xref: /openbmc/linux/net/core/dev.c (revision a16be368)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/pkt_cls.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140 #include <linux/crash_dump.h>
141 #include <linux/sctp.h>
142 #include <net/udp_tunnel.h>
143 #include <linux/net_namespace.h>
144 #include <linux/indirect_call_wrapper.h>
145 #include <net/devlink.h>
146 
147 #include "net-sysfs.h"
148 
149 #define MAX_GRO_SKBS 8
150 
151 /* This should be increased if a protocol with a bigger head is added. */
152 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153 
154 static DEFINE_SPINLOCK(ptype_lock);
155 static DEFINE_SPINLOCK(offload_lock);
156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157 struct list_head ptype_all __read_mostly;	/* Taps */
158 static struct list_head offload_base __read_mostly;
159 
160 static int netif_rx_internal(struct sk_buff *skb);
161 static int call_netdevice_notifiers_info(unsigned long val,
162 					 struct netdev_notifier_info *info);
163 static int call_netdevice_notifiers_extack(unsigned long val,
164 					   struct net_device *dev,
165 					   struct netlink_ext_ack *extack);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167 
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189 
190 static DEFINE_MUTEX(ifalias_mutex);
191 
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194 
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197 
198 static DECLARE_RWSEM(devnet_rename_sem);
199 
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202 	while (++net->dev_base_seq == 0)
203 		;
204 }
205 
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209 
210 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212 
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217 
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 	spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224 
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228 	spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231 
232 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
233 						       const char *name)
234 {
235 	struct netdev_name_node *name_node;
236 
237 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
238 	if (!name_node)
239 		return NULL;
240 	INIT_HLIST_NODE(&name_node->hlist);
241 	name_node->dev = dev;
242 	name_node->name = name;
243 	return name_node;
244 }
245 
246 static struct netdev_name_node *
247 netdev_name_node_head_alloc(struct net_device *dev)
248 {
249 	struct netdev_name_node *name_node;
250 
251 	name_node = netdev_name_node_alloc(dev, dev->name);
252 	if (!name_node)
253 		return NULL;
254 	INIT_LIST_HEAD(&name_node->list);
255 	return name_node;
256 }
257 
258 static void netdev_name_node_free(struct netdev_name_node *name_node)
259 {
260 	kfree(name_node);
261 }
262 
263 static void netdev_name_node_add(struct net *net,
264 				 struct netdev_name_node *name_node)
265 {
266 	hlist_add_head_rcu(&name_node->hlist,
267 			   dev_name_hash(net, name_node->name));
268 }
269 
270 static void netdev_name_node_del(struct netdev_name_node *name_node)
271 {
272 	hlist_del_rcu(&name_node->hlist);
273 }
274 
275 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
276 							const char *name)
277 {
278 	struct hlist_head *head = dev_name_hash(net, name);
279 	struct netdev_name_node *name_node;
280 
281 	hlist_for_each_entry(name_node, head, hlist)
282 		if (!strcmp(name_node->name, name))
283 			return name_node;
284 	return NULL;
285 }
286 
287 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
288 							    const char *name)
289 {
290 	struct hlist_head *head = dev_name_hash(net, name);
291 	struct netdev_name_node *name_node;
292 
293 	hlist_for_each_entry_rcu(name_node, head, hlist)
294 		if (!strcmp(name_node->name, name))
295 			return name_node;
296 	return NULL;
297 }
298 
299 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
300 {
301 	struct netdev_name_node *name_node;
302 	struct net *net = dev_net(dev);
303 
304 	name_node = netdev_name_node_lookup(net, name);
305 	if (name_node)
306 		return -EEXIST;
307 	name_node = netdev_name_node_alloc(dev, name);
308 	if (!name_node)
309 		return -ENOMEM;
310 	netdev_name_node_add(net, name_node);
311 	/* The node that holds dev->name acts as a head of per-device list. */
312 	list_add_tail(&name_node->list, &dev->name_node->list);
313 
314 	return 0;
315 }
316 EXPORT_SYMBOL(netdev_name_node_alt_create);
317 
318 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
319 {
320 	list_del(&name_node->list);
321 	netdev_name_node_del(name_node);
322 	kfree(name_node->name);
323 	netdev_name_node_free(name_node);
324 }
325 
326 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
327 {
328 	struct netdev_name_node *name_node;
329 	struct net *net = dev_net(dev);
330 
331 	name_node = netdev_name_node_lookup(net, name);
332 	if (!name_node)
333 		return -ENOENT;
334 	/* lookup might have found our primary name or a name belonging
335 	 * to another device.
336 	 */
337 	if (name_node == dev->name_node || name_node->dev != dev)
338 		return -EINVAL;
339 
340 	__netdev_name_node_alt_destroy(name_node);
341 
342 	return 0;
343 }
344 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
345 
346 static void netdev_name_node_alt_flush(struct net_device *dev)
347 {
348 	struct netdev_name_node *name_node, *tmp;
349 
350 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
351 		__netdev_name_node_alt_destroy(name_node);
352 }
353 
354 /* Device list insertion */
355 static void list_netdevice(struct net_device *dev)
356 {
357 	struct net *net = dev_net(dev);
358 
359 	ASSERT_RTNL();
360 
361 	write_lock_bh(&dev_base_lock);
362 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
363 	netdev_name_node_add(net, dev->name_node);
364 	hlist_add_head_rcu(&dev->index_hlist,
365 			   dev_index_hash(net, dev->ifindex));
366 	write_unlock_bh(&dev_base_lock);
367 
368 	dev_base_seq_inc(net);
369 }
370 
371 /* Device list removal
372  * caller must respect a RCU grace period before freeing/reusing dev
373  */
374 static void unlist_netdevice(struct net_device *dev)
375 {
376 	ASSERT_RTNL();
377 
378 	/* Unlink dev from the device chain */
379 	write_lock_bh(&dev_base_lock);
380 	list_del_rcu(&dev->dev_list);
381 	netdev_name_node_del(dev->name_node);
382 	hlist_del_rcu(&dev->index_hlist);
383 	write_unlock_bh(&dev_base_lock);
384 
385 	dev_base_seq_inc(dev_net(dev));
386 }
387 
388 /*
389  *	Our notifier list
390  */
391 
392 static RAW_NOTIFIER_HEAD(netdev_chain);
393 
394 /*
395  *	Device drivers call our routines to queue packets here. We empty the
396  *	queue in the local softnet handler.
397  */
398 
399 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
400 EXPORT_PER_CPU_SYMBOL(softnet_data);
401 
402 #ifdef CONFIG_LOCKDEP
403 /*
404  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
405  * according to dev->type
406  */
407 static const unsigned short netdev_lock_type[] = {
408 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
409 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
410 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
411 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
412 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
413 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
414 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
415 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
416 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
417 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
418 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
419 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
420 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
421 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
422 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
423 
424 static const char *const netdev_lock_name[] = {
425 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
426 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
427 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
428 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
429 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
430 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
431 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
432 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
433 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
434 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
435 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
436 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
437 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
438 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
439 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
440 
441 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
442 
443 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
444 {
445 	int i;
446 
447 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
448 		if (netdev_lock_type[i] == dev_type)
449 			return i;
450 	/* the last key is used by default */
451 	return ARRAY_SIZE(netdev_lock_type) - 1;
452 }
453 
454 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
455 						 unsigned short dev_type)
456 {
457 	int i;
458 
459 	i = netdev_lock_pos(dev_type);
460 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
461 				   netdev_lock_name[i]);
462 }
463 #else
464 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
465 						 unsigned short dev_type)
466 {
467 }
468 #endif
469 
470 /*******************************************************************************
471  *
472  *		Protocol management and registration routines
473  *
474  *******************************************************************************/
475 
476 
477 /*
478  *	Add a protocol ID to the list. Now that the input handler is
479  *	smarter we can dispense with all the messy stuff that used to be
480  *	here.
481  *
482  *	BEWARE!!! Protocol handlers, mangling input packets,
483  *	MUST BE last in hash buckets and checking protocol handlers
484  *	MUST start from promiscuous ptype_all chain in net_bh.
485  *	It is true now, do not change it.
486  *	Explanation follows: if protocol handler, mangling packet, will
487  *	be the first on list, it is not able to sense, that packet
488  *	is cloned and should be copied-on-write, so that it will
489  *	change it and subsequent readers will get broken packet.
490  *							--ANK (980803)
491  */
492 
493 static inline struct list_head *ptype_head(const struct packet_type *pt)
494 {
495 	if (pt->type == htons(ETH_P_ALL))
496 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
497 	else
498 		return pt->dev ? &pt->dev->ptype_specific :
499 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
500 }
501 
502 /**
503  *	dev_add_pack - add packet handler
504  *	@pt: packet type declaration
505  *
506  *	Add a protocol handler to the networking stack. The passed &packet_type
507  *	is linked into kernel lists and may not be freed until it has been
508  *	removed from the kernel lists.
509  *
510  *	This call does not sleep therefore it can not
511  *	guarantee all CPU's that are in middle of receiving packets
512  *	will see the new packet type (until the next received packet).
513  */
514 
515 void dev_add_pack(struct packet_type *pt)
516 {
517 	struct list_head *head = ptype_head(pt);
518 
519 	spin_lock(&ptype_lock);
520 	list_add_rcu(&pt->list, head);
521 	spin_unlock(&ptype_lock);
522 }
523 EXPORT_SYMBOL(dev_add_pack);
524 
525 /**
526  *	__dev_remove_pack	 - remove packet handler
527  *	@pt: packet type declaration
528  *
529  *	Remove a protocol handler that was previously added to the kernel
530  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
531  *	from the kernel lists and can be freed or reused once this function
532  *	returns.
533  *
534  *      The packet type might still be in use by receivers
535  *	and must not be freed until after all the CPU's have gone
536  *	through a quiescent state.
537  */
538 void __dev_remove_pack(struct packet_type *pt)
539 {
540 	struct list_head *head = ptype_head(pt);
541 	struct packet_type *pt1;
542 
543 	spin_lock(&ptype_lock);
544 
545 	list_for_each_entry(pt1, head, list) {
546 		if (pt == pt1) {
547 			list_del_rcu(&pt->list);
548 			goto out;
549 		}
550 	}
551 
552 	pr_warn("dev_remove_pack: %p not found\n", pt);
553 out:
554 	spin_unlock(&ptype_lock);
555 }
556 EXPORT_SYMBOL(__dev_remove_pack);
557 
558 /**
559  *	dev_remove_pack	 - remove packet handler
560  *	@pt: packet type declaration
561  *
562  *	Remove a protocol handler that was previously added to the kernel
563  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
564  *	from the kernel lists and can be freed or reused once this function
565  *	returns.
566  *
567  *	This call sleeps to guarantee that no CPU is looking at the packet
568  *	type after return.
569  */
570 void dev_remove_pack(struct packet_type *pt)
571 {
572 	__dev_remove_pack(pt);
573 
574 	synchronize_net();
575 }
576 EXPORT_SYMBOL(dev_remove_pack);
577 
578 
579 /**
580  *	dev_add_offload - register offload handlers
581  *	@po: protocol offload declaration
582  *
583  *	Add protocol offload handlers to the networking stack. The passed
584  *	&proto_offload is linked into kernel lists and may not be freed until
585  *	it has been removed from the kernel lists.
586  *
587  *	This call does not sleep therefore it can not
588  *	guarantee all CPU's that are in middle of receiving packets
589  *	will see the new offload handlers (until the next received packet).
590  */
591 void dev_add_offload(struct packet_offload *po)
592 {
593 	struct packet_offload *elem;
594 
595 	spin_lock(&offload_lock);
596 	list_for_each_entry(elem, &offload_base, list) {
597 		if (po->priority < elem->priority)
598 			break;
599 	}
600 	list_add_rcu(&po->list, elem->list.prev);
601 	spin_unlock(&offload_lock);
602 }
603 EXPORT_SYMBOL(dev_add_offload);
604 
605 /**
606  *	__dev_remove_offload	 - remove offload handler
607  *	@po: packet offload declaration
608  *
609  *	Remove a protocol offload handler that was previously added to the
610  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
611  *	is removed from the kernel lists and can be freed or reused once this
612  *	function returns.
613  *
614  *      The packet type might still be in use by receivers
615  *	and must not be freed until after all the CPU's have gone
616  *	through a quiescent state.
617  */
618 static void __dev_remove_offload(struct packet_offload *po)
619 {
620 	struct list_head *head = &offload_base;
621 	struct packet_offload *po1;
622 
623 	spin_lock(&offload_lock);
624 
625 	list_for_each_entry(po1, head, list) {
626 		if (po == po1) {
627 			list_del_rcu(&po->list);
628 			goto out;
629 		}
630 	}
631 
632 	pr_warn("dev_remove_offload: %p not found\n", po);
633 out:
634 	spin_unlock(&offload_lock);
635 }
636 
637 /**
638  *	dev_remove_offload	 - remove packet offload handler
639  *	@po: packet offload declaration
640  *
641  *	Remove a packet offload handler that was previously added to the kernel
642  *	offload handlers by dev_add_offload(). The passed &offload_type is
643  *	removed from the kernel lists and can be freed or reused once this
644  *	function returns.
645  *
646  *	This call sleeps to guarantee that no CPU is looking at the packet
647  *	type after return.
648  */
649 void dev_remove_offload(struct packet_offload *po)
650 {
651 	__dev_remove_offload(po);
652 
653 	synchronize_net();
654 }
655 EXPORT_SYMBOL(dev_remove_offload);
656 
657 /******************************************************************************
658  *
659  *		      Device Boot-time Settings Routines
660  *
661  ******************************************************************************/
662 
663 /* Boot time configuration table */
664 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
665 
666 /**
667  *	netdev_boot_setup_add	- add new setup entry
668  *	@name: name of the device
669  *	@map: configured settings for the device
670  *
671  *	Adds new setup entry to the dev_boot_setup list.  The function
672  *	returns 0 on error and 1 on success.  This is a generic routine to
673  *	all netdevices.
674  */
675 static int netdev_boot_setup_add(char *name, struct ifmap *map)
676 {
677 	struct netdev_boot_setup *s;
678 	int i;
679 
680 	s = dev_boot_setup;
681 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
682 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
683 			memset(s[i].name, 0, sizeof(s[i].name));
684 			strlcpy(s[i].name, name, IFNAMSIZ);
685 			memcpy(&s[i].map, map, sizeof(s[i].map));
686 			break;
687 		}
688 	}
689 
690 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
691 }
692 
693 /**
694  * netdev_boot_setup_check	- check boot time settings
695  * @dev: the netdevice
696  *
697  * Check boot time settings for the device.
698  * The found settings are set for the device to be used
699  * later in the device probing.
700  * Returns 0 if no settings found, 1 if they are.
701  */
702 int netdev_boot_setup_check(struct net_device *dev)
703 {
704 	struct netdev_boot_setup *s = dev_boot_setup;
705 	int i;
706 
707 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
708 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
709 		    !strcmp(dev->name, s[i].name)) {
710 			dev->irq = s[i].map.irq;
711 			dev->base_addr = s[i].map.base_addr;
712 			dev->mem_start = s[i].map.mem_start;
713 			dev->mem_end = s[i].map.mem_end;
714 			return 1;
715 		}
716 	}
717 	return 0;
718 }
719 EXPORT_SYMBOL(netdev_boot_setup_check);
720 
721 
722 /**
723  * netdev_boot_base	- get address from boot time settings
724  * @prefix: prefix for network device
725  * @unit: id for network device
726  *
727  * Check boot time settings for the base address of device.
728  * The found settings are set for the device to be used
729  * later in the device probing.
730  * Returns 0 if no settings found.
731  */
732 unsigned long netdev_boot_base(const char *prefix, int unit)
733 {
734 	const struct netdev_boot_setup *s = dev_boot_setup;
735 	char name[IFNAMSIZ];
736 	int i;
737 
738 	sprintf(name, "%s%d", prefix, unit);
739 
740 	/*
741 	 * If device already registered then return base of 1
742 	 * to indicate not to probe for this interface
743 	 */
744 	if (__dev_get_by_name(&init_net, name))
745 		return 1;
746 
747 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
748 		if (!strcmp(name, s[i].name))
749 			return s[i].map.base_addr;
750 	return 0;
751 }
752 
753 /*
754  * Saves at boot time configured settings for any netdevice.
755  */
756 int __init netdev_boot_setup(char *str)
757 {
758 	int ints[5];
759 	struct ifmap map;
760 
761 	str = get_options(str, ARRAY_SIZE(ints), ints);
762 	if (!str || !*str)
763 		return 0;
764 
765 	/* Save settings */
766 	memset(&map, 0, sizeof(map));
767 	if (ints[0] > 0)
768 		map.irq = ints[1];
769 	if (ints[0] > 1)
770 		map.base_addr = ints[2];
771 	if (ints[0] > 2)
772 		map.mem_start = ints[3];
773 	if (ints[0] > 3)
774 		map.mem_end = ints[4];
775 
776 	/* Add new entry to the list */
777 	return netdev_boot_setup_add(str, &map);
778 }
779 
780 __setup("netdev=", netdev_boot_setup);
781 
782 /*******************************************************************************
783  *
784  *			    Device Interface Subroutines
785  *
786  *******************************************************************************/
787 
788 /**
789  *	dev_get_iflink	- get 'iflink' value of a interface
790  *	@dev: targeted interface
791  *
792  *	Indicates the ifindex the interface is linked to.
793  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
794  */
795 
796 int dev_get_iflink(const struct net_device *dev)
797 {
798 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
799 		return dev->netdev_ops->ndo_get_iflink(dev);
800 
801 	return dev->ifindex;
802 }
803 EXPORT_SYMBOL(dev_get_iflink);
804 
805 /**
806  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
807  *	@dev: targeted interface
808  *	@skb: The packet.
809  *
810  *	For better visibility of tunnel traffic OVS needs to retrieve
811  *	egress tunnel information for a packet. Following API allows
812  *	user to get this info.
813  */
814 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
815 {
816 	struct ip_tunnel_info *info;
817 
818 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
819 		return -EINVAL;
820 
821 	info = skb_tunnel_info_unclone(skb);
822 	if (!info)
823 		return -ENOMEM;
824 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
825 		return -EINVAL;
826 
827 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
828 }
829 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
830 
831 /**
832  *	__dev_get_by_name	- find a device by its name
833  *	@net: the applicable net namespace
834  *	@name: name to find
835  *
836  *	Find an interface by name. Must be called under RTNL semaphore
837  *	or @dev_base_lock. If the name is found a pointer to the device
838  *	is returned. If the name is not found then %NULL is returned. The
839  *	reference counters are not incremented so the caller must be
840  *	careful with locks.
841  */
842 
843 struct net_device *__dev_get_by_name(struct net *net, const char *name)
844 {
845 	struct netdev_name_node *node_name;
846 
847 	node_name = netdev_name_node_lookup(net, name);
848 	return node_name ? node_name->dev : NULL;
849 }
850 EXPORT_SYMBOL(__dev_get_by_name);
851 
852 /**
853  * dev_get_by_name_rcu	- find a device by its name
854  * @net: the applicable net namespace
855  * @name: name to find
856  *
857  * Find an interface by name.
858  * If the name is found a pointer to the device is returned.
859  * If the name is not found then %NULL is returned.
860  * The reference counters are not incremented so the caller must be
861  * careful with locks. The caller must hold RCU lock.
862  */
863 
864 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
865 {
866 	struct netdev_name_node *node_name;
867 
868 	node_name = netdev_name_node_lookup_rcu(net, name);
869 	return node_name ? node_name->dev : NULL;
870 }
871 EXPORT_SYMBOL(dev_get_by_name_rcu);
872 
873 /**
874  *	dev_get_by_name		- find a device by its name
875  *	@net: the applicable net namespace
876  *	@name: name to find
877  *
878  *	Find an interface by name. This can be called from any
879  *	context and does its own locking. The returned handle has
880  *	the usage count incremented and the caller must use dev_put() to
881  *	release it when it is no longer needed. %NULL is returned if no
882  *	matching device is found.
883  */
884 
885 struct net_device *dev_get_by_name(struct net *net, const char *name)
886 {
887 	struct net_device *dev;
888 
889 	rcu_read_lock();
890 	dev = dev_get_by_name_rcu(net, name);
891 	if (dev)
892 		dev_hold(dev);
893 	rcu_read_unlock();
894 	return dev;
895 }
896 EXPORT_SYMBOL(dev_get_by_name);
897 
898 /**
899  *	__dev_get_by_index - find a device by its ifindex
900  *	@net: the applicable net namespace
901  *	@ifindex: index of device
902  *
903  *	Search for an interface by index. Returns %NULL if the device
904  *	is not found or a pointer to the device. The device has not
905  *	had its reference counter increased so the caller must be careful
906  *	about locking. The caller must hold either the RTNL semaphore
907  *	or @dev_base_lock.
908  */
909 
910 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
911 {
912 	struct net_device *dev;
913 	struct hlist_head *head = dev_index_hash(net, ifindex);
914 
915 	hlist_for_each_entry(dev, head, index_hlist)
916 		if (dev->ifindex == ifindex)
917 			return dev;
918 
919 	return NULL;
920 }
921 EXPORT_SYMBOL(__dev_get_by_index);
922 
923 /**
924  *	dev_get_by_index_rcu - find a device by its ifindex
925  *	@net: the applicable net namespace
926  *	@ifindex: index of device
927  *
928  *	Search for an interface by index. Returns %NULL if the device
929  *	is not found or a pointer to the device. The device has not
930  *	had its reference counter increased so the caller must be careful
931  *	about locking. The caller must hold RCU lock.
932  */
933 
934 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
935 {
936 	struct net_device *dev;
937 	struct hlist_head *head = dev_index_hash(net, ifindex);
938 
939 	hlist_for_each_entry_rcu(dev, head, index_hlist)
940 		if (dev->ifindex == ifindex)
941 			return dev;
942 
943 	return NULL;
944 }
945 EXPORT_SYMBOL(dev_get_by_index_rcu);
946 
947 
948 /**
949  *	dev_get_by_index - find a device by its ifindex
950  *	@net: the applicable net namespace
951  *	@ifindex: index of device
952  *
953  *	Search for an interface by index. Returns NULL if the device
954  *	is not found or a pointer to the device. The device returned has
955  *	had a reference added and the pointer is safe until the user calls
956  *	dev_put to indicate they have finished with it.
957  */
958 
959 struct net_device *dev_get_by_index(struct net *net, int ifindex)
960 {
961 	struct net_device *dev;
962 
963 	rcu_read_lock();
964 	dev = dev_get_by_index_rcu(net, ifindex);
965 	if (dev)
966 		dev_hold(dev);
967 	rcu_read_unlock();
968 	return dev;
969 }
970 EXPORT_SYMBOL(dev_get_by_index);
971 
972 /**
973  *	dev_get_by_napi_id - find a device by napi_id
974  *	@napi_id: ID of the NAPI struct
975  *
976  *	Search for an interface by NAPI ID. Returns %NULL if the device
977  *	is not found or a pointer to the device. The device has not had
978  *	its reference counter increased so the caller must be careful
979  *	about locking. The caller must hold RCU lock.
980  */
981 
982 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
983 {
984 	struct napi_struct *napi;
985 
986 	WARN_ON_ONCE(!rcu_read_lock_held());
987 
988 	if (napi_id < MIN_NAPI_ID)
989 		return NULL;
990 
991 	napi = napi_by_id(napi_id);
992 
993 	return napi ? napi->dev : NULL;
994 }
995 EXPORT_SYMBOL(dev_get_by_napi_id);
996 
997 /**
998  *	netdev_get_name - get a netdevice name, knowing its ifindex.
999  *	@net: network namespace
1000  *	@name: a pointer to the buffer where the name will be stored.
1001  *	@ifindex: the ifindex of the interface to get the name from.
1002  */
1003 int netdev_get_name(struct net *net, char *name, int ifindex)
1004 {
1005 	struct net_device *dev;
1006 	int ret;
1007 
1008 	down_read(&devnet_rename_sem);
1009 	rcu_read_lock();
1010 
1011 	dev = dev_get_by_index_rcu(net, ifindex);
1012 	if (!dev) {
1013 		ret = -ENODEV;
1014 		goto out;
1015 	}
1016 
1017 	strcpy(name, dev->name);
1018 
1019 	ret = 0;
1020 out:
1021 	rcu_read_unlock();
1022 	up_read(&devnet_rename_sem);
1023 	return ret;
1024 }
1025 
1026 /**
1027  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1028  *	@net: the applicable net namespace
1029  *	@type: media type of device
1030  *	@ha: hardware address
1031  *
1032  *	Search for an interface by MAC address. Returns NULL if the device
1033  *	is not found or a pointer to the device.
1034  *	The caller must hold RCU or RTNL.
1035  *	The returned device has not had its ref count increased
1036  *	and the caller must therefore be careful about locking
1037  *
1038  */
1039 
1040 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1041 				       const char *ha)
1042 {
1043 	struct net_device *dev;
1044 
1045 	for_each_netdev_rcu(net, dev)
1046 		if (dev->type == type &&
1047 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1048 			return dev;
1049 
1050 	return NULL;
1051 }
1052 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1053 
1054 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1055 {
1056 	struct net_device *dev;
1057 
1058 	ASSERT_RTNL();
1059 	for_each_netdev(net, dev)
1060 		if (dev->type == type)
1061 			return dev;
1062 
1063 	return NULL;
1064 }
1065 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1066 
1067 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1068 {
1069 	struct net_device *dev, *ret = NULL;
1070 
1071 	rcu_read_lock();
1072 	for_each_netdev_rcu(net, dev)
1073 		if (dev->type == type) {
1074 			dev_hold(dev);
1075 			ret = dev;
1076 			break;
1077 		}
1078 	rcu_read_unlock();
1079 	return ret;
1080 }
1081 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1082 
1083 /**
1084  *	__dev_get_by_flags - find any device with given flags
1085  *	@net: the applicable net namespace
1086  *	@if_flags: IFF_* values
1087  *	@mask: bitmask of bits in if_flags to check
1088  *
1089  *	Search for any interface with the given flags. Returns NULL if a device
1090  *	is not found or a pointer to the device. Must be called inside
1091  *	rtnl_lock(), and result refcount is unchanged.
1092  */
1093 
1094 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1095 				      unsigned short mask)
1096 {
1097 	struct net_device *dev, *ret;
1098 
1099 	ASSERT_RTNL();
1100 
1101 	ret = NULL;
1102 	for_each_netdev(net, dev) {
1103 		if (((dev->flags ^ if_flags) & mask) == 0) {
1104 			ret = dev;
1105 			break;
1106 		}
1107 	}
1108 	return ret;
1109 }
1110 EXPORT_SYMBOL(__dev_get_by_flags);
1111 
1112 /**
1113  *	dev_valid_name - check if name is okay for network device
1114  *	@name: name string
1115  *
1116  *	Network device names need to be valid file names to
1117  *	to allow sysfs to work.  We also disallow any kind of
1118  *	whitespace.
1119  */
1120 bool dev_valid_name(const char *name)
1121 {
1122 	if (*name == '\0')
1123 		return false;
1124 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1125 		return false;
1126 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1127 		return false;
1128 
1129 	while (*name) {
1130 		if (*name == '/' || *name == ':' || isspace(*name))
1131 			return false;
1132 		name++;
1133 	}
1134 	return true;
1135 }
1136 EXPORT_SYMBOL(dev_valid_name);
1137 
1138 /**
1139  *	__dev_alloc_name - allocate a name for a device
1140  *	@net: network namespace to allocate the device name in
1141  *	@name: name format string
1142  *	@buf:  scratch buffer and result name string
1143  *
1144  *	Passed a format string - eg "lt%d" it will try and find a suitable
1145  *	id. It scans list of devices to build up a free map, then chooses
1146  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1147  *	while allocating the name and adding the device in order to avoid
1148  *	duplicates.
1149  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1150  *	Returns the number of the unit assigned or a negative errno code.
1151  */
1152 
1153 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1154 {
1155 	int i = 0;
1156 	const char *p;
1157 	const int max_netdevices = 8*PAGE_SIZE;
1158 	unsigned long *inuse;
1159 	struct net_device *d;
1160 
1161 	if (!dev_valid_name(name))
1162 		return -EINVAL;
1163 
1164 	p = strchr(name, '%');
1165 	if (p) {
1166 		/*
1167 		 * Verify the string as this thing may have come from
1168 		 * the user.  There must be either one "%d" and no other "%"
1169 		 * characters.
1170 		 */
1171 		if (p[1] != 'd' || strchr(p + 2, '%'))
1172 			return -EINVAL;
1173 
1174 		/* Use one page as a bit array of possible slots */
1175 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1176 		if (!inuse)
1177 			return -ENOMEM;
1178 
1179 		for_each_netdev(net, d) {
1180 			if (!sscanf(d->name, name, &i))
1181 				continue;
1182 			if (i < 0 || i >= max_netdevices)
1183 				continue;
1184 
1185 			/*  avoid cases where sscanf is not exact inverse of printf */
1186 			snprintf(buf, IFNAMSIZ, name, i);
1187 			if (!strncmp(buf, d->name, IFNAMSIZ))
1188 				set_bit(i, inuse);
1189 		}
1190 
1191 		i = find_first_zero_bit(inuse, max_netdevices);
1192 		free_page((unsigned long) inuse);
1193 	}
1194 
1195 	snprintf(buf, IFNAMSIZ, name, i);
1196 	if (!__dev_get_by_name(net, buf))
1197 		return i;
1198 
1199 	/* It is possible to run out of possible slots
1200 	 * when the name is long and there isn't enough space left
1201 	 * for the digits, or if all bits are used.
1202 	 */
1203 	return -ENFILE;
1204 }
1205 
1206 static int dev_alloc_name_ns(struct net *net,
1207 			     struct net_device *dev,
1208 			     const char *name)
1209 {
1210 	char buf[IFNAMSIZ];
1211 	int ret;
1212 
1213 	BUG_ON(!net);
1214 	ret = __dev_alloc_name(net, name, buf);
1215 	if (ret >= 0)
1216 		strlcpy(dev->name, buf, IFNAMSIZ);
1217 	return ret;
1218 }
1219 
1220 /**
1221  *	dev_alloc_name - allocate a name for a device
1222  *	@dev: device
1223  *	@name: name format string
1224  *
1225  *	Passed a format string - eg "lt%d" it will try and find a suitable
1226  *	id. It scans list of devices to build up a free map, then chooses
1227  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1228  *	while allocating the name and adding the device in order to avoid
1229  *	duplicates.
1230  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1231  *	Returns the number of the unit assigned or a negative errno code.
1232  */
1233 
1234 int dev_alloc_name(struct net_device *dev, const char *name)
1235 {
1236 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1237 }
1238 EXPORT_SYMBOL(dev_alloc_name);
1239 
1240 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1241 			      const char *name)
1242 {
1243 	BUG_ON(!net);
1244 
1245 	if (!dev_valid_name(name))
1246 		return -EINVAL;
1247 
1248 	if (strchr(name, '%'))
1249 		return dev_alloc_name_ns(net, dev, name);
1250 	else if (__dev_get_by_name(net, name))
1251 		return -EEXIST;
1252 	else if (dev->name != name)
1253 		strlcpy(dev->name, name, IFNAMSIZ);
1254 
1255 	return 0;
1256 }
1257 
1258 /**
1259  *	dev_change_name - change name of a device
1260  *	@dev: device
1261  *	@newname: name (or format string) must be at least IFNAMSIZ
1262  *
1263  *	Change name of a device, can pass format strings "eth%d".
1264  *	for wildcarding.
1265  */
1266 int dev_change_name(struct net_device *dev, const char *newname)
1267 {
1268 	unsigned char old_assign_type;
1269 	char oldname[IFNAMSIZ];
1270 	int err = 0;
1271 	int ret;
1272 	struct net *net;
1273 
1274 	ASSERT_RTNL();
1275 	BUG_ON(!dev_net(dev));
1276 
1277 	net = dev_net(dev);
1278 
1279 	/* Some auto-enslaved devices e.g. failover slaves are
1280 	 * special, as userspace might rename the device after
1281 	 * the interface had been brought up and running since
1282 	 * the point kernel initiated auto-enslavement. Allow
1283 	 * live name change even when these slave devices are
1284 	 * up and running.
1285 	 *
1286 	 * Typically, users of these auto-enslaving devices
1287 	 * don't actually care about slave name change, as
1288 	 * they are supposed to operate on master interface
1289 	 * directly.
1290 	 */
1291 	if (dev->flags & IFF_UP &&
1292 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1293 		return -EBUSY;
1294 
1295 	down_write(&devnet_rename_sem);
1296 
1297 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1298 		up_write(&devnet_rename_sem);
1299 		return 0;
1300 	}
1301 
1302 	memcpy(oldname, dev->name, IFNAMSIZ);
1303 
1304 	err = dev_get_valid_name(net, dev, newname);
1305 	if (err < 0) {
1306 		up_write(&devnet_rename_sem);
1307 		return err;
1308 	}
1309 
1310 	if (oldname[0] && !strchr(oldname, '%'))
1311 		netdev_info(dev, "renamed from %s\n", oldname);
1312 
1313 	old_assign_type = dev->name_assign_type;
1314 	dev->name_assign_type = NET_NAME_RENAMED;
1315 
1316 rollback:
1317 	ret = device_rename(&dev->dev, dev->name);
1318 	if (ret) {
1319 		memcpy(dev->name, oldname, IFNAMSIZ);
1320 		dev->name_assign_type = old_assign_type;
1321 		up_write(&devnet_rename_sem);
1322 		return ret;
1323 	}
1324 
1325 	up_write(&devnet_rename_sem);
1326 
1327 	netdev_adjacent_rename_links(dev, oldname);
1328 
1329 	write_lock_bh(&dev_base_lock);
1330 	netdev_name_node_del(dev->name_node);
1331 	write_unlock_bh(&dev_base_lock);
1332 
1333 	synchronize_rcu();
1334 
1335 	write_lock_bh(&dev_base_lock);
1336 	netdev_name_node_add(net, dev->name_node);
1337 	write_unlock_bh(&dev_base_lock);
1338 
1339 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1340 	ret = notifier_to_errno(ret);
1341 
1342 	if (ret) {
1343 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1344 		if (err >= 0) {
1345 			err = ret;
1346 			down_write(&devnet_rename_sem);
1347 			memcpy(dev->name, oldname, IFNAMSIZ);
1348 			memcpy(oldname, newname, IFNAMSIZ);
1349 			dev->name_assign_type = old_assign_type;
1350 			old_assign_type = NET_NAME_RENAMED;
1351 			goto rollback;
1352 		} else {
1353 			pr_err("%s: name change rollback failed: %d\n",
1354 			       dev->name, ret);
1355 		}
1356 	}
1357 
1358 	return err;
1359 }
1360 
1361 /**
1362  *	dev_set_alias - change ifalias of a device
1363  *	@dev: device
1364  *	@alias: name up to IFALIASZ
1365  *	@len: limit of bytes to copy from info
1366  *
1367  *	Set ifalias for a device,
1368  */
1369 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1370 {
1371 	struct dev_ifalias *new_alias = NULL;
1372 
1373 	if (len >= IFALIASZ)
1374 		return -EINVAL;
1375 
1376 	if (len) {
1377 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1378 		if (!new_alias)
1379 			return -ENOMEM;
1380 
1381 		memcpy(new_alias->ifalias, alias, len);
1382 		new_alias->ifalias[len] = 0;
1383 	}
1384 
1385 	mutex_lock(&ifalias_mutex);
1386 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1387 					mutex_is_locked(&ifalias_mutex));
1388 	mutex_unlock(&ifalias_mutex);
1389 
1390 	if (new_alias)
1391 		kfree_rcu(new_alias, rcuhead);
1392 
1393 	return len;
1394 }
1395 EXPORT_SYMBOL(dev_set_alias);
1396 
1397 /**
1398  *	dev_get_alias - get ifalias of a device
1399  *	@dev: device
1400  *	@name: buffer to store name of ifalias
1401  *	@len: size of buffer
1402  *
1403  *	get ifalias for a device.  Caller must make sure dev cannot go
1404  *	away,  e.g. rcu read lock or own a reference count to device.
1405  */
1406 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1407 {
1408 	const struct dev_ifalias *alias;
1409 	int ret = 0;
1410 
1411 	rcu_read_lock();
1412 	alias = rcu_dereference(dev->ifalias);
1413 	if (alias)
1414 		ret = snprintf(name, len, "%s", alias->ifalias);
1415 	rcu_read_unlock();
1416 
1417 	return ret;
1418 }
1419 
1420 /**
1421  *	netdev_features_change - device changes features
1422  *	@dev: device to cause notification
1423  *
1424  *	Called to indicate a device has changed features.
1425  */
1426 void netdev_features_change(struct net_device *dev)
1427 {
1428 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1429 }
1430 EXPORT_SYMBOL(netdev_features_change);
1431 
1432 /**
1433  *	netdev_state_change - device changes state
1434  *	@dev: device to cause notification
1435  *
1436  *	Called to indicate a device has changed state. This function calls
1437  *	the notifier chains for netdev_chain and sends a NEWLINK message
1438  *	to the routing socket.
1439  */
1440 void netdev_state_change(struct net_device *dev)
1441 {
1442 	if (dev->flags & IFF_UP) {
1443 		struct netdev_notifier_change_info change_info = {
1444 			.info.dev = dev,
1445 		};
1446 
1447 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1448 					      &change_info.info);
1449 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1450 	}
1451 }
1452 EXPORT_SYMBOL(netdev_state_change);
1453 
1454 /**
1455  * netdev_notify_peers - notify network peers about existence of @dev
1456  * @dev: network device
1457  *
1458  * Generate traffic such that interested network peers are aware of
1459  * @dev, such as by generating a gratuitous ARP. This may be used when
1460  * a device wants to inform the rest of the network about some sort of
1461  * reconfiguration such as a failover event or virtual machine
1462  * migration.
1463  */
1464 void netdev_notify_peers(struct net_device *dev)
1465 {
1466 	rtnl_lock();
1467 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1468 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1469 	rtnl_unlock();
1470 }
1471 EXPORT_SYMBOL(netdev_notify_peers);
1472 
1473 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1474 {
1475 	const struct net_device_ops *ops = dev->netdev_ops;
1476 	int ret;
1477 
1478 	ASSERT_RTNL();
1479 
1480 	if (!netif_device_present(dev))
1481 		return -ENODEV;
1482 
1483 	/* Block netpoll from trying to do any rx path servicing.
1484 	 * If we don't do this there is a chance ndo_poll_controller
1485 	 * or ndo_poll may be running while we open the device
1486 	 */
1487 	netpoll_poll_disable(dev);
1488 
1489 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1490 	ret = notifier_to_errno(ret);
1491 	if (ret)
1492 		return ret;
1493 
1494 	set_bit(__LINK_STATE_START, &dev->state);
1495 
1496 	if (ops->ndo_validate_addr)
1497 		ret = ops->ndo_validate_addr(dev);
1498 
1499 	if (!ret && ops->ndo_open)
1500 		ret = ops->ndo_open(dev);
1501 
1502 	netpoll_poll_enable(dev);
1503 
1504 	if (ret)
1505 		clear_bit(__LINK_STATE_START, &dev->state);
1506 	else {
1507 		dev->flags |= IFF_UP;
1508 		dev_set_rx_mode(dev);
1509 		dev_activate(dev);
1510 		add_device_randomness(dev->dev_addr, dev->addr_len);
1511 	}
1512 
1513 	return ret;
1514 }
1515 
1516 /**
1517  *	dev_open	- prepare an interface for use.
1518  *	@dev: device to open
1519  *	@extack: netlink extended ack
1520  *
1521  *	Takes a device from down to up state. The device's private open
1522  *	function is invoked and then the multicast lists are loaded. Finally
1523  *	the device is moved into the up state and a %NETDEV_UP message is
1524  *	sent to the netdev notifier chain.
1525  *
1526  *	Calling this function on an active interface is a nop. On a failure
1527  *	a negative errno code is returned.
1528  */
1529 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1530 {
1531 	int ret;
1532 
1533 	if (dev->flags & IFF_UP)
1534 		return 0;
1535 
1536 	ret = __dev_open(dev, extack);
1537 	if (ret < 0)
1538 		return ret;
1539 
1540 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1541 	call_netdevice_notifiers(NETDEV_UP, dev);
1542 
1543 	return ret;
1544 }
1545 EXPORT_SYMBOL(dev_open);
1546 
1547 static void __dev_close_many(struct list_head *head)
1548 {
1549 	struct net_device *dev;
1550 
1551 	ASSERT_RTNL();
1552 	might_sleep();
1553 
1554 	list_for_each_entry(dev, head, close_list) {
1555 		/* Temporarily disable netpoll until the interface is down */
1556 		netpoll_poll_disable(dev);
1557 
1558 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1559 
1560 		clear_bit(__LINK_STATE_START, &dev->state);
1561 
1562 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1563 		 * can be even on different cpu. So just clear netif_running().
1564 		 *
1565 		 * dev->stop() will invoke napi_disable() on all of it's
1566 		 * napi_struct instances on this device.
1567 		 */
1568 		smp_mb__after_atomic(); /* Commit netif_running(). */
1569 	}
1570 
1571 	dev_deactivate_many(head);
1572 
1573 	list_for_each_entry(dev, head, close_list) {
1574 		const struct net_device_ops *ops = dev->netdev_ops;
1575 
1576 		/*
1577 		 *	Call the device specific close. This cannot fail.
1578 		 *	Only if device is UP
1579 		 *
1580 		 *	We allow it to be called even after a DETACH hot-plug
1581 		 *	event.
1582 		 */
1583 		if (ops->ndo_stop)
1584 			ops->ndo_stop(dev);
1585 
1586 		dev->flags &= ~IFF_UP;
1587 		netpoll_poll_enable(dev);
1588 	}
1589 }
1590 
1591 static void __dev_close(struct net_device *dev)
1592 {
1593 	LIST_HEAD(single);
1594 
1595 	list_add(&dev->close_list, &single);
1596 	__dev_close_many(&single);
1597 	list_del(&single);
1598 }
1599 
1600 void dev_close_many(struct list_head *head, bool unlink)
1601 {
1602 	struct net_device *dev, *tmp;
1603 
1604 	/* Remove the devices that don't need to be closed */
1605 	list_for_each_entry_safe(dev, tmp, head, close_list)
1606 		if (!(dev->flags & IFF_UP))
1607 			list_del_init(&dev->close_list);
1608 
1609 	__dev_close_many(head);
1610 
1611 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1612 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1613 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1614 		if (unlink)
1615 			list_del_init(&dev->close_list);
1616 	}
1617 }
1618 EXPORT_SYMBOL(dev_close_many);
1619 
1620 /**
1621  *	dev_close - shutdown an interface.
1622  *	@dev: device to shutdown
1623  *
1624  *	This function moves an active device into down state. A
1625  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1626  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1627  *	chain.
1628  */
1629 void dev_close(struct net_device *dev)
1630 {
1631 	if (dev->flags & IFF_UP) {
1632 		LIST_HEAD(single);
1633 
1634 		list_add(&dev->close_list, &single);
1635 		dev_close_many(&single, true);
1636 		list_del(&single);
1637 	}
1638 }
1639 EXPORT_SYMBOL(dev_close);
1640 
1641 
1642 /**
1643  *	dev_disable_lro - disable Large Receive Offload on a device
1644  *	@dev: device
1645  *
1646  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1647  *	called under RTNL.  This is needed if received packets may be
1648  *	forwarded to another interface.
1649  */
1650 void dev_disable_lro(struct net_device *dev)
1651 {
1652 	struct net_device *lower_dev;
1653 	struct list_head *iter;
1654 
1655 	dev->wanted_features &= ~NETIF_F_LRO;
1656 	netdev_update_features(dev);
1657 
1658 	if (unlikely(dev->features & NETIF_F_LRO))
1659 		netdev_WARN(dev, "failed to disable LRO!\n");
1660 
1661 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1662 		dev_disable_lro(lower_dev);
1663 }
1664 EXPORT_SYMBOL(dev_disable_lro);
1665 
1666 /**
1667  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1668  *	@dev: device
1669  *
1670  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1671  *	called under RTNL.  This is needed if Generic XDP is installed on
1672  *	the device.
1673  */
1674 static void dev_disable_gro_hw(struct net_device *dev)
1675 {
1676 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1677 	netdev_update_features(dev);
1678 
1679 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1680 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1681 }
1682 
1683 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1684 {
1685 #define N(val) 						\
1686 	case NETDEV_##val:				\
1687 		return "NETDEV_" __stringify(val);
1688 	switch (cmd) {
1689 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1690 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1691 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1692 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1693 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1694 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1695 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1696 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1697 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1698 	N(PRE_CHANGEADDR)
1699 	}
1700 #undef N
1701 	return "UNKNOWN_NETDEV_EVENT";
1702 }
1703 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1704 
1705 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1706 				   struct net_device *dev)
1707 {
1708 	struct netdev_notifier_info info = {
1709 		.dev = dev,
1710 	};
1711 
1712 	return nb->notifier_call(nb, val, &info);
1713 }
1714 
1715 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1716 					     struct net_device *dev)
1717 {
1718 	int err;
1719 
1720 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1721 	err = notifier_to_errno(err);
1722 	if (err)
1723 		return err;
1724 
1725 	if (!(dev->flags & IFF_UP))
1726 		return 0;
1727 
1728 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1729 	return 0;
1730 }
1731 
1732 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1733 						struct net_device *dev)
1734 {
1735 	if (dev->flags & IFF_UP) {
1736 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1737 					dev);
1738 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1739 	}
1740 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1741 }
1742 
1743 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1744 						 struct net *net)
1745 {
1746 	struct net_device *dev;
1747 	int err;
1748 
1749 	for_each_netdev(net, dev) {
1750 		err = call_netdevice_register_notifiers(nb, dev);
1751 		if (err)
1752 			goto rollback;
1753 	}
1754 	return 0;
1755 
1756 rollback:
1757 	for_each_netdev_continue_reverse(net, dev)
1758 		call_netdevice_unregister_notifiers(nb, dev);
1759 	return err;
1760 }
1761 
1762 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1763 						    struct net *net)
1764 {
1765 	struct net_device *dev;
1766 
1767 	for_each_netdev(net, dev)
1768 		call_netdevice_unregister_notifiers(nb, dev);
1769 }
1770 
1771 static int dev_boot_phase = 1;
1772 
1773 /**
1774  * register_netdevice_notifier - register a network notifier block
1775  * @nb: notifier
1776  *
1777  * Register a notifier to be called when network device events occur.
1778  * The notifier passed is linked into the kernel structures and must
1779  * not be reused until it has been unregistered. A negative errno code
1780  * is returned on a failure.
1781  *
1782  * When registered all registration and up events are replayed
1783  * to the new notifier to allow device to have a race free
1784  * view of the network device list.
1785  */
1786 
1787 int register_netdevice_notifier(struct notifier_block *nb)
1788 {
1789 	struct net *net;
1790 	int err;
1791 
1792 	/* Close race with setup_net() and cleanup_net() */
1793 	down_write(&pernet_ops_rwsem);
1794 	rtnl_lock();
1795 	err = raw_notifier_chain_register(&netdev_chain, nb);
1796 	if (err)
1797 		goto unlock;
1798 	if (dev_boot_phase)
1799 		goto unlock;
1800 	for_each_net(net) {
1801 		err = call_netdevice_register_net_notifiers(nb, net);
1802 		if (err)
1803 			goto rollback;
1804 	}
1805 
1806 unlock:
1807 	rtnl_unlock();
1808 	up_write(&pernet_ops_rwsem);
1809 	return err;
1810 
1811 rollback:
1812 	for_each_net_continue_reverse(net)
1813 		call_netdevice_unregister_net_notifiers(nb, net);
1814 
1815 	raw_notifier_chain_unregister(&netdev_chain, nb);
1816 	goto unlock;
1817 }
1818 EXPORT_SYMBOL(register_netdevice_notifier);
1819 
1820 /**
1821  * unregister_netdevice_notifier - unregister a network notifier block
1822  * @nb: notifier
1823  *
1824  * Unregister a notifier previously registered by
1825  * register_netdevice_notifier(). The notifier is unlinked into the
1826  * kernel structures and may then be reused. A negative errno code
1827  * is returned on a failure.
1828  *
1829  * After unregistering unregister and down device events are synthesized
1830  * for all devices on the device list to the removed notifier to remove
1831  * the need for special case cleanup code.
1832  */
1833 
1834 int unregister_netdevice_notifier(struct notifier_block *nb)
1835 {
1836 	struct net *net;
1837 	int err;
1838 
1839 	/* Close race with setup_net() and cleanup_net() */
1840 	down_write(&pernet_ops_rwsem);
1841 	rtnl_lock();
1842 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1843 	if (err)
1844 		goto unlock;
1845 
1846 	for_each_net(net)
1847 		call_netdevice_unregister_net_notifiers(nb, net);
1848 
1849 unlock:
1850 	rtnl_unlock();
1851 	up_write(&pernet_ops_rwsem);
1852 	return err;
1853 }
1854 EXPORT_SYMBOL(unregister_netdevice_notifier);
1855 
1856 static int __register_netdevice_notifier_net(struct net *net,
1857 					     struct notifier_block *nb,
1858 					     bool ignore_call_fail)
1859 {
1860 	int err;
1861 
1862 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1863 	if (err)
1864 		return err;
1865 	if (dev_boot_phase)
1866 		return 0;
1867 
1868 	err = call_netdevice_register_net_notifiers(nb, net);
1869 	if (err && !ignore_call_fail)
1870 		goto chain_unregister;
1871 
1872 	return 0;
1873 
1874 chain_unregister:
1875 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1876 	return err;
1877 }
1878 
1879 static int __unregister_netdevice_notifier_net(struct net *net,
1880 					       struct notifier_block *nb)
1881 {
1882 	int err;
1883 
1884 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1885 	if (err)
1886 		return err;
1887 
1888 	call_netdevice_unregister_net_notifiers(nb, net);
1889 	return 0;
1890 }
1891 
1892 /**
1893  * register_netdevice_notifier_net - register a per-netns network notifier block
1894  * @net: network namespace
1895  * @nb: notifier
1896  *
1897  * Register a notifier to be called when network device events occur.
1898  * The notifier passed is linked into the kernel structures and must
1899  * not be reused until it has been unregistered. A negative errno code
1900  * is returned on a failure.
1901  *
1902  * When registered all registration and up events are replayed
1903  * to the new notifier to allow device to have a race free
1904  * view of the network device list.
1905  */
1906 
1907 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1908 {
1909 	int err;
1910 
1911 	rtnl_lock();
1912 	err = __register_netdevice_notifier_net(net, nb, false);
1913 	rtnl_unlock();
1914 	return err;
1915 }
1916 EXPORT_SYMBOL(register_netdevice_notifier_net);
1917 
1918 /**
1919  * unregister_netdevice_notifier_net - unregister a per-netns
1920  *                                     network notifier block
1921  * @net: network namespace
1922  * @nb: notifier
1923  *
1924  * Unregister a notifier previously registered by
1925  * register_netdevice_notifier(). The notifier is unlinked into the
1926  * kernel structures and may then be reused. A negative errno code
1927  * is returned on a failure.
1928  *
1929  * After unregistering unregister and down device events are synthesized
1930  * for all devices on the device list to the removed notifier to remove
1931  * the need for special case cleanup code.
1932  */
1933 
1934 int unregister_netdevice_notifier_net(struct net *net,
1935 				      struct notifier_block *nb)
1936 {
1937 	int err;
1938 
1939 	rtnl_lock();
1940 	err = __unregister_netdevice_notifier_net(net, nb);
1941 	rtnl_unlock();
1942 	return err;
1943 }
1944 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1945 
1946 int register_netdevice_notifier_dev_net(struct net_device *dev,
1947 					struct notifier_block *nb,
1948 					struct netdev_net_notifier *nn)
1949 {
1950 	int err;
1951 
1952 	rtnl_lock();
1953 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1954 	if (!err) {
1955 		nn->nb = nb;
1956 		list_add(&nn->list, &dev->net_notifier_list);
1957 	}
1958 	rtnl_unlock();
1959 	return err;
1960 }
1961 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1962 
1963 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1964 					  struct notifier_block *nb,
1965 					  struct netdev_net_notifier *nn)
1966 {
1967 	int err;
1968 
1969 	rtnl_lock();
1970 	list_del(&nn->list);
1971 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1972 	rtnl_unlock();
1973 	return err;
1974 }
1975 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1976 
1977 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1978 					     struct net *net)
1979 {
1980 	struct netdev_net_notifier *nn;
1981 
1982 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1983 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1984 		__register_netdevice_notifier_net(net, nn->nb, true);
1985 	}
1986 }
1987 
1988 /**
1989  *	call_netdevice_notifiers_info - call all network notifier blocks
1990  *	@val: value passed unmodified to notifier function
1991  *	@info: notifier information data
1992  *
1993  *	Call all network notifier blocks.  Parameters and return value
1994  *	are as for raw_notifier_call_chain().
1995  */
1996 
1997 static int call_netdevice_notifiers_info(unsigned long val,
1998 					 struct netdev_notifier_info *info)
1999 {
2000 	struct net *net = dev_net(info->dev);
2001 	int ret;
2002 
2003 	ASSERT_RTNL();
2004 
2005 	/* Run per-netns notifier block chain first, then run the global one.
2006 	 * Hopefully, one day, the global one is going to be removed after
2007 	 * all notifier block registrators get converted to be per-netns.
2008 	 */
2009 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2010 	if (ret & NOTIFY_STOP_MASK)
2011 		return ret;
2012 	return raw_notifier_call_chain(&netdev_chain, val, info);
2013 }
2014 
2015 static int call_netdevice_notifiers_extack(unsigned long val,
2016 					   struct net_device *dev,
2017 					   struct netlink_ext_ack *extack)
2018 {
2019 	struct netdev_notifier_info info = {
2020 		.dev = dev,
2021 		.extack = extack,
2022 	};
2023 
2024 	return call_netdevice_notifiers_info(val, &info);
2025 }
2026 
2027 /**
2028  *	call_netdevice_notifiers - call all network notifier blocks
2029  *      @val: value passed unmodified to notifier function
2030  *      @dev: net_device pointer passed unmodified to notifier function
2031  *
2032  *	Call all network notifier blocks.  Parameters and return value
2033  *	are as for raw_notifier_call_chain().
2034  */
2035 
2036 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2037 {
2038 	return call_netdevice_notifiers_extack(val, dev, NULL);
2039 }
2040 EXPORT_SYMBOL(call_netdevice_notifiers);
2041 
2042 /**
2043  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2044  *	@val: value passed unmodified to notifier function
2045  *	@dev: net_device pointer passed unmodified to notifier function
2046  *	@arg: additional u32 argument passed to the notifier function
2047  *
2048  *	Call all network notifier blocks.  Parameters and return value
2049  *	are as for raw_notifier_call_chain().
2050  */
2051 static int call_netdevice_notifiers_mtu(unsigned long val,
2052 					struct net_device *dev, u32 arg)
2053 {
2054 	struct netdev_notifier_info_ext info = {
2055 		.info.dev = dev,
2056 		.ext.mtu = arg,
2057 	};
2058 
2059 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2060 
2061 	return call_netdevice_notifiers_info(val, &info.info);
2062 }
2063 
2064 #ifdef CONFIG_NET_INGRESS
2065 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2066 
2067 void net_inc_ingress_queue(void)
2068 {
2069 	static_branch_inc(&ingress_needed_key);
2070 }
2071 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2072 
2073 void net_dec_ingress_queue(void)
2074 {
2075 	static_branch_dec(&ingress_needed_key);
2076 }
2077 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2078 #endif
2079 
2080 #ifdef CONFIG_NET_EGRESS
2081 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2082 
2083 void net_inc_egress_queue(void)
2084 {
2085 	static_branch_inc(&egress_needed_key);
2086 }
2087 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2088 
2089 void net_dec_egress_queue(void)
2090 {
2091 	static_branch_dec(&egress_needed_key);
2092 }
2093 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2094 #endif
2095 
2096 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2097 #ifdef CONFIG_JUMP_LABEL
2098 static atomic_t netstamp_needed_deferred;
2099 static atomic_t netstamp_wanted;
2100 static void netstamp_clear(struct work_struct *work)
2101 {
2102 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2103 	int wanted;
2104 
2105 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2106 	if (wanted > 0)
2107 		static_branch_enable(&netstamp_needed_key);
2108 	else
2109 		static_branch_disable(&netstamp_needed_key);
2110 }
2111 static DECLARE_WORK(netstamp_work, netstamp_clear);
2112 #endif
2113 
2114 void net_enable_timestamp(void)
2115 {
2116 #ifdef CONFIG_JUMP_LABEL
2117 	int wanted;
2118 
2119 	while (1) {
2120 		wanted = atomic_read(&netstamp_wanted);
2121 		if (wanted <= 0)
2122 			break;
2123 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2124 			return;
2125 	}
2126 	atomic_inc(&netstamp_needed_deferred);
2127 	schedule_work(&netstamp_work);
2128 #else
2129 	static_branch_inc(&netstamp_needed_key);
2130 #endif
2131 }
2132 EXPORT_SYMBOL(net_enable_timestamp);
2133 
2134 void net_disable_timestamp(void)
2135 {
2136 #ifdef CONFIG_JUMP_LABEL
2137 	int wanted;
2138 
2139 	while (1) {
2140 		wanted = atomic_read(&netstamp_wanted);
2141 		if (wanted <= 1)
2142 			break;
2143 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2144 			return;
2145 	}
2146 	atomic_dec(&netstamp_needed_deferred);
2147 	schedule_work(&netstamp_work);
2148 #else
2149 	static_branch_dec(&netstamp_needed_key);
2150 #endif
2151 }
2152 EXPORT_SYMBOL(net_disable_timestamp);
2153 
2154 static inline void net_timestamp_set(struct sk_buff *skb)
2155 {
2156 	skb->tstamp = 0;
2157 	if (static_branch_unlikely(&netstamp_needed_key))
2158 		__net_timestamp(skb);
2159 }
2160 
2161 #define net_timestamp_check(COND, SKB)				\
2162 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2163 		if ((COND) && !(SKB)->tstamp)			\
2164 			__net_timestamp(SKB);			\
2165 	}							\
2166 
2167 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2168 {
2169 	unsigned int len;
2170 
2171 	if (!(dev->flags & IFF_UP))
2172 		return false;
2173 
2174 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2175 	if (skb->len <= len)
2176 		return true;
2177 
2178 	/* if TSO is enabled, we don't care about the length as the packet
2179 	 * could be forwarded without being segmented before
2180 	 */
2181 	if (skb_is_gso(skb))
2182 		return true;
2183 
2184 	return false;
2185 }
2186 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2187 
2188 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2189 {
2190 	int ret = ____dev_forward_skb(dev, skb);
2191 
2192 	if (likely(!ret)) {
2193 		skb->protocol = eth_type_trans(skb, dev);
2194 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2195 	}
2196 
2197 	return ret;
2198 }
2199 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2200 
2201 /**
2202  * dev_forward_skb - loopback an skb to another netif
2203  *
2204  * @dev: destination network device
2205  * @skb: buffer to forward
2206  *
2207  * return values:
2208  *	NET_RX_SUCCESS	(no congestion)
2209  *	NET_RX_DROP     (packet was dropped, but freed)
2210  *
2211  * dev_forward_skb can be used for injecting an skb from the
2212  * start_xmit function of one device into the receive queue
2213  * of another device.
2214  *
2215  * The receiving device may be in another namespace, so
2216  * we have to clear all information in the skb that could
2217  * impact namespace isolation.
2218  */
2219 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2220 {
2221 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2222 }
2223 EXPORT_SYMBOL_GPL(dev_forward_skb);
2224 
2225 static inline int deliver_skb(struct sk_buff *skb,
2226 			      struct packet_type *pt_prev,
2227 			      struct net_device *orig_dev)
2228 {
2229 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2230 		return -ENOMEM;
2231 	refcount_inc(&skb->users);
2232 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2233 }
2234 
2235 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2236 					  struct packet_type **pt,
2237 					  struct net_device *orig_dev,
2238 					  __be16 type,
2239 					  struct list_head *ptype_list)
2240 {
2241 	struct packet_type *ptype, *pt_prev = *pt;
2242 
2243 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2244 		if (ptype->type != type)
2245 			continue;
2246 		if (pt_prev)
2247 			deliver_skb(skb, pt_prev, orig_dev);
2248 		pt_prev = ptype;
2249 	}
2250 	*pt = pt_prev;
2251 }
2252 
2253 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2254 {
2255 	if (!ptype->af_packet_priv || !skb->sk)
2256 		return false;
2257 
2258 	if (ptype->id_match)
2259 		return ptype->id_match(ptype, skb->sk);
2260 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2261 		return true;
2262 
2263 	return false;
2264 }
2265 
2266 /**
2267  * dev_nit_active - return true if any network interface taps are in use
2268  *
2269  * @dev: network device to check for the presence of taps
2270  */
2271 bool dev_nit_active(struct net_device *dev)
2272 {
2273 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2274 }
2275 EXPORT_SYMBOL_GPL(dev_nit_active);
2276 
2277 /*
2278  *	Support routine. Sends outgoing frames to any network
2279  *	taps currently in use.
2280  */
2281 
2282 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2283 {
2284 	struct packet_type *ptype;
2285 	struct sk_buff *skb2 = NULL;
2286 	struct packet_type *pt_prev = NULL;
2287 	struct list_head *ptype_list = &ptype_all;
2288 
2289 	rcu_read_lock();
2290 again:
2291 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2292 		if (ptype->ignore_outgoing)
2293 			continue;
2294 
2295 		/* Never send packets back to the socket
2296 		 * they originated from - MvS (miquels@drinkel.ow.org)
2297 		 */
2298 		if (skb_loop_sk(ptype, skb))
2299 			continue;
2300 
2301 		if (pt_prev) {
2302 			deliver_skb(skb2, pt_prev, skb->dev);
2303 			pt_prev = ptype;
2304 			continue;
2305 		}
2306 
2307 		/* need to clone skb, done only once */
2308 		skb2 = skb_clone(skb, GFP_ATOMIC);
2309 		if (!skb2)
2310 			goto out_unlock;
2311 
2312 		net_timestamp_set(skb2);
2313 
2314 		/* skb->nh should be correctly
2315 		 * set by sender, so that the second statement is
2316 		 * just protection against buggy protocols.
2317 		 */
2318 		skb_reset_mac_header(skb2);
2319 
2320 		if (skb_network_header(skb2) < skb2->data ||
2321 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2322 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2323 					     ntohs(skb2->protocol),
2324 					     dev->name);
2325 			skb_reset_network_header(skb2);
2326 		}
2327 
2328 		skb2->transport_header = skb2->network_header;
2329 		skb2->pkt_type = PACKET_OUTGOING;
2330 		pt_prev = ptype;
2331 	}
2332 
2333 	if (ptype_list == &ptype_all) {
2334 		ptype_list = &dev->ptype_all;
2335 		goto again;
2336 	}
2337 out_unlock:
2338 	if (pt_prev) {
2339 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2340 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2341 		else
2342 			kfree_skb(skb2);
2343 	}
2344 	rcu_read_unlock();
2345 }
2346 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2347 
2348 /**
2349  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2350  * @dev: Network device
2351  * @txq: number of queues available
2352  *
2353  * If real_num_tx_queues is changed the tc mappings may no longer be
2354  * valid. To resolve this verify the tc mapping remains valid and if
2355  * not NULL the mapping. With no priorities mapping to this
2356  * offset/count pair it will no longer be used. In the worst case TC0
2357  * is invalid nothing can be done so disable priority mappings. If is
2358  * expected that drivers will fix this mapping if they can before
2359  * calling netif_set_real_num_tx_queues.
2360  */
2361 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2362 {
2363 	int i;
2364 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2365 
2366 	/* If TC0 is invalidated disable TC mapping */
2367 	if (tc->offset + tc->count > txq) {
2368 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2369 		dev->num_tc = 0;
2370 		return;
2371 	}
2372 
2373 	/* Invalidated prio to tc mappings set to TC0 */
2374 	for (i = 1; i < TC_BITMASK + 1; i++) {
2375 		int q = netdev_get_prio_tc_map(dev, i);
2376 
2377 		tc = &dev->tc_to_txq[q];
2378 		if (tc->offset + tc->count > txq) {
2379 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2380 				i, q);
2381 			netdev_set_prio_tc_map(dev, i, 0);
2382 		}
2383 	}
2384 }
2385 
2386 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2387 {
2388 	if (dev->num_tc) {
2389 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2390 		int i;
2391 
2392 		/* walk through the TCs and see if it falls into any of them */
2393 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2394 			if ((txq - tc->offset) < tc->count)
2395 				return i;
2396 		}
2397 
2398 		/* didn't find it, just return -1 to indicate no match */
2399 		return -1;
2400 	}
2401 
2402 	return 0;
2403 }
2404 EXPORT_SYMBOL(netdev_txq_to_tc);
2405 
2406 #ifdef CONFIG_XPS
2407 struct static_key xps_needed __read_mostly;
2408 EXPORT_SYMBOL(xps_needed);
2409 struct static_key xps_rxqs_needed __read_mostly;
2410 EXPORT_SYMBOL(xps_rxqs_needed);
2411 static DEFINE_MUTEX(xps_map_mutex);
2412 #define xmap_dereference(P)		\
2413 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2414 
2415 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2416 			     int tci, u16 index)
2417 {
2418 	struct xps_map *map = NULL;
2419 	int pos;
2420 
2421 	if (dev_maps)
2422 		map = xmap_dereference(dev_maps->attr_map[tci]);
2423 	if (!map)
2424 		return false;
2425 
2426 	for (pos = map->len; pos--;) {
2427 		if (map->queues[pos] != index)
2428 			continue;
2429 
2430 		if (map->len > 1) {
2431 			map->queues[pos] = map->queues[--map->len];
2432 			break;
2433 		}
2434 
2435 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2436 		kfree_rcu(map, rcu);
2437 		return false;
2438 	}
2439 
2440 	return true;
2441 }
2442 
2443 static bool remove_xps_queue_cpu(struct net_device *dev,
2444 				 struct xps_dev_maps *dev_maps,
2445 				 int cpu, u16 offset, u16 count)
2446 {
2447 	int num_tc = dev->num_tc ? : 1;
2448 	bool active = false;
2449 	int tci;
2450 
2451 	for (tci = cpu * num_tc; num_tc--; tci++) {
2452 		int i, j;
2453 
2454 		for (i = count, j = offset; i--; j++) {
2455 			if (!remove_xps_queue(dev_maps, tci, j))
2456 				break;
2457 		}
2458 
2459 		active |= i < 0;
2460 	}
2461 
2462 	return active;
2463 }
2464 
2465 static void reset_xps_maps(struct net_device *dev,
2466 			   struct xps_dev_maps *dev_maps,
2467 			   bool is_rxqs_map)
2468 {
2469 	if (is_rxqs_map) {
2470 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2471 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2472 	} else {
2473 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2474 	}
2475 	static_key_slow_dec_cpuslocked(&xps_needed);
2476 	kfree_rcu(dev_maps, rcu);
2477 }
2478 
2479 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2480 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2481 			   u16 offset, u16 count, bool is_rxqs_map)
2482 {
2483 	bool active = false;
2484 	int i, j;
2485 
2486 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2487 	     j < nr_ids;)
2488 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2489 					       count);
2490 	if (!active)
2491 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2492 
2493 	if (!is_rxqs_map) {
2494 		for (i = offset + (count - 1); count--; i--) {
2495 			netdev_queue_numa_node_write(
2496 				netdev_get_tx_queue(dev, i),
2497 				NUMA_NO_NODE);
2498 		}
2499 	}
2500 }
2501 
2502 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2503 				   u16 count)
2504 {
2505 	const unsigned long *possible_mask = NULL;
2506 	struct xps_dev_maps *dev_maps;
2507 	unsigned int nr_ids;
2508 
2509 	if (!static_key_false(&xps_needed))
2510 		return;
2511 
2512 	cpus_read_lock();
2513 	mutex_lock(&xps_map_mutex);
2514 
2515 	if (static_key_false(&xps_rxqs_needed)) {
2516 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2517 		if (dev_maps) {
2518 			nr_ids = dev->num_rx_queues;
2519 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2520 				       offset, count, true);
2521 		}
2522 	}
2523 
2524 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2525 	if (!dev_maps)
2526 		goto out_no_maps;
2527 
2528 	if (num_possible_cpus() > 1)
2529 		possible_mask = cpumask_bits(cpu_possible_mask);
2530 	nr_ids = nr_cpu_ids;
2531 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2532 		       false);
2533 
2534 out_no_maps:
2535 	mutex_unlock(&xps_map_mutex);
2536 	cpus_read_unlock();
2537 }
2538 
2539 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2540 {
2541 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2542 }
2543 
2544 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2545 				      u16 index, bool is_rxqs_map)
2546 {
2547 	struct xps_map *new_map;
2548 	int alloc_len = XPS_MIN_MAP_ALLOC;
2549 	int i, pos;
2550 
2551 	for (pos = 0; map && pos < map->len; pos++) {
2552 		if (map->queues[pos] != index)
2553 			continue;
2554 		return map;
2555 	}
2556 
2557 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2558 	if (map) {
2559 		if (pos < map->alloc_len)
2560 			return map;
2561 
2562 		alloc_len = map->alloc_len * 2;
2563 	}
2564 
2565 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2566 	 *  map
2567 	 */
2568 	if (is_rxqs_map)
2569 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2570 	else
2571 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2572 				       cpu_to_node(attr_index));
2573 	if (!new_map)
2574 		return NULL;
2575 
2576 	for (i = 0; i < pos; i++)
2577 		new_map->queues[i] = map->queues[i];
2578 	new_map->alloc_len = alloc_len;
2579 	new_map->len = pos;
2580 
2581 	return new_map;
2582 }
2583 
2584 /* Must be called under cpus_read_lock */
2585 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2586 			  u16 index, bool is_rxqs_map)
2587 {
2588 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2589 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2590 	int i, j, tci, numa_node_id = -2;
2591 	int maps_sz, num_tc = 1, tc = 0;
2592 	struct xps_map *map, *new_map;
2593 	bool active = false;
2594 	unsigned int nr_ids;
2595 
2596 	if (dev->num_tc) {
2597 		/* Do not allow XPS on subordinate device directly */
2598 		num_tc = dev->num_tc;
2599 		if (num_tc < 0)
2600 			return -EINVAL;
2601 
2602 		/* If queue belongs to subordinate dev use its map */
2603 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2604 
2605 		tc = netdev_txq_to_tc(dev, index);
2606 		if (tc < 0)
2607 			return -EINVAL;
2608 	}
2609 
2610 	mutex_lock(&xps_map_mutex);
2611 	if (is_rxqs_map) {
2612 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2613 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2614 		nr_ids = dev->num_rx_queues;
2615 	} else {
2616 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2617 		if (num_possible_cpus() > 1) {
2618 			online_mask = cpumask_bits(cpu_online_mask);
2619 			possible_mask = cpumask_bits(cpu_possible_mask);
2620 		}
2621 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2622 		nr_ids = nr_cpu_ids;
2623 	}
2624 
2625 	if (maps_sz < L1_CACHE_BYTES)
2626 		maps_sz = L1_CACHE_BYTES;
2627 
2628 	/* allocate memory for queue storage */
2629 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2630 	     j < nr_ids;) {
2631 		if (!new_dev_maps)
2632 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2633 		if (!new_dev_maps) {
2634 			mutex_unlock(&xps_map_mutex);
2635 			return -ENOMEM;
2636 		}
2637 
2638 		tci = j * num_tc + tc;
2639 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2640 				 NULL;
2641 
2642 		map = expand_xps_map(map, j, index, is_rxqs_map);
2643 		if (!map)
2644 			goto error;
2645 
2646 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2647 	}
2648 
2649 	if (!new_dev_maps)
2650 		goto out_no_new_maps;
2651 
2652 	if (!dev_maps) {
2653 		/* Increment static keys at most once per type */
2654 		static_key_slow_inc_cpuslocked(&xps_needed);
2655 		if (is_rxqs_map)
2656 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2657 	}
2658 
2659 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2660 	     j < nr_ids;) {
2661 		/* copy maps belonging to foreign traffic classes */
2662 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2663 			/* fill in the new device map from the old device map */
2664 			map = xmap_dereference(dev_maps->attr_map[tci]);
2665 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2666 		}
2667 
2668 		/* We need to explicitly update tci as prevous loop
2669 		 * could break out early if dev_maps is NULL.
2670 		 */
2671 		tci = j * num_tc + tc;
2672 
2673 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2674 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2675 			/* add tx-queue to CPU/rx-queue maps */
2676 			int pos = 0;
2677 
2678 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2679 			while ((pos < map->len) && (map->queues[pos] != index))
2680 				pos++;
2681 
2682 			if (pos == map->len)
2683 				map->queues[map->len++] = index;
2684 #ifdef CONFIG_NUMA
2685 			if (!is_rxqs_map) {
2686 				if (numa_node_id == -2)
2687 					numa_node_id = cpu_to_node(j);
2688 				else if (numa_node_id != cpu_to_node(j))
2689 					numa_node_id = -1;
2690 			}
2691 #endif
2692 		} else if (dev_maps) {
2693 			/* fill in the new device map from the old device map */
2694 			map = xmap_dereference(dev_maps->attr_map[tci]);
2695 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2696 		}
2697 
2698 		/* copy maps belonging to foreign traffic classes */
2699 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2700 			/* fill in the new device map from the old device map */
2701 			map = xmap_dereference(dev_maps->attr_map[tci]);
2702 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2703 		}
2704 	}
2705 
2706 	if (is_rxqs_map)
2707 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2708 	else
2709 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2710 
2711 	/* Cleanup old maps */
2712 	if (!dev_maps)
2713 		goto out_no_old_maps;
2714 
2715 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2716 	     j < nr_ids;) {
2717 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2718 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2719 			map = xmap_dereference(dev_maps->attr_map[tci]);
2720 			if (map && map != new_map)
2721 				kfree_rcu(map, rcu);
2722 		}
2723 	}
2724 
2725 	kfree_rcu(dev_maps, rcu);
2726 
2727 out_no_old_maps:
2728 	dev_maps = new_dev_maps;
2729 	active = true;
2730 
2731 out_no_new_maps:
2732 	if (!is_rxqs_map) {
2733 		/* update Tx queue numa node */
2734 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2735 					     (numa_node_id >= 0) ?
2736 					     numa_node_id : NUMA_NO_NODE);
2737 	}
2738 
2739 	if (!dev_maps)
2740 		goto out_no_maps;
2741 
2742 	/* removes tx-queue from unused CPUs/rx-queues */
2743 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2744 	     j < nr_ids;) {
2745 		for (i = tc, tci = j * num_tc; i--; tci++)
2746 			active |= remove_xps_queue(dev_maps, tci, index);
2747 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2748 		    !netif_attr_test_online(j, online_mask, nr_ids))
2749 			active |= remove_xps_queue(dev_maps, tci, index);
2750 		for (i = num_tc - tc, tci++; --i; tci++)
2751 			active |= remove_xps_queue(dev_maps, tci, index);
2752 	}
2753 
2754 	/* free map if not active */
2755 	if (!active)
2756 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2757 
2758 out_no_maps:
2759 	mutex_unlock(&xps_map_mutex);
2760 
2761 	return 0;
2762 error:
2763 	/* remove any maps that we added */
2764 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2765 	     j < nr_ids;) {
2766 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2767 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2768 			map = dev_maps ?
2769 			      xmap_dereference(dev_maps->attr_map[tci]) :
2770 			      NULL;
2771 			if (new_map && new_map != map)
2772 				kfree(new_map);
2773 		}
2774 	}
2775 
2776 	mutex_unlock(&xps_map_mutex);
2777 
2778 	kfree(new_dev_maps);
2779 	return -ENOMEM;
2780 }
2781 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2782 
2783 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2784 			u16 index)
2785 {
2786 	int ret;
2787 
2788 	cpus_read_lock();
2789 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2790 	cpus_read_unlock();
2791 
2792 	return ret;
2793 }
2794 EXPORT_SYMBOL(netif_set_xps_queue);
2795 
2796 #endif
2797 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2798 {
2799 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2800 
2801 	/* Unbind any subordinate channels */
2802 	while (txq-- != &dev->_tx[0]) {
2803 		if (txq->sb_dev)
2804 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2805 	}
2806 }
2807 
2808 void netdev_reset_tc(struct net_device *dev)
2809 {
2810 #ifdef CONFIG_XPS
2811 	netif_reset_xps_queues_gt(dev, 0);
2812 #endif
2813 	netdev_unbind_all_sb_channels(dev);
2814 
2815 	/* Reset TC configuration of device */
2816 	dev->num_tc = 0;
2817 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2818 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2819 }
2820 EXPORT_SYMBOL(netdev_reset_tc);
2821 
2822 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2823 {
2824 	if (tc >= dev->num_tc)
2825 		return -EINVAL;
2826 
2827 #ifdef CONFIG_XPS
2828 	netif_reset_xps_queues(dev, offset, count);
2829 #endif
2830 	dev->tc_to_txq[tc].count = count;
2831 	dev->tc_to_txq[tc].offset = offset;
2832 	return 0;
2833 }
2834 EXPORT_SYMBOL(netdev_set_tc_queue);
2835 
2836 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2837 {
2838 	if (num_tc > TC_MAX_QUEUE)
2839 		return -EINVAL;
2840 
2841 #ifdef CONFIG_XPS
2842 	netif_reset_xps_queues_gt(dev, 0);
2843 #endif
2844 	netdev_unbind_all_sb_channels(dev);
2845 
2846 	dev->num_tc = num_tc;
2847 	return 0;
2848 }
2849 EXPORT_SYMBOL(netdev_set_num_tc);
2850 
2851 void netdev_unbind_sb_channel(struct net_device *dev,
2852 			      struct net_device *sb_dev)
2853 {
2854 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2855 
2856 #ifdef CONFIG_XPS
2857 	netif_reset_xps_queues_gt(sb_dev, 0);
2858 #endif
2859 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2860 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2861 
2862 	while (txq-- != &dev->_tx[0]) {
2863 		if (txq->sb_dev == sb_dev)
2864 			txq->sb_dev = NULL;
2865 	}
2866 }
2867 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2868 
2869 int netdev_bind_sb_channel_queue(struct net_device *dev,
2870 				 struct net_device *sb_dev,
2871 				 u8 tc, u16 count, u16 offset)
2872 {
2873 	/* Make certain the sb_dev and dev are already configured */
2874 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2875 		return -EINVAL;
2876 
2877 	/* We cannot hand out queues we don't have */
2878 	if ((offset + count) > dev->real_num_tx_queues)
2879 		return -EINVAL;
2880 
2881 	/* Record the mapping */
2882 	sb_dev->tc_to_txq[tc].count = count;
2883 	sb_dev->tc_to_txq[tc].offset = offset;
2884 
2885 	/* Provide a way for Tx queue to find the tc_to_txq map or
2886 	 * XPS map for itself.
2887 	 */
2888 	while (count--)
2889 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2890 
2891 	return 0;
2892 }
2893 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2894 
2895 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2896 {
2897 	/* Do not use a multiqueue device to represent a subordinate channel */
2898 	if (netif_is_multiqueue(dev))
2899 		return -ENODEV;
2900 
2901 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2902 	 * Channel 0 is meant to be "native" mode and used only to represent
2903 	 * the main root device. We allow writing 0 to reset the device back
2904 	 * to normal mode after being used as a subordinate channel.
2905 	 */
2906 	if (channel > S16_MAX)
2907 		return -EINVAL;
2908 
2909 	dev->num_tc = -channel;
2910 
2911 	return 0;
2912 }
2913 EXPORT_SYMBOL(netdev_set_sb_channel);
2914 
2915 /*
2916  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2917  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2918  */
2919 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2920 {
2921 	bool disabling;
2922 	int rc;
2923 
2924 	disabling = txq < dev->real_num_tx_queues;
2925 
2926 	if (txq < 1 || txq > dev->num_tx_queues)
2927 		return -EINVAL;
2928 
2929 	if (dev->reg_state == NETREG_REGISTERED ||
2930 	    dev->reg_state == NETREG_UNREGISTERING) {
2931 		ASSERT_RTNL();
2932 
2933 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2934 						  txq);
2935 		if (rc)
2936 			return rc;
2937 
2938 		if (dev->num_tc)
2939 			netif_setup_tc(dev, txq);
2940 
2941 		dev->real_num_tx_queues = txq;
2942 
2943 		if (disabling) {
2944 			synchronize_net();
2945 			qdisc_reset_all_tx_gt(dev, txq);
2946 #ifdef CONFIG_XPS
2947 			netif_reset_xps_queues_gt(dev, txq);
2948 #endif
2949 		}
2950 	} else {
2951 		dev->real_num_tx_queues = txq;
2952 	}
2953 
2954 	return 0;
2955 }
2956 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2957 
2958 #ifdef CONFIG_SYSFS
2959 /**
2960  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2961  *	@dev: Network device
2962  *	@rxq: Actual number of RX queues
2963  *
2964  *	This must be called either with the rtnl_lock held or before
2965  *	registration of the net device.  Returns 0 on success, or a
2966  *	negative error code.  If called before registration, it always
2967  *	succeeds.
2968  */
2969 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2970 {
2971 	int rc;
2972 
2973 	if (rxq < 1 || rxq > dev->num_rx_queues)
2974 		return -EINVAL;
2975 
2976 	if (dev->reg_state == NETREG_REGISTERED) {
2977 		ASSERT_RTNL();
2978 
2979 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2980 						  rxq);
2981 		if (rc)
2982 			return rc;
2983 	}
2984 
2985 	dev->real_num_rx_queues = rxq;
2986 	return 0;
2987 }
2988 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2989 #endif
2990 
2991 /**
2992  * netif_get_num_default_rss_queues - default number of RSS queues
2993  *
2994  * This routine should set an upper limit on the number of RSS queues
2995  * used by default by multiqueue devices.
2996  */
2997 int netif_get_num_default_rss_queues(void)
2998 {
2999 	return is_kdump_kernel() ?
3000 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3001 }
3002 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3003 
3004 static void __netif_reschedule(struct Qdisc *q)
3005 {
3006 	struct softnet_data *sd;
3007 	unsigned long flags;
3008 
3009 	local_irq_save(flags);
3010 	sd = this_cpu_ptr(&softnet_data);
3011 	q->next_sched = NULL;
3012 	*sd->output_queue_tailp = q;
3013 	sd->output_queue_tailp = &q->next_sched;
3014 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3015 	local_irq_restore(flags);
3016 }
3017 
3018 void __netif_schedule(struct Qdisc *q)
3019 {
3020 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3021 		__netif_reschedule(q);
3022 }
3023 EXPORT_SYMBOL(__netif_schedule);
3024 
3025 struct dev_kfree_skb_cb {
3026 	enum skb_free_reason reason;
3027 };
3028 
3029 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3030 {
3031 	return (struct dev_kfree_skb_cb *)skb->cb;
3032 }
3033 
3034 void netif_schedule_queue(struct netdev_queue *txq)
3035 {
3036 	rcu_read_lock();
3037 	if (!netif_xmit_stopped(txq)) {
3038 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3039 
3040 		__netif_schedule(q);
3041 	}
3042 	rcu_read_unlock();
3043 }
3044 EXPORT_SYMBOL(netif_schedule_queue);
3045 
3046 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3047 {
3048 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3049 		struct Qdisc *q;
3050 
3051 		rcu_read_lock();
3052 		q = rcu_dereference(dev_queue->qdisc);
3053 		__netif_schedule(q);
3054 		rcu_read_unlock();
3055 	}
3056 }
3057 EXPORT_SYMBOL(netif_tx_wake_queue);
3058 
3059 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3060 {
3061 	unsigned long flags;
3062 
3063 	if (unlikely(!skb))
3064 		return;
3065 
3066 	if (likely(refcount_read(&skb->users) == 1)) {
3067 		smp_rmb();
3068 		refcount_set(&skb->users, 0);
3069 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3070 		return;
3071 	}
3072 	get_kfree_skb_cb(skb)->reason = reason;
3073 	local_irq_save(flags);
3074 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3075 	__this_cpu_write(softnet_data.completion_queue, skb);
3076 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3077 	local_irq_restore(flags);
3078 }
3079 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3080 
3081 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3082 {
3083 	if (in_irq() || irqs_disabled())
3084 		__dev_kfree_skb_irq(skb, reason);
3085 	else
3086 		dev_kfree_skb(skb);
3087 }
3088 EXPORT_SYMBOL(__dev_kfree_skb_any);
3089 
3090 
3091 /**
3092  * netif_device_detach - mark device as removed
3093  * @dev: network device
3094  *
3095  * Mark device as removed from system and therefore no longer available.
3096  */
3097 void netif_device_detach(struct net_device *dev)
3098 {
3099 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3100 	    netif_running(dev)) {
3101 		netif_tx_stop_all_queues(dev);
3102 	}
3103 }
3104 EXPORT_SYMBOL(netif_device_detach);
3105 
3106 /**
3107  * netif_device_attach - mark device as attached
3108  * @dev: network device
3109  *
3110  * Mark device as attached from system and restart if needed.
3111  */
3112 void netif_device_attach(struct net_device *dev)
3113 {
3114 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3115 	    netif_running(dev)) {
3116 		netif_tx_wake_all_queues(dev);
3117 		__netdev_watchdog_up(dev);
3118 	}
3119 }
3120 EXPORT_SYMBOL(netif_device_attach);
3121 
3122 /*
3123  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3124  * to be used as a distribution range.
3125  */
3126 static u16 skb_tx_hash(const struct net_device *dev,
3127 		       const struct net_device *sb_dev,
3128 		       struct sk_buff *skb)
3129 {
3130 	u32 hash;
3131 	u16 qoffset = 0;
3132 	u16 qcount = dev->real_num_tx_queues;
3133 
3134 	if (dev->num_tc) {
3135 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3136 
3137 		qoffset = sb_dev->tc_to_txq[tc].offset;
3138 		qcount = sb_dev->tc_to_txq[tc].count;
3139 	}
3140 
3141 	if (skb_rx_queue_recorded(skb)) {
3142 		hash = skb_get_rx_queue(skb);
3143 		if (hash >= qoffset)
3144 			hash -= qoffset;
3145 		while (unlikely(hash >= qcount))
3146 			hash -= qcount;
3147 		return hash + qoffset;
3148 	}
3149 
3150 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3151 }
3152 
3153 static void skb_warn_bad_offload(const struct sk_buff *skb)
3154 {
3155 	static const netdev_features_t null_features;
3156 	struct net_device *dev = skb->dev;
3157 	const char *name = "";
3158 
3159 	if (!net_ratelimit())
3160 		return;
3161 
3162 	if (dev) {
3163 		if (dev->dev.parent)
3164 			name = dev_driver_string(dev->dev.parent);
3165 		else
3166 			name = netdev_name(dev);
3167 	}
3168 	skb_dump(KERN_WARNING, skb, false);
3169 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3170 	     name, dev ? &dev->features : &null_features,
3171 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3172 }
3173 
3174 /*
3175  * Invalidate hardware checksum when packet is to be mangled, and
3176  * complete checksum manually on outgoing path.
3177  */
3178 int skb_checksum_help(struct sk_buff *skb)
3179 {
3180 	__wsum csum;
3181 	int ret = 0, offset;
3182 
3183 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3184 		goto out_set_summed;
3185 
3186 	if (unlikely(skb_shinfo(skb)->gso_size)) {
3187 		skb_warn_bad_offload(skb);
3188 		return -EINVAL;
3189 	}
3190 
3191 	/* Before computing a checksum, we should make sure no frag could
3192 	 * be modified by an external entity : checksum could be wrong.
3193 	 */
3194 	if (skb_has_shared_frag(skb)) {
3195 		ret = __skb_linearize(skb);
3196 		if (ret)
3197 			goto out;
3198 	}
3199 
3200 	offset = skb_checksum_start_offset(skb);
3201 	BUG_ON(offset >= skb_headlen(skb));
3202 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3203 
3204 	offset += skb->csum_offset;
3205 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3206 
3207 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3208 	if (ret)
3209 		goto out;
3210 
3211 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3212 out_set_summed:
3213 	skb->ip_summed = CHECKSUM_NONE;
3214 out:
3215 	return ret;
3216 }
3217 EXPORT_SYMBOL(skb_checksum_help);
3218 
3219 int skb_crc32c_csum_help(struct sk_buff *skb)
3220 {
3221 	__le32 crc32c_csum;
3222 	int ret = 0, offset, start;
3223 
3224 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3225 		goto out;
3226 
3227 	if (unlikely(skb_is_gso(skb)))
3228 		goto out;
3229 
3230 	/* Before computing a checksum, we should make sure no frag could
3231 	 * be modified by an external entity : checksum could be wrong.
3232 	 */
3233 	if (unlikely(skb_has_shared_frag(skb))) {
3234 		ret = __skb_linearize(skb);
3235 		if (ret)
3236 			goto out;
3237 	}
3238 	start = skb_checksum_start_offset(skb);
3239 	offset = start + offsetof(struct sctphdr, checksum);
3240 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3241 		ret = -EINVAL;
3242 		goto out;
3243 	}
3244 
3245 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3246 	if (ret)
3247 		goto out;
3248 
3249 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3250 						  skb->len - start, ~(__u32)0,
3251 						  crc32c_csum_stub));
3252 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3253 	skb->ip_summed = CHECKSUM_NONE;
3254 	skb->csum_not_inet = 0;
3255 out:
3256 	return ret;
3257 }
3258 
3259 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3260 {
3261 	__be16 type = skb->protocol;
3262 
3263 	/* Tunnel gso handlers can set protocol to ethernet. */
3264 	if (type == htons(ETH_P_TEB)) {
3265 		struct ethhdr *eth;
3266 
3267 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3268 			return 0;
3269 
3270 		eth = (struct ethhdr *)skb->data;
3271 		type = eth->h_proto;
3272 	}
3273 
3274 	return __vlan_get_protocol(skb, type, depth);
3275 }
3276 
3277 /**
3278  *	skb_mac_gso_segment - mac layer segmentation handler.
3279  *	@skb: buffer to segment
3280  *	@features: features for the output path (see dev->features)
3281  */
3282 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3283 				    netdev_features_t features)
3284 {
3285 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3286 	struct packet_offload *ptype;
3287 	int vlan_depth = skb->mac_len;
3288 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3289 
3290 	if (unlikely(!type))
3291 		return ERR_PTR(-EINVAL);
3292 
3293 	__skb_pull(skb, vlan_depth);
3294 
3295 	rcu_read_lock();
3296 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3297 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3298 			segs = ptype->callbacks.gso_segment(skb, features);
3299 			break;
3300 		}
3301 	}
3302 	rcu_read_unlock();
3303 
3304 	__skb_push(skb, skb->data - skb_mac_header(skb));
3305 
3306 	return segs;
3307 }
3308 EXPORT_SYMBOL(skb_mac_gso_segment);
3309 
3310 
3311 /* openvswitch calls this on rx path, so we need a different check.
3312  */
3313 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3314 {
3315 	if (tx_path)
3316 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3317 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3318 
3319 	return skb->ip_summed == CHECKSUM_NONE;
3320 }
3321 
3322 /**
3323  *	__skb_gso_segment - Perform segmentation on skb.
3324  *	@skb: buffer to segment
3325  *	@features: features for the output path (see dev->features)
3326  *	@tx_path: whether it is called in TX path
3327  *
3328  *	This function segments the given skb and returns a list of segments.
3329  *
3330  *	It may return NULL if the skb requires no segmentation.  This is
3331  *	only possible when GSO is used for verifying header integrity.
3332  *
3333  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3334  */
3335 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3336 				  netdev_features_t features, bool tx_path)
3337 {
3338 	struct sk_buff *segs;
3339 
3340 	if (unlikely(skb_needs_check(skb, tx_path))) {
3341 		int err;
3342 
3343 		/* We're going to init ->check field in TCP or UDP header */
3344 		err = skb_cow_head(skb, 0);
3345 		if (err < 0)
3346 			return ERR_PTR(err);
3347 	}
3348 
3349 	/* Only report GSO partial support if it will enable us to
3350 	 * support segmentation on this frame without needing additional
3351 	 * work.
3352 	 */
3353 	if (features & NETIF_F_GSO_PARTIAL) {
3354 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3355 		struct net_device *dev = skb->dev;
3356 
3357 		partial_features |= dev->features & dev->gso_partial_features;
3358 		if (!skb_gso_ok(skb, features | partial_features))
3359 			features &= ~NETIF_F_GSO_PARTIAL;
3360 	}
3361 
3362 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3363 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3364 
3365 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3366 	SKB_GSO_CB(skb)->encap_level = 0;
3367 
3368 	skb_reset_mac_header(skb);
3369 	skb_reset_mac_len(skb);
3370 
3371 	segs = skb_mac_gso_segment(skb, features);
3372 
3373 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3374 		skb_warn_bad_offload(skb);
3375 
3376 	return segs;
3377 }
3378 EXPORT_SYMBOL(__skb_gso_segment);
3379 
3380 /* Take action when hardware reception checksum errors are detected. */
3381 #ifdef CONFIG_BUG
3382 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3383 {
3384 	if (net_ratelimit()) {
3385 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3386 		skb_dump(KERN_ERR, skb, true);
3387 		dump_stack();
3388 	}
3389 }
3390 EXPORT_SYMBOL(netdev_rx_csum_fault);
3391 #endif
3392 
3393 /* XXX: check that highmem exists at all on the given machine. */
3394 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3395 {
3396 #ifdef CONFIG_HIGHMEM
3397 	int i;
3398 
3399 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3400 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3401 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3402 
3403 			if (PageHighMem(skb_frag_page(frag)))
3404 				return 1;
3405 		}
3406 	}
3407 #endif
3408 	return 0;
3409 }
3410 
3411 /* If MPLS offload request, verify we are testing hardware MPLS features
3412  * instead of standard features for the netdev.
3413  */
3414 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3415 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3416 					   netdev_features_t features,
3417 					   __be16 type)
3418 {
3419 	if (eth_p_mpls(type))
3420 		features &= skb->dev->mpls_features;
3421 
3422 	return features;
3423 }
3424 #else
3425 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3426 					   netdev_features_t features,
3427 					   __be16 type)
3428 {
3429 	return features;
3430 }
3431 #endif
3432 
3433 static netdev_features_t harmonize_features(struct sk_buff *skb,
3434 	netdev_features_t features)
3435 {
3436 	int tmp;
3437 	__be16 type;
3438 
3439 	type = skb_network_protocol(skb, &tmp);
3440 	features = net_mpls_features(skb, features, type);
3441 
3442 	if (skb->ip_summed != CHECKSUM_NONE &&
3443 	    !can_checksum_protocol(features, type)) {
3444 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3445 	}
3446 	if (illegal_highdma(skb->dev, skb))
3447 		features &= ~NETIF_F_SG;
3448 
3449 	return features;
3450 }
3451 
3452 netdev_features_t passthru_features_check(struct sk_buff *skb,
3453 					  struct net_device *dev,
3454 					  netdev_features_t features)
3455 {
3456 	return features;
3457 }
3458 EXPORT_SYMBOL(passthru_features_check);
3459 
3460 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3461 					     struct net_device *dev,
3462 					     netdev_features_t features)
3463 {
3464 	return vlan_features_check(skb, features);
3465 }
3466 
3467 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3468 					    struct net_device *dev,
3469 					    netdev_features_t features)
3470 {
3471 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3472 
3473 	if (gso_segs > dev->gso_max_segs)
3474 		return features & ~NETIF_F_GSO_MASK;
3475 
3476 	/* Support for GSO partial features requires software
3477 	 * intervention before we can actually process the packets
3478 	 * so we need to strip support for any partial features now
3479 	 * and we can pull them back in after we have partially
3480 	 * segmented the frame.
3481 	 */
3482 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3483 		features &= ~dev->gso_partial_features;
3484 
3485 	/* Make sure to clear the IPv4 ID mangling feature if the
3486 	 * IPv4 header has the potential to be fragmented.
3487 	 */
3488 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3489 		struct iphdr *iph = skb->encapsulation ?
3490 				    inner_ip_hdr(skb) : ip_hdr(skb);
3491 
3492 		if (!(iph->frag_off & htons(IP_DF)))
3493 			features &= ~NETIF_F_TSO_MANGLEID;
3494 	}
3495 
3496 	return features;
3497 }
3498 
3499 netdev_features_t netif_skb_features(struct sk_buff *skb)
3500 {
3501 	struct net_device *dev = skb->dev;
3502 	netdev_features_t features = dev->features;
3503 
3504 	if (skb_is_gso(skb))
3505 		features = gso_features_check(skb, dev, features);
3506 
3507 	/* If encapsulation offload request, verify we are testing
3508 	 * hardware encapsulation features instead of standard
3509 	 * features for the netdev
3510 	 */
3511 	if (skb->encapsulation)
3512 		features &= dev->hw_enc_features;
3513 
3514 	if (skb_vlan_tagged(skb))
3515 		features = netdev_intersect_features(features,
3516 						     dev->vlan_features |
3517 						     NETIF_F_HW_VLAN_CTAG_TX |
3518 						     NETIF_F_HW_VLAN_STAG_TX);
3519 
3520 	if (dev->netdev_ops->ndo_features_check)
3521 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3522 								features);
3523 	else
3524 		features &= dflt_features_check(skb, dev, features);
3525 
3526 	return harmonize_features(skb, features);
3527 }
3528 EXPORT_SYMBOL(netif_skb_features);
3529 
3530 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3531 		    struct netdev_queue *txq, bool more)
3532 {
3533 	unsigned int len;
3534 	int rc;
3535 
3536 	if (dev_nit_active(dev))
3537 		dev_queue_xmit_nit(skb, dev);
3538 
3539 	len = skb->len;
3540 	trace_net_dev_start_xmit(skb, dev);
3541 	rc = netdev_start_xmit(skb, dev, txq, more);
3542 	trace_net_dev_xmit(skb, rc, dev, len);
3543 
3544 	return rc;
3545 }
3546 
3547 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3548 				    struct netdev_queue *txq, int *ret)
3549 {
3550 	struct sk_buff *skb = first;
3551 	int rc = NETDEV_TX_OK;
3552 
3553 	while (skb) {
3554 		struct sk_buff *next = skb->next;
3555 
3556 		skb_mark_not_on_list(skb);
3557 		rc = xmit_one(skb, dev, txq, next != NULL);
3558 		if (unlikely(!dev_xmit_complete(rc))) {
3559 			skb->next = next;
3560 			goto out;
3561 		}
3562 
3563 		skb = next;
3564 		if (netif_tx_queue_stopped(txq) && skb) {
3565 			rc = NETDEV_TX_BUSY;
3566 			break;
3567 		}
3568 	}
3569 
3570 out:
3571 	*ret = rc;
3572 	return skb;
3573 }
3574 
3575 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3576 					  netdev_features_t features)
3577 {
3578 	if (skb_vlan_tag_present(skb) &&
3579 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3580 		skb = __vlan_hwaccel_push_inside(skb);
3581 	return skb;
3582 }
3583 
3584 int skb_csum_hwoffload_help(struct sk_buff *skb,
3585 			    const netdev_features_t features)
3586 {
3587 	if (unlikely(skb->csum_not_inet))
3588 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3589 			skb_crc32c_csum_help(skb);
3590 
3591 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3592 }
3593 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3594 
3595 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3596 {
3597 	netdev_features_t features;
3598 
3599 	features = netif_skb_features(skb);
3600 	skb = validate_xmit_vlan(skb, features);
3601 	if (unlikely(!skb))
3602 		goto out_null;
3603 
3604 	skb = sk_validate_xmit_skb(skb, dev);
3605 	if (unlikely(!skb))
3606 		goto out_null;
3607 
3608 	if (netif_needs_gso(skb, features)) {
3609 		struct sk_buff *segs;
3610 
3611 		segs = skb_gso_segment(skb, features);
3612 		if (IS_ERR(segs)) {
3613 			goto out_kfree_skb;
3614 		} else if (segs) {
3615 			consume_skb(skb);
3616 			skb = segs;
3617 		}
3618 	} else {
3619 		if (skb_needs_linearize(skb, features) &&
3620 		    __skb_linearize(skb))
3621 			goto out_kfree_skb;
3622 
3623 		/* If packet is not checksummed and device does not
3624 		 * support checksumming for this protocol, complete
3625 		 * checksumming here.
3626 		 */
3627 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3628 			if (skb->encapsulation)
3629 				skb_set_inner_transport_header(skb,
3630 							       skb_checksum_start_offset(skb));
3631 			else
3632 				skb_set_transport_header(skb,
3633 							 skb_checksum_start_offset(skb));
3634 			if (skb_csum_hwoffload_help(skb, features))
3635 				goto out_kfree_skb;
3636 		}
3637 	}
3638 
3639 	skb = validate_xmit_xfrm(skb, features, again);
3640 
3641 	return skb;
3642 
3643 out_kfree_skb:
3644 	kfree_skb(skb);
3645 out_null:
3646 	atomic_long_inc(&dev->tx_dropped);
3647 	return NULL;
3648 }
3649 
3650 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3651 {
3652 	struct sk_buff *next, *head = NULL, *tail;
3653 
3654 	for (; skb != NULL; skb = next) {
3655 		next = skb->next;
3656 		skb_mark_not_on_list(skb);
3657 
3658 		/* in case skb wont be segmented, point to itself */
3659 		skb->prev = skb;
3660 
3661 		skb = validate_xmit_skb(skb, dev, again);
3662 		if (!skb)
3663 			continue;
3664 
3665 		if (!head)
3666 			head = skb;
3667 		else
3668 			tail->next = skb;
3669 		/* If skb was segmented, skb->prev points to
3670 		 * the last segment. If not, it still contains skb.
3671 		 */
3672 		tail = skb->prev;
3673 	}
3674 	return head;
3675 }
3676 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3677 
3678 static void qdisc_pkt_len_init(struct sk_buff *skb)
3679 {
3680 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3681 
3682 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3683 
3684 	/* To get more precise estimation of bytes sent on wire,
3685 	 * we add to pkt_len the headers size of all segments
3686 	 */
3687 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3688 		unsigned int hdr_len;
3689 		u16 gso_segs = shinfo->gso_segs;
3690 
3691 		/* mac layer + network layer */
3692 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3693 
3694 		/* + transport layer */
3695 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3696 			const struct tcphdr *th;
3697 			struct tcphdr _tcphdr;
3698 
3699 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3700 						sizeof(_tcphdr), &_tcphdr);
3701 			if (likely(th))
3702 				hdr_len += __tcp_hdrlen(th);
3703 		} else {
3704 			struct udphdr _udphdr;
3705 
3706 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3707 					       sizeof(_udphdr), &_udphdr))
3708 				hdr_len += sizeof(struct udphdr);
3709 		}
3710 
3711 		if (shinfo->gso_type & SKB_GSO_DODGY)
3712 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3713 						shinfo->gso_size);
3714 
3715 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3716 	}
3717 }
3718 
3719 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3720 				 struct net_device *dev,
3721 				 struct netdev_queue *txq)
3722 {
3723 	spinlock_t *root_lock = qdisc_lock(q);
3724 	struct sk_buff *to_free = NULL;
3725 	bool contended;
3726 	int rc;
3727 
3728 	qdisc_calculate_pkt_len(skb, q);
3729 
3730 	if (q->flags & TCQ_F_NOLOCK) {
3731 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3732 		qdisc_run(q);
3733 
3734 		if (unlikely(to_free))
3735 			kfree_skb_list(to_free);
3736 		return rc;
3737 	}
3738 
3739 	/*
3740 	 * Heuristic to force contended enqueues to serialize on a
3741 	 * separate lock before trying to get qdisc main lock.
3742 	 * This permits qdisc->running owner to get the lock more
3743 	 * often and dequeue packets faster.
3744 	 */
3745 	contended = qdisc_is_running(q);
3746 	if (unlikely(contended))
3747 		spin_lock(&q->busylock);
3748 
3749 	spin_lock(root_lock);
3750 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3751 		__qdisc_drop(skb, &to_free);
3752 		rc = NET_XMIT_DROP;
3753 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3754 		   qdisc_run_begin(q)) {
3755 		/*
3756 		 * This is a work-conserving queue; there are no old skbs
3757 		 * waiting to be sent out; and the qdisc is not running -
3758 		 * xmit the skb directly.
3759 		 */
3760 
3761 		qdisc_bstats_update(q, skb);
3762 
3763 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3764 			if (unlikely(contended)) {
3765 				spin_unlock(&q->busylock);
3766 				contended = false;
3767 			}
3768 			__qdisc_run(q);
3769 		}
3770 
3771 		qdisc_run_end(q);
3772 		rc = NET_XMIT_SUCCESS;
3773 	} else {
3774 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3775 		if (qdisc_run_begin(q)) {
3776 			if (unlikely(contended)) {
3777 				spin_unlock(&q->busylock);
3778 				contended = false;
3779 			}
3780 			__qdisc_run(q);
3781 			qdisc_run_end(q);
3782 		}
3783 	}
3784 	spin_unlock(root_lock);
3785 	if (unlikely(to_free))
3786 		kfree_skb_list(to_free);
3787 	if (unlikely(contended))
3788 		spin_unlock(&q->busylock);
3789 	return rc;
3790 }
3791 
3792 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3793 static void skb_update_prio(struct sk_buff *skb)
3794 {
3795 	const struct netprio_map *map;
3796 	const struct sock *sk;
3797 	unsigned int prioidx;
3798 
3799 	if (skb->priority)
3800 		return;
3801 	map = rcu_dereference_bh(skb->dev->priomap);
3802 	if (!map)
3803 		return;
3804 	sk = skb_to_full_sk(skb);
3805 	if (!sk)
3806 		return;
3807 
3808 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3809 
3810 	if (prioidx < map->priomap_len)
3811 		skb->priority = map->priomap[prioidx];
3812 }
3813 #else
3814 #define skb_update_prio(skb)
3815 #endif
3816 
3817 /**
3818  *	dev_loopback_xmit - loop back @skb
3819  *	@net: network namespace this loopback is happening in
3820  *	@sk:  sk needed to be a netfilter okfn
3821  *	@skb: buffer to transmit
3822  */
3823 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3824 {
3825 	skb_reset_mac_header(skb);
3826 	__skb_pull(skb, skb_network_offset(skb));
3827 	skb->pkt_type = PACKET_LOOPBACK;
3828 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3829 	WARN_ON(!skb_dst(skb));
3830 	skb_dst_force(skb);
3831 	netif_rx_ni(skb);
3832 	return 0;
3833 }
3834 EXPORT_SYMBOL(dev_loopback_xmit);
3835 
3836 #ifdef CONFIG_NET_EGRESS
3837 static struct sk_buff *
3838 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3839 {
3840 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3841 	struct tcf_result cl_res;
3842 
3843 	if (!miniq)
3844 		return skb;
3845 
3846 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3847 	mini_qdisc_bstats_cpu_update(miniq, skb);
3848 
3849 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3850 	case TC_ACT_OK:
3851 	case TC_ACT_RECLASSIFY:
3852 		skb->tc_index = TC_H_MIN(cl_res.classid);
3853 		break;
3854 	case TC_ACT_SHOT:
3855 		mini_qdisc_qstats_cpu_drop(miniq);
3856 		*ret = NET_XMIT_DROP;
3857 		kfree_skb(skb);
3858 		return NULL;
3859 	case TC_ACT_STOLEN:
3860 	case TC_ACT_QUEUED:
3861 	case TC_ACT_TRAP:
3862 		*ret = NET_XMIT_SUCCESS;
3863 		consume_skb(skb);
3864 		return NULL;
3865 	case TC_ACT_REDIRECT:
3866 		/* No need to push/pop skb's mac_header here on egress! */
3867 		skb_do_redirect(skb);
3868 		*ret = NET_XMIT_SUCCESS;
3869 		return NULL;
3870 	default:
3871 		break;
3872 	}
3873 
3874 	return skb;
3875 }
3876 #endif /* CONFIG_NET_EGRESS */
3877 
3878 #ifdef CONFIG_XPS
3879 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3880 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3881 {
3882 	struct xps_map *map;
3883 	int queue_index = -1;
3884 
3885 	if (dev->num_tc) {
3886 		tci *= dev->num_tc;
3887 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3888 	}
3889 
3890 	map = rcu_dereference(dev_maps->attr_map[tci]);
3891 	if (map) {
3892 		if (map->len == 1)
3893 			queue_index = map->queues[0];
3894 		else
3895 			queue_index = map->queues[reciprocal_scale(
3896 						skb_get_hash(skb), map->len)];
3897 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3898 			queue_index = -1;
3899 	}
3900 	return queue_index;
3901 }
3902 #endif
3903 
3904 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3905 			 struct sk_buff *skb)
3906 {
3907 #ifdef CONFIG_XPS
3908 	struct xps_dev_maps *dev_maps;
3909 	struct sock *sk = skb->sk;
3910 	int queue_index = -1;
3911 
3912 	if (!static_key_false(&xps_needed))
3913 		return -1;
3914 
3915 	rcu_read_lock();
3916 	if (!static_key_false(&xps_rxqs_needed))
3917 		goto get_cpus_map;
3918 
3919 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3920 	if (dev_maps) {
3921 		int tci = sk_rx_queue_get(sk);
3922 
3923 		if (tci >= 0 && tci < dev->num_rx_queues)
3924 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3925 							  tci);
3926 	}
3927 
3928 get_cpus_map:
3929 	if (queue_index < 0) {
3930 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3931 		if (dev_maps) {
3932 			unsigned int tci = skb->sender_cpu - 1;
3933 
3934 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3935 							  tci);
3936 		}
3937 	}
3938 	rcu_read_unlock();
3939 
3940 	return queue_index;
3941 #else
3942 	return -1;
3943 #endif
3944 }
3945 
3946 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3947 		     struct net_device *sb_dev)
3948 {
3949 	return 0;
3950 }
3951 EXPORT_SYMBOL(dev_pick_tx_zero);
3952 
3953 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3954 		       struct net_device *sb_dev)
3955 {
3956 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3957 }
3958 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3959 
3960 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3961 		     struct net_device *sb_dev)
3962 {
3963 	struct sock *sk = skb->sk;
3964 	int queue_index = sk_tx_queue_get(sk);
3965 
3966 	sb_dev = sb_dev ? : dev;
3967 
3968 	if (queue_index < 0 || skb->ooo_okay ||
3969 	    queue_index >= dev->real_num_tx_queues) {
3970 		int new_index = get_xps_queue(dev, sb_dev, skb);
3971 
3972 		if (new_index < 0)
3973 			new_index = skb_tx_hash(dev, sb_dev, skb);
3974 
3975 		if (queue_index != new_index && sk &&
3976 		    sk_fullsock(sk) &&
3977 		    rcu_access_pointer(sk->sk_dst_cache))
3978 			sk_tx_queue_set(sk, new_index);
3979 
3980 		queue_index = new_index;
3981 	}
3982 
3983 	return queue_index;
3984 }
3985 EXPORT_SYMBOL(netdev_pick_tx);
3986 
3987 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3988 					 struct sk_buff *skb,
3989 					 struct net_device *sb_dev)
3990 {
3991 	int queue_index = 0;
3992 
3993 #ifdef CONFIG_XPS
3994 	u32 sender_cpu = skb->sender_cpu - 1;
3995 
3996 	if (sender_cpu >= (u32)NR_CPUS)
3997 		skb->sender_cpu = raw_smp_processor_id() + 1;
3998 #endif
3999 
4000 	if (dev->real_num_tx_queues != 1) {
4001 		const struct net_device_ops *ops = dev->netdev_ops;
4002 
4003 		if (ops->ndo_select_queue)
4004 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4005 		else
4006 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4007 
4008 		queue_index = netdev_cap_txqueue(dev, queue_index);
4009 	}
4010 
4011 	skb_set_queue_mapping(skb, queue_index);
4012 	return netdev_get_tx_queue(dev, queue_index);
4013 }
4014 
4015 /**
4016  *	__dev_queue_xmit - transmit a buffer
4017  *	@skb: buffer to transmit
4018  *	@sb_dev: suboordinate device used for L2 forwarding offload
4019  *
4020  *	Queue a buffer for transmission to a network device. The caller must
4021  *	have set the device and priority and built the buffer before calling
4022  *	this function. The function can be called from an interrupt.
4023  *
4024  *	A negative errno code is returned on a failure. A success does not
4025  *	guarantee the frame will be transmitted as it may be dropped due
4026  *	to congestion or traffic shaping.
4027  *
4028  * -----------------------------------------------------------------------------------
4029  *      I notice this method can also return errors from the queue disciplines,
4030  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4031  *      be positive.
4032  *
4033  *      Regardless of the return value, the skb is consumed, so it is currently
4034  *      difficult to retry a send to this method.  (You can bump the ref count
4035  *      before sending to hold a reference for retry if you are careful.)
4036  *
4037  *      When calling this method, interrupts MUST be enabled.  This is because
4038  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4039  *          --BLG
4040  */
4041 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4042 {
4043 	struct net_device *dev = skb->dev;
4044 	struct netdev_queue *txq;
4045 	struct Qdisc *q;
4046 	int rc = -ENOMEM;
4047 	bool again = false;
4048 
4049 	skb_reset_mac_header(skb);
4050 
4051 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4052 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4053 
4054 	/* Disable soft irqs for various locks below. Also
4055 	 * stops preemption for RCU.
4056 	 */
4057 	rcu_read_lock_bh();
4058 
4059 	skb_update_prio(skb);
4060 
4061 	qdisc_pkt_len_init(skb);
4062 #ifdef CONFIG_NET_CLS_ACT
4063 	skb->tc_at_ingress = 0;
4064 # ifdef CONFIG_NET_EGRESS
4065 	if (static_branch_unlikely(&egress_needed_key)) {
4066 		skb = sch_handle_egress(skb, &rc, dev);
4067 		if (!skb)
4068 			goto out;
4069 	}
4070 # endif
4071 #endif
4072 	/* If device/qdisc don't need skb->dst, release it right now while
4073 	 * its hot in this cpu cache.
4074 	 */
4075 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4076 		skb_dst_drop(skb);
4077 	else
4078 		skb_dst_force(skb);
4079 
4080 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4081 	q = rcu_dereference_bh(txq->qdisc);
4082 
4083 	trace_net_dev_queue(skb);
4084 	if (q->enqueue) {
4085 		rc = __dev_xmit_skb(skb, q, dev, txq);
4086 		goto out;
4087 	}
4088 
4089 	/* The device has no queue. Common case for software devices:
4090 	 * loopback, all the sorts of tunnels...
4091 
4092 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4093 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4094 	 * counters.)
4095 	 * However, it is possible, that they rely on protection
4096 	 * made by us here.
4097 
4098 	 * Check this and shot the lock. It is not prone from deadlocks.
4099 	 *Either shot noqueue qdisc, it is even simpler 8)
4100 	 */
4101 	if (dev->flags & IFF_UP) {
4102 		int cpu = smp_processor_id(); /* ok because BHs are off */
4103 
4104 		if (txq->xmit_lock_owner != cpu) {
4105 			if (dev_xmit_recursion())
4106 				goto recursion_alert;
4107 
4108 			skb = validate_xmit_skb(skb, dev, &again);
4109 			if (!skb)
4110 				goto out;
4111 
4112 			HARD_TX_LOCK(dev, txq, cpu);
4113 
4114 			if (!netif_xmit_stopped(txq)) {
4115 				dev_xmit_recursion_inc();
4116 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4117 				dev_xmit_recursion_dec();
4118 				if (dev_xmit_complete(rc)) {
4119 					HARD_TX_UNLOCK(dev, txq);
4120 					goto out;
4121 				}
4122 			}
4123 			HARD_TX_UNLOCK(dev, txq);
4124 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4125 					     dev->name);
4126 		} else {
4127 			/* Recursion is detected! It is possible,
4128 			 * unfortunately
4129 			 */
4130 recursion_alert:
4131 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4132 					     dev->name);
4133 		}
4134 	}
4135 
4136 	rc = -ENETDOWN;
4137 	rcu_read_unlock_bh();
4138 
4139 	atomic_long_inc(&dev->tx_dropped);
4140 	kfree_skb_list(skb);
4141 	return rc;
4142 out:
4143 	rcu_read_unlock_bh();
4144 	return rc;
4145 }
4146 
4147 int dev_queue_xmit(struct sk_buff *skb)
4148 {
4149 	return __dev_queue_xmit(skb, NULL);
4150 }
4151 EXPORT_SYMBOL(dev_queue_xmit);
4152 
4153 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4154 {
4155 	return __dev_queue_xmit(skb, sb_dev);
4156 }
4157 EXPORT_SYMBOL(dev_queue_xmit_accel);
4158 
4159 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4160 {
4161 	struct net_device *dev = skb->dev;
4162 	struct sk_buff *orig_skb = skb;
4163 	struct netdev_queue *txq;
4164 	int ret = NETDEV_TX_BUSY;
4165 	bool again = false;
4166 
4167 	if (unlikely(!netif_running(dev) ||
4168 		     !netif_carrier_ok(dev)))
4169 		goto drop;
4170 
4171 	skb = validate_xmit_skb_list(skb, dev, &again);
4172 	if (skb != orig_skb)
4173 		goto drop;
4174 
4175 	skb_set_queue_mapping(skb, queue_id);
4176 	txq = skb_get_tx_queue(dev, skb);
4177 
4178 	local_bh_disable();
4179 
4180 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4181 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4182 		ret = netdev_start_xmit(skb, dev, txq, false);
4183 	HARD_TX_UNLOCK(dev, txq);
4184 
4185 	local_bh_enable();
4186 
4187 	if (!dev_xmit_complete(ret))
4188 		kfree_skb(skb);
4189 
4190 	return ret;
4191 drop:
4192 	atomic_long_inc(&dev->tx_dropped);
4193 	kfree_skb_list(skb);
4194 	return NET_XMIT_DROP;
4195 }
4196 EXPORT_SYMBOL(dev_direct_xmit);
4197 
4198 /*************************************************************************
4199  *			Receiver routines
4200  *************************************************************************/
4201 
4202 int netdev_max_backlog __read_mostly = 1000;
4203 EXPORT_SYMBOL(netdev_max_backlog);
4204 
4205 int netdev_tstamp_prequeue __read_mostly = 1;
4206 int netdev_budget __read_mostly = 300;
4207 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4208 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4209 int weight_p __read_mostly = 64;           /* old backlog weight */
4210 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4211 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4212 int dev_rx_weight __read_mostly = 64;
4213 int dev_tx_weight __read_mostly = 64;
4214 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4215 int gro_normal_batch __read_mostly = 8;
4216 
4217 /* Called with irq disabled */
4218 static inline void ____napi_schedule(struct softnet_data *sd,
4219 				     struct napi_struct *napi)
4220 {
4221 	list_add_tail(&napi->poll_list, &sd->poll_list);
4222 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4223 }
4224 
4225 #ifdef CONFIG_RPS
4226 
4227 /* One global table that all flow-based protocols share. */
4228 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4229 EXPORT_SYMBOL(rps_sock_flow_table);
4230 u32 rps_cpu_mask __read_mostly;
4231 EXPORT_SYMBOL(rps_cpu_mask);
4232 
4233 struct static_key_false rps_needed __read_mostly;
4234 EXPORT_SYMBOL(rps_needed);
4235 struct static_key_false rfs_needed __read_mostly;
4236 EXPORT_SYMBOL(rfs_needed);
4237 
4238 static struct rps_dev_flow *
4239 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4240 	    struct rps_dev_flow *rflow, u16 next_cpu)
4241 {
4242 	if (next_cpu < nr_cpu_ids) {
4243 #ifdef CONFIG_RFS_ACCEL
4244 		struct netdev_rx_queue *rxqueue;
4245 		struct rps_dev_flow_table *flow_table;
4246 		struct rps_dev_flow *old_rflow;
4247 		u32 flow_id;
4248 		u16 rxq_index;
4249 		int rc;
4250 
4251 		/* Should we steer this flow to a different hardware queue? */
4252 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4253 		    !(dev->features & NETIF_F_NTUPLE))
4254 			goto out;
4255 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4256 		if (rxq_index == skb_get_rx_queue(skb))
4257 			goto out;
4258 
4259 		rxqueue = dev->_rx + rxq_index;
4260 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4261 		if (!flow_table)
4262 			goto out;
4263 		flow_id = skb_get_hash(skb) & flow_table->mask;
4264 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4265 							rxq_index, flow_id);
4266 		if (rc < 0)
4267 			goto out;
4268 		old_rflow = rflow;
4269 		rflow = &flow_table->flows[flow_id];
4270 		rflow->filter = rc;
4271 		if (old_rflow->filter == rflow->filter)
4272 			old_rflow->filter = RPS_NO_FILTER;
4273 	out:
4274 #endif
4275 		rflow->last_qtail =
4276 			per_cpu(softnet_data, next_cpu).input_queue_head;
4277 	}
4278 
4279 	rflow->cpu = next_cpu;
4280 	return rflow;
4281 }
4282 
4283 /*
4284  * get_rps_cpu is called from netif_receive_skb and returns the target
4285  * CPU from the RPS map of the receiving queue for a given skb.
4286  * rcu_read_lock must be held on entry.
4287  */
4288 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4289 		       struct rps_dev_flow **rflowp)
4290 {
4291 	const struct rps_sock_flow_table *sock_flow_table;
4292 	struct netdev_rx_queue *rxqueue = dev->_rx;
4293 	struct rps_dev_flow_table *flow_table;
4294 	struct rps_map *map;
4295 	int cpu = -1;
4296 	u32 tcpu;
4297 	u32 hash;
4298 
4299 	if (skb_rx_queue_recorded(skb)) {
4300 		u16 index = skb_get_rx_queue(skb);
4301 
4302 		if (unlikely(index >= dev->real_num_rx_queues)) {
4303 			WARN_ONCE(dev->real_num_rx_queues > 1,
4304 				  "%s received packet on queue %u, but number "
4305 				  "of RX queues is %u\n",
4306 				  dev->name, index, dev->real_num_rx_queues);
4307 			goto done;
4308 		}
4309 		rxqueue += index;
4310 	}
4311 
4312 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4313 
4314 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4315 	map = rcu_dereference(rxqueue->rps_map);
4316 	if (!flow_table && !map)
4317 		goto done;
4318 
4319 	skb_reset_network_header(skb);
4320 	hash = skb_get_hash(skb);
4321 	if (!hash)
4322 		goto done;
4323 
4324 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4325 	if (flow_table && sock_flow_table) {
4326 		struct rps_dev_flow *rflow;
4327 		u32 next_cpu;
4328 		u32 ident;
4329 
4330 		/* First check into global flow table if there is a match */
4331 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4332 		if ((ident ^ hash) & ~rps_cpu_mask)
4333 			goto try_rps;
4334 
4335 		next_cpu = ident & rps_cpu_mask;
4336 
4337 		/* OK, now we know there is a match,
4338 		 * we can look at the local (per receive queue) flow table
4339 		 */
4340 		rflow = &flow_table->flows[hash & flow_table->mask];
4341 		tcpu = rflow->cpu;
4342 
4343 		/*
4344 		 * If the desired CPU (where last recvmsg was done) is
4345 		 * different from current CPU (one in the rx-queue flow
4346 		 * table entry), switch if one of the following holds:
4347 		 *   - Current CPU is unset (>= nr_cpu_ids).
4348 		 *   - Current CPU is offline.
4349 		 *   - The current CPU's queue tail has advanced beyond the
4350 		 *     last packet that was enqueued using this table entry.
4351 		 *     This guarantees that all previous packets for the flow
4352 		 *     have been dequeued, thus preserving in order delivery.
4353 		 */
4354 		if (unlikely(tcpu != next_cpu) &&
4355 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4356 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4357 		      rflow->last_qtail)) >= 0)) {
4358 			tcpu = next_cpu;
4359 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4360 		}
4361 
4362 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4363 			*rflowp = rflow;
4364 			cpu = tcpu;
4365 			goto done;
4366 		}
4367 	}
4368 
4369 try_rps:
4370 
4371 	if (map) {
4372 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4373 		if (cpu_online(tcpu)) {
4374 			cpu = tcpu;
4375 			goto done;
4376 		}
4377 	}
4378 
4379 done:
4380 	return cpu;
4381 }
4382 
4383 #ifdef CONFIG_RFS_ACCEL
4384 
4385 /**
4386  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4387  * @dev: Device on which the filter was set
4388  * @rxq_index: RX queue index
4389  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4390  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4391  *
4392  * Drivers that implement ndo_rx_flow_steer() should periodically call
4393  * this function for each installed filter and remove the filters for
4394  * which it returns %true.
4395  */
4396 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4397 			 u32 flow_id, u16 filter_id)
4398 {
4399 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4400 	struct rps_dev_flow_table *flow_table;
4401 	struct rps_dev_flow *rflow;
4402 	bool expire = true;
4403 	unsigned int cpu;
4404 
4405 	rcu_read_lock();
4406 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4407 	if (flow_table && flow_id <= flow_table->mask) {
4408 		rflow = &flow_table->flows[flow_id];
4409 		cpu = READ_ONCE(rflow->cpu);
4410 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4411 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4412 			   rflow->last_qtail) <
4413 		     (int)(10 * flow_table->mask)))
4414 			expire = false;
4415 	}
4416 	rcu_read_unlock();
4417 	return expire;
4418 }
4419 EXPORT_SYMBOL(rps_may_expire_flow);
4420 
4421 #endif /* CONFIG_RFS_ACCEL */
4422 
4423 /* Called from hardirq (IPI) context */
4424 static void rps_trigger_softirq(void *data)
4425 {
4426 	struct softnet_data *sd = data;
4427 
4428 	____napi_schedule(sd, &sd->backlog);
4429 	sd->received_rps++;
4430 }
4431 
4432 #endif /* CONFIG_RPS */
4433 
4434 /*
4435  * Check if this softnet_data structure is another cpu one
4436  * If yes, queue it to our IPI list and return 1
4437  * If no, return 0
4438  */
4439 static int rps_ipi_queued(struct softnet_data *sd)
4440 {
4441 #ifdef CONFIG_RPS
4442 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4443 
4444 	if (sd != mysd) {
4445 		sd->rps_ipi_next = mysd->rps_ipi_list;
4446 		mysd->rps_ipi_list = sd;
4447 
4448 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4449 		return 1;
4450 	}
4451 #endif /* CONFIG_RPS */
4452 	return 0;
4453 }
4454 
4455 #ifdef CONFIG_NET_FLOW_LIMIT
4456 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4457 #endif
4458 
4459 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4460 {
4461 #ifdef CONFIG_NET_FLOW_LIMIT
4462 	struct sd_flow_limit *fl;
4463 	struct softnet_data *sd;
4464 	unsigned int old_flow, new_flow;
4465 
4466 	if (qlen < (netdev_max_backlog >> 1))
4467 		return false;
4468 
4469 	sd = this_cpu_ptr(&softnet_data);
4470 
4471 	rcu_read_lock();
4472 	fl = rcu_dereference(sd->flow_limit);
4473 	if (fl) {
4474 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4475 		old_flow = fl->history[fl->history_head];
4476 		fl->history[fl->history_head] = new_flow;
4477 
4478 		fl->history_head++;
4479 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4480 
4481 		if (likely(fl->buckets[old_flow]))
4482 			fl->buckets[old_flow]--;
4483 
4484 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4485 			fl->count++;
4486 			rcu_read_unlock();
4487 			return true;
4488 		}
4489 	}
4490 	rcu_read_unlock();
4491 #endif
4492 	return false;
4493 }
4494 
4495 /*
4496  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4497  * queue (may be a remote CPU queue).
4498  */
4499 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4500 			      unsigned int *qtail)
4501 {
4502 	struct softnet_data *sd;
4503 	unsigned long flags;
4504 	unsigned int qlen;
4505 
4506 	sd = &per_cpu(softnet_data, cpu);
4507 
4508 	local_irq_save(flags);
4509 
4510 	rps_lock(sd);
4511 	if (!netif_running(skb->dev))
4512 		goto drop;
4513 	qlen = skb_queue_len(&sd->input_pkt_queue);
4514 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4515 		if (qlen) {
4516 enqueue:
4517 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4518 			input_queue_tail_incr_save(sd, qtail);
4519 			rps_unlock(sd);
4520 			local_irq_restore(flags);
4521 			return NET_RX_SUCCESS;
4522 		}
4523 
4524 		/* Schedule NAPI for backlog device
4525 		 * We can use non atomic operation since we own the queue lock
4526 		 */
4527 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4528 			if (!rps_ipi_queued(sd))
4529 				____napi_schedule(sd, &sd->backlog);
4530 		}
4531 		goto enqueue;
4532 	}
4533 
4534 drop:
4535 	sd->dropped++;
4536 	rps_unlock(sd);
4537 
4538 	local_irq_restore(flags);
4539 
4540 	atomic_long_inc(&skb->dev->rx_dropped);
4541 	kfree_skb(skb);
4542 	return NET_RX_DROP;
4543 }
4544 
4545 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4546 {
4547 	struct net_device *dev = skb->dev;
4548 	struct netdev_rx_queue *rxqueue;
4549 
4550 	rxqueue = dev->_rx;
4551 
4552 	if (skb_rx_queue_recorded(skb)) {
4553 		u16 index = skb_get_rx_queue(skb);
4554 
4555 		if (unlikely(index >= dev->real_num_rx_queues)) {
4556 			WARN_ONCE(dev->real_num_rx_queues > 1,
4557 				  "%s received packet on queue %u, but number "
4558 				  "of RX queues is %u\n",
4559 				  dev->name, index, dev->real_num_rx_queues);
4560 
4561 			return rxqueue; /* Return first rxqueue */
4562 		}
4563 		rxqueue += index;
4564 	}
4565 	return rxqueue;
4566 }
4567 
4568 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4569 				     struct xdp_buff *xdp,
4570 				     struct bpf_prog *xdp_prog)
4571 {
4572 	struct netdev_rx_queue *rxqueue;
4573 	void *orig_data, *orig_data_end;
4574 	u32 metalen, act = XDP_DROP;
4575 	__be16 orig_eth_type;
4576 	struct ethhdr *eth;
4577 	bool orig_bcast;
4578 	int hlen, off;
4579 	u32 mac_len;
4580 
4581 	/* Reinjected packets coming from act_mirred or similar should
4582 	 * not get XDP generic processing.
4583 	 */
4584 	if (skb_is_redirected(skb))
4585 		return XDP_PASS;
4586 
4587 	/* XDP packets must be linear and must have sufficient headroom
4588 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4589 	 * native XDP provides, thus we need to do it here as well.
4590 	 */
4591 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4592 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4593 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4594 		int troom = skb->tail + skb->data_len - skb->end;
4595 
4596 		/* In case we have to go down the path and also linearize,
4597 		 * then lets do the pskb_expand_head() work just once here.
4598 		 */
4599 		if (pskb_expand_head(skb,
4600 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4601 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4602 			goto do_drop;
4603 		if (skb_linearize(skb))
4604 			goto do_drop;
4605 	}
4606 
4607 	/* The XDP program wants to see the packet starting at the MAC
4608 	 * header.
4609 	 */
4610 	mac_len = skb->data - skb_mac_header(skb);
4611 	hlen = skb_headlen(skb) + mac_len;
4612 	xdp->data = skb->data - mac_len;
4613 	xdp->data_meta = xdp->data;
4614 	xdp->data_end = xdp->data + hlen;
4615 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4616 
4617 	/* SKB "head" area always have tailroom for skb_shared_info */
4618 	xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4619 	xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4620 
4621 	orig_data_end = xdp->data_end;
4622 	orig_data = xdp->data;
4623 	eth = (struct ethhdr *)xdp->data;
4624 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4625 	orig_eth_type = eth->h_proto;
4626 
4627 	rxqueue = netif_get_rxqueue(skb);
4628 	xdp->rxq = &rxqueue->xdp_rxq;
4629 
4630 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4631 
4632 	/* check if bpf_xdp_adjust_head was used */
4633 	off = xdp->data - orig_data;
4634 	if (off) {
4635 		if (off > 0)
4636 			__skb_pull(skb, off);
4637 		else if (off < 0)
4638 			__skb_push(skb, -off);
4639 
4640 		skb->mac_header += off;
4641 		skb_reset_network_header(skb);
4642 	}
4643 
4644 	/* check if bpf_xdp_adjust_tail was used */
4645 	off = xdp->data_end - orig_data_end;
4646 	if (off != 0) {
4647 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4648 		skb->len += off; /* positive on grow, negative on shrink */
4649 	}
4650 
4651 	/* check if XDP changed eth hdr such SKB needs update */
4652 	eth = (struct ethhdr *)xdp->data;
4653 	if ((orig_eth_type != eth->h_proto) ||
4654 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4655 		__skb_push(skb, ETH_HLEN);
4656 		skb->protocol = eth_type_trans(skb, skb->dev);
4657 	}
4658 
4659 	switch (act) {
4660 	case XDP_REDIRECT:
4661 	case XDP_TX:
4662 		__skb_push(skb, mac_len);
4663 		break;
4664 	case XDP_PASS:
4665 		metalen = xdp->data - xdp->data_meta;
4666 		if (metalen)
4667 			skb_metadata_set(skb, metalen);
4668 		break;
4669 	default:
4670 		bpf_warn_invalid_xdp_action(act);
4671 		/* fall through */
4672 	case XDP_ABORTED:
4673 		trace_xdp_exception(skb->dev, xdp_prog, act);
4674 		/* fall through */
4675 	case XDP_DROP:
4676 	do_drop:
4677 		kfree_skb(skb);
4678 		break;
4679 	}
4680 
4681 	return act;
4682 }
4683 
4684 /* When doing generic XDP we have to bypass the qdisc layer and the
4685  * network taps in order to match in-driver-XDP behavior.
4686  */
4687 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4688 {
4689 	struct net_device *dev = skb->dev;
4690 	struct netdev_queue *txq;
4691 	bool free_skb = true;
4692 	int cpu, rc;
4693 
4694 	txq = netdev_core_pick_tx(dev, skb, NULL);
4695 	cpu = smp_processor_id();
4696 	HARD_TX_LOCK(dev, txq, cpu);
4697 	if (!netif_xmit_stopped(txq)) {
4698 		rc = netdev_start_xmit(skb, dev, txq, 0);
4699 		if (dev_xmit_complete(rc))
4700 			free_skb = false;
4701 	}
4702 	HARD_TX_UNLOCK(dev, txq);
4703 	if (free_skb) {
4704 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4705 		kfree_skb(skb);
4706 	}
4707 }
4708 
4709 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4710 
4711 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4712 {
4713 	if (xdp_prog) {
4714 		struct xdp_buff xdp;
4715 		u32 act;
4716 		int err;
4717 
4718 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4719 		if (act != XDP_PASS) {
4720 			switch (act) {
4721 			case XDP_REDIRECT:
4722 				err = xdp_do_generic_redirect(skb->dev, skb,
4723 							      &xdp, xdp_prog);
4724 				if (err)
4725 					goto out_redir;
4726 				break;
4727 			case XDP_TX:
4728 				generic_xdp_tx(skb, xdp_prog);
4729 				break;
4730 			}
4731 			return XDP_DROP;
4732 		}
4733 	}
4734 	return XDP_PASS;
4735 out_redir:
4736 	kfree_skb(skb);
4737 	return XDP_DROP;
4738 }
4739 EXPORT_SYMBOL_GPL(do_xdp_generic);
4740 
4741 static int netif_rx_internal(struct sk_buff *skb)
4742 {
4743 	int ret;
4744 
4745 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4746 
4747 	trace_netif_rx(skb);
4748 
4749 #ifdef CONFIG_RPS
4750 	if (static_branch_unlikely(&rps_needed)) {
4751 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4752 		int cpu;
4753 
4754 		preempt_disable();
4755 		rcu_read_lock();
4756 
4757 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4758 		if (cpu < 0)
4759 			cpu = smp_processor_id();
4760 
4761 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4762 
4763 		rcu_read_unlock();
4764 		preempt_enable();
4765 	} else
4766 #endif
4767 	{
4768 		unsigned int qtail;
4769 
4770 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4771 		put_cpu();
4772 	}
4773 	return ret;
4774 }
4775 
4776 /**
4777  *	netif_rx	-	post buffer to the network code
4778  *	@skb: buffer to post
4779  *
4780  *	This function receives a packet from a device driver and queues it for
4781  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4782  *	may be dropped during processing for congestion control or by the
4783  *	protocol layers.
4784  *
4785  *	return values:
4786  *	NET_RX_SUCCESS	(no congestion)
4787  *	NET_RX_DROP     (packet was dropped)
4788  *
4789  */
4790 
4791 int netif_rx(struct sk_buff *skb)
4792 {
4793 	int ret;
4794 
4795 	trace_netif_rx_entry(skb);
4796 
4797 	ret = netif_rx_internal(skb);
4798 	trace_netif_rx_exit(ret);
4799 
4800 	return ret;
4801 }
4802 EXPORT_SYMBOL(netif_rx);
4803 
4804 int netif_rx_ni(struct sk_buff *skb)
4805 {
4806 	int err;
4807 
4808 	trace_netif_rx_ni_entry(skb);
4809 
4810 	preempt_disable();
4811 	err = netif_rx_internal(skb);
4812 	if (local_softirq_pending())
4813 		do_softirq();
4814 	preempt_enable();
4815 	trace_netif_rx_ni_exit(err);
4816 
4817 	return err;
4818 }
4819 EXPORT_SYMBOL(netif_rx_ni);
4820 
4821 static __latent_entropy void net_tx_action(struct softirq_action *h)
4822 {
4823 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4824 
4825 	if (sd->completion_queue) {
4826 		struct sk_buff *clist;
4827 
4828 		local_irq_disable();
4829 		clist = sd->completion_queue;
4830 		sd->completion_queue = NULL;
4831 		local_irq_enable();
4832 
4833 		while (clist) {
4834 			struct sk_buff *skb = clist;
4835 
4836 			clist = clist->next;
4837 
4838 			WARN_ON(refcount_read(&skb->users));
4839 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4840 				trace_consume_skb(skb);
4841 			else
4842 				trace_kfree_skb(skb, net_tx_action);
4843 
4844 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4845 				__kfree_skb(skb);
4846 			else
4847 				__kfree_skb_defer(skb);
4848 		}
4849 
4850 		__kfree_skb_flush();
4851 	}
4852 
4853 	if (sd->output_queue) {
4854 		struct Qdisc *head;
4855 
4856 		local_irq_disable();
4857 		head = sd->output_queue;
4858 		sd->output_queue = NULL;
4859 		sd->output_queue_tailp = &sd->output_queue;
4860 		local_irq_enable();
4861 
4862 		while (head) {
4863 			struct Qdisc *q = head;
4864 			spinlock_t *root_lock = NULL;
4865 
4866 			head = head->next_sched;
4867 
4868 			if (!(q->flags & TCQ_F_NOLOCK)) {
4869 				root_lock = qdisc_lock(q);
4870 				spin_lock(root_lock);
4871 			}
4872 			/* We need to make sure head->next_sched is read
4873 			 * before clearing __QDISC_STATE_SCHED
4874 			 */
4875 			smp_mb__before_atomic();
4876 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4877 			qdisc_run(q);
4878 			if (root_lock)
4879 				spin_unlock(root_lock);
4880 		}
4881 	}
4882 
4883 	xfrm_dev_backlog(sd);
4884 }
4885 
4886 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4887 /* This hook is defined here for ATM LANE */
4888 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4889 			     unsigned char *addr) __read_mostly;
4890 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4891 #endif
4892 
4893 static inline struct sk_buff *
4894 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4895 		   struct net_device *orig_dev)
4896 {
4897 #ifdef CONFIG_NET_CLS_ACT
4898 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4899 	struct tcf_result cl_res;
4900 
4901 	/* If there's at least one ingress present somewhere (so
4902 	 * we get here via enabled static key), remaining devices
4903 	 * that are not configured with an ingress qdisc will bail
4904 	 * out here.
4905 	 */
4906 	if (!miniq)
4907 		return skb;
4908 
4909 	if (*pt_prev) {
4910 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4911 		*pt_prev = NULL;
4912 	}
4913 
4914 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4915 	skb->tc_at_ingress = 1;
4916 	mini_qdisc_bstats_cpu_update(miniq, skb);
4917 
4918 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4919 				     &cl_res, false)) {
4920 	case TC_ACT_OK:
4921 	case TC_ACT_RECLASSIFY:
4922 		skb->tc_index = TC_H_MIN(cl_res.classid);
4923 		break;
4924 	case TC_ACT_SHOT:
4925 		mini_qdisc_qstats_cpu_drop(miniq);
4926 		kfree_skb(skb);
4927 		return NULL;
4928 	case TC_ACT_STOLEN:
4929 	case TC_ACT_QUEUED:
4930 	case TC_ACT_TRAP:
4931 		consume_skb(skb);
4932 		return NULL;
4933 	case TC_ACT_REDIRECT:
4934 		/* skb_mac_header check was done by cls/act_bpf, so
4935 		 * we can safely push the L2 header back before
4936 		 * redirecting to another netdev
4937 		 */
4938 		__skb_push(skb, skb->mac_len);
4939 		skb_do_redirect(skb);
4940 		return NULL;
4941 	case TC_ACT_CONSUMED:
4942 		return NULL;
4943 	default:
4944 		break;
4945 	}
4946 #endif /* CONFIG_NET_CLS_ACT */
4947 	return skb;
4948 }
4949 
4950 /**
4951  *	netdev_is_rx_handler_busy - check if receive handler is registered
4952  *	@dev: device to check
4953  *
4954  *	Check if a receive handler is already registered for a given device.
4955  *	Return true if there one.
4956  *
4957  *	The caller must hold the rtnl_mutex.
4958  */
4959 bool netdev_is_rx_handler_busy(struct net_device *dev)
4960 {
4961 	ASSERT_RTNL();
4962 	return dev && rtnl_dereference(dev->rx_handler);
4963 }
4964 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4965 
4966 /**
4967  *	netdev_rx_handler_register - register receive handler
4968  *	@dev: device to register a handler for
4969  *	@rx_handler: receive handler to register
4970  *	@rx_handler_data: data pointer that is used by rx handler
4971  *
4972  *	Register a receive handler for a device. This handler will then be
4973  *	called from __netif_receive_skb. A negative errno code is returned
4974  *	on a failure.
4975  *
4976  *	The caller must hold the rtnl_mutex.
4977  *
4978  *	For a general description of rx_handler, see enum rx_handler_result.
4979  */
4980 int netdev_rx_handler_register(struct net_device *dev,
4981 			       rx_handler_func_t *rx_handler,
4982 			       void *rx_handler_data)
4983 {
4984 	if (netdev_is_rx_handler_busy(dev))
4985 		return -EBUSY;
4986 
4987 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4988 		return -EINVAL;
4989 
4990 	/* Note: rx_handler_data must be set before rx_handler */
4991 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4992 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4993 
4994 	return 0;
4995 }
4996 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4997 
4998 /**
4999  *	netdev_rx_handler_unregister - unregister receive handler
5000  *	@dev: device to unregister a handler from
5001  *
5002  *	Unregister a receive handler from a device.
5003  *
5004  *	The caller must hold the rtnl_mutex.
5005  */
5006 void netdev_rx_handler_unregister(struct net_device *dev)
5007 {
5008 
5009 	ASSERT_RTNL();
5010 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5011 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5012 	 * section has a guarantee to see a non NULL rx_handler_data
5013 	 * as well.
5014 	 */
5015 	synchronize_net();
5016 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5017 }
5018 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5019 
5020 /*
5021  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5022  * the special handling of PFMEMALLOC skbs.
5023  */
5024 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5025 {
5026 	switch (skb->protocol) {
5027 	case htons(ETH_P_ARP):
5028 	case htons(ETH_P_IP):
5029 	case htons(ETH_P_IPV6):
5030 	case htons(ETH_P_8021Q):
5031 	case htons(ETH_P_8021AD):
5032 		return true;
5033 	default:
5034 		return false;
5035 	}
5036 }
5037 
5038 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5039 			     int *ret, struct net_device *orig_dev)
5040 {
5041 	if (nf_hook_ingress_active(skb)) {
5042 		int ingress_retval;
5043 
5044 		if (*pt_prev) {
5045 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5046 			*pt_prev = NULL;
5047 		}
5048 
5049 		rcu_read_lock();
5050 		ingress_retval = nf_hook_ingress(skb);
5051 		rcu_read_unlock();
5052 		return ingress_retval;
5053 	}
5054 	return 0;
5055 }
5056 
5057 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5058 				    struct packet_type **ppt_prev)
5059 {
5060 	struct packet_type *ptype, *pt_prev;
5061 	rx_handler_func_t *rx_handler;
5062 	struct sk_buff *skb = *pskb;
5063 	struct net_device *orig_dev;
5064 	bool deliver_exact = false;
5065 	int ret = NET_RX_DROP;
5066 	__be16 type;
5067 
5068 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5069 
5070 	trace_netif_receive_skb(skb);
5071 
5072 	orig_dev = skb->dev;
5073 
5074 	skb_reset_network_header(skb);
5075 	if (!skb_transport_header_was_set(skb))
5076 		skb_reset_transport_header(skb);
5077 	skb_reset_mac_len(skb);
5078 
5079 	pt_prev = NULL;
5080 
5081 another_round:
5082 	skb->skb_iif = skb->dev->ifindex;
5083 
5084 	__this_cpu_inc(softnet_data.processed);
5085 
5086 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5087 		int ret2;
5088 
5089 		preempt_disable();
5090 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5091 		preempt_enable();
5092 
5093 		if (ret2 != XDP_PASS) {
5094 			ret = NET_RX_DROP;
5095 			goto out;
5096 		}
5097 		skb_reset_mac_len(skb);
5098 	}
5099 
5100 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5101 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5102 		skb = skb_vlan_untag(skb);
5103 		if (unlikely(!skb))
5104 			goto out;
5105 	}
5106 
5107 	if (skb_skip_tc_classify(skb))
5108 		goto skip_classify;
5109 
5110 	if (pfmemalloc)
5111 		goto skip_taps;
5112 
5113 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5114 		if (pt_prev)
5115 			ret = deliver_skb(skb, pt_prev, orig_dev);
5116 		pt_prev = ptype;
5117 	}
5118 
5119 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5120 		if (pt_prev)
5121 			ret = deliver_skb(skb, pt_prev, orig_dev);
5122 		pt_prev = ptype;
5123 	}
5124 
5125 skip_taps:
5126 #ifdef CONFIG_NET_INGRESS
5127 	if (static_branch_unlikely(&ingress_needed_key)) {
5128 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5129 		if (!skb)
5130 			goto out;
5131 
5132 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5133 			goto out;
5134 	}
5135 #endif
5136 	skb_reset_redirect(skb);
5137 skip_classify:
5138 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5139 		goto drop;
5140 
5141 	if (skb_vlan_tag_present(skb)) {
5142 		if (pt_prev) {
5143 			ret = deliver_skb(skb, pt_prev, orig_dev);
5144 			pt_prev = NULL;
5145 		}
5146 		if (vlan_do_receive(&skb))
5147 			goto another_round;
5148 		else if (unlikely(!skb))
5149 			goto out;
5150 	}
5151 
5152 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5153 	if (rx_handler) {
5154 		if (pt_prev) {
5155 			ret = deliver_skb(skb, pt_prev, orig_dev);
5156 			pt_prev = NULL;
5157 		}
5158 		switch (rx_handler(&skb)) {
5159 		case RX_HANDLER_CONSUMED:
5160 			ret = NET_RX_SUCCESS;
5161 			goto out;
5162 		case RX_HANDLER_ANOTHER:
5163 			goto another_round;
5164 		case RX_HANDLER_EXACT:
5165 			deliver_exact = true;
5166 		case RX_HANDLER_PASS:
5167 			break;
5168 		default:
5169 			BUG();
5170 		}
5171 	}
5172 
5173 	if (unlikely(skb_vlan_tag_present(skb))) {
5174 check_vlan_id:
5175 		if (skb_vlan_tag_get_id(skb)) {
5176 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5177 			 * find vlan device.
5178 			 */
5179 			skb->pkt_type = PACKET_OTHERHOST;
5180 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5181 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5182 			/* Outer header is 802.1P with vlan 0, inner header is
5183 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5184 			 * not find vlan dev for vlan id 0.
5185 			 */
5186 			__vlan_hwaccel_clear_tag(skb);
5187 			skb = skb_vlan_untag(skb);
5188 			if (unlikely(!skb))
5189 				goto out;
5190 			if (vlan_do_receive(&skb))
5191 				/* After stripping off 802.1P header with vlan 0
5192 				 * vlan dev is found for inner header.
5193 				 */
5194 				goto another_round;
5195 			else if (unlikely(!skb))
5196 				goto out;
5197 			else
5198 				/* We have stripped outer 802.1P vlan 0 header.
5199 				 * But could not find vlan dev.
5200 				 * check again for vlan id to set OTHERHOST.
5201 				 */
5202 				goto check_vlan_id;
5203 		}
5204 		/* Note: we might in the future use prio bits
5205 		 * and set skb->priority like in vlan_do_receive()
5206 		 * For the time being, just ignore Priority Code Point
5207 		 */
5208 		__vlan_hwaccel_clear_tag(skb);
5209 	}
5210 
5211 	type = skb->protocol;
5212 
5213 	/* deliver only exact match when indicated */
5214 	if (likely(!deliver_exact)) {
5215 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5216 				       &ptype_base[ntohs(type) &
5217 						   PTYPE_HASH_MASK]);
5218 	}
5219 
5220 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5221 			       &orig_dev->ptype_specific);
5222 
5223 	if (unlikely(skb->dev != orig_dev)) {
5224 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5225 				       &skb->dev->ptype_specific);
5226 	}
5227 
5228 	if (pt_prev) {
5229 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5230 			goto drop;
5231 		*ppt_prev = pt_prev;
5232 	} else {
5233 drop:
5234 		if (!deliver_exact)
5235 			atomic_long_inc(&skb->dev->rx_dropped);
5236 		else
5237 			atomic_long_inc(&skb->dev->rx_nohandler);
5238 		kfree_skb(skb);
5239 		/* Jamal, now you will not able to escape explaining
5240 		 * me how you were going to use this. :-)
5241 		 */
5242 		ret = NET_RX_DROP;
5243 	}
5244 
5245 out:
5246 	/* The invariant here is that if *ppt_prev is not NULL
5247 	 * then skb should also be non-NULL.
5248 	 *
5249 	 * Apparently *ppt_prev assignment above holds this invariant due to
5250 	 * skb dereferencing near it.
5251 	 */
5252 	*pskb = skb;
5253 	return ret;
5254 }
5255 
5256 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5257 {
5258 	struct net_device *orig_dev = skb->dev;
5259 	struct packet_type *pt_prev = NULL;
5260 	int ret;
5261 
5262 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5263 	if (pt_prev)
5264 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5265 					 skb->dev, pt_prev, orig_dev);
5266 	return ret;
5267 }
5268 
5269 /**
5270  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5271  *	@skb: buffer to process
5272  *
5273  *	More direct receive version of netif_receive_skb().  It should
5274  *	only be used by callers that have a need to skip RPS and Generic XDP.
5275  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5276  *
5277  *	This function may only be called from softirq context and interrupts
5278  *	should be enabled.
5279  *
5280  *	Return values (usually ignored):
5281  *	NET_RX_SUCCESS: no congestion
5282  *	NET_RX_DROP: packet was dropped
5283  */
5284 int netif_receive_skb_core(struct sk_buff *skb)
5285 {
5286 	int ret;
5287 
5288 	rcu_read_lock();
5289 	ret = __netif_receive_skb_one_core(skb, false);
5290 	rcu_read_unlock();
5291 
5292 	return ret;
5293 }
5294 EXPORT_SYMBOL(netif_receive_skb_core);
5295 
5296 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5297 						  struct packet_type *pt_prev,
5298 						  struct net_device *orig_dev)
5299 {
5300 	struct sk_buff *skb, *next;
5301 
5302 	if (!pt_prev)
5303 		return;
5304 	if (list_empty(head))
5305 		return;
5306 	if (pt_prev->list_func != NULL)
5307 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5308 				   ip_list_rcv, head, pt_prev, orig_dev);
5309 	else
5310 		list_for_each_entry_safe(skb, next, head, list) {
5311 			skb_list_del_init(skb);
5312 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5313 		}
5314 }
5315 
5316 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5317 {
5318 	/* Fast-path assumptions:
5319 	 * - There is no RX handler.
5320 	 * - Only one packet_type matches.
5321 	 * If either of these fails, we will end up doing some per-packet
5322 	 * processing in-line, then handling the 'last ptype' for the whole
5323 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5324 	 * because the 'last ptype' must be constant across the sublist, and all
5325 	 * other ptypes are handled per-packet.
5326 	 */
5327 	/* Current (common) ptype of sublist */
5328 	struct packet_type *pt_curr = NULL;
5329 	/* Current (common) orig_dev of sublist */
5330 	struct net_device *od_curr = NULL;
5331 	struct list_head sublist;
5332 	struct sk_buff *skb, *next;
5333 
5334 	INIT_LIST_HEAD(&sublist);
5335 	list_for_each_entry_safe(skb, next, head, list) {
5336 		struct net_device *orig_dev = skb->dev;
5337 		struct packet_type *pt_prev = NULL;
5338 
5339 		skb_list_del_init(skb);
5340 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5341 		if (!pt_prev)
5342 			continue;
5343 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5344 			/* dispatch old sublist */
5345 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5346 			/* start new sublist */
5347 			INIT_LIST_HEAD(&sublist);
5348 			pt_curr = pt_prev;
5349 			od_curr = orig_dev;
5350 		}
5351 		list_add_tail(&skb->list, &sublist);
5352 	}
5353 
5354 	/* dispatch final sublist */
5355 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5356 }
5357 
5358 static int __netif_receive_skb(struct sk_buff *skb)
5359 {
5360 	int ret;
5361 
5362 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5363 		unsigned int noreclaim_flag;
5364 
5365 		/*
5366 		 * PFMEMALLOC skbs are special, they should
5367 		 * - be delivered to SOCK_MEMALLOC sockets only
5368 		 * - stay away from userspace
5369 		 * - have bounded memory usage
5370 		 *
5371 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5372 		 * context down to all allocation sites.
5373 		 */
5374 		noreclaim_flag = memalloc_noreclaim_save();
5375 		ret = __netif_receive_skb_one_core(skb, true);
5376 		memalloc_noreclaim_restore(noreclaim_flag);
5377 	} else
5378 		ret = __netif_receive_skb_one_core(skb, false);
5379 
5380 	return ret;
5381 }
5382 
5383 static void __netif_receive_skb_list(struct list_head *head)
5384 {
5385 	unsigned long noreclaim_flag = 0;
5386 	struct sk_buff *skb, *next;
5387 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5388 
5389 	list_for_each_entry_safe(skb, next, head, list) {
5390 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5391 			struct list_head sublist;
5392 
5393 			/* Handle the previous sublist */
5394 			list_cut_before(&sublist, head, &skb->list);
5395 			if (!list_empty(&sublist))
5396 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5397 			pfmemalloc = !pfmemalloc;
5398 			/* See comments in __netif_receive_skb */
5399 			if (pfmemalloc)
5400 				noreclaim_flag = memalloc_noreclaim_save();
5401 			else
5402 				memalloc_noreclaim_restore(noreclaim_flag);
5403 		}
5404 	}
5405 	/* Handle the remaining sublist */
5406 	if (!list_empty(head))
5407 		__netif_receive_skb_list_core(head, pfmemalloc);
5408 	/* Restore pflags */
5409 	if (pfmemalloc)
5410 		memalloc_noreclaim_restore(noreclaim_flag);
5411 }
5412 
5413 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5414 {
5415 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5416 	struct bpf_prog *new = xdp->prog;
5417 	int ret = 0;
5418 
5419 	if (new) {
5420 		u32 i;
5421 
5422 		/* generic XDP does not work with DEVMAPs that can
5423 		 * have a bpf_prog installed on an entry
5424 		 */
5425 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5426 			if (dev_map_can_have_prog(new->aux->used_maps[i]))
5427 				return -EINVAL;
5428 		}
5429 	}
5430 
5431 	switch (xdp->command) {
5432 	case XDP_SETUP_PROG:
5433 		rcu_assign_pointer(dev->xdp_prog, new);
5434 		if (old)
5435 			bpf_prog_put(old);
5436 
5437 		if (old && !new) {
5438 			static_branch_dec(&generic_xdp_needed_key);
5439 		} else if (new && !old) {
5440 			static_branch_inc(&generic_xdp_needed_key);
5441 			dev_disable_lro(dev);
5442 			dev_disable_gro_hw(dev);
5443 		}
5444 		break;
5445 
5446 	case XDP_QUERY_PROG:
5447 		xdp->prog_id = old ? old->aux->id : 0;
5448 		break;
5449 
5450 	default:
5451 		ret = -EINVAL;
5452 		break;
5453 	}
5454 
5455 	return ret;
5456 }
5457 
5458 static int netif_receive_skb_internal(struct sk_buff *skb)
5459 {
5460 	int ret;
5461 
5462 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5463 
5464 	if (skb_defer_rx_timestamp(skb))
5465 		return NET_RX_SUCCESS;
5466 
5467 	rcu_read_lock();
5468 #ifdef CONFIG_RPS
5469 	if (static_branch_unlikely(&rps_needed)) {
5470 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5471 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5472 
5473 		if (cpu >= 0) {
5474 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5475 			rcu_read_unlock();
5476 			return ret;
5477 		}
5478 	}
5479 #endif
5480 	ret = __netif_receive_skb(skb);
5481 	rcu_read_unlock();
5482 	return ret;
5483 }
5484 
5485 static void netif_receive_skb_list_internal(struct list_head *head)
5486 {
5487 	struct sk_buff *skb, *next;
5488 	struct list_head sublist;
5489 
5490 	INIT_LIST_HEAD(&sublist);
5491 	list_for_each_entry_safe(skb, next, head, list) {
5492 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5493 		skb_list_del_init(skb);
5494 		if (!skb_defer_rx_timestamp(skb))
5495 			list_add_tail(&skb->list, &sublist);
5496 	}
5497 	list_splice_init(&sublist, head);
5498 
5499 	rcu_read_lock();
5500 #ifdef CONFIG_RPS
5501 	if (static_branch_unlikely(&rps_needed)) {
5502 		list_for_each_entry_safe(skb, next, head, list) {
5503 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5504 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5505 
5506 			if (cpu >= 0) {
5507 				/* Will be handled, remove from list */
5508 				skb_list_del_init(skb);
5509 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5510 			}
5511 		}
5512 	}
5513 #endif
5514 	__netif_receive_skb_list(head);
5515 	rcu_read_unlock();
5516 }
5517 
5518 /**
5519  *	netif_receive_skb - process receive buffer from network
5520  *	@skb: buffer to process
5521  *
5522  *	netif_receive_skb() is the main receive data processing function.
5523  *	It always succeeds. The buffer may be dropped during processing
5524  *	for congestion control or by the protocol layers.
5525  *
5526  *	This function may only be called from softirq context and interrupts
5527  *	should be enabled.
5528  *
5529  *	Return values (usually ignored):
5530  *	NET_RX_SUCCESS: no congestion
5531  *	NET_RX_DROP: packet was dropped
5532  */
5533 int netif_receive_skb(struct sk_buff *skb)
5534 {
5535 	int ret;
5536 
5537 	trace_netif_receive_skb_entry(skb);
5538 
5539 	ret = netif_receive_skb_internal(skb);
5540 	trace_netif_receive_skb_exit(ret);
5541 
5542 	return ret;
5543 }
5544 EXPORT_SYMBOL(netif_receive_skb);
5545 
5546 /**
5547  *	netif_receive_skb_list - process many receive buffers from network
5548  *	@head: list of skbs to process.
5549  *
5550  *	Since return value of netif_receive_skb() is normally ignored, and
5551  *	wouldn't be meaningful for a list, this function returns void.
5552  *
5553  *	This function may only be called from softirq context and interrupts
5554  *	should be enabled.
5555  */
5556 void netif_receive_skb_list(struct list_head *head)
5557 {
5558 	struct sk_buff *skb;
5559 
5560 	if (list_empty(head))
5561 		return;
5562 	if (trace_netif_receive_skb_list_entry_enabled()) {
5563 		list_for_each_entry(skb, head, list)
5564 			trace_netif_receive_skb_list_entry(skb);
5565 	}
5566 	netif_receive_skb_list_internal(head);
5567 	trace_netif_receive_skb_list_exit(0);
5568 }
5569 EXPORT_SYMBOL(netif_receive_skb_list);
5570 
5571 DEFINE_PER_CPU(struct work_struct, flush_works);
5572 
5573 /* Network device is going away, flush any packets still pending */
5574 static void flush_backlog(struct work_struct *work)
5575 {
5576 	struct sk_buff *skb, *tmp;
5577 	struct softnet_data *sd;
5578 
5579 	local_bh_disable();
5580 	sd = this_cpu_ptr(&softnet_data);
5581 
5582 	local_irq_disable();
5583 	rps_lock(sd);
5584 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5585 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5586 			__skb_unlink(skb, &sd->input_pkt_queue);
5587 			kfree_skb(skb);
5588 			input_queue_head_incr(sd);
5589 		}
5590 	}
5591 	rps_unlock(sd);
5592 	local_irq_enable();
5593 
5594 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5595 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5596 			__skb_unlink(skb, &sd->process_queue);
5597 			kfree_skb(skb);
5598 			input_queue_head_incr(sd);
5599 		}
5600 	}
5601 	local_bh_enable();
5602 }
5603 
5604 static void flush_all_backlogs(void)
5605 {
5606 	unsigned int cpu;
5607 
5608 	get_online_cpus();
5609 
5610 	for_each_online_cpu(cpu)
5611 		queue_work_on(cpu, system_highpri_wq,
5612 			      per_cpu_ptr(&flush_works, cpu));
5613 
5614 	for_each_online_cpu(cpu)
5615 		flush_work(per_cpu_ptr(&flush_works, cpu));
5616 
5617 	put_online_cpus();
5618 }
5619 
5620 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5621 static void gro_normal_list(struct napi_struct *napi)
5622 {
5623 	if (!napi->rx_count)
5624 		return;
5625 	netif_receive_skb_list_internal(&napi->rx_list);
5626 	INIT_LIST_HEAD(&napi->rx_list);
5627 	napi->rx_count = 0;
5628 }
5629 
5630 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5631  * pass the whole batch up to the stack.
5632  */
5633 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5634 {
5635 	list_add_tail(&skb->list, &napi->rx_list);
5636 	if (++napi->rx_count >= gro_normal_batch)
5637 		gro_normal_list(napi);
5638 }
5639 
5640 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5641 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5642 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5643 {
5644 	struct packet_offload *ptype;
5645 	__be16 type = skb->protocol;
5646 	struct list_head *head = &offload_base;
5647 	int err = -ENOENT;
5648 
5649 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5650 
5651 	if (NAPI_GRO_CB(skb)->count == 1) {
5652 		skb_shinfo(skb)->gso_size = 0;
5653 		goto out;
5654 	}
5655 
5656 	rcu_read_lock();
5657 	list_for_each_entry_rcu(ptype, head, list) {
5658 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5659 			continue;
5660 
5661 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5662 					 ipv6_gro_complete, inet_gro_complete,
5663 					 skb, 0);
5664 		break;
5665 	}
5666 	rcu_read_unlock();
5667 
5668 	if (err) {
5669 		WARN_ON(&ptype->list == head);
5670 		kfree_skb(skb);
5671 		return NET_RX_SUCCESS;
5672 	}
5673 
5674 out:
5675 	gro_normal_one(napi, skb);
5676 	return NET_RX_SUCCESS;
5677 }
5678 
5679 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5680 				   bool flush_old)
5681 {
5682 	struct list_head *head = &napi->gro_hash[index].list;
5683 	struct sk_buff *skb, *p;
5684 
5685 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5686 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5687 			return;
5688 		skb_list_del_init(skb);
5689 		napi_gro_complete(napi, skb);
5690 		napi->gro_hash[index].count--;
5691 	}
5692 
5693 	if (!napi->gro_hash[index].count)
5694 		__clear_bit(index, &napi->gro_bitmask);
5695 }
5696 
5697 /* napi->gro_hash[].list contains packets ordered by age.
5698  * youngest packets at the head of it.
5699  * Complete skbs in reverse order to reduce latencies.
5700  */
5701 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5702 {
5703 	unsigned long bitmask = napi->gro_bitmask;
5704 	unsigned int i, base = ~0U;
5705 
5706 	while ((i = ffs(bitmask)) != 0) {
5707 		bitmask >>= i;
5708 		base += i;
5709 		__napi_gro_flush_chain(napi, base, flush_old);
5710 	}
5711 }
5712 EXPORT_SYMBOL(napi_gro_flush);
5713 
5714 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5715 					  struct sk_buff *skb)
5716 {
5717 	unsigned int maclen = skb->dev->hard_header_len;
5718 	u32 hash = skb_get_hash_raw(skb);
5719 	struct list_head *head;
5720 	struct sk_buff *p;
5721 
5722 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5723 	list_for_each_entry(p, head, list) {
5724 		unsigned long diffs;
5725 
5726 		NAPI_GRO_CB(p)->flush = 0;
5727 
5728 		if (hash != skb_get_hash_raw(p)) {
5729 			NAPI_GRO_CB(p)->same_flow = 0;
5730 			continue;
5731 		}
5732 
5733 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5734 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5735 		if (skb_vlan_tag_present(p))
5736 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5737 		diffs |= skb_metadata_dst_cmp(p, skb);
5738 		diffs |= skb_metadata_differs(p, skb);
5739 		if (maclen == ETH_HLEN)
5740 			diffs |= compare_ether_header(skb_mac_header(p),
5741 						      skb_mac_header(skb));
5742 		else if (!diffs)
5743 			diffs = memcmp(skb_mac_header(p),
5744 				       skb_mac_header(skb),
5745 				       maclen);
5746 		NAPI_GRO_CB(p)->same_flow = !diffs;
5747 	}
5748 
5749 	return head;
5750 }
5751 
5752 static void skb_gro_reset_offset(struct sk_buff *skb)
5753 {
5754 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5755 	const skb_frag_t *frag0 = &pinfo->frags[0];
5756 
5757 	NAPI_GRO_CB(skb)->data_offset = 0;
5758 	NAPI_GRO_CB(skb)->frag0 = NULL;
5759 	NAPI_GRO_CB(skb)->frag0_len = 0;
5760 
5761 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5762 	    !PageHighMem(skb_frag_page(frag0))) {
5763 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5764 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5765 						    skb_frag_size(frag0),
5766 						    skb->end - skb->tail);
5767 	}
5768 }
5769 
5770 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5771 {
5772 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5773 
5774 	BUG_ON(skb->end - skb->tail < grow);
5775 
5776 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5777 
5778 	skb->data_len -= grow;
5779 	skb->tail += grow;
5780 
5781 	skb_frag_off_add(&pinfo->frags[0], grow);
5782 	skb_frag_size_sub(&pinfo->frags[0], grow);
5783 
5784 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5785 		skb_frag_unref(skb, 0);
5786 		memmove(pinfo->frags, pinfo->frags + 1,
5787 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5788 	}
5789 }
5790 
5791 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5792 {
5793 	struct sk_buff *oldest;
5794 
5795 	oldest = list_last_entry(head, struct sk_buff, list);
5796 
5797 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5798 	 * impossible.
5799 	 */
5800 	if (WARN_ON_ONCE(!oldest))
5801 		return;
5802 
5803 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5804 	 * SKB to the chain.
5805 	 */
5806 	skb_list_del_init(oldest);
5807 	napi_gro_complete(napi, oldest);
5808 }
5809 
5810 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5811 							   struct sk_buff *));
5812 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5813 							   struct sk_buff *));
5814 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5815 {
5816 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5817 	struct list_head *head = &offload_base;
5818 	struct packet_offload *ptype;
5819 	__be16 type = skb->protocol;
5820 	struct list_head *gro_head;
5821 	struct sk_buff *pp = NULL;
5822 	enum gro_result ret;
5823 	int same_flow;
5824 	int grow;
5825 
5826 	if (netif_elide_gro(skb->dev))
5827 		goto normal;
5828 
5829 	gro_head = gro_list_prepare(napi, skb);
5830 
5831 	rcu_read_lock();
5832 	list_for_each_entry_rcu(ptype, head, list) {
5833 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5834 			continue;
5835 
5836 		skb_set_network_header(skb, skb_gro_offset(skb));
5837 		skb_reset_mac_len(skb);
5838 		NAPI_GRO_CB(skb)->same_flow = 0;
5839 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5840 		NAPI_GRO_CB(skb)->free = 0;
5841 		NAPI_GRO_CB(skb)->encap_mark = 0;
5842 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5843 		NAPI_GRO_CB(skb)->is_fou = 0;
5844 		NAPI_GRO_CB(skb)->is_atomic = 1;
5845 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5846 
5847 		/* Setup for GRO checksum validation */
5848 		switch (skb->ip_summed) {
5849 		case CHECKSUM_COMPLETE:
5850 			NAPI_GRO_CB(skb)->csum = skb->csum;
5851 			NAPI_GRO_CB(skb)->csum_valid = 1;
5852 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5853 			break;
5854 		case CHECKSUM_UNNECESSARY:
5855 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5856 			NAPI_GRO_CB(skb)->csum_valid = 0;
5857 			break;
5858 		default:
5859 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5860 			NAPI_GRO_CB(skb)->csum_valid = 0;
5861 		}
5862 
5863 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5864 					ipv6_gro_receive, inet_gro_receive,
5865 					gro_head, skb);
5866 		break;
5867 	}
5868 	rcu_read_unlock();
5869 
5870 	if (&ptype->list == head)
5871 		goto normal;
5872 
5873 	if (PTR_ERR(pp) == -EINPROGRESS) {
5874 		ret = GRO_CONSUMED;
5875 		goto ok;
5876 	}
5877 
5878 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5879 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5880 
5881 	if (pp) {
5882 		skb_list_del_init(pp);
5883 		napi_gro_complete(napi, pp);
5884 		napi->gro_hash[hash].count--;
5885 	}
5886 
5887 	if (same_flow)
5888 		goto ok;
5889 
5890 	if (NAPI_GRO_CB(skb)->flush)
5891 		goto normal;
5892 
5893 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5894 		gro_flush_oldest(napi, gro_head);
5895 	} else {
5896 		napi->gro_hash[hash].count++;
5897 	}
5898 	NAPI_GRO_CB(skb)->count = 1;
5899 	NAPI_GRO_CB(skb)->age = jiffies;
5900 	NAPI_GRO_CB(skb)->last = skb;
5901 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5902 	list_add(&skb->list, gro_head);
5903 	ret = GRO_HELD;
5904 
5905 pull:
5906 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5907 	if (grow > 0)
5908 		gro_pull_from_frag0(skb, grow);
5909 ok:
5910 	if (napi->gro_hash[hash].count) {
5911 		if (!test_bit(hash, &napi->gro_bitmask))
5912 			__set_bit(hash, &napi->gro_bitmask);
5913 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5914 		__clear_bit(hash, &napi->gro_bitmask);
5915 	}
5916 
5917 	return ret;
5918 
5919 normal:
5920 	ret = GRO_NORMAL;
5921 	goto pull;
5922 }
5923 
5924 struct packet_offload *gro_find_receive_by_type(__be16 type)
5925 {
5926 	struct list_head *offload_head = &offload_base;
5927 	struct packet_offload *ptype;
5928 
5929 	list_for_each_entry_rcu(ptype, offload_head, list) {
5930 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5931 			continue;
5932 		return ptype;
5933 	}
5934 	return NULL;
5935 }
5936 EXPORT_SYMBOL(gro_find_receive_by_type);
5937 
5938 struct packet_offload *gro_find_complete_by_type(__be16 type)
5939 {
5940 	struct list_head *offload_head = &offload_base;
5941 	struct packet_offload *ptype;
5942 
5943 	list_for_each_entry_rcu(ptype, offload_head, list) {
5944 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5945 			continue;
5946 		return ptype;
5947 	}
5948 	return NULL;
5949 }
5950 EXPORT_SYMBOL(gro_find_complete_by_type);
5951 
5952 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5953 {
5954 	skb_dst_drop(skb);
5955 	skb_ext_put(skb);
5956 	kmem_cache_free(skbuff_head_cache, skb);
5957 }
5958 
5959 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5960 				    struct sk_buff *skb,
5961 				    gro_result_t ret)
5962 {
5963 	switch (ret) {
5964 	case GRO_NORMAL:
5965 		gro_normal_one(napi, skb);
5966 		break;
5967 
5968 	case GRO_DROP:
5969 		kfree_skb(skb);
5970 		break;
5971 
5972 	case GRO_MERGED_FREE:
5973 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5974 			napi_skb_free_stolen_head(skb);
5975 		else
5976 			__kfree_skb(skb);
5977 		break;
5978 
5979 	case GRO_HELD:
5980 	case GRO_MERGED:
5981 	case GRO_CONSUMED:
5982 		break;
5983 	}
5984 
5985 	return ret;
5986 }
5987 
5988 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5989 {
5990 	gro_result_t ret;
5991 
5992 	skb_mark_napi_id(skb, napi);
5993 	trace_napi_gro_receive_entry(skb);
5994 
5995 	skb_gro_reset_offset(skb);
5996 
5997 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5998 	trace_napi_gro_receive_exit(ret);
5999 
6000 	return ret;
6001 }
6002 EXPORT_SYMBOL(napi_gro_receive);
6003 
6004 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6005 {
6006 	if (unlikely(skb->pfmemalloc)) {
6007 		consume_skb(skb);
6008 		return;
6009 	}
6010 	__skb_pull(skb, skb_headlen(skb));
6011 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6012 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6013 	__vlan_hwaccel_clear_tag(skb);
6014 	skb->dev = napi->dev;
6015 	skb->skb_iif = 0;
6016 
6017 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6018 	skb->pkt_type = PACKET_HOST;
6019 
6020 	skb->encapsulation = 0;
6021 	skb_shinfo(skb)->gso_type = 0;
6022 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6023 	skb_ext_reset(skb);
6024 
6025 	napi->skb = skb;
6026 }
6027 
6028 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6029 {
6030 	struct sk_buff *skb = napi->skb;
6031 
6032 	if (!skb) {
6033 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6034 		if (skb) {
6035 			napi->skb = skb;
6036 			skb_mark_napi_id(skb, napi);
6037 		}
6038 	}
6039 	return skb;
6040 }
6041 EXPORT_SYMBOL(napi_get_frags);
6042 
6043 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6044 				      struct sk_buff *skb,
6045 				      gro_result_t ret)
6046 {
6047 	switch (ret) {
6048 	case GRO_NORMAL:
6049 	case GRO_HELD:
6050 		__skb_push(skb, ETH_HLEN);
6051 		skb->protocol = eth_type_trans(skb, skb->dev);
6052 		if (ret == GRO_NORMAL)
6053 			gro_normal_one(napi, skb);
6054 		break;
6055 
6056 	case GRO_DROP:
6057 		napi_reuse_skb(napi, skb);
6058 		break;
6059 
6060 	case GRO_MERGED_FREE:
6061 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6062 			napi_skb_free_stolen_head(skb);
6063 		else
6064 			napi_reuse_skb(napi, skb);
6065 		break;
6066 
6067 	case GRO_MERGED:
6068 	case GRO_CONSUMED:
6069 		break;
6070 	}
6071 
6072 	return ret;
6073 }
6074 
6075 /* Upper GRO stack assumes network header starts at gro_offset=0
6076  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6077  * We copy ethernet header into skb->data to have a common layout.
6078  */
6079 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6080 {
6081 	struct sk_buff *skb = napi->skb;
6082 	const struct ethhdr *eth;
6083 	unsigned int hlen = sizeof(*eth);
6084 
6085 	napi->skb = NULL;
6086 
6087 	skb_reset_mac_header(skb);
6088 	skb_gro_reset_offset(skb);
6089 
6090 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6091 		eth = skb_gro_header_slow(skb, hlen, 0);
6092 		if (unlikely(!eth)) {
6093 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6094 					     __func__, napi->dev->name);
6095 			napi_reuse_skb(napi, skb);
6096 			return NULL;
6097 		}
6098 	} else {
6099 		eth = (const struct ethhdr *)skb->data;
6100 		gro_pull_from_frag0(skb, hlen);
6101 		NAPI_GRO_CB(skb)->frag0 += hlen;
6102 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6103 	}
6104 	__skb_pull(skb, hlen);
6105 
6106 	/*
6107 	 * This works because the only protocols we care about don't require
6108 	 * special handling.
6109 	 * We'll fix it up properly in napi_frags_finish()
6110 	 */
6111 	skb->protocol = eth->h_proto;
6112 
6113 	return skb;
6114 }
6115 
6116 gro_result_t napi_gro_frags(struct napi_struct *napi)
6117 {
6118 	gro_result_t ret;
6119 	struct sk_buff *skb = napi_frags_skb(napi);
6120 
6121 	if (!skb)
6122 		return GRO_DROP;
6123 
6124 	trace_napi_gro_frags_entry(skb);
6125 
6126 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6127 	trace_napi_gro_frags_exit(ret);
6128 
6129 	return ret;
6130 }
6131 EXPORT_SYMBOL(napi_gro_frags);
6132 
6133 /* Compute the checksum from gro_offset and return the folded value
6134  * after adding in any pseudo checksum.
6135  */
6136 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6137 {
6138 	__wsum wsum;
6139 	__sum16 sum;
6140 
6141 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6142 
6143 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6144 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6145 	/* See comments in __skb_checksum_complete(). */
6146 	if (likely(!sum)) {
6147 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6148 		    !skb->csum_complete_sw)
6149 			netdev_rx_csum_fault(skb->dev, skb);
6150 	}
6151 
6152 	NAPI_GRO_CB(skb)->csum = wsum;
6153 	NAPI_GRO_CB(skb)->csum_valid = 1;
6154 
6155 	return sum;
6156 }
6157 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6158 
6159 static void net_rps_send_ipi(struct softnet_data *remsd)
6160 {
6161 #ifdef CONFIG_RPS
6162 	while (remsd) {
6163 		struct softnet_data *next = remsd->rps_ipi_next;
6164 
6165 		if (cpu_online(remsd->cpu))
6166 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6167 		remsd = next;
6168 	}
6169 #endif
6170 }
6171 
6172 /*
6173  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6174  * Note: called with local irq disabled, but exits with local irq enabled.
6175  */
6176 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6177 {
6178 #ifdef CONFIG_RPS
6179 	struct softnet_data *remsd = sd->rps_ipi_list;
6180 
6181 	if (remsd) {
6182 		sd->rps_ipi_list = NULL;
6183 
6184 		local_irq_enable();
6185 
6186 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6187 		net_rps_send_ipi(remsd);
6188 	} else
6189 #endif
6190 		local_irq_enable();
6191 }
6192 
6193 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6194 {
6195 #ifdef CONFIG_RPS
6196 	return sd->rps_ipi_list != NULL;
6197 #else
6198 	return false;
6199 #endif
6200 }
6201 
6202 static int process_backlog(struct napi_struct *napi, int quota)
6203 {
6204 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6205 	bool again = true;
6206 	int work = 0;
6207 
6208 	/* Check if we have pending ipi, its better to send them now,
6209 	 * not waiting net_rx_action() end.
6210 	 */
6211 	if (sd_has_rps_ipi_waiting(sd)) {
6212 		local_irq_disable();
6213 		net_rps_action_and_irq_enable(sd);
6214 	}
6215 
6216 	napi->weight = dev_rx_weight;
6217 	while (again) {
6218 		struct sk_buff *skb;
6219 
6220 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6221 			rcu_read_lock();
6222 			__netif_receive_skb(skb);
6223 			rcu_read_unlock();
6224 			input_queue_head_incr(sd);
6225 			if (++work >= quota)
6226 				return work;
6227 
6228 		}
6229 
6230 		local_irq_disable();
6231 		rps_lock(sd);
6232 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6233 			/*
6234 			 * Inline a custom version of __napi_complete().
6235 			 * only current cpu owns and manipulates this napi,
6236 			 * and NAPI_STATE_SCHED is the only possible flag set
6237 			 * on backlog.
6238 			 * We can use a plain write instead of clear_bit(),
6239 			 * and we dont need an smp_mb() memory barrier.
6240 			 */
6241 			napi->state = 0;
6242 			again = false;
6243 		} else {
6244 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6245 						   &sd->process_queue);
6246 		}
6247 		rps_unlock(sd);
6248 		local_irq_enable();
6249 	}
6250 
6251 	return work;
6252 }
6253 
6254 /**
6255  * __napi_schedule - schedule for receive
6256  * @n: entry to schedule
6257  *
6258  * The entry's receive function will be scheduled to run.
6259  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6260  */
6261 void __napi_schedule(struct napi_struct *n)
6262 {
6263 	unsigned long flags;
6264 
6265 	local_irq_save(flags);
6266 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6267 	local_irq_restore(flags);
6268 }
6269 EXPORT_SYMBOL(__napi_schedule);
6270 
6271 /**
6272  *	napi_schedule_prep - check if napi can be scheduled
6273  *	@n: napi context
6274  *
6275  * Test if NAPI routine is already running, and if not mark
6276  * it as running.  This is used as a condition variable
6277  * insure only one NAPI poll instance runs.  We also make
6278  * sure there is no pending NAPI disable.
6279  */
6280 bool napi_schedule_prep(struct napi_struct *n)
6281 {
6282 	unsigned long val, new;
6283 
6284 	do {
6285 		val = READ_ONCE(n->state);
6286 		if (unlikely(val & NAPIF_STATE_DISABLE))
6287 			return false;
6288 		new = val | NAPIF_STATE_SCHED;
6289 
6290 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6291 		 * This was suggested by Alexander Duyck, as compiler
6292 		 * emits better code than :
6293 		 * if (val & NAPIF_STATE_SCHED)
6294 		 *     new |= NAPIF_STATE_MISSED;
6295 		 */
6296 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6297 						   NAPIF_STATE_MISSED;
6298 	} while (cmpxchg(&n->state, val, new) != val);
6299 
6300 	return !(val & NAPIF_STATE_SCHED);
6301 }
6302 EXPORT_SYMBOL(napi_schedule_prep);
6303 
6304 /**
6305  * __napi_schedule_irqoff - schedule for receive
6306  * @n: entry to schedule
6307  *
6308  * Variant of __napi_schedule() assuming hard irqs are masked
6309  */
6310 void __napi_schedule_irqoff(struct napi_struct *n)
6311 {
6312 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6313 }
6314 EXPORT_SYMBOL(__napi_schedule_irqoff);
6315 
6316 bool napi_complete_done(struct napi_struct *n, int work_done)
6317 {
6318 	unsigned long flags, val, new, timeout = 0;
6319 	bool ret = true;
6320 
6321 	/*
6322 	 * 1) Don't let napi dequeue from the cpu poll list
6323 	 *    just in case its running on a different cpu.
6324 	 * 2) If we are busy polling, do nothing here, we have
6325 	 *    the guarantee we will be called later.
6326 	 */
6327 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6328 				 NAPIF_STATE_IN_BUSY_POLL)))
6329 		return false;
6330 
6331 	if (work_done) {
6332 		if (n->gro_bitmask)
6333 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6334 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6335 	}
6336 	if (n->defer_hard_irqs_count > 0) {
6337 		n->defer_hard_irqs_count--;
6338 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6339 		if (timeout)
6340 			ret = false;
6341 	}
6342 	if (n->gro_bitmask) {
6343 		/* When the NAPI instance uses a timeout and keeps postponing
6344 		 * it, we need to bound somehow the time packets are kept in
6345 		 * the GRO layer
6346 		 */
6347 		napi_gro_flush(n, !!timeout);
6348 	}
6349 
6350 	gro_normal_list(n);
6351 
6352 	if (unlikely(!list_empty(&n->poll_list))) {
6353 		/* If n->poll_list is not empty, we need to mask irqs */
6354 		local_irq_save(flags);
6355 		list_del_init(&n->poll_list);
6356 		local_irq_restore(flags);
6357 	}
6358 
6359 	do {
6360 		val = READ_ONCE(n->state);
6361 
6362 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6363 
6364 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6365 
6366 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6367 		 * because we will call napi->poll() one more time.
6368 		 * This C code was suggested by Alexander Duyck to help gcc.
6369 		 */
6370 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6371 						    NAPIF_STATE_SCHED;
6372 	} while (cmpxchg(&n->state, val, new) != val);
6373 
6374 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6375 		__napi_schedule(n);
6376 		return false;
6377 	}
6378 
6379 	if (timeout)
6380 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6381 			      HRTIMER_MODE_REL_PINNED);
6382 	return ret;
6383 }
6384 EXPORT_SYMBOL(napi_complete_done);
6385 
6386 /* must be called under rcu_read_lock(), as we dont take a reference */
6387 static struct napi_struct *napi_by_id(unsigned int napi_id)
6388 {
6389 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6390 	struct napi_struct *napi;
6391 
6392 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6393 		if (napi->napi_id == napi_id)
6394 			return napi;
6395 
6396 	return NULL;
6397 }
6398 
6399 #if defined(CONFIG_NET_RX_BUSY_POLL)
6400 
6401 #define BUSY_POLL_BUDGET 8
6402 
6403 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6404 {
6405 	int rc;
6406 
6407 	/* Busy polling means there is a high chance device driver hard irq
6408 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6409 	 * set in napi_schedule_prep().
6410 	 * Since we are about to call napi->poll() once more, we can safely
6411 	 * clear NAPI_STATE_MISSED.
6412 	 *
6413 	 * Note: x86 could use a single "lock and ..." instruction
6414 	 * to perform these two clear_bit()
6415 	 */
6416 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6417 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6418 
6419 	local_bh_disable();
6420 
6421 	/* All we really want here is to re-enable device interrupts.
6422 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6423 	 */
6424 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6425 	/* We can't gro_normal_list() here, because napi->poll() might have
6426 	 * rearmed the napi (napi_complete_done()) in which case it could
6427 	 * already be running on another CPU.
6428 	 */
6429 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6430 	netpoll_poll_unlock(have_poll_lock);
6431 	if (rc == BUSY_POLL_BUDGET) {
6432 		/* As the whole budget was spent, we still own the napi so can
6433 		 * safely handle the rx_list.
6434 		 */
6435 		gro_normal_list(napi);
6436 		__napi_schedule(napi);
6437 	}
6438 	local_bh_enable();
6439 }
6440 
6441 void napi_busy_loop(unsigned int napi_id,
6442 		    bool (*loop_end)(void *, unsigned long),
6443 		    void *loop_end_arg)
6444 {
6445 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6446 	int (*napi_poll)(struct napi_struct *napi, int budget);
6447 	void *have_poll_lock = NULL;
6448 	struct napi_struct *napi;
6449 
6450 restart:
6451 	napi_poll = NULL;
6452 
6453 	rcu_read_lock();
6454 
6455 	napi = napi_by_id(napi_id);
6456 	if (!napi)
6457 		goto out;
6458 
6459 	preempt_disable();
6460 	for (;;) {
6461 		int work = 0;
6462 
6463 		local_bh_disable();
6464 		if (!napi_poll) {
6465 			unsigned long val = READ_ONCE(napi->state);
6466 
6467 			/* If multiple threads are competing for this napi,
6468 			 * we avoid dirtying napi->state as much as we can.
6469 			 */
6470 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6471 				   NAPIF_STATE_IN_BUSY_POLL))
6472 				goto count;
6473 			if (cmpxchg(&napi->state, val,
6474 				    val | NAPIF_STATE_IN_BUSY_POLL |
6475 					  NAPIF_STATE_SCHED) != val)
6476 				goto count;
6477 			have_poll_lock = netpoll_poll_lock(napi);
6478 			napi_poll = napi->poll;
6479 		}
6480 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6481 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6482 		gro_normal_list(napi);
6483 count:
6484 		if (work > 0)
6485 			__NET_ADD_STATS(dev_net(napi->dev),
6486 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6487 		local_bh_enable();
6488 
6489 		if (!loop_end || loop_end(loop_end_arg, start_time))
6490 			break;
6491 
6492 		if (unlikely(need_resched())) {
6493 			if (napi_poll)
6494 				busy_poll_stop(napi, have_poll_lock);
6495 			preempt_enable();
6496 			rcu_read_unlock();
6497 			cond_resched();
6498 			if (loop_end(loop_end_arg, start_time))
6499 				return;
6500 			goto restart;
6501 		}
6502 		cpu_relax();
6503 	}
6504 	if (napi_poll)
6505 		busy_poll_stop(napi, have_poll_lock);
6506 	preempt_enable();
6507 out:
6508 	rcu_read_unlock();
6509 }
6510 EXPORT_SYMBOL(napi_busy_loop);
6511 
6512 #endif /* CONFIG_NET_RX_BUSY_POLL */
6513 
6514 static void napi_hash_add(struct napi_struct *napi)
6515 {
6516 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6517 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6518 		return;
6519 
6520 	spin_lock(&napi_hash_lock);
6521 
6522 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6523 	do {
6524 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6525 			napi_gen_id = MIN_NAPI_ID;
6526 	} while (napi_by_id(napi_gen_id));
6527 	napi->napi_id = napi_gen_id;
6528 
6529 	hlist_add_head_rcu(&napi->napi_hash_node,
6530 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6531 
6532 	spin_unlock(&napi_hash_lock);
6533 }
6534 
6535 /* Warning : caller is responsible to make sure rcu grace period
6536  * is respected before freeing memory containing @napi
6537  */
6538 bool napi_hash_del(struct napi_struct *napi)
6539 {
6540 	bool rcu_sync_needed = false;
6541 
6542 	spin_lock(&napi_hash_lock);
6543 
6544 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6545 		rcu_sync_needed = true;
6546 		hlist_del_rcu(&napi->napi_hash_node);
6547 	}
6548 	spin_unlock(&napi_hash_lock);
6549 	return rcu_sync_needed;
6550 }
6551 EXPORT_SYMBOL_GPL(napi_hash_del);
6552 
6553 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6554 {
6555 	struct napi_struct *napi;
6556 
6557 	napi = container_of(timer, struct napi_struct, timer);
6558 
6559 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6560 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6561 	 */
6562 	if (!napi_disable_pending(napi) &&
6563 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6564 		__napi_schedule_irqoff(napi);
6565 
6566 	return HRTIMER_NORESTART;
6567 }
6568 
6569 static void init_gro_hash(struct napi_struct *napi)
6570 {
6571 	int i;
6572 
6573 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6574 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6575 		napi->gro_hash[i].count = 0;
6576 	}
6577 	napi->gro_bitmask = 0;
6578 }
6579 
6580 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6581 		    int (*poll)(struct napi_struct *, int), int weight)
6582 {
6583 	INIT_LIST_HEAD(&napi->poll_list);
6584 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6585 	napi->timer.function = napi_watchdog;
6586 	init_gro_hash(napi);
6587 	napi->skb = NULL;
6588 	INIT_LIST_HEAD(&napi->rx_list);
6589 	napi->rx_count = 0;
6590 	napi->poll = poll;
6591 	if (weight > NAPI_POLL_WEIGHT)
6592 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6593 				weight);
6594 	napi->weight = weight;
6595 	list_add(&napi->dev_list, &dev->napi_list);
6596 	napi->dev = dev;
6597 #ifdef CONFIG_NETPOLL
6598 	napi->poll_owner = -1;
6599 #endif
6600 	set_bit(NAPI_STATE_SCHED, &napi->state);
6601 	napi_hash_add(napi);
6602 }
6603 EXPORT_SYMBOL(netif_napi_add);
6604 
6605 void napi_disable(struct napi_struct *n)
6606 {
6607 	might_sleep();
6608 	set_bit(NAPI_STATE_DISABLE, &n->state);
6609 
6610 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6611 		msleep(1);
6612 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6613 		msleep(1);
6614 
6615 	hrtimer_cancel(&n->timer);
6616 
6617 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6618 }
6619 EXPORT_SYMBOL(napi_disable);
6620 
6621 static void flush_gro_hash(struct napi_struct *napi)
6622 {
6623 	int i;
6624 
6625 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6626 		struct sk_buff *skb, *n;
6627 
6628 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6629 			kfree_skb(skb);
6630 		napi->gro_hash[i].count = 0;
6631 	}
6632 }
6633 
6634 /* Must be called in process context */
6635 void netif_napi_del(struct napi_struct *napi)
6636 {
6637 	might_sleep();
6638 	if (napi_hash_del(napi))
6639 		synchronize_net();
6640 	list_del_init(&napi->dev_list);
6641 	napi_free_frags(napi);
6642 
6643 	flush_gro_hash(napi);
6644 	napi->gro_bitmask = 0;
6645 }
6646 EXPORT_SYMBOL(netif_napi_del);
6647 
6648 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6649 {
6650 	void *have;
6651 	int work, weight;
6652 
6653 	list_del_init(&n->poll_list);
6654 
6655 	have = netpoll_poll_lock(n);
6656 
6657 	weight = n->weight;
6658 
6659 	/* This NAPI_STATE_SCHED test is for avoiding a race
6660 	 * with netpoll's poll_napi().  Only the entity which
6661 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6662 	 * actually make the ->poll() call.  Therefore we avoid
6663 	 * accidentally calling ->poll() when NAPI is not scheduled.
6664 	 */
6665 	work = 0;
6666 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6667 		work = n->poll(n, weight);
6668 		trace_napi_poll(n, work, weight);
6669 	}
6670 
6671 	WARN_ON_ONCE(work > weight);
6672 
6673 	if (likely(work < weight))
6674 		goto out_unlock;
6675 
6676 	/* Drivers must not modify the NAPI state if they
6677 	 * consume the entire weight.  In such cases this code
6678 	 * still "owns" the NAPI instance and therefore can
6679 	 * move the instance around on the list at-will.
6680 	 */
6681 	if (unlikely(napi_disable_pending(n))) {
6682 		napi_complete(n);
6683 		goto out_unlock;
6684 	}
6685 
6686 	if (n->gro_bitmask) {
6687 		/* flush too old packets
6688 		 * If HZ < 1000, flush all packets.
6689 		 */
6690 		napi_gro_flush(n, HZ >= 1000);
6691 	}
6692 
6693 	gro_normal_list(n);
6694 
6695 	/* Some drivers may have called napi_schedule
6696 	 * prior to exhausting their budget.
6697 	 */
6698 	if (unlikely(!list_empty(&n->poll_list))) {
6699 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6700 			     n->dev ? n->dev->name : "backlog");
6701 		goto out_unlock;
6702 	}
6703 
6704 	list_add_tail(&n->poll_list, repoll);
6705 
6706 out_unlock:
6707 	netpoll_poll_unlock(have);
6708 
6709 	return work;
6710 }
6711 
6712 static __latent_entropy void net_rx_action(struct softirq_action *h)
6713 {
6714 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6715 	unsigned long time_limit = jiffies +
6716 		usecs_to_jiffies(netdev_budget_usecs);
6717 	int budget = netdev_budget;
6718 	LIST_HEAD(list);
6719 	LIST_HEAD(repoll);
6720 
6721 	local_irq_disable();
6722 	list_splice_init(&sd->poll_list, &list);
6723 	local_irq_enable();
6724 
6725 	for (;;) {
6726 		struct napi_struct *n;
6727 
6728 		if (list_empty(&list)) {
6729 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6730 				goto out;
6731 			break;
6732 		}
6733 
6734 		n = list_first_entry(&list, struct napi_struct, poll_list);
6735 		budget -= napi_poll(n, &repoll);
6736 
6737 		/* If softirq window is exhausted then punt.
6738 		 * Allow this to run for 2 jiffies since which will allow
6739 		 * an average latency of 1.5/HZ.
6740 		 */
6741 		if (unlikely(budget <= 0 ||
6742 			     time_after_eq(jiffies, time_limit))) {
6743 			sd->time_squeeze++;
6744 			break;
6745 		}
6746 	}
6747 
6748 	local_irq_disable();
6749 
6750 	list_splice_tail_init(&sd->poll_list, &list);
6751 	list_splice_tail(&repoll, &list);
6752 	list_splice(&list, &sd->poll_list);
6753 	if (!list_empty(&sd->poll_list))
6754 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6755 
6756 	net_rps_action_and_irq_enable(sd);
6757 out:
6758 	__kfree_skb_flush();
6759 }
6760 
6761 struct netdev_adjacent {
6762 	struct net_device *dev;
6763 
6764 	/* upper master flag, there can only be one master device per list */
6765 	bool master;
6766 
6767 	/* lookup ignore flag */
6768 	bool ignore;
6769 
6770 	/* counter for the number of times this device was added to us */
6771 	u16 ref_nr;
6772 
6773 	/* private field for the users */
6774 	void *private;
6775 
6776 	struct list_head list;
6777 	struct rcu_head rcu;
6778 };
6779 
6780 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6781 						 struct list_head *adj_list)
6782 {
6783 	struct netdev_adjacent *adj;
6784 
6785 	list_for_each_entry(adj, adj_list, list) {
6786 		if (adj->dev == adj_dev)
6787 			return adj;
6788 	}
6789 	return NULL;
6790 }
6791 
6792 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6793 {
6794 	struct net_device *dev = data;
6795 
6796 	return upper_dev == dev;
6797 }
6798 
6799 /**
6800  * netdev_has_upper_dev - Check if device is linked to an upper device
6801  * @dev: device
6802  * @upper_dev: upper device to check
6803  *
6804  * Find out if a device is linked to specified upper device and return true
6805  * in case it is. Note that this checks only immediate upper device,
6806  * not through a complete stack of devices. The caller must hold the RTNL lock.
6807  */
6808 bool netdev_has_upper_dev(struct net_device *dev,
6809 			  struct net_device *upper_dev)
6810 {
6811 	ASSERT_RTNL();
6812 
6813 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6814 					     upper_dev);
6815 }
6816 EXPORT_SYMBOL(netdev_has_upper_dev);
6817 
6818 /**
6819  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6820  * @dev: device
6821  * @upper_dev: upper device to check
6822  *
6823  * Find out if a device is linked to specified upper device and return true
6824  * in case it is. Note that this checks the entire upper device chain.
6825  * The caller must hold rcu lock.
6826  */
6827 
6828 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6829 				  struct net_device *upper_dev)
6830 {
6831 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6832 					       upper_dev);
6833 }
6834 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6835 
6836 /**
6837  * netdev_has_any_upper_dev - Check if device is linked to some device
6838  * @dev: device
6839  *
6840  * Find out if a device is linked to an upper device and return true in case
6841  * it is. The caller must hold the RTNL lock.
6842  */
6843 bool netdev_has_any_upper_dev(struct net_device *dev)
6844 {
6845 	ASSERT_RTNL();
6846 
6847 	return !list_empty(&dev->adj_list.upper);
6848 }
6849 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6850 
6851 /**
6852  * netdev_master_upper_dev_get - Get master upper device
6853  * @dev: device
6854  *
6855  * Find a master upper device and return pointer to it or NULL in case
6856  * it's not there. The caller must hold the RTNL lock.
6857  */
6858 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6859 {
6860 	struct netdev_adjacent *upper;
6861 
6862 	ASSERT_RTNL();
6863 
6864 	if (list_empty(&dev->adj_list.upper))
6865 		return NULL;
6866 
6867 	upper = list_first_entry(&dev->adj_list.upper,
6868 				 struct netdev_adjacent, list);
6869 	if (likely(upper->master))
6870 		return upper->dev;
6871 	return NULL;
6872 }
6873 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6874 
6875 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6876 {
6877 	struct netdev_adjacent *upper;
6878 
6879 	ASSERT_RTNL();
6880 
6881 	if (list_empty(&dev->adj_list.upper))
6882 		return NULL;
6883 
6884 	upper = list_first_entry(&dev->adj_list.upper,
6885 				 struct netdev_adjacent, list);
6886 	if (likely(upper->master) && !upper->ignore)
6887 		return upper->dev;
6888 	return NULL;
6889 }
6890 
6891 /**
6892  * netdev_has_any_lower_dev - Check if device is linked to some device
6893  * @dev: device
6894  *
6895  * Find out if a device is linked to a lower device and return true in case
6896  * it is. The caller must hold the RTNL lock.
6897  */
6898 static bool netdev_has_any_lower_dev(struct net_device *dev)
6899 {
6900 	ASSERT_RTNL();
6901 
6902 	return !list_empty(&dev->adj_list.lower);
6903 }
6904 
6905 void *netdev_adjacent_get_private(struct list_head *adj_list)
6906 {
6907 	struct netdev_adjacent *adj;
6908 
6909 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6910 
6911 	return adj->private;
6912 }
6913 EXPORT_SYMBOL(netdev_adjacent_get_private);
6914 
6915 /**
6916  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6917  * @dev: device
6918  * @iter: list_head ** of the current position
6919  *
6920  * Gets the next device from the dev's upper list, starting from iter
6921  * position. The caller must hold RCU read lock.
6922  */
6923 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6924 						 struct list_head **iter)
6925 {
6926 	struct netdev_adjacent *upper;
6927 
6928 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6929 
6930 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6931 
6932 	if (&upper->list == &dev->adj_list.upper)
6933 		return NULL;
6934 
6935 	*iter = &upper->list;
6936 
6937 	return upper->dev;
6938 }
6939 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6940 
6941 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6942 						  struct list_head **iter,
6943 						  bool *ignore)
6944 {
6945 	struct netdev_adjacent *upper;
6946 
6947 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6948 
6949 	if (&upper->list == &dev->adj_list.upper)
6950 		return NULL;
6951 
6952 	*iter = &upper->list;
6953 	*ignore = upper->ignore;
6954 
6955 	return upper->dev;
6956 }
6957 
6958 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6959 						    struct list_head **iter)
6960 {
6961 	struct netdev_adjacent *upper;
6962 
6963 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6964 
6965 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6966 
6967 	if (&upper->list == &dev->adj_list.upper)
6968 		return NULL;
6969 
6970 	*iter = &upper->list;
6971 
6972 	return upper->dev;
6973 }
6974 
6975 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6976 				       int (*fn)(struct net_device *dev,
6977 						 void *data),
6978 				       void *data)
6979 {
6980 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6981 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6982 	int ret, cur = 0;
6983 	bool ignore;
6984 
6985 	now = dev;
6986 	iter = &dev->adj_list.upper;
6987 
6988 	while (1) {
6989 		if (now != dev) {
6990 			ret = fn(now, data);
6991 			if (ret)
6992 				return ret;
6993 		}
6994 
6995 		next = NULL;
6996 		while (1) {
6997 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6998 			if (!udev)
6999 				break;
7000 			if (ignore)
7001 				continue;
7002 
7003 			next = udev;
7004 			niter = &udev->adj_list.upper;
7005 			dev_stack[cur] = now;
7006 			iter_stack[cur++] = iter;
7007 			break;
7008 		}
7009 
7010 		if (!next) {
7011 			if (!cur)
7012 				return 0;
7013 			next = dev_stack[--cur];
7014 			niter = iter_stack[cur];
7015 		}
7016 
7017 		now = next;
7018 		iter = niter;
7019 	}
7020 
7021 	return 0;
7022 }
7023 
7024 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7025 				  int (*fn)(struct net_device *dev,
7026 					    void *data),
7027 				  void *data)
7028 {
7029 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7030 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7031 	int ret, cur = 0;
7032 
7033 	now = dev;
7034 	iter = &dev->adj_list.upper;
7035 
7036 	while (1) {
7037 		if (now != dev) {
7038 			ret = fn(now, data);
7039 			if (ret)
7040 				return ret;
7041 		}
7042 
7043 		next = NULL;
7044 		while (1) {
7045 			udev = netdev_next_upper_dev_rcu(now, &iter);
7046 			if (!udev)
7047 				break;
7048 
7049 			next = udev;
7050 			niter = &udev->adj_list.upper;
7051 			dev_stack[cur] = now;
7052 			iter_stack[cur++] = iter;
7053 			break;
7054 		}
7055 
7056 		if (!next) {
7057 			if (!cur)
7058 				return 0;
7059 			next = dev_stack[--cur];
7060 			niter = iter_stack[cur];
7061 		}
7062 
7063 		now = next;
7064 		iter = niter;
7065 	}
7066 
7067 	return 0;
7068 }
7069 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7070 
7071 static bool __netdev_has_upper_dev(struct net_device *dev,
7072 				   struct net_device *upper_dev)
7073 {
7074 	ASSERT_RTNL();
7075 
7076 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7077 					   upper_dev);
7078 }
7079 
7080 /**
7081  * netdev_lower_get_next_private - Get the next ->private from the
7082  *				   lower neighbour list
7083  * @dev: device
7084  * @iter: list_head ** of the current position
7085  *
7086  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7087  * list, starting from iter position. The caller must hold either hold the
7088  * RTNL lock or its own locking that guarantees that the neighbour lower
7089  * list will remain unchanged.
7090  */
7091 void *netdev_lower_get_next_private(struct net_device *dev,
7092 				    struct list_head **iter)
7093 {
7094 	struct netdev_adjacent *lower;
7095 
7096 	lower = list_entry(*iter, struct netdev_adjacent, list);
7097 
7098 	if (&lower->list == &dev->adj_list.lower)
7099 		return NULL;
7100 
7101 	*iter = lower->list.next;
7102 
7103 	return lower->private;
7104 }
7105 EXPORT_SYMBOL(netdev_lower_get_next_private);
7106 
7107 /**
7108  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7109  *				       lower neighbour list, RCU
7110  *				       variant
7111  * @dev: device
7112  * @iter: list_head ** of the current position
7113  *
7114  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7115  * list, starting from iter position. The caller must hold RCU read lock.
7116  */
7117 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7118 					struct list_head **iter)
7119 {
7120 	struct netdev_adjacent *lower;
7121 
7122 	WARN_ON_ONCE(!rcu_read_lock_held());
7123 
7124 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7125 
7126 	if (&lower->list == &dev->adj_list.lower)
7127 		return NULL;
7128 
7129 	*iter = &lower->list;
7130 
7131 	return lower->private;
7132 }
7133 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7134 
7135 /**
7136  * netdev_lower_get_next - Get the next device from the lower neighbour
7137  *                         list
7138  * @dev: device
7139  * @iter: list_head ** of the current position
7140  *
7141  * Gets the next netdev_adjacent from the dev's lower neighbour
7142  * list, starting from iter position. The caller must hold RTNL lock or
7143  * its own locking that guarantees that the neighbour lower
7144  * list will remain unchanged.
7145  */
7146 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7147 {
7148 	struct netdev_adjacent *lower;
7149 
7150 	lower = list_entry(*iter, struct netdev_adjacent, list);
7151 
7152 	if (&lower->list == &dev->adj_list.lower)
7153 		return NULL;
7154 
7155 	*iter = lower->list.next;
7156 
7157 	return lower->dev;
7158 }
7159 EXPORT_SYMBOL(netdev_lower_get_next);
7160 
7161 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7162 						struct list_head **iter)
7163 {
7164 	struct netdev_adjacent *lower;
7165 
7166 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7167 
7168 	if (&lower->list == &dev->adj_list.lower)
7169 		return NULL;
7170 
7171 	*iter = &lower->list;
7172 
7173 	return lower->dev;
7174 }
7175 
7176 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7177 						  struct list_head **iter,
7178 						  bool *ignore)
7179 {
7180 	struct netdev_adjacent *lower;
7181 
7182 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7183 
7184 	if (&lower->list == &dev->adj_list.lower)
7185 		return NULL;
7186 
7187 	*iter = &lower->list;
7188 	*ignore = lower->ignore;
7189 
7190 	return lower->dev;
7191 }
7192 
7193 int netdev_walk_all_lower_dev(struct net_device *dev,
7194 			      int (*fn)(struct net_device *dev,
7195 					void *data),
7196 			      void *data)
7197 {
7198 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7199 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7200 	int ret, cur = 0;
7201 
7202 	now = dev;
7203 	iter = &dev->adj_list.lower;
7204 
7205 	while (1) {
7206 		if (now != dev) {
7207 			ret = fn(now, data);
7208 			if (ret)
7209 				return ret;
7210 		}
7211 
7212 		next = NULL;
7213 		while (1) {
7214 			ldev = netdev_next_lower_dev(now, &iter);
7215 			if (!ldev)
7216 				break;
7217 
7218 			next = ldev;
7219 			niter = &ldev->adj_list.lower;
7220 			dev_stack[cur] = now;
7221 			iter_stack[cur++] = iter;
7222 			break;
7223 		}
7224 
7225 		if (!next) {
7226 			if (!cur)
7227 				return 0;
7228 			next = dev_stack[--cur];
7229 			niter = iter_stack[cur];
7230 		}
7231 
7232 		now = next;
7233 		iter = niter;
7234 	}
7235 
7236 	return 0;
7237 }
7238 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7239 
7240 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7241 				       int (*fn)(struct net_device *dev,
7242 						 void *data),
7243 				       void *data)
7244 {
7245 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7246 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7247 	int ret, cur = 0;
7248 	bool ignore;
7249 
7250 	now = dev;
7251 	iter = &dev->adj_list.lower;
7252 
7253 	while (1) {
7254 		if (now != dev) {
7255 			ret = fn(now, data);
7256 			if (ret)
7257 				return ret;
7258 		}
7259 
7260 		next = NULL;
7261 		while (1) {
7262 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7263 			if (!ldev)
7264 				break;
7265 			if (ignore)
7266 				continue;
7267 
7268 			next = ldev;
7269 			niter = &ldev->adj_list.lower;
7270 			dev_stack[cur] = now;
7271 			iter_stack[cur++] = iter;
7272 			break;
7273 		}
7274 
7275 		if (!next) {
7276 			if (!cur)
7277 				return 0;
7278 			next = dev_stack[--cur];
7279 			niter = iter_stack[cur];
7280 		}
7281 
7282 		now = next;
7283 		iter = niter;
7284 	}
7285 
7286 	return 0;
7287 }
7288 
7289 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7290 					     struct list_head **iter)
7291 {
7292 	struct netdev_adjacent *lower;
7293 
7294 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7295 	if (&lower->list == &dev->adj_list.lower)
7296 		return NULL;
7297 
7298 	*iter = &lower->list;
7299 
7300 	return lower->dev;
7301 }
7302 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7303 
7304 static u8 __netdev_upper_depth(struct net_device *dev)
7305 {
7306 	struct net_device *udev;
7307 	struct list_head *iter;
7308 	u8 max_depth = 0;
7309 	bool ignore;
7310 
7311 	for (iter = &dev->adj_list.upper,
7312 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7313 	     udev;
7314 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7315 		if (ignore)
7316 			continue;
7317 		if (max_depth < udev->upper_level)
7318 			max_depth = udev->upper_level;
7319 	}
7320 
7321 	return max_depth;
7322 }
7323 
7324 static u8 __netdev_lower_depth(struct net_device *dev)
7325 {
7326 	struct net_device *ldev;
7327 	struct list_head *iter;
7328 	u8 max_depth = 0;
7329 	bool ignore;
7330 
7331 	for (iter = &dev->adj_list.lower,
7332 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7333 	     ldev;
7334 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7335 		if (ignore)
7336 			continue;
7337 		if (max_depth < ldev->lower_level)
7338 			max_depth = ldev->lower_level;
7339 	}
7340 
7341 	return max_depth;
7342 }
7343 
7344 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7345 {
7346 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7347 	return 0;
7348 }
7349 
7350 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7351 {
7352 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7353 	return 0;
7354 }
7355 
7356 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7357 				  int (*fn)(struct net_device *dev,
7358 					    void *data),
7359 				  void *data)
7360 {
7361 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7362 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7363 	int ret, cur = 0;
7364 
7365 	now = dev;
7366 	iter = &dev->adj_list.lower;
7367 
7368 	while (1) {
7369 		if (now != dev) {
7370 			ret = fn(now, data);
7371 			if (ret)
7372 				return ret;
7373 		}
7374 
7375 		next = NULL;
7376 		while (1) {
7377 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7378 			if (!ldev)
7379 				break;
7380 
7381 			next = ldev;
7382 			niter = &ldev->adj_list.lower;
7383 			dev_stack[cur] = now;
7384 			iter_stack[cur++] = iter;
7385 			break;
7386 		}
7387 
7388 		if (!next) {
7389 			if (!cur)
7390 				return 0;
7391 			next = dev_stack[--cur];
7392 			niter = iter_stack[cur];
7393 		}
7394 
7395 		now = next;
7396 		iter = niter;
7397 	}
7398 
7399 	return 0;
7400 }
7401 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7402 
7403 /**
7404  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7405  *				       lower neighbour list, RCU
7406  *				       variant
7407  * @dev: device
7408  *
7409  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7410  * list. The caller must hold RCU read lock.
7411  */
7412 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7413 {
7414 	struct netdev_adjacent *lower;
7415 
7416 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7417 			struct netdev_adjacent, list);
7418 	if (lower)
7419 		return lower->private;
7420 	return NULL;
7421 }
7422 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7423 
7424 /**
7425  * netdev_master_upper_dev_get_rcu - Get master upper device
7426  * @dev: device
7427  *
7428  * Find a master upper device and return pointer to it or NULL in case
7429  * it's not there. The caller must hold the RCU read lock.
7430  */
7431 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7432 {
7433 	struct netdev_adjacent *upper;
7434 
7435 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7436 				       struct netdev_adjacent, list);
7437 	if (upper && likely(upper->master))
7438 		return upper->dev;
7439 	return NULL;
7440 }
7441 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7442 
7443 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7444 			      struct net_device *adj_dev,
7445 			      struct list_head *dev_list)
7446 {
7447 	char linkname[IFNAMSIZ+7];
7448 
7449 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7450 		"upper_%s" : "lower_%s", adj_dev->name);
7451 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7452 				 linkname);
7453 }
7454 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7455 			       char *name,
7456 			       struct list_head *dev_list)
7457 {
7458 	char linkname[IFNAMSIZ+7];
7459 
7460 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7461 		"upper_%s" : "lower_%s", name);
7462 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7463 }
7464 
7465 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7466 						 struct net_device *adj_dev,
7467 						 struct list_head *dev_list)
7468 {
7469 	return (dev_list == &dev->adj_list.upper ||
7470 		dev_list == &dev->adj_list.lower) &&
7471 		net_eq(dev_net(dev), dev_net(adj_dev));
7472 }
7473 
7474 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7475 					struct net_device *adj_dev,
7476 					struct list_head *dev_list,
7477 					void *private, bool master)
7478 {
7479 	struct netdev_adjacent *adj;
7480 	int ret;
7481 
7482 	adj = __netdev_find_adj(adj_dev, dev_list);
7483 
7484 	if (adj) {
7485 		adj->ref_nr += 1;
7486 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7487 			 dev->name, adj_dev->name, adj->ref_nr);
7488 
7489 		return 0;
7490 	}
7491 
7492 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7493 	if (!adj)
7494 		return -ENOMEM;
7495 
7496 	adj->dev = adj_dev;
7497 	adj->master = master;
7498 	adj->ref_nr = 1;
7499 	adj->private = private;
7500 	adj->ignore = false;
7501 	dev_hold(adj_dev);
7502 
7503 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7504 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7505 
7506 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7507 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7508 		if (ret)
7509 			goto free_adj;
7510 	}
7511 
7512 	/* Ensure that master link is always the first item in list. */
7513 	if (master) {
7514 		ret = sysfs_create_link(&(dev->dev.kobj),
7515 					&(adj_dev->dev.kobj), "master");
7516 		if (ret)
7517 			goto remove_symlinks;
7518 
7519 		list_add_rcu(&adj->list, dev_list);
7520 	} else {
7521 		list_add_tail_rcu(&adj->list, dev_list);
7522 	}
7523 
7524 	return 0;
7525 
7526 remove_symlinks:
7527 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7528 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7529 free_adj:
7530 	kfree(adj);
7531 	dev_put(adj_dev);
7532 
7533 	return ret;
7534 }
7535 
7536 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7537 					 struct net_device *adj_dev,
7538 					 u16 ref_nr,
7539 					 struct list_head *dev_list)
7540 {
7541 	struct netdev_adjacent *adj;
7542 
7543 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7544 		 dev->name, adj_dev->name, ref_nr);
7545 
7546 	adj = __netdev_find_adj(adj_dev, dev_list);
7547 
7548 	if (!adj) {
7549 		pr_err("Adjacency does not exist for device %s from %s\n",
7550 		       dev->name, adj_dev->name);
7551 		WARN_ON(1);
7552 		return;
7553 	}
7554 
7555 	if (adj->ref_nr > ref_nr) {
7556 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7557 			 dev->name, adj_dev->name, ref_nr,
7558 			 adj->ref_nr - ref_nr);
7559 		adj->ref_nr -= ref_nr;
7560 		return;
7561 	}
7562 
7563 	if (adj->master)
7564 		sysfs_remove_link(&(dev->dev.kobj), "master");
7565 
7566 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7567 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7568 
7569 	list_del_rcu(&adj->list);
7570 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7571 		 adj_dev->name, dev->name, adj_dev->name);
7572 	dev_put(adj_dev);
7573 	kfree_rcu(adj, rcu);
7574 }
7575 
7576 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7577 					    struct net_device *upper_dev,
7578 					    struct list_head *up_list,
7579 					    struct list_head *down_list,
7580 					    void *private, bool master)
7581 {
7582 	int ret;
7583 
7584 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7585 					   private, master);
7586 	if (ret)
7587 		return ret;
7588 
7589 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7590 					   private, false);
7591 	if (ret) {
7592 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7593 		return ret;
7594 	}
7595 
7596 	return 0;
7597 }
7598 
7599 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7600 					       struct net_device *upper_dev,
7601 					       u16 ref_nr,
7602 					       struct list_head *up_list,
7603 					       struct list_head *down_list)
7604 {
7605 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7606 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7607 }
7608 
7609 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7610 						struct net_device *upper_dev,
7611 						void *private, bool master)
7612 {
7613 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7614 						&dev->adj_list.upper,
7615 						&upper_dev->adj_list.lower,
7616 						private, master);
7617 }
7618 
7619 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7620 						   struct net_device *upper_dev)
7621 {
7622 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7623 					   &dev->adj_list.upper,
7624 					   &upper_dev->adj_list.lower);
7625 }
7626 
7627 static int __netdev_upper_dev_link(struct net_device *dev,
7628 				   struct net_device *upper_dev, bool master,
7629 				   void *upper_priv, void *upper_info,
7630 				   struct netlink_ext_ack *extack)
7631 {
7632 	struct netdev_notifier_changeupper_info changeupper_info = {
7633 		.info = {
7634 			.dev = dev,
7635 			.extack = extack,
7636 		},
7637 		.upper_dev = upper_dev,
7638 		.master = master,
7639 		.linking = true,
7640 		.upper_info = upper_info,
7641 	};
7642 	struct net_device *master_dev;
7643 	int ret = 0;
7644 
7645 	ASSERT_RTNL();
7646 
7647 	if (dev == upper_dev)
7648 		return -EBUSY;
7649 
7650 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7651 	if (__netdev_has_upper_dev(upper_dev, dev))
7652 		return -EBUSY;
7653 
7654 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7655 		return -EMLINK;
7656 
7657 	if (!master) {
7658 		if (__netdev_has_upper_dev(dev, upper_dev))
7659 			return -EEXIST;
7660 	} else {
7661 		master_dev = __netdev_master_upper_dev_get(dev);
7662 		if (master_dev)
7663 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7664 	}
7665 
7666 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7667 					    &changeupper_info.info);
7668 	ret = notifier_to_errno(ret);
7669 	if (ret)
7670 		return ret;
7671 
7672 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7673 						   master);
7674 	if (ret)
7675 		return ret;
7676 
7677 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7678 					    &changeupper_info.info);
7679 	ret = notifier_to_errno(ret);
7680 	if (ret)
7681 		goto rollback;
7682 
7683 	__netdev_update_upper_level(dev, NULL);
7684 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7685 
7686 	__netdev_update_lower_level(upper_dev, NULL);
7687 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7688 				    NULL);
7689 
7690 	return 0;
7691 
7692 rollback:
7693 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7694 
7695 	return ret;
7696 }
7697 
7698 /**
7699  * netdev_upper_dev_link - Add a link to the upper device
7700  * @dev: device
7701  * @upper_dev: new upper device
7702  * @extack: netlink extended ack
7703  *
7704  * Adds a link to device which is upper to this one. The caller must hold
7705  * the RTNL lock. On a failure a negative errno code is returned.
7706  * On success the reference counts are adjusted and the function
7707  * returns zero.
7708  */
7709 int netdev_upper_dev_link(struct net_device *dev,
7710 			  struct net_device *upper_dev,
7711 			  struct netlink_ext_ack *extack)
7712 {
7713 	return __netdev_upper_dev_link(dev, upper_dev, false,
7714 				       NULL, NULL, extack);
7715 }
7716 EXPORT_SYMBOL(netdev_upper_dev_link);
7717 
7718 /**
7719  * netdev_master_upper_dev_link - Add a master link to the upper device
7720  * @dev: device
7721  * @upper_dev: new upper device
7722  * @upper_priv: upper device private
7723  * @upper_info: upper info to be passed down via notifier
7724  * @extack: netlink extended ack
7725  *
7726  * Adds a link to device which is upper to this one. In this case, only
7727  * one master upper device can be linked, although other non-master devices
7728  * might be linked as well. The caller must hold the RTNL lock.
7729  * On a failure a negative errno code is returned. On success the reference
7730  * counts are adjusted and the function returns zero.
7731  */
7732 int netdev_master_upper_dev_link(struct net_device *dev,
7733 				 struct net_device *upper_dev,
7734 				 void *upper_priv, void *upper_info,
7735 				 struct netlink_ext_ack *extack)
7736 {
7737 	return __netdev_upper_dev_link(dev, upper_dev, true,
7738 				       upper_priv, upper_info, extack);
7739 }
7740 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7741 
7742 /**
7743  * netdev_upper_dev_unlink - Removes a link to upper device
7744  * @dev: device
7745  * @upper_dev: new upper device
7746  *
7747  * Removes a link to device which is upper to this one. The caller must hold
7748  * the RTNL lock.
7749  */
7750 void netdev_upper_dev_unlink(struct net_device *dev,
7751 			     struct net_device *upper_dev)
7752 {
7753 	struct netdev_notifier_changeupper_info changeupper_info = {
7754 		.info = {
7755 			.dev = dev,
7756 		},
7757 		.upper_dev = upper_dev,
7758 		.linking = false,
7759 	};
7760 
7761 	ASSERT_RTNL();
7762 
7763 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7764 
7765 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7766 				      &changeupper_info.info);
7767 
7768 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7769 
7770 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7771 				      &changeupper_info.info);
7772 
7773 	__netdev_update_upper_level(dev, NULL);
7774 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7775 
7776 	__netdev_update_lower_level(upper_dev, NULL);
7777 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7778 				    NULL);
7779 }
7780 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7781 
7782 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7783 				      struct net_device *lower_dev,
7784 				      bool val)
7785 {
7786 	struct netdev_adjacent *adj;
7787 
7788 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7789 	if (adj)
7790 		adj->ignore = val;
7791 
7792 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7793 	if (adj)
7794 		adj->ignore = val;
7795 }
7796 
7797 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7798 					struct net_device *lower_dev)
7799 {
7800 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7801 }
7802 
7803 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7804 				       struct net_device *lower_dev)
7805 {
7806 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7807 }
7808 
7809 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7810 				   struct net_device *new_dev,
7811 				   struct net_device *dev,
7812 				   struct netlink_ext_ack *extack)
7813 {
7814 	int err;
7815 
7816 	if (!new_dev)
7817 		return 0;
7818 
7819 	if (old_dev && new_dev != old_dev)
7820 		netdev_adjacent_dev_disable(dev, old_dev);
7821 
7822 	err = netdev_upper_dev_link(new_dev, dev, extack);
7823 	if (err) {
7824 		if (old_dev && new_dev != old_dev)
7825 			netdev_adjacent_dev_enable(dev, old_dev);
7826 		return err;
7827 	}
7828 
7829 	return 0;
7830 }
7831 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7832 
7833 void netdev_adjacent_change_commit(struct net_device *old_dev,
7834 				   struct net_device *new_dev,
7835 				   struct net_device *dev)
7836 {
7837 	if (!new_dev || !old_dev)
7838 		return;
7839 
7840 	if (new_dev == old_dev)
7841 		return;
7842 
7843 	netdev_adjacent_dev_enable(dev, old_dev);
7844 	netdev_upper_dev_unlink(old_dev, dev);
7845 }
7846 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7847 
7848 void netdev_adjacent_change_abort(struct net_device *old_dev,
7849 				  struct net_device *new_dev,
7850 				  struct net_device *dev)
7851 {
7852 	if (!new_dev)
7853 		return;
7854 
7855 	if (old_dev && new_dev != old_dev)
7856 		netdev_adjacent_dev_enable(dev, old_dev);
7857 
7858 	netdev_upper_dev_unlink(new_dev, dev);
7859 }
7860 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7861 
7862 /**
7863  * netdev_bonding_info_change - Dispatch event about slave change
7864  * @dev: device
7865  * @bonding_info: info to dispatch
7866  *
7867  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7868  * The caller must hold the RTNL lock.
7869  */
7870 void netdev_bonding_info_change(struct net_device *dev,
7871 				struct netdev_bonding_info *bonding_info)
7872 {
7873 	struct netdev_notifier_bonding_info info = {
7874 		.info.dev = dev,
7875 	};
7876 
7877 	memcpy(&info.bonding_info, bonding_info,
7878 	       sizeof(struct netdev_bonding_info));
7879 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7880 				      &info.info);
7881 }
7882 EXPORT_SYMBOL(netdev_bonding_info_change);
7883 
7884 /**
7885  * netdev_get_xmit_slave - Get the xmit slave of master device
7886  * @skb: The packet
7887  * @all_slaves: assume all the slaves are active
7888  *
7889  * The reference counters are not incremented so the caller must be
7890  * careful with locks. The caller must hold RCU lock.
7891  * %NULL is returned if no slave is found.
7892  */
7893 
7894 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7895 					 struct sk_buff *skb,
7896 					 bool all_slaves)
7897 {
7898 	const struct net_device_ops *ops = dev->netdev_ops;
7899 
7900 	if (!ops->ndo_get_xmit_slave)
7901 		return NULL;
7902 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7903 }
7904 EXPORT_SYMBOL(netdev_get_xmit_slave);
7905 
7906 static void netdev_adjacent_add_links(struct net_device *dev)
7907 {
7908 	struct netdev_adjacent *iter;
7909 
7910 	struct net *net = dev_net(dev);
7911 
7912 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7913 		if (!net_eq(net, dev_net(iter->dev)))
7914 			continue;
7915 		netdev_adjacent_sysfs_add(iter->dev, dev,
7916 					  &iter->dev->adj_list.lower);
7917 		netdev_adjacent_sysfs_add(dev, iter->dev,
7918 					  &dev->adj_list.upper);
7919 	}
7920 
7921 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7922 		if (!net_eq(net, dev_net(iter->dev)))
7923 			continue;
7924 		netdev_adjacent_sysfs_add(iter->dev, dev,
7925 					  &iter->dev->adj_list.upper);
7926 		netdev_adjacent_sysfs_add(dev, iter->dev,
7927 					  &dev->adj_list.lower);
7928 	}
7929 }
7930 
7931 static void netdev_adjacent_del_links(struct net_device *dev)
7932 {
7933 	struct netdev_adjacent *iter;
7934 
7935 	struct net *net = dev_net(dev);
7936 
7937 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7938 		if (!net_eq(net, dev_net(iter->dev)))
7939 			continue;
7940 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7941 					  &iter->dev->adj_list.lower);
7942 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7943 					  &dev->adj_list.upper);
7944 	}
7945 
7946 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7947 		if (!net_eq(net, dev_net(iter->dev)))
7948 			continue;
7949 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7950 					  &iter->dev->adj_list.upper);
7951 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7952 					  &dev->adj_list.lower);
7953 	}
7954 }
7955 
7956 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7957 {
7958 	struct netdev_adjacent *iter;
7959 
7960 	struct net *net = dev_net(dev);
7961 
7962 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7963 		if (!net_eq(net, dev_net(iter->dev)))
7964 			continue;
7965 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7966 					  &iter->dev->adj_list.lower);
7967 		netdev_adjacent_sysfs_add(iter->dev, dev,
7968 					  &iter->dev->adj_list.lower);
7969 	}
7970 
7971 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7972 		if (!net_eq(net, dev_net(iter->dev)))
7973 			continue;
7974 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7975 					  &iter->dev->adj_list.upper);
7976 		netdev_adjacent_sysfs_add(iter->dev, dev,
7977 					  &iter->dev->adj_list.upper);
7978 	}
7979 }
7980 
7981 void *netdev_lower_dev_get_private(struct net_device *dev,
7982 				   struct net_device *lower_dev)
7983 {
7984 	struct netdev_adjacent *lower;
7985 
7986 	if (!lower_dev)
7987 		return NULL;
7988 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7989 	if (!lower)
7990 		return NULL;
7991 
7992 	return lower->private;
7993 }
7994 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7995 
7996 
7997 /**
7998  * netdev_lower_change - Dispatch event about lower device state change
7999  * @lower_dev: device
8000  * @lower_state_info: state to dispatch
8001  *
8002  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8003  * The caller must hold the RTNL lock.
8004  */
8005 void netdev_lower_state_changed(struct net_device *lower_dev,
8006 				void *lower_state_info)
8007 {
8008 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8009 		.info.dev = lower_dev,
8010 	};
8011 
8012 	ASSERT_RTNL();
8013 	changelowerstate_info.lower_state_info = lower_state_info;
8014 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8015 				      &changelowerstate_info.info);
8016 }
8017 EXPORT_SYMBOL(netdev_lower_state_changed);
8018 
8019 static void dev_change_rx_flags(struct net_device *dev, int flags)
8020 {
8021 	const struct net_device_ops *ops = dev->netdev_ops;
8022 
8023 	if (ops->ndo_change_rx_flags)
8024 		ops->ndo_change_rx_flags(dev, flags);
8025 }
8026 
8027 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8028 {
8029 	unsigned int old_flags = dev->flags;
8030 	kuid_t uid;
8031 	kgid_t gid;
8032 
8033 	ASSERT_RTNL();
8034 
8035 	dev->flags |= IFF_PROMISC;
8036 	dev->promiscuity += inc;
8037 	if (dev->promiscuity == 0) {
8038 		/*
8039 		 * Avoid overflow.
8040 		 * If inc causes overflow, untouch promisc and return error.
8041 		 */
8042 		if (inc < 0)
8043 			dev->flags &= ~IFF_PROMISC;
8044 		else {
8045 			dev->promiscuity -= inc;
8046 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8047 				dev->name);
8048 			return -EOVERFLOW;
8049 		}
8050 	}
8051 	if (dev->flags != old_flags) {
8052 		pr_info("device %s %s promiscuous mode\n",
8053 			dev->name,
8054 			dev->flags & IFF_PROMISC ? "entered" : "left");
8055 		if (audit_enabled) {
8056 			current_uid_gid(&uid, &gid);
8057 			audit_log(audit_context(), GFP_ATOMIC,
8058 				  AUDIT_ANOM_PROMISCUOUS,
8059 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8060 				  dev->name, (dev->flags & IFF_PROMISC),
8061 				  (old_flags & IFF_PROMISC),
8062 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8063 				  from_kuid(&init_user_ns, uid),
8064 				  from_kgid(&init_user_ns, gid),
8065 				  audit_get_sessionid(current));
8066 		}
8067 
8068 		dev_change_rx_flags(dev, IFF_PROMISC);
8069 	}
8070 	if (notify)
8071 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8072 	return 0;
8073 }
8074 
8075 /**
8076  *	dev_set_promiscuity	- update promiscuity count on a device
8077  *	@dev: device
8078  *	@inc: modifier
8079  *
8080  *	Add or remove promiscuity from a device. While the count in the device
8081  *	remains above zero the interface remains promiscuous. Once it hits zero
8082  *	the device reverts back to normal filtering operation. A negative inc
8083  *	value is used to drop promiscuity on the device.
8084  *	Return 0 if successful or a negative errno code on error.
8085  */
8086 int dev_set_promiscuity(struct net_device *dev, int inc)
8087 {
8088 	unsigned int old_flags = dev->flags;
8089 	int err;
8090 
8091 	err = __dev_set_promiscuity(dev, inc, true);
8092 	if (err < 0)
8093 		return err;
8094 	if (dev->flags != old_flags)
8095 		dev_set_rx_mode(dev);
8096 	return err;
8097 }
8098 EXPORT_SYMBOL(dev_set_promiscuity);
8099 
8100 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8101 {
8102 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8103 
8104 	ASSERT_RTNL();
8105 
8106 	dev->flags |= IFF_ALLMULTI;
8107 	dev->allmulti += inc;
8108 	if (dev->allmulti == 0) {
8109 		/*
8110 		 * Avoid overflow.
8111 		 * If inc causes overflow, untouch allmulti and return error.
8112 		 */
8113 		if (inc < 0)
8114 			dev->flags &= ~IFF_ALLMULTI;
8115 		else {
8116 			dev->allmulti -= inc;
8117 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8118 				dev->name);
8119 			return -EOVERFLOW;
8120 		}
8121 	}
8122 	if (dev->flags ^ old_flags) {
8123 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8124 		dev_set_rx_mode(dev);
8125 		if (notify)
8126 			__dev_notify_flags(dev, old_flags,
8127 					   dev->gflags ^ old_gflags);
8128 	}
8129 	return 0;
8130 }
8131 
8132 /**
8133  *	dev_set_allmulti	- update allmulti count on a device
8134  *	@dev: device
8135  *	@inc: modifier
8136  *
8137  *	Add or remove reception of all multicast frames to a device. While the
8138  *	count in the device remains above zero the interface remains listening
8139  *	to all interfaces. Once it hits zero the device reverts back to normal
8140  *	filtering operation. A negative @inc value is used to drop the counter
8141  *	when releasing a resource needing all multicasts.
8142  *	Return 0 if successful or a negative errno code on error.
8143  */
8144 
8145 int dev_set_allmulti(struct net_device *dev, int inc)
8146 {
8147 	return __dev_set_allmulti(dev, inc, true);
8148 }
8149 EXPORT_SYMBOL(dev_set_allmulti);
8150 
8151 /*
8152  *	Upload unicast and multicast address lists to device and
8153  *	configure RX filtering. When the device doesn't support unicast
8154  *	filtering it is put in promiscuous mode while unicast addresses
8155  *	are present.
8156  */
8157 void __dev_set_rx_mode(struct net_device *dev)
8158 {
8159 	const struct net_device_ops *ops = dev->netdev_ops;
8160 
8161 	/* dev_open will call this function so the list will stay sane. */
8162 	if (!(dev->flags&IFF_UP))
8163 		return;
8164 
8165 	if (!netif_device_present(dev))
8166 		return;
8167 
8168 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8169 		/* Unicast addresses changes may only happen under the rtnl,
8170 		 * therefore calling __dev_set_promiscuity here is safe.
8171 		 */
8172 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8173 			__dev_set_promiscuity(dev, 1, false);
8174 			dev->uc_promisc = true;
8175 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8176 			__dev_set_promiscuity(dev, -1, false);
8177 			dev->uc_promisc = false;
8178 		}
8179 	}
8180 
8181 	if (ops->ndo_set_rx_mode)
8182 		ops->ndo_set_rx_mode(dev);
8183 }
8184 
8185 void dev_set_rx_mode(struct net_device *dev)
8186 {
8187 	netif_addr_lock_bh(dev);
8188 	__dev_set_rx_mode(dev);
8189 	netif_addr_unlock_bh(dev);
8190 }
8191 
8192 /**
8193  *	dev_get_flags - get flags reported to userspace
8194  *	@dev: device
8195  *
8196  *	Get the combination of flag bits exported through APIs to userspace.
8197  */
8198 unsigned int dev_get_flags(const struct net_device *dev)
8199 {
8200 	unsigned int flags;
8201 
8202 	flags = (dev->flags & ~(IFF_PROMISC |
8203 				IFF_ALLMULTI |
8204 				IFF_RUNNING |
8205 				IFF_LOWER_UP |
8206 				IFF_DORMANT)) |
8207 		(dev->gflags & (IFF_PROMISC |
8208 				IFF_ALLMULTI));
8209 
8210 	if (netif_running(dev)) {
8211 		if (netif_oper_up(dev))
8212 			flags |= IFF_RUNNING;
8213 		if (netif_carrier_ok(dev))
8214 			flags |= IFF_LOWER_UP;
8215 		if (netif_dormant(dev))
8216 			flags |= IFF_DORMANT;
8217 	}
8218 
8219 	return flags;
8220 }
8221 EXPORT_SYMBOL(dev_get_flags);
8222 
8223 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8224 		       struct netlink_ext_ack *extack)
8225 {
8226 	unsigned int old_flags = dev->flags;
8227 	int ret;
8228 
8229 	ASSERT_RTNL();
8230 
8231 	/*
8232 	 *	Set the flags on our device.
8233 	 */
8234 
8235 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8236 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8237 			       IFF_AUTOMEDIA)) |
8238 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8239 				    IFF_ALLMULTI));
8240 
8241 	/*
8242 	 *	Load in the correct multicast list now the flags have changed.
8243 	 */
8244 
8245 	if ((old_flags ^ flags) & IFF_MULTICAST)
8246 		dev_change_rx_flags(dev, IFF_MULTICAST);
8247 
8248 	dev_set_rx_mode(dev);
8249 
8250 	/*
8251 	 *	Have we downed the interface. We handle IFF_UP ourselves
8252 	 *	according to user attempts to set it, rather than blindly
8253 	 *	setting it.
8254 	 */
8255 
8256 	ret = 0;
8257 	if ((old_flags ^ flags) & IFF_UP) {
8258 		if (old_flags & IFF_UP)
8259 			__dev_close(dev);
8260 		else
8261 			ret = __dev_open(dev, extack);
8262 	}
8263 
8264 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8265 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8266 		unsigned int old_flags = dev->flags;
8267 
8268 		dev->gflags ^= IFF_PROMISC;
8269 
8270 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8271 			if (dev->flags != old_flags)
8272 				dev_set_rx_mode(dev);
8273 	}
8274 
8275 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8276 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8277 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8278 	 */
8279 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8280 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8281 
8282 		dev->gflags ^= IFF_ALLMULTI;
8283 		__dev_set_allmulti(dev, inc, false);
8284 	}
8285 
8286 	return ret;
8287 }
8288 
8289 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8290 			unsigned int gchanges)
8291 {
8292 	unsigned int changes = dev->flags ^ old_flags;
8293 
8294 	if (gchanges)
8295 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8296 
8297 	if (changes & IFF_UP) {
8298 		if (dev->flags & IFF_UP)
8299 			call_netdevice_notifiers(NETDEV_UP, dev);
8300 		else
8301 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8302 	}
8303 
8304 	if (dev->flags & IFF_UP &&
8305 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8306 		struct netdev_notifier_change_info change_info = {
8307 			.info = {
8308 				.dev = dev,
8309 			},
8310 			.flags_changed = changes,
8311 		};
8312 
8313 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8314 	}
8315 }
8316 
8317 /**
8318  *	dev_change_flags - change device settings
8319  *	@dev: device
8320  *	@flags: device state flags
8321  *	@extack: netlink extended ack
8322  *
8323  *	Change settings on device based state flags. The flags are
8324  *	in the userspace exported format.
8325  */
8326 int dev_change_flags(struct net_device *dev, unsigned int flags,
8327 		     struct netlink_ext_ack *extack)
8328 {
8329 	int ret;
8330 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8331 
8332 	ret = __dev_change_flags(dev, flags, extack);
8333 	if (ret < 0)
8334 		return ret;
8335 
8336 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8337 	__dev_notify_flags(dev, old_flags, changes);
8338 	return ret;
8339 }
8340 EXPORT_SYMBOL(dev_change_flags);
8341 
8342 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8343 {
8344 	const struct net_device_ops *ops = dev->netdev_ops;
8345 
8346 	if (ops->ndo_change_mtu)
8347 		return ops->ndo_change_mtu(dev, new_mtu);
8348 
8349 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8350 	WRITE_ONCE(dev->mtu, new_mtu);
8351 	return 0;
8352 }
8353 EXPORT_SYMBOL(__dev_set_mtu);
8354 
8355 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8356 		     struct netlink_ext_ack *extack)
8357 {
8358 	/* MTU must be positive, and in range */
8359 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8360 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8361 		return -EINVAL;
8362 	}
8363 
8364 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8365 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8366 		return -EINVAL;
8367 	}
8368 	return 0;
8369 }
8370 
8371 /**
8372  *	dev_set_mtu_ext - Change maximum transfer unit
8373  *	@dev: device
8374  *	@new_mtu: new transfer unit
8375  *	@extack: netlink extended ack
8376  *
8377  *	Change the maximum transfer size of the network device.
8378  */
8379 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8380 		    struct netlink_ext_ack *extack)
8381 {
8382 	int err, orig_mtu;
8383 
8384 	if (new_mtu == dev->mtu)
8385 		return 0;
8386 
8387 	err = dev_validate_mtu(dev, new_mtu, extack);
8388 	if (err)
8389 		return err;
8390 
8391 	if (!netif_device_present(dev))
8392 		return -ENODEV;
8393 
8394 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8395 	err = notifier_to_errno(err);
8396 	if (err)
8397 		return err;
8398 
8399 	orig_mtu = dev->mtu;
8400 	err = __dev_set_mtu(dev, new_mtu);
8401 
8402 	if (!err) {
8403 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8404 						   orig_mtu);
8405 		err = notifier_to_errno(err);
8406 		if (err) {
8407 			/* setting mtu back and notifying everyone again,
8408 			 * so that they have a chance to revert changes.
8409 			 */
8410 			__dev_set_mtu(dev, orig_mtu);
8411 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8412 						     new_mtu);
8413 		}
8414 	}
8415 	return err;
8416 }
8417 
8418 int dev_set_mtu(struct net_device *dev, int new_mtu)
8419 {
8420 	struct netlink_ext_ack extack;
8421 	int err;
8422 
8423 	memset(&extack, 0, sizeof(extack));
8424 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8425 	if (err && extack._msg)
8426 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8427 	return err;
8428 }
8429 EXPORT_SYMBOL(dev_set_mtu);
8430 
8431 /**
8432  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8433  *	@dev: device
8434  *	@new_len: new tx queue length
8435  */
8436 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8437 {
8438 	unsigned int orig_len = dev->tx_queue_len;
8439 	int res;
8440 
8441 	if (new_len != (unsigned int)new_len)
8442 		return -ERANGE;
8443 
8444 	if (new_len != orig_len) {
8445 		dev->tx_queue_len = new_len;
8446 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8447 		res = notifier_to_errno(res);
8448 		if (res)
8449 			goto err_rollback;
8450 		res = dev_qdisc_change_tx_queue_len(dev);
8451 		if (res)
8452 			goto err_rollback;
8453 	}
8454 
8455 	return 0;
8456 
8457 err_rollback:
8458 	netdev_err(dev, "refused to change device tx_queue_len\n");
8459 	dev->tx_queue_len = orig_len;
8460 	return res;
8461 }
8462 
8463 /**
8464  *	dev_set_group - Change group this device belongs to
8465  *	@dev: device
8466  *	@new_group: group this device should belong to
8467  */
8468 void dev_set_group(struct net_device *dev, int new_group)
8469 {
8470 	dev->group = new_group;
8471 }
8472 EXPORT_SYMBOL(dev_set_group);
8473 
8474 /**
8475  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8476  *	@dev: device
8477  *	@addr: new address
8478  *	@extack: netlink extended ack
8479  */
8480 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8481 			      struct netlink_ext_ack *extack)
8482 {
8483 	struct netdev_notifier_pre_changeaddr_info info = {
8484 		.info.dev = dev,
8485 		.info.extack = extack,
8486 		.dev_addr = addr,
8487 	};
8488 	int rc;
8489 
8490 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8491 	return notifier_to_errno(rc);
8492 }
8493 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8494 
8495 /**
8496  *	dev_set_mac_address - Change Media Access Control Address
8497  *	@dev: device
8498  *	@sa: new address
8499  *	@extack: netlink extended ack
8500  *
8501  *	Change the hardware (MAC) address of the device
8502  */
8503 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8504 			struct netlink_ext_ack *extack)
8505 {
8506 	const struct net_device_ops *ops = dev->netdev_ops;
8507 	int err;
8508 
8509 	if (!ops->ndo_set_mac_address)
8510 		return -EOPNOTSUPP;
8511 	if (sa->sa_family != dev->type)
8512 		return -EINVAL;
8513 	if (!netif_device_present(dev))
8514 		return -ENODEV;
8515 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8516 	if (err)
8517 		return err;
8518 	err = ops->ndo_set_mac_address(dev, sa);
8519 	if (err)
8520 		return err;
8521 	dev->addr_assign_type = NET_ADDR_SET;
8522 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8523 	add_device_randomness(dev->dev_addr, dev->addr_len);
8524 	return 0;
8525 }
8526 EXPORT_SYMBOL(dev_set_mac_address);
8527 
8528 /**
8529  *	dev_change_carrier - Change device carrier
8530  *	@dev: device
8531  *	@new_carrier: new value
8532  *
8533  *	Change device carrier
8534  */
8535 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8536 {
8537 	const struct net_device_ops *ops = dev->netdev_ops;
8538 
8539 	if (!ops->ndo_change_carrier)
8540 		return -EOPNOTSUPP;
8541 	if (!netif_device_present(dev))
8542 		return -ENODEV;
8543 	return ops->ndo_change_carrier(dev, new_carrier);
8544 }
8545 EXPORT_SYMBOL(dev_change_carrier);
8546 
8547 /**
8548  *	dev_get_phys_port_id - Get device physical port ID
8549  *	@dev: device
8550  *	@ppid: port ID
8551  *
8552  *	Get device physical port ID
8553  */
8554 int dev_get_phys_port_id(struct net_device *dev,
8555 			 struct netdev_phys_item_id *ppid)
8556 {
8557 	const struct net_device_ops *ops = dev->netdev_ops;
8558 
8559 	if (!ops->ndo_get_phys_port_id)
8560 		return -EOPNOTSUPP;
8561 	return ops->ndo_get_phys_port_id(dev, ppid);
8562 }
8563 EXPORT_SYMBOL(dev_get_phys_port_id);
8564 
8565 /**
8566  *	dev_get_phys_port_name - Get device physical port name
8567  *	@dev: device
8568  *	@name: port name
8569  *	@len: limit of bytes to copy to name
8570  *
8571  *	Get device physical port name
8572  */
8573 int dev_get_phys_port_name(struct net_device *dev,
8574 			   char *name, size_t len)
8575 {
8576 	const struct net_device_ops *ops = dev->netdev_ops;
8577 	int err;
8578 
8579 	if (ops->ndo_get_phys_port_name) {
8580 		err = ops->ndo_get_phys_port_name(dev, name, len);
8581 		if (err != -EOPNOTSUPP)
8582 			return err;
8583 	}
8584 	return devlink_compat_phys_port_name_get(dev, name, len);
8585 }
8586 EXPORT_SYMBOL(dev_get_phys_port_name);
8587 
8588 /**
8589  *	dev_get_port_parent_id - Get the device's port parent identifier
8590  *	@dev: network device
8591  *	@ppid: pointer to a storage for the port's parent identifier
8592  *	@recurse: allow/disallow recursion to lower devices
8593  *
8594  *	Get the devices's port parent identifier
8595  */
8596 int dev_get_port_parent_id(struct net_device *dev,
8597 			   struct netdev_phys_item_id *ppid,
8598 			   bool recurse)
8599 {
8600 	const struct net_device_ops *ops = dev->netdev_ops;
8601 	struct netdev_phys_item_id first = { };
8602 	struct net_device *lower_dev;
8603 	struct list_head *iter;
8604 	int err;
8605 
8606 	if (ops->ndo_get_port_parent_id) {
8607 		err = ops->ndo_get_port_parent_id(dev, ppid);
8608 		if (err != -EOPNOTSUPP)
8609 			return err;
8610 	}
8611 
8612 	err = devlink_compat_switch_id_get(dev, ppid);
8613 	if (!err || err != -EOPNOTSUPP)
8614 		return err;
8615 
8616 	if (!recurse)
8617 		return -EOPNOTSUPP;
8618 
8619 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8620 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8621 		if (err)
8622 			break;
8623 		if (!first.id_len)
8624 			first = *ppid;
8625 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8626 			return -ENODATA;
8627 	}
8628 
8629 	return err;
8630 }
8631 EXPORT_SYMBOL(dev_get_port_parent_id);
8632 
8633 /**
8634  *	netdev_port_same_parent_id - Indicate if two network devices have
8635  *	the same port parent identifier
8636  *	@a: first network device
8637  *	@b: second network device
8638  */
8639 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8640 {
8641 	struct netdev_phys_item_id a_id = { };
8642 	struct netdev_phys_item_id b_id = { };
8643 
8644 	if (dev_get_port_parent_id(a, &a_id, true) ||
8645 	    dev_get_port_parent_id(b, &b_id, true))
8646 		return false;
8647 
8648 	return netdev_phys_item_id_same(&a_id, &b_id);
8649 }
8650 EXPORT_SYMBOL(netdev_port_same_parent_id);
8651 
8652 /**
8653  *	dev_change_proto_down - update protocol port state information
8654  *	@dev: device
8655  *	@proto_down: new value
8656  *
8657  *	This info can be used by switch drivers to set the phys state of the
8658  *	port.
8659  */
8660 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8661 {
8662 	const struct net_device_ops *ops = dev->netdev_ops;
8663 
8664 	if (!ops->ndo_change_proto_down)
8665 		return -EOPNOTSUPP;
8666 	if (!netif_device_present(dev))
8667 		return -ENODEV;
8668 	return ops->ndo_change_proto_down(dev, proto_down);
8669 }
8670 EXPORT_SYMBOL(dev_change_proto_down);
8671 
8672 /**
8673  *	dev_change_proto_down_generic - generic implementation for
8674  * 	ndo_change_proto_down that sets carrier according to
8675  * 	proto_down.
8676  *
8677  *	@dev: device
8678  *	@proto_down: new value
8679  */
8680 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8681 {
8682 	if (proto_down)
8683 		netif_carrier_off(dev);
8684 	else
8685 		netif_carrier_on(dev);
8686 	dev->proto_down = proto_down;
8687 	return 0;
8688 }
8689 EXPORT_SYMBOL(dev_change_proto_down_generic);
8690 
8691 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8692 		    enum bpf_netdev_command cmd)
8693 {
8694 	struct netdev_bpf xdp;
8695 
8696 	if (!bpf_op)
8697 		return 0;
8698 
8699 	memset(&xdp, 0, sizeof(xdp));
8700 	xdp.command = cmd;
8701 
8702 	/* Query must always succeed. */
8703 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8704 
8705 	return xdp.prog_id;
8706 }
8707 
8708 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8709 			   struct netlink_ext_ack *extack, u32 flags,
8710 			   struct bpf_prog *prog)
8711 {
8712 	bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8713 	struct bpf_prog *prev_prog = NULL;
8714 	struct netdev_bpf xdp;
8715 	int err;
8716 
8717 	if (non_hw) {
8718 		prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8719 							   XDP_QUERY_PROG));
8720 		if (IS_ERR(prev_prog))
8721 			prev_prog = NULL;
8722 	}
8723 
8724 	memset(&xdp, 0, sizeof(xdp));
8725 	if (flags & XDP_FLAGS_HW_MODE)
8726 		xdp.command = XDP_SETUP_PROG_HW;
8727 	else
8728 		xdp.command = XDP_SETUP_PROG;
8729 	xdp.extack = extack;
8730 	xdp.flags = flags;
8731 	xdp.prog = prog;
8732 
8733 	err = bpf_op(dev, &xdp);
8734 	if (!err && non_hw)
8735 		bpf_prog_change_xdp(prev_prog, prog);
8736 
8737 	if (prev_prog)
8738 		bpf_prog_put(prev_prog);
8739 
8740 	return err;
8741 }
8742 
8743 static void dev_xdp_uninstall(struct net_device *dev)
8744 {
8745 	struct netdev_bpf xdp;
8746 	bpf_op_t ndo_bpf;
8747 
8748 	/* Remove generic XDP */
8749 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8750 
8751 	/* Remove from the driver */
8752 	ndo_bpf = dev->netdev_ops->ndo_bpf;
8753 	if (!ndo_bpf)
8754 		return;
8755 
8756 	memset(&xdp, 0, sizeof(xdp));
8757 	xdp.command = XDP_QUERY_PROG;
8758 	WARN_ON(ndo_bpf(dev, &xdp));
8759 	if (xdp.prog_id)
8760 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8761 					NULL));
8762 
8763 	/* Remove HW offload */
8764 	memset(&xdp, 0, sizeof(xdp));
8765 	xdp.command = XDP_QUERY_PROG_HW;
8766 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8767 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8768 					NULL));
8769 }
8770 
8771 /**
8772  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
8773  *	@dev: device
8774  *	@extack: netlink extended ack
8775  *	@fd: new program fd or negative value to clear
8776  *	@expected_fd: old program fd that userspace expects to replace or clear
8777  *	@flags: xdp-related flags
8778  *
8779  *	Set or clear a bpf program for a device
8780  */
8781 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8782 		      int fd, int expected_fd, u32 flags)
8783 {
8784 	const struct net_device_ops *ops = dev->netdev_ops;
8785 	enum bpf_netdev_command query;
8786 	u32 prog_id, expected_id = 0;
8787 	bpf_op_t bpf_op, bpf_chk;
8788 	struct bpf_prog *prog;
8789 	bool offload;
8790 	int err;
8791 
8792 	ASSERT_RTNL();
8793 
8794 	offload = flags & XDP_FLAGS_HW_MODE;
8795 	query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8796 
8797 	bpf_op = bpf_chk = ops->ndo_bpf;
8798 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8799 		NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8800 		return -EOPNOTSUPP;
8801 	}
8802 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8803 		bpf_op = generic_xdp_install;
8804 	if (bpf_op == bpf_chk)
8805 		bpf_chk = generic_xdp_install;
8806 
8807 	prog_id = __dev_xdp_query(dev, bpf_op, query);
8808 	if (flags & XDP_FLAGS_REPLACE) {
8809 		if (expected_fd >= 0) {
8810 			prog = bpf_prog_get_type_dev(expected_fd,
8811 						     BPF_PROG_TYPE_XDP,
8812 						     bpf_op == ops->ndo_bpf);
8813 			if (IS_ERR(prog))
8814 				return PTR_ERR(prog);
8815 			expected_id = prog->aux->id;
8816 			bpf_prog_put(prog);
8817 		}
8818 
8819 		if (prog_id != expected_id) {
8820 			NL_SET_ERR_MSG(extack, "Active program does not match expected");
8821 			return -EEXIST;
8822 		}
8823 	}
8824 	if (fd >= 0) {
8825 		if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8826 			NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8827 			return -EEXIST;
8828 		}
8829 
8830 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8831 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8832 			return -EBUSY;
8833 		}
8834 
8835 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8836 					     bpf_op == ops->ndo_bpf);
8837 		if (IS_ERR(prog))
8838 			return PTR_ERR(prog);
8839 
8840 		if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8841 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8842 			bpf_prog_put(prog);
8843 			return -EINVAL;
8844 		}
8845 
8846 		if (prog->expected_attach_type == BPF_XDP_DEVMAP) {
8847 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
8848 			bpf_prog_put(prog);
8849 			return -EINVAL;
8850 		}
8851 
8852 		/* prog->aux->id may be 0 for orphaned device-bound progs */
8853 		if (prog->aux->id && prog->aux->id == prog_id) {
8854 			bpf_prog_put(prog);
8855 			return 0;
8856 		}
8857 	} else {
8858 		if (!prog_id)
8859 			return 0;
8860 		prog = NULL;
8861 	}
8862 
8863 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8864 	if (err < 0 && prog)
8865 		bpf_prog_put(prog);
8866 
8867 	return err;
8868 }
8869 
8870 /**
8871  *	dev_new_index	-	allocate an ifindex
8872  *	@net: the applicable net namespace
8873  *
8874  *	Returns a suitable unique value for a new device interface
8875  *	number.  The caller must hold the rtnl semaphore or the
8876  *	dev_base_lock to be sure it remains unique.
8877  */
8878 static int dev_new_index(struct net *net)
8879 {
8880 	int ifindex = net->ifindex;
8881 
8882 	for (;;) {
8883 		if (++ifindex <= 0)
8884 			ifindex = 1;
8885 		if (!__dev_get_by_index(net, ifindex))
8886 			return net->ifindex = ifindex;
8887 	}
8888 }
8889 
8890 /* Delayed registration/unregisteration */
8891 static LIST_HEAD(net_todo_list);
8892 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8893 
8894 static void net_set_todo(struct net_device *dev)
8895 {
8896 	list_add_tail(&dev->todo_list, &net_todo_list);
8897 	dev_net(dev)->dev_unreg_count++;
8898 }
8899 
8900 static void rollback_registered_many(struct list_head *head)
8901 {
8902 	struct net_device *dev, *tmp;
8903 	LIST_HEAD(close_head);
8904 
8905 	BUG_ON(dev_boot_phase);
8906 	ASSERT_RTNL();
8907 
8908 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8909 		/* Some devices call without registering
8910 		 * for initialization unwind. Remove those
8911 		 * devices and proceed with the remaining.
8912 		 */
8913 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8914 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8915 				 dev->name, dev);
8916 
8917 			WARN_ON(1);
8918 			list_del(&dev->unreg_list);
8919 			continue;
8920 		}
8921 		dev->dismantle = true;
8922 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8923 	}
8924 
8925 	/* If device is running, close it first. */
8926 	list_for_each_entry(dev, head, unreg_list)
8927 		list_add_tail(&dev->close_list, &close_head);
8928 	dev_close_many(&close_head, true);
8929 
8930 	list_for_each_entry(dev, head, unreg_list) {
8931 		/* And unlink it from device chain. */
8932 		unlist_netdevice(dev);
8933 
8934 		dev->reg_state = NETREG_UNREGISTERING;
8935 	}
8936 	flush_all_backlogs();
8937 
8938 	synchronize_net();
8939 
8940 	list_for_each_entry(dev, head, unreg_list) {
8941 		struct sk_buff *skb = NULL;
8942 
8943 		/* Shutdown queueing discipline. */
8944 		dev_shutdown(dev);
8945 
8946 		dev_xdp_uninstall(dev);
8947 
8948 		/* Notify protocols, that we are about to destroy
8949 		 * this device. They should clean all the things.
8950 		 */
8951 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8952 
8953 		if (!dev->rtnl_link_ops ||
8954 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8955 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8956 						     GFP_KERNEL, NULL, 0);
8957 
8958 		/*
8959 		 *	Flush the unicast and multicast chains
8960 		 */
8961 		dev_uc_flush(dev);
8962 		dev_mc_flush(dev);
8963 
8964 		netdev_name_node_alt_flush(dev);
8965 		netdev_name_node_free(dev->name_node);
8966 
8967 		if (dev->netdev_ops->ndo_uninit)
8968 			dev->netdev_ops->ndo_uninit(dev);
8969 
8970 		if (skb)
8971 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8972 
8973 		/* Notifier chain MUST detach us all upper devices. */
8974 		WARN_ON(netdev_has_any_upper_dev(dev));
8975 		WARN_ON(netdev_has_any_lower_dev(dev));
8976 
8977 		/* Remove entries from kobject tree */
8978 		netdev_unregister_kobject(dev);
8979 #ifdef CONFIG_XPS
8980 		/* Remove XPS queueing entries */
8981 		netif_reset_xps_queues_gt(dev, 0);
8982 #endif
8983 	}
8984 
8985 	synchronize_net();
8986 
8987 	list_for_each_entry(dev, head, unreg_list)
8988 		dev_put(dev);
8989 }
8990 
8991 static void rollback_registered(struct net_device *dev)
8992 {
8993 	LIST_HEAD(single);
8994 
8995 	list_add(&dev->unreg_list, &single);
8996 	rollback_registered_many(&single);
8997 	list_del(&single);
8998 }
8999 
9000 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9001 	struct net_device *upper, netdev_features_t features)
9002 {
9003 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9004 	netdev_features_t feature;
9005 	int feature_bit;
9006 
9007 	for_each_netdev_feature(upper_disables, feature_bit) {
9008 		feature = __NETIF_F_BIT(feature_bit);
9009 		if (!(upper->wanted_features & feature)
9010 		    && (features & feature)) {
9011 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9012 				   &feature, upper->name);
9013 			features &= ~feature;
9014 		}
9015 	}
9016 
9017 	return features;
9018 }
9019 
9020 static void netdev_sync_lower_features(struct net_device *upper,
9021 	struct net_device *lower, netdev_features_t features)
9022 {
9023 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9024 	netdev_features_t feature;
9025 	int feature_bit;
9026 
9027 	for_each_netdev_feature(upper_disables, feature_bit) {
9028 		feature = __NETIF_F_BIT(feature_bit);
9029 		if (!(features & feature) && (lower->features & feature)) {
9030 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9031 				   &feature, lower->name);
9032 			lower->wanted_features &= ~feature;
9033 			__netdev_update_features(lower);
9034 
9035 			if (unlikely(lower->features & feature))
9036 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9037 					    &feature, lower->name);
9038 			else
9039 				netdev_features_change(lower);
9040 		}
9041 	}
9042 }
9043 
9044 static netdev_features_t netdev_fix_features(struct net_device *dev,
9045 	netdev_features_t features)
9046 {
9047 	/* Fix illegal checksum combinations */
9048 	if ((features & NETIF_F_HW_CSUM) &&
9049 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9050 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9051 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9052 	}
9053 
9054 	/* TSO requires that SG is present as well. */
9055 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9056 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9057 		features &= ~NETIF_F_ALL_TSO;
9058 	}
9059 
9060 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9061 					!(features & NETIF_F_IP_CSUM)) {
9062 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9063 		features &= ~NETIF_F_TSO;
9064 		features &= ~NETIF_F_TSO_ECN;
9065 	}
9066 
9067 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9068 					 !(features & NETIF_F_IPV6_CSUM)) {
9069 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9070 		features &= ~NETIF_F_TSO6;
9071 	}
9072 
9073 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9074 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9075 		features &= ~NETIF_F_TSO_MANGLEID;
9076 
9077 	/* TSO ECN requires that TSO is present as well. */
9078 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9079 		features &= ~NETIF_F_TSO_ECN;
9080 
9081 	/* Software GSO depends on SG. */
9082 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9083 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9084 		features &= ~NETIF_F_GSO;
9085 	}
9086 
9087 	/* GSO partial features require GSO partial be set */
9088 	if ((features & dev->gso_partial_features) &&
9089 	    !(features & NETIF_F_GSO_PARTIAL)) {
9090 		netdev_dbg(dev,
9091 			   "Dropping partially supported GSO features since no GSO partial.\n");
9092 		features &= ~dev->gso_partial_features;
9093 	}
9094 
9095 	if (!(features & NETIF_F_RXCSUM)) {
9096 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9097 		 * successfully merged by hardware must also have the
9098 		 * checksum verified by hardware.  If the user does not
9099 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9100 		 */
9101 		if (features & NETIF_F_GRO_HW) {
9102 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9103 			features &= ~NETIF_F_GRO_HW;
9104 		}
9105 	}
9106 
9107 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9108 	if (features & NETIF_F_RXFCS) {
9109 		if (features & NETIF_F_LRO) {
9110 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9111 			features &= ~NETIF_F_LRO;
9112 		}
9113 
9114 		if (features & NETIF_F_GRO_HW) {
9115 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9116 			features &= ~NETIF_F_GRO_HW;
9117 		}
9118 	}
9119 
9120 	return features;
9121 }
9122 
9123 int __netdev_update_features(struct net_device *dev)
9124 {
9125 	struct net_device *upper, *lower;
9126 	netdev_features_t features;
9127 	struct list_head *iter;
9128 	int err = -1;
9129 
9130 	ASSERT_RTNL();
9131 
9132 	features = netdev_get_wanted_features(dev);
9133 
9134 	if (dev->netdev_ops->ndo_fix_features)
9135 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9136 
9137 	/* driver might be less strict about feature dependencies */
9138 	features = netdev_fix_features(dev, features);
9139 
9140 	/* some features can't be enabled if they're off an an upper device */
9141 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9142 		features = netdev_sync_upper_features(dev, upper, features);
9143 
9144 	if (dev->features == features)
9145 		goto sync_lower;
9146 
9147 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9148 		&dev->features, &features);
9149 
9150 	if (dev->netdev_ops->ndo_set_features)
9151 		err = dev->netdev_ops->ndo_set_features(dev, features);
9152 	else
9153 		err = 0;
9154 
9155 	if (unlikely(err < 0)) {
9156 		netdev_err(dev,
9157 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9158 			err, &features, &dev->features);
9159 		/* return non-0 since some features might have changed and
9160 		 * it's better to fire a spurious notification than miss it
9161 		 */
9162 		return -1;
9163 	}
9164 
9165 sync_lower:
9166 	/* some features must be disabled on lower devices when disabled
9167 	 * on an upper device (think: bonding master or bridge)
9168 	 */
9169 	netdev_for_each_lower_dev(dev, lower, iter)
9170 		netdev_sync_lower_features(dev, lower, features);
9171 
9172 	if (!err) {
9173 		netdev_features_t diff = features ^ dev->features;
9174 
9175 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9176 			/* udp_tunnel_{get,drop}_rx_info both need
9177 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9178 			 * device, or they won't do anything.
9179 			 * Thus we need to update dev->features
9180 			 * *before* calling udp_tunnel_get_rx_info,
9181 			 * but *after* calling udp_tunnel_drop_rx_info.
9182 			 */
9183 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9184 				dev->features = features;
9185 				udp_tunnel_get_rx_info(dev);
9186 			} else {
9187 				udp_tunnel_drop_rx_info(dev);
9188 			}
9189 		}
9190 
9191 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9192 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9193 				dev->features = features;
9194 				err |= vlan_get_rx_ctag_filter_info(dev);
9195 			} else {
9196 				vlan_drop_rx_ctag_filter_info(dev);
9197 			}
9198 		}
9199 
9200 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9201 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9202 				dev->features = features;
9203 				err |= vlan_get_rx_stag_filter_info(dev);
9204 			} else {
9205 				vlan_drop_rx_stag_filter_info(dev);
9206 			}
9207 		}
9208 
9209 		dev->features = features;
9210 	}
9211 
9212 	return err < 0 ? 0 : 1;
9213 }
9214 
9215 /**
9216  *	netdev_update_features - recalculate device features
9217  *	@dev: the device to check
9218  *
9219  *	Recalculate dev->features set and send notifications if it
9220  *	has changed. Should be called after driver or hardware dependent
9221  *	conditions might have changed that influence the features.
9222  */
9223 void netdev_update_features(struct net_device *dev)
9224 {
9225 	if (__netdev_update_features(dev))
9226 		netdev_features_change(dev);
9227 }
9228 EXPORT_SYMBOL(netdev_update_features);
9229 
9230 /**
9231  *	netdev_change_features - recalculate device features
9232  *	@dev: the device to check
9233  *
9234  *	Recalculate dev->features set and send notifications even
9235  *	if they have not changed. Should be called instead of
9236  *	netdev_update_features() if also dev->vlan_features might
9237  *	have changed to allow the changes to be propagated to stacked
9238  *	VLAN devices.
9239  */
9240 void netdev_change_features(struct net_device *dev)
9241 {
9242 	__netdev_update_features(dev);
9243 	netdev_features_change(dev);
9244 }
9245 EXPORT_SYMBOL(netdev_change_features);
9246 
9247 /**
9248  *	netif_stacked_transfer_operstate -	transfer operstate
9249  *	@rootdev: the root or lower level device to transfer state from
9250  *	@dev: the device to transfer operstate to
9251  *
9252  *	Transfer operational state from root to device. This is normally
9253  *	called when a stacking relationship exists between the root
9254  *	device and the device(a leaf device).
9255  */
9256 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9257 					struct net_device *dev)
9258 {
9259 	if (rootdev->operstate == IF_OPER_DORMANT)
9260 		netif_dormant_on(dev);
9261 	else
9262 		netif_dormant_off(dev);
9263 
9264 	if (rootdev->operstate == IF_OPER_TESTING)
9265 		netif_testing_on(dev);
9266 	else
9267 		netif_testing_off(dev);
9268 
9269 	if (netif_carrier_ok(rootdev))
9270 		netif_carrier_on(dev);
9271 	else
9272 		netif_carrier_off(dev);
9273 }
9274 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9275 
9276 static int netif_alloc_rx_queues(struct net_device *dev)
9277 {
9278 	unsigned int i, count = dev->num_rx_queues;
9279 	struct netdev_rx_queue *rx;
9280 	size_t sz = count * sizeof(*rx);
9281 	int err = 0;
9282 
9283 	BUG_ON(count < 1);
9284 
9285 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9286 	if (!rx)
9287 		return -ENOMEM;
9288 
9289 	dev->_rx = rx;
9290 
9291 	for (i = 0; i < count; i++) {
9292 		rx[i].dev = dev;
9293 
9294 		/* XDP RX-queue setup */
9295 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9296 		if (err < 0)
9297 			goto err_rxq_info;
9298 	}
9299 	return 0;
9300 
9301 err_rxq_info:
9302 	/* Rollback successful reg's and free other resources */
9303 	while (i--)
9304 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9305 	kvfree(dev->_rx);
9306 	dev->_rx = NULL;
9307 	return err;
9308 }
9309 
9310 static void netif_free_rx_queues(struct net_device *dev)
9311 {
9312 	unsigned int i, count = dev->num_rx_queues;
9313 
9314 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9315 	if (!dev->_rx)
9316 		return;
9317 
9318 	for (i = 0; i < count; i++)
9319 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9320 
9321 	kvfree(dev->_rx);
9322 }
9323 
9324 static void netdev_init_one_queue(struct net_device *dev,
9325 				  struct netdev_queue *queue, void *_unused)
9326 {
9327 	/* Initialize queue lock */
9328 	spin_lock_init(&queue->_xmit_lock);
9329 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9330 	queue->xmit_lock_owner = -1;
9331 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9332 	queue->dev = dev;
9333 #ifdef CONFIG_BQL
9334 	dql_init(&queue->dql, HZ);
9335 #endif
9336 }
9337 
9338 static void netif_free_tx_queues(struct net_device *dev)
9339 {
9340 	kvfree(dev->_tx);
9341 }
9342 
9343 static int netif_alloc_netdev_queues(struct net_device *dev)
9344 {
9345 	unsigned int count = dev->num_tx_queues;
9346 	struct netdev_queue *tx;
9347 	size_t sz = count * sizeof(*tx);
9348 
9349 	if (count < 1 || count > 0xffff)
9350 		return -EINVAL;
9351 
9352 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9353 	if (!tx)
9354 		return -ENOMEM;
9355 
9356 	dev->_tx = tx;
9357 
9358 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9359 	spin_lock_init(&dev->tx_global_lock);
9360 
9361 	return 0;
9362 }
9363 
9364 void netif_tx_stop_all_queues(struct net_device *dev)
9365 {
9366 	unsigned int i;
9367 
9368 	for (i = 0; i < dev->num_tx_queues; i++) {
9369 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9370 
9371 		netif_tx_stop_queue(txq);
9372 	}
9373 }
9374 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9375 
9376 void netdev_update_lockdep_key(struct net_device *dev)
9377 {
9378 	lockdep_unregister_key(&dev->addr_list_lock_key);
9379 	lockdep_register_key(&dev->addr_list_lock_key);
9380 
9381 	lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9382 }
9383 EXPORT_SYMBOL(netdev_update_lockdep_key);
9384 
9385 /**
9386  *	register_netdevice	- register a network device
9387  *	@dev: device to register
9388  *
9389  *	Take a completed network device structure and add it to the kernel
9390  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9391  *	chain. 0 is returned on success. A negative errno code is returned
9392  *	on a failure to set up the device, or if the name is a duplicate.
9393  *
9394  *	Callers must hold the rtnl semaphore. You may want
9395  *	register_netdev() instead of this.
9396  *
9397  *	BUGS:
9398  *	The locking appears insufficient to guarantee two parallel registers
9399  *	will not get the same name.
9400  */
9401 
9402 int register_netdevice(struct net_device *dev)
9403 {
9404 	int ret;
9405 	struct net *net = dev_net(dev);
9406 
9407 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9408 		     NETDEV_FEATURE_COUNT);
9409 	BUG_ON(dev_boot_phase);
9410 	ASSERT_RTNL();
9411 
9412 	might_sleep();
9413 
9414 	/* When net_device's are persistent, this will be fatal. */
9415 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9416 	BUG_ON(!net);
9417 
9418 	ret = ethtool_check_ops(dev->ethtool_ops);
9419 	if (ret)
9420 		return ret;
9421 
9422 	spin_lock_init(&dev->addr_list_lock);
9423 	lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9424 
9425 	ret = dev_get_valid_name(net, dev, dev->name);
9426 	if (ret < 0)
9427 		goto out;
9428 
9429 	ret = -ENOMEM;
9430 	dev->name_node = netdev_name_node_head_alloc(dev);
9431 	if (!dev->name_node)
9432 		goto out;
9433 
9434 	/* Init, if this function is available */
9435 	if (dev->netdev_ops->ndo_init) {
9436 		ret = dev->netdev_ops->ndo_init(dev);
9437 		if (ret) {
9438 			if (ret > 0)
9439 				ret = -EIO;
9440 			goto err_free_name;
9441 		}
9442 	}
9443 
9444 	if (((dev->hw_features | dev->features) &
9445 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9446 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9447 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9448 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9449 		ret = -EINVAL;
9450 		goto err_uninit;
9451 	}
9452 
9453 	ret = -EBUSY;
9454 	if (!dev->ifindex)
9455 		dev->ifindex = dev_new_index(net);
9456 	else if (__dev_get_by_index(net, dev->ifindex))
9457 		goto err_uninit;
9458 
9459 	/* Transfer changeable features to wanted_features and enable
9460 	 * software offloads (GSO and GRO).
9461 	 */
9462 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9463 	dev->features |= NETIF_F_SOFT_FEATURES;
9464 
9465 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
9466 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9467 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9468 	}
9469 
9470 	dev->wanted_features = dev->features & dev->hw_features;
9471 
9472 	if (!(dev->flags & IFF_LOOPBACK))
9473 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9474 
9475 	/* If IPv4 TCP segmentation offload is supported we should also
9476 	 * allow the device to enable segmenting the frame with the option
9477 	 * of ignoring a static IP ID value.  This doesn't enable the
9478 	 * feature itself but allows the user to enable it later.
9479 	 */
9480 	if (dev->hw_features & NETIF_F_TSO)
9481 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9482 	if (dev->vlan_features & NETIF_F_TSO)
9483 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9484 	if (dev->mpls_features & NETIF_F_TSO)
9485 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9486 	if (dev->hw_enc_features & NETIF_F_TSO)
9487 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9488 
9489 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9490 	 */
9491 	dev->vlan_features |= NETIF_F_HIGHDMA;
9492 
9493 	/* Make NETIF_F_SG inheritable to tunnel devices.
9494 	 */
9495 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9496 
9497 	/* Make NETIF_F_SG inheritable to MPLS.
9498 	 */
9499 	dev->mpls_features |= NETIF_F_SG;
9500 
9501 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9502 	ret = notifier_to_errno(ret);
9503 	if (ret)
9504 		goto err_uninit;
9505 
9506 	ret = netdev_register_kobject(dev);
9507 	if (ret) {
9508 		dev->reg_state = NETREG_UNREGISTERED;
9509 		goto err_uninit;
9510 	}
9511 	dev->reg_state = NETREG_REGISTERED;
9512 
9513 	__netdev_update_features(dev);
9514 
9515 	/*
9516 	 *	Default initial state at registry is that the
9517 	 *	device is present.
9518 	 */
9519 
9520 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9521 
9522 	linkwatch_init_dev(dev);
9523 
9524 	dev_init_scheduler(dev);
9525 	dev_hold(dev);
9526 	list_netdevice(dev);
9527 	add_device_randomness(dev->dev_addr, dev->addr_len);
9528 
9529 	/* If the device has permanent device address, driver should
9530 	 * set dev_addr and also addr_assign_type should be set to
9531 	 * NET_ADDR_PERM (default value).
9532 	 */
9533 	if (dev->addr_assign_type == NET_ADDR_PERM)
9534 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9535 
9536 	/* Notify protocols, that a new device appeared. */
9537 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9538 	ret = notifier_to_errno(ret);
9539 	if (ret) {
9540 		rollback_registered(dev);
9541 		rcu_barrier();
9542 
9543 		dev->reg_state = NETREG_UNREGISTERED;
9544 	}
9545 	/*
9546 	 *	Prevent userspace races by waiting until the network
9547 	 *	device is fully setup before sending notifications.
9548 	 */
9549 	if (!dev->rtnl_link_ops ||
9550 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9551 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9552 
9553 out:
9554 	return ret;
9555 
9556 err_uninit:
9557 	if (dev->netdev_ops->ndo_uninit)
9558 		dev->netdev_ops->ndo_uninit(dev);
9559 	if (dev->priv_destructor)
9560 		dev->priv_destructor(dev);
9561 err_free_name:
9562 	netdev_name_node_free(dev->name_node);
9563 	goto out;
9564 }
9565 EXPORT_SYMBOL(register_netdevice);
9566 
9567 /**
9568  *	init_dummy_netdev	- init a dummy network device for NAPI
9569  *	@dev: device to init
9570  *
9571  *	This takes a network device structure and initialize the minimum
9572  *	amount of fields so it can be used to schedule NAPI polls without
9573  *	registering a full blown interface. This is to be used by drivers
9574  *	that need to tie several hardware interfaces to a single NAPI
9575  *	poll scheduler due to HW limitations.
9576  */
9577 int init_dummy_netdev(struct net_device *dev)
9578 {
9579 	/* Clear everything. Note we don't initialize spinlocks
9580 	 * are they aren't supposed to be taken by any of the
9581 	 * NAPI code and this dummy netdev is supposed to be
9582 	 * only ever used for NAPI polls
9583 	 */
9584 	memset(dev, 0, sizeof(struct net_device));
9585 
9586 	/* make sure we BUG if trying to hit standard
9587 	 * register/unregister code path
9588 	 */
9589 	dev->reg_state = NETREG_DUMMY;
9590 
9591 	/* NAPI wants this */
9592 	INIT_LIST_HEAD(&dev->napi_list);
9593 
9594 	/* a dummy interface is started by default */
9595 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9596 	set_bit(__LINK_STATE_START, &dev->state);
9597 
9598 	/* napi_busy_loop stats accounting wants this */
9599 	dev_net_set(dev, &init_net);
9600 
9601 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
9602 	 * because users of this 'device' dont need to change
9603 	 * its refcount.
9604 	 */
9605 
9606 	return 0;
9607 }
9608 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9609 
9610 
9611 /**
9612  *	register_netdev	- register a network device
9613  *	@dev: device to register
9614  *
9615  *	Take a completed network device structure and add it to the kernel
9616  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9617  *	chain. 0 is returned on success. A negative errno code is returned
9618  *	on a failure to set up the device, or if the name is a duplicate.
9619  *
9620  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
9621  *	and expands the device name if you passed a format string to
9622  *	alloc_netdev.
9623  */
9624 int register_netdev(struct net_device *dev)
9625 {
9626 	int err;
9627 
9628 	if (rtnl_lock_killable())
9629 		return -EINTR;
9630 	err = register_netdevice(dev);
9631 	rtnl_unlock();
9632 	return err;
9633 }
9634 EXPORT_SYMBOL(register_netdev);
9635 
9636 int netdev_refcnt_read(const struct net_device *dev)
9637 {
9638 	int i, refcnt = 0;
9639 
9640 	for_each_possible_cpu(i)
9641 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9642 	return refcnt;
9643 }
9644 EXPORT_SYMBOL(netdev_refcnt_read);
9645 
9646 /**
9647  * netdev_wait_allrefs - wait until all references are gone.
9648  * @dev: target net_device
9649  *
9650  * This is called when unregistering network devices.
9651  *
9652  * Any protocol or device that holds a reference should register
9653  * for netdevice notification, and cleanup and put back the
9654  * reference if they receive an UNREGISTER event.
9655  * We can get stuck here if buggy protocols don't correctly
9656  * call dev_put.
9657  */
9658 static void netdev_wait_allrefs(struct net_device *dev)
9659 {
9660 	unsigned long rebroadcast_time, warning_time;
9661 	int refcnt;
9662 
9663 	linkwatch_forget_dev(dev);
9664 
9665 	rebroadcast_time = warning_time = jiffies;
9666 	refcnt = netdev_refcnt_read(dev);
9667 
9668 	while (refcnt != 0) {
9669 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9670 			rtnl_lock();
9671 
9672 			/* Rebroadcast unregister notification */
9673 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9674 
9675 			__rtnl_unlock();
9676 			rcu_barrier();
9677 			rtnl_lock();
9678 
9679 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9680 				     &dev->state)) {
9681 				/* We must not have linkwatch events
9682 				 * pending on unregister. If this
9683 				 * happens, we simply run the queue
9684 				 * unscheduled, resulting in a noop
9685 				 * for this device.
9686 				 */
9687 				linkwatch_run_queue();
9688 			}
9689 
9690 			__rtnl_unlock();
9691 
9692 			rebroadcast_time = jiffies;
9693 		}
9694 
9695 		msleep(250);
9696 
9697 		refcnt = netdev_refcnt_read(dev);
9698 
9699 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9700 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9701 				 dev->name, refcnt);
9702 			warning_time = jiffies;
9703 		}
9704 	}
9705 }
9706 
9707 /* The sequence is:
9708  *
9709  *	rtnl_lock();
9710  *	...
9711  *	register_netdevice(x1);
9712  *	register_netdevice(x2);
9713  *	...
9714  *	unregister_netdevice(y1);
9715  *	unregister_netdevice(y2);
9716  *      ...
9717  *	rtnl_unlock();
9718  *	free_netdev(y1);
9719  *	free_netdev(y2);
9720  *
9721  * We are invoked by rtnl_unlock().
9722  * This allows us to deal with problems:
9723  * 1) We can delete sysfs objects which invoke hotplug
9724  *    without deadlocking with linkwatch via keventd.
9725  * 2) Since we run with the RTNL semaphore not held, we can sleep
9726  *    safely in order to wait for the netdev refcnt to drop to zero.
9727  *
9728  * We must not return until all unregister events added during
9729  * the interval the lock was held have been completed.
9730  */
9731 void netdev_run_todo(void)
9732 {
9733 	struct list_head list;
9734 
9735 	/* Snapshot list, allow later requests */
9736 	list_replace_init(&net_todo_list, &list);
9737 
9738 	__rtnl_unlock();
9739 
9740 
9741 	/* Wait for rcu callbacks to finish before next phase */
9742 	if (!list_empty(&list))
9743 		rcu_barrier();
9744 
9745 	while (!list_empty(&list)) {
9746 		struct net_device *dev
9747 			= list_first_entry(&list, struct net_device, todo_list);
9748 		list_del(&dev->todo_list);
9749 
9750 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9751 			pr_err("network todo '%s' but state %d\n",
9752 			       dev->name, dev->reg_state);
9753 			dump_stack();
9754 			continue;
9755 		}
9756 
9757 		dev->reg_state = NETREG_UNREGISTERED;
9758 
9759 		netdev_wait_allrefs(dev);
9760 
9761 		/* paranoia */
9762 		BUG_ON(netdev_refcnt_read(dev));
9763 		BUG_ON(!list_empty(&dev->ptype_all));
9764 		BUG_ON(!list_empty(&dev->ptype_specific));
9765 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
9766 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9767 #if IS_ENABLED(CONFIG_DECNET)
9768 		WARN_ON(dev->dn_ptr);
9769 #endif
9770 		if (dev->priv_destructor)
9771 			dev->priv_destructor(dev);
9772 		if (dev->needs_free_netdev)
9773 			free_netdev(dev);
9774 
9775 		/* Report a network device has been unregistered */
9776 		rtnl_lock();
9777 		dev_net(dev)->dev_unreg_count--;
9778 		__rtnl_unlock();
9779 		wake_up(&netdev_unregistering_wq);
9780 
9781 		/* Free network device */
9782 		kobject_put(&dev->dev.kobj);
9783 	}
9784 }
9785 
9786 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9787  * all the same fields in the same order as net_device_stats, with only
9788  * the type differing, but rtnl_link_stats64 may have additional fields
9789  * at the end for newer counters.
9790  */
9791 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9792 			     const struct net_device_stats *netdev_stats)
9793 {
9794 #if BITS_PER_LONG == 64
9795 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9796 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9797 	/* zero out counters that only exist in rtnl_link_stats64 */
9798 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9799 	       sizeof(*stats64) - sizeof(*netdev_stats));
9800 #else
9801 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9802 	const unsigned long *src = (const unsigned long *)netdev_stats;
9803 	u64 *dst = (u64 *)stats64;
9804 
9805 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9806 	for (i = 0; i < n; i++)
9807 		dst[i] = src[i];
9808 	/* zero out counters that only exist in rtnl_link_stats64 */
9809 	memset((char *)stats64 + n * sizeof(u64), 0,
9810 	       sizeof(*stats64) - n * sizeof(u64));
9811 #endif
9812 }
9813 EXPORT_SYMBOL(netdev_stats_to_stats64);
9814 
9815 /**
9816  *	dev_get_stats	- get network device statistics
9817  *	@dev: device to get statistics from
9818  *	@storage: place to store stats
9819  *
9820  *	Get network statistics from device. Return @storage.
9821  *	The device driver may provide its own method by setting
9822  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9823  *	otherwise the internal statistics structure is used.
9824  */
9825 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9826 					struct rtnl_link_stats64 *storage)
9827 {
9828 	const struct net_device_ops *ops = dev->netdev_ops;
9829 
9830 	if (ops->ndo_get_stats64) {
9831 		memset(storage, 0, sizeof(*storage));
9832 		ops->ndo_get_stats64(dev, storage);
9833 	} else if (ops->ndo_get_stats) {
9834 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9835 	} else {
9836 		netdev_stats_to_stats64(storage, &dev->stats);
9837 	}
9838 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9839 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9840 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9841 	return storage;
9842 }
9843 EXPORT_SYMBOL(dev_get_stats);
9844 
9845 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9846 {
9847 	struct netdev_queue *queue = dev_ingress_queue(dev);
9848 
9849 #ifdef CONFIG_NET_CLS_ACT
9850 	if (queue)
9851 		return queue;
9852 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9853 	if (!queue)
9854 		return NULL;
9855 	netdev_init_one_queue(dev, queue, NULL);
9856 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9857 	queue->qdisc_sleeping = &noop_qdisc;
9858 	rcu_assign_pointer(dev->ingress_queue, queue);
9859 #endif
9860 	return queue;
9861 }
9862 
9863 static const struct ethtool_ops default_ethtool_ops;
9864 
9865 void netdev_set_default_ethtool_ops(struct net_device *dev,
9866 				    const struct ethtool_ops *ops)
9867 {
9868 	if (dev->ethtool_ops == &default_ethtool_ops)
9869 		dev->ethtool_ops = ops;
9870 }
9871 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9872 
9873 void netdev_freemem(struct net_device *dev)
9874 {
9875 	char *addr = (char *)dev - dev->padded;
9876 
9877 	kvfree(addr);
9878 }
9879 
9880 /**
9881  * alloc_netdev_mqs - allocate network device
9882  * @sizeof_priv: size of private data to allocate space for
9883  * @name: device name format string
9884  * @name_assign_type: origin of device name
9885  * @setup: callback to initialize device
9886  * @txqs: the number of TX subqueues to allocate
9887  * @rxqs: the number of RX subqueues to allocate
9888  *
9889  * Allocates a struct net_device with private data area for driver use
9890  * and performs basic initialization.  Also allocates subqueue structs
9891  * for each queue on the device.
9892  */
9893 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9894 		unsigned char name_assign_type,
9895 		void (*setup)(struct net_device *),
9896 		unsigned int txqs, unsigned int rxqs)
9897 {
9898 	struct net_device *dev;
9899 	unsigned int alloc_size;
9900 	struct net_device *p;
9901 
9902 	BUG_ON(strlen(name) >= sizeof(dev->name));
9903 
9904 	if (txqs < 1) {
9905 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9906 		return NULL;
9907 	}
9908 
9909 	if (rxqs < 1) {
9910 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9911 		return NULL;
9912 	}
9913 
9914 	alloc_size = sizeof(struct net_device);
9915 	if (sizeof_priv) {
9916 		/* ensure 32-byte alignment of private area */
9917 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9918 		alloc_size += sizeof_priv;
9919 	}
9920 	/* ensure 32-byte alignment of whole construct */
9921 	alloc_size += NETDEV_ALIGN - 1;
9922 
9923 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9924 	if (!p)
9925 		return NULL;
9926 
9927 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
9928 	dev->padded = (char *)dev - (char *)p;
9929 
9930 	dev->pcpu_refcnt = alloc_percpu(int);
9931 	if (!dev->pcpu_refcnt)
9932 		goto free_dev;
9933 
9934 	if (dev_addr_init(dev))
9935 		goto free_pcpu;
9936 
9937 	dev_mc_init(dev);
9938 	dev_uc_init(dev);
9939 
9940 	dev_net_set(dev, &init_net);
9941 
9942 	lockdep_register_key(&dev->addr_list_lock_key);
9943 
9944 	dev->gso_max_size = GSO_MAX_SIZE;
9945 	dev->gso_max_segs = GSO_MAX_SEGS;
9946 	dev->upper_level = 1;
9947 	dev->lower_level = 1;
9948 
9949 	INIT_LIST_HEAD(&dev->napi_list);
9950 	INIT_LIST_HEAD(&dev->unreg_list);
9951 	INIT_LIST_HEAD(&dev->close_list);
9952 	INIT_LIST_HEAD(&dev->link_watch_list);
9953 	INIT_LIST_HEAD(&dev->adj_list.upper);
9954 	INIT_LIST_HEAD(&dev->adj_list.lower);
9955 	INIT_LIST_HEAD(&dev->ptype_all);
9956 	INIT_LIST_HEAD(&dev->ptype_specific);
9957 	INIT_LIST_HEAD(&dev->net_notifier_list);
9958 #ifdef CONFIG_NET_SCHED
9959 	hash_init(dev->qdisc_hash);
9960 #endif
9961 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9962 	setup(dev);
9963 
9964 	if (!dev->tx_queue_len) {
9965 		dev->priv_flags |= IFF_NO_QUEUE;
9966 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9967 	}
9968 
9969 	dev->num_tx_queues = txqs;
9970 	dev->real_num_tx_queues = txqs;
9971 	if (netif_alloc_netdev_queues(dev))
9972 		goto free_all;
9973 
9974 	dev->num_rx_queues = rxqs;
9975 	dev->real_num_rx_queues = rxqs;
9976 	if (netif_alloc_rx_queues(dev))
9977 		goto free_all;
9978 
9979 	strcpy(dev->name, name);
9980 	dev->name_assign_type = name_assign_type;
9981 	dev->group = INIT_NETDEV_GROUP;
9982 	if (!dev->ethtool_ops)
9983 		dev->ethtool_ops = &default_ethtool_ops;
9984 
9985 	nf_hook_ingress_init(dev);
9986 
9987 	return dev;
9988 
9989 free_all:
9990 	free_netdev(dev);
9991 	return NULL;
9992 
9993 free_pcpu:
9994 	free_percpu(dev->pcpu_refcnt);
9995 free_dev:
9996 	netdev_freemem(dev);
9997 	return NULL;
9998 }
9999 EXPORT_SYMBOL(alloc_netdev_mqs);
10000 
10001 /**
10002  * free_netdev - free network device
10003  * @dev: device
10004  *
10005  * This function does the last stage of destroying an allocated device
10006  * interface. The reference to the device object is released. If this
10007  * is the last reference then it will be freed.Must be called in process
10008  * context.
10009  */
10010 void free_netdev(struct net_device *dev)
10011 {
10012 	struct napi_struct *p, *n;
10013 
10014 	might_sleep();
10015 	netif_free_tx_queues(dev);
10016 	netif_free_rx_queues(dev);
10017 
10018 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10019 
10020 	/* Flush device addresses */
10021 	dev_addr_flush(dev);
10022 
10023 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10024 		netif_napi_del(p);
10025 
10026 	free_percpu(dev->pcpu_refcnt);
10027 	dev->pcpu_refcnt = NULL;
10028 	free_percpu(dev->xdp_bulkq);
10029 	dev->xdp_bulkq = NULL;
10030 
10031 	lockdep_unregister_key(&dev->addr_list_lock_key);
10032 
10033 	/*  Compatibility with error handling in drivers */
10034 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10035 		netdev_freemem(dev);
10036 		return;
10037 	}
10038 
10039 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10040 	dev->reg_state = NETREG_RELEASED;
10041 
10042 	/* will free via device release */
10043 	put_device(&dev->dev);
10044 }
10045 EXPORT_SYMBOL(free_netdev);
10046 
10047 /**
10048  *	synchronize_net -  Synchronize with packet receive processing
10049  *
10050  *	Wait for packets currently being received to be done.
10051  *	Does not block later packets from starting.
10052  */
10053 void synchronize_net(void)
10054 {
10055 	might_sleep();
10056 	if (rtnl_is_locked())
10057 		synchronize_rcu_expedited();
10058 	else
10059 		synchronize_rcu();
10060 }
10061 EXPORT_SYMBOL(synchronize_net);
10062 
10063 /**
10064  *	unregister_netdevice_queue - remove device from the kernel
10065  *	@dev: device
10066  *	@head: list
10067  *
10068  *	This function shuts down a device interface and removes it
10069  *	from the kernel tables.
10070  *	If head not NULL, device is queued to be unregistered later.
10071  *
10072  *	Callers must hold the rtnl semaphore.  You may want
10073  *	unregister_netdev() instead of this.
10074  */
10075 
10076 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10077 {
10078 	ASSERT_RTNL();
10079 
10080 	if (head) {
10081 		list_move_tail(&dev->unreg_list, head);
10082 	} else {
10083 		rollback_registered(dev);
10084 		/* Finish processing unregister after unlock */
10085 		net_set_todo(dev);
10086 	}
10087 }
10088 EXPORT_SYMBOL(unregister_netdevice_queue);
10089 
10090 /**
10091  *	unregister_netdevice_many - unregister many devices
10092  *	@head: list of devices
10093  *
10094  *  Note: As most callers use a stack allocated list_head,
10095  *  we force a list_del() to make sure stack wont be corrupted later.
10096  */
10097 void unregister_netdevice_many(struct list_head *head)
10098 {
10099 	struct net_device *dev;
10100 
10101 	if (!list_empty(head)) {
10102 		rollback_registered_many(head);
10103 		list_for_each_entry(dev, head, unreg_list)
10104 			net_set_todo(dev);
10105 		list_del(head);
10106 	}
10107 }
10108 EXPORT_SYMBOL(unregister_netdevice_many);
10109 
10110 /**
10111  *	unregister_netdev - remove device from the kernel
10112  *	@dev: device
10113  *
10114  *	This function shuts down a device interface and removes it
10115  *	from the kernel tables.
10116  *
10117  *	This is just a wrapper for unregister_netdevice that takes
10118  *	the rtnl semaphore.  In general you want to use this and not
10119  *	unregister_netdevice.
10120  */
10121 void unregister_netdev(struct net_device *dev)
10122 {
10123 	rtnl_lock();
10124 	unregister_netdevice(dev);
10125 	rtnl_unlock();
10126 }
10127 EXPORT_SYMBOL(unregister_netdev);
10128 
10129 /**
10130  *	dev_change_net_namespace - move device to different nethost namespace
10131  *	@dev: device
10132  *	@net: network namespace
10133  *	@pat: If not NULL name pattern to try if the current device name
10134  *	      is already taken in the destination network namespace.
10135  *
10136  *	This function shuts down a device interface and moves it
10137  *	to a new network namespace. On success 0 is returned, on
10138  *	a failure a netagive errno code is returned.
10139  *
10140  *	Callers must hold the rtnl semaphore.
10141  */
10142 
10143 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10144 {
10145 	struct net *net_old = dev_net(dev);
10146 	int err, new_nsid, new_ifindex;
10147 
10148 	ASSERT_RTNL();
10149 
10150 	/* Don't allow namespace local devices to be moved. */
10151 	err = -EINVAL;
10152 	if (dev->features & NETIF_F_NETNS_LOCAL)
10153 		goto out;
10154 
10155 	/* Ensure the device has been registrered */
10156 	if (dev->reg_state != NETREG_REGISTERED)
10157 		goto out;
10158 
10159 	/* Get out if there is nothing todo */
10160 	err = 0;
10161 	if (net_eq(net_old, net))
10162 		goto out;
10163 
10164 	/* Pick the destination device name, and ensure
10165 	 * we can use it in the destination network namespace.
10166 	 */
10167 	err = -EEXIST;
10168 	if (__dev_get_by_name(net, dev->name)) {
10169 		/* We get here if we can't use the current device name */
10170 		if (!pat)
10171 			goto out;
10172 		err = dev_get_valid_name(net, dev, pat);
10173 		if (err < 0)
10174 			goto out;
10175 	}
10176 
10177 	/*
10178 	 * And now a mini version of register_netdevice unregister_netdevice.
10179 	 */
10180 
10181 	/* If device is running close it first. */
10182 	dev_close(dev);
10183 
10184 	/* And unlink it from device chain */
10185 	unlist_netdevice(dev);
10186 
10187 	synchronize_net();
10188 
10189 	/* Shutdown queueing discipline. */
10190 	dev_shutdown(dev);
10191 
10192 	/* Notify protocols, that we are about to destroy
10193 	 * this device. They should clean all the things.
10194 	 *
10195 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10196 	 * This is wanted because this way 8021q and macvlan know
10197 	 * the device is just moving and can keep their slaves up.
10198 	 */
10199 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10200 	rcu_barrier();
10201 
10202 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10203 	/* If there is an ifindex conflict assign a new one */
10204 	if (__dev_get_by_index(net, dev->ifindex))
10205 		new_ifindex = dev_new_index(net);
10206 	else
10207 		new_ifindex = dev->ifindex;
10208 
10209 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10210 			    new_ifindex);
10211 
10212 	/*
10213 	 *	Flush the unicast and multicast chains
10214 	 */
10215 	dev_uc_flush(dev);
10216 	dev_mc_flush(dev);
10217 
10218 	/* Send a netdev-removed uevent to the old namespace */
10219 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10220 	netdev_adjacent_del_links(dev);
10221 
10222 	/* Move per-net netdevice notifiers that are following the netdevice */
10223 	move_netdevice_notifiers_dev_net(dev, net);
10224 
10225 	/* Actually switch the network namespace */
10226 	dev_net_set(dev, net);
10227 	dev->ifindex = new_ifindex;
10228 
10229 	/* Send a netdev-add uevent to the new namespace */
10230 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10231 	netdev_adjacent_add_links(dev);
10232 
10233 	/* Fixup kobjects */
10234 	err = device_rename(&dev->dev, dev->name);
10235 	WARN_ON(err);
10236 
10237 	/* Adapt owner in case owning user namespace of target network
10238 	 * namespace is different from the original one.
10239 	 */
10240 	err = netdev_change_owner(dev, net_old, net);
10241 	WARN_ON(err);
10242 
10243 	/* Add the device back in the hashes */
10244 	list_netdevice(dev);
10245 
10246 	/* Notify protocols, that a new device appeared. */
10247 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10248 
10249 	/*
10250 	 *	Prevent userspace races by waiting until the network
10251 	 *	device is fully setup before sending notifications.
10252 	 */
10253 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10254 
10255 	synchronize_net();
10256 	err = 0;
10257 out:
10258 	return err;
10259 }
10260 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10261 
10262 static int dev_cpu_dead(unsigned int oldcpu)
10263 {
10264 	struct sk_buff **list_skb;
10265 	struct sk_buff *skb;
10266 	unsigned int cpu;
10267 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10268 
10269 	local_irq_disable();
10270 	cpu = smp_processor_id();
10271 	sd = &per_cpu(softnet_data, cpu);
10272 	oldsd = &per_cpu(softnet_data, oldcpu);
10273 
10274 	/* Find end of our completion_queue. */
10275 	list_skb = &sd->completion_queue;
10276 	while (*list_skb)
10277 		list_skb = &(*list_skb)->next;
10278 	/* Append completion queue from offline CPU. */
10279 	*list_skb = oldsd->completion_queue;
10280 	oldsd->completion_queue = NULL;
10281 
10282 	/* Append output queue from offline CPU. */
10283 	if (oldsd->output_queue) {
10284 		*sd->output_queue_tailp = oldsd->output_queue;
10285 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10286 		oldsd->output_queue = NULL;
10287 		oldsd->output_queue_tailp = &oldsd->output_queue;
10288 	}
10289 	/* Append NAPI poll list from offline CPU, with one exception :
10290 	 * process_backlog() must be called by cpu owning percpu backlog.
10291 	 * We properly handle process_queue & input_pkt_queue later.
10292 	 */
10293 	while (!list_empty(&oldsd->poll_list)) {
10294 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10295 							    struct napi_struct,
10296 							    poll_list);
10297 
10298 		list_del_init(&napi->poll_list);
10299 		if (napi->poll == process_backlog)
10300 			napi->state = 0;
10301 		else
10302 			____napi_schedule(sd, napi);
10303 	}
10304 
10305 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10306 	local_irq_enable();
10307 
10308 #ifdef CONFIG_RPS
10309 	remsd = oldsd->rps_ipi_list;
10310 	oldsd->rps_ipi_list = NULL;
10311 #endif
10312 	/* send out pending IPI's on offline CPU */
10313 	net_rps_send_ipi(remsd);
10314 
10315 	/* Process offline CPU's input_pkt_queue */
10316 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10317 		netif_rx_ni(skb);
10318 		input_queue_head_incr(oldsd);
10319 	}
10320 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10321 		netif_rx_ni(skb);
10322 		input_queue_head_incr(oldsd);
10323 	}
10324 
10325 	return 0;
10326 }
10327 
10328 /**
10329  *	netdev_increment_features - increment feature set by one
10330  *	@all: current feature set
10331  *	@one: new feature set
10332  *	@mask: mask feature set
10333  *
10334  *	Computes a new feature set after adding a device with feature set
10335  *	@one to the master device with current feature set @all.  Will not
10336  *	enable anything that is off in @mask. Returns the new feature set.
10337  */
10338 netdev_features_t netdev_increment_features(netdev_features_t all,
10339 	netdev_features_t one, netdev_features_t mask)
10340 {
10341 	if (mask & NETIF_F_HW_CSUM)
10342 		mask |= NETIF_F_CSUM_MASK;
10343 	mask |= NETIF_F_VLAN_CHALLENGED;
10344 
10345 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10346 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10347 
10348 	/* If one device supports hw checksumming, set for all. */
10349 	if (all & NETIF_F_HW_CSUM)
10350 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10351 
10352 	return all;
10353 }
10354 EXPORT_SYMBOL(netdev_increment_features);
10355 
10356 static struct hlist_head * __net_init netdev_create_hash(void)
10357 {
10358 	int i;
10359 	struct hlist_head *hash;
10360 
10361 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10362 	if (hash != NULL)
10363 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
10364 			INIT_HLIST_HEAD(&hash[i]);
10365 
10366 	return hash;
10367 }
10368 
10369 /* Initialize per network namespace state */
10370 static int __net_init netdev_init(struct net *net)
10371 {
10372 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
10373 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
10374 
10375 	if (net != &init_net)
10376 		INIT_LIST_HEAD(&net->dev_base_head);
10377 
10378 	net->dev_name_head = netdev_create_hash();
10379 	if (net->dev_name_head == NULL)
10380 		goto err_name;
10381 
10382 	net->dev_index_head = netdev_create_hash();
10383 	if (net->dev_index_head == NULL)
10384 		goto err_idx;
10385 
10386 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10387 
10388 	return 0;
10389 
10390 err_idx:
10391 	kfree(net->dev_name_head);
10392 err_name:
10393 	return -ENOMEM;
10394 }
10395 
10396 /**
10397  *	netdev_drivername - network driver for the device
10398  *	@dev: network device
10399  *
10400  *	Determine network driver for device.
10401  */
10402 const char *netdev_drivername(const struct net_device *dev)
10403 {
10404 	const struct device_driver *driver;
10405 	const struct device *parent;
10406 	const char *empty = "";
10407 
10408 	parent = dev->dev.parent;
10409 	if (!parent)
10410 		return empty;
10411 
10412 	driver = parent->driver;
10413 	if (driver && driver->name)
10414 		return driver->name;
10415 	return empty;
10416 }
10417 
10418 static void __netdev_printk(const char *level, const struct net_device *dev,
10419 			    struct va_format *vaf)
10420 {
10421 	if (dev && dev->dev.parent) {
10422 		dev_printk_emit(level[1] - '0',
10423 				dev->dev.parent,
10424 				"%s %s %s%s: %pV",
10425 				dev_driver_string(dev->dev.parent),
10426 				dev_name(dev->dev.parent),
10427 				netdev_name(dev), netdev_reg_state(dev),
10428 				vaf);
10429 	} else if (dev) {
10430 		printk("%s%s%s: %pV",
10431 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
10432 	} else {
10433 		printk("%s(NULL net_device): %pV", level, vaf);
10434 	}
10435 }
10436 
10437 void netdev_printk(const char *level, const struct net_device *dev,
10438 		   const char *format, ...)
10439 {
10440 	struct va_format vaf;
10441 	va_list args;
10442 
10443 	va_start(args, format);
10444 
10445 	vaf.fmt = format;
10446 	vaf.va = &args;
10447 
10448 	__netdev_printk(level, dev, &vaf);
10449 
10450 	va_end(args);
10451 }
10452 EXPORT_SYMBOL(netdev_printk);
10453 
10454 #define define_netdev_printk_level(func, level)			\
10455 void func(const struct net_device *dev, const char *fmt, ...)	\
10456 {								\
10457 	struct va_format vaf;					\
10458 	va_list args;						\
10459 								\
10460 	va_start(args, fmt);					\
10461 								\
10462 	vaf.fmt = fmt;						\
10463 	vaf.va = &args;						\
10464 								\
10465 	__netdev_printk(level, dev, &vaf);			\
10466 								\
10467 	va_end(args);						\
10468 }								\
10469 EXPORT_SYMBOL(func);
10470 
10471 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10472 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10473 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10474 define_netdev_printk_level(netdev_err, KERN_ERR);
10475 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10476 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10477 define_netdev_printk_level(netdev_info, KERN_INFO);
10478 
10479 static void __net_exit netdev_exit(struct net *net)
10480 {
10481 	kfree(net->dev_name_head);
10482 	kfree(net->dev_index_head);
10483 	if (net != &init_net)
10484 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10485 }
10486 
10487 static struct pernet_operations __net_initdata netdev_net_ops = {
10488 	.init = netdev_init,
10489 	.exit = netdev_exit,
10490 };
10491 
10492 static void __net_exit default_device_exit(struct net *net)
10493 {
10494 	struct net_device *dev, *aux;
10495 	/*
10496 	 * Push all migratable network devices back to the
10497 	 * initial network namespace
10498 	 */
10499 	rtnl_lock();
10500 	for_each_netdev_safe(net, dev, aux) {
10501 		int err;
10502 		char fb_name[IFNAMSIZ];
10503 
10504 		/* Ignore unmoveable devices (i.e. loopback) */
10505 		if (dev->features & NETIF_F_NETNS_LOCAL)
10506 			continue;
10507 
10508 		/* Leave virtual devices for the generic cleanup */
10509 		if (dev->rtnl_link_ops)
10510 			continue;
10511 
10512 		/* Push remaining network devices to init_net */
10513 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10514 		if (__dev_get_by_name(&init_net, fb_name))
10515 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
10516 		err = dev_change_net_namespace(dev, &init_net, fb_name);
10517 		if (err) {
10518 			pr_emerg("%s: failed to move %s to init_net: %d\n",
10519 				 __func__, dev->name, err);
10520 			BUG();
10521 		}
10522 	}
10523 	rtnl_unlock();
10524 }
10525 
10526 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10527 {
10528 	/* Return with the rtnl_lock held when there are no network
10529 	 * devices unregistering in any network namespace in net_list.
10530 	 */
10531 	struct net *net;
10532 	bool unregistering;
10533 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
10534 
10535 	add_wait_queue(&netdev_unregistering_wq, &wait);
10536 	for (;;) {
10537 		unregistering = false;
10538 		rtnl_lock();
10539 		list_for_each_entry(net, net_list, exit_list) {
10540 			if (net->dev_unreg_count > 0) {
10541 				unregistering = true;
10542 				break;
10543 			}
10544 		}
10545 		if (!unregistering)
10546 			break;
10547 		__rtnl_unlock();
10548 
10549 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10550 	}
10551 	remove_wait_queue(&netdev_unregistering_wq, &wait);
10552 }
10553 
10554 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10555 {
10556 	/* At exit all network devices most be removed from a network
10557 	 * namespace.  Do this in the reverse order of registration.
10558 	 * Do this across as many network namespaces as possible to
10559 	 * improve batching efficiency.
10560 	 */
10561 	struct net_device *dev;
10562 	struct net *net;
10563 	LIST_HEAD(dev_kill_list);
10564 
10565 	/* To prevent network device cleanup code from dereferencing
10566 	 * loopback devices or network devices that have been freed
10567 	 * wait here for all pending unregistrations to complete,
10568 	 * before unregistring the loopback device and allowing the
10569 	 * network namespace be freed.
10570 	 *
10571 	 * The netdev todo list containing all network devices
10572 	 * unregistrations that happen in default_device_exit_batch
10573 	 * will run in the rtnl_unlock() at the end of
10574 	 * default_device_exit_batch.
10575 	 */
10576 	rtnl_lock_unregistering(net_list);
10577 	list_for_each_entry(net, net_list, exit_list) {
10578 		for_each_netdev_reverse(net, dev) {
10579 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10580 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10581 			else
10582 				unregister_netdevice_queue(dev, &dev_kill_list);
10583 		}
10584 	}
10585 	unregister_netdevice_many(&dev_kill_list);
10586 	rtnl_unlock();
10587 }
10588 
10589 static struct pernet_operations __net_initdata default_device_ops = {
10590 	.exit = default_device_exit,
10591 	.exit_batch = default_device_exit_batch,
10592 };
10593 
10594 /*
10595  *	Initialize the DEV module. At boot time this walks the device list and
10596  *	unhooks any devices that fail to initialise (normally hardware not
10597  *	present) and leaves us with a valid list of present and active devices.
10598  *
10599  */
10600 
10601 /*
10602  *       This is called single threaded during boot, so no need
10603  *       to take the rtnl semaphore.
10604  */
10605 static int __init net_dev_init(void)
10606 {
10607 	int i, rc = -ENOMEM;
10608 
10609 	BUG_ON(!dev_boot_phase);
10610 
10611 	if (dev_proc_init())
10612 		goto out;
10613 
10614 	if (netdev_kobject_init())
10615 		goto out;
10616 
10617 	INIT_LIST_HEAD(&ptype_all);
10618 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
10619 		INIT_LIST_HEAD(&ptype_base[i]);
10620 
10621 	INIT_LIST_HEAD(&offload_base);
10622 
10623 	if (register_pernet_subsys(&netdev_net_ops))
10624 		goto out;
10625 
10626 	/*
10627 	 *	Initialise the packet receive queues.
10628 	 */
10629 
10630 	for_each_possible_cpu(i) {
10631 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10632 		struct softnet_data *sd = &per_cpu(softnet_data, i);
10633 
10634 		INIT_WORK(flush, flush_backlog);
10635 
10636 		skb_queue_head_init(&sd->input_pkt_queue);
10637 		skb_queue_head_init(&sd->process_queue);
10638 #ifdef CONFIG_XFRM_OFFLOAD
10639 		skb_queue_head_init(&sd->xfrm_backlog);
10640 #endif
10641 		INIT_LIST_HEAD(&sd->poll_list);
10642 		sd->output_queue_tailp = &sd->output_queue;
10643 #ifdef CONFIG_RPS
10644 		sd->csd.func = rps_trigger_softirq;
10645 		sd->csd.info = sd;
10646 		sd->cpu = i;
10647 #endif
10648 
10649 		init_gro_hash(&sd->backlog);
10650 		sd->backlog.poll = process_backlog;
10651 		sd->backlog.weight = weight_p;
10652 	}
10653 
10654 	dev_boot_phase = 0;
10655 
10656 	/* The loopback device is special if any other network devices
10657 	 * is present in a network namespace the loopback device must
10658 	 * be present. Since we now dynamically allocate and free the
10659 	 * loopback device ensure this invariant is maintained by
10660 	 * keeping the loopback device as the first device on the
10661 	 * list of network devices.  Ensuring the loopback devices
10662 	 * is the first device that appears and the last network device
10663 	 * that disappears.
10664 	 */
10665 	if (register_pernet_device(&loopback_net_ops))
10666 		goto out;
10667 
10668 	if (register_pernet_device(&default_device_ops))
10669 		goto out;
10670 
10671 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10672 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10673 
10674 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10675 				       NULL, dev_cpu_dead);
10676 	WARN_ON(rc < 0);
10677 	rc = 0;
10678 out:
10679 	return rc;
10680 }
10681 
10682 subsys_initcall(net_dev_init);
10683