xref: /openbmc/linux/net/core/dev.c (revision a13f2ef1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/pkt_cls.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140 #include <linux/crash_dump.h>
141 #include <linux/sctp.h>
142 #include <net/udp_tunnel.h>
143 #include <linux/net_namespace.h>
144 #include <linux/indirect_call_wrapper.h>
145 #include <net/devlink.h>
146 
147 #include "net-sysfs.h"
148 
149 #define MAX_GRO_SKBS 8
150 
151 /* This should be increased if a protocol with a bigger head is added. */
152 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153 
154 static DEFINE_SPINLOCK(ptype_lock);
155 static DEFINE_SPINLOCK(offload_lock);
156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157 struct list_head ptype_all __read_mostly;	/* Taps */
158 static struct list_head offload_base __read_mostly;
159 
160 static int netif_rx_internal(struct sk_buff *skb);
161 static int call_netdevice_notifiers_info(unsigned long val,
162 					 struct netdev_notifier_info *info);
163 static int call_netdevice_notifiers_extack(unsigned long val,
164 					   struct net_device *dev,
165 					   struct netlink_ext_ack *extack);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167 
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189 
190 static DEFINE_MUTEX(ifalias_mutex);
191 
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194 
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197 
198 static DECLARE_RWSEM(devnet_rename_sem);
199 
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202 	while (++net->dev_base_seq == 0)
203 		;
204 }
205 
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209 
210 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212 
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217 
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 	spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224 
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228 	spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231 
232 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
233 						       const char *name)
234 {
235 	struct netdev_name_node *name_node;
236 
237 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
238 	if (!name_node)
239 		return NULL;
240 	INIT_HLIST_NODE(&name_node->hlist);
241 	name_node->dev = dev;
242 	name_node->name = name;
243 	return name_node;
244 }
245 
246 static struct netdev_name_node *
247 netdev_name_node_head_alloc(struct net_device *dev)
248 {
249 	struct netdev_name_node *name_node;
250 
251 	name_node = netdev_name_node_alloc(dev, dev->name);
252 	if (!name_node)
253 		return NULL;
254 	INIT_LIST_HEAD(&name_node->list);
255 	return name_node;
256 }
257 
258 static void netdev_name_node_free(struct netdev_name_node *name_node)
259 {
260 	kfree(name_node);
261 }
262 
263 static void netdev_name_node_add(struct net *net,
264 				 struct netdev_name_node *name_node)
265 {
266 	hlist_add_head_rcu(&name_node->hlist,
267 			   dev_name_hash(net, name_node->name));
268 }
269 
270 static void netdev_name_node_del(struct netdev_name_node *name_node)
271 {
272 	hlist_del_rcu(&name_node->hlist);
273 }
274 
275 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
276 							const char *name)
277 {
278 	struct hlist_head *head = dev_name_hash(net, name);
279 	struct netdev_name_node *name_node;
280 
281 	hlist_for_each_entry(name_node, head, hlist)
282 		if (!strcmp(name_node->name, name))
283 			return name_node;
284 	return NULL;
285 }
286 
287 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
288 							    const char *name)
289 {
290 	struct hlist_head *head = dev_name_hash(net, name);
291 	struct netdev_name_node *name_node;
292 
293 	hlist_for_each_entry_rcu(name_node, head, hlist)
294 		if (!strcmp(name_node->name, name))
295 			return name_node;
296 	return NULL;
297 }
298 
299 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
300 {
301 	struct netdev_name_node *name_node;
302 	struct net *net = dev_net(dev);
303 
304 	name_node = netdev_name_node_lookup(net, name);
305 	if (name_node)
306 		return -EEXIST;
307 	name_node = netdev_name_node_alloc(dev, name);
308 	if (!name_node)
309 		return -ENOMEM;
310 	netdev_name_node_add(net, name_node);
311 	/* The node that holds dev->name acts as a head of per-device list. */
312 	list_add_tail(&name_node->list, &dev->name_node->list);
313 
314 	return 0;
315 }
316 EXPORT_SYMBOL(netdev_name_node_alt_create);
317 
318 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
319 {
320 	list_del(&name_node->list);
321 	netdev_name_node_del(name_node);
322 	kfree(name_node->name);
323 	netdev_name_node_free(name_node);
324 }
325 
326 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
327 {
328 	struct netdev_name_node *name_node;
329 	struct net *net = dev_net(dev);
330 
331 	name_node = netdev_name_node_lookup(net, name);
332 	if (!name_node)
333 		return -ENOENT;
334 	/* lookup might have found our primary name or a name belonging
335 	 * to another device.
336 	 */
337 	if (name_node == dev->name_node || name_node->dev != dev)
338 		return -EINVAL;
339 
340 	__netdev_name_node_alt_destroy(name_node);
341 
342 	return 0;
343 }
344 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
345 
346 static void netdev_name_node_alt_flush(struct net_device *dev)
347 {
348 	struct netdev_name_node *name_node, *tmp;
349 
350 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
351 		__netdev_name_node_alt_destroy(name_node);
352 }
353 
354 /* Device list insertion */
355 static void list_netdevice(struct net_device *dev)
356 {
357 	struct net *net = dev_net(dev);
358 
359 	ASSERT_RTNL();
360 
361 	write_lock_bh(&dev_base_lock);
362 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
363 	netdev_name_node_add(net, dev->name_node);
364 	hlist_add_head_rcu(&dev->index_hlist,
365 			   dev_index_hash(net, dev->ifindex));
366 	write_unlock_bh(&dev_base_lock);
367 
368 	dev_base_seq_inc(net);
369 }
370 
371 /* Device list removal
372  * caller must respect a RCU grace period before freeing/reusing dev
373  */
374 static void unlist_netdevice(struct net_device *dev)
375 {
376 	ASSERT_RTNL();
377 
378 	/* Unlink dev from the device chain */
379 	write_lock_bh(&dev_base_lock);
380 	list_del_rcu(&dev->dev_list);
381 	netdev_name_node_del(dev->name_node);
382 	hlist_del_rcu(&dev->index_hlist);
383 	write_unlock_bh(&dev_base_lock);
384 
385 	dev_base_seq_inc(dev_net(dev));
386 }
387 
388 /*
389  *	Our notifier list
390  */
391 
392 static RAW_NOTIFIER_HEAD(netdev_chain);
393 
394 /*
395  *	Device drivers call our routines to queue packets here. We empty the
396  *	queue in the local softnet handler.
397  */
398 
399 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
400 EXPORT_PER_CPU_SYMBOL(softnet_data);
401 
402 #ifdef CONFIG_LOCKDEP
403 /*
404  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
405  * according to dev->type
406  */
407 static const unsigned short netdev_lock_type[] = {
408 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
409 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
410 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
411 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
412 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
413 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
414 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
415 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
416 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
417 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
418 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
419 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
420 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
421 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
422 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
423 
424 static const char *const netdev_lock_name[] = {
425 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
426 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
427 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
428 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
429 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
430 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
431 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
432 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
433 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
434 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
435 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
436 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
437 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
438 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
439 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
440 
441 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
442 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
443 
444 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
445 {
446 	int i;
447 
448 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
449 		if (netdev_lock_type[i] == dev_type)
450 			return i;
451 	/* the last key is used by default */
452 	return ARRAY_SIZE(netdev_lock_type) - 1;
453 }
454 
455 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
456 						 unsigned short dev_type)
457 {
458 	int i;
459 
460 	i = netdev_lock_pos(dev_type);
461 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
462 				   netdev_lock_name[i]);
463 }
464 
465 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
466 {
467 	int i;
468 
469 	i = netdev_lock_pos(dev->type);
470 	lockdep_set_class_and_name(&dev->addr_list_lock,
471 				   &netdev_addr_lock_key[i],
472 				   netdev_lock_name[i]);
473 }
474 #else
475 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
476 						 unsigned short dev_type)
477 {
478 }
479 
480 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
481 {
482 }
483 #endif
484 
485 /*******************************************************************************
486  *
487  *		Protocol management and registration routines
488  *
489  *******************************************************************************/
490 
491 
492 /*
493  *	Add a protocol ID to the list. Now that the input handler is
494  *	smarter we can dispense with all the messy stuff that used to be
495  *	here.
496  *
497  *	BEWARE!!! Protocol handlers, mangling input packets,
498  *	MUST BE last in hash buckets and checking protocol handlers
499  *	MUST start from promiscuous ptype_all chain in net_bh.
500  *	It is true now, do not change it.
501  *	Explanation follows: if protocol handler, mangling packet, will
502  *	be the first on list, it is not able to sense, that packet
503  *	is cloned and should be copied-on-write, so that it will
504  *	change it and subsequent readers will get broken packet.
505  *							--ANK (980803)
506  */
507 
508 static inline struct list_head *ptype_head(const struct packet_type *pt)
509 {
510 	if (pt->type == htons(ETH_P_ALL))
511 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
512 	else
513 		return pt->dev ? &pt->dev->ptype_specific :
514 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
515 }
516 
517 /**
518  *	dev_add_pack - add packet handler
519  *	@pt: packet type declaration
520  *
521  *	Add a protocol handler to the networking stack. The passed &packet_type
522  *	is linked into kernel lists and may not be freed until it has been
523  *	removed from the kernel lists.
524  *
525  *	This call does not sleep therefore it can not
526  *	guarantee all CPU's that are in middle of receiving packets
527  *	will see the new packet type (until the next received packet).
528  */
529 
530 void dev_add_pack(struct packet_type *pt)
531 {
532 	struct list_head *head = ptype_head(pt);
533 
534 	spin_lock(&ptype_lock);
535 	list_add_rcu(&pt->list, head);
536 	spin_unlock(&ptype_lock);
537 }
538 EXPORT_SYMBOL(dev_add_pack);
539 
540 /**
541  *	__dev_remove_pack	 - remove packet handler
542  *	@pt: packet type declaration
543  *
544  *	Remove a protocol handler that was previously added to the kernel
545  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
546  *	from the kernel lists and can be freed or reused once this function
547  *	returns.
548  *
549  *      The packet type might still be in use by receivers
550  *	and must not be freed until after all the CPU's have gone
551  *	through a quiescent state.
552  */
553 void __dev_remove_pack(struct packet_type *pt)
554 {
555 	struct list_head *head = ptype_head(pt);
556 	struct packet_type *pt1;
557 
558 	spin_lock(&ptype_lock);
559 
560 	list_for_each_entry(pt1, head, list) {
561 		if (pt == pt1) {
562 			list_del_rcu(&pt->list);
563 			goto out;
564 		}
565 	}
566 
567 	pr_warn("dev_remove_pack: %p not found\n", pt);
568 out:
569 	spin_unlock(&ptype_lock);
570 }
571 EXPORT_SYMBOL(__dev_remove_pack);
572 
573 /**
574  *	dev_remove_pack	 - remove packet handler
575  *	@pt: packet type declaration
576  *
577  *	Remove a protocol handler that was previously added to the kernel
578  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
579  *	from the kernel lists and can be freed or reused once this function
580  *	returns.
581  *
582  *	This call sleeps to guarantee that no CPU is looking at the packet
583  *	type after return.
584  */
585 void dev_remove_pack(struct packet_type *pt)
586 {
587 	__dev_remove_pack(pt);
588 
589 	synchronize_net();
590 }
591 EXPORT_SYMBOL(dev_remove_pack);
592 
593 
594 /**
595  *	dev_add_offload - register offload handlers
596  *	@po: protocol offload declaration
597  *
598  *	Add protocol offload handlers to the networking stack. The passed
599  *	&proto_offload is linked into kernel lists and may not be freed until
600  *	it has been removed from the kernel lists.
601  *
602  *	This call does not sleep therefore it can not
603  *	guarantee all CPU's that are in middle of receiving packets
604  *	will see the new offload handlers (until the next received packet).
605  */
606 void dev_add_offload(struct packet_offload *po)
607 {
608 	struct packet_offload *elem;
609 
610 	spin_lock(&offload_lock);
611 	list_for_each_entry(elem, &offload_base, list) {
612 		if (po->priority < elem->priority)
613 			break;
614 	}
615 	list_add_rcu(&po->list, elem->list.prev);
616 	spin_unlock(&offload_lock);
617 }
618 EXPORT_SYMBOL(dev_add_offload);
619 
620 /**
621  *	__dev_remove_offload	 - remove offload handler
622  *	@po: packet offload declaration
623  *
624  *	Remove a protocol offload handler that was previously added to the
625  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
626  *	is removed from the kernel lists and can be freed or reused once this
627  *	function returns.
628  *
629  *      The packet type might still be in use by receivers
630  *	and must not be freed until after all the CPU's have gone
631  *	through a quiescent state.
632  */
633 static void __dev_remove_offload(struct packet_offload *po)
634 {
635 	struct list_head *head = &offload_base;
636 	struct packet_offload *po1;
637 
638 	spin_lock(&offload_lock);
639 
640 	list_for_each_entry(po1, head, list) {
641 		if (po == po1) {
642 			list_del_rcu(&po->list);
643 			goto out;
644 		}
645 	}
646 
647 	pr_warn("dev_remove_offload: %p not found\n", po);
648 out:
649 	spin_unlock(&offload_lock);
650 }
651 
652 /**
653  *	dev_remove_offload	 - remove packet offload handler
654  *	@po: packet offload declaration
655  *
656  *	Remove a packet offload handler that was previously added to the kernel
657  *	offload handlers by dev_add_offload(). The passed &offload_type is
658  *	removed from the kernel lists and can be freed or reused once this
659  *	function returns.
660  *
661  *	This call sleeps to guarantee that no CPU is looking at the packet
662  *	type after return.
663  */
664 void dev_remove_offload(struct packet_offload *po)
665 {
666 	__dev_remove_offload(po);
667 
668 	synchronize_net();
669 }
670 EXPORT_SYMBOL(dev_remove_offload);
671 
672 /******************************************************************************
673  *
674  *		      Device Boot-time Settings Routines
675  *
676  ******************************************************************************/
677 
678 /* Boot time configuration table */
679 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
680 
681 /**
682  *	netdev_boot_setup_add	- add new setup entry
683  *	@name: name of the device
684  *	@map: configured settings for the device
685  *
686  *	Adds new setup entry to the dev_boot_setup list.  The function
687  *	returns 0 on error and 1 on success.  This is a generic routine to
688  *	all netdevices.
689  */
690 static int netdev_boot_setup_add(char *name, struct ifmap *map)
691 {
692 	struct netdev_boot_setup *s;
693 	int i;
694 
695 	s = dev_boot_setup;
696 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
697 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
698 			memset(s[i].name, 0, sizeof(s[i].name));
699 			strlcpy(s[i].name, name, IFNAMSIZ);
700 			memcpy(&s[i].map, map, sizeof(s[i].map));
701 			break;
702 		}
703 	}
704 
705 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
706 }
707 
708 /**
709  * netdev_boot_setup_check	- check boot time settings
710  * @dev: the netdevice
711  *
712  * Check boot time settings for the device.
713  * The found settings are set for the device to be used
714  * later in the device probing.
715  * Returns 0 if no settings found, 1 if they are.
716  */
717 int netdev_boot_setup_check(struct net_device *dev)
718 {
719 	struct netdev_boot_setup *s = dev_boot_setup;
720 	int i;
721 
722 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
723 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
724 		    !strcmp(dev->name, s[i].name)) {
725 			dev->irq = s[i].map.irq;
726 			dev->base_addr = s[i].map.base_addr;
727 			dev->mem_start = s[i].map.mem_start;
728 			dev->mem_end = s[i].map.mem_end;
729 			return 1;
730 		}
731 	}
732 	return 0;
733 }
734 EXPORT_SYMBOL(netdev_boot_setup_check);
735 
736 
737 /**
738  * netdev_boot_base	- get address from boot time settings
739  * @prefix: prefix for network device
740  * @unit: id for network device
741  *
742  * Check boot time settings for the base address of device.
743  * The found settings are set for the device to be used
744  * later in the device probing.
745  * Returns 0 if no settings found.
746  */
747 unsigned long netdev_boot_base(const char *prefix, int unit)
748 {
749 	const struct netdev_boot_setup *s = dev_boot_setup;
750 	char name[IFNAMSIZ];
751 	int i;
752 
753 	sprintf(name, "%s%d", prefix, unit);
754 
755 	/*
756 	 * If device already registered then return base of 1
757 	 * to indicate not to probe for this interface
758 	 */
759 	if (__dev_get_by_name(&init_net, name))
760 		return 1;
761 
762 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
763 		if (!strcmp(name, s[i].name))
764 			return s[i].map.base_addr;
765 	return 0;
766 }
767 
768 /*
769  * Saves at boot time configured settings for any netdevice.
770  */
771 int __init netdev_boot_setup(char *str)
772 {
773 	int ints[5];
774 	struct ifmap map;
775 
776 	str = get_options(str, ARRAY_SIZE(ints), ints);
777 	if (!str || !*str)
778 		return 0;
779 
780 	/* Save settings */
781 	memset(&map, 0, sizeof(map));
782 	if (ints[0] > 0)
783 		map.irq = ints[1];
784 	if (ints[0] > 1)
785 		map.base_addr = ints[2];
786 	if (ints[0] > 2)
787 		map.mem_start = ints[3];
788 	if (ints[0] > 3)
789 		map.mem_end = ints[4];
790 
791 	/* Add new entry to the list */
792 	return netdev_boot_setup_add(str, &map);
793 }
794 
795 __setup("netdev=", netdev_boot_setup);
796 
797 /*******************************************************************************
798  *
799  *			    Device Interface Subroutines
800  *
801  *******************************************************************************/
802 
803 /**
804  *	dev_get_iflink	- get 'iflink' value of a interface
805  *	@dev: targeted interface
806  *
807  *	Indicates the ifindex the interface is linked to.
808  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
809  */
810 
811 int dev_get_iflink(const struct net_device *dev)
812 {
813 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
814 		return dev->netdev_ops->ndo_get_iflink(dev);
815 
816 	return dev->ifindex;
817 }
818 EXPORT_SYMBOL(dev_get_iflink);
819 
820 /**
821  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
822  *	@dev: targeted interface
823  *	@skb: The packet.
824  *
825  *	For better visibility of tunnel traffic OVS needs to retrieve
826  *	egress tunnel information for a packet. Following API allows
827  *	user to get this info.
828  */
829 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
830 {
831 	struct ip_tunnel_info *info;
832 
833 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
834 		return -EINVAL;
835 
836 	info = skb_tunnel_info_unclone(skb);
837 	if (!info)
838 		return -ENOMEM;
839 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
840 		return -EINVAL;
841 
842 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
843 }
844 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
845 
846 /**
847  *	__dev_get_by_name	- find a device by its name
848  *	@net: the applicable net namespace
849  *	@name: name to find
850  *
851  *	Find an interface by name. Must be called under RTNL semaphore
852  *	or @dev_base_lock. If the name is found a pointer to the device
853  *	is returned. If the name is not found then %NULL is returned. The
854  *	reference counters are not incremented so the caller must be
855  *	careful with locks.
856  */
857 
858 struct net_device *__dev_get_by_name(struct net *net, const char *name)
859 {
860 	struct netdev_name_node *node_name;
861 
862 	node_name = netdev_name_node_lookup(net, name);
863 	return node_name ? node_name->dev : NULL;
864 }
865 EXPORT_SYMBOL(__dev_get_by_name);
866 
867 /**
868  * dev_get_by_name_rcu	- find a device by its name
869  * @net: the applicable net namespace
870  * @name: name to find
871  *
872  * Find an interface by name.
873  * If the name is found a pointer to the device is returned.
874  * If the name is not found then %NULL is returned.
875  * The reference counters are not incremented so the caller must be
876  * careful with locks. The caller must hold RCU lock.
877  */
878 
879 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
880 {
881 	struct netdev_name_node *node_name;
882 
883 	node_name = netdev_name_node_lookup_rcu(net, name);
884 	return node_name ? node_name->dev : NULL;
885 }
886 EXPORT_SYMBOL(dev_get_by_name_rcu);
887 
888 /**
889  *	dev_get_by_name		- find a device by its name
890  *	@net: the applicable net namespace
891  *	@name: name to find
892  *
893  *	Find an interface by name. This can be called from any
894  *	context and does its own locking. The returned handle has
895  *	the usage count incremented and the caller must use dev_put() to
896  *	release it when it is no longer needed. %NULL is returned if no
897  *	matching device is found.
898  */
899 
900 struct net_device *dev_get_by_name(struct net *net, const char *name)
901 {
902 	struct net_device *dev;
903 
904 	rcu_read_lock();
905 	dev = dev_get_by_name_rcu(net, name);
906 	if (dev)
907 		dev_hold(dev);
908 	rcu_read_unlock();
909 	return dev;
910 }
911 EXPORT_SYMBOL(dev_get_by_name);
912 
913 /**
914  *	__dev_get_by_index - find a device by its ifindex
915  *	@net: the applicable net namespace
916  *	@ifindex: index of device
917  *
918  *	Search for an interface by index. Returns %NULL if the device
919  *	is not found or a pointer to the device. The device has not
920  *	had its reference counter increased so the caller must be careful
921  *	about locking. The caller must hold either the RTNL semaphore
922  *	or @dev_base_lock.
923  */
924 
925 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
926 {
927 	struct net_device *dev;
928 	struct hlist_head *head = dev_index_hash(net, ifindex);
929 
930 	hlist_for_each_entry(dev, head, index_hlist)
931 		if (dev->ifindex == ifindex)
932 			return dev;
933 
934 	return NULL;
935 }
936 EXPORT_SYMBOL(__dev_get_by_index);
937 
938 /**
939  *	dev_get_by_index_rcu - find a device by its ifindex
940  *	@net: the applicable net namespace
941  *	@ifindex: index of device
942  *
943  *	Search for an interface by index. Returns %NULL if the device
944  *	is not found or a pointer to the device. The device has not
945  *	had its reference counter increased so the caller must be careful
946  *	about locking. The caller must hold RCU lock.
947  */
948 
949 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
950 {
951 	struct net_device *dev;
952 	struct hlist_head *head = dev_index_hash(net, ifindex);
953 
954 	hlist_for_each_entry_rcu(dev, head, index_hlist)
955 		if (dev->ifindex == ifindex)
956 			return dev;
957 
958 	return NULL;
959 }
960 EXPORT_SYMBOL(dev_get_by_index_rcu);
961 
962 
963 /**
964  *	dev_get_by_index - find a device by its ifindex
965  *	@net: the applicable net namespace
966  *	@ifindex: index of device
967  *
968  *	Search for an interface by index. Returns NULL if the device
969  *	is not found or a pointer to the device. The device returned has
970  *	had a reference added and the pointer is safe until the user calls
971  *	dev_put to indicate they have finished with it.
972  */
973 
974 struct net_device *dev_get_by_index(struct net *net, int ifindex)
975 {
976 	struct net_device *dev;
977 
978 	rcu_read_lock();
979 	dev = dev_get_by_index_rcu(net, ifindex);
980 	if (dev)
981 		dev_hold(dev);
982 	rcu_read_unlock();
983 	return dev;
984 }
985 EXPORT_SYMBOL(dev_get_by_index);
986 
987 /**
988  *	dev_get_by_napi_id - find a device by napi_id
989  *	@napi_id: ID of the NAPI struct
990  *
991  *	Search for an interface by NAPI ID. Returns %NULL if the device
992  *	is not found or a pointer to the device. The device has not had
993  *	its reference counter increased so the caller must be careful
994  *	about locking. The caller must hold RCU lock.
995  */
996 
997 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
998 {
999 	struct napi_struct *napi;
1000 
1001 	WARN_ON_ONCE(!rcu_read_lock_held());
1002 
1003 	if (napi_id < MIN_NAPI_ID)
1004 		return NULL;
1005 
1006 	napi = napi_by_id(napi_id);
1007 
1008 	return napi ? napi->dev : NULL;
1009 }
1010 EXPORT_SYMBOL(dev_get_by_napi_id);
1011 
1012 /**
1013  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1014  *	@net: network namespace
1015  *	@name: a pointer to the buffer where the name will be stored.
1016  *	@ifindex: the ifindex of the interface to get the name from.
1017  */
1018 int netdev_get_name(struct net *net, char *name, int ifindex)
1019 {
1020 	struct net_device *dev;
1021 	int ret;
1022 
1023 	down_read(&devnet_rename_sem);
1024 	rcu_read_lock();
1025 
1026 	dev = dev_get_by_index_rcu(net, ifindex);
1027 	if (!dev) {
1028 		ret = -ENODEV;
1029 		goto out;
1030 	}
1031 
1032 	strcpy(name, dev->name);
1033 
1034 	ret = 0;
1035 out:
1036 	rcu_read_unlock();
1037 	up_read(&devnet_rename_sem);
1038 	return ret;
1039 }
1040 
1041 /**
1042  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1043  *	@net: the applicable net namespace
1044  *	@type: media type of device
1045  *	@ha: hardware address
1046  *
1047  *	Search for an interface by MAC address. Returns NULL if the device
1048  *	is not found or a pointer to the device.
1049  *	The caller must hold RCU or RTNL.
1050  *	The returned device has not had its ref count increased
1051  *	and the caller must therefore be careful about locking
1052  *
1053  */
1054 
1055 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1056 				       const char *ha)
1057 {
1058 	struct net_device *dev;
1059 
1060 	for_each_netdev_rcu(net, dev)
1061 		if (dev->type == type &&
1062 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1063 			return dev;
1064 
1065 	return NULL;
1066 }
1067 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1068 
1069 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1070 {
1071 	struct net_device *dev;
1072 
1073 	ASSERT_RTNL();
1074 	for_each_netdev(net, dev)
1075 		if (dev->type == type)
1076 			return dev;
1077 
1078 	return NULL;
1079 }
1080 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1081 
1082 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1083 {
1084 	struct net_device *dev, *ret = NULL;
1085 
1086 	rcu_read_lock();
1087 	for_each_netdev_rcu(net, dev)
1088 		if (dev->type == type) {
1089 			dev_hold(dev);
1090 			ret = dev;
1091 			break;
1092 		}
1093 	rcu_read_unlock();
1094 	return ret;
1095 }
1096 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1097 
1098 /**
1099  *	__dev_get_by_flags - find any device with given flags
1100  *	@net: the applicable net namespace
1101  *	@if_flags: IFF_* values
1102  *	@mask: bitmask of bits in if_flags to check
1103  *
1104  *	Search for any interface with the given flags. Returns NULL if a device
1105  *	is not found or a pointer to the device. Must be called inside
1106  *	rtnl_lock(), and result refcount is unchanged.
1107  */
1108 
1109 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1110 				      unsigned short mask)
1111 {
1112 	struct net_device *dev, *ret;
1113 
1114 	ASSERT_RTNL();
1115 
1116 	ret = NULL;
1117 	for_each_netdev(net, dev) {
1118 		if (((dev->flags ^ if_flags) & mask) == 0) {
1119 			ret = dev;
1120 			break;
1121 		}
1122 	}
1123 	return ret;
1124 }
1125 EXPORT_SYMBOL(__dev_get_by_flags);
1126 
1127 /**
1128  *	dev_valid_name - check if name is okay for network device
1129  *	@name: name string
1130  *
1131  *	Network device names need to be valid file names to
1132  *	to allow sysfs to work.  We also disallow any kind of
1133  *	whitespace.
1134  */
1135 bool dev_valid_name(const char *name)
1136 {
1137 	if (*name == '\0')
1138 		return false;
1139 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1140 		return false;
1141 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1142 		return false;
1143 
1144 	while (*name) {
1145 		if (*name == '/' || *name == ':' || isspace(*name))
1146 			return false;
1147 		name++;
1148 	}
1149 	return true;
1150 }
1151 EXPORT_SYMBOL(dev_valid_name);
1152 
1153 /**
1154  *	__dev_alloc_name - allocate a name for a device
1155  *	@net: network namespace to allocate the device name in
1156  *	@name: name format string
1157  *	@buf:  scratch buffer and result name string
1158  *
1159  *	Passed a format string - eg "lt%d" it will try and find a suitable
1160  *	id. It scans list of devices to build up a free map, then chooses
1161  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1162  *	while allocating the name and adding the device in order to avoid
1163  *	duplicates.
1164  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1165  *	Returns the number of the unit assigned or a negative errno code.
1166  */
1167 
1168 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1169 {
1170 	int i = 0;
1171 	const char *p;
1172 	const int max_netdevices = 8*PAGE_SIZE;
1173 	unsigned long *inuse;
1174 	struct net_device *d;
1175 
1176 	if (!dev_valid_name(name))
1177 		return -EINVAL;
1178 
1179 	p = strchr(name, '%');
1180 	if (p) {
1181 		/*
1182 		 * Verify the string as this thing may have come from
1183 		 * the user.  There must be either one "%d" and no other "%"
1184 		 * characters.
1185 		 */
1186 		if (p[1] != 'd' || strchr(p + 2, '%'))
1187 			return -EINVAL;
1188 
1189 		/* Use one page as a bit array of possible slots */
1190 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1191 		if (!inuse)
1192 			return -ENOMEM;
1193 
1194 		for_each_netdev(net, d) {
1195 			if (!sscanf(d->name, name, &i))
1196 				continue;
1197 			if (i < 0 || i >= max_netdevices)
1198 				continue;
1199 
1200 			/*  avoid cases where sscanf is not exact inverse of printf */
1201 			snprintf(buf, IFNAMSIZ, name, i);
1202 			if (!strncmp(buf, d->name, IFNAMSIZ))
1203 				set_bit(i, inuse);
1204 		}
1205 
1206 		i = find_first_zero_bit(inuse, max_netdevices);
1207 		free_page((unsigned long) inuse);
1208 	}
1209 
1210 	snprintf(buf, IFNAMSIZ, name, i);
1211 	if (!__dev_get_by_name(net, buf))
1212 		return i;
1213 
1214 	/* It is possible to run out of possible slots
1215 	 * when the name is long and there isn't enough space left
1216 	 * for the digits, or if all bits are used.
1217 	 */
1218 	return -ENFILE;
1219 }
1220 
1221 static int dev_alloc_name_ns(struct net *net,
1222 			     struct net_device *dev,
1223 			     const char *name)
1224 {
1225 	char buf[IFNAMSIZ];
1226 	int ret;
1227 
1228 	BUG_ON(!net);
1229 	ret = __dev_alloc_name(net, name, buf);
1230 	if (ret >= 0)
1231 		strlcpy(dev->name, buf, IFNAMSIZ);
1232 	return ret;
1233 }
1234 
1235 /**
1236  *	dev_alloc_name - allocate a name for a device
1237  *	@dev: device
1238  *	@name: name format string
1239  *
1240  *	Passed a format string - eg "lt%d" it will try and find a suitable
1241  *	id. It scans list of devices to build up a free map, then chooses
1242  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1243  *	while allocating the name and adding the device in order to avoid
1244  *	duplicates.
1245  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1246  *	Returns the number of the unit assigned or a negative errno code.
1247  */
1248 
1249 int dev_alloc_name(struct net_device *dev, const char *name)
1250 {
1251 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1252 }
1253 EXPORT_SYMBOL(dev_alloc_name);
1254 
1255 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1256 			      const char *name)
1257 {
1258 	BUG_ON(!net);
1259 
1260 	if (!dev_valid_name(name))
1261 		return -EINVAL;
1262 
1263 	if (strchr(name, '%'))
1264 		return dev_alloc_name_ns(net, dev, name);
1265 	else if (__dev_get_by_name(net, name))
1266 		return -EEXIST;
1267 	else if (dev->name != name)
1268 		strlcpy(dev->name, name, IFNAMSIZ);
1269 
1270 	return 0;
1271 }
1272 
1273 /**
1274  *	dev_change_name - change name of a device
1275  *	@dev: device
1276  *	@newname: name (or format string) must be at least IFNAMSIZ
1277  *
1278  *	Change name of a device, can pass format strings "eth%d".
1279  *	for wildcarding.
1280  */
1281 int dev_change_name(struct net_device *dev, const char *newname)
1282 {
1283 	unsigned char old_assign_type;
1284 	char oldname[IFNAMSIZ];
1285 	int err = 0;
1286 	int ret;
1287 	struct net *net;
1288 
1289 	ASSERT_RTNL();
1290 	BUG_ON(!dev_net(dev));
1291 
1292 	net = dev_net(dev);
1293 
1294 	/* Some auto-enslaved devices e.g. failover slaves are
1295 	 * special, as userspace might rename the device after
1296 	 * the interface had been brought up and running since
1297 	 * the point kernel initiated auto-enslavement. Allow
1298 	 * live name change even when these slave devices are
1299 	 * up and running.
1300 	 *
1301 	 * Typically, users of these auto-enslaving devices
1302 	 * don't actually care about slave name change, as
1303 	 * they are supposed to operate on master interface
1304 	 * directly.
1305 	 */
1306 	if (dev->flags & IFF_UP &&
1307 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1308 		return -EBUSY;
1309 
1310 	down_write(&devnet_rename_sem);
1311 
1312 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1313 		up_write(&devnet_rename_sem);
1314 		return 0;
1315 	}
1316 
1317 	memcpy(oldname, dev->name, IFNAMSIZ);
1318 
1319 	err = dev_get_valid_name(net, dev, newname);
1320 	if (err < 0) {
1321 		up_write(&devnet_rename_sem);
1322 		return err;
1323 	}
1324 
1325 	if (oldname[0] && !strchr(oldname, '%'))
1326 		netdev_info(dev, "renamed from %s\n", oldname);
1327 
1328 	old_assign_type = dev->name_assign_type;
1329 	dev->name_assign_type = NET_NAME_RENAMED;
1330 
1331 rollback:
1332 	ret = device_rename(&dev->dev, dev->name);
1333 	if (ret) {
1334 		memcpy(dev->name, oldname, IFNAMSIZ);
1335 		dev->name_assign_type = old_assign_type;
1336 		up_write(&devnet_rename_sem);
1337 		return ret;
1338 	}
1339 
1340 	up_write(&devnet_rename_sem);
1341 
1342 	netdev_adjacent_rename_links(dev, oldname);
1343 
1344 	write_lock_bh(&dev_base_lock);
1345 	netdev_name_node_del(dev->name_node);
1346 	write_unlock_bh(&dev_base_lock);
1347 
1348 	synchronize_rcu();
1349 
1350 	write_lock_bh(&dev_base_lock);
1351 	netdev_name_node_add(net, dev->name_node);
1352 	write_unlock_bh(&dev_base_lock);
1353 
1354 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1355 	ret = notifier_to_errno(ret);
1356 
1357 	if (ret) {
1358 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1359 		if (err >= 0) {
1360 			err = ret;
1361 			down_write(&devnet_rename_sem);
1362 			memcpy(dev->name, oldname, IFNAMSIZ);
1363 			memcpy(oldname, newname, IFNAMSIZ);
1364 			dev->name_assign_type = old_assign_type;
1365 			old_assign_type = NET_NAME_RENAMED;
1366 			goto rollback;
1367 		} else {
1368 			pr_err("%s: name change rollback failed: %d\n",
1369 			       dev->name, ret);
1370 		}
1371 	}
1372 
1373 	return err;
1374 }
1375 
1376 /**
1377  *	dev_set_alias - change ifalias of a device
1378  *	@dev: device
1379  *	@alias: name up to IFALIASZ
1380  *	@len: limit of bytes to copy from info
1381  *
1382  *	Set ifalias for a device,
1383  */
1384 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1385 {
1386 	struct dev_ifalias *new_alias = NULL;
1387 
1388 	if (len >= IFALIASZ)
1389 		return -EINVAL;
1390 
1391 	if (len) {
1392 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1393 		if (!new_alias)
1394 			return -ENOMEM;
1395 
1396 		memcpy(new_alias->ifalias, alias, len);
1397 		new_alias->ifalias[len] = 0;
1398 	}
1399 
1400 	mutex_lock(&ifalias_mutex);
1401 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1402 					mutex_is_locked(&ifalias_mutex));
1403 	mutex_unlock(&ifalias_mutex);
1404 
1405 	if (new_alias)
1406 		kfree_rcu(new_alias, rcuhead);
1407 
1408 	return len;
1409 }
1410 EXPORT_SYMBOL(dev_set_alias);
1411 
1412 /**
1413  *	dev_get_alias - get ifalias of a device
1414  *	@dev: device
1415  *	@name: buffer to store name of ifalias
1416  *	@len: size of buffer
1417  *
1418  *	get ifalias for a device.  Caller must make sure dev cannot go
1419  *	away,  e.g. rcu read lock or own a reference count to device.
1420  */
1421 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1422 {
1423 	const struct dev_ifalias *alias;
1424 	int ret = 0;
1425 
1426 	rcu_read_lock();
1427 	alias = rcu_dereference(dev->ifalias);
1428 	if (alias)
1429 		ret = snprintf(name, len, "%s", alias->ifalias);
1430 	rcu_read_unlock();
1431 
1432 	return ret;
1433 }
1434 
1435 /**
1436  *	netdev_features_change - device changes features
1437  *	@dev: device to cause notification
1438  *
1439  *	Called to indicate a device has changed features.
1440  */
1441 void netdev_features_change(struct net_device *dev)
1442 {
1443 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1444 }
1445 EXPORT_SYMBOL(netdev_features_change);
1446 
1447 /**
1448  *	netdev_state_change - device changes state
1449  *	@dev: device to cause notification
1450  *
1451  *	Called to indicate a device has changed state. This function calls
1452  *	the notifier chains for netdev_chain and sends a NEWLINK message
1453  *	to the routing socket.
1454  */
1455 void netdev_state_change(struct net_device *dev)
1456 {
1457 	if (dev->flags & IFF_UP) {
1458 		struct netdev_notifier_change_info change_info = {
1459 			.info.dev = dev,
1460 		};
1461 
1462 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1463 					      &change_info.info);
1464 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1465 	}
1466 }
1467 EXPORT_SYMBOL(netdev_state_change);
1468 
1469 /**
1470  * netdev_notify_peers - notify network peers about existence of @dev
1471  * @dev: network device
1472  *
1473  * Generate traffic such that interested network peers are aware of
1474  * @dev, such as by generating a gratuitous ARP. This may be used when
1475  * a device wants to inform the rest of the network about some sort of
1476  * reconfiguration such as a failover event or virtual machine
1477  * migration.
1478  */
1479 void netdev_notify_peers(struct net_device *dev)
1480 {
1481 	rtnl_lock();
1482 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1483 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1484 	rtnl_unlock();
1485 }
1486 EXPORT_SYMBOL(netdev_notify_peers);
1487 
1488 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1489 {
1490 	const struct net_device_ops *ops = dev->netdev_ops;
1491 	int ret;
1492 
1493 	ASSERT_RTNL();
1494 
1495 	if (!netif_device_present(dev))
1496 		return -ENODEV;
1497 
1498 	/* Block netpoll from trying to do any rx path servicing.
1499 	 * If we don't do this there is a chance ndo_poll_controller
1500 	 * or ndo_poll may be running while we open the device
1501 	 */
1502 	netpoll_poll_disable(dev);
1503 
1504 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1505 	ret = notifier_to_errno(ret);
1506 	if (ret)
1507 		return ret;
1508 
1509 	set_bit(__LINK_STATE_START, &dev->state);
1510 
1511 	if (ops->ndo_validate_addr)
1512 		ret = ops->ndo_validate_addr(dev);
1513 
1514 	if (!ret && ops->ndo_open)
1515 		ret = ops->ndo_open(dev);
1516 
1517 	netpoll_poll_enable(dev);
1518 
1519 	if (ret)
1520 		clear_bit(__LINK_STATE_START, &dev->state);
1521 	else {
1522 		dev->flags |= IFF_UP;
1523 		dev_set_rx_mode(dev);
1524 		dev_activate(dev);
1525 		add_device_randomness(dev->dev_addr, dev->addr_len);
1526 	}
1527 
1528 	return ret;
1529 }
1530 
1531 /**
1532  *	dev_open	- prepare an interface for use.
1533  *	@dev: device to open
1534  *	@extack: netlink extended ack
1535  *
1536  *	Takes a device from down to up state. The device's private open
1537  *	function is invoked and then the multicast lists are loaded. Finally
1538  *	the device is moved into the up state and a %NETDEV_UP message is
1539  *	sent to the netdev notifier chain.
1540  *
1541  *	Calling this function on an active interface is a nop. On a failure
1542  *	a negative errno code is returned.
1543  */
1544 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1545 {
1546 	int ret;
1547 
1548 	if (dev->flags & IFF_UP)
1549 		return 0;
1550 
1551 	ret = __dev_open(dev, extack);
1552 	if (ret < 0)
1553 		return ret;
1554 
1555 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1556 	call_netdevice_notifiers(NETDEV_UP, dev);
1557 
1558 	return ret;
1559 }
1560 EXPORT_SYMBOL(dev_open);
1561 
1562 static void __dev_close_many(struct list_head *head)
1563 {
1564 	struct net_device *dev;
1565 
1566 	ASSERT_RTNL();
1567 	might_sleep();
1568 
1569 	list_for_each_entry(dev, head, close_list) {
1570 		/* Temporarily disable netpoll until the interface is down */
1571 		netpoll_poll_disable(dev);
1572 
1573 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1574 
1575 		clear_bit(__LINK_STATE_START, &dev->state);
1576 
1577 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1578 		 * can be even on different cpu. So just clear netif_running().
1579 		 *
1580 		 * dev->stop() will invoke napi_disable() on all of it's
1581 		 * napi_struct instances on this device.
1582 		 */
1583 		smp_mb__after_atomic(); /* Commit netif_running(). */
1584 	}
1585 
1586 	dev_deactivate_many(head);
1587 
1588 	list_for_each_entry(dev, head, close_list) {
1589 		const struct net_device_ops *ops = dev->netdev_ops;
1590 
1591 		/*
1592 		 *	Call the device specific close. This cannot fail.
1593 		 *	Only if device is UP
1594 		 *
1595 		 *	We allow it to be called even after a DETACH hot-plug
1596 		 *	event.
1597 		 */
1598 		if (ops->ndo_stop)
1599 			ops->ndo_stop(dev);
1600 
1601 		dev->flags &= ~IFF_UP;
1602 		netpoll_poll_enable(dev);
1603 	}
1604 }
1605 
1606 static void __dev_close(struct net_device *dev)
1607 {
1608 	LIST_HEAD(single);
1609 
1610 	list_add(&dev->close_list, &single);
1611 	__dev_close_many(&single);
1612 	list_del(&single);
1613 }
1614 
1615 void dev_close_many(struct list_head *head, bool unlink)
1616 {
1617 	struct net_device *dev, *tmp;
1618 
1619 	/* Remove the devices that don't need to be closed */
1620 	list_for_each_entry_safe(dev, tmp, head, close_list)
1621 		if (!(dev->flags & IFF_UP))
1622 			list_del_init(&dev->close_list);
1623 
1624 	__dev_close_many(head);
1625 
1626 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1627 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1628 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1629 		if (unlink)
1630 			list_del_init(&dev->close_list);
1631 	}
1632 }
1633 EXPORT_SYMBOL(dev_close_many);
1634 
1635 /**
1636  *	dev_close - shutdown an interface.
1637  *	@dev: device to shutdown
1638  *
1639  *	This function moves an active device into down state. A
1640  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1641  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1642  *	chain.
1643  */
1644 void dev_close(struct net_device *dev)
1645 {
1646 	if (dev->flags & IFF_UP) {
1647 		LIST_HEAD(single);
1648 
1649 		list_add(&dev->close_list, &single);
1650 		dev_close_many(&single, true);
1651 		list_del(&single);
1652 	}
1653 }
1654 EXPORT_SYMBOL(dev_close);
1655 
1656 
1657 /**
1658  *	dev_disable_lro - disable Large Receive Offload on a device
1659  *	@dev: device
1660  *
1661  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1662  *	called under RTNL.  This is needed if received packets may be
1663  *	forwarded to another interface.
1664  */
1665 void dev_disable_lro(struct net_device *dev)
1666 {
1667 	struct net_device *lower_dev;
1668 	struct list_head *iter;
1669 
1670 	dev->wanted_features &= ~NETIF_F_LRO;
1671 	netdev_update_features(dev);
1672 
1673 	if (unlikely(dev->features & NETIF_F_LRO))
1674 		netdev_WARN(dev, "failed to disable LRO!\n");
1675 
1676 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1677 		dev_disable_lro(lower_dev);
1678 }
1679 EXPORT_SYMBOL(dev_disable_lro);
1680 
1681 /**
1682  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1683  *	@dev: device
1684  *
1685  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1686  *	called under RTNL.  This is needed if Generic XDP is installed on
1687  *	the device.
1688  */
1689 static void dev_disable_gro_hw(struct net_device *dev)
1690 {
1691 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1692 	netdev_update_features(dev);
1693 
1694 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1695 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1696 }
1697 
1698 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1699 {
1700 #define N(val) 						\
1701 	case NETDEV_##val:				\
1702 		return "NETDEV_" __stringify(val);
1703 	switch (cmd) {
1704 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1705 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1706 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1707 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1708 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1709 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1710 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1711 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1712 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1713 	N(PRE_CHANGEADDR)
1714 	}
1715 #undef N
1716 	return "UNKNOWN_NETDEV_EVENT";
1717 }
1718 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1719 
1720 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1721 				   struct net_device *dev)
1722 {
1723 	struct netdev_notifier_info info = {
1724 		.dev = dev,
1725 	};
1726 
1727 	return nb->notifier_call(nb, val, &info);
1728 }
1729 
1730 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1731 					     struct net_device *dev)
1732 {
1733 	int err;
1734 
1735 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1736 	err = notifier_to_errno(err);
1737 	if (err)
1738 		return err;
1739 
1740 	if (!(dev->flags & IFF_UP))
1741 		return 0;
1742 
1743 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1744 	return 0;
1745 }
1746 
1747 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1748 						struct net_device *dev)
1749 {
1750 	if (dev->flags & IFF_UP) {
1751 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1752 					dev);
1753 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1754 	}
1755 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1756 }
1757 
1758 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1759 						 struct net *net)
1760 {
1761 	struct net_device *dev;
1762 	int err;
1763 
1764 	for_each_netdev(net, dev) {
1765 		err = call_netdevice_register_notifiers(nb, dev);
1766 		if (err)
1767 			goto rollback;
1768 	}
1769 	return 0;
1770 
1771 rollback:
1772 	for_each_netdev_continue_reverse(net, dev)
1773 		call_netdevice_unregister_notifiers(nb, dev);
1774 	return err;
1775 }
1776 
1777 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1778 						    struct net *net)
1779 {
1780 	struct net_device *dev;
1781 
1782 	for_each_netdev(net, dev)
1783 		call_netdevice_unregister_notifiers(nb, dev);
1784 }
1785 
1786 static int dev_boot_phase = 1;
1787 
1788 /**
1789  * register_netdevice_notifier - register a network notifier block
1790  * @nb: notifier
1791  *
1792  * Register a notifier to be called when network device events occur.
1793  * The notifier passed is linked into the kernel structures and must
1794  * not be reused until it has been unregistered. A negative errno code
1795  * is returned on a failure.
1796  *
1797  * When registered all registration and up events are replayed
1798  * to the new notifier to allow device to have a race free
1799  * view of the network device list.
1800  */
1801 
1802 int register_netdevice_notifier(struct notifier_block *nb)
1803 {
1804 	struct net *net;
1805 	int err;
1806 
1807 	/* Close race with setup_net() and cleanup_net() */
1808 	down_write(&pernet_ops_rwsem);
1809 	rtnl_lock();
1810 	err = raw_notifier_chain_register(&netdev_chain, nb);
1811 	if (err)
1812 		goto unlock;
1813 	if (dev_boot_phase)
1814 		goto unlock;
1815 	for_each_net(net) {
1816 		err = call_netdevice_register_net_notifiers(nb, net);
1817 		if (err)
1818 			goto rollback;
1819 	}
1820 
1821 unlock:
1822 	rtnl_unlock();
1823 	up_write(&pernet_ops_rwsem);
1824 	return err;
1825 
1826 rollback:
1827 	for_each_net_continue_reverse(net)
1828 		call_netdevice_unregister_net_notifiers(nb, net);
1829 
1830 	raw_notifier_chain_unregister(&netdev_chain, nb);
1831 	goto unlock;
1832 }
1833 EXPORT_SYMBOL(register_netdevice_notifier);
1834 
1835 /**
1836  * unregister_netdevice_notifier - unregister a network notifier block
1837  * @nb: notifier
1838  *
1839  * Unregister a notifier previously registered by
1840  * register_netdevice_notifier(). The notifier is unlinked into the
1841  * kernel structures and may then be reused. A negative errno code
1842  * is returned on a failure.
1843  *
1844  * After unregistering unregister and down device events are synthesized
1845  * for all devices on the device list to the removed notifier to remove
1846  * the need for special case cleanup code.
1847  */
1848 
1849 int unregister_netdevice_notifier(struct notifier_block *nb)
1850 {
1851 	struct net *net;
1852 	int err;
1853 
1854 	/* Close race with setup_net() and cleanup_net() */
1855 	down_write(&pernet_ops_rwsem);
1856 	rtnl_lock();
1857 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1858 	if (err)
1859 		goto unlock;
1860 
1861 	for_each_net(net)
1862 		call_netdevice_unregister_net_notifiers(nb, net);
1863 
1864 unlock:
1865 	rtnl_unlock();
1866 	up_write(&pernet_ops_rwsem);
1867 	return err;
1868 }
1869 EXPORT_SYMBOL(unregister_netdevice_notifier);
1870 
1871 static int __register_netdevice_notifier_net(struct net *net,
1872 					     struct notifier_block *nb,
1873 					     bool ignore_call_fail)
1874 {
1875 	int err;
1876 
1877 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1878 	if (err)
1879 		return err;
1880 	if (dev_boot_phase)
1881 		return 0;
1882 
1883 	err = call_netdevice_register_net_notifiers(nb, net);
1884 	if (err && !ignore_call_fail)
1885 		goto chain_unregister;
1886 
1887 	return 0;
1888 
1889 chain_unregister:
1890 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1891 	return err;
1892 }
1893 
1894 static int __unregister_netdevice_notifier_net(struct net *net,
1895 					       struct notifier_block *nb)
1896 {
1897 	int err;
1898 
1899 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1900 	if (err)
1901 		return err;
1902 
1903 	call_netdevice_unregister_net_notifiers(nb, net);
1904 	return 0;
1905 }
1906 
1907 /**
1908  * register_netdevice_notifier_net - register a per-netns network notifier block
1909  * @net: network namespace
1910  * @nb: notifier
1911  *
1912  * Register a notifier to be called when network device events occur.
1913  * The notifier passed is linked into the kernel structures and must
1914  * not be reused until it has been unregistered. A negative errno code
1915  * is returned on a failure.
1916  *
1917  * When registered all registration and up events are replayed
1918  * to the new notifier to allow device to have a race free
1919  * view of the network device list.
1920  */
1921 
1922 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1923 {
1924 	int err;
1925 
1926 	rtnl_lock();
1927 	err = __register_netdevice_notifier_net(net, nb, false);
1928 	rtnl_unlock();
1929 	return err;
1930 }
1931 EXPORT_SYMBOL(register_netdevice_notifier_net);
1932 
1933 /**
1934  * unregister_netdevice_notifier_net - unregister a per-netns
1935  *                                     network notifier block
1936  * @net: network namespace
1937  * @nb: notifier
1938  *
1939  * Unregister a notifier previously registered by
1940  * register_netdevice_notifier(). The notifier is unlinked into the
1941  * kernel structures and may then be reused. A negative errno code
1942  * is returned on a failure.
1943  *
1944  * After unregistering unregister and down device events are synthesized
1945  * for all devices on the device list to the removed notifier to remove
1946  * the need for special case cleanup code.
1947  */
1948 
1949 int unregister_netdevice_notifier_net(struct net *net,
1950 				      struct notifier_block *nb)
1951 {
1952 	int err;
1953 
1954 	rtnl_lock();
1955 	err = __unregister_netdevice_notifier_net(net, nb);
1956 	rtnl_unlock();
1957 	return err;
1958 }
1959 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1960 
1961 int register_netdevice_notifier_dev_net(struct net_device *dev,
1962 					struct notifier_block *nb,
1963 					struct netdev_net_notifier *nn)
1964 {
1965 	int err;
1966 
1967 	rtnl_lock();
1968 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1969 	if (!err) {
1970 		nn->nb = nb;
1971 		list_add(&nn->list, &dev->net_notifier_list);
1972 	}
1973 	rtnl_unlock();
1974 	return err;
1975 }
1976 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1977 
1978 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1979 					  struct notifier_block *nb,
1980 					  struct netdev_net_notifier *nn)
1981 {
1982 	int err;
1983 
1984 	rtnl_lock();
1985 	list_del(&nn->list);
1986 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1987 	rtnl_unlock();
1988 	return err;
1989 }
1990 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1991 
1992 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1993 					     struct net *net)
1994 {
1995 	struct netdev_net_notifier *nn;
1996 
1997 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1998 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1999 		__register_netdevice_notifier_net(net, nn->nb, true);
2000 	}
2001 }
2002 
2003 /**
2004  *	call_netdevice_notifiers_info - call all network notifier blocks
2005  *	@val: value passed unmodified to notifier function
2006  *	@info: notifier information data
2007  *
2008  *	Call all network notifier blocks.  Parameters and return value
2009  *	are as for raw_notifier_call_chain().
2010  */
2011 
2012 static int call_netdevice_notifiers_info(unsigned long val,
2013 					 struct netdev_notifier_info *info)
2014 {
2015 	struct net *net = dev_net(info->dev);
2016 	int ret;
2017 
2018 	ASSERT_RTNL();
2019 
2020 	/* Run per-netns notifier block chain first, then run the global one.
2021 	 * Hopefully, one day, the global one is going to be removed after
2022 	 * all notifier block registrators get converted to be per-netns.
2023 	 */
2024 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2025 	if (ret & NOTIFY_STOP_MASK)
2026 		return ret;
2027 	return raw_notifier_call_chain(&netdev_chain, val, info);
2028 }
2029 
2030 static int call_netdevice_notifiers_extack(unsigned long val,
2031 					   struct net_device *dev,
2032 					   struct netlink_ext_ack *extack)
2033 {
2034 	struct netdev_notifier_info info = {
2035 		.dev = dev,
2036 		.extack = extack,
2037 	};
2038 
2039 	return call_netdevice_notifiers_info(val, &info);
2040 }
2041 
2042 /**
2043  *	call_netdevice_notifiers - call all network notifier blocks
2044  *      @val: value passed unmodified to notifier function
2045  *      @dev: net_device pointer passed unmodified to notifier function
2046  *
2047  *	Call all network notifier blocks.  Parameters and return value
2048  *	are as for raw_notifier_call_chain().
2049  */
2050 
2051 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2052 {
2053 	return call_netdevice_notifiers_extack(val, dev, NULL);
2054 }
2055 EXPORT_SYMBOL(call_netdevice_notifiers);
2056 
2057 /**
2058  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2059  *	@val: value passed unmodified to notifier function
2060  *	@dev: net_device pointer passed unmodified to notifier function
2061  *	@arg: additional u32 argument passed to the notifier function
2062  *
2063  *	Call all network notifier blocks.  Parameters and return value
2064  *	are as for raw_notifier_call_chain().
2065  */
2066 static int call_netdevice_notifiers_mtu(unsigned long val,
2067 					struct net_device *dev, u32 arg)
2068 {
2069 	struct netdev_notifier_info_ext info = {
2070 		.info.dev = dev,
2071 		.ext.mtu = arg,
2072 	};
2073 
2074 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2075 
2076 	return call_netdevice_notifiers_info(val, &info.info);
2077 }
2078 
2079 #ifdef CONFIG_NET_INGRESS
2080 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2081 
2082 void net_inc_ingress_queue(void)
2083 {
2084 	static_branch_inc(&ingress_needed_key);
2085 }
2086 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2087 
2088 void net_dec_ingress_queue(void)
2089 {
2090 	static_branch_dec(&ingress_needed_key);
2091 }
2092 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2093 #endif
2094 
2095 #ifdef CONFIG_NET_EGRESS
2096 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2097 
2098 void net_inc_egress_queue(void)
2099 {
2100 	static_branch_inc(&egress_needed_key);
2101 }
2102 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2103 
2104 void net_dec_egress_queue(void)
2105 {
2106 	static_branch_dec(&egress_needed_key);
2107 }
2108 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2109 #endif
2110 
2111 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2112 #ifdef CONFIG_JUMP_LABEL
2113 static atomic_t netstamp_needed_deferred;
2114 static atomic_t netstamp_wanted;
2115 static void netstamp_clear(struct work_struct *work)
2116 {
2117 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2118 	int wanted;
2119 
2120 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2121 	if (wanted > 0)
2122 		static_branch_enable(&netstamp_needed_key);
2123 	else
2124 		static_branch_disable(&netstamp_needed_key);
2125 }
2126 static DECLARE_WORK(netstamp_work, netstamp_clear);
2127 #endif
2128 
2129 void net_enable_timestamp(void)
2130 {
2131 #ifdef CONFIG_JUMP_LABEL
2132 	int wanted;
2133 
2134 	while (1) {
2135 		wanted = atomic_read(&netstamp_wanted);
2136 		if (wanted <= 0)
2137 			break;
2138 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2139 			return;
2140 	}
2141 	atomic_inc(&netstamp_needed_deferred);
2142 	schedule_work(&netstamp_work);
2143 #else
2144 	static_branch_inc(&netstamp_needed_key);
2145 #endif
2146 }
2147 EXPORT_SYMBOL(net_enable_timestamp);
2148 
2149 void net_disable_timestamp(void)
2150 {
2151 #ifdef CONFIG_JUMP_LABEL
2152 	int wanted;
2153 
2154 	while (1) {
2155 		wanted = atomic_read(&netstamp_wanted);
2156 		if (wanted <= 1)
2157 			break;
2158 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2159 			return;
2160 	}
2161 	atomic_dec(&netstamp_needed_deferred);
2162 	schedule_work(&netstamp_work);
2163 #else
2164 	static_branch_dec(&netstamp_needed_key);
2165 #endif
2166 }
2167 EXPORT_SYMBOL(net_disable_timestamp);
2168 
2169 static inline void net_timestamp_set(struct sk_buff *skb)
2170 {
2171 	skb->tstamp = 0;
2172 	if (static_branch_unlikely(&netstamp_needed_key))
2173 		__net_timestamp(skb);
2174 }
2175 
2176 #define net_timestamp_check(COND, SKB)				\
2177 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2178 		if ((COND) && !(SKB)->tstamp)			\
2179 			__net_timestamp(SKB);			\
2180 	}							\
2181 
2182 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2183 {
2184 	unsigned int len;
2185 
2186 	if (!(dev->flags & IFF_UP))
2187 		return false;
2188 
2189 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2190 	if (skb->len <= len)
2191 		return true;
2192 
2193 	/* if TSO is enabled, we don't care about the length as the packet
2194 	 * could be forwarded without being segmented before
2195 	 */
2196 	if (skb_is_gso(skb))
2197 		return true;
2198 
2199 	return false;
2200 }
2201 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2202 
2203 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2204 {
2205 	int ret = ____dev_forward_skb(dev, skb);
2206 
2207 	if (likely(!ret)) {
2208 		skb->protocol = eth_type_trans(skb, dev);
2209 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2210 	}
2211 
2212 	return ret;
2213 }
2214 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2215 
2216 /**
2217  * dev_forward_skb - loopback an skb to another netif
2218  *
2219  * @dev: destination network device
2220  * @skb: buffer to forward
2221  *
2222  * return values:
2223  *	NET_RX_SUCCESS	(no congestion)
2224  *	NET_RX_DROP     (packet was dropped, but freed)
2225  *
2226  * dev_forward_skb can be used for injecting an skb from the
2227  * start_xmit function of one device into the receive queue
2228  * of another device.
2229  *
2230  * The receiving device may be in another namespace, so
2231  * we have to clear all information in the skb that could
2232  * impact namespace isolation.
2233  */
2234 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2235 {
2236 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2237 }
2238 EXPORT_SYMBOL_GPL(dev_forward_skb);
2239 
2240 static inline int deliver_skb(struct sk_buff *skb,
2241 			      struct packet_type *pt_prev,
2242 			      struct net_device *orig_dev)
2243 {
2244 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2245 		return -ENOMEM;
2246 	refcount_inc(&skb->users);
2247 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2248 }
2249 
2250 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2251 					  struct packet_type **pt,
2252 					  struct net_device *orig_dev,
2253 					  __be16 type,
2254 					  struct list_head *ptype_list)
2255 {
2256 	struct packet_type *ptype, *pt_prev = *pt;
2257 
2258 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2259 		if (ptype->type != type)
2260 			continue;
2261 		if (pt_prev)
2262 			deliver_skb(skb, pt_prev, orig_dev);
2263 		pt_prev = ptype;
2264 	}
2265 	*pt = pt_prev;
2266 }
2267 
2268 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2269 {
2270 	if (!ptype->af_packet_priv || !skb->sk)
2271 		return false;
2272 
2273 	if (ptype->id_match)
2274 		return ptype->id_match(ptype, skb->sk);
2275 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2276 		return true;
2277 
2278 	return false;
2279 }
2280 
2281 /**
2282  * dev_nit_active - return true if any network interface taps are in use
2283  *
2284  * @dev: network device to check for the presence of taps
2285  */
2286 bool dev_nit_active(struct net_device *dev)
2287 {
2288 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2289 }
2290 EXPORT_SYMBOL_GPL(dev_nit_active);
2291 
2292 /*
2293  *	Support routine. Sends outgoing frames to any network
2294  *	taps currently in use.
2295  */
2296 
2297 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2298 {
2299 	struct packet_type *ptype;
2300 	struct sk_buff *skb2 = NULL;
2301 	struct packet_type *pt_prev = NULL;
2302 	struct list_head *ptype_list = &ptype_all;
2303 
2304 	rcu_read_lock();
2305 again:
2306 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2307 		if (ptype->ignore_outgoing)
2308 			continue;
2309 
2310 		/* Never send packets back to the socket
2311 		 * they originated from - MvS (miquels@drinkel.ow.org)
2312 		 */
2313 		if (skb_loop_sk(ptype, skb))
2314 			continue;
2315 
2316 		if (pt_prev) {
2317 			deliver_skb(skb2, pt_prev, skb->dev);
2318 			pt_prev = ptype;
2319 			continue;
2320 		}
2321 
2322 		/* need to clone skb, done only once */
2323 		skb2 = skb_clone(skb, GFP_ATOMIC);
2324 		if (!skb2)
2325 			goto out_unlock;
2326 
2327 		net_timestamp_set(skb2);
2328 
2329 		/* skb->nh should be correctly
2330 		 * set by sender, so that the second statement is
2331 		 * just protection against buggy protocols.
2332 		 */
2333 		skb_reset_mac_header(skb2);
2334 
2335 		if (skb_network_header(skb2) < skb2->data ||
2336 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2337 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2338 					     ntohs(skb2->protocol),
2339 					     dev->name);
2340 			skb_reset_network_header(skb2);
2341 		}
2342 
2343 		skb2->transport_header = skb2->network_header;
2344 		skb2->pkt_type = PACKET_OUTGOING;
2345 		pt_prev = ptype;
2346 	}
2347 
2348 	if (ptype_list == &ptype_all) {
2349 		ptype_list = &dev->ptype_all;
2350 		goto again;
2351 	}
2352 out_unlock:
2353 	if (pt_prev) {
2354 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2355 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2356 		else
2357 			kfree_skb(skb2);
2358 	}
2359 	rcu_read_unlock();
2360 }
2361 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2362 
2363 /**
2364  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2365  * @dev: Network device
2366  * @txq: number of queues available
2367  *
2368  * If real_num_tx_queues is changed the tc mappings may no longer be
2369  * valid. To resolve this verify the tc mapping remains valid and if
2370  * not NULL the mapping. With no priorities mapping to this
2371  * offset/count pair it will no longer be used. In the worst case TC0
2372  * is invalid nothing can be done so disable priority mappings. If is
2373  * expected that drivers will fix this mapping if they can before
2374  * calling netif_set_real_num_tx_queues.
2375  */
2376 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2377 {
2378 	int i;
2379 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2380 
2381 	/* If TC0 is invalidated disable TC mapping */
2382 	if (tc->offset + tc->count > txq) {
2383 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2384 		dev->num_tc = 0;
2385 		return;
2386 	}
2387 
2388 	/* Invalidated prio to tc mappings set to TC0 */
2389 	for (i = 1; i < TC_BITMASK + 1; i++) {
2390 		int q = netdev_get_prio_tc_map(dev, i);
2391 
2392 		tc = &dev->tc_to_txq[q];
2393 		if (tc->offset + tc->count > txq) {
2394 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2395 				i, q);
2396 			netdev_set_prio_tc_map(dev, i, 0);
2397 		}
2398 	}
2399 }
2400 
2401 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2402 {
2403 	if (dev->num_tc) {
2404 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2405 		int i;
2406 
2407 		/* walk through the TCs and see if it falls into any of them */
2408 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2409 			if ((txq - tc->offset) < tc->count)
2410 				return i;
2411 		}
2412 
2413 		/* didn't find it, just return -1 to indicate no match */
2414 		return -1;
2415 	}
2416 
2417 	return 0;
2418 }
2419 EXPORT_SYMBOL(netdev_txq_to_tc);
2420 
2421 #ifdef CONFIG_XPS
2422 struct static_key xps_needed __read_mostly;
2423 EXPORT_SYMBOL(xps_needed);
2424 struct static_key xps_rxqs_needed __read_mostly;
2425 EXPORT_SYMBOL(xps_rxqs_needed);
2426 static DEFINE_MUTEX(xps_map_mutex);
2427 #define xmap_dereference(P)		\
2428 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2429 
2430 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2431 			     int tci, u16 index)
2432 {
2433 	struct xps_map *map = NULL;
2434 	int pos;
2435 
2436 	if (dev_maps)
2437 		map = xmap_dereference(dev_maps->attr_map[tci]);
2438 	if (!map)
2439 		return false;
2440 
2441 	for (pos = map->len; pos--;) {
2442 		if (map->queues[pos] != index)
2443 			continue;
2444 
2445 		if (map->len > 1) {
2446 			map->queues[pos] = map->queues[--map->len];
2447 			break;
2448 		}
2449 
2450 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2451 		kfree_rcu(map, rcu);
2452 		return false;
2453 	}
2454 
2455 	return true;
2456 }
2457 
2458 static bool remove_xps_queue_cpu(struct net_device *dev,
2459 				 struct xps_dev_maps *dev_maps,
2460 				 int cpu, u16 offset, u16 count)
2461 {
2462 	int num_tc = dev->num_tc ? : 1;
2463 	bool active = false;
2464 	int tci;
2465 
2466 	for (tci = cpu * num_tc; num_tc--; tci++) {
2467 		int i, j;
2468 
2469 		for (i = count, j = offset; i--; j++) {
2470 			if (!remove_xps_queue(dev_maps, tci, j))
2471 				break;
2472 		}
2473 
2474 		active |= i < 0;
2475 	}
2476 
2477 	return active;
2478 }
2479 
2480 static void reset_xps_maps(struct net_device *dev,
2481 			   struct xps_dev_maps *dev_maps,
2482 			   bool is_rxqs_map)
2483 {
2484 	if (is_rxqs_map) {
2485 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2486 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2487 	} else {
2488 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2489 	}
2490 	static_key_slow_dec_cpuslocked(&xps_needed);
2491 	kfree_rcu(dev_maps, rcu);
2492 }
2493 
2494 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2495 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2496 			   u16 offset, u16 count, bool is_rxqs_map)
2497 {
2498 	bool active = false;
2499 	int i, j;
2500 
2501 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2502 	     j < nr_ids;)
2503 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2504 					       count);
2505 	if (!active)
2506 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2507 
2508 	if (!is_rxqs_map) {
2509 		for (i = offset + (count - 1); count--; i--) {
2510 			netdev_queue_numa_node_write(
2511 				netdev_get_tx_queue(dev, i),
2512 				NUMA_NO_NODE);
2513 		}
2514 	}
2515 }
2516 
2517 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2518 				   u16 count)
2519 {
2520 	const unsigned long *possible_mask = NULL;
2521 	struct xps_dev_maps *dev_maps;
2522 	unsigned int nr_ids;
2523 
2524 	if (!static_key_false(&xps_needed))
2525 		return;
2526 
2527 	cpus_read_lock();
2528 	mutex_lock(&xps_map_mutex);
2529 
2530 	if (static_key_false(&xps_rxqs_needed)) {
2531 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2532 		if (dev_maps) {
2533 			nr_ids = dev->num_rx_queues;
2534 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2535 				       offset, count, true);
2536 		}
2537 	}
2538 
2539 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2540 	if (!dev_maps)
2541 		goto out_no_maps;
2542 
2543 	if (num_possible_cpus() > 1)
2544 		possible_mask = cpumask_bits(cpu_possible_mask);
2545 	nr_ids = nr_cpu_ids;
2546 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2547 		       false);
2548 
2549 out_no_maps:
2550 	mutex_unlock(&xps_map_mutex);
2551 	cpus_read_unlock();
2552 }
2553 
2554 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2555 {
2556 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2557 }
2558 
2559 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2560 				      u16 index, bool is_rxqs_map)
2561 {
2562 	struct xps_map *new_map;
2563 	int alloc_len = XPS_MIN_MAP_ALLOC;
2564 	int i, pos;
2565 
2566 	for (pos = 0; map && pos < map->len; pos++) {
2567 		if (map->queues[pos] != index)
2568 			continue;
2569 		return map;
2570 	}
2571 
2572 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2573 	if (map) {
2574 		if (pos < map->alloc_len)
2575 			return map;
2576 
2577 		alloc_len = map->alloc_len * 2;
2578 	}
2579 
2580 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2581 	 *  map
2582 	 */
2583 	if (is_rxqs_map)
2584 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2585 	else
2586 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2587 				       cpu_to_node(attr_index));
2588 	if (!new_map)
2589 		return NULL;
2590 
2591 	for (i = 0; i < pos; i++)
2592 		new_map->queues[i] = map->queues[i];
2593 	new_map->alloc_len = alloc_len;
2594 	new_map->len = pos;
2595 
2596 	return new_map;
2597 }
2598 
2599 /* Must be called under cpus_read_lock */
2600 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2601 			  u16 index, bool is_rxqs_map)
2602 {
2603 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2604 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2605 	int i, j, tci, numa_node_id = -2;
2606 	int maps_sz, num_tc = 1, tc = 0;
2607 	struct xps_map *map, *new_map;
2608 	bool active = false;
2609 	unsigned int nr_ids;
2610 
2611 	if (dev->num_tc) {
2612 		/* Do not allow XPS on subordinate device directly */
2613 		num_tc = dev->num_tc;
2614 		if (num_tc < 0)
2615 			return -EINVAL;
2616 
2617 		/* If queue belongs to subordinate dev use its map */
2618 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2619 
2620 		tc = netdev_txq_to_tc(dev, index);
2621 		if (tc < 0)
2622 			return -EINVAL;
2623 	}
2624 
2625 	mutex_lock(&xps_map_mutex);
2626 	if (is_rxqs_map) {
2627 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2628 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2629 		nr_ids = dev->num_rx_queues;
2630 	} else {
2631 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2632 		if (num_possible_cpus() > 1) {
2633 			online_mask = cpumask_bits(cpu_online_mask);
2634 			possible_mask = cpumask_bits(cpu_possible_mask);
2635 		}
2636 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2637 		nr_ids = nr_cpu_ids;
2638 	}
2639 
2640 	if (maps_sz < L1_CACHE_BYTES)
2641 		maps_sz = L1_CACHE_BYTES;
2642 
2643 	/* allocate memory for queue storage */
2644 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2645 	     j < nr_ids;) {
2646 		if (!new_dev_maps)
2647 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2648 		if (!new_dev_maps) {
2649 			mutex_unlock(&xps_map_mutex);
2650 			return -ENOMEM;
2651 		}
2652 
2653 		tci = j * num_tc + tc;
2654 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2655 				 NULL;
2656 
2657 		map = expand_xps_map(map, j, index, is_rxqs_map);
2658 		if (!map)
2659 			goto error;
2660 
2661 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2662 	}
2663 
2664 	if (!new_dev_maps)
2665 		goto out_no_new_maps;
2666 
2667 	if (!dev_maps) {
2668 		/* Increment static keys at most once per type */
2669 		static_key_slow_inc_cpuslocked(&xps_needed);
2670 		if (is_rxqs_map)
2671 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2672 	}
2673 
2674 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2675 	     j < nr_ids;) {
2676 		/* copy maps belonging to foreign traffic classes */
2677 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2678 			/* fill in the new device map from the old device map */
2679 			map = xmap_dereference(dev_maps->attr_map[tci]);
2680 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2681 		}
2682 
2683 		/* We need to explicitly update tci as prevous loop
2684 		 * could break out early if dev_maps is NULL.
2685 		 */
2686 		tci = j * num_tc + tc;
2687 
2688 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2689 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2690 			/* add tx-queue to CPU/rx-queue maps */
2691 			int pos = 0;
2692 
2693 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2694 			while ((pos < map->len) && (map->queues[pos] != index))
2695 				pos++;
2696 
2697 			if (pos == map->len)
2698 				map->queues[map->len++] = index;
2699 #ifdef CONFIG_NUMA
2700 			if (!is_rxqs_map) {
2701 				if (numa_node_id == -2)
2702 					numa_node_id = cpu_to_node(j);
2703 				else if (numa_node_id != cpu_to_node(j))
2704 					numa_node_id = -1;
2705 			}
2706 #endif
2707 		} else if (dev_maps) {
2708 			/* fill in the new device map from the old device map */
2709 			map = xmap_dereference(dev_maps->attr_map[tci]);
2710 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2711 		}
2712 
2713 		/* copy maps belonging to foreign traffic classes */
2714 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2715 			/* fill in the new device map from the old device map */
2716 			map = xmap_dereference(dev_maps->attr_map[tci]);
2717 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2718 		}
2719 	}
2720 
2721 	if (is_rxqs_map)
2722 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2723 	else
2724 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2725 
2726 	/* Cleanup old maps */
2727 	if (!dev_maps)
2728 		goto out_no_old_maps;
2729 
2730 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2731 	     j < nr_ids;) {
2732 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2733 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2734 			map = xmap_dereference(dev_maps->attr_map[tci]);
2735 			if (map && map != new_map)
2736 				kfree_rcu(map, rcu);
2737 		}
2738 	}
2739 
2740 	kfree_rcu(dev_maps, rcu);
2741 
2742 out_no_old_maps:
2743 	dev_maps = new_dev_maps;
2744 	active = true;
2745 
2746 out_no_new_maps:
2747 	if (!is_rxqs_map) {
2748 		/* update Tx queue numa node */
2749 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2750 					     (numa_node_id >= 0) ?
2751 					     numa_node_id : NUMA_NO_NODE);
2752 	}
2753 
2754 	if (!dev_maps)
2755 		goto out_no_maps;
2756 
2757 	/* removes tx-queue from unused CPUs/rx-queues */
2758 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2759 	     j < nr_ids;) {
2760 		for (i = tc, tci = j * num_tc; i--; tci++)
2761 			active |= remove_xps_queue(dev_maps, tci, index);
2762 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2763 		    !netif_attr_test_online(j, online_mask, nr_ids))
2764 			active |= remove_xps_queue(dev_maps, tci, index);
2765 		for (i = num_tc - tc, tci++; --i; tci++)
2766 			active |= remove_xps_queue(dev_maps, tci, index);
2767 	}
2768 
2769 	/* free map if not active */
2770 	if (!active)
2771 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2772 
2773 out_no_maps:
2774 	mutex_unlock(&xps_map_mutex);
2775 
2776 	return 0;
2777 error:
2778 	/* remove any maps that we added */
2779 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2780 	     j < nr_ids;) {
2781 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2782 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2783 			map = dev_maps ?
2784 			      xmap_dereference(dev_maps->attr_map[tci]) :
2785 			      NULL;
2786 			if (new_map && new_map != map)
2787 				kfree(new_map);
2788 		}
2789 	}
2790 
2791 	mutex_unlock(&xps_map_mutex);
2792 
2793 	kfree(new_dev_maps);
2794 	return -ENOMEM;
2795 }
2796 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2797 
2798 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2799 			u16 index)
2800 {
2801 	int ret;
2802 
2803 	cpus_read_lock();
2804 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2805 	cpus_read_unlock();
2806 
2807 	return ret;
2808 }
2809 EXPORT_SYMBOL(netif_set_xps_queue);
2810 
2811 #endif
2812 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2813 {
2814 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2815 
2816 	/* Unbind any subordinate channels */
2817 	while (txq-- != &dev->_tx[0]) {
2818 		if (txq->sb_dev)
2819 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2820 	}
2821 }
2822 
2823 void netdev_reset_tc(struct net_device *dev)
2824 {
2825 #ifdef CONFIG_XPS
2826 	netif_reset_xps_queues_gt(dev, 0);
2827 #endif
2828 	netdev_unbind_all_sb_channels(dev);
2829 
2830 	/* Reset TC configuration of device */
2831 	dev->num_tc = 0;
2832 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2833 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2834 }
2835 EXPORT_SYMBOL(netdev_reset_tc);
2836 
2837 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2838 {
2839 	if (tc >= dev->num_tc)
2840 		return -EINVAL;
2841 
2842 #ifdef CONFIG_XPS
2843 	netif_reset_xps_queues(dev, offset, count);
2844 #endif
2845 	dev->tc_to_txq[tc].count = count;
2846 	dev->tc_to_txq[tc].offset = offset;
2847 	return 0;
2848 }
2849 EXPORT_SYMBOL(netdev_set_tc_queue);
2850 
2851 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2852 {
2853 	if (num_tc > TC_MAX_QUEUE)
2854 		return -EINVAL;
2855 
2856 #ifdef CONFIG_XPS
2857 	netif_reset_xps_queues_gt(dev, 0);
2858 #endif
2859 	netdev_unbind_all_sb_channels(dev);
2860 
2861 	dev->num_tc = num_tc;
2862 	return 0;
2863 }
2864 EXPORT_SYMBOL(netdev_set_num_tc);
2865 
2866 void netdev_unbind_sb_channel(struct net_device *dev,
2867 			      struct net_device *sb_dev)
2868 {
2869 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2870 
2871 #ifdef CONFIG_XPS
2872 	netif_reset_xps_queues_gt(sb_dev, 0);
2873 #endif
2874 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2875 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2876 
2877 	while (txq-- != &dev->_tx[0]) {
2878 		if (txq->sb_dev == sb_dev)
2879 			txq->sb_dev = NULL;
2880 	}
2881 }
2882 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2883 
2884 int netdev_bind_sb_channel_queue(struct net_device *dev,
2885 				 struct net_device *sb_dev,
2886 				 u8 tc, u16 count, u16 offset)
2887 {
2888 	/* Make certain the sb_dev and dev are already configured */
2889 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2890 		return -EINVAL;
2891 
2892 	/* We cannot hand out queues we don't have */
2893 	if ((offset + count) > dev->real_num_tx_queues)
2894 		return -EINVAL;
2895 
2896 	/* Record the mapping */
2897 	sb_dev->tc_to_txq[tc].count = count;
2898 	sb_dev->tc_to_txq[tc].offset = offset;
2899 
2900 	/* Provide a way for Tx queue to find the tc_to_txq map or
2901 	 * XPS map for itself.
2902 	 */
2903 	while (count--)
2904 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2905 
2906 	return 0;
2907 }
2908 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2909 
2910 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2911 {
2912 	/* Do not use a multiqueue device to represent a subordinate channel */
2913 	if (netif_is_multiqueue(dev))
2914 		return -ENODEV;
2915 
2916 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2917 	 * Channel 0 is meant to be "native" mode and used only to represent
2918 	 * the main root device. We allow writing 0 to reset the device back
2919 	 * to normal mode after being used as a subordinate channel.
2920 	 */
2921 	if (channel > S16_MAX)
2922 		return -EINVAL;
2923 
2924 	dev->num_tc = -channel;
2925 
2926 	return 0;
2927 }
2928 EXPORT_SYMBOL(netdev_set_sb_channel);
2929 
2930 /*
2931  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2932  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2933  */
2934 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2935 {
2936 	bool disabling;
2937 	int rc;
2938 
2939 	disabling = txq < dev->real_num_tx_queues;
2940 
2941 	if (txq < 1 || txq > dev->num_tx_queues)
2942 		return -EINVAL;
2943 
2944 	if (dev->reg_state == NETREG_REGISTERED ||
2945 	    dev->reg_state == NETREG_UNREGISTERING) {
2946 		ASSERT_RTNL();
2947 
2948 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2949 						  txq);
2950 		if (rc)
2951 			return rc;
2952 
2953 		if (dev->num_tc)
2954 			netif_setup_tc(dev, txq);
2955 
2956 		dev->real_num_tx_queues = txq;
2957 
2958 		if (disabling) {
2959 			synchronize_net();
2960 			qdisc_reset_all_tx_gt(dev, txq);
2961 #ifdef CONFIG_XPS
2962 			netif_reset_xps_queues_gt(dev, txq);
2963 #endif
2964 		}
2965 	} else {
2966 		dev->real_num_tx_queues = txq;
2967 	}
2968 
2969 	return 0;
2970 }
2971 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2972 
2973 #ifdef CONFIG_SYSFS
2974 /**
2975  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2976  *	@dev: Network device
2977  *	@rxq: Actual number of RX queues
2978  *
2979  *	This must be called either with the rtnl_lock held or before
2980  *	registration of the net device.  Returns 0 on success, or a
2981  *	negative error code.  If called before registration, it always
2982  *	succeeds.
2983  */
2984 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2985 {
2986 	int rc;
2987 
2988 	if (rxq < 1 || rxq > dev->num_rx_queues)
2989 		return -EINVAL;
2990 
2991 	if (dev->reg_state == NETREG_REGISTERED) {
2992 		ASSERT_RTNL();
2993 
2994 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2995 						  rxq);
2996 		if (rc)
2997 			return rc;
2998 	}
2999 
3000 	dev->real_num_rx_queues = rxq;
3001 	return 0;
3002 }
3003 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3004 #endif
3005 
3006 /**
3007  * netif_get_num_default_rss_queues - default number of RSS queues
3008  *
3009  * This routine should set an upper limit on the number of RSS queues
3010  * used by default by multiqueue devices.
3011  */
3012 int netif_get_num_default_rss_queues(void)
3013 {
3014 	return is_kdump_kernel() ?
3015 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3016 }
3017 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3018 
3019 static void __netif_reschedule(struct Qdisc *q)
3020 {
3021 	struct softnet_data *sd;
3022 	unsigned long flags;
3023 
3024 	local_irq_save(flags);
3025 	sd = this_cpu_ptr(&softnet_data);
3026 	q->next_sched = NULL;
3027 	*sd->output_queue_tailp = q;
3028 	sd->output_queue_tailp = &q->next_sched;
3029 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3030 	local_irq_restore(flags);
3031 }
3032 
3033 void __netif_schedule(struct Qdisc *q)
3034 {
3035 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3036 		__netif_reschedule(q);
3037 }
3038 EXPORT_SYMBOL(__netif_schedule);
3039 
3040 struct dev_kfree_skb_cb {
3041 	enum skb_free_reason reason;
3042 };
3043 
3044 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3045 {
3046 	return (struct dev_kfree_skb_cb *)skb->cb;
3047 }
3048 
3049 void netif_schedule_queue(struct netdev_queue *txq)
3050 {
3051 	rcu_read_lock();
3052 	if (!netif_xmit_stopped(txq)) {
3053 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3054 
3055 		__netif_schedule(q);
3056 	}
3057 	rcu_read_unlock();
3058 }
3059 EXPORT_SYMBOL(netif_schedule_queue);
3060 
3061 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3062 {
3063 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3064 		struct Qdisc *q;
3065 
3066 		rcu_read_lock();
3067 		q = rcu_dereference(dev_queue->qdisc);
3068 		__netif_schedule(q);
3069 		rcu_read_unlock();
3070 	}
3071 }
3072 EXPORT_SYMBOL(netif_tx_wake_queue);
3073 
3074 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3075 {
3076 	unsigned long flags;
3077 
3078 	if (unlikely(!skb))
3079 		return;
3080 
3081 	if (likely(refcount_read(&skb->users) == 1)) {
3082 		smp_rmb();
3083 		refcount_set(&skb->users, 0);
3084 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3085 		return;
3086 	}
3087 	get_kfree_skb_cb(skb)->reason = reason;
3088 	local_irq_save(flags);
3089 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3090 	__this_cpu_write(softnet_data.completion_queue, skb);
3091 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3092 	local_irq_restore(flags);
3093 }
3094 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3095 
3096 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3097 {
3098 	if (in_irq() || irqs_disabled())
3099 		__dev_kfree_skb_irq(skb, reason);
3100 	else
3101 		dev_kfree_skb(skb);
3102 }
3103 EXPORT_SYMBOL(__dev_kfree_skb_any);
3104 
3105 
3106 /**
3107  * netif_device_detach - mark device as removed
3108  * @dev: network device
3109  *
3110  * Mark device as removed from system and therefore no longer available.
3111  */
3112 void netif_device_detach(struct net_device *dev)
3113 {
3114 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3115 	    netif_running(dev)) {
3116 		netif_tx_stop_all_queues(dev);
3117 	}
3118 }
3119 EXPORT_SYMBOL(netif_device_detach);
3120 
3121 /**
3122  * netif_device_attach - mark device as attached
3123  * @dev: network device
3124  *
3125  * Mark device as attached from system and restart if needed.
3126  */
3127 void netif_device_attach(struct net_device *dev)
3128 {
3129 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3130 	    netif_running(dev)) {
3131 		netif_tx_wake_all_queues(dev);
3132 		__netdev_watchdog_up(dev);
3133 	}
3134 }
3135 EXPORT_SYMBOL(netif_device_attach);
3136 
3137 /*
3138  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3139  * to be used as a distribution range.
3140  */
3141 static u16 skb_tx_hash(const struct net_device *dev,
3142 		       const struct net_device *sb_dev,
3143 		       struct sk_buff *skb)
3144 {
3145 	u32 hash;
3146 	u16 qoffset = 0;
3147 	u16 qcount = dev->real_num_tx_queues;
3148 
3149 	if (dev->num_tc) {
3150 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3151 
3152 		qoffset = sb_dev->tc_to_txq[tc].offset;
3153 		qcount = sb_dev->tc_to_txq[tc].count;
3154 	}
3155 
3156 	if (skb_rx_queue_recorded(skb)) {
3157 		hash = skb_get_rx_queue(skb);
3158 		if (hash >= qoffset)
3159 			hash -= qoffset;
3160 		while (unlikely(hash >= qcount))
3161 			hash -= qcount;
3162 		return hash + qoffset;
3163 	}
3164 
3165 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3166 }
3167 
3168 static void skb_warn_bad_offload(const struct sk_buff *skb)
3169 {
3170 	static const netdev_features_t null_features;
3171 	struct net_device *dev = skb->dev;
3172 	const char *name = "";
3173 
3174 	if (!net_ratelimit())
3175 		return;
3176 
3177 	if (dev) {
3178 		if (dev->dev.parent)
3179 			name = dev_driver_string(dev->dev.parent);
3180 		else
3181 			name = netdev_name(dev);
3182 	}
3183 	skb_dump(KERN_WARNING, skb, false);
3184 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3185 	     name, dev ? &dev->features : &null_features,
3186 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3187 }
3188 
3189 /*
3190  * Invalidate hardware checksum when packet is to be mangled, and
3191  * complete checksum manually on outgoing path.
3192  */
3193 int skb_checksum_help(struct sk_buff *skb)
3194 {
3195 	__wsum csum;
3196 	int ret = 0, offset;
3197 
3198 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3199 		goto out_set_summed;
3200 
3201 	if (unlikely(skb_shinfo(skb)->gso_size)) {
3202 		skb_warn_bad_offload(skb);
3203 		return -EINVAL;
3204 	}
3205 
3206 	/* Before computing a checksum, we should make sure no frag could
3207 	 * be modified by an external entity : checksum could be wrong.
3208 	 */
3209 	if (skb_has_shared_frag(skb)) {
3210 		ret = __skb_linearize(skb);
3211 		if (ret)
3212 			goto out;
3213 	}
3214 
3215 	offset = skb_checksum_start_offset(skb);
3216 	BUG_ON(offset >= skb_headlen(skb));
3217 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3218 
3219 	offset += skb->csum_offset;
3220 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3221 
3222 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3223 	if (ret)
3224 		goto out;
3225 
3226 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3227 out_set_summed:
3228 	skb->ip_summed = CHECKSUM_NONE;
3229 out:
3230 	return ret;
3231 }
3232 EXPORT_SYMBOL(skb_checksum_help);
3233 
3234 int skb_crc32c_csum_help(struct sk_buff *skb)
3235 {
3236 	__le32 crc32c_csum;
3237 	int ret = 0, offset, start;
3238 
3239 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3240 		goto out;
3241 
3242 	if (unlikely(skb_is_gso(skb)))
3243 		goto out;
3244 
3245 	/* Before computing a checksum, we should make sure no frag could
3246 	 * be modified by an external entity : checksum could be wrong.
3247 	 */
3248 	if (unlikely(skb_has_shared_frag(skb))) {
3249 		ret = __skb_linearize(skb);
3250 		if (ret)
3251 			goto out;
3252 	}
3253 	start = skb_checksum_start_offset(skb);
3254 	offset = start + offsetof(struct sctphdr, checksum);
3255 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3256 		ret = -EINVAL;
3257 		goto out;
3258 	}
3259 
3260 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3261 	if (ret)
3262 		goto out;
3263 
3264 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3265 						  skb->len - start, ~(__u32)0,
3266 						  crc32c_csum_stub));
3267 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3268 	skb->ip_summed = CHECKSUM_NONE;
3269 	skb->csum_not_inet = 0;
3270 out:
3271 	return ret;
3272 }
3273 
3274 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3275 {
3276 	__be16 type = skb->protocol;
3277 
3278 	/* Tunnel gso handlers can set protocol to ethernet. */
3279 	if (type == htons(ETH_P_TEB)) {
3280 		struct ethhdr *eth;
3281 
3282 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3283 			return 0;
3284 
3285 		eth = (struct ethhdr *)skb->data;
3286 		type = eth->h_proto;
3287 	}
3288 
3289 	return __vlan_get_protocol(skb, type, depth);
3290 }
3291 
3292 /**
3293  *	skb_mac_gso_segment - mac layer segmentation handler.
3294  *	@skb: buffer to segment
3295  *	@features: features for the output path (see dev->features)
3296  */
3297 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3298 				    netdev_features_t features)
3299 {
3300 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3301 	struct packet_offload *ptype;
3302 	int vlan_depth = skb->mac_len;
3303 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3304 
3305 	if (unlikely(!type))
3306 		return ERR_PTR(-EINVAL);
3307 
3308 	__skb_pull(skb, vlan_depth);
3309 
3310 	rcu_read_lock();
3311 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3312 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3313 			segs = ptype->callbacks.gso_segment(skb, features);
3314 			break;
3315 		}
3316 	}
3317 	rcu_read_unlock();
3318 
3319 	__skb_push(skb, skb->data - skb_mac_header(skb));
3320 
3321 	return segs;
3322 }
3323 EXPORT_SYMBOL(skb_mac_gso_segment);
3324 
3325 
3326 /* openvswitch calls this on rx path, so we need a different check.
3327  */
3328 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3329 {
3330 	if (tx_path)
3331 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3332 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3333 
3334 	return skb->ip_summed == CHECKSUM_NONE;
3335 }
3336 
3337 /**
3338  *	__skb_gso_segment - Perform segmentation on skb.
3339  *	@skb: buffer to segment
3340  *	@features: features for the output path (see dev->features)
3341  *	@tx_path: whether it is called in TX path
3342  *
3343  *	This function segments the given skb and returns a list of segments.
3344  *
3345  *	It may return NULL if the skb requires no segmentation.  This is
3346  *	only possible when GSO is used for verifying header integrity.
3347  *
3348  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3349  */
3350 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3351 				  netdev_features_t features, bool tx_path)
3352 {
3353 	struct sk_buff *segs;
3354 
3355 	if (unlikely(skb_needs_check(skb, tx_path))) {
3356 		int err;
3357 
3358 		/* We're going to init ->check field in TCP or UDP header */
3359 		err = skb_cow_head(skb, 0);
3360 		if (err < 0)
3361 			return ERR_PTR(err);
3362 	}
3363 
3364 	/* Only report GSO partial support if it will enable us to
3365 	 * support segmentation on this frame without needing additional
3366 	 * work.
3367 	 */
3368 	if (features & NETIF_F_GSO_PARTIAL) {
3369 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3370 		struct net_device *dev = skb->dev;
3371 
3372 		partial_features |= dev->features & dev->gso_partial_features;
3373 		if (!skb_gso_ok(skb, features | partial_features))
3374 			features &= ~NETIF_F_GSO_PARTIAL;
3375 	}
3376 
3377 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3378 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3379 
3380 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3381 	SKB_GSO_CB(skb)->encap_level = 0;
3382 
3383 	skb_reset_mac_header(skb);
3384 	skb_reset_mac_len(skb);
3385 
3386 	segs = skb_mac_gso_segment(skb, features);
3387 
3388 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3389 		skb_warn_bad_offload(skb);
3390 
3391 	return segs;
3392 }
3393 EXPORT_SYMBOL(__skb_gso_segment);
3394 
3395 /* Take action when hardware reception checksum errors are detected. */
3396 #ifdef CONFIG_BUG
3397 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3398 {
3399 	if (net_ratelimit()) {
3400 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3401 		skb_dump(KERN_ERR, skb, true);
3402 		dump_stack();
3403 	}
3404 }
3405 EXPORT_SYMBOL(netdev_rx_csum_fault);
3406 #endif
3407 
3408 /* XXX: check that highmem exists at all on the given machine. */
3409 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3410 {
3411 #ifdef CONFIG_HIGHMEM
3412 	int i;
3413 
3414 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3415 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3416 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3417 
3418 			if (PageHighMem(skb_frag_page(frag)))
3419 				return 1;
3420 		}
3421 	}
3422 #endif
3423 	return 0;
3424 }
3425 
3426 /* If MPLS offload request, verify we are testing hardware MPLS features
3427  * instead of standard features for the netdev.
3428  */
3429 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3430 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3431 					   netdev_features_t features,
3432 					   __be16 type)
3433 {
3434 	if (eth_p_mpls(type))
3435 		features &= skb->dev->mpls_features;
3436 
3437 	return features;
3438 }
3439 #else
3440 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3441 					   netdev_features_t features,
3442 					   __be16 type)
3443 {
3444 	return features;
3445 }
3446 #endif
3447 
3448 static netdev_features_t harmonize_features(struct sk_buff *skb,
3449 	netdev_features_t features)
3450 {
3451 	int tmp;
3452 	__be16 type;
3453 
3454 	type = skb_network_protocol(skb, &tmp);
3455 	features = net_mpls_features(skb, features, type);
3456 
3457 	if (skb->ip_summed != CHECKSUM_NONE &&
3458 	    !can_checksum_protocol(features, type)) {
3459 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3460 	}
3461 	if (illegal_highdma(skb->dev, skb))
3462 		features &= ~NETIF_F_SG;
3463 
3464 	return features;
3465 }
3466 
3467 netdev_features_t passthru_features_check(struct sk_buff *skb,
3468 					  struct net_device *dev,
3469 					  netdev_features_t features)
3470 {
3471 	return features;
3472 }
3473 EXPORT_SYMBOL(passthru_features_check);
3474 
3475 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3476 					     struct net_device *dev,
3477 					     netdev_features_t features)
3478 {
3479 	return vlan_features_check(skb, features);
3480 }
3481 
3482 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3483 					    struct net_device *dev,
3484 					    netdev_features_t features)
3485 {
3486 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3487 
3488 	if (gso_segs > dev->gso_max_segs)
3489 		return features & ~NETIF_F_GSO_MASK;
3490 
3491 	/* Support for GSO partial features requires software
3492 	 * intervention before we can actually process the packets
3493 	 * so we need to strip support for any partial features now
3494 	 * and we can pull them back in after we have partially
3495 	 * segmented the frame.
3496 	 */
3497 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3498 		features &= ~dev->gso_partial_features;
3499 
3500 	/* Make sure to clear the IPv4 ID mangling feature if the
3501 	 * IPv4 header has the potential to be fragmented.
3502 	 */
3503 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3504 		struct iphdr *iph = skb->encapsulation ?
3505 				    inner_ip_hdr(skb) : ip_hdr(skb);
3506 
3507 		if (!(iph->frag_off & htons(IP_DF)))
3508 			features &= ~NETIF_F_TSO_MANGLEID;
3509 	}
3510 
3511 	return features;
3512 }
3513 
3514 netdev_features_t netif_skb_features(struct sk_buff *skb)
3515 {
3516 	struct net_device *dev = skb->dev;
3517 	netdev_features_t features = dev->features;
3518 
3519 	if (skb_is_gso(skb))
3520 		features = gso_features_check(skb, dev, features);
3521 
3522 	/* If encapsulation offload request, verify we are testing
3523 	 * hardware encapsulation features instead of standard
3524 	 * features for the netdev
3525 	 */
3526 	if (skb->encapsulation)
3527 		features &= dev->hw_enc_features;
3528 
3529 	if (skb_vlan_tagged(skb))
3530 		features = netdev_intersect_features(features,
3531 						     dev->vlan_features |
3532 						     NETIF_F_HW_VLAN_CTAG_TX |
3533 						     NETIF_F_HW_VLAN_STAG_TX);
3534 
3535 	if (dev->netdev_ops->ndo_features_check)
3536 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3537 								features);
3538 	else
3539 		features &= dflt_features_check(skb, dev, features);
3540 
3541 	return harmonize_features(skb, features);
3542 }
3543 EXPORT_SYMBOL(netif_skb_features);
3544 
3545 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3546 		    struct netdev_queue *txq, bool more)
3547 {
3548 	unsigned int len;
3549 	int rc;
3550 
3551 	if (dev_nit_active(dev))
3552 		dev_queue_xmit_nit(skb, dev);
3553 
3554 	len = skb->len;
3555 	trace_net_dev_start_xmit(skb, dev);
3556 	rc = netdev_start_xmit(skb, dev, txq, more);
3557 	trace_net_dev_xmit(skb, rc, dev, len);
3558 
3559 	return rc;
3560 }
3561 
3562 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3563 				    struct netdev_queue *txq, int *ret)
3564 {
3565 	struct sk_buff *skb = first;
3566 	int rc = NETDEV_TX_OK;
3567 
3568 	while (skb) {
3569 		struct sk_buff *next = skb->next;
3570 
3571 		skb_mark_not_on_list(skb);
3572 		rc = xmit_one(skb, dev, txq, next != NULL);
3573 		if (unlikely(!dev_xmit_complete(rc))) {
3574 			skb->next = next;
3575 			goto out;
3576 		}
3577 
3578 		skb = next;
3579 		if (netif_tx_queue_stopped(txq) && skb) {
3580 			rc = NETDEV_TX_BUSY;
3581 			break;
3582 		}
3583 	}
3584 
3585 out:
3586 	*ret = rc;
3587 	return skb;
3588 }
3589 
3590 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3591 					  netdev_features_t features)
3592 {
3593 	if (skb_vlan_tag_present(skb) &&
3594 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3595 		skb = __vlan_hwaccel_push_inside(skb);
3596 	return skb;
3597 }
3598 
3599 int skb_csum_hwoffload_help(struct sk_buff *skb,
3600 			    const netdev_features_t features)
3601 {
3602 	if (unlikely(skb->csum_not_inet))
3603 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3604 			skb_crc32c_csum_help(skb);
3605 
3606 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3607 }
3608 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3609 
3610 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3611 {
3612 	netdev_features_t features;
3613 
3614 	features = netif_skb_features(skb);
3615 	skb = validate_xmit_vlan(skb, features);
3616 	if (unlikely(!skb))
3617 		goto out_null;
3618 
3619 	skb = sk_validate_xmit_skb(skb, dev);
3620 	if (unlikely(!skb))
3621 		goto out_null;
3622 
3623 	if (netif_needs_gso(skb, features)) {
3624 		struct sk_buff *segs;
3625 
3626 		segs = skb_gso_segment(skb, features);
3627 		if (IS_ERR(segs)) {
3628 			goto out_kfree_skb;
3629 		} else if (segs) {
3630 			consume_skb(skb);
3631 			skb = segs;
3632 		}
3633 	} else {
3634 		if (skb_needs_linearize(skb, features) &&
3635 		    __skb_linearize(skb))
3636 			goto out_kfree_skb;
3637 
3638 		/* If packet is not checksummed and device does not
3639 		 * support checksumming for this protocol, complete
3640 		 * checksumming here.
3641 		 */
3642 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3643 			if (skb->encapsulation)
3644 				skb_set_inner_transport_header(skb,
3645 							       skb_checksum_start_offset(skb));
3646 			else
3647 				skb_set_transport_header(skb,
3648 							 skb_checksum_start_offset(skb));
3649 			if (skb_csum_hwoffload_help(skb, features))
3650 				goto out_kfree_skb;
3651 		}
3652 	}
3653 
3654 	skb = validate_xmit_xfrm(skb, features, again);
3655 
3656 	return skb;
3657 
3658 out_kfree_skb:
3659 	kfree_skb(skb);
3660 out_null:
3661 	atomic_long_inc(&dev->tx_dropped);
3662 	return NULL;
3663 }
3664 
3665 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3666 {
3667 	struct sk_buff *next, *head = NULL, *tail;
3668 
3669 	for (; skb != NULL; skb = next) {
3670 		next = skb->next;
3671 		skb_mark_not_on_list(skb);
3672 
3673 		/* in case skb wont be segmented, point to itself */
3674 		skb->prev = skb;
3675 
3676 		skb = validate_xmit_skb(skb, dev, again);
3677 		if (!skb)
3678 			continue;
3679 
3680 		if (!head)
3681 			head = skb;
3682 		else
3683 			tail->next = skb;
3684 		/* If skb was segmented, skb->prev points to
3685 		 * the last segment. If not, it still contains skb.
3686 		 */
3687 		tail = skb->prev;
3688 	}
3689 	return head;
3690 }
3691 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3692 
3693 static void qdisc_pkt_len_init(struct sk_buff *skb)
3694 {
3695 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3696 
3697 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3698 
3699 	/* To get more precise estimation of bytes sent on wire,
3700 	 * we add to pkt_len the headers size of all segments
3701 	 */
3702 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3703 		unsigned int hdr_len;
3704 		u16 gso_segs = shinfo->gso_segs;
3705 
3706 		/* mac layer + network layer */
3707 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3708 
3709 		/* + transport layer */
3710 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3711 			const struct tcphdr *th;
3712 			struct tcphdr _tcphdr;
3713 
3714 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3715 						sizeof(_tcphdr), &_tcphdr);
3716 			if (likely(th))
3717 				hdr_len += __tcp_hdrlen(th);
3718 		} else {
3719 			struct udphdr _udphdr;
3720 
3721 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3722 					       sizeof(_udphdr), &_udphdr))
3723 				hdr_len += sizeof(struct udphdr);
3724 		}
3725 
3726 		if (shinfo->gso_type & SKB_GSO_DODGY)
3727 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3728 						shinfo->gso_size);
3729 
3730 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3731 	}
3732 }
3733 
3734 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3735 				 struct net_device *dev,
3736 				 struct netdev_queue *txq)
3737 {
3738 	spinlock_t *root_lock = qdisc_lock(q);
3739 	struct sk_buff *to_free = NULL;
3740 	bool contended;
3741 	int rc;
3742 
3743 	qdisc_calculate_pkt_len(skb, q);
3744 
3745 	if (q->flags & TCQ_F_NOLOCK) {
3746 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3747 		qdisc_run(q);
3748 
3749 		if (unlikely(to_free))
3750 			kfree_skb_list(to_free);
3751 		return rc;
3752 	}
3753 
3754 	/*
3755 	 * Heuristic to force contended enqueues to serialize on a
3756 	 * separate lock before trying to get qdisc main lock.
3757 	 * This permits qdisc->running owner to get the lock more
3758 	 * often and dequeue packets faster.
3759 	 */
3760 	contended = qdisc_is_running(q);
3761 	if (unlikely(contended))
3762 		spin_lock(&q->busylock);
3763 
3764 	spin_lock(root_lock);
3765 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3766 		__qdisc_drop(skb, &to_free);
3767 		rc = NET_XMIT_DROP;
3768 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3769 		   qdisc_run_begin(q)) {
3770 		/*
3771 		 * This is a work-conserving queue; there are no old skbs
3772 		 * waiting to be sent out; and the qdisc is not running -
3773 		 * xmit the skb directly.
3774 		 */
3775 
3776 		qdisc_bstats_update(q, skb);
3777 
3778 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3779 			if (unlikely(contended)) {
3780 				spin_unlock(&q->busylock);
3781 				contended = false;
3782 			}
3783 			__qdisc_run(q);
3784 		}
3785 
3786 		qdisc_run_end(q);
3787 		rc = NET_XMIT_SUCCESS;
3788 	} else {
3789 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3790 		if (qdisc_run_begin(q)) {
3791 			if (unlikely(contended)) {
3792 				spin_unlock(&q->busylock);
3793 				contended = false;
3794 			}
3795 			__qdisc_run(q);
3796 			qdisc_run_end(q);
3797 		}
3798 	}
3799 	spin_unlock(root_lock);
3800 	if (unlikely(to_free))
3801 		kfree_skb_list(to_free);
3802 	if (unlikely(contended))
3803 		spin_unlock(&q->busylock);
3804 	return rc;
3805 }
3806 
3807 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3808 static void skb_update_prio(struct sk_buff *skb)
3809 {
3810 	const struct netprio_map *map;
3811 	const struct sock *sk;
3812 	unsigned int prioidx;
3813 
3814 	if (skb->priority)
3815 		return;
3816 	map = rcu_dereference_bh(skb->dev->priomap);
3817 	if (!map)
3818 		return;
3819 	sk = skb_to_full_sk(skb);
3820 	if (!sk)
3821 		return;
3822 
3823 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3824 
3825 	if (prioidx < map->priomap_len)
3826 		skb->priority = map->priomap[prioidx];
3827 }
3828 #else
3829 #define skb_update_prio(skb)
3830 #endif
3831 
3832 /**
3833  *	dev_loopback_xmit - loop back @skb
3834  *	@net: network namespace this loopback is happening in
3835  *	@sk:  sk needed to be a netfilter okfn
3836  *	@skb: buffer to transmit
3837  */
3838 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3839 {
3840 	skb_reset_mac_header(skb);
3841 	__skb_pull(skb, skb_network_offset(skb));
3842 	skb->pkt_type = PACKET_LOOPBACK;
3843 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3844 	WARN_ON(!skb_dst(skb));
3845 	skb_dst_force(skb);
3846 	netif_rx_ni(skb);
3847 	return 0;
3848 }
3849 EXPORT_SYMBOL(dev_loopback_xmit);
3850 
3851 #ifdef CONFIG_NET_EGRESS
3852 static struct sk_buff *
3853 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3854 {
3855 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3856 	struct tcf_result cl_res;
3857 
3858 	if (!miniq)
3859 		return skb;
3860 
3861 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3862 	mini_qdisc_bstats_cpu_update(miniq, skb);
3863 
3864 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3865 	case TC_ACT_OK:
3866 	case TC_ACT_RECLASSIFY:
3867 		skb->tc_index = TC_H_MIN(cl_res.classid);
3868 		break;
3869 	case TC_ACT_SHOT:
3870 		mini_qdisc_qstats_cpu_drop(miniq);
3871 		*ret = NET_XMIT_DROP;
3872 		kfree_skb(skb);
3873 		return NULL;
3874 	case TC_ACT_STOLEN:
3875 	case TC_ACT_QUEUED:
3876 	case TC_ACT_TRAP:
3877 		*ret = NET_XMIT_SUCCESS;
3878 		consume_skb(skb);
3879 		return NULL;
3880 	case TC_ACT_REDIRECT:
3881 		/* No need to push/pop skb's mac_header here on egress! */
3882 		skb_do_redirect(skb);
3883 		*ret = NET_XMIT_SUCCESS;
3884 		return NULL;
3885 	default:
3886 		break;
3887 	}
3888 
3889 	return skb;
3890 }
3891 #endif /* CONFIG_NET_EGRESS */
3892 
3893 #ifdef CONFIG_XPS
3894 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3895 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3896 {
3897 	struct xps_map *map;
3898 	int queue_index = -1;
3899 
3900 	if (dev->num_tc) {
3901 		tci *= dev->num_tc;
3902 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3903 	}
3904 
3905 	map = rcu_dereference(dev_maps->attr_map[tci]);
3906 	if (map) {
3907 		if (map->len == 1)
3908 			queue_index = map->queues[0];
3909 		else
3910 			queue_index = map->queues[reciprocal_scale(
3911 						skb_get_hash(skb), map->len)];
3912 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3913 			queue_index = -1;
3914 	}
3915 	return queue_index;
3916 }
3917 #endif
3918 
3919 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3920 			 struct sk_buff *skb)
3921 {
3922 #ifdef CONFIG_XPS
3923 	struct xps_dev_maps *dev_maps;
3924 	struct sock *sk = skb->sk;
3925 	int queue_index = -1;
3926 
3927 	if (!static_key_false(&xps_needed))
3928 		return -1;
3929 
3930 	rcu_read_lock();
3931 	if (!static_key_false(&xps_rxqs_needed))
3932 		goto get_cpus_map;
3933 
3934 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3935 	if (dev_maps) {
3936 		int tci = sk_rx_queue_get(sk);
3937 
3938 		if (tci >= 0 && tci < dev->num_rx_queues)
3939 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3940 							  tci);
3941 	}
3942 
3943 get_cpus_map:
3944 	if (queue_index < 0) {
3945 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3946 		if (dev_maps) {
3947 			unsigned int tci = skb->sender_cpu - 1;
3948 
3949 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3950 							  tci);
3951 		}
3952 	}
3953 	rcu_read_unlock();
3954 
3955 	return queue_index;
3956 #else
3957 	return -1;
3958 #endif
3959 }
3960 
3961 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3962 		     struct net_device *sb_dev)
3963 {
3964 	return 0;
3965 }
3966 EXPORT_SYMBOL(dev_pick_tx_zero);
3967 
3968 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3969 		       struct net_device *sb_dev)
3970 {
3971 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3972 }
3973 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3974 
3975 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3976 		     struct net_device *sb_dev)
3977 {
3978 	struct sock *sk = skb->sk;
3979 	int queue_index = sk_tx_queue_get(sk);
3980 
3981 	sb_dev = sb_dev ? : dev;
3982 
3983 	if (queue_index < 0 || skb->ooo_okay ||
3984 	    queue_index >= dev->real_num_tx_queues) {
3985 		int new_index = get_xps_queue(dev, sb_dev, skb);
3986 
3987 		if (new_index < 0)
3988 			new_index = skb_tx_hash(dev, sb_dev, skb);
3989 
3990 		if (queue_index != new_index && sk &&
3991 		    sk_fullsock(sk) &&
3992 		    rcu_access_pointer(sk->sk_dst_cache))
3993 			sk_tx_queue_set(sk, new_index);
3994 
3995 		queue_index = new_index;
3996 	}
3997 
3998 	return queue_index;
3999 }
4000 EXPORT_SYMBOL(netdev_pick_tx);
4001 
4002 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4003 					 struct sk_buff *skb,
4004 					 struct net_device *sb_dev)
4005 {
4006 	int queue_index = 0;
4007 
4008 #ifdef CONFIG_XPS
4009 	u32 sender_cpu = skb->sender_cpu - 1;
4010 
4011 	if (sender_cpu >= (u32)NR_CPUS)
4012 		skb->sender_cpu = raw_smp_processor_id() + 1;
4013 #endif
4014 
4015 	if (dev->real_num_tx_queues != 1) {
4016 		const struct net_device_ops *ops = dev->netdev_ops;
4017 
4018 		if (ops->ndo_select_queue)
4019 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4020 		else
4021 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4022 
4023 		queue_index = netdev_cap_txqueue(dev, queue_index);
4024 	}
4025 
4026 	skb_set_queue_mapping(skb, queue_index);
4027 	return netdev_get_tx_queue(dev, queue_index);
4028 }
4029 
4030 /**
4031  *	__dev_queue_xmit - transmit a buffer
4032  *	@skb: buffer to transmit
4033  *	@sb_dev: suboordinate device used for L2 forwarding offload
4034  *
4035  *	Queue a buffer for transmission to a network device. The caller must
4036  *	have set the device and priority and built the buffer before calling
4037  *	this function. The function can be called from an interrupt.
4038  *
4039  *	A negative errno code is returned on a failure. A success does not
4040  *	guarantee the frame will be transmitted as it may be dropped due
4041  *	to congestion or traffic shaping.
4042  *
4043  * -----------------------------------------------------------------------------------
4044  *      I notice this method can also return errors from the queue disciplines,
4045  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4046  *      be positive.
4047  *
4048  *      Regardless of the return value, the skb is consumed, so it is currently
4049  *      difficult to retry a send to this method.  (You can bump the ref count
4050  *      before sending to hold a reference for retry if you are careful.)
4051  *
4052  *      When calling this method, interrupts MUST be enabled.  This is because
4053  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4054  *          --BLG
4055  */
4056 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4057 {
4058 	struct net_device *dev = skb->dev;
4059 	struct netdev_queue *txq;
4060 	struct Qdisc *q;
4061 	int rc = -ENOMEM;
4062 	bool again = false;
4063 
4064 	skb_reset_mac_header(skb);
4065 
4066 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4067 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4068 
4069 	/* Disable soft irqs for various locks below. Also
4070 	 * stops preemption for RCU.
4071 	 */
4072 	rcu_read_lock_bh();
4073 
4074 	skb_update_prio(skb);
4075 
4076 	qdisc_pkt_len_init(skb);
4077 #ifdef CONFIG_NET_CLS_ACT
4078 	skb->tc_at_ingress = 0;
4079 # ifdef CONFIG_NET_EGRESS
4080 	if (static_branch_unlikely(&egress_needed_key)) {
4081 		skb = sch_handle_egress(skb, &rc, dev);
4082 		if (!skb)
4083 			goto out;
4084 	}
4085 # endif
4086 #endif
4087 	/* If device/qdisc don't need skb->dst, release it right now while
4088 	 * its hot in this cpu cache.
4089 	 */
4090 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4091 		skb_dst_drop(skb);
4092 	else
4093 		skb_dst_force(skb);
4094 
4095 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4096 	q = rcu_dereference_bh(txq->qdisc);
4097 
4098 	trace_net_dev_queue(skb);
4099 	if (q->enqueue) {
4100 		rc = __dev_xmit_skb(skb, q, dev, txq);
4101 		goto out;
4102 	}
4103 
4104 	/* The device has no queue. Common case for software devices:
4105 	 * loopback, all the sorts of tunnels...
4106 
4107 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4108 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4109 	 * counters.)
4110 	 * However, it is possible, that they rely on protection
4111 	 * made by us here.
4112 
4113 	 * Check this and shot the lock. It is not prone from deadlocks.
4114 	 *Either shot noqueue qdisc, it is even simpler 8)
4115 	 */
4116 	if (dev->flags & IFF_UP) {
4117 		int cpu = smp_processor_id(); /* ok because BHs are off */
4118 
4119 		if (txq->xmit_lock_owner != cpu) {
4120 			if (dev_xmit_recursion())
4121 				goto recursion_alert;
4122 
4123 			skb = validate_xmit_skb(skb, dev, &again);
4124 			if (!skb)
4125 				goto out;
4126 
4127 			HARD_TX_LOCK(dev, txq, cpu);
4128 
4129 			if (!netif_xmit_stopped(txq)) {
4130 				dev_xmit_recursion_inc();
4131 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4132 				dev_xmit_recursion_dec();
4133 				if (dev_xmit_complete(rc)) {
4134 					HARD_TX_UNLOCK(dev, txq);
4135 					goto out;
4136 				}
4137 			}
4138 			HARD_TX_UNLOCK(dev, txq);
4139 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4140 					     dev->name);
4141 		} else {
4142 			/* Recursion is detected! It is possible,
4143 			 * unfortunately
4144 			 */
4145 recursion_alert:
4146 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4147 					     dev->name);
4148 		}
4149 	}
4150 
4151 	rc = -ENETDOWN;
4152 	rcu_read_unlock_bh();
4153 
4154 	atomic_long_inc(&dev->tx_dropped);
4155 	kfree_skb_list(skb);
4156 	return rc;
4157 out:
4158 	rcu_read_unlock_bh();
4159 	return rc;
4160 }
4161 
4162 int dev_queue_xmit(struct sk_buff *skb)
4163 {
4164 	return __dev_queue_xmit(skb, NULL);
4165 }
4166 EXPORT_SYMBOL(dev_queue_xmit);
4167 
4168 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4169 {
4170 	return __dev_queue_xmit(skb, sb_dev);
4171 }
4172 EXPORT_SYMBOL(dev_queue_xmit_accel);
4173 
4174 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4175 {
4176 	struct net_device *dev = skb->dev;
4177 	struct sk_buff *orig_skb = skb;
4178 	struct netdev_queue *txq;
4179 	int ret = NETDEV_TX_BUSY;
4180 	bool again = false;
4181 
4182 	if (unlikely(!netif_running(dev) ||
4183 		     !netif_carrier_ok(dev)))
4184 		goto drop;
4185 
4186 	skb = validate_xmit_skb_list(skb, dev, &again);
4187 	if (skb != orig_skb)
4188 		goto drop;
4189 
4190 	skb_set_queue_mapping(skb, queue_id);
4191 	txq = skb_get_tx_queue(dev, skb);
4192 
4193 	local_bh_disable();
4194 
4195 	dev_xmit_recursion_inc();
4196 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4197 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4198 		ret = netdev_start_xmit(skb, dev, txq, false);
4199 	HARD_TX_UNLOCK(dev, txq);
4200 	dev_xmit_recursion_dec();
4201 
4202 	local_bh_enable();
4203 
4204 	if (!dev_xmit_complete(ret))
4205 		kfree_skb(skb);
4206 
4207 	return ret;
4208 drop:
4209 	atomic_long_inc(&dev->tx_dropped);
4210 	kfree_skb_list(skb);
4211 	return NET_XMIT_DROP;
4212 }
4213 EXPORT_SYMBOL(dev_direct_xmit);
4214 
4215 /*************************************************************************
4216  *			Receiver routines
4217  *************************************************************************/
4218 
4219 int netdev_max_backlog __read_mostly = 1000;
4220 EXPORT_SYMBOL(netdev_max_backlog);
4221 
4222 int netdev_tstamp_prequeue __read_mostly = 1;
4223 int netdev_budget __read_mostly = 300;
4224 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4225 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4226 int weight_p __read_mostly = 64;           /* old backlog weight */
4227 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4228 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4229 int dev_rx_weight __read_mostly = 64;
4230 int dev_tx_weight __read_mostly = 64;
4231 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4232 int gro_normal_batch __read_mostly = 8;
4233 
4234 /* Called with irq disabled */
4235 static inline void ____napi_schedule(struct softnet_data *sd,
4236 				     struct napi_struct *napi)
4237 {
4238 	list_add_tail(&napi->poll_list, &sd->poll_list);
4239 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4240 }
4241 
4242 #ifdef CONFIG_RPS
4243 
4244 /* One global table that all flow-based protocols share. */
4245 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4246 EXPORT_SYMBOL(rps_sock_flow_table);
4247 u32 rps_cpu_mask __read_mostly;
4248 EXPORT_SYMBOL(rps_cpu_mask);
4249 
4250 struct static_key_false rps_needed __read_mostly;
4251 EXPORT_SYMBOL(rps_needed);
4252 struct static_key_false rfs_needed __read_mostly;
4253 EXPORT_SYMBOL(rfs_needed);
4254 
4255 static struct rps_dev_flow *
4256 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4257 	    struct rps_dev_flow *rflow, u16 next_cpu)
4258 {
4259 	if (next_cpu < nr_cpu_ids) {
4260 #ifdef CONFIG_RFS_ACCEL
4261 		struct netdev_rx_queue *rxqueue;
4262 		struct rps_dev_flow_table *flow_table;
4263 		struct rps_dev_flow *old_rflow;
4264 		u32 flow_id;
4265 		u16 rxq_index;
4266 		int rc;
4267 
4268 		/* Should we steer this flow to a different hardware queue? */
4269 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4270 		    !(dev->features & NETIF_F_NTUPLE))
4271 			goto out;
4272 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4273 		if (rxq_index == skb_get_rx_queue(skb))
4274 			goto out;
4275 
4276 		rxqueue = dev->_rx + rxq_index;
4277 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4278 		if (!flow_table)
4279 			goto out;
4280 		flow_id = skb_get_hash(skb) & flow_table->mask;
4281 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4282 							rxq_index, flow_id);
4283 		if (rc < 0)
4284 			goto out;
4285 		old_rflow = rflow;
4286 		rflow = &flow_table->flows[flow_id];
4287 		rflow->filter = rc;
4288 		if (old_rflow->filter == rflow->filter)
4289 			old_rflow->filter = RPS_NO_FILTER;
4290 	out:
4291 #endif
4292 		rflow->last_qtail =
4293 			per_cpu(softnet_data, next_cpu).input_queue_head;
4294 	}
4295 
4296 	rflow->cpu = next_cpu;
4297 	return rflow;
4298 }
4299 
4300 /*
4301  * get_rps_cpu is called from netif_receive_skb and returns the target
4302  * CPU from the RPS map of the receiving queue for a given skb.
4303  * rcu_read_lock must be held on entry.
4304  */
4305 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4306 		       struct rps_dev_flow **rflowp)
4307 {
4308 	const struct rps_sock_flow_table *sock_flow_table;
4309 	struct netdev_rx_queue *rxqueue = dev->_rx;
4310 	struct rps_dev_flow_table *flow_table;
4311 	struct rps_map *map;
4312 	int cpu = -1;
4313 	u32 tcpu;
4314 	u32 hash;
4315 
4316 	if (skb_rx_queue_recorded(skb)) {
4317 		u16 index = skb_get_rx_queue(skb);
4318 
4319 		if (unlikely(index >= dev->real_num_rx_queues)) {
4320 			WARN_ONCE(dev->real_num_rx_queues > 1,
4321 				  "%s received packet on queue %u, but number "
4322 				  "of RX queues is %u\n",
4323 				  dev->name, index, dev->real_num_rx_queues);
4324 			goto done;
4325 		}
4326 		rxqueue += index;
4327 	}
4328 
4329 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4330 
4331 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4332 	map = rcu_dereference(rxqueue->rps_map);
4333 	if (!flow_table && !map)
4334 		goto done;
4335 
4336 	skb_reset_network_header(skb);
4337 	hash = skb_get_hash(skb);
4338 	if (!hash)
4339 		goto done;
4340 
4341 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4342 	if (flow_table && sock_flow_table) {
4343 		struct rps_dev_flow *rflow;
4344 		u32 next_cpu;
4345 		u32 ident;
4346 
4347 		/* First check into global flow table if there is a match */
4348 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4349 		if ((ident ^ hash) & ~rps_cpu_mask)
4350 			goto try_rps;
4351 
4352 		next_cpu = ident & rps_cpu_mask;
4353 
4354 		/* OK, now we know there is a match,
4355 		 * we can look at the local (per receive queue) flow table
4356 		 */
4357 		rflow = &flow_table->flows[hash & flow_table->mask];
4358 		tcpu = rflow->cpu;
4359 
4360 		/*
4361 		 * If the desired CPU (where last recvmsg was done) is
4362 		 * different from current CPU (one in the rx-queue flow
4363 		 * table entry), switch if one of the following holds:
4364 		 *   - Current CPU is unset (>= nr_cpu_ids).
4365 		 *   - Current CPU is offline.
4366 		 *   - The current CPU's queue tail has advanced beyond the
4367 		 *     last packet that was enqueued using this table entry.
4368 		 *     This guarantees that all previous packets for the flow
4369 		 *     have been dequeued, thus preserving in order delivery.
4370 		 */
4371 		if (unlikely(tcpu != next_cpu) &&
4372 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4373 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4374 		      rflow->last_qtail)) >= 0)) {
4375 			tcpu = next_cpu;
4376 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4377 		}
4378 
4379 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4380 			*rflowp = rflow;
4381 			cpu = tcpu;
4382 			goto done;
4383 		}
4384 	}
4385 
4386 try_rps:
4387 
4388 	if (map) {
4389 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4390 		if (cpu_online(tcpu)) {
4391 			cpu = tcpu;
4392 			goto done;
4393 		}
4394 	}
4395 
4396 done:
4397 	return cpu;
4398 }
4399 
4400 #ifdef CONFIG_RFS_ACCEL
4401 
4402 /**
4403  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4404  * @dev: Device on which the filter was set
4405  * @rxq_index: RX queue index
4406  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4407  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4408  *
4409  * Drivers that implement ndo_rx_flow_steer() should periodically call
4410  * this function for each installed filter and remove the filters for
4411  * which it returns %true.
4412  */
4413 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4414 			 u32 flow_id, u16 filter_id)
4415 {
4416 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4417 	struct rps_dev_flow_table *flow_table;
4418 	struct rps_dev_flow *rflow;
4419 	bool expire = true;
4420 	unsigned int cpu;
4421 
4422 	rcu_read_lock();
4423 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4424 	if (flow_table && flow_id <= flow_table->mask) {
4425 		rflow = &flow_table->flows[flow_id];
4426 		cpu = READ_ONCE(rflow->cpu);
4427 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4428 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4429 			   rflow->last_qtail) <
4430 		     (int)(10 * flow_table->mask)))
4431 			expire = false;
4432 	}
4433 	rcu_read_unlock();
4434 	return expire;
4435 }
4436 EXPORT_SYMBOL(rps_may_expire_flow);
4437 
4438 #endif /* CONFIG_RFS_ACCEL */
4439 
4440 /* Called from hardirq (IPI) context */
4441 static void rps_trigger_softirq(void *data)
4442 {
4443 	struct softnet_data *sd = data;
4444 
4445 	____napi_schedule(sd, &sd->backlog);
4446 	sd->received_rps++;
4447 }
4448 
4449 #endif /* CONFIG_RPS */
4450 
4451 /*
4452  * Check if this softnet_data structure is another cpu one
4453  * If yes, queue it to our IPI list and return 1
4454  * If no, return 0
4455  */
4456 static int rps_ipi_queued(struct softnet_data *sd)
4457 {
4458 #ifdef CONFIG_RPS
4459 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4460 
4461 	if (sd != mysd) {
4462 		sd->rps_ipi_next = mysd->rps_ipi_list;
4463 		mysd->rps_ipi_list = sd;
4464 
4465 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4466 		return 1;
4467 	}
4468 #endif /* CONFIG_RPS */
4469 	return 0;
4470 }
4471 
4472 #ifdef CONFIG_NET_FLOW_LIMIT
4473 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4474 #endif
4475 
4476 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4477 {
4478 #ifdef CONFIG_NET_FLOW_LIMIT
4479 	struct sd_flow_limit *fl;
4480 	struct softnet_data *sd;
4481 	unsigned int old_flow, new_flow;
4482 
4483 	if (qlen < (netdev_max_backlog >> 1))
4484 		return false;
4485 
4486 	sd = this_cpu_ptr(&softnet_data);
4487 
4488 	rcu_read_lock();
4489 	fl = rcu_dereference(sd->flow_limit);
4490 	if (fl) {
4491 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4492 		old_flow = fl->history[fl->history_head];
4493 		fl->history[fl->history_head] = new_flow;
4494 
4495 		fl->history_head++;
4496 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4497 
4498 		if (likely(fl->buckets[old_flow]))
4499 			fl->buckets[old_flow]--;
4500 
4501 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4502 			fl->count++;
4503 			rcu_read_unlock();
4504 			return true;
4505 		}
4506 	}
4507 	rcu_read_unlock();
4508 #endif
4509 	return false;
4510 }
4511 
4512 /*
4513  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4514  * queue (may be a remote CPU queue).
4515  */
4516 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4517 			      unsigned int *qtail)
4518 {
4519 	struct softnet_data *sd;
4520 	unsigned long flags;
4521 	unsigned int qlen;
4522 
4523 	sd = &per_cpu(softnet_data, cpu);
4524 
4525 	local_irq_save(flags);
4526 
4527 	rps_lock(sd);
4528 	if (!netif_running(skb->dev))
4529 		goto drop;
4530 	qlen = skb_queue_len(&sd->input_pkt_queue);
4531 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4532 		if (qlen) {
4533 enqueue:
4534 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4535 			input_queue_tail_incr_save(sd, qtail);
4536 			rps_unlock(sd);
4537 			local_irq_restore(flags);
4538 			return NET_RX_SUCCESS;
4539 		}
4540 
4541 		/* Schedule NAPI for backlog device
4542 		 * We can use non atomic operation since we own the queue lock
4543 		 */
4544 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4545 			if (!rps_ipi_queued(sd))
4546 				____napi_schedule(sd, &sd->backlog);
4547 		}
4548 		goto enqueue;
4549 	}
4550 
4551 drop:
4552 	sd->dropped++;
4553 	rps_unlock(sd);
4554 
4555 	local_irq_restore(flags);
4556 
4557 	atomic_long_inc(&skb->dev->rx_dropped);
4558 	kfree_skb(skb);
4559 	return NET_RX_DROP;
4560 }
4561 
4562 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4563 {
4564 	struct net_device *dev = skb->dev;
4565 	struct netdev_rx_queue *rxqueue;
4566 
4567 	rxqueue = dev->_rx;
4568 
4569 	if (skb_rx_queue_recorded(skb)) {
4570 		u16 index = skb_get_rx_queue(skb);
4571 
4572 		if (unlikely(index >= dev->real_num_rx_queues)) {
4573 			WARN_ONCE(dev->real_num_rx_queues > 1,
4574 				  "%s received packet on queue %u, but number "
4575 				  "of RX queues is %u\n",
4576 				  dev->name, index, dev->real_num_rx_queues);
4577 
4578 			return rxqueue; /* Return first rxqueue */
4579 		}
4580 		rxqueue += index;
4581 	}
4582 	return rxqueue;
4583 }
4584 
4585 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4586 				     struct xdp_buff *xdp,
4587 				     struct bpf_prog *xdp_prog)
4588 {
4589 	struct netdev_rx_queue *rxqueue;
4590 	void *orig_data, *orig_data_end;
4591 	u32 metalen, act = XDP_DROP;
4592 	__be16 orig_eth_type;
4593 	struct ethhdr *eth;
4594 	bool orig_bcast;
4595 	int hlen, off;
4596 	u32 mac_len;
4597 
4598 	/* Reinjected packets coming from act_mirred or similar should
4599 	 * not get XDP generic processing.
4600 	 */
4601 	if (skb_is_redirected(skb))
4602 		return XDP_PASS;
4603 
4604 	/* XDP packets must be linear and must have sufficient headroom
4605 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4606 	 * native XDP provides, thus we need to do it here as well.
4607 	 */
4608 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4609 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4610 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4611 		int troom = skb->tail + skb->data_len - skb->end;
4612 
4613 		/* In case we have to go down the path and also linearize,
4614 		 * then lets do the pskb_expand_head() work just once here.
4615 		 */
4616 		if (pskb_expand_head(skb,
4617 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4618 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4619 			goto do_drop;
4620 		if (skb_linearize(skb))
4621 			goto do_drop;
4622 	}
4623 
4624 	/* The XDP program wants to see the packet starting at the MAC
4625 	 * header.
4626 	 */
4627 	mac_len = skb->data - skb_mac_header(skb);
4628 	hlen = skb_headlen(skb) + mac_len;
4629 	xdp->data = skb->data - mac_len;
4630 	xdp->data_meta = xdp->data;
4631 	xdp->data_end = xdp->data + hlen;
4632 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4633 
4634 	/* SKB "head" area always have tailroom for skb_shared_info */
4635 	xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4636 	xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4637 
4638 	orig_data_end = xdp->data_end;
4639 	orig_data = xdp->data;
4640 	eth = (struct ethhdr *)xdp->data;
4641 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4642 	orig_eth_type = eth->h_proto;
4643 
4644 	rxqueue = netif_get_rxqueue(skb);
4645 	xdp->rxq = &rxqueue->xdp_rxq;
4646 
4647 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4648 
4649 	/* check if bpf_xdp_adjust_head was used */
4650 	off = xdp->data - orig_data;
4651 	if (off) {
4652 		if (off > 0)
4653 			__skb_pull(skb, off);
4654 		else if (off < 0)
4655 			__skb_push(skb, -off);
4656 
4657 		skb->mac_header += off;
4658 		skb_reset_network_header(skb);
4659 	}
4660 
4661 	/* check if bpf_xdp_adjust_tail was used */
4662 	off = xdp->data_end - orig_data_end;
4663 	if (off != 0) {
4664 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4665 		skb->len += off; /* positive on grow, negative on shrink */
4666 	}
4667 
4668 	/* check if XDP changed eth hdr such SKB needs update */
4669 	eth = (struct ethhdr *)xdp->data;
4670 	if ((orig_eth_type != eth->h_proto) ||
4671 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4672 		__skb_push(skb, ETH_HLEN);
4673 		skb->protocol = eth_type_trans(skb, skb->dev);
4674 	}
4675 
4676 	switch (act) {
4677 	case XDP_REDIRECT:
4678 	case XDP_TX:
4679 		__skb_push(skb, mac_len);
4680 		break;
4681 	case XDP_PASS:
4682 		metalen = xdp->data - xdp->data_meta;
4683 		if (metalen)
4684 			skb_metadata_set(skb, metalen);
4685 		break;
4686 	default:
4687 		bpf_warn_invalid_xdp_action(act);
4688 		/* fall through */
4689 	case XDP_ABORTED:
4690 		trace_xdp_exception(skb->dev, xdp_prog, act);
4691 		/* fall through */
4692 	case XDP_DROP:
4693 	do_drop:
4694 		kfree_skb(skb);
4695 		break;
4696 	}
4697 
4698 	return act;
4699 }
4700 
4701 /* When doing generic XDP we have to bypass the qdisc layer and the
4702  * network taps in order to match in-driver-XDP behavior.
4703  */
4704 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4705 {
4706 	struct net_device *dev = skb->dev;
4707 	struct netdev_queue *txq;
4708 	bool free_skb = true;
4709 	int cpu, rc;
4710 
4711 	txq = netdev_core_pick_tx(dev, skb, NULL);
4712 	cpu = smp_processor_id();
4713 	HARD_TX_LOCK(dev, txq, cpu);
4714 	if (!netif_xmit_stopped(txq)) {
4715 		rc = netdev_start_xmit(skb, dev, txq, 0);
4716 		if (dev_xmit_complete(rc))
4717 			free_skb = false;
4718 	}
4719 	HARD_TX_UNLOCK(dev, txq);
4720 	if (free_skb) {
4721 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4722 		kfree_skb(skb);
4723 	}
4724 }
4725 
4726 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4727 
4728 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4729 {
4730 	if (xdp_prog) {
4731 		struct xdp_buff xdp;
4732 		u32 act;
4733 		int err;
4734 
4735 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4736 		if (act != XDP_PASS) {
4737 			switch (act) {
4738 			case XDP_REDIRECT:
4739 				err = xdp_do_generic_redirect(skb->dev, skb,
4740 							      &xdp, xdp_prog);
4741 				if (err)
4742 					goto out_redir;
4743 				break;
4744 			case XDP_TX:
4745 				generic_xdp_tx(skb, xdp_prog);
4746 				break;
4747 			}
4748 			return XDP_DROP;
4749 		}
4750 	}
4751 	return XDP_PASS;
4752 out_redir:
4753 	kfree_skb(skb);
4754 	return XDP_DROP;
4755 }
4756 EXPORT_SYMBOL_GPL(do_xdp_generic);
4757 
4758 static int netif_rx_internal(struct sk_buff *skb)
4759 {
4760 	int ret;
4761 
4762 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4763 
4764 	trace_netif_rx(skb);
4765 
4766 #ifdef CONFIG_RPS
4767 	if (static_branch_unlikely(&rps_needed)) {
4768 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4769 		int cpu;
4770 
4771 		preempt_disable();
4772 		rcu_read_lock();
4773 
4774 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4775 		if (cpu < 0)
4776 			cpu = smp_processor_id();
4777 
4778 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4779 
4780 		rcu_read_unlock();
4781 		preempt_enable();
4782 	} else
4783 #endif
4784 	{
4785 		unsigned int qtail;
4786 
4787 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4788 		put_cpu();
4789 	}
4790 	return ret;
4791 }
4792 
4793 /**
4794  *	netif_rx	-	post buffer to the network code
4795  *	@skb: buffer to post
4796  *
4797  *	This function receives a packet from a device driver and queues it for
4798  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4799  *	may be dropped during processing for congestion control or by the
4800  *	protocol layers.
4801  *
4802  *	return values:
4803  *	NET_RX_SUCCESS	(no congestion)
4804  *	NET_RX_DROP     (packet was dropped)
4805  *
4806  */
4807 
4808 int netif_rx(struct sk_buff *skb)
4809 {
4810 	int ret;
4811 
4812 	trace_netif_rx_entry(skb);
4813 
4814 	ret = netif_rx_internal(skb);
4815 	trace_netif_rx_exit(ret);
4816 
4817 	return ret;
4818 }
4819 EXPORT_SYMBOL(netif_rx);
4820 
4821 int netif_rx_ni(struct sk_buff *skb)
4822 {
4823 	int err;
4824 
4825 	trace_netif_rx_ni_entry(skb);
4826 
4827 	preempt_disable();
4828 	err = netif_rx_internal(skb);
4829 	if (local_softirq_pending())
4830 		do_softirq();
4831 	preempt_enable();
4832 	trace_netif_rx_ni_exit(err);
4833 
4834 	return err;
4835 }
4836 EXPORT_SYMBOL(netif_rx_ni);
4837 
4838 static __latent_entropy void net_tx_action(struct softirq_action *h)
4839 {
4840 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4841 
4842 	if (sd->completion_queue) {
4843 		struct sk_buff *clist;
4844 
4845 		local_irq_disable();
4846 		clist = sd->completion_queue;
4847 		sd->completion_queue = NULL;
4848 		local_irq_enable();
4849 
4850 		while (clist) {
4851 			struct sk_buff *skb = clist;
4852 
4853 			clist = clist->next;
4854 
4855 			WARN_ON(refcount_read(&skb->users));
4856 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4857 				trace_consume_skb(skb);
4858 			else
4859 				trace_kfree_skb(skb, net_tx_action);
4860 
4861 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4862 				__kfree_skb(skb);
4863 			else
4864 				__kfree_skb_defer(skb);
4865 		}
4866 
4867 		__kfree_skb_flush();
4868 	}
4869 
4870 	if (sd->output_queue) {
4871 		struct Qdisc *head;
4872 
4873 		local_irq_disable();
4874 		head = sd->output_queue;
4875 		sd->output_queue = NULL;
4876 		sd->output_queue_tailp = &sd->output_queue;
4877 		local_irq_enable();
4878 
4879 		while (head) {
4880 			struct Qdisc *q = head;
4881 			spinlock_t *root_lock = NULL;
4882 
4883 			head = head->next_sched;
4884 
4885 			if (!(q->flags & TCQ_F_NOLOCK)) {
4886 				root_lock = qdisc_lock(q);
4887 				spin_lock(root_lock);
4888 			}
4889 			/* We need to make sure head->next_sched is read
4890 			 * before clearing __QDISC_STATE_SCHED
4891 			 */
4892 			smp_mb__before_atomic();
4893 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4894 			qdisc_run(q);
4895 			if (root_lock)
4896 				spin_unlock(root_lock);
4897 		}
4898 	}
4899 
4900 	xfrm_dev_backlog(sd);
4901 }
4902 
4903 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4904 /* This hook is defined here for ATM LANE */
4905 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4906 			     unsigned char *addr) __read_mostly;
4907 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4908 #endif
4909 
4910 static inline struct sk_buff *
4911 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4912 		   struct net_device *orig_dev)
4913 {
4914 #ifdef CONFIG_NET_CLS_ACT
4915 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4916 	struct tcf_result cl_res;
4917 
4918 	/* If there's at least one ingress present somewhere (so
4919 	 * we get here via enabled static key), remaining devices
4920 	 * that are not configured with an ingress qdisc will bail
4921 	 * out here.
4922 	 */
4923 	if (!miniq)
4924 		return skb;
4925 
4926 	if (*pt_prev) {
4927 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4928 		*pt_prev = NULL;
4929 	}
4930 
4931 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4932 	skb->tc_at_ingress = 1;
4933 	mini_qdisc_bstats_cpu_update(miniq, skb);
4934 
4935 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4936 				     &cl_res, false)) {
4937 	case TC_ACT_OK:
4938 	case TC_ACT_RECLASSIFY:
4939 		skb->tc_index = TC_H_MIN(cl_res.classid);
4940 		break;
4941 	case TC_ACT_SHOT:
4942 		mini_qdisc_qstats_cpu_drop(miniq);
4943 		kfree_skb(skb);
4944 		return NULL;
4945 	case TC_ACT_STOLEN:
4946 	case TC_ACT_QUEUED:
4947 	case TC_ACT_TRAP:
4948 		consume_skb(skb);
4949 		return NULL;
4950 	case TC_ACT_REDIRECT:
4951 		/* skb_mac_header check was done by cls/act_bpf, so
4952 		 * we can safely push the L2 header back before
4953 		 * redirecting to another netdev
4954 		 */
4955 		__skb_push(skb, skb->mac_len);
4956 		skb_do_redirect(skb);
4957 		return NULL;
4958 	case TC_ACT_CONSUMED:
4959 		return NULL;
4960 	default:
4961 		break;
4962 	}
4963 #endif /* CONFIG_NET_CLS_ACT */
4964 	return skb;
4965 }
4966 
4967 /**
4968  *	netdev_is_rx_handler_busy - check if receive handler is registered
4969  *	@dev: device to check
4970  *
4971  *	Check if a receive handler is already registered for a given device.
4972  *	Return true if there one.
4973  *
4974  *	The caller must hold the rtnl_mutex.
4975  */
4976 bool netdev_is_rx_handler_busy(struct net_device *dev)
4977 {
4978 	ASSERT_RTNL();
4979 	return dev && rtnl_dereference(dev->rx_handler);
4980 }
4981 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4982 
4983 /**
4984  *	netdev_rx_handler_register - register receive handler
4985  *	@dev: device to register a handler for
4986  *	@rx_handler: receive handler to register
4987  *	@rx_handler_data: data pointer that is used by rx handler
4988  *
4989  *	Register a receive handler for a device. This handler will then be
4990  *	called from __netif_receive_skb. A negative errno code is returned
4991  *	on a failure.
4992  *
4993  *	The caller must hold the rtnl_mutex.
4994  *
4995  *	For a general description of rx_handler, see enum rx_handler_result.
4996  */
4997 int netdev_rx_handler_register(struct net_device *dev,
4998 			       rx_handler_func_t *rx_handler,
4999 			       void *rx_handler_data)
5000 {
5001 	if (netdev_is_rx_handler_busy(dev))
5002 		return -EBUSY;
5003 
5004 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5005 		return -EINVAL;
5006 
5007 	/* Note: rx_handler_data must be set before rx_handler */
5008 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5009 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5010 
5011 	return 0;
5012 }
5013 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5014 
5015 /**
5016  *	netdev_rx_handler_unregister - unregister receive handler
5017  *	@dev: device to unregister a handler from
5018  *
5019  *	Unregister a receive handler from a device.
5020  *
5021  *	The caller must hold the rtnl_mutex.
5022  */
5023 void netdev_rx_handler_unregister(struct net_device *dev)
5024 {
5025 
5026 	ASSERT_RTNL();
5027 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5028 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5029 	 * section has a guarantee to see a non NULL rx_handler_data
5030 	 * as well.
5031 	 */
5032 	synchronize_net();
5033 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5034 }
5035 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5036 
5037 /*
5038  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5039  * the special handling of PFMEMALLOC skbs.
5040  */
5041 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5042 {
5043 	switch (skb->protocol) {
5044 	case htons(ETH_P_ARP):
5045 	case htons(ETH_P_IP):
5046 	case htons(ETH_P_IPV6):
5047 	case htons(ETH_P_8021Q):
5048 	case htons(ETH_P_8021AD):
5049 		return true;
5050 	default:
5051 		return false;
5052 	}
5053 }
5054 
5055 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5056 			     int *ret, struct net_device *orig_dev)
5057 {
5058 	if (nf_hook_ingress_active(skb)) {
5059 		int ingress_retval;
5060 
5061 		if (*pt_prev) {
5062 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5063 			*pt_prev = NULL;
5064 		}
5065 
5066 		rcu_read_lock();
5067 		ingress_retval = nf_hook_ingress(skb);
5068 		rcu_read_unlock();
5069 		return ingress_retval;
5070 	}
5071 	return 0;
5072 }
5073 
5074 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5075 				    struct packet_type **ppt_prev)
5076 {
5077 	struct packet_type *ptype, *pt_prev;
5078 	rx_handler_func_t *rx_handler;
5079 	struct sk_buff *skb = *pskb;
5080 	struct net_device *orig_dev;
5081 	bool deliver_exact = false;
5082 	int ret = NET_RX_DROP;
5083 	__be16 type;
5084 
5085 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5086 
5087 	trace_netif_receive_skb(skb);
5088 
5089 	orig_dev = skb->dev;
5090 
5091 	skb_reset_network_header(skb);
5092 	if (!skb_transport_header_was_set(skb))
5093 		skb_reset_transport_header(skb);
5094 	skb_reset_mac_len(skb);
5095 
5096 	pt_prev = NULL;
5097 
5098 another_round:
5099 	skb->skb_iif = skb->dev->ifindex;
5100 
5101 	__this_cpu_inc(softnet_data.processed);
5102 
5103 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5104 		int ret2;
5105 
5106 		preempt_disable();
5107 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5108 		preempt_enable();
5109 
5110 		if (ret2 != XDP_PASS) {
5111 			ret = NET_RX_DROP;
5112 			goto out;
5113 		}
5114 		skb_reset_mac_len(skb);
5115 	}
5116 
5117 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5118 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5119 		skb = skb_vlan_untag(skb);
5120 		if (unlikely(!skb))
5121 			goto out;
5122 	}
5123 
5124 	if (skb_skip_tc_classify(skb))
5125 		goto skip_classify;
5126 
5127 	if (pfmemalloc)
5128 		goto skip_taps;
5129 
5130 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5131 		if (pt_prev)
5132 			ret = deliver_skb(skb, pt_prev, orig_dev);
5133 		pt_prev = ptype;
5134 	}
5135 
5136 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5137 		if (pt_prev)
5138 			ret = deliver_skb(skb, pt_prev, orig_dev);
5139 		pt_prev = ptype;
5140 	}
5141 
5142 skip_taps:
5143 #ifdef CONFIG_NET_INGRESS
5144 	if (static_branch_unlikely(&ingress_needed_key)) {
5145 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5146 		if (!skb)
5147 			goto out;
5148 
5149 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5150 			goto out;
5151 	}
5152 #endif
5153 	skb_reset_redirect(skb);
5154 skip_classify:
5155 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5156 		goto drop;
5157 
5158 	if (skb_vlan_tag_present(skb)) {
5159 		if (pt_prev) {
5160 			ret = deliver_skb(skb, pt_prev, orig_dev);
5161 			pt_prev = NULL;
5162 		}
5163 		if (vlan_do_receive(&skb))
5164 			goto another_round;
5165 		else if (unlikely(!skb))
5166 			goto out;
5167 	}
5168 
5169 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5170 	if (rx_handler) {
5171 		if (pt_prev) {
5172 			ret = deliver_skb(skb, pt_prev, orig_dev);
5173 			pt_prev = NULL;
5174 		}
5175 		switch (rx_handler(&skb)) {
5176 		case RX_HANDLER_CONSUMED:
5177 			ret = NET_RX_SUCCESS;
5178 			goto out;
5179 		case RX_HANDLER_ANOTHER:
5180 			goto another_round;
5181 		case RX_HANDLER_EXACT:
5182 			deliver_exact = true;
5183 		case RX_HANDLER_PASS:
5184 			break;
5185 		default:
5186 			BUG();
5187 		}
5188 	}
5189 
5190 	if (unlikely(skb_vlan_tag_present(skb))) {
5191 check_vlan_id:
5192 		if (skb_vlan_tag_get_id(skb)) {
5193 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5194 			 * find vlan device.
5195 			 */
5196 			skb->pkt_type = PACKET_OTHERHOST;
5197 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5198 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5199 			/* Outer header is 802.1P with vlan 0, inner header is
5200 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5201 			 * not find vlan dev for vlan id 0.
5202 			 */
5203 			__vlan_hwaccel_clear_tag(skb);
5204 			skb = skb_vlan_untag(skb);
5205 			if (unlikely(!skb))
5206 				goto out;
5207 			if (vlan_do_receive(&skb))
5208 				/* After stripping off 802.1P header with vlan 0
5209 				 * vlan dev is found for inner header.
5210 				 */
5211 				goto another_round;
5212 			else if (unlikely(!skb))
5213 				goto out;
5214 			else
5215 				/* We have stripped outer 802.1P vlan 0 header.
5216 				 * But could not find vlan dev.
5217 				 * check again for vlan id to set OTHERHOST.
5218 				 */
5219 				goto check_vlan_id;
5220 		}
5221 		/* Note: we might in the future use prio bits
5222 		 * and set skb->priority like in vlan_do_receive()
5223 		 * For the time being, just ignore Priority Code Point
5224 		 */
5225 		__vlan_hwaccel_clear_tag(skb);
5226 	}
5227 
5228 	type = skb->protocol;
5229 
5230 	/* deliver only exact match when indicated */
5231 	if (likely(!deliver_exact)) {
5232 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5233 				       &ptype_base[ntohs(type) &
5234 						   PTYPE_HASH_MASK]);
5235 	}
5236 
5237 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5238 			       &orig_dev->ptype_specific);
5239 
5240 	if (unlikely(skb->dev != orig_dev)) {
5241 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5242 				       &skb->dev->ptype_specific);
5243 	}
5244 
5245 	if (pt_prev) {
5246 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5247 			goto drop;
5248 		*ppt_prev = pt_prev;
5249 	} else {
5250 drop:
5251 		if (!deliver_exact)
5252 			atomic_long_inc(&skb->dev->rx_dropped);
5253 		else
5254 			atomic_long_inc(&skb->dev->rx_nohandler);
5255 		kfree_skb(skb);
5256 		/* Jamal, now you will not able to escape explaining
5257 		 * me how you were going to use this. :-)
5258 		 */
5259 		ret = NET_RX_DROP;
5260 	}
5261 
5262 out:
5263 	/* The invariant here is that if *ppt_prev is not NULL
5264 	 * then skb should also be non-NULL.
5265 	 *
5266 	 * Apparently *ppt_prev assignment above holds this invariant due to
5267 	 * skb dereferencing near it.
5268 	 */
5269 	*pskb = skb;
5270 	return ret;
5271 }
5272 
5273 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5274 {
5275 	struct net_device *orig_dev = skb->dev;
5276 	struct packet_type *pt_prev = NULL;
5277 	int ret;
5278 
5279 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5280 	if (pt_prev)
5281 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5282 					 skb->dev, pt_prev, orig_dev);
5283 	return ret;
5284 }
5285 
5286 /**
5287  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5288  *	@skb: buffer to process
5289  *
5290  *	More direct receive version of netif_receive_skb().  It should
5291  *	only be used by callers that have a need to skip RPS and Generic XDP.
5292  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5293  *
5294  *	This function may only be called from softirq context and interrupts
5295  *	should be enabled.
5296  *
5297  *	Return values (usually ignored):
5298  *	NET_RX_SUCCESS: no congestion
5299  *	NET_RX_DROP: packet was dropped
5300  */
5301 int netif_receive_skb_core(struct sk_buff *skb)
5302 {
5303 	int ret;
5304 
5305 	rcu_read_lock();
5306 	ret = __netif_receive_skb_one_core(skb, false);
5307 	rcu_read_unlock();
5308 
5309 	return ret;
5310 }
5311 EXPORT_SYMBOL(netif_receive_skb_core);
5312 
5313 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5314 						  struct packet_type *pt_prev,
5315 						  struct net_device *orig_dev)
5316 {
5317 	struct sk_buff *skb, *next;
5318 
5319 	if (!pt_prev)
5320 		return;
5321 	if (list_empty(head))
5322 		return;
5323 	if (pt_prev->list_func != NULL)
5324 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5325 				   ip_list_rcv, head, pt_prev, orig_dev);
5326 	else
5327 		list_for_each_entry_safe(skb, next, head, list) {
5328 			skb_list_del_init(skb);
5329 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5330 		}
5331 }
5332 
5333 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5334 {
5335 	/* Fast-path assumptions:
5336 	 * - There is no RX handler.
5337 	 * - Only one packet_type matches.
5338 	 * If either of these fails, we will end up doing some per-packet
5339 	 * processing in-line, then handling the 'last ptype' for the whole
5340 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5341 	 * because the 'last ptype' must be constant across the sublist, and all
5342 	 * other ptypes are handled per-packet.
5343 	 */
5344 	/* Current (common) ptype of sublist */
5345 	struct packet_type *pt_curr = NULL;
5346 	/* Current (common) orig_dev of sublist */
5347 	struct net_device *od_curr = NULL;
5348 	struct list_head sublist;
5349 	struct sk_buff *skb, *next;
5350 
5351 	INIT_LIST_HEAD(&sublist);
5352 	list_for_each_entry_safe(skb, next, head, list) {
5353 		struct net_device *orig_dev = skb->dev;
5354 		struct packet_type *pt_prev = NULL;
5355 
5356 		skb_list_del_init(skb);
5357 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5358 		if (!pt_prev)
5359 			continue;
5360 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5361 			/* dispatch old sublist */
5362 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5363 			/* start new sublist */
5364 			INIT_LIST_HEAD(&sublist);
5365 			pt_curr = pt_prev;
5366 			od_curr = orig_dev;
5367 		}
5368 		list_add_tail(&skb->list, &sublist);
5369 	}
5370 
5371 	/* dispatch final sublist */
5372 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5373 }
5374 
5375 static int __netif_receive_skb(struct sk_buff *skb)
5376 {
5377 	int ret;
5378 
5379 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5380 		unsigned int noreclaim_flag;
5381 
5382 		/*
5383 		 * PFMEMALLOC skbs are special, they should
5384 		 * - be delivered to SOCK_MEMALLOC sockets only
5385 		 * - stay away from userspace
5386 		 * - have bounded memory usage
5387 		 *
5388 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5389 		 * context down to all allocation sites.
5390 		 */
5391 		noreclaim_flag = memalloc_noreclaim_save();
5392 		ret = __netif_receive_skb_one_core(skb, true);
5393 		memalloc_noreclaim_restore(noreclaim_flag);
5394 	} else
5395 		ret = __netif_receive_skb_one_core(skb, false);
5396 
5397 	return ret;
5398 }
5399 
5400 static void __netif_receive_skb_list(struct list_head *head)
5401 {
5402 	unsigned long noreclaim_flag = 0;
5403 	struct sk_buff *skb, *next;
5404 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5405 
5406 	list_for_each_entry_safe(skb, next, head, list) {
5407 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5408 			struct list_head sublist;
5409 
5410 			/* Handle the previous sublist */
5411 			list_cut_before(&sublist, head, &skb->list);
5412 			if (!list_empty(&sublist))
5413 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5414 			pfmemalloc = !pfmemalloc;
5415 			/* See comments in __netif_receive_skb */
5416 			if (pfmemalloc)
5417 				noreclaim_flag = memalloc_noreclaim_save();
5418 			else
5419 				memalloc_noreclaim_restore(noreclaim_flag);
5420 		}
5421 	}
5422 	/* Handle the remaining sublist */
5423 	if (!list_empty(head))
5424 		__netif_receive_skb_list_core(head, pfmemalloc);
5425 	/* Restore pflags */
5426 	if (pfmemalloc)
5427 		memalloc_noreclaim_restore(noreclaim_flag);
5428 }
5429 
5430 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5431 {
5432 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5433 	struct bpf_prog *new = xdp->prog;
5434 	int ret = 0;
5435 
5436 	if (new) {
5437 		u32 i;
5438 
5439 		/* generic XDP does not work with DEVMAPs that can
5440 		 * have a bpf_prog installed on an entry
5441 		 */
5442 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5443 			if (dev_map_can_have_prog(new->aux->used_maps[i]))
5444 				return -EINVAL;
5445 		}
5446 	}
5447 
5448 	switch (xdp->command) {
5449 	case XDP_SETUP_PROG:
5450 		rcu_assign_pointer(dev->xdp_prog, new);
5451 		if (old)
5452 			bpf_prog_put(old);
5453 
5454 		if (old && !new) {
5455 			static_branch_dec(&generic_xdp_needed_key);
5456 		} else if (new && !old) {
5457 			static_branch_inc(&generic_xdp_needed_key);
5458 			dev_disable_lro(dev);
5459 			dev_disable_gro_hw(dev);
5460 		}
5461 		break;
5462 
5463 	case XDP_QUERY_PROG:
5464 		xdp->prog_id = old ? old->aux->id : 0;
5465 		break;
5466 
5467 	default:
5468 		ret = -EINVAL;
5469 		break;
5470 	}
5471 
5472 	return ret;
5473 }
5474 
5475 static int netif_receive_skb_internal(struct sk_buff *skb)
5476 {
5477 	int ret;
5478 
5479 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5480 
5481 	if (skb_defer_rx_timestamp(skb))
5482 		return NET_RX_SUCCESS;
5483 
5484 	rcu_read_lock();
5485 #ifdef CONFIG_RPS
5486 	if (static_branch_unlikely(&rps_needed)) {
5487 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5488 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5489 
5490 		if (cpu >= 0) {
5491 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5492 			rcu_read_unlock();
5493 			return ret;
5494 		}
5495 	}
5496 #endif
5497 	ret = __netif_receive_skb(skb);
5498 	rcu_read_unlock();
5499 	return ret;
5500 }
5501 
5502 static void netif_receive_skb_list_internal(struct list_head *head)
5503 {
5504 	struct sk_buff *skb, *next;
5505 	struct list_head sublist;
5506 
5507 	INIT_LIST_HEAD(&sublist);
5508 	list_for_each_entry_safe(skb, next, head, list) {
5509 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5510 		skb_list_del_init(skb);
5511 		if (!skb_defer_rx_timestamp(skb))
5512 			list_add_tail(&skb->list, &sublist);
5513 	}
5514 	list_splice_init(&sublist, head);
5515 
5516 	rcu_read_lock();
5517 #ifdef CONFIG_RPS
5518 	if (static_branch_unlikely(&rps_needed)) {
5519 		list_for_each_entry_safe(skb, next, head, list) {
5520 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5521 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5522 
5523 			if (cpu >= 0) {
5524 				/* Will be handled, remove from list */
5525 				skb_list_del_init(skb);
5526 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5527 			}
5528 		}
5529 	}
5530 #endif
5531 	__netif_receive_skb_list(head);
5532 	rcu_read_unlock();
5533 }
5534 
5535 /**
5536  *	netif_receive_skb - process receive buffer from network
5537  *	@skb: buffer to process
5538  *
5539  *	netif_receive_skb() is the main receive data processing function.
5540  *	It always succeeds. The buffer may be dropped during processing
5541  *	for congestion control or by the protocol layers.
5542  *
5543  *	This function may only be called from softirq context and interrupts
5544  *	should be enabled.
5545  *
5546  *	Return values (usually ignored):
5547  *	NET_RX_SUCCESS: no congestion
5548  *	NET_RX_DROP: packet was dropped
5549  */
5550 int netif_receive_skb(struct sk_buff *skb)
5551 {
5552 	int ret;
5553 
5554 	trace_netif_receive_skb_entry(skb);
5555 
5556 	ret = netif_receive_skb_internal(skb);
5557 	trace_netif_receive_skb_exit(ret);
5558 
5559 	return ret;
5560 }
5561 EXPORT_SYMBOL(netif_receive_skb);
5562 
5563 /**
5564  *	netif_receive_skb_list - process many receive buffers from network
5565  *	@head: list of skbs to process.
5566  *
5567  *	Since return value of netif_receive_skb() is normally ignored, and
5568  *	wouldn't be meaningful for a list, this function returns void.
5569  *
5570  *	This function may only be called from softirq context and interrupts
5571  *	should be enabled.
5572  */
5573 void netif_receive_skb_list(struct list_head *head)
5574 {
5575 	struct sk_buff *skb;
5576 
5577 	if (list_empty(head))
5578 		return;
5579 	if (trace_netif_receive_skb_list_entry_enabled()) {
5580 		list_for_each_entry(skb, head, list)
5581 			trace_netif_receive_skb_list_entry(skb);
5582 	}
5583 	netif_receive_skb_list_internal(head);
5584 	trace_netif_receive_skb_list_exit(0);
5585 }
5586 EXPORT_SYMBOL(netif_receive_skb_list);
5587 
5588 DEFINE_PER_CPU(struct work_struct, flush_works);
5589 
5590 /* Network device is going away, flush any packets still pending */
5591 static void flush_backlog(struct work_struct *work)
5592 {
5593 	struct sk_buff *skb, *tmp;
5594 	struct softnet_data *sd;
5595 
5596 	local_bh_disable();
5597 	sd = this_cpu_ptr(&softnet_data);
5598 
5599 	local_irq_disable();
5600 	rps_lock(sd);
5601 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5602 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5603 			__skb_unlink(skb, &sd->input_pkt_queue);
5604 			dev_kfree_skb_irq(skb);
5605 			input_queue_head_incr(sd);
5606 		}
5607 	}
5608 	rps_unlock(sd);
5609 	local_irq_enable();
5610 
5611 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5612 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5613 			__skb_unlink(skb, &sd->process_queue);
5614 			kfree_skb(skb);
5615 			input_queue_head_incr(sd);
5616 		}
5617 	}
5618 	local_bh_enable();
5619 }
5620 
5621 static void flush_all_backlogs(void)
5622 {
5623 	unsigned int cpu;
5624 
5625 	get_online_cpus();
5626 
5627 	for_each_online_cpu(cpu)
5628 		queue_work_on(cpu, system_highpri_wq,
5629 			      per_cpu_ptr(&flush_works, cpu));
5630 
5631 	for_each_online_cpu(cpu)
5632 		flush_work(per_cpu_ptr(&flush_works, cpu));
5633 
5634 	put_online_cpus();
5635 }
5636 
5637 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5638 static void gro_normal_list(struct napi_struct *napi)
5639 {
5640 	if (!napi->rx_count)
5641 		return;
5642 	netif_receive_skb_list_internal(&napi->rx_list);
5643 	INIT_LIST_HEAD(&napi->rx_list);
5644 	napi->rx_count = 0;
5645 }
5646 
5647 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5648  * pass the whole batch up to the stack.
5649  */
5650 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5651 {
5652 	list_add_tail(&skb->list, &napi->rx_list);
5653 	if (++napi->rx_count >= gro_normal_batch)
5654 		gro_normal_list(napi);
5655 }
5656 
5657 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5658 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5659 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5660 {
5661 	struct packet_offload *ptype;
5662 	__be16 type = skb->protocol;
5663 	struct list_head *head = &offload_base;
5664 	int err = -ENOENT;
5665 
5666 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5667 
5668 	if (NAPI_GRO_CB(skb)->count == 1) {
5669 		skb_shinfo(skb)->gso_size = 0;
5670 		goto out;
5671 	}
5672 
5673 	rcu_read_lock();
5674 	list_for_each_entry_rcu(ptype, head, list) {
5675 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5676 			continue;
5677 
5678 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5679 					 ipv6_gro_complete, inet_gro_complete,
5680 					 skb, 0);
5681 		break;
5682 	}
5683 	rcu_read_unlock();
5684 
5685 	if (err) {
5686 		WARN_ON(&ptype->list == head);
5687 		kfree_skb(skb);
5688 		return NET_RX_SUCCESS;
5689 	}
5690 
5691 out:
5692 	gro_normal_one(napi, skb);
5693 	return NET_RX_SUCCESS;
5694 }
5695 
5696 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5697 				   bool flush_old)
5698 {
5699 	struct list_head *head = &napi->gro_hash[index].list;
5700 	struct sk_buff *skb, *p;
5701 
5702 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5703 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5704 			return;
5705 		skb_list_del_init(skb);
5706 		napi_gro_complete(napi, skb);
5707 		napi->gro_hash[index].count--;
5708 	}
5709 
5710 	if (!napi->gro_hash[index].count)
5711 		__clear_bit(index, &napi->gro_bitmask);
5712 }
5713 
5714 /* napi->gro_hash[].list contains packets ordered by age.
5715  * youngest packets at the head of it.
5716  * Complete skbs in reverse order to reduce latencies.
5717  */
5718 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5719 {
5720 	unsigned long bitmask = napi->gro_bitmask;
5721 	unsigned int i, base = ~0U;
5722 
5723 	while ((i = ffs(bitmask)) != 0) {
5724 		bitmask >>= i;
5725 		base += i;
5726 		__napi_gro_flush_chain(napi, base, flush_old);
5727 	}
5728 }
5729 EXPORT_SYMBOL(napi_gro_flush);
5730 
5731 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5732 					  struct sk_buff *skb)
5733 {
5734 	unsigned int maclen = skb->dev->hard_header_len;
5735 	u32 hash = skb_get_hash_raw(skb);
5736 	struct list_head *head;
5737 	struct sk_buff *p;
5738 
5739 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5740 	list_for_each_entry(p, head, list) {
5741 		unsigned long diffs;
5742 
5743 		NAPI_GRO_CB(p)->flush = 0;
5744 
5745 		if (hash != skb_get_hash_raw(p)) {
5746 			NAPI_GRO_CB(p)->same_flow = 0;
5747 			continue;
5748 		}
5749 
5750 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5751 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5752 		if (skb_vlan_tag_present(p))
5753 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5754 		diffs |= skb_metadata_dst_cmp(p, skb);
5755 		diffs |= skb_metadata_differs(p, skb);
5756 		if (maclen == ETH_HLEN)
5757 			diffs |= compare_ether_header(skb_mac_header(p),
5758 						      skb_mac_header(skb));
5759 		else if (!diffs)
5760 			diffs = memcmp(skb_mac_header(p),
5761 				       skb_mac_header(skb),
5762 				       maclen);
5763 		NAPI_GRO_CB(p)->same_flow = !diffs;
5764 	}
5765 
5766 	return head;
5767 }
5768 
5769 static void skb_gro_reset_offset(struct sk_buff *skb)
5770 {
5771 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5772 	const skb_frag_t *frag0 = &pinfo->frags[0];
5773 
5774 	NAPI_GRO_CB(skb)->data_offset = 0;
5775 	NAPI_GRO_CB(skb)->frag0 = NULL;
5776 	NAPI_GRO_CB(skb)->frag0_len = 0;
5777 
5778 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5779 	    !PageHighMem(skb_frag_page(frag0))) {
5780 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5781 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5782 						    skb_frag_size(frag0),
5783 						    skb->end - skb->tail);
5784 	}
5785 }
5786 
5787 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5788 {
5789 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5790 
5791 	BUG_ON(skb->end - skb->tail < grow);
5792 
5793 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5794 
5795 	skb->data_len -= grow;
5796 	skb->tail += grow;
5797 
5798 	skb_frag_off_add(&pinfo->frags[0], grow);
5799 	skb_frag_size_sub(&pinfo->frags[0], grow);
5800 
5801 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5802 		skb_frag_unref(skb, 0);
5803 		memmove(pinfo->frags, pinfo->frags + 1,
5804 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5805 	}
5806 }
5807 
5808 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5809 {
5810 	struct sk_buff *oldest;
5811 
5812 	oldest = list_last_entry(head, struct sk_buff, list);
5813 
5814 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5815 	 * impossible.
5816 	 */
5817 	if (WARN_ON_ONCE(!oldest))
5818 		return;
5819 
5820 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5821 	 * SKB to the chain.
5822 	 */
5823 	skb_list_del_init(oldest);
5824 	napi_gro_complete(napi, oldest);
5825 }
5826 
5827 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5828 							   struct sk_buff *));
5829 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5830 							   struct sk_buff *));
5831 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5832 {
5833 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5834 	struct list_head *head = &offload_base;
5835 	struct packet_offload *ptype;
5836 	__be16 type = skb->protocol;
5837 	struct list_head *gro_head;
5838 	struct sk_buff *pp = NULL;
5839 	enum gro_result ret;
5840 	int same_flow;
5841 	int grow;
5842 
5843 	if (netif_elide_gro(skb->dev))
5844 		goto normal;
5845 
5846 	gro_head = gro_list_prepare(napi, skb);
5847 
5848 	rcu_read_lock();
5849 	list_for_each_entry_rcu(ptype, head, list) {
5850 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5851 			continue;
5852 
5853 		skb_set_network_header(skb, skb_gro_offset(skb));
5854 		skb_reset_mac_len(skb);
5855 		NAPI_GRO_CB(skb)->same_flow = 0;
5856 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5857 		NAPI_GRO_CB(skb)->free = 0;
5858 		NAPI_GRO_CB(skb)->encap_mark = 0;
5859 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5860 		NAPI_GRO_CB(skb)->is_fou = 0;
5861 		NAPI_GRO_CB(skb)->is_atomic = 1;
5862 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5863 
5864 		/* Setup for GRO checksum validation */
5865 		switch (skb->ip_summed) {
5866 		case CHECKSUM_COMPLETE:
5867 			NAPI_GRO_CB(skb)->csum = skb->csum;
5868 			NAPI_GRO_CB(skb)->csum_valid = 1;
5869 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5870 			break;
5871 		case CHECKSUM_UNNECESSARY:
5872 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5873 			NAPI_GRO_CB(skb)->csum_valid = 0;
5874 			break;
5875 		default:
5876 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5877 			NAPI_GRO_CB(skb)->csum_valid = 0;
5878 		}
5879 
5880 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5881 					ipv6_gro_receive, inet_gro_receive,
5882 					gro_head, skb);
5883 		break;
5884 	}
5885 	rcu_read_unlock();
5886 
5887 	if (&ptype->list == head)
5888 		goto normal;
5889 
5890 	if (PTR_ERR(pp) == -EINPROGRESS) {
5891 		ret = GRO_CONSUMED;
5892 		goto ok;
5893 	}
5894 
5895 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5896 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5897 
5898 	if (pp) {
5899 		skb_list_del_init(pp);
5900 		napi_gro_complete(napi, pp);
5901 		napi->gro_hash[hash].count--;
5902 	}
5903 
5904 	if (same_flow)
5905 		goto ok;
5906 
5907 	if (NAPI_GRO_CB(skb)->flush)
5908 		goto normal;
5909 
5910 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5911 		gro_flush_oldest(napi, gro_head);
5912 	} else {
5913 		napi->gro_hash[hash].count++;
5914 	}
5915 	NAPI_GRO_CB(skb)->count = 1;
5916 	NAPI_GRO_CB(skb)->age = jiffies;
5917 	NAPI_GRO_CB(skb)->last = skb;
5918 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5919 	list_add(&skb->list, gro_head);
5920 	ret = GRO_HELD;
5921 
5922 pull:
5923 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5924 	if (grow > 0)
5925 		gro_pull_from_frag0(skb, grow);
5926 ok:
5927 	if (napi->gro_hash[hash].count) {
5928 		if (!test_bit(hash, &napi->gro_bitmask))
5929 			__set_bit(hash, &napi->gro_bitmask);
5930 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5931 		__clear_bit(hash, &napi->gro_bitmask);
5932 	}
5933 
5934 	return ret;
5935 
5936 normal:
5937 	ret = GRO_NORMAL;
5938 	goto pull;
5939 }
5940 
5941 struct packet_offload *gro_find_receive_by_type(__be16 type)
5942 {
5943 	struct list_head *offload_head = &offload_base;
5944 	struct packet_offload *ptype;
5945 
5946 	list_for_each_entry_rcu(ptype, offload_head, list) {
5947 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5948 			continue;
5949 		return ptype;
5950 	}
5951 	return NULL;
5952 }
5953 EXPORT_SYMBOL(gro_find_receive_by_type);
5954 
5955 struct packet_offload *gro_find_complete_by_type(__be16 type)
5956 {
5957 	struct list_head *offload_head = &offload_base;
5958 	struct packet_offload *ptype;
5959 
5960 	list_for_each_entry_rcu(ptype, offload_head, list) {
5961 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5962 			continue;
5963 		return ptype;
5964 	}
5965 	return NULL;
5966 }
5967 EXPORT_SYMBOL(gro_find_complete_by_type);
5968 
5969 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5970 {
5971 	skb_dst_drop(skb);
5972 	skb_ext_put(skb);
5973 	kmem_cache_free(skbuff_head_cache, skb);
5974 }
5975 
5976 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5977 				    struct sk_buff *skb,
5978 				    gro_result_t ret)
5979 {
5980 	switch (ret) {
5981 	case GRO_NORMAL:
5982 		gro_normal_one(napi, skb);
5983 		break;
5984 
5985 	case GRO_DROP:
5986 		kfree_skb(skb);
5987 		break;
5988 
5989 	case GRO_MERGED_FREE:
5990 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5991 			napi_skb_free_stolen_head(skb);
5992 		else
5993 			__kfree_skb(skb);
5994 		break;
5995 
5996 	case GRO_HELD:
5997 	case GRO_MERGED:
5998 	case GRO_CONSUMED:
5999 		break;
6000 	}
6001 
6002 	return ret;
6003 }
6004 
6005 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6006 {
6007 	gro_result_t ret;
6008 
6009 	skb_mark_napi_id(skb, napi);
6010 	trace_napi_gro_receive_entry(skb);
6011 
6012 	skb_gro_reset_offset(skb);
6013 
6014 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6015 	trace_napi_gro_receive_exit(ret);
6016 
6017 	return ret;
6018 }
6019 EXPORT_SYMBOL(napi_gro_receive);
6020 
6021 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6022 {
6023 	if (unlikely(skb->pfmemalloc)) {
6024 		consume_skb(skb);
6025 		return;
6026 	}
6027 	__skb_pull(skb, skb_headlen(skb));
6028 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6029 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6030 	__vlan_hwaccel_clear_tag(skb);
6031 	skb->dev = napi->dev;
6032 	skb->skb_iif = 0;
6033 
6034 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6035 	skb->pkt_type = PACKET_HOST;
6036 
6037 	skb->encapsulation = 0;
6038 	skb_shinfo(skb)->gso_type = 0;
6039 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6040 	skb_ext_reset(skb);
6041 
6042 	napi->skb = skb;
6043 }
6044 
6045 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6046 {
6047 	struct sk_buff *skb = napi->skb;
6048 
6049 	if (!skb) {
6050 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6051 		if (skb) {
6052 			napi->skb = skb;
6053 			skb_mark_napi_id(skb, napi);
6054 		}
6055 	}
6056 	return skb;
6057 }
6058 EXPORT_SYMBOL(napi_get_frags);
6059 
6060 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6061 				      struct sk_buff *skb,
6062 				      gro_result_t ret)
6063 {
6064 	switch (ret) {
6065 	case GRO_NORMAL:
6066 	case GRO_HELD:
6067 		__skb_push(skb, ETH_HLEN);
6068 		skb->protocol = eth_type_trans(skb, skb->dev);
6069 		if (ret == GRO_NORMAL)
6070 			gro_normal_one(napi, skb);
6071 		break;
6072 
6073 	case GRO_DROP:
6074 		napi_reuse_skb(napi, skb);
6075 		break;
6076 
6077 	case GRO_MERGED_FREE:
6078 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6079 			napi_skb_free_stolen_head(skb);
6080 		else
6081 			napi_reuse_skb(napi, skb);
6082 		break;
6083 
6084 	case GRO_MERGED:
6085 	case GRO_CONSUMED:
6086 		break;
6087 	}
6088 
6089 	return ret;
6090 }
6091 
6092 /* Upper GRO stack assumes network header starts at gro_offset=0
6093  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6094  * We copy ethernet header into skb->data to have a common layout.
6095  */
6096 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6097 {
6098 	struct sk_buff *skb = napi->skb;
6099 	const struct ethhdr *eth;
6100 	unsigned int hlen = sizeof(*eth);
6101 
6102 	napi->skb = NULL;
6103 
6104 	skb_reset_mac_header(skb);
6105 	skb_gro_reset_offset(skb);
6106 
6107 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6108 		eth = skb_gro_header_slow(skb, hlen, 0);
6109 		if (unlikely(!eth)) {
6110 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6111 					     __func__, napi->dev->name);
6112 			napi_reuse_skb(napi, skb);
6113 			return NULL;
6114 		}
6115 	} else {
6116 		eth = (const struct ethhdr *)skb->data;
6117 		gro_pull_from_frag0(skb, hlen);
6118 		NAPI_GRO_CB(skb)->frag0 += hlen;
6119 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6120 	}
6121 	__skb_pull(skb, hlen);
6122 
6123 	/*
6124 	 * This works because the only protocols we care about don't require
6125 	 * special handling.
6126 	 * We'll fix it up properly in napi_frags_finish()
6127 	 */
6128 	skb->protocol = eth->h_proto;
6129 
6130 	return skb;
6131 }
6132 
6133 gro_result_t napi_gro_frags(struct napi_struct *napi)
6134 {
6135 	gro_result_t ret;
6136 	struct sk_buff *skb = napi_frags_skb(napi);
6137 
6138 	if (!skb)
6139 		return GRO_DROP;
6140 
6141 	trace_napi_gro_frags_entry(skb);
6142 
6143 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6144 	trace_napi_gro_frags_exit(ret);
6145 
6146 	return ret;
6147 }
6148 EXPORT_SYMBOL(napi_gro_frags);
6149 
6150 /* Compute the checksum from gro_offset and return the folded value
6151  * after adding in any pseudo checksum.
6152  */
6153 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6154 {
6155 	__wsum wsum;
6156 	__sum16 sum;
6157 
6158 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6159 
6160 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6161 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6162 	/* See comments in __skb_checksum_complete(). */
6163 	if (likely(!sum)) {
6164 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6165 		    !skb->csum_complete_sw)
6166 			netdev_rx_csum_fault(skb->dev, skb);
6167 	}
6168 
6169 	NAPI_GRO_CB(skb)->csum = wsum;
6170 	NAPI_GRO_CB(skb)->csum_valid = 1;
6171 
6172 	return sum;
6173 }
6174 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6175 
6176 static void net_rps_send_ipi(struct softnet_data *remsd)
6177 {
6178 #ifdef CONFIG_RPS
6179 	while (remsd) {
6180 		struct softnet_data *next = remsd->rps_ipi_next;
6181 
6182 		if (cpu_online(remsd->cpu))
6183 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6184 		remsd = next;
6185 	}
6186 #endif
6187 }
6188 
6189 /*
6190  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6191  * Note: called with local irq disabled, but exits with local irq enabled.
6192  */
6193 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6194 {
6195 #ifdef CONFIG_RPS
6196 	struct softnet_data *remsd = sd->rps_ipi_list;
6197 
6198 	if (remsd) {
6199 		sd->rps_ipi_list = NULL;
6200 
6201 		local_irq_enable();
6202 
6203 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6204 		net_rps_send_ipi(remsd);
6205 	} else
6206 #endif
6207 		local_irq_enable();
6208 }
6209 
6210 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6211 {
6212 #ifdef CONFIG_RPS
6213 	return sd->rps_ipi_list != NULL;
6214 #else
6215 	return false;
6216 #endif
6217 }
6218 
6219 static int process_backlog(struct napi_struct *napi, int quota)
6220 {
6221 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6222 	bool again = true;
6223 	int work = 0;
6224 
6225 	/* Check if we have pending ipi, its better to send them now,
6226 	 * not waiting net_rx_action() end.
6227 	 */
6228 	if (sd_has_rps_ipi_waiting(sd)) {
6229 		local_irq_disable();
6230 		net_rps_action_and_irq_enable(sd);
6231 	}
6232 
6233 	napi->weight = dev_rx_weight;
6234 	while (again) {
6235 		struct sk_buff *skb;
6236 
6237 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6238 			rcu_read_lock();
6239 			__netif_receive_skb(skb);
6240 			rcu_read_unlock();
6241 			input_queue_head_incr(sd);
6242 			if (++work >= quota)
6243 				return work;
6244 
6245 		}
6246 
6247 		local_irq_disable();
6248 		rps_lock(sd);
6249 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6250 			/*
6251 			 * Inline a custom version of __napi_complete().
6252 			 * only current cpu owns and manipulates this napi,
6253 			 * and NAPI_STATE_SCHED is the only possible flag set
6254 			 * on backlog.
6255 			 * We can use a plain write instead of clear_bit(),
6256 			 * and we dont need an smp_mb() memory barrier.
6257 			 */
6258 			napi->state = 0;
6259 			again = false;
6260 		} else {
6261 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6262 						   &sd->process_queue);
6263 		}
6264 		rps_unlock(sd);
6265 		local_irq_enable();
6266 	}
6267 
6268 	return work;
6269 }
6270 
6271 /**
6272  * __napi_schedule - schedule for receive
6273  * @n: entry to schedule
6274  *
6275  * The entry's receive function will be scheduled to run.
6276  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6277  */
6278 void __napi_schedule(struct napi_struct *n)
6279 {
6280 	unsigned long flags;
6281 
6282 	local_irq_save(flags);
6283 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6284 	local_irq_restore(flags);
6285 }
6286 EXPORT_SYMBOL(__napi_schedule);
6287 
6288 /**
6289  *	napi_schedule_prep - check if napi can be scheduled
6290  *	@n: napi context
6291  *
6292  * Test if NAPI routine is already running, and if not mark
6293  * it as running.  This is used as a condition variable
6294  * insure only one NAPI poll instance runs.  We also make
6295  * sure there is no pending NAPI disable.
6296  */
6297 bool napi_schedule_prep(struct napi_struct *n)
6298 {
6299 	unsigned long val, new;
6300 
6301 	do {
6302 		val = READ_ONCE(n->state);
6303 		if (unlikely(val & NAPIF_STATE_DISABLE))
6304 			return false;
6305 		new = val | NAPIF_STATE_SCHED;
6306 
6307 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6308 		 * This was suggested by Alexander Duyck, as compiler
6309 		 * emits better code than :
6310 		 * if (val & NAPIF_STATE_SCHED)
6311 		 *     new |= NAPIF_STATE_MISSED;
6312 		 */
6313 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6314 						   NAPIF_STATE_MISSED;
6315 	} while (cmpxchg(&n->state, val, new) != val);
6316 
6317 	return !(val & NAPIF_STATE_SCHED);
6318 }
6319 EXPORT_SYMBOL(napi_schedule_prep);
6320 
6321 /**
6322  * __napi_schedule_irqoff - schedule for receive
6323  * @n: entry to schedule
6324  *
6325  * Variant of __napi_schedule() assuming hard irqs are masked
6326  */
6327 void __napi_schedule_irqoff(struct napi_struct *n)
6328 {
6329 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6330 }
6331 EXPORT_SYMBOL(__napi_schedule_irqoff);
6332 
6333 bool napi_complete_done(struct napi_struct *n, int work_done)
6334 {
6335 	unsigned long flags, val, new, timeout = 0;
6336 	bool ret = true;
6337 
6338 	/*
6339 	 * 1) Don't let napi dequeue from the cpu poll list
6340 	 *    just in case its running on a different cpu.
6341 	 * 2) If we are busy polling, do nothing here, we have
6342 	 *    the guarantee we will be called later.
6343 	 */
6344 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6345 				 NAPIF_STATE_IN_BUSY_POLL)))
6346 		return false;
6347 
6348 	if (work_done) {
6349 		if (n->gro_bitmask)
6350 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6351 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6352 	}
6353 	if (n->defer_hard_irqs_count > 0) {
6354 		n->defer_hard_irqs_count--;
6355 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6356 		if (timeout)
6357 			ret = false;
6358 	}
6359 	if (n->gro_bitmask) {
6360 		/* When the NAPI instance uses a timeout and keeps postponing
6361 		 * it, we need to bound somehow the time packets are kept in
6362 		 * the GRO layer
6363 		 */
6364 		napi_gro_flush(n, !!timeout);
6365 	}
6366 
6367 	gro_normal_list(n);
6368 
6369 	if (unlikely(!list_empty(&n->poll_list))) {
6370 		/* If n->poll_list is not empty, we need to mask irqs */
6371 		local_irq_save(flags);
6372 		list_del_init(&n->poll_list);
6373 		local_irq_restore(flags);
6374 	}
6375 
6376 	do {
6377 		val = READ_ONCE(n->state);
6378 
6379 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6380 
6381 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6382 
6383 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6384 		 * because we will call napi->poll() one more time.
6385 		 * This C code was suggested by Alexander Duyck to help gcc.
6386 		 */
6387 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6388 						    NAPIF_STATE_SCHED;
6389 	} while (cmpxchg(&n->state, val, new) != val);
6390 
6391 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6392 		__napi_schedule(n);
6393 		return false;
6394 	}
6395 
6396 	if (timeout)
6397 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6398 			      HRTIMER_MODE_REL_PINNED);
6399 	return ret;
6400 }
6401 EXPORT_SYMBOL(napi_complete_done);
6402 
6403 /* must be called under rcu_read_lock(), as we dont take a reference */
6404 static struct napi_struct *napi_by_id(unsigned int napi_id)
6405 {
6406 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6407 	struct napi_struct *napi;
6408 
6409 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6410 		if (napi->napi_id == napi_id)
6411 			return napi;
6412 
6413 	return NULL;
6414 }
6415 
6416 #if defined(CONFIG_NET_RX_BUSY_POLL)
6417 
6418 #define BUSY_POLL_BUDGET 8
6419 
6420 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6421 {
6422 	int rc;
6423 
6424 	/* Busy polling means there is a high chance device driver hard irq
6425 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6426 	 * set in napi_schedule_prep().
6427 	 * Since we are about to call napi->poll() once more, we can safely
6428 	 * clear NAPI_STATE_MISSED.
6429 	 *
6430 	 * Note: x86 could use a single "lock and ..." instruction
6431 	 * to perform these two clear_bit()
6432 	 */
6433 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6434 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6435 
6436 	local_bh_disable();
6437 
6438 	/* All we really want here is to re-enable device interrupts.
6439 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6440 	 */
6441 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6442 	/* We can't gro_normal_list() here, because napi->poll() might have
6443 	 * rearmed the napi (napi_complete_done()) in which case it could
6444 	 * already be running on another CPU.
6445 	 */
6446 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6447 	netpoll_poll_unlock(have_poll_lock);
6448 	if (rc == BUSY_POLL_BUDGET) {
6449 		/* As the whole budget was spent, we still own the napi so can
6450 		 * safely handle the rx_list.
6451 		 */
6452 		gro_normal_list(napi);
6453 		__napi_schedule(napi);
6454 	}
6455 	local_bh_enable();
6456 }
6457 
6458 void napi_busy_loop(unsigned int napi_id,
6459 		    bool (*loop_end)(void *, unsigned long),
6460 		    void *loop_end_arg)
6461 {
6462 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6463 	int (*napi_poll)(struct napi_struct *napi, int budget);
6464 	void *have_poll_lock = NULL;
6465 	struct napi_struct *napi;
6466 
6467 restart:
6468 	napi_poll = NULL;
6469 
6470 	rcu_read_lock();
6471 
6472 	napi = napi_by_id(napi_id);
6473 	if (!napi)
6474 		goto out;
6475 
6476 	preempt_disable();
6477 	for (;;) {
6478 		int work = 0;
6479 
6480 		local_bh_disable();
6481 		if (!napi_poll) {
6482 			unsigned long val = READ_ONCE(napi->state);
6483 
6484 			/* If multiple threads are competing for this napi,
6485 			 * we avoid dirtying napi->state as much as we can.
6486 			 */
6487 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6488 				   NAPIF_STATE_IN_BUSY_POLL))
6489 				goto count;
6490 			if (cmpxchg(&napi->state, val,
6491 				    val | NAPIF_STATE_IN_BUSY_POLL |
6492 					  NAPIF_STATE_SCHED) != val)
6493 				goto count;
6494 			have_poll_lock = netpoll_poll_lock(napi);
6495 			napi_poll = napi->poll;
6496 		}
6497 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6498 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6499 		gro_normal_list(napi);
6500 count:
6501 		if (work > 0)
6502 			__NET_ADD_STATS(dev_net(napi->dev),
6503 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6504 		local_bh_enable();
6505 
6506 		if (!loop_end || loop_end(loop_end_arg, start_time))
6507 			break;
6508 
6509 		if (unlikely(need_resched())) {
6510 			if (napi_poll)
6511 				busy_poll_stop(napi, have_poll_lock);
6512 			preempt_enable();
6513 			rcu_read_unlock();
6514 			cond_resched();
6515 			if (loop_end(loop_end_arg, start_time))
6516 				return;
6517 			goto restart;
6518 		}
6519 		cpu_relax();
6520 	}
6521 	if (napi_poll)
6522 		busy_poll_stop(napi, have_poll_lock);
6523 	preempt_enable();
6524 out:
6525 	rcu_read_unlock();
6526 }
6527 EXPORT_SYMBOL(napi_busy_loop);
6528 
6529 #endif /* CONFIG_NET_RX_BUSY_POLL */
6530 
6531 static void napi_hash_add(struct napi_struct *napi)
6532 {
6533 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6534 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6535 		return;
6536 
6537 	spin_lock(&napi_hash_lock);
6538 
6539 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6540 	do {
6541 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6542 			napi_gen_id = MIN_NAPI_ID;
6543 	} while (napi_by_id(napi_gen_id));
6544 	napi->napi_id = napi_gen_id;
6545 
6546 	hlist_add_head_rcu(&napi->napi_hash_node,
6547 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6548 
6549 	spin_unlock(&napi_hash_lock);
6550 }
6551 
6552 /* Warning : caller is responsible to make sure rcu grace period
6553  * is respected before freeing memory containing @napi
6554  */
6555 bool napi_hash_del(struct napi_struct *napi)
6556 {
6557 	bool rcu_sync_needed = false;
6558 
6559 	spin_lock(&napi_hash_lock);
6560 
6561 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6562 		rcu_sync_needed = true;
6563 		hlist_del_rcu(&napi->napi_hash_node);
6564 	}
6565 	spin_unlock(&napi_hash_lock);
6566 	return rcu_sync_needed;
6567 }
6568 EXPORT_SYMBOL_GPL(napi_hash_del);
6569 
6570 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6571 {
6572 	struct napi_struct *napi;
6573 
6574 	napi = container_of(timer, struct napi_struct, timer);
6575 
6576 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6577 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6578 	 */
6579 	if (!napi_disable_pending(napi) &&
6580 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6581 		__napi_schedule_irqoff(napi);
6582 
6583 	return HRTIMER_NORESTART;
6584 }
6585 
6586 static void init_gro_hash(struct napi_struct *napi)
6587 {
6588 	int i;
6589 
6590 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6591 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6592 		napi->gro_hash[i].count = 0;
6593 	}
6594 	napi->gro_bitmask = 0;
6595 }
6596 
6597 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6598 		    int (*poll)(struct napi_struct *, int), int weight)
6599 {
6600 	INIT_LIST_HEAD(&napi->poll_list);
6601 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6602 	napi->timer.function = napi_watchdog;
6603 	init_gro_hash(napi);
6604 	napi->skb = NULL;
6605 	INIT_LIST_HEAD(&napi->rx_list);
6606 	napi->rx_count = 0;
6607 	napi->poll = poll;
6608 	if (weight > NAPI_POLL_WEIGHT)
6609 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6610 				weight);
6611 	napi->weight = weight;
6612 	list_add(&napi->dev_list, &dev->napi_list);
6613 	napi->dev = dev;
6614 #ifdef CONFIG_NETPOLL
6615 	napi->poll_owner = -1;
6616 #endif
6617 	set_bit(NAPI_STATE_SCHED, &napi->state);
6618 	napi_hash_add(napi);
6619 }
6620 EXPORT_SYMBOL(netif_napi_add);
6621 
6622 void napi_disable(struct napi_struct *n)
6623 {
6624 	might_sleep();
6625 	set_bit(NAPI_STATE_DISABLE, &n->state);
6626 
6627 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6628 		msleep(1);
6629 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6630 		msleep(1);
6631 
6632 	hrtimer_cancel(&n->timer);
6633 
6634 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6635 }
6636 EXPORT_SYMBOL(napi_disable);
6637 
6638 static void flush_gro_hash(struct napi_struct *napi)
6639 {
6640 	int i;
6641 
6642 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6643 		struct sk_buff *skb, *n;
6644 
6645 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6646 			kfree_skb(skb);
6647 		napi->gro_hash[i].count = 0;
6648 	}
6649 }
6650 
6651 /* Must be called in process context */
6652 void netif_napi_del(struct napi_struct *napi)
6653 {
6654 	might_sleep();
6655 	if (napi_hash_del(napi))
6656 		synchronize_net();
6657 	list_del_init(&napi->dev_list);
6658 	napi_free_frags(napi);
6659 
6660 	flush_gro_hash(napi);
6661 	napi->gro_bitmask = 0;
6662 }
6663 EXPORT_SYMBOL(netif_napi_del);
6664 
6665 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6666 {
6667 	void *have;
6668 	int work, weight;
6669 
6670 	list_del_init(&n->poll_list);
6671 
6672 	have = netpoll_poll_lock(n);
6673 
6674 	weight = n->weight;
6675 
6676 	/* This NAPI_STATE_SCHED test is for avoiding a race
6677 	 * with netpoll's poll_napi().  Only the entity which
6678 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6679 	 * actually make the ->poll() call.  Therefore we avoid
6680 	 * accidentally calling ->poll() when NAPI is not scheduled.
6681 	 */
6682 	work = 0;
6683 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6684 		work = n->poll(n, weight);
6685 		trace_napi_poll(n, work, weight);
6686 	}
6687 
6688 	WARN_ON_ONCE(work > weight);
6689 
6690 	if (likely(work < weight))
6691 		goto out_unlock;
6692 
6693 	/* Drivers must not modify the NAPI state if they
6694 	 * consume the entire weight.  In such cases this code
6695 	 * still "owns" the NAPI instance and therefore can
6696 	 * move the instance around on the list at-will.
6697 	 */
6698 	if (unlikely(napi_disable_pending(n))) {
6699 		napi_complete(n);
6700 		goto out_unlock;
6701 	}
6702 
6703 	if (n->gro_bitmask) {
6704 		/* flush too old packets
6705 		 * If HZ < 1000, flush all packets.
6706 		 */
6707 		napi_gro_flush(n, HZ >= 1000);
6708 	}
6709 
6710 	gro_normal_list(n);
6711 
6712 	/* Some drivers may have called napi_schedule
6713 	 * prior to exhausting their budget.
6714 	 */
6715 	if (unlikely(!list_empty(&n->poll_list))) {
6716 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6717 			     n->dev ? n->dev->name : "backlog");
6718 		goto out_unlock;
6719 	}
6720 
6721 	list_add_tail(&n->poll_list, repoll);
6722 
6723 out_unlock:
6724 	netpoll_poll_unlock(have);
6725 
6726 	return work;
6727 }
6728 
6729 static __latent_entropy void net_rx_action(struct softirq_action *h)
6730 {
6731 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6732 	unsigned long time_limit = jiffies +
6733 		usecs_to_jiffies(netdev_budget_usecs);
6734 	int budget = netdev_budget;
6735 	LIST_HEAD(list);
6736 	LIST_HEAD(repoll);
6737 
6738 	local_irq_disable();
6739 	list_splice_init(&sd->poll_list, &list);
6740 	local_irq_enable();
6741 
6742 	for (;;) {
6743 		struct napi_struct *n;
6744 
6745 		if (list_empty(&list)) {
6746 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6747 				goto out;
6748 			break;
6749 		}
6750 
6751 		n = list_first_entry(&list, struct napi_struct, poll_list);
6752 		budget -= napi_poll(n, &repoll);
6753 
6754 		/* If softirq window is exhausted then punt.
6755 		 * Allow this to run for 2 jiffies since which will allow
6756 		 * an average latency of 1.5/HZ.
6757 		 */
6758 		if (unlikely(budget <= 0 ||
6759 			     time_after_eq(jiffies, time_limit))) {
6760 			sd->time_squeeze++;
6761 			break;
6762 		}
6763 	}
6764 
6765 	local_irq_disable();
6766 
6767 	list_splice_tail_init(&sd->poll_list, &list);
6768 	list_splice_tail(&repoll, &list);
6769 	list_splice(&list, &sd->poll_list);
6770 	if (!list_empty(&sd->poll_list))
6771 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6772 
6773 	net_rps_action_and_irq_enable(sd);
6774 out:
6775 	__kfree_skb_flush();
6776 }
6777 
6778 struct netdev_adjacent {
6779 	struct net_device *dev;
6780 
6781 	/* upper master flag, there can only be one master device per list */
6782 	bool master;
6783 
6784 	/* lookup ignore flag */
6785 	bool ignore;
6786 
6787 	/* counter for the number of times this device was added to us */
6788 	u16 ref_nr;
6789 
6790 	/* private field for the users */
6791 	void *private;
6792 
6793 	struct list_head list;
6794 	struct rcu_head rcu;
6795 };
6796 
6797 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6798 						 struct list_head *adj_list)
6799 {
6800 	struct netdev_adjacent *adj;
6801 
6802 	list_for_each_entry(adj, adj_list, list) {
6803 		if (adj->dev == adj_dev)
6804 			return adj;
6805 	}
6806 	return NULL;
6807 }
6808 
6809 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6810 {
6811 	struct net_device *dev = data;
6812 
6813 	return upper_dev == dev;
6814 }
6815 
6816 /**
6817  * netdev_has_upper_dev - Check if device is linked to an upper device
6818  * @dev: device
6819  * @upper_dev: upper device to check
6820  *
6821  * Find out if a device is linked to specified upper device and return true
6822  * in case it is. Note that this checks only immediate upper device,
6823  * not through a complete stack of devices. The caller must hold the RTNL lock.
6824  */
6825 bool netdev_has_upper_dev(struct net_device *dev,
6826 			  struct net_device *upper_dev)
6827 {
6828 	ASSERT_RTNL();
6829 
6830 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6831 					     upper_dev);
6832 }
6833 EXPORT_SYMBOL(netdev_has_upper_dev);
6834 
6835 /**
6836  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6837  * @dev: device
6838  * @upper_dev: upper device to check
6839  *
6840  * Find out if a device is linked to specified upper device and return true
6841  * in case it is. Note that this checks the entire upper device chain.
6842  * The caller must hold rcu lock.
6843  */
6844 
6845 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6846 				  struct net_device *upper_dev)
6847 {
6848 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6849 					       upper_dev);
6850 }
6851 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6852 
6853 /**
6854  * netdev_has_any_upper_dev - Check if device is linked to some device
6855  * @dev: device
6856  *
6857  * Find out if a device is linked to an upper device and return true in case
6858  * it is. The caller must hold the RTNL lock.
6859  */
6860 bool netdev_has_any_upper_dev(struct net_device *dev)
6861 {
6862 	ASSERT_RTNL();
6863 
6864 	return !list_empty(&dev->adj_list.upper);
6865 }
6866 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6867 
6868 /**
6869  * netdev_master_upper_dev_get - Get master upper device
6870  * @dev: device
6871  *
6872  * Find a master upper device and return pointer to it or NULL in case
6873  * it's not there. The caller must hold the RTNL lock.
6874  */
6875 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6876 {
6877 	struct netdev_adjacent *upper;
6878 
6879 	ASSERT_RTNL();
6880 
6881 	if (list_empty(&dev->adj_list.upper))
6882 		return NULL;
6883 
6884 	upper = list_first_entry(&dev->adj_list.upper,
6885 				 struct netdev_adjacent, list);
6886 	if (likely(upper->master))
6887 		return upper->dev;
6888 	return NULL;
6889 }
6890 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6891 
6892 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6893 {
6894 	struct netdev_adjacent *upper;
6895 
6896 	ASSERT_RTNL();
6897 
6898 	if (list_empty(&dev->adj_list.upper))
6899 		return NULL;
6900 
6901 	upper = list_first_entry(&dev->adj_list.upper,
6902 				 struct netdev_adjacent, list);
6903 	if (likely(upper->master) && !upper->ignore)
6904 		return upper->dev;
6905 	return NULL;
6906 }
6907 
6908 /**
6909  * netdev_has_any_lower_dev - Check if device is linked to some device
6910  * @dev: device
6911  *
6912  * Find out if a device is linked to a lower device and return true in case
6913  * it is. The caller must hold the RTNL lock.
6914  */
6915 static bool netdev_has_any_lower_dev(struct net_device *dev)
6916 {
6917 	ASSERT_RTNL();
6918 
6919 	return !list_empty(&dev->adj_list.lower);
6920 }
6921 
6922 void *netdev_adjacent_get_private(struct list_head *adj_list)
6923 {
6924 	struct netdev_adjacent *adj;
6925 
6926 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6927 
6928 	return adj->private;
6929 }
6930 EXPORT_SYMBOL(netdev_adjacent_get_private);
6931 
6932 /**
6933  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6934  * @dev: device
6935  * @iter: list_head ** of the current position
6936  *
6937  * Gets the next device from the dev's upper list, starting from iter
6938  * position. The caller must hold RCU read lock.
6939  */
6940 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6941 						 struct list_head **iter)
6942 {
6943 	struct netdev_adjacent *upper;
6944 
6945 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6946 
6947 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6948 
6949 	if (&upper->list == &dev->adj_list.upper)
6950 		return NULL;
6951 
6952 	*iter = &upper->list;
6953 
6954 	return upper->dev;
6955 }
6956 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6957 
6958 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6959 						  struct list_head **iter,
6960 						  bool *ignore)
6961 {
6962 	struct netdev_adjacent *upper;
6963 
6964 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6965 
6966 	if (&upper->list == &dev->adj_list.upper)
6967 		return NULL;
6968 
6969 	*iter = &upper->list;
6970 	*ignore = upper->ignore;
6971 
6972 	return upper->dev;
6973 }
6974 
6975 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6976 						    struct list_head **iter)
6977 {
6978 	struct netdev_adjacent *upper;
6979 
6980 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6981 
6982 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6983 
6984 	if (&upper->list == &dev->adj_list.upper)
6985 		return NULL;
6986 
6987 	*iter = &upper->list;
6988 
6989 	return upper->dev;
6990 }
6991 
6992 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6993 				       int (*fn)(struct net_device *dev,
6994 						 void *data),
6995 				       void *data)
6996 {
6997 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6998 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6999 	int ret, cur = 0;
7000 	bool ignore;
7001 
7002 	now = dev;
7003 	iter = &dev->adj_list.upper;
7004 
7005 	while (1) {
7006 		if (now != dev) {
7007 			ret = fn(now, data);
7008 			if (ret)
7009 				return ret;
7010 		}
7011 
7012 		next = NULL;
7013 		while (1) {
7014 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7015 			if (!udev)
7016 				break;
7017 			if (ignore)
7018 				continue;
7019 
7020 			next = udev;
7021 			niter = &udev->adj_list.upper;
7022 			dev_stack[cur] = now;
7023 			iter_stack[cur++] = iter;
7024 			break;
7025 		}
7026 
7027 		if (!next) {
7028 			if (!cur)
7029 				return 0;
7030 			next = dev_stack[--cur];
7031 			niter = iter_stack[cur];
7032 		}
7033 
7034 		now = next;
7035 		iter = niter;
7036 	}
7037 
7038 	return 0;
7039 }
7040 
7041 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7042 				  int (*fn)(struct net_device *dev,
7043 					    void *data),
7044 				  void *data)
7045 {
7046 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7047 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7048 	int ret, cur = 0;
7049 
7050 	now = dev;
7051 	iter = &dev->adj_list.upper;
7052 
7053 	while (1) {
7054 		if (now != dev) {
7055 			ret = fn(now, data);
7056 			if (ret)
7057 				return ret;
7058 		}
7059 
7060 		next = NULL;
7061 		while (1) {
7062 			udev = netdev_next_upper_dev_rcu(now, &iter);
7063 			if (!udev)
7064 				break;
7065 
7066 			next = udev;
7067 			niter = &udev->adj_list.upper;
7068 			dev_stack[cur] = now;
7069 			iter_stack[cur++] = iter;
7070 			break;
7071 		}
7072 
7073 		if (!next) {
7074 			if (!cur)
7075 				return 0;
7076 			next = dev_stack[--cur];
7077 			niter = iter_stack[cur];
7078 		}
7079 
7080 		now = next;
7081 		iter = niter;
7082 	}
7083 
7084 	return 0;
7085 }
7086 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7087 
7088 static bool __netdev_has_upper_dev(struct net_device *dev,
7089 				   struct net_device *upper_dev)
7090 {
7091 	ASSERT_RTNL();
7092 
7093 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7094 					   upper_dev);
7095 }
7096 
7097 /**
7098  * netdev_lower_get_next_private - Get the next ->private from the
7099  *				   lower neighbour list
7100  * @dev: device
7101  * @iter: list_head ** of the current position
7102  *
7103  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7104  * list, starting from iter position. The caller must hold either hold the
7105  * RTNL lock or its own locking that guarantees that the neighbour lower
7106  * list will remain unchanged.
7107  */
7108 void *netdev_lower_get_next_private(struct net_device *dev,
7109 				    struct list_head **iter)
7110 {
7111 	struct netdev_adjacent *lower;
7112 
7113 	lower = list_entry(*iter, struct netdev_adjacent, list);
7114 
7115 	if (&lower->list == &dev->adj_list.lower)
7116 		return NULL;
7117 
7118 	*iter = lower->list.next;
7119 
7120 	return lower->private;
7121 }
7122 EXPORT_SYMBOL(netdev_lower_get_next_private);
7123 
7124 /**
7125  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7126  *				       lower neighbour list, RCU
7127  *				       variant
7128  * @dev: device
7129  * @iter: list_head ** of the current position
7130  *
7131  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7132  * list, starting from iter position. The caller must hold RCU read lock.
7133  */
7134 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7135 					struct list_head **iter)
7136 {
7137 	struct netdev_adjacent *lower;
7138 
7139 	WARN_ON_ONCE(!rcu_read_lock_held());
7140 
7141 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7142 
7143 	if (&lower->list == &dev->adj_list.lower)
7144 		return NULL;
7145 
7146 	*iter = &lower->list;
7147 
7148 	return lower->private;
7149 }
7150 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7151 
7152 /**
7153  * netdev_lower_get_next - Get the next device from the lower neighbour
7154  *                         list
7155  * @dev: device
7156  * @iter: list_head ** of the current position
7157  *
7158  * Gets the next netdev_adjacent from the dev's lower neighbour
7159  * list, starting from iter position. The caller must hold RTNL lock or
7160  * its own locking that guarantees that the neighbour lower
7161  * list will remain unchanged.
7162  */
7163 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7164 {
7165 	struct netdev_adjacent *lower;
7166 
7167 	lower = list_entry(*iter, struct netdev_adjacent, list);
7168 
7169 	if (&lower->list == &dev->adj_list.lower)
7170 		return NULL;
7171 
7172 	*iter = lower->list.next;
7173 
7174 	return lower->dev;
7175 }
7176 EXPORT_SYMBOL(netdev_lower_get_next);
7177 
7178 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7179 						struct list_head **iter)
7180 {
7181 	struct netdev_adjacent *lower;
7182 
7183 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7184 
7185 	if (&lower->list == &dev->adj_list.lower)
7186 		return NULL;
7187 
7188 	*iter = &lower->list;
7189 
7190 	return lower->dev;
7191 }
7192 
7193 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7194 						  struct list_head **iter,
7195 						  bool *ignore)
7196 {
7197 	struct netdev_adjacent *lower;
7198 
7199 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7200 
7201 	if (&lower->list == &dev->adj_list.lower)
7202 		return NULL;
7203 
7204 	*iter = &lower->list;
7205 	*ignore = lower->ignore;
7206 
7207 	return lower->dev;
7208 }
7209 
7210 int netdev_walk_all_lower_dev(struct net_device *dev,
7211 			      int (*fn)(struct net_device *dev,
7212 					void *data),
7213 			      void *data)
7214 {
7215 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7216 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7217 	int ret, cur = 0;
7218 
7219 	now = dev;
7220 	iter = &dev->adj_list.lower;
7221 
7222 	while (1) {
7223 		if (now != dev) {
7224 			ret = fn(now, data);
7225 			if (ret)
7226 				return ret;
7227 		}
7228 
7229 		next = NULL;
7230 		while (1) {
7231 			ldev = netdev_next_lower_dev(now, &iter);
7232 			if (!ldev)
7233 				break;
7234 
7235 			next = ldev;
7236 			niter = &ldev->adj_list.lower;
7237 			dev_stack[cur] = now;
7238 			iter_stack[cur++] = iter;
7239 			break;
7240 		}
7241 
7242 		if (!next) {
7243 			if (!cur)
7244 				return 0;
7245 			next = dev_stack[--cur];
7246 			niter = iter_stack[cur];
7247 		}
7248 
7249 		now = next;
7250 		iter = niter;
7251 	}
7252 
7253 	return 0;
7254 }
7255 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7256 
7257 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7258 				       int (*fn)(struct net_device *dev,
7259 						 void *data),
7260 				       void *data)
7261 {
7262 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7263 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7264 	int ret, cur = 0;
7265 	bool ignore;
7266 
7267 	now = dev;
7268 	iter = &dev->adj_list.lower;
7269 
7270 	while (1) {
7271 		if (now != dev) {
7272 			ret = fn(now, data);
7273 			if (ret)
7274 				return ret;
7275 		}
7276 
7277 		next = NULL;
7278 		while (1) {
7279 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7280 			if (!ldev)
7281 				break;
7282 			if (ignore)
7283 				continue;
7284 
7285 			next = ldev;
7286 			niter = &ldev->adj_list.lower;
7287 			dev_stack[cur] = now;
7288 			iter_stack[cur++] = iter;
7289 			break;
7290 		}
7291 
7292 		if (!next) {
7293 			if (!cur)
7294 				return 0;
7295 			next = dev_stack[--cur];
7296 			niter = iter_stack[cur];
7297 		}
7298 
7299 		now = next;
7300 		iter = niter;
7301 	}
7302 
7303 	return 0;
7304 }
7305 
7306 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7307 					     struct list_head **iter)
7308 {
7309 	struct netdev_adjacent *lower;
7310 
7311 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7312 	if (&lower->list == &dev->adj_list.lower)
7313 		return NULL;
7314 
7315 	*iter = &lower->list;
7316 
7317 	return lower->dev;
7318 }
7319 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7320 
7321 static u8 __netdev_upper_depth(struct net_device *dev)
7322 {
7323 	struct net_device *udev;
7324 	struct list_head *iter;
7325 	u8 max_depth = 0;
7326 	bool ignore;
7327 
7328 	for (iter = &dev->adj_list.upper,
7329 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7330 	     udev;
7331 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7332 		if (ignore)
7333 			continue;
7334 		if (max_depth < udev->upper_level)
7335 			max_depth = udev->upper_level;
7336 	}
7337 
7338 	return max_depth;
7339 }
7340 
7341 static u8 __netdev_lower_depth(struct net_device *dev)
7342 {
7343 	struct net_device *ldev;
7344 	struct list_head *iter;
7345 	u8 max_depth = 0;
7346 	bool ignore;
7347 
7348 	for (iter = &dev->adj_list.lower,
7349 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7350 	     ldev;
7351 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7352 		if (ignore)
7353 			continue;
7354 		if (max_depth < ldev->lower_level)
7355 			max_depth = ldev->lower_level;
7356 	}
7357 
7358 	return max_depth;
7359 }
7360 
7361 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7362 {
7363 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7364 	return 0;
7365 }
7366 
7367 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7368 {
7369 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7370 	return 0;
7371 }
7372 
7373 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7374 				  int (*fn)(struct net_device *dev,
7375 					    void *data),
7376 				  void *data)
7377 {
7378 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7379 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7380 	int ret, cur = 0;
7381 
7382 	now = dev;
7383 	iter = &dev->adj_list.lower;
7384 
7385 	while (1) {
7386 		if (now != dev) {
7387 			ret = fn(now, data);
7388 			if (ret)
7389 				return ret;
7390 		}
7391 
7392 		next = NULL;
7393 		while (1) {
7394 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7395 			if (!ldev)
7396 				break;
7397 
7398 			next = ldev;
7399 			niter = &ldev->adj_list.lower;
7400 			dev_stack[cur] = now;
7401 			iter_stack[cur++] = iter;
7402 			break;
7403 		}
7404 
7405 		if (!next) {
7406 			if (!cur)
7407 				return 0;
7408 			next = dev_stack[--cur];
7409 			niter = iter_stack[cur];
7410 		}
7411 
7412 		now = next;
7413 		iter = niter;
7414 	}
7415 
7416 	return 0;
7417 }
7418 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7419 
7420 /**
7421  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7422  *				       lower neighbour list, RCU
7423  *				       variant
7424  * @dev: device
7425  *
7426  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7427  * list. The caller must hold RCU read lock.
7428  */
7429 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7430 {
7431 	struct netdev_adjacent *lower;
7432 
7433 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7434 			struct netdev_adjacent, list);
7435 	if (lower)
7436 		return lower->private;
7437 	return NULL;
7438 }
7439 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7440 
7441 /**
7442  * netdev_master_upper_dev_get_rcu - Get master upper device
7443  * @dev: device
7444  *
7445  * Find a master upper device and return pointer to it or NULL in case
7446  * it's not there. The caller must hold the RCU read lock.
7447  */
7448 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7449 {
7450 	struct netdev_adjacent *upper;
7451 
7452 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7453 				       struct netdev_adjacent, list);
7454 	if (upper && likely(upper->master))
7455 		return upper->dev;
7456 	return NULL;
7457 }
7458 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7459 
7460 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7461 			      struct net_device *adj_dev,
7462 			      struct list_head *dev_list)
7463 {
7464 	char linkname[IFNAMSIZ+7];
7465 
7466 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7467 		"upper_%s" : "lower_%s", adj_dev->name);
7468 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7469 				 linkname);
7470 }
7471 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7472 			       char *name,
7473 			       struct list_head *dev_list)
7474 {
7475 	char linkname[IFNAMSIZ+7];
7476 
7477 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7478 		"upper_%s" : "lower_%s", name);
7479 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7480 }
7481 
7482 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7483 						 struct net_device *adj_dev,
7484 						 struct list_head *dev_list)
7485 {
7486 	return (dev_list == &dev->adj_list.upper ||
7487 		dev_list == &dev->adj_list.lower) &&
7488 		net_eq(dev_net(dev), dev_net(adj_dev));
7489 }
7490 
7491 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7492 					struct net_device *adj_dev,
7493 					struct list_head *dev_list,
7494 					void *private, bool master)
7495 {
7496 	struct netdev_adjacent *adj;
7497 	int ret;
7498 
7499 	adj = __netdev_find_adj(adj_dev, dev_list);
7500 
7501 	if (adj) {
7502 		adj->ref_nr += 1;
7503 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7504 			 dev->name, adj_dev->name, adj->ref_nr);
7505 
7506 		return 0;
7507 	}
7508 
7509 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7510 	if (!adj)
7511 		return -ENOMEM;
7512 
7513 	adj->dev = adj_dev;
7514 	adj->master = master;
7515 	adj->ref_nr = 1;
7516 	adj->private = private;
7517 	adj->ignore = false;
7518 	dev_hold(adj_dev);
7519 
7520 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7521 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7522 
7523 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7524 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7525 		if (ret)
7526 			goto free_adj;
7527 	}
7528 
7529 	/* Ensure that master link is always the first item in list. */
7530 	if (master) {
7531 		ret = sysfs_create_link(&(dev->dev.kobj),
7532 					&(adj_dev->dev.kobj), "master");
7533 		if (ret)
7534 			goto remove_symlinks;
7535 
7536 		list_add_rcu(&adj->list, dev_list);
7537 	} else {
7538 		list_add_tail_rcu(&adj->list, dev_list);
7539 	}
7540 
7541 	return 0;
7542 
7543 remove_symlinks:
7544 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7545 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7546 free_adj:
7547 	kfree(adj);
7548 	dev_put(adj_dev);
7549 
7550 	return ret;
7551 }
7552 
7553 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7554 					 struct net_device *adj_dev,
7555 					 u16 ref_nr,
7556 					 struct list_head *dev_list)
7557 {
7558 	struct netdev_adjacent *adj;
7559 
7560 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7561 		 dev->name, adj_dev->name, ref_nr);
7562 
7563 	adj = __netdev_find_adj(adj_dev, dev_list);
7564 
7565 	if (!adj) {
7566 		pr_err("Adjacency does not exist for device %s from %s\n",
7567 		       dev->name, adj_dev->name);
7568 		WARN_ON(1);
7569 		return;
7570 	}
7571 
7572 	if (adj->ref_nr > ref_nr) {
7573 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7574 			 dev->name, adj_dev->name, ref_nr,
7575 			 adj->ref_nr - ref_nr);
7576 		adj->ref_nr -= ref_nr;
7577 		return;
7578 	}
7579 
7580 	if (adj->master)
7581 		sysfs_remove_link(&(dev->dev.kobj), "master");
7582 
7583 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7584 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7585 
7586 	list_del_rcu(&adj->list);
7587 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7588 		 adj_dev->name, dev->name, adj_dev->name);
7589 	dev_put(adj_dev);
7590 	kfree_rcu(adj, rcu);
7591 }
7592 
7593 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7594 					    struct net_device *upper_dev,
7595 					    struct list_head *up_list,
7596 					    struct list_head *down_list,
7597 					    void *private, bool master)
7598 {
7599 	int ret;
7600 
7601 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7602 					   private, master);
7603 	if (ret)
7604 		return ret;
7605 
7606 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7607 					   private, false);
7608 	if (ret) {
7609 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7610 		return ret;
7611 	}
7612 
7613 	return 0;
7614 }
7615 
7616 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7617 					       struct net_device *upper_dev,
7618 					       u16 ref_nr,
7619 					       struct list_head *up_list,
7620 					       struct list_head *down_list)
7621 {
7622 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7623 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7624 }
7625 
7626 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7627 						struct net_device *upper_dev,
7628 						void *private, bool master)
7629 {
7630 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7631 						&dev->adj_list.upper,
7632 						&upper_dev->adj_list.lower,
7633 						private, master);
7634 }
7635 
7636 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7637 						   struct net_device *upper_dev)
7638 {
7639 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7640 					   &dev->adj_list.upper,
7641 					   &upper_dev->adj_list.lower);
7642 }
7643 
7644 static int __netdev_upper_dev_link(struct net_device *dev,
7645 				   struct net_device *upper_dev, bool master,
7646 				   void *upper_priv, void *upper_info,
7647 				   struct netlink_ext_ack *extack)
7648 {
7649 	struct netdev_notifier_changeupper_info changeupper_info = {
7650 		.info = {
7651 			.dev = dev,
7652 			.extack = extack,
7653 		},
7654 		.upper_dev = upper_dev,
7655 		.master = master,
7656 		.linking = true,
7657 		.upper_info = upper_info,
7658 	};
7659 	struct net_device *master_dev;
7660 	int ret = 0;
7661 
7662 	ASSERT_RTNL();
7663 
7664 	if (dev == upper_dev)
7665 		return -EBUSY;
7666 
7667 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7668 	if (__netdev_has_upper_dev(upper_dev, dev))
7669 		return -EBUSY;
7670 
7671 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7672 		return -EMLINK;
7673 
7674 	if (!master) {
7675 		if (__netdev_has_upper_dev(dev, upper_dev))
7676 			return -EEXIST;
7677 	} else {
7678 		master_dev = __netdev_master_upper_dev_get(dev);
7679 		if (master_dev)
7680 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7681 	}
7682 
7683 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7684 					    &changeupper_info.info);
7685 	ret = notifier_to_errno(ret);
7686 	if (ret)
7687 		return ret;
7688 
7689 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7690 						   master);
7691 	if (ret)
7692 		return ret;
7693 
7694 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7695 					    &changeupper_info.info);
7696 	ret = notifier_to_errno(ret);
7697 	if (ret)
7698 		goto rollback;
7699 
7700 	__netdev_update_upper_level(dev, NULL);
7701 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7702 
7703 	__netdev_update_lower_level(upper_dev, NULL);
7704 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7705 				    NULL);
7706 
7707 	return 0;
7708 
7709 rollback:
7710 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7711 
7712 	return ret;
7713 }
7714 
7715 /**
7716  * netdev_upper_dev_link - Add a link to the upper device
7717  * @dev: device
7718  * @upper_dev: new upper device
7719  * @extack: netlink extended ack
7720  *
7721  * Adds a link to device which is upper to this one. The caller must hold
7722  * the RTNL lock. On a failure a negative errno code is returned.
7723  * On success the reference counts are adjusted and the function
7724  * returns zero.
7725  */
7726 int netdev_upper_dev_link(struct net_device *dev,
7727 			  struct net_device *upper_dev,
7728 			  struct netlink_ext_ack *extack)
7729 {
7730 	return __netdev_upper_dev_link(dev, upper_dev, false,
7731 				       NULL, NULL, extack);
7732 }
7733 EXPORT_SYMBOL(netdev_upper_dev_link);
7734 
7735 /**
7736  * netdev_master_upper_dev_link - Add a master link to the upper device
7737  * @dev: device
7738  * @upper_dev: new upper device
7739  * @upper_priv: upper device private
7740  * @upper_info: upper info to be passed down via notifier
7741  * @extack: netlink extended ack
7742  *
7743  * Adds a link to device which is upper to this one. In this case, only
7744  * one master upper device can be linked, although other non-master devices
7745  * might be linked as well. The caller must hold the RTNL lock.
7746  * On a failure a negative errno code is returned. On success the reference
7747  * counts are adjusted and the function returns zero.
7748  */
7749 int netdev_master_upper_dev_link(struct net_device *dev,
7750 				 struct net_device *upper_dev,
7751 				 void *upper_priv, void *upper_info,
7752 				 struct netlink_ext_ack *extack)
7753 {
7754 	return __netdev_upper_dev_link(dev, upper_dev, true,
7755 				       upper_priv, upper_info, extack);
7756 }
7757 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7758 
7759 /**
7760  * netdev_upper_dev_unlink - Removes a link to upper device
7761  * @dev: device
7762  * @upper_dev: new upper device
7763  *
7764  * Removes a link to device which is upper to this one. The caller must hold
7765  * the RTNL lock.
7766  */
7767 void netdev_upper_dev_unlink(struct net_device *dev,
7768 			     struct net_device *upper_dev)
7769 {
7770 	struct netdev_notifier_changeupper_info changeupper_info = {
7771 		.info = {
7772 			.dev = dev,
7773 		},
7774 		.upper_dev = upper_dev,
7775 		.linking = false,
7776 	};
7777 
7778 	ASSERT_RTNL();
7779 
7780 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7781 
7782 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7783 				      &changeupper_info.info);
7784 
7785 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7786 
7787 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7788 				      &changeupper_info.info);
7789 
7790 	__netdev_update_upper_level(dev, NULL);
7791 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7792 
7793 	__netdev_update_lower_level(upper_dev, NULL);
7794 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7795 				    NULL);
7796 }
7797 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7798 
7799 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7800 				      struct net_device *lower_dev,
7801 				      bool val)
7802 {
7803 	struct netdev_adjacent *adj;
7804 
7805 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7806 	if (adj)
7807 		adj->ignore = val;
7808 
7809 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7810 	if (adj)
7811 		adj->ignore = val;
7812 }
7813 
7814 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7815 					struct net_device *lower_dev)
7816 {
7817 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7818 }
7819 
7820 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7821 				       struct net_device *lower_dev)
7822 {
7823 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7824 }
7825 
7826 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7827 				   struct net_device *new_dev,
7828 				   struct net_device *dev,
7829 				   struct netlink_ext_ack *extack)
7830 {
7831 	int err;
7832 
7833 	if (!new_dev)
7834 		return 0;
7835 
7836 	if (old_dev && new_dev != old_dev)
7837 		netdev_adjacent_dev_disable(dev, old_dev);
7838 
7839 	err = netdev_upper_dev_link(new_dev, dev, extack);
7840 	if (err) {
7841 		if (old_dev && new_dev != old_dev)
7842 			netdev_adjacent_dev_enable(dev, old_dev);
7843 		return err;
7844 	}
7845 
7846 	return 0;
7847 }
7848 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7849 
7850 void netdev_adjacent_change_commit(struct net_device *old_dev,
7851 				   struct net_device *new_dev,
7852 				   struct net_device *dev)
7853 {
7854 	if (!new_dev || !old_dev)
7855 		return;
7856 
7857 	if (new_dev == old_dev)
7858 		return;
7859 
7860 	netdev_adjacent_dev_enable(dev, old_dev);
7861 	netdev_upper_dev_unlink(old_dev, dev);
7862 }
7863 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7864 
7865 void netdev_adjacent_change_abort(struct net_device *old_dev,
7866 				  struct net_device *new_dev,
7867 				  struct net_device *dev)
7868 {
7869 	if (!new_dev)
7870 		return;
7871 
7872 	if (old_dev && new_dev != old_dev)
7873 		netdev_adjacent_dev_enable(dev, old_dev);
7874 
7875 	netdev_upper_dev_unlink(new_dev, dev);
7876 }
7877 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7878 
7879 /**
7880  * netdev_bonding_info_change - Dispatch event about slave change
7881  * @dev: device
7882  * @bonding_info: info to dispatch
7883  *
7884  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7885  * The caller must hold the RTNL lock.
7886  */
7887 void netdev_bonding_info_change(struct net_device *dev,
7888 				struct netdev_bonding_info *bonding_info)
7889 {
7890 	struct netdev_notifier_bonding_info info = {
7891 		.info.dev = dev,
7892 	};
7893 
7894 	memcpy(&info.bonding_info, bonding_info,
7895 	       sizeof(struct netdev_bonding_info));
7896 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7897 				      &info.info);
7898 }
7899 EXPORT_SYMBOL(netdev_bonding_info_change);
7900 
7901 /**
7902  * netdev_get_xmit_slave - Get the xmit slave of master device
7903  * @skb: The packet
7904  * @all_slaves: assume all the slaves are active
7905  *
7906  * The reference counters are not incremented so the caller must be
7907  * careful with locks. The caller must hold RCU lock.
7908  * %NULL is returned if no slave is found.
7909  */
7910 
7911 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7912 					 struct sk_buff *skb,
7913 					 bool all_slaves)
7914 {
7915 	const struct net_device_ops *ops = dev->netdev_ops;
7916 
7917 	if (!ops->ndo_get_xmit_slave)
7918 		return NULL;
7919 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7920 }
7921 EXPORT_SYMBOL(netdev_get_xmit_slave);
7922 
7923 static void netdev_adjacent_add_links(struct net_device *dev)
7924 {
7925 	struct netdev_adjacent *iter;
7926 
7927 	struct net *net = dev_net(dev);
7928 
7929 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7930 		if (!net_eq(net, dev_net(iter->dev)))
7931 			continue;
7932 		netdev_adjacent_sysfs_add(iter->dev, dev,
7933 					  &iter->dev->adj_list.lower);
7934 		netdev_adjacent_sysfs_add(dev, iter->dev,
7935 					  &dev->adj_list.upper);
7936 	}
7937 
7938 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7939 		if (!net_eq(net, dev_net(iter->dev)))
7940 			continue;
7941 		netdev_adjacent_sysfs_add(iter->dev, dev,
7942 					  &iter->dev->adj_list.upper);
7943 		netdev_adjacent_sysfs_add(dev, iter->dev,
7944 					  &dev->adj_list.lower);
7945 	}
7946 }
7947 
7948 static void netdev_adjacent_del_links(struct net_device *dev)
7949 {
7950 	struct netdev_adjacent *iter;
7951 
7952 	struct net *net = dev_net(dev);
7953 
7954 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7955 		if (!net_eq(net, dev_net(iter->dev)))
7956 			continue;
7957 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7958 					  &iter->dev->adj_list.lower);
7959 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7960 					  &dev->adj_list.upper);
7961 	}
7962 
7963 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7964 		if (!net_eq(net, dev_net(iter->dev)))
7965 			continue;
7966 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7967 					  &iter->dev->adj_list.upper);
7968 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7969 					  &dev->adj_list.lower);
7970 	}
7971 }
7972 
7973 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7974 {
7975 	struct netdev_adjacent *iter;
7976 
7977 	struct net *net = dev_net(dev);
7978 
7979 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7980 		if (!net_eq(net, dev_net(iter->dev)))
7981 			continue;
7982 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7983 					  &iter->dev->adj_list.lower);
7984 		netdev_adjacent_sysfs_add(iter->dev, dev,
7985 					  &iter->dev->adj_list.lower);
7986 	}
7987 
7988 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7989 		if (!net_eq(net, dev_net(iter->dev)))
7990 			continue;
7991 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7992 					  &iter->dev->adj_list.upper);
7993 		netdev_adjacent_sysfs_add(iter->dev, dev,
7994 					  &iter->dev->adj_list.upper);
7995 	}
7996 }
7997 
7998 void *netdev_lower_dev_get_private(struct net_device *dev,
7999 				   struct net_device *lower_dev)
8000 {
8001 	struct netdev_adjacent *lower;
8002 
8003 	if (!lower_dev)
8004 		return NULL;
8005 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8006 	if (!lower)
8007 		return NULL;
8008 
8009 	return lower->private;
8010 }
8011 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8012 
8013 
8014 /**
8015  * netdev_lower_change - Dispatch event about lower device state change
8016  * @lower_dev: device
8017  * @lower_state_info: state to dispatch
8018  *
8019  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8020  * The caller must hold the RTNL lock.
8021  */
8022 void netdev_lower_state_changed(struct net_device *lower_dev,
8023 				void *lower_state_info)
8024 {
8025 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8026 		.info.dev = lower_dev,
8027 	};
8028 
8029 	ASSERT_RTNL();
8030 	changelowerstate_info.lower_state_info = lower_state_info;
8031 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8032 				      &changelowerstate_info.info);
8033 }
8034 EXPORT_SYMBOL(netdev_lower_state_changed);
8035 
8036 static void dev_change_rx_flags(struct net_device *dev, int flags)
8037 {
8038 	const struct net_device_ops *ops = dev->netdev_ops;
8039 
8040 	if (ops->ndo_change_rx_flags)
8041 		ops->ndo_change_rx_flags(dev, flags);
8042 }
8043 
8044 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8045 {
8046 	unsigned int old_flags = dev->flags;
8047 	kuid_t uid;
8048 	kgid_t gid;
8049 
8050 	ASSERT_RTNL();
8051 
8052 	dev->flags |= IFF_PROMISC;
8053 	dev->promiscuity += inc;
8054 	if (dev->promiscuity == 0) {
8055 		/*
8056 		 * Avoid overflow.
8057 		 * If inc causes overflow, untouch promisc and return error.
8058 		 */
8059 		if (inc < 0)
8060 			dev->flags &= ~IFF_PROMISC;
8061 		else {
8062 			dev->promiscuity -= inc;
8063 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8064 				dev->name);
8065 			return -EOVERFLOW;
8066 		}
8067 	}
8068 	if (dev->flags != old_flags) {
8069 		pr_info("device %s %s promiscuous mode\n",
8070 			dev->name,
8071 			dev->flags & IFF_PROMISC ? "entered" : "left");
8072 		if (audit_enabled) {
8073 			current_uid_gid(&uid, &gid);
8074 			audit_log(audit_context(), GFP_ATOMIC,
8075 				  AUDIT_ANOM_PROMISCUOUS,
8076 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8077 				  dev->name, (dev->flags & IFF_PROMISC),
8078 				  (old_flags & IFF_PROMISC),
8079 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8080 				  from_kuid(&init_user_ns, uid),
8081 				  from_kgid(&init_user_ns, gid),
8082 				  audit_get_sessionid(current));
8083 		}
8084 
8085 		dev_change_rx_flags(dev, IFF_PROMISC);
8086 	}
8087 	if (notify)
8088 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8089 	return 0;
8090 }
8091 
8092 /**
8093  *	dev_set_promiscuity	- update promiscuity count on a device
8094  *	@dev: device
8095  *	@inc: modifier
8096  *
8097  *	Add or remove promiscuity from a device. While the count in the device
8098  *	remains above zero the interface remains promiscuous. Once it hits zero
8099  *	the device reverts back to normal filtering operation. A negative inc
8100  *	value is used to drop promiscuity on the device.
8101  *	Return 0 if successful or a negative errno code on error.
8102  */
8103 int dev_set_promiscuity(struct net_device *dev, int inc)
8104 {
8105 	unsigned int old_flags = dev->flags;
8106 	int err;
8107 
8108 	err = __dev_set_promiscuity(dev, inc, true);
8109 	if (err < 0)
8110 		return err;
8111 	if (dev->flags != old_flags)
8112 		dev_set_rx_mode(dev);
8113 	return err;
8114 }
8115 EXPORT_SYMBOL(dev_set_promiscuity);
8116 
8117 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8118 {
8119 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8120 
8121 	ASSERT_RTNL();
8122 
8123 	dev->flags |= IFF_ALLMULTI;
8124 	dev->allmulti += inc;
8125 	if (dev->allmulti == 0) {
8126 		/*
8127 		 * Avoid overflow.
8128 		 * If inc causes overflow, untouch allmulti and return error.
8129 		 */
8130 		if (inc < 0)
8131 			dev->flags &= ~IFF_ALLMULTI;
8132 		else {
8133 			dev->allmulti -= inc;
8134 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8135 				dev->name);
8136 			return -EOVERFLOW;
8137 		}
8138 	}
8139 	if (dev->flags ^ old_flags) {
8140 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8141 		dev_set_rx_mode(dev);
8142 		if (notify)
8143 			__dev_notify_flags(dev, old_flags,
8144 					   dev->gflags ^ old_gflags);
8145 	}
8146 	return 0;
8147 }
8148 
8149 /**
8150  *	dev_set_allmulti	- update allmulti count on a device
8151  *	@dev: device
8152  *	@inc: modifier
8153  *
8154  *	Add or remove reception of all multicast frames to a device. While the
8155  *	count in the device remains above zero the interface remains listening
8156  *	to all interfaces. Once it hits zero the device reverts back to normal
8157  *	filtering operation. A negative @inc value is used to drop the counter
8158  *	when releasing a resource needing all multicasts.
8159  *	Return 0 if successful or a negative errno code on error.
8160  */
8161 
8162 int dev_set_allmulti(struct net_device *dev, int inc)
8163 {
8164 	return __dev_set_allmulti(dev, inc, true);
8165 }
8166 EXPORT_SYMBOL(dev_set_allmulti);
8167 
8168 /*
8169  *	Upload unicast and multicast address lists to device and
8170  *	configure RX filtering. When the device doesn't support unicast
8171  *	filtering it is put in promiscuous mode while unicast addresses
8172  *	are present.
8173  */
8174 void __dev_set_rx_mode(struct net_device *dev)
8175 {
8176 	const struct net_device_ops *ops = dev->netdev_ops;
8177 
8178 	/* dev_open will call this function so the list will stay sane. */
8179 	if (!(dev->flags&IFF_UP))
8180 		return;
8181 
8182 	if (!netif_device_present(dev))
8183 		return;
8184 
8185 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8186 		/* Unicast addresses changes may only happen under the rtnl,
8187 		 * therefore calling __dev_set_promiscuity here is safe.
8188 		 */
8189 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8190 			__dev_set_promiscuity(dev, 1, false);
8191 			dev->uc_promisc = true;
8192 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8193 			__dev_set_promiscuity(dev, -1, false);
8194 			dev->uc_promisc = false;
8195 		}
8196 	}
8197 
8198 	if (ops->ndo_set_rx_mode)
8199 		ops->ndo_set_rx_mode(dev);
8200 }
8201 
8202 void dev_set_rx_mode(struct net_device *dev)
8203 {
8204 	netif_addr_lock_bh(dev);
8205 	__dev_set_rx_mode(dev);
8206 	netif_addr_unlock_bh(dev);
8207 }
8208 
8209 /**
8210  *	dev_get_flags - get flags reported to userspace
8211  *	@dev: device
8212  *
8213  *	Get the combination of flag bits exported through APIs to userspace.
8214  */
8215 unsigned int dev_get_flags(const struct net_device *dev)
8216 {
8217 	unsigned int flags;
8218 
8219 	flags = (dev->flags & ~(IFF_PROMISC |
8220 				IFF_ALLMULTI |
8221 				IFF_RUNNING |
8222 				IFF_LOWER_UP |
8223 				IFF_DORMANT)) |
8224 		(dev->gflags & (IFF_PROMISC |
8225 				IFF_ALLMULTI));
8226 
8227 	if (netif_running(dev)) {
8228 		if (netif_oper_up(dev))
8229 			flags |= IFF_RUNNING;
8230 		if (netif_carrier_ok(dev))
8231 			flags |= IFF_LOWER_UP;
8232 		if (netif_dormant(dev))
8233 			flags |= IFF_DORMANT;
8234 	}
8235 
8236 	return flags;
8237 }
8238 EXPORT_SYMBOL(dev_get_flags);
8239 
8240 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8241 		       struct netlink_ext_ack *extack)
8242 {
8243 	unsigned int old_flags = dev->flags;
8244 	int ret;
8245 
8246 	ASSERT_RTNL();
8247 
8248 	/*
8249 	 *	Set the flags on our device.
8250 	 */
8251 
8252 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8253 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8254 			       IFF_AUTOMEDIA)) |
8255 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8256 				    IFF_ALLMULTI));
8257 
8258 	/*
8259 	 *	Load in the correct multicast list now the flags have changed.
8260 	 */
8261 
8262 	if ((old_flags ^ flags) & IFF_MULTICAST)
8263 		dev_change_rx_flags(dev, IFF_MULTICAST);
8264 
8265 	dev_set_rx_mode(dev);
8266 
8267 	/*
8268 	 *	Have we downed the interface. We handle IFF_UP ourselves
8269 	 *	according to user attempts to set it, rather than blindly
8270 	 *	setting it.
8271 	 */
8272 
8273 	ret = 0;
8274 	if ((old_flags ^ flags) & IFF_UP) {
8275 		if (old_flags & IFF_UP)
8276 			__dev_close(dev);
8277 		else
8278 			ret = __dev_open(dev, extack);
8279 	}
8280 
8281 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8282 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8283 		unsigned int old_flags = dev->flags;
8284 
8285 		dev->gflags ^= IFF_PROMISC;
8286 
8287 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8288 			if (dev->flags != old_flags)
8289 				dev_set_rx_mode(dev);
8290 	}
8291 
8292 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8293 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8294 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8295 	 */
8296 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8297 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8298 
8299 		dev->gflags ^= IFF_ALLMULTI;
8300 		__dev_set_allmulti(dev, inc, false);
8301 	}
8302 
8303 	return ret;
8304 }
8305 
8306 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8307 			unsigned int gchanges)
8308 {
8309 	unsigned int changes = dev->flags ^ old_flags;
8310 
8311 	if (gchanges)
8312 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8313 
8314 	if (changes & IFF_UP) {
8315 		if (dev->flags & IFF_UP)
8316 			call_netdevice_notifiers(NETDEV_UP, dev);
8317 		else
8318 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8319 	}
8320 
8321 	if (dev->flags & IFF_UP &&
8322 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8323 		struct netdev_notifier_change_info change_info = {
8324 			.info = {
8325 				.dev = dev,
8326 			},
8327 			.flags_changed = changes,
8328 		};
8329 
8330 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8331 	}
8332 }
8333 
8334 /**
8335  *	dev_change_flags - change device settings
8336  *	@dev: device
8337  *	@flags: device state flags
8338  *	@extack: netlink extended ack
8339  *
8340  *	Change settings on device based state flags. The flags are
8341  *	in the userspace exported format.
8342  */
8343 int dev_change_flags(struct net_device *dev, unsigned int flags,
8344 		     struct netlink_ext_ack *extack)
8345 {
8346 	int ret;
8347 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8348 
8349 	ret = __dev_change_flags(dev, flags, extack);
8350 	if (ret < 0)
8351 		return ret;
8352 
8353 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8354 	__dev_notify_flags(dev, old_flags, changes);
8355 	return ret;
8356 }
8357 EXPORT_SYMBOL(dev_change_flags);
8358 
8359 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8360 {
8361 	const struct net_device_ops *ops = dev->netdev_ops;
8362 
8363 	if (ops->ndo_change_mtu)
8364 		return ops->ndo_change_mtu(dev, new_mtu);
8365 
8366 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8367 	WRITE_ONCE(dev->mtu, new_mtu);
8368 	return 0;
8369 }
8370 EXPORT_SYMBOL(__dev_set_mtu);
8371 
8372 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8373 		     struct netlink_ext_ack *extack)
8374 {
8375 	/* MTU must be positive, and in range */
8376 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8377 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8378 		return -EINVAL;
8379 	}
8380 
8381 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8382 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8383 		return -EINVAL;
8384 	}
8385 	return 0;
8386 }
8387 
8388 /**
8389  *	dev_set_mtu_ext - Change maximum transfer unit
8390  *	@dev: device
8391  *	@new_mtu: new transfer unit
8392  *	@extack: netlink extended ack
8393  *
8394  *	Change the maximum transfer size of the network device.
8395  */
8396 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8397 		    struct netlink_ext_ack *extack)
8398 {
8399 	int err, orig_mtu;
8400 
8401 	if (new_mtu == dev->mtu)
8402 		return 0;
8403 
8404 	err = dev_validate_mtu(dev, new_mtu, extack);
8405 	if (err)
8406 		return err;
8407 
8408 	if (!netif_device_present(dev))
8409 		return -ENODEV;
8410 
8411 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8412 	err = notifier_to_errno(err);
8413 	if (err)
8414 		return err;
8415 
8416 	orig_mtu = dev->mtu;
8417 	err = __dev_set_mtu(dev, new_mtu);
8418 
8419 	if (!err) {
8420 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8421 						   orig_mtu);
8422 		err = notifier_to_errno(err);
8423 		if (err) {
8424 			/* setting mtu back and notifying everyone again,
8425 			 * so that they have a chance to revert changes.
8426 			 */
8427 			__dev_set_mtu(dev, orig_mtu);
8428 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8429 						     new_mtu);
8430 		}
8431 	}
8432 	return err;
8433 }
8434 
8435 int dev_set_mtu(struct net_device *dev, int new_mtu)
8436 {
8437 	struct netlink_ext_ack extack;
8438 	int err;
8439 
8440 	memset(&extack, 0, sizeof(extack));
8441 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8442 	if (err && extack._msg)
8443 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8444 	return err;
8445 }
8446 EXPORT_SYMBOL(dev_set_mtu);
8447 
8448 /**
8449  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8450  *	@dev: device
8451  *	@new_len: new tx queue length
8452  */
8453 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8454 {
8455 	unsigned int orig_len = dev->tx_queue_len;
8456 	int res;
8457 
8458 	if (new_len != (unsigned int)new_len)
8459 		return -ERANGE;
8460 
8461 	if (new_len != orig_len) {
8462 		dev->tx_queue_len = new_len;
8463 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8464 		res = notifier_to_errno(res);
8465 		if (res)
8466 			goto err_rollback;
8467 		res = dev_qdisc_change_tx_queue_len(dev);
8468 		if (res)
8469 			goto err_rollback;
8470 	}
8471 
8472 	return 0;
8473 
8474 err_rollback:
8475 	netdev_err(dev, "refused to change device tx_queue_len\n");
8476 	dev->tx_queue_len = orig_len;
8477 	return res;
8478 }
8479 
8480 /**
8481  *	dev_set_group - Change group this device belongs to
8482  *	@dev: device
8483  *	@new_group: group this device should belong to
8484  */
8485 void dev_set_group(struct net_device *dev, int new_group)
8486 {
8487 	dev->group = new_group;
8488 }
8489 EXPORT_SYMBOL(dev_set_group);
8490 
8491 /**
8492  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8493  *	@dev: device
8494  *	@addr: new address
8495  *	@extack: netlink extended ack
8496  */
8497 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8498 			      struct netlink_ext_ack *extack)
8499 {
8500 	struct netdev_notifier_pre_changeaddr_info info = {
8501 		.info.dev = dev,
8502 		.info.extack = extack,
8503 		.dev_addr = addr,
8504 	};
8505 	int rc;
8506 
8507 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8508 	return notifier_to_errno(rc);
8509 }
8510 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8511 
8512 /**
8513  *	dev_set_mac_address - Change Media Access Control Address
8514  *	@dev: device
8515  *	@sa: new address
8516  *	@extack: netlink extended ack
8517  *
8518  *	Change the hardware (MAC) address of the device
8519  */
8520 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8521 			struct netlink_ext_ack *extack)
8522 {
8523 	const struct net_device_ops *ops = dev->netdev_ops;
8524 	int err;
8525 
8526 	if (!ops->ndo_set_mac_address)
8527 		return -EOPNOTSUPP;
8528 	if (sa->sa_family != dev->type)
8529 		return -EINVAL;
8530 	if (!netif_device_present(dev))
8531 		return -ENODEV;
8532 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8533 	if (err)
8534 		return err;
8535 	err = ops->ndo_set_mac_address(dev, sa);
8536 	if (err)
8537 		return err;
8538 	dev->addr_assign_type = NET_ADDR_SET;
8539 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8540 	add_device_randomness(dev->dev_addr, dev->addr_len);
8541 	return 0;
8542 }
8543 EXPORT_SYMBOL(dev_set_mac_address);
8544 
8545 /**
8546  *	dev_change_carrier - Change device carrier
8547  *	@dev: device
8548  *	@new_carrier: new value
8549  *
8550  *	Change device carrier
8551  */
8552 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8553 {
8554 	const struct net_device_ops *ops = dev->netdev_ops;
8555 
8556 	if (!ops->ndo_change_carrier)
8557 		return -EOPNOTSUPP;
8558 	if (!netif_device_present(dev))
8559 		return -ENODEV;
8560 	return ops->ndo_change_carrier(dev, new_carrier);
8561 }
8562 EXPORT_SYMBOL(dev_change_carrier);
8563 
8564 /**
8565  *	dev_get_phys_port_id - Get device physical port ID
8566  *	@dev: device
8567  *	@ppid: port ID
8568  *
8569  *	Get device physical port ID
8570  */
8571 int dev_get_phys_port_id(struct net_device *dev,
8572 			 struct netdev_phys_item_id *ppid)
8573 {
8574 	const struct net_device_ops *ops = dev->netdev_ops;
8575 
8576 	if (!ops->ndo_get_phys_port_id)
8577 		return -EOPNOTSUPP;
8578 	return ops->ndo_get_phys_port_id(dev, ppid);
8579 }
8580 EXPORT_SYMBOL(dev_get_phys_port_id);
8581 
8582 /**
8583  *	dev_get_phys_port_name - Get device physical port name
8584  *	@dev: device
8585  *	@name: port name
8586  *	@len: limit of bytes to copy to name
8587  *
8588  *	Get device physical port name
8589  */
8590 int dev_get_phys_port_name(struct net_device *dev,
8591 			   char *name, size_t len)
8592 {
8593 	const struct net_device_ops *ops = dev->netdev_ops;
8594 	int err;
8595 
8596 	if (ops->ndo_get_phys_port_name) {
8597 		err = ops->ndo_get_phys_port_name(dev, name, len);
8598 		if (err != -EOPNOTSUPP)
8599 			return err;
8600 	}
8601 	return devlink_compat_phys_port_name_get(dev, name, len);
8602 }
8603 EXPORT_SYMBOL(dev_get_phys_port_name);
8604 
8605 /**
8606  *	dev_get_port_parent_id - Get the device's port parent identifier
8607  *	@dev: network device
8608  *	@ppid: pointer to a storage for the port's parent identifier
8609  *	@recurse: allow/disallow recursion to lower devices
8610  *
8611  *	Get the devices's port parent identifier
8612  */
8613 int dev_get_port_parent_id(struct net_device *dev,
8614 			   struct netdev_phys_item_id *ppid,
8615 			   bool recurse)
8616 {
8617 	const struct net_device_ops *ops = dev->netdev_ops;
8618 	struct netdev_phys_item_id first = { };
8619 	struct net_device *lower_dev;
8620 	struct list_head *iter;
8621 	int err;
8622 
8623 	if (ops->ndo_get_port_parent_id) {
8624 		err = ops->ndo_get_port_parent_id(dev, ppid);
8625 		if (err != -EOPNOTSUPP)
8626 			return err;
8627 	}
8628 
8629 	err = devlink_compat_switch_id_get(dev, ppid);
8630 	if (!err || err != -EOPNOTSUPP)
8631 		return err;
8632 
8633 	if (!recurse)
8634 		return -EOPNOTSUPP;
8635 
8636 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8637 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8638 		if (err)
8639 			break;
8640 		if (!first.id_len)
8641 			first = *ppid;
8642 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8643 			return -ENODATA;
8644 	}
8645 
8646 	return err;
8647 }
8648 EXPORT_SYMBOL(dev_get_port_parent_id);
8649 
8650 /**
8651  *	netdev_port_same_parent_id - Indicate if two network devices have
8652  *	the same port parent identifier
8653  *	@a: first network device
8654  *	@b: second network device
8655  */
8656 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8657 {
8658 	struct netdev_phys_item_id a_id = { };
8659 	struct netdev_phys_item_id b_id = { };
8660 
8661 	if (dev_get_port_parent_id(a, &a_id, true) ||
8662 	    dev_get_port_parent_id(b, &b_id, true))
8663 		return false;
8664 
8665 	return netdev_phys_item_id_same(&a_id, &b_id);
8666 }
8667 EXPORT_SYMBOL(netdev_port_same_parent_id);
8668 
8669 /**
8670  *	dev_change_proto_down - update protocol port state information
8671  *	@dev: device
8672  *	@proto_down: new value
8673  *
8674  *	This info can be used by switch drivers to set the phys state of the
8675  *	port.
8676  */
8677 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8678 {
8679 	const struct net_device_ops *ops = dev->netdev_ops;
8680 
8681 	if (!ops->ndo_change_proto_down)
8682 		return -EOPNOTSUPP;
8683 	if (!netif_device_present(dev))
8684 		return -ENODEV;
8685 	return ops->ndo_change_proto_down(dev, proto_down);
8686 }
8687 EXPORT_SYMBOL(dev_change_proto_down);
8688 
8689 /**
8690  *	dev_change_proto_down_generic - generic implementation for
8691  * 	ndo_change_proto_down that sets carrier according to
8692  * 	proto_down.
8693  *
8694  *	@dev: device
8695  *	@proto_down: new value
8696  */
8697 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8698 {
8699 	if (proto_down)
8700 		netif_carrier_off(dev);
8701 	else
8702 		netif_carrier_on(dev);
8703 	dev->proto_down = proto_down;
8704 	return 0;
8705 }
8706 EXPORT_SYMBOL(dev_change_proto_down_generic);
8707 
8708 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8709 		    enum bpf_netdev_command cmd)
8710 {
8711 	struct netdev_bpf xdp;
8712 
8713 	if (!bpf_op)
8714 		return 0;
8715 
8716 	memset(&xdp, 0, sizeof(xdp));
8717 	xdp.command = cmd;
8718 
8719 	/* Query must always succeed. */
8720 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8721 
8722 	return xdp.prog_id;
8723 }
8724 
8725 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8726 			   struct netlink_ext_ack *extack, u32 flags,
8727 			   struct bpf_prog *prog)
8728 {
8729 	bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8730 	struct bpf_prog *prev_prog = NULL;
8731 	struct netdev_bpf xdp;
8732 	int err;
8733 
8734 	if (non_hw) {
8735 		prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8736 							   XDP_QUERY_PROG));
8737 		if (IS_ERR(prev_prog))
8738 			prev_prog = NULL;
8739 	}
8740 
8741 	memset(&xdp, 0, sizeof(xdp));
8742 	if (flags & XDP_FLAGS_HW_MODE)
8743 		xdp.command = XDP_SETUP_PROG_HW;
8744 	else
8745 		xdp.command = XDP_SETUP_PROG;
8746 	xdp.extack = extack;
8747 	xdp.flags = flags;
8748 	xdp.prog = prog;
8749 
8750 	err = bpf_op(dev, &xdp);
8751 	if (!err && non_hw)
8752 		bpf_prog_change_xdp(prev_prog, prog);
8753 
8754 	if (prev_prog)
8755 		bpf_prog_put(prev_prog);
8756 
8757 	return err;
8758 }
8759 
8760 static void dev_xdp_uninstall(struct net_device *dev)
8761 {
8762 	struct netdev_bpf xdp;
8763 	bpf_op_t ndo_bpf;
8764 
8765 	/* Remove generic XDP */
8766 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8767 
8768 	/* Remove from the driver */
8769 	ndo_bpf = dev->netdev_ops->ndo_bpf;
8770 	if (!ndo_bpf)
8771 		return;
8772 
8773 	memset(&xdp, 0, sizeof(xdp));
8774 	xdp.command = XDP_QUERY_PROG;
8775 	WARN_ON(ndo_bpf(dev, &xdp));
8776 	if (xdp.prog_id)
8777 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8778 					NULL));
8779 
8780 	/* Remove HW offload */
8781 	memset(&xdp, 0, sizeof(xdp));
8782 	xdp.command = XDP_QUERY_PROG_HW;
8783 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8784 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8785 					NULL));
8786 }
8787 
8788 /**
8789  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
8790  *	@dev: device
8791  *	@extack: netlink extended ack
8792  *	@fd: new program fd or negative value to clear
8793  *	@expected_fd: old program fd that userspace expects to replace or clear
8794  *	@flags: xdp-related flags
8795  *
8796  *	Set or clear a bpf program for a device
8797  */
8798 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8799 		      int fd, int expected_fd, u32 flags)
8800 {
8801 	const struct net_device_ops *ops = dev->netdev_ops;
8802 	enum bpf_netdev_command query;
8803 	u32 prog_id, expected_id = 0;
8804 	bpf_op_t bpf_op, bpf_chk;
8805 	struct bpf_prog *prog;
8806 	bool offload;
8807 	int err;
8808 
8809 	ASSERT_RTNL();
8810 
8811 	offload = flags & XDP_FLAGS_HW_MODE;
8812 	query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8813 
8814 	bpf_op = bpf_chk = ops->ndo_bpf;
8815 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8816 		NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8817 		return -EOPNOTSUPP;
8818 	}
8819 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8820 		bpf_op = generic_xdp_install;
8821 	if (bpf_op == bpf_chk)
8822 		bpf_chk = generic_xdp_install;
8823 
8824 	prog_id = __dev_xdp_query(dev, bpf_op, query);
8825 	if (flags & XDP_FLAGS_REPLACE) {
8826 		if (expected_fd >= 0) {
8827 			prog = bpf_prog_get_type_dev(expected_fd,
8828 						     BPF_PROG_TYPE_XDP,
8829 						     bpf_op == ops->ndo_bpf);
8830 			if (IS_ERR(prog))
8831 				return PTR_ERR(prog);
8832 			expected_id = prog->aux->id;
8833 			bpf_prog_put(prog);
8834 		}
8835 
8836 		if (prog_id != expected_id) {
8837 			NL_SET_ERR_MSG(extack, "Active program does not match expected");
8838 			return -EEXIST;
8839 		}
8840 	}
8841 	if (fd >= 0) {
8842 		if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8843 			NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8844 			return -EEXIST;
8845 		}
8846 
8847 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8848 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8849 			return -EBUSY;
8850 		}
8851 
8852 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8853 					     bpf_op == ops->ndo_bpf);
8854 		if (IS_ERR(prog))
8855 			return PTR_ERR(prog);
8856 
8857 		if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8858 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8859 			bpf_prog_put(prog);
8860 			return -EINVAL;
8861 		}
8862 
8863 		if (prog->expected_attach_type == BPF_XDP_DEVMAP) {
8864 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
8865 			bpf_prog_put(prog);
8866 			return -EINVAL;
8867 		}
8868 
8869 		/* prog->aux->id may be 0 for orphaned device-bound progs */
8870 		if (prog->aux->id && prog->aux->id == prog_id) {
8871 			bpf_prog_put(prog);
8872 			return 0;
8873 		}
8874 	} else {
8875 		if (!prog_id)
8876 			return 0;
8877 		prog = NULL;
8878 	}
8879 
8880 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8881 	if (err < 0 && prog)
8882 		bpf_prog_put(prog);
8883 
8884 	return err;
8885 }
8886 
8887 /**
8888  *	dev_new_index	-	allocate an ifindex
8889  *	@net: the applicable net namespace
8890  *
8891  *	Returns a suitable unique value for a new device interface
8892  *	number.  The caller must hold the rtnl semaphore or the
8893  *	dev_base_lock to be sure it remains unique.
8894  */
8895 static int dev_new_index(struct net *net)
8896 {
8897 	int ifindex = net->ifindex;
8898 
8899 	for (;;) {
8900 		if (++ifindex <= 0)
8901 			ifindex = 1;
8902 		if (!__dev_get_by_index(net, ifindex))
8903 			return net->ifindex = ifindex;
8904 	}
8905 }
8906 
8907 /* Delayed registration/unregisteration */
8908 static LIST_HEAD(net_todo_list);
8909 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8910 
8911 static void net_set_todo(struct net_device *dev)
8912 {
8913 	list_add_tail(&dev->todo_list, &net_todo_list);
8914 	dev_net(dev)->dev_unreg_count++;
8915 }
8916 
8917 static void rollback_registered_many(struct list_head *head)
8918 {
8919 	struct net_device *dev, *tmp;
8920 	LIST_HEAD(close_head);
8921 
8922 	BUG_ON(dev_boot_phase);
8923 	ASSERT_RTNL();
8924 
8925 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8926 		/* Some devices call without registering
8927 		 * for initialization unwind. Remove those
8928 		 * devices and proceed with the remaining.
8929 		 */
8930 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8931 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8932 				 dev->name, dev);
8933 
8934 			WARN_ON(1);
8935 			list_del(&dev->unreg_list);
8936 			continue;
8937 		}
8938 		dev->dismantle = true;
8939 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8940 	}
8941 
8942 	/* If device is running, close it first. */
8943 	list_for_each_entry(dev, head, unreg_list)
8944 		list_add_tail(&dev->close_list, &close_head);
8945 	dev_close_many(&close_head, true);
8946 
8947 	list_for_each_entry(dev, head, unreg_list) {
8948 		/* And unlink it from device chain. */
8949 		unlist_netdevice(dev);
8950 
8951 		dev->reg_state = NETREG_UNREGISTERING;
8952 	}
8953 	flush_all_backlogs();
8954 
8955 	synchronize_net();
8956 
8957 	list_for_each_entry(dev, head, unreg_list) {
8958 		struct sk_buff *skb = NULL;
8959 
8960 		/* Shutdown queueing discipline. */
8961 		dev_shutdown(dev);
8962 
8963 		dev_xdp_uninstall(dev);
8964 
8965 		/* Notify protocols, that we are about to destroy
8966 		 * this device. They should clean all the things.
8967 		 */
8968 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8969 
8970 		if (!dev->rtnl_link_ops ||
8971 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8972 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8973 						     GFP_KERNEL, NULL, 0);
8974 
8975 		/*
8976 		 *	Flush the unicast and multicast chains
8977 		 */
8978 		dev_uc_flush(dev);
8979 		dev_mc_flush(dev);
8980 
8981 		netdev_name_node_alt_flush(dev);
8982 		netdev_name_node_free(dev->name_node);
8983 
8984 		if (dev->netdev_ops->ndo_uninit)
8985 			dev->netdev_ops->ndo_uninit(dev);
8986 
8987 		if (skb)
8988 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8989 
8990 		/* Notifier chain MUST detach us all upper devices. */
8991 		WARN_ON(netdev_has_any_upper_dev(dev));
8992 		WARN_ON(netdev_has_any_lower_dev(dev));
8993 
8994 		/* Remove entries from kobject tree */
8995 		netdev_unregister_kobject(dev);
8996 #ifdef CONFIG_XPS
8997 		/* Remove XPS queueing entries */
8998 		netif_reset_xps_queues_gt(dev, 0);
8999 #endif
9000 	}
9001 
9002 	synchronize_net();
9003 
9004 	list_for_each_entry(dev, head, unreg_list)
9005 		dev_put(dev);
9006 }
9007 
9008 static void rollback_registered(struct net_device *dev)
9009 {
9010 	LIST_HEAD(single);
9011 
9012 	list_add(&dev->unreg_list, &single);
9013 	rollback_registered_many(&single);
9014 	list_del(&single);
9015 }
9016 
9017 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9018 	struct net_device *upper, netdev_features_t features)
9019 {
9020 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9021 	netdev_features_t feature;
9022 	int feature_bit;
9023 
9024 	for_each_netdev_feature(upper_disables, feature_bit) {
9025 		feature = __NETIF_F_BIT(feature_bit);
9026 		if (!(upper->wanted_features & feature)
9027 		    && (features & feature)) {
9028 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9029 				   &feature, upper->name);
9030 			features &= ~feature;
9031 		}
9032 	}
9033 
9034 	return features;
9035 }
9036 
9037 static void netdev_sync_lower_features(struct net_device *upper,
9038 	struct net_device *lower, netdev_features_t features)
9039 {
9040 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9041 	netdev_features_t feature;
9042 	int feature_bit;
9043 
9044 	for_each_netdev_feature(upper_disables, feature_bit) {
9045 		feature = __NETIF_F_BIT(feature_bit);
9046 		if (!(features & feature) && (lower->features & feature)) {
9047 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9048 				   &feature, lower->name);
9049 			lower->wanted_features &= ~feature;
9050 			__netdev_update_features(lower);
9051 
9052 			if (unlikely(lower->features & feature))
9053 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9054 					    &feature, lower->name);
9055 			else
9056 				netdev_features_change(lower);
9057 		}
9058 	}
9059 }
9060 
9061 static netdev_features_t netdev_fix_features(struct net_device *dev,
9062 	netdev_features_t features)
9063 {
9064 	/* Fix illegal checksum combinations */
9065 	if ((features & NETIF_F_HW_CSUM) &&
9066 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9067 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9068 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9069 	}
9070 
9071 	/* TSO requires that SG is present as well. */
9072 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9073 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9074 		features &= ~NETIF_F_ALL_TSO;
9075 	}
9076 
9077 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9078 					!(features & NETIF_F_IP_CSUM)) {
9079 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9080 		features &= ~NETIF_F_TSO;
9081 		features &= ~NETIF_F_TSO_ECN;
9082 	}
9083 
9084 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9085 					 !(features & NETIF_F_IPV6_CSUM)) {
9086 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9087 		features &= ~NETIF_F_TSO6;
9088 	}
9089 
9090 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9091 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9092 		features &= ~NETIF_F_TSO_MANGLEID;
9093 
9094 	/* TSO ECN requires that TSO is present as well. */
9095 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9096 		features &= ~NETIF_F_TSO_ECN;
9097 
9098 	/* Software GSO depends on SG. */
9099 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9100 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9101 		features &= ~NETIF_F_GSO;
9102 	}
9103 
9104 	/* GSO partial features require GSO partial be set */
9105 	if ((features & dev->gso_partial_features) &&
9106 	    !(features & NETIF_F_GSO_PARTIAL)) {
9107 		netdev_dbg(dev,
9108 			   "Dropping partially supported GSO features since no GSO partial.\n");
9109 		features &= ~dev->gso_partial_features;
9110 	}
9111 
9112 	if (!(features & NETIF_F_RXCSUM)) {
9113 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9114 		 * successfully merged by hardware must also have the
9115 		 * checksum verified by hardware.  If the user does not
9116 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9117 		 */
9118 		if (features & NETIF_F_GRO_HW) {
9119 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9120 			features &= ~NETIF_F_GRO_HW;
9121 		}
9122 	}
9123 
9124 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9125 	if (features & NETIF_F_RXFCS) {
9126 		if (features & NETIF_F_LRO) {
9127 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9128 			features &= ~NETIF_F_LRO;
9129 		}
9130 
9131 		if (features & NETIF_F_GRO_HW) {
9132 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9133 			features &= ~NETIF_F_GRO_HW;
9134 		}
9135 	}
9136 
9137 	return features;
9138 }
9139 
9140 int __netdev_update_features(struct net_device *dev)
9141 {
9142 	struct net_device *upper, *lower;
9143 	netdev_features_t features;
9144 	struct list_head *iter;
9145 	int err = -1;
9146 
9147 	ASSERT_RTNL();
9148 
9149 	features = netdev_get_wanted_features(dev);
9150 
9151 	if (dev->netdev_ops->ndo_fix_features)
9152 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9153 
9154 	/* driver might be less strict about feature dependencies */
9155 	features = netdev_fix_features(dev, features);
9156 
9157 	/* some features can't be enabled if they're off an an upper device */
9158 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9159 		features = netdev_sync_upper_features(dev, upper, features);
9160 
9161 	if (dev->features == features)
9162 		goto sync_lower;
9163 
9164 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9165 		&dev->features, &features);
9166 
9167 	if (dev->netdev_ops->ndo_set_features)
9168 		err = dev->netdev_ops->ndo_set_features(dev, features);
9169 	else
9170 		err = 0;
9171 
9172 	if (unlikely(err < 0)) {
9173 		netdev_err(dev,
9174 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9175 			err, &features, &dev->features);
9176 		/* return non-0 since some features might have changed and
9177 		 * it's better to fire a spurious notification than miss it
9178 		 */
9179 		return -1;
9180 	}
9181 
9182 sync_lower:
9183 	/* some features must be disabled on lower devices when disabled
9184 	 * on an upper device (think: bonding master or bridge)
9185 	 */
9186 	netdev_for_each_lower_dev(dev, lower, iter)
9187 		netdev_sync_lower_features(dev, lower, features);
9188 
9189 	if (!err) {
9190 		netdev_features_t diff = features ^ dev->features;
9191 
9192 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9193 			/* udp_tunnel_{get,drop}_rx_info both need
9194 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9195 			 * device, or they won't do anything.
9196 			 * Thus we need to update dev->features
9197 			 * *before* calling udp_tunnel_get_rx_info,
9198 			 * but *after* calling udp_tunnel_drop_rx_info.
9199 			 */
9200 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9201 				dev->features = features;
9202 				udp_tunnel_get_rx_info(dev);
9203 			} else {
9204 				udp_tunnel_drop_rx_info(dev);
9205 			}
9206 		}
9207 
9208 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9209 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9210 				dev->features = features;
9211 				err |= vlan_get_rx_ctag_filter_info(dev);
9212 			} else {
9213 				vlan_drop_rx_ctag_filter_info(dev);
9214 			}
9215 		}
9216 
9217 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9218 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9219 				dev->features = features;
9220 				err |= vlan_get_rx_stag_filter_info(dev);
9221 			} else {
9222 				vlan_drop_rx_stag_filter_info(dev);
9223 			}
9224 		}
9225 
9226 		dev->features = features;
9227 	}
9228 
9229 	return err < 0 ? 0 : 1;
9230 }
9231 
9232 /**
9233  *	netdev_update_features - recalculate device features
9234  *	@dev: the device to check
9235  *
9236  *	Recalculate dev->features set and send notifications if it
9237  *	has changed. Should be called after driver or hardware dependent
9238  *	conditions might have changed that influence the features.
9239  */
9240 void netdev_update_features(struct net_device *dev)
9241 {
9242 	if (__netdev_update_features(dev))
9243 		netdev_features_change(dev);
9244 }
9245 EXPORT_SYMBOL(netdev_update_features);
9246 
9247 /**
9248  *	netdev_change_features - recalculate device features
9249  *	@dev: the device to check
9250  *
9251  *	Recalculate dev->features set and send notifications even
9252  *	if they have not changed. Should be called instead of
9253  *	netdev_update_features() if also dev->vlan_features might
9254  *	have changed to allow the changes to be propagated to stacked
9255  *	VLAN devices.
9256  */
9257 void netdev_change_features(struct net_device *dev)
9258 {
9259 	__netdev_update_features(dev);
9260 	netdev_features_change(dev);
9261 }
9262 EXPORT_SYMBOL(netdev_change_features);
9263 
9264 /**
9265  *	netif_stacked_transfer_operstate -	transfer operstate
9266  *	@rootdev: the root or lower level device to transfer state from
9267  *	@dev: the device to transfer operstate to
9268  *
9269  *	Transfer operational state from root to device. This is normally
9270  *	called when a stacking relationship exists between the root
9271  *	device and the device(a leaf device).
9272  */
9273 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9274 					struct net_device *dev)
9275 {
9276 	if (rootdev->operstate == IF_OPER_DORMANT)
9277 		netif_dormant_on(dev);
9278 	else
9279 		netif_dormant_off(dev);
9280 
9281 	if (rootdev->operstate == IF_OPER_TESTING)
9282 		netif_testing_on(dev);
9283 	else
9284 		netif_testing_off(dev);
9285 
9286 	if (netif_carrier_ok(rootdev))
9287 		netif_carrier_on(dev);
9288 	else
9289 		netif_carrier_off(dev);
9290 }
9291 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9292 
9293 static int netif_alloc_rx_queues(struct net_device *dev)
9294 {
9295 	unsigned int i, count = dev->num_rx_queues;
9296 	struct netdev_rx_queue *rx;
9297 	size_t sz = count * sizeof(*rx);
9298 	int err = 0;
9299 
9300 	BUG_ON(count < 1);
9301 
9302 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9303 	if (!rx)
9304 		return -ENOMEM;
9305 
9306 	dev->_rx = rx;
9307 
9308 	for (i = 0; i < count; i++) {
9309 		rx[i].dev = dev;
9310 
9311 		/* XDP RX-queue setup */
9312 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9313 		if (err < 0)
9314 			goto err_rxq_info;
9315 	}
9316 	return 0;
9317 
9318 err_rxq_info:
9319 	/* Rollback successful reg's and free other resources */
9320 	while (i--)
9321 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9322 	kvfree(dev->_rx);
9323 	dev->_rx = NULL;
9324 	return err;
9325 }
9326 
9327 static void netif_free_rx_queues(struct net_device *dev)
9328 {
9329 	unsigned int i, count = dev->num_rx_queues;
9330 
9331 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9332 	if (!dev->_rx)
9333 		return;
9334 
9335 	for (i = 0; i < count; i++)
9336 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9337 
9338 	kvfree(dev->_rx);
9339 }
9340 
9341 static void netdev_init_one_queue(struct net_device *dev,
9342 				  struct netdev_queue *queue, void *_unused)
9343 {
9344 	/* Initialize queue lock */
9345 	spin_lock_init(&queue->_xmit_lock);
9346 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9347 	queue->xmit_lock_owner = -1;
9348 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9349 	queue->dev = dev;
9350 #ifdef CONFIG_BQL
9351 	dql_init(&queue->dql, HZ);
9352 #endif
9353 }
9354 
9355 static void netif_free_tx_queues(struct net_device *dev)
9356 {
9357 	kvfree(dev->_tx);
9358 }
9359 
9360 static int netif_alloc_netdev_queues(struct net_device *dev)
9361 {
9362 	unsigned int count = dev->num_tx_queues;
9363 	struct netdev_queue *tx;
9364 	size_t sz = count * sizeof(*tx);
9365 
9366 	if (count < 1 || count > 0xffff)
9367 		return -EINVAL;
9368 
9369 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9370 	if (!tx)
9371 		return -ENOMEM;
9372 
9373 	dev->_tx = tx;
9374 
9375 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9376 	spin_lock_init(&dev->tx_global_lock);
9377 
9378 	return 0;
9379 }
9380 
9381 void netif_tx_stop_all_queues(struct net_device *dev)
9382 {
9383 	unsigned int i;
9384 
9385 	for (i = 0; i < dev->num_tx_queues; i++) {
9386 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9387 
9388 		netif_tx_stop_queue(txq);
9389 	}
9390 }
9391 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9392 
9393 /**
9394  *	register_netdevice	- register a network device
9395  *	@dev: device to register
9396  *
9397  *	Take a completed network device structure and add it to the kernel
9398  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9399  *	chain. 0 is returned on success. A negative errno code is returned
9400  *	on a failure to set up the device, or if the name is a duplicate.
9401  *
9402  *	Callers must hold the rtnl semaphore. You may want
9403  *	register_netdev() instead of this.
9404  *
9405  *	BUGS:
9406  *	The locking appears insufficient to guarantee two parallel registers
9407  *	will not get the same name.
9408  */
9409 
9410 int register_netdevice(struct net_device *dev)
9411 {
9412 	int ret;
9413 	struct net *net = dev_net(dev);
9414 
9415 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9416 		     NETDEV_FEATURE_COUNT);
9417 	BUG_ON(dev_boot_phase);
9418 	ASSERT_RTNL();
9419 
9420 	might_sleep();
9421 
9422 	/* When net_device's are persistent, this will be fatal. */
9423 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9424 	BUG_ON(!net);
9425 
9426 	ret = ethtool_check_ops(dev->ethtool_ops);
9427 	if (ret)
9428 		return ret;
9429 
9430 	spin_lock_init(&dev->addr_list_lock);
9431 	netdev_set_addr_lockdep_class(dev);
9432 
9433 	ret = dev_get_valid_name(net, dev, dev->name);
9434 	if (ret < 0)
9435 		goto out;
9436 
9437 	ret = -ENOMEM;
9438 	dev->name_node = netdev_name_node_head_alloc(dev);
9439 	if (!dev->name_node)
9440 		goto out;
9441 
9442 	/* Init, if this function is available */
9443 	if (dev->netdev_ops->ndo_init) {
9444 		ret = dev->netdev_ops->ndo_init(dev);
9445 		if (ret) {
9446 			if (ret > 0)
9447 				ret = -EIO;
9448 			goto err_free_name;
9449 		}
9450 	}
9451 
9452 	if (((dev->hw_features | dev->features) &
9453 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9454 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9455 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9456 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9457 		ret = -EINVAL;
9458 		goto err_uninit;
9459 	}
9460 
9461 	ret = -EBUSY;
9462 	if (!dev->ifindex)
9463 		dev->ifindex = dev_new_index(net);
9464 	else if (__dev_get_by_index(net, dev->ifindex))
9465 		goto err_uninit;
9466 
9467 	/* Transfer changeable features to wanted_features and enable
9468 	 * software offloads (GSO and GRO).
9469 	 */
9470 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9471 	dev->features |= NETIF_F_SOFT_FEATURES;
9472 
9473 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
9474 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9475 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9476 	}
9477 
9478 	dev->wanted_features = dev->features & dev->hw_features;
9479 
9480 	if (!(dev->flags & IFF_LOOPBACK))
9481 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9482 
9483 	/* If IPv4 TCP segmentation offload is supported we should also
9484 	 * allow the device to enable segmenting the frame with the option
9485 	 * of ignoring a static IP ID value.  This doesn't enable the
9486 	 * feature itself but allows the user to enable it later.
9487 	 */
9488 	if (dev->hw_features & NETIF_F_TSO)
9489 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9490 	if (dev->vlan_features & NETIF_F_TSO)
9491 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9492 	if (dev->mpls_features & NETIF_F_TSO)
9493 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9494 	if (dev->hw_enc_features & NETIF_F_TSO)
9495 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9496 
9497 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9498 	 */
9499 	dev->vlan_features |= NETIF_F_HIGHDMA;
9500 
9501 	/* Make NETIF_F_SG inheritable to tunnel devices.
9502 	 */
9503 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9504 
9505 	/* Make NETIF_F_SG inheritable to MPLS.
9506 	 */
9507 	dev->mpls_features |= NETIF_F_SG;
9508 
9509 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9510 	ret = notifier_to_errno(ret);
9511 	if (ret)
9512 		goto err_uninit;
9513 
9514 	ret = netdev_register_kobject(dev);
9515 	if (ret) {
9516 		dev->reg_state = NETREG_UNREGISTERED;
9517 		goto err_uninit;
9518 	}
9519 	dev->reg_state = NETREG_REGISTERED;
9520 
9521 	__netdev_update_features(dev);
9522 
9523 	/*
9524 	 *	Default initial state at registry is that the
9525 	 *	device is present.
9526 	 */
9527 
9528 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9529 
9530 	linkwatch_init_dev(dev);
9531 
9532 	dev_init_scheduler(dev);
9533 	dev_hold(dev);
9534 	list_netdevice(dev);
9535 	add_device_randomness(dev->dev_addr, dev->addr_len);
9536 
9537 	/* If the device has permanent device address, driver should
9538 	 * set dev_addr and also addr_assign_type should be set to
9539 	 * NET_ADDR_PERM (default value).
9540 	 */
9541 	if (dev->addr_assign_type == NET_ADDR_PERM)
9542 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9543 
9544 	/* Notify protocols, that a new device appeared. */
9545 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9546 	ret = notifier_to_errno(ret);
9547 	if (ret) {
9548 		rollback_registered(dev);
9549 		rcu_barrier();
9550 
9551 		dev->reg_state = NETREG_UNREGISTERED;
9552 		/* We should put the kobject that hold in
9553 		 * netdev_unregister_kobject(), otherwise
9554 		 * the net device cannot be freed when
9555 		 * driver calls free_netdev(), because the
9556 		 * kobject is being hold.
9557 		 */
9558 		kobject_put(&dev->dev.kobj);
9559 	}
9560 	/*
9561 	 *	Prevent userspace races by waiting until the network
9562 	 *	device is fully setup before sending notifications.
9563 	 */
9564 	if (!dev->rtnl_link_ops ||
9565 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9566 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9567 
9568 out:
9569 	return ret;
9570 
9571 err_uninit:
9572 	if (dev->netdev_ops->ndo_uninit)
9573 		dev->netdev_ops->ndo_uninit(dev);
9574 	if (dev->priv_destructor)
9575 		dev->priv_destructor(dev);
9576 err_free_name:
9577 	netdev_name_node_free(dev->name_node);
9578 	goto out;
9579 }
9580 EXPORT_SYMBOL(register_netdevice);
9581 
9582 /**
9583  *	init_dummy_netdev	- init a dummy network device for NAPI
9584  *	@dev: device to init
9585  *
9586  *	This takes a network device structure and initialize the minimum
9587  *	amount of fields so it can be used to schedule NAPI polls without
9588  *	registering a full blown interface. This is to be used by drivers
9589  *	that need to tie several hardware interfaces to a single NAPI
9590  *	poll scheduler due to HW limitations.
9591  */
9592 int init_dummy_netdev(struct net_device *dev)
9593 {
9594 	/* Clear everything. Note we don't initialize spinlocks
9595 	 * are they aren't supposed to be taken by any of the
9596 	 * NAPI code and this dummy netdev is supposed to be
9597 	 * only ever used for NAPI polls
9598 	 */
9599 	memset(dev, 0, sizeof(struct net_device));
9600 
9601 	/* make sure we BUG if trying to hit standard
9602 	 * register/unregister code path
9603 	 */
9604 	dev->reg_state = NETREG_DUMMY;
9605 
9606 	/* NAPI wants this */
9607 	INIT_LIST_HEAD(&dev->napi_list);
9608 
9609 	/* a dummy interface is started by default */
9610 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9611 	set_bit(__LINK_STATE_START, &dev->state);
9612 
9613 	/* napi_busy_loop stats accounting wants this */
9614 	dev_net_set(dev, &init_net);
9615 
9616 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
9617 	 * because users of this 'device' dont need to change
9618 	 * its refcount.
9619 	 */
9620 
9621 	return 0;
9622 }
9623 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9624 
9625 
9626 /**
9627  *	register_netdev	- register a network device
9628  *	@dev: device to register
9629  *
9630  *	Take a completed network device structure and add it to the kernel
9631  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9632  *	chain. 0 is returned on success. A negative errno code is returned
9633  *	on a failure to set up the device, or if the name is a duplicate.
9634  *
9635  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
9636  *	and expands the device name if you passed a format string to
9637  *	alloc_netdev.
9638  */
9639 int register_netdev(struct net_device *dev)
9640 {
9641 	int err;
9642 
9643 	if (rtnl_lock_killable())
9644 		return -EINTR;
9645 	err = register_netdevice(dev);
9646 	rtnl_unlock();
9647 	return err;
9648 }
9649 EXPORT_SYMBOL(register_netdev);
9650 
9651 int netdev_refcnt_read(const struct net_device *dev)
9652 {
9653 	int i, refcnt = 0;
9654 
9655 	for_each_possible_cpu(i)
9656 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9657 	return refcnt;
9658 }
9659 EXPORT_SYMBOL(netdev_refcnt_read);
9660 
9661 /**
9662  * netdev_wait_allrefs - wait until all references are gone.
9663  * @dev: target net_device
9664  *
9665  * This is called when unregistering network devices.
9666  *
9667  * Any protocol or device that holds a reference should register
9668  * for netdevice notification, and cleanup and put back the
9669  * reference if they receive an UNREGISTER event.
9670  * We can get stuck here if buggy protocols don't correctly
9671  * call dev_put.
9672  */
9673 static void netdev_wait_allrefs(struct net_device *dev)
9674 {
9675 	unsigned long rebroadcast_time, warning_time;
9676 	int refcnt;
9677 
9678 	linkwatch_forget_dev(dev);
9679 
9680 	rebroadcast_time = warning_time = jiffies;
9681 	refcnt = netdev_refcnt_read(dev);
9682 
9683 	while (refcnt != 0) {
9684 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9685 			rtnl_lock();
9686 
9687 			/* Rebroadcast unregister notification */
9688 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9689 
9690 			__rtnl_unlock();
9691 			rcu_barrier();
9692 			rtnl_lock();
9693 
9694 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9695 				     &dev->state)) {
9696 				/* We must not have linkwatch events
9697 				 * pending on unregister. If this
9698 				 * happens, we simply run the queue
9699 				 * unscheduled, resulting in a noop
9700 				 * for this device.
9701 				 */
9702 				linkwatch_run_queue();
9703 			}
9704 
9705 			__rtnl_unlock();
9706 
9707 			rebroadcast_time = jiffies;
9708 		}
9709 
9710 		msleep(250);
9711 
9712 		refcnt = netdev_refcnt_read(dev);
9713 
9714 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9715 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9716 				 dev->name, refcnt);
9717 			warning_time = jiffies;
9718 		}
9719 	}
9720 }
9721 
9722 /* The sequence is:
9723  *
9724  *	rtnl_lock();
9725  *	...
9726  *	register_netdevice(x1);
9727  *	register_netdevice(x2);
9728  *	...
9729  *	unregister_netdevice(y1);
9730  *	unregister_netdevice(y2);
9731  *      ...
9732  *	rtnl_unlock();
9733  *	free_netdev(y1);
9734  *	free_netdev(y2);
9735  *
9736  * We are invoked by rtnl_unlock().
9737  * This allows us to deal with problems:
9738  * 1) We can delete sysfs objects which invoke hotplug
9739  *    without deadlocking with linkwatch via keventd.
9740  * 2) Since we run with the RTNL semaphore not held, we can sleep
9741  *    safely in order to wait for the netdev refcnt to drop to zero.
9742  *
9743  * We must not return until all unregister events added during
9744  * the interval the lock was held have been completed.
9745  */
9746 void netdev_run_todo(void)
9747 {
9748 	struct list_head list;
9749 
9750 	/* Snapshot list, allow later requests */
9751 	list_replace_init(&net_todo_list, &list);
9752 
9753 	__rtnl_unlock();
9754 
9755 
9756 	/* Wait for rcu callbacks to finish before next phase */
9757 	if (!list_empty(&list))
9758 		rcu_barrier();
9759 
9760 	while (!list_empty(&list)) {
9761 		struct net_device *dev
9762 			= list_first_entry(&list, struct net_device, todo_list);
9763 		list_del(&dev->todo_list);
9764 
9765 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9766 			pr_err("network todo '%s' but state %d\n",
9767 			       dev->name, dev->reg_state);
9768 			dump_stack();
9769 			continue;
9770 		}
9771 
9772 		dev->reg_state = NETREG_UNREGISTERED;
9773 
9774 		netdev_wait_allrefs(dev);
9775 
9776 		/* paranoia */
9777 		BUG_ON(netdev_refcnt_read(dev));
9778 		BUG_ON(!list_empty(&dev->ptype_all));
9779 		BUG_ON(!list_empty(&dev->ptype_specific));
9780 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
9781 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9782 #if IS_ENABLED(CONFIG_DECNET)
9783 		WARN_ON(dev->dn_ptr);
9784 #endif
9785 		if (dev->priv_destructor)
9786 			dev->priv_destructor(dev);
9787 		if (dev->needs_free_netdev)
9788 			free_netdev(dev);
9789 
9790 		/* Report a network device has been unregistered */
9791 		rtnl_lock();
9792 		dev_net(dev)->dev_unreg_count--;
9793 		__rtnl_unlock();
9794 		wake_up(&netdev_unregistering_wq);
9795 
9796 		/* Free network device */
9797 		kobject_put(&dev->dev.kobj);
9798 	}
9799 }
9800 
9801 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9802  * all the same fields in the same order as net_device_stats, with only
9803  * the type differing, but rtnl_link_stats64 may have additional fields
9804  * at the end for newer counters.
9805  */
9806 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9807 			     const struct net_device_stats *netdev_stats)
9808 {
9809 #if BITS_PER_LONG == 64
9810 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9811 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9812 	/* zero out counters that only exist in rtnl_link_stats64 */
9813 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9814 	       sizeof(*stats64) - sizeof(*netdev_stats));
9815 #else
9816 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9817 	const unsigned long *src = (const unsigned long *)netdev_stats;
9818 	u64 *dst = (u64 *)stats64;
9819 
9820 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9821 	for (i = 0; i < n; i++)
9822 		dst[i] = src[i];
9823 	/* zero out counters that only exist in rtnl_link_stats64 */
9824 	memset((char *)stats64 + n * sizeof(u64), 0,
9825 	       sizeof(*stats64) - n * sizeof(u64));
9826 #endif
9827 }
9828 EXPORT_SYMBOL(netdev_stats_to_stats64);
9829 
9830 /**
9831  *	dev_get_stats	- get network device statistics
9832  *	@dev: device to get statistics from
9833  *	@storage: place to store stats
9834  *
9835  *	Get network statistics from device. Return @storage.
9836  *	The device driver may provide its own method by setting
9837  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9838  *	otherwise the internal statistics structure is used.
9839  */
9840 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9841 					struct rtnl_link_stats64 *storage)
9842 {
9843 	const struct net_device_ops *ops = dev->netdev_ops;
9844 
9845 	if (ops->ndo_get_stats64) {
9846 		memset(storage, 0, sizeof(*storage));
9847 		ops->ndo_get_stats64(dev, storage);
9848 	} else if (ops->ndo_get_stats) {
9849 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9850 	} else {
9851 		netdev_stats_to_stats64(storage, &dev->stats);
9852 	}
9853 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9854 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9855 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9856 	return storage;
9857 }
9858 EXPORT_SYMBOL(dev_get_stats);
9859 
9860 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9861 {
9862 	struct netdev_queue *queue = dev_ingress_queue(dev);
9863 
9864 #ifdef CONFIG_NET_CLS_ACT
9865 	if (queue)
9866 		return queue;
9867 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9868 	if (!queue)
9869 		return NULL;
9870 	netdev_init_one_queue(dev, queue, NULL);
9871 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9872 	queue->qdisc_sleeping = &noop_qdisc;
9873 	rcu_assign_pointer(dev->ingress_queue, queue);
9874 #endif
9875 	return queue;
9876 }
9877 
9878 static const struct ethtool_ops default_ethtool_ops;
9879 
9880 void netdev_set_default_ethtool_ops(struct net_device *dev,
9881 				    const struct ethtool_ops *ops)
9882 {
9883 	if (dev->ethtool_ops == &default_ethtool_ops)
9884 		dev->ethtool_ops = ops;
9885 }
9886 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9887 
9888 void netdev_freemem(struct net_device *dev)
9889 {
9890 	char *addr = (char *)dev - dev->padded;
9891 
9892 	kvfree(addr);
9893 }
9894 
9895 /**
9896  * alloc_netdev_mqs - allocate network device
9897  * @sizeof_priv: size of private data to allocate space for
9898  * @name: device name format string
9899  * @name_assign_type: origin of device name
9900  * @setup: callback to initialize device
9901  * @txqs: the number of TX subqueues to allocate
9902  * @rxqs: the number of RX subqueues to allocate
9903  *
9904  * Allocates a struct net_device with private data area for driver use
9905  * and performs basic initialization.  Also allocates subqueue structs
9906  * for each queue on the device.
9907  */
9908 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9909 		unsigned char name_assign_type,
9910 		void (*setup)(struct net_device *),
9911 		unsigned int txqs, unsigned int rxqs)
9912 {
9913 	struct net_device *dev;
9914 	unsigned int alloc_size;
9915 	struct net_device *p;
9916 
9917 	BUG_ON(strlen(name) >= sizeof(dev->name));
9918 
9919 	if (txqs < 1) {
9920 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9921 		return NULL;
9922 	}
9923 
9924 	if (rxqs < 1) {
9925 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9926 		return NULL;
9927 	}
9928 
9929 	alloc_size = sizeof(struct net_device);
9930 	if (sizeof_priv) {
9931 		/* ensure 32-byte alignment of private area */
9932 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9933 		alloc_size += sizeof_priv;
9934 	}
9935 	/* ensure 32-byte alignment of whole construct */
9936 	alloc_size += NETDEV_ALIGN - 1;
9937 
9938 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9939 	if (!p)
9940 		return NULL;
9941 
9942 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
9943 	dev->padded = (char *)dev - (char *)p;
9944 
9945 	dev->pcpu_refcnt = alloc_percpu(int);
9946 	if (!dev->pcpu_refcnt)
9947 		goto free_dev;
9948 
9949 	if (dev_addr_init(dev))
9950 		goto free_pcpu;
9951 
9952 	dev_mc_init(dev);
9953 	dev_uc_init(dev);
9954 
9955 	dev_net_set(dev, &init_net);
9956 
9957 	dev->gso_max_size = GSO_MAX_SIZE;
9958 	dev->gso_max_segs = GSO_MAX_SEGS;
9959 	dev->upper_level = 1;
9960 	dev->lower_level = 1;
9961 
9962 	INIT_LIST_HEAD(&dev->napi_list);
9963 	INIT_LIST_HEAD(&dev->unreg_list);
9964 	INIT_LIST_HEAD(&dev->close_list);
9965 	INIT_LIST_HEAD(&dev->link_watch_list);
9966 	INIT_LIST_HEAD(&dev->adj_list.upper);
9967 	INIT_LIST_HEAD(&dev->adj_list.lower);
9968 	INIT_LIST_HEAD(&dev->ptype_all);
9969 	INIT_LIST_HEAD(&dev->ptype_specific);
9970 	INIT_LIST_HEAD(&dev->net_notifier_list);
9971 #ifdef CONFIG_NET_SCHED
9972 	hash_init(dev->qdisc_hash);
9973 #endif
9974 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9975 	setup(dev);
9976 
9977 	if (!dev->tx_queue_len) {
9978 		dev->priv_flags |= IFF_NO_QUEUE;
9979 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9980 	}
9981 
9982 	dev->num_tx_queues = txqs;
9983 	dev->real_num_tx_queues = txqs;
9984 	if (netif_alloc_netdev_queues(dev))
9985 		goto free_all;
9986 
9987 	dev->num_rx_queues = rxqs;
9988 	dev->real_num_rx_queues = rxqs;
9989 	if (netif_alloc_rx_queues(dev))
9990 		goto free_all;
9991 
9992 	strcpy(dev->name, name);
9993 	dev->name_assign_type = name_assign_type;
9994 	dev->group = INIT_NETDEV_GROUP;
9995 	if (!dev->ethtool_ops)
9996 		dev->ethtool_ops = &default_ethtool_ops;
9997 
9998 	nf_hook_ingress_init(dev);
9999 
10000 	return dev;
10001 
10002 free_all:
10003 	free_netdev(dev);
10004 	return NULL;
10005 
10006 free_pcpu:
10007 	free_percpu(dev->pcpu_refcnt);
10008 free_dev:
10009 	netdev_freemem(dev);
10010 	return NULL;
10011 }
10012 EXPORT_SYMBOL(alloc_netdev_mqs);
10013 
10014 /**
10015  * free_netdev - free network device
10016  * @dev: device
10017  *
10018  * This function does the last stage of destroying an allocated device
10019  * interface. The reference to the device object is released. If this
10020  * is the last reference then it will be freed.Must be called in process
10021  * context.
10022  */
10023 void free_netdev(struct net_device *dev)
10024 {
10025 	struct napi_struct *p, *n;
10026 
10027 	might_sleep();
10028 	netif_free_tx_queues(dev);
10029 	netif_free_rx_queues(dev);
10030 
10031 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10032 
10033 	/* Flush device addresses */
10034 	dev_addr_flush(dev);
10035 
10036 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10037 		netif_napi_del(p);
10038 
10039 	free_percpu(dev->pcpu_refcnt);
10040 	dev->pcpu_refcnt = NULL;
10041 	free_percpu(dev->xdp_bulkq);
10042 	dev->xdp_bulkq = NULL;
10043 
10044 	/*  Compatibility with error handling in drivers */
10045 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10046 		netdev_freemem(dev);
10047 		return;
10048 	}
10049 
10050 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10051 	dev->reg_state = NETREG_RELEASED;
10052 
10053 	/* will free via device release */
10054 	put_device(&dev->dev);
10055 }
10056 EXPORT_SYMBOL(free_netdev);
10057 
10058 /**
10059  *	synchronize_net -  Synchronize with packet receive processing
10060  *
10061  *	Wait for packets currently being received to be done.
10062  *	Does not block later packets from starting.
10063  */
10064 void synchronize_net(void)
10065 {
10066 	might_sleep();
10067 	if (rtnl_is_locked())
10068 		synchronize_rcu_expedited();
10069 	else
10070 		synchronize_rcu();
10071 }
10072 EXPORT_SYMBOL(synchronize_net);
10073 
10074 /**
10075  *	unregister_netdevice_queue - remove device from the kernel
10076  *	@dev: device
10077  *	@head: list
10078  *
10079  *	This function shuts down a device interface and removes it
10080  *	from the kernel tables.
10081  *	If head not NULL, device is queued to be unregistered later.
10082  *
10083  *	Callers must hold the rtnl semaphore.  You may want
10084  *	unregister_netdev() instead of this.
10085  */
10086 
10087 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10088 {
10089 	ASSERT_RTNL();
10090 
10091 	if (head) {
10092 		list_move_tail(&dev->unreg_list, head);
10093 	} else {
10094 		rollback_registered(dev);
10095 		/* Finish processing unregister after unlock */
10096 		net_set_todo(dev);
10097 	}
10098 }
10099 EXPORT_SYMBOL(unregister_netdevice_queue);
10100 
10101 /**
10102  *	unregister_netdevice_many - unregister many devices
10103  *	@head: list of devices
10104  *
10105  *  Note: As most callers use a stack allocated list_head,
10106  *  we force a list_del() to make sure stack wont be corrupted later.
10107  */
10108 void unregister_netdevice_many(struct list_head *head)
10109 {
10110 	struct net_device *dev;
10111 
10112 	if (!list_empty(head)) {
10113 		rollback_registered_many(head);
10114 		list_for_each_entry(dev, head, unreg_list)
10115 			net_set_todo(dev);
10116 		list_del(head);
10117 	}
10118 }
10119 EXPORT_SYMBOL(unregister_netdevice_many);
10120 
10121 /**
10122  *	unregister_netdev - remove device from the kernel
10123  *	@dev: device
10124  *
10125  *	This function shuts down a device interface and removes it
10126  *	from the kernel tables.
10127  *
10128  *	This is just a wrapper for unregister_netdevice that takes
10129  *	the rtnl semaphore.  In general you want to use this and not
10130  *	unregister_netdevice.
10131  */
10132 void unregister_netdev(struct net_device *dev)
10133 {
10134 	rtnl_lock();
10135 	unregister_netdevice(dev);
10136 	rtnl_unlock();
10137 }
10138 EXPORT_SYMBOL(unregister_netdev);
10139 
10140 /**
10141  *	dev_change_net_namespace - move device to different nethost namespace
10142  *	@dev: device
10143  *	@net: network namespace
10144  *	@pat: If not NULL name pattern to try if the current device name
10145  *	      is already taken in the destination network namespace.
10146  *
10147  *	This function shuts down a device interface and moves it
10148  *	to a new network namespace. On success 0 is returned, on
10149  *	a failure a netagive errno code is returned.
10150  *
10151  *	Callers must hold the rtnl semaphore.
10152  */
10153 
10154 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10155 {
10156 	struct net *net_old = dev_net(dev);
10157 	int err, new_nsid, new_ifindex;
10158 
10159 	ASSERT_RTNL();
10160 
10161 	/* Don't allow namespace local devices to be moved. */
10162 	err = -EINVAL;
10163 	if (dev->features & NETIF_F_NETNS_LOCAL)
10164 		goto out;
10165 
10166 	/* Ensure the device has been registrered */
10167 	if (dev->reg_state != NETREG_REGISTERED)
10168 		goto out;
10169 
10170 	/* Get out if there is nothing todo */
10171 	err = 0;
10172 	if (net_eq(net_old, net))
10173 		goto out;
10174 
10175 	/* Pick the destination device name, and ensure
10176 	 * we can use it in the destination network namespace.
10177 	 */
10178 	err = -EEXIST;
10179 	if (__dev_get_by_name(net, dev->name)) {
10180 		/* We get here if we can't use the current device name */
10181 		if (!pat)
10182 			goto out;
10183 		err = dev_get_valid_name(net, dev, pat);
10184 		if (err < 0)
10185 			goto out;
10186 	}
10187 
10188 	/*
10189 	 * And now a mini version of register_netdevice unregister_netdevice.
10190 	 */
10191 
10192 	/* If device is running close it first. */
10193 	dev_close(dev);
10194 
10195 	/* And unlink it from device chain */
10196 	unlist_netdevice(dev);
10197 
10198 	synchronize_net();
10199 
10200 	/* Shutdown queueing discipline. */
10201 	dev_shutdown(dev);
10202 
10203 	/* Notify protocols, that we are about to destroy
10204 	 * this device. They should clean all the things.
10205 	 *
10206 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10207 	 * This is wanted because this way 8021q and macvlan know
10208 	 * the device is just moving and can keep their slaves up.
10209 	 */
10210 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10211 	rcu_barrier();
10212 
10213 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10214 	/* If there is an ifindex conflict assign a new one */
10215 	if (__dev_get_by_index(net, dev->ifindex))
10216 		new_ifindex = dev_new_index(net);
10217 	else
10218 		new_ifindex = dev->ifindex;
10219 
10220 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10221 			    new_ifindex);
10222 
10223 	/*
10224 	 *	Flush the unicast and multicast chains
10225 	 */
10226 	dev_uc_flush(dev);
10227 	dev_mc_flush(dev);
10228 
10229 	/* Send a netdev-removed uevent to the old namespace */
10230 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10231 	netdev_adjacent_del_links(dev);
10232 
10233 	/* Move per-net netdevice notifiers that are following the netdevice */
10234 	move_netdevice_notifiers_dev_net(dev, net);
10235 
10236 	/* Actually switch the network namespace */
10237 	dev_net_set(dev, net);
10238 	dev->ifindex = new_ifindex;
10239 
10240 	/* Send a netdev-add uevent to the new namespace */
10241 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10242 	netdev_adjacent_add_links(dev);
10243 
10244 	/* Fixup kobjects */
10245 	err = device_rename(&dev->dev, dev->name);
10246 	WARN_ON(err);
10247 
10248 	/* Adapt owner in case owning user namespace of target network
10249 	 * namespace is different from the original one.
10250 	 */
10251 	err = netdev_change_owner(dev, net_old, net);
10252 	WARN_ON(err);
10253 
10254 	/* Add the device back in the hashes */
10255 	list_netdevice(dev);
10256 
10257 	/* Notify protocols, that a new device appeared. */
10258 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10259 
10260 	/*
10261 	 *	Prevent userspace races by waiting until the network
10262 	 *	device is fully setup before sending notifications.
10263 	 */
10264 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10265 
10266 	synchronize_net();
10267 	err = 0;
10268 out:
10269 	return err;
10270 }
10271 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10272 
10273 static int dev_cpu_dead(unsigned int oldcpu)
10274 {
10275 	struct sk_buff **list_skb;
10276 	struct sk_buff *skb;
10277 	unsigned int cpu;
10278 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10279 
10280 	local_irq_disable();
10281 	cpu = smp_processor_id();
10282 	sd = &per_cpu(softnet_data, cpu);
10283 	oldsd = &per_cpu(softnet_data, oldcpu);
10284 
10285 	/* Find end of our completion_queue. */
10286 	list_skb = &sd->completion_queue;
10287 	while (*list_skb)
10288 		list_skb = &(*list_skb)->next;
10289 	/* Append completion queue from offline CPU. */
10290 	*list_skb = oldsd->completion_queue;
10291 	oldsd->completion_queue = NULL;
10292 
10293 	/* Append output queue from offline CPU. */
10294 	if (oldsd->output_queue) {
10295 		*sd->output_queue_tailp = oldsd->output_queue;
10296 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10297 		oldsd->output_queue = NULL;
10298 		oldsd->output_queue_tailp = &oldsd->output_queue;
10299 	}
10300 	/* Append NAPI poll list from offline CPU, with one exception :
10301 	 * process_backlog() must be called by cpu owning percpu backlog.
10302 	 * We properly handle process_queue & input_pkt_queue later.
10303 	 */
10304 	while (!list_empty(&oldsd->poll_list)) {
10305 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10306 							    struct napi_struct,
10307 							    poll_list);
10308 
10309 		list_del_init(&napi->poll_list);
10310 		if (napi->poll == process_backlog)
10311 			napi->state = 0;
10312 		else
10313 			____napi_schedule(sd, napi);
10314 	}
10315 
10316 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10317 	local_irq_enable();
10318 
10319 #ifdef CONFIG_RPS
10320 	remsd = oldsd->rps_ipi_list;
10321 	oldsd->rps_ipi_list = NULL;
10322 #endif
10323 	/* send out pending IPI's on offline CPU */
10324 	net_rps_send_ipi(remsd);
10325 
10326 	/* Process offline CPU's input_pkt_queue */
10327 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10328 		netif_rx_ni(skb);
10329 		input_queue_head_incr(oldsd);
10330 	}
10331 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10332 		netif_rx_ni(skb);
10333 		input_queue_head_incr(oldsd);
10334 	}
10335 
10336 	return 0;
10337 }
10338 
10339 /**
10340  *	netdev_increment_features - increment feature set by one
10341  *	@all: current feature set
10342  *	@one: new feature set
10343  *	@mask: mask feature set
10344  *
10345  *	Computes a new feature set after adding a device with feature set
10346  *	@one to the master device with current feature set @all.  Will not
10347  *	enable anything that is off in @mask. Returns the new feature set.
10348  */
10349 netdev_features_t netdev_increment_features(netdev_features_t all,
10350 	netdev_features_t one, netdev_features_t mask)
10351 {
10352 	if (mask & NETIF_F_HW_CSUM)
10353 		mask |= NETIF_F_CSUM_MASK;
10354 	mask |= NETIF_F_VLAN_CHALLENGED;
10355 
10356 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10357 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10358 
10359 	/* If one device supports hw checksumming, set for all. */
10360 	if (all & NETIF_F_HW_CSUM)
10361 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10362 
10363 	return all;
10364 }
10365 EXPORT_SYMBOL(netdev_increment_features);
10366 
10367 static struct hlist_head * __net_init netdev_create_hash(void)
10368 {
10369 	int i;
10370 	struct hlist_head *hash;
10371 
10372 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10373 	if (hash != NULL)
10374 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
10375 			INIT_HLIST_HEAD(&hash[i]);
10376 
10377 	return hash;
10378 }
10379 
10380 /* Initialize per network namespace state */
10381 static int __net_init netdev_init(struct net *net)
10382 {
10383 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
10384 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
10385 
10386 	if (net != &init_net)
10387 		INIT_LIST_HEAD(&net->dev_base_head);
10388 
10389 	net->dev_name_head = netdev_create_hash();
10390 	if (net->dev_name_head == NULL)
10391 		goto err_name;
10392 
10393 	net->dev_index_head = netdev_create_hash();
10394 	if (net->dev_index_head == NULL)
10395 		goto err_idx;
10396 
10397 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10398 
10399 	return 0;
10400 
10401 err_idx:
10402 	kfree(net->dev_name_head);
10403 err_name:
10404 	return -ENOMEM;
10405 }
10406 
10407 /**
10408  *	netdev_drivername - network driver for the device
10409  *	@dev: network device
10410  *
10411  *	Determine network driver for device.
10412  */
10413 const char *netdev_drivername(const struct net_device *dev)
10414 {
10415 	const struct device_driver *driver;
10416 	const struct device *parent;
10417 	const char *empty = "";
10418 
10419 	parent = dev->dev.parent;
10420 	if (!parent)
10421 		return empty;
10422 
10423 	driver = parent->driver;
10424 	if (driver && driver->name)
10425 		return driver->name;
10426 	return empty;
10427 }
10428 
10429 static void __netdev_printk(const char *level, const struct net_device *dev,
10430 			    struct va_format *vaf)
10431 {
10432 	if (dev && dev->dev.parent) {
10433 		dev_printk_emit(level[1] - '0',
10434 				dev->dev.parent,
10435 				"%s %s %s%s: %pV",
10436 				dev_driver_string(dev->dev.parent),
10437 				dev_name(dev->dev.parent),
10438 				netdev_name(dev), netdev_reg_state(dev),
10439 				vaf);
10440 	} else if (dev) {
10441 		printk("%s%s%s: %pV",
10442 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
10443 	} else {
10444 		printk("%s(NULL net_device): %pV", level, vaf);
10445 	}
10446 }
10447 
10448 void netdev_printk(const char *level, const struct net_device *dev,
10449 		   const char *format, ...)
10450 {
10451 	struct va_format vaf;
10452 	va_list args;
10453 
10454 	va_start(args, format);
10455 
10456 	vaf.fmt = format;
10457 	vaf.va = &args;
10458 
10459 	__netdev_printk(level, dev, &vaf);
10460 
10461 	va_end(args);
10462 }
10463 EXPORT_SYMBOL(netdev_printk);
10464 
10465 #define define_netdev_printk_level(func, level)			\
10466 void func(const struct net_device *dev, const char *fmt, ...)	\
10467 {								\
10468 	struct va_format vaf;					\
10469 	va_list args;						\
10470 								\
10471 	va_start(args, fmt);					\
10472 								\
10473 	vaf.fmt = fmt;						\
10474 	vaf.va = &args;						\
10475 								\
10476 	__netdev_printk(level, dev, &vaf);			\
10477 								\
10478 	va_end(args);						\
10479 }								\
10480 EXPORT_SYMBOL(func);
10481 
10482 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10483 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10484 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10485 define_netdev_printk_level(netdev_err, KERN_ERR);
10486 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10487 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10488 define_netdev_printk_level(netdev_info, KERN_INFO);
10489 
10490 static void __net_exit netdev_exit(struct net *net)
10491 {
10492 	kfree(net->dev_name_head);
10493 	kfree(net->dev_index_head);
10494 	if (net != &init_net)
10495 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10496 }
10497 
10498 static struct pernet_operations __net_initdata netdev_net_ops = {
10499 	.init = netdev_init,
10500 	.exit = netdev_exit,
10501 };
10502 
10503 static void __net_exit default_device_exit(struct net *net)
10504 {
10505 	struct net_device *dev, *aux;
10506 	/*
10507 	 * Push all migratable network devices back to the
10508 	 * initial network namespace
10509 	 */
10510 	rtnl_lock();
10511 	for_each_netdev_safe(net, dev, aux) {
10512 		int err;
10513 		char fb_name[IFNAMSIZ];
10514 
10515 		/* Ignore unmoveable devices (i.e. loopback) */
10516 		if (dev->features & NETIF_F_NETNS_LOCAL)
10517 			continue;
10518 
10519 		/* Leave virtual devices for the generic cleanup */
10520 		if (dev->rtnl_link_ops)
10521 			continue;
10522 
10523 		/* Push remaining network devices to init_net */
10524 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10525 		if (__dev_get_by_name(&init_net, fb_name))
10526 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
10527 		err = dev_change_net_namespace(dev, &init_net, fb_name);
10528 		if (err) {
10529 			pr_emerg("%s: failed to move %s to init_net: %d\n",
10530 				 __func__, dev->name, err);
10531 			BUG();
10532 		}
10533 	}
10534 	rtnl_unlock();
10535 }
10536 
10537 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10538 {
10539 	/* Return with the rtnl_lock held when there are no network
10540 	 * devices unregistering in any network namespace in net_list.
10541 	 */
10542 	struct net *net;
10543 	bool unregistering;
10544 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
10545 
10546 	add_wait_queue(&netdev_unregistering_wq, &wait);
10547 	for (;;) {
10548 		unregistering = false;
10549 		rtnl_lock();
10550 		list_for_each_entry(net, net_list, exit_list) {
10551 			if (net->dev_unreg_count > 0) {
10552 				unregistering = true;
10553 				break;
10554 			}
10555 		}
10556 		if (!unregistering)
10557 			break;
10558 		__rtnl_unlock();
10559 
10560 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10561 	}
10562 	remove_wait_queue(&netdev_unregistering_wq, &wait);
10563 }
10564 
10565 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10566 {
10567 	/* At exit all network devices most be removed from a network
10568 	 * namespace.  Do this in the reverse order of registration.
10569 	 * Do this across as many network namespaces as possible to
10570 	 * improve batching efficiency.
10571 	 */
10572 	struct net_device *dev;
10573 	struct net *net;
10574 	LIST_HEAD(dev_kill_list);
10575 
10576 	/* To prevent network device cleanup code from dereferencing
10577 	 * loopback devices or network devices that have been freed
10578 	 * wait here for all pending unregistrations to complete,
10579 	 * before unregistring the loopback device and allowing the
10580 	 * network namespace be freed.
10581 	 *
10582 	 * The netdev todo list containing all network devices
10583 	 * unregistrations that happen in default_device_exit_batch
10584 	 * will run in the rtnl_unlock() at the end of
10585 	 * default_device_exit_batch.
10586 	 */
10587 	rtnl_lock_unregistering(net_list);
10588 	list_for_each_entry(net, net_list, exit_list) {
10589 		for_each_netdev_reverse(net, dev) {
10590 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10591 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10592 			else
10593 				unregister_netdevice_queue(dev, &dev_kill_list);
10594 		}
10595 	}
10596 	unregister_netdevice_many(&dev_kill_list);
10597 	rtnl_unlock();
10598 }
10599 
10600 static struct pernet_operations __net_initdata default_device_ops = {
10601 	.exit = default_device_exit,
10602 	.exit_batch = default_device_exit_batch,
10603 };
10604 
10605 /*
10606  *	Initialize the DEV module. At boot time this walks the device list and
10607  *	unhooks any devices that fail to initialise (normally hardware not
10608  *	present) and leaves us with a valid list of present and active devices.
10609  *
10610  */
10611 
10612 /*
10613  *       This is called single threaded during boot, so no need
10614  *       to take the rtnl semaphore.
10615  */
10616 static int __init net_dev_init(void)
10617 {
10618 	int i, rc = -ENOMEM;
10619 
10620 	BUG_ON(!dev_boot_phase);
10621 
10622 	if (dev_proc_init())
10623 		goto out;
10624 
10625 	if (netdev_kobject_init())
10626 		goto out;
10627 
10628 	INIT_LIST_HEAD(&ptype_all);
10629 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
10630 		INIT_LIST_HEAD(&ptype_base[i]);
10631 
10632 	INIT_LIST_HEAD(&offload_base);
10633 
10634 	if (register_pernet_subsys(&netdev_net_ops))
10635 		goto out;
10636 
10637 	/*
10638 	 *	Initialise the packet receive queues.
10639 	 */
10640 
10641 	for_each_possible_cpu(i) {
10642 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10643 		struct softnet_data *sd = &per_cpu(softnet_data, i);
10644 
10645 		INIT_WORK(flush, flush_backlog);
10646 
10647 		skb_queue_head_init(&sd->input_pkt_queue);
10648 		skb_queue_head_init(&sd->process_queue);
10649 #ifdef CONFIG_XFRM_OFFLOAD
10650 		skb_queue_head_init(&sd->xfrm_backlog);
10651 #endif
10652 		INIT_LIST_HEAD(&sd->poll_list);
10653 		sd->output_queue_tailp = &sd->output_queue;
10654 #ifdef CONFIG_RPS
10655 		sd->csd.func = rps_trigger_softirq;
10656 		sd->csd.info = sd;
10657 		sd->cpu = i;
10658 #endif
10659 
10660 		init_gro_hash(&sd->backlog);
10661 		sd->backlog.poll = process_backlog;
10662 		sd->backlog.weight = weight_p;
10663 	}
10664 
10665 	dev_boot_phase = 0;
10666 
10667 	/* The loopback device is special if any other network devices
10668 	 * is present in a network namespace the loopback device must
10669 	 * be present. Since we now dynamically allocate and free the
10670 	 * loopback device ensure this invariant is maintained by
10671 	 * keeping the loopback device as the first device on the
10672 	 * list of network devices.  Ensuring the loopback devices
10673 	 * is the first device that appears and the last network device
10674 	 * that disappears.
10675 	 */
10676 	if (register_pernet_device(&loopback_net_ops))
10677 		goto out;
10678 
10679 	if (register_pernet_device(&default_device_ops))
10680 		goto out;
10681 
10682 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10683 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10684 
10685 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10686 				       NULL, dev_cpu_dead);
10687 	WARN_ON(rc < 0);
10688 	rc = 0;
10689 out:
10690 	return rc;
10691 }
10692 
10693 subsys_initcall(net_dev_init);
10694