xref: /openbmc/linux/net/core/dev.c (revision 9fa48a24)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 
154 #include "dev.h"
155 #include "net-sysfs.h"
156 
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164 					 struct netdev_notifier_info *info);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 					   struct net_device *dev,
167 					   struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169 
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191 
192 static DEFINE_MUTEX(ifalias_mutex);
193 
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196 
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199 
200 static DECLARE_RWSEM(devnet_rename_sem);
201 
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204 	while (++net->dev_base_seq == 0)
205 		;
206 }
207 
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211 
212 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214 
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219 
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 				    unsigned long *flags)
222 {
223 	if (IS_ENABLED(CONFIG_RPS))
224 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 		local_irq_save(*flags);
227 }
228 
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231 	if (IS_ENABLED(CONFIG_RPS))
232 		spin_lock_irq(&sd->input_pkt_queue.lock);
233 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 		local_irq_disable();
235 }
236 
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 					  unsigned long *flags)
239 {
240 	if (IS_ENABLED(CONFIG_RPS))
241 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 		local_irq_restore(*flags);
244 }
245 
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248 	if (IS_ENABLED(CONFIG_RPS))
249 		spin_unlock_irq(&sd->input_pkt_queue.lock);
250 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 		local_irq_enable();
252 }
253 
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 						       const char *name)
256 {
257 	struct netdev_name_node *name_node;
258 
259 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 	if (!name_node)
261 		return NULL;
262 	INIT_HLIST_NODE(&name_node->hlist);
263 	name_node->dev = dev;
264 	name_node->name = name;
265 	return name_node;
266 }
267 
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271 	struct netdev_name_node *name_node;
272 
273 	name_node = netdev_name_node_alloc(dev, dev->name);
274 	if (!name_node)
275 		return NULL;
276 	INIT_LIST_HEAD(&name_node->list);
277 	return name_node;
278 }
279 
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282 	kfree(name_node);
283 }
284 
285 static void netdev_name_node_add(struct net *net,
286 				 struct netdev_name_node *name_node)
287 {
288 	hlist_add_head_rcu(&name_node->hlist,
289 			   dev_name_hash(net, name_node->name));
290 }
291 
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294 	hlist_del_rcu(&name_node->hlist);
295 }
296 
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 							const char *name)
299 {
300 	struct hlist_head *head = dev_name_hash(net, name);
301 	struct netdev_name_node *name_node;
302 
303 	hlist_for_each_entry(name_node, head, hlist)
304 		if (!strcmp(name_node->name, name))
305 			return name_node;
306 	return NULL;
307 }
308 
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 							    const char *name)
311 {
312 	struct hlist_head *head = dev_name_hash(net, name);
313 	struct netdev_name_node *name_node;
314 
315 	hlist_for_each_entry_rcu(name_node, head, hlist)
316 		if (!strcmp(name_node->name, name))
317 			return name_node;
318 	return NULL;
319 }
320 
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323 	return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326 
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329 	struct netdev_name_node *name_node;
330 	struct net *net = dev_net(dev);
331 
332 	name_node = netdev_name_node_lookup(net, name);
333 	if (name_node)
334 		return -EEXIST;
335 	name_node = netdev_name_node_alloc(dev, name);
336 	if (!name_node)
337 		return -ENOMEM;
338 	netdev_name_node_add(net, name_node);
339 	/* The node that holds dev->name acts as a head of per-device list. */
340 	list_add_tail(&name_node->list, &dev->name_node->list);
341 
342 	return 0;
343 }
344 
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 	list_del(&name_node->list);
348 	netdev_name_node_del(name_node);
349 	kfree(name_node->name);
350 	netdev_name_node_free(name_node);
351 }
352 
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355 	struct netdev_name_node *name_node;
356 	struct net *net = dev_net(dev);
357 
358 	name_node = netdev_name_node_lookup(net, name);
359 	if (!name_node)
360 		return -ENOENT;
361 	/* lookup might have found our primary name or a name belonging
362 	 * to another device.
363 	 */
364 	if (name_node == dev->name_node || name_node->dev != dev)
365 		return -EINVAL;
366 
367 	__netdev_name_node_alt_destroy(name_node);
368 
369 	return 0;
370 }
371 
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374 	struct netdev_name_node *name_node, *tmp;
375 
376 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 		__netdev_name_node_alt_destroy(name_node);
378 }
379 
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383 	struct net *net = dev_net(dev);
384 
385 	ASSERT_RTNL();
386 
387 	write_lock(&dev_base_lock);
388 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389 	netdev_name_node_add(net, dev->name_node);
390 	hlist_add_head_rcu(&dev->index_hlist,
391 			   dev_index_hash(net, dev->ifindex));
392 	write_unlock(&dev_base_lock);
393 
394 	dev_base_seq_inc(net);
395 }
396 
397 /* Device list removal
398  * caller must respect a RCU grace period before freeing/reusing dev
399  */
400 static void unlist_netdevice(struct net_device *dev, bool lock)
401 {
402 	ASSERT_RTNL();
403 
404 	/* Unlink dev from the device chain */
405 	if (lock)
406 		write_lock(&dev_base_lock);
407 	list_del_rcu(&dev->dev_list);
408 	netdev_name_node_del(dev->name_node);
409 	hlist_del_rcu(&dev->index_hlist);
410 	if (lock)
411 		write_unlock(&dev_base_lock);
412 
413 	dev_base_seq_inc(dev_net(dev));
414 }
415 
416 /*
417  *	Our notifier list
418  */
419 
420 static RAW_NOTIFIER_HEAD(netdev_chain);
421 
422 /*
423  *	Device drivers call our routines to queue packets here. We empty the
424  *	queue in the local softnet handler.
425  */
426 
427 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
428 EXPORT_PER_CPU_SYMBOL(softnet_data);
429 
430 #ifdef CONFIG_LOCKDEP
431 /*
432  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
433  * according to dev->type
434  */
435 static const unsigned short netdev_lock_type[] = {
436 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
437 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
438 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
439 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
440 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
441 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
442 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
443 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
444 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
445 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
446 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
447 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
448 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
449 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
450 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
451 
452 static const char *const netdev_lock_name[] = {
453 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
454 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
455 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
456 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
457 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
458 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
459 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
460 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
461 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
462 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
463 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
464 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
465 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
466 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
467 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
468 
469 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
470 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
471 
472 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
473 {
474 	int i;
475 
476 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
477 		if (netdev_lock_type[i] == dev_type)
478 			return i;
479 	/* the last key is used by default */
480 	return ARRAY_SIZE(netdev_lock_type) - 1;
481 }
482 
483 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
484 						 unsigned short dev_type)
485 {
486 	int i;
487 
488 	i = netdev_lock_pos(dev_type);
489 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
490 				   netdev_lock_name[i]);
491 }
492 
493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494 {
495 	int i;
496 
497 	i = netdev_lock_pos(dev->type);
498 	lockdep_set_class_and_name(&dev->addr_list_lock,
499 				   &netdev_addr_lock_key[i],
500 				   netdev_lock_name[i]);
501 }
502 #else
503 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
504 						 unsigned short dev_type)
505 {
506 }
507 
508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509 {
510 }
511 #endif
512 
513 /*******************************************************************************
514  *
515  *		Protocol management and registration routines
516  *
517  *******************************************************************************/
518 
519 
520 /*
521  *	Add a protocol ID to the list. Now that the input handler is
522  *	smarter we can dispense with all the messy stuff that used to be
523  *	here.
524  *
525  *	BEWARE!!! Protocol handlers, mangling input packets,
526  *	MUST BE last in hash buckets and checking protocol handlers
527  *	MUST start from promiscuous ptype_all chain in net_bh.
528  *	It is true now, do not change it.
529  *	Explanation follows: if protocol handler, mangling packet, will
530  *	be the first on list, it is not able to sense, that packet
531  *	is cloned and should be copied-on-write, so that it will
532  *	change it and subsequent readers will get broken packet.
533  *							--ANK (980803)
534  */
535 
536 static inline struct list_head *ptype_head(const struct packet_type *pt)
537 {
538 	if (pt->type == htons(ETH_P_ALL))
539 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
540 	else
541 		return pt->dev ? &pt->dev->ptype_specific :
542 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
543 }
544 
545 /**
546  *	dev_add_pack - add packet handler
547  *	@pt: packet type declaration
548  *
549  *	Add a protocol handler to the networking stack. The passed &packet_type
550  *	is linked into kernel lists and may not be freed until it has been
551  *	removed from the kernel lists.
552  *
553  *	This call does not sleep therefore it can not
554  *	guarantee all CPU's that are in middle of receiving packets
555  *	will see the new packet type (until the next received packet).
556  */
557 
558 void dev_add_pack(struct packet_type *pt)
559 {
560 	struct list_head *head = ptype_head(pt);
561 
562 	spin_lock(&ptype_lock);
563 	list_add_rcu(&pt->list, head);
564 	spin_unlock(&ptype_lock);
565 }
566 EXPORT_SYMBOL(dev_add_pack);
567 
568 /**
569  *	__dev_remove_pack	 - remove packet handler
570  *	@pt: packet type declaration
571  *
572  *	Remove a protocol handler that was previously added to the kernel
573  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
574  *	from the kernel lists and can be freed or reused once this function
575  *	returns.
576  *
577  *      The packet type might still be in use by receivers
578  *	and must not be freed until after all the CPU's have gone
579  *	through a quiescent state.
580  */
581 void __dev_remove_pack(struct packet_type *pt)
582 {
583 	struct list_head *head = ptype_head(pt);
584 	struct packet_type *pt1;
585 
586 	spin_lock(&ptype_lock);
587 
588 	list_for_each_entry(pt1, head, list) {
589 		if (pt == pt1) {
590 			list_del_rcu(&pt->list);
591 			goto out;
592 		}
593 	}
594 
595 	pr_warn("dev_remove_pack: %p not found\n", pt);
596 out:
597 	spin_unlock(&ptype_lock);
598 }
599 EXPORT_SYMBOL(__dev_remove_pack);
600 
601 /**
602  *	dev_remove_pack	 - remove packet handler
603  *	@pt: packet type declaration
604  *
605  *	Remove a protocol handler that was previously added to the kernel
606  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
607  *	from the kernel lists and can be freed or reused once this function
608  *	returns.
609  *
610  *	This call sleeps to guarantee that no CPU is looking at the packet
611  *	type after return.
612  */
613 void dev_remove_pack(struct packet_type *pt)
614 {
615 	__dev_remove_pack(pt);
616 
617 	synchronize_net();
618 }
619 EXPORT_SYMBOL(dev_remove_pack);
620 
621 
622 /*******************************************************************************
623  *
624  *			    Device Interface Subroutines
625  *
626  *******************************************************************************/
627 
628 /**
629  *	dev_get_iflink	- get 'iflink' value of a interface
630  *	@dev: targeted interface
631  *
632  *	Indicates the ifindex the interface is linked to.
633  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
634  */
635 
636 int dev_get_iflink(const struct net_device *dev)
637 {
638 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
639 		return dev->netdev_ops->ndo_get_iflink(dev);
640 
641 	return dev->ifindex;
642 }
643 EXPORT_SYMBOL(dev_get_iflink);
644 
645 /**
646  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
647  *	@dev: targeted interface
648  *	@skb: The packet.
649  *
650  *	For better visibility of tunnel traffic OVS needs to retrieve
651  *	egress tunnel information for a packet. Following API allows
652  *	user to get this info.
653  */
654 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
655 {
656 	struct ip_tunnel_info *info;
657 
658 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
659 		return -EINVAL;
660 
661 	info = skb_tunnel_info_unclone(skb);
662 	if (!info)
663 		return -ENOMEM;
664 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
665 		return -EINVAL;
666 
667 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
668 }
669 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
670 
671 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
672 {
673 	int k = stack->num_paths++;
674 
675 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
676 		return NULL;
677 
678 	return &stack->path[k];
679 }
680 
681 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
682 			  struct net_device_path_stack *stack)
683 {
684 	const struct net_device *last_dev;
685 	struct net_device_path_ctx ctx = {
686 		.dev	= dev,
687 	};
688 	struct net_device_path *path;
689 	int ret = 0;
690 
691 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
692 	stack->num_paths = 0;
693 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
694 		last_dev = ctx.dev;
695 		path = dev_fwd_path(stack);
696 		if (!path)
697 			return -1;
698 
699 		memset(path, 0, sizeof(struct net_device_path));
700 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
701 		if (ret < 0)
702 			return -1;
703 
704 		if (WARN_ON_ONCE(last_dev == ctx.dev))
705 			return -1;
706 	}
707 
708 	if (!ctx.dev)
709 		return ret;
710 
711 	path = dev_fwd_path(stack);
712 	if (!path)
713 		return -1;
714 	path->type = DEV_PATH_ETHERNET;
715 	path->dev = ctx.dev;
716 
717 	return ret;
718 }
719 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
720 
721 /**
722  *	__dev_get_by_name	- find a device by its name
723  *	@net: the applicable net namespace
724  *	@name: name to find
725  *
726  *	Find an interface by name. Must be called under RTNL semaphore
727  *	or @dev_base_lock. If the name is found a pointer to the device
728  *	is returned. If the name is not found then %NULL is returned. The
729  *	reference counters are not incremented so the caller must be
730  *	careful with locks.
731  */
732 
733 struct net_device *__dev_get_by_name(struct net *net, const char *name)
734 {
735 	struct netdev_name_node *node_name;
736 
737 	node_name = netdev_name_node_lookup(net, name);
738 	return node_name ? node_name->dev : NULL;
739 }
740 EXPORT_SYMBOL(__dev_get_by_name);
741 
742 /**
743  * dev_get_by_name_rcu	- find a device by its name
744  * @net: the applicable net namespace
745  * @name: name to find
746  *
747  * Find an interface by name.
748  * If the name is found a pointer to the device is returned.
749  * If the name is not found then %NULL is returned.
750  * The reference counters are not incremented so the caller must be
751  * careful with locks. The caller must hold RCU lock.
752  */
753 
754 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
755 {
756 	struct netdev_name_node *node_name;
757 
758 	node_name = netdev_name_node_lookup_rcu(net, name);
759 	return node_name ? node_name->dev : NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762 
763 /**
764  *	dev_get_by_name		- find a device by its name
765  *	@net: the applicable net namespace
766  *	@name: name to find
767  *
768  *	Find an interface by name. This can be called from any
769  *	context and does its own locking. The returned handle has
770  *	the usage count incremented and the caller must use dev_put() to
771  *	release it when it is no longer needed. %NULL is returned if no
772  *	matching device is found.
773  */
774 
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777 	struct net_device *dev;
778 
779 	rcu_read_lock();
780 	dev = dev_get_by_name_rcu(net, name);
781 	dev_hold(dev);
782 	rcu_read_unlock();
783 	return dev;
784 }
785 EXPORT_SYMBOL(dev_get_by_name);
786 
787 /**
788  *	__dev_get_by_index - find a device by its ifindex
789  *	@net: the applicable net namespace
790  *	@ifindex: index of device
791  *
792  *	Search for an interface by index. Returns %NULL if the device
793  *	is not found or a pointer to the device. The device has not
794  *	had its reference counter increased so the caller must be careful
795  *	about locking. The caller must hold either the RTNL semaphore
796  *	or @dev_base_lock.
797  */
798 
799 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800 {
801 	struct net_device *dev;
802 	struct hlist_head *head = dev_index_hash(net, ifindex);
803 
804 	hlist_for_each_entry(dev, head, index_hlist)
805 		if (dev->ifindex == ifindex)
806 			return dev;
807 
808 	return NULL;
809 }
810 EXPORT_SYMBOL(__dev_get_by_index);
811 
812 /**
813  *	dev_get_by_index_rcu - find a device by its ifindex
814  *	@net: the applicable net namespace
815  *	@ifindex: index of device
816  *
817  *	Search for an interface by index. Returns %NULL if the device
818  *	is not found or a pointer to the device. The device has not
819  *	had its reference counter increased so the caller must be careful
820  *	about locking. The caller must hold RCU lock.
821  */
822 
823 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824 {
825 	struct net_device *dev;
826 	struct hlist_head *head = dev_index_hash(net, ifindex);
827 
828 	hlist_for_each_entry_rcu(dev, head, index_hlist)
829 		if (dev->ifindex == ifindex)
830 			return dev;
831 
832 	return NULL;
833 }
834 EXPORT_SYMBOL(dev_get_by_index_rcu);
835 
836 
837 /**
838  *	dev_get_by_index - find a device by its ifindex
839  *	@net: the applicable net namespace
840  *	@ifindex: index of device
841  *
842  *	Search for an interface by index. Returns NULL if the device
843  *	is not found or a pointer to the device. The device returned has
844  *	had a reference added and the pointer is safe until the user calls
845  *	dev_put to indicate they have finished with it.
846  */
847 
848 struct net_device *dev_get_by_index(struct net *net, int ifindex)
849 {
850 	struct net_device *dev;
851 
852 	rcu_read_lock();
853 	dev = dev_get_by_index_rcu(net, ifindex);
854 	dev_hold(dev);
855 	rcu_read_unlock();
856 	return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859 
860 /**
861  *	dev_get_by_napi_id - find a device by napi_id
862  *	@napi_id: ID of the NAPI struct
863  *
864  *	Search for an interface by NAPI ID. Returns %NULL if the device
865  *	is not found or a pointer to the device. The device has not had
866  *	its reference counter increased so the caller must be careful
867  *	about locking. The caller must hold RCU lock.
868  */
869 
870 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
871 {
872 	struct napi_struct *napi;
873 
874 	WARN_ON_ONCE(!rcu_read_lock_held());
875 
876 	if (napi_id < MIN_NAPI_ID)
877 		return NULL;
878 
879 	napi = napi_by_id(napi_id);
880 
881 	return napi ? napi->dev : NULL;
882 }
883 EXPORT_SYMBOL(dev_get_by_napi_id);
884 
885 /**
886  *	netdev_get_name - get a netdevice name, knowing its ifindex.
887  *	@net: network namespace
888  *	@name: a pointer to the buffer where the name will be stored.
889  *	@ifindex: the ifindex of the interface to get the name from.
890  */
891 int netdev_get_name(struct net *net, char *name, int ifindex)
892 {
893 	struct net_device *dev;
894 	int ret;
895 
896 	down_read(&devnet_rename_sem);
897 	rcu_read_lock();
898 
899 	dev = dev_get_by_index_rcu(net, ifindex);
900 	if (!dev) {
901 		ret = -ENODEV;
902 		goto out;
903 	}
904 
905 	strcpy(name, dev->name);
906 
907 	ret = 0;
908 out:
909 	rcu_read_unlock();
910 	up_read(&devnet_rename_sem);
911 	return ret;
912 }
913 
914 /**
915  *	dev_getbyhwaddr_rcu - find a device by its hardware address
916  *	@net: the applicable net namespace
917  *	@type: media type of device
918  *	@ha: hardware address
919  *
920  *	Search for an interface by MAC address. Returns NULL if the device
921  *	is not found or a pointer to the device.
922  *	The caller must hold RCU or RTNL.
923  *	The returned device has not had its ref count increased
924  *	and the caller must therefore be careful about locking
925  *
926  */
927 
928 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
929 				       const char *ha)
930 {
931 	struct net_device *dev;
932 
933 	for_each_netdev_rcu(net, dev)
934 		if (dev->type == type &&
935 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
936 			return dev;
937 
938 	return NULL;
939 }
940 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
941 
942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943 {
944 	struct net_device *dev, *ret = NULL;
945 
946 	rcu_read_lock();
947 	for_each_netdev_rcu(net, dev)
948 		if (dev->type == type) {
949 			dev_hold(dev);
950 			ret = dev;
951 			break;
952 		}
953 	rcu_read_unlock();
954 	return ret;
955 }
956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
957 
958 /**
959  *	__dev_get_by_flags - find any device with given flags
960  *	@net: the applicable net namespace
961  *	@if_flags: IFF_* values
962  *	@mask: bitmask of bits in if_flags to check
963  *
964  *	Search for any interface with the given flags. Returns NULL if a device
965  *	is not found or a pointer to the device. Must be called inside
966  *	rtnl_lock(), and result refcount is unchanged.
967  */
968 
969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970 				      unsigned short mask)
971 {
972 	struct net_device *dev, *ret;
973 
974 	ASSERT_RTNL();
975 
976 	ret = NULL;
977 	for_each_netdev(net, dev) {
978 		if (((dev->flags ^ if_flags) & mask) == 0) {
979 			ret = dev;
980 			break;
981 		}
982 	}
983 	return ret;
984 }
985 EXPORT_SYMBOL(__dev_get_by_flags);
986 
987 /**
988  *	dev_valid_name - check if name is okay for network device
989  *	@name: name string
990  *
991  *	Network device names need to be valid file names to
992  *	allow sysfs to work.  We also disallow any kind of
993  *	whitespace.
994  */
995 bool dev_valid_name(const char *name)
996 {
997 	if (*name == '\0')
998 		return false;
999 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1000 		return false;
1001 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1002 		return false;
1003 
1004 	while (*name) {
1005 		if (*name == '/' || *name == ':' || isspace(*name))
1006 			return false;
1007 		name++;
1008 	}
1009 	return true;
1010 }
1011 EXPORT_SYMBOL(dev_valid_name);
1012 
1013 /**
1014  *	__dev_alloc_name - allocate a name for a device
1015  *	@net: network namespace to allocate the device name in
1016  *	@name: name format string
1017  *	@buf:  scratch buffer and result name string
1018  *
1019  *	Passed a format string - eg "lt%d" it will try and find a suitable
1020  *	id. It scans list of devices to build up a free map, then chooses
1021  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *	while allocating the name and adding the device in order to avoid
1023  *	duplicates.
1024  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *	Returns the number of the unit assigned or a negative errno code.
1026  */
1027 
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029 {
1030 	int i = 0;
1031 	const char *p;
1032 	const int max_netdevices = 8*PAGE_SIZE;
1033 	unsigned long *inuse;
1034 	struct net_device *d;
1035 
1036 	if (!dev_valid_name(name))
1037 		return -EINVAL;
1038 
1039 	p = strchr(name, '%');
1040 	if (p) {
1041 		/*
1042 		 * Verify the string as this thing may have come from
1043 		 * the user.  There must be either one "%d" and no other "%"
1044 		 * characters.
1045 		 */
1046 		if (p[1] != 'd' || strchr(p + 2, '%'))
1047 			return -EINVAL;
1048 
1049 		/* Use one page as a bit array of possible slots */
1050 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051 		if (!inuse)
1052 			return -ENOMEM;
1053 
1054 		for_each_netdev(net, d) {
1055 			struct netdev_name_node *name_node;
1056 			list_for_each_entry(name_node, &d->name_node->list, list) {
1057 				if (!sscanf(name_node->name, name, &i))
1058 					continue;
1059 				if (i < 0 || i >= max_netdevices)
1060 					continue;
1061 
1062 				/*  avoid cases where sscanf is not exact inverse of printf */
1063 				snprintf(buf, IFNAMSIZ, name, i);
1064 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1065 					__set_bit(i, inuse);
1066 			}
1067 			if (!sscanf(d->name, name, &i))
1068 				continue;
1069 			if (i < 0 || i >= max_netdevices)
1070 				continue;
1071 
1072 			/*  avoid cases where sscanf is not exact inverse of printf */
1073 			snprintf(buf, IFNAMSIZ, name, i);
1074 			if (!strncmp(buf, d->name, IFNAMSIZ))
1075 				__set_bit(i, inuse);
1076 		}
1077 
1078 		i = find_first_zero_bit(inuse, max_netdevices);
1079 		free_page((unsigned long) inuse);
1080 	}
1081 
1082 	snprintf(buf, IFNAMSIZ, name, i);
1083 	if (!netdev_name_in_use(net, buf))
1084 		return i;
1085 
1086 	/* It is possible to run out of possible slots
1087 	 * when the name is long and there isn't enough space left
1088 	 * for the digits, or if all bits are used.
1089 	 */
1090 	return -ENFILE;
1091 }
1092 
1093 static int dev_alloc_name_ns(struct net *net,
1094 			     struct net_device *dev,
1095 			     const char *name)
1096 {
1097 	char buf[IFNAMSIZ];
1098 	int ret;
1099 
1100 	BUG_ON(!net);
1101 	ret = __dev_alloc_name(net, name, buf);
1102 	if (ret >= 0)
1103 		strscpy(dev->name, buf, IFNAMSIZ);
1104 	return ret;
1105 }
1106 
1107 /**
1108  *	dev_alloc_name - allocate a name for a device
1109  *	@dev: device
1110  *	@name: name format string
1111  *
1112  *	Passed a format string - eg "lt%d" it will try and find a suitable
1113  *	id. It scans list of devices to build up a free map, then chooses
1114  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1115  *	while allocating the name and adding the device in order to avoid
1116  *	duplicates.
1117  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118  *	Returns the number of the unit assigned or a negative errno code.
1119  */
1120 
1121 int dev_alloc_name(struct net_device *dev, const char *name)
1122 {
1123 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1124 }
1125 EXPORT_SYMBOL(dev_alloc_name);
1126 
1127 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1128 			      const char *name)
1129 {
1130 	BUG_ON(!net);
1131 
1132 	if (!dev_valid_name(name))
1133 		return -EINVAL;
1134 
1135 	if (strchr(name, '%'))
1136 		return dev_alloc_name_ns(net, dev, name);
1137 	else if (netdev_name_in_use(net, name))
1138 		return -EEXIST;
1139 	else if (dev->name != name)
1140 		strscpy(dev->name, name, IFNAMSIZ);
1141 
1142 	return 0;
1143 }
1144 
1145 /**
1146  *	dev_change_name - change name of a device
1147  *	@dev: device
1148  *	@newname: name (or format string) must be at least IFNAMSIZ
1149  *
1150  *	Change name of a device, can pass format strings "eth%d".
1151  *	for wildcarding.
1152  */
1153 int dev_change_name(struct net_device *dev, const char *newname)
1154 {
1155 	unsigned char old_assign_type;
1156 	char oldname[IFNAMSIZ];
1157 	int err = 0;
1158 	int ret;
1159 	struct net *net;
1160 
1161 	ASSERT_RTNL();
1162 	BUG_ON(!dev_net(dev));
1163 
1164 	net = dev_net(dev);
1165 
1166 	down_write(&devnet_rename_sem);
1167 
1168 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1169 		up_write(&devnet_rename_sem);
1170 		return 0;
1171 	}
1172 
1173 	memcpy(oldname, dev->name, IFNAMSIZ);
1174 
1175 	err = dev_get_valid_name(net, dev, newname);
1176 	if (err < 0) {
1177 		up_write(&devnet_rename_sem);
1178 		return err;
1179 	}
1180 
1181 	if (oldname[0] && !strchr(oldname, '%'))
1182 		netdev_info(dev, "renamed from %s%s\n", oldname,
1183 			    dev->flags & IFF_UP ? " (while UP)" : "");
1184 
1185 	old_assign_type = dev->name_assign_type;
1186 	dev->name_assign_type = NET_NAME_RENAMED;
1187 
1188 rollback:
1189 	ret = device_rename(&dev->dev, dev->name);
1190 	if (ret) {
1191 		memcpy(dev->name, oldname, IFNAMSIZ);
1192 		dev->name_assign_type = old_assign_type;
1193 		up_write(&devnet_rename_sem);
1194 		return ret;
1195 	}
1196 
1197 	up_write(&devnet_rename_sem);
1198 
1199 	netdev_adjacent_rename_links(dev, oldname);
1200 
1201 	write_lock(&dev_base_lock);
1202 	netdev_name_node_del(dev->name_node);
1203 	write_unlock(&dev_base_lock);
1204 
1205 	synchronize_rcu();
1206 
1207 	write_lock(&dev_base_lock);
1208 	netdev_name_node_add(net, dev->name_node);
1209 	write_unlock(&dev_base_lock);
1210 
1211 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1212 	ret = notifier_to_errno(ret);
1213 
1214 	if (ret) {
1215 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1216 		if (err >= 0) {
1217 			err = ret;
1218 			down_write(&devnet_rename_sem);
1219 			memcpy(dev->name, oldname, IFNAMSIZ);
1220 			memcpy(oldname, newname, IFNAMSIZ);
1221 			dev->name_assign_type = old_assign_type;
1222 			old_assign_type = NET_NAME_RENAMED;
1223 			goto rollback;
1224 		} else {
1225 			netdev_err(dev, "name change rollback failed: %d\n",
1226 				   ret);
1227 		}
1228 	}
1229 
1230 	return err;
1231 }
1232 
1233 /**
1234  *	dev_set_alias - change ifalias of a device
1235  *	@dev: device
1236  *	@alias: name up to IFALIASZ
1237  *	@len: limit of bytes to copy from info
1238  *
1239  *	Set ifalias for a device,
1240  */
1241 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1242 {
1243 	struct dev_ifalias *new_alias = NULL;
1244 
1245 	if (len >= IFALIASZ)
1246 		return -EINVAL;
1247 
1248 	if (len) {
1249 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1250 		if (!new_alias)
1251 			return -ENOMEM;
1252 
1253 		memcpy(new_alias->ifalias, alias, len);
1254 		new_alias->ifalias[len] = 0;
1255 	}
1256 
1257 	mutex_lock(&ifalias_mutex);
1258 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1259 					mutex_is_locked(&ifalias_mutex));
1260 	mutex_unlock(&ifalias_mutex);
1261 
1262 	if (new_alias)
1263 		kfree_rcu(new_alias, rcuhead);
1264 
1265 	return len;
1266 }
1267 EXPORT_SYMBOL(dev_set_alias);
1268 
1269 /**
1270  *	dev_get_alias - get ifalias of a device
1271  *	@dev: device
1272  *	@name: buffer to store name of ifalias
1273  *	@len: size of buffer
1274  *
1275  *	get ifalias for a device.  Caller must make sure dev cannot go
1276  *	away,  e.g. rcu read lock or own a reference count to device.
1277  */
1278 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1279 {
1280 	const struct dev_ifalias *alias;
1281 	int ret = 0;
1282 
1283 	rcu_read_lock();
1284 	alias = rcu_dereference(dev->ifalias);
1285 	if (alias)
1286 		ret = snprintf(name, len, "%s", alias->ifalias);
1287 	rcu_read_unlock();
1288 
1289 	return ret;
1290 }
1291 
1292 /**
1293  *	netdev_features_change - device changes features
1294  *	@dev: device to cause notification
1295  *
1296  *	Called to indicate a device has changed features.
1297  */
1298 void netdev_features_change(struct net_device *dev)
1299 {
1300 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1301 }
1302 EXPORT_SYMBOL(netdev_features_change);
1303 
1304 /**
1305  *	netdev_state_change - device changes state
1306  *	@dev: device to cause notification
1307  *
1308  *	Called to indicate a device has changed state. This function calls
1309  *	the notifier chains for netdev_chain and sends a NEWLINK message
1310  *	to the routing socket.
1311  */
1312 void netdev_state_change(struct net_device *dev)
1313 {
1314 	if (dev->flags & IFF_UP) {
1315 		struct netdev_notifier_change_info change_info = {
1316 			.info.dev = dev,
1317 		};
1318 
1319 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1320 					      &change_info.info);
1321 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1322 	}
1323 }
1324 EXPORT_SYMBOL(netdev_state_change);
1325 
1326 /**
1327  * __netdev_notify_peers - notify network peers about existence of @dev,
1328  * to be called when rtnl lock is already held.
1329  * @dev: network device
1330  *
1331  * Generate traffic such that interested network peers are aware of
1332  * @dev, such as by generating a gratuitous ARP. This may be used when
1333  * a device wants to inform the rest of the network about some sort of
1334  * reconfiguration such as a failover event or virtual machine
1335  * migration.
1336  */
1337 void __netdev_notify_peers(struct net_device *dev)
1338 {
1339 	ASSERT_RTNL();
1340 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1341 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1342 }
1343 EXPORT_SYMBOL(__netdev_notify_peers);
1344 
1345 /**
1346  * netdev_notify_peers - notify network peers about existence of @dev
1347  * @dev: network device
1348  *
1349  * Generate traffic such that interested network peers are aware of
1350  * @dev, such as by generating a gratuitous ARP. This may be used when
1351  * a device wants to inform the rest of the network about some sort of
1352  * reconfiguration such as a failover event or virtual machine
1353  * migration.
1354  */
1355 void netdev_notify_peers(struct net_device *dev)
1356 {
1357 	rtnl_lock();
1358 	__netdev_notify_peers(dev);
1359 	rtnl_unlock();
1360 }
1361 EXPORT_SYMBOL(netdev_notify_peers);
1362 
1363 static int napi_threaded_poll(void *data);
1364 
1365 static int napi_kthread_create(struct napi_struct *n)
1366 {
1367 	int err = 0;
1368 
1369 	/* Create and wake up the kthread once to put it in
1370 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1371 	 * warning and work with loadavg.
1372 	 */
1373 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1374 				n->dev->name, n->napi_id);
1375 	if (IS_ERR(n->thread)) {
1376 		err = PTR_ERR(n->thread);
1377 		pr_err("kthread_run failed with err %d\n", err);
1378 		n->thread = NULL;
1379 	}
1380 
1381 	return err;
1382 }
1383 
1384 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1385 {
1386 	const struct net_device_ops *ops = dev->netdev_ops;
1387 	int ret;
1388 
1389 	ASSERT_RTNL();
1390 	dev_addr_check(dev);
1391 
1392 	if (!netif_device_present(dev)) {
1393 		/* may be detached because parent is runtime-suspended */
1394 		if (dev->dev.parent)
1395 			pm_runtime_resume(dev->dev.parent);
1396 		if (!netif_device_present(dev))
1397 			return -ENODEV;
1398 	}
1399 
1400 	/* Block netpoll from trying to do any rx path servicing.
1401 	 * If we don't do this there is a chance ndo_poll_controller
1402 	 * or ndo_poll may be running while we open the device
1403 	 */
1404 	netpoll_poll_disable(dev);
1405 
1406 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1407 	ret = notifier_to_errno(ret);
1408 	if (ret)
1409 		return ret;
1410 
1411 	set_bit(__LINK_STATE_START, &dev->state);
1412 
1413 	if (ops->ndo_validate_addr)
1414 		ret = ops->ndo_validate_addr(dev);
1415 
1416 	if (!ret && ops->ndo_open)
1417 		ret = ops->ndo_open(dev);
1418 
1419 	netpoll_poll_enable(dev);
1420 
1421 	if (ret)
1422 		clear_bit(__LINK_STATE_START, &dev->state);
1423 	else {
1424 		dev->flags |= IFF_UP;
1425 		dev_set_rx_mode(dev);
1426 		dev_activate(dev);
1427 		add_device_randomness(dev->dev_addr, dev->addr_len);
1428 	}
1429 
1430 	return ret;
1431 }
1432 
1433 /**
1434  *	dev_open	- prepare an interface for use.
1435  *	@dev: device to open
1436  *	@extack: netlink extended ack
1437  *
1438  *	Takes a device from down to up state. The device's private open
1439  *	function is invoked and then the multicast lists are loaded. Finally
1440  *	the device is moved into the up state and a %NETDEV_UP message is
1441  *	sent to the netdev notifier chain.
1442  *
1443  *	Calling this function on an active interface is a nop. On a failure
1444  *	a negative errno code is returned.
1445  */
1446 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1447 {
1448 	int ret;
1449 
1450 	if (dev->flags & IFF_UP)
1451 		return 0;
1452 
1453 	ret = __dev_open(dev, extack);
1454 	if (ret < 0)
1455 		return ret;
1456 
1457 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1458 	call_netdevice_notifiers(NETDEV_UP, dev);
1459 
1460 	return ret;
1461 }
1462 EXPORT_SYMBOL(dev_open);
1463 
1464 static void __dev_close_many(struct list_head *head)
1465 {
1466 	struct net_device *dev;
1467 
1468 	ASSERT_RTNL();
1469 	might_sleep();
1470 
1471 	list_for_each_entry(dev, head, close_list) {
1472 		/* Temporarily disable netpoll until the interface is down */
1473 		netpoll_poll_disable(dev);
1474 
1475 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1476 
1477 		clear_bit(__LINK_STATE_START, &dev->state);
1478 
1479 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1480 		 * can be even on different cpu. So just clear netif_running().
1481 		 *
1482 		 * dev->stop() will invoke napi_disable() on all of it's
1483 		 * napi_struct instances on this device.
1484 		 */
1485 		smp_mb__after_atomic(); /* Commit netif_running(). */
1486 	}
1487 
1488 	dev_deactivate_many(head);
1489 
1490 	list_for_each_entry(dev, head, close_list) {
1491 		const struct net_device_ops *ops = dev->netdev_ops;
1492 
1493 		/*
1494 		 *	Call the device specific close. This cannot fail.
1495 		 *	Only if device is UP
1496 		 *
1497 		 *	We allow it to be called even after a DETACH hot-plug
1498 		 *	event.
1499 		 */
1500 		if (ops->ndo_stop)
1501 			ops->ndo_stop(dev);
1502 
1503 		dev->flags &= ~IFF_UP;
1504 		netpoll_poll_enable(dev);
1505 	}
1506 }
1507 
1508 static void __dev_close(struct net_device *dev)
1509 {
1510 	LIST_HEAD(single);
1511 
1512 	list_add(&dev->close_list, &single);
1513 	__dev_close_many(&single);
1514 	list_del(&single);
1515 }
1516 
1517 void dev_close_many(struct list_head *head, bool unlink)
1518 {
1519 	struct net_device *dev, *tmp;
1520 
1521 	/* Remove the devices that don't need to be closed */
1522 	list_for_each_entry_safe(dev, tmp, head, close_list)
1523 		if (!(dev->flags & IFF_UP))
1524 			list_del_init(&dev->close_list);
1525 
1526 	__dev_close_many(head);
1527 
1528 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1529 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1530 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1531 		if (unlink)
1532 			list_del_init(&dev->close_list);
1533 	}
1534 }
1535 EXPORT_SYMBOL(dev_close_many);
1536 
1537 /**
1538  *	dev_close - shutdown an interface.
1539  *	@dev: device to shutdown
1540  *
1541  *	This function moves an active device into down state. A
1542  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1543  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1544  *	chain.
1545  */
1546 void dev_close(struct net_device *dev)
1547 {
1548 	if (dev->flags & IFF_UP) {
1549 		LIST_HEAD(single);
1550 
1551 		list_add(&dev->close_list, &single);
1552 		dev_close_many(&single, true);
1553 		list_del(&single);
1554 	}
1555 }
1556 EXPORT_SYMBOL(dev_close);
1557 
1558 
1559 /**
1560  *	dev_disable_lro - disable Large Receive Offload on a device
1561  *	@dev: device
1562  *
1563  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1564  *	called under RTNL.  This is needed if received packets may be
1565  *	forwarded to another interface.
1566  */
1567 void dev_disable_lro(struct net_device *dev)
1568 {
1569 	struct net_device *lower_dev;
1570 	struct list_head *iter;
1571 
1572 	dev->wanted_features &= ~NETIF_F_LRO;
1573 	netdev_update_features(dev);
1574 
1575 	if (unlikely(dev->features & NETIF_F_LRO))
1576 		netdev_WARN(dev, "failed to disable LRO!\n");
1577 
1578 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1579 		dev_disable_lro(lower_dev);
1580 }
1581 EXPORT_SYMBOL(dev_disable_lro);
1582 
1583 /**
1584  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1585  *	@dev: device
1586  *
1587  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1588  *	called under RTNL.  This is needed if Generic XDP is installed on
1589  *	the device.
1590  */
1591 static void dev_disable_gro_hw(struct net_device *dev)
1592 {
1593 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1594 	netdev_update_features(dev);
1595 
1596 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1597 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1598 }
1599 
1600 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1601 {
1602 #define N(val) 						\
1603 	case NETDEV_##val:				\
1604 		return "NETDEV_" __stringify(val);
1605 	switch (cmd) {
1606 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1607 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1608 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1609 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1610 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1611 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1612 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1613 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1614 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1615 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1616 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1617 	N(XDP_FEAT_CHANGE)
1618 	}
1619 #undef N
1620 	return "UNKNOWN_NETDEV_EVENT";
1621 }
1622 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1623 
1624 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1625 				   struct net_device *dev)
1626 {
1627 	struct netdev_notifier_info info = {
1628 		.dev = dev,
1629 	};
1630 
1631 	return nb->notifier_call(nb, val, &info);
1632 }
1633 
1634 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1635 					     struct net_device *dev)
1636 {
1637 	int err;
1638 
1639 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1640 	err = notifier_to_errno(err);
1641 	if (err)
1642 		return err;
1643 
1644 	if (!(dev->flags & IFF_UP))
1645 		return 0;
1646 
1647 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1648 	return 0;
1649 }
1650 
1651 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1652 						struct net_device *dev)
1653 {
1654 	if (dev->flags & IFF_UP) {
1655 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1656 					dev);
1657 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1658 	}
1659 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1660 }
1661 
1662 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1663 						 struct net *net)
1664 {
1665 	struct net_device *dev;
1666 	int err;
1667 
1668 	for_each_netdev(net, dev) {
1669 		err = call_netdevice_register_notifiers(nb, dev);
1670 		if (err)
1671 			goto rollback;
1672 	}
1673 	return 0;
1674 
1675 rollback:
1676 	for_each_netdev_continue_reverse(net, dev)
1677 		call_netdevice_unregister_notifiers(nb, dev);
1678 	return err;
1679 }
1680 
1681 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1682 						    struct net *net)
1683 {
1684 	struct net_device *dev;
1685 
1686 	for_each_netdev(net, dev)
1687 		call_netdevice_unregister_notifiers(nb, dev);
1688 }
1689 
1690 static int dev_boot_phase = 1;
1691 
1692 /**
1693  * register_netdevice_notifier - register a network notifier block
1694  * @nb: notifier
1695  *
1696  * Register a notifier to be called when network device events occur.
1697  * The notifier passed is linked into the kernel structures and must
1698  * not be reused until it has been unregistered. A negative errno code
1699  * is returned on a failure.
1700  *
1701  * When registered all registration and up events are replayed
1702  * to the new notifier to allow device to have a race free
1703  * view of the network device list.
1704  */
1705 
1706 int register_netdevice_notifier(struct notifier_block *nb)
1707 {
1708 	struct net *net;
1709 	int err;
1710 
1711 	/* Close race with setup_net() and cleanup_net() */
1712 	down_write(&pernet_ops_rwsem);
1713 	rtnl_lock();
1714 	err = raw_notifier_chain_register(&netdev_chain, nb);
1715 	if (err)
1716 		goto unlock;
1717 	if (dev_boot_phase)
1718 		goto unlock;
1719 	for_each_net(net) {
1720 		err = call_netdevice_register_net_notifiers(nb, net);
1721 		if (err)
1722 			goto rollback;
1723 	}
1724 
1725 unlock:
1726 	rtnl_unlock();
1727 	up_write(&pernet_ops_rwsem);
1728 	return err;
1729 
1730 rollback:
1731 	for_each_net_continue_reverse(net)
1732 		call_netdevice_unregister_net_notifiers(nb, net);
1733 
1734 	raw_notifier_chain_unregister(&netdev_chain, nb);
1735 	goto unlock;
1736 }
1737 EXPORT_SYMBOL(register_netdevice_notifier);
1738 
1739 /**
1740  * unregister_netdevice_notifier - unregister a network notifier block
1741  * @nb: notifier
1742  *
1743  * Unregister a notifier previously registered by
1744  * register_netdevice_notifier(). The notifier is unlinked into the
1745  * kernel structures and may then be reused. A negative errno code
1746  * is returned on a failure.
1747  *
1748  * After unregistering unregister and down device events are synthesized
1749  * for all devices on the device list to the removed notifier to remove
1750  * the need for special case cleanup code.
1751  */
1752 
1753 int unregister_netdevice_notifier(struct notifier_block *nb)
1754 {
1755 	struct net *net;
1756 	int err;
1757 
1758 	/* Close race with setup_net() and cleanup_net() */
1759 	down_write(&pernet_ops_rwsem);
1760 	rtnl_lock();
1761 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1762 	if (err)
1763 		goto unlock;
1764 
1765 	for_each_net(net)
1766 		call_netdevice_unregister_net_notifiers(nb, net);
1767 
1768 unlock:
1769 	rtnl_unlock();
1770 	up_write(&pernet_ops_rwsem);
1771 	return err;
1772 }
1773 EXPORT_SYMBOL(unregister_netdevice_notifier);
1774 
1775 static int __register_netdevice_notifier_net(struct net *net,
1776 					     struct notifier_block *nb,
1777 					     bool ignore_call_fail)
1778 {
1779 	int err;
1780 
1781 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1782 	if (err)
1783 		return err;
1784 	if (dev_boot_phase)
1785 		return 0;
1786 
1787 	err = call_netdevice_register_net_notifiers(nb, net);
1788 	if (err && !ignore_call_fail)
1789 		goto chain_unregister;
1790 
1791 	return 0;
1792 
1793 chain_unregister:
1794 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1795 	return err;
1796 }
1797 
1798 static int __unregister_netdevice_notifier_net(struct net *net,
1799 					       struct notifier_block *nb)
1800 {
1801 	int err;
1802 
1803 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1804 	if (err)
1805 		return err;
1806 
1807 	call_netdevice_unregister_net_notifiers(nb, net);
1808 	return 0;
1809 }
1810 
1811 /**
1812  * register_netdevice_notifier_net - register a per-netns network notifier block
1813  * @net: network namespace
1814  * @nb: notifier
1815  *
1816  * Register a notifier to be called when network device events occur.
1817  * The notifier passed is linked into the kernel structures and must
1818  * not be reused until it has been unregistered. A negative errno code
1819  * is returned on a failure.
1820  *
1821  * When registered all registration and up events are replayed
1822  * to the new notifier to allow device to have a race free
1823  * view of the network device list.
1824  */
1825 
1826 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1827 {
1828 	int err;
1829 
1830 	rtnl_lock();
1831 	err = __register_netdevice_notifier_net(net, nb, false);
1832 	rtnl_unlock();
1833 	return err;
1834 }
1835 EXPORT_SYMBOL(register_netdevice_notifier_net);
1836 
1837 /**
1838  * unregister_netdevice_notifier_net - unregister a per-netns
1839  *                                     network notifier block
1840  * @net: network namespace
1841  * @nb: notifier
1842  *
1843  * Unregister a notifier previously registered by
1844  * register_netdevice_notifier_net(). The notifier is unlinked from the
1845  * kernel structures and may then be reused. A negative errno code
1846  * is returned on a failure.
1847  *
1848  * After unregistering unregister and down device events are synthesized
1849  * for all devices on the device list to the removed notifier to remove
1850  * the need for special case cleanup code.
1851  */
1852 
1853 int unregister_netdevice_notifier_net(struct net *net,
1854 				      struct notifier_block *nb)
1855 {
1856 	int err;
1857 
1858 	rtnl_lock();
1859 	err = __unregister_netdevice_notifier_net(net, nb);
1860 	rtnl_unlock();
1861 	return err;
1862 }
1863 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1864 
1865 static void __move_netdevice_notifier_net(struct net *src_net,
1866 					  struct net *dst_net,
1867 					  struct notifier_block *nb)
1868 {
1869 	__unregister_netdevice_notifier_net(src_net, nb);
1870 	__register_netdevice_notifier_net(dst_net, nb, true);
1871 }
1872 
1873 int register_netdevice_notifier_dev_net(struct net_device *dev,
1874 					struct notifier_block *nb,
1875 					struct netdev_net_notifier *nn)
1876 {
1877 	int err;
1878 
1879 	rtnl_lock();
1880 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1881 	if (!err) {
1882 		nn->nb = nb;
1883 		list_add(&nn->list, &dev->net_notifier_list);
1884 	}
1885 	rtnl_unlock();
1886 	return err;
1887 }
1888 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1889 
1890 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1891 					  struct notifier_block *nb,
1892 					  struct netdev_net_notifier *nn)
1893 {
1894 	int err;
1895 
1896 	rtnl_lock();
1897 	list_del(&nn->list);
1898 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1899 	rtnl_unlock();
1900 	return err;
1901 }
1902 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1903 
1904 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1905 					     struct net *net)
1906 {
1907 	struct netdev_net_notifier *nn;
1908 
1909 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1910 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1911 }
1912 
1913 /**
1914  *	call_netdevice_notifiers_info - call all network notifier blocks
1915  *	@val: value passed unmodified to notifier function
1916  *	@info: notifier information data
1917  *
1918  *	Call all network notifier blocks.  Parameters and return value
1919  *	are as for raw_notifier_call_chain().
1920  */
1921 
1922 static int call_netdevice_notifiers_info(unsigned long val,
1923 					 struct netdev_notifier_info *info)
1924 {
1925 	struct net *net = dev_net(info->dev);
1926 	int ret;
1927 
1928 	ASSERT_RTNL();
1929 
1930 	/* Run per-netns notifier block chain first, then run the global one.
1931 	 * Hopefully, one day, the global one is going to be removed after
1932 	 * all notifier block registrators get converted to be per-netns.
1933 	 */
1934 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1935 	if (ret & NOTIFY_STOP_MASK)
1936 		return ret;
1937 	return raw_notifier_call_chain(&netdev_chain, val, info);
1938 }
1939 
1940 /**
1941  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1942  *	                                       for and rollback on error
1943  *	@val_up: value passed unmodified to notifier function
1944  *	@val_down: value passed unmodified to the notifier function when
1945  *	           recovering from an error on @val_up
1946  *	@info: notifier information data
1947  *
1948  *	Call all per-netns network notifier blocks, but not notifier blocks on
1949  *	the global notifier chain. Parameters and return value are as for
1950  *	raw_notifier_call_chain_robust().
1951  */
1952 
1953 static int
1954 call_netdevice_notifiers_info_robust(unsigned long val_up,
1955 				     unsigned long val_down,
1956 				     struct netdev_notifier_info *info)
1957 {
1958 	struct net *net = dev_net(info->dev);
1959 
1960 	ASSERT_RTNL();
1961 
1962 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1963 					      val_up, val_down, info);
1964 }
1965 
1966 static int call_netdevice_notifiers_extack(unsigned long val,
1967 					   struct net_device *dev,
1968 					   struct netlink_ext_ack *extack)
1969 {
1970 	struct netdev_notifier_info info = {
1971 		.dev = dev,
1972 		.extack = extack,
1973 	};
1974 
1975 	return call_netdevice_notifiers_info(val, &info);
1976 }
1977 
1978 /**
1979  *	call_netdevice_notifiers - call all network notifier blocks
1980  *      @val: value passed unmodified to notifier function
1981  *      @dev: net_device pointer passed unmodified to notifier function
1982  *
1983  *	Call all network notifier blocks.  Parameters and return value
1984  *	are as for raw_notifier_call_chain().
1985  */
1986 
1987 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1988 {
1989 	return call_netdevice_notifiers_extack(val, dev, NULL);
1990 }
1991 EXPORT_SYMBOL(call_netdevice_notifiers);
1992 
1993 /**
1994  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1995  *	@val: value passed unmodified to notifier function
1996  *	@dev: net_device pointer passed unmodified to notifier function
1997  *	@arg: additional u32 argument passed to the notifier function
1998  *
1999  *	Call all network notifier blocks.  Parameters and return value
2000  *	are as for raw_notifier_call_chain().
2001  */
2002 static int call_netdevice_notifiers_mtu(unsigned long val,
2003 					struct net_device *dev, u32 arg)
2004 {
2005 	struct netdev_notifier_info_ext info = {
2006 		.info.dev = dev,
2007 		.ext.mtu = arg,
2008 	};
2009 
2010 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2011 
2012 	return call_netdevice_notifiers_info(val, &info.info);
2013 }
2014 
2015 #ifdef CONFIG_NET_INGRESS
2016 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2017 
2018 void net_inc_ingress_queue(void)
2019 {
2020 	static_branch_inc(&ingress_needed_key);
2021 }
2022 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2023 
2024 void net_dec_ingress_queue(void)
2025 {
2026 	static_branch_dec(&ingress_needed_key);
2027 }
2028 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2029 #endif
2030 
2031 #ifdef CONFIG_NET_EGRESS
2032 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2033 
2034 void net_inc_egress_queue(void)
2035 {
2036 	static_branch_inc(&egress_needed_key);
2037 }
2038 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2039 
2040 void net_dec_egress_queue(void)
2041 {
2042 	static_branch_dec(&egress_needed_key);
2043 }
2044 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2045 #endif
2046 
2047 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2048 EXPORT_SYMBOL(netstamp_needed_key);
2049 #ifdef CONFIG_JUMP_LABEL
2050 static atomic_t netstamp_needed_deferred;
2051 static atomic_t netstamp_wanted;
2052 static void netstamp_clear(struct work_struct *work)
2053 {
2054 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2055 	int wanted;
2056 
2057 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2058 	if (wanted > 0)
2059 		static_branch_enable(&netstamp_needed_key);
2060 	else
2061 		static_branch_disable(&netstamp_needed_key);
2062 }
2063 static DECLARE_WORK(netstamp_work, netstamp_clear);
2064 #endif
2065 
2066 void net_enable_timestamp(void)
2067 {
2068 #ifdef CONFIG_JUMP_LABEL
2069 	int wanted = atomic_read(&netstamp_wanted);
2070 
2071 	while (wanted > 0) {
2072 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2073 			return;
2074 	}
2075 	atomic_inc(&netstamp_needed_deferred);
2076 	schedule_work(&netstamp_work);
2077 #else
2078 	static_branch_inc(&netstamp_needed_key);
2079 #endif
2080 }
2081 EXPORT_SYMBOL(net_enable_timestamp);
2082 
2083 void net_disable_timestamp(void)
2084 {
2085 #ifdef CONFIG_JUMP_LABEL
2086 	int wanted = atomic_read(&netstamp_wanted);
2087 
2088 	while (wanted > 1) {
2089 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2090 			return;
2091 	}
2092 	atomic_dec(&netstamp_needed_deferred);
2093 	schedule_work(&netstamp_work);
2094 #else
2095 	static_branch_dec(&netstamp_needed_key);
2096 #endif
2097 }
2098 EXPORT_SYMBOL(net_disable_timestamp);
2099 
2100 static inline void net_timestamp_set(struct sk_buff *skb)
2101 {
2102 	skb->tstamp = 0;
2103 	skb->mono_delivery_time = 0;
2104 	if (static_branch_unlikely(&netstamp_needed_key))
2105 		skb->tstamp = ktime_get_real();
2106 }
2107 
2108 #define net_timestamp_check(COND, SKB)				\
2109 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2110 		if ((COND) && !(SKB)->tstamp)			\
2111 			(SKB)->tstamp = ktime_get_real();	\
2112 	}							\
2113 
2114 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2115 {
2116 	return __is_skb_forwardable(dev, skb, true);
2117 }
2118 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2119 
2120 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2121 			      bool check_mtu)
2122 {
2123 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2124 
2125 	if (likely(!ret)) {
2126 		skb->protocol = eth_type_trans(skb, dev);
2127 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2128 	}
2129 
2130 	return ret;
2131 }
2132 
2133 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2134 {
2135 	return __dev_forward_skb2(dev, skb, true);
2136 }
2137 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2138 
2139 /**
2140  * dev_forward_skb - loopback an skb to another netif
2141  *
2142  * @dev: destination network device
2143  * @skb: buffer to forward
2144  *
2145  * return values:
2146  *	NET_RX_SUCCESS	(no congestion)
2147  *	NET_RX_DROP     (packet was dropped, but freed)
2148  *
2149  * dev_forward_skb can be used for injecting an skb from the
2150  * start_xmit function of one device into the receive queue
2151  * of another device.
2152  *
2153  * The receiving device may be in another namespace, so
2154  * we have to clear all information in the skb that could
2155  * impact namespace isolation.
2156  */
2157 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2158 {
2159 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2160 }
2161 EXPORT_SYMBOL_GPL(dev_forward_skb);
2162 
2163 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2164 {
2165 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2166 }
2167 
2168 static inline int deliver_skb(struct sk_buff *skb,
2169 			      struct packet_type *pt_prev,
2170 			      struct net_device *orig_dev)
2171 {
2172 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2173 		return -ENOMEM;
2174 	refcount_inc(&skb->users);
2175 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2176 }
2177 
2178 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2179 					  struct packet_type **pt,
2180 					  struct net_device *orig_dev,
2181 					  __be16 type,
2182 					  struct list_head *ptype_list)
2183 {
2184 	struct packet_type *ptype, *pt_prev = *pt;
2185 
2186 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2187 		if (ptype->type != type)
2188 			continue;
2189 		if (pt_prev)
2190 			deliver_skb(skb, pt_prev, orig_dev);
2191 		pt_prev = ptype;
2192 	}
2193 	*pt = pt_prev;
2194 }
2195 
2196 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2197 {
2198 	if (!ptype->af_packet_priv || !skb->sk)
2199 		return false;
2200 
2201 	if (ptype->id_match)
2202 		return ptype->id_match(ptype, skb->sk);
2203 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2204 		return true;
2205 
2206 	return false;
2207 }
2208 
2209 /**
2210  * dev_nit_active - return true if any network interface taps are in use
2211  *
2212  * @dev: network device to check for the presence of taps
2213  */
2214 bool dev_nit_active(struct net_device *dev)
2215 {
2216 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2217 }
2218 EXPORT_SYMBOL_GPL(dev_nit_active);
2219 
2220 /*
2221  *	Support routine. Sends outgoing frames to any network
2222  *	taps currently in use.
2223  */
2224 
2225 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2226 {
2227 	struct packet_type *ptype;
2228 	struct sk_buff *skb2 = NULL;
2229 	struct packet_type *pt_prev = NULL;
2230 	struct list_head *ptype_list = &ptype_all;
2231 
2232 	rcu_read_lock();
2233 again:
2234 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2235 		if (ptype->ignore_outgoing)
2236 			continue;
2237 
2238 		/* Never send packets back to the socket
2239 		 * they originated from - MvS (miquels@drinkel.ow.org)
2240 		 */
2241 		if (skb_loop_sk(ptype, skb))
2242 			continue;
2243 
2244 		if (pt_prev) {
2245 			deliver_skb(skb2, pt_prev, skb->dev);
2246 			pt_prev = ptype;
2247 			continue;
2248 		}
2249 
2250 		/* need to clone skb, done only once */
2251 		skb2 = skb_clone(skb, GFP_ATOMIC);
2252 		if (!skb2)
2253 			goto out_unlock;
2254 
2255 		net_timestamp_set(skb2);
2256 
2257 		/* skb->nh should be correctly
2258 		 * set by sender, so that the second statement is
2259 		 * just protection against buggy protocols.
2260 		 */
2261 		skb_reset_mac_header(skb2);
2262 
2263 		if (skb_network_header(skb2) < skb2->data ||
2264 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2265 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2266 					     ntohs(skb2->protocol),
2267 					     dev->name);
2268 			skb_reset_network_header(skb2);
2269 		}
2270 
2271 		skb2->transport_header = skb2->network_header;
2272 		skb2->pkt_type = PACKET_OUTGOING;
2273 		pt_prev = ptype;
2274 	}
2275 
2276 	if (ptype_list == &ptype_all) {
2277 		ptype_list = &dev->ptype_all;
2278 		goto again;
2279 	}
2280 out_unlock:
2281 	if (pt_prev) {
2282 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2283 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2284 		else
2285 			kfree_skb(skb2);
2286 	}
2287 	rcu_read_unlock();
2288 }
2289 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2290 
2291 /**
2292  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2293  * @dev: Network device
2294  * @txq: number of queues available
2295  *
2296  * If real_num_tx_queues is changed the tc mappings may no longer be
2297  * valid. To resolve this verify the tc mapping remains valid and if
2298  * not NULL the mapping. With no priorities mapping to this
2299  * offset/count pair it will no longer be used. In the worst case TC0
2300  * is invalid nothing can be done so disable priority mappings. If is
2301  * expected that drivers will fix this mapping if they can before
2302  * calling netif_set_real_num_tx_queues.
2303  */
2304 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2305 {
2306 	int i;
2307 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2308 
2309 	/* If TC0 is invalidated disable TC mapping */
2310 	if (tc->offset + tc->count > txq) {
2311 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2312 		dev->num_tc = 0;
2313 		return;
2314 	}
2315 
2316 	/* Invalidated prio to tc mappings set to TC0 */
2317 	for (i = 1; i < TC_BITMASK + 1; i++) {
2318 		int q = netdev_get_prio_tc_map(dev, i);
2319 
2320 		tc = &dev->tc_to_txq[q];
2321 		if (tc->offset + tc->count > txq) {
2322 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2323 				    i, q);
2324 			netdev_set_prio_tc_map(dev, i, 0);
2325 		}
2326 	}
2327 }
2328 
2329 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2330 {
2331 	if (dev->num_tc) {
2332 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2333 		int i;
2334 
2335 		/* walk through the TCs and see if it falls into any of them */
2336 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2337 			if ((txq - tc->offset) < tc->count)
2338 				return i;
2339 		}
2340 
2341 		/* didn't find it, just return -1 to indicate no match */
2342 		return -1;
2343 	}
2344 
2345 	return 0;
2346 }
2347 EXPORT_SYMBOL(netdev_txq_to_tc);
2348 
2349 #ifdef CONFIG_XPS
2350 static struct static_key xps_needed __read_mostly;
2351 static struct static_key xps_rxqs_needed __read_mostly;
2352 static DEFINE_MUTEX(xps_map_mutex);
2353 #define xmap_dereference(P)		\
2354 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2355 
2356 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2357 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2358 {
2359 	struct xps_map *map = NULL;
2360 	int pos;
2361 
2362 	if (dev_maps)
2363 		map = xmap_dereference(dev_maps->attr_map[tci]);
2364 	if (!map)
2365 		return false;
2366 
2367 	for (pos = map->len; pos--;) {
2368 		if (map->queues[pos] != index)
2369 			continue;
2370 
2371 		if (map->len > 1) {
2372 			map->queues[pos] = map->queues[--map->len];
2373 			break;
2374 		}
2375 
2376 		if (old_maps)
2377 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2378 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2379 		kfree_rcu(map, rcu);
2380 		return false;
2381 	}
2382 
2383 	return true;
2384 }
2385 
2386 static bool remove_xps_queue_cpu(struct net_device *dev,
2387 				 struct xps_dev_maps *dev_maps,
2388 				 int cpu, u16 offset, u16 count)
2389 {
2390 	int num_tc = dev_maps->num_tc;
2391 	bool active = false;
2392 	int tci;
2393 
2394 	for (tci = cpu * num_tc; num_tc--; tci++) {
2395 		int i, j;
2396 
2397 		for (i = count, j = offset; i--; j++) {
2398 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2399 				break;
2400 		}
2401 
2402 		active |= i < 0;
2403 	}
2404 
2405 	return active;
2406 }
2407 
2408 static void reset_xps_maps(struct net_device *dev,
2409 			   struct xps_dev_maps *dev_maps,
2410 			   enum xps_map_type type)
2411 {
2412 	static_key_slow_dec_cpuslocked(&xps_needed);
2413 	if (type == XPS_RXQS)
2414 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2415 
2416 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2417 
2418 	kfree_rcu(dev_maps, rcu);
2419 }
2420 
2421 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2422 			   u16 offset, u16 count)
2423 {
2424 	struct xps_dev_maps *dev_maps;
2425 	bool active = false;
2426 	int i, j;
2427 
2428 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2429 	if (!dev_maps)
2430 		return;
2431 
2432 	for (j = 0; j < dev_maps->nr_ids; j++)
2433 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2434 	if (!active)
2435 		reset_xps_maps(dev, dev_maps, type);
2436 
2437 	if (type == XPS_CPUS) {
2438 		for (i = offset + (count - 1); count--; i--)
2439 			netdev_queue_numa_node_write(
2440 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2441 	}
2442 }
2443 
2444 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2445 				   u16 count)
2446 {
2447 	if (!static_key_false(&xps_needed))
2448 		return;
2449 
2450 	cpus_read_lock();
2451 	mutex_lock(&xps_map_mutex);
2452 
2453 	if (static_key_false(&xps_rxqs_needed))
2454 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2455 
2456 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2457 
2458 	mutex_unlock(&xps_map_mutex);
2459 	cpus_read_unlock();
2460 }
2461 
2462 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2463 {
2464 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2465 }
2466 
2467 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2468 				      u16 index, bool is_rxqs_map)
2469 {
2470 	struct xps_map *new_map;
2471 	int alloc_len = XPS_MIN_MAP_ALLOC;
2472 	int i, pos;
2473 
2474 	for (pos = 0; map && pos < map->len; pos++) {
2475 		if (map->queues[pos] != index)
2476 			continue;
2477 		return map;
2478 	}
2479 
2480 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2481 	if (map) {
2482 		if (pos < map->alloc_len)
2483 			return map;
2484 
2485 		alloc_len = map->alloc_len * 2;
2486 	}
2487 
2488 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2489 	 *  map
2490 	 */
2491 	if (is_rxqs_map)
2492 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2493 	else
2494 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2495 				       cpu_to_node(attr_index));
2496 	if (!new_map)
2497 		return NULL;
2498 
2499 	for (i = 0; i < pos; i++)
2500 		new_map->queues[i] = map->queues[i];
2501 	new_map->alloc_len = alloc_len;
2502 	new_map->len = pos;
2503 
2504 	return new_map;
2505 }
2506 
2507 /* Copy xps maps at a given index */
2508 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2509 			      struct xps_dev_maps *new_dev_maps, int index,
2510 			      int tc, bool skip_tc)
2511 {
2512 	int i, tci = index * dev_maps->num_tc;
2513 	struct xps_map *map;
2514 
2515 	/* copy maps belonging to foreign traffic classes */
2516 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2517 		if (i == tc && skip_tc)
2518 			continue;
2519 
2520 		/* fill in the new device map from the old device map */
2521 		map = xmap_dereference(dev_maps->attr_map[tci]);
2522 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2523 	}
2524 }
2525 
2526 /* Must be called under cpus_read_lock */
2527 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2528 			  u16 index, enum xps_map_type type)
2529 {
2530 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2531 	const unsigned long *online_mask = NULL;
2532 	bool active = false, copy = false;
2533 	int i, j, tci, numa_node_id = -2;
2534 	int maps_sz, num_tc = 1, tc = 0;
2535 	struct xps_map *map, *new_map;
2536 	unsigned int nr_ids;
2537 
2538 	if (dev->num_tc) {
2539 		/* Do not allow XPS on subordinate device directly */
2540 		num_tc = dev->num_tc;
2541 		if (num_tc < 0)
2542 			return -EINVAL;
2543 
2544 		/* If queue belongs to subordinate dev use its map */
2545 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2546 
2547 		tc = netdev_txq_to_tc(dev, index);
2548 		if (tc < 0)
2549 			return -EINVAL;
2550 	}
2551 
2552 	mutex_lock(&xps_map_mutex);
2553 
2554 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2555 	if (type == XPS_RXQS) {
2556 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2557 		nr_ids = dev->num_rx_queues;
2558 	} else {
2559 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2560 		if (num_possible_cpus() > 1)
2561 			online_mask = cpumask_bits(cpu_online_mask);
2562 		nr_ids = nr_cpu_ids;
2563 	}
2564 
2565 	if (maps_sz < L1_CACHE_BYTES)
2566 		maps_sz = L1_CACHE_BYTES;
2567 
2568 	/* The old dev_maps could be larger or smaller than the one we're
2569 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2570 	 * between. We could try to be smart, but let's be safe instead and only
2571 	 * copy foreign traffic classes if the two map sizes match.
2572 	 */
2573 	if (dev_maps &&
2574 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2575 		copy = true;
2576 
2577 	/* allocate memory for queue storage */
2578 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2579 	     j < nr_ids;) {
2580 		if (!new_dev_maps) {
2581 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2582 			if (!new_dev_maps) {
2583 				mutex_unlock(&xps_map_mutex);
2584 				return -ENOMEM;
2585 			}
2586 
2587 			new_dev_maps->nr_ids = nr_ids;
2588 			new_dev_maps->num_tc = num_tc;
2589 		}
2590 
2591 		tci = j * num_tc + tc;
2592 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2593 
2594 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2595 		if (!map)
2596 			goto error;
2597 
2598 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2599 	}
2600 
2601 	if (!new_dev_maps)
2602 		goto out_no_new_maps;
2603 
2604 	if (!dev_maps) {
2605 		/* Increment static keys at most once per type */
2606 		static_key_slow_inc_cpuslocked(&xps_needed);
2607 		if (type == XPS_RXQS)
2608 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2609 	}
2610 
2611 	for (j = 0; j < nr_ids; j++) {
2612 		bool skip_tc = false;
2613 
2614 		tci = j * num_tc + tc;
2615 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2616 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2617 			/* add tx-queue to CPU/rx-queue maps */
2618 			int pos = 0;
2619 
2620 			skip_tc = true;
2621 
2622 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2623 			while ((pos < map->len) && (map->queues[pos] != index))
2624 				pos++;
2625 
2626 			if (pos == map->len)
2627 				map->queues[map->len++] = index;
2628 #ifdef CONFIG_NUMA
2629 			if (type == XPS_CPUS) {
2630 				if (numa_node_id == -2)
2631 					numa_node_id = cpu_to_node(j);
2632 				else if (numa_node_id != cpu_to_node(j))
2633 					numa_node_id = -1;
2634 			}
2635 #endif
2636 		}
2637 
2638 		if (copy)
2639 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2640 					  skip_tc);
2641 	}
2642 
2643 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2644 
2645 	/* Cleanup old maps */
2646 	if (!dev_maps)
2647 		goto out_no_old_maps;
2648 
2649 	for (j = 0; j < dev_maps->nr_ids; j++) {
2650 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2651 			map = xmap_dereference(dev_maps->attr_map[tci]);
2652 			if (!map)
2653 				continue;
2654 
2655 			if (copy) {
2656 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2657 				if (map == new_map)
2658 					continue;
2659 			}
2660 
2661 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2662 			kfree_rcu(map, rcu);
2663 		}
2664 	}
2665 
2666 	old_dev_maps = dev_maps;
2667 
2668 out_no_old_maps:
2669 	dev_maps = new_dev_maps;
2670 	active = true;
2671 
2672 out_no_new_maps:
2673 	if (type == XPS_CPUS)
2674 		/* update Tx queue numa node */
2675 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2676 					     (numa_node_id >= 0) ?
2677 					     numa_node_id : NUMA_NO_NODE);
2678 
2679 	if (!dev_maps)
2680 		goto out_no_maps;
2681 
2682 	/* removes tx-queue from unused CPUs/rx-queues */
2683 	for (j = 0; j < dev_maps->nr_ids; j++) {
2684 		tci = j * dev_maps->num_tc;
2685 
2686 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2687 			if (i == tc &&
2688 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2689 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2690 				continue;
2691 
2692 			active |= remove_xps_queue(dev_maps,
2693 						   copy ? old_dev_maps : NULL,
2694 						   tci, index);
2695 		}
2696 	}
2697 
2698 	if (old_dev_maps)
2699 		kfree_rcu(old_dev_maps, rcu);
2700 
2701 	/* free map if not active */
2702 	if (!active)
2703 		reset_xps_maps(dev, dev_maps, type);
2704 
2705 out_no_maps:
2706 	mutex_unlock(&xps_map_mutex);
2707 
2708 	return 0;
2709 error:
2710 	/* remove any maps that we added */
2711 	for (j = 0; j < nr_ids; j++) {
2712 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2713 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2714 			map = copy ?
2715 			      xmap_dereference(dev_maps->attr_map[tci]) :
2716 			      NULL;
2717 			if (new_map && new_map != map)
2718 				kfree(new_map);
2719 		}
2720 	}
2721 
2722 	mutex_unlock(&xps_map_mutex);
2723 
2724 	kfree(new_dev_maps);
2725 	return -ENOMEM;
2726 }
2727 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2728 
2729 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2730 			u16 index)
2731 {
2732 	int ret;
2733 
2734 	cpus_read_lock();
2735 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2736 	cpus_read_unlock();
2737 
2738 	return ret;
2739 }
2740 EXPORT_SYMBOL(netif_set_xps_queue);
2741 
2742 #endif
2743 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2744 {
2745 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2746 
2747 	/* Unbind any subordinate channels */
2748 	while (txq-- != &dev->_tx[0]) {
2749 		if (txq->sb_dev)
2750 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2751 	}
2752 }
2753 
2754 void netdev_reset_tc(struct net_device *dev)
2755 {
2756 #ifdef CONFIG_XPS
2757 	netif_reset_xps_queues_gt(dev, 0);
2758 #endif
2759 	netdev_unbind_all_sb_channels(dev);
2760 
2761 	/* Reset TC configuration of device */
2762 	dev->num_tc = 0;
2763 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2764 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2765 }
2766 EXPORT_SYMBOL(netdev_reset_tc);
2767 
2768 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2769 {
2770 	if (tc >= dev->num_tc)
2771 		return -EINVAL;
2772 
2773 #ifdef CONFIG_XPS
2774 	netif_reset_xps_queues(dev, offset, count);
2775 #endif
2776 	dev->tc_to_txq[tc].count = count;
2777 	dev->tc_to_txq[tc].offset = offset;
2778 	return 0;
2779 }
2780 EXPORT_SYMBOL(netdev_set_tc_queue);
2781 
2782 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2783 {
2784 	if (num_tc > TC_MAX_QUEUE)
2785 		return -EINVAL;
2786 
2787 #ifdef CONFIG_XPS
2788 	netif_reset_xps_queues_gt(dev, 0);
2789 #endif
2790 	netdev_unbind_all_sb_channels(dev);
2791 
2792 	dev->num_tc = num_tc;
2793 	return 0;
2794 }
2795 EXPORT_SYMBOL(netdev_set_num_tc);
2796 
2797 void netdev_unbind_sb_channel(struct net_device *dev,
2798 			      struct net_device *sb_dev)
2799 {
2800 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2801 
2802 #ifdef CONFIG_XPS
2803 	netif_reset_xps_queues_gt(sb_dev, 0);
2804 #endif
2805 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2806 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2807 
2808 	while (txq-- != &dev->_tx[0]) {
2809 		if (txq->sb_dev == sb_dev)
2810 			txq->sb_dev = NULL;
2811 	}
2812 }
2813 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2814 
2815 int netdev_bind_sb_channel_queue(struct net_device *dev,
2816 				 struct net_device *sb_dev,
2817 				 u8 tc, u16 count, u16 offset)
2818 {
2819 	/* Make certain the sb_dev and dev are already configured */
2820 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2821 		return -EINVAL;
2822 
2823 	/* We cannot hand out queues we don't have */
2824 	if ((offset + count) > dev->real_num_tx_queues)
2825 		return -EINVAL;
2826 
2827 	/* Record the mapping */
2828 	sb_dev->tc_to_txq[tc].count = count;
2829 	sb_dev->tc_to_txq[tc].offset = offset;
2830 
2831 	/* Provide a way for Tx queue to find the tc_to_txq map or
2832 	 * XPS map for itself.
2833 	 */
2834 	while (count--)
2835 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2836 
2837 	return 0;
2838 }
2839 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2840 
2841 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2842 {
2843 	/* Do not use a multiqueue device to represent a subordinate channel */
2844 	if (netif_is_multiqueue(dev))
2845 		return -ENODEV;
2846 
2847 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2848 	 * Channel 0 is meant to be "native" mode and used only to represent
2849 	 * the main root device. We allow writing 0 to reset the device back
2850 	 * to normal mode after being used as a subordinate channel.
2851 	 */
2852 	if (channel > S16_MAX)
2853 		return -EINVAL;
2854 
2855 	dev->num_tc = -channel;
2856 
2857 	return 0;
2858 }
2859 EXPORT_SYMBOL(netdev_set_sb_channel);
2860 
2861 /*
2862  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2863  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2864  */
2865 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2866 {
2867 	bool disabling;
2868 	int rc;
2869 
2870 	disabling = txq < dev->real_num_tx_queues;
2871 
2872 	if (txq < 1 || txq > dev->num_tx_queues)
2873 		return -EINVAL;
2874 
2875 	if (dev->reg_state == NETREG_REGISTERED ||
2876 	    dev->reg_state == NETREG_UNREGISTERING) {
2877 		ASSERT_RTNL();
2878 
2879 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2880 						  txq);
2881 		if (rc)
2882 			return rc;
2883 
2884 		if (dev->num_tc)
2885 			netif_setup_tc(dev, txq);
2886 
2887 		dev_qdisc_change_real_num_tx(dev, txq);
2888 
2889 		dev->real_num_tx_queues = txq;
2890 
2891 		if (disabling) {
2892 			synchronize_net();
2893 			qdisc_reset_all_tx_gt(dev, txq);
2894 #ifdef CONFIG_XPS
2895 			netif_reset_xps_queues_gt(dev, txq);
2896 #endif
2897 		}
2898 	} else {
2899 		dev->real_num_tx_queues = txq;
2900 	}
2901 
2902 	return 0;
2903 }
2904 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2905 
2906 #ifdef CONFIG_SYSFS
2907 /**
2908  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2909  *	@dev: Network device
2910  *	@rxq: Actual number of RX queues
2911  *
2912  *	This must be called either with the rtnl_lock held or before
2913  *	registration of the net device.  Returns 0 on success, or a
2914  *	negative error code.  If called before registration, it always
2915  *	succeeds.
2916  */
2917 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2918 {
2919 	int rc;
2920 
2921 	if (rxq < 1 || rxq > dev->num_rx_queues)
2922 		return -EINVAL;
2923 
2924 	if (dev->reg_state == NETREG_REGISTERED) {
2925 		ASSERT_RTNL();
2926 
2927 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2928 						  rxq);
2929 		if (rc)
2930 			return rc;
2931 	}
2932 
2933 	dev->real_num_rx_queues = rxq;
2934 	return 0;
2935 }
2936 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2937 #endif
2938 
2939 /**
2940  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2941  *	@dev: Network device
2942  *	@txq: Actual number of TX queues
2943  *	@rxq: Actual number of RX queues
2944  *
2945  *	Set the real number of both TX and RX queues.
2946  *	Does nothing if the number of queues is already correct.
2947  */
2948 int netif_set_real_num_queues(struct net_device *dev,
2949 			      unsigned int txq, unsigned int rxq)
2950 {
2951 	unsigned int old_rxq = dev->real_num_rx_queues;
2952 	int err;
2953 
2954 	if (txq < 1 || txq > dev->num_tx_queues ||
2955 	    rxq < 1 || rxq > dev->num_rx_queues)
2956 		return -EINVAL;
2957 
2958 	/* Start from increases, so the error path only does decreases -
2959 	 * decreases can't fail.
2960 	 */
2961 	if (rxq > dev->real_num_rx_queues) {
2962 		err = netif_set_real_num_rx_queues(dev, rxq);
2963 		if (err)
2964 			return err;
2965 	}
2966 	if (txq > dev->real_num_tx_queues) {
2967 		err = netif_set_real_num_tx_queues(dev, txq);
2968 		if (err)
2969 			goto undo_rx;
2970 	}
2971 	if (rxq < dev->real_num_rx_queues)
2972 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2973 	if (txq < dev->real_num_tx_queues)
2974 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2975 
2976 	return 0;
2977 undo_rx:
2978 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2979 	return err;
2980 }
2981 EXPORT_SYMBOL(netif_set_real_num_queues);
2982 
2983 /**
2984  * netif_set_tso_max_size() - set the max size of TSO frames supported
2985  * @dev:	netdev to update
2986  * @size:	max skb->len of a TSO frame
2987  *
2988  * Set the limit on the size of TSO super-frames the device can handle.
2989  * Unless explicitly set the stack will assume the value of
2990  * %GSO_LEGACY_MAX_SIZE.
2991  */
2992 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
2993 {
2994 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
2995 	if (size < READ_ONCE(dev->gso_max_size))
2996 		netif_set_gso_max_size(dev, size);
2997 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
2998 		netif_set_gso_ipv4_max_size(dev, size);
2999 }
3000 EXPORT_SYMBOL(netif_set_tso_max_size);
3001 
3002 /**
3003  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3004  * @dev:	netdev to update
3005  * @segs:	max number of TCP segments
3006  *
3007  * Set the limit on the number of TCP segments the device can generate from
3008  * a single TSO super-frame.
3009  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3010  */
3011 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3012 {
3013 	dev->tso_max_segs = segs;
3014 	if (segs < READ_ONCE(dev->gso_max_segs))
3015 		netif_set_gso_max_segs(dev, segs);
3016 }
3017 EXPORT_SYMBOL(netif_set_tso_max_segs);
3018 
3019 /**
3020  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3021  * @to:		netdev to update
3022  * @from:	netdev from which to copy the limits
3023  */
3024 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3025 {
3026 	netif_set_tso_max_size(to, from->tso_max_size);
3027 	netif_set_tso_max_segs(to, from->tso_max_segs);
3028 }
3029 EXPORT_SYMBOL(netif_inherit_tso_max);
3030 
3031 /**
3032  * netif_get_num_default_rss_queues - default number of RSS queues
3033  *
3034  * Default value is the number of physical cores if there are only 1 or 2, or
3035  * divided by 2 if there are more.
3036  */
3037 int netif_get_num_default_rss_queues(void)
3038 {
3039 	cpumask_var_t cpus;
3040 	int cpu, count = 0;
3041 
3042 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3043 		return 1;
3044 
3045 	cpumask_copy(cpus, cpu_online_mask);
3046 	for_each_cpu(cpu, cpus) {
3047 		++count;
3048 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3049 	}
3050 	free_cpumask_var(cpus);
3051 
3052 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3053 }
3054 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3055 
3056 static void __netif_reschedule(struct Qdisc *q)
3057 {
3058 	struct softnet_data *sd;
3059 	unsigned long flags;
3060 
3061 	local_irq_save(flags);
3062 	sd = this_cpu_ptr(&softnet_data);
3063 	q->next_sched = NULL;
3064 	*sd->output_queue_tailp = q;
3065 	sd->output_queue_tailp = &q->next_sched;
3066 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3067 	local_irq_restore(flags);
3068 }
3069 
3070 void __netif_schedule(struct Qdisc *q)
3071 {
3072 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3073 		__netif_reschedule(q);
3074 }
3075 EXPORT_SYMBOL(__netif_schedule);
3076 
3077 struct dev_kfree_skb_cb {
3078 	enum skb_free_reason reason;
3079 };
3080 
3081 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3082 {
3083 	return (struct dev_kfree_skb_cb *)skb->cb;
3084 }
3085 
3086 void netif_schedule_queue(struct netdev_queue *txq)
3087 {
3088 	rcu_read_lock();
3089 	if (!netif_xmit_stopped(txq)) {
3090 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3091 
3092 		__netif_schedule(q);
3093 	}
3094 	rcu_read_unlock();
3095 }
3096 EXPORT_SYMBOL(netif_schedule_queue);
3097 
3098 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3099 {
3100 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3101 		struct Qdisc *q;
3102 
3103 		rcu_read_lock();
3104 		q = rcu_dereference(dev_queue->qdisc);
3105 		__netif_schedule(q);
3106 		rcu_read_unlock();
3107 	}
3108 }
3109 EXPORT_SYMBOL(netif_tx_wake_queue);
3110 
3111 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3112 {
3113 	unsigned long flags;
3114 
3115 	if (unlikely(!skb))
3116 		return;
3117 
3118 	if (likely(refcount_read(&skb->users) == 1)) {
3119 		smp_rmb();
3120 		refcount_set(&skb->users, 0);
3121 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3122 		return;
3123 	}
3124 	get_kfree_skb_cb(skb)->reason = reason;
3125 	local_irq_save(flags);
3126 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3127 	__this_cpu_write(softnet_data.completion_queue, skb);
3128 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3129 	local_irq_restore(flags);
3130 }
3131 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3132 
3133 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3134 {
3135 	if (in_hardirq() || irqs_disabled())
3136 		__dev_kfree_skb_irq(skb, reason);
3137 	else if (unlikely(reason == SKB_REASON_DROPPED))
3138 		kfree_skb(skb);
3139 	else
3140 		consume_skb(skb);
3141 }
3142 EXPORT_SYMBOL(__dev_kfree_skb_any);
3143 
3144 
3145 /**
3146  * netif_device_detach - mark device as removed
3147  * @dev: network device
3148  *
3149  * Mark device as removed from system and therefore no longer available.
3150  */
3151 void netif_device_detach(struct net_device *dev)
3152 {
3153 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3154 	    netif_running(dev)) {
3155 		netif_tx_stop_all_queues(dev);
3156 	}
3157 }
3158 EXPORT_SYMBOL(netif_device_detach);
3159 
3160 /**
3161  * netif_device_attach - mark device as attached
3162  * @dev: network device
3163  *
3164  * Mark device as attached from system and restart if needed.
3165  */
3166 void netif_device_attach(struct net_device *dev)
3167 {
3168 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3169 	    netif_running(dev)) {
3170 		netif_tx_wake_all_queues(dev);
3171 		__netdev_watchdog_up(dev);
3172 	}
3173 }
3174 EXPORT_SYMBOL(netif_device_attach);
3175 
3176 /*
3177  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3178  * to be used as a distribution range.
3179  */
3180 static u16 skb_tx_hash(const struct net_device *dev,
3181 		       const struct net_device *sb_dev,
3182 		       struct sk_buff *skb)
3183 {
3184 	u32 hash;
3185 	u16 qoffset = 0;
3186 	u16 qcount = dev->real_num_tx_queues;
3187 
3188 	if (dev->num_tc) {
3189 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3190 
3191 		qoffset = sb_dev->tc_to_txq[tc].offset;
3192 		qcount = sb_dev->tc_to_txq[tc].count;
3193 		if (unlikely(!qcount)) {
3194 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3195 					     sb_dev->name, qoffset, tc);
3196 			qoffset = 0;
3197 			qcount = dev->real_num_tx_queues;
3198 		}
3199 	}
3200 
3201 	if (skb_rx_queue_recorded(skb)) {
3202 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3203 		hash = skb_get_rx_queue(skb);
3204 		if (hash >= qoffset)
3205 			hash -= qoffset;
3206 		while (unlikely(hash >= qcount))
3207 			hash -= qcount;
3208 		return hash + qoffset;
3209 	}
3210 
3211 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3212 }
3213 
3214 static void skb_warn_bad_offload(const struct sk_buff *skb)
3215 {
3216 	static const netdev_features_t null_features;
3217 	struct net_device *dev = skb->dev;
3218 	const char *name = "";
3219 
3220 	if (!net_ratelimit())
3221 		return;
3222 
3223 	if (dev) {
3224 		if (dev->dev.parent)
3225 			name = dev_driver_string(dev->dev.parent);
3226 		else
3227 			name = netdev_name(dev);
3228 	}
3229 	skb_dump(KERN_WARNING, skb, false);
3230 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3231 	     name, dev ? &dev->features : &null_features,
3232 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3233 }
3234 
3235 /*
3236  * Invalidate hardware checksum when packet is to be mangled, and
3237  * complete checksum manually on outgoing path.
3238  */
3239 int skb_checksum_help(struct sk_buff *skb)
3240 {
3241 	__wsum csum;
3242 	int ret = 0, offset;
3243 
3244 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3245 		goto out_set_summed;
3246 
3247 	if (unlikely(skb_is_gso(skb))) {
3248 		skb_warn_bad_offload(skb);
3249 		return -EINVAL;
3250 	}
3251 
3252 	/* Before computing a checksum, we should make sure no frag could
3253 	 * be modified by an external entity : checksum could be wrong.
3254 	 */
3255 	if (skb_has_shared_frag(skb)) {
3256 		ret = __skb_linearize(skb);
3257 		if (ret)
3258 			goto out;
3259 	}
3260 
3261 	offset = skb_checksum_start_offset(skb);
3262 	ret = -EINVAL;
3263 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3264 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3265 		goto out;
3266 	}
3267 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3268 
3269 	offset += skb->csum_offset;
3270 	if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3271 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3272 		goto out;
3273 	}
3274 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3275 	if (ret)
3276 		goto out;
3277 
3278 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3279 out_set_summed:
3280 	skb->ip_summed = CHECKSUM_NONE;
3281 out:
3282 	return ret;
3283 }
3284 EXPORT_SYMBOL(skb_checksum_help);
3285 
3286 int skb_crc32c_csum_help(struct sk_buff *skb)
3287 {
3288 	__le32 crc32c_csum;
3289 	int ret = 0, offset, start;
3290 
3291 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3292 		goto out;
3293 
3294 	if (unlikely(skb_is_gso(skb)))
3295 		goto out;
3296 
3297 	/* Before computing a checksum, we should make sure no frag could
3298 	 * be modified by an external entity : checksum could be wrong.
3299 	 */
3300 	if (unlikely(skb_has_shared_frag(skb))) {
3301 		ret = __skb_linearize(skb);
3302 		if (ret)
3303 			goto out;
3304 	}
3305 	start = skb_checksum_start_offset(skb);
3306 	offset = start + offsetof(struct sctphdr, checksum);
3307 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3308 		ret = -EINVAL;
3309 		goto out;
3310 	}
3311 
3312 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3313 	if (ret)
3314 		goto out;
3315 
3316 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3317 						  skb->len - start, ~(__u32)0,
3318 						  crc32c_csum_stub));
3319 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3320 	skb->ip_summed = CHECKSUM_NONE;
3321 	skb->csum_not_inet = 0;
3322 out:
3323 	return ret;
3324 }
3325 
3326 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3327 {
3328 	__be16 type = skb->protocol;
3329 
3330 	/* Tunnel gso handlers can set protocol to ethernet. */
3331 	if (type == htons(ETH_P_TEB)) {
3332 		struct ethhdr *eth;
3333 
3334 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3335 			return 0;
3336 
3337 		eth = (struct ethhdr *)skb->data;
3338 		type = eth->h_proto;
3339 	}
3340 
3341 	return __vlan_get_protocol(skb, type, depth);
3342 }
3343 
3344 /* openvswitch calls this on rx path, so we need a different check.
3345  */
3346 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3347 {
3348 	if (tx_path)
3349 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3350 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3351 
3352 	return skb->ip_summed == CHECKSUM_NONE;
3353 }
3354 
3355 /**
3356  *	__skb_gso_segment - Perform segmentation on skb.
3357  *	@skb: buffer to segment
3358  *	@features: features for the output path (see dev->features)
3359  *	@tx_path: whether it is called in TX path
3360  *
3361  *	This function segments the given skb and returns a list of segments.
3362  *
3363  *	It may return NULL if the skb requires no segmentation.  This is
3364  *	only possible when GSO is used for verifying header integrity.
3365  *
3366  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3367  */
3368 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3369 				  netdev_features_t features, bool tx_path)
3370 {
3371 	struct sk_buff *segs;
3372 
3373 	if (unlikely(skb_needs_check(skb, tx_path))) {
3374 		int err;
3375 
3376 		/* We're going to init ->check field in TCP or UDP header */
3377 		err = skb_cow_head(skb, 0);
3378 		if (err < 0)
3379 			return ERR_PTR(err);
3380 	}
3381 
3382 	/* Only report GSO partial support if it will enable us to
3383 	 * support segmentation on this frame without needing additional
3384 	 * work.
3385 	 */
3386 	if (features & NETIF_F_GSO_PARTIAL) {
3387 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3388 		struct net_device *dev = skb->dev;
3389 
3390 		partial_features |= dev->features & dev->gso_partial_features;
3391 		if (!skb_gso_ok(skb, features | partial_features))
3392 			features &= ~NETIF_F_GSO_PARTIAL;
3393 	}
3394 
3395 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3396 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3397 
3398 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3399 	SKB_GSO_CB(skb)->encap_level = 0;
3400 
3401 	skb_reset_mac_header(skb);
3402 	skb_reset_mac_len(skb);
3403 
3404 	segs = skb_mac_gso_segment(skb, features);
3405 
3406 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3407 		skb_warn_bad_offload(skb);
3408 
3409 	return segs;
3410 }
3411 EXPORT_SYMBOL(__skb_gso_segment);
3412 
3413 /* Take action when hardware reception checksum errors are detected. */
3414 #ifdef CONFIG_BUG
3415 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3416 {
3417 	netdev_err(dev, "hw csum failure\n");
3418 	skb_dump(KERN_ERR, skb, true);
3419 	dump_stack();
3420 }
3421 
3422 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3423 {
3424 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3425 }
3426 EXPORT_SYMBOL(netdev_rx_csum_fault);
3427 #endif
3428 
3429 /* XXX: check that highmem exists at all on the given machine. */
3430 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3431 {
3432 #ifdef CONFIG_HIGHMEM
3433 	int i;
3434 
3435 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3436 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3437 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3438 
3439 			if (PageHighMem(skb_frag_page(frag)))
3440 				return 1;
3441 		}
3442 	}
3443 #endif
3444 	return 0;
3445 }
3446 
3447 /* If MPLS offload request, verify we are testing hardware MPLS features
3448  * instead of standard features for the netdev.
3449  */
3450 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3451 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3452 					   netdev_features_t features,
3453 					   __be16 type)
3454 {
3455 	if (eth_p_mpls(type))
3456 		features &= skb->dev->mpls_features;
3457 
3458 	return features;
3459 }
3460 #else
3461 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3462 					   netdev_features_t features,
3463 					   __be16 type)
3464 {
3465 	return features;
3466 }
3467 #endif
3468 
3469 static netdev_features_t harmonize_features(struct sk_buff *skb,
3470 	netdev_features_t features)
3471 {
3472 	__be16 type;
3473 
3474 	type = skb_network_protocol(skb, NULL);
3475 	features = net_mpls_features(skb, features, type);
3476 
3477 	if (skb->ip_summed != CHECKSUM_NONE &&
3478 	    !can_checksum_protocol(features, type)) {
3479 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3480 	}
3481 	if (illegal_highdma(skb->dev, skb))
3482 		features &= ~NETIF_F_SG;
3483 
3484 	return features;
3485 }
3486 
3487 netdev_features_t passthru_features_check(struct sk_buff *skb,
3488 					  struct net_device *dev,
3489 					  netdev_features_t features)
3490 {
3491 	return features;
3492 }
3493 EXPORT_SYMBOL(passthru_features_check);
3494 
3495 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3496 					     struct net_device *dev,
3497 					     netdev_features_t features)
3498 {
3499 	return vlan_features_check(skb, features);
3500 }
3501 
3502 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3503 					    struct net_device *dev,
3504 					    netdev_features_t features)
3505 {
3506 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3507 
3508 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3509 		return features & ~NETIF_F_GSO_MASK;
3510 
3511 	if (!skb_shinfo(skb)->gso_type) {
3512 		skb_warn_bad_offload(skb);
3513 		return features & ~NETIF_F_GSO_MASK;
3514 	}
3515 
3516 	/* Support for GSO partial features requires software
3517 	 * intervention before we can actually process the packets
3518 	 * so we need to strip support for any partial features now
3519 	 * and we can pull them back in after we have partially
3520 	 * segmented the frame.
3521 	 */
3522 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3523 		features &= ~dev->gso_partial_features;
3524 
3525 	/* Make sure to clear the IPv4 ID mangling feature if the
3526 	 * IPv4 header has the potential to be fragmented.
3527 	 */
3528 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3529 		struct iphdr *iph = skb->encapsulation ?
3530 				    inner_ip_hdr(skb) : ip_hdr(skb);
3531 
3532 		if (!(iph->frag_off & htons(IP_DF)))
3533 			features &= ~NETIF_F_TSO_MANGLEID;
3534 	}
3535 
3536 	return features;
3537 }
3538 
3539 netdev_features_t netif_skb_features(struct sk_buff *skb)
3540 {
3541 	struct net_device *dev = skb->dev;
3542 	netdev_features_t features = dev->features;
3543 
3544 	if (skb_is_gso(skb))
3545 		features = gso_features_check(skb, dev, features);
3546 
3547 	/* If encapsulation offload request, verify we are testing
3548 	 * hardware encapsulation features instead of standard
3549 	 * features for the netdev
3550 	 */
3551 	if (skb->encapsulation)
3552 		features &= dev->hw_enc_features;
3553 
3554 	if (skb_vlan_tagged(skb))
3555 		features = netdev_intersect_features(features,
3556 						     dev->vlan_features |
3557 						     NETIF_F_HW_VLAN_CTAG_TX |
3558 						     NETIF_F_HW_VLAN_STAG_TX);
3559 
3560 	if (dev->netdev_ops->ndo_features_check)
3561 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3562 								features);
3563 	else
3564 		features &= dflt_features_check(skb, dev, features);
3565 
3566 	return harmonize_features(skb, features);
3567 }
3568 EXPORT_SYMBOL(netif_skb_features);
3569 
3570 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3571 		    struct netdev_queue *txq, bool more)
3572 {
3573 	unsigned int len;
3574 	int rc;
3575 
3576 	if (dev_nit_active(dev))
3577 		dev_queue_xmit_nit(skb, dev);
3578 
3579 	len = skb->len;
3580 	trace_net_dev_start_xmit(skb, dev);
3581 	rc = netdev_start_xmit(skb, dev, txq, more);
3582 	trace_net_dev_xmit(skb, rc, dev, len);
3583 
3584 	return rc;
3585 }
3586 
3587 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3588 				    struct netdev_queue *txq, int *ret)
3589 {
3590 	struct sk_buff *skb = first;
3591 	int rc = NETDEV_TX_OK;
3592 
3593 	while (skb) {
3594 		struct sk_buff *next = skb->next;
3595 
3596 		skb_mark_not_on_list(skb);
3597 		rc = xmit_one(skb, dev, txq, next != NULL);
3598 		if (unlikely(!dev_xmit_complete(rc))) {
3599 			skb->next = next;
3600 			goto out;
3601 		}
3602 
3603 		skb = next;
3604 		if (netif_tx_queue_stopped(txq) && skb) {
3605 			rc = NETDEV_TX_BUSY;
3606 			break;
3607 		}
3608 	}
3609 
3610 out:
3611 	*ret = rc;
3612 	return skb;
3613 }
3614 
3615 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3616 					  netdev_features_t features)
3617 {
3618 	if (skb_vlan_tag_present(skb) &&
3619 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3620 		skb = __vlan_hwaccel_push_inside(skb);
3621 	return skb;
3622 }
3623 
3624 int skb_csum_hwoffload_help(struct sk_buff *skb,
3625 			    const netdev_features_t features)
3626 {
3627 	if (unlikely(skb_csum_is_sctp(skb)))
3628 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3629 			skb_crc32c_csum_help(skb);
3630 
3631 	if (features & NETIF_F_HW_CSUM)
3632 		return 0;
3633 
3634 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3635 		switch (skb->csum_offset) {
3636 		case offsetof(struct tcphdr, check):
3637 		case offsetof(struct udphdr, check):
3638 			return 0;
3639 		}
3640 	}
3641 
3642 	return skb_checksum_help(skb);
3643 }
3644 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3645 
3646 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3647 {
3648 	netdev_features_t features;
3649 
3650 	features = netif_skb_features(skb);
3651 	skb = validate_xmit_vlan(skb, features);
3652 	if (unlikely(!skb))
3653 		goto out_null;
3654 
3655 	skb = sk_validate_xmit_skb(skb, dev);
3656 	if (unlikely(!skb))
3657 		goto out_null;
3658 
3659 	if (netif_needs_gso(skb, features)) {
3660 		struct sk_buff *segs;
3661 
3662 		segs = skb_gso_segment(skb, features);
3663 		if (IS_ERR(segs)) {
3664 			goto out_kfree_skb;
3665 		} else if (segs) {
3666 			consume_skb(skb);
3667 			skb = segs;
3668 		}
3669 	} else {
3670 		if (skb_needs_linearize(skb, features) &&
3671 		    __skb_linearize(skb))
3672 			goto out_kfree_skb;
3673 
3674 		/* If packet is not checksummed and device does not
3675 		 * support checksumming for this protocol, complete
3676 		 * checksumming here.
3677 		 */
3678 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3679 			if (skb->encapsulation)
3680 				skb_set_inner_transport_header(skb,
3681 							       skb_checksum_start_offset(skb));
3682 			else
3683 				skb_set_transport_header(skb,
3684 							 skb_checksum_start_offset(skb));
3685 			if (skb_csum_hwoffload_help(skb, features))
3686 				goto out_kfree_skb;
3687 		}
3688 	}
3689 
3690 	skb = validate_xmit_xfrm(skb, features, again);
3691 
3692 	return skb;
3693 
3694 out_kfree_skb:
3695 	kfree_skb(skb);
3696 out_null:
3697 	dev_core_stats_tx_dropped_inc(dev);
3698 	return NULL;
3699 }
3700 
3701 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3702 {
3703 	struct sk_buff *next, *head = NULL, *tail;
3704 
3705 	for (; skb != NULL; skb = next) {
3706 		next = skb->next;
3707 		skb_mark_not_on_list(skb);
3708 
3709 		/* in case skb wont be segmented, point to itself */
3710 		skb->prev = skb;
3711 
3712 		skb = validate_xmit_skb(skb, dev, again);
3713 		if (!skb)
3714 			continue;
3715 
3716 		if (!head)
3717 			head = skb;
3718 		else
3719 			tail->next = skb;
3720 		/* If skb was segmented, skb->prev points to
3721 		 * the last segment. If not, it still contains skb.
3722 		 */
3723 		tail = skb->prev;
3724 	}
3725 	return head;
3726 }
3727 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3728 
3729 static void qdisc_pkt_len_init(struct sk_buff *skb)
3730 {
3731 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3732 
3733 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3734 
3735 	/* To get more precise estimation of bytes sent on wire,
3736 	 * we add to pkt_len the headers size of all segments
3737 	 */
3738 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3739 		unsigned int hdr_len;
3740 		u16 gso_segs = shinfo->gso_segs;
3741 
3742 		/* mac layer + network layer */
3743 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3744 
3745 		/* + transport layer */
3746 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3747 			const struct tcphdr *th;
3748 			struct tcphdr _tcphdr;
3749 
3750 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3751 						sizeof(_tcphdr), &_tcphdr);
3752 			if (likely(th))
3753 				hdr_len += __tcp_hdrlen(th);
3754 		} else {
3755 			struct udphdr _udphdr;
3756 
3757 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3758 					       sizeof(_udphdr), &_udphdr))
3759 				hdr_len += sizeof(struct udphdr);
3760 		}
3761 
3762 		if (shinfo->gso_type & SKB_GSO_DODGY)
3763 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3764 						shinfo->gso_size);
3765 
3766 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3767 	}
3768 }
3769 
3770 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3771 			     struct sk_buff **to_free,
3772 			     struct netdev_queue *txq)
3773 {
3774 	int rc;
3775 
3776 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3777 	if (rc == NET_XMIT_SUCCESS)
3778 		trace_qdisc_enqueue(q, txq, skb);
3779 	return rc;
3780 }
3781 
3782 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3783 				 struct net_device *dev,
3784 				 struct netdev_queue *txq)
3785 {
3786 	spinlock_t *root_lock = qdisc_lock(q);
3787 	struct sk_buff *to_free = NULL;
3788 	bool contended;
3789 	int rc;
3790 
3791 	qdisc_calculate_pkt_len(skb, q);
3792 
3793 	if (q->flags & TCQ_F_NOLOCK) {
3794 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3795 		    qdisc_run_begin(q)) {
3796 			/* Retest nolock_qdisc_is_empty() within the protection
3797 			 * of q->seqlock to protect from racing with requeuing.
3798 			 */
3799 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3800 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3801 				__qdisc_run(q);
3802 				qdisc_run_end(q);
3803 
3804 				goto no_lock_out;
3805 			}
3806 
3807 			qdisc_bstats_cpu_update(q, skb);
3808 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3809 			    !nolock_qdisc_is_empty(q))
3810 				__qdisc_run(q);
3811 
3812 			qdisc_run_end(q);
3813 			return NET_XMIT_SUCCESS;
3814 		}
3815 
3816 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3817 		qdisc_run(q);
3818 
3819 no_lock_out:
3820 		if (unlikely(to_free))
3821 			kfree_skb_list_reason(to_free,
3822 					      SKB_DROP_REASON_QDISC_DROP);
3823 		return rc;
3824 	}
3825 
3826 	/*
3827 	 * Heuristic to force contended enqueues to serialize on a
3828 	 * separate lock before trying to get qdisc main lock.
3829 	 * This permits qdisc->running owner to get the lock more
3830 	 * often and dequeue packets faster.
3831 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3832 	 * and then other tasks will only enqueue packets. The packets will be
3833 	 * sent after the qdisc owner is scheduled again. To prevent this
3834 	 * scenario the task always serialize on the lock.
3835 	 */
3836 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3837 	if (unlikely(contended))
3838 		spin_lock(&q->busylock);
3839 
3840 	spin_lock(root_lock);
3841 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3842 		__qdisc_drop(skb, &to_free);
3843 		rc = NET_XMIT_DROP;
3844 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3845 		   qdisc_run_begin(q)) {
3846 		/*
3847 		 * This is a work-conserving queue; there are no old skbs
3848 		 * waiting to be sent out; and the qdisc is not running -
3849 		 * xmit the skb directly.
3850 		 */
3851 
3852 		qdisc_bstats_update(q, skb);
3853 
3854 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3855 			if (unlikely(contended)) {
3856 				spin_unlock(&q->busylock);
3857 				contended = false;
3858 			}
3859 			__qdisc_run(q);
3860 		}
3861 
3862 		qdisc_run_end(q);
3863 		rc = NET_XMIT_SUCCESS;
3864 	} else {
3865 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3866 		if (qdisc_run_begin(q)) {
3867 			if (unlikely(contended)) {
3868 				spin_unlock(&q->busylock);
3869 				contended = false;
3870 			}
3871 			__qdisc_run(q);
3872 			qdisc_run_end(q);
3873 		}
3874 	}
3875 	spin_unlock(root_lock);
3876 	if (unlikely(to_free))
3877 		kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3878 	if (unlikely(contended))
3879 		spin_unlock(&q->busylock);
3880 	return rc;
3881 }
3882 
3883 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3884 static void skb_update_prio(struct sk_buff *skb)
3885 {
3886 	const struct netprio_map *map;
3887 	const struct sock *sk;
3888 	unsigned int prioidx;
3889 
3890 	if (skb->priority)
3891 		return;
3892 	map = rcu_dereference_bh(skb->dev->priomap);
3893 	if (!map)
3894 		return;
3895 	sk = skb_to_full_sk(skb);
3896 	if (!sk)
3897 		return;
3898 
3899 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3900 
3901 	if (prioidx < map->priomap_len)
3902 		skb->priority = map->priomap[prioidx];
3903 }
3904 #else
3905 #define skb_update_prio(skb)
3906 #endif
3907 
3908 /**
3909  *	dev_loopback_xmit - loop back @skb
3910  *	@net: network namespace this loopback is happening in
3911  *	@sk:  sk needed to be a netfilter okfn
3912  *	@skb: buffer to transmit
3913  */
3914 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3915 {
3916 	skb_reset_mac_header(skb);
3917 	__skb_pull(skb, skb_network_offset(skb));
3918 	skb->pkt_type = PACKET_LOOPBACK;
3919 	if (skb->ip_summed == CHECKSUM_NONE)
3920 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3921 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3922 	skb_dst_force(skb);
3923 	netif_rx(skb);
3924 	return 0;
3925 }
3926 EXPORT_SYMBOL(dev_loopback_xmit);
3927 
3928 #ifdef CONFIG_NET_EGRESS
3929 static struct sk_buff *
3930 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3931 {
3932 #ifdef CONFIG_NET_CLS_ACT
3933 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3934 	struct tcf_result cl_res;
3935 
3936 	if (!miniq)
3937 		return skb;
3938 
3939 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3940 	tc_skb_cb(skb)->mru = 0;
3941 	tc_skb_cb(skb)->post_ct = false;
3942 	mini_qdisc_bstats_cpu_update(miniq, skb);
3943 
3944 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3945 	case TC_ACT_OK:
3946 	case TC_ACT_RECLASSIFY:
3947 		skb->tc_index = TC_H_MIN(cl_res.classid);
3948 		break;
3949 	case TC_ACT_SHOT:
3950 		mini_qdisc_qstats_cpu_drop(miniq);
3951 		*ret = NET_XMIT_DROP;
3952 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3953 		return NULL;
3954 	case TC_ACT_STOLEN:
3955 	case TC_ACT_QUEUED:
3956 	case TC_ACT_TRAP:
3957 		*ret = NET_XMIT_SUCCESS;
3958 		consume_skb(skb);
3959 		return NULL;
3960 	case TC_ACT_REDIRECT:
3961 		/* No need to push/pop skb's mac_header here on egress! */
3962 		skb_do_redirect(skb);
3963 		*ret = NET_XMIT_SUCCESS;
3964 		return NULL;
3965 	default:
3966 		break;
3967 	}
3968 #endif /* CONFIG_NET_CLS_ACT */
3969 
3970 	return skb;
3971 }
3972 
3973 static struct netdev_queue *
3974 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3975 {
3976 	int qm = skb_get_queue_mapping(skb);
3977 
3978 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3979 }
3980 
3981 static bool netdev_xmit_txqueue_skipped(void)
3982 {
3983 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3984 }
3985 
3986 void netdev_xmit_skip_txqueue(bool skip)
3987 {
3988 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3989 }
3990 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3991 #endif /* CONFIG_NET_EGRESS */
3992 
3993 #ifdef CONFIG_XPS
3994 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3995 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3996 {
3997 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
3998 	struct xps_map *map;
3999 	int queue_index = -1;
4000 
4001 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4002 		return queue_index;
4003 
4004 	tci *= dev_maps->num_tc;
4005 	tci += tc;
4006 
4007 	map = rcu_dereference(dev_maps->attr_map[tci]);
4008 	if (map) {
4009 		if (map->len == 1)
4010 			queue_index = map->queues[0];
4011 		else
4012 			queue_index = map->queues[reciprocal_scale(
4013 						skb_get_hash(skb), map->len)];
4014 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4015 			queue_index = -1;
4016 	}
4017 	return queue_index;
4018 }
4019 #endif
4020 
4021 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4022 			 struct sk_buff *skb)
4023 {
4024 #ifdef CONFIG_XPS
4025 	struct xps_dev_maps *dev_maps;
4026 	struct sock *sk = skb->sk;
4027 	int queue_index = -1;
4028 
4029 	if (!static_key_false(&xps_needed))
4030 		return -1;
4031 
4032 	rcu_read_lock();
4033 	if (!static_key_false(&xps_rxqs_needed))
4034 		goto get_cpus_map;
4035 
4036 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4037 	if (dev_maps) {
4038 		int tci = sk_rx_queue_get(sk);
4039 
4040 		if (tci >= 0)
4041 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4042 							  tci);
4043 	}
4044 
4045 get_cpus_map:
4046 	if (queue_index < 0) {
4047 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4048 		if (dev_maps) {
4049 			unsigned int tci = skb->sender_cpu - 1;
4050 
4051 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4052 							  tci);
4053 		}
4054 	}
4055 	rcu_read_unlock();
4056 
4057 	return queue_index;
4058 #else
4059 	return -1;
4060 #endif
4061 }
4062 
4063 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4064 		     struct net_device *sb_dev)
4065 {
4066 	return 0;
4067 }
4068 EXPORT_SYMBOL(dev_pick_tx_zero);
4069 
4070 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4071 		       struct net_device *sb_dev)
4072 {
4073 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4074 }
4075 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4076 
4077 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4078 		     struct net_device *sb_dev)
4079 {
4080 	struct sock *sk = skb->sk;
4081 	int queue_index = sk_tx_queue_get(sk);
4082 
4083 	sb_dev = sb_dev ? : dev;
4084 
4085 	if (queue_index < 0 || skb->ooo_okay ||
4086 	    queue_index >= dev->real_num_tx_queues) {
4087 		int new_index = get_xps_queue(dev, sb_dev, skb);
4088 
4089 		if (new_index < 0)
4090 			new_index = skb_tx_hash(dev, sb_dev, skb);
4091 
4092 		if (queue_index != new_index && sk &&
4093 		    sk_fullsock(sk) &&
4094 		    rcu_access_pointer(sk->sk_dst_cache))
4095 			sk_tx_queue_set(sk, new_index);
4096 
4097 		queue_index = new_index;
4098 	}
4099 
4100 	return queue_index;
4101 }
4102 EXPORT_SYMBOL(netdev_pick_tx);
4103 
4104 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4105 					 struct sk_buff *skb,
4106 					 struct net_device *sb_dev)
4107 {
4108 	int queue_index = 0;
4109 
4110 #ifdef CONFIG_XPS
4111 	u32 sender_cpu = skb->sender_cpu - 1;
4112 
4113 	if (sender_cpu >= (u32)NR_CPUS)
4114 		skb->sender_cpu = raw_smp_processor_id() + 1;
4115 #endif
4116 
4117 	if (dev->real_num_tx_queues != 1) {
4118 		const struct net_device_ops *ops = dev->netdev_ops;
4119 
4120 		if (ops->ndo_select_queue)
4121 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4122 		else
4123 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4124 
4125 		queue_index = netdev_cap_txqueue(dev, queue_index);
4126 	}
4127 
4128 	skb_set_queue_mapping(skb, queue_index);
4129 	return netdev_get_tx_queue(dev, queue_index);
4130 }
4131 
4132 /**
4133  * __dev_queue_xmit() - transmit a buffer
4134  * @skb:	buffer to transmit
4135  * @sb_dev:	suboordinate device used for L2 forwarding offload
4136  *
4137  * Queue a buffer for transmission to a network device. The caller must
4138  * have set the device and priority and built the buffer before calling
4139  * this function. The function can be called from an interrupt.
4140  *
4141  * When calling this method, interrupts MUST be enabled. This is because
4142  * the BH enable code must have IRQs enabled so that it will not deadlock.
4143  *
4144  * Regardless of the return value, the skb is consumed, so it is currently
4145  * difficult to retry a send to this method. (You can bump the ref count
4146  * before sending to hold a reference for retry if you are careful.)
4147  *
4148  * Return:
4149  * * 0				- buffer successfully transmitted
4150  * * positive qdisc return code	- NET_XMIT_DROP etc.
4151  * * negative errno		- other errors
4152  */
4153 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4154 {
4155 	struct net_device *dev = skb->dev;
4156 	struct netdev_queue *txq = NULL;
4157 	struct Qdisc *q;
4158 	int rc = -ENOMEM;
4159 	bool again = false;
4160 
4161 	skb_reset_mac_header(skb);
4162 	skb_assert_len(skb);
4163 
4164 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4165 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4166 
4167 	/* Disable soft irqs for various locks below. Also
4168 	 * stops preemption for RCU.
4169 	 */
4170 	rcu_read_lock_bh();
4171 
4172 	skb_update_prio(skb);
4173 
4174 	qdisc_pkt_len_init(skb);
4175 #ifdef CONFIG_NET_CLS_ACT
4176 	skb->tc_at_ingress = 0;
4177 #endif
4178 #ifdef CONFIG_NET_EGRESS
4179 	if (static_branch_unlikely(&egress_needed_key)) {
4180 		if (nf_hook_egress_active()) {
4181 			skb = nf_hook_egress(skb, &rc, dev);
4182 			if (!skb)
4183 				goto out;
4184 		}
4185 
4186 		netdev_xmit_skip_txqueue(false);
4187 
4188 		nf_skip_egress(skb, true);
4189 		skb = sch_handle_egress(skb, &rc, dev);
4190 		if (!skb)
4191 			goto out;
4192 		nf_skip_egress(skb, false);
4193 
4194 		if (netdev_xmit_txqueue_skipped())
4195 			txq = netdev_tx_queue_mapping(dev, skb);
4196 	}
4197 #endif
4198 	/* If device/qdisc don't need skb->dst, release it right now while
4199 	 * its hot in this cpu cache.
4200 	 */
4201 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4202 		skb_dst_drop(skb);
4203 	else
4204 		skb_dst_force(skb);
4205 
4206 	if (!txq)
4207 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4208 
4209 	q = rcu_dereference_bh(txq->qdisc);
4210 
4211 	trace_net_dev_queue(skb);
4212 	if (q->enqueue) {
4213 		rc = __dev_xmit_skb(skb, q, dev, txq);
4214 		goto out;
4215 	}
4216 
4217 	/* The device has no queue. Common case for software devices:
4218 	 * loopback, all the sorts of tunnels...
4219 
4220 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4221 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4222 	 * counters.)
4223 	 * However, it is possible, that they rely on protection
4224 	 * made by us here.
4225 
4226 	 * Check this and shot the lock. It is not prone from deadlocks.
4227 	 *Either shot noqueue qdisc, it is even simpler 8)
4228 	 */
4229 	if (dev->flags & IFF_UP) {
4230 		int cpu = smp_processor_id(); /* ok because BHs are off */
4231 
4232 		/* Other cpus might concurrently change txq->xmit_lock_owner
4233 		 * to -1 or to their cpu id, but not to our id.
4234 		 */
4235 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4236 			if (dev_xmit_recursion())
4237 				goto recursion_alert;
4238 
4239 			skb = validate_xmit_skb(skb, dev, &again);
4240 			if (!skb)
4241 				goto out;
4242 
4243 			HARD_TX_LOCK(dev, txq, cpu);
4244 
4245 			if (!netif_xmit_stopped(txq)) {
4246 				dev_xmit_recursion_inc();
4247 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4248 				dev_xmit_recursion_dec();
4249 				if (dev_xmit_complete(rc)) {
4250 					HARD_TX_UNLOCK(dev, txq);
4251 					goto out;
4252 				}
4253 			}
4254 			HARD_TX_UNLOCK(dev, txq);
4255 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4256 					     dev->name);
4257 		} else {
4258 			/* Recursion is detected! It is possible,
4259 			 * unfortunately
4260 			 */
4261 recursion_alert:
4262 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4263 					     dev->name);
4264 		}
4265 	}
4266 
4267 	rc = -ENETDOWN;
4268 	rcu_read_unlock_bh();
4269 
4270 	dev_core_stats_tx_dropped_inc(dev);
4271 	kfree_skb_list(skb);
4272 	return rc;
4273 out:
4274 	rcu_read_unlock_bh();
4275 	return rc;
4276 }
4277 EXPORT_SYMBOL(__dev_queue_xmit);
4278 
4279 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4280 {
4281 	struct net_device *dev = skb->dev;
4282 	struct sk_buff *orig_skb = skb;
4283 	struct netdev_queue *txq;
4284 	int ret = NETDEV_TX_BUSY;
4285 	bool again = false;
4286 
4287 	if (unlikely(!netif_running(dev) ||
4288 		     !netif_carrier_ok(dev)))
4289 		goto drop;
4290 
4291 	skb = validate_xmit_skb_list(skb, dev, &again);
4292 	if (skb != orig_skb)
4293 		goto drop;
4294 
4295 	skb_set_queue_mapping(skb, queue_id);
4296 	txq = skb_get_tx_queue(dev, skb);
4297 
4298 	local_bh_disable();
4299 
4300 	dev_xmit_recursion_inc();
4301 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4302 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4303 		ret = netdev_start_xmit(skb, dev, txq, false);
4304 	HARD_TX_UNLOCK(dev, txq);
4305 	dev_xmit_recursion_dec();
4306 
4307 	local_bh_enable();
4308 	return ret;
4309 drop:
4310 	dev_core_stats_tx_dropped_inc(dev);
4311 	kfree_skb_list(skb);
4312 	return NET_XMIT_DROP;
4313 }
4314 EXPORT_SYMBOL(__dev_direct_xmit);
4315 
4316 /*************************************************************************
4317  *			Receiver routines
4318  *************************************************************************/
4319 
4320 int netdev_max_backlog __read_mostly = 1000;
4321 EXPORT_SYMBOL(netdev_max_backlog);
4322 
4323 int netdev_tstamp_prequeue __read_mostly = 1;
4324 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4325 int netdev_budget __read_mostly = 300;
4326 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4327 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4328 int weight_p __read_mostly = 64;           /* old backlog weight */
4329 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4330 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4331 int dev_rx_weight __read_mostly = 64;
4332 int dev_tx_weight __read_mostly = 64;
4333 
4334 /* Called with irq disabled */
4335 static inline void ____napi_schedule(struct softnet_data *sd,
4336 				     struct napi_struct *napi)
4337 {
4338 	struct task_struct *thread;
4339 
4340 	lockdep_assert_irqs_disabled();
4341 
4342 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4343 		/* Paired with smp_mb__before_atomic() in
4344 		 * napi_enable()/dev_set_threaded().
4345 		 * Use READ_ONCE() to guarantee a complete
4346 		 * read on napi->thread. Only call
4347 		 * wake_up_process() when it's not NULL.
4348 		 */
4349 		thread = READ_ONCE(napi->thread);
4350 		if (thread) {
4351 			/* Avoid doing set_bit() if the thread is in
4352 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4353 			 * makes sure to proceed with napi polling
4354 			 * if the thread is explicitly woken from here.
4355 			 */
4356 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4357 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4358 			wake_up_process(thread);
4359 			return;
4360 		}
4361 	}
4362 
4363 	list_add_tail(&napi->poll_list, &sd->poll_list);
4364 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4365 }
4366 
4367 #ifdef CONFIG_RPS
4368 
4369 /* One global table that all flow-based protocols share. */
4370 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4371 EXPORT_SYMBOL(rps_sock_flow_table);
4372 u32 rps_cpu_mask __read_mostly;
4373 EXPORT_SYMBOL(rps_cpu_mask);
4374 
4375 struct static_key_false rps_needed __read_mostly;
4376 EXPORT_SYMBOL(rps_needed);
4377 struct static_key_false rfs_needed __read_mostly;
4378 EXPORT_SYMBOL(rfs_needed);
4379 
4380 static struct rps_dev_flow *
4381 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4382 	    struct rps_dev_flow *rflow, u16 next_cpu)
4383 {
4384 	if (next_cpu < nr_cpu_ids) {
4385 #ifdef CONFIG_RFS_ACCEL
4386 		struct netdev_rx_queue *rxqueue;
4387 		struct rps_dev_flow_table *flow_table;
4388 		struct rps_dev_flow *old_rflow;
4389 		u32 flow_id;
4390 		u16 rxq_index;
4391 		int rc;
4392 
4393 		/* Should we steer this flow to a different hardware queue? */
4394 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4395 		    !(dev->features & NETIF_F_NTUPLE))
4396 			goto out;
4397 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4398 		if (rxq_index == skb_get_rx_queue(skb))
4399 			goto out;
4400 
4401 		rxqueue = dev->_rx + rxq_index;
4402 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4403 		if (!flow_table)
4404 			goto out;
4405 		flow_id = skb_get_hash(skb) & flow_table->mask;
4406 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4407 							rxq_index, flow_id);
4408 		if (rc < 0)
4409 			goto out;
4410 		old_rflow = rflow;
4411 		rflow = &flow_table->flows[flow_id];
4412 		rflow->filter = rc;
4413 		if (old_rflow->filter == rflow->filter)
4414 			old_rflow->filter = RPS_NO_FILTER;
4415 	out:
4416 #endif
4417 		rflow->last_qtail =
4418 			per_cpu(softnet_data, next_cpu).input_queue_head;
4419 	}
4420 
4421 	rflow->cpu = next_cpu;
4422 	return rflow;
4423 }
4424 
4425 /*
4426  * get_rps_cpu is called from netif_receive_skb and returns the target
4427  * CPU from the RPS map of the receiving queue for a given skb.
4428  * rcu_read_lock must be held on entry.
4429  */
4430 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4431 		       struct rps_dev_flow **rflowp)
4432 {
4433 	const struct rps_sock_flow_table *sock_flow_table;
4434 	struct netdev_rx_queue *rxqueue = dev->_rx;
4435 	struct rps_dev_flow_table *flow_table;
4436 	struct rps_map *map;
4437 	int cpu = -1;
4438 	u32 tcpu;
4439 	u32 hash;
4440 
4441 	if (skb_rx_queue_recorded(skb)) {
4442 		u16 index = skb_get_rx_queue(skb);
4443 
4444 		if (unlikely(index >= dev->real_num_rx_queues)) {
4445 			WARN_ONCE(dev->real_num_rx_queues > 1,
4446 				  "%s received packet on queue %u, but number "
4447 				  "of RX queues is %u\n",
4448 				  dev->name, index, dev->real_num_rx_queues);
4449 			goto done;
4450 		}
4451 		rxqueue += index;
4452 	}
4453 
4454 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4455 
4456 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4457 	map = rcu_dereference(rxqueue->rps_map);
4458 	if (!flow_table && !map)
4459 		goto done;
4460 
4461 	skb_reset_network_header(skb);
4462 	hash = skb_get_hash(skb);
4463 	if (!hash)
4464 		goto done;
4465 
4466 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4467 	if (flow_table && sock_flow_table) {
4468 		struct rps_dev_flow *rflow;
4469 		u32 next_cpu;
4470 		u32 ident;
4471 
4472 		/* First check into global flow table if there is a match */
4473 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4474 		if ((ident ^ hash) & ~rps_cpu_mask)
4475 			goto try_rps;
4476 
4477 		next_cpu = ident & rps_cpu_mask;
4478 
4479 		/* OK, now we know there is a match,
4480 		 * we can look at the local (per receive queue) flow table
4481 		 */
4482 		rflow = &flow_table->flows[hash & flow_table->mask];
4483 		tcpu = rflow->cpu;
4484 
4485 		/*
4486 		 * If the desired CPU (where last recvmsg was done) is
4487 		 * different from current CPU (one in the rx-queue flow
4488 		 * table entry), switch if one of the following holds:
4489 		 *   - Current CPU is unset (>= nr_cpu_ids).
4490 		 *   - Current CPU is offline.
4491 		 *   - The current CPU's queue tail has advanced beyond the
4492 		 *     last packet that was enqueued using this table entry.
4493 		 *     This guarantees that all previous packets for the flow
4494 		 *     have been dequeued, thus preserving in order delivery.
4495 		 */
4496 		if (unlikely(tcpu != next_cpu) &&
4497 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4498 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4499 		      rflow->last_qtail)) >= 0)) {
4500 			tcpu = next_cpu;
4501 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4502 		}
4503 
4504 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4505 			*rflowp = rflow;
4506 			cpu = tcpu;
4507 			goto done;
4508 		}
4509 	}
4510 
4511 try_rps:
4512 
4513 	if (map) {
4514 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4515 		if (cpu_online(tcpu)) {
4516 			cpu = tcpu;
4517 			goto done;
4518 		}
4519 	}
4520 
4521 done:
4522 	return cpu;
4523 }
4524 
4525 #ifdef CONFIG_RFS_ACCEL
4526 
4527 /**
4528  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4529  * @dev: Device on which the filter was set
4530  * @rxq_index: RX queue index
4531  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4532  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4533  *
4534  * Drivers that implement ndo_rx_flow_steer() should periodically call
4535  * this function for each installed filter and remove the filters for
4536  * which it returns %true.
4537  */
4538 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4539 			 u32 flow_id, u16 filter_id)
4540 {
4541 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4542 	struct rps_dev_flow_table *flow_table;
4543 	struct rps_dev_flow *rflow;
4544 	bool expire = true;
4545 	unsigned int cpu;
4546 
4547 	rcu_read_lock();
4548 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4549 	if (flow_table && flow_id <= flow_table->mask) {
4550 		rflow = &flow_table->flows[flow_id];
4551 		cpu = READ_ONCE(rflow->cpu);
4552 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4553 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4554 			   rflow->last_qtail) <
4555 		     (int)(10 * flow_table->mask)))
4556 			expire = false;
4557 	}
4558 	rcu_read_unlock();
4559 	return expire;
4560 }
4561 EXPORT_SYMBOL(rps_may_expire_flow);
4562 
4563 #endif /* CONFIG_RFS_ACCEL */
4564 
4565 /* Called from hardirq (IPI) context */
4566 static void rps_trigger_softirq(void *data)
4567 {
4568 	struct softnet_data *sd = data;
4569 
4570 	____napi_schedule(sd, &sd->backlog);
4571 	sd->received_rps++;
4572 }
4573 
4574 #endif /* CONFIG_RPS */
4575 
4576 /* Called from hardirq (IPI) context */
4577 static void trigger_rx_softirq(void *data)
4578 {
4579 	struct softnet_data *sd = data;
4580 
4581 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4582 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4583 }
4584 
4585 /*
4586  * Check if this softnet_data structure is another cpu one
4587  * If yes, queue it to our IPI list and return 1
4588  * If no, return 0
4589  */
4590 static int napi_schedule_rps(struct softnet_data *sd)
4591 {
4592 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4593 
4594 #ifdef CONFIG_RPS
4595 	if (sd != mysd) {
4596 		sd->rps_ipi_next = mysd->rps_ipi_list;
4597 		mysd->rps_ipi_list = sd;
4598 
4599 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4600 		return 1;
4601 	}
4602 #endif /* CONFIG_RPS */
4603 	__napi_schedule_irqoff(&mysd->backlog);
4604 	return 0;
4605 }
4606 
4607 #ifdef CONFIG_NET_FLOW_LIMIT
4608 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4609 #endif
4610 
4611 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4612 {
4613 #ifdef CONFIG_NET_FLOW_LIMIT
4614 	struct sd_flow_limit *fl;
4615 	struct softnet_data *sd;
4616 	unsigned int old_flow, new_flow;
4617 
4618 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4619 		return false;
4620 
4621 	sd = this_cpu_ptr(&softnet_data);
4622 
4623 	rcu_read_lock();
4624 	fl = rcu_dereference(sd->flow_limit);
4625 	if (fl) {
4626 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4627 		old_flow = fl->history[fl->history_head];
4628 		fl->history[fl->history_head] = new_flow;
4629 
4630 		fl->history_head++;
4631 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4632 
4633 		if (likely(fl->buckets[old_flow]))
4634 			fl->buckets[old_flow]--;
4635 
4636 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4637 			fl->count++;
4638 			rcu_read_unlock();
4639 			return true;
4640 		}
4641 	}
4642 	rcu_read_unlock();
4643 #endif
4644 	return false;
4645 }
4646 
4647 /*
4648  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4649  * queue (may be a remote CPU queue).
4650  */
4651 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4652 			      unsigned int *qtail)
4653 {
4654 	enum skb_drop_reason reason;
4655 	struct softnet_data *sd;
4656 	unsigned long flags;
4657 	unsigned int qlen;
4658 
4659 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4660 	sd = &per_cpu(softnet_data, cpu);
4661 
4662 	rps_lock_irqsave(sd, &flags);
4663 	if (!netif_running(skb->dev))
4664 		goto drop;
4665 	qlen = skb_queue_len(&sd->input_pkt_queue);
4666 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4667 		if (qlen) {
4668 enqueue:
4669 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4670 			input_queue_tail_incr_save(sd, qtail);
4671 			rps_unlock_irq_restore(sd, &flags);
4672 			return NET_RX_SUCCESS;
4673 		}
4674 
4675 		/* Schedule NAPI for backlog device
4676 		 * We can use non atomic operation since we own the queue lock
4677 		 */
4678 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4679 			napi_schedule_rps(sd);
4680 		goto enqueue;
4681 	}
4682 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4683 
4684 drop:
4685 	sd->dropped++;
4686 	rps_unlock_irq_restore(sd, &flags);
4687 
4688 	dev_core_stats_rx_dropped_inc(skb->dev);
4689 	kfree_skb_reason(skb, reason);
4690 	return NET_RX_DROP;
4691 }
4692 
4693 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4694 {
4695 	struct net_device *dev = skb->dev;
4696 	struct netdev_rx_queue *rxqueue;
4697 
4698 	rxqueue = dev->_rx;
4699 
4700 	if (skb_rx_queue_recorded(skb)) {
4701 		u16 index = skb_get_rx_queue(skb);
4702 
4703 		if (unlikely(index >= dev->real_num_rx_queues)) {
4704 			WARN_ONCE(dev->real_num_rx_queues > 1,
4705 				  "%s received packet on queue %u, but number "
4706 				  "of RX queues is %u\n",
4707 				  dev->name, index, dev->real_num_rx_queues);
4708 
4709 			return rxqueue; /* Return first rxqueue */
4710 		}
4711 		rxqueue += index;
4712 	}
4713 	return rxqueue;
4714 }
4715 
4716 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4717 			     struct bpf_prog *xdp_prog)
4718 {
4719 	void *orig_data, *orig_data_end, *hard_start;
4720 	struct netdev_rx_queue *rxqueue;
4721 	bool orig_bcast, orig_host;
4722 	u32 mac_len, frame_sz;
4723 	__be16 orig_eth_type;
4724 	struct ethhdr *eth;
4725 	u32 metalen, act;
4726 	int off;
4727 
4728 	/* The XDP program wants to see the packet starting at the MAC
4729 	 * header.
4730 	 */
4731 	mac_len = skb->data - skb_mac_header(skb);
4732 	hard_start = skb->data - skb_headroom(skb);
4733 
4734 	/* SKB "head" area always have tailroom for skb_shared_info */
4735 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4736 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4737 
4738 	rxqueue = netif_get_rxqueue(skb);
4739 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4740 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4741 			 skb_headlen(skb) + mac_len, true);
4742 
4743 	orig_data_end = xdp->data_end;
4744 	orig_data = xdp->data;
4745 	eth = (struct ethhdr *)xdp->data;
4746 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4747 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4748 	orig_eth_type = eth->h_proto;
4749 
4750 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4751 
4752 	/* check if bpf_xdp_adjust_head was used */
4753 	off = xdp->data - orig_data;
4754 	if (off) {
4755 		if (off > 0)
4756 			__skb_pull(skb, off);
4757 		else if (off < 0)
4758 			__skb_push(skb, -off);
4759 
4760 		skb->mac_header += off;
4761 		skb_reset_network_header(skb);
4762 	}
4763 
4764 	/* check if bpf_xdp_adjust_tail was used */
4765 	off = xdp->data_end - orig_data_end;
4766 	if (off != 0) {
4767 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4768 		skb->len += off; /* positive on grow, negative on shrink */
4769 	}
4770 
4771 	/* check if XDP changed eth hdr such SKB needs update */
4772 	eth = (struct ethhdr *)xdp->data;
4773 	if ((orig_eth_type != eth->h_proto) ||
4774 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4775 						  skb->dev->dev_addr)) ||
4776 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4777 		__skb_push(skb, ETH_HLEN);
4778 		skb->pkt_type = PACKET_HOST;
4779 		skb->protocol = eth_type_trans(skb, skb->dev);
4780 	}
4781 
4782 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4783 	 * before calling us again on redirect path. We do not call do_redirect
4784 	 * as we leave that up to the caller.
4785 	 *
4786 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4787 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4788 	 */
4789 	switch (act) {
4790 	case XDP_REDIRECT:
4791 	case XDP_TX:
4792 		__skb_push(skb, mac_len);
4793 		break;
4794 	case XDP_PASS:
4795 		metalen = xdp->data - xdp->data_meta;
4796 		if (metalen)
4797 			skb_metadata_set(skb, metalen);
4798 		break;
4799 	}
4800 
4801 	return act;
4802 }
4803 
4804 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4805 				     struct xdp_buff *xdp,
4806 				     struct bpf_prog *xdp_prog)
4807 {
4808 	u32 act = XDP_DROP;
4809 
4810 	/* Reinjected packets coming from act_mirred or similar should
4811 	 * not get XDP generic processing.
4812 	 */
4813 	if (skb_is_redirected(skb))
4814 		return XDP_PASS;
4815 
4816 	/* XDP packets must be linear and must have sufficient headroom
4817 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4818 	 * native XDP provides, thus we need to do it here as well.
4819 	 */
4820 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4821 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4822 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4823 		int troom = skb->tail + skb->data_len - skb->end;
4824 
4825 		/* In case we have to go down the path and also linearize,
4826 		 * then lets do the pskb_expand_head() work just once here.
4827 		 */
4828 		if (pskb_expand_head(skb,
4829 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4830 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4831 			goto do_drop;
4832 		if (skb_linearize(skb))
4833 			goto do_drop;
4834 	}
4835 
4836 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4837 	switch (act) {
4838 	case XDP_REDIRECT:
4839 	case XDP_TX:
4840 	case XDP_PASS:
4841 		break;
4842 	default:
4843 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4844 		fallthrough;
4845 	case XDP_ABORTED:
4846 		trace_xdp_exception(skb->dev, xdp_prog, act);
4847 		fallthrough;
4848 	case XDP_DROP:
4849 	do_drop:
4850 		kfree_skb(skb);
4851 		break;
4852 	}
4853 
4854 	return act;
4855 }
4856 
4857 /* When doing generic XDP we have to bypass the qdisc layer and the
4858  * network taps in order to match in-driver-XDP behavior. This also means
4859  * that XDP packets are able to starve other packets going through a qdisc,
4860  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4861  * queues, so they do not have this starvation issue.
4862  */
4863 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4864 {
4865 	struct net_device *dev = skb->dev;
4866 	struct netdev_queue *txq;
4867 	bool free_skb = true;
4868 	int cpu, rc;
4869 
4870 	txq = netdev_core_pick_tx(dev, skb, NULL);
4871 	cpu = smp_processor_id();
4872 	HARD_TX_LOCK(dev, txq, cpu);
4873 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4874 		rc = netdev_start_xmit(skb, dev, txq, 0);
4875 		if (dev_xmit_complete(rc))
4876 			free_skb = false;
4877 	}
4878 	HARD_TX_UNLOCK(dev, txq);
4879 	if (free_skb) {
4880 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4881 		dev_core_stats_tx_dropped_inc(dev);
4882 		kfree_skb(skb);
4883 	}
4884 }
4885 
4886 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4887 
4888 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4889 {
4890 	if (xdp_prog) {
4891 		struct xdp_buff xdp;
4892 		u32 act;
4893 		int err;
4894 
4895 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4896 		if (act != XDP_PASS) {
4897 			switch (act) {
4898 			case XDP_REDIRECT:
4899 				err = xdp_do_generic_redirect(skb->dev, skb,
4900 							      &xdp, xdp_prog);
4901 				if (err)
4902 					goto out_redir;
4903 				break;
4904 			case XDP_TX:
4905 				generic_xdp_tx(skb, xdp_prog);
4906 				break;
4907 			}
4908 			return XDP_DROP;
4909 		}
4910 	}
4911 	return XDP_PASS;
4912 out_redir:
4913 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4914 	return XDP_DROP;
4915 }
4916 EXPORT_SYMBOL_GPL(do_xdp_generic);
4917 
4918 static int netif_rx_internal(struct sk_buff *skb)
4919 {
4920 	int ret;
4921 
4922 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4923 
4924 	trace_netif_rx(skb);
4925 
4926 #ifdef CONFIG_RPS
4927 	if (static_branch_unlikely(&rps_needed)) {
4928 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4929 		int cpu;
4930 
4931 		rcu_read_lock();
4932 
4933 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4934 		if (cpu < 0)
4935 			cpu = smp_processor_id();
4936 
4937 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4938 
4939 		rcu_read_unlock();
4940 	} else
4941 #endif
4942 	{
4943 		unsigned int qtail;
4944 
4945 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4946 	}
4947 	return ret;
4948 }
4949 
4950 /**
4951  *	__netif_rx	-	Slightly optimized version of netif_rx
4952  *	@skb: buffer to post
4953  *
4954  *	This behaves as netif_rx except that it does not disable bottom halves.
4955  *	As a result this function may only be invoked from the interrupt context
4956  *	(either hard or soft interrupt).
4957  */
4958 int __netif_rx(struct sk_buff *skb)
4959 {
4960 	int ret;
4961 
4962 	lockdep_assert_once(hardirq_count() | softirq_count());
4963 
4964 	trace_netif_rx_entry(skb);
4965 	ret = netif_rx_internal(skb);
4966 	trace_netif_rx_exit(ret);
4967 	return ret;
4968 }
4969 EXPORT_SYMBOL(__netif_rx);
4970 
4971 /**
4972  *	netif_rx	-	post buffer to the network code
4973  *	@skb: buffer to post
4974  *
4975  *	This function receives a packet from a device driver and queues it for
4976  *	the upper (protocol) levels to process via the backlog NAPI device. It
4977  *	always succeeds. The buffer may be dropped during processing for
4978  *	congestion control or by the protocol layers.
4979  *	The network buffer is passed via the backlog NAPI device. Modern NIC
4980  *	driver should use NAPI and GRO.
4981  *	This function can used from interrupt and from process context. The
4982  *	caller from process context must not disable interrupts before invoking
4983  *	this function.
4984  *
4985  *	return values:
4986  *	NET_RX_SUCCESS	(no congestion)
4987  *	NET_RX_DROP     (packet was dropped)
4988  *
4989  */
4990 int netif_rx(struct sk_buff *skb)
4991 {
4992 	bool need_bh_off = !(hardirq_count() | softirq_count());
4993 	int ret;
4994 
4995 	if (need_bh_off)
4996 		local_bh_disable();
4997 	trace_netif_rx_entry(skb);
4998 	ret = netif_rx_internal(skb);
4999 	trace_netif_rx_exit(ret);
5000 	if (need_bh_off)
5001 		local_bh_enable();
5002 	return ret;
5003 }
5004 EXPORT_SYMBOL(netif_rx);
5005 
5006 static __latent_entropy void net_tx_action(struct softirq_action *h)
5007 {
5008 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5009 
5010 	if (sd->completion_queue) {
5011 		struct sk_buff *clist;
5012 
5013 		local_irq_disable();
5014 		clist = sd->completion_queue;
5015 		sd->completion_queue = NULL;
5016 		local_irq_enable();
5017 
5018 		while (clist) {
5019 			struct sk_buff *skb = clist;
5020 
5021 			clist = clist->next;
5022 
5023 			WARN_ON(refcount_read(&skb->users));
5024 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5025 				trace_consume_skb(skb, net_tx_action);
5026 			else
5027 				trace_kfree_skb(skb, net_tx_action,
5028 						SKB_DROP_REASON_NOT_SPECIFIED);
5029 
5030 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5031 				__kfree_skb(skb);
5032 			else
5033 				__kfree_skb_defer(skb);
5034 		}
5035 	}
5036 
5037 	if (sd->output_queue) {
5038 		struct Qdisc *head;
5039 
5040 		local_irq_disable();
5041 		head = sd->output_queue;
5042 		sd->output_queue = NULL;
5043 		sd->output_queue_tailp = &sd->output_queue;
5044 		local_irq_enable();
5045 
5046 		rcu_read_lock();
5047 
5048 		while (head) {
5049 			struct Qdisc *q = head;
5050 			spinlock_t *root_lock = NULL;
5051 
5052 			head = head->next_sched;
5053 
5054 			/* We need to make sure head->next_sched is read
5055 			 * before clearing __QDISC_STATE_SCHED
5056 			 */
5057 			smp_mb__before_atomic();
5058 
5059 			if (!(q->flags & TCQ_F_NOLOCK)) {
5060 				root_lock = qdisc_lock(q);
5061 				spin_lock(root_lock);
5062 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5063 						     &q->state))) {
5064 				/* There is a synchronize_net() between
5065 				 * STATE_DEACTIVATED flag being set and
5066 				 * qdisc_reset()/some_qdisc_is_busy() in
5067 				 * dev_deactivate(), so we can safely bail out
5068 				 * early here to avoid data race between
5069 				 * qdisc_deactivate() and some_qdisc_is_busy()
5070 				 * for lockless qdisc.
5071 				 */
5072 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5073 				continue;
5074 			}
5075 
5076 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5077 			qdisc_run(q);
5078 			if (root_lock)
5079 				spin_unlock(root_lock);
5080 		}
5081 
5082 		rcu_read_unlock();
5083 	}
5084 
5085 	xfrm_dev_backlog(sd);
5086 }
5087 
5088 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5089 /* This hook is defined here for ATM LANE */
5090 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5091 			     unsigned char *addr) __read_mostly;
5092 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5093 #endif
5094 
5095 static inline struct sk_buff *
5096 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5097 		   struct net_device *orig_dev, bool *another)
5098 {
5099 #ifdef CONFIG_NET_CLS_ACT
5100 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5101 	struct tcf_result cl_res;
5102 
5103 	/* If there's at least one ingress present somewhere (so
5104 	 * we get here via enabled static key), remaining devices
5105 	 * that are not configured with an ingress qdisc will bail
5106 	 * out here.
5107 	 */
5108 	if (!miniq)
5109 		return skb;
5110 
5111 	if (*pt_prev) {
5112 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5113 		*pt_prev = NULL;
5114 	}
5115 
5116 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5117 	tc_skb_cb(skb)->mru = 0;
5118 	tc_skb_cb(skb)->post_ct = false;
5119 	skb->tc_at_ingress = 1;
5120 	mini_qdisc_bstats_cpu_update(miniq, skb);
5121 
5122 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5123 	case TC_ACT_OK:
5124 	case TC_ACT_RECLASSIFY:
5125 		skb->tc_index = TC_H_MIN(cl_res.classid);
5126 		break;
5127 	case TC_ACT_SHOT:
5128 		mini_qdisc_qstats_cpu_drop(miniq);
5129 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5130 		*ret = NET_RX_DROP;
5131 		return NULL;
5132 	case TC_ACT_STOLEN:
5133 	case TC_ACT_QUEUED:
5134 	case TC_ACT_TRAP:
5135 		consume_skb(skb);
5136 		*ret = NET_RX_SUCCESS;
5137 		return NULL;
5138 	case TC_ACT_REDIRECT:
5139 		/* skb_mac_header check was done by cls/act_bpf, so
5140 		 * we can safely push the L2 header back before
5141 		 * redirecting to another netdev
5142 		 */
5143 		__skb_push(skb, skb->mac_len);
5144 		if (skb_do_redirect(skb) == -EAGAIN) {
5145 			__skb_pull(skb, skb->mac_len);
5146 			*another = true;
5147 			break;
5148 		}
5149 		*ret = NET_RX_SUCCESS;
5150 		return NULL;
5151 	case TC_ACT_CONSUMED:
5152 		*ret = NET_RX_SUCCESS;
5153 		return NULL;
5154 	default:
5155 		break;
5156 	}
5157 #endif /* CONFIG_NET_CLS_ACT */
5158 	return skb;
5159 }
5160 
5161 /**
5162  *	netdev_is_rx_handler_busy - check if receive handler is registered
5163  *	@dev: device to check
5164  *
5165  *	Check if a receive handler is already registered for a given device.
5166  *	Return true if there one.
5167  *
5168  *	The caller must hold the rtnl_mutex.
5169  */
5170 bool netdev_is_rx_handler_busy(struct net_device *dev)
5171 {
5172 	ASSERT_RTNL();
5173 	return dev && rtnl_dereference(dev->rx_handler);
5174 }
5175 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5176 
5177 /**
5178  *	netdev_rx_handler_register - register receive handler
5179  *	@dev: device to register a handler for
5180  *	@rx_handler: receive handler to register
5181  *	@rx_handler_data: data pointer that is used by rx handler
5182  *
5183  *	Register a receive handler for a device. This handler will then be
5184  *	called from __netif_receive_skb. A negative errno code is returned
5185  *	on a failure.
5186  *
5187  *	The caller must hold the rtnl_mutex.
5188  *
5189  *	For a general description of rx_handler, see enum rx_handler_result.
5190  */
5191 int netdev_rx_handler_register(struct net_device *dev,
5192 			       rx_handler_func_t *rx_handler,
5193 			       void *rx_handler_data)
5194 {
5195 	if (netdev_is_rx_handler_busy(dev))
5196 		return -EBUSY;
5197 
5198 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5199 		return -EINVAL;
5200 
5201 	/* Note: rx_handler_data must be set before rx_handler */
5202 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5203 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5204 
5205 	return 0;
5206 }
5207 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5208 
5209 /**
5210  *	netdev_rx_handler_unregister - unregister receive handler
5211  *	@dev: device to unregister a handler from
5212  *
5213  *	Unregister a receive handler from a device.
5214  *
5215  *	The caller must hold the rtnl_mutex.
5216  */
5217 void netdev_rx_handler_unregister(struct net_device *dev)
5218 {
5219 
5220 	ASSERT_RTNL();
5221 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5222 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5223 	 * section has a guarantee to see a non NULL rx_handler_data
5224 	 * as well.
5225 	 */
5226 	synchronize_net();
5227 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5228 }
5229 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5230 
5231 /*
5232  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5233  * the special handling of PFMEMALLOC skbs.
5234  */
5235 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5236 {
5237 	switch (skb->protocol) {
5238 	case htons(ETH_P_ARP):
5239 	case htons(ETH_P_IP):
5240 	case htons(ETH_P_IPV6):
5241 	case htons(ETH_P_8021Q):
5242 	case htons(ETH_P_8021AD):
5243 		return true;
5244 	default:
5245 		return false;
5246 	}
5247 }
5248 
5249 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5250 			     int *ret, struct net_device *orig_dev)
5251 {
5252 	if (nf_hook_ingress_active(skb)) {
5253 		int ingress_retval;
5254 
5255 		if (*pt_prev) {
5256 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5257 			*pt_prev = NULL;
5258 		}
5259 
5260 		rcu_read_lock();
5261 		ingress_retval = nf_hook_ingress(skb);
5262 		rcu_read_unlock();
5263 		return ingress_retval;
5264 	}
5265 	return 0;
5266 }
5267 
5268 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5269 				    struct packet_type **ppt_prev)
5270 {
5271 	struct packet_type *ptype, *pt_prev;
5272 	rx_handler_func_t *rx_handler;
5273 	struct sk_buff *skb = *pskb;
5274 	struct net_device *orig_dev;
5275 	bool deliver_exact = false;
5276 	int ret = NET_RX_DROP;
5277 	__be16 type;
5278 
5279 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5280 
5281 	trace_netif_receive_skb(skb);
5282 
5283 	orig_dev = skb->dev;
5284 
5285 	skb_reset_network_header(skb);
5286 	if (!skb_transport_header_was_set(skb))
5287 		skb_reset_transport_header(skb);
5288 	skb_reset_mac_len(skb);
5289 
5290 	pt_prev = NULL;
5291 
5292 another_round:
5293 	skb->skb_iif = skb->dev->ifindex;
5294 
5295 	__this_cpu_inc(softnet_data.processed);
5296 
5297 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5298 		int ret2;
5299 
5300 		migrate_disable();
5301 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5302 		migrate_enable();
5303 
5304 		if (ret2 != XDP_PASS) {
5305 			ret = NET_RX_DROP;
5306 			goto out;
5307 		}
5308 	}
5309 
5310 	if (eth_type_vlan(skb->protocol)) {
5311 		skb = skb_vlan_untag(skb);
5312 		if (unlikely(!skb))
5313 			goto out;
5314 	}
5315 
5316 	if (skb_skip_tc_classify(skb))
5317 		goto skip_classify;
5318 
5319 	if (pfmemalloc)
5320 		goto skip_taps;
5321 
5322 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5323 		if (pt_prev)
5324 			ret = deliver_skb(skb, pt_prev, orig_dev);
5325 		pt_prev = ptype;
5326 	}
5327 
5328 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5329 		if (pt_prev)
5330 			ret = deliver_skb(skb, pt_prev, orig_dev);
5331 		pt_prev = ptype;
5332 	}
5333 
5334 skip_taps:
5335 #ifdef CONFIG_NET_INGRESS
5336 	if (static_branch_unlikely(&ingress_needed_key)) {
5337 		bool another = false;
5338 
5339 		nf_skip_egress(skb, true);
5340 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5341 					 &another);
5342 		if (another)
5343 			goto another_round;
5344 		if (!skb)
5345 			goto out;
5346 
5347 		nf_skip_egress(skb, false);
5348 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5349 			goto out;
5350 	}
5351 #endif
5352 	skb_reset_redirect(skb);
5353 skip_classify:
5354 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5355 		goto drop;
5356 
5357 	if (skb_vlan_tag_present(skb)) {
5358 		if (pt_prev) {
5359 			ret = deliver_skb(skb, pt_prev, orig_dev);
5360 			pt_prev = NULL;
5361 		}
5362 		if (vlan_do_receive(&skb))
5363 			goto another_round;
5364 		else if (unlikely(!skb))
5365 			goto out;
5366 	}
5367 
5368 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5369 	if (rx_handler) {
5370 		if (pt_prev) {
5371 			ret = deliver_skb(skb, pt_prev, orig_dev);
5372 			pt_prev = NULL;
5373 		}
5374 		switch (rx_handler(&skb)) {
5375 		case RX_HANDLER_CONSUMED:
5376 			ret = NET_RX_SUCCESS;
5377 			goto out;
5378 		case RX_HANDLER_ANOTHER:
5379 			goto another_round;
5380 		case RX_HANDLER_EXACT:
5381 			deliver_exact = true;
5382 			break;
5383 		case RX_HANDLER_PASS:
5384 			break;
5385 		default:
5386 			BUG();
5387 		}
5388 	}
5389 
5390 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5391 check_vlan_id:
5392 		if (skb_vlan_tag_get_id(skb)) {
5393 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5394 			 * find vlan device.
5395 			 */
5396 			skb->pkt_type = PACKET_OTHERHOST;
5397 		} else if (eth_type_vlan(skb->protocol)) {
5398 			/* Outer header is 802.1P with vlan 0, inner header is
5399 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5400 			 * not find vlan dev for vlan id 0.
5401 			 */
5402 			__vlan_hwaccel_clear_tag(skb);
5403 			skb = skb_vlan_untag(skb);
5404 			if (unlikely(!skb))
5405 				goto out;
5406 			if (vlan_do_receive(&skb))
5407 				/* After stripping off 802.1P header with vlan 0
5408 				 * vlan dev is found for inner header.
5409 				 */
5410 				goto another_round;
5411 			else if (unlikely(!skb))
5412 				goto out;
5413 			else
5414 				/* We have stripped outer 802.1P vlan 0 header.
5415 				 * But could not find vlan dev.
5416 				 * check again for vlan id to set OTHERHOST.
5417 				 */
5418 				goto check_vlan_id;
5419 		}
5420 		/* Note: we might in the future use prio bits
5421 		 * and set skb->priority like in vlan_do_receive()
5422 		 * For the time being, just ignore Priority Code Point
5423 		 */
5424 		__vlan_hwaccel_clear_tag(skb);
5425 	}
5426 
5427 	type = skb->protocol;
5428 
5429 	/* deliver only exact match when indicated */
5430 	if (likely(!deliver_exact)) {
5431 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5432 				       &ptype_base[ntohs(type) &
5433 						   PTYPE_HASH_MASK]);
5434 	}
5435 
5436 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5437 			       &orig_dev->ptype_specific);
5438 
5439 	if (unlikely(skb->dev != orig_dev)) {
5440 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5441 				       &skb->dev->ptype_specific);
5442 	}
5443 
5444 	if (pt_prev) {
5445 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5446 			goto drop;
5447 		*ppt_prev = pt_prev;
5448 	} else {
5449 drop:
5450 		if (!deliver_exact)
5451 			dev_core_stats_rx_dropped_inc(skb->dev);
5452 		else
5453 			dev_core_stats_rx_nohandler_inc(skb->dev);
5454 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5455 		/* Jamal, now you will not able to escape explaining
5456 		 * me how you were going to use this. :-)
5457 		 */
5458 		ret = NET_RX_DROP;
5459 	}
5460 
5461 out:
5462 	/* The invariant here is that if *ppt_prev is not NULL
5463 	 * then skb should also be non-NULL.
5464 	 *
5465 	 * Apparently *ppt_prev assignment above holds this invariant due to
5466 	 * skb dereferencing near it.
5467 	 */
5468 	*pskb = skb;
5469 	return ret;
5470 }
5471 
5472 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5473 {
5474 	struct net_device *orig_dev = skb->dev;
5475 	struct packet_type *pt_prev = NULL;
5476 	int ret;
5477 
5478 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5479 	if (pt_prev)
5480 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5481 					 skb->dev, pt_prev, orig_dev);
5482 	return ret;
5483 }
5484 
5485 /**
5486  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5487  *	@skb: buffer to process
5488  *
5489  *	More direct receive version of netif_receive_skb().  It should
5490  *	only be used by callers that have a need to skip RPS and Generic XDP.
5491  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5492  *
5493  *	This function may only be called from softirq context and interrupts
5494  *	should be enabled.
5495  *
5496  *	Return values (usually ignored):
5497  *	NET_RX_SUCCESS: no congestion
5498  *	NET_RX_DROP: packet was dropped
5499  */
5500 int netif_receive_skb_core(struct sk_buff *skb)
5501 {
5502 	int ret;
5503 
5504 	rcu_read_lock();
5505 	ret = __netif_receive_skb_one_core(skb, false);
5506 	rcu_read_unlock();
5507 
5508 	return ret;
5509 }
5510 EXPORT_SYMBOL(netif_receive_skb_core);
5511 
5512 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5513 						  struct packet_type *pt_prev,
5514 						  struct net_device *orig_dev)
5515 {
5516 	struct sk_buff *skb, *next;
5517 
5518 	if (!pt_prev)
5519 		return;
5520 	if (list_empty(head))
5521 		return;
5522 	if (pt_prev->list_func != NULL)
5523 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5524 				   ip_list_rcv, head, pt_prev, orig_dev);
5525 	else
5526 		list_for_each_entry_safe(skb, next, head, list) {
5527 			skb_list_del_init(skb);
5528 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5529 		}
5530 }
5531 
5532 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5533 {
5534 	/* Fast-path assumptions:
5535 	 * - There is no RX handler.
5536 	 * - Only one packet_type matches.
5537 	 * If either of these fails, we will end up doing some per-packet
5538 	 * processing in-line, then handling the 'last ptype' for the whole
5539 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5540 	 * because the 'last ptype' must be constant across the sublist, and all
5541 	 * other ptypes are handled per-packet.
5542 	 */
5543 	/* Current (common) ptype of sublist */
5544 	struct packet_type *pt_curr = NULL;
5545 	/* Current (common) orig_dev of sublist */
5546 	struct net_device *od_curr = NULL;
5547 	struct list_head sublist;
5548 	struct sk_buff *skb, *next;
5549 
5550 	INIT_LIST_HEAD(&sublist);
5551 	list_for_each_entry_safe(skb, next, head, list) {
5552 		struct net_device *orig_dev = skb->dev;
5553 		struct packet_type *pt_prev = NULL;
5554 
5555 		skb_list_del_init(skb);
5556 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5557 		if (!pt_prev)
5558 			continue;
5559 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5560 			/* dispatch old sublist */
5561 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5562 			/* start new sublist */
5563 			INIT_LIST_HEAD(&sublist);
5564 			pt_curr = pt_prev;
5565 			od_curr = orig_dev;
5566 		}
5567 		list_add_tail(&skb->list, &sublist);
5568 	}
5569 
5570 	/* dispatch final sublist */
5571 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5572 }
5573 
5574 static int __netif_receive_skb(struct sk_buff *skb)
5575 {
5576 	int ret;
5577 
5578 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5579 		unsigned int noreclaim_flag;
5580 
5581 		/*
5582 		 * PFMEMALLOC skbs are special, they should
5583 		 * - be delivered to SOCK_MEMALLOC sockets only
5584 		 * - stay away from userspace
5585 		 * - have bounded memory usage
5586 		 *
5587 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5588 		 * context down to all allocation sites.
5589 		 */
5590 		noreclaim_flag = memalloc_noreclaim_save();
5591 		ret = __netif_receive_skb_one_core(skb, true);
5592 		memalloc_noreclaim_restore(noreclaim_flag);
5593 	} else
5594 		ret = __netif_receive_skb_one_core(skb, false);
5595 
5596 	return ret;
5597 }
5598 
5599 static void __netif_receive_skb_list(struct list_head *head)
5600 {
5601 	unsigned long noreclaim_flag = 0;
5602 	struct sk_buff *skb, *next;
5603 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5604 
5605 	list_for_each_entry_safe(skb, next, head, list) {
5606 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5607 			struct list_head sublist;
5608 
5609 			/* Handle the previous sublist */
5610 			list_cut_before(&sublist, head, &skb->list);
5611 			if (!list_empty(&sublist))
5612 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5613 			pfmemalloc = !pfmemalloc;
5614 			/* See comments in __netif_receive_skb */
5615 			if (pfmemalloc)
5616 				noreclaim_flag = memalloc_noreclaim_save();
5617 			else
5618 				memalloc_noreclaim_restore(noreclaim_flag);
5619 		}
5620 	}
5621 	/* Handle the remaining sublist */
5622 	if (!list_empty(head))
5623 		__netif_receive_skb_list_core(head, pfmemalloc);
5624 	/* Restore pflags */
5625 	if (pfmemalloc)
5626 		memalloc_noreclaim_restore(noreclaim_flag);
5627 }
5628 
5629 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5630 {
5631 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5632 	struct bpf_prog *new = xdp->prog;
5633 	int ret = 0;
5634 
5635 	switch (xdp->command) {
5636 	case XDP_SETUP_PROG:
5637 		rcu_assign_pointer(dev->xdp_prog, new);
5638 		if (old)
5639 			bpf_prog_put(old);
5640 
5641 		if (old && !new) {
5642 			static_branch_dec(&generic_xdp_needed_key);
5643 		} else if (new && !old) {
5644 			static_branch_inc(&generic_xdp_needed_key);
5645 			dev_disable_lro(dev);
5646 			dev_disable_gro_hw(dev);
5647 		}
5648 		break;
5649 
5650 	default:
5651 		ret = -EINVAL;
5652 		break;
5653 	}
5654 
5655 	return ret;
5656 }
5657 
5658 static int netif_receive_skb_internal(struct sk_buff *skb)
5659 {
5660 	int ret;
5661 
5662 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5663 
5664 	if (skb_defer_rx_timestamp(skb))
5665 		return NET_RX_SUCCESS;
5666 
5667 	rcu_read_lock();
5668 #ifdef CONFIG_RPS
5669 	if (static_branch_unlikely(&rps_needed)) {
5670 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5671 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5672 
5673 		if (cpu >= 0) {
5674 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5675 			rcu_read_unlock();
5676 			return ret;
5677 		}
5678 	}
5679 #endif
5680 	ret = __netif_receive_skb(skb);
5681 	rcu_read_unlock();
5682 	return ret;
5683 }
5684 
5685 void netif_receive_skb_list_internal(struct list_head *head)
5686 {
5687 	struct sk_buff *skb, *next;
5688 	struct list_head sublist;
5689 
5690 	INIT_LIST_HEAD(&sublist);
5691 	list_for_each_entry_safe(skb, next, head, list) {
5692 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5693 		skb_list_del_init(skb);
5694 		if (!skb_defer_rx_timestamp(skb))
5695 			list_add_tail(&skb->list, &sublist);
5696 	}
5697 	list_splice_init(&sublist, head);
5698 
5699 	rcu_read_lock();
5700 #ifdef CONFIG_RPS
5701 	if (static_branch_unlikely(&rps_needed)) {
5702 		list_for_each_entry_safe(skb, next, head, list) {
5703 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5704 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5705 
5706 			if (cpu >= 0) {
5707 				/* Will be handled, remove from list */
5708 				skb_list_del_init(skb);
5709 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5710 			}
5711 		}
5712 	}
5713 #endif
5714 	__netif_receive_skb_list(head);
5715 	rcu_read_unlock();
5716 }
5717 
5718 /**
5719  *	netif_receive_skb - process receive buffer from network
5720  *	@skb: buffer to process
5721  *
5722  *	netif_receive_skb() is the main receive data processing function.
5723  *	It always succeeds. The buffer may be dropped during processing
5724  *	for congestion control or by the protocol layers.
5725  *
5726  *	This function may only be called from softirq context and interrupts
5727  *	should be enabled.
5728  *
5729  *	Return values (usually ignored):
5730  *	NET_RX_SUCCESS: no congestion
5731  *	NET_RX_DROP: packet was dropped
5732  */
5733 int netif_receive_skb(struct sk_buff *skb)
5734 {
5735 	int ret;
5736 
5737 	trace_netif_receive_skb_entry(skb);
5738 
5739 	ret = netif_receive_skb_internal(skb);
5740 	trace_netif_receive_skb_exit(ret);
5741 
5742 	return ret;
5743 }
5744 EXPORT_SYMBOL(netif_receive_skb);
5745 
5746 /**
5747  *	netif_receive_skb_list - process many receive buffers from network
5748  *	@head: list of skbs to process.
5749  *
5750  *	Since return value of netif_receive_skb() is normally ignored, and
5751  *	wouldn't be meaningful for a list, this function returns void.
5752  *
5753  *	This function may only be called from softirq context and interrupts
5754  *	should be enabled.
5755  */
5756 void netif_receive_skb_list(struct list_head *head)
5757 {
5758 	struct sk_buff *skb;
5759 
5760 	if (list_empty(head))
5761 		return;
5762 	if (trace_netif_receive_skb_list_entry_enabled()) {
5763 		list_for_each_entry(skb, head, list)
5764 			trace_netif_receive_skb_list_entry(skb);
5765 	}
5766 	netif_receive_skb_list_internal(head);
5767 	trace_netif_receive_skb_list_exit(0);
5768 }
5769 EXPORT_SYMBOL(netif_receive_skb_list);
5770 
5771 static DEFINE_PER_CPU(struct work_struct, flush_works);
5772 
5773 /* Network device is going away, flush any packets still pending */
5774 static void flush_backlog(struct work_struct *work)
5775 {
5776 	struct sk_buff *skb, *tmp;
5777 	struct softnet_data *sd;
5778 
5779 	local_bh_disable();
5780 	sd = this_cpu_ptr(&softnet_data);
5781 
5782 	rps_lock_irq_disable(sd);
5783 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5784 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5785 			__skb_unlink(skb, &sd->input_pkt_queue);
5786 			dev_kfree_skb_irq(skb);
5787 			input_queue_head_incr(sd);
5788 		}
5789 	}
5790 	rps_unlock_irq_enable(sd);
5791 
5792 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5793 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5794 			__skb_unlink(skb, &sd->process_queue);
5795 			kfree_skb(skb);
5796 			input_queue_head_incr(sd);
5797 		}
5798 	}
5799 	local_bh_enable();
5800 }
5801 
5802 static bool flush_required(int cpu)
5803 {
5804 #if IS_ENABLED(CONFIG_RPS)
5805 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5806 	bool do_flush;
5807 
5808 	rps_lock_irq_disable(sd);
5809 
5810 	/* as insertion into process_queue happens with the rps lock held,
5811 	 * process_queue access may race only with dequeue
5812 	 */
5813 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5814 		   !skb_queue_empty_lockless(&sd->process_queue);
5815 	rps_unlock_irq_enable(sd);
5816 
5817 	return do_flush;
5818 #endif
5819 	/* without RPS we can't safely check input_pkt_queue: during a
5820 	 * concurrent remote skb_queue_splice() we can detect as empty both
5821 	 * input_pkt_queue and process_queue even if the latter could end-up
5822 	 * containing a lot of packets.
5823 	 */
5824 	return true;
5825 }
5826 
5827 static void flush_all_backlogs(void)
5828 {
5829 	static cpumask_t flush_cpus;
5830 	unsigned int cpu;
5831 
5832 	/* since we are under rtnl lock protection we can use static data
5833 	 * for the cpumask and avoid allocating on stack the possibly
5834 	 * large mask
5835 	 */
5836 	ASSERT_RTNL();
5837 
5838 	cpus_read_lock();
5839 
5840 	cpumask_clear(&flush_cpus);
5841 	for_each_online_cpu(cpu) {
5842 		if (flush_required(cpu)) {
5843 			queue_work_on(cpu, system_highpri_wq,
5844 				      per_cpu_ptr(&flush_works, cpu));
5845 			cpumask_set_cpu(cpu, &flush_cpus);
5846 		}
5847 	}
5848 
5849 	/* we can have in flight packet[s] on the cpus we are not flushing,
5850 	 * synchronize_net() in unregister_netdevice_many() will take care of
5851 	 * them
5852 	 */
5853 	for_each_cpu(cpu, &flush_cpus)
5854 		flush_work(per_cpu_ptr(&flush_works, cpu));
5855 
5856 	cpus_read_unlock();
5857 }
5858 
5859 static void net_rps_send_ipi(struct softnet_data *remsd)
5860 {
5861 #ifdef CONFIG_RPS
5862 	while (remsd) {
5863 		struct softnet_data *next = remsd->rps_ipi_next;
5864 
5865 		if (cpu_online(remsd->cpu))
5866 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5867 		remsd = next;
5868 	}
5869 #endif
5870 }
5871 
5872 /*
5873  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5874  * Note: called with local irq disabled, but exits with local irq enabled.
5875  */
5876 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5877 {
5878 #ifdef CONFIG_RPS
5879 	struct softnet_data *remsd = sd->rps_ipi_list;
5880 
5881 	if (remsd) {
5882 		sd->rps_ipi_list = NULL;
5883 
5884 		local_irq_enable();
5885 
5886 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5887 		net_rps_send_ipi(remsd);
5888 	} else
5889 #endif
5890 		local_irq_enable();
5891 }
5892 
5893 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5894 {
5895 #ifdef CONFIG_RPS
5896 	return sd->rps_ipi_list != NULL;
5897 #else
5898 	return false;
5899 #endif
5900 }
5901 
5902 static int process_backlog(struct napi_struct *napi, int quota)
5903 {
5904 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5905 	bool again = true;
5906 	int work = 0;
5907 
5908 	/* Check if we have pending ipi, its better to send them now,
5909 	 * not waiting net_rx_action() end.
5910 	 */
5911 	if (sd_has_rps_ipi_waiting(sd)) {
5912 		local_irq_disable();
5913 		net_rps_action_and_irq_enable(sd);
5914 	}
5915 
5916 	napi->weight = READ_ONCE(dev_rx_weight);
5917 	while (again) {
5918 		struct sk_buff *skb;
5919 
5920 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5921 			rcu_read_lock();
5922 			__netif_receive_skb(skb);
5923 			rcu_read_unlock();
5924 			input_queue_head_incr(sd);
5925 			if (++work >= quota)
5926 				return work;
5927 
5928 		}
5929 
5930 		rps_lock_irq_disable(sd);
5931 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5932 			/*
5933 			 * Inline a custom version of __napi_complete().
5934 			 * only current cpu owns and manipulates this napi,
5935 			 * and NAPI_STATE_SCHED is the only possible flag set
5936 			 * on backlog.
5937 			 * We can use a plain write instead of clear_bit(),
5938 			 * and we dont need an smp_mb() memory barrier.
5939 			 */
5940 			napi->state = 0;
5941 			again = false;
5942 		} else {
5943 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5944 						   &sd->process_queue);
5945 		}
5946 		rps_unlock_irq_enable(sd);
5947 	}
5948 
5949 	return work;
5950 }
5951 
5952 /**
5953  * __napi_schedule - schedule for receive
5954  * @n: entry to schedule
5955  *
5956  * The entry's receive function will be scheduled to run.
5957  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5958  */
5959 void __napi_schedule(struct napi_struct *n)
5960 {
5961 	unsigned long flags;
5962 
5963 	local_irq_save(flags);
5964 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5965 	local_irq_restore(flags);
5966 }
5967 EXPORT_SYMBOL(__napi_schedule);
5968 
5969 /**
5970  *	napi_schedule_prep - check if napi can be scheduled
5971  *	@n: napi context
5972  *
5973  * Test if NAPI routine is already running, and if not mark
5974  * it as running.  This is used as a condition variable to
5975  * insure only one NAPI poll instance runs.  We also make
5976  * sure there is no pending NAPI disable.
5977  */
5978 bool napi_schedule_prep(struct napi_struct *n)
5979 {
5980 	unsigned long new, val = READ_ONCE(n->state);
5981 
5982 	do {
5983 		if (unlikely(val & NAPIF_STATE_DISABLE))
5984 			return false;
5985 		new = val | NAPIF_STATE_SCHED;
5986 
5987 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5988 		 * This was suggested by Alexander Duyck, as compiler
5989 		 * emits better code than :
5990 		 * if (val & NAPIF_STATE_SCHED)
5991 		 *     new |= NAPIF_STATE_MISSED;
5992 		 */
5993 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5994 						   NAPIF_STATE_MISSED;
5995 	} while (!try_cmpxchg(&n->state, &val, new));
5996 
5997 	return !(val & NAPIF_STATE_SCHED);
5998 }
5999 EXPORT_SYMBOL(napi_schedule_prep);
6000 
6001 /**
6002  * __napi_schedule_irqoff - schedule for receive
6003  * @n: entry to schedule
6004  *
6005  * Variant of __napi_schedule() assuming hard irqs are masked.
6006  *
6007  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6008  * because the interrupt disabled assumption might not be true
6009  * due to force-threaded interrupts and spinlock substitution.
6010  */
6011 void __napi_schedule_irqoff(struct napi_struct *n)
6012 {
6013 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6014 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6015 	else
6016 		__napi_schedule(n);
6017 }
6018 EXPORT_SYMBOL(__napi_schedule_irqoff);
6019 
6020 bool napi_complete_done(struct napi_struct *n, int work_done)
6021 {
6022 	unsigned long flags, val, new, timeout = 0;
6023 	bool ret = true;
6024 
6025 	/*
6026 	 * 1) Don't let napi dequeue from the cpu poll list
6027 	 *    just in case its running on a different cpu.
6028 	 * 2) If we are busy polling, do nothing here, we have
6029 	 *    the guarantee we will be called later.
6030 	 */
6031 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6032 				 NAPIF_STATE_IN_BUSY_POLL)))
6033 		return false;
6034 
6035 	if (work_done) {
6036 		if (n->gro_bitmask)
6037 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6038 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6039 	}
6040 	if (n->defer_hard_irqs_count > 0) {
6041 		n->defer_hard_irqs_count--;
6042 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6043 		if (timeout)
6044 			ret = false;
6045 	}
6046 	if (n->gro_bitmask) {
6047 		/* When the NAPI instance uses a timeout and keeps postponing
6048 		 * it, we need to bound somehow the time packets are kept in
6049 		 * the GRO layer
6050 		 */
6051 		napi_gro_flush(n, !!timeout);
6052 	}
6053 
6054 	gro_normal_list(n);
6055 
6056 	if (unlikely(!list_empty(&n->poll_list))) {
6057 		/* If n->poll_list is not empty, we need to mask irqs */
6058 		local_irq_save(flags);
6059 		list_del_init(&n->poll_list);
6060 		local_irq_restore(flags);
6061 	}
6062 
6063 	val = READ_ONCE(n->state);
6064 	do {
6065 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6066 
6067 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6068 			      NAPIF_STATE_SCHED_THREADED |
6069 			      NAPIF_STATE_PREFER_BUSY_POLL);
6070 
6071 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6072 		 * because we will call napi->poll() one more time.
6073 		 * This C code was suggested by Alexander Duyck to help gcc.
6074 		 */
6075 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6076 						    NAPIF_STATE_SCHED;
6077 	} while (!try_cmpxchg(&n->state, &val, new));
6078 
6079 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6080 		__napi_schedule(n);
6081 		return false;
6082 	}
6083 
6084 	if (timeout)
6085 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6086 			      HRTIMER_MODE_REL_PINNED);
6087 	return ret;
6088 }
6089 EXPORT_SYMBOL(napi_complete_done);
6090 
6091 /* must be called under rcu_read_lock(), as we dont take a reference */
6092 static struct napi_struct *napi_by_id(unsigned int napi_id)
6093 {
6094 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6095 	struct napi_struct *napi;
6096 
6097 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6098 		if (napi->napi_id == napi_id)
6099 			return napi;
6100 
6101 	return NULL;
6102 }
6103 
6104 #if defined(CONFIG_NET_RX_BUSY_POLL)
6105 
6106 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6107 {
6108 	if (!skip_schedule) {
6109 		gro_normal_list(napi);
6110 		__napi_schedule(napi);
6111 		return;
6112 	}
6113 
6114 	if (napi->gro_bitmask) {
6115 		/* flush too old packets
6116 		 * If HZ < 1000, flush all packets.
6117 		 */
6118 		napi_gro_flush(napi, HZ >= 1000);
6119 	}
6120 
6121 	gro_normal_list(napi);
6122 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6123 }
6124 
6125 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6126 			   u16 budget)
6127 {
6128 	bool skip_schedule = false;
6129 	unsigned long timeout;
6130 	int rc;
6131 
6132 	/* Busy polling means there is a high chance device driver hard irq
6133 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6134 	 * set in napi_schedule_prep().
6135 	 * Since we are about to call napi->poll() once more, we can safely
6136 	 * clear NAPI_STATE_MISSED.
6137 	 *
6138 	 * Note: x86 could use a single "lock and ..." instruction
6139 	 * to perform these two clear_bit()
6140 	 */
6141 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6142 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6143 
6144 	local_bh_disable();
6145 
6146 	if (prefer_busy_poll) {
6147 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6148 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6149 		if (napi->defer_hard_irqs_count && timeout) {
6150 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6151 			skip_schedule = true;
6152 		}
6153 	}
6154 
6155 	/* All we really want here is to re-enable device interrupts.
6156 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6157 	 */
6158 	rc = napi->poll(napi, budget);
6159 	/* We can't gro_normal_list() here, because napi->poll() might have
6160 	 * rearmed the napi (napi_complete_done()) in which case it could
6161 	 * already be running on another CPU.
6162 	 */
6163 	trace_napi_poll(napi, rc, budget);
6164 	netpoll_poll_unlock(have_poll_lock);
6165 	if (rc == budget)
6166 		__busy_poll_stop(napi, skip_schedule);
6167 	local_bh_enable();
6168 }
6169 
6170 void napi_busy_loop(unsigned int napi_id,
6171 		    bool (*loop_end)(void *, unsigned long),
6172 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6173 {
6174 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6175 	int (*napi_poll)(struct napi_struct *napi, int budget);
6176 	void *have_poll_lock = NULL;
6177 	struct napi_struct *napi;
6178 
6179 restart:
6180 	napi_poll = NULL;
6181 
6182 	rcu_read_lock();
6183 
6184 	napi = napi_by_id(napi_id);
6185 	if (!napi)
6186 		goto out;
6187 
6188 	preempt_disable();
6189 	for (;;) {
6190 		int work = 0;
6191 
6192 		local_bh_disable();
6193 		if (!napi_poll) {
6194 			unsigned long val = READ_ONCE(napi->state);
6195 
6196 			/* If multiple threads are competing for this napi,
6197 			 * we avoid dirtying napi->state as much as we can.
6198 			 */
6199 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6200 				   NAPIF_STATE_IN_BUSY_POLL)) {
6201 				if (prefer_busy_poll)
6202 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6203 				goto count;
6204 			}
6205 			if (cmpxchg(&napi->state, val,
6206 				    val | NAPIF_STATE_IN_BUSY_POLL |
6207 					  NAPIF_STATE_SCHED) != val) {
6208 				if (prefer_busy_poll)
6209 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6210 				goto count;
6211 			}
6212 			have_poll_lock = netpoll_poll_lock(napi);
6213 			napi_poll = napi->poll;
6214 		}
6215 		work = napi_poll(napi, budget);
6216 		trace_napi_poll(napi, work, budget);
6217 		gro_normal_list(napi);
6218 count:
6219 		if (work > 0)
6220 			__NET_ADD_STATS(dev_net(napi->dev),
6221 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6222 		local_bh_enable();
6223 
6224 		if (!loop_end || loop_end(loop_end_arg, start_time))
6225 			break;
6226 
6227 		if (unlikely(need_resched())) {
6228 			if (napi_poll)
6229 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6230 			preempt_enable();
6231 			rcu_read_unlock();
6232 			cond_resched();
6233 			if (loop_end(loop_end_arg, start_time))
6234 				return;
6235 			goto restart;
6236 		}
6237 		cpu_relax();
6238 	}
6239 	if (napi_poll)
6240 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6241 	preempt_enable();
6242 out:
6243 	rcu_read_unlock();
6244 }
6245 EXPORT_SYMBOL(napi_busy_loop);
6246 
6247 #endif /* CONFIG_NET_RX_BUSY_POLL */
6248 
6249 static void napi_hash_add(struct napi_struct *napi)
6250 {
6251 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6252 		return;
6253 
6254 	spin_lock(&napi_hash_lock);
6255 
6256 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6257 	do {
6258 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6259 			napi_gen_id = MIN_NAPI_ID;
6260 	} while (napi_by_id(napi_gen_id));
6261 	napi->napi_id = napi_gen_id;
6262 
6263 	hlist_add_head_rcu(&napi->napi_hash_node,
6264 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6265 
6266 	spin_unlock(&napi_hash_lock);
6267 }
6268 
6269 /* Warning : caller is responsible to make sure rcu grace period
6270  * is respected before freeing memory containing @napi
6271  */
6272 static void napi_hash_del(struct napi_struct *napi)
6273 {
6274 	spin_lock(&napi_hash_lock);
6275 
6276 	hlist_del_init_rcu(&napi->napi_hash_node);
6277 
6278 	spin_unlock(&napi_hash_lock);
6279 }
6280 
6281 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6282 {
6283 	struct napi_struct *napi;
6284 
6285 	napi = container_of(timer, struct napi_struct, timer);
6286 
6287 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6288 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6289 	 */
6290 	if (!napi_disable_pending(napi) &&
6291 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6292 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6293 		__napi_schedule_irqoff(napi);
6294 	}
6295 
6296 	return HRTIMER_NORESTART;
6297 }
6298 
6299 static void init_gro_hash(struct napi_struct *napi)
6300 {
6301 	int i;
6302 
6303 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6304 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6305 		napi->gro_hash[i].count = 0;
6306 	}
6307 	napi->gro_bitmask = 0;
6308 }
6309 
6310 int dev_set_threaded(struct net_device *dev, bool threaded)
6311 {
6312 	struct napi_struct *napi;
6313 	int err = 0;
6314 
6315 	if (dev->threaded == threaded)
6316 		return 0;
6317 
6318 	if (threaded) {
6319 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6320 			if (!napi->thread) {
6321 				err = napi_kthread_create(napi);
6322 				if (err) {
6323 					threaded = false;
6324 					break;
6325 				}
6326 			}
6327 		}
6328 	}
6329 
6330 	dev->threaded = threaded;
6331 
6332 	/* Make sure kthread is created before THREADED bit
6333 	 * is set.
6334 	 */
6335 	smp_mb__before_atomic();
6336 
6337 	/* Setting/unsetting threaded mode on a napi might not immediately
6338 	 * take effect, if the current napi instance is actively being
6339 	 * polled. In this case, the switch between threaded mode and
6340 	 * softirq mode will happen in the next round of napi_schedule().
6341 	 * This should not cause hiccups/stalls to the live traffic.
6342 	 */
6343 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6344 		if (threaded)
6345 			set_bit(NAPI_STATE_THREADED, &napi->state);
6346 		else
6347 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6348 	}
6349 
6350 	return err;
6351 }
6352 EXPORT_SYMBOL(dev_set_threaded);
6353 
6354 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6355 			   int (*poll)(struct napi_struct *, int), int weight)
6356 {
6357 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6358 		return;
6359 
6360 	INIT_LIST_HEAD(&napi->poll_list);
6361 	INIT_HLIST_NODE(&napi->napi_hash_node);
6362 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6363 	napi->timer.function = napi_watchdog;
6364 	init_gro_hash(napi);
6365 	napi->skb = NULL;
6366 	INIT_LIST_HEAD(&napi->rx_list);
6367 	napi->rx_count = 0;
6368 	napi->poll = poll;
6369 	if (weight > NAPI_POLL_WEIGHT)
6370 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6371 				weight);
6372 	napi->weight = weight;
6373 	napi->dev = dev;
6374 #ifdef CONFIG_NETPOLL
6375 	napi->poll_owner = -1;
6376 #endif
6377 	set_bit(NAPI_STATE_SCHED, &napi->state);
6378 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6379 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6380 	napi_hash_add(napi);
6381 	napi_get_frags_check(napi);
6382 	/* Create kthread for this napi if dev->threaded is set.
6383 	 * Clear dev->threaded if kthread creation failed so that
6384 	 * threaded mode will not be enabled in napi_enable().
6385 	 */
6386 	if (dev->threaded && napi_kthread_create(napi))
6387 		dev->threaded = 0;
6388 }
6389 EXPORT_SYMBOL(netif_napi_add_weight);
6390 
6391 void napi_disable(struct napi_struct *n)
6392 {
6393 	unsigned long val, new;
6394 
6395 	might_sleep();
6396 	set_bit(NAPI_STATE_DISABLE, &n->state);
6397 
6398 	val = READ_ONCE(n->state);
6399 	do {
6400 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6401 			usleep_range(20, 200);
6402 			val = READ_ONCE(n->state);
6403 		}
6404 
6405 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6406 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6407 	} while (!try_cmpxchg(&n->state, &val, new));
6408 
6409 	hrtimer_cancel(&n->timer);
6410 
6411 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6412 }
6413 EXPORT_SYMBOL(napi_disable);
6414 
6415 /**
6416  *	napi_enable - enable NAPI scheduling
6417  *	@n: NAPI context
6418  *
6419  * Resume NAPI from being scheduled on this context.
6420  * Must be paired with napi_disable.
6421  */
6422 void napi_enable(struct napi_struct *n)
6423 {
6424 	unsigned long new, val = READ_ONCE(n->state);
6425 
6426 	do {
6427 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6428 
6429 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6430 		if (n->dev->threaded && n->thread)
6431 			new |= NAPIF_STATE_THREADED;
6432 	} while (!try_cmpxchg(&n->state, &val, new));
6433 }
6434 EXPORT_SYMBOL(napi_enable);
6435 
6436 static void flush_gro_hash(struct napi_struct *napi)
6437 {
6438 	int i;
6439 
6440 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6441 		struct sk_buff *skb, *n;
6442 
6443 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6444 			kfree_skb(skb);
6445 		napi->gro_hash[i].count = 0;
6446 	}
6447 }
6448 
6449 /* Must be called in process context */
6450 void __netif_napi_del(struct napi_struct *napi)
6451 {
6452 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6453 		return;
6454 
6455 	napi_hash_del(napi);
6456 	list_del_rcu(&napi->dev_list);
6457 	napi_free_frags(napi);
6458 
6459 	flush_gro_hash(napi);
6460 	napi->gro_bitmask = 0;
6461 
6462 	if (napi->thread) {
6463 		kthread_stop(napi->thread);
6464 		napi->thread = NULL;
6465 	}
6466 }
6467 EXPORT_SYMBOL(__netif_napi_del);
6468 
6469 static int __napi_poll(struct napi_struct *n, bool *repoll)
6470 {
6471 	int work, weight;
6472 
6473 	weight = n->weight;
6474 
6475 	/* This NAPI_STATE_SCHED test is for avoiding a race
6476 	 * with netpoll's poll_napi().  Only the entity which
6477 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6478 	 * actually make the ->poll() call.  Therefore we avoid
6479 	 * accidentally calling ->poll() when NAPI is not scheduled.
6480 	 */
6481 	work = 0;
6482 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6483 		work = n->poll(n, weight);
6484 		trace_napi_poll(n, work, weight);
6485 	}
6486 
6487 	if (unlikely(work > weight))
6488 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6489 				n->poll, work, weight);
6490 
6491 	if (likely(work < weight))
6492 		return work;
6493 
6494 	/* Drivers must not modify the NAPI state if they
6495 	 * consume the entire weight.  In such cases this code
6496 	 * still "owns" the NAPI instance and therefore can
6497 	 * move the instance around on the list at-will.
6498 	 */
6499 	if (unlikely(napi_disable_pending(n))) {
6500 		napi_complete(n);
6501 		return work;
6502 	}
6503 
6504 	/* The NAPI context has more processing work, but busy-polling
6505 	 * is preferred. Exit early.
6506 	 */
6507 	if (napi_prefer_busy_poll(n)) {
6508 		if (napi_complete_done(n, work)) {
6509 			/* If timeout is not set, we need to make sure
6510 			 * that the NAPI is re-scheduled.
6511 			 */
6512 			napi_schedule(n);
6513 		}
6514 		return work;
6515 	}
6516 
6517 	if (n->gro_bitmask) {
6518 		/* flush too old packets
6519 		 * If HZ < 1000, flush all packets.
6520 		 */
6521 		napi_gro_flush(n, HZ >= 1000);
6522 	}
6523 
6524 	gro_normal_list(n);
6525 
6526 	/* Some drivers may have called napi_schedule
6527 	 * prior to exhausting their budget.
6528 	 */
6529 	if (unlikely(!list_empty(&n->poll_list))) {
6530 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6531 			     n->dev ? n->dev->name : "backlog");
6532 		return work;
6533 	}
6534 
6535 	*repoll = true;
6536 
6537 	return work;
6538 }
6539 
6540 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6541 {
6542 	bool do_repoll = false;
6543 	void *have;
6544 	int work;
6545 
6546 	list_del_init(&n->poll_list);
6547 
6548 	have = netpoll_poll_lock(n);
6549 
6550 	work = __napi_poll(n, &do_repoll);
6551 
6552 	if (do_repoll)
6553 		list_add_tail(&n->poll_list, repoll);
6554 
6555 	netpoll_poll_unlock(have);
6556 
6557 	return work;
6558 }
6559 
6560 static int napi_thread_wait(struct napi_struct *napi)
6561 {
6562 	bool woken = false;
6563 
6564 	set_current_state(TASK_INTERRUPTIBLE);
6565 
6566 	while (!kthread_should_stop()) {
6567 		/* Testing SCHED_THREADED bit here to make sure the current
6568 		 * kthread owns this napi and could poll on this napi.
6569 		 * Testing SCHED bit is not enough because SCHED bit might be
6570 		 * set by some other busy poll thread or by napi_disable().
6571 		 */
6572 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6573 			WARN_ON(!list_empty(&napi->poll_list));
6574 			__set_current_state(TASK_RUNNING);
6575 			return 0;
6576 		}
6577 
6578 		schedule();
6579 		/* woken being true indicates this thread owns this napi. */
6580 		woken = true;
6581 		set_current_state(TASK_INTERRUPTIBLE);
6582 	}
6583 	__set_current_state(TASK_RUNNING);
6584 
6585 	return -1;
6586 }
6587 
6588 static int napi_threaded_poll(void *data)
6589 {
6590 	struct napi_struct *napi = data;
6591 	void *have;
6592 
6593 	while (!napi_thread_wait(napi)) {
6594 		for (;;) {
6595 			bool repoll = false;
6596 
6597 			local_bh_disable();
6598 
6599 			have = netpoll_poll_lock(napi);
6600 			__napi_poll(napi, &repoll);
6601 			netpoll_poll_unlock(have);
6602 
6603 			local_bh_enable();
6604 
6605 			if (!repoll)
6606 				break;
6607 
6608 			cond_resched();
6609 		}
6610 	}
6611 	return 0;
6612 }
6613 
6614 static void skb_defer_free_flush(struct softnet_data *sd)
6615 {
6616 	struct sk_buff *skb, *next;
6617 
6618 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6619 	if (!READ_ONCE(sd->defer_list))
6620 		return;
6621 
6622 	spin_lock_irq(&sd->defer_lock);
6623 	skb = sd->defer_list;
6624 	sd->defer_list = NULL;
6625 	sd->defer_count = 0;
6626 	spin_unlock_irq(&sd->defer_lock);
6627 
6628 	while (skb != NULL) {
6629 		next = skb->next;
6630 		napi_consume_skb(skb, 1);
6631 		skb = next;
6632 	}
6633 }
6634 
6635 static __latent_entropy void net_rx_action(struct softirq_action *h)
6636 {
6637 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6638 	unsigned long time_limit = jiffies +
6639 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6640 	int budget = READ_ONCE(netdev_budget);
6641 	LIST_HEAD(list);
6642 	LIST_HEAD(repoll);
6643 
6644 	local_irq_disable();
6645 	list_splice_init(&sd->poll_list, &list);
6646 	local_irq_enable();
6647 
6648 	for (;;) {
6649 		struct napi_struct *n;
6650 
6651 		skb_defer_free_flush(sd);
6652 
6653 		if (list_empty(&list)) {
6654 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6655 				goto end;
6656 			break;
6657 		}
6658 
6659 		n = list_first_entry(&list, struct napi_struct, poll_list);
6660 		budget -= napi_poll(n, &repoll);
6661 
6662 		/* If softirq window is exhausted then punt.
6663 		 * Allow this to run for 2 jiffies since which will allow
6664 		 * an average latency of 1.5/HZ.
6665 		 */
6666 		if (unlikely(budget <= 0 ||
6667 			     time_after_eq(jiffies, time_limit))) {
6668 			sd->time_squeeze++;
6669 			break;
6670 		}
6671 	}
6672 
6673 	local_irq_disable();
6674 
6675 	list_splice_tail_init(&sd->poll_list, &list);
6676 	list_splice_tail(&repoll, &list);
6677 	list_splice(&list, &sd->poll_list);
6678 	if (!list_empty(&sd->poll_list))
6679 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6680 
6681 	net_rps_action_and_irq_enable(sd);
6682 end:;
6683 }
6684 
6685 struct netdev_adjacent {
6686 	struct net_device *dev;
6687 	netdevice_tracker dev_tracker;
6688 
6689 	/* upper master flag, there can only be one master device per list */
6690 	bool master;
6691 
6692 	/* lookup ignore flag */
6693 	bool ignore;
6694 
6695 	/* counter for the number of times this device was added to us */
6696 	u16 ref_nr;
6697 
6698 	/* private field for the users */
6699 	void *private;
6700 
6701 	struct list_head list;
6702 	struct rcu_head rcu;
6703 };
6704 
6705 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6706 						 struct list_head *adj_list)
6707 {
6708 	struct netdev_adjacent *adj;
6709 
6710 	list_for_each_entry(adj, adj_list, list) {
6711 		if (adj->dev == adj_dev)
6712 			return adj;
6713 	}
6714 	return NULL;
6715 }
6716 
6717 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6718 				    struct netdev_nested_priv *priv)
6719 {
6720 	struct net_device *dev = (struct net_device *)priv->data;
6721 
6722 	return upper_dev == dev;
6723 }
6724 
6725 /**
6726  * netdev_has_upper_dev - Check if device is linked to an upper device
6727  * @dev: device
6728  * @upper_dev: upper device to check
6729  *
6730  * Find out if a device is linked to specified upper device and return true
6731  * in case it is. Note that this checks only immediate upper device,
6732  * not through a complete stack of devices. The caller must hold the RTNL lock.
6733  */
6734 bool netdev_has_upper_dev(struct net_device *dev,
6735 			  struct net_device *upper_dev)
6736 {
6737 	struct netdev_nested_priv priv = {
6738 		.data = (void *)upper_dev,
6739 	};
6740 
6741 	ASSERT_RTNL();
6742 
6743 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6744 					     &priv);
6745 }
6746 EXPORT_SYMBOL(netdev_has_upper_dev);
6747 
6748 /**
6749  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6750  * @dev: device
6751  * @upper_dev: upper device to check
6752  *
6753  * Find out if a device is linked to specified upper device and return true
6754  * in case it is. Note that this checks the entire upper device chain.
6755  * The caller must hold rcu lock.
6756  */
6757 
6758 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6759 				  struct net_device *upper_dev)
6760 {
6761 	struct netdev_nested_priv priv = {
6762 		.data = (void *)upper_dev,
6763 	};
6764 
6765 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6766 					       &priv);
6767 }
6768 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6769 
6770 /**
6771  * netdev_has_any_upper_dev - Check if device is linked to some device
6772  * @dev: device
6773  *
6774  * Find out if a device is linked to an upper device and return true in case
6775  * it is. The caller must hold the RTNL lock.
6776  */
6777 bool netdev_has_any_upper_dev(struct net_device *dev)
6778 {
6779 	ASSERT_RTNL();
6780 
6781 	return !list_empty(&dev->adj_list.upper);
6782 }
6783 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6784 
6785 /**
6786  * netdev_master_upper_dev_get - Get master upper device
6787  * @dev: device
6788  *
6789  * Find a master upper device and return pointer to it or NULL in case
6790  * it's not there. The caller must hold the RTNL lock.
6791  */
6792 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6793 {
6794 	struct netdev_adjacent *upper;
6795 
6796 	ASSERT_RTNL();
6797 
6798 	if (list_empty(&dev->adj_list.upper))
6799 		return NULL;
6800 
6801 	upper = list_first_entry(&dev->adj_list.upper,
6802 				 struct netdev_adjacent, list);
6803 	if (likely(upper->master))
6804 		return upper->dev;
6805 	return NULL;
6806 }
6807 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6808 
6809 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6810 {
6811 	struct netdev_adjacent *upper;
6812 
6813 	ASSERT_RTNL();
6814 
6815 	if (list_empty(&dev->adj_list.upper))
6816 		return NULL;
6817 
6818 	upper = list_first_entry(&dev->adj_list.upper,
6819 				 struct netdev_adjacent, list);
6820 	if (likely(upper->master) && !upper->ignore)
6821 		return upper->dev;
6822 	return NULL;
6823 }
6824 
6825 /**
6826  * netdev_has_any_lower_dev - Check if device is linked to some device
6827  * @dev: device
6828  *
6829  * Find out if a device is linked to a lower device and return true in case
6830  * it is. The caller must hold the RTNL lock.
6831  */
6832 static bool netdev_has_any_lower_dev(struct net_device *dev)
6833 {
6834 	ASSERT_RTNL();
6835 
6836 	return !list_empty(&dev->adj_list.lower);
6837 }
6838 
6839 void *netdev_adjacent_get_private(struct list_head *adj_list)
6840 {
6841 	struct netdev_adjacent *adj;
6842 
6843 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6844 
6845 	return adj->private;
6846 }
6847 EXPORT_SYMBOL(netdev_adjacent_get_private);
6848 
6849 /**
6850  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6851  * @dev: device
6852  * @iter: list_head ** of the current position
6853  *
6854  * Gets the next device from the dev's upper list, starting from iter
6855  * position. The caller must hold RCU read lock.
6856  */
6857 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6858 						 struct list_head **iter)
6859 {
6860 	struct netdev_adjacent *upper;
6861 
6862 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6863 
6864 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6865 
6866 	if (&upper->list == &dev->adj_list.upper)
6867 		return NULL;
6868 
6869 	*iter = &upper->list;
6870 
6871 	return upper->dev;
6872 }
6873 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6874 
6875 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6876 						  struct list_head **iter,
6877 						  bool *ignore)
6878 {
6879 	struct netdev_adjacent *upper;
6880 
6881 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6882 
6883 	if (&upper->list == &dev->adj_list.upper)
6884 		return NULL;
6885 
6886 	*iter = &upper->list;
6887 	*ignore = upper->ignore;
6888 
6889 	return upper->dev;
6890 }
6891 
6892 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6893 						    struct list_head **iter)
6894 {
6895 	struct netdev_adjacent *upper;
6896 
6897 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6898 
6899 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6900 
6901 	if (&upper->list == &dev->adj_list.upper)
6902 		return NULL;
6903 
6904 	*iter = &upper->list;
6905 
6906 	return upper->dev;
6907 }
6908 
6909 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6910 				       int (*fn)(struct net_device *dev,
6911 					 struct netdev_nested_priv *priv),
6912 				       struct netdev_nested_priv *priv)
6913 {
6914 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6915 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6916 	int ret, cur = 0;
6917 	bool ignore;
6918 
6919 	now = dev;
6920 	iter = &dev->adj_list.upper;
6921 
6922 	while (1) {
6923 		if (now != dev) {
6924 			ret = fn(now, priv);
6925 			if (ret)
6926 				return ret;
6927 		}
6928 
6929 		next = NULL;
6930 		while (1) {
6931 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6932 			if (!udev)
6933 				break;
6934 			if (ignore)
6935 				continue;
6936 
6937 			next = udev;
6938 			niter = &udev->adj_list.upper;
6939 			dev_stack[cur] = now;
6940 			iter_stack[cur++] = iter;
6941 			break;
6942 		}
6943 
6944 		if (!next) {
6945 			if (!cur)
6946 				return 0;
6947 			next = dev_stack[--cur];
6948 			niter = iter_stack[cur];
6949 		}
6950 
6951 		now = next;
6952 		iter = niter;
6953 	}
6954 
6955 	return 0;
6956 }
6957 
6958 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6959 				  int (*fn)(struct net_device *dev,
6960 					    struct netdev_nested_priv *priv),
6961 				  struct netdev_nested_priv *priv)
6962 {
6963 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6964 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6965 	int ret, cur = 0;
6966 
6967 	now = dev;
6968 	iter = &dev->adj_list.upper;
6969 
6970 	while (1) {
6971 		if (now != dev) {
6972 			ret = fn(now, priv);
6973 			if (ret)
6974 				return ret;
6975 		}
6976 
6977 		next = NULL;
6978 		while (1) {
6979 			udev = netdev_next_upper_dev_rcu(now, &iter);
6980 			if (!udev)
6981 				break;
6982 
6983 			next = udev;
6984 			niter = &udev->adj_list.upper;
6985 			dev_stack[cur] = now;
6986 			iter_stack[cur++] = iter;
6987 			break;
6988 		}
6989 
6990 		if (!next) {
6991 			if (!cur)
6992 				return 0;
6993 			next = dev_stack[--cur];
6994 			niter = iter_stack[cur];
6995 		}
6996 
6997 		now = next;
6998 		iter = niter;
6999 	}
7000 
7001 	return 0;
7002 }
7003 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7004 
7005 static bool __netdev_has_upper_dev(struct net_device *dev,
7006 				   struct net_device *upper_dev)
7007 {
7008 	struct netdev_nested_priv priv = {
7009 		.flags = 0,
7010 		.data = (void *)upper_dev,
7011 	};
7012 
7013 	ASSERT_RTNL();
7014 
7015 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7016 					   &priv);
7017 }
7018 
7019 /**
7020  * netdev_lower_get_next_private - Get the next ->private from the
7021  *				   lower neighbour list
7022  * @dev: device
7023  * @iter: list_head ** of the current position
7024  *
7025  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7026  * list, starting from iter position. The caller must hold either hold the
7027  * RTNL lock or its own locking that guarantees that the neighbour lower
7028  * list will remain unchanged.
7029  */
7030 void *netdev_lower_get_next_private(struct net_device *dev,
7031 				    struct list_head **iter)
7032 {
7033 	struct netdev_adjacent *lower;
7034 
7035 	lower = list_entry(*iter, struct netdev_adjacent, list);
7036 
7037 	if (&lower->list == &dev->adj_list.lower)
7038 		return NULL;
7039 
7040 	*iter = lower->list.next;
7041 
7042 	return lower->private;
7043 }
7044 EXPORT_SYMBOL(netdev_lower_get_next_private);
7045 
7046 /**
7047  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7048  *				       lower neighbour list, RCU
7049  *				       variant
7050  * @dev: device
7051  * @iter: list_head ** of the current position
7052  *
7053  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7054  * list, starting from iter position. The caller must hold RCU read lock.
7055  */
7056 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7057 					struct list_head **iter)
7058 {
7059 	struct netdev_adjacent *lower;
7060 
7061 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7062 
7063 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7064 
7065 	if (&lower->list == &dev->adj_list.lower)
7066 		return NULL;
7067 
7068 	*iter = &lower->list;
7069 
7070 	return lower->private;
7071 }
7072 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7073 
7074 /**
7075  * netdev_lower_get_next - Get the next device from the lower neighbour
7076  *                         list
7077  * @dev: device
7078  * @iter: list_head ** of the current position
7079  *
7080  * Gets the next netdev_adjacent from the dev's lower neighbour
7081  * list, starting from iter position. The caller must hold RTNL lock or
7082  * its own locking that guarantees that the neighbour lower
7083  * list will remain unchanged.
7084  */
7085 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7086 {
7087 	struct netdev_adjacent *lower;
7088 
7089 	lower = list_entry(*iter, struct netdev_adjacent, list);
7090 
7091 	if (&lower->list == &dev->adj_list.lower)
7092 		return NULL;
7093 
7094 	*iter = lower->list.next;
7095 
7096 	return lower->dev;
7097 }
7098 EXPORT_SYMBOL(netdev_lower_get_next);
7099 
7100 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7101 						struct list_head **iter)
7102 {
7103 	struct netdev_adjacent *lower;
7104 
7105 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7106 
7107 	if (&lower->list == &dev->adj_list.lower)
7108 		return NULL;
7109 
7110 	*iter = &lower->list;
7111 
7112 	return lower->dev;
7113 }
7114 
7115 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7116 						  struct list_head **iter,
7117 						  bool *ignore)
7118 {
7119 	struct netdev_adjacent *lower;
7120 
7121 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7122 
7123 	if (&lower->list == &dev->adj_list.lower)
7124 		return NULL;
7125 
7126 	*iter = &lower->list;
7127 	*ignore = lower->ignore;
7128 
7129 	return lower->dev;
7130 }
7131 
7132 int netdev_walk_all_lower_dev(struct net_device *dev,
7133 			      int (*fn)(struct net_device *dev,
7134 					struct netdev_nested_priv *priv),
7135 			      struct netdev_nested_priv *priv)
7136 {
7137 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7138 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7139 	int ret, cur = 0;
7140 
7141 	now = dev;
7142 	iter = &dev->adj_list.lower;
7143 
7144 	while (1) {
7145 		if (now != dev) {
7146 			ret = fn(now, priv);
7147 			if (ret)
7148 				return ret;
7149 		}
7150 
7151 		next = NULL;
7152 		while (1) {
7153 			ldev = netdev_next_lower_dev(now, &iter);
7154 			if (!ldev)
7155 				break;
7156 
7157 			next = ldev;
7158 			niter = &ldev->adj_list.lower;
7159 			dev_stack[cur] = now;
7160 			iter_stack[cur++] = iter;
7161 			break;
7162 		}
7163 
7164 		if (!next) {
7165 			if (!cur)
7166 				return 0;
7167 			next = dev_stack[--cur];
7168 			niter = iter_stack[cur];
7169 		}
7170 
7171 		now = next;
7172 		iter = niter;
7173 	}
7174 
7175 	return 0;
7176 }
7177 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7178 
7179 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7180 				       int (*fn)(struct net_device *dev,
7181 					 struct netdev_nested_priv *priv),
7182 				       struct netdev_nested_priv *priv)
7183 {
7184 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7185 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7186 	int ret, cur = 0;
7187 	bool ignore;
7188 
7189 	now = dev;
7190 	iter = &dev->adj_list.lower;
7191 
7192 	while (1) {
7193 		if (now != dev) {
7194 			ret = fn(now, priv);
7195 			if (ret)
7196 				return ret;
7197 		}
7198 
7199 		next = NULL;
7200 		while (1) {
7201 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7202 			if (!ldev)
7203 				break;
7204 			if (ignore)
7205 				continue;
7206 
7207 			next = ldev;
7208 			niter = &ldev->adj_list.lower;
7209 			dev_stack[cur] = now;
7210 			iter_stack[cur++] = iter;
7211 			break;
7212 		}
7213 
7214 		if (!next) {
7215 			if (!cur)
7216 				return 0;
7217 			next = dev_stack[--cur];
7218 			niter = iter_stack[cur];
7219 		}
7220 
7221 		now = next;
7222 		iter = niter;
7223 	}
7224 
7225 	return 0;
7226 }
7227 
7228 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7229 					     struct list_head **iter)
7230 {
7231 	struct netdev_adjacent *lower;
7232 
7233 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7234 	if (&lower->list == &dev->adj_list.lower)
7235 		return NULL;
7236 
7237 	*iter = &lower->list;
7238 
7239 	return lower->dev;
7240 }
7241 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7242 
7243 static u8 __netdev_upper_depth(struct net_device *dev)
7244 {
7245 	struct net_device *udev;
7246 	struct list_head *iter;
7247 	u8 max_depth = 0;
7248 	bool ignore;
7249 
7250 	for (iter = &dev->adj_list.upper,
7251 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7252 	     udev;
7253 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7254 		if (ignore)
7255 			continue;
7256 		if (max_depth < udev->upper_level)
7257 			max_depth = udev->upper_level;
7258 	}
7259 
7260 	return max_depth;
7261 }
7262 
7263 static u8 __netdev_lower_depth(struct net_device *dev)
7264 {
7265 	struct net_device *ldev;
7266 	struct list_head *iter;
7267 	u8 max_depth = 0;
7268 	bool ignore;
7269 
7270 	for (iter = &dev->adj_list.lower,
7271 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7272 	     ldev;
7273 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7274 		if (ignore)
7275 			continue;
7276 		if (max_depth < ldev->lower_level)
7277 			max_depth = ldev->lower_level;
7278 	}
7279 
7280 	return max_depth;
7281 }
7282 
7283 static int __netdev_update_upper_level(struct net_device *dev,
7284 				       struct netdev_nested_priv *__unused)
7285 {
7286 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7287 	return 0;
7288 }
7289 
7290 #ifdef CONFIG_LOCKDEP
7291 static LIST_HEAD(net_unlink_list);
7292 
7293 static void net_unlink_todo(struct net_device *dev)
7294 {
7295 	if (list_empty(&dev->unlink_list))
7296 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7297 }
7298 #endif
7299 
7300 static int __netdev_update_lower_level(struct net_device *dev,
7301 				       struct netdev_nested_priv *priv)
7302 {
7303 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7304 
7305 #ifdef CONFIG_LOCKDEP
7306 	if (!priv)
7307 		return 0;
7308 
7309 	if (priv->flags & NESTED_SYNC_IMM)
7310 		dev->nested_level = dev->lower_level - 1;
7311 	if (priv->flags & NESTED_SYNC_TODO)
7312 		net_unlink_todo(dev);
7313 #endif
7314 	return 0;
7315 }
7316 
7317 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7318 				  int (*fn)(struct net_device *dev,
7319 					    struct netdev_nested_priv *priv),
7320 				  struct netdev_nested_priv *priv)
7321 {
7322 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7323 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7324 	int ret, cur = 0;
7325 
7326 	now = dev;
7327 	iter = &dev->adj_list.lower;
7328 
7329 	while (1) {
7330 		if (now != dev) {
7331 			ret = fn(now, priv);
7332 			if (ret)
7333 				return ret;
7334 		}
7335 
7336 		next = NULL;
7337 		while (1) {
7338 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7339 			if (!ldev)
7340 				break;
7341 
7342 			next = ldev;
7343 			niter = &ldev->adj_list.lower;
7344 			dev_stack[cur] = now;
7345 			iter_stack[cur++] = iter;
7346 			break;
7347 		}
7348 
7349 		if (!next) {
7350 			if (!cur)
7351 				return 0;
7352 			next = dev_stack[--cur];
7353 			niter = iter_stack[cur];
7354 		}
7355 
7356 		now = next;
7357 		iter = niter;
7358 	}
7359 
7360 	return 0;
7361 }
7362 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7363 
7364 /**
7365  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7366  *				       lower neighbour list, RCU
7367  *				       variant
7368  * @dev: device
7369  *
7370  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7371  * list. The caller must hold RCU read lock.
7372  */
7373 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7374 {
7375 	struct netdev_adjacent *lower;
7376 
7377 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7378 			struct netdev_adjacent, list);
7379 	if (lower)
7380 		return lower->private;
7381 	return NULL;
7382 }
7383 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7384 
7385 /**
7386  * netdev_master_upper_dev_get_rcu - Get master upper device
7387  * @dev: device
7388  *
7389  * Find a master upper device and return pointer to it or NULL in case
7390  * it's not there. The caller must hold the RCU read lock.
7391  */
7392 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7393 {
7394 	struct netdev_adjacent *upper;
7395 
7396 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7397 				       struct netdev_adjacent, list);
7398 	if (upper && likely(upper->master))
7399 		return upper->dev;
7400 	return NULL;
7401 }
7402 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7403 
7404 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7405 			      struct net_device *adj_dev,
7406 			      struct list_head *dev_list)
7407 {
7408 	char linkname[IFNAMSIZ+7];
7409 
7410 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7411 		"upper_%s" : "lower_%s", adj_dev->name);
7412 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7413 				 linkname);
7414 }
7415 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7416 			       char *name,
7417 			       struct list_head *dev_list)
7418 {
7419 	char linkname[IFNAMSIZ+7];
7420 
7421 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7422 		"upper_%s" : "lower_%s", name);
7423 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7424 }
7425 
7426 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7427 						 struct net_device *adj_dev,
7428 						 struct list_head *dev_list)
7429 {
7430 	return (dev_list == &dev->adj_list.upper ||
7431 		dev_list == &dev->adj_list.lower) &&
7432 		net_eq(dev_net(dev), dev_net(adj_dev));
7433 }
7434 
7435 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7436 					struct net_device *adj_dev,
7437 					struct list_head *dev_list,
7438 					void *private, bool master)
7439 {
7440 	struct netdev_adjacent *adj;
7441 	int ret;
7442 
7443 	adj = __netdev_find_adj(adj_dev, dev_list);
7444 
7445 	if (adj) {
7446 		adj->ref_nr += 1;
7447 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7448 			 dev->name, adj_dev->name, adj->ref_nr);
7449 
7450 		return 0;
7451 	}
7452 
7453 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7454 	if (!adj)
7455 		return -ENOMEM;
7456 
7457 	adj->dev = adj_dev;
7458 	adj->master = master;
7459 	adj->ref_nr = 1;
7460 	adj->private = private;
7461 	adj->ignore = false;
7462 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7463 
7464 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7465 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7466 
7467 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7468 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7469 		if (ret)
7470 			goto free_adj;
7471 	}
7472 
7473 	/* Ensure that master link is always the first item in list. */
7474 	if (master) {
7475 		ret = sysfs_create_link(&(dev->dev.kobj),
7476 					&(adj_dev->dev.kobj), "master");
7477 		if (ret)
7478 			goto remove_symlinks;
7479 
7480 		list_add_rcu(&adj->list, dev_list);
7481 	} else {
7482 		list_add_tail_rcu(&adj->list, dev_list);
7483 	}
7484 
7485 	return 0;
7486 
7487 remove_symlinks:
7488 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7489 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7490 free_adj:
7491 	netdev_put(adj_dev, &adj->dev_tracker);
7492 	kfree(adj);
7493 
7494 	return ret;
7495 }
7496 
7497 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7498 					 struct net_device *adj_dev,
7499 					 u16 ref_nr,
7500 					 struct list_head *dev_list)
7501 {
7502 	struct netdev_adjacent *adj;
7503 
7504 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7505 		 dev->name, adj_dev->name, ref_nr);
7506 
7507 	adj = __netdev_find_adj(adj_dev, dev_list);
7508 
7509 	if (!adj) {
7510 		pr_err("Adjacency does not exist for device %s from %s\n",
7511 		       dev->name, adj_dev->name);
7512 		WARN_ON(1);
7513 		return;
7514 	}
7515 
7516 	if (adj->ref_nr > ref_nr) {
7517 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7518 			 dev->name, adj_dev->name, ref_nr,
7519 			 adj->ref_nr - ref_nr);
7520 		adj->ref_nr -= ref_nr;
7521 		return;
7522 	}
7523 
7524 	if (adj->master)
7525 		sysfs_remove_link(&(dev->dev.kobj), "master");
7526 
7527 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7528 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7529 
7530 	list_del_rcu(&adj->list);
7531 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7532 		 adj_dev->name, dev->name, adj_dev->name);
7533 	netdev_put(adj_dev, &adj->dev_tracker);
7534 	kfree_rcu(adj, rcu);
7535 }
7536 
7537 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7538 					    struct net_device *upper_dev,
7539 					    struct list_head *up_list,
7540 					    struct list_head *down_list,
7541 					    void *private, bool master)
7542 {
7543 	int ret;
7544 
7545 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7546 					   private, master);
7547 	if (ret)
7548 		return ret;
7549 
7550 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7551 					   private, false);
7552 	if (ret) {
7553 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7554 		return ret;
7555 	}
7556 
7557 	return 0;
7558 }
7559 
7560 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7561 					       struct net_device *upper_dev,
7562 					       u16 ref_nr,
7563 					       struct list_head *up_list,
7564 					       struct list_head *down_list)
7565 {
7566 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7567 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7568 }
7569 
7570 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7571 						struct net_device *upper_dev,
7572 						void *private, bool master)
7573 {
7574 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7575 						&dev->adj_list.upper,
7576 						&upper_dev->adj_list.lower,
7577 						private, master);
7578 }
7579 
7580 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7581 						   struct net_device *upper_dev)
7582 {
7583 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7584 					   &dev->adj_list.upper,
7585 					   &upper_dev->adj_list.lower);
7586 }
7587 
7588 static int __netdev_upper_dev_link(struct net_device *dev,
7589 				   struct net_device *upper_dev, bool master,
7590 				   void *upper_priv, void *upper_info,
7591 				   struct netdev_nested_priv *priv,
7592 				   struct netlink_ext_ack *extack)
7593 {
7594 	struct netdev_notifier_changeupper_info changeupper_info = {
7595 		.info = {
7596 			.dev = dev,
7597 			.extack = extack,
7598 		},
7599 		.upper_dev = upper_dev,
7600 		.master = master,
7601 		.linking = true,
7602 		.upper_info = upper_info,
7603 	};
7604 	struct net_device *master_dev;
7605 	int ret = 0;
7606 
7607 	ASSERT_RTNL();
7608 
7609 	if (dev == upper_dev)
7610 		return -EBUSY;
7611 
7612 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7613 	if (__netdev_has_upper_dev(upper_dev, dev))
7614 		return -EBUSY;
7615 
7616 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7617 		return -EMLINK;
7618 
7619 	if (!master) {
7620 		if (__netdev_has_upper_dev(dev, upper_dev))
7621 			return -EEXIST;
7622 	} else {
7623 		master_dev = __netdev_master_upper_dev_get(dev);
7624 		if (master_dev)
7625 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7626 	}
7627 
7628 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7629 					    &changeupper_info.info);
7630 	ret = notifier_to_errno(ret);
7631 	if (ret)
7632 		return ret;
7633 
7634 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7635 						   master);
7636 	if (ret)
7637 		return ret;
7638 
7639 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7640 					    &changeupper_info.info);
7641 	ret = notifier_to_errno(ret);
7642 	if (ret)
7643 		goto rollback;
7644 
7645 	__netdev_update_upper_level(dev, NULL);
7646 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7647 
7648 	__netdev_update_lower_level(upper_dev, priv);
7649 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7650 				    priv);
7651 
7652 	return 0;
7653 
7654 rollback:
7655 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7656 
7657 	return ret;
7658 }
7659 
7660 /**
7661  * netdev_upper_dev_link - Add a link to the upper device
7662  * @dev: device
7663  * @upper_dev: new upper device
7664  * @extack: netlink extended ack
7665  *
7666  * Adds a link to device which is upper to this one. The caller must hold
7667  * the RTNL lock. On a failure a negative errno code is returned.
7668  * On success the reference counts are adjusted and the function
7669  * returns zero.
7670  */
7671 int netdev_upper_dev_link(struct net_device *dev,
7672 			  struct net_device *upper_dev,
7673 			  struct netlink_ext_ack *extack)
7674 {
7675 	struct netdev_nested_priv priv = {
7676 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7677 		.data = NULL,
7678 	};
7679 
7680 	return __netdev_upper_dev_link(dev, upper_dev, false,
7681 				       NULL, NULL, &priv, extack);
7682 }
7683 EXPORT_SYMBOL(netdev_upper_dev_link);
7684 
7685 /**
7686  * netdev_master_upper_dev_link - Add a master link to the upper device
7687  * @dev: device
7688  * @upper_dev: new upper device
7689  * @upper_priv: upper device private
7690  * @upper_info: upper info to be passed down via notifier
7691  * @extack: netlink extended ack
7692  *
7693  * Adds a link to device which is upper to this one. In this case, only
7694  * one master upper device can be linked, although other non-master devices
7695  * might be linked as well. The caller must hold the RTNL lock.
7696  * On a failure a negative errno code is returned. On success the reference
7697  * counts are adjusted and the function returns zero.
7698  */
7699 int netdev_master_upper_dev_link(struct net_device *dev,
7700 				 struct net_device *upper_dev,
7701 				 void *upper_priv, void *upper_info,
7702 				 struct netlink_ext_ack *extack)
7703 {
7704 	struct netdev_nested_priv priv = {
7705 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7706 		.data = NULL,
7707 	};
7708 
7709 	return __netdev_upper_dev_link(dev, upper_dev, true,
7710 				       upper_priv, upper_info, &priv, extack);
7711 }
7712 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7713 
7714 static void __netdev_upper_dev_unlink(struct net_device *dev,
7715 				      struct net_device *upper_dev,
7716 				      struct netdev_nested_priv *priv)
7717 {
7718 	struct netdev_notifier_changeupper_info changeupper_info = {
7719 		.info = {
7720 			.dev = dev,
7721 		},
7722 		.upper_dev = upper_dev,
7723 		.linking = false,
7724 	};
7725 
7726 	ASSERT_RTNL();
7727 
7728 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7729 
7730 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7731 				      &changeupper_info.info);
7732 
7733 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7734 
7735 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7736 				      &changeupper_info.info);
7737 
7738 	__netdev_update_upper_level(dev, NULL);
7739 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7740 
7741 	__netdev_update_lower_level(upper_dev, priv);
7742 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7743 				    priv);
7744 }
7745 
7746 /**
7747  * netdev_upper_dev_unlink - Removes a link to upper device
7748  * @dev: device
7749  * @upper_dev: new upper device
7750  *
7751  * Removes a link to device which is upper to this one. The caller must hold
7752  * the RTNL lock.
7753  */
7754 void netdev_upper_dev_unlink(struct net_device *dev,
7755 			     struct net_device *upper_dev)
7756 {
7757 	struct netdev_nested_priv priv = {
7758 		.flags = NESTED_SYNC_TODO,
7759 		.data = NULL,
7760 	};
7761 
7762 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7763 }
7764 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7765 
7766 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7767 				      struct net_device *lower_dev,
7768 				      bool val)
7769 {
7770 	struct netdev_adjacent *adj;
7771 
7772 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7773 	if (adj)
7774 		adj->ignore = val;
7775 
7776 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7777 	if (adj)
7778 		adj->ignore = val;
7779 }
7780 
7781 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7782 					struct net_device *lower_dev)
7783 {
7784 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7785 }
7786 
7787 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7788 				       struct net_device *lower_dev)
7789 {
7790 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7791 }
7792 
7793 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7794 				   struct net_device *new_dev,
7795 				   struct net_device *dev,
7796 				   struct netlink_ext_ack *extack)
7797 {
7798 	struct netdev_nested_priv priv = {
7799 		.flags = 0,
7800 		.data = NULL,
7801 	};
7802 	int err;
7803 
7804 	if (!new_dev)
7805 		return 0;
7806 
7807 	if (old_dev && new_dev != old_dev)
7808 		netdev_adjacent_dev_disable(dev, old_dev);
7809 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7810 				      extack);
7811 	if (err) {
7812 		if (old_dev && new_dev != old_dev)
7813 			netdev_adjacent_dev_enable(dev, old_dev);
7814 		return err;
7815 	}
7816 
7817 	return 0;
7818 }
7819 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7820 
7821 void netdev_adjacent_change_commit(struct net_device *old_dev,
7822 				   struct net_device *new_dev,
7823 				   struct net_device *dev)
7824 {
7825 	struct netdev_nested_priv priv = {
7826 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7827 		.data = NULL,
7828 	};
7829 
7830 	if (!new_dev || !old_dev)
7831 		return;
7832 
7833 	if (new_dev == old_dev)
7834 		return;
7835 
7836 	netdev_adjacent_dev_enable(dev, old_dev);
7837 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7838 }
7839 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7840 
7841 void netdev_adjacent_change_abort(struct net_device *old_dev,
7842 				  struct net_device *new_dev,
7843 				  struct net_device *dev)
7844 {
7845 	struct netdev_nested_priv priv = {
7846 		.flags = 0,
7847 		.data = NULL,
7848 	};
7849 
7850 	if (!new_dev)
7851 		return;
7852 
7853 	if (old_dev && new_dev != old_dev)
7854 		netdev_adjacent_dev_enable(dev, old_dev);
7855 
7856 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7857 }
7858 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7859 
7860 /**
7861  * netdev_bonding_info_change - Dispatch event about slave change
7862  * @dev: device
7863  * @bonding_info: info to dispatch
7864  *
7865  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7866  * The caller must hold the RTNL lock.
7867  */
7868 void netdev_bonding_info_change(struct net_device *dev,
7869 				struct netdev_bonding_info *bonding_info)
7870 {
7871 	struct netdev_notifier_bonding_info info = {
7872 		.info.dev = dev,
7873 	};
7874 
7875 	memcpy(&info.bonding_info, bonding_info,
7876 	       sizeof(struct netdev_bonding_info));
7877 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7878 				      &info.info);
7879 }
7880 EXPORT_SYMBOL(netdev_bonding_info_change);
7881 
7882 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7883 					   struct netlink_ext_ack *extack)
7884 {
7885 	struct netdev_notifier_offload_xstats_info info = {
7886 		.info.dev = dev,
7887 		.info.extack = extack,
7888 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7889 	};
7890 	int err;
7891 	int rc;
7892 
7893 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7894 					 GFP_KERNEL);
7895 	if (!dev->offload_xstats_l3)
7896 		return -ENOMEM;
7897 
7898 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7899 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
7900 						  &info.info);
7901 	err = notifier_to_errno(rc);
7902 	if (err)
7903 		goto free_stats;
7904 
7905 	return 0;
7906 
7907 free_stats:
7908 	kfree(dev->offload_xstats_l3);
7909 	dev->offload_xstats_l3 = NULL;
7910 	return err;
7911 }
7912 
7913 int netdev_offload_xstats_enable(struct net_device *dev,
7914 				 enum netdev_offload_xstats_type type,
7915 				 struct netlink_ext_ack *extack)
7916 {
7917 	ASSERT_RTNL();
7918 
7919 	if (netdev_offload_xstats_enabled(dev, type))
7920 		return -EALREADY;
7921 
7922 	switch (type) {
7923 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7924 		return netdev_offload_xstats_enable_l3(dev, extack);
7925 	}
7926 
7927 	WARN_ON(1);
7928 	return -EINVAL;
7929 }
7930 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7931 
7932 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7933 {
7934 	struct netdev_notifier_offload_xstats_info info = {
7935 		.info.dev = dev,
7936 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7937 	};
7938 
7939 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7940 				      &info.info);
7941 	kfree(dev->offload_xstats_l3);
7942 	dev->offload_xstats_l3 = NULL;
7943 }
7944 
7945 int netdev_offload_xstats_disable(struct net_device *dev,
7946 				  enum netdev_offload_xstats_type type)
7947 {
7948 	ASSERT_RTNL();
7949 
7950 	if (!netdev_offload_xstats_enabled(dev, type))
7951 		return -EALREADY;
7952 
7953 	switch (type) {
7954 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7955 		netdev_offload_xstats_disable_l3(dev);
7956 		return 0;
7957 	}
7958 
7959 	WARN_ON(1);
7960 	return -EINVAL;
7961 }
7962 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7963 
7964 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7965 {
7966 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7967 }
7968 
7969 static struct rtnl_hw_stats64 *
7970 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7971 			      enum netdev_offload_xstats_type type)
7972 {
7973 	switch (type) {
7974 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7975 		return dev->offload_xstats_l3;
7976 	}
7977 
7978 	WARN_ON(1);
7979 	return NULL;
7980 }
7981 
7982 bool netdev_offload_xstats_enabled(const struct net_device *dev,
7983 				   enum netdev_offload_xstats_type type)
7984 {
7985 	ASSERT_RTNL();
7986 
7987 	return netdev_offload_xstats_get_ptr(dev, type);
7988 }
7989 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7990 
7991 struct netdev_notifier_offload_xstats_ru {
7992 	bool used;
7993 };
7994 
7995 struct netdev_notifier_offload_xstats_rd {
7996 	struct rtnl_hw_stats64 stats;
7997 	bool used;
7998 };
7999 
8000 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8001 				  const struct rtnl_hw_stats64 *src)
8002 {
8003 	dest->rx_packets	  += src->rx_packets;
8004 	dest->tx_packets	  += src->tx_packets;
8005 	dest->rx_bytes		  += src->rx_bytes;
8006 	dest->tx_bytes		  += src->tx_bytes;
8007 	dest->rx_errors		  += src->rx_errors;
8008 	dest->tx_errors		  += src->tx_errors;
8009 	dest->rx_dropped	  += src->rx_dropped;
8010 	dest->tx_dropped	  += src->tx_dropped;
8011 	dest->multicast		  += src->multicast;
8012 }
8013 
8014 static int netdev_offload_xstats_get_used(struct net_device *dev,
8015 					  enum netdev_offload_xstats_type type,
8016 					  bool *p_used,
8017 					  struct netlink_ext_ack *extack)
8018 {
8019 	struct netdev_notifier_offload_xstats_ru report_used = {};
8020 	struct netdev_notifier_offload_xstats_info info = {
8021 		.info.dev = dev,
8022 		.info.extack = extack,
8023 		.type = type,
8024 		.report_used = &report_used,
8025 	};
8026 	int rc;
8027 
8028 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8029 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8030 					   &info.info);
8031 	*p_used = report_used.used;
8032 	return notifier_to_errno(rc);
8033 }
8034 
8035 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8036 					   enum netdev_offload_xstats_type type,
8037 					   struct rtnl_hw_stats64 *p_stats,
8038 					   bool *p_used,
8039 					   struct netlink_ext_ack *extack)
8040 {
8041 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8042 	struct netdev_notifier_offload_xstats_info info = {
8043 		.info.dev = dev,
8044 		.info.extack = extack,
8045 		.type = type,
8046 		.report_delta = &report_delta,
8047 	};
8048 	struct rtnl_hw_stats64 *stats;
8049 	int rc;
8050 
8051 	stats = netdev_offload_xstats_get_ptr(dev, type);
8052 	if (WARN_ON(!stats))
8053 		return -EINVAL;
8054 
8055 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8056 					   &info.info);
8057 
8058 	/* Cache whatever we got, even if there was an error, otherwise the
8059 	 * successful stats retrievals would get lost.
8060 	 */
8061 	netdev_hw_stats64_add(stats, &report_delta.stats);
8062 
8063 	if (p_stats)
8064 		*p_stats = *stats;
8065 	*p_used = report_delta.used;
8066 
8067 	return notifier_to_errno(rc);
8068 }
8069 
8070 int netdev_offload_xstats_get(struct net_device *dev,
8071 			      enum netdev_offload_xstats_type type,
8072 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8073 			      struct netlink_ext_ack *extack)
8074 {
8075 	ASSERT_RTNL();
8076 
8077 	if (p_stats)
8078 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8079 						       p_used, extack);
8080 	else
8081 		return netdev_offload_xstats_get_used(dev, type, p_used,
8082 						      extack);
8083 }
8084 EXPORT_SYMBOL(netdev_offload_xstats_get);
8085 
8086 void
8087 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8088 				   const struct rtnl_hw_stats64 *stats)
8089 {
8090 	report_delta->used = true;
8091 	netdev_hw_stats64_add(&report_delta->stats, stats);
8092 }
8093 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8094 
8095 void
8096 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8097 {
8098 	report_used->used = true;
8099 }
8100 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8101 
8102 void netdev_offload_xstats_push_delta(struct net_device *dev,
8103 				      enum netdev_offload_xstats_type type,
8104 				      const struct rtnl_hw_stats64 *p_stats)
8105 {
8106 	struct rtnl_hw_stats64 *stats;
8107 
8108 	ASSERT_RTNL();
8109 
8110 	stats = netdev_offload_xstats_get_ptr(dev, type);
8111 	if (WARN_ON(!stats))
8112 		return;
8113 
8114 	netdev_hw_stats64_add(stats, p_stats);
8115 }
8116 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8117 
8118 /**
8119  * netdev_get_xmit_slave - Get the xmit slave of master device
8120  * @dev: device
8121  * @skb: The packet
8122  * @all_slaves: assume all the slaves are active
8123  *
8124  * The reference counters are not incremented so the caller must be
8125  * careful with locks. The caller must hold RCU lock.
8126  * %NULL is returned if no slave is found.
8127  */
8128 
8129 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8130 					 struct sk_buff *skb,
8131 					 bool all_slaves)
8132 {
8133 	const struct net_device_ops *ops = dev->netdev_ops;
8134 
8135 	if (!ops->ndo_get_xmit_slave)
8136 		return NULL;
8137 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8138 }
8139 EXPORT_SYMBOL(netdev_get_xmit_slave);
8140 
8141 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8142 						  struct sock *sk)
8143 {
8144 	const struct net_device_ops *ops = dev->netdev_ops;
8145 
8146 	if (!ops->ndo_sk_get_lower_dev)
8147 		return NULL;
8148 	return ops->ndo_sk_get_lower_dev(dev, sk);
8149 }
8150 
8151 /**
8152  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8153  * @dev: device
8154  * @sk: the socket
8155  *
8156  * %NULL is returned if no lower device is found.
8157  */
8158 
8159 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8160 					    struct sock *sk)
8161 {
8162 	struct net_device *lower;
8163 
8164 	lower = netdev_sk_get_lower_dev(dev, sk);
8165 	while (lower) {
8166 		dev = lower;
8167 		lower = netdev_sk_get_lower_dev(dev, sk);
8168 	}
8169 
8170 	return dev;
8171 }
8172 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8173 
8174 static void netdev_adjacent_add_links(struct net_device *dev)
8175 {
8176 	struct netdev_adjacent *iter;
8177 
8178 	struct net *net = dev_net(dev);
8179 
8180 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8181 		if (!net_eq(net, dev_net(iter->dev)))
8182 			continue;
8183 		netdev_adjacent_sysfs_add(iter->dev, dev,
8184 					  &iter->dev->adj_list.lower);
8185 		netdev_adjacent_sysfs_add(dev, iter->dev,
8186 					  &dev->adj_list.upper);
8187 	}
8188 
8189 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8190 		if (!net_eq(net, dev_net(iter->dev)))
8191 			continue;
8192 		netdev_adjacent_sysfs_add(iter->dev, dev,
8193 					  &iter->dev->adj_list.upper);
8194 		netdev_adjacent_sysfs_add(dev, iter->dev,
8195 					  &dev->adj_list.lower);
8196 	}
8197 }
8198 
8199 static void netdev_adjacent_del_links(struct net_device *dev)
8200 {
8201 	struct netdev_adjacent *iter;
8202 
8203 	struct net *net = dev_net(dev);
8204 
8205 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8206 		if (!net_eq(net, dev_net(iter->dev)))
8207 			continue;
8208 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8209 					  &iter->dev->adj_list.lower);
8210 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8211 					  &dev->adj_list.upper);
8212 	}
8213 
8214 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8215 		if (!net_eq(net, dev_net(iter->dev)))
8216 			continue;
8217 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8218 					  &iter->dev->adj_list.upper);
8219 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8220 					  &dev->adj_list.lower);
8221 	}
8222 }
8223 
8224 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8225 {
8226 	struct netdev_adjacent *iter;
8227 
8228 	struct net *net = dev_net(dev);
8229 
8230 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8231 		if (!net_eq(net, dev_net(iter->dev)))
8232 			continue;
8233 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8234 					  &iter->dev->adj_list.lower);
8235 		netdev_adjacent_sysfs_add(iter->dev, dev,
8236 					  &iter->dev->adj_list.lower);
8237 	}
8238 
8239 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8240 		if (!net_eq(net, dev_net(iter->dev)))
8241 			continue;
8242 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8243 					  &iter->dev->adj_list.upper);
8244 		netdev_adjacent_sysfs_add(iter->dev, dev,
8245 					  &iter->dev->adj_list.upper);
8246 	}
8247 }
8248 
8249 void *netdev_lower_dev_get_private(struct net_device *dev,
8250 				   struct net_device *lower_dev)
8251 {
8252 	struct netdev_adjacent *lower;
8253 
8254 	if (!lower_dev)
8255 		return NULL;
8256 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8257 	if (!lower)
8258 		return NULL;
8259 
8260 	return lower->private;
8261 }
8262 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8263 
8264 
8265 /**
8266  * netdev_lower_state_changed - Dispatch event about lower device state change
8267  * @lower_dev: device
8268  * @lower_state_info: state to dispatch
8269  *
8270  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8271  * The caller must hold the RTNL lock.
8272  */
8273 void netdev_lower_state_changed(struct net_device *lower_dev,
8274 				void *lower_state_info)
8275 {
8276 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8277 		.info.dev = lower_dev,
8278 	};
8279 
8280 	ASSERT_RTNL();
8281 	changelowerstate_info.lower_state_info = lower_state_info;
8282 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8283 				      &changelowerstate_info.info);
8284 }
8285 EXPORT_SYMBOL(netdev_lower_state_changed);
8286 
8287 static void dev_change_rx_flags(struct net_device *dev, int flags)
8288 {
8289 	const struct net_device_ops *ops = dev->netdev_ops;
8290 
8291 	if (ops->ndo_change_rx_flags)
8292 		ops->ndo_change_rx_flags(dev, flags);
8293 }
8294 
8295 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8296 {
8297 	unsigned int old_flags = dev->flags;
8298 	kuid_t uid;
8299 	kgid_t gid;
8300 
8301 	ASSERT_RTNL();
8302 
8303 	dev->flags |= IFF_PROMISC;
8304 	dev->promiscuity += inc;
8305 	if (dev->promiscuity == 0) {
8306 		/*
8307 		 * Avoid overflow.
8308 		 * If inc causes overflow, untouch promisc and return error.
8309 		 */
8310 		if (inc < 0)
8311 			dev->flags &= ~IFF_PROMISC;
8312 		else {
8313 			dev->promiscuity -= inc;
8314 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8315 			return -EOVERFLOW;
8316 		}
8317 	}
8318 	if (dev->flags != old_flags) {
8319 		netdev_info(dev, "%s promiscuous mode\n",
8320 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8321 		if (audit_enabled) {
8322 			current_uid_gid(&uid, &gid);
8323 			audit_log(audit_context(), GFP_ATOMIC,
8324 				  AUDIT_ANOM_PROMISCUOUS,
8325 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8326 				  dev->name, (dev->flags & IFF_PROMISC),
8327 				  (old_flags & IFF_PROMISC),
8328 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8329 				  from_kuid(&init_user_ns, uid),
8330 				  from_kgid(&init_user_ns, gid),
8331 				  audit_get_sessionid(current));
8332 		}
8333 
8334 		dev_change_rx_flags(dev, IFF_PROMISC);
8335 	}
8336 	if (notify)
8337 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8338 	return 0;
8339 }
8340 
8341 /**
8342  *	dev_set_promiscuity	- update promiscuity count on a device
8343  *	@dev: device
8344  *	@inc: modifier
8345  *
8346  *	Add or remove promiscuity from a device. While the count in the device
8347  *	remains above zero the interface remains promiscuous. Once it hits zero
8348  *	the device reverts back to normal filtering operation. A negative inc
8349  *	value is used to drop promiscuity on the device.
8350  *	Return 0 if successful or a negative errno code on error.
8351  */
8352 int dev_set_promiscuity(struct net_device *dev, int inc)
8353 {
8354 	unsigned int old_flags = dev->flags;
8355 	int err;
8356 
8357 	err = __dev_set_promiscuity(dev, inc, true);
8358 	if (err < 0)
8359 		return err;
8360 	if (dev->flags != old_flags)
8361 		dev_set_rx_mode(dev);
8362 	return err;
8363 }
8364 EXPORT_SYMBOL(dev_set_promiscuity);
8365 
8366 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8367 {
8368 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8369 
8370 	ASSERT_RTNL();
8371 
8372 	dev->flags |= IFF_ALLMULTI;
8373 	dev->allmulti += inc;
8374 	if (dev->allmulti == 0) {
8375 		/*
8376 		 * Avoid overflow.
8377 		 * If inc causes overflow, untouch allmulti and return error.
8378 		 */
8379 		if (inc < 0)
8380 			dev->flags &= ~IFF_ALLMULTI;
8381 		else {
8382 			dev->allmulti -= inc;
8383 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8384 			return -EOVERFLOW;
8385 		}
8386 	}
8387 	if (dev->flags ^ old_flags) {
8388 		netdev_info(dev, "%s allmulticast mode\n",
8389 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8390 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8391 		dev_set_rx_mode(dev);
8392 		if (notify)
8393 			__dev_notify_flags(dev, old_flags,
8394 					   dev->gflags ^ old_gflags, 0, NULL);
8395 	}
8396 	return 0;
8397 }
8398 
8399 /**
8400  *	dev_set_allmulti	- update allmulti count on a device
8401  *	@dev: device
8402  *	@inc: modifier
8403  *
8404  *	Add or remove reception of all multicast frames to a device. While the
8405  *	count in the device remains above zero the interface remains listening
8406  *	to all interfaces. Once it hits zero the device reverts back to normal
8407  *	filtering operation. A negative @inc value is used to drop the counter
8408  *	when releasing a resource needing all multicasts.
8409  *	Return 0 if successful or a negative errno code on error.
8410  */
8411 
8412 int dev_set_allmulti(struct net_device *dev, int inc)
8413 {
8414 	return __dev_set_allmulti(dev, inc, true);
8415 }
8416 EXPORT_SYMBOL(dev_set_allmulti);
8417 
8418 /*
8419  *	Upload unicast and multicast address lists to device and
8420  *	configure RX filtering. When the device doesn't support unicast
8421  *	filtering it is put in promiscuous mode while unicast addresses
8422  *	are present.
8423  */
8424 void __dev_set_rx_mode(struct net_device *dev)
8425 {
8426 	const struct net_device_ops *ops = dev->netdev_ops;
8427 
8428 	/* dev_open will call this function so the list will stay sane. */
8429 	if (!(dev->flags&IFF_UP))
8430 		return;
8431 
8432 	if (!netif_device_present(dev))
8433 		return;
8434 
8435 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8436 		/* Unicast addresses changes may only happen under the rtnl,
8437 		 * therefore calling __dev_set_promiscuity here is safe.
8438 		 */
8439 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8440 			__dev_set_promiscuity(dev, 1, false);
8441 			dev->uc_promisc = true;
8442 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8443 			__dev_set_promiscuity(dev, -1, false);
8444 			dev->uc_promisc = false;
8445 		}
8446 	}
8447 
8448 	if (ops->ndo_set_rx_mode)
8449 		ops->ndo_set_rx_mode(dev);
8450 }
8451 
8452 void dev_set_rx_mode(struct net_device *dev)
8453 {
8454 	netif_addr_lock_bh(dev);
8455 	__dev_set_rx_mode(dev);
8456 	netif_addr_unlock_bh(dev);
8457 }
8458 
8459 /**
8460  *	dev_get_flags - get flags reported to userspace
8461  *	@dev: device
8462  *
8463  *	Get the combination of flag bits exported through APIs to userspace.
8464  */
8465 unsigned int dev_get_flags(const struct net_device *dev)
8466 {
8467 	unsigned int flags;
8468 
8469 	flags = (dev->flags & ~(IFF_PROMISC |
8470 				IFF_ALLMULTI |
8471 				IFF_RUNNING |
8472 				IFF_LOWER_UP |
8473 				IFF_DORMANT)) |
8474 		(dev->gflags & (IFF_PROMISC |
8475 				IFF_ALLMULTI));
8476 
8477 	if (netif_running(dev)) {
8478 		if (netif_oper_up(dev))
8479 			flags |= IFF_RUNNING;
8480 		if (netif_carrier_ok(dev))
8481 			flags |= IFF_LOWER_UP;
8482 		if (netif_dormant(dev))
8483 			flags |= IFF_DORMANT;
8484 	}
8485 
8486 	return flags;
8487 }
8488 EXPORT_SYMBOL(dev_get_flags);
8489 
8490 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8491 		       struct netlink_ext_ack *extack)
8492 {
8493 	unsigned int old_flags = dev->flags;
8494 	int ret;
8495 
8496 	ASSERT_RTNL();
8497 
8498 	/*
8499 	 *	Set the flags on our device.
8500 	 */
8501 
8502 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8503 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8504 			       IFF_AUTOMEDIA)) |
8505 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8506 				    IFF_ALLMULTI));
8507 
8508 	/*
8509 	 *	Load in the correct multicast list now the flags have changed.
8510 	 */
8511 
8512 	if ((old_flags ^ flags) & IFF_MULTICAST)
8513 		dev_change_rx_flags(dev, IFF_MULTICAST);
8514 
8515 	dev_set_rx_mode(dev);
8516 
8517 	/*
8518 	 *	Have we downed the interface. We handle IFF_UP ourselves
8519 	 *	according to user attempts to set it, rather than blindly
8520 	 *	setting it.
8521 	 */
8522 
8523 	ret = 0;
8524 	if ((old_flags ^ flags) & IFF_UP) {
8525 		if (old_flags & IFF_UP)
8526 			__dev_close(dev);
8527 		else
8528 			ret = __dev_open(dev, extack);
8529 	}
8530 
8531 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8532 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8533 		unsigned int old_flags = dev->flags;
8534 
8535 		dev->gflags ^= IFF_PROMISC;
8536 
8537 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8538 			if (dev->flags != old_flags)
8539 				dev_set_rx_mode(dev);
8540 	}
8541 
8542 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8543 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8544 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8545 	 */
8546 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8547 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8548 
8549 		dev->gflags ^= IFF_ALLMULTI;
8550 		__dev_set_allmulti(dev, inc, false);
8551 	}
8552 
8553 	return ret;
8554 }
8555 
8556 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8557 			unsigned int gchanges, u32 portid,
8558 			const struct nlmsghdr *nlh)
8559 {
8560 	unsigned int changes = dev->flags ^ old_flags;
8561 
8562 	if (gchanges)
8563 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8564 
8565 	if (changes & IFF_UP) {
8566 		if (dev->flags & IFF_UP)
8567 			call_netdevice_notifiers(NETDEV_UP, dev);
8568 		else
8569 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8570 	}
8571 
8572 	if (dev->flags & IFF_UP &&
8573 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8574 		struct netdev_notifier_change_info change_info = {
8575 			.info = {
8576 				.dev = dev,
8577 			},
8578 			.flags_changed = changes,
8579 		};
8580 
8581 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8582 	}
8583 }
8584 
8585 /**
8586  *	dev_change_flags - change device settings
8587  *	@dev: device
8588  *	@flags: device state flags
8589  *	@extack: netlink extended ack
8590  *
8591  *	Change settings on device based state flags. The flags are
8592  *	in the userspace exported format.
8593  */
8594 int dev_change_flags(struct net_device *dev, unsigned int flags,
8595 		     struct netlink_ext_ack *extack)
8596 {
8597 	int ret;
8598 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8599 
8600 	ret = __dev_change_flags(dev, flags, extack);
8601 	if (ret < 0)
8602 		return ret;
8603 
8604 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8605 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8606 	return ret;
8607 }
8608 EXPORT_SYMBOL(dev_change_flags);
8609 
8610 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8611 {
8612 	const struct net_device_ops *ops = dev->netdev_ops;
8613 
8614 	if (ops->ndo_change_mtu)
8615 		return ops->ndo_change_mtu(dev, new_mtu);
8616 
8617 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8618 	WRITE_ONCE(dev->mtu, new_mtu);
8619 	return 0;
8620 }
8621 EXPORT_SYMBOL(__dev_set_mtu);
8622 
8623 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8624 		     struct netlink_ext_ack *extack)
8625 {
8626 	/* MTU must be positive, and in range */
8627 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8628 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8629 		return -EINVAL;
8630 	}
8631 
8632 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8633 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8634 		return -EINVAL;
8635 	}
8636 	return 0;
8637 }
8638 
8639 /**
8640  *	dev_set_mtu_ext - Change maximum transfer unit
8641  *	@dev: device
8642  *	@new_mtu: new transfer unit
8643  *	@extack: netlink extended ack
8644  *
8645  *	Change the maximum transfer size of the network device.
8646  */
8647 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8648 		    struct netlink_ext_ack *extack)
8649 {
8650 	int err, orig_mtu;
8651 
8652 	if (new_mtu == dev->mtu)
8653 		return 0;
8654 
8655 	err = dev_validate_mtu(dev, new_mtu, extack);
8656 	if (err)
8657 		return err;
8658 
8659 	if (!netif_device_present(dev))
8660 		return -ENODEV;
8661 
8662 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8663 	err = notifier_to_errno(err);
8664 	if (err)
8665 		return err;
8666 
8667 	orig_mtu = dev->mtu;
8668 	err = __dev_set_mtu(dev, new_mtu);
8669 
8670 	if (!err) {
8671 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8672 						   orig_mtu);
8673 		err = notifier_to_errno(err);
8674 		if (err) {
8675 			/* setting mtu back and notifying everyone again,
8676 			 * so that they have a chance to revert changes.
8677 			 */
8678 			__dev_set_mtu(dev, orig_mtu);
8679 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8680 						     new_mtu);
8681 		}
8682 	}
8683 	return err;
8684 }
8685 
8686 int dev_set_mtu(struct net_device *dev, int new_mtu)
8687 {
8688 	struct netlink_ext_ack extack;
8689 	int err;
8690 
8691 	memset(&extack, 0, sizeof(extack));
8692 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8693 	if (err && extack._msg)
8694 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8695 	return err;
8696 }
8697 EXPORT_SYMBOL(dev_set_mtu);
8698 
8699 /**
8700  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8701  *	@dev: device
8702  *	@new_len: new tx queue length
8703  */
8704 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8705 {
8706 	unsigned int orig_len = dev->tx_queue_len;
8707 	int res;
8708 
8709 	if (new_len != (unsigned int)new_len)
8710 		return -ERANGE;
8711 
8712 	if (new_len != orig_len) {
8713 		dev->tx_queue_len = new_len;
8714 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8715 		res = notifier_to_errno(res);
8716 		if (res)
8717 			goto err_rollback;
8718 		res = dev_qdisc_change_tx_queue_len(dev);
8719 		if (res)
8720 			goto err_rollback;
8721 	}
8722 
8723 	return 0;
8724 
8725 err_rollback:
8726 	netdev_err(dev, "refused to change device tx_queue_len\n");
8727 	dev->tx_queue_len = orig_len;
8728 	return res;
8729 }
8730 
8731 /**
8732  *	dev_set_group - Change group this device belongs to
8733  *	@dev: device
8734  *	@new_group: group this device should belong to
8735  */
8736 void dev_set_group(struct net_device *dev, int new_group)
8737 {
8738 	dev->group = new_group;
8739 }
8740 
8741 /**
8742  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8743  *	@dev: device
8744  *	@addr: new address
8745  *	@extack: netlink extended ack
8746  */
8747 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8748 			      struct netlink_ext_ack *extack)
8749 {
8750 	struct netdev_notifier_pre_changeaddr_info info = {
8751 		.info.dev = dev,
8752 		.info.extack = extack,
8753 		.dev_addr = addr,
8754 	};
8755 	int rc;
8756 
8757 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8758 	return notifier_to_errno(rc);
8759 }
8760 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8761 
8762 /**
8763  *	dev_set_mac_address - Change Media Access Control Address
8764  *	@dev: device
8765  *	@sa: new address
8766  *	@extack: netlink extended ack
8767  *
8768  *	Change the hardware (MAC) address of the device
8769  */
8770 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8771 			struct netlink_ext_ack *extack)
8772 {
8773 	const struct net_device_ops *ops = dev->netdev_ops;
8774 	int err;
8775 
8776 	if (!ops->ndo_set_mac_address)
8777 		return -EOPNOTSUPP;
8778 	if (sa->sa_family != dev->type)
8779 		return -EINVAL;
8780 	if (!netif_device_present(dev))
8781 		return -ENODEV;
8782 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8783 	if (err)
8784 		return err;
8785 	err = ops->ndo_set_mac_address(dev, sa);
8786 	if (err)
8787 		return err;
8788 	dev->addr_assign_type = NET_ADDR_SET;
8789 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8790 	add_device_randomness(dev->dev_addr, dev->addr_len);
8791 	return 0;
8792 }
8793 EXPORT_SYMBOL(dev_set_mac_address);
8794 
8795 static DECLARE_RWSEM(dev_addr_sem);
8796 
8797 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8798 			     struct netlink_ext_ack *extack)
8799 {
8800 	int ret;
8801 
8802 	down_write(&dev_addr_sem);
8803 	ret = dev_set_mac_address(dev, sa, extack);
8804 	up_write(&dev_addr_sem);
8805 	return ret;
8806 }
8807 EXPORT_SYMBOL(dev_set_mac_address_user);
8808 
8809 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8810 {
8811 	size_t size = sizeof(sa->sa_data_min);
8812 	struct net_device *dev;
8813 	int ret = 0;
8814 
8815 	down_read(&dev_addr_sem);
8816 	rcu_read_lock();
8817 
8818 	dev = dev_get_by_name_rcu(net, dev_name);
8819 	if (!dev) {
8820 		ret = -ENODEV;
8821 		goto unlock;
8822 	}
8823 	if (!dev->addr_len)
8824 		memset(sa->sa_data, 0, size);
8825 	else
8826 		memcpy(sa->sa_data, dev->dev_addr,
8827 		       min_t(size_t, size, dev->addr_len));
8828 	sa->sa_family = dev->type;
8829 
8830 unlock:
8831 	rcu_read_unlock();
8832 	up_read(&dev_addr_sem);
8833 	return ret;
8834 }
8835 EXPORT_SYMBOL(dev_get_mac_address);
8836 
8837 /**
8838  *	dev_change_carrier - Change device carrier
8839  *	@dev: device
8840  *	@new_carrier: new value
8841  *
8842  *	Change device carrier
8843  */
8844 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8845 {
8846 	const struct net_device_ops *ops = dev->netdev_ops;
8847 
8848 	if (!ops->ndo_change_carrier)
8849 		return -EOPNOTSUPP;
8850 	if (!netif_device_present(dev))
8851 		return -ENODEV;
8852 	return ops->ndo_change_carrier(dev, new_carrier);
8853 }
8854 
8855 /**
8856  *	dev_get_phys_port_id - Get device physical port ID
8857  *	@dev: device
8858  *	@ppid: port ID
8859  *
8860  *	Get device physical port ID
8861  */
8862 int dev_get_phys_port_id(struct net_device *dev,
8863 			 struct netdev_phys_item_id *ppid)
8864 {
8865 	const struct net_device_ops *ops = dev->netdev_ops;
8866 
8867 	if (!ops->ndo_get_phys_port_id)
8868 		return -EOPNOTSUPP;
8869 	return ops->ndo_get_phys_port_id(dev, ppid);
8870 }
8871 
8872 /**
8873  *	dev_get_phys_port_name - Get device physical port name
8874  *	@dev: device
8875  *	@name: port name
8876  *	@len: limit of bytes to copy to name
8877  *
8878  *	Get device physical port name
8879  */
8880 int dev_get_phys_port_name(struct net_device *dev,
8881 			   char *name, size_t len)
8882 {
8883 	const struct net_device_ops *ops = dev->netdev_ops;
8884 	int err;
8885 
8886 	if (ops->ndo_get_phys_port_name) {
8887 		err = ops->ndo_get_phys_port_name(dev, name, len);
8888 		if (err != -EOPNOTSUPP)
8889 			return err;
8890 	}
8891 	return devlink_compat_phys_port_name_get(dev, name, len);
8892 }
8893 
8894 /**
8895  *	dev_get_port_parent_id - Get the device's port parent identifier
8896  *	@dev: network device
8897  *	@ppid: pointer to a storage for the port's parent identifier
8898  *	@recurse: allow/disallow recursion to lower devices
8899  *
8900  *	Get the devices's port parent identifier
8901  */
8902 int dev_get_port_parent_id(struct net_device *dev,
8903 			   struct netdev_phys_item_id *ppid,
8904 			   bool recurse)
8905 {
8906 	const struct net_device_ops *ops = dev->netdev_ops;
8907 	struct netdev_phys_item_id first = { };
8908 	struct net_device *lower_dev;
8909 	struct list_head *iter;
8910 	int err;
8911 
8912 	if (ops->ndo_get_port_parent_id) {
8913 		err = ops->ndo_get_port_parent_id(dev, ppid);
8914 		if (err != -EOPNOTSUPP)
8915 			return err;
8916 	}
8917 
8918 	err = devlink_compat_switch_id_get(dev, ppid);
8919 	if (!recurse || err != -EOPNOTSUPP)
8920 		return err;
8921 
8922 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8923 		err = dev_get_port_parent_id(lower_dev, ppid, true);
8924 		if (err)
8925 			break;
8926 		if (!first.id_len)
8927 			first = *ppid;
8928 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8929 			return -EOPNOTSUPP;
8930 	}
8931 
8932 	return err;
8933 }
8934 EXPORT_SYMBOL(dev_get_port_parent_id);
8935 
8936 /**
8937  *	netdev_port_same_parent_id - Indicate if two network devices have
8938  *	the same port parent identifier
8939  *	@a: first network device
8940  *	@b: second network device
8941  */
8942 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8943 {
8944 	struct netdev_phys_item_id a_id = { };
8945 	struct netdev_phys_item_id b_id = { };
8946 
8947 	if (dev_get_port_parent_id(a, &a_id, true) ||
8948 	    dev_get_port_parent_id(b, &b_id, true))
8949 		return false;
8950 
8951 	return netdev_phys_item_id_same(&a_id, &b_id);
8952 }
8953 EXPORT_SYMBOL(netdev_port_same_parent_id);
8954 
8955 /**
8956  *	dev_change_proto_down - set carrier according to proto_down.
8957  *
8958  *	@dev: device
8959  *	@proto_down: new value
8960  */
8961 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8962 {
8963 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8964 		return -EOPNOTSUPP;
8965 	if (!netif_device_present(dev))
8966 		return -ENODEV;
8967 	if (proto_down)
8968 		netif_carrier_off(dev);
8969 	else
8970 		netif_carrier_on(dev);
8971 	dev->proto_down = proto_down;
8972 	return 0;
8973 }
8974 
8975 /**
8976  *	dev_change_proto_down_reason - proto down reason
8977  *
8978  *	@dev: device
8979  *	@mask: proto down mask
8980  *	@value: proto down value
8981  */
8982 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8983 				  u32 value)
8984 {
8985 	int b;
8986 
8987 	if (!mask) {
8988 		dev->proto_down_reason = value;
8989 	} else {
8990 		for_each_set_bit(b, &mask, 32) {
8991 			if (value & (1 << b))
8992 				dev->proto_down_reason |= BIT(b);
8993 			else
8994 				dev->proto_down_reason &= ~BIT(b);
8995 		}
8996 	}
8997 }
8998 
8999 struct bpf_xdp_link {
9000 	struct bpf_link link;
9001 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9002 	int flags;
9003 };
9004 
9005 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9006 {
9007 	if (flags & XDP_FLAGS_HW_MODE)
9008 		return XDP_MODE_HW;
9009 	if (flags & XDP_FLAGS_DRV_MODE)
9010 		return XDP_MODE_DRV;
9011 	if (flags & XDP_FLAGS_SKB_MODE)
9012 		return XDP_MODE_SKB;
9013 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9014 }
9015 
9016 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9017 {
9018 	switch (mode) {
9019 	case XDP_MODE_SKB:
9020 		return generic_xdp_install;
9021 	case XDP_MODE_DRV:
9022 	case XDP_MODE_HW:
9023 		return dev->netdev_ops->ndo_bpf;
9024 	default:
9025 		return NULL;
9026 	}
9027 }
9028 
9029 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9030 					 enum bpf_xdp_mode mode)
9031 {
9032 	return dev->xdp_state[mode].link;
9033 }
9034 
9035 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9036 				     enum bpf_xdp_mode mode)
9037 {
9038 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9039 
9040 	if (link)
9041 		return link->link.prog;
9042 	return dev->xdp_state[mode].prog;
9043 }
9044 
9045 u8 dev_xdp_prog_count(struct net_device *dev)
9046 {
9047 	u8 count = 0;
9048 	int i;
9049 
9050 	for (i = 0; i < __MAX_XDP_MODE; i++)
9051 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9052 			count++;
9053 	return count;
9054 }
9055 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9056 
9057 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9058 {
9059 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9060 
9061 	return prog ? prog->aux->id : 0;
9062 }
9063 
9064 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9065 			     struct bpf_xdp_link *link)
9066 {
9067 	dev->xdp_state[mode].link = link;
9068 	dev->xdp_state[mode].prog = NULL;
9069 }
9070 
9071 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9072 			     struct bpf_prog *prog)
9073 {
9074 	dev->xdp_state[mode].link = NULL;
9075 	dev->xdp_state[mode].prog = prog;
9076 }
9077 
9078 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9079 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9080 			   u32 flags, struct bpf_prog *prog)
9081 {
9082 	struct netdev_bpf xdp;
9083 	int err;
9084 
9085 	memset(&xdp, 0, sizeof(xdp));
9086 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9087 	xdp.extack = extack;
9088 	xdp.flags = flags;
9089 	xdp.prog = prog;
9090 
9091 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9092 	 * "moved" into driver), so they don't increment it on their own, but
9093 	 * they do decrement refcnt when program is detached or replaced.
9094 	 * Given net_device also owns link/prog, we need to bump refcnt here
9095 	 * to prevent drivers from underflowing it.
9096 	 */
9097 	if (prog)
9098 		bpf_prog_inc(prog);
9099 	err = bpf_op(dev, &xdp);
9100 	if (err) {
9101 		if (prog)
9102 			bpf_prog_put(prog);
9103 		return err;
9104 	}
9105 
9106 	if (mode != XDP_MODE_HW)
9107 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9108 
9109 	return 0;
9110 }
9111 
9112 static void dev_xdp_uninstall(struct net_device *dev)
9113 {
9114 	struct bpf_xdp_link *link;
9115 	struct bpf_prog *prog;
9116 	enum bpf_xdp_mode mode;
9117 	bpf_op_t bpf_op;
9118 
9119 	ASSERT_RTNL();
9120 
9121 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9122 		prog = dev_xdp_prog(dev, mode);
9123 		if (!prog)
9124 			continue;
9125 
9126 		bpf_op = dev_xdp_bpf_op(dev, mode);
9127 		if (!bpf_op)
9128 			continue;
9129 
9130 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9131 
9132 		/* auto-detach link from net device */
9133 		link = dev_xdp_link(dev, mode);
9134 		if (link)
9135 			link->dev = NULL;
9136 		else
9137 			bpf_prog_put(prog);
9138 
9139 		dev_xdp_set_link(dev, mode, NULL);
9140 	}
9141 }
9142 
9143 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9144 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9145 			  struct bpf_prog *old_prog, u32 flags)
9146 {
9147 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9148 	struct bpf_prog *cur_prog;
9149 	struct net_device *upper;
9150 	struct list_head *iter;
9151 	enum bpf_xdp_mode mode;
9152 	bpf_op_t bpf_op;
9153 	int err;
9154 
9155 	ASSERT_RTNL();
9156 
9157 	/* either link or prog attachment, never both */
9158 	if (link && (new_prog || old_prog))
9159 		return -EINVAL;
9160 	/* link supports only XDP mode flags */
9161 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9162 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9163 		return -EINVAL;
9164 	}
9165 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9166 	if (num_modes > 1) {
9167 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9168 		return -EINVAL;
9169 	}
9170 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9171 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9172 		NL_SET_ERR_MSG(extack,
9173 			       "More than one program loaded, unset mode is ambiguous");
9174 		return -EINVAL;
9175 	}
9176 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9177 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9178 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9179 		return -EINVAL;
9180 	}
9181 
9182 	mode = dev_xdp_mode(dev, flags);
9183 	/* can't replace attached link */
9184 	if (dev_xdp_link(dev, mode)) {
9185 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9186 		return -EBUSY;
9187 	}
9188 
9189 	/* don't allow if an upper device already has a program */
9190 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9191 		if (dev_xdp_prog_count(upper) > 0) {
9192 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9193 			return -EEXIST;
9194 		}
9195 	}
9196 
9197 	cur_prog = dev_xdp_prog(dev, mode);
9198 	/* can't replace attached prog with link */
9199 	if (link && cur_prog) {
9200 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9201 		return -EBUSY;
9202 	}
9203 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9204 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9205 		return -EEXIST;
9206 	}
9207 
9208 	/* put effective new program into new_prog */
9209 	if (link)
9210 		new_prog = link->link.prog;
9211 
9212 	if (new_prog) {
9213 		bool offload = mode == XDP_MODE_HW;
9214 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9215 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9216 
9217 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9218 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9219 			return -EBUSY;
9220 		}
9221 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9222 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9223 			return -EEXIST;
9224 		}
9225 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9226 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9227 			return -EINVAL;
9228 		}
9229 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9230 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9231 			return -EINVAL;
9232 		}
9233 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9234 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9235 			return -EINVAL;
9236 		}
9237 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9238 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9239 			return -EINVAL;
9240 		}
9241 	}
9242 
9243 	/* don't call drivers if the effective program didn't change */
9244 	if (new_prog != cur_prog) {
9245 		bpf_op = dev_xdp_bpf_op(dev, mode);
9246 		if (!bpf_op) {
9247 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9248 			return -EOPNOTSUPP;
9249 		}
9250 
9251 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9252 		if (err)
9253 			return err;
9254 	}
9255 
9256 	if (link)
9257 		dev_xdp_set_link(dev, mode, link);
9258 	else
9259 		dev_xdp_set_prog(dev, mode, new_prog);
9260 	if (cur_prog)
9261 		bpf_prog_put(cur_prog);
9262 
9263 	return 0;
9264 }
9265 
9266 static int dev_xdp_attach_link(struct net_device *dev,
9267 			       struct netlink_ext_ack *extack,
9268 			       struct bpf_xdp_link *link)
9269 {
9270 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9271 }
9272 
9273 static int dev_xdp_detach_link(struct net_device *dev,
9274 			       struct netlink_ext_ack *extack,
9275 			       struct bpf_xdp_link *link)
9276 {
9277 	enum bpf_xdp_mode mode;
9278 	bpf_op_t bpf_op;
9279 
9280 	ASSERT_RTNL();
9281 
9282 	mode = dev_xdp_mode(dev, link->flags);
9283 	if (dev_xdp_link(dev, mode) != link)
9284 		return -EINVAL;
9285 
9286 	bpf_op = dev_xdp_bpf_op(dev, mode);
9287 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9288 	dev_xdp_set_link(dev, mode, NULL);
9289 	return 0;
9290 }
9291 
9292 static void bpf_xdp_link_release(struct bpf_link *link)
9293 {
9294 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9295 
9296 	rtnl_lock();
9297 
9298 	/* if racing with net_device's tear down, xdp_link->dev might be
9299 	 * already NULL, in which case link was already auto-detached
9300 	 */
9301 	if (xdp_link->dev) {
9302 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9303 		xdp_link->dev = NULL;
9304 	}
9305 
9306 	rtnl_unlock();
9307 }
9308 
9309 static int bpf_xdp_link_detach(struct bpf_link *link)
9310 {
9311 	bpf_xdp_link_release(link);
9312 	return 0;
9313 }
9314 
9315 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9316 {
9317 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9318 
9319 	kfree(xdp_link);
9320 }
9321 
9322 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9323 				     struct seq_file *seq)
9324 {
9325 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9326 	u32 ifindex = 0;
9327 
9328 	rtnl_lock();
9329 	if (xdp_link->dev)
9330 		ifindex = xdp_link->dev->ifindex;
9331 	rtnl_unlock();
9332 
9333 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9334 }
9335 
9336 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9337 				       struct bpf_link_info *info)
9338 {
9339 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9340 	u32 ifindex = 0;
9341 
9342 	rtnl_lock();
9343 	if (xdp_link->dev)
9344 		ifindex = xdp_link->dev->ifindex;
9345 	rtnl_unlock();
9346 
9347 	info->xdp.ifindex = ifindex;
9348 	return 0;
9349 }
9350 
9351 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9352 			       struct bpf_prog *old_prog)
9353 {
9354 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9355 	enum bpf_xdp_mode mode;
9356 	bpf_op_t bpf_op;
9357 	int err = 0;
9358 
9359 	rtnl_lock();
9360 
9361 	/* link might have been auto-released already, so fail */
9362 	if (!xdp_link->dev) {
9363 		err = -ENOLINK;
9364 		goto out_unlock;
9365 	}
9366 
9367 	if (old_prog && link->prog != old_prog) {
9368 		err = -EPERM;
9369 		goto out_unlock;
9370 	}
9371 	old_prog = link->prog;
9372 	if (old_prog->type != new_prog->type ||
9373 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9374 		err = -EINVAL;
9375 		goto out_unlock;
9376 	}
9377 
9378 	if (old_prog == new_prog) {
9379 		/* no-op, don't disturb drivers */
9380 		bpf_prog_put(new_prog);
9381 		goto out_unlock;
9382 	}
9383 
9384 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9385 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9386 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9387 			      xdp_link->flags, new_prog);
9388 	if (err)
9389 		goto out_unlock;
9390 
9391 	old_prog = xchg(&link->prog, new_prog);
9392 	bpf_prog_put(old_prog);
9393 
9394 out_unlock:
9395 	rtnl_unlock();
9396 	return err;
9397 }
9398 
9399 static const struct bpf_link_ops bpf_xdp_link_lops = {
9400 	.release = bpf_xdp_link_release,
9401 	.dealloc = bpf_xdp_link_dealloc,
9402 	.detach = bpf_xdp_link_detach,
9403 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9404 	.fill_link_info = bpf_xdp_link_fill_link_info,
9405 	.update_prog = bpf_xdp_link_update,
9406 };
9407 
9408 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9409 {
9410 	struct net *net = current->nsproxy->net_ns;
9411 	struct bpf_link_primer link_primer;
9412 	struct bpf_xdp_link *link;
9413 	struct net_device *dev;
9414 	int err, fd;
9415 
9416 	rtnl_lock();
9417 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9418 	if (!dev) {
9419 		rtnl_unlock();
9420 		return -EINVAL;
9421 	}
9422 
9423 	link = kzalloc(sizeof(*link), GFP_USER);
9424 	if (!link) {
9425 		err = -ENOMEM;
9426 		goto unlock;
9427 	}
9428 
9429 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9430 	link->dev = dev;
9431 	link->flags = attr->link_create.flags;
9432 
9433 	err = bpf_link_prime(&link->link, &link_primer);
9434 	if (err) {
9435 		kfree(link);
9436 		goto unlock;
9437 	}
9438 
9439 	err = dev_xdp_attach_link(dev, NULL, link);
9440 	rtnl_unlock();
9441 
9442 	if (err) {
9443 		link->dev = NULL;
9444 		bpf_link_cleanup(&link_primer);
9445 		goto out_put_dev;
9446 	}
9447 
9448 	fd = bpf_link_settle(&link_primer);
9449 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9450 	dev_put(dev);
9451 	return fd;
9452 
9453 unlock:
9454 	rtnl_unlock();
9455 
9456 out_put_dev:
9457 	dev_put(dev);
9458 	return err;
9459 }
9460 
9461 /**
9462  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9463  *	@dev: device
9464  *	@extack: netlink extended ack
9465  *	@fd: new program fd or negative value to clear
9466  *	@expected_fd: old program fd that userspace expects to replace or clear
9467  *	@flags: xdp-related flags
9468  *
9469  *	Set or clear a bpf program for a device
9470  */
9471 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9472 		      int fd, int expected_fd, u32 flags)
9473 {
9474 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9475 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9476 	int err;
9477 
9478 	ASSERT_RTNL();
9479 
9480 	if (fd >= 0) {
9481 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9482 						 mode != XDP_MODE_SKB);
9483 		if (IS_ERR(new_prog))
9484 			return PTR_ERR(new_prog);
9485 	}
9486 
9487 	if (expected_fd >= 0) {
9488 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9489 						 mode != XDP_MODE_SKB);
9490 		if (IS_ERR(old_prog)) {
9491 			err = PTR_ERR(old_prog);
9492 			old_prog = NULL;
9493 			goto err_out;
9494 		}
9495 	}
9496 
9497 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9498 
9499 err_out:
9500 	if (err && new_prog)
9501 		bpf_prog_put(new_prog);
9502 	if (old_prog)
9503 		bpf_prog_put(old_prog);
9504 	return err;
9505 }
9506 
9507 /**
9508  *	dev_new_index	-	allocate an ifindex
9509  *	@net: the applicable net namespace
9510  *
9511  *	Returns a suitable unique value for a new device interface
9512  *	number.  The caller must hold the rtnl semaphore or the
9513  *	dev_base_lock to be sure it remains unique.
9514  */
9515 static int dev_new_index(struct net *net)
9516 {
9517 	int ifindex = net->ifindex;
9518 
9519 	for (;;) {
9520 		if (++ifindex <= 0)
9521 			ifindex = 1;
9522 		if (!__dev_get_by_index(net, ifindex))
9523 			return net->ifindex = ifindex;
9524 	}
9525 }
9526 
9527 /* Delayed registration/unregisteration */
9528 LIST_HEAD(net_todo_list);
9529 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9530 
9531 static void net_set_todo(struct net_device *dev)
9532 {
9533 	list_add_tail(&dev->todo_list, &net_todo_list);
9534 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9535 }
9536 
9537 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9538 	struct net_device *upper, netdev_features_t features)
9539 {
9540 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9541 	netdev_features_t feature;
9542 	int feature_bit;
9543 
9544 	for_each_netdev_feature(upper_disables, feature_bit) {
9545 		feature = __NETIF_F_BIT(feature_bit);
9546 		if (!(upper->wanted_features & feature)
9547 		    && (features & feature)) {
9548 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9549 				   &feature, upper->name);
9550 			features &= ~feature;
9551 		}
9552 	}
9553 
9554 	return features;
9555 }
9556 
9557 static void netdev_sync_lower_features(struct net_device *upper,
9558 	struct net_device *lower, netdev_features_t features)
9559 {
9560 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9561 	netdev_features_t feature;
9562 	int feature_bit;
9563 
9564 	for_each_netdev_feature(upper_disables, feature_bit) {
9565 		feature = __NETIF_F_BIT(feature_bit);
9566 		if (!(features & feature) && (lower->features & feature)) {
9567 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9568 				   &feature, lower->name);
9569 			lower->wanted_features &= ~feature;
9570 			__netdev_update_features(lower);
9571 
9572 			if (unlikely(lower->features & feature))
9573 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9574 					    &feature, lower->name);
9575 			else
9576 				netdev_features_change(lower);
9577 		}
9578 	}
9579 }
9580 
9581 static netdev_features_t netdev_fix_features(struct net_device *dev,
9582 	netdev_features_t features)
9583 {
9584 	/* Fix illegal checksum combinations */
9585 	if ((features & NETIF_F_HW_CSUM) &&
9586 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9587 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9588 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9589 	}
9590 
9591 	/* TSO requires that SG is present as well. */
9592 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9593 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9594 		features &= ~NETIF_F_ALL_TSO;
9595 	}
9596 
9597 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9598 					!(features & NETIF_F_IP_CSUM)) {
9599 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9600 		features &= ~NETIF_F_TSO;
9601 		features &= ~NETIF_F_TSO_ECN;
9602 	}
9603 
9604 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9605 					 !(features & NETIF_F_IPV6_CSUM)) {
9606 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9607 		features &= ~NETIF_F_TSO6;
9608 	}
9609 
9610 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9611 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9612 		features &= ~NETIF_F_TSO_MANGLEID;
9613 
9614 	/* TSO ECN requires that TSO is present as well. */
9615 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9616 		features &= ~NETIF_F_TSO_ECN;
9617 
9618 	/* Software GSO depends on SG. */
9619 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9620 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9621 		features &= ~NETIF_F_GSO;
9622 	}
9623 
9624 	/* GSO partial features require GSO partial be set */
9625 	if ((features & dev->gso_partial_features) &&
9626 	    !(features & NETIF_F_GSO_PARTIAL)) {
9627 		netdev_dbg(dev,
9628 			   "Dropping partially supported GSO features since no GSO partial.\n");
9629 		features &= ~dev->gso_partial_features;
9630 	}
9631 
9632 	if (!(features & NETIF_F_RXCSUM)) {
9633 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9634 		 * successfully merged by hardware must also have the
9635 		 * checksum verified by hardware.  If the user does not
9636 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9637 		 */
9638 		if (features & NETIF_F_GRO_HW) {
9639 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9640 			features &= ~NETIF_F_GRO_HW;
9641 		}
9642 	}
9643 
9644 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9645 	if (features & NETIF_F_RXFCS) {
9646 		if (features & NETIF_F_LRO) {
9647 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9648 			features &= ~NETIF_F_LRO;
9649 		}
9650 
9651 		if (features & NETIF_F_GRO_HW) {
9652 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9653 			features &= ~NETIF_F_GRO_HW;
9654 		}
9655 	}
9656 
9657 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9658 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9659 		features &= ~NETIF_F_LRO;
9660 	}
9661 
9662 	if (features & NETIF_F_HW_TLS_TX) {
9663 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9664 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9665 		bool hw_csum = features & NETIF_F_HW_CSUM;
9666 
9667 		if (!ip_csum && !hw_csum) {
9668 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9669 			features &= ~NETIF_F_HW_TLS_TX;
9670 		}
9671 	}
9672 
9673 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9674 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9675 		features &= ~NETIF_F_HW_TLS_RX;
9676 	}
9677 
9678 	return features;
9679 }
9680 
9681 int __netdev_update_features(struct net_device *dev)
9682 {
9683 	struct net_device *upper, *lower;
9684 	netdev_features_t features;
9685 	struct list_head *iter;
9686 	int err = -1;
9687 
9688 	ASSERT_RTNL();
9689 
9690 	features = netdev_get_wanted_features(dev);
9691 
9692 	if (dev->netdev_ops->ndo_fix_features)
9693 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9694 
9695 	/* driver might be less strict about feature dependencies */
9696 	features = netdev_fix_features(dev, features);
9697 
9698 	/* some features can't be enabled if they're off on an upper device */
9699 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9700 		features = netdev_sync_upper_features(dev, upper, features);
9701 
9702 	if (dev->features == features)
9703 		goto sync_lower;
9704 
9705 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9706 		&dev->features, &features);
9707 
9708 	if (dev->netdev_ops->ndo_set_features)
9709 		err = dev->netdev_ops->ndo_set_features(dev, features);
9710 	else
9711 		err = 0;
9712 
9713 	if (unlikely(err < 0)) {
9714 		netdev_err(dev,
9715 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9716 			err, &features, &dev->features);
9717 		/* return non-0 since some features might have changed and
9718 		 * it's better to fire a spurious notification than miss it
9719 		 */
9720 		return -1;
9721 	}
9722 
9723 sync_lower:
9724 	/* some features must be disabled on lower devices when disabled
9725 	 * on an upper device (think: bonding master or bridge)
9726 	 */
9727 	netdev_for_each_lower_dev(dev, lower, iter)
9728 		netdev_sync_lower_features(dev, lower, features);
9729 
9730 	if (!err) {
9731 		netdev_features_t diff = features ^ dev->features;
9732 
9733 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9734 			/* udp_tunnel_{get,drop}_rx_info both need
9735 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9736 			 * device, or they won't do anything.
9737 			 * Thus we need to update dev->features
9738 			 * *before* calling udp_tunnel_get_rx_info,
9739 			 * but *after* calling udp_tunnel_drop_rx_info.
9740 			 */
9741 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9742 				dev->features = features;
9743 				udp_tunnel_get_rx_info(dev);
9744 			} else {
9745 				udp_tunnel_drop_rx_info(dev);
9746 			}
9747 		}
9748 
9749 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9750 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9751 				dev->features = features;
9752 				err |= vlan_get_rx_ctag_filter_info(dev);
9753 			} else {
9754 				vlan_drop_rx_ctag_filter_info(dev);
9755 			}
9756 		}
9757 
9758 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9759 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9760 				dev->features = features;
9761 				err |= vlan_get_rx_stag_filter_info(dev);
9762 			} else {
9763 				vlan_drop_rx_stag_filter_info(dev);
9764 			}
9765 		}
9766 
9767 		dev->features = features;
9768 	}
9769 
9770 	return err < 0 ? 0 : 1;
9771 }
9772 
9773 /**
9774  *	netdev_update_features - recalculate device features
9775  *	@dev: the device to check
9776  *
9777  *	Recalculate dev->features set and send notifications if it
9778  *	has changed. Should be called after driver or hardware dependent
9779  *	conditions might have changed that influence the features.
9780  */
9781 void netdev_update_features(struct net_device *dev)
9782 {
9783 	if (__netdev_update_features(dev))
9784 		netdev_features_change(dev);
9785 }
9786 EXPORT_SYMBOL(netdev_update_features);
9787 
9788 /**
9789  *	netdev_change_features - recalculate device features
9790  *	@dev: the device to check
9791  *
9792  *	Recalculate dev->features set and send notifications even
9793  *	if they have not changed. Should be called instead of
9794  *	netdev_update_features() if also dev->vlan_features might
9795  *	have changed to allow the changes to be propagated to stacked
9796  *	VLAN devices.
9797  */
9798 void netdev_change_features(struct net_device *dev)
9799 {
9800 	__netdev_update_features(dev);
9801 	netdev_features_change(dev);
9802 }
9803 EXPORT_SYMBOL(netdev_change_features);
9804 
9805 /**
9806  *	netif_stacked_transfer_operstate -	transfer operstate
9807  *	@rootdev: the root or lower level device to transfer state from
9808  *	@dev: the device to transfer operstate to
9809  *
9810  *	Transfer operational state from root to device. This is normally
9811  *	called when a stacking relationship exists between the root
9812  *	device and the device(a leaf device).
9813  */
9814 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9815 					struct net_device *dev)
9816 {
9817 	if (rootdev->operstate == IF_OPER_DORMANT)
9818 		netif_dormant_on(dev);
9819 	else
9820 		netif_dormant_off(dev);
9821 
9822 	if (rootdev->operstate == IF_OPER_TESTING)
9823 		netif_testing_on(dev);
9824 	else
9825 		netif_testing_off(dev);
9826 
9827 	if (netif_carrier_ok(rootdev))
9828 		netif_carrier_on(dev);
9829 	else
9830 		netif_carrier_off(dev);
9831 }
9832 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9833 
9834 static int netif_alloc_rx_queues(struct net_device *dev)
9835 {
9836 	unsigned int i, count = dev->num_rx_queues;
9837 	struct netdev_rx_queue *rx;
9838 	size_t sz = count * sizeof(*rx);
9839 	int err = 0;
9840 
9841 	BUG_ON(count < 1);
9842 
9843 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9844 	if (!rx)
9845 		return -ENOMEM;
9846 
9847 	dev->_rx = rx;
9848 
9849 	for (i = 0; i < count; i++) {
9850 		rx[i].dev = dev;
9851 
9852 		/* XDP RX-queue setup */
9853 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9854 		if (err < 0)
9855 			goto err_rxq_info;
9856 	}
9857 	return 0;
9858 
9859 err_rxq_info:
9860 	/* Rollback successful reg's and free other resources */
9861 	while (i--)
9862 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9863 	kvfree(dev->_rx);
9864 	dev->_rx = NULL;
9865 	return err;
9866 }
9867 
9868 static void netif_free_rx_queues(struct net_device *dev)
9869 {
9870 	unsigned int i, count = dev->num_rx_queues;
9871 
9872 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9873 	if (!dev->_rx)
9874 		return;
9875 
9876 	for (i = 0; i < count; i++)
9877 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9878 
9879 	kvfree(dev->_rx);
9880 }
9881 
9882 static void netdev_init_one_queue(struct net_device *dev,
9883 				  struct netdev_queue *queue, void *_unused)
9884 {
9885 	/* Initialize queue lock */
9886 	spin_lock_init(&queue->_xmit_lock);
9887 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9888 	queue->xmit_lock_owner = -1;
9889 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9890 	queue->dev = dev;
9891 #ifdef CONFIG_BQL
9892 	dql_init(&queue->dql, HZ);
9893 #endif
9894 }
9895 
9896 static void netif_free_tx_queues(struct net_device *dev)
9897 {
9898 	kvfree(dev->_tx);
9899 }
9900 
9901 static int netif_alloc_netdev_queues(struct net_device *dev)
9902 {
9903 	unsigned int count = dev->num_tx_queues;
9904 	struct netdev_queue *tx;
9905 	size_t sz = count * sizeof(*tx);
9906 
9907 	if (count < 1 || count > 0xffff)
9908 		return -EINVAL;
9909 
9910 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9911 	if (!tx)
9912 		return -ENOMEM;
9913 
9914 	dev->_tx = tx;
9915 
9916 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9917 	spin_lock_init(&dev->tx_global_lock);
9918 
9919 	return 0;
9920 }
9921 
9922 void netif_tx_stop_all_queues(struct net_device *dev)
9923 {
9924 	unsigned int i;
9925 
9926 	for (i = 0; i < dev->num_tx_queues; i++) {
9927 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9928 
9929 		netif_tx_stop_queue(txq);
9930 	}
9931 }
9932 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9933 
9934 /**
9935  * register_netdevice() - register a network device
9936  * @dev: device to register
9937  *
9938  * Take a prepared network device structure and make it externally accessible.
9939  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9940  * Callers must hold the rtnl lock - you may want register_netdev()
9941  * instead of this.
9942  */
9943 int register_netdevice(struct net_device *dev)
9944 {
9945 	int ret;
9946 	struct net *net = dev_net(dev);
9947 
9948 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9949 		     NETDEV_FEATURE_COUNT);
9950 	BUG_ON(dev_boot_phase);
9951 	ASSERT_RTNL();
9952 
9953 	might_sleep();
9954 
9955 	/* When net_device's are persistent, this will be fatal. */
9956 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9957 	BUG_ON(!net);
9958 
9959 	ret = ethtool_check_ops(dev->ethtool_ops);
9960 	if (ret)
9961 		return ret;
9962 
9963 	spin_lock_init(&dev->addr_list_lock);
9964 	netdev_set_addr_lockdep_class(dev);
9965 
9966 	ret = dev_get_valid_name(net, dev, dev->name);
9967 	if (ret < 0)
9968 		goto out;
9969 
9970 	ret = -ENOMEM;
9971 	dev->name_node = netdev_name_node_head_alloc(dev);
9972 	if (!dev->name_node)
9973 		goto out;
9974 
9975 	/* Init, if this function is available */
9976 	if (dev->netdev_ops->ndo_init) {
9977 		ret = dev->netdev_ops->ndo_init(dev);
9978 		if (ret) {
9979 			if (ret > 0)
9980 				ret = -EIO;
9981 			goto err_free_name;
9982 		}
9983 	}
9984 
9985 	if (((dev->hw_features | dev->features) &
9986 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9987 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9988 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9989 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9990 		ret = -EINVAL;
9991 		goto err_uninit;
9992 	}
9993 
9994 	ret = -EBUSY;
9995 	if (!dev->ifindex)
9996 		dev->ifindex = dev_new_index(net);
9997 	else if (__dev_get_by_index(net, dev->ifindex))
9998 		goto err_uninit;
9999 
10000 	/* Transfer changeable features to wanted_features and enable
10001 	 * software offloads (GSO and GRO).
10002 	 */
10003 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10004 	dev->features |= NETIF_F_SOFT_FEATURES;
10005 
10006 	if (dev->udp_tunnel_nic_info) {
10007 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10008 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10009 	}
10010 
10011 	dev->wanted_features = dev->features & dev->hw_features;
10012 
10013 	if (!(dev->flags & IFF_LOOPBACK))
10014 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10015 
10016 	/* If IPv4 TCP segmentation offload is supported we should also
10017 	 * allow the device to enable segmenting the frame with the option
10018 	 * of ignoring a static IP ID value.  This doesn't enable the
10019 	 * feature itself but allows the user to enable it later.
10020 	 */
10021 	if (dev->hw_features & NETIF_F_TSO)
10022 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10023 	if (dev->vlan_features & NETIF_F_TSO)
10024 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10025 	if (dev->mpls_features & NETIF_F_TSO)
10026 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10027 	if (dev->hw_enc_features & NETIF_F_TSO)
10028 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10029 
10030 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10031 	 */
10032 	dev->vlan_features |= NETIF_F_HIGHDMA;
10033 
10034 	/* Make NETIF_F_SG inheritable to tunnel devices.
10035 	 */
10036 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10037 
10038 	/* Make NETIF_F_SG inheritable to MPLS.
10039 	 */
10040 	dev->mpls_features |= NETIF_F_SG;
10041 
10042 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10043 	ret = notifier_to_errno(ret);
10044 	if (ret)
10045 		goto err_uninit;
10046 
10047 	ret = netdev_register_kobject(dev);
10048 	write_lock(&dev_base_lock);
10049 	dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10050 	write_unlock(&dev_base_lock);
10051 	if (ret)
10052 		goto err_uninit_notify;
10053 
10054 	__netdev_update_features(dev);
10055 
10056 	/*
10057 	 *	Default initial state at registry is that the
10058 	 *	device is present.
10059 	 */
10060 
10061 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10062 
10063 	linkwatch_init_dev(dev);
10064 
10065 	dev_init_scheduler(dev);
10066 
10067 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10068 	list_netdevice(dev);
10069 
10070 	add_device_randomness(dev->dev_addr, dev->addr_len);
10071 
10072 	/* If the device has permanent device address, driver should
10073 	 * set dev_addr and also addr_assign_type should be set to
10074 	 * NET_ADDR_PERM (default value).
10075 	 */
10076 	if (dev->addr_assign_type == NET_ADDR_PERM)
10077 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10078 
10079 	/* Notify protocols, that a new device appeared. */
10080 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10081 	ret = notifier_to_errno(ret);
10082 	if (ret) {
10083 		/* Expect explicit free_netdev() on failure */
10084 		dev->needs_free_netdev = false;
10085 		unregister_netdevice_queue(dev, NULL);
10086 		goto out;
10087 	}
10088 	/*
10089 	 *	Prevent userspace races by waiting until the network
10090 	 *	device is fully setup before sending notifications.
10091 	 */
10092 	if (!dev->rtnl_link_ops ||
10093 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10094 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10095 
10096 out:
10097 	return ret;
10098 
10099 err_uninit_notify:
10100 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10101 err_uninit:
10102 	if (dev->netdev_ops->ndo_uninit)
10103 		dev->netdev_ops->ndo_uninit(dev);
10104 	if (dev->priv_destructor)
10105 		dev->priv_destructor(dev);
10106 err_free_name:
10107 	netdev_name_node_free(dev->name_node);
10108 	goto out;
10109 }
10110 EXPORT_SYMBOL(register_netdevice);
10111 
10112 /**
10113  *	init_dummy_netdev	- init a dummy network device for NAPI
10114  *	@dev: device to init
10115  *
10116  *	This takes a network device structure and initialize the minimum
10117  *	amount of fields so it can be used to schedule NAPI polls without
10118  *	registering a full blown interface. This is to be used by drivers
10119  *	that need to tie several hardware interfaces to a single NAPI
10120  *	poll scheduler due to HW limitations.
10121  */
10122 int init_dummy_netdev(struct net_device *dev)
10123 {
10124 	/* Clear everything. Note we don't initialize spinlocks
10125 	 * are they aren't supposed to be taken by any of the
10126 	 * NAPI code and this dummy netdev is supposed to be
10127 	 * only ever used for NAPI polls
10128 	 */
10129 	memset(dev, 0, sizeof(struct net_device));
10130 
10131 	/* make sure we BUG if trying to hit standard
10132 	 * register/unregister code path
10133 	 */
10134 	dev->reg_state = NETREG_DUMMY;
10135 
10136 	/* NAPI wants this */
10137 	INIT_LIST_HEAD(&dev->napi_list);
10138 
10139 	/* a dummy interface is started by default */
10140 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10141 	set_bit(__LINK_STATE_START, &dev->state);
10142 
10143 	/* napi_busy_loop stats accounting wants this */
10144 	dev_net_set(dev, &init_net);
10145 
10146 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10147 	 * because users of this 'device' dont need to change
10148 	 * its refcount.
10149 	 */
10150 
10151 	return 0;
10152 }
10153 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10154 
10155 
10156 /**
10157  *	register_netdev	- register a network device
10158  *	@dev: device to register
10159  *
10160  *	Take a completed network device structure and add it to the kernel
10161  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10162  *	chain. 0 is returned on success. A negative errno code is returned
10163  *	on a failure to set up the device, or if the name is a duplicate.
10164  *
10165  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10166  *	and expands the device name if you passed a format string to
10167  *	alloc_netdev.
10168  */
10169 int register_netdev(struct net_device *dev)
10170 {
10171 	int err;
10172 
10173 	if (rtnl_lock_killable())
10174 		return -EINTR;
10175 	err = register_netdevice(dev);
10176 	rtnl_unlock();
10177 	return err;
10178 }
10179 EXPORT_SYMBOL(register_netdev);
10180 
10181 int netdev_refcnt_read(const struct net_device *dev)
10182 {
10183 #ifdef CONFIG_PCPU_DEV_REFCNT
10184 	int i, refcnt = 0;
10185 
10186 	for_each_possible_cpu(i)
10187 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10188 	return refcnt;
10189 #else
10190 	return refcount_read(&dev->dev_refcnt);
10191 #endif
10192 }
10193 EXPORT_SYMBOL(netdev_refcnt_read);
10194 
10195 int netdev_unregister_timeout_secs __read_mostly = 10;
10196 
10197 #define WAIT_REFS_MIN_MSECS 1
10198 #define WAIT_REFS_MAX_MSECS 250
10199 /**
10200  * netdev_wait_allrefs_any - wait until all references are gone.
10201  * @list: list of net_devices to wait on
10202  *
10203  * This is called when unregistering network devices.
10204  *
10205  * Any protocol or device that holds a reference should register
10206  * for netdevice notification, and cleanup and put back the
10207  * reference if they receive an UNREGISTER event.
10208  * We can get stuck here if buggy protocols don't correctly
10209  * call dev_put.
10210  */
10211 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10212 {
10213 	unsigned long rebroadcast_time, warning_time;
10214 	struct net_device *dev;
10215 	int wait = 0;
10216 
10217 	rebroadcast_time = warning_time = jiffies;
10218 
10219 	list_for_each_entry(dev, list, todo_list)
10220 		if (netdev_refcnt_read(dev) == 1)
10221 			return dev;
10222 
10223 	while (true) {
10224 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10225 			rtnl_lock();
10226 
10227 			/* Rebroadcast unregister notification */
10228 			list_for_each_entry(dev, list, todo_list)
10229 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10230 
10231 			__rtnl_unlock();
10232 			rcu_barrier();
10233 			rtnl_lock();
10234 
10235 			list_for_each_entry(dev, list, todo_list)
10236 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10237 					     &dev->state)) {
10238 					/* We must not have linkwatch events
10239 					 * pending on unregister. If this
10240 					 * happens, we simply run the queue
10241 					 * unscheduled, resulting in a noop
10242 					 * for this device.
10243 					 */
10244 					linkwatch_run_queue();
10245 					break;
10246 				}
10247 
10248 			__rtnl_unlock();
10249 
10250 			rebroadcast_time = jiffies;
10251 		}
10252 
10253 		if (!wait) {
10254 			rcu_barrier();
10255 			wait = WAIT_REFS_MIN_MSECS;
10256 		} else {
10257 			msleep(wait);
10258 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10259 		}
10260 
10261 		list_for_each_entry(dev, list, todo_list)
10262 			if (netdev_refcnt_read(dev) == 1)
10263 				return dev;
10264 
10265 		if (time_after(jiffies, warning_time +
10266 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10267 			list_for_each_entry(dev, list, todo_list) {
10268 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10269 					 dev->name, netdev_refcnt_read(dev));
10270 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10271 			}
10272 
10273 			warning_time = jiffies;
10274 		}
10275 	}
10276 }
10277 
10278 /* The sequence is:
10279  *
10280  *	rtnl_lock();
10281  *	...
10282  *	register_netdevice(x1);
10283  *	register_netdevice(x2);
10284  *	...
10285  *	unregister_netdevice(y1);
10286  *	unregister_netdevice(y2);
10287  *      ...
10288  *	rtnl_unlock();
10289  *	free_netdev(y1);
10290  *	free_netdev(y2);
10291  *
10292  * We are invoked by rtnl_unlock().
10293  * This allows us to deal with problems:
10294  * 1) We can delete sysfs objects which invoke hotplug
10295  *    without deadlocking with linkwatch via keventd.
10296  * 2) Since we run with the RTNL semaphore not held, we can sleep
10297  *    safely in order to wait for the netdev refcnt to drop to zero.
10298  *
10299  * We must not return until all unregister events added during
10300  * the interval the lock was held have been completed.
10301  */
10302 void netdev_run_todo(void)
10303 {
10304 	struct net_device *dev, *tmp;
10305 	struct list_head list;
10306 #ifdef CONFIG_LOCKDEP
10307 	struct list_head unlink_list;
10308 
10309 	list_replace_init(&net_unlink_list, &unlink_list);
10310 
10311 	while (!list_empty(&unlink_list)) {
10312 		struct net_device *dev = list_first_entry(&unlink_list,
10313 							  struct net_device,
10314 							  unlink_list);
10315 		list_del_init(&dev->unlink_list);
10316 		dev->nested_level = dev->lower_level - 1;
10317 	}
10318 #endif
10319 
10320 	/* Snapshot list, allow later requests */
10321 	list_replace_init(&net_todo_list, &list);
10322 
10323 	__rtnl_unlock();
10324 
10325 	/* Wait for rcu callbacks to finish before next phase */
10326 	if (!list_empty(&list))
10327 		rcu_barrier();
10328 
10329 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10330 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10331 			netdev_WARN(dev, "run_todo but not unregistering\n");
10332 			list_del(&dev->todo_list);
10333 			continue;
10334 		}
10335 
10336 		write_lock(&dev_base_lock);
10337 		dev->reg_state = NETREG_UNREGISTERED;
10338 		write_unlock(&dev_base_lock);
10339 		linkwatch_forget_dev(dev);
10340 	}
10341 
10342 	while (!list_empty(&list)) {
10343 		dev = netdev_wait_allrefs_any(&list);
10344 		list_del(&dev->todo_list);
10345 
10346 		/* paranoia */
10347 		BUG_ON(netdev_refcnt_read(dev) != 1);
10348 		BUG_ON(!list_empty(&dev->ptype_all));
10349 		BUG_ON(!list_empty(&dev->ptype_specific));
10350 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10351 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10352 
10353 		if (dev->priv_destructor)
10354 			dev->priv_destructor(dev);
10355 		if (dev->needs_free_netdev)
10356 			free_netdev(dev);
10357 
10358 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10359 			wake_up(&netdev_unregistering_wq);
10360 
10361 		/* Free network device */
10362 		kobject_put(&dev->dev.kobj);
10363 	}
10364 }
10365 
10366 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10367  * all the same fields in the same order as net_device_stats, with only
10368  * the type differing, but rtnl_link_stats64 may have additional fields
10369  * at the end for newer counters.
10370  */
10371 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10372 			     const struct net_device_stats *netdev_stats)
10373 {
10374 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10375 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10376 	u64 *dst = (u64 *)stats64;
10377 
10378 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10379 	for (i = 0; i < n; i++)
10380 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10381 	/* zero out counters that only exist in rtnl_link_stats64 */
10382 	memset((char *)stats64 + n * sizeof(u64), 0,
10383 	       sizeof(*stats64) - n * sizeof(u64));
10384 }
10385 EXPORT_SYMBOL(netdev_stats_to_stats64);
10386 
10387 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10388 {
10389 	struct net_device_core_stats __percpu *p;
10390 
10391 	p = alloc_percpu_gfp(struct net_device_core_stats,
10392 			     GFP_ATOMIC | __GFP_NOWARN);
10393 
10394 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10395 		free_percpu(p);
10396 
10397 	/* This READ_ONCE() pairs with the cmpxchg() above */
10398 	return READ_ONCE(dev->core_stats);
10399 }
10400 EXPORT_SYMBOL(netdev_core_stats_alloc);
10401 
10402 /**
10403  *	dev_get_stats	- get network device statistics
10404  *	@dev: device to get statistics from
10405  *	@storage: place to store stats
10406  *
10407  *	Get network statistics from device. Return @storage.
10408  *	The device driver may provide its own method by setting
10409  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10410  *	otherwise the internal statistics structure is used.
10411  */
10412 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10413 					struct rtnl_link_stats64 *storage)
10414 {
10415 	const struct net_device_ops *ops = dev->netdev_ops;
10416 	const struct net_device_core_stats __percpu *p;
10417 
10418 	if (ops->ndo_get_stats64) {
10419 		memset(storage, 0, sizeof(*storage));
10420 		ops->ndo_get_stats64(dev, storage);
10421 	} else if (ops->ndo_get_stats) {
10422 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10423 	} else {
10424 		netdev_stats_to_stats64(storage, &dev->stats);
10425 	}
10426 
10427 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10428 	p = READ_ONCE(dev->core_stats);
10429 	if (p) {
10430 		const struct net_device_core_stats *core_stats;
10431 		int i;
10432 
10433 		for_each_possible_cpu(i) {
10434 			core_stats = per_cpu_ptr(p, i);
10435 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10436 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10437 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10438 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10439 		}
10440 	}
10441 	return storage;
10442 }
10443 EXPORT_SYMBOL(dev_get_stats);
10444 
10445 /**
10446  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10447  *	@s: place to store stats
10448  *	@netstats: per-cpu network stats to read from
10449  *
10450  *	Read per-cpu network statistics and populate the related fields in @s.
10451  */
10452 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10453 			   const struct pcpu_sw_netstats __percpu *netstats)
10454 {
10455 	int cpu;
10456 
10457 	for_each_possible_cpu(cpu) {
10458 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10459 		const struct pcpu_sw_netstats *stats;
10460 		unsigned int start;
10461 
10462 		stats = per_cpu_ptr(netstats, cpu);
10463 		do {
10464 			start = u64_stats_fetch_begin(&stats->syncp);
10465 			rx_packets = u64_stats_read(&stats->rx_packets);
10466 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10467 			tx_packets = u64_stats_read(&stats->tx_packets);
10468 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10469 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10470 
10471 		s->rx_packets += rx_packets;
10472 		s->rx_bytes   += rx_bytes;
10473 		s->tx_packets += tx_packets;
10474 		s->tx_bytes   += tx_bytes;
10475 	}
10476 }
10477 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10478 
10479 /**
10480  *	dev_get_tstats64 - ndo_get_stats64 implementation
10481  *	@dev: device to get statistics from
10482  *	@s: place to store stats
10483  *
10484  *	Populate @s from dev->stats and dev->tstats. Can be used as
10485  *	ndo_get_stats64() callback.
10486  */
10487 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10488 {
10489 	netdev_stats_to_stats64(s, &dev->stats);
10490 	dev_fetch_sw_netstats(s, dev->tstats);
10491 }
10492 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10493 
10494 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10495 {
10496 	struct netdev_queue *queue = dev_ingress_queue(dev);
10497 
10498 #ifdef CONFIG_NET_CLS_ACT
10499 	if (queue)
10500 		return queue;
10501 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10502 	if (!queue)
10503 		return NULL;
10504 	netdev_init_one_queue(dev, queue, NULL);
10505 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10506 	queue->qdisc_sleeping = &noop_qdisc;
10507 	rcu_assign_pointer(dev->ingress_queue, queue);
10508 #endif
10509 	return queue;
10510 }
10511 
10512 static const struct ethtool_ops default_ethtool_ops;
10513 
10514 void netdev_set_default_ethtool_ops(struct net_device *dev,
10515 				    const struct ethtool_ops *ops)
10516 {
10517 	if (dev->ethtool_ops == &default_ethtool_ops)
10518 		dev->ethtool_ops = ops;
10519 }
10520 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10521 
10522 /**
10523  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10524  * @dev: netdev to enable the IRQ coalescing on
10525  *
10526  * Sets a conservative default for SW IRQ coalescing. Users can use
10527  * sysfs attributes to override the default values.
10528  */
10529 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10530 {
10531 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10532 
10533 	dev->gro_flush_timeout = 20000;
10534 	dev->napi_defer_hard_irqs = 1;
10535 }
10536 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10537 
10538 void netdev_freemem(struct net_device *dev)
10539 {
10540 	char *addr = (char *)dev - dev->padded;
10541 
10542 	kvfree(addr);
10543 }
10544 
10545 /**
10546  * alloc_netdev_mqs - allocate network device
10547  * @sizeof_priv: size of private data to allocate space for
10548  * @name: device name format string
10549  * @name_assign_type: origin of device name
10550  * @setup: callback to initialize device
10551  * @txqs: the number of TX subqueues to allocate
10552  * @rxqs: the number of RX subqueues to allocate
10553  *
10554  * Allocates a struct net_device with private data area for driver use
10555  * and performs basic initialization.  Also allocates subqueue structs
10556  * for each queue on the device.
10557  */
10558 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10559 		unsigned char name_assign_type,
10560 		void (*setup)(struct net_device *),
10561 		unsigned int txqs, unsigned int rxqs)
10562 {
10563 	struct net_device *dev;
10564 	unsigned int alloc_size;
10565 	struct net_device *p;
10566 
10567 	BUG_ON(strlen(name) >= sizeof(dev->name));
10568 
10569 	if (txqs < 1) {
10570 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10571 		return NULL;
10572 	}
10573 
10574 	if (rxqs < 1) {
10575 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10576 		return NULL;
10577 	}
10578 
10579 	alloc_size = sizeof(struct net_device);
10580 	if (sizeof_priv) {
10581 		/* ensure 32-byte alignment of private area */
10582 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10583 		alloc_size += sizeof_priv;
10584 	}
10585 	/* ensure 32-byte alignment of whole construct */
10586 	alloc_size += NETDEV_ALIGN - 1;
10587 
10588 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10589 	if (!p)
10590 		return NULL;
10591 
10592 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10593 	dev->padded = (char *)dev - (char *)p;
10594 
10595 	ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10596 #ifdef CONFIG_PCPU_DEV_REFCNT
10597 	dev->pcpu_refcnt = alloc_percpu(int);
10598 	if (!dev->pcpu_refcnt)
10599 		goto free_dev;
10600 	__dev_hold(dev);
10601 #else
10602 	refcount_set(&dev->dev_refcnt, 1);
10603 #endif
10604 
10605 	if (dev_addr_init(dev))
10606 		goto free_pcpu;
10607 
10608 	dev_mc_init(dev);
10609 	dev_uc_init(dev);
10610 
10611 	dev_net_set(dev, &init_net);
10612 
10613 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10614 	dev->gso_max_segs = GSO_MAX_SEGS;
10615 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10616 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10617 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10618 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10619 	dev->tso_max_segs = TSO_MAX_SEGS;
10620 	dev->upper_level = 1;
10621 	dev->lower_level = 1;
10622 #ifdef CONFIG_LOCKDEP
10623 	dev->nested_level = 0;
10624 	INIT_LIST_HEAD(&dev->unlink_list);
10625 #endif
10626 
10627 	INIT_LIST_HEAD(&dev->napi_list);
10628 	INIT_LIST_HEAD(&dev->unreg_list);
10629 	INIT_LIST_HEAD(&dev->close_list);
10630 	INIT_LIST_HEAD(&dev->link_watch_list);
10631 	INIT_LIST_HEAD(&dev->adj_list.upper);
10632 	INIT_LIST_HEAD(&dev->adj_list.lower);
10633 	INIT_LIST_HEAD(&dev->ptype_all);
10634 	INIT_LIST_HEAD(&dev->ptype_specific);
10635 	INIT_LIST_HEAD(&dev->net_notifier_list);
10636 #ifdef CONFIG_NET_SCHED
10637 	hash_init(dev->qdisc_hash);
10638 #endif
10639 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10640 	setup(dev);
10641 
10642 	if (!dev->tx_queue_len) {
10643 		dev->priv_flags |= IFF_NO_QUEUE;
10644 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10645 	}
10646 
10647 	dev->num_tx_queues = txqs;
10648 	dev->real_num_tx_queues = txqs;
10649 	if (netif_alloc_netdev_queues(dev))
10650 		goto free_all;
10651 
10652 	dev->num_rx_queues = rxqs;
10653 	dev->real_num_rx_queues = rxqs;
10654 	if (netif_alloc_rx_queues(dev))
10655 		goto free_all;
10656 
10657 	strcpy(dev->name, name);
10658 	dev->name_assign_type = name_assign_type;
10659 	dev->group = INIT_NETDEV_GROUP;
10660 	if (!dev->ethtool_ops)
10661 		dev->ethtool_ops = &default_ethtool_ops;
10662 
10663 	nf_hook_netdev_init(dev);
10664 
10665 	return dev;
10666 
10667 free_all:
10668 	free_netdev(dev);
10669 	return NULL;
10670 
10671 free_pcpu:
10672 #ifdef CONFIG_PCPU_DEV_REFCNT
10673 	free_percpu(dev->pcpu_refcnt);
10674 free_dev:
10675 #endif
10676 	netdev_freemem(dev);
10677 	return NULL;
10678 }
10679 EXPORT_SYMBOL(alloc_netdev_mqs);
10680 
10681 /**
10682  * free_netdev - free network device
10683  * @dev: device
10684  *
10685  * This function does the last stage of destroying an allocated device
10686  * interface. The reference to the device object is released. If this
10687  * is the last reference then it will be freed.Must be called in process
10688  * context.
10689  */
10690 void free_netdev(struct net_device *dev)
10691 {
10692 	struct napi_struct *p, *n;
10693 
10694 	might_sleep();
10695 
10696 	/* When called immediately after register_netdevice() failed the unwind
10697 	 * handling may still be dismantling the device. Handle that case by
10698 	 * deferring the free.
10699 	 */
10700 	if (dev->reg_state == NETREG_UNREGISTERING) {
10701 		ASSERT_RTNL();
10702 		dev->needs_free_netdev = true;
10703 		return;
10704 	}
10705 
10706 	netif_free_tx_queues(dev);
10707 	netif_free_rx_queues(dev);
10708 
10709 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10710 
10711 	/* Flush device addresses */
10712 	dev_addr_flush(dev);
10713 
10714 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10715 		netif_napi_del(p);
10716 
10717 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10718 #ifdef CONFIG_PCPU_DEV_REFCNT
10719 	free_percpu(dev->pcpu_refcnt);
10720 	dev->pcpu_refcnt = NULL;
10721 #endif
10722 	free_percpu(dev->core_stats);
10723 	dev->core_stats = NULL;
10724 	free_percpu(dev->xdp_bulkq);
10725 	dev->xdp_bulkq = NULL;
10726 
10727 	/*  Compatibility with error handling in drivers */
10728 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10729 		netdev_freemem(dev);
10730 		return;
10731 	}
10732 
10733 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10734 	dev->reg_state = NETREG_RELEASED;
10735 
10736 	/* will free via device release */
10737 	put_device(&dev->dev);
10738 }
10739 EXPORT_SYMBOL(free_netdev);
10740 
10741 /**
10742  *	synchronize_net -  Synchronize with packet receive processing
10743  *
10744  *	Wait for packets currently being received to be done.
10745  *	Does not block later packets from starting.
10746  */
10747 void synchronize_net(void)
10748 {
10749 	might_sleep();
10750 	if (rtnl_is_locked())
10751 		synchronize_rcu_expedited();
10752 	else
10753 		synchronize_rcu();
10754 }
10755 EXPORT_SYMBOL(synchronize_net);
10756 
10757 /**
10758  *	unregister_netdevice_queue - remove device from the kernel
10759  *	@dev: device
10760  *	@head: list
10761  *
10762  *	This function shuts down a device interface and removes it
10763  *	from the kernel tables.
10764  *	If head not NULL, device is queued to be unregistered later.
10765  *
10766  *	Callers must hold the rtnl semaphore.  You may want
10767  *	unregister_netdev() instead of this.
10768  */
10769 
10770 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10771 {
10772 	ASSERT_RTNL();
10773 
10774 	if (head) {
10775 		list_move_tail(&dev->unreg_list, head);
10776 	} else {
10777 		LIST_HEAD(single);
10778 
10779 		list_add(&dev->unreg_list, &single);
10780 		unregister_netdevice_many(&single);
10781 	}
10782 }
10783 EXPORT_SYMBOL(unregister_netdevice_queue);
10784 
10785 void unregister_netdevice_many_notify(struct list_head *head,
10786 				      u32 portid, const struct nlmsghdr *nlh)
10787 {
10788 	struct net_device *dev, *tmp;
10789 	LIST_HEAD(close_head);
10790 
10791 	BUG_ON(dev_boot_phase);
10792 	ASSERT_RTNL();
10793 
10794 	if (list_empty(head))
10795 		return;
10796 
10797 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10798 		/* Some devices call without registering
10799 		 * for initialization unwind. Remove those
10800 		 * devices and proceed with the remaining.
10801 		 */
10802 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10803 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10804 				 dev->name, dev);
10805 
10806 			WARN_ON(1);
10807 			list_del(&dev->unreg_list);
10808 			continue;
10809 		}
10810 		dev->dismantle = true;
10811 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10812 	}
10813 
10814 	/* If device is running, close it first. */
10815 	list_for_each_entry(dev, head, unreg_list)
10816 		list_add_tail(&dev->close_list, &close_head);
10817 	dev_close_many(&close_head, true);
10818 
10819 	list_for_each_entry(dev, head, unreg_list) {
10820 		/* And unlink it from device chain. */
10821 		write_lock(&dev_base_lock);
10822 		unlist_netdevice(dev, false);
10823 		dev->reg_state = NETREG_UNREGISTERING;
10824 		write_unlock(&dev_base_lock);
10825 	}
10826 	flush_all_backlogs();
10827 
10828 	synchronize_net();
10829 
10830 	list_for_each_entry(dev, head, unreg_list) {
10831 		struct sk_buff *skb = NULL;
10832 
10833 		/* Shutdown queueing discipline. */
10834 		dev_shutdown(dev);
10835 
10836 		dev_xdp_uninstall(dev);
10837 		bpf_dev_bound_netdev_unregister(dev);
10838 
10839 		netdev_offload_xstats_disable_all(dev);
10840 
10841 		/* Notify protocols, that we are about to destroy
10842 		 * this device. They should clean all the things.
10843 		 */
10844 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10845 
10846 		if (!dev->rtnl_link_ops ||
10847 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10848 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10849 						     GFP_KERNEL, NULL, 0,
10850 						     portid, nlh);
10851 
10852 		/*
10853 		 *	Flush the unicast and multicast chains
10854 		 */
10855 		dev_uc_flush(dev);
10856 		dev_mc_flush(dev);
10857 
10858 		netdev_name_node_alt_flush(dev);
10859 		netdev_name_node_free(dev->name_node);
10860 
10861 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10862 
10863 		if (dev->netdev_ops->ndo_uninit)
10864 			dev->netdev_ops->ndo_uninit(dev);
10865 
10866 		if (skb)
10867 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10868 
10869 		/* Notifier chain MUST detach us all upper devices. */
10870 		WARN_ON(netdev_has_any_upper_dev(dev));
10871 		WARN_ON(netdev_has_any_lower_dev(dev));
10872 
10873 		/* Remove entries from kobject tree */
10874 		netdev_unregister_kobject(dev);
10875 #ifdef CONFIG_XPS
10876 		/* Remove XPS queueing entries */
10877 		netif_reset_xps_queues_gt(dev, 0);
10878 #endif
10879 	}
10880 
10881 	synchronize_net();
10882 
10883 	list_for_each_entry(dev, head, unreg_list) {
10884 		netdev_put(dev, &dev->dev_registered_tracker);
10885 		net_set_todo(dev);
10886 	}
10887 
10888 	list_del(head);
10889 }
10890 
10891 /**
10892  *	unregister_netdevice_many - unregister many devices
10893  *	@head: list of devices
10894  *
10895  *  Note: As most callers use a stack allocated list_head,
10896  *  we force a list_del() to make sure stack wont be corrupted later.
10897  */
10898 void unregister_netdevice_many(struct list_head *head)
10899 {
10900 	unregister_netdevice_many_notify(head, 0, NULL);
10901 }
10902 EXPORT_SYMBOL(unregister_netdevice_many);
10903 
10904 /**
10905  *	unregister_netdev - remove device from the kernel
10906  *	@dev: device
10907  *
10908  *	This function shuts down a device interface and removes it
10909  *	from the kernel tables.
10910  *
10911  *	This is just a wrapper for unregister_netdevice that takes
10912  *	the rtnl semaphore.  In general you want to use this and not
10913  *	unregister_netdevice.
10914  */
10915 void unregister_netdev(struct net_device *dev)
10916 {
10917 	rtnl_lock();
10918 	unregister_netdevice(dev);
10919 	rtnl_unlock();
10920 }
10921 EXPORT_SYMBOL(unregister_netdev);
10922 
10923 /**
10924  *	__dev_change_net_namespace - move device to different nethost namespace
10925  *	@dev: device
10926  *	@net: network namespace
10927  *	@pat: If not NULL name pattern to try if the current device name
10928  *	      is already taken in the destination network namespace.
10929  *	@new_ifindex: If not zero, specifies device index in the target
10930  *	              namespace.
10931  *
10932  *	This function shuts down a device interface and moves it
10933  *	to a new network namespace. On success 0 is returned, on
10934  *	a failure a netagive errno code is returned.
10935  *
10936  *	Callers must hold the rtnl semaphore.
10937  */
10938 
10939 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10940 			       const char *pat, int new_ifindex)
10941 {
10942 	struct net *net_old = dev_net(dev);
10943 	int err, new_nsid;
10944 
10945 	ASSERT_RTNL();
10946 
10947 	/* Don't allow namespace local devices to be moved. */
10948 	err = -EINVAL;
10949 	if (dev->features & NETIF_F_NETNS_LOCAL)
10950 		goto out;
10951 
10952 	/* Ensure the device has been registrered */
10953 	if (dev->reg_state != NETREG_REGISTERED)
10954 		goto out;
10955 
10956 	/* Get out if there is nothing todo */
10957 	err = 0;
10958 	if (net_eq(net_old, net))
10959 		goto out;
10960 
10961 	/* Pick the destination device name, and ensure
10962 	 * we can use it in the destination network namespace.
10963 	 */
10964 	err = -EEXIST;
10965 	if (netdev_name_in_use(net, dev->name)) {
10966 		/* We get here if we can't use the current device name */
10967 		if (!pat)
10968 			goto out;
10969 		err = dev_get_valid_name(net, dev, pat);
10970 		if (err < 0)
10971 			goto out;
10972 	}
10973 
10974 	/* Check that new_ifindex isn't used yet. */
10975 	err = -EBUSY;
10976 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10977 		goto out;
10978 
10979 	/*
10980 	 * And now a mini version of register_netdevice unregister_netdevice.
10981 	 */
10982 
10983 	/* If device is running close it first. */
10984 	dev_close(dev);
10985 
10986 	/* And unlink it from device chain */
10987 	unlist_netdevice(dev, true);
10988 
10989 	synchronize_net();
10990 
10991 	/* Shutdown queueing discipline. */
10992 	dev_shutdown(dev);
10993 
10994 	/* Notify protocols, that we are about to destroy
10995 	 * this device. They should clean all the things.
10996 	 *
10997 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10998 	 * This is wanted because this way 8021q and macvlan know
10999 	 * the device is just moving and can keep their slaves up.
11000 	 */
11001 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11002 	rcu_barrier();
11003 
11004 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11005 	/* If there is an ifindex conflict assign a new one */
11006 	if (!new_ifindex) {
11007 		if (__dev_get_by_index(net, dev->ifindex))
11008 			new_ifindex = dev_new_index(net);
11009 		else
11010 			new_ifindex = dev->ifindex;
11011 	}
11012 
11013 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11014 			    new_ifindex);
11015 
11016 	/*
11017 	 *	Flush the unicast and multicast chains
11018 	 */
11019 	dev_uc_flush(dev);
11020 	dev_mc_flush(dev);
11021 
11022 	/* Send a netdev-removed uevent to the old namespace */
11023 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11024 	netdev_adjacent_del_links(dev);
11025 
11026 	/* Move per-net netdevice notifiers that are following the netdevice */
11027 	move_netdevice_notifiers_dev_net(dev, net);
11028 
11029 	/* Actually switch the network namespace */
11030 	dev_net_set(dev, net);
11031 	dev->ifindex = new_ifindex;
11032 
11033 	/* Send a netdev-add uevent to the new namespace */
11034 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11035 	netdev_adjacent_add_links(dev);
11036 
11037 	/* Fixup kobjects */
11038 	err = device_rename(&dev->dev, dev->name);
11039 	WARN_ON(err);
11040 
11041 	/* Adapt owner in case owning user namespace of target network
11042 	 * namespace is different from the original one.
11043 	 */
11044 	err = netdev_change_owner(dev, net_old, net);
11045 	WARN_ON(err);
11046 
11047 	/* Add the device back in the hashes */
11048 	list_netdevice(dev);
11049 
11050 	/* Notify protocols, that a new device appeared. */
11051 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11052 
11053 	/*
11054 	 *	Prevent userspace races by waiting until the network
11055 	 *	device is fully setup before sending notifications.
11056 	 */
11057 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11058 
11059 	synchronize_net();
11060 	err = 0;
11061 out:
11062 	return err;
11063 }
11064 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11065 
11066 static int dev_cpu_dead(unsigned int oldcpu)
11067 {
11068 	struct sk_buff **list_skb;
11069 	struct sk_buff *skb;
11070 	unsigned int cpu;
11071 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11072 
11073 	local_irq_disable();
11074 	cpu = smp_processor_id();
11075 	sd = &per_cpu(softnet_data, cpu);
11076 	oldsd = &per_cpu(softnet_data, oldcpu);
11077 
11078 	/* Find end of our completion_queue. */
11079 	list_skb = &sd->completion_queue;
11080 	while (*list_skb)
11081 		list_skb = &(*list_skb)->next;
11082 	/* Append completion queue from offline CPU. */
11083 	*list_skb = oldsd->completion_queue;
11084 	oldsd->completion_queue = NULL;
11085 
11086 	/* Append output queue from offline CPU. */
11087 	if (oldsd->output_queue) {
11088 		*sd->output_queue_tailp = oldsd->output_queue;
11089 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11090 		oldsd->output_queue = NULL;
11091 		oldsd->output_queue_tailp = &oldsd->output_queue;
11092 	}
11093 	/* Append NAPI poll list from offline CPU, with one exception :
11094 	 * process_backlog() must be called by cpu owning percpu backlog.
11095 	 * We properly handle process_queue & input_pkt_queue later.
11096 	 */
11097 	while (!list_empty(&oldsd->poll_list)) {
11098 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11099 							    struct napi_struct,
11100 							    poll_list);
11101 
11102 		list_del_init(&napi->poll_list);
11103 		if (napi->poll == process_backlog)
11104 			napi->state = 0;
11105 		else
11106 			____napi_schedule(sd, napi);
11107 	}
11108 
11109 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11110 	local_irq_enable();
11111 
11112 #ifdef CONFIG_RPS
11113 	remsd = oldsd->rps_ipi_list;
11114 	oldsd->rps_ipi_list = NULL;
11115 #endif
11116 	/* send out pending IPI's on offline CPU */
11117 	net_rps_send_ipi(remsd);
11118 
11119 	/* Process offline CPU's input_pkt_queue */
11120 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11121 		netif_rx(skb);
11122 		input_queue_head_incr(oldsd);
11123 	}
11124 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11125 		netif_rx(skb);
11126 		input_queue_head_incr(oldsd);
11127 	}
11128 
11129 	return 0;
11130 }
11131 
11132 /**
11133  *	netdev_increment_features - increment feature set by one
11134  *	@all: current feature set
11135  *	@one: new feature set
11136  *	@mask: mask feature set
11137  *
11138  *	Computes a new feature set after adding a device with feature set
11139  *	@one to the master device with current feature set @all.  Will not
11140  *	enable anything that is off in @mask. Returns the new feature set.
11141  */
11142 netdev_features_t netdev_increment_features(netdev_features_t all,
11143 	netdev_features_t one, netdev_features_t mask)
11144 {
11145 	if (mask & NETIF_F_HW_CSUM)
11146 		mask |= NETIF_F_CSUM_MASK;
11147 	mask |= NETIF_F_VLAN_CHALLENGED;
11148 
11149 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11150 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11151 
11152 	/* If one device supports hw checksumming, set for all. */
11153 	if (all & NETIF_F_HW_CSUM)
11154 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11155 
11156 	return all;
11157 }
11158 EXPORT_SYMBOL(netdev_increment_features);
11159 
11160 static struct hlist_head * __net_init netdev_create_hash(void)
11161 {
11162 	int i;
11163 	struct hlist_head *hash;
11164 
11165 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11166 	if (hash != NULL)
11167 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11168 			INIT_HLIST_HEAD(&hash[i]);
11169 
11170 	return hash;
11171 }
11172 
11173 /* Initialize per network namespace state */
11174 static int __net_init netdev_init(struct net *net)
11175 {
11176 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11177 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11178 
11179 	INIT_LIST_HEAD(&net->dev_base_head);
11180 
11181 	net->dev_name_head = netdev_create_hash();
11182 	if (net->dev_name_head == NULL)
11183 		goto err_name;
11184 
11185 	net->dev_index_head = netdev_create_hash();
11186 	if (net->dev_index_head == NULL)
11187 		goto err_idx;
11188 
11189 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11190 
11191 	return 0;
11192 
11193 err_idx:
11194 	kfree(net->dev_name_head);
11195 err_name:
11196 	return -ENOMEM;
11197 }
11198 
11199 /**
11200  *	netdev_drivername - network driver for the device
11201  *	@dev: network device
11202  *
11203  *	Determine network driver for device.
11204  */
11205 const char *netdev_drivername(const struct net_device *dev)
11206 {
11207 	const struct device_driver *driver;
11208 	const struct device *parent;
11209 	const char *empty = "";
11210 
11211 	parent = dev->dev.parent;
11212 	if (!parent)
11213 		return empty;
11214 
11215 	driver = parent->driver;
11216 	if (driver && driver->name)
11217 		return driver->name;
11218 	return empty;
11219 }
11220 
11221 static void __netdev_printk(const char *level, const struct net_device *dev,
11222 			    struct va_format *vaf)
11223 {
11224 	if (dev && dev->dev.parent) {
11225 		dev_printk_emit(level[1] - '0',
11226 				dev->dev.parent,
11227 				"%s %s %s%s: %pV",
11228 				dev_driver_string(dev->dev.parent),
11229 				dev_name(dev->dev.parent),
11230 				netdev_name(dev), netdev_reg_state(dev),
11231 				vaf);
11232 	} else if (dev) {
11233 		printk("%s%s%s: %pV",
11234 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11235 	} else {
11236 		printk("%s(NULL net_device): %pV", level, vaf);
11237 	}
11238 }
11239 
11240 void netdev_printk(const char *level, const struct net_device *dev,
11241 		   const char *format, ...)
11242 {
11243 	struct va_format vaf;
11244 	va_list args;
11245 
11246 	va_start(args, format);
11247 
11248 	vaf.fmt = format;
11249 	vaf.va = &args;
11250 
11251 	__netdev_printk(level, dev, &vaf);
11252 
11253 	va_end(args);
11254 }
11255 EXPORT_SYMBOL(netdev_printk);
11256 
11257 #define define_netdev_printk_level(func, level)			\
11258 void func(const struct net_device *dev, const char *fmt, ...)	\
11259 {								\
11260 	struct va_format vaf;					\
11261 	va_list args;						\
11262 								\
11263 	va_start(args, fmt);					\
11264 								\
11265 	vaf.fmt = fmt;						\
11266 	vaf.va = &args;						\
11267 								\
11268 	__netdev_printk(level, dev, &vaf);			\
11269 								\
11270 	va_end(args);						\
11271 }								\
11272 EXPORT_SYMBOL(func);
11273 
11274 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11275 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11276 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11277 define_netdev_printk_level(netdev_err, KERN_ERR);
11278 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11279 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11280 define_netdev_printk_level(netdev_info, KERN_INFO);
11281 
11282 static void __net_exit netdev_exit(struct net *net)
11283 {
11284 	kfree(net->dev_name_head);
11285 	kfree(net->dev_index_head);
11286 	if (net != &init_net)
11287 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11288 }
11289 
11290 static struct pernet_operations __net_initdata netdev_net_ops = {
11291 	.init = netdev_init,
11292 	.exit = netdev_exit,
11293 };
11294 
11295 static void __net_exit default_device_exit_net(struct net *net)
11296 {
11297 	struct net_device *dev, *aux;
11298 	/*
11299 	 * Push all migratable network devices back to the
11300 	 * initial network namespace
11301 	 */
11302 	ASSERT_RTNL();
11303 	for_each_netdev_safe(net, dev, aux) {
11304 		int err;
11305 		char fb_name[IFNAMSIZ];
11306 
11307 		/* Ignore unmoveable devices (i.e. loopback) */
11308 		if (dev->features & NETIF_F_NETNS_LOCAL)
11309 			continue;
11310 
11311 		/* Leave virtual devices for the generic cleanup */
11312 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11313 			continue;
11314 
11315 		/* Push remaining network devices to init_net */
11316 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11317 		if (netdev_name_in_use(&init_net, fb_name))
11318 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11319 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11320 		if (err) {
11321 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11322 				 __func__, dev->name, err);
11323 			BUG();
11324 		}
11325 	}
11326 }
11327 
11328 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11329 {
11330 	/* At exit all network devices most be removed from a network
11331 	 * namespace.  Do this in the reverse order of registration.
11332 	 * Do this across as many network namespaces as possible to
11333 	 * improve batching efficiency.
11334 	 */
11335 	struct net_device *dev;
11336 	struct net *net;
11337 	LIST_HEAD(dev_kill_list);
11338 
11339 	rtnl_lock();
11340 	list_for_each_entry(net, net_list, exit_list) {
11341 		default_device_exit_net(net);
11342 		cond_resched();
11343 	}
11344 
11345 	list_for_each_entry(net, net_list, exit_list) {
11346 		for_each_netdev_reverse(net, dev) {
11347 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11348 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11349 			else
11350 				unregister_netdevice_queue(dev, &dev_kill_list);
11351 		}
11352 	}
11353 	unregister_netdevice_many(&dev_kill_list);
11354 	rtnl_unlock();
11355 }
11356 
11357 static struct pernet_operations __net_initdata default_device_ops = {
11358 	.exit_batch = default_device_exit_batch,
11359 };
11360 
11361 /*
11362  *	Initialize the DEV module. At boot time this walks the device list and
11363  *	unhooks any devices that fail to initialise (normally hardware not
11364  *	present) and leaves us with a valid list of present and active devices.
11365  *
11366  */
11367 
11368 /*
11369  *       This is called single threaded during boot, so no need
11370  *       to take the rtnl semaphore.
11371  */
11372 static int __init net_dev_init(void)
11373 {
11374 	int i, rc = -ENOMEM;
11375 
11376 	BUG_ON(!dev_boot_phase);
11377 
11378 	if (dev_proc_init())
11379 		goto out;
11380 
11381 	if (netdev_kobject_init())
11382 		goto out;
11383 
11384 	INIT_LIST_HEAD(&ptype_all);
11385 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11386 		INIT_LIST_HEAD(&ptype_base[i]);
11387 
11388 	if (register_pernet_subsys(&netdev_net_ops))
11389 		goto out;
11390 
11391 	/*
11392 	 *	Initialise the packet receive queues.
11393 	 */
11394 
11395 	for_each_possible_cpu(i) {
11396 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11397 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11398 
11399 		INIT_WORK(flush, flush_backlog);
11400 
11401 		skb_queue_head_init(&sd->input_pkt_queue);
11402 		skb_queue_head_init(&sd->process_queue);
11403 #ifdef CONFIG_XFRM_OFFLOAD
11404 		skb_queue_head_init(&sd->xfrm_backlog);
11405 #endif
11406 		INIT_LIST_HEAD(&sd->poll_list);
11407 		sd->output_queue_tailp = &sd->output_queue;
11408 #ifdef CONFIG_RPS
11409 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11410 		sd->cpu = i;
11411 #endif
11412 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11413 		spin_lock_init(&sd->defer_lock);
11414 
11415 		init_gro_hash(&sd->backlog);
11416 		sd->backlog.poll = process_backlog;
11417 		sd->backlog.weight = weight_p;
11418 	}
11419 
11420 	dev_boot_phase = 0;
11421 
11422 	/* The loopback device is special if any other network devices
11423 	 * is present in a network namespace the loopback device must
11424 	 * be present. Since we now dynamically allocate and free the
11425 	 * loopback device ensure this invariant is maintained by
11426 	 * keeping the loopback device as the first device on the
11427 	 * list of network devices.  Ensuring the loopback devices
11428 	 * is the first device that appears and the last network device
11429 	 * that disappears.
11430 	 */
11431 	if (register_pernet_device(&loopback_net_ops))
11432 		goto out;
11433 
11434 	if (register_pernet_device(&default_device_ops))
11435 		goto out;
11436 
11437 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11438 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11439 
11440 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11441 				       NULL, dev_cpu_dead);
11442 	WARN_ON(rc < 0);
11443 	rc = 0;
11444 out:
11445 	return rc;
11446 }
11447 
11448 subsys_initcall(net_dev_init);
11449