xref: /openbmc/linux/net/core/dev.c (revision af958a38)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135 #include <linux/errqueue.h>
136 
137 #include "net-sysfs.h"
138 
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141 
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144 
145 static DEFINE_SPINLOCK(ptype_lock);
146 static DEFINE_SPINLOCK(offload_lock);
147 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
148 struct list_head ptype_all __read_mostly;	/* Taps */
149 static struct list_head offload_base __read_mostly;
150 
151 static int netif_rx_internal(struct sk_buff *skb);
152 static int call_netdevice_notifiers_info(unsigned long val,
153 					 struct net_device *dev,
154 					 struct netdev_notifier_info *info);
155 
156 /*
157  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
158  * semaphore.
159  *
160  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
161  *
162  * Writers must hold the rtnl semaphore while they loop through the
163  * dev_base_head list, and hold dev_base_lock for writing when they do the
164  * actual updates.  This allows pure readers to access the list even
165  * while a writer is preparing to update it.
166  *
167  * To put it another way, dev_base_lock is held for writing only to
168  * protect against pure readers; the rtnl semaphore provides the
169  * protection against other writers.
170  *
171  * See, for example usages, register_netdevice() and
172  * unregister_netdevice(), which must be called with the rtnl
173  * semaphore held.
174  */
175 DEFINE_RWLOCK(dev_base_lock);
176 EXPORT_SYMBOL(dev_base_lock);
177 
178 /* protects napi_hash addition/deletion and napi_gen_id */
179 static DEFINE_SPINLOCK(napi_hash_lock);
180 
181 static unsigned int napi_gen_id;
182 static DEFINE_HASHTABLE(napi_hash, 8);
183 
184 static seqcount_t devnet_rename_seq;
185 
186 static inline void dev_base_seq_inc(struct net *net)
187 {
188 	while (++net->dev_base_seq == 0);
189 }
190 
191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
192 {
193 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
194 
195 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
196 }
197 
198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
199 {
200 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
201 }
202 
203 static inline void rps_lock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206 	spin_lock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209 
210 static inline void rps_unlock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 	spin_unlock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216 
217 /* Device list insertion */
218 static void list_netdevice(struct net_device *dev)
219 {
220 	struct net *net = dev_net(dev);
221 
222 	ASSERT_RTNL();
223 
224 	write_lock_bh(&dev_base_lock);
225 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
226 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
227 	hlist_add_head_rcu(&dev->index_hlist,
228 			   dev_index_hash(net, dev->ifindex));
229 	write_unlock_bh(&dev_base_lock);
230 
231 	dev_base_seq_inc(net);
232 }
233 
234 /* Device list removal
235  * caller must respect a RCU grace period before freeing/reusing dev
236  */
237 static void unlist_netdevice(struct net_device *dev)
238 {
239 	ASSERT_RTNL();
240 
241 	/* Unlink dev from the device chain */
242 	write_lock_bh(&dev_base_lock);
243 	list_del_rcu(&dev->dev_list);
244 	hlist_del_rcu(&dev->name_hlist);
245 	hlist_del_rcu(&dev->index_hlist);
246 	write_unlock_bh(&dev_base_lock);
247 
248 	dev_base_seq_inc(dev_net(dev));
249 }
250 
251 /*
252  *	Our notifier list
253  */
254 
255 static RAW_NOTIFIER_HEAD(netdev_chain);
256 
257 /*
258  *	Device drivers call our routines to queue packets here. We empty the
259  *	queue in the local softnet handler.
260  */
261 
262 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
263 EXPORT_PER_CPU_SYMBOL(softnet_data);
264 
265 #ifdef CONFIG_LOCKDEP
266 /*
267  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268  * according to dev->type
269  */
270 static const unsigned short netdev_lock_type[] =
271 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
284 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
285 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
286 
287 static const char *const netdev_lock_name[] =
288 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
301 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
302 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
303 
304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
306 
307 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308 {
309 	int i;
310 
311 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 		if (netdev_lock_type[i] == dev_type)
313 			return i;
314 	/* the last key is used by default */
315 	return ARRAY_SIZE(netdev_lock_type) - 1;
316 }
317 
318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 						 unsigned short dev_type)
320 {
321 	int i;
322 
323 	i = netdev_lock_pos(dev_type);
324 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 				   netdev_lock_name[i]);
326 }
327 
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 	int i;
331 
332 	i = netdev_lock_pos(dev->type);
333 	lockdep_set_class_and_name(&dev->addr_list_lock,
334 				   &netdev_addr_lock_key[i],
335 				   netdev_lock_name[i]);
336 }
337 #else
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 						 unsigned short dev_type)
340 {
341 }
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 }
345 #endif
346 
347 /*******************************************************************************
348 
349 		Protocol management and registration routines
350 
351 *******************************************************************************/
352 
353 /*
354  *	Add a protocol ID to the list. Now that the input handler is
355  *	smarter we can dispense with all the messy stuff that used to be
356  *	here.
357  *
358  *	BEWARE!!! Protocol handlers, mangling input packets,
359  *	MUST BE last in hash buckets and checking protocol handlers
360  *	MUST start from promiscuous ptype_all chain in net_bh.
361  *	It is true now, do not change it.
362  *	Explanation follows: if protocol handler, mangling packet, will
363  *	be the first on list, it is not able to sense, that packet
364  *	is cloned and should be copied-on-write, so that it will
365  *	change it and subsequent readers will get broken packet.
366  *							--ANK (980803)
367  */
368 
369 static inline struct list_head *ptype_head(const struct packet_type *pt)
370 {
371 	if (pt->type == htons(ETH_P_ALL))
372 		return &ptype_all;
373 	else
374 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
375 }
376 
377 /**
378  *	dev_add_pack - add packet handler
379  *	@pt: packet type declaration
380  *
381  *	Add a protocol handler to the networking stack. The passed &packet_type
382  *	is linked into kernel lists and may not be freed until it has been
383  *	removed from the kernel lists.
384  *
385  *	This call does not sleep therefore it can not
386  *	guarantee all CPU's that are in middle of receiving packets
387  *	will see the new packet type (until the next received packet).
388  */
389 
390 void dev_add_pack(struct packet_type *pt)
391 {
392 	struct list_head *head = ptype_head(pt);
393 
394 	spin_lock(&ptype_lock);
395 	list_add_rcu(&pt->list, head);
396 	spin_unlock(&ptype_lock);
397 }
398 EXPORT_SYMBOL(dev_add_pack);
399 
400 /**
401  *	__dev_remove_pack	 - remove packet handler
402  *	@pt: packet type declaration
403  *
404  *	Remove a protocol handler that was previously added to the kernel
405  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
406  *	from the kernel lists and can be freed or reused once this function
407  *	returns.
408  *
409  *      The packet type might still be in use by receivers
410  *	and must not be freed until after all the CPU's have gone
411  *	through a quiescent state.
412  */
413 void __dev_remove_pack(struct packet_type *pt)
414 {
415 	struct list_head *head = ptype_head(pt);
416 	struct packet_type *pt1;
417 
418 	spin_lock(&ptype_lock);
419 
420 	list_for_each_entry(pt1, head, list) {
421 		if (pt == pt1) {
422 			list_del_rcu(&pt->list);
423 			goto out;
424 		}
425 	}
426 
427 	pr_warn("dev_remove_pack: %p not found\n", pt);
428 out:
429 	spin_unlock(&ptype_lock);
430 }
431 EXPORT_SYMBOL(__dev_remove_pack);
432 
433 /**
434  *	dev_remove_pack	 - remove packet handler
435  *	@pt: packet type declaration
436  *
437  *	Remove a protocol handler that was previously added to the kernel
438  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
439  *	from the kernel lists and can be freed or reused once this function
440  *	returns.
441  *
442  *	This call sleeps to guarantee that no CPU is looking at the packet
443  *	type after return.
444  */
445 void dev_remove_pack(struct packet_type *pt)
446 {
447 	__dev_remove_pack(pt);
448 
449 	synchronize_net();
450 }
451 EXPORT_SYMBOL(dev_remove_pack);
452 
453 
454 /**
455  *	dev_add_offload - register offload handlers
456  *	@po: protocol offload declaration
457  *
458  *	Add protocol offload handlers to the networking stack. The passed
459  *	&proto_offload is linked into kernel lists and may not be freed until
460  *	it has been removed from the kernel lists.
461  *
462  *	This call does not sleep therefore it can not
463  *	guarantee all CPU's that are in middle of receiving packets
464  *	will see the new offload handlers (until the next received packet).
465  */
466 void dev_add_offload(struct packet_offload *po)
467 {
468 	struct list_head *head = &offload_base;
469 
470 	spin_lock(&offload_lock);
471 	list_add_rcu(&po->list, head);
472 	spin_unlock(&offload_lock);
473 }
474 EXPORT_SYMBOL(dev_add_offload);
475 
476 /**
477  *	__dev_remove_offload	 - remove offload handler
478  *	@po: packet offload declaration
479  *
480  *	Remove a protocol offload handler that was previously added to the
481  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
482  *	is removed from the kernel lists and can be freed or reused once this
483  *	function returns.
484  *
485  *      The packet type might still be in use by receivers
486  *	and must not be freed until after all the CPU's have gone
487  *	through a quiescent state.
488  */
489 static void __dev_remove_offload(struct packet_offload *po)
490 {
491 	struct list_head *head = &offload_base;
492 	struct packet_offload *po1;
493 
494 	spin_lock(&offload_lock);
495 
496 	list_for_each_entry(po1, head, list) {
497 		if (po == po1) {
498 			list_del_rcu(&po->list);
499 			goto out;
500 		}
501 	}
502 
503 	pr_warn("dev_remove_offload: %p not found\n", po);
504 out:
505 	spin_unlock(&offload_lock);
506 }
507 
508 /**
509  *	dev_remove_offload	 - remove packet offload handler
510  *	@po: packet offload declaration
511  *
512  *	Remove a packet offload handler that was previously added to the kernel
513  *	offload handlers by dev_add_offload(). The passed &offload_type is
514  *	removed from the kernel lists and can be freed or reused once this
515  *	function returns.
516  *
517  *	This call sleeps to guarantee that no CPU is looking at the packet
518  *	type after return.
519  */
520 void dev_remove_offload(struct packet_offload *po)
521 {
522 	__dev_remove_offload(po);
523 
524 	synchronize_net();
525 }
526 EXPORT_SYMBOL(dev_remove_offload);
527 
528 /******************************************************************************
529 
530 		      Device Boot-time Settings Routines
531 
532 *******************************************************************************/
533 
534 /* Boot time configuration table */
535 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
536 
537 /**
538  *	netdev_boot_setup_add	- add new setup entry
539  *	@name: name of the device
540  *	@map: configured settings for the device
541  *
542  *	Adds new setup entry to the dev_boot_setup list.  The function
543  *	returns 0 on error and 1 on success.  This is a generic routine to
544  *	all netdevices.
545  */
546 static int netdev_boot_setup_add(char *name, struct ifmap *map)
547 {
548 	struct netdev_boot_setup *s;
549 	int i;
550 
551 	s = dev_boot_setup;
552 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
553 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
554 			memset(s[i].name, 0, sizeof(s[i].name));
555 			strlcpy(s[i].name, name, IFNAMSIZ);
556 			memcpy(&s[i].map, map, sizeof(s[i].map));
557 			break;
558 		}
559 	}
560 
561 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
562 }
563 
564 /**
565  *	netdev_boot_setup_check	- check boot time settings
566  *	@dev: the netdevice
567  *
568  * 	Check boot time settings for the device.
569  *	The found settings are set for the device to be used
570  *	later in the device probing.
571  *	Returns 0 if no settings found, 1 if they are.
572  */
573 int netdev_boot_setup_check(struct net_device *dev)
574 {
575 	struct netdev_boot_setup *s = dev_boot_setup;
576 	int i;
577 
578 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
579 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
580 		    !strcmp(dev->name, s[i].name)) {
581 			dev->irq 	= s[i].map.irq;
582 			dev->base_addr 	= s[i].map.base_addr;
583 			dev->mem_start 	= s[i].map.mem_start;
584 			dev->mem_end 	= s[i].map.mem_end;
585 			return 1;
586 		}
587 	}
588 	return 0;
589 }
590 EXPORT_SYMBOL(netdev_boot_setup_check);
591 
592 
593 /**
594  *	netdev_boot_base	- get address from boot time settings
595  *	@prefix: prefix for network device
596  *	@unit: id for network device
597  *
598  * 	Check boot time settings for the base address of device.
599  *	The found settings are set for the device to be used
600  *	later in the device probing.
601  *	Returns 0 if no settings found.
602  */
603 unsigned long netdev_boot_base(const char *prefix, int unit)
604 {
605 	const struct netdev_boot_setup *s = dev_boot_setup;
606 	char name[IFNAMSIZ];
607 	int i;
608 
609 	sprintf(name, "%s%d", prefix, unit);
610 
611 	/*
612 	 * If device already registered then return base of 1
613 	 * to indicate not to probe for this interface
614 	 */
615 	if (__dev_get_by_name(&init_net, name))
616 		return 1;
617 
618 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
619 		if (!strcmp(name, s[i].name))
620 			return s[i].map.base_addr;
621 	return 0;
622 }
623 
624 /*
625  * Saves at boot time configured settings for any netdevice.
626  */
627 int __init netdev_boot_setup(char *str)
628 {
629 	int ints[5];
630 	struct ifmap map;
631 
632 	str = get_options(str, ARRAY_SIZE(ints), ints);
633 	if (!str || !*str)
634 		return 0;
635 
636 	/* Save settings */
637 	memset(&map, 0, sizeof(map));
638 	if (ints[0] > 0)
639 		map.irq = ints[1];
640 	if (ints[0] > 1)
641 		map.base_addr = ints[2];
642 	if (ints[0] > 2)
643 		map.mem_start = ints[3];
644 	if (ints[0] > 3)
645 		map.mem_end = ints[4];
646 
647 	/* Add new entry to the list */
648 	return netdev_boot_setup_add(str, &map);
649 }
650 
651 __setup("netdev=", netdev_boot_setup);
652 
653 /*******************************************************************************
654 
655 			    Device Interface Subroutines
656 
657 *******************************************************************************/
658 
659 /**
660  *	__dev_get_by_name	- find a device by its name
661  *	@net: the applicable net namespace
662  *	@name: name to find
663  *
664  *	Find an interface by name. Must be called under RTNL semaphore
665  *	or @dev_base_lock. If the name is found a pointer to the device
666  *	is returned. If the name is not found then %NULL is returned. The
667  *	reference counters are not incremented so the caller must be
668  *	careful with locks.
669  */
670 
671 struct net_device *__dev_get_by_name(struct net *net, const char *name)
672 {
673 	struct net_device *dev;
674 	struct hlist_head *head = dev_name_hash(net, name);
675 
676 	hlist_for_each_entry(dev, head, name_hlist)
677 		if (!strncmp(dev->name, name, IFNAMSIZ))
678 			return dev;
679 
680 	return NULL;
681 }
682 EXPORT_SYMBOL(__dev_get_by_name);
683 
684 /**
685  *	dev_get_by_name_rcu	- find a device by its name
686  *	@net: the applicable net namespace
687  *	@name: name to find
688  *
689  *	Find an interface by name.
690  *	If the name is found a pointer to the device is returned.
691  * 	If the name is not found then %NULL is returned.
692  *	The reference counters are not incremented so the caller must be
693  *	careful with locks. The caller must hold RCU lock.
694  */
695 
696 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
697 {
698 	struct net_device *dev;
699 	struct hlist_head *head = dev_name_hash(net, name);
700 
701 	hlist_for_each_entry_rcu(dev, head, name_hlist)
702 		if (!strncmp(dev->name, name, IFNAMSIZ))
703 			return dev;
704 
705 	return NULL;
706 }
707 EXPORT_SYMBOL(dev_get_by_name_rcu);
708 
709 /**
710  *	dev_get_by_name		- find a device by its name
711  *	@net: the applicable net namespace
712  *	@name: name to find
713  *
714  *	Find an interface by name. This can be called from any
715  *	context and does its own locking. The returned handle has
716  *	the usage count incremented and the caller must use dev_put() to
717  *	release it when it is no longer needed. %NULL is returned if no
718  *	matching device is found.
719  */
720 
721 struct net_device *dev_get_by_name(struct net *net, const char *name)
722 {
723 	struct net_device *dev;
724 
725 	rcu_read_lock();
726 	dev = dev_get_by_name_rcu(net, name);
727 	if (dev)
728 		dev_hold(dev);
729 	rcu_read_unlock();
730 	return dev;
731 }
732 EXPORT_SYMBOL(dev_get_by_name);
733 
734 /**
735  *	__dev_get_by_index - find a device by its ifindex
736  *	@net: the applicable net namespace
737  *	@ifindex: index of device
738  *
739  *	Search for an interface by index. Returns %NULL if the device
740  *	is not found or a pointer to the device. The device has not
741  *	had its reference counter increased so the caller must be careful
742  *	about locking. The caller must hold either the RTNL semaphore
743  *	or @dev_base_lock.
744  */
745 
746 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
747 {
748 	struct net_device *dev;
749 	struct hlist_head *head = dev_index_hash(net, ifindex);
750 
751 	hlist_for_each_entry(dev, head, index_hlist)
752 		if (dev->ifindex == ifindex)
753 			return dev;
754 
755 	return NULL;
756 }
757 EXPORT_SYMBOL(__dev_get_by_index);
758 
759 /**
760  *	dev_get_by_index_rcu - find a device by its ifindex
761  *	@net: the applicable net namespace
762  *	@ifindex: index of device
763  *
764  *	Search for an interface by index. Returns %NULL if the device
765  *	is not found or a pointer to the device. The device has not
766  *	had its reference counter increased so the caller must be careful
767  *	about locking. The caller must hold RCU lock.
768  */
769 
770 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
771 {
772 	struct net_device *dev;
773 	struct hlist_head *head = dev_index_hash(net, ifindex);
774 
775 	hlist_for_each_entry_rcu(dev, head, index_hlist)
776 		if (dev->ifindex == ifindex)
777 			return dev;
778 
779 	return NULL;
780 }
781 EXPORT_SYMBOL(dev_get_by_index_rcu);
782 
783 
784 /**
785  *	dev_get_by_index - find a device by its ifindex
786  *	@net: the applicable net namespace
787  *	@ifindex: index of device
788  *
789  *	Search for an interface by index. Returns NULL if the device
790  *	is not found or a pointer to the device. The device returned has
791  *	had a reference added and the pointer is safe until the user calls
792  *	dev_put to indicate they have finished with it.
793  */
794 
795 struct net_device *dev_get_by_index(struct net *net, int ifindex)
796 {
797 	struct net_device *dev;
798 
799 	rcu_read_lock();
800 	dev = dev_get_by_index_rcu(net, ifindex);
801 	if (dev)
802 		dev_hold(dev);
803 	rcu_read_unlock();
804 	return dev;
805 }
806 EXPORT_SYMBOL(dev_get_by_index);
807 
808 /**
809  *	netdev_get_name - get a netdevice name, knowing its ifindex.
810  *	@net: network namespace
811  *	@name: a pointer to the buffer where the name will be stored.
812  *	@ifindex: the ifindex of the interface to get the name from.
813  *
814  *	The use of raw_seqcount_begin() and cond_resched() before
815  *	retrying is required as we want to give the writers a chance
816  *	to complete when CONFIG_PREEMPT is not set.
817  */
818 int netdev_get_name(struct net *net, char *name, int ifindex)
819 {
820 	struct net_device *dev;
821 	unsigned int seq;
822 
823 retry:
824 	seq = raw_seqcount_begin(&devnet_rename_seq);
825 	rcu_read_lock();
826 	dev = dev_get_by_index_rcu(net, ifindex);
827 	if (!dev) {
828 		rcu_read_unlock();
829 		return -ENODEV;
830 	}
831 
832 	strcpy(name, dev->name);
833 	rcu_read_unlock();
834 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
835 		cond_resched();
836 		goto retry;
837 	}
838 
839 	return 0;
840 }
841 
842 /**
843  *	dev_getbyhwaddr_rcu - find a device by its hardware address
844  *	@net: the applicable net namespace
845  *	@type: media type of device
846  *	@ha: hardware address
847  *
848  *	Search for an interface by MAC address. Returns NULL if the device
849  *	is not found or a pointer to the device.
850  *	The caller must hold RCU or RTNL.
851  *	The returned device has not had its ref count increased
852  *	and the caller must therefore be careful about locking
853  *
854  */
855 
856 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
857 				       const char *ha)
858 {
859 	struct net_device *dev;
860 
861 	for_each_netdev_rcu(net, dev)
862 		if (dev->type == type &&
863 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
864 			return dev;
865 
866 	return NULL;
867 }
868 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
869 
870 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
871 {
872 	struct net_device *dev;
873 
874 	ASSERT_RTNL();
875 	for_each_netdev(net, dev)
876 		if (dev->type == type)
877 			return dev;
878 
879 	return NULL;
880 }
881 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
882 
883 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
884 {
885 	struct net_device *dev, *ret = NULL;
886 
887 	rcu_read_lock();
888 	for_each_netdev_rcu(net, dev)
889 		if (dev->type == type) {
890 			dev_hold(dev);
891 			ret = dev;
892 			break;
893 		}
894 	rcu_read_unlock();
895 	return ret;
896 }
897 EXPORT_SYMBOL(dev_getfirstbyhwtype);
898 
899 /**
900  *	dev_get_by_flags_rcu - find any device with given flags
901  *	@net: the applicable net namespace
902  *	@if_flags: IFF_* values
903  *	@mask: bitmask of bits in if_flags to check
904  *
905  *	Search for any interface with the given flags. Returns NULL if a device
906  *	is not found or a pointer to the device. Must be called inside
907  *	rcu_read_lock(), and result refcount is unchanged.
908  */
909 
910 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
911 				    unsigned short mask)
912 {
913 	struct net_device *dev, *ret;
914 
915 	ret = NULL;
916 	for_each_netdev_rcu(net, dev) {
917 		if (((dev->flags ^ if_flags) & mask) == 0) {
918 			ret = dev;
919 			break;
920 		}
921 	}
922 	return ret;
923 }
924 EXPORT_SYMBOL(dev_get_by_flags_rcu);
925 
926 /**
927  *	dev_valid_name - check if name is okay for network device
928  *	@name: name string
929  *
930  *	Network device names need to be valid file names to
931  *	to allow sysfs to work.  We also disallow any kind of
932  *	whitespace.
933  */
934 bool dev_valid_name(const char *name)
935 {
936 	if (*name == '\0')
937 		return false;
938 	if (strlen(name) >= IFNAMSIZ)
939 		return false;
940 	if (!strcmp(name, ".") || !strcmp(name, ".."))
941 		return false;
942 
943 	while (*name) {
944 		if (*name == '/' || isspace(*name))
945 			return false;
946 		name++;
947 	}
948 	return true;
949 }
950 EXPORT_SYMBOL(dev_valid_name);
951 
952 /**
953  *	__dev_alloc_name - allocate a name for a device
954  *	@net: network namespace to allocate the device name in
955  *	@name: name format string
956  *	@buf:  scratch buffer and result name string
957  *
958  *	Passed a format string - eg "lt%d" it will try and find a suitable
959  *	id. It scans list of devices to build up a free map, then chooses
960  *	the first empty slot. The caller must hold the dev_base or rtnl lock
961  *	while allocating the name and adding the device in order to avoid
962  *	duplicates.
963  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
964  *	Returns the number of the unit assigned or a negative errno code.
965  */
966 
967 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
968 {
969 	int i = 0;
970 	const char *p;
971 	const int max_netdevices = 8*PAGE_SIZE;
972 	unsigned long *inuse;
973 	struct net_device *d;
974 
975 	p = strnchr(name, IFNAMSIZ-1, '%');
976 	if (p) {
977 		/*
978 		 * Verify the string as this thing may have come from
979 		 * the user.  There must be either one "%d" and no other "%"
980 		 * characters.
981 		 */
982 		if (p[1] != 'd' || strchr(p + 2, '%'))
983 			return -EINVAL;
984 
985 		/* Use one page as a bit array of possible slots */
986 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
987 		if (!inuse)
988 			return -ENOMEM;
989 
990 		for_each_netdev(net, d) {
991 			if (!sscanf(d->name, name, &i))
992 				continue;
993 			if (i < 0 || i >= max_netdevices)
994 				continue;
995 
996 			/*  avoid cases where sscanf is not exact inverse of printf */
997 			snprintf(buf, IFNAMSIZ, name, i);
998 			if (!strncmp(buf, d->name, IFNAMSIZ))
999 				set_bit(i, inuse);
1000 		}
1001 
1002 		i = find_first_zero_bit(inuse, max_netdevices);
1003 		free_page((unsigned long) inuse);
1004 	}
1005 
1006 	if (buf != name)
1007 		snprintf(buf, IFNAMSIZ, name, i);
1008 	if (!__dev_get_by_name(net, buf))
1009 		return i;
1010 
1011 	/* It is possible to run out of possible slots
1012 	 * when the name is long and there isn't enough space left
1013 	 * for the digits, or if all bits are used.
1014 	 */
1015 	return -ENFILE;
1016 }
1017 
1018 /**
1019  *	dev_alloc_name - allocate a name for a device
1020  *	@dev: device
1021  *	@name: name format string
1022  *
1023  *	Passed a format string - eg "lt%d" it will try and find a suitable
1024  *	id. It scans list of devices to build up a free map, then chooses
1025  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1026  *	while allocating the name and adding the device in order to avoid
1027  *	duplicates.
1028  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1029  *	Returns the number of the unit assigned or a negative errno code.
1030  */
1031 
1032 int dev_alloc_name(struct net_device *dev, const char *name)
1033 {
1034 	char buf[IFNAMSIZ];
1035 	struct net *net;
1036 	int ret;
1037 
1038 	BUG_ON(!dev_net(dev));
1039 	net = dev_net(dev);
1040 	ret = __dev_alloc_name(net, name, buf);
1041 	if (ret >= 0)
1042 		strlcpy(dev->name, buf, IFNAMSIZ);
1043 	return ret;
1044 }
1045 EXPORT_SYMBOL(dev_alloc_name);
1046 
1047 static int dev_alloc_name_ns(struct net *net,
1048 			     struct net_device *dev,
1049 			     const char *name)
1050 {
1051 	char buf[IFNAMSIZ];
1052 	int ret;
1053 
1054 	ret = __dev_alloc_name(net, name, buf);
1055 	if (ret >= 0)
1056 		strlcpy(dev->name, buf, IFNAMSIZ);
1057 	return ret;
1058 }
1059 
1060 static int dev_get_valid_name(struct net *net,
1061 			      struct net_device *dev,
1062 			      const char *name)
1063 {
1064 	BUG_ON(!net);
1065 
1066 	if (!dev_valid_name(name))
1067 		return -EINVAL;
1068 
1069 	if (strchr(name, '%'))
1070 		return dev_alloc_name_ns(net, dev, name);
1071 	else if (__dev_get_by_name(net, name))
1072 		return -EEXIST;
1073 	else if (dev->name != name)
1074 		strlcpy(dev->name, name, IFNAMSIZ);
1075 
1076 	return 0;
1077 }
1078 
1079 /**
1080  *	dev_change_name - change name of a device
1081  *	@dev: device
1082  *	@newname: name (or format string) must be at least IFNAMSIZ
1083  *
1084  *	Change name of a device, can pass format strings "eth%d".
1085  *	for wildcarding.
1086  */
1087 int dev_change_name(struct net_device *dev, const char *newname)
1088 {
1089 	unsigned char old_assign_type;
1090 	char oldname[IFNAMSIZ];
1091 	int err = 0;
1092 	int ret;
1093 	struct net *net;
1094 
1095 	ASSERT_RTNL();
1096 	BUG_ON(!dev_net(dev));
1097 
1098 	net = dev_net(dev);
1099 	if (dev->flags & IFF_UP)
1100 		return -EBUSY;
1101 
1102 	write_seqcount_begin(&devnet_rename_seq);
1103 
1104 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1105 		write_seqcount_end(&devnet_rename_seq);
1106 		return 0;
1107 	}
1108 
1109 	memcpy(oldname, dev->name, IFNAMSIZ);
1110 
1111 	err = dev_get_valid_name(net, dev, newname);
1112 	if (err < 0) {
1113 		write_seqcount_end(&devnet_rename_seq);
1114 		return err;
1115 	}
1116 
1117 	if (oldname[0] && !strchr(oldname, '%'))
1118 		netdev_info(dev, "renamed from %s\n", oldname);
1119 
1120 	old_assign_type = dev->name_assign_type;
1121 	dev->name_assign_type = NET_NAME_RENAMED;
1122 
1123 rollback:
1124 	ret = device_rename(&dev->dev, dev->name);
1125 	if (ret) {
1126 		memcpy(dev->name, oldname, IFNAMSIZ);
1127 		dev->name_assign_type = old_assign_type;
1128 		write_seqcount_end(&devnet_rename_seq);
1129 		return ret;
1130 	}
1131 
1132 	write_seqcount_end(&devnet_rename_seq);
1133 
1134 	netdev_adjacent_rename_links(dev, oldname);
1135 
1136 	write_lock_bh(&dev_base_lock);
1137 	hlist_del_rcu(&dev->name_hlist);
1138 	write_unlock_bh(&dev_base_lock);
1139 
1140 	synchronize_rcu();
1141 
1142 	write_lock_bh(&dev_base_lock);
1143 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1144 	write_unlock_bh(&dev_base_lock);
1145 
1146 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1147 	ret = notifier_to_errno(ret);
1148 
1149 	if (ret) {
1150 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1151 		if (err >= 0) {
1152 			err = ret;
1153 			write_seqcount_begin(&devnet_rename_seq);
1154 			memcpy(dev->name, oldname, IFNAMSIZ);
1155 			memcpy(oldname, newname, IFNAMSIZ);
1156 			dev->name_assign_type = old_assign_type;
1157 			old_assign_type = NET_NAME_RENAMED;
1158 			goto rollback;
1159 		} else {
1160 			pr_err("%s: name change rollback failed: %d\n",
1161 			       dev->name, ret);
1162 		}
1163 	}
1164 
1165 	return err;
1166 }
1167 
1168 /**
1169  *	dev_set_alias - change ifalias of a device
1170  *	@dev: device
1171  *	@alias: name up to IFALIASZ
1172  *	@len: limit of bytes to copy from info
1173  *
1174  *	Set ifalias for a device,
1175  */
1176 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1177 {
1178 	char *new_ifalias;
1179 
1180 	ASSERT_RTNL();
1181 
1182 	if (len >= IFALIASZ)
1183 		return -EINVAL;
1184 
1185 	if (!len) {
1186 		kfree(dev->ifalias);
1187 		dev->ifalias = NULL;
1188 		return 0;
1189 	}
1190 
1191 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1192 	if (!new_ifalias)
1193 		return -ENOMEM;
1194 	dev->ifalias = new_ifalias;
1195 
1196 	strlcpy(dev->ifalias, alias, len+1);
1197 	return len;
1198 }
1199 
1200 
1201 /**
1202  *	netdev_features_change - device changes features
1203  *	@dev: device to cause notification
1204  *
1205  *	Called to indicate a device has changed features.
1206  */
1207 void netdev_features_change(struct net_device *dev)
1208 {
1209 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1210 }
1211 EXPORT_SYMBOL(netdev_features_change);
1212 
1213 /**
1214  *	netdev_state_change - device changes state
1215  *	@dev: device to cause notification
1216  *
1217  *	Called to indicate a device has changed state. This function calls
1218  *	the notifier chains for netdev_chain and sends a NEWLINK message
1219  *	to the routing socket.
1220  */
1221 void netdev_state_change(struct net_device *dev)
1222 {
1223 	if (dev->flags & IFF_UP) {
1224 		struct netdev_notifier_change_info change_info;
1225 
1226 		change_info.flags_changed = 0;
1227 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1228 					      &change_info.info);
1229 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1230 	}
1231 }
1232 EXPORT_SYMBOL(netdev_state_change);
1233 
1234 /**
1235  * 	netdev_notify_peers - notify network peers about existence of @dev
1236  * 	@dev: network device
1237  *
1238  * Generate traffic such that interested network peers are aware of
1239  * @dev, such as by generating a gratuitous ARP. This may be used when
1240  * a device wants to inform the rest of the network about some sort of
1241  * reconfiguration such as a failover event or virtual machine
1242  * migration.
1243  */
1244 void netdev_notify_peers(struct net_device *dev)
1245 {
1246 	rtnl_lock();
1247 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1248 	rtnl_unlock();
1249 }
1250 EXPORT_SYMBOL(netdev_notify_peers);
1251 
1252 static int __dev_open(struct net_device *dev)
1253 {
1254 	const struct net_device_ops *ops = dev->netdev_ops;
1255 	int ret;
1256 
1257 	ASSERT_RTNL();
1258 
1259 	if (!netif_device_present(dev))
1260 		return -ENODEV;
1261 
1262 	/* Block netpoll from trying to do any rx path servicing.
1263 	 * If we don't do this there is a chance ndo_poll_controller
1264 	 * or ndo_poll may be running while we open the device
1265 	 */
1266 	netpoll_poll_disable(dev);
1267 
1268 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1269 	ret = notifier_to_errno(ret);
1270 	if (ret)
1271 		return ret;
1272 
1273 	set_bit(__LINK_STATE_START, &dev->state);
1274 
1275 	if (ops->ndo_validate_addr)
1276 		ret = ops->ndo_validate_addr(dev);
1277 
1278 	if (!ret && ops->ndo_open)
1279 		ret = ops->ndo_open(dev);
1280 
1281 	netpoll_poll_enable(dev);
1282 
1283 	if (ret)
1284 		clear_bit(__LINK_STATE_START, &dev->state);
1285 	else {
1286 		dev->flags |= IFF_UP;
1287 		net_dmaengine_get();
1288 		dev_set_rx_mode(dev);
1289 		dev_activate(dev);
1290 		add_device_randomness(dev->dev_addr, dev->addr_len);
1291 	}
1292 
1293 	return ret;
1294 }
1295 
1296 /**
1297  *	dev_open	- prepare an interface for use.
1298  *	@dev:	device to open
1299  *
1300  *	Takes a device from down to up state. The device's private open
1301  *	function is invoked and then the multicast lists are loaded. Finally
1302  *	the device is moved into the up state and a %NETDEV_UP message is
1303  *	sent to the netdev notifier chain.
1304  *
1305  *	Calling this function on an active interface is a nop. On a failure
1306  *	a negative errno code is returned.
1307  */
1308 int dev_open(struct net_device *dev)
1309 {
1310 	int ret;
1311 
1312 	if (dev->flags & IFF_UP)
1313 		return 0;
1314 
1315 	ret = __dev_open(dev);
1316 	if (ret < 0)
1317 		return ret;
1318 
1319 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1320 	call_netdevice_notifiers(NETDEV_UP, dev);
1321 
1322 	return ret;
1323 }
1324 EXPORT_SYMBOL(dev_open);
1325 
1326 static int __dev_close_many(struct list_head *head)
1327 {
1328 	struct net_device *dev;
1329 
1330 	ASSERT_RTNL();
1331 	might_sleep();
1332 
1333 	list_for_each_entry(dev, head, close_list) {
1334 		/* Temporarily disable netpoll until the interface is down */
1335 		netpoll_poll_disable(dev);
1336 
1337 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1338 
1339 		clear_bit(__LINK_STATE_START, &dev->state);
1340 
1341 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1342 		 * can be even on different cpu. So just clear netif_running().
1343 		 *
1344 		 * dev->stop() will invoke napi_disable() on all of it's
1345 		 * napi_struct instances on this device.
1346 		 */
1347 		smp_mb__after_atomic(); /* Commit netif_running(). */
1348 	}
1349 
1350 	dev_deactivate_many(head);
1351 
1352 	list_for_each_entry(dev, head, close_list) {
1353 		const struct net_device_ops *ops = dev->netdev_ops;
1354 
1355 		/*
1356 		 *	Call the device specific close. This cannot fail.
1357 		 *	Only if device is UP
1358 		 *
1359 		 *	We allow it to be called even after a DETACH hot-plug
1360 		 *	event.
1361 		 */
1362 		if (ops->ndo_stop)
1363 			ops->ndo_stop(dev);
1364 
1365 		dev->flags &= ~IFF_UP;
1366 		net_dmaengine_put();
1367 		netpoll_poll_enable(dev);
1368 	}
1369 
1370 	return 0;
1371 }
1372 
1373 static int __dev_close(struct net_device *dev)
1374 {
1375 	int retval;
1376 	LIST_HEAD(single);
1377 
1378 	list_add(&dev->close_list, &single);
1379 	retval = __dev_close_many(&single);
1380 	list_del(&single);
1381 
1382 	return retval;
1383 }
1384 
1385 static int dev_close_many(struct list_head *head)
1386 {
1387 	struct net_device *dev, *tmp;
1388 
1389 	/* Remove the devices that don't need to be closed */
1390 	list_for_each_entry_safe(dev, tmp, head, close_list)
1391 		if (!(dev->flags & IFF_UP))
1392 			list_del_init(&dev->close_list);
1393 
1394 	__dev_close_many(head);
1395 
1396 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1397 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1398 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1399 		list_del_init(&dev->close_list);
1400 	}
1401 
1402 	return 0;
1403 }
1404 
1405 /**
1406  *	dev_close - shutdown an interface.
1407  *	@dev: device to shutdown
1408  *
1409  *	This function moves an active device into down state. A
1410  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1411  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1412  *	chain.
1413  */
1414 int dev_close(struct net_device *dev)
1415 {
1416 	if (dev->flags & IFF_UP) {
1417 		LIST_HEAD(single);
1418 
1419 		list_add(&dev->close_list, &single);
1420 		dev_close_many(&single);
1421 		list_del(&single);
1422 	}
1423 	return 0;
1424 }
1425 EXPORT_SYMBOL(dev_close);
1426 
1427 
1428 /**
1429  *	dev_disable_lro - disable Large Receive Offload on a device
1430  *	@dev: device
1431  *
1432  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1433  *	called under RTNL.  This is needed if received packets may be
1434  *	forwarded to another interface.
1435  */
1436 void dev_disable_lro(struct net_device *dev)
1437 {
1438 	/*
1439 	 * If we're trying to disable lro on a vlan device
1440 	 * use the underlying physical device instead
1441 	 */
1442 	if (is_vlan_dev(dev))
1443 		dev = vlan_dev_real_dev(dev);
1444 
1445 	/* the same for macvlan devices */
1446 	if (netif_is_macvlan(dev))
1447 		dev = macvlan_dev_real_dev(dev);
1448 
1449 	dev->wanted_features &= ~NETIF_F_LRO;
1450 	netdev_update_features(dev);
1451 
1452 	if (unlikely(dev->features & NETIF_F_LRO))
1453 		netdev_WARN(dev, "failed to disable LRO!\n");
1454 }
1455 EXPORT_SYMBOL(dev_disable_lro);
1456 
1457 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1458 				   struct net_device *dev)
1459 {
1460 	struct netdev_notifier_info info;
1461 
1462 	netdev_notifier_info_init(&info, dev);
1463 	return nb->notifier_call(nb, val, &info);
1464 }
1465 
1466 static int dev_boot_phase = 1;
1467 
1468 /**
1469  *	register_netdevice_notifier - register a network notifier block
1470  *	@nb: notifier
1471  *
1472  *	Register a notifier to be called when network device events occur.
1473  *	The notifier passed is linked into the kernel structures and must
1474  *	not be reused until it has been unregistered. A negative errno code
1475  *	is returned on a failure.
1476  *
1477  * 	When registered all registration and up events are replayed
1478  *	to the new notifier to allow device to have a race free
1479  *	view of the network device list.
1480  */
1481 
1482 int register_netdevice_notifier(struct notifier_block *nb)
1483 {
1484 	struct net_device *dev;
1485 	struct net_device *last;
1486 	struct net *net;
1487 	int err;
1488 
1489 	rtnl_lock();
1490 	err = raw_notifier_chain_register(&netdev_chain, nb);
1491 	if (err)
1492 		goto unlock;
1493 	if (dev_boot_phase)
1494 		goto unlock;
1495 	for_each_net(net) {
1496 		for_each_netdev(net, dev) {
1497 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1498 			err = notifier_to_errno(err);
1499 			if (err)
1500 				goto rollback;
1501 
1502 			if (!(dev->flags & IFF_UP))
1503 				continue;
1504 
1505 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1506 		}
1507 	}
1508 
1509 unlock:
1510 	rtnl_unlock();
1511 	return err;
1512 
1513 rollback:
1514 	last = dev;
1515 	for_each_net(net) {
1516 		for_each_netdev(net, dev) {
1517 			if (dev == last)
1518 				goto outroll;
1519 
1520 			if (dev->flags & IFF_UP) {
1521 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1522 							dev);
1523 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1524 			}
1525 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1526 		}
1527 	}
1528 
1529 outroll:
1530 	raw_notifier_chain_unregister(&netdev_chain, nb);
1531 	goto unlock;
1532 }
1533 EXPORT_SYMBOL(register_netdevice_notifier);
1534 
1535 /**
1536  *	unregister_netdevice_notifier - unregister a network notifier block
1537  *	@nb: notifier
1538  *
1539  *	Unregister a notifier previously registered by
1540  *	register_netdevice_notifier(). The notifier is unlinked into the
1541  *	kernel structures and may then be reused. A negative errno code
1542  *	is returned on a failure.
1543  *
1544  * 	After unregistering unregister and down device events are synthesized
1545  *	for all devices on the device list to the removed notifier to remove
1546  *	the need for special case cleanup code.
1547  */
1548 
1549 int unregister_netdevice_notifier(struct notifier_block *nb)
1550 {
1551 	struct net_device *dev;
1552 	struct net *net;
1553 	int err;
1554 
1555 	rtnl_lock();
1556 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1557 	if (err)
1558 		goto unlock;
1559 
1560 	for_each_net(net) {
1561 		for_each_netdev(net, dev) {
1562 			if (dev->flags & IFF_UP) {
1563 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1564 							dev);
1565 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1566 			}
1567 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1568 		}
1569 	}
1570 unlock:
1571 	rtnl_unlock();
1572 	return err;
1573 }
1574 EXPORT_SYMBOL(unregister_netdevice_notifier);
1575 
1576 /**
1577  *	call_netdevice_notifiers_info - call all network notifier blocks
1578  *	@val: value passed unmodified to notifier function
1579  *	@dev: net_device pointer passed unmodified to notifier function
1580  *	@info: notifier information data
1581  *
1582  *	Call all network notifier blocks.  Parameters and return value
1583  *	are as for raw_notifier_call_chain().
1584  */
1585 
1586 static int call_netdevice_notifiers_info(unsigned long val,
1587 					 struct net_device *dev,
1588 					 struct netdev_notifier_info *info)
1589 {
1590 	ASSERT_RTNL();
1591 	netdev_notifier_info_init(info, dev);
1592 	return raw_notifier_call_chain(&netdev_chain, val, info);
1593 }
1594 
1595 /**
1596  *	call_netdevice_notifiers - call all network notifier blocks
1597  *      @val: value passed unmodified to notifier function
1598  *      @dev: net_device pointer passed unmodified to notifier function
1599  *
1600  *	Call all network notifier blocks.  Parameters and return value
1601  *	are as for raw_notifier_call_chain().
1602  */
1603 
1604 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1605 {
1606 	struct netdev_notifier_info info;
1607 
1608 	return call_netdevice_notifiers_info(val, dev, &info);
1609 }
1610 EXPORT_SYMBOL(call_netdevice_notifiers);
1611 
1612 static struct static_key netstamp_needed __read_mostly;
1613 #ifdef HAVE_JUMP_LABEL
1614 /* We are not allowed to call static_key_slow_dec() from irq context
1615  * If net_disable_timestamp() is called from irq context, defer the
1616  * static_key_slow_dec() calls.
1617  */
1618 static atomic_t netstamp_needed_deferred;
1619 #endif
1620 
1621 void net_enable_timestamp(void)
1622 {
1623 #ifdef HAVE_JUMP_LABEL
1624 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1625 
1626 	if (deferred) {
1627 		while (--deferred)
1628 			static_key_slow_dec(&netstamp_needed);
1629 		return;
1630 	}
1631 #endif
1632 	static_key_slow_inc(&netstamp_needed);
1633 }
1634 EXPORT_SYMBOL(net_enable_timestamp);
1635 
1636 void net_disable_timestamp(void)
1637 {
1638 #ifdef HAVE_JUMP_LABEL
1639 	if (in_interrupt()) {
1640 		atomic_inc(&netstamp_needed_deferred);
1641 		return;
1642 	}
1643 #endif
1644 	static_key_slow_dec(&netstamp_needed);
1645 }
1646 EXPORT_SYMBOL(net_disable_timestamp);
1647 
1648 static inline void net_timestamp_set(struct sk_buff *skb)
1649 {
1650 	skb->tstamp.tv64 = 0;
1651 	if (static_key_false(&netstamp_needed))
1652 		__net_timestamp(skb);
1653 }
1654 
1655 #define net_timestamp_check(COND, SKB)			\
1656 	if (static_key_false(&netstamp_needed)) {		\
1657 		if ((COND) && !(SKB)->tstamp.tv64)	\
1658 			__net_timestamp(SKB);		\
1659 	}						\
1660 
1661 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1662 {
1663 	unsigned int len;
1664 
1665 	if (!(dev->flags & IFF_UP))
1666 		return false;
1667 
1668 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1669 	if (skb->len <= len)
1670 		return true;
1671 
1672 	/* if TSO is enabled, we don't care about the length as the packet
1673 	 * could be forwarded without being segmented before
1674 	 */
1675 	if (skb_is_gso(skb))
1676 		return true;
1677 
1678 	return false;
1679 }
1680 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1681 
1682 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683 {
1684 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686 			atomic_long_inc(&dev->rx_dropped);
1687 			kfree_skb(skb);
1688 			return NET_RX_DROP;
1689 		}
1690 	}
1691 
1692 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1693 		atomic_long_inc(&dev->rx_dropped);
1694 		kfree_skb(skb);
1695 		return NET_RX_DROP;
1696 	}
1697 
1698 	skb_scrub_packet(skb, true);
1699 	skb->protocol = eth_type_trans(skb, dev);
1700 
1701 	return 0;
1702 }
1703 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1704 
1705 /**
1706  * dev_forward_skb - loopback an skb to another netif
1707  *
1708  * @dev: destination network device
1709  * @skb: buffer to forward
1710  *
1711  * return values:
1712  *	NET_RX_SUCCESS	(no congestion)
1713  *	NET_RX_DROP     (packet was dropped, but freed)
1714  *
1715  * dev_forward_skb can be used for injecting an skb from the
1716  * start_xmit function of one device into the receive queue
1717  * of another device.
1718  *
1719  * The receiving device may be in another namespace, so
1720  * we have to clear all information in the skb that could
1721  * impact namespace isolation.
1722  */
1723 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1724 {
1725 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1726 }
1727 EXPORT_SYMBOL_GPL(dev_forward_skb);
1728 
1729 static inline int deliver_skb(struct sk_buff *skb,
1730 			      struct packet_type *pt_prev,
1731 			      struct net_device *orig_dev)
1732 {
1733 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1734 		return -ENOMEM;
1735 	atomic_inc(&skb->users);
1736 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1737 }
1738 
1739 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1740 {
1741 	if (!ptype->af_packet_priv || !skb->sk)
1742 		return false;
1743 
1744 	if (ptype->id_match)
1745 		return ptype->id_match(ptype, skb->sk);
1746 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1747 		return true;
1748 
1749 	return false;
1750 }
1751 
1752 /*
1753  *	Support routine. Sends outgoing frames to any network
1754  *	taps currently in use.
1755  */
1756 
1757 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1758 {
1759 	struct packet_type *ptype;
1760 	struct sk_buff *skb2 = NULL;
1761 	struct packet_type *pt_prev = NULL;
1762 
1763 	rcu_read_lock();
1764 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1765 		/* Never send packets back to the socket
1766 		 * they originated from - MvS (miquels@drinkel.ow.org)
1767 		 */
1768 		if ((ptype->dev == dev || !ptype->dev) &&
1769 		    (!skb_loop_sk(ptype, skb))) {
1770 			if (pt_prev) {
1771 				deliver_skb(skb2, pt_prev, skb->dev);
1772 				pt_prev = ptype;
1773 				continue;
1774 			}
1775 
1776 			skb2 = skb_clone(skb, GFP_ATOMIC);
1777 			if (!skb2)
1778 				break;
1779 
1780 			net_timestamp_set(skb2);
1781 
1782 			/* skb->nh should be correctly
1783 			   set by sender, so that the second statement is
1784 			   just protection against buggy protocols.
1785 			 */
1786 			skb_reset_mac_header(skb2);
1787 
1788 			if (skb_network_header(skb2) < skb2->data ||
1789 			    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1790 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1791 						     ntohs(skb2->protocol),
1792 						     dev->name);
1793 				skb_reset_network_header(skb2);
1794 			}
1795 
1796 			skb2->transport_header = skb2->network_header;
1797 			skb2->pkt_type = PACKET_OUTGOING;
1798 			pt_prev = ptype;
1799 		}
1800 	}
1801 	if (pt_prev)
1802 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1803 	rcu_read_unlock();
1804 }
1805 
1806 /**
1807  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1808  * @dev: Network device
1809  * @txq: number of queues available
1810  *
1811  * If real_num_tx_queues is changed the tc mappings may no longer be
1812  * valid. To resolve this verify the tc mapping remains valid and if
1813  * not NULL the mapping. With no priorities mapping to this
1814  * offset/count pair it will no longer be used. In the worst case TC0
1815  * is invalid nothing can be done so disable priority mappings. If is
1816  * expected that drivers will fix this mapping if they can before
1817  * calling netif_set_real_num_tx_queues.
1818  */
1819 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1820 {
1821 	int i;
1822 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1823 
1824 	/* If TC0 is invalidated disable TC mapping */
1825 	if (tc->offset + tc->count > txq) {
1826 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1827 		dev->num_tc = 0;
1828 		return;
1829 	}
1830 
1831 	/* Invalidated prio to tc mappings set to TC0 */
1832 	for (i = 1; i < TC_BITMASK + 1; i++) {
1833 		int q = netdev_get_prio_tc_map(dev, i);
1834 
1835 		tc = &dev->tc_to_txq[q];
1836 		if (tc->offset + tc->count > txq) {
1837 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1838 				i, q);
1839 			netdev_set_prio_tc_map(dev, i, 0);
1840 		}
1841 	}
1842 }
1843 
1844 #ifdef CONFIG_XPS
1845 static DEFINE_MUTEX(xps_map_mutex);
1846 #define xmap_dereference(P)		\
1847 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1848 
1849 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1850 					int cpu, u16 index)
1851 {
1852 	struct xps_map *map = NULL;
1853 	int pos;
1854 
1855 	if (dev_maps)
1856 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1857 
1858 	for (pos = 0; map && pos < map->len; pos++) {
1859 		if (map->queues[pos] == index) {
1860 			if (map->len > 1) {
1861 				map->queues[pos] = map->queues[--map->len];
1862 			} else {
1863 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1864 				kfree_rcu(map, rcu);
1865 				map = NULL;
1866 			}
1867 			break;
1868 		}
1869 	}
1870 
1871 	return map;
1872 }
1873 
1874 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1875 {
1876 	struct xps_dev_maps *dev_maps;
1877 	int cpu, i;
1878 	bool active = false;
1879 
1880 	mutex_lock(&xps_map_mutex);
1881 	dev_maps = xmap_dereference(dev->xps_maps);
1882 
1883 	if (!dev_maps)
1884 		goto out_no_maps;
1885 
1886 	for_each_possible_cpu(cpu) {
1887 		for (i = index; i < dev->num_tx_queues; i++) {
1888 			if (!remove_xps_queue(dev_maps, cpu, i))
1889 				break;
1890 		}
1891 		if (i == dev->num_tx_queues)
1892 			active = true;
1893 	}
1894 
1895 	if (!active) {
1896 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1897 		kfree_rcu(dev_maps, rcu);
1898 	}
1899 
1900 	for (i = index; i < dev->num_tx_queues; i++)
1901 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1902 					     NUMA_NO_NODE);
1903 
1904 out_no_maps:
1905 	mutex_unlock(&xps_map_mutex);
1906 }
1907 
1908 static struct xps_map *expand_xps_map(struct xps_map *map,
1909 				      int cpu, u16 index)
1910 {
1911 	struct xps_map *new_map;
1912 	int alloc_len = XPS_MIN_MAP_ALLOC;
1913 	int i, pos;
1914 
1915 	for (pos = 0; map && pos < map->len; pos++) {
1916 		if (map->queues[pos] != index)
1917 			continue;
1918 		return map;
1919 	}
1920 
1921 	/* Need to add queue to this CPU's existing map */
1922 	if (map) {
1923 		if (pos < map->alloc_len)
1924 			return map;
1925 
1926 		alloc_len = map->alloc_len * 2;
1927 	}
1928 
1929 	/* Need to allocate new map to store queue on this CPU's map */
1930 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1931 			       cpu_to_node(cpu));
1932 	if (!new_map)
1933 		return NULL;
1934 
1935 	for (i = 0; i < pos; i++)
1936 		new_map->queues[i] = map->queues[i];
1937 	new_map->alloc_len = alloc_len;
1938 	new_map->len = pos;
1939 
1940 	return new_map;
1941 }
1942 
1943 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1944 			u16 index)
1945 {
1946 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1947 	struct xps_map *map, *new_map;
1948 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1949 	int cpu, numa_node_id = -2;
1950 	bool active = false;
1951 
1952 	mutex_lock(&xps_map_mutex);
1953 
1954 	dev_maps = xmap_dereference(dev->xps_maps);
1955 
1956 	/* allocate memory for queue storage */
1957 	for_each_online_cpu(cpu) {
1958 		if (!cpumask_test_cpu(cpu, mask))
1959 			continue;
1960 
1961 		if (!new_dev_maps)
1962 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1963 		if (!new_dev_maps) {
1964 			mutex_unlock(&xps_map_mutex);
1965 			return -ENOMEM;
1966 		}
1967 
1968 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1969 				 NULL;
1970 
1971 		map = expand_xps_map(map, cpu, index);
1972 		if (!map)
1973 			goto error;
1974 
1975 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1976 	}
1977 
1978 	if (!new_dev_maps)
1979 		goto out_no_new_maps;
1980 
1981 	for_each_possible_cpu(cpu) {
1982 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1983 			/* add queue to CPU maps */
1984 			int pos = 0;
1985 
1986 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1987 			while ((pos < map->len) && (map->queues[pos] != index))
1988 				pos++;
1989 
1990 			if (pos == map->len)
1991 				map->queues[map->len++] = index;
1992 #ifdef CONFIG_NUMA
1993 			if (numa_node_id == -2)
1994 				numa_node_id = cpu_to_node(cpu);
1995 			else if (numa_node_id != cpu_to_node(cpu))
1996 				numa_node_id = -1;
1997 #endif
1998 		} else if (dev_maps) {
1999 			/* fill in the new device map from the old device map */
2000 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2001 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2002 		}
2003 
2004 	}
2005 
2006 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2007 
2008 	/* Cleanup old maps */
2009 	if (dev_maps) {
2010 		for_each_possible_cpu(cpu) {
2011 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2012 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2013 			if (map && map != new_map)
2014 				kfree_rcu(map, rcu);
2015 		}
2016 
2017 		kfree_rcu(dev_maps, rcu);
2018 	}
2019 
2020 	dev_maps = new_dev_maps;
2021 	active = true;
2022 
2023 out_no_new_maps:
2024 	/* update Tx queue numa node */
2025 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2026 				     (numa_node_id >= 0) ? numa_node_id :
2027 				     NUMA_NO_NODE);
2028 
2029 	if (!dev_maps)
2030 		goto out_no_maps;
2031 
2032 	/* removes queue from unused CPUs */
2033 	for_each_possible_cpu(cpu) {
2034 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2035 			continue;
2036 
2037 		if (remove_xps_queue(dev_maps, cpu, index))
2038 			active = true;
2039 	}
2040 
2041 	/* free map if not active */
2042 	if (!active) {
2043 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2044 		kfree_rcu(dev_maps, rcu);
2045 	}
2046 
2047 out_no_maps:
2048 	mutex_unlock(&xps_map_mutex);
2049 
2050 	return 0;
2051 error:
2052 	/* remove any maps that we added */
2053 	for_each_possible_cpu(cpu) {
2054 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2055 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056 				 NULL;
2057 		if (new_map && new_map != map)
2058 			kfree(new_map);
2059 	}
2060 
2061 	mutex_unlock(&xps_map_mutex);
2062 
2063 	kfree(new_dev_maps);
2064 	return -ENOMEM;
2065 }
2066 EXPORT_SYMBOL(netif_set_xps_queue);
2067 
2068 #endif
2069 /*
2070  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2071  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2072  */
2073 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2074 {
2075 	int rc;
2076 
2077 	if (txq < 1 || txq > dev->num_tx_queues)
2078 		return -EINVAL;
2079 
2080 	if (dev->reg_state == NETREG_REGISTERED ||
2081 	    dev->reg_state == NETREG_UNREGISTERING) {
2082 		ASSERT_RTNL();
2083 
2084 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2085 						  txq);
2086 		if (rc)
2087 			return rc;
2088 
2089 		if (dev->num_tc)
2090 			netif_setup_tc(dev, txq);
2091 
2092 		if (txq < dev->real_num_tx_queues) {
2093 			qdisc_reset_all_tx_gt(dev, txq);
2094 #ifdef CONFIG_XPS
2095 			netif_reset_xps_queues_gt(dev, txq);
2096 #endif
2097 		}
2098 	}
2099 
2100 	dev->real_num_tx_queues = txq;
2101 	return 0;
2102 }
2103 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2104 
2105 #ifdef CONFIG_SYSFS
2106 /**
2107  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2108  *	@dev: Network device
2109  *	@rxq: Actual number of RX queues
2110  *
2111  *	This must be called either with the rtnl_lock held or before
2112  *	registration of the net device.  Returns 0 on success, or a
2113  *	negative error code.  If called before registration, it always
2114  *	succeeds.
2115  */
2116 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2117 {
2118 	int rc;
2119 
2120 	if (rxq < 1 || rxq > dev->num_rx_queues)
2121 		return -EINVAL;
2122 
2123 	if (dev->reg_state == NETREG_REGISTERED) {
2124 		ASSERT_RTNL();
2125 
2126 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2127 						  rxq);
2128 		if (rc)
2129 			return rc;
2130 	}
2131 
2132 	dev->real_num_rx_queues = rxq;
2133 	return 0;
2134 }
2135 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2136 #endif
2137 
2138 /**
2139  * netif_get_num_default_rss_queues - default number of RSS queues
2140  *
2141  * This routine should set an upper limit on the number of RSS queues
2142  * used by default by multiqueue devices.
2143  */
2144 int netif_get_num_default_rss_queues(void)
2145 {
2146 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2147 }
2148 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2149 
2150 static inline void __netif_reschedule(struct Qdisc *q)
2151 {
2152 	struct softnet_data *sd;
2153 	unsigned long flags;
2154 
2155 	local_irq_save(flags);
2156 	sd = &__get_cpu_var(softnet_data);
2157 	q->next_sched = NULL;
2158 	*sd->output_queue_tailp = q;
2159 	sd->output_queue_tailp = &q->next_sched;
2160 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2161 	local_irq_restore(flags);
2162 }
2163 
2164 void __netif_schedule(struct Qdisc *q)
2165 {
2166 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2167 		__netif_reschedule(q);
2168 }
2169 EXPORT_SYMBOL(__netif_schedule);
2170 
2171 struct dev_kfree_skb_cb {
2172 	enum skb_free_reason reason;
2173 };
2174 
2175 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2176 {
2177 	return (struct dev_kfree_skb_cb *)skb->cb;
2178 }
2179 
2180 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2181 {
2182 	unsigned long flags;
2183 
2184 	if (likely(atomic_read(&skb->users) == 1)) {
2185 		smp_rmb();
2186 		atomic_set(&skb->users, 0);
2187 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2188 		return;
2189 	}
2190 	get_kfree_skb_cb(skb)->reason = reason;
2191 	local_irq_save(flags);
2192 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2193 	__this_cpu_write(softnet_data.completion_queue, skb);
2194 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2195 	local_irq_restore(flags);
2196 }
2197 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2198 
2199 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2200 {
2201 	if (in_irq() || irqs_disabled())
2202 		__dev_kfree_skb_irq(skb, reason);
2203 	else
2204 		dev_kfree_skb(skb);
2205 }
2206 EXPORT_SYMBOL(__dev_kfree_skb_any);
2207 
2208 
2209 /**
2210  * netif_device_detach - mark device as removed
2211  * @dev: network device
2212  *
2213  * Mark device as removed from system and therefore no longer available.
2214  */
2215 void netif_device_detach(struct net_device *dev)
2216 {
2217 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2218 	    netif_running(dev)) {
2219 		netif_tx_stop_all_queues(dev);
2220 	}
2221 }
2222 EXPORT_SYMBOL(netif_device_detach);
2223 
2224 /**
2225  * netif_device_attach - mark device as attached
2226  * @dev: network device
2227  *
2228  * Mark device as attached from system and restart if needed.
2229  */
2230 void netif_device_attach(struct net_device *dev)
2231 {
2232 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2233 	    netif_running(dev)) {
2234 		netif_tx_wake_all_queues(dev);
2235 		__netdev_watchdog_up(dev);
2236 	}
2237 }
2238 EXPORT_SYMBOL(netif_device_attach);
2239 
2240 static void skb_warn_bad_offload(const struct sk_buff *skb)
2241 {
2242 	static const netdev_features_t null_features = 0;
2243 	struct net_device *dev = skb->dev;
2244 	const char *driver = "";
2245 
2246 	if (!net_ratelimit())
2247 		return;
2248 
2249 	if (dev && dev->dev.parent)
2250 		driver = dev_driver_string(dev->dev.parent);
2251 
2252 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2253 	     "gso_type=%d ip_summed=%d\n",
2254 	     driver, dev ? &dev->features : &null_features,
2255 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2256 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2257 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2258 }
2259 
2260 /*
2261  * Invalidate hardware checksum when packet is to be mangled, and
2262  * complete checksum manually on outgoing path.
2263  */
2264 int skb_checksum_help(struct sk_buff *skb)
2265 {
2266 	__wsum csum;
2267 	int ret = 0, offset;
2268 
2269 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2270 		goto out_set_summed;
2271 
2272 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2273 		skb_warn_bad_offload(skb);
2274 		return -EINVAL;
2275 	}
2276 
2277 	/* Before computing a checksum, we should make sure no frag could
2278 	 * be modified by an external entity : checksum could be wrong.
2279 	 */
2280 	if (skb_has_shared_frag(skb)) {
2281 		ret = __skb_linearize(skb);
2282 		if (ret)
2283 			goto out;
2284 	}
2285 
2286 	offset = skb_checksum_start_offset(skb);
2287 	BUG_ON(offset >= skb_headlen(skb));
2288 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2289 
2290 	offset += skb->csum_offset;
2291 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2292 
2293 	if (skb_cloned(skb) &&
2294 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2295 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2296 		if (ret)
2297 			goto out;
2298 	}
2299 
2300 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2301 out_set_summed:
2302 	skb->ip_summed = CHECKSUM_NONE;
2303 out:
2304 	return ret;
2305 }
2306 EXPORT_SYMBOL(skb_checksum_help);
2307 
2308 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2309 {
2310 	unsigned int vlan_depth = skb->mac_len;
2311 	__be16 type = skb->protocol;
2312 
2313 	/* Tunnel gso handlers can set protocol to ethernet. */
2314 	if (type == htons(ETH_P_TEB)) {
2315 		struct ethhdr *eth;
2316 
2317 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2318 			return 0;
2319 
2320 		eth = (struct ethhdr *)skb_mac_header(skb);
2321 		type = eth->h_proto;
2322 	}
2323 
2324 	/* if skb->protocol is 802.1Q/AD then the header should already be
2325 	 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2326 	 * ETH_HLEN otherwise
2327 	 */
2328 	if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2329 		if (vlan_depth) {
2330 			if (WARN_ON(vlan_depth < VLAN_HLEN))
2331 				return 0;
2332 			vlan_depth -= VLAN_HLEN;
2333 		} else {
2334 			vlan_depth = ETH_HLEN;
2335 		}
2336 		do {
2337 			struct vlan_hdr *vh;
2338 
2339 			if (unlikely(!pskb_may_pull(skb,
2340 						    vlan_depth + VLAN_HLEN)))
2341 				return 0;
2342 
2343 			vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2344 			type = vh->h_vlan_encapsulated_proto;
2345 			vlan_depth += VLAN_HLEN;
2346 		} while (type == htons(ETH_P_8021Q) ||
2347 			 type == htons(ETH_P_8021AD));
2348 	}
2349 
2350 	*depth = vlan_depth;
2351 
2352 	return type;
2353 }
2354 
2355 /**
2356  *	skb_mac_gso_segment - mac layer segmentation handler.
2357  *	@skb: buffer to segment
2358  *	@features: features for the output path (see dev->features)
2359  */
2360 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2361 				    netdev_features_t features)
2362 {
2363 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2364 	struct packet_offload *ptype;
2365 	int vlan_depth = skb->mac_len;
2366 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2367 
2368 	if (unlikely(!type))
2369 		return ERR_PTR(-EINVAL);
2370 
2371 	__skb_pull(skb, vlan_depth);
2372 
2373 	rcu_read_lock();
2374 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2375 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2376 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2377 				int err;
2378 
2379 				err = ptype->callbacks.gso_send_check(skb);
2380 				segs = ERR_PTR(err);
2381 				if (err || skb_gso_ok(skb, features))
2382 					break;
2383 				__skb_push(skb, (skb->data -
2384 						 skb_network_header(skb)));
2385 			}
2386 			segs = ptype->callbacks.gso_segment(skb, features);
2387 			break;
2388 		}
2389 	}
2390 	rcu_read_unlock();
2391 
2392 	__skb_push(skb, skb->data - skb_mac_header(skb));
2393 
2394 	return segs;
2395 }
2396 EXPORT_SYMBOL(skb_mac_gso_segment);
2397 
2398 
2399 /* openvswitch calls this on rx path, so we need a different check.
2400  */
2401 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2402 {
2403 	if (tx_path)
2404 		return skb->ip_summed != CHECKSUM_PARTIAL;
2405 	else
2406 		return skb->ip_summed == CHECKSUM_NONE;
2407 }
2408 
2409 /**
2410  *	__skb_gso_segment - Perform segmentation on skb.
2411  *	@skb: buffer to segment
2412  *	@features: features for the output path (see dev->features)
2413  *	@tx_path: whether it is called in TX path
2414  *
2415  *	This function segments the given skb and returns a list of segments.
2416  *
2417  *	It may return NULL if the skb requires no segmentation.  This is
2418  *	only possible when GSO is used for verifying header integrity.
2419  */
2420 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2421 				  netdev_features_t features, bool tx_path)
2422 {
2423 	if (unlikely(skb_needs_check(skb, tx_path))) {
2424 		int err;
2425 
2426 		skb_warn_bad_offload(skb);
2427 
2428 		err = skb_cow_head(skb, 0);
2429 		if (err < 0)
2430 			return ERR_PTR(err);
2431 	}
2432 
2433 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2434 	SKB_GSO_CB(skb)->encap_level = 0;
2435 
2436 	skb_reset_mac_header(skb);
2437 	skb_reset_mac_len(skb);
2438 
2439 	return skb_mac_gso_segment(skb, features);
2440 }
2441 EXPORT_SYMBOL(__skb_gso_segment);
2442 
2443 /* Take action when hardware reception checksum errors are detected. */
2444 #ifdef CONFIG_BUG
2445 void netdev_rx_csum_fault(struct net_device *dev)
2446 {
2447 	if (net_ratelimit()) {
2448 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2449 		dump_stack();
2450 	}
2451 }
2452 EXPORT_SYMBOL(netdev_rx_csum_fault);
2453 #endif
2454 
2455 /* Actually, we should eliminate this check as soon as we know, that:
2456  * 1. IOMMU is present and allows to map all the memory.
2457  * 2. No high memory really exists on this machine.
2458  */
2459 
2460 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2461 {
2462 #ifdef CONFIG_HIGHMEM
2463 	int i;
2464 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2465 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2466 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2467 			if (PageHighMem(skb_frag_page(frag)))
2468 				return 1;
2469 		}
2470 	}
2471 
2472 	if (PCI_DMA_BUS_IS_PHYS) {
2473 		struct device *pdev = dev->dev.parent;
2474 
2475 		if (!pdev)
2476 			return 0;
2477 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2478 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2479 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2480 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2481 				return 1;
2482 		}
2483 	}
2484 #endif
2485 	return 0;
2486 }
2487 
2488 struct dev_gso_cb {
2489 	void (*destructor)(struct sk_buff *skb);
2490 };
2491 
2492 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2493 
2494 static void dev_gso_skb_destructor(struct sk_buff *skb)
2495 {
2496 	struct dev_gso_cb *cb;
2497 
2498 	kfree_skb_list(skb->next);
2499 	skb->next = NULL;
2500 
2501 	cb = DEV_GSO_CB(skb);
2502 	if (cb->destructor)
2503 		cb->destructor(skb);
2504 }
2505 
2506 /**
2507  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2508  *	@skb: buffer to segment
2509  *	@features: device features as applicable to this skb
2510  *
2511  *	This function segments the given skb and stores the list of segments
2512  *	in skb->next.
2513  */
2514 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2515 {
2516 	struct sk_buff *segs;
2517 
2518 	segs = skb_gso_segment(skb, features);
2519 
2520 	/* Verifying header integrity only. */
2521 	if (!segs)
2522 		return 0;
2523 
2524 	if (IS_ERR(segs))
2525 		return PTR_ERR(segs);
2526 
2527 	skb->next = segs;
2528 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2529 	skb->destructor = dev_gso_skb_destructor;
2530 
2531 	return 0;
2532 }
2533 
2534 /* If MPLS offload request, verify we are testing hardware MPLS features
2535  * instead of standard features for the netdev.
2536  */
2537 #ifdef CONFIG_NET_MPLS_GSO
2538 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2539 					   netdev_features_t features,
2540 					   __be16 type)
2541 {
2542 	if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2543 		features &= skb->dev->mpls_features;
2544 
2545 	return features;
2546 }
2547 #else
2548 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2549 					   netdev_features_t features,
2550 					   __be16 type)
2551 {
2552 	return features;
2553 }
2554 #endif
2555 
2556 static netdev_features_t harmonize_features(struct sk_buff *skb,
2557 	netdev_features_t features)
2558 {
2559 	int tmp;
2560 	__be16 type;
2561 
2562 	type = skb_network_protocol(skb, &tmp);
2563 	features = net_mpls_features(skb, features, type);
2564 
2565 	if (skb->ip_summed != CHECKSUM_NONE &&
2566 	    !can_checksum_protocol(features, type)) {
2567 		features &= ~NETIF_F_ALL_CSUM;
2568 	} else if (illegal_highdma(skb->dev, skb)) {
2569 		features &= ~NETIF_F_SG;
2570 	}
2571 
2572 	return features;
2573 }
2574 
2575 netdev_features_t netif_skb_features(struct sk_buff *skb)
2576 {
2577 	__be16 protocol = skb->protocol;
2578 	netdev_features_t features = skb->dev->features;
2579 
2580 	if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2581 		features &= ~NETIF_F_GSO_MASK;
2582 
2583 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2584 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2585 		protocol = veh->h_vlan_encapsulated_proto;
2586 	} else if (!vlan_tx_tag_present(skb)) {
2587 		return harmonize_features(skb, features);
2588 	}
2589 
2590 	features = netdev_intersect_features(features,
2591 					     skb->dev->vlan_features |
2592 					     NETIF_F_HW_VLAN_CTAG_TX |
2593 					     NETIF_F_HW_VLAN_STAG_TX);
2594 
2595 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2596 		features = netdev_intersect_features(features,
2597 						     NETIF_F_SG |
2598 						     NETIF_F_HIGHDMA |
2599 						     NETIF_F_FRAGLIST |
2600 						     NETIF_F_GEN_CSUM |
2601 						     NETIF_F_HW_VLAN_CTAG_TX |
2602 						     NETIF_F_HW_VLAN_STAG_TX);
2603 
2604 	return harmonize_features(skb, features);
2605 }
2606 EXPORT_SYMBOL(netif_skb_features);
2607 
2608 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2609 			struct netdev_queue *txq)
2610 {
2611 	const struct net_device_ops *ops = dev->netdev_ops;
2612 	int rc = NETDEV_TX_OK;
2613 	unsigned int skb_len;
2614 
2615 	if (likely(!skb->next)) {
2616 		netdev_features_t features;
2617 
2618 		/*
2619 		 * If device doesn't need skb->dst, release it right now while
2620 		 * its hot in this cpu cache
2621 		 */
2622 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2623 			skb_dst_drop(skb);
2624 
2625 		features = netif_skb_features(skb);
2626 
2627 		if (vlan_tx_tag_present(skb) &&
2628 		    !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2629 			skb = __vlan_put_tag(skb, skb->vlan_proto,
2630 					     vlan_tx_tag_get(skb));
2631 			if (unlikely(!skb))
2632 				goto out;
2633 
2634 			skb->vlan_tci = 0;
2635 		}
2636 
2637 		/* If encapsulation offload request, verify we are testing
2638 		 * hardware encapsulation features instead of standard
2639 		 * features for the netdev
2640 		 */
2641 		if (skb->encapsulation)
2642 			features &= dev->hw_enc_features;
2643 
2644 		if (netif_needs_gso(skb, features)) {
2645 			if (unlikely(dev_gso_segment(skb, features)))
2646 				goto out_kfree_skb;
2647 			if (skb->next)
2648 				goto gso;
2649 		} else {
2650 			if (skb_needs_linearize(skb, features) &&
2651 			    __skb_linearize(skb))
2652 				goto out_kfree_skb;
2653 
2654 			/* If packet is not checksummed and device does not
2655 			 * support checksumming for this protocol, complete
2656 			 * checksumming here.
2657 			 */
2658 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2659 				if (skb->encapsulation)
2660 					skb_set_inner_transport_header(skb,
2661 						skb_checksum_start_offset(skb));
2662 				else
2663 					skb_set_transport_header(skb,
2664 						skb_checksum_start_offset(skb));
2665 				if (!(features & NETIF_F_ALL_CSUM) &&
2666 				     skb_checksum_help(skb))
2667 					goto out_kfree_skb;
2668 			}
2669 		}
2670 
2671 		if (!list_empty(&ptype_all))
2672 			dev_queue_xmit_nit(skb, dev);
2673 
2674 		skb_len = skb->len;
2675 		trace_net_dev_start_xmit(skb, dev);
2676 		rc = ops->ndo_start_xmit(skb, dev);
2677 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2678 		if (rc == NETDEV_TX_OK)
2679 			txq_trans_update(txq);
2680 		return rc;
2681 	}
2682 
2683 gso:
2684 	do {
2685 		struct sk_buff *nskb = skb->next;
2686 
2687 		skb->next = nskb->next;
2688 		nskb->next = NULL;
2689 
2690 		if (!list_empty(&ptype_all))
2691 			dev_queue_xmit_nit(nskb, dev);
2692 
2693 		skb_len = nskb->len;
2694 		trace_net_dev_start_xmit(nskb, dev);
2695 		rc = ops->ndo_start_xmit(nskb, dev);
2696 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2697 		if (unlikely(rc != NETDEV_TX_OK)) {
2698 			if (rc & ~NETDEV_TX_MASK)
2699 				goto out_kfree_gso_skb;
2700 			nskb->next = skb->next;
2701 			skb->next = nskb;
2702 			return rc;
2703 		}
2704 		txq_trans_update(txq);
2705 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2706 			return NETDEV_TX_BUSY;
2707 	} while (skb->next);
2708 
2709 out_kfree_gso_skb:
2710 	if (likely(skb->next == NULL)) {
2711 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2712 		consume_skb(skb);
2713 		return rc;
2714 	}
2715 out_kfree_skb:
2716 	kfree_skb(skb);
2717 out:
2718 	return rc;
2719 }
2720 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2721 
2722 static void qdisc_pkt_len_init(struct sk_buff *skb)
2723 {
2724 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2725 
2726 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2727 
2728 	/* To get more precise estimation of bytes sent on wire,
2729 	 * we add to pkt_len the headers size of all segments
2730 	 */
2731 	if (shinfo->gso_size)  {
2732 		unsigned int hdr_len;
2733 		u16 gso_segs = shinfo->gso_segs;
2734 
2735 		/* mac layer + network layer */
2736 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2737 
2738 		/* + transport layer */
2739 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2740 			hdr_len += tcp_hdrlen(skb);
2741 		else
2742 			hdr_len += sizeof(struct udphdr);
2743 
2744 		if (shinfo->gso_type & SKB_GSO_DODGY)
2745 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2746 						shinfo->gso_size);
2747 
2748 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2749 	}
2750 }
2751 
2752 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2753 				 struct net_device *dev,
2754 				 struct netdev_queue *txq)
2755 {
2756 	spinlock_t *root_lock = qdisc_lock(q);
2757 	bool contended;
2758 	int rc;
2759 
2760 	qdisc_pkt_len_init(skb);
2761 	qdisc_calculate_pkt_len(skb, q);
2762 	/*
2763 	 * Heuristic to force contended enqueues to serialize on a
2764 	 * separate lock before trying to get qdisc main lock.
2765 	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2766 	 * often and dequeue packets faster.
2767 	 */
2768 	contended = qdisc_is_running(q);
2769 	if (unlikely(contended))
2770 		spin_lock(&q->busylock);
2771 
2772 	spin_lock(root_lock);
2773 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2774 		kfree_skb(skb);
2775 		rc = NET_XMIT_DROP;
2776 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2777 		   qdisc_run_begin(q)) {
2778 		/*
2779 		 * This is a work-conserving queue; there are no old skbs
2780 		 * waiting to be sent out; and the qdisc is not running -
2781 		 * xmit the skb directly.
2782 		 */
2783 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2784 			skb_dst_force(skb);
2785 
2786 		qdisc_bstats_update(q, skb);
2787 
2788 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2789 			if (unlikely(contended)) {
2790 				spin_unlock(&q->busylock);
2791 				contended = false;
2792 			}
2793 			__qdisc_run(q);
2794 		} else
2795 			qdisc_run_end(q);
2796 
2797 		rc = NET_XMIT_SUCCESS;
2798 	} else {
2799 		skb_dst_force(skb);
2800 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2801 		if (qdisc_run_begin(q)) {
2802 			if (unlikely(contended)) {
2803 				spin_unlock(&q->busylock);
2804 				contended = false;
2805 			}
2806 			__qdisc_run(q);
2807 		}
2808 	}
2809 	spin_unlock(root_lock);
2810 	if (unlikely(contended))
2811 		spin_unlock(&q->busylock);
2812 	return rc;
2813 }
2814 
2815 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2816 static void skb_update_prio(struct sk_buff *skb)
2817 {
2818 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2819 
2820 	if (!skb->priority && skb->sk && map) {
2821 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2822 
2823 		if (prioidx < map->priomap_len)
2824 			skb->priority = map->priomap[prioidx];
2825 	}
2826 }
2827 #else
2828 #define skb_update_prio(skb)
2829 #endif
2830 
2831 static DEFINE_PER_CPU(int, xmit_recursion);
2832 #define RECURSION_LIMIT 10
2833 
2834 /**
2835  *	dev_loopback_xmit - loop back @skb
2836  *	@skb: buffer to transmit
2837  */
2838 int dev_loopback_xmit(struct sk_buff *skb)
2839 {
2840 	skb_reset_mac_header(skb);
2841 	__skb_pull(skb, skb_network_offset(skb));
2842 	skb->pkt_type = PACKET_LOOPBACK;
2843 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2844 	WARN_ON(!skb_dst(skb));
2845 	skb_dst_force(skb);
2846 	netif_rx_ni(skb);
2847 	return 0;
2848 }
2849 EXPORT_SYMBOL(dev_loopback_xmit);
2850 
2851 /**
2852  *	__dev_queue_xmit - transmit a buffer
2853  *	@skb: buffer to transmit
2854  *	@accel_priv: private data used for L2 forwarding offload
2855  *
2856  *	Queue a buffer for transmission to a network device. The caller must
2857  *	have set the device and priority and built the buffer before calling
2858  *	this function. The function can be called from an interrupt.
2859  *
2860  *	A negative errno code is returned on a failure. A success does not
2861  *	guarantee the frame will be transmitted as it may be dropped due
2862  *	to congestion or traffic shaping.
2863  *
2864  * -----------------------------------------------------------------------------------
2865  *      I notice this method can also return errors from the queue disciplines,
2866  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2867  *      be positive.
2868  *
2869  *      Regardless of the return value, the skb is consumed, so it is currently
2870  *      difficult to retry a send to this method.  (You can bump the ref count
2871  *      before sending to hold a reference for retry if you are careful.)
2872  *
2873  *      When calling this method, interrupts MUST be enabled.  This is because
2874  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2875  *          --BLG
2876  */
2877 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2878 {
2879 	struct net_device *dev = skb->dev;
2880 	struct netdev_queue *txq;
2881 	struct Qdisc *q;
2882 	int rc = -ENOMEM;
2883 
2884 	skb_reset_mac_header(skb);
2885 
2886 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2887 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2888 
2889 	/* Disable soft irqs for various locks below. Also
2890 	 * stops preemption for RCU.
2891 	 */
2892 	rcu_read_lock_bh();
2893 
2894 	skb_update_prio(skb);
2895 
2896 	txq = netdev_pick_tx(dev, skb, accel_priv);
2897 	q = rcu_dereference_bh(txq->qdisc);
2898 
2899 #ifdef CONFIG_NET_CLS_ACT
2900 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2901 #endif
2902 	trace_net_dev_queue(skb);
2903 	if (q->enqueue) {
2904 		rc = __dev_xmit_skb(skb, q, dev, txq);
2905 		goto out;
2906 	}
2907 
2908 	/* The device has no queue. Common case for software devices:
2909 	   loopback, all the sorts of tunnels...
2910 
2911 	   Really, it is unlikely that netif_tx_lock protection is necessary
2912 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2913 	   counters.)
2914 	   However, it is possible, that they rely on protection
2915 	   made by us here.
2916 
2917 	   Check this and shot the lock. It is not prone from deadlocks.
2918 	   Either shot noqueue qdisc, it is even simpler 8)
2919 	 */
2920 	if (dev->flags & IFF_UP) {
2921 		int cpu = smp_processor_id(); /* ok because BHs are off */
2922 
2923 		if (txq->xmit_lock_owner != cpu) {
2924 
2925 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2926 				goto recursion_alert;
2927 
2928 			HARD_TX_LOCK(dev, txq, cpu);
2929 
2930 			if (!netif_xmit_stopped(txq)) {
2931 				__this_cpu_inc(xmit_recursion);
2932 				rc = dev_hard_start_xmit(skb, dev, txq);
2933 				__this_cpu_dec(xmit_recursion);
2934 				if (dev_xmit_complete(rc)) {
2935 					HARD_TX_UNLOCK(dev, txq);
2936 					goto out;
2937 				}
2938 			}
2939 			HARD_TX_UNLOCK(dev, txq);
2940 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2941 					     dev->name);
2942 		} else {
2943 			/* Recursion is detected! It is possible,
2944 			 * unfortunately
2945 			 */
2946 recursion_alert:
2947 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2948 					     dev->name);
2949 		}
2950 	}
2951 
2952 	rc = -ENETDOWN;
2953 	rcu_read_unlock_bh();
2954 
2955 	atomic_long_inc(&dev->tx_dropped);
2956 	kfree_skb(skb);
2957 	return rc;
2958 out:
2959 	rcu_read_unlock_bh();
2960 	return rc;
2961 }
2962 
2963 int dev_queue_xmit(struct sk_buff *skb)
2964 {
2965 	return __dev_queue_xmit(skb, NULL);
2966 }
2967 EXPORT_SYMBOL(dev_queue_xmit);
2968 
2969 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2970 {
2971 	return __dev_queue_xmit(skb, accel_priv);
2972 }
2973 EXPORT_SYMBOL(dev_queue_xmit_accel);
2974 
2975 
2976 /*=======================================================================
2977 			Receiver routines
2978   =======================================================================*/
2979 
2980 int netdev_max_backlog __read_mostly = 1000;
2981 EXPORT_SYMBOL(netdev_max_backlog);
2982 
2983 int netdev_tstamp_prequeue __read_mostly = 1;
2984 int netdev_budget __read_mostly = 300;
2985 int weight_p __read_mostly = 64;            /* old backlog weight */
2986 
2987 /* Called with irq disabled */
2988 static inline void ____napi_schedule(struct softnet_data *sd,
2989 				     struct napi_struct *napi)
2990 {
2991 	list_add_tail(&napi->poll_list, &sd->poll_list);
2992 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2993 }
2994 
2995 #ifdef CONFIG_RPS
2996 
2997 /* One global table that all flow-based protocols share. */
2998 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2999 EXPORT_SYMBOL(rps_sock_flow_table);
3000 
3001 struct static_key rps_needed __read_mostly;
3002 
3003 static struct rps_dev_flow *
3004 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3005 	    struct rps_dev_flow *rflow, u16 next_cpu)
3006 {
3007 	if (next_cpu != RPS_NO_CPU) {
3008 #ifdef CONFIG_RFS_ACCEL
3009 		struct netdev_rx_queue *rxqueue;
3010 		struct rps_dev_flow_table *flow_table;
3011 		struct rps_dev_flow *old_rflow;
3012 		u32 flow_id;
3013 		u16 rxq_index;
3014 		int rc;
3015 
3016 		/* Should we steer this flow to a different hardware queue? */
3017 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3018 		    !(dev->features & NETIF_F_NTUPLE))
3019 			goto out;
3020 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3021 		if (rxq_index == skb_get_rx_queue(skb))
3022 			goto out;
3023 
3024 		rxqueue = dev->_rx + rxq_index;
3025 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3026 		if (!flow_table)
3027 			goto out;
3028 		flow_id = skb_get_hash(skb) & flow_table->mask;
3029 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3030 							rxq_index, flow_id);
3031 		if (rc < 0)
3032 			goto out;
3033 		old_rflow = rflow;
3034 		rflow = &flow_table->flows[flow_id];
3035 		rflow->filter = rc;
3036 		if (old_rflow->filter == rflow->filter)
3037 			old_rflow->filter = RPS_NO_FILTER;
3038 	out:
3039 #endif
3040 		rflow->last_qtail =
3041 			per_cpu(softnet_data, next_cpu).input_queue_head;
3042 	}
3043 
3044 	rflow->cpu = next_cpu;
3045 	return rflow;
3046 }
3047 
3048 /*
3049  * get_rps_cpu is called from netif_receive_skb and returns the target
3050  * CPU from the RPS map of the receiving queue for a given skb.
3051  * rcu_read_lock must be held on entry.
3052  */
3053 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3054 		       struct rps_dev_flow **rflowp)
3055 {
3056 	struct netdev_rx_queue *rxqueue;
3057 	struct rps_map *map;
3058 	struct rps_dev_flow_table *flow_table;
3059 	struct rps_sock_flow_table *sock_flow_table;
3060 	int cpu = -1;
3061 	u16 tcpu;
3062 	u32 hash;
3063 
3064 	if (skb_rx_queue_recorded(skb)) {
3065 		u16 index = skb_get_rx_queue(skb);
3066 		if (unlikely(index >= dev->real_num_rx_queues)) {
3067 			WARN_ONCE(dev->real_num_rx_queues > 1,
3068 				  "%s received packet on queue %u, but number "
3069 				  "of RX queues is %u\n",
3070 				  dev->name, index, dev->real_num_rx_queues);
3071 			goto done;
3072 		}
3073 		rxqueue = dev->_rx + index;
3074 	} else
3075 		rxqueue = dev->_rx;
3076 
3077 	map = rcu_dereference(rxqueue->rps_map);
3078 	if (map) {
3079 		if (map->len == 1 &&
3080 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
3081 			tcpu = map->cpus[0];
3082 			if (cpu_online(tcpu))
3083 				cpu = tcpu;
3084 			goto done;
3085 		}
3086 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3087 		goto done;
3088 	}
3089 
3090 	skb_reset_network_header(skb);
3091 	hash = skb_get_hash(skb);
3092 	if (!hash)
3093 		goto done;
3094 
3095 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3096 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3097 	if (flow_table && sock_flow_table) {
3098 		u16 next_cpu;
3099 		struct rps_dev_flow *rflow;
3100 
3101 		rflow = &flow_table->flows[hash & flow_table->mask];
3102 		tcpu = rflow->cpu;
3103 
3104 		next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3105 
3106 		/*
3107 		 * If the desired CPU (where last recvmsg was done) is
3108 		 * different from current CPU (one in the rx-queue flow
3109 		 * table entry), switch if one of the following holds:
3110 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
3111 		 *   - Current CPU is offline.
3112 		 *   - The current CPU's queue tail has advanced beyond the
3113 		 *     last packet that was enqueued using this table entry.
3114 		 *     This guarantees that all previous packets for the flow
3115 		 *     have been dequeued, thus preserving in order delivery.
3116 		 */
3117 		if (unlikely(tcpu != next_cpu) &&
3118 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3119 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3120 		      rflow->last_qtail)) >= 0)) {
3121 			tcpu = next_cpu;
3122 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3123 		}
3124 
3125 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3126 			*rflowp = rflow;
3127 			cpu = tcpu;
3128 			goto done;
3129 		}
3130 	}
3131 
3132 	if (map) {
3133 		tcpu = map->cpus[((u64) hash * map->len) >> 32];
3134 
3135 		if (cpu_online(tcpu)) {
3136 			cpu = tcpu;
3137 			goto done;
3138 		}
3139 	}
3140 
3141 done:
3142 	return cpu;
3143 }
3144 
3145 #ifdef CONFIG_RFS_ACCEL
3146 
3147 /**
3148  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3149  * @dev: Device on which the filter was set
3150  * @rxq_index: RX queue index
3151  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3152  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3153  *
3154  * Drivers that implement ndo_rx_flow_steer() should periodically call
3155  * this function for each installed filter and remove the filters for
3156  * which it returns %true.
3157  */
3158 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3159 			 u32 flow_id, u16 filter_id)
3160 {
3161 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3162 	struct rps_dev_flow_table *flow_table;
3163 	struct rps_dev_flow *rflow;
3164 	bool expire = true;
3165 	int cpu;
3166 
3167 	rcu_read_lock();
3168 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3169 	if (flow_table && flow_id <= flow_table->mask) {
3170 		rflow = &flow_table->flows[flow_id];
3171 		cpu = ACCESS_ONCE(rflow->cpu);
3172 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3173 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3174 			   rflow->last_qtail) <
3175 		     (int)(10 * flow_table->mask)))
3176 			expire = false;
3177 	}
3178 	rcu_read_unlock();
3179 	return expire;
3180 }
3181 EXPORT_SYMBOL(rps_may_expire_flow);
3182 
3183 #endif /* CONFIG_RFS_ACCEL */
3184 
3185 /* Called from hardirq (IPI) context */
3186 static void rps_trigger_softirq(void *data)
3187 {
3188 	struct softnet_data *sd = data;
3189 
3190 	____napi_schedule(sd, &sd->backlog);
3191 	sd->received_rps++;
3192 }
3193 
3194 #endif /* CONFIG_RPS */
3195 
3196 /*
3197  * Check if this softnet_data structure is another cpu one
3198  * If yes, queue it to our IPI list and return 1
3199  * If no, return 0
3200  */
3201 static int rps_ipi_queued(struct softnet_data *sd)
3202 {
3203 #ifdef CONFIG_RPS
3204 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3205 
3206 	if (sd != mysd) {
3207 		sd->rps_ipi_next = mysd->rps_ipi_list;
3208 		mysd->rps_ipi_list = sd;
3209 
3210 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3211 		return 1;
3212 	}
3213 #endif /* CONFIG_RPS */
3214 	return 0;
3215 }
3216 
3217 #ifdef CONFIG_NET_FLOW_LIMIT
3218 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3219 #endif
3220 
3221 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3222 {
3223 #ifdef CONFIG_NET_FLOW_LIMIT
3224 	struct sd_flow_limit *fl;
3225 	struct softnet_data *sd;
3226 	unsigned int old_flow, new_flow;
3227 
3228 	if (qlen < (netdev_max_backlog >> 1))
3229 		return false;
3230 
3231 	sd = &__get_cpu_var(softnet_data);
3232 
3233 	rcu_read_lock();
3234 	fl = rcu_dereference(sd->flow_limit);
3235 	if (fl) {
3236 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3237 		old_flow = fl->history[fl->history_head];
3238 		fl->history[fl->history_head] = new_flow;
3239 
3240 		fl->history_head++;
3241 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3242 
3243 		if (likely(fl->buckets[old_flow]))
3244 			fl->buckets[old_flow]--;
3245 
3246 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3247 			fl->count++;
3248 			rcu_read_unlock();
3249 			return true;
3250 		}
3251 	}
3252 	rcu_read_unlock();
3253 #endif
3254 	return false;
3255 }
3256 
3257 /*
3258  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3259  * queue (may be a remote CPU queue).
3260  */
3261 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3262 			      unsigned int *qtail)
3263 {
3264 	struct softnet_data *sd;
3265 	unsigned long flags;
3266 	unsigned int qlen;
3267 
3268 	sd = &per_cpu(softnet_data, cpu);
3269 
3270 	local_irq_save(flags);
3271 
3272 	rps_lock(sd);
3273 	qlen = skb_queue_len(&sd->input_pkt_queue);
3274 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3275 		if (skb_queue_len(&sd->input_pkt_queue)) {
3276 enqueue:
3277 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3278 			input_queue_tail_incr_save(sd, qtail);
3279 			rps_unlock(sd);
3280 			local_irq_restore(flags);
3281 			return NET_RX_SUCCESS;
3282 		}
3283 
3284 		/* Schedule NAPI for backlog device
3285 		 * We can use non atomic operation since we own the queue lock
3286 		 */
3287 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3288 			if (!rps_ipi_queued(sd))
3289 				____napi_schedule(sd, &sd->backlog);
3290 		}
3291 		goto enqueue;
3292 	}
3293 
3294 	sd->dropped++;
3295 	rps_unlock(sd);
3296 
3297 	local_irq_restore(flags);
3298 
3299 	atomic_long_inc(&skb->dev->rx_dropped);
3300 	kfree_skb(skb);
3301 	return NET_RX_DROP;
3302 }
3303 
3304 static int netif_rx_internal(struct sk_buff *skb)
3305 {
3306 	int ret;
3307 
3308 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3309 
3310 	trace_netif_rx(skb);
3311 #ifdef CONFIG_RPS
3312 	if (static_key_false(&rps_needed)) {
3313 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3314 		int cpu;
3315 
3316 		preempt_disable();
3317 		rcu_read_lock();
3318 
3319 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3320 		if (cpu < 0)
3321 			cpu = smp_processor_id();
3322 
3323 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3324 
3325 		rcu_read_unlock();
3326 		preempt_enable();
3327 	} else
3328 #endif
3329 	{
3330 		unsigned int qtail;
3331 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3332 		put_cpu();
3333 	}
3334 	return ret;
3335 }
3336 
3337 /**
3338  *	netif_rx	-	post buffer to the network code
3339  *	@skb: buffer to post
3340  *
3341  *	This function receives a packet from a device driver and queues it for
3342  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3343  *	may be dropped during processing for congestion control or by the
3344  *	protocol layers.
3345  *
3346  *	return values:
3347  *	NET_RX_SUCCESS	(no congestion)
3348  *	NET_RX_DROP     (packet was dropped)
3349  *
3350  */
3351 
3352 int netif_rx(struct sk_buff *skb)
3353 {
3354 	trace_netif_rx_entry(skb);
3355 
3356 	return netif_rx_internal(skb);
3357 }
3358 EXPORT_SYMBOL(netif_rx);
3359 
3360 int netif_rx_ni(struct sk_buff *skb)
3361 {
3362 	int err;
3363 
3364 	trace_netif_rx_ni_entry(skb);
3365 
3366 	preempt_disable();
3367 	err = netif_rx_internal(skb);
3368 	if (local_softirq_pending())
3369 		do_softirq();
3370 	preempt_enable();
3371 
3372 	return err;
3373 }
3374 EXPORT_SYMBOL(netif_rx_ni);
3375 
3376 static void net_tx_action(struct softirq_action *h)
3377 {
3378 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3379 
3380 	if (sd->completion_queue) {
3381 		struct sk_buff *clist;
3382 
3383 		local_irq_disable();
3384 		clist = sd->completion_queue;
3385 		sd->completion_queue = NULL;
3386 		local_irq_enable();
3387 
3388 		while (clist) {
3389 			struct sk_buff *skb = clist;
3390 			clist = clist->next;
3391 
3392 			WARN_ON(atomic_read(&skb->users));
3393 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3394 				trace_consume_skb(skb);
3395 			else
3396 				trace_kfree_skb(skb, net_tx_action);
3397 			__kfree_skb(skb);
3398 		}
3399 	}
3400 
3401 	if (sd->output_queue) {
3402 		struct Qdisc *head;
3403 
3404 		local_irq_disable();
3405 		head = sd->output_queue;
3406 		sd->output_queue = NULL;
3407 		sd->output_queue_tailp = &sd->output_queue;
3408 		local_irq_enable();
3409 
3410 		while (head) {
3411 			struct Qdisc *q = head;
3412 			spinlock_t *root_lock;
3413 
3414 			head = head->next_sched;
3415 
3416 			root_lock = qdisc_lock(q);
3417 			if (spin_trylock(root_lock)) {
3418 				smp_mb__before_atomic();
3419 				clear_bit(__QDISC_STATE_SCHED,
3420 					  &q->state);
3421 				qdisc_run(q);
3422 				spin_unlock(root_lock);
3423 			} else {
3424 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3425 					      &q->state)) {
3426 					__netif_reschedule(q);
3427 				} else {
3428 					smp_mb__before_atomic();
3429 					clear_bit(__QDISC_STATE_SCHED,
3430 						  &q->state);
3431 				}
3432 			}
3433 		}
3434 	}
3435 }
3436 
3437 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3438     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3439 /* This hook is defined here for ATM LANE */
3440 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3441 			     unsigned char *addr) __read_mostly;
3442 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3443 #endif
3444 
3445 #ifdef CONFIG_NET_CLS_ACT
3446 /* TODO: Maybe we should just force sch_ingress to be compiled in
3447  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3448  * a compare and 2 stores extra right now if we dont have it on
3449  * but have CONFIG_NET_CLS_ACT
3450  * NOTE: This doesn't stop any functionality; if you dont have
3451  * the ingress scheduler, you just can't add policies on ingress.
3452  *
3453  */
3454 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3455 {
3456 	struct net_device *dev = skb->dev;
3457 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3458 	int result = TC_ACT_OK;
3459 	struct Qdisc *q;
3460 
3461 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3462 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3463 				     skb->skb_iif, dev->ifindex);
3464 		return TC_ACT_SHOT;
3465 	}
3466 
3467 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3468 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3469 
3470 	q = rxq->qdisc;
3471 	if (q != &noop_qdisc) {
3472 		spin_lock(qdisc_lock(q));
3473 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3474 			result = qdisc_enqueue_root(skb, q);
3475 		spin_unlock(qdisc_lock(q));
3476 	}
3477 
3478 	return result;
3479 }
3480 
3481 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3482 					 struct packet_type **pt_prev,
3483 					 int *ret, struct net_device *orig_dev)
3484 {
3485 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3486 
3487 	if (!rxq || rxq->qdisc == &noop_qdisc)
3488 		goto out;
3489 
3490 	if (*pt_prev) {
3491 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3492 		*pt_prev = NULL;
3493 	}
3494 
3495 	switch (ing_filter(skb, rxq)) {
3496 	case TC_ACT_SHOT:
3497 	case TC_ACT_STOLEN:
3498 		kfree_skb(skb);
3499 		return NULL;
3500 	}
3501 
3502 out:
3503 	skb->tc_verd = 0;
3504 	return skb;
3505 }
3506 #endif
3507 
3508 /**
3509  *	netdev_rx_handler_register - register receive handler
3510  *	@dev: device to register a handler for
3511  *	@rx_handler: receive handler to register
3512  *	@rx_handler_data: data pointer that is used by rx handler
3513  *
3514  *	Register a receive handler for a device. This handler will then be
3515  *	called from __netif_receive_skb. A negative errno code is returned
3516  *	on a failure.
3517  *
3518  *	The caller must hold the rtnl_mutex.
3519  *
3520  *	For a general description of rx_handler, see enum rx_handler_result.
3521  */
3522 int netdev_rx_handler_register(struct net_device *dev,
3523 			       rx_handler_func_t *rx_handler,
3524 			       void *rx_handler_data)
3525 {
3526 	ASSERT_RTNL();
3527 
3528 	if (dev->rx_handler)
3529 		return -EBUSY;
3530 
3531 	/* Note: rx_handler_data must be set before rx_handler */
3532 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3533 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3534 
3535 	return 0;
3536 }
3537 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3538 
3539 /**
3540  *	netdev_rx_handler_unregister - unregister receive handler
3541  *	@dev: device to unregister a handler from
3542  *
3543  *	Unregister a receive handler from a device.
3544  *
3545  *	The caller must hold the rtnl_mutex.
3546  */
3547 void netdev_rx_handler_unregister(struct net_device *dev)
3548 {
3549 
3550 	ASSERT_RTNL();
3551 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3552 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3553 	 * section has a guarantee to see a non NULL rx_handler_data
3554 	 * as well.
3555 	 */
3556 	synchronize_net();
3557 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3558 }
3559 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3560 
3561 /*
3562  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3563  * the special handling of PFMEMALLOC skbs.
3564  */
3565 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3566 {
3567 	switch (skb->protocol) {
3568 	case htons(ETH_P_ARP):
3569 	case htons(ETH_P_IP):
3570 	case htons(ETH_P_IPV6):
3571 	case htons(ETH_P_8021Q):
3572 	case htons(ETH_P_8021AD):
3573 		return true;
3574 	default:
3575 		return false;
3576 	}
3577 }
3578 
3579 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3580 {
3581 	struct packet_type *ptype, *pt_prev;
3582 	rx_handler_func_t *rx_handler;
3583 	struct net_device *orig_dev;
3584 	struct net_device *null_or_dev;
3585 	bool deliver_exact = false;
3586 	int ret = NET_RX_DROP;
3587 	__be16 type;
3588 
3589 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3590 
3591 	trace_netif_receive_skb(skb);
3592 
3593 	orig_dev = skb->dev;
3594 
3595 	skb_reset_network_header(skb);
3596 	if (!skb_transport_header_was_set(skb))
3597 		skb_reset_transport_header(skb);
3598 	skb_reset_mac_len(skb);
3599 
3600 	pt_prev = NULL;
3601 
3602 	rcu_read_lock();
3603 
3604 another_round:
3605 	skb->skb_iif = skb->dev->ifindex;
3606 
3607 	__this_cpu_inc(softnet_data.processed);
3608 
3609 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3610 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3611 		skb = skb_vlan_untag(skb);
3612 		if (unlikely(!skb))
3613 			goto unlock;
3614 	}
3615 
3616 #ifdef CONFIG_NET_CLS_ACT
3617 	if (skb->tc_verd & TC_NCLS) {
3618 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3619 		goto ncls;
3620 	}
3621 #endif
3622 
3623 	if (pfmemalloc)
3624 		goto skip_taps;
3625 
3626 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3627 		if (!ptype->dev || ptype->dev == skb->dev) {
3628 			if (pt_prev)
3629 				ret = deliver_skb(skb, pt_prev, orig_dev);
3630 			pt_prev = ptype;
3631 		}
3632 	}
3633 
3634 skip_taps:
3635 #ifdef CONFIG_NET_CLS_ACT
3636 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3637 	if (!skb)
3638 		goto unlock;
3639 ncls:
3640 #endif
3641 
3642 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3643 		goto drop;
3644 
3645 	if (vlan_tx_tag_present(skb)) {
3646 		if (pt_prev) {
3647 			ret = deliver_skb(skb, pt_prev, orig_dev);
3648 			pt_prev = NULL;
3649 		}
3650 		if (vlan_do_receive(&skb))
3651 			goto another_round;
3652 		else if (unlikely(!skb))
3653 			goto unlock;
3654 	}
3655 
3656 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3657 	if (rx_handler) {
3658 		if (pt_prev) {
3659 			ret = deliver_skb(skb, pt_prev, orig_dev);
3660 			pt_prev = NULL;
3661 		}
3662 		switch (rx_handler(&skb)) {
3663 		case RX_HANDLER_CONSUMED:
3664 			ret = NET_RX_SUCCESS;
3665 			goto unlock;
3666 		case RX_HANDLER_ANOTHER:
3667 			goto another_round;
3668 		case RX_HANDLER_EXACT:
3669 			deliver_exact = true;
3670 		case RX_HANDLER_PASS:
3671 			break;
3672 		default:
3673 			BUG();
3674 		}
3675 	}
3676 
3677 	if (unlikely(vlan_tx_tag_present(skb))) {
3678 		if (vlan_tx_tag_get_id(skb))
3679 			skb->pkt_type = PACKET_OTHERHOST;
3680 		/* Note: we might in the future use prio bits
3681 		 * and set skb->priority like in vlan_do_receive()
3682 		 * For the time being, just ignore Priority Code Point
3683 		 */
3684 		skb->vlan_tci = 0;
3685 	}
3686 
3687 	/* deliver only exact match when indicated */
3688 	null_or_dev = deliver_exact ? skb->dev : NULL;
3689 
3690 	type = skb->protocol;
3691 	list_for_each_entry_rcu(ptype,
3692 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3693 		if (ptype->type == type &&
3694 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3695 		     ptype->dev == orig_dev)) {
3696 			if (pt_prev)
3697 				ret = deliver_skb(skb, pt_prev, orig_dev);
3698 			pt_prev = ptype;
3699 		}
3700 	}
3701 
3702 	if (pt_prev) {
3703 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3704 			goto drop;
3705 		else
3706 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3707 	} else {
3708 drop:
3709 		atomic_long_inc(&skb->dev->rx_dropped);
3710 		kfree_skb(skb);
3711 		/* Jamal, now you will not able to escape explaining
3712 		 * me how you were going to use this. :-)
3713 		 */
3714 		ret = NET_RX_DROP;
3715 	}
3716 
3717 unlock:
3718 	rcu_read_unlock();
3719 	return ret;
3720 }
3721 
3722 static int __netif_receive_skb(struct sk_buff *skb)
3723 {
3724 	int ret;
3725 
3726 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3727 		unsigned long pflags = current->flags;
3728 
3729 		/*
3730 		 * PFMEMALLOC skbs are special, they should
3731 		 * - be delivered to SOCK_MEMALLOC sockets only
3732 		 * - stay away from userspace
3733 		 * - have bounded memory usage
3734 		 *
3735 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3736 		 * context down to all allocation sites.
3737 		 */
3738 		current->flags |= PF_MEMALLOC;
3739 		ret = __netif_receive_skb_core(skb, true);
3740 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3741 	} else
3742 		ret = __netif_receive_skb_core(skb, false);
3743 
3744 	return ret;
3745 }
3746 
3747 static int netif_receive_skb_internal(struct sk_buff *skb)
3748 {
3749 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3750 
3751 	if (skb_defer_rx_timestamp(skb))
3752 		return NET_RX_SUCCESS;
3753 
3754 #ifdef CONFIG_RPS
3755 	if (static_key_false(&rps_needed)) {
3756 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3757 		int cpu, ret;
3758 
3759 		rcu_read_lock();
3760 
3761 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3762 
3763 		if (cpu >= 0) {
3764 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3765 			rcu_read_unlock();
3766 			return ret;
3767 		}
3768 		rcu_read_unlock();
3769 	}
3770 #endif
3771 	return __netif_receive_skb(skb);
3772 }
3773 
3774 /**
3775  *	netif_receive_skb - process receive buffer from network
3776  *	@skb: buffer to process
3777  *
3778  *	netif_receive_skb() is the main receive data processing function.
3779  *	It always succeeds. The buffer may be dropped during processing
3780  *	for congestion control or by the protocol layers.
3781  *
3782  *	This function may only be called from softirq context and interrupts
3783  *	should be enabled.
3784  *
3785  *	Return values (usually ignored):
3786  *	NET_RX_SUCCESS: no congestion
3787  *	NET_RX_DROP: packet was dropped
3788  */
3789 int netif_receive_skb(struct sk_buff *skb)
3790 {
3791 	trace_netif_receive_skb_entry(skb);
3792 
3793 	return netif_receive_skb_internal(skb);
3794 }
3795 EXPORT_SYMBOL(netif_receive_skb);
3796 
3797 /* Network device is going away, flush any packets still pending
3798  * Called with irqs disabled.
3799  */
3800 static void flush_backlog(void *arg)
3801 {
3802 	struct net_device *dev = arg;
3803 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3804 	struct sk_buff *skb, *tmp;
3805 
3806 	rps_lock(sd);
3807 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3808 		if (skb->dev == dev) {
3809 			__skb_unlink(skb, &sd->input_pkt_queue);
3810 			kfree_skb(skb);
3811 			input_queue_head_incr(sd);
3812 		}
3813 	}
3814 	rps_unlock(sd);
3815 
3816 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3817 		if (skb->dev == dev) {
3818 			__skb_unlink(skb, &sd->process_queue);
3819 			kfree_skb(skb);
3820 			input_queue_head_incr(sd);
3821 		}
3822 	}
3823 }
3824 
3825 static int napi_gro_complete(struct sk_buff *skb)
3826 {
3827 	struct packet_offload *ptype;
3828 	__be16 type = skb->protocol;
3829 	struct list_head *head = &offload_base;
3830 	int err = -ENOENT;
3831 
3832 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3833 
3834 	if (NAPI_GRO_CB(skb)->count == 1) {
3835 		skb_shinfo(skb)->gso_size = 0;
3836 		goto out;
3837 	}
3838 
3839 	rcu_read_lock();
3840 	list_for_each_entry_rcu(ptype, head, list) {
3841 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3842 			continue;
3843 
3844 		err = ptype->callbacks.gro_complete(skb, 0);
3845 		break;
3846 	}
3847 	rcu_read_unlock();
3848 
3849 	if (err) {
3850 		WARN_ON(&ptype->list == head);
3851 		kfree_skb(skb);
3852 		return NET_RX_SUCCESS;
3853 	}
3854 
3855 out:
3856 	return netif_receive_skb_internal(skb);
3857 }
3858 
3859 /* napi->gro_list contains packets ordered by age.
3860  * youngest packets at the head of it.
3861  * Complete skbs in reverse order to reduce latencies.
3862  */
3863 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3864 {
3865 	struct sk_buff *skb, *prev = NULL;
3866 
3867 	/* scan list and build reverse chain */
3868 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3869 		skb->prev = prev;
3870 		prev = skb;
3871 	}
3872 
3873 	for (skb = prev; skb; skb = prev) {
3874 		skb->next = NULL;
3875 
3876 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3877 			return;
3878 
3879 		prev = skb->prev;
3880 		napi_gro_complete(skb);
3881 		napi->gro_count--;
3882 	}
3883 
3884 	napi->gro_list = NULL;
3885 }
3886 EXPORT_SYMBOL(napi_gro_flush);
3887 
3888 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3889 {
3890 	struct sk_buff *p;
3891 	unsigned int maclen = skb->dev->hard_header_len;
3892 	u32 hash = skb_get_hash_raw(skb);
3893 
3894 	for (p = napi->gro_list; p; p = p->next) {
3895 		unsigned long diffs;
3896 
3897 		NAPI_GRO_CB(p)->flush = 0;
3898 
3899 		if (hash != skb_get_hash_raw(p)) {
3900 			NAPI_GRO_CB(p)->same_flow = 0;
3901 			continue;
3902 		}
3903 
3904 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3905 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3906 		if (maclen == ETH_HLEN)
3907 			diffs |= compare_ether_header(skb_mac_header(p),
3908 						      skb_mac_header(skb));
3909 		else if (!diffs)
3910 			diffs = memcmp(skb_mac_header(p),
3911 				       skb_mac_header(skb),
3912 				       maclen);
3913 		NAPI_GRO_CB(p)->same_flow = !diffs;
3914 	}
3915 }
3916 
3917 static void skb_gro_reset_offset(struct sk_buff *skb)
3918 {
3919 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3920 	const skb_frag_t *frag0 = &pinfo->frags[0];
3921 
3922 	NAPI_GRO_CB(skb)->data_offset = 0;
3923 	NAPI_GRO_CB(skb)->frag0 = NULL;
3924 	NAPI_GRO_CB(skb)->frag0_len = 0;
3925 
3926 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3927 	    pinfo->nr_frags &&
3928 	    !PageHighMem(skb_frag_page(frag0))) {
3929 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3930 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3931 	}
3932 }
3933 
3934 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3935 {
3936 	struct skb_shared_info *pinfo = skb_shinfo(skb);
3937 
3938 	BUG_ON(skb->end - skb->tail < grow);
3939 
3940 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3941 
3942 	skb->data_len -= grow;
3943 	skb->tail += grow;
3944 
3945 	pinfo->frags[0].page_offset += grow;
3946 	skb_frag_size_sub(&pinfo->frags[0], grow);
3947 
3948 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3949 		skb_frag_unref(skb, 0);
3950 		memmove(pinfo->frags, pinfo->frags + 1,
3951 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
3952 	}
3953 }
3954 
3955 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3956 {
3957 	struct sk_buff **pp = NULL;
3958 	struct packet_offload *ptype;
3959 	__be16 type = skb->protocol;
3960 	struct list_head *head = &offload_base;
3961 	int same_flow;
3962 	enum gro_result ret;
3963 	int grow;
3964 
3965 	if (!(skb->dev->features & NETIF_F_GRO))
3966 		goto normal;
3967 
3968 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3969 		goto normal;
3970 
3971 	gro_list_prepare(napi, skb);
3972 	NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3973 
3974 	rcu_read_lock();
3975 	list_for_each_entry_rcu(ptype, head, list) {
3976 		if (ptype->type != type || !ptype->callbacks.gro_receive)
3977 			continue;
3978 
3979 		skb_set_network_header(skb, skb_gro_offset(skb));
3980 		skb_reset_mac_len(skb);
3981 		NAPI_GRO_CB(skb)->same_flow = 0;
3982 		NAPI_GRO_CB(skb)->flush = 0;
3983 		NAPI_GRO_CB(skb)->free = 0;
3984 		NAPI_GRO_CB(skb)->udp_mark = 0;
3985 
3986 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3987 		break;
3988 	}
3989 	rcu_read_unlock();
3990 
3991 	if (&ptype->list == head)
3992 		goto normal;
3993 
3994 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3995 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3996 
3997 	if (pp) {
3998 		struct sk_buff *nskb = *pp;
3999 
4000 		*pp = nskb->next;
4001 		nskb->next = NULL;
4002 		napi_gro_complete(nskb);
4003 		napi->gro_count--;
4004 	}
4005 
4006 	if (same_flow)
4007 		goto ok;
4008 
4009 	if (NAPI_GRO_CB(skb)->flush)
4010 		goto normal;
4011 
4012 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4013 		struct sk_buff *nskb = napi->gro_list;
4014 
4015 		/* locate the end of the list to select the 'oldest' flow */
4016 		while (nskb->next) {
4017 			pp = &nskb->next;
4018 			nskb = *pp;
4019 		}
4020 		*pp = NULL;
4021 		nskb->next = NULL;
4022 		napi_gro_complete(nskb);
4023 	} else {
4024 		napi->gro_count++;
4025 	}
4026 	NAPI_GRO_CB(skb)->count = 1;
4027 	NAPI_GRO_CB(skb)->age = jiffies;
4028 	NAPI_GRO_CB(skb)->last = skb;
4029 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4030 	skb->next = napi->gro_list;
4031 	napi->gro_list = skb;
4032 	ret = GRO_HELD;
4033 
4034 pull:
4035 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4036 	if (grow > 0)
4037 		gro_pull_from_frag0(skb, grow);
4038 ok:
4039 	return ret;
4040 
4041 normal:
4042 	ret = GRO_NORMAL;
4043 	goto pull;
4044 }
4045 
4046 struct packet_offload *gro_find_receive_by_type(__be16 type)
4047 {
4048 	struct list_head *offload_head = &offload_base;
4049 	struct packet_offload *ptype;
4050 
4051 	list_for_each_entry_rcu(ptype, offload_head, list) {
4052 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4053 			continue;
4054 		return ptype;
4055 	}
4056 	return NULL;
4057 }
4058 EXPORT_SYMBOL(gro_find_receive_by_type);
4059 
4060 struct packet_offload *gro_find_complete_by_type(__be16 type)
4061 {
4062 	struct list_head *offload_head = &offload_base;
4063 	struct packet_offload *ptype;
4064 
4065 	list_for_each_entry_rcu(ptype, offload_head, list) {
4066 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4067 			continue;
4068 		return ptype;
4069 	}
4070 	return NULL;
4071 }
4072 EXPORT_SYMBOL(gro_find_complete_by_type);
4073 
4074 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4075 {
4076 	switch (ret) {
4077 	case GRO_NORMAL:
4078 		if (netif_receive_skb_internal(skb))
4079 			ret = GRO_DROP;
4080 		break;
4081 
4082 	case GRO_DROP:
4083 		kfree_skb(skb);
4084 		break;
4085 
4086 	case GRO_MERGED_FREE:
4087 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4088 			kmem_cache_free(skbuff_head_cache, skb);
4089 		else
4090 			__kfree_skb(skb);
4091 		break;
4092 
4093 	case GRO_HELD:
4094 	case GRO_MERGED:
4095 		break;
4096 	}
4097 
4098 	return ret;
4099 }
4100 
4101 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4102 {
4103 	trace_napi_gro_receive_entry(skb);
4104 
4105 	skb_gro_reset_offset(skb);
4106 
4107 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4108 }
4109 EXPORT_SYMBOL(napi_gro_receive);
4110 
4111 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4112 {
4113 	__skb_pull(skb, skb_headlen(skb));
4114 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4115 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4116 	skb->vlan_tci = 0;
4117 	skb->dev = napi->dev;
4118 	skb->skb_iif = 0;
4119 	skb->encapsulation = 0;
4120 	skb_shinfo(skb)->gso_type = 0;
4121 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4122 
4123 	napi->skb = skb;
4124 }
4125 
4126 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4127 {
4128 	struct sk_buff *skb = napi->skb;
4129 
4130 	if (!skb) {
4131 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4132 		napi->skb = skb;
4133 	}
4134 	return skb;
4135 }
4136 EXPORT_SYMBOL(napi_get_frags);
4137 
4138 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4139 				      struct sk_buff *skb,
4140 				      gro_result_t ret)
4141 {
4142 	switch (ret) {
4143 	case GRO_NORMAL:
4144 	case GRO_HELD:
4145 		__skb_push(skb, ETH_HLEN);
4146 		skb->protocol = eth_type_trans(skb, skb->dev);
4147 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4148 			ret = GRO_DROP;
4149 		break;
4150 
4151 	case GRO_DROP:
4152 	case GRO_MERGED_FREE:
4153 		napi_reuse_skb(napi, skb);
4154 		break;
4155 
4156 	case GRO_MERGED:
4157 		break;
4158 	}
4159 
4160 	return ret;
4161 }
4162 
4163 /* Upper GRO stack assumes network header starts at gro_offset=0
4164  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4165  * We copy ethernet header into skb->data to have a common layout.
4166  */
4167 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4168 {
4169 	struct sk_buff *skb = napi->skb;
4170 	const struct ethhdr *eth;
4171 	unsigned int hlen = sizeof(*eth);
4172 
4173 	napi->skb = NULL;
4174 
4175 	skb_reset_mac_header(skb);
4176 	skb_gro_reset_offset(skb);
4177 
4178 	eth = skb_gro_header_fast(skb, 0);
4179 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4180 		eth = skb_gro_header_slow(skb, hlen, 0);
4181 		if (unlikely(!eth)) {
4182 			napi_reuse_skb(napi, skb);
4183 			return NULL;
4184 		}
4185 	} else {
4186 		gro_pull_from_frag0(skb, hlen);
4187 		NAPI_GRO_CB(skb)->frag0 += hlen;
4188 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4189 	}
4190 	__skb_pull(skb, hlen);
4191 
4192 	/*
4193 	 * This works because the only protocols we care about don't require
4194 	 * special handling.
4195 	 * We'll fix it up properly in napi_frags_finish()
4196 	 */
4197 	skb->protocol = eth->h_proto;
4198 
4199 	return skb;
4200 }
4201 
4202 gro_result_t napi_gro_frags(struct napi_struct *napi)
4203 {
4204 	struct sk_buff *skb = napi_frags_skb(napi);
4205 
4206 	if (!skb)
4207 		return GRO_DROP;
4208 
4209 	trace_napi_gro_frags_entry(skb);
4210 
4211 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4212 }
4213 EXPORT_SYMBOL(napi_gro_frags);
4214 
4215 /*
4216  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4217  * Note: called with local irq disabled, but exits with local irq enabled.
4218  */
4219 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4220 {
4221 #ifdef CONFIG_RPS
4222 	struct softnet_data *remsd = sd->rps_ipi_list;
4223 
4224 	if (remsd) {
4225 		sd->rps_ipi_list = NULL;
4226 
4227 		local_irq_enable();
4228 
4229 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4230 		while (remsd) {
4231 			struct softnet_data *next = remsd->rps_ipi_next;
4232 
4233 			if (cpu_online(remsd->cpu))
4234 				smp_call_function_single_async(remsd->cpu,
4235 							   &remsd->csd);
4236 			remsd = next;
4237 		}
4238 	} else
4239 #endif
4240 		local_irq_enable();
4241 }
4242 
4243 static int process_backlog(struct napi_struct *napi, int quota)
4244 {
4245 	int work = 0;
4246 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4247 
4248 #ifdef CONFIG_RPS
4249 	/* Check if we have pending ipi, its better to send them now,
4250 	 * not waiting net_rx_action() end.
4251 	 */
4252 	if (sd->rps_ipi_list) {
4253 		local_irq_disable();
4254 		net_rps_action_and_irq_enable(sd);
4255 	}
4256 #endif
4257 	napi->weight = weight_p;
4258 	local_irq_disable();
4259 	while (1) {
4260 		struct sk_buff *skb;
4261 
4262 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4263 			local_irq_enable();
4264 			__netif_receive_skb(skb);
4265 			local_irq_disable();
4266 			input_queue_head_incr(sd);
4267 			if (++work >= quota) {
4268 				local_irq_enable();
4269 				return work;
4270 			}
4271 		}
4272 
4273 		rps_lock(sd);
4274 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4275 			/*
4276 			 * Inline a custom version of __napi_complete().
4277 			 * only current cpu owns and manipulates this napi,
4278 			 * and NAPI_STATE_SCHED is the only possible flag set
4279 			 * on backlog.
4280 			 * We can use a plain write instead of clear_bit(),
4281 			 * and we dont need an smp_mb() memory barrier.
4282 			 */
4283 			list_del(&napi->poll_list);
4284 			napi->state = 0;
4285 			rps_unlock(sd);
4286 
4287 			break;
4288 		}
4289 
4290 		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4291 					   &sd->process_queue);
4292 		rps_unlock(sd);
4293 	}
4294 	local_irq_enable();
4295 
4296 	return work;
4297 }
4298 
4299 /**
4300  * __napi_schedule - schedule for receive
4301  * @n: entry to schedule
4302  *
4303  * The entry's receive function will be scheduled to run
4304  */
4305 void __napi_schedule(struct napi_struct *n)
4306 {
4307 	unsigned long flags;
4308 
4309 	local_irq_save(flags);
4310 	____napi_schedule(&__get_cpu_var(softnet_data), n);
4311 	local_irq_restore(flags);
4312 }
4313 EXPORT_SYMBOL(__napi_schedule);
4314 
4315 void __napi_complete(struct napi_struct *n)
4316 {
4317 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4318 	BUG_ON(n->gro_list);
4319 
4320 	list_del(&n->poll_list);
4321 	smp_mb__before_atomic();
4322 	clear_bit(NAPI_STATE_SCHED, &n->state);
4323 }
4324 EXPORT_SYMBOL(__napi_complete);
4325 
4326 void napi_complete(struct napi_struct *n)
4327 {
4328 	unsigned long flags;
4329 
4330 	/*
4331 	 * don't let napi dequeue from the cpu poll list
4332 	 * just in case its running on a different cpu
4333 	 */
4334 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4335 		return;
4336 
4337 	napi_gro_flush(n, false);
4338 	local_irq_save(flags);
4339 	__napi_complete(n);
4340 	local_irq_restore(flags);
4341 }
4342 EXPORT_SYMBOL(napi_complete);
4343 
4344 /* must be called under rcu_read_lock(), as we dont take a reference */
4345 struct napi_struct *napi_by_id(unsigned int napi_id)
4346 {
4347 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4348 	struct napi_struct *napi;
4349 
4350 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4351 		if (napi->napi_id == napi_id)
4352 			return napi;
4353 
4354 	return NULL;
4355 }
4356 EXPORT_SYMBOL_GPL(napi_by_id);
4357 
4358 void napi_hash_add(struct napi_struct *napi)
4359 {
4360 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4361 
4362 		spin_lock(&napi_hash_lock);
4363 
4364 		/* 0 is not a valid id, we also skip an id that is taken
4365 		 * we expect both events to be extremely rare
4366 		 */
4367 		napi->napi_id = 0;
4368 		while (!napi->napi_id) {
4369 			napi->napi_id = ++napi_gen_id;
4370 			if (napi_by_id(napi->napi_id))
4371 				napi->napi_id = 0;
4372 		}
4373 
4374 		hlist_add_head_rcu(&napi->napi_hash_node,
4375 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4376 
4377 		spin_unlock(&napi_hash_lock);
4378 	}
4379 }
4380 EXPORT_SYMBOL_GPL(napi_hash_add);
4381 
4382 /* Warning : caller is responsible to make sure rcu grace period
4383  * is respected before freeing memory containing @napi
4384  */
4385 void napi_hash_del(struct napi_struct *napi)
4386 {
4387 	spin_lock(&napi_hash_lock);
4388 
4389 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4390 		hlist_del_rcu(&napi->napi_hash_node);
4391 
4392 	spin_unlock(&napi_hash_lock);
4393 }
4394 EXPORT_SYMBOL_GPL(napi_hash_del);
4395 
4396 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4397 		    int (*poll)(struct napi_struct *, int), int weight)
4398 {
4399 	INIT_LIST_HEAD(&napi->poll_list);
4400 	napi->gro_count = 0;
4401 	napi->gro_list = NULL;
4402 	napi->skb = NULL;
4403 	napi->poll = poll;
4404 	if (weight > NAPI_POLL_WEIGHT)
4405 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4406 			    weight, dev->name);
4407 	napi->weight = weight;
4408 	list_add(&napi->dev_list, &dev->napi_list);
4409 	napi->dev = dev;
4410 #ifdef CONFIG_NETPOLL
4411 	spin_lock_init(&napi->poll_lock);
4412 	napi->poll_owner = -1;
4413 #endif
4414 	set_bit(NAPI_STATE_SCHED, &napi->state);
4415 }
4416 EXPORT_SYMBOL(netif_napi_add);
4417 
4418 void netif_napi_del(struct napi_struct *napi)
4419 {
4420 	list_del_init(&napi->dev_list);
4421 	napi_free_frags(napi);
4422 
4423 	kfree_skb_list(napi->gro_list);
4424 	napi->gro_list = NULL;
4425 	napi->gro_count = 0;
4426 }
4427 EXPORT_SYMBOL(netif_napi_del);
4428 
4429 static void net_rx_action(struct softirq_action *h)
4430 {
4431 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
4432 	unsigned long time_limit = jiffies + 2;
4433 	int budget = netdev_budget;
4434 	void *have;
4435 
4436 	local_irq_disable();
4437 
4438 	while (!list_empty(&sd->poll_list)) {
4439 		struct napi_struct *n;
4440 		int work, weight;
4441 
4442 		/* If softirq window is exhuasted then punt.
4443 		 * Allow this to run for 2 jiffies since which will allow
4444 		 * an average latency of 1.5/HZ.
4445 		 */
4446 		if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4447 			goto softnet_break;
4448 
4449 		local_irq_enable();
4450 
4451 		/* Even though interrupts have been re-enabled, this
4452 		 * access is safe because interrupts can only add new
4453 		 * entries to the tail of this list, and only ->poll()
4454 		 * calls can remove this head entry from the list.
4455 		 */
4456 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4457 
4458 		have = netpoll_poll_lock(n);
4459 
4460 		weight = n->weight;
4461 
4462 		/* This NAPI_STATE_SCHED test is for avoiding a race
4463 		 * with netpoll's poll_napi().  Only the entity which
4464 		 * obtains the lock and sees NAPI_STATE_SCHED set will
4465 		 * actually make the ->poll() call.  Therefore we avoid
4466 		 * accidentally calling ->poll() when NAPI is not scheduled.
4467 		 */
4468 		work = 0;
4469 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4470 			work = n->poll(n, weight);
4471 			trace_napi_poll(n);
4472 		}
4473 
4474 		WARN_ON_ONCE(work > weight);
4475 
4476 		budget -= work;
4477 
4478 		local_irq_disable();
4479 
4480 		/* Drivers must not modify the NAPI state if they
4481 		 * consume the entire weight.  In such cases this code
4482 		 * still "owns" the NAPI instance and therefore can
4483 		 * move the instance around on the list at-will.
4484 		 */
4485 		if (unlikely(work == weight)) {
4486 			if (unlikely(napi_disable_pending(n))) {
4487 				local_irq_enable();
4488 				napi_complete(n);
4489 				local_irq_disable();
4490 			} else {
4491 				if (n->gro_list) {
4492 					/* flush too old packets
4493 					 * If HZ < 1000, flush all packets.
4494 					 */
4495 					local_irq_enable();
4496 					napi_gro_flush(n, HZ >= 1000);
4497 					local_irq_disable();
4498 				}
4499 				list_move_tail(&n->poll_list, &sd->poll_list);
4500 			}
4501 		}
4502 
4503 		netpoll_poll_unlock(have);
4504 	}
4505 out:
4506 	net_rps_action_and_irq_enable(sd);
4507 
4508 #ifdef CONFIG_NET_DMA
4509 	/*
4510 	 * There may not be any more sk_buffs coming right now, so push
4511 	 * any pending DMA copies to hardware
4512 	 */
4513 	dma_issue_pending_all();
4514 #endif
4515 
4516 	return;
4517 
4518 softnet_break:
4519 	sd->time_squeeze++;
4520 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4521 	goto out;
4522 }
4523 
4524 struct netdev_adjacent {
4525 	struct net_device *dev;
4526 
4527 	/* upper master flag, there can only be one master device per list */
4528 	bool master;
4529 
4530 	/* counter for the number of times this device was added to us */
4531 	u16 ref_nr;
4532 
4533 	/* private field for the users */
4534 	void *private;
4535 
4536 	struct list_head list;
4537 	struct rcu_head rcu;
4538 };
4539 
4540 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4541 						 struct net_device *adj_dev,
4542 						 struct list_head *adj_list)
4543 {
4544 	struct netdev_adjacent *adj;
4545 
4546 	list_for_each_entry(adj, adj_list, list) {
4547 		if (adj->dev == adj_dev)
4548 			return adj;
4549 	}
4550 	return NULL;
4551 }
4552 
4553 /**
4554  * netdev_has_upper_dev - Check if device is linked to an upper device
4555  * @dev: device
4556  * @upper_dev: upper device to check
4557  *
4558  * Find out if a device is linked to specified upper device and return true
4559  * in case it is. Note that this checks only immediate upper device,
4560  * not through a complete stack of devices. The caller must hold the RTNL lock.
4561  */
4562 bool netdev_has_upper_dev(struct net_device *dev,
4563 			  struct net_device *upper_dev)
4564 {
4565 	ASSERT_RTNL();
4566 
4567 	return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4568 }
4569 EXPORT_SYMBOL(netdev_has_upper_dev);
4570 
4571 /**
4572  * netdev_has_any_upper_dev - Check if device is linked to some device
4573  * @dev: device
4574  *
4575  * Find out if a device is linked to an upper device and return true in case
4576  * it is. The caller must hold the RTNL lock.
4577  */
4578 static bool netdev_has_any_upper_dev(struct net_device *dev)
4579 {
4580 	ASSERT_RTNL();
4581 
4582 	return !list_empty(&dev->all_adj_list.upper);
4583 }
4584 
4585 /**
4586  * netdev_master_upper_dev_get - Get master upper device
4587  * @dev: device
4588  *
4589  * Find a master upper device and return pointer to it or NULL in case
4590  * it's not there. The caller must hold the RTNL lock.
4591  */
4592 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4593 {
4594 	struct netdev_adjacent *upper;
4595 
4596 	ASSERT_RTNL();
4597 
4598 	if (list_empty(&dev->adj_list.upper))
4599 		return NULL;
4600 
4601 	upper = list_first_entry(&dev->adj_list.upper,
4602 				 struct netdev_adjacent, list);
4603 	if (likely(upper->master))
4604 		return upper->dev;
4605 	return NULL;
4606 }
4607 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4608 
4609 void *netdev_adjacent_get_private(struct list_head *adj_list)
4610 {
4611 	struct netdev_adjacent *adj;
4612 
4613 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4614 
4615 	return adj->private;
4616 }
4617 EXPORT_SYMBOL(netdev_adjacent_get_private);
4618 
4619 /**
4620  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4621  * @dev: device
4622  * @iter: list_head ** of the current position
4623  *
4624  * Gets the next device from the dev's upper list, starting from iter
4625  * position. The caller must hold RCU read lock.
4626  */
4627 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4628 						 struct list_head **iter)
4629 {
4630 	struct netdev_adjacent *upper;
4631 
4632 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4633 
4634 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4635 
4636 	if (&upper->list == &dev->adj_list.upper)
4637 		return NULL;
4638 
4639 	*iter = &upper->list;
4640 
4641 	return upper->dev;
4642 }
4643 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4644 
4645 /**
4646  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4647  * @dev: device
4648  * @iter: list_head ** of the current position
4649  *
4650  * Gets the next device from the dev's upper list, starting from iter
4651  * position. The caller must hold RCU read lock.
4652  */
4653 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4654 						     struct list_head **iter)
4655 {
4656 	struct netdev_adjacent *upper;
4657 
4658 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4659 
4660 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4661 
4662 	if (&upper->list == &dev->all_adj_list.upper)
4663 		return NULL;
4664 
4665 	*iter = &upper->list;
4666 
4667 	return upper->dev;
4668 }
4669 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4670 
4671 /**
4672  * netdev_lower_get_next_private - Get the next ->private from the
4673  *				   lower neighbour list
4674  * @dev: device
4675  * @iter: list_head ** of the current position
4676  *
4677  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4678  * list, starting from iter position. The caller must hold either hold the
4679  * RTNL lock or its own locking that guarantees that the neighbour lower
4680  * list will remain unchainged.
4681  */
4682 void *netdev_lower_get_next_private(struct net_device *dev,
4683 				    struct list_head **iter)
4684 {
4685 	struct netdev_adjacent *lower;
4686 
4687 	lower = list_entry(*iter, struct netdev_adjacent, list);
4688 
4689 	if (&lower->list == &dev->adj_list.lower)
4690 		return NULL;
4691 
4692 	*iter = lower->list.next;
4693 
4694 	return lower->private;
4695 }
4696 EXPORT_SYMBOL(netdev_lower_get_next_private);
4697 
4698 /**
4699  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4700  *				       lower neighbour list, RCU
4701  *				       variant
4702  * @dev: device
4703  * @iter: list_head ** of the current position
4704  *
4705  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4706  * list, starting from iter position. The caller must hold RCU read lock.
4707  */
4708 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4709 					struct list_head **iter)
4710 {
4711 	struct netdev_adjacent *lower;
4712 
4713 	WARN_ON_ONCE(!rcu_read_lock_held());
4714 
4715 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4716 
4717 	if (&lower->list == &dev->adj_list.lower)
4718 		return NULL;
4719 
4720 	*iter = &lower->list;
4721 
4722 	return lower->private;
4723 }
4724 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4725 
4726 /**
4727  * netdev_lower_get_next - Get the next device from the lower neighbour
4728  *                         list
4729  * @dev: device
4730  * @iter: list_head ** of the current position
4731  *
4732  * Gets the next netdev_adjacent from the dev's lower neighbour
4733  * list, starting from iter position. The caller must hold RTNL lock or
4734  * its own locking that guarantees that the neighbour lower
4735  * list will remain unchainged.
4736  */
4737 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4738 {
4739 	struct netdev_adjacent *lower;
4740 
4741 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4742 
4743 	if (&lower->list == &dev->adj_list.lower)
4744 		return NULL;
4745 
4746 	*iter = &lower->list;
4747 
4748 	return lower->dev;
4749 }
4750 EXPORT_SYMBOL(netdev_lower_get_next);
4751 
4752 /**
4753  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4754  *				       lower neighbour list, RCU
4755  *				       variant
4756  * @dev: device
4757  *
4758  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4759  * list. The caller must hold RCU read lock.
4760  */
4761 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4762 {
4763 	struct netdev_adjacent *lower;
4764 
4765 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
4766 			struct netdev_adjacent, list);
4767 	if (lower)
4768 		return lower->private;
4769 	return NULL;
4770 }
4771 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4772 
4773 /**
4774  * netdev_master_upper_dev_get_rcu - Get master upper device
4775  * @dev: device
4776  *
4777  * Find a master upper device and return pointer to it or NULL in case
4778  * it's not there. The caller must hold the RCU read lock.
4779  */
4780 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4781 {
4782 	struct netdev_adjacent *upper;
4783 
4784 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
4785 				       struct netdev_adjacent, list);
4786 	if (upper && likely(upper->master))
4787 		return upper->dev;
4788 	return NULL;
4789 }
4790 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4791 
4792 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4793 			      struct net_device *adj_dev,
4794 			      struct list_head *dev_list)
4795 {
4796 	char linkname[IFNAMSIZ+7];
4797 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4798 		"upper_%s" : "lower_%s", adj_dev->name);
4799 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4800 				 linkname);
4801 }
4802 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4803 			       char *name,
4804 			       struct list_head *dev_list)
4805 {
4806 	char linkname[IFNAMSIZ+7];
4807 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4808 		"upper_%s" : "lower_%s", name);
4809 	sysfs_remove_link(&(dev->dev.kobj), linkname);
4810 }
4811 
4812 #define netdev_adjacent_is_neigh_list(dev, dev_list) \
4813 		(dev_list == &dev->adj_list.upper || \
4814 		 dev_list == &dev->adj_list.lower)
4815 
4816 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4817 					struct net_device *adj_dev,
4818 					struct list_head *dev_list,
4819 					void *private, bool master)
4820 {
4821 	struct netdev_adjacent *adj;
4822 	int ret;
4823 
4824 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4825 
4826 	if (adj) {
4827 		adj->ref_nr++;
4828 		return 0;
4829 	}
4830 
4831 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4832 	if (!adj)
4833 		return -ENOMEM;
4834 
4835 	adj->dev = adj_dev;
4836 	adj->master = master;
4837 	adj->ref_nr = 1;
4838 	adj->private = private;
4839 	dev_hold(adj_dev);
4840 
4841 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4842 		 adj_dev->name, dev->name, adj_dev->name);
4843 
4844 	if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4845 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4846 		if (ret)
4847 			goto free_adj;
4848 	}
4849 
4850 	/* Ensure that master link is always the first item in list. */
4851 	if (master) {
4852 		ret = sysfs_create_link(&(dev->dev.kobj),
4853 					&(adj_dev->dev.kobj), "master");
4854 		if (ret)
4855 			goto remove_symlinks;
4856 
4857 		list_add_rcu(&adj->list, dev_list);
4858 	} else {
4859 		list_add_tail_rcu(&adj->list, dev_list);
4860 	}
4861 
4862 	return 0;
4863 
4864 remove_symlinks:
4865 	if (netdev_adjacent_is_neigh_list(dev, dev_list))
4866 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4867 free_adj:
4868 	kfree(adj);
4869 	dev_put(adj_dev);
4870 
4871 	return ret;
4872 }
4873 
4874 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4875 					 struct net_device *adj_dev,
4876 					 struct list_head *dev_list)
4877 {
4878 	struct netdev_adjacent *adj;
4879 
4880 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4881 
4882 	if (!adj) {
4883 		pr_err("tried to remove device %s from %s\n",
4884 		       dev->name, adj_dev->name);
4885 		BUG();
4886 	}
4887 
4888 	if (adj->ref_nr > 1) {
4889 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4890 			 adj->ref_nr-1);
4891 		adj->ref_nr--;
4892 		return;
4893 	}
4894 
4895 	if (adj->master)
4896 		sysfs_remove_link(&(dev->dev.kobj), "master");
4897 
4898 	if (netdev_adjacent_is_neigh_list(dev, dev_list) &&
4899 	    net_eq(dev_net(dev),dev_net(adj_dev)))
4900 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4901 
4902 	list_del_rcu(&adj->list);
4903 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
4904 		 adj_dev->name, dev->name, adj_dev->name);
4905 	dev_put(adj_dev);
4906 	kfree_rcu(adj, rcu);
4907 }
4908 
4909 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4910 					    struct net_device *upper_dev,
4911 					    struct list_head *up_list,
4912 					    struct list_head *down_list,
4913 					    void *private, bool master)
4914 {
4915 	int ret;
4916 
4917 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4918 					   master);
4919 	if (ret)
4920 		return ret;
4921 
4922 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4923 					   false);
4924 	if (ret) {
4925 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4926 		return ret;
4927 	}
4928 
4929 	return 0;
4930 }
4931 
4932 static int __netdev_adjacent_dev_link(struct net_device *dev,
4933 				      struct net_device *upper_dev)
4934 {
4935 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4936 						&dev->all_adj_list.upper,
4937 						&upper_dev->all_adj_list.lower,
4938 						NULL, false);
4939 }
4940 
4941 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4942 					       struct net_device *upper_dev,
4943 					       struct list_head *up_list,
4944 					       struct list_head *down_list)
4945 {
4946 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4947 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4948 }
4949 
4950 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4951 					 struct net_device *upper_dev)
4952 {
4953 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4954 					   &dev->all_adj_list.upper,
4955 					   &upper_dev->all_adj_list.lower);
4956 }
4957 
4958 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4959 						struct net_device *upper_dev,
4960 						void *private, bool master)
4961 {
4962 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4963 
4964 	if (ret)
4965 		return ret;
4966 
4967 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4968 					       &dev->adj_list.upper,
4969 					       &upper_dev->adj_list.lower,
4970 					       private, master);
4971 	if (ret) {
4972 		__netdev_adjacent_dev_unlink(dev, upper_dev);
4973 		return ret;
4974 	}
4975 
4976 	return 0;
4977 }
4978 
4979 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4980 						   struct net_device *upper_dev)
4981 {
4982 	__netdev_adjacent_dev_unlink(dev, upper_dev);
4983 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4984 					   &dev->adj_list.upper,
4985 					   &upper_dev->adj_list.lower);
4986 }
4987 
4988 static int __netdev_upper_dev_link(struct net_device *dev,
4989 				   struct net_device *upper_dev, bool master,
4990 				   void *private)
4991 {
4992 	struct netdev_adjacent *i, *j, *to_i, *to_j;
4993 	int ret = 0;
4994 
4995 	ASSERT_RTNL();
4996 
4997 	if (dev == upper_dev)
4998 		return -EBUSY;
4999 
5000 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5001 	if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5002 		return -EBUSY;
5003 
5004 	if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5005 		return -EEXIST;
5006 
5007 	if (master && netdev_master_upper_dev_get(dev))
5008 		return -EBUSY;
5009 
5010 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5011 						   master);
5012 	if (ret)
5013 		return ret;
5014 
5015 	/* Now that we linked these devs, make all the upper_dev's
5016 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5017 	 * versa, and don't forget the devices itself. All of these
5018 	 * links are non-neighbours.
5019 	 */
5020 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5021 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5022 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5023 				 i->dev->name, j->dev->name);
5024 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5025 			if (ret)
5026 				goto rollback_mesh;
5027 		}
5028 	}
5029 
5030 	/* add dev to every upper_dev's upper device */
5031 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5032 		pr_debug("linking %s's upper device %s with %s\n",
5033 			 upper_dev->name, i->dev->name, dev->name);
5034 		ret = __netdev_adjacent_dev_link(dev, i->dev);
5035 		if (ret)
5036 			goto rollback_upper_mesh;
5037 	}
5038 
5039 	/* add upper_dev to every dev's lower device */
5040 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5041 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5042 			 i->dev->name, upper_dev->name);
5043 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5044 		if (ret)
5045 			goto rollback_lower_mesh;
5046 	}
5047 
5048 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5049 	return 0;
5050 
5051 rollback_lower_mesh:
5052 	to_i = i;
5053 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5054 		if (i == to_i)
5055 			break;
5056 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5057 	}
5058 
5059 	i = NULL;
5060 
5061 rollback_upper_mesh:
5062 	to_i = i;
5063 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5064 		if (i == to_i)
5065 			break;
5066 		__netdev_adjacent_dev_unlink(dev, i->dev);
5067 	}
5068 
5069 	i = j = NULL;
5070 
5071 rollback_mesh:
5072 	to_i = i;
5073 	to_j = j;
5074 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5075 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5076 			if (i == to_i && j == to_j)
5077 				break;
5078 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5079 		}
5080 		if (i == to_i)
5081 			break;
5082 	}
5083 
5084 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5085 
5086 	return ret;
5087 }
5088 
5089 /**
5090  * netdev_upper_dev_link - Add a link to the upper device
5091  * @dev: device
5092  * @upper_dev: new upper device
5093  *
5094  * Adds a link to device which is upper to this one. The caller must hold
5095  * the RTNL lock. On a failure a negative errno code is returned.
5096  * On success the reference counts are adjusted and the function
5097  * returns zero.
5098  */
5099 int netdev_upper_dev_link(struct net_device *dev,
5100 			  struct net_device *upper_dev)
5101 {
5102 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5103 }
5104 EXPORT_SYMBOL(netdev_upper_dev_link);
5105 
5106 /**
5107  * netdev_master_upper_dev_link - Add a master link to the upper device
5108  * @dev: device
5109  * @upper_dev: new upper device
5110  *
5111  * Adds a link to device which is upper to this one. In this case, only
5112  * one master upper device can be linked, although other non-master devices
5113  * might be linked as well. The caller must hold the RTNL lock.
5114  * On a failure a negative errno code is returned. On success the reference
5115  * counts are adjusted and the function returns zero.
5116  */
5117 int netdev_master_upper_dev_link(struct net_device *dev,
5118 				 struct net_device *upper_dev)
5119 {
5120 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5121 }
5122 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5123 
5124 int netdev_master_upper_dev_link_private(struct net_device *dev,
5125 					 struct net_device *upper_dev,
5126 					 void *private)
5127 {
5128 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5129 }
5130 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5131 
5132 /**
5133  * netdev_upper_dev_unlink - Removes a link to upper device
5134  * @dev: device
5135  * @upper_dev: new upper device
5136  *
5137  * Removes a link to device which is upper to this one. The caller must hold
5138  * the RTNL lock.
5139  */
5140 void netdev_upper_dev_unlink(struct net_device *dev,
5141 			     struct net_device *upper_dev)
5142 {
5143 	struct netdev_adjacent *i, *j;
5144 	ASSERT_RTNL();
5145 
5146 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5147 
5148 	/* Here is the tricky part. We must remove all dev's lower
5149 	 * devices from all upper_dev's upper devices and vice
5150 	 * versa, to maintain the graph relationship.
5151 	 */
5152 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5153 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5154 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5155 
5156 	/* remove also the devices itself from lower/upper device
5157 	 * list
5158 	 */
5159 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5160 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5161 
5162 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5163 		__netdev_adjacent_dev_unlink(dev, i->dev);
5164 
5165 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5166 }
5167 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5168 
5169 void netdev_adjacent_add_links(struct net_device *dev)
5170 {
5171 	struct netdev_adjacent *iter;
5172 
5173 	struct net *net = dev_net(dev);
5174 
5175 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5176 		if (!net_eq(net,dev_net(iter->dev)))
5177 			continue;
5178 		netdev_adjacent_sysfs_add(iter->dev, dev,
5179 					  &iter->dev->adj_list.lower);
5180 		netdev_adjacent_sysfs_add(dev, iter->dev,
5181 					  &dev->adj_list.upper);
5182 	}
5183 
5184 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5185 		if (!net_eq(net,dev_net(iter->dev)))
5186 			continue;
5187 		netdev_adjacent_sysfs_add(iter->dev, dev,
5188 					  &iter->dev->adj_list.upper);
5189 		netdev_adjacent_sysfs_add(dev, iter->dev,
5190 					  &dev->adj_list.lower);
5191 	}
5192 }
5193 
5194 void netdev_adjacent_del_links(struct net_device *dev)
5195 {
5196 	struct netdev_adjacent *iter;
5197 
5198 	struct net *net = dev_net(dev);
5199 
5200 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5201 		if (!net_eq(net,dev_net(iter->dev)))
5202 			continue;
5203 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5204 					  &iter->dev->adj_list.lower);
5205 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5206 					  &dev->adj_list.upper);
5207 	}
5208 
5209 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5210 		if (!net_eq(net,dev_net(iter->dev)))
5211 			continue;
5212 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5213 					  &iter->dev->adj_list.upper);
5214 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5215 					  &dev->adj_list.lower);
5216 	}
5217 }
5218 
5219 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5220 {
5221 	struct netdev_adjacent *iter;
5222 
5223 	struct net *net = dev_net(dev);
5224 
5225 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5226 		if (!net_eq(net,dev_net(iter->dev)))
5227 			continue;
5228 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5229 					  &iter->dev->adj_list.lower);
5230 		netdev_adjacent_sysfs_add(iter->dev, dev,
5231 					  &iter->dev->adj_list.lower);
5232 	}
5233 
5234 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5235 		if (!net_eq(net,dev_net(iter->dev)))
5236 			continue;
5237 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5238 					  &iter->dev->adj_list.upper);
5239 		netdev_adjacent_sysfs_add(iter->dev, dev,
5240 					  &iter->dev->adj_list.upper);
5241 	}
5242 }
5243 
5244 void *netdev_lower_dev_get_private(struct net_device *dev,
5245 				   struct net_device *lower_dev)
5246 {
5247 	struct netdev_adjacent *lower;
5248 
5249 	if (!lower_dev)
5250 		return NULL;
5251 	lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5252 	if (!lower)
5253 		return NULL;
5254 
5255 	return lower->private;
5256 }
5257 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5258 
5259 
5260 int dev_get_nest_level(struct net_device *dev,
5261 		       bool (*type_check)(struct net_device *dev))
5262 {
5263 	struct net_device *lower = NULL;
5264 	struct list_head *iter;
5265 	int max_nest = -1;
5266 	int nest;
5267 
5268 	ASSERT_RTNL();
5269 
5270 	netdev_for_each_lower_dev(dev, lower, iter) {
5271 		nest = dev_get_nest_level(lower, type_check);
5272 		if (max_nest < nest)
5273 			max_nest = nest;
5274 	}
5275 
5276 	if (type_check(dev))
5277 		max_nest++;
5278 
5279 	return max_nest;
5280 }
5281 EXPORT_SYMBOL(dev_get_nest_level);
5282 
5283 static void dev_change_rx_flags(struct net_device *dev, int flags)
5284 {
5285 	const struct net_device_ops *ops = dev->netdev_ops;
5286 
5287 	if (ops->ndo_change_rx_flags)
5288 		ops->ndo_change_rx_flags(dev, flags);
5289 }
5290 
5291 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5292 {
5293 	unsigned int old_flags = dev->flags;
5294 	kuid_t uid;
5295 	kgid_t gid;
5296 
5297 	ASSERT_RTNL();
5298 
5299 	dev->flags |= IFF_PROMISC;
5300 	dev->promiscuity += inc;
5301 	if (dev->promiscuity == 0) {
5302 		/*
5303 		 * Avoid overflow.
5304 		 * If inc causes overflow, untouch promisc and return error.
5305 		 */
5306 		if (inc < 0)
5307 			dev->flags &= ~IFF_PROMISC;
5308 		else {
5309 			dev->promiscuity -= inc;
5310 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5311 				dev->name);
5312 			return -EOVERFLOW;
5313 		}
5314 	}
5315 	if (dev->flags != old_flags) {
5316 		pr_info("device %s %s promiscuous mode\n",
5317 			dev->name,
5318 			dev->flags & IFF_PROMISC ? "entered" : "left");
5319 		if (audit_enabled) {
5320 			current_uid_gid(&uid, &gid);
5321 			audit_log(current->audit_context, GFP_ATOMIC,
5322 				AUDIT_ANOM_PROMISCUOUS,
5323 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5324 				dev->name, (dev->flags & IFF_PROMISC),
5325 				(old_flags & IFF_PROMISC),
5326 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5327 				from_kuid(&init_user_ns, uid),
5328 				from_kgid(&init_user_ns, gid),
5329 				audit_get_sessionid(current));
5330 		}
5331 
5332 		dev_change_rx_flags(dev, IFF_PROMISC);
5333 	}
5334 	if (notify)
5335 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5336 	return 0;
5337 }
5338 
5339 /**
5340  *	dev_set_promiscuity	- update promiscuity count on a device
5341  *	@dev: device
5342  *	@inc: modifier
5343  *
5344  *	Add or remove promiscuity from a device. While the count in the device
5345  *	remains above zero the interface remains promiscuous. Once it hits zero
5346  *	the device reverts back to normal filtering operation. A negative inc
5347  *	value is used to drop promiscuity on the device.
5348  *	Return 0 if successful or a negative errno code on error.
5349  */
5350 int dev_set_promiscuity(struct net_device *dev, int inc)
5351 {
5352 	unsigned int old_flags = dev->flags;
5353 	int err;
5354 
5355 	err = __dev_set_promiscuity(dev, inc, true);
5356 	if (err < 0)
5357 		return err;
5358 	if (dev->flags != old_flags)
5359 		dev_set_rx_mode(dev);
5360 	return err;
5361 }
5362 EXPORT_SYMBOL(dev_set_promiscuity);
5363 
5364 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5365 {
5366 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5367 
5368 	ASSERT_RTNL();
5369 
5370 	dev->flags |= IFF_ALLMULTI;
5371 	dev->allmulti += inc;
5372 	if (dev->allmulti == 0) {
5373 		/*
5374 		 * Avoid overflow.
5375 		 * If inc causes overflow, untouch allmulti and return error.
5376 		 */
5377 		if (inc < 0)
5378 			dev->flags &= ~IFF_ALLMULTI;
5379 		else {
5380 			dev->allmulti -= inc;
5381 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5382 				dev->name);
5383 			return -EOVERFLOW;
5384 		}
5385 	}
5386 	if (dev->flags ^ old_flags) {
5387 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5388 		dev_set_rx_mode(dev);
5389 		if (notify)
5390 			__dev_notify_flags(dev, old_flags,
5391 					   dev->gflags ^ old_gflags);
5392 	}
5393 	return 0;
5394 }
5395 
5396 /**
5397  *	dev_set_allmulti	- update allmulti count on a device
5398  *	@dev: device
5399  *	@inc: modifier
5400  *
5401  *	Add or remove reception of all multicast frames to a device. While the
5402  *	count in the device remains above zero the interface remains listening
5403  *	to all interfaces. Once it hits zero the device reverts back to normal
5404  *	filtering operation. A negative @inc value is used to drop the counter
5405  *	when releasing a resource needing all multicasts.
5406  *	Return 0 if successful or a negative errno code on error.
5407  */
5408 
5409 int dev_set_allmulti(struct net_device *dev, int inc)
5410 {
5411 	return __dev_set_allmulti(dev, inc, true);
5412 }
5413 EXPORT_SYMBOL(dev_set_allmulti);
5414 
5415 /*
5416  *	Upload unicast and multicast address lists to device and
5417  *	configure RX filtering. When the device doesn't support unicast
5418  *	filtering it is put in promiscuous mode while unicast addresses
5419  *	are present.
5420  */
5421 void __dev_set_rx_mode(struct net_device *dev)
5422 {
5423 	const struct net_device_ops *ops = dev->netdev_ops;
5424 
5425 	/* dev_open will call this function so the list will stay sane. */
5426 	if (!(dev->flags&IFF_UP))
5427 		return;
5428 
5429 	if (!netif_device_present(dev))
5430 		return;
5431 
5432 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5433 		/* Unicast addresses changes may only happen under the rtnl,
5434 		 * therefore calling __dev_set_promiscuity here is safe.
5435 		 */
5436 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5437 			__dev_set_promiscuity(dev, 1, false);
5438 			dev->uc_promisc = true;
5439 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5440 			__dev_set_promiscuity(dev, -1, false);
5441 			dev->uc_promisc = false;
5442 		}
5443 	}
5444 
5445 	if (ops->ndo_set_rx_mode)
5446 		ops->ndo_set_rx_mode(dev);
5447 }
5448 
5449 void dev_set_rx_mode(struct net_device *dev)
5450 {
5451 	netif_addr_lock_bh(dev);
5452 	__dev_set_rx_mode(dev);
5453 	netif_addr_unlock_bh(dev);
5454 }
5455 
5456 /**
5457  *	dev_get_flags - get flags reported to userspace
5458  *	@dev: device
5459  *
5460  *	Get the combination of flag bits exported through APIs to userspace.
5461  */
5462 unsigned int dev_get_flags(const struct net_device *dev)
5463 {
5464 	unsigned int flags;
5465 
5466 	flags = (dev->flags & ~(IFF_PROMISC |
5467 				IFF_ALLMULTI |
5468 				IFF_RUNNING |
5469 				IFF_LOWER_UP |
5470 				IFF_DORMANT)) |
5471 		(dev->gflags & (IFF_PROMISC |
5472 				IFF_ALLMULTI));
5473 
5474 	if (netif_running(dev)) {
5475 		if (netif_oper_up(dev))
5476 			flags |= IFF_RUNNING;
5477 		if (netif_carrier_ok(dev))
5478 			flags |= IFF_LOWER_UP;
5479 		if (netif_dormant(dev))
5480 			flags |= IFF_DORMANT;
5481 	}
5482 
5483 	return flags;
5484 }
5485 EXPORT_SYMBOL(dev_get_flags);
5486 
5487 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5488 {
5489 	unsigned int old_flags = dev->flags;
5490 	int ret;
5491 
5492 	ASSERT_RTNL();
5493 
5494 	/*
5495 	 *	Set the flags on our device.
5496 	 */
5497 
5498 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5499 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5500 			       IFF_AUTOMEDIA)) |
5501 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5502 				    IFF_ALLMULTI));
5503 
5504 	/*
5505 	 *	Load in the correct multicast list now the flags have changed.
5506 	 */
5507 
5508 	if ((old_flags ^ flags) & IFF_MULTICAST)
5509 		dev_change_rx_flags(dev, IFF_MULTICAST);
5510 
5511 	dev_set_rx_mode(dev);
5512 
5513 	/*
5514 	 *	Have we downed the interface. We handle IFF_UP ourselves
5515 	 *	according to user attempts to set it, rather than blindly
5516 	 *	setting it.
5517 	 */
5518 
5519 	ret = 0;
5520 	if ((old_flags ^ flags) & IFF_UP)
5521 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5522 
5523 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5524 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5525 		unsigned int old_flags = dev->flags;
5526 
5527 		dev->gflags ^= IFF_PROMISC;
5528 
5529 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5530 			if (dev->flags != old_flags)
5531 				dev_set_rx_mode(dev);
5532 	}
5533 
5534 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5535 	   is important. Some (broken) drivers set IFF_PROMISC, when
5536 	   IFF_ALLMULTI is requested not asking us and not reporting.
5537 	 */
5538 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5539 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5540 
5541 		dev->gflags ^= IFF_ALLMULTI;
5542 		__dev_set_allmulti(dev, inc, false);
5543 	}
5544 
5545 	return ret;
5546 }
5547 
5548 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5549 			unsigned int gchanges)
5550 {
5551 	unsigned int changes = dev->flags ^ old_flags;
5552 
5553 	if (gchanges)
5554 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5555 
5556 	if (changes & IFF_UP) {
5557 		if (dev->flags & IFF_UP)
5558 			call_netdevice_notifiers(NETDEV_UP, dev);
5559 		else
5560 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5561 	}
5562 
5563 	if (dev->flags & IFF_UP &&
5564 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5565 		struct netdev_notifier_change_info change_info;
5566 
5567 		change_info.flags_changed = changes;
5568 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5569 					      &change_info.info);
5570 	}
5571 }
5572 
5573 /**
5574  *	dev_change_flags - change device settings
5575  *	@dev: device
5576  *	@flags: device state flags
5577  *
5578  *	Change settings on device based state flags. The flags are
5579  *	in the userspace exported format.
5580  */
5581 int dev_change_flags(struct net_device *dev, unsigned int flags)
5582 {
5583 	int ret;
5584 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5585 
5586 	ret = __dev_change_flags(dev, flags);
5587 	if (ret < 0)
5588 		return ret;
5589 
5590 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5591 	__dev_notify_flags(dev, old_flags, changes);
5592 	return ret;
5593 }
5594 EXPORT_SYMBOL(dev_change_flags);
5595 
5596 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5597 {
5598 	const struct net_device_ops *ops = dev->netdev_ops;
5599 
5600 	if (ops->ndo_change_mtu)
5601 		return ops->ndo_change_mtu(dev, new_mtu);
5602 
5603 	dev->mtu = new_mtu;
5604 	return 0;
5605 }
5606 
5607 /**
5608  *	dev_set_mtu - Change maximum transfer unit
5609  *	@dev: device
5610  *	@new_mtu: new transfer unit
5611  *
5612  *	Change the maximum transfer size of the network device.
5613  */
5614 int dev_set_mtu(struct net_device *dev, int new_mtu)
5615 {
5616 	int err, orig_mtu;
5617 
5618 	if (new_mtu == dev->mtu)
5619 		return 0;
5620 
5621 	/*	MTU must be positive.	 */
5622 	if (new_mtu < 0)
5623 		return -EINVAL;
5624 
5625 	if (!netif_device_present(dev))
5626 		return -ENODEV;
5627 
5628 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5629 	err = notifier_to_errno(err);
5630 	if (err)
5631 		return err;
5632 
5633 	orig_mtu = dev->mtu;
5634 	err = __dev_set_mtu(dev, new_mtu);
5635 
5636 	if (!err) {
5637 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5638 		err = notifier_to_errno(err);
5639 		if (err) {
5640 			/* setting mtu back and notifying everyone again,
5641 			 * so that they have a chance to revert changes.
5642 			 */
5643 			__dev_set_mtu(dev, orig_mtu);
5644 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5645 		}
5646 	}
5647 	return err;
5648 }
5649 EXPORT_SYMBOL(dev_set_mtu);
5650 
5651 /**
5652  *	dev_set_group - Change group this device belongs to
5653  *	@dev: device
5654  *	@new_group: group this device should belong to
5655  */
5656 void dev_set_group(struct net_device *dev, int new_group)
5657 {
5658 	dev->group = new_group;
5659 }
5660 EXPORT_SYMBOL(dev_set_group);
5661 
5662 /**
5663  *	dev_set_mac_address - Change Media Access Control Address
5664  *	@dev: device
5665  *	@sa: new address
5666  *
5667  *	Change the hardware (MAC) address of the device
5668  */
5669 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5670 {
5671 	const struct net_device_ops *ops = dev->netdev_ops;
5672 	int err;
5673 
5674 	if (!ops->ndo_set_mac_address)
5675 		return -EOPNOTSUPP;
5676 	if (sa->sa_family != dev->type)
5677 		return -EINVAL;
5678 	if (!netif_device_present(dev))
5679 		return -ENODEV;
5680 	err = ops->ndo_set_mac_address(dev, sa);
5681 	if (err)
5682 		return err;
5683 	dev->addr_assign_type = NET_ADDR_SET;
5684 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5685 	add_device_randomness(dev->dev_addr, dev->addr_len);
5686 	return 0;
5687 }
5688 EXPORT_SYMBOL(dev_set_mac_address);
5689 
5690 /**
5691  *	dev_change_carrier - Change device carrier
5692  *	@dev: device
5693  *	@new_carrier: new value
5694  *
5695  *	Change device carrier
5696  */
5697 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5698 {
5699 	const struct net_device_ops *ops = dev->netdev_ops;
5700 
5701 	if (!ops->ndo_change_carrier)
5702 		return -EOPNOTSUPP;
5703 	if (!netif_device_present(dev))
5704 		return -ENODEV;
5705 	return ops->ndo_change_carrier(dev, new_carrier);
5706 }
5707 EXPORT_SYMBOL(dev_change_carrier);
5708 
5709 /**
5710  *	dev_get_phys_port_id - Get device physical port ID
5711  *	@dev: device
5712  *	@ppid: port ID
5713  *
5714  *	Get device physical port ID
5715  */
5716 int dev_get_phys_port_id(struct net_device *dev,
5717 			 struct netdev_phys_port_id *ppid)
5718 {
5719 	const struct net_device_ops *ops = dev->netdev_ops;
5720 
5721 	if (!ops->ndo_get_phys_port_id)
5722 		return -EOPNOTSUPP;
5723 	return ops->ndo_get_phys_port_id(dev, ppid);
5724 }
5725 EXPORT_SYMBOL(dev_get_phys_port_id);
5726 
5727 /**
5728  *	dev_new_index	-	allocate an ifindex
5729  *	@net: the applicable net namespace
5730  *
5731  *	Returns a suitable unique value for a new device interface
5732  *	number.  The caller must hold the rtnl semaphore or the
5733  *	dev_base_lock to be sure it remains unique.
5734  */
5735 static int dev_new_index(struct net *net)
5736 {
5737 	int ifindex = net->ifindex;
5738 	for (;;) {
5739 		if (++ifindex <= 0)
5740 			ifindex = 1;
5741 		if (!__dev_get_by_index(net, ifindex))
5742 			return net->ifindex = ifindex;
5743 	}
5744 }
5745 
5746 /* Delayed registration/unregisteration */
5747 static LIST_HEAD(net_todo_list);
5748 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5749 
5750 static void net_set_todo(struct net_device *dev)
5751 {
5752 	list_add_tail(&dev->todo_list, &net_todo_list);
5753 	dev_net(dev)->dev_unreg_count++;
5754 }
5755 
5756 static void rollback_registered_many(struct list_head *head)
5757 {
5758 	struct net_device *dev, *tmp;
5759 	LIST_HEAD(close_head);
5760 
5761 	BUG_ON(dev_boot_phase);
5762 	ASSERT_RTNL();
5763 
5764 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5765 		/* Some devices call without registering
5766 		 * for initialization unwind. Remove those
5767 		 * devices and proceed with the remaining.
5768 		 */
5769 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5770 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5771 				 dev->name, dev);
5772 
5773 			WARN_ON(1);
5774 			list_del(&dev->unreg_list);
5775 			continue;
5776 		}
5777 		dev->dismantle = true;
5778 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5779 	}
5780 
5781 	/* If device is running, close it first. */
5782 	list_for_each_entry(dev, head, unreg_list)
5783 		list_add_tail(&dev->close_list, &close_head);
5784 	dev_close_many(&close_head);
5785 
5786 	list_for_each_entry(dev, head, unreg_list) {
5787 		/* And unlink it from device chain. */
5788 		unlist_netdevice(dev);
5789 
5790 		dev->reg_state = NETREG_UNREGISTERING;
5791 	}
5792 
5793 	synchronize_net();
5794 
5795 	list_for_each_entry(dev, head, unreg_list) {
5796 		/* Shutdown queueing discipline. */
5797 		dev_shutdown(dev);
5798 
5799 
5800 		/* Notify protocols, that we are about to destroy
5801 		   this device. They should clean all the things.
5802 		*/
5803 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5804 
5805 		/*
5806 		 *	Flush the unicast and multicast chains
5807 		 */
5808 		dev_uc_flush(dev);
5809 		dev_mc_flush(dev);
5810 
5811 		if (dev->netdev_ops->ndo_uninit)
5812 			dev->netdev_ops->ndo_uninit(dev);
5813 
5814 		if (!dev->rtnl_link_ops ||
5815 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5816 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5817 
5818 		/* Notifier chain MUST detach us all upper devices. */
5819 		WARN_ON(netdev_has_any_upper_dev(dev));
5820 
5821 		/* Remove entries from kobject tree */
5822 		netdev_unregister_kobject(dev);
5823 #ifdef CONFIG_XPS
5824 		/* Remove XPS queueing entries */
5825 		netif_reset_xps_queues_gt(dev, 0);
5826 #endif
5827 	}
5828 
5829 	synchronize_net();
5830 
5831 	list_for_each_entry(dev, head, unreg_list)
5832 		dev_put(dev);
5833 }
5834 
5835 static void rollback_registered(struct net_device *dev)
5836 {
5837 	LIST_HEAD(single);
5838 
5839 	list_add(&dev->unreg_list, &single);
5840 	rollback_registered_many(&single);
5841 	list_del(&single);
5842 }
5843 
5844 static netdev_features_t netdev_fix_features(struct net_device *dev,
5845 	netdev_features_t features)
5846 {
5847 	/* Fix illegal checksum combinations */
5848 	if ((features & NETIF_F_HW_CSUM) &&
5849 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5850 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5851 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5852 	}
5853 
5854 	/* TSO requires that SG is present as well. */
5855 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5856 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5857 		features &= ~NETIF_F_ALL_TSO;
5858 	}
5859 
5860 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5861 					!(features & NETIF_F_IP_CSUM)) {
5862 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5863 		features &= ~NETIF_F_TSO;
5864 		features &= ~NETIF_F_TSO_ECN;
5865 	}
5866 
5867 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5868 					 !(features & NETIF_F_IPV6_CSUM)) {
5869 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5870 		features &= ~NETIF_F_TSO6;
5871 	}
5872 
5873 	/* TSO ECN requires that TSO is present as well. */
5874 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5875 		features &= ~NETIF_F_TSO_ECN;
5876 
5877 	/* Software GSO depends on SG. */
5878 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5879 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5880 		features &= ~NETIF_F_GSO;
5881 	}
5882 
5883 	/* UFO needs SG and checksumming */
5884 	if (features & NETIF_F_UFO) {
5885 		/* maybe split UFO into V4 and V6? */
5886 		if (!((features & NETIF_F_GEN_CSUM) ||
5887 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5888 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5889 			netdev_dbg(dev,
5890 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5891 			features &= ~NETIF_F_UFO;
5892 		}
5893 
5894 		if (!(features & NETIF_F_SG)) {
5895 			netdev_dbg(dev,
5896 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5897 			features &= ~NETIF_F_UFO;
5898 		}
5899 	}
5900 
5901 #ifdef CONFIG_NET_RX_BUSY_POLL
5902 	if (dev->netdev_ops->ndo_busy_poll)
5903 		features |= NETIF_F_BUSY_POLL;
5904 	else
5905 #endif
5906 		features &= ~NETIF_F_BUSY_POLL;
5907 
5908 	return features;
5909 }
5910 
5911 int __netdev_update_features(struct net_device *dev)
5912 {
5913 	netdev_features_t features;
5914 	int err = 0;
5915 
5916 	ASSERT_RTNL();
5917 
5918 	features = netdev_get_wanted_features(dev);
5919 
5920 	if (dev->netdev_ops->ndo_fix_features)
5921 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5922 
5923 	/* driver might be less strict about feature dependencies */
5924 	features = netdev_fix_features(dev, features);
5925 
5926 	if (dev->features == features)
5927 		return 0;
5928 
5929 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5930 		&dev->features, &features);
5931 
5932 	if (dev->netdev_ops->ndo_set_features)
5933 		err = dev->netdev_ops->ndo_set_features(dev, features);
5934 
5935 	if (unlikely(err < 0)) {
5936 		netdev_err(dev,
5937 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5938 			err, &features, &dev->features);
5939 		return -1;
5940 	}
5941 
5942 	if (!err)
5943 		dev->features = features;
5944 
5945 	return 1;
5946 }
5947 
5948 /**
5949  *	netdev_update_features - recalculate device features
5950  *	@dev: the device to check
5951  *
5952  *	Recalculate dev->features set and send notifications if it
5953  *	has changed. Should be called after driver or hardware dependent
5954  *	conditions might have changed that influence the features.
5955  */
5956 void netdev_update_features(struct net_device *dev)
5957 {
5958 	if (__netdev_update_features(dev))
5959 		netdev_features_change(dev);
5960 }
5961 EXPORT_SYMBOL(netdev_update_features);
5962 
5963 /**
5964  *	netdev_change_features - recalculate device features
5965  *	@dev: the device to check
5966  *
5967  *	Recalculate dev->features set and send notifications even
5968  *	if they have not changed. Should be called instead of
5969  *	netdev_update_features() if also dev->vlan_features might
5970  *	have changed to allow the changes to be propagated to stacked
5971  *	VLAN devices.
5972  */
5973 void netdev_change_features(struct net_device *dev)
5974 {
5975 	__netdev_update_features(dev);
5976 	netdev_features_change(dev);
5977 }
5978 EXPORT_SYMBOL(netdev_change_features);
5979 
5980 /**
5981  *	netif_stacked_transfer_operstate -	transfer operstate
5982  *	@rootdev: the root or lower level device to transfer state from
5983  *	@dev: the device to transfer operstate to
5984  *
5985  *	Transfer operational state from root to device. This is normally
5986  *	called when a stacking relationship exists between the root
5987  *	device and the device(a leaf device).
5988  */
5989 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5990 					struct net_device *dev)
5991 {
5992 	if (rootdev->operstate == IF_OPER_DORMANT)
5993 		netif_dormant_on(dev);
5994 	else
5995 		netif_dormant_off(dev);
5996 
5997 	if (netif_carrier_ok(rootdev)) {
5998 		if (!netif_carrier_ok(dev))
5999 			netif_carrier_on(dev);
6000 	} else {
6001 		if (netif_carrier_ok(dev))
6002 			netif_carrier_off(dev);
6003 	}
6004 }
6005 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6006 
6007 #ifdef CONFIG_SYSFS
6008 static int netif_alloc_rx_queues(struct net_device *dev)
6009 {
6010 	unsigned int i, count = dev->num_rx_queues;
6011 	struct netdev_rx_queue *rx;
6012 
6013 	BUG_ON(count < 1);
6014 
6015 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
6016 	if (!rx)
6017 		return -ENOMEM;
6018 
6019 	dev->_rx = rx;
6020 
6021 	for (i = 0; i < count; i++)
6022 		rx[i].dev = dev;
6023 	return 0;
6024 }
6025 #endif
6026 
6027 static void netdev_init_one_queue(struct net_device *dev,
6028 				  struct netdev_queue *queue, void *_unused)
6029 {
6030 	/* Initialize queue lock */
6031 	spin_lock_init(&queue->_xmit_lock);
6032 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6033 	queue->xmit_lock_owner = -1;
6034 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6035 	queue->dev = dev;
6036 #ifdef CONFIG_BQL
6037 	dql_init(&queue->dql, HZ);
6038 #endif
6039 }
6040 
6041 static void netif_free_tx_queues(struct net_device *dev)
6042 {
6043 	kvfree(dev->_tx);
6044 }
6045 
6046 static int netif_alloc_netdev_queues(struct net_device *dev)
6047 {
6048 	unsigned int count = dev->num_tx_queues;
6049 	struct netdev_queue *tx;
6050 	size_t sz = count * sizeof(*tx);
6051 
6052 	BUG_ON(count < 1 || count > 0xffff);
6053 
6054 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6055 	if (!tx) {
6056 		tx = vzalloc(sz);
6057 		if (!tx)
6058 			return -ENOMEM;
6059 	}
6060 	dev->_tx = tx;
6061 
6062 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6063 	spin_lock_init(&dev->tx_global_lock);
6064 
6065 	return 0;
6066 }
6067 
6068 /**
6069  *	register_netdevice	- register a network device
6070  *	@dev: device to register
6071  *
6072  *	Take a completed network device structure and add it to the kernel
6073  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6074  *	chain. 0 is returned on success. A negative errno code is returned
6075  *	on a failure to set up the device, or if the name is a duplicate.
6076  *
6077  *	Callers must hold the rtnl semaphore. You may want
6078  *	register_netdev() instead of this.
6079  *
6080  *	BUGS:
6081  *	The locking appears insufficient to guarantee two parallel registers
6082  *	will not get the same name.
6083  */
6084 
6085 int register_netdevice(struct net_device *dev)
6086 {
6087 	int ret;
6088 	struct net *net = dev_net(dev);
6089 
6090 	BUG_ON(dev_boot_phase);
6091 	ASSERT_RTNL();
6092 
6093 	might_sleep();
6094 
6095 	/* When net_device's are persistent, this will be fatal. */
6096 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6097 	BUG_ON(!net);
6098 
6099 	spin_lock_init(&dev->addr_list_lock);
6100 	netdev_set_addr_lockdep_class(dev);
6101 
6102 	dev->iflink = -1;
6103 
6104 	ret = dev_get_valid_name(net, dev, dev->name);
6105 	if (ret < 0)
6106 		goto out;
6107 
6108 	/* Init, if this function is available */
6109 	if (dev->netdev_ops->ndo_init) {
6110 		ret = dev->netdev_ops->ndo_init(dev);
6111 		if (ret) {
6112 			if (ret > 0)
6113 				ret = -EIO;
6114 			goto out;
6115 		}
6116 	}
6117 
6118 	if (((dev->hw_features | dev->features) &
6119 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6120 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6121 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6122 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6123 		ret = -EINVAL;
6124 		goto err_uninit;
6125 	}
6126 
6127 	ret = -EBUSY;
6128 	if (!dev->ifindex)
6129 		dev->ifindex = dev_new_index(net);
6130 	else if (__dev_get_by_index(net, dev->ifindex))
6131 		goto err_uninit;
6132 
6133 	if (dev->iflink == -1)
6134 		dev->iflink = dev->ifindex;
6135 
6136 	/* Transfer changeable features to wanted_features and enable
6137 	 * software offloads (GSO and GRO).
6138 	 */
6139 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6140 	dev->features |= NETIF_F_SOFT_FEATURES;
6141 	dev->wanted_features = dev->features & dev->hw_features;
6142 
6143 	if (!(dev->flags & IFF_LOOPBACK)) {
6144 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6145 	}
6146 
6147 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6148 	 */
6149 	dev->vlan_features |= NETIF_F_HIGHDMA;
6150 
6151 	/* Make NETIF_F_SG inheritable to tunnel devices.
6152 	 */
6153 	dev->hw_enc_features |= NETIF_F_SG;
6154 
6155 	/* Make NETIF_F_SG inheritable to MPLS.
6156 	 */
6157 	dev->mpls_features |= NETIF_F_SG;
6158 
6159 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6160 	ret = notifier_to_errno(ret);
6161 	if (ret)
6162 		goto err_uninit;
6163 
6164 	ret = netdev_register_kobject(dev);
6165 	if (ret)
6166 		goto err_uninit;
6167 	dev->reg_state = NETREG_REGISTERED;
6168 
6169 	__netdev_update_features(dev);
6170 
6171 	/*
6172 	 *	Default initial state at registry is that the
6173 	 *	device is present.
6174 	 */
6175 
6176 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6177 
6178 	linkwatch_init_dev(dev);
6179 
6180 	dev_init_scheduler(dev);
6181 	dev_hold(dev);
6182 	list_netdevice(dev);
6183 	add_device_randomness(dev->dev_addr, dev->addr_len);
6184 
6185 	/* If the device has permanent device address, driver should
6186 	 * set dev_addr and also addr_assign_type should be set to
6187 	 * NET_ADDR_PERM (default value).
6188 	 */
6189 	if (dev->addr_assign_type == NET_ADDR_PERM)
6190 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6191 
6192 	/* Notify protocols, that a new device appeared. */
6193 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6194 	ret = notifier_to_errno(ret);
6195 	if (ret) {
6196 		rollback_registered(dev);
6197 		dev->reg_state = NETREG_UNREGISTERED;
6198 	}
6199 	/*
6200 	 *	Prevent userspace races by waiting until the network
6201 	 *	device is fully setup before sending notifications.
6202 	 */
6203 	if (!dev->rtnl_link_ops ||
6204 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6205 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6206 
6207 out:
6208 	return ret;
6209 
6210 err_uninit:
6211 	if (dev->netdev_ops->ndo_uninit)
6212 		dev->netdev_ops->ndo_uninit(dev);
6213 	goto out;
6214 }
6215 EXPORT_SYMBOL(register_netdevice);
6216 
6217 /**
6218  *	init_dummy_netdev	- init a dummy network device for NAPI
6219  *	@dev: device to init
6220  *
6221  *	This takes a network device structure and initialize the minimum
6222  *	amount of fields so it can be used to schedule NAPI polls without
6223  *	registering a full blown interface. This is to be used by drivers
6224  *	that need to tie several hardware interfaces to a single NAPI
6225  *	poll scheduler due to HW limitations.
6226  */
6227 int init_dummy_netdev(struct net_device *dev)
6228 {
6229 	/* Clear everything. Note we don't initialize spinlocks
6230 	 * are they aren't supposed to be taken by any of the
6231 	 * NAPI code and this dummy netdev is supposed to be
6232 	 * only ever used for NAPI polls
6233 	 */
6234 	memset(dev, 0, sizeof(struct net_device));
6235 
6236 	/* make sure we BUG if trying to hit standard
6237 	 * register/unregister code path
6238 	 */
6239 	dev->reg_state = NETREG_DUMMY;
6240 
6241 	/* NAPI wants this */
6242 	INIT_LIST_HEAD(&dev->napi_list);
6243 
6244 	/* a dummy interface is started by default */
6245 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6246 	set_bit(__LINK_STATE_START, &dev->state);
6247 
6248 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6249 	 * because users of this 'device' dont need to change
6250 	 * its refcount.
6251 	 */
6252 
6253 	return 0;
6254 }
6255 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6256 
6257 
6258 /**
6259  *	register_netdev	- register a network device
6260  *	@dev: device to register
6261  *
6262  *	Take a completed network device structure and add it to the kernel
6263  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6264  *	chain. 0 is returned on success. A negative errno code is returned
6265  *	on a failure to set up the device, or if the name is a duplicate.
6266  *
6267  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6268  *	and expands the device name if you passed a format string to
6269  *	alloc_netdev.
6270  */
6271 int register_netdev(struct net_device *dev)
6272 {
6273 	int err;
6274 
6275 	rtnl_lock();
6276 	err = register_netdevice(dev);
6277 	rtnl_unlock();
6278 	return err;
6279 }
6280 EXPORT_SYMBOL(register_netdev);
6281 
6282 int netdev_refcnt_read(const struct net_device *dev)
6283 {
6284 	int i, refcnt = 0;
6285 
6286 	for_each_possible_cpu(i)
6287 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6288 	return refcnt;
6289 }
6290 EXPORT_SYMBOL(netdev_refcnt_read);
6291 
6292 /**
6293  * netdev_wait_allrefs - wait until all references are gone.
6294  * @dev: target net_device
6295  *
6296  * This is called when unregistering network devices.
6297  *
6298  * Any protocol or device that holds a reference should register
6299  * for netdevice notification, and cleanup and put back the
6300  * reference if they receive an UNREGISTER event.
6301  * We can get stuck here if buggy protocols don't correctly
6302  * call dev_put.
6303  */
6304 static void netdev_wait_allrefs(struct net_device *dev)
6305 {
6306 	unsigned long rebroadcast_time, warning_time;
6307 	int refcnt;
6308 
6309 	linkwatch_forget_dev(dev);
6310 
6311 	rebroadcast_time = warning_time = jiffies;
6312 	refcnt = netdev_refcnt_read(dev);
6313 
6314 	while (refcnt != 0) {
6315 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6316 			rtnl_lock();
6317 
6318 			/* Rebroadcast unregister notification */
6319 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6320 
6321 			__rtnl_unlock();
6322 			rcu_barrier();
6323 			rtnl_lock();
6324 
6325 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6326 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6327 				     &dev->state)) {
6328 				/* We must not have linkwatch events
6329 				 * pending on unregister. If this
6330 				 * happens, we simply run the queue
6331 				 * unscheduled, resulting in a noop
6332 				 * for this device.
6333 				 */
6334 				linkwatch_run_queue();
6335 			}
6336 
6337 			__rtnl_unlock();
6338 
6339 			rebroadcast_time = jiffies;
6340 		}
6341 
6342 		msleep(250);
6343 
6344 		refcnt = netdev_refcnt_read(dev);
6345 
6346 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6347 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6348 				 dev->name, refcnt);
6349 			warning_time = jiffies;
6350 		}
6351 	}
6352 }
6353 
6354 /* The sequence is:
6355  *
6356  *	rtnl_lock();
6357  *	...
6358  *	register_netdevice(x1);
6359  *	register_netdevice(x2);
6360  *	...
6361  *	unregister_netdevice(y1);
6362  *	unregister_netdevice(y2);
6363  *      ...
6364  *	rtnl_unlock();
6365  *	free_netdev(y1);
6366  *	free_netdev(y2);
6367  *
6368  * We are invoked by rtnl_unlock().
6369  * This allows us to deal with problems:
6370  * 1) We can delete sysfs objects which invoke hotplug
6371  *    without deadlocking with linkwatch via keventd.
6372  * 2) Since we run with the RTNL semaphore not held, we can sleep
6373  *    safely in order to wait for the netdev refcnt to drop to zero.
6374  *
6375  * We must not return until all unregister events added during
6376  * the interval the lock was held have been completed.
6377  */
6378 void netdev_run_todo(void)
6379 {
6380 	struct list_head list;
6381 
6382 	/* Snapshot list, allow later requests */
6383 	list_replace_init(&net_todo_list, &list);
6384 
6385 	__rtnl_unlock();
6386 
6387 
6388 	/* Wait for rcu callbacks to finish before next phase */
6389 	if (!list_empty(&list))
6390 		rcu_barrier();
6391 
6392 	while (!list_empty(&list)) {
6393 		struct net_device *dev
6394 			= list_first_entry(&list, struct net_device, todo_list);
6395 		list_del(&dev->todo_list);
6396 
6397 		rtnl_lock();
6398 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6399 		__rtnl_unlock();
6400 
6401 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6402 			pr_err("network todo '%s' but state %d\n",
6403 			       dev->name, dev->reg_state);
6404 			dump_stack();
6405 			continue;
6406 		}
6407 
6408 		dev->reg_state = NETREG_UNREGISTERED;
6409 
6410 		on_each_cpu(flush_backlog, dev, 1);
6411 
6412 		netdev_wait_allrefs(dev);
6413 
6414 		/* paranoia */
6415 		BUG_ON(netdev_refcnt_read(dev));
6416 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6417 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6418 		WARN_ON(dev->dn_ptr);
6419 
6420 		if (dev->destructor)
6421 			dev->destructor(dev);
6422 
6423 		/* Report a network device has been unregistered */
6424 		rtnl_lock();
6425 		dev_net(dev)->dev_unreg_count--;
6426 		__rtnl_unlock();
6427 		wake_up(&netdev_unregistering_wq);
6428 
6429 		/* Free network device */
6430 		kobject_put(&dev->dev.kobj);
6431 	}
6432 }
6433 
6434 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6435  * fields in the same order, with only the type differing.
6436  */
6437 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6438 			     const struct net_device_stats *netdev_stats)
6439 {
6440 #if BITS_PER_LONG == 64
6441 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6442 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6443 #else
6444 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6445 	const unsigned long *src = (const unsigned long *)netdev_stats;
6446 	u64 *dst = (u64 *)stats64;
6447 
6448 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6449 		     sizeof(*stats64) / sizeof(u64));
6450 	for (i = 0; i < n; i++)
6451 		dst[i] = src[i];
6452 #endif
6453 }
6454 EXPORT_SYMBOL(netdev_stats_to_stats64);
6455 
6456 /**
6457  *	dev_get_stats	- get network device statistics
6458  *	@dev: device to get statistics from
6459  *	@storage: place to store stats
6460  *
6461  *	Get network statistics from device. Return @storage.
6462  *	The device driver may provide its own method by setting
6463  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6464  *	otherwise the internal statistics structure is used.
6465  */
6466 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6467 					struct rtnl_link_stats64 *storage)
6468 {
6469 	const struct net_device_ops *ops = dev->netdev_ops;
6470 
6471 	if (ops->ndo_get_stats64) {
6472 		memset(storage, 0, sizeof(*storage));
6473 		ops->ndo_get_stats64(dev, storage);
6474 	} else if (ops->ndo_get_stats) {
6475 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6476 	} else {
6477 		netdev_stats_to_stats64(storage, &dev->stats);
6478 	}
6479 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6480 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6481 	return storage;
6482 }
6483 EXPORT_SYMBOL(dev_get_stats);
6484 
6485 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6486 {
6487 	struct netdev_queue *queue = dev_ingress_queue(dev);
6488 
6489 #ifdef CONFIG_NET_CLS_ACT
6490 	if (queue)
6491 		return queue;
6492 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6493 	if (!queue)
6494 		return NULL;
6495 	netdev_init_one_queue(dev, queue, NULL);
6496 	queue->qdisc = &noop_qdisc;
6497 	queue->qdisc_sleeping = &noop_qdisc;
6498 	rcu_assign_pointer(dev->ingress_queue, queue);
6499 #endif
6500 	return queue;
6501 }
6502 
6503 static const struct ethtool_ops default_ethtool_ops;
6504 
6505 void netdev_set_default_ethtool_ops(struct net_device *dev,
6506 				    const struct ethtool_ops *ops)
6507 {
6508 	if (dev->ethtool_ops == &default_ethtool_ops)
6509 		dev->ethtool_ops = ops;
6510 }
6511 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6512 
6513 void netdev_freemem(struct net_device *dev)
6514 {
6515 	char *addr = (char *)dev - dev->padded;
6516 
6517 	kvfree(addr);
6518 }
6519 
6520 /**
6521  *	alloc_netdev_mqs - allocate network device
6522  *	@sizeof_priv:		size of private data to allocate space for
6523  *	@name:			device name format string
6524  *	@name_assign_type: 	origin of device name
6525  *	@setup:			callback to initialize device
6526  *	@txqs:			the number of TX subqueues to allocate
6527  *	@rxqs:			the number of RX subqueues to allocate
6528  *
6529  *	Allocates a struct net_device with private data area for driver use
6530  *	and performs basic initialization.  Also allocates subqueue structs
6531  *	for each queue on the device.
6532  */
6533 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6534 		unsigned char name_assign_type,
6535 		void (*setup)(struct net_device *),
6536 		unsigned int txqs, unsigned int rxqs)
6537 {
6538 	struct net_device *dev;
6539 	size_t alloc_size;
6540 	struct net_device *p;
6541 
6542 	BUG_ON(strlen(name) >= sizeof(dev->name));
6543 
6544 	if (txqs < 1) {
6545 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6546 		return NULL;
6547 	}
6548 
6549 #ifdef CONFIG_SYSFS
6550 	if (rxqs < 1) {
6551 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6552 		return NULL;
6553 	}
6554 #endif
6555 
6556 	alloc_size = sizeof(struct net_device);
6557 	if (sizeof_priv) {
6558 		/* ensure 32-byte alignment of private area */
6559 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6560 		alloc_size += sizeof_priv;
6561 	}
6562 	/* ensure 32-byte alignment of whole construct */
6563 	alloc_size += NETDEV_ALIGN - 1;
6564 
6565 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6566 	if (!p)
6567 		p = vzalloc(alloc_size);
6568 	if (!p)
6569 		return NULL;
6570 
6571 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6572 	dev->padded = (char *)dev - (char *)p;
6573 
6574 	dev->pcpu_refcnt = alloc_percpu(int);
6575 	if (!dev->pcpu_refcnt)
6576 		goto free_dev;
6577 
6578 	if (dev_addr_init(dev))
6579 		goto free_pcpu;
6580 
6581 	dev_mc_init(dev);
6582 	dev_uc_init(dev);
6583 
6584 	dev_net_set(dev, &init_net);
6585 
6586 	dev->gso_max_size = GSO_MAX_SIZE;
6587 	dev->gso_max_segs = GSO_MAX_SEGS;
6588 
6589 	INIT_LIST_HEAD(&dev->napi_list);
6590 	INIT_LIST_HEAD(&dev->unreg_list);
6591 	INIT_LIST_HEAD(&dev->close_list);
6592 	INIT_LIST_HEAD(&dev->link_watch_list);
6593 	INIT_LIST_HEAD(&dev->adj_list.upper);
6594 	INIT_LIST_HEAD(&dev->adj_list.lower);
6595 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
6596 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
6597 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
6598 	setup(dev);
6599 
6600 	dev->num_tx_queues = txqs;
6601 	dev->real_num_tx_queues = txqs;
6602 	if (netif_alloc_netdev_queues(dev))
6603 		goto free_all;
6604 
6605 #ifdef CONFIG_SYSFS
6606 	dev->num_rx_queues = rxqs;
6607 	dev->real_num_rx_queues = rxqs;
6608 	if (netif_alloc_rx_queues(dev))
6609 		goto free_all;
6610 #endif
6611 
6612 	strcpy(dev->name, name);
6613 	dev->name_assign_type = name_assign_type;
6614 	dev->group = INIT_NETDEV_GROUP;
6615 	if (!dev->ethtool_ops)
6616 		dev->ethtool_ops = &default_ethtool_ops;
6617 	return dev;
6618 
6619 free_all:
6620 	free_netdev(dev);
6621 	return NULL;
6622 
6623 free_pcpu:
6624 	free_percpu(dev->pcpu_refcnt);
6625 free_dev:
6626 	netdev_freemem(dev);
6627 	return NULL;
6628 }
6629 EXPORT_SYMBOL(alloc_netdev_mqs);
6630 
6631 /**
6632  *	free_netdev - free network device
6633  *	@dev: device
6634  *
6635  *	This function does the last stage of destroying an allocated device
6636  * 	interface. The reference to the device object is released.
6637  *	If this is the last reference then it will be freed.
6638  */
6639 void free_netdev(struct net_device *dev)
6640 {
6641 	struct napi_struct *p, *n;
6642 
6643 	release_net(dev_net(dev));
6644 
6645 	netif_free_tx_queues(dev);
6646 #ifdef CONFIG_SYSFS
6647 	kfree(dev->_rx);
6648 #endif
6649 
6650 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6651 
6652 	/* Flush device addresses */
6653 	dev_addr_flush(dev);
6654 
6655 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6656 		netif_napi_del(p);
6657 
6658 	free_percpu(dev->pcpu_refcnt);
6659 	dev->pcpu_refcnt = NULL;
6660 
6661 	/*  Compatibility with error handling in drivers */
6662 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6663 		netdev_freemem(dev);
6664 		return;
6665 	}
6666 
6667 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6668 	dev->reg_state = NETREG_RELEASED;
6669 
6670 	/* will free via device release */
6671 	put_device(&dev->dev);
6672 }
6673 EXPORT_SYMBOL(free_netdev);
6674 
6675 /**
6676  *	synchronize_net -  Synchronize with packet receive processing
6677  *
6678  *	Wait for packets currently being received to be done.
6679  *	Does not block later packets from starting.
6680  */
6681 void synchronize_net(void)
6682 {
6683 	might_sleep();
6684 	if (rtnl_is_locked())
6685 		synchronize_rcu_expedited();
6686 	else
6687 		synchronize_rcu();
6688 }
6689 EXPORT_SYMBOL(synchronize_net);
6690 
6691 /**
6692  *	unregister_netdevice_queue - remove device from the kernel
6693  *	@dev: device
6694  *	@head: list
6695  *
6696  *	This function shuts down a device interface and removes it
6697  *	from the kernel tables.
6698  *	If head not NULL, device is queued to be unregistered later.
6699  *
6700  *	Callers must hold the rtnl semaphore.  You may want
6701  *	unregister_netdev() instead of this.
6702  */
6703 
6704 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6705 {
6706 	ASSERT_RTNL();
6707 
6708 	if (head) {
6709 		list_move_tail(&dev->unreg_list, head);
6710 	} else {
6711 		rollback_registered(dev);
6712 		/* Finish processing unregister after unlock */
6713 		net_set_todo(dev);
6714 	}
6715 }
6716 EXPORT_SYMBOL(unregister_netdevice_queue);
6717 
6718 /**
6719  *	unregister_netdevice_many - unregister many devices
6720  *	@head: list of devices
6721  *
6722  *  Note: As most callers use a stack allocated list_head,
6723  *  we force a list_del() to make sure stack wont be corrupted later.
6724  */
6725 void unregister_netdevice_many(struct list_head *head)
6726 {
6727 	struct net_device *dev;
6728 
6729 	if (!list_empty(head)) {
6730 		rollback_registered_many(head);
6731 		list_for_each_entry(dev, head, unreg_list)
6732 			net_set_todo(dev);
6733 		list_del(head);
6734 	}
6735 }
6736 EXPORT_SYMBOL(unregister_netdevice_many);
6737 
6738 /**
6739  *	unregister_netdev - remove device from the kernel
6740  *	@dev: device
6741  *
6742  *	This function shuts down a device interface and removes it
6743  *	from the kernel tables.
6744  *
6745  *	This is just a wrapper for unregister_netdevice that takes
6746  *	the rtnl semaphore.  In general you want to use this and not
6747  *	unregister_netdevice.
6748  */
6749 void unregister_netdev(struct net_device *dev)
6750 {
6751 	rtnl_lock();
6752 	unregister_netdevice(dev);
6753 	rtnl_unlock();
6754 }
6755 EXPORT_SYMBOL(unregister_netdev);
6756 
6757 /**
6758  *	dev_change_net_namespace - move device to different nethost namespace
6759  *	@dev: device
6760  *	@net: network namespace
6761  *	@pat: If not NULL name pattern to try if the current device name
6762  *	      is already taken in the destination network namespace.
6763  *
6764  *	This function shuts down a device interface and moves it
6765  *	to a new network namespace. On success 0 is returned, on
6766  *	a failure a netagive errno code is returned.
6767  *
6768  *	Callers must hold the rtnl semaphore.
6769  */
6770 
6771 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6772 {
6773 	int err;
6774 
6775 	ASSERT_RTNL();
6776 
6777 	/* Don't allow namespace local devices to be moved. */
6778 	err = -EINVAL;
6779 	if (dev->features & NETIF_F_NETNS_LOCAL)
6780 		goto out;
6781 
6782 	/* Ensure the device has been registrered */
6783 	if (dev->reg_state != NETREG_REGISTERED)
6784 		goto out;
6785 
6786 	/* Get out if there is nothing todo */
6787 	err = 0;
6788 	if (net_eq(dev_net(dev), net))
6789 		goto out;
6790 
6791 	/* Pick the destination device name, and ensure
6792 	 * we can use it in the destination network namespace.
6793 	 */
6794 	err = -EEXIST;
6795 	if (__dev_get_by_name(net, dev->name)) {
6796 		/* We get here if we can't use the current device name */
6797 		if (!pat)
6798 			goto out;
6799 		if (dev_get_valid_name(net, dev, pat) < 0)
6800 			goto out;
6801 	}
6802 
6803 	/*
6804 	 * And now a mini version of register_netdevice unregister_netdevice.
6805 	 */
6806 
6807 	/* If device is running close it first. */
6808 	dev_close(dev);
6809 
6810 	/* And unlink it from device chain */
6811 	err = -ENODEV;
6812 	unlist_netdevice(dev);
6813 
6814 	synchronize_net();
6815 
6816 	/* Shutdown queueing discipline. */
6817 	dev_shutdown(dev);
6818 
6819 	/* Notify protocols, that we are about to destroy
6820 	   this device. They should clean all the things.
6821 
6822 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6823 	   This is wanted because this way 8021q and macvlan know
6824 	   the device is just moving and can keep their slaves up.
6825 	*/
6826 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6827 	rcu_barrier();
6828 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6829 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6830 
6831 	/*
6832 	 *	Flush the unicast and multicast chains
6833 	 */
6834 	dev_uc_flush(dev);
6835 	dev_mc_flush(dev);
6836 
6837 	/* Send a netdev-removed uevent to the old namespace */
6838 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6839 	netdev_adjacent_del_links(dev);
6840 
6841 	/* Actually switch the network namespace */
6842 	dev_net_set(dev, net);
6843 
6844 	/* If there is an ifindex conflict assign a new one */
6845 	if (__dev_get_by_index(net, dev->ifindex)) {
6846 		int iflink = (dev->iflink == dev->ifindex);
6847 		dev->ifindex = dev_new_index(net);
6848 		if (iflink)
6849 			dev->iflink = dev->ifindex;
6850 	}
6851 
6852 	/* Send a netdev-add uevent to the new namespace */
6853 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6854 	netdev_adjacent_add_links(dev);
6855 
6856 	/* Fixup kobjects */
6857 	err = device_rename(&dev->dev, dev->name);
6858 	WARN_ON(err);
6859 
6860 	/* Add the device back in the hashes */
6861 	list_netdevice(dev);
6862 
6863 	/* Notify protocols, that a new device appeared. */
6864 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6865 
6866 	/*
6867 	 *	Prevent userspace races by waiting until the network
6868 	 *	device is fully setup before sending notifications.
6869 	 */
6870 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6871 
6872 	synchronize_net();
6873 	err = 0;
6874 out:
6875 	return err;
6876 }
6877 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6878 
6879 static int dev_cpu_callback(struct notifier_block *nfb,
6880 			    unsigned long action,
6881 			    void *ocpu)
6882 {
6883 	struct sk_buff **list_skb;
6884 	struct sk_buff *skb;
6885 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6886 	struct softnet_data *sd, *oldsd;
6887 
6888 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6889 		return NOTIFY_OK;
6890 
6891 	local_irq_disable();
6892 	cpu = smp_processor_id();
6893 	sd = &per_cpu(softnet_data, cpu);
6894 	oldsd = &per_cpu(softnet_data, oldcpu);
6895 
6896 	/* Find end of our completion_queue. */
6897 	list_skb = &sd->completion_queue;
6898 	while (*list_skb)
6899 		list_skb = &(*list_skb)->next;
6900 	/* Append completion queue from offline CPU. */
6901 	*list_skb = oldsd->completion_queue;
6902 	oldsd->completion_queue = NULL;
6903 
6904 	/* Append output queue from offline CPU. */
6905 	if (oldsd->output_queue) {
6906 		*sd->output_queue_tailp = oldsd->output_queue;
6907 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6908 		oldsd->output_queue = NULL;
6909 		oldsd->output_queue_tailp = &oldsd->output_queue;
6910 	}
6911 	/* Append NAPI poll list from offline CPU. */
6912 	if (!list_empty(&oldsd->poll_list)) {
6913 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6914 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6915 	}
6916 
6917 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6918 	local_irq_enable();
6919 
6920 	/* Process offline CPU's input_pkt_queue */
6921 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6922 		netif_rx_internal(skb);
6923 		input_queue_head_incr(oldsd);
6924 	}
6925 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6926 		netif_rx_internal(skb);
6927 		input_queue_head_incr(oldsd);
6928 	}
6929 
6930 	return NOTIFY_OK;
6931 }
6932 
6933 
6934 /**
6935  *	netdev_increment_features - increment feature set by one
6936  *	@all: current feature set
6937  *	@one: new feature set
6938  *	@mask: mask feature set
6939  *
6940  *	Computes a new feature set after adding a device with feature set
6941  *	@one to the master device with current feature set @all.  Will not
6942  *	enable anything that is off in @mask. Returns the new feature set.
6943  */
6944 netdev_features_t netdev_increment_features(netdev_features_t all,
6945 	netdev_features_t one, netdev_features_t mask)
6946 {
6947 	if (mask & NETIF_F_GEN_CSUM)
6948 		mask |= NETIF_F_ALL_CSUM;
6949 	mask |= NETIF_F_VLAN_CHALLENGED;
6950 
6951 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6952 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6953 
6954 	/* If one device supports hw checksumming, set for all. */
6955 	if (all & NETIF_F_GEN_CSUM)
6956 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6957 
6958 	return all;
6959 }
6960 EXPORT_SYMBOL(netdev_increment_features);
6961 
6962 static struct hlist_head * __net_init netdev_create_hash(void)
6963 {
6964 	int i;
6965 	struct hlist_head *hash;
6966 
6967 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6968 	if (hash != NULL)
6969 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6970 			INIT_HLIST_HEAD(&hash[i]);
6971 
6972 	return hash;
6973 }
6974 
6975 /* Initialize per network namespace state */
6976 static int __net_init netdev_init(struct net *net)
6977 {
6978 	if (net != &init_net)
6979 		INIT_LIST_HEAD(&net->dev_base_head);
6980 
6981 	net->dev_name_head = netdev_create_hash();
6982 	if (net->dev_name_head == NULL)
6983 		goto err_name;
6984 
6985 	net->dev_index_head = netdev_create_hash();
6986 	if (net->dev_index_head == NULL)
6987 		goto err_idx;
6988 
6989 	return 0;
6990 
6991 err_idx:
6992 	kfree(net->dev_name_head);
6993 err_name:
6994 	return -ENOMEM;
6995 }
6996 
6997 /**
6998  *	netdev_drivername - network driver for the device
6999  *	@dev: network device
7000  *
7001  *	Determine network driver for device.
7002  */
7003 const char *netdev_drivername(const struct net_device *dev)
7004 {
7005 	const struct device_driver *driver;
7006 	const struct device *parent;
7007 	const char *empty = "";
7008 
7009 	parent = dev->dev.parent;
7010 	if (!parent)
7011 		return empty;
7012 
7013 	driver = parent->driver;
7014 	if (driver && driver->name)
7015 		return driver->name;
7016 	return empty;
7017 }
7018 
7019 static int __netdev_printk(const char *level, const struct net_device *dev,
7020 			   struct va_format *vaf)
7021 {
7022 	int r;
7023 
7024 	if (dev && dev->dev.parent) {
7025 		r = dev_printk_emit(level[1] - '0',
7026 				    dev->dev.parent,
7027 				    "%s %s %s%s: %pV",
7028 				    dev_driver_string(dev->dev.parent),
7029 				    dev_name(dev->dev.parent),
7030 				    netdev_name(dev), netdev_reg_state(dev),
7031 				    vaf);
7032 	} else if (dev) {
7033 		r = printk("%s%s%s: %pV", level, netdev_name(dev),
7034 			   netdev_reg_state(dev), vaf);
7035 	} else {
7036 		r = printk("%s(NULL net_device): %pV", level, vaf);
7037 	}
7038 
7039 	return r;
7040 }
7041 
7042 int netdev_printk(const char *level, const struct net_device *dev,
7043 		  const char *format, ...)
7044 {
7045 	struct va_format vaf;
7046 	va_list args;
7047 	int r;
7048 
7049 	va_start(args, format);
7050 
7051 	vaf.fmt = format;
7052 	vaf.va = &args;
7053 
7054 	r = __netdev_printk(level, dev, &vaf);
7055 
7056 	va_end(args);
7057 
7058 	return r;
7059 }
7060 EXPORT_SYMBOL(netdev_printk);
7061 
7062 #define define_netdev_printk_level(func, level)			\
7063 int func(const struct net_device *dev, const char *fmt, ...)	\
7064 {								\
7065 	int r;							\
7066 	struct va_format vaf;					\
7067 	va_list args;						\
7068 								\
7069 	va_start(args, fmt);					\
7070 								\
7071 	vaf.fmt = fmt;						\
7072 	vaf.va = &args;						\
7073 								\
7074 	r = __netdev_printk(level, dev, &vaf);			\
7075 								\
7076 	va_end(args);						\
7077 								\
7078 	return r;						\
7079 }								\
7080 EXPORT_SYMBOL(func);
7081 
7082 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7083 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7084 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7085 define_netdev_printk_level(netdev_err, KERN_ERR);
7086 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7087 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7088 define_netdev_printk_level(netdev_info, KERN_INFO);
7089 
7090 static void __net_exit netdev_exit(struct net *net)
7091 {
7092 	kfree(net->dev_name_head);
7093 	kfree(net->dev_index_head);
7094 }
7095 
7096 static struct pernet_operations __net_initdata netdev_net_ops = {
7097 	.init = netdev_init,
7098 	.exit = netdev_exit,
7099 };
7100 
7101 static void __net_exit default_device_exit(struct net *net)
7102 {
7103 	struct net_device *dev, *aux;
7104 	/*
7105 	 * Push all migratable network devices back to the
7106 	 * initial network namespace
7107 	 */
7108 	rtnl_lock();
7109 	for_each_netdev_safe(net, dev, aux) {
7110 		int err;
7111 		char fb_name[IFNAMSIZ];
7112 
7113 		/* Ignore unmoveable devices (i.e. loopback) */
7114 		if (dev->features & NETIF_F_NETNS_LOCAL)
7115 			continue;
7116 
7117 		/* Leave virtual devices for the generic cleanup */
7118 		if (dev->rtnl_link_ops)
7119 			continue;
7120 
7121 		/* Push remaining network devices to init_net */
7122 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7123 		err = dev_change_net_namespace(dev, &init_net, fb_name);
7124 		if (err) {
7125 			pr_emerg("%s: failed to move %s to init_net: %d\n",
7126 				 __func__, dev->name, err);
7127 			BUG();
7128 		}
7129 	}
7130 	rtnl_unlock();
7131 }
7132 
7133 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7134 {
7135 	/* Return with the rtnl_lock held when there are no network
7136 	 * devices unregistering in any network namespace in net_list.
7137 	 */
7138 	struct net *net;
7139 	bool unregistering;
7140 	DEFINE_WAIT(wait);
7141 
7142 	for (;;) {
7143 		prepare_to_wait(&netdev_unregistering_wq, &wait,
7144 				TASK_UNINTERRUPTIBLE);
7145 		unregistering = false;
7146 		rtnl_lock();
7147 		list_for_each_entry(net, net_list, exit_list) {
7148 			if (net->dev_unreg_count > 0) {
7149 				unregistering = true;
7150 				break;
7151 			}
7152 		}
7153 		if (!unregistering)
7154 			break;
7155 		__rtnl_unlock();
7156 		schedule();
7157 	}
7158 	finish_wait(&netdev_unregistering_wq, &wait);
7159 }
7160 
7161 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7162 {
7163 	/* At exit all network devices most be removed from a network
7164 	 * namespace.  Do this in the reverse order of registration.
7165 	 * Do this across as many network namespaces as possible to
7166 	 * improve batching efficiency.
7167 	 */
7168 	struct net_device *dev;
7169 	struct net *net;
7170 	LIST_HEAD(dev_kill_list);
7171 
7172 	/* To prevent network device cleanup code from dereferencing
7173 	 * loopback devices or network devices that have been freed
7174 	 * wait here for all pending unregistrations to complete,
7175 	 * before unregistring the loopback device and allowing the
7176 	 * network namespace be freed.
7177 	 *
7178 	 * The netdev todo list containing all network devices
7179 	 * unregistrations that happen in default_device_exit_batch
7180 	 * will run in the rtnl_unlock() at the end of
7181 	 * default_device_exit_batch.
7182 	 */
7183 	rtnl_lock_unregistering(net_list);
7184 	list_for_each_entry(net, net_list, exit_list) {
7185 		for_each_netdev_reverse(net, dev) {
7186 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7187 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7188 			else
7189 				unregister_netdevice_queue(dev, &dev_kill_list);
7190 		}
7191 	}
7192 	unregister_netdevice_many(&dev_kill_list);
7193 	rtnl_unlock();
7194 }
7195 
7196 static struct pernet_operations __net_initdata default_device_ops = {
7197 	.exit = default_device_exit,
7198 	.exit_batch = default_device_exit_batch,
7199 };
7200 
7201 /*
7202  *	Initialize the DEV module. At boot time this walks the device list and
7203  *	unhooks any devices that fail to initialise (normally hardware not
7204  *	present) and leaves us with a valid list of present and active devices.
7205  *
7206  */
7207 
7208 /*
7209  *       This is called single threaded during boot, so no need
7210  *       to take the rtnl semaphore.
7211  */
7212 static int __init net_dev_init(void)
7213 {
7214 	int i, rc = -ENOMEM;
7215 
7216 	BUG_ON(!dev_boot_phase);
7217 
7218 	if (dev_proc_init())
7219 		goto out;
7220 
7221 	if (netdev_kobject_init())
7222 		goto out;
7223 
7224 	INIT_LIST_HEAD(&ptype_all);
7225 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7226 		INIT_LIST_HEAD(&ptype_base[i]);
7227 
7228 	INIT_LIST_HEAD(&offload_base);
7229 
7230 	if (register_pernet_subsys(&netdev_net_ops))
7231 		goto out;
7232 
7233 	/*
7234 	 *	Initialise the packet receive queues.
7235 	 */
7236 
7237 	for_each_possible_cpu(i) {
7238 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7239 
7240 		skb_queue_head_init(&sd->input_pkt_queue);
7241 		skb_queue_head_init(&sd->process_queue);
7242 		INIT_LIST_HEAD(&sd->poll_list);
7243 		sd->output_queue_tailp = &sd->output_queue;
7244 #ifdef CONFIG_RPS
7245 		sd->csd.func = rps_trigger_softirq;
7246 		sd->csd.info = sd;
7247 		sd->cpu = i;
7248 #endif
7249 
7250 		sd->backlog.poll = process_backlog;
7251 		sd->backlog.weight = weight_p;
7252 	}
7253 
7254 	dev_boot_phase = 0;
7255 
7256 	/* The loopback device is special if any other network devices
7257 	 * is present in a network namespace the loopback device must
7258 	 * be present. Since we now dynamically allocate and free the
7259 	 * loopback device ensure this invariant is maintained by
7260 	 * keeping the loopback device as the first device on the
7261 	 * list of network devices.  Ensuring the loopback devices
7262 	 * is the first device that appears and the last network device
7263 	 * that disappears.
7264 	 */
7265 	if (register_pernet_device(&loopback_net_ops))
7266 		goto out;
7267 
7268 	if (register_pernet_device(&default_device_ops))
7269 		goto out;
7270 
7271 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7272 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7273 
7274 	hotcpu_notifier(dev_cpu_callback, 0);
7275 	dst_init();
7276 	rc = 0;
7277 out:
7278 	return rc;
7279 }
7280 
7281 subsys_initcall(net_dev_init);
7282