xref: /openbmc/linux/net/core/dev.c (revision a17922de)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149 
150 #include "net-sysfs.h"
151 
152 #define MAX_GRO_SKBS 8
153 
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 static struct list_head offload_base __read_mostly;
162 
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 					 struct netdev_notifier_info *info);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167 
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189 
190 static DEFINE_MUTEX(ifalias_mutex);
191 
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194 
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197 
198 static seqcount_t devnet_rename_seq;
199 
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202 	while (++net->dev_base_seq == 0)
203 		;
204 }
205 
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209 
210 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212 
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217 
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 	spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224 
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228 	spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231 
232 /* Device list insertion */
233 static void list_netdevice(struct net_device *dev)
234 {
235 	struct net *net = dev_net(dev);
236 
237 	ASSERT_RTNL();
238 
239 	write_lock_bh(&dev_base_lock);
240 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
241 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
242 	hlist_add_head_rcu(&dev->index_hlist,
243 			   dev_index_hash(net, dev->ifindex));
244 	write_unlock_bh(&dev_base_lock);
245 
246 	dev_base_seq_inc(net);
247 }
248 
249 /* Device list removal
250  * caller must respect a RCU grace period before freeing/reusing dev
251  */
252 static void unlist_netdevice(struct net_device *dev)
253 {
254 	ASSERT_RTNL();
255 
256 	/* Unlink dev from the device chain */
257 	write_lock_bh(&dev_base_lock);
258 	list_del_rcu(&dev->dev_list);
259 	hlist_del_rcu(&dev->name_hlist);
260 	hlist_del_rcu(&dev->index_hlist);
261 	write_unlock_bh(&dev_base_lock);
262 
263 	dev_base_seq_inc(dev_net(dev));
264 }
265 
266 /*
267  *	Our notifier list
268  */
269 
270 static RAW_NOTIFIER_HEAD(netdev_chain);
271 
272 /*
273  *	Device drivers call our routines to queue packets here. We empty the
274  *	queue in the local softnet handler.
275  */
276 
277 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
278 EXPORT_PER_CPU_SYMBOL(softnet_data);
279 
280 #ifdef CONFIG_LOCKDEP
281 /*
282  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
283  * according to dev->type
284  */
285 static const unsigned short netdev_lock_type[] = {
286 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
287 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
288 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
289 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
290 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
291 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
292 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
293 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
294 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
295 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
296 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
297 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
298 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
299 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
300 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
301 
302 static const char *const netdev_lock_name[] = {
303 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
304 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
305 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
306 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
307 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
308 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
309 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
310 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
311 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
312 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
313 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
314 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
315 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
316 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
317 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
318 
319 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
320 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 
322 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
323 {
324 	int i;
325 
326 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
327 		if (netdev_lock_type[i] == dev_type)
328 			return i;
329 	/* the last key is used by default */
330 	return ARRAY_SIZE(netdev_lock_type) - 1;
331 }
332 
333 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
334 						 unsigned short dev_type)
335 {
336 	int i;
337 
338 	i = netdev_lock_pos(dev_type);
339 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
340 				   netdev_lock_name[i]);
341 }
342 
343 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
344 {
345 	int i;
346 
347 	i = netdev_lock_pos(dev->type);
348 	lockdep_set_class_and_name(&dev->addr_list_lock,
349 				   &netdev_addr_lock_key[i],
350 				   netdev_lock_name[i]);
351 }
352 #else
353 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
354 						 unsigned short dev_type)
355 {
356 }
357 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
358 {
359 }
360 #endif
361 
362 /*******************************************************************************
363  *
364  *		Protocol management and registration routines
365  *
366  *******************************************************************************/
367 
368 
369 /*
370  *	Add a protocol ID to the list. Now that the input handler is
371  *	smarter we can dispense with all the messy stuff that used to be
372  *	here.
373  *
374  *	BEWARE!!! Protocol handlers, mangling input packets,
375  *	MUST BE last in hash buckets and checking protocol handlers
376  *	MUST start from promiscuous ptype_all chain in net_bh.
377  *	It is true now, do not change it.
378  *	Explanation follows: if protocol handler, mangling packet, will
379  *	be the first on list, it is not able to sense, that packet
380  *	is cloned and should be copied-on-write, so that it will
381  *	change it and subsequent readers will get broken packet.
382  *							--ANK (980803)
383  */
384 
385 static inline struct list_head *ptype_head(const struct packet_type *pt)
386 {
387 	if (pt->type == htons(ETH_P_ALL))
388 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
389 	else
390 		return pt->dev ? &pt->dev->ptype_specific :
391 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
392 }
393 
394 /**
395  *	dev_add_pack - add packet handler
396  *	@pt: packet type declaration
397  *
398  *	Add a protocol handler to the networking stack. The passed &packet_type
399  *	is linked into kernel lists and may not be freed until it has been
400  *	removed from the kernel lists.
401  *
402  *	This call does not sleep therefore it can not
403  *	guarantee all CPU's that are in middle of receiving packets
404  *	will see the new packet type (until the next received packet).
405  */
406 
407 void dev_add_pack(struct packet_type *pt)
408 {
409 	struct list_head *head = ptype_head(pt);
410 
411 	spin_lock(&ptype_lock);
412 	list_add_rcu(&pt->list, head);
413 	spin_unlock(&ptype_lock);
414 }
415 EXPORT_SYMBOL(dev_add_pack);
416 
417 /**
418  *	__dev_remove_pack	 - remove packet handler
419  *	@pt: packet type declaration
420  *
421  *	Remove a protocol handler that was previously added to the kernel
422  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
423  *	from the kernel lists and can be freed or reused once this function
424  *	returns.
425  *
426  *      The packet type might still be in use by receivers
427  *	and must not be freed until after all the CPU's have gone
428  *	through a quiescent state.
429  */
430 void __dev_remove_pack(struct packet_type *pt)
431 {
432 	struct list_head *head = ptype_head(pt);
433 	struct packet_type *pt1;
434 
435 	spin_lock(&ptype_lock);
436 
437 	list_for_each_entry(pt1, head, list) {
438 		if (pt == pt1) {
439 			list_del_rcu(&pt->list);
440 			goto out;
441 		}
442 	}
443 
444 	pr_warn("dev_remove_pack: %p not found\n", pt);
445 out:
446 	spin_unlock(&ptype_lock);
447 }
448 EXPORT_SYMBOL(__dev_remove_pack);
449 
450 /**
451  *	dev_remove_pack	 - remove packet handler
452  *	@pt: packet type declaration
453  *
454  *	Remove a protocol handler that was previously added to the kernel
455  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
456  *	from the kernel lists and can be freed or reused once this function
457  *	returns.
458  *
459  *	This call sleeps to guarantee that no CPU is looking at the packet
460  *	type after return.
461  */
462 void dev_remove_pack(struct packet_type *pt)
463 {
464 	__dev_remove_pack(pt);
465 
466 	synchronize_net();
467 }
468 EXPORT_SYMBOL(dev_remove_pack);
469 
470 
471 /**
472  *	dev_add_offload - register offload handlers
473  *	@po: protocol offload declaration
474  *
475  *	Add protocol offload handlers to the networking stack. The passed
476  *	&proto_offload is linked into kernel lists and may not be freed until
477  *	it has been removed from the kernel lists.
478  *
479  *	This call does not sleep therefore it can not
480  *	guarantee all CPU's that are in middle of receiving packets
481  *	will see the new offload handlers (until the next received packet).
482  */
483 void dev_add_offload(struct packet_offload *po)
484 {
485 	struct packet_offload *elem;
486 
487 	spin_lock(&offload_lock);
488 	list_for_each_entry(elem, &offload_base, list) {
489 		if (po->priority < elem->priority)
490 			break;
491 	}
492 	list_add_rcu(&po->list, elem->list.prev);
493 	spin_unlock(&offload_lock);
494 }
495 EXPORT_SYMBOL(dev_add_offload);
496 
497 /**
498  *	__dev_remove_offload	 - remove offload handler
499  *	@po: packet offload declaration
500  *
501  *	Remove a protocol offload handler that was previously added to the
502  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
503  *	is removed from the kernel lists and can be freed or reused once this
504  *	function returns.
505  *
506  *      The packet type might still be in use by receivers
507  *	and must not be freed until after all the CPU's have gone
508  *	through a quiescent state.
509  */
510 static void __dev_remove_offload(struct packet_offload *po)
511 {
512 	struct list_head *head = &offload_base;
513 	struct packet_offload *po1;
514 
515 	spin_lock(&offload_lock);
516 
517 	list_for_each_entry(po1, head, list) {
518 		if (po == po1) {
519 			list_del_rcu(&po->list);
520 			goto out;
521 		}
522 	}
523 
524 	pr_warn("dev_remove_offload: %p not found\n", po);
525 out:
526 	spin_unlock(&offload_lock);
527 }
528 
529 /**
530  *	dev_remove_offload	 - remove packet offload handler
531  *	@po: packet offload declaration
532  *
533  *	Remove a packet offload handler that was previously added to the kernel
534  *	offload handlers by dev_add_offload(). The passed &offload_type is
535  *	removed from the kernel lists and can be freed or reused once this
536  *	function returns.
537  *
538  *	This call sleeps to guarantee that no CPU is looking at the packet
539  *	type after return.
540  */
541 void dev_remove_offload(struct packet_offload *po)
542 {
543 	__dev_remove_offload(po);
544 
545 	synchronize_net();
546 }
547 EXPORT_SYMBOL(dev_remove_offload);
548 
549 /******************************************************************************
550  *
551  *		      Device Boot-time Settings Routines
552  *
553  ******************************************************************************/
554 
555 /* Boot time configuration table */
556 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
557 
558 /**
559  *	netdev_boot_setup_add	- add new setup entry
560  *	@name: name of the device
561  *	@map: configured settings for the device
562  *
563  *	Adds new setup entry to the dev_boot_setup list.  The function
564  *	returns 0 on error and 1 on success.  This is a generic routine to
565  *	all netdevices.
566  */
567 static int netdev_boot_setup_add(char *name, struct ifmap *map)
568 {
569 	struct netdev_boot_setup *s;
570 	int i;
571 
572 	s = dev_boot_setup;
573 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
574 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
575 			memset(s[i].name, 0, sizeof(s[i].name));
576 			strlcpy(s[i].name, name, IFNAMSIZ);
577 			memcpy(&s[i].map, map, sizeof(s[i].map));
578 			break;
579 		}
580 	}
581 
582 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
583 }
584 
585 /**
586  * netdev_boot_setup_check	- check boot time settings
587  * @dev: the netdevice
588  *
589  * Check boot time settings for the device.
590  * The found settings are set for the device to be used
591  * later in the device probing.
592  * Returns 0 if no settings found, 1 if they are.
593  */
594 int netdev_boot_setup_check(struct net_device *dev)
595 {
596 	struct netdev_boot_setup *s = dev_boot_setup;
597 	int i;
598 
599 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
600 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
601 		    !strcmp(dev->name, s[i].name)) {
602 			dev->irq = s[i].map.irq;
603 			dev->base_addr = s[i].map.base_addr;
604 			dev->mem_start = s[i].map.mem_start;
605 			dev->mem_end = s[i].map.mem_end;
606 			return 1;
607 		}
608 	}
609 	return 0;
610 }
611 EXPORT_SYMBOL(netdev_boot_setup_check);
612 
613 
614 /**
615  * netdev_boot_base	- get address from boot time settings
616  * @prefix: prefix for network device
617  * @unit: id for network device
618  *
619  * Check boot time settings for the base address of device.
620  * The found settings are set for the device to be used
621  * later in the device probing.
622  * Returns 0 if no settings found.
623  */
624 unsigned long netdev_boot_base(const char *prefix, int unit)
625 {
626 	const struct netdev_boot_setup *s = dev_boot_setup;
627 	char name[IFNAMSIZ];
628 	int i;
629 
630 	sprintf(name, "%s%d", prefix, unit);
631 
632 	/*
633 	 * If device already registered then return base of 1
634 	 * to indicate not to probe for this interface
635 	 */
636 	if (__dev_get_by_name(&init_net, name))
637 		return 1;
638 
639 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
640 		if (!strcmp(name, s[i].name))
641 			return s[i].map.base_addr;
642 	return 0;
643 }
644 
645 /*
646  * Saves at boot time configured settings for any netdevice.
647  */
648 int __init netdev_boot_setup(char *str)
649 {
650 	int ints[5];
651 	struct ifmap map;
652 
653 	str = get_options(str, ARRAY_SIZE(ints), ints);
654 	if (!str || !*str)
655 		return 0;
656 
657 	/* Save settings */
658 	memset(&map, 0, sizeof(map));
659 	if (ints[0] > 0)
660 		map.irq = ints[1];
661 	if (ints[0] > 1)
662 		map.base_addr = ints[2];
663 	if (ints[0] > 2)
664 		map.mem_start = ints[3];
665 	if (ints[0] > 3)
666 		map.mem_end = ints[4];
667 
668 	/* Add new entry to the list */
669 	return netdev_boot_setup_add(str, &map);
670 }
671 
672 __setup("netdev=", netdev_boot_setup);
673 
674 /*******************************************************************************
675  *
676  *			    Device Interface Subroutines
677  *
678  *******************************************************************************/
679 
680 /**
681  *	dev_get_iflink	- get 'iflink' value of a interface
682  *	@dev: targeted interface
683  *
684  *	Indicates the ifindex the interface is linked to.
685  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
686  */
687 
688 int dev_get_iflink(const struct net_device *dev)
689 {
690 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
691 		return dev->netdev_ops->ndo_get_iflink(dev);
692 
693 	return dev->ifindex;
694 }
695 EXPORT_SYMBOL(dev_get_iflink);
696 
697 /**
698  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
699  *	@dev: targeted interface
700  *	@skb: The packet.
701  *
702  *	For better visibility of tunnel traffic OVS needs to retrieve
703  *	egress tunnel information for a packet. Following API allows
704  *	user to get this info.
705  */
706 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
707 {
708 	struct ip_tunnel_info *info;
709 
710 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
711 		return -EINVAL;
712 
713 	info = skb_tunnel_info_unclone(skb);
714 	if (!info)
715 		return -ENOMEM;
716 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
717 		return -EINVAL;
718 
719 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
720 }
721 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
722 
723 /**
724  *	__dev_get_by_name	- find a device by its name
725  *	@net: the applicable net namespace
726  *	@name: name to find
727  *
728  *	Find an interface by name. Must be called under RTNL semaphore
729  *	or @dev_base_lock. If the name is found a pointer to the device
730  *	is returned. If the name is not found then %NULL is returned. The
731  *	reference counters are not incremented so the caller must be
732  *	careful with locks.
733  */
734 
735 struct net_device *__dev_get_by_name(struct net *net, const char *name)
736 {
737 	struct net_device *dev;
738 	struct hlist_head *head = dev_name_hash(net, name);
739 
740 	hlist_for_each_entry(dev, head, name_hlist)
741 		if (!strncmp(dev->name, name, IFNAMSIZ))
742 			return dev;
743 
744 	return NULL;
745 }
746 EXPORT_SYMBOL(__dev_get_by_name);
747 
748 /**
749  * dev_get_by_name_rcu	- find a device by its name
750  * @net: the applicable net namespace
751  * @name: name to find
752  *
753  * Find an interface by name.
754  * If the name is found a pointer to the device is returned.
755  * If the name is not found then %NULL is returned.
756  * The reference counters are not incremented so the caller must be
757  * careful with locks. The caller must hold RCU lock.
758  */
759 
760 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
761 {
762 	struct net_device *dev;
763 	struct hlist_head *head = dev_name_hash(net, name);
764 
765 	hlist_for_each_entry_rcu(dev, head, name_hlist)
766 		if (!strncmp(dev->name, name, IFNAMSIZ))
767 			return dev;
768 
769 	return NULL;
770 }
771 EXPORT_SYMBOL(dev_get_by_name_rcu);
772 
773 /**
774  *	dev_get_by_name		- find a device by its name
775  *	@net: the applicable net namespace
776  *	@name: name to find
777  *
778  *	Find an interface by name. This can be called from any
779  *	context and does its own locking. The returned handle has
780  *	the usage count incremented and the caller must use dev_put() to
781  *	release it when it is no longer needed. %NULL is returned if no
782  *	matching device is found.
783  */
784 
785 struct net_device *dev_get_by_name(struct net *net, const char *name)
786 {
787 	struct net_device *dev;
788 
789 	rcu_read_lock();
790 	dev = dev_get_by_name_rcu(net, name);
791 	if (dev)
792 		dev_hold(dev);
793 	rcu_read_unlock();
794 	return dev;
795 }
796 EXPORT_SYMBOL(dev_get_by_name);
797 
798 /**
799  *	__dev_get_by_index - find a device by its ifindex
800  *	@net: the applicable net namespace
801  *	@ifindex: index of device
802  *
803  *	Search for an interface by index. Returns %NULL if the device
804  *	is not found or a pointer to the device. The device has not
805  *	had its reference counter increased so the caller must be careful
806  *	about locking. The caller must hold either the RTNL semaphore
807  *	or @dev_base_lock.
808  */
809 
810 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
811 {
812 	struct net_device *dev;
813 	struct hlist_head *head = dev_index_hash(net, ifindex);
814 
815 	hlist_for_each_entry(dev, head, index_hlist)
816 		if (dev->ifindex == ifindex)
817 			return dev;
818 
819 	return NULL;
820 }
821 EXPORT_SYMBOL(__dev_get_by_index);
822 
823 /**
824  *	dev_get_by_index_rcu - find a device by its ifindex
825  *	@net: the applicable net namespace
826  *	@ifindex: index of device
827  *
828  *	Search for an interface by index. Returns %NULL if the device
829  *	is not found or a pointer to the device. The device has not
830  *	had its reference counter increased so the caller must be careful
831  *	about locking. The caller must hold RCU lock.
832  */
833 
834 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
835 {
836 	struct net_device *dev;
837 	struct hlist_head *head = dev_index_hash(net, ifindex);
838 
839 	hlist_for_each_entry_rcu(dev, head, index_hlist)
840 		if (dev->ifindex == ifindex)
841 			return dev;
842 
843 	return NULL;
844 }
845 EXPORT_SYMBOL(dev_get_by_index_rcu);
846 
847 
848 /**
849  *	dev_get_by_index - find a device by its ifindex
850  *	@net: the applicable net namespace
851  *	@ifindex: index of device
852  *
853  *	Search for an interface by index. Returns NULL if the device
854  *	is not found or a pointer to the device. The device returned has
855  *	had a reference added and the pointer is safe until the user calls
856  *	dev_put to indicate they have finished with it.
857  */
858 
859 struct net_device *dev_get_by_index(struct net *net, int ifindex)
860 {
861 	struct net_device *dev;
862 
863 	rcu_read_lock();
864 	dev = dev_get_by_index_rcu(net, ifindex);
865 	if (dev)
866 		dev_hold(dev);
867 	rcu_read_unlock();
868 	return dev;
869 }
870 EXPORT_SYMBOL(dev_get_by_index);
871 
872 /**
873  *	dev_get_by_napi_id - find a device by napi_id
874  *	@napi_id: ID of the NAPI struct
875  *
876  *	Search for an interface by NAPI ID. Returns %NULL if the device
877  *	is not found or a pointer to the device. The device has not had
878  *	its reference counter increased so the caller must be careful
879  *	about locking. The caller must hold RCU lock.
880  */
881 
882 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
883 {
884 	struct napi_struct *napi;
885 
886 	WARN_ON_ONCE(!rcu_read_lock_held());
887 
888 	if (napi_id < MIN_NAPI_ID)
889 		return NULL;
890 
891 	napi = napi_by_id(napi_id);
892 
893 	return napi ? napi->dev : NULL;
894 }
895 EXPORT_SYMBOL(dev_get_by_napi_id);
896 
897 /**
898  *	netdev_get_name - get a netdevice name, knowing its ifindex.
899  *	@net: network namespace
900  *	@name: a pointer to the buffer where the name will be stored.
901  *	@ifindex: the ifindex of the interface to get the name from.
902  *
903  *	The use of raw_seqcount_begin() and cond_resched() before
904  *	retrying is required as we want to give the writers a chance
905  *	to complete when CONFIG_PREEMPT is not set.
906  */
907 int netdev_get_name(struct net *net, char *name, int ifindex)
908 {
909 	struct net_device *dev;
910 	unsigned int seq;
911 
912 retry:
913 	seq = raw_seqcount_begin(&devnet_rename_seq);
914 	rcu_read_lock();
915 	dev = dev_get_by_index_rcu(net, ifindex);
916 	if (!dev) {
917 		rcu_read_unlock();
918 		return -ENODEV;
919 	}
920 
921 	strcpy(name, dev->name);
922 	rcu_read_unlock();
923 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
924 		cond_resched();
925 		goto retry;
926 	}
927 
928 	return 0;
929 }
930 
931 /**
932  *	dev_getbyhwaddr_rcu - find a device by its hardware address
933  *	@net: the applicable net namespace
934  *	@type: media type of device
935  *	@ha: hardware address
936  *
937  *	Search for an interface by MAC address. Returns NULL if the device
938  *	is not found or a pointer to the device.
939  *	The caller must hold RCU or RTNL.
940  *	The returned device has not had its ref count increased
941  *	and the caller must therefore be careful about locking
942  *
943  */
944 
945 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
946 				       const char *ha)
947 {
948 	struct net_device *dev;
949 
950 	for_each_netdev_rcu(net, dev)
951 		if (dev->type == type &&
952 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
953 			return dev;
954 
955 	return NULL;
956 }
957 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
958 
959 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
960 {
961 	struct net_device *dev;
962 
963 	ASSERT_RTNL();
964 	for_each_netdev(net, dev)
965 		if (dev->type == type)
966 			return dev;
967 
968 	return NULL;
969 }
970 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
971 
972 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
973 {
974 	struct net_device *dev, *ret = NULL;
975 
976 	rcu_read_lock();
977 	for_each_netdev_rcu(net, dev)
978 		if (dev->type == type) {
979 			dev_hold(dev);
980 			ret = dev;
981 			break;
982 		}
983 	rcu_read_unlock();
984 	return ret;
985 }
986 EXPORT_SYMBOL(dev_getfirstbyhwtype);
987 
988 /**
989  *	__dev_get_by_flags - find any device with given flags
990  *	@net: the applicable net namespace
991  *	@if_flags: IFF_* values
992  *	@mask: bitmask of bits in if_flags to check
993  *
994  *	Search for any interface with the given flags. Returns NULL if a device
995  *	is not found or a pointer to the device. Must be called inside
996  *	rtnl_lock(), and result refcount is unchanged.
997  */
998 
999 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1000 				      unsigned short mask)
1001 {
1002 	struct net_device *dev, *ret;
1003 
1004 	ASSERT_RTNL();
1005 
1006 	ret = NULL;
1007 	for_each_netdev(net, dev) {
1008 		if (((dev->flags ^ if_flags) & mask) == 0) {
1009 			ret = dev;
1010 			break;
1011 		}
1012 	}
1013 	return ret;
1014 }
1015 EXPORT_SYMBOL(__dev_get_by_flags);
1016 
1017 /**
1018  *	dev_valid_name - check if name is okay for network device
1019  *	@name: name string
1020  *
1021  *	Network device names need to be valid file names to
1022  *	to allow sysfs to work.  We also disallow any kind of
1023  *	whitespace.
1024  */
1025 bool dev_valid_name(const char *name)
1026 {
1027 	if (*name == '\0')
1028 		return false;
1029 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1030 		return false;
1031 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1032 		return false;
1033 
1034 	while (*name) {
1035 		if (*name == '/' || *name == ':' || isspace(*name))
1036 			return false;
1037 		name++;
1038 	}
1039 	return true;
1040 }
1041 EXPORT_SYMBOL(dev_valid_name);
1042 
1043 /**
1044  *	__dev_alloc_name - allocate a name for a device
1045  *	@net: network namespace to allocate the device name in
1046  *	@name: name format string
1047  *	@buf:  scratch buffer and result name string
1048  *
1049  *	Passed a format string - eg "lt%d" it will try and find a suitable
1050  *	id. It scans list of devices to build up a free map, then chooses
1051  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1052  *	while allocating the name and adding the device in order to avoid
1053  *	duplicates.
1054  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1055  *	Returns the number of the unit assigned or a negative errno code.
1056  */
1057 
1058 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1059 {
1060 	int i = 0;
1061 	const char *p;
1062 	const int max_netdevices = 8*PAGE_SIZE;
1063 	unsigned long *inuse;
1064 	struct net_device *d;
1065 
1066 	if (!dev_valid_name(name))
1067 		return -EINVAL;
1068 
1069 	p = strchr(name, '%');
1070 	if (p) {
1071 		/*
1072 		 * Verify the string as this thing may have come from
1073 		 * the user.  There must be either one "%d" and no other "%"
1074 		 * characters.
1075 		 */
1076 		if (p[1] != 'd' || strchr(p + 2, '%'))
1077 			return -EINVAL;
1078 
1079 		/* Use one page as a bit array of possible slots */
1080 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1081 		if (!inuse)
1082 			return -ENOMEM;
1083 
1084 		for_each_netdev(net, d) {
1085 			if (!sscanf(d->name, name, &i))
1086 				continue;
1087 			if (i < 0 || i >= max_netdevices)
1088 				continue;
1089 
1090 			/*  avoid cases where sscanf is not exact inverse of printf */
1091 			snprintf(buf, IFNAMSIZ, name, i);
1092 			if (!strncmp(buf, d->name, IFNAMSIZ))
1093 				set_bit(i, inuse);
1094 		}
1095 
1096 		i = find_first_zero_bit(inuse, max_netdevices);
1097 		free_page((unsigned long) inuse);
1098 	}
1099 
1100 	snprintf(buf, IFNAMSIZ, name, i);
1101 	if (!__dev_get_by_name(net, buf))
1102 		return i;
1103 
1104 	/* It is possible to run out of possible slots
1105 	 * when the name is long and there isn't enough space left
1106 	 * for the digits, or if all bits are used.
1107 	 */
1108 	return -ENFILE;
1109 }
1110 
1111 static int dev_alloc_name_ns(struct net *net,
1112 			     struct net_device *dev,
1113 			     const char *name)
1114 {
1115 	char buf[IFNAMSIZ];
1116 	int ret;
1117 
1118 	BUG_ON(!net);
1119 	ret = __dev_alloc_name(net, name, buf);
1120 	if (ret >= 0)
1121 		strlcpy(dev->name, buf, IFNAMSIZ);
1122 	return ret;
1123 }
1124 
1125 /**
1126  *	dev_alloc_name - allocate a name for a device
1127  *	@dev: device
1128  *	@name: name format string
1129  *
1130  *	Passed a format string - eg "lt%d" it will try and find a suitable
1131  *	id. It scans list of devices to build up a free map, then chooses
1132  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1133  *	while allocating the name and adding the device in order to avoid
1134  *	duplicates.
1135  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1136  *	Returns the number of the unit assigned or a negative errno code.
1137  */
1138 
1139 int dev_alloc_name(struct net_device *dev, const char *name)
1140 {
1141 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1142 }
1143 EXPORT_SYMBOL(dev_alloc_name);
1144 
1145 int dev_get_valid_name(struct net *net, struct net_device *dev,
1146 		       const char *name)
1147 {
1148 	BUG_ON(!net);
1149 
1150 	if (!dev_valid_name(name))
1151 		return -EINVAL;
1152 
1153 	if (strchr(name, '%'))
1154 		return dev_alloc_name_ns(net, dev, name);
1155 	else if (__dev_get_by_name(net, name))
1156 		return -EEXIST;
1157 	else if (dev->name != name)
1158 		strlcpy(dev->name, name, IFNAMSIZ);
1159 
1160 	return 0;
1161 }
1162 EXPORT_SYMBOL(dev_get_valid_name);
1163 
1164 /**
1165  *	dev_change_name - change name of a device
1166  *	@dev: device
1167  *	@newname: name (or format string) must be at least IFNAMSIZ
1168  *
1169  *	Change name of a device, can pass format strings "eth%d".
1170  *	for wildcarding.
1171  */
1172 int dev_change_name(struct net_device *dev, const char *newname)
1173 {
1174 	unsigned char old_assign_type;
1175 	char oldname[IFNAMSIZ];
1176 	int err = 0;
1177 	int ret;
1178 	struct net *net;
1179 
1180 	ASSERT_RTNL();
1181 	BUG_ON(!dev_net(dev));
1182 
1183 	net = dev_net(dev);
1184 	if (dev->flags & IFF_UP)
1185 		return -EBUSY;
1186 
1187 	write_seqcount_begin(&devnet_rename_seq);
1188 
1189 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1190 		write_seqcount_end(&devnet_rename_seq);
1191 		return 0;
1192 	}
1193 
1194 	memcpy(oldname, dev->name, IFNAMSIZ);
1195 
1196 	err = dev_get_valid_name(net, dev, newname);
1197 	if (err < 0) {
1198 		write_seqcount_end(&devnet_rename_seq);
1199 		return err;
1200 	}
1201 
1202 	if (oldname[0] && !strchr(oldname, '%'))
1203 		netdev_info(dev, "renamed from %s\n", oldname);
1204 
1205 	old_assign_type = dev->name_assign_type;
1206 	dev->name_assign_type = NET_NAME_RENAMED;
1207 
1208 rollback:
1209 	ret = device_rename(&dev->dev, dev->name);
1210 	if (ret) {
1211 		memcpy(dev->name, oldname, IFNAMSIZ);
1212 		dev->name_assign_type = old_assign_type;
1213 		write_seqcount_end(&devnet_rename_seq);
1214 		return ret;
1215 	}
1216 
1217 	write_seqcount_end(&devnet_rename_seq);
1218 
1219 	netdev_adjacent_rename_links(dev, oldname);
1220 
1221 	write_lock_bh(&dev_base_lock);
1222 	hlist_del_rcu(&dev->name_hlist);
1223 	write_unlock_bh(&dev_base_lock);
1224 
1225 	synchronize_rcu();
1226 
1227 	write_lock_bh(&dev_base_lock);
1228 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1229 	write_unlock_bh(&dev_base_lock);
1230 
1231 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1232 	ret = notifier_to_errno(ret);
1233 
1234 	if (ret) {
1235 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1236 		if (err >= 0) {
1237 			err = ret;
1238 			write_seqcount_begin(&devnet_rename_seq);
1239 			memcpy(dev->name, oldname, IFNAMSIZ);
1240 			memcpy(oldname, newname, IFNAMSIZ);
1241 			dev->name_assign_type = old_assign_type;
1242 			old_assign_type = NET_NAME_RENAMED;
1243 			goto rollback;
1244 		} else {
1245 			pr_err("%s: name change rollback failed: %d\n",
1246 			       dev->name, ret);
1247 		}
1248 	}
1249 
1250 	return err;
1251 }
1252 
1253 /**
1254  *	dev_set_alias - change ifalias of a device
1255  *	@dev: device
1256  *	@alias: name up to IFALIASZ
1257  *	@len: limit of bytes to copy from info
1258  *
1259  *	Set ifalias for a device,
1260  */
1261 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1262 {
1263 	struct dev_ifalias *new_alias = NULL;
1264 
1265 	if (len >= IFALIASZ)
1266 		return -EINVAL;
1267 
1268 	if (len) {
1269 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1270 		if (!new_alias)
1271 			return -ENOMEM;
1272 
1273 		memcpy(new_alias->ifalias, alias, len);
1274 		new_alias->ifalias[len] = 0;
1275 	}
1276 
1277 	mutex_lock(&ifalias_mutex);
1278 	rcu_swap_protected(dev->ifalias, new_alias,
1279 			   mutex_is_locked(&ifalias_mutex));
1280 	mutex_unlock(&ifalias_mutex);
1281 
1282 	if (new_alias)
1283 		kfree_rcu(new_alias, rcuhead);
1284 
1285 	return len;
1286 }
1287 EXPORT_SYMBOL(dev_set_alias);
1288 
1289 /**
1290  *	dev_get_alias - get ifalias of a device
1291  *	@dev: device
1292  *	@name: buffer to store name of ifalias
1293  *	@len: size of buffer
1294  *
1295  *	get ifalias for a device.  Caller must make sure dev cannot go
1296  *	away,  e.g. rcu read lock or own a reference count to device.
1297  */
1298 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299 {
1300 	const struct dev_ifalias *alias;
1301 	int ret = 0;
1302 
1303 	rcu_read_lock();
1304 	alias = rcu_dereference(dev->ifalias);
1305 	if (alias)
1306 		ret = snprintf(name, len, "%s", alias->ifalias);
1307 	rcu_read_unlock();
1308 
1309 	return ret;
1310 }
1311 
1312 /**
1313  *	netdev_features_change - device changes features
1314  *	@dev: device to cause notification
1315  *
1316  *	Called to indicate a device has changed features.
1317  */
1318 void netdev_features_change(struct net_device *dev)
1319 {
1320 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1321 }
1322 EXPORT_SYMBOL(netdev_features_change);
1323 
1324 /**
1325  *	netdev_state_change - device changes state
1326  *	@dev: device to cause notification
1327  *
1328  *	Called to indicate a device has changed state. This function calls
1329  *	the notifier chains for netdev_chain and sends a NEWLINK message
1330  *	to the routing socket.
1331  */
1332 void netdev_state_change(struct net_device *dev)
1333 {
1334 	if (dev->flags & IFF_UP) {
1335 		struct netdev_notifier_change_info change_info = {
1336 			.info.dev = dev,
1337 		};
1338 
1339 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1340 					      &change_info.info);
1341 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1342 	}
1343 }
1344 EXPORT_SYMBOL(netdev_state_change);
1345 
1346 /**
1347  * netdev_notify_peers - notify network peers about existence of @dev
1348  * @dev: network device
1349  *
1350  * Generate traffic such that interested network peers are aware of
1351  * @dev, such as by generating a gratuitous ARP. This may be used when
1352  * a device wants to inform the rest of the network about some sort of
1353  * reconfiguration such as a failover event or virtual machine
1354  * migration.
1355  */
1356 void netdev_notify_peers(struct net_device *dev)
1357 {
1358 	rtnl_lock();
1359 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361 	rtnl_unlock();
1362 }
1363 EXPORT_SYMBOL(netdev_notify_peers);
1364 
1365 static int __dev_open(struct net_device *dev)
1366 {
1367 	const struct net_device_ops *ops = dev->netdev_ops;
1368 	int ret;
1369 
1370 	ASSERT_RTNL();
1371 
1372 	if (!netif_device_present(dev))
1373 		return -ENODEV;
1374 
1375 	/* Block netpoll from trying to do any rx path servicing.
1376 	 * If we don't do this there is a chance ndo_poll_controller
1377 	 * or ndo_poll may be running while we open the device
1378 	 */
1379 	netpoll_poll_disable(dev);
1380 
1381 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382 	ret = notifier_to_errno(ret);
1383 	if (ret)
1384 		return ret;
1385 
1386 	set_bit(__LINK_STATE_START, &dev->state);
1387 
1388 	if (ops->ndo_validate_addr)
1389 		ret = ops->ndo_validate_addr(dev);
1390 
1391 	if (!ret && ops->ndo_open)
1392 		ret = ops->ndo_open(dev);
1393 
1394 	netpoll_poll_enable(dev);
1395 
1396 	if (ret)
1397 		clear_bit(__LINK_STATE_START, &dev->state);
1398 	else {
1399 		dev->flags |= IFF_UP;
1400 		dev_set_rx_mode(dev);
1401 		dev_activate(dev);
1402 		add_device_randomness(dev->dev_addr, dev->addr_len);
1403 	}
1404 
1405 	return ret;
1406 }
1407 
1408 /**
1409  *	dev_open	- prepare an interface for use.
1410  *	@dev:	device to open
1411  *
1412  *	Takes a device from down to up state. The device's private open
1413  *	function is invoked and then the multicast lists are loaded. Finally
1414  *	the device is moved into the up state and a %NETDEV_UP message is
1415  *	sent to the netdev notifier chain.
1416  *
1417  *	Calling this function on an active interface is a nop. On a failure
1418  *	a negative errno code is returned.
1419  */
1420 int dev_open(struct net_device *dev)
1421 {
1422 	int ret;
1423 
1424 	if (dev->flags & IFF_UP)
1425 		return 0;
1426 
1427 	ret = __dev_open(dev);
1428 	if (ret < 0)
1429 		return ret;
1430 
1431 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432 	call_netdevice_notifiers(NETDEV_UP, dev);
1433 
1434 	return ret;
1435 }
1436 EXPORT_SYMBOL(dev_open);
1437 
1438 static void __dev_close_many(struct list_head *head)
1439 {
1440 	struct net_device *dev;
1441 
1442 	ASSERT_RTNL();
1443 	might_sleep();
1444 
1445 	list_for_each_entry(dev, head, close_list) {
1446 		/* Temporarily disable netpoll until the interface is down */
1447 		netpoll_poll_disable(dev);
1448 
1449 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450 
1451 		clear_bit(__LINK_STATE_START, &dev->state);
1452 
1453 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1454 		 * can be even on different cpu. So just clear netif_running().
1455 		 *
1456 		 * dev->stop() will invoke napi_disable() on all of it's
1457 		 * napi_struct instances on this device.
1458 		 */
1459 		smp_mb__after_atomic(); /* Commit netif_running(). */
1460 	}
1461 
1462 	dev_deactivate_many(head);
1463 
1464 	list_for_each_entry(dev, head, close_list) {
1465 		const struct net_device_ops *ops = dev->netdev_ops;
1466 
1467 		/*
1468 		 *	Call the device specific close. This cannot fail.
1469 		 *	Only if device is UP
1470 		 *
1471 		 *	We allow it to be called even after a DETACH hot-plug
1472 		 *	event.
1473 		 */
1474 		if (ops->ndo_stop)
1475 			ops->ndo_stop(dev);
1476 
1477 		dev->flags &= ~IFF_UP;
1478 		netpoll_poll_enable(dev);
1479 	}
1480 }
1481 
1482 static void __dev_close(struct net_device *dev)
1483 {
1484 	LIST_HEAD(single);
1485 
1486 	list_add(&dev->close_list, &single);
1487 	__dev_close_many(&single);
1488 	list_del(&single);
1489 }
1490 
1491 void dev_close_many(struct list_head *head, bool unlink)
1492 {
1493 	struct net_device *dev, *tmp;
1494 
1495 	/* Remove the devices that don't need to be closed */
1496 	list_for_each_entry_safe(dev, tmp, head, close_list)
1497 		if (!(dev->flags & IFF_UP))
1498 			list_del_init(&dev->close_list);
1499 
1500 	__dev_close_many(head);
1501 
1502 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1503 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1505 		if (unlink)
1506 			list_del_init(&dev->close_list);
1507 	}
1508 }
1509 EXPORT_SYMBOL(dev_close_many);
1510 
1511 /**
1512  *	dev_close - shutdown an interface.
1513  *	@dev: device to shutdown
1514  *
1515  *	This function moves an active device into down state. A
1516  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518  *	chain.
1519  */
1520 void dev_close(struct net_device *dev)
1521 {
1522 	if (dev->flags & IFF_UP) {
1523 		LIST_HEAD(single);
1524 
1525 		list_add(&dev->close_list, &single);
1526 		dev_close_many(&single, true);
1527 		list_del(&single);
1528 	}
1529 }
1530 EXPORT_SYMBOL(dev_close);
1531 
1532 
1533 /**
1534  *	dev_disable_lro - disable Large Receive Offload on a device
1535  *	@dev: device
1536  *
1537  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1538  *	called under RTNL.  This is needed if received packets may be
1539  *	forwarded to another interface.
1540  */
1541 void dev_disable_lro(struct net_device *dev)
1542 {
1543 	struct net_device *lower_dev;
1544 	struct list_head *iter;
1545 
1546 	dev->wanted_features &= ~NETIF_F_LRO;
1547 	netdev_update_features(dev);
1548 
1549 	if (unlikely(dev->features & NETIF_F_LRO))
1550 		netdev_WARN(dev, "failed to disable LRO!\n");
1551 
1552 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1553 		dev_disable_lro(lower_dev);
1554 }
1555 EXPORT_SYMBOL(dev_disable_lro);
1556 
1557 /**
1558  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559  *	@dev: device
1560  *
1561  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1562  *	called under RTNL.  This is needed if Generic XDP is installed on
1563  *	the device.
1564  */
1565 static void dev_disable_gro_hw(struct net_device *dev)
1566 {
1567 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1568 	netdev_update_features(dev);
1569 
1570 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1571 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1572 }
1573 
1574 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1575 {
1576 #define N(val) 						\
1577 	case NETDEV_##val:				\
1578 		return "NETDEV_" __stringify(val);
1579 	switch (cmd) {
1580 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1581 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1582 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1583 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1584 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1585 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1586 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1587 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1588 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1589 	}
1590 #undef N
1591 	return "UNKNOWN_NETDEV_EVENT";
1592 }
1593 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1594 
1595 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1596 				   struct net_device *dev)
1597 {
1598 	struct netdev_notifier_info info = {
1599 		.dev = dev,
1600 	};
1601 
1602 	return nb->notifier_call(nb, val, &info);
1603 }
1604 
1605 static int dev_boot_phase = 1;
1606 
1607 /**
1608  * register_netdevice_notifier - register a network notifier block
1609  * @nb: notifier
1610  *
1611  * Register a notifier to be called when network device events occur.
1612  * The notifier passed is linked into the kernel structures and must
1613  * not be reused until it has been unregistered. A negative errno code
1614  * is returned on a failure.
1615  *
1616  * When registered all registration and up events are replayed
1617  * to the new notifier to allow device to have a race free
1618  * view of the network device list.
1619  */
1620 
1621 int register_netdevice_notifier(struct notifier_block *nb)
1622 {
1623 	struct net_device *dev;
1624 	struct net_device *last;
1625 	struct net *net;
1626 	int err;
1627 
1628 	/* Close race with setup_net() and cleanup_net() */
1629 	down_write(&pernet_ops_rwsem);
1630 	rtnl_lock();
1631 	err = raw_notifier_chain_register(&netdev_chain, nb);
1632 	if (err)
1633 		goto unlock;
1634 	if (dev_boot_phase)
1635 		goto unlock;
1636 	for_each_net(net) {
1637 		for_each_netdev(net, dev) {
1638 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1639 			err = notifier_to_errno(err);
1640 			if (err)
1641 				goto rollback;
1642 
1643 			if (!(dev->flags & IFF_UP))
1644 				continue;
1645 
1646 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1647 		}
1648 	}
1649 
1650 unlock:
1651 	rtnl_unlock();
1652 	up_write(&pernet_ops_rwsem);
1653 	return err;
1654 
1655 rollback:
1656 	last = dev;
1657 	for_each_net(net) {
1658 		for_each_netdev(net, dev) {
1659 			if (dev == last)
1660 				goto outroll;
1661 
1662 			if (dev->flags & IFF_UP) {
1663 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1664 							dev);
1665 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1666 			}
1667 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1668 		}
1669 	}
1670 
1671 outroll:
1672 	raw_notifier_chain_unregister(&netdev_chain, nb);
1673 	goto unlock;
1674 }
1675 EXPORT_SYMBOL(register_netdevice_notifier);
1676 
1677 /**
1678  * unregister_netdevice_notifier - unregister a network notifier block
1679  * @nb: notifier
1680  *
1681  * Unregister a notifier previously registered by
1682  * register_netdevice_notifier(). The notifier is unlinked into the
1683  * kernel structures and may then be reused. A negative errno code
1684  * is returned on a failure.
1685  *
1686  * After unregistering unregister and down device events are synthesized
1687  * for all devices on the device list to the removed notifier to remove
1688  * the need for special case cleanup code.
1689  */
1690 
1691 int unregister_netdevice_notifier(struct notifier_block *nb)
1692 {
1693 	struct net_device *dev;
1694 	struct net *net;
1695 	int err;
1696 
1697 	/* Close race with setup_net() and cleanup_net() */
1698 	down_write(&pernet_ops_rwsem);
1699 	rtnl_lock();
1700 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1701 	if (err)
1702 		goto unlock;
1703 
1704 	for_each_net(net) {
1705 		for_each_netdev(net, dev) {
1706 			if (dev->flags & IFF_UP) {
1707 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1708 							dev);
1709 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1710 			}
1711 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1712 		}
1713 	}
1714 unlock:
1715 	rtnl_unlock();
1716 	up_write(&pernet_ops_rwsem);
1717 	return err;
1718 }
1719 EXPORT_SYMBOL(unregister_netdevice_notifier);
1720 
1721 /**
1722  *	call_netdevice_notifiers_info - call all network notifier blocks
1723  *	@val: value passed unmodified to notifier function
1724  *	@info: notifier information data
1725  *
1726  *	Call all network notifier blocks.  Parameters and return value
1727  *	are as for raw_notifier_call_chain().
1728  */
1729 
1730 static int call_netdevice_notifiers_info(unsigned long val,
1731 					 struct netdev_notifier_info *info)
1732 {
1733 	ASSERT_RTNL();
1734 	return raw_notifier_call_chain(&netdev_chain, val, info);
1735 }
1736 
1737 /**
1738  *	call_netdevice_notifiers - call all network notifier blocks
1739  *      @val: value passed unmodified to notifier function
1740  *      @dev: net_device pointer passed unmodified to notifier function
1741  *
1742  *	Call all network notifier blocks.  Parameters and return value
1743  *	are as for raw_notifier_call_chain().
1744  */
1745 
1746 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1747 {
1748 	struct netdev_notifier_info info = {
1749 		.dev = dev,
1750 	};
1751 
1752 	return call_netdevice_notifiers_info(val, &info);
1753 }
1754 EXPORT_SYMBOL(call_netdevice_notifiers);
1755 
1756 #ifdef CONFIG_NET_INGRESS
1757 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1758 
1759 void net_inc_ingress_queue(void)
1760 {
1761 	static_branch_inc(&ingress_needed_key);
1762 }
1763 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1764 
1765 void net_dec_ingress_queue(void)
1766 {
1767 	static_branch_dec(&ingress_needed_key);
1768 }
1769 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1770 #endif
1771 
1772 #ifdef CONFIG_NET_EGRESS
1773 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1774 
1775 void net_inc_egress_queue(void)
1776 {
1777 	static_branch_inc(&egress_needed_key);
1778 }
1779 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1780 
1781 void net_dec_egress_queue(void)
1782 {
1783 	static_branch_dec(&egress_needed_key);
1784 }
1785 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1786 #endif
1787 
1788 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1789 #ifdef HAVE_JUMP_LABEL
1790 static atomic_t netstamp_needed_deferred;
1791 static atomic_t netstamp_wanted;
1792 static void netstamp_clear(struct work_struct *work)
1793 {
1794 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1795 	int wanted;
1796 
1797 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1798 	if (wanted > 0)
1799 		static_branch_enable(&netstamp_needed_key);
1800 	else
1801 		static_branch_disable(&netstamp_needed_key);
1802 }
1803 static DECLARE_WORK(netstamp_work, netstamp_clear);
1804 #endif
1805 
1806 void net_enable_timestamp(void)
1807 {
1808 #ifdef HAVE_JUMP_LABEL
1809 	int wanted;
1810 
1811 	while (1) {
1812 		wanted = atomic_read(&netstamp_wanted);
1813 		if (wanted <= 0)
1814 			break;
1815 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1816 			return;
1817 	}
1818 	atomic_inc(&netstamp_needed_deferred);
1819 	schedule_work(&netstamp_work);
1820 #else
1821 	static_branch_inc(&netstamp_needed_key);
1822 #endif
1823 }
1824 EXPORT_SYMBOL(net_enable_timestamp);
1825 
1826 void net_disable_timestamp(void)
1827 {
1828 #ifdef HAVE_JUMP_LABEL
1829 	int wanted;
1830 
1831 	while (1) {
1832 		wanted = atomic_read(&netstamp_wanted);
1833 		if (wanted <= 1)
1834 			break;
1835 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1836 			return;
1837 	}
1838 	atomic_dec(&netstamp_needed_deferred);
1839 	schedule_work(&netstamp_work);
1840 #else
1841 	static_branch_dec(&netstamp_needed_key);
1842 #endif
1843 }
1844 EXPORT_SYMBOL(net_disable_timestamp);
1845 
1846 static inline void net_timestamp_set(struct sk_buff *skb)
1847 {
1848 	skb->tstamp = 0;
1849 	if (static_branch_unlikely(&netstamp_needed_key))
1850 		__net_timestamp(skb);
1851 }
1852 
1853 #define net_timestamp_check(COND, SKB)				\
1854 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
1855 		if ((COND) && !(SKB)->tstamp)			\
1856 			__net_timestamp(SKB);			\
1857 	}							\
1858 
1859 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1860 {
1861 	unsigned int len;
1862 
1863 	if (!(dev->flags & IFF_UP))
1864 		return false;
1865 
1866 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1867 	if (skb->len <= len)
1868 		return true;
1869 
1870 	/* if TSO is enabled, we don't care about the length as the packet
1871 	 * could be forwarded without being segmented before
1872 	 */
1873 	if (skb_is_gso(skb))
1874 		return true;
1875 
1876 	return false;
1877 }
1878 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1879 
1880 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1881 {
1882 	int ret = ____dev_forward_skb(dev, skb);
1883 
1884 	if (likely(!ret)) {
1885 		skb->protocol = eth_type_trans(skb, dev);
1886 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1887 	}
1888 
1889 	return ret;
1890 }
1891 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1892 
1893 /**
1894  * dev_forward_skb - loopback an skb to another netif
1895  *
1896  * @dev: destination network device
1897  * @skb: buffer to forward
1898  *
1899  * return values:
1900  *	NET_RX_SUCCESS	(no congestion)
1901  *	NET_RX_DROP     (packet was dropped, but freed)
1902  *
1903  * dev_forward_skb can be used for injecting an skb from the
1904  * start_xmit function of one device into the receive queue
1905  * of another device.
1906  *
1907  * The receiving device may be in another namespace, so
1908  * we have to clear all information in the skb that could
1909  * impact namespace isolation.
1910  */
1911 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1912 {
1913 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1914 }
1915 EXPORT_SYMBOL_GPL(dev_forward_skb);
1916 
1917 static inline int deliver_skb(struct sk_buff *skb,
1918 			      struct packet_type *pt_prev,
1919 			      struct net_device *orig_dev)
1920 {
1921 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1922 		return -ENOMEM;
1923 	refcount_inc(&skb->users);
1924 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1925 }
1926 
1927 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1928 					  struct packet_type **pt,
1929 					  struct net_device *orig_dev,
1930 					  __be16 type,
1931 					  struct list_head *ptype_list)
1932 {
1933 	struct packet_type *ptype, *pt_prev = *pt;
1934 
1935 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1936 		if (ptype->type != type)
1937 			continue;
1938 		if (pt_prev)
1939 			deliver_skb(skb, pt_prev, orig_dev);
1940 		pt_prev = ptype;
1941 	}
1942 	*pt = pt_prev;
1943 }
1944 
1945 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1946 {
1947 	if (!ptype->af_packet_priv || !skb->sk)
1948 		return false;
1949 
1950 	if (ptype->id_match)
1951 		return ptype->id_match(ptype, skb->sk);
1952 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1953 		return true;
1954 
1955 	return false;
1956 }
1957 
1958 /*
1959  *	Support routine. Sends outgoing frames to any network
1960  *	taps currently in use.
1961  */
1962 
1963 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1964 {
1965 	struct packet_type *ptype;
1966 	struct sk_buff *skb2 = NULL;
1967 	struct packet_type *pt_prev = NULL;
1968 	struct list_head *ptype_list = &ptype_all;
1969 
1970 	rcu_read_lock();
1971 again:
1972 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1973 		/* Never send packets back to the socket
1974 		 * they originated from - MvS (miquels@drinkel.ow.org)
1975 		 */
1976 		if (skb_loop_sk(ptype, skb))
1977 			continue;
1978 
1979 		if (pt_prev) {
1980 			deliver_skb(skb2, pt_prev, skb->dev);
1981 			pt_prev = ptype;
1982 			continue;
1983 		}
1984 
1985 		/* need to clone skb, done only once */
1986 		skb2 = skb_clone(skb, GFP_ATOMIC);
1987 		if (!skb2)
1988 			goto out_unlock;
1989 
1990 		net_timestamp_set(skb2);
1991 
1992 		/* skb->nh should be correctly
1993 		 * set by sender, so that the second statement is
1994 		 * just protection against buggy protocols.
1995 		 */
1996 		skb_reset_mac_header(skb2);
1997 
1998 		if (skb_network_header(skb2) < skb2->data ||
1999 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2000 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2001 					     ntohs(skb2->protocol),
2002 					     dev->name);
2003 			skb_reset_network_header(skb2);
2004 		}
2005 
2006 		skb2->transport_header = skb2->network_header;
2007 		skb2->pkt_type = PACKET_OUTGOING;
2008 		pt_prev = ptype;
2009 	}
2010 
2011 	if (ptype_list == &ptype_all) {
2012 		ptype_list = &dev->ptype_all;
2013 		goto again;
2014 	}
2015 out_unlock:
2016 	if (pt_prev) {
2017 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2018 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2019 		else
2020 			kfree_skb(skb2);
2021 	}
2022 	rcu_read_unlock();
2023 }
2024 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2025 
2026 /**
2027  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2028  * @dev: Network device
2029  * @txq: number of queues available
2030  *
2031  * If real_num_tx_queues is changed the tc mappings may no longer be
2032  * valid. To resolve this verify the tc mapping remains valid and if
2033  * not NULL the mapping. With no priorities mapping to this
2034  * offset/count pair it will no longer be used. In the worst case TC0
2035  * is invalid nothing can be done so disable priority mappings. If is
2036  * expected that drivers will fix this mapping if they can before
2037  * calling netif_set_real_num_tx_queues.
2038  */
2039 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2040 {
2041 	int i;
2042 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2043 
2044 	/* If TC0 is invalidated disable TC mapping */
2045 	if (tc->offset + tc->count > txq) {
2046 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2047 		dev->num_tc = 0;
2048 		return;
2049 	}
2050 
2051 	/* Invalidated prio to tc mappings set to TC0 */
2052 	for (i = 1; i < TC_BITMASK + 1; i++) {
2053 		int q = netdev_get_prio_tc_map(dev, i);
2054 
2055 		tc = &dev->tc_to_txq[q];
2056 		if (tc->offset + tc->count > txq) {
2057 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2058 				i, q);
2059 			netdev_set_prio_tc_map(dev, i, 0);
2060 		}
2061 	}
2062 }
2063 
2064 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2065 {
2066 	if (dev->num_tc) {
2067 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2068 		int i;
2069 
2070 		/* walk through the TCs and see if it falls into any of them */
2071 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2072 			if ((txq - tc->offset) < tc->count)
2073 				return i;
2074 		}
2075 
2076 		/* didn't find it, just return -1 to indicate no match */
2077 		return -1;
2078 	}
2079 
2080 	return 0;
2081 }
2082 EXPORT_SYMBOL(netdev_txq_to_tc);
2083 
2084 #ifdef CONFIG_XPS
2085 struct static_key xps_needed __read_mostly;
2086 EXPORT_SYMBOL(xps_needed);
2087 struct static_key xps_rxqs_needed __read_mostly;
2088 EXPORT_SYMBOL(xps_rxqs_needed);
2089 static DEFINE_MUTEX(xps_map_mutex);
2090 #define xmap_dereference(P)		\
2091 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2092 
2093 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2094 			     int tci, u16 index)
2095 {
2096 	struct xps_map *map = NULL;
2097 	int pos;
2098 
2099 	if (dev_maps)
2100 		map = xmap_dereference(dev_maps->attr_map[tci]);
2101 	if (!map)
2102 		return false;
2103 
2104 	for (pos = map->len; pos--;) {
2105 		if (map->queues[pos] != index)
2106 			continue;
2107 
2108 		if (map->len > 1) {
2109 			map->queues[pos] = map->queues[--map->len];
2110 			break;
2111 		}
2112 
2113 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2114 		kfree_rcu(map, rcu);
2115 		return false;
2116 	}
2117 
2118 	return true;
2119 }
2120 
2121 static bool remove_xps_queue_cpu(struct net_device *dev,
2122 				 struct xps_dev_maps *dev_maps,
2123 				 int cpu, u16 offset, u16 count)
2124 {
2125 	int num_tc = dev->num_tc ? : 1;
2126 	bool active = false;
2127 	int tci;
2128 
2129 	for (tci = cpu * num_tc; num_tc--; tci++) {
2130 		int i, j;
2131 
2132 		for (i = count, j = offset; i--; j++) {
2133 			if (!remove_xps_queue(dev_maps, tci, j))
2134 				break;
2135 		}
2136 
2137 		active |= i < 0;
2138 	}
2139 
2140 	return active;
2141 }
2142 
2143 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2144 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2145 			   u16 offset, u16 count, bool is_rxqs_map)
2146 {
2147 	bool active = false;
2148 	int i, j;
2149 
2150 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2151 	     j < nr_ids;)
2152 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2153 					       count);
2154 	if (!active) {
2155 		if (is_rxqs_map) {
2156 			RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2157 		} else {
2158 			RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2159 
2160 			for (i = offset + (count - 1); count--; i--)
2161 				netdev_queue_numa_node_write(
2162 					netdev_get_tx_queue(dev, i),
2163 							NUMA_NO_NODE);
2164 		}
2165 		kfree_rcu(dev_maps, rcu);
2166 	}
2167 }
2168 
2169 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2170 				   u16 count)
2171 {
2172 	const unsigned long *possible_mask = NULL;
2173 	struct xps_dev_maps *dev_maps;
2174 	unsigned int nr_ids;
2175 
2176 	if (!static_key_false(&xps_needed))
2177 		return;
2178 
2179 	mutex_lock(&xps_map_mutex);
2180 
2181 	if (static_key_false(&xps_rxqs_needed)) {
2182 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2183 		if (dev_maps) {
2184 			nr_ids = dev->num_rx_queues;
2185 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2186 				       offset, count, true);
2187 		}
2188 	}
2189 
2190 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2191 	if (!dev_maps)
2192 		goto out_no_maps;
2193 
2194 	if (num_possible_cpus() > 1)
2195 		possible_mask = cpumask_bits(cpu_possible_mask);
2196 	nr_ids = nr_cpu_ids;
2197 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2198 		       false);
2199 
2200 out_no_maps:
2201 	if (static_key_enabled(&xps_rxqs_needed))
2202 		static_key_slow_dec(&xps_rxqs_needed);
2203 
2204 	static_key_slow_dec(&xps_needed);
2205 	mutex_unlock(&xps_map_mutex);
2206 }
2207 
2208 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2209 {
2210 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2211 }
2212 
2213 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2214 				      u16 index, bool is_rxqs_map)
2215 {
2216 	struct xps_map *new_map;
2217 	int alloc_len = XPS_MIN_MAP_ALLOC;
2218 	int i, pos;
2219 
2220 	for (pos = 0; map && pos < map->len; pos++) {
2221 		if (map->queues[pos] != index)
2222 			continue;
2223 		return map;
2224 	}
2225 
2226 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2227 	if (map) {
2228 		if (pos < map->alloc_len)
2229 			return map;
2230 
2231 		alloc_len = map->alloc_len * 2;
2232 	}
2233 
2234 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2235 	 *  map
2236 	 */
2237 	if (is_rxqs_map)
2238 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2239 	else
2240 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2241 				       cpu_to_node(attr_index));
2242 	if (!new_map)
2243 		return NULL;
2244 
2245 	for (i = 0; i < pos; i++)
2246 		new_map->queues[i] = map->queues[i];
2247 	new_map->alloc_len = alloc_len;
2248 	new_map->len = pos;
2249 
2250 	return new_map;
2251 }
2252 
2253 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2254 			  u16 index, bool is_rxqs_map)
2255 {
2256 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2257 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2258 	int i, j, tci, numa_node_id = -2;
2259 	int maps_sz, num_tc = 1, tc = 0;
2260 	struct xps_map *map, *new_map;
2261 	bool active = false;
2262 	unsigned int nr_ids;
2263 
2264 	if (dev->num_tc) {
2265 		/* Do not allow XPS on subordinate device directly */
2266 		num_tc = dev->num_tc;
2267 		if (num_tc < 0)
2268 			return -EINVAL;
2269 
2270 		/* If queue belongs to subordinate dev use its map */
2271 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2272 
2273 		tc = netdev_txq_to_tc(dev, index);
2274 		if (tc < 0)
2275 			return -EINVAL;
2276 	}
2277 
2278 	mutex_lock(&xps_map_mutex);
2279 	if (is_rxqs_map) {
2280 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2281 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2282 		nr_ids = dev->num_rx_queues;
2283 	} else {
2284 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2285 		if (num_possible_cpus() > 1) {
2286 			online_mask = cpumask_bits(cpu_online_mask);
2287 			possible_mask = cpumask_bits(cpu_possible_mask);
2288 		}
2289 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2290 		nr_ids = nr_cpu_ids;
2291 	}
2292 
2293 	if (maps_sz < L1_CACHE_BYTES)
2294 		maps_sz = L1_CACHE_BYTES;
2295 
2296 	/* allocate memory for queue storage */
2297 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2298 	     j < nr_ids;) {
2299 		if (!new_dev_maps)
2300 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2301 		if (!new_dev_maps) {
2302 			mutex_unlock(&xps_map_mutex);
2303 			return -ENOMEM;
2304 		}
2305 
2306 		tci = j * num_tc + tc;
2307 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2308 				 NULL;
2309 
2310 		map = expand_xps_map(map, j, index, is_rxqs_map);
2311 		if (!map)
2312 			goto error;
2313 
2314 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2315 	}
2316 
2317 	if (!new_dev_maps)
2318 		goto out_no_new_maps;
2319 
2320 	static_key_slow_inc(&xps_needed);
2321 	if (is_rxqs_map)
2322 		static_key_slow_inc(&xps_rxqs_needed);
2323 
2324 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2325 	     j < nr_ids;) {
2326 		/* copy maps belonging to foreign traffic classes */
2327 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2328 			/* fill in the new device map from the old device map */
2329 			map = xmap_dereference(dev_maps->attr_map[tci]);
2330 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2331 		}
2332 
2333 		/* We need to explicitly update tci as prevous loop
2334 		 * could break out early if dev_maps is NULL.
2335 		 */
2336 		tci = j * num_tc + tc;
2337 
2338 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2339 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2340 			/* add tx-queue to CPU/rx-queue maps */
2341 			int pos = 0;
2342 
2343 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2344 			while ((pos < map->len) && (map->queues[pos] != index))
2345 				pos++;
2346 
2347 			if (pos == map->len)
2348 				map->queues[map->len++] = index;
2349 #ifdef CONFIG_NUMA
2350 			if (!is_rxqs_map) {
2351 				if (numa_node_id == -2)
2352 					numa_node_id = cpu_to_node(j);
2353 				else if (numa_node_id != cpu_to_node(j))
2354 					numa_node_id = -1;
2355 			}
2356 #endif
2357 		} else if (dev_maps) {
2358 			/* fill in the new device map from the old device map */
2359 			map = xmap_dereference(dev_maps->attr_map[tci]);
2360 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2361 		}
2362 
2363 		/* copy maps belonging to foreign traffic classes */
2364 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2365 			/* fill in the new device map from the old device map */
2366 			map = xmap_dereference(dev_maps->attr_map[tci]);
2367 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2368 		}
2369 	}
2370 
2371 	if (is_rxqs_map)
2372 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2373 	else
2374 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2375 
2376 	/* Cleanup old maps */
2377 	if (!dev_maps)
2378 		goto out_no_old_maps;
2379 
2380 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2381 	     j < nr_ids;) {
2382 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2383 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2384 			map = xmap_dereference(dev_maps->attr_map[tci]);
2385 			if (map && map != new_map)
2386 				kfree_rcu(map, rcu);
2387 		}
2388 	}
2389 
2390 	kfree_rcu(dev_maps, rcu);
2391 
2392 out_no_old_maps:
2393 	dev_maps = new_dev_maps;
2394 	active = true;
2395 
2396 out_no_new_maps:
2397 	if (!is_rxqs_map) {
2398 		/* update Tx queue numa node */
2399 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2400 					     (numa_node_id >= 0) ?
2401 					     numa_node_id : NUMA_NO_NODE);
2402 	}
2403 
2404 	if (!dev_maps)
2405 		goto out_no_maps;
2406 
2407 	/* removes tx-queue from unused CPUs/rx-queues */
2408 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2409 	     j < nr_ids;) {
2410 		for (i = tc, tci = j * num_tc; i--; tci++)
2411 			active |= remove_xps_queue(dev_maps, tci, index);
2412 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2413 		    !netif_attr_test_online(j, online_mask, nr_ids))
2414 			active |= remove_xps_queue(dev_maps, tci, index);
2415 		for (i = num_tc - tc, tci++; --i; tci++)
2416 			active |= remove_xps_queue(dev_maps, tci, index);
2417 	}
2418 
2419 	/* free map if not active */
2420 	if (!active) {
2421 		if (is_rxqs_map)
2422 			RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2423 		else
2424 			RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2425 		kfree_rcu(dev_maps, rcu);
2426 	}
2427 
2428 out_no_maps:
2429 	mutex_unlock(&xps_map_mutex);
2430 
2431 	return 0;
2432 error:
2433 	/* remove any maps that we added */
2434 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2435 	     j < nr_ids;) {
2436 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2437 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2438 			map = dev_maps ?
2439 			      xmap_dereference(dev_maps->attr_map[tci]) :
2440 			      NULL;
2441 			if (new_map && new_map != map)
2442 				kfree(new_map);
2443 		}
2444 	}
2445 
2446 	mutex_unlock(&xps_map_mutex);
2447 
2448 	kfree(new_dev_maps);
2449 	return -ENOMEM;
2450 }
2451 
2452 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2453 			u16 index)
2454 {
2455 	return __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2456 }
2457 EXPORT_SYMBOL(netif_set_xps_queue);
2458 
2459 #endif
2460 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2461 {
2462 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2463 
2464 	/* Unbind any subordinate channels */
2465 	while (txq-- != &dev->_tx[0]) {
2466 		if (txq->sb_dev)
2467 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2468 	}
2469 }
2470 
2471 void netdev_reset_tc(struct net_device *dev)
2472 {
2473 #ifdef CONFIG_XPS
2474 	netif_reset_xps_queues_gt(dev, 0);
2475 #endif
2476 	netdev_unbind_all_sb_channels(dev);
2477 
2478 	/* Reset TC configuration of device */
2479 	dev->num_tc = 0;
2480 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2481 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2482 }
2483 EXPORT_SYMBOL(netdev_reset_tc);
2484 
2485 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2486 {
2487 	if (tc >= dev->num_tc)
2488 		return -EINVAL;
2489 
2490 #ifdef CONFIG_XPS
2491 	netif_reset_xps_queues(dev, offset, count);
2492 #endif
2493 	dev->tc_to_txq[tc].count = count;
2494 	dev->tc_to_txq[tc].offset = offset;
2495 	return 0;
2496 }
2497 EXPORT_SYMBOL(netdev_set_tc_queue);
2498 
2499 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2500 {
2501 	if (num_tc > TC_MAX_QUEUE)
2502 		return -EINVAL;
2503 
2504 #ifdef CONFIG_XPS
2505 	netif_reset_xps_queues_gt(dev, 0);
2506 #endif
2507 	netdev_unbind_all_sb_channels(dev);
2508 
2509 	dev->num_tc = num_tc;
2510 	return 0;
2511 }
2512 EXPORT_SYMBOL(netdev_set_num_tc);
2513 
2514 void netdev_unbind_sb_channel(struct net_device *dev,
2515 			      struct net_device *sb_dev)
2516 {
2517 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2518 
2519 #ifdef CONFIG_XPS
2520 	netif_reset_xps_queues_gt(sb_dev, 0);
2521 #endif
2522 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2523 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2524 
2525 	while (txq-- != &dev->_tx[0]) {
2526 		if (txq->sb_dev == sb_dev)
2527 			txq->sb_dev = NULL;
2528 	}
2529 }
2530 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2531 
2532 int netdev_bind_sb_channel_queue(struct net_device *dev,
2533 				 struct net_device *sb_dev,
2534 				 u8 tc, u16 count, u16 offset)
2535 {
2536 	/* Make certain the sb_dev and dev are already configured */
2537 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2538 		return -EINVAL;
2539 
2540 	/* We cannot hand out queues we don't have */
2541 	if ((offset + count) > dev->real_num_tx_queues)
2542 		return -EINVAL;
2543 
2544 	/* Record the mapping */
2545 	sb_dev->tc_to_txq[tc].count = count;
2546 	sb_dev->tc_to_txq[tc].offset = offset;
2547 
2548 	/* Provide a way for Tx queue to find the tc_to_txq map or
2549 	 * XPS map for itself.
2550 	 */
2551 	while (count--)
2552 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2553 
2554 	return 0;
2555 }
2556 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2557 
2558 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2559 {
2560 	/* Do not use a multiqueue device to represent a subordinate channel */
2561 	if (netif_is_multiqueue(dev))
2562 		return -ENODEV;
2563 
2564 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2565 	 * Channel 0 is meant to be "native" mode and used only to represent
2566 	 * the main root device. We allow writing 0 to reset the device back
2567 	 * to normal mode after being used as a subordinate channel.
2568 	 */
2569 	if (channel > S16_MAX)
2570 		return -EINVAL;
2571 
2572 	dev->num_tc = -channel;
2573 
2574 	return 0;
2575 }
2576 EXPORT_SYMBOL(netdev_set_sb_channel);
2577 
2578 /*
2579  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2580  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2581  */
2582 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2583 {
2584 	bool disabling;
2585 	int rc;
2586 
2587 	disabling = txq < dev->real_num_tx_queues;
2588 
2589 	if (txq < 1 || txq > dev->num_tx_queues)
2590 		return -EINVAL;
2591 
2592 	if (dev->reg_state == NETREG_REGISTERED ||
2593 	    dev->reg_state == NETREG_UNREGISTERING) {
2594 		ASSERT_RTNL();
2595 
2596 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2597 						  txq);
2598 		if (rc)
2599 			return rc;
2600 
2601 		if (dev->num_tc)
2602 			netif_setup_tc(dev, txq);
2603 
2604 		dev->real_num_tx_queues = txq;
2605 
2606 		if (disabling) {
2607 			synchronize_net();
2608 			qdisc_reset_all_tx_gt(dev, txq);
2609 #ifdef CONFIG_XPS
2610 			netif_reset_xps_queues_gt(dev, txq);
2611 #endif
2612 		}
2613 	} else {
2614 		dev->real_num_tx_queues = txq;
2615 	}
2616 
2617 	return 0;
2618 }
2619 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2620 
2621 #ifdef CONFIG_SYSFS
2622 /**
2623  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2624  *	@dev: Network device
2625  *	@rxq: Actual number of RX queues
2626  *
2627  *	This must be called either with the rtnl_lock held or before
2628  *	registration of the net device.  Returns 0 on success, or a
2629  *	negative error code.  If called before registration, it always
2630  *	succeeds.
2631  */
2632 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2633 {
2634 	int rc;
2635 
2636 	if (rxq < 1 || rxq > dev->num_rx_queues)
2637 		return -EINVAL;
2638 
2639 	if (dev->reg_state == NETREG_REGISTERED) {
2640 		ASSERT_RTNL();
2641 
2642 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2643 						  rxq);
2644 		if (rc)
2645 			return rc;
2646 	}
2647 
2648 	dev->real_num_rx_queues = rxq;
2649 	return 0;
2650 }
2651 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2652 #endif
2653 
2654 /**
2655  * netif_get_num_default_rss_queues - default number of RSS queues
2656  *
2657  * This routine should set an upper limit on the number of RSS queues
2658  * used by default by multiqueue devices.
2659  */
2660 int netif_get_num_default_rss_queues(void)
2661 {
2662 	return is_kdump_kernel() ?
2663 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2664 }
2665 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2666 
2667 static void __netif_reschedule(struct Qdisc *q)
2668 {
2669 	struct softnet_data *sd;
2670 	unsigned long flags;
2671 
2672 	local_irq_save(flags);
2673 	sd = this_cpu_ptr(&softnet_data);
2674 	q->next_sched = NULL;
2675 	*sd->output_queue_tailp = q;
2676 	sd->output_queue_tailp = &q->next_sched;
2677 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2678 	local_irq_restore(flags);
2679 }
2680 
2681 void __netif_schedule(struct Qdisc *q)
2682 {
2683 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2684 		__netif_reschedule(q);
2685 }
2686 EXPORT_SYMBOL(__netif_schedule);
2687 
2688 struct dev_kfree_skb_cb {
2689 	enum skb_free_reason reason;
2690 };
2691 
2692 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2693 {
2694 	return (struct dev_kfree_skb_cb *)skb->cb;
2695 }
2696 
2697 void netif_schedule_queue(struct netdev_queue *txq)
2698 {
2699 	rcu_read_lock();
2700 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2701 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2702 
2703 		__netif_schedule(q);
2704 	}
2705 	rcu_read_unlock();
2706 }
2707 EXPORT_SYMBOL(netif_schedule_queue);
2708 
2709 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2710 {
2711 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2712 		struct Qdisc *q;
2713 
2714 		rcu_read_lock();
2715 		q = rcu_dereference(dev_queue->qdisc);
2716 		__netif_schedule(q);
2717 		rcu_read_unlock();
2718 	}
2719 }
2720 EXPORT_SYMBOL(netif_tx_wake_queue);
2721 
2722 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2723 {
2724 	unsigned long flags;
2725 
2726 	if (unlikely(!skb))
2727 		return;
2728 
2729 	if (likely(refcount_read(&skb->users) == 1)) {
2730 		smp_rmb();
2731 		refcount_set(&skb->users, 0);
2732 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2733 		return;
2734 	}
2735 	get_kfree_skb_cb(skb)->reason = reason;
2736 	local_irq_save(flags);
2737 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2738 	__this_cpu_write(softnet_data.completion_queue, skb);
2739 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2740 	local_irq_restore(flags);
2741 }
2742 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2743 
2744 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2745 {
2746 	if (in_irq() || irqs_disabled())
2747 		__dev_kfree_skb_irq(skb, reason);
2748 	else
2749 		dev_kfree_skb(skb);
2750 }
2751 EXPORT_SYMBOL(__dev_kfree_skb_any);
2752 
2753 
2754 /**
2755  * netif_device_detach - mark device as removed
2756  * @dev: network device
2757  *
2758  * Mark device as removed from system and therefore no longer available.
2759  */
2760 void netif_device_detach(struct net_device *dev)
2761 {
2762 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2763 	    netif_running(dev)) {
2764 		netif_tx_stop_all_queues(dev);
2765 	}
2766 }
2767 EXPORT_SYMBOL(netif_device_detach);
2768 
2769 /**
2770  * netif_device_attach - mark device as attached
2771  * @dev: network device
2772  *
2773  * Mark device as attached from system and restart if needed.
2774  */
2775 void netif_device_attach(struct net_device *dev)
2776 {
2777 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2778 	    netif_running(dev)) {
2779 		netif_tx_wake_all_queues(dev);
2780 		__netdev_watchdog_up(dev);
2781 	}
2782 }
2783 EXPORT_SYMBOL(netif_device_attach);
2784 
2785 /*
2786  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2787  * to be used as a distribution range.
2788  */
2789 static u16 skb_tx_hash(const struct net_device *dev,
2790 		       const struct net_device *sb_dev,
2791 		       struct sk_buff *skb)
2792 {
2793 	u32 hash;
2794 	u16 qoffset = 0;
2795 	u16 qcount = dev->real_num_tx_queues;
2796 
2797 	if (dev->num_tc) {
2798 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2799 
2800 		qoffset = sb_dev->tc_to_txq[tc].offset;
2801 		qcount = sb_dev->tc_to_txq[tc].count;
2802 	}
2803 
2804 	if (skb_rx_queue_recorded(skb)) {
2805 		hash = skb_get_rx_queue(skb);
2806 		while (unlikely(hash >= qcount))
2807 			hash -= qcount;
2808 		return hash + qoffset;
2809 	}
2810 
2811 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2812 }
2813 
2814 static void skb_warn_bad_offload(const struct sk_buff *skb)
2815 {
2816 	static const netdev_features_t null_features;
2817 	struct net_device *dev = skb->dev;
2818 	const char *name = "";
2819 
2820 	if (!net_ratelimit())
2821 		return;
2822 
2823 	if (dev) {
2824 		if (dev->dev.parent)
2825 			name = dev_driver_string(dev->dev.parent);
2826 		else
2827 			name = netdev_name(dev);
2828 	}
2829 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2830 	     "gso_type=%d ip_summed=%d\n",
2831 	     name, dev ? &dev->features : &null_features,
2832 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2833 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2834 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2835 }
2836 
2837 /*
2838  * Invalidate hardware checksum when packet is to be mangled, and
2839  * complete checksum manually on outgoing path.
2840  */
2841 int skb_checksum_help(struct sk_buff *skb)
2842 {
2843 	__wsum csum;
2844 	int ret = 0, offset;
2845 
2846 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2847 		goto out_set_summed;
2848 
2849 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2850 		skb_warn_bad_offload(skb);
2851 		return -EINVAL;
2852 	}
2853 
2854 	/* Before computing a checksum, we should make sure no frag could
2855 	 * be modified by an external entity : checksum could be wrong.
2856 	 */
2857 	if (skb_has_shared_frag(skb)) {
2858 		ret = __skb_linearize(skb);
2859 		if (ret)
2860 			goto out;
2861 	}
2862 
2863 	offset = skb_checksum_start_offset(skb);
2864 	BUG_ON(offset >= skb_headlen(skb));
2865 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2866 
2867 	offset += skb->csum_offset;
2868 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2869 
2870 	if (skb_cloned(skb) &&
2871 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2872 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2873 		if (ret)
2874 			goto out;
2875 	}
2876 
2877 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2878 out_set_summed:
2879 	skb->ip_summed = CHECKSUM_NONE;
2880 out:
2881 	return ret;
2882 }
2883 EXPORT_SYMBOL(skb_checksum_help);
2884 
2885 int skb_crc32c_csum_help(struct sk_buff *skb)
2886 {
2887 	__le32 crc32c_csum;
2888 	int ret = 0, offset, start;
2889 
2890 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2891 		goto out;
2892 
2893 	if (unlikely(skb_is_gso(skb)))
2894 		goto out;
2895 
2896 	/* Before computing a checksum, we should make sure no frag could
2897 	 * be modified by an external entity : checksum could be wrong.
2898 	 */
2899 	if (unlikely(skb_has_shared_frag(skb))) {
2900 		ret = __skb_linearize(skb);
2901 		if (ret)
2902 			goto out;
2903 	}
2904 	start = skb_checksum_start_offset(skb);
2905 	offset = start + offsetof(struct sctphdr, checksum);
2906 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2907 		ret = -EINVAL;
2908 		goto out;
2909 	}
2910 	if (skb_cloned(skb) &&
2911 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2912 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2913 		if (ret)
2914 			goto out;
2915 	}
2916 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2917 						  skb->len - start, ~(__u32)0,
2918 						  crc32c_csum_stub));
2919 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2920 	skb->ip_summed = CHECKSUM_NONE;
2921 	skb->csum_not_inet = 0;
2922 out:
2923 	return ret;
2924 }
2925 
2926 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2927 {
2928 	__be16 type = skb->protocol;
2929 
2930 	/* Tunnel gso handlers can set protocol to ethernet. */
2931 	if (type == htons(ETH_P_TEB)) {
2932 		struct ethhdr *eth;
2933 
2934 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2935 			return 0;
2936 
2937 		eth = (struct ethhdr *)skb->data;
2938 		type = eth->h_proto;
2939 	}
2940 
2941 	return __vlan_get_protocol(skb, type, depth);
2942 }
2943 
2944 /**
2945  *	skb_mac_gso_segment - mac layer segmentation handler.
2946  *	@skb: buffer to segment
2947  *	@features: features for the output path (see dev->features)
2948  */
2949 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2950 				    netdev_features_t features)
2951 {
2952 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2953 	struct packet_offload *ptype;
2954 	int vlan_depth = skb->mac_len;
2955 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2956 
2957 	if (unlikely(!type))
2958 		return ERR_PTR(-EINVAL);
2959 
2960 	__skb_pull(skb, vlan_depth);
2961 
2962 	rcu_read_lock();
2963 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2964 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2965 			segs = ptype->callbacks.gso_segment(skb, features);
2966 			break;
2967 		}
2968 	}
2969 	rcu_read_unlock();
2970 
2971 	__skb_push(skb, skb->data - skb_mac_header(skb));
2972 
2973 	return segs;
2974 }
2975 EXPORT_SYMBOL(skb_mac_gso_segment);
2976 
2977 
2978 /* openvswitch calls this on rx path, so we need a different check.
2979  */
2980 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2981 {
2982 	if (tx_path)
2983 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2984 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
2985 
2986 	return skb->ip_summed == CHECKSUM_NONE;
2987 }
2988 
2989 /**
2990  *	__skb_gso_segment - Perform segmentation on skb.
2991  *	@skb: buffer to segment
2992  *	@features: features for the output path (see dev->features)
2993  *	@tx_path: whether it is called in TX path
2994  *
2995  *	This function segments the given skb and returns a list of segments.
2996  *
2997  *	It may return NULL if the skb requires no segmentation.  This is
2998  *	only possible when GSO is used for verifying header integrity.
2999  *
3000  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3001  */
3002 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3003 				  netdev_features_t features, bool tx_path)
3004 {
3005 	struct sk_buff *segs;
3006 
3007 	if (unlikely(skb_needs_check(skb, tx_path))) {
3008 		int err;
3009 
3010 		/* We're going to init ->check field in TCP or UDP header */
3011 		err = skb_cow_head(skb, 0);
3012 		if (err < 0)
3013 			return ERR_PTR(err);
3014 	}
3015 
3016 	/* Only report GSO partial support if it will enable us to
3017 	 * support segmentation on this frame without needing additional
3018 	 * work.
3019 	 */
3020 	if (features & NETIF_F_GSO_PARTIAL) {
3021 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3022 		struct net_device *dev = skb->dev;
3023 
3024 		partial_features |= dev->features & dev->gso_partial_features;
3025 		if (!skb_gso_ok(skb, features | partial_features))
3026 			features &= ~NETIF_F_GSO_PARTIAL;
3027 	}
3028 
3029 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3030 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3031 
3032 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3033 	SKB_GSO_CB(skb)->encap_level = 0;
3034 
3035 	skb_reset_mac_header(skb);
3036 	skb_reset_mac_len(skb);
3037 
3038 	segs = skb_mac_gso_segment(skb, features);
3039 
3040 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3041 		skb_warn_bad_offload(skb);
3042 
3043 	return segs;
3044 }
3045 EXPORT_SYMBOL(__skb_gso_segment);
3046 
3047 /* Take action when hardware reception checksum errors are detected. */
3048 #ifdef CONFIG_BUG
3049 void netdev_rx_csum_fault(struct net_device *dev)
3050 {
3051 	if (net_ratelimit()) {
3052 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3053 		dump_stack();
3054 	}
3055 }
3056 EXPORT_SYMBOL(netdev_rx_csum_fault);
3057 #endif
3058 
3059 /* XXX: check that highmem exists at all on the given machine. */
3060 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3061 {
3062 #ifdef CONFIG_HIGHMEM
3063 	int i;
3064 
3065 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3066 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3067 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3068 
3069 			if (PageHighMem(skb_frag_page(frag)))
3070 				return 1;
3071 		}
3072 	}
3073 #endif
3074 	return 0;
3075 }
3076 
3077 /* If MPLS offload request, verify we are testing hardware MPLS features
3078  * instead of standard features for the netdev.
3079  */
3080 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3081 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3082 					   netdev_features_t features,
3083 					   __be16 type)
3084 {
3085 	if (eth_p_mpls(type))
3086 		features &= skb->dev->mpls_features;
3087 
3088 	return features;
3089 }
3090 #else
3091 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3092 					   netdev_features_t features,
3093 					   __be16 type)
3094 {
3095 	return features;
3096 }
3097 #endif
3098 
3099 static netdev_features_t harmonize_features(struct sk_buff *skb,
3100 	netdev_features_t features)
3101 {
3102 	int tmp;
3103 	__be16 type;
3104 
3105 	type = skb_network_protocol(skb, &tmp);
3106 	features = net_mpls_features(skb, features, type);
3107 
3108 	if (skb->ip_summed != CHECKSUM_NONE &&
3109 	    !can_checksum_protocol(features, type)) {
3110 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3111 	}
3112 	if (illegal_highdma(skb->dev, skb))
3113 		features &= ~NETIF_F_SG;
3114 
3115 	return features;
3116 }
3117 
3118 netdev_features_t passthru_features_check(struct sk_buff *skb,
3119 					  struct net_device *dev,
3120 					  netdev_features_t features)
3121 {
3122 	return features;
3123 }
3124 EXPORT_SYMBOL(passthru_features_check);
3125 
3126 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3127 					     struct net_device *dev,
3128 					     netdev_features_t features)
3129 {
3130 	return vlan_features_check(skb, features);
3131 }
3132 
3133 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3134 					    struct net_device *dev,
3135 					    netdev_features_t features)
3136 {
3137 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3138 
3139 	if (gso_segs > dev->gso_max_segs)
3140 		return features & ~NETIF_F_GSO_MASK;
3141 
3142 	/* Support for GSO partial features requires software
3143 	 * intervention before we can actually process the packets
3144 	 * so we need to strip support for any partial features now
3145 	 * and we can pull them back in after we have partially
3146 	 * segmented the frame.
3147 	 */
3148 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3149 		features &= ~dev->gso_partial_features;
3150 
3151 	/* Make sure to clear the IPv4 ID mangling feature if the
3152 	 * IPv4 header has the potential to be fragmented.
3153 	 */
3154 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3155 		struct iphdr *iph = skb->encapsulation ?
3156 				    inner_ip_hdr(skb) : ip_hdr(skb);
3157 
3158 		if (!(iph->frag_off & htons(IP_DF)))
3159 			features &= ~NETIF_F_TSO_MANGLEID;
3160 	}
3161 
3162 	return features;
3163 }
3164 
3165 netdev_features_t netif_skb_features(struct sk_buff *skb)
3166 {
3167 	struct net_device *dev = skb->dev;
3168 	netdev_features_t features = dev->features;
3169 
3170 	if (skb_is_gso(skb))
3171 		features = gso_features_check(skb, dev, features);
3172 
3173 	/* If encapsulation offload request, verify we are testing
3174 	 * hardware encapsulation features instead of standard
3175 	 * features for the netdev
3176 	 */
3177 	if (skb->encapsulation)
3178 		features &= dev->hw_enc_features;
3179 
3180 	if (skb_vlan_tagged(skb))
3181 		features = netdev_intersect_features(features,
3182 						     dev->vlan_features |
3183 						     NETIF_F_HW_VLAN_CTAG_TX |
3184 						     NETIF_F_HW_VLAN_STAG_TX);
3185 
3186 	if (dev->netdev_ops->ndo_features_check)
3187 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3188 								features);
3189 	else
3190 		features &= dflt_features_check(skb, dev, features);
3191 
3192 	return harmonize_features(skb, features);
3193 }
3194 EXPORT_SYMBOL(netif_skb_features);
3195 
3196 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3197 		    struct netdev_queue *txq, bool more)
3198 {
3199 	unsigned int len;
3200 	int rc;
3201 
3202 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3203 		dev_queue_xmit_nit(skb, dev);
3204 
3205 	len = skb->len;
3206 	trace_net_dev_start_xmit(skb, dev);
3207 	rc = netdev_start_xmit(skb, dev, txq, more);
3208 	trace_net_dev_xmit(skb, rc, dev, len);
3209 
3210 	return rc;
3211 }
3212 
3213 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3214 				    struct netdev_queue *txq, int *ret)
3215 {
3216 	struct sk_buff *skb = first;
3217 	int rc = NETDEV_TX_OK;
3218 
3219 	while (skb) {
3220 		struct sk_buff *next = skb->next;
3221 
3222 		skb->next = NULL;
3223 		rc = xmit_one(skb, dev, txq, next != NULL);
3224 		if (unlikely(!dev_xmit_complete(rc))) {
3225 			skb->next = next;
3226 			goto out;
3227 		}
3228 
3229 		skb = next;
3230 		if (netif_xmit_stopped(txq) && skb) {
3231 			rc = NETDEV_TX_BUSY;
3232 			break;
3233 		}
3234 	}
3235 
3236 out:
3237 	*ret = rc;
3238 	return skb;
3239 }
3240 
3241 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3242 					  netdev_features_t features)
3243 {
3244 	if (skb_vlan_tag_present(skb) &&
3245 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3246 		skb = __vlan_hwaccel_push_inside(skb);
3247 	return skb;
3248 }
3249 
3250 int skb_csum_hwoffload_help(struct sk_buff *skb,
3251 			    const netdev_features_t features)
3252 {
3253 	if (unlikely(skb->csum_not_inet))
3254 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3255 			skb_crc32c_csum_help(skb);
3256 
3257 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3258 }
3259 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3260 
3261 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3262 {
3263 	netdev_features_t features;
3264 
3265 	features = netif_skb_features(skb);
3266 	skb = validate_xmit_vlan(skb, features);
3267 	if (unlikely(!skb))
3268 		goto out_null;
3269 
3270 	skb = sk_validate_xmit_skb(skb, dev);
3271 	if (unlikely(!skb))
3272 		goto out_null;
3273 
3274 	if (netif_needs_gso(skb, features)) {
3275 		struct sk_buff *segs;
3276 
3277 		segs = skb_gso_segment(skb, features);
3278 		if (IS_ERR(segs)) {
3279 			goto out_kfree_skb;
3280 		} else if (segs) {
3281 			consume_skb(skb);
3282 			skb = segs;
3283 		}
3284 	} else {
3285 		if (skb_needs_linearize(skb, features) &&
3286 		    __skb_linearize(skb))
3287 			goto out_kfree_skb;
3288 
3289 		/* If packet is not checksummed and device does not
3290 		 * support checksumming for this protocol, complete
3291 		 * checksumming here.
3292 		 */
3293 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3294 			if (skb->encapsulation)
3295 				skb_set_inner_transport_header(skb,
3296 							       skb_checksum_start_offset(skb));
3297 			else
3298 				skb_set_transport_header(skb,
3299 							 skb_checksum_start_offset(skb));
3300 			if (skb_csum_hwoffload_help(skb, features))
3301 				goto out_kfree_skb;
3302 		}
3303 	}
3304 
3305 	skb = validate_xmit_xfrm(skb, features, again);
3306 
3307 	return skb;
3308 
3309 out_kfree_skb:
3310 	kfree_skb(skb);
3311 out_null:
3312 	atomic_long_inc(&dev->tx_dropped);
3313 	return NULL;
3314 }
3315 
3316 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3317 {
3318 	struct sk_buff *next, *head = NULL, *tail;
3319 
3320 	for (; skb != NULL; skb = next) {
3321 		next = skb->next;
3322 		skb->next = NULL;
3323 
3324 		/* in case skb wont be segmented, point to itself */
3325 		skb->prev = skb;
3326 
3327 		skb = validate_xmit_skb(skb, dev, again);
3328 		if (!skb)
3329 			continue;
3330 
3331 		if (!head)
3332 			head = skb;
3333 		else
3334 			tail->next = skb;
3335 		/* If skb was segmented, skb->prev points to
3336 		 * the last segment. If not, it still contains skb.
3337 		 */
3338 		tail = skb->prev;
3339 	}
3340 	return head;
3341 }
3342 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3343 
3344 static void qdisc_pkt_len_init(struct sk_buff *skb)
3345 {
3346 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3347 
3348 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3349 
3350 	/* To get more precise estimation of bytes sent on wire,
3351 	 * we add to pkt_len the headers size of all segments
3352 	 */
3353 	if (shinfo->gso_size)  {
3354 		unsigned int hdr_len;
3355 		u16 gso_segs = shinfo->gso_segs;
3356 
3357 		/* mac layer + network layer */
3358 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3359 
3360 		/* + transport layer */
3361 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3362 			const struct tcphdr *th;
3363 			struct tcphdr _tcphdr;
3364 
3365 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3366 						sizeof(_tcphdr), &_tcphdr);
3367 			if (likely(th))
3368 				hdr_len += __tcp_hdrlen(th);
3369 		} else {
3370 			struct udphdr _udphdr;
3371 
3372 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3373 					       sizeof(_udphdr), &_udphdr))
3374 				hdr_len += sizeof(struct udphdr);
3375 		}
3376 
3377 		if (shinfo->gso_type & SKB_GSO_DODGY)
3378 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3379 						shinfo->gso_size);
3380 
3381 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3382 	}
3383 }
3384 
3385 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3386 				 struct net_device *dev,
3387 				 struct netdev_queue *txq)
3388 {
3389 	spinlock_t *root_lock = qdisc_lock(q);
3390 	struct sk_buff *to_free = NULL;
3391 	bool contended;
3392 	int rc;
3393 
3394 	qdisc_calculate_pkt_len(skb, q);
3395 
3396 	if (q->flags & TCQ_F_NOLOCK) {
3397 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3398 			__qdisc_drop(skb, &to_free);
3399 			rc = NET_XMIT_DROP;
3400 		} else {
3401 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3402 			qdisc_run(q);
3403 		}
3404 
3405 		if (unlikely(to_free))
3406 			kfree_skb_list(to_free);
3407 		return rc;
3408 	}
3409 
3410 	/*
3411 	 * Heuristic to force contended enqueues to serialize on a
3412 	 * separate lock before trying to get qdisc main lock.
3413 	 * This permits qdisc->running owner to get the lock more
3414 	 * often and dequeue packets faster.
3415 	 */
3416 	contended = qdisc_is_running(q);
3417 	if (unlikely(contended))
3418 		spin_lock(&q->busylock);
3419 
3420 	spin_lock(root_lock);
3421 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3422 		__qdisc_drop(skb, &to_free);
3423 		rc = NET_XMIT_DROP;
3424 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3425 		   qdisc_run_begin(q)) {
3426 		/*
3427 		 * This is a work-conserving queue; there are no old skbs
3428 		 * waiting to be sent out; and the qdisc is not running -
3429 		 * xmit the skb directly.
3430 		 */
3431 
3432 		qdisc_bstats_update(q, skb);
3433 
3434 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3435 			if (unlikely(contended)) {
3436 				spin_unlock(&q->busylock);
3437 				contended = false;
3438 			}
3439 			__qdisc_run(q);
3440 		}
3441 
3442 		qdisc_run_end(q);
3443 		rc = NET_XMIT_SUCCESS;
3444 	} else {
3445 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3446 		if (qdisc_run_begin(q)) {
3447 			if (unlikely(contended)) {
3448 				spin_unlock(&q->busylock);
3449 				contended = false;
3450 			}
3451 			__qdisc_run(q);
3452 			qdisc_run_end(q);
3453 		}
3454 	}
3455 	spin_unlock(root_lock);
3456 	if (unlikely(to_free))
3457 		kfree_skb_list(to_free);
3458 	if (unlikely(contended))
3459 		spin_unlock(&q->busylock);
3460 	return rc;
3461 }
3462 
3463 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3464 static void skb_update_prio(struct sk_buff *skb)
3465 {
3466 	const struct netprio_map *map;
3467 	const struct sock *sk;
3468 	unsigned int prioidx;
3469 
3470 	if (skb->priority)
3471 		return;
3472 	map = rcu_dereference_bh(skb->dev->priomap);
3473 	if (!map)
3474 		return;
3475 	sk = skb_to_full_sk(skb);
3476 	if (!sk)
3477 		return;
3478 
3479 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3480 
3481 	if (prioidx < map->priomap_len)
3482 		skb->priority = map->priomap[prioidx];
3483 }
3484 #else
3485 #define skb_update_prio(skb)
3486 #endif
3487 
3488 DEFINE_PER_CPU(int, xmit_recursion);
3489 EXPORT_SYMBOL(xmit_recursion);
3490 
3491 /**
3492  *	dev_loopback_xmit - loop back @skb
3493  *	@net: network namespace this loopback is happening in
3494  *	@sk:  sk needed to be a netfilter okfn
3495  *	@skb: buffer to transmit
3496  */
3497 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3498 {
3499 	skb_reset_mac_header(skb);
3500 	__skb_pull(skb, skb_network_offset(skb));
3501 	skb->pkt_type = PACKET_LOOPBACK;
3502 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3503 	WARN_ON(!skb_dst(skb));
3504 	skb_dst_force(skb);
3505 	netif_rx_ni(skb);
3506 	return 0;
3507 }
3508 EXPORT_SYMBOL(dev_loopback_xmit);
3509 
3510 #ifdef CONFIG_NET_EGRESS
3511 static struct sk_buff *
3512 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3513 {
3514 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3515 	struct tcf_result cl_res;
3516 
3517 	if (!miniq)
3518 		return skb;
3519 
3520 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3521 	mini_qdisc_bstats_cpu_update(miniq, skb);
3522 
3523 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3524 	case TC_ACT_OK:
3525 	case TC_ACT_RECLASSIFY:
3526 		skb->tc_index = TC_H_MIN(cl_res.classid);
3527 		break;
3528 	case TC_ACT_SHOT:
3529 		mini_qdisc_qstats_cpu_drop(miniq);
3530 		*ret = NET_XMIT_DROP;
3531 		kfree_skb(skb);
3532 		return NULL;
3533 	case TC_ACT_STOLEN:
3534 	case TC_ACT_QUEUED:
3535 	case TC_ACT_TRAP:
3536 		*ret = NET_XMIT_SUCCESS;
3537 		consume_skb(skb);
3538 		return NULL;
3539 	case TC_ACT_REDIRECT:
3540 		/* No need to push/pop skb's mac_header here on egress! */
3541 		skb_do_redirect(skb);
3542 		*ret = NET_XMIT_SUCCESS;
3543 		return NULL;
3544 	default:
3545 		break;
3546 	}
3547 
3548 	return skb;
3549 }
3550 #endif /* CONFIG_NET_EGRESS */
3551 
3552 #ifdef CONFIG_XPS
3553 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3554 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3555 {
3556 	struct xps_map *map;
3557 	int queue_index = -1;
3558 
3559 	if (dev->num_tc) {
3560 		tci *= dev->num_tc;
3561 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3562 	}
3563 
3564 	map = rcu_dereference(dev_maps->attr_map[tci]);
3565 	if (map) {
3566 		if (map->len == 1)
3567 			queue_index = map->queues[0];
3568 		else
3569 			queue_index = map->queues[reciprocal_scale(
3570 						skb_get_hash(skb), map->len)];
3571 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3572 			queue_index = -1;
3573 	}
3574 	return queue_index;
3575 }
3576 #endif
3577 
3578 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3579 			 struct sk_buff *skb)
3580 {
3581 #ifdef CONFIG_XPS
3582 	struct xps_dev_maps *dev_maps;
3583 	struct sock *sk = skb->sk;
3584 	int queue_index = -1;
3585 
3586 	if (!static_key_false(&xps_needed))
3587 		return -1;
3588 
3589 	rcu_read_lock();
3590 	if (!static_key_false(&xps_rxqs_needed))
3591 		goto get_cpus_map;
3592 
3593 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3594 	if (dev_maps) {
3595 		int tci = sk_rx_queue_get(sk);
3596 
3597 		if (tci >= 0 && tci < dev->num_rx_queues)
3598 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3599 							  tci);
3600 	}
3601 
3602 get_cpus_map:
3603 	if (queue_index < 0) {
3604 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3605 		if (dev_maps) {
3606 			unsigned int tci = skb->sender_cpu - 1;
3607 
3608 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3609 							  tci);
3610 		}
3611 	}
3612 	rcu_read_unlock();
3613 
3614 	return queue_index;
3615 #else
3616 	return -1;
3617 #endif
3618 }
3619 
3620 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3621 		     struct net_device *sb_dev,
3622 		     select_queue_fallback_t fallback)
3623 {
3624 	return 0;
3625 }
3626 EXPORT_SYMBOL(dev_pick_tx_zero);
3627 
3628 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3629 		       struct net_device *sb_dev,
3630 		       select_queue_fallback_t fallback)
3631 {
3632 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3633 }
3634 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3635 
3636 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3637 			    struct net_device *sb_dev)
3638 {
3639 	struct sock *sk = skb->sk;
3640 	int queue_index = sk_tx_queue_get(sk);
3641 
3642 	sb_dev = sb_dev ? : dev;
3643 
3644 	if (queue_index < 0 || skb->ooo_okay ||
3645 	    queue_index >= dev->real_num_tx_queues) {
3646 		int new_index = get_xps_queue(dev, sb_dev, skb);
3647 
3648 		if (new_index < 0)
3649 			new_index = skb_tx_hash(dev, sb_dev, skb);
3650 
3651 		if (queue_index != new_index && sk &&
3652 		    sk_fullsock(sk) &&
3653 		    rcu_access_pointer(sk->sk_dst_cache))
3654 			sk_tx_queue_set(sk, new_index);
3655 
3656 		queue_index = new_index;
3657 	}
3658 
3659 	return queue_index;
3660 }
3661 
3662 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3663 				    struct sk_buff *skb,
3664 				    struct net_device *sb_dev)
3665 {
3666 	int queue_index = 0;
3667 
3668 #ifdef CONFIG_XPS
3669 	u32 sender_cpu = skb->sender_cpu - 1;
3670 
3671 	if (sender_cpu >= (u32)NR_CPUS)
3672 		skb->sender_cpu = raw_smp_processor_id() + 1;
3673 #endif
3674 
3675 	if (dev->real_num_tx_queues != 1) {
3676 		const struct net_device_ops *ops = dev->netdev_ops;
3677 
3678 		if (ops->ndo_select_queue)
3679 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3680 							    __netdev_pick_tx);
3681 		else
3682 			queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3683 
3684 		queue_index = netdev_cap_txqueue(dev, queue_index);
3685 	}
3686 
3687 	skb_set_queue_mapping(skb, queue_index);
3688 	return netdev_get_tx_queue(dev, queue_index);
3689 }
3690 
3691 /**
3692  *	__dev_queue_xmit - transmit a buffer
3693  *	@skb: buffer to transmit
3694  *	@sb_dev: suboordinate device used for L2 forwarding offload
3695  *
3696  *	Queue a buffer for transmission to a network device. The caller must
3697  *	have set the device and priority and built the buffer before calling
3698  *	this function. The function can be called from an interrupt.
3699  *
3700  *	A negative errno code is returned on a failure. A success does not
3701  *	guarantee the frame will be transmitted as it may be dropped due
3702  *	to congestion or traffic shaping.
3703  *
3704  * -----------------------------------------------------------------------------------
3705  *      I notice this method can also return errors from the queue disciplines,
3706  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3707  *      be positive.
3708  *
3709  *      Regardless of the return value, the skb is consumed, so it is currently
3710  *      difficult to retry a send to this method.  (You can bump the ref count
3711  *      before sending to hold a reference for retry if you are careful.)
3712  *
3713  *      When calling this method, interrupts MUST be enabled.  This is because
3714  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3715  *          --BLG
3716  */
3717 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3718 {
3719 	struct net_device *dev = skb->dev;
3720 	struct netdev_queue *txq;
3721 	struct Qdisc *q;
3722 	int rc = -ENOMEM;
3723 	bool again = false;
3724 
3725 	skb_reset_mac_header(skb);
3726 
3727 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3728 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3729 
3730 	/* Disable soft irqs for various locks below. Also
3731 	 * stops preemption for RCU.
3732 	 */
3733 	rcu_read_lock_bh();
3734 
3735 	skb_update_prio(skb);
3736 
3737 	qdisc_pkt_len_init(skb);
3738 #ifdef CONFIG_NET_CLS_ACT
3739 	skb->tc_at_ingress = 0;
3740 # ifdef CONFIG_NET_EGRESS
3741 	if (static_branch_unlikely(&egress_needed_key)) {
3742 		skb = sch_handle_egress(skb, &rc, dev);
3743 		if (!skb)
3744 			goto out;
3745 	}
3746 # endif
3747 #endif
3748 	/* If device/qdisc don't need skb->dst, release it right now while
3749 	 * its hot in this cpu cache.
3750 	 */
3751 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3752 		skb_dst_drop(skb);
3753 	else
3754 		skb_dst_force(skb);
3755 
3756 	txq = netdev_pick_tx(dev, skb, sb_dev);
3757 	q = rcu_dereference_bh(txq->qdisc);
3758 
3759 	trace_net_dev_queue(skb);
3760 	if (q->enqueue) {
3761 		rc = __dev_xmit_skb(skb, q, dev, txq);
3762 		goto out;
3763 	}
3764 
3765 	/* The device has no queue. Common case for software devices:
3766 	 * loopback, all the sorts of tunnels...
3767 
3768 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3769 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3770 	 * counters.)
3771 	 * However, it is possible, that they rely on protection
3772 	 * made by us here.
3773 
3774 	 * Check this and shot the lock. It is not prone from deadlocks.
3775 	 *Either shot noqueue qdisc, it is even simpler 8)
3776 	 */
3777 	if (dev->flags & IFF_UP) {
3778 		int cpu = smp_processor_id(); /* ok because BHs are off */
3779 
3780 		if (txq->xmit_lock_owner != cpu) {
3781 			if (unlikely(__this_cpu_read(xmit_recursion) >
3782 				     XMIT_RECURSION_LIMIT))
3783 				goto recursion_alert;
3784 
3785 			skb = validate_xmit_skb(skb, dev, &again);
3786 			if (!skb)
3787 				goto out;
3788 
3789 			HARD_TX_LOCK(dev, txq, cpu);
3790 
3791 			if (!netif_xmit_stopped(txq)) {
3792 				__this_cpu_inc(xmit_recursion);
3793 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3794 				__this_cpu_dec(xmit_recursion);
3795 				if (dev_xmit_complete(rc)) {
3796 					HARD_TX_UNLOCK(dev, txq);
3797 					goto out;
3798 				}
3799 			}
3800 			HARD_TX_UNLOCK(dev, txq);
3801 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3802 					     dev->name);
3803 		} else {
3804 			/* Recursion is detected! It is possible,
3805 			 * unfortunately
3806 			 */
3807 recursion_alert:
3808 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3809 					     dev->name);
3810 		}
3811 	}
3812 
3813 	rc = -ENETDOWN;
3814 	rcu_read_unlock_bh();
3815 
3816 	atomic_long_inc(&dev->tx_dropped);
3817 	kfree_skb_list(skb);
3818 	return rc;
3819 out:
3820 	rcu_read_unlock_bh();
3821 	return rc;
3822 }
3823 
3824 int dev_queue_xmit(struct sk_buff *skb)
3825 {
3826 	return __dev_queue_xmit(skb, NULL);
3827 }
3828 EXPORT_SYMBOL(dev_queue_xmit);
3829 
3830 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3831 {
3832 	return __dev_queue_xmit(skb, sb_dev);
3833 }
3834 EXPORT_SYMBOL(dev_queue_xmit_accel);
3835 
3836 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3837 {
3838 	struct net_device *dev = skb->dev;
3839 	struct sk_buff *orig_skb = skb;
3840 	struct netdev_queue *txq;
3841 	int ret = NETDEV_TX_BUSY;
3842 	bool again = false;
3843 
3844 	if (unlikely(!netif_running(dev) ||
3845 		     !netif_carrier_ok(dev)))
3846 		goto drop;
3847 
3848 	skb = validate_xmit_skb_list(skb, dev, &again);
3849 	if (skb != orig_skb)
3850 		goto drop;
3851 
3852 	skb_set_queue_mapping(skb, queue_id);
3853 	txq = skb_get_tx_queue(dev, skb);
3854 
3855 	local_bh_disable();
3856 
3857 	HARD_TX_LOCK(dev, txq, smp_processor_id());
3858 	if (!netif_xmit_frozen_or_drv_stopped(txq))
3859 		ret = netdev_start_xmit(skb, dev, txq, false);
3860 	HARD_TX_UNLOCK(dev, txq);
3861 
3862 	local_bh_enable();
3863 
3864 	if (!dev_xmit_complete(ret))
3865 		kfree_skb(skb);
3866 
3867 	return ret;
3868 drop:
3869 	atomic_long_inc(&dev->tx_dropped);
3870 	kfree_skb_list(skb);
3871 	return NET_XMIT_DROP;
3872 }
3873 EXPORT_SYMBOL(dev_direct_xmit);
3874 
3875 /*************************************************************************
3876  *			Receiver routines
3877  *************************************************************************/
3878 
3879 int netdev_max_backlog __read_mostly = 1000;
3880 EXPORT_SYMBOL(netdev_max_backlog);
3881 
3882 int netdev_tstamp_prequeue __read_mostly = 1;
3883 int netdev_budget __read_mostly = 300;
3884 unsigned int __read_mostly netdev_budget_usecs = 2000;
3885 int weight_p __read_mostly = 64;           /* old backlog weight */
3886 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3887 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3888 int dev_rx_weight __read_mostly = 64;
3889 int dev_tx_weight __read_mostly = 64;
3890 
3891 /* Called with irq disabled */
3892 static inline void ____napi_schedule(struct softnet_data *sd,
3893 				     struct napi_struct *napi)
3894 {
3895 	list_add_tail(&napi->poll_list, &sd->poll_list);
3896 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3897 }
3898 
3899 #ifdef CONFIG_RPS
3900 
3901 /* One global table that all flow-based protocols share. */
3902 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3903 EXPORT_SYMBOL(rps_sock_flow_table);
3904 u32 rps_cpu_mask __read_mostly;
3905 EXPORT_SYMBOL(rps_cpu_mask);
3906 
3907 struct static_key rps_needed __read_mostly;
3908 EXPORT_SYMBOL(rps_needed);
3909 struct static_key rfs_needed __read_mostly;
3910 EXPORT_SYMBOL(rfs_needed);
3911 
3912 static struct rps_dev_flow *
3913 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3914 	    struct rps_dev_flow *rflow, u16 next_cpu)
3915 {
3916 	if (next_cpu < nr_cpu_ids) {
3917 #ifdef CONFIG_RFS_ACCEL
3918 		struct netdev_rx_queue *rxqueue;
3919 		struct rps_dev_flow_table *flow_table;
3920 		struct rps_dev_flow *old_rflow;
3921 		u32 flow_id;
3922 		u16 rxq_index;
3923 		int rc;
3924 
3925 		/* Should we steer this flow to a different hardware queue? */
3926 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3927 		    !(dev->features & NETIF_F_NTUPLE))
3928 			goto out;
3929 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3930 		if (rxq_index == skb_get_rx_queue(skb))
3931 			goto out;
3932 
3933 		rxqueue = dev->_rx + rxq_index;
3934 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3935 		if (!flow_table)
3936 			goto out;
3937 		flow_id = skb_get_hash(skb) & flow_table->mask;
3938 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3939 							rxq_index, flow_id);
3940 		if (rc < 0)
3941 			goto out;
3942 		old_rflow = rflow;
3943 		rflow = &flow_table->flows[flow_id];
3944 		rflow->filter = rc;
3945 		if (old_rflow->filter == rflow->filter)
3946 			old_rflow->filter = RPS_NO_FILTER;
3947 	out:
3948 #endif
3949 		rflow->last_qtail =
3950 			per_cpu(softnet_data, next_cpu).input_queue_head;
3951 	}
3952 
3953 	rflow->cpu = next_cpu;
3954 	return rflow;
3955 }
3956 
3957 /*
3958  * get_rps_cpu is called from netif_receive_skb and returns the target
3959  * CPU from the RPS map of the receiving queue for a given skb.
3960  * rcu_read_lock must be held on entry.
3961  */
3962 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3963 		       struct rps_dev_flow **rflowp)
3964 {
3965 	const struct rps_sock_flow_table *sock_flow_table;
3966 	struct netdev_rx_queue *rxqueue = dev->_rx;
3967 	struct rps_dev_flow_table *flow_table;
3968 	struct rps_map *map;
3969 	int cpu = -1;
3970 	u32 tcpu;
3971 	u32 hash;
3972 
3973 	if (skb_rx_queue_recorded(skb)) {
3974 		u16 index = skb_get_rx_queue(skb);
3975 
3976 		if (unlikely(index >= dev->real_num_rx_queues)) {
3977 			WARN_ONCE(dev->real_num_rx_queues > 1,
3978 				  "%s received packet on queue %u, but number "
3979 				  "of RX queues is %u\n",
3980 				  dev->name, index, dev->real_num_rx_queues);
3981 			goto done;
3982 		}
3983 		rxqueue += index;
3984 	}
3985 
3986 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3987 
3988 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3989 	map = rcu_dereference(rxqueue->rps_map);
3990 	if (!flow_table && !map)
3991 		goto done;
3992 
3993 	skb_reset_network_header(skb);
3994 	hash = skb_get_hash(skb);
3995 	if (!hash)
3996 		goto done;
3997 
3998 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3999 	if (flow_table && sock_flow_table) {
4000 		struct rps_dev_flow *rflow;
4001 		u32 next_cpu;
4002 		u32 ident;
4003 
4004 		/* First check into global flow table if there is a match */
4005 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4006 		if ((ident ^ hash) & ~rps_cpu_mask)
4007 			goto try_rps;
4008 
4009 		next_cpu = ident & rps_cpu_mask;
4010 
4011 		/* OK, now we know there is a match,
4012 		 * we can look at the local (per receive queue) flow table
4013 		 */
4014 		rflow = &flow_table->flows[hash & flow_table->mask];
4015 		tcpu = rflow->cpu;
4016 
4017 		/*
4018 		 * If the desired CPU (where last recvmsg was done) is
4019 		 * different from current CPU (one in the rx-queue flow
4020 		 * table entry), switch if one of the following holds:
4021 		 *   - Current CPU is unset (>= nr_cpu_ids).
4022 		 *   - Current CPU is offline.
4023 		 *   - The current CPU's queue tail has advanced beyond the
4024 		 *     last packet that was enqueued using this table entry.
4025 		 *     This guarantees that all previous packets for the flow
4026 		 *     have been dequeued, thus preserving in order delivery.
4027 		 */
4028 		if (unlikely(tcpu != next_cpu) &&
4029 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4030 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4031 		      rflow->last_qtail)) >= 0)) {
4032 			tcpu = next_cpu;
4033 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4034 		}
4035 
4036 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4037 			*rflowp = rflow;
4038 			cpu = tcpu;
4039 			goto done;
4040 		}
4041 	}
4042 
4043 try_rps:
4044 
4045 	if (map) {
4046 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4047 		if (cpu_online(tcpu)) {
4048 			cpu = tcpu;
4049 			goto done;
4050 		}
4051 	}
4052 
4053 done:
4054 	return cpu;
4055 }
4056 
4057 #ifdef CONFIG_RFS_ACCEL
4058 
4059 /**
4060  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4061  * @dev: Device on which the filter was set
4062  * @rxq_index: RX queue index
4063  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4064  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4065  *
4066  * Drivers that implement ndo_rx_flow_steer() should periodically call
4067  * this function for each installed filter and remove the filters for
4068  * which it returns %true.
4069  */
4070 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4071 			 u32 flow_id, u16 filter_id)
4072 {
4073 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4074 	struct rps_dev_flow_table *flow_table;
4075 	struct rps_dev_flow *rflow;
4076 	bool expire = true;
4077 	unsigned int cpu;
4078 
4079 	rcu_read_lock();
4080 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4081 	if (flow_table && flow_id <= flow_table->mask) {
4082 		rflow = &flow_table->flows[flow_id];
4083 		cpu = READ_ONCE(rflow->cpu);
4084 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4085 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4086 			   rflow->last_qtail) <
4087 		     (int)(10 * flow_table->mask)))
4088 			expire = false;
4089 	}
4090 	rcu_read_unlock();
4091 	return expire;
4092 }
4093 EXPORT_SYMBOL(rps_may_expire_flow);
4094 
4095 #endif /* CONFIG_RFS_ACCEL */
4096 
4097 /* Called from hardirq (IPI) context */
4098 static void rps_trigger_softirq(void *data)
4099 {
4100 	struct softnet_data *sd = data;
4101 
4102 	____napi_schedule(sd, &sd->backlog);
4103 	sd->received_rps++;
4104 }
4105 
4106 #endif /* CONFIG_RPS */
4107 
4108 /*
4109  * Check if this softnet_data structure is another cpu one
4110  * If yes, queue it to our IPI list and return 1
4111  * If no, return 0
4112  */
4113 static int rps_ipi_queued(struct softnet_data *sd)
4114 {
4115 #ifdef CONFIG_RPS
4116 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4117 
4118 	if (sd != mysd) {
4119 		sd->rps_ipi_next = mysd->rps_ipi_list;
4120 		mysd->rps_ipi_list = sd;
4121 
4122 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4123 		return 1;
4124 	}
4125 #endif /* CONFIG_RPS */
4126 	return 0;
4127 }
4128 
4129 #ifdef CONFIG_NET_FLOW_LIMIT
4130 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4131 #endif
4132 
4133 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4134 {
4135 #ifdef CONFIG_NET_FLOW_LIMIT
4136 	struct sd_flow_limit *fl;
4137 	struct softnet_data *sd;
4138 	unsigned int old_flow, new_flow;
4139 
4140 	if (qlen < (netdev_max_backlog >> 1))
4141 		return false;
4142 
4143 	sd = this_cpu_ptr(&softnet_data);
4144 
4145 	rcu_read_lock();
4146 	fl = rcu_dereference(sd->flow_limit);
4147 	if (fl) {
4148 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4149 		old_flow = fl->history[fl->history_head];
4150 		fl->history[fl->history_head] = new_flow;
4151 
4152 		fl->history_head++;
4153 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4154 
4155 		if (likely(fl->buckets[old_flow]))
4156 			fl->buckets[old_flow]--;
4157 
4158 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4159 			fl->count++;
4160 			rcu_read_unlock();
4161 			return true;
4162 		}
4163 	}
4164 	rcu_read_unlock();
4165 #endif
4166 	return false;
4167 }
4168 
4169 /*
4170  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4171  * queue (may be a remote CPU queue).
4172  */
4173 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4174 			      unsigned int *qtail)
4175 {
4176 	struct softnet_data *sd;
4177 	unsigned long flags;
4178 	unsigned int qlen;
4179 
4180 	sd = &per_cpu(softnet_data, cpu);
4181 
4182 	local_irq_save(flags);
4183 
4184 	rps_lock(sd);
4185 	if (!netif_running(skb->dev))
4186 		goto drop;
4187 	qlen = skb_queue_len(&sd->input_pkt_queue);
4188 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4189 		if (qlen) {
4190 enqueue:
4191 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4192 			input_queue_tail_incr_save(sd, qtail);
4193 			rps_unlock(sd);
4194 			local_irq_restore(flags);
4195 			return NET_RX_SUCCESS;
4196 		}
4197 
4198 		/* Schedule NAPI for backlog device
4199 		 * We can use non atomic operation since we own the queue lock
4200 		 */
4201 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4202 			if (!rps_ipi_queued(sd))
4203 				____napi_schedule(sd, &sd->backlog);
4204 		}
4205 		goto enqueue;
4206 	}
4207 
4208 drop:
4209 	sd->dropped++;
4210 	rps_unlock(sd);
4211 
4212 	local_irq_restore(flags);
4213 
4214 	atomic_long_inc(&skb->dev->rx_dropped);
4215 	kfree_skb(skb);
4216 	return NET_RX_DROP;
4217 }
4218 
4219 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4220 {
4221 	struct net_device *dev = skb->dev;
4222 	struct netdev_rx_queue *rxqueue;
4223 
4224 	rxqueue = dev->_rx;
4225 
4226 	if (skb_rx_queue_recorded(skb)) {
4227 		u16 index = skb_get_rx_queue(skb);
4228 
4229 		if (unlikely(index >= dev->real_num_rx_queues)) {
4230 			WARN_ONCE(dev->real_num_rx_queues > 1,
4231 				  "%s received packet on queue %u, but number "
4232 				  "of RX queues is %u\n",
4233 				  dev->name, index, dev->real_num_rx_queues);
4234 
4235 			return rxqueue; /* Return first rxqueue */
4236 		}
4237 		rxqueue += index;
4238 	}
4239 	return rxqueue;
4240 }
4241 
4242 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4243 				     struct xdp_buff *xdp,
4244 				     struct bpf_prog *xdp_prog)
4245 {
4246 	struct netdev_rx_queue *rxqueue;
4247 	void *orig_data, *orig_data_end;
4248 	u32 metalen, act = XDP_DROP;
4249 	int hlen, off;
4250 	u32 mac_len;
4251 
4252 	/* Reinjected packets coming from act_mirred or similar should
4253 	 * not get XDP generic processing.
4254 	 */
4255 	if (skb_cloned(skb))
4256 		return XDP_PASS;
4257 
4258 	/* XDP packets must be linear and must have sufficient headroom
4259 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4260 	 * native XDP provides, thus we need to do it here as well.
4261 	 */
4262 	if (skb_is_nonlinear(skb) ||
4263 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4264 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4265 		int troom = skb->tail + skb->data_len - skb->end;
4266 
4267 		/* In case we have to go down the path and also linearize,
4268 		 * then lets do the pskb_expand_head() work just once here.
4269 		 */
4270 		if (pskb_expand_head(skb,
4271 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4272 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4273 			goto do_drop;
4274 		if (skb_linearize(skb))
4275 			goto do_drop;
4276 	}
4277 
4278 	/* The XDP program wants to see the packet starting at the MAC
4279 	 * header.
4280 	 */
4281 	mac_len = skb->data - skb_mac_header(skb);
4282 	hlen = skb_headlen(skb) + mac_len;
4283 	xdp->data = skb->data - mac_len;
4284 	xdp->data_meta = xdp->data;
4285 	xdp->data_end = xdp->data + hlen;
4286 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4287 	orig_data_end = xdp->data_end;
4288 	orig_data = xdp->data;
4289 
4290 	rxqueue = netif_get_rxqueue(skb);
4291 	xdp->rxq = &rxqueue->xdp_rxq;
4292 
4293 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4294 
4295 	off = xdp->data - orig_data;
4296 	if (off > 0)
4297 		__skb_pull(skb, off);
4298 	else if (off < 0)
4299 		__skb_push(skb, -off);
4300 	skb->mac_header += off;
4301 
4302 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4303 	 * pckt.
4304 	 */
4305 	off = orig_data_end - xdp->data_end;
4306 	if (off != 0) {
4307 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4308 		skb->len -= off;
4309 
4310 	}
4311 
4312 	switch (act) {
4313 	case XDP_REDIRECT:
4314 	case XDP_TX:
4315 		__skb_push(skb, mac_len);
4316 		break;
4317 	case XDP_PASS:
4318 		metalen = xdp->data - xdp->data_meta;
4319 		if (metalen)
4320 			skb_metadata_set(skb, metalen);
4321 		break;
4322 	default:
4323 		bpf_warn_invalid_xdp_action(act);
4324 		/* fall through */
4325 	case XDP_ABORTED:
4326 		trace_xdp_exception(skb->dev, xdp_prog, act);
4327 		/* fall through */
4328 	case XDP_DROP:
4329 	do_drop:
4330 		kfree_skb(skb);
4331 		break;
4332 	}
4333 
4334 	return act;
4335 }
4336 
4337 /* When doing generic XDP we have to bypass the qdisc layer and the
4338  * network taps in order to match in-driver-XDP behavior.
4339  */
4340 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4341 {
4342 	struct net_device *dev = skb->dev;
4343 	struct netdev_queue *txq;
4344 	bool free_skb = true;
4345 	int cpu, rc;
4346 
4347 	txq = netdev_pick_tx(dev, skb, NULL);
4348 	cpu = smp_processor_id();
4349 	HARD_TX_LOCK(dev, txq, cpu);
4350 	if (!netif_xmit_stopped(txq)) {
4351 		rc = netdev_start_xmit(skb, dev, txq, 0);
4352 		if (dev_xmit_complete(rc))
4353 			free_skb = false;
4354 	}
4355 	HARD_TX_UNLOCK(dev, txq);
4356 	if (free_skb) {
4357 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4358 		kfree_skb(skb);
4359 	}
4360 }
4361 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4362 
4363 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4364 
4365 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4366 {
4367 	if (xdp_prog) {
4368 		struct xdp_buff xdp;
4369 		u32 act;
4370 		int err;
4371 
4372 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4373 		if (act != XDP_PASS) {
4374 			switch (act) {
4375 			case XDP_REDIRECT:
4376 				err = xdp_do_generic_redirect(skb->dev, skb,
4377 							      &xdp, xdp_prog);
4378 				if (err)
4379 					goto out_redir;
4380 				break;
4381 			case XDP_TX:
4382 				generic_xdp_tx(skb, xdp_prog);
4383 				break;
4384 			}
4385 			return XDP_DROP;
4386 		}
4387 	}
4388 	return XDP_PASS;
4389 out_redir:
4390 	kfree_skb(skb);
4391 	return XDP_DROP;
4392 }
4393 EXPORT_SYMBOL_GPL(do_xdp_generic);
4394 
4395 static int netif_rx_internal(struct sk_buff *skb)
4396 {
4397 	int ret;
4398 
4399 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4400 
4401 	trace_netif_rx(skb);
4402 
4403 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4404 		int ret;
4405 
4406 		preempt_disable();
4407 		rcu_read_lock();
4408 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4409 		rcu_read_unlock();
4410 		preempt_enable();
4411 
4412 		/* Consider XDP consuming the packet a success from
4413 		 * the netdev point of view we do not want to count
4414 		 * this as an error.
4415 		 */
4416 		if (ret != XDP_PASS)
4417 			return NET_RX_SUCCESS;
4418 	}
4419 
4420 #ifdef CONFIG_RPS
4421 	if (static_key_false(&rps_needed)) {
4422 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4423 		int cpu;
4424 
4425 		preempt_disable();
4426 		rcu_read_lock();
4427 
4428 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4429 		if (cpu < 0)
4430 			cpu = smp_processor_id();
4431 
4432 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4433 
4434 		rcu_read_unlock();
4435 		preempt_enable();
4436 	} else
4437 #endif
4438 	{
4439 		unsigned int qtail;
4440 
4441 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4442 		put_cpu();
4443 	}
4444 	return ret;
4445 }
4446 
4447 /**
4448  *	netif_rx	-	post buffer to the network code
4449  *	@skb: buffer to post
4450  *
4451  *	This function receives a packet from a device driver and queues it for
4452  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4453  *	may be dropped during processing for congestion control or by the
4454  *	protocol layers.
4455  *
4456  *	return values:
4457  *	NET_RX_SUCCESS	(no congestion)
4458  *	NET_RX_DROP     (packet was dropped)
4459  *
4460  */
4461 
4462 int netif_rx(struct sk_buff *skb)
4463 {
4464 	trace_netif_rx_entry(skb);
4465 
4466 	return netif_rx_internal(skb);
4467 }
4468 EXPORT_SYMBOL(netif_rx);
4469 
4470 int netif_rx_ni(struct sk_buff *skb)
4471 {
4472 	int err;
4473 
4474 	trace_netif_rx_ni_entry(skb);
4475 
4476 	preempt_disable();
4477 	err = netif_rx_internal(skb);
4478 	if (local_softirq_pending())
4479 		do_softirq();
4480 	preempt_enable();
4481 
4482 	return err;
4483 }
4484 EXPORT_SYMBOL(netif_rx_ni);
4485 
4486 static __latent_entropy void net_tx_action(struct softirq_action *h)
4487 {
4488 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4489 
4490 	if (sd->completion_queue) {
4491 		struct sk_buff *clist;
4492 
4493 		local_irq_disable();
4494 		clist = sd->completion_queue;
4495 		sd->completion_queue = NULL;
4496 		local_irq_enable();
4497 
4498 		while (clist) {
4499 			struct sk_buff *skb = clist;
4500 
4501 			clist = clist->next;
4502 
4503 			WARN_ON(refcount_read(&skb->users));
4504 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4505 				trace_consume_skb(skb);
4506 			else
4507 				trace_kfree_skb(skb, net_tx_action);
4508 
4509 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4510 				__kfree_skb(skb);
4511 			else
4512 				__kfree_skb_defer(skb);
4513 		}
4514 
4515 		__kfree_skb_flush();
4516 	}
4517 
4518 	if (sd->output_queue) {
4519 		struct Qdisc *head;
4520 
4521 		local_irq_disable();
4522 		head = sd->output_queue;
4523 		sd->output_queue = NULL;
4524 		sd->output_queue_tailp = &sd->output_queue;
4525 		local_irq_enable();
4526 
4527 		while (head) {
4528 			struct Qdisc *q = head;
4529 			spinlock_t *root_lock = NULL;
4530 
4531 			head = head->next_sched;
4532 
4533 			if (!(q->flags & TCQ_F_NOLOCK)) {
4534 				root_lock = qdisc_lock(q);
4535 				spin_lock(root_lock);
4536 			}
4537 			/* We need to make sure head->next_sched is read
4538 			 * before clearing __QDISC_STATE_SCHED
4539 			 */
4540 			smp_mb__before_atomic();
4541 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4542 			qdisc_run(q);
4543 			if (root_lock)
4544 				spin_unlock(root_lock);
4545 		}
4546 	}
4547 
4548 	xfrm_dev_backlog(sd);
4549 }
4550 
4551 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4552 /* This hook is defined here for ATM LANE */
4553 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4554 			     unsigned char *addr) __read_mostly;
4555 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4556 #endif
4557 
4558 static inline struct sk_buff *
4559 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4560 		   struct net_device *orig_dev)
4561 {
4562 #ifdef CONFIG_NET_CLS_ACT
4563 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4564 	struct tcf_result cl_res;
4565 
4566 	/* If there's at least one ingress present somewhere (so
4567 	 * we get here via enabled static key), remaining devices
4568 	 * that are not configured with an ingress qdisc will bail
4569 	 * out here.
4570 	 */
4571 	if (!miniq)
4572 		return skb;
4573 
4574 	if (*pt_prev) {
4575 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4576 		*pt_prev = NULL;
4577 	}
4578 
4579 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4580 	skb->tc_at_ingress = 1;
4581 	mini_qdisc_bstats_cpu_update(miniq, skb);
4582 
4583 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4584 	case TC_ACT_OK:
4585 	case TC_ACT_RECLASSIFY:
4586 		skb->tc_index = TC_H_MIN(cl_res.classid);
4587 		break;
4588 	case TC_ACT_SHOT:
4589 		mini_qdisc_qstats_cpu_drop(miniq);
4590 		kfree_skb(skb);
4591 		return NULL;
4592 	case TC_ACT_STOLEN:
4593 	case TC_ACT_QUEUED:
4594 	case TC_ACT_TRAP:
4595 		consume_skb(skb);
4596 		return NULL;
4597 	case TC_ACT_REDIRECT:
4598 		/* skb_mac_header check was done by cls/act_bpf, so
4599 		 * we can safely push the L2 header back before
4600 		 * redirecting to another netdev
4601 		 */
4602 		__skb_push(skb, skb->mac_len);
4603 		skb_do_redirect(skb);
4604 		return NULL;
4605 	default:
4606 		break;
4607 	}
4608 #endif /* CONFIG_NET_CLS_ACT */
4609 	return skb;
4610 }
4611 
4612 /**
4613  *	netdev_is_rx_handler_busy - check if receive handler is registered
4614  *	@dev: device to check
4615  *
4616  *	Check if a receive handler is already registered for a given device.
4617  *	Return true if there one.
4618  *
4619  *	The caller must hold the rtnl_mutex.
4620  */
4621 bool netdev_is_rx_handler_busy(struct net_device *dev)
4622 {
4623 	ASSERT_RTNL();
4624 	return dev && rtnl_dereference(dev->rx_handler);
4625 }
4626 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4627 
4628 /**
4629  *	netdev_rx_handler_register - register receive handler
4630  *	@dev: device to register a handler for
4631  *	@rx_handler: receive handler to register
4632  *	@rx_handler_data: data pointer that is used by rx handler
4633  *
4634  *	Register a receive handler for a device. This handler will then be
4635  *	called from __netif_receive_skb. A negative errno code is returned
4636  *	on a failure.
4637  *
4638  *	The caller must hold the rtnl_mutex.
4639  *
4640  *	For a general description of rx_handler, see enum rx_handler_result.
4641  */
4642 int netdev_rx_handler_register(struct net_device *dev,
4643 			       rx_handler_func_t *rx_handler,
4644 			       void *rx_handler_data)
4645 {
4646 	if (netdev_is_rx_handler_busy(dev))
4647 		return -EBUSY;
4648 
4649 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4650 		return -EINVAL;
4651 
4652 	/* Note: rx_handler_data must be set before rx_handler */
4653 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4654 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4655 
4656 	return 0;
4657 }
4658 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4659 
4660 /**
4661  *	netdev_rx_handler_unregister - unregister receive handler
4662  *	@dev: device to unregister a handler from
4663  *
4664  *	Unregister a receive handler from a device.
4665  *
4666  *	The caller must hold the rtnl_mutex.
4667  */
4668 void netdev_rx_handler_unregister(struct net_device *dev)
4669 {
4670 
4671 	ASSERT_RTNL();
4672 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4673 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4674 	 * section has a guarantee to see a non NULL rx_handler_data
4675 	 * as well.
4676 	 */
4677 	synchronize_net();
4678 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4679 }
4680 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4681 
4682 /*
4683  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4684  * the special handling of PFMEMALLOC skbs.
4685  */
4686 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4687 {
4688 	switch (skb->protocol) {
4689 	case htons(ETH_P_ARP):
4690 	case htons(ETH_P_IP):
4691 	case htons(ETH_P_IPV6):
4692 	case htons(ETH_P_8021Q):
4693 	case htons(ETH_P_8021AD):
4694 		return true;
4695 	default:
4696 		return false;
4697 	}
4698 }
4699 
4700 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4701 			     int *ret, struct net_device *orig_dev)
4702 {
4703 #ifdef CONFIG_NETFILTER_INGRESS
4704 	if (nf_hook_ingress_active(skb)) {
4705 		int ingress_retval;
4706 
4707 		if (*pt_prev) {
4708 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4709 			*pt_prev = NULL;
4710 		}
4711 
4712 		rcu_read_lock();
4713 		ingress_retval = nf_hook_ingress(skb);
4714 		rcu_read_unlock();
4715 		return ingress_retval;
4716 	}
4717 #endif /* CONFIG_NETFILTER_INGRESS */
4718 	return 0;
4719 }
4720 
4721 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4722 				    struct packet_type **ppt_prev)
4723 {
4724 	struct packet_type *ptype, *pt_prev;
4725 	rx_handler_func_t *rx_handler;
4726 	struct net_device *orig_dev;
4727 	bool deliver_exact = false;
4728 	int ret = NET_RX_DROP;
4729 	__be16 type;
4730 
4731 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4732 
4733 	trace_netif_receive_skb(skb);
4734 
4735 	orig_dev = skb->dev;
4736 
4737 	skb_reset_network_header(skb);
4738 	if (!skb_transport_header_was_set(skb))
4739 		skb_reset_transport_header(skb);
4740 	skb_reset_mac_len(skb);
4741 
4742 	pt_prev = NULL;
4743 
4744 another_round:
4745 	skb->skb_iif = skb->dev->ifindex;
4746 
4747 	__this_cpu_inc(softnet_data.processed);
4748 
4749 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4750 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4751 		skb = skb_vlan_untag(skb);
4752 		if (unlikely(!skb))
4753 			goto out;
4754 	}
4755 
4756 	if (skb_skip_tc_classify(skb))
4757 		goto skip_classify;
4758 
4759 	if (pfmemalloc)
4760 		goto skip_taps;
4761 
4762 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4763 		if (pt_prev)
4764 			ret = deliver_skb(skb, pt_prev, orig_dev);
4765 		pt_prev = ptype;
4766 	}
4767 
4768 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4769 		if (pt_prev)
4770 			ret = deliver_skb(skb, pt_prev, orig_dev);
4771 		pt_prev = ptype;
4772 	}
4773 
4774 skip_taps:
4775 #ifdef CONFIG_NET_INGRESS
4776 	if (static_branch_unlikely(&ingress_needed_key)) {
4777 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4778 		if (!skb)
4779 			goto out;
4780 
4781 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4782 			goto out;
4783 	}
4784 #endif
4785 	skb_reset_tc(skb);
4786 skip_classify:
4787 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4788 		goto drop;
4789 
4790 	if (skb_vlan_tag_present(skb)) {
4791 		if (pt_prev) {
4792 			ret = deliver_skb(skb, pt_prev, orig_dev);
4793 			pt_prev = NULL;
4794 		}
4795 		if (vlan_do_receive(&skb))
4796 			goto another_round;
4797 		else if (unlikely(!skb))
4798 			goto out;
4799 	}
4800 
4801 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4802 	if (rx_handler) {
4803 		if (pt_prev) {
4804 			ret = deliver_skb(skb, pt_prev, orig_dev);
4805 			pt_prev = NULL;
4806 		}
4807 		switch (rx_handler(&skb)) {
4808 		case RX_HANDLER_CONSUMED:
4809 			ret = NET_RX_SUCCESS;
4810 			goto out;
4811 		case RX_HANDLER_ANOTHER:
4812 			goto another_round;
4813 		case RX_HANDLER_EXACT:
4814 			deliver_exact = true;
4815 		case RX_HANDLER_PASS:
4816 			break;
4817 		default:
4818 			BUG();
4819 		}
4820 	}
4821 
4822 	if (unlikely(skb_vlan_tag_present(skb))) {
4823 		if (skb_vlan_tag_get_id(skb))
4824 			skb->pkt_type = PACKET_OTHERHOST;
4825 		/* Note: we might in the future use prio bits
4826 		 * and set skb->priority like in vlan_do_receive()
4827 		 * For the time being, just ignore Priority Code Point
4828 		 */
4829 		skb->vlan_tci = 0;
4830 	}
4831 
4832 	type = skb->protocol;
4833 
4834 	/* deliver only exact match when indicated */
4835 	if (likely(!deliver_exact)) {
4836 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4837 				       &ptype_base[ntohs(type) &
4838 						   PTYPE_HASH_MASK]);
4839 	}
4840 
4841 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4842 			       &orig_dev->ptype_specific);
4843 
4844 	if (unlikely(skb->dev != orig_dev)) {
4845 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4846 				       &skb->dev->ptype_specific);
4847 	}
4848 
4849 	if (pt_prev) {
4850 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4851 			goto drop;
4852 		*ppt_prev = pt_prev;
4853 	} else {
4854 drop:
4855 		if (!deliver_exact)
4856 			atomic_long_inc(&skb->dev->rx_dropped);
4857 		else
4858 			atomic_long_inc(&skb->dev->rx_nohandler);
4859 		kfree_skb(skb);
4860 		/* Jamal, now you will not able to escape explaining
4861 		 * me how you were going to use this. :-)
4862 		 */
4863 		ret = NET_RX_DROP;
4864 	}
4865 
4866 out:
4867 	return ret;
4868 }
4869 
4870 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4871 {
4872 	struct net_device *orig_dev = skb->dev;
4873 	struct packet_type *pt_prev = NULL;
4874 	int ret;
4875 
4876 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4877 	if (pt_prev)
4878 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4879 	return ret;
4880 }
4881 
4882 /**
4883  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4884  *	@skb: buffer to process
4885  *
4886  *	More direct receive version of netif_receive_skb().  It should
4887  *	only be used by callers that have a need to skip RPS and Generic XDP.
4888  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4889  *
4890  *	This function may only be called from softirq context and interrupts
4891  *	should be enabled.
4892  *
4893  *	Return values (usually ignored):
4894  *	NET_RX_SUCCESS: no congestion
4895  *	NET_RX_DROP: packet was dropped
4896  */
4897 int netif_receive_skb_core(struct sk_buff *skb)
4898 {
4899 	int ret;
4900 
4901 	rcu_read_lock();
4902 	ret = __netif_receive_skb_one_core(skb, false);
4903 	rcu_read_unlock();
4904 
4905 	return ret;
4906 }
4907 EXPORT_SYMBOL(netif_receive_skb_core);
4908 
4909 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4910 						  struct packet_type *pt_prev,
4911 						  struct net_device *orig_dev)
4912 {
4913 	struct sk_buff *skb, *next;
4914 
4915 	if (!pt_prev)
4916 		return;
4917 	if (list_empty(head))
4918 		return;
4919 	if (pt_prev->list_func != NULL)
4920 		pt_prev->list_func(head, pt_prev, orig_dev);
4921 	else
4922 		list_for_each_entry_safe(skb, next, head, list)
4923 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4924 }
4925 
4926 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4927 {
4928 	/* Fast-path assumptions:
4929 	 * - There is no RX handler.
4930 	 * - Only one packet_type matches.
4931 	 * If either of these fails, we will end up doing some per-packet
4932 	 * processing in-line, then handling the 'last ptype' for the whole
4933 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
4934 	 * because the 'last ptype' must be constant across the sublist, and all
4935 	 * other ptypes are handled per-packet.
4936 	 */
4937 	/* Current (common) ptype of sublist */
4938 	struct packet_type *pt_curr = NULL;
4939 	/* Current (common) orig_dev of sublist */
4940 	struct net_device *od_curr = NULL;
4941 	struct list_head sublist;
4942 	struct sk_buff *skb, *next;
4943 
4944 	INIT_LIST_HEAD(&sublist);
4945 	list_for_each_entry_safe(skb, next, head, list) {
4946 		struct net_device *orig_dev = skb->dev;
4947 		struct packet_type *pt_prev = NULL;
4948 
4949 		list_del(&skb->list);
4950 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4951 		if (!pt_prev)
4952 			continue;
4953 		if (pt_curr != pt_prev || od_curr != orig_dev) {
4954 			/* dispatch old sublist */
4955 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4956 			/* start new sublist */
4957 			INIT_LIST_HEAD(&sublist);
4958 			pt_curr = pt_prev;
4959 			od_curr = orig_dev;
4960 		}
4961 		list_add_tail(&skb->list, &sublist);
4962 	}
4963 
4964 	/* dispatch final sublist */
4965 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4966 }
4967 
4968 static int __netif_receive_skb(struct sk_buff *skb)
4969 {
4970 	int ret;
4971 
4972 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4973 		unsigned int noreclaim_flag;
4974 
4975 		/*
4976 		 * PFMEMALLOC skbs are special, they should
4977 		 * - be delivered to SOCK_MEMALLOC sockets only
4978 		 * - stay away from userspace
4979 		 * - have bounded memory usage
4980 		 *
4981 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4982 		 * context down to all allocation sites.
4983 		 */
4984 		noreclaim_flag = memalloc_noreclaim_save();
4985 		ret = __netif_receive_skb_one_core(skb, true);
4986 		memalloc_noreclaim_restore(noreclaim_flag);
4987 	} else
4988 		ret = __netif_receive_skb_one_core(skb, false);
4989 
4990 	return ret;
4991 }
4992 
4993 static void __netif_receive_skb_list(struct list_head *head)
4994 {
4995 	unsigned long noreclaim_flag = 0;
4996 	struct sk_buff *skb, *next;
4997 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
4998 
4999 	list_for_each_entry_safe(skb, next, head, list) {
5000 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5001 			struct list_head sublist;
5002 
5003 			/* Handle the previous sublist */
5004 			list_cut_before(&sublist, head, &skb->list);
5005 			if (!list_empty(&sublist))
5006 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5007 			pfmemalloc = !pfmemalloc;
5008 			/* See comments in __netif_receive_skb */
5009 			if (pfmemalloc)
5010 				noreclaim_flag = memalloc_noreclaim_save();
5011 			else
5012 				memalloc_noreclaim_restore(noreclaim_flag);
5013 		}
5014 	}
5015 	/* Handle the remaining sublist */
5016 	if (!list_empty(head))
5017 		__netif_receive_skb_list_core(head, pfmemalloc);
5018 	/* Restore pflags */
5019 	if (pfmemalloc)
5020 		memalloc_noreclaim_restore(noreclaim_flag);
5021 }
5022 
5023 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5024 {
5025 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5026 	struct bpf_prog *new = xdp->prog;
5027 	int ret = 0;
5028 
5029 	switch (xdp->command) {
5030 	case XDP_SETUP_PROG:
5031 		rcu_assign_pointer(dev->xdp_prog, new);
5032 		if (old)
5033 			bpf_prog_put(old);
5034 
5035 		if (old && !new) {
5036 			static_branch_dec(&generic_xdp_needed_key);
5037 		} else if (new && !old) {
5038 			static_branch_inc(&generic_xdp_needed_key);
5039 			dev_disable_lro(dev);
5040 			dev_disable_gro_hw(dev);
5041 		}
5042 		break;
5043 
5044 	case XDP_QUERY_PROG:
5045 		xdp->prog_id = old ? old->aux->id : 0;
5046 		break;
5047 
5048 	default:
5049 		ret = -EINVAL;
5050 		break;
5051 	}
5052 
5053 	return ret;
5054 }
5055 
5056 static int netif_receive_skb_internal(struct sk_buff *skb)
5057 {
5058 	int ret;
5059 
5060 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5061 
5062 	if (skb_defer_rx_timestamp(skb))
5063 		return NET_RX_SUCCESS;
5064 
5065 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5066 		int ret;
5067 
5068 		preempt_disable();
5069 		rcu_read_lock();
5070 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5071 		rcu_read_unlock();
5072 		preempt_enable();
5073 
5074 		if (ret != XDP_PASS)
5075 			return NET_RX_DROP;
5076 	}
5077 
5078 	rcu_read_lock();
5079 #ifdef CONFIG_RPS
5080 	if (static_key_false(&rps_needed)) {
5081 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5082 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5083 
5084 		if (cpu >= 0) {
5085 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5086 			rcu_read_unlock();
5087 			return ret;
5088 		}
5089 	}
5090 #endif
5091 	ret = __netif_receive_skb(skb);
5092 	rcu_read_unlock();
5093 	return ret;
5094 }
5095 
5096 static void netif_receive_skb_list_internal(struct list_head *head)
5097 {
5098 	struct bpf_prog *xdp_prog = NULL;
5099 	struct sk_buff *skb, *next;
5100 	struct list_head sublist;
5101 
5102 	INIT_LIST_HEAD(&sublist);
5103 	list_for_each_entry_safe(skb, next, head, list) {
5104 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5105 		list_del(&skb->list);
5106 		if (!skb_defer_rx_timestamp(skb))
5107 			list_add_tail(&skb->list, &sublist);
5108 	}
5109 	list_splice_init(&sublist, head);
5110 
5111 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5112 		preempt_disable();
5113 		rcu_read_lock();
5114 		list_for_each_entry_safe(skb, next, head, list) {
5115 			xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5116 			list_del(&skb->list);
5117 			if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5118 				list_add_tail(&skb->list, &sublist);
5119 		}
5120 		rcu_read_unlock();
5121 		preempt_enable();
5122 		/* Put passed packets back on main list */
5123 		list_splice_init(&sublist, head);
5124 	}
5125 
5126 	rcu_read_lock();
5127 #ifdef CONFIG_RPS
5128 	if (static_key_false(&rps_needed)) {
5129 		list_for_each_entry_safe(skb, next, head, list) {
5130 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5131 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5132 
5133 			if (cpu >= 0) {
5134 				/* Will be handled, remove from list */
5135 				list_del(&skb->list);
5136 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5137 			}
5138 		}
5139 	}
5140 #endif
5141 	__netif_receive_skb_list(head);
5142 	rcu_read_unlock();
5143 }
5144 
5145 /**
5146  *	netif_receive_skb - process receive buffer from network
5147  *	@skb: buffer to process
5148  *
5149  *	netif_receive_skb() is the main receive data processing function.
5150  *	It always succeeds. The buffer may be dropped during processing
5151  *	for congestion control or by the protocol layers.
5152  *
5153  *	This function may only be called from softirq context and interrupts
5154  *	should be enabled.
5155  *
5156  *	Return values (usually ignored):
5157  *	NET_RX_SUCCESS: no congestion
5158  *	NET_RX_DROP: packet was dropped
5159  */
5160 int netif_receive_skb(struct sk_buff *skb)
5161 {
5162 	trace_netif_receive_skb_entry(skb);
5163 
5164 	return netif_receive_skb_internal(skb);
5165 }
5166 EXPORT_SYMBOL(netif_receive_skb);
5167 
5168 /**
5169  *	netif_receive_skb_list - process many receive buffers from network
5170  *	@head: list of skbs to process.
5171  *
5172  *	Since return value of netif_receive_skb() is normally ignored, and
5173  *	wouldn't be meaningful for a list, this function returns void.
5174  *
5175  *	This function may only be called from softirq context and interrupts
5176  *	should be enabled.
5177  */
5178 void netif_receive_skb_list(struct list_head *head)
5179 {
5180 	struct sk_buff *skb;
5181 
5182 	if (list_empty(head))
5183 		return;
5184 	list_for_each_entry(skb, head, list)
5185 		trace_netif_receive_skb_list_entry(skb);
5186 	netif_receive_skb_list_internal(head);
5187 }
5188 EXPORT_SYMBOL(netif_receive_skb_list);
5189 
5190 DEFINE_PER_CPU(struct work_struct, flush_works);
5191 
5192 /* Network device is going away, flush any packets still pending */
5193 static void flush_backlog(struct work_struct *work)
5194 {
5195 	struct sk_buff *skb, *tmp;
5196 	struct softnet_data *sd;
5197 
5198 	local_bh_disable();
5199 	sd = this_cpu_ptr(&softnet_data);
5200 
5201 	local_irq_disable();
5202 	rps_lock(sd);
5203 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5204 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5205 			__skb_unlink(skb, &sd->input_pkt_queue);
5206 			kfree_skb(skb);
5207 			input_queue_head_incr(sd);
5208 		}
5209 	}
5210 	rps_unlock(sd);
5211 	local_irq_enable();
5212 
5213 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5214 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5215 			__skb_unlink(skb, &sd->process_queue);
5216 			kfree_skb(skb);
5217 			input_queue_head_incr(sd);
5218 		}
5219 	}
5220 	local_bh_enable();
5221 }
5222 
5223 static void flush_all_backlogs(void)
5224 {
5225 	unsigned int cpu;
5226 
5227 	get_online_cpus();
5228 
5229 	for_each_online_cpu(cpu)
5230 		queue_work_on(cpu, system_highpri_wq,
5231 			      per_cpu_ptr(&flush_works, cpu));
5232 
5233 	for_each_online_cpu(cpu)
5234 		flush_work(per_cpu_ptr(&flush_works, cpu));
5235 
5236 	put_online_cpus();
5237 }
5238 
5239 static int napi_gro_complete(struct sk_buff *skb)
5240 {
5241 	struct packet_offload *ptype;
5242 	__be16 type = skb->protocol;
5243 	struct list_head *head = &offload_base;
5244 	int err = -ENOENT;
5245 
5246 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5247 
5248 	if (NAPI_GRO_CB(skb)->count == 1) {
5249 		skb_shinfo(skb)->gso_size = 0;
5250 		goto out;
5251 	}
5252 
5253 	rcu_read_lock();
5254 	list_for_each_entry_rcu(ptype, head, list) {
5255 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5256 			continue;
5257 
5258 		err = ptype->callbacks.gro_complete(skb, 0);
5259 		break;
5260 	}
5261 	rcu_read_unlock();
5262 
5263 	if (err) {
5264 		WARN_ON(&ptype->list == head);
5265 		kfree_skb(skb);
5266 		return NET_RX_SUCCESS;
5267 	}
5268 
5269 out:
5270 	return netif_receive_skb_internal(skb);
5271 }
5272 
5273 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5274 				   bool flush_old)
5275 {
5276 	struct list_head *head = &napi->gro_hash[index].list;
5277 	struct sk_buff *skb, *p;
5278 
5279 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5280 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5281 			return;
5282 		list_del(&skb->list);
5283 		skb->next = NULL;
5284 		napi_gro_complete(skb);
5285 		napi->gro_hash[index].count--;
5286 	}
5287 
5288 	if (!napi->gro_hash[index].count)
5289 		__clear_bit(index, &napi->gro_bitmask);
5290 }
5291 
5292 /* napi->gro_hash[].list contains packets ordered by age.
5293  * youngest packets at the head of it.
5294  * Complete skbs in reverse order to reduce latencies.
5295  */
5296 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5297 {
5298 	u32 i;
5299 
5300 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5301 		if (test_bit(i, &napi->gro_bitmask))
5302 			__napi_gro_flush_chain(napi, i, flush_old);
5303 	}
5304 }
5305 EXPORT_SYMBOL(napi_gro_flush);
5306 
5307 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5308 					  struct sk_buff *skb)
5309 {
5310 	unsigned int maclen = skb->dev->hard_header_len;
5311 	u32 hash = skb_get_hash_raw(skb);
5312 	struct list_head *head;
5313 	struct sk_buff *p;
5314 
5315 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5316 	list_for_each_entry(p, head, list) {
5317 		unsigned long diffs;
5318 
5319 		NAPI_GRO_CB(p)->flush = 0;
5320 
5321 		if (hash != skb_get_hash_raw(p)) {
5322 			NAPI_GRO_CB(p)->same_flow = 0;
5323 			continue;
5324 		}
5325 
5326 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5327 		diffs |= p->vlan_tci ^ skb->vlan_tci;
5328 		diffs |= skb_metadata_dst_cmp(p, skb);
5329 		diffs |= skb_metadata_differs(p, skb);
5330 		if (maclen == ETH_HLEN)
5331 			diffs |= compare_ether_header(skb_mac_header(p),
5332 						      skb_mac_header(skb));
5333 		else if (!diffs)
5334 			diffs = memcmp(skb_mac_header(p),
5335 				       skb_mac_header(skb),
5336 				       maclen);
5337 		NAPI_GRO_CB(p)->same_flow = !diffs;
5338 	}
5339 
5340 	return head;
5341 }
5342 
5343 static void skb_gro_reset_offset(struct sk_buff *skb)
5344 {
5345 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5346 	const skb_frag_t *frag0 = &pinfo->frags[0];
5347 
5348 	NAPI_GRO_CB(skb)->data_offset = 0;
5349 	NAPI_GRO_CB(skb)->frag0 = NULL;
5350 	NAPI_GRO_CB(skb)->frag0_len = 0;
5351 
5352 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5353 	    pinfo->nr_frags &&
5354 	    !PageHighMem(skb_frag_page(frag0))) {
5355 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5356 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5357 						    skb_frag_size(frag0),
5358 						    skb->end - skb->tail);
5359 	}
5360 }
5361 
5362 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5363 {
5364 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5365 
5366 	BUG_ON(skb->end - skb->tail < grow);
5367 
5368 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5369 
5370 	skb->data_len -= grow;
5371 	skb->tail += grow;
5372 
5373 	pinfo->frags[0].page_offset += grow;
5374 	skb_frag_size_sub(&pinfo->frags[0], grow);
5375 
5376 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5377 		skb_frag_unref(skb, 0);
5378 		memmove(pinfo->frags, pinfo->frags + 1,
5379 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5380 	}
5381 }
5382 
5383 static void gro_flush_oldest(struct list_head *head)
5384 {
5385 	struct sk_buff *oldest;
5386 
5387 	oldest = list_last_entry(head, struct sk_buff, list);
5388 
5389 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5390 	 * impossible.
5391 	 */
5392 	if (WARN_ON_ONCE(!oldest))
5393 		return;
5394 
5395 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5396 	 * SKB to the chain.
5397 	 */
5398 	list_del(&oldest->list);
5399 	napi_gro_complete(oldest);
5400 }
5401 
5402 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5403 {
5404 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5405 	struct list_head *head = &offload_base;
5406 	struct packet_offload *ptype;
5407 	__be16 type = skb->protocol;
5408 	struct list_head *gro_head;
5409 	struct sk_buff *pp = NULL;
5410 	enum gro_result ret;
5411 	int same_flow;
5412 	int grow;
5413 
5414 	if (netif_elide_gro(skb->dev))
5415 		goto normal;
5416 
5417 	gro_head = gro_list_prepare(napi, skb);
5418 
5419 	rcu_read_lock();
5420 	list_for_each_entry_rcu(ptype, head, list) {
5421 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5422 			continue;
5423 
5424 		skb_set_network_header(skb, skb_gro_offset(skb));
5425 		skb_reset_mac_len(skb);
5426 		NAPI_GRO_CB(skb)->same_flow = 0;
5427 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5428 		NAPI_GRO_CB(skb)->free = 0;
5429 		NAPI_GRO_CB(skb)->encap_mark = 0;
5430 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5431 		NAPI_GRO_CB(skb)->is_fou = 0;
5432 		NAPI_GRO_CB(skb)->is_atomic = 1;
5433 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5434 
5435 		/* Setup for GRO checksum validation */
5436 		switch (skb->ip_summed) {
5437 		case CHECKSUM_COMPLETE:
5438 			NAPI_GRO_CB(skb)->csum = skb->csum;
5439 			NAPI_GRO_CB(skb)->csum_valid = 1;
5440 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5441 			break;
5442 		case CHECKSUM_UNNECESSARY:
5443 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5444 			NAPI_GRO_CB(skb)->csum_valid = 0;
5445 			break;
5446 		default:
5447 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5448 			NAPI_GRO_CB(skb)->csum_valid = 0;
5449 		}
5450 
5451 		pp = ptype->callbacks.gro_receive(gro_head, skb);
5452 		break;
5453 	}
5454 	rcu_read_unlock();
5455 
5456 	if (&ptype->list == head)
5457 		goto normal;
5458 
5459 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5460 		ret = GRO_CONSUMED;
5461 		goto ok;
5462 	}
5463 
5464 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5465 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5466 
5467 	if (pp) {
5468 		list_del(&pp->list);
5469 		pp->next = NULL;
5470 		napi_gro_complete(pp);
5471 		napi->gro_hash[hash].count--;
5472 	}
5473 
5474 	if (same_flow)
5475 		goto ok;
5476 
5477 	if (NAPI_GRO_CB(skb)->flush)
5478 		goto normal;
5479 
5480 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5481 		gro_flush_oldest(gro_head);
5482 	} else {
5483 		napi->gro_hash[hash].count++;
5484 	}
5485 	NAPI_GRO_CB(skb)->count = 1;
5486 	NAPI_GRO_CB(skb)->age = jiffies;
5487 	NAPI_GRO_CB(skb)->last = skb;
5488 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5489 	list_add(&skb->list, gro_head);
5490 	ret = GRO_HELD;
5491 
5492 pull:
5493 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5494 	if (grow > 0)
5495 		gro_pull_from_frag0(skb, grow);
5496 ok:
5497 	if (napi->gro_hash[hash].count) {
5498 		if (!test_bit(hash, &napi->gro_bitmask))
5499 			__set_bit(hash, &napi->gro_bitmask);
5500 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5501 		__clear_bit(hash, &napi->gro_bitmask);
5502 	}
5503 
5504 	return ret;
5505 
5506 normal:
5507 	ret = GRO_NORMAL;
5508 	goto pull;
5509 }
5510 
5511 struct packet_offload *gro_find_receive_by_type(__be16 type)
5512 {
5513 	struct list_head *offload_head = &offload_base;
5514 	struct packet_offload *ptype;
5515 
5516 	list_for_each_entry_rcu(ptype, offload_head, list) {
5517 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5518 			continue;
5519 		return ptype;
5520 	}
5521 	return NULL;
5522 }
5523 EXPORT_SYMBOL(gro_find_receive_by_type);
5524 
5525 struct packet_offload *gro_find_complete_by_type(__be16 type)
5526 {
5527 	struct list_head *offload_head = &offload_base;
5528 	struct packet_offload *ptype;
5529 
5530 	list_for_each_entry_rcu(ptype, offload_head, list) {
5531 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5532 			continue;
5533 		return ptype;
5534 	}
5535 	return NULL;
5536 }
5537 EXPORT_SYMBOL(gro_find_complete_by_type);
5538 
5539 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5540 {
5541 	skb_dst_drop(skb);
5542 	secpath_reset(skb);
5543 	kmem_cache_free(skbuff_head_cache, skb);
5544 }
5545 
5546 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5547 {
5548 	switch (ret) {
5549 	case GRO_NORMAL:
5550 		if (netif_receive_skb_internal(skb))
5551 			ret = GRO_DROP;
5552 		break;
5553 
5554 	case GRO_DROP:
5555 		kfree_skb(skb);
5556 		break;
5557 
5558 	case GRO_MERGED_FREE:
5559 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5560 			napi_skb_free_stolen_head(skb);
5561 		else
5562 			__kfree_skb(skb);
5563 		break;
5564 
5565 	case GRO_HELD:
5566 	case GRO_MERGED:
5567 	case GRO_CONSUMED:
5568 		break;
5569 	}
5570 
5571 	return ret;
5572 }
5573 
5574 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5575 {
5576 	skb_mark_napi_id(skb, napi);
5577 	trace_napi_gro_receive_entry(skb);
5578 
5579 	skb_gro_reset_offset(skb);
5580 
5581 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5582 }
5583 EXPORT_SYMBOL(napi_gro_receive);
5584 
5585 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5586 {
5587 	if (unlikely(skb->pfmemalloc)) {
5588 		consume_skb(skb);
5589 		return;
5590 	}
5591 	__skb_pull(skb, skb_headlen(skb));
5592 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5593 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5594 	skb->vlan_tci = 0;
5595 	skb->dev = napi->dev;
5596 	skb->skb_iif = 0;
5597 	skb->encapsulation = 0;
5598 	skb_shinfo(skb)->gso_type = 0;
5599 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5600 	secpath_reset(skb);
5601 
5602 	napi->skb = skb;
5603 }
5604 
5605 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5606 {
5607 	struct sk_buff *skb = napi->skb;
5608 
5609 	if (!skb) {
5610 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5611 		if (skb) {
5612 			napi->skb = skb;
5613 			skb_mark_napi_id(skb, napi);
5614 		}
5615 	}
5616 	return skb;
5617 }
5618 EXPORT_SYMBOL(napi_get_frags);
5619 
5620 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5621 				      struct sk_buff *skb,
5622 				      gro_result_t ret)
5623 {
5624 	switch (ret) {
5625 	case GRO_NORMAL:
5626 	case GRO_HELD:
5627 		__skb_push(skb, ETH_HLEN);
5628 		skb->protocol = eth_type_trans(skb, skb->dev);
5629 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5630 			ret = GRO_DROP;
5631 		break;
5632 
5633 	case GRO_DROP:
5634 		napi_reuse_skb(napi, skb);
5635 		break;
5636 
5637 	case GRO_MERGED_FREE:
5638 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5639 			napi_skb_free_stolen_head(skb);
5640 		else
5641 			napi_reuse_skb(napi, skb);
5642 		break;
5643 
5644 	case GRO_MERGED:
5645 	case GRO_CONSUMED:
5646 		break;
5647 	}
5648 
5649 	return ret;
5650 }
5651 
5652 /* Upper GRO stack assumes network header starts at gro_offset=0
5653  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5654  * We copy ethernet header into skb->data to have a common layout.
5655  */
5656 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5657 {
5658 	struct sk_buff *skb = napi->skb;
5659 	const struct ethhdr *eth;
5660 	unsigned int hlen = sizeof(*eth);
5661 
5662 	napi->skb = NULL;
5663 
5664 	skb_reset_mac_header(skb);
5665 	skb_gro_reset_offset(skb);
5666 
5667 	eth = skb_gro_header_fast(skb, 0);
5668 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5669 		eth = skb_gro_header_slow(skb, hlen, 0);
5670 		if (unlikely(!eth)) {
5671 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5672 					     __func__, napi->dev->name);
5673 			napi_reuse_skb(napi, skb);
5674 			return NULL;
5675 		}
5676 	} else {
5677 		gro_pull_from_frag0(skb, hlen);
5678 		NAPI_GRO_CB(skb)->frag0 += hlen;
5679 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5680 	}
5681 	__skb_pull(skb, hlen);
5682 
5683 	/*
5684 	 * This works because the only protocols we care about don't require
5685 	 * special handling.
5686 	 * We'll fix it up properly in napi_frags_finish()
5687 	 */
5688 	skb->protocol = eth->h_proto;
5689 
5690 	return skb;
5691 }
5692 
5693 gro_result_t napi_gro_frags(struct napi_struct *napi)
5694 {
5695 	struct sk_buff *skb = napi_frags_skb(napi);
5696 
5697 	if (!skb)
5698 		return GRO_DROP;
5699 
5700 	trace_napi_gro_frags_entry(skb);
5701 
5702 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5703 }
5704 EXPORT_SYMBOL(napi_gro_frags);
5705 
5706 /* Compute the checksum from gro_offset and return the folded value
5707  * after adding in any pseudo checksum.
5708  */
5709 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5710 {
5711 	__wsum wsum;
5712 	__sum16 sum;
5713 
5714 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5715 
5716 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5717 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5718 	if (likely(!sum)) {
5719 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5720 		    !skb->csum_complete_sw)
5721 			netdev_rx_csum_fault(skb->dev);
5722 	}
5723 
5724 	NAPI_GRO_CB(skb)->csum = wsum;
5725 	NAPI_GRO_CB(skb)->csum_valid = 1;
5726 
5727 	return sum;
5728 }
5729 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5730 
5731 static void net_rps_send_ipi(struct softnet_data *remsd)
5732 {
5733 #ifdef CONFIG_RPS
5734 	while (remsd) {
5735 		struct softnet_data *next = remsd->rps_ipi_next;
5736 
5737 		if (cpu_online(remsd->cpu))
5738 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5739 		remsd = next;
5740 	}
5741 #endif
5742 }
5743 
5744 /*
5745  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5746  * Note: called with local irq disabled, but exits with local irq enabled.
5747  */
5748 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5749 {
5750 #ifdef CONFIG_RPS
5751 	struct softnet_data *remsd = sd->rps_ipi_list;
5752 
5753 	if (remsd) {
5754 		sd->rps_ipi_list = NULL;
5755 
5756 		local_irq_enable();
5757 
5758 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5759 		net_rps_send_ipi(remsd);
5760 	} else
5761 #endif
5762 		local_irq_enable();
5763 }
5764 
5765 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5766 {
5767 #ifdef CONFIG_RPS
5768 	return sd->rps_ipi_list != NULL;
5769 #else
5770 	return false;
5771 #endif
5772 }
5773 
5774 static int process_backlog(struct napi_struct *napi, int quota)
5775 {
5776 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5777 	bool again = true;
5778 	int work = 0;
5779 
5780 	/* Check if we have pending ipi, its better to send them now,
5781 	 * not waiting net_rx_action() end.
5782 	 */
5783 	if (sd_has_rps_ipi_waiting(sd)) {
5784 		local_irq_disable();
5785 		net_rps_action_and_irq_enable(sd);
5786 	}
5787 
5788 	napi->weight = dev_rx_weight;
5789 	while (again) {
5790 		struct sk_buff *skb;
5791 
5792 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5793 			rcu_read_lock();
5794 			__netif_receive_skb(skb);
5795 			rcu_read_unlock();
5796 			input_queue_head_incr(sd);
5797 			if (++work >= quota)
5798 				return work;
5799 
5800 		}
5801 
5802 		local_irq_disable();
5803 		rps_lock(sd);
5804 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5805 			/*
5806 			 * Inline a custom version of __napi_complete().
5807 			 * only current cpu owns and manipulates this napi,
5808 			 * and NAPI_STATE_SCHED is the only possible flag set
5809 			 * on backlog.
5810 			 * We can use a plain write instead of clear_bit(),
5811 			 * and we dont need an smp_mb() memory barrier.
5812 			 */
5813 			napi->state = 0;
5814 			again = false;
5815 		} else {
5816 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5817 						   &sd->process_queue);
5818 		}
5819 		rps_unlock(sd);
5820 		local_irq_enable();
5821 	}
5822 
5823 	return work;
5824 }
5825 
5826 /**
5827  * __napi_schedule - schedule for receive
5828  * @n: entry to schedule
5829  *
5830  * The entry's receive function will be scheduled to run.
5831  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5832  */
5833 void __napi_schedule(struct napi_struct *n)
5834 {
5835 	unsigned long flags;
5836 
5837 	local_irq_save(flags);
5838 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5839 	local_irq_restore(flags);
5840 }
5841 EXPORT_SYMBOL(__napi_schedule);
5842 
5843 /**
5844  *	napi_schedule_prep - check if napi can be scheduled
5845  *	@n: napi context
5846  *
5847  * Test if NAPI routine is already running, and if not mark
5848  * it as running.  This is used as a condition variable
5849  * insure only one NAPI poll instance runs.  We also make
5850  * sure there is no pending NAPI disable.
5851  */
5852 bool napi_schedule_prep(struct napi_struct *n)
5853 {
5854 	unsigned long val, new;
5855 
5856 	do {
5857 		val = READ_ONCE(n->state);
5858 		if (unlikely(val & NAPIF_STATE_DISABLE))
5859 			return false;
5860 		new = val | NAPIF_STATE_SCHED;
5861 
5862 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5863 		 * This was suggested by Alexander Duyck, as compiler
5864 		 * emits better code than :
5865 		 * if (val & NAPIF_STATE_SCHED)
5866 		 *     new |= NAPIF_STATE_MISSED;
5867 		 */
5868 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5869 						   NAPIF_STATE_MISSED;
5870 	} while (cmpxchg(&n->state, val, new) != val);
5871 
5872 	return !(val & NAPIF_STATE_SCHED);
5873 }
5874 EXPORT_SYMBOL(napi_schedule_prep);
5875 
5876 /**
5877  * __napi_schedule_irqoff - schedule for receive
5878  * @n: entry to schedule
5879  *
5880  * Variant of __napi_schedule() assuming hard irqs are masked
5881  */
5882 void __napi_schedule_irqoff(struct napi_struct *n)
5883 {
5884 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5885 }
5886 EXPORT_SYMBOL(__napi_schedule_irqoff);
5887 
5888 bool napi_complete_done(struct napi_struct *n, int work_done)
5889 {
5890 	unsigned long flags, val, new;
5891 
5892 	/*
5893 	 * 1) Don't let napi dequeue from the cpu poll list
5894 	 *    just in case its running on a different cpu.
5895 	 * 2) If we are busy polling, do nothing here, we have
5896 	 *    the guarantee we will be called later.
5897 	 */
5898 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5899 				 NAPIF_STATE_IN_BUSY_POLL)))
5900 		return false;
5901 
5902 	if (n->gro_bitmask) {
5903 		unsigned long timeout = 0;
5904 
5905 		if (work_done)
5906 			timeout = n->dev->gro_flush_timeout;
5907 
5908 		if (timeout)
5909 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5910 				      HRTIMER_MODE_REL_PINNED);
5911 		else
5912 			napi_gro_flush(n, false);
5913 	}
5914 	if (unlikely(!list_empty(&n->poll_list))) {
5915 		/* If n->poll_list is not empty, we need to mask irqs */
5916 		local_irq_save(flags);
5917 		list_del_init(&n->poll_list);
5918 		local_irq_restore(flags);
5919 	}
5920 
5921 	do {
5922 		val = READ_ONCE(n->state);
5923 
5924 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5925 
5926 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5927 
5928 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5929 		 * because we will call napi->poll() one more time.
5930 		 * This C code was suggested by Alexander Duyck to help gcc.
5931 		 */
5932 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5933 						    NAPIF_STATE_SCHED;
5934 	} while (cmpxchg(&n->state, val, new) != val);
5935 
5936 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5937 		__napi_schedule(n);
5938 		return false;
5939 	}
5940 
5941 	return true;
5942 }
5943 EXPORT_SYMBOL(napi_complete_done);
5944 
5945 /* must be called under rcu_read_lock(), as we dont take a reference */
5946 static struct napi_struct *napi_by_id(unsigned int napi_id)
5947 {
5948 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5949 	struct napi_struct *napi;
5950 
5951 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5952 		if (napi->napi_id == napi_id)
5953 			return napi;
5954 
5955 	return NULL;
5956 }
5957 
5958 #if defined(CONFIG_NET_RX_BUSY_POLL)
5959 
5960 #define BUSY_POLL_BUDGET 8
5961 
5962 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5963 {
5964 	int rc;
5965 
5966 	/* Busy polling means there is a high chance device driver hard irq
5967 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5968 	 * set in napi_schedule_prep().
5969 	 * Since we are about to call napi->poll() once more, we can safely
5970 	 * clear NAPI_STATE_MISSED.
5971 	 *
5972 	 * Note: x86 could use a single "lock and ..." instruction
5973 	 * to perform these two clear_bit()
5974 	 */
5975 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5976 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5977 
5978 	local_bh_disable();
5979 
5980 	/* All we really want here is to re-enable device interrupts.
5981 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5982 	 */
5983 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5984 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5985 	netpoll_poll_unlock(have_poll_lock);
5986 	if (rc == BUSY_POLL_BUDGET)
5987 		__napi_schedule(napi);
5988 	local_bh_enable();
5989 }
5990 
5991 void napi_busy_loop(unsigned int napi_id,
5992 		    bool (*loop_end)(void *, unsigned long),
5993 		    void *loop_end_arg)
5994 {
5995 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5996 	int (*napi_poll)(struct napi_struct *napi, int budget);
5997 	void *have_poll_lock = NULL;
5998 	struct napi_struct *napi;
5999 
6000 restart:
6001 	napi_poll = NULL;
6002 
6003 	rcu_read_lock();
6004 
6005 	napi = napi_by_id(napi_id);
6006 	if (!napi)
6007 		goto out;
6008 
6009 	preempt_disable();
6010 	for (;;) {
6011 		int work = 0;
6012 
6013 		local_bh_disable();
6014 		if (!napi_poll) {
6015 			unsigned long val = READ_ONCE(napi->state);
6016 
6017 			/* If multiple threads are competing for this napi,
6018 			 * we avoid dirtying napi->state as much as we can.
6019 			 */
6020 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6021 				   NAPIF_STATE_IN_BUSY_POLL))
6022 				goto count;
6023 			if (cmpxchg(&napi->state, val,
6024 				    val | NAPIF_STATE_IN_BUSY_POLL |
6025 					  NAPIF_STATE_SCHED) != val)
6026 				goto count;
6027 			have_poll_lock = netpoll_poll_lock(napi);
6028 			napi_poll = napi->poll;
6029 		}
6030 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6031 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6032 count:
6033 		if (work > 0)
6034 			__NET_ADD_STATS(dev_net(napi->dev),
6035 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6036 		local_bh_enable();
6037 
6038 		if (!loop_end || loop_end(loop_end_arg, start_time))
6039 			break;
6040 
6041 		if (unlikely(need_resched())) {
6042 			if (napi_poll)
6043 				busy_poll_stop(napi, have_poll_lock);
6044 			preempt_enable();
6045 			rcu_read_unlock();
6046 			cond_resched();
6047 			if (loop_end(loop_end_arg, start_time))
6048 				return;
6049 			goto restart;
6050 		}
6051 		cpu_relax();
6052 	}
6053 	if (napi_poll)
6054 		busy_poll_stop(napi, have_poll_lock);
6055 	preempt_enable();
6056 out:
6057 	rcu_read_unlock();
6058 }
6059 EXPORT_SYMBOL(napi_busy_loop);
6060 
6061 #endif /* CONFIG_NET_RX_BUSY_POLL */
6062 
6063 static void napi_hash_add(struct napi_struct *napi)
6064 {
6065 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6066 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6067 		return;
6068 
6069 	spin_lock(&napi_hash_lock);
6070 
6071 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6072 	do {
6073 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6074 			napi_gen_id = MIN_NAPI_ID;
6075 	} while (napi_by_id(napi_gen_id));
6076 	napi->napi_id = napi_gen_id;
6077 
6078 	hlist_add_head_rcu(&napi->napi_hash_node,
6079 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6080 
6081 	spin_unlock(&napi_hash_lock);
6082 }
6083 
6084 /* Warning : caller is responsible to make sure rcu grace period
6085  * is respected before freeing memory containing @napi
6086  */
6087 bool napi_hash_del(struct napi_struct *napi)
6088 {
6089 	bool rcu_sync_needed = false;
6090 
6091 	spin_lock(&napi_hash_lock);
6092 
6093 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6094 		rcu_sync_needed = true;
6095 		hlist_del_rcu(&napi->napi_hash_node);
6096 	}
6097 	spin_unlock(&napi_hash_lock);
6098 	return rcu_sync_needed;
6099 }
6100 EXPORT_SYMBOL_GPL(napi_hash_del);
6101 
6102 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6103 {
6104 	struct napi_struct *napi;
6105 
6106 	napi = container_of(timer, struct napi_struct, timer);
6107 
6108 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6109 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6110 	 */
6111 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6112 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6113 		__napi_schedule_irqoff(napi);
6114 
6115 	return HRTIMER_NORESTART;
6116 }
6117 
6118 static void init_gro_hash(struct napi_struct *napi)
6119 {
6120 	int i;
6121 
6122 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6123 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6124 		napi->gro_hash[i].count = 0;
6125 	}
6126 	napi->gro_bitmask = 0;
6127 }
6128 
6129 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6130 		    int (*poll)(struct napi_struct *, int), int weight)
6131 {
6132 	INIT_LIST_HEAD(&napi->poll_list);
6133 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6134 	napi->timer.function = napi_watchdog;
6135 	init_gro_hash(napi);
6136 	napi->skb = NULL;
6137 	napi->poll = poll;
6138 	if (weight > NAPI_POLL_WEIGHT)
6139 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6140 			    weight, dev->name);
6141 	napi->weight = weight;
6142 	list_add(&napi->dev_list, &dev->napi_list);
6143 	napi->dev = dev;
6144 #ifdef CONFIG_NETPOLL
6145 	napi->poll_owner = -1;
6146 #endif
6147 	set_bit(NAPI_STATE_SCHED, &napi->state);
6148 	napi_hash_add(napi);
6149 }
6150 EXPORT_SYMBOL(netif_napi_add);
6151 
6152 void napi_disable(struct napi_struct *n)
6153 {
6154 	might_sleep();
6155 	set_bit(NAPI_STATE_DISABLE, &n->state);
6156 
6157 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6158 		msleep(1);
6159 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6160 		msleep(1);
6161 
6162 	hrtimer_cancel(&n->timer);
6163 
6164 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6165 }
6166 EXPORT_SYMBOL(napi_disable);
6167 
6168 static void flush_gro_hash(struct napi_struct *napi)
6169 {
6170 	int i;
6171 
6172 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6173 		struct sk_buff *skb, *n;
6174 
6175 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6176 			kfree_skb(skb);
6177 		napi->gro_hash[i].count = 0;
6178 	}
6179 }
6180 
6181 /* Must be called in process context */
6182 void netif_napi_del(struct napi_struct *napi)
6183 {
6184 	might_sleep();
6185 	if (napi_hash_del(napi))
6186 		synchronize_net();
6187 	list_del_init(&napi->dev_list);
6188 	napi_free_frags(napi);
6189 
6190 	flush_gro_hash(napi);
6191 	napi->gro_bitmask = 0;
6192 }
6193 EXPORT_SYMBOL(netif_napi_del);
6194 
6195 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6196 {
6197 	void *have;
6198 	int work, weight;
6199 
6200 	list_del_init(&n->poll_list);
6201 
6202 	have = netpoll_poll_lock(n);
6203 
6204 	weight = n->weight;
6205 
6206 	/* This NAPI_STATE_SCHED test is for avoiding a race
6207 	 * with netpoll's poll_napi().  Only the entity which
6208 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6209 	 * actually make the ->poll() call.  Therefore we avoid
6210 	 * accidentally calling ->poll() when NAPI is not scheduled.
6211 	 */
6212 	work = 0;
6213 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6214 		work = n->poll(n, weight);
6215 		trace_napi_poll(n, work, weight);
6216 	}
6217 
6218 	WARN_ON_ONCE(work > weight);
6219 
6220 	if (likely(work < weight))
6221 		goto out_unlock;
6222 
6223 	/* Drivers must not modify the NAPI state if they
6224 	 * consume the entire weight.  In such cases this code
6225 	 * still "owns" the NAPI instance and therefore can
6226 	 * move the instance around on the list at-will.
6227 	 */
6228 	if (unlikely(napi_disable_pending(n))) {
6229 		napi_complete(n);
6230 		goto out_unlock;
6231 	}
6232 
6233 	if (n->gro_bitmask) {
6234 		/* flush too old packets
6235 		 * If HZ < 1000, flush all packets.
6236 		 */
6237 		napi_gro_flush(n, HZ >= 1000);
6238 	}
6239 
6240 	/* Some drivers may have called napi_schedule
6241 	 * prior to exhausting their budget.
6242 	 */
6243 	if (unlikely(!list_empty(&n->poll_list))) {
6244 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6245 			     n->dev ? n->dev->name : "backlog");
6246 		goto out_unlock;
6247 	}
6248 
6249 	list_add_tail(&n->poll_list, repoll);
6250 
6251 out_unlock:
6252 	netpoll_poll_unlock(have);
6253 
6254 	return work;
6255 }
6256 
6257 static __latent_entropy void net_rx_action(struct softirq_action *h)
6258 {
6259 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6260 	unsigned long time_limit = jiffies +
6261 		usecs_to_jiffies(netdev_budget_usecs);
6262 	int budget = netdev_budget;
6263 	LIST_HEAD(list);
6264 	LIST_HEAD(repoll);
6265 
6266 	local_irq_disable();
6267 	list_splice_init(&sd->poll_list, &list);
6268 	local_irq_enable();
6269 
6270 	for (;;) {
6271 		struct napi_struct *n;
6272 
6273 		if (list_empty(&list)) {
6274 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6275 				goto out;
6276 			break;
6277 		}
6278 
6279 		n = list_first_entry(&list, struct napi_struct, poll_list);
6280 		budget -= napi_poll(n, &repoll);
6281 
6282 		/* If softirq window is exhausted then punt.
6283 		 * Allow this to run for 2 jiffies since which will allow
6284 		 * an average latency of 1.5/HZ.
6285 		 */
6286 		if (unlikely(budget <= 0 ||
6287 			     time_after_eq(jiffies, time_limit))) {
6288 			sd->time_squeeze++;
6289 			break;
6290 		}
6291 	}
6292 
6293 	local_irq_disable();
6294 
6295 	list_splice_tail_init(&sd->poll_list, &list);
6296 	list_splice_tail(&repoll, &list);
6297 	list_splice(&list, &sd->poll_list);
6298 	if (!list_empty(&sd->poll_list))
6299 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6300 
6301 	net_rps_action_and_irq_enable(sd);
6302 out:
6303 	__kfree_skb_flush();
6304 }
6305 
6306 struct netdev_adjacent {
6307 	struct net_device *dev;
6308 
6309 	/* upper master flag, there can only be one master device per list */
6310 	bool master;
6311 
6312 	/* counter for the number of times this device was added to us */
6313 	u16 ref_nr;
6314 
6315 	/* private field for the users */
6316 	void *private;
6317 
6318 	struct list_head list;
6319 	struct rcu_head rcu;
6320 };
6321 
6322 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6323 						 struct list_head *adj_list)
6324 {
6325 	struct netdev_adjacent *adj;
6326 
6327 	list_for_each_entry(adj, adj_list, list) {
6328 		if (adj->dev == adj_dev)
6329 			return adj;
6330 	}
6331 	return NULL;
6332 }
6333 
6334 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6335 {
6336 	struct net_device *dev = data;
6337 
6338 	return upper_dev == dev;
6339 }
6340 
6341 /**
6342  * netdev_has_upper_dev - Check if device is linked to an upper device
6343  * @dev: device
6344  * @upper_dev: upper device to check
6345  *
6346  * Find out if a device is linked to specified upper device and return true
6347  * in case it is. Note that this checks only immediate upper device,
6348  * not through a complete stack of devices. The caller must hold the RTNL lock.
6349  */
6350 bool netdev_has_upper_dev(struct net_device *dev,
6351 			  struct net_device *upper_dev)
6352 {
6353 	ASSERT_RTNL();
6354 
6355 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6356 					     upper_dev);
6357 }
6358 EXPORT_SYMBOL(netdev_has_upper_dev);
6359 
6360 /**
6361  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6362  * @dev: device
6363  * @upper_dev: upper device to check
6364  *
6365  * Find out if a device is linked to specified upper device and return true
6366  * in case it is. Note that this checks the entire upper device chain.
6367  * The caller must hold rcu lock.
6368  */
6369 
6370 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6371 				  struct net_device *upper_dev)
6372 {
6373 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6374 					       upper_dev);
6375 }
6376 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6377 
6378 /**
6379  * netdev_has_any_upper_dev - Check if device is linked to some device
6380  * @dev: device
6381  *
6382  * Find out if a device is linked to an upper device and return true in case
6383  * it is. The caller must hold the RTNL lock.
6384  */
6385 bool netdev_has_any_upper_dev(struct net_device *dev)
6386 {
6387 	ASSERT_RTNL();
6388 
6389 	return !list_empty(&dev->adj_list.upper);
6390 }
6391 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6392 
6393 /**
6394  * netdev_master_upper_dev_get - Get master upper device
6395  * @dev: device
6396  *
6397  * Find a master upper device and return pointer to it or NULL in case
6398  * it's not there. The caller must hold the RTNL lock.
6399  */
6400 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6401 {
6402 	struct netdev_adjacent *upper;
6403 
6404 	ASSERT_RTNL();
6405 
6406 	if (list_empty(&dev->adj_list.upper))
6407 		return NULL;
6408 
6409 	upper = list_first_entry(&dev->adj_list.upper,
6410 				 struct netdev_adjacent, list);
6411 	if (likely(upper->master))
6412 		return upper->dev;
6413 	return NULL;
6414 }
6415 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6416 
6417 /**
6418  * netdev_has_any_lower_dev - Check if device is linked to some device
6419  * @dev: device
6420  *
6421  * Find out if a device is linked to a lower device and return true in case
6422  * it is. The caller must hold the RTNL lock.
6423  */
6424 static bool netdev_has_any_lower_dev(struct net_device *dev)
6425 {
6426 	ASSERT_RTNL();
6427 
6428 	return !list_empty(&dev->adj_list.lower);
6429 }
6430 
6431 void *netdev_adjacent_get_private(struct list_head *adj_list)
6432 {
6433 	struct netdev_adjacent *adj;
6434 
6435 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6436 
6437 	return adj->private;
6438 }
6439 EXPORT_SYMBOL(netdev_adjacent_get_private);
6440 
6441 /**
6442  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6443  * @dev: device
6444  * @iter: list_head ** of the current position
6445  *
6446  * Gets the next device from the dev's upper list, starting from iter
6447  * position. The caller must hold RCU read lock.
6448  */
6449 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6450 						 struct list_head **iter)
6451 {
6452 	struct netdev_adjacent *upper;
6453 
6454 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6455 
6456 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6457 
6458 	if (&upper->list == &dev->adj_list.upper)
6459 		return NULL;
6460 
6461 	*iter = &upper->list;
6462 
6463 	return upper->dev;
6464 }
6465 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6466 
6467 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6468 						    struct list_head **iter)
6469 {
6470 	struct netdev_adjacent *upper;
6471 
6472 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6473 
6474 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6475 
6476 	if (&upper->list == &dev->adj_list.upper)
6477 		return NULL;
6478 
6479 	*iter = &upper->list;
6480 
6481 	return upper->dev;
6482 }
6483 
6484 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6485 				  int (*fn)(struct net_device *dev,
6486 					    void *data),
6487 				  void *data)
6488 {
6489 	struct net_device *udev;
6490 	struct list_head *iter;
6491 	int ret;
6492 
6493 	for (iter = &dev->adj_list.upper,
6494 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
6495 	     udev;
6496 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6497 		/* first is the upper device itself */
6498 		ret = fn(udev, data);
6499 		if (ret)
6500 			return ret;
6501 
6502 		/* then look at all of its upper devices */
6503 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6504 		if (ret)
6505 			return ret;
6506 	}
6507 
6508 	return 0;
6509 }
6510 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6511 
6512 /**
6513  * netdev_lower_get_next_private - Get the next ->private from the
6514  *				   lower neighbour list
6515  * @dev: device
6516  * @iter: list_head ** of the current position
6517  *
6518  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6519  * list, starting from iter position. The caller must hold either hold the
6520  * RTNL lock or its own locking that guarantees that the neighbour lower
6521  * list will remain unchanged.
6522  */
6523 void *netdev_lower_get_next_private(struct net_device *dev,
6524 				    struct list_head **iter)
6525 {
6526 	struct netdev_adjacent *lower;
6527 
6528 	lower = list_entry(*iter, struct netdev_adjacent, list);
6529 
6530 	if (&lower->list == &dev->adj_list.lower)
6531 		return NULL;
6532 
6533 	*iter = lower->list.next;
6534 
6535 	return lower->private;
6536 }
6537 EXPORT_SYMBOL(netdev_lower_get_next_private);
6538 
6539 /**
6540  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6541  *				       lower neighbour list, RCU
6542  *				       variant
6543  * @dev: device
6544  * @iter: list_head ** of the current position
6545  *
6546  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6547  * list, starting from iter position. The caller must hold RCU read lock.
6548  */
6549 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6550 					struct list_head **iter)
6551 {
6552 	struct netdev_adjacent *lower;
6553 
6554 	WARN_ON_ONCE(!rcu_read_lock_held());
6555 
6556 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6557 
6558 	if (&lower->list == &dev->adj_list.lower)
6559 		return NULL;
6560 
6561 	*iter = &lower->list;
6562 
6563 	return lower->private;
6564 }
6565 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6566 
6567 /**
6568  * netdev_lower_get_next - Get the next device from the lower neighbour
6569  *                         list
6570  * @dev: device
6571  * @iter: list_head ** of the current position
6572  *
6573  * Gets the next netdev_adjacent from the dev's lower neighbour
6574  * list, starting from iter position. The caller must hold RTNL lock or
6575  * its own locking that guarantees that the neighbour lower
6576  * list will remain unchanged.
6577  */
6578 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6579 {
6580 	struct netdev_adjacent *lower;
6581 
6582 	lower = list_entry(*iter, struct netdev_adjacent, list);
6583 
6584 	if (&lower->list == &dev->adj_list.lower)
6585 		return NULL;
6586 
6587 	*iter = lower->list.next;
6588 
6589 	return lower->dev;
6590 }
6591 EXPORT_SYMBOL(netdev_lower_get_next);
6592 
6593 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6594 						struct list_head **iter)
6595 {
6596 	struct netdev_adjacent *lower;
6597 
6598 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6599 
6600 	if (&lower->list == &dev->adj_list.lower)
6601 		return NULL;
6602 
6603 	*iter = &lower->list;
6604 
6605 	return lower->dev;
6606 }
6607 
6608 int netdev_walk_all_lower_dev(struct net_device *dev,
6609 			      int (*fn)(struct net_device *dev,
6610 					void *data),
6611 			      void *data)
6612 {
6613 	struct net_device *ldev;
6614 	struct list_head *iter;
6615 	int ret;
6616 
6617 	for (iter = &dev->adj_list.lower,
6618 	     ldev = netdev_next_lower_dev(dev, &iter);
6619 	     ldev;
6620 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6621 		/* first is the lower device itself */
6622 		ret = fn(ldev, data);
6623 		if (ret)
6624 			return ret;
6625 
6626 		/* then look at all of its lower devices */
6627 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6628 		if (ret)
6629 			return ret;
6630 	}
6631 
6632 	return 0;
6633 }
6634 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6635 
6636 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6637 						    struct list_head **iter)
6638 {
6639 	struct netdev_adjacent *lower;
6640 
6641 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6642 	if (&lower->list == &dev->adj_list.lower)
6643 		return NULL;
6644 
6645 	*iter = &lower->list;
6646 
6647 	return lower->dev;
6648 }
6649 
6650 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6651 				  int (*fn)(struct net_device *dev,
6652 					    void *data),
6653 				  void *data)
6654 {
6655 	struct net_device *ldev;
6656 	struct list_head *iter;
6657 	int ret;
6658 
6659 	for (iter = &dev->adj_list.lower,
6660 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6661 	     ldev;
6662 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6663 		/* first is the lower device itself */
6664 		ret = fn(ldev, data);
6665 		if (ret)
6666 			return ret;
6667 
6668 		/* then look at all of its lower devices */
6669 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6670 		if (ret)
6671 			return ret;
6672 	}
6673 
6674 	return 0;
6675 }
6676 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6677 
6678 /**
6679  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6680  *				       lower neighbour list, RCU
6681  *				       variant
6682  * @dev: device
6683  *
6684  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6685  * list. The caller must hold RCU read lock.
6686  */
6687 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6688 {
6689 	struct netdev_adjacent *lower;
6690 
6691 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6692 			struct netdev_adjacent, list);
6693 	if (lower)
6694 		return lower->private;
6695 	return NULL;
6696 }
6697 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6698 
6699 /**
6700  * netdev_master_upper_dev_get_rcu - Get master upper device
6701  * @dev: device
6702  *
6703  * Find a master upper device and return pointer to it or NULL in case
6704  * it's not there. The caller must hold the RCU read lock.
6705  */
6706 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6707 {
6708 	struct netdev_adjacent *upper;
6709 
6710 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6711 				       struct netdev_adjacent, list);
6712 	if (upper && likely(upper->master))
6713 		return upper->dev;
6714 	return NULL;
6715 }
6716 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6717 
6718 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6719 			      struct net_device *adj_dev,
6720 			      struct list_head *dev_list)
6721 {
6722 	char linkname[IFNAMSIZ+7];
6723 
6724 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6725 		"upper_%s" : "lower_%s", adj_dev->name);
6726 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6727 				 linkname);
6728 }
6729 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6730 			       char *name,
6731 			       struct list_head *dev_list)
6732 {
6733 	char linkname[IFNAMSIZ+7];
6734 
6735 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6736 		"upper_%s" : "lower_%s", name);
6737 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6738 }
6739 
6740 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6741 						 struct net_device *adj_dev,
6742 						 struct list_head *dev_list)
6743 {
6744 	return (dev_list == &dev->adj_list.upper ||
6745 		dev_list == &dev->adj_list.lower) &&
6746 		net_eq(dev_net(dev), dev_net(adj_dev));
6747 }
6748 
6749 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6750 					struct net_device *adj_dev,
6751 					struct list_head *dev_list,
6752 					void *private, bool master)
6753 {
6754 	struct netdev_adjacent *adj;
6755 	int ret;
6756 
6757 	adj = __netdev_find_adj(adj_dev, dev_list);
6758 
6759 	if (adj) {
6760 		adj->ref_nr += 1;
6761 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6762 			 dev->name, adj_dev->name, adj->ref_nr);
6763 
6764 		return 0;
6765 	}
6766 
6767 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6768 	if (!adj)
6769 		return -ENOMEM;
6770 
6771 	adj->dev = adj_dev;
6772 	adj->master = master;
6773 	adj->ref_nr = 1;
6774 	adj->private = private;
6775 	dev_hold(adj_dev);
6776 
6777 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6778 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6779 
6780 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6781 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6782 		if (ret)
6783 			goto free_adj;
6784 	}
6785 
6786 	/* Ensure that master link is always the first item in list. */
6787 	if (master) {
6788 		ret = sysfs_create_link(&(dev->dev.kobj),
6789 					&(adj_dev->dev.kobj), "master");
6790 		if (ret)
6791 			goto remove_symlinks;
6792 
6793 		list_add_rcu(&adj->list, dev_list);
6794 	} else {
6795 		list_add_tail_rcu(&adj->list, dev_list);
6796 	}
6797 
6798 	return 0;
6799 
6800 remove_symlinks:
6801 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6802 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6803 free_adj:
6804 	kfree(adj);
6805 	dev_put(adj_dev);
6806 
6807 	return ret;
6808 }
6809 
6810 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6811 					 struct net_device *adj_dev,
6812 					 u16 ref_nr,
6813 					 struct list_head *dev_list)
6814 {
6815 	struct netdev_adjacent *adj;
6816 
6817 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6818 		 dev->name, adj_dev->name, ref_nr);
6819 
6820 	adj = __netdev_find_adj(adj_dev, dev_list);
6821 
6822 	if (!adj) {
6823 		pr_err("Adjacency does not exist for device %s from %s\n",
6824 		       dev->name, adj_dev->name);
6825 		WARN_ON(1);
6826 		return;
6827 	}
6828 
6829 	if (adj->ref_nr > ref_nr) {
6830 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6831 			 dev->name, adj_dev->name, ref_nr,
6832 			 adj->ref_nr - ref_nr);
6833 		adj->ref_nr -= ref_nr;
6834 		return;
6835 	}
6836 
6837 	if (adj->master)
6838 		sysfs_remove_link(&(dev->dev.kobj), "master");
6839 
6840 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6841 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6842 
6843 	list_del_rcu(&adj->list);
6844 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6845 		 adj_dev->name, dev->name, adj_dev->name);
6846 	dev_put(adj_dev);
6847 	kfree_rcu(adj, rcu);
6848 }
6849 
6850 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6851 					    struct net_device *upper_dev,
6852 					    struct list_head *up_list,
6853 					    struct list_head *down_list,
6854 					    void *private, bool master)
6855 {
6856 	int ret;
6857 
6858 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6859 					   private, master);
6860 	if (ret)
6861 		return ret;
6862 
6863 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6864 					   private, false);
6865 	if (ret) {
6866 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6867 		return ret;
6868 	}
6869 
6870 	return 0;
6871 }
6872 
6873 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6874 					       struct net_device *upper_dev,
6875 					       u16 ref_nr,
6876 					       struct list_head *up_list,
6877 					       struct list_head *down_list)
6878 {
6879 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6880 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6881 }
6882 
6883 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6884 						struct net_device *upper_dev,
6885 						void *private, bool master)
6886 {
6887 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6888 						&dev->adj_list.upper,
6889 						&upper_dev->adj_list.lower,
6890 						private, master);
6891 }
6892 
6893 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6894 						   struct net_device *upper_dev)
6895 {
6896 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6897 					   &dev->adj_list.upper,
6898 					   &upper_dev->adj_list.lower);
6899 }
6900 
6901 static int __netdev_upper_dev_link(struct net_device *dev,
6902 				   struct net_device *upper_dev, bool master,
6903 				   void *upper_priv, void *upper_info,
6904 				   struct netlink_ext_ack *extack)
6905 {
6906 	struct netdev_notifier_changeupper_info changeupper_info = {
6907 		.info = {
6908 			.dev = dev,
6909 			.extack = extack,
6910 		},
6911 		.upper_dev = upper_dev,
6912 		.master = master,
6913 		.linking = true,
6914 		.upper_info = upper_info,
6915 	};
6916 	struct net_device *master_dev;
6917 	int ret = 0;
6918 
6919 	ASSERT_RTNL();
6920 
6921 	if (dev == upper_dev)
6922 		return -EBUSY;
6923 
6924 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6925 	if (netdev_has_upper_dev(upper_dev, dev))
6926 		return -EBUSY;
6927 
6928 	if (!master) {
6929 		if (netdev_has_upper_dev(dev, upper_dev))
6930 			return -EEXIST;
6931 	} else {
6932 		master_dev = netdev_master_upper_dev_get(dev);
6933 		if (master_dev)
6934 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
6935 	}
6936 
6937 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6938 					    &changeupper_info.info);
6939 	ret = notifier_to_errno(ret);
6940 	if (ret)
6941 		return ret;
6942 
6943 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6944 						   master);
6945 	if (ret)
6946 		return ret;
6947 
6948 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6949 					    &changeupper_info.info);
6950 	ret = notifier_to_errno(ret);
6951 	if (ret)
6952 		goto rollback;
6953 
6954 	return 0;
6955 
6956 rollback:
6957 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6958 
6959 	return ret;
6960 }
6961 
6962 /**
6963  * netdev_upper_dev_link - Add a link to the upper device
6964  * @dev: device
6965  * @upper_dev: new upper device
6966  * @extack: netlink extended ack
6967  *
6968  * Adds a link to device which is upper to this one. The caller must hold
6969  * the RTNL lock. On a failure a negative errno code is returned.
6970  * On success the reference counts are adjusted and the function
6971  * returns zero.
6972  */
6973 int netdev_upper_dev_link(struct net_device *dev,
6974 			  struct net_device *upper_dev,
6975 			  struct netlink_ext_ack *extack)
6976 {
6977 	return __netdev_upper_dev_link(dev, upper_dev, false,
6978 				       NULL, NULL, extack);
6979 }
6980 EXPORT_SYMBOL(netdev_upper_dev_link);
6981 
6982 /**
6983  * netdev_master_upper_dev_link - Add a master link to the upper device
6984  * @dev: device
6985  * @upper_dev: new upper device
6986  * @upper_priv: upper device private
6987  * @upper_info: upper info to be passed down via notifier
6988  * @extack: netlink extended ack
6989  *
6990  * Adds a link to device which is upper to this one. In this case, only
6991  * one master upper device can be linked, although other non-master devices
6992  * might be linked as well. The caller must hold the RTNL lock.
6993  * On a failure a negative errno code is returned. On success the reference
6994  * counts are adjusted and the function returns zero.
6995  */
6996 int netdev_master_upper_dev_link(struct net_device *dev,
6997 				 struct net_device *upper_dev,
6998 				 void *upper_priv, void *upper_info,
6999 				 struct netlink_ext_ack *extack)
7000 {
7001 	return __netdev_upper_dev_link(dev, upper_dev, true,
7002 				       upper_priv, upper_info, extack);
7003 }
7004 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7005 
7006 /**
7007  * netdev_upper_dev_unlink - Removes a link to upper device
7008  * @dev: device
7009  * @upper_dev: new upper device
7010  *
7011  * Removes a link to device which is upper to this one. The caller must hold
7012  * the RTNL lock.
7013  */
7014 void netdev_upper_dev_unlink(struct net_device *dev,
7015 			     struct net_device *upper_dev)
7016 {
7017 	struct netdev_notifier_changeupper_info changeupper_info = {
7018 		.info = {
7019 			.dev = dev,
7020 		},
7021 		.upper_dev = upper_dev,
7022 		.linking = false,
7023 	};
7024 
7025 	ASSERT_RTNL();
7026 
7027 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7028 
7029 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7030 				      &changeupper_info.info);
7031 
7032 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7033 
7034 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7035 				      &changeupper_info.info);
7036 }
7037 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7038 
7039 /**
7040  * netdev_bonding_info_change - Dispatch event about slave change
7041  * @dev: device
7042  * @bonding_info: info to dispatch
7043  *
7044  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7045  * The caller must hold the RTNL lock.
7046  */
7047 void netdev_bonding_info_change(struct net_device *dev,
7048 				struct netdev_bonding_info *bonding_info)
7049 {
7050 	struct netdev_notifier_bonding_info info = {
7051 		.info.dev = dev,
7052 	};
7053 
7054 	memcpy(&info.bonding_info, bonding_info,
7055 	       sizeof(struct netdev_bonding_info));
7056 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7057 				      &info.info);
7058 }
7059 EXPORT_SYMBOL(netdev_bonding_info_change);
7060 
7061 static void netdev_adjacent_add_links(struct net_device *dev)
7062 {
7063 	struct netdev_adjacent *iter;
7064 
7065 	struct net *net = dev_net(dev);
7066 
7067 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7068 		if (!net_eq(net, dev_net(iter->dev)))
7069 			continue;
7070 		netdev_adjacent_sysfs_add(iter->dev, dev,
7071 					  &iter->dev->adj_list.lower);
7072 		netdev_adjacent_sysfs_add(dev, iter->dev,
7073 					  &dev->adj_list.upper);
7074 	}
7075 
7076 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7077 		if (!net_eq(net, dev_net(iter->dev)))
7078 			continue;
7079 		netdev_adjacent_sysfs_add(iter->dev, dev,
7080 					  &iter->dev->adj_list.upper);
7081 		netdev_adjacent_sysfs_add(dev, iter->dev,
7082 					  &dev->adj_list.lower);
7083 	}
7084 }
7085 
7086 static void netdev_adjacent_del_links(struct net_device *dev)
7087 {
7088 	struct netdev_adjacent *iter;
7089 
7090 	struct net *net = dev_net(dev);
7091 
7092 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7093 		if (!net_eq(net, dev_net(iter->dev)))
7094 			continue;
7095 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7096 					  &iter->dev->adj_list.lower);
7097 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7098 					  &dev->adj_list.upper);
7099 	}
7100 
7101 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7102 		if (!net_eq(net, dev_net(iter->dev)))
7103 			continue;
7104 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7105 					  &iter->dev->adj_list.upper);
7106 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7107 					  &dev->adj_list.lower);
7108 	}
7109 }
7110 
7111 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7112 {
7113 	struct netdev_adjacent *iter;
7114 
7115 	struct net *net = dev_net(dev);
7116 
7117 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7118 		if (!net_eq(net, dev_net(iter->dev)))
7119 			continue;
7120 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7121 					  &iter->dev->adj_list.lower);
7122 		netdev_adjacent_sysfs_add(iter->dev, dev,
7123 					  &iter->dev->adj_list.lower);
7124 	}
7125 
7126 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7127 		if (!net_eq(net, dev_net(iter->dev)))
7128 			continue;
7129 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7130 					  &iter->dev->adj_list.upper);
7131 		netdev_adjacent_sysfs_add(iter->dev, dev,
7132 					  &iter->dev->adj_list.upper);
7133 	}
7134 }
7135 
7136 void *netdev_lower_dev_get_private(struct net_device *dev,
7137 				   struct net_device *lower_dev)
7138 {
7139 	struct netdev_adjacent *lower;
7140 
7141 	if (!lower_dev)
7142 		return NULL;
7143 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7144 	if (!lower)
7145 		return NULL;
7146 
7147 	return lower->private;
7148 }
7149 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7150 
7151 
7152 int dev_get_nest_level(struct net_device *dev)
7153 {
7154 	struct net_device *lower = NULL;
7155 	struct list_head *iter;
7156 	int max_nest = -1;
7157 	int nest;
7158 
7159 	ASSERT_RTNL();
7160 
7161 	netdev_for_each_lower_dev(dev, lower, iter) {
7162 		nest = dev_get_nest_level(lower);
7163 		if (max_nest < nest)
7164 			max_nest = nest;
7165 	}
7166 
7167 	return max_nest + 1;
7168 }
7169 EXPORT_SYMBOL(dev_get_nest_level);
7170 
7171 /**
7172  * netdev_lower_change - Dispatch event about lower device state change
7173  * @lower_dev: device
7174  * @lower_state_info: state to dispatch
7175  *
7176  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7177  * The caller must hold the RTNL lock.
7178  */
7179 void netdev_lower_state_changed(struct net_device *lower_dev,
7180 				void *lower_state_info)
7181 {
7182 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7183 		.info.dev = lower_dev,
7184 	};
7185 
7186 	ASSERT_RTNL();
7187 	changelowerstate_info.lower_state_info = lower_state_info;
7188 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7189 				      &changelowerstate_info.info);
7190 }
7191 EXPORT_SYMBOL(netdev_lower_state_changed);
7192 
7193 static void dev_change_rx_flags(struct net_device *dev, int flags)
7194 {
7195 	const struct net_device_ops *ops = dev->netdev_ops;
7196 
7197 	if (ops->ndo_change_rx_flags)
7198 		ops->ndo_change_rx_flags(dev, flags);
7199 }
7200 
7201 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7202 {
7203 	unsigned int old_flags = dev->flags;
7204 	kuid_t uid;
7205 	kgid_t gid;
7206 
7207 	ASSERT_RTNL();
7208 
7209 	dev->flags |= IFF_PROMISC;
7210 	dev->promiscuity += inc;
7211 	if (dev->promiscuity == 0) {
7212 		/*
7213 		 * Avoid overflow.
7214 		 * If inc causes overflow, untouch promisc and return error.
7215 		 */
7216 		if (inc < 0)
7217 			dev->flags &= ~IFF_PROMISC;
7218 		else {
7219 			dev->promiscuity -= inc;
7220 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7221 				dev->name);
7222 			return -EOVERFLOW;
7223 		}
7224 	}
7225 	if (dev->flags != old_flags) {
7226 		pr_info("device %s %s promiscuous mode\n",
7227 			dev->name,
7228 			dev->flags & IFF_PROMISC ? "entered" : "left");
7229 		if (audit_enabled) {
7230 			current_uid_gid(&uid, &gid);
7231 			audit_log(audit_context(), GFP_ATOMIC,
7232 				  AUDIT_ANOM_PROMISCUOUS,
7233 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7234 				  dev->name, (dev->flags & IFF_PROMISC),
7235 				  (old_flags & IFF_PROMISC),
7236 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7237 				  from_kuid(&init_user_ns, uid),
7238 				  from_kgid(&init_user_ns, gid),
7239 				  audit_get_sessionid(current));
7240 		}
7241 
7242 		dev_change_rx_flags(dev, IFF_PROMISC);
7243 	}
7244 	if (notify)
7245 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7246 	return 0;
7247 }
7248 
7249 /**
7250  *	dev_set_promiscuity	- update promiscuity count on a device
7251  *	@dev: device
7252  *	@inc: modifier
7253  *
7254  *	Add or remove promiscuity from a device. While the count in the device
7255  *	remains above zero the interface remains promiscuous. Once it hits zero
7256  *	the device reverts back to normal filtering operation. A negative inc
7257  *	value is used to drop promiscuity on the device.
7258  *	Return 0 if successful or a negative errno code on error.
7259  */
7260 int dev_set_promiscuity(struct net_device *dev, int inc)
7261 {
7262 	unsigned int old_flags = dev->flags;
7263 	int err;
7264 
7265 	err = __dev_set_promiscuity(dev, inc, true);
7266 	if (err < 0)
7267 		return err;
7268 	if (dev->flags != old_flags)
7269 		dev_set_rx_mode(dev);
7270 	return err;
7271 }
7272 EXPORT_SYMBOL(dev_set_promiscuity);
7273 
7274 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7275 {
7276 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7277 
7278 	ASSERT_RTNL();
7279 
7280 	dev->flags |= IFF_ALLMULTI;
7281 	dev->allmulti += inc;
7282 	if (dev->allmulti == 0) {
7283 		/*
7284 		 * Avoid overflow.
7285 		 * If inc causes overflow, untouch allmulti and return error.
7286 		 */
7287 		if (inc < 0)
7288 			dev->flags &= ~IFF_ALLMULTI;
7289 		else {
7290 			dev->allmulti -= inc;
7291 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7292 				dev->name);
7293 			return -EOVERFLOW;
7294 		}
7295 	}
7296 	if (dev->flags ^ old_flags) {
7297 		dev_change_rx_flags(dev, IFF_ALLMULTI);
7298 		dev_set_rx_mode(dev);
7299 		if (notify)
7300 			__dev_notify_flags(dev, old_flags,
7301 					   dev->gflags ^ old_gflags);
7302 	}
7303 	return 0;
7304 }
7305 
7306 /**
7307  *	dev_set_allmulti	- update allmulti count on a device
7308  *	@dev: device
7309  *	@inc: modifier
7310  *
7311  *	Add or remove reception of all multicast frames to a device. While the
7312  *	count in the device remains above zero the interface remains listening
7313  *	to all interfaces. Once it hits zero the device reverts back to normal
7314  *	filtering operation. A negative @inc value is used to drop the counter
7315  *	when releasing a resource needing all multicasts.
7316  *	Return 0 if successful or a negative errno code on error.
7317  */
7318 
7319 int dev_set_allmulti(struct net_device *dev, int inc)
7320 {
7321 	return __dev_set_allmulti(dev, inc, true);
7322 }
7323 EXPORT_SYMBOL(dev_set_allmulti);
7324 
7325 /*
7326  *	Upload unicast and multicast address lists to device and
7327  *	configure RX filtering. When the device doesn't support unicast
7328  *	filtering it is put in promiscuous mode while unicast addresses
7329  *	are present.
7330  */
7331 void __dev_set_rx_mode(struct net_device *dev)
7332 {
7333 	const struct net_device_ops *ops = dev->netdev_ops;
7334 
7335 	/* dev_open will call this function so the list will stay sane. */
7336 	if (!(dev->flags&IFF_UP))
7337 		return;
7338 
7339 	if (!netif_device_present(dev))
7340 		return;
7341 
7342 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7343 		/* Unicast addresses changes may only happen under the rtnl,
7344 		 * therefore calling __dev_set_promiscuity here is safe.
7345 		 */
7346 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7347 			__dev_set_promiscuity(dev, 1, false);
7348 			dev->uc_promisc = true;
7349 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7350 			__dev_set_promiscuity(dev, -1, false);
7351 			dev->uc_promisc = false;
7352 		}
7353 	}
7354 
7355 	if (ops->ndo_set_rx_mode)
7356 		ops->ndo_set_rx_mode(dev);
7357 }
7358 
7359 void dev_set_rx_mode(struct net_device *dev)
7360 {
7361 	netif_addr_lock_bh(dev);
7362 	__dev_set_rx_mode(dev);
7363 	netif_addr_unlock_bh(dev);
7364 }
7365 
7366 /**
7367  *	dev_get_flags - get flags reported to userspace
7368  *	@dev: device
7369  *
7370  *	Get the combination of flag bits exported through APIs to userspace.
7371  */
7372 unsigned int dev_get_flags(const struct net_device *dev)
7373 {
7374 	unsigned int flags;
7375 
7376 	flags = (dev->flags & ~(IFF_PROMISC |
7377 				IFF_ALLMULTI |
7378 				IFF_RUNNING |
7379 				IFF_LOWER_UP |
7380 				IFF_DORMANT)) |
7381 		(dev->gflags & (IFF_PROMISC |
7382 				IFF_ALLMULTI));
7383 
7384 	if (netif_running(dev)) {
7385 		if (netif_oper_up(dev))
7386 			flags |= IFF_RUNNING;
7387 		if (netif_carrier_ok(dev))
7388 			flags |= IFF_LOWER_UP;
7389 		if (netif_dormant(dev))
7390 			flags |= IFF_DORMANT;
7391 	}
7392 
7393 	return flags;
7394 }
7395 EXPORT_SYMBOL(dev_get_flags);
7396 
7397 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7398 {
7399 	unsigned int old_flags = dev->flags;
7400 	int ret;
7401 
7402 	ASSERT_RTNL();
7403 
7404 	/*
7405 	 *	Set the flags on our device.
7406 	 */
7407 
7408 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7409 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7410 			       IFF_AUTOMEDIA)) |
7411 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7412 				    IFF_ALLMULTI));
7413 
7414 	/*
7415 	 *	Load in the correct multicast list now the flags have changed.
7416 	 */
7417 
7418 	if ((old_flags ^ flags) & IFF_MULTICAST)
7419 		dev_change_rx_flags(dev, IFF_MULTICAST);
7420 
7421 	dev_set_rx_mode(dev);
7422 
7423 	/*
7424 	 *	Have we downed the interface. We handle IFF_UP ourselves
7425 	 *	according to user attempts to set it, rather than blindly
7426 	 *	setting it.
7427 	 */
7428 
7429 	ret = 0;
7430 	if ((old_flags ^ flags) & IFF_UP) {
7431 		if (old_flags & IFF_UP)
7432 			__dev_close(dev);
7433 		else
7434 			ret = __dev_open(dev);
7435 	}
7436 
7437 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
7438 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
7439 		unsigned int old_flags = dev->flags;
7440 
7441 		dev->gflags ^= IFF_PROMISC;
7442 
7443 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
7444 			if (dev->flags != old_flags)
7445 				dev_set_rx_mode(dev);
7446 	}
7447 
7448 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7449 	 * is important. Some (broken) drivers set IFF_PROMISC, when
7450 	 * IFF_ALLMULTI is requested not asking us and not reporting.
7451 	 */
7452 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7453 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7454 
7455 		dev->gflags ^= IFF_ALLMULTI;
7456 		__dev_set_allmulti(dev, inc, false);
7457 	}
7458 
7459 	return ret;
7460 }
7461 
7462 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7463 			unsigned int gchanges)
7464 {
7465 	unsigned int changes = dev->flags ^ old_flags;
7466 
7467 	if (gchanges)
7468 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7469 
7470 	if (changes & IFF_UP) {
7471 		if (dev->flags & IFF_UP)
7472 			call_netdevice_notifiers(NETDEV_UP, dev);
7473 		else
7474 			call_netdevice_notifiers(NETDEV_DOWN, dev);
7475 	}
7476 
7477 	if (dev->flags & IFF_UP &&
7478 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7479 		struct netdev_notifier_change_info change_info = {
7480 			.info = {
7481 				.dev = dev,
7482 			},
7483 			.flags_changed = changes,
7484 		};
7485 
7486 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7487 	}
7488 }
7489 
7490 /**
7491  *	dev_change_flags - change device settings
7492  *	@dev: device
7493  *	@flags: device state flags
7494  *
7495  *	Change settings on device based state flags. The flags are
7496  *	in the userspace exported format.
7497  */
7498 int dev_change_flags(struct net_device *dev, unsigned int flags)
7499 {
7500 	int ret;
7501 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7502 
7503 	ret = __dev_change_flags(dev, flags);
7504 	if (ret < 0)
7505 		return ret;
7506 
7507 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7508 	__dev_notify_flags(dev, old_flags, changes);
7509 	return ret;
7510 }
7511 EXPORT_SYMBOL(dev_change_flags);
7512 
7513 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7514 {
7515 	const struct net_device_ops *ops = dev->netdev_ops;
7516 
7517 	if (ops->ndo_change_mtu)
7518 		return ops->ndo_change_mtu(dev, new_mtu);
7519 
7520 	dev->mtu = new_mtu;
7521 	return 0;
7522 }
7523 EXPORT_SYMBOL(__dev_set_mtu);
7524 
7525 /**
7526  *	dev_set_mtu - Change maximum transfer unit
7527  *	@dev: device
7528  *	@new_mtu: new transfer unit
7529  *
7530  *	Change the maximum transfer size of the network device.
7531  */
7532 int dev_set_mtu(struct net_device *dev, int new_mtu)
7533 {
7534 	int err, orig_mtu;
7535 
7536 	if (new_mtu == dev->mtu)
7537 		return 0;
7538 
7539 	/* MTU must be positive, and in range */
7540 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7541 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7542 				    dev->name, new_mtu, dev->min_mtu);
7543 		return -EINVAL;
7544 	}
7545 
7546 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7547 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7548 				    dev->name, new_mtu, dev->max_mtu);
7549 		return -EINVAL;
7550 	}
7551 
7552 	if (!netif_device_present(dev))
7553 		return -ENODEV;
7554 
7555 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7556 	err = notifier_to_errno(err);
7557 	if (err)
7558 		return err;
7559 
7560 	orig_mtu = dev->mtu;
7561 	err = __dev_set_mtu(dev, new_mtu);
7562 
7563 	if (!err) {
7564 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7565 		err = notifier_to_errno(err);
7566 		if (err) {
7567 			/* setting mtu back and notifying everyone again,
7568 			 * so that they have a chance to revert changes.
7569 			 */
7570 			__dev_set_mtu(dev, orig_mtu);
7571 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7572 		}
7573 	}
7574 	return err;
7575 }
7576 EXPORT_SYMBOL(dev_set_mtu);
7577 
7578 /**
7579  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7580  *	@dev: device
7581  *	@new_len: new tx queue length
7582  */
7583 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7584 {
7585 	unsigned int orig_len = dev->tx_queue_len;
7586 	int res;
7587 
7588 	if (new_len != (unsigned int)new_len)
7589 		return -ERANGE;
7590 
7591 	if (new_len != orig_len) {
7592 		dev->tx_queue_len = new_len;
7593 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7594 		res = notifier_to_errno(res);
7595 		if (res) {
7596 			netdev_err(dev,
7597 				   "refused to change device tx_queue_len\n");
7598 			dev->tx_queue_len = orig_len;
7599 			return res;
7600 		}
7601 		return dev_qdisc_change_tx_queue_len(dev);
7602 	}
7603 
7604 	return 0;
7605 }
7606 
7607 /**
7608  *	dev_set_group - Change group this device belongs to
7609  *	@dev: device
7610  *	@new_group: group this device should belong to
7611  */
7612 void dev_set_group(struct net_device *dev, int new_group)
7613 {
7614 	dev->group = new_group;
7615 }
7616 EXPORT_SYMBOL(dev_set_group);
7617 
7618 /**
7619  *	dev_set_mac_address - Change Media Access Control Address
7620  *	@dev: device
7621  *	@sa: new address
7622  *
7623  *	Change the hardware (MAC) address of the device
7624  */
7625 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7626 {
7627 	const struct net_device_ops *ops = dev->netdev_ops;
7628 	int err;
7629 
7630 	if (!ops->ndo_set_mac_address)
7631 		return -EOPNOTSUPP;
7632 	if (sa->sa_family != dev->type)
7633 		return -EINVAL;
7634 	if (!netif_device_present(dev))
7635 		return -ENODEV;
7636 	err = ops->ndo_set_mac_address(dev, sa);
7637 	if (err)
7638 		return err;
7639 	dev->addr_assign_type = NET_ADDR_SET;
7640 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7641 	add_device_randomness(dev->dev_addr, dev->addr_len);
7642 	return 0;
7643 }
7644 EXPORT_SYMBOL(dev_set_mac_address);
7645 
7646 /**
7647  *	dev_change_carrier - Change device carrier
7648  *	@dev: device
7649  *	@new_carrier: new value
7650  *
7651  *	Change device carrier
7652  */
7653 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7654 {
7655 	const struct net_device_ops *ops = dev->netdev_ops;
7656 
7657 	if (!ops->ndo_change_carrier)
7658 		return -EOPNOTSUPP;
7659 	if (!netif_device_present(dev))
7660 		return -ENODEV;
7661 	return ops->ndo_change_carrier(dev, new_carrier);
7662 }
7663 EXPORT_SYMBOL(dev_change_carrier);
7664 
7665 /**
7666  *	dev_get_phys_port_id - Get device physical port ID
7667  *	@dev: device
7668  *	@ppid: port ID
7669  *
7670  *	Get device physical port ID
7671  */
7672 int dev_get_phys_port_id(struct net_device *dev,
7673 			 struct netdev_phys_item_id *ppid)
7674 {
7675 	const struct net_device_ops *ops = dev->netdev_ops;
7676 
7677 	if (!ops->ndo_get_phys_port_id)
7678 		return -EOPNOTSUPP;
7679 	return ops->ndo_get_phys_port_id(dev, ppid);
7680 }
7681 EXPORT_SYMBOL(dev_get_phys_port_id);
7682 
7683 /**
7684  *	dev_get_phys_port_name - Get device physical port name
7685  *	@dev: device
7686  *	@name: port name
7687  *	@len: limit of bytes to copy to name
7688  *
7689  *	Get device physical port name
7690  */
7691 int dev_get_phys_port_name(struct net_device *dev,
7692 			   char *name, size_t len)
7693 {
7694 	const struct net_device_ops *ops = dev->netdev_ops;
7695 
7696 	if (!ops->ndo_get_phys_port_name)
7697 		return -EOPNOTSUPP;
7698 	return ops->ndo_get_phys_port_name(dev, name, len);
7699 }
7700 EXPORT_SYMBOL(dev_get_phys_port_name);
7701 
7702 /**
7703  *	dev_change_proto_down - update protocol port state information
7704  *	@dev: device
7705  *	@proto_down: new value
7706  *
7707  *	This info can be used by switch drivers to set the phys state of the
7708  *	port.
7709  */
7710 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7711 {
7712 	const struct net_device_ops *ops = dev->netdev_ops;
7713 
7714 	if (!ops->ndo_change_proto_down)
7715 		return -EOPNOTSUPP;
7716 	if (!netif_device_present(dev))
7717 		return -ENODEV;
7718 	return ops->ndo_change_proto_down(dev, proto_down);
7719 }
7720 EXPORT_SYMBOL(dev_change_proto_down);
7721 
7722 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7723 		    enum bpf_netdev_command cmd)
7724 {
7725 	struct netdev_bpf xdp;
7726 
7727 	if (!bpf_op)
7728 		return 0;
7729 
7730 	memset(&xdp, 0, sizeof(xdp));
7731 	xdp.command = cmd;
7732 
7733 	/* Query must always succeed. */
7734 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7735 
7736 	return xdp.prog_id;
7737 }
7738 
7739 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7740 			   struct netlink_ext_ack *extack, u32 flags,
7741 			   struct bpf_prog *prog)
7742 {
7743 	struct netdev_bpf xdp;
7744 
7745 	memset(&xdp, 0, sizeof(xdp));
7746 	if (flags & XDP_FLAGS_HW_MODE)
7747 		xdp.command = XDP_SETUP_PROG_HW;
7748 	else
7749 		xdp.command = XDP_SETUP_PROG;
7750 	xdp.extack = extack;
7751 	xdp.flags = flags;
7752 	xdp.prog = prog;
7753 
7754 	return bpf_op(dev, &xdp);
7755 }
7756 
7757 static void dev_xdp_uninstall(struct net_device *dev)
7758 {
7759 	struct netdev_bpf xdp;
7760 	bpf_op_t ndo_bpf;
7761 
7762 	/* Remove generic XDP */
7763 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7764 
7765 	/* Remove from the driver */
7766 	ndo_bpf = dev->netdev_ops->ndo_bpf;
7767 	if (!ndo_bpf)
7768 		return;
7769 
7770 	memset(&xdp, 0, sizeof(xdp));
7771 	xdp.command = XDP_QUERY_PROG;
7772 	WARN_ON(ndo_bpf(dev, &xdp));
7773 	if (xdp.prog_id)
7774 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7775 					NULL));
7776 
7777 	/* Remove HW offload */
7778 	memset(&xdp, 0, sizeof(xdp));
7779 	xdp.command = XDP_QUERY_PROG_HW;
7780 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7781 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7782 					NULL));
7783 }
7784 
7785 /**
7786  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7787  *	@dev: device
7788  *	@extack: netlink extended ack
7789  *	@fd: new program fd or negative value to clear
7790  *	@flags: xdp-related flags
7791  *
7792  *	Set or clear a bpf program for a device
7793  */
7794 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7795 		      int fd, u32 flags)
7796 {
7797 	const struct net_device_ops *ops = dev->netdev_ops;
7798 	enum bpf_netdev_command query;
7799 	struct bpf_prog *prog = NULL;
7800 	bpf_op_t bpf_op, bpf_chk;
7801 	int err;
7802 
7803 	ASSERT_RTNL();
7804 
7805 	query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7806 
7807 	bpf_op = bpf_chk = ops->ndo_bpf;
7808 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7809 		return -EOPNOTSUPP;
7810 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7811 		bpf_op = generic_xdp_install;
7812 	if (bpf_op == bpf_chk)
7813 		bpf_chk = generic_xdp_install;
7814 
7815 	if (fd >= 0) {
7816 		if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7817 		    __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7818 			return -EEXIST;
7819 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7820 		    __dev_xdp_query(dev, bpf_op, query))
7821 			return -EBUSY;
7822 
7823 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7824 					     bpf_op == ops->ndo_bpf);
7825 		if (IS_ERR(prog))
7826 			return PTR_ERR(prog);
7827 
7828 		if (!(flags & XDP_FLAGS_HW_MODE) &&
7829 		    bpf_prog_is_dev_bound(prog->aux)) {
7830 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7831 			bpf_prog_put(prog);
7832 			return -EINVAL;
7833 		}
7834 	}
7835 
7836 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7837 	if (err < 0 && prog)
7838 		bpf_prog_put(prog);
7839 
7840 	return err;
7841 }
7842 
7843 /**
7844  *	dev_new_index	-	allocate an ifindex
7845  *	@net: the applicable net namespace
7846  *
7847  *	Returns a suitable unique value for a new device interface
7848  *	number.  The caller must hold the rtnl semaphore or the
7849  *	dev_base_lock to be sure it remains unique.
7850  */
7851 static int dev_new_index(struct net *net)
7852 {
7853 	int ifindex = net->ifindex;
7854 
7855 	for (;;) {
7856 		if (++ifindex <= 0)
7857 			ifindex = 1;
7858 		if (!__dev_get_by_index(net, ifindex))
7859 			return net->ifindex = ifindex;
7860 	}
7861 }
7862 
7863 /* Delayed registration/unregisteration */
7864 static LIST_HEAD(net_todo_list);
7865 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7866 
7867 static void net_set_todo(struct net_device *dev)
7868 {
7869 	list_add_tail(&dev->todo_list, &net_todo_list);
7870 	dev_net(dev)->dev_unreg_count++;
7871 }
7872 
7873 static void rollback_registered_many(struct list_head *head)
7874 {
7875 	struct net_device *dev, *tmp;
7876 	LIST_HEAD(close_head);
7877 
7878 	BUG_ON(dev_boot_phase);
7879 	ASSERT_RTNL();
7880 
7881 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7882 		/* Some devices call without registering
7883 		 * for initialization unwind. Remove those
7884 		 * devices and proceed with the remaining.
7885 		 */
7886 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7887 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7888 				 dev->name, dev);
7889 
7890 			WARN_ON(1);
7891 			list_del(&dev->unreg_list);
7892 			continue;
7893 		}
7894 		dev->dismantle = true;
7895 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7896 	}
7897 
7898 	/* If device is running, close it first. */
7899 	list_for_each_entry(dev, head, unreg_list)
7900 		list_add_tail(&dev->close_list, &close_head);
7901 	dev_close_many(&close_head, true);
7902 
7903 	list_for_each_entry(dev, head, unreg_list) {
7904 		/* And unlink it from device chain. */
7905 		unlist_netdevice(dev);
7906 
7907 		dev->reg_state = NETREG_UNREGISTERING;
7908 	}
7909 	flush_all_backlogs();
7910 
7911 	synchronize_net();
7912 
7913 	list_for_each_entry(dev, head, unreg_list) {
7914 		struct sk_buff *skb = NULL;
7915 
7916 		/* Shutdown queueing discipline. */
7917 		dev_shutdown(dev);
7918 
7919 		dev_xdp_uninstall(dev);
7920 
7921 		/* Notify protocols, that we are about to destroy
7922 		 * this device. They should clean all the things.
7923 		 */
7924 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7925 
7926 		if (!dev->rtnl_link_ops ||
7927 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7928 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7929 						     GFP_KERNEL, NULL, 0);
7930 
7931 		/*
7932 		 *	Flush the unicast and multicast chains
7933 		 */
7934 		dev_uc_flush(dev);
7935 		dev_mc_flush(dev);
7936 
7937 		if (dev->netdev_ops->ndo_uninit)
7938 			dev->netdev_ops->ndo_uninit(dev);
7939 
7940 		if (skb)
7941 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7942 
7943 		/* Notifier chain MUST detach us all upper devices. */
7944 		WARN_ON(netdev_has_any_upper_dev(dev));
7945 		WARN_ON(netdev_has_any_lower_dev(dev));
7946 
7947 		/* Remove entries from kobject tree */
7948 		netdev_unregister_kobject(dev);
7949 #ifdef CONFIG_XPS
7950 		/* Remove XPS queueing entries */
7951 		netif_reset_xps_queues_gt(dev, 0);
7952 #endif
7953 	}
7954 
7955 	synchronize_net();
7956 
7957 	list_for_each_entry(dev, head, unreg_list)
7958 		dev_put(dev);
7959 }
7960 
7961 static void rollback_registered(struct net_device *dev)
7962 {
7963 	LIST_HEAD(single);
7964 
7965 	list_add(&dev->unreg_list, &single);
7966 	rollback_registered_many(&single);
7967 	list_del(&single);
7968 }
7969 
7970 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7971 	struct net_device *upper, netdev_features_t features)
7972 {
7973 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7974 	netdev_features_t feature;
7975 	int feature_bit;
7976 
7977 	for_each_netdev_feature(&upper_disables, feature_bit) {
7978 		feature = __NETIF_F_BIT(feature_bit);
7979 		if (!(upper->wanted_features & feature)
7980 		    && (features & feature)) {
7981 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7982 				   &feature, upper->name);
7983 			features &= ~feature;
7984 		}
7985 	}
7986 
7987 	return features;
7988 }
7989 
7990 static void netdev_sync_lower_features(struct net_device *upper,
7991 	struct net_device *lower, netdev_features_t features)
7992 {
7993 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7994 	netdev_features_t feature;
7995 	int feature_bit;
7996 
7997 	for_each_netdev_feature(&upper_disables, feature_bit) {
7998 		feature = __NETIF_F_BIT(feature_bit);
7999 		if (!(features & feature) && (lower->features & feature)) {
8000 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8001 				   &feature, lower->name);
8002 			lower->wanted_features &= ~feature;
8003 			netdev_update_features(lower);
8004 
8005 			if (unlikely(lower->features & feature))
8006 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8007 					    &feature, lower->name);
8008 		}
8009 	}
8010 }
8011 
8012 static netdev_features_t netdev_fix_features(struct net_device *dev,
8013 	netdev_features_t features)
8014 {
8015 	/* Fix illegal checksum combinations */
8016 	if ((features & NETIF_F_HW_CSUM) &&
8017 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8018 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8019 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8020 	}
8021 
8022 	/* TSO requires that SG is present as well. */
8023 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8024 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8025 		features &= ~NETIF_F_ALL_TSO;
8026 	}
8027 
8028 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8029 					!(features & NETIF_F_IP_CSUM)) {
8030 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8031 		features &= ~NETIF_F_TSO;
8032 		features &= ~NETIF_F_TSO_ECN;
8033 	}
8034 
8035 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8036 					 !(features & NETIF_F_IPV6_CSUM)) {
8037 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8038 		features &= ~NETIF_F_TSO6;
8039 	}
8040 
8041 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8042 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8043 		features &= ~NETIF_F_TSO_MANGLEID;
8044 
8045 	/* TSO ECN requires that TSO is present as well. */
8046 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8047 		features &= ~NETIF_F_TSO_ECN;
8048 
8049 	/* Software GSO depends on SG. */
8050 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8051 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8052 		features &= ~NETIF_F_GSO;
8053 	}
8054 
8055 	/* GSO partial features require GSO partial be set */
8056 	if ((features & dev->gso_partial_features) &&
8057 	    !(features & NETIF_F_GSO_PARTIAL)) {
8058 		netdev_dbg(dev,
8059 			   "Dropping partially supported GSO features since no GSO partial.\n");
8060 		features &= ~dev->gso_partial_features;
8061 	}
8062 
8063 	if (!(features & NETIF_F_RXCSUM)) {
8064 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8065 		 * successfully merged by hardware must also have the
8066 		 * checksum verified by hardware.  If the user does not
8067 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8068 		 */
8069 		if (features & NETIF_F_GRO_HW) {
8070 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8071 			features &= ~NETIF_F_GRO_HW;
8072 		}
8073 	}
8074 
8075 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8076 	if (features & NETIF_F_RXFCS) {
8077 		if (features & NETIF_F_LRO) {
8078 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8079 			features &= ~NETIF_F_LRO;
8080 		}
8081 
8082 		if (features & NETIF_F_GRO_HW) {
8083 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8084 			features &= ~NETIF_F_GRO_HW;
8085 		}
8086 	}
8087 
8088 	return features;
8089 }
8090 
8091 int __netdev_update_features(struct net_device *dev)
8092 {
8093 	struct net_device *upper, *lower;
8094 	netdev_features_t features;
8095 	struct list_head *iter;
8096 	int err = -1;
8097 
8098 	ASSERT_RTNL();
8099 
8100 	features = netdev_get_wanted_features(dev);
8101 
8102 	if (dev->netdev_ops->ndo_fix_features)
8103 		features = dev->netdev_ops->ndo_fix_features(dev, features);
8104 
8105 	/* driver might be less strict about feature dependencies */
8106 	features = netdev_fix_features(dev, features);
8107 
8108 	/* some features can't be enabled if they're off an an upper device */
8109 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
8110 		features = netdev_sync_upper_features(dev, upper, features);
8111 
8112 	if (dev->features == features)
8113 		goto sync_lower;
8114 
8115 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8116 		&dev->features, &features);
8117 
8118 	if (dev->netdev_ops->ndo_set_features)
8119 		err = dev->netdev_ops->ndo_set_features(dev, features);
8120 	else
8121 		err = 0;
8122 
8123 	if (unlikely(err < 0)) {
8124 		netdev_err(dev,
8125 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
8126 			err, &features, &dev->features);
8127 		/* return non-0 since some features might have changed and
8128 		 * it's better to fire a spurious notification than miss it
8129 		 */
8130 		return -1;
8131 	}
8132 
8133 sync_lower:
8134 	/* some features must be disabled on lower devices when disabled
8135 	 * on an upper device (think: bonding master or bridge)
8136 	 */
8137 	netdev_for_each_lower_dev(dev, lower, iter)
8138 		netdev_sync_lower_features(dev, lower, features);
8139 
8140 	if (!err) {
8141 		netdev_features_t diff = features ^ dev->features;
8142 
8143 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8144 			/* udp_tunnel_{get,drop}_rx_info both need
8145 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8146 			 * device, or they won't do anything.
8147 			 * Thus we need to update dev->features
8148 			 * *before* calling udp_tunnel_get_rx_info,
8149 			 * but *after* calling udp_tunnel_drop_rx_info.
8150 			 */
8151 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8152 				dev->features = features;
8153 				udp_tunnel_get_rx_info(dev);
8154 			} else {
8155 				udp_tunnel_drop_rx_info(dev);
8156 			}
8157 		}
8158 
8159 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8160 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8161 				dev->features = features;
8162 				err |= vlan_get_rx_ctag_filter_info(dev);
8163 			} else {
8164 				vlan_drop_rx_ctag_filter_info(dev);
8165 			}
8166 		}
8167 
8168 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8169 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8170 				dev->features = features;
8171 				err |= vlan_get_rx_stag_filter_info(dev);
8172 			} else {
8173 				vlan_drop_rx_stag_filter_info(dev);
8174 			}
8175 		}
8176 
8177 		dev->features = features;
8178 	}
8179 
8180 	return err < 0 ? 0 : 1;
8181 }
8182 
8183 /**
8184  *	netdev_update_features - recalculate device features
8185  *	@dev: the device to check
8186  *
8187  *	Recalculate dev->features set and send notifications if it
8188  *	has changed. Should be called after driver or hardware dependent
8189  *	conditions might have changed that influence the features.
8190  */
8191 void netdev_update_features(struct net_device *dev)
8192 {
8193 	if (__netdev_update_features(dev))
8194 		netdev_features_change(dev);
8195 }
8196 EXPORT_SYMBOL(netdev_update_features);
8197 
8198 /**
8199  *	netdev_change_features - recalculate device features
8200  *	@dev: the device to check
8201  *
8202  *	Recalculate dev->features set and send notifications even
8203  *	if they have not changed. Should be called instead of
8204  *	netdev_update_features() if also dev->vlan_features might
8205  *	have changed to allow the changes to be propagated to stacked
8206  *	VLAN devices.
8207  */
8208 void netdev_change_features(struct net_device *dev)
8209 {
8210 	__netdev_update_features(dev);
8211 	netdev_features_change(dev);
8212 }
8213 EXPORT_SYMBOL(netdev_change_features);
8214 
8215 /**
8216  *	netif_stacked_transfer_operstate -	transfer operstate
8217  *	@rootdev: the root or lower level device to transfer state from
8218  *	@dev: the device to transfer operstate to
8219  *
8220  *	Transfer operational state from root to device. This is normally
8221  *	called when a stacking relationship exists between the root
8222  *	device and the device(a leaf device).
8223  */
8224 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8225 					struct net_device *dev)
8226 {
8227 	if (rootdev->operstate == IF_OPER_DORMANT)
8228 		netif_dormant_on(dev);
8229 	else
8230 		netif_dormant_off(dev);
8231 
8232 	if (netif_carrier_ok(rootdev))
8233 		netif_carrier_on(dev);
8234 	else
8235 		netif_carrier_off(dev);
8236 }
8237 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8238 
8239 static int netif_alloc_rx_queues(struct net_device *dev)
8240 {
8241 	unsigned int i, count = dev->num_rx_queues;
8242 	struct netdev_rx_queue *rx;
8243 	size_t sz = count * sizeof(*rx);
8244 	int err = 0;
8245 
8246 	BUG_ON(count < 1);
8247 
8248 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8249 	if (!rx)
8250 		return -ENOMEM;
8251 
8252 	dev->_rx = rx;
8253 
8254 	for (i = 0; i < count; i++) {
8255 		rx[i].dev = dev;
8256 
8257 		/* XDP RX-queue setup */
8258 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8259 		if (err < 0)
8260 			goto err_rxq_info;
8261 	}
8262 	return 0;
8263 
8264 err_rxq_info:
8265 	/* Rollback successful reg's and free other resources */
8266 	while (i--)
8267 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8268 	kvfree(dev->_rx);
8269 	dev->_rx = NULL;
8270 	return err;
8271 }
8272 
8273 static void netif_free_rx_queues(struct net_device *dev)
8274 {
8275 	unsigned int i, count = dev->num_rx_queues;
8276 
8277 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8278 	if (!dev->_rx)
8279 		return;
8280 
8281 	for (i = 0; i < count; i++)
8282 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8283 
8284 	kvfree(dev->_rx);
8285 }
8286 
8287 static void netdev_init_one_queue(struct net_device *dev,
8288 				  struct netdev_queue *queue, void *_unused)
8289 {
8290 	/* Initialize queue lock */
8291 	spin_lock_init(&queue->_xmit_lock);
8292 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8293 	queue->xmit_lock_owner = -1;
8294 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8295 	queue->dev = dev;
8296 #ifdef CONFIG_BQL
8297 	dql_init(&queue->dql, HZ);
8298 #endif
8299 }
8300 
8301 static void netif_free_tx_queues(struct net_device *dev)
8302 {
8303 	kvfree(dev->_tx);
8304 }
8305 
8306 static int netif_alloc_netdev_queues(struct net_device *dev)
8307 {
8308 	unsigned int count = dev->num_tx_queues;
8309 	struct netdev_queue *tx;
8310 	size_t sz = count * sizeof(*tx);
8311 
8312 	if (count < 1 || count > 0xffff)
8313 		return -EINVAL;
8314 
8315 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8316 	if (!tx)
8317 		return -ENOMEM;
8318 
8319 	dev->_tx = tx;
8320 
8321 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8322 	spin_lock_init(&dev->tx_global_lock);
8323 
8324 	return 0;
8325 }
8326 
8327 void netif_tx_stop_all_queues(struct net_device *dev)
8328 {
8329 	unsigned int i;
8330 
8331 	for (i = 0; i < dev->num_tx_queues; i++) {
8332 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8333 
8334 		netif_tx_stop_queue(txq);
8335 	}
8336 }
8337 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8338 
8339 /**
8340  *	register_netdevice	- register a network device
8341  *	@dev: device to register
8342  *
8343  *	Take a completed network device structure and add it to the kernel
8344  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8345  *	chain. 0 is returned on success. A negative errno code is returned
8346  *	on a failure to set up the device, or if the name is a duplicate.
8347  *
8348  *	Callers must hold the rtnl semaphore. You may want
8349  *	register_netdev() instead of this.
8350  *
8351  *	BUGS:
8352  *	The locking appears insufficient to guarantee two parallel registers
8353  *	will not get the same name.
8354  */
8355 
8356 int register_netdevice(struct net_device *dev)
8357 {
8358 	int ret;
8359 	struct net *net = dev_net(dev);
8360 
8361 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8362 		     NETDEV_FEATURE_COUNT);
8363 	BUG_ON(dev_boot_phase);
8364 	ASSERT_RTNL();
8365 
8366 	might_sleep();
8367 
8368 	/* When net_device's are persistent, this will be fatal. */
8369 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8370 	BUG_ON(!net);
8371 
8372 	spin_lock_init(&dev->addr_list_lock);
8373 	netdev_set_addr_lockdep_class(dev);
8374 
8375 	ret = dev_get_valid_name(net, dev, dev->name);
8376 	if (ret < 0)
8377 		goto out;
8378 
8379 	/* Init, if this function is available */
8380 	if (dev->netdev_ops->ndo_init) {
8381 		ret = dev->netdev_ops->ndo_init(dev);
8382 		if (ret) {
8383 			if (ret > 0)
8384 				ret = -EIO;
8385 			goto out;
8386 		}
8387 	}
8388 
8389 	if (((dev->hw_features | dev->features) &
8390 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
8391 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8392 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8393 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8394 		ret = -EINVAL;
8395 		goto err_uninit;
8396 	}
8397 
8398 	ret = -EBUSY;
8399 	if (!dev->ifindex)
8400 		dev->ifindex = dev_new_index(net);
8401 	else if (__dev_get_by_index(net, dev->ifindex))
8402 		goto err_uninit;
8403 
8404 	/* Transfer changeable features to wanted_features and enable
8405 	 * software offloads (GSO and GRO).
8406 	 */
8407 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
8408 	dev->features |= NETIF_F_SOFT_FEATURES;
8409 
8410 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
8411 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8412 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8413 	}
8414 
8415 	dev->wanted_features = dev->features & dev->hw_features;
8416 
8417 	if (!(dev->flags & IFF_LOOPBACK))
8418 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
8419 
8420 	/* If IPv4 TCP segmentation offload is supported we should also
8421 	 * allow the device to enable segmenting the frame with the option
8422 	 * of ignoring a static IP ID value.  This doesn't enable the
8423 	 * feature itself but allows the user to enable it later.
8424 	 */
8425 	if (dev->hw_features & NETIF_F_TSO)
8426 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
8427 	if (dev->vlan_features & NETIF_F_TSO)
8428 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8429 	if (dev->mpls_features & NETIF_F_TSO)
8430 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8431 	if (dev->hw_enc_features & NETIF_F_TSO)
8432 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8433 
8434 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8435 	 */
8436 	dev->vlan_features |= NETIF_F_HIGHDMA;
8437 
8438 	/* Make NETIF_F_SG inheritable to tunnel devices.
8439 	 */
8440 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8441 
8442 	/* Make NETIF_F_SG inheritable to MPLS.
8443 	 */
8444 	dev->mpls_features |= NETIF_F_SG;
8445 
8446 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8447 	ret = notifier_to_errno(ret);
8448 	if (ret)
8449 		goto err_uninit;
8450 
8451 	ret = netdev_register_kobject(dev);
8452 	if (ret)
8453 		goto err_uninit;
8454 	dev->reg_state = NETREG_REGISTERED;
8455 
8456 	__netdev_update_features(dev);
8457 
8458 	/*
8459 	 *	Default initial state at registry is that the
8460 	 *	device is present.
8461 	 */
8462 
8463 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8464 
8465 	linkwatch_init_dev(dev);
8466 
8467 	dev_init_scheduler(dev);
8468 	dev_hold(dev);
8469 	list_netdevice(dev);
8470 	add_device_randomness(dev->dev_addr, dev->addr_len);
8471 
8472 	/* If the device has permanent device address, driver should
8473 	 * set dev_addr and also addr_assign_type should be set to
8474 	 * NET_ADDR_PERM (default value).
8475 	 */
8476 	if (dev->addr_assign_type == NET_ADDR_PERM)
8477 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8478 
8479 	/* Notify protocols, that a new device appeared. */
8480 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8481 	ret = notifier_to_errno(ret);
8482 	if (ret) {
8483 		rollback_registered(dev);
8484 		dev->reg_state = NETREG_UNREGISTERED;
8485 	}
8486 	/*
8487 	 *	Prevent userspace races by waiting until the network
8488 	 *	device is fully setup before sending notifications.
8489 	 */
8490 	if (!dev->rtnl_link_ops ||
8491 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8492 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8493 
8494 out:
8495 	return ret;
8496 
8497 err_uninit:
8498 	if (dev->netdev_ops->ndo_uninit)
8499 		dev->netdev_ops->ndo_uninit(dev);
8500 	if (dev->priv_destructor)
8501 		dev->priv_destructor(dev);
8502 	goto out;
8503 }
8504 EXPORT_SYMBOL(register_netdevice);
8505 
8506 /**
8507  *	init_dummy_netdev	- init a dummy network device for NAPI
8508  *	@dev: device to init
8509  *
8510  *	This takes a network device structure and initialize the minimum
8511  *	amount of fields so it can be used to schedule NAPI polls without
8512  *	registering a full blown interface. This is to be used by drivers
8513  *	that need to tie several hardware interfaces to a single NAPI
8514  *	poll scheduler due to HW limitations.
8515  */
8516 int init_dummy_netdev(struct net_device *dev)
8517 {
8518 	/* Clear everything. Note we don't initialize spinlocks
8519 	 * are they aren't supposed to be taken by any of the
8520 	 * NAPI code and this dummy netdev is supposed to be
8521 	 * only ever used for NAPI polls
8522 	 */
8523 	memset(dev, 0, sizeof(struct net_device));
8524 
8525 	/* make sure we BUG if trying to hit standard
8526 	 * register/unregister code path
8527 	 */
8528 	dev->reg_state = NETREG_DUMMY;
8529 
8530 	/* NAPI wants this */
8531 	INIT_LIST_HEAD(&dev->napi_list);
8532 
8533 	/* a dummy interface is started by default */
8534 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8535 	set_bit(__LINK_STATE_START, &dev->state);
8536 
8537 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8538 	 * because users of this 'device' dont need to change
8539 	 * its refcount.
8540 	 */
8541 
8542 	return 0;
8543 }
8544 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8545 
8546 
8547 /**
8548  *	register_netdev	- register a network device
8549  *	@dev: device to register
8550  *
8551  *	Take a completed network device structure and add it to the kernel
8552  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8553  *	chain. 0 is returned on success. A negative errno code is returned
8554  *	on a failure to set up the device, or if the name is a duplicate.
8555  *
8556  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8557  *	and expands the device name if you passed a format string to
8558  *	alloc_netdev.
8559  */
8560 int register_netdev(struct net_device *dev)
8561 {
8562 	int err;
8563 
8564 	if (rtnl_lock_killable())
8565 		return -EINTR;
8566 	err = register_netdevice(dev);
8567 	rtnl_unlock();
8568 	return err;
8569 }
8570 EXPORT_SYMBOL(register_netdev);
8571 
8572 int netdev_refcnt_read(const struct net_device *dev)
8573 {
8574 	int i, refcnt = 0;
8575 
8576 	for_each_possible_cpu(i)
8577 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8578 	return refcnt;
8579 }
8580 EXPORT_SYMBOL(netdev_refcnt_read);
8581 
8582 /**
8583  * netdev_wait_allrefs - wait until all references are gone.
8584  * @dev: target net_device
8585  *
8586  * This is called when unregistering network devices.
8587  *
8588  * Any protocol or device that holds a reference should register
8589  * for netdevice notification, and cleanup and put back the
8590  * reference if they receive an UNREGISTER event.
8591  * We can get stuck here if buggy protocols don't correctly
8592  * call dev_put.
8593  */
8594 static void netdev_wait_allrefs(struct net_device *dev)
8595 {
8596 	unsigned long rebroadcast_time, warning_time;
8597 	int refcnt;
8598 
8599 	linkwatch_forget_dev(dev);
8600 
8601 	rebroadcast_time = warning_time = jiffies;
8602 	refcnt = netdev_refcnt_read(dev);
8603 
8604 	while (refcnt != 0) {
8605 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8606 			rtnl_lock();
8607 
8608 			/* Rebroadcast unregister notification */
8609 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8610 
8611 			__rtnl_unlock();
8612 			rcu_barrier();
8613 			rtnl_lock();
8614 
8615 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8616 				     &dev->state)) {
8617 				/* We must not have linkwatch events
8618 				 * pending on unregister. If this
8619 				 * happens, we simply run the queue
8620 				 * unscheduled, resulting in a noop
8621 				 * for this device.
8622 				 */
8623 				linkwatch_run_queue();
8624 			}
8625 
8626 			__rtnl_unlock();
8627 
8628 			rebroadcast_time = jiffies;
8629 		}
8630 
8631 		msleep(250);
8632 
8633 		refcnt = netdev_refcnt_read(dev);
8634 
8635 		if (time_after(jiffies, warning_time + 10 * HZ)) {
8636 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8637 				 dev->name, refcnt);
8638 			warning_time = jiffies;
8639 		}
8640 	}
8641 }
8642 
8643 /* The sequence is:
8644  *
8645  *	rtnl_lock();
8646  *	...
8647  *	register_netdevice(x1);
8648  *	register_netdevice(x2);
8649  *	...
8650  *	unregister_netdevice(y1);
8651  *	unregister_netdevice(y2);
8652  *      ...
8653  *	rtnl_unlock();
8654  *	free_netdev(y1);
8655  *	free_netdev(y2);
8656  *
8657  * We are invoked by rtnl_unlock().
8658  * This allows us to deal with problems:
8659  * 1) We can delete sysfs objects which invoke hotplug
8660  *    without deadlocking with linkwatch via keventd.
8661  * 2) Since we run with the RTNL semaphore not held, we can sleep
8662  *    safely in order to wait for the netdev refcnt to drop to zero.
8663  *
8664  * We must not return until all unregister events added during
8665  * the interval the lock was held have been completed.
8666  */
8667 void netdev_run_todo(void)
8668 {
8669 	struct list_head list;
8670 
8671 	/* Snapshot list, allow later requests */
8672 	list_replace_init(&net_todo_list, &list);
8673 
8674 	__rtnl_unlock();
8675 
8676 
8677 	/* Wait for rcu callbacks to finish before next phase */
8678 	if (!list_empty(&list))
8679 		rcu_barrier();
8680 
8681 	while (!list_empty(&list)) {
8682 		struct net_device *dev
8683 			= list_first_entry(&list, struct net_device, todo_list);
8684 		list_del(&dev->todo_list);
8685 
8686 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8687 			pr_err("network todo '%s' but state %d\n",
8688 			       dev->name, dev->reg_state);
8689 			dump_stack();
8690 			continue;
8691 		}
8692 
8693 		dev->reg_state = NETREG_UNREGISTERED;
8694 
8695 		netdev_wait_allrefs(dev);
8696 
8697 		/* paranoia */
8698 		BUG_ON(netdev_refcnt_read(dev));
8699 		BUG_ON(!list_empty(&dev->ptype_all));
8700 		BUG_ON(!list_empty(&dev->ptype_specific));
8701 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8702 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8703 #if IS_ENABLED(CONFIG_DECNET)
8704 		WARN_ON(dev->dn_ptr);
8705 #endif
8706 		if (dev->priv_destructor)
8707 			dev->priv_destructor(dev);
8708 		if (dev->needs_free_netdev)
8709 			free_netdev(dev);
8710 
8711 		/* Report a network device has been unregistered */
8712 		rtnl_lock();
8713 		dev_net(dev)->dev_unreg_count--;
8714 		__rtnl_unlock();
8715 		wake_up(&netdev_unregistering_wq);
8716 
8717 		/* Free network device */
8718 		kobject_put(&dev->dev.kobj);
8719 	}
8720 }
8721 
8722 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8723  * all the same fields in the same order as net_device_stats, with only
8724  * the type differing, but rtnl_link_stats64 may have additional fields
8725  * at the end for newer counters.
8726  */
8727 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8728 			     const struct net_device_stats *netdev_stats)
8729 {
8730 #if BITS_PER_LONG == 64
8731 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8732 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8733 	/* zero out counters that only exist in rtnl_link_stats64 */
8734 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
8735 	       sizeof(*stats64) - sizeof(*netdev_stats));
8736 #else
8737 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8738 	const unsigned long *src = (const unsigned long *)netdev_stats;
8739 	u64 *dst = (u64 *)stats64;
8740 
8741 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8742 	for (i = 0; i < n; i++)
8743 		dst[i] = src[i];
8744 	/* zero out counters that only exist in rtnl_link_stats64 */
8745 	memset((char *)stats64 + n * sizeof(u64), 0,
8746 	       sizeof(*stats64) - n * sizeof(u64));
8747 #endif
8748 }
8749 EXPORT_SYMBOL(netdev_stats_to_stats64);
8750 
8751 /**
8752  *	dev_get_stats	- get network device statistics
8753  *	@dev: device to get statistics from
8754  *	@storage: place to store stats
8755  *
8756  *	Get network statistics from device. Return @storage.
8757  *	The device driver may provide its own method by setting
8758  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8759  *	otherwise the internal statistics structure is used.
8760  */
8761 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8762 					struct rtnl_link_stats64 *storage)
8763 {
8764 	const struct net_device_ops *ops = dev->netdev_ops;
8765 
8766 	if (ops->ndo_get_stats64) {
8767 		memset(storage, 0, sizeof(*storage));
8768 		ops->ndo_get_stats64(dev, storage);
8769 	} else if (ops->ndo_get_stats) {
8770 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8771 	} else {
8772 		netdev_stats_to_stats64(storage, &dev->stats);
8773 	}
8774 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8775 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8776 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8777 	return storage;
8778 }
8779 EXPORT_SYMBOL(dev_get_stats);
8780 
8781 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8782 {
8783 	struct netdev_queue *queue = dev_ingress_queue(dev);
8784 
8785 #ifdef CONFIG_NET_CLS_ACT
8786 	if (queue)
8787 		return queue;
8788 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8789 	if (!queue)
8790 		return NULL;
8791 	netdev_init_one_queue(dev, queue, NULL);
8792 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8793 	queue->qdisc_sleeping = &noop_qdisc;
8794 	rcu_assign_pointer(dev->ingress_queue, queue);
8795 #endif
8796 	return queue;
8797 }
8798 
8799 static const struct ethtool_ops default_ethtool_ops;
8800 
8801 void netdev_set_default_ethtool_ops(struct net_device *dev,
8802 				    const struct ethtool_ops *ops)
8803 {
8804 	if (dev->ethtool_ops == &default_ethtool_ops)
8805 		dev->ethtool_ops = ops;
8806 }
8807 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8808 
8809 void netdev_freemem(struct net_device *dev)
8810 {
8811 	char *addr = (char *)dev - dev->padded;
8812 
8813 	kvfree(addr);
8814 }
8815 
8816 /**
8817  * alloc_netdev_mqs - allocate network device
8818  * @sizeof_priv: size of private data to allocate space for
8819  * @name: device name format string
8820  * @name_assign_type: origin of device name
8821  * @setup: callback to initialize device
8822  * @txqs: the number of TX subqueues to allocate
8823  * @rxqs: the number of RX subqueues to allocate
8824  *
8825  * Allocates a struct net_device with private data area for driver use
8826  * and performs basic initialization.  Also allocates subqueue structs
8827  * for each queue on the device.
8828  */
8829 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8830 		unsigned char name_assign_type,
8831 		void (*setup)(struct net_device *),
8832 		unsigned int txqs, unsigned int rxqs)
8833 {
8834 	struct net_device *dev;
8835 	unsigned int alloc_size;
8836 	struct net_device *p;
8837 
8838 	BUG_ON(strlen(name) >= sizeof(dev->name));
8839 
8840 	if (txqs < 1) {
8841 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8842 		return NULL;
8843 	}
8844 
8845 	if (rxqs < 1) {
8846 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8847 		return NULL;
8848 	}
8849 
8850 	alloc_size = sizeof(struct net_device);
8851 	if (sizeof_priv) {
8852 		/* ensure 32-byte alignment of private area */
8853 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8854 		alloc_size += sizeof_priv;
8855 	}
8856 	/* ensure 32-byte alignment of whole construct */
8857 	alloc_size += NETDEV_ALIGN - 1;
8858 
8859 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8860 	if (!p)
8861 		return NULL;
8862 
8863 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8864 	dev->padded = (char *)dev - (char *)p;
8865 
8866 	dev->pcpu_refcnt = alloc_percpu(int);
8867 	if (!dev->pcpu_refcnt)
8868 		goto free_dev;
8869 
8870 	if (dev_addr_init(dev))
8871 		goto free_pcpu;
8872 
8873 	dev_mc_init(dev);
8874 	dev_uc_init(dev);
8875 
8876 	dev_net_set(dev, &init_net);
8877 
8878 	dev->gso_max_size = GSO_MAX_SIZE;
8879 	dev->gso_max_segs = GSO_MAX_SEGS;
8880 
8881 	INIT_LIST_HEAD(&dev->napi_list);
8882 	INIT_LIST_HEAD(&dev->unreg_list);
8883 	INIT_LIST_HEAD(&dev->close_list);
8884 	INIT_LIST_HEAD(&dev->link_watch_list);
8885 	INIT_LIST_HEAD(&dev->adj_list.upper);
8886 	INIT_LIST_HEAD(&dev->adj_list.lower);
8887 	INIT_LIST_HEAD(&dev->ptype_all);
8888 	INIT_LIST_HEAD(&dev->ptype_specific);
8889 #ifdef CONFIG_NET_SCHED
8890 	hash_init(dev->qdisc_hash);
8891 #endif
8892 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8893 	setup(dev);
8894 
8895 	if (!dev->tx_queue_len) {
8896 		dev->priv_flags |= IFF_NO_QUEUE;
8897 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8898 	}
8899 
8900 	dev->num_tx_queues = txqs;
8901 	dev->real_num_tx_queues = txqs;
8902 	if (netif_alloc_netdev_queues(dev))
8903 		goto free_all;
8904 
8905 	dev->num_rx_queues = rxqs;
8906 	dev->real_num_rx_queues = rxqs;
8907 	if (netif_alloc_rx_queues(dev))
8908 		goto free_all;
8909 
8910 	strcpy(dev->name, name);
8911 	dev->name_assign_type = name_assign_type;
8912 	dev->group = INIT_NETDEV_GROUP;
8913 	if (!dev->ethtool_ops)
8914 		dev->ethtool_ops = &default_ethtool_ops;
8915 
8916 	nf_hook_ingress_init(dev);
8917 
8918 	return dev;
8919 
8920 free_all:
8921 	free_netdev(dev);
8922 	return NULL;
8923 
8924 free_pcpu:
8925 	free_percpu(dev->pcpu_refcnt);
8926 free_dev:
8927 	netdev_freemem(dev);
8928 	return NULL;
8929 }
8930 EXPORT_SYMBOL(alloc_netdev_mqs);
8931 
8932 /**
8933  * free_netdev - free network device
8934  * @dev: device
8935  *
8936  * This function does the last stage of destroying an allocated device
8937  * interface. The reference to the device object is released. If this
8938  * is the last reference then it will be freed.Must be called in process
8939  * context.
8940  */
8941 void free_netdev(struct net_device *dev)
8942 {
8943 	struct napi_struct *p, *n;
8944 
8945 	might_sleep();
8946 	netif_free_tx_queues(dev);
8947 	netif_free_rx_queues(dev);
8948 
8949 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8950 
8951 	/* Flush device addresses */
8952 	dev_addr_flush(dev);
8953 
8954 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8955 		netif_napi_del(p);
8956 
8957 	free_percpu(dev->pcpu_refcnt);
8958 	dev->pcpu_refcnt = NULL;
8959 
8960 	/*  Compatibility with error handling in drivers */
8961 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8962 		netdev_freemem(dev);
8963 		return;
8964 	}
8965 
8966 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8967 	dev->reg_state = NETREG_RELEASED;
8968 
8969 	/* will free via device release */
8970 	put_device(&dev->dev);
8971 }
8972 EXPORT_SYMBOL(free_netdev);
8973 
8974 /**
8975  *	synchronize_net -  Synchronize with packet receive processing
8976  *
8977  *	Wait for packets currently being received to be done.
8978  *	Does not block later packets from starting.
8979  */
8980 void synchronize_net(void)
8981 {
8982 	might_sleep();
8983 	if (rtnl_is_locked())
8984 		synchronize_rcu_expedited();
8985 	else
8986 		synchronize_rcu();
8987 }
8988 EXPORT_SYMBOL(synchronize_net);
8989 
8990 /**
8991  *	unregister_netdevice_queue - remove device from the kernel
8992  *	@dev: device
8993  *	@head: list
8994  *
8995  *	This function shuts down a device interface and removes it
8996  *	from the kernel tables.
8997  *	If head not NULL, device is queued to be unregistered later.
8998  *
8999  *	Callers must hold the rtnl semaphore.  You may want
9000  *	unregister_netdev() instead of this.
9001  */
9002 
9003 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9004 {
9005 	ASSERT_RTNL();
9006 
9007 	if (head) {
9008 		list_move_tail(&dev->unreg_list, head);
9009 	} else {
9010 		rollback_registered(dev);
9011 		/* Finish processing unregister after unlock */
9012 		net_set_todo(dev);
9013 	}
9014 }
9015 EXPORT_SYMBOL(unregister_netdevice_queue);
9016 
9017 /**
9018  *	unregister_netdevice_many - unregister many devices
9019  *	@head: list of devices
9020  *
9021  *  Note: As most callers use a stack allocated list_head,
9022  *  we force a list_del() to make sure stack wont be corrupted later.
9023  */
9024 void unregister_netdevice_many(struct list_head *head)
9025 {
9026 	struct net_device *dev;
9027 
9028 	if (!list_empty(head)) {
9029 		rollback_registered_many(head);
9030 		list_for_each_entry(dev, head, unreg_list)
9031 			net_set_todo(dev);
9032 		list_del(head);
9033 	}
9034 }
9035 EXPORT_SYMBOL(unregister_netdevice_many);
9036 
9037 /**
9038  *	unregister_netdev - remove device from the kernel
9039  *	@dev: device
9040  *
9041  *	This function shuts down a device interface and removes it
9042  *	from the kernel tables.
9043  *
9044  *	This is just a wrapper for unregister_netdevice that takes
9045  *	the rtnl semaphore.  In general you want to use this and not
9046  *	unregister_netdevice.
9047  */
9048 void unregister_netdev(struct net_device *dev)
9049 {
9050 	rtnl_lock();
9051 	unregister_netdevice(dev);
9052 	rtnl_unlock();
9053 }
9054 EXPORT_SYMBOL(unregister_netdev);
9055 
9056 /**
9057  *	dev_change_net_namespace - move device to different nethost namespace
9058  *	@dev: device
9059  *	@net: network namespace
9060  *	@pat: If not NULL name pattern to try if the current device name
9061  *	      is already taken in the destination network namespace.
9062  *
9063  *	This function shuts down a device interface and moves it
9064  *	to a new network namespace. On success 0 is returned, on
9065  *	a failure a netagive errno code is returned.
9066  *
9067  *	Callers must hold the rtnl semaphore.
9068  */
9069 
9070 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9071 {
9072 	int err, new_nsid, new_ifindex;
9073 
9074 	ASSERT_RTNL();
9075 
9076 	/* Don't allow namespace local devices to be moved. */
9077 	err = -EINVAL;
9078 	if (dev->features & NETIF_F_NETNS_LOCAL)
9079 		goto out;
9080 
9081 	/* Ensure the device has been registrered */
9082 	if (dev->reg_state != NETREG_REGISTERED)
9083 		goto out;
9084 
9085 	/* Get out if there is nothing todo */
9086 	err = 0;
9087 	if (net_eq(dev_net(dev), net))
9088 		goto out;
9089 
9090 	/* Pick the destination device name, and ensure
9091 	 * we can use it in the destination network namespace.
9092 	 */
9093 	err = -EEXIST;
9094 	if (__dev_get_by_name(net, dev->name)) {
9095 		/* We get here if we can't use the current device name */
9096 		if (!pat)
9097 			goto out;
9098 		err = dev_get_valid_name(net, dev, pat);
9099 		if (err < 0)
9100 			goto out;
9101 	}
9102 
9103 	/*
9104 	 * And now a mini version of register_netdevice unregister_netdevice.
9105 	 */
9106 
9107 	/* If device is running close it first. */
9108 	dev_close(dev);
9109 
9110 	/* And unlink it from device chain */
9111 	unlist_netdevice(dev);
9112 
9113 	synchronize_net();
9114 
9115 	/* Shutdown queueing discipline. */
9116 	dev_shutdown(dev);
9117 
9118 	/* Notify protocols, that we are about to destroy
9119 	 * this device. They should clean all the things.
9120 	 *
9121 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
9122 	 * This is wanted because this way 8021q and macvlan know
9123 	 * the device is just moving and can keep their slaves up.
9124 	 */
9125 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9126 	rcu_barrier();
9127 
9128 	new_nsid = peernet2id_alloc(dev_net(dev), net);
9129 	/* If there is an ifindex conflict assign a new one */
9130 	if (__dev_get_by_index(net, dev->ifindex))
9131 		new_ifindex = dev_new_index(net);
9132 	else
9133 		new_ifindex = dev->ifindex;
9134 
9135 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9136 			    new_ifindex);
9137 
9138 	/*
9139 	 *	Flush the unicast and multicast chains
9140 	 */
9141 	dev_uc_flush(dev);
9142 	dev_mc_flush(dev);
9143 
9144 	/* Send a netdev-removed uevent to the old namespace */
9145 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9146 	netdev_adjacent_del_links(dev);
9147 
9148 	/* Actually switch the network namespace */
9149 	dev_net_set(dev, net);
9150 	dev->ifindex = new_ifindex;
9151 
9152 	/* Send a netdev-add uevent to the new namespace */
9153 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9154 	netdev_adjacent_add_links(dev);
9155 
9156 	/* Fixup kobjects */
9157 	err = device_rename(&dev->dev, dev->name);
9158 	WARN_ON(err);
9159 
9160 	/* Add the device back in the hashes */
9161 	list_netdevice(dev);
9162 
9163 	/* Notify protocols, that a new device appeared. */
9164 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
9165 
9166 	/*
9167 	 *	Prevent userspace races by waiting until the network
9168 	 *	device is fully setup before sending notifications.
9169 	 */
9170 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9171 
9172 	synchronize_net();
9173 	err = 0;
9174 out:
9175 	return err;
9176 }
9177 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9178 
9179 static int dev_cpu_dead(unsigned int oldcpu)
9180 {
9181 	struct sk_buff **list_skb;
9182 	struct sk_buff *skb;
9183 	unsigned int cpu;
9184 	struct softnet_data *sd, *oldsd, *remsd = NULL;
9185 
9186 	local_irq_disable();
9187 	cpu = smp_processor_id();
9188 	sd = &per_cpu(softnet_data, cpu);
9189 	oldsd = &per_cpu(softnet_data, oldcpu);
9190 
9191 	/* Find end of our completion_queue. */
9192 	list_skb = &sd->completion_queue;
9193 	while (*list_skb)
9194 		list_skb = &(*list_skb)->next;
9195 	/* Append completion queue from offline CPU. */
9196 	*list_skb = oldsd->completion_queue;
9197 	oldsd->completion_queue = NULL;
9198 
9199 	/* Append output queue from offline CPU. */
9200 	if (oldsd->output_queue) {
9201 		*sd->output_queue_tailp = oldsd->output_queue;
9202 		sd->output_queue_tailp = oldsd->output_queue_tailp;
9203 		oldsd->output_queue = NULL;
9204 		oldsd->output_queue_tailp = &oldsd->output_queue;
9205 	}
9206 	/* Append NAPI poll list from offline CPU, with one exception :
9207 	 * process_backlog() must be called by cpu owning percpu backlog.
9208 	 * We properly handle process_queue & input_pkt_queue later.
9209 	 */
9210 	while (!list_empty(&oldsd->poll_list)) {
9211 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9212 							    struct napi_struct,
9213 							    poll_list);
9214 
9215 		list_del_init(&napi->poll_list);
9216 		if (napi->poll == process_backlog)
9217 			napi->state = 0;
9218 		else
9219 			____napi_schedule(sd, napi);
9220 	}
9221 
9222 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
9223 	local_irq_enable();
9224 
9225 #ifdef CONFIG_RPS
9226 	remsd = oldsd->rps_ipi_list;
9227 	oldsd->rps_ipi_list = NULL;
9228 #endif
9229 	/* send out pending IPI's on offline CPU */
9230 	net_rps_send_ipi(remsd);
9231 
9232 	/* Process offline CPU's input_pkt_queue */
9233 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9234 		netif_rx_ni(skb);
9235 		input_queue_head_incr(oldsd);
9236 	}
9237 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9238 		netif_rx_ni(skb);
9239 		input_queue_head_incr(oldsd);
9240 	}
9241 
9242 	return 0;
9243 }
9244 
9245 /**
9246  *	netdev_increment_features - increment feature set by one
9247  *	@all: current feature set
9248  *	@one: new feature set
9249  *	@mask: mask feature set
9250  *
9251  *	Computes a new feature set after adding a device with feature set
9252  *	@one to the master device with current feature set @all.  Will not
9253  *	enable anything that is off in @mask. Returns the new feature set.
9254  */
9255 netdev_features_t netdev_increment_features(netdev_features_t all,
9256 	netdev_features_t one, netdev_features_t mask)
9257 {
9258 	if (mask & NETIF_F_HW_CSUM)
9259 		mask |= NETIF_F_CSUM_MASK;
9260 	mask |= NETIF_F_VLAN_CHALLENGED;
9261 
9262 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9263 	all &= one | ~NETIF_F_ALL_FOR_ALL;
9264 
9265 	/* If one device supports hw checksumming, set for all. */
9266 	if (all & NETIF_F_HW_CSUM)
9267 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9268 
9269 	return all;
9270 }
9271 EXPORT_SYMBOL(netdev_increment_features);
9272 
9273 static struct hlist_head * __net_init netdev_create_hash(void)
9274 {
9275 	int i;
9276 	struct hlist_head *hash;
9277 
9278 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9279 	if (hash != NULL)
9280 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
9281 			INIT_HLIST_HEAD(&hash[i]);
9282 
9283 	return hash;
9284 }
9285 
9286 /* Initialize per network namespace state */
9287 static int __net_init netdev_init(struct net *net)
9288 {
9289 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
9290 		     8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9291 
9292 	if (net != &init_net)
9293 		INIT_LIST_HEAD(&net->dev_base_head);
9294 
9295 	net->dev_name_head = netdev_create_hash();
9296 	if (net->dev_name_head == NULL)
9297 		goto err_name;
9298 
9299 	net->dev_index_head = netdev_create_hash();
9300 	if (net->dev_index_head == NULL)
9301 		goto err_idx;
9302 
9303 	return 0;
9304 
9305 err_idx:
9306 	kfree(net->dev_name_head);
9307 err_name:
9308 	return -ENOMEM;
9309 }
9310 
9311 /**
9312  *	netdev_drivername - network driver for the device
9313  *	@dev: network device
9314  *
9315  *	Determine network driver for device.
9316  */
9317 const char *netdev_drivername(const struct net_device *dev)
9318 {
9319 	const struct device_driver *driver;
9320 	const struct device *parent;
9321 	const char *empty = "";
9322 
9323 	parent = dev->dev.parent;
9324 	if (!parent)
9325 		return empty;
9326 
9327 	driver = parent->driver;
9328 	if (driver && driver->name)
9329 		return driver->name;
9330 	return empty;
9331 }
9332 
9333 static void __netdev_printk(const char *level, const struct net_device *dev,
9334 			    struct va_format *vaf)
9335 {
9336 	if (dev && dev->dev.parent) {
9337 		dev_printk_emit(level[1] - '0',
9338 				dev->dev.parent,
9339 				"%s %s %s%s: %pV",
9340 				dev_driver_string(dev->dev.parent),
9341 				dev_name(dev->dev.parent),
9342 				netdev_name(dev), netdev_reg_state(dev),
9343 				vaf);
9344 	} else if (dev) {
9345 		printk("%s%s%s: %pV",
9346 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
9347 	} else {
9348 		printk("%s(NULL net_device): %pV", level, vaf);
9349 	}
9350 }
9351 
9352 void netdev_printk(const char *level, const struct net_device *dev,
9353 		   const char *format, ...)
9354 {
9355 	struct va_format vaf;
9356 	va_list args;
9357 
9358 	va_start(args, format);
9359 
9360 	vaf.fmt = format;
9361 	vaf.va = &args;
9362 
9363 	__netdev_printk(level, dev, &vaf);
9364 
9365 	va_end(args);
9366 }
9367 EXPORT_SYMBOL(netdev_printk);
9368 
9369 #define define_netdev_printk_level(func, level)			\
9370 void func(const struct net_device *dev, const char *fmt, ...)	\
9371 {								\
9372 	struct va_format vaf;					\
9373 	va_list args;						\
9374 								\
9375 	va_start(args, fmt);					\
9376 								\
9377 	vaf.fmt = fmt;						\
9378 	vaf.va = &args;						\
9379 								\
9380 	__netdev_printk(level, dev, &vaf);			\
9381 								\
9382 	va_end(args);						\
9383 }								\
9384 EXPORT_SYMBOL(func);
9385 
9386 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9387 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9388 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9389 define_netdev_printk_level(netdev_err, KERN_ERR);
9390 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9391 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9392 define_netdev_printk_level(netdev_info, KERN_INFO);
9393 
9394 static void __net_exit netdev_exit(struct net *net)
9395 {
9396 	kfree(net->dev_name_head);
9397 	kfree(net->dev_index_head);
9398 	if (net != &init_net)
9399 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9400 }
9401 
9402 static struct pernet_operations __net_initdata netdev_net_ops = {
9403 	.init = netdev_init,
9404 	.exit = netdev_exit,
9405 };
9406 
9407 static void __net_exit default_device_exit(struct net *net)
9408 {
9409 	struct net_device *dev, *aux;
9410 	/*
9411 	 * Push all migratable network devices back to the
9412 	 * initial network namespace
9413 	 */
9414 	rtnl_lock();
9415 	for_each_netdev_safe(net, dev, aux) {
9416 		int err;
9417 		char fb_name[IFNAMSIZ];
9418 
9419 		/* Ignore unmoveable devices (i.e. loopback) */
9420 		if (dev->features & NETIF_F_NETNS_LOCAL)
9421 			continue;
9422 
9423 		/* Leave virtual devices for the generic cleanup */
9424 		if (dev->rtnl_link_ops)
9425 			continue;
9426 
9427 		/* Push remaining network devices to init_net */
9428 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9429 		err = dev_change_net_namespace(dev, &init_net, fb_name);
9430 		if (err) {
9431 			pr_emerg("%s: failed to move %s to init_net: %d\n",
9432 				 __func__, dev->name, err);
9433 			BUG();
9434 		}
9435 	}
9436 	rtnl_unlock();
9437 }
9438 
9439 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9440 {
9441 	/* Return with the rtnl_lock held when there are no network
9442 	 * devices unregistering in any network namespace in net_list.
9443 	 */
9444 	struct net *net;
9445 	bool unregistering;
9446 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
9447 
9448 	add_wait_queue(&netdev_unregistering_wq, &wait);
9449 	for (;;) {
9450 		unregistering = false;
9451 		rtnl_lock();
9452 		list_for_each_entry(net, net_list, exit_list) {
9453 			if (net->dev_unreg_count > 0) {
9454 				unregistering = true;
9455 				break;
9456 			}
9457 		}
9458 		if (!unregistering)
9459 			break;
9460 		__rtnl_unlock();
9461 
9462 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9463 	}
9464 	remove_wait_queue(&netdev_unregistering_wq, &wait);
9465 }
9466 
9467 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9468 {
9469 	/* At exit all network devices most be removed from a network
9470 	 * namespace.  Do this in the reverse order of registration.
9471 	 * Do this across as many network namespaces as possible to
9472 	 * improve batching efficiency.
9473 	 */
9474 	struct net_device *dev;
9475 	struct net *net;
9476 	LIST_HEAD(dev_kill_list);
9477 
9478 	/* To prevent network device cleanup code from dereferencing
9479 	 * loopback devices or network devices that have been freed
9480 	 * wait here for all pending unregistrations to complete,
9481 	 * before unregistring the loopback device and allowing the
9482 	 * network namespace be freed.
9483 	 *
9484 	 * The netdev todo list containing all network devices
9485 	 * unregistrations that happen in default_device_exit_batch
9486 	 * will run in the rtnl_unlock() at the end of
9487 	 * default_device_exit_batch.
9488 	 */
9489 	rtnl_lock_unregistering(net_list);
9490 	list_for_each_entry(net, net_list, exit_list) {
9491 		for_each_netdev_reverse(net, dev) {
9492 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9493 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9494 			else
9495 				unregister_netdevice_queue(dev, &dev_kill_list);
9496 		}
9497 	}
9498 	unregister_netdevice_many(&dev_kill_list);
9499 	rtnl_unlock();
9500 }
9501 
9502 static struct pernet_operations __net_initdata default_device_ops = {
9503 	.exit = default_device_exit,
9504 	.exit_batch = default_device_exit_batch,
9505 };
9506 
9507 /*
9508  *	Initialize the DEV module. At boot time this walks the device list and
9509  *	unhooks any devices that fail to initialise (normally hardware not
9510  *	present) and leaves us with a valid list of present and active devices.
9511  *
9512  */
9513 
9514 /*
9515  *       This is called single threaded during boot, so no need
9516  *       to take the rtnl semaphore.
9517  */
9518 static int __init net_dev_init(void)
9519 {
9520 	int i, rc = -ENOMEM;
9521 
9522 	BUG_ON(!dev_boot_phase);
9523 
9524 	if (dev_proc_init())
9525 		goto out;
9526 
9527 	if (netdev_kobject_init())
9528 		goto out;
9529 
9530 	INIT_LIST_HEAD(&ptype_all);
9531 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9532 		INIT_LIST_HEAD(&ptype_base[i]);
9533 
9534 	INIT_LIST_HEAD(&offload_base);
9535 
9536 	if (register_pernet_subsys(&netdev_net_ops))
9537 		goto out;
9538 
9539 	/*
9540 	 *	Initialise the packet receive queues.
9541 	 */
9542 
9543 	for_each_possible_cpu(i) {
9544 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9545 		struct softnet_data *sd = &per_cpu(softnet_data, i);
9546 
9547 		INIT_WORK(flush, flush_backlog);
9548 
9549 		skb_queue_head_init(&sd->input_pkt_queue);
9550 		skb_queue_head_init(&sd->process_queue);
9551 #ifdef CONFIG_XFRM_OFFLOAD
9552 		skb_queue_head_init(&sd->xfrm_backlog);
9553 #endif
9554 		INIT_LIST_HEAD(&sd->poll_list);
9555 		sd->output_queue_tailp = &sd->output_queue;
9556 #ifdef CONFIG_RPS
9557 		sd->csd.func = rps_trigger_softirq;
9558 		sd->csd.info = sd;
9559 		sd->cpu = i;
9560 #endif
9561 
9562 		init_gro_hash(&sd->backlog);
9563 		sd->backlog.poll = process_backlog;
9564 		sd->backlog.weight = weight_p;
9565 	}
9566 
9567 	dev_boot_phase = 0;
9568 
9569 	/* The loopback device is special if any other network devices
9570 	 * is present in a network namespace the loopback device must
9571 	 * be present. Since we now dynamically allocate and free the
9572 	 * loopback device ensure this invariant is maintained by
9573 	 * keeping the loopback device as the first device on the
9574 	 * list of network devices.  Ensuring the loopback devices
9575 	 * is the first device that appears and the last network device
9576 	 * that disappears.
9577 	 */
9578 	if (register_pernet_device(&loopback_net_ops))
9579 		goto out;
9580 
9581 	if (register_pernet_device(&default_device_ops))
9582 		goto out;
9583 
9584 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9585 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9586 
9587 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9588 				       NULL, dev_cpu_dead);
9589 	WARN_ON(rc < 0);
9590 	rc = 0;
9591 out:
9592 	return rc;
9593 }
9594 
9595 subsys_initcall(net_dev_init);
9596