xref: /openbmc/linux/net/core/dev.c (revision a2fb4d78)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135 
136 #include "net-sysfs.h"
137 
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140 
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143 
144 static DEFINE_SPINLOCK(ptype_lock);
145 static DEFINE_SPINLOCK(offload_lock);
146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
147 struct list_head ptype_all __read_mostly;	/* Taps */
148 static struct list_head offload_base __read_mostly;
149 
150 static int netif_rx_internal(struct sk_buff *skb);
151 
152 /*
153  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
154  * semaphore.
155  *
156  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
157  *
158  * Writers must hold the rtnl semaphore while they loop through the
159  * dev_base_head list, and hold dev_base_lock for writing when they do the
160  * actual updates.  This allows pure readers to access the list even
161  * while a writer is preparing to update it.
162  *
163  * To put it another way, dev_base_lock is held for writing only to
164  * protect against pure readers; the rtnl semaphore provides the
165  * protection against other writers.
166  *
167  * See, for example usages, register_netdevice() and
168  * unregister_netdevice(), which must be called with the rtnl
169  * semaphore held.
170  */
171 DEFINE_RWLOCK(dev_base_lock);
172 EXPORT_SYMBOL(dev_base_lock);
173 
174 /* protects napi_hash addition/deletion and napi_gen_id */
175 static DEFINE_SPINLOCK(napi_hash_lock);
176 
177 static unsigned int napi_gen_id;
178 static DEFINE_HASHTABLE(napi_hash, 8);
179 
180 static seqcount_t devnet_rename_seq;
181 
182 static inline void dev_base_seq_inc(struct net *net)
183 {
184 	while (++net->dev_base_seq == 0);
185 }
186 
187 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
188 {
189 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
190 
191 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
192 }
193 
194 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
195 {
196 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
197 }
198 
199 static inline void rps_lock(struct softnet_data *sd)
200 {
201 #ifdef CONFIG_RPS
202 	spin_lock(&sd->input_pkt_queue.lock);
203 #endif
204 }
205 
206 static inline void rps_unlock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209 	spin_unlock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212 
213 /* Device list insertion */
214 static void list_netdevice(struct net_device *dev)
215 {
216 	struct net *net = dev_net(dev);
217 
218 	ASSERT_RTNL();
219 
220 	write_lock_bh(&dev_base_lock);
221 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
222 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
223 	hlist_add_head_rcu(&dev->index_hlist,
224 			   dev_index_hash(net, dev->ifindex));
225 	write_unlock_bh(&dev_base_lock);
226 
227 	dev_base_seq_inc(net);
228 }
229 
230 /* Device list removal
231  * caller must respect a RCU grace period before freeing/reusing dev
232  */
233 static void unlist_netdevice(struct net_device *dev)
234 {
235 	ASSERT_RTNL();
236 
237 	/* Unlink dev from the device chain */
238 	write_lock_bh(&dev_base_lock);
239 	list_del_rcu(&dev->dev_list);
240 	hlist_del_rcu(&dev->name_hlist);
241 	hlist_del_rcu(&dev->index_hlist);
242 	write_unlock_bh(&dev_base_lock);
243 
244 	dev_base_seq_inc(dev_net(dev));
245 }
246 
247 /*
248  *	Our notifier list
249  */
250 
251 static RAW_NOTIFIER_HEAD(netdev_chain);
252 
253 /*
254  *	Device drivers call our routines to queue packets here. We empty the
255  *	queue in the local softnet handler.
256  */
257 
258 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
259 EXPORT_PER_CPU_SYMBOL(softnet_data);
260 
261 #ifdef CONFIG_LOCKDEP
262 /*
263  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
264  * according to dev->type
265  */
266 static const unsigned short netdev_lock_type[] =
267 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
268 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
269 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
270 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
271 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
272 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
273 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
274 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
275 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
276 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
277 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
278 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
279 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
280 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
281 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
282 
283 static const char *const netdev_lock_name[] =
284 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
285 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
286 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
287 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
288 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
289 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
290 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
291 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
292 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
293 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
294 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
295 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
296 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
297 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
298 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
299 
300 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
301 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
302 
303 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
304 {
305 	int i;
306 
307 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
308 		if (netdev_lock_type[i] == dev_type)
309 			return i;
310 	/* the last key is used by default */
311 	return ARRAY_SIZE(netdev_lock_type) - 1;
312 }
313 
314 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
315 						 unsigned short dev_type)
316 {
317 	int i;
318 
319 	i = netdev_lock_pos(dev_type);
320 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
321 				   netdev_lock_name[i]);
322 }
323 
324 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
325 {
326 	int i;
327 
328 	i = netdev_lock_pos(dev->type);
329 	lockdep_set_class_and_name(&dev->addr_list_lock,
330 				   &netdev_addr_lock_key[i],
331 				   netdev_lock_name[i]);
332 }
333 #else
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 						 unsigned short dev_type)
336 {
337 }
338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339 {
340 }
341 #endif
342 
343 /*******************************************************************************
344 
345 		Protocol management and registration routines
346 
347 *******************************************************************************/
348 
349 /*
350  *	Add a protocol ID to the list. Now that the input handler is
351  *	smarter we can dispense with all the messy stuff that used to be
352  *	here.
353  *
354  *	BEWARE!!! Protocol handlers, mangling input packets,
355  *	MUST BE last in hash buckets and checking protocol handlers
356  *	MUST start from promiscuous ptype_all chain in net_bh.
357  *	It is true now, do not change it.
358  *	Explanation follows: if protocol handler, mangling packet, will
359  *	be the first on list, it is not able to sense, that packet
360  *	is cloned and should be copied-on-write, so that it will
361  *	change it and subsequent readers will get broken packet.
362  *							--ANK (980803)
363  */
364 
365 static inline struct list_head *ptype_head(const struct packet_type *pt)
366 {
367 	if (pt->type == htons(ETH_P_ALL))
368 		return &ptype_all;
369 	else
370 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
371 }
372 
373 /**
374  *	dev_add_pack - add packet handler
375  *	@pt: packet type declaration
376  *
377  *	Add a protocol handler to the networking stack. The passed &packet_type
378  *	is linked into kernel lists and may not be freed until it has been
379  *	removed from the kernel lists.
380  *
381  *	This call does not sleep therefore it can not
382  *	guarantee all CPU's that are in middle of receiving packets
383  *	will see the new packet type (until the next received packet).
384  */
385 
386 void dev_add_pack(struct packet_type *pt)
387 {
388 	struct list_head *head = ptype_head(pt);
389 
390 	spin_lock(&ptype_lock);
391 	list_add_rcu(&pt->list, head);
392 	spin_unlock(&ptype_lock);
393 }
394 EXPORT_SYMBOL(dev_add_pack);
395 
396 /**
397  *	__dev_remove_pack	 - remove packet handler
398  *	@pt: packet type declaration
399  *
400  *	Remove a protocol handler that was previously added to the kernel
401  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
402  *	from the kernel lists and can be freed or reused once this function
403  *	returns.
404  *
405  *      The packet type might still be in use by receivers
406  *	and must not be freed until after all the CPU's have gone
407  *	through a quiescent state.
408  */
409 void __dev_remove_pack(struct packet_type *pt)
410 {
411 	struct list_head *head = ptype_head(pt);
412 	struct packet_type *pt1;
413 
414 	spin_lock(&ptype_lock);
415 
416 	list_for_each_entry(pt1, head, list) {
417 		if (pt == pt1) {
418 			list_del_rcu(&pt->list);
419 			goto out;
420 		}
421 	}
422 
423 	pr_warn("dev_remove_pack: %p not found\n", pt);
424 out:
425 	spin_unlock(&ptype_lock);
426 }
427 EXPORT_SYMBOL(__dev_remove_pack);
428 
429 /**
430  *	dev_remove_pack	 - remove packet handler
431  *	@pt: packet type declaration
432  *
433  *	Remove a protocol handler that was previously added to the kernel
434  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
435  *	from the kernel lists and can be freed or reused once this function
436  *	returns.
437  *
438  *	This call sleeps to guarantee that no CPU is looking at the packet
439  *	type after return.
440  */
441 void dev_remove_pack(struct packet_type *pt)
442 {
443 	__dev_remove_pack(pt);
444 
445 	synchronize_net();
446 }
447 EXPORT_SYMBOL(dev_remove_pack);
448 
449 
450 /**
451  *	dev_add_offload - register offload handlers
452  *	@po: protocol offload declaration
453  *
454  *	Add protocol offload handlers to the networking stack. The passed
455  *	&proto_offload is linked into kernel lists and may not be freed until
456  *	it has been removed from the kernel lists.
457  *
458  *	This call does not sleep therefore it can not
459  *	guarantee all CPU's that are in middle of receiving packets
460  *	will see the new offload handlers (until the next received packet).
461  */
462 void dev_add_offload(struct packet_offload *po)
463 {
464 	struct list_head *head = &offload_base;
465 
466 	spin_lock(&offload_lock);
467 	list_add_rcu(&po->list, head);
468 	spin_unlock(&offload_lock);
469 }
470 EXPORT_SYMBOL(dev_add_offload);
471 
472 /**
473  *	__dev_remove_offload	 - remove offload handler
474  *	@po: packet offload declaration
475  *
476  *	Remove a protocol offload handler that was previously added to the
477  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
478  *	is removed from the kernel lists and can be freed or reused once this
479  *	function returns.
480  *
481  *      The packet type might still be in use by receivers
482  *	and must not be freed until after all the CPU's have gone
483  *	through a quiescent state.
484  */
485 static void __dev_remove_offload(struct packet_offload *po)
486 {
487 	struct list_head *head = &offload_base;
488 	struct packet_offload *po1;
489 
490 	spin_lock(&offload_lock);
491 
492 	list_for_each_entry(po1, head, list) {
493 		if (po == po1) {
494 			list_del_rcu(&po->list);
495 			goto out;
496 		}
497 	}
498 
499 	pr_warn("dev_remove_offload: %p not found\n", po);
500 out:
501 	spin_unlock(&offload_lock);
502 }
503 
504 /**
505  *	dev_remove_offload	 - remove packet offload handler
506  *	@po: packet offload declaration
507  *
508  *	Remove a packet offload handler that was previously added to the kernel
509  *	offload handlers by dev_add_offload(). The passed &offload_type is
510  *	removed from the kernel lists and can be freed or reused once this
511  *	function returns.
512  *
513  *	This call sleeps to guarantee that no CPU is looking at the packet
514  *	type after return.
515  */
516 void dev_remove_offload(struct packet_offload *po)
517 {
518 	__dev_remove_offload(po);
519 
520 	synchronize_net();
521 }
522 EXPORT_SYMBOL(dev_remove_offload);
523 
524 /******************************************************************************
525 
526 		      Device Boot-time Settings Routines
527 
528 *******************************************************************************/
529 
530 /* Boot time configuration table */
531 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
532 
533 /**
534  *	netdev_boot_setup_add	- add new setup entry
535  *	@name: name of the device
536  *	@map: configured settings for the device
537  *
538  *	Adds new setup entry to the dev_boot_setup list.  The function
539  *	returns 0 on error and 1 on success.  This is a generic routine to
540  *	all netdevices.
541  */
542 static int netdev_boot_setup_add(char *name, struct ifmap *map)
543 {
544 	struct netdev_boot_setup *s;
545 	int i;
546 
547 	s = dev_boot_setup;
548 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
549 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
550 			memset(s[i].name, 0, sizeof(s[i].name));
551 			strlcpy(s[i].name, name, IFNAMSIZ);
552 			memcpy(&s[i].map, map, sizeof(s[i].map));
553 			break;
554 		}
555 	}
556 
557 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
558 }
559 
560 /**
561  *	netdev_boot_setup_check	- check boot time settings
562  *	@dev: the netdevice
563  *
564  * 	Check boot time settings for the device.
565  *	The found settings are set for the device to be used
566  *	later in the device probing.
567  *	Returns 0 if no settings found, 1 if they are.
568  */
569 int netdev_boot_setup_check(struct net_device *dev)
570 {
571 	struct netdev_boot_setup *s = dev_boot_setup;
572 	int i;
573 
574 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
576 		    !strcmp(dev->name, s[i].name)) {
577 			dev->irq 	= s[i].map.irq;
578 			dev->base_addr 	= s[i].map.base_addr;
579 			dev->mem_start 	= s[i].map.mem_start;
580 			dev->mem_end 	= s[i].map.mem_end;
581 			return 1;
582 		}
583 	}
584 	return 0;
585 }
586 EXPORT_SYMBOL(netdev_boot_setup_check);
587 
588 
589 /**
590  *	netdev_boot_base	- get address from boot time settings
591  *	@prefix: prefix for network device
592  *	@unit: id for network device
593  *
594  * 	Check boot time settings for the base address of device.
595  *	The found settings are set for the device to be used
596  *	later in the device probing.
597  *	Returns 0 if no settings found.
598  */
599 unsigned long netdev_boot_base(const char *prefix, int unit)
600 {
601 	const struct netdev_boot_setup *s = dev_boot_setup;
602 	char name[IFNAMSIZ];
603 	int i;
604 
605 	sprintf(name, "%s%d", prefix, unit);
606 
607 	/*
608 	 * If device already registered then return base of 1
609 	 * to indicate not to probe for this interface
610 	 */
611 	if (__dev_get_by_name(&init_net, name))
612 		return 1;
613 
614 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
615 		if (!strcmp(name, s[i].name))
616 			return s[i].map.base_addr;
617 	return 0;
618 }
619 
620 /*
621  * Saves at boot time configured settings for any netdevice.
622  */
623 int __init netdev_boot_setup(char *str)
624 {
625 	int ints[5];
626 	struct ifmap map;
627 
628 	str = get_options(str, ARRAY_SIZE(ints), ints);
629 	if (!str || !*str)
630 		return 0;
631 
632 	/* Save settings */
633 	memset(&map, 0, sizeof(map));
634 	if (ints[0] > 0)
635 		map.irq = ints[1];
636 	if (ints[0] > 1)
637 		map.base_addr = ints[2];
638 	if (ints[0] > 2)
639 		map.mem_start = ints[3];
640 	if (ints[0] > 3)
641 		map.mem_end = ints[4];
642 
643 	/* Add new entry to the list */
644 	return netdev_boot_setup_add(str, &map);
645 }
646 
647 __setup("netdev=", netdev_boot_setup);
648 
649 /*******************************************************************************
650 
651 			    Device Interface Subroutines
652 
653 *******************************************************************************/
654 
655 /**
656  *	__dev_get_by_name	- find a device by its name
657  *	@net: the applicable net namespace
658  *	@name: name to find
659  *
660  *	Find an interface by name. Must be called under RTNL semaphore
661  *	or @dev_base_lock. If the name is found a pointer to the device
662  *	is returned. If the name is not found then %NULL is returned. The
663  *	reference counters are not incremented so the caller must be
664  *	careful with locks.
665  */
666 
667 struct net_device *__dev_get_by_name(struct net *net, const char *name)
668 {
669 	struct net_device *dev;
670 	struct hlist_head *head = dev_name_hash(net, name);
671 
672 	hlist_for_each_entry(dev, head, name_hlist)
673 		if (!strncmp(dev->name, name, IFNAMSIZ))
674 			return dev;
675 
676 	return NULL;
677 }
678 EXPORT_SYMBOL(__dev_get_by_name);
679 
680 /**
681  *	dev_get_by_name_rcu	- find a device by its name
682  *	@net: the applicable net namespace
683  *	@name: name to find
684  *
685  *	Find an interface by name.
686  *	If the name is found a pointer to the device is returned.
687  * 	If the name is not found then %NULL is returned.
688  *	The reference counters are not incremented so the caller must be
689  *	careful with locks. The caller must hold RCU lock.
690  */
691 
692 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
693 {
694 	struct net_device *dev;
695 	struct hlist_head *head = dev_name_hash(net, name);
696 
697 	hlist_for_each_entry_rcu(dev, head, name_hlist)
698 		if (!strncmp(dev->name, name, IFNAMSIZ))
699 			return dev;
700 
701 	return NULL;
702 }
703 EXPORT_SYMBOL(dev_get_by_name_rcu);
704 
705 /**
706  *	dev_get_by_name		- find a device by its name
707  *	@net: the applicable net namespace
708  *	@name: name to find
709  *
710  *	Find an interface by name. This can be called from any
711  *	context and does its own locking. The returned handle has
712  *	the usage count incremented and the caller must use dev_put() to
713  *	release it when it is no longer needed. %NULL is returned if no
714  *	matching device is found.
715  */
716 
717 struct net_device *dev_get_by_name(struct net *net, const char *name)
718 {
719 	struct net_device *dev;
720 
721 	rcu_read_lock();
722 	dev = dev_get_by_name_rcu(net, name);
723 	if (dev)
724 		dev_hold(dev);
725 	rcu_read_unlock();
726 	return dev;
727 }
728 EXPORT_SYMBOL(dev_get_by_name);
729 
730 /**
731  *	__dev_get_by_index - find a device by its ifindex
732  *	@net: the applicable net namespace
733  *	@ifindex: index of device
734  *
735  *	Search for an interface by index. Returns %NULL if the device
736  *	is not found or a pointer to the device. The device has not
737  *	had its reference counter increased so the caller must be careful
738  *	about locking. The caller must hold either the RTNL semaphore
739  *	or @dev_base_lock.
740  */
741 
742 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
743 {
744 	struct net_device *dev;
745 	struct hlist_head *head = dev_index_hash(net, ifindex);
746 
747 	hlist_for_each_entry(dev, head, index_hlist)
748 		if (dev->ifindex == ifindex)
749 			return dev;
750 
751 	return NULL;
752 }
753 EXPORT_SYMBOL(__dev_get_by_index);
754 
755 /**
756  *	dev_get_by_index_rcu - find a device by its ifindex
757  *	@net: the applicable net namespace
758  *	@ifindex: index of device
759  *
760  *	Search for an interface by index. Returns %NULL if the device
761  *	is not found or a pointer to the device. The device has not
762  *	had its reference counter increased so the caller must be careful
763  *	about locking. The caller must hold RCU lock.
764  */
765 
766 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
767 {
768 	struct net_device *dev;
769 	struct hlist_head *head = dev_index_hash(net, ifindex);
770 
771 	hlist_for_each_entry_rcu(dev, head, index_hlist)
772 		if (dev->ifindex == ifindex)
773 			return dev;
774 
775 	return NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_index_rcu);
778 
779 
780 /**
781  *	dev_get_by_index - find a device by its ifindex
782  *	@net: the applicable net namespace
783  *	@ifindex: index of device
784  *
785  *	Search for an interface by index. Returns NULL if the device
786  *	is not found or a pointer to the device. The device returned has
787  *	had a reference added and the pointer is safe until the user calls
788  *	dev_put to indicate they have finished with it.
789  */
790 
791 struct net_device *dev_get_by_index(struct net *net, int ifindex)
792 {
793 	struct net_device *dev;
794 
795 	rcu_read_lock();
796 	dev = dev_get_by_index_rcu(net, ifindex);
797 	if (dev)
798 		dev_hold(dev);
799 	rcu_read_unlock();
800 	return dev;
801 }
802 EXPORT_SYMBOL(dev_get_by_index);
803 
804 /**
805  *	netdev_get_name - get a netdevice name, knowing its ifindex.
806  *	@net: network namespace
807  *	@name: a pointer to the buffer where the name will be stored.
808  *	@ifindex: the ifindex of the interface to get the name from.
809  *
810  *	The use of raw_seqcount_begin() and cond_resched() before
811  *	retrying is required as we want to give the writers a chance
812  *	to complete when CONFIG_PREEMPT is not set.
813  */
814 int netdev_get_name(struct net *net, char *name, int ifindex)
815 {
816 	struct net_device *dev;
817 	unsigned int seq;
818 
819 retry:
820 	seq = raw_seqcount_begin(&devnet_rename_seq);
821 	rcu_read_lock();
822 	dev = dev_get_by_index_rcu(net, ifindex);
823 	if (!dev) {
824 		rcu_read_unlock();
825 		return -ENODEV;
826 	}
827 
828 	strcpy(name, dev->name);
829 	rcu_read_unlock();
830 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
831 		cond_resched();
832 		goto retry;
833 	}
834 
835 	return 0;
836 }
837 
838 /**
839  *	dev_getbyhwaddr_rcu - find a device by its hardware address
840  *	@net: the applicable net namespace
841  *	@type: media type of device
842  *	@ha: hardware address
843  *
844  *	Search for an interface by MAC address. Returns NULL if the device
845  *	is not found or a pointer to the device.
846  *	The caller must hold RCU or RTNL.
847  *	The returned device has not had its ref count increased
848  *	and the caller must therefore be careful about locking
849  *
850  */
851 
852 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
853 				       const char *ha)
854 {
855 	struct net_device *dev;
856 
857 	for_each_netdev_rcu(net, dev)
858 		if (dev->type == type &&
859 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
860 			return dev;
861 
862 	return NULL;
863 }
864 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
865 
866 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
867 {
868 	struct net_device *dev;
869 
870 	ASSERT_RTNL();
871 	for_each_netdev(net, dev)
872 		if (dev->type == type)
873 			return dev;
874 
875 	return NULL;
876 }
877 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
878 
879 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
880 {
881 	struct net_device *dev, *ret = NULL;
882 
883 	rcu_read_lock();
884 	for_each_netdev_rcu(net, dev)
885 		if (dev->type == type) {
886 			dev_hold(dev);
887 			ret = dev;
888 			break;
889 		}
890 	rcu_read_unlock();
891 	return ret;
892 }
893 EXPORT_SYMBOL(dev_getfirstbyhwtype);
894 
895 /**
896  *	dev_get_by_flags_rcu - find any device with given flags
897  *	@net: the applicable net namespace
898  *	@if_flags: IFF_* values
899  *	@mask: bitmask of bits in if_flags to check
900  *
901  *	Search for any interface with the given flags. Returns NULL if a device
902  *	is not found or a pointer to the device. Must be called inside
903  *	rcu_read_lock(), and result refcount is unchanged.
904  */
905 
906 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
907 				    unsigned short mask)
908 {
909 	struct net_device *dev, *ret;
910 
911 	ret = NULL;
912 	for_each_netdev_rcu(net, dev) {
913 		if (((dev->flags ^ if_flags) & mask) == 0) {
914 			ret = dev;
915 			break;
916 		}
917 	}
918 	return ret;
919 }
920 EXPORT_SYMBOL(dev_get_by_flags_rcu);
921 
922 /**
923  *	dev_valid_name - check if name is okay for network device
924  *	@name: name string
925  *
926  *	Network device names need to be valid file names to
927  *	to allow sysfs to work.  We also disallow any kind of
928  *	whitespace.
929  */
930 bool dev_valid_name(const char *name)
931 {
932 	if (*name == '\0')
933 		return false;
934 	if (strlen(name) >= IFNAMSIZ)
935 		return false;
936 	if (!strcmp(name, ".") || !strcmp(name, ".."))
937 		return false;
938 
939 	while (*name) {
940 		if (*name == '/' || isspace(*name))
941 			return false;
942 		name++;
943 	}
944 	return true;
945 }
946 EXPORT_SYMBOL(dev_valid_name);
947 
948 /**
949  *	__dev_alloc_name - allocate a name for a device
950  *	@net: network namespace to allocate the device name in
951  *	@name: name format string
952  *	@buf:  scratch buffer and result name string
953  *
954  *	Passed a format string - eg "lt%d" it will try and find a suitable
955  *	id. It scans list of devices to build up a free map, then chooses
956  *	the first empty slot. The caller must hold the dev_base or rtnl lock
957  *	while allocating the name and adding the device in order to avoid
958  *	duplicates.
959  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
960  *	Returns the number of the unit assigned or a negative errno code.
961  */
962 
963 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
964 {
965 	int i = 0;
966 	const char *p;
967 	const int max_netdevices = 8*PAGE_SIZE;
968 	unsigned long *inuse;
969 	struct net_device *d;
970 
971 	p = strnchr(name, IFNAMSIZ-1, '%');
972 	if (p) {
973 		/*
974 		 * Verify the string as this thing may have come from
975 		 * the user.  There must be either one "%d" and no other "%"
976 		 * characters.
977 		 */
978 		if (p[1] != 'd' || strchr(p + 2, '%'))
979 			return -EINVAL;
980 
981 		/* Use one page as a bit array of possible slots */
982 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
983 		if (!inuse)
984 			return -ENOMEM;
985 
986 		for_each_netdev(net, d) {
987 			if (!sscanf(d->name, name, &i))
988 				continue;
989 			if (i < 0 || i >= max_netdevices)
990 				continue;
991 
992 			/*  avoid cases where sscanf is not exact inverse of printf */
993 			snprintf(buf, IFNAMSIZ, name, i);
994 			if (!strncmp(buf, d->name, IFNAMSIZ))
995 				set_bit(i, inuse);
996 		}
997 
998 		i = find_first_zero_bit(inuse, max_netdevices);
999 		free_page((unsigned long) inuse);
1000 	}
1001 
1002 	if (buf != name)
1003 		snprintf(buf, IFNAMSIZ, name, i);
1004 	if (!__dev_get_by_name(net, buf))
1005 		return i;
1006 
1007 	/* It is possible to run out of possible slots
1008 	 * when the name is long and there isn't enough space left
1009 	 * for the digits, or if all bits are used.
1010 	 */
1011 	return -ENFILE;
1012 }
1013 
1014 /**
1015  *	dev_alloc_name - allocate a name for a device
1016  *	@dev: device
1017  *	@name: name format string
1018  *
1019  *	Passed a format string - eg "lt%d" it will try and find a suitable
1020  *	id. It scans list of devices to build up a free map, then chooses
1021  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *	while allocating the name and adding the device in order to avoid
1023  *	duplicates.
1024  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *	Returns the number of the unit assigned or a negative errno code.
1026  */
1027 
1028 int dev_alloc_name(struct net_device *dev, const char *name)
1029 {
1030 	char buf[IFNAMSIZ];
1031 	struct net *net;
1032 	int ret;
1033 
1034 	BUG_ON(!dev_net(dev));
1035 	net = dev_net(dev);
1036 	ret = __dev_alloc_name(net, name, buf);
1037 	if (ret >= 0)
1038 		strlcpy(dev->name, buf, IFNAMSIZ);
1039 	return ret;
1040 }
1041 EXPORT_SYMBOL(dev_alloc_name);
1042 
1043 static int dev_alloc_name_ns(struct net *net,
1044 			     struct net_device *dev,
1045 			     const char *name)
1046 {
1047 	char buf[IFNAMSIZ];
1048 	int ret;
1049 
1050 	ret = __dev_alloc_name(net, name, buf);
1051 	if (ret >= 0)
1052 		strlcpy(dev->name, buf, IFNAMSIZ);
1053 	return ret;
1054 }
1055 
1056 static int dev_get_valid_name(struct net *net,
1057 			      struct net_device *dev,
1058 			      const char *name)
1059 {
1060 	BUG_ON(!net);
1061 
1062 	if (!dev_valid_name(name))
1063 		return -EINVAL;
1064 
1065 	if (strchr(name, '%'))
1066 		return dev_alloc_name_ns(net, dev, name);
1067 	else if (__dev_get_by_name(net, name))
1068 		return -EEXIST;
1069 	else if (dev->name != name)
1070 		strlcpy(dev->name, name, IFNAMSIZ);
1071 
1072 	return 0;
1073 }
1074 
1075 /**
1076  *	dev_change_name - change name of a device
1077  *	@dev: device
1078  *	@newname: name (or format string) must be at least IFNAMSIZ
1079  *
1080  *	Change name of a device, can pass format strings "eth%d".
1081  *	for wildcarding.
1082  */
1083 int dev_change_name(struct net_device *dev, const char *newname)
1084 {
1085 	char oldname[IFNAMSIZ];
1086 	int err = 0;
1087 	int ret;
1088 	struct net *net;
1089 
1090 	ASSERT_RTNL();
1091 	BUG_ON(!dev_net(dev));
1092 
1093 	net = dev_net(dev);
1094 	if (dev->flags & IFF_UP)
1095 		return -EBUSY;
1096 
1097 	write_seqcount_begin(&devnet_rename_seq);
1098 
1099 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1100 		write_seqcount_end(&devnet_rename_seq);
1101 		return 0;
1102 	}
1103 
1104 	memcpy(oldname, dev->name, IFNAMSIZ);
1105 
1106 	err = dev_get_valid_name(net, dev, newname);
1107 	if (err < 0) {
1108 		write_seqcount_end(&devnet_rename_seq);
1109 		return err;
1110 	}
1111 
1112 rollback:
1113 	ret = device_rename(&dev->dev, dev->name);
1114 	if (ret) {
1115 		memcpy(dev->name, oldname, IFNAMSIZ);
1116 		write_seqcount_end(&devnet_rename_seq);
1117 		return ret;
1118 	}
1119 
1120 	write_seqcount_end(&devnet_rename_seq);
1121 
1122 	netdev_adjacent_rename_links(dev, oldname);
1123 
1124 	write_lock_bh(&dev_base_lock);
1125 	hlist_del_rcu(&dev->name_hlist);
1126 	write_unlock_bh(&dev_base_lock);
1127 
1128 	synchronize_rcu();
1129 
1130 	write_lock_bh(&dev_base_lock);
1131 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1132 	write_unlock_bh(&dev_base_lock);
1133 
1134 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1135 	ret = notifier_to_errno(ret);
1136 
1137 	if (ret) {
1138 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1139 		if (err >= 0) {
1140 			err = ret;
1141 			write_seqcount_begin(&devnet_rename_seq);
1142 			memcpy(dev->name, oldname, IFNAMSIZ);
1143 			memcpy(oldname, newname, IFNAMSIZ);
1144 			goto rollback;
1145 		} else {
1146 			pr_err("%s: name change rollback failed: %d\n",
1147 			       dev->name, ret);
1148 		}
1149 	}
1150 
1151 	return err;
1152 }
1153 
1154 /**
1155  *	dev_set_alias - change ifalias of a device
1156  *	@dev: device
1157  *	@alias: name up to IFALIASZ
1158  *	@len: limit of bytes to copy from info
1159  *
1160  *	Set ifalias for a device,
1161  */
1162 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1163 {
1164 	char *new_ifalias;
1165 
1166 	ASSERT_RTNL();
1167 
1168 	if (len >= IFALIASZ)
1169 		return -EINVAL;
1170 
1171 	if (!len) {
1172 		kfree(dev->ifalias);
1173 		dev->ifalias = NULL;
1174 		return 0;
1175 	}
1176 
1177 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1178 	if (!new_ifalias)
1179 		return -ENOMEM;
1180 	dev->ifalias = new_ifalias;
1181 
1182 	strlcpy(dev->ifalias, alias, len+1);
1183 	return len;
1184 }
1185 
1186 
1187 /**
1188  *	netdev_features_change - device changes features
1189  *	@dev: device to cause notification
1190  *
1191  *	Called to indicate a device has changed features.
1192  */
1193 void netdev_features_change(struct net_device *dev)
1194 {
1195 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1196 }
1197 EXPORT_SYMBOL(netdev_features_change);
1198 
1199 /**
1200  *	netdev_state_change - device changes state
1201  *	@dev: device to cause notification
1202  *
1203  *	Called to indicate a device has changed state. This function calls
1204  *	the notifier chains for netdev_chain and sends a NEWLINK message
1205  *	to the routing socket.
1206  */
1207 void netdev_state_change(struct net_device *dev)
1208 {
1209 	if (dev->flags & IFF_UP) {
1210 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1211 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1212 	}
1213 }
1214 EXPORT_SYMBOL(netdev_state_change);
1215 
1216 /**
1217  * 	netdev_notify_peers - notify network peers about existence of @dev
1218  * 	@dev: network device
1219  *
1220  * Generate traffic such that interested network peers are aware of
1221  * @dev, such as by generating a gratuitous ARP. This may be used when
1222  * a device wants to inform the rest of the network about some sort of
1223  * reconfiguration such as a failover event or virtual machine
1224  * migration.
1225  */
1226 void netdev_notify_peers(struct net_device *dev)
1227 {
1228 	rtnl_lock();
1229 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1230 	rtnl_unlock();
1231 }
1232 EXPORT_SYMBOL(netdev_notify_peers);
1233 
1234 static int __dev_open(struct net_device *dev)
1235 {
1236 	const struct net_device_ops *ops = dev->netdev_ops;
1237 	int ret;
1238 
1239 	ASSERT_RTNL();
1240 
1241 	if (!netif_device_present(dev))
1242 		return -ENODEV;
1243 
1244 	/* Block netpoll from trying to do any rx path servicing.
1245 	 * If we don't do this there is a chance ndo_poll_controller
1246 	 * or ndo_poll may be running while we open the device
1247 	 */
1248 	netpoll_rx_disable(dev);
1249 
1250 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1251 	ret = notifier_to_errno(ret);
1252 	if (ret)
1253 		return ret;
1254 
1255 	set_bit(__LINK_STATE_START, &dev->state);
1256 
1257 	if (ops->ndo_validate_addr)
1258 		ret = ops->ndo_validate_addr(dev);
1259 
1260 	if (!ret && ops->ndo_open)
1261 		ret = ops->ndo_open(dev);
1262 
1263 	netpoll_rx_enable(dev);
1264 
1265 	if (ret)
1266 		clear_bit(__LINK_STATE_START, &dev->state);
1267 	else {
1268 		dev->flags |= IFF_UP;
1269 		net_dmaengine_get();
1270 		dev_set_rx_mode(dev);
1271 		dev_activate(dev);
1272 		add_device_randomness(dev->dev_addr, dev->addr_len);
1273 	}
1274 
1275 	return ret;
1276 }
1277 
1278 /**
1279  *	dev_open	- prepare an interface for use.
1280  *	@dev:	device to open
1281  *
1282  *	Takes a device from down to up state. The device's private open
1283  *	function is invoked and then the multicast lists are loaded. Finally
1284  *	the device is moved into the up state and a %NETDEV_UP message is
1285  *	sent to the netdev notifier chain.
1286  *
1287  *	Calling this function on an active interface is a nop. On a failure
1288  *	a negative errno code is returned.
1289  */
1290 int dev_open(struct net_device *dev)
1291 {
1292 	int ret;
1293 
1294 	if (dev->flags & IFF_UP)
1295 		return 0;
1296 
1297 	ret = __dev_open(dev);
1298 	if (ret < 0)
1299 		return ret;
1300 
1301 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1302 	call_netdevice_notifiers(NETDEV_UP, dev);
1303 
1304 	return ret;
1305 }
1306 EXPORT_SYMBOL(dev_open);
1307 
1308 static int __dev_close_many(struct list_head *head)
1309 {
1310 	struct net_device *dev;
1311 
1312 	ASSERT_RTNL();
1313 	might_sleep();
1314 
1315 	list_for_each_entry(dev, head, close_list) {
1316 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1317 
1318 		clear_bit(__LINK_STATE_START, &dev->state);
1319 
1320 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1321 		 * can be even on different cpu. So just clear netif_running().
1322 		 *
1323 		 * dev->stop() will invoke napi_disable() on all of it's
1324 		 * napi_struct instances on this device.
1325 		 */
1326 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1327 	}
1328 
1329 	dev_deactivate_many(head);
1330 
1331 	list_for_each_entry(dev, head, close_list) {
1332 		const struct net_device_ops *ops = dev->netdev_ops;
1333 
1334 		/*
1335 		 *	Call the device specific close. This cannot fail.
1336 		 *	Only if device is UP
1337 		 *
1338 		 *	We allow it to be called even after a DETACH hot-plug
1339 		 *	event.
1340 		 */
1341 		if (ops->ndo_stop)
1342 			ops->ndo_stop(dev);
1343 
1344 		dev->flags &= ~IFF_UP;
1345 		net_dmaengine_put();
1346 	}
1347 
1348 	return 0;
1349 }
1350 
1351 static int __dev_close(struct net_device *dev)
1352 {
1353 	int retval;
1354 	LIST_HEAD(single);
1355 
1356 	/* Temporarily disable netpoll until the interface is down */
1357 	netpoll_rx_disable(dev);
1358 
1359 	list_add(&dev->close_list, &single);
1360 	retval = __dev_close_many(&single);
1361 	list_del(&single);
1362 
1363 	netpoll_rx_enable(dev);
1364 	return retval;
1365 }
1366 
1367 static int dev_close_many(struct list_head *head)
1368 {
1369 	struct net_device *dev, *tmp;
1370 
1371 	/* Remove the devices that don't need to be closed */
1372 	list_for_each_entry_safe(dev, tmp, head, close_list)
1373 		if (!(dev->flags & IFF_UP))
1374 			list_del_init(&dev->close_list);
1375 
1376 	__dev_close_many(head);
1377 
1378 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1379 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1380 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1381 		list_del_init(&dev->close_list);
1382 	}
1383 
1384 	return 0;
1385 }
1386 
1387 /**
1388  *	dev_close - shutdown an interface.
1389  *	@dev: device to shutdown
1390  *
1391  *	This function moves an active device into down state. A
1392  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1393  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1394  *	chain.
1395  */
1396 int dev_close(struct net_device *dev)
1397 {
1398 	if (dev->flags & IFF_UP) {
1399 		LIST_HEAD(single);
1400 
1401 		/* Block netpoll rx while the interface is going down */
1402 		netpoll_rx_disable(dev);
1403 
1404 		list_add(&dev->close_list, &single);
1405 		dev_close_many(&single);
1406 		list_del(&single);
1407 
1408 		netpoll_rx_enable(dev);
1409 	}
1410 	return 0;
1411 }
1412 EXPORT_SYMBOL(dev_close);
1413 
1414 
1415 /**
1416  *	dev_disable_lro - disable Large Receive Offload on a device
1417  *	@dev: device
1418  *
1419  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1420  *	called under RTNL.  This is needed if received packets may be
1421  *	forwarded to another interface.
1422  */
1423 void dev_disable_lro(struct net_device *dev)
1424 {
1425 	/*
1426 	 * If we're trying to disable lro on a vlan device
1427 	 * use the underlying physical device instead
1428 	 */
1429 	if (is_vlan_dev(dev))
1430 		dev = vlan_dev_real_dev(dev);
1431 
1432 	/* the same for macvlan devices */
1433 	if (netif_is_macvlan(dev))
1434 		dev = macvlan_dev_real_dev(dev);
1435 
1436 	dev->wanted_features &= ~NETIF_F_LRO;
1437 	netdev_update_features(dev);
1438 
1439 	if (unlikely(dev->features & NETIF_F_LRO))
1440 		netdev_WARN(dev, "failed to disable LRO!\n");
1441 }
1442 EXPORT_SYMBOL(dev_disable_lro);
1443 
1444 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1445 				   struct net_device *dev)
1446 {
1447 	struct netdev_notifier_info info;
1448 
1449 	netdev_notifier_info_init(&info, dev);
1450 	return nb->notifier_call(nb, val, &info);
1451 }
1452 
1453 static int dev_boot_phase = 1;
1454 
1455 /**
1456  *	register_netdevice_notifier - register a network notifier block
1457  *	@nb: notifier
1458  *
1459  *	Register a notifier to be called when network device events occur.
1460  *	The notifier passed is linked into the kernel structures and must
1461  *	not be reused until it has been unregistered. A negative errno code
1462  *	is returned on a failure.
1463  *
1464  * 	When registered all registration and up events are replayed
1465  *	to the new notifier to allow device to have a race free
1466  *	view of the network device list.
1467  */
1468 
1469 int register_netdevice_notifier(struct notifier_block *nb)
1470 {
1471 	struct net_device *dev;
1472 	struct net_device *last;
1473 	struct net *net;
1474 	int err;
1475 
1476 	rtnl_lock();
1477 	err = raw_notifier_chain_register(&netdev_chain, nb);
1478 	if (err)
1479 		goto unlock;
1480 	if (dev_boot_phase)
1481 		goto unlock;
1482 	for_each_net(net) {
1483 		for_each_netdev(net, dev) {
1484 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1485 			err = notifier_to_errno(err);
1486 			if (err)
1487 				goto rollback;
1488 
1489 			if (!(dev->flags & IFF_UP))
1490 				continue;
1491 
1492 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1493 		}
1494 	}
1495 
1496 unlock:
1497 	rtnl_unlock();
1498 	return err;
1499 
1500 rollback:
1501 	last = dev;
1502 	for_each_net(net) {
1503 		for_each_netdev(net, dev) {
1504 			if (dev == last)
1505 				goto outroll;
1506 
1507 			if (dev->flags & IFF_UP) {
1508 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1509 							dev);
1510 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1511 			}
1512 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1513 		}
1514 	}
1515 
1516 outroll:
1517 	raw_notifier_chain_unregister(&netdev_chain, nb);
1518 	goto unlock;
1519 }
1520 EXPORT_SYMBOL(register_netdevice_notifier);
1521 
1522 /**
1523  *	unregister_netdevice_notifier - unregister a network notifier block
1524  *	@nb: notifier
1525  *
1526  *	Unregister a notifier previously registered by
1527  *	register_netdevice_notifier(). The notifier is unlinked into the
1528  *	kernel structures and may then be reused. A negative errno code
1529  *	is returned on a failure.
1530  *
1531  * 	After unregistering unregister and down device events are synthesized
1532  *	for all devices on the device list to the removed notifier to remove
1533  *	the need for special case cleanup code.
1534  */
1535 
1536 int unregister_netdevice_notifier(struct notifier_block *nb)
1537 {
1538 	struct net_device *dev;
1539 	struct net *net;
1540 	int err;
1541 
1542 	rtnl_lock();
1543 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1544 	if (err)
1545 		goto unlock;
1546 
1547 	for_each_net(net) {
1548 		for_each_netdev(net, dev) {
1549 			if (dev->flags & IFF_UP) {
1550 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1551 							dev);
1552 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1553 			}
1554 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1555 		}
1556 	}
1557 unlock:
1558 	rtnl_unlock();
1559 	return err;
1560 }
1561 EXPORT_SYMBOL(unregister_netdevice_notifier);
1562 
1563 /**
1564  *	call_netdevice_notifiers_info - call all network notifier blocks
1565  *	@val: value passed unmodified to notifier function
1566  *	@dev: net_device pointer passed unmodified to notifier function
1567  *	@info: notifier information data
1568  *
1569  *	Call all network notifier blocks.  Parameters and return value
1570  *	are as for raw_notifier_call_chain().
1571  */
1572 
1573 static int call_netdevice_notifiers_info(unsigned long val,
1574 					 struct net_device *dev,
1575 					 struct netdev_notifier_info *info)
1576 {
1577 	ASSERT_RTNL();
1578 	netdev_notifier_info_init(info, dev);
1579 	return raw_notifier_call_chain(&netdev_chain, val, info);
1580 }
1581 
1582 /**
1583  *	call_netdevice_notifiers - call all network notifier blocks
1584  *      @val: value passed unmodified to notifier function
1585  *      @dev: net_device pointer passed unmodified to notifier function
1586  *
1587  *	Call all network notifier blocks.  Parameters and return value
1588  *	are as for raw_notifier_call_chain().
1589  */
1590 
1591 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1592 {
1593 	struct netdev_notifier_info info;
1594 
1595 	return call_netdevice_notifiers_info(val, dev, &info);
1596 }
1597 EXPORT_SYMBOL(call_netdevice_notifiers);
1598 
1599 static struct static_key netstamp_needed __read_mostly;
1600 #ifdef HAVE_JUMP_LABEL
1601 /* We are not allowed to call static_key_slow_dec() from irq context
1602  * If net_disable_timestamp() is called from irq context, defer the
1603  * static_key_slow_dec() calls.
1604  */
1605 static atomic_t netstamp_needed_deferred;
1606 #endif
1607 
1608 void net_enable_timestamp(void)
1609 {
1610 #ifdef HAVE_JUMP_LABEL
1611 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1612 
1613 	if (deferred) {
1614 		while (--deferred)
1615 			static_key_slow_dec(&netstamp_needed);
1616 		return;
1617 	}
1618 #endif
1619 	static_key_slow_inc(&netstamp_needed);
1620 }
1621 EXPORT_SYMBOL(net_enable_timestamp);
1622 
1623 void net_disable_timestamp(void)
1624 {
1625 #ifdef HAVE_JUMP_LABEL
1626 	if (in_interrupt()) {
1627 		atomic_inc(&netstamp_needed_deferred);
1628 		return;
1629 	}
1630 #endif
1631 	static_key_slow_dec(&netstamp_needed);
1632 }
1633 EXPORT_SYMBOL(net_disable_timestamp);
1634 
1635 static inline void net_timestamp_set(struct sk_buff *skb)
1636 {
1637 	skb->tstamp.tv64 = 0;
1638 	if (static_key_false(&netstamp_needed))
1639 		__net_timestamp(skb);
1640 }
1641 
1642 #define net_timestamp_check(COND, SKB)			\
1643 	if (static_key_false(&netstamp_needed)) {		\
1644 		if ((COND) && !(SKB)->tstamp.tv64)	\
1645 			__net_timestamp(SKB);		\
1646 	}						\
1647 
1648 static inline bool is_skb_forwardable(struct net_device *dev,
1649 				      struct sk_buff *skb)
1650 {
1651 	unsigned int len;
1652 
1653 	if (!(dev->flags & IFF_UP))
1654 		return false;
1655 
1656 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1657 	if (skb->len <= len)
1658 		return true;
1659 
1660 	/* if TSO is enabled, we don't care about the length as the packet
1661 	 * could be forwarded without being segmented before
1662 	 */
1663 	if (skb_is_gso(skb))
1664 		return true;
1665 
1666 	return false;
1667 }
1668 
1669 /**
1670  * dev_forward_skb - loopback an skb to another netif
1671  *
1672  * @dev: destination network device
1673  * @skb: buffer to forward
1674  *
1675  * return values:
1676  *	NET_RX_SUCCESS	(no congestion)
1677  *	NET_RX_DROP     (packet was dropped, but freed)
1678  *
1679  * dev_forward_skb can be used for injecting an skb from the
1680  * start_xmit function of one device into the receive queue
1681  * of another device.
1682  *
1683  * The receiving device may be in another namespace, so
1684  * we have to clear all information in the skb that could
1685  * impact namespace isolation.
1686  */
1687 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1688 {
1689 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1690 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1691 			atomic_long_inc(&dev->rx_dropped);
1692 			kfree_skb(skb);
1693 			return NET_RX_DROP;
1694 		}
1695 	}
1696 
1697 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1698 		atomic_long_inc(&dev->rx_dropped);
1699 		kfree_skb(skb);
1700 		return NET_RX_DROP;
1701 	}
1702 
1703 	skb_scrub_packet(skb, true);
1704 	skb->protocol = eth_type_trans(skb, dev);
1705 
1706 	return netif_rx_internal(skb);
1707 }
1708 EXPORT_SYMBOL_GPL(dev_forward_skb);
1709 
1710 static inline int deliver_skb(struct sk_buff *skb,
1711 			      struct packet_type *pt_prev,
1712 			      struct net_device *orig_dev)
1713 {
1714 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1715 		return -ENOMEM;
1716 	atomic_inc(&skb->users);
1717 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1718 }
1719 
1720 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1721 {
1722 	if (!ptype->af_packet_priv || !skb->sk)
1723 		return false;
1724 
1725 	if (ptype->id_match)
1726 		return ptype->id_match(ptype, skb->sk);
1727 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1728 		return true;
1729 
1730 	return false;
1731 }
1732 
1733 /*
1734  *	Support routine. Sends outgoing frames to any network
1735  *	taps currently in use.
1736  */
1737 
1738 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1739 {
1740 	struct packet_type *ptype;
1741 	struct sk_buff *skb2 = NULL;
1742 	struct packet_type *pt_prev = NULL;
1743 
1744 	rcu_read_lock();
1745 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1746 		/* Never send packets back to the socket
1747 		 * they originated from - MvS (miquels@drinkel.ow.org)
1748 		 */
1749 		if ((ptype->dev == dev || !ptype->dev) &&
1750 		    (!skb_loop_sk(ptype, skb))) {
1751 			if (pt_prev) {
1752 				deliver_skb(skb2, pt_prev, skb->dev);
1753 				pt_prev = ptype;
1754 				continue;
1755 			}
1756 
1757 			skb2 = skb_clone(skb, GFP_ATOMIC);
1758 			if (!skb2)
1759 				break;
1760 
1761 			net_timestamp_set(skb2);
1762 
1763 			/* skb->nh should be correctly
1764 			   set by sender, so that the second statement is
1765 			   just protection against buggy protocols.
1766 			 */
1767 			skb_reset_mac_header(skb2);
1768 
1769 			if (skb_network_header(skb2) < skb2->data ||
1770 			    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1771 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1772 						     ntohs(skb2->protocol),
1773 						     dev->name);
1774 				skb_reset_network_header(skb2);
1775 			}
1776 
1777 			skb2->transport_header = skb2->network_header;
1778 			skb2->pkt_type = PACKET_OUTGOING;
1779 			pt_prev = ptype;
1780 		}
1781 	}
1782 	if (pt_prev)
1783 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1784 	rcu_read_unlock();
1785 }
1786 
1787 /**
1788  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1789  * @dev: Network device
1790  * @txq: number of queues available
1791  *
1792  * If real_num_tx_queues is changed the tc mappings may no longer be
1793  * valid. To resolve this verify the tc mapping remains valid and if
1794  * not NULL the mapping. With no priorities mapping to this
1795  * offset/count pair it will no longer be used. In the worst case TC0
1796  * is invalid nothing can be done so disable priority mappings. If is
1797  * expected that drivers will fix this mapping if they can before
1798  * calling netif_set_real_num_tx_queues.
1799  */
1800 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1801 {
1802 	int i;
1803 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1804 
1805 	/* If TC0 is invalidated disable TC mapping */
1806 	if (tc->offset + tc->count > txq) {
1807 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1808 		dev->num_tc = 0;
1809 		return;
1810 	}
1811 
1812 	/* Invalidated prio to tc mappings set to TC0 */
1813 	for (i = 1; i < TC_BITMASK + 1; i++) {
1814 		int q = netdev_get_prio_tc_map(dev, i);
1815 
1816 		tc = &dev->tc_to_txq[q];
1817 		if (tc->offset + tc->count > txq) {
1818 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1819 				i, q);
1820 			netdev_set_prio_tc_map(dev, i, 0);
1821 		}
1822 	}
1823 }
1824 
1825 #ifdef CONFIG_XPS
1826 static DEFINE_MUTEX(xps_map_mutex);
1827 #define xmap_dereference(P)		\
1828 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1829 
1830 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1831 					int cpu, u16 index)
1832 {
1833 	struct xps_map *map = NULL;
1834 	int pos;
1835 
1836 	if (dev_maps)
1837 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1838 
1839 	for (pos = 0; map && pos < map->len; pos++) {
1840 		if (map->queues[pos] == index) {
1841 			if (map->len > 1) {
1842 				map->queues[pos] = map->queues[--map->len];
1843 			} else {
1844 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1845 				kfree_rcu(map, rcu);
1846 				map = NULL;
1847 			}
1848 			break;
1849 		}
1850 	}
1851 
1852 	return map;
1853 }
1854 
1855 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1856 {
1857 	struct xps_dev_maps *dev_maps;
1858 	int cpu, i;
1859 	bool active = false;
1860 
1861 	mutex_lock(&xps_map_mutex);
1862 	dev_maps = xmap_dereference(dev->xps_maps);
1863 
1864 	if (!dev_maps)
1865 		goto out_no_maps;
1866 
1867 	for_each_possible_cpu(cpu) {
1868 		for (i = index; i < dev->num_tx_queues; i++) {
1869 			if (!remove_xps_queue(dev_maps, cpu, i))
1870 				break;
1871 		}
1872 		if (i == dev->num_tx_queues)
1873 			active = true;
1874 	}
1875 
1876 	if (!active) {
1877 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1878 		kfree_rcu(dev_maps, rcu);
1879 	}
1880 
1881 	for (i = index; i < dev->num_tx_queues; i++)
1882 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1883 					     NUMA_NO_NODE);
1884 
1885 out_no_maps:
1886 	mutex_unlock(&xps_map_mutex);
1887 }
1888 
1889 static struct xps_map *expand_xps_map(struct xps_map *map,
1890 				      int cpu, u16 index)
1891 {
1892 	struct xps_map *new_map;
1893 	int alloc_len = XPS_MIN_MAP_ALLOC;
1894 	int i, pos;
1895 
1896 	for (pos = 0; map && pos < map->len; pos++) {
1897 		if (map->queues[pos] != index)
1898 			continue;
1899 		return map;
1900 	}
1901 
1902 	/* Need to add queue to this CPU's existing map */
1903 	if (map) {
1904 		if (pos < map->alloc_len)
1905 			return map;
1906 
1907 		alloc_len = map->alloc_len * 2;
1908 	}
1909 
1910 	/* Need to allocate new map to store queue on this CPU's map */
1911 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1912 			       cpu_to_node(cpu));
1913 	if (!new_map)
1914 		return NULL;
1915 
1916 	for (i = 0; i < pos; i++)
1917 		new_map->queues[i] = map->queues[i];
1918 	new_map->alloc_len = alloc_len;
1919 	new_map->len = pos;
1920 
1921 	return new_map;
1922 }
1923 
1924 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1925 			u16 index)
1926 {
1927 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1928 	struct xps_map *map, *new_map;
1929 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1930 	int cpu, numa_node_id = -2;
1931 	bool active = false;
1932 
1933 	mutex_lock(&xps_map_mutex);
1934 
1935 	dev_maps = xmap_dereference(dev->xps_maps);
1936 
1937 	/* allocate memory for queue storage */
1938 	for_each_online_cpu(cpu) {
1939 		if (!cpumask_test_cpu(cpu, mask))
1940 			continue;
1941 
1942 		if (!new_dev_maps)
1943 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1944 		if (!new_dev_maps) {
1945 			mutex_unlock(&xps_map_mutex);
1946 			return -ENOMEM;
1947 		}
1948 
1949 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1950 				 NULL;
1951 
1952 		map = expand_xps_map(map, cpu, index);
1953 		if (!map)
1954 			goto error;
1955 
1956 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1957 	}
1958 
1959 	if (!new_dev_maps)
1960 		goto out_no_new_maps;
1961 
1962 	for_each_possible_cpu(cpu) {
1963 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1964 			/* add queue to CPU maps */
1965 			int pos = 0;
1966 
1967 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1968 			while ((pos < map->len) && (map->queues[pos] != index))
1969 				pos++;
1970 
1971 			if (pos == map->len)
1972 				map->queues[map->len++] = index;
1973 #ifdef CONFIG_NUMA
1974 			if (numa_node_id == -2)
1975 				numa_node_id = cpu_to_node(cpu);
1976 			else if (numa_node_id != cpu_to_node(cpu))
1977 				numa_node_id = -1;
1978 #endif
1979 		} else if (dev_maps) {
1980 			/* fill in the new device map from the old device map */
1981 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1982 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1983 		}
1984 
1985 	}
1986 
1987 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1988 
1989 	/* Cleanup old maps */
1990 	if (dev_maps) {
1991 		for_each_possible_cpu(cpu) {
1992 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1993 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1994 			if (map && map != new_map)
1995 				kfree_rcu(map, rcu);
1996 		}
1997 
1998 		kfree_rcu(dev_maps, rcu);
1999 	}
2000 
2001 	dev_maps = new_dev_maps;
2002 	active = true;
2003 
2004 out_no_new_maps:
2005 	/* update Tx queue numa node */
2006 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2007 				     (numa_node_id >= 0) ? numa_node_id :
2008 				     NUMA_NO_NODE);
2009 
2010 	if (!dev_maps)
2011 		goto out_no_maps;
2012 
2013 	/* removes queue from unused CPUs */
2014 	for_each_possible_cpu(cpu) {
2015 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2016 			continue;
2017 
2018 		if (remove_xps_queue(dev_maps, cpu, index))
2019 			active = true;
2020 	}
2021 
2022 	/* free map if not active */
2023 	if (!active) {
2024 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2025 		kfree_rcu(dev_maps, rcu);
2026 	}
2027 
2028 out_no_maps:
2029 	mutex_unlock(&xps_map_mutex);
2030 
2031 	return 0;
2032 error:
2033 	/* remove any maps that we added */
2034 	for_each_possible_cpu(cpu) {
2035 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2036 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2037 				 NULL;
2038 		if (new_map && new_map != map)
2039 			kfree(new_map);
2040 	}
2041 
2042 	mutex_unlock(&xps_map_mutex);
2043 
2044 	kfree(new_dev_maps);
2045 	return -ENOMEM;
2046 }
2047 EXPORT_SYMBOL(netif_set_xps_queue);
2048 
2049 #endif
2050 /*
2051  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2052  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2053  */
2054 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2055 {
2056 	int rc;
2057 
2058 	if (txq < 1 || txq > dev->num_tx_queues)
2059 		return -EINVAL;
2060 
2061 	if (dev->reg_state == NETREG_REGISTERED ||
2062 	    dev->reg_state == NETREG_UNREGISTERING) {
2063 		ASSERT_RTNL();
2064 
2065 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2066 						  txq);
2067 		if (rc)
2068 			return rc;
2069 
2070 		if (dev->num_tc)
2071 			netif_setup_tc(dev, txq);
2072 
2073 		if (txq < dev->real_num_tx_queues) {
2074 			qdisc_reset_all_tx_gt(dev, txq);
2075 #ifdef CONFIG_XPS
2076 			netif_reset_xps_queues_gt(dev, txq);
2077 #endif
2078 		}
2079 	}
2080 
2081 	dev->real_num_tx_queues = txq;
2082 	return 0;
2083 }
2084 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2085 
2086 #ifdef CONFIG_SYSFS
2087 /**
2088  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2089  *	@dev: Network device
2090  *	@rxq: Actual number of RX queues
2091  *
2092  *	This must be called either with the rtnl_lock held or before
2093  *	registration of the net device.  Returns 0 on success, or a
2094  *	negative error code.  If called before registration, it always
2095  *	succeeds.
2096  */
2097 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2098 {
2099 	int rc;
2100 
2101 	if (rxq < 1 || rxq > dev->num_rx_queues)
2102 		return -EINVAL;
2103 
2104 	if (dev->reg_state == NETREG_REGISTERED) {
2105 		ASSERT_RTNL();
2106 
2107 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2108 						  rxq);
2109 		if (rc)
2110 			return rc;
2111 	}
2112 
2113 	dev->real_num_rx_queues = rxq;
2114 	return 0;
2115 }
2116 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2117 #endif
2118 
2119 /**
2120  * netif_get_num_default_rss_queues - default number of RSS queues
2121  *
2122  * This routine should set an upper limit on the number of RSS queues
2123  * used by default by multiqueue devices.
2124  */
2125 int netif_get_num_default_rss_queues(void)
2126 {
2127 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2128 }
2129 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2130 
2131 static inline void __netif_reschedule(struct Qdisc *q)
2132 {
2133 	struct softnet_data *sd;
2134 	unsigned long flags;
2135 
2136 	local_irq_save(flags);
2137 	sd = &__get_cpu_var(softnet_data);
2138 	q->next_sched = NULL;
2139 	*sd->output_queue_tailp = q;
2140 	sd->output_queue_tailp = &q->next_sched;
2141 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2142 	local_irq_restore(flags);
2143 }
2144 
2145 void __netif_schedule(struct Qdisc *q)
2146 {
2147 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2148 		__netif_reschedule(q);
2149 }
2150 EXPORT_SYMBOL(__netif_schedule);
2151 
2152 struct dev_kfree_skb_cb {
2153 	enum skb_free_reason reason;
2154 };
2155 
2156 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2157 {
2158 	return (struct dev_kfree_skb_cb *)skb->cb;
2159 }
2160 
2161 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2162 {
2163 	unsigned long flags;
2164 
2165 	if (likely(atomic_read(&skb->users) == 1)) {
2166 		smp_rmb();
2167 		atomic_set(&skb->users, 0);
2168 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2169 		return;
2170 	}
2171 	get_kfree_skb_cb(skb)->reason = reason;
2172 	local_irq_save(flags);
2173 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2174 	__this_cpu_write(softnet_data.completion_queue, skb);
2175 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2176 	local_irq_restore(flags);
2177 }
2178 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2179 
2180 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2181 {
2182 	if (in_irq() || irqs_disabled())
2183 		__dev_kfree_skb_irq(skb, reason);
2184 	else
2185 		dev_kfree_skb(skb);
2186 }
2187 EXPORT_SYMBOL(__dev_kfree_skb_any);
2188 
2189 
2190 /**
2191  * netif_device_detach - mark device as removed
2192  * @dev: network device
2193  *
2194  * Mark device as removed from system and therefore no longer available.
2195  */
2196 void netif_device_detach(struct net_device *dev)
2197 {
2198 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2199 	    netif_running(dev)) {
2200 		netif_tx_stop_all_queues(dev);
2201 	}
2202 }
2203 EXPORT_SYMBOL(netif_device_detach);
2204 
2205 /**
2206  * netif_device_attach - mark device as attached
2207  * @dev: network device
2208  *
2209  * Mark device as attached from system and restart if needed.
2210  */
2211 void netif_device_attach(struct net_device *dev)
2212 {
2213 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2214 	    netif_running(dev)) {
2215 		netif_tx_wake_all_queues(dev);
2216 		__netdev_watchdog_up(dev);
2217 	}
2218 }
2219 EXPORT_SYMBOL(netif_device_attach);
2220 
2221 static void skb_warn_bad_offload(const struct sk_buff *skb)
2222 {
2223 	static const netdev_features_t null_features = 0;
2224 	struct net_device *dev = skb->dev;
2225 	const char *driver = "";
2226 
2227 	if (!net_ratelimit())
2228 		return;
2229 
2230 	if (dev && dev->dev.parent)
2231 		driver = dev_driver_string(dev->dev.parent);
2232 
2233 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2234 	     "gso_type=%d ip_summed=%d\n",
2235 	     driver, dev ? &dev->features : &null_features,
2236 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2237 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2238 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2239 }
2240 
2241 /*
2242  * Invalidate hardware checksum when packet is to be mangled, and
2243  * complete checksum manually on outgoing path.
2244  */
2245 int skb_checksum_help(struct sk_buff *skb)
2246 {
2247 	__wsum csum;
2248 	int ret = 0, offset;
2249 
2250 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2251 		goto out_set_summed;
2252 
2253 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2254 		skb_warn_bad_offload(skb);
2255 		return -EINVAL;
2256 	}
2257 
2258 	/* Before computing a checksum, we should make sure no frag could
2259 	 * be modified by an external entity : checksum could be wrong.
2260 	 */
2261 	if (skb_has_shared_frag(skb)) {
2262 		ret = __skb_linearize(skb);
2263 		if (ret)
2264 			goto out;
2265 	}
2266 
2267 	offset = skb_checksum_start_offset(skb);
2268 	BUG_ON(offset >= skb_headlen(skb));
2269 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2270 
2271 	offset += skb->csum_offset;
2272 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2273 
2274 	if (skb_cloned(skb) &&
2275 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2276 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2277 		if (ret)
2278 			goto out;
2279 	}
2280 
2281 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2282 out_set_summed:
2283 	skb->ip_summed = CHECKSUM_NONE;
2284 out:
2285 	return ret;
2286 }
2287 EXPORT_SYMBOL(skb_checksum_help);
2288 
2289 __be16 skb_network_protocol(struct sk_buff *skb)
2290 {
2291 	__be16 type = skb->protocol;
2292 	int vlan_depth = ETH_HLEN;
2293 
2294 	/* Tunnel gso handlers can set protocol to ethernet. */
2295 	if (type == htons(ETH_P_TEB)) {
2296 		struct ethhdr *eth;
2297 
2298 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2299 			return 0;
2300 
2301 		eth = (struct ethhdr *)skb_mac_header(skb);
2302 		type = eth->h_proto;
2303 	}
2304 
2305 	while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2306 		struct vlan_hdr *vh;
2307 
2308 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2309 			return 0;
2310 
2311 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2312 		type = vh->h_vlan_encapsulated_proto;
2313 		vlan_depth += VLAN_HLEN;
2314 	}
2315 
2316 	return type;
2317 }
2318 
2319 /**
2320  *	skb_mac_gso_segment - mac layer segmentation handler.
2321  *	@skb: buffer to segment
2322  *	@features: features for the output path (see dev->features)
2323  */
2324 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2325 				    netdev_features_t features)
2326 {
2327 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2328 	struct packet_offload *ptype;
2329 	__be16 type = skb_network_protocol(skb);
2330 
2331 	if (unlikely(!type))
2332 		return ERR_PTR(-EINVAL);
2333 
2334 	__skb_pull(skb, skb->mac_len);
2335 
2336 	rcu_read_lock();
2337 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2338 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2339 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2340 				int err;
2341 
2342 				err = ptype->callbacks.gso_send_check(skb);
2343 				segs = ERR_PTR(err);
2344 				if (err || skb_gso_ok(skb, features))
2345 					break;
2346 				__skb_push(skb, (skb->data -
2347 						 skb_network_header(skb)));
2348 			}
2349 			segs = ptype->callbacks.gso_segment(skb, features);
2350 			break;
2351 		}
2352 	}
2353 	rcu_read_unlock();
2354 
2355 	__skb_push(skb, skb->data - skb_mac_header(skb));
2356 
2357 	return segs;
2358 }
2359 EXPORT_SYMBOL(skb_mac_gso_segment);
2360 
2361 
2362 /* openvswitch calls this on rx path, so we need a different check.
2363  */
2364 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2365 {
2366 	if (tx_path)
2367 		return skb->ip_summed != CHECKSUM_PARTIAL;
2368 	else
2369 		return skb->ip_summed == CHECKSUM_NONE;
2370 }
2371 
2372 /**
2373  *	__skb_gso_segment - Perform segmentation on skb.
2374  *	@skb: buffer to segment
2375  *	@features: features for the output path (see dev->features)
2376  *	@tx_path: whether it is called in TX path
2377  *
2378  *	This function segments the given skb and returns a list of segments.
2379  *
2380  *	It may return NULL if the skb requires no segmentation.  This is
2381  *	only possible when GSO is used for verifying header integrity.
2382  */
2383 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2384 				  netdev_features_t features, bool tx_path)
2385 {
2386 	if (unlikely(skb_needs_check(skb, tx_path))) {
2387 		int err;
2388 
2389 		skb_warn_bad_offload(skb);
2390 
2391 		if (skb_header_cloned(skb) &&
2392 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2393 			return ERR_PTR(err);
2394 	}
2395 
2396 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2397 	SKB_GSO_CB(skb)->encap_level = 0;
2398 
2399 	skb_reset_mac_header(skb);
2400 	skb_reset_mac_len(skb);
2401 
2402 	return skb_mac_gso_segment(skb, features);
2403 }
2404 EXPORT_SYMBOL(__skb_gso_segment);
2405 
2406 /* Take action when hardware reception checksum errors are detected. */
2407 #ifdef CONFIG_BUG
2408 void netdev_rx_csum_fault(struct net_device *dev)
2409 {
2410 	if (net_ratelimit()) {
2411 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2412 		dump_stack();
2413 	}
2414 }
2415 EXPORT_SYMBOL(netdev_rx_csum_fault);
2416 #endif
2417 
2418 /* Actually, we should eliminate this check as soon as we know, that:
2419  * 1. IOMMU is present and allows to map all the memory.
2420  * 2. No high memory really exists on this machine.
2421  */
2422 
2423 static int illegal_highdma(const struct net_device *dev, struct sk_buff *skb)
2424 {
2425 #ifdef CONFIG_HIGHMEM
2426 	int i;
2427 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2428 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2429 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2430 			if (PageHighMem(skb_frag_page(frag)))
2431 				return 1;
2432 		}
2433 	}
2434 
2435 	if (PCI_DMA_BUS_IS_PHYS) {
2436 		struct device *pdev = dev->dev.parent;
2437 
2438 		if (!pdev)
2439 			return 0;
2440 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2441 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2442 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2443 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2444 				return 1;
2445 		}
2446 	}
2447 #endif
2448 	return 0;
2449 }
2450 
2451 struct dev_gso_cb {
2452 	void (*destructor)(struct sk_buff *skb);
2453 };
2454 
2455 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2456 
2457 static void dev_gso_skb_destructor(struct sk_buff *skb)
2458 {
2459 	struct dev_gso_cb *cb;
2460 
2461 	kfree_skb_list(skb->next);
2462 	skb->next = NULL;
2463 
2464 	cb = DEV_GSO_CB(skb);
2465 	if (cb->destructor)
2466 		cb->destructor(skb);
2467 }
2468 
2469 /**
2470  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2471  *	@skb: buffer to segment
2472  *	@features: device features as applicable to this skb
2473  *
2474  *	This function segments the given skb and stores the list of segments
2475  *	in skb->next.
2476  */
2477 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2478 {
2479 	struct sk_buff *segs;
2480 
2481 	segs = skb_gso_segment(skb, features);
2482 
2483 	/* Verifying header integrity only. */
2484 	if (!segs)
2485 		return 0;
2486 
2487 	if (IS_ERR(segs))
2488 		return PTR_ERR(segs);
2489 
2490 	skb->next = segs;
2491 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2492 	skb->destructor = dev_gso_skb_destructor;
2493 
2494 	return 0;
2495 }
2496 
2497 static netdev_features_t harmonize_features(struct sk_buff *skb,
2498 					    const struct net_device *dev,
2499 					    netdev_features_t features)
2500 {
2501 	if (skb->ip_summed != CHECKSUM_NONE &&
2502 	    !can_checksum_protocol(features, skb_network_protocol(skb))) {
2503 		features &= ~NETIF_F_ALL_CSUM;
2504 	} else if (illegal_highdma(dev, skb)) {
2505 		features &= ~NETIF_F_SG;
2506 	}
2507 
2508 	return features;
2509 }
2510 
2511 netdev_features_t netif_skb_dev_features(struct sk_buff *skb,
2512 					 const struct net_device *dev)
2513 {
2514 	__be16 protocol = skb->protocol;
2515 	netdev_features_t features = dev->features;
2516 
2517 	if (skb_shinfo(skb)->gso_segs > dev->gso_max_segs)
2518 		features &= ~NETIF_F_GSO_MASK;
2519 
2520 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2521 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2522 		protocol = veh->h_vlan_encapsulated_proto;
2523 	} else if (!vlan_tx_tag_present(skb)) {
2524 		return harmonize_features(skb, dev, features);
2525 	}
2526 
2527 	features &= (dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2528 					       NETIF_F_HW_VLAN_STAG_TX);
2529 
2530 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2531 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2532 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2533 				NETIF_F_HW_VLAN_STAG_TX;
2534 
2535 	return harmonize_features(skb, dev, features);
2536 }
2537 EXPORT_SYMBOL(netif_skb_dev_features);
2538 
2539 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2540 			struct netdev_queue *txq)
2541 {
2542 	const struct net_device_ops *ops = dev->netdev_ops;
2543 	int rc = NETDEV_TX_OK;
2544 	unsigned int skb_len;
2545 
2546 	if (likely(!skb->next)) {
2547 		netdev_features_t features;
2548 
2549 		/*
2550 		 * If device doesn't need skb->dst, release it right now while
2551 		 * its hot in this cpu cache
2552 		 */
2553 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2554 			skb_dst_drop(skb);
2555 
2556 		features = netif_skb_features(skb);
2557 
2558 		if (vlan_tx_tag_present(skb) &&
2559 		    !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2560 			skb = __vlan_put_tag(skb, skb->vlan_proto,
2561 					     vlan_tx_tag_get(skb));
2562 			if (unlikely(!skb))
2563 				goto out;
2564 
2565 			skb->vlan_tci = 0;
2566 		}
2567 
2568 		/* If encapsulation offload request, verify we are testing
2569 		 * hardware encapsulation features instead of standard
2570 		 * features for the netdev
2571 		 */
2572 		if (skb->encapsulation)
2573 			features &= dev->hw_enc_features;
2574 
2575 		if (netif_needs_gso(skb, features)) {
2576 			if (unlikely(dev_gso_segment(skb, features)))
2577 				goto out_kfree_skb;
2578 			if (skb->next)
2579 				goto gso;
2580 		} else {
2581 			if (skb_needs_linearize(skb, features) &&
2582 			    __skb_linearize(skb))
2583 				goto out_kfree_skb;
2584 
2585 			/* If packet is not checksummed and device does not
2586 			 * support checksumming for this protocol, complete
2587 			 * checksumming here.
2588 			 */
2589 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2590 				if (skb->encapsulation)
2591 					skb_set_inner_transport_header(skb,
2592 						skb_checksum_start_offset(skb));
2593 				else
2594 					skb_set_transport_header(skb,
2595 						skb_checksum_start_offset(skb));
2596 				if (!(features & NETIF_F_ALL_CSUM) &&
2597 				     skb_checksum_help(skb))
2598 					goto out_kfree_skb;
2599 			}
2600 		}
2601 
2602 		if (!list_empty(&ptype_all))
2603 			dev_queue_xmit_nit(skb, dev);
2604 
2605 		skb_len = skb->len;
2606 		trace_net_dev_start_xmit(skb, dev);
2607 		rc = ops->ndo_start_xmit(skb, dev);
2608 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2609 		if (rc == NETDEV_TX_OK)
2610 			txq_trans_update(txq);
2611 		return rc;
2612 	}
2613 
2614 gso:
2615 	do {
2616 		struct sk_buff *nskb = skb->next;
2617 
2618 		skb->next = nskb->next;
2619 		nskb->next = NULL;
2620 
2621 		if (!list_empty(&ptype_all))
2622 			dev_queue_xmit_nit(nskb, dev);
2623 
2624 		skb_len = nskb->len;
2625 		trace_net_dev_start_xmit(nskb, dev);
2626 		rc = ops->ndo_start_xmit(nskb, dev);
2627 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2628 		if (unlikely(rc != NETDEV_TX_OK)) {
2629 			if (rc & ~NETDEV_TX_MASK)
2630 				goto out_kfree_gso_skb;
2631 			nskb->next = skb->next;
2632 			skb->next = nskb;
2633 			return rc;
2634 		}
2635 		txq_trans_update(txq);
2636 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2637 			return NETDEV_TX_BUSY;
2638 	} while (skb->next);
2639 
2640 out_kfree_gso_skb:
2641 	if (likely(skb->next == NULL)) {
2642 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2643 		consume_skb(skb);
2644 		return rc;
2645 	}
2646 out_kfree_skb:
2647 	kfree_skb(skb);
2648 out:
2649 	return rc;
2650 }
2651 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2652 
2653 static void qdisc_pkt_len_init(struct sk_buff *skb)
2654 {
2655 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2656 
2657 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2658 
2659 	/* To get more precise estimation of bytes sent on wire,
2660 	 * we add to pkt_len the headers size of all segments
2661 	 */
2662 	if (shinfo->gso_size)  {
2663 		unsigned int hdr_len;
2664 		u16 gso_segs = shinfo->gso_segs;
2665 
2666 		/* mac layer + network layer */
2667 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2668 
2669 		/* + transport layer */
2670 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2671 			hdr_len += tcp_hdrlen(skb);
2672 		else
2673 			hdr_len += sizeof(struct udphdr);
2674 
2675 		if (shinfo->gso_type & SKB_GSO_DODGY)
2676 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2677 						shinfo->gso_size);
2678 
2679 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2680 	}
2681 }
2682 
2683 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2684 				 struct net_device *dev,
2685 				 struct netdev_queue *txq)
2686 {
2687 	spinlock_t *root_lock = qdisc_lock(q);
2688 	bool contended;
2689 	int rc;
2690 
2691 	qdisc_pkt_len_init(skb);
2692 	qdisc_calculate_pkt_len(skb, q);
2693 	/*
2694 	 * Heuristic to force contended enqueues to serialize on a
2695 	 * separate lock before trying to get qdisc main lock.
2696 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2697 	 * and dequeue packets faster.
2698 	 */
2699 	contended = qdisc_is_running(q);
2700 	if (unlikely(contended))
2701 		spin_lock(&q->busylock);
2702 
2703 	spin_lock(root_lock);
2704 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2705 		kfree_skb(skb);
2706 		rc = NET_XMIT_DROP;
2707 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2708 		   qdisc_run_begin(q)) {
2709 		/*
2710 		 * This is a work-conserving queue; there are no old skbs
2711 		 * waiting to be sent out; and the qdisc is not running -
2712 		 * xmit the skb directly.
2713 		 */
2714 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2715 			skb_dst_force(skb);
2716 
2717 		qdisc_bstats_update(q, skb);
2718 
2719 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2720 			if (unlikely(contended)) {
2721 				spin_unlock(&q->busylock);
2722 				contended = false;
2723 			}
2724 			__qdisc_run(q);
2725 		} else
2726 			qdisc_run_end(q);
2727 
2728 		rc = NET_XMIT_SUCCESS;
2729 	} else {
2730 		skb_dst_force(skb);
2731 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2732 		if (qdisc_run_begin(q)) {
2733 			if (unlikely(contended)) {
2734 				spin_unlock(&q->busylock);
2735 				contended = false;
2736 			}
2737 			__qdisc_run(q);
2738 		}
2739 	}
2740 	spin_unlock(root_lock);
2741 	if (unlikely(contended))
2742 		spin_unlock(&q->busylock);
2743 	return rc;
2744 }
2745 
2746 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2747 static void skb_update_prio(struct sk_buff *skb)
2748 {
2749 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2750 
2751 	if (!skb->priority && skb->sk && map) {
2752 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2753 
2754 		if (prioidx < map->priomap_len)
2755 			skb->priority = map->priomap[prioidx];
2756 	}
2757 }
2758 #else
2759 #define skb_update_prio(skb)
2760 #endif
2761 
2762 static DEFINE_PER_CPU(int, xmit_recursion);
2763 #define RECURSION_LIMIT 10
2764 
2765 /**
2766  *	dev_loopback_xmit - loop back @skb
2767  *	@skb: buffer to transmit
2768  */
2769 int dev_loopback_xmit(struct sk_buff *skb)
2770 {
2771 	skb_reset_mac_header(skb);
2772 	__skb_pull(skb, skb_network_offset(skb));
2773 	skb->pkt_type = PACKET_LOOPBACK;
2774 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2775 	WARN_ON(!skb_dst(skb));
2776 	skb_dst_force(skb);
2777 	netif_rx_ni(skb);
2778 	return 0;
2779 }
2780 EXPORT_SYMBOL(dev_loopback_xmit);
2781 
2782 /**
2783  *	__dev_queue_xmit - transmit a buffer
2784  *	@skb: buffer to transmit
2785  *	@accel_priv: private data used for L2 forwarding offload
2786  *
2787  *	Queue a buffer for transmission to a network device. The caller must
2788  *	have set the device and priority and built the buffer before calling
2789  *	this function. The function can be called from an interrupt.
2790  *
2791  *	A negative errno code is returned on a failure. A success does not
2792  *	guarantee the frame will be transmitted as it may be dropped due
2793  *	to congestion or traffic shaping.
2794  *
2795  * -----------------------------------------------------------------------------------
2796  *      I notice this method can also return errors from the queue disciplines,
2797  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2798  *      be positive.
2799  *
2800  *      Regardless of the return value, the skb is consumed, so it is currently
2801  *      difficult to retry a send to this method.  (You can bump the ref count
2802  *      before sending to hold a reference for retry if you are careful.)
2803  *
2804  *      When calling this method, interrupts MUST be enabled.  This is because
2805  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2806  *          --BLG
2807  */
2808 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2809 {
2810 	struct net_device *dev = skb->dev;
2811 	struct netdev_queue *txq;
2812 	struct Qdisc *q;
2813 	int rc = -ENOMEM;
2814 
2815 	skb_reset_mac_header(skb);
2816 
2817 	/* Disable soft irqs for various locks below. Also
2818 	 * stops preemption for RCU.
2819 	 */
2820 	rcu_read_lock_bh();
2821 
2822 	skb_update_prio(skb);
2823 
2824 	txq = netdev_pick_tx(dev, skb, accel_priv);
2825 	q = rcu_dereference_bh(txq->qdisc);
2826 
2827 #ifdef CONFIG_NET_CLS_ACT
2828 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2829 #endif
2830 	trace_net_dev_queue(skb);
2831 	if (q->enqueue) {
2832 		rc = __dev_xmit_skb(skb, q, dev, txq);
2833 		goto out;
2834 	}
2835 
2836 	/* The device has no queue. Common case for software devices:
2837 	   loopback, all the sorts of tunnels...
2838 
2839 	   Really, it is unlikely that netif_tx_lock protection is necessary
2840 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2841 	   counters.)
2842 	   However, it is possible, that they rely on protection
2843 	   made by us here.
2844 
2845 	   Check this and shot the lock. It is not prone from deadlocks.
2846 	   Either shot noqueue qdisc, it is even simpler 8)
2847 	 */
2848 	if (dev->flags & IFF_UP) {
2849 		int cpu = smp_processor_id(); /* ok because BHs are off */
2850 
2851 		if (txq->xmit_lock_owner != cpu) {
2852 
2853 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2854 				goto recursion_alert;
2855 
2856 			HARD_TX_LOCK(dev, txq, cpu);
2857 
2858 			if (!netif_xmit_stopped(txq)) {
2859 				__this_cpu_inc(xmit_recursion);
2860 				rc = dev_hard_start_xmit(skb, dev, txq);
2861 				__this_cpu_dec(xmit_recursion);
2862 				if (dev_xmit_complete(rc)) {
2863 					HARD_TX_UNLOCK(dev, txq);
2864 					goto out;
2865 				}
2866 			}
2867 			HARD_TX_UNLOCK(dev, txq);
2868 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2869 					     dev->name);
2870 		} else {
2871 			/* Recursion is detected! It is possible,
2872 			 * unfortunately
2873 			 */
2874 recursion_alert:
2875 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2876 					     dev->name);
2877 		}
2878 	}
2879 
2880 	rc = -ENETDOWN;
2881 	rcu_read_unlock_bh();
2882 
2883 	kfree_skb(skb);
2884 	return rc;
2885 out:
2886 	rcu_read_unlock_bh();
2887 	return rc;
2888 }
2889 
2890 int dev_queue_xmit(struct sk_buff *skb)
2891 {
2892 	return __dev_queue_xmit(skb, NULL);
2893 }
2894 EXPORT_SYMBOL(dev_queue_xmit);
2895 
2896 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2897 {
2898 	return __dev_queue_xmit(skb, accel_priv);
2899 }
2900 EXPORT_SYMBOL(dev_queue_xmit_accel);
2901 
2902 
2903 /*=======================================================================
2904 			Receiver routines
2905   =======================================================================*/
2906 
2907 int netdev_max_backlog __read_mostly = 1000;
2908 EXPORT_SYMBOL(netdev_max_backlog);
2909 
2910 int netdev_tstamp_prequeue __read_mostly = 1;
2911 int netdev_budget __read_mostly = 300;
2912 int weight_p __read_mostly = 64;            /* old backlog weight */
2913 
2914 /* Called with irq disabled */
2915 static inline void ____napi_schedule(struct softnet_data *sd,
2916 				     struct napi_struct *napi)
2917 {
2918 	list_add_tail(&napi->poll_list, &sd->poll_list);
2919 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2920 }
2921 
2922 #ifdef CONFIG_RPS
2923 
2924 /* One global table that all flow-based protocols share. */
2925 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2926 EXPORT_SYMBOL(rps_sock_flow_table);
2927 
2928 struct static_key rps_needed __read_mostly;
2929 
2930 static struct rps_dev_flow *
2931 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2932 	    struct rps_dev_flow *rflow, u16 next_cpu)
2933 {
2934 	if (next_cpu != RPS_NO_CPU) {
2935 #ifdef CONFIG_RFS_ACCEL
2936 		struct netdev_rx_queue *rxqueue;
2937 		struct rps_dev_flow_table *flow_table;
2938 		struct rps_dev_flow *old_rflow;
2939 		u32 flow_id;
2940 		u16 rxq_index;
2941 		int rc;
2942 
2943 		/* Should we steer this flow to a different hardware queue? */
2944 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2945 		    !(dev->features & NETIF_F_NTUPLE))
2946 			goto out;
2947 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2948 		if (rxq_index == skb_get_rx_queue(skb))
2949 			goto out;
2950 
2951 		rxqueue = dev->_rx + rxq_index;
2952 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2953 		if (!flow_table)
2954 			goto out;
2955 		flow_id = skb->rxhash & flow_table->mask;
2956 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2957 							rxq_index, flow_id);
2958 		if (rc < 0)
2959 			goto out;
2960 		old_rflow = rflow;
2961 		rflow = &flow_table->flows[flow_id];
2962 		rflow->filter = rc;
2963 		if (old_rflow->filter == rflow->filter)
2964 			old_rflow->filter = RPS_NO_FILTER;
2965 	out:
2966 #endif
2967 		rflow->last_qtail =
2968 			per_cpu(softnet_data, next_cpu).input_queue_head;
2969 	}
2970 
2971 	rflow->cpu = next_cpu;
2972 	return rflow;
2973 }
2974 
2975 /*
2976  * get_rps_cpu is called from netif_receive_skb and returns the target
2977  * CPU from the RPS map of the receiving queue for a given skb.
2978  * rcu_read_lock must be held on entry.
2979  */
2980 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2981 		       struct rps_dev_flow **rflowp)
2982 {
2983 	struct netdev_rx_queue *rxqueue;
2984 	struct rps_map *map;
2985 	struct rps_dev_flow_table *flow_table;
2986 	struct rps_sock_flow_table *sock_flow_table;
2987 	int cpu = -1;
2988 	u16 tcpu;
2989 
2990 	if (skb_rx_queue_recorded(skb)) {
2991 		u16 index = skb_get_rx_queue(skb);
2992 		if (unlikely(index >= dev->real_num_rx_queues)) {
2993 			WARN_ONCE(dev->real_num_rx_queues > 1,
2994 				  "%s received packet on queue %u, but number "
2995 				  "of RX queues is %u\n",
2996 				  dev->name, index, dev->real_num_rx_queues);
2997 			goto done;
2998 		}
2999 		rxqueue = dev->_rx + index;
3000 	} else
3001 		rxqueue = dev->_rx;
3002 
3003 	map = rcu_dereference(rxqueue->rps_map);
3004 	if (map) {
3005 		if (map->len == 1 &&
3006 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
3007 			tcpu = map->cpus[0];
3008 			if (cpu_online(tcpu))
3009 				cpu = tcpu;
3010 			goto done;
3011 		}
3012 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3013 		goto done;
3014 	}
3015 
3016 	skb_reset_network_header(skb);
3017 	if (!skb_get_hash(skb))
3018 		goto done;
3019 
3020 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3021 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3022 	if (flow_table && sock_flow_table) {
3023 		u16 next_cpu;
3024 		struct rps_dev_flow *rflow;
3025 
3026 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
3027 		tcpu = rflow->cpu;
3028 
3029 		next_cpu = sock_flow_table->ents[skb->rxhash &
3030 		    sock_flow_table->mask];
3031 
3032 		/*
3033 		 * If the desired CPU (where last recvmsg was done) is
3034 		 * different from current CPU (one in the rx-queue flow
3035 		 * table entry), switch if one of the following holds:
3036 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
3037 		 *   - Current CPU is offline.
3038 		 *   - The current CPU's queue tail has advanced beyond the
3039 		 *     last packet that was enqueued using this table entry.
3040 		 *     This guarantees that all previous packets for the flow
3041 		 *     have been dequeued, thus preserving in order delivery.
3042 		 */
3043 		if (unlikely(tcpu != next_cpu) &&
3044 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3045 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3046 		      rflow->last_qtail)) >= 0)) {
3047 			tcpu = next_cpu;
3048 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3049 		}
3050 
3051 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3052 			*rflowp = rflow;
3053 			cpu = tcpu;
3054 			goto done;
3055 		}
3056 	}
3057 
3058 	if (map) {
3059 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
3060 
3061 		if (cpu_online(tcpu)) {
3062 			cpu = tcpu;
3063 			goto done;
3064 		}
3065 	}
3066 
3067 done:
3068 	return cpu;
3069 }
3070 
3071 #ifdef CONFIG_RFS_ACCEL
3072 
3073 /**
3074  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3075  * @dev: Device on which the filter was set
3076  * @rxq_index: RX queue index
3077  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3078  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3079  *
3080  * Drivers that implement ndo_rx_flow_steer() should periodically call
3081  * this function for each installed filter and remove the filters for
3082  * which it returns %true.
3083  */
3084 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3085 			 u32 flow_id, u16 filter_id)
3086 {
3087 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3088 	struct rps_dev_flow_table *flow_table;
3089 	struct rps_dev_flow *rflow;
3090 	bool expire = true;
3091 	int cpu;
3092 
3093 	rcu_read_lock();
3094 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3095 	if (flow_table && flow_id <= flow_table->mask) {
3096 		rflow = &flow_table->flows[flow_id];
3097 		cpu = ACCESS_ONCE(rflow->cpu);
3098 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3099 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3100 			   rflow->last_qtail) <
3101 		     (int)(10 * flow_table->mask)))
3102 			expire = false;
3103 	}
3104 	rcu_read_unlock();
3105 	return expire;
3106 }
3107 EXPORT_SYMBOL(rps_may_expire_flow);
3108 
3109 #endif /* CONFIG_RFS_ACCEL */
3110 
3111 /* Called from hardirq (IPI) context */
3112 static void rps_trigger_softirq(void *data)
3113 {
3114 	struct softnet_data *sd = data;
3115 
3116 	____napi_schedule(sd, &sd->backlog);
3117 	sd->received_rps++;
3118 }
3119 
3120 #endif /* CONFIG_RPS */
3121 
3122 /*
3123  * Check if this softnet_data structure is another cpu one
3124  * If yes, queue it to our IPI list and return 1
3125  * If no, return 0
3126  */
3127 static int rps_ipi_queued(struct softnet_data *sd)
3128 {
3129 #ifdef CONFIG_RPS
3130 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3131 
3132 	if (sd != mysd) {
3133 		sd->rps_ipi_next = mysd->rps_ipi_list;
3134 		mysd->rps_ipi_list = sd;
3135 
3136 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3137 		return 1;
3138 	}
3139 #endif /* CONFIG_RPS */
3140 	return 0;
3141 }
3142 
3143 #ifdef CONFIG_NET_FLOW_LIMIT
3144 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3145 #endif
3146 
3147 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3148 {
3149 #ifdef CONFIG_NET_FLOW_LIMIT
3150 	struct sd_flow_limit *fl;
3151 	struct softnet_data *sd;
3152 	unsigned int old_flow, new_flow;
3153 
3154 	if (qlen < (netdev_max_backlog >> 1))
3155 		return false;
3156 
3157 	sd = &__get_cpu_var(softnet_data);
3158 
3159 	rcu_read_lock();
3160 	fl = rcu_dereference(sd->flow_limit);
3161 	if (fl) {
3162 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3163 		old_flow = fl->history[fl->history_head];
3164 		fl->history[fl->history_head] = new_flow;
3165 
3166 		fl->history_head++;
3167 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3168 
3169 		if (likely(fl->buckets[old_flow]))
3170 			fl->buckets[old_flow]--;
3171 
3172 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3173 			fl->count++;
3174 			rcu_read_unlock();
3175 			return true;
3176 		}
3177 	}
3178 	rcu_read_unlock();
3179 #endif
3180 	return false;
3181 }
3182 
3183 /*
3184  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3185  * queue (may be a remote CPU queue).
3186  */
3187 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3188 			      unsigned int *qtail)
3189 {
3190 	struct softnet_data *sd;
3191 	unsigned long flags;
3192 	unsigned int qlen;
3193 
3194 	sd = &per_cpu(softnet_data, cpu);
3195 
3196 	local_irq_save(flags);
3197 
3198 	rps_lock(sd);
3199 	qlen = skb_queue_len(&sd->input_pkt_queue);
3200 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3201 		if (skb_queue_len(&sd->input_pkt_queue)) {
3202 enqueue:
3203 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3204 			input_queue_tail_incr_save(sd, qtail);
3205 			rps_unlock(sd);
3206 			local_irq_restore(flags);
3207 			return NET_RX_SUCCESS;
3208 		}
3209 
3210 		/* Schedule NAPI for backlog device
3211 		 * We can use non atomic operation since we own the queue lock
3212 		 */
3213 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3214 			if (!rps_ipi_queued(sd))
3215 				____napi_schedule(sd, &sd->backlog);
3216 		}
3217 		goto enqueue;
3218 	}
3219 
3220 	sd->dropped++;
3221 	rps_unlock(sd);
3222 
3223 	local_irq_restore(flags);
3224 
3225 	atomic_long_inc(&skb->dev->rx_dropped);
3226 	kfree_skb(skb);
3227 	return NET_RX_DROP;
3228 }
3229 
3230 static int netif_rx_internal(struct sk_buff *skb)
3231 {
3232 	int ret;
3233 
3234 	/* if netpoll wants it, pretend we never saw it */
3235 	if (netpoll_rx(skb))
3236 		return NET_RX_DROP;
3237 
3238 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3239 
3240 	trace_netif_rx(skb);
3241 #ifdef CONFIG_RPS
3242 	if (static_key_false(&rps_needed)) {
3243 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3244 		int cpu;
3245 
3246 		preempt_disable();
3247 		rcu_read_lock();
3248 
3249 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3250 		if (cpu < 0)
3251 			cpu = smp_processor_id();
3252 
3253 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3254 
3255 		rcu_read_unlock();
3256 		preempt_enable();
3257 	} else
3258 #endif
3259 	{
3260 		unsigned int qtail;
3261 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3262 		put_cpu();
3263 	}
3264 	return ret;
3265 }
3266 
3267 /**
3268  *	netif_rx	-	post buffer to the network code
3269  *	@skb: buffer to post
3270  *
3271  *	This function receives a packet from a device driver and queues it for
3272  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3273  *	may be dropped during processing for congestion control or by the
3274  *	protocol layers.
3275  *
3276  *	return values:
3277  *	NET_RX_SUCCESS	(no congestion)
3278  *	NET_RX_DROP     (packet was dropped)
3279  *
3280  */
3281 
3282 int netif_rx(struct sk_buff *skb)
3283 {
3284 	trace_netif_rx_entry(skb);
3285 
3286 	return netif_rx_internal(skb);
3287 }
3288 EXPORT_SYMBOL(netif_rx);
3289 
3290 int netif_rx_ni(struct sk_buff *skb)
3291 {
3292 	int err;
3293 
3294 	trace_netif_rx_ni_entry(skb);
3295 
3296 	preempt_disable();
3297 	err = netif_rx_internal(skb);
3298 	if (local_softirq_pending())
3299 		do_softirq();
3300 	preempt_enable();
3301 
3302 	return err;
3303 }
3304 EXPORT_SYMBOL(netif_rx_ni);
3305 
3306 static void net_tx_action(struct softirq_action *h)
3307 {
3308 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3309 
3310 	if (sd->completion_queue) {
3311 		struct sk_buff *clist;
3312 
3313 		local_irq_disable();
3314 		clist = sd->completion_queue;
3315 		sd->completion_queue = NULL;
3316 		local_irq_enable();
3317 
3318 		while (clist) {
3319 			struct sk_buff *skb = clist;
3320 			clist = clist->next;
3321 
3322 			WARN_ON(atomic_read(&skb->users));
3323 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3324 				trace_consume_skb(skb);
3325 			else
3326 				trace_kfree_skb(skb, net_tx_action);
3327 			__kfree_skb(skb);
3328 		}
3329 	}
3330 
3331 	if (sd->output_queue) {
3332 		struct Qdisc *head;
3333 
3334 		local_irq_disable();
3335 		head = sd->output_queue;
3336 		sd->output_queue = NULL;
3337 		sd->output_queue_tailp = &sd->output_queue;
3338 		local_irq_enable();
3339 
3340 		while (head) {
3341 			struct Qdisc *q = head;
3342 			spinlock_t *root_lock;
3343 
3344 			head = head->next_sched;
3345 
3346 			root_lock = qdisc_lock(q);
3347 			if (spin_trylock(root_lock)) {
3348 				smp_mb__before_clear_bit();
3349 				clear_bit(__QDISC_STATE_SCHED,
3350 					  &q->state);
3351 				qdisc_run(q);
3352 				spin_unlock(root_lock);
3353 			} else {
3354 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3355 					      &q->state)) {
3356 					__netif_reschedule(q);
3357 				} else {
3358 					smp_mb__before_clear_bit();
3359 					clear_bit(__QDISC_STATE_SCHED,
3360 						  &q->state);
3361 				}
3362 			}
3363 		}
3364 	}
3365 }
3366 
3367 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3368     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3369 /* This hook is defined here for ATM LANE */
3370 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3371 			     unsigned char *addr) __read_mostly;
3372 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3373 #endif
3374 
3375 #ifdef CONFIG_NET_CLS_ACT
3376 /* TODO: Maybe we should just force sch_ingress to be compiled in
3377  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3378  * a compare and 2 stores extra right now if we dont have it on
3379  * but have CONFIG_NET_CLS_ACT
3380  * NOTE: This doesn't stop any functionality; if you dont have
3381  * the ingress scheduler, you just can't add policies on ingress.
3382  *
3383  */
3384 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3385 {
3386 	struct net_device *dev = skb->dev;
3387 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3388 	int result = TC_ACT_OK;
3389 	struct Qdisc *q;
3390 
3391 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3392 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3393 				     skb->skb_iif, dev->ifindex);
3394 		return TC_ACT_SHOT;
3395 	}
3396 
3397 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3398 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3399 
3400 	q = rxq->qdisc;
3401 	if (q != &noop_qdisc) {
3402 		spin_lock(qdisc_lock(q));
3403 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3404 			result = qdisc_enqueue_root(skb, q);
3405 		spin_unlock(qdisc_lock(q));
3406 	}
3407 
3408 	return result;
3409 }
3410 
3411 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3412 					 struct packet_type **pt_prev,
3413 					 int *ret, struct net_device *orig_dev)
3414 {
3415 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3416 
3417 	if (!rxq || rxq->qdisc == &noop_qdisc)
3418 		goto out;
3419 
3420 	if (*pt_prev) {
3421 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3422 		*pt_prev = NULL;
3423 	}
3424 
3425 	switch (ing_filter(skb, rxq)) {
3426 	case TC_ACT_SHOT:
3427 	case TC_ACT_STOLEN:
3428 		kfree_skb(skb);
3429 		return NULL;
3430 	}
3431 
3432 out:
3433 	skb->tc_verd = 0;
3434 	return skb;
3435 }
3436 #endif
3437 
3438 /**
3439  *	netdev_rx_handler_register - register receive handler
3440  *	@dev: device to register a handler for
3441  *	@rx_handler: receive handler to register
3442  *	@rx_handler_data: data pointer that is used by rx handler
3443  *
3444  *	Register a receive hander for a device. This handler will then be
3445  *	called from __netif_receive_skb. A negative errno code is returned
3446  *	on a failure.
3447  *
3448  *	The caller must hold the rtnl_mutex.
3449  *
3450  *	For a general description of rx_handler, see enum rx_handler_result.
3451  */
3452 int netdev_rx_handler_register(struct net_device *dev,
3453 			       rx_handler_func_t *rx_handler,
3454 			       void *rx_handler_data)
3455 {
3456 	ASSERT_RTNL();
3457 
3458 	if (dev->rx_handler)
3459 		return -EBUSY;
3460 
3461 	/* Note: rx_handler_data must be set before rx_handler */
3462 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3463 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3464 
3465 	return 0;
3466 }
3467 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3468 
3469 /**
3470  *	netdev_rx_handler_unregister - unregister receive handler
3471  *	@dev: device to unregister a handler from
3472  *
3473  *	Unregister a receive handler from a device.
3474  *
3475  *	The caller must hold the rtnl_mutex.
3476  */
3477 void netdev_rx_handler_unregister(struct net_device *dev)
3478 {
3479 
3480 	ASSERT_RTNL();
3481 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3482 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3483 	 * section has a guarantee to see a non NULL rx_handler_data
3484 	 * as well.
3485 	 */
3486 	synchronize_net();
3487 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3488 }
3489 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3490 
3491 /*
3492  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3493  * the special handling of PFMEMALLOC skbs.
3494  */
3495 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3496 {
3497 	switch (skb->protocol) {
3498 	case __constant_htons(ETH_P_ARP):
3499 	case __constant_htons(ETH_P_IP):
3500 	case __constant_htons(ETH_P_IPV6):
3501 	case __constant_htons(ETH_P_8021Q):
3502 	case __constant_htons(ETH_P_8021AD):
3503 		return true;
3504 	default:
3505 		return false;
3506 	}
3507 }
3508 
3509 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3510 {
3511 	struct packet_type *ptype, *pt_prev;
3512 	rx_handler_func_t *rx_handler;
3513 	struct net_device *orig_dev;
3514 	struct net_device *null_or_dev;
3515 	bool deliver_exact = false;
3516 	int ret = NET_RX_DROP;
3517 	__be16 type;
3518 
3519 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3520 
3521 	trace_netif_receive_skb(skb);
3522 
3523 	/* if we've gotten here through NAPI, check netpoll */
3524 	if (netpoll_receive_skb(skb))
3525 		goto out;
3526 
3527 	orig_dev = skb->dev;
3528 
3529 	skb_reset_network_header(skb);
3530 	if (!skb_transport_header_was_set(skb))
3531 		skb_reset_transport_header(skb);
3532 	skb_reset_mac_len(skb);
3533 
3534 	pt_prev = NULL;
3535 
3536 	rcu_read_lock();
3537 
3538 another_round:
3539 	skb->skb_iif = skb->dev->ifindex;
3540 
3541 	__this_cpu_inc(softnet_data.processed);
3542 
3543 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3544 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3545 		skb = vlan_untag(skb);
3546 		if (unlikely(!skb))
3547 			goto unlock;
3548 	}
3549 
3550 #ifdef CONFIG_NET_CLS_ACT
3551 	if (skb->tc_verd & TC_NCLS) {
3552 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3553 		goto ncls;
3554 	}
3555 #endif
3556 
3557 	if (pfmemalloc)
3558 		goto skip_taps;
3559 
3560 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3561 		if (!ptype->dev || ptype->dev == skb->dev) {
3562 			if (pt_prev)
3563 				ret = deliver_skb(skb, pt_prev, orig_dev);
3564 			pt_prev = ptype;
3565 		}
3566 	}
3567 
3568 skip_taps:
3569 #ifdef CONFIG_NET_CLS_ACT
3570 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3571 	if (!skb)
3572 		goto unlock;
3573 ncls:
3574 #endif
3575 
3576 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3577 		goto drop;
3578 
3579 	if (vlan_tx_tag_present(skb)) {
3580 		if (pt_prev) {
3581 			ret = deliver_skb(skb, pt_prev, orig_dev);
3582 			pt_prev = NULL;
3583 		}
3584 		if (vlan_do_receive(&skb))
3585 			goto another_round;
3586 		else if (unlikely(!skb))
3587 			goto unlock;
3588 	}
3589 
3590 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3591 	if (rx_handler) {
3592 		if (pt_prev) {
3593 			ret = deliver_skb(skb, pt_prev, orig_dev);
3594 			pt_prev = NULL;
3595 		}
3596 		switch (rx_handler(&skb)) {
3597 		case RX_HANDLER_CONSUMED:
3598 			ret = NET_RX_SUCCESS;
3599 			goto unlock;
3600 		case RX_HANDLER_ANOTHER:
3601 			goto another_round;
3602 		case RX_HANDLER_EXACT:
3603 			deliver_exact = true;
3604 		case RX_HANDLER_PASS:
3605 			break;
3606 		default:
3607 			BUG();
3608 		}
3609 	}
3610 
3611 	if (unlikely(vlan_tx_tag_present(skb))) {
3612 		if (vlan_tx_tag_get_id(skb))
3613 			skb->pkt_type = PACKET_OTHERHOST;
3614 		/* Note: we might in the future use prio bits
3615 		 * and set skb->priority like in vlan_do_receive()
3616 		 * For the time being, just ignore Priority Code Point
3617 		 */
3618 		skb->vlan_tci = 0;
3619 	}
3620 
3621 	/* deliver only exact match when indicated */
3622 	null_or_dev = deliver_exact ? skb->dev : NULL;
3623 
3624 	type = skb->protocol;
3625 	list_for_each_entry_rcu(ptype,
3626 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3627 		if (ptype->type == type &&
3628 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3629 		     ptype->dev == orig_dev)) {
3630 			if (pt_prev)
3631 				ret = deliver_skb(skb, pt_prev, orig_dev);
3632 			pt_prev = ptype;
3633 		}
3634 	}
3635 
3636 	if (pt_prev) {
3637 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3638 			goto drop;
3639 		else
3640 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3641 	} else {
3642 drop:
3643 		atomic_long_inc(&skb->dev->rx_dropped);
3644 		kfree_skb(skb);
3645 		/* Jamal, now you will not able to escape explaining
3646 		 * me how you were going to use this. :-)
3647 		 */
3648 		ret = NET_RX_DROP;
3649 	}
3650 
3651 unlock:
3652 	rcu_read_unlock();
3653 out:
3654 	return ret;
3655 }
3656 
3657 static int __netif_receive_skb(struct sk_buff *skb)
3658 {
3659 	int ret;
3660 
3661 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3662 		unsigned long pflags = current->flags;
3663 
3664 		/*
3665 		 * PFMEMALLOC skbs are special, they should
3666 		 * - be delivered to SOCK_MEMALLOC sockets only
3667 		 * - stay away from userspace
3668 		 * - have bounded memory usage
3669 		 *
3670 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3671 		 * context down to all allocation sites.
3672 		 */
3673 		current->flags |= PF_MEMALLOC;
3674 		ret = __netif_receive_skb_core(skb, true);
3675 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3676 	} else
3677 		ret = __netif_receive_skb_core(skb, false);
3678 
3679 	return ret;
3680 }
3681 
3682 static int netif_receive_skb_internal(struct sk_buff *skb)
3683 {
3684 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3685 
3686 	if (skb_defer_rx_timestamp(skb))
3687 		return NET_RX_SUCCESS;
3688 
3689 #ifdef CONFIG_RPS
3690 	if (static_key_false(&rps_needed)) {
3691 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3692 		int cpu, ret;
3693 
3694 		rcu_read_lock();
3695 
3696 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3697 
3698 		if (cpu >= 0) {
3699 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3700 			rcu_read_unlock();
3701 			return ret;
3702 		}
3703 		rcu_read_unlock();
3704 	}
3705 #endif
3706 	return __netif_receive_skb(skb);
3707 }
3708 
3709 /**
3710  *	netif_receive_skb - process receive buffer from network
3711  *	@skb: buffer to process
3712  *
3713  *	netif_receive_skb() is the main receive data processing function.
3714  *	It always succeeds. The buffer may be dropped during processing
3715  *	for congestion control or by the protocol layers.
3716  *
3717  *	This function may only be called from softirq context and interrupts
3718  *	should be enabled.
3719  *
3720  *	Return values (usually ignored):
3721  *	NET_RX_SUCCESS: no congestion
3722  *	NET_RX_DROP: packet was dropped
3723  */
3724 int netif_receive_skb(struct sk_buff *skb)
3725 {
3726 	trace_netif_receive_skb_entry(skb);
3727 
3728 	return netif_receive_skb_internal(skb);
3729 }
3730 EXPORT_SYMBOL(netif_receive_skb);
3731 
3732 /* Network device is going away, flush any packets still pending
3733  * Called with irqs disabled.
3734  */
3735 static void flush_backlog(void *arg)
3736 {
3737 	struct net_device *dev = arg;
3738 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3739 	struct sk_buff *skb, *tmp;
3740 
3741 	rps_lock(sd);
3742 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3743 		if (skb->dev == dev) {
3744 			__skb_unlink(skb, &sd->input_pkt_queue);
3745 			kfree_skb(skb);
3746 			input_queue_head_incr(sd);
3747 		}
3748 	}
3749 	rps_unlock(sd);
3750 
3751 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3752 		if (skb->dev == dev) {
3753 			__skb_unlink(skb, &sd->process_queue);
3754 			kfree_skb(skb);
3755 			input_queue_head_incr(sd);
3756 		}
3757 	}
3758 }
3759 
3760 static int napi_gro_complete(struct sk_buff *skb)
3761 {
3762 	struct packet_offload *ptype;
3763 	__be16 type = skb->protocol;
3764 	struct list_head *head = &offload_base;
3765 	int err = -ENOENT;
3766 
3767 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3768 
3769 	if (NAPI_GRO_CB(skb)->count == 1) {
3770 		skb_shinfo(skb)->gso_size = 0;
3771 		goto out;
3772 	}
3773 
3774 	rcu_read_lock();
3775 	list_for_each_entry_rcu(ptype, head, list) {
3776 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3777 			continue;
3778 
3779 		err = ptype->callbacks.gro_complete(skb, 0);
3780 		break;
3781 	}
3782 	rcu_read_unlock();
3783 
3784 	if (err) {
3785 		WARN_ON(&ptype->list == head);
3786 		kfree_skb(skb);
3787 		return NET_RX_SUCCESS;
3788 	}
3789 
3790 out:
3791 	return netif_receive_skb_internal(skb);
3792 }
3793 
3794 /* napi->gro_list contains packets ordered by age.
3795  * youngest packets at the head of it.
3796  * Complete skbs in reverse order to reduce latencies.
3797  */
3798 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3799 {
3800 	struct sk_buff *skb, *prev = NULL;
3801 
3802 	/* scan list and build reverse chain */
3803 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3804 		skb->prev = prev;
3805 		prev = skb;
3806 	}
3807 
3808 	for (skb = prev; skb; skb = prev) {
3809 		skb->next = NULL;
3810 
3811 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3812 			return;
3813 
3814 		prev = skb->prev;
3815 		napi_gro_complete(skb);
3816 		napi->gro_count--;
3817 	}
3818 
3819 	napi->gro_list = NULL;
3820 }
3821 EXPORT_SYMBOL(napi_gro_flush);
3822 
3823 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3824 {
3825 	struct sk_buff *p;
3826 	unsigned int maclen = skb->dev->hard_header_len;
3827 	u32 hash = skb_get_hash_raw(skb);
3828 
3829 	for (p = napi->gro_list; p; p = p->next) {
3830 		unsigned long diffs;
3831 
3832 		NAPI_GRO_CB(p)->flush = 0;
3833 
3834 		if (hash != skb_get_hash_raw(p)) {
3835 			NAPI_GRO_CB(p)->same_flow = 0;
3836 			continue;
3837 		}
3838 
3839 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3840 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3841 		if (maclen == ETH_HLEN)
3842 			diffs |= compare_ether_header(skb_mac_header(p),
3843 						      skb_gro_mac_header(skb));
3844 		else if (!diffs)
3845 			diffs = memcmp(skb_mac_header(p),
3846 				       skb_gro_mac_header(skb),
3847 				       maclen);
3848 		NAPI_GRO_CB(p)->same_flow = !diffs;
3849 	}
3850 }
3851 
3852 static void skb_gro_reset_offset(struct sk_buff *skb)
3853 {
3854 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3855 	const skb_frag_t *frag0 = &pinfo->frags[0];
3856 
3857 	NAPI_GRO_CB(skb)->data_offset = 0;
3858 	NAPI_GRO_CB(skb)->frag0 = NULL;
3859 	NAPI_GRO_CB(skb)->frag0_len = 0;
3860 
3861 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3862 	    pinfo->nr_frags &&
3863 	    !PageHighMem(skb_frag_page(frag0))) {
3864 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3865 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3866 	}
3867 }
3868 
3869 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3870 {
3871 	struct sk_buff **pp = NULL;
3872 	struct packet_offload *ptype;
3873 	__be16 type = skb->protocol;
3874 	struct list_head *head = &offload_base;
3875 	int same_flow;
3876 	enum gro_result ret;
3877 
3878 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3879 		goto normal;
3880 
3881 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3882 		goto normal;
3883 
3884 	skb_gro_reset_offset(skb);
3885 	gro_list_prepare(napi, skb);
3886 	NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3887 
3888 	rcu_read_lock();
3889 	list_for_each_entry_rcu(ptype, head, list) {
3890 		if (ptype->type != type || !ptype->callbacks.gro_receive)
3891 			continue;
3892 
3893 		skb_set_network_header(skb, skb_gro_offset(skb));
3894 		skb_reset_mac_len(skb);
3895 		NAPI_GRO_CB(skb)->same_flow = 0;
3896 		NAPI_GRO_CB(skb)->flush = 0;
3897 		NAPI_GRO_CB(skb)->free = 0;
3898 		NAPI_GRO_CB(skb)->udp_mark = 0;
3899 
3900 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3901 		break;
3902 	}
3903 	rcu_read_unlock();
3904 
3905 	if (&ptype->list == head)
3906 		goto normal;
3907 
3908 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3909 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3910 
3911 	if (pp) {
3912 		struct sk_buff *nskb = *pp;
3913 
3914 		*pp = nskb->next;
3915 		nskb->next = NULL;
3916 		napi_gro_complete(nskb);
3917 		napi->gro_count--;
3918 	}
3919 
3920 	if (same_flow)
3921 		goto ok;
3922 
3923 	if (NAPI_GRO_CB(skb)->flush)
3924 		goto normal;
3925 
3926 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
3927 		struct sk_buff *nskb = napi->gro_list;
3928 
3929 		/* locate the end of the list to select the 'oldest' flow */
3930 		while (nskb->next) {
3931 			pp = &nskb->next;
3932 			nskb = *pp;
3933 		}
3934 		*pp = NULL;
3935 		nskb->next = NULL;
3936 		napi_gro_complete(nskb);
3937 	} else {
3938 		napi->gro_count++;
3939 	}
3940 	NAPI_GRO_CB(skb)->count = 1;
3941 	NAPI_GRO_CB(skb)->age = jiffies;
3942 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3943 	skb->next = napi->gro_list;
3944 	napi->gro_list = skb;
3945 	ret = GRO_HELD;
3946 
3947 pull:
3948 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3949 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3950 
3951 		BUG_ON(skb->end - skb->tail < grow);
3952 
3953 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3954 
3955 		skb->tail += grow;
3956 		skb->data_len -= grow;
3957 
3958 		skb_shinfo(skb)->frags[0].page_offset += grow;
3959 		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3960 
3961 		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3962 			skb_frag_unref(skb, 0);
3963 			memmove(skb_shinfo(skb)->frags,
3964 				skb_shinfo(skb)->frags + 1,
3965 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3966 		}
3967 	}
3968 
3969 ok:
3970 	return ret;
3971 
3972 normal:
3973 	ret = GRO_NORMAL;
3974 	goto pull;
3975 }
3976 
3977 struct packet_offload *gro_find_receive_by_type(__be16 type)
3978 {
3979 	struct list_head *offload_head = &offload_base;
3980 	struct packet_offload *ptype;
3981 
3982 	list_for_each_entry_rcu(ptype, offload_head, list) {
3983 		if (ptype->type != type || !ptype->callbacks.gro_receive)
3984 			continue;
3985 		return ptype;
3986 	}
3987 	return NULL;
3988 }
3989 EXPORT_SYMBOL(gro_find_receive_by_type);
3990 
3991 struct packet_offload *gro_find_complete_by_type(__be16 type)
3992 {
3993 	struct list_head *offload_head = &offload_base;
3994 	struct packet_offload *ptype;
3995 
3996 	list_for_each_entry_rcu(ptype, offload_head, list) {
3997 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3998 			continue;
3999 		return ptype;
4000 	}
4001 	return NULL;
4002 }
4003 EXPORT_SYMBOL(gro_find_complete_by_type);
4004 
4005 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4006 {
4007 	switch (ret) {
4008 	case GRO_NORMAL:
4009 		if (netif_receive_skb_internal(skb))
4010 			ret = GRO_DROP;
4011 		break;
4012 
4013 	case GRO_DROP:
4014 		kfree_skb(skb);
4015 		break;
4016 
4017 	case GRO_MERGED_FREE:
4018 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4019 			kmem_cache_free(skbuff_head_cache, skb);
4020 		else
4021 			__kfree_skb(skb);
4022 		break;
4023 
4024 	case GRO_HELD:
4025 	case GRO_MERGED:
4026 		break;
4027 	}
4028 
4029 	return ret;
4030 }
4031 
4032 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4033 {
4034 	trace_napi_gro_receive_entry(skb);
4035 
4036 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4037 }
4038 EXPORT_SYMBOL(napi_gro_receive);
4039 
4040 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4041 {
4042 	__skb_pull(skb, skb_headlen(skb));
4043 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4044 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4045 	skb->vlan_tci = 0;
4046 	skb->dev = napi->dev;
4047 	skb->skb_iif = 0;
4048 
4049 	napi->skb = skb;
4050 }
4051 
4052 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4053 {
4054 	struct sk_buff *skb = napi->skb;
4055 
4056 	if (!skb) {
4057 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4058 		napi->skb = skb;
4059 	}
4060 	return skb;
4061 }
4062 EXPORT_SYMBOL(napi_get_frags);
4063 
4064 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
4065 			       gro_result_t ret)
4066 {
4067 	switch (ret) {
4068 	case GRO_NORMAL:
4069 		if (netif_receive_skb_internal(skb))
4070 			ret = GRO_DROP;
4071 		break;
4072 
4073 	case GRO_DROP:
4074 	case GRO_MERGED_FREE:
4075 		napi_reuse_skb(napi, skb);
4076 		break;
4077 
4078 	case GRO_HELD:
4079 	case GRO_MERGED:
4080 		break;
4081 	}
4082 
4083 	return ret;
4084 }
4085 
4086 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4087 {
4088 	struct sk_buff *skb = napi->skb;
4089 
4090 	napi->skb = NULL;
4091 
4092 	if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) {
4093 		napi_reuse_skb(napi, skb);
4094 		return NULL;
4095 	}
4096 	skb->protocol = eth_type_trans(skb, skb->dev);
4097 
4098 	return skb;
4099 }
4100 
4101 gro_result_t napi_gro_frags(struct napi_struct *napi)
4102 {
4103 	struct sk_buff *skb = napi_frags_skb(napi);
4104 
4105 	if (!skb)
4106 		return GRO_DROP;
4107 
4108 	trace_napi_gro_frags_entry(skb);
4109 
4110 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4111 }
4112 EXPORT_SYMBOL(napi_gro_frags);
4113 
4114 /*
4115  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4116  * Note: called with local irq disabled, but exits with local irq enabled.
4117  */
4118 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4119 {
4120 #ifdef CONFIG_RPS
4121 	struct softnet_data *remsd = sd->rps_ipi_list;
4122 
4123 	if (remsd) {
4124 		sd->rps_ipi_list = NULL;
4125 
4126 		local_irq_enable();
4127 
4128 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4129 		while (remsd) {
4130 			struct softnet_data *next = remsd->rps_ipi_next;
4131 
4132 			if (cpu_online(remsd->cpu))
4133 				__smp_call_function_single(remsd->cpu,
4134 							   &remsd->csd, 0);
4135 			remsd = next;
4136 		}
4137 	} else
4138 #endif
4139 		local_irq_enable();
4140 }
4141 
4142 static int process_backlog(struct napi_struct *napi, int quota)
4143 {
4144 	int work = 0;
4145 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4146 
4147 #ifdef CONFIG_RPS
4148 	/* Check if we have pending ipi, its better to send them now,
4149 	 * not waiting net_rx_action() end.
4150 	 */
4151 	if (sd->rps_ipi_list) {
4152 		local_irq_disable();
4153 		net_rps_action_and_irq_enable(sd);
4154 	}
4155 #endif
4156 	napi->weight = weight_p;
4157 	local_irq_disable();
4158 	while (work < quota) {
4159 		struct sk_buff *skb;
4160 		unsigned int qlen;
4161 
4162 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4163 			local_irq_enable();
4164 			__netif_receive_skb(skb);
4165 			local_irq_disable();
4166 			input_queue_head_incr(sd);
4167 			if (++work >= quota) {
4168 				local_irq_enable();
4169 				return work;
4170 			}
4171 		}
4172 
4173 		rps_lock(sd);
4174 		qlen = skb_queue_len(&sd->input_pkt_queue);
4175 		if (qlen)
4176 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
4177 						   &sd->process_queue);
4178 
4179 		if (qlen < quota - work) {
4180 			/*
4181 			 * Inline a custom version of __napi_complete().
4182 			 * only current cpu owns and manipulates this napi,
4183 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4184 			 * we can use a plain write instead of clear_bit(),
4185 			 * and we dont need an smp_mb() memory barrier.
4186 			 */
4187 			list_del(&napi->poll_list);
4188 			napi->state = 0;
4189 
4190 			quota = work + qlen;
4191 		}
4192 		rps_unlock(sd);
4193 	}
4194 	local_irq_enable();
4195 
4196 	return work;
4197 }
4198 
4199 /**
4200  * __napi_schedule - schedule for receive
4201  * @n: entry to schedule
4202  *
4203  * The entry's receive function will be scheduled to run
4204  */
4205 void __napi_schedule(struct napi_struct *n)
4206 {
4207 	unsigned long flags;
4208 
4209 	local_irq_save(flags);
4210 	____napi_schedule(&__get_cpu_var(softnet_data), n);
4211 	local_irq_restore(flags);
4212 }
4213 EXPORT_SYMBOL(__napi_schedule);
4214 
4215 void __napi_complete(struct napi_struct *n)
4216 {
4217 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4218 	BUG_ON(n->gro_list);
4219 
4220 	list_del(&n->poll_list);
4221 	smp_mb__before_clear_bit();
4222 	clear_bit(NAPI_STATE_SCHED, &n->state);
4223 }
4224 EXPORT_SYMBOL(__napi_complete);
4225 
4226 void napi_complete(struct napi_struct *n)
4227 {
4228 	unsigned long flags;
4229 
4230 	/*
4231 	 * don't let napi dequeue from the cpu poll list
4232 	 * just in case its running on a different cpu
4233 	 */
4234 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4235 		return;
4236 
4237 	napi_gro_flush(n, false);
4238 	local_irq_save(flags);
4239 	__napi_complete(n);
4240 	local_irq_restore(flags);
4241 }
4242 EXPORT_SYMBOL(napi_complete);
4243 
4244 /* must be called under rcu_read_lock(), as we dont take a reference */
4245 struct napi_struct *napi_by_id(unsigned int napi_id)
4246 {
4247 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4248 	struct napi_struct *napi;
4249 
4250 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4251 		if (napi->napi_id == napi_id)
4252 			return napi;
4253 
4254 	return NULL;
4255 }
4256 EXPORT_SYMBOL_GPL(napi_by_id);
4257 
4258 void napi_hash_add(struct napi_struct *napi)
4259 {
4260 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4261 
4262 		spin_lock(&napi_hash_lock);
4263 
4264 		/* 0 is not a valid id, we also skip an id that is taken
4265 		 * we expect both events to be extremely rare
4266 		 */
4267 		napi->napi_id = 0;
4268 		while (!napi->napi_id) {
4269 			napi->napi_id = ++napi_gen_id;
4270 			if (napi_by_id(napi->napi_id))
4271 				napi->napi_id = 0;
4272 		}
4273 
4274 		hlist_add_head_rcu(&napi->napi_hash_node,
4275 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4276 
4277 		spin_unlock(&napi_hash_lock);
4278 	}
4279 }
4280 EXPORT_SYMBOL_GPL(napi_hash_add);
4281 
4282 /* Warning : caller is responsible to make sure rcu grace period
4283  * is respected before freeing memory containing @napi
4284  */
4285 void napi_hash_del(struct napi_struct *napi)
4286 {
4287 	spin_lock(&napi_hash_lock);
4288 
4289 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4290 		hlist_del_rcu(&napi->napi_hash_node);
4291 
4292 	spin_unlock(&napi_hash_lock);
4293 }
4294 EXPORT_SYMBOL_GPL(napi_hash_del);
4295 
4296 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4297 		    int (*poll)(struct napi_struct *, int), int weight)
4298 {
4299 	INIT_LIST_HEAD(&napi->poll_list);
4300 	napi->gro_count = 0;
4301 	napi->gro_list = NULL;
4302 	napi->skb = NULL;
4303 	napi->poll = poll;
4304 	if (weight > NAPI_POLL_WEIGHT)
4305 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4306 			    weight, dev->name);
4307 	napi->weight = weight;
4308 	list_add(&napi->dev_list, &dev->napi_list);
4309 	napi->dev = dev;
4310 #ifdef CONFIG_NETPOLL
4311 	spin_lock_init(&napi->poll_lock);
4312 	napi->poll_owner = -1;
4313 #endif
4314 	set_bit(NAPI_STATE_SCHED, &napi->state);
4315 }
4316 EXPORT_SYMBOL(netif_napi_add);
4317 
4318 void netif_napi_del(struct napi_struct *napi)
4319 {
4320 	list_del_init(&napi->dev_list);
4321 	napi_free_frags(napi);
4322 
4323 	kfree_skb_list(napi->gro_list);
4324 	napi->gro_list = NULL;
4325 	napi->gro_count = 0;
4326 }
4327 EXPORT_SYMBOL(netif_napi_del);
4328 
4329 static void net_rx_action(struct softirq_action *h)
4330 {
4331 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
4332 	unsigned long time_limit = jiffies + 2;
4333 	int budget = netdev_budget;
4334 	void *have;
4335 
4336 	local_irq_disable();
4337 
4338 	while (!list_empty(&sd->poll_list)) {
4339 		struct napi_struct *n;
4340 		int work, weight;
4341 
4342 		/* If softirq window is exhuasted then punt.
4343 		 * Allow this to run for 2 jiffies since which will allow
4344 		 * an average latency of 1.5/HZ.
4345 		 */
4346 		if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4347 			goto softnet_break;
4348 
4349 		local_irq_enable();
4350 
4351 		/* Even though interrupts have been re-enabled, this
4352 		 * access is safe because interrupts can only add new
4353 		 * entries to the tail of this list, and only ->poll()
4354 		 * calls can remove this head entry from the list.
4355 		 */
4356 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4357 
4358 		have = netpoll_poll_lock(n);
4359 
4360 		weight = n->weight;
4361 
4362 		/* This NAPI_STATE_SCHED test is for avoiding a race
4363 		 * with netpoll's poll_napi().  Only the entity which
4364 		 * obtains the lock and sees NAPI_STATE_SCHED set will
4365 		 * actually make the ->poll() call.  Therefore we avoid
4366 		 * accidentally calling ->poll() when NAPI is not scheduled.
4367 		 */
4368 		work = 0;
4369 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4370 			work = n->poll(n, weight);
4371 			trace_napi_poll(n);
4372 		}
4373 
4374 		WARN_ON_ONCE(work > weight);
4375 
4376 		budget -= work;
4377 
4378 		local_irq_disable();
4379 
4380 		/* Drivers must not modify the NAPI state if they
4381 		 * consume the entire weight.  In such cases this code
4382 		 * still "owns" the NAPI instance and therefore can
4383 		 * move the instance around on the list at-will.
4384 		 */
4385 		if (unlikely(work == weight)) {
4386 			if (unlikely(napi_disable_pending(n))) {
4387 				local_irq_enable();
4388 				napi_complete(n);
4389 				local_irq_disable();
4390 			} else {
4391 				if (n->gro_list) {
4392 					/* flush too old packets
4393 					 * If HZ < 1000, flush all packets.
4394 					 */
4395 					local_irq_enable();
4396 					napi_gro_flush(n, HZ >= 1000);
4397 					local_irq_disable();
4398 				}
4399 				list_move_tail(&n->poll_list, &sd->poll_list);
4400 			}
4401 		}
4402 
4403 		netpoll_poll_unlock(have);
4404 	}
4405 out:
4406 	net_rps_action_and_irq_enable(sd);
4407 
4408 #ifdef CONFIG_NET_DMA
4409 	/*
4410 	 * There may not be any more sk_buffs coming right now, so push
4411 	 * any pending DMA copies to hardware
4412 	 */
4413 	dma_issue_pending_all();
4414 #endif
4415 
4416 	return;
4417 
4418 softnet_break:
4419 	sd->time_squeeze++;
4420 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4421 	goto out;
4422 }
4423 
4424 struct netdev_adjacent {
4425 	struct net_device *dev;
4426 
4427 	/* upper master flag, there can only be one master device per list */
4428 	bool master;
4429 
4430 	/* counter for the number of times this device was added to us */
4431 	u16 ref_nr;
4432 
4433 	/* private field for the users */
4434 	void *private;
4435 
4436 	struct list_head list;
4437 	struct rcu_head rcu;
4438 };
4439 
4440 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4441 						 struct net_device *adj_dev,
4442 						 struct list_head *adj_list)
4443 {
4444 	struct netdev_adjacent *adj;
4445 
4446 	list_for_each_entry(adj, adj_list, list) {
4447 		if (adj->dev == adj_dev)
4448 			return adj;
4449 	}
4450 	return NULL;
4451 }
4452 
4453 /**
4454  * netdev_has_upper_dev - Check if device is linked to an upper device
4455  * @dev: device
4456  * @upper_dev: upper device to check
4457  *
4458  * Find out if a device is linked to specified upper device and return true
4459  * in case it is. Note that this checks only immediate upper device,
4460  * not through a complete stack of devices. The caller must hold the RTNL lock.
4461  */
4462 bool netdev_has_upper_dev(struct net_device *dev,
4463 			  struct net_device *upper_dev)
4464 {
4465 	ASSERT_RTNL();
4466 
4467 	return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4468 }
4469 EXPORT_SYMBOL(netdev_has_upper_dev);
4470 
4471 /**
4472  * netdev_has_any_upper_dev - Check if device is linked to some device
4473  * @dev: device
4474  *
4475  * Find out if a device is linked to an upper device and return true in case
4476  * it is. The caller must hold the RTNL lock.
4477  */
4478 static bool netdev_has_any_upper_dev(struct net_device *dev)
4479 {
4480 	ASSERT_RTNL();
4481 
4482 	return !list_empty(&dev->all_adj_list.upper);
4483 }
4484 
4485 /**
4486  * netdev_master_upper_dev_get - Get master upper device
4487  * @dev: device
4488  *
4489  * Find a master upper device and return pointer to it or NULL in case
4490  * it's not there. The caller must hold the RTNL lock.
4491  */
4492 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4493 {
4494 	struct netdev_adjacent *upper;
4495 
4496 	ASSERT_RTNL();
4497 
4498 	if (list_empty(&dev->adj_list.upper))
4499 		return NULL;
4500 
4501 	upper = list_first_entry(&dev->adj_list.upper,
4502 				 struct netdev_adjacent, list);
4503 	if (likely(upper->master))
4504 		return upper->dev;
4505 	return NULL;
4506 }
4507 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4508 
4509 void *netdev_adjacent_get_private(struct list_head *adj_list)
4510 {
4511 	struct netdev_adjacent *adj;
4512 
4513 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4514 
4515 	return adj->private;
4516 }
4517 EXPORT_SYMBOL(netdev_adjacent_get_private);
4518 
4519 /**
4520  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4521  * @dev: device
4522  * @iter: list_head ** of the current position
4523  *
4524  * Gets the next device from the dev's upper list, starting from iter
4525  * position. The caller must hold RCU read lock.
4526  */
4527 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4528 						     struct list_head **iter)
4529 {
4530 	struct netdev_adjacent *upper;
4531 
4532 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4533 
4534 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4535 
4536 	if (&upper->list == &dev->all_adj_list.upper)
4537 		return NULL;
4538 
4539 	*iter = &upper->list;
4540 
4541 	return upper->dev;
4542 }
4543 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4544 
4545 /**
4546  * netdev_lower_get_next_private - Get the next ->private from the
4547  *				   lower neighbour list
4548  * @dev: device
4549  * @iter: list_head ** of the current position
4550  *
4551  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4552  * list, starting from iter position. The caller must hold either hold the
4553  * RTNL lock or its own locking that guarantees that the neighbour lower
4554  * list will remain unchainged.
4555  */
4556 void *netdev_lower_get_next_private(struct net_device *dev,
4557 				    struct list_head **iter)
4558 {
4559 	struct netdev_adjacent *lower;
4560 
4561 	lower = list_entry(*iter, struct netdev_adjacent, list);
4562 
4563 	if (&lower->list == &dev->adj_list.lower)
4564 		return NULL;
4565 
4566 	if (iter)
4567 		*iter = lower->list.next;
4568 
4569 	return lower->private;
4570 }
4571 EXPORT_SYMBOL(netdev_lower_get_next_private);
4572 
4573 /**
4574  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4575  *				       lower neighbour list, RCU
4576  *				       variant
4577  * @dev: device
4578  * @iter: list_head ** of the current position
4579  *
4580  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4581  * list, starting from iter position. The caller must hold RCU read lock.
4582  */
4583 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4584 					struct list_head **iter)
4585 {
4586 	struct netdev_adjacent *lower;
4587 
4588 	WARN_ON_ONCE(!rcu_read_lock_held());
4589 
4590 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4591 
4592 	if (&lower->list == &dev->adj_list.lower)
4593 		return NULL;
4594 
4595 	if (iter)
4596 		*iter = &lower->list;
4597 
4598 	return lower->private;
4599 }
4600 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4601 
4602 /**
4603  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4604  *				       lower neighbour list, RCU
4605  *				       variant
4606  * @dev: device
4607  *
4608  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4609  * list. The caller must hold RCU read lock.
4610  */
4611 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4612 {
4613 	struct netdev_adjacent *lower;
4614 
4615 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
4616 			struct netdev_adjacent, list);
4617 	if (lower)
4618 		return lower->private;
4619 	return NULL;
4620 }
4621 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4622 
4623 /**
4624  * netdev_master_upper_dev_get_rcu - Get master upper device
4625  * @dev: device
4626  *
4627  * Find a master upper device and return pointer to it or NULL in case
4628  * it's not there. The caller must hold the RCU read lock.
4629  */
4630 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4631 {
4632 	struct netdev_adjacent *upper;
4633 
4634 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
4635 				       struct netdev_adjacent, list);
4636 	if (upper && likely(upper->master))
4637 		return upper->dev;
4638 	return NULL;
4639 }
4640 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4641 
4642 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4643 			      struct net_device *adj_dev,
4644 			      struct list_head *dev_list)
4645 {
4646 	char linkname[IFNAMSIZ+7];
4647 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4648 		"upper_%s" : "lower_%s", adj_dev->name);
4649 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4650 				 linkname);
4651 }
4652 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4653 			       char *name,
4654 			       struct list_head *dev_list)
4655 {
4656 	char linkname[IFNAMSIZ+7];
4657 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4658 		"upper_%s" : "lower_%s", name);
4659 	sysfs_remove_link(&(dev->dev.kobj), linkname);
4660 }
4661 
4662 #define netdev_adjacent_is_neigh_list(dev, dev_list) \
4663 		(dev_list == &dev->adj_list.upper || \
4664 		 dev_list == &dev->adj_list.lower)
4665 
4666 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4667 					struct net_device *adj_dev,
4668 					struct list_head *dev_list,
4669 					void *private, bool master)
4670 {
4671 	struct netdev_adjacent *adj;
4672 	int ret;
4673 
4674 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4675 
4676 	if (adj) {
4677 		adj->ref_nr++;
4678 		return 0;
4679 	}
4680 
4681 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4682 	if (!adj)
4683 		return -ENOMEM;
4684 
4685 	adj->dev = adj_dev;
4686 	adj->master = master;
4687 	adj->ref_nr = 1;
4688 	adj->private = private;
4689 	dev_hold(adj_dev);
4690 
4691 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4692 		 adj_dev->name, dev->name, adj_dev->name);
4693 
4694 	if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4695 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4696 		if (ret)
4697 			goto free_adj;
4698 	}
4699 
4700 	/* Ensure that master link is always the first item in list. */
4701 	if (master) {
4702 		ret = sysfs_create_link(&(dev->dev.kobj),
4703 					&(adj_dev->dev.kobj), "master");
4704 		if (ret)
4705 			goto remove_symlinks;
4706 
4707 		list_add_rcu(&adj->list, dev_list);
4708 	} else {
4709 		list_add_tail_rcu(&adj->list, dev_list);
4710 	}
4711 
4712 	return 0;
4713 
4714 remove_symlinks:
4715 	if (netdev_adjacent_is_neigh_list(dev, dev_list))
4716 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4717 free_adj:
4718 	kfree(adj);
4719 	dev_put(adj_dev);
4720 
4721 	return ret;
4722 }
4723 
4724 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4725 					 struct net_device *adj_dev,
4726 					 struct list_head *dev_list)
4727 {
4728 	struct netdev_adjacent *adj;
4729 
4730 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4731 
4732 	if (!adj) {
4733 		pr_err("tried to remove device %s from %s\n",
4734 		       dev->name, adj_dev->name);
4735 		BUG();
4736 	}
4737 
4738 	if (adj->ref_nr > 1) {
4739 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4740 			 adj->ref_nr-1);
4741 		adj->ref_nr--;
4742 		return;
4743 	}
4744 
4745 	if (adj->master)
4746 		sysfs_remove_link(&(dev->dev.kobj), "master");
4747 
4748 	if (netdev_adjacent_is_neigh_list(dev, dev_list))
4749 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4750 
4751 	list_del_rcu(&adj->list);
4752 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
4753 		 adj_dev->name, dev->name, adj_dev->name);
4754 	dev_put(adj_dev);
4755 	kfree_rcu(adj, rcu);
4756 }
4757 
4758 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4759 					    struct net_device *upper_dev,
4760 					    struct list_head *up_list,
4761 					    struct list_head *down_list,
4762 					    void *private, bool master)
4763 {
4764 	int ret;
4765 
4766 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4767 					   master);
4768 	if (ret)
4769 		return ret;
4770 
4771 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4772 					   false);
4773 	if (ret) {
4774 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4775 		return ret;
4776 	}
4777 
4778 	return 0;
4779 }
4780 
4781 static int __netdev_adjacent_dev_link(struct net_device *dev,
4782 				      struct net_device *upper_dev)
4783 {
4784 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4785 						&dev->all_adj_list.upper,
4786 						&upper_dev->all_adj_list.lower,
4787 						NULL, false);
4788 }
4789 
4790 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4791 					       struct net_device *upper_dev,
4792 					       struct list_head *up_list,
4793 					       struct list_head *down_list)
4794 {
4795 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4796 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4797 }
4798 
4799 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4800 					 struct net_device *upper_dev)
4801 {
4802 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4803 					   &dev->all_adj_list.upper,
4804 					   &upper_dev->all_adj_list.lower);
4805 }
4806 
4807 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4808 						struct net_device *upper_dev,
4809 						void *private, bool master)
4810 {
4811 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4812 
4813 	if (ret)
4814 		return ret;
4815 
4816 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4817 					       &dev->adj_list.upper,
4818 					       &upper_dev->adj_list.lower,
4819 					       private, master);
4820 	if (ret) {
4821 		__netdev_adjacent_dev_unlink(dev, upper_dev);
4822 		return ret;
4823 	}
4824 
4825 	return 0;
4826 }
4827 
4828 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4829 						   struct net_device *upper_dev)
4830 {
4831 	__netdev_adjacent_dev_unlink(dev, upper_dev);
4832 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4833 					   &dev->adj_list.upper,
4834 					   &upper_dev->adj_list.lower);
4835 }
4836 
4837 static int __netdev_upper_dev_link(struct net_device *dev,
4838 				   struct net_device *upper_dev, bool master,
4839 				   void *private)
4840 {
4841 	struct netdev_adjacent *i, *j, *to_i, *to_j;
4842 	int ret = 0;
4843 
4844 	ASSERT_RTNL();
4845 
4846 	if (dev == upper_dev)
4847 		return -EBUSY;
4848 
4849 	/* To prevent loops, check if dev is not upper device to upper_dev. */
4850 	if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4851 		return -EBUSY;
4852 
4853 	if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4854 		return -EEXIST;
4855 
4856 	if (master && netdev_master_upper_dev_get(dev))
4857 		return -EBUSY;
4858 
4859 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4860 						   master);
4861 	if (ret)
4862 		return ret;
4863 
4864 	/* Now that we linked these devs, make all the upper_dev's
4865 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4866 	 * versa, and don't forget the devices itself. All of these
4867 	 * links are non-neighbours.
4868 	 */
4869 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4870 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4871 			pr_debug("Interlinking %s with %s, non-neighbour\n",
4872 				 i->dev->name, j->dev->name);
4873 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4874 			if (ret)
4875 				goto rollback_mesh;
4876 		}
4877 	}
4878 
4879 	/* add dev to every upper_dev's upper device */
4880 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4881 		pr_debug("linking %s's upper device %s with %s\n",
4882 			 upper_dev->name, i->dev->name, dev->name);
4883 		ret = __netdev_adjacent_dev_link(dev, i->dev);
4884 		if (ret)
4885 			goto rollback_upper_mesh;
4886 	}
4887 
4888 	/* add upper_dev to every dev's lower device */
4889 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4890 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
4891 			 i->dev->name, upper_dev->name);
4892 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4893 		if (ret)
4894 			goto rollback_lower_mesh;
4895 	}
4896 
4897 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4898 	return 0;
4899 
4900 rollback_lower_mesh:
4901 	to_i = i;
4902 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4903 		if (i == to_i)
4904 			break;
4905 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
4906 	}
4907 
4908 	i = NULL;
4909 
4910 rollback_upper_mesh:
4911 	to_i = i;
4912 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4913 		if (i == to_i)
4914 			break;
4915 		__netdev_adjacent_dev_unlink(dev, i->dev);
4916 	}
4917 
4918 	i = j = NULL;
4919 
4920 rollback_mesh:
4921 	to_i = i;
4922 	to_j = j;
4923 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4924 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4925 			if (i == to_i && j == to_j)
4926 				break;
4927 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
4928 		}
4929 		if (i == to_i)
4930 			break;
4931 	}
4932 
4933 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4934 
4935 	return ret;
4936 }
4937 
4938 /**
4939  * netdev_upper_dev_link - Add a link to the upper device
4940  * @dev: device
4941  * @upper_dev: new upper device
4942  *
4943  * Adds a link to device which is upper to this one. The caller must hold
4944  * the RTNL lock. On a failure a negative errno code is returned.
4945  * On success the reference counts are adjusted and the function
4946  * returns zero.
4947  */
4948 int netdev_upper_dev_link(struct net_device *dev,
4949 			  struct net_device *upper_dev)
4950 {
4951 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
4952 }
4953 EXPORT_SYMBOL(netdev_upper_dev_link);
4954 
4955 /**
4956  * netdev_master_upper_dev_link - Add a master link to the upper device
4957  * @dev: device
4958  * @upper_dev: new upper device
4959  *
4960  * Adds a link to device which is upper to this one. In this case, only
4961  * one master upper device can be linked, although other non-master devices
4962  * might be linked as well. The caller must hold the RTNL lock.
4963  * On a failure a negative errno code is returned. On success the reference
4964  * counts are adjusted and the function returns zero.
4965  */
4966 int netdev_master_upper_dev_link(struct net_device *dev,
4967 				 struct net_device *upper_dev)
4968 {
4969 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
4970 }
4971 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4972 
4973 int netdev_master_upper_dev_link_private(struct net_device *dev,
4974 					 struct net_device *upper_dev,
4975 					 void *private)
4976 {
4977 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
4978 }
4979 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
4980 
4981 /**
4982  * netdev_upper_dev_unlink - Removes a link to upper device
4983  * @dev: device
4984  * @upper_dev: new upper device
4985  *
4986  * Removes a link to device which is upper to this one. The caller must hold
4987  * the RTNL lock.
4988  */
4989 void netdev_upper_dev_unlink(struct net_device *dev,
4990 			     struct net_device *upper_dev)
4991 {
4992 	struct netdev_adjacent *i, *j;
4993 	ASSERT_RTNL();
4994 
4995 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4996 
4997 	/* Here is the tricky part. We must remove all dev's lower
4998 	 * devices from all upper_dev's upper devices and vice
4999 	 * versa, to maintain the graph relationship.
5000 	 */
5001 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5002 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5003 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5004 
5005 	/* remove also the devices itself from lower/upper device
5006 	 * list
5007 	 */
5008 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5009 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5010 
5011 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5012 		__netdev_adjacent_dev_unlink(dev, i->dev);
5013 
5014 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5015 }
5016 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5017 
5018 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5019 {
5020 	struct netdev_adjacent *iter;
5021 
5022 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5023 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5024 					  &iter->dev->adj_list.lower);
5025 		netdev_adjacent_sysfs_add(iter->dev, dev,
5026 					  &iter->dev->adj_list.lower);
5027 	}
5028 
5029 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5030 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5031 					  &iter->dev->adj_list.upper);
5032 		netdev_adjacent_sysfs_add(iter->dev, dev,
5033 					  &iter->dev->adj_list.upper);
5034 	}
5035 }
5036 
5037 void *netdev_lower_dev_get_private(struct net_device *dev,
5038 				   struct net_device *lower_dev)
5039 {
5040 	struct netdev_adjacent *lower;
5041 
5042 	if (!lower_dev)
5043 		return NULL;
5044 	lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5045 	if (!lower)
5046 		return NULL;
5047 
5048 	return lower->private;
5049 }
5050 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5051 
5052 static void dev_change_rx_flags(struct net_device *dev, int flags)
5053 {
5054 	const struct net_device_ops *ops = dev->netdev_ops;
5055 
5056 	if (ops->ndo_change_rx_flags)
5057 		ops->ndo_change_rx_flags(dev, flags);
5058 }
5059 
5060 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5061 {
5062 	unsigned int old_flags = dev->flags;
5063 	kuid_t uid;
5064 	kgid_t gid;
5065 
5066 	ASSERT_RTNL();
5067 
5068 	dev->flags |= IFF_PROMISC;
5069 	dev->promiscuity += inc;
5070 	if (dev->promiscuity == 0) {
5071 		/*
5072 		 * Avoid overflow.
5073 		 * If inc causes overflow, untouch promisc and return error.
5074 		 */
5075 		if (inc < 0)
5076 			dev->flags &= ~IFF_PROMISC;
5077 		else {
5078 			dev->promiscuity -= inc;
5079 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5080 				dev->name);
5081 			return -EOVERFLOW;
5082 		}
5083 	}
5084 	if (dev->flags != old_flags) {
5085 		pr_info("device %s %s promiscuous mode\n",
5086 			dev->name,
5087 			dev->flags & IFF_PROMISC ? "entered" : "left");
5088 		if (audit_enabled) {
5089 			current_uid_gid(&uid, &gid);
5090 			audit_log(current->audit_context, GFP_ATOMIC,
5091 				AUDIT_ANOM_PROMISCUOUS,
5092 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5093 				dev->name, (dev->flags & IFF_PROMISC),
5094 				(old_flags & IFF_PROMISC),
5095 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5096 				from_kuid(&init_user_ns, uid),
5097 				from_kgid(&init_user_ns, gid),
5098 				audit_get_sessionid(current));
5099 		}
5100 
5101 		dev_change_rx_flags(dev, IFF_PROMISC);
5102 	}
5103 	if (notify)
5104 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5105 	return 0;
5106 }
5107 
5108 /**
5109  *	dev_set_promiscuity	- update promiscuity count on a device
5110  *	@dev: device
5111  *	@inc: modifier
5112  *
5113  *	Add or remove promiscuity from a device. While the count in the device
5114  *	remains above zero the interface remains promiscuous. Once it hits zero
5115  *	the device reverts back to normal filtering operation. A negative inc
5116  *	value is used to drop promiscuity on the device.
5117  *	Return 0 if successful or a negative errno code on error.
5118  */
5119 int dev_set_promiscuity(struct net_device *dev, int inc)
5120 {
5121 	unsigned int old_flags = dev->flags;
5122 	int err;
5123 
5124 	err = __dev_set_promiscuity(dev, inc, true);
5125 	if (err < 0)
5126 		return err;
5127 	if (dev->flags != old_flags)
5128 		dev_set_rx_mode(dev);
5129 	return err;
5130 }
5131 EXPORT_SYMBOL(dev_set_promiscuity);
5132 
5133 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5134 {
5135 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5136 
5137 	ASSERT_RTNL();
5138 
5139 	dev->flags |= IFF_ALLMULTI;
5140 	dev->allmulti += inc;
5141 	if (dev->allmulti == 0) {
5142 		/*
5143 		 * Avoid overflow.
5144 		 * If inc causes overflow, untouch allmulti and return error.
5145 		 */
5146 		if (inc < 0)
5147 			dev->flags &= ~IFF_ALLMULTI;
5148 		else {
5149 			dev->allmulti -= inc;
5150 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5151 				dev->name);
5152 			return -EOVERFLOW;
5153 		}
5154 	}
5155 	if (dev->flags ^ old_flags) {
5156 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5157 		dev_set_rx_mode(dev);
5158 		if (notify)
5159 			__dev_notify_flags(dev, old_flags,
5160 					   dev->gflags ^ old_gflags);
5161 	}
5162 	return 0;
5163 }
5164 
5165 /**
5166  *	dev_set_allmulti	- update allmulti count on a device
5167  *	@dev: device
5168  *	@inc: modifier
5169  *
5170  *	Add or remove reception of all multicast frames to a device. While the
5171  *	count in the device remains above zero the interface remains listening
5172  *	to all interfaces. Once it hits zero the device reverts back to normal
5173  *	filtering operation. A negative @inc value is used to drop the counter
5174  *	when releasing a resource needing all multicasts.
5175  *	Return 0 if successful or a negative errno code on error.
5176  */
5177 
5178 int dev_set_allmulti(struct net_device *dev, int inc)
5179 {
5180 	return __dev_set_allmulti(dev, inc, true);
5181 }
5182 EXPORT_SYMBOL(dev_set_allmulti);
5183 
5184 /*
5185  *	Upload unicast and multicast address lists to device and
5186  *	configure RX filtering. When the device doesn't support unicast
5187  *	filtering it is put in promiscuous mode while unicast addresses
5188  *	are present.
5189  */
5190 void __dev_set_rx_mode(struct net_device *dev)
5191 {
5192 	const struct net_device_ops *ops = dev->netdev_ops;
5193 
5194 	/* dev_open will call this function so the list will stay sane. */
5195 	if (!(dev->flags&IFF_UP))
5196 		return;
5197 
5198 	if (!netif_device_present(dev))
5199 		return;
5200 
5201 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5202 		/* Unicast addresses changes may only happen under the rtnl,
5203 		 * therefore calling __dev_set_promiscuity here is safe.
5204 		 */
5205 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5206 			__dev_set_promiscuity(dev, 1, false);
5207 			dev->uc_promisc = true;
5208 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5209 			__dev_set_promiscuity(dev, -1, false);
5210 			dev->uc_promisc = false;
5211 		}
5212 	}
5213 
5214 	if (ops->ndo_set_rx_mode)
5215 		ops->ndo_set_rx_mode(dev);
5216 }
5217 
5218 void dev_set_rx_mode(struct net_device *dev)
5219 {
5220 	netif_addr_lock_bh(dev);
5221 	__dev_set_rx_mode(dev);
5222 	netif_addr_unlock_bh(dev);
5223 }
5224 
5225 /**
5226  *	dev_get_flags - get flags reported to userspace
5227  *	@dev: device
5228  *
5229  *	Get the combination of flag bits exported through APIs to userspace.
5230  */
5231 unsigned int dev_get_flags(const struct net_device *dev)
5232 {
5233 	unsigned int flags;
5234 
5235 	flags = (dev->flags & ~(IFF_PROMISC |
5236 				IFF_ALLMULTI |
5237 				IFF_RUNNING |
5238 				IFF_LOWER_UP |
5239 				IFF_DORMANT)) |
5240 		(dev->gflags & (IFF_PROMISC |
5241 				IFF_ALLMULTI));
5242 
5243 	if (netif_running(dev)) {
5244 		if (netif_oper_up(dev))
5245 			flags |= IFF_RUNNING;
5246 		if (netif_carrier_ok(dev))
5247 			flags |= IFF_LOWER_UP;
5248 		if (netif_dormant(dev))
5249 			flags |= IFF_DORMANT;
5250 	}
5251 
5252 	return flags;
5253 }
5254 EXPORT_SYMBOL(dev_get_flags);
5255 
5256 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5257 {
5258 	unsigned int old_flags = dev->flags;
5259 	int ret;
5260 
5261 	ASSERT_RTNL();
5262 
5263 	/*
5264 	 *	Set the flags on our device.
5265 	 */
5266 
5267 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5268 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5269 			       IFF_AUTOMEDIA)) |
5270 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5271 				    IFF_ALLMULTI));
5272 
5273 	/*
5274 	 *	Load in the correct multicast list now the flags have changed.
5275 	 */
5276 
5277 	if ((old_flags ^ flags) & IFF_MULTICAST)
5278 		dev_change_rx_flags(dev, IFF_MULTICAST);
5279 
5280 	dev_set_rx_mode(dev);
5281 
5282 	/*
5283 	 *	Have we downed the interface. We handle IFF_UP ourselves
5284 	 *	according to user attempts to set it, rather than blindly
5285 	 *	setting it.
5286 	 */
5287 
5288 	ret = 0;
5289 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
5290 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5291 
5292 		if (!ret)
5293 			dev_set_rx_mode(dev);
5294 	}
5295 
5296 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5297 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5298 		unsigned int old_flags = dev->flags;
5299 
5300 		dev->gflags ^= IFF_PROMISC;
5301 
5302 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5303 			if (dev->flags != old_flags)
5304 				dev_set_rx_mode(dev);
5305 	}
5306 
5307 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5308 	   is important. Some (broken) drivers set IFF_PROMISC, when
5309 	   IFF_ALLMULTI is requested not asking us and not reporting.
5310 	 */
5311 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5312 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5313 
5314 		dev->gflags ^= IFF_ALLMULTI;
5315 		__dev_set_allmulti(dev, inc, false);
5316 	}
5317 
5318 	return ret;
5319 }
5320 
5321 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5322 			unsigned int gchanges)
5323 {
5324 	unsigned int changes = dev->flags ^ old_flags;
5325 
5326 	if (gchanges)
5327 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5328 
5329 	if (changes & IFF_UP) {
5330 		if (dev->flags & IFF_UP)
5331 			call_netdevice_notifiers(NETDEV_UP, dev);
5332 		else
5333 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5334 	}
5335 
5336 	if (dev->flags & IFF_UP &&
5337 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5338 		struct netdev_notifier_change_info change_info;
5339 
5340 		change_info.flags_changed = changes;
5341 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5342 					      &change_info.info);
5343 	}
5344 }
5345 
5346 /**
5347  *	dev_change_flags - change device settings
5348  *	@dev: device
5349  *	@flags: device state flags
5350  *
5351  *	Change settings on device based state flags. The flags are
5352  *	in the userspace exported format.
5353  */
5354 int dev_change_flags(struct net_device *dev, unsigned int flags)
5355 {
5356 	int ret;
5357 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5358 
5359 	ret = __dev_change_flags(dev, flags);
5360 	if (ret < 0)
5361 		return ret;
5362 
5363 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5364 	__dev_notify_flags(dev, old_flags, changes);
5365 	return ret;
5366 }
5367 EXPORT_SYMBOL(dev_change_flags);
5368 
5369 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5370 {
5371 	const struct net_device_ops *ops = dev->netdev_ops;
5372 
5373 	if (ops->ndo_change_mtu)
5374 		return ops->ndo_change_mtu(dev, new_mtu);
5375 
5376 	dev->mtu = new_mtu;
5377 	return 0;
5378 }
5379 
5380 /**
5381  *	dev_set_mtu - Change maximum transfer unit
5382  *	@dev: device
5383  *	@new_mtu: new transfer unit
5384  *
5385  *	Change the maximum transfer size of the network device.
5386  */
5387 int dev_set_mtu(struct net_device *dev, int new_mtu)
5388 {
5389 	int err, orig_mtu;
5390 
5391 	if (new_mtu == dev->mtu)
5392 		return 0;
5393 
5394 	/*	MTU must be positive.	 */
5395 	if (new_mtu < 0)
5396 		return -EINVAL;
5397 
5398 	if (!netif_device_present(dev))
5399 		return -ENODEV;
5400 
5401 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5402 	err = notifier_to_errno(err);
5403 	if (err)
5404 		return err;
5405 
5406 	orig_mtu = dev->mtu;
5407 	err = __dev_set_mtu(dev, new_mtu);
5408 
5409 	if (!err) {
5410 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5411 		err = notifier_to_errno(err);
5412 		if (err) {
5413 			/* setting mtu back and notifying everyone again,
5414 			 * so that they have a chance to revert changes.
5415 			 */
5416 			__dev_set_mtu(dev, orig_mtu);
5417 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5418 		}
5419 	}
5420 	return err;
5421 }
5422 EXPORT_SYMBOL(dev_set_mtu);
5423 
5424 /**
5425  *	dev_set_group - Change group this device belongs to
5426  *	@dev: device
5427  *	@new_group: group this device should belong to
5428  */
5429 void dev_set_group(struct net_device *dev, int new_group)
5430 {
5431 	dev->group = new_group;
5432 }
5433 EXPORT_SYMBOL(dev_set_group);
5434 
5435 /**
5436  *	dev_set_mac_address - Change Media Access Control Address
5437  *	@dev: device
5438  *	@sa: new address
5439  *
5440  *	Change the hardware (MAC) address of the device
5441  */
5442 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5443 {
5444 	const struct net_device_ops *ops = dev->netdev_ops;
5445 	int err;
5446 
5447 	if (!ops->ndo_set_mac_address)
5448 		return -EOPNOTSUPP;
5449 	if (sa->sa_family != dev->type)
5450 		return -EINVAL;
5451 	if (!netif_device_present(dev))
5452 		return -ENODEV;
5453 	err = ops->ndo_set_mac_address(dev, sa);
5454 	if (err)
5455 		return err;
5456 	dev->addr_assign_type = NET_ADDR_SET;
5457 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5458 	add_device_randomness(dev->dev_addr, dev->addr_len);
5459 	return 0;
5460 }
5461 EXPORT_SYMBOL(dev_set_mac_address);
5462 
5463 /**
5464  *	dev_change_carrier - Change device carrier
5465  *	@dev: device
5466  *	@new_carrier: new value
5467  *
5468  *	Change device carrier
5469  */
5470 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5471 {
5472 	const struct net_device_ops *ops = dev->netdev_ops;
5473 
5474 	if (!ops->ndo_change_carrier)
5475 		return -EOPNOTSUPP;
5476 	if (!netif_device_present(dev))
5477 		return -ENODEV;
5478 	return ops->ndo_change_carrier(dev, new_carrier);
5479 }
5480 EXPORT_SYMBOL(dev_change_carrier);
5481 
5482 /**
5483  *	dev_get_phys_port_id - Get device physical port ID
5484  *	@dev: device
5485  *	@ppid: port ID
5486  *
5487  *	Get device physical port ID
5488  */
5489 int dev_get_phys_port_id(struct net_device *dev,
5490 			 struct netdev_phys_port_id *ppid)
5491 {
5492 	const struct net_device_ops *ops = dev->netdev_ops;
5493 
5494 	if (!ops->ndo_get_phys_port_id)
5495 		return -EOPNOTSUPP;
5496 	return ops->ndo_get_phys_port_id(dev, ppid);
5497 }
5498 EXPORT_SYMBOL(dev_get_phys_port_id);
5499 
5500 /**
5501  *	dev_new_index	-	allocate an ifindex
5502  *	@net: the applicable net namespace
5503  *
5504  *	Returns a suitable unique value for a new device interface
5505  *	number.  The caller must hold the rtnl semaphore or the
5506  *	dev_base_lock to be sure it remains unique.
5507  */
5508 static int dev_new_index(struct net *net)
5509 {
5510 	int ifindex = net->ifindex;
5511 	for (;;) {
5512 		if (++ifindex <= 0)
5513 			ifindex = 1;
5514 		if (!__dev_get_by_index(net, ifindex))
5515 			return net->ifindex = ifindex;
5516 	}
5517 }
5518 
5519 /* Delayed registration/unregisteration */
5520 static LIST_HEAD(net_todo_list);
5521 static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5522 
5523 static void net_set_todo(struct net_device *dev)
5524 {
5525 	list_add_tail(&dev->todo_list, &net_todo_list);
5526 	dev_net(dev)->dev_unreg_count++;
5527 }
5528 
5529 static void rollback_registered_many(struct list_head *head)
5530 {
5531 	struct net_device *dev, *tmp;
5532 	LIST_HEAD(close_head);
5533 
5534 	BUG_ON(dev_boot_phase);
5535 	ASSERT_RTNL();
5536 
5537 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5538 		/* Some devices call without registering
5539 		 * for initialization unwind. Remove those
5540 		 * devices and proceed with the remaining.
5541 		 */
5542 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5543 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5544 				 dev->name, dev);
5545 
5546 			WARN_ON(1);
5547 			list_del(&dev->unreg_list);
5548 			continue;
5549 		}
5550 		dev->dismantle = true;
5551 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5552 	}
5553 
5554 	/* If device is running, close it first. */
5555 	list_for_each_entry(dev, head, unreg_list)
5556 		list_add_tail(&dev->close_list, &close_head);
5557 	dev_close_many(&close_head);
5558 
5559 	list_for_each_entry(dev, head, unreg_list) {
5560 		/* And unlink it from device chain. */
5561 		unlist_netdevice(dev);
5562 
5563 		dev->reg_state = NETREG_UNREGISTERING;
5564 	}
5565 
5566 	synchronize_net();
5567 
5568 	list_for_each_entry(dev, head, unreg_list) {
5569 		/* Shutdown queueing discipline. */
5570 		dev_shutdown(dev);
5571 
5572 
5573 		/* Notify protocols, that we are about to destroy
5574 		   this device. They should clean all the things.
5575 		*/
5576 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5577 
5578 		if (!dev->rtnl_link_ops ||
5579 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5580 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5581 
5582 		/*
5583 		 *	Flush the unicast and multicast chains
5584 		 */
5585 		dev_uc_flush(dev);
5586 		dev_mc_flush(dev);
5587 
5588 		if (dev->netdev_ops->ndo_uninit)
5589 			dev->netdev_ops->ndo_uninit(dev);
5590 
5591 		/* Notifier chain MUST detach us all upper devices. */
5592 		WARN_ON(netdev_has_any_upper_dev(dev));
5593 
5594 		/* Remove entries from kobject tree */
5595 		netdev_unregister_kobject(dev);
5596 #ifdef CONFIG_XPS
5597 		/* Remove XPS queueing entries */
5598 		netif_reset_xps_queues_gt(dev, 0);
5599 #endif
5600 	}
5601 
5602 	synchronize_net();
5603 
5604 	list_for_each_entry(dev, head, unreg_list)
5605 		dev_put(dev);
5606 }
5607 
5608 static void rollback_registered(struct net_device *dev)
5609 {
5610 	LIST_HEAD(single);
5611 
5612 	list_add(&dev->unreg_list, &single);
5613 	rollback_registered_many(&single);
5614 	list_del(&single);
5615 }
5616 
5617 static netdev_features_t netdev_fix_features(struct net_device *dev,
5618 	netdev_features_t features)
5619 {
5620 	/* Fix illegal checksum combinations */
5621 	if ((features & NETIF_F_HW_CSUM) &&
5622 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5623 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5624 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5625 	}
5626 
5627 	/* TSO requires that SG is present as well. */
5628 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5629 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5630 		features &= ~NETIF_F_ALL_TSO;
5631 	}
5632 
5633 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5634 					!(features & NETIF_F_IP_CSUM)) {
5635 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5636 		features &= ~NETIF_F_TSO;
5637 		features &= ~NETIF_F_TSO_ECN;
5638 	}
5639 
5640 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5641 					 !(features & NETIF_F_IPV6_CSUM)) {
5642 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5643 		features &= ~NETIF_F_TSO6;
5644 	}
5645 
5646 	/* TSO ECN requires that TSO is present as well. */
5647 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5648 		features &= ~NETIF_F_TSO_ECN;
5649 
5650 	/* Software GSO depends on SG. */
5651 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5652 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5653 		features &= ~NETIF_F_GSO;
5654 	}
5655 
5656 	/* UFO needs SG and checksumming */
5657 	if (features & NETIF_F_UFO) {
5658 		/* maybe split UFO into V4 and V6? */
5659 		if (!((features & NETIF_F_GEN_CSUM) ||
5660 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5661 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5662 			netdev_dbg(dev,
5663 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5664 			features &= ~NETIF_F_UFO;
5665 		}
5666 
5667 		if (!(features & NETIF_F_SG)) {
5668 			netdev_dbg(dev,
5669 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5670 			features &= ~NETIF_F_UFO;
5671 		}
5672 	}
5673 
5674 	return features;
5675 }
5676 
5677 int __netdev_update_features(struct net_device *dev)
5678 {
5679 	netdev_features_t features;
5680 	int err = 0;
5681 
5682 	ASSERT_RTNL();
5683 
5684 	features = netdev_get_wanted_features(dev);
5685 
5686 	if (dev->netdev_ops->ndo_fix_features)
5687 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5688 
5689 	/* driver might be less strict about feature dependencies */
5690 	features = netdev_fix_features(dev, features);
5691 
5692 	if (dev->features == features)
5693 		return 0;
5694 
5695 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5696 		&dev->features, &features);
5697 
5698 	if (dev->netdev_ops->ndo_set_features)
5699 		err = dev->netdev_ops->ndo_set_features(dev, features);
5700 
5701 	if (unlikely(err < 0)) {
5702 		netdev_err(dev,
5703 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5704 			err, &features, &dev->features);
5705 		return -1;
5706 	}
5707 
5708 	if (!err)
5709 		dev->features = features;
5710 
5711 	return 1;
5712 }
5713 
5714 /**
5715  *	netdev_update_features - recalculate device features
5716  *	@dev: the device to check
5717  *
5718  *	Recalculate dev->features set and send notifications if it
5719  *	has changed. Should be called after driver or hardware dependent
5720  *	conditions might have changed that influence the features.
5721  */
5722 void netdev_update_features(struct net_device *dev)
5723 {
5724 	if (__netdev_update_features(dev))
5725 		netdev_features_change(dev);
5726 }
5727 EXPORT_SYMBOL(netdev_update_features);
5728 
5729 /**
5730  *	netdev_change_features - recalculate device features
5731  *	@dev: the device to check
5732  *
5733  *	Recalculate dev->features set and send notifications even
5734  *	if they have not changed. Should be called instead of
5735  *	netdev_update_features() if also dev->vlan_features might
5736  *	have changed to allow the changes to be propagated to stacked
5737  *	VLAN devices.
5738  */
5739 void netdev_change_features(struct net_device *dev)
5740 {
5741 	__netdev_update_features(dev);
5742 	netdev_features_change(dev);
5743 }
5744 EXPORT_SYMBOL(netdev_change_features);
5745 
5746 /**
5747  *	netif_stacked_transfer_operstate -	transfer operstate
5748  *	@rootdev: the root or lower level device to transfer state from
5749  *	@dev: the device to transfer operstate to
5750  *
5751  *	Transfer operational state from root to device. This is normally
5752  *	called when a stacking relationship exists between the root
5753  *	device and the device(a leaf device).
5754  */
5755 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5756 					struct net_device *dev)
5757 {
5758 	if (rootdev->operstate == IF_OPER_DORMANT)
5759 		netif_dormant_on(dev);
5760 	else
5761 		netif_dormant_off(dev);
5762 
5763 	if (netif_carrier_ok(rootdev)) {
5764 		if (!netif_carrier_ok(dev))
5765 			netif_carrier_on(dev);
5766 	} else {
5767 		if (netif_carrier_ok(dev))
5768 			netif_carrier_off(dev);
5769 	}
5770 }
5771 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5772 
5773 #ifdef CONFIG_SYSFS
5774 static int netif_alloc_rx_queues(struct net_device *dev)
5775 {
5776 	unsigned int i, count = dev->num_rx_queues;
5777 	struct netdev_rx_queue *rx;
5778 
5779 	BUG_ON(count < 1);
5780 
5781 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5782 	if (!rx)
5783 		return -ENOMEM;
5784 
5785 	dev->_rx = rx;
5786 
5787 	for (i = 0; i < count; i++)
5788 		rx[i].dev = dev;
5789 	return 0;
5790 }
5791 #endif
5792 
5793 static void netdev_init_one_queue(struct net_device *dev,
5794 				  struct netdev_queue *queue, void *_unused)
5795 {
5796 	/* Initialize queue lock */
5797 	spin_lock_init(&queue->_xmit_lock);
5798 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5799 	queue->xmit_lock_owner = -1;
5800 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5801 	queue->dev = dev;
5802 #ifdef CONFIG_BQL
5803 	dql_init(&queue->dql, HZ);
5804 #endif
5805 }
5806 
5807 static void netif_free_tx_queues(struct net_device *dev)
5808 {
5809 	if (is_vmalloc_addr(dev->_tx))
5810 		vfree(dev->_tx);
5811 	else
5812 		kfree(dev->_tx);
5813 }
5814 
5815 static int netif_alloc_netdev_queues(struct net_device *dev)
5816 {
5817 	unsigned int count = dev->num_tx_queues;
5818 	struct netdev_queue *tx;
5819 	size_t sz = count * sizeof(*tx);
5820 
5821 	BUG_ON(count < 1 || count > 0xffff);
5822 
5823 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5824 	if (!tx) {
5825 		tx = vzalloc(sz);
5826 		if (!tx)
5827 			return -ENOMEM;
5828 	}
5829 	dev->_tx = tx;
5830 
5831 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5832 	spin_lock_init(&dev->tx_global_lock);
5833 
5834 	return 0;
5835 }
5836 
5837 /**
5838  *	register_netdevice	- register a network device
5839  *	@dev: device to register
5840  *
5841  *	Take a completed network device structure and add it to the kernel
5842  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5843  *	chain. 0 is returned on success. A negative errno code is returned
5844  *	on a failure to set up the device, or if the name is a duplicate.
5845  *
5846  *	Callers must hold the rtnl semaphore. You may want
5847  *	register_netdev() instead of this.
5848  *
5849  *	BUGS:
5850  *	The locking appears insufficient to guarantee two parallel registers
5851  *	will not get the same name.
5852  */
5853 
5854 int register_netdevice(struct net_device *dev)
5855 {
5856 	int ret;
5857 	struct net *net = dev_net(dev);
5858 
5859 	BUG_ON(dev_boot_phase);
5860 	ASSERT_RTNL();
5861 
5862 	might_sleep();
5863 
5864 	/* When net_device's are persistent, this will be fatal. */
5865 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5866 	BUG_ON(!net);
5867 
5868 	spin_lock_init(&dev->addr_list_lock);
5869 	netdev_set_addr_lockdep_class(dev);
5870 
5871 	dev->iflink = -1;
5872 
5873 	ret = dev_get_valid_name(net, dev, dev->name);
5874 	if (ret < 0)
5875 		goto out;
5876 
5877 	/* Init, if this function is available */
5878 	if (dev->netdev_ops->ndo_init) {
5879 		ret = dev->netdev_ops->ndo_init(dev);
5880 		if (ret) {
5881 			if (ret > 0)
5882 				ret = -EIO;
5883 			goto out;
5884 		}
5885 	}
5886 
5887 	if (((dev->hw_features | dev->features) &
5888 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
5889 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5890 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5891 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5892 		ret = -EINVAL;
5893 		goto err_uninit;
5894 	}
5895 
5896 	ret = -EBUSY;
5897 	if (!dev->ifindex)
5898 		dev->ifindex = dev_new_index(net);
5899 	else if (__dev_get_by_index(net, dev->ifindex))
5900 		goto err_uninit;
5901 
5902 	if (dev->iflink == -1)
5903 		dev->iflink = dev->ifindex;
5904 
5905 	/* Transfer changeable features to wanted_features and enable
5906 	 * software offloads (GSO and GRO).
5907 	 */
5908 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5909 	dev->features |= NETIF_F_SOFT_FEATURES;
5910 	dev->wanted_features = dev->features & dev->hw_features;
5911 
5912 	if (!(dev->flags & IFF_LOOPBACK)) {
5913 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5914 	}
5915 
5916 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5917 	 */
5918 	dev->vlan_features |= NETIF_F_HIGHDMA;
5919 
5920 	/* Make NETIF_F_SG inheritable to tunnel devices.
5921 	 */
5922 	dev->hw_enc_features |= NETIF_F_SG;
5923 
5924 	/* Make NETIF_F_SG inheritable to MPLS.
5925 	 */
5926 	dev->mpls_features |= NETIF_F_SG;
5927 
5928 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5929 	ret = notifier_to_errno(ret);
5930 	if (ret)
5931 		goto err_uninit;
5932 
5933 	ret = netdev_register_kobject(dev);
5934 	if (ret)
5935 		goto err_uninit;
5936 	dev->reg_state = NETREG_REGISTERED;
5937 
5938 	__netdev_update_features(dev);
5939 
5940 	/*
5941 	 *	Default initial state at registry is that the
5942 	 *	device is present.
5943 	 */
5944 
5945 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5946 
5947 	linkwatch_init_dev(dev);
5948 
5949 	dev_init_scheduler(dev);
5950 	dev_hold(dev);
5951 	list_netdevice(dev);
5952 	add_device_randomness(dev->dev_addr, dev->addr_len);
5953 
5954 	/* If the device has permanent device address, driver should
5955 	 * set dev_addr and also addr_assign_type should be set to
5956 	 * NET_ADDR_PERM (default value).
5957 	 */
5958 	if (dev->addr_assign_type == NET_ADDR_PERM)
5959 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5960 
5961 	/* Notify protocols, that a new device appeared. */
5962 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5963 	ret = notifier_to_errno(ret);
5964 	if (ret) {
5965 		rollback_registered(dev);
5966 		dev->reg_state = NETREG_UNREGISTERED;
5967 	}
5968 	/*
5969 	 *	Prevent userspace races by waiting until the network
5970 	 *	device is fully setup before sending notifications.
5971 	 */
5972 	if (!dev->rtnl_link_ops ||
5973 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5974 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
5975 
5976 out:
5977 	return ret;
5978 
5979 err_uninit:
5980 	if (dev->netdev_ops->ndo_uninit)
5981 		dev->netdev_ops->ndo_uninit(dev);
5982 	goto out;
5983 }
5984 EXPORT_SYMBOL(register_netdevice);
5985 
5986 /**
5987  *	init_dummy_netdev	- init a dummy network device for NAPI
5988  *	@dev: device to init
5989  *
5990  *	This takes a network device structure and initialize the minimum
5991  *	amount of fields so it can be used to schedule NAPI polls without
5992  *	registering a full blown interface. This is to be used by drivers
5993  *	that need to tie several hardware interfaces to a single NAPI
5994  *	poll scheduler due to HW limitations.
5995  */
5996 int init_dummy_netdev(struct net_device *dev)
5997 {
5998 	/* Clear everything. Note we don't initialize spinlocks
5999 	 * are they aren't supposed to be taken by any of the
6000 	 * NAPI code and this dummy netdev is supposed to be
6001 	 * only ever used for NAPI polls
6002 	 */
6003 	memset(dev, 0, sizeof(struct net_device));
6004 
6005 	/* make sure we BUG if trying to hit standard
6006 	 * register/unregister code path
6007 	 */
6008 	dev->reg_state = NETREG_DUMMY;
6009 
6010 	/* NAPI wants this */
6011 	INIT_LIST_HEAD(&dev->napi_list);
6012 
6013 	/* a dummy interface is started by default */
6014 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6015 	set_bit(__LINK_STATE_START, &dev->state);
6016 
6017 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6018 	 * because users of this 'device' dont need to change
6019 	 * its refcount.
6020 	 */
6021 
6022 	return 0;
6023 }
6024 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6025 
6026 
6027 /**
6028  *	register_netdev	- register a network device
6029  *	@dev: device to register
6030  *
6031  *	Take a completed network device structure and add it to the kernel
6032  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6033  *	chain. 0 is returned on success. A negative errno code is returned
6034  *	on a failure to set up the device, or if the name is a duplicate.
6035  *
6036  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6037  *	and expands the device name if you passed a format string to
6038  *	alloc_netdev.
6039  */
6040 int register_netdev(struct net_device *dev)
6041 {
6042 	int err;
6043 
6044 	rtnl_lock();
6045 	err = register_netdevice(dev);
6046 	rtnl_unlock();
6047 	return err;
6048 }
6049 EXPORT_SYMBOL(register_netdev);
6050 
6051 int netdev_refcnt_read(const struct net_device *dev)
6052 {
6053 	int i, refcnt = 0;
6054 
6055 	for_each_possible_cpu(i)
6056 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6057 	return refcnt;
6058 }
6059 EXPORT_SYMBOL(netdev_refcnt_read);
6060 
6061 /**
6062  * netdev_wait_allrefs - wait until all references are gone.
6063  * @dev: target net_device
6064  *
6065  * This is called when unregistering network devices.
6066  *
6067  * Any protocol or device that holds a reference should register
6068  * for netdevice notification, and cleanup and put back the
6069  * reference if they receive an UNREGISTER event.
6070  * We can get stuck here if buggy protocols don't correctly
6071  * call dev_put.
6072  */
6073 static void netdev_wait_allrefs(struct net_device *dev)
6074 {
6075 	unsigned long rebroadcast_time, warning_time;
6076 	int refcnt;
6077 
6078 	linkwatch_forget_dev(dev);
6079 
6080 	rebroadcast_time = warning_time = jiffies;
6081 	refcnt = netdev_refcnt_read(dev);
6082 
6083 	while (refcnt != 0) {
6084 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6085 			rtnl_lock();
6086 
6087 			/* Rebroadcast unregister notification */
6088 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6089 
6090 			__rtnl_unlock();
6091 			rcu_barrier();
6092 			rtnl_lock();
6093 
6094 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6095 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6096 				     &dev->state)) {
6097 				/* We must not have linkwatch events
6098 				 * pending on unregister. If this
6099 				 * happens, we simply run the queue
6100 				 * unscheduled, resulting in a noop
6101 				 * for this device.
6102 				 */
6103 				linkwatch_run_queue();
6104 			}
6105 
6106 			__rtnl_unlock();
6107 
6108 			rebroadcast_time = jiffies;
6109 		}
6110 
6111 		msleep(250);
6112 
6113 		refcnt = netdev_refcnt_read(dev);
6114 
6115 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6116 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6117 				 dev->name, refcnt);
6118 			warning_time = jiffies;
6119 		}
6120 	}
6121 }
6122 
6123 /* The sequence is:
6124  *
6125  *	rtnl_lock();
6126  *	...
6127  *	register_netdevice(x1);
6128  *	register_netdevice(x2);
6129  *	...
6130  *	unregister_netdevice(y1);
6131  *	unregister_netdevice(y2);
6132  *      ...
6133  *	rtnl_unlock();
6134  *	free_netdev(y1);
6135  *	free_netdev(y2);
6136  *
6137  * We are invoked by rtnl_unlock().
6138  * This allows us to deal with problems:
6139  * 1) We can delete sysfs objects which invoke hotplug
6140  *    without deadlocking with linkwatch via keventd.
6141  * 2) Since we run with the RTNL semaphore not held, we can sleep
6142  *    safely in order to wait for the netdev refcnt to drop to zero.
6143  *
6144  * We must not return until all unregister events added during
6145  * the interval the lock was held have been completed.
6146  */
6147 void netdev_run_todo(void)
6148 {
6149 	struct list_head list;
6150 
6151 	/* Snapshot list, allow later requests */
6152 	list_replace_init(&net_todo_list, &list);
6153 
6154 	__rtnl_unlock();
6155 
6156 
6157 	/* Wait for rcu callbacks to finish before next phase */
6158 	if (!list_empty(&list))
6159 		rcu_barrier();
6160 
6161 	while (!list_empty(&list)) {
6162 		struct net_device *dev
6163 			= list_first_entry(&list, struct net_device, todo_list);
6164 		list_del(&dev->todo_list);
6165 
6166 		rtnl_lock();
6167 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6168 		__rtnl_unlock();
6169 
6170 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6171 			pr_err("network todo '%s' but state %d\n",
6172 			       dev->name, dev->reg_state);
6173 			dump_stack();
6174 			continue;
6175 		}
6176 
6177 		dev->reg_state = NETREG_UNREGISTERED;
6178 
6179 		on_each_cpu(flush_backlog, dev, 1);
6180 
6181 		netdev_wait_allrefs(dev);
6182 
6183 		/* paranoia */
6184 		BUG_ON(netdev_refcnt_read(dev));
6185 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6186 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6187 		WARN_ON(dev->dn_ptr);
6188 
6189 		if (dev->destructor)
6190 			dev->destructor(dev);
6191 
6192 		/* Report a network device has been unregistered */
6193 		rtnl_lock();
6194 		dev_net(dev)->dev_unreg_count--;
6195 		__rtnl_unlock();
6196 		wake_up(&netdev_unregistering_wq);
6197 
6198 		/* Free network device */
6199 		kobject_put(&dev->dev.kobj);
6200 	}
6201 }
6202 
6203 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6204  * fields in the same order, with only the type differing.
6205  */
6206 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6207 			     const struct net_device_stats *netdev_stats)
6208 {
6209 #if BITS_PER_LONG == 64
6210 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6211 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6212 #else
6213 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6214 	const unsigned long *src = (const unsigned long *)netdev_stats;
6215 	u64 *dst = (u64 *)stats64;
6216 
6217 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6218 		     sizeof(*stats64) / sizeof(u64));
6219 	for (i = 0; i < n; i++)
6220 		dst[i] = src[i];
6221 #endif
6222 }
6223 EXPORT_SYMBOL(netdev_stats_to_stats64);
6224 
6225 /**
6226  *	dev_get_stats	- get network device statistics
6227  *	@dev: device to get statistics from
6228  *	@storage: place to store stats
6229  *
6230  *	Get network statistics from device. Return @storage.
6231  *	The device driver may provide its own method by setting
6232  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6233  *	otherwise the internal statistics structure is used.
6234  */
6235 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6236 					struct rtnl_link_stats64 *storage)
6237 {
6238 	const struct net_device_ops *ops = dev->netdev_ops;
6239 
6240 	if (ops->ndo_get_stats64) {
6241 		memset(storage, 0, sizeof(*storage));
6242 		ops->ndo_get_stats64(dev, storage);
6243 	} else if (ops->ndo_get_stats) {
6244 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6245 	} else {
6246 		netdev_stats_to_stats64(storage, &dev->stats);
6247 	}
6248 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6249 	return storage;
6250 }
6251 EXPORT_SYMBOL(dev_get_stats);
6252 
6253 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6254 {
6255 	struct netdev_queue *queue = dev_ingress_queue(dev);
6256 
6257 #ifdef CONFIG_NET_CLS_ACT
6258 	if (queue)
6259 		return queue;
6260 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6261 	if (!queue)
6262 		return NULL;
6263 	netdev_init_one_queue(dev, queue, NULL);
6264 	queue->qdisc = &noop_qdisc;
6265 	queue->qdisc_sleeping = &noop_qdisc;
6266 	rcu_assign_pointer(dev->ingress_queue, queue);
6267 #endif
6268 	return queue;
6269 }
6270 
6271 static const struct ethtool_ops default_ethtool_ops;
6272 
6273 void netdev_set_default_ethtool_ops(struct net_device *dev,
6274 				    const struct ethtool_ops *ops)
6275 {
6276 	if (dev->ethtool_ops == &default_ethtool_ops)
6277 		dev->ethtool_ops = ops;
6278 }
6279 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6280 
6281 void netdev_freemem(struct net_device *dev)
6282 {
6283 	char *addr = (char *)dev - dev->padded;
6284 
6285 	if (is_vmalloc_addr(addr))
6286 		vfree(addr);
6287 	else
6288 		kfree(addr);
6289 }
6290 
6291 /**
6292  *	alloc_netdev_mqs - allocate network device
6293  *	@sizeof_priv:	size of private data to allocate space for
6294  *	@name:		device name format string
6295  *	@setup:		callback to initialize device
6296  *	@txqs:		the number of TX subqueues to allocate
6297  *	@rxqs:		the number of RX subqueues to allocate
6298  *
6299  *	Allocates a struct net_device with private data area for driver use
6300  *	and performs basic initialization.  Also allocates subqueue structs
6301  *	for each queue on the device.
6302  */
6303 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6304 		void (*setup)(struct net_device *),
6305 		unsigned int txqs, unsigned int rxqs)
6306 {
6307 	struct net_device *dev;
6308 	size_t alloc_size;
6309 	struct net_device *p;
6310 
6311 	BUG_ON(strlen(name) >= sizeof(dev->name));
6312 
6313 	if (txqs < 1) {
6314 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6315 		return NULL;
6316 	}
6317 
6318 #ifdef CONFIG_SYSFS
6319 	if (rxqs < 1) {
6320 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6321 		return NULL;
6322 	}
6323 #endif
6324 
6325 	alloc_size = sizeof(struct net_device);
6326 	if (sizeof_priv) {
6327 		/* ensure 32-byte alignment of private area */
6328 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6329 		alloc_size += sizeof_priv;
6330 	}
6331 	/* ensure 32-byte alignment of whole construct */
6332 	alloc_size += NETDEV_ALIGN - 1;
6333 
6334 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6335 	if (!p)
6336 		p = vzalloc(alloc_size);
6337 	if (!p)
6338 		return NULL;
6339 
6340 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6341 	dev->padded = (char *)dev - (char *)p;
6342 
6343 	dev->pcpu_refcnt = alloc_percpu(int);
6344 	if (!dev->pcpu_refcnt)
6345 		goto free_dev;
6346 
6347 	if (dev_addr_init(dev))
6348 		goto free_pcpu;
6349 
6350 	dev_mc_init(dev);
6351 	dev_uc_init(dev);
6352 
6353 	dev_net_set(dev, &init_net);
6354 
6355 	dev->gso_max_size = GSO_MAX_SIZE;
6356 	dev->gso_max_segs = GSO_MAX_SEGS;
6357 
6358 	INIT_LIST_HEAD(&dev->napi_list);
6359 	INIT_LIST_HEAD(&dev->unreg_list);
6360 	INIT_LIST_HEAD(&dev->close_list);
6361 	INIT_LIST_HEAD(&dev->link_watch_list);
6362 	INIT_LIST_HEAD(&dev->adj_list.upper);
6363 	INIT_LIST_HEAD(&dev->adj_list.lower);
6364 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
6365 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
6366 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
6367 	setup(dev);
6368 
6369 	dev->num_tx_queues = txqs;
6370 	dev->real_num_tx_queues = txqs;
6371 	if (netif_alloc_netdev_queues(dev))
6372 		goto free_all;
6373 
6374 #ifdef CONFIG_SYSFS
6375 	dev->num_rx_queues = rxqs;
6376 	dev->real_num_rx_queues = rxqs;
6377 	if (netif_alloc_rx_queues(dev))
6378 		goto free_all;
6379 #endif
6380 
6381 	strcpy(dev->name, name);
6382 	dev->group = INIT_NETDEV_GROUP;
6383 	if (!dev->ethtool_ops)
6384 		dev->ethtool_ops = &default_ethtool_ops;
6385 	return dev;
6386 
6387 free_all:
6388 	free_netdev(dev);
6389 	return NULL;
6390 
6391 free_pcpu:
6392 	free_percpu(dev->pcpu_refcnt);
6393 	netif_free_tx_queues(dev);
6394 #ifdef CONFIG_SYSFS
6395 	kfree(dev->_rx);
6396 #endif
6397 
6398 free_dev:
6399 	netdev_freemem(dev);
6400 	return NULL;
6401 }
6402 EXPORT_SYMBOL(alloc_netdev_mqs);
6403 
6404 /**
6405  *	free_netdev - free network device
6406  *	@dev: device
6407  *
6408  *	This function does the last stage of destroying an allocated device
6409  * 	interface. The reference to the device object is released.
6410  *	If this is the last reference then it will be freed.
6411  */
6412 void free_netdev(struct net_device *dev)
6413 {
6414 	struct napi_struct *p, *n;
6415 
6416 	release_net(dev_net(dev));
6417 
6418 	netif_free_tx_queues(dev);
6419 #ifdef CONFIG_SYSFS
6420 	kfree(dev->_rx);
6421 #endif
6422 
6423 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6424 
6425 	/* Flush device addresses */
6426 	dev_addr_flush(dev);
6427 
6428 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6429 		netif_napi_del(p);
6430 
6431 	free_percpu(dev->pcpu_refcnt);
6432 	dev->pcpu_refcnt = NULL;
6433 
6434 	/*  Compatibility with error handling in drivers */
6435 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6436 		netdev_freemem(dev);
6437 		return;
6438 	}
6439 
6440 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6441 	dev->reg_state = NETREG_RELEASED;
6442 
6443 	/* will free via device release */
6444 	put_device(&dev->dev);
6445 }
6446 EXPORT_SYMBOL(free_netdev);
6447 
6448 /**
6449  *	synchronize_net -  Synchronize with packet receive processing
6450  *
6451  *	Wait for packets currently being received to be done.
6452  *	Does not block later packets from starting.
6453  */
6454 void synchronize_net(void)
6455 {
6456 	might_sleep();
6457 	if (rtnl_is_locked())
6458 		synchronize_rcu_expedited();
6459 	else
6460 		synchronize_rcu();
6461 }
6462 EXPORT_SYMBOL(synchronize_net);
6463 
6464 /**
6465  *	unregister_netdevice_queue - remove device from the kernel
6466  *	@dev: device
6467  *	@head: list
6468  *
6469  *	This function shuts down a device interface and removes it
6470  *	from the kernel tables.
6471  *	If head not NULL, device is queued to be unregistered later.
6472  *
6473  *	Callers must hold the rtnl semaphore.  You may want
6474  *	unregister_netdev() instead of this.
6475  */
6476 
6477 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6478 {
6479 	ASSERT_RTNL();
6480 
6481 	if (head) {
6482 		list_move_tail(&dev->unreg_list, head);
6483 	} else {
6484 		rollback_registered(dev);
6485 		/* Finish processing unregister after unlock */
6486 		net_set_todo(dev);
6487 	}
6488 }
6489 EXPORT_SYMBOL(unregister_netdevice_queue);
6490 
6491 /**
6492  *	unregister_netdevice_many - unregister many devices
6493  *	@head: list of devices
6494  */
6495 void unregister_netdevice_many(struct list_head *head)
6496 {
6497 	struct net_device *dev;
6498 
6499 	if (!list_empty(head)) {
6500 		rollback_registered_many(head);
6501 		list_for_each_entry(dev, head, unreg_list)
6502 			net_set_todo(dev);
6503 	}
6504 }
6505 EXPORT_SYMBOL(unregister_netdevice_many);
6506 
6507 /**
6508  *	unregister_netdev - remove device from the kernel
6509  *	@dev: device
6510  *
6511  *	This function shuts down a device interface and removes it
6512  *	from the kernel tables.
6513  *
6514  *	This is just a wrapper for unregister_netdevice that takes
6515  *	the rtnl semaphore.  In general you want to use this and not
6516  *	unregister_netdevice.
6517  */
6518 void unregister_netdev(struct net_device *dev)
6519 {
6520 	rtnl_lock();
6521 	unregister_netdevice(dev);
6522 	rtnl_unlock();
6523 }
6524 EXPORT_SYMBOL(unregister_netdev);
6525 
6526 /**
6527  *	dev_change_net_namespace - move device to different nethost namespace
6528  *	@dev: device
6529  *	@net: network namespace
6530  *	@pat: If not NULL name pattern to try if the current device name
6531  *	      is already taken in the destination network namespace.
6532  *
6533  *	This function shuts down a device interface and moves it
6534  *	to a new network namespace. On success 0 is returned, on
6535  *	a failure a netagive errno code is returned.
6536  *
6537  *	Callers must hold the rtnl semaphore.
6538  */
6539 
6540 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6541 {
6542 	int err;
6543 
6544 	ASSERT_RTNL();
6545 
6546 	/* Don't allow namespace local devices to be moved. */
6547 	err = -EINVAL;
6548 	if (dev->features & NETIF_F_NETNS_LOCAL)
6549 		goto out;
6550 
6551 	/* Ensure the device has been registrered */
6552 	if (dev->reg_state != NETREG_REGISTERED)
6553 		goto out;
6554 
6555 	/* Get out if there is nothing todo */
6556 	err = 0;
6557 	if (net_eq(dev_net(dev), net))
6558 		goto out;
6559 
6560 	/* Pick the destination device name, and ensure
6561 	 * we can use it in the destination network namespace.
6562 	 */
6563 	err = -EEXIST;
6564 	if (__dev_get_by_name(net, dev->name)) {
6565 		/* We get here if we can't use the current device name */
6566 		if (!pat)
6567 			goto out;
6568 		if (dev_get_valid_name(net, dev, pat) < 0)
6569 			goto out;
6570 	}
6571 
6572 	/*
6573 	 * And now a mini version of register_netdevice unregister_netdevice.
6574 	 */
6575 
6576 	/* If device is running close it first. */
6577 	dev_close(dev);
6578 
6579 	/* And unlink it from device chain */
6580 	err = -ENODEV;
6581 	unlist_netdevice(dev);
6582 
6583 	synchronize_net();
6584 
6585 	/* Shutdown queueing discipline. */
6586 	dev_shutdown(dev);
6587 
6588 	/* Notify protocols, that we are about to destroy
6589 	   this device. They should clean all the things.
6590 
6591 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6592 	   This is wanted because this way 8021q and macvlan know
6593 	   the device is just moving and can keep their slaves up.
6594 	*/
6595 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6596 	rcu_barrier();
6597 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6598 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6599 
6600 	/*
6601 	 *	Flush the unicast and multicast chains
6602 	 */
6603 	dev_uc_flush(dev);
6604 	dev_mc_flush(dev);
6605 
6606 	/* Send a netdev-removed uevent to the old namespace */
6607 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6608 
6609 	/* Actually switch the network namespace */
6610 	dev_net_set(dev, net);
6611 
6612 	/* If there is an ifindex conflict assign a new one */
6613 	if (__dev_get_by_index(net, dev->ifindex)) {
6614 		int iflink = (dev->iflink == dev->ifindex);
6615 		dev->ifindex = dev_new_index(net);
6616 		if (iflink)
6617 			dev->iflink = dev->ifindex;
6618 	}
6619 
6620 	/* Send a netdev-add uevent to the new namespace */
6621 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6622 
6623 	/* Fixup kobjects */
6624 	err = device_rename(&dev->dev, dev->name);
6625 	WARN_ON(err);
6626 
6627 	/* Add the device back in the hashes */
6628 	list_netdevice(dev);
6629 
6630 	/* Notify protocols, that a new device appeared. */
6631 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6632 
6633 	/*
6634 	 *	Prevent userspace races by waiting until the network
6635 	 *	device is fully setup before sending notifications.
6636 	 */
6637 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6638 
6639 	synchronize_net();
6640 	err = 0;
6641 out:
6642 	return err;
6643 }
6644 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6645 
6646 static int dev_cpu_callback(struct notifier_block *nfb,
6647 			    unsigned long action,
6648 			    void *ocpu)
6649 {
6650 	struct sk_buff **list_skb;
6651 	struct sk_buff *skb;
6652 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6653 	struct softnet_data *sd, *oldsd;
6654 
6655 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6656 		return NOTIFY_OK;
6657 
6658 	local_irq_disable();
6659 	cpu = smp_processor_id();
6660 	sd = &per_cpu(softnet_data, cpu);
6661 	oldsd = &per_cpu(softnet_data, oldcpu);
6662 
6663 	/* Find end of our completion_queue. */
6664 	list_skb = &sd->completion_queue;
6665 	while (*list_skb)
6666 		list_skb = &(*list_skb)->next;
6667 	/* Append completion queue from offline CPU. */
6668 	*list_skb = oldsd->completion_queue;
6669 	oldsd->completion_queue = NULL;
6670 
6671 	/* Append output queue from offline CPU. */
6672 	if (oldsd->output_queue) {
6673 		*sd->output_queue_tailp = oldsd->output_queue;
6674 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6675 		oldsd->output_queue = NULL;
6676 		oldsd->output_queue_tailp = &oldsd->output_queue;
6677 	}
6678 	/* Append NAPI poll list from offline CPU. */
6679 	if (!list_empty(&oldsd->poll_list)) {
6680 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6681 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6682 	}
6683 
6684 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6685 	local_irq_enable();
6686 
6687 	/* Process offline CPU's input_pkt_queue */
6688 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6689 		netif_rx_internal(skb);
6690 		input_queue_head_incr(oldsd);
6691 	}
6692 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6693 		netif_rx_internal(skb);
6694 		input_queue_head_incr(oldsd);
6695 	}
6696 
6697 	return NOTIFY_OK;
6698 }
6699 
6700 
6701 /**
6702  *	netdev_increment_features - increment feature set by one
6703  *	@all: current feature set
6704  *	@one: new feature set
6705  *	@mask: mask feature set
6706  *
6707  *	Computes a new feature set after adding a device with feature set
6708  *	@one to the master device with current feature set @all.  Will not
6709  *	enable anything that is off in @mask. Returns the new feature set.
6710  */
6711 netdev_features_t netdev_increment_features(netdev_features_t all,
6712 	netdev_features_t one, netdev_features_t mask)
6713 {
6714 	if (mask & NETIF_F_GEN_CSUM)
6715 		mask |= NETIF_F_ALL_CSUM;
6716 	mask |= NETIF_F_VLAN_CHALLENGED;
6717 
6718 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6719 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6720 
6721 	/* If one device supports hw checksumming, set for all. */
6722 	if (all & NETIF_F_GEN_CSUM)
6723 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6724 
6725 	return all;
6726 }
6727 EXPORT_SYMBOL(netdev_increment_features);
6728 
6729 static struct hlist_head * __net_init netdev_create_hash(void)
6730 {
6731 	int i;
6732 	struct hlist_head *hash;
6733 
6734 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6735 	if (hash != NULL)
6736 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6737 			INIT_HLIST_HEAD(&hash[i]);
6738 
6739 	return hash;
6740 }
6741 
6742 /* Initialize per network namespace state */
6743 static int __net_init netdev_init(struct net *net)
6744 {
6745 	if (net != &init_net)
6746 		INIT_LIST_HEAD(&net->dev_base_head);
6747 
6748 	net->dev_name_head = netdev_create_hash();
6749 	if (net->dev_name_head == NULL)
6750 		goto err_name;
6751 
6752 	net->dev_index_head = netdev_create_hash();
6753 	if (net->dev_index_head == NULL)
6754 		goto err_idx;
6755 
6756 	return 0;
6757 
6758 err_idx:
6759 	kfree(net->dev_name_head);
6760 err_name:
6761 	return -ENOMEM;
6762 }
6763 
6764 /**
6765  *	netdev_drivername - network driver for the device
6766  *	@dev: network device
6767  *
6768  *	Determine network driver for device.
6769  */
6770 const char *netdev_drivername(const struct net_device *dev)
6771 {
6772 	const struct device_driver *driver;
6773 	const struct device *parent;
6774 	const char *empty = "";
6775 
6776 	parent = dev->dev.parent;
6777 	if (!parent)
6778 		return empty;
6779 
6780 	driver = parent->driver;
6781 	if (driver && driver->name)
6782 		return driver->name;
6783 	return empty;
6784 }
6785 
6786 static int __netdev_printk(const char *level, const struct net_device *dev,
6787 			   struct va_format *vaf)
6788 {
6789 	int r;
6790 
6791 	if (dev && dev->dev.parent) {
6792 		r = dev_printk_emit(level[1] - '0',
6793 				    dev->dev.parent,
6794 				    "%s %s %s: %pV",
6795 				    dev_driver_string(dev->dev.parent),
6796 				    dev_name(dev->dev.parent),
6797 				    netdev_name(dev), vaf);
6798 	} else if (dev) {
6799 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6800 	} else {
6801 		r = printk("%s(NULL net_device): %pV", level, vaf);
6802 	}
6803 
6804 	return r;
6805 }
6806 
6807 int netdev_printk(const char *level, const struct net_device *dev,
6808 		  const char *format, ...)
6809 {
6810 	struct va_format vaf;
6811 	va_list args;
6812 	int r;
6813 
6814 	va_start(args, format);
6815 
6816 	vaf.fmt = format;
6817 	vaf.va = &args;
6818 
6819 	r = __netdev_printk(level, dev, &vaf);
6820 
6821 	va_end(args);
6822 
6823 	return r;
6824 }
6825 EXPORT_SYMBOL(netdev_printk);
6826 
6827 #define define_netdev_printk_level(func, level)			\
6828 int func(const struct net_device *dev, const char *fmt, ...)	\
6829 {								\
6830 	int r;							\
6831 	struct va_format vaf;					\
6832 	va_list args;						\
6833 								\
6834 	va_start(args, fmt);					\
6835 								\
6836 	vaf.fmt = fmt;						\
6837 	vaf.va = &args;						\
6838 								\
6839 	r = __netdev_printk(level, dev, &vaf);			\
6840 								\
6841 	va_end(args);						\
6842 								\
6843 	return r;						\
6844 }								\
6845 EXPORT_SYMBOL(func);
6846 
6847 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6848 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6849 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6850 define_netdev_printk_level(netdev_err, KERN_ERR);
6851 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6852 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6853 define_netdev_printk_level(netdev_info, KERN_INFO);
6854 
6855 static void __net_exit netdev_exit(struct net *net)
6856 {
6857 	kfree(net->dev_name_head);
6858 	kfree(net->dev_index_head);
6859 }
6860 
6861 static struct pernet_operations __net_initdata netdev_net_ops = {
6862 	.init = netdev_init,
6863 	.exit = netdev_exit,
6864 };
6865 
6866 static void __net_exit default_device_exit(struct net *net)
6867 {
6868 	struct net_device *dev, *aux;
6869 	/*
6870 	 * Push all migratable network devices back to the
6871 	 * initial network namespace
6872 	 */
6873 	rtnl_lock();
6874 	for_each_netdev_safe(net, dev, aux) {
6875 		int err;
6876 		char fb_name[IFNAMSIZ];
6877 
6878 		/* Ignore unmoveable devices (i.e. loopback) */
6879 		if (dev->features & NETIF_F_NETNS_LOCAL)
6880 			continue;
6881 
6882 		/* Leave virtual devices for the generic cleanup */
6883 		if (dev->rtnl_link_ops)
6884 			continue;
6885 
6886 		/* Push remaining network devices to init_net */
6887 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6888 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6889 		if (err) {
6890 			pr_emerg("%s: failed to move %s to init_net: %d\n",
6891 				 __func__, dev->name, err);
6892 			BUG();
6893 		}
6894 	}
6895 	rtnl_unlock();
6896 }
6897 
6898 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
6899 {
6900 	/* Return with the rtnl_lock held when there are no network
6901 	 * devices unregistering in any network namespace in net_list.
6902 	 */
6903 	struct net *net;
6904 	bool unregistering;
6905 	DEFINE_WAIT(wait);
6906 
6907 	for (;;) {
6908 		prepare_to_wait(&netdev_unregistering_wq, &wait,
6909 				TASK_UNINTERRUPTIBLE);
6910 		unregistering = false;
6911 		rtnl_lock();
6912 		list_for_each_entry(net, net_list, exit_list) {
6913 			if (net->dev_unreg_count > 0) {
6914 				unregistering = true;
6915 				break;
6916 			}
6917 		}
6918 		if (!unregistering)
6919 			break;
6920 		__rtnl_unlock();
6921 		schedule();
6922 	}
6923 	finish_wait(&netdev_unregistering_wq, &wait);
6924 }
6925 
6926 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6927 {
6928 	/* At exit all network devices most be removed from a network
6929 	 * namespace.  Do this in the reverse order of registration.
6930 	 * Do this across as many network namespaces as possible to
6931 	 * improve batching efficiency.
6932 	 */
6933 	struct net_device *dev;
6934 	struct net *net;
6935 	LIST_HEAD(dev_kill_list);
6936 
6937 	/* To prevent network device cleanup code from dereferencing
6938 	 * loopback devices or network devices that have been freed
6939 	 * wait here for all pending unregistrations to complete,
6940 	 * before unregistring the loopback device and allowing the
6941 	 * network namespace be freed.
6942 	 *
6943 	 * The netdev todo list containing all network devices
6944 	 * unregistrations that happen in default_device_exit_batch
6945 	 * will run in the rtnl_unlock() at the end of
6946 	 * default_device_exit_batch.
6947 	 */
6948 	rtnl_lock_unregistering(net_list);
6949 	list_for_each_entry(net, net_list, exit_list) {
6950 		for_each_netdev_reverse(net, dev) {
6951 			if (dev->rtnl_link_ops)
6952 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6953 			else
6954 				unregister_netdevice_queue(dev, &dev_kill_list);
6955 		}
6956 	}
6957 	unregister_netdevice_many(&dev_kill_list);
6958 	list_del(&dev_kill_list);
6959 	rtnl_unlock();
6960 }
6961 
6962 static struct pernet_operations __net_initdata default_device_ops = {
6963 	.exit = default_device_exit,
6964 	.exit_batch = default_device_exit_batch,
6965 };
6966 
6967 /*
6968  *	Initialize the DEV module. At boot time this walks the device list and
6969  *	unhooks any devices that fail to initialise (normally hardware not
6970  *	present) and leaves us with a valid list of present and active devices.
6971  *
6972  */
6973 
6974 /*
6975  *       This is called single threaded during boot, so no need
6976  *       to take the rtnl semaphore.
6977  */
6978 static int __init net_dev_init(void)
6979 {
6980 	int i, rc = -ENOMEM;
6981 
6982 	BUG_ON(!dev_boot_phase);
6983 
6984 	if (dev_proc_init())
6985 		goto out;
6986 
6987 	if (netdev_kobject_init())
6988 		goto out;
6989 
6990 	INIT_LIST_HEAD(&ptype_all);
6991 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6992 		INIT_LIST_HEAD(&ptype_base[i]);
6993 
6994 	INIT_LIST_HEAD(&offload_base);
6995 
6996 	if (register_pernet_subsys(&netdev_net_ops))
6997 		goto out;
6998 
6999 	/*
7000 	 *	Initialise the packet receive queues.
7001 	 */
7002 
7003 	for_each_possible_cpu(i) {
7004 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7005 
7006 		skb_queue_head_init(&sd->input_pkt_queue);
7007 		skb_queue_head_init(&sd->process_queue);
7008 		INIT_LIST_HEAD(&sd->poll_list);
7009 		sd->output_queue_tailp = &sd->output_queue;
7010 #ifdef CONFIG_RPS
7011 		sd->csd.func = rps_trigger_softirq;
7012 		sd->csd.info = sd;
7013 		sd->cpu = i;
7014 #endif
7015 
7016 		sd->backlog.poll = process_backlog;
7017 		sd->backlog.weight = weight_p;
7018 	}
7019 
7020 	dev_boot_phase = 0;
7021 
7022 	/* The loopback device is special if any other network devices
7023 	 * is present in a network namespace the loopback device must
7024 	 * be present. Since we now dynamically allocate and free the
7025 	 * loopback device ensure this invariant is maintained by
7026 	 * keeping the loopback device as the first device on the
7027 	 * list of network devices.  Ensuring the loopback devices
7028 	 * is the first device that appears and the last network device
7029 	 * that disappears.
7030 	 */
7031 	if (register_pernet_device(&loopback_net_ops))
7032 		goto out;
7033 
7034 	if (register_pernet_device(&default_device_ops))
7035 		goto out;
7036 
7037 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7038 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7039 
7040 	hotcpu_notifier(dev_cpu_callback, 0);
7041 	dst_init();
7042 	rc = 0;
7043 out:
7044 	return rc;
7045 }
7046 
7047 subsys_initcall(net_dev_init);
7048