 
6497 	if (!list_empty(head)) {
6498 		rollback_registered_many(head);
6499 		list_for_each_entry(dev, head, unreg_list)
6500 			net_set_todo(dev);
6501 	}
6502 }
6503 EXPORT_SYMBOL(unregister_netdevice_many);
6504 
6505 /**
6506  *	unregister_netdev - remove device from the kernel
6507  *	@dev: device
6508  *
6509  *	This function shuts down a device interface and removes it
6510  *	from the kernel tables.
6511  *
6512  *	This is just a wrapper for unregister_netdevice that takes
6513  *	the rtnl semaphore.  In general you want to use this and not
6514  *	unregister_netdevice.
6515  */
6516 void unregister_netdev(struct net_device *dev)
6517 {
6518 	rtnl_lock();
6519 	unregister_netdevice(dev);
6520 	rtnl_unlock();
6521 }
6522 EXPORT_SYMBOL(unregister_netdev);
6523 
6524 /**
6525  *	dev_change_net_namespace - move device to different nethost namespace
6526  *	@dev: device
6527  *	@net: network namespace
6528  *	@pat: If not NULL name pattern to try if the current device name
6529  *	      is already taken in the destination network namespace.
6530  *
6531  *	This function shuts down a device interface and moves it
6532  *	to a new network namespace. On success 0 is returned, on
6533  *	a failure a netagive errno code is returned.
6534  *
6535  *	Callers must hold the rtnl semaphore.
6536  */
6537 
6538 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6539 {
6540 	int err;
6541 
6542 	ASSERT_RTNL();
6543 
6544 	/* Don't allow namespace local devices to be moved. */
6545 	err = -EINVAL;
6546 	if (dev->features & NETIF_F_NETNS_LOCAL)
6547 		goto out;
6548 
6549 	/* Ensure the device has been registrered */
6550 	if (dev->reg_state != NETREG_REGISTERED)
6551 		goto out;
6552 
6553 	/* Get out if there is nothing todo */
6554 	err = 0;
6555 	if (net_eq(dev_net(dev), net))
6556 		goto out;
6557 
6558 	/* Pick the destination device name, and ensure
6559 	 * we can use it in the destination network namespace.
6560 	 */
6561 	err = -EEXIST;
6562 	if (__dev_get_by_name(net, dev->name)) {
6563 		/* We get here if we can't use the current device name */
6564 		if (!pat)
6565 			goto out;
6566 		if (dev_get_valid_name(net, dev, pat) < 0)
6567 			goto out;
6568 	}
6569 
6570 	/*
6571 	 * And now a mini version of register_netdevice unregister_netdevice.
6572 	 */
6573 
6574 	/* If device is running close it first. */
6575 	dev_close(dev);
6576 
6577 	/* And unlink it from device chain */
6578 	err = -ENODEV;
6579 	unlist_netdevice(dev);
6580 
6581 	synchronize_net();
6582 
6583 	/* Shutdown queueing discipline. */
6584 	dev_shutdown(dev);
6585 
6586 	/* Notify protocols, that we are about to destroy
6587 	   this device. They should clean all the things.
6588 
6589 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6590 	   This is wanted because this way 8021q and macvlan know
6591 	   the device is just moving and can keep their slaves up.
6592 	*/
6593 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6594 	rcu_barrier();
6595 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6596 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6597 
6598 	/*
6599 	 *	Flush the unicast and multicast chains
6600 	 */
6601 	dev_uc_flush(dev);
6602 	dev_mc_flush(dev);
6603 
6604 	/* Send a netdev-removed uevent to the old namespace */
6605 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6606 
6607 	/* Actually switch the network namespace */
6608 	dev_net_set(dev, net);
6609 
6610 	/* If there is an ifindex conflict assign a new one */
6611 	if (__dev_get_by_index(net, dev->ifindex)) {
6612 		int iflink = (dev->iflink == dev->ifindex);
6613 		dev->ifindex = dev_new_index(net);
6614 		if (iflink)
6615 			dev->iflink = dev->ifindex;
6616 	}
6617 
6618 	/* Send a netdev-add uevent to the new namespace */
6619 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6620 
6621 	/* Fixup kobjects */
6622 	err = device_rename(&dev->dev, dev->name);
6623 	WARN_ON(err);
6624 
6625 	/* Add the device back in the hashes */
6626 	list_netdevice(dev);
6627 
6628 	/* Notify protocols, that a new device appeared. */
6629 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6630 
6631 	/*
6632 	 *	Prevent userspace races by waiting until the network
6633 	 *	device is fully setup before sending notifications.
6634 	 */
6635 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6636 
6637 	synchronize_net();
6638 	err = 0;
6639 out:
6640 	return err;
6641 }
6642 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6643 
6644 static int dev_cpu_callback(struct notifier_block *nfb,
6645 			    unsigned long action,
6646 			    void *ocpu)
6647 {
6648 	struct sk_buff **list_skb;
6649 	struct sk_buff *skb;
6650 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6651 	struct softnet_data *sd, *oldsd;
6652 
6653 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6654 		return NOTIFY_OK;
6655 
6656 	local_irq_disable();
6657 	cpu = smp_processor_id();
6658 	sd = &per_cpu(softnet_data, cpu);
6659 	oldsd = &per_cpu(softnet_data, oldcpu);
6660 
6661 	/* Find end of our completion_queue. */
6662 	list_skb = &sd->completion_queue;
6663 	while (*list_skb)
6664 		list_skb = &(*list_skb)->next;
6665 	/* Append completion queue from offline CPU. */
6666 	*list_skb = oldsd->completion_queue;
6667 	oldsd->completion_queue = NULL;
6668 
6669 	/* Append output queue from offline CPU. */
6670 	if (oldsd->output_queue) {
6671 		*sd->output_queue_tailp = oldsd->output_queue;
6672 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6673 		oldsd->output_queue = NULL;
6674 		oldsd->output_queue_tailp = &oldsd->output_queue;
6675 	}
6676 	/* Append NAPI poll list from offline CPU. */
6677 	if (!list_empty(&oldsd->poll_list)) {
6678 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6679 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6680 	}
6681 
6682 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6683 	local_irq_enable();
6684 
6685 	/* Process offline CPU's input_pkt_queue */
6686 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6687 		netif_rx_internal(skb);
6688 		input_queue_head_incr(oldsd);
6689 	}
6690 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6691 		netif_rx_internal(skb);
6692 		input_queue_head_incr(oldsd);
6693 	}
6694 
6695 	return NOTIFY_OK;
6696 }
6697 
6698 
6699 /**
6700  *	netdev_increment_features - increment feature set by one
6701  *	@all: current feature set
6702  *	@one: new feature set
6703  *	@mask: mask feature set
6704  *
6705  *	Computes a new feature set after adding a device with feature set
6706  *	@one to the master device with current feature set @all.  Will not
6707  *	enable anything that is off in @mask. Returns the new feature set.
6708  */
6709 netdev_features_t netdev_increment_features(netdev_features_t all,
6710 	netdev_features_t one, netdev_features_t mask)
6711 {
6712 	if (mask & NETIF_F_GEN_CSUM)
6713 		mask |= NETIF_F_ALL_CSUM;
6714 	mask |= NETIF_F_VLAN_CHALLENGED;
6715 
6716 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6717 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6718 
6719 	/* If one device supports hw checksumming, set for all. */
6720 	if (all & NETIF_F_GEN_CSUM)
6721 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6722 
6723 	return all;
6724 }
6725 EXPORT_SYMBOL(netdev_increment_features);
6726 
6727 static struct hlist_head * __net_init netdev_create_hash(void)
6728 {
6729 	int i;
6730 	struct hlist_head *hash;
6731 
6732 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6733 	if (hash != NULL)
6734 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6735 			INIT_HLIST_HEAD(&hash[i]);
6736 
6737 	return hash;
6738 }
6739 
6740 /* Initialize per network namespace state */
6741 static int __net_init netdev_init(struct net *net)
6742 {
6743 	if (net != &init_net)
6744 		INIT_LIST_HEAD(&net->dev_base_head);
6745 
6746 	net->dev_name_head = netdev_create_hash();
6747 	if (net->dev_name_head == NULL)
6748 		goto err_name;
6749 
6750 	net->dev_index_head = netdev_create_hash();
6751 	if (net->dev_index_head == NULL)
6752 		goto err_idx;
6753 
6754 	return 0;
6755 
6756 err_idx:
6757 	kfree(net->dev_name_head);
6758 err_name:
6759 	return -ENOMEM;
6760 }
6761 
6762 /**
6763  *	netdev_drivername - network driver for the device
6764  *	@dev: network device
6765  *
6766  *	Determine network driver for device.
6767  */
6768 const char *netdev_drivername(const struct net_device *dev)
6769 {
6770 	const struct device_driver *driver;
6771 	const struct device *parent;
6772 	const char *empty = "";
6773 
6774 	parent = dev->dev.parent;
6775 	if (!parent)
6776 		return empty;
6777 
6778 	driver = parent->driver;
6779 	if (driver && driver->name)
6780 		return driver->name;
6781 	return empty;
6782 }
6783 
6784 static int __netdev_printk(const char *level, const struct net_device *dev,
6785 			   struct va_format *vaf)
6786 {
6787 	int r;
6788 
6789 	if (dev && dev->dev.parent) {
6790 		r = dev_printk_emit(level[1] - '0',
6791 				    dev->dev.parent,
6792 				    "%s %s %s: %pV",
6793 				    dev_driver_string(dev->dev.parent),
6794 				    dev_name(dev->dev.parent),
6795 				    netdev_name(dev), vaf);
6796 	} else if (dev) {
6797 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6798 	} else {
6799 		r = printk("%s(NULL net_device): %pV", level, vaf);
6800 	}
6801 
6802 	return r;
6803 }
6804 
6805 int netdev_printk(const char *level, const struct net_device *dev,
6806 		  const char *format, ...)
6807 {
6808 	struct va_format vaf;
6809 	va_list args;
6810 	int r;
6811 
6812 	va_start(args, format);
6813 
6814 	vaf.fmt = format;
6815 	vaf.va = &args;
6816 
6817 	r = __netdev_printk(level, dev, &vaf);
6818 
6819 	va_end(args);
6820 
6821 	return r;
6822 }
6823 EXPORT_SYMBOL(netdev_printk);
6824 
6825 #define define_netdev_printk_level(func, level)			\
6826 int func(const struct net_device *dev, const char *fmt, ...)	\
6827 {								\
6828 	int r;							\
6829 	struct va_format vaf;					\
6830 	va_list args;						\
6831 								\
6832 	va_start(args, fmt);					\
6833 								\
6834 	vaf.fmt = fmt;						\
6835 	vaf.va = &args;						\
6836 								\
6837 	r = __netdev_printk(level, dev, &vaf);			\
6838 								\
6839 	va_end(args);						\
6840 								\
6841 	return r;						\
6842 }								\
6843 EXPORT_SYMBOL(func);
6844 
6845 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6846 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6847 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6848 define_netdev_printk_level(netdev_err, KERN_ERR);
6849 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6850 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6851 define_netdev_printk_level(netdev_info, KERN_INFO);
6852 
6853 static void __net_exit netdev_exit(struct net *net)
6854 {
6855 	kfree(net->dev_name_head);
6856 	kfree(net->dev_index_head);
6857 }
6858 
6859 static struct pernet_operations __net_initdata netdev_net_ops = {
6860 	.init = netdev_init,
6861 	.exit = netdev_exit,
6862 };
6863 
6864 static void __net_exit default_device_exit(struct net *net)
6865 {
6866 	struct net_device *dev, *aux;
6867 	/*
6868 	 * Push all migratable network devices back to the
6869 	 * initial network namespace
6870 	 */
6871 	rtnl_lock();
6872 	for_each_netdev_safe(net, dev, aux) {
6873 		int err;
6874 		char fb_name[IFNAMSIZ];
6875 
6876 		/* Ignore unmoveable devices (i.e. loopback) */
6877 		if (dev->features & NETIF_F_NETNS_LOCAL)
6878 			continue;
6879 
6880 		/* Leave virtual devices for the generic cleanup */
6881 		if (dev->rtnl_link_ops)
6882 			continue;
6883 
6884 		/* Push remaining network devices to init_net */
6885 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6886 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6887 		if (err) {
6888 			pr_emerg("%s: failed to move %s to init_net: %d\n",
6889 				 __func__, dev->name, err);
6890 			BUG();
6891 		}
6892 	}
6893 	rtnl_unlock();
6894 }
6895 
6896 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
6897 {
6898 	/* Return with the rtnl_lock held when there are no network
6899 	 * devices unregistering in any network namespace in net_list.
6900 	 */
6901 	struct net *net;
6902 	bool unregistering;
6903 	DEFINE_WAIT(wait);
6904 
6905 	for (;;) {
6906 		prepare_to_wait(&netdev_unregistering_wq, &wait,
6907 				TASK_UNINTERRUPTIBLE);
6908 		unregistering = false;
6909 		rtnl_lock();
6910 		list_for_each_entry(net, net_list, exit_list) {
6911 			if (net->dev_unreg_count > 0) {
6912 				unregistering = true;
6913 				break;
6914 			}
6915 		}
6916 		if (!unregistering)
6917 			break;
6918 		__rtnl_unlock();
6919 		schedule();
6920 	}
6921 	finish_wait(&netdev_unregistering_wq, &wait);
6922 }
6923 
6924 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6925 {
6926 	/* At exit all network devices most be removed from a network
6927 	 * namespace.  Do this in the reverse order of registration.
6928 	 * Do this across as many network namespaces as possible to
6929 	 * improve batching efficiency.
6930 	 */
6931 	struct net_device *dev;
6932 	struct net *net;
6933 	LIST_HEAD(dev_kill_list);
6934 
6935 	/* To prevent network device cleanup code from dereferencing
6936 	 * loopback devices or network devices that have been freed
6937 	 * wait here for all pending unregistrations to complete,
6938 	 * before unregistring the loopback device and allowing the
6939 	 * network namespace be freed.
6940 	 *
6941 	 * The netdev todo list containing all network devices
6942 	 * unregistrations that happen in default_device_exit_batch
6943 	 * will run in the rtnl_unlock() at the end of
6944 	 * default_device_exit_batch.
6945 	 */
6946 	rtnl_lock_unregistering(net_list);
6947 	list_for_each_entry(net, net_list, exit_list) {
6948 		for_each_netdev_reverse(net, dev) {
6949 			if (dev->rtnl_link_ops)
6950 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6951 			else
6952 				unregister_netdevice_queue(dev, &dev_kill_list);
6953 		}
6954 	}
6955 	unregister_netdevice_many(&dev_kill_list);
6956 	list_del(&dev_kill_list);
6957 	rtnl_unlock();
6958 }
6959 
6960 static struct pernet_operations __net_initdata default_device_ops = {
6961 	.exit = default_device_exit,
6962 	.exit_batch = default_device_exit_batch,
6963 };
6964 
6965 /*
6966  *	Initialize the DEV module. At boot time this walks the device list and
6967  *	unhooks any devices that fail to initialise (normally hardware not
6968  *	present) and leaves us with a valid list of present and active devices.
6969  *
6970  */
6971 
6972 /*
6973  *       This is called single threaded during boot, so no need
6974  *       to take the rtnl semaphore.
6975  */
6976 static int __init net_dev_init(void)
6977 {
6978 	int i, rc = -ENOMEM;
6979 
6980 	BUG_ON(!dev_boot_phase);
6981 
6982 	if (dev_proc_init())
6983 		goto out;
6984 
6985 	if (netdev_kobject_init())
6986 		goto out;
6987 
6988 	INIT_LIST_HEAD(&ptype_all);
6989 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6990 		INIT_LIST_HEAD(&ptype_base[i]);
6991 
6992 	INIT_LIST_HEAD(&offload_base);
6993 
6994 	if (register_pernet_subsys(&netdev_net_ops))
6995 		goto out;
6996 
6997 	/*
6998 	 *	Initialise the packet receive queues.
6999 	 */
7000 
7001 	for_each_possible_cpu(i) {
7002 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7003 
7004 		skb_queue_head_init(&sd->input_pkt_queue);
7005 		skb_queue_head_init(&sd->process_queue);
7006 		INIT_LIST_HEAD(&sd->poll_list);
7007 		sd->output_queue_tailp = &sd->output_queue;
7008 #ifdef CONFIG_RPS
7009 		sd->csd.func = rps_trigger_softirq;
7010 		sd->csd.info = sd;
7011 		sd->cpu = i;
7012 #endif
7013 
7014 		sd->backlog.poll = process_backlog;
7015 		sd->backlog.weight = weight_p;
7016 	}
7017 
7018 	dev_boot_phase = 0;
7019 
7020 	/* The loopback device is special if any other network devices
7021 	 * is present in a network namespace the loopback device must
7022 	 * be present. Since we now dynamically allocate and free the
7023 	 * loopback device ensure this invariant is maintained by
7024 	 * keeping the loopback device as the first device on the
7025 	 * list of network devices.  Ensuring the loopback devices
7026 	 * is the first device that appears and the last network device
7027 	 * that disappears.
7028 	 */
7029 	if (register_pernet_device(&loopback_net_ops))
7030 		goto out;
7031 
7032 	if (register_pernet_device(&default_device_ops))
7033 		goto out;
7034 
7035 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7036 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7037 
7038 	hotcpu_notifier(dev_cpu_callback, 0);
7039 	dst_init();
7040 	rc = 0;
7041 out:
7042 	return rc;
7043 }
7044 
7045 subsys_initcall(net_dev_init);
7046