xref: /openbmc/linux/net/core/dev.c (revision a31edb20)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/pkt_cls.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140 #include <linux/crash_dump.h>
141 #include <linux/sctp.h>
142 #include <net/udp_tunnel.h>
143 #include <linux/net_namespace.h>
144 #include <linux/indirect_call_wrapper.h>
145 #include <net/devlink.h>
146 #include <linux/pm_runtime.h>
147 
148 #include "net-sysfs.h"
149 
150 #define MAX_GRO_SKBS 8
151 
152 /* This should be increased if a protocol with a bigger head is added. */
153 #define GRO_MAX_HEAD (MAX_HEADER + 128)
154 
155 static DEFINE_SPINLOCK(ptype_lock);
156 static DEFINE_SPINLOCK(offload_lock);
157 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
158 struct list_head ptype_all __read_mostly;	/* Taps */
159 static struct list_head offload_base __read_mostly;
160 
161 static int netif_rx_internal(struct sk_buff *skb);
162 static int call_netdevice_notifiers_info(unsigned long val,
163 					 struct netdev_notifier_info *info);
164 static int call_netdevice_notifiers_extack(unsigned long val,
165 					   struct net_device *dev,
166 					   struct netlink_ext_ack *extack);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static DECLARE_RWSEM(devnet_rename_sem);
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 	spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232 
233 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
234 						       const char *name)
235 {
236 	struct netdev_name_node *name_node;
237 
238 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
239 	if (!name_node)
240 		return NULL;
241 	INIT_HLIST_NODE(&name_node->hlist);
242 	name_node->dev = dev;
243 	name_node->name = name;
244 	return name_node;
245 }
246 
247 static struct netdev_name_node *
248 netdev_name_node_head_alloc(struct net_device *dev)
249 {
250 	struct netdev_name_node *name_node;
251 
252 	name_node = netdev_name_node_alloc(dev, dev->name);
253 	if (!name_node)
254 		return NULL;
255 	INIT_LIST_HEAD(&name_node->list);
256 	return name_node;
257 }
258 
259 static void netdev_name_node_free(struct netdev_name_node *name_node)
260 {
261 	kfree(name_node);
262 }
263 
264 static void netdev_name_node_add(struct net *net,
265 				 struct netdev_name_node *name_node)
266 {
267 	hlist_add_head_rcu(&name_node->hlist,
268 			   dev_name_hash(net, name_node->name));
269 }
270 
271 static void netdev_name_node_del(struct netdev_name_node *name_node)
272 {
273 	hlist_del_rcu(&name_node->hlist);
274 }
275 
276 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
277 							const char *name)
278 {
279 	struct hlist_head *head = dev_name_hash(net, name);
280 	struct netdev_name_node *name_node;
281 
282 	hlist_for_each_entry(name_node, head, hlist)
283 		if (!strcmp(name_node->name, name))
284 			return name_node;
285 	return NULL;
286 }
287 
288 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
289 							    const char *name)
290 {
291 	struct hlist_head *head = dev_name_hash(net, name);
292 	struct netdev_name_node *name_node;
293 
294 	hlist_for_each_entry_rcu(name_node, head, hlist)
295 		if (!strcmp(name_node->name, name))
296 			return name_node;
297 	return NULL;
298 }
299 
300 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
301 {
302 	struct netdev_name_node *name_node;
303 	struct net *net = dev_net(dev);
304 
305 	name_node = netdev_name_node_lookup(net, name);
306 	if (name_node)
307 		return -EEXIST;
308 	name_node = netdev_name_node_alloc(dev, name);
309 	if (!name_node)
310 		return -ENOMEM;
311 	netdev_name_node_add(net, name_node);
312 	/* The node that holds dev->name acts as a head of per-device list. */
313 	list_add_tail(&name_node->list, &dev->name_node->list);
314 
315 	return 0;
316 }
317 EXPORT_SYMBOL(netdev_name_node_alt_create);
318 
319 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
320 {
321 	list_del(&name_node->list);
322 	netdev_name_node_del(name_node);
323 	kfree(name_node->name);
324 	netdev_name_node_free(name_node);
325 }
326 
327 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
328 {
329 	struct netdev_name_node *name_node;
330 	struct net *net = dev_net(dev);
331 
332 	name_node = netdev_name_node_lookup(net, name);
333 	if (!name_node)
334 		return -ENOENT;
335 	/* lookup might have found our primary name or a name belonging
336 	 * to another device.
337 	 */
338 	if (name_node == dev->name_node || name_node->dev != dev)
339 		return -EINVAL;
340 
341 	__netdev_name_node_alt_destroy(name_node);
342 
343 	return 0;
344 }
345 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
346 
347 static void netdev_name_node_alt_flush(struct net_device *dev)
348 {
349 	struct netdev_name_node *name_node, *tmp;
350 
351 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
352 		__netdev_name_node_alt_destroy(name_node);
353 }
354 
355 /* Device list insertion */
356 static void list_netdevice(struct net_device *dev)
357 {
358 	struct net *net = dev_net(dev);
359 
360 	ASSERT_RTNL();
361 
362 	write_lock_bh(&dev_base_lock);
363 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
364 	netdev_name_node_add(net, dev->name_node);
365 	hlist_add_head_rcu(&dev->index_hlist,
366 			   dev_index_hash(net, dev->ifindex));
367 	write_unlock_bh(&dev_base_lock);
368 
369 	dev_base_seq_inc(net);
370 }
371 
372 /* Device list removal
373  * caller must respect a RCU grace period before freeing/reusing dev
374  */
375 static void unlist_netdevice(struct net_device *dev)
376 {
377 	ASSERT_RTNL();
378 
379 	/* Unlink dev from the device chain */
380 	write_lock_bh(&dev_base_lock);
381 	list_del_rcu(&dev->dev_list);
382 	netdev_name_node_del(dev->name_node);
383 	hlist_del_rcu(&dev->index_hlist);
384 	write_unlock_bh(&dev_base_lock);
385 
386 	dev_base_seq_inc(dev_net(dev));
387 }
388 
389 /*
390  *	Our notifier list
391  */
392 
393 static RAW_NOTIFIER_HEAD(netdev_chain);
394 
395 /*
396  *	Device drivers call our routines to queue packets here. We empty the
397  *	queue in the local softnet handler.
398  */
399 
400 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
401 EXPORT_PER_CPU_SYMBOL(softnet_data);
402 
403 #ifdef CONFIG_LOCKDEP
404 /*
405  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
406  * according to dev->type
407  */
408 static const unsigned short netdev_lock_type[] = {
409 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
410 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
411 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
412 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
413 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
414 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
415 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
416 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
417 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
418 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
419 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
420 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
421 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
422 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
423 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
424 
425 static const char *const netdev_lock_name[] = {
426 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
427 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
428 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
429 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
430 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
431 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
432 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
433 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
434 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
435 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
436 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
437 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
438 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
439 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
440 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
441 
442 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
443 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
444 
445 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
446 {
447 	int i;
448 
449 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
450 		if (netdev_lock_type[i] == dev_type)
451 			return i;
452 	/* the last key is used by default */
453 	return ARRAY_SIZE(netdev_lock_type) - 1;
454 }
455 
456 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
457 						 unsigned short dev_type)
458 {
459 	int i;
460 
461 	i = netdev_lock_pos(dev_type);
462 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
463 				   netdev_lock_name[i]);
464 }
465 
466 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
467 {
468 	int i;
469 
470 	i = netdev_lock_pos(dev->type);
471 	lockdep_set_class_and_name(&dev->addr_list_lock,
472 				   &netdev_addr_lock_key[i],
473 				   netdev_lock_name[i]);
474 }
475 #else
476 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
477 						 unsigned short dev_type)
478 {
479 }
480 
481 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
482 {
483 }
484 #endif
485 
486 /*******************************************************************************
487  *
488  *		Protocol management and registration routines
489  *
490  *******************************************************************************/
491 
492 
493 /*
494  *	Add a protocol ID to the list. Now that the input handler is
495  *	smarter we can dispense with all the messy stuff that used to be
496  *	here.
497  *
498  *	BEWARE!!! Protocol handlers, mangling input packets,
499  *	MUST BE last in hash buckets and checking protocol handlers
500  *	MUST start from promiscuous ptype_all chain in net_bh.
501  *	It is true now, do not change it.
502  *	Explanation follows: if protocol handler, mangling packet, will
503  *	be the first on list, it is not able to sense, that packet
504  *	is cloned and should be copied-on-write, so that it will
505  *	change it and subsequent readers will get broken packet.
506  *							--ANK (980803)
507  */
508 
509 static inline struct list_head *ptype_head(const struct packet_type *pt)
510 {
511 	if (pt->type == htons(ETH_P_ALL))
512 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
513 	else
514 		return pt->dev ? &pt->dev->ptype_specific :
515 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
516 }
517 
518 /**
519  *	dev_add_pack - add packet handler
520  *	@pt: packet type declaration
521  *
522  *	Add a protocol handler to the networking stack. The passed &packet_type
523  *	is linked into kernel lists and may not be freed until it has been
524  *	removed from the kernel lists.
525  *
526  *	This call does not sleep therefore it can not
527  *	guarantee all CPU's that are in middle of receiving packets
528  *	will see the new packet type (until the next received packet).
529  */
530 
531 void dev_add_pack(struct packet_type *pt)
532 {
533 	struct list_head *head = ptype_head(pt);
534 
535 	spin_lock(&ptype_lock);
536 	list_add_rcu(&pt->list, head);
537 	spin_unlock(&ptype_lock);
538 }
539 EXPORT_SYMBOL(dev_add_pack);
540 
541 /**
542  *	__dev_remove_pack	 - remove packet handler
543  *	@pt: packet type declaration
544  *
545  *	Remove a protocol handler that was previously added to the kernel
546  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
547  *	from the kernel lists and can be freed or reused once this function
548  *	returns.
549  *
550  *      The packet type might still be in use by receivers
551  *	and must not be freed until after all the CPU's have gone
552  *	through a quiescent state.
553  */
554 void __dev_remove_pack(struct packet_type *pt)
555 {
556 	struct list_head *head = ptype_head(pt);
557 	struct packet_type *pt1;
558 
559 	spin_lock(&ptype_lock);
560 
561 	list_for_each_entry(pt1, head, list) {
562 		if (pt == pt1) {
563 			list_del_rcu(&pt->list);
564 			goto out;
565 		}
566 	}
567 
568 	pr_warn("dev_remove_pack: %p not found\n", pt);
569 out:
570 	spin_unlock(&ptype_lock);
571 }
572 EXPORT_SYMBOL(__dev_remove_pack);
573 
574 /**
575  *	dev_remove_pack	 - remove packet handler
576  *	@pt: packet type declaration
577  *
578  *	Remove a protocol handler that was previously added to the kernel
579  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
580  *	from the kernel lists and can be freed or reused once this function
581  *	returns.
582  *
583  *	This call sleeps to guarantee that no CPU is looking at the packet
584  *	type after return.
585  */
586 void dev_remove_pack(struct packet_type *pt)
587 {
588 	__dev_remove_pack(pt);
589 
590 	synchronize_net();
591 }
592 EXPORT_SYMBOL(dev_remove_pack);
593 
594 
595 /**
596  *	dev_add_offload - register offload handlers
597  *	@po: protocol offload declaration
598  *
599  *	Add protocol offload handlers to the networking stack. The passed
600  *	&proto_offload is linked into kernel lists and may not be freed until
601  *	it has been removed from the kernel lists.
602  *
603  *	This call does not sleep therefore it can not
604  *	guarantee all CPU's that are in middle of receiving packets
605  *	will see the new offload handlers (until the next received packet).
606  */
607 void dev_add_offload(struct packet_offload *po)
608 {
609 	struct packet_offload *elem;
610 
611 	spin_lock(&offload_lock);
612 	list_for_each_entry(elem, &offload_base, list) {
613 		if (po->priority < elem->priority)
614 			break;
615 	}
616 	list_add_rcu(&po->list, elem->list.prev);
617 	spin_unlock(&offload_lock);
618 }
619 EXPORT_SYMBOL(dev_add_offload);
620 
621 /**
622  *	__dev_remove_offload	 - remove offload handler
623  *	@po: packet offload declaration
624  *
625  *	Remove a protocol offload handler that was previously added to the
626  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
627  *	is removed from the kernel lists and can be freed or reused once this
628  *	function returns.
629  *
630  *      The packet type might still be in use by receivers
631  *	and must not be freed until after all the CPU's have gone
632  *	through a quiescent state.
633  */
634 static void __dev_remove_offload(struct packet_offload *po)
635 {
636 	struct list_head *head = &offload_base;
637 	struct packet_offload *po1;
638 
639 	spin_lock(&offload_lock);
640 
641 	list_for_each_entry(po1, head, list) {
642 		if (po == po1) {
643 			list_del_rcu(&po->list);
644 			goto out;
645 		}
646 	}
647 
648 	pr_warn("dev_remove_offload: %p not found\n", po);
649 out:
650 	spin_unlock(&offload_lock);
651 }
652 
653 /**
654  *	dev_remove_offload	 - remove packet offload handler
655  *	@po: packet offload declaration
656  *
657  *	Remove a packet offload handler that was previously added to the kernel
658  *	offload handlers by dev_add_offload(). The passed &offload_type is
659  *	removed from the kernel lists and can be freed or reused once this
660  *	function returns.
661  *
662  *	This call sleeps to guarantee that no CPU is looking at the packet
663  *	type after return.
664  */
665 void dev_remove_offload(struct packet_offload *po)
666 {
667 	__dev_remove_offload(po);
668 
669 	synchronize_net();
670 }
671 EXPORT_SYMBOL(dev_remove_offload);
672 
673 /******************************************************************************
674  *
675  *		      Device Boot-time Settings Routines
676  *
677  ******************************************************************************/
678 
679 /* Boot time configuration table */
680 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
681 
682 /**
683  *	netdev_boot_setup_add	- add new setup entry
684  *	@name: name of the device
685  *	@map: configured settings for the device
686  *
687  *	Adds new setup entry to the dev_boot_setup list.  The function
688  *	returns 0 on error and 1 on success.  This is a generic routine to
689  *	all netdevices.
690  */
691 static int netdev_boot_setup_add(char *name, struct ifmap *map)
692 {
693 	struct netdev_boot_setup *s;
694 	int i;
695 
696 	s = dev_boot_setup;
697 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
698 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
699 			memset(s[i].name, 0, sizeof(s[i].name));
700 			strlcpy(s[i].name, name, IFNAMSIZ);
701 			memcpy(&s[i].map, map, sizeof(s[i].map));
702 			break;
703 		}
704 	}
705 
706 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
707 }
708 
709 /**
710  * netdev_boot_setup_check	- check boot time settings
711  * @dev: the netdevice
712  *
713  * Check boot time settings for the device.
714  * The found settings are set for the device to be used
715  * later in the device probing.
716  * Returns 0 if no settings found, 1 if they are.
717  */
718 int netdev_boot_setup_check(struct net_device *dev)
719 {
720 	struct netdev_boot_setup *s = dev_boot_setup;
721 	int i;
722 
723 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
724 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
725 		    !strcmp(dev->name, s[i].name)) {
726 			dev->irq = s[i].map.irq;
727 			dev->base_addr = s[i].map.base_addr;
728 			dev->mem_start = s[i].map.mem_start;
729 			dev->mem_end = s[i].map.mem_end;
730 			return 1;
731 		}
732 	}
733 	return 0;
734 }
735 EXPORT_SYMBOL(netdev_boot_setup_check);
736 
737 
738 /**
739  * netdev_boot_base	- get address from boot time settings
740  * @prefix: prefix for network device
741  * @unit: id for network device
742  *
743  * Check boot time settings for the base address of device.
744  * The found settings are set for the device to be used
745  * later in the device probing.
746  * Returns 0 if no settings found.
747  */
748 unsigned long netdev_boot_base(const char *prefix, int unit)
749 {
750 	const struct netdev_boot_setup *s = dev_boot_setup;
751 	char name[IFNAMSIZ];
752 	int i;
753 
754 	sprintf(name, "%s%d", prefix, unit);
755 
756 	/*
757 	 * If device already registered then return base of 1
758 	 * to indicate not to probe for this interface
759 	 */
760 	if (__dev_get_by_name(&init_net, name))
761 		return 1;
762 
763 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
764 		if (!strcmp(name, s[i].name))
765 			return s[i].map.base_addr;
766 	return 0;
767 }
768 
769 /*
770  * Saves at boot time configured settings for any netdevice.
771  */
772 int __init netdev_boot_setup(char *str)
773 {
774 	int ints[5];
775 	struct ifmap map;
776 
777 	str = get_options(str, ARRAY_SIZE(ints), ints);
778 	if (!str || !*str)
779 		return 0;
780 
781 	/* Save settings */
782 	memset(&map, 0, sizeof(map));
783 	if (ints[0] > 0)
784 		map.irq = ints[1];
785 	if (ints[0] > 1)
786 		map.base_addr = ints[2];
787 	if (ints[0] > 2)
788 		map.mem_start = ints[3];
789 	if (ints[0] > 3)
790 		map.mem_end = ints[4];
791 
792 	/* Add new entry to the list */
793 	return netdev_boot_setup_add(str, &map);
794 }
795 
796 __setup("netdev=", netdev_boot_setup);
797 
798 /*******************************************************************************
799  *
800  *			    Device Interface Subroutines
801  *
802  *******************************************************************************/
803 
804 /**
805  *	dev_get_iflink	- get 'iflink' value of a interface
806  *	@dev: targeted interface
807  *
808  *	Indicates the ifindex the interface is linked to.
809  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
810  */
811 
812 int dev_get_iflink(const struct net_device *dev)
813 {
814 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
815 		return dev->netdev_ops->ndo_get_iflink(dev);
816 
817 	return dev->ifindex;
818 }
819 EXPORT_SYMBOL(dev_get_iflink);
820 
821 /**
822  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
823  *	@dev: targeted interface
824  *	@skb: The packet.
825  *
826  *	For better visibility of tunnel traffic OVS needs to retrieve
827  *	egress tunnel information for a packet. Following API allows
828  *	user to get this info.
829  */
830 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
831 {
832 	struct ip_tunnel_info *info;
833 
834 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
835 		return -EINVAL;
836 
837 	info = skb_tunnel_info_unclone(skb);
838 	if (!info)
839 		return -ENOMEM;
840 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
841 		return -EINVAL;
842 
843 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
844 }
845 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
846 
847 /**
848  *	__dev_get_by_name	- find a device by its name
849  *	@net: the applicable net namespace
850  *	@name: name to find
851  *
852  *	Find an interface by name. Must be called under RTNL semaphore
853  *	or @dev_base_lock. If the name is found a pointer to the device
854  *	is returned. If the name is not found then %NULL is returned. The
855  *	reference counters are not incremented so the caller must be
856  *	careful with locks.
857  */
858 
859 struct net_device *__dev_get_by_name(struct net *net, const char *name)
860 {
861 	struct netdev_name_node *node_name;
862 
863 	node_name = netdev_name_node_lookup(net, name);
864 	return node_name ? node_name->dev : NULL;
865 }
866 EXPORT_SYMBOL(__dev_get_by_name);
867 
868 /**
869  * dev_get_by_name_rcu	- find a device by its name
870  * @net: the applicable net namespace
871  * @name: name to find
872  *
873  * Find an interface by name.
874  * If the name is found a pointer to the device is returned.
875  * If the name is not found then %NULL is returned.
876  * The reference counters are not incremented so the caller must be
877  * careful with locks. The caller must hold RCU lock.
878  */
879 
880 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
881 {
882 	struct netdev_name_node *node_name;
883 
884 	node_name = netdev_name_node_lookup_rcu(net, name);
885 	return node_name ? node_name->dev : NULL;
886 }
887 EXPORT_SYMBOL(dev_get_by_name_rcu);
888 
889 /**
890  *	dev_get_by_name		- find a device by its name
891  *	@net: the applicable net namespace
892  *	@name: name to find
893  *
894  *	Find an interface by name. This can be called from any
895  *	context and does its own locking. The returned handle has
896  *	the usage count incremented and the caller must use dev_put() to
897  *	release it when it is no longer needed. %NULL is returned if no
898  *	matching device is found.
899  */
900 
901 struct net_device *dev_get_by_name(struct net *net, const char *name)
902 {
903 	struct net_device *dev;
904 
905 	rcu_read_lock();
906 	dev = dev_get_by_name_rcu(net, name);
907 	if (dev)
908 		dev_hold(dev);
909 	rcu_read_unlock();
910 	return dev;
911 }
912 EXPORT_SYMBOL(dev_get_by_name);
913 
914 /**
915  *	__dev_get_by_index - find a device by its ifindex
916  *	@net: the applicable net namespace
917  *	@ifindex: index of device
918  *
919  *	Search for an interface by index. Returns %NULL if the device
920  *	is not found or a pointer to the device. The device has not
921  *	had its reference counter increased so the caller must be careful
922  *	about locking. The caller must hold either the RTNL semaphore
923  *	or @dev_base_lock.
924  */
925 
926 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
927 {
928 	struct net_device *dev;
929 	struct hlist_head *head = dev_index_hash(net, ifindex);
930 
931 	hlist_for_each_entry(dev, head, index_hlist)
932 		if (dev->ifindex == ifindex)
933 			return dev;
934 
935 	return NULL;
936 }
937 EXPORT_SYMBOL(__dev_get_by_index);
938 
939 /**
940  *	dev_get_by_index_rcu - find a device by its ifindex
941  *	@net: the applicable net namespace
942  *	@ifindex: index of device
943  *
944  *	Search for an interface by index. Returns %NULL if the device
945  *	is not found or a pointer to the device. The device has not
946  *	had its reference counter increased so the caller must be careful
947  *	about locking. The caller must hold RCU lock.
948  */
949 
950 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
951 {
952 	struct net_device *dev;
953 	struct hlist_head *head = dev_index_hash(net, ifindex);
954 
955 	hlist_for_each_entry_rcu(dev, head, index_hlist)
956 		if (dev->ifindex == ifindex)
957 			return dev;
958 
959 	return NULL;
960 }
961 EXPORT_SYMBOL(dev_get_by_index_rcu);
962 
963 
964 /**
965  *	dev_get_by_index - find a device by its ifindex
966  *	@net: the applicable net namespace
967  *	@ifindex: index of device
968  *
969  *	Search for an interface by index. Returns NULL if the device
970  *	is not found or a pointer to the device. The device returned has
971  *	had a reference added and the pointer is safe until the user calls
972  *	dev_put to indicate they have finished with it.
973  */
974 
975 struct net_device *dev_get_by_index(struct net *net, int ifindex)
976 {
977 	struct net_device *dev;
978 
979 	rcu_read_lock();
980 	dev = dev_get_by_index_rcu(net, ifindex);
981 	if (dev)
982 		dev_hold(dev);
983 	rcu_read_unlock();
984 	return dev;
985 }
986 EXPORT_SYMBOL(dev_get_by_index);
987 
988 /**
989  *	dev_get_by_napi_id - find a device by napi_id
990  *	@napi_id: ID of the NAPI struct
991  *
992  *	Search for an interface by NAPI ID. Returns %NULL if the device
993  *	is not found or a pointer to the device. The device has not had
994  *	its reference counter increased so the caller must be careful
995  *	about locking. The caller must hold RCU lock.
996  */
997 
998 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
999 {
1000 	struct napi_struct *napi;
1001 
1002 	WARN_ON_ONCE(!rcu_read_lock_held());
1003 
1004 	if (napi_id < MIN_NAPI_ID)
1005 		return NULL;
1006 
1007 	napi = napi_by_id(napi_id);
1008 
1009 	return napi ? napi->dev : NULL;
1010 }
1011 EXPORT_SYMBOL(dev_get_by_napi_id);
1012 
1013 /**
1014  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1015  *	@net: network namespace
1016  *	@name: a pointer to the buffer where the name will be stored.
1017  *	@ifindex: the ifindex of the interface to get the name from.
1018  */
1019 int netdev_get_name(struct net *net, char *name, int ifindex)
1020 {
1021 	struct net_device *dev;
1022 	int ret;
1023 
1024 	down_read(&devnet_rename_sem);
1025 	rcu_read_lock();
1026 
1027 	dev = dev_get_by_index_rcu(net, ifindex);
1028 	if (!dev) {
1029 		ret = -ENODEV;
1030 		goto out;
1031 	}
1032 
1033 	strcpy(name, dev->name);
1034 
1035 	ret = 0;
1036 out:
1037 	rcu_read_unlock();
1038 	up_read(&devnet_rename_sem);
1039 	return ret;
1040 }
1041 
1042 /**
1043  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1044  *	@net: the applicable net namespace
1045  *	@type: media type of device
1046  *	@ha: hardware address
1047  *
1048  *	Search for an interface by MAC address. Returns NULL if the device
1049  *	is not found or a pointer to the device.
1050  *	The caller must hold RCU or RTNL.
1051  *	The returned device has not had its ref count increased
1052  *	and the caller must therefore be careful about locking
1053  *
1054  */
1055 
1056 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1057 				       const char *ha)
1058 {
1059 	struct net_device *dev;
1060 
1061 	for_each_netdev_rcu(net, dev)
1062 		if (dev->type == type &&
1063 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1064 			return dev;
1065 
1066 	return NULL;
1067 }
1068 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1069 
1070 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1071 {
1072 	struct net_device *dev;
1073 
1074 	ASSERT_RTNL();
1075 	for_each_netdev(net, dev)
1076 		if (dev->type == type)
1077 			return dev;
1078 
1079 	return NULL;
1080 }
1081 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1082 
1083 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1084 {
1085 	struct net_device *dev, *ret = NULL;
1086 
1087 	rcu_read_lock();
1088 	for_each_netdev_rcu(net, dev)
1089 		if (dev->type == type) {
1090 			dev_hold(dev);
1091 			ret = dev;
1092 			break;
1093 		}
1094 	rcu_read_unlock();
1095 	return ret;
1096 }
1097 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1098 
1099 /**
1100  *	__dev_get_by_flags - find any device with given flags
1101  *	@net: the applicable net namespace
1102  *	@if_flags: IFF_* values
1103  *	@mask: bitmask of bits in if_flags to check
1104  *
1105  *	Search for any interface with the given flags. Returns NULL if a device
1106  *	is not found or a pointer to the device. Must be called inside
1107  *	rtnl_lock(), and result refcount is unchanged.
1108  */
1109 
1110 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1111 				      unsigned short mask)
1112 {
1113 	struct net_device *dev, *ret;
1114 
1115 	ASSERT_RTNL();
1116 
1117 	ret = NULL;
1118 	for_each_netdev(net, dev) {
1119 		if (((dev->flags ^ if_flags) & mask) == 0) {
1120 			ret = dev;
1121 			break;
1122 		}
1123 	}
1124 	return ret;
1125 }
1126 EXPORT_SYMBOL(__dev_get_by_flags);
1127 
1128 /**
1129  *	dev_valid_name - check if name is okay for network device
1130  *	@name: name string
1131  *
1132  *	Network device names need to be valid file names to
1133  *	to allow sysfs to work.  We also disallow any kind of
1134  *	whitespace.
1135  */
1136 bool dev_valid_name(const char *name)
1137 {
1138 	if (*name == '\0')
1139 		return false;
1140 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1141 		return false;
1142 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1143 		return false;
1144 
1145 	while (*name) {
1146 		if (*name == '/' || *name == ':' || isspace(*name))
1147 			return false;
1148 		name++;
1149 	}
1150 	return true;
1151 }
1152 EXPORT_SYMBOL(dev_valid_name);
1153 
1154 /**
1155  *	__dev_alloc_name - allocate a name for a device
1156  *	@net: network namespace to allocate the device name in
1157  *	@name: name format string
1158  *	@buf:  scratch buffer and result name string
1159  *
1160  *	Passed a format string - eg "lt%d" it will try and find a suitable
1161  *	id. It scans list of devices to build up a free map, then chooses
1162  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1163  *	while allocating the name and adding the device in order to avoid
1164  *	duplicates.
1165  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1166  *	Returns the number of the unit assigned or a negative errno code.
1167  */
1168 
1169 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1170 {
1171 	int i = 0;
1172 	const char *p;
1173 	const int max_netdevices = 8*PAGE_SIZE;
1174 	unsigned long *inuse;
1175 	struct net_device *d;
1176 
1177 	if (!dev_valid_name(name))
1178 		return -EINVAL;
1179 
1180 	p = strchr(name, '%');
1181 	if (p) {
1182 		/*
1183 		 * Verify the string as this thing may have come from
1184 		 * the user.  There must be either one "%d" and no other "%"
1185 		 * characters.
1186 		 */
1187 		if (p[1] != 'd' || strchr(p + 2, '%'))
1188 			return -EINVAL;
1189 
1190 		/* Use one page as a bit array of possible slots */
1191 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1192 		if (!inuse)
1193 			return -ENOMEM;
1194 
1195 		for_each_netdev(net, d) {
1196 			if (!sscanf(d->name, name, &i))
1197 				continue;
1198 			if (i < 0 || i >= max_netdevices)
1199 				continue;
1200 
1201 			/*  avoid cases where sscanf is not exact inverse of printf */
1202 			snprintf(buf, IFNAMSIZ, name, i);
1203 			if (!strncmp(buf, d->name, IFNAMSIZ))
1204 				set_bit(i, inuse);
1205 		}
1206 
1207 		i = find_first_zero_bit(inuse, max_netdevices);
1208 		free_page((unsigned long) inuse);
1209 	}
1210 
1211 	snprintf(buf, IFNAMSIZ, name, i);
1212 	if (!__dev_get_by_name(net, buf))
1213 		return i;
1214 
1215 	/* It is possible to run out of possible slots
1216 	 * when the name is long and there isn't enough space left
1217 	 * for the digits, or if all bits are used.
1218 	 */
1219 	return -ENFILE;
1220 }
1221 
1222 static int dev_alloc_name_ns(struct net *net,
1223 			     struct net_device *dev,
1224 			     const char *name)
1225 {
1226 	char buf[IFNAMSIZ];
1227 	int ret;
1228 
1229 	BUG_ON(!net);
1230 	ret = __dev_alloc_name(net, name, buf);
1231 	if (ret >= 0)
1232 		strlcpy(dev->name, buf, IFNAMSIZ);
1233 	return ret;
1234 }
1235 
1236 /**
1237  *	dev_alloc_name - allocate a name for a device
1238  *	@dev: device
1239  *	@name: name format string
1240  *
1241  *	Passed a format string - eg "lt%d" it will try and find a suitable
1242  *	id. It scans list of devices to build up a free map, then chooses
1243  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1244  *	while allocating the name and adding the device in order to avoid
1245  *	duplicates.
1246  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1247  *	Returns the number of the unit assigned or a negative errno code.
1248  */
1249 
1250 int dev_alloc_name(struct net_device *dev, const char *name)
1251 {
1252 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1253 }
1254 EXPORT_SYMBOL(dev_alloc_name);
1255 
1256 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1257 			      const char *name)
1258 {
1259 	BUG_ON(!net);
1260 
1261 	if (!dev_valid_name(name))
1262 		return -EINVAL;
1263 
1264 	if (strchr(name, '%'))
1265 		return dev_alloc_name_ns(net, dev, name);
1266 	else if (__dev_get_by_name(net, name))
1267 		return -EEXIST;
1268 	else if (dev->name != name)
1269 		strlcpy(dev->name, name, IFNAMSIZ);
1270 
1271 	return 0;
1272 }
1273 
1274 /**
1275  *	dev_change_name - change name of a device
1276  *	@dev: device
1277  *	@newname: name (or format string) must be at least IFNAMSIZ
1278  *
1279  *	Change name of a device, can pass format strings "eth%d".
1280  *	for wildcarding.
1281  */
1282 int dev_change_name(struct net_device *dev, const char *newname)
1283 {
1284 	unsigned char old_assign_type;
1285 	char oldname[IFNAMSIZ];
1286 	int err = 0;
1287 	int ret;
1288 	struct net *net;
1289 
1290 	ASSERT_RTNL();
1291 	BUG_ON(!dev_net(dev));
1292 
1293 	net = dev_net(dev);
1294 
1295 	/* Some auto-enslaved devices e.g. failover slaves are
1296 	 * special, as userspace might rename the device after
1297 	 * the interface had been brought up and running since
1298 	 * the point kernel initiated auto-enslavement. Allow
1299 	 * live name change even when these slave devices are
1300 	 * up and running.
1301 	 *
1302 	 * Typically, users of these auto-enslaving devices
1303 	 * don't actually care about slave name change, as
1304 	 * they are supposed to operate on master interface
1305 	 * directly.
1306 	 */
1307 	if (dev->flags & IFF_UP &&
1308 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1309 		return -EBUSY;
1310 
1311 	down_write(&devnet_rename_sem);
1312 
1313 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1314 		up_write(&devnet_rename_sem);
1315 		return 0;
1316 	}
1317 
1318 	memcpy(oldname, dev->name, IFNAMSIZ);
1319 
1320 	err = dev_get_valid_name(net, dev, newname);
1321 	if (err < 0) {
1322 		up_write(&devnet_rename_sem);
1323 		return err;
1324 	}
1325 
1326 	if (oldname[0] && !strchr(oldname, '%'))
1327 		netdev_info(dev, "renamed from %s\n", oldname);
1328 
1329 	old_assign_type = dev->name_assign_type;
1330 	dev->name_assign_type = NET_NAME_RENAMED;
1331 
1332 rollback:
1333 	ret = device_rename(&dev->dev, dev->name);
1334 	if (ret) {
1335 		memcpy(dev->name, oldname, IFNAMSIZ);
1336 		dev->name_assign_type = old_assign_type;
1337 		up_write(&devnet_rename_sem);
1338 		return ret;
1339 	}
1340 
1341 	up_write(&devnet_rename_sem);
1342 
1343 	netdev_adjacent_rename_links(dev, oldname);
1344 
1345 	write_lock_bh(&dev_base_lock);
1346 	netdev_name_node_del(dev->name_node);
1347 	write_unlock_bh(&dev_base_lock);
1348 
1349 	synchronize_rcu();
1350 
1351 	write_lock_bh(&dev_base_lock);
1352 	netdev_name_node_add(net, dev->name_node);
1353 	write_unlock_bh(&dev_base_lock);
1354 
1355 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1356 	ret = notifier_to_errno(ret);
1357 
1358 	if (ret) {
1359 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1360 		if (err >= 0) {
1361 			err = ret;
1362 			down_write(&devnet_rename_sem);
1363 			memcpy(dev->name, oldname, IFNAMSIZ);
1364 			memcpy(oldname, newname, IFNAMSIZ);
1365 			dev->name_assign_type = old_assign_type;
1366 			old_assign_type = NET_NAME_RENAMED;
1367 			goto rollback;
1368 		} else {
1369 			pr_err("%s: name change rollback failed: %d\n",
1370 			       dev->name, ret);
1371 		}
1372 	}
1373 
1374 	return err;
1375 }
1376 
1377 /**
1378  *	dev_set_alias - change ifalias of a device
1379  *	@dev: device
1380  *	@alias: name up to IFALIASZ
1381  *	@len: limit of bytes to copy from info
1382  *
1383  *	Set ifalias for a device,
1384  */
1385 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1386 {
1387 	struct dev_ifalias *new_alias = NULL;
1388 
1389 	if (len >= IFALIASZ)
1390 		return -EINVAL;
1391 
1392 	if (len) {
1393 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1394 		if (!new_alias)
1395 			return -ENOMEM;
1396 
1397 		memcpy(new_alias->ifalias, alias, len);
1398 		new_alias->ifalias[len] = 0;
1399 	}
1400 
1401 	mutex_lock(&ifalias_mutex);
1402 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1403 					mutex_is_locked(&ifalias_mutex));
1404 	mutex_unlock(&ifalias_mutex);
1405 
1406 	if (new_alias)
1407 		kfree_rcu(new_alias, rcuhead);
1408 
1409 	return len;
1410 }
1411 EXPORT_SYMBOL(dev_set_alias);
1412 
1413 /**
1414  *	dev_get_alias - get ifalias of a device
1415  *	@dev: device
1416  *	@name: buffer to store name of ifalias
1417  *	@len: size of buffer
1418  *
1419  *	get ifalias for a device.  Caller must make sure dev cannot go
1420  *	away,  e.g. rcu read lock or own a reference count to device.
1421  */
1422 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1423 {
1424 	const struct dev_ifalias *alias;
1425 	int ret = 0;
1426 
1427 	rcu_read_lock();
1428 	alias = rcu_dereference(dev->ifalias);
1429 	if (alias)
1430 		ret = snprintf(name, len, "%s", alias->ifalias);
1431 	rcu_read_unlock();
1432 
1433 	return ret;
1434 }
1435 
1436 /**
1437  *	netdev_features_change - device changes features
1438  *	@dev: device to cause notification
1439  *
1440  *	Called to indicate a device has changed features.
1441  */
1442 void netdev_features_change(struct net_device *dev)
1443 {
1444 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1445 }
1446 EXPORT_SYMBOL(netdev_features_change);
1447 
1448 /**
1449  *	netdev_state_change - device changes state
1450  *	@dev: device to cause notification
1451  *
1452  *	Called to indicate a device has changed state. This function calls
1453  *	the notifier chains for netdev_chain and sends a NEWLINK message
1454  *	to the routing socket.
1455  */
1456 void netdev_state_change(struct net_device *dev)
1457 {
1458 	if (dev->flags & IFF_UP) {
1459 		struct netdev_notifier_change_info change_info = {
1460 			.info.dev = dev,
1461 		};
1462 
1463 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1464 					      &change_info.info);
1465 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1466 	}
1467 }
1468 EXPORT_SYMBOL(netdev_state_change);
1469 
1470 /**
1471  * netdev_notify_peers - notify network peers about existence of @dev
1472  * @dev: network device
1473  *
1474  * Generate traffic such that interested network peers are aware of
1475  * @dev, such as by generating a gratuitous ARP. This may be used when
1476  * a device wants to inform the rest of the network about some sort of
1477  * reconfiguration such as a failover event or virtual machine
1478  * migration.
1479  */
1480 void netdev_notify_peers(struct net_device *dev)
1481 {
1482 	rtnl_lock();
1483 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1484 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1485 	rtnl_unlock();
1486 }
1487 EXPORT_SYMBOL(netdev_notify_peers);
1488 
1489 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1490 {
1491 	const struct net_device_ops *ops = dev->netdev_ops;
1492 	int ret;
1493 
1494 	ASSERT_RTNL();
1495 
1496 	if (!netif_device_present(dev)) {
1497 		/* may be detached because parent is runtime-suspended */
1498 		if (dev->dev.parent)
1499 			pm_runtime_resume(dev->dev.parent);
1500 		if (!netif_device_present(dev))
1501 			return -ENODEV;
1502 	}
1503 
1504 	/* Block netpoll from trying to do any rx path servicing.
1505 	 * If we don't do this there is a chance ndo_poll_controller
1506 	 * or ndo_poll may be running while we open the device
1507 	 */
1508 	netpoll_poll_disable(dev);
1509 
1510 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1511 	ret = notifier_to_errno(ret);
1512 	if (ret)
1513 		return ret;
1514 
1515 	set_bit(__LINK_STATE_START, &dev->state);
1516 
1517 	if (ops->ndo_validate_addr)
1518 		ret = ops->ndo_validate_addr(dev);
1519 
1520 	if (!ret && ops->ndo_open)
1521 		ret = ops->ndo_open(dev);
1522 
1523 	netpoll_poll_enable(dev);
1524 
1525 	if (ret)
1526 		clear_bit(__LINK_STATE_START, &dev->state);
1527 	else {
1528 		dev->flags |= IFF_UP;
1529 		dev_set_rx_mode(dev);
1530 		dev_activate(dev);
1531 		add_device_randomness(dev->dev_addr, dev->addr_len);
1532 	}
1533 
1534 	return ret;
1535 }
1536 
1537 /**
1538  *	dev_open	- prepare an interface for use.
1539  *	@dev: device to open
1540  *	@extack: netlink extended ack
1541  *
1542  *	Takes a device from down to up state. The device's private open
1543  *	function is invoked and then the multicast lists are loaded. Finally
1544  *	the device is moved into the up state and a %NETDEV_UP message is
1545  *	sent to the netdev notifier chain.
1546  *
1547  *	Calling this function on an active interface is a nop. On a failure
1548  *	a negative errno code is returned.
1549  */
1550 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1551 {
1552 	int ret;
1553 
1554 	if (dev->flags & IFF_UP)
1555 		return 0;
1556 
1557 	ret = __dev_open(dev, extack);
1558 	if (ret < 0)
1559 		return ret;
1560 
1561 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1562 	call_netdevice_notifiers(NETDEV_UP, dev);
1563 
1564 	return ret;
1565 }
1566 EXPORT_SYMBOL(dev_open);
1567 
1568 static void __dev_close_many(struct list_head *head)
1569 {
1570 	struct net_device *dev;
1571 
1572 	ASSERT_RTNL();
1573 	might_sleep();
1574 
1575 	list_for_each_entry(dev, head, close_list) {
1576 		/* Temporarily disable netpoll until the interface is down */
1577 		netpoll_poll_disable(dev);
1578 
1579 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1580 
1581 		clear_bit(__LINK_STATE_START, &dev->state);
1582 
1583 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1584 		 * can be even on different cpu. So just clear netif_running().
1585 		 *
1586 		 * dev->stop() will invoke napi_disable() on all of it's
1587 		 * napi_struct instances on this device.
1588 		 */
1589 		smp_mb__after_atomic(); /* Commit netif_running(). */
1590 	}
1591 
1592 	dev_deactivate_many(head);
1593 
1594 	list_for_each_entry(dev, head, close_list) {
1595 		const struct net_device_ops *ops = dev->netdev_ops;
1596 
1597 		/*
1598 		 *	Call the device specific close. This cannot fail.
1599 		 *	Only if device is UP
1600 		 *
1601 		 *	We allow it to be called even after a DETACH hot-plug
1602 		 *	event.
1603 		 */
1604 		if (ops->ndo_stop)
1605 			ops->ndo_stop(dev);
1606 
1607 		dev->flags &= ~IFF_UP;
1608 		netpoll_poll_enable(dev);
1609 	}
1610 }
1611 
1612 static void __dev_close(struct net_device *dev)
1613 {
1614 	LIST_HEAD(single);
1615 
1616 	list_add(&dev->close_list, &single);
1617 	__dev_close_many(&single);
1618 	list_del(&single);
1619 }
1620 
1621 void dev_close_many(struct list_head *head, bool unlink)
1622 {
1623 	struct net_device *dev, *tmp;
1624 
1625 	/* Remove the devices that don't need to be closed */
1626 	list_for_each_entry_safe(dev, tmp, head, close_list)
1627 		if (!(dev->flags & IFF_UP))
1628 			list_del_init(&dev->close_list);
1629 
1630 	__dev_close_many(head);
1631 
1632 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1633 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1634 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1635 		if (unlink)
1636 			list_del_init(&dev->close_list);
1637 	}
1638 }
1639 EXPORT_SYMBOL(dev_close_many);
1640 
1641 /**
1642  *	dev_close - shutdown an interface.
1643  *	@dev: device to shutdown
1644  *
1645  *	This function moves an active device into down state. A
1646  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1647  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1648  *	chain.
1649  */
1650 void dev_close(struct net_device *dev)
1651 {
1652 	if (dev->flags & IFF_UP) {
1653 		LIST_HEAD(single);
1654 
1655 		list_add(&dev->close_list, &single);
1656 		dev_close_many(&single, true);
1657 		list_del(&single);
1658 	}
1659 }
1660 EXPORT_SYMBOL(dev_close);
1661 
1662 
1663 /**
1664  *	dev_disable_lro - disable Large Receive Offload on a device
1665  *	@dev: device
1666  *
1667  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1668  *	called under RTNL.  This is needed if received packets may be
1669  *	forwarded to another interface.
1670  */
1671 void dev_disable_lro(struct net_device *dev)
1672 {
1673 	struct net_device *lower_dev;
1674 	struct list_head *iter;
1675 
1676 	dev->wanted_features &= ~NETIF_F_LRO;
1677 	netdev_update_features(dev);
1678 
1679 	if (unlikely(dev->features & NETIF_F_LRO))
1680 		netdev_WARN(dev, "failed to disable LRO!\n");
1681 
1682 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1683 		dev_disable_lro(lower_dev);
1684 }
1685 EXPORT_SYMBOL(dev_disable_lro);
1686 
1687 /**
1688  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1689  *	@dev: device
1690  *
1691  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1692  *	called under RTNL.  This is needed if Generic XDP is installed on
1693  *	the device.
1694  */
1695 static void dev_disable_gro_hw(struct net_device *dev)
1696 {
1697 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1698 	netdev_update_features(dev);
1699 
1700 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1701 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1702 }
1703 
1704 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1705 {
1706 #define N(val) 						\
1707 	case NETDEV_##val:				\
1708 		return "NETDEV_" __stringify(val);
1709 	switch (cmd) {
1710 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1711 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1712 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1713 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1714 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1715 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1716 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1717 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1718 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1719 	N(PRE_CHANGEADDR)
1720 	}
1721 #undef N
1722 	return "UNKNOWN_NETDEV_EVENT";
1723 }
1724 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1725 
1726 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1727 				   struct net_device *dev)
1728 {
1729 	struct netdev_notifier_info info = {
1730 		.dev = dev,
1731 	};
1732 
1733 	return nb->notifier_call(nb, val, &info);
1734 }
1735 
1736 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1737 					     struct net_device *dev)
1738 {
1739 	int err;
1740 
1741 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1742 	err = notifier_to_errno(err);
1743 	if (err)
1744 		return err;
1745 
1746 	if (!(dev->flags & IFF_UP))
1747 		return 0;
1748 
1749 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1750 	return 0;
1751 }
1752 
1753 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1754 						struct net_device *dev)
1755 {
1756 	if (dev->flags & IFF_UP) {
1757 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1758 					dev);
1759 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1760 	}
1761 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1762 }
1763 
1764 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1765 						 struct net *net)
1766 {
1767 	struct net_device *dev;
1768 	int err;
1769 
1770 	for_each_netdev(net, dev) {
1771 		err = call_netdevice_register_notifiers(nb, dev);
1772 		if (err)
1773 			goto rollback;
1774 	}
1775 	return 0;
1776 
1777 rollback:
1778 	for_each_netdev_continue_reverse(net, dev)
1779 		call_netdevice_unregister_notifiers(nb, dev);
1780 	return err;
1781 }
1782 
1783 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1784 						    struct net *net)
1785 {
1786 	struct net_device *dev;
1787 
1788 	for_each_netdev(net, dev)
1789 		call_netdevice_unregister_notifiers(nb, dev);
1790 }
1791 
1792 static int dev_boot_phase = 1;
1793 
1794 /**
1795  * register_netdevice_notifier - register a network notifier block
1796  * @nb: notifier
1797  *
1798  * Register a notifier to be called when network device events occur.
1799  * The notifier passed is linked into the kernel structures and must
1800  * not be reused until it has been unregistered. A negative errno code
1801  * is returned on a failure.
1802  *
1803  * When registered all registration and up events are replayed
1804  * to the new notifier to allow device to have a race free
1805  * view of the network device list.
1806  */
1807 
1808 int register_netdevice_notifier(struct notifier_block *nb)
1809 {
1810 	struct net *net;
1811 	int err;
1812 
1813 	/* Close race with setup_net() and cleanup_net() */
1814 	down_write(&pernet_ops_rwsem);
1815 	rtnl_lock();
1816 	err = raw_notifier_chain_register(&netdev_chain, nb);
1817 	if (err)
1818 		goto unlock;
1819 	if (dev_boot_phase)
1820 		goto unlock;
1821 	for_each_net(net) {
1822 		err = call_netdevice_register_net_notifiers(nb, net);
1823 		if (err)
1824 			goto rollback;
1825 	}
1826 
1827 unlock:
1828 	rtnl_unlock();
1829 	up_write(&pernet_ops_rwsem);
1830 	return err;
1831 
1832 rollback:
1833 	for_each_net_continue_reverse(net)
1834 		call_netdevice_unregister_net_notifiers(nb, net);
1835 
1836 	raw_notifier_chain_unregister(&netdev_chain, nb);
1837 	goto unlock;
1838 }
1839 EXPORT_SYMBOL(register_netdevice_notifier);
1840 
1841 /**
1842  * unregister_netdevice_notifier - unregister a network notifier block
1843  * @nb: notifier
1844  *
1845  * Unregister a notifier previously registered by
1846  * register_netdevice_notifier(). The notifier is unlinked into the
1847  * kernel structures and may then be reused. A negative errno code
1848  * is returned on a failure.
1849  *
1850  * After unregistering unregister and down device events are synthesized
1851  * for all devices on the device list to the removed notifier to remove
1852  * the need for special case cleanup code.
1853  */
1854 
1855 int unregister_netdevice_notifier(struct notifier_block *nb)
1856 {
1857 	struct net *net;
1858 	int err;
1859 
1860 	/* Close race with setup_net() and cleanup_net() */
1861 	down_write(&pernet_ops_rwsem);
1862 	rtnl_lock();
1863 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1864 	if (err)
1865 		goto unlock;
1866 
1867 	for_each_net(net)
1868 		call_netdevice_unregister_net_notifiers(nb, net);
1869 
1870 unlock:
1871 	rtnl_unlock();
1872 	up_write(&pernet_ops_rwsem);
1873 	return err;
1874 }
1875 EXPORT_SYMBOL(unregister_netdevice_notifier);
1876 
1877 static int __register_netdevice_notifier_net(struct net *net,
1878 					     struct notifier_block *nb,
1879 					     bool ignore_call_fail)
1880 {
1881 	int err;
1882 
1883 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1884 	if (err)
1885 		return err;
1886 	if (dev_boot_phase)
1887 		return 0;
1888 
1889 	err = call_netdevice_register_net_notifiers(nb, net);
1890 	if (err && !ignore_call_fail)
1891 		goto chain_unregister;
1892 
1893 	return 0;
1894 
1895 chain_unregister:
1896 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1897 	return err;
1898 }
1899 
1900 static int __unregister_netdevice_notifier_net(struct net *net,
1901 					       struct notifier_block *nb)
1902 {
1903 	int err;
1904 
1905 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1906 	if (err)
1907 		return err;
1908 
1909 	call_netdevice_unregister_net_notifiers(nb, net);
1910 	return 0;
1911 }
1912 
1913 /**
1914  * register_netdevice_notifier_net - register a per-netns network notifier block
1915  * @net: network namespace
1916  * @nb: notifier
1917  *
1918  * Register a notifier to be called when network device events occur.
1919  * The notifier passed is linked into the kernel structures and must
1920  * not be reused until it has been unregistered. A negative errno code
1921  * is returned on a failure.
1922  *
1923  * When registered all registration and up events are replayed
1924  * to the new notifier to allow device to have a race free
1925  * view of the network device list.
1926  */
1927 
1928 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1929 {
1930 	int err;
1931 
1932 	rtnl_lock();
1933 	err = __register_netdevice_notifier_net(net, nb, false);
1934 	rtnl_unlock();
1935 	return err;
1936 }
1937 EXPORT_SYMBOL(register_netdevice_notifier_net);
1938 
1939 /**
1940  * unregister_netdevice_notifier_net - unregister a per-netns
1941  *                                     network notifier block
1942  * @net: network namespace
1943  * @nb: notifier
1944  *
1945  * Unregister a notifier previously registered by
1946  * register_netdevice_notifier(). The notifier is unlinked into the
1947  * kernel structures and may then be reused. A negative errno code
1948  * is returned on a failure.
1949  *
1950  * After unregistering unregister and down device events are synthesized
1951  * for all devices on the device list to the removed notifier to remove
1952  * the need for special case cleanup code.
1953  */
1954 
1955 int unregister_netdevice_notifier_net(struct net *net,
1956 				      struct notifier_block *nb)
1957 {
1958 	int err;
1959 
1960 	rtnl_lock();
1961 	err = __unregister_netdevice_notifier_net(net, nb);
1962 	rtnl_unlock();
1963 	return err;
1964 }
1965 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1966 
1967 int register_netdevice_notifier_dev_net(struct net_device *dev,
1968 					struct notifier_block *nb,
1969 					struct netdev_net_notifier *nn)
1970 {
1971 	int err;
1972 
1973 	rtnl_lock();
1974 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1975 	if (!err) {
1976 		nn->nb = nb;
1977 		list_add(&nn->list, &dev->net_notifier_list);
1978 	}
1979 	rtnl_unlock();
1980 	return err;
1981 }
1982 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1983 
1984 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1985 					  struct notifier_block *nb,
1986 					  struct netdev_net_notifier *nn)
1987 {
1988 	int err;
1989 
1990 	rtnl_lock();
1991 	list_del(&nn->list);
1992 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1993 	rtnl_unlock();
1994 	return err;
1995 }
1996 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1997 
1998 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1999 					     struct net *net)
2000 {
2001 	struct netdev_net_notifier *nn;
2002 
2003 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
2004 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2005 		__register_netdevice_notifier_net(net, nn->nb, true);
2006 	}
2007 }
2008 
2009 /**
2010  *	call_netdevice_notifiers_info - call all network notifier blocks
2011  *	@val: value passed unmodified to notifier function
2012  *	@info: notifier information data
2013  *
2014  *	Call all network notifier blocks.  Parameters and return value
2015  *	are as for raw_notifier_call_chain().
2016  */
2017 
2018 static int call_netdevice_notifiers_info(unsigned long val,
2019 					 struct netdev_notifier_info *info)
2020 {
2021 	struct net *net = dev_net(info->dev);
2022 	int ret;
2023 
2024 	ASSERT_RTNL();
2025 
2026 	/* Run per-netns notifier block chain first, then run the global one.
2027 	 * Hopefully, one day, the global one is going to be removed after
2028 	 * all notifier block registrators get converted to be per-netns.
2029 	 */
2030 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2031 	if (ret & NOTIFY_STOP_MASK)
2032 		return ret;
2033 	return raw_notifier_call_chain(&netdev_chain, val, info);
2034 }
2035 
2036 static int call_netdevice_notifiers_extack(unsigned long val,
2037 					   struct net_device *dev,
2038 					   struct netlink_ext_ack *extack)
2039 {
2040 	struct netdev_notifier_info info = {
2041 		.dev = dev,
2042 		.extack = extack,
2043 	};
2044 
2045 	return call_netdevice_notifiers_info(val, &info);
2046 }
2047 
2048 /**
2049  *	call_netdevice_notifiers - call all network notifier blocks
2050  *      @val: value passed unmodified to notifier function
2051  *      @dev: net_device pointer passed unmodified to notifier function
2052  *
2053  *	Call all network notifier blocks.  Parameters and return value
2054  *	are as for raw_notifier_call_chain().
2055  */
2056 
2057 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2058 {
2059 	return call_netdevice_notifiers_extack(val, dev, NULL);
2060 }
2061 EXPORT_SYMBOL(call_netdevice_notifiers);
2062 
2063 /**
2064  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2065  *	@val: value passed unmodified to notifier function
2066  *	@dev: net_device pointer passed unmodified to notifier function
2067  *	@arg: additional u32 argument passed to the notifier function
2068  *
2069  *	Call all network notifier blocks.  Parameters and return value
2070  *	are as for raw_notifier_call_chain().
2071  */
2072 static int call_netdevice_notifiers_mtu(unsigned long val,
2073 					struct net_device *dev, u32 arg)
2074 {
2075 	struct netdev_notifier_info_ext info = {
2076 		.info.dev = dev,
2077 		.ext.mtu = arg,
2078 	};
2079 
2080 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2081 
2082 	return call_netdevice_notifiers_info(val, &info.info);
2083 }
2084 
2085 #ifdef CONFIG_NET_INGRESS
2086 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2087 
2088 void net_inc_ingress_queue(void)
2089 {
2090 	static_branch_inc(&ingress_needed_key);
2091 }
2092 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2093 
2094 void net_dec_ingress_queue(void)
2095 {
2096 	static_branch_dec(&ingress_needed_key);
2097 }
2098 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2099 #endif
2100 
2101 #ifdef CONFIG_NET_EGRESS
2102 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2103 
2104 void net_inc_egress_queue(void)
2105 {
2106 	static_branch_inc(&egress_needed_key);
2107 }
2108 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2109 
2110 void net_dec_egress_queue(void)
2111 {
2112 	static_branch_dec(&egress_needed_key);
2113 }
2114 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2115 #endif
2116 
2117 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2118 #ifdef CONFIG_JUMP_LABEL
2119 static atomic_t netstamp_needed_deferred;
2120 static atomic_t netstamp_wanted;
2121 static void netstamp_clear(struct work_struct *work)
2122 {
2123 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2124 	int wanted;
2125 
2126 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2127 	if (wanted > 0)
2128 		static_branch_enable(&netstamp_needed_key);
2129 	else
2130 		static_branch_disable(&netstamp_needed_key);
2131 }
2132 static DECLARE_WORK(netstamp_work, netstamp_clear);
2133 #endif
2134 
2135 void net_enable_timestamp(void)
2136 {
2137 #ifdef CONFIG_JUMP_LABEL
2138 	int wanted;
2139 
2140 	while (1) {
2141 		wanted = atomic_read(&netstamp_wanted);
2142 		if (wanted <= 0)
2143 			break;
2144 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2145 			return;
2146 	}
2147 	atomic_inc(&netstamp_needed_deferred);
2148 	schedule_work(&netstamp_work);
2149 #else
2150 	static_branch_inc(&netstamp_needed_key);
2151 #endif
2152 }
2153 EXPORT_SYMBOL(net_enable_timestamp);
2154 
2155 void net_disable_timestamp(void)
2156 {
2157 #ifdef CONFIG_JUMP_LABEL
2158 	int wanted;
2159 
2160 	while (1) {
2161 		wanted = atomic_read(&netstamp_wanted);
2162 		if (wanted <= 1)
2163 			break;
2164 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2165 			return;
2166 	}
2167 	atomic_dec(&netstamp_needed_deferred);
2168 	schedule_work(&netstamp_work);
2169 #else
2170 	static_branch_dec(&netstamp_needed_key);
2171 #endif
2172 }
2173 EXPORT_SYMBOL(net_disable_timestamp);
2174 
2175 static inline void net_timestamp_set(struct sk_buff *skb)
2176 {
2177 	skb->tstamp = 0;
2178 	if (static_branch_unlikely(&netstamp_needed_key))
2179 		__net_timestamp(skb);
2180 }
2181 
2182 #define net_timestamp_check(COND, SKB)				\
2183 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2184 		if ((COND) && !(SKB)->tstamp)			\
2185 			__net_timestamp(SKB);			\
2186 	}							\
2187 
2188 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2189 {
2190 	unsigned int len;
2191 
2192 	if (!(dev->flags & IFF_UP))
2193 		return false;
2194 
2195 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2196 	if (skb->len <= len)
2197 		return true;
2198 
2199 	/* if TSO is enabled, we don't care about the length as the packet
2200 	 * could be forwarded without being segmented before
2201 	 */
2202 	if (skb_is_gso(skb))
2203 		return true;
2204 
2205 	return false;
2206 }
2207 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2208 
2209 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2210 {
2211 	int ret = ____dev_forward_skb(dev, skb);
2212 
2213 	if (likely(!ret)) {
2214 		skb->protocol = eth_type_trans(skb, dev);
2215 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2216 	}
2217 
2218 	return ret;
2219 }
2220 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2221 
2222 /**
2223  * dev_forward_skb - loopback an skb to another netif
2224  *
2225  * @dev: destination network device
2226  * @skb: buffer to forward
2227  *
2228  * return values:
2229  *	NET_RX_SUCCESS	(no congestion)
2230  *	NET_RX_DROP     (packet was dropped, but freed)
2231  *
2232  * dev_forward_skb can be used for injecting an skb from the
2233  * start_xmit function of one device into the receive queue
2234  * of another device.
2235  *
2236  * The receiving device may be in another namespace, so
2237  * we have to clear all information in the skb that could
2238  * impact namespace isolation.
2239  */
2240 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2241 {
2242 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2243 }
2244 EXPORT_SYMBOL_GPL(dev_forward_skb);
2245 
2246 static inline int deliver_skb(struct sk_buff *skb,
2247 			      struct packet_type *pt_prev,
2248 			      struct net_device *orig_dev)
2249 {
2250 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2251 		return -ENOMEM;
2252 	refcount_inc(&skb->users);
2253 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2254 }
2255 
2256 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2257 					  struct packet_type **pt,
2258 					  struct net_device *orig_dev,
2259 					  __be16 type,
2260 					  struct list_head *ptype_list)
2261 {
2262 	struct packet_type *ptype, *pt_prev = *pt;
2263 
2264 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2265 		if (ptype->type != type)
2266 			continue;
2267 		if (pt_prev)
2268 			deliver_skb(skb, pt_prev, orig_dev);
2269 		pt_prev = ptype;
2270 	}
2271 	*pt = pt_prev;
2272 }
2273 
2274 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2275 {
2276 	if (!ptype->af_packet_priv || !skb->sk)
2277 		return false;
2278 
2279 	if (ptype->id_match)
2280 		return ptype->id_match(ptype, skb->sk);
2281 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2282 		return true;
2283 
2284 	return false;
2285 }
2286 
2287 /**
2288  * dev_nit_active - return true if any network interface taps are in use
2289  *
2290  * @dev: network device to check for the presence of taps
2291  */
2292 bool dev_nit_active(struct net_device *dev)
2293 {
2294 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2295 }
2296 EXPORT_SYMBOL_GPL(dev_nit_active);
2297 
2298 /*
2299  *	Support routine. Sends outgoing frames to any network
2300  *	taps currently in use.
2301  */
2302 
2303 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2304 {
2305 	struct packet_type *ptype;
2306 	struct sk_buff *skb2 = NULL;
2307 	struct packet_type *pt_prev = NULL;
2308 	struct list_head *ptype_list = &ptype_all;
2309 
2310 	rcu_read_lock();
2311 again:
2312 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2313 		if (ptype->ignore_outgoing)
2314 			continue;
2315 
2316 		/* Never send packets back to the socket
2317 		 * they originated from - MvS (miquels@drinkel.ow.org)
2318 		 */
2319 		if (skb_loop_sk(ptype, skb))
2320 			continue;
2321 
2322 		if (pt_prev) {
2323 			deliver_skb(skb2, pt_prev, skb->dev);
2324 			pt_prev = ptype;
2325 			continue;
2326 		}
2327 
2328 		/* need to clone skb, done only once */
2329 		skb2 = skb_clone(skb, GFP_ATOMIC);
2330 		if (!skb2)
2331 			goto out_unlock;
2332 
2333 		net_timestamp_set(skb2);
2334 
2335 		/* skb->nh should be correctly
2336 		 * set by sender, so that the second statement is
2337 		 * just protection against buggy protocols.
2338 		 */
2339 		skb_reset_mac_header(skb2);
2340 
2341 		if (skb_network_header(skb2) < skb2->data ||
2342 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2343 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2344 					     ntohs(skb2->protocol),
2345 					     dev->name);
2346 			skb_reset_network_header(skb2);
2347 		}
2348 
2349 		skb2->transport_header = skb2->network_header;
2350 		skb2->pkt_type = PACKET_OUTGOING;
2351 		pt_prev = ptype;
2352 	}
2353 
2354 	if (ptype_list == &ptype_all) {
2355 		ptype_list = &dev->ptype_all;
2356 		goto again;
2357 	}
2358 out_unlock:
2359 	if (pt_prev) {
2360 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2361 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2362 		else
2363 			kfree_skb(skb2);
2364 	}
2365 	rcu_read_unlock();
2366 }
2367 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2368 
2369 /**
2370  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2371  * @dev: Network device
2372  * @txq: number of queues available
2373  *
2374  * If real_num_tx_queues is changed the tc mappings may no longer be
2375  * valid. To resolve this verify the tc mapping remains valid and if
2376  * not NULL the mapping. With no priorities mapping to this
2377  * offset/count pair it will no longer be used. In the worst case TC0
2378  * is invalid nothing can be done so disable priority mappings. If is
2379  * expected that drivers will fix this mapping if they can before
2380  * calling netif_set_real_num_tx_queues.
2381  */
2382 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2383 {
2384 	int i;
2385 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2386 
2387 	/* If TC0 is invalidated disable TC mapping */
2388 	if (tc->offset + tc->count > txq) {
2389 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2390 		dev->num_tc = 0;
2391 		return;
2392 	}
2393 
2394 	/* Invalidated prio to tc mappings set to TC0 */
2395 	for (i = 1; i < TC_BITMASK + 1; i++) {
2396 		int q = netdev_get_prio_tc_map(dev, i);
2397 
2398 		tc = &dev->tc_to_txq[q];
2399 		if (tc->offset + tc->count > txq) {
2400 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2401 				i, q);
2402 			netdev_set_prio_tc_map(dev, i, 0);
2403 		}
2404 	}
2405 }
2406 
2407 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2408 {
2409 	if (dev->num_tc) {
2410 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2411 		int i;
2412 
2413 		/* walk through the TCs and see if it falls into any of them */
2414 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2415 			if ((txq - tc->offset) < tc->count)
2416 				return i;
2417 		}
2418 
2419 		/* didn't find it, just return -1 to indicate no match */
2420 		return -1;
2421 	}
2422 
2423 	return 0;
2424 }
2425 EXPORT_SYMBOL(netdev_txq_to_tc);
2426 
2427 #ifdef CONFIG_XPS
2428 struct static_key xps_needed __read_mostly;
2429 EXPORT_SYMBOL(xps_needed);
2430 struct static_key xps_rxqs_needed __read_mostly;
2431 EXPORT_SYMBOL(xps_rxqs_needed);
2432 static DEFINE_MUTEX(xps_map_mutex);
2433 #define xmap_dereference(P)		\
2434 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2435 
2436 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2437 			     int tci, u16 index)
2438 {
2439 	struct xps_map *map = NULL;
2440 	int pos;
2441 
2442 	if (dev_maps)
2443 		map = xmap_dereference(dev_maps->attr_map[tci]);
2444 	if (!map)
2445 		return false;
2446 
2447 	for (pos = map->len; pos--;) {
2448 		if (map->queues[pos] != index)
2449 			continue;
2450 
2451 		if (map->len > 1) {
2452 			map->queues[pos] = map->queues[--map->len];
2453 			break;
2454 		}
2455 
2456 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2457 		kfree_rcu(map, rcu);
2458 		return false;
2459 	}
2460 
2461 	return true;
2462 }
2463 
2464 static bool remove_xps_queue_cpu(struct net_device *dev,
2465 				 struct xps_dev_maps *dev_maps,
2466 				 int cpu, u16 offset, u16 count)
2467 {
2468 	int num_tc = dev->num_tc ? : 1;
2469 	bool active = false;
2470 	int tci;
2471 
2472 	for (tci = cpu * num_tc; num_tc--; tci++) {
2473 		int i, j;
2474 
2475 		for (i = count, j = offset; i--; j++) {
2476 			if (!remove_xps_queue(dev_maps, tci, j))
2477 				break;
2478 		}
2479 
2480 		active |= i < 0;
2481 	}
2482 
2483 	return active;
2484 }
2485 
2486 static void reset_xps_maps(struct net_device *dev,
2487 			   struct xps_dev_maps *dev_maps,
2488 			   bool is_rxqs_map)
2489 {
2490 	if (is_rxqs_map) {
2491 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2492 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2493 	} else {
2494 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2495 	}
2496 	static_key_slow_dec_cpuslocked(&xps_needed);
2497 	kfree_rcu(dev_maps, rcu);
2498 }
2499 
2500 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2501 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2502 			   u16 offset, u16 count, bool is_rxqs_map)
2503 {
2504 	bool active = false;
2505 	int i, j;
2506 
2507 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2508 	     j < nr_ids;)
2509 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2510 					       count);
2511 	if (!active)
2512 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2513 
2514 	if (!is_rxqs_map) {
2515 		for (i = offset + (count - 1); count--; i--) {
2516 			netdev_queue_numa_node_write(
2517 				netdev_get_tx_queue(dev, i),
2518 				NUMA_NO_NODE);
2519 		}
2520 	}
2521 }
2522 
2523 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2524 				   u16 count)
2525 {
2526 	const unsigned long *possible_mask = NULL;
2527 	struct xps_dev_maps *dev_maps;
2528 	unsigned int nr_ids;
2529 
2530 	if (!static_key_false(&xps_needed))
2531 		return;
2532 
2533 	cpus_read_lock();
2534 	mutex_lock(&xps_map_mutex);
2535 
2536 	if (static_key_false(&xps_rxqs_needed)) {
2537 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2538 		if (dev_maps) {
2539 			nr_ids = dev->num_rx_queues;
2540 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2541 				       offset, count, true);
2542 		}
2543 	}
2544 
2545 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2546 	if (!dev_maps)
2547 		goto out_no_maps;
2548 
2549 	if (num_possible_cpus() > 1)
2550 		possible_mask = cpumask_bits(cpu_possible_mask);
2551 	nr_ids = nr_cpu_ids;
2552 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2553 		       false);
2554 
2555 out_no_maps:
2556 	mutex_unlock(&xps_map_mutex);
2557 	cpus_read_unlock();
2558 }
2559 
2560 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2561 {
2562 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2563 }
2564 
2565 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2566 				      u16 index, bool is_rxqs_map)
2567 {
2568 	struct xps_map *new_map;
2569 	int alloc_len = XPS_MIN_MAP_ALLOC;
2570 	int i, pos;
2571 
2572 	for (pos = 0; map && pos < map->len; pos++) {
2573 		if (map->queues[pos] != index)
2574 			continue;
2575 		return map;
2576 	}
2577 
2578 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2579 	if (map) {
2580 		if (pos < map->alloc_len)
2581 			return map;
2582 
2583 		alloc_len = map->alloc_len * 2;
2584 	}
2585 
2586 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2587 	 *  map
2588 	 */
2589 	if (is_rxqs_map)
2590 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2591 	else
2592 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2593 				       cpu_to_node(attr_index));
2594 	if (!new_map)
2595 		return NULL;
2596 
2597 	for (i = 0; i < pos; i++)
2598 		new_map->queues[i] = map->queues[i];
2599 	new_map->alloc_len = alloc_len;
2600 	new_map->len = pos;
2601 
2602 	return new_map;
2603 }
2604 
2605 /* Must be called under cpus_read_lock */
2606 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2607 			  u16 index, bool is_rxqs_map)
2608 {
2609 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2610 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2611 	int i, j, tci, numa_node_id = -2;
2612 	int maps_sz, num_tc = 1, tc = 0;
2613 	struct xps_map *map, *new_map;
2614 	bool active = false;
2615 	unsigned int nr_ids;
2616 
2617 	if (dev->num_tc) {
2618 		/* Do not allow XPS on subordinate device directly */
2619 		num_tc = dev->num_tc;
2620 		if (num_tc < 0)
2621 			return -EINVAL;
2622 
2623 		/* If queue belongs to subordinate dev use its map */
2624 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2625 
2626 		tc = netdev_txq_to_tc(dev, index);
2627 		if (tc < 0)
2628 			return -EINVAL;
2629 	}
2630 
2631 	mutex_lock(&xps_map_mutex);
2632 	if (is_rxqs_map) {
2633 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2634 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2635 		nr_ids = dev->num_rx_queues;
2636 	} else {
2637 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2638 		if (num_possible_cpus() > 1) {
2639 			online_mask = cpumask_bits(cpu_online_mask);
2640 			possible_mask = cpumask_bits(cpu_possible_mask);
2641 		}
2642 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2643 		nr_ids = nr_cpu_ids;
2644 	}
2645 
2646 	if (maps_sz < L1_CACHE_BYTES)
2647 		maps_sz = L1_CACHE_BYTES;
2648 
2649 	/* allocate memory for queue storage */
2650 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2651 	     j < nr_ids;) {
2652 		if (!new_dev_maps)
2653 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2654 		if (!new_dev_maps) {
2655 			mutex_unlock(&xps_map_mutex);
2656 			return -ENOMEM;
2657 		}
2658 
2659 		tci = j * num_tc + tc;
2660 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2661 				 NULL;
2662 
2663 		map = expand_xps_map(map, j, index, is_rxqs_map);
2664 		if (!map)
2665 			goto error;
2666 
2667 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2668 	}
2669 
2670 	if (!new_dev_maps)
2671 		goto out_no_new_maps;
2672 
2673 	if (!dev_maps) {
2674 		/* Increment static keys at most once per type */
2675 		static_key_slow_inc_cpuslocked(&xps_needed);
2676 		if (is_rxqs_map)
2677 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2678 	}
2679 
2680 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2681 	     j < nr_ids;) {
2682 		/* copy maps belonging to foreign traffic classes */
2683 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2684 			/* fill in the new device map from the old device map */
2685 			map = xmap_dereference(dev_maps->attr_map[tci]);
2686 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2687 		}
2688 
2689 		/* We need to explicitly update tci as prevous loop
2690 		 * could break out early if dev_maps is NULL.
2691 		 */
2692 		tci = j * num_tc + tc;
2693 
2694 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2695 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2696 			/* add tx-queue to CPU/rx-queue maps */
2697 			int pos = 0;
2698 
2699 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2700 			while ((pos < map->len) && (map->queues[pos] != index))
2701 				pos++;
2702 
2703 			if (pos == map->len)
2704 				map->queues[map->len++] = index;
2705 #ifdef CONFIG_NUMA
2706 			if (!is_rxqs_map) {
2707 				if (numa_node_id == -2)
2708 					numa_node_id = cpu_to_node(j);
2709 				else if (numa_node_id != cpu_to_node(j))
2710 					numa_node_id = -1;
2711 			}
2712 #endif
2713 		} else if (dev_maps) {
2714 			/* fill in the new device map from the old device map */
2715 			map = xmap_dereference(dev_maps->attr_map[tci]);
2716 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2717 		}
2718 
2719 		/* copy maps belonging to foreign traffic classes */
2720 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2721 			/* fill in the new device map from the old device map */
2722 			map = xmap_dereference(dev_maps->attr_map[tci]);
2723 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2724 		}
2725 	}
2726 
2727 	if (is_rxqs_map)
2728 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2729 	else
2730 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2731 
2732 	/* Cleanup old maps */
2733 	if (!dev_maps)
2734 		goto out_no_old_maps;
2735 
2736 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2737 	     j < nr_ids;) {
2738 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2739 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2740 			map = xmap_dereference(dev_maps->attr_map[tci]);
2741 			if (map && map != new_map)
2742 				kfree_rcu(map, rcu);
2743 		}
2744 	}
2745 
2746 	kfree_rcu(dev_maps, rcu);
2747 
2748 out_no_old_maps:
2749 	dev_maps = new_dev_maps;
2750 	active = true;
2751 
2752 out_no_new_maps:
2753 	if (!is_rxqs_map) {
2754 		/* update Tx queue numa node */
2755 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2756 					     (numa_node_id >= 0) ?
2757 					     numa_node_id : NUMA_NO_NODE);
2758 	}
2759 
2760 	if (!dev_maps)
2761 		goto out_no_maps;
2762 
2763 	/* removes tx-queue from unused CPUs/rx-queues */
2764 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2765 	     j < nr_ids;) {
2766 		for (i = tc, tci = j * num_tc; i--; tci++)
2767 			active |= remove_xps_queue(dev_maps, tci, index);
2768 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2769 		    !netif_attr_test_online(j, online_mask, nr_ids))
2770 			active |= remove_xps_queue(dev_maps, tci, index);
2771 		for (i = num_tc - tc, tci++; --i; tci++)
2772 			active |= remove_xps_queue(dev_maps, tci, index);
2773 	}
2774 
2775 	/* free map if not active */
2776 	if (!active)
2777 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2778 
2779 out_no_maps:
2780 	mutex_unlock(&xps_map_mutex);
2781 
2782 	return 0;
2783 error:
2784 	/* remove any maps that we added */
2785 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2786 	     j < nr_ids;) {
2787 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2788 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2789 			map = dev_maps ?
2790 			      xmap_dereference(dev_maps->attr_map[tci]) :
2791 			      NULL;
2792 			if (new_map && new_map != map)
2793 				kfree(new_map);
2794 		}
2795 	}
2796 
2797 	mutex_unlock(&xps_map_mutex);
2798 
2799 	kfree(new_dev_maps);
2800 	return -ENOMEM;
2801 }
2802 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2803 
2804 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2805 			u16 index)
2806 {
2807 	int ret;
2808 
2809 	cpus_read_lock();
2810 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2811 	cpus_read_unlock();
2812 
2813 	return ret;
2814 }
2815 EXPORT_SYMBOL(netif_set_xps_queue);
2816 
2817 #endif
2818 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2819 {
2820 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2821 
2822 	/* Unbind any subordinate channels */
2823 	while (txq-- != &dev->_tx[0]) {
2824 		if (txq->sb_dev)
2825 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2826 	}
2827 }
2828 
2829 void netdev_reset_tc(struct net_device *dev)
2830 {
2831 #ifdef CONFIG_XPS
2832 	netif_reset_xps_queues_gt(dev, 0);
2833 #endif
2834 	netdev_unbind_all_sb_channels(dev);
2835 
2836 	/* Reset TC configuration of device */
2837 	dev->num_tc = 0;
2838 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2839 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2840 }
2841 EXPORT_SYMBOL(netdev_reset_tc);
2842 
2843 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2844 {
2845 	if (tc >= dev->num_tc)
2846 		return -EINVAL;
2847 
2848 #ifdef CONFIG_XPS
2849 	netif_reset_xps_queues(dev, offset, count);
2850 #endif
2851 	dev->tc_to_txq[tc].count = count;
2852 	dev->tc_to_txq[tc].offset = offset;
2853 	return 0;
2854 }
2855 EXPORT_SYMBOL(netdev_set_tc_queue);
2856 
2857 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2858 {
2859 	if (num_tc > TC_MAX_QUEUE)
2860 		return -EINVAL;
2861 
2862 #ifdef CONFIG_XPS
2863 	netif_reset_xps_queues_gt(dev, 0);
2864 #endif
2865 	netdev_unbind_all_sb_channels(dev);
2866 
2867 	dev->num_tc = num_tc;
2868 	return 0;
2869 }
2870 EXPORT_SYMBOL(netdev_set_num_tc);
2871 
2872 void netdev_unbind_sb_channel(struct net_device *dev,
2873 			      struct net_device *sb_dev)
2874 {
2875 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2876 
2877 #ifdef CONFIG_XPS
2878 	netif_reset_xps_queues_gt(sb_dev, 0);
2879 #endif
2880 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2881 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2882 
2883 	while (txq-- != &dev->_tx[0]) {
2884 		if (txq->sb_dev == sb_dev)
2885 			txq->sb_dev = NULL;
2886 	}
2887 }
2888 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2889 
2890 int netdev_bind_sb_channel_queue(struct net_device *dev,
2891 				 struct net_device *sb_dev,
2892 				 u8 tc, u16 count, u16 offset)
2893 {
2894 	/* Make certain the sb_dev and dev are already configured */
2895 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2896 		return -EINVAL;
2897 
2898 	/* We cannot hand out queues we don't have */
2899 	if ((offset + count) > dev->real_num_tx_queues)
2900 		return -EINVAL;
2901 
2902 	/* Record the mapping */
2903 	sb_dev->tc_to_txq[tc].count = count;
2904 	sb_dev->tc_to_txq[tc].offset = offset;
2905 
2906 	/* Provide a way for Tx queue to find the tc_to_txq map or
2907 	 * XPS map for itself.
2908 	 */
2909 	while (count--)
2910 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2911 
2912 	return 0;
2913 }
2914 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2915 
2916 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2917 {
2918 	/* Do not use a multiqueue device to represent a subordinate channel */
2919 	if (netif_is_multiqueue(dev))
2920 		return -ENODEV;
2921 
2922 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2923 	 * Channel 0 is meant to be "native" mode and used only to represent
2924 	 * the main root device. We allow writing 0 to reset the device back
2925 	 * to normal mode after being used as a subordinate channel.
2926 	 */
2927 	if (channel > S16_MAX)
2928 		return -EINVAL;
2929 
2930 	dev->num_tc = -channel;
2931 
2932 	return 0;
2933 }
2934 EXPORT_SYMBOL(netdev_set_sb_channel);
2935 
2936 /*
2937  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2938  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2939  */
2940 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2941 {
2942 	bool disabling;
2943 	int rc;
2944 
2945 	disabling = txq < dev->real_num_tx_queues;
2946 
2947 	if (txq < 1 || txq > dev->num_tx_queues)
2948 		return -EINVAL;
2949 
2950 	if (dev->reg_state == NETREG_REGISTERED ||
2951 	    dev->reg_state == NETREG_UNREGISTERING) {
2952 		ASSERT_RTNL();
2953 
2954 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2955 						  txq);
2956 		if (rc)
2957 			return rc;
2958 
2959 		if (dev->num_tc)
2960 			netif_setup_tc(dev, txq);
2961 
2962 		dev->real_num_tx_queues = txq;
2963 
2964 		if (disabling) {
2965 			synchronize_net();
2966 			qdisc_reset_all_tx_gt(dev, txq);
2967 #ifdef CONFIG_XPS
2968 			netif_reset_xps_queues_gt(dev, txq);
2969 #endif
2970 		}
2971 	} else {
2972 		dev->real_num_tx_queues = txq;
2973 	}
2974 
2975 	return 0;
2976 }
2977 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2978 
2979 #ifdef CONFIG_SYSFS
2980 /**
2981  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2982  *	@dev: Network device
2983  *	@rxq: Actual number of RX queues
2984  *
2985  *	This must be called either with the rtnl_lock held or before
2986  *	registration of the net device.  Returns 0 on success, or a
2987  *	negative error code.  If called before registration, it always
2988  *	succeeds.
2989  */
2990 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2991 {
2992 	int rc;
2993 
2994 	if (rxq < 1 || rxq > dev->num_rx_queues)
2995 		return -EINVAL;
2996 
2997 	if (dev->reg_state == NETREG_REGISTERED) {
2998 		ASSERT_RTNL();
2999 
3000 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3001 						  rxq);
3002 		if (rc)
3003 			return rc;
3004 	}
3005 
3006 	dev->real_num_rx_queues = rxq;
3007 	return 0;
3008 }
3009 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3010 #endif
3011 
3012 /**
3013  * netif_get_num_default_rss_queues - default number of RSS queues
3014  *
3015  * This routine should set an upper limit on the number of RSS queues
3016  * used by default by multiqueue devices.
3017  */
3018 int netif_get_num_default_rss_queues(void)
3019 {
3020 	return is_kdump_kernel() ?
3021 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3022 }
3023 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3024 
3025 static void __netif_reschedule(struct Qdisc *q)
3026 {
3027 	struct softnet_data *sd;
3028 	unsigned long flags;
3029 
3030 	local_irq_save(flags);
3031 	sd = this_cpu_ptr(&softnet_data);
3032 	q->next_sched = NULL;
3033 	*sd->output_queue_tailp = q;
3034 	sd->output_queue_tailp = &q->next_sched;
3035 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3036 	local_irq_restore(flags);
3037 }
3038 
3039 void __netif_schedule(struct Qdisc *q)
3040 {
3041 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3042 		__netif_reschedule(q);
3043 }
3044 EXPORT_SYMBOL(__netif_schedule);
3045 
3046 struct dev_kfree_skb_cb {
3047 	enum skb_free_reason reason;
3048 };
3049 
3050 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3051 {
3052 	return (struct dev_kfree_skb_cb *)skb->cb;
3053 }
3054 
3055 void netif_schedule_queue(struct netdev_queue *txq)
3056 {
3057 	rcu_read_lock();
3058 	if (!netif_xmit_stopped(txq)) {
3059 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3060 
3061 		__netif_schedule(q);
3062 	}
3063 	rcu_read_unlock();
3064 }
3065 EXPORT_SYMBOL(netif_schedule_queue);
3066 
3067 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3068 {
3069 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3070 		struct Qdisc *q;
3071 
3072 		rcu_read_lock();
3073 		q = rcu_dereference(dev_queue->qdisc);
3074 		__netif_schedule(q);
3075 		rcu_read_unlock();
3076 	}
3077 }
3078 EXPORT_SYMBOL(netif_tx_wake_queue);
3079 
3080 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3081 {
3082 	unsigned long flags;
3083 
3084 	if (unlikely(!skb))
3085 		return;
3086 
3087 	if (likely(refcount_read(&skb->users) == 1)) {
3088 		smp_rmb();
3089 		refcount_set(&skb->users, 0);
3090 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3091 		return;
3092 	}
3093 	get_kfree_skb_cb(skb)->reason = reason;
3094 	local_irq_save(flags);
3095 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3096 	__this_cpu_write(softnet_data.completion_queue, skb);
3097 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3098 	local_irq_restore(flags);
3099 }
3100 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3101 
3102 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3103 {
3104 	if (in_irq() || irqs_disabled())
3105 		__dev_kfree_skb_irq(skb, reason);
3106 	else
3107 		dev_kfree_skb(skb);
3108 }
3109 EXPORT_SYMBOL(__dev_kfree_skb_any);
3110 
3111 
3112 /**
3113  * netif_device_detach - mark device as removed
3114  * @dev: network device
3115  *
3116  * Mark device as removed from system and therefore no longer available.
3117  */
3118 void netif_device_detach(struct net_device *dev)
3119 {
3120 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3121 	    netif_running(dev)) {
3122 		netif_tx_stop_all_queues(dev);
3123 	}
3124 }
3125 EXPORT_SYMBOL(netif_device_detach);
3126 
3127 /**
3128  * netif_device_attach - mark device as attached
3129  * @dev: network device
3130  *
3131  * Mark device as attached from system and restart if needed.
3132  */
3133 void netif_device_attach(struct net_device *dev)
3134 {
3135 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3136 	    netif_running(dev)) {
3137 		netif_tx_wake_all_queues(dev);
3138 		__netdev_watchdog_up(dev);
3139 	}
3140 }
3141 EXPORT_SYMBOL(netif_device_attach);
3142 
3143 /*
3144  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3145  * to be used as a distribution range.
3146  */
3147 static u16 skb_tx_hash(const struct net_device *dev,
3148 		       const struct net_device *sb_dev,
3149 		       struct sk_buff *skb)
3150 {
3151 	u32 hash;
3152 	u16 qoffset = 0;
3153 	u16 qcount = dev->real_num_tx_queues;
3154 
3155 	if (dev->num_tc) {
3156 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3157 
3158 		qoffset = sb_dev->tc_to_txq[tc].offset;
3159 		qcount = sb_dev->tc_to_txq[tc].count;
3160 	}
3161 
3162 	if (skb_rx_queue_recorded(skb)) {
3163 		hash = skb_get_rx_queue(skb);
3164 		if (hash >= qoffset)
3165 			hash -= qoffset;
3166 		while (unlikely(hash >= qcount))
3167 			hash -= qcount;
3168 		return hash + qoffset;
3169 	}
3170 
3171 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3172 }
3173 
3174 static void skb_warn_bad_offload(const struct sk_buff *skb)
3175 {
3176 	static const netdev_features_t null_features;
3177 	struct net_device *dev = skb->dev;
3178 	const char *name = "";
3179 
3180 	if (!net_ratelimit())
3181 		return;
3182 
3183 	if (dev) {
3184 		if (dev->dev.parent)
3185 			name = dev_driver_string(dev->dev.parent);
3186 		else
3187 			name = netdev_name(dev);
3188 	}
3189 	skb_dump(KERN_WARNING, skb, false);
3190 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3191 	     name, dev ? &dev->features : &null_features,
3192 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3193 }
3194 
3195 /*
3196  * Invalidate hardware checksum when packet is to be mangled, and
3197  * complete checksum manually on outgoing path.
3198  */
3199 int skb_checksum_help(struct sk_buff *skb)
3200 {
3201 	__wsum csum;
3202 	int ret = 0, offset;
3203 
3204 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3205 		goto out_set_summed;
3206 
3207 	if (unlikely(skb_shinfo(skb)->gso_size)) {
3208 		skb_warn_bad_offload(skb);
3209 		return -EINVAL;
3210 	}
3211 
3212 	/* Before computing a checksum, we should make sure no frag could
3213 	 * be modified by an external entity : checksum could be wrong.
3214 	 */
3215 	if (skb_has_shared_frag(skb)) {
3216 		ret = __skb_linearize(skb);
3217 		if (ret)
3218 			goto out;
3219 	}
3220 
3221 	offset = skb_checksum_start_offset(skb);
3222 	BUG_ON(offset >= skb_headlen(skb));
3223 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3224 
3225 	offset += skb->csum_offset;
3226 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3227 
3228 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3229 	if (ret)
3230 		goto out;
3231 
3232 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3233 out_set_summed:
3234 	skb->ip_summed = CHECKSUM_NONE;
3235 out:
3236 	return ret;
3237 }
3238 EXPORT_SYMBOL(skb_checksum_help);
3239 
3240 int skb_crc32c_csum_help(struct sk_buff *skb)
3241 {
3242 	__le32 crc32c_csum;
3243 	int ret = 0, offset, start;
3244 
3245 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3246 		goto out;
3247 
3248 	if (unlikely(skb_is_gso(skb)))
3249 		goto out;
3250 
3251 	/* Before computing a checksum, we should make sure no frag could
3252 	 * be modified by an external entity : checksum could be wrong.
3253 	 */
3254 	if (unlikely(skb_has_shared_frag(skb))) {
3255 		ret = __skb_linearize(skb);
3256 		if (ret)
3257 			goto out;
3258 	}
3259 	start = skb_checksum_start_offset(skb);
3260 	offset = start + offsetof(struct sctphdr, checksum);
3261 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3262 		ret = -EINVAL;
3263 		goto out;
3264 	}
3265 
3266 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3267 	if (ret)
3268 		goto out;
3269 
3270 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3271 						  skb->len - start, ~(__u32)0,
3272 						  crc32c_csum_stub));
3273 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3274 	skb->ip_summed = CHECKSUM_NONE;
3275 	skb->csum_not_inet = 0;
3276 out:
3277 	return ret;
3278 }
3279 
3280 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3281 {
3282 	__be16 type = skb->protocol;
3283 
3284 	/* Tunnel gso handlers can set protocol to ethernet. */
3285 	if (type == htons(ETH_P_TEB)) {
3286 		struct ethhdr *eth;
3287 
3288 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3289 			return 0;
3290 
3291 		eth = (struct ethhdr *)skb->data;
3292 		type = eth->h_proto;
3293 	}
3294 
3295 	return __vlan_get_protocol(skb, type, depth);
3296 }
3297 
3298 /**
3299  *	skb_mac_gso_segment - mac layer segmentation handler.
3300  *	@skb: buffer to segment
3301  *	@features: features for the output path (see dev->features)
3302  */
3303 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3304 				    netdev_features_t features)
3305 {
3306 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3307 	struct packet_offload *ptype;
3308 	int vlan_depth = skb->mac_len;
3309 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3310 
3311 	if (unlikely(!type))
3312 		return ERR_PTR(-EINVAL);
3313 
3314 	__skb_pull(skb, vlan_depth);
3315 
3316 	rcu_read_lock();
3317 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3318 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3319 			segs = ptype->callbacks.gso_segment(skb, features);
3320 			break;
3321 		}
3322 	}
3323 	rcu_read_unlock();
3324 
3325 	__skb_push(skb, skb->data - skb_mac_header(skb));
3326 
3327 	return segs;
3328 }
3329 EXPORT_SYMBOL(skb_mac_gso_segment);
3330 
3331 
3332 /* openvswitch calls this on rx path, so we need a different check.
3333  */
3334 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3335 {
3336 	if (tx_path)
3337 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3338 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3339 
3340 	return skb->ip_summed == CHECKSUM_NONE;
3341 }
3342 
3343 /**
3344  *	__skb_gso_segment - Perform segmentation on skb.
3345  *	@skb: buffer to segment
3346  *	@features: features for the output path (see dev->features)
3347  *	@tx_path: whether it is called in TX path
3348  *
3349  *	This function segments the given skb and returns a list of segments.
3350  *
3351  *	It may return NULL if the skb requires no segmentation.  This is
3352  *	only possible when GSO is used for verifying header integrity.
3353  *
3354  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3355  */
3356 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3357 				  netdev_features_t features, bool tx_path)
3358 {
3359 	struct sk_buff *segs;
3360 
3361 	if (unlikely(skb_needs_check(skb, tx_path))) {
3362 		int err;
3363 
3364 		/* We're going to init ->check field in TCP or UDP header */
3365 		err = skb_cow_head(skb, 0);
3366 		if (err < 0)
3367 			return ERR_PTR(err);
3368 	}
3369 
3370 	/* Only report GSO partial support if it will enable us to
3371 	 * support segmentation on this frame without needing additional
3372 	 * work.
3373 	 */
3374 	if (features & NETIF_F_GSO_PARTIAL) {
3375 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3376 		struct net_device *dev = skb->dev;
3377 
3378 		partial_features |= dev->features & dev->gso_partial_features;
3379 		if (!skb_gso_ok(skb, features | partial_features))
3380 			features &= ~NETIF_F_GSO_PARTIAL;
3381 	}
3382 
3383 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3384 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3385 
3386 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3387 	SKB_GSO_CB(skb)->encap_level = 0;
3388 
3389 	skb_reset_mac_header(skb);
3390 	skb_reset_mac_len(skb);
3391 
3392 	segs = skb_mac_gso_segment(skb, features);
3393 
3394 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3395 		skb_warn_bad_offload(skb);
3396 
3397 	return segs;
3398 }
3399 EXPORT_SYMBOL(__skb_gso_segment);
3400 
3401 /* Take action when hardware reception checksum errors are detected. */
3402 #ifdef CONFIG_BUG
3403 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3404 {
3405 	if (net_ratelimit()) {
3406 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3407 		skb_dump(KERN_ERR, skb, true);
3408 		dump_stack();
3409 	}
3410 }
3411 EXPORT_SYMBOL(netdev_rx_csum_fault);
3412 #endif
3413 
3414 /* XXX: check that highmem exists at all on the given machine. */
3415 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3416 {
3417 #ifdef CONFIG_HIGHMEM
3418 	int i;
3419 
3420 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3421 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3422 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3423 
3424 			if (PageHighMem(skb_frag_page(frag)))
3425 				return 1;
3426 		}
3427 	}
3428 #endif
3429 	return 0;
3430 }
3431 
3432 /* If MPLS offload request, verify we are testing hardware MPLS features
3433  * instead of standard features for the netdev.
3434  */
3435 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3436 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3437 					   netdev_features_t features,
3438 					   __be16 type)
3439 {
3440 	if (eth_p_mpls(type))
3441 		features &= skb->dev->mpls_features;
3442 
3443 	return features;
3444 }
3445 #else
3446 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3447 					   netdev_features_t features,
3448 					   __be16 type)
3449 {
3450 	return features;
3451 }
3452 #endif
3453 
3454 static netdev_features_t harmonize_features(struct sk_buff *skb,
3455 	netdev_features_t features)
3456 {
3457 	int tmp;
3458 	__be16 type;
3459 
3460 	type = skb_network_protocol(skb, &tmp);
3461 	features = net_mpls_features(skb, features, type);
3462 
3463 	if (skb->ip_summed != CHECKSUM_NONE &&
3464 	    !can_checksum_protocol(features, type)) {
3465 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3466 	}
3467 	if (illegal_highdma(skb->dev, skb))
3468 		features &= ~NETIF_F_SG;
3469 
3470 	return features;
3471 }
3472 
3473 netdev_features_t passthru_features_check(struct sk_buff *skb,
3474 					  struct net_device *dev,
3475 					  netdev_features_t features)
3476 {
3477 	return features;
3478 }
3479 EXPORT_SYMBOL(passthru_features_check);
3480 
3481 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3482 					     struct net_device *dev,
3483 					     netdev_features_t features)
3484 {
3485 	return vlan_features_check(skb, features);
3486 }
3487 
3488 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3489 					    struct net_device *dev,
3490 					    netdev_features_t features)
3491 {
3492 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3493 
3494 	if (gso_segs > dev->gso_max_segs)
3495 		return features & ~NETIF_F_GSO_MASK;
3496 
3497 	/* Support for GSO partial features requires software
3498 	 * intervention before we can actually process the packets
3499 	 * so we need to strip support for any partial features now
3500 	 * and we can pull them back in after we have partially
3501 	 * segmented the frame.
3502 	 */
3503 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3504 		features &= ~dev->gso_partial_features;
3505 
3506 	/* Make sure to clear the IPv4 ID mangling feature if the
3507 	 * IPv4 header has the potential to be fragmented.
3508 	 */
3509 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3510 		struct iphdr *iph = skb->encapsulation ?
3511 				    inner_ip_hdr(skb) : ip_hdr(skb);
3512 
3513 		if (!(iph->frag_off & htons(IP_DF)))
3514 			features &= ~NETIF_F_TSO_MANGLEID;
3515 	}
3516 
3517 	return features;
3518 }
3519 
3520 netdev_features_t netif_skb_features(struct sk_buff *skb)
3521 {
3522 	struct net_device *dev = skb->dev;
3523 	netdev_features_t features = dev->features;
3524 
3525 	if (skb_is_gso(skb))
3526 		features = gso_features_check(skb, dev, features);
3527 
3528 	/* If encapsulation offload request, verify we are testing
3529 	 * hardware encapsulation features instead of standard
3530 	 * features for the netdev
3531 	 */
3532 	if (skb->encapsulation)
3533 		features &= dev->hw_enc_features;
3534 
3535 	if (skb_vlan_tagged(skb))
3536 		features = netdev_intersect_features(features,
3537 						     dev->vlan_features |
3538 						     NETIF_F_HW_VLAN_CTAG_TX |
3539 						     NETIF_F_HW_VLAN_STAG_TX);
3540 
3541 	if (dev->netdev_ops->ndo_features_check)
3542 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3543 								features);
3544 	else
3545 		features &= dflt_features_check(skb, dev, features);
3546 
3547 	return harmonize_features(skb, features);
3548 }
3549 EXPORT_SYMBOL(netif_skb_features);
3550 
3551 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3552 		    struct netdev_queue *txq, bool more)
3553 {
3554 	unsigned int len;
3555 	int rc;
3556 
3557 	if (dev_nit_active(dev))
3558 		dev_queue_xmit_nit(skb, dev);
3559 
3560 	len = skb->len;
3561 	trace_net_dev_start_xmit(skb, dev);
3562 	rc = netdev_start_xmit(skb, dev, txq, more);
3563 	trace_net_dev_xmit(skb, rc, dev, len);
3564 
3565 	return rc;
3566 }
3567 
3568 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3569 				    struct netdev_queue *txq, int *ret)
3570 {
3571 	struct sk_buff *skb = first;
3572 	int rc = NETDEV_TX_OK;
3573 
3574 	while (skb) {
3575 		struct sk_buff *next = skb->next;
3576 
3577 		skb_mark_not_on_list(skb);
3578 		rc = xmit_one(skb, dev, txq, next != NULL);
3579 		if (unlikely(!dev_xmit_complete(rc))) {
3580 			skb->next = next;
3581 			goto out;
3582 		}
3583 
3584 		skb = next;
3585 		if (netif_tx_queue_stopped(txq) && skb) {
3586 			rc = NETDEV_TX_BUSY;
3587 			break;
3588 		}
3589 	}
3590 
3591 out:
3592 	*ret = rc;
3593 	return skb;
3594 }
3595 
3596 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3597 					  netdev_features_t features)
3598 {
3599 	if (skb_vlan_tag_present(skb) &&
3600 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3601 		skb = __vlan_hwaccel_push_inside(skb);
3602 	return skb;
3603 }
3604 
3605 int skb_csum_hwoffload_help(struct sk_buff *skb,
3606 			    const netdev_features_t features)
3607 {
3608 	if (unlikely(skb->csum_not_inet))
3609 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3610 			skb_crc32c_csum_help(skb);
3611 
3612 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3613 }
3614 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3615 
3616 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3617 {
3618 	netdev_features_t features;
3619 
3620 	features = netif_skb_features(skb);
3621 	skb = validate_xmit_vlan(skb, features);
3622 	if (unlikely(!skb))
3623 		goto out_null;
3624 
3625 	skb = sk_validate_xmit_skb(skb, dev);
3626 	if (unlikely(!skb))
3627 		goto out_null;
3628 
3629 	if (netif_needs_gso(skb, features)) {
3630 		struct sk_buff *segs;
3631 
3632 		segs = skb_gso_segment(skb, features);
3633 		if (IS_ERR(segs)) {
3634 			goto out_kfree_skb;
3635 		} else if (segs) {
3636 			consume_skb(skb);
3637 			skb = segs;
3638 		}
3639 	} else {
3640 		if (skb_needs_linearize(skb, features) &&
3641 		    __skb_linearize(skb))
3642 			goto out_kfree_skb;
3643 
3644 		/* If packet is not checksummed and device does not
3645 		 * support checksumming for this protocol, complete
3646 		 * checksumming here.
3647 		 */
3648 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3649 			if (skb->encapsulation)
3650 				skb_set_inner_transport_header(skb,
3651 							       skb_checksum_start_offset(skb));
3652 			else
3653 				skb_set_transport_header(skb,
3654 							 skb_checksum_start_offset(skb));
3655 			if (skb_csum_hwoffload_help(skb, features))
3656 				goto out_kfree_skb;
3657 		}
3658 	}
3659 
3660 	skb = validate_xmit_xfrm(skb, features, again);
3661 
3662 	return skb;
3663 
3664 out_kfree_skb:
3665 	kfree_skb(skb);
3666 out_null:
3667 	atomic_long_inc(&dev->tx_dropped);
3668 	return NULL;
3669 }
3670 
3671 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3672 {
3673 	struct sk_buff *next, *head = NULL, *tail;
3674 
3675 	for (; skb != NULL; skb = next) {
3676 		next = skb->next;
3677 		skb_mark_not_on_list(skb);
3678 
3679 		/* in case skb wont be segmented, point to itself */
3680 		skb->prev = skb;
3681 
3682 		skb = validate_xmit_skb(skb, dev, again);
3683 		if (!skb)
3684 			continue;
3685 
3686 		if (!head)
3687 			head = skb;
3688 		else
3689 			tail->next = skb;
3690 		/* If skb was segmented, skb->prev points to
3691 		 * the last segment. If not, it still contains skb.
3692 		 */
3693 		tail = skb->prev;
3694 	}
3695 	return head;
3696 }
3697 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3698 
3699 static void qdisc_pkt_len_init(struct sk_buff *skb)
3700 {
3701 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3702 
3703 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3704 
3705 	/* To get more precise estimation of bytes sent on wire,
3706 	 * we add to pkt_len the headers size of all segments
3707 	 */
3708 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3709 		unsigned int hdr_len;
3710 		u16 gso_segs = shinfo->gso_segs;
3711 
3712 		/* mac layer + network layer */
3713 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3714 
3715 		/* + transport layer */
3716 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3717 			const struct tcphdr *th;
3718 			struct tcphdr _tcphdr;
3719 
3720 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3721 						sizeof(_tcphdr), &_tcphdr);
3722 			if (likely(th))
3723 				hdr_len += __tcp_hdrlen(th);
3724 		} else {
3725 			struct udphdr _udphdr;
3726 
3727 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3728 					       sizeof(_udphdr), &_udphdr))
3729 				hdr_len += sizeof(struct udphdr);
3730 		}
3731 
3732 		if (shinfo->gso_type & SKB_GSO_DODGY)
3733 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3734 						shinfo->gso_size);
3735 
3736 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3737 	}
3738 }
3739 
3740 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3741 				 struct net_device *dev,
3742 				 struct netdev_queue *txq)
3743 {
3744 	spinlock_t *root_lock = qdisc_lock(q);
3745 	struct sk_buff *to_free = NULL;
3746 	bool contended;
3747 	int rc;
3748 
3749 	qdisc_calculate_pkt_len(skb, q);
3750 
3751 	if (q->flags & TCQ_F_NOLOCK) {
3752 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3753 		qdisc_run(q);
3754 
3755 		if (unlikely(to_free))
3756 			kfree_skb_list(to_free);
3757 		return rc;
3758 	}
3759 
3760 	/*
3761 	 * Heuristic to force contended enqueues to serialize on a
3762 	 * separate lock before trying to get qdisc main lock.
3763 	 * This permits qdisc->running owner to get the lock more
3764 	 * often and dequeue packets faster.
3765 	 */
3766 	contended = qdisc_is_running(q);
3767 	if (unlikely(contended))
3768 		spin_lock(&q->busylock);
3769 
3770 	spin_lock(root_lock);
3771 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3772 		__qdisc_drop(skb, &to_free);
3773 		rc = NET_XMIT_DROP;
3774 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3775 		   qdisc_run_begin(q)) {
3776 		/*
3777 		 * This is a work-conserving queue; there are no old skbs
3778 		 * waiting to be sent out; and the qdisc is not running -
3779 		 * xmit the skb directly.
3780 		 */
3781 
3782 		qdisc_bstats_update(q, skb);
3783 
3784 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3785 			if (unlikely(contended)) {
3786 				spin_unlock(&q->busylock);
3787 				contended = false;
3788 			}
3789 			__qdisc_run(q);
3790 		}
3791 
3792 		qdisc_run_end(q);
3793 		rc = NET_XMIT_SUCCESS;
3794 	} else {
3795 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3796 		if (qdisc_run_begin(q)) {
3797 			if (unlikely(contended)) {
3798 				spin_unlock(&q->busylock);
3799 				contended = false;
3800 			}
3801 			__qdisc_run(q);
3802 			qdisc_run_end(q);
3803 		}
3804 	}
3805 	spin_unlock(root_lock);
3806 	if (unlikely(to_free))
3807 		kfree_skb_list(to_free);
3808 	if (unlikely(contended))
3809 		spin_unlock(&q->busylock);
3810 	return rc;
3811 }
3812 
3813 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3814 static void skb_update_prio(struct sk_buff *skb)
3815 {
3816 	const struct netprio_map *map;
3817 	const struct sock *sk;
3818 	unsigned int prioidx;
3819 
3820 	if (skb->priority)
3821 		return;
3822 	map = rcu_dereference_bh(skb->dev->priomap);
3823 	if (!map)
3824 		return;
3825 	sk = skb_to_full_sk(skb);
3826 	if (!sk)
3827 		return;
3828 
3829 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3830 
3831 	if (prioidx < map->priomap_len)
3832 		skb->priority = map->priomap[prioidx];
3833 }
3834 #else
3835 #define skb_update_prio(skb)
3836 #endif
3837 
3838 /**
3839  *	dev_loopback_xmit - loop back @skb
3840  *	@net: network namespace this loopback is happening in
3841  *	@sk:  sk needed to be a netfilter okfn
3842  *	@skb: buffer to transmit
3843  */
3844 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3845 {
3846 	skb_reset_mac_header(skb);
3847 	__skb_pull(skb, skb_network_offset(skb));
3848 	skb->pkt_type = PACKET_LOOPBACK;
3849 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3850 	WARN_ON(!skb_dst(skb));
3851 	skb_dst_force(skb);
3852 	netif_rx_ni(skb);
3853 	return 0;
3854 }
3855 EXPORT_SYMBOL(dev_loopback_xmit);
3856 
3857 #ifdef CONFIG_NET_EGRESS
3858 static struct sk_buff *
3859 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3860 {
3861 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3862 	struct tcf_result cl_res;
3863 
3864 	if (!miniq)
3865 		return skb;
3866 
3867 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3868 	mini_qdisc_bstats_cpu_update(miniq, skb);
3869 
3870 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3871 	case TC_ACT_OK:
3872 	case TC_ACT_RECLASSIFY:
3873 		skb->tc_index = TC_H_MIN(cl_res.classid);
3874 		break;
3875 	case TC_ACT_SHOT:
3876 		mini_qdisc_qstats_cpu_drop(miniq);
3877 		*ret = NET_XMIT_DROP;
3878 		kfree_skb(skb);
3879 		return NULL;
3880 	case TC_ACT_STOLEN:
3881 	case TC_ACT_QUEUED:
3882 	case TC_ACT_TRAP:
3883 		*ret = NET_XMIT_SUCCESS;
3884 		consume_skb(skb);
3885 		return NULL;
3886 	case TC_ACT_REDIRECT:
3887 		/* No need to push/pop skb's mac_header here on egress! */
3888 		skb_do_redirect(skb);
3889 		*ret = NET_XMIT_SUCCESS;
3890 		return NULL;
3891 	default:
3892 		break;
3893 	}
3894 
3895 	return skb;
3896 }
3897 #endif /* CONFIG_NET_EGRESS */
3898 
3899 #ifdef CONFIG_XPS
3900 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3901 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3902 {
3903 	struct xps_map *map;
3904 	int queue_index = -1;
3905 
3906 	if (dev->num_tc) {
3907 		tci *= dev->num_tc;
3908 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3909 	}
3910 
3911 	map = rcu_dereference(dev_maps->attr_map[tci]);
3912 	if (map) {
3913 		if (map->len == 1)
3914 			queue_index = map->queues[0];
3915 		else
3916 			queue_index = map->queues[reciprocal_scale(
3917 						skb_get_hash(skb), map->len)];
3918 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3919 			queue_index = -1;
3920 	}
3921 	return queue_index;
3922 }
3923 #endif
3924 
3925 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3926 			 struct sk_buff *skb)
3927 {
3928 #ifdef CONFIG_XPS
3929 	struct xps_dev_maps *dev_maps;
3930 	struct sock *sk = skb->sk;
3931 	int queue_index = -1;
3932 
3933 	if (!static_key_false(&xps_needed))
3934 		return -1;
3935 
3936 	rcu_read_lock();
3937 	if (!static_key_false(&xps_rxqs_needed))
3938 		goto get_cpus_map;
3939 
3940 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3941 	if (dev_maps) {
3942 		int tci = sk_rx_queue_get(sk);
3943 
3944 		if (tci >= 0 && tci < dev->num_rx_queues)
3945 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3946 							  tci);
3947 	}
3948 
3949 get_cpus_map:
3950 	if (queue_index < 0) {
3951 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3952 		if (dev_maps) {
3953 			unsigned int tci = skb->sender_cpu - 1;
3954 
3955 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3956 							  tci);
3957 		}
3958 	}
3959 	rcu_read_unlock();
3960 
3961 	return queue_index;
3962 #else
3963 	return -1;
3964 #endif
3965 }
3966 
3967 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3968 		     struct net_device *sb_dev)
3969 {
3970 	return 0;
3971 }
3972 EXPORT_SYMBOL(dev_pick_tx_zero);
3973 
3974 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3975 		       struct net_device *sb_dev)
3976 {
3977 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3978 }
3979 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3980 
3981 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3982 		     struct net_device *sb_dev)
3983 {
3984 	struct sock *sk = skb->sk;
3985 	int queue_index = sk_tx_queue_get(sk);
3986 
3987 	sb_dev = sb_dev ? : dev;
3988 
3989 	if (queue_index < 0 || skb->ooo_okay ||
3990 	    queue_index >= dev->real_num_tx_queues) {
3991 		int new_index = get_xps_queue(dev, sb_dev, skb);
3992 
3993 		if (new_index < 0)
3994 			new_index = skb_tx_hash(dev, sb_dev, skb);
3995 
3996 		if (queue_index != new_index && sk &&
3997 		    sk_fullsock(sk) &&
3998 		    rcu_access_pointer(sk->sk_dst_cache))
3999 			sk_tx_queue_set(sk, new_index);
4000 
4001 		queue_index = new_index;
4002 	}
4003 
4004 	return queue_index;
4005 }
4006 EXPORT_SYMBOL(netdev_pick_tx);
4007 
4008 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4009 					 struct sk_buff *skb,
4010 					 struct net_device *sb_dev)
4011 {
4012 	int queue_index = 0;
4013 
4014 #ifdef CONFIG_XPS
4015 	u32 sender_cpu = skb->sender_cpu - 1;
4016 
4017 	if (sender_cpu >= (u32)NR_CPUS)
4018 		skb->sender_cpu = raw_smp_processor_id() + 1;
4019 #endif
4020 
4021 	if (dev->real_num_tx_queues != 1) {
4022 		const struct net_device_ops *ops = dev->netdev_ops;
4023 
4024 		if (ops->ndo_select_queue)
4025 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4026 		else
4027 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4028 
4029 		queue_index = netdev_cap_txqueue(dev, queue_index);
4030 	}
4031 
4032 	skb_set_queue_mapping(skb, queue_index);
4033 	return netdev_get_tx_queue(dev, queue_index);
4034 }
4035 
4036 /**
4037  *	__dev_queue_xmit - transmit a buffer
4038  *	@skb: buffer to transmit
4039  *	@sb_dev: suboordinate device used for L2 forwarding offload
4040  *
4041  *	Queue a buffer for transmission to a network device. The caller must
4042  *	have set the device and priority and built the buffer before calling
4043  *	this function. The function can be called from an interrupt.
4044  *
4045  *	A negative errno code is returned on a failure. A success does not
4046  *	guarantee the frame will be transmitted as it may be dropped due
4047  *	to congestion or traffic shaping.
4048  *
4049  * -----------------------------------------------------------------------------------
4050  *      I notice this method can also return errors from the queue disciplines,
4051  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4052  *      be positive.
4053  *
4054  *      Regardless of the return value, the skb is consumed, so it is currently
4055  *      difficult to retry a send to this method.  (You can bump the ref count
4056  *      before sending to hold a reference for retry if you are careful.)
4057  *
4058  *      When calling this method, interrupts MUST be enabled.  This is because
4059  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4060  *          --BLG
4061  */
4062 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4063 {
4064 	struct net_device *dev = skb->dev;
4065 	struct netdev_queue *txq;
4066 	struct Qdisc *q;
4067 	int rc = -ENOMEM;
4068 	bool again = false;
4069 
4070 	skb_reset_mac_header(skb);
4071 
4072 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4073 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4074 
4075 	/* Disable soft irqs for various locks below. Also
4076 	 * stops preemption for RCU.
4077 	 */
4078 	rcu_read_lock_bh();
4079 
4080 	skb_update_prio(skb);
4081 
4082 	qdisc_pkt_len_init(skb);
4083 #ifdef CONFIG_NET_CLS_ACT
4084 	skb->tc_at_ingress = 0;
4085 # ifdef CONFIG_NET_EGRESS
4086 	if (static_branch_unlikely(&egress_needed_key)) {
4087 		skb = sch_handle_egress(skb, &rc, dev);
4088 		if (!skb)
4089 			goto out;
4090 	}
4091 # endif
4092 #endif
4093 	/* If device/qdisc don't need skb->dst, release it right now while
4094 	 * its hot in this cpu cache.
4095 	 */
4096 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4097 		skb_dst_drop(skb);
4098 	else
4099 		skb_dst_force(skb);
4100 
4101 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4102 	q = rcu_dereference_bh(txq->qdisc);
4103 
4104 	trace_net_dev_queue(skb);
4105 	if (q->enqueue) {
4106 		rc = __dev_xmit_skb(skb, q, dev, txq);
4107 		goto out;
4108 	}
4109 
4110 	/* The device has no queue. Common case for software devices:
4111 	 * loopback, all the sorts of tunnels...
4112 
4113 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4114 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4115 	 * counters.)
4116 	 * However, it is possible, that they rely on protection
4117 	 * made by us here.
4118 
4119 	 * Check this and shot the lock. It is not prone from deadlocks.
4120 	 *Either shot noqueue qdisc, it is even simpler 8)
4121 	 */
4122 	if (dev->flags & IFF_UP) {
4123 		int cpu = smp_processor_id(); /* ok because BHs are off */
4124 
4125 		if (txq->xmit_lock_owner != cpu) {
4126 			if (dev_xmit_recursion())
4127 				goto recursion_alert;
4128 
4129 			skb = validate_xmit_skb(skb, dev, &again);
4130 			if (!skb)
4131 				goto out;
4132 
4133 			HARD_TX_LOCK(dev, txq, cpu);
4134 
4135 			if (!netif_xmit_stopped(txq)) {
4136 				dev_xmit_recursion_inc();
4137 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4138 				dev_xmit_recursion_dec();
4139 				if (dev_xmit_complete(rc)) {
4140 					HARD_TX_UNLOCK(dev, txq);
4141 					goto out;
4142 				}
4143 			}
4144 			HARD_TX_UNLOCK(dev, txq);
4145 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4146 					     dev->name);
4147 		} else {
4148 			/* Recursion is detected! It is possible,
4149 			 * unfortunately
4150 			 */
4151 recursion_alert:
4152 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4153 					     dev->name);
4154 		}
4155 	}
4156 
4157 	rc = -ENETDOWN;
4158 	rcu_read_unlock_bh();
4159 
4160 	atomic_long_inc(&dev->tx_dropped);
4161 	kfree_skb_list(skb);
4162 	return rc;
4163 out:
4164 	rcu_read_unlock_bh();
4165 	return rc;
4166 }
4167 
4168 int dev_queue_xmit(struct sk_buff *skb)
4169 {
4170 	return __dev_queue_xmit(skb, NULL);
4171 }
4172 EXPORT_SYMBOL(dev_queue_xmit);
4173 
4174 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4175 {
4176 	return __dev_queue_xmit(skb, sb_dev);
4177 }
4178 EXPORT_SYMBOL(dev_queue_xmit_accel);
4179 
4180 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4181 {
4182 	struct net_device *dev = skb->dev;
4183 	struct sk_buff *orig_skb = skb;
4184 	struct netdev_queue *txq;
4185 	int ret = NETDEV_TX_BUSY;
4186 	bool again = false;
4187 
4188 	if (unlikely(!netif_running(dev) ||
4189 		     !netif_carrier_ok(dev)))
4190 		goto drop;
4191 
4192 	skb = validate_xmit_skb_list(skb, dev, &again);
4193 	if (skb != orig_skb)
4194 		goto drop;
4195 
4196 	skb_set_queue_mapping(skb, queue_id);
4197 	txq = skb_get_tx_queue(dev, skb);
4198 
4199 	local_bh_disable();
4200 
4201 	dev_xmit_recursion_inc();
4202 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4203 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4204 		ret = netdev_start_xmit(skb, dev, txq, false);
4205 	HARD_TX_UNLOCK(dev, txq);
4206 	dev_xmit_recursion_dec();
4207 
4208 	local_bh_enable();
4209 
4210 	if (!dev_xmit_complete(ret))
4211 		kfree_skb(skb);
4212 
4213 	return ret;
4214 drop:
4215 	atomic_long_inc(&dev->tx_dropped);
4216 	kfree_skb_list(skb);
4217 	return NET_XMIT_DROP;
4218 }
4219 EXPORT_SYMBOL(dev_direct_xmit);
4220 
4221 /*************************************************************************
4222  *			Receiver routines
4223  *************************************************************************/
4224 
4225 int netdev_max_backlog __read_mostly = 1000;
4226 EXPORT_SYMBOL(netdev_max_backlog);
4227 
4228 int netdev_tstamp_prequeue __read_mostly = 1;
4229 int netdev_budget __read_mostly = 300;
4230 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4231 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4232 int weight_p __read_mostly = 64;           /* old backlog weight */
4233 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4234 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4235 int dev_rx_weight __read_mostly = 64;
4236 int dev_tx_weight __read_mostly = 64;
4237 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4238 int gro_normal_batch __read_mostly = 8;
4239 
4240 /* Called with irq disabled */
4241 static inline void ____napi_schedule(struct softnet_data *sd,
4242 				     struct napi_struct *napi)
4243 {
4244 	list_add_tail(&napi->poll_list, &sd->poll_list);
4245 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4246 }
4247 
4248 #ifdef CONFIG_RPS
4249 
4250 /* One global table that all flow-based protocols share. */
4251 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4252 EXPORT_SYMBOL(rps_sock_flow_table);
4253 u32 rps_cpu_mask __read_mostly;
4254 EXPORT_SYMBOL(rps_cpu_mask);
4255 
4256 struct static_key_false rps_needed __read_mostly;
4257 EXPORT_SYMBOL(rps_needed);
4258 struct static_key_false rfs_needed __read_mostly;
4259 EXPORT_SYMBOL(rfs_needed);
4260 
4261 static struct rps_dev_flow *
4262 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4263 	    struct rps_dev_flow *rflow, u16 next_cpu)
4264 {
4265 	if (next_cpu < nr_cpu_ids) {
4266 #ifdef CONFIG_RFS_ACCEL
4267 		struct netdev_rx_queue *rxqueue;
4268 		struct rps_dev_flow_table *flow_table;
4269 		struct rps_dev_flow *old_rflow;
4270 		u32 flow_id;
4271 		u16 rxq_index;
4272 		int rc;
4273 
4274 		/* Should we steer this flow to a different hardware queue? */
4275 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4276 		    !(dev->features & NETIF_F_NTUPLE))
4277 			goto out;
4278 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4279 		if (rxq_index == skb_get_rx_queue(skb))
4280 			goto out;
4281 
4282 		rxqueue = dev->_rx + rxq_index;
4283 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4284 		if (!flow_table)
4285 			goto out;
4286 		flow_id = skb_get_hash(skb) & flow_table->mask;
4287 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4288 							rxq_index, flow_id);
4289 		if (rc < 0)
4290 			goto out;
4291 		old_rflow = rflow;
4292 		rflow = &flow_table->flows[flow_id];
4293 		rflow->filter = rc;
4294 		if (old_rflow->filter == rflow->filter)
4295 			old_rflow->filter = RPS_NO_FILTER;
4296 	out:
4297 #endif
4298 		rflow->last_qtail =
4299 			per_cpu(softnet_data, next_cpu).input_queue_head;
4300 	}
4301 
4302 	rflow->cpu = next_cpu;
4303 	return rflow;
4304 }
4305 
4306 /*
4307  * get_rps_cpu is called from netif_receive_skb and returns the target
4308  * CPU from the RPS map of the receiving queue for a given skb.
4309  * rcu_read_lock must be held on entry.
4310  */
4311 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4312 		       struct rps_dev_flow **rflowp)
4313 {
4314 	const struct rps_sock_flow_table *sock_flow_table;
4315 	struct netdev_rx_queue *rxqueue = dev->_rx;
4316 	struct rps_dev_flow_table *flow_table;
4317 	struct rps_map *map;
4318 	int cpu = -1;
4319 	u32 tcpu;
4320 	u32 hash;
4321 
4322 	if (skb_rx_queue_recorded(skb)) {
4323 		u16 index = skb_get_rx_queue(skb);
4324 
4325 		if (unlikely(index >= dev->real_num_rx_queues)) {
4326 			WARN_ONCE(dev->real_num_rx_queues > 1,
4327 				  "%s received packet on queue %u, but number "
4328 				  "of RX queues is %u\n",
4329 				  dev->name, index, dev->real_num_rx_queues);
4330 			goto done;
4331 		}
4332 		rxqueue += index;
4333 	}
4334 
4335 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4336 
4337 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4338 	map = rcu_dereference(rxqueue->rps_map);
4339 	if (!flow_table && !map)
4340 		goto done;
4341 
4342 	skb_reset_network_header(skb);
4343 	hash = skb_get_hash(skb);
4344 	if (!hash)
4345 		goto done;
4346 
4347 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4348 	if (flow_table && sock_flow_table) {
4349 		struct rps_dev_flow *rflow;
4350 		u32 next_cpu;
4351 		u32 ident;
4352 
4353 		/* First check into global flow table if there is a match */
4354 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4355 		if ((ident ^ hash) & ~rps_cpu_mask)
4356 			goto try_rps;
4357 
4358 		next_cpu = ident & rps_cpu_mask;
4359 
4360 		/* OK, now we know there is a match,
4361 		 * we can look at the local (per receive queue) flow table
4362 		 */
4363 		rflow = &flow_table->flows[hash & flow_table->mask];
4364 		tcpu = rflow->cpu;
4365 
4366 		/*
4367 		 * If the desired CPU (where last recvmsg was done) is
4368 		 * different from current CPU (one in the rx-queue flow
4369 		 * table entry), switch if one of the following holds:
4370 		 *   - Current CPU is unset (>= nr_cpu_ids).
4371 		 *   - Current CPU is offline.
4372 		 *   - The current CPU's queue tail has advanced beyond the
4373 		 *     last packet that was enqueued using this table entry.
4374 		 *     This guarantees that all previous packets for the flow
4375 		 *     have been dequeued, thus preserving in order delivery.
4376 		 */
4377 		if (unlikely(tcpu != next_cpu) &&
4378 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4379 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4380 		      rflow->last_qtail)) >= 0)) {
4381 			tcpu = next_cpu;
4382 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4383 		}
4384 
4385 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4386 			*rflowp = rflow;
4387 			cpu = tcpu;
4388 			goto done;
4389 		}
4390 	}
4391 
4392 try_rps:
4393 
4394 	if (map) {
4395 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4396 		if (cpu_online(tcpu)) {
4397 			cpu = tcpu;
4398 			goto done;
4399 		}
4400 	}
4401 
4402 done:
4403 	return cpu;
4404 }
4405 
4406 #ifdef CONFIG_RFS_ACCEL
4407 
4408 /**
4409  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4410  * @dev: Device on which the filter was set
4411  * @rxq_index: RX queue index
4412  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4413  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4414  *
4415  * Drivers that implement ndo_rx_flow_steer() should periodically call
4416  * this function for each installed filter and remove the filters for
4417  * which it returns %true.
4418  */
4419 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4420 			 u32 flow_id, u16 filter_id)
4421 {
4422 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4423 	struct rps_dev_flow_table *flow_table;
4424 	struct rps_dev_flow *rflow;
4425 	bool expire = true;
4426 	unsigned int cpu;
4427 
4428 	rcu_read_lock();
4429 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4430 	if (flow_table && flow_id <= flow_table->mask) {
4431 		rflow = &flow_table->flows[flow_id];
4432 		cpu = READ_ONCE(rflow->cpu);
4433 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4434 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4435 			   rflow->last_qtail) <
4436 		     (int)(10 * flow_table->mask)))
4437 			expire = false;
4438 	}
4439 	rcu_read_unlock();
4440 	return expire;
4441 }
4442 EXPORT_SYMBOL(rps_may_expire_flow);
4443 
4444 #endif /* CONFIG_RFS_ACCEL */
4445 
4446 /* Called from hardirq (IPI) context */
4447 static void rps_trigger_softirq(void *data)
4448 {
4449 	struct softnet_data *sd = data;
4450 
4451 	____napi_schedule(sd, &sd->backlog);
4452 	sd->received_rps++;
4453 }
4454 
4455 #endif /* CONFIG_RPS */
4456 
4457 /*
4458  * Check if this softnet_data structure is another cpu one
4459  * If yes, queue it to our IPI list and return 1
4460  * If no, return 0
4461  */
4462 static int rps_ipi_queued(struct softnet_data *sd)
4463 {
4464 #ifdef CONFIG_RPS
4465 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4466 
4467 	if (sd != mysd) {
4468 		sd->rps_ipi_next = mysd->rps_ipi_list;
4469 		mysd->rps_ipi_list = sd;
4470 
4471 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4472 		return 1;
4473 	}
4474 #endif /* CONFIG_RPS */
4475 	return 0;
4476 }
4477 
4478 #ifdef CONFIG_NET_FLOW_LIMIT
4479 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4480 #endif
4481 
4482 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4483 {
4484 #ifdef CONFIG_NET_FLOW_LIMIT
4485 	struct sd_flow_limit *fl;
4486 	struct softnet_data *sd;
4487 	unsigned int old_flow, new_flow;
4488 
4489 	if (qlen < (netdev_max_backlog >> 1))
4490 		return false;
4491 
4492 	sd = this_cpu_ptr(&softnet_data);
4493 
4494 	rcu_read_lock();
4495 	fl = rcu_dereference(sd->flow_limit);
4496 	if (fl) {
4497 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4498 		old_flow = fl->history[fl->history_head];
4499 		fl->history[fl->history_head] = new_flow;
4500 
4501 		fl->history_head++;
4502 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4503 
4504 		if (likely(fl->buckets[old_flow]))
4505 			fl->buckets[old_flow]--;
4506 
4507 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4508 			fl->count++;
4509 			rcu_read_unlock();
4510 			return true;
4511 		}
4512 	}
4513 	rcu_read_unlock();
4514 #endif
4515 	return false;
4516 }
4517 
4518 /*
4519  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4520  * queue (may be a remote CPU queue).
4521  */
4522 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4523 			      unsigned int *qtail)
4524 {
4525 	struct softnet_data *sd;
4526 	unsigned long flags;
4527 	unsigned int qlen;
4528 
4529 	sd = &per_cpu(softnet_data, cpu);
4530 
4531 	local_irq_save(flags);
4532 
4533 	rps_lock(sd);
4534 	if (!netif_running(skb->dev))
4535 		goto drop;
4536 	qlen = skb_queue_len(&sd->input_pkt_queue);
4537 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4538 		if (qlen) {
4539 enqueue:
4540 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4541 			input_queue_tail_incr_save(sd, qtail);
4542 			rps_unlock(sd);
4543 			local_irq_restore(flags);
4544 			return NET_RX_SUCCESS;
4545 		}
4546 
4547 		/* Schedule NAPI for backlog device
4548 		 * We can use non atomic operation since we own the queue lock
4549 		 */
4550 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4551 			if (!rps_ipi_queued(sd))
4552 				____napi_schedule(sd, &sd->backlog);
4553 		}
4554 		goto enqueue;
4555 	}
4556 
4557 drop:
4558 	sd->dropped++;
4559 	rps_unlock(sd);
4560 
4561 	local_irq_restore(flags);
4562 
4563 	atomic_long_inc(&skb->dev->rx_dropped);
4564 	kfree_skb(skb);
4565 	return NET_RX_DROP;
4566 }
4567 
4568 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4569 {
4570 	struct net_device *dev = skb->dev;
4571 	struct netdev_rx_queue *rxqueue;
4572 
4573 	rxqueue = dev->_rx;
4574 
4575 	if (skb_rx_queue_recorded(skb)) {
4576 		u16 index = skb_get_rx_queue(skb);
4577 
4578 		if (unlikely(index >= dev->real_num_rx_queues)) {
4579 			WARN_ONCE(dev->real_num_rx_queues > 1,
4580 				  "%s received packet on queue %u, but number "
4581 				  "of RX queues is %u\n",
4582 				  dev->name, index, dev->real_num_rx_queues);
4583 
4584 			return rxqueue; /* Return first rxqueue */
4585 		}
4586 		rxqueue += index;
4587 	}
4588 	return rxqueue;
4589 }
4590 
4591 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4592 				     struct xdp_buff *xdp,
4593 				     struct bpf_prog *xdp_prog)
4594 {
4595 	struct netdev_rx_queue *rxqueue;
4596 	void *orig_data, *orig_data_end;
4597 	u32 metalen, act = XDP_DROP;
4598 	__be16 orig_eth_type;
4599 	struct ethhdr *eth;
4600 	bool orig_bcast;
4601 	int hlen, off;
4602 	u32 mac_len;
4603 
4604 	/* Reinjected packets coming from act_mirred or similar should
4605 	 * not get XDP generic processing.
4606 	 */
4607 	if (skb_is_redirected(skb))
4608 		return XDP_PASS;
4609 
4610 	/* XDP packets must be linear and must have sufficient headroom
4611 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4612 	 * native XDP provides, thus we need to do it here as well.
4613 	 */
4614 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4615 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4616 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4617 		int troom = skb->tail + skb->data_len - skb->end;
4618 
4619 		/* In case we have to go down the path and also linearize,
4620 		 * then lets do the pskb_expand_head() work just once here.
4621 		 */
4622 		if (pskb_expand_head(skb,
4623 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4624 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4625 			goto do_drop;
4626 		if (skb_linearize(skb))
4627 			goto do_drop;
4628 	}
4629 
4630 	/* The XDP program wants to see the packet starting at the MAC
4631 	 * header.
4632 	 */
4633 	mac_len = skb->data - skb_mac_header(skb);
4634 	hlen = skb_headlen(skb) + mac_len;
4635 	xdp->data = skb->data - mac_len;
4636 	xdp->data_meta = xdp->data;
4637 	xdp->data_end = xdp->data + hlen;
4638 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4639 
4640 	/* SKB "head" area always have tailroom for skb_shared_info */
4641 	xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4642 	xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4643 
4644 	orig_data_end = xdp->data_end;
4645 	orig_data = xdp->data;
4646 	eth = (struct ethhdr *)xdp->data;
4647 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4648 	orig_eth_type = eth->h_proto;
4649 
4650 	rxqueue = netif_get_rxqueue(skb);
4651 	xdp->rxq = &rxqueue->xdp_rxq;
4652 
4653 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4654 
4655 	/* check if bpf_xdp_adjust_head was used */
4656 	off = xdp->data - orig_data;
4657 	if (off) {
4658 		if (off > 0)
4659 			__skb_pull(skb, off);
4660 		else if (off < 0)
4661 			__skb_push(skb, -off);
4662 
4663 		skb->mac_header += off;
4664 		skb_reset_network_header(skb);
4665 	}
4666 
4667 	/* check if bpf_xdp_adjust_tail was used */
4668 	off = xdp->data_end - orig_data_end;
4669 	if (off != 0) {
4670 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4671 		skb->len += off; /* positive on grow, negative on shrink */
4672 	}
4673 
4674 	/* check if XDP changed eth hdr such SKB needs update */
4675 	eth = (struct ethhdr *)xdp->data;
4676 	if ((orig_eth_type != eth->h_proto) ||
4677 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4678 		__skb_push(skb, ETH_HLEN);
4679 		skb->protocol = eth_type_trans(skb, skb->dev);
4680 	}
4681 
4682 	switch (act) {
4683 	case XDP_REDIRECT:
4684 	case XDP_TX:
4685 		__skb_push(skb, mac_len);
4686 		break;
4687 	case XDP_PASS:
4688 		metalen = xdp->data - xdp->data_meta;
4689 		if (metalen)
4690 			skb_metadata_set(skb, metalen);
4691 		break;
4692 	default:
4693 		bpf_warn_invalid_xdp_action(act);
4694 		/* fall through */
4695 	case XDP_ABORTED:
4696 		trace_xdp_exception(skb->dev, xdp_prog, act);
4697 		/* fall through */
4698 	case XDP_DROP:
4699 	do_drop:
4700 		kfree_skb(skb);
4701 		break;
4702 	}
4703 
4704 	return act;
4705 }
4706 
4707 /* When doing generic XDP we have to bypass the qdisc layer and the
4708  * network taps in order to match in-driver-XDP behavior.
4709  */
4710 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4711 {
4712 	struct net_device *dev = skb->dev;
4713 	struct netdev_queue *txq;
4714 	bool free_skb = true;
4715 	int cpu, rc;
4716 
4717 	txq = netdev_core_pick_tx(dev, skb, NULL);
4718 	cpu = smp_processor_id();
4719 	HARD_TX_LOCK(dev, txq, cpu);
4720 	if (!netif_xmit_stopped(txq)) {
4721 		rc = netdev_start_xmit(skb, dev, txq, 0);
4722 		if (dev_xmit_complete(rc))
4723 			free_skb = false;
4724 	}
4725 	HARD_TX_UNLOCK(dev, txq);
4726 	if (free_skb) {
4727 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4728 		kfree_skb(skb);
4729 	}
4730 }
4731 
4732 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4733 
4734 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4735 {
4736 	if (xdp_prog) {
4737 		struct xdp_buff xdp;
4738 		u32 act;
4739 		int err;
4740 
4741 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4742 		if (act != XDP_PASS) {
4743 			switch (act) {
4744 			case XDP_REDIRECT:
4745 				err = xdp_do_generic_redirect(skb->dev, skb,
4746 							      &xdp, xdp_prog);
4747 				if (err)
4748 					goto out_redir;
4749 				break;
4750 			case XDP_TX:
4751 				generic_xdp_tx(skb, xdp_prog);
4752 				break;
4753 			}
4754 			return XDP_DROP;
4755 		}
4756 	}
4757 	return XDP_PASS;
4758 out_redir:
4759 	kfree_skb(skb);
4760 	return XDP_DROP;
4761 }
4762 EXPORT_SYMBOL_GPL(do_xdp_generic);
4763 
4764 static int netif_rx_internal(struct sk_buff *skb)
4765 {
4766 	int ret;
4767 
4768 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4769 
4770 	trace_netif_rx(skb);
4771 
4772 #ifdef CONFIG_RPS
4773 	if (static_branch_unlikely(&rps_needed)) {
4774 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4775 		int cpu;
4776 
4777 		preempt_disable();
4778 		rcu_read_lock();
4779 
4780 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4781 		if (cpu < 0)
4782 			cpu = smp_processor_id();
4783 
4784 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4785 
4786 		rcu_read_unlock();
4787 		preempt_enable();
4788 	} else
4789 #endif
4790 	{
4791 		unsigned int qtail;
4792 
4793 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4794 		put_cpu();
4795 	}
4796 	return ret;
4797 }
4798 
4799 /**
4800  *	netif_rx	-	post buffer to the network code
4801  *	@skb: buffer to post
4802  *
4803  *	This function receives a packet from a device driver and queues it for
4804  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4805  *	may be dropped during processing for congestion control or by the
4806  *	protocol layers.
4807  *
4808  *	return values:
4809  *	NET_RX_SUCCESS	(no congestion)
4810  *	NET_RX_DROP     (packet was dropped)
4811  *
4812  */
4813 
4814 int netif_rx(struct sk_buff *skb)
4815 {
4816 	int ret;
4817 
4818 	trace_netif_rx_entry(skb);
4819 
4820 	ret = netif_rx_internal(skb);
4821 	trace_netif_rx_exit(ret);
4822 
4823 	return ret;
4824 }
4825 EXPORT_SYMBOL(netif_rx);
4826 
4827 int netif_rx_ni(struct sk_buff *skb)
4828 {
4829 	int err;
4830 
4831 	trace_netif_rx_ni_entry(skb);
4832 
4833 	preempt_disable();
4834 	err = netif_rx_internal(skb);
4835 	if (local_softirq_pending())
4836 		do_softirq();
4837 	preempt_enable();
4838 	trace_netif_rx_ni_exit(err);
4839 
4840 	return err;
4841 }
4842 EXPORT_SYMBOL(netif_rx_ni);
4843 
4844 static __latent_entropy void net_tx_action(struct softirq_action *h)
4845 {
4846 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4847 
4848 	if (sd->completion_queue) {
4849 		struct sk_buff *clist;
4850 
4851 		local_irq_disable();
4852 		clist = sd->completion_queue;
4853 		sd->completion_queue = NULL;
4854 		local_irq_enable();
4855 
4856 		while (clist) {
4857 			struct sk_buff *skb = clist;
4858 
4859 			clist = clist->next;
4860 
4861 			WARN_ON(refcount_read(&skb->users));
4862 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4863 				trace_consume_skb(skb);
4864 			else
4865 				trace_kfree_skb(skb, net_tx_action);
4866 
4867 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4868 				__kfree_skb(skb);
4869 			else
4870 				__kfree_skb_defer(skb);
4871 		}
4872 
4873 		__kfree_skb_flush();
4874 	}
4875 
4876 	if (sd->output_queue) {
4877 		struct Qdisc *head;
4878 
4879 		local_irq_disable();
4880 		head = sd->output_queue;
4881 		sd->output_queue = NULL;
4882 		sd->output_queue_tailp = &sd->output_queue;
4883 		local_irq_enable();
4884 
4885 		while (head) {
4886 			struct Qdisc *q = head;
4887 			spinlock_t *root_lock = NULL;
4888 
4889 			head = head->next_sched;
4890 
4891 			if (!(q->flags & TCQ_F_NOLOCK)) {
4892 				root_lock = qdisc_lock(q);
4893 				spin_lock(root_lock);
4894 			}
4895 			/* We need to make sure head->next_sched is read
4896 			 * before clearing __QDISC_STATE_SCHED
4897 			 */
4898 			smp_mb__before_atomic();
4899 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4900 			qdisc_run(q);
4901 			if (root_lock)
4902 				spin_unlock(root_lock);
4903 		}
4904 	}
4905 
4906 	xfrm_dev_backlog(sd);
4907 }
4908 
4909 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4910 /* This hook is defined here for ATM LANE */
4911 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4912 			     unsigned char *addr) __read_mostly;
4913 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4914 #endif
4915 
4916 static inline struct sk_buff *
4917 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4918 		   struct net_device *orig_dev)
4919 {
4920 #ifdef CONFIG_NET_CLS_ACT
4921 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4922 	struct tcf_result cl_res;
4923 
4924 	/* If there's at least one ingress present somewhere (so
4925 	 * we get here via enabled static key), remaining devices
4926 	 * that are not configured with an ingress qdisc will bail
4927 	 * out here.
4928 	 */
4929 	if (!miniq)
4930 		return skb;
4931 
4932 	if (*pt_prev) {
4933 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4934 		*pt_prev = NULL;
4935 	}
4936 
4937 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4938 	skb->tc_at_ingress = 1;
4939 	mini_qdisc_bstats_cpu_update(miniq, skb);
4940 
4941 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4942 				     &cl_res, false)) {
4943 	case TC_ACT_OK:
4944 	case TC_ACT_RECLASSIFY:
4945 		skb->tc_index = TC_H_MIN(cl_res.classid);
4946 		break;
4947 	case TC_ACT_SHOT:
4948 		mini_qdisc_qstats_cpu_drop(miniq);
4949 		kfree_skb(skb);
4950 		return NULL;
4951 	case TC_ACT_STOLEN:
4952 	case TC_ACT_QUEUED:
4953 	case TC_ACT_TRAP:
4954 		consume_skb(skb);
4955 		return NULL;
4956 	case TC_ACT_REDIRECT:
4957 		/* skb_mac_header check was done by cls/act_bpf, so
4958 		 * we can safely push the L2 header back before
4959 		 * redirecting to another netdev
4960 		 */
4961 		__skb_push(skb, skb->mac_len);
4962 		skb_do_redirect(skb);
4963 		return NULL;
4964 	case TC_ACT_CONSUMED:
4965 		return NULL;
4966 	default:
4967 		break;
4968 	}
4969 #endif /* CONFIG_NET_CLS_ACT */
4970 	return skb;
4971 }
4972 
4973 /**
4974  *	netdev_is_rx_handler_busy - check if receive handler is registered
4975  *	@dev: device to check
4976  *
4977  *	Check if a receive handler is already registered for a given device.
4978  *	Return true if there one.
4979  *
4980  *	The caller must hold the rtnl_mutex.
4981  */
4982 bool netdev_is_rx_handler_busy(struct net_device *dev)
4983 {
4984 	ASSERT_RTNL();
4985 	return dev && rtnl_dereference(dev->rx_handler);
4986 }
4987 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4988 
4989 /**
4990  *	netdev_rx_handler_register - register receive handler
4991  *	@dev: device to register a handler for
4992  *	@rx_handler: receive handler to register
4993  *	@rx_handler_data: data pointer that is used by rx handler
4994  *
4995  *	Register a receive handler for a device. This handler will then be
4996  *	called from __netif_receive_skb. A negative errno code is returned
4997  *	on a failure.
4998  *
4999  *	The caller must hold the rtnl_mutex.
5000  *
5001  *	For a general description of rx_handler, see enum rx_handler_result.
5002  */
5003 int netdev_rx_handler_register(struct net_device *dev,
5004 			       rx_handler_func_t *rx_handler,
5005 			       void *rx_handler_data)
5006 {
5007 	if (netdev_is_rx_handler_busy(dev))
5008 		return -EBUSY;
5009 
5010 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5011 		return -EINVAL;
5012 
5013 	/* Note: rx_handler_data must be set before rx_handler */
5014 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5015 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5016 
5017 	return 0;
5018 }
5019 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5020 
5021 /**
5022  *	netdev_rx_handler_unregister - unregister receive handler
5023  *	@dev: device to unregister a handler from
5024  *
5025  *	Unregister a receive handler from a device.
5026  *
5027  *	The caller must hold the rtnl_mutex.
5028  */
5029 void netdev_rx_handler_unregister(struct net_device *dev)
5030 {
5031 
5032 	ASSERT_RTNL();
5033 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5034 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5035 	 * section has a guarantee to see a non NULL rx_handler_data
5036 	 * as well.
5037 	 */
5038 	synchronize_net();
5039 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5040 }
5041 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5042 
5043 /*
5044  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5045  * the special handling of PFMEMALLOC skbs.
5046  */
5047 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5048 {
5049 	switch (skb->protocol) {
5050 	case htons(ETH_P_ARP):
5051 	case htons(ETH_P_IP):
5052 	case htons(ETH_P_IPV6):
5053 	case htons(ETH_P_8021Q):
5054 	case htons(ETH_P_8021AD):
5055 		return true;
5056 	default:
5057 		return false;
5058 	}
5059 }
5060 
5061 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5062 			     int *ret, struct net_device *orig_dev)
5063 {
5064 	if (nf_hook_ingress_active(skb)) {
5065 		int ingress_retval;
5066 
5067 		if (*pt_prev) {
5068 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5069 			*pt_prev = NULL;
5070 		}
5071 
5072 		rcu_read_lock();
5073 		ingress_retval = nf_hook_ingress(skb);
5074 		rcu_read_unlock();
5075 		return ingress_retval;
5076 	}
5077 	return 0;
5078 }
5079 
5080 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5081 				    struct packet_type **ppt_prev)
5082 {
5083 	struct packet_type *ptype, *pt_prev;
5084 	rx_handler_func_t *rx_handler;
5085 	struct sk_buff *skb = *pskb;
5086 	struct net_device *orig_dev;
5087 	bool deliver_exact = false;
5088 	int ret = NET_RX_DROP;
5089 	__be16 type;
5090 
5091 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5092 
5093 	trace_netif_receive_skb(skb);
5094 
5095 	orig_dev = skb->dev;
5096 
5097 	skb_reset_network_header(skb);
5098 	if (!skb_transport_header_was_set(skb))
5099 		skb_reset_transport_header(skb);
5100 	skb_reset_mac_len(skb);
5101 
5102 	pt_prev = NULL;
5103 
5104 another_round:
5105 	skb->skb_iif = skb->dev->ifindex;
5106 
5107 	__this_cpu_inc(softnet_data.processed);
5108 
5109 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5110 		int ret2;
5111 
5112 		preempt_disable();
5113 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5114 		preempt_enable();
5115 
5116 		if (ret2 != XDP_PASS) {
5117 			ret = NET_RX_DROP;
5118 			goto out;
5119 		}
5120 		skb_reset_mac_len(skb);
5121 	}
5122 
5123 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5124 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5125 		skb = skb_vlan_untag(skb);
5126 		if (unlikely(!skb))
5127 			goto out;
5128 	}
5129 
5130 	if (skb_skip_tc_classify(skb))
5131 		goto skip_classify;
5132 
5133 	if (pfmemalloc)
5134 		goto skip_taps;
5135 
5136 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5137 		if (pt_prev)
5138 			ret = deliver_skb(skb, pt_prev, orig_dev);
5139 		pt_prev = ptype;
5140 	}
5141 
5142 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5143 		if (pt_prev)
5144 			ret = deliver_skb(skb, pt_prev, orig_dev);
5145 		pt_prev = ptype;
5146 	}
5147 
5148 skip_taps:
5149 #ifdef CONFIG_NET_INGRESS
5150 	if (static_branch_unlikely(&ingress_needed_key)) {
5151 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5152 		if (!skb)
5153 			goto out;
5154 
5155 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5156 			goto out;
5157 	}
5158 #endif
5159 	skb_reset_redirect(skb);
5160 skip_classify:
5161 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5162 		goto drop;
5163 
5164 	if (skb_vlan_tag_present(skb)) {
5165 		if (pt_prev) {
5166 			ret = deliver_skb(skb, pt_prev, orig_dev);
5167 			pt_prev = NULL;
5168 		}
5169 		if (vlan_do_receive(&skb))
5170 			goto another_round;
5171 		else if (unlikely(!skb))
5172 			goto out;
5173 	}
5174 
5175 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5176 	if (rx_handler) {
5177 		if (pt_prev) {
5178 			ret = deliver_skb(skb, pt_prev, orig_dev);
5179 			pt_prev = NULL;
5180 		}
5181 		switch (rx_handler(&skb)) {
5182 		case RX_HANDLER_CONSUMED:
5183 			ret = NET_RX_SUCCESS;
5184 			goto out;
5185 		case RX_HANDLER_ANOTHER:
5186 			goto another_round;
5187 		case RX_HANDLER_EXACT:
5188 			deliver_exact = true;
5189 		case RX_HANDLER_PASS:
5190 			break;
5191 		default:
5192 			BUG();
5193 		}
5194 	}
5195 
5196 	if (unlikely(skb_vlan_tag_present(skb))) {
5197 check_vlan_id:
5198 		if (skb_vlan_tag_get_id(skb)) {
5199 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5200 			 * find vlan device.
5201 			 */
5202 			skb->pkt_type = PACKET_OTHERHOST;
5203 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5204 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5205 			/* Outer header is 802.1P with vlan 0, inner header is
5206 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5207 			 * not find vlan dev for vlan id 0.
5208 			 */
5209 			__vlan_hwaccel_clear_tag(skb);
5210 			skb = skb_vlan_untag(skb);
5211 			if (unlikely(!skb))
5212 				goto out;
5213 			if (vlan_do_receive(&skb))
5214 				/* After stripping off 802.1P header with vlan 0
5215 				 * vlan dev is found for inner header.
5216 				 */
5217 				goto another_round;
5218 			else if (unlikely(!skb))
5219 				goto out;
5220 			else
5221 				/* We have stripped outer 802.1P vlan 0 header.
5222 				 * But could not find vlan dev.
5223 				 * check again for vlan id to set OTHERHOST.
5224 				 */
5225 				goto check_vlan_id;
5226 		}
5227 		/* Note: we might in the future use prio bits
5228 		 * and set skb->priority like in vlan_do_receive()
5229 		 * For the time being, just ignore Priority Code Point
5230 		 */
5231 		__vlan_hwaccel_clear_tag(skb);
5232 	}
5233 
5234 	type = skb->protocol;
5235 
5236 	/* deliver only exact match when indicated */
5237 	if (likely(!deliver_exact)) {
5238 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5239 				       &ptype_base[ntohs(type) &
5240 						   PTYPE_HASH_MASK]);
5241 	}
5242 
5243 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5244 			       &orig_dev->ptype_specific);
5245 
5246 	if (unlikely(skb->dev != orig_dev)) {
5247 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5248 				       &skb->dev->ptype_specific);
5249 	}
5250 
5251 	if (pt_prev) {
5252 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5253 			goto drop;
5254 		*ppt_prev = pt_prev;
5255 	} else {
5256 drop:
5257 		if (!deliver_exact)
5258 			atomic_long_inc(&skb->dev->rx_dropped);
5259 		else
5260 			atomic_long_inc(&skb->dev->rx_nohandler);
5261 		kfree_skb(skb);
5262 		/* Jamal, now you will not able to escape explaining
5263 		 * me how you were going to use this. :-)
5264 		 */
5265 		ret = NET_RX_DROP;
5266 	}
5267 
5268 out:
5269 	/* The invariant here is that if *ppt_prev is not NULL
5270 	 * then skb should also be non-NULL.
5271 	 *
5272 	 * Apparently *ppt_prev assignment above holds this invariant due to
5273 	 * skb dereferencing near it.
5274 	 */
5275 	*pskb = skb;
5276 	return ret;
5277 }
5278 
5279 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5280 {
5281 	struct net_device *orig_dev = skb->dev;
5282 	struct packet_type *pt_prev = NULL;
5283 	int ret;
5284 
5285 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5286 	if (pt_prev)
5287 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5288 					 skb->dev, pt_prev, orig_dev);
5289 	return ret;
5290 }
5291 
5292 /**
5293  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5294  *	@skb: buffer to process
5295  *
5296  *	More direct receive version of netif_receive_skb().  It should
5297  *	only be used by callers that have a need to skip RPS and Generic XDP.
5298  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5299  *
5300  *	This function may only be called from softirq context and interrupts
5301  *	should be enabled.
5302  *
5303  *	Return values (usually ignored):
5304  *	NET_RX_SUCCESS: no congestion
5305  *	NET_RX_DROP: packet was dropped
5306  */
5307 int netif_receive_skb_core(struct sk_buff *skb)
5308 {
5309 	int ret;
5310 
5311 	rcu_read_lock();
5312 	ret = __netif_receive_skb_one_core(skb, false);
5313 	rcu_read_unlock();
5314 
5315 	return ret;
5316 }
5317 EXPORT_SYMBOL(netif_receive_skb_core);
5318 
5319 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5320 						  struct packet_type *pt_prev,
5321 						  struct net_device *orig_dev)
5322 {
5323 	struct sk_buff *skb, *next;
5324 
5325 	if (!pt_prev)
5326 		return;
5327 	if (list_empty(head))
5328 		return;
5329 	if (pt_prev->list_func != NULL)
5330 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5331 				   ip_list_rcv, head, pt_prev, orig_dev);
5332 	else
5333 		list_for_each_entry_safe(skb, next, head, list) {
5334 			skb_list_del_init(skb);
5335 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5336 		}
5337 }
5338 
5339 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5340 {
5341 	/* Fast-path assumptions:
5342 	 * - There is no RX handler.
5343 	 * - Only one packet_type matches.
5344 	 * If either of these fails, we will end up doing some per-packet
5345 	 * processing in-line, then handling the 'last ptype' for the whole
5346 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5347 	 * because the 'last ptype' must be constant across the sublist, and all
5348 	 * other ptypes are handled per-packet.
5349 	 */
5350 	/* Current (common) ptype of sublist */
5351 	struct packet_type *pt_curr = NULL;
5352 	/* Current (common) orig_dev of sublist */
5353 	struct net_device *od_curr = NULL;
5354 	struct list_head sublist;
5355 	struct sk_buff *skb, *next;
5356 
5357 	INIT_LIST_HEAD(&sublist);
5358 	list_for_each_entry_safe(skb, next, head, list) {
5359 		struct net_device *orig_dev = skb->dev;
5360 		struct packet_type *pt_prev = NULL;
5361 
5362 		skb_list_del_init(skb);
5363 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5364 		if (!pt_prev)
5365 			continue;
5366 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5367 			/* dispatch old sublist */
5368 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5369 			/* start new sublist */
5370 			INIT_LIST_HEAD(&sublist);
5371 			pt_curr = pt_prev;
5372 			od_curr = orig_dev;
5373 		}
5374 		list_add_tail(&skb->list, &sublist);
5375 	}
5376 
5377 	/* dispatch final sublist */
5378 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5379 }
5380 
5381 static int __netif_receive_skb(struct sk_buff *skb)
5382 {
5383 	int ret;
5384 
5385 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5386 		unsigned int noreclaim_flag;
5387 
5388 		/*
5389 		 * PFMEMALLOC skbs are special, they should
5390 		 * - be delivered to SOCK_MEMALLOC sockets only
5391 		 * - stay away from userspace
5392 		 * - have bounded memory usage
5393 		 *
5394 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5395 		 * context down to all allocation sites.
5396 		 */
5397 		noreclaim_flag = memalloc_noreclaim_save();
5398 		ret = __netif_receive_skb_one_core(skb, true);
5399 		memalloc_noreclaim_restore(noreclaim_flag);
5400 	} else
5401 		ret = __netif_receive_skb_one_core(skb, false);
5402 
5403 	return ret;
5404 }
5405 
5406 static void __netif_receive_skb_list(struct list_head *head)
5407 {
5408 	unsigned long noreclaim_flag = 0;
5409 	struct sk_buff *skb, *next;
5410 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5411 
5412 	list_for_each_entry_safe(skb, next, head, list) {
5413 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5414 			struct list_head sublist;
5415 
5416 			/* Handle the previous sublist */
5417 			list_cut_before(&sublist, head, &skb->list);
5418 			if (!list_empty(&sublist))
5419 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5420 			pfmemalloc = !pfmemalloc;
5421 			/* See comments in __netif_receive_skb */
5422 			if (pfmemalloc)
5423 				noreclaim_flag = memalloc_noreclaim_save();
5424 			else
5425 				memalloc_noreclaim_restore(noreclaim_flag);
5426 		}
5427 	}
5428 	/* Handle the remaining sublist */
5429 	if (!list_empty(head))
5430 		__netif_receive_skb_list_core(head, pfmemalloc);
5431 	/* Restore pflags */
5432 	if (pfmemalloc)
5433 		memalloc_noreclaim_restore(noreclaim_flag);
5434 }
5435 
5436 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5437 {
5438 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5439 	struct bpf_prog *new = xdp->prog;
5440 	int ret = 0;
5441 
5442 	if (new) {
5443 		u32 i;
5444 
5445 		/* generic XDP does not work with DEVMAPs that can
5446 		 * have a bpf_prog installed on an entry
5447 		 */
5448 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5449 			if (dev_map_can_have_prog(new->aux->used_maps[i]))
5450 				return -EINVAL;
5451 			if (cpu_map_prog_allowed(new->aux->used_maps[i]))
5452 				return -EINVAL;
5453 		}
5454 	}
5455 
5456 	switch (xdp->command) {
5457 	case XDP_SETUP_PROG:
5458 		rcu_assign_pointer(dev->xdp_prog, new);
5459 		if (old)
5460 			bpf_prog_put(old);
5461 
5462 		if (old && !new) {
5463 			static_branch_dec(&generic_xdp_needed_key);
5464 		} else if (new && !old) {
5465 			static_branch_inc(&generic_xdp_needed_key);
5466 			dev_disable_lro(dev);
5467 			dev_disable_gro_hw(dev);
5468 		}
5469 		break;
5470 
5471 	case XDP_QUERY_PROG:
5472 		xdp->prog_id = old ? old->aux->id : 0;
5473 		break;
5474 
5475 	default:
5476 		ret = -EINVAL;
5477 		break;
5478 	}
5479 
5480 	return ret;
5481 }
5482 
5483 static int netif_receive_skb_internal(struct sk_buff *skb)
5484 {
5485 	int ret;
5486 
5487 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5488 
5489 	if (skb_defer_rx_timestamp(skb))
5490 		return NET_RX_SUCCESS;
5491 
5492 	rcu_read_lock();
5493 #ifdef CONFIG_RPS
5494 	if (static_branch_unlikely(&rps_needed)) {
5495 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5496 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5497 
5498 		if (cpu >= 0) {
5499 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5500 			rcu_read_unlock();
5501 			return ret;
5502 		}
5503 	}
5504 #endif
5505 	ret = __netif_receive_skb(skb);
5506 	rcu_read_unlock();
5507 	return ret;
5508 }
5509 
5510 static void netif_receive_skb_list_internal(struct list_head *head)
5511 {
5512 	struct sk_buff *skb, *next;
5513 	struct list_head sublist;
5514 
5515 	INIT_LIST_HEAD(&sublist);
5516 	list_for_each_entry_safe(skb, next, head, list) {
5517 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5518 		skb_list_del_init(skb);
5519 		if (!skb_defer_rx_timestamp(skb))
5520 			list_add_tail(&skb->list, &sublist);
5521 	}
5522 	list_splice_init(&sublist, head);
5523 
5524 	rcu_read_lock();
5525 #ifdef CONFIG_RPS
5526 	if (static_branch_unlikely(&rps_needed)) {
5527 		list_for_each_entry_safe(skb, next, head, list) {
5528 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5529 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5530 
5531 			if (cpu >= 0) {
5532 				/* Will be handled, remove from list */
5533 				skb_list_del_init(skb);
5534 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5535 			}
5536 		}
5537 	}
5538 #endif
5539 	__netif_receive_skb_list(head);
5540 	rcu_read_unlock();
5541 }
5542 
5543 /**
5544  *	netif_receive_skb - process receive buffer from network
5545  *	@skb: buffer to process
5546  *
5547  *	netif_receive_skb() is the main receive data processing function.
5548  *	It always succeeds. The buffer may be dropped during processing
5549  *	for congestion control or by the protocol layers.
5550  *
5551  *	This function may only be called from softirq context and interrupts
5552  *	should be enabled.
5553  *
5554  *	Return values (usually ignored):
5555  *	NET_RX_SUCCESS: no congestion
5556  *	NET_RX_DROP: packet was dropped
5557  */
5558 int netif_receive_skb(struct sk_buff *skb)
5559 {
5560 	int ret;
5561 
5562 	trace_netif_receive_skb_entry(skb);
5563 
5564 	ret = netif_receive_skb_internal(skb);
5565 	trace_netif_receive_skb_exit(ret);
5566 
5567 	return ret;
5568 }
5569 EXPORT_SYMBOL(netif_receive_skb);
5570 
5571 /**
5572  *	netif_receive_skb_list - process many receive buffers from network
5573  *	@head: list of skbs to process.
5574  *
5575  *	Since return value of netif_receive_skb() is normally ignored, and
5576  *	wouldn't be meaningful for a list, this function returns void.
5577  *
5578  *	This function may only be called from softirq context and interrupts
5579  *	should be enabled.
5580  */
5581 void netif_receive_skb_list(struct list_head *head)
5582 {
5583 	struct sk_buff *skb;
5584 
5585 	if (list_empty(head))
5586 		return;
5587 	if (trace_netif_receive_skb_list_entry_enabled()) {
5588 		list_for_each_entry(skb, head, list)
5589 			trace_netif_receive_skb_list_entry(skb);
5590 	}
5591 	netif_receive_skb_list_internal(head);
5592 	trace_netif_receive_skb_list_exit(0);
5593 }
5594 EXPORT_SYMBOL(netif_receive_skb_list);
5595 
5596 static DEFINE_PER_CPU(struct work_struct, flush_works);
5597 
5598 /* Network device is going away, flush any packets still pending */
5599 static void flush_backlog(struct work_struct *work)
5600 {
5601 	struct sk_buff *skb, *tmp;
5602 	struct softnet_data *sd;
5603 
5604 	local_bh_disable();
5605 	sd = this_cpu_ptr(&softnet_data);
5606 
5607 	local_irq_disable();
5608 	rps_lock(sd);
5609 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5610 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5611 			__skb_unlink(skb, &sd->input_pkt_queue);
5612 			dev_kfree_skb_irq(skb);
5613 			input_queue_head_incr(sd);
5614 		}
5615 	}
5616 	rps_unlock(sd);
5617 	local_irq_enable();
5618 
5619 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5620 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5621 			__skb_unlink(skb, &sd->process_queue);
5622 			kfree_skb(skb);
5623 			input_queue_head_incr(sd);
5624 		}
5625 	}
5626 	local_bh_enable();
5627 }
5628 
5629 static void flush_all_backlogs(void)
5630 {
5631 	unsigned int cpu;
5632 
5633 	get_online_cpus();
5634 
5635 	for_each_online_cpu(cpu)
5636 		queue_work_on(cpu, system_highpri_wq,
5637 			      per_cpu_ptr(&flush_works, cpu));
5638 
5639 	for_each_online_cpu(cpu)
5640 		flush_work(per_cpu_ptr(&flush_works, cpu));
5641 
5642 	put_online_cpus();
5643 }
5644 
5645 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5646 static void gro_normal_list(struct napi_struct *napi)
5647 {
5648 	if (!napi->rx_count)
5649 		return;
5650 	netif_receive_skb_list_internal(&napi->rx_list);
5651 	INIT_LIST_HEAD(&napi->rx_list);
5652 	napi->rx_count = 0;
5653 }
5654 
5655 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5656  * pass the whole batch up to the stack.
5657  */
5658 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5659 {
5660 	list_add_tail(&skb->list, &napi->rx_list);
5661 	if (++napi->rx_count >= gro_normal_batch)
5662 		gro_normal_list(napi);
5663 }
5664 
5665 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5666 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5667 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5668 {
5669 	struct packet_offload *ptype;
5670 	__be16 type = skb->protocol;
5671 	struct list_head *head = &offload_base;
5672 	int err = -ENOENT;
5673 
5674 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5675 
5676 	if (NAPI_GRO_CB(skb)->count == 1) {
5677 		skb_shinfo(skb)->gso_size = 0;
5678 		goto out;
5679 	}
5680 
5681 	rcu_read_lock();
5682 	list_for_each_entry_rcu(ptype, head, list) {
5683 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5684 			continue;
5685 
5686 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5687 					 ipv6_gro_complete, inet_gro_complete,
5688 					 skb, 0);
5689 		break;
5690 	}
5691 	rcu_read_unlock();
5692 
5693 	if (err) {
5694 		WARN_ON(&ptype->list == head);
5695 		kfree_skb(skb);
5696 		return NET_RX_SUCCESS;
5697 	}
5698 
5699 out:
5700 	gro_normal_one(napi, skb);
5701 	return NET_RX_SUCCESS;
5702 }
5703 
5704 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5705 				   bool flush_old)
5706 {
5707 	struct list_head *head = &napi->gro_hash[index].list;
5708 	struct sk_buff *skb, *p;
5709 
5710 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5711 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5712 			return;
5713 		skb_list_del_init(skb);
5714 		napi_gro_complete(napi, skb);
5715 		napi->gro_hash[index].count--;
5716 	}
5717 
5718 	if (!napi->gro_hash[index].count)
5719 		__clear_bit(index, &napi->gro_bitmask);
5720 }
5721 
5722 /* napi->gro_hash[].list contains packets ordered by age.
5723  * youngest packets at the head of it.
5724  * Complete skbs in reverse order to reduce latencies.
5725  */
5726 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5727 {
5728 	unsigned long bitmask = napi->gro_bitmask;
5729 	unsigned int i, base = ~0U;
5730 
5731 	while ((i = ffs(bitmask)) != 0) {
5732 		bitmask >>= i;
5733 		base += i;
5734 		__napi_gro_flush_chain(napi, base, flush_old);
5735 	}
5736 }
5737 EXPORT_SYMBOL(napi_gro_flush);
5738 
5739 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5740 					  struct sk_buff *skb)
5741 {
5742 	unsigned int maclen = skb->dev->hard_header_len;
5743 	u32 hash = skb_get_hash_raw(skb);
5744 	struct list_head *head;
5745 	struct sk_buff *p;
5746 
5747 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5748 	list_for_each_entry(p, head, list) {
5749 		unsigned long diffs;
5750 
5751 		NAPI_GRO_CB(p)->flush = 0;
5752 
5753 		if (hash != skb_get_hash_raw(p)) {
5754 			NAPI_GRO_CB(p)->same_flow = 0;
5755 			continue;
5756 		}
5757 
5758 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5759 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5760 		if (skb_vlan_tag_present(p))
5761 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5762 		diffs |= skb_metadata_dst_cmp(p, skb);
5763 		diffs |= skb_metadata_differs(p, skb);
5764 		if (maclen == ETH_HLEN)
5765 			diffs |= compare_ether_header(skb_mac_header(p),
5766 						      skb_mac_header(skb));
5767 		else if (!diffs)
5768 			diffs = memcmp(skb_mac_header(p),
5769 				       skb_mac_header(skb),
5770 				       maclen);
5771 		NAPI_GRO_CB(p)->same_flow = !diffs;
5772 	}
5773 
5774 	return head;
5775 }
5776 
5777 static void skb_gro_reset_offset(struct sk_buff *skb)
5778 {
5779 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5780 	const skb_frag_t *frag0 = &pinfo->frags[0];
5781 
5782 	NAPI_GRO_CB(skb)->data_offset = 0;
5783 	NAPI_GRO_CB(skb)->frag0 = NULL;
5784 	NAPI_GRO_CB(skb)->frag0_len = 0;
5785 
5786 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5787 	    !PageHighMem(skb_frag_page(frag0))) {
5788 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5789 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5790 						    skb_frag_size(frag0),
5791 						    skb->end - skb->tail);
5792 	}
5793 }
5794 
5795 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5796 {
5797 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5798 
5799 	BUG_ON(skb->end - skb->tail < grow);
5800 
5801 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5802 
5803 	skb->data_len -= grow;
5804 	skb->tail += grow;
5805 
5806 	skb_frag_off_add(&pinfo->frags[0], grow);
5807 	skb_frag_size_sub(&pinfo->frags[0], grow);
5808 
5809 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5810 		skb_frag_unref(skb, 0);
5811 		memmove(pinfo->frags, pinfo->frags + 1,
5812 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5813 	}
5814 }
5815 
5816 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5817 {
5818 	struct sk_buff *oldest;
5819 
5820 	oldest = list_last_entry(head, struct sk_buff, list);
5821 
5822 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5823 	 * impossible.
5824 	 */
5825 	if (WARN_ON_ONCE(!oldest))
5826 		return;
5827 
5828 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5829 	 * SKB to the chain.
5830 	 */
5831 	skb_list_del_init(oldest);
5832 	napi_gro_complete(napi, oldest);
5833 }
5834 
5835 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5836 							   struct sk_buff *));
5837 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5838 							   struct sk_buff *));
5839 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5840 {
5841 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5842 	struct list_head *head = &offload_base;
5843 	struct packet_offload *ptype;
5844 	__be16 type = skb->protocol;
5845 	struct list_head *gro_head;
5846 	struct sk_buff *pp = NULL;
5847 	enum gro_result ret;
5848 	int same_flow;
5849 	int grow;
5850 
5851 	if (netif_elide_gro(skb->dev))
5852 		goto normal;
5853 
5854 	gro_head = gro_list_prepare(napi, skb);
5855 
5856 	rcu_read_lock();
5857 	list_for_each_entry_rcu(ptype, head, list) {
5858 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5859 			continue;
5860 
5861 		skb_set_network_header(skb, skb_gro_offset(skb));
5862 		skb_reset_mac_len(skb);
5863 		NAPI_GRO_CB(skb)->same_flow = 0;
5864 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5865 		NAPI_GRO_CB(skb)->free = 0;
5866 		NAPI_GRO_CB(skb)->encap_mark = 0;
5867 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5868 		NAPI_GRO_CB(skb)->is_fou = 0;
5869 		NAPI_GRO_CB(skb)->is_atomic = 1;
5870 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5871 
5872 		/* Setup for GRO checksum validation */
5873 		switch (skb->ip_summed) {
5874 		case CHECKSUM_COMPLETE:
5875 			NAPI_GRO_CB(skb)->csum = skb->csum;
5876 			NAPI_GRO_CB(skb)->csum_valid = 1;
5877 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5878 			break;
5879 		case CHECKSUM_UNNECESSARY:
5880 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5881 			NAPI_GRO_CB(skb)->csum_valid = 0;
5882 			break;
5883 		default:
5884 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5885 			NAPI_GRO_CB(skb)->csum_valid = 0;
5886 		}
5887 
5888 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5889 					ipv6_gro_receive, inet_gro_receive,
5890 					gro_head, skb);
5891 		break;
5892 	}
5893 	rcu_read_unlock();
5894 
5895 	if (&ptype->list == head)
5896 		goto normal;
5897 
5898 	if (PTR_ERR(pp) == -EINPROGRESS) {
5899 		ret = GRO_CONSUMED;
5900 		goto ok;
5901 	}
5902 
5903 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5904 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5905 
5906 	if (pp) {
5907 		skb_list_del_init(pp);
5908 		napi_gro_complete(napi, pp);
5909 		napi->gro_hash[hash].count--;
5910 	}
5911 
5912 	if (same_flow)
5913 		goto ok;
5914 
5915 	if (NAPI_GRO_CB(skb)->flush)
5916 		goto normal;
5917 
5918 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5919 		gro_flush_oldest(napi, gro_head);
5920 	} else {
5921 		napi->gro_hash[hash].count++;
5922 	}
5923 	NAPI_GRO_CB(skb)->count = 1;
5924 	NAPI_GRO_CB(skb)->age = jiffies;
5925 	NAPI_GRO_CB(skb)->last = skb;
5926 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5927 	list_add(&skb->list, gro_head);
5928 	ret = GRO_HELD;
5929 
5930 pull:
5931 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5932 	if (grow > 0)
5933 		gro_pull_from_frag0(skb, grow);
5934 ok:
5935 	if (napi->gro_hash[hash].count) {
5936 		if (!test_bit(hash, &napi->gro_bitmask))
5937 			__set_bit(hash, &napi->gro_bitmask);
5938 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5939 		__clear_bit(hash, &napi->gro_bitmask);
5940 	}
5941 
5942 	return ret;
5943 
5944 normal:
5945 	ret = GRO_NORMAL;
5946 	goto pull;
5947 }
5948 
5949 struct packet_offload *gro_find_receive_by_type(__be16 type)
5950 {
5951 	struct list_head *offload_head = &offload_base;
5952 	struct packet_offload *ptype;
5953 
5954 	list_for_each_entry_rcu(ptype, offload_head, list) {
5955 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5956 			continue;
5957 		return ptype;
5958 	}
5959 	return NULL;
5960 }
5961 EXPORT_SYMBOL(gro_find_receive_by_type);
5962 
5963 struct packet_offload *gro_find_complete_by_type(__be16 type)
5964 {
5965 	struct list_head *offload_head = &offload_base;
5966 	struct packet_offload *ptype;
5967 
5968 	list_for_each_entry_rcu(ptype, offload_head, list) {
5969 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5970 			continue;
5971 		return ptype;
5972 	}
5973 	return NULL;
5974 }
5975 EXPORT_SYMBOL(gro_find_complete_by_type);
5976 
5977 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5978 {
5979 	skb_dst_drop(skb);
5980 	skb_ext_put(skb);
5981 	kmem_cache_free(skbuff_head_cache, skb);
5982 }
5983 
5984 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5985 				    struct sk_buff *skb,
5986 				    gro_result_t ret)
5987 {
5988 	switch (ret) {
5989 	case GRO_NORMAL:
5990 		gro_normal_one(napi, skb);
5991 		break;
5992 
5993 	case GRO_DROP:
5994 		kfree_skb(skb);
5995 		break;
5996 
5997 	case GRO_MERGED_FREE:
5998 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5999 			napi_skb_free_stolen_head(skb);
6000 		else
6001 			__kfree_skb(skb);
6002 		break;
6003 
6004 	case GRO_HELD:
6005 	case GRO_MERGED:
6006 	case GRO_CONSUMED:
6007 		break;
6008 	}
6009 
6010 	return ret;
6011 }
6012 
6013 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6014 {
6015 	gro_result_t ret;
6016 
6017 	skb_mark_napi_id(skb, napi);
6018 	trace_napi_gro_receive_entry(skb);
6019 
6020 	skb_gro_reset_offset(skb);
6021 
6022 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6023 	trace_napi_gro_receive_exit(ret);
6024 
6025 	return ret;
6026 }
6027 EXPORT_SYMBOL(napi_gro_receive);
6028 
6029 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6030 {
6031 	if (unlikely(skb->pfmemalloc)) {
6032 		consume_skb(skb);
6033 		return;
6034 	}
6035 	__skb_pull(skb, skb_headlen(skb));
6036 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6037 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6038 	__vlan_hwaccel_clear_tag(skb);
6039 	skb->dev = napi->dev;
6040 	skb->skb_iif = 0;
6041 
6042 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6043 	skb->pkt_type = PACKET_HOST;
6044 
6045 	skb->encapsulation = 0;
6046 	skb_shinfo(skb)->gso_type = 0;
6047 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6048 	skb_ext_reset(skb);
6049 
6050 	napi->skb = skb;
6051 }
6052 
6053 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6054 {
6055 	struct sk_buff *skb = napi->skb;
6056 
6057 	if (!skb) {
6058 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6059 		if (skb) {
6060 			napi->skb = skb;
6061 			skb_mark_napi_id(skb, napi);
6062 		}
6063 	}
6064 	return skb;
6065 }
6066 EXPORT_SYMBOL(napi_get_frags);
6067 
6068 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6069 				      struct sk_buff *skb,
6070 				      gro_result_t ret)
6071 {
6072 	switch (ret) {
6073 	case GRO_NORMAL:
6074 	case GRO_HELD:
6075 		__skb_push(skb, ETH_HLEN);
6076 		skb->protocol = eth_type_trans(skb, skb->dev);
6077 		if (ret == GRO_NORMAL)
6078 			gro_normal_one(napi, skb);
6079 		break;
6080 
6081 	case GRO_DROP:
6082 		napi_reuse_skb(napi, skb);
6083 		break;
6084 
6085 	case GRO_MERGED_FREE:
6086 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6087 			napi_skb_free_stolen_head(skb);
6088 		else
6089 			napi_reuse_skb(napi, skb);
6090 		break;
6091 
6092 	case GRO_MERGED:
6093 	case GRO_CONSUMED:
6094 		break;
6095 	}
6096 
6097 	return ret;
6098 }
6099 
6100 /* Upper GRO stack assumes network header starts at gro_offset=0
6101  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6102  * We copy ethernet header into skb->data to have a common layout.
6103  */
6104 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6105 {
6106 	struct sk_buff *skb = napi->skb;
6107 	const struct ethhdr *eth;
6108 	unsigned int hlen = sizeof(*eth);
6109 
6110 	napi->skb = NULL;
6111 
6112 	skb_reset_mac_header(skb);
6113 	skb_gro_reset_offset(skb);
6114 
6115 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6116 		eth = skb_gro_header_slow(skb, hlen, 0);
6117 		if (unlikely(!eth)) {
6118 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6119 					     __func__, napi->dev->name);
6120 			napi_reuse_skb(napi, skb);
6121 			return NULL;
6122 		}
6123 	} else {
6124 		eth = (const struct ethhdr *)skb->data;
6125 		gro_pull_from_frag0(skb, hlen);
6126 		NAPI_GRO_CB(skb)->frag0 += hlen;
6127 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6128 	}
6129 	__skb_pull(skb, hlen);
6130 
6131 	/*
6132 	 * This works because the only protocols we care about don't require
6133 	 * special handling.
6134 	 * We'll fix it up properly in napi_frags_finish()
6135 	 */
6136 	skb->protocol = eth->h_proto;
6137 
6138 	return skb;
6139 }
6140 
6141 gro_result_t napi_gro_frags(struct napi_struct *napi)
6142 {
6143 	gro_result_t ret;
6144 	struct sk_buff *skb = napi_frags_skb(napi);
6145 
6146 	if (!skb)
6147 		return GRO_DROP;
6148 
6149 	trace_napi_gro_frags_entry(skb);
6150 
6151 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6152 	trace_napi_gro_frags_exit(ret);
6153 
6154 	return ret;
6155 }
6156 EXPORT_SYMBOL(napi_gro_frags);
6157 
6158 /* Compute the checksum from gro_offset and return the folded value
6159  * after adding in any pseudo checksum.
6160  */
6161 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6162 {
6163 	__wsum wsum;
6164 	__sum16 sum;
6165 
6166 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6167 
6168 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6169 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6170 	/* See comments in __skb_checksum_complete(). */
6171 	if (likely(!sum)) {
6172 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6173 		    !skb->csum_complete_sw)
6174 			netdev_rx_csum_fault(skb->dev, skb);
6175 	}
6176 
6177 	NAPI_GRO_CB(skb)->csum = wsum;
6178 	NAPI_GRO_CB(skb)->csum_valid = 1;
6179 
6180 	return sum;
6181 }
6182 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6183 
6184 static void net_rps_send_ipi(struct softnet_data *remsd)
6185 {
6186 #ifdef CONFIG_RPS
6187 	while (remsd) {
6188 		struct softnet_data *next = remsd->rps_ipi_next;
6189 
6190 		if (cpu_online(remsd->cpu))
6191 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6192 		remsd = next;
6193 	}
6194 #endif
6195 }
6196 
6197 /*
6198  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6199  * Note: called with local irq disabled, but exits with local irq enabled.
6200  */
6201 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6202 {
6203 #ifdef CONFIG_RPS
6204 	struct softnet_data *remsd = sd->rps_ipi_list;
6205 
6206 	if (remsd) {
6207 		sd->rps_ipi_list = NULL;
6208 
6209 		local_irq_enable();
6210 
6211 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6212 		net_rps_send_ipi(remsd);
6213 	} else
6214 #endif
6215 		local_irq_enable();
6216 }
6217 
6218 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6219 {
6220 #ifdef CONFIG_RPS
6221 	return sd->rps_ipi_list != NULL;
6222 #else
6223 	return false;
6224 #endif
6225 }
6226 
6227 static int process_backlog(struct napi_struct *napi, int quota)
6228 {
6229 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6230 	bool again = true;
6231 	int work = 0;
6232 
6233 	/* Check if we have pending ipi, its better to send them now,
6234 	 * not waiting net_rx_action() end.
6235 	 */
6236 	if (sd_has_rps_ipi_waiting(sd)) {
6237 		local_irq_disable();
6238 		net_rps_action_and_irq_enable(sd);
6239 	}
6240 
6241 	napi->weight = dev_rx_weight;
6242 	while (again) {
6243 		struct sk_buff *skb;
6244 
6245 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6246 			rcu_read_lock();
6247 			__netif_receive_skb(skb);
6248 			rcu_read_unlock();
6249 			input_queue_head_incr(sd);
6250 			if (++work >= quota)
6251 				return work;
6252 
6253 		}
6254 
6255 		local_irq_disable();
6256 		rps_lock(sd);
6257 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6258 			/*
6259 			 * Inline a custom version of __napi_complete().
6260 			 * only current cpu owns and manipulates this napi,
6261 			 * and NAPI_STATE_SCHED is the only possible flag set
6262 			 * on backlog.
6263 			 * We can use a plain write instead of clear_bit(),
6264 			 * and we dont need an smp_mb() memory barrier.
6265 			 */
6266 			napi->state = 0;
6267 			again = false;
6268 		} else {
6269 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6270 						   &sd->process_queue);
6271 		}
6272 		rps_unlock(sd);
6273 		local_irq_enable();
6274 	}
6275 
6276 	return work;
6277 }
6278 
6279 /**
6280  * __napi_schedule - schedule for receive
6281  * @n: entry to schedule
6282  *
6283  * The entry's receive function will be scheduled to run.
6284  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6285  */
6286 void __napi_schedule(struct napi_struct *n)
6287 {
6288 	unsigned long flags;
6289 
6290 	local_irq_save(flags);
6291 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6292 	local_irq_restore(flags);
6293 }
6294 EXPORT_SYMBOL(__napi_schedule);
6295 
6296 /**
6297  *	napi_schedule_prep - check if napi can be scheduled
6298  *	@n: napi context
6299  *
6300  * Test if NAPI routine is already running, and if not mark
6301  * it as running.  This is used as a condition variable
6302  * insure only one NAPI poll instance runs.  We also make
6303  * sure there is no pending NAPI disable.
6304  */
6305 bool napi_schedule_prep(struct napi_struct *n)
6306 {
6307 	unsigned long val, new;
6308 
6309 	do {
6310 		val = READ_ONCE(n->state);
6311 		if (unlikely(val & NAPIF_STATE_DISABLE))
6312 			return false;
6313 		new = val | NAPIF_STATE_SCHED;
6314 
6315 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6316 		 * This was suggested by Alexander Duyck, as compiler
6317 		 * emits better code than :
6318 		 * if (val & NAPIF_STATE_SCHED)
6319 		 *     new |= NAPIF_STATE_MISSED;
6320 		 */
6321 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6322 						   NAPIF_STATE_MISSED;
6323 	} while (cmpxchg(&n->state, val, new) != val);
6324 
6325 	return !(val & NAPIF_STATE_SCHED);
6326 }
6327 EXPORT_SYMBOL(napi_schedule_prep);
6328 
6329 /**
6330  * __napi_schedule_irqoff - schedule for receive
6331  * @n: entry to schedule
6332  *
6333  * Variant of __napi_schedule() assuming hard irqs are masked
6334  */
6335 void __napi_schedule_irqoff(struct napi_struct *n)
6336 {
6337 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6338 }
6339 EXPORT_SYMBOL(__napi_schedule_irqoff);
6340 
6341 bool napi_complete_done(struct napi_struct *n, int work_done)
6342 {
6343 	unsigned long flags, val, new, timeout = 0;
6344 	bool ret = true;
6345 
6346 	/*
6347 	 * 1) Don't let napi dequeue from the cpu poll list
6348 	 *    just in case its running on a different cpu.
6349 	 * 2) If we are busy polling, do nothing here, we have
6350 	 *    the guarantee we will be called later.
6351 	 */
6352 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6353 				 NAPIF_STATE_IN_BUSY_POLL)))
6354 		return false;
6355 
6356 	if (work_done) {
6357 		if (n->gro_bitmask)
6358 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6359 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6360 	}
6361 	if (n->defer_hard_irqs_count > 0) {
6362 		n->defer_hard_irqs_count--;
6363 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6364 		if (timeout)
6365 			ret = false;
6366 	}
6367 	if (n->gro_bitmask) {
6368 		/* When the NAPI instance uses a timeout and keeps postponing
6369 		 * it, we need to bound somehow the time packets are kept in
6370 		 * the GRO layer
6371 		 */
6372 		napi_gro_flush(n, !!timeout);
6373 	}
6374 
6375 	gro_normal_list(n);
6376 
6377 	if (unlikely(!list_empty(&n->poll_list))) {
6378 		/* If n->poll_list is not empty, we need to mask irqs */
6379 		local_irq_save(flags);
6380 		list_del_init(&n->poll_list);
6381 		local_irq_restore(flags);
6382 	}
6383 
6384 	do {
6385 		val = READ_ONCE(n->state);
6386 
6387 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6388 
6389 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6390 
6391 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6392 		 * because we will call napi->poll() one more time.
6393 		 * This C code was suggested by Alexander Duyck to help gcc.
6394 		 */
6395 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6396 						    NAPIF_STATE_SCHED;
6397 	} while (cmpxchg(&n->state, val, new) != val);
6398 
6399 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6400 		__napi_schedule(n);
6401 		return false;
6402 	}
6403 
6404 	if (timeout)
6405 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6406 			      HRTIMER_MODE_REL_PINNED);
6407 	return ret;
6408 }
6409 EXPORT_SYMBOL(napi_complete_done);
6410 
6411 /* must be called under rcu_read_lock(), as we dont take a reference */
6412 static struct napi_struct *napi_by_id(unsigned int napi_id)
6413 {
6414 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6415 	struct napi_struct *napi;
6416 
6417 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6418 		if (napi->napi_id == napi_id)
6419 			return napi;
6420 
6421 	return NULL;
6422 }
6423 
6424 #if defined(CONFIG_NET_RX_BUSY_POLL)
6425 
6426 #define BUSY_POLL_BUDGET 8
6427 
6428 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6429 {
6430 	int rc;
6431 
6432 	/* Busy polling means there is a high chance device driver hard irq
6433 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6434 	 * set in napi_schedule_prep().
6435 	 * Since we are about to call napi->poll() once more, we can safely
6436 	 * clear NAPI_STATE_MISSED.
6437 	 *
6438 	 * Note: x86 could use a single "lock and ..." instruction
6439 	 * to perform these two clear_bit()
6440 	 */
6441 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6442 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6443 
6444 	local_bh_disable();
6445 
6446 	/* All we really want here is to re-enable device interrupts.
6447 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6448 	 */
6449 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6450 	/* We can't gro_normal_list() here, because napi->poll() might have
6451 	 * rearmed the napi (napi_complete_done()) in which case it could
6452 	 * already be running on another CPU.
6453 	 */
6454 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6455 	netpoll_poll_unlock(have_poll_lock);
6456 	if (rc == BUSY_POLL_BUDGET) {
6457 		/* As the whole budget was spent, we still own the napi so can
6458 		 * safely handle the rx_list.
6459 		 */
6460 		gro_normal_list(napi);
6461 		__napi_schedule(napi);
6462 	}
6463 	local_bh_enable();
6464 }
6465 
6466 void napi_busy_loop(unsigned int napi_id,
6467 		    bool (*loop_end)(void *, unsigned long),
6468 		    void *loop_end_arg)
6469 {
6470 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6471 	int (*napi_poll)(struct napi_struct *napi, int budget);
6472 	void *have_poll_lock = NULL;
6473 	struct napi_struct *napi;
6474 
6475 restart:
6476 	napi_poll = NULL;
6477 
6478 	rcu_read_lock();
6479 
6480 	napi = napi_by_id(napi_id);
6481 	if (!napi)
6482 		goto out;
6483 
6484 	preempt_disable();
6485 	for (;;) {
6486 		int work = 0;
6487 
6488 		local_bh_disable();
6489 		if (!napi_poll) {
6490 			unsigned long val = READ_ONCE(napi->state);
6491 
6492 			/* If multiple threads are competing for this napi,
6493 			 * we avoid dirtying napi->state as much as we can.
6494 			 */
6495 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6496 				   NAPIF_STATE_IN_BUSY_POLL))
6497 				goto count;
6498 			if (cmpxchg(&napi->state, val,
6499 				    val | NAPIF_STATE_IN_BUSY_POLL |
6500 					  NAPIF_STATE_SCHED) != val)
6501 				goto count;
6502 			have_poll_lock = netpoll_poll_lock(napi);
6503 			napi_poll = napi->poll;
6504 		}
6505 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6506 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6507 		gro_normal_list(napi);
6508 count:
6509 		if (work > 0)
6510 			__NET_ADD_STATS(dev_net(napi->dev),
6511 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6512 		local_bh_enable();
6513 
6514 		if (!loop_end || loop_end(loop_end_arg, start_time))
6515 			break;
6516 
6517 		if (unlikely(need_resched())) {
6518 			if (napi_poll)
6519 				busy_poll_stop(napi, have_poll_lock);
6520 			preempt_enable();
6521 			rcu_read_unlock();
6522 			cond_resched();
6523 			if (loop_end(loop_end_arg, start_time))
6524 				return;
6525 			goto restart;
6526 		}
6527 		cpu_relax();
6528 	}
6529 	if (napi_poll)
6530 		busy_poll_stop(napi, have_poll_lock);
6531 	preempt_enable();
6532 out:
6533 	rcu_read_unlock();
6534 }
6535 EXPORT_SYMBOL(napi_busy_loop);
6536 
6537 #endif /* CONFIG_NET_RX_BUSY_POLL */
6538 
6539 static void napi_hash_add(struct napi_struct *napi)
6540 {
6541 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6542 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6543 		return;
6544 
6545 	spin_lock(&napi_hash_lock);
6546 
6547 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6548 	do {
6549 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6550 			napi_gen_id = MIN_NAPI_ID;
6551 	} while (napi_by_id(napi_gen_id));
6552 	napi->napi_id = napi_gen_id;
6553 
6554 	hlist_add_head_rcu(&napi->napi_hash_node,
6555 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6556 
6557 	spin_unlock(&napi_hash_lock);
6558 }
6559 
6560 /* Warning : caller is responsible to make sure rcu grace period
6561  * is respected before freeing memory containing @napi
6562  */
6563 bool napi_hash_del(struct napi_struct *napi)
6564 {
6565 	bool rcu_sync_needed = false;
6566 
6567 	spin_lock(&napi_hash_lock);
6568 
6569 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6570 		rcu_sync_needed = true;
6571 		hlist_del_rcu(&napi->napi_hash_node);
6572 	}
6573 	spin_unlock(&napi_hash_lock);
6574 	return rcu_sync_needed;
6575 }
6576 EXPORT_SYMBOL_GPL(napi_hash_del);
6577 
6578 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6579 {
6580 	struct napi_struct *napi;
6581 
6582 	napi = container_of(timer, struct napi_struct, timer);
6583 
6584 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6585 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6586 	 */
6587 	if (!napi_disable_pending(napi) &&
6588 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6589 		__napi_schedule_irqoff(napi);
6590 
6591 	return HRTIMER_NORESTART;
6592 }
6593 
6594 static void init_gro_hash(struct napi_struct *napi)
6595 {
6596 	int i;
6597 
6598 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6599 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6600 		napi->gro_hash[i].count = 0;
6601 	}
6602 	napi->gro_bitmask = 0;
6603 }
6604 
6605 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6606 		    int (*poll)(struct napi_struct *, int), int weight)
6607 {
6608 	INIT_LIST_HEAD(&napi->poll_list);
6609 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6610 	napi->timer.function = napi_watchdog;
6611 	init_gro_hash(napi);
6612 	napi->skb = NULL;
6613 	INIT_LIST_HEAD(&napi->rx_list);
6614 	napi->rx_count = 0;
6615 	napi->poll = poll;
6616 	if (weight > NAPI_POLL_WEIGHT)
6617 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6618 				weight);
6619 	napi->weight = weight;
6620 	list_add(&napi->dev_list, &dev->napi_list);
6621 	napi->dev = dev;
6622 #ifdef CONFIG_NETPOLL
6623 	napi->poll_owner = -1;
6624 #endif
6625 	set_bit(NAPI_STATE_SCHED, &napi->state);
6626 	napi_hash_add(napi);
6627 }
6628 EXPORT_SYMBOL(netif_napi_add);
6629 
6630 void napi_disable(struct napi_struct *n)
6631 {
6632 	might_sleep();
6633 	set_bit(NAPI_STATE_DISABLE, &n->state);
6634 
6635 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6636 		msleep(1);
6637 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6638 		msleep(1);
6639 
6640 	hrtimer_cancel(&n->timer);
6641 
6642 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6643 }
6644 EXPORT_SYMBOL(napi_disable);
6645 
6646 static void flush_gro_hash(struct napi_struct *napi)
6647 {
6648 	int i;
6649 
6650 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6651 		struct sk_buff *skb, *n;
6652 
6653 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6654 			kfree_skb(skb);
6655 		napi->gro_hash[i].count = 0;
6656 	}
6657 }
6658 
6659 /* Must be called in process context */
6660 void netif_napi_del(struct napi_struct *napi)
6661 {
6662 	might_sleep();
6663 	if (napi_hash_del(napi))
6664 		synchronize_net();
6665 	list_del_init(&napi->dev_list);
6666 	napi_free_frags(napi);
6667 
6668 	flush_gro_hash(napi);
6669 	napi->gro_bitmask = 0;
6670 }
6671 EXPORT_SYMBOL(netif_napi_del);
6672 
6673 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6674 {
6675 	void *have;
6676 	int work, weight;
6677 
6678 	list_del_init(&n->poll_list);
6679 
6680 	have = netpoll_poll_lock(n);
6681 
6682 	weight = n->weight;
6683 
6684 	/* This NAPI_STATE_SCHED test is for avoiding a race
6685 	 * with netpoll's poll_napi().  Only the entity which
6686 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6687 	 * actually make the ->poll() call.  Therefore we avoid
6688 	 * accidentally calling ->poll() when NAPI is not scheduled.
6689 	 */
6690 	work = 0;
6691 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6692 		work = n->poll(n, weight);
6693 		trace_napi_poll(n, work, weight);
6694 	}
6695 
6696 	if (unlikely(work > weight))
6697 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6698 			    n->poll, work, weight);
6699 
6700 	if (likely(work < weight))
6701 		goto out_unlock;
6702 
6703 	/* Drivers must not modify the NAPI state if they
6704 	 * consume the entire weight.  In such cases this code
6705 	 * still "owns" the NAPI instance and therefore can
6706 	 * move the instance around on the list at-will.
6707 	 */
6708 	if (unlikely(napi_disable_pending(n))) {
6709 		napi_complete(n);
6710 		goto out_unlock;
6711 	}
6712 
6713 	if (n->gro_bitmask) {
6714 		/* flush too old packets
6715 		 * If HZ < 1000, flush all packets.
6716 		 */
6717 		napi_gro_flush(n, HZ >= 1000);
6718 	}
6719 
6720 	gro_normal_list(n);
6721 
6722 	/* Some drivers may have called napi_schedule
6723 	 * prior to exhausting their budget.
6724 	 */
6725 	if (unlikely(!list_empty(&n->poll_list))) {
6726 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6727 			     n->dev ? n->dev->name : "backlog");
6728 		goto out_unlock;
6729 	}
6730 
6731 	list_add_tail(&n->poll_list, repoll);
6732 
6733 out_unlock:
6734 	netpoll_poll_unlock(have);
6735 
6736 	return work;
6737 }
6738 
6739 static __latent_entropy void net_rx_action(struct softirq_action *h)
6740 {
6741 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6742 	unsigned long time_limit = jiffies +
6743 		usecs_to_jiffies(netdev_budget_usecs);
6744 	int budget = netdev_budget;
6745 	LIST_HEAD(list);
6746 	LIST_HEAD(repoll);
6747 
6748 	local_irq_disable();
6749 	list_splice_init(&sd->poll_list, &list);
6750 	local_irq_enable();
6751 
6752 	for (;;) {
6753 		struct napi_struct *n;
6754 
6755 		if (list_empty(&list)) {
6756 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6757 				goto out;
6758 			break;
6759 		}
6760 
6761 		n = list_first_entry(&list, struct napi_struct, poll_list);
6762 		budget -= napi_poll(n, &repoll);
6763 
6764 		/* If softirq window is exhausted then punt.
6765 		 * Allow this to run for 2 jiffies since which will allow
6766 		 * an average latency of 1.5/HZ.
6767 		 */
6768 		if (unlikely(budget <= 0 ||
6769 			     time_after_eq(jiffies, time_limit))) {
6770 			sd->time_squeeze++;
6771 			break;
6772 		}
6773 	}
6774 
6775 	local_irq_disable();
6776 
6777 	list_splice_tail_init(&sd->poll_list, &list);
6778 	list_splice_tail(&repoll, &list);
6779 	list_splice(&list, &sd->poll_list);
6780 	if (!list_empty(&sd->poll_list))
6781 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6782 
6783 	net_rps_action_and_irq_enable(sd);
6784 out:
6785 	__kfree_skb_flush();
6786 }
6787 
6788 struct netdev_adjacent {
6789 	struct net_device *dev;
6790 
6791 	/* upper master flag, there can only be one master device per list */
6792 	bool master;
6793 
6794 	/* lookup ignore flag */
6795 	bool ignore;
6796 
6797 	/* counter for the number of times this device was added to us */
6798 	u16 ref_nr;
6799 
6800 	/* private field for the users */
6801 	void *private;
6802 
6803 	struct list_head list;
6804 	struct rcu_head rcu;
6805 };
6806 
6807 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6808 						 struct list_head *adj_list)
6809 {
6810 	struct netdev_adjacent *adj;
6811 
6812 	list_for_each_entry(adj, adj_list, list) {
6813 		if (adj->dev == adj_dev)
6814 			return adj;
6815 	}
6816 	return NULL;
6817 }
6818 
6819 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6820 {
6821 	struct net_device *dev = data;
6822 
6823 	return upper_dev == dev;
6824 }
6825 
6826 /**
6827  * netdev_has_upper_dev - Check if device is linked to an upper device
6828  * @dev: device
6829  * @upper_dev: upper device to check
6830  *
6831  * Find out if a device is linked to specified upper device and return true
6832  * in case it is. Note that this checks only immediate upper device,
6833  * not through a complete stack of devices. The caller must hold the RTNL lock.
6834  */
6835 bool netdev_has_upper_dev(struct net_device *dev,
6836 			  struct net_device *upper_dev)
6837 {
6838 	ASSERT_RTNL();
6839 
6840 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6841 					     upper_dev);
6842 }
6843 EXPORT_SYMBOL(netdev_has_upper_dev);
6844 
6845 /**
6846  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6847  * @dev: device
6848  * @upper_dev: upper device to check
6849  *
6850  * Find out if a device is linked to specified upper device and return true
6851  * in case it is. Note that this checks the entire upper device chain.
6852  * The caller must hold rcu lock.
6853  */
6854 
6855 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6856 				  struct net_device *upper_dev)
6857 {
6858 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6859 					       upper_dev);
6860 }
6861 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6862 
6863 /**
6864  * netdev_has_any_upper_dev - Check if device is linked to some device
6865  * @dev: device
6866  *
6867  * Find out if a device is linked to an upper device and return true in case
6868  * it is. The caller must hold the RTNL lock.
6869  */
6870 bool netdev_has_any_upper_dev(struct net_device *dev)
6871 {
6872 	ASSERT_RTNL();
6873 
6874 	return !list_empty(&dev->adj_list.upper);
6875 }
6876 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6877 
6878 /**
6879  * netdev_master_upper_dev_get - Get master upper device
6880  * @dev: device
6881  *
6882  * Find a master upper device and return pointer to it or NULL in case
6883  * it's not there. The caller must hold the RTNL lock.
6884  */
6885 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6886 {
6887 	struct netdev_adjacent *upper;
6888 
6889 	ASSERT_RTNL();
6890 
6891 	if (list_empty(&dev->adj_list.upper))
6892 		return NULL;
6893 
6894 	upper = list_first_entry(&dev->adj_list.upper,
6895 				 struct netdev_adjacent, list);
6896 	if (likely(upper->master))
6897 		return upper->dev;
6898 	return NULL;
6899 }
6900 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6901 
6902 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6903 {
6904 	struct netdev_adjacent *upper;
6905 
6906 	ASSERT_RTNL();
6907 
6908 	if (list_empty(&dev->adj_list.upper))
6909 		return NULL;
6910 
6911 	upper = list_first_entry(&dev->adj_list.upper,
6912 				 struct netdev_adjacent, list);
6913 	if (likely(upper->master) && !upper->ignore)
6914 		return upper->dev;
6915 	return NULL;
6916 }
6917 
6918 /**
6919  * netdev_has_any_lower_dev - Check if device is linked to some device
6920  * @dev: device
6921  *
6922  * Find out if a device is linked to a lower device and return true in case
6923  * it is. The caller must hold the RTNL lock.
6924  */
6925 static bool netdev_has_any_lower_dev(struct net_device *dev)
6926 {
6927 	ASSERT_RTNL();
6928 
6929 	return !list_empty(&dev->adj_list.lower);
6930 }
6931 
6932 void *netdev_adjacent_get_private(struct list_head *adj_list)
6933 {
6934 	struct netdev_adjacent *adj;
6935 
6936 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6937 
6938 	return adj->private;
6939 }
6940 EXPORT_SYMBOL(netdev_adjacent_get_private);
6941 
6942 /**
6943  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6944  * @dev: device
6945  * @iter: list_head ** of the current position
6946  *
6947  * Gets the next device from the dev's upper list, starting from iter
6948  * position. The caller must hold RCU read lock.
6949  */
6950 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6951 						 struct list_head **iter)
6952 {
6953 	struct netdev_adjacent *upper;
6954 
6955 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6956 
6957 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6958 
6959 	if (&upper->list == &dev->adj_list.upper)
6960 		return NULL;
6961 
6962 	*iter = &upper->list;
6963 
6964 	return upper->dev;
6965 }
6966 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6967 
6968 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6969 						  struct list_head **iter,
6970 						  bool *ignore)
6971 {
6972 	struct netdev_adjacent *upper;
6973 
6974 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6975 
6976 	if (&upper->list == &dev->adj_list.upper)
6977 		return NULL;
6978 
6979 	*iter = &upper->list;
6980 	*ignore = upper->ignore;
6981 
6982 	return upper->dev;
6983 }
6984 
6985 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6986 						    struct list_head **iter)
6987 {
6988 	struct netdev_adjacent *upper;
6989 
6990 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6991 
6992 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6993 
6994 	if (&upper->list == &dev->adj_list.upper)
6995 		return NULL;
6996 
6997 	*iter = &upper->list;
6998 
6999 	return upper->dev;
7000 }
7001 
7002 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7003 				       int (*fn)(struct net_device *dev,
7004 						 void *data),
7005 				       void *data)
7006 {
7007 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7008 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7009 	int ret, cur = 0;
7010 	bool ignore;
7011 
7012 	now = dev;
7013 	iter = &dev->adj_list.upper;
7014 
7015 	while (1) {
7016 		if (now != dev) {
7017 			ret = fn(now, data);
7018 			if (ret)
7019 				return ret;
7020 		}
7021 
7022 		next = NULL;
7023 		while (1) {
7024 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7025 			if (!udev)
7026 				break;
7027 			if (ignore)
7028 				continue;
7029 
7030 			next = udev;
7031 			niter = &udev->adj_list.upper;
7032 			dev_stack[cur] = now;
7033 			iter_stack[cur++] = iter;
7034 			break;
7035 		}
7036 
7037 		if (!next) {
7038 			if (!cur)
7039 				return 0;
7040 			next = dev_stack[--cur];
7041 			niter = iter_stack[cur];
7042 		}
7043 
7044 		now = next;
7045 		iter = niter;
7046 	}
7047 
7048 	return 0;
7049 }
7050 
7051 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7052 				  int (*fn)(struct net_device *dev,
7053 					    void *data),
7054 				  void *data)
7055 {
7056 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7057 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7058 	int ret, cur = 0;
7059 
7060 	now = dev;
7061 	iter = &dev->adj_list.upper;
7062 
7063 	while (1) {
7064 		if (now != dev) {
7065 			ret = fn(now, data);
7066 			if (ret)
7067 				return ret;
7068 		}
7069 
7070 		next = NULL;
7071 		while (1) {
7072 			udev = netdev_next_upper_dev_rcu(now, &iter);
7073 			if (!udev)
7074 				break;
7075 
7076 			next = udev;
7077 			niter = &udev->adj_list.upper;
7078 			dev_stack[cur] = now;
7079 			iter_stack[cur++] = iter;
7080 			break;
7081 		}
7082 
7083 		if (!next) {
7084 			if (!cur)
7085 				return 0;
7086 			next = dev_stack[--cur];
7087 			niter = iter_stack[cur];
7088 		}
7089 
7090 		now = next;
7091 		iter = niter;
7092 	}
7093 
7094 	return 0;
7095 }
7096 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7097 
7098 static bool __netdev_has_upper_dev(struct net_device *dev,
7099 				   struct net_device *upper_dev)
7100 {
7101 	ASSERT_RTNL();
7102 
7103 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7104 					   upper_dev);
7105 }
7106 
7107 /**
7108  * netdev_lower_get_next_private - Get the next ->private from the
7109  *				   lower neighbour list
7110  * @dev: device
7111  * @iter: list_head ** of the current position
7112  *
7113  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7114  * list, starting from iter position. The caller must hold either hold the
7115  * RTNL lock or its own locking that guarantees that the neighbour lower
7116  * list will remain unchanged.
7117  */
7118 void *netdev_lower_get_next_private(struct net_device *dev,
7119 				    struct list_head **iter)
7120 {
7121 	struct netdev_adjacent *lower;
7122 
7123 	lower = list_entry(*iter, struct netdev_adjacent, list);
7124 
7125 	if (&lower->list == &dev->adj_list.lower)
7126 		return NULL;
7127 
7128 	*iter = lower->list.next;
7129 
7130 	return lower->private;
7131 }
7132 EXPORT_SYMBOL(netdev_lower_get_next_private);
7133 
7134 /**
7135  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7136  *				       lower neighbour list, RCU
7137  *				       variant
7138  * @dev: device
7139  * @iter: list_head ** of the current position
7140  *
7141  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7142  * list, starting from iter position. The caller must hold RCU read lock.
7143  */
7144 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7145 					struct list_head **iter)
7146 {
7147 	struct netdev_adjacent *lower;
7148 
7149 	WARN_ON_ONCE(!rcu_read_lock_held());
7150 
7151 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7152 
7153 	if (&lower->list == &dev->adj_list.lower)
7154 		return NULL;
7155 
7156 	*iter = &lower->list;
7157 
7158 	return lower->private;
7159 }
7160 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7161 
7162 /**
7163  * netdev_lower_get_next - Get the next device from the lower neighbour
7164  *                         list
7165  * @dev: device
7166  * @iter: list_head ** of the current position
7167  *
7168  * Gets the next netdev_adjacent from the dev's lower neighbour
7169  * list, starting from iter position. The caller must hold RTNL lock or
7170  * its own locking that guarantees that the neighbour lower
7171  * list will remain unchanged.
7172  */
7173 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7174 {
7175 	struct netdev_adjacent *lower;
7176 
7177 	lower = list_entry(*iter, struct netdev_adjacent, list);
7178 
7179 	if (&lower->list == &dev->adj_list.lower)
7180 		return NULL;
7181 
7182 	*iter = lower->list.next;
7183 
7184 	return lower->dev;
7185 }
7186 EXPORT_SYMBOL(netdev_lower_get_next);
7187 
7188 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7189 						struct list_head **iter)
7190 {
7191 	struct netdev_adjacent *lower;
7192 
7193 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7194 
7195 	if (&lower->list == &dev->adj_list.lower)
7196 		return NULL;
7197 
7198 	*iter = &lower->list;
7199 
7200 	return lower->dev;
7201 }
7202 
7203 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7204 						  struct list_head **iter,
7205 						  bool *ignore)
7206 {
7207 	struct netdev_adjacent *lower;
7208 
7209 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7210 
7211 	if (&lower->list == &dev->adj_list.lower)
7212 		return NULL;
7213 
7214 	*iter = &lower->list;
7215 	*ignore = lower->ignore;
7216 
7217 	return lower->dev;
7218 }
7219 
7220 int netdev_walk_all_lower_dev(struct net_device *dev,
7221 			      int (*fn)(struct net_device *dev,
7222 					void *data),
7223 			      void *data)
7224 {
7225 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7226 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7227 	int ret, cur = 0;
7228 
7229 	now = dev;
7230 	iter = &dev->adj_list.lower;
7231 
7232 	while (1) {
7233 		if (now != dev) {
7234 			ret = fn(now, data);
7235 			if (ret)
7236 				return ret;
7237 		}
7238 
7239 		next = NULL;
7240 		while (1) {
7241 			ldev = netdev_next_lower_dev(now, &iter);
7242 			if (!ldev)
7243 				break;
7244 
7245 			next = ldev;
7246 			niter = &ldev->adj_list.lower;
7247 			dev_stack[cur] = now;
7248 			iter_stack[cur++] = iter;
7249 			break;
7250 		}
7251 
7252 		if (!next) {
7253 			if (!cur)
7254 				return 0;
7255 			next = dev_stack[--cur];
7256 			niter = iter_stack[cur];
7257 		}
7258 
7259 		now = next;
7260 		iter = niter;
7261 	}
7262 
7263 	return 0;
7264 }
7265 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7266 
7267 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7268 				       int (*fn)(struct net_device *dev,
7269 						 void *data),
7270 				       void *data)
7271 {
7272 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7273 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7274 	int ret, cur = 0;
7275 	bool ignore;
7276 
7277 	now = dev;
7278 	iter = &dev->adj_list.lower;
7279 
7280 	while (1) {
7281 		if (now != dev) {
7282 			ret = fn(now, data);
7283 			if (ret)
7284 				return ret;
7285 		}
7286 
7287 		next = NULL;
7288 		while (1) {
7289 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7290 			if (!ldev)
7291 				break;
7292 			if (ignore)
7293 				continue;
7294 
7295 			next = ldev;
7296 			niter = &ldev->adj_list.lower;
7297 			dev_stack[cur] = now;
7298 			iter_stack[cur++] = iter;
7299 			break;
7300 		}
7301 
7302 		if (!next) {
7303 			if (!cur)
7304 				return 0;
7305 			next = dev_stack[--cur];
7306 			niter = iter_stack[cur];
7307 		}
7308 
7309 		now = next;
7310 		iter = niter;
7311 	}
7312 
7313 	return 0;
7314 }
7315 
7316 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7317 					     struct list_head **iter)
7318 {
7319 	struct netdev_adjacent *lower;
7320 
7321 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7322 	if (&lower->list == &dev->adj_list.lower)
7323 		return NULL;
7324 
7325 	*iter = &lower->list;
7326 
7327 	return lower->dev;
7328 }
7329 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7330 
7331 static u8 __netdev_upper_depth(struct net_device *dev)
7332 {
7333 	struct net_device *udev;
7334 	struct list_head *iter;
7335 	u8 max_depth = 0;
7336 	bool ignore;
7337 
7338 	for (iter = &dev->adj_list.upper,
7339 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7340 	     udev;
7341 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7342 		if (ignore)
7343 			continue;
7344 		if (max_depth < udev->upper_level)
7345 			max_depth = udev->upper_level;
7346 	}
7347 
7348 	return max_depth;
7349 }
7350 
7351 static u8 __netdev_lower_depth(struct net_device *dev)
7352 {
7353 	struct net_device *ldev;
7354 	struct list_head *iter;
7355 	u8 max_depth = 0;
7356 	bool ignore;
7357 
7358 	for (iter = &dev->adj_list.lower,
7359 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7360 	     ldev;
7361 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7362 		if (ignore)
7363 			continue;
7364 		if (max_depth < ldev->lower_level)
7365 			max_depth = ldev->lower_level;
7366 	}
7367 
7368 	return max_depth;
7369 }
7370 
7371 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7372 {
7373 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7374 	return 0;
7375 }
7376 
7377 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7378 {
7379 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7380 	return 0;
7381 }
7382 
7383 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7384 				  int (*fn)(struct net_device *dev,
7385 					    void *data),
7386 				  void *data)
7387 {
7388 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7389 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7390 	int ret, cur = 0;
7391 
7392 	now = dev;
7393 	iter = &dev->adj_list.lower;
7394 
7395 	while (1) {
7396 		if (now != dev) {
7397 			ret = fn(now, data);
7398 			if (ret)
7399 				return ret;
7400 		}
7401 
7402 		next = NULL;
7403 		while (1) {
7404 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7405 			if (!ldev)
7406 				break;
7407 
7408 			next = ldev;
7409 			niter = &ldev->adj_list.lower;
7410 			dev_stack[cur] = now;
7411 			iter_stack[cur++] = iter;
7412 			break;
7413 		}
7414 
7415 		if (!next) {
7416 			if (!cur)
7417 				return 0;
7418 			next = dev_stack[--cur];
7419 			niter = iter_stack[cur];
7420 		}
7421 
7422 		now = next;
7423 		iter = niter;
7424 	}
7425 
7426 	return 0;
7427 }
7428 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7429 
7430 /**
7431  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7432  *				       lower neighbour list, RCU
7433  *				       variant
7434  * @dev: device
7435  *
7436  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7437  * list. The caller must hold RCU read lock.
7438  */
7439 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7440 {
7441 	struct netdev_adjacent *lower;
7442 
7443 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7444 			struct netdev_adjacent, list);
7445 	if (lower)
7446 		return lower->private;
7447 	return NULL;
7448 }
7449 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7450 
7451 /**
7452  * netdev_master_upper_dev_get_rcu - Get master upper device
7453  * @dev: device
7454  *
7455  * Find a master upper device and return pointer to it or NULL in case
7456  * it's not there. The caller must hold the RCU read lock.
7457  */
7458 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7459 {
7460 	struct netdev_adjacent *upper;
7461 
7462 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7463 				       struct netdev_adjacent, list);
7464 	if (upper && likely(upper->master))
7465 		return upper->dev;
7466 	return NULL;
7467 }
7468 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7469 
7470 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7471 			      struct net_device *adj_dev,
7472 			      struct list_head *dev_list)
7473 {
7474 	char linkname[IFNAMSIZ+7];
7475 
7476 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7477 		"upper_%s" : "lower_%s", adj_dev->name);
7478 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7479 				 linkname);
7480 }
7481 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7482 			       char *name,
7483 			       struct list_head *dev_list)
7484 {
7485 	char linkname[IFNAMSIZ+7];
7486 
7487 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7488 		"upper_%s" : "lower_%s", name);
7489 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7490 }
7491 
7492 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7493 						 struct net_device *adj_dev,
7494 						 struct list_head *dev_list)
7495 {
7496 	return (dev_list == &dev->adj_list.upper ||
7497 		dev_list == &dev->adj_list.lower) &&
7498 		net_eq(dev_net(dev), dev_net(adj_dev));
7499 }
7500 
7501 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7502 					struct net_device *adj_dev,
7503 					struct list_head *dev_list,
7504 					void *private, bool master)
7505 {
7506 	struct netdev_adjacent *adj;
7507 	int ret;
7508 
7509 	adj = __netdev_find_adj(adj_dev, dev_list);
7510 
7511 	if (adj) {
7512 		adj->ref_nr += 1;
7513 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7514 			 dev->name, adj_dev->name, adj->ref_nr);
7515 
7516 		return 0;
7517 	}
7518 
7519 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7520 	if (!adj)
7521 		return -ENOMEM;
7522 
7523 	adj->dev = adj_dev;
7524 	adj->master = master;
7525 	adj->ref_nr = 1;
7526 	adj->private = private;
7527 	adj->ignore = false;
7528 	dev_hold(adj_dev);
7529 
7530 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7531 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7532 
7533 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7534 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7535 		if (ret)
7536 			goto free_adj;
7537 	}
7538 
7539 	/* Ensure that master link is always the first item in list. */
7540 	if (master) {
7541 		ret = sysfs_create_link(&(dev->dev.kobj),
7542 					&(adj_dev->dev.kobj), "master");
7543 		if (ret)
7544 			goto remove_symlinks;
7545 
7546 		list_add_rcu(&adj->list, dev_list);
7547 	} else {
7548 		list_add_tail_rcu(&adj->list, dev_list);
7549 	}
7550 
7551 	return 0;
7552 
7553 remove_symlinks:
7554 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7555 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7556 free_adj:
7557 	kfree(adj);
7558 	dev_put(adj_dev);
7559 
7560 	return ret;
7561 }
7562 
7563 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7564 					 struct net_device *adj_dev,
7565 					 u16 ref_nr,
7566 					 struct list_head *dev_list)
7567 {
7568 	struct netdev_adjacent *adj;
7569 
7570 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7571 		 dev->name, adj_dev->name, ref_nr);
7572 
7573 	adj = __netdev_find_adj(adj_dev, dev_list);
7574 
7575 	if (!adj) {
7576 		pr_err("Adjacency does not exist for device %s from %s\n",
7577 		       dev->name, adj_dev->name);
7578 		WARN_ON(1);
7579 		return;
7580 	}
7581 
7582 	if (adj->ref_nr > ref_nr) {
7583 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7584 			 dev->name, adj_dev->name, ref_nr,
7585 			 adj->ref_nr - ref_nr);
7586 		adj->ref_nr -= ref_nr;
7587 		return;
7588 	}
7589 
7590 	if (adj->master)
7591 		sysfs_remove_link(&(dev->dev.kobj), "master");
7592 
7593 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7594 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7595 
7596 	list_del_rcu(&adj->list);
7597 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7598 		 adj_dev->name, dev->name, adj_dev->name);
7599 	dev_put(adj_dev);
7600 	kfree_rcu(adj, rcu);
7601 }
7602 
7603 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7604 					    struct net_device *upper_dev,
7605 					    struct list_head *up_list,
7606 					    struct list_head *down_list,
7607 					    void *private, bool master)
7608 {
7609 	int ret;
7610 
7611 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7612 					   private, master);
7613 	if (ret)
7614 		return ret;
7615 
7616 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7617 					   private, false);
7618 	if (ret) {
7619 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7620 		return ret;
7621 	}
7622 
7623 	return 0;
7624 }
7625 
7626 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7627 					       struct net_device *upper_dev,
7628 					       u16 ref_nr,
7629 					       struct list_head *up_list,
7630 					       struct list_head *down_list)
7631 {
7632 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7633 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7634 }
7635 
7636 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7637 						struct net_device *upper_dev,
7638 						void *private, bool master)
7639 {
7640 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7641 						&dev->adj_list.upper,
7642 						&upper_dev->adj_list.lower,
7643 						private, master);
7644 }
7645 
7646 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7647 						   struct net_device *upper_dev)
7648 {
7649 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7650 					   &dev->adj_list.upper,
7651 					   &upper_dev->adj_list.lower);
7652 }
7653 
7654 static int __netdev_upper_dev_link(struct net_device *dev,
7655 				   struct net_device *upper_dev, bool master,
7656 				   void *upper_priv, void *upper_info,
7657 				   struct netlink_ext_ack *extack)
7658 {
7659 	struct netdev_notifier_changeupper_info changeupper_info = {
7660 		.info = {
7661 			.dev = dev,
7662 			.extack = extack,
7663 		},
7664 		.upper_dev = upper_dev,
7665 		.master = master,
7666 		.linking = true,
7667 		.upper_info = upper_info,
7668 	};
7669 	struct net_device *master_dev;
7670 	int ret = 0;
7671 
7672 	ASSERT_RTNL();
7673 
7674 	if (dev == upper_dev)
7675 		return -EBUSY;
7676 
7677 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7678 	if (__netdev_has_upper_dev(upper_dev, dev))
7679 		return -EBUSY;
7680 
7681 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7682 		return -EMLINK;
7683 
7684 	if (!master) {
7685 		if (__netdev_has_upper_dev(dev, upper_dev))
7686 			return -EEXIST;
7687 	} else {
7688 		master_dev = __netdev_master_upper_dev_get(dev);
7689 		if (master_dev)
7690 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7691 	}
7692 
7693 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7694 					    &changeupper_info.info);
7695 	ret = notifier_to_errno(ret);
7696 	if (ret)
7697 		return ret;
7698 
7699 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7700 						   master);
7701 	if (ret)
7702 		return ret;
7703 
7704 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7705 					    &changeupper_info.info);
7706 	ret = notifier_to_errno(ret);
7707 	if (ret)
7708 		goto rollback;
7709 
7710 	__netdev_update_upper_level(dev, NULL);
7711 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7712 
7713 	__netdev_update_lower_level(upper_dev, NULL);
7714 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7715 				    NULL);
7716 
7717 	return 0;
7718 
7719 rollback:
7720 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7721 
7722 	return ret;
7723 }
7724 
7725 /**
7726  * netdev_upper_dev_link - Add a link to the upper device
7727  * @dev: device
7728  * @upper_dev: new upper device
7729  * @extack: netlink extended ack
7730  *
7731  * Adds a link to device which is upper to this one. The caller must hold
7732  * the RTNL lock. On a failure a negative errno code is returned.
7733  * On success the reference counts are adjusted and the function
7734  * returns zero.
7735  */
7736 int netdev_upper_dev_link(struct net_device *dev,
7737 			  struct net_device *upper_dev,
7738 			  struct netlink_ext_ack *extack)
7739 {
7740 	return __netdev_upper_dev_link(dev, upper_dev, false,
7741 				       NULL, NULL, extack);
7742 }
7743 EXPORT_SYMBOL(netdev_upper_dev_link);
7744 
7745 /**
7746  * netdev_master_upper_dev_link - Add a master link to the upper device
7747  * @dev: device
7748  * @upper_dev: new upper device
7749  * @upper_priv: upper device private
7750  * @upper_info: upper info to be passed down via notifier
7751  * @extack: netlink extended ack
7752  *
7753  * Adds a link to device which is upper to this one. In this case, only
7754  * one master upper device can be linked, although other non-master devices
7755  * might be linked as well. The caller must hold the RTNL lock.
7756  * On a failure a negative errno code is returned. On success the reference
7757  * counts are adjusted and the function returns zero.
7758  */
7759 int netdev_master_upper_dev_link(struct net_device *dev,
7760 				 struct net_device *upper_dev,
7761 				 void *upper_priv, void *upper_info,
7762 				 struct netlink_ext_ack *extack)
7763 {
7764 	return __netdev_upper_dev_link(dev, upper_dev, true,
7765 				       upper_priv, upper_info, extack);
7766 }
7767 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7768 
7769 /**
7770  * netdev_upper_dev_unlink - Removes a link to upper device
7771  * @dev: device
7772  * @upper_dev: new upper device
7773  *
7774  * Removes a link to device which is upper to this one. The caller must hold
7775  * the RTNL lock.
7776  */
7777 void netdev_upper_dev_unlink(struct net_device *dev,
7778 			     struct net_device *upper_dev)
7779 {
7780 	struct netdev_notifier_changeupper_info changeupper_info = {
7781 		.info = {
7782 			.dev = dev,
7783 		},
7784 		.upper_dev = upper_dev,
7785 		.linking = false,
7786 	};
7787 
7788 	ASSERT_RTNL();
7789 
7790 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7791 
7792 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7793 				      &changeupper_info.info);
7794 
7795 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7796 
7797 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7798 				      &changeupper_info.info);
7799 
7800 	__netdev_update_upper_level(dev, NULL);
7801 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7802 
7803 	__netdev_update_lower_level(upper_dev, NULL);
7804 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7805 				    NULL);
7806 }
7807 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7808 
7809 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7810 				      struct net_device *lower_dev,
7811 				      bool val)
7812 {
7813 	struct netdev_adjacent *adj;
7814 
7815 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7816 	if (adj)
7817 		adj->ignore = val;
7818 
7819 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7820 	if (adj)
7821 		adj->ignore = val;
7822 }
7823 
7824 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7825 					struct net_device *lower_dev)
7826 {
7827 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7828 }
7829 
7830 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7831 				       struct net_device *lower_dev)
7832 {
7833 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7834 }
7835 
7836 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7837 				   struct net_device *new_dev,
7838 				   struct net_device *dev,
7839 				   struct netlink_ext_ack *extack)
7840 {
7841 	int err;
7842 
7843 	if (!new_dev)
7844 		return 0;
7845 
7846 	if (old_dev && new_dev != old_dev)
7847 		netdev_adjacent_dev_disable(dev, old_dev);
7848 
7849 	err = netdev_upper_dev_link(new_dev, dev, extack);
7850 	if (err) {
7851 		if (old_dev && new_dev != old_dev)
7852 			netdev_adjacent_dev_enable(dev, old_dev);
7853 		return err;
7854 	}
7855 
7856 	return 0;
7857 }
7858 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7859 
7860 void netdev_adjacent_change_commit(struct net_device *old_dev,
7861 				   struct net_device *new_dev,
7862 				   struct net_device *dev)
7863 {
7864 	if (!new_dev || !old_dev)
7865 		return;
7866 
7867 	if (new_dev == old_dev)
7868 		return;
7869 
7870 	netdev_adjacent_dev_enable(dev, old_dev);
7871 	netdev_upper_dev_unlink(old_dev, dev);
7872 }
7873 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7874 
7875 void netdev_adjacent_change_abort(struct net_device *old_dev,
7876 				  struct net_device *new_dev,
7877 				  struct net_device *dev)
7878 {
7879 	if (!new_dev)
7880 		return;
7881 
7882 	if (old_dev && new_dev != old_dev)
7883 		netdev_adjacent_dev_enable(dev, old_dev);
7884 
7885 	netdev_upper_dev_unlink(new_dev, dev);
7886 }
7887 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7888 
7889 /**
7890  * netdev_bonding_info_change - Dispatch event about slave change
7891  * @dev: device
7892  * @bonding_info: info to dispatch
7893  *
7894  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7895  * The caller must hold the RTNL lock.
7896  */
7897 void netdev_bonding_info_change(struct net_device *dev,
7898 				struct netdev_bonding_info *bonding_info)
7899 {
7900 	struct netdev_notifier_bonding_info info = {
7901 		.info.dev = dev,
7902 	};
7903 
7904 	memcpy(&info.bonding_info, bonding_info,
7905 	       sizeof(struct netdev_bonding_info));
7906 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7907 				      &info.info);
7908 }
7909 EXPORT_SYMBOL(netdev_bonding_info_change);
7910 
7911 /**
7912  * netdev_get_xmit_slave - Get the xmit slave of master device
7913  * @dev: device
7914  * @skb: The packet
7915  * @all_slaves: assume all the slaves are active
7916  *
7917  * The reference counters are not incremented so the caller must be
7918  * careful with locks. The caller must hold RCU lock.
7919  * %NULL is returned if no slave is found.
7920  */
7921 
7922 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7923 					 struct sk_buff *skb,
7924 					 bool all_slaves)
7925 {
7926 	const struct net_device_ops *ops = dev->netdev_ops;
7927 
7928 	if (!ops->ndo_get_xmit_slave)
7929 		return NULL;
7930 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7931 }
7932 EXPORT_SYMBOL(netdev_get_xmit_slave);
7933 
7934 static void netdev_adjacent_add_links(struct net_device *dev)
7935 {
7936 	struct netdev_adjacent *iter;
7937 
7938 	struct net *net = dev_net(dev);
7939 
7940 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7941 		if (!net_eq(net, dev_net(iter->dev)))
7942 			continue;
7943 		netdev_adjacent_sysfs_add(iter->dev, dev,
7944 					  &iter->dev->adj_list.lower);
7945 		netdev_adjacent_sysfs_add(dev, iter->dev,
7946 					  &dev->adj_list.upper);
7947 	}
7948 
7949 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7950 		if (!net_eq(net, dev_net(iter->dev)))
7951 			continue;
7952 		netdev_adjacent_sysfs_add(iter->dev, dev,
7953 					  &iter->dev->adj_list.upper);
7954 		netdev_adjacent_sysfs_add(dev, iter->dev,
7955 					  &dev->adj_list.lower);
7956 	}
7957 }
7958 
7959 static void netdev_adjacent_del_links(struct net_device *dev)
7960 {
7961 	struct netdev_adjacent *iter;
7962 
7963 	struct net *net = dev_net(dev);
7964 
7965 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7966 		if (!net_eq(net, dev_net(iter->dev)))
7967 			continue;
7968 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7969 					  &iter->dev->adj_list.lower);
7970 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7971 					  &dev->adj_list.upper);
7972 	}
7973 
7974 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7975 		if (!net_eq(net, dev_net(iter->dev)))
7976 			continue;
7977 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7978 					  &iter->dev->adj_list.upper);
7979 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7980 					  &dev->adj_list.lower);
7981 	}
7982 }
7983 
7984 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7985 {
7986 	struct netdev_adjacent *iter;
7987 
7988 	struct net *net = dev_net(dev);
7989 
7990 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7991 		if (!net_eq(net, dev_net(iter->dev)))
7992 			continue;
7993 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7994 					  &iter->dev->adj_list.lower);
7995 		netdev_adjacent_sysfs_add(iter->dev, dev,
7996 					  &iter->dev->adj_list.lower);
7997 	}
7998 
7999 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8000 		if (!net_eq(net, dev_net(iter->dev)))
8001 			continue;
8002 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8003 					  &iter->dev->adj_list.upper);
8004 		netdev_adjacent_sysfs_add(iter->dev, dev,
8005 					  &iter->dev->adj_list.upper);
8006 	}
8007 }
8008 
8009 void *netdev_lower_dev_get_private(struct net_device *dev,
8010 				   struct net_device *lower_dev)
8011 {
8012 	struct netdev_adjacent *lower;
8013 
8014 	if (!lower_dev)
8015 		return NULL;
8016 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8017 	if (!lower)
8018 		return NULL;
8019 
8020 	return lower->private;
8021 }
8022 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8023 
8024 
8025 /**
8026  * netdev_lower_change - Dispatch event about lower device state change
8027  * @lower_dev: device
8028  * @lower_state_info: state to dispatch
8029  *
8030  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8031  * The caller must hold the RTNL lock.
8032  */
8033 void netdev_lower_state_changed(struct net_device *lower_dev,
8034 				void *lower_state_info)
8035 {
8036 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8037 		.info.dev = lower_dev,
8038 	};
8039 
8040 	ASSERT_RTNL();
8041 	changelowerstate_info.lower_state_info = lower_state_info;
8042 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8043 				      &changelowerstate_info.info);
8044 }
8045 EXPORT_SYMBOL(netdev_lower_state_changed);
8046 
8047 static void dev_change_rx_flags(struct net_device *dev, int flags)
8048 {
8049 	const struct net_device_ops *ops = dev->netdev_ops;
8050 
8051 	if (ops->ndo_change_rx_flags)
8052 		ops->ndo_change_rx_flags(dev, flags);
8053 }
8054 
8055 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8056 {
8057 	unsigned int old_flags = dev->flags;
8058 	kuid_t uid;
8059 	kgid_t gid;
8060 
8061 	ASSERT_RTNL();
8062 
8063 	dev->flags |= IFF_PROMISC;
8064 	dev->promiscuity += inc;
8065 	if (dev->promiscuity == 0) {
8066 		/*
8067 		 * Avoid overflow.
8068 		 * If inc causes overflow, untouch promisc and return error.
8069 		 */
8070 		if (inc < 0)
8071 			dev->flags &= ~IFF_PROMISC;
8072 		else {
8073 			dev->promiscuity -= inc;
8074 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8075 				dev->name);
8076 			return -EOVERFLOW;
8077 		}
8078 	}
8079 	if (dev->flags != old_flags) {
8080 		pr_info("device %s %s promiscuous mode\n",
8081 			dev->name,
8082 			dev->flags & IFF_PROMISC ? "entered" : "left");
8083 		if (audit_enabled) {
8084 			current_uid_gid(&uid, &gid);
8085 			audit_log(audit_context(), GFP_ATOMIC,
8086 				  AUDIT_ANOM_PROMISCUOUS,
8087 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8088 				  dev->name, (dev->flags & IFF_PROMISC),
8089 				  (old_flags & IFF_PROMISC),
8090 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8091 				  from_kuid(&init_user_ns, uid),
8092 				  from_kgid(&init_user_ns, gid),
8093 				  audit_get_sessionid(current));
8094 		}
8095 
8096 		dev_change_rx_flags(dev, IFF_PROMISC);
8097 	}
8098 	if (notify)
8099 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8100 	return 0;
8101 }
8102 
8103 /**
8104  *	dev_set_promiscuity	- update promiscuity count on a device
8105  *	@dev: device
8106  *	@inc: modifier
8107  *
8108  *	Add or remove promiscuity from a device. While the count in the device
8109  *	remains above zero the interface remains promiscuous. Once it hits zero
8110  *	the device reverts back to normal filtering operation. A negative inc
8111  *	value is used to drop promiscuity on the device.
8112  *	Return 0 if successful or a negative errno code on error.
8113  */
8114 int dev_set_promiscuity(struct net_device *dev, int inc)
8115 {
8116 	unsigned int old_flags = dev->flags;
8117 	int err;
8118 
8119 	err = __dev_set_promiscuity(dev, inc, true);
8120 	if (err < 0)
8121 		return err;
8122 	if (dev->flags != old_flags)
8123 		dev_set_rx_mode(dev);
8124 	return err;
8125 }
8126 EXPORT_SYMBOL(dev_set_promiscuity);
8127 
8128 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8129 {
8130 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8131 
8132 	ASSERT_RTNL();
8133 
8134 	dev->flags |= IFF_ALLMULTI;
8135 	dev->allmulti += inc;
8136 	if (dev->allmulti == 0) {
8137 		/*
8138 		 * Avoid overflow.
8139 		 * If inc causes overflow, untouch allmulti and return error.
8140 		 */
8141 		if (inc < 0)
8142 			dev->flags &= ~IFF_ALLMULTI;
8143 		else {
8144 			dev->allmulti -= inc;
8145 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8146 				dev->name);
8147 			return -EOVERFLOW;
8148 		}
8149 	}
8150 	if (dev->flags ^ old_flags) {
8151 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8152 		dev_set_rx_mode(dev);
8153 		if (notify)
8154 			__dev_notify_flags(dev, old_flags,
8155 					   dev->gflags ^ old_gflags);
8156 	}
8157 	return 0;
8158 }
8159 
8160 /**
8161  *	dev_set_allmulti	- update allmulti count on a device
8162  *	@dev: device
8163  *	@inc: modifier
8164  *
8165  *	Add or remove reception of all multicast frames to a device. While the
8166  *	count in the device remains above zero the interface remains listening
8167  *	to all interfaces. Once it hits zero the device reverts back to normal
8168  *	filtering operation. A negative @inc value is used to drop the counter
8169  *	when releasing a resource needing all multicasts.
8170  *	Return 0 if successful or a negative errno code on error.
8171  */
8172 
8173 int dev_set_allmulti(struct net_device *dev, int inc)
8174 {
8175 	return __dev_set_allmulti(dev, inc, true);
8176 }
8177 EXPORT_SYMBOL(dev_set_allmulti);
8178 
8179 /*
8180  *	Upload unicast and multicast address lists to device and
8181  *	configure RX filtering. When the device doesn't support unicast
8182  *	filtering it is put in promiscuous mode while unicast addresses
8183  *	are present.
8184  */
8185 void __dev_set_rx_mode(struct net_device *dev)
8186 {
8187 	const struct net_device_ops *ops = dev->netdev_ops;
8188 
8189 	/* dev_open will call this function so the list will stay sane. */
8190 	if (!(dev->flags&IFF_UP))
8191 		return;
8192 
8193 	if (!netif_device_present(dev))
8194 		return;
8195 
8196 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8197 		/* Unicast addresses changes may only happen under the rtnl,
8198 		 * therefore calling __dev_set_promiscuity here is safe.
8199 		 */
8200 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8201 			__dev_set_promiscuity(dev, 1, false);
8202 			dev->uc_promisc = true;
8203 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8204 			__dev_set_promiscuity(dev, -1, false);
8205 			dev->uc_promisc = false;
8206 		}
8207 	}
8208 
8209 	if (ops->ndo_set_rx_mode)
8210 		ops->ndo_set_rx_mode(dev);
8211 }
8212 
8213 void dev_set_rx_mode(struct net_device *dev)
8214 {
8215 	netif_addr_lock_bh(dev);
8216 	__dev_set_rx_mode(dev);
8217 	netif_addr_unlock_bh(dev);
8218 }
8219 
8220 /**
8221  *	dev_get_flags - get flags reported to userspace
8222  *	@dev: device
8223  *
8224  *	Get the combination of flag bits exported through APIs to userspace.
8225  */
8226 unsigned int dev_get_flags(const struct net_device *dev)
8227 {
8228 	unsigned int flags;
8229 
8230 	flags = (dev->flags & ~(IFF_PROMISC |
8231 				IFF_ALLMULTI |
8232 				IFF_RUNNING |
8233 				IFF_LOWER_UP |
8234 				IFF_DORMANT)) |
8235 		(dev->gflags & (IFF_PROMISC |
8236 				IFF_ALLMULTI));
8237 
8238 	if (netif_running(dev)) {
8239 		if (netif_oper_up(dev))
8240 			flags |= IFF_RUNNING;
8241 		if (netif_carrier_ok(dev))
8242 			flags |= IFF_LOWER_UP;
8243 		if (netif_dormant(dev))
8244 			flags |= IFF_DORMANT;
8245 	}
8246 
8247 	return flags;
8248 }
8249 EXPORT_SYMBOL(dev_get_flags);
8250 
8251 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8252 		       struct netlink_ext_ack *extack)
8253 {
8254 	unsigned int old_flags = dev->flags;
8255 	int ret;
8256 
8257 	ASSERT_RTNL();
8258 
8259 	/*
8260 	 *	Set the flags on our device.
8261 	 */
8262 
8263 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8264 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8265 			       IFF_AUTOMEDIA)) |
8266 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8267 				    IFF_ALLMULTI));
8268 
8269 	/*
8270 	 *	Load in the correct multicast list now the flags have changed.
8271 	 */
8272 
8273 	if ((old_flags ^ flags) & IFF_MULTICAST)
8274 		dev_change_rx_flags(dev, IFF_MULTICAST);
8275 
8276 	dev_set_rx_mode(dev);
8277 
8278 	/*
8279 	 *	Have we downed the interface. We handle IFF_UP ourselves
8280 	 *	according to user attempts to set it, rather than blindly
8281 	 *	setting it.
8282 	 */
8283 
8284 	ret = 0;
8285 	if ((old_flags ^ flags) & IFF_UP) {
8286 		if (old_flags & IFF_UP)
8287 			__dev_close(dev);
8288 		else
8289 			ret = __dev_open(dev, extack);
8290 	}
8291 
8292 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8293 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8294 		unsigned int old_flags = dev->flags;
8295 
8296 		dev->gflags ^= IFF_PROMISC;
8297 
8298 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8299 			if (dev->flags != old_flags)
8300 				dev_set_rx_mode(dev);
8301 	}
8302 
8303 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8304 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8305 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8306 	 */
8307 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8308 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8309 
8310 		dev->gflags ^= IFF_ALLMULTI;
8311 		__dev_set_allmulti(dev, inc, false);
8312 	}
8313 
8314 	return ret;
8315 }
8316 
8317 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8318 			unsigned int gchanges)
8319 {
8320 	unsigned int changes = dev->flags ^ old_flags;
8321 
8322 	if (gchanges)
8323 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8324 
8325 	if (changes & IFF_UP) {
8326 		if (dev->flags & IFF_UP)
8327 			call_netdevice_notifiers(NETDEV_UP, dev);
8328 		else
8329 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8330 	}
8331 
8332 	if (dev->flags & IFF_UP &&
8333 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8334 		struct netdev_notifier_change_info change_info = {
8335 			.info = {
8336 				.dev = dev,
8337 			},
8338 			.flags_changed = changes,
8339 		};
8340 
8341 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8342 	}
8343 }
8344 
8345 /**
8346  *	dev_change_flags - change device settings
8347  *	@dev: device
8348  *	@flags: device state flags
8349  *	@extack: netlink extended ack
8350  *
8351  *	Change settings on device based state flags. The flags are
8352  *	in the userspace exported format.
8353  */
8354 int dev_change_flags(struct net_device *dev, unsigned int flags,
8355 		     struct netlink_ext_ack *extack)
8356 {
8357 	int ret;
8358 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8359 
8360 	ret = __dev_change_flags(dev, flags, extack);
8361 	if (ret < 0)
8362 		return ret;
8363 
8364 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8365 	__dev_notify_flags(dev, old_flags, changes);
8366 	return ret;
8367 }
8368 EXPORT_SYMBOL(dev_change_flags);
8369 
8370 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8371 {
8372 	const struct net_device_ops *ops = dev->netdev_ops;
8373 
8374 	if (ops->ndo_change_mtu)
8375 		return ops->ndo_change_mtu(dev, new_mtu);
8376 
8377 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8378 	WRITE_ONCE(dev->mtu, new_mtu);
8379 	return 0;
8380 }
8381 EXPORT_SYMBOL(__dev_set_mtu);
8382 
8383 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8384 		     struct netlink_ext_ack *extack)
8385 {
8386 	/* MTU must be positive, and in range */
8387 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8388 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8389 		return -EINVAL;
8390 	}
8391 
8392 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8393 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8394 		return -EINVAL;
8395 	}
8396 	return 0;
8397 }
8398 
8399 /**
8400  *	dev_set_mtu_ext - Change maximum transfer unit
8401  *	@dev: device
8402  *	@new_mtu: new transfer unit
8403  *	@extack: netlink extended ack
8404  *
8405  *	Change the maximum transfer size of the network device.
8406  */
8407 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8408 		    struct netlink_ext_ack *extack)
8409 {
8410 	int err, orig_mtu;
8411 
8412 	if (new_mtu == dev->mtu)
8413 		return 0;
8414 
8415 	err = dev_validate_mtu(dev, new_mtu, extack);
8416 	if (err)
8417 		return err;
8418 
8419 	if (!netif_device_present(dev))
8420 		return -ENODEV;
8421 
8422 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8423 	err = notifier_to_errno(err);
8424 	if (err)
8425 		return err;
8426 
8427 	orig_mtu = dev->mtu;
8428 	err = __dev_set_mtu(dev, new_mtu);
8429 
8430 	if (!err) {
8431 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8432 						   orig_mtu);
8433 		err = notifier_to_errno(err);
8434 		if (err) {
8435 			/* setting mtu back and notifying everyone again,
8436 			 * so that they have a chance to revert changes.
8437 			 */
8438 			__dev_set_mtu(dev, orig_mtu);
8439 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8440 						     new_mtu);
8441 		}
8442 	}
8443 	return err;
8444 }
8445 
8446 int dev_set_mtu(struct net_device *dev, int new_mtu)
8447 {
8448 	struct netlink_ext_ack extack;
8449 	int err;
8450 
8451 	memset(&extack, 0, sizeof(extack));
8452 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8453 	if (err && extack._msg)
8454 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8455 	return err;
8456 }
8457 EXPORT_SYMBOL(dev_set_mtu);
8458 
8459 /**
8460  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8461  *	@dev: device
8462  *	@new_len: new tx queue length
8463  */
8464 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8465 {
8466 	unsigned int orig_len = dev->tx_queue_len;
8467 	int res;
8468 
8469 	if (new_len != (unsigned int)new_len)
8470 		return -ERANGE;
8471 
8472 	if (new_len != orig_len) {
8473 		dev->tx_queue_len = new_len;
8474 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8475 		res = notifier_to_errno(res);
8476 		if (res)
8477 			goto err_rollback;
8478 		res = dev_qdisc_change_tx_queue_len(dev);
8479 		if (res)
8480 			goto err_rollback;
8481 	}
8482 
8483 	return 0;
8484 
8485 err_rollback:
8486 	netdev_err(dev, "refused to change device tx_queue_len\n");
8487 	dev->tx_queue_len = orig_len;
8488 	return res;
8489 }
8490 
8491 /**
8492  *	dev_set_group - Change group this device belongs to
8493  *	@dev: device
8494  *	@new_group: group this device should belong to
8495  */
8496 void dev_set_group(struct net_device *dev, int new_group)
8497 {
8498 	dev->group = new_group;
8499 }
8500 EXPORT_SYMBOL(dev_set_group);
8501 
8502 /**
8503  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8504  *	@dev: device
8505  *	@addr: new address
8506  *	@extack: netlink extended ack
8507  */
8508 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8509 			      struct netlink_ext_ack *extack)
8510 {
8511 	struct netdev_notifier_pre_changeaddr_info info = {
8512 		.info.dev = dev,
8513 		.info.extack = extack,
8514 		.dev_addr = addr,
8515 	};
8516 	int rc;
8517 
8518 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8519 	return notifier_to_errno(rc);
8520 }
8521 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8522 
8523 /**
8524  *	dev_set_mac_address - Change Media Access Control Address
8525  *	@dev: device
8526  *	@sa: new address
8527  *	@extack: netlink extended ack
8528  *
8529  *	Change the hardware (MAC) address of the device
8530  */
8531 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8532 			struct netlink_ext_ack *extack)
8533 {
8534 	const struct net_device_ops *ops = dev->netdev_ops;
8535 	int err;
8536 
8537 	if (!ops->ndo_set_mac_address)
8538 		return -EOPNOTSUPP;
8539 	if (sa->sa_family != dev->type)
8540 		return -EINVAL;
8541 	if (!netif_device_present(dev))
8542 		return -ENODEV;
8543 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8544 	if (err)
8545 		return err;
8546 	err = ops->ndo_set_mac_address(dev, sa);
8547 	if (err)
8548 		return err;
8549 	dev->addr_assign_type = NET_ADDR_SET;
8550 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8551 	add_device_randomness(dev->dev_addr, dev->addr_len);
8552 	return 0;
8553 }
8554 EXPORT_SYMBOL(dev_set_mac_address);
8555 
8556 /**
8557  *	dev_change_carrier - Change device carrier
8558  *	@dev: device
8559  *	@new_carrier: new value
8560  *
8561  *	Change device carrier
8562  */
8563 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8564 {
8565 	const struct net_device_ops *ops = dev->netdev_ops;
8566 
8567 	if (!ops->ndo_change_carrier)
8568 		return -EOPNOTSUPP;
8569 	if (!netif_device_present(dev))
8570 		return -ENODEV;
8571 	return ops->ndo_change_carrier(dev, new_carrier);
8572 }
8573 EXPORT_SYMBOL(dev_change_carrier);
8574 
8575 /**
8576  *	dev_get_phys_port_id - Get device physical port ID
8577  *	@dev: device
8578  *	@ppid: port ID
8579  *
8580  *	Get device physical port ID
8581  */
8582 int dev_get_phys_port_id(struct net_device *dev,
8583 			 struct netdev_phys_item_id *ppid)
8584 {
8585 	const struct net_device_ops *ops = dev->netdev_ops;
8586 
8587 	if (!ops->ndo_get_phys_port_id)
8588 		return -EOPNOTSUPP;
8589 	return ops->ndo_get_phys_port_id(dev, ppid);
8590 }
8591 EXPORT_SYMBOL(dev_get_phys_port_id);
8592 
8593 /**
8594  *	dev_get_phys_port_name - Get device physical port name
8595  *	@dev: device
8596  *	@name: port name
8597  *	@len: limit of bytes to copy to name
8598  *
8599  *	Get device physical port name
8600  */
8601 int dev_get_phys_port_name(struct net_device *dev,
8602 			   char *name, size_t len)
8603 {
8604 	const struct net_device_ops *ops = dev->netdev_ops;
8605 	int err;
8606 
8607 	if (ops->ndo_get_phys_port_name) {
8608 		err = ops->ndo_get_phys_port_name(dev, name, len);
8609 		if (err != -EOPNOTSUPP)
8610 			return err;
8611 	}
8612 	return devlink_compat_phys_port_name_get(dev, name, len);
8613 }
8614 EXPORT_SYMBOL(dev_get_phys_port_name);
8615 
8616 /**
8617  *	dev_get_port_parent_id - Get the device's port parent identifier
8618  *	@dev: network device
8619  *	@ppid: pointer to a storage for the port's parent identifier
8620  *	@recurse: allow/disallow recursion to lower devices
8621  *
8622  *	Get the devices's port parent identifier
8623  */
8624 int dev_get_port_parent_id(struct net_device *dev,
8625 			   struct netdev_phys_item_id *ppid,
8626 			   bool recurse)
8627 {
8628 	const struct net_device_ops *ops = dev->netdev_ops;
8629 	struct netdev_phys_item_id first = { };
8630 	struct net_device *lower_dev;
8631 	struct list_head *iter;
8632 	int err;
8633 
8634 	if (ops->ndo_get_port_parent_id) {
8635 		err = ops->ndo_get_port_parent_id(dev, ppid);
8636 		if (err != -EOPNOTSUPP)
8637 			return err;
8638 	}
8639 
8640 	err = devlink_compat_switch_id_get(dev, ppid);
8641 	if (!err || err != -EOPNOTSUPP)
8642 		return err;
8643 
8644 	if (!recurse)
8645 		return -EOPNOTSUPP;
8646 
8647 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8648 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8649 		if (err)
8650 			break;
8651 		if (!first.id_len)
8652 			first = *ppid;
8653 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8654 			return -ENODATA;
8655 	}
8656 
8657 	return err;
8658 }
8659 EXPORT_SYMBOL(dev_get_port_parent_id);
8660 
8661 /**
8662  *	netdev_port_same_parent_id - Indicate if two network devices have
8663  *	the same port parent identifier
8664  *	@a: first network device
8665  *	@b: second network device
8666  */
8667 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8668 {
8669 	struct netdev_phys_item_id a_id = { };
8670 	struct netdev_phys_item_id b_id = { };
8671 
8672 	if (dev_get_port_parent_id(a, &a_id, true) ||
8673 	    dev_get_port_parent_id(b, &b_id, true))
8674 		return false;
8675 
8676 	return netdev_phys_item_id_same(&a_id, &b_id);
8677 }
8678 EXPORT_SYMBOL(netdev_port_same_parent_id);
8679 
8680 /**
8681  *	dev_change_proto_down - update protocol port state information
8682  *	@dev: device
8683  *	@proto_down: new value
8684  *
8685  *	This info can be used by switch drivers to set the phys state of the
8686  *	port.
8687  */
8688 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8689 {
8690 	const struct net_device_ops *ops = dev->netdev_ops;
8691 
8692 	if (!ops->ndo_change_proto_down)
8693 		return -EOPNOTSUPP;
8694 	if (!netif_device_present(dev))
8695 		return -ENODEV;
8696 	return ops->ndo_change_proto_down(dev, proto_down);
8697 }
8698 EXPORT_SYMBOL(dev_change_proto_down);
8699 
8700 /**
8701  *	dev_change_proto_down_generic - generic implementation for
8702  * 	ndo_change_proto_down that sets carrier according to
8703  * 	proto_down.
8704  *
8705  *	@dev: device
8706  *	@proto_down: new value
8707  */
8708 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8709 {
8710 	if (proto_down)
8711 		netif_carrier_off(dev);
8712 	else
8713 		netif_carrier_on(dev);
8714 	dev->proto_down = proto_down;
8715 	return 0;
8716 }
8717 EXPORT_SYMBOL(dev_change_proto_down_generic);
8718 
8719 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8720 		    enum bpf_netdev_command cmd)
8721 {
8722 	struct netdev_bpf xdp;
8723 
8724 	if (!bpf_op)
8725 		return 0;
8726 
8727 	memset(&xdp, 0, sizeof(xdp));
8728 	xdp.command = cmd;
8729 
8730 	/* Query must always succeed. */
8731 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8732 
8733 	return xdp.prog_id;
8734 }
8735 
8736 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8737 			   struct netlink_ext_ack *extack, u32 flags,
8738 			   struct bpf_prog *prog)
8739 {
8740 	bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8741 	struct bpf_prog *prev_prog = NULL;
8742 	struct netdev_bpf xdp;
8743 	int err;
8744 
8745 	if (non_hw) {
8746 		prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8747 							   XDP_QUERY_PROG));
8748 		if (IS_ERR(prev_prog))
8749 			prev_prog = NULL;
8750 	}
8751 
8752 	memset(&xdp, 0, sizeof(xdp));
8753 	if (flags & XDP_FLAGS_HW_MODE)
8754 		xdp.command = XDP_SETUP_PROG_HW;
8755 	else
8756 		xdp.command = XDP_SETUP_PROG;
8757 	xdp.extack = extack;
8758 	xdp.flags = flags;
8759 	xdp.prog = prog;
8760 
8761 	err = bpf_op(dev, &xdp);
8762 	if (!err && non_hw)
8763 		bpf_prog_change_xdp(prev_prog, prog);
8764 
8765 	if (prev_prog)
8766 		bpf_prog_put(prev_prog);
8767 
8768 	return err;
8769 }
8770 
8771 static void dev_xdp_uninstall(struct net_device *dev)
8772 {
8773 	struct netdev_bpf xdp;
8774 	bpf_op_t ndo_bpf;
8775 
8776 	/* Remove generic XDP */
8777 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8778 
8779 	/* Remove from the driver */
8780 	ndo_bpf = dev->netdev_ops->ndo_bpf;
8781 	if (!ndo_bpf)
8782 		return;
8783 
8784 	memset(&xdp, 0, sizeof(xdp));
8785 	xdp.command = XDP_QUERY_PROG;
8786 	WARN_ON(ndo_bpf(dev, &xdp));
8787 	if (xdp.prog_id)
8788 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8789 					NULL));
8790 
8791 	/* Remove HW offload */
8792 	memset(&xdp, 0, sizeof(xdp));
8793 	xdp.command = XDP_QUERY_PROG_HW;
8794 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8795 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8796 					NULL));
8797 }
8798 
8799 /**
8800  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
8801  *	@dev: device
8802  *	@extack: netlink extended ack
8803  *	@fd: new program fd or negative value to clear
8804  *	@expected_fd: old program fd that userspace expects to replace or clear
8805  *	@flags: xdp-related flags
8806  *
8807  *	Set or clear a bpf program for a device
8808  */
8809 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8810 		      int fd, int expected_fd, u32 flags)
8811 {
8812 	const struct net_device_ops *ops = dev->netdev_ops;
8813 	enum bpf_netdev_command query;
8814 	u32 prog_id, expected_id = 0;
8815 	bpf_op_t bpf_op, bpf_chk;
8816 	struct bpf_prog *prog;
8817 	bool offload;
8818 	int err;
8819 
8820 	ASSERT_RTNL();
8821 
8822 	offload = flags & XDP_FLAGS_HW_MODE;
8823 	query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8824 
8825 	bpf_op = bpf_chk = ops->ndo_bpf;
8826 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8827 		NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8828 		return -EOPNOTSUPP;
8829 	}
8830 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8831 		bpf_op = generic_xdp_install;
8832 	if (bpf_op == bpf_chk)
8833 		bpf_chk = generic_xdp_install;
8834 
8835 	prog_id = __dev_xdp_query(dev, bpf_op, query);
8836 	if (flags & XDP_FLAGS_REPLACE) {
8837 		if (expected_fd >= 0) {
8838 			prog = bpf_prog_get_type_dev(expected_fd,
8839 						     BPF_PROG_TYPE_XDP,
8840 						     bpf_op == ops->ndo_bpf);
8841 			if (IS_ERR(prog))
8842 				return PTR_ERR(prog);
8843 			expected_id = prog->aux->id;
8844 			bpf_prog_put(prog);
8845 		}
8846 
8847 		if (prog_id != expected_id) {
8848 			NL_SET_ERR_MSG(extack, "Active program does not match expected");
8849 			return -EEXIST;
8850 		}
8851 	}
8852 	if (fd >= 0) {
8853 		if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8854 			NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8855 			return -EEXIST;
8856 		}
8857 
8858 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8859 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8860 			return -EBUSY;
8861 		}
8862 
8863 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8864 					     bpf_op == ops->ndo_bpf);
8865 		if (IS_ERR(prog))
8866 			return PTR_ERR(prog);
8867 
8868 		if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8869 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8870 			bpf_prog_put(prog);
8871 			return -EINVAL;
8872 		}
8873 
8874 		if (prog->expected_attach_type == BPF_XDP_DEVMAP) {
8875 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
8876 			bpf_prog_put(prog);
8877 			return -EINVAL;
8878 		}
8879 
8880 		if (prog->expected_attach_type == BPF_XDP_CPUMAP) {
8881 			NL_SET_ERR_MSG(extack,
8882 				       "BPF_XDP_CPUMAP programs can not be attached to a device");
8883 			bpf_prog_put(prog);
8884 			return -EINVAL;
8885 		}
8886 
8887 		/* prog->aux->id may be 0 for orphaned device-bound progs */
8888 		if (prog->aux->id && prog->aux->id == prog_id) {
8889 			bpf_prog_put(prog);
8890 			return 0;
8891 		}
8892 	} else {
8893 		if (!prog_id)
8894 			return 0;
8895 		prog = NULL;
8896 	}
8897 
8898 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8899 	if (err < 0 && prog)
8900 		bpf_prog_put(prog);
8901 
8902 	return err;
8903 }
8904 
8905 /**
8906  *	dev_new_index	-	allocate an ifindex
8907  *	@net: the applicable net namespace
8908  *
8909  *	Returns a suitable unique value for a new device interface
8910  *	number.  The caller must hold the rtnl semaphore or the
8911  *	dev_base_lock to be sure it remains unique.
8912  */
8913 static int dev_new_index(struct net *net)
8914 {
8915 	int ifindex = net->ifindex;
8916 
8917 	for (;;) {
8918 		if (++ifindex <= 0)
8919 			ifindex = 1;
8920 		if (!__dev_get_by_index(net, ifindex))
8921 			return net->ifindex = ifindex;
8922 	}
8923 }
8924 
8925 /* Delayed registration/unregisteration */
8926 static LIST_HEAD(net_todo_list);
8927 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8928 
8929 static void net_set_todo(struct net_device *dev)
8930 {
8931 	list_add_tail(&dev->todo_list, &net_todo_list);
8932 	dev_net(dev)->dev_unreg_count++;
8933 }
8934 
8935 static void rollback_registered_many(struct list_head *head)
8936 {
8937 	struct net_device *dev, *tmp;
8938 	LIST_HEAD(close_head);
8939 
8940 	BUG_ON(dev_boot_phase);
8941 	ASSERT_RTNL();
8942 
8943 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8944 		/* Some devices call without registering
8945 		 * for initialization unwind. Remove those
8946 		 * devices and proceed with the remaining.
8947 		 */
8948 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8949 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8950 				 dev->name, dev);
8951 
8952 			WARN_ON(1);
8953 			list_del(&dev->unreg_list);
8954 			continue;
8955 		}
8956 		dev->dismantle = true;
8957 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8958 	}
8959 
8960 	/* If device is running, close it first. */
8961 	list_for_each_entry(dev, head, unreg_list)
8962 		list_add_tail(&dev->close_list, &close_head);
8963 	dev_close_many(&close_head, true);
8964 
8965 	list_for_each_entry(dev, head, unreg_list) {
8966 		/* And unlink it from device chain. */
8967 		unlist_netdevice(dev);
8968 
8969 		dev->reg_state = NETREG_UNREGISTERING;
8970 	}
8971 	flush_all_backlogs();
8972 
8973 	synchronize_net();
8974 
8975 	list_for_each_entry(dev, head, unreg_list) {
8976 		struct sk_buff *skb = NULL;
8977 
8978 		/* Shutdown queueing discipline. */
8979 		dev_shutdown(dev);
8980 
8981 		dev_xdp_uninstall(dev);
8982 
8983 		/* Notify protocols, that we are about to destroy
8984 		 * this device. They should clean all the things.
8985 		 */
8986 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8987 
8988 		if (!dev->rtnl_link_ops ||
8989 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8990 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8991 						     GFP_KERNEL, NULL, 0);
8992 
8993 		/*
8994 		 *	Flush the unicast and multicast chains
8995 		 */
8996 		dev_uc_flush(dev);
8997 		dev_mc_flush(dev);
8998 
8999 		netdev_name_node_alt_flush(dev);
9000 		netdev_name_node_free(dev->name_node);
9001 
9002 		if (dev->netdev_ops->ndo_uninit)
9003 			dev->netdev_ops->ndo_uninit(dev);
9004 
9005 		if (skb)
9006 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
9007 
9008 		/* Notifier chain MUST detach us all upper devices. */
9009 		WARN_ON(netdev_has_any_upper_dev(dev));
9010 		WARN_ON(netdev_has_any_lower_dev(dev));
9011 
9012 		/* Remove entries from kobject tree */
9013 		netdev_unregister_kobject(dev);
9014 #ifdef CONFIG_XPS
9015 		/* Remove XPS queueing entries */
9016 		netif_reset_xps_queues_gt(dev, 0);
9017 #endif
9018 	}
9019 
9020 	synchronize_net();
9021 
9022 	list_for_each_entry(dev, head, unreg_list)
9023 		dev_put(dev);
9024 }
9025 
9026 static void rollback_registered(struct net_device *dev)
9027 {
9028 	LIST_HEAD(single);
9029 
9030 	list_add(&dev->unreg_list, &single);
9031 	rollback_registered_many(&single);
9032 	list_del(&single);
9033 }
9034 
9035 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9036 	struct net_device *upper, netdev_features_t features)
9037 {
9038 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9039 	netdev_features_t feature;
9040 	int feature_bit;
9041 
9042 	for_each_netdev_feature(upper_disables, feature_bit) {
9043 		feature = __NETIF_F_BIT(feature_bit);
9044 		if (!(upper->wanted_features & feature)
9045 		    && (features & feature)) {
9046 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9047 				   &feature, upper->name);
9048 			features &= ~feature;
9049 		}
9050 	}
9051 
9052 	return features;
9053 }
9054 
9055 static void netdev_sync_lower_features(struct net_device *upper,
9056 	struct net_device *lower, netdev_features_t features)
9057 {
9058 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9059 	netdev_features_t feature;
9060 	int feature_bit;
9061 
9062 	for_each_netdev_feature(upper_disables, feature_bit) {
9063 		feature = __NETIF_F_BIT(feature_bit);
9064 		if (!(features & feature) && (lower->features & feature)) {
9065 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9066 				   &feature, lower->name);
9067 			lower->wanted_features &= ~feature;
9068 			__netdev_update_features(lower);
9069 
9070 			if (unlikely(lower->features & feature))
9071 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9072 					    &feature, lower->name);
9073 			else
9074 				netdev_features_change(lower);
9075 		}
9076 	}
9077 }
9078 
9079 static netdev_features_t netdev_fix_features(struct net_device *dev,
9080 	netdev_features_t features)
9081 {
9082 	/* Fix illegal checksum combinations */
9083 	if ((features & NETIF_F_HW_CSUM) &&
9084 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9085 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9086 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9087 	}
9088 
9089 	/* TSO requires that SG is present as well. */
9090 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9091 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9092 		features &= ~NETIF_F_ALL_TSO;
9093 	}
9094 
9095 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9096 					!(features & NETIF_F_IP_CSUM)) {
9097 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9098 		features &= ~NETIF_F_TSO;
9099 		features &= ~NETIF_F_TSO_ECN;
9100 	}
9101 
9102 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9103 					 !(features & NETIF_F_IPV6_CSUM)) {
9104 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9105 		features &= ~NETIF_F_TSO6;
9106 	}
9107 
9108 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9109 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9110 		features &= ~NETIF_F_TSO_MANGLEID;
9111 
9112 	/* TSO ECN requires that TSO is present as well. */
9113 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9114 		features &= ~NETIF_F_TSO_ECN;
9115 
9116 	/* Software GSO depends on SG. */
9117 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9118 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9119 		features &= ~NETIF_F_GSO;
9120 	}
9121 
9122 	/* GSO partial features require GSO partial be set */
9123 	if ((features & dev->gso_partial_features) &&
9124 	    !(features & NETIF_F_GSO_PARTIAL)) {
9125 		netdev_dbg(dev,
9126 			   "Dropping partially supported GSO features since no GSO partial.\n");
9127 		features &= ~dev->gso_partial_features;
9128 	}
9129 
9130 	if (!(features & NETIF_F_RXCSUM)) {
9131 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9132 		 * successfully merged by hardware must also have the
9133 		 * checksum verified by hardware.  If the user does not
9134 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9135 		 */
9136 		if (features & NETIF_F_GRO_HW) {
9137 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9138 			features &= ~NETIF_F_GRO_HW;
9139 		}
9140 	}
9141 
9142 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9143 	if (features & NETIF_F_RXFCS) {
9144 		if (features & NETIF_F_LRO) {
9145 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9146 			features &= ~NETIF_F_LRO;
9147 		}
9148 
9149 		if (features & NETIF_F_GRO_HW) {
9150 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9151 			features &= ~NETIF_F_GRO_HW;
9152 		}
9153 	}
9154 
9155 	return features;
9156 }
9157 
9158 int __netdev_update_features(struct net_device *dev)
9159 {
9160 	struct net_device *upper, *lower;
9161 	netdev_features_t features;
9162 	struct list_head *iter;
9163 	int err = -1;
9164 
9165 	ASSERT_RTNL();
9166 
9167 	features = netdev_get_wanted_features(dev);
9168 
9169 	if (dev->netdev_ops->ndo_fix_features)
9170 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9171 
9172 	/* driver might be less strict about feature dependencies */
9173 	features = netdev_fix_features(dev, features);
9174 
9175 	/* some features can't be enabled if they're off an an upper device */
9176 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9177 		features = netdev_sync_upper_features(dev, upper, features);
9178 
9179 	if (dev->features == features)
9180 		goto sync_lower;
9181 
9182 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9183 		&dev->features, &features);
9184 
9185 	if (dev->netdev_ops->ndo_set_features)
9186 		err = dev->netdev_ops->ndo_set_features(dev, features);
9187 	else
9188 		err = 0;
9189 
9190 	if (unlikely(err < 0)) {
9191 		netdev_err(dev,
9192 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9193 			err, &features, &dev->features);
9194 		/* return non-0 since some features might have changed and
9195 		 * it's better to fire a spurious notification than miss it
9196 		 */
9197 		return -1;
9198 	}
9199 
9200 sync_lower:
9201 	/* some features must be disabled on lower devices when disabled
9202 	 * on an upper device (think: bonding master or bridge)
9203 	 */
9204 	netdev_for_each_lower_dev(dev, lower, iter)
9205 		netdev_sync_lower_features(dev, lower, features);
9206 
9207 	if (!err) {
9208 		netdev_features_t diff = features ^ dev->features;
9209 
9210 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9211 			/* udp_tunnel_{get,drop}_rx_info both need
9212 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9213 			 * device, or they won't do anything.
9214 			 * Thus we need to update dev->features
9215 			 * *before* calling udp_tunnel_get_rx_info,
9216 			 * but *after* calling udp_tunnel_drop_rx_info.
9217 			 */
9218 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9219 				dev->features = features;
9220 				udp_tunnel_get_rx_info(dev);
9221 			} else {
9222 				udp_tunnel_drop_rx_info(dev);
9223 			}
9224 		}
9225 
9226 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9227 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9228 				dev->features = features;
9229 				err |= vlan_get_rx_ctag_filter_info(dev);
9230 			} else {
9231 				vlan_drop_rx_ctag_filter_info(dev);
9232 			}
9233 		}
9234 
9235 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9236 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9237 				dev->features = features;
9238 				err |= vlan_get_rx_stag_filter_info(dev);
9239 			} else {
9240 				vlan_drop_rx_stag_filter_info(dev);
9241 			}
9242 		}
9243 
9244 		dev->features = features;
9245 	}
9246 
9247 	return err < 0 ? 0 : 1;
9248 }
9249 
9250 /**
9251  *	netdev_update_features - recalculate device features
9252  *	@dev: the device to check
9253  *
9254  *	Recalculate dev->features set and send notifications if it
9255  *	has changed. Should be called after driver or hardware dependent
9256  *	conditions might have changed that influence the features.
9257  */
9258 void netdev_update_features(struct net_device *dev)
9259 {
9260 	if (__netdev_update_features(dev))
9261 		netdev_features_change(dev);
9262 }
9263 EXPORT_SYMBOL(netdev_update_features);
9264 
9265 /**
9266  *	netdev_change_features - recalculate device features
9267  *	@dev: the device to check
9268  *
9269  *	Recalculate dev->features set and send notifications even
9270  *	if they have not changed. Should be called instead of
9271  *	netdev_update_features() if also dev->vlan_features might
9272  *	have changed to allow the changes to be propagated to stacked
9273  *	VLAN devices.
9274  */
9275 void netdev_change_features(struct net_device *dev)
9276 {
9277 	__netdev_update_features(dev);
9278 	netdev_features_change(dev);
9279 }
9280 EXPORT_SYMBOL(netdev_change_features);
9281 
9282 /**
9283  *	netif_stacked_transfer_operstate -	transfer operstate
9284  *	@rootdev: the root or lower level device to transfer state from
9285  *	@dev: the device to transfer operstate to
9286  *
9287  *	Transfer operational state from root to device. This is normally
9288  *	called when a stacking relationship exists between the root
9289  *	device and the device(a leaf device).
9290  */
9291 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9292 					struct net_device *dev)
9293 {
9294 	if (rootdev->operstate == IF_OPER_DORMANT)
9295 		netif_dormant_on(dev);
9296 	else
9297 		netif_dormant_off(dev);
9298 
9299 	if (rootdev->operstate == IF_OPER_TESTING)
9300 		netif_testing_on(dev);
9301 	else
9302 		netif_testing_off(dev);
9303 
9304 	if (netif_carrier_ok(rootdev))
9305 		netif_carrier_on(dev);
9306 	else
9307 		netif_carrier_off(dev);
9308 }
9309 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9310 
9311 static int netif_alloc_rx_queues(struct net_device *dev)
9312 {
9313 	unsigned int i, count = dev->num_rx_queues;
9314 	struct netdev_rx_queue *rx;
9315 	size_t sz = count * sizeof(*rx);
9316 	int err = 0;
9317 
9318 	BUG_ON(count < 1);
9319 
9320 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9321 	if (!rx)
9322 		return -ENOMEM;
9323 
9324 	dev->_rx = rx;
9325 
9326 	for (i = 0; i < count; i++) {
9327 		rx[i].dev = dev;
9328 
9329 		/* XDP RX-queue setup */
9330 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9331 		if (err < 0)
9332 			goto err_rxq_info;
9333 	}
9334 	return 0;
9335 
9336 err_rxq_info:
9337 	/* Rollback successful reg's and free other resources */
9338 	while (i--)
9339 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9340 	kvfree(dev->_rx);
9341 	dev->_rx = NULL;
9342 	return err;
9343 }
9344 
9345 static void netif_free_rx_queues(struct net_device *dev)
9346 {
9347 	unsigned int i, count = dev->num_rx_queues;
9348 
9349 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9350 	if (!dev->_rx)
9351 		return;
9352 
9353 	for (i = 0; i < count; i++)
9354 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9355 
9356 	kvfree(dev->_rx);
9357 }
9358 
9359 static void netdev_init_one_queue(struct net_device *dev,
9360 				  struct netdev_queue *queue, void *_unused)
9361 {
9362 	/* Initialize queue lock */
9363 	spin_lock_init(&queue->_xmit_lock);
9364 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9365 	queue->xmit_lock_owner = -1;
9366 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9367 	queue->dev = dev;
9368 #ifdef CONFIG_BQL
9369 	dql_init(&queue->dql, HZ);
9370 #endif
9371 }
9372 
9373 static void netif_free_tx_queues(struct net_device *dev)
9374 {
9375 	kvfree(dev->_tx);
9376 }
9377 
9378 static int netif_alloc_netdev_queues(struct net_device *dev)
9379 {
9380 	unsigned int count = dev->num_tx_queues;
9381 	struct netdev_queue *tx;
9382 	size_t sz = count * sizeof(*tx);
9383 
9384 	if (count < 1 || count > 0xffff)
9385 		return -EINVAL;
9386 
9387 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9388 	if (!tx)
9389 		return -ENOMEM;
9390 
9391 	dev->_tx = tx;
9392 
9393 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9394 	spin_lock_init(&dev->tx_global_lock);
9395 
9396 	return 0;
9397 }
9398 
9399 void netif_tx_stop_all_queues(struct net_device *dev)
9400 {
9401 	unsigned int i;
9402 
9403 	for (i = 0; i < dev->num_tx_queues; i++) {
9404 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9405 
9406 		netif_tx_stop_queue(txq);
9407 	}
9408 }
9409 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9410 
9411 /**
9412  *	register_netdevice	- register a network device
9413  *	@dev: device to register
9414  *
9415  *	Take a completed network device structure and add it to the kernel
9416  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9417  *	chain. 0 is returned on success. A negative errno code is returned
9418  *	on a failure to set up the device, or if the name is a duplicate.
9419  *
9420  *	Callers must hold the rtnl semaphore. You may want
9421  *	register_netdev() instead of this.
9422  *
9423  *	BUGS:
9424  *	The locking appears insufficient to guarantee two parallel registers
9425  *	will not get the same name.
9426  */
9427 
9428 int register_netdevice(struct net_device *dev)
9429 {
9430 	int ret;
9431 	struct net *net = dev_net(dev);
9432 
9433 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9434 		     NETDEV_FEATURE_COUNT);
9435 	BUG_ON(dev_boot_phase);
9436 	ASSERT_RTNL();
9437 
9438 	might_sleep();
9439 
9440 	/* When net_device's are persistent, this will be fatal. */
9441 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9442 	BUG_ON(!net);
9443 
9444 	ret = ethtool_check_ops(dev->ethtool_ops);
9445 	if (ret)
9446 		return ret;
9447 
9448 	spin_lock_init(&dev->addr_list_lock);
9449 	netdev_set_addr_lockdep_class(dev);
9450 
9451 	ret = dev_get_valid_name(net, dev, dev->name);
9452 	if (ret < 0)
9453 		goto out;
9454 
9455 	ret = -ENOMEM;
9456 	dev->name_node = netdev_name_node_head_alloc(dev);
9457 	if (!dev->name_node)
9458 		goto out;
9459 
9460 	/* Init, if this function is available */
9461 	if (dev->netdev_ops->ndo_init) {
9462 		ret = dev->netdev_ops->ndo_init(dev);
9463 		if (ret) {
9464 			if (ret > 0)
9465 				ret = -EIO;
9466 			goto err_free_name;
9467 		}
9468 	}
9469 
9470 	if (((dev->hw_features | dev->features) &
9471 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9472 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9473 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9474 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9475 		ret = -EINVAL;
9476 		goto err_uninit;
9477 	}
9478 
9479 	ret = -EBUSY;
9480 	if (!dev->ifindex)
9481 		dev->ifindex = dev_new_index(net);
9482 	else if (__dev_get_by_index(net, dev->ifindex))
9483 		goto err_uninit;
9484 
9485 	/* Transfer changeable features to wanted_features and enable
9486 	 * software offloads (GSO and GRO).
9487 	 */
9488 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9489 	dev->features |= NETIF_F_SOFT_FEATURES;
9490 
9491 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
9492 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9493 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9494 	}
9495 
9496 	dev->wanted_features = dev->features & dev->hw_features;
9497 
9498 	if (!(dev->flags & IFF_LOOPBACK))
9499 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9500 
9501 	/* If IPv4 TCP segmentation offload is supported we should also
9502 	 * allow the device to enable segmenting the frame with the option
9503 	 * of ignoring a static IP ID value.  This doesn't enable the
9504 	 * feature itself but allows the user to enable it later.
9505 	 */
9506 	if (dev->hw_features & NETIF_F_TSO)
9507 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9508 	if (dev->vlan_features & NETIF_F_TSO)
9509 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9510 	if (dev->mpls_features & NETIF_F_TSO)
9511 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9512 	if (dev->hw_enc_features & NETIF_F_TSO)
9513 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9514 
9515 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9516 	 */
9517 	dev->vlan_features |= NETIF_F_HIGHDMA;
9518 
9519 	/* Make NETIF_F_SG inheritable to tunnel devices.
9520 	 */
9521 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9522 
9523 	/* Make NETIF_F_SG inheritable to MPLS.
9524 	 */
9525 	dev->mpls_features |= NETIF_F_SG;
9526 
9527 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9528 	ret = notifier_to_errno(ret);
9529 	if (ret)
9530 		goto err_uninit;
9531 
9532 	ret = netdev_register_kobject(dev);
9533 	if (ret) {
9534 		dev->reg_state = NETREG_UNREGISTERED;
9535 		goto err_uninit;
9536 	}
9537 	dev->reg_state = NETREG_REGISTERED;
9538 
9539 	__netdev_update_features(dev);
9540 
9541 	/*
9542 	 *	Default initial state at registry is that the
9543 	 *	device is present.
9544 	 */
9545 
9546 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9547 
9548 	linkwatch_init_dev(dev);
9549 
9550 	dev_init_scheduler(dev);
9551 	dev_hold(dev);
9552 	list_netdevice(dev);
9553 	add_device_randomness(dev->dev_addr, dev->addr_len);
9554 
9555 	/* If the device has permanent device address, driver should
9556 	 * set dev_addr and also addr_assign_type should be set to
9557 	 * NET_ADDR_PERM (default value).
9558 	 */
9559 	if (dev->addr_assign_type == NET_ADDR_PERM)
9560 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9561 
9562 	/* Notify protocols, that a new device appeared. */
9563 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9564 	ret = notifier_to_errno(ret);
9565 	if (ret) {
9566 		rollback_registered(dev);
9567 		rcu_barrier();
9568 
9569 		dev->reg_state = NETREG_UNREGISTERED;
9570 		/* We should put the kobject that hold in
9571 		 * netdev_unregister_kobject(), otherwise
9572 		 * the net device cannot be freed when
9573 		 * driver calls free_netdev(), because the
9574 		 * kobject is being hold.
9575 		 */
9576 		kobject_put(&dev->dev.kobj);
9577 	}
9578 	/*
9579 	 *	Prevent userspace races by waiting until the network
9580 	 *	device is fully setup before sending notifications.
9581 	 */
9582 	if (!dev->rtnl_link_ops ||
9583 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9584 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9585 
9586 out:
9587 	return ret;
9588 
9589 err_uninit:
9590 	if (dev->netdev_ops->ndo_uninit)
9591 		dev->netdev_ops->ndo_uninit(dev);
9592 	if (dev->priv_destructor)
9593 		dev->priv_destructor(dev);
9594 err_free_name:
9595 	netdev_name_node_free(dev->name_node);
9596 	goto out;
9597 }
9598 EXPORT_SYMBOL(register_netdevice);
9599 
9600 /**
9601  *	init_dummy_netdev	- init a dummy network device for NAPI
9602  *	@dev: device to init
9603  *
9604  *	This takes a network device structure and initialize the minimum
9605  *	amount of fields so it can be used to schedule NAPI polls without
9606  *	registering a full blown interface. This is to be used by drivers
9607  *	that need to tie several hardware interfaces to a single NAPI
9608  *	poll scheduler due to HW limitations.
9609  */
9610 int init_dummy_netdev(struct net_device *dev)
9611 {
9612 	/* Clear everything. Note we don't initialize spinlocks
9613 	 * are they aren't supposed to be taken by any of the
9614 	 * NAPI code and this dummy netdev is supposed to be
9615 	 * only ever used for NAPI polls
9616 	 */
9617 	memset(dev, 0, sizeof(struct net_device));
9618 
9619 	/* make sure we BUG if trying to hit standard
9620 	 * register/unregister code path
9621 	 */
9622 	dev->reg_state = NETREG_DUMMY;
9623 
9624 	/* NAPI wants this */
9625 	INIT_LIST_HEAD(&dev->napi_list);
9626 
9627 	/* a dummy interface is started by default */
9628 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9629 	set_bit(__LINK_STATE_START, &dev->state);
9630 
9631 	/* napi_busy_loop stats accounting wants this */
9632 	dev_net_set(dev, &init_net);
9633 
9634 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
9635 	 * because users of this 'device' dont need to change
9636 	 * its refcount.
9637 	 */
9638 
9639 	return 0;
9640 }
9641 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9642 
9643 
9644 /**
9645  *	register_netdev	- register a network device
9646  *	@dev: device to register
9647  *
9648  *	Take a completed network device structure and add it to the kernel
9649  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9650  *	chain. 0 is returned on success. A negative errno code is returned
9651  *	on a failure to set up the device, or if the name is a duplicate.
9652  *
9653  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
9654  *	and expands the device name if you passed a format string to
9655  *	alloc_netdev.
9656  */
9657 int register_netdev(struct net_device *dev)
9658 {
9659 	int err;
9660 
9661 	if (rtnl_lock_killable())
9662 		return -EINTR;
9663 	err = register_netdevice(dev);
9664 	rtnl_unlock();
9665 	return err;
9666 }
9667 EXPORT_SYMBOL(register_netdev);
9668 
9669 int netdev_refcnt_read(const struct net_device *dev)
9670 {
9671 	int i, refcnt = 0;
9672 
9673 	for_each_possible_cpu(i)
9674 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9675 	return refcnt;
9676 }
9677 EXPORT_SYMBOL(netdev_refcnt_read);
9678 
9679 /**
9680  * netdev_wait_allrefs - wait until all references are gone.
9681  * @dev: target net_device
9682  *
9683  * This is called when unregistering network devices.
9684  *
9685  * Any protocol or device that holds a reference should register
9686  * for netdevice notification, and cleanup and put back the
9687  * reference if they receive an UNREGISTER event.
9688  * We can get stuck here if buggy protocols don't correctly
9689  * call dev_put.
9690  */
9691 static void netdev_wait_allrefs(struct net_device *dev)
9692 {
9693 	unsigned long rebroadcast_time, warning_time;
9694 	int refcnt;
9695 
9696 	linkwatch_forget_dev(dev);
9697 
9698 	rebroadcast_time = warning_time = jiffies;
9699 	refcnt = netdev_refcnt_read(dev);
9700 
9701 	while (refcnt != 0) {
9702 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9703 			rtnl_lock();
9704 
9705 			/* Rebroadcast unregister notification */
9706 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9707 
9708 			__rtnl_unlock();
9709 			rcu_barrier();
9710 			rtnl_lock();
9711 
9712 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9713 				     &dev->state)) {
9714 				/* We must not have linkwatch events
9715 				 * pending on unregister. If this
9716 				 * happens, we simply run the queue
9717 				 * unscheduled, resulting in a noop
9718 				 * for this device.
9719 				 */
9720 				linkwatch_run_queue();
9721 			}
9722 
9723 			__rtnl_unlock();
9724 
9725 			rebroadcast_time = jiffies;
9726 		}
9727 
9728 		msleep(250);
9729 
9730 		refcnt = netdev_refcnt_read(dev);
9731 
9732 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9733 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9734 				 dev->name, refcnt);
9735 			warning_time = jiffies;
9736 		}
9737 	}
9738 }
9739 
9740 /* The sequence is:
9741  *
9742  *	rtnl_lock();
9743  *	...
9744  *	register_netdevice(x1);
9745  *	register_netdevice(x2);
9746  *	...
9747  *	unregister_netdevice(y1);
9748  *	unregister_netdevice(y2);
9749  *      ...
9750  *	rtnl_unlock();
9751  *	free_netdev(y1);
9752  *	free_netdev(y2);
9753  *
9754  * We are invoked by rtnl_unlock().
9755  * This allows us to deal with problems:
9756  * 1) We can delete sysfs objects which invoke hotplug
9757  *    without deadlocking with linkwatch via keventd.
9758  * 2) Since we run with the RTNL semaphore not held, we can sleep
9759  *    safely in order to wait for the netdev refcnt to drop to zero.
9760  *
9761  * We must not return until all unregister events added during
9762  * the interval the lock was held have been completed.
9763  */
9764 void netdev_run_todo(void)
9765 {
9766 	struct list_head list;
9767 
9768 	/* Snapshot list, allow later requests */
9769 	list_replace_init(&net_todo_list, &list);
9770 
9771 	__rtnl_unlock();
9772 
9773 
9774 	/* Wait for rcu callbacks to finish before next phase */
9775 	if (!list_empty(&list))
9776 		rcu_barrier();
9777 
9778 	while (!list_empty(&list)) {
9779 		struct net_device *dev
9780 			= list_first_entry(&list, struct net_device, todo_list);
9781 		list_del(&dev->todo_list);
9782 
9783 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9784 			pr_err("network todo '%s' but state %d\n",
9785 			       dev->name, dev->reg_state);
9786 			dump_stack();
9787 			continue;
9788 		}
9789 
9790 		dev->reg_state = NETREG_UNREGISTERED;
9791 
9792 		netdev_wait_allrefs(dev);
9793 
9794 		/* paranoia */
9795 		BUG_ON(netdev_refcnt_read(dev));
9796 		BUG_ON(!list_empty(&dev->ptype_all));
9797 		BUG_ON(!list_empty(&dev->ptype_specific));
9798 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
9799 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9800 #if IS_ENABLED(CONFIG_DECNET)
9801 		WARN_ON(dev->dn_ptr);
9802 #endif
9803 		if (dev->priv_destructor)
9804 			dev->priv_destructor(dev);
9805 		if (dev->needs_free_netdev)
9806 			free_netdev(dev);
9807 
9808 		/* Report a network device has been unregistered */
9809 		rtnl_lock();
9810 		dev_net(dev)->dev_unreg_count--;
9811 		__rtnl_unlock();
9812 		wake_up(&netdev_unregistering_wq);
9813 
9814 		/* Free network device */
9815 		kobject_put(&dev->dev.kobj);
9816 	}
9817 }
9818 
9819 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9820  * all the same fields in the same order as net_device_stats, with only
9821  * the type differing, but rtnl_link_stats64 may have additional fields
9822  * at the end for newer counters.
9823  */
9824 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9825 			     const struct net_device_stats *netdev_stats)
9826 {
9827 #if BITS_PER_LONG == 64
9828 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9829 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9830 	/* zero out counters that only exist in rtnl_link_stats64 */
9831 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9832 	       sizeof(*stats64) - sizeof(*netdev_stats));
9833 #else
9834 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9835 	const unsigned long *src = (const unsigned long *)netdev_stats;
9836 	u64 *dst = (u64 *)stats64;
9837 
9838 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9839 	for (i = 0; i < n; i++)
9840 		dst[i] = src[i];
9841 	/* zero out counters that only exist in rtnl_link_stats64 */
9842 	memset((char *)stats64 + n * sizeof(u64), 0,
9843 	       sizeof(*stats64) - n * sizeof(u64));
9844 #endif
9845 }
9846 EXPORT_SYMBOL(netdev_stats_to_stats64);
9847 
9848 /**
9849  *	dev_get_stats	- get network device statistics
9850  *	@dev: device to get statistics from
9851  *	@storage: place to store stats
9852  *
9853  *	Get network statistics from device. Return @storage.
9854  *	The device driver may provide its own method by setting
9855  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9856  *	otherwise the internal statistics structure is used.
9857  */
9858 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9859 					struct rtnl_link_stats64 *storage)
9860 {
9861 	const struct net_device_ops *ops = dev->netdev_ops;
9862 
9863 	if (ops->ndo_get_stats64) {
9864 		memset(storage, 0, sizeof(*storage));
9865 		ops->ndo_get_stats64(dev, storage);
9866 	} else if (ops->ndo_get_stats) {
9867 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9868 	} else {
9869 		netdev_stats_to_stats64(storage, &dev->stats);
9870 	}
9871 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9872 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9873 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9874 	return storage;
9875 }
9876 EXPORT_SYMBOL(dev_get_stats);
9877 
9878 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9879 {
9880 	struct netdev_queue *queue = dev_ingress_queue(dev);
9881 
9882 #ifdef CONFIG_NET_CLS_ACT
9883 	if (queue)
9884 		return queue;
9885 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9886 	if (!queue)
9887 		return NULL;
9888 	netdev_init_one_queue(dev, queue, NULL);
9889 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9890 	queue->qdisc_sleeping = &noop_qdisc;
9891 	rcu_assign_pointer(dev->ingress_queue, queue);
9892 #endif
9893 	return queue;
9894 }
9895 
9896 static const struct ethtool_ops default_ethtool_ops;
9897 
9898 void netdev_set_default_ethtool_ops(struct net_device *dev,
9899 				    const struct ethtool_ops *ops)
9900 {
9901 	if (dev->ethtool_ops == &default_ethtool_ops)
9902 		dev->ethtool_ops = ops;
9903 }
9904 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9905 
9906 void netdev_freemem(struct net_device *dev)
9907 {
9908 	char *addr = (char *)dev - dev->padded;
9909 
9910 	kvfree(addr);
9911 }
9912 
9913 /**
9914  * alloc_netdev_mqs - allocate network device
9915  * @sizeof_priv: size of private data to allocate space for
9916  * @name: device name format string
9917  * @name_assign_type: origin of device name
9918  * @setup: callback to initialize device
9919  * @txqs: the number of TX subqueues to allocate
9920  * @rxqs: the number of RX subqueues to allocate
9921  *
9922  * Allocates a struct net_device with private data area for driver use
9923  * and performs basic initialization.  Also allocates subqueue structs
9924  * for each queue on the device.
9925  */
9926 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9927 		unsigned char name_assign_type,
9928 		void (*setup)(struct net_device *),
9929 		unsigned int txqs, unsigned int rxqs)
9930 {
9931 	struct net_device *dev;
9932 	unsigned int alloc_size;
9933 	struct net_device *p;
9934 
9935 	BUG_ON(strlen(name) >= sizeof(dev->name));
9936 
9937 	if (txqs < 1) {
9938 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9939 		return NULL;
9940 	}
9941 
9942 	if (rxqs < 1) {
9943 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9944 		return NULL;
9945 	}
9946 
9947 	alloc_size = sizeof(struct net_device);
9948 	if (sizeof_priv) {
9949 		/* ensure 32-byte alignment of private area */
9950 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9951 		alloc_size += sizeof_priv;
9952 	}
9953 	/* ensure 32-byte alignment of whole construct */
9954 	alloc_size += NETDEV_ALIGN - 1;
9955 
9956 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9957 	if (!p)
9958 		return NULL;
9959 
9960 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
9961 	dev->padded = (char *)dev - (char *)p;
9962 
9963 	dev->pcpu_refcnt = alloc_percpu(int);
9964 	if (!dev->pcpu_refcnt)
9965 		goto free_dev;
9966 
9967 	if (dev_addr_init(dev))
9968 		goto free_pcpu;
9969 
9970 	dev_mc_init(dev);
9971 	dev_uc_init(dev);
9972 
9973 	dev_net_set(dev, &init_net);
9974 
9975 	dev->gso_max_size = GSO_MAX_SIZE;
9976 	dev->gso_max_segs = GSO_MAX_SEGS;
9977 	dev->upper_level = 1;
9978 	dev->lower_level = 1;
9979 
9980 	INIT_LIST_HEAD(&dev->napi_list);
9981 	INIT_LIST_HEAD(&dev->unreg_list);
9982 	INIT_LIST_HEAD(&dev->close_list);
9983 	INIT_LIST_HEAD(&dev->link_watch_list);
9984 	INIT_LIST_HEAD(&dev->adj_list.upper);
9985 	INIT_LIST_HEAD(&dev->adj_list.lower);
9986 	INIT_LIST_HEAD(&dev->ptype_all);
9987 	INIT_LIST_HEAD(&dev->ptype_specific);
9988 	INIT_LIST_HEAD(&dev->net_notifier_list);
9989 #ifdef CONFIG_NET_SCHED
9990 	hash_init(dev->qdisc_hash);
9991 #endif
9992 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9993 	setup(dev);
9994 
9995 	if (!dev->tx_queue_len) {
9996 		dev->priv_flags |= IFF_NO_QUEUE;
9997 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9998 	}
9999 
10000 	dev->num_tx_queues = txqs;
10001 	dev->real_num_tx_queues = txqs;
10002 	if (netif_alloc_netdev_queues(dev))
10003 		goto free_all;
10004 
10005 	dev->num_rx_queues = rxqs;
10006 	dev->real_num_rx_queues = rxqs;
10007 	if (netif_alloc_rx_queues(dev))
10008 		goto free_all;
10009 
10010 	strcpy(dev->name, name);
10011 	dev->name_assign_type = name_assign_type;
10012 	dev->group = INIT_NETDEV_GROUP;
10013 	if (!dev->ethtool_ops)
10014 		dev->ethtool_ops = &default_ethtool_ops;
10015 
10016 	nf_hook_ingress_init(dev);
10017 
10018 	return dev;
10019 
10020 free_all:
10021 	free_netdev(dev);
10022 	return NULL;
10023 
10024 free_pcpu:
10025 	free_percpu(dev->pcpu_refcnt);
10026 free_dev:
10027 	netdev_freemem(dev);
10028 	return NULL;
10029 }
10030 EXPORT_SYMBOL(alloc_netdev_mqs);
10031 
10032 /**
10033  * free_netdev - free network device
10034  * @dev: device
10035  *
10036  * This function does the last stage of destroying an allocated device
10037  * interface. The reference to the device object is released. If this
10038  * is the last reference then it will be freed.Must be called in process
10039  * context.
10040  */
10041 void free_netdev(struct net_device *dev)
10042 {
10043 	struct napi_struct *p, *n;
10044 
10045 	might_sleep();
10046 	netif_free_tx_queues(dev);
10047 	netif_free_rx_queues(dev);
10048 
10049 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10050 
10051 	/* Flush device addresses */
10052 	dev_addr_flush(dev);
10053 
10054 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10055 		netif_napi_del(p);
10056 
10057 	free_percpu(dev->pcpu_refcnt);
10058 	dev->pcpu_refcnt = NULL;
10059 	free_percpu(dev->xdp_bulkq);
10060 	dev->xdp_bulkq = NULL;
10061 
10062 	/*  Compatibility with error handling in drivers */
10063 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10064 		netdev_freemem(dev);
10065 		return;
10066 	}
10067 
10068 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10069 	dev->reg_state = NETREG_RELEASED;
10070 
10071 	/* will free via device release */
10072 	put_device(&dev->dev);
10073 }
10074 EXPORT_SYMBOL(free_netdev);
10075 
10076 /**
10077  *	synchronize_net -  Synchronize with packet receive processing
10078  *
10079  *	Wait for packets currently being received to be done.
10080  *	Does not block later packets from starting.
10081  */
10082 void synchronize_net(void)
10083 {
10084 	might_sleep();
10085 	if (rtnl_is_locked())
10086 		synchronize_rcu_expedited();
10087 	else
10088 		synchronize_rcu();
10089 }
10090 EXPORT_SYMBOL(synchronize_net);
10091 
10092 /**
10093  *	unregister_netdevice_queue - remove device from the kernel
10094  *	@dev: device
10095  *	@head: list
10096  *
10097  *	This function shuts down a device interface and removes it
10098  *	from the kernel tables.
10099  *	If head not NULL, device is queued to be unregistered later.
10100  *
10101  *	Callers must hold the rtnl semaphore.  You may want
10102  *	unregister_netdev() instead of this.
10103  */
10104 
10105 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10106 {
10107 	ASSERT_RTNL();
10108 
10109 	if (head) {
10110 		list_move_tail(&dev->unreg_list, head);
10111 	} else {
10112 		rollback_registered(dev);
10113 		/* Finish processing unregister after unlock */
10114 		net_set_todo(dev);
10115 	}
10116 }
10117 EXPORT_SYMBOL(unregister_netdevice_queue);
10118 
10119 /**
10120  *	unregister_netdevice_many - unregister many devices
10121  *	@head: list of devices
10122  *
10123  *  Note: As most callers use a stack allocated list_head,
10124  *  we force a list_del() to make sure stack wont be corrupted later.
10125  */
10126 void unregister_netdevice_many(struct list_head *head)
10127 {
10128 	struct net_device *dev;
10129 
10130 	if (!list_empty(head)) {
10131 		rollback_registered_many(head);
10132 		list_for_each_entry(dev, head, unreg_list)
10133 			net_set_todo(dev);
10134 		list_del(head);
10135 	}
10136 }
10137 EXPORT_SYMBOL(unregister_netdevice_many);
10138 
10139 /**
10140  *	unregister_netdev - remove device from the kernel
10141  *	@dev: device
10142  *
10143  *	This function shuts down a device interface and removes it
10144  *	from the kernel tables.
10145  *
10146  *	This is just a wrapper for unregister_netdevice that takes
10147  *	the rtnl semaphore.  In general you want to use this and not
10148  *	unregister_netdevice.
10149  */
10150 void unregister_netdev(struct net_device *dev)
10151 {
10152 	rtnl_lock();
10153 	unregister_netdevice(dev);
10154 	rtnl_unlock();
10155 }
10156 EXPORT_SYMBOL(unregister_netdev);
10157 
10158 /**
10159  *	dev_change_net_namespace - move device to different nethost namespace
10160  *	@dev: device
10161  *	@net: network namespace
10162  *	@pat: If not NULL name pattern to try if the current device name
10163  *	      is already taken in the destination network namespace.
10164  *
10165  *	This function shuts down a device interface and moves it
10166  *	to a new network namespace. On success 0 is returned, on
10167  *	a failure a netagive errno code is returned.
10168  *
10169  *	Callers must hold the rtnl semaphore.
10170  */
10171 
10172 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10173 {
10174 	struct net *net_old = dev_net(dev);
10175 	int err, new_nsid, new_ifindex;
10176 
10177 	ASSERT_RTNL();
10178 
10179 	/* Don't allow namespace local devices to be moved. */
10180 	err = -EINVAL;
10181 	if (dev->features & NETIF_F_NETNS_LOCAL)
10182 		goto out;
10183 
10184 	/* Ensure the device has been registrered */
10185 	if (dev->reg_state != NETREG_REGISTERED)
10186 		goto out;
10187 
10188 	/* Get out if there is nothing todo */
10189 	err = 0;
10190 	if (net_eq(net_old, net))
10191 		goto out;
10192 
10193 	/* Pick the destination device name, and ensure
10194 	 * we can use it in the destination network namespace.
10195 	 */
10196 	err = -EEXIST;
10197 	if (__dev_get_by_name(net, dev->name)) {
10198 		/* We get here if we can't use the current device name */
10199 		if (!pat)
10200 			goto out;
10201 		err = dev_get_valid_name(net, dev, pat);
10202 		if (err < 0)
10203 			goto out;
10204 	}
10205 
10206 	/*
10207 	 * And now a mini version of register_netdevice unregister_netdevice.
10208 	 */
10209 
10210 	/* If device is running close it first. */
10211 	dev_close(dev);
10212 
10213 	/* And unlink it from device chain */
10214 	unlist_netdevice(dev);
10215 
10216 	synchronize_net();
10217 
10218 	/* Shutdown queueing discipline. */
10219 	dev_shutdown(dev);
10220 
10221 	/* Notify protocols, that we are about to destroy
10222 	 * this device. They should clean all the things.
10223 	 *
10224 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10225 	 * This is wanted because this way 8021q and macvlan know
10226 	 * the device is just moving and can keep their slaves up.
10227 	 */
10228 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10229 	rcu_barrier();
10230 
10231 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10232 	/* If there is an ifindex conflict assign a new one */
10233 	if (__dev_get_by_index(net, dev->ifindex))
10234 		new_ifindex = dev_new_index(net);
10235 	else
10236 		new_ifindex = dev->ifindex;
10237 
10238 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10239 			    new_ifindex);
10240 
10241 	/*
10242 	 *	Flush the unicast and multicast chains
10243 	 */
10244 	dev_uc_flush(dev);
10245 	dev_mc_flush(dev);
10246 
10247 	/* Send a netdev-removed uevent to the old namespace */
10248 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10249 	netdev_adjacent_del_links(dev);
10250 
10251 	/* Move per-net netdevice notifiers that are following the netdevice */
10252 	move_netdevice_notifiers_dev_net(dev, net);
10253 
10254 	/* Actually switch the network namespace */
10255 	dev_net_set(dev, net);
10256 	dev->ifindex = new_ifindex;
10257 
10258 	/* Send a netdev-add uevent to the new namespace */
10259 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10260 	netdev_adjacent_add_links(dev);
10261 
10262 	/* Fixup kobjects */
10263 	err = device_rename(&dev->dev, dev->name);
10264 	WARN_ON(err);
10265 
10266 	/* Adapt owner in case owning user namespace of target network
10267 	 * namespace is different from the original one.
10268 	 */
10269 	err = netdev_change_owner(dev, net_old, net);
10270 	WARN_ON(err);
10271 
10272 	/* Add the device back in the hashes */
10273 	list_netdevice(dev);
10274 
10275 	/* Notify protocols, that a new device appeared. */
10276 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10277 
10278 	/*
10279 	 *	Prevent userspace races by waiting until the network
10280 	 *	device is fully setup before sending notifications.
10281 	 */
10282 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10283 
10284 	synchronize_net();
10285 	err = 0;
10286 out:
10287 	return err;
10288 }
10289 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10290 
10291 static int dev_cpu_dead(unsigned int oldcpu)
10292 {
10293 	struct sk_buff **list_skb;
10294 	struct sk_buff *skb;
10295 	unsigned int cpu;
10296 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10297 
10298 	local_irq_disable();
10299 	cpu = smp_processor_id();
10300 	sd = &per_cpu(softnet_data, cpu);
10301 	oldsd = &per_cpu(softnet_data, oldcpu);
10302 
10303 	/* Find end of our completion_queue. */
10304 	list_skb = &sd->completion_queue;
10305 	while (*list_skb)
10306 		list_skb = &(*list_skb)->next;
10307 	/* Append completion queue from offline CPU. */
10308 	*list_skb = oldsd->completion_queue;
10309 	oldsd->completion_queue = NULL;
10310 
10311 	/* Append output queue from offline CPU. */
10312 	if (oldsd->output_queue) {
10313 		*sd->output_queue_tailp = oldsd->output_queue;
10314 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10315 		oldsd->output_queue = NULL;
10316 		oldsd->output_queue_tailp = &oldsd->output_queue;
10317 	}
10318 	/* Append NAPI poll list from offline CPU, with one exception :
10319 	 * process_backlog() must be called by cpu owning percpu backlog.
10320 	 * We properly handle process_queue & input_pkt_queue later.
10321 	 */
10322 	while (!list_empty(&oldsd->poll_list)) {
10323 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10324 							    struct napi_struct,
10325 							    poll_list);
10326 
10327 		list_del_init(&napi->poll_list);
10328 		if (napi->poll == process_backlog)
10329 			napi->state = 0;
10330 		else
10331 			____napi_schedule(sd, napi);
10332 	}
10333 
10334 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10335 	local_irq_enable();
10336 
10337 #ifdef CONFIG_RPS
10338 	remsd = oldsd->rps_ipi_list;
10339 	oldsd->rps_ipi_list = NULL;
10340 #endif
10341 	/* send out pending IPI's on offline CPU */
10342 	net_rps_send_ipi(remsd);
10343 
10344 	/* Process offline CPU's input_pkt_queue */
10345 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10346 		netif_rx_ni(skb);
10347 		input_queue_head_incr(oldsd);
10348 	}
10349 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10350 		netif_rx_ni(skb);
10351 		input_queue_head_incr(oldsd);
10352 	}
10353 
10354 	return 0;
10355 }
10356 
10357 /**
10358  *	netdev_increment_features - increment feature set by one
10359  *	@all: current feature set
10360  *	@one: new feature set
10361  *	@mask: mask feature set
10362  *
10363  *	Computes a new feature set after adding a device with feature set
10364  *	@one to the master device with current feature set @all.  Will not
10365  *	enable anything that is off in @mask. Returns the new feature set.
10366  */
10367 netdev_features_t netdev_increment_features(netdev_features_t all,
10368 	netdev_features_t one, netdev_features_t mask)
10369 {
10370 	if (mask & NETIF_F_HW_CSUM)
10371 		mask |= NETIF_F_CSUM_MASK;
10372 	mask |= NETIF_F_VLAN_CHALLENGED;
10373 
10374 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10375 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10376 
10377 	/* If one device supports hw checksumming, set for all. */
10378 	if (all & NETIF_F_HW_CSUM)
10379 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10380 
10381 	return all;
10382 }
10383 EXPORT_SYMBOL(netdev_increment_features);
10384 
10385 static struct hlist_head * __net_init netdev_create_hash(void)
10386 {
10387 	int i;
10388 	struct hlist_head *hash;
10389 
10390 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10391 	if (hash != NULL)
10392 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
10393 			INIT_HLIST_HEAD(&hash[i]);
10394 
10395 	return hash;
10396 }
10397 
10398 /* Initialize per network namespace state */
10399 static int __net_init netdev_init(struct net *net)
10400 {
10401 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
10402 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
10403 
10404 	if (net != &init_net)
10405 		INIT_LIST_HEAD(&net->dev_base_head);
10406 
10407 	net->dev_name_head = netdev_create_hash();
10408 	if (net->dev_name_head == NULL)
10409 		goto err_name;
10410 
10411 	net->dev_index_head = netdev_create_hash();
10412 	if (net->dev_index_head == NULL)
10413 		goto err_idx;
10414 
10415 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10416 
10417 	return 0;
10418 
10419 err_idx:
10420 	kfree(net->dev_name_head);
10421 err_name:
10422 	return -ENOMEM;
10423 }
10424 
10425 /**
10426  *	netdev_drivername - network driver for the device
10427  *	@dev: network device
10428  *
10429  *	Determine network driver for device.
10430  */
10431 const char *netdev_drivername(const struct net_device *dev)
10432 {
10433 	const struct device_driver *driver;
10434 	const struct device *parent;
10435 	const char *empty = "";
10436 
10437 	parent = dev->dev.parent;
10438 	if (!parent)
10439 		return empty;
10440 
10441 	driver = parent->driver;
10442 	if (driver && driver->name)
10443 		return driver->name;
10444 	return empty;
10445 }
10446 
10447 static void __netdev_printk(const char *level, const struct net_device *dev,
10448 			    struct va_format *vaf)
10449 {
10450 	if (dev && dev->dev.parent) {
10451 		dev_printk_emit(level[1] - '0',
10452 				dev->dev.parent,
10453 				"%s %s %s%s: %pV",
10454 				dev_driver_string(dev->dev.parent),
10455 				dev_name(dev->dev.parent),
10456 				netdev_name(dev), netdev_reg_state(dev),
10457 				vaf);
10458 	} else if (dev) {
10459 		printk("%s%s%s: %pV",
10460 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
10461 	} else {
10462 		printk("%s(NULL net_device): %pV", level, vaf);
10463 	}
10464 }
10465 
10466 void netdev_printk(const char *level, const struct net_device *dev,
10467 		   const char *format, ...)
10468 {
10469 	struct va_format vaf;
10470 	va_list args;
10471 
10472 	va_start(args, format);
10473 
10474 	vaf.fmt = format;
10475 	vaf.va = &args;
10476 
10477 	__netdev_printk(level, dev, &vaf);
10478 
10479 	va_end(args);
10480 }
10481 EXPORT_SYMBOL(netdev_printk);
10482 
10483 #define define_netdev_printk_level(func, level)			\
10484 void func(const struct net_device *dev, const char *fmt, ...)	\
10485 {								\
10486 	struct va_format vaf;					\
10487 	va_list args;						\
10488 								\
10489 	va_start(args, fmt);					\
10490 								\
10491 	vaf.fmt = fmt;						\
10492 	vaf.va = &args;						\
10493 								\
10494 	__netdev_printk(level, dev, &vaf);			\
10495 								\
10496 	va_end(args);						\
10497 }								\
10498 EXPORT_SYMBOL(func);
10499 
10500 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10501 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10502 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10503 define_netdev_printk_level(netdev_err, KERN_ERR);
10504 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10505 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10506 define_netdev_printk_level(netdev_info, KERN_INFO);
10507 
10508 static void __net_exit netdev_exit(struct net *net)
10509 {
10510 	kfree(net->dev_name_head);
10511 	kfree(net->dev_index_head);
10512 	if (net != &init_net)
10513 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10514 }
10515 
10516 static struct pernet_operations __net_initdata netdev_net_ops = {
10517 	.init = netdev_init,
10518 	.exit = netdev_exit,
10519 };
10520 
10521 static void __net_exit default_device_exit(struct net *net)
10522 {
10523 	struct net_device *dev, *aux;
10524 	/*
10525 	 * Push all migratable network devices back to the
10526 	 * initial network namespace
10527 	 */
10528 	rtnl_lock();
10529 	for_each_netdev_safe(net, dev, aux) {
10530 		int err;
10531 		char fb_name[IFNAMSIZ];
10532 
10533 		/* Ignore unmoveable devices (i.e. loopback) */
10534 		if (dev->features & NETIF_F_NETNS_LOCAL)
10535 			continue;
10536 
10537 		/* Leave virtual devices for the generic cleanup */
10538 		if (dev->rtnl_link_ops)
10539 			continue;
10540 
10541 		/* Push remaining network devices to init_net */
10542 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10543 		if (__dev_get_by_name(&init_net, fb_name))
10544 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
10545 		err = dev_change_net_namespace(dev, &init_net, fb_name);
10546 		if (err) {
10547 			pr_emerg("%s: failed to move %s to init_net: %d\n",
10548 				 __func__, dev->name, err);
10549 			BUG();
10550 		}
10551 	}
10552 	rtnl_unlock();
10553 }
10554 
10555 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10556 {
10557 	/* Return with the rtnl_lock held when there are no network
10558 	 * devices unregistering in any network namespace in net_list.
10559 	 */
10560 	struct net *net;
10561 	bool unregistering;
10562 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
10563 
10564 	add_wait_queue(&netdev_unregistering_wq, &wait);
10565 	for (;;) {
10566 		unregistering = false;
10567 		rtnl_lock();
10568 		list_for_each_entry(net, net_list, exit_list) {
10569 			if (net->dev_unreg_count > 0) {
10570 				unregistering = true;
10571 				break;
10572 			}
10573 		}
10574 		if (!unregistering)
10575 			break;
10576 		__rtnl_unlock();
10577 
10578 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10579 	}
10580 	remove_wait_queue(&netdev_unregistering_wq, &wait);
10581 }
10582 
10583 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10584 {
10585 	/* At exit all network devices most be removed from a network
10586 	 * namespace.  Do this in the reverse order of registration.
10587 	 * Do this across as many network namespaces as possible to
10588 	 * improve batching efficiency.
10589 	 */
10590 	struct net_device *dev;
10591 	struct net *net;
10592 	LIST_HEAD(dev_kill_list);
10593 
10594 	/* To prevent network device cleanup code from dereferencing
10595 	 * loopback devices or network devices that have been freed
10596 	 * wait here for all pending unregistrations to complete,
10597 	 * before unregistring the loopback device and allowing the
10598 	 * network namespace be freed.
10599 	 *
10600 	 * The netdev todo list containing all network devices
10601 	 * unregistrations that happen in default_device_exit_batch
10602 	 * will run in the rtnl_unlock() at the end of
10603 	 * default_device_exit_batch.
10604 	 */
10605 	rtnl_lock_unregistering(net_list);
10606 	list_for_each_entry(net, net_list, exit_list) {
10607 		for_each_netdev_reverse(net, dev) {
10608 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10609 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10610 			else
10611 				unregister_netdevice_queue(dev, &dev_kill_list);
10612 		}
10613 	}
10614 	unregister_netdevice_many(&dev_kill_list);
10615 	rtnl_unlock();
10616 }
10617 
10618 static struct pernet_operations __net_initdata default_device_ops = {
10619 	.exit = default_device_exit,
10620 	.exit_batch = default_device_exit_batch,
10621 };
10622 
10623 /*
10624  *	Initialize the DEV module. At boot time this walks the device list and
10625  *	unhooks any devices that fail to initialise (normally hardware not
10626  *	present) and leaves us with a valid list of present and active devices.
10627  *
10628  */
10629 
10630 /*
10631  *       This is called single threaded during boot, so no need
10632  *       to take the rtnl semaphore.
10633  */
10634 static int __init net_dev_init(void)
10635 {
10636 	int i, rc = -ENOMEM;
10637 
10638 	BUG_ON(!dev_boot_phase);
10639 
10640 	if (dev_proc_init())
10641 		goto out;
10642 
10643 	if (netdev_kobject_init())
10644 		goto out;
10645 
10646 	INIT_LIST_HEAD(&ptype_all);
10647 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
10648 		INIT_LIST_HEAD(&ptype_base[i]);
10649 
10650 	INIT_LIST_HEAD(&offload_base);
10651 
10652 	if (register_pernet_subsys(&netdev_net_ops))
10653 		goto out;
10654 
10655 	/*
10656 	 *	Initialise the packet receive queues.
10657 	 */
10658 
10659 	for_each_possible_cpu(i) {
10660 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10661 		struct softnet_data *sd = &per_cpu(softnet_data, i);
10662 
10663 		INIT_WORK(flush, flush_backlog);
10664 
10665 		skb_queue_head_init(&sd->input_pkt_queue);
10666 		skb_queue_head_init(&sd->process_queue);
10667 #ifdef CONFIG_XFRM_OFFLOAD
10668 		skb_queue_head_init(&sd->xfrm_backlog);
10669 #endif
10670 		INIT_LIST_HEAD(&sd->poll_list);
10671 		sd->output_queue_tailp = &sd->output_queue;
10672 #ifdef CONFIG_RPS
10673 		sd->csd.func = rps_trigger_softirq;
10674 		sd->csd.info = sd;
10675 		sd->cpu = i;
10676 #endif
10677 
10678 		init_gro_hash(&sd->backlog);
10679 		sd->backlog.poll = process_backlog;
10680 		sd->backlog.weight = weight_p;
10681 	}
10682 
10683 	dev_boot_phase = 0;
10684 
10685 	/* The loopback device is special if any other network devices
10686 	 * is present in a network namespace the loopback device must
10687 	 * be present. Since we now dynamically allocate and free the
10688 	 * loopback device ensure this invariant is maintained by
10689 	 * keeping the loopback device as the first device on the
10690 	 * list of network devices.  Ensuring the loopback devices
10691 	 * is the first device that appears and the last network device
10692 	 * that disappears.
10693 	 */
10694 	if (register_pernet_device(&loopback_net_ops))
10695 		goto out;
10696 
10697 	if (register_pernet_device(&default_device_ops))
10698 		goto out;
10699 
10700 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10701 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10702 
10703 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10704 				       NULL, dev_cpu_dead);
10705 	WARN_ON(rc < 0);
10706 	rc = 0;
10707 out:
10708 	return rc;
10709 }
10710 
10711 subsys_initcall(net_dev_init);
10712