1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/rwsem.h> 83 #include <linux/string.h> 84 #include <linux/mm.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/errno.h> 88 #include <linux/interrupt.h> 89 #include <linux/if_ether.h> 90 #include <linux/netdevice.h> 91 #include <linux/etherdevice.h> 92 #include <linux/ethtool.h> 93 #include <linux/skbuff.h> 94 #include <linux/kthread.h> 95 #include <linux/bpf.h> 96 #include <linux/bpf_trace.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <net/busy_poll.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/stat.h> 102 #include <net/dsa.h> 103 #include <net/dst.h> 104 #include <net/dst_metadata.h> 105 #include <net/gro.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <linux/highmem.h> 111 #include <linux/init.h> 112 #include <linux/module.h> 113 #include <linux/netpoll.h> 114 #include <linux/rcupdate.h> 115 #include <linux/delay.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <net/mpls.h> 127 #include <linux/ipv6.h> 128 #include <linux/in.h> 129 #include <linux/jhash.h> 130 #include <linux/random.h> 131 #include <trace/events/napi.h> 132 #include <trace/events/net.h> 133 #include <trace/events/skb.h> 134 #include <trace/events/qdisc.h> 135 #include <linux/inetdevice.h> 136 #include <linux/cpu_rmap.h> 137 #include <linux/static_key.h> 138 #include <linux/hashtable.h> 139 #include <linux/vmalloc.h> 140 #include <linux/if_macvlan.h> 141 #include <linux/errqueue.h> 142 #include <linux/hrtimer.h> 143 #include <linux/netfilter_netdev.h> 144 #include <linux/crash_dump.h> 145 #include <linux/sctp.h> 146 #include <net/udp_tunnel.h> 147 #include <linux/net_namespace.h> 148 #include <linux/indirect_call_wrapper.h> 149 #include <net/devlink.h> 150 #include <linux/pm_runtime.h> 151 #include <linux/prandom.h> 152 #include <linux/once_lite.h> 153 154 #include "dev.h" 155 #include "net-sysfs.h" 156 157 158 static DEFINE_SPINLOCK(ptype_lock); 159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 160 struct list_head ptype_all __read_mostly; /* Taps */ 161 162 static int netif_rx_internal(struct sk_buff *skb); 163 static int call_netdevice_notifiers_extack(unsigned long val, 164 struct net_device *dev, 165 struct netlink_ext_ack *extack); 166 static struct napi_struct *napi_by_id(unsigned int napi_id); 167 168 /* 169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 170 * semaphore. 171 * 172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 173 * 174 * Writers must hold the rtnl semaphore while they loop through the 175 * dev_base_head list, and hold dev_base_lock for writing when they do the 176 * actual updates. This allows pure readers to access the list even 177 * while a writer is preparing to update it. 178 * 179 * To put it another way, dev_base_lock is held for writing only to 180 * protect against pure readers; the rtnl semaphore provides the 181 * protection against other writers. 182 * 183 * See, for example usages, register_netdevice() and 184 * unregister_netdevice(), which must be called with the rtnl 185 * semaphore held. 186 */ 187 DEFINE_RWLOCK(dev_base_lock); 188 EXPORT_SYMBOL(dev_base_lock); 189 190 static DEFINE_MUTEX(ifalias_mutex); 191 192 /* protects napi_hash addition/deletion and napi_gen_id */ 193 static DEFINE_SPINLOCK(napi_hash_lock); 194 195 static unsigned int napi_gen_id = NR_CPUS; 196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 197 198 static DECLARE_RWSEM(devnet_rename_sem); 199 200 static inline void dev_base_seq_inc(struct net *net) 201 { 202 while (++net->dev_base_seq == 0) 203 ; 204 } 205 206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 207 { 208 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 209 210 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 211 } 212 213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 214 { 215 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 216 } 217 218 static inline void rps_lock_irqsave(struct softnet_data *sd, 219 unsigned long *flags) 220 { 221 if (IS_ENABLED(CONFIG_RPS)) 222 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 223 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 224 local_irq_save(*flags); 225 } 226 227 static inline void rps_lock_irq_disable(struct softnet_data *sd) 228 { 229 if (IS_ENABLED(CONFIG_RPS)) 230 spin_lock_irq(&sd->input_pkt_queue.lock); 231 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 232 local_irq_disable(); 233 } 234 235 static inline void rps_unlock_irq_restore(struct softnet_data *sd, 236 unsigned long *flags) 237 { 238 if (IS_ENABLED(CONFIG_RPS)) 239 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 240 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 241 local_irq_restore(*flags); 242 } 243 244 static inline void rps_unlock_irq_enable(struct softnet_data *sd) 245 { 246 if (IS_ENABLED(CONFIG_RPS)) 247 spin_unlock_irq(&sd->input_pkt_queue.lock); 248 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 249 local_irq_enable(); 250 } 251 252 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 253 const char *name) 254 { 255 struct netdev_name_node *name_node; 256 257 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 258 if (!name_node) 259 return NULL; 260 INIT_HLIST_NODE(&name_node->hlist); 261 name_node->dev = dev; 262 name_node->name = name; 263 return name_node; 264 } 265 266 static struct netdev_name_node * 267 netdev_name_node_head_alloc(struct net_device *dev) 268 { 269 struct netdev_name_node *name_node; 270 271 name_node = netdev_name_node_alloc(dev, dev->name); 272 if (!name_node) 273 return NULL; 274 INIT_LIST_HEAD(&name_node->list); 275 return name_node; 276 } 277 278 static void netdev_name_node_free(struct netdev_name_node *name_node) 279 { 280 kfree(name_node); 281 } 282 283 static void netdev_name_node_add(struct net *net, 284 struct netdev_name_node *name_node) 285 { 286 hlist_add_head_rcu(&name_node->hlist, 287 dev_name_hash(net, name_node->name)); 288 } 289 290 static void netdev_name_node_del(struct netdev_name_node *name_node) 291 { 292 hlist_del_rcu(&name_node->hlist); 293 } 294 295 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 296 const char *name) 297 { 298 struct hlist_head *head = dev_name_hash(net, name); 299 struct netdev_name_node *name_node; 300 301 hlist_for_each_entry(name_node, head, hlist) 302 if (!strcmp(name_node->name, name)) 303 return name_node; 304 return NULL; 305 } 306 307 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 308 const char *name) 309 { 310 struct hlist_head *head = dev_name_hash(net, name); 311 struct netdev_name_node *name_node; 312 313 hlist_for_each_entry_rcu(name_node, head, hlist) 314 if (!strcmp(name_node->name, name)) 315 return name_node; 316 return NULL; 317 } 318 319 bool netdev_name_in_use(struct net *net, const char *name) 320 { 321 return netdev_name_node_lookup(net, name); 322 } 323 EXPORT_SYMBOL(netdev_name_in_use); 324 325 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 326 { 327 struct netdev_name_node *name_node; 328 struct net *net = dev_net(dev); 329 330 name_node = netdev_name_node_lookup(net, name); 331 if (name_node) 332 return -EEXIST; 333 name_node = netdev_name_node_alloc(dev, name); 334 if (!name_node) 335 return -ENOMEM; 336 netdev_name_node_add(net, name_node); 337 /* The node that holds dev->name acts as a head of per-device list. */ 338 list_add_tail(&name_node->list, &dev->name_node->list); 339 340 return 0; 341 } 342 343 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 344 { 345 list_del(&name_node->list); 346 netdev_name_node_del(name_node); 347 kfree(name_node->name); 348 netdev_name_node_free(name_node); 349 } 350 351 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 352 { 353 struct netdev_name_node *name_node; 354 struct net *net = dev_net(dev); 355 356 name_node = netdev_name_node_lookup(net, name); 357 if (!name_node) 358 return -ENOENT; 359 /* lookup might have found our primary name or a name belonging 360 * to another device. 361 */ 362 if (name_node == dev->name_node || name_node->dev != dev) 363 return -EINVAL; 364 365 __netdev_name_node_alt_destroy(name_node); 366 367 return 0; 368 } 369 370 static void netdev_name_node_alt_flush(struct net_device *dev) 371 { 372 struct netdev_name_node *name_node, *tmp; 373 374 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 375 __netdev_name_node_alt_destroy(name_node); 376 } 377 378 /* Device list insertion */ 379 static void list_netdevice(struct net_device *dev) 380 { 381 struct net *net = dev_net(dev); 382 383 ASSERT_RTNL(); 384 385 write_lock(&dev_base_lock); 386 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 387 netdev_name_node_add(net, dev->name_node); 388 hlist_add_head_rcu(&dev->index_hlist, 389 dev_index_hash(net, dev->ifindex)); 390 write_unlock(&dev_base_lock); 391 392 dev_base_seq_inc(net); 393 } 394 395 /* Device list removal 396 * caller must respect a RCU grace period before freeing/reusing dev 397 */ 398 static void unlist_netdevice(struct net_device *dev, bool lock) 399 { 400 ASSERT_RTNL(); 401 402 /* Unlink dev from the device chain */ 403 if (lock) 404 write_lock(&dev_base_lock); 405 list_del_rcu(&dev->dev_list); 406 netdev_name_node_del(dev->name_node); 407 hlist_del_rcu(&dev->index_hlist); 408 if (lock) 409 write_unlock(&dev_base_lock); 410 411 dev_base_seq_inc(dev_net(dev)); 412 } 413 414 /* 415 * Our notifier list 416 */ 417 418 static RAW_NOTIFIER_HEAD(netdev_chain); 419 420 /* 421 * Device drivers call our routines to queue packets here. We empty the 422 * queue in the local softnet handler. 423 */ 424 425 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 426 EXPORT_PER_CPU_SYMBOL(softnet_data); 427 428 #ifdef CONFIG_LOCKDEP 429 /* 430 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 431 * according to dev->type 432 */ 433 static const unsigned short netdev_lock_type[] = { 434 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 435 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 436 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 437 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 438 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 439 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 440 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 441 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 442 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 443 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 444 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 445 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 446 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 447 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 448 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 449 450 static const char *const netdev_lock_name[] = { 451 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 452 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 453 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 454 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 455 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 456 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 457 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 458 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 459 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 460 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 461 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 462 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 463 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 464 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 465 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 466 467 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 468 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 469 470 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 471 { 472 int i; 473 474 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 475 if (netdev_lock_type[i] == dev_type) 476 return i; 477 /* the last key is used by default */ 478 return ARRAY_SIZE(netdev_lock_type) - 1; 479 } 480 481 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 482 unsigned short dev_type) 483 { 484 int i; 485 486 i = netdev_lock_pos(dev_type); 487 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 488 netdev_lock_name[i]); 489 } 490 491 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 492 { 493 int i; 494 495 i = netdev_lock_pos(dev->type); 496 lockdep_set_class_and_name(&dev->addr_list_lock, 497 &netdev_addr_lock_key[i], 498 netdev_lock_name[i]); 499 } 500 #else 501 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 502 unsigned short dev_type) 503 { 504 } 505 506 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 507 { 508 } 509 #endif 510 511 /******************************************************************************* 512 * 513 * Protocol management and registration routines 514 * 515 *******************************************************************************/ 516 517 518 /* 519 * Add a protocol ID to the list. Now that the input handler is 520 * smarter we can dispense with all the messy stuff that used to be 521 * here. 522 * 523 * BEWARE!!! Protocol handlers, mangling input packets, 524 * MUST BE last in hash buckets and checking protocol handlers 525 * MUST start from promiscuous ptype_all chain in net_bh. 526 * It is true now, do not change it. 527 * Explanation follows: if protocol handler, mangling packet, will 528 * be the first on list, it is not able to sense, that packet 529 * is cloned and should be copied-on-write, so that it will 530 * change it and subsequent readers will get broken packet. 531 * --ANK (980803) 532 */ 533 534 static inline struct list_head *ptype_head(const struct packet_type *pt) 535 { 536 if (pt->type == htons(ETH_P_ALL)) 537 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 538 else 539 return pt->dev ? &pt->dev->ptype_specific : 540 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 541 } 542 543 /** 544 * dev_add_pack - add packet handler 545 * @pt: packet type declaration 546 * 547 * Add a protocol handler to the networking stack. The passed &packet_type 548 * is linked into kernel lists and may not be freed until it has been 549 * removed from the kernel lists. 550 * 551 * This call does not sleep therefore it can not 552 * guarantee all CPU's that are in middle of receiving packets 553 * will see the new packet type (until the next received packet). 554 */ 555 556 void dev_add_pack(struct packet_type *pt) 557 { 558 struct list_head *head = ptype_head(pt); 559 560 spin_lock(&ptype_lock); 561 list_add_rcu(&pt->list, head); 562 spin_unlock(&ptype_lock); 563 } 564 EXPORT_SYMBOL(dev_add_pack); 565 566 /** 567 * __dev_remove_pack - remove packet handler 568 * @pt: packet type declaration 569 * 570 * Remove a protocol handler that was previously added to the kernel 571 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 572 * from the kernel lists and can be freed or reused once this function 573 * returns. 574 * 575 * The packet type might still be in use by receivers 576 * and must not be freed until after all the CPU's have gone 577 * through a quiescent state. 578 */ 579 void __dev_remove_pack(struct packet_type *pt) 580 { 581 struct list_head *head = ptype_head(pt); 582 struct packet_type *pt1; 583 584 spin_lock(&ptype_lock); 585 586 list_for_each_entry(pt1, head, list) { 587 if (pt == pt1) { 588 list_del_rcu(&pt->list); 589 goto out; 590 } 591 } 592 593 pr_warn("dev_remove_pack: %p not found\n", pt); 594 out: 595 spin_unlock(&ptype_lock); 596 } 597 EXPORT_SYMBOL(__dev_remove_pack); 598 599 /** 600 * dev_remove_pack - remove packet handler 601 * @pt: packet type declaration 602 * 603 * Remove a protocol handler that was previously added to the kernel 604 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 605 * from the kernel lists and can be freed or reused once this function 606 * returns. 607 * 608 * This call sleeps to guarantee that no CPU is looking at the packet 609 * type after return. 610 */ 611 void dev_remove_pack(struct packet_type *pt) 612 { 613 __dev_remove_pack(pt); 614 615 synchronize_net(); 616 } 617 EXPORT_SYMBOL(dev_remove_pack); 618 619 620 /******************************************************************************* 621 * 622 * Device Interface Subroutines 623 * 624 *******************************************************************************/ 625 626 /** 627 * dev_get_iflink - get 'iflink' value of a interface 628 * @dev: targeted interface 629 * 630 * Indicates the ifindex the interface is linked to. 631 * Physical interfaces have the same 'ifindex' and 'iflink' values. 632 */ 633 634 int dev_get_iflink(const struct net_device *dev) 635 { 636 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 637 return dev->netdev_ops->ndo_get_iflink(dev); 638 639 return dev->ifindex; 640 } 641 EXPORT_SYMBOL(dev_get_iflink); 642 643 /** 644 * dev_fill_metadata_dst - Retrieve tunnel egress information. 645 * @dev: targeted interface 646 * @skb: The packet. 647 * 648 * For better visibility of tunnel traffic OVS needs to retrieve 649 * egress tunnel information for a packet. Following API allows 650 * user to get this info. 651 */ 652 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 653 { 654 struct ip_tunnel_info *info; 655 656 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 657 return -EINVAL; 658 659 info = skb_tunnel_info_unclone(skb); 660 if (!info) 661 return -ENOMEM; 662 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 663 return -EINVAL; 664 665 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 666 } 667 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 668 669 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 670 { 671 int k = stack->num_paths++; 672 673 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 674 return NULL; 675 676 return &stack->path[k]; 677 } 678 679 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 680 struct net_device_path_stack *stack) 681 { 682 const struct net_device *last_dev; 683 struct net_device_path_ctx ctx = { 684 .dev = dev, 685 }; 686 struct net_device_path *path; 687 int ret = 0; 688 689 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 690 stack->num_paths = 0; 691 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 692 last_dev = ctx.dev; 693 path = dev_fwd_path(stack); 694 if (!path) 695 return -1; 696 697 memset(path, 0, sizeof(struct net_device_path)); 698 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 699 if (ret < 0) 700 return -1; 701 702 if (WARN_ON_ONCE(last_dev == ctx.dev)) 703 return -1; 704 } 705 706 if (!ctx.dev) 707 return ret; 708 709 path = dev_fwd_path(stack); 710 if (!path) 711 return -1; 712 path->type = DEV_PATH_ETHERNET; 713 path->dev = ctx.dev; 714 715 return ret; 716 } 717 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 718 719 /** 720 * __dev_get_by_name - find a device by its name 721 * @net: the applicable net namespace 722 * @name: name to find 723 * 724 * Find an interface by name. Must be called under RTNL semaphore 725 * or @dev_base_lock. If the name is found a pointer to the device 726 * is returned. If the name is not found then %NULL is returned. The 727 * reference counters are not incremented so the caller must be 728 * careful with locks. 729 */ 730 731 struct net_device *__dev_get_by_name(struct net *net, const char *name) 732 { 733 struct netdev_name_node *node_name; 734 735 node_name = netdev_name_node_lookup(net, name); 736 return node_name ? node_name->dev : NULL; 737 } 738 EXPORT_SYMBOL(__dev_get_by_name); 739 740 /** 741 * dev_get_by_name_rcu - find a device by its name 742 * @net: the applicable net namespace 743 * @name: name to find 744 * 745 * Find an interface by name. 746 * If the name is found a pointer to the device is returned. 747 * If the name is not found then %NULL is returned. 748 * The reference counters are not incremented so the caller must be 749 * careful with locks. The caller must hold RCU lock. 750 */ 751 752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 753 { 754 struct netdev_name_node *node_name; 755 756 node_name = netdev_name_node_lookup_rcu(net, name); 757 return node_name ? node_name->dev : NULL; 758 } 759 EXPORT_SYMBOL(dev_get_by_name_rcu); 760 761 /** 762 * dev_get_by_name - find a device by its name 763 * @net: the applicable net namespace 764 * @name: name to find 765 * 766 * Find an interface by name. This can be called from any 767 * context and does its own locking. The returned handle has 768 * the usage count incremented and the caller must use dev_put() to 769 * release it when it is no longer needed. %NULL is returned if no 770 * matching device is found. 771 */ 772 773 struct net_device *dev_get_by_name(struct net *net, const char *name) 774 { 775 struct net_device *dev; 776 777 rcu_read_lock(); 778 dev = dev_get_by_name_rcu(net, name); 779 dev_hold(dev); 780 rcu_read_unlock(); 781 return dev; 782 } 783 EXPORT_SYMBOL(dev_get_by_name); 784 785 /** 786 * __dev_get_by_index - find a device by its ifindex 787 * @net: the applicable net namespace 788 * @ifindex: index of device 789 * 790 * Search for an interface by index. Returns %NULL if the device 791 * is not found or a pointer to the device. The device has not 792 * had its reference counter increased so the caller must be careful 793 * about locking. The caller must hold either the RTNL semaphore 794 * or @dev_base_lock. 795 */ 796 797 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 798 { 799 struct net_device *dev; 800 struct hlist_head *head = dev_index_hash(net, ifindex); 801 802 hlist_for_each_entry(dev, head, index_hlist) 803 if (dev->ifindex == ifindex) 804 return dev; 805 806 return NULL; 807 } 808 EXPORT_SYMBOL(__dev_get_by_index); 809 810 /** 811 * dev_get_by_index_rcu - find a device by its ifindex 812 * @net: the applicable net namespace 813 * @ifindex: index of device 814 * 815 * Search for an interface by index. Returns %NULL if the device 816 * is not found or a pointer to the device. The device has not 817 * had its reference counter increased so the caller must be careful 818 * about locking. The caller must hold RCU lock. 819 */ 820 821 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 822 { 823 struct net_device *dev; 824 struct hlist_head *head = dev_index_hash(net, ifindex); 825 826 hlist_for_each_entry_rcu(dev, head, index_hlist) 827 if (dev->ifindex == ifindex) 828 return dev; 829 830 return NULL; 831 } 832 EXPORT_SYMBOL(dev_get_by_index_rcu); 833 834 835 /** 836 * dev_get_by_index - find a device by its ifindex 837 * @net: the applicable net namespace 838 * @ifindex: index of device 839 * 840 * Search for an interface by index. Returns NULL if the device 841 * is not found or a pointer to the device. The device returned has 842 * had a reference added and the pointer is safe until the user calls 843 * dev_put to indicate they have finished with it. 844 */ 845 846 struct net_device *dev_get_by_index(struct net *net, int ifindex) 847 { 848 struct net_device *dev; 849 850 rcu_read_lock(); 851 dev = dev_get_by_index_rcu(net, ifindex); 852 dev_hold(dev); 853 rcu_read_unlock(); 854 return dev; 855 } 856 EXPORT_SYMBOL(dev_get_by_index); 857 858 /** 859 * dev_get_by_napi_id - find a device by napi_id 860 * @napi_id: ID of the NAPI struct 861 * 862 * Search for an interface by NAPI ID. Returns %NULL if the device 863 * is not found or a pointer to the device. The device has not had 864 * its reference counter increased so the caller must be careful 865 * about locking. The caller must hold RCU lock. 866 */ 867 868 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 869 { 870 struct napi_struct *napi; 871 872 WARN_ON_ONCE(!rcu_read_lock_held()); 873 874 if (napi_id < MIN_NAPI_ID) 875 return NULL; 876 877 napi = napi_by_id(napi_id); 878 879 return napi ? napi->dev : NULL; 880 } 881 EXPORT_SYMBOL(dev_get_by_napi_id); 882 883 /** 884 * netdev_get_name - get a netdevice name, knowing its ifindex. 885 * @net: network namespace 886 * @name: a pointer to the buffer where the name will be stored. 887 * @ifindex: the ifindex of the interface to get the name from. 888 */ 889 int netdev_get_name(struct net *net, char *name, int ifindex) 890 { 891 struct net_device *dev; 892 int ret; 893 894 down_read(&devnet_rename_sem); 895 rcu_read_lock(); 896 897 dev = dev_get_by_index_rcu(net, ifindex); 898 if (!dev) { 899 ret = -ENODEV; 900 goto out; 901 } 902 903 strcpy(name, dev->name); 904 905 ret = 0; 906 out: 907 rcu_read_unlock(); 908 up_read(&devnet_rename_sem); 909 return ret; 910 } 911 912 /** 913 * dev_getbyhwaddr_rcu - find a device by its hardware address 914 * @net: the applicable net namespace 915 * @type: media type of device 916 * @ha: hardware address 917 * 918 * Search for an interface by MAC address. Returns NULL if the device 919 * is not found or a pointer to the device. 920 * The caller must hold RCU or RTNL. 921 * The returned device has not had its ref count increased 922 * and the caller must therefore be careful about locking 923 * 924 */ 925 926 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 927 const char *ha) 928 { 929 struct net_device *dev; 930 931 for_each_netdev_rcu(net, dev) 932 if (dev->type == type && 933 !memcmp(dev->dev_addr, ha, dev->addr_len)) 934 return dev; 935 936 return NULL; 937 } 938 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 939 940 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 941 { 942 struct net_device *dev, *ret = NULL; 943 944 rcu_read_lock(); 945 for_each_netdev_rcu(net, dev) 946 if (dev->type == type) { 947 dev_hold(dev); 948 ret = dev; 949 break; 950 } 951 rcu_read_unlock(); 952 return ret; 953 } 954 EXPORT_SYMBOL(dev_getfirstbyhwtype); 955 956 /** 957 * __dev_get_by_flags - find any device with given flags 958 * @net: the applicable net namespace 959 * @if_flags: IFF_* values 960 * @mask: bitmask of bits in if_flags to check 961 * 962 * Search for any interface with the given flags. Returns NULL if a device 963 * is not found or a pointer to the device. Must be called inside 964 * rtnl_lock(), and result refcount is unchanged. 965 */ 966 967 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 968 unsigned short mask) 969 { 970 struct net_device *dev, *ret; 971 972 ASSERT_RTNL(); 973 974 ret = NULL; 975 for_each_netdev(net, dev) { 976 if (((dev->flags ^ if_flags) & mask) == 0) { 977 ret = dev; 978 break; 979 } 980 } 981 return ret; 982 } 983 EXPORT_SYMBOL(__dev_get_by_flags); 984 985 /** 986 * dev_valid_name - check if name is okay for network device 987 * @name: name string 988 * 989 * Network device names need to be valid file names to 990 * allow sysfs to work. We also disallow any kind of 991 * whitespace. 992 */ 993 bool dev_valid_name(const char *name) 994 { 995 if (*name == '\0') 996 return false; 997 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 998 return false; 999 if (!strcmp(name, ".") || !strcmp(name, "..")) 1000 return false; 1001 1002 while (*name) { 1003 if (*name == '/' || *name == ':' || isspace(*name)) 1004 return false; 1005 name++; 1006 } 1007 return true; 1008 } 1009 EXPORT_SYMBOL(dev_valid_name); 1010 1011 /** 1012 * __dev_alloc_name - allocate a name for a device 1013 * @net: network namespace to allocate the device name in 1014 * @name: name format string 1015 * @buf: scratch buffer and result name string 1016 * 1017 * Passed a format string - eg "lt%d" it will try and find a suitable 1018 * id. It scans list of devices to build up a free map, then chooses 1019 * the first empty slot. The caller must hold the dev_base or rtnl lock 1020 * while allocating the name and adding the device in order to avoid 1021 * duplicates. 1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1023 * Returns the number of the unit assigned or a negative errno code. 1024 */ 1025 1026 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1027 { 1028 int i = 0; 1029 const char *p; 1030 const int max_netdevices = 8*PAGE_SIZE; 1031 unsigned long *inuse; 1032 struct net_device *d; 1033 1034 if (!dev_valid_name(name)) 1035 return -EINVAL; 1036 1037 p = strchr(name, '%'); 1038 if (p) { 1039 /* 1040 * Verify the string as this thing may have come from 1041 * the user. There must be either one "%d" and no other "%" 1042 * characters. 1043 */ 1044 if (p[1] != 'd' || strchr(p + 2, '%')) 1045 return -EINVAL; 1046 1047 /* Use one page as a bit array of possible slots */ 1048 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1049 if (!inuse) 1050 return -ENOMEM; 1051 1052 for_each_netdev(net, d) { 1053 struct netdev_name_node *name_node; 1054 list_for_each_entry(name_node, &d->name_node->list, list) { 1055 if (!sscanf(name_node->name, name, &i)) 1056 continue; 1057 if (i < 0 || i >= max_netdevices) 1058 continue; 1059 1060 /* avoid cases where sscanf is not exact inverse of printf */ 1061 snprintf(buf, IFNAMSIZ, name, i); 1062 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1063 __set_bit(i, inuse); 1064 } 1065 if (!sscanf(d->name, name, &i)) 1066 continue; 1067 if (i < 0 || i >= max_netdevices) 1068 continue; 1069 1070 /* avoid cases where sscanf is not exact inverse of printf */ 1071 snprintf(buf, IFNAMSIZ, name, i); 1072 if (!strncmp(buf, d->name, IFNAMSIZ)) 1073 __set_bit(i, inuse); 1074 } 1075 1076 i = find_first_zero_bit(inuse, max_netdevices); 1077 free_page((unsigned long) inuse); 1078 } 1079 1080 snprintf(buf, IFNAMSIZ, name, i); 1081 if (!netdev_name_in_use(net, buf)) 1082 return i; 1083 1084 /* It is possible to run out of possible slots 1085 * when the name is long and there isn't enough space left 1086 * for the digits, or if all bits are used. 1087 */ 1088 return -ENFILE; 1089 } 1090 1091 static int dev_alloc_name_ns(struct net *net, 1092 struct net_device *dev, 1093 const char *name) 1094 { 1095 char buf[IFNAMSIZ]; 1096 int ret; 1097 1098 BUG_ON(!net); 1099 ret = __dev_alloc_name(net, name, buf); 1100 if (ret >= 0) 1101 strscpy(dev->name, buf, IFNAMSIZ); 1102 return ret; 1103 } 1104 1105 /** 1106 * dev_alloc_name - allocate a name for a device 1107 * @dev: device 1108 * @name: name format string 1109 * 1110 * Passed a format string - eg "lt%d" it will try and find a suitable 1111 * id. It scans list of devices to build up a free map, then chooses 1112 * the first empty slot. The caller must hold the dev_base or rtnl lock 1113 * while allocating the name and adding the device in order to avoid 1114 * duplicates. 1115 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1116 * Returns the number of the unit assigned or a negative errno code. 1117 */ 1118 1119 int dev_alloc_name(struct net_device *dev, const char *name) 1120 { 1121 return dev_alloc_name_ns(dev_net(dev), dev, name); 1122 } 1123 EXPORT_SYMBOL(dev_alloc_name); 1124 1125 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1126 const char *name) 1127 { 1128 BUG_ON(!net); 1129 1130 if (!dev_valid_name(name)) 1131 return -EINVAL; 1132 1133 if (strchr(name, '%')) 1134 return dev_alloc_name_ns(net, dev, name); 1135 else if (netdev_name_in_use(net, name)) 1136 return -EEXIST; 1137 else if (dev->name != name) 1138 strscpy(dev->name, name, IFNAMSIZ); 1139 1140 return 0; 1141 } 1142 1143 /** 1144 * dev_change_name - change name of a device 1145 * @dev: device 1146 * @newname: name (or format string) must be at least IFNAMSIZ 1147 * 1148 * Change name of a device, can pass format strings "eth%d". 1149 * for wildcarding. 1150 */ 1151 int dev_change_name(struct net_device *dev, const char *newname) 1152 { 1153 unsigned char old_assign_type; 1154 char oldname[IFNAMSIZ]; 1155 int err = 0; 1156 int ret; 1157 struct net *net; 1158 1159 ASSERT_RTNL(); 1160 BUG_ON(!dev_net(dev)); 1161 1162 net = dev_net(dev); 1163 1164 down_write(&devnet_rename_sem); 1165 1166 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1167 up_write(&devnet_rename_sem); 1168 return 0; 1169 } 1170 1171 memcpy(oldname, dev->name, IFNAMSIZ); 1172 1173 err = dev_get_valid_name(net, dev, newname); 1174 if (err < 0) { 1175 up_write(&devnet_rename_sem); 1176 return err; 1177 } 1178 1179 if (oldname[0] && !strchr(oldname, '%')) 1180 netdev_info(dev, "renamed from %s%s\n", oldname, 1181 dev->flags & IFF_UP ? " (while UP)" : ""); 1182 1183 old_assign_type = dev->name_assign_type; 1184 dev->name_assign_type = NET_NAME_RENAMED; 1185 1186 rollback: 1187 ret = device_rename(&dev->dev, dev->name); 1188 if (ret) { 1189 memcpy(dev->name, oldname, IFNAMSIZ); 1190 dev->name_assign_type = old_assign_type; 1191 up_write(&devnet_rename_sem); 1192 return ret; 1193 } 1194 1195 up_write(&devnet_rename_sem); 1196 1197 netdev_adjacent_rename_links(dev, oldname); 1198 1199 write_lock(&dev_base_lock); 1200 netdev_name_node_del(dev->name_node); 1201 write_unlock(&dev_base_lock); 1202 1203 synchronize_rcu(); 1204 1205 write_lock(&dev_base_lock); 1206 netdev_name_node_add(net, dev->name_node); 1207 write_unlock(&dev_base_lock); 1208 1209 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1210 ret = notifier_to_errno(ret); 1211 1212 if (ret) { 1213 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1214 if (err >= 0) { 1215 err = ret; 1216 down_write(&devnet_rename_sem); 1217 memcpy(dev->name, oldname, IFNAMSIZ); 1218 memcpy(oldname, newname, IFNAMSIZ); 1219 dev->name_assign_type = old_assign_type; 1220 old_assign_type = NET_NAME_RENAMED; 1221 goto rollback; 1222 } else { 1223 netdev_err(dev, "name change rollback failed: %d\n", 1224 ret); 1225 } 1226 } 1227 1228 return err; 1229 } 1230 1231 /** 1232 * dev_set_alias - change ifalias of a device 1233 * @dev: device 1234 * @alias: name up to IFALIASZ 1235 * @len: limit of bytes to copy from info 1236 * 1237 * Set ifalias for a device, 1238 */ 1239 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1240 { 1241 struct dev_ifalias *new_alias = NULL; 1242 1243 if (len >= IFALIASZ) 1244 return -EINVAL; 1245 1246 if (len) { 1247 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1248 if (!new_alias) 1249 return -ENOMEM; 1250 1251 memcpy(new_alias->ifalias, alias, len); 1252 new_alias->ifalias[len] = 0; 1253 } 1254 1255 mutex_lock(&ifalias_mutex); 1256 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1257 mutex_is_locked(&ifalias_mutex)); 1258 mutex_unlock(&ifalias_mutex); 1259 1260 if (new_alias) 1261 kfree_rcu(new_alias, rcuhead); 1262 1263 return len; 1264 } 1265 EXPORT_SYMBOL(dev_set_alias); 1266 1267 /** 1268 * dev_get_alias - get ifalias of a device 1269 * @dev: device 1270 * @name: buffer to store name of ifalias 1271 * @len: size of buffer 1272 * 1273 * get ifalias for a device. Caller must make sure dev cannot go 1274 * away, e.g. rcu read lock or own a reference count to device. 1275 */ 1276 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1277 { 1278 const struct dev_ifalias *alias; 1279 int ret = 0; 1280 1281 rcu_read_lock(); 1282 alias = rcu_dereference(dev->ifalias); 1283 if (alias) 1284 ret = snprintf(name, len, "%s", alias->ifalias); 1285 rcu_read_unlock(); 1286 1287 return ret; 1288 } 1289 1290 /** 1291 * netdev_features_change - device changes features 1292 * @dev: device to cause notification 1293 * 1294 * Called to indicate a device has changed features. 1295 */ 1296 void netdev_features_change(struct net_device *dev) 1297 { 1298 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1299 } 1300 EXPORT_SYMBOL(netdev_features_change); 1301 1302 /** 1303 * netdev_state_change - device changes state 1304 * @dev: device to cause notification 1305 * 1306 * Called to indicate a device has changed state. This function calls 1307 * the notifier chains for netdev_chain and sends a NEWLINK message 1308 * to the routing socket. 1309 */ 1310 void netdev_state_change(struct net_device *dev) 1311 { 1312 if (dev->flags & IFF_UP) { 1313 struct netdev_notifier_change_info change_info = { 1314 .info.dev = dev, 1315 }; 1316 1317 call_netdevice_notifiers_info(NETDEV_CHANGE, 1318 &change_info.info); 1319 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1320 } 1321 } 1322 EXPORT_SYMBOL(netdev_state_change); 1323 1324 /** 1325 * __netdev_notify_peers - notify network peers about existence of @dev, 1326 * to be called when rtnl lock is already held. 1327 * @dev: network device 1328 * 1329 * Generate traffic such that interested network peers are aware of 1330 * @dev, such as by generating a gratuitous ARP. This may be used when 1331 * a device wants to inform the rest of the network about some sort of 1332 * reconfiguration such as a failover event or virtual machine 1333 * migration. 1334 */ 1335 void __netdev_notify_peers(struct net_device *dev) 1336 { 1337 ASSERT_RTNL(); 1338 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1339 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1340 } 1341 EXPORT_SYMBOL(__netdev_notify_peers); 1342 1343 /** 1344 * netdev_notify_peers - notify network peers about existence of @dev 1345 * @dev: network device 1346 * 1347 * Generate traffic such that interested network peers are aware of 1348 * @dev, such as by generating a gratuitous ARP. This may be used when 1349 * a device wants to inform the rest of the network about some sort of 1350 * reconfiguration such as a failover event or virtual machine 1351 * migration. 1352 */ 1353 void netdev_notify_peers(struct net_device *dev) 1354 { 1355 rtnl_lock(); 1356 __netdev_notify_peers(dev); 1357 rtnl_unlock(); 1358 } 1359 EXPORT_SYMBOL(netdev_notify_peers); 1360 1361 static int napi_threaded_poll(void *data); 1362 1363 static int napi_kthread_create(struct napi_struct *n) 1364 { 1365 int err = 0; 1366 1367 /* Create and wake up the kthread once to put it in 1368 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1369 * warning and work with loadavg. 1370 */ 1371 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1372 n->dev->name, n->napi_id); 1373 if (IS_ERR(n->thread)) { 1374 err = PTR_ERR(n->thread); 1375 pr_err("kthread_run failed with err %d\n", err); 1376 n->thread = NULL; 1377 } 1378 1379 return err; 1380 } 1381 1382 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1383 { 1384 const struct net_device_ops *ops = dev->netdev_ops; 1385 int ret; 1386 1387 ASSERT_RTNL(); 1388 dev_addr_check(dev); 1389 1390 if (!netif_device_present(dev)) { 1391 /* may be detached because parent is runtime-suspended */ 1392 if (dev->dev.parent) 1393 pm_runtime_resume(dev->dev.parent); 1394 if (!netif_device_present(dev)) 1395 return -ENODEV; 1396 } 1397 1398 /* Block netpoll from trying to do any rx path servicing. 1399 * If we don't do this there is a chance ndo_poll_controller 1400 * or ndo_poll may be running while we open the device 1401 */ 1402 netpoll_poll_disable(dev); 1403 1404 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1405 ret = notifier_to_errno(ret); 1406 if (ret) 1407 return ret; 1408 1409 set_bit(__LINK_STATE_START, &dev->state); 1410 1411 if (ops->ndo_validate_addr) 1412 ret = ops->ndo_validate_addr(dev); 1413 1414 if (!ret && ops->ndo_open) 1415 ret = ops->ndo_open(dev); 1416 1417 netpoll_poll_enable(dev); 1418 1419 if (ret) 1420 clear_bit(__LINK_STATE_START, &dev->state); 1421 else { 1422 dev->flags |= IFF_UP; 1423 dev_set_rx_mode(dev); 1424 dev_activate(dev); 1425 add_device_randomness(dev->dev_addr, dev->addr_len); 1426 } 1427 1428 return ret; 1429 } 1430 1431 /** 1432 * dev_open - prepare an interface for use. 1433 * @dev: device to open 1434 * @extack: netlink extended ack 1435 * 1436 * Takes a device from down to up state. The device's private open 1437 * function is invoked and then the multicast lists are loaded. Finally 1438 * the device is moved into the up state and a %NETDEV_UP message is 1439 * sent to the netdev notifier chain. 1440 * 1441 * Calling this function on an active interface is a nop. On a failure 1442 * a negative errno code is returned. 1443 */ 1444 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1445 { 1446 int ret; 1447 1448 if (dev->flags & IFF_UP) 1449 return 0; 1450 1451 ret = __dev_open(dev, extack); 1452 if (ret < 0) 1453 return ret; 1454 1455 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1456 call_netdevice_notifiers(NETDEV_UP, dev); 1457 1458 return ret; 1459 } 1460 EXPORT_SYMBOL(dev_open); 1461 1462 static void __dev_close_many(struct list_head *head) 1463 { 1464 struct net_device *dev; 1465 1466 ASSERT_RTNL(); 1467 might_sleep(); 1468 1469 list_for_each_entry(dev, head, close_list) { 1470 /* Temporarily disable netpoll until the interface is down */ 1471 netpoll_poll_disable(dev); 1472 1473 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1474 1475 clear_bit(__LINK_STATE_START, &dev->state); 1476 1477 /* Synchronize to scheduled poll. We cannot touch poll list, it 1478 * can be even on different cpu. So just clear netif_running(). 1479 * 1480 * dev->stop() will invoke napi_disable() on all of it's 1481 * napi_struct instances on this device. 1482 */ 1483 smp_mb__after_atomic(); /* Commit netif_running(). */ 1484 } 1485 1486 dev_deactivate_many(head); 1487 1488 list_for_each_entry(dev, head, close_list) { 1489 const struct net_device_ops *ops = dev->netdev_ops; 1490 1491 /* 1492 * Call the device specific close. This cannot fail. 1493 * Only if device is UP 1494 * 1495 * We allow it to be called even after a DETACH hot-plug 1496 * event. 1497 */ 1498 if (ops->ndo_stop) 1499 ops->ndo_stop(dev); 1500 1501 dev->flags &= ~IFF_UP; 1502 netpoll_poll_enable(dev); 1503 } 1504 } 1505 1506 static void __dev_close(struct net_device *dev) 1507 { 1508 LIST_HEAD(single); 1509 1510 list_add(&dev->close_list, &single); 1511 __dev_close_many(&single); 1512 list_del(&single); 1513 } 1514 1515 void dev_close_many(struct list_head *head, bool unlink) 1516 { 1517 struct net_device *dev, *tmp; 1518 1519 /* Remove the devices that don't need to be closed */ 1520 list_for_each_entry_safe(dev, tmp, head, close_list) 1521 if (!(dev->flags & IFF_UP)) 1522 list_del_init(&dev->close_list); 1523 1524 __dev_close_many(head); 1525 1526 list_for_each_entry_safe(dev, tmp, head, close_list) { 1527 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1528 call_netdevice_notifiers(NETDEV_DOWN, dev); 1529 if (unlink) 1530 list_del_init(&dev->close_list); 1531 } 1532 } 1533 EXPORT_SYMBOL(dev_close_many); 1534 1535 /** 1536 * dev_close - shutdown an interface. 1537 * @dev: device to shutdown 1538 * 1539 * This function moves an active device into down state. A 1540 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1541 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1542 * chain. 1543 */ 1544 void dev_close(struct net_device *dev) 1545 { 1546 if (dev->flags & IFF_UP) { 1547 LIST_HEAD(single); 1548 1549 list_add(&dev->close_list, &single); 1550 dev_close_many(&single, true); 1551 list_del(&single); 1552 } 1553 } 1554 EXPORT_SYMBOL(dev_close); 1555 1556 1557 /** 1558 * dev_disable_lro - disable Large Receive Offload on a device 1559 * @dev: device 1560 * 1561 * Disable Large Receive Offload (LRO) on a net device. Must be 1562 * called under RTNL. This is needed if received packets may be 1563 * forwarded to another interface. 1564 */ 1565 void dev_disable_lro(struct net_device *dev) 1566 { 1567 struct net_device *lower_dev; 1568 struct list_head *iter; 1569 1570 dev->wanted_features &= ~NETIF_F_LRO; 1571 netdev_update_features(dev); 1572 1573 if (unlikely(dev->features & NETIF_F_LRO)) 1574 netdev_WARN(dev, "failed to disable LRO!\n"); 1575 1576 netdev_for_each_lower_dev(dev, lower_dev, iter) 1577 dev_disable_lro(lower_dev); 1578 } 1579 EXPORT_SYMBOL(dev_disable_lro); 1580 1581 /** 1582 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1583 * @dev: device 1584 * 1585 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1586 * called under RTNL. This is needed if Generic XDP is installed on 1587 * the device. 1588 */ 1589 static void dev_disable_gro_hw(struct net_device *dev) 1590 { 1591 dev->wanted_features &= ~NETIF_F_GRO_HW; 1592 netdev_update_features(dev); 1593 1594 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1595 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1596 } 1597 1598 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1599 { 1600 #define N(val) \ 1601 case NETDEV_##val: \ 1602 return "NETDEV_" __stringify(val); 1603 switch (cmd) { 1604 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1605 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1606 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1607 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1608 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1609 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1610 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1611 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1612 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1613 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1614 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1615 N(XDP_FEAT_CHANGE) 1616 } 1617 #undef N 1618 return "UNKNOWN_NETDEV_EVENT"; 1619 } 1620 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1621 1622 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1623 struct net_device *dev) 1624 { 1625 struct netdev_notifier_info info = { 1626 .dev = dev, 1627 }; 1628 1629 return nb->notifier_call(nb, val, &info); 1630 } 1631 1632 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1633 struct net_device *dev) 1634 { 1635 int err; 1636 1637 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1638 err = notifier_to_errno(err); 1639 if (err) 1640 return err; 1641 1642 if (!(dev->flags & IFF_UP)) 1643 return 0; 1644 1645 call_netdevice_notifier(nb, NETDEV_UP, dev); 1646 return 0; 1647 } 1648 1649 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1650 struct net_device *dev) 1651 { 1652 if (dev->flags & IFF_UP) { 1653 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1654 dev); 1655 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1656 } 1657 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1658 } 1659 1660 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1661 struct net *net) 1662 { 1663 struct net_device *dev; 1664 int err; 1665 1666 for_each_netdev(net, dev) { 1667 err = call_netdevice_register_notifiers(nb, dev); 1668 if (err) 1669 goto rollback; 1670 } 1671 return 0; 1672 1673 rollback: 1674 for_each_netdev_continue_reverse(net, dev) 1675 call_netdevice_unregister_notifiers(nb, dev); 1676 return err; 1677 } 1678 1679 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1680 struct net *net) 1681 { 1682 struct net_device *dev; 1683 1684 for_each_netdev(net, dev) 1685 call_netdevice_unregister_notifiers(nb, dev); 1686 } 1687 1688 static int dev_boot_phase = 1; 1689 1690 /** 1691 * register_netdevice_notifier - register a network notifier block 1692 * @nb: notifier 1693 * 1694 * Register a notifier to be called when network device events occur. 1695 * The notifier passed is linked into the kernel structures and must 1696 * not be reused until it has been unregistered. A negative errno code 1697 * is returned on a failure. 1698 * 1699 * When registered all registration and up events are replayed 1700 * to the new notifier to allow device to have a race free 1701 * view of the network device list. 1702 */ 1703 1704 int register_netdevice_notifier(struct notifier_block *nb) 1705 { 1706 struct net *net; 1707 int err; 1708 1709 /* Close race with setup_net() and cleanup_net() */ 1710 down_write(&pernet_ops_rwsem); 1711 rtnl_lock(); 1712 err = raw_notifier_chain_register(&netdev_chain, nb); 1713 if (err) 1714 goto unlock; 1715 if (dev_boot_phase) 1716 goto unlock; 1717 for_each_net(net) { 1718 err = call_netdevice_register_net_notifiers(nb, net); 1719 if (err) 1720 goto rollback; 1721 } 1722 1723 unlock: 1724 rtnl_unlock(); 1725 up_write(&pernet_ops_rwsem); 1726 return err; 1727 1728 rollback: 1729 for_each_net_continue_reverse(net) 1730 call_netdevice_unregister_net_notifiers(nb, net); 1731 1732 raw_notifier_chain_unregister(&netdev_chain, nb); 1733 goto unlock; 1734 } 1735 EXPORT_SYMBOL(register_netdevice_notifier); 1736 1737 /** 1738 * unregister_netdevice_notifier - unregister a network notifier block 1739 * @nb: notifier 1740 * 1741 * Unregister a notifier previously registered by 1742 * register_netdevice_notifier(). The notifier is unlinked into the 1743 * kernel structures and may then be reused. A negative errno code 1744 * is returned on a failure. 1745 * 1746 * After unregistering unregister and down device events are synthesized 1747 * for all devices on the device list to the removed notifier to remove 1748 * the need for special case cleanup code. 1749 */ 1750 1751 int unregister_netdevice_notifier(struct notifier_block *nb) 1752 { 1753 struct net *net; 1754 int err; 1755 1756 /* Close race with setup_net() and cleanup_net() */ 1757 down_write(&pernet_ops_rwsem); 1758 rtnl_lock(); 1759 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1760 if (err) 1761 goto unlock; 1762 1763 for_each_net(net) 1764 call_netdevice_unregister_net_notifiers(nb, net); 1765 1766 unlock: 1767 rtnl_unlock(); 1768 up_write(&pernet_ops_rwsem); 1769 return err; 1770 } 1771 EXPORT_SYMBOL(unregister_netdevice_notifier); 1772 1773 static int __register_netdevice_notifier_net(struct net *net, 1774 struct notifier_block *nb, 1775 bool ignore_call_fail) 1776 { 1777 int err; 1778 1779 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1780 if (err) 1781 return err; 1782 if (dev_boot_phase) 1783 return 0; 1784 1785 err = call_netdevice_register_net_notifiers(nb, net); 1786 if (err && !ignore_call_fail) 1787 goto chain_unregister; 1788 1789 return 0; 1790 1791 chain_unregister: 1792 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1793 return err; 1794 } 1795 1796 static int __unregister_netdevice_notifier_net(struct net *net, 1797 struct notifier_block *nb) 1798 { 1799 int err; 1800 1801 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1802 if (err) 1803 return err; 1804 1805 call_netdevice_unregister_net_notifiers(nb, net); 1806 return 0; 1807 } 1808 1809 /** 1810 * register_netdevice_notifier_net - register a per-netns network notifier block 1811 * @net: network namespace 1812 * @nb: notifier 1813 * 1814 * Register a notifier to be called when network device events occur. 1815 * The notifier passed is linked into the kernel structures and must 1816 * not be reused until it has been unregistered. A negative errno code 1817 * is returned on a failure. 1818 * 1819 * When registered all registration and up events are replayed 1820 * to the new notifier to allow device to have a race free 1821 * view of the network device list. 1822 */ 1823 1824 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1825 { 1826 int err; 1827 1828 rtnl_lock(); 1829 err = __register_netdevice_notifier_net(net, nb, false); 1830 rtnl_unlock(); 1831 return err; 1832 } 1833 EXPORT_SYMBOL(register_netdevice_notifier_net); 1834 1835 /** 1836 * unregister_netdevice_notifier_net - unregister a per-netns 1837 * network notifier block 1838 * @net: network namespace 1839 * @nb: notifier 1840 * 1841 * Unregister a notifier previously registered by 1842 * register_netdevice_notifier_net(). The notifier is unlinked from the 1843 * kernel structures and may then be reused. A negative errno code 1844 * is returned on a failure. 1845 * 1846 * After unregistering unregister and down device events are synthesized 1847 * for all devices on the device list to the removed notifier to remove 1848 * the need for special case cleanup code. 1849 */ 1850 1851 int unregister_netdevice_notifier_net(struct net *net, 1852 struct notifier_block *nb) 1853 { 1854 int err; 1855 1856 rtnl_lock(); 1857 err = __unregister_netdevice_notifier_net(net, nb); 1858 rtnl_unlock(); 1859 return err; 1860 } 1861 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1862 1863 static void __move_netdevice_notifier_net(struct net *src_net, 1864 struct net *dst_net, 1865 struct notifier_block *nb) 1866 { 1867 __unregister_netdevice_notifier_net(src_net, nb); 1868 __register_netdevice_notifier_net(dst_net, nb, true); 1869 } 1870 1871 int register_netdevice_notifier_dev_net(struct net_device *dev, 1872 struct notifier_block *nb, 1873 struct netdev_net_notifier *nn) 1874 { 1875 int err; 1876 1877 rtnl_lock(); 1878 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1879 if (!err) { 1880 nn->nb = nb; 1881 list_add(&nn->list, &dev->net_notifier_list); 1882 } 1883 rtnl_unlock(); 1884 return err; 1885 } 1886 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1887 1888 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1889 struct notifier_block *nb, 1890 struct netdev_net_notifier *nn) 1891 { 1892 int err; 1893 1894 rtnl_lock(); 1895 list_del(&nn->list); 1896 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1897 rtnl_unlock(); 1898 return err; 1899 } 1900 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1901 1902 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 1903 struct net *net) 1904 { 1905 struct netdev_net_notifier *nn; 1906 1907 list_for_each_entry(nn, &dev->net_notifier_list, list) 1908 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 1909 } 1910 1911 /** 1912 * call_netdevice_notifiers_info - call all network notifier blocks 1913 * @val: value passed unmodified to notifier function 1914 * @info: notifier information data 1915 * 1916 * Call all network notifier blocks. Parameters and return value 1917 * are as for raw_notifier_call_chain(). 1918 */ 1919 1920 int call_netdevice_notifiers_info(unsigned long val, 1921 struct netdev_notifier_info *info) 1922 { 1923 struct net *net = dev_net(info->dev); 1924 int ret; 1925 1926 ASSERT_RTNL(); 1927 1928 /* Run per-netns notifier block chain first, then run the global one. 1929 * Hopefully, one day, the global one is going to be removed after 1930 * all notifier block registrators get converted to be per-netns. 1931 */ 1932 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 1933 if (ret & NOTIFY_STOP_MASK) 1934 return ret; 1935 return raw_notifier_call_chain(&netdev_chain, val, info); 1936 } 1937 1938 /** 1939 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 1940 * for and rollback on error 1941 * @val_up: value passed unmodified to notifier function 1942 * @val_down: value passed unmodified to the notifier function when 1943 * recovering from an error on @val_up 1944 * @info: notifier information data 1945 * 1946 * Call all per-netns network notifier blocks, but not notifier blocks on 1947 * the global notifier chain. Parameters and return value are as for 1948 * raw_notifier_call_chain_robust(). 1949 */ 1950 1951 static int 1952 call_netdevice_notifiers_info_robust(unsigned long val_up, 1953 unsigned long val_down, 1954 struct netdev_notifier_info *info) 1955 { 1956 struct net *net = dev_net(info->dev); 1957 1958 ASSERT_RTNL(); 1959 1960 return raw_notifier_call_chain_robust(&net->netdev_chain, 1961 val_up, val_down, info); 1962 } 1963 1964 static int call_netdevice_notifiers_extack(unsigned long val, 1965 struct net_device *dev, 1966 struct netlink_ext_ack *extack) 1967 { 1968 struct netdev_notifier_info info = { 1969 .dev = dev, 1970 .extack = extack, 1971 }; 1972 1973 return call_netdevice_notifiers_info(val, &info); 1974 } 1975 1976 /** 1977 * call_netdevice_notifiers - call all network notifier blocks 1978 * @val: value passed unmodified to notifier function 1979 * @dev: net_device pointer passed unmodified to notifier function 1980 * 1981 * Call all network notifier blocks. Parameters and return value 1982 * are as for raw_notifier_call_chain(). 1983 */ 1984 1985 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1986 { 1987 return call_netdevice_notifiers_extack(val, dev, NULL); 1988 } 1989 EXPORT_SYMBOL(call_netdevice_notifiers); 1990 1991 /** 1992 * call_netdevice_notifiers_mtu - call all network notifier blocks 1993 * @val: value passed unmodified to notifier function 1994 * @dev: net_device pointer passed unmodified to notifier function 1995 * @arg: additional u32 argument passed to the notifier function 1996 * 1997 * Call all network notifier blocks. Parameters and return value 1998 * are as for raw_notifier_call_chain(). 1999 */ 2000 static int call_netdevice_notifiers_mtu(unsigned long val, 2001 struct net_device *dev, u32 arg) 2002 { 2003 struct netdev_notifier_info_ext info = { 2004 .info.dev = dev, 2005 .ext.mtu = arg, 2006 }; 2007 2008 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2009 2010 return call_netdevice_notifiers_info(val, &info.info); 2011 } 2012 2013 #ifdef CONFIG_NET_INGRESS 2014 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2015 2016 void net_inc_ingress_queue(void) 2017 { 2018 static_branch_inc(&ingress_needed_key); 2019 } 2020 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2021 2022 void net_dec_ingress_queue(void) 2023 { 2024 static_branch_dec(&ingress_needed_key); 2025 } 2026 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2027 #endif 2028 2029 #ifdef CONFIG_NET_EGRESS 2030 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2031 2032 void net_inc_egress_queue(void) 2033 { 2034 static_branch_inc(&egress_needed_key); 2035 } 2036 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2037 2038 void net_dec_egress_queue(void) 2039 { 2040 static_branch_dec(&egress_needed_key); 2041 } 2042 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2043 #endif 2044 2045 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2046 EXPORT_SYMBOL(netstamp_needed_key); 2047 #ifdef CONFIG_JUMP_LABEL 2048 static atomic_t netstamp_needed_deferred; 2049 static atomic_t netstamp_wanted; 2050 static void netstamp_clear(struct work_struct *work) 2051 { 2052 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2053 int wanted; 2054 2055 wanted = atomic_add_return(deferred, &netstamp_wanted); 2056 if (wanted > 0) 2057 static_branch_enable(&netstamp_needed_key); 2058 else 2059 static_branch_disable(&netstamp_needed_key); 2060 } 2061 static DECLARE_WORK(netstamp_work, netstamp_clear); 2062 #endif 2063 2064 void net_enable_timestamp(void) 2065 { 2066 #ifdef CONFIG_JUMP_LABEL 2067 int wanted = atomic_read(&netstamp_wanted); 2068 2069 while (wanted > 0) { 2070 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2071 return; 2072 } 2073 atomic_inc(&netstamp_needed_deferred); 2074 schedule_work(&netstamp_work); 2075 #else 2076 static_branch_inc(&netstamp_needed_key); 2077 #endif 2078 } 2079 EXPORT_SYMBOL(net_enable_timestamp); 2080 2081 void net_disable_timestamp(void) 2082 { 2083 #ifdef CONFIG_JUMP_LABEL 2084 int wanted = atomic_read(&netstamp_wanted); 2085 2086 while (wanted > 1) { 2087 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2088 return; 2089 } 2090 atomic_dec(&netstamp_needed_deferred); 2091 schedule_work(&netstamp_work); 2092 #else 2093 static_branch_dec(&netstamp_needed_key); 2094 #endif 2095 } 2096 EXPORT_SYMBOL(net_disable_timestamp); 2097 2098 static inline void net_timestamp_set(struct sk_buff *skb) 2099 { 2100 skb->tstamp = 0; 2101 skb->mono_delivery_time = 0; 2102 if (static_branch_unlikely(&netstamp_needed_key)) 2103 skb->tstamp = ktime_get_real(); 2104 } 2105 2106 #define net_timestamp_check(COND, SKB) \ 2107 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2108 if ((COND) && !(SKB)->tstamp) \ 2109 (SKB)->tstamp = ktime_get_real(); \ 2110 } \ 2111 2112 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2113 { 2114 return __is_skb_forwardable(dev, skb, true); 2115 } 2116 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2117 2118 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2119 bool check_mtu) 2120 { 2121 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2122 2123 if (likely(!ret)) { 2124 skb->protocol = eth_type_trans(skb, dev); 2125 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2126 } 2127 2128 return ret; 2129 } 2130 2131 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2132 { 2133 return __dev_forward_skb2(dev, skb, true); 2134 } 2135 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2136 2137 /** 2138 * dev_forward_skb - loopback an skb to another netif 2139 * 2140 * @dev: destination network device 2141 * @skb: buffer to forward 2142 * 2143 * return values: 2144 * NET_RX_SUCCESS (no congestion) 2145 * NET_RX_DROP (packet was dropped, but freed) 2146 * 2147 * dev_forward_skb can be used for injecting an skb from the 2148 * start_xmit function of one device into the receive queue 2149 * of another device. 2150 * 2151 * The receiving device may be in another namespace, so 2152 * we have to clear all information in the skb that could 2153 * impact namespace isolation. 2154 */ 2155 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2156 { 2157 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2158 } 2159 EXPORT_SYMBOL_GPL(dev_forward_skb); 2160 2161 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2162 { 2163 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2164 } 2165 2166 static inline int deliver_skb(struct sk_buff *skb, 2167 struct packet_type *pt_prev, 2168 struct net_device *orig_dev) 2169 { 2170 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2171 return -ENOMEM; 2172 refcount_inc(&skb->users); 2173 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2174 } 2175 2176 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2177 struct packet_type **pt, 2178 struct net_device *orig_dev, 2179 __be16 type, 2180 struct list_head *ptype_list) 2181 { 2182 struct packet_type *ptype, *pt_prev = *pt; 2183 2184 list_for_each_entry_rcu(ptype, ptype_list, list) { 2185 if (ptype->type != type) 2186 continue; 2187 if (pt_prev) 2188 deliver_skb(skb, pt_prev, orig_dev); 2189 pt_prev = ptype; 2190 } 2191 *pt = pt_prev; 2192 } 2193 2194 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2195 { 2196 if (!ptype->af_packet_priv || !skb->sk) 2197 return false; 2198 2199 if (ptype->id_match) 2200 return ptype->id_match(ptype, skb->sk); 2201 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2202 return true; 2203 2204 return false; 2205 } 2206 2207 /** 2208 * dev_nit_active - return true if any network interface taps are in use 2209 * 2210 * @dev: network device to check for the presence of taps 2211 */ 2212 bool dev_nit_active(struct net_device *dev) 2213 { 2214 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2215 } 2216 EXPORT_SYMBOL_GPL(dev_nit_active); 2217 2218 /* 2219 * Support routine. Sends outgoing frames to any network 2220 * taps currently in use. 2221 */ 2222 2223 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2224 { 2225 struct packet_type *ptype; 2226 struct sk_buff *skb2 = NULL; 2227 struct packet_type *pt_prev = NULL; 2228 struct list_head *ptype_list = &ptype_all; 2229 2230 rcu_read_lock(); 2231 again: 2232 list_for_each_entry_rcu(ptype, ptype_list, list) { 2233 if (ptype->ignore_outgoing) 2234 continue; 2235 2236 /* Never send packets back to the socket 2237 * they originated from - MvS (miquels@drinkel.ow.org) 2238 */ 2239 if (skb_loop_sk(ptype, skb)) 2240 continue; 2241 2242 if (pt_prev) { 2243 deliver_skb(skb2, pt_prev, skb->dev); 2244 pt_prev = ptype; 2245 continue; 2246 } 2247 2248 /* need to clone skb, done only once */ 2249 skb2 = skb_clone(skb, GFP_ATOMIC); 2250 if (!skb2) 2251 goto out_unlock; 2252 2253 net_timestamp_set(skb2); 2254 2255 /* skb->nh should be correctly 2256 * set by sender, so that the second statement is 2257 * just protection against buggy protocols. 2258 */ 2259 skb_reset_mac_header(skb2); 2260 2261 if (skb_network_header(skb2) < skb2->data || 2262 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2263 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2264 ntohs(skb2->protocol), 2265 dev->name); 2266 skb_reset_network_header(skb2); 2267 } 2268 2269 skb2->transport_header = skb2->network_header; 2270 skb2->pkt_type = PACKET_OUTGOING; 2271 pt_prev = ptype; 2272 } 2273 2274 if (ptype_list == &ptype_all) { 2275 ptype_list = &dev->ptype_all; 2276 goto again; 2277 } 2278 out_unlock: 2279 if (pt_prev) { 2280 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2281 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2282 else 2283 kfree_skb(skb2); 2284 } 2285 rcu_read_unlock(); 2286 } 2287 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2288 2289 /** 2290 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2291 * @dev: Network device 2292 * @txq: number of queues available 2293 * 2294 * If real_num_tx_queues is changed the tc mappings may no longer be 2295 * valid. To resolve this verify the tc mapping remains valid and if 2296 * not NULL the mapping. With no priorities mapping to this 2297 * offset/count pair it will no longer be used. In the worst case TC0 2298 * is invalid nothing can be done so disable priority mappings. If is 2299 * expected that drivers will fix this mapping if they can before 2300 * calling netif_set_real_num_tx_queues. 2301 */ 2302 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2303 { 2304 int i; 2305 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2306 2307 /* If TC0 is invalidated disable TC mapping */ 2308 if (tc->offset + tc->count > txq) { 2309 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2310 dev->num_tc = 0; 2311 return; 2312 } 2313 2314 /* Invalidated prio to tc mappings set to TC0 */ 2315 for (i = 1; i < TC_BITMASK + 1; i++) { 2316 int q = netdev_get_prio_tc_map(dev, i); 2317 2318 tc = &dev->tc_to_txq[q]; 2319 if (tc->offset + tc->count > txq) { 2320 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2321 i, q); 2322 netdev_set_prio_tc_map(dev, i, 0); 2323 } 2324 } 2325 } 2326 2327 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2328 { 2329 if (dev->num_tc) { 2330 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2331 int i; 2332 2333 /* walk through the TCs and see if it falls into any of them */ 2334 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2335 if ((txq - tc->offset) < tc->count) 2336 return i; 2337 } 2338 2339 /* didn't find it, just return -1 to indicate no match */ 2340 return -1; 2341 } 2342 2343 return 0; 2344 } 2345 EXPORT_SYMBOL(netdev_txq_to_tc); 2346 2347 #ifdef CONFIG_XPS 2348 static struct static_key xps_needed __read_mostly; 2349 static struct static_key xps_rxqs_needed __read_mostly; 2350 static DEFINE_MUTEX(xps_map_mutex); 2351 #define xmap_dereference(P) \ 2352 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2353 2354 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2355 struct xps_dev_maps *old_maps, int tci, u16 index) 2356 { 2357 struct xps_map *map = NULL; 2358 int pos; 2359 2360 if (dev_maps) 2361 map = xmap_dereference(dev_maps->attr_map[tci]); 2362 if (!map) 2363 return false; 2364 2365 for (pos = map->len; pos--;) { 2366 if (map->queues[pos] != index) 2367 continue; 2368 2369 if (map->len > 1) { 2370 map->queues[pos] = map->queues[--map->len]; 2371 break; 2372 } 2373 2374 if (old_maps) 2375 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2376 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2377 kfree_rcu(map, rcu); 2378 return false; 2379 } 2380 2381 return true; 2382 } 2383 2384 static bool remove_xps_queue_cpu(struct net_device *dev, 2385 struct xps_dev_maps *dev_maps, 2386 int cpu, u16 offset, u16 count) 2387 { 2388 int num_tc = dev_maps->num_tc; 2389 bool active = false; 2390 int tci; 2391 2392 for (tci = cpu * num_tc; num_tc--; tci++) { 2393 int i, j; 2394 2395 for (i = count, j = offset; i--; j++) { 2396 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2397 break; 2398 } 2399 2400 active |= i < 0; 2401 } 2402 2403 return active; 2404 } 2405 2406 static void reset_xps_maps(struct net_device *dev, 2407 struct xps_dev_maps *dev_maps, 2408 enum xps_map_type type) 2409 { 2410 static_key_slow_dec_cpuslocked(&xps_needed); 2411 if (type == XPS_RXQS) 2412 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2413 2414 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2415 2416 kfree_rcu(dev_maps, rcu); 2417 } 2418 2419 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2420 u16 offset, u16 count) 2421 { 2422 struct xps_dev_maps *dev_maps; 2423 bool active = false; 2424 int i, j; 2425 2426 dev_maps = xmap_dereference(dev->xps_maps[type]); 2427 if (!dev_maps) 2428 return; 2429 2430 for (j = 0; j < dev_maps->nr_ids; j++) 2431 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2432 if (!active) 2433 reset_xps_maps(dev, dev_maps, type); 2434 2435 if (type == XPS_CPUS) { 2436 for (i = offset + (count - 1); count--; i--) 2437 netdev_queue_numa_node_write( 2438 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2439 } 2440 } 2441 2442 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2443 u16 count) 2444 { 2445 if (!static_key_false(&xps_needed)) 2446 return; 2447 2448 cpus_read_lock(); 2449 mutex_lock(&xps_map_mutex); 2450 2451 if (static_key_false(&xps_rxqs_needed)) 2452 clean_xps_maps(dev, XPS_RXQS, offset, count); 2453 2454 clean_xps_maps(dev, XPS_CPUS, offset, count); 2455 2456 mutex_unlock(&xps_map_mutex); 2457 cpus_read_unlock(); 2458 } 2459 2460 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2461 { 2462 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2463 } 2464 2465 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2466 u16 index, bool is_rxqs_map) 2467 { 2468 struct xps_map *new_map; 2469 int alloc_len = XPS_MIN_MAP_ALLOC; 2470 int i, pos; 2471 2472 for (pos = 0; map && pos < map->len; pos++) { 2473 if (map->queues[pos] != index) 2474 continue; 2475 return map; 2476 } 2477 2478 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2479 if (map) { 2480 if (pos < map->alloc_len) 2481 return map; 2482 2483 alloc_len = map->alloc_len * 2; 2484 } 2485 2486 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2487 * map 2488 */ 2489 if (is_rxqs_map) 2490 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2491 else 2492 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2493 cpu_to_node(attr_index)); 2494 if (!new_map) 2495 return NULL; 2496 2497 for (i = 0; i < pos; i++) 2498 new_map->queues[i] = map->queues[i]; 2499 new_map->alloc_len = alloc_len; 2500 new_map->len = pos; 2501 2502 return new_map; 2503 } 2504 2505 /* Copy xps maps at a given index */ 2506 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2507 struct xps_dev_maps *new_dev_maps, int index, 2508 int tc, bool skip_tc) 2509 { 2510 int i, tci = index * dev_maps->num_tc; 2511 struct xps_map *map; 2512 2513 /* copy maps belonging to foreign traffic classes */ 2514 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2515 if (i == tc && skip_tc) 2516 continue; 2517 2518 /* fill in the new device map from the old device map */ 2519 map = xmap_dereference(dev_maps->attr_map[tci]); 2520 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2521 } 2522 } 2523 2524 /* Must be called under cpus_read_lock */ 2525 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2526 u16 index, enum xps_map_type type) 2527 { 2528 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2529 const unsigned long *online_mask = NULL; 2530 bool active = false, copy = false; 2531 int i, j, tci, numa_node_id = -2; 2532 int maps_sz, num_tc = 1, tc = 0; 2533 struct xps_map *map, *new_map; 2534 unsigned int nr_ids; 2535 2536 WARN_ON_ONCE(index >= dev->num_tx_queues); 2537 2538 if (dev->num_tc) { 2539 /* Do not allow XPS on subordinate device directly */ 2540 num_tc = dev->num_tc; 2541 if (num_tc < 0) 2542 return -EINVAL; 2543 2544 /* If queue belongs to subordinate dev use its map */ 2545 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2546 2547 tc = netdev_txq_to_tc(dev, index); 2548 if (tc < 0) 2549 return -EINVAL; 2550 } 2551 2552 mutex_lock(&xps_map_mutex); 2553 2554 dev_maps = xmap_dereference(dev->xps_maps[type]); 2555 if (type == XPS_RXQS) { 2556 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2557 nr_ids = dev->num_rx_queues; 2558 } else { 2559 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2560 if (num_possible_cpus() > 1) 2561 online_mask = cpumask_bits(cpu_online_mask); 2562 nr_ids = nr_cpu_ids; 2563 } 2564 2565 if (maps_sz < L1_CACHE_BYTES) 2566 maps_sz = L1_CACHE_BYTES; 2567 2568 /* The old dev_maps could be larger or smaller than the one we're 2569 * setting up now, as dev->num_tc or nr_ids could have been updated in 2570 * between. We could try to be smart, but let's be safe instead and only 2571 * copy foreign traffic classes if the two map sizes match. 2572 */ 2573 if (dev_maps && 2574 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2575 copy = true; 2576 2577 /* allocate memory for queue storage */ 2578 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2579 j < nr_ids;) { 2580 if (!new_dev_maps) { 2581 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2582 if (!new_dev_maps) { 2583 mutex_unlock(&xps_map_mutex); 2584 return -ENOMEM; 2585 } 2586 2587 new_dev_maps->nr_ids = nr_ids; 2588 new_dev_maps->num_tc = num_tc; 2589 } 2590 2591 tci = j * num_tc + tc; 2592 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2593 2594 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2595 if (!map) 2596 goto error; 2597 2598 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2599 } 2600 2601 if (!new_dev_maps) 2602 goto out_no_new_maps; 2603 2604 if (!dev_maps) { 2605 /* Increment static keys at most once per type */ 2606 static_key_slow_inc_cpuslocked(&xps_needed); 2607 if (type == XPS_RXQS) 2608 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2609 } 2610 2611 for (j = 0; j < nr_ids; j++) { 2612 bool skip_tc = false; 2613 2614 tci = j * num_tc + tc; 2615 if (netif_attr_test_mask(j, mask, nr_ids) && 2616 netif_attr_test_online(j, online_mask, nr_ids)) { 2617 /* add tx-queue to CPU/rx-queue maps */ 2618 int pos = 0; 2619 2620 skip_tc = true; 2621 2622 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2623 while ((pos < map->len) && (map->queues[pos] != index)) 2624 pos++; 2625 2626 if (pos == map->len) 2627 map->queues[map->len++] = index; 2628 #ifdef CONFIG_NUMA 2629 if (type == XPS_CPUS) { 2630 if (numa_node_id == -2) 2631 numa_node_id = cpu_to_node(j); 2632 else if (numa_node_id != cpu_to_node(j)) 2633 numa_node_id = -1; 2634 } 2635 #endif 2636 } 2637 2638 if (copy) 2639 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2640 skip_tc); 2641 } 2642 2643 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2644 2645 /* Cleanup old maps */ 2646 if (!dev_maps) 2647 goto out_no_old_maps; 2648 2649 for (j = 0; j < dev_maps->nr_ids; j++) { 2650 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2651 map = xmap_dereference(dev_maps->attr_map[tci]); 2652 if (!map) 2653 continue; 2654 2655 if (copy) { 2656 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2657 if (map == new_map) 2658 continue; 2659 } 2660 2661 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2662 kfree_rcu(map, rcu); 2663 } 2664 } 2665 2666 old_dev_maps = dev_maps; 2667 2668 out_no_old_maps: 2669 dev_maps = new_dev_maps; 2670 active = true; 2671 2672 out_no_new_maps: 2673 if (type == XPS_CPUS) 2674 /* update Tx queue numa node */ 2675 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2676 (numa_node_id >= 0) ? 2677 numa_node_id : NUMA_NO_NODE); 2678 2679 if (!dev_maps) 2680 goto out_no_maps; 2681 2682 /* removes tx-queue from unused CPUs/rx-queues */ 2683 for (j = 0; j < dev_maps->nr_ids; j++) { 2684 tci = j * dev_maps->num_tc; 2685 2686 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2687 if (i == tc && 2688 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2689 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2690 continue; 2691 2692 active |= remove_xps_queue(dev_maps, 2693 copy ? old_dev_maps : NULL, 2694 tci, index); 2695 } 2696 } 2697 2698 if (old_dev_maps) 2699 kfree_rcu(old_dev_maps, rcu); 2700 2701 /* free map if not active */ 2702 if (!active) 2703 reset_xps_maps(dev, dev_maps, type); 2704 2705 out_no_maps: 2706 mutex_unlock(&xps_map_mutex); 2707 2708 return 0; 2709 error: 2710 /* remove any maps that we added */ 2711 for (j = 0; j < nr_ids; j++) { 2712 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2713 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2714 map = copy ? 2715 xmap_dereference(dev_maps->attr_map[tci]) : 2716 NULL; 2717 if (new_map && new_map != map) 2718 kfree(new_map); 2719 } 2720 } 2721 2722 mutex_unlock(&xps_map_mutex); 2723 2724 kfree(new_dev_maps); 2725 return -ENOMEM; 2726 } 2727 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2728 2729 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2730 u16 index) 2731 { 2732 int ret; 2733 2734 cpus_read_lock(); 2735 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 2736 cpus_read_unlock(); 2737 2738 return ret; 2739 } 2740 EXPORT_SYMBOL(netif_set_xps_queue); 2741 2742 #endif 2743 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2744 { 2745 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2746 2747 /* Unbind any subordinate channels */ 2748 while (txq-- != &dev->_tx[0]) { 2749 if (txq->sb_dev) 2750 netdev_unbind_sb_channel(dev, txq->sb_dev); 2751 } 2752 } 2753 2754 void netdev_reset_tc(struct net_device *dev) 2755 { 2756 #ifdef CONFIG_XPS 2757 netif_reset_xps_queues_gt(dev, 0); 2758 #endif 2759 netdev_unbind_all_sb_channels(dev); 2760 2761 /* Reset TC configuration of device */ 2762 dev->num_tc = 0; 2763 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2764 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2765 } 2766 EXPORT_SYMBOL(netdev_reset_tc); 2767 2768 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2769 { 2770 if (tc >= dev->num_tc) 2771 return -EINVAL; 2772 2773 #ifdef CONFIG_XPS 2774 netif_reset_xps_queues(dev, offset, count); 2775 #endif 2776 dev->tc_to_txq[tc].count = count; 2777 dev->tc_to_txq[tc].offset = offset; 2778 return 0; 2779 } 2780 EXPORT_SYMBOL(netdev_set_tc_queue); 2781 2782 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2783 { 2784 if (num_tc > TC_MAX_QUEUE) 2785 return -EINVAL; 2786 2787 #ifdef CONFIG_XPS 2788 netif_reset_xps_queues_gt(dev, 0); 2789 #endif 2790 netdev_unbind_all_sb_channels(dev); 2791 2792 dev->num_tc = num_tc; 2793 return 0; 2794 } 2795 EXPORT_SYMBOL(netdev_set_num_tc); 2796 2797 void netdev_unbind_sb_channel(struct net_device *dev, 2798 struct net_device *sb_dev) 2799 { 2800 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2801 2802 #ifdef CONFIG_XPS 2803 netif_reset_xps_queues_gt(sb_dev, 0); 2804 #endif 2805 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2806 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2807 2808 while (txq-- != &dev->_tx[0]) { 2809 if (txq->sb_dev == sb_dev) 2810 txq->sb_dev = NULL; 2811 } 2812 } 2813 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2814 2815 int netdev_bind_sb_channel_queue(struct net_device *dev, 2816 struct net_device *sb_dev, 2817 u8 tc, u16 count, u16 offset) 2818 { 2819 /* Make certain the sb_dev and dev are already configured */ 2820 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2821 return -EINVAL; 2822 2823 /* We cannot hand out queues we don't have */ 2824 if ((offset + count) > dev->real_num_tx_queues) 2825 return -EINVAL; 2826 2827 /* Record the mapping */ 2828 sb_dev->tc_to_txq[tc].count = count; 2829 sb_dev->tc_to_txq[tc].offset = offset; 2830 2831 /* Provide a way for Tx queue to find the tc_to_txq map or 2832 * XPS map for itself. 2833 */ 2834 while (count--) 2835 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2836 2837 return 0; 2838 } 2839 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2840 2841 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2842 { 2843 /* Do not use a multiqueue device to represent a subordinate channel */ 2844 if (netif_is_multiqueue(dev)) 2845 return -ENODEV; 2846 2847 /* We allow channels 1 - 32767 to be used for subordinate channels. 2848 * Channel 0 is meant to be "native" mode and used only to represent 2849 * the main root device. We allow writing 0 to reset the device back 2850 * to normal mode after being used as a subordinate channel. 2851 */ 2852 if (channel > S16_MAX) 2853 return -EINVAL; 2854 2855 dev->num_tc = -channel; 2856 2857 return 0; 2858 } 2859 EXPORT_SYMBOL(netdev_set_sb_channel); 2860 2861 /* 2862 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2863 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2864 */ 2865 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2866 { 2867 bool disabling; 2868 int rc; 2869 2870 disabling = txq < dev->real_num_tx_queues; 2871 2872 if (txq < 1 || txq > dev->num_tx_queues) 2873 return -EINVAL; 2874 2875 if (dev->reg_state == NETREG_REGISTERED || 2876 dev->reg_state == NETREG_UNREGISTERING) { 2877 ASSERT_RTNL(); 2878 2879 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2880 txq); 2881 if (rc) 2882 return rc; 2883 2884 if (dev->num_tc) 2885 netif_setup_tc(dev, txq); 2886 2887 dev_qdisc_change_real_num_tx(dev, txq); 2888 2889 dev->real_num_tx_queues = txq; 2890 2891 if (disabling) { 2892 synchronize_net(); 2893 qdisc_reset_all_tx_gt(dev, txq); 2894 #ifdef CONFIG_XPS 2895 netif_reset_xps_queues_gt(dev, txq); 2896 #endif 2897 } 2898 } else { 2899 dev->real_num_tx_queues = txq; 2900 } 2901 2902 return 0; 2903 } 2904 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2905 2906 #ifdef CONFIG_SYSFS 2907 /** 2908 * netif_set_real_num_rx_queues - set actual number of RX queues used 2909 * @dev: Network device 2910 * @rxq: Actual number of RX queues 2911 * 2912 * This must be called either with the rtnl_lock held or before 2913 * registration of the net device. Returns 0 on success, or a 2914 * negative error code. If called before registration, it always 2915 * succeeds. 2916 */ 2917 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2918 { 2919 int rc; 2920 2921 if (rxq < 1 || rxq > dev->num_rx_queues) 2922 return -EINVAL; 2923 2924 if (dev->reg_state == NETREG_REGISTERED) { 2925 ASSERT_RTNL(); 2926 2927 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2928 rxq); 2929 if (rc) 2930 return rc; 2931 } 2932 2933 dev->real_num_rx_queues = rxq; 2934 return 0; 2935 } 2936 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2937 #endif 2938 2939 /** 2940 * netif_set_real_num_queues - set actual number of RX and TX queues used 2941 * @dev: Network device 2942 * @txq: Actual number of TX queues 2943 * @rxq: Actual number of RX queues 2944 * 2945 * Set the real number of both TX and RX queues. 2946 * Does nothing if the number of queues is already correct. 2947 */ 2948 int netif_set_real_num_queues(struct net_device *dev, 2949 unsigned int txq, unsigned int rxq) 2950 { 2951 unsigned int old_rxq = dev->real_num_rx_queues; 2952 int err; 2953 2954 if (txq < 1 || txq > dev->num_tx_queues || 2955 rxq < 1 || rxq > dev->num_rx_queues) 2956 return -EINVAL; 2957 2958 /* Start from increases, so the error path only does decreases - 2959 * decreases can't fail. 2960 */ 2961 if (rxq > dev->real_num_rx_queues) { 2962 err = netif_set_real_num_rx_queues(dev, rxq); 2963 if (err) 2964 return err; 2965 } 2966 if (txq > dev->real_num_tx_queues) { 2967 err = netif_set_real_num_tx_queues(dev, txq); 2968 if (err) 2969 goto undo_rx; 2970 } 2971 if (rxq < dev->real_num_rx_queues) 2972 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 2973 if (txq < dev->real_num_tx_queues) 2974 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 2975 2976 return 0; 2977 undo_rx: 2978 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 2979 return err; 2980 } 2981 EXPORT_SYMBOL(netif_set_real_num_queues); 2982 2983 /** 2984 * netif_set_tso_max_size() - set the max size of TSO frames supported 2985 * @dev: netdev to update 2986 * @size: max skb->len of a TSO frame 2987 * 2988 * Set the limit on the size of TSO super-frames the device can handle. 2989 * Unless explicitly set the stack will assume the value of 2990 * %GSO_LEGACY_MAX_SIZE. 2991 */ 2992 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 2993 { 2994 dev->tso_max_size = min(GSO_MAX_SIZE, size); 2995 if (size < READ_ONCE(dev->gso_max_size)) 2996 netif_set_gso_max_size(dev, size); 2997 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 2998 netif_set_gso_ipv4_max_size(dev, size); 2999 } 3000 EXPORT_SYMBOL(netif_set_tso_max_size); 3001 3002 /** 3003 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3004 * @dev: netdev to update 3005 * @segs: max number of TCP segments 3006 * 3007 * Set the limit on the number of TCP segments the device can generate from 3008 * a single TSO super-frame. 3009 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3010 */ 3011 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3012 { 3013 dev->tso_max_segs = segs; 3014 if (segs < READ_ONCE(dev->gso_max_segs)) 3015 netif_set_gso_max_segs(dev, segs); 3016 } 3017 EXPORT_SYMBOL(netif_set_tso_max_segs); 3018 3019 /** 3020 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3021 * @to: netdev to update 3022 * @from: netdev from which to copy the limits 3023 */ 3024 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3025 { 3026 netif_set_tso_max_size(to, from->tso_max_size); 3027 netif_set_tso_max_segs(to, from->tso_max_segs); 3028 } 3029 EXPORT_SYMBOL(netif_inherit_tso_max); 3030 3031 /** 3032 * netif_get_num_default_rss_queues - default number of RSS queues 3033 * 3034 * Default value is the number of physical cores if there are only 1 or 2, or 3035 * divided by 2 if there are more. 3036 */ 3037 int netif_get_num_default_rss_queues(void) 3038 { 3039 cpumask_var_t cpus; 3040 int cpu, count = 0; 3041 3042 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3043 return 1; 3044 3045 cpumask_copy(cpus, cpu_online_mask); 3046 for_each_cpu(cpu, cpus) { 3047 ++count; 3048 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3049 } 3050 free_cpumask_var(cpus); 3051 3052 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3053 } 3054 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3055 3056 static void __netif_reschedule(struct Qdisc *q) 3057 { 3058 struct softnet_data *sd; 3059 unsigned long flags; 3060 3061 local_irq_save(flags); 3062 sd = this_cpu_ptr(&softnet_data); 3063 q->next_sched = NULL; 3064 *sd->output_queue_tailp = q; 3065 sd->output_queue_tailp = &q->next_sched; 3066 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3067 local_irq_restore(flags); 3068 } 3069 3070 void __netif_schedule(struct Qdisc *q) 3071 { 3072 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3073 __netif_reschedule(q); 3074 } 3075 EXPORT_SYMBOL(__netif_schedule); 3076 3077 struct dev_kfree_skb_cb { 3078 enum skb_drop_reason reason; 3079 }; 3080 3081 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3082 { 3083 return (struct dev_kfree_skb_cb *)skb->cb; 3084 } 3085 3086 void netif_schedule_queue(struct netdev_queue *txq) 3087 { 3088 rcu_read_lock(); 3089 if (!netif_xmit_stopped(txq)) { 3090 struct Qdisc *q = rcu_dereference(txq->qdisc); 3091 3092 __netif_schedule(q); 3093 } 3094 rcu_read_unlock(); 3095 } 3096 EXPORT_SYMBOL(netif_schedule_queue); 3097 3098 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3099 { 3100 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3101 struct Qdisc *q; 3102 3103 rcu_read_lock(); 3104 q = rcu_dereference(dev_queue->qdisc); 3105 __netif_schedule(q); 3106 rcu_read_unlock(); 3107 } 3108 } 3109 EXPORT_SYMBOL(netif_tx_wake_queue); 3110 3111 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3112 { 3113 unsigned long flags; 3114 3115 if (unlikely(!skb)) 3116 return; 3117 3118 if (likely(refcount_read(&skb->users) == 1)) { 3119 smp_rmb(); 3120 refcount_set(&skb->users, 0); 3121 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3122 return; 3123 } 3124 get_kfree_skb_cb(skb)->reason = reason; 3125 local_irq_save(flags); 3126 skb->next = __this_cpu_read(softnet_data.completion_queue); 3127 __this_cpu_write(softnet_data.completion_queue, skb); 3128 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3129 local_irq_restore(flags); 3130 } 3131 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3132 3133 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3134 { 3135 if (in_hardirq() || irqs_disabled()) 3136 dev_kfree_skb_irq_reason(skb, reason); 3137 else 3138 kfree_skb_reason(skb, reason); 3139 } 3140 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3141 3142 3143 /** 3144 * netif_device_detach - mark device as removed 3145 * @dev: network device 3146 * 3147 * Mark device as removed from system and therefore no longer available. 3148 */ 3149 void netif_device_detach(struct net_device *dev) 3150 { 3151 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3152 netif_running(dev)) { 3153 netif_tx_stop_all_queues(dev); 3154 } 3155 } 3156 EXPORT_SYMBOL(netif_device_detach); 3157 3158 /** 3159 * netif_device_attach - mark device as attached 3160 * @dev: network device 3161 * 3162 * Mark device as attached from system and restart if needed. 3163 */ 3164 void netif_device_attach(struct net_device *dev) 3165 { 3166 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3167 netif_running(dev)) { 3168 netif_tx_wake_all_queues(dev); 3169 __netdev_watchdog_up(dev); 3170 } 3171 } 3172 EXPORT_SYMBOL(netif_device_attach); 3173 3174 /* 3175 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3176 * to be used as a distribution range. 3177 */ 3178 static u16 skb_tx_hash(const struct net_device *dev, 3179 const struct net_device *sb_dev, 3180 struct sk_buff *skb) 3181 { 3182 u32 hash; 3183 u16 qoffset = 0; 3184 u16 qcount = dev->real_num_tx_queues; 3185 3186 if (dev->num_tc) { 3187 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3188 3189 qoffset = sb_dev->tc_to_txq[tc].offset; 3190 qcount = sb_dev->tc_to_txq[tc].count; 3191 if (unlikely(!qcount)) { 3192 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3193 sb_dev->name, qoffset, tc); 3194 qoffset = 0; 3195 qcount = dev->real_num_tx_queues; 3196 } 3197 } 3198 3199 if (skb_rx_queue_recorded(skb)) { 3200 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3201 hash = skb_get_rx_queue(skb); 3202 if (hash >= qoffset) 3203 hash -= qoffset; 3204 while (unlikely(hash >= qcount)) 3205 hash -= qcount; 3206 return hash + qoffset; 3207 } 3208 3209 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3210 } 3211 3212 static void skb_warn_bad_offload(const struct sk_buff *skb) 3213 { 3214 static const netdev_features_t null_features; 3215 struct net_device *dev = skb->dev; 3216 const char *name = ""; 3217 3218 if (!net_ratelimit()) 3219 return; 3220 3221 if (dev) { 3222 if (dev->dev.parent) 3223 name = dev_driver_string(dev->dev.parent); 3224 else 3225 name = netdev_name(dev); 3226 } 3227 skb_dump(KERN_WARNING, skb, false); 3228 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3229 name, dev ? &dev->features : &null_features, 3230 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3231 } 3232 3233 /* 3234 * Invalidate hardware checksum when packet is to be mangled, and 3235 * complete checksum manually on outgoing path. 3236 */ 3237 int skb_checksum_help(struct sk_buff *skb) 3238 { 3239 __wsum csum; 3240 int ret = 0, offset; 3241 3242 if (skb->ip_summed == CHECKSUM_COMPLETE) 3243 goto out_set_summed; 3244 3245 if (unlikely(skb_is_gso(skb))) { 3246 skb_warn_bad_offload(skb); 3247 return -EINVAL; 3248 } 3249 3250 /* Before computing a checksum, we should make sure no frag could 3251 * be modified by an external entity : checksum could be wrong. 3252 */ 3253 if (skb_has_shared_frag(skb)) { 3254 ret = __skb_linearize(skb); 3255 if (ret) 3256 goto out; 3257 } 3258 3259 offset = skb_checksum_start_offset(skb); 3260 ret = -EINVAL; 3261 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3262 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3263 goto out; 3264 } 3265 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3266 3267 offset += skb->csum_offset; 3268 if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) { 3269 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3270 goto out; 3271 } 3272 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3273 if (ret) 3274 goto out; 3275 3276 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3277 out_set_summed: 3278 skb->ip_summed = CHECKSUM_NONE; 3279 out: 3280 return ret; 3281 } 3282 EXPORT_SYMBOL(skb_checksum_help); 3283 3284 int skb_crc32c_csum_help(struct sk_buff *skb) 3285 { 3286 __le32 crc32c_csum; 3287 int ret = 0, offset, start; 3288 3289 if (skb->ip_summed != CHECKSUM_PARTIAL) 3290 goto out; 3291 3292 if (unlikely(skb_is_gso(skb))) 3293 goto out; 3294 3295 /* Before computing a checksum, we should make sure no frag could 3296 * be modified by an external entity : checksum could be wrong. 3297 */ 3298 if (unlikely(skb_has_shared_frag(skb))) { 3299 ret = __skb_linearize(skb); 3300 if (ret) 3301 goto out; 3302 } 3303 start = skb_checksum_start_offset(skb); 3304 offset = start + offsetof(struct sctphdr, checksum); 3305 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3306 ret = -EINVAL; 3307 goto out; 3308 } 3309 3310 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3311 if (ret) 3312 goto out; 3313 3314 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3315 skb->len - start, ~(__u32)0, 3316 crc32c_csum_stub)); 3317 *(__le32 *)(skb->data + offset) = crc32c_csum; 3318 skb_reset_csum_not_inet(skb); 3319 out: 3320 return ret; 3321 } 3322 3323 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3324 { 3325 __be16 type = skb->protocol; 3326 3327 /* Tunnel gso handlers can set protocol to ethernet. */ 3328 if (type == htons(ETH_P_TEB)) { 3329 struct ethhdr *eth; 3330 3331 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3332 return 0; 3333 3334 eth = (struct ethhdr *)skb->data; 3335 type = eth->h_proto; 3336 } 3337 3338 return vlan_get_protocol_and_depth(skb, type, depth); 3339 } 3340 3341 /* openvswitch calls this on rx path, so we need a different check. 3342 */ 3343 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3344 { 3345 if (tx_path) 3346 return skb->ip_summed != CHECKSUM_PARTIAL && 3347 skb->ip_summed != CHECKSUM_UNNECESSARY; 3348 3349 return skb->ip_summed == CHECKSUM_NONE; 3350 } 3351 3352 /** 3353 * __skb_gso_segment - Perform segmentation on skb. 3354 * @skb: buffer to segment 3355 * @features: features for the output path (see dev->features) 3356 * @tx_path: whether it is called in TX path 3357 * 3358 * This function segments the given skb and returns a list of segments. 3359 * 3360 * It may return NULL if the skb requires no segmentation. This is 3361 * only possible when GSO is used for verifying header integrity. 3362 * 3363 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb. 3364 */ 3365 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3366 netdev_features_t features, bool tx_path) 3367 { 3368 struct sk_buff *segs; 3369 3370 if (unlikely(skb_needs_check(skb, tx_path))) { 3371 int err; 3372 3373 /* We're going to init ->check field in TCP or UDP header */ 3374 err = skb_cow_head(skb, 0); 3375 if (err < 0) 3376 return ERR_PTR(err); 3377 } 3378 3379 /* Only report GSO partial support if it will enable us to 3380 * support segmentation on this frame without needing additional 3381 * work. 3382 */ 3383 if (features & NETIF_F_GSO_PARTIAL) { 3384 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3385 struct net_device *dev = skb->dev; 3386 3387 partial_features |= dev->features & dev->gso_partial_features; 3388 if (!skb_gso_ok(skb, features | partial_features)) 3389 features &= ~NETIF_F_GSO_PARTIAL; 3390 } 3391 3392 BUILD_BUG_ON(SKB_GSO_CB_OFFSET + 3393 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3394 3395 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3396 SKB_GSO_CB(skb)->encap_level = 0; 3397 3398 skb_reset_mac_header(skb); 3399 skb_reset_mac_len(skb); 3400 3401 segs = skb_mac_gso_segment(skb, features); 3402 3403 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3404 skb_warn_bad_offload(skb); 3405 3406 return segs; 3407 } 3408 EXPORT_SYMBOL(__skb_gso_segment); 3409 3410 /* Take action when hardware reception checksum errors are detected. */ 3411 #ifdef CONFIG_BUG 3412 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3413 { 3414 netdev_err(dev, "hw csum failure\n"); 3415 skb_dump(KERN_ERR, skb, true); 3416 dump_stack(); 3417 } 3418 3419 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3420 { 3421 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3422 } 3423 EXPORT_SYMBOL(netdev_rx_csum_fault); 3424 #endif 3425 3426 /* XXX: check that highmem exists at all on the given machine. */ 3427 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3428 { 3429 #ifdef CONFIG_HIGHMEM 3430 int i; 3431 3432 if (!(dev->features & NETIF_F_HIGHDMA)) { 3433 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3434 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3435 3436 if (PageHighMem(skb_frag_page(frag))) 3437 return 1; 3438 } 3439 } 3440 #endif 3441 return 0; 3442 } 3443 3444 /* If MPLS offload request, verify we are testing hardware MPLS features 3445 * instead of standard features for the netdev. 3446 */ 3447 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3448 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3449 netdev_features_t features, 3450 __be16 type) 3451 { 3452 if (eth_p_mpls(type)) 3453 features &= skb->dev->mpls_features; 3454 3455 return features; 3456 } 3457 #else 3458 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3459 netdev_features_t features, 3460 __be16 type) 3461 { 3462 return features; 3463 } 3464 #endif 3465 3466 static netdev_features_t harmonize_features(struct sk_buff *skb, 3467 netdev_features_t features) 3468 { 3469 __be16 type; 3470 3471 type = skb_network_protocol(skb, NULL); 3472 features = net_mpls_features(skb, features, type); 3473 3474 if (skb->ip_summed != CHECKSUM_NONE && 3475 !can_checksum_protocol(features, type)) { 3476 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3477 } 3478 if (illegal_highdma(skb->dev, skb)) 3479 features &= ~NETIF_F_SG; 3480 3481 return features; 3482 } 3483 3484 netdev_features_t passthru_features_check(struct sk_buff *skb, 3485 struct net_device *dev, 3486 netdev_features_t features) 3487 { 3488 return features; 3489 } 3490 EXPORT_SYMBOL(passthru_features_check); 3491 3492 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3493 struct net_device *dev, 3494 netdev_features_t features) 3495 { 3496 return vlan_features_check(skb, features); 3497 } 3498 3499 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3500 struct net_device *dev, 3501 netdev_features_t features) 3502 { 3503 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3504 3505 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3506 return features & ~NETIF_F_GSO_MASK; 3507 3508 if (!skb_shinfo(skb)->gso_type) { 3509 skb_warn_bad_offload(skb); 3510 return features & ~NETIF_F_GSO_MASK; 3511 } 3512 3513 /* Support for GSO partial features requires software 3514 * intervention before we can actually process the packets 3515 * so we need to strip support for any partial features now 3516 * and we can pull them back in after we have partially 3517 * segmented the frame. 3518 */ 3519 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3520 features &= ~dev->gso_partial_features; 3521 3522 /* Make sure to clear the IPv4 ID mangling feature if the 3523 * IPv4 header has the potential to be fragmented. 3524 */ 3525 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3526 struct iphdr *iph = skb->encapsulation ? 3527 inner_ip_hdr(skb) : ip_hdr(skb); 3528 3529 if (!(iph->frag_off & htons(IP_DF))) 3530 features &= ~NETIF_F_TSO_MANGLEID; 3531 } 3532 3533 return features; 3534 } 3535 3536 netdev_features_t netif_skb_features(struct sk_buff *skb) 3537 { 3538 struct net_device *dev = skb->dev; 3539 netdev_features_t features = dev->features; 3540 3541 if (skb_is_gso(skb)) 3542 features = gso_features_check(skb, dev, features); 3543 3544 /* If encapsulation offload request, verify we are testing 3545 * hardware encapsulation features instead of standard 3546 * features for the netdev 3547 */ 3548 if (skb->encapsulation) 3549 features &= dev->hw_enc_features; 3550 3551 if (skb_vlan_tagged(skb)) 3552 features = netdev_intersect_features(features, 3553 dev->vlan_features | 3554 NETIF_F_HW_VLAN_CTAG_TX | 3555 NETIF_F_HW_VLAN_STAG_TX); 3556 3557 if (dev->netdev_ops->ndo_features_check) 3558 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3559 features); 3560 else 3561 features &= dflt_features_check(skb, dev, features); 3562 3563 return harmonize_features(skb, features); 3564 } 3565 EXPORT_SYMBOL(netif_skb_features); 3566 3567 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3568 struct netdev_queue *txq, bool more) 3569 { 3570 unsigned int len; 3571 int rc; 3572 3573 if (dev_nit_active(dev)) 3574 dev_queue_xmit_nit(skb, dev); 3575 3576 len = skb->len; 3577 trace_net_dev_start_xmit(skb, dev); 3578 rc = netdev_start_xmit(skb, dev, txq, more); 3579 trace_net_dev_xmit(skb, rc, dev, len); 3580 3581 return rc; 3582 } 3583 3584 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3585 struct netdev_queue *txq, int *ret) 3586 { 3587 struct sk_buff *skb = first; 3588 int rc = NETDEV_TX_OK; 3589 3590 while (skb) { 3591 struct sk_buff *next = skb->next; 3592 3593 skb_mark_not_on_list(skb); 3594 rc = xmit_one(skb, dev, txq, next != NULL); 3595 if (unlikely(!dev_xmit_complete(rc))) { 3596 skb->next = next; 3597 goto out; 3598 } 3599 3600 skb = next; 3601 if (netif_tx_queue_stopped(txq) && skb) { 3602 rc = NETDEV_TX_BUSY; 3603 break; 3604 } 3605 } 3606 3607 out: 3608 *ret = rc; 3609 return skb; 3610 } 3611 3612 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3613 netdev_features_t features) 3614 { 3615 if (skb_vlan_tag_present(skb) && 3616 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3617 skb = __vlan_hwaccel_push_inside(skb); 3618 return skb; 3619 } 3620 3621 int skb_csum_hwoffload_help(struct sk_buff *skb, 3622 const netdev_features_t features) 3623 { 3624 if (unlikely(skb_csum_is_sctp(skb))) 3625 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3626 skb_crc32c_csum_help(skb); 3627 3628 if (features & NETIF_F_HW_CSUM) 3629 return 0; 3630 3631 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3632 switch (skb->csum_offset) { 3633 case offsetof(struct tcphdr, check): 3634 case offsetof(struct udphdr, check): 3635 return 0; 3636 } 3637 } 3638 3639 return skb_checksum_help(skb); 3640 } 3641 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3642 3643 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3644 { 3645 netdev_features_t features; 3646 3647 features = netif_skb_features(skb); 3648 skb = validate_xmit_vlan(skb, features); 3649 if (unlikely(!skb)) 3650 goto out_null; 3651 3652 skb = sk_validate_xmit_skb(skb, dev); 3653 if (unlikely(!skb)) 3654 goto out_null; 3655 3656 if (netif_needs_gso(skb, features)) { 3657 struct sk_buff *segs; 3658 3659 segs = skb_gso_segment(skb, features); 3660 if (IS_ERR(segs)) { 3661 goto out_kfree_skb; 3662 } else if (segs) { 3663 consume_skb(skb); 3664 skb = segs; 3665 } 3666 } else { 3667 if (skb_needs_linearize(skb, features) && 3668 __skb_linearize(skb)) 3669 goto out_kfree_skb; 3670 3671 /* If packet is not checksummed and device does not 3672 * support checksumming for this protocol, complete 3673 * checksumming here. 3674 */ 3675 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3676 if (skb->encapsulation) 3677 skb_set_inner_transport_header(skb, 3678 skb_checksum_start_offset(skb)); 3679 else 3680 skb_set_transport_header(skb, 3681 skb_checksum_start_offset(skb)); 3682 if (skb_csum_hwoffload_help(skb, features)) 3683 goto out_kfree_skb; 3684 } 3685 } 3686 3687 skb = validate_xmit_xfrm(skb, features, again); 3688 3689 return skb; 3690 3691 out_kfree_skb: 3692 kfree_skb(skb); 3693 out_null: 3694 dev_core_stats_tx_dropped_inc(dev); 3695 return NULL; 3696 } 3697 3698 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3699 { 3700 struct sk_buff *next, *head = NULL, *tail; 3701 3702 for (; skb != NULL; skb = next) { 3703 next = skb->next; 3704 skb_mark_not_on_list(skb); 3705 3706 /* in case skb wont be segmented, point to itself */ 3707 skb->prev = skb; 3708 3709 skb = validate_xmit_skb(skb, dev, again); 3710 if (!skb) 3711 continue; 3712 3713 if (!head) 3714 head = skb; 3715 else 3716 tail->next = skb; 3717 /* If skb was segmented, skb->prev points to 3718 * the last segment. If not, it still contains skb. 3719 */ 3720 tail = skb->prev; 3721 } 3722 return head; 3723 } 3724 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3725 3726 static void qdisc_pkt_len_init(struct sk_buff *skb) 3727 { 3728 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3729 3730 qdisc_skb_cb(skb)->pkt_len = skb->len; 3731 3732 /* To get more precise estimation of bytes sent on wire, 3733 * we add to pkt_len the headers size of all segments 3734 */ 3735 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3736 u16 gso_segs = shinfo->gso_segs; 3737 unsigned int hdr_len; 3738 3739 /* mac layer + network layer */ 3740 hdr_len = skb_transport_offset(skb); 3741 3742 /* + transport layer */ 3743 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3744 const struct tcphdr *th; 3745 struct tcphdr _tcphdr; 3746 3747 th = skb_header_pointer(skb, hdr_len, 3748 sizeof(_tcphdr), &_tcphdr); 3749 if (likely(th)) 3750 hdr_len += __tcp_hdrlen(th); 3751 } else { 3752 struct udphdr _udphdr; 3753 3754 if (skb_header_pointer(skb, hdr_len, 3755 sizeof(_udphdr), &_udphdr)) 3756 hdr_len += sizeof(struct udphdr); 3757 } 3758 3759 if (shinfo->gso_type & SKB_GSO_DODGY) 3760 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3761 shinfo->gso_size); 3762 3763 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3764 } 3765 } 3766 3767 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 3768 struct sk_buff **to_free, 3769 struct netdev_queue *txq) 3770 { 3771 int rc; 3772 3773 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 3774 if (rc == NET_XMIT_SUCCESS) 3775 trace_qdisc_enqueue(q, txq, skb); 3776 return rc; 3777 } 3778 3779 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3780 struct net_device *dev, 3781 struct netdev_queue *txq) 3782 { 3783 spinlock_t *root_lock = qdisc_lock(q); 3784 struct sk_buff *to_free = NULL; 3785 bool contended; 3786 int rc; 3787 3788 qdisc_calculate_pkt_len(skb, q); 3789 3790 if (q->flags & TCQ_F_NOLOCK) { 3791 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 3792 qdisc_run_begin(q)) { 3793 /* Retest nolock_qdisc_is_empty() within the protection 3794 * of q->seqlock to protect from racing with requeuing. 3795 */ 3796 if (unlikely(!nolock_qdisc_is_empty(q))) { 3797 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3798 __qdisc_run(q); 3799 qdisc_run_end(q); 3800 3801 goto no_lock_out; 3802 } 3803 3804 qdisc_bstats_cpu_update(q, skb); 3805 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 3806 !nolock_qdisc_is_empty(q)) 3807 __qdisc_run(q); 3808 3809 qdisc_run_end(q); 3810 return NET_XMIT_SUCCESS; 3811 } 3812 3813 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3814 qdisc_run(q); 3815 3816 no_lock_out: 3817 if (unlikely(to_free)) 3818 kfree_skb_list_reason(to_free, 3819 SKB_DROP_REASON_QDISC_DROP); 3820 return rc; 3821 } 3822 3823 /* 3824 * Heuristic to force contended enqueues to serialize on a 3825 * separate lock before trying to get qdisc main lock. 3826 * This permits qdisc->running owner to get the lock more 3827 * often and dequeue packets faster. 3828 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 3829 * and then other tasks will only enqueue packets. The packets will be 3830 * sent after the qdisc owner is scheduled again. To prevent this 3831 * scenario the task always serialize on the lock. 3832 */ 3833 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 3834 if (unlikely(contended)) 3835 spin_lock(&q->busylock); 3836 3837 spin_lock(root_lock); 3838 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3839 __qdisc_drop(skb, &to_free); 3840 rc = NET_XMIT_DROP; 3841 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3842 qdisc_run_begin(q)) { 3843 /* 3844 * This is a work-conserving queue; there are no old skbs 3845 * waiting to be sent out; and the qdisc is not running - 3846 * xmit the skb directly. 3847 */ 3848 3849 qdisc_bstats_update(q, skb); 3850 3851 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3852 if (unlikely(contended)) { 3853 spin_unlock(&q->busylock); 3854 contended = false; 3855 } 3856 __qdisc_run(q); 3857 } 3858 3859 qdisc_run_end(q); 3860 rc = NET_XMIT_SUCCESS; 3861 } else { 3862 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3863 if (qdisc_run_begin(q)) { 3864 if (unlikely(contended)) { 3865 spin_unlock(&q->busylock); 3866 contended = false; 3867 } 3868 __qdisc_run(q); 3869 qdisc_run_end(q); 3870 } 3871 } 3872 spin_unlock(root_lock); 3873 if (unlikely(to_free)) 3874 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP); 3875 if (unlikely(contended)) 3876 spin_unlock(&q->busylock); 3877 return rc; 3878 } 3879 3880 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3881 static void skb_update_prio(struct sk_buff *skb) 3882 { 3883 const struct netprio_map *map; 3884 const struct sock *sk; 3885 unsigned int prioidx; 3886 3887 if (skb->priority) 3888 return; 3889 map = rcu_dereference_bh(skb->dev->priomap); 3890 if (!map) 3891 return; 3892 sk = skb_to_full_sk(skb); 3893 if (!sk) 3894 return; 3895 3896 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3897 3898 if (prioidx < map->priomap_len) 3899 skb->priority = map->priomap[prioidx]; 3900 } 3901 #else 3902 #define skb_update_prio(skb) 3903 #endif 3904 3905 /** 3906 * dev_loopback_xmit - loop back @skb 3907 * @net: network namespace this loopback is happening in 3908 * @sk: sk needed to be a netfilter okfn 3909 * @skb: buffer to transmit 3910 */ 3911 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3912 { 3913 skb_reset_mac_header(skb); 3914 __skb_pull(skb, skb_network_offset(skb)); 3915 skb->pkt_type = PACKET_LOOPBACK; 3916 if (skb->ip_summed == CHECKSUM_NONE) 3917 skb->ip_summed = CHECKSUM_UNNECESSARY; 3918 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 3919 skb_dst_force(skb); 3920 netif_rx(skb); 3921 return 0; 3922 } 3923 EXPORT_SYMBOL(dev_loopback_xmit); 3924 3925 #ifdef CONFIG_NET_EGRESS 3926 static struct sk_buff * 3927 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3928 { 3929 #ifdef CONFIG_NET_CLS_ACT 3930 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3931 struct tcf_result cl_res; 3932 3933 if (!miniq) 3934 return skb; 3935 3936 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3937 tc_skb_cb(skb)->mru = 0; 3938 tc_skb_cb(skb)->post_ct = false; 3939 mini_qdisc_bstats_cpu_update(miniq, skb); 3940 3941 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) { 3942 case TC_ACT_OK: 3943 case TC_ACT_RECLASSIFY: 3944 skb->tc_index = TC_H_MIN(cl_res.classid); 3945 break; 3946 case TC_ACT_SHOT: 3947 mini_qdisc_qstats_cpu_drop(miniq); 3948 *ret = NET_XMIT_DROP; 3949 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS); 3950 return NULL; 3951 case TC_ACT_STOLEN: 3952 case TC_ACT_QUEUED: 3953 case TC_ACT_TRAP: 3954 *ret = NET_XMIT_SUCCESS; 3955 consume_skb(skb); 3956 return NULL; 3957 case TC_ACT_REDIRECT: 3958 /* No need to push/pop skb's mac_header here on egress! */ 3959 skb_do_redirect(skb); 3960 *ret = NET_XMIT_SUCCESS; 3961 return NULL; 3962 default: 3963 break; 3964 } 3965 #endif /* CONFIG_NET_CLS_ACT */ 3966 3967 return skb; 3968 } 3969 3970 static struct netdev_queue * 3971 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 3972 { 3973 int qm = skb_get_queue_mapping(skb); 3974 3975 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 3976 } 3977 3978 static bool netdev_xmit_txqueue_skipped(void) 3979 { 3980 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 3981 } 3982 3983 void netdev_xmit_skip_txqueue(bool skip) 3984 { 3985 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 3986 } 3987 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 3988 #endif /* CONFIG_NET_EGRESS */ 3989 3990 #ifdef CONFIG_XPS 3991 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3992 struct xps_dev_maps *dev_maps, unsigned int tci) 3993 { 3994 int tc = netdev_get_prio_tc_map(dev, skb->priority); 3995 struct xps_map *map; 3996 int queue_index = -1; 3997 3998 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 3999 return queue_index; 4000 4001 tci *= dev_maps->num_tc; 4002 tci += tc; 4003 4004 map = rcu_dereference(dev_maps->attr_map[tci]); 4005 if (map) { 4006 if (map->len == 1) 4007 queue_index = map->queues[0]; 4008 else 4009 queue_index = map->queues[reciprocal_scale( 4010 skb_get_hash(skb), map->len)]; 4011 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4012 queue_index = -1; 4013 } 4014 return queue_index; 4015 } 4016 #endif 4017 4018 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4019 struct sk_buff *skb) 4020 { 4021 #ifdef CONFIG_XPS 4022 struct xps_dev_maps *dev_maps; 4023 struct sock *sk = skb->sk; 4024 int queue_index = -1; 4025 4026 if (!static_key_false(&xps_needed)) 4027 return -1; 4028 4029 rcu_read_lock(); 4030 if (!static_key_false(&xps_rxqs_needed)) 4031 goto get_cpus_map; 4032 4033 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4034 if (dev_maps) { 4035 int tci = sk_rx_queue_get(sk); 4036 4037 if (tci >= 0) 4038 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4039 tci); 4040 } 4041 4042 get_cpus_map: 4043 if (queue_index < 0) { 4044 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4045 if (dev_maps) { 4046 unsigned int tci = skb->sender_cpu - 1; 4047 4048 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4049 tci); 4050 } 4051 } 4052 rcu_read_unlock(); 4053 4054 return queue_index; 4055 #else 4056 return -1; 4057 #endif 4058 } 4059 4060 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4061 struct net_device *sb_dev) 4062 { 4063 return 0; 4064 } 4065 EXPORT_SYMBOL(dev_pick_tx_zero); 4066 4067 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 4068 struct net_device *sb_dev) 4069 { 4070 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 4071 } 4072 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 4073 4074 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4075 struct net_device *sb_dev) 4076 { 4077 struct sock *sk = skb->sk; 4078 int queue_index = sk_tx_queue_get(sk); 4079 4080 sb_dev = sb_dev ? : dev; 4081 4082 if (queue_index < 0 || skb->ooo_okay || 4083 queue_index >= dev->real_num_tx_queues) { 4084 int new_index = get_xps_queue(dev, sb_dev, skb); 4085 4086 if (new_index < 0) 4087 new_index = skb_tx_hash(dev, sb_dev, skb); 4088 4089 if (queue_index != new_index && sk && 4090 sk_fullsock(sk) && 4091 rcu_access_pointer(sk->sk_dst_cache)) 4092 sk_tx_queue_set(sk, new_index); 4093 4094 queue_index = new_index; 4095 } 4096 4097 return queue_index; 4098 } 4099 EXPORT_SYMBOL(netdev_pick_tx); 4100 4101 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4102 struct sk_buff *skb, 4103 struct net_device *sb_dev) 4104 { 4105 int queue_index = 0; 4106 4107 #ifdef CONFIG_XPS 4108 u32 sender_cpu = skb->sender_cpu - 1; 4109 4110 if (sender_cpu >= (u32)NR_CPUS) 4111 skb->sender_cpu = raw_smp_processor_id() + 1; 4112 #endif 4113 4114 if (dev->real_num_tx_queues != 1) { 4115 const struct net_device_ops *ops = dev->netdev_ops; 4116 4117 if (ops->ndo_select_queue) 4118 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4119 else 4120 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4121 4122 queue_index = netdev_cap_txqueue(dev, queue_index); 4123 } 4124 4125 skb_set_queue_mapping(skb, queue_index); 4126 return netdev_get_tx_queue(dev, queue_index); 4127 } 4128 4129 /** 4130 * __dev_queue_xmit() - transmit a buffer 4131 * @skb: buffer to transmit 4132 * @sb_dev: suboordinate device used for L2 forwarding offload 4133 * 4134 * Queue a buffer for transmission to a network device. The caller must 4135 * have set the device and priority and built the buffer before calling 4136 * this function. The function can be called from an interrupt. 4137 * 4138 * When calling this method, interrupts MUST be enabled. This is because 4139 * the BH enable code must have IRQs enabled so that it will not deadlock. 4140 * 4141 * Regardless of the return value, the skb is consumed, so it is currently 4142 * difficult to retry a send to this method. (You can bump the ref count 4143 * before sending to hold a reference for retry if you are careful.) 4144 * 4145 * Return: 4146 * * 0 - buffer successfully transmitted 4147 * * positive qdisc return code - NET_XMIT_DROP etc. 4148 * * negative errno - other errors 4149 */ 4150 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4151 { 4152 struct net_device *dev = skb->dev; 4153 struct netdev_queue *txq = NULL; 4154 struct Qdisc *q; 4155 int rc = -ENOMEM; 4156 bool again = false; 4157 4158 skb_reset_mac_header(skb); 4159 skb_assert_len(skb); 4160 4161 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4162 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4163 4164 /* Disable soft irqs for various locks below. Also 4165 * stops preemption for RCU. 4166 */ 4167 rcu_read_lock_bh(); 4168 4169 skb_update_prio(skb); 4170 4171 qdisc_pkt_len_init(skb); 4172 #ifdef CONFIG_NET_CLS_ACT 4173 skb->tc_at_ingress = 0; 4174 #endif 4175 #ifdef CONFIG_NET_EGRESS 4176 if (static_branch_unlikely(&egress_needed_key)) { 4177 if (nf_hook_egress_active()) { 4178 skb = nf_hook_egress(skb, &rc, dev); 4179 if (!skb) 4180 goto out; 4181 } 4182 4183 netdev_xmit_skip_txqueue(false); 4184 4185 nf_skip_egress(skb, true); 4186 skb = sch_handle_egress(skb, &rc, dev); 4187 if (!skb) 4188 goto out; 4189 nf_skip_egress(skb, false); 4190 4191 if (netdev_xmit_txqueue_skipped()) 4192 txq = netdev_tx_queue_mapping(dev, skb); 4193 } 4194 #endif 4195 /* If device/qdisc don't need skb->dst, release it right now while 4196 * its hot in this cpu cache. 4197 */ 4198 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4199 skb_dst_drop(skb); 4200 else 4201 skb_dst_force(skb); 4202 4203 if (!txq) 4204 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4205 4206 q = rcu_dereference_bh(txq->qdisc); 4207 4208 trace_net_dev_queue(skb); 4209 if (q->enqueue) { 4210 rc = __dev_xmit_skb(skb, q, dev, txq); 4211 goto out; 4212 } 4213 4214 /* The device has no queue. Common case for software devices: 4215 * loopback, all the sorts of tunnels... 4216 4217 * Really, it is unlikely that netif_tx_lock protection is necessary 4218 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4219 * counters.) 4220 * However, it is possible, that they rely on protection 4221 * made by us here. 4222 4223 * Check this and shot the lock. It is not prone from deadlocks. 4224 *Either shot noqueue qdisc, it is even simpler 8) 4225 */ 4226 if (dev->flags & IFF_UP) { 4227 int cpu = smp_processor_id(); /* ok because BHs are off */ 4228 4229 /* Other cpus might concurrently change txq->xmit_lock_owner 4230 * to -1 or to their cpu id, but not to our id. 4231 */ 4232 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4233 if (dev_xmit_recursion()) 4234 goto recursion_alert; 4235 4236 skb = validate_xmit_skb(skb, dev, &again); 4237 if (!skb) 4238 goto out; 4239 4240 HARD_TX_LOCK(dev, txq, cpu); 4241 4242 if (!netif_xmit_stopped(txq)) { 4243 dev_xmit_recursion_inc(); 4244 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4245 dev_xmit_recursion_dec(); 4246 if (dev_xmit_complete(rc)) { 4247 HARD_TX_UNLOCK(dev, txq); 4248 goto out; 4249 } 4250 } 4251 HARD_TX_UNLOCK(dev, txq); 4252 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4253 dev->name); 4254 } else { 4255 /* Recursion is detected! It is possible, 4256 * unfortunately 4257 */ 4258 recursion_alert: 4259 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4260 dev->name); 4261 } 4262 } 4263 4264 rc = -ENETDOWN; 4265 rcu_read_unlock_bh(); 4266 4267 dev_core_stats_tx_dropped_inc(dev); 4268 kfree_skb_list(skb); 4269 return rc; 4270 out: 4271 rcu_read_unlock_bh(); 4272 return rc; 4273 } 4274 EXPORT_SYMBOL(__dev_queue_xmit); 4275 4276 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4277 { 4278 struct net_device *dev = skb->dev; 4279 struct sk_buff *orig_skb = skb; 4280 struct netdev_queue *txq; 4281 int ret = NETDEV_TX_BUSY; 4282 bool again = false; 4283 4284 if (unlikely(!netif_running(dev) || 4285 !netif_carrier_ok(dev))) 4286 goto drop; 4287 4288 skb = validate_xmit_skb_list(skb, dev, &again); 4289 if (skb != orig_skb) 4290 goto drop; 4291 4292 skb_set_queue_mapping(skb, queue_id); 4293 txq = skb_get_tx_queue(dev, skb); 4294 4295 local_bh_disable(); 4296 4297 dev_xmit_recursion_inc(); 4298 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4299 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4300 ret = netdev_start_xmit(skb, dev, txq, false); 4301 HARD_TX_UNLOCK(dev, txq); 4302 dev_xmit_recursion_dec(); 4303 4304 local_bh_enable(); 4305 return ret; 4306 drop: 4307 dev_core_stats_tx_dropped_inc(dev); 4308 kfree_skb_list(skb); 4309 return NET_XMIT_DROP; 4310 } 4311 EXPORT_SYMBOL(__dev_direct_xmit); 4312 4313 /************************************************************************* 4314 * Receiver routines 4315 *************************************************************************/ 4316 4317 int netdev_max_backlog __read_mostly = 1000; 4318 EXPORT_SYMBOL(netdev_max_backlog); 4319 4320 int netdev_tstamp_prequeue __read_mostly = 1; 4321 unsigned int sysctl_skb_defer_max __read_mostly = 64; 4322 int netdev_budget __read_mostly = 300; 4323 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4324 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4325 int weight_p __read_mostly = 64; /* old backlog weight */ 4326 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4327 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4328 int dev_rx_weight __read_mostly = 64; 4329 int dev_tx_weight __read_mostly = 64; 4330 4331 /* Called with irq disabled */ 4332 static inline void ____napi_schedule(struct softnet_data *sd, 4333 struct napi_struct *napi) 4334 { 4335 struct task_struct *thread; 4336 4337 lockdep_assert_irqs_disabled(); 4338 4339 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4340 /* Paired with smp_mb__before_atomic() in 4341 * napi_enable()/dev_set_threaded(). 4342 * Use READ_ONCE() to guarantee a complete 4343 * read on napi->thread. Only call 4344 * wake_up_process() when it's not NULL. 4345 */ 4346 thread = READ_ONCE(napi->thread); 4347 if (thread) { 4348 /* Avoid doing set_bit() if the thread is in 4349 * INTERRUPTIBLE state, cause napi_thread_wait() 4350 * makes sure to proceed with napi polling 4351 * if the thread is explicitly woken from here. 4352 */ 4353 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE) 4354 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4355 wake_up_process(thread); 4356 return; 4357 } 4358 } 4359 4360 list_add_tail(&napi->poll_list, &sd->poll_list); 4361 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4362 /* If not called from net_rx_action() 4363 * we have to raise NET_RX_SOFTIRQ. 4364 */ 4365 if (!sd->in_net_rx_action) 4366 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4367 } 4368 4369 #ifdef CONFIG_RPS 4370 4371 /* One global table that all flow-based protocols share. */ 4372 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4373 EXPORT_SYMBOL(rps_sock_flow_table); 4374 u32 rps_cpu_mask __read_mostly; 4375 EXPORT_SYMBOL(rps_cpu_mask); 4376 4377 struct static_key_false rps_needed __read_mostly; 4378 EXPORT_SYMBOL(rps_needed); 4379 struct static_key_false rfs_needed __read_mostly; 4380 EXPORT_SYMBOL(rfs_needed); 4381 4382 static struct rps_dev_flow * 4383 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4384 struct rps_dev_flow *rflow, u16 next_cpu) 4385 { 4386 if (next_cpu < nr_cpu_ids) { 4387 #ifdef CONFIG_RFS_ACCEL 4388 struct netdev_rx_queue *rxqueue; 4389 struct rps_dev_flow_table *flow_table; 4390 struct rps_dev_flow *old_rflow; 4391 u32 flow_id; 4392 u16 rxq_index; 4393 int rc; 4394 4395 /* Should we steer this flow to a different hardware queue? */ 4396 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4397 !(dev->features & NETIF_F_NTUPLE)) 4398 goto out; 4399 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4400 if (rxq_index == skb_get_rx_queue(skb)) 4401 goto out; 4402 4403 rxqueue = dev->_rx + rxq_index; 4404 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4405 if (!flow_table) 4406 goto out; 4407 flow_id = skb_get_hash(skb) & flow_table->mask; 4408 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4409 rxq_index, flow_id); 4410 if (rc < 0) 4411 goto out; 4412 old_rflow = rflow; 4413 rflow = &flow_table->flows[flow_id]; 4414 rflow->filter = rc; 4415 if (old_rflow->filter == rflow->filter) 4416 old_rflow->filter = RPS_NO_FILTER; 4417 out: 4418 #endif 4419 rflow->last_qtail = 4420 per_cpu(softnet_data, next_cpu).input_queue_head; 4421 } 4422 4423 rflow->cpu = next_cpu; 4424 return rflow; 4425 } 4426 4427 /* 4428 * get_rps_cpu is called from netif_receive_skb and returns the target 4429 * CPU from the RPS map of the receiving queue for a given skb. 4430 * rcu_read_lock must be held on entry. 4431 */ 4432 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4433 struct rps_dev_flow **rflowp) 4434 { 4435 const struct rps_sock_flow_table *sock_flow_table; 4436 struct netdev_rx_queue *rxqueue = dev->_rx; 4437 struct rps_dev_flow_table *flow_table; 4438 struct rps_map *map; 4439 int cpu = -1; 4440 u32 tcpu; 4441 u32 hash; 4442 4443 if (skb_rx_queue_recorded(skb)) { 4444 u16 index = skb_get_rx_queue(skb); 4445 4446 if (unlikely(index >= dev->real_num_rx_queues)) { 4447 WARN_ONCE(dev->real_num_rx_queues > 1, 4448 "%s received packet on queue %u, but number " 4449 "of RX queues is %u\n", 4450 dev->name, index, dev->real_num_rx_queues); 4451 goto done; 4452 } 4453 rxqueue += index; 4454 } 4455 4456 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4457 4458 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4459 map = rcu_dereference(rxqueue->rps_map); 4460 if (!flow_table && !map) 4461 goto done; 4462 4463 skb_reset_network_header(skb); 4464 hash = skb_get_hash(skb); 4465 if (!hash) 4466 goto done; 4467 4468 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4469 if (flow_table && sock_flow_table) { 4470 struct rps_dev_flow *rflow; 4471 u32 next_cpu; 4472 u32 ident; 4473 4474 /* First check into global flow table if there is a match. 4475 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 4476 */ 4477 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 4478 if ((ident ^ hash) & ~rps_cpu_mask) 4479 goto try_rps; 4480 4481 next_cpu = ident & rps_cpu_mask; 4482 4483 /* OK, now we know there is a match, 4484 * we can look at the local (per receive queue) flow table 4485 */ 4486 rflow = &flow_table->flows[hash & flow_table->mask]; 4487 tcpu = rflow->cpu; 4488 4489 /* 4490 * If the desired CPU (where last recvmsg was done) is 4491 * different from current CPU (one in the rx-queue flow 4492 * table entry), switch if one of the following holds: 4493 * - Current CPU is unset (>= nr_cpu_ids). 4494 * - Current CPU is offline. 4495 * - The current CPU's queue tail has advanced beyond the 4496 * last packet that was enqueued using this table entry. 4497 * This guarantees that all previous packets for the flow 4498 * have been dequeued, thus preserving in order delivery. 4499 */ 4500 if (unlikely(tcpu != next_cpu) && 4501 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4502 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4503 rflow->last_qtail)) >= 0)) { 4504 tcpu = next_cpu; 4505 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4506 } 4507 4508 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4509 *rflowp = rflow; 4510 cpu = tcpu; 4511 goto done; 4512 } 4513 } 4514 4515 try_rps: 4516 4517 if (map) { 4518 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4519 if (cpu_online(tcpu)) { 4520 cpu = tcpu; 4521 goto done; 4522 } 4523 } 4524 4525 done: 4526 return cpu; 4527 } 4528 4529 #ifdef CONFIG_RFS_ACCEL 4530 4531 /** 4532 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4533 * @dev: Device on which the filter was set 4534 * @rxq_index: RX queue index 4535 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4536 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4537 * 4538 * Drivers that implement ndo_rx_flow_steer() should periodically call 4539 * this function for each installed filter and remove the filters for 4540 * which it returns %true. 4541 */ 4542 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4543 u32 flow_id, u16 filter_id) 4544 { 4545 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4546 struct rps_dev_flow_table *flow_table; 4547 struct rps_dev_flow *rflow; 4548 bool expire = true; 4549 unsigned int cpu; 4550 4551 rcu_read_lock(); 4552 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4553 if (flow_table && flow_id <= flow_table->mask) { 4554 rflow = &flow_table->flows[flow_id]; 4555 cpu = READ_ONCE(rflow->cpu); 4556 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4557 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4558 rflow->last_qtail) < 4559 (int)(10 * flow_table->mask))) 4560 expire = false; 4561 } 4562 rcu_read_unlock(); 4563 return expire; 4564 } 4565 EXPORT_SYMBOL(rps_may_expire_flow); 4566 4567 #endif /* CONFIG_RFS_ACCEL */ 4568 4569 /* Called from hardirq (IPI) context */ 4570 static void rps_trigger_softirq(void *data) 4571 { 4572 struct softnet_data *sd = data; 4573 4574 ____napi_schedule(sd, &sd->backlog); 4575 sd->received_rps++; 4576 } 4577 4578 #endif /* CONFIG_RPS */ 4579 4580 /* Called from hardirq (IPI) context */ 4581 static void trigger_rx_softirq(void *data) 4582 { 4583 struct softnet_data *sd = data; 4584 4585 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4586 smp_store_release(&sd->defer_ipi_scheduled, 0); 4587 } 4588 4589 /* 4590 * After we queued a packet into sd->input_pkt_queue, 4591 * we need to make sure this queue is serviced soon. 4592 * 4593 * - If this is another cpu queue, link it to our rps_ipi_list, 4594 * and make sure we will process rps_ipi_list from net_rx_action(). 4595 * 4596 * - If this is our own queue, NAPI schedule our backlog. 4597 * Note that this also raises NET_RX_SOFTIRQ. 4598 */ 4599 static void napi_schedule_rps(struct softnet_data *sd) 4600 { 4601 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4602 4603 #ifdef CONFIG_RPS 4604 if (sd != mysd) { 4605 sd->rps_ipi_next = mysd->rps_ipi_list; 4606 mysd->rps_ipi_list = sd; 4607 4608 /* If not called from net_rx_action() or napi_threaded_poll() 4609 * we have to raise NET_RX_SOFTIRQ. 4610 */ 4611 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 4612 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4613 return; 4614 } 4615 #endif /* CONFIG_RPS */ 4616 __napi_schedule_irqoff(&mysd->backlog); 4617 } 4618 4619 #ifdef CONFIG_NET_FLOW_LIMIT 4620 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4621 #endif 4622 4623 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4624 { 4625 #ifdef CONFIG_NET_FLOW_LIMIT 4626 struct sd_flow_limit *fl; 4627 struct softnet_data *sd; 4628 unsigned int old_flow, new_flow; 4629 4630 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1)) 4631 return false; 4632 4633 sd = this_cpu_ptr(&softnet_data); 4634 4635 rcu_read_lock(); 4636 fl = rcu_dereference(sd->flow_limit); 4637 if (fl) { 4638 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4639 old_flow = fl->history[fl->history_head]; 4640 fl->history[fl->history_head] = new_flow; 4641 4642 fl->history_head++; 4643 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4644 4645 if (likely(fl->buckets[old_flow])) 4646 fl->buckets[old_flow]--; 4647 4648 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4649 fl->count++; 4650 rcu_read_unlock(); 4651 return true; 4652 } 4653 } 4654 rcu_read_unlock(); 4655 #endif 4656 return false; 4657 } 4658 4659 /* 4660 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4661 * queue (may be a remote CPU queue). 4662 */ 4663 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4664 unsigned int *qtail) 4665 { 4666 enum skb_drop_reason reason; 4667 struct softnet_data *sd; 4668 unsigned long flags; 4669 unsigned int qlen; 4670 4671 reason = SKB_DROP_REASON_NOT_SPECIFIED; 4672 sd = &per_cpu(softnet_data, cpu); 4673 4674 rps_lock_irqsave(sd, &flags); 4675 if (!netif_running(skb->dev)) 4676 goto drop; 4677 qlen = skb_queue_len(&sd->input_pkt_queue); 4678 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) { 4679 if (qlen) { 4680 enqueue: 4681 __skb_queue_tail(&sd->input_pkt_queue, skb); 4682 input_queue_tail_incr_save(sd, qtail); 4683 rps_unlock_irq_restore(sd, &flags); 4684 return NET_RX_SUCCESS; 4685 } 4686 4687 /* Schedule NAPI for backlog device 4688 * We can use non atomic operation since we own the queue lock 4689 */ 4690 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 4691 napi_schedule_rps(sd); 4692 goto enqueue; 4693 } 4694 reason = SKB_DROP_REASON_CPU_BACKLOG; 4695 4696 drop: 4697 sd->dropped++; 4698 rps_unlock_irq_restore(sd, &flags); 4699 4700 dev_core_stats_rx_dropped_inc(skb->dev); 4701 kfree_skb_reason(skb, reason); 4702 return NET_RX_DROP; 4703 } 4704 4705 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4706 { 4707 struct net_device *dev = skb->dev; 4708 struct netdev_rx_queue *rxqueue; 4709 4710 rxqueue = dev->_rx; 4711 4712 if (skb_rx_queue_recorded(skb)) { 4713 u16 index = skb_get_rx_queue(skb); 4714 4715 if (unlikely(index >= dev->real_num_rx_queues)) { 4716 WARN_ONCE(dev->real_num_rx_queues > 1, 4717 "%s received packet on queue %u, but number " 4718 "of RX queues is %u\n", 4719 dev->name, index, dev->real_num_rx_queues); 4720 4721 return rxqueue; /* Return first rxqueue */ 4722 } 4723 rxqueue += index; 4724 } 4725 return rxqueue; 4726 } 4727 4728 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 4729 struct bpf_prog *xdp_prog) 4730 { 4731 void *orig_data, *orig_data_end, *hard_start; 4732 struct netdev_rx_queue *rxqueue; 4733 bool orig_bcast, orig_host; 4734 u32 mac_len, frame_sz; 4735 __be16 orig_eth_type; 4736 struct ethhdr *eth; 4737 u32 metalen, act; 4738 int off; 4739 4740 /* The XDP program wants to see the packet starting at the MAC 4741 * header. 4742 */ 4743 mac_len = skb->data - skb_mac_header(skb); 4744 hard_start = skb->data - skb_headroom(skb); 4745 4746 /* SKB "head" area always have tailroom for skb_shared_info */ 4747 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 4748 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4749 4750 rxqueue = netif_get_rxqueue(skb); 4751 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 4752 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 4753 skb_headlen(skb) + mac_len, true); 4754 4755 orig_data_end = xdp->data_end; 4756 orig_data = xdp->data; 4757 eth = (struct ethhdr *)xdp->data; 4758 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 4759 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4760 orig_eth_type = eth->h_proto; 4761 4762 act = bpf_prog_run_xdp(xdp_prog, xdp); 4763 4764 /* check if bpf_xdp_adjust_head was used */ 4765 off = xdp->data - orig_data; 4766 if (off) { 4767 if (off > 0) 4768 __skb_pull(skb, off); 4769 else if (off < 0) 4770 __skb_push(skb, -off); 4771 4772 skb->mac_header += off; 4773 skb_reset_network_header(skb); 4774 } 4775 4776 /* check if bpf_xdp_adjust_tail was used */ 4777 off = xdp->data_end - orig_data_end; 4778 if (off != 0) { 4779 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4780 skb->len += off; /* positive on grow, negative on shrink */ 4781 } 4782 4783 /* check if XDP changed eth hdr such SKB needs update */ 4784 eth = (struct ethhdr *)xdp->data; 4785 if ((orig_eth_type != eth->h_proto) || 4786 (orig_host != ether_addr_equal_64bits(eth->h_dest, 4787 skb->dev->dev_addr)) || 4788 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4789 __skb_push(skb, ETH_HLEN); 4790 skb->pkt_type = PACKET_HOST; 4791 skb->protocol = eth_type_trans(skb, skb->dev); 4792 } 4793 4794 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 4795 * before calling us again on redirect path. We do not call do_redirect 4796 * as we leave that up to the caller. 4797 * 4798 * Caller is responsible for managing lifetime of skb (i.e. calling 4799 * kfree_skb in response to actions it cannot handle/XDP_DROP). 4800 */ 4801 switch (act) { 4802 case XDP_REDIRECT: 4803 case XDP_TX: 4804 __skb_push(skb, mac_len); 4805 break; 4806 case XDP_PASS: 4807 metalen = xdp->data - xdp->data_meta; 4808 if (metalen) 4809 skb_metadata_set(skb, metalen); 4810 break; 4811 } 4812 4813 return act; 4814 } 4815 4816 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4817 struct xdp_buff *xdp, 4818 struct bpf_prog *xdp_prog) 4819 { 4820 u32 act = XDP_DROP; 4821 4822 /* Reinjected packets coming from act_mirred or similar should 4823 * not get XDP generic processing. 4824 */ 4825 if (skb_is_redirected(skb)) 4826 return XDP_PASS; 4827 4828 /* XDP packets must be linear and must have sufficient headroom 4829 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4830 * native XDP provides, thus we need to do it here as well. 4831 */ 4832 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4833 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4834 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4835 int troom = skb->tail + skb->data_len - skb->end; 4836 4837 /* In case we have to go down the path and also linearize, 4838 * then lets do the pskb_expand_head() work just once here. 4839 */ 4840 if (pskb_expand_head(skb, 4841 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4842 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4843 goto do_drop; 4844 if (skb_linearize(skb)) 4845 goto do_drop; 4846 } 4847 4848 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog); 4849 switch (act) { 4850 case XDP_REDIRECT: 4851 case XDP_TX: 4852 case XDP_PASS: 4853 break; 4854 default: 4855 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act); 4856 fallthrough; 4857 case XDP_ABORTED: 4858 trace_xdp_exception(skb->dev, xdp_prog, act); 4859 fallthrough; 4860 case XDP_DROP: 4861 do_drop: 4862 kfree_skb(skb); 4863 break; 4864 } 4865 4866 return act; 4867 } 4868 4869 /* When doing generic XDP we have to bypass the qdisc layer and the 4870 * network taps in order to match in-driver-XDP behavior. This also means 4871 * that XDP packets are able to starve other packets going through a qdisc, 4872 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 4873 * queues, so they do not have this starvation issue. 4874 */ 4875 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4876 { 4877 struct net_device *dev = skb->dev; 4878 struct netdev_queue *txq; 4879 bool free_skb = true; 4880 int cpu, rc; 4881 4882 txq = netdev_core_pick_tx(dev, skb, NULL); 4883 cpu = smp_processor_id(); 4884 HARD_TX_LOCK(dev, txq, cpu); 4885 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 4886 rc = netdev_start_xmit(skb, dev, txq, 0); 4887 if (dev_xmit_complete(rc)) 4888 free_skb = false; 4889 } 4890 HARD_TX_UNLOCK(dev, txq); 4891 if (free_skb) { 4892 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4893 dev_core_stats_tx_dropped_inc(dev); 4894 kfree_skb(skb); 4895 } 4896 } 4897 4898 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4899 4900 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4901 { 4902 if (xdp_prog) { 4903 struct xdp_buff xdp; 4904 u32 act; 4905 int err; 4906 4907 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4908 if (act != XDP_PASS) { 4909 switch (act) { 4910 case XDP_REDIRECT: 4911 err = xdp_do_generic_redirect(skb->dev, skb, 4912 &xdp, xdp_prog); 4913 if (err) 4914 goto out_redir; 4915 break; 4916 case XDP_TX: 4917 generic_xdp_tx(skb, xdp_prog); 4918 break; 4919 } 4920 return XDP_DROP; 4921 } 4922 } 4923 return XDP_PASS; 4924 out_redir: 4925 kfree_skb_reason(skb, SKB_DROP_REASON_XDP); 4926 return XDP_DROP; 4927 } 4928 EXPORT_SYMBOL_GPL(do_xdp_generic); 4929 4930 static int netif_rx_internal(struct sk_buff *skb) 4931 { 4932 int ret; 4933 4934 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); 4935 4936 trace_netif_rx(skb); 4937 4938 #ifdef CONFIG_RPS 4939 if (static_branch_unlikely(&rps_needed)) { 4940 struct rps_dev_flow voidflow, *rflow = &voidflow; 4941 int cpu; 4942 4943 rcu_read_lock(); 4944 4945 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4946 if (cpu < 0) 4947 cpu = smp_processor_id(); 4948 4949 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4950 4951 rcu_read_unlock(); 4952 } else 4953 #endif 4954 { 4955 unsigned int qtail; 4956 4957 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 4958 } 4959 return ret; 4960 } 4961 4962 /** 4963 * __netif_rx - Slightly optimized version of netif_rx 4964 * @skb: buffer to post 4965 * 4966 * This behaves as netif_rx except that it does not disable bottom halves. 4967 * As a result this function may only be invoked from the interrupt context 4968 * (either hard or soft interrupt). 4969 */ 4970 int __netif_rx(struct sk_buff *skb) 4971 { 4972 int ret; 4973 4974 lockdep_assert_once(hardirq_count() | softirq_count()); 4975 4976 trace_netif_rx_entry(skb); 4977 ret = netif_rx_internal(skb); 4978 trace_netif_rx_exit(ret); 4979 return ret; 4980 } 4981 EXPORT_SYMBOL(__netif_rx); 4982 4983 /** 4984 * netif_rx - post buffer to the network code 4985 * @skb: buffer to post 4986 * 4987 * This function receives a packet from a device driver and queues it for 4988 * the upper (protocol) levels to process via the backlog NAPI device. It 4989 * always succeeds. The buffer may be dropped during processing for 4990 * congestion control or by the protocol layers. 4991 * The network buffer is passed via the backlog NAPI device. Modern NIC 4992 * driver should use NAPI and GRO. 4993 * This function can used from interrupt and from process context. The 4994 * caller from process context must not disable interrupts before invoking 4995 * this function. 4996 * 4997 * return values: 4998 * NET_RX_SUCCESS (no congestion) 4999 * NET_RX_DROP (packet was dropped) 5000 * 5001 */ 5002 int netif_rx(struct sk_buff *skb) 5003 { 5004 bool need_bh_off = !(hardirq_count() | softirq_count()); 5005 int ret; 5006 5007 if (need_bh_off) 5008 local_bh_disable(); 5009 trace_netif_rx_entry(skb); 5010 ret = netif_rx_internal(skb); 5011 trace_netif_rx_exit(ret); 5012 if (need_bh_off) 5013 local_bh_enable(); 5014 return ret; 5015 } 5016 EXPORT_SYMBOL(netif_rx); 5017 5018 static __latent_entropy void net_tx_action(struct softirq_action *h) 5019 { 5020 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5021 5022 if (sd->completion_queue) { 5023 struct sk_buff *clist; 5024 5025 local_irq_disable(); 5026 clist = sd->completion_queue; 5027 sd->completion_queue = NULL; 5028 local_irq_enable(); 5029 5030 while (clist) { 5031 struct sk_buff *skb = clist; 5032 5033 clist = clist->next; 5034 5035 WARN_ON(refcount_read(&skb->users)); 5036 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5037 trace_consume_skb(skb, net_tx_action); 5038 else 5039 trace_kfree_skb(skb, net_tx_action, 5040 get_kfree_skb_cb(skb)->reason); 5041 5042 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5043 __kfree_skb(skb); 5044 else 5045 __napi_kfree_skb(skb, 5046 get_kfree_skb_cb(skb)->reason); 5047 } 5048 } 5049 5050 if (sd->output_queue) { 5051 struct Qdisc *head; 5052 5053 local_irq_disable(); 5054 head = sd->output_queue; 5055 sd->output_queue = NULL; 5056 sd->output_queue_tailp = &sd->output_queue; 5057 local_irq_enable(); 5058 5059 rcu_read_lock(); 5060 5061 while (head) { 5062 struct Qdisc *q = head; 5063 spinlock_t *root_lock = NULL; 5064 5065 head = head->next_sched; 5066 5067 /* We need to make sure head->next_sched is read 5068 * before clearing __QDISC_STATE_SCHED 5069 */ 5070 smp_mb__before_atomic(); 5071 5072 if (!(q->flags & TCQ_F_NOLOCK)) { 5073 root_lock = qdisc_lock(q); 5074 spin_lock(root_lock); 5075 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5076 &q->state))) { 5077 /* There is a synchronize_net() between 5078 * STATE_DEACTIVATED flag being set and 5079 * qdisc_reset()/some_qdisc_is_busy() in 5080 * dev_deactivate(), so we can safely bail out 5081 * early here to avoid data race between 5082 * qdisc_deactivate() and some_qdisc_is_busy() 5083 * for lockless qdisc. 5084 */ 5085 clear_bit(__QDISC_STATE_SCHED, &q->state); 5086 continue; 5087 } 5088 5089 clear_bit(__QDISC_STATE_SCHED, &q->state); 5090 qdisc_run(q); 5091 if (root_lock) 5092 spin_unlock(root_lock); 5093 } 5094 5095 rcu_read_unlock(); 5096 } 5097 5098 xfrm_dev_backlog(sd); 5099 } 5100 5101 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5102 /* This hook is defined here for ATM LANE */ 5103 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5104 unsigned char *addr) __read_mostly; 5105 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5106 #endif 5107 5108 static inline struct sk_buff * 5109 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 5110 struct net_device *orig_dev, bool *another) 5111 { 5112 #ifdef CONFIG_NET_CLS_ACT 5113 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 5114 struct tcf_result cl_res; 5115 5116 /* If there's at least one ingress present somewhere (so 5117 * we get here via enabled static key), remaining devices 5118 * that are not configured with an ingress qdisc will bail 5119 * out here. 5120 */ 5121 if (!miniq) 5122 return skb; 5123 5124 if (*pt_prev) { 5125 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5126 *pt_prev = NULL; 5127 } 5128 5129 qdisc_skb_cb(skb)->pkt_len = skb->len; 5130 tc_skb_cb(skb)->mru = 0; 5131 tc_skb_cb(skb)->post_ct = false; 5132 skb->tc_at_ingress = 1; 5133 mini_qdisc_bstats_cpu_update(miniq, skb); 5134 5135 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) { 5136 case TC_ACT_OK: 5137 case TC_ACT_RECLASSIFY: 5138 skb->tc_index = TC_H_MIN(cl_res.classid); 5139 break; 5140 case TC_ACT_SHOT: 5141 mini_qdisc_qstats_cpu_drop(miniq); 5142 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS); 5143 *ret = NET_RX_DROP; 5144 return NULL; 5145 case TC_ACT_STOLEN: 5146 case TC_ACT_QUEUED: 5147 case TC_ACT_TRAP: 5148 consume_skb(skb); 5149 *ret = NET_RX_SUCCESS; 5150 return NULL; 5151 case TC_ACT_REDIRECT: 5152 /* skb_mac_header check was done by cls/act_bpf, so 5153 * we can safely push the L2 header back before 5154 * redirecting to another netdev 5155 */ 5156 __skb_push(skb, skb->mac_len); 5157 if (skb_do_redirect(skb) == -EAGAIN) { 5158 __skb_pull(skb, skb->mac_len); 5159 *another = true; 5160 break; 5161 } 5162 *ret = NET_RX_SUCCESS; 5163 return NULL; 5164 case TC_ACT_CONSUMED: 5165 *ret = NET_RX_SUCCESS; 5166 return NULL; 5167 default: 5168 break; 5169 } 5170 #endif /* CONFIG_NET_CLS_ACT */ 5171 return skb; 5172 } 5173 5174 /** 5175 * netdev_is_rx_handler_busy - check if receive handler is registered 5176 * @dev: device to check 5177 * 5178 * Check if a receive handler is already registered for a given device. 5179 * Return true if there one. 5180 * 5181 * The caller must hold the rtnl_mutex. 5182 */ 5183 bool netdev_is_rx_handler_busy(struct net_device *dev) 5184 { 5185 ASSERT_RTNL(); 5186 return dev && rtnl_dereference(dev->rx_handler); 5187 } 5188 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5189 5190 /** 5191 * netdev_rx_handler_register - register receive handler 5192 * @dev: device to register a handler for 5193 * @rx_handler: receive handler to register 5194 * @rx_handler_data: data pointer that is used by rx handler 5195 * 5196 * Register a receive handler for a device. This handler will then be 5197 * called from __netif_receive_skb. A negative errno code is returned 5198 * on a failure. 5199 * 5200 * The caller must hold the rtnl_mutex. 5201 * 5202 * For a general description of rx_handler, see enum rx_handler_result. 5203 */ 5204 int netdev_rx_handler_register(struct net_device *dev, 5205 rx_handler_func_t *rx_handler, 5206 void *rx_handler_data) 5207 { 5208 if (netdev_is_rx_handler_busy(dev)) 5209 return -EBUSY; 5210 5211 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5212 return -EINVAL; 5213 5214 /* Note: rx_handler_data must be set before rx_handler */ 5215 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5216 rcu_assign_pointer(dev->rx_handler, rx_handler); 5217 5218 return 0; 5219 } 5220 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5221 5222 /** 5223 * netdev_rx_handler_unregister - unregister receive handler 5224 * @dev: device to unregister a handler from 5225 * 5226 * Unregister a receive handler from a device. 5227 * 5228 * The caller must hold the rtnl_mutex. 5229 */ 5230 void netdev_rx_handler_unregister(struct net_device *dev) 5231 { 5232 5233 ASSERT_RTNL(); 5234 RCU_INIT_POINTER(dev->rx_handler, NULL); 5235 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5236 * section has a guarantee to see a non NULL rx_handler_data 5237 * as well. 5238 */ 5239 synchronize_net(); 5240 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5241 } 5242 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5243 5244 /* 5245 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5246 * the special handling of PFMEMALLOC skbs. 5247 */ 5248 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5249 { 5250 switch (skb->protocol) { 5251 case htons(ETH_P_ARP): 5252 case htons(ETH_P_IP): 5253 case htons(ETH_P_IPV6): 5254 case htons(ETH_P_8021Q): 5255 case htons(ETH_P_8021AD): 5256 return true; 5257 default: 5258 return false; 5259 } 5260 } 5261 5262 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5263 int *ret, struct net_device *orig_dev) 5264 { 5265 if (nf_hook_ingress_active(skb)) { 5266 int ingress_retval; 5267 5268 if (*pt_prev) { 5269 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5270 *pt_prev = NULL; 5271 } 5272 5273 rcu_read_lock(); 5274 ingress_retval = nf_hook_ingress(skb); 5275 rcu_read_unlock(); 5276 return ingress_retval; 5277 } 5278 return 0; 5279 } 5280 5281 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5282 struct packet_type **ppt_prev) 5283 { 5284 struct packet_type *ptype, *pt_prev; 5285 rx_handler_func_t *rx_handler; 5286 struct sk_buff *skb = *pskb; 5287 struct net_device *orig_dev; 5288 bool deliver_exact = false; 5289 int ret = NET_RX_DROP; 5290 __be16 type; 5291 5292 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb); 5293 5294 trace_netif_receive_skb(skb); 5295 5296 orig_dev = skb->dev; 5297 5298 skb_reset_network_header(skb); 5299 if (!skb_transport_header_was_set(skb)) 5300 skb_reset_transport_header(skb); 5301 skb_reset_mac_len(skb); 5302 5303 pt_prev = NULL; 5304 5305 another_round: 5306 skb->skb_iif = skb->dev->ifindex; 5307 5308 __this_cpu_inc(softnet_data.processed); 5309 5310 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5311 int ret2; 5312 5313 migrate_disable(); 5314 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5315 migrate_enable(); 5316 5317 if (ret2 != XDP_PASS) { 5318 ret = NET_RX_DROP; 5319 goto out; 5320 } 5321 } 5322 5323 if (eth_type_vlan(skb->protocol)) { 5324 skb = skb_vlan_untag(skb); 5325 if (unlikely(!skb)) 5326 goto out; 5327 } 5328 5329 if (skb_skip_tc_classify(skb)) 5330 goto skip_classify; 5331 5332 if (pfmemalloc) 5333 goto skip_taps; 5334 5335 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5336 if (pt_prev) 5337 ret = deliver_skb(skb, pt_prev, orig_dev); 5338 pt_prev = ptype; 5339 } 5340 5341 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5342 if (pt_prev) 5343 ret = deliver_skb(skb, pt_prev, orig_dev); 5344 pt_prev = ptype; 5345 } 5346 5347 skip_taps: 5348 #ifdef CONFIG_NET_INGRESS 5349 if (static_branch_unlikely(&ingress_needed_key)) { 5350 bool another = false; 5351 5352 nf_skip_egress(skb, true); 5353 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5354 &another); 5355 if (another) 5356 goto another_round; 5357 if (!skb) 5358 goto out; 5359 5360 nf_skip_egress(skb, false); 5361 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5362 goto out; 5363 } 5364 #endif 5365 skb_reset_redirect(skb); 5366 skip_classify: 5367 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5368 goto drop; 5369 5370 if (skb_vlan_tag_present(skb)) { 5371 if (pt_prev) { 5372 ret = deliver_skb(skb, pt_prev, orig_dev); 5373 pt_prev = NULL; 5374 } 5375 if (vlan_do_receive(&skb)) 5376 goto another_round; 5377 else if (unlikely(!skb)) 5378 goto out; 5379 } 5380 5381 rx_handler = rcu_dereference(skb->dev->rx_handler); 5382 if (rx_handler) { 5383 if (pt_prev) { 5384 ret = deliver_skb(skb, pt_prev, orig_dev); 5385 pt_prev = NULL; 5386 } 5387 switch (rx_handler(&skb)) { 5388 case RX_HANDLER_CONSUMED: 5389 ret = NET_RX_SUCCESS; 5390 goto out; 5391 case RX_HANDLER_ANOTHER: 5392 goto another_round; 5393 case RX_HANDLER_EXACT: 5394 deliver_exact = true; 5395 break; 5396 case RX_HANDLER_PASS: 5397 break; 5398 default: 5399 BUG(); 5400 } 5401 } 5402 5403 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5404 check_vlan_id: 5405 if (skb_vlan_tag_get_id(skb)) { 5406 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5407 * find vlan device. 5408 */ 5409 skb->pkt_type = PACKET_OTHERHOST; 5410 } else if (eth_type_vlan(skb->protocol)) { 5411 /* Outer header is 802.1P with vlan 0, inner header is 5412 * 802.1Q or 802.1AD and vlan_do_receive() above could 5413 * not find vlan dev for vlan id 0. 5414 */ 5415 __vlan_hwaccel_clear_tag(skb); 5416 skb = skb_vlan_untag(skb); 5417 if (unlikely(!skb)) 5418 goto out; 5419 if (vlan_do_receive(&skb)) 5420 /* After stripping off 802.1P header with vlan 0 5421 * vlan dev is found for inner header. 5422 */ 5423 goto another_round; 5424 else if (unlikely(!skb)) 5425 goto out; 5426 else 5427 /* We have stripped outer 802.1P vlan 0 header. 5428 * But could not find vlan dev. 5429 * check again for vlan id to set OTHERHOST. 5430 */ 5431 goto check_vlan_id; 5432 } 5433 /* Note: we might in the future use prio bits 5434 * and set skb->priority like in vlan_do_receive() 5435 * For the time being, just ignore Priority Code Point 5436 */ 5437 __vlan_hwaccel_clear_tag(skb); 5438 } 5439 5440 type = skb->protocol; 5441 5442 /* deliver only exact match when indicated */ 5443 if (likely(!deliver_exact)) { 5444 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5445 &ptype_base[ntohs(type) & 5446 PTYPE_HASH_MASK]); 5447 } 5448 5449 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5450 &orig_dev->ptype_specific); 5451 5452 if (unlikely(skb->dev != orig_dev)) { 5453 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5454 &skb->dev->ptype_specific); 5455 } 5456 5457 if (pt_prev) { 5458 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5459 goto drop; 5460 *ppt_prev = pt_prev; 5461 } else { 5462 drop: 5463 if (!deliver_exact) 5464 dev_core_stats_rx_dropped_inc(skb->dev); 5465 else 5466 dev_core_stats_rx_nohandler_inc(skb->dev); 5467 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO); 5468 /* Jamal, now you will not able to escape explaining 5469 * me how you were going to use this. :-) 5470 */ 5471 ret = NET_RX_DROP; 5472 } 5473 5474 out: 5475 /* The invariant here is that if *ppt_prev is not NULL 5476 * then skb should also be non-NULL. 5477 * 5478 * Apparently *ppt_prev assignment above holds this invariant due to 5479 * skb dereferencing near it. 5480 */ 5481 *pskb = skb; 5482 return ret; 5483 } 5484 5485 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5486 { 5487 struct net_device *orig_dev = skb->dev; 5488 struct packet_type *pt_prev = NULL; 5489 int ret; 5490 5491 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5492 if (pt_prev) 5493 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5494 skb->dev, pt_prev, orig_dev); 5495 return ret; 5496 } 5497 5498 /** 5499 * netif_receive_skb_core - special purpose version of netif_receive_skb 5500 * @skb: buffer to process 5501 * 5502 * More direct receive version of netif_receive_skb(). It should 5503 * only be used by callers that have a need to skip RPS and Generic XDP. 5504 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5505 * 5506 * This function may only be called from softirq context and interrupts 5507 * should be enabled. 5508 * 5509 * Return values (usually ignored): 5510 * NET_RX_SUCCESS: no congestion 5511 * NET_RX_DROP: packet was dropped 5512 */ 5513 int netif_receive_skb_core(struct sk_buff *skb) 5514 { 5515 int ret; 5516 5517 rcu_read_lock(); 5518 ret = __netif_receive_skb_one_core(skb, false); 5519 rcu_read_unlock(); 5520 5521 return ret; 5522 } 5523 EXPORT_SYMBOL(netif_receive_skb_core); 5524 5525 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5526 struct packet_type *pt_prev, 5527 struct net_device *orig_dev) 5528 { 5529 struct sk_buff *skb, *next; 5530 5531 if (!pt_prev) 5532 return; 5533 if (list_empty(head)) 5534 return; 5535 if (pt_prev->list_func != NULL) 5536 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5537 ip_list_rcv, head, pt_prev, orig_dev); 5538 else 5539 list_for_each_entry_safe(skb, next, head, list) { 5540 skb_list_del_init(skb); 5541 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5542 } 5543 } 5544 5545 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5546 { 5547 /* Fast-path assumptions: 5548 * - There is no RX handler. 5549 * - Only one packet_type matches. 5550 * If either of these fails, we will end up doing some per-packet 5551 * processing in-line, then handling the 'last ptype' for the whole 5552 * sublist. This can't cause out-of-order delivery to any single ptype, 5553 * because the 'last ptype' must be constant across the sublist, and all 5554 * other ptypes are handled per-packet. 5555 */ 5556 /* Current (common) ptype of sublist */ 5557 struct packet_type *pt_curr = NULL; 5558 /* Current (common) orig_dev of sublist */ 5559 struct net_device *od_curr = NULL; 5560 struct list_head sublist; 5561 struct sk_buff *skb, *next; 5562 5563 INIT_LIST_HEAD(&sublist); 5564 list_for_each_entry_safe(skb, next, head, list) { 5565 struct net_device *orig_dev = skb->dev; 5566 struct packet_type *pt_prev = NULL; 5567 5568 skb_list_del_init(skb); 5569 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5570 if (!pt_prev) 5571 continue; 5572 if (pt_curr != pt_prev || od_curr != orig_dev) { 5573 /* dispatch old sublist */ 5574 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5575 /* start new sublist */ 5576 INIT_LIST_HEAD(&sublist); 5577 pt_curr = pt_prev; 5578 od_curr = orig_dev; 5579 } 5580 list_add_tail(&skb->list, &sublist); 5581 } 5582 5583 /* dispatch final sublist */ 5584 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5585 } 5586 5587 static int __netif_receive_skb(struct sk_buff *skb) 5588 { 5589 int ret; 5590 5591 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5592 unsigned int noreclaim_flag; 5593 5594 /* 5595 * PFMEMALLOC skbs are special, they should 5596 * - be delivered to SOCK_MEMALLOC sockets only 5597 * - stay away from userspace 5598 * - have bounded memory usage 5599 * 5600 * Use PF_MEMALLOC as this saves us from propagating the allocation 5601 * context down to all allocation sites. 5602 */ 5603 noreclaim_flag = memalloc_noreclaim_save(); 5604 ret = __netif_receive_skb_one_core(skb, true); 5605 memalloc_noreclaim_restore(noreclaim_flag); 5606 } else 5607 ret = __netif_receive_skb_one_core(skb, false); 5608 5609 return ret; 5610 } 5611 5612 static void __netif_receive_skb_list(struct list_head *head) 5613 { 5614 unsigned long noreclaim_flag = 0; 5615 struct sk_buff *skb, *next; 5616 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5617 5618 list_for_each_entry_safe(skb, next, head, list) { 5619 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5620 struct list_head sublist; 5621 5622 /* Handle the previous sublist */ 5623 list_cut_before(&sublist, head, &skb->list); 5624 if (!list_empty(&sublist)) 5625 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5626 pfmemalloc = !pfmemalloc; 5627 /* See comments in __netif_receive_skb */ 5628 if (pfmemalloc) 5629 noreclaim_flag = memalloc_noreclaim_save(); 5630 else 5631 memalloc_noreclaim_restore(noreclaim_flag); 5632 } 5633 } 5634 /* Handle the remaining sublist */ 5635 if (!list_empty(head)) 5636 __netif_receive_skb_list_core(head, pfmemalloc); 5637 /* Restore pflags */ 5638 if (pfmemalloc) 5639 memalloc_noreclaim_restore(noreclaim_flag); 5640 } 5641 5642 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5643 { 5644 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5645 struct bpf_prog *new = xdp->prog; 5646 int ret = 0; 5647 5648 switch (xdp->command) { 5649 case XDP_SETUP_PROG: 5650 rcu_assign_pointer(dev->xdp_prog, new); 5651 if (old) 5652 bpf_prog_put(old); 5653 5654 if (old && !new) { 5655 static_branch_dec(&generic_xdp_needed_key); 5656 } else if (new && !old) { 5657 static_branch_inc(&generic_xdp_needed_key); 5658 dev_disable_lro(dev); 5659 dev_disable_gro_hw(dev); 5660 } 5661 break; 5662 5663 default: 5664 ret = -EINVAL; 5665 break; 5666 } 5667 5668 return ret; 5669 } 5670 5671 static int netif_receive_skb_internal(struct sk_buff *skb) 5672 { 5673 int ret; 5674 5675 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); 5676 5677 if (skb_defer_rx_timestamp(skb)) 5678 return NET_RX_SUCCESS; 5679 5680 rcu_read_lock(); 5681 #ifdef CONFIG_RPS 5682 if (static_branch_unlikely(&rps_needed)) { 5683 struct rps_dev_flow voidflow, *rflow = &voidflow; 5684 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5685 5686 if (cpu >= 0) { 5687 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5688 rcu_read_unlock(); 5689 return ret; 5690 } 5691 } 5692 #endif 5693 ret = __netif_receive_skb(skb); 5694 rcu_read_unlock(); 5695 return ret; 5696 } 5697 5698 void netif_receive_skb_list_internal(struct list_head *head) 5699 { 5700 struct sk_buff *skb, *next; 5701 struct list_head sublist; 5702 5703 INIT_LIST_HEAD(&sublist); 5704 list_for_each_entry_safe(skb, next, head, list) { 5705 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); 5706 skb_list_del_init(skb); 5707 if (!skb_defer_rx_timestamp(skb)) 5708 list_add_tail(&skb->list, &sublist); 5709 } 5710 list_splice_init(&sublist, head); 5711 5712 rcu_read_lock(); 5713 #ifdef CONFIG_RPS 5714 if (static_branch_unlikely(&rps_needed)) { 5715 list_for_each_entry_safe(skb, next, head, list) { 5716 struct rps_dev_flow voidflow, *rflow = &voidflow; 5717 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5718 5719 if (cpu >= 0) { 5720 /* Will be handled, remove from list */ 5721 skb_list_del_init(skb); 5722 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5723 } 5724 } 5725 } 5726 #endif 5727 __netif_receive_skb_list(head); 5728 rcu_read_unlock(); 5729 } 5730 5731 /** 5732 * netif_receive_skb - process receive buffer from network 5733 * @skb: buffer to process 5734 * 5735 * netif_receive_skb() is the main receive data processing function. 5736 * It always succeeds. The buffer may be dropped during processing 5737 * for congestion control or by the protocol layers. 5738 * 5739 * This function may only be called from softirq context and interrupts 5740 * should be enabled. 5741 * 5742 * Return values (usually ignored): 5743 * NET_RX_SUCCESS: no congestion 5744 * NET_RX_DROP: packet was dropped 5745 */ 5746 int netif_receive_skb(struct sk_buff *skb) 5747 { 5748 int ret; 5749 5750 trace_netif_receive_skb_entry(skb); 5751 5752 ret = netif_receive_skb_internal(skb); 5753 trace_netif_receive_skb_exit(ret); 5754 5755 return ret; 5756 } 5757 EXPORT_SYMBOL(netif_receive_skb); 5758 5759 /** 5760 * netif_receive_skb_list - process many receive buffers from network 5761 * @head: list of skbs to process. 5762 * 5763 * Since return value of netif_receive_skb() is normally ignored, and 5764 * wouldn't be meaningful for a list, this function returns void. 5765 * 5766 * This function may only be called from softirq context and interrupts 5767 * should be enabled. 5768 */ 5769 void netif_receive_skb_list(struct list_head *head) 5770 { 5771 struct sk_buff *skb; 5772 5773 if (list_empty(head)) 5774 return; 5775 if (trace_netif_receive_skb_list_entry_enabled()) { 5776 list_for_each_entry(skb, head, list) 5777 trace_netif_receive_skb_list_entry(skb); 5778 } 5779 netif_receive_skb_list_internal(head); 5780 trace_netif_receive_skb_list_exit(0); 5781 } 5782 EXPORT_SYMBOL(netif_receive_skb_list); 5783 5784 static DEFINE_PER_CPU(struct work_struct, flush_works); 5785 5786 /* Network device is going away, flush any packets still pending */ 5787 static void flush_backlog(struct work_struct *work) 5788 { 5789 struct sk_buff *skb, *tmp; 5790 struct softnet_data *sd; 5791 5792 local_bh_disable(); 5793 sd = this_cpu_ptr(&softnet_data); 5794 5795 rps_lock_irq_disable(sd); 5796 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5797 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5798 __skb_unlink(skb, &sd->input_pkt_queue); 5799 dev_kfree_skb_irq(skb); 5800 input_queue_head_incr(sd); 5801 } 5802 } 5803 rps_unlock_irq_enable(sd); 5804 5805 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5806 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5807 __skb_unlink(skb, &sd->process_queue); 5808 kfree_skb(skb); 5809 input_queue_head_incr(sd); 5810 } 5811 } 5812 local_bh_enable(); 5813 } 5814 5815 static bool flush_required(int cpu) 5816 { 5817 #if IS_ENABLED(CONFIG_RPS) 5818 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5819 bool do_flush; 5820 5821 rps_lock_irq_disable(sd); 5822 5823 /* as insertion into process_queue happens with the rps lock held, 5824 * process_queue access may race only with dequeue 5825 */ 5826 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 5827 !skb_queue_empty_lockless(&sd->process_queue); 5828 rps_unlock_irq_enable(sd); 5829 5830 return do_flush; 5831 #endif 5832 /* without RPS we can't safely check input_pkt_queue: during a 5833 * concurrent remote skb_queue_splice() we can detect as empty both 5834 * input_pkt_queue and process_queue even if the latter could end-up 5835 * containing a lot of packets. 5836 */ 5837 return true; 5838 } 5839 5840 static void flush_all_backlogs(void) 5841 { 5842 static cpumask_t flush_cpus; 5843 unsigned int cpu; 5844 5845 /* since we are under rtnl lock protection we can use static data 5846 * for the cpumask and avoid allocating on stack the possibly 5847 * large mask 5848 */ 5849 ASSERT_RTNL(); 5850 5851 cpus_read_lock(); 5852 5853 cpumask_clear(&flush_cpus); 5854 for_each_online_cpu(cpu) { 5855 if (flush_required(cpu)) { 5856 queue_work_on(cpu, system_highpri_wq, 5857 per_cpu_ptr(&flush_works, cpu)); 5858 cpumask_set_cpu(cpu, &flush_cpus); 5859 } 5860 } 5861 5862 /* we can have in flight packet[s] on the cpus we are not flushing, 5863 * synchronize_net() in unregister_netdevice_many() will take care of 5864 * them 5865 */ 5866 for_each_cpu(cpu, &flush_cpus) 5867 flush_work(per_cpu_ptr(&flush_works, cpu)); 5868 5869 cpus_read_unlock(); 5870 } 5871 5872 static void net_rps_send_ipi(struct softnet_data *remsd) 5873 { 5874 #ifdef CONFIG_RPS 5875 while (remsd) { 5876 struct softnet_data *next = remsd->rps_ipi_next; 5877 5878 if (cpu_online(remsd->cpu)) 5879 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5880 remsd = next; 5881 } 5882 #endif 5883 } 5884 5885 /* 5886 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5887 * Note: called with local irq disabled, but exits with local irq enabled. 5888 */ 5889 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5890 { 5891 #ifdef CONFIG_RPS 5892 struct softnet_data *remsd = sd->rps_ipi_list; 5893 5894 if (remsd) { 5895 sd->rps_ipi_list = NULL; 5896 5897 local_irq_enable(); 5898 5899 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5900 net_rps_send_ipi(remsd); 5901 } else 5902 #endif 5903 local_irq_enable(); 5904 } 5905 5906 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5907 { 5908 #ifdef CONFIG_RPS 5909 return sd->rps_ipi_list != NULL; 5910 #else 5911 return false; 5912 #endif 5913 } 5914 5915 static int process_backlog(struct napi_struct *napi, int quota) 5916 { 5917 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5918 bool again = true; 5919 int work = 0; 5920 5921 /* Check if we have pending ipi, its better to send them now, 5922 * not waiting net_rx_action() end. 5923 */ 5924 if (sd_has_rps_ipi_waiting(sd)) { 5925 local_irq_disable(); 5926 net_rps_action_and_irq_enable(sd); 5927 } 5928 5929 napi->weight = READ_ONCE(dev_rx_weight); 5930 while (again) { 5931 struct sk_buff *skb; 5932 5933 while ((skb = __skb_dequeue(&sd->process_queue))) { 5934 rcu_read_lock(); 5935 __netif_receive_skb(skb); 5936 rcu_read_unlock(); 5937 input_queue_head_incr(sd); 5938 if (++work >= quota) 5939 return work; 5940 5941 } 5942 5943 rps_lock_irq_disable(sd); 5944 if (skb_queue_empty(&sd->input_pkt_queue)) { 5945 /* 5946 * Inline a custom version of __napi_complete(). 5947 * only current cpu owns and manipulates this napi, 5948 * and NAPI_STATE_SCHED is the only possible flag set 5949 * on backlog. 5950 * We can use a plain write instead of clear_bit(), 5951 * and we dont need an smp_mb() memory barrier. 5952 */ 5953 napi->state = 0; 5954 again = false; 5955 } else { 5956 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5957 &sd->process_queue); 5958 } 5959 rps_unlock_irq_enable(sd); 5960 } 5961 5962 return work; 5963 } 5964 5965 /** 5966 * __napi_schedule - schedule for receive 5967 * @n: entry to schedule 5968 * 5969 * The entry's receive function will be scheduled to run. 5970 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5971 */ 5972 void __napi_schedule(struct napi_struct *n) 5973 { 5974 unsigned long flags; 5975 5976 local_irq_save(flags); 5977 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5978 local_irq_restore(flags); 5979 } 5980 EXPORT_SYMBOL(__napi_schedule); 5981 5982 /** 5983 * napi_schedule_prep - check if napi can be scheduled 5984 * @n: napi context 5985 * 5986 * Test if NAPI routine is already running, and if not mark 5987 * it as running. This is used as a condition variable to 5988 * insure only one NAPI poll instance runs. We also make 5989 * sure there is no pending NAPI disable. 5990 */ 5991 bool napi_schedule_prep(struct napi_struct *n) 5992 { 5993 unsigned long new, val = READ_ONCE(n->state); 5994 5995 do { 5996 if (unlikely(val & NAPIF_STATE_DISABLE)) 5997 return false; 5998 new = val | NAPIF_STATE_SCHED; 5999 6000 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6001 * This was suggested by Alexander Duyck, as compiler 6002 * emits better code than : 6003 * if (val & NAPIF_STATE_SCHED) 6004 * new |= NAPIF_STATE_MISSED; 6005 */ 6006 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6007 NAPIF_STATE_MISSED; 6008 } while (!try_cmpxchg(&n->state, &val, new)); 6009 6010 return !(val & NAPIF_STATE_SCHED); 6011 } 6012 EXPORT_SYMBOL(napi_schedule_prep); 6013 6014 /** 6015 * __napi_schedule_irqoff - schedule for receive 6016 * @n: entry to schedule 6017 * 6018 * Variant of __napi_schedule() assuming hard irqs are masked. 6019 * 6020 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6021 * because the interrupt disabled assumption might not be true 6022 * due to force-threaded interrupts and spinlock substitution. 6023 */ 6024 void __napi_schedule_irqoff(struct napi_struct *n) 6025 { 6026 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6027 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6028 else 6029 __napi_schedule(n); 6030 } 6031 EXPORT_SYMBOL(__napi_schedule_irqoff); 6032 6033 bool napi_complete_done(struct napi_struct *n, int work_done) 6034 { 6035 unsigned long flags, val, new, timeout = 0; 6036 bool ret = true; 6037 6038 /* 6039 * 1) Don't let napi dequeue from the cpu poll list 6040 * just in case its running on a different cpu. 6041 * 2) If we are busy polling, do nothing here, we have 6042 * the guarantee we will be called later. 6043 */ 6044 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6045 NAPIF_STATE_IN_BUSY_POLL))) 6046 return false; 6047 6048 if (work_done) { 6049 if (n->gro_bitmask) 6050 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6051 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6052 } 6053 if (n->defer_hard_irqs_count > 0) { 6054 n->defer_hard_irqs_count--; 6055 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6056 if (timeout) 6057 ret = false; 6058 } 6059 if (n->gro_bitmask) { 6060 /* When the NAPI instance uses a timeout and keeps postponing 6061 * it, we need to bound somehow the time packets are kept in 6062 * the GRO layer 6063 */ 6064 napi_gro_flush(n, !!timeout); 6065 } 6066 6067 gro_normal_list(n); 6068 6069 if (unlikely(!list_empty(&n->poll_list))) { 6070 /* If n->poll_list is not empty, we need to mask irqs */ 6071 local_irq_save(flags); 6072 list_del_init(&n->poll_list); 6073 local_irq_restore(flags); 6074 } 6075 WRITE_ONCE(n->list_owner, -1); 6076 6077 val = READ_ONCE(n->state); 6078 do { 6079 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6080 6081 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6082 NAPIF_STATE_SCHED_THREADED | 6083 NAPIF_STATE_PREFER_BUSY_POLL); 6084 6085 /* If STATE_MISSED was set, leave STATE_SCHED set, 6086 * because we will call napi->poll() one more time. 6087 * This C code was suggested by Alexander Duyck to help gcc. 6088 */ 6089 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6090 NAPIF_STATE_SCHED; 6091 } while (!try_cmpxchg(&n->state, &val, new)); 6092 6093 if (unlikely(val & NAPIF_STATE_MISSED)) { 6094 __napi_schedule(n); 6095 return false; 6096 } 6097 6098 if (timeout) 6099 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6100 HRTIMER_MODE_REL_PINNED); 6101 return ret; 6102 } 6103 EXPORT_SYMBOL(napi_complete_done); 6104 6105 /* must be called under rcu_read_lock(), as we dont take a reference */ 6106 static struct napi_struct *napi_by_id(unsigned int napi_id) 6107 { 6108 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6109 struct napi_struct *napi; 6110 6111 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6112 if (napi->napi_id == napi_id) 6113 return napi; 6114 6115 return NULL; 6116 } 6117 6118 #if defined(CONFIG_NET_RX_BUSY_POLL) 6119 6120 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6121 { 6122 if (!skip_schedule) { 6123 gro_normal_list(napi); 6124 __napi_schedule(napi); 6125 return; 6126 } 6127 6128 if (napi->gro_bitmask) { 6129 /* flush too old packets 6130 * If HZ < 1000, flush all packets. 6131 */ 6132 napi_gro_flush(napi, HZ >= 1000); 6133 } 6134 6135 gro_normal_list(napi); 6136 clear_bit(NAPI_STATE_SCHED, &napi->state); 6137 } 6138 6139 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll, 6140 u16 budget) 6141 { 6142 bool skip_schedule = false; 6143 unsigned long timeout; 6144 int rc; 6145 6146 /* Busy polling means there is a high chance device driver hard irq 6147 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6148 * set in napi_schedule_prep(). 6149 * Since we are about to call napi->poll() once more, we can safely 6150 * clear NAPI_STATE_MISSED. 6151 * 6152 * Note: x86 could use a single "lock and ..." instruction 6153 * to perform these two clear_bit() 6154 */ 6155 clear_bit(NAPI_STATE_MISSED, &napi->state); 6156 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6157 6158 local_bh_disable(); 6159 6160 if (prefer_busy_poll) { 6161 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs); 6162 timeout = READ_ONCE(napi->dev->gro_flush_timeout); 6163 if (napi->defer_hard_irqs_count && timeout) { 6164 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6165 skip_schedule = true; 6166 } 6167 } 6168 6169 /* All we really want here is to re-enable device interrupts. 6170 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6171 */ 6172 rc = napi->poll(napi, budget); 6173 /* We can't gro_normal_list() here, because napi->poll() might have 6174 * rearmed the napi (napi_complete_done()) in which case it could 6175 * already be running on another CPU. 6176 */ 6177 trace_napi_poll(napi, rc, budget); 6178 netpoll_poll_unlock(have_poll_lock); 6179 if (rc == budget) 6180 __busy_poll_stop(napi, skip_schedule); 6181 local_bh_enable(); 6182 } 6183 6184 void napi_busy_loop(unsigned int napi_id, 6185 bool (*loop_end)(void *, unsigned long), 6186 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6187 { 6188 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6189 int (*napi_poll)(struct napi_struct *napi, int budget); 6190 void *have_poll_lock = NULL; 6191 struct napi_struct *napi; 6192 6193 restart: 6194 napi_poll = NULL; 6195 6196 rcu_read_lock(); 6197 6198 napi = napi_by_id(napi_id); 6199 if (!napi) 6200 goto out; 6201 6202 preempt_disable(); 6203 for (;;) { 6204 int work = 0; 6205 6206 local_bh_disable(); 6207 if (!napi_poll) { 6208 unsigned long val = READ_ONCE(napi->state); 6209 6210 /* If multiple threads are competing for this napi, 6211 * we avoid dirtying napi->state as much as we can. 6212 */ 6213 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6214 NAPIF_STATE_IN_BUSY_POLL)) { 6215 if (prefer_busy_poll) 6216 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6217 goto count; 6218 } 6219 if (cmpxchg(&napi->state, val, 6220 val | NAPIF_STATE_IN_BUSY_POLL | 6221 NAPIF_STATE_SCHED) != val) { 6222 if (prefer_busy_poll) 6223 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6224 goto count; 6225 } 6226 have_poll_lock = netpoll_poll_lock(napi); 6227 napi_poll = napi->poll; 6228 } 6229 work = napi_poll(napi, budget); 6230 trace_napi_poll(napi, work, budget); 6231 gro_normal_list(napi); 6232 count: 6233 if (work > 0) 6234 __NET_ADD_STATS(dev_net(napi->dev), 6235 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6236 local_bh_enable(); 6237 6238 if (!loop_end || loop_end(loop_end_arg, start_time)) 6239 break; 6240 6241 if (unlikely(need_resched())) { 6242 if (napi_poll) 6243 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6244 preempt_enable(); 6245 rcu_read_unlock(); 6246 cond_resched(); 6247 if (loop_end(loop_end_arg, start_time)) 6248 return; 6249 goto restart; 6250 } 6251 cpu_relax(); 6252 } 6253 if (napi_poll) 6254 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6255 preempt_enable(); 6256 out: 6257 rcu_read_unlock(); 6258 } 6259 EXPORT_SYMBOL(napi_busy_loop); 6260 6261 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6262 6263 static void napi_hash_add(struct napi_struct *napi) 6264 { 6265 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6266 return; 6267 6268 spin_lock(&napi_hash_lock); 6269 6270 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6271 do { 6272 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6273 napi_gen_id = MIN_NAPI_ID; 6274 } while (napi_by_id(napi_gen_id)); 6275 napi->napi_id = napi_gen_id; 6276 6277 hlist_add_head_rcu(&napi->napi_hash_node, 6278 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6279 6280 spin_unlock(&napi_hash_lock); 6281 } 6282 6283 /* Warning : caller is responsible to make sure rcu grace period 6284 * is respected before freeing memory containing @napi 6285 */ 6286 static void napi_hash_del(struct napi_struct *napi) 6287 { 6288 spin_lock(&napi_hash_lock); 6289 6290 hlist_del_init_rcu(&napi->napi_hash_node); 6291 6292 spin_unlock(&napi_hash_lock); 6293 } 6294 6295 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6296 { 6297 struct napi_struct *napi; 6298 6299 napi = container_of(timer, struct napi_struct, timer); 6300 6301 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6302 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6303 */ 6304 if (!napi_disable_pending(napi) && 6305 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6306 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6307 __napi_schedule_irqoff(napi); 6308 } 6309 6310 return HRTIMER_NORESTART; 6311 } 6312 6313 static void init_gro_hash(struct napi_struct *napi) 6314 { 6315 int i; 6316 6317 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6318 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6319 napi->gro_hash[i].count = 0; 6320 } 6321 napi->gro_bitmask = 0; 6322 } 6323 6324 int dev_set_threaded(struct net_device *dev, bool threaded) 6325 { 6326 struct napi_struct *napi; 6327 int err = 0; 6328 6329 if (dev->threaded == threaded) 6330 return 0; 6331 6332 if (threaded) { 6333 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6334 if (!napi->thread) { 6335 err = napi_kthread_create(napi); 6336 if (err) { 6337 threaded = false; 6338 break; 6339 } 6340 } 6341 } 6342 } 6343 6344 dev->threaded = threaded; 6345 6346 /* Make sure kthread is created before THREADED bit 6347 * is set. 6348 */ 6349 smp_mb__before_atomic(); 6350 6351 /* Setting/unsetting threaded mode on a napi might not immediately 6352 * take effect, if the current napi instance is actively being 6353 * polled. In this case, the switch between threaded mode and 6354 * softirq mode will happen in the next round of napi_schedule(). 6355 * This should not cause hiccups/stalls to the live traffic. 6356 */ 6357 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6358 if (threaded) 6359 set_bit(NAPI_STATE_THREADED, &napi->state); 6360 else 6361 clear_bit(NAPI_STATE_THREADED, &napi->state); 6362 } 6363 6364 return err; 6365 } 6366 EXPORT_SYMBOL(dev_set_threaded); 6367 6368 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 6369 int (*poll)(struct napi_struct *, int), int weight) 6370 { 6371 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6372 return; 6373 6374 INIT_LIST_HEAD(&napi->poll_list); 6375 INIT_HLIST_NODE(&napi->napi_hash_node); 6376 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6377 napi->timer.function = napi_watchdog; 6378 init_gro_hash(napi); 6379 napi->skb = NULL; 6380 INIT_LIST_HEAD(&napi->rx_list); 6381 napi->rx_count = 0; 6382 napi->poll = poll; 6383 if (weight > NAPI_POLL_WEIGHT) 6384 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6385 weight); 6386 napi->weight = weight; 6387 napi->dev = dev; 6388 #ifdef CONFIG_NETPOLL 6389 napi->poll_owner = -1; 6390 #endif 6391 napi->list_owner = -1; 6392 set_bit(NAPI_STATE_SCHED, &napi->state); 6393 set_bit(NAPI_STATE_NPSVC, &napi->state); 6394 list_add_rcu(&napi->dev_list, &dev->napi_list); 6395 napi_hash_add(napi); 6396 napi_get_frags_check(napi); 6397 /* Create kthread for this napi if dev->threaded is set. 6398 * Clear dev->threaded if kthread creation failed so that 6399 * threaded mode will not be enabled in napi_enable(). 6400 */ 6401 if (dev->threaded && napi_kthread_create(napi)) 6402 dev->threaded = 0; 6403 } 6404 EXPORT_SYMBOL(netif_napi_add_weight); 6405 6406 void napi_disable(struct napi_struct *n) 6407 { 6408 unsigned long val, new; 6409 6410 might_sleep(); 6411 set_bit(NAPI_STATE_DISABLE, &n->state); 6412 6413 val = READ_ONCE(n->state); 6414 do { 6415 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 6416 usleep_range(20, 200); 6417 val = READ_ONCE(n->state); 6418 } 6419 6420 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 6421 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 6422 } while (!try_cmpxchg(&n->state, &val, new)); 6423 6424 hrtimer_cancel(&n->timer); 6425 6426 clear_bit(NAPI_STATE_DISABLE, &n->state); 6427 } 6428 EXPORT_SYMBOL(napi_disable); 6429 6430 /** 6431 * napi_enable - enable NAPI scheduling 6432 * @n: NAPI context 6433 * 6434 * Resume NAPI from being scheduled on this context. 6435 * Must be paired with napi_disable. 6436 */ 6437 void napi_enable(struct napi_struct *n) 6438 { 6439 unsigned long new, val = READ_ONCE(n->state); 6440 6441 do { 6442 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 6443 6444 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 6445 if (n->dev->threaded && n->thread) 6446 new |= NAPIF_STATE_THREADED; 6447 } while (!try_cmpxchg(&n->state, &val, new)); 6448 } 6449 EXPORT_SYMBOL(napi_enable); 6450 6451 static void flush_gro_hash(struct napi_struct *napi) 6452 { 6453 int i; 6454 6455 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6456 struct sk_buff *skb, *n; 6457 6458 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6459 kfree_skb(skb); 6460 napi->gro_hash[i].count = 0; 6461 } 6462 } 6463 6464 /* Must be called in process context */ 6465 void __netif_napi_del(struct napi_struct *napi) 6466 { 6467 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6468 return; 6469 6470 napi_hash_del(napi); 6471 list_del_rcu(&napi->dev_list); 6472 napi_free_frags(napi); 6473 6474 flush_gro_hash(napi); 6475 napi->gro_bitmask = 0; 6476 6477 if (napi->thread) { 6478 kthread_stop(napi->thread); 6479 napi->thread = NULL; 6480 } 6481 } 6482 EXPORT_SYMBOL(__netif_napi_del); 6483 6484 static int __napi_poll(struct napi_struct *n, bool *repoll) 6485 { 6486 int work, weight; 6487 6488 weight = n->weight; 6489 6490 /* This NAPI_STATE_SCHED test is for avoiding a race 6491 * with netpoll's poll_napi(). Only the entity which 6492 * obtains the lock and sees NAPI_STATE_SCHED set will 6493 * actually make the ->poll() call. Therefore we avoid 6494 * accidentally calling ->poll() when NAPI is not scheduled. 6495 */ 6496 work = 0; 6497 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6498 work = n->poll(n, weight); 6499 trace_napi_poll(n, work, weight); 6500 } 6501 6502 if (unlikely(work > weight)) 6503 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6504 n->poll, work, weight); 6505 6506 if (likely(work < weight)) 6507 return work; 6508 6509 /* Drivers must not modify the NAPI state if they 6510 * consume the entire weight. In such cases this code 6511 * still "owns" the NAPI instance and therefore can 6512 * move the instance around on the list at-will. 6513 */ 6514 if (unlikely(napi_disable_pending(n))) { 6515 napi_complete(n); 6516 return work; 6517 } 6518 6519 /* The NAPI context has more processing work, but busy-polling 6520 * is preferred. Exit early. 6521 */ 6522 if (napi_prefer_busy_poll(n)) { 6523 if (napi_complete_done(n, work)) { 6524 /* If timeout is not set, we need to make sure 6525 * that the NAPI is re-scheduled. 6526 */ 6527 napi_schedule(n); 6528 } 6529 return work; 6530 } 6531 6532 if (n->gro_bitmask) { 6533 /* flush too old packets 6534 * If HZ < 1000, flush all packets. 6535 */ 6536 napi_gro_flush(n, HZ >= 1000); 6537 } 6538 6539 gro_normal_list(n); 6540 6541 /* Some drivers may have called napi_schedule 6542 * prior to exhausting their budget. 6543 */ 6544 if (unlikely(!list_empty(&n->poll_list))) { 6545 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6546 n->dev ? n->dev->name : "backlog"); 6547 return work; 6548 } 6549 6550 *repoll = true; 6551 6552 return work; 6553 } 6554 6555 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6556 { 6557 bool do_repoll = false; 6558 void *have; 6559 int work; 6560 6561 list_del_init(&n->poll_list); 6562 6563 have = netpoll_poll_lock(n); 6564 6565 work = __napi_poll(n, &do_repoll); 6566 6567 if (do_repoll) 6568 list_add_tail(&n->poll_list, repoll); 6569 6570 netpoll_poll_unlock(have); 6571 6572 return work; 6573 } 6574 6575 static int napi_thread_wait(struct napi_struct *napi) 6576 { 6577 bool woken = false; 6578 6579 set_current_state(TASK_INTERRUPTIBLE); 6580 6581 while (!kthread_should_stop()) { 6582 /* Testing SCHED_THREADED bit here to make sure the current 6583 * kthread owns this napi and could poll on this napi. 6584 * Testing SCHED bit is not enough because SCHED bit might be 6585 * set by some other busy poll thread or by napi_disable(). 6586 */ 6587 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) { 6588 WARN_ON(!list_empty(&napi->poll_list)); 6589 __set_current_state(TASK_RUNNING); 6590 return 0; 6591 } 6592 6593 schedule(); 6594 /* woken being true indicates this thread owns this napi. */ 6595 woken = true; 6596 set_current_state(TASK_INTERRUPTIBLE); 6597 } 6598 __set_current_state(TASK_RUNNING); 6599 6600 return -1; 6601 } 6602 6603 static void skb_defer_free_flush(struct softnet_data *sd) 6604 { 6605 struct sk_buff *skb, *next; 6606 6607 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6608 if (!READ_ONCE(sd->defer_list)) 6609 return; 6610 6611 spin_lock(&sd->defer_lock); 6612 skb = sd->defer_list; 6613 sd->defer_list = NULL; 6614 sd->defer_count = 0; 6615 spin_unlock(&sd->defer_lock); 6616 6617 while (skb != NULL) { 6618 next = skb->next; 6619 napi_consume_skb(skb, 1); 6620 skb = next; 6621 } 6622 } 6623 6624 static int napi_threaded_poll(void *data) 6625 { 6626 struct napi_struct *napi = data; 6627 struct softnet_data *sd; 6628 void *have; 6629 6630 while (!napi_thread_wait(napi)) { 6631 for (;;) { 6632 bool repoll = false; 6633 6634 local_bh_disable(); 6635 sd = this_cpu_ptr(&softnet_data); 6636 sd->in_napi_threaded_poll = true; 6637 6638 have = netpoll_poll_lock(napi); 6639 __napi_poll(napi, &repoll); 6640 netpoll_poll_unlock(have); 6641 6642 sd->in_napi_threaded_poll = false; 6643 barrier(); 6644 6645 if (sd_has_rps_ipi_waiting(sd)) { 6646 local_irq_disable(); 6647 net_rps_action_and_irq_enable(sd); 6648 } 6649 skb_defer_free_flush(sd); 6650 local_bh_enable(); 6651 6652 if (!repoll) 6653 break; 6654 6655 cond_resched(); 6656 } 6657 } 6658 return 0; 6659 } 6660 6661 static __latent_entropy void net_rx_action(struct softirq_action *h) 6662 { 6663 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6664 unsigned long time_limit = jiffies + 6665 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs)); 6666 int budget = READ_ONCE(netdev_budget); 6667 LIST_HEAD(list); 6668 LIST_HEAD(repoll); 6669 6670 start: 6671 sd->in_net_rx_action = true; 6672 local_irq_disable(); 6673 list_splice_init(&sd->poll_list, &list); 6674 local_irq_enable(); 6675 6676 for (;;) { 6677 struct napi_struct *n; 6678 6679 skb_defer_free_flush(sd); 6680 6681 if (list_empty(&list)) { 6682 if (list_empty(&repoll)) { 6683 sd->in_net_rx_action = false; 6684 barrier(); 6685 /* We need to check if ____napi_schedule() 6686 * had refilled poll_list while 6687 * sd->in_net_rx_action was true. 6688 */ 6689 if (!list_empty(&sd->poll_list)) 6690 goto start; 6691 if (!sd_has_rps_ipi_waiting(sd)) 6692 goto end; 6693 } 6694 break; 6695 } 6696 6697 n = list_first_entry(&list, struct napi_struct, poll_list); 6698 budget -= napi_poll(n, &repoll); 6699 6700 /* If softirq window is exhausted then punt. 6701 * Allow this to run for 2 jiffies since which will allow 6702 * an average latency of 1.5/HZ. 6703 */ 6704 if (unlikely(budget <= 0 || 6705 time_after_eq(jiffies, time_limit))) { 6706 sd->time_squeeze++; 6707 break; 6708 } 6709 } 6710 6711 local_irq_disable(); 6712 6713 list_splice_tail_init(&sd->poll_list, &list); 6714 list_splice_tail(&repoll, &list); 6715 list_splice(&list, &sd->poll_list); 6716 if (!list_empty(&sd->poll_list)) 6717 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6718 else 6719 sd->in_net_rx_action = false; 6720 6721 net_rps_action_and_irq_enable(sd); 6722 end:; 6723 } 6724 6725 struct netdev_adjacent { 6726 struct net_device *dev; 6727 netdevice_tracker dev_tracker; 6728 6729 /* upper master flag, there can only be one master device per list */ 6730 bool master; 6731 6732 /* lookup ignore flag */ 6733 bool ignore; 6734 6735 /* counter for the number of times this device was added to us */ 6736 u16 ref_nr; 6737 6738 /* private field for the users */ 6739 void *private; 6740 6741 struct list_head list; 6742 struct rcu_head rcu; 6743 }; 6744 6745 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6746 struct list_head *adj_list) 6747 { 6748 struct netdev_adjacent *adj; 6749 6750 list_for_each_entry(adj, adj_list, list) { 6751 if (adj->dev == adj_dev) 6752 return adj; 6753 } 6754 return NULL; 6755 } 6756 6757 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 6758 struct netdev_nested_priv *priv) 6759 { 6760 struct net_device *dev = (struct net_device *)priv->data; 6761 6762 return upper_dev == dev; 6763 } 6764 6765 /** 6766 * netdev_has_upper_dev - Check if device is linked to an upper device 6767 * @dev: device 6768 * @upper_dev: upper device to check 6769 * 6770 * Find out if a device is linked to specified upper device and return true 6771 * in case it is. Note that this checks only immediate upper device, 6772 * not through a complete stack of devices. The caller must hold the RTNL lock. 6773 */ 6774 bool netdev_has_upper_dev(struct net_device *dev, 6775 struct net_device *upper_dev) 6776 { 6777 struct netdev_nested_priv priv = { 6778 .data = (void *)upper_dev, 6779 }; 6780 6781 ASSERT_RTNL(); 6782 6783 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6784 &priv); 6785 } 6786 EXPORT_SYMBOL(netdev_has_upper_dev); 6787 6788 /** 6789 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 6790 * @dev: device 6791 * @upper_dev: upper device to check 6792 * 6793 * Find out if a device is linked to specified upper device and return true 6794 * in case it is. Note that this checks the entire upper device chain. 6795 * The caller must hold rcu lock. 6796 */ 6797 6798 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6799 struct net_device *upper_dev) 6800 { 6801 struct netdev_nested_priv priv = { 6802 .data = (void *)upper_dev, 6803 }; 6804 6805 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6806 &priv); 6807 } 6808 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6809 6810 /** 6811 * netdev_has_any_upper_dev - Check if device is linked to some device 6812 * @dev: device 6813 * 6814 * Find out if a device is linked to an upper device and return true in case 6815 * it is. The caller must hold the RTNL lock. 6816 */ 6817 bool netdev_has_any_upper_dev(struct net_device *dev) 6818 { 6819 ASSERT_RTNL(); 6820 6821 return !list_empty(&dev->adj_list.upper); 6822 } 6823 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6824 6825 /** 6826 * netdev_master_upper_dev_get - Get master upper device 6827 * @dev: device 6828 * 6829 * Find a master upper device and return pointer to it or NULL in case 6830 * it's not there. The caller must hold the RTNL lock. 6831 */ 6832 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6833 { 6834 struct netdev_adjacent *upper; 6835 6836 ASSERT_RTNL(); 6837 6838 if (list_empty(&dev->adj_list.upper)) 6839 return NULL; 6840 6841 upper = list_first_entry(&dev->adj_list.upper, 6842 struct netdev_adjacent, list); 6843 if (likely(upper->master)) 6844 return upper->dev; 6845 return NULL; 6846 } 6847 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6848 6849 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 6850 { 6851 struct netdev_adjacent *upper; 6852 6853 ASSERT_RTNL(); 6854 6855 if (list_empty(&dev->adj_list.upper)) 6856 return NULL; 6857 6858 upper = list_first_entry(&dev->adj_list.upper, 6859 struct netdev_adjacent, list); 6860 if (likely(upper->master) && !upper->ignore) 6861 return upper->dev; 6862 return NULL; 6863 } 6864 6865 /** 6866 * netdev_has_any_lower_dev - Check if device is linked to some device 6867 * @dev: device 6868 * 6869 * Find out if a device is linked to a lower device and return true in case 6870 * it is. The caller must hold the RTNL lock. 6871 */ 6872 static bool netdev_has_any_lower_dev(struct net_device *dev) 6873 { 6874 ASSERT_RTNL(); 6875 6876 return !list_empty(&dev->adj_list.lower); 6877 } 6878 6879 void *netdev_adjacent_get_private(struct list_head *adj_list) 6880 { 6881 struct netdev_adjacent *adj; 6882 6883 adj = list_entry(adj_list, struct netdev_adjacent, list); 6884 6885 return adj->private; 6886 } 6887 EXPORT_SYMBOL(netdev_adjacent_get_private); 6888 6889 /** 6890 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6891 * @dev: device 6892 * @iter: list_head ** of the current position 6893 * 6894 * Gets the next device from the dev's upper list, starting from iter 6895 * position. The caller must hold RCU read lock. 6896 */ 6897 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6898 struct list_head **iter) 6899 { 6900 struct netdev_adjacent *upper; 6901 6902 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6903 6904 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6905 6906 if (&upper->list == &dev->adj_list.upper) 6907 return NULL; 6908 6909 *iter = &upper->list; 6910 6911 return upper->dev; 6912 } 6913 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6914 6915 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 6916 struct list_head **iter, 6917 bool *ignore) 6918 { 6919 struct netdev_adjacent *upper; 6920 6921 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 6922 6923 if (&upper->list == &dev->adj_list.upper) 6924 return NULL; 6925 6926 *iter = &upper->list; 6927 *ignore = upper->ignore; 6928 6929 return upper->dev; 6930 } 6931 6932 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6933 struct list_head **iter) 6934 { 6935 struct netdev_adjacent *upper; 6936 6937 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6938 6939 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6940 6941 if (&upper->list == &dev->adj_list.upper) 6942 return NULL; 6943 6944 *iter = &upper->list; 6945 6946 return upper->dev; 6947 } 6948 6949 static int __netdev_walk_all_upper_dev(struct net_device *dev, 6950 int (*fn)(struct net_device *dev, 6951 struct netdev_nested_priv *priv), 6952 struct netdev_nested_priv *priv) 6953 { 6954 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6955 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6956 int ret, cur = 0; 6957 bool ignore; 6958 6959 now = dev; 6960 iter = &dev->adj_list.upper; 6961 6962 while (1) { 6963 if (now != dev) { 6964 ret = fn(now, priv); 6965 if (ret) 6966 return ret; 6967 } 6968 6969 next = NULL; 6970 while (1) { 6971 udev = __netdev_next_upper_dev(now, &iter, &ignore); 6972 if (!udev) 6973 break; 6974 if (ignore) 6975 continue; 6976 6977 next = udev; 6978 niter = &udev->adj_list.upper; 6979 dev_stack[cur] = now; 6980 iter_stack[cur++] = iter; 6981 break; 6982 } 6983 6984 if (!next) { 6985 if (!cur) 6986 return 0; 6987 next = dev_stack[--cur]; 6988 niter = iter_stack[cur]; 6989 } 6990 6991 now = next; 6992 iter = niter; 6993 } 6994 6995 return 0; 6996 } 6997 6998 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6999 int (*fn)(struct net_device *dev, 7000 struct netdev_nested_priv *priv), 7001 struct netdev_nested_priv *priv) 7002 { 7003 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7004 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7005 int ret, cur = 0; 7006 7007 now = dev; 7008 iter = &dev->adj_list.upper; 7009 7010 while (1) { 7011 if (now != dev) { 7012 ret = fn(now, priv); 7013 if (ret) 7014 return ret; 7015 } 7016 7017 next = NULL; 7018 while (1) { 7019 udev = netdev_next_upper_dev_rcu(now, &iter); 7020 if (!udev) 7021 break; 7022 7023 next = udev; 7024 niter = &udev->adj_list.upper; 7025 dev_stack[cur] = now; 7026 iter_stack[cur++] = iter; 7027 break; 7028 } 7029 7030 if (!next) { 7031 if (!cur) 7032 return 0; 7033 next = dev_stack[--cur]; 7034 niter = iter_stack[cur]; 7035 } 7036 7037 now = next; 7038 iter = niter; 7039 } 7040 7041 return 0; 7042 } 7043 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7044 7045 static bool __netdev_has_upper_dev(struct net_device *dev, 7046 struct net_device *upper_dev) 7047 { 7048 struct netdev_nested_priv priv = { 7049 .flags = 0, 7050 .data = (void *)upper_dev, 7051 }; 7052 7053 ASSERT_RTNL(); 7054 7055 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7056 &priv); 7057 } 7058 7059 /** 7060 * netdev_lower_get_next_private - Get the next ->private from the 7061 * lower neighbour list 7062 * @dev: device 7063 * @iter: list_head ** of the current position 7064 * 7065 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7066 * list, starting from iter position. The caller must hold either hold the 7067 * RTNL lock or its own locking that guarantees that the neighbour lower 7068 * list will remain unchanged. 7069 */ 7070 void *netdev_lower_get_next_private(struct net_device *dev, 7071 struct list_head **iter) 7072 { 7073 struct netdev_adjacent *lower; 7074 7075 lower = list_entry(*iter, struct netdev_adjacent, list); 7076 7077 if (&lower->list == &dev->adj_list.lower) 7078 return NULL; 7079 7080 *iter = lower->list.next; 7081 7082 return lower->private; 7083 } 7084 EXPORT_SYMBOL(netdev_lower_get_next_private); 7085 7086 /** 7087 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7088 * lower neighbour list, RCU 7089 * variant 7090 * @dev: device 7091 * @iter: list_head ** of the current position 7092 * 7093 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7094 * list, starting from iter position. The caller must hold RCU read lock. 7095 */ 7096 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7097 struct list_head **iter) 7098 { 7099 struct netdev_adjacent *lower; 7100 7101 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 7102 7103 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7104 7105 if (&lower->list == &dev->adj_list.lower) 7106 return NULL; 7107 7108 *iter = &lower->list; 7109 7110 return lower->private; 7111 } 7112 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7113 7114 /** 7115 * netdev_lower_get_next - Get the next device from the lower neighbour 7116 * list 7117 * @dev: device 7118 * @iter: list_head ** of the current position 7119 * 7120 * Gets the next netdev_adjacent from the dev's lower neighbour 7121 * list, starting from iter position. The caller must hold RTNL lock or 7122 * its own locking that guarantees that the neighbour lower 7123 * list will remain unchanged. 7124 */ 7125 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7126 { 7127 struct netdev_adjacent *lower; 7128 7129 lower = list_entry(*iter, struct netdev_adjacent, list); 7130 7131 if (&lower->list == &dev->adj_list.lower) 7132 return NULL; 7133 7134 *iter = lower->list.next; 7135 7136 return lower->dev; 7137 } 7138 EXPORT_SYMBOL(netdev_lower_get_next); 7139 7140 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7141 struct list_head **iter) 7142 { 7143 struct netdev_adjacent *lower; 7144 7145 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7146 7147 if (&lower->list == &dev->adj_list.lower) 7148 return NULL; 7149 7150 *iter = &lower->list; 7151 7152 return lower->dev; 7153 } 7154 7155 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7156 struct list_head **iter, 7157 bool *ignore) 7158 { 7159 struct netdev_adjacent *lower; 7160 7161 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7162 7163 if (&lower->list == &dev->adj_list.lower) 7164 return NULL; 7165 7166 *iter = &lower->list; 7167 *ignore = lower->ignore; 7168 7169 return lower->dev; 7170 } 7171 7172 int netdev_walk_all_lower_dev(struct net_device *dev, 7173 int (*fn)(struct net_device *dev, 7174 struct netdev_nested_priv *priv), 7175 struct netdev_nested_priv *priv) 7176 { 7177 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7178 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7179 int ret, cur = 0; 7180 7181 now = dev; 7182 iter = &dev->adj_list.lower; 7183 7184 while (1) { 7185 if (now != dev) { 7186 ret = fn(now, priv); 7187 if (ret) 7188 return ret; 7189 } 7190 7191 next = NULL; 7192 while (1) { 7193 ldev = netdev_next_lower_dev(now, &iter); 7194 if (!ldev) 7195 break; 7196 7197 next = ldev; 7198 niter = &ldev->adj_list.lower; 7199 dev_stack[cur] = now; 7200 iter_stack[cur++] = iter; 7201 break; 7202 } 7203 7204 if (!next) { 7205 if (!cur) 7206 return 0; 7207 next = dev_stack[--cur]; 7208 niter = iter_stack[cur]; 7209 } 7210 7211 now = next; 7212 iter = niter; 7213 } 7214 7215 return 0; 7216 } 7217 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7218 7219 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7220 int (*fn)(struct net_device *dev, 7221 struct netdev_nested_priv *priv), 7222 struct netdev_nested_priv *priv) 7223 { 7224 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7225 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7226 int ret, cur = 0; 7227 bool ignore; 7228 7229 now = dev; 7230 iter = &dev->adj_list.lower; 7231 7232 while (1) { 7233 if (now != dev) { 7234 ret = fn(now, priv); 7235 if (ret) 7236 return ret; 7237 } 7238 7239 next = NULL; 7240 while (1) { 7241 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7242 if (!ldev) 7243 break; 7244 if (ignore) 7245 continue; 7246 7247 next = ldev; 7248 niter = &ldev->adj_list.lower; 7249 dev_stack[cur] = now; 7250 iter_stack[cur++] = iter; 7251 break; 7252 } 7253 7254 if (!next) { 7255 if (!cur) 7256 return 0; 7257 next = dev_stack[--cur]; 7258 niter = iter_stack[cur]; 7259 } 7260 7261 now = next; 7262 iter = niter; 7263 } 7264 7265 return 0; 7266 } 7267 7268 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7269 struct list_head **iter) 7270 { 7271 struct netdev_adjacent *lower; 7272 7273 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7274 if (&lower->list == &dev->adj_list.lower) 7275 return NULL; 7276 7277 *iter = &lower->list; 7278 7279 return lower->dev; 7280 } 7281 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7282 7283 static u8 __netdev_upper_depth(struct net_device *dev) 7284 { 7285 struct net_device *udev; 7286 struct list_head *iter; 7287 u8 max_depth = 0; 7288 bool ignore; 7289 7290 for (iter = &dev->adj_list.upper, 7291 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7292 udev; 7293 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7294 if (ignore) 7295 continue; 7296 if (max_depth < udev->upper_level) 7297 max_depth = udev->upper_level; 7298 } 7299 7300 return max_depth; 7301 } 7302 7303 static u8 __netdev_lower_depth(struct net_device *dev) 7304 { 7305 struct net_device *ldev; 7306 struct list_head *iter; 7307 u8 max_depth = 0; 7308 bool ignore; 7309 7310 for (iter = &dev->adj_list.lower, 7311 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7312 ldev; 7313 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7314 if (ignore) 7315 continue; 7316 if (max_depth < ldev->lower_level) 7317 max_depth = ldev->lower_level; 7318 } 7319 7320 return max_depth; 7321 } 7322 7323 static int __netdev_update_upper_level(struct net_device *dev, 7324 struct netdev_nested_priv *__unused) 7325 { 7326 dev->upper_level = __netdev_upper_depth(dev) + 1; 7327 return 0; 7328 } 7329 7330 #ifdef CONFIG_LOCKDEP 7331 static LIST_HEAD(net_unlink_list); 7332 7333 static void net_unlink_todo(struct net_device *dev) 7334 { 7335 if (list_empty(&dev->unlink_list)) 7336 list_add_tail(&dev->unlink_list, &net_unlink_list); 7337 } 7338 #endif 7339 7340 static int __netdev_update_lower_level(struct net_device *dev, 7341 struct netdev_nested_priv *priv) 7342 { 7343 dev->lower_level = __netdev_lower_depth(dev) + 1; 7344 7345 #ifdef CONFIG_LOCKDEP 7346 if (!priv) 7347 return 0; 7348 7349 if (priv->flags & NESTED_SYNC_IMM) 7350 dev->nested_level = dev->lower_level - 1; 7351 if (priv->flags & NESTED_SYNC_TODO) 7352 net_unlink_todo(dev); 7353 #endif 7354 return 0; 7355 } 7356 7357 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7358 int (*fn)(struct net_device *dev, 7359 struct netdev_nested_priv *priv), 7360 struct netdev_nested_priv *priv) 7361 { 7362 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7363 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7364 int ret, cur = 0; 7365 7366 now = dev; 7367 iter = &dev->adj_list.lower; 7368 7369 while (1) { 7370 if (now != dev) { 7371 ret = fn(now, priv); 7372 if (ret) 7373 return ret; 7374 } 7375 7376 next = NULL; 7377 while (1) { 7378 ldev = netdev_next_lower_dev_rcu(now, &iter); 7379 if (!ldev) 7380 break; 7381 7382 next = ldev; 7383 niter = &ldev->adj_list.lower; 7384 dev_stack[cur] = now; 7385 iter_stack[cur++] = iter; 7386 break; 7387 } 7388 7389 if (!next) { 7390 if (!cur) 7391 return 0; 7392 next = dev_stack[--cur]; 7393 niter = iter_stack[cur]; 7394 } 7395 7396 now = next; 7397 iter = niter; 7398 } 7399 7400 return 0; 7401 } 7402 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7403 7404 /** 7405 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7406 * lower neighbour list, RCU 7407 * variant 7408 * @dev: device 7409 * 7410 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7411 * list. The caller must hold RCU read lock. 7412 */ 7413 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7414 { 7415 struct netdev_adjacent *lower; 7416 7417 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7418 struct netdev_adjacent, list); 7419 if (lower) 7420 return lower->private; 7421 return NULL; 7422 } 7423 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7424 7425 /** 7426 * netdev_master_upper_dev_get_rcu - Get master upper device 7427 * @dev: device 7428 * 7429 * Find a master upper device and return pointer to it or NULL in case 7430 * it's not there. The caller must hold the RCU read lock. 7431 */ 7432 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7433 { 7434 struct netdev_adjacent *upper; 7435 7436 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7437 struct netdev_adjacent, list); 7438 if (upper && likely(upper->master)) 7439 return upper->dev; 7440 return NULL; 7441 } 7442 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7443 7444 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7445 struct net_device *adj_dev, 7446 struct list_head *dev_list) 7447 { 7448 char linkname[IFNAMSIZ+7]; 7449 7450 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7451 "upper_%s" : "lower_%s", adj_dev->name); 7452 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7453 linkname); 7454 } 7455 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7456 char *name, 7457 struct list_head *dev_list) 7458 { 7459 char linkname[IFNAMSIZ+7]; 7460 7461 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7462 "upper_%s" : "lower_%s", name); 7463 sysfs_remove_link(&(dev->dev.kobj), linkname); 7464 } 7465 7466 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7467 struct net_device *adj_dev, 7468 struct list_head *dev_list) 7469 { 7470 return (dev_list == &dev->adj_list.upper || 7471 dev_list == &dev->adj_list.lower) && 7472 net_eq(dev_net(dev), dev_net(adj_dev)); 7473 } 7474 7475 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7476 struct net_device *adj_dev, 7477 struct list_head *dev_list, 7478 void *private, bool master) 7479 { 7480 struct netdev_adjacent *adj; 7481 int ret; 7482 7483 adj = __netdev_find_adj(adj_dev, dev_list); 7484 7485 if (adj) { 7486 adj->ref_nr += 1; 7487 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7488 dev->name, adj_dev->name, adj->ref_nr); 7489 7490 return 0; 7491 } 7492 7493 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7494 if (!adj) 7495 return -ENOMEM; 7496 7497 adj->dev = adj_dev; 7498 adj->master = master; 7499 adj->ref_nr = 1; 7500 adj->private = private; 7501 adj->ignore = false; 7502 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 7503 7504 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7505 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7506 7507 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7508 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7509 if (ret) 7510 goto free_adj; 7511 } 7512 7513 /* Ensure that master link is always the first item in list. */ 7514 if (master) { 7515 ret = sysfs_create_link(&(dev->dev.kobj), 7516 &(adj_dev->dev.kobj), "master"); 7517 if (ret) 7518 goto remove_symlinks; 7519 7520 list_add_rcu(&adj->list, dev_list); 7521 } else { 7522 list_add_tail_rcu(&adj->list, dev_list); 7523 } 7524 7525 return 0; 7526 7527 remove_symlinks: 7528 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7529 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7530 free_adj: 7531 netdev_put(adj_dev, &adj->dev_tracker); 7532 kfree(adj); 7533 7534 return ret; 7535 } 7536 7537 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7538 struct net_device *adj_dev, 7539 u16 ref_nr, 7540 struct list_head *dev_list) 7541 { 7542 struct netdev_adjacent *adj; 7543 7544 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7545 dev->name, adj_dev->name, ref_nr); 7546 7547 adj = __netdev_find_adj(adj_dev, dev_list); 7548 7549 if (!adj) { 7550 pr_err("Adjacency does not exist for device %s from %s\n", 7551 dev->name, adj_dev->name); 7552 WARN_ON(1); 7553 return; 7554 } 7555 7556 if (adj->ref_nr > ref_nr) { 7557 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7558 dev->name, adj_dev->name, ref_nr, 7559 adj->ref_nr - ref_nr); 7560 adj->ref_nr -= ref_nr; 7561 return; 7562 } 7563 7564 if (adj->master) 7565 sysfs_remove_link(&(dev->dev.kobj), "master"); 7566 7567 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7568 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7569 7570 list_del_rcu(&adj->list); 7571 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7572 adj_dev->name, dev->name, adj_dev->name); 7573 netdev_put(adj_dev, &adj->dev_tracker); 7574 kfree_rcu(adj, rcu); 7575 } 7576 7577 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7578 struct net_device *upper_dev, 7579 struct list_head *up_list, 7580 struct list_head *down_list, 7581 void *private, bool master) 7582 { 7583 int ret; 7584 7585 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7586 private, master); 7587 if (ret) 7588 return ret; 7589 7590 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7591 private, false); 7592 if (ret) { 7593 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7594 return ret; 7595 } 7596 7597 return 0; 7598 } 7599 7600 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7601 struct net_device *upper_dev, 7602 u16 ref_nr, 7603 struct list_head *up_list, 7604 struct list_head *down_list) 7605 { 7606 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7607 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7608 } 7609 7610 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7611 struct net_device *upper_dev, 7612 void *private, bool master) 7613 { 7614 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7615 &dev->adj_list.upper, 7616 &upper_dev->adj_list.lower, 7617 private, master); 7618 } 7619 7620 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7621 struct net_device *upper_dev) 7622 { 7623 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7624 &dev->adj_list.upper, 7625 &upper_dev->adj_list.lower); 7626 } 7627 7628 static int __netdev_upper_dev_link(struct net_device *dev, 7629 struct net_device *upper_dev, bool master, 7630 void *upper_priv, void *upper_info, 7631 struct netdev_nested_priv *priv, 7632 struct netlink_ext_ack *extack) 7633 { 7634 struct netdev_notifier_changeupper_info changeupper_info = { 7635 .info = { 7636 .dev = dev, 7637 .extack = extack, 7638 }, 7639 .upper_dev = upper_dev, 7640 .master = master, 7641 .linking = true, 7642 .upper_info = upper_info, 7643 }; 7644 struct net_device *master_dev; 7645 int ret = 0; 7646 7647 ASSERT_RTNL(); 7648 7649 if (dev == upper_dev) 7650 return -EBUSY; 7651 7652 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7653 if (__netdev_has_upper_dev(upper_dev, dev)) 7654 return -EBUSY; 7655 7656 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7657 return -EMLINK; 7658 7659 if (!master) { 7660 if (__netdev_has_upper_dev(dev, upper_dev)) 7661 return -EEXIST; 7662 } else { 7663 master_dev = __netdev_master_upper_dev_get(dev); 7664 if (master_dev) 7665 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7666 } 7667 7668 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7669 &changeupper_info.info); 7670 ret = notifier_to_errno(ret); 7671 if (ret) 7672 return ret; 7673 7674 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7675 master); 7676 if (ret) 7677 return ret; 7678 7679 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7680 &changeupper_info.info); 7681 ret = notifier_to_errno(ret); 7682 if (ret) 7683 goto rollback; 7684 7685 __netdev_update_upper_level(dev, NULL); 7686 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7687 7688 __netdev_update_lower_level(upper_dev, priv); 7689 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7690 priv); 7691 7692 return 0; 7693 7694 rollback: 7695 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7696 7697 return ret; 7698 } 7699 7700 /** 7701 * netdev_upper_dev_link - Add a link to the upper device 7702 * @dev: device 7703 * @upper_dev: new upper device 7704 * @extack: netlink extended ack 7705 * 7706 * Adds a link to device which is upper to this one. The caller must hold 7707 * the RTNL lock. On a failure a negative errno code is returned. 7708 * On success the reference counts are adjusted and the function 7709 * returns zero. 7710 */ 7711 int netdev_upper_dev_link(struct net_device *dev, 7712 struct net_device *upper_dev, 7713 struct netlink_ext_ack *extack) 7714 { 7715 struct netdev_nested_priv priv = { 7716 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7717 .data = NULL, 7718 }; 7719 7720 return __netdev_upper_dev_link(dev, upper_dev, false, 7721 NULL, NULL, &priv, extack); 7722 } 7723 EXPORT_SYMBOL(netdev_upper_dev_link); 7724 7725 /** 7726 * netdev_master_upper_dev_link - Add a master link to the upper device 7727 * @dev: device 7728 * @upper_dev: new upper device 7729 * @upper_priv: upper device private 7730 * @upper_info: upper info to be passed down via notifier 7731 * @extack: netlink extended ack 7732 * 7733 * Adds a link to device which is upper to this one. In this case, only 7734 * one master upper device can be linked, although other non-master devices 7735 * might be linked as well. The caller must hold the RTNL lock. 7736 * On a failure a negative errno code is returned. On success the reference 7737 * counts are adjusted and the function returns zero. 7738 */ 7739 int netdev_master_upper_dev_link(struct net_device *dev, 7740 struct net_device *upper_dev, 7741 void *upper_priv, void *upper_info, 7742 struct netlink_ext_ack *extack) 7743 { 7744 struct netdev_nested_priv priv = { 7745 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7746 .data = NULL, 7747 }; 7748 7749 return __netdev_upper_dev_link(dev, upper_dev, true, 7750 upper_priv, upper_info, &priv, extack); 7751 } 7752 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7753 7754 static void __netdev_upper_dev_unlink(struct net_device *dev, 7755 struct net_device *upper_dev, 7756 struct netdev_nested_priv *priv) 7757 { 7758 struct netdev_notifier_changeupper_info changeupper_info = { 7759 .info = { 7760 .dev = dev, 7761 }, 7762 .upper_dev = upper_dev, 7763 .linking = false, 7764 }; 7765 7766 ASSERT_RTNL(); 7767 7768 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7769 7770 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7771 &changeupper_info.info); 7772 7773 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7774 7775 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7776 &changeupper_info.info); 7777 7778 __netdev_update_upper_level(dev, NULL); 7779 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7780 7781 __netdev_update_lower_level(upper_dev, priv); 7782 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7783 priv); 7784 } 7785 7786 /** 7787 * netdev_upper_dev_unlink - Removes a link to upper device 7788 * @dev: device 7789 * @upper_dev: new upper device 7790 * 7791 * Removes a link to device which is upper to this one. The caller must hold 7792 * the RTNL lock. 7793 */ 7794 void netdev_upper_dev_unlink(struct net_device *dev, 7795 struct net_device *upper_dev) 7796 { 7797 struct netdev_nested_priv priv = { 7798 .flags = NESTED_SYNC_TODO, 7799 .data = NULL, 7800 }; 7801 7802 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 7803 } 7804 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7805 7806 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 7807 struct net_device *lower_dev, 7808 bool val) 7809 { 7810 struct netdev_adjacent *adj; 7811 7812 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 7813 if (adj) 7814 adj->ignore = val; 7815 7816 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 7817 if (adj) 7818 adj->ignore = val; 7819 } 7820 7821 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 7822 struct net_device *lower_dev) 7823 { 7824 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 7825 } 7826 7827 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 7828 struct net_device *lower_dev) 7829 { 7830 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 7831 } 7832 7833 int netdev_adjacent_change_prepare(struct net_device *old_dev, 7834 struct net_device *new_dev, 7835 struct net_device *dev, 7836 struct netlink_ext_ack *extack) 7837 { 7838 struct netdev_nested_priv priv = { 7839 .flags = 0, 7840 .data = NULL, 7841 }; 7842 int err; 7843 7844 if (!new_dev) 7845 return 0; 7846 7847 if (old_dev && new_dev != old_dev) 7848 netdev_adjacent_dev_disable(dev, old_dev); 7849 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 7850 extack); 7851 if (err) { 7852 if (old_dev && new_dev != old_dev) 7853 netdev_adjacent_dev_enable(dev, old_dev); 7854 return err; 7855 } 7856 7857 return 0; 7858 } 7859 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 7860 7861 void netdev_adjacent_change_commit(struct net_device *old_dev, 7862 struct net_device *new_dev, 7863 struct net_device *dev) 7864 { 7865 struct netdev_nested_priv priv = { 7866 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7867 .data = NULL, 7868 }; 7869 7870 if (!new_dev || !old_dev) 7871 return; 7872 7873 if (new_dev == old_dev) 7874 return; 7875 7876 netdev_adjacent_dev_enable(dev, old_dev); 7877 __netdev_upper_dev_unlink(old_dev, dev, &priv); 7878 } 7879 EXPORT_SYMBOL(netdev_adjacent_change_commit); 7880 7881 void netdev_adjacent_change_abort(struct net_device *old_dev, 7882 struct net_device *new_dev, 7883 struct net_device *dev) 7884 { 7885 struct netdev_nested_priv priv = { 7886 .flags = 0, 7887 .data = NULL, 7888 }; 7889 7890 if (!new_dev) 7891 return; 7892 7893 if (old_dev && new_dev != old_dev) 7894 netdev_adjacent_dev_enable(dev, old_dev); 7895 7896 __netdev_upper_dev_unlink(new_dev, dev, &priv); 7897 } 7898 EXPORT_SYMBOL(netdev_adjacent_change_abort); 7899 7900 /** 7901 * netdev_bonding_info_change - Dispatch event about slave change 7902 * @dev: device 7903 * @bonding_info: info to dispatch 7904 * 7905 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7906 * The caller must hold the RTNL lock. 7907 */ 7908 void netdev_bonding_info_change(struct net_device *dev, 7909 struct netdev_bonding_info *bonding_info) 7910 { 7911 struct netdev_notifier_bonding_info info = { 7912 .info.dev = dev, 7913 }; 7914 7915 memcpy(&info.bonding_info, bonding_info, 7916 sizeof(struct netdev_bonding_info)); 7917 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7918 &info.info); 7919 } 7920 EXPORT_SYMBOL(netdev_bonding_info_change); 7921 7922 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 7923 struct netlink_ext_ack *extack) 7924 { 7925 struct netdev_notifier_offload_xstats_info info = { 7926 .info.dev = dev, 7927 .info.extack = extack, 7928 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 7929 }; 7930 int err; 7931 int rc; 7932 7933 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 7934 GFP_KERNEL); 7935 if (!dev->offload_xstats_l3) 7936 return -ENOMEM; 7937 7938 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 7939 NETDEV_OFFLOAD_XSTATS_DISABLE, 7940 &info.info); 7941 err = notifier_to_errno(rc); 7942 if (err) 7943 goto free_stats; 7944 7945 return 0; 7946 7947 free_stats: 7948 kfree(dev->offload_xstats_l3); 7949 dev->offload_xstats_l3 = NULL; 7950 return err; 7951 } 7952 7953 int netdev_offload_xstats_enable(struct net_device *dev, 7954 enum netdev_offload_xstats_type type, 7955 struct netlink_ext_ack *extack) 7956 { 7957 ASSERT_RTNL(); 7958 7959 if (netdev_offload_xstats_enabled(dev, type)) 7960 return -EALREADY; 7961 7962 switch (type) { 7963 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 7964 return netdev_offload_xstats_enable_l3(dev, extack); 7965 } 7966 7967 WARN_ON(1); 7968 return -EINVAL; 7969 } 7970 EXPORT_SYMBOL(netdev_offload_xstats_enable); 7971 7972 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 7973 { 7974 struct netdev_notifier_offload_xstats_info info = { 7975 .info.dev = dev, 7976 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 7977 }; 7978 7979 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 7980 &info.info); 7981 kfree(dev->offload_xstats_l3); 7982 dev->offload_xstats_l3 = NULL; 7983 } 7984 7985 int netdev_offload_xstats_disable(struct net_device *dev, 7986 enum netdev_offload_xstats_type type) 7987 { 7988 ASSERT_RTNL(); 7989 7990 if (!netdev_offload_xstats_enabled(dev, type)) 7991 return -EALREADY; 7992 7993 switch (type) { 7994 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 7995 netdev_offload_xstats_disable_l3(dev); 7996 return 0; 7997 } 7998 7999 WARN_ON(1); 8000 return -EINVAL; 8001 } 8002 EXPORT_SYMBOL(netdev_offload_xstats_disable); 8003 8004 static void netdev_offload_xstats_disable_all(struct net_device *dev) 8005 { 8006 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 8007 } 8008 8009 static struct rtnl_hw_stats64 * 8010 netdev_offload_xstats_get_ptr(const struct net_device *dev, 8011 enum netdev_offload_xstats_type type) 8012 { 8013 switch (type) { 8014 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8015 return dev->offload_xstats_l3; 8016 } 8017 8018 WARN_ON(1); 8019 return NULL; 8020 } 8021 8022 bool netdev_offload_xstats_enabled(const struct net_device *dev, 8023 enum netdev_offload_xstats_type type) 8024 { 8025 ASSERT_RTNL(); 8026 8027 return netdev_offload_xstats_get_ptr(dev, type); 8028 } 8029 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 8030 8031 struct netdev_notifier_offload_xstats_ru { 8032 bool used; 8033 }; 8034 8035 struct netdev_notifier_offload_xstats_rd { 8036 struct rtnl_hw_stats64 stats; 8037 bool used; 8038 }; 8039 8040 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 8041 const struct rtnl_hw_stats64 *src) 8042 { 8043 dest->rx_packets += src->rx_packets; 8044 dest->tx_packets += src->tx_packets; 8045 dest->rx_bytes += src->rx_bytes; 8046 dest->tx_bytes += src->tx_bytes; 8047 dest->rx_errors += src->rx_errors; 8048 dest->tx_errors += src->tx_errors; 8049 dest->rx_dropped += src->rx_dropped; 8050 dest->tx_dropped += src->tx_dropped; 8051 dest->multicast += src->multicast; 8052 } 8053 8054 static int netdev_offload_xstats_get_used(struct net_device *dev, 8055 enum netdev_offload_xstats_type type, 8056 bool *p_used, 8057 struct netlink_ext_ack *extack) 8058 { 8059 struct netdev_notifier_offload_xstats_ru report_used = {}; 8060 struct netdev_notifier_offload_xstats_info info = { 8061 .info.dev = dev, 8062 .info.extack = extack, 8063 .type = type, 8064 .report_used = &report_used, 8065 }; 8066 int rc; 8067 8068 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 8069 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 8070 &info.info); 8071 *p_used = report_used.used; 8072 return notifier_to_errno(rc); 8073 } 8074 8075 static int netdev_offload_xstats_get_stats(struct net_device *dev, 8076 enum netdev_offload_xstats_type type, 8077 struct rtnl_hw_stats64 *p_stats, 8078 bool *p_used, 8079 struct netlink_ext_ack *extack) 8080 { 8081 struct netdev_notifier_offload_xstats_rd report_delta = {}; 8082 struct netdev_notifier_offload_xstats_info info = { 8083 .info.dev = dev, 8084 .info.extack = extack, 8085 .type = type, 8086 .report_delta = &report_delta, 8087 }; 8088 struct rtnl_hw_stats64 *stats; 8089 int rc; 8090 8091 stats = netdev_offload_xstats_get_ptr(dev, type); 8092 if (WARN_ON(!stats)) 8093 return -EINVAL; 8094 8095 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 8096 &info.info); 8097 8098 /* Cache whatever we got, even if there was an error, otherwise the 8099 * successful stats retrievals would get lost. 8100 */ 8101 netdev_hw_stats64_add(stats, &report_delta.stats); 8102 8103 if (p_stats) 8104 *p_stats = *stats; 8105 *p_used = report_delta.used; 8106 8107 return notifier_to_errno(rc); 8108 } 8109 8110 int netdev_offload_xstats_get(struct net_device *dev, 8111 enum netdev_offload_xstats_type type, 8112 struct rtnl_hw_stats64 *p_stats, bool *p_used, 8113 struct netlink_ext_ack *extack) 8114 { 8115 ASSERT_RTNL(); 8116 8117 if (p_stats) 8118 return netdev_offload_xstats_get_stats(dev, type, p_stats, 8119 p_used, extack); 8120 else 8121 return netdev_offload_xstats_get_used(dev, type, p_used, 8122 extack); 8123 } 8124 EXPORT_SYMBOL(netdev_offload_xstats_get); 8125 8126 void 8127 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 8128 const struct rtnl_hw_stats64 *stats) 8129 { 8130 report_delta->used = true; 8131 netdev_hw_stats64_add(&report_delta->stats, stats); 8132 } 8133 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 8134 8135 void 8136 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 8137 { 8138 report_used->used = true; 8139 } 8140 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 8141 8142 void netdev_offload_xstats_push_delta(struct net_device *dev, 8143 enum netdev_offload_xstats_type type, 8144 const struct rtnl_hw_stats64 *p_stats) 8145 { 8146 struct rtnl_hw_stats64 *stats; 8147 8148 ASSERT_RTNL(); 8149 8150 stats = netdev_offload_xstats_get_ptr(dev, type); 8151 if (WARN_ON(!stats)) 8152 return; 8153 8154 netdev_hw_stats64_add(stats, p_stats); 8155 } 8156 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 8157 8158 /** 8159 * netdev_get_xmit_slave - Get the xmit slave of master device 8160 * @dev: device 8161 * @skb: The packet 8162 * @all_slaves: assume all the slaves are active 8163 * 8164 * The reference counters are not incremented so the caller must be 8165 * careful with locks. The caller must hold RCU lock. 8166 * %NULL is returned if no slave is found. 8167 */ 8168 8169 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8170 struct sk_buff *skb, 8171 bool all_slaves) 8172 { 8173 const struct net_device_ops *ops = dev->netdev_ops; 8174 8175 if (!ops->ndo_get_xmit_slave) 8176 return NULL; 8177 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8178 } 8179 EXPORT_SYMBOL(netdev_get_xmit_slave); 8180 8181 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 8182 struct sock *sk) 8183 { 8184 const struct net_device_ops *ops = dev->netdev_ops; 8185 8186 if (!ops->ndo_sk_get_lower_dev) 8187 return NULL; 8188 return ops->ndo_sk_get_lower_dev(dev, sk); 8189 } 8190 8191 /** 8192 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 8193 * @dev: device 8194 * @sk: the socket 8195 * 8196 * %NULL is returned if no lower device is found. 8197 */ 8198 8199 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 8200 struct sock *sk) 8201 { 8202 struct net_device *lower; 8203 8204 lower = netdev_sk_get_lower_dev(dev, sk); 8205 while (lower) { 8206 dev = lower; 8207 lower = netdev_sk_get_lower_dev(dev, sk); 8208 } 8209 8210 return dev; 8211 } 8212 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 8213 8214 static void netdev_adjacent_add_links(struct net_device *dev) 8215 { 8216 struct netdev_adjacent *iter; 8217 8218 struct net *net = dev_net(dev); 8219 8220 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8221 if (!net_eq(net, dev_net(iter->dev))) 8222 continue; 8223 netdev_adjacent_sysfs_add(iter->dev, dev, 8224 &iter->dev->adj_list.lower); 8225 netdev_adjacent_sysfs_add(dev, iter->dev, 8226 &dev->adj_list.upper); 8227 } 8228 8229 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8230 if (!net_eq(net, dev_net(iter->dev))) 8231 continue; 8232 netdev_adjacent_sysfs_add(iter->dev, dev, 8233 &iter->dev->adj_list.upper); 8234 netdev_adjacent_sysfs_add(dev, iter->dev, 8235 &dev->adj_list.lower); 8236 } 8237 } 8238 8239 static void netdev_adjacent_del_links(struct net_device *dev) 8240 { 8241 struct netdev_adjacent *iter; 8242 8243 struct net *net = dev_net(dev); 8244 8245 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8246 if (!net_eq(net, dev_net(iter->dev))) 8247 continue; 8248 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8249 &iter->dev->adj_list.lower); 8250 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8251 &dev->adj_list.upper); 8252 } 8253 8254 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8255 if (!net_eq(net, dev_net(iter->dev))) 8256 continue; 8257 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8258 &iter->dev->adj_list.upper); 8259 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8260 &dev->adj_list.lower); 8261 } 8262 } 8263 8264 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8265 { 8266 struct netdev_adjacent *iter; 8267 8268 struct net *net = dev_net(dev); 8269 8270 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8271 if (!net_eq(net, dev_net(iter->dev))) 8272 continue; 8273 netdev_adjacent_sysfs_del(iter->dev, oldname, 8274 &iter->dev->adj_list.lower); 8275 netdev_adjacent_sysfs_add(iter->dev, dev, 8276 &iter->dev->adj_list.lower); 8277 } 8278 8279 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8280 if (!net_eq(net, dev_net(iter->dev))) 8281 continue; 8282 netdev_adjacent_sysfs_del(iter->dev, oldname, 8283 &iter->dev->adj_list.upper); 8284 netdev_adjacent_sysfs_add(iter->dev, dev, 8285 &iter->dev->adj_list.upper); 8286 } 8287 } 8288 8289 void *netdev_lower_dev_get_private(struct net_device *dev, 8290 struct net_device *lower_dev) 8291 { 8292 struct netdev_adjacent *lower; 8293 8294 if (!lower_dev) 8295 return NULL; 8296 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8297 if (!lower) 8298 return NULL; 8299 8300 return lower->private; 8301 } 8302 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8303 8304 8305 /** 8306 * netdev_lower_state_changed - Dispatch event about lower device state change 8307 * @lower_dev: device 8308 * @lower_state_info: state to dispatch 8309 * 8310 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8311 * The caller must hold the RTNL lock. 8312 */ 8313 void netdev_lower_state_changed(struct net_device *lower_dev, 8314 void *lower_state_info) 8315 { 8316 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8317 .info.dev = lower_dev, 8318 }; 8319 8320 ASSERT_RTNL(); 8321 changelowerstate_info.lower_state_info = lower_state_info; 8322 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8323 &changelowerstate_info.info); 8324 } 8325 EXPORT_SYMBOL(netdev_lower_state_changed); 8326 8327 static void dev_change_rx_flags(struct net_device *dev, int flags) 8328 { 8329 const struct net_device_ops *ops = dev->netdev_ops; 8330 8331 if (ops->ndo_change_rx_flags) 8332 ops->ndo_change_rx_flags(dev, flags); 8333 } 8334 8335 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8336 { 8337 unsigned int old_flags = dev->flags; 8338 kuid_t uid; 8339 kgid_t gid; 8340 8341 ASSERT_RTNL(); 8342 8343 dev->flags |= IFF_PROMISC; 8344 dev->promiscuity += inc; 8345 if (dev->promiscuity == 0) { 8346 /* 8347 * Avoid overflow. 8348 * If inc causes overflow, untouch promisc and return error. 8349 */ 8350 if (inc < 0) 8351 dev->flags &= ~IFF_PROMISC; 8352 else { 8353 dev->promiscuity -= inc; 8354 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 8355 return -EOVERFLOW; 8356 } 8357 } 8358 if (dev->flags != old_flags) { 8359 netdev_info(dev, "%s promiscuous mode\n", 8360 dev->flags & IFF_PROMISC ? "entered" : "left"); 8361 if (audit_enabled) { 8362 current_uid_gid(&uid, &gid); 8363 audit_log(audit_context(), GFP_ATOMIC, 8364 AUDIT_ANOM_PROMISCUOUS, 8365 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8366 dev->name, (dev->flags & IFF_PROMISC), 8367 (old_flags & IFF_PROMISC), 8368 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8369 from_kuid(&init_user_ns, uid), 8370 from_kgid(&init_user_ns, gid), 8371 audit_get_sessionid(current)); 8372 } 8373 8374 dev_change_rx_flags(dev, IFF_PROMISC); 8375 } 8376 if (notify) 8377 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 8378 return 0; 8379 } 8380 8381 /** 8382 * dev_set_promiscuity - update promiscuity count on a device 8383 * @dev: device 8384 * @inc: modifier 8385 * 8386 * Add or remove promiscuity from a device. While the count in the device 8387 * remains above zero the interface remains promiscuous. Once it hits zero 8388 * the device reverts back to normal filtering operation. A negative inc 8389 * value is used to drop promiscuity on the device. 8390 * Return 0 if successful or a negative errno code on error. 8391 */ 8392 int dev_set_promiscuity(struct net_device *dev, int inc) 8393 { 8394 unsigned int old_flags = dev->flags; 8395 int err; 8396 8397 err = __dev_set_promiscuity(dev, inc, true); 8398 if (err < 0) 8399 return err; 8400 if (dev->flags != old_flags) 8401 dev_set_rx_mode(dev); 8402 return err; 8403 } 8404 EXPORT_SYMBOL(dev_set_promiscuity); 8405 8406 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8407 { 8408 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8409 8410 ASSERT_RTNL(); 8411 8412 dev->flags |= IFF_ALLMULTI; 8413 dev->allmulti += inc; 8414 if (dev->allmulti == 0) { 8415 /* 8416 * Avoid overflow. 8417 * If inc causes overflow, untouch allmulti and return error. 8418 */ 8419 if (inc < 0) 8420 dev->flags &= ~IFF_ALLMULTI; 8421 else { 8422 dev->allmulti -= inc; 8423 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 8424 return -EOVERFLOW; 8425 } 8426 } 8427 if (dev->flags ^ old_flags) { 8428 netdev_info(dev, "%s allmulticast mode\n", 8429 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 8430 dev_change_rx_flags(dev, IFF_ALLMULTI); 8431 dev_set_rx_mode(dev); 8432 if (notify) 8433 __dev_notify_flags(dev, old_flags, 8434 dev->gflags ^ old_gflags, 0, NULL); 8435 } 8436 return 0; 8437 } 8438 8439 /** 8440 * dev_set_allmulti - update allmulti count on a device 8441 * @dev: device 8442 * @inc: modifier 8443 * 8444 * Add or remove reception of all multicast frames to a device. While the 8445 * count in the device remains above zero the interface remains listening 8446 * to all interfaces. Once it hits zero the device reverts back to normal 8447 * filtering operation. A negative @inc value is used to drop the counter 8448 * when releasing a resource needing all multicasts. 8449 * Return 0 if successful or a negative errno code on error. 8450 */ 8451 8452 int dev_set_allmulti(struct net_device *dev, int inc) 8453 { 8454 return __dev_set_allmulti(dev, inc, true); 8455 } 8456 EXPORT_SYMBOL(dev_set_allmulti); 8457 8458 /* 8459 * Upload unicast and multicast address lists to device and 8460 * configure RX filtering. When the device doesn't support unicast 8461 * filtering it is put in promiscuous mode while unicast addresses 8462 * are present. 8463 */ 8464 void __dev_set_rx_mode(struct net_device *dev) 8465 { 8466 const struct net_device_ops *ops = dev->netdev_ops; 8467 8468 /* dev_open will call this function so the list will stay sane. */ 8469 if (!(dev->flags&IFF_UP)) 8470 return; 8471 8472 if (!netif_device_present(dev)) 8473 return; 8474 8475 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8476 /* Unicast addresses changes may only happen under the rtnl, 8477 * therefore calling __dev_set_promiscuity here is safe. 8478 */ 8479 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8480 __dev_set_promiscuity(dev, 1, false); 8481 dev->uc_promisc = true; 8482 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8483 __dev_set_promiscuity(dev, -1, false); 8484 dev->uc_promisc = false; 8485 } 8486 } 8487 8488 if (ops->ndo_set_rx_mode) 8489 ops->ndo_set_rx_mode(dev); 8490 } 8491 8492 void dev_set_rx_mode(struct net_device *dev) 8493 { 8494 netif_addr_lock_bh(dev); 8495 __dev_set_rx_mode(dev); 8496 netif_addr_unlock_bh(dev); 8497 } 8498 8499 /** 8500 * dev_get_flags - get flags reported to userspace 8501 * @dev: device 8502 * 8503 * Get the combination of flag bits exported through APIs to userspace. 8504 */ 8505 unsigned int dev_get_flags(const struct net_device *dev) 8506 { 8507 unsigned int flags; 8508 8509 flags = (dev->flags & ~(IFF_PROMISC | 8510 IFF_ALLMULTI | 8511 IFF_RUNNING | 8512 IFF_LOWER_UP | 8513 IFF_DORMANT)) | 8514 (dev->gflags & (IFF_PROMISC | 8515 IFF_ALLMULTI)); 8516 8517 if (netif_running(dev)) { 8518 if (netif_oper_up(dev)) 8519 flags |= IFF_RUNNING; 8520 if (netif_carrier_ok(dev)) 8521 flags |= IFF_LOWER_UP; 8522 if (netif_dormant(dev)) 8523 flags |= IFF_DORMANT; 8524 } 8525 8526 return flags; 8527 } 8528 EXPORT_SYMBOL(dev_get_flags); 8529 8530 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8531 struct netlink_ext_ack *extack) 8532 { 8533 unsigned int old_flags = dev->flags; 8534 int ret; 8535 8536 ASSERT_RTNL(); 8537 8538 /* 8539 * Set the flags on our device. 8540 */ 8541 8542 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8543 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8544 IFF_AUTOMEDIA)) | 8545 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8546 IFF_ALLMULTI)); 8547 8548 /* 8549 * Load in the correct multicast list now the flags have changed. 8550 */ 8551 8552 if ((old_flags ^ flags) & IFF_MULTICAST) 8553 dev_change_rx_flags(dev, IFF_MULTICAST); 8554 8555 dev_set_rx_mode(dev); 8556 8557 /* 8558 * Have we downed the interface. We handle IFF_UP ourselves 8559 * according to user attempts to set it, rather than blindly 8560 * setting it. 8561 */ 8562 8563 ret = 0; 8564 if ((old_flags ^ flags) & IFF_UP) { 8565 if (old_flags & IFF_UP) 8566 __dev_close(dev); 8567 else 8568 ret = __dev_open(dev, extack); 8569 } 8570 8571 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8572 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8573 unsigned int old_flags = dev->flags; 8574 8575 dev->gflags ^= IFF_PROMISC; 8576 8577 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8578 if (dev->flags != old_flags) 8579 dev_set_rx_mode(dev); 8580 } 8581 8582 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8583 * is important. Some (broken) drivers set IFF_PROMISC, when 8584 * IFF_ALLMULTI is requested not asking us and not reporting. 8585 */ 8586 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8587 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8588 8589 dev->gflags ^= IFF_ALLMULTI; 8590 __dev_set_allmulti(dev, inc, false); 8591 } 8592 8593 return ret; 8594 } 8595 8596 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8597 unsigned int gchanges, u32 portid, 8598 const struct nlmsghdr *nlh) 8599 { 8600 unsigned int changes = dev->flags ^ old_flags; 8601 8602 if (gchanges) 8603 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 8604 8605 if (changes & IFF_UP) { 8606 if (dev->flags & IFF_UP) 8607 call_netdevice_notifiers(NETDEV_UP, dev); 8608 else 8609 call_netdevice_notifiers(NETDEV_DOWN, dev); 8610 } 8611 8612 if (dev->flags & IFF_UP && 8613 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8614 struct netdev_notifier_change_info change_info = { 8615 .info = { 8616 .dev = dev, 8617 }, 8618 .flags_changed = changes, 8619 }; 8620 8621 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8622 } 8623 } 8624 8625 /** 8626 * dev_change_flags - change device settings 8627 * @dev: device 8628 * @flags: device state flags 8629 * @extack: netlink extended ack 8630 * 8631 * Change settings on device based state flags. The flags are 8632 * in the userspace exported format. 8633 */ 8634 int dev_change_flags(struct net_device *dev, unsigned int flags, 8635 struct netlink_ext_ack *extack) 8636 { 8637 int ret; 8638 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8639 8640 ret = __dev_change_flags(dev, flags, extack); 8641 if (ret < 0) 8642 return ret; 8643 8644 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8645 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 8646 return ret; 8647 } 8648 EXPORT_SYMBOL(dev_change_flags); 8649 8650 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8651 { 8652 const struct net_device_ops *ops = dev->netdev_ops; 8653 8654 if (ops->ndo_change_mtu) 8655 return ops->ndo_change_mtu(dev, new_mtu); 8656 8657 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8658 WRITE_ONCE(dev->mtu, new_mtu); 8659 return 0; 8660 } 8661 EXPORT_SYMBOL(__dev_set_mtu); 8662 8663 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8664 struct netlink_ext_ack *extack) 8665 { 8666 /* MTU must be positive, and in range */ 8667 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8668 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8669 return -EINVAL; 8670 } 8671 8672 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8673 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8674 return -EINVAL; 8675 } 8676 return 0; 8677 } 8678 8679 /** 8680 * dev_set_mtu_ext - Change maximum transfer unit 8681 * @dev: device 8682 * @new_mtu: new transfer unit 8683 * @extack: netlink extended ack 8684 * 8685 * Change the maximum transfer size of the network device. 8686 */ 8687 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8688 struct netlink_ext_ack *extack) 8689 { 8690 int err, orig_mtu; 8691 8692 if (new_mtu == dev->mtu) 8693 return 0; 8694 8695 err = dev_validate_mtu(dev, new_mtu, extack); 8696 if (err) 8697 return err; 8698 8699 if (!netif_device_present(dev)) 8700 return -ENODEV; 8701 8702 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8703 err = notifier_to_errno(err); 8704 if (err) 8705 return err; 8706 8707 orig_mtu = dev->mtu; 8708 err = __dev_set_mtu(dev, new_mtu); 8709 8710 if (!err) { 8711 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8712 orig_mtu); 8713 err = notifier_to_errno(err); 8714 if (err) { 8715 /* setting mtu back and notifying everyone again, 8716 * so that they have a chance to revert changes. 8717 */ 8718 __dev_set_mtu(dev, orig_mtu); 8719 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8720 new_mtu); 8721 } 8722 } 8723 return err; 8724 } 8725 8726 int dev_set_mtu(struct net_device *dev, int new_mtu) 8727 { 8728 struct netlink_ext_ack extack; 8729 int err; 8730 8731 memset(&extack, 0, sizeof(extack)); 8732 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8733 if (err && extack._msg) 8734 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8735 return err; 8736 } 8737 EXPORT_SYMBOL(dev_set_mtu); 8738 8739 /** 8740 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8741 * @dev: device 8742 * @new_len: new tx queue length 8743 */ 8744 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8745 { 8746 unsigned int orig_len = dev->tx_queue_len; 8747 int res; 8748 8749 if (new_len != (unsigned int)new_len) 8750 return -ERANGE; 8751 8752 if (new_len != orig_len) { 8753 dev->tx_queue_len = new_len; 8754 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8755 res = notifier_to_errno(res); 8756 if (res) 8757 goto err_rollback; 8758 res = dev_qdisc_change_tx_queue_len(dev); 8759 if (res) 8760 goto err_rollback; 8761 } 8762 8763 return 0; 8764 8765 err_rollback: 8766 netdev_err(dev, "refused to change device tx_queue_len\n"); 8767 dev->tx_queue_len = orig_len; 8768 return res; 8769 } 8770 8771 /** 8772 * dev_set_group - Change group this device belongs to 8773 * @dev: device 8774 * @new_group: group this device should belong to 8775 */ 8776 void dev_set_group(struct net_device *dev, int new_group) 8777 { 8778 dev->group = new_group; 8779 } 8780 8781 /** 8782 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8783 * @dev: device 8784 * @addr: new address 8785 * @extack: netlink extended ack 8786 */ 8787 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8788 struct netlink_ext_ack *extack) 8789 { 8790 struct netdev_notifier_pre_changeaddr_info info = { 8791 .info.dev = dev, 8792 .info.extack = extack, 8793 .dev_addr = addr, 8794 }; 8795 int rc; 8796 8797 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8798 return notifier_to_errno(rc); 8799 } 8800 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8801 8802 /** 8803 * dev_set_mac_address - Change Media Access Control Address 8804 * @dev: device 8805 * @sa: new address 8806 * @extack: netlink extended ack 8807 * 8808 * Change the hardware (MAC) address of the device 8809 */ 8810 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8811 struct netlink_ext_ack *extack) 8812 { 8813 const struct net_device_ops *ops = dev->netdev_ops; 8814 int err; 8815 8816 if (!ops->ndo_set_mac_address) 8817 return -EOPNOTSUPP; 8818 if (sa->sa_family != dev->type) 8819 return -EINVAL; 8820 if (!netif_device_present(dev)) 8821 return -ENODEV; 8822 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8823 if (err) 8824 return err; 8825 err = ops->ndo_set_mac_address(dev, sa); 8826 if (err) 8827 return err; 8828 dev->addr_assign_type = NET_ADDR_SET; 8829 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8830 add_device_randomness(dev->dev_addr, dev->addr_len); 8831 return 0; 8832 } 8833 EXPORT_SYMBOL(dev_set_mac_address); 8834 8835 static DECLARE_RWSEM(dev_addr_sem); 8836 8837 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 8838 struct netlink_ext_ack *extack) 8839 { 8840 int ret; 8841 8842 down_write(&dev_addr_sem); 8843 ret = dev_set_mac_address(dev, sa, extack); 8844 up_write(&dev_addr_sem); 8845 return ret; 8846 } 8847 EXPORT_SYMBOL(dev_set_mac_address_user); 8848 8849 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 8850 { 8851 size_t size = sizeof(sa->sa_data_min); 8852 struct net_device *dev; 8853 int ret = 0; 8854 8855 down_read(&dev_addr_sem); 8856 rcu_read_lock(); 8857 8858 dev = dev_get_by_name_rcu(net, dev_name); 8859 if (!dev) { 8860 ret = -ENODEV; 8861 goto unlock; 8862 } 8863 if (!dev->addr_len) 8864 memset(sa->sa_data, 0, size); 8865 else 8866 memcpy(sa->sa_data, dev->dev_addr, 8867 min_t(size_t, size, dev->addr_len)); 8868 sa->sa_family = dev->type; 8869 8870 unlock: 8871 rcu_read_unlock(); 8872 up_read(&dev_addr_sem); 8873 return ret; 8874 } 8875 EXPORT_SYMBOL(dev_get_mac_address); 8876 8877 /** 8878 * dev_change_carrier - Change device carrier 8879 * @dev: device 8880 * @new_carrier: new value 8881 * 8882 * Change device carrier 8883 */ 8884 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8885 { 8886 const struct net_device_ops *ops = dev->netdev_ops; 8887 8888 if (!ops->ndo_change_carrier) 8889 return -EOPNOTSUPP; 8890 if (!netif_device_present(dev)) 8891 return -ENODEV; 8892 return ops->ndo_change_carrier(dev, new_carrier); 8893 } 8894 8895 /** 8896 * dev_get_phys_port_id - Get device physical port ID 8897 * @dev: device 8898 * @ppid: port ID 8899 * 8900 * Get device physical port ID 8901 */ 8902 int dev_get_phys_port_id(struct net_device *dev, 8903 struct netdev_phys_item_id *ppid) 8904 { 8905 const struct net_device_ops *ops = dev->netdev_ops; 8906 8907 if (!ops->ndo_get_phys_port_id) 8908 return -EOPNOTSUPP; 8909 return ops->ndo_get_phys_port_id(dev, ppid); 8910 } 8911 8912 /** 8913 * dev_get_phys_port_name - Get device physical port name 8914 * @dev: device 8915 * @name: port name 8916 * @len: limit of bytes to copy to name 8917 * 8918 * Get device physical port name 8919 */ 8920 int dev_get_phys_port_name(struct net_device *dev, 8921 char *name, size_t len) 8922 { 8923 const struct net_device_ops *ops = dev->netdev_ops; 8924 int err; 8925 8926 if (ops->ndo_get_phys_port_name) { 8927 err = ops->ndo_get_phys_port_name(dev, name, len); 8928 if (err != -EOPNOTSUPP) 8929 return err; 8930 } 8931 return devlink_compat_phys_port_name_get(dev, name, len); 8932 } 8933 8934 /** 8935 * dev_get_port_parent_id - Get the device's port parent identifier 8936 * @dev: network device 8937 * @ppid: pointer to a storage for the port's parent identifier 8938 * @recurse: allow/disallow recursion to lower devices 8939 * 8940 * Get the devices's port parent identifier 8941 */ 8942 int dev_get_port_parent_id(struct net_device *dev, 8943 struct netdev_phys_item_id *ppid, 8944 bool recurse) 8945 { 8946 const struct net_device_ops *ops = dev->netdev_ops; 8947 struct netdev_phys_item_id first = { }; 8948 struct net_device *lower_dev; 8949 struct list_head *iter; 8950 int err; 8951 8952 if (ops->ndo_get_port_parent_id) { 8953 err = ops->ndo_get_port_parent_id(dev, ppid); 8954 if (err != -EOPNOTSUPP) 8955 return err; 8956 } 8957 8958 err = devlink_compat_switch_id_get(dev, ppid); 8959 if (!recurse || err != -EOPNOTSUPP) 8960 return err; 8961 8962 netdev_for_each_lower_dev(dev, lower_dev, iter) { 8963 err = dev_get_port_parent_id(lower_dev, ppid, true); 8964 if (err) 8965 break; 8966 if (!first.id_len) 8967 first = *ppid; 8968 else if (memcmp(&first, ppid, sizeof(*ppid))) 8969 return -EOPNOTSUPP; 8970 } 8971 8972 return err; 8973 } 8974 EXPORT_SYMBOL(dev_get_port_parent_id); 8975 8976 /** 8977 * netdev_port_same_parent_id - Indicate if two network devices have 8978 * the same port parent identifier 8979 * @a: first network device 8980 * @b: second network device 8981 */ 8982 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 8983 { 8984 struct netdev_phys_item_id a_id = { }; 8985 struct netdev_phys_item_id b_id = { }; 8986 8987 if (dev_get_port_parent_id(a, &a_id, true) || 8988 dev_get_port_parent_id(b, &b_id, true)) 8989 return false; 8990 8991 return netdev_phys_item_id_same(&a_id, &b_id); 8992 } 8993 EXPORT_SYMBOL(netdev_port_same_parent_id); 8994 8995 /** 8996 * dev_change_proto_down - set carrier according to proto_down. 8997 * 8998 * @dev: device 8999 * @proto_down: new value 9000 */ 9001 int dev_change_proto_down(struct net_device *dev, bool proto_down) 9002 { 9003 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN)) 9004 return -EOPNOTSUPP; 9005 if (!netif_device_present(dev)) 9006 return -ENODEV; 9007 if (proto_down) 9008 netif_carrier_off(dev); 9009 else 9010 netif_carrier_on(dev); 9011 dev->proto_down = proto_down; 9012 return 0; 9013 } 9014 9015 /** 9016 * dev_change_proto_down_reason - proto down reason 9017 * 9018 * @dev: device 9019 * @mask: proto down mask 9020 * @value: proto down value 9021 */ 9022 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 9023 u32 value) 9024 { 9025 int b; 9026 9027 if (!mask) { 9028 dev->proto_down_reason = value; 9029 } else { 9030 for_each_set_bit(b, &mask, 32) { 9031 if (value & (1 << b)) 9032 dev->proto_down_reason |= BIT(b); 9033 else 9034 dev->proto_down_reason &= ~BIT(b); 9035 } 9036 } 9037 } 9038 9039 struct bpf_xdp_link { 9040 struct bpf_link link; 9041 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9042 int flags; 9043 }; 9044 9045 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9046 { 9047 if (flags & XDP_FLAGS_HW_MODE) 9048 return XDP_MODE_HW; 9049 if (flags & XDP_FLAGS_DRV_MODE) 9050 return XDP_MODE_DRV; 9051 if (flags & XDP_FLAGS_SKB_MODE) 9052 return XDP_MODE_SKB; 9053 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9054 } 9055 9056 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9057 { 9058 switch (mode) { 9059 case XDP_MODE_SKB: 9060 return generic_xdp_install; 9061 case XDP_MODE_DRV: 9062 case XDP_MODE_HW: 9063 return dev->netdev_ops->ndo_bpf; 9064 default: 9065 return NULL; 9066 } 9067 } 9068 9069 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9070 enum bpf_xdp_mode mode) 9071 { 9072 return dev->xdp_state[mode].link; 9073 } 9074 9075 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9076 enum bpf_xdp_mode mode) 9077 { 9078 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9079 9080 if (link) 9081 return link->link.prog; 9082 return dev->xdp_state[mode].prog; 9083 } 9084 9085 u8 dev_xdp_prog_count(struct net_device *dev) 9086 { 9087 u8 count = 0; 9088 int i; 9089 9090 for (i = 0; i < __MAX_XDP_MODE; i++) 9091 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9092 count++; 9093 return count; 9094 } 9095 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 9096 9097 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9098 { 9099 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9100 9101 return prog ? prog->aux->id : 0; 9102 } 9103 9104 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9105 struct bpf_xdp_link *link) 9106 { 9107 dev->xdp_state[mode].link = link; 9108 dev->xdp_state[mode].prog = NULL; 9109 } 9110 9111 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9112 struct bpf_prog *prog) 9113 { 9114 dev->xdp_state[mode].link = NULL; 9115 dev->xdp_state[mode].prog = prog; 9116 } 9117 9118 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9119 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9120 u32 flags, struct bpf_prog *prog) 9121 { 9122 struct netdev_bpf xdp; 9123 int err; 9124 9125 memset(&xdp, 0, sizeof(xdp)); 9126 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9127 xdp.extack = extack; 9128 xdp.flags = flags; 9129 xdp.prog = prog; 9130 9131 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9132 * "moved" into driver), so they don't increment it on their own, but 9133 * they do decrement refcnt when program is detached or replaced. 9134 * Given net_device also owns link/prog, we need to bump refcnt here 9135 * to prevent drivers from underflowing it. 9136 */ 9137 if (prog) 9138 bpf_prog_inc(prog); 9139 err = bpf_op(dev, &xdp); 9140 if (err) { 9141 if (prog) 9142 bpf_prog_put(prog); 9143 return err; 9144 } 9145 9146 if (mode != XDP_MODE_HW) 9147 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9148 9149 return 0; 9150 } 9151 9152 static void dev_xdp_uninstall(struct net_device *dev) 9153 { 9154 struct bpf_xdp_link *link; 9155 struct bpf_prog *prog; 9156 enum bpf_xdp_mode mode; 9157 bpf_op_t bpf_op; 9158 9159 ASSERT_RTNL(); 9160 9161 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9162 prog = dev_xdp_prog(dev, mode); 9163 if (!prog) 9164 continue; 9165 9166 bpf_op = dev_xdp_bpf_op(dev, mode); 9167 if (!bpf_op) 9168 continue; 9169 9170 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9171 9172 /* auto-detach link from net device */ 9173 link = dev_xdp_link(dev, mode); 9174 if (link) 9175 link->dev = NULL; 9176 else 9177 bpf_prog_put(prog); 9178 9179 dev_xdp_set_link(dev, mode, NULL); 9180 } 9181 } 9182 9183 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9184 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9185 struct bpf_prog *old_prog, u32 flags) 9186 { 9187 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9188 struct bpf_prog *cur_prog; 9189 struct net_device *upper; 9190 struct list_head *iter; 9191 enum bpf_xdp_mode mode; 9192 bpf_op_t bpf_op; 9193 int err; 9194 9195 ASSERT_RTNL(); 9196 9197 /* either link or prog attachment, never both */ 9198 if (link && (new_prog || old_prog)) 9199 return -EINVAL; 9200 /* link supports only XDP mode flags */ 9201 if (link && (flags & ~XDP_FLAGS_MODES)) { 9202 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9203 return -EINVAL; 9204 } 9205 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 9206 if (num_modes > 1) { 9207 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9208 return -EINVAL; 9209 } 9210 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 9211 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 9212 NL_SET_ERR_MSG(extack, 9213 "More than one program loaded, unset mode is ambiguous"); 9214 return -EINVAL; 9215 } 9216 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9217 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9218 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9219 return -EINVAL; 9220 } 9221 9222 mode = dev_xdp_mode(dev, flags); 9223 /* can't replace attached link */ 9224 if (dev_xdp_link(dev, mode)) { 9225 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9226 return -EBUSY; 9227 } 9228 9229 /* don't allow if an upper device already has a program */ 9230 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 9231 if (dev_xdp_prog_count(upper) > 0) { 9232 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 9233 return -EEXIST; 9234 } 9235 } 9236 9237 cur_prog = dev_xdp_prog(dev, mode); 9238 /* can't replace attached prog with link */ 9239 if (link && cur_prog) { 9240 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9241 return -EBUSY; 9242 } 9243 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9244 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9245 return -EEXIST; 9246 } 9247 9248 /* put effective new program into new_prog */ 9249 if (link) 9250 new_prog = link->link.prog; 9251 9252 if (new_prog) { 9253 bool offload = mode == XDP_MODE_HW; 9254 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9255 ? XDP_MODE_DRV : XDP_MODE_SKB; 9256 9257 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9258 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9259 return -EBUSY; 9260 } 9261 if (!offload && dev_xdp_prog(dev, other_mode)) { 9262 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9263 return -EEXIST; 9264 } 9265 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 9266 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 9267 return -EINVAL; 9268 } 9269 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 9270 NL_SET_ERR_MSG(extack, "Program bound to different device"); 9271 return -EINVAL; 9272 } 9273 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9274 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9275 return -EINVAL; 9276 } 9277 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9278 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9279 return -EINVAL; 9280 } 9281 } 9282 9283 /* don't call drivers if the effective program didn't change */ 9284 if (new_prog != cur_prog) { 9285 bpf_op = dev_xdp_bpf_op(dev, mode); 9286 if (!bpf_op) { 9287 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9288 return -EOPNOTSUPP; 9289 } 9290 9291 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9292 if (err) 9293 return err; 9294 } 9295 9296 if (link) 9297 dev_xdp_set_link(dev, mode, link); 9298 else 9299 dev_xdp_set_prog(dev, mode, new_prog); 9300 if (cur_prog) 9301 bpf_prog_put(cur_prog); 9302 9303 return 0; 9304 } 9305 9306 static int dev_xdp_attach_link(struct net_device *dev, 9307 struct netlink_ext_ack *extack, 9308 struct bpf_xdp_link *link) 9309 { 9310 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9311 } 9312 9313 static int dev_xdp_detach_link(struct net_device *dev, 9314 struct netlink_ext_ack *extack, 9315 struct bpf_xdp_link *link) 9316 { 9317 enum bpf_xdp_mode mode; 9318 bpf_op_t bpf_op; 9319 9320 ASSERT_RTNL(); 9321 9322 mode = dev_xdp_mode(dev, link->flags); 9323 if (dev_xdp_link(dev, mode) != link) 9324 return -EINVAL; 9325 9326 bpf_op = dev_xdp_bpf_op(dev, mode); 9327 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9328 dev_xdp_set_link(dev, mode, NULL); 9329 return 0; 9330 } 9331 9332 static void bpf_xdp_link_release(struct bpf_link *link) 9333 { 9334 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9335 9336 rtnl_lock(); 9337 9338 /* if racing with net_device's tear down, xdp_link->dev might be 9339 * already NULL, in which case link was already auto-detached 9340 */ 9341 if (xdp_link->dev) { 9342 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9343 xdp_link->dev = NULL; 9344 } 9345 9346 rtnl_unlock(); 9347 } 9348 9349 static int bpf_xdp_link_detach(struct bpf_link *link) 9350 { 9351 bpf_xdp_link_release(link); 9352 return 0; 9353 } 9354 9355 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9356 { 9357 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9358 9359 kfree(xdp_link); 9360 } 9361 9362 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9363 struct seq_file *seq) 9364 { 9365 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9366 u32 ifindex = 0; 9367 9368 rtnl_lock(); 9369 if (xdp_link->dev) 9370 ifindex = xdp_link->dev->ifindex; 9371 rtnl_unlock(); 9372 9373 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9374 } 9375 9376 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9377 struct bpf_link_info *info) 9378 { 9379 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9380 u32 ifindex = 0; 9381 9382 rtnl_lock(); 9383 if (xdp_link->dev) 9384 ifindex = xdp_link->dev->ifindex; 9385 rtnl_unlock(); 9386 9387 info->xdp.ifindex = ifindex; 9388 return 0; 9389 } 9390 9391 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9392 struct bpf_prog *old_prog) 9393 { 9394 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9395 enum bpf_xdp_mode mode; 9396 bpf_op_t bpf_op; 9397 int err = 0; 9398 9399 rtnl_lock(); 9400 9401 /* link might have been auto-released already, so fail */ 9402 if (!xdp_link->dev) { 9403 err = -ENOLINK; 9404 goto out_unlock; 9405 } 9406 9407 if (old_prog && link->prog != old_prog) { 9408 err = -EPERM; 9409 goto out_unlock; 9410 } 9411 old_prog = link->prog; 9412 if (old_prog->type != new_prog->type || 9413 old_prog->expected_attach_type != new_prog->expected_attach_type) { 9414 err = -EINVAL; 9415 goto out_unlock; 9416 } 9417 9418 if (old_prog == new_prog) { 9419 /* no-op, don't disturb drivers */ 9420 bpf_prog_put(new_prog); 9421 goto out_unlock; 9422 } 9423 9424 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9425 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9426 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9427 xdp_link->flags, new_prog); 9428 if (err) 9429 goto out_unlock; 9430 9431 old_prog = xchg(&link->prog, new_prog); 9432 bpf_prog_put(old_prog); 9433 9434 out_unlock: 9435 rtnl_unlock(); 9436 return err; 9437 } 9438 9439 static const struct bpf_link_ops bpf_xdp_link_lops = { 9440 .release = bpf_xdp_link_release, 9441 .dealloc = bpf_xdp_link_dealloc, 9442 .detach = bpf_xdp_link_detach, 9443 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9444 .fill_link_info = bpf_xdp_link_fill_link_info, 9445 .update_prog = bpf_xdp_link_update, 9446 }; 9447 9448 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9449 { 9450 struct net *net = current->nsproxy->net_ns; 9451 struct bpf_link_primer link_primer; 9452 struct bpf_xdp_link *link; 9453 struct net_device *dev; 9454 int err, fd; 9455 9456 rtnl_lock(); 9457 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9458 if (!dev) { 9459 rtnl_unlock(); 9460 return -EINVAL; 9461 } 9462 9463 link = kzalloc(sizeof(*link), GFP_USER); 9464 if (!link) { 9465 err = -ENOMEM; 9466 goto unlock; 9467 } 9468 9469 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9470 link->dev = dev; 9471 link->flags = attr->link_create.flags; 9472 9473 err = bpf_link_prime(&link->link, &link_primer); 9474 if (err) { 9475 kfree(link); 9476 goto unlock; 9477 } 9478 9479 err = dev_xdp_attach_link(dev, NULL, link); 9480 rtnl_unlock(); 9481 9482 if (err) { 9483 link->dev = NULL; 9484 bpf_link_cleanup(&link_primer); 9485 goto out_put_dev; 9486 } 9487 9488 fd = bpf_link_settle(&link_primer); 9489 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9490 dev_put(dev); 9491 return fd; 9492 9493 unlock: 9494 rtnl_unlock(); 9495 9496 out_put_dev: 9497 dev_put(dev); 9498 return err; 9499 } 9500 9501 /** 9502 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9503 * @dev: device 9504 * @extack: netlink extended ack 9505 * @fd: new program fd or negative value to clear 9506 * @expected_fd: old program fd that userspace expects to replace or clear 9507 * @flags: xdp-related flags 9508 * 9509 * Set or clear a bpf program for a device 9510 */ 9511 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9512 int fd, int expected_fd, u32 flags) 9513 { 9514 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9515 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9516 int err; 9517 9518 ASSERT_RTNL(); 9519 9520 if (fd >= 0) { 9521 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9522 mode != XDP_MODE_SKB); 9523 if (IS_ERR(new_prog)) 9524 return PTR_ERR(new_prog); 9525 } 9526 9527 if (expected_fd >= 0) { 9528 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9529 mode != XDP_MODE_SKB); 9530 if (IS_ERR(old_prog)) { 9531 err = PTR_ERR(old_prog); 9532 old_prog = NULL; 9533 goto err_out; 9534 } 9535 } 9536 9537 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9538 9539 err_out: 9540 if (err && new_prog) 9541 bpf_prog_put(new_prog); 9542 if (old_prog) 9543 bpf_prog_put(old_prog); 9544 return err; 9545 } 9546 9547 /** 9548 * dev_new_index - allocate an ifindex 9549 * @net: the applicable net namespace 9550 * 9551 * Returns a suitable unique value for a new device interface 9552 * number. The caller must hold the rtnl semaphore or the 9553 * dev_base_lock to be sure it remains unique. 9554 */ 9555 static int dev_new_index(struct net *net) 9556 { 9557 int ifindex = net->ifindex; 9558 9559 for (;;) { 9560 if (++ifindex <= 0) 9561 ifindex = 1; 9562 if (!__dev_get_by_index(net, ifindex)) 9563 return net->ifindex = ifindex; 9564 } 9565 } 9566 9567 /* Delayed registration/unregisteration */ 9568 LIST_HEAD(net_todo_list); 9569 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9570 9571 static void net_set_todo(struct net_device *dev) 9572 { 9573 list_add_tail(&dev->todo_list, &net_todo_list); 9574 atomic_inc(&dev_net(dev)->dev_unreg_count); 9575 } 9576 9577 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9578 struct net_device *upper, netdev_features_t features) 9579 { 9580 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9581 netdev_features_t feature; 9582 int feature_bit; 9583 9584 for_each_netdev_feature(upper_disables, feature_bit) { 9585 feature = __NETIF_F_BIT(feature_bit); 9586 if (!(upper->wanted_features & feature) 9587 && (features & feature)) { 9588 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9589 &feature, upper->name); 9590 features &= ~feature; 9591 } 9592 } 9593 9594 return features; 9595 } 9596 9597 static void netdev_sync_lower_features(struct net_device *upper, 9598 struct net_device *lower, netdev_features_t features) 9599 { 9600 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9601 netdev_features_t feature; 9602 int feature_bit; 9603 9604 for_each_netdev_feature(upper_disables, feature_bit) { 9605 feature = __NETIF_F_BIT(feature_bit); 9606 if (!(features & feature) && (lower->features & feature)) { 9607 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9608 &feature, lower->name); 9609 lower->wanted_features &= ~feature; 9610 __netdev_update_features(lower); 9611 9612 if (unlikely(lower->features & feature)) 9613 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9614 &feature, lower->name); 9615 else 9616 netdev_features_change(lower); 9617 } 9618 } 9619 } 9620 9621 static netdev_features_t netdev_fix_features(struct net_device *dev, 9622 netdev_features_t features) 9623 { 9624 /* Fix illegal checksum combinations */ 9625 if ((features & NETIF_F_HW_CSUM) && 9626 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9627 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9628 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9629 } 9630 9631 /* TSO requires that SG is present as well. */ 9632 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9633 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9634 features &= ~NETIF_F_ALL_TSO; 9635 } 9636 9637 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9638 !(features & NETIF_F_IP_CSUM)) { 9639 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9640 features &= ~NETIF_F_TSO; 9641 features &= ~NETIF_F_TSO_ECN; 9642 } 9643 9644 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9645 !(features & NETIF_F_IPV6_CSUM)) { 9646 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9647 features &= ~NETIF_F_TSO6; 9648 } 9649 9650 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9651 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9652 features &= ~NETIF_F_TSO_MANGLEID; 9653 9654 /* TSO ECN requires that TSO is present as well. */ 9655 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9656 features &= ~NETIF_F_TSO_ECN; 9657 9658 /* Software GSO depends on SG. */ 9659 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9660 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9661 features &= ~NETIF_F_GSO; 9662 } 9663 9664 /* GSO partial features require GSO partial be set */ 9665 if ((features & dev->gso_partial_features) && 9666 !(features & NETIF_F_GSO_PARTIAL)) { 9667 netdev_dbg(dev, 9668 "Dropping partially supported GSO features since no GSO partial.\n"); 9669 features &= ~dev->gso_partial_features; 9670 } 9671 9672 if (!(features & NETIF_F_RXCSUM)) { 9673 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9674 * successfully merged by hardware must also have the 9675 * checksum verified by hardware. If the user does not 9676 * want to enable RXCSUM, logically, we should disable GRO_HW. 9677 */ 9678 if (features & NETIF_F_GRO_HW) { 9679 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9680 features &= ~NETIF_F_GRO_HW; 9681 } 9682 } 9683 9684 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9685 if (features & NETIF_F_RXFCS) { 9686 if (features & NETIF_F_LRO) { 9687 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9688 features &= ~NETIF_F_LRO; 9689 } 9690 9691 if (features & NETIF_F_GRO_HW) { 9692 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9693 features &= ~NETIF_F_GRO_HW; 9694 } 9695 } 9696 9697 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 9698 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 9699 features &= ~NETIF_F_LRO; 9700 } 9701 9702 if (features & NETIF_F_HW_TLS_TX) { 9703 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) == 9704 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 9705 bool hw_csum = features & NETIF_F_HW_CSUM; 9706 9707 if (!ip_csum && !hw_csum) { 9708 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 9709 features &= ~NETIF_F_HW_TLS_TX; 9710 } 9711 } 9712 9713 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 9714 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 9715 features &= ~NETIF_F_HW_TLS_RX; 9716 } 9717 9718 return features; 9719 } 9720 9721 int __netdev_update_features(struct net_device *dev) 9722 { 9723 struct net_device *upper, *lower; 9724 netdev_features_t features; 9725 struct list_head *iter; 9726 int err = -1; 9727 9728 ASSERT_RTNL(); 9729 9730 features = netdev_get_wanted_features(dev); 9731 9732 if (dev->netdev_ops->ndo_fix_features) 9733 features = dev->netdev_ops->ndo_fix_features(dev, features); 9734 9735 /* driver might be less strict about feature dependencies */ 9736 features = netdev_fix_features(dev, features); 9737 9738 /* some features can't be enabled if they're off on an upper device */ 9739 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9740 features = netdev_sync_upper_features(dev, upper, features); 9741 9742 if (dev->features == features) 9743 goto sync_lower; 9744 9745 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9746 &dev->features, &features); 9747 9748 if (dev->netdev_ops->ndo_set_features) 9749 err = dev->netdev_ops->ndo_set_features(dev, features); 9750 else 9751 err = 0; 9752 9753 if (unlikely(err < 0)) { 9754 netdev_err(dev, 9755 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9756 err, &features, &dev->features); 9757 /* return non-0 since some features might have changed and 9758 * it's better to fire a spurious notification than miss it 9759 */ 9760 return -1; 9761 } 9762 9763 sync_lower: 9764 /* some features must be disabled on lower devices when disabled 9765 * on an upper device (think: bonding master or bridge) 9766 */ 9767 netdev_for_each_lower_dev(dev, lower, iter) 9768 netdev_sync_lower_features(dev, lower, features); 9769 9770 if (!err) { 9771 netdev_features_t diff = features ^ dev->features; 9772 9773 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9774 /* udp_tunnel_{get,drop}_rx_info both need 9775 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9776 * device, or they won't do anything. 9777 * Thus we need to update dev->features 9778 * *before* calling udp_tunnel_get_rx_info, 9779 * but *after* calling udp_tunnel_drop_rx_info. 9780 */ 9781 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9782 dev->features = features; 9783 udp_tunnel_get_rx_info(dev); 9784 } else { 9785 udp_tunnel_drop_rx_info(dev); 9786 } 9787 } 9788 9789 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9790 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9791 dev->features = features; 9792 err |= vlan_get_rx_ctag_filter_info(dev); 9793 } else { 9794 vlan_drop_rx_ctag_filter_info(dev); 9795 } 9796 } 9797 9798 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9799 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9800 dev->features = features; 9801 err |= vlan_get_rx_stag_filter_info(dev); 9802 } else { 9803 vlan_drop_rx_stag_filter_info(dev); 9804 } 9805 } 9806 9807 dev->features = features; 9808 } 9809 9810 return err < 0 ? 0 : 1; 9811 } 9812 9813 /** 9814 * netdev_update_features - recalculate device features 9815 * @dev: the device to check 9816 * 9817 * Recalculate dev->features set and send notifications if it 9818 * has changed. Should be called after driver or hardware dependent 9819 * conditions might have changed that influence the features. 9820 */ 9821 void netdev_update_features(struct net_device *dev) 9822 { 9823 if (__netdev_update_features(dev)) 9824 netdev_features_change(dev); 9825 } 9826 EXPORT_SYMBOL(netdev_update_features); 9827 9828 /** 9829 * netdev_change_features - recalculate device features 9830 * @dev: the device to check 9831 * 9832 * Recalculate dev->features set and send notifications even 9833 * if they have not changed. Should be called instead of 9834 * netdev_update_features() if also dev->vlan_features might 9835 * have changed to allow the changes to be propagated to stacked 9836 * VLAN devices. 9837 */ 9838 void netdev_change_features(struct net_device *dev) 9839 { 9840 __netdev_update_features(dev); 9841 netdev_features_change(dev); 9842 } 9843 EXPORT_SYMBOL(netdev_change_features); 9844 9845 /** 9846 * netif_stacked_transfer_operstate - transfer operstate 9847 * @rootdev: the root or lower level device to transfer state from 9848 * @dev: the device to transfer operstate to 9849 * 9850 * Transfer operational state from root to device. This is normally 9851 * called when a stacking relationship exists between the root 9852 * device and the device(a leaf device). 9853 */ 9854 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9855 struct net_device *dev) 9856 { 9857 if (rootdev->operstate == IF_OPER_DORMANT) 9858 netif_dormant_on(dev); 9859 else 9860 netif_dormant_off(dev); 9861 9862 if (rootdev->operstate == IF_OPER_TESTING) 9863 netif_testing_on(dev); 9864 else 9865 netif_testing_off(dev); 9866 9867 if (netif_carrier_ok(rootdev)) 9868 netif_carrier_on(dev); 9869 else 9870 netif_carrier_off(dev); 9871 } 9872 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 9873 9874 static int netif_alloc_rx_queues(struct net_device *dev) 9875 { 9876 unsigned int i, count = dev->num_rx_queues; 9877 struct netdev_rx_queue *rx; 9878 size_t sz = count * sizeof(*rx); 9879 int err = 0; 9880 9881 BUG_ON(count < 1); 9882 9883 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 9884 if (!rx) 9885 return -ENOMEM; 9886 9887 dev->_rx = rx; 9888 9889 for (i = 0; i < count; i++) { 9890 rx[i].dev = dev; 9891 9892 /* XDP RX-queue setup */ 9893 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 9894 if (err < 0) 9895 goto err_rxq_info; 9896 } 9897 return 0; 9898 9899 err_rxq_info: 9900 /* Rollback successful reg's and free other resources */ 9901 while (i--) 9902 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 9903 kvfree(dev->_rx); 9904 dev->_rx = NULL; 9905 return err; 9906 } 9907 9908 static void netif_free_rx_queues(struct net_device *dev) 9909 { 9910 unsigned int i, count = dev->num_rx_queues; 9911 9912 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 9913 if (!dev->_rx) 9914 return; 9915 9916 for (i = 0; i < count; i++) 9917 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 9918 9919 kvfree(dev->_rx); 9920 } 9921 9922 static void netdev_init_one_queue(struct net_device *dev, 9923 struct netdev_queue *queue, void *_unused) 9924 { 9925 /* Initialize queue lock */ 9926 spin_lock_init(&queue->_xmit_lock); 9927 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 9928 queue->xmit_lock_owner = -1; 9929 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 9930 queue->dev = dev; 9931 #ifdef CONFIG_BQL 9932 dql_init(&queue->dql, HZ); 9933 #endif 9934 } 9935 9936 static void netif_free_tx_queues(struct net_device *dev) 9937 { 9938 kvfree(dev->_tx); 9939 } 9940 9941 static int netif_alloc_netdev_queues(struct net_device *dev) 9942 { 9943 unsigned int count = dev->num_tx_queues; 9944 struct netdev_queue *tx; 9945 size_t sz = count * sizeof(*tx); 9946 9947 if (count < 1 || count > 0xffff) 9948 return -EINVAL; 9949 9950 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 9951 if (!tx) 9952 return -ENOMEM; 9953 9954 dev->_tx = tx; 9955 9956 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 9957 spin_lock_init(&dev->tx_global_lock); 9958 9959 return 0; 9960 } 9961 9962 void netif_tx_stop_all_queues(struct net_device *dev) 9963 { 9964 unsigned int i; 9965 9966 for (i = 0; i < dev->num_tx_queues; i++) { 9967 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 9968 9969 netif_tx_stop_queue(txq); 9970 } 9971 } 9972 EXPORT_SYMBOL(netif_tx_stop_all_queues); 9973 9974 /** 9975 * register_netdevice() - register a network device 9976 * @dev: device to register 9977 * 9978 * Take a prepared network device structure and make it externally accessible. 9979 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 9980 * Callers must hold the rtnl lock - you may want register_netdev() 9981 * instead of this. 9982 */ 9983 int register_netdevice(struct net_device *dev) 9984 { 9985 int ret; 9986 struct net *net = dev_net(dev); 9987 9988 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 9989 NETDEV_FEATURE_COUNT); 9990 BUG_ON(dev_boot_phase); 9991 ASSERT_RTNL(); 9992 9993 might_sleep(); 9994 9995 /* When net_device's are persistent, this will be fatal. */ 9996 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 9997 BUG_ON(!net); 9998 9999 ret = ethtool_check_ops(dev->ethtool_ops); 10000 if (ret) 10001 return ret; 10002 10003 spin_lock_init(&dev->addr_list_lock); 10004 netdev_set_addr_lockdep_class(dev); 10005 10006 ret = dev_get_valid_name(net, dev, dev->name); 10007 if (ret < 0) 10008 goto out; 10009 10010 ret = -ENOMEM; 10011 dev->name_node = netdev_name_node_head_alloc(dev); 10012 if (!dev->name_node) 10013 goto out; 10014 10015 /* Init, if this function is available */ 10016 if (dev->netdev_ops->ndo_init) { 10017 ret = dev->netdev_ops->ndo_init(dev); 10018 if (ret) { 10019 if (ret > 0) 10020 ret = -EIO; 10021 goto err_free_name; 10022 } 10023 } 10024 10025 if (((dev->hw_features | dev->features) & 10026 NETIF_F_HW_VLAN_CTAG_FILTER) && 10027 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 10028 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 10029 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 10030 ret = -EINVAL; 10031 goto err_uninit; 10032 } 10033 10034 ret = -EBUSY; 10035 if (!dev->ifindex) 10036 dev->ifindex = dev_new_index(net); 10037 else if (__dev_get_by_index(net, dev->ifindex)) 10038 goto err_uninit; 10039 10040 /* Transfer changeable features to wanted_features and enable 10041 * software offloads (GSO and GRO). 10042 */ 10043 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 10044 dev->features |= NETIF_F_SOFT_FEATURES; 10045 10046 if (dev->udp_tunnel_nic_info) { 10047 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10048 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10049 } 10050 10051 dev->wanted_features = dev->features & dev->hw_features; 10052 10053 if (!(dev->flags & IFF_LOOPBACK)) 10054 dev->hw_features |= NETIF_F_NOCACHE_COPY; 10055 10056 /* If IPv4 TCP segmentation offload is supported we should also 10057 * allow the device to enable segmenting the frame with the option 10058 * of ignoring a static IP ID value. This doesn't enable the 10059 * feature itself but allows the user to enable it later. 10060 */ 10061 if (dev->hw_features & NETIF_F_TSO) 10062 dev->hw_features |= NETIF_F_TSO_MANGLEID; 10063 if (dev->vlan_features & NETIF_F_TSO) 10064 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 10065 if (dev->mpls_features & NETIF_F_TSO) 10066 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 10067 if (dev->hw_enc_features & NETIF_F_TSO) 10068 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 10069 10070 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 10071 */ 10072 dev->vlan_features |= NETIF_F_HIGHDMA; 10073 10074 /* Make NETIF_F_SG inheritable to tunnel devices. 10075 */ 10076 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 10077 10078 /* Make NETIF_F_SG inheritable to MPLS. 10079 */ 10080 dev->mpls_features |= NETIF_F_SG; 10081 10082 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 10083 ret = notifier_to_errno(ret); 10084 if (ret) 10085 goto err_uninit; 10086 10087 ret = netdev_register_kobject(dev); 10088 write_lock(&dev_base_lock); 10089 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED; 10090 write_unlock(&dev_base_lock); 10091 if (ret) 10092 goto err_uninit_notify; 10093 10094 __netdev_update_features(dev); 10095 10096 /* 10097 * Default initial state at registry is that the 10098 * device is present. 10099 */ 10100 10101 set_bit(__LINK_STATE_PRESENT, &dev->state); 10102 10103 linkwatch_init_dev(dev); 10104 10105 dev_init_scheduler(dev); 10106 10107 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 10108 list_netdevice(dev); 10109 10110 add_device_randomness(dev->dev_addr, dev->addr_len); 10111 10112 /* If the device has permanent device address, driver should 10113 * set dev_addr and also addr_assign_type should be set to 10114 * NET_ADDR_PERM (default value). 10115 */ 10116 if (dev->addr_assign_type == NET_ADDR_PERM) 10117 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 10118 10119 /* Notify protocols, that a new device appeared. */ 10120 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 10121 ret = notifier_to_errno(ret); 10122 if (ret) { 10123 /* Expect explicit free_netdev() on failure */ 10124 dev->needs_free_netdev = false; 10125 unregister_netdevice_queue(dev, NULL); 10126 goto out; 10127 } 10128 /* 10129 * Prevent userspace races by waiting until the network 10130 * device is fully setup before sending notifications. 10131 */ 10132 if (!dev->rtnl_link_ops || 10133 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10134 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 10135 10136 out: 10137 return ret; 10138 10139 err_uninit_notify: 10140 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 10141 err_uninit: 10142 if (dev->netdev_ops->ndo_uninit) 10143 dev->netdev_ops->ndo_uninit(dev); 10144 if (dev->priv_destructor) 10145 dev->priv_destructor(dev); 10146 err_free_name: 10147 netdev_name_node_free(dev->name_node); 10148 goto out; 10149 } 10150 EXPORT_SYMBOL(register_netdevice); 10151 10152 /** 10153 * init_dummy_netdev - init a dummy network device for NAPI 10154 * @dev: device to init 10155 * 10156 * This takes a network device structure and initialize the minimum 10157 * amount of fields so it can be used to schedule NAPI polls without 10158 * registering a full blown interface. This is to be used by drivers 10159 * that need to tie several hardware interfaces to a single NAPI 10160 * poll scheduler due to HW limitations. 10161 */ 10162 int init_dummy_netdev(struct net_device *dev) 10163 { 10164 /* Clear everything. Note we don't initialize spinlocks 10165 * are they aren't supposed to be taken by any of the 10166 * NAPI code and this dummy netdev is supposed to be 10167 * only ever used for NAPI polls 10168 */ 10169 memset(dev, 0, sizeof(struct net_device)); 10170 10171 /* make sure we BUG if trying to hit standard 10172 * register/unregister code path 10173 */ 10174 dev->reg_state = NETREG_DUMMY; 10175 10176 /* NAPI wants this */ 10177 INIT_LIST_HEAD(&dev->napi_list); 10178 10179 /* a dummy interface is started by default */ 10180 set_bit(__LINK_STATE_PRESENT, &dev->state); 10181 set_bit(__LINK_STATE_START, &dev->state); 10182 10183 /* napi_busy_loop stats accounting wants this */ 10184 dev_net_set(dev, &init_net); 10185 10186 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10187 * because users of this 'device' dont need to change 10188 * its refcount. 10189 */ 10190 10191 return 0; 10192 } 10193 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10194 10195 10196 /** 10197 * register_netdev - register a network device 10198 * @dev: device to register 10199 * 10200 * Take a completed network device structure and add it to the kernel 10201 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10202 * chain. 0 is returned on success. A negative errno code is returned 10203 * on a failure to set up the device, or if the name is a duplicate. 10204 * 10205 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10206 * and expands the device name if you passed a format string to 10207 * alloc_netdev. 10208 */ 10209 int register_netdev(struct net_device *dev) 10210 { 10211 int err; 10212 10213 if (rtnl_lock_killable()) 10214 return -EINTR; 10215 err = register_netdevice(dev); 10216 rtnl_unlock(); 10217 return err; 10218 } 10219 EXPORT_SYMBOL(register_netdev); 10220 10221 int netdev_refcnt_read(const struct net_device *dev) 10222 { 10223 #ifdef CONFIG_PCPU_DEV_REFCNT 10224 int i, refcnt = 0; 10225 10226 for_each_possible_cpu(i) 10227 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10228 return refcnt; 10229 #else 10230 return refcount_read(&dev->dev_refcnt); 10231 #endif 10232 } 10233 EXPORT_SYMBOL(netdev_refcnt_read); 10234 10235 int netdev_unregister_timeout_secs __read_mostly = 10; 10236 10237 #define WAIT_REFS_MIN_MSECS 1 10238 #define WAIT_REFS_MAX_MSECS 250 10239 /** 10240 * netdev_wait_allrefs_any - wait until all references are gone. 10241 * @list: list of net_devices to wait on 10242 * 10243 * This is called when unregistering network devices. 10244 * 10245 * Any protocol or device that holds a reference should register 10246 * for netdevice notification, and cleanup and put back the 10247 * reference if they receive an UNREGISTER event. 10248 * We can get stuck here if buggy protocols don't correctly 10249 * call dev_put. 10250 */ 10251 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 10252 { 10253 unsigned long rebroadcast_time, warning_time; 10254 struct net_device *dev; 10255 int wait = 0; 10256 10257 rebroadcast_time = warning_time = jiffies; 10258 10259 list_for_each_entry(dev, list, todo_list) 10260 if (netdev_refcnt_read(dev) == 1) 10261 return dev; 10262 10263 while (true) { 10264 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10265 rtnl_lock(); 10266 10267 /* Rebroadcast unregister notification */ 10268 list_for_each_entry(dev, list, todo_list) 10269 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10270 10271 __rtnl_unlock(); 10272 rcu_barrier(); 10273 rtnl_lock(); 10274 10275 list_for_each_entry(dev, list, todo_list) 10276 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10277 &dev->state)) { 10278 /* We must not have linkwatch events 10279 * pending on unregister. If this 10280 * happens, we simply run the queue 10281 * unscheduled, resulting in a noop 10282 * for this device. 10283 */ 10284 linkwatch_run_queue(); 10285 break; 10286 } 10287 10288 __rtnl_unlock(); 10289 10290 rebroadcast_time = jiffies; 10291 } 10292 10293 if (!wait) { 10294 rcu_barrier(); 10295 wait = WAIT_REFS_MIN_MSECS; 10296 } else { 10297 msleep(wait); 10298 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10299 } 10300 10301 list_for_each_entry(dev, list, todo_list) 10302 if (netdev_refcnt_read(dev) == 1) 10303 return dev; 10304 10305 if (time_after(jiffies, warning_time + 10306 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 10307 list_for_each_entry(dev, list, todo_list) { 10308 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10309 dev->name, netdev_refcnt_read(dev)); 10310 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 10311 } 10312 10313 warning_time = jiffies; 10314 } 10315 } 10316 } 10317 10318 /* The sequence is: 10319 * 10320 * rtnl_lock(); 10321 * ... 10322 * register_netdevice(x1); 10323 * register_netdevice(x2); 10324 * ... 10325 * unregister_netdevice(y1); 10326 * unregister_netdevice(y2); 10327 * ... 10328 * rtnl_unlock(); 10329 * free_netdev(y1); 10330 * free_netdev(y2); 10331 * 10332 * We are invoked by rtnl_unlock(). 10333 * This allows us to deal with problems: 10334 * 1) We can delete sysfs objects which invoke hotplug 10335 * without deadlocking with linkwatch via keventd. 10336 * 2) Since we run with the RTNL semaphore not held, we can sleep 10337 * safely in order to wait for the netdev refcnt to drop to zero. 10338 * 10339 * We must not return until all unregister events added during 10340 * the interval the lock was held have been completed. 10341 */ 10342 void netdev_run_todo(void) 10343 { 10344 struct net_device *dev, *tmp; 10345 struct list_head list; 10346 #ifdef CONFIG_LOCKDEP 10347 struct list_head unlink_list; 10348 10349 list_replace_init(&net_unlink_list, &unlink_list); 10350 10351 while (!list_empty(&unlink_list)) { 10352 struct net_device *dev = list_first_entry(&unlink_list, 10353 struct net_device, 10354 unlink_list); 10355 list_del_init(&dev->unlink_list); 10356 dev->nested_level = dev->lower_level - 1; 10357 } 10358 #endif 10359 10360 /* Snapshot list, allow later requests */ 10361 list_replace_init(&net_todo_list, &list); 10362 10363 __rtnl_unlock(); 10364 10365 /* Wait for rcu callbacks to finish before next phase */ 10366 if (!list_empty(&list)) 10367 rcu_barrier(); 10368 10369 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 10370 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10371 netdev_WARN(dev, "run_todo but not unregistering\n"); 10372 list_del(&dev->todo_list); 10373 continue; 10374 } 10375 10376 write_lock(&dev_base_lock); 10377 dev->reg_state = NETREG_UNREGISTERED; 10378 write_unlock(&dev_base_lock); 10379 linkwatch_forget_dev(dev); 10380 } 10381 10382 while (!list_empty(&list)) { 10383 dev = netdev_wait_allrefs_any(&list); 10384 list_del(&dev->todo_list); 10385 10386 /* paranoia */ 10387 BUG_ON(netdev_refcnt_read(dev) != 1); 10388 BUG_ON(!list_empty(&dev->ptype_all)); 10389 BUG_ON(!list_empty(&dev->ptype_specific)); 10390 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10391 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10392 10393 if (dev->priv_destructor) 10394 dev->priv_destructor(dev); 10395 if (dev->needs_free_netdev) 10396 free_netdev(dev); 10397 10398 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count)) 10399 wake_up(&netdev_unregistering_wq); 10400 10401 /* Free network device */ 10402 kobject_put(&dev->dev.kobj); 10403 } 10404 } 10405 10406 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10407 * all the same fields in the same order as net_device_stats, with only 10408 * the type differing, but rtnl_link_stats64 may have additional fields 10409 * at the end for newer counters. 10410 */ 10411 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10412 const struct net_device_stats *netdev_stats) 10413 { 10414 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 10415 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 10416 u64 *dst = (u64 *)stats64; 10417 10418 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10419 for (i = 0; i < n; i++) 10420 dst[i] = (unsigned long)atomic_long_read(&src[i]); 10421 /* zero out counters that only exist in rtnl_link_stats64 */ 10422 memset((char *)stats64 + n * sizeof(u64), 0, 10423 sizeof(*stats64) - n * sizeof(u64)); 10424 } 10425 EXPORT_SYMBOL(netdev_stats_to_stats64); 10426 10427 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev) 10428 { 10429 struct net_device_core_stats __percpu *p; 10430 10431 p = alloc_percpu_gfp(struct net_device_core_stats, 10432 GFP_ATOMIC | __GFP_NOWARN); 10433 10434 if (p && cmpxchg(&dev->core_stats, NULL, p)) 10435 free_percpu(p); 10436 10437 /* This READ_ONCE() pairs with the cmpxchg() above */ 10438 return READ_ONCE(dev->core_stats); 10439 } 10440 EXPORT_SYMBOL(netdev_core_stats_alloc); 10441 10442 /** 10443 * dev_get_stats - get network device statistics 10444 * @dev: device to get statistics from 10445 * @storage: place to store stats 10446 * 10447 * Get network statistics from device. Return @storage. 10448 * The device driver may provide its own method by setting 10449 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10450 * otherwise the internal statistics structure is used. 10451 */ 10452 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10453 struct rtnl_link_stats64 *storage) 10454 { 10455 const struct net_device_ops *ops = dev->netdev_ops; 10456 const struct net_device_core_stats __percpu *p; 10457 10458 if (ops->ndo_get_stats64) { 10459 memset(storage, 0, sizeof(*storage)); 10460 ops->ndo_get_stats64(dev, storage); 10461 } else if (ops->ndo_get_stats) { 10462 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10463 } else { 10464 netdev_stats_to_stats64(storage, &dev->stats); 10465 } 10466 10467 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 10468 p = READ_ONCE(dev->core_stats); 10469 if (p) { 10470 const struct net_device_core_stats *core_stats; 10471 int i; 10472 10473 for_each_possible_cpu(i) { 10474 core_stats = per_cpu_ptr(p, i); 10475 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 10476 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 10477 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 10478 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 10479 } 10480 } 10481 return storage; 10482 } 10483 EXPORT_SYMBOL(dev_get_stats); 10484 10485 /** 10486 * dev_fetch_sw_netstats - get per-cpu network device statistics 10487 * @s: place to store stats 10488 * @netstats: per-cpu network stats to read from 10489 * 10490 * Read per-cpu network statistics and populate the related fields in @s. 10491 */ 10492 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10493 const struct pcpu_sw_netstats __percpu *netstats) 10494 { 10495 int cpu; 10496 10497 for_each_possible_cpu(cpu) { 10498 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 10499 const struct pcpu_sw_netstats *stats; 10500 unsigned int start; 10501 10502 stats = per_cpu_ptr(netstats, cpu); 10503 do { 10504 start = u64_stats_fetch_begin(&stats->syncp); 10505 rx_packets = u64_stats_read(&stats->rx_packets); 10506 rx_bytes = u64_stats_read(&stats->rx_bytes); 10507 tx_packets = u64_stats_read(&stats->tx_packets); 10508 tx_bytes = u64_stats_read(&stats->tx_bytes); 10509 } while (u64_stats_fetch_retry(&stats->syncp, start)); 10510 10511 s->rx_packets += rx_packets; 10512 s->rx_bytes += rx_bytes; 10513 s->tx_packets += tx_packets; 10514 s->tx_bytes += tx_bytes; 10515 } 10516 } 10517 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 10518 10519 /** 10520 * dev_get_tstats64 - ndo_get_stats64 implementation 10521 * @dev: device to get statistics from 10522 * @s: place to store stats 10523 * 10524 * Populate @s from dev->stats and dev->tstats. Can be used as 10525 * ndo_get_stats64() callback. 10526 */ 10527 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 10528 { 10529 netdev_stats_to_stats64(s, &dev->stats); 10530 dev_fetch_sw_netstats(s, dev->tstats); 10531 } 10532 EXPORT_SYMBOL_GPL(dev_get_tstats64); 10533 10534 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10535 { 10536 struct netdev_queue *queue = dev_ingress_queue(dev); 10537 10538 #ifdef CONFIG_NET_CLS_ACT 10539 if (queue) 10540 return queue; 10541 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 10542 if (!queue) 10543 return NULL; 10544 netdev_init_one_queue(dev, queue, NULL); 10545 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 10546 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 10547 rcu_assign_pointer(dev->ingress_queue, queue); 10548 #endif 10549 return queue; 10550 } 10551 10552 static const struct ethtool_ops default_ethtool_ops; 10553 10554 void netdev_set_default_ethtool_ops(struct net_device *dev, 10555 const struct ethtool_ops *ops) 10556 { 10557 if (dev->ethtool_ops == &default_ethtool_ops) 10558 dev->ethtool_ops = ops; 10559 } 10560 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 10561 10562 /** 10563 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 10564 * @dev: netdev to enable the IRQ coalescing on 10565 * 10566 * Sets a conservative default for SW IRQ coalescing. Users can use 10567 * sysfs attributes to override the default values. 10568 */ 10569 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 10570 { 10571 WARN_ON(dev->reg_state == NETREG_REGISTERED); 10572 10573 dev->gro_flush_timeout = 20000; 10574 dev->napi_defer_hard_irqs = 1; 10575 } 10576 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 10577 10578 void netdev_freemem(struct net_device *dev) 10579 { 10580 char *addr = (char *)dev - dev->padded; 10581 10582 kvfree(addr); 10583 } 10584 10585 /** 10586 * alloc_netdev_mqs - allocate network device 10587 * @sizeof_priv: size of private data to allocate space for 10588 * @name: device name format string 10589 * @name_assign_type: origin of device name 10590 * @setup: callback to initialize device 10591 * @txqs: the number of TX subqueues to allocate 10592 * @rxqs: the number of RX subqueues to allocate 10593 * 10594 * Allocates a struct net_device with private data area for driver use 10595 * and performs basic initialization. Also allocates subqueue structs 10596 * for each queue on the device. 10597 */ 10598 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 10599 unsigned char name_assign_type, 10600 void (*setup)(struct net_device *), 10601 unsigned int txqs, unsigned int rxqs) 10602 { 10603 struct net_device *dev; 10604 unsigned int alloc_size; 10605 struct net_device *p; 10606 10607 BUG_ON(strlen(name) >= sizeof(dev->name)); 10608 10609 if (txqs < 1) { 10610 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 10611 return NULL; 10612 } 10613 10614 if (rxqs < 1) { 10615 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 10616 return NULL; 10617 } 10618 10619 alloc_size = sizeof(struct net_device); 10620 if (sizeof_priv) { 10621 /* ensure 32-byte alignment of private area */ 10622 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 10623 alloc_size += sizeof_priv; 10624 } 10625 /* ensure 32-byte alignment of whole construct */ 10626 alloc_size += NETDEV_ALIGN - 1; 10627 10628 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10629 if (!p) 10630 return NULL; 10631 10632 dev = PTR_ALIGN(p, NETDEV_ALIGN); 10633 dev->padded = (char *)dev - (char *)p; 10634 10635 ref_tracker_dir_init(&dev->refcnt_tracker, 128); 10636 #ifdef CONFIG_PCPU_DEV_REFCNT 10637 dev->pcpu_refcnt = alloc_percpu(int); 10638 if (!dev->pcpu_refcnt) 10639 goto free_dev; 10640 __dev_hold(dev); 10641 #else 10642 refcount_set(&dev->dev_refcnt, 1); 10643 #endif 10644 10645 if (dev_addr_init(dev)) 10646 goto free_pcpu; 10647 10648 dev_mc_init(dev); 10649 dev_uc_init(dev); 10650 10651 dev_net_set(dev, &init_net); 10652 10653 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 10654 dev->gso_max_segs = GSO_MAX_SEGS; 10655 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 10656 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 10657 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 10658 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 10659 dev->tso_max_segs = TSO_MAX_SEGS; 10660 dev->upper_level = 1; 10661 dev->lower_level = 1; 10662 #ifdef CONFIG_LOCKDEP 10663 dev->nested_level = 0; 10664 INIT_LIST_HEAD(&dev->unlink_list); 10665 #endif 10666 10667 INIT_LIST_HEAD(&dev->napi_list); 10668 INIT_LIST_HEAD(&dev->unreg_list); 10669 INIT_LIST_HEAD(&dev->close_list); 10670 INIT_LIST_HEAD(&dev->link_watch_list); 10671 INIT_LIST_HEAD(&dev->adj_list.upper); 10672 INIT_LIST_HEAD(&dev->adj_list.lower); 10673 INIT_LIST_HEAD(&dev->ptype_all); 10674 INIT_LIST_HEAD(&dev->ptype_specific); 10675 INIT_LIST_HEAD(&dev->net_notifier_list); 10676 #ifdef CONFIG_NET_SCHED 10677 hash_init(dev->qdisc_hash); 10678 #endif 10679 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 10680 setup(dev); 10681 10682 if (!dev->tx_queue_len) { 10683 dev->priv_flags |= IFF_NO_QUEUE; 10684 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 10685 } 10686 10687 dev->num_tx_queues = txqs; 10688 dev->real_num_tx_queues = txqs; 10689 if (netif_alloc_netdev_queues(dev)) 10690 goto free_all; 10691 10692 dev->num_rx_queues = rxqs; 10693 dev->real_num_rx_queues = rxqs; 10694 if (netif_alloc_rx_queues(dev)) 10695 goto free_all; 10696 10697 strcpy(dev->name, name); 10698 dev->name_assign_type = name_assign_type; 10699 dev->group = INIT_NETDEV_GROUP; 10700 if (!dev->ethtool_ops) 10701 dev->ethtool_ops = &default_ethtool_ops; 10702 10703 nf_hook_netdev_init(dev); 10704 10705 return dev; 10706 10707 free_all: 10708 free_netdev(dev); 10709 return NULL; 10710 10711 free_pcpu: 10712 #ifdef CONFIG_PCPU_DEV_REFCNT 10713 free_percpu(dev->pcpu_refcnt); 10714 free_dev: 10715 #endif 10716 netdev_freemem(dev); 10717 return NULL; 10718 } 10719 EXPORT_SYMBOL(alloc_netdev_mqs); 10720 10721 /** 10722 * free_netdev - free network device 10723 * @dev: device 10724 * 10725 * This function does the last stage of destroying an allocated device 10726 * interface. The reference to the device object is released. If this 10727 * is the last reference then it will be freed.Must be called in process 10728 * context. 10729 */ 10730 void free_netdev(struct net_device *dev) 10731 { 10732 struct napi_struct *p, *n; 10733 10734 might_sleep(); 10735 10736 /* When called immediately after register_netdevice() failed the unwind 10737 * handling may still be dismantling the device. Handle that case by 10738 * deferring the free. 10739 */ 10740 if (dev->reg_state == NETREG_UNREGISTERING) { 10741 ASSERT_RTNL(); 10742 dev->needs_free_netdev = true; 10743 return; 10744 } 10745 10746 netif_free_tx_queues(dev); 10747 netif_free_rx_queues(dev); 10748 10749 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 10750 10751 /* Flush device addresses */ 10752 dev_addr_flush(dev); 10753 10754 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 10755 netif_napi_del(p); 10756 10757 ref_tracker_dir_exit(&dev->refcnt_tracker); 10758 #ifdef CONFIG_PCPU_DEV_REFCNT 10759 free_percpu(dev->pcpu_refcnt); 10760 dev->pcpu_refcnt = NULL; 10761 #endif 10762 free_percpu(dev->core_stats); 10763 dev->core_stats = NULL; 10764 free_percpu(dev->xdp_bulkq); 10765 dev->xdp_bulkq = NULL; 10766 10767 /* Compatibility with error handling in drivers */ 10768 if (dev->reg_state == NETREG_UNINITIALIZED) { 10769 netdev_freemem(dev); 10770 return; 10771 } 10772 10773 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 10774 dev->reg_state = NETREG_RELEASED; 10775 10776 /* will free via device release */ 10777 put_device(&dev->dev); 10778 } 10779 EXPORT_SYMBOL(free_netdev); 10780 10781 /** 10782 * synchronize_net - Synchronize with packet receive processing 10783 * 10784 * Wait for packets currently being received to be done. 10785 * Does not block later packets from starting. 10786 */ 10787 void synchronize_net(void) 10788 { 10789 might_sleep(); 10790 if (rtnl_is_locked()) 10791 synchronize_rcu_expedited(); 10792 else 10793 synchronize_rcu(); 10794 } 10795 EXPORT_SYMBOL(synchronize_net); 10796 10797 /** 10798 * unregister_netdevice_queue - remove device from the kernel 10799 * @dev: device 10800 * @head: list 10801 * 10802 * This function shuts down a device interface and removes it 10803 * from the kernel tables. 10804 * If head not NULL, device is queued to be unregistered later. 10805 * 10806 * Callers must hold the rtnl semaphore. You may want 10807 * unregister_netdev() instead of this. 10808 */ 10809 10810 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 10811 { 10812 ASSERT_RTNL(); 10813 10814 if (head) { 10815 list_move_tail(&dev->unreg_list, head); 10816 } else { 10817 LIST_HEAD(single); 10818 10819 list_add(&dev->unreg_list, &single); 10820 unregister_netdevice_many(&single); 10821 } 10822 } 10823 EXPORT_SYMBOL(unregister_netdevice_queue); 10824 10825 void unregister_netdevice_many_notify(struct list_head *head, 10826 u32 portid, const struct nlmsghdr *nlh) 10827 { 10828 struct net_device *dev, *tmp; 10829 LIST_HEAD(close_head); 10830 10831 BUG_ON(dev_boot_phase); 10832 ASSERT_RTNL(); 10833 10834 if (list_empty(head)) 10835 return; 10836 10837 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 10838 /* Some devices call without registering 10839 * for initialization unwind. Remove those 10840 * devices and proceed with the remaining. 10841 */ 10842 if (dev->reg_state == NETREG_UNINITIALIZED) { 10843 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 10844 dev->name, dev); 10845 10846 WARN_ON(1); 10847 list_del(&dev->unreg_list); 10848 continue; 10849 } 10850 dev->dismantle = true; 10851 BUG_ON(dev->reg_state != NETREG_REGISTERED); 10852 } 10853 10854 /* If device is running, close it first. */ 10855 list_for_each_entry(dev, head, unreg_list) 10856 list_add_tail(&dev->close_list, &close_head); 10857 dev_close_many(&close_head, true); 10858 10859 list_for_each_entry(dev, head, unreg_list) { 10860 /* And unlink it from device chain. */ 10861 write_lock(&dev_base_lock); 10862 unlist_netdevice(dev, false); 10863 dev->reg_state = NETREG_UNREGISTERING; 10864 write_unlock(&dev_base_lock); 10865 } 10866 flush_all_backlogs(); 10867 10868 synchronize_net(); 10869 10870 list_for_each_entry(dev, head, unreg_list) { 10871 struct sk_buff *skb = NULL; 10872 10873 /* Shutdown queueing discipline. */ 10874 dev_shutdown(dev); 10875 10876 dev_xdp_uninstall(dev); 10877 bpf_dev_bound_netdev_unregister(dev); 10878 10879 netdev_offload_xstats_disable_all(dev); 10880 10881 /* Notify protocols, that we are about to destroy 10882 * this device. They should clean all the things. 10883 */ 10884 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10885 10886 if (!dev->rtnl_link_ops || 10887 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10888 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 10889 GFP_KERNEL, NULL, 0, 10890 portid, nlh); 10891 10892 /* 10893 * Flush the unicast and multicast chains 10894 */ 10895 dev_uc_flush(dev); 10896 dev_mc_flush(dev); 10897 10898 netdev_name_node_alt_flush(dev); 10899 netdev_name_node_free(dev->name_node); 10900 10901 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 10902 10903 if (dev->netdev_ops->ndo_uninit) 10904 dev->netdev_ops->ndo_uninit(dev); 10905 10906 if (skb) 10907 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 10908 10909 /* Notifier chain MUST detach us all upper devices. */ 10910 WARN_ON(netdev_has_any_upper_dev(dev)); 10911 WARN_ON(netdev_has_any_lower_dev(dev)); 10912 10913 /* Remove entries from kobject tree */ 10914 netdev_unregister_kobject(dev); 10915 #ifdef CONFIG_XPS 10916 /* Remove XPS queueing entries */ 10917 netif_reset_xps_queues_gt(dev, 0); 10918 #endif 10919 } 10920 10921 synchronize_net(); 10922 10923 list_for_each_entry(dev, head, unreg_list) { 10924 netdev_put(dev, &dev->dev_registered_tracker); 10925 net_set_todo(dev); 10926 } 10927 10928 list_del(head); 10929 } 10930 10931 /** 10932 * unregister_netdevice_many - unregister many devices 10933 * @head: list of devices 10934 * 10935 * Note: As most callers use a stack allocated list_head, 10936 * we force a list_del() to make sure stack wont be corrupted later. 10937 */ 10938 void unregister_netdevice_many(struct list_head *head) 10939 { 10940 unregister_netdevice_many_notify(head, 0, NULL); 10941 } 10942 EXPORT_SYMBOL(unregister_netdevice_many); 10943 10944 /** 10945 * unregister_netdev - remove device from the kernel 10946 * @dev: device 10947 * 10948 * This function shuts down a device interface and removes it 10949 * from the kernel tables. 10950 * 10951 * This is just a wrapper for unregister_netdevice that takes 10952 * the rtnl semaphore. In general you want to use this and not 10953 * unregister_netdevice. 10954 */ 10955 void unregister_netdev(struct net_device *dev) 10956 { 10957 rtnl_lock(); 10958 unregister_netdevice(dev); 10959 rtnl_unlock(); 10960 } 10961 EXPORT_SYMBOL(unregister_netdev); 10962 10963 /** 10964 * __dev_change_net_namespace - move device to different nethost namespace 10965 * @dev: device 10966 * @net: network namespace 10967 * @pat: If not NULL name pattern to try if the current device name 10968 * is already taken in the destination network namespace. 10969 * @new_ifindex: If not zero, specifies device index in the target 10970 * namespace. 10971 * 10972 * This function shuts down a device interface and moves it 10973 * to a new network namespace. On success 0 is returned, on 10974 * a failure a netagive errno code is returned. 10975 * 10976 * Callers must hold the rtnl semaphore. 10977 */ 10978 10979 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 10980 const char *pat, int new_ifindex) 10981 { 10982 struct net *net_old = dev_net(dev); 10983 int err, new_nsid; 10984 10985 ASSERT_RTNL(); 10986 10987 /* Don't allow namespace local devices to be moved. */ 10988 err = -EINVAL; 10989 if (dev->features & NETIF_F_NETNS_LOCAL) 10990 goto out; 10991 10992 /* Ensure the device has been registrered */ 10993 if (dev->reg_state != NETREG_REGISTERED) 10994 goto out; 10995 10996 /* Get out if there is nothing todo */ 10997 err = 0; 10998 if (net_eq(net_old, net)) 10999 goto out; 11000 11001 /* Pick the destination device name, and ensure 11002 * we can use it in the destination network namespace. 11003 */ 11004 err = -EEXIST; 11005 if (netdev_name_in_use(net, dev->name)) { 11006 /* We get here if we can't use the current device name */ 11007 if (!pat) 11008 goto out; 11009 err = dev_get_valid_name(net, dev, pat); 11010 if (err < 0) 11011 goto out; 11012 } 11013 11014 /* Check that new_ifindex isn't used yet. */ 11015 err = -EBUSY; 11016 if (new_ifindex && __dev_get_by_index(net, new_ifindex)) 11017 goto out; 11018 11019 /* 11020 * And now a mini version of register_netdevice unregister_netdevice. 11021 */ 11022 11023 /* If device is running close it first. */ 11024 dev_close(dev); 11025 11026 /* And unlink it from device chain */ 11027 unlist_netdevice(dev, true); 11028 11029 synchronize_net(); 11030 11031 /* Shutdown queueing discipline. */ 11032 dev_shutdown(dev); 11033 11034 /* Notify protocols, that we are about to destroy 11035 * this device. They should clean all the things. 11036 * 11037 * Note that dev->reg_state stays at NETREG_REGISTERED. 11038 * This is wanted because this way 8021q and macvlan know 11039 * the device is just moving and can keep their slaves up. 11040 */ 11041 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11042 rcu_barrier(); 11043 11044 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 11045 /* If there is an ifindex conflict assign a new one */ 11046 if (!new_ifindex) { 11047 if (__dev_get_by_index(net, dev->ifindex)) 11048 new_ifindex = dev_new_index(net); 11049 else 11050 new_ifindex = dev->ifindex; 11051 } 11052 11053 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 11054 new_ifindex); 11055 11056 /* 11057 * Flush the unicast and multicast chains 11058 */ 11059 dev_uc_flush(dev); 11060 dev_mc_flush(dev); 11061 11062 /* Send a netdev-removed uevent to the old namespace */ 11063 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 11064 netdev_adjacent_del_links(dev); 11065 11066 /* Move per-net netdevice notifiers that are following the netdevice */ 11067 move_netdevice_notifiers_dev_net(dev, net); 11068 11069 /* Actually switch the network namespace */ 11070 dev_net_set(dev, net); 11071 dev->ifindex = new_ifindex; 11072 11073 /* Send a netdev-add uevent to the new namespace */ 11074 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 11075 netdev_adjacent_add_links(dev); 11076 11077 /* Fixup kobjects */ 11078 err = device_rename(&dev->dev, dev->name); 11079 WARN_ON(err); 11080 11081 /* Adapt owner in case owning user namespace of target network 11082 * namespace is different from the original one. 11083 */ 11084 err = netdev_change_owner(dev, net_old, net); 11085 WARN_ON(err); 11086 11087 /* Add the device back in the hashes */ 11088 list_netdevice(dev); 11089 11090 /* Notify protocols, that a new device appeared. */ 11091 call_netdevice_notifiers(NETDEV_REGISTER, dev); 11092 11093 /* 11094 * Prevent userspace races by waiting until the network 11095 * device is fully setup before sending notifications. 11096 */ 11097 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11098 11099 synchronize_net(); 11100 err = 0; 11101 out: 11102 return err; 11103 } 11104 EXPORT_SYMBOL_GPL(__dev_change_net_namespace); 11105 11106 static int dev_cpu_dead(unsigned int oldcpu) 11107 { 11108 struct sk_buff **list_skb; 11109 struct sk_buff *skb; 11110 unsigned int cpu; 11111 struct softnet_data *sd, *oldsd, *remsd = NULL; 11112 11113 local_irq_disable(); 11114 cpu = smp_processor_id(); 11115 sd = &per_cpu(softnet_data, cpu); 11116 oldsd = &per_cpu(softnet_data, oldcpu); 11117 11118 /* Find end of our completion_queue. */ 11119 list_skb = &sd->completion_queue; 11120 while (*list_skb) 11121 list_skb = &(*list_skb)->next; 11122 /* Append completion queue from offline CPU. */ 11123 *list_skb = oldsd->completion_queue; 11124 oldsd->completion_queue = NULL; 11125 11126 /* Append output queue from offline CPU. */ 11127 if (oldsd->output_queue) { 11128 *sd->output_queue_tailp = oldsd->output_queue; 11129 sd->output_queue_tailp = oldsd->output_queue_tailp; 11130 oldsd->output_queue = NULL; 11131 oldsd->output_queue_tailp = &oldsd->output_queue; 11132 } 11133 /* Append NAPI poll list from offline CPU, with one exception : 11134 * process_backlog() must be called by cpu owning percpu backlog. 11135 * We properly handle process_queue & input_pkt_queue later. 11136 */ 11137 while (!list_empty(&oldsd->poll_list)) { 11138 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 11139 struct napi_struct, 11140 poll_list); 11141 11142 list_del_init(&napi->poll_list); 11143 if (napi->poll == process_backlog) 11144 napi->state = 0; 11145 else 11146 ____napi_schedule(sd, napi); 11147 } 11148 11149 raise_softirq_irqoff(NET_TX_SOFTIRQ); 11150 local_irq_enable(); 11151 11152 #ifdef CONFIG_RPS 11153 remsd = oldsd->rps_ipi_list; 11154 oldsd->rps_ipi_list = NULL; 11155 #endif 11156 /* send out pending IPI's on offline CPU */ 11157 net_rps_send_ipi(remsd); 11158 11159 /* Process offline CPU's input_pkt_queue */ 11160 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 11161 netif_rx(skb); 11162 input_queue_head_incr(oldsd); 11163 } 11164 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 11165 netif_rx(skb); 11166 input_queue_head_incr(oldsd); 11167 } 11168 11169 return 0; 11170 } 11171 11172 /** 11173 * netdev_increment_features - increment feature set by one 11174 * @all: current feature set 11175 * @one: new feature set 11176 * @mask: mask feature set 11177 * 11178 * Computes a new feature set after adding a device with feature set 11179 * @one to the master device with current feature set @all. Will not 11180 * enable anything that is off in @mask. Returns the new feature set. 11181 */ 11182 netdev_features_t netdev_increment_features(netdev_features_t all, 11183 netdev_features_t one, netdev_features_t mask) 11184 { 11185 if (mask & NETIF_F_HW_CSUM) 11186 mask |= NETIF_F_CSUM_MASK; 11187 mask |= NETIF_F_VLAN_CHALLENGED; 11188 11189 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 11190 all &= one | ~NETIF_F_ALL_FOR_ALL; 11191 11192 /* If one device supports hw checksumming, set for all. */ 11193 if (all & NETIF_F_HW_CSUM) 11194 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 11195 11196 return all; 11197 } 11198 EXPORT_SYMBOL(netdev_increment_features); 11199 11200 static struct hlist_head * __net_init netdev_create_hash(void) 11201 { 11202 int i; 11203 struct hlist_head *hash; 11204 11205 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 11206 if (hash != NULL) 11207 for (i = 0; i < NETDEV_HASHENTRIES; i++) 11208 INIT_HLIST_HEAD(&hash[i]); 11209 11210 return hash; 11211 } 11212 11213 /* Initialize per network namespace state */ 11214 static int __net_init netdev_init(struct net *net) 11215 { 11216 BUILD_BUG_ON(GRO_HASH_BUCKETS > 11217 8 * sizeof_field(struct napi_struct, gro_bitmask)); 11218 11219 INIT_LIST_HEAD(&net->dev_base_head); 11220 11221 net->dev_name_head = netdev_create_hash(); 11222 if (net->dev_name_head == NULL) 11223 goto err_name; 11224 11225 net->dev_index_head = netdev_create_hash(); 11226 if (net->dev_index_head == NULL) 11227 goto err_idx; 11228 11229 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 11230 11231 return 0; 11232 11233 err_idx: 11234 kfree(net->dev_name_head); 11235 err_name: 11236 return -ENOMEM; 11237 } 11238 11239 /** 11240 * netdev_drivername - network driver for the device 11241 * @dev: network device 11242 * 11243 * Determine network driver for device. 11244 */ 11245 const char *netdev_drivername(const struct net_device *dev) 11246 { 11247 const struct device_driver *driver; 11248 const struct device *parent; 11249 const char *empty = ""; 11250 11251 parent = dev->dev.parent; 11252 if (!parent) 11253 return empty; 11254 11255 driver = parent->driver; 11256 if (driver && driver->name) 11257 return driver->name; 11258 return empty; 11259 } 11260 11261 static void __netdev_printk(const char *level, const struct net_device *dev, 11262 struct va_format *vaf) 11263 { 11264 if (dev && dev->dev.parent) { 11265 dev_printk_emit(level[1] - '0', 11266 dev->dev.parent, 11267 "%s %s %s%s: %pV", 11268 dev_driver_string(dev->dev.parent), 11269 dev_name(dev->dev.parent), 11270 netdev_name(dev), netdev_reg_state(dev), 11271 vaf); 11272 } else if (dev) { 11273 printk("%s%s%s: %pV", 11274 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11275 } else { 11276 printk("%s(NULL net_device): %pV", level, vaf); 11277 } 11278 } 11279 11280 void netdev_printk(const char *level, const struct net_device *dev, 11281 const char *format, ...) 11282 { 11283 struct va_format vaf; 11284 va_list args; 11285 11286 va_start(args, format); 11287 11288 vaf.fmt = format; 11289 vaf.va = &args; 11290 11291 __netdev_printk(level, dev, &vaf); 11292 11293 va_end(args); 11294 } 11295 EXPORT_SYMBOL(netdev_printk); 11296 11297 #define define_netdev_printk_level(func, level) \ 11298 void func(const struct net_device *dev, const char *fmt, ...) \ 11299 { \ 11300 struct va_format vaf; \ 11301 va_list args; \ 11302 \ 11303 va_start(args, fmt); \ 11304 \ 11305 vaf.fmt = fmt; \ 11306 vaf.va = &args; \ 11307 \ 11308 __netdev_printk(level, dev, &vaf); \ 11309 \ 11310 va_end(args); \ 11311 } \ 11312 EXPORT_SYMBOL(func); 11313 11314 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 11315 define_netdev_printk_level(netdev_alert, KERN_ALERT); 11316 define_netdev_printk_level(netdev_crit, KERN_CRIT); 11317 define_netdev_printk_level(netdev_err, KERN_ERR); 11318 define_netdev_printk_level(netdev_warn, KERN_WARNING); 11319 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11320 define_netdev_printk_level(netdev_info, KERN_INFO); 11321 11322 static void __net_exit netdev_exit(struct net *net) 11323 { 11324 kfree(net->dev_name_head); 11325 kfree(net->dev_index_head); 11326 if (net != &init_net) 11327 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11328 } 11329 11330 static struct pernet_operations __net_initdata netdev_net_ops = { 11331 .init = netdev_init, 11332 .exit = netdev_exit, 11333 }; 11334 11335 static void __net_exit default_device_exit_net(struct net *net) 11336 { 11337 struct net_device *dev, *aux; 11338 /* 11339 * Push all migratable network devices back to the 11340 * initial network namespace 11341 */ 11342 ASSERT_RTNL(); 11343 for_each_netdev_safe(net, dev, aux) { 11344 int err; 11345 char fb_name[IFNAMSIZ]; 11346 11347 /* Ignore unmoveable devices (i.e. loopback) */ 11348 if (dev->features & NETIF_F_NETNS_LOCAL) 11349 continue; 11350 11351 /* Leave virtual devices for the generic cleanup */ 11352 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 11353 continue; 11354 11355 /* Push remaining network devices to init_net */ 11356 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11357 if (netdev_name_in_use(&init_net, fb_name)) 11358 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11359 err = dev_change_net_namespace(dev, &init_net, fb_name); 11360 if (err) { 11361 pr_emerg("%s: failed to move %s to init_net: %d\n", 11362 __func__, dev->name, err); 11363 BUG(); 11364 } 11365 } 11366 } 11367 11368 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11369 { 11370 /* At exit all network devices most be removed from a network 11371 * namespace. Do this in the reverse order of registration. 11372 * Do this across as many network namespaces as possible to 11373 * improve batching efficiency. 11374 */ 11375 struct net_device *dev; 11376 struct net *net; 11377 LIST_HEAD(dev_kill_list); 11378 11379 rtnl_lock(); 11380 list_for_each_entry(net, net_list, exit_list) { 11381 default_device_exit_net(net); 11382 cond_resched(); 11383 } 11384 11385 list_for_each_entry(net, net_list, exit_list) { 11386 for_each_netdev_reverse(net, dev) { 11387 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11388 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11389 else 11390 unregister_netdevice_queue(dev, &dev_kill_list); 11391 } 11392 } 11393 unregister_netdevice_many(&dev_kill_list); 11394 rtnl_unlock(); 11395 } 11396 11397 static struct pernet_operations __net_initdata default_device_ops = { 11398 .exit_batch = default_device_exit_batch, 11399 }; 11400 11401 /* 11402 * Initialize the DEV module. At boot time this walks the device list and 11403 * unhooks any devices that fail to initialise (normally hardware not 11404 * present) and leaves us with a valid list of present and active devices. 11405 * 11406 */ 11407 11408 /* 11409 * This is called single threaded during boot, so no need 11410 * to take the rtnl semaphore. 11411 */ 11412 static int __init net_dev_init(void) 11413 { 11414 int i, rc = -ENOMEM; 11415 11416 BUG_ON(!dev_boot_phase); 11417 11418 if (dev_proc_init()) 11419 goto out; 11420 11421 if (netdev_kobject_init()) 11422 goto out; 11423 11424 INIT_LIST_HEAD(&ptype_all); 11425 for (i = 0; i < PTYPE_HASH_SIZE; i++) 11426 INIT_LIST_HEAD(&ptype_base[i]); 11427 11428 if (register_pernet_subsys(&netdev_net_ops)) 11429 goto out; 11430 11431 /* 11432 * Initialise the packet receive queues. 11433 */ 11434 11435 for_each_possible_cpu(i) { 11436 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 11437 struct softnet_data *sd = &per_cpu(softnet_data, i); 11438 11439 INIT_WORK(flush, flush_backlog); 11440 11441 skb_queue_head_init(&sd->input_pkt_queue); 11442 skb_queue_head_init(&sd->process_queue); 11443 #ifdef CONFIG_XFRM_OFFLOAD 11444 skb_queue_head_init(&sd->xfrm_backlog); 11445 #endif 11446 INIT_LIST_HEAD(&sd->poll_list); 11447 sd->output_queue_tailp = &sd->output_queue; 11448 #ifdef CONFIG_RPS 11449 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 11450 sd->cpu = i; 11451 #endif 11452 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 11453 spin_lock_init(&sd->defer_lock); 11454 11455 init_gro_hash(&sd->backlog); 11456 sd->backlog.poll = process_backlog; 11457 sd->backlog.weight = weight_p; 11458 } 11459 11460 dev_boot_phase = 0; 11461 11462 /* The loopback device is special if any other network devices 11463 * is present in a network namespace the loopback device must 11464 * be present. Since we now dynamically allocate and free the 11465 * loopback device ensure this invariant is maintained by 11466 * keeping the loopback device as the first device on the 11467 * list of network devices. Ensuring the loopback devices 11468 * is the first device that appears and the last network device 11469 * that disappears. 11470 */ 11471 if (register_pernet_device(&loopback_net_ops)) 11472 goto out; 11473 11474 if (register_pernet_device(&default_device_ops)) 11475 goto out; 11476 11477 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 11478 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 11479 11480 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 11481 NULL, dev_cpu_dead); 11482 WARN_ON(rc < 0); 11483 rc = 0; 11484 out: 11485 return rc; 11486 } 11487 11488 subsys_initcall(net_dev_init); 11489