xref: /openbmc/linux/net/core/dev.c (revision 9ee0034b8f49aaaa7e7c2da8db1038915db99c19)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/sctp.h>
143 #include <linux/crash_dump.h>
144 
145 #include "net-sysfs.h"
146 
147 /* Instead of increasing this, you should create a hash table. */
148 #define MAX_GRO_SKBS 8
149 
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152 
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;	/* Taps */
157 static struct list_head offload_base __read_mostly;
158 
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 					 struct net_device *dev,
162 					 struct netdev_notifier_info *info);
163 
164 /*
165  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
166  * semaphore.
167  *
168  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
169  *
170  * Writers must hold the rtnl semaphore while they loop through the
171  * dev_base_head list, and hold dev_base_lock for writing when they do the
172  * actual updates.  This allows pure readers to access the list even
173  * while a writer is preparing to update it.
174  *
175  * To put it another way, dev_base_lock is held for writing only to
176  * protect against pure readers; the rtnl semaphore provides the
177  * protection against other writers.
178  *
179  * See, for example usages, register_netdevice() and
180  * unregister_netdevice(), which must be called with the rtnl
181  * semaphore held.
182  */
183 DEFINE_RWLOCK(dev_base_lock);
184 EXPORT_SYMBOL(dev_base_lock);
185 
186 /* protects napi_hash addition/deletion and napi_gen_id */
187 static DEFINE_SPINLOCK(napi_hash_lock);
188 
189 static unsigned int napi_gen_id = NR_CPUS;
190 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
191 
192 static seqcount_t devnet_rename_seq;
193 
194 static inline void dev_base_seq_inc(struct net *net)
195 {
196 	while (++net->dev_base_seq == 0);
197 }
198 
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202 
203 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205 
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210 
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 	spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217 
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 	spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224 
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
227 {
228 	struct net *net = dev_net(dev);
229 
230 	ASSERT_RTNL();
231 
232 	write_lock_bh(&dev_base_lock);
233 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 	hlist_add_head_rcu(&dev->index_hlist,
236 			   dev_index_hash(net, dev->ifindex));
237 	write_unlock_bh(&dev_base_lock);
238 
239 	dev_base_seq_inc(net);
240 }
241 
242 /* Device list removal
243  * caller must respect a RCU grace period before freeing/reusing dev
244  */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 	ASSERT_RTNL();
248 
249 	/* Unlink dev from the device chain */
250 	write_lock_bh(&dev_base_lock);
251 	list_del_rcu(&dev->dev_list);
252 	hlist_del_rcu(&dev->name_hlist);
253 	hlist_del_rcu(&dev->index_hlist);
254 	write_unlock_bh(&dev_base_lock);
255 
256 	dev_base_seq_inc(dev_net(dev));
257 }
258 
259 /*
260  *	Our notifier list
261  */
262 
263 static RAW_NOTIFIER_HEAD(netdev_chain);
264 
265 /*
266  *	Device drivers call our routines to queue packets here. We empty the
267  *	queue in the local softnet handler.
268  */
269 
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
272 
273 #ifdef CONFIG_LOCKDEP
274 /*
275  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276  * according to dev->type
277  */
278 static const unsigned short netdev_lock_type[] =
279 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294 
295 static const char *const netdev_lock_name[] =
296 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311 
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 	int i;
318 
319 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 		if (netdev_lock_type[i] == dev_type)
321 			return i;
322 	/* the last key is used by default */
323 	return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325 
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 						 unsigned short dev_type)
328 {
329 	int i;
330 
331 	i = netdev_lock_pos(dev_type);
332 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 				   netdev_lock_name[i]);
334 }
335 
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 	int i;
339 
340 	i = netdev_lock_pos(dev->type);
341 	lockdep_set_class_and_name(&dev->addr_list_lock,
342 				   &netdev_addr_lock_key[i],
343 				   netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 						 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354 
355 /*******************************************************************************
356 
357 		Protocol management and registration routines
358 
359 *******************************************************************************/
360 
361 /*
362  *	Add a protocol ID to the list. Now that the input handler is
363  *	smarter we can dispense with all the messy stuff that used to be
364  *	here.
365  *
366  *	BEWARE!!! Protocol handlers, mangling input packets,
367  *	MUST BE last in hash buckets and checking protocol handlers
368  *	MUST start from promiscuous ptype_all chain in net_bh.
369  *	It is true now, do not change it.
370  *	Explanation follows: if protocol handler, mangling packet, will
371  *	be the first on list, it is not able to sense, that packet
372  *	is cloned and should be copied-on-write, so that it will
373  *	change it and subsequent readers will get broken packet.
374  *							--ANK (980803)
375  */
376 
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 	if (pt->type == htons(ETH_P_ALL))
380 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
381 	else
382 		return pt->dev ? &pt->dev->ptype_specific :
383 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385 
386 /**
387  *	dev_add_pack - add packet handler
388  *	@pt: packet type declaration
389  *
390  *	Add a protocol handler to the networking stack. The passed &packet_type
391  *	is linked into kernel lists and may not be freed until it has been
392  *	removed from the kernel lists.
393  *
394  *	This call does not sleep therefore it can not
395  *	guarantee all CPU's that are in middle of receiving packets
396  *	will see the new packet type (until the next received packet).
397  */
398 
399 void dev_add_pack(struct packet_type *pt)
400 {
401 	struct list_head *head = ptype_head(pt);
402 
403 	spin_lock(&ptype_lock);
404 	list_add_rcu(&pt->list, head);
405 	spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408 
409 /**
410  *	__dev_remove_pack	 - remove packet handler
411  *	@pt: packet type declaration
412  *
413  *	Remove a protocol handler that was previously added to the kernel
414  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
415  *	from the kernel lists and can be freed or reused once this function
416  *	returns.
417  *
418  *      The packet type might still be in use by receivers
419  *	and must not be freed until after all the CPU's have gone
420  *	through a quiescent state.
421  */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424 	struct list_head *head = ptype_head(pt);
425 	struct packet_type *pt1;
426 
427 	spin_lock(&ptype_lock);
428 
429 	list_for_each_entry(pt1, head, list) {
430 		if (pt == pt1) {
431 			list_del_rcu(&pt->list);
432 			goto out;
433 		}
434 	}
435 
436 	pr_warn("dev_remove_pack: %p not found\n", pt);
437 out:
438 	spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441 
442 /**
443  *	dev_remove_pack	 - remove packet handler
444  *	@pt: packet type declaration
445  *
446  *	Remove a protocol handler that was previously added to the kernel
447  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
448  *	from the kernel lists and can be freed or reused once this function
449  *	returns.
450  *
451  *	This call sleeps to guarantee that no CPU is looking at the packet
452  *	type after return.
453  */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 	__dev_remove_pack(pt);
457 
458 	synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461 
462 
463 /**
464  *	dev_add_offload - register offload handlers
465  *	@po: protocol offload declaration
466  *
467  *	Add protocol offload handlers to the networking stack. The passed
468  *	&proto_offload is linked into kernel lists and may not be freed until
469  *	it has been removed from the kernel lists.
470  *
471  *	This call does not sleep therefore it can not
472  *	guarantee all CPU's that are in middle of receiving packets
473  *	will see the new offload handlers (until the next received packet).
474  */
475 void dev_add_offload(struct packet_offload *po)
476 {
477 	struct packet_offload *elem;
478 
479 	spin_lock(&offload_lock);
480 	list_for_each_entry(elem, &offload_base, list) {
481 		if (po->priority < elem->priority)
482 			break;
483 	}
484 	list_add_rcu(&po->list, elem->list.prev);
485 	spin_unlock(&offload_lock);
486 }
487 EXPORT_SYMBOL(dev_add_offload);
488 
489 /**
490  *	__dev_remove_offload	 - remove offload handler
491  *	@po: packet offload declaration
492  *
493  *	Remove a protocol offload handler that was previously added to the
494  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
495  *	is removed from the kernel lists and can be freed or reused once this
496  *	function returns.
497  *
498  *      The packet type might still be in use by receivers
499  *	and must not be freed until after all the CPU's have gone
500  *	through a quiescent state.
501  */
502 static void __dev_remove_offload(struct packet_offload *po)
503 {
504 	struct list_head *head = &offload_base;
505 	struct packet_offload *po1;
506 
507 	spin_lock(&offload_lock);
508 
509 	list_for_each_entry(po1, head, list) {
510 		if (po == po1) {
511 			list_del_rcu(&po->list);
512 			goto out;
513 		}
514 	}
515 
516 	pr_warn("dev_remove_offload: %p not found\n", po);
517 out:
518 	spin_unlock(&offload_lock);
519 }
520 
521 /**
522  *	dev_remove_offload	 - remove packet offload handler
523  *	@po: packet offload declaration
524  *
525  *	Remove a packet offload handler that was previously added to the kernel
526  *	offload handlers by dev_add_offload(). The passed &offload_type is
527  *	removed from the kernel lists and can be freed or reused once this
528  *	function returns.
529  *
530  *	This call sleeps to guarantee that no CPU is looking at the packet
531  *	type after return.
532  */
533 void dev_remove_offload(struct packet_offload *po)
534 {
535 	__dev_remove_offload(po);
536 
537 	synchronize_net();
538 }
539 EXPORT_SYMBOL(dev_remove_offload);
540 
541 /******************************************************************************
542 
543 		      Device Boot-time Settings Routines
544 
545 *******************************************************************************/
546 
547 /* Boot time configuration table */
548 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549 
550 /**
551  *	netdev_boot_setup_add	- add new setup entry
552  *	@name: name of the device
553  *	@map: configured settings for the device
554  *
555  *	Adds new setup entry to the dev_boot_setup list.  The function
556  *	returns 0 on error and 1 on success.  This is a generic routine to
557  *	all netdevices.
558  */
559 static int netdev_boot_setup_add(char *name, struct ifmap *map)
560 {
561 	struct netdev_boot_setup *s;
562 	int i;
563 
564 	s = dev_boot_setup;
565 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
566 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
567 			memset(s[i].name, 0, sizeof(s[i].name));
568 			strlcpy(s[i].name, name, IFNAMSIZ);
569 			memcpy(&s[i].map, map, sizeof(s[i].map));
570 			break;
571 		}
572 	}
573 
574 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
575 }
576 
577 /**
578  *	netdev_boot_setup_check	- check boot time settings
579  *	@dev: the netdevice
580  *
581  * 	Check boot time settings for the device.
582  *	The found settings are set for the device to be used
583  *	later in the device probing.
584  *	Returns 0 if no settings found, 1 if they are.
585  */
586 int netdev_boot_setup_check(struct net_device *dev)
587 {
588 	struct netdev_boot_setup *s = dev_boot_setup;
589 	int i;
590 
591 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
592 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
593 		    !strcmp(dev->name, s[i].name)) {
594 			dev->irq 	= s[i].map.irq;
595 			dev->base_addr 	= s[i].map.base_addr;
596 			dev->mem_start 	= s[i].map.mem_start;
597 			dev->mem_end 	= s[i].map.mem_end;
598 			return 1;
599 		}
600 	}
601 	return 0;
602 }
603 EXPORT_SYMBOL(netdev_boot_setup_check);
604 
605 
606 /**
607  *	netdev_boot_base	- get address from boot time settings
608  *	@prefix: prefix for network device
609  *	@unit: id for network device
610  *
611  * 	Check boot time settings for the base address of device.
612  *	The found settings are set for the device to be used
613  *	later in the device probing.
614  *	Returns 0 if no settings found.
615  */
616 unsigned long netdev_boot_base(const char *prefix, int unit)
617 {
618 	const struct netdev_boot_setup *s = dev_boot_setup;
619 	char name[IFNAMSIZ];
620 	int i;
621 
622 	sprintf(name, "%s%d", prefix, unit);
623 
624 	/*
625 	 * If device already registered then return base of 1
626 	 * to indicate not to probe for this interface
627 	 */
628 	if (__dev_get_by_name(&init_net, name))
629 		return 1;
630 
631 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
632 		if (!strcmp(name, s[i].name))
633 			return s[i].map.base_addr;
634 	return 0;
635 }
636 
637 /*
638  * Saves at boot time configured settings for any netdevice.
639  */
640 int __init netdev_boot_setup(char *str)
641 {
642 	int ints[5];
643 	struct ifmap map;
644 
645 	str = get_options(str, ARRAY_SIZE(ints), ints);
646 	if (!str || !*str)
647 		return 0;
648 
649 	/* Save settings */
650 	memset(&map, 0, sizeof(map));
651 	if (ints[0] > 0)
652 		map.irq = ints[1];
653 	if (ints[0] > 1)
654 		map.base_addr = ints[2];
655 	if (ints[0] > 2)
656 		map.mem_start = ints[3];
657 	if (ints[0] > 3)
658 		map.mem_end = ints[4];
659 
660 	/* Add new entry to the list */
661 	return netdev_boot_setup_add(str, &map);
662 }
663 
664 __setup("netdev=", netdev_boot_setup);
665 
666 /*******************************************************************************
667 
668 			    Device Interface Subroutines
669 
670 *******************************************************************************/
671 
672 /**
673  *	dev_get_iflink	- get 'iflink' value of a interface
674  *	@dev: targeted interface
675  *
676  *	Indicates the ifindex the interface is linked to.
677  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
678  */
679 
680 int dev_get_iflink(const struct net_device *dev)
681 {
682 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
683 		return dev->netdev_ops->ndo_get_iflink(dev);
684 
685 	return dev->ifindex;
686 }
687 EXPORT_SYMBOL(dev_get_iflink);
688 
689 /**
690  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
691  *	@dev: targeted interface
692  *	@skb: The packet.
693  *
694  *	For better visibility of tunnel traffic OVS needs to retrieve
695  *	egress tunnel information for a packet. Following API allows
696  *	user to get this info.
697  */
698 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699 {
700 	struct ip_tunnel_info *info;
701 
702 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
703 		return -EINVAL;
704 
705 	info = skb_tunnel_info_unclone(skb);
706 	if (!info)
707 		return -ENOMEM;
708 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
709 		return -EINVAL;
710 
711 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712 }
713 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714 
715 /**
716  *	__dev_get_by_name	- find a device by its name
717  *	@net: the applicable net namespace
718  *	@name: name to find
719  *
720  *	Find an interface by name. Must be called under RTNL semaphore
721  *	or @dev_base_lock. If the name is found a pointer to the device
722  *	is returned. If the name is not found then %NULL is returned. The
723  *	reference counters are not incremented so the caller must be
724  *	careful with locks.
725  */
726 
727 struct net_device *__dev_get_by_name(struct net *net, const char *name)
728 {
729 	struct net_device *dev;
730 	struct hlist_head *head = dev_name_hash(net, name);
731 
732 	hlist_for_each_entry(dev, head, name_hlist)
733 		if (!strncmp(dev->name, name, IFNAMSIZ))
734 			return dev;
735 
736 	return NULL;
737 }
738 EXPORT_SYMBOL(__dev_get_by_name);
739 
740 /**
741  *	dev_get_by_name_rcu	- find a device by its name
742  *	@net: the applicable net namespace
743  *	@name: name to find
744  *
745  *	Find an interface by name.
746  *	If the name is found a pointer to the device is returned.
747  * 	If the name is not found then %NULL is returned.
748  *	The reference counters are not incremented so the caller must be
749  *	careful with locks. The caller must hold RCU lock.
750  */
751 
752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 {
754 	struct net_device *dev;
755 	struct hlist_head *head = dev_name_hash(net, name);
756 
757 	hlist_for_each_entry_rcu(dev, head, name_hlist)
758 		if (!strncmp(dev->name, name, IFNAMSIZ))
759 			return dev;
760 
761 	return NULL;
762 }
763 EXPORT_SYMBOL(dev_get_by_name_rcu);
764 
765 /**
766  *	dev_get_by_name		- find a device by its name
767  *	@net: the applicable net namespace
768  *	@name: name to find
769  *
770  *	Find an interface by name. This can be called from any
771  *	context and does its own locking. The returned handle has
772  *	the usage count incremented and the caller must use dev_put() to
773  *	release it when it is no longer needed. %NULL is returned if no
774  *	matching device is found.
775  */
776 
777 struct net_device *dev_get_by_name(struct net *net, const char *name)
778 {
779 	struct net_device *dev;
780 
781 	rcu_read_lock();
782 	dev = dev_get_by_name_rcu(net, name);
783 	if (dev)
784 		dev_hold(dev);
785 	rcu_read_unlock();
786 	return dev;
787 }
788 EXPORT_SYMBOL(dev_get_by_name);
789 
790 /**
791  *	__dev_get_by_index - find a device by its ifindex
792  *	@net: the applicable net namespace
793  *	@ifindex: index of device
794  *
795  *	Search for an interface by index. Returns %NULL if the device
796  *	is not found or a pointer to the device. The device has not
797  *	had its reference counter increased so the caller must be careful
798  *	about locking. The caller must hold either the RTNL semaphore
799  *	or @dev_base_lock.
800  */
801 
802 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
803 {
804 	struct net_device *dev;
805 	struct hlist_head *head = dev_index_hash(net, ifindex);
806 
807 	hlist_for_each_entry(dev, head, index_hlist)
808 		if (dev->ifindex == ifindex)
809 			return dev;
810 
811 	return NULL;
812 }
813 EXPORT_SYMBOL(__dev_get_by_index);
814 
815 /**
816  *	dev_get_by_index_rcu - find a device by its ifindex
817  *	@net: the applicable net namespace
818  *	@ifindex: index of device
819  *
820  *	Search for an interface by index. Returns %NULL if the device
821  *	is not found or a pointer to the device. The device has not
822  *	had its reference counter increased so the caller must be careful
823  *	about locking. The caller must hold RCU lock.
824  */
825 
826 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827 {
828 	struct net_device *dev;
829 	struct hlist_head *head = dev_index_hash(net, ifindex);
830 
831 	hlist_for_each_entry_rcu(dev, head, index_hlist)
832 		if (dev->ifindex == ifindex)
833 			return dev;
834 
835 	return NULL;
836 }
837 EXPORT_SYMBOL(dev_get_by_index_rcu);
838 
839 
840 /**
841  *	dev_get_by_index - find a device by its ifindex
842  *	@net: the applicable net namespace
843  *	@ifindex: index of device
844  *
845  *	Search for an interface by index. Returns NULL if the device
846  *	is not found or a pointer to the device. The device returned has
847  *	had a reference added and the pointer is safe until the user calls
848  *	dev_put to indicate they have finished with it.
849  */
850 
851 struct net_device *dev_get_by_index(struct net *net, int ifindex)
852 {
853 	struct net_device *dev;
854 
855 	rcu_read_lock();
856 	dev = dev_get_by_index_rcu(net, ifindex);
857 	if (dev)
858 		dev_hold(dev);
859 	rcu_read_unlock();
860 	return dev;
861 }
862 EXPORT_SYMBOL(dev_get_by_index);
863 
864 /**
865  *	netdev_get_name - get a netdevice name, knowing its ifindex.
866  *	@net: network namespace
867  *	@name: a pointer to the buffer where the name will be stored.
868  *	@ifindex: the ifindex of the interface to get the name from.
869  *
870  *	The use of raw_seqcount_begin() and cond_resched() before
871  *	retrying is required as we want to give the writers a chance
872  *	to complete when CONFIG_PREEMPT is not set.
873  */
874 int netdev_get_name(struct net *net, char *name, int ifindex)
875 {
876 	struct net_device *dev;
877 	unsigned int seq;
878 
879 retry:
880 	seq = raw_seqcount_begin(&devnet_rename_seq);
881 	rcu_read_lock();
882 	dev = dev_get_by_index_rcu(net, ifindex);
883 	if (!dev) {
884 		rcu_read_unlock();
885 		return -ENODEV;
886 	}
887 
888 	strcpy(name, dev->name);
889 	rcu_read_unlock();
890 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
891 		cond_resched();
892 		goto retry;
893 	}
894 
895 	return 0;
896 }
897 
898 /**
899  *	dev_getbyhwaddr_rcu - find a device by its hardware address
900  *	@net: the applicable net namespace
901  *	@type: media type of device
902  *	@ha: hardware address
903  *
904  *	Search for an interface by MAC address. Returns NULL if the device
905  *	is not found or a pointer to the device.
906  *	The caller must hold RCU or RTNL.
907  *	The returned device has not had its ref count increased
908  *	and the caller must therefore be careful about locking
909  *
910  */
911 
912 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
913 				       const char *ha)
914 {
915 	struct net_device *dev;
916 
917 	for_each_netdev_rcu(net, dev)
918 		if (dev->type == type &&
919 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
920 			return dev;
921 
922 	return NULL;
923 }
924 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
925 
926 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
927 {
928 	struct net_device *dev;
929 
930 	ASSERT_RTNL();
931 	for_each_netdev(net, dev)
932 		if (dev->type == type)
933 			return dev;
934 
935 	return NULL;
936 }
937 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938 
939 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
940 {
941 	struct net_device *dev, *ret = NULL;
942 
943 	rcu_read_lock();
944 	for_each_netdev_rcu(net, dev)
945 		if (dev->type == type) {
946 			dev_hold(dev);
947 			ret = dev;
948 			break;
949 		}
950 	rcu_read_unlock();
951 	return ret;
952 }
953 EXPORT_SYMBOL(dev_getfirstbyhwtype);
954 
955 /**
956  *	__dev_get_by_flags - find any device with given flags
957  *	@net: the applicable net namespace
958  *	@if_flags: IFF_* values
959  *	@mask: bitmask of bits in if_flags to check
960  *
961  *	Search for any interface with the given flags. Returns NULL if a device
962  *	is not found or a pointer to the device. Must be called inside
963  *	rtnl_lock(), and result refcount is unchanged.
964  */
965 
966 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967 				      unsigned short mask)
968 {
969 	struct net_device *dev, *ret;
970 
971 	ASSERT_RTNL();
972 
973 	ret = NULL;
974 	for_each_netdev(net, dev) {
975 		if (((dev->flags ^ if_flags) & mask) == 0) {
976 			ret = dev;
977 			break;
978 		}
979 	}
980 	return ret;
981 }
982 EXPORT_SYMBOL(__dev_get_by_flags);
983 
984 /**
985  *	dev_valid_name - check if name is okay for network device
986  *	@name: name string
987  *
988  *	Network device names need to be valid file names to
989  *	to allow sysfs to work.  We also disallow any kind of
990  *	whitespace.
991  */
992 bool dev_valid_name(const char *name)
993 {
994 	if (*name == '\0')
995 		return false;
996 	if (strlen(name) >= IFNAMSIZ)
997 		return false;
998 	if (!strcmp(name, ".") || !strcmp(name, ".."))
999 		return false;
1000 
1001 	while (*name) {
1002 		if (*name == '/' || *name == ':' || isspace(*name))
1003 			return false;
1004 		name++;
1005 	}
1006 	return true;
1007 }
1008 EXPORT_SYMBOL(dev_valid_name);
1009 
1010 /**
1011  *	__dev_alloc_name - allocate a name for a device
1012  *	@net: network namespace to allocate the device name in
1013  *	@name: name format string
1014  *	@buf:  scratch buffer and result name string
1015  *
1016  *	Passed a format string - eg "lt%d" it will try and find a suitable
1017  *	id. It scans list of devices to build up a free map, then chooses
1018  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1019  *	while allocating the name and adding the device in order to avoid
1020  *	duplicates.
1021  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022  *	Returns the number of the unit assigned or a negative errno code.
1023  */
1024 
1025 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1026 {
1027 	int i = 0;
1028 	const char *p;
1029 	const int max_netdevices = 8*PAGE_SIZE;
1030 	unsigned long *inuse;
1031 	struct net_device *d;
1032 
1033 	p = strnchr(name, IFNAMSIZ-1, '%');
1034 	if (p) {
1035 		/*
1036 		 * Verify the string as this thing may have come from
1037 		 * the user.  There must be either one "%d" and no other "%"
1038 		 * characters.
1039 		 */
1040 		if (p[1] != 'd' || strchr(p + 2, '%'))
1041 			return -EINVAL;
1042 
1043 		/* Use one page as a bit array of possible slots */
1044 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1045 		if (!inuse)
1046 			return -ENOMEM;
1047 
1048 		for_each_netdev(net, d) {
1049 			if (!sscanf(d->name, name, &i))
1050 				continue;
1051 			if (i < 0 || i >= max_netdevices)
1052 				continue;
1053 
1054 			/*  avoid cases where sscanf is not exact inverse of printf */
1055 			snprintf(buf, IFNAMSIZ, name, i);
1056 			if (!strncmp(buf, d->name, IFNAMSIZ))
1057 				set_bit(i, inuse);
1058 		}
1059 
1060 		i = find_first_zero_bit(inuse, max_netdevices);
1061 		free_page((unsigned long) inuse);
1062 	}
1063 
1064 	if (buf != name)
1065 		snprintf(buf, IFNAMSIZ, name, i);
1066 	if (!__dev_get_by_name(net, buf))
1067 		return i;
1068 
1069 	/* It is possible to run out of possible slots
1070 	 * when the name is long and there isn't enough space left
1071 	 * for the digits, or if all bits are used.
1072 	 */
1073 	return -ENFILE;
1074 }
1075 
1076 /**
1077  *	dev_alloc_name - allocate a name for a device
1078  *	@dev: device
1079  *	@name: name format string
1080  *
1081  *	Passed a format string - eg "lt%d" it will try and find a suitable
1082  *	id. It scans list of devices to build up a free map, then chooses
1083  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1084  *	while allocating the name and adding the device in order to avoid
1085  *	duplicates.
1086  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1087  *	Returns the number of the unit assigned or a negative errno code.
1088  */
1089 
1090 int dev_alloc_name(struct net_device *dev, const char *name)
1091 {
1092 	char buf[IFNAMSIZ];
1093 	struct net *net;
1094 	int ret;
1095 
1096 	BUG_ON(!dev_net(dev));
1097 	net = dev_net(dev);
1098 	ret = __dev_alloc_name(net, name, buf);
1099 	if (ret >= 0)
1100 		strlcpy(dev->name, buf, IFNAMSIZ);
1101 	return ret;
1102 }
1103 EXPORT_SYMBOL(dev_alloc_name);
1104 
1105 static int dev_alloc_name_ns(struct net *net,
1106 			     struct net_device *dev,
1107 			     const char *name)
1108 {
1109 	char buf[IFNAMSIZ];
1110 	int ret;
1111 
1112 	ret = __dev_alloc_name(net, name, buf);
1113 	if (ret >= 0)
1114 		strlcpy(dev->name, buf, IFNAMSIZ);
1115 	return ret;
1116 }
1117 
1118 static int dev_get_valid_name(struct net *net,
1119 			      struct net_device *dev,
1120 			      const char *name)
1121 {
1122 	BUG_ON(!net);
1123 
1124 	if (!dev_valid_name(name))
1125 		return -EINVAL;
1126 
1127 	if (strchr(name, '%'))
1128 		return dev_alloc_name_ns(net, dev, name);
1129 	else if (__dev_get_by_name(net, name))
1130 		return -EEXIST;
1131 	else if (dev->name != name)
1132 		strlcpy(dev->name, name, IFNAMSIZ);
1133 
1134 	return 0;
1135 }
1136 
1137 /**
1138  *	dev_change_name - change name of a device
1139  *	@dev: device
1140  *	@newname: name (or format string) must be at least IFNAMSIZ
1141  *
1142  *	Change name of a device, can pass format strings "eth%d".
1143  *	for wildcarding.
1144  */
1145 int dev_change_name(struct net_device *dev, const char *newname)
1146 {
1147 	unsigned char old_assign_type;
1148 	char oldname[IFNAMSIZ];
1149 	int err = 0;
1150 	int ret;
1151 	struct net *net;
1152 
1153 	ASSERT_RTNL();
1154 	BUG_ON(!dev_net(dev));
1155 
1156 	net = dev_net(dev);
1157 	if (dev->flags & IFF_UP)
1158 		return -EBUSY;
1159 
1160 	write_seqcount_begin(&devnet_rename_seq);
1161 
1162 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1163 		write_seqcount_end(&devnet_rename_seq);
1164 		return 0;
1165 	}
1166 
1167 	memcpy(oldname, dev->name, IFNAMSIZ);
1168 
1169 	err = dev_get_valid_name(net, dev, newname);
1170 	if (err < 0) {
1171 		write_seqcount_end(&devnet_rename_seq);
1172 		return err;
1173 	}
1174 
1175 	if (oldname[0] && !strchr(oldname, '%'))
1176 		netdev_info(dev, "renamed from %s\n", oldname);
1177 
1178 	old_assign_type = dev->name_assign_type;
1179 	dev->name_assign_type = NET_NAME_RENAMED;
1180 
1181 rollback:
1182 	ret = device_rename(&dev->dev, dev->name);
1183 	if (ret) {
1184 		memcpy(dev->name, oldname, IFNAMSIZ);
1185 		dev->name_assign_type = old_assign_type;
1186 		write_seqcount_end(&devnet_rename_seq);
1187 		return ret;
1188 	}
1189 
1190 	write_seqcount_end(&devnet_rename_seq);
1191 
1192 	netdev_adjacent_rename_links(dev, oldname);
1193 
1194 	write_lock_bh(&dev_base_lock);
1195 	hlist_del_rcu(&dev->name_hlist);
1196 	write_unlock_bh(&dev_base_lock);
1197 
1198 	synchronize_rcu();
1199 
1200 	write_lock_bh(&dev_base_lock);
1201 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1202 	write_unlock_bh(&dev_base_lock);
1203 
1204 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1205 	ret = notifier_to_errno(ret);
1206 
1207 	if (ret) {
1208 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1209 		if (err >= 0) {
1210 			err = ret;
1211 			write_seqcount_begin(&devnet_rename_seq);
1212 			memcpy(dev->name, oldname, IFNAMSIZ);
1213 			memcpy(oldname, newname, IFNAMSIZ);
1214 			dev->name_assign_type = old_assign_type;
1215 			old_assign_type = NET_NAME_RENAMED;
1216 			goto rollback;
1217 		} else {
1218 			pr_err("%s: name change rollback failed: %d\n",
1219 			       dev->name, ret);
1220 		}
1221 	}
1222 
1223 	return err;
1224 }
1225 
1226 /**
1227  *	dev_set_alias - change ifalias of a device
1228  *	@dev: device
1229  *	@alias: name up to IFALIASZ
1230  *	@len: limit of bytes to copy from info
1231  *
1232  *	Set ifalias for a device,
1233  */
1234 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1235 {
1236 	char *new_ifalias;
1237 
1238 	ASSERT_RTNL();
1239 
1240 	if (len >= IFALIASZ)
1241 		return -EINVAL;
1242 
1243 	if (!len) {
1244 		kfree(dev->ifalias);
1245 		dev->ifalias = NULL;
1246 		return 0;
1247 	}
1248 
1249 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1250 	if (!new_ifalias)
1251 		return -ENOMEM;
1252 	dev->ifalias = new_ifalias;
1253 
1254 	strlcpy(dev->ifalias, alias, len+1);
1255 	return len;
1256 }
1257 
1258 
1259 /**
1260  *	netdev_features_change - device changes features
1261  *	@dev: device to cause notification
1262  *
1263  *	Called to indicate a device has changed features.
1264  */
1265 void netdev_features_change(struct net_device *dev)
1266 {
1267 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1268 }
1269 EXPORT_SYMBOL(netdev_features_change);
1270 
1271 /**
1272  *	netdev_state_change - device changes state
1273  *	@dev: device to cause notification
1274  *
1275  *	Called to indicate a device has changed state. This function calls
1276  *	the notifier chains for netdev_chain and sends a NEWLINK message
1277  *	to the routing socket.
1278  */
1279 void netdev_state_change(struct net_device *dev)
1280 {
1281 	if (dev->flags & IFF_UP) {
1282 		struct netdev_notifier_change_info change_info;
1283 
1284 		change_info.flags_changed = 0;
1285 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286 					      &change_info.info);
1287 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1288 	}
1289 }
1290 EXPORT_SYMBOL(netdev_state_change);
1291 
1292 /**
1293  * 	netdev_notify_peers - notify network peers about existence of @dev
1294  * 	@dev: network device
1295  *
1296  * Generate traffic such that interested network peers are aware of
1297  * @dev, such as by generating a gratuitous ARP. This may be used when
1298  * a device wants to inform the rest of the network about some sort of
1299  * reconfiguration such as a failover event or virtual machine
1300  * migration.
1301  */
1302 void netdev_notify_peers(struct net_device *dev)
1303 {
1304 	rtnl_lock();
1305 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1306 	rtnl_unlock();
1307 }
1308 EXPORT_SYMBOL(netdev_notify_peers);
1309 
1310 static int __dev_open(struct net_device *dev)
1311 {
1312 	const struct net_device_ops *ops = dev->netdev_ops;
1313 	int ret;
1314 
1315 	ASSERT_RTNL();
1316 
1317 	if (!netif_device_present(dev))
1318 		return -ENODEV;
1319 
1320 	/* Block netpoll from trying to do any rx path servicing.
1321 	 * If we don't do this there is a chance ndo_poll_controller
1322 	 * or ndo_poll may be running while we open the device
1323 	 */
1324 	netpoll_poll_disable(dev);
1325 
1326 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1327 	ret = notifier_to_errno(ret);
1328 	if (ret)
1329 		return ret;
1330 
1331 	set_bit(__LINK_STATE_START, &dev->state);
1332 
1333 	if (ops->ndo_validate_addr)
1334 		ret = ops->ndo_validate_addr(dev);
1335 
1336 	if (!ret && ops->ndo_open)
1337 		ret = ops->ndo_open(dev);
1338 
1339 	netpoll_poll_enable(dev);
1340 
1341 	if (ret)
1342 		clear_bit(__LINK_STATE_START, &dev->state);
1343 	else {
1344 		dev->flags |= IFF_UP;
1345 		dev_set_rx_mode(dev);
1346 		dev_activate(dev);
1347 		add_device_randomness(dev->dev_addr, dev->addr_len);
1348 	}
1349 
1350 	return ret;
1351 }
1352 
1353 /**
1354  *	dev_open	- prepare an interface for use.
1355  *	@dev:	device to open
1356  *
1357  *	Takes a device from down to up state. The device's private open
1358  *	function is invoked and then the multicast lists are loaded. Finally
1359  *	the device is moved into the up state and a %NETDEV_UP message is
1360  *	sent to the netdev notifier chain.
1361  *
1362  *	Calling this function on an active interface is a nop. On a failure
1363  *	a negative errno code is returned.
1364  */
1365 int dev_open(struct net_device *dev)
1366 {
1367 	int ret;
1368 
1369 	if (dev->flags & IFF_UP)
1370 		return 0;
1371 
1372 	ret = __dev_open(dev);
1373 	if (ret < 0)
1374 		return ret;
1375 
1376 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1377 	call_netdevice_notifiers(NETDEV_UP, dev);
1378 
1379 	return ret;
1380 }
1381 EXPORT_SYMBOL(dev_open);
1382 
1383 static int __dev_close_many(struct list_head *head)
1384 {
1385 	struct net_device *dev;
1386 
1387 	ASSERT_RTNL();
1388 	might_sleep();
1389 
1390 	list_for_each_entry(dev, head, close_list) {
1391 		/* Temporarily disable netpoll until the interface is down */
1392 		netpoll_poll_disable(dev);
1393 
1394 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1395 
1396 		clear_bit(__LINK_STATE_START, &dev->state);
1397 
1398 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1399 		 * can be even on different cpu. So just clear netif_running().
1400 		 *
1401 		 * dev->stop() will invoke napi_disable() on all of it's
1402 		 * napi_struct instances on this device.
1403 		 */
1404 		smp_mb__after_atomic(); /* Commit netif_running(). */
1405 	}
1406 
1407 	dev_deactivate_many(head);
1408 
1409 	list_for_each_entry(dev, head, close_list) {
1410 		const struct net_device_ops *ops = dev->netdev_ops;
1411 
1412 		/*
1413 		 *	Call the device specific close. This cannot fail.
1414 		 *	Only if device is UP
1415 		 *
1416 		 *	We allow it to be called even after a DETACH hot-plug
1417 		 *	event.
1418 		 */
1419 		if (ops->ndo_stop)
1420 			ops->ndo_stop(dev);
1421 
1422 		dev->flags &= ~IFF_UP;
1423 		netpoll_poll_enable(dev);
1424 	}
1425 
1426 	return 0;
1427 }
1428 
1429 static int __dev_close(struct net_device *dev)
1430 {
1431 	int retval;
1432 	LIST_HEAD(single);
1433 
1434 	list_add(&dev->close_list, &single);
1435 	retval = __dev_close_many(&single);
1436 	list_del(&single);
1437 
1438 	return retval;
1439 }
1440 
1441 int dev_close_many(struct list_head *head, bool unlink)
1442 {
1443 	struct net_device *dev, *tmp;
1444 
1445 	/* Remove the devices that don't need to be closed */
1446 	list_for_each_entry_safe(dev, tmp, head, close_list)
1447 		if (!(dev->flags & IFF_UP))
1448 			list_del_init(&dev->close_list);
1449 
1450 	__dev_close_many(head);
1451 
1452 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1453 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1454 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1455 		if (unlink)
1456 			list_del_init(&dev->close_list);
1457 	}
1458 
1459 	return 0;
1460 }
1461 EXPORT_SYMBOL(dev_close_many);
1462 
1463 /**
1464  *	dev_close - shutdown an interface.
1465  *	@dev: device to shutdown
1466  *
1467  *	This function moves an active device into down state. A
1468  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1469  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1470  *	chain.
1471  */
1472 int dev_close(struct net_device *dev)
1473 {
1474 	if (dev->flags & IFF_UP) {
1475 		LIST_HEAD(single);
1476 
1477 		list_add(&dev->close_list, &single);
1478 		dev_close_many(&single, true);
1479 		list_del(&single);
1480 	}
1481 	return 0;
1482 }
1483 EXPORT_SYMBOL(dev_close);
1484 
1485 
1486 /**
1487  *	dev_disable_lro - disable Large Receive Offload on a device
1488  *	@dev: device
1489  *
1490  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1491  *	called under RTNL.  This is needed if received packets may be
1492  *	forwarded to another interface.
1493  */
1494 void dev_disable_lro(struct net_device *dev)
1495 {
1496 	struct net_device *lower_dev;
1497 	struct list_head *iter;
1498 
1499 	dev->wanted_features &= ~NETIF_F_LRO;
1500 	netdev_update_features(dev);
1501 
1502 	if (unlikely(dev->features & NETIF_F_LRO))
1503 		netdev_WARN(dev, "failed to disable LRO!\n");
1504 
1505 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1506 		dev_disable_lro(lower_dev);
1507 }
1508 EXPORT_SYMBOL(dev_disable_lro);
1509 
1510 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1511 				   struct net_device *dev)
1512 {
1513 	struct netdev_notifier_info info;
1514 
1515 	netdev_notifier_info_init(&info, dev);
1516 	return nb->notifier_call(nb, val, &info);
1517 }
1518 
1519 static int dev_boot_phase = 1;
1520 
1521 /**
1522  *	register_netdevice_notifier - register a network notifier block
1523  *	@nb: notifier
1524  *
1525  *	Register a notifier to be called when network device events occur.
1526  *	The notifier passed is linked into the kernel structures and must
1527  *	not be reused until it has been unregistered. A negative errno code
1528  *	is returned on a failure.
1529  *
1530  * 	When registered all registration and up events are replayed
1531  *	to the new notifier to allow device to have a race free
1532  *	view of the network device list.
1533  */
1534 
1535 int register_netdevice_notifier(struct notifier_block *nb)
1536 {
1537 	struct net_device *dev;
1538 	struct net_device *last;
1539 	struct net *net;
1540 	int err;
1541 
1542 	rtnl_lock();
1543 	err = raw_notifier_chain_register(&netdev_chain, nb);
1544 	if (err)
1545 		goto unlock;
1546 	if (dev_boot_phase)
1547 		goto unlock;
1548 	for_each_net(net) {
1549 		for_each_netdev(net, dev) {
1550 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1551 			err = notifier_to_errno(err);
1552 			if (err)
1553 				goto rollback;
1554 
1555 			if (!(dev->flags & IFF_UP))
1556 				continue;
1557 
1558 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1559 		}
1560 	}
1561 
1562 unlock:
1563 	rtnl_unlock();
1564 	return err;
1565 
1566 rollback:
1567 	last = dev;
1568 	for_each_net(net) {
1569 		for_each_netdev(net, dev) {
1570 			if (dev == last)
1571 				goto outroll;
1572 
1573 			if (dev->flags & IFF_UP) {
1574 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575 							dev);
1576 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1577 			}
1578 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1579 		}
1580 	}
1581 
1582 outroll:
1583 	raw_notifier_chain_unregister(&netdev_chain, nb);
1584 	goto unlock;
1585 }
1586 EXPORT_SYMBOL(register_netdevice_notifier);
1587 
1588 /**
1589  *	unregister_netdevice_notifier - unregister a network notifier block
1590  *	@nb: notifier
1591  *
1592  *	Unregister a notifier previously registered by
1593  *	register_netdevice_notifier(). The notifier is unlinked into the
1594  *	kernel structures and may then be reused. A negative errno code
1595  *	is returned on a failure.
1596  *
1597  * 	After unregistering unregister and down device events are synthesized
1598  *	for all devices on the device list to the removed notifier to remove
1599  *	the need for special case cleanup code.
1600  */
1601 
1602 int unregister_netdevice_notifier(struct notifier_block *nb)
1603 {
1604 	struct net_device *dev;
1605 	struct net *net;
1606 	int err;
1607 
1608 	rtnl_lock();
1609 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1610 	if (err)
1611 		goto unlock;
1612 
1613 	for_each_net(net) {
1614 		for_each_netdev(net, dev) {
1615 			if (dev->flags & IFF_UP) {
1616 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617 							dev);
1618 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1619 			}
1620 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1621 		}
1622 	}
1623 unlock:
1624 	rtnl_unlock();
1625 	return err;
1626 }
1627 EXPORT_SYMBOL(unregister_netdevice_notifier);
1628 
1629 /**
1630  *	call_netdevice_notifiers_info - call all network notifier blocks
1631  *	@val: value passed unmodified to notifier function
1632  *	@dev: net_device pointer passed unmodified to notifier function
1633  *	@info: notifier information data
1634  *
1635  *	Call all network notifier blocks.  Parameters and return value
1636  *	are as for raw_notifier_call_chain().
1637  */
1638 
1639 static int call_netdevice_notifiers_info(unsigned long val,
1640 					 struct net_device *dev,
1641 					 struct netdev_notifier_info *info)
1642 {
1643 	ASSERT_RTNL();
1644 	netdev_notifier_info_init(info, dev);
1645 	return raw_notifier_call_chain(&netdev_chain, val, info);
1646 }
1647 
1648 /**
1649  *	call_netdevice_notifiers - call all network notifier blocks
1650  *      @val: value passed unmodified to notifier function
1651  *      @dev: net_device pointer passed unmodified to notifier function
1652  *
1653  *	Call all network notifier blocks.  Parameters and return value
1654  *	are as for raw_notifier_call_chain().
1655  */
1656 
1657 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1658 {
1659 	struct netdev_notifier_info info;
1660 
1661 	return call_netdevice_notifiers_info(val, dev, &info);
1662 }
1663 EXPORT_SYMBOL(call_netdevice_notifiers);
1664 
1665 #ifdef CONFIG_NET_INGRESS
1666 static struct static_key ingress_needed __read_mostly;
1667 
1668 void net_inc_ingress_queue(void)
1669 {
1670 	static_key_slow_inc(&ingress_needed);
1671 }
1672 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673 
1674 void net_dec_ingress_queue(void)
1675 {
1676 	static_key_slow_dec(&ingress_needed);
1677 }
1678 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1679 #endif
1680 
1681 #ifdef CONFIG_NET_EGRESS
1682 static struct static_key egress_needed __read_mostly;
1683 
1684 void net_inc_egress_queue(void)
1685 {
1686 	static_key_slow_inc(&egress_needed);
1687 }
1688 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689 
1690 void net_dec_egress_queue(void)
1691 {
1692 	static_key_slow_dec(&egress_needed);
1693 }
1694 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1695 #endif
1696 
1697 static struct static_key netstamp_needed __read_mostly;
1698 #ifdef HAVE_JUMP_LABEL
1699 /* We are not allowed to call static_key_slow_dec() from irq context
1700  * If net_disable_timestamp() is called from irq context, defer the
1701  * static_key_slow_dec() calls.
1702  */
1703 static atomic_t netstamp_needed_deferred;
1704 #endif
1705 
1706 void net_enable_timestamp(void)
1707 {
1708 #ifdef HAVE_JUMP_LABEL
1709 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710 
1711 	if (deferred) {
1712 		while (--deferred)
1713 			static_key_slow_dec(&netstamp_needed);
1714 		return;
1715 	}
1716 #endif
1717 	static_key_slow_inc(&netstamp_needed);
1718 }
1719 EXPORT_SYMBOL(net_enable_timestamp);
1720 
1721 void net_disable_timestamp(void)
1722 {
1723 #ifdef HAVE_JUMP_LABEL
1724 	if (in_interrupt()) {
1725 		atomic_inc(&netstamp_needed_deferred);
1726 		return;
1727 	}
1728 #endif
1729 	static_key_slow_dec(&netstamp_needed);
1730 }
1731 EXPORT_SYMBOL(net_disable_timestamp);
1732 
1733 static inline void net_timestamp_set(struct sk_buff *skb)
1734 {
1735 	skb->tstamp.tv64 = 0;
1736 	if (static_key_false(&netstamp_needed))
1737 		__net_timestamp(skb);
1738 }
1739 
1740 #define net_timestamp_check(COND, SKB)			\
1741 	if (static_key_false(&netstamp_needed)) {		\
1742 		if ((COND) && !(SKB)->tstamp.tv64)	\
1743 			__net_timestamp(SKB);		\
1744 	}						\
1745 
1746 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1747 {
1748 	unsigned int len;
1749 
1750 	if (!(dev->flags & IFF_UP))
1751 		return false;
1752 
1753 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1754 	if (skb->len <= len)
1755 		return true;
1756 
1757 	/* if TSO is enabled, we don't care about the length as the packet
1758 	 * could be forwarded without being segmented before
1759 	 */
1760 	if (skb_is_gso(skb))
1761 		return true;
1762 
1763 	return false;
1764 }
1765 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1766 
1767 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768 {
1769 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1770 	    unlikely(!is_skb_forwardable(dev, skb))) {
1771 		atomic_long_inc(&dev->rx_dropped);
1772 		kfree_skb(skb);
1773 		return NET_RX_DROP;
1774 	}
1775 
1776 	skb_scrub_packet(skb, true);
1777 	skb->priority = 0;
1778 	skb->protocol = eth_type_trans(skb, dev);
1779 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1780 
1781 	return 0;
1782 }
1783 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1784 
1785 /**
1786  * dev_forward_skb - loopback an skb to another netif
1787  *
1788  * @dev: destination network device
1789  * @skb: buffer to forward
1790  *
1791  * return values:
1792  *	NET_RX_SUCCESS	(no congestion)
1793  *	NET_RX_DROP     (packet was dropped, but freed)
1794  *
1795  * dev_forward_skb can be used for injecting an skb from the
1796  * start_xmit function of one device into the receive queue
1797  * of another device.
1798  *
1799  * The receiving device may be in another namespace, so
1800  * we have to clear all information in the skb that could
1801  * impact namespace isolation.
1802  */
1803 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1804 {
1805 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1806 }
1807 EXPORT_SYMBOL_GPL(dev_forward_skb);
1808 
1809 static inline int deliver_skb(struct sk_buff *skb,
1810 			      struct packet_type *pt_prev,
1811 			      struct net_device *orig_dev)
1812 {
1813 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1814 		return -ENOMEM;
1815 	atomic_inc(&skb->users);
1816 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1817 }
1818 
1819 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1820 					  struct packet_type **pt,
1821 					  struct net_device *orig_dev,
1822 					  __be16 type,
1823 					  struct list_head *ptype_list)
1824 {
1825 	struct packet_type *ptype, *pt_prev = *pt;
1826 
1827 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1828 		if (ptype->type != type)
1829 			continue;
1830 		if (pt_prev)
1831 			deliver_skb(skb, pt_prev, orig_dev);
1832 		pt_prev = ptype;
1833 	}
1834 	*pt = pt_prev;
1835 }
1836 
1837 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1838 {
1839 	if (!ptype->af_packet_priv || !skb->sk)
1840 		return false;
1841 
1842 	if (ptype->id_match)
1843 		return ptype->id_match(ptype, skb->sk);
1844 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1845 		return true;
1846 
1847 	return false;
1848 }
1849 
1850 /*
1851  *	Support routine. Sends outgoing frames to any network
1852  *	taps currently in use.
1853  */
1854 
1855 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1856 {
1857 	struct packet_type *ptype;
1858 	struct sk_buff *skb2 = NULL;
1859 	struct packet_type *pt_prev = NULL;
1860 	struct list_head *ptype_list = &ptype_all;
1861 
1862 	rcu_read_lock();
1863 again:
1864 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1865 		/* Never send packets back to the socket
1866 		 * they originated from - MvS (miquels@drinkel.ow.org)
1867 		 */
1868 		if (skb_loop_sk(ptype, skb))
1869 			continue;
1870 
1871 		if (pt_prev) {
1872 			deliver_skb(skb2, pt_prev, skb->dev);
1873 			pt_prev = ptype;
1874 			continue;
1875 		}
1876 
1877 		/* need to clone skb, done only once */
1878 		skb2 = skb_clone(skb, GFP_ATOMIC);
1879 		if (!skb2)
1880 			goto out_unlock;
1881 
1882 		net_timestamp_set(skb2);
1883 
1884 		/* skb->nh should be correctly
1885 		 * set by sender, so that the second statement is
1886 		 * just protection against buggy protocols.
1887 		 */
1888 		skb_reset_mac_header(skb2);
1889 
1890 		if (skb_network_header(skb2) < skb2->data ||
1891 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1892 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1893 					     ntohs(skb2->protocol),
1894 					     dev->name);
1895 			skb_reset_network_header(skb2);
1896 		}
1897 
1898 		skb2->transport_header = skb2->network_header;
1899 		skb2->pkt_type = PACKET_OUTGOING;
1900 		pt_prev = ptype;
1901 	}
1902 
1903 	if (ptype_list == &ptype_all) {
1904 		ptype_list = &dev->ptype_all;
1905 		goto again;
1906 	}
1907 out_unlock:
1908 	if (pt_prev)
1909 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1910 	rcu_read_unlock();
1911 }
1912 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1913 
1914 /**
1915  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1916  * @dev: Network device
1917  * @txq: number of queues available
1918  *
1919  * If real_num_tx_queues is changed the tc mappings may no longer be
1920  * valid. To resolve this verify the tc mapping remains valid and if
1921  * not NULL the mapping. With no priorities mapping to this
1922  * offset/count pair it will no longer be used. In the worst case TC0
1923  * is invalid nothing can be done so disable priority mappings. If is
1924  * expected that drivers will fix this mapping if they can before
1925  * calling netif_set_real_num_tx_queues.
1926  */
1927 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1928 {
1929 	int i;
1930 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1931 
1932 	/* If TC0 is invalidated disable TC mapping */
1933 	if (tc->offset + tc->count > txq) {
1934 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1935 		dev->num_tc = 0;
1936 		return;
1937 	}
1938 
1939 	/* Invalidated prio to tc mappings set to TC0 */
1940 	for (i = 1; i < TC_BITMASK + 1; i++) {
1941 		int q = netdev_get_prio_tc_map(dev, i);
1942 
1943 		tc = &dev->tc_to_txq[q];
1944 		if (tc->offset + tc->count > txq) {
1945 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1946 				i, q);
1947 			netdev_set_prio_tc_map(dev, i, 0);
1948 		}
1949 	}
1950 }
1951 
1952 #ifdef CONFIG_XPS
1953 static DEFINE_MUTEX(xps_map_mutex);
1954 #define xmap_dereference(P)		\
1955 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1956 
1957 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1958 					int cpu, u16 index)
1959 {
1960 	struct xps_map *map = NULL;
1961 	int pos;
1962 
1963 	if (dev_maps)
1964 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1965 
1966 	for (pos = 0; map && pos < map->len; pos++) {
1967 		if (map->queues[pos] == index) {
1968 			if (map->len > 1) {
1969 				map->queues[pos] = map->queues[--map->len];
1970 			} else {
1971 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1972 				kfree_rcu(map, rcu);
1973 				map = NULL;
1974 			}
1975 			break;
1976 		}
1977 	}
1978 
1979 	return map;
1980 }
1981 
1982 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1983 {
1984 	struct xps_dev_maps *dev_maps;
1985 	int cpu, i;
1986 	bool active = false;
1987 
1988 	mutex_lock(&xps_map_mutex);
1989 	dev_maps = xmap_dereference(dev->xps_maps);
1990 
1991 	if (!dev_maps)
1992 		goto out_no_maps;
1993 
1994 	for_each_possible_cpu(cpu) {
1995 		for (i = index; i < dev->num_tx_queues; i++) {
1996 			if (!remove_xps_queue(dev_maps, cpu, i))
1997 				break;
1998 		}
1999 		if (i == dev->num_tx_queues)
2000 			active = true;
2001 	}
2002 
2003 	if (!active) {
2004 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2005 		kfree_rcu(dev_maps, rcu);
2006 	}
2007 
2008 	for (i = index; i < dev->num_tx_queues; i++)
2009 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2010 					     NUMA_NO_NODE);
2011 
2012 out_no_maps:
2013 	mutex_unlock(&xps_map_mutex);
2014 }
2015 
2016 static struct xps_map *expand_xps_map(struct xps_map *map,
2017 				      int cpu, u16 index)
2018 {
2019 	struct xps_map *new_map;
2020 	int alloc_len = XPS_MIN_MAP_ALLOC;
2021 	int i, pos;
2022 
2023 	for (pos = 0; map && pos < map->len; pos++) {
2024 		if (map->queues[pos] != index)
2025 			continue;
2026 		return map;
2027 	}
2028 
2029 	/* Need to add queue to this CPU's existing map */
2030 	if (map) {
2031 		if (pos < map->alloc_len)
2032 			return map;
2033 
2034 		alloc_len = map->alloc_len * 2;
2035 	}
2036 
2037 	/* Need to allocate new map to store queue on this CPU's map */
2038 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2039 			       cpu_to_node(cpu));
2040 	if (!new_map)
2041 		return NULL;
2042 
2043 	for (i = 0; i < pos; i++)
2044 		new_map->queues[i] = map->queues[i];
2045 	new_map->alloc_len = alloc_len;
2046 	new_map->len = pos;
2047 
2048 	return new_map;
2049 }
2050 
2051 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2052 			u16 index)
2053 {
2054 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2055 	struct xps_map *map, *new_map;
2056 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2057 	int cpu, numa_node_id = -2;
2058 	bool active = false;
2059 
2060 	mutex_lock(&xps_map_mutex);
2061 
2062 	dev_maps = xmap_dereference(dev->xps_maps);
2063 
2064 	/* allocate memory for queue storage */
2065 	for_each_online_cpu(cpu) {
2066 		if (!cpumask_test_cpu(cpu, mask))
2067 			continue;
2068 
2069 		if (!new_dev_maps)
2070 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2071 		if (!new_dev_maps) {
2072 			mutex_unlock(&xps_map_mutex);
2073 			return -ENOMEM;
2074 		}
2075 
2076 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2077 				 NULL;
2078 
2079 		map = expand_xps_map(map, cpu, index);
2080 		if (!map)
2081 			goto error;
2082 
2083 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2084 	}
2085 
2086 	if (!new_dev_maps)
2087 		goto out_no_new_maps;
2088 
2089 	for_each_possible_cpu(cpu) {
2090 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2091 			/* add queue to CPU maps */
2092 			int pos = 0;
2093 
2094 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2095 			while ((pos < map->len) && (map->queues[pos] != index))
2096 				pos++;
2097 
2098 			if (pos == map->len)
2099 				map->queues[map->len++] = index;
2100 #ifdef CONFIG_NUMA
2101 			if (numa_node_id == -2)
2102 				numa_node_id = cpu_to_node(cpu);
2103 			else if (numa_node_id != cpu_to_node(cpu))
2104 				numa_node_id = -1;
2105 #endif
2106 		} else if (dev_maps) {
2107 			/* fill in the new device map from the old device map */
2108 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2109 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2110 		}
2111 
2112 	}
2113 
2114 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2115 
2116 	/* Cleanup old maps */
2117 	if (dev_maps) {
2118 		for_each_possible_cpu(cpu) {
2119 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2120 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2121 			if (map && map != new_map)
2122 				kfree_rcu(map, rcu);
2123 		}
2124 
2125 		kfree_rcu(dev_maps, rcu);
2126 	}
2127 
2128 	dev_maps = new_dev_maps;
2129 	active = true;
2130 
2131 out_no_new_maps:
2132 	/* update Tx queue numa node */
2133 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2134 				     (numa_node_id >= 0) ? numa_node_id :
2135 				     NUMA_NO_NODE);
2136 
2137 	if (!dev_maps)
2138 		goto out_no_maps;
2139 
2140 	/* removes queue from unused CPUs */
2141 	for_each_possible_cpu(cpu) {
2142 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2143 			continue;
2144 
2145 		if (remove_xps_queue(dev_maps, cpu, index))
2146 			active = true;
2147 	}
2148 
2149 	/* free map if not active */
2150 	if (!active) {
2151 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2152 		kfree_rcu(dev_maps, rcu);
2153 	}
2154 
2155 out_no_maps:
2156 	mutex_unlock(&xps_map_mutex);
2157 
2158 	return 0;
2159 error:
2160 	/* remove any maps that we added */
2161 	for_each_possible_cpu(cpu) {
2162 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2163 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2164 				 NULL;
2165 		if (new_map && new_map != map)
2166 			kfree(new_map);
2167 	}
2168 
2169 	mutex_unlock(&xps_map_mutex);
2170 
2171 	kfree(new_dev_maps);
2172 	return -ENOMEM;
2173 }
2174 EXPORT_SYMBOL(netif_set_xps_queue);
2175 
2176 #endif
2177 /*
2178  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2179  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2180  */
2181 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2182 {
2183 	int rc;
2184 
2185 	if (txq < 1 || txq > dev->num_tx_queues)
2186 		return -EINVAL;
2187 
2188 	if (dev->reg_state == NETREG_REGISTERED ||
2189 	    dev->reg_state == NETREG_UNREGISTERING) {
2190 		ASSERT_RTNL();
2191 
2192 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2193 						  txq);
2194 		if (rc)
2195 			return rc;
2196 
2197 		if (dev->num_tc)
2198 			netif_setup_tc(dev, txq);
2199 
2200 		if (txq < dev->real_num_tx_queues) {
2201 			qdisc_reset_all_tx_gt(dev, txq);
2202 #ifdef CONFIG_XPS
2203 			netif_reset_xps_queues_gt(dev, txq);
2204 #endif
2205 		}
2206 	}
2207 
2208 	dev->real_num_tx_queues = txq;
2209 	return 0;
2210 }
2211 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2212 
2213 #ifdef CONFIG_SYSFS
2214 /**
2215  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2216  *	@dev: Network device
2217  *	@rxq: Actual number of RX queues
2218  *
2219  *	This must be called either with the rtnl_lock held or before
2220  *	registration of the net device.  Returns 0 on success, or a
2221  *	negative error code.  If called before registration, it always
2222  *	succeeds.
2223  */
2224 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2225 {
2226 	int rc;
2227 
2228 	if (rxq < 1 || rxq > dev->num_rx_queues)
2229 		return -EINVAL;
2230 
2231 	if (dev->reg_state == NETREG_REGISTERED) {
2232 		ASSERT_RTNL();
2233 
2234 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2235 						  rxq);
2236 		if (rc)
2237 			return rc;
2238 	}
2239 
2240 	dev->real_num_rx_queues = rxq;
2241 	return 0;
2242 }
2243 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2244 #endif
2245 
2246 /**
2247  * netif_get_num_default_rss_queues - default number of RSS queues
2248  *
2249  * This routine should set an upper limit on the number of RSS queues
2250  * used by default by multiqueue devices.
2251  */
2252 int netif_get_num_default_rss_queues(void)
2253 {
2254 	return is_kdump_kernel() ?
2255 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2256 }
2257 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2258 
2259 static void __netif_reschedule(struct Qdisc *q)
2260 {
2261 	struct softnet_data *sd;
2262 	unsigned long flags;
2263 
2264 	local_irq_save(flags);
2265 	sd = this_cpu_ptr(&softnet_data);
2266 	q->next_sched = NULL;
2267 	*sd->output_queue_tailp = q;
2268 	sd->output_queue_tailp = &q->next_sched;
2269 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270 	local_irq_restore(flags);
2271 }
2272 
2273 void __netif_schedule(struct Qdisc *q)
2274 {
2275 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2276 		__netif_reschedule(q);
2277 }
2278 EXPORT_SYMBOL(__netif_schedule);
2279 
2280 struct dev_kfree_skb_cb {
2281 	enum skb_free_reason reason;
2282 };
2283 
2284 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2285 {
2286 	return (struct dev_kfree_skb_cb *)skb->cb;
2287 }
2288 
2289 void netif_schedule_queue(struct netdev_queue *txq)
2290 {
2291 	rcu_read_lock();
2292 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2293 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2294 
2295 		__netif_schedule(q);
2296 	}
2297 	rcu_read_unlock();
2298 }
2299 EXPORT_SYMBOL(netif_schedule_queue);
2300 
2301 /**
2302  *	netif_wake_subqueue - allow sending packets on subqueue
2303  *	@dev: network device
2304  *	@queue_index: sub queue index
2305  *
2306  * Resume individual transmit queue of a device with multiple transmit queues.
2307  */
2308 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2309 {
2310 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2311 
2312 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2313 		struct Qdisc *q;
2314 
2315 		rcu_read_lock();
2316 		q = rcu_dereference(txq->qdisc);
2317 		__netif_schedule(q);
2318 		rcu_read_unlock();
2319 	}
2320 }
2321 EXPORT_SYMBOL(netif_wake_subqueue);
2322 
2323 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2324 {
2325 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2326 		struct Qdisc *q;
2327 
2328 		rcu_read_lock();
2329 		q = rcu_dereference(dev_queue->qdisc);
2330 		__netif_schedule(q);
2331 		rcu_read_unlock();
2332 	}
2333 }
2334 EXPORT_SYMBOL(netif_tx_wake_queue);
2335 
2336 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2337 {
2338 	unsigned long flags;
2339 
2340 	if (likely(atomic_read(&skb->users) == 1)) {
2341 		smp_rmb();
2342 		atomic_set(&skb->users, 0);
2343 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2344 		return;
2345 	}
2346 	get_kfree_skb_cb(skb)->reason = reason;
2347 	local_irq_save(flags);
2348 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2349 	__this_cpu_write(softnet_data.completion_queue, skb);
2350 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2351 	local_irq_restore(flags);
2352 }
2353 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2354 
2355 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2356 {
2357 	if (in_irq() || irqs_disabled())
2358 		__dev_kfree_skb_irq(skb, reason);
2359 	else
2360 		dev_kfree_skb(skb);
2361 }
2362 EXPORT_SYMBOL(__dev_kfree_skb_any);
2363 
2364 
2365 /**
2366  * netif_device_detach - mark device as removed
2367  * @dev: network device
2368  *
2369  * Mark device as removed from system and therefore no longer available.
2370  */
2371 void netif_device_detach(struct net_device *dev)
2372 {
2373 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2374 	    netif_running(dev)) {
2375 		netif_tx_stop_all_queues(dev);
2376 	}
2377 }
2378 EXPORT_SYMBOL(netif_device_detach);
2379 
2380 /**
2381  * netif_device_attach - mark device as attached
2382  * @dev: network device
2383  *
2384  * Mark device as attached from system and restart if needed.
2385  */
2386 void netif_device_attach(struct net_device *dev)
2387 {
2388 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2389 	    netif_running(dev)) {
2390 		netif_tx_wake_all_queues(dev);
2391 		__netdev_watchdog_up(dev);
2392 	}
2393 }
2394 EXPORT_SYMBOL(netif_device_attach);
2395 
2396 /*
2397  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2398  * to be used as a distribution range.
2399  */
2400 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2401 		  unsigned int num_tx_queues)
2402 {
2403 	u32 hash;
2404 	u16 qoffset = 0;
2405 	u16 qcount = num_tx_queues;
2406 
2407 	if (skb_rx_queue_recorded(skb)) {
2408 		hash = skb_get_rx_queue(skb);
2409 		while (unlikely(hash >= num_tx_queues))
2410 			hash -= num_tx_queues;
2411 		return hash;
2412 	}
2413 
2414 	if (dev->num_tc) {
2415 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2416 		qoffset = dev->tc_to_txq[tc].offset;
2417 		qcount = dev->tc_to_txq[tc].count;
2418 	}
2419 
2420 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2421 }
2422 EXPORT_SYMBOL(__skb_tx_hash);
2423 
2424 static void skb_warn_bad_offload(const struct sk_buff *skb)
2425 {
2426 	static const netdev_features_t null_features;
2427 	struct net_device *dev = skb->dev;
2428 	const char *name = "";
2429 
2430 	if (!net_ratelimit())
2431 		return;
2432 
2433 	if (dev) {
2434 		if (dev->dev.parent)
2435 			name = dev_driver_string(dev->dev.parent);
2436 		else
2437 			name = netdev_name(dev);
2438 	}
2439 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2440 	     "gso_type=%d ip_summed=%d\n",
2441 	     name, dev ? &dev->features : &null_features,
2442 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2443 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2444 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2445 }
2446 
2447 /*
2448  * Invalidate hardware checksum when packet is to be mangled, and
2449  * complete checksum manually on outgoing path.
2450  */
2451 int skb_checksum_help(struct sk_buff *skb)
2452 {
2453 	__wsum csum;
2454 	int ret = 0, offset;
2455 
2456 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2457 		goto out_set_summed;
2458 
2459 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2460 		skb_warn_bad_offload(skb);
2461 		return -EINVAL;
2462 	}
2463 
2464 	/* Before computing a checksum, we should make sure no frag could
2465 	 * be modified by an external entity : checksum could be wrong.
2466 	 */
2467 	if (skb_has_shared_frag(skb)) {
2468 		ret = __skb_linearize(skb);
2469 		if (ret)
2470 			goto out;
2471 	}
2472 
2473 	offset = skb_checksum_start_offset(skb);
2474 	BUG_ON(offset >= skb_headlen(skb));
2475 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2476 
2477 	offset += skb->csum_offset;
2478 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2479 
2480 	if (skb_cloned(skb) &&
2481 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2482 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2483 		if (ret)
2484 			goto out;
2485 	}
2486 
2487 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2488 out_set_summed:
2489 	skb->ip_summed = CHECKSUM_NONE;
2490 out:
2491 	return ret;
2492 }
2493 EXPORT_SYMBOL(skb_checksum_help);
2494 
2495 /* skb_csum_offload_check - Driver helper function to determine if a device
2496  * with limited checksum offload capabilities is able to offload the checksum
2497  * for a given packet.
2498  *
2499  * Arguments:
2500  *   skb - sk_buff for the packet in question
2501  *   spec - contains the description of what device can offload
2502  *   csum_encapped - returns true if the checksum being offloaded is
2503  *	      encpasulated. That is it is checksum for the transport header
2504  *	      in the inner headers.
2505  *   checksum_help - when set indicates that helper function should
2506  *	      call skb_checksum_help if offload checks fail
2507  *
2508  * Returns:
2509  *   true: Packet has passed the checksum checks and should be offloadable to
2510  *	   the device (a driver may still need to check for additional
2511  *	   restrictions of its device)
2512  *   false: Checksum is not offloadable. If checksum_help was set then
2513  *	   skb_checksum_help was called to resolve checksum for non-GSO
2514  *	   packets and when IP protocol is not SCTP
2515  */
2516 bool __skb_csum_offload_chk(struct sk_buff *skb,
2517 			    const struct skb_csum_offl_spec *spec,
2518 			    bool *csum_encapped,
2519 			    bool csum_help)
2520 {
2521 	struct iphdr *iph;
2522 	struct ipv6hdr *ipv6;
2523 	void *nhdr;
2524 	int protocol;
2525 	u8 ip_proto;
2526 
2527 	if (skb->protocol == htons(ETH_P_8021Q) ||
2528 	    skb->protocol == htons(ETH_P_8021AD)) {
2529 		if (!spec->vlan_okay)
2530 			goto need_help;
2531 	}
2532 
2533 	/* We check whether the checksum refers to a transport layer checksum in
2534 	 * the outermost header or an encapsulated transport layer checksum that
2535 	 * corresponds to the inner headers of the skb. If the checksum is for
2536 	 * something else in the packet we need help.
2537 	 */
2538 	if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2539 		/* Non-encapsulated checksum */
2540 		protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2541 		nhdr = skb_network_header(skb);
2542 		*csum_encapped = false;
2543 		if (spec->no_not_encapped)
2544 			goto need_help;
2545 	} else if (skb->encapsulation && spec->encap_okay &&
2546 		   skb_checksum_start_offset(skb) ==
2547 		   skb_inner_transport_offset(skb)) {
2548 		/* Encapsulated checksum */
2549 		*csum_encapped = true;
2550 		switch (skb->inner_protocol_type) {
2551 		case ENCAP_TYPE_ETHER:
2552 			protocol = eproto_to_ipproto(skb->inner_protocol);
2553 			break;
2554 		case ENCAP_TYPE_IPPROTO:
2555 			protocol = skb->inner_protocol;
2556 			break;
2557 		}
2558 		nhdr = skb_inner_network_header(skb);
2559 	} else {
2560 		goto need_help;
2561 	}
2562 
2563 	switch (protocol) {
2564 	case IPPROTO_IP:
2565 		if (!spec->ipv4_okay)
2566 			goto need_help;
2567 		iph = nhdr;
2568 		ip_proto = iph->protocol;
2569 		if (iph->ihl != 5 && !spec->ip_options_okay)
2570 			goto need_help;
2571 		break;
2572 	case IPPROTO_IPV6:
2573 		if (!spec->ipv6_okay)
2574 			goto need_help;
2575 		if (spec->no_encapped_ipv6 && *csum_encapped)
2576 			goto need_help;
2577 		ipv6 = nhdr;
2578 		nhdr += sizeof(*ipv6);
2579 		ip_proto = ipv6->nexthdr;
2580 		break;
2581 	default:
2582 		goto need_help;
2583 	}
2584 
2585 ip_proto_again:
2586 	switch (ip_proto) {
2587 	case IPPROTO_TCP:
2588 		if (!spec->tcp_okay ||
2589 		    skb->csum_offset != offsetof(struct tcphdr, check))
2590 			goto need_help;
2591 		break;
2592 	case IPPROTO_UDP:
2593 		if (!spec->udp_okay ||
2594 		    skb->csum_offset != offsetof(struct udphdr, check))
2595 			goto need_help;
2596 		break;
2597 	case IPPROTO_SCTP:
2598 		if (!spec->sctp_okay ||
2599 		    skb->csum_offset != offsetof(struct sctphdr, checksum))
2600 			goto cant_help;
2601 		break;
2602 	case NEXTHDR_HOP:
2603 	case NEXTHDR_ROUTING:
2604 	case NEXTHDR_DEST: {
2605 		u8 *opthdr = nhdr;
2606 
2607 		if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2608 			goto need_help;
2609 
2610 		ip_proto = opthdr[0];
2611 		nhdr += (opthdr[1] + 1) << 3;
2612 
2613 		goto ip_proto_again;
2614 	}
2615 	default:
2616 		goto need_help;
2617 	}
2618 
2619 	/* Passed the tests for offloading checksum */
2620 	return true;
2621 
2622 need_help:
2623 	if (csum_help && !skb_shinfo(skb)->gso_size)
2624 		skb_checksum_help(skb);
2625 cant_help:
2626 	return false;
2627 }
2628 EXPORT_SYMBOL(__skb_csum_offload_chk);
2629 
2630 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2631 {
2632 	__be16 type = skb->protocol;
2633 
2634 	/* Tunnel gso handlers can set protocol to ethernet. */
2635 	if (type == htons(ETH_P_TEB)) {
2636 		struct ethhdr *eth;
2637 
2638 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2639 			return 0;
2640 
2641 		eth = (struct ethhdr *)skb_mac_header(skb);
2642 		type = eth->h_proto;
2643 	}
2644 
2645 	return __vlan_get_protocol(skb, type, depth);
2646 }
2647 
2648 /**
2649  *	skb_mac_gso_segment - mac layer segmentation handler.
2650  *	@skb: buffer to segment
2651  *	@features: features for the output path (see dev->features)
2652  */
2653 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2654 				    netdev_features_t features)
2655 {
2656 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2657 	struct packet_offload *ptype;
2658 	int vlan_depth = skb->mac_len;
2659 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2660 
2661 	if (unlikely(!type))
2662 		return ERR_PTR(-EINVAL);
2663 
2664 	__skb_pull(skb, vlan_depth);
2665 
2666 	rcu_read_lock();
2667 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2668 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2669 			segs = ptype->callbacks.gso_segment(skb, features);
2670 			break;
2671 		}
2672 	}
2673 	rcu_read_unlock();
2674 
2675 	__skb_push(skb, skb->data - skb_mac_header(skb));
2676 
2677 	return segs;
2678 }
2679 EXPORT_SYMBOL(skb_mac_gso_segment);
2680 
2681 
2682 /* openvswitch calls this on rx path, so we need a different check.
2683  */
2684 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2685 {
2686 	if (tx_path)
2687 		return skb->ip_summed != CHECKSUM_PARTIAL;
2688 	else
2689 		return skb->ip_summed == CHECKSUM_NONE;
2690 }
2691 
2692 /**
2693  *	__skb_gso_segment - Perform segmentation on skb.
2694  *	@skb: buffer to segment
2695  *	@features: features for the output path (see dev->features)
2696  *	@tx_path: whether it is called in TX path
2697  *
2698  *	This function segments the given skb and returns a list of segments.
2699  *
2700  *	It may return NULL if the skb requires no segmentation.  This is
2701  *	only possible when GSO is used for verifying header integrity.
2702  *
2703  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2704  */
2705 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2706 				  netdev_features_t features, bool tx_path)
2707 {
2708 	if (unlikely(skb_needs_check(skb, tx_path))) {
2709 		int err;
2710 
2711 		skb_warn_bad_offload(skb);
2712 
2713 		err = skb_cow_head(skb, 0);
2714 		if (err < 0)
2715 			return ERR_PTR(err);
2716 	}
2717 
2718 	/* Only report GSO partial support if it will enable us to
2719 	 * support segmentation on this frame without needing additional
2720 	 * work.
2721 	 */
2722 	if (features & NETIF_F_GSO_PARTIAL) {
2723 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2724 		struct net_device *dev = skb->dev;
2725 
2726 		partial_features |= dev->features & dev->gso_partial_features;
2727 		if (!skb_gso_ok(skb, features | partial_features))
2728 			features &= ~NETIF_F_GSO_PARTIAL;
2729 	}
2730 
2731 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2732 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2733 
2734 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2735 	SKB_GSO_CB(skb)->encap_level = 0;
2736 
2737 	skb_reset_mac_header(skb);
2738 	skb_reset_mac_len(skb);
2739 
2740 	return skb_mac_gso_segment(skb, features);
2741 }
2742 EXPORT_SYMBOL(__skb_gso_segment);
2743 
2744 /* Take action when hardware reception checksum errors are detected. */
2745 #ifdef CONFIG_BUG
2746 void netdev_rx_csum_fault(struct net_device *dev)
2747 {
2748 	if (net_ratelimit()) {
2749 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2750 		dump_stack();
2751 	}
2752 }
2753 EXPORT_SYMBOL(netdev_rx_csum_fault);
2754 #endif
2755 
2756 /* Actually, we should eliminate this check as soon as we know, that:
2757  * 1. IOMMU is present and allows to map all the memory.
2758  * 2. No high memory really exists on this machine.
2759  */
2760 
2761 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2762 {
2763 #ifdef CONFIG_HIGHMEM
2764 	int i;
2765 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2766 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768 			if (PageHighMem(skb_frag_page(frag)))
2769 				return 1;
2770 		}
2771 	}
2772 
2773 	if (PCI_DMA_BUS_IS_PHYS) {
2774 		struct device *pdev = dev->dev.parent;
2775 
2776 		if (!pdev)
2777 			return 0;
2778 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2779 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2780 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2781 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2782 				return 1;
2783 		}
2784 	}
2785 #endif
2786 	return 0;
2787 }
2788 
2789 /* If MPLS offload request, verify we are testing hardware MPLS features
2790  * instead of standard features for the netdev.
2791  */
2792 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2793 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2794 					   netdev_features_t features,
2795 					   __be16 type)
2796 {
2797 	if (eth_p_mpls(type))
2798 		features &= skb->dev->mpls_features;
2799 
2800 	return features;
2801 }
2802 #else
2803 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2804 					   netdev_features_t features,
2805 					   __be16 type)
2806 {
2807 	return features;
2808 }
2809 #endif
2810 
2811 static netdev_features_t harmonize_features(struct sk_buff *skb,
2812 	netdev_features_t features)
2813 {
2814 	int tmp;
2815 	__be16 type;
2816 
2817 	type = skb_network_protocol(skb, &tmp);
2818 	features = net_mpls_features(skb, features, type);
2819 
2820 	if (skb->ip_summed != CHECKSUM_NONE &&
2821 	    !can_checksum_protocol(features, type)) {
2822 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2823 	} else if (illegal_highdma(skb->dev, skb)) {
2824 		features &= ~NETIF_F_SG;
2825 	}
2826 
2827 	return features;
2828 }
2829 
2830 netdev_features_t passthru_features_check(struct sk_buff *skb,
2831 					  struct net_device *dev,
2832 					  netdev_features_t features)
2833 {
2834 	return features;
2835 }
2836 EXPORT_SYMBOL(passthru_features_check);
2837 
2838 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2839 					     struct net_device *dev,
2840 					     netdev_features_t features)
2841 {
2842 	return vlan_features_check(skb, features);
2843 }
2844 
2845 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2846 					    struct net_device *dev,
2847 					    netdev_features_t features)
2848 {
2849 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2850 
2851 	if (gso_segs > dev->gso_max_segs)
2852 		return features & ~NETIF_F_GSO_MASK;
2853 
2854 	/* Support for GSO partial features requires software
2855 	 * intervention before we can actually process the packets
2856 	 * so we need to strip support for any partial features now
2857 	 * and we can pull them back in after we have partially
2858 	 * segmented the frame.
2859 	 */
2860 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2861 		features &= ~dev->gso_partial_features;
2862 
2863 	/* Make sure to clear the IPv4 ID mangling feature if the
2864 	 * IPv4 header has the potential to be fragmented.
2865 	 */
2866 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2867 		struct iphdr *iph = skb->encapsulation ?
2868 				    inner_ip_hdr(skb) : ip_hdr(skb);
2869 
2870 		if (!(iph->frag_off & htons(IP_DF)))
2871 			features &= ~NETIF_F_TSO_MANGLEID;
2872 	}
2873 
2874 	return features;
2875 }
2876 
2877 netdev_features_t netif_skb_features(struct sk_buff *skb)
2878 {
2879 	struct net_device *dev = skb->dev;
2880 	netdev_features_t features = dev->features;
2881 
2882 	if (skb_is_gso(skb))
2883 		features = gso_features_check(skb, dev, features);
2884 
2885 	/* If encapsulation offload request, verify we are testing
2886 	 * hardware encapsulation features instead of standard
2887 	 * features for the netdev
2888 	 */
2889 	if (skb->encapsulation)
2890 		features &= dev->hw_enc_features;
2891 
2892 	if (skb_vlan_tagged(skb))
2893 		features = netdev_intersect_features(features,
2894 						     dev->vlan_features |
2895 						     NETIF_F_HW_VLAN_CTAG_TX |
2896 						     NETIF_F_HW_VLAN_STAG_TX);
2897 
2898 	if (dev->netdev_ops->ndo_features_check)
2899 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2900 								features);
2901 	else
2902 		features &= dflt_features_check(skb, dev, features);
2903 
2904 	return harmonize_features(skb, features);
2905 }
2906 EXPORT_SYMBOL(netif_skb_features);
2907 
2908 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2909 		    struct netdev_queue *txq, bool more)
2910 {
2911 	unsigned int len;
2912 	int rc;
2913 
2914 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2915 		dev_queue_xmit_nit(skb, dev);
2916 
2917 	len = skb->len;
2918 	trace_net_dev_start_xmit(skb, dev);
2919 	rc = netdev_start_xmit(skb, dev, txq, more);
2920 	trace_net_dev_xmit(skb, rc, dev, len);
2921 
2922 	return rc;
2923 }
2924 
2925 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2926 				    struct netdev_queue *txq, int *ret)
2927 {
2928 	struct sk_buff *skb = first;
2929 	int rc = NETDEV_TX_OK;
2930 
2931 	while (skb) {
2932 		struct sk_buff *next = skb->next;
2933 
2934 		skb->next = NULL;
2935 		rc = xmit_one(skb, dev, txq, next != NULL);
2936 		if (unlikely(!dev_xmit_complete(rc))) {
2937 			skb->next = next;
2938 			goto out;
2939 		}
2940 
2941 		skb = next;
2942 		if (netif_xmit_stopped(txq) && skb) {
2943 			rc = NETDEV_TX_BUSY;
2944 			break;
2945 		}
2946 	}
2947 
2948 out:
2949 	*ret = rc;
2950 	return skb;
2951 }
2952 
2953 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2954 					  netdev_features_t features)
2955 {
2956 	if (skb_vlan_tag_present(skb) &&
2957 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2958 		skb = __vlan_hwaccel_push_inside(skb);
2959 	return skb;
2960 }
2961 
2962 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2963 {
2964 	netdev_features_t features;
2965 
2966 	features = netif_skb_features(skb);
2967 	skb = validate_xmit_vlan(skb, features);
2968 	if (unlikely(!skb))
2969 		goto out_null;
2970 
2971 	if (netif_needs_gso(skb, features)) {
2972 		struct sk_buff *segs;
2973 
2974 		segs = skb_gso_segment(skb, features);
2975 		if (IS_ERR(segs)) {
2976 			goto out_kfree_skb;
2977 		} else if (segs) {
2978 			consume_skb(skb);
2979 			skb = segs;
2980 		}
2981 	} else {
2982 		if (skb_needs_linearize(skb, features) &&
2983 		    __skb_linearize(skb))
2984 			goto out_kfree_skb;
2985 
2986 		/* If packet is not checksummed and device does not
2987 		 * support checksumming for this protocol, complete
2988 		 * checksumming here.
2989 		 */
2990 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2991 			if (skb->encapsulation)
2992 				skb_set_inner_transport_header(skb,
2993 							       skb_checksum_start_offset(skb));
2994 			else
2995 				skb_set_transport_header(skb,
2996 							 skb_checksum_start_offset(skb));
2997 			if (!(features & NETIF_F_CSUM_MASK) &&
2998 			    skb_checksum_help(skb))
2999 				goto out_kfree_skb;
3000 		}
3001 	}
3002 
3003 	return skb;
3004 
3005 out_kfree_skb:
3006 	kfree_skb(skb);
3007 out_null:
3008 	atomic_long_inc(&dev->tx_dropped);
3009 	return NULL;
3010 }
3011 
3012 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3013 {
3014 	struct sk_buff *next, *head = NULL, *tail;
3015 
3016 	for (; skb != NULL; skb = next) {
3017 		next = skb->next;
3018 		skb->next = NULL;
3019 
3020 		/* in case skb wont be segmented, point to itself */
3021 		skb->prev = skb;
3022 
3023 		skb = validate_xmit_skb(skb, dev);
3024 		if (!skb)
3025 			continue;
3026 
3027 		if (!head)
3028 			head = skb;
3029 		else
3030 			tail->next = skb;
3031 		/* If skb was segmented, skb->prev points to
3032 		 * the last segment. If not, it still contains skb.
3033 		 */
3034 		tail = skb->prev;
3035 	}
3036 	return head;
3037 }
3038 
3039 static void qdisc_pkt_len_init(struct sk_buff *skb)
3040 {
3041 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3042 
3043 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3044 
3045 	/* To get more precise estimation of bytes sent on wire,
3046 	 * we add to pkt_len the headers size of all segments
3047 	 */
3048 	if (shinfo->gso_size)  {
3049 		unsigned int hdr_len;
3050 		u16 gso_segs = shinfo->gso_segs;
3051 
3052 		/* mac layer + network layer */
3053 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3054 
3055 		/* + transport layer */
3056 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3057 			hdr_len += tcp_hdrlen(skb);
3058 		else
3059 			hdr_len += sizeof(struct udphdr);
3060 
3061 		if (shinfo->gso_type & SKB_GSO_DODGY)
3062 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3063 						shinfo->gso_size);
3064 
3065 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3066 	}
3067 }
3068 
3069 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3070 				 struct net_device *dev,
3071 				 struct netdev_queue *txq)
3072 {
3073 	spinlock_t *root_lock = qdisc_lock(q);
3074 	struct sk_buff *to_free = NULL;
3075 	bool contended;
3076 	int rc;
3077 
3078 	qdisc_calculate_pkt_len(skb, q);
3079 	/*
3080 	 * Heuristic to force contended enqueues to serialize on a
3081 	 * separate lock before trying to get qdisc main lock.
3082 	 * This permits qdisc->running owner to get the lock more
3083 	 * often and dequeue packets faster.
3084 	 */
3085 	contended = qdisc_is_running(q);
3086 	if (unlikely(contended))
3087 		spin_lock(&q->busylock);
3088 
3089 	spin_lock(root_lock);
3090 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3091 		__qdisc_drop(skb, &to_free);
3092 		rc = NET_XMIT_DROP;
3093 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3094 		   qdisc_run_begin(q)) {
3095 		/*
3096 		 * This is a work-conserving queue; there are no old skbs
3097 		 * waiting to be sent out; and the qdisc is not running -
3098 		 * xmit the skb directly.
3099 		 */
3100 
3101 		qdisc_bstats_update(q, skb);
3102 
3103 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3104 			if (unlikely(contended)) {
3105 				spin_unlock(&q->busylock);
3106 				contended = false;
3107 			}
3108 			__qdisc_run(q);
3109 		} else
3110 			qdisc_run_end(q);
3111 
3112 		rc = NET_XMIT_SUCCESS;
3113 	} else {
3114 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3115 		if (qdisc_run_begin(q)) {
3116 			if (unlikely(contended)) {
3117 				spin_unlock(&q->busylock);
3118 				contended = false;
3119 			}
3120 			__qdisc_run(q);
3121 		}
3122 	}
3123 	spin_unlock(root_lock);
3124 	if (unlikely(to_free))
3125 		kfree_skb_list(to_free);
3126 	if (unlikely(contended))
3127 		spin_unlock(&q->busylock);
3128 	return rc;
3129 }
3130 
3131 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3132 static void skb_update_prio(struct sk_buff *skb)
3133 {
3134 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3135 
3136 	if (!skb->priority && skb->sk && map) {
3137 		unsigned int prioidx =
3138 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3139 
3140 		if (prioidx < map->priomap_len)
3141 			skb->priority = map->priomap[prioidx];
3142 	}
3143 }
3144 #else
3145 #define skb_update_prio(skb)
3146 #endif
3147 
3148 DEFINE_PER_CPU(int, xmit_recursion);
3149 EXPORT_SYMBOL(xmit_recursion);
3150 
3151 /**
3152  *	dev_loopback_xmit - loop back @skb
3153  *	@net: network namespace this loopback is happening in
3154  *	@sk:  sk needed to be a netfilter okfn
3155  *	@skb: buffer to transmit
3156  */
3157 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3158 {
3159 	skb_reset_mac_header(skb);
3160 	__skb_pull(skb, skb_network_offset(skb));
3161 	skb->pkt_type = PACKET_LOOPBACK;
3162 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3163 	WARN_ON(!skb_dst(skb));
3164 	skb_dst_force(skb);
3165 	netif_rx_ni(skb);
3166 	return 0;
3167 }
3168 EXPORT_SYMBOL(dev_loopback_xmit);
3169 
3170 #ifdef CONFIG_NET_EGRESS
3171 static struct sk_buff *
3172 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3173 {
3174 	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3175 	struct tcf_result cl_res;
3176 
3177 	if (!cl)
3178 		return skb;
3179 
3180 	/* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3181 	 * earlier by the caller.
3182 	 */
3183 	qdisc_bstats_cpu_update(cl->q, skb);
3184 
3185 	switch (tc_classify(skb, cl, &cl_res, false)) {
3186 	case TC_ACT_OK:
3187 	case TC_ACT_RECLASSIFY:
3188 		skb->tc_index = TC_H_MIN(cl_res.classid);
3189 		break;
3190 	case TC_ACT_SHOT:
3191 		qdisc_qstats_cpu_drop(cl->q);
3192 		*ret = NET_XMIT_DROP;
3193 		kfree_skb(skb);
3194 		return NULL;
3195 	case TC_ACT_STOLEN:
3196 	case TC_ACT_QUEUED:
3197 		*ret = NET_XMIT_SUCCESS;
3198 		consume_skb(skb);
3199 		return NULL;
3200 	case TC_ACT_REDIRECT:
3201 		/* No need to push/pop skb's mac_header here on egress! */
3202 		skb_do_redirect(skb);
3203 		*ret = NET_XMIT_SUCCESS;
3204 		return NULL;
3205 	default:
3206 		break;
3207 	}
3208 
3209 	return skb;
3210 }
3211 #endif /* CONFIG_NET_EGRESS */
3212 
3213 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3214 {
3215 #ifdef CONFIG_XPS
3216 	struct xps_dev_maps *dev_maps;
3217 	struct xps_map *map;
3218 	int queue_index = -1;
3219 
3220 	rcu_read_lock();
3221 	dev_maps = rcu_dereference(dev->xps_maps);
3222 	if (dev_maps) {
3223 		map = rcu_dereference(
3224 		    dev_maps->cpu_map[skb->sender_cpu - 1]);
3225 		if (map) {
3226 			if (map->len == 1)
3227 				queue_index = map->queues[0];
3228 			else
3229 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3230 									   map->len)];
3231 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3232 				queue_index = -1;
3233 		}
3234 	}
3235 	rcu_read_unlock();
3236 
3237 	return queue_index;
3238 #else
3239 	return -1;
3240 #endif
3241 }
3242 
3243 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3244 {
3245 	struct sock *sk = skb->sk;
3246 	int queue_index = sk_tx_queue_get(sk);
3247 
3248 	if (queue_index < 0 || skb->ooo_okay ||
3249 	    queue_index >= dev->real_num_tx_queues) {
3250 		int new_index = get_xps_queue(dev, skb);
3251 		if (new_index < 0)
3252 			new_index = skb_tx_hash(dev, skb);
3253 
3254 		if (queue_index != new_index && sk &&
3255 		    sk_fullsock(sk) &&
3256 		    rcu_access_pointer(sk->sk_dst_cache))
3257 			sk_tx_queue_set(sk, new_index);
3258 
3259 		queue_index = new_index;
3260 	}
3261 
3262 	return queue_index;
3263 }
3264 
3265 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3266 				    struct sk_buff *skb,
3267 				    void *accel_priv)
3268 {
3269 	int queue_index = 0;
3270 
3271 #ifdef CONFIG_XPS
3272 	u32 sender_cpu = skb->sender_cpu - 1;
3273 
3274 	if (sender_cpu >= (u32)NR_CPUS)
3275 		skb->sender_cpu = raw_smp_processor_id() + 1;
3276 #endif
3277 
3278 	if (dev->real_num_tx_queues != 1) {
3279 		const struct net_device_ops *ops = dev->netdev_ops;
3280 		if (ops->ndo_select_queue)
3281 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3282 							    __netdev_pick_tx);
3283 		else
3284 			queue_index = __netdev_pick_tx(dev, skb);
3285 
3286 		if (!accel_priv)
3287 			queue_index = netdev_cap_txqueue(dev, queue_index);
3288 	}
3289 
3290 	skb_set_queue_mapping(skb, queue_index);
3291 	return netdev_get_tx_queue(dev, queue_index);
3292 }
3293 
3294 /**
3295  *	__dev_queue_xmit - transmit a buffer
3296  *	@skb: buffer to transmit
3297  *	@accel_priv: private data used for L2 forwarding offload
3298  *
3299  *	Queue a buffer for transmission to a network device. The caller must
3300  *	have set the device and priority and built the buffer before calling
3301  *	this function. The function can be called from an interrupt.
3302  *
3303  *	A negative errno code is returned on a failure. A success does not
3304  *	guarantee the frame will be transmitted as it may be dropped due
3305  *	to congestion or traffic shaping.
3306  *
3307  * -----------------------------------------------------------------------------------
3308  *      I notice this method can also return errors from the queue disciplines,
3309  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3310  *      be positive.
3311  *
3312  *      Regardless of the return value, the skb is consumed, so it is currently
3313  *      difficult to retry a send to this method.  (You can bump the ref count
3314  *      before sending to hold a reference for retry if you are careful.)
3315  *
3316  *      When calling this method, interrupts MUST be enabled.  This is because
3317  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3318  *          --BLG
3319  */
3320 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3321 {
3322 	struct net_device *dev = skb->dev;
3323 	struct netdev_queue *txq;
3324 	struct Qdisc *q;
3325 	int rc = -ENOMEM;
3326 
3327 	skb_reset_mac_header(skb);
3328 
3329 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3330 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3331 
3332 	/* Disable soft irqs for various locks below. Also
3333 	 * stops preemption for RCU.
3334 	 */
3335 	rcu_read_lock_bh();
3336 
3337 	skb_update_prio(skb);
3338 
3339 	qdisc_pkt_len_init(skb);
3340 #ifdef CONFIG_NET_CLS_ACT
3341 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3342 # ifdef CONFIG_NET_EGRESS
3343 	if (static_key_false(&egress_needed)) {
3344 		skb = sch_handle_egress(skb, &rc, dev);
3345 		if (!skb)
3346 			goto out;
3347 	}
3348 # endif
3349 #endif
3350 	/* If device/qdisc don't need skb->dst, release it right now while
3351 	 * its hot in this cpu cache.
3352 	 */
3353 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3354 		skb_dst_drop(skb);
3355 	else
3356 		skb_dst_force(skb);
3357 
3358 	txq = netdev_pick_tx(dev, skb, accel_priv);
3359 	q = rcu_dereference_bh(txq->qdisc);
3360 
3361 	trace_net_dev_queue(skb);
3362 	if (q->enqueue) {
3363 		rc = __dev_xmit_skb(skb, q, dev, txq);
3364 		goto out;
3365 	}
3366 
3367 	/* The device has no queue. Common case for software devices:
3368 	   loopback, all the sorts of tunnels...
3369 
3370 	   Really, it is unlikely that netif_tx_lock protection is necessary
3371 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3372 	   counters.)
3373 	   However, it is possible, that they rely on protection
3374 	   made by us here.
3375 
3376 	   Check this and shot the lock. It is not prone from deadlocks.
3377 	   Either shot noqueue qdisc, it is even simpler 8)
3378 	 */
3379 	if (dev->flags & IFF_UP) {
3380 		int cpu = smp_processor_id(); /* ok because BHs are off */
3381 
3382 		if (txq->xmit_lock_owner != cpu) {
3383 			if (unlikely(__this_cpu_read(xmit_recursion) >
3384 				     XMIT_RECURSION_LIMIT))
3385 				goto recursion_alert;
3386 
3387 			skb = validate_xmit_skb(skb, dev);
3388 			if (!skb)
3389 				goto out;
3390 
3391 			HARD_TX_LOCK(dev, txq, cpu);
3392 
3393 			if (!netif_xmit_stopped(txq)) {
3394 				__this_cpu_inc(xmit_recursion);
3395 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3396 				__this_cpu_dec(xmit_recursion);
3397 				if (dev_xmit_complete(rc)) {
3398 					HARD_TX_UNLOCK(dev, txq);
3399 					goto out;
3400 				}
3401 			}
3402 			HARD_TX_UNLOCK(dev, txq);
3403 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3404 					     dev->name);
3405 		} else {
3406 			/* Recursion is detected! It is possible,
3407 			 * unfortunately
3408 			 */
3409 recursion_alert:
3410 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3411 					     dev->name);
3412 		}
3413 	}
3414 
3415 	rc = -ENETDOWN;
3416 	rcu_read_unlock_bh();
3417 
3418 	atomic_long_inc(&dev->tx_dropped);
3419 	kfree_skb_list(skb);
3420 	return rc;
3421 out:
3422 	rcu_read_unlock_bh();
3423 	return rc;
3424 }
3425 
3426 int dev_queue_xmit(struct sk_buff *skb)
3427 {
3428 	return __dev_queue_xmit(skb, NULL);
3429 }
3430 EXPORT_SYMBOL(dev_queue_xmit);
3431 
3432 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3433 {
3434 	return __dev_queue_xmit(skb, accel_priv);
3435 }
3436 EXPORT_SYMBOL(dev_queue_xmit_accel);
3437 
3438 
3439 /*=======================================================================
3440 			Receiver routines
3441   =======================================================================*/
3442 
3443 int netdev_max_backlog __read_mostly = 1000;
3444 EXPORT_SYMBOL(netdev_max_backlog);
3445 
3446 int netdev_tstamp_prequeue __read_mostly = 1;
3447 int netdev_budget __read_mostly = 300;
3448 int weight_p __read_mostly = 64;            /* old backlog weight */
3449 
3450 /* Called with irq disabled */
3451 static inline void ____napi_schedule(struct softnet_data *sd,
3452 				     struct napi_struct *napi)
3453 {
3454 	list_add_tail(&napi->poll_list, &sd->poll_list);
3455 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3456 }
3457 
3458 #ifdef CONFIG_RPS
3459 
3460 /* One global table that all flow-based protocols share. */
3461 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3462 EXPORT_SYMBOL(rps_sock_flow_table);
3463 u32 rps_cpu_mask __read_mostly;
3464 EXPORT_SYMBOL(rps_cpu_mask);
3465 
3466 struct static_key rps_needed __read_mostly;
3467 EXPORT_SYMBOL(rps_needed);
3468 
3469 static struct rps_dev_flow *
3470 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3471 	    struct rps_dev_flow *rflow, u16 next_cpu)
3472 {
3473 	if (next_cpu < nr_cpu_ids) {
3474 #ifdef CONFIG_RFS_ACCEL
3475 		struct netdev_rx_queue *rxqueue;
3476 		struct rps_dev_flow_table *flow_table;
3477 		struct rps_dev_flow *old_rflow;
3478 		u32 flow_id;
3479 		u16 rxq_index;
3480 		int rc;
3481 
3482 		/* Should we steer this flow to a different hardware queue? */
3483 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3484 		    !(dev->features & NETIF_F_NTUPLE))
3485 			goto out;
3486 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3487 		if (rxq_index == skb_get_rx_queue(skb))
3488 			goto out;
3489 
3490 		rxqueue = dev->_rx + rxq_index;
3491 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3492 		if (!flow_table)
3493 			goto out;
3494 		flow_id = skb_get_hash(skb) & flow_table->mask;
3495 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3496 							rxq_index, flow_id);
3497 		if (rc < 0)
3498 			goto out;
3499 		old_rflow = rflow;
3500 		rflow = &flow_table->flows[flow_id];
3501 		rflow->filter = rc;
3502 		if (old_rflow->filter == rflow->filter)
3503 			old_rflow->filter = RPS_NO_FILTER;
3504 	out:
3505 #endif
3506 		rflow->last_qtail =
3507 			per_cpu(softnet_data, next_cpu).input_queue_head;
3508 	}
3509 
3510 	rflow->cpu = next_cpu;
3511 	return rflow;
3512 }
3513 
3514 /*
3515  * get_rps_cpu is called from netif_receive_skb and returns the target
3516  * CPU from the RPS map of the receiving queue for a given skb.
3517  * rcu_read_lock must be held on entry.
3518  */
3519 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3520 		       struct rps_dev_flow **rflowp)
3521 {
3522 	const struct rps_sock_flow_table *sock_flow_table;
3523 	struct netdev_rx_queue *rxqueue = dev->_rx;
3524 	struct rps_dev_flow_table *flow_table;
3525 	struct rps_map *map;
3526 	int cpu = -1;
3527 	u32 tcpu;
3528 	u32 hash;
3529 
3530 	if (skb_rx_queue_recorded(skb)) {
3531 		u16 index = skb_get_rx_queue(skb);
3532 
3533 		if (unlikely(index >= dev->real_num_rx_queues)) {
3534 			WARN_ONCE(dev->real_num_rx_queues > 1,
3535 				  "%s received packet on queue %u, but number "
3536 				  "of RX queues is %u\n",
3537 				  dev->name, index, dev->real_num_rx_queues);
3538 			goto done;
3539 		}
3540 		rxqueue += index;
3541 	}
3542 
3543 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3544 
3545 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3546 	map = rcu_dereference(rxqueue->rps_map);
3547 	if (!flow_table && !map)
3548 		goto done;
3549 
3550 	skb_reset_network_header(skb);
3551 	hash = skb_get_hash(skb);
3552 	if (!hash)
3553 		goto done;
3554 
3555 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3556 	if (flow_table && sock_flow_table) {
3557 		struct rps_dev_flow *rflow;
3558 		u32 next_cpu;
3559 		u32 ident;
3560 
3561 		/* First check into global flow table if there is a match */
3562 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3563 		if ((ident ^ hash) & ~rps_cpu_mask)
3564 			goto try_rps;
3565 
3566 		next_cpu = ident & rps_cpu_mask;
3567 
3568 		/* OK, now we know there is a match,
3569 		 * we can look at the local (per receive queue) flow table
3570 		 */
3571 		rflow = &flow_table->flows[hash & flow_table->mask];
3572 		tcpu = rflow->cpu;
3573 
3574 		/*
3575 		 * If the desired CPU (where last recvmsg was done) is
3576 		 * different from current CPU (one in the rx-queue flow
3577 		 * table entry), switch if one of the following holds:
3578 		 *   - Current CPU is unset (>= nr_cpu_ids).
3579 		 *   - Current CPU is offline.
3580 		 *   - The current CPU's queue tail has advanced beyond the
3581 		 *     last packet that was enqueued using this table entry.
3582 		 *     This guarantees that all previous packets for the flow
3583 		 *     have been dequeued, thus preserving in order delivery.
3584 		 */
3585 		if (unlikely(tcpu != next_cpu) &&
3586 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3587 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3588 		      rflow->last_qtail)) >= 0)) {
3589 			tcpu = next_cpu;
3590 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3591 		}
3592 
3593 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3594 			*rflowp = rflow;
3595 			cpu = tcpu;
3596 			goto done;
3597 		}
3598 	}
3599 
3600 try_rps:
3601 
3602 	if (map) {
3603 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3604 		if (cpu_online(tcpu)) {
3605 			cpu = tcpu;
3606 			goto done;
3607 		}
3608 	}
3609 
3610 done:
3611 	return cpu;
3612 }
3613 
3614 #ifdef CONFIG_RFS_ACCEL
3615 
3616 /**
3617  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3618  * @dev: Device on which the filter was set
3619  * @rxq_index: RX queue index
3620  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3621  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3622  *
3623  * Drivers that implement ndo_rx_flow_steer() should periodically call
3624  * this function for each installed filter and remove the filters for
3625  * which it returns %true.
3626  */
3627 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3628 			 u32 flow_id, u16 filter_id)
3629 {
3630 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3631 	struct rps_dev_flow_table *flow_table;
3632 	struct rps_dev_flow *rflow;
3633 	bool expire = true;
3634 	unsigned int cpu;
3635 
3636 	rcu_read_lock();
3637 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3638 	if (flow_table && flow_id <= flow_table->mask) {
3639 		rflow = &flow_table->flows[flow_id];
3640 		cpu = ACCESS_ONCE(rflow->cpu);
3641 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3642 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3643 			   rflow->last_qtail) <
3644 		     (int)(10 * flow_table->mask)))
3645 			expire = false;
3646 	}
3647 	rcu_read_unlock();
3648 	return expire;
3649 }
3650 EXPORT_SYMBOL(rps_may_expire_flow);
3651 
3652 #endif /* CONFIG_RFS_ACCEL */
3653 
3654 /* Called from hardirq (IPI) context */
3655 static void rps_trigger_softirq(void *data)
3656 {
3657 	struct softnet_data *sd = data;
3658 
3659 	____napi_schedule(sd, &sd->backlog);
3660 	sd->received_rps++;
3661 }
3662 
3663 #endif /* CONFIG_RPS */
3664 
3665 /*
3666  * Check if this softnet_data structure is another cpu one
3667  * If yes, queue it to our IPI list and return 1
3668  * If no, return 0
3669  */
3670 static int rps_ipi_queued(struct softnet_data *sd)
3671 {
3672 #ifdef CONFIG_RPS
3673 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3674 
3675 	if (sd != mysd) {
3676 		sd->rps_ipi_next = mysd->rps_ipi_list;
3677 		mysd->rps_ipi_list = sd;
3678 
3679 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3680 		return 1;
3681 	}
3682 #endif /* CONFIG_RPS */
3683 	return 0;
3684 }
3685 
3686 #ifdef CONFIG_NET_FLOW_LIMIT
3687 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3688 #endif
3689 
3690 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3691 {
3692 #ifdef CONFIG_NET_FLOW_LIMIT
3693 	struct sd_flow_limit *fl;
3694 	struct softnet_data *sd;
3695 	unsigned int old_flow, new_flow;
3696 
3697 	if (qlen < (netdev_max_backlog >> 1))
3698 		return false;
3699 
3700 	sd = this_cpu_ptr(&softnet_data);
3701 
3702 	rcu_read_lock();
3703 	fl = rcu_dereference(sd->flow_limit);
3704 	if (fl) {
3705 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3706 		old_flow = fl->history[fl->history_head];
3707 		fl->history[fl->history_head] = new_flow;
3708 
3709 		fl->history_head++;
3710 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3711 
3712 		if (likely(fl->buckets[old_flow]))
3713 			fl->buckets[old_flow]--;
3714 
3715 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3716 			fl->count++;
3717 			rcu_read_unlock();
3718 			return true;
3719 		}
3720 	}
3721 	rcu_read_unlock();
3722 #endif
3723 	return false;
3724 }
3725 
3726 /*
3727  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3728  * queue (may be a remote CPU queue).
3729  */
3730 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3731 			      unsigned int *qtail)
3732 {
3733 	struct softnet_data *sd;
3734 	unsigned long flags;
3735 	unsigned int qlen;
3736 
3737 	sd = &per_cpu(softnet_data, cpu);
3738 
3739 	local_irq_save(flags);
3740 
3741 	rps_lock(sd);
3742 	if (!netif_running(skb->dev))
3743 		goto drop;
3744 	qlen = skb_queue_len(&sd->input_pkt_queue);
3745 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3746 		if (qlen) {
3747 enqueue:
3748 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3749 			input_queue_tail_incr_save(sd, qtail);
3750 			rps_unlock(sd);
3751 			local_irq_restore(flags);
3752 			return NET_RX_SUCCESS;
3753 		}
3754 
3755 		/* Schedule NAPI for backlog device
3756 		 * We can use non atomic operation since we own the queue lock
3757 		 */
3758 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3759 			if (!rps_ipi_queued(sd))
3760 				____napi_schedule(sd, &sd->backlog);
3761 		}
3762 		goto enqueue;
3763 	}
3764 
3765 drop:
3766 	sd->dropped++;
3767 	rps_unlock(sd);
3768 
3769 	local_irq_restore(flags);
3770 
3771 	atomic_long_inc(&skb->dev->rx_dropped);
3772 	kfree_skb(skb);
3773 	return NET_RX_DROP;
3774 }
3775 
3776 static int netif_rx_internal(struct sk_buff *skb)
3777 {
3778 	int ret;
3779 
3780 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3781 
3782 	trace_netif_rx(skb);
3783 #ifdef CONFIG_RPS
3784 	if (static_key_false(&rps_needed)) {
3785 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3786 		int cpu;
3787 
3788 		preempt_disable();
3789 		rcu_read_lock();
3790 
3791 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3792 		if (cpu < 0)
3793 			cpu = smp_processor_id();
3794 
3795 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3796 
3797 		rcu_read_unlock();
3798 		preempt_enable();
3799 	} else
3800 #endif
3801 	{
3802 		unsigned int qtail;
3803 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3804 		put_cpu();
3805 	}
3806 	return ret;
3807 }
3808 
3809 /**
3810  *	netif_rx	-	post buffer to the network code
3811  *	@skb: buffer to post
3812  *
3813  *	This function receives a packet from a device driver and queues it for
3814  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3815  *	may be dropped during processing for congestion control or by the
3816  *	protocol layers.
3817  *
3818  *	return values:
3819  *	NET_RX_SUCCESS	(no congestion)
3820  *	NET_RX_DROP     (packet was dropped)
3821  *
3822  */
3823 
3824 int netif_rx(struct sk_buff *skb)
3825 {
3826 	trace_netif_rx_entry(skb);
3827 
3828 	return netif_rx_internal(skb);
3829 }
3830 EXPORT_SYMBOL(netif_rx);
3831 
3832 int netif_rx_ni(struct sk_buff *skb)
3833 {
3834 	int err;
3835 
3836 	trace_netif_rx_ni_entry(skb);
3837 
3838 	preempt_disable();
3839 	err = netif_rx_internal(skb);
3840 	if (local_softirq_pending())
3841 		do_softirq();
3842 	preempt_enable();
3843 
3844 	return err;
3845 }
3846 EXPORT_SYMBOL(netif_rx_ni);
3847 
3848 static void net_tx_action(struct softirq_action *h)
3849 {
3850 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3851 
3852 	if (sd->completion_queue) {
3853 		struct sk_buff *clist;
3854 
3855 		local_irq_disable();
3856 		clist = sd->completion_queue;
3857 		sd->completion_queue = NULL;
3858 		local_irq_enable();
3859 
3860 		while (clist) {
3861 			struct sk_buff *skb = clist;
3862 			clist = clist->next;
3863 
3864 			WARN_ON(atomic_read(&skb->users));
3865 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3866 				trace_consume_skb(skb);
3867 			else
3868 				trace_kfree_skb(skb, net_tx_action);
3869 
3870 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3871 				__kfree_skb(skb);
3872 			else
3873 				__kfree_skb_defer(skb);
3874 		}
3875 
3876 		__kfree_skb_flush();
3877 	}
3878 
3879 	if (sd->output_queue) {
3880 		struct Qdisc *head;
3881 
3882 		local_irq_disable();
3883 		head = sd->output_queue;
3884 		sd->output_queue = NULL;
3885 		sd->output_queue_tailp = &sd->output_queue;
3886 		local_irq_enable();
3887 
3888 		while (head) {
3889 			struct Qdisc *q = head;
3890 			spinlock_t *root_lock;
3891 
3892 			head = head->next_sched;
3893 
3894 			root_lock = qdisc_lock(q);
3895 			spin_lock(root_lock);
3896 			/* We need to make sure head->next_sched is read
3897 			 * before clearing __QDISC_STATE_SCHED
3898 			 */
3899 			smp_mb__before_atomic();
3900 			clear_bit(__QDISC_STATE_SCHED, &q->state);
3901 			qdisc_run(q);
3902 			spin_unlock(root_lock);
3903 		}
3904 	}
3905 }
3906 
3907 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3908 /* This hook is defined here for ATM LANE */
3909 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3910 			     unsigned char *addr) __read_mostly;
3911 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3912 #endif
3913 
3914 static inline struct sk_buff *
3915 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3916 		   struct net_device *orig_dev)
3917 {
3918 #ifdef CONFIG_NET_CLS_ACT
3919 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3920 	struct tcf_result cl_res;
3921 
3922 	/* If there's at least one ingress present somewhere (so
3923 	 * we get here via enabled static key), remaining devices
3924 	 * that are not configured with an ingress qdisc will bail
3925 	 * out here.
3926 	 */
3927 	if (!cl)
3928 		return skb;
3929 	if (*pt_prev) {
3930 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3931 		*pt_prev = NULL;
3932 	}
3933 
3934 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3935 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3936 	qdisc_bstats_cpu_update(cl->q, skb);
3937 
3938 	switch (tc_classify(skb, cl, &cl_res, false)) {
3939 	case TC_ACT_OK:
3940 	case TC_ACT_RECLASSIFY:
3941 		skb->tc_index = TC_H_MIN(cl_res.classid);
3942 		break;
3943 	case TC_ACT_SHOT:
3944 		qdisc_qstats_cpu_drop(cl->q);
3945 		kfree_skb(skb);
3946 		return NULL;
3947 	case TC_ACT_STOLEN:
3948 	case TC_ACT_QUEUED:
3949 		consume_skb(skb);
3950 		return NULL;
3951 	case TC_ACT_REDIRECT:
3952 		/* skb_mac_header check was done by cls/act_bpf, so
3953 		 * we can safely push the L2 header back before
3954 		 * redirecting to another netdev
3955 		 */
3956 		__skb_push(skb, skb->mac_len);
3957 		skb_do_redirect(skb);
3958 		return NULL;
3959 	default:
3960 		break;
3961 	}
3962 #endif /* CONFIG_NET_CLS_ACT */
3963 	return skb;
3964 }
3965 
3966 /**
3967  *	netdev_rx_handler_register - register receive handler
3968  *	@dev: device to register a handler for
3969  *	@rx_handler: receive handler to register
3970  *	@rx_handler_data: data pointer that is used by rx handler
3971  *
3972  *	Register a receive handler for a device. This handler will then be
3973  *	called from __netif_receive_skb. A negative errno code is returned
3974  *	on a failure.
3975  *
3976  *	The caller must hold the rtnl_mutex.
3977  *
3978  *	For a general description of rx_handler, see enum rx_handler_result.
3979  */
3980 int netdev_rx_handler_register(struct net_device *dev,
3981 			       rx_handler_func_t *rx_handler,
3982 			       void *rx_handler_data)
3983 {
3984 	ASSERT_RTNL();
3985 
3986 	if (dev->rx_handler)
3987 		return -EBUSY;
3988 
3989 	/* Note: rx_handler_data must be set before rx_handler */
3990 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3991 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3992 
3993 	return 0;
3994 }
3995 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3996 
3997 /**
3998  *	netdev_rx_handler_unregister - unregister receive handler
3999  *	@dev: device to unregister a handler from
4000  *
4001  *	Unregister a receive handler from a device.
4002  *
4003  *	The caller must hold the rtnl_mutex.
4004  */
4005 void netdev_rx_handler_unregister(struct net_device *dev)
4006 {
4007 
4008 	ASSERT_RTNL();
4009 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4010 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4011 	 * section has a guarantee to see a non NULL rx_handler_data
4012 	 * as well.
4013 	 */
4014 	synchronize_net();
4015 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4016 }
4017 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4018 
4019 /*
4020  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4021  * the special handling of PFMEMALLOC skbs.
4022  */
4023 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4024 {
4025 	switch (skb->protocol) {
4026 	case htons(ETH_P_ARP):
4027 	case htons(ETH_P_IP):
4028 	case htons(ETH_P_IPV6):
4029 	case htons(ETH_P_8021Q):
4030 	case htons(ETH_P_8021AD):
4031 		return true;
4032 	default:
4033 		return false;
4034 	}
4035 }
4036 
4037 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4038 			     int *ret, struct net_device *orig_dev)
4039 {
4040 #ifdef CONFIG_NETFILTER_INGRESS
4041 	if (nf_hook_ingress_active(skb)) {
4042 		if (*pt_prev) {
4043 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4044 			*pt_prev = NULL;
4045 		}
4046 
4047 		return nf_hook_ingress(skb);
4048 	}
4049 #endif /* CONFIG_NETFILTER_INGRESS */
4050 	return 0;
4051 }
4052 
4053 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4054 {
4055 	struct packet_type *ptype, *pt_prev;
4056 	rx_handler_func_t *rx_handler;
4057 	struct net_device *orig_dev;
4058 	bool deliver_exact = false;
4059 	int ret = NET_RX_DROP;
4060 	__be16 type;
4061 
4062 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4063 
4064 	trace_netif_receive_skb(skb);
4065 
4066 	orig_dev = skb->dev;
4067 
4068 	skb_reset_network_header(skb);
4069 	if (!skb_transport_header_was_set(skb))
4070 		skb_reset_transport_header(skb);
4071 	skb_reset_mac_len(skb);
4072 
4073 	pt_prev = NULL;
4074 
4075 another_round:
4076 	skb->skb_iif = skb->dev->ifindex;
4077 
4078 	__this_cpu_inc(softnet_data.processed);
4079 
4080 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4081 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4082 		skb = skb_vlan_untag(skb);
4083 		if (unlikely(!skb))
4084 			goto out;
4085 	}
4086 
4087 #ifdef CONFIG_NET_CLS_ACT
4088 	if (skb->tc_verd & TC_NCLS) {
4089 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4090 		goto ncls;
4091 	}
4092 #endif
4093 
4094 	if (pfmemalloc)
4095 		goto skip_taps;
4096 
4097 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4098 		if (pt_prev)
4099 			ret = deliver_skb(skb, pt_prev, orig_dev);
4100 		pt_prev = ptype;
4101 	}
4102 
4103 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4104 		if (pt_prev)
4105 			ret = deliver_skb(skb, pt_prev, orig_dev);
4106 		pt_prev = ptype;
4107 	}
4108 
4109 skip_taps:
4110 #ifdef CONFIG_NET_INGRESS
4111 	if (static_key_false(&ingress_needed)) {
4112 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4113 		if (!skb)
4114 			goto out;
4115 
4116 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4117 			goto out;
4118 	}
4119 #endif
4120 #ifdef CONFIG_NET_CLS_ACT
4121 	skb->tc_verd = 0;
4122 ncls:
4123 #endif
4124 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4125 		goto drop;
4126 
4127 	if (skb_vlan_tag_present(skb)) {
4128 		if (pt_prev) {
4129 			ret = deliver_skb(skb, pt_prev, orig_dev);
4130 			pt_prev = NULL;
4131 		}
4132 		if (vlan_do_receive(&skb))
4133 			goto another_round;
4134 		else if (unlikely(!skb))
4135 			goto out;
4136 	}
4137 
4138 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4139 	if (rx_handler) {
4140 		if (pt_prev) {
4141 			ret = deliver_skb(skb, pt_prev, orig_dev);
4142 			pt_prev = NULL;
4143 		}
4144 		switch (rx_handler(&skb)) {
4145 		case RX_HANDLER_CONSUMED:
4146 			ret = NET_RX_SUCCESS;
4147 			goto out;
4148 		case RX_HANDLER_ANOTHER:
4149 			goto another_round;
4150 		case RX_HANDLER_EXACT:
4151 			deliver_exact = true;
4152 		case RX_HANDLER_PASS:
4153 			break;
4154 		default:
4155 			BUG();
4156 		}
4157 	}
4158 
4159 	if (unlikely(skb_vlan_tag_present(skb))) {
4160 		if (skb_vlan_tag_get_id(skb))
4161 			skb->pkt_type = PACKET_OTHERHOST;
4162 		/* Note: we might in the future use prio bits
4163 		 * and set skb->priority like in vlan_do_receive()
4164 		 * For the time being, just ignore Priority Code Point
4165 		 */
4166 		skb->vlan_tci = 0;
4167 	}
4168 
4169 	type = skb->protocol;
4170 
4171 	/* deliver only exact match when indicated */
4172 	if (likely(!deliver_exact)) {
4173 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4174 				       &ptype_base[ntohs(type) &
4175 						   PTYPE_HASH_MASK]);
4176 	}
4177 
4178 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4179 			       &orig_dev->ptype_specific);
4180 
4181 	if (unlikely(skb->dev != orig_dev)) {
4182 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4183 				       &skb->dev->ptype_specific);
4184 	}
4185 
4186 	if (pt_prev) {
4187 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4188 			goto drop;
4189 		else
4190 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4191 	} else {
4192 drop:
4193 		if (!deliver_exact)
4194 			atomic_long_inc(&skb->dev->rx_dropped);
4195 		else
4196 			atomic_long_inc(&skb->dev->rx_nohandler);
4197 		kfree_skb(skb);
4198 		/* Jamal, now you will not able to escape explaining
4199 		 * me how you were going to use this. :-)
4200 		 */
4201 		ret = NET_RX_DROP;
4202 	}
4203 
4204 out:
4205 	return ret;
4206 }
4207 
4208 static int __netif_receive_skb(struct sk_buff *skb)
4209 {
4210 	int ret;
4211 
4212 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4213 		unsigned long pflags = current->flags;
4214 
4215 		/*
4216 		 * PFMEMALLOC skbs are special, they should
4217 		 * - be delivered to SOCK_MEMALLOC sockets only
4218 		 * - stay away from userspace
4219 		 * - have bounded memory usage
4220 		 *
4221 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4222 		 * context down to all allocation sites.
4223 		 */
4224 		current->flags |= PF_MEMALLOC;
4225 		ret = __netif_receive_skb_core(skb, true);
4226 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
4227 	} else
4228 		ret = __netif_receive_skb_core(skb, false);
4229 
4230 	return ret;
4231 }
4232 
4233 static int netif_receive_skb_internal(struct sk_buff *skb)
4234 {
4235 	int ret;
4236 
4237 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4238 
4239 	if (skb_defer_rx_timestamp(skb))
4240 		return NET_RX_SUCCESS;
4241 
4242 	rcu_read_lock();
4243 
4244 #ifdef CONFIG_RPS
4245 	if (static_key_false(&rps_needed)) {
4246 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4247 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4248 
4249 		if (cpu >= 0) {
4250 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4251 			rcu_read_unlock();
4252 			return ret;
4253 		}
4254 	}
4255 #endif
4256 	ret = __netif_receive_skb(skb);
4257 	rcu_read_unlock();
4258 	return ret;
4259 }
4260 
4261 /**
4262  *	netif_receive_skb - process receive buffer from network
4263  *	@skb: buffer to process
4264  *
4265  *	netif_receive_skb() is the main receive data processing function.
4266  *	It always succeeds. The buffer may be dropped during processing
4267  *	for congestion control or by the protocol layers.
4268  *
4269  *	This function may only be called from softirq context and interrupts
4270  *	should be enabled.
4271  *
4272  *	Return values (usually ignored):
4273  *	NET_RX_SUCCESS: no congestion
4274  *	NET_RX_DROP: packet was dropped
4275  */
4276 int netif_receive_skb(struct sk_buff *skb)
4277 {
4278 	trace_netif_receive_skb_entry(skb);
4279 
4280 	return netif_receive_skb_internal(skb);
4281 }
4282 EXPORT_SYMBOL(netif_receive_skb);
4283 
4284 DEFINE_PER_CPU(struct work_struct, flush_works);
4285 
4286 /* Network device is going away, flush any packets still pending */
4287 static void flush_backlog(struct work_struct *work)
4288 {
4289 	struct sk_buff *skb, *tmp;
4290 	struct softnet_data *sd;
4291 
4292 	local_bh_disable();
4293 	sd = this_cpu_ptr(&softnet_data);
4294 
4295 	local_irq_disable();
4296 	rps_lock(sd);
4297 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4298 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4299 			__skb_unlink(skb, &sd->input_pkt_queue);
4300 			kfree_skb(skb);
4301 			input_queue_head_incr(sd);
4302 		}
4303 	}
4304 	rps_unlock(sd);
4305 	local_irq_enable();
4306 
4307 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4308 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4309 			__skb_unlink(skb, &sd->process_queue);
4310 			kfree_skb(skb);
4311 			input_queue_head_incr(sd);
4312 		}
4313 	}
4314 	local_bh_enable();
4315 }
4316 
4317 static void flush_all_backlogs(void)
4318 {
4319 	unsigned int cpu;
4320 
4321 	get_online_cpus();
4322 
4323 	for_each_online_cpu(cpu)
4324 		queue_work_on(cpu, system_highpri_wq,
4325 			      per_cpu_ptr(&flush_works, cpu));
4326 
4327 	for_each_online_cpu(cpu)
4328 		flush_work(per_cpu_ptr(&flush_works, cpu));
4329 
4330 	put_online_cpus();
4331 }
4332 
4333 static int napi_gro_complete(struct sk_buff *skb)
4334 {
4335 	struct packet_offload *ptype;
4336 	__be16 type = skb->protocol;
4337 	struct list_head *head = &offload_base;
4338 	int err = -ENOENT;
4339 
4340 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4341 
4342 	if (NAPI_GRO_CB(skb)->count == 1) {
4343 		skb_shinfo(skb)->gso_size = 0;
4344 		goto out;
4345 	}
4346 
4347 	rcu_read_lock();
4348 	list_for_each_entry_rcu(ptype, head, list) {
4349 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4350 			continue;
4351 
4352 		err = ptype->callbacks.gro_complete(skb, 0);
4353 		break;
4354 	}
4355 	rcu_read_unlock();
4356 
4357 	if (err) {
4358 		WARN_ON(&ptype->list == head);
4359 		kfree_skb(skb);
4360 		return NET_RX_SUCCESS;
4361 	}
4362 
4363 out:
4364 	return netif_receive_skb_internal(skb);
4365 }
4366 
4367 /* napi->gro_list contains packets ordered by age.
4368  * youngest packets at the head of it.
4369  * Complete skbs in reverse order to reduce latencies.
4370  */
4371 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4372 {
4373 	struct sk_buff *skb, *prev = NULL;
4374 
4375 	/* scan list and build reverse chain */
4376 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4377 		skb->prev = prev;
4378 		prev = skb;
4379 	}
4380 
4381 	for (skb = prev; skb; skb = prev) {
4382 		skb->next = NULL;
4383 
4384 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4385 			return;
4386 
4387 		prev = skb->prev;
4388 		napi_gro_complete(skb);
4389 		napi->gro_count--;
4390 	}
4391 
4392 	napi->gro_list = NULL;
4393 }
4394 EXPORT_SYMBOL(napi_gro_flush);
4395 
4396 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4397 {
4398 	struct sk_buff *p;
4399 	unsigned int maclen = skb->dev->hard_header_len;
4400 	u32 hash = skb_get_hash_raw(skb);
4401 
4402 	for (p = napi->gro_list; p; p = p->next) {
4403 		unsigned long diffs;
4404 
4405 		NAPI_GRO_CB(p)->flush = 0;
4406 
4407 		if (hash != skb_get_hash_raw(p)) {
4408 			NAPI_GRO_CB(p)->same_flow = 0;
4409 			continue;
4410 		}
4411 
4412 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4413 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4414 		diffs |= skb_metadata_dst_cmp(p, skb);
4415 		if (maclen == ETH_HLEN)
4416 			diffs |= compare_ether_header(skb_mac_header(p),
4417 						      skb_mac_header(skb));
4418 		else if (!diffs)
4419 			diffs = memcmp(skb_mac_header(p),
4420 				       skb_mac_header(skb),
4421 				       maclen);
4422 		NAPI_GRO_CB(p)->same_flow = !diffs;
4423 	}
4424 }
4425 
4426 static void skb_gro_reset_offset(struct sk_buff *skb)
4427 {
4428 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4429 	const skb_frag_t *frag0 = &pinfo->frags[0];
4430 
4431 	NAPI_GRO_CB(skb)->data_offset = 0;
4432 	NAPI_GRO_CB(skb)->frag0 = NULL;
4433 	NAPI_GRO_CB(skb)->frag0_len = 0;
4434 
4435 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4436 	    pinfo->nr_frags &&
4437 	    !PageHighMem(skb_frag_page(frag0))) {
4438 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4439 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4440 	}
4441 }
4442 
4443 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4444 {
4445 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4446 
4447 	BUG_ON(skb->end - skb->tail < grow);
4448 
4449 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4450 
4451 	skb->data_len -= grow;
4452 	skb->tail += grow;
4453 
4454 	pinfo->frags[0].page_offset += grow;
4455 	skb_frag_size_sub(&pinfo->frags[0], grow);
4456 
4457 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4458 		skb_frag_unref(skb, 0);
4459 		memmove(pinfo->frags, pinfo->frags + 1,
4460 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4461 	}
4462 }
4463 
4464 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4465 {
4466 	struct sk_buff **pp = NULL;
4467 	struct packet_offload *ptype;
4468 	__be16 type = skb->protocol;
4469 	struct list_head *head = &offload_base;
4470 	int same_flow;
4471 	enum gro_result ret;
4472 	int grow;
4473 
4474 	if (!(skb->dev->features & NETIF_F_GRO))
4475 		goto normal;
4476 
4477 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4478 		goto normal;
4479 
4480 	gro_list_prepare(napi, skb);
4481 
4482 	rcu_read_lock();
4483 	list_for_each_entry_rcu(ptype, head, list) {
4484 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4485 			continue;
4486 
4487 		skb_set_network_header(skb, skb_gro_offset(skb));
4488 		skb_reset_mac_len(skb);
4489 		NAPI_GRO_CB(skb)->same_flow = 0;
4490 		NAPI_GRO_CB(skb)->flush = 0;
4491 		NAPI_GRO_CB(skb)->free = 0;
4492 		NAPI_GRO_CB(skb)->encap_mark = 0;
4493 		NAPI_GRO_CB(skb)->is_fou = 0;
4494 		NAPI_GRO_CB(skb)->is_atomic = 1;
4495 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4496 
4497 		/* Setup for GRO checksum validation */
4498 		switch (skb->ip_summed) {
4499 		case CHECKSUM_COMPLETE:
4500 			NAPI_GRO_CB(skb)->csum = skb->csum;
4501 			NAPI_GRO_CB(skb)->csum_valid = 1;
4502 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4503 			break;
4504 		case CHECKSUM_UNNECESSARY:
4505 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4506 			NAPI_GRO_CB(skb)->csum_valid = 0;
4507 			break;
4508 		default:
4509 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4510 			NAPI_GRO_CB(skb)->csum_valid = 0;
4511 		}
4512 
4513 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4514 		break;
4515 	}
4516 	rcu_read_unlock();
4517 
4518 	if (&ptype->list == head)
4519 		goto normal;
4520 
4521 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4522 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4523 
4524 	if (pp) {
4525 		struct sk_buff *nskb = *pp;
4526 
4527 		*pp = nskb->next;
4528 		nskb->next = NULL;
4529 		napi_gro_complete(nskb);
4530 		napi->gro_count--;
4531 	}
4532 
4533 	if (same_flow)
4534 		goto ok;
4535 
4536 	if (NAPI_GRO_CB(skb)->flush)
4537 		goto normal;
4538 
4539 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4540 		struct sk_buff *nskb = napi->gro_list;
4541 
4542 		/* locate the end of the list to select the 'oldest' flow */
4543 		while (nskb->next) {
4544 			pp = &nskb->next;
4545 			nskb = *pp;
4546 		}
4547 		*pp = NULL;
4548 		nskb->next = NULL;
4549 		napi_gro_complete(nskb);
4550 	} else {
4551 		napi->gro_count++;
4552 	}
4553 	NAPI_GRO_CB(skb)->count = 1;
4554 	NAPI_GRO_CB(skb)->age = jiffies;
4555 	NAPI_GRO_CB(skb)->last = skb;
4556 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4557 	skb->next = napi->gro_list;
4558 	napi->gro_list = skb;
4559 	ret = GRO_HELD;
4560 
4561 pull:
4562 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4563 	if (grow > 0)
4564 		gro_pull_from_frag0(skb, grow);
4565 ok:
4566 	return ret;
4567 
4568 normal:
4569 	ret = GRO_NORMAL;
4570 	goto pull;
4571 }
4572 
4573 struct packet_offload *gro_find_receive_by_type(__be16 type)
4574 {
4575 	struct list_head *offload_head = &offload_base;
4576 	struct packet_offload *ptype;
4577 
4578 	list_for_each_entry_rcu(ptype, offload_head, list) {
4579 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4580 			continue;
4581 		return ptype;
4582 	}
4583 	return NULL;
4584 }
4585 EXPORT_SYMBOL(gro_find_receive_by_type);
4586 
4587 struct packet_offload *gro_find_complete_by_type(__be16 type)
4588 {
4589 	struct list_head *offload_head = &offload_base;
4590 	struct packet_offload *ptype;
4591 
4592 	list_for_each_entry_rcu(ptype, offload_head, list) {
4593 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4594 			continue;
4595 		return ptype;
4596 	}
4597 	return NULL;
4598 }
4599 EXPORT_SYMBOL(gro_find_complete_by_type);
4600 
4601 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4602 {
4603 	switch (ret) {
4604 	case GRO_NORMAL:
4605 		if (netif_receive_skb_internal(skb))
4606 			ret = GRO_DROP;
4607 		break;
4608 
4609 	case GRO_DROP:
4610 		kfree_skb(skb);
4611 		break;
4612 
4613 	case GRO_MERGED_FREE:
4614 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4615 			skb_dst_drop(skb);
4616 			kmem_cache_free(skbuff_head_cache, skb);
4617 		} else {
4618 			__kfree_skb(skb);
4619 		}
4620 		break;
4621 
4622 	case GRO_HELD:
4623 	case GRO_MERGED:
4624 		break;
4625 	}
4626 
4627 	return ret;
4628 }
4629 
4630 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4631 {
4632 	skb_mark_napi_id(skb, napi);
4633 	trace_napi_gro_receive_entry(skb);
4634 
4635 	skb_gro_reset_offset(skb);
4636 
4637 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4638 }
4639 EXPORT_SYMBOL(napi_gro_receive);
4640 
4641 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4642 {
4643 	if (unlikely(skb->pfmemalloc)) {
4644 		consume_skb(skb);
4645 		return;
4646 	}
4647 	__skb_pull(skb, skb_headlen(skb));
4648 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4649 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4650 	skb->vlan_tci = 0;
4651 	skb->dev = napi->dev;
4652 	skb->skb_iif = 0;
4653 	skb->encapsulation = 0;
4654 	skb_shinfo(skb)->gso_type = 0;
4655 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4656 
4657 	napi->skb = skb;
4658 }
4659 
4660 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4661 {
4662 	struct sk_buff *skb = napi->skb;
4663 
4664 	if (!skb) {
4665 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4666 		if (skb) {
4667 			napi->skb = skb;
4668 			skb_mark_napi_id(skb, napi);
4669 		}
4670 	}
4671 	return skb;
4672 }
4673 EXPORT_SYMBOL(napi_get_frags);
4674 
4675 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4676 				      struct sk_buff *skb,
4677 				      gro_result_t ret)
4678 {
4679 	switch (ret) {
4680 	case GRO_NORMAL:
4681 	case GRO_HELD:
4682 		__skb_push(skb, ETH_HLEN);
4683 		skb->protocol = eth_type_trans(skb, skb->dev);
4684 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4685 			ret = GRO_DROP;
4686 		break;
4687 
4688 	case GRO_DROP:
4689 	case GRO_MERGED_FREE:
4690 		napi_reuse_skb(napi, skb);
4691 		break;
4692 
4693 	case GRO_MERGED:
4694 		break;
4695 	}
4696 
4697 	return ret;
4698 }
4699 
4700 /* Upper GRO stack assumes network header starts at gro_offset=0
4701  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4702  * We copy ethernet header into skb->data to have a common layout.
4703  */
4704 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4705 {
4706 	struct sk_buff *skb = napi->skb;
4707 	const struct ethhdr *eth;
4708 	unsigned int hlen = sizeof(*eth);
4709 
4710 	napi->skb = NULL;
4711 
4712 	skb_reset_mac_header(skb);
4713 	skb_gro_reset_offset(skb);
4714 
4715 	eth = skb_gro_header_fast(skb, 0);
4716 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4717 		eth = skb_gro_header_slow(skb, hlen, 0);
4718 		if (unlikely(!eth)) {
4719 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4720 					     __func__, napi->dev->name);
4721 			napi_reuse_skb(napi, skb);
4722 			return NULL;
4723 		}
4724 	} else {
4725 		gro_pull_from_frag0(skb, hlen);
4726 		NAPI_GRO_CB(skb)->frag0 += hlen;
4727 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4728 	}
4729 	__skb_pull(skb, hlen);
4730 
4731 	/*
4732 	 * This works because the only protocols we care about don't require
4733 	 * special handling.
4734 	 * We'll fix it up properly in napi_frags_finish()
4735 	 */
4736 	skb->protocol = eth->h_proto;
4737 
4738 	return skb;
4739 }
4740 
4741 gro_result_t napi_gro_frags(struct napi_struct *napi)
4742 {
4743 	struct sk_buff *skb = napi_frags_skb(napi);
4744 
4745 	if (!skb)
4746 		return GRO_DROP;
4747 
4748 	trace_napi_gro_frags_entry(skb);
4749 
4750 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4751 }
4752 EXPORT_SYMBOL(napi_gro_frags);
4753 
4754 /* Compute the checksum from gro_offset and return the folded value
4755  * after adding in any pseudo checksum.
4756  */
4757 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4758 {
4759 	__wsum wsum;
4760 	__sum16 sum;
4761 
4762 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4763 
4764 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4765 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4766 	if (likely(!sum)) {
4767 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4768 		    !skb->csum_complete_sw)
4769 			netdev_rx_csum_fault(skb->dev);
4770 	}
4771 
4772 	NAPI_GRO_CB(skb)->csum = wsum;
4773 	NAPI_GRO_CB(skb)->csum_valid = 1;
4774 
4775 	return sum;
4776 }
4777 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4778 
4779 /*
4780  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4781  * Note: called with local irq disabled, but exits with local irq enabled.
4782  */
4783 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4784 {
4785 #ifdef CONFIG_RPS
4786 	struct softnet_data *remsd = sd->rps_ipi_list;
4787 
4788 	if (remsd) {
4789 		sd->rps_ipi_list = NULL;
4790 
4791 		local_irq_enable();
4792 
4793 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4794 		while (remsd) {
4795 			struct softnet_data *next = remsd->rps_ipi_next;
4796 
4797 			if (cpu_online(remsd->cpu))
4798 				smp_call_function_single_async(remsd->cpu,
4799 							   &remsd->csd);
4800 			remsd = next;
4801 		}
4802 	} else
4803 #endif
4804 		local_irq_enable();
4805 }
4806 
4807 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4808 {
4809 #ifdef CONFIG_RPS
4810 	return sd->rps_ipi_list != NULL;
4811 #else
4812 	return false;
4813 #endif
4814 }
4815 
4816 static int process_backlog(struct napi_struct *napi, int quota)
4817 {
4818 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4819 	bool again = true;
4820 	int work = 0;
4821 
4822 	/* Check if we have pending ipi, its better to send them now,
4823 	 * not waiting net_rx_action() end.
4824 	 */
4825 	if (sd_has_rps_ipi_waiting(sd)) {
4826 		local_irq_disable();
4827 		net_rps_action_and_irq_enable(sd);
4828 	}
4829 
4830 	napi->weight = weight_p;
4831 	while (again) {
4832 		struct sk_buff *skb;
4833 
4834 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4835 			rcu_read_lock();
4836 			__netif_receive_skb(skb);
4837 			rcu_read_unlock();
4838 			input_queue_head_incr(sd);
4839 			if (++work >= quota)
4840 				return work;
4841 
4842 		}
4843 
4844 		local_irq_disable();
4845 		rps_lock(sd);
4846 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4847 			/*
4848 			 * Inline a custom version of __napi_complete().
4849 			 * only current cpu owns and manipulates this napi,
4850 			 * and NAPI_STATE_SCHED is the only possible flag set
4851 			 * on backlog.
4852 			 * We can use a plain write instead of clear_bit(),
4853 			 * and we dont need an smp_mb() memory barrier.
4854 			 */
4855 			napi->state = 0;
4856 			again = false;
4857 		} else {
4858 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
4859 						   &sd->process_queue);
4860 		}
4861 		rps_unlock(sd);
4862 		local_irq_enable();
4863 	}
4864 
4865 	return work;
4866 }
4867 
4868 /**
4869  * __napi_schedule - schedule for receive
4870  * @n: entry to schedule
4871  *
4872  * The entry's receive function will be scheduled to run.
4873  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4874  */
4875 void __napi_schedule(struct napi_struct *n)
4876 {
4877 	unsigned long flags;
4878 
4879 	local_irq_save(flags);
4880 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4881 	local_irq_restore(flags);
4882 }
4883 EXPORT_SYMBOL(__napi_schedule);
4884 
4885 /**
4886  * __napi_schedule_irqoff - schedule for receive
4887  * @n: entry to schedule
4888  *
4889  * Variant of __napi_schedule() assuming hard irqs are masked
4890  */
4891 void __napi_schedule_irqoff(struct napi_struct *n)
4892 {
4893 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4894 }
4895 EXPORT_SYMBOL(__napi_schedule_irqoff);
4896 
4897 void __napi_complete(struct napi_struct *n)
4898 {
4899 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4900 
4901 	list_del_init(&n->poll_list);
4902 	smp_mb__before_atomic();
4903 	clear_bit(NAPI_STATE_SCHED, &n->state);
4904 }
4905 EXPORT_SYMBOL(__napi_complete);
4906 
4907 void napi_complete_done(struct napi_struct *n, int work_done)
4908 {
4909 	unsigned long flags;
4910 
4911 	/*
4912 	 * don't let napi dequeue from the cpu poll list
4913 	 * just in case its running on a different cpu
4914 	 */
4915 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4916 		return;
4917 
4918 	if (n->gro_list) {
4919 		unsigned long timeout = 0;
4920 
4921 		if (work_done)
4922 			timeout = n->dev->gro_flush_timeout;
4923 
4924 		if (timeout)
4925 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4926 				      HRTIMER_MODE_REL_PINNED);
4927 		else
4928 			napi_gro_flush(n, false);
4929 	}
4930 	if (likely(list_empty(&n->poll_list))) {
4931 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4932 	} else {
4933 		/* If n->poll_list is not empty, we need to mask irqs */
4934 		local_irq_save(flags);
4935 		__napi_complete(n);
4936 		local_irq_restore(flags);
4937 	}
4938 }
4939 EXPORT_SYMBOL(napi_complete_done);
4940 
4941 /* must be called under rcu_read_lock(), as we dont take a reference */
4942 static struct napi_struct *napi_by_id(unsigned int napi_id)
4943 {
4944 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4945 	struct napi_struct *napi;
4946 
4947 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4948 		if (napi->napi_id == napi_id)
4949 			return napi;
4950 
4951 	return NULL;
4952 }
4953 
4954 #if defined(CONFIG_NET_RX_BUSY_POLL)
4955 #define BUSY_POLL_BUDGET 8
4956 bool sk_busy_loop(struct sock *sk, int nonblock)
4957 {
4958 	unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4959 	int (*busy_poll)(struct napi_struct *dev);
4960 	struct napi_struct *napi;
4961 	int rc = false;
4962 
4963 	rcu_read_lock();
4964 
4965 	napi = napi_by_id(sk->sk_napi_id);
4966 	if (!napi)
4967 		goto out;
4968 
4969 	/* Note: ndo_busy_poll method is optional in linux-4.5 */
4970 	busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4971 
4972 	do {
4973 		rc = 0;
4974 		local_bh_disable();
4975 		if (busy_poll) {
4976 			rc = busy_poll(napi);
4977 		} else if (napi_schedule_prep(napi)) {
4978 			void *have = netpoll_poll_lock(napi);
4979 
4980 			if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4981 				rc = napi->poll(napi, BUSY_POLL_BUDGET);
4982 				trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
4983 				if (rc == BUSY_POLL_BUDGET) {
4984 					napi_complete_done(napi, rc);
4985 					napi_schedule(napi);
4986 				}
4987 			}
4988 			netpoll_poll_unlock(have);
4989 		}
4990 		if (rc > 0)
4991 			__NET_ADD_STATS(sock_net(sk),
4992 					LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4993 		local_bh_enable();
4994 
4995 		if (rc == LL_FLUSH_FAILED)
4996 			break; /* permanent failure */
4997 
4998 		cpu_relax();
4999 	} while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
5000 		 !need_resched() && !busy_loop_timeout(end_time));
5001 
5002 	rc = !skb_queue_empty(&sk->sk_receive_queue);
5003 out:
5004 	rcu_read_unlock();
5005 	return rc;
5006 }
5007 EXPORT_SYMBOL(sk_busy_loop);
5008 
5009 #endif /* CONFIG_NET_RX_BUSY_POLL */
5010 
5011 void napi_hash_add(struct napi_struct *napi)
5012 {
5013 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5014 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5015 		return;
5016 
5017 	spin_lock(&napi_hash_lock);
5018 
5019 	/* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5020 	do {
5021 		if (unlikely(++napi_gen_id < NR_CPUS + 1))
5022 			napi_gen_id = NR_CPUS + 1;
5023 	} while (napi_by_id(napi_gen_id));
5024 	napi->napi_id = napi_gen_id;
5025 
5026 	hlist_add_head_rcu(&napi->napi_hash_node,
5027 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5028 
5029 	spin_unlock(&napi_hash_lock);
5030 }
5031 EXPORT_SYMBOL_GPL(napi_hash_add);
5032 
5033 /* Warning : caller is responsible to make sure rcu grace period
5034  * is respected before freeing memory containing @napi
5035  */
5036 bool napi_hash_del(struct napi_struct *napi)
5037 {
5038 	bool rcu_sync_needed = false;
5039 
5040 	spin_lock(&napi_hash_lock);
5041 
5042 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5043 		rcu_sync_needed = true;
5044 		hlist_del_rcu(&napi->napi_hash_node);
5045 	}
5046 	spin_unlock(&napi_hash_lock);
5047 	return rcu_sync_needed;
5048 }
5049 EXPORT_SYMBOL_GPL(napi_hash_del);
5050 
5051 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5052 {
5053 	struct napi_struct *napi;
5054 
5055 	napi = container_of(timer, struct napi_struct, timer);
5056 	if (napi->gro_list)
5057 		napi_schedule(napi);
5058 
5059 	return HRTIMER_NORESTART;
5060 }
5061 
5062 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5063 		    int (*poll)(struct napi_struct *, int), int weight)
5064 {
5065 	INIT_LIST_HEAD(&napi->poll_list);
5066 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5067 	napi->timer.function = napi_watchdog;
5068 	napi->gro_count = 0;
5069 	napi->gro_list = NULL;
5070 	napi->skb = NULL;
5071 	napi->poll = poll;
5072 	if (weight > NAPI_POLL_WEIGHT)
5073 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5074 			    weight, dev->name);
5075 	napi->weight = weight;
5076 	list_add(&napi->dev_list, &dev->napi_list);
5077 	napi->dev = dev;
5078 #ifdef CONFIG_NETPOLL
5079 	spin_lock_init(&napi->poll_lock);
5080 	napi->poll_owner = -1;
5081 #endif
5082 	set_bit(NAPI_STATE_SCHED, &napi->state);
5083 	napi_hash_add(napi);
5084 }
5085 EXPORT_SYMBOL(netif_napi_add);
5086 
5087 void napi_disable(struct napi_struct *n)
5088 {
5089 	might_sleep();
5090 	set_bit(NAPI_STATE_DISABLE, &n->state);
5091 
5092 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5093 		msleep(1);
5094 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5095 		msleep(1);
5096 
5097 	hrtimer_cancel(&n->timer);
5098 
5099 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5100 }
5101 EXPORT_SYMBOL(napi_disable);
5102 
5103 /* Must be called in process context */
5104 void netif_napi_del(struct napi_struct *napi)
5105 {
5106 	might_sleep();
5107 	if (napi_hash_del(napi))
5108 		synchronize_net();
5109 	list_del_init(&napi->dev_list);
5110 	napi_free_frags(napi);
5111 
5112 	kfree_skb_list(napi->gro_list);
5113 	napi->gro_list = NULL;
5114 	napi->gro_count = 0;
5115 }
5116 EXPORT_SYMBOL(netif_napi_del);
5117 
5118 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5119 {
5120 	void *have;
5121 	int work, weight;
5122 
5123 	list_del_init(&n->poll_list);
5124 
5125 	have = netpoll_poll_lock(n);
5126 
5127 	weight = n->weight;
5128 
5129 	/* This NAPI_STATE_SCHED test is for avoiding a race
5130 	 * with netpoll's poll_napi().  Only the entity which
5131 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5132 	 * actually make the ->poll() call.  Therefore we avoid
5133 	 * accidentally calling ->poll() when NAPI is not scheduled.
5134 	 */
5135 	work = 0;
5136 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5137 		work = n->poll(n, weight);
5138 		trace_napi_poll(n, work, weight);
5139 	}
5140 
5141 	WARN_ON_ONCE(work > weight);
5142 
5143 	if (likely(work < weight))
5144 		goto out_unlock;
5145 
5146 	/* Drivers must not modify the NAPI state if they
5147 	 * consume the entire weight.  In such cases this code
5148 	 * still "owns" the NAPI instance and therefore can
5149 	 * move the instance around on the list at-will.
5150 	 */
5151 	if (unlikely(napi_disable_pending(n))) {
5152 		napi_complete(n);
5153 		goto out_unlock;
5154 	}
5155 
5156 	if (n->gro_list) {
5157 		/* flush too old packets
5158 		 * If HZ < 1000, flush all packets.
5159 		 */
5160 		napi_gro_flush(n, HZ >= 1000);
5161 	}
5162 
5163 	/* Some drivers may have called napi_schedule
5164 	 * prior to exhausting their budget.
5165 	 */
5166 	if (unlikely(!list_empty(&n->poll_list))) {
5167 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5168 			     n->dev ? n->dev->name : "backlog");
5169 		goto out_unlock;
5170 	}
5171 
5172 	list_add_tail(&n->poll_list, repoll);
5173 
5174 out_unlock:
5175 	netpoll_poll_unlock(have);
5176 
5177 	return work;
5178 }
5179 
5180 static void net_rx_action(struct softirq_action *h)
5181 {
5182 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5183 	unsigned long time_limit = jiffies + 2;
5184 	int budget = netdev_budget;
5185 	LIST_HEAD(list);
5186 	LIST_HEAD(repoll);
5187 
5188 	local_irq_disable();
5189 	list_splice_init(&sd->poll_list, &list);
5190 	local_irq_enable();
5191 
5192 	for (;;) {
5193 		struct napi_struct *n;
5194 
5195 		if (list_empty(&list)) {
5196 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5197 				return;
5198 			break;
5199 		}
5200 
5201 		n = list_first_entry(&list, struct napi_struct, poll_list);
5202 		budget -= napi_poll(n, &repoll);
5203 
5204 		/* If softirq window is exhausted then punt.
5205 		 * Allow this to run for 2 jiffies since which will allow
5206 		 * an average latency of 1.5/HZ.
5207 		 */
5208 		if (unlikely(budget <= 0 ||
5209 			     time_after_eq(jiffies, time_limit))) {
5210 			sd->time_squeeze++;
5211 			break;
5212 		}
5213 	}
5214 
5215 	__kfree_skb_flush();
5216 	local_irq_disable();
5217 
5218 	list_splice_tail_init(&sd->poll_list, &list);
5219 	list_splice_tail(&repoll, &list);
5220 	list_splice(&list, &sd->poll_list);
5221 	if (!list_empty(&sd->poll_list))
5222 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5223 
5224 	net_rps_action_and_irq_enable(sd);
5225 }
5226 
5227 struct netdev_adjacent {
5228 	struct net_device *dev;
5229 
5230 	/* upper master flag, there can only be one master device per list */
5231 	bool master;
5232 
5233 	/* counter for the number of times this device was added to us */
5234 	u16 ref_nr;
5235 
5236 	/* private field for the users */
5237 	void *private;
5238 
5239 	struct list_head list;
5240 	struct rcu_head rcu;
5241 };
5242 
5243 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5244 						 struct list_head *adj_list)
5245 {
5246 	struct netdev_adjacent *adj;
5247 
5248 	list_for_each_entry(adj, adj_list, list) {
5249 		if (adj->dev == adj_dev)
5250 			return adj;
5251 	}
5252 	return NULL;
5253 }
5254 
5255 /**
5256  * netdev_has_upper_dev - Check if device is linked to an upper device
5257  * @dev: device
5258  * @upper_dev: upper device to check
5259  *
5260  * Find out if a device is linked to specified upper device and return true
5261  * in case it is. Note that this checks only immediate upper device,
5262  * not through a complete stack of devices. The caller must hold the RTNL lock.
5263  */
5264 bool netdev_has_upper_dev(struct net_device *dev,
5265 			  struct net_device *upper_dev)
5266 {
5267 	ASSERT_RTNL();
5268 
5269 	return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5270 }
5271 EXPORT_SYMBOL(netdev_has_upper_dev);
5272 
5273 /**
5274  * netdev_has_any_upper_dev - Check if device is linked to some device
5275  * @dev: device
5276  *
5277  * Find out if a device is linked to an upper device and return true in case
5278  * it is. The caller must hold the RTNL lock.
5279  */
5280 static bool netdev_has_any_upper_dev(struct net_device *dev)
5281 {
5282 	ASSERT_RTNL();
5283 
5284 	return !list_empty(&dev->all_adj_list.upper);
5285 }
5286 
5287 /**
5288  * netdev_master_upper_dev_get - Get master upper device
5289  * @dev: device
5290  *
5291  * Find a master upper device and return pointer to it or NULL in case
5292  * it's not there. The caller must hold the RTNL lock.
5293  */
5294 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5295 {
5296 	struct netdev_adjacent *upper;
5297 
5298 	ASSERT_RTNL();
5299 
5300 	if (list_empty(&dev->adj_list.upper))
5301 		return NULL;
5302 
5303 	upper = list_first_entry(&dev->adj_list.upper,
5304 				 struct netdev_adjacent, list);
5305 	if (likely(upper->master))
5306 		return upper->dev;
5307 	return NULL;
5308 }
5309 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5310 
5311 void *netdev_adjacent_get_private(struct list_head *adj_list)
5312 {
5313 	struct netdev_adjacent *adj;
5314 
5315 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5316 
5317 	return adj->private;
5318 }
5319 EXPORT_SYMBOL(netdev_adjacent_get_private);
5320 
5321 /**
5322  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5323  * @dev: device
5324  * @iter: list_head ** of the current position
5325  *
5326  * Gets the next device from the dev's upper list, starting from iter
5327  * position. The caller must hold RCU read lock.
5328  */
5329 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5330 						 struct list_head **iter)
5331 {
5332 	struct netdev_adjacent *upper;
5333 
5334 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5335 
5336 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5337 
5338 	if (&upper->list == &dev->adj_list.upper)
5339 		return NULL;
5340 
5341 	*iter = &upper->list;
5342 
5343 	return upper->dev;
5344 }
5345 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5346 
5347 /**
5348  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5349  * @dev: device
5350  * @iter: list_head ** of the current position
5351  *
5352  * Gets the next device from the dev's upper list, starting from iter
5353  * position. The caller must hold RCU read lock.
5354  */
5355 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5356 						     struct list_head **iter)
5357 {
5358 	struct netdev_adjacent *upper;
5359 
5360 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5361 
5362 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5363 
5364 	if (&upper->list == &dev->all_adj_list.upper)
5365 		return NULL;
5366 
5367 	*iter = &upper->list;
5368 
5369 	return upper->dev;
5370 }
5371 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5372 
5373 /**
5374  * netdev_lower_get_next_private - Get the next ->private from the
5375  *				   lower neighbour list
5376  * @dev: device
5377  * @iter: list_head ** of the current position
5378  *
5379  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5380  * list, starting from iter position. The caller must hold either hold the
5381  * RTNL lock or its own locking that guarantees that the neighbour lower
5382  * list will remain unchanged.
5383  */
5384 void *netdev_lower_get_next_private(struct net_device *dev,
5385 				    struct list_head **iter)
5386 {
5387 	struct netdev_adjacent *lower;
5388 
5389 	lower = list_entry(*iter, struct netdev_adjacent, list);
5390 
5391 	if (&lower->list == &dev->adj_list.lower)
5392 		return NULL;
5393 
5394 	*iter = lower->list.next;
5395 
5396 	return lower->private;
5397 }
5398 EXPORT_SYMBOL(netdev_lower_get_next_private);
5399 
5400 /**
5401  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5402  *				       lower neighbour list, RCU
5403  *				       variant
5404  * @dev: device
5405  * @iter: list_head ** of the current position
5406  *
5407  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5408  * list, starting from iter position. The caller must hold RCU read lock.
5409  */
5410 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5411 					struct list_head **iter)
5412 {
5413 	struct netdev_adjacent *lower;
5414 
5415 	WARN_ON_ONCE(!rcu_read_lock_held());
5416 
5417 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5418 
5419 	if (&lower->list == &dev->adj_list.lower)
5420 		return NULL;
5421 
5422 	*iter = &lower->list;
5423 
5424 	return lower->private;
5425 }
5426 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5427 
5428 /**
5429  * netdev_lower_get_next - Get the next device from the lower neighbour
5430  *                         list
5431  * @dev: device
5432  * @iter: list_head ** of the current position
5433  *
5434  * Gets the next netdev_adjacent from the dev's lower neighbour
5435  * list, starting from iter position. The caller must hold RTNL lock or
5436  * its own locking that guarantees that the neighbour lower
5437  * list will remain unchanged.
5438  */
5439 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5440 {
5441 	struct netdev_adjacent *lower;
5442 
5443 	lower = list_entry(*iter, struct netdev_adjacent, list);
5444 
5445 	if (&lower->list == &dev->adj_list.lower)
5446 		return NULL;
5447 
5448 	*iter = lower->list.next;
5449 
5450 	return lower->dev;
5451 }
5452 EXPORT_SYMBOL(netdev_lower_get_next);
5453 
5454 /**
5455  * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5456  * @dev: device
5457  * @iter: list_head ** of the current position
5458  *
5459  * Gets the next netdev_adjacent from the dev's all lower neighbour
5460  * list, starting from iter position. The caller must hold RTNL lock or
5461  * its own locking that guarantees that the neighbour all lower
5462  * list will remain unchanged.
5463  */
5464 struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5465 {
5466 	struct netdev_adjacent *lower;
5467 
5468 	lower = list_entry(*iter, struct netdev_adjacent, list);
5469 
5470 	if (&lower->list == &dev->all_adj_list.lower)
5471 		return NULL;
5472 
5473 	*iter = lower->list.next;
5474 
5475 	return lower->dev;
5476 }
5477 EXPORT_SYMBOL(netdev_all_lower_get_next);
5478 
5479 /**
5480  * netdev_all_lower_get_next_rcu - Get the next device from all
5481  *				   lower neighbour list, RCU variant
5482  * @dev: device
5483  * @iter: list_head ** of the current position
5484  *
5485  * Gets the next netdev_adjacent from the dev's all lower neighbour
5486  * list, starting from iter position. The caller must hold RCU read lock.
5487  */
5488 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5489 						 struct list_head **iter)
5490 {
5491 	struct netdev_adjacent *lower;
5492 
5493 	lower = list_first_or_null_rcu(&dev->all_adj_list.lower,
5494 				       struct netdev_adjacent, list);
5495 
5496 	return lower ? lower->dev : NULL;
5497 }
5498 EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5499 
5500 /**
5501  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5502  *				       lower neighbour list, RCU
5503  *				       variant
5504  * @dev: device
5505  *
5506  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5507  * list. The caller must hold RCU read lock.
5508  */
5509 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5510 {
5511 	struct netdev_adjacent *lower;
5512 
5513 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5514 			struct netdev_adjacent, list);
5515 	if (lower)
5516 		return lower->private;
5517 	return NULL;
5518 }
5519 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5520 
5521 /**
5522  * netdev_master_upper_dev_get_rcu - Get master upper device
5523  * @dev: device
5524  *
5525  * Find a master upper device and return pointer to it or NULL in case
5526  * it's not there. The caller must hold the RCU read lock.
5527  */
5528 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5529 {
5530 	struct netdev_adjacent *upper;
5531 
5532 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5533 				       struct netdev_adjacent, list);
5534 	if (upper && likely(upper->master))
5535 		return upper->dev;
5536 	return NULL;
5537 }
5538 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5539 
5540 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5541 			      struct net_device *adj_dev,
5542 			      struct list_head *dev_list)
5543 {
5544 	char linkname[IFNAMSIZ+7];
5545 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5546 		"upper_%s" : "lower_%s", adj_dev->name);
5547 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5548 				 linkname);
5549 }
5550 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5551 			       char *name,
5552 			       struct list_head *dev_list)
5553 {
5554 	char linkname[IFNAMSIZ+7];
5555 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5556 		"upper_%s" : "lower_%s", name);
5557 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5558 }
5559 
5560 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5561 						 struct net_device *adj_dev,
5562 						 struct list_head *dev_list)
5563 {
5564 	return (dev_list == &dev->adj_list.upper ||
5565 		dev_list == &dev->adj_list.lower) &&
5566 		net_eq(dev_net(dev), dev_net(adj_dev));
5567 }
5568 
5569 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5570 					struct net_device *adj_dev,
5571 					struct list_head *dev_list,
5572 					void *private, bool master)
5573 {
5574 	struct netdev_adjacent *adj;
5575 	int ret;
5576 
5577 	adj = __netdev_find_adj(adj_dev, dev_list);
5578 
5579 	if (adj) {
5580 		adj->ref_nr++;
5581 		return 0;
5582 	}
5583 
5584 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5585 	if (!adj)
5586 		return -ENOMEM;
5587 
5588 	adj->dev = adj_dev;
5589 	adj->master = master;
5590 	adj->ref_nr = 1;
5591 	adj->private = private;
5592 	dev_hold(adj_dev);
5593 
5594 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5595 		 adj_dev->name, dev->name, adj_dev->name);
5596 
5597 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5598 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5599 		if (ret)
5600 			goto free_adj;
5601 	}
5602 
5603 	/* Ensure that master link is always the first item in list. */
5604 	if (master) {
5605 		ret = sysfs_create_link(&(dev->dev.kobj),
5606 					&(adj_dev->dev.kobj), "master");
5607 		if (ret)
5608 			goto remove_symlinks;
5609 
5610 		list_add_rcu(&adj->list, dev_list);
5611 	} else {
5612 		list_add_tail_rcu(&adj->list, dev_list);
5613 	}
5614 
5615 	return 0;
5616 
5617 remove_symlinks:
5618 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5619 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5620 free_adj:
5621 	kfree(adj);
5622 	dev_put(adj_dev);
5623 
5624 	return ret;
5625 }
5626 
5627 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5628 					 struct net_device *adj_dev,
5629 					 struct list_head *dev_list)
5630 {
5631 	struct netdev_adjacent *adj;
5632 
5633 	adj = __netdev_find_adj(adj_dev, dev_list);
5634 
5635 	if (!adj) {
5636 		pr_err("tried to remove device %s from %s\n",
5637 		       dev->name, adj_dev->name);
5638 		BUG();
5639 	}
5640 
5641 	if (adj->ref_nr > 1) {
5642 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5643 			 adj->ref_nr-1);
5644 		adj->ref_nr--;
5645 		return;
5646 	}
5647 
5648 	if (adj->master)
5649 		sysfs_remove_link(&(dev->dev.kobj), "master");
5650 
5651 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5652 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5653 
5654 	list_del_rcu(&adj->list);
5655 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5656 		 adj_dev->name, dev->name, adj_dev->name);
5657 	dev_put(adj_dev);
5658 	kfree_rcu(adj, rcu);
5659 }
5660 
5661 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5662 					    struct net_device *upper_dev,
5663 					    struct list_head *up_list,
5664 					    struct list_head *down_list,
5665 					    void *private, bool master)
5666 {
5667 	int ret;
5668 
5669 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5670 					   master);
5671 	if (ret)
5672 		return ret;
5673 
5674 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5675 					   false);
5676 	if (ret) {
5677 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5678 		return ret;
5679 	}
5680 
5681 	return 0;
5682 }
5683 
5684 static int __netdev_adjacent_dev_link(struct net_device *dev,
5685 				      struct net_device *upper_dev)
5686 {
5687 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5688 						&dev->all_adj_list.upper,
5689 						&upper_dev->all_adj_list.lower,
5690 						NULL, false);
5691 }
5692 
5693 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5694 					       struct net_device *upper_dev,
5695 					       struct list_head *up_list,
5696 					       struct list_head *down_list)
5697 {
5698 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5699 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5700 }
5701 
5702 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5703 					 struct net_device *upper_dev)
5704 {
5705 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5706 					   &dev->all_adj_list.upper,
5707 					   &upper_dev->all_adj_list.lower);
5708 }
5709 
5710 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5711 						struct net_device *upper_dev,
5712 						void *private, bool master)
5713 {
5714 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5715 
5716 	if (ret)
5717 		return ret;
5718 
5719 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5720 					       &dev->adj_list.upper,
5721 					       &upper_dev->adj_list.lower,
5722 					       private, master);
5723 	if (ret) {
5724 		__netdev_adjacent_dev_unlink(dev, upper_dev);
5725 		return ret;
5726 	}
5727 
5728 	return 0;
5729 }
5730 
5731 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5732 						   struct net_device *upper_dev)
5733 {
5734 	__netdev_adjacent_dev_unlink(dev, upper_dev);
5735 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5736 					   &dev->adj_list.upper,
5737 					   &upper_dev->adj_list.lower);
5738 }
5739 
5740 static int __netdev_upper_dev_link(struct net_device *dev,
5741 				   struct net_device *upper_dev, bool master,
5742 				   void *upper_priv, void *upper_info)
5743 {
5744 	struct netdev_notifier_changeupper_info changeupper_info;
5745 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5746 	int ret = 0;
5747 
5748 	ASSERT_RTNL();
5749 
5750 	if (dev == upper_dev)
5751 		return -EBUSY;
5752 
5753 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5754 	if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5755 		return -EBUSY;
5756 
5757 	if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5758 		return -EEXIST;
5759 
5760 	if (master && netdev_master_upper_dev_get(dev))
5761 		return -EBUSY;
5762 
5763 	changeupper_info.upper_dev = upper_dev;
5764 	changeupper_info.master = master;
5765 	changeupper_info.linking = true;
5766 	changeupper_info.upper_info = upper_info;
5767 
5768 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5769 					    &changeupper_info.info);
5770 	ret = notifier_to_errno(ret);
5771 	if (ret)
5772 		return ret;
5773 
5774 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5775 						   master);
5776 	if (ret)
5777 		return ret;
5778 
5779 	/* Now that we linked these devs, make all the upper_dev's
5780 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5781 	 * versa, and don't forget the devices itself. All of these
5782 	 * links are non-neighbours.
5783 	 */
5784 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5785 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5786 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5787 				 i->dev->name, j->dev->name);
5788 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5789 			if (ret)
5790 				goto rollback_mesh;
5791 		}
5792 	}
5793 
5794 	/* add dev to every upper_dev's upper device */
5795 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5796 		pr_debug("linking %s's upper device %s with %s\n",
5797 			 upper_dev->name, i->dev->name, dev->name);
5798 		ret = __netdev_adjacent_dev_link(dev, i->dev);
5799 		if (ret)
5800 			goto rollback_upper_mesh;
5801 	}
5802 
5803 	/* add upper_dev to every dev's lower device */
5804 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5805 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5806 			 i->dev->name, upper_dev->name);
5807 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5808 		if (ret)
5809 			goto rollback_lower_mesh;
5810 	}
5811 
5812 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5813 					    &changeupper_info.info);
5814 	ret = notifier_to_errno(ret);
5815 	if (ret)
5816 		goto rollback_lower_mesh;
5817 
5818 	return 0;
5819 
5820 rollback_lower_mesh:
5821 	to_i = i;
5822 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5823 		if (i == to_i)
5824 			break;
5825 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5826 	}
5827 
5828 	i = NULL;
5829 
5830 rollback_upper_mesh:
5831 	to_i = i;
5832 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5833 		if (i == to_i)
5834 			break;
5835 		__netdev_adjacent_dev_unlink(dev, i->dev);
5836 	}
5837 
5838 	i = j = NULL;
5839 
5840 rollback_mesh:
5841 	to_i = i;
5842 	to_j = j;
5843 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5844 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5845 			if (i == to_i && j == to_j)
5846 				break;
5847 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5848 		}
5849 		if (i == to_i)
5850 			break;
5851 	}
5852 
5853 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5854 
5855 	return ret;
5856 }
5857 
5858 /**
5859  * netdev_upper_dev_link - Add a link to the upper device
5860  * @dev: device
5861  * @upper_dev: new upper device
5862  *
5863  * Adds a link to device which is upper to this one. The caller must hold
5864  * the RTNL lock. On a failure a negative errno code is returned.
5865  * On success the reference counts are adjusted and the function
5866  * returns zero.
5867  */
5868 int netdev_upper_dev_link(struct net_device *dev,
5869 			  struct net_device *upper_dev)
5870 {
5871 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5872 }
5873 EXPORT_SYMBOL(netdev_upper_dev_link);
5874 
5875 /**
5876  * netdev_master_upper_dev_link - Add a master link to the upper device
5877  * @dev: device
5878  * @upper_dev: new upper device
5879  * @upper_priv: upper device private
5880  * @upper_info: upper info to be passed down via notifier
5881  *
5882  * Adds a link to device which is upper to this one. In this case, only
5883  * one master upper device can be linked, although other non-master devices
5884  * might be linked as well. The caller must hold the RTNL lock.
5885  * On a failure a negative errno code is returned. On success the reference
5886  * counts are adjusted and the function returns zero.
5887  */
5888 int netdev_master_upper_dev_link(struct net_device *dev,
5889 				 struct net_device *upper_dev,
5890 				 void *upper_priv, void *upper_info)
5891 {
5892 	return __netdev_upper_dev_link(dev, upper_dev, true,
5893 				       upper_priv, upper_info);
5894 }
5895 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5896 
5897 /**
5898  * netdev_upper_dev_unlink - Removes a link to upper device
5899  * @dev: device
5900  * @upper_dev: new upper device
5901  *
5902  * Removes a link to device which is upper to this one. The caller must hold
5903  * the RTNL lock.
5904  */
5905 void netdev_upper_dev_unlink(struct net_device *dev,
5906 			     struct net_device *upper_dev)
5907 {
5908 	struct netdev_notifier_changeupper_info changeupper_info;
5909 	struct netdev_adjacent *i, *j;
5910 	ASSERT_RTNL();
5911 
5912 	changeupper_info.upper_dev = upper_dev;
5913 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5914 	changeupper_info.linking = false;
5915 
5916 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5917 				      &changeupper_info.info);
5918 
5919 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5920 
5921 	/* Here is the tricky part. We must remove all dev's lower
5922 	 * devices from all upper_dev's upper devices and vice
5923 	 * versa, to maintain the graph relationship.
5924 	 */
5925 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5926 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5927 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5928 
5929 	/* remove also the devices itself from lower/upper device
5930 	 * list
5931 	 */
5932 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5933 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5934 
5935 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5936 		__netdev_adjacent_dev_unlink(dev, i->dev);
5937 
5938 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5939 				      &changeupper_info.info);
5940 }
5941 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5942 
5943 /**
5944  * netdev_bonding_info_change - Dispatch event about slave change
5945  * @dev: device
5946  * @bonding_info: info to dispatch
5947  *
5948  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5949  * The caller must hold the RTNL lock.
5950  */
5951 void netdev_bonding_info_change(struct net_device *dev,
5952 				struct netdev_bonding_info *bonding_info)
5953 {
5954 	struct netdev_notifier_bonding_info	info;
5955 
5956 	memcpy(&info.bonding_info, bonding_info,
5957 	       sizeof(struct netdev_bonding_info));
5958 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5959 				      &info.info);
5960 }
5961 EXPORT_SYMBOL(netdev_bonding_info_change);
5962 
5963 static void netdev_adjacent_add_links(struct net_device *dev)
5964 {
5965 	struct netdev_adjacent *iter;
5966 
5967 	struct net *net = dev_net(dev);
5968 
5969 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5970 		if (!net_eq(net, dev_net(iter->dev)))
5971 			continue;
5972 		netdev_adjacent_sysfs_add(iter->dev, dev,
5973 					  &iter->dev->adj_list.lower);
5974 		netdev_adjacent_sysfs_add(dev, iter->dev,
5975 					  &dev->adj_list.upper);
5976 	}
5977 
5978 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5979 		if (!net_eq(net, dev_net(iter->dev)))
5980 			continue;
5981 		netdev_adjacent_sysfs_add(iter->dev, dev,
5982 					  &iter->dev->adj_list.upper);
5983 		netdev_adjacent_sysfs_add(dev, iter->dev,
5984 					  &dev->adj_list.lower);
5985 	}
5986 }
5987 
5988 static void netdev_adjacent_del_links(struct net_device *dev)
5989 {
5990 	struct netdev_adjacent *iter;
5991 
5992 	struct net *net = dev_net(dev);
5993 
5994 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5995 		if (!net_eq(net, dev_net(iter->dev)))
5996 			continue;
5997 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5998 					  &iter->dev->adj_list.lower);
5999 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6000 					  &dev->adj_list.upper);
6001 	}
6002 
6003 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6004 		if (!net_eq(net, dev_net(iter->dev)))
6005 			continue;
6006 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6007 					  &iter->dev->adj_list.upper);
6008 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6009 					  &dev->adj_list.lower);
6010 	}
6011 }
6012 
6013 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6014 {
6015 	struct netdev_adjacent *iter;
6016 
6017 	struct net *net = dev_net(dev);
6018 
6019 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6020 		if (!net_eq(net, dev_net(iter->dev)))
6021 			continue;
6022 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6023 					  &iter->dev->adj_list.lower);
6024 		netdev_adjacent_sysfs_add(iter->dev, dev,
6025 					  &iter->dev->adj_list.lower);
6026 	}
6027 
6028 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6029 		if (!net_eq(net, dev_net(iter->dev)))
6030 			continue;
6031 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6032 					  &iter->dev->adj_list.upper);
6033 		netdev_adjacent_sysfs_add(iter->dev, dev,
6034 					  &iter->dev->adj_list.upper);
6035 	}
6036 }
6037 
6038 void *netdev_lower_dev_get_private(struct net_device *dev,
6039 				   struct net_device *lower_dev)
6040 {
6041 	struct netdev_adjacent *lower;
6042 
6043 	if (!lower_dev)
6044 		return NULL;
6045 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6046 	if (!lower)
6047 		return NULL;
6048 
6049 	return lower->private;
6050 }
6051 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6052 
6053 
6054 int dev_get_nest_level(struct net_device *dev)
6055 {
6056 	struct net_device *lower = NULL;
6057 	struct list_head *iter;
6058 	int max_nest = -1;
6059 	int nest;
6060 
6061 	ASSERT_RTNL();
6062 
6063 	netdev_for_each_lower_dev(dev, lower, iter) {
6064 		nest = dev_get_nest_level(lower);
6065 		if (max_nest < nest)
6066 			max_nest = nest;
6067 	}
6068 
6069 	return max_nest + 1;
6070 }
6071 EXPORT_SYMBOL(dev_get_nest_level);
6072 
6073 /**
6074  * netdev_lower_change - Dispatch event about lower device state change
6075  * @lower_dev: device
6076  * @lower_state_info: state to dispatch
6077  *
6078  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6079  * The caller must hold the RTNL lock.
6080  */
6081 void netdev_lower_state_changed(struct net_device *lower_dev,
6082 				void *lower_state_info)
6083 {
6084 	struct netdev_notifier_changelowerstate_info changelowerstate_info;
6085 
6086 	ASSERT_RTNL();
6087 	changelowerstate_info.lower_state_info = lower_state_info;
6088 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6089 				      &changelowerstate_info.info);
6090 }
6091 EXPORT_SYMBOL(netdev_lower_state_changed);
6092 
6093 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6094 					   struct neighbour *n)
6095 {
6096 	struct net_device *lower_dev, *stop_dev;
6097 	struct list_head *iter;
6098 	int err;
6099 
6100 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6101 		if (!lower_dev->netdev_ops->ndo_neigh_construct)
6102 			continue;
6103 		err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6104 		if (err) {
6105 			stop_dev = lower_dev;
6106 			goto rollback;
6107 		}
6108 	}
6109 	return 0;
6110 
6111 rollback:
6112 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6113 		if (lower_dev == stop_dev)
6114 			break;
6115 		if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6116 			continue;
6117 		lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6118 	}
6119 	return err;
6120 }
6121 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6122 
6123 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6124 					  struct neighbour *n)
6125 {
6126 	struct net_device *lower_dev;
6127 	struct list_head *iter;
6128 
6129 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6130 		if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6131 			continue;
6132 		lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6133 	}
6134 }
6135 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6136 
6137 static void dev_change_rx_flags(struct net_device *dev, int flags)
6138 {
6139 	const struct net_device_ops *ops = dev->netdev_ops;
6140 
6141 	if (ops->ndo_change_rx_flags)
6142 		ops->ndo_change_rx_flags(dev, flags);
6143 }
6144 
6145 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6146 {
6147 	unsigned int old_flags = dev->flags;
6148 	kuid_t uid;
6149 	kgid_t gid;
6150 
6151 	ASSERT_RTNL();
6152 
6153 	dev->flags |= IFF_PROMISC;
6154 	dev->promiscuity += inc;
6155 	if (dev->promiscuity == 0) {
6156 		/*
6157 		 * Avoid overflow.
6158 		 * If inc causes overflow, untouch promisc and return error.
6159 		 */
6160 		if (inc < 0)
6161 			dev->flags &= ~IFF_PROMISC;
6162 		else {
6163 			dev->promiscuity -= inc;
6164 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6165 				dev->name);
6166 			return -EOVERFLOW;
6167 		}
6168 	}
6169 	if (dev->flags != old_flags) {
6170 		pr_info("device %s %s promiscuous mode\n",
6171 			dev->name,
6172 			dev->flags & IFF_PROMISC ? "entered" : "left");
6173 		if (audit_enabled) {
6174 			current_uid_gid(&uid, &gid);
6175 			audit_log(current->audit_context, GFP_ATOMIC,
6176 				AUDIT_ANOM_PROMISCUOUS,
6177 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6178 				dev->name, (dev->flags & IFF_PROMISC),
6179 				(old_flags & IFF_PROMISC),
6180 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6181 				from_kuid(&init_user_ns, uid),
6182 				from_kgid(&init_user_ns, gid),
6183 				audit_get_sessionid(current));
6184 		}
6185 
6186 		dev_change_rx_flags(dev, IFF_PROMISC);
6187 	}
6188 	if (notify)
6189 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6190 	return 0;
6191 }
6192 
6193 /**
6194  *	dev_set_promiscuity	- update promiscuity count on a device
6195  *	@dev: device
6196  *	@inc: modifier
6197  *
6198  *	Add or remove promiscuity from a device. While the count in the device
6199  *	remains above zero the interface remains promiscuous. Once it hits zero
6200  *	the device reverts back to normal filtering operation. A negative inc
6201  *	value is used to drop promiscuity on the device.
6202  *	Return 0 if successful or a negative errno code on error.
6203  */
6204 int dev_set_promiscuity(struct net_device *dev, int inc)
6205 {
6206 	unsigned int old_flags = dev->flags;
6207 	int err;
6208 
6209 	err = __dev_set_promiscuity(dev, inc, true);
6210 	if (err < 0)
6211 		return err;
6212 	if (dev->flags != old_flags)
6213 		dev_set_rx_mode(dev);
6214 	return err;
6215 }
6216 EXPORT_SYMBOL(dev_set_promiscuity);
6217 
6218 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6219 {
6220 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6221 
6222 	ASSERT_RTNL();
6223 
6224 	dev->flags |= IFF_ALLMULTI;
6225 	dev->allmulti += inc;
6226 	if (dev->allmulti == 0) {
6227 		/*
6228 		 * Avoid overflow.
6229 		 * If inc causes overflow, untouch allmulti and return error.
6230 		 */
6231 		if (inc < 0)
6232 			dev->flags &= ~IFF_ALLMULTI;
6233 		else {
6234 			dev->allmulti -= inc;
6235 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6236 				dev->name);
6237 			return -EOVERFLOW;
6238 		}
6239 	}
6240 	if (dev->flags ^ old_flags) {
6241 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6242 		dev_set_rx_mode(dev);
6243 		if (notify)
6244 			__dev_notify_flags(dev, old_flags,
6245 					   dev->gflags ^ old_gflags);
6246 	}
6247 	return 0;
6248 }
6249 
6250 /**
6251  *	dev_set_allmulti	- update allmulti count on a device
6252  *	@dev: device
6253  *	@inc: modifier
6254  *
6255  *	Add or remove reception of all multicast frames to a device. While the
6256  *	count in the device remains above zero the interface remains listening
6257  *	to all interfaces. Once it hits zero the device reverts back to normal
6258  *	filtering operation. A negative @inc value is used to drop the counter
6259  *	when releasing a resource needing all multicasts.
6260  *	Return 0 if successful or a negative errno code on error.
6261  */
6262 
6263 int dev_set_allmulti(struct net_device *dev, int inc)
6264 {
6265 	return __dev_set_allmulti(dev, inc, true);
6266 }
6267 EXPORT_SYMBOL(dev_set_allmulti);
6268 
6269 /*
6270  *	Upload unicast and multicast address lists to device and
6271  *	configure RX filtering. When the device doesn't support unicast
6272  *	filtering it is put in promiscuous mode while unicast addresses
6273  *	are present.
6274  */
6275 void __dev_set_rx_mode(struct net_device *dev)
6276 {
6277 	const struct net_device_ops *ops = dev->netdev_ops;
6278 
6279 	/* dev_open will call this function so the list will stay sane. */
6280 	if (!(dev->flags&IFF_UP))
6281 		return;
6282 
6283 	if (!netif_device_present(dev))
6284 		return;
6285 
6286 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6287 		/* Unicast addresses changes may only happen under the rtnl,
6288 		 * therefore calling __dev_set_promiscuity here is safe.
6289 		 */
6290 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6291 			__dev_set_promiscuity(dev, 1, false);
6292 			dev->uc_promisc = true;
6293 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6294 			__dev_set_promiscuity(dev, -1, false);
6295 			dev->uc_promisc = false;
6296 		}
6297 	}
6298 
6299 	if (ops->ndo_set_rx_mode)
6300 		ops->ndo_set_rx_mode(dev);
6301 }
6302 
6303 void dev_set_rx_mode(struct net_device *dev)
6304 {
6305 	netif_addr_lock_bh(dev);
6306 	__dev_set_rx_mode(dev);
6307 	netif_addr_unlock_bh(dev);
6308 }
6309 
6310 /**
6311  *	dev_get_flags - get flags reported to userspace
6312  *	@dev: device
6313  *
6314  *	Get the combination of flag bits exported through APIs to userspace.
6315  */
6316 unsigned int dev_get_flags(const struct net_device *dev)
6317 {
6318 	unsigned int flags;
6319 
6320 	flags = (dev->flags & ~(IFF_PROMISC |
6321 				IFF_ALLMULTI |
6322 				IFF_RUNNING |
6323 				IFF_LOWER_UP |
6324 				IFF_DORMANT)) |
6325 		(dev->gflags & (IFF_PROMISC |
6326 				IFF_ALLMULTI));
6327 
6328 	if (netif_running(dev)) {
6329 		if (netif_oper_up(dev))
6330 			flags |= IFF_RUNNING;
6331 		if (netif_carrier_ok(dev))
6332 			flags |= IFF_LOWER_UP;
6333 		if (netif_dormant(dev))
6334 			flags |= IFF_DORMANT;
6335 	}
6336 
6337 	return flags;
6338 }
6339 EXPORT_SYMBOL(dev_get_flags);
6340 
6341 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6342 {
6343 	unsigned int old_flags = dev->flags;
6344 	int ret;
6345 
6346 	ASSERT_RTNL();
6347 
6348 	/*
6349 	 *	Set the flags on our device.
6350 	 */
6351 
6352 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6353 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6354 			       IFF_AUTOMEDIA)) |
6355 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6356 				    IFF_ALLMULTI));
6357 
6358 	/*
6359 	 *	Load in the correct multicast list now the flags have changed.
6360 	 */
6361 
6362 	if ((old_flags ^ flags) & IFF_MULTICAST)
6363 		dev_change_rx_flags(dev, IFF_MULTICAST);
6364 
6365 	dev_set_rx_mode(dev);
6366 
6367 	/*
6368 	 *	Have we downed the interface. We handle IFF_UP ourselves
6369 	 *	according to user attempts to set it, rather than blindly
6370 	 *	setting it.
6371 	 */
6372 
6373 	ret = 0;
6374 	if ((old_flags ^ flags) & IFF_UP)
6375 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6376 
6377 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6378 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6379 		unsigned int old_flags = dev->flags;
6380 
6381 		dev->gflags ^= IFF_PROMISC;
6382 
6383 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6384 			if (dev->flags != old_flags)
6385 				dev_set_rx_mode(dev);
6386 	}
6387 
6388 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6389 	   is important. Some (broken) drivers set IFF_PROMISC, when
6390 	   IFF_ALLMULTI is requested not asking us and not reporting.
6391 	 */
6392 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6393 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6394 
6395 		dev->gflags ^= IFF_ALLMULTI;
6396 		__dev_set_allmulti(dev, inc, false);
6397 	}
6398 
6399 	return ret;
6400 }
6401 
6402 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6403 			unsigned int gchanges)
6404 {
6405 	unsigned int changes = dev->flags ^ old_flags;
6406 
6407 	if (gchanges)
6408 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6409 
6410 	if (changes & IFF_UP) {
6411 		if (dev->flags & IFF_UP)
6412 			call_netdevice_notifiers(NETDEV_UP, dev);
6413 		else
6414 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6415 	}
6416 
6417 	if (dev->flags & IFF_UP &&
6418 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6419 		struct netdev_notifier_change_info change_info;
6420 
6421 		change_info.flags_changed = changes;
6422 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6423 					      &change_info.info);
6424 	}
6425 }
6426 
6427 /**
6428  *	dev_change_flags - change device settings
6429  *	@dev: device
6430  *	@flags: device state flags
6431  *
6432  *	Change settings on device based state flags. The flags are
6433  *	in the userspace exported format.
6434  */
6435 int dev_change_flags(struct net_device *dev, unsigned int flags)
6436 {
6437 	int ret;
6438 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6439 
6440 	ret = __dev_change_flags(dev, flags);
6441 	if (ret < 0)
6442 		return ret;
6443 
6444 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6445 	__dev_notify_flags(dev, old_flags, changes);
6446 	return ret;
6447 }
6448 EXPORT_SYMBOL(dev_change_flags);
6449 
6450 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6451 {
6452 	const struct net_device_ops *ops = dev->netdev_ops;
6453 
6454 	if (ops->ndo_change_mtu)
6455 		return ops->ndo_change_mtu(dev, new_mtu);
6456 
6457 	dev->mtu = new_mtu;
6458 	return 0;
6459 }
6460 
6461 /**
6462  *	dev_set_mtu - Change maximum transfer unit
6463  *	@dev: device
6464  *	@new_mtu: new transfer unit
6465  *
6466  *	Change the maximum transfer size of the network device.
6467  */
6468 int dev_set_mtu(struct net_device *dev, int new_mtu)
6469 {
6470 	int err, orig_mtu;
6471 
6472 	if (new_mtu == dev->mtu)
6473 		return 0;
6474 
6475 	/*	MTU must be positive.	 */
6476 	if (new_mtu < 0)
6477 		return -EINVAL;
6478 
6479 	if (!netif_device_present(dev))
6480 		return -ENODEV;
6481 
6482 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6483 	err = notifier_to_errno(err);
6484 	if (err)
6485 		return err;
6486 
6487 	orig_mtu = dev->mtu;
6488 	err = __dev_set_mtu(dev, new_mtu);
6489 
6490 	if (!err) {
6491 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6492 		err = notifier_to_errno(err);
6493 		if (err) {
6494 			/* setting mtu back and notifying everyone again,
6495 			 * so that they have a chance to revert changes.
6496 			 */
6497 			__dev_set_mtu(dev, orig_mtu);
6498 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6499 		}
6500 	}
6501 	return err;
6502 }
6503 EXPORT_SYMBOL(dev_set_mtu);
6504 
6505 /**
6506  *	dev_set_group - Change group this device belongs to
6507  *	@dev: device
6508  *	@new_group: group this device should belong to
6509  */
6510 void dev_set_group(struct net_device *dev, int new_group)
6511 {
6512 	dev->group = new_group;
6513 }
6514 EXPORT_SYMBOL(dev_set_group);
6515 
6516 /**
6517  *	dev_set_mac_address - Change Media Access Control Address
6518  *	@dev: device
6519  *	@sa: new address
6520  *
6521  *	Change the hardware (MAC) address of the device
6522  */
6523 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6524 {
6525 	const struct net_device_ops *ops = dev->netdev_ops;
6526 	int err;
6527 
6528 	if (!ops->ndo_set_mac_address)
6529 		return -EOPNOTSUPP;
6530 	if (sa->sa_family != dev->type)
6531 		return -EINVAL;
6532 	if (!netif_device_present(dev))
6533 		return -ENODEV;
6534 	err = ops->ndo_set_mac_address(dev, sa);
6535 	if (err)
6536 		return err;
6537 	dev->addr_assign_type = NET_ADDR_SET;
6538 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6539 	add_device_randomness(dev->dev_addr, dev->addr_len);
6540 	return 0;
6541 }
6542 EXPORT_SYMBOL(dev_set_mac_address);
6543 
6544 /**
6545  *	dev_change_carrier - Change device carrier
6546  *	@dev: device
6547  *	@new_carrier: new value
6548  *
6549  *	Change device carrier
6550  */
6551 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6552 {
6553 	const struct net_device_ops *ops = dev->netdev_ops;
6554 
6555 	if (!ops->ndo_change_carrier)
6556 		return -EOPNOTSUPP;
6557 	if (!netif_device_present(dev))
6558 		return -ENODEV;
6559 	return ops->ndo_change_carrier(dev, new_carrier);
6560 }
6561 EXPORT_SYMBOL(dev_change_carrier);
6562 
6563 /**
6564  *	dev_get_phys_port_id - Get device physical port ID
6565  *	@dev: device
6566  *	@ppid: port ID
6567  *
6568  *	Get device physical port ID
6569  */
6570 int dev_get_phys_port_id(struct net_device *dev,
6571 			 struct netdev_phys_item_id *ppid)
6572 {
6573 	const struct net_device_ops *ops = dev->netdev_ops;
6574 
6575 	if (!ops->ndo_get_phys_port_id)
6576 		return -EOPNOTSUPP;
6577 	return ops->ndo_get_phys_port_id(dev, ppid);
6578 }
6579 EXPORT_SYMBOL(dev_get_phys_port_id);
6580 
6581 /**
6582  *	dev_get_phys_port_name - Get device physical port name
6583  *	@dev: device
6584  *	@name: port name
6585  *	@len: limit of bytes to copy to name
6586  *
6587  *	Get device physical port name
6588  */
6589 int dev_get_phys_port_name(struct net_device *dev,
6590 			   char *name, size_t len)
6591 {
6592 	const struct net_device_ops *ops = dev->netdev_ops;
6593 
6594 	if (!ops->ndo_get_phys_port_name)
6595 		return -EOPNOTSUPP;
6596 	return ops->ndo_get_phys_port_name(dev, name, len);
6597 }
6598 EXPORT_SYMBOL(dev_get_phys_port_name);
6599 
6600 /**
6601  *	dev_change_proto_down - update protocol port state information
6602  *	@dev: device
6603  *	@proto_down: new value
6604  *
6605  *	This info can be used by switch drivers to set the phys state of the
6606  *	port.
6607  */
6608 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6609 {
6610 	const struct net_device_ops *ops = dev->netdev_ops;
6611 
6612 	if (!ops->ndo_change_proto_down)
6613 		return -EOPNOTSUPP;
6614 	if (!netif_device_present(dev))
6615 		return -ENODEV;
6616 	return ops->ndo_change_proto_down(dev, proto_down);
6617 }
6618 EXPORT_SYMBOL(dev_change_proto_down);
6619 
6620 /**
6621  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
6622  *	@dev: device
6623  *	@fd: new program fd or negative value to clear
6624  *
6625  *	Set or clear a bpf program for a device
6626  */
6627 int dev_change_xdp_fd(struct net_device *dev, int fd)
6628 {
6629 	const struct net_device_ops *ops = dev->netdev_ops;
6630 	struct bpf_prog *prog = NULL;
6631 	struct netdev_xdp xdp = {};
6632 	int err;
6633 
6634 	if (!ops->ndo_xdp)
6635 		return -EOPNOTSUPP;
6636 	if (fd >= 0) {
6637 		prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6638 		if (IS_ERR(prog))
6639 			return PTR_ERR(prog);
6640 	}
6641 
6642 	xdp.command = XDP_SETUP_PROG;
6643 	xdp.prog = prog;
6644 	err = ops->ndo_xdp(dev, &xdp);
6645 	if (err < 0 && prog)
6646 		bpf_prog_put(prog);
6647 
6648 	return err;
6649 }
6650 EXPORT_SYMBOL(dev_change_xdp_fd);
6651 
6652 /**
6653  *	dev_new_index	-	allocate an ifindex
6654  *	@net: the applicable net namespace
6655  *
6656  *	Returns a suitable unique value for a new device interface
6657  *	number.  The caller must hold the rtnl semaphore or the
6658  *	dev_base_lock to be sure it remains unique.
6659  */
6660 static int dev_new_index(struct net *net)
6661 {
6662 	int ifindex = net->ifindex;
6663 	for (;;) {
6664 		if (++ifindex <= 0)
6665 			ifindex = 1;
6666 		if (!__dev_get_by_index(net, ifindex))
6667 			return net->ifindex = ifindex;
6668 	}
6669 }
6670 
6671 /* Delayed registration/unregisteration */
6672 static LIST_HEAD(net_todo_list);
6673 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6674 
6675 static void net_set_todo(struct net_device *dev)
6676 {
6677 	list_add_tail(&dev->todo_list, &net_todo_list);
6678 	dev_net(dev)->dev_unreg_count++;
6679 }
6680 
6681 static void rollback_registered_many(struct list_head *head)
6682 {
6683 	struct net_device *dev, *tmp;
6684 	LIST_HEAD(close_head);
6685 
6686 	BUG_ON(dev_boot_phase);
6687 	ASSERT_RTNL();
6688 
6689 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6690 		/* Some devices call without registering
6691 		 * for initialization unwind. Remove those
6692 		 * devices and proceed with the remaining.
6693 		 */
6694 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6695 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6696 				 dev->name, dev);
6697 
6698 			WARN_ON(1);
6699 			list_del(&dev->unreg_list);
6700 			continue;
6701 		}
6702 		dev->dismantle = true;
6703 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6704 	}
6705 
6706 	/* If device is running, close it first. */
6707 	list_for_each_entry(dev, head, unreg_list)
6708 		list_add_tail(&dev->close_list, &close_head);
6709 	dev_close_many(&close_head, true);
6710 
6711 	list_for_each_entry(dev, head, unreg_list) {
6712 		/* And unlink it from device chain. */
6713 		unlist_netdevice(dev);
6714 
6715 		dev->reg_state = NETREG_UNREGISTERING;
6716 	}
6717 	flush_all_backlogs();
6718 
6719 	synchronize_net();
6720 
6721 	list_for_each_entry(dev, head, unreg_list) {
6722 		struct sk_buff *skb = NULL;
6723 
6724 		/* Shutdown queueing discipline. */
6725 		dev_shutdown(dev);
6726 
6727 
6728 		/* Notify protocols, that we are about to destroy
6729 		   this device. They should clean all the things.
6730 		*/
6731 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6732 
6733 		if (!dev->rtnl_link_ops ||
6734 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6735 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6736 						     GFP_KERNEL);
6737 
6738 		/*
6739 		 *	Flush the unicast and multicast chains
6740 		 */
6741 		dev_uc_flush(dev);
6742 		dev_mc_flush(dev);
6743 
6744 		if (dev->netdev_ops->ndo_uninit)
6745 			dev->netdev_ops->ndo_uninit(dev);
6746 
6747 		if (skb)
6748 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6749 
6750 		/* Notifier chain MUST detach us all upper devices. */
6751 		WARN_ON(netdev_has_any_upper_dev(dev));
6752 
6753 		/* Remove entries from kobject tree */
6754 		netdev_unregister_kobject(dev);
6755 #ifdef CONFIG_XPS
6756 		/* Remove XPS queueing entries */
6757 		netif_reset_xps_queues_gt(dev, 0);
6758 #endif
6759 	}
6760 
6761 	synchronize_net();
6762 
6763 	list_for_each_entry(dev, head, unreg_list)
6764 		dev_put(dev);
6765 }
6766 
6767 static void rollback_registered(struct net_device *dev)
6768 {
6769 	LIST_HEAD(single);
6770 
6771 	list_add(&dev->unreg_list, &single);
6772 	rollback_registered_many(&single);
6773 	list_del(&single);
6774 }
6775 
6776 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6777 	struct net_device *upper, netdev_features_t features)
6778 {
6779 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6780 	netdev_features_t feature;
6781 	int feature_bit;
6782 
6783 	for_each_netdev_feature(&upper_disables, feature_bit) {
6784 		feature = __NETIF_F_BIT(feature_bit);
6785 		if (!(upper->wanted_features & feature)
6786 		    && (features & feature)) {
6787 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6788 				   &feature, upper->name);
6789 			features &= ~feature;
6790 		}
6791 	}
6792 
6793 	return features;
6794 }
6795 
6796 static void netdev_sync_lower_features(struct net_device *upper,
6797 	struct net_device *lower, netdev_features_t features)
6798 {
6799 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6800 	netdev_features_t feature;
6801 	int feature_bit;
6802 
6803 	for_each_netdev_feature(&upper_disables, feature_bit) {
6804 		feature = __NETIF_F_BIT(feature_bit);
6805 		if (!(features & feature) && (lower->features & feature)) {
6806 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6807 				   &feature, lower->name);
6808 			lower->wanted_features &= ~feature;
6809 			netdev_update_features(lower);
6810 
6811 			if (unlikely(lower->features & feature))
6812 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6813 					    &feature, lower->name);
6814 		}
6815 	}
6816 }
6817 
6818 static netdev_features_t netdev_fix_features(struct net_device *dev,
6819 	netdev_features_t features)
6820 {
6821 	/* Fix illegal checksum combinations */
6822 	if ((features & NETIF_F_HW_CSUM) &&
6823 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6824 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6825 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6826 	}
6827 
6828 	/* TSO requires that SG is present as well. */
6829 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6830 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6831 		features &= ~NETIF_F_ALL_TSO;
6832 	}
6833 
6834 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6835 					!(features & NETIF_F_IP_CSUM)) {
6836 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6837 		features &= ~NETIF_F_TSO;
6838 		features &= ~NETIF_F_TSO_ECN;
6839 	}
6840 
6841 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6842 					 !(features & NETIF_F_IPV6_CSUM)) {
6843 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6844 		features &= ~NETIF_F_TSO6;
6845 	}
6846 
6847 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6848 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6849 		features &= ~NETIF_F_TSO_MANGLEID;
6850 
6851 	/* TSO ECN requires that TSO is present as well. */
6852 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6853 		features &= ~NETIF_F_TSO_ECN;
6854 
6855 	/* Software GSO depends on SG. */
6856 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6857 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6858 		features &= ~NETIF_F_GSO;
6859 	}
6860 
6861 	/* UFO needs SG and checksumming */
6862 	if (features & NETIF_F_UFO) {
6863 		/* maybe split UFO into V4 and V6? */
6864 		if (!(features & NETIF_F_HW_CSUM) &&
6865 		    ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6866 		     (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6867 			netdev_dbg(dev,
6868 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6869 			features &= ~NETIF_F_UFO;
6870 		}
6871 
6872 		if (!(features & NETIF_F_SG)) {
6873 			netdev_dbg(dev,
6874 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6875 			features &= ~NETIF_F_UFO;
6876 		}
6877 	}
6878 
6879 	/* GSO partial features require GSO partial be set */
6880 	if ((features & dev->gso_partial_features) &&
6881 	    !(features & NETIF_F_GSO_PARTIAL)) {
6882 		netdev_dbg(dev,
6883 			   "Dropping partially supported GSO features since no GSO partial.\n");
6884 		features &= ~dev->gso_partial_features;
6885 	}
6886 
6887 #ifdef CONFIG_NET_RX_BUSY_POLL
6888 	if (dev->netdev_ops->ndo_busy_poll)
6889 		features |= NETIF_F_BUSY_POLL;
6890 	else
6891 #endif
6892 		features &= ~NETIF_F_BUSY_POLL;
6893 
6894 	return features;
6895 }
6896 
6897 int __netdev_update_features(struct net_device *dev)
6898 {
6899 	struct net_device *upper, *lower;
6900 	netdev_features_t features;
6901 	struct list_head *iter;
6902 	int err = -1;
6903 
6904 	ASSERT_RTNL();
6905 
6906 	features = netdev_get_wanted_features(dev);
6907 
6908 	if (dev->netdev_ops->ndo_fix_features)
6909 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6910 
6911 	/* driver might be less strict about feature dependencies */
6912 	features = netdev_fix_features(dev, features);
6913 
6914 	/* some features can't be enabled if they're off an an upper device */
6915 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
6916 		features = netdev_sync_upper_features(dev, upper, features);
6917 
6918 	if (dev->features == features)
6919 		goto sync_lower;
6920 
6921 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6922 		&dev->features, &features);
6923 
6924 	if (dev->netdev_ops->ndo_set_features)
6925 		err = dev->netdev_ops->ndo_set_features(dev, features);
6926 	else
6927 		err = 0;
6928 
6929 	if (unlikely(err < 0)) {
6930 		netdev_err(dev,
6931 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6932 			err, &features, &dev->features);
6933 		/* return non-0 since some features might have changed and
6934 		 * it's better to fire a spurious notification than miss it
6935 		 */
6936 		return -1;
6937 	}
6938 
6939 sync_lower:
6940 	/* some features must be disabled on lower devices when disabled
6941 	 * on an upper device (think: bonding master or bridge)
6942 	 */
6943 	netdev_for_each_lower_dev(dev, lower, iter)
6944 		netdev_sync_lower_features(dev, lower, features);
6945 
6946 	if (!err)
6947 		dev->features = features;
6948 
6949 	return err < 0 ? 0 : 1;
6950 }
6951 
6952 /**
6953  *	netdev_update_features - recalculate device features
6954  *	@dev: the device to check
6955  *
6956  *	Recalculate dev->features set and send notifications if it
6957  *	has changed. Should be called after driver or hardware dependent
6958  *	conditions might have changed that influence the features.
6959  */
6960 void netdev_update_features(struct net_device *dev)
6961 {
6962 	if (__netdev_update_features(dev))
6963 		netdev_features_change(dev);
6964 }
6965 EXPORT_SYMBOL(netdev_update_features);
6966 
6967 /**
6968  *	netdev_change_features - recalculate device features
6969  *	@dev: the device to check
6970  *
6971  *	Recalculate dev->features set and send notifications even
6972  *	if they have not changed. Should be called instead of
6973  *	netdev_update_features() if also dev->vlan_features might
6974  *	have changed to allow the changes to be propagated to stacked
6975  *	VLAN devices.
6976  */
6977 void netdev_change_features(struct net_device *dev)
6978 {
6979 	__netdev_update_features(dev);
6980 	netdev_features_change(dev);
6981 }
6982 EXPORT_SYMBOL(netdev_change_features);
6983 
6984 /**
6985  *	netif_stacked_transfer_operstate -	transfer operstate
6986  *	@rootdev: the root or lower level device to transfer state from
6987  *	@dev: the device to transfer operstate to
6988  *
6989  *	Transfer operational state from root to device. This is normally
6990  *	called when a stacking relationship exists between the root
6991  *	device and the device(a leaf device).
6992  */
6993 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6994 					struct net_device *dev)
6995 {
6996 	if (rootdev->operstate == IF_OPER_DORMANT)
6997 		netif_dormant_on(dev);
6998 	else
6999 		netif_dormant_off(dev);
7000 
7001 	if (netif_carrier_ok(rootdev)) {
7002 		if (!netif_carrier_ok(dev))
7003 			netif_carrier_on(dev);
7004 	} else {
7005 		if (netif_carrier_ok(dev))
7006 			netif_carrier_off(dev);
7007 	}
7008 }
7009 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7010 
7011 #ifdef CONFIG_SYSFS
7012 static int netif_alloc_rx_queues(struct net_device *dev)
7013 {
7014 	unsigned int i, count = dev->num_rx_queues;
7015 	struct netdev_rx_queue *rx;
7016 	size_t sz = count * sizeof(*rx);
7017 
7018 	BUG_ON(count < 1);
7019 
7020 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7021 	if (!rx) {
7022 		rx = vzalloc(sz);
7023 		if (!rx)
7024 			return -ENOMEM;
7025 	}
7026 	dev->_rx = rx;
7027 
7028 	for (i = 0; i < count; i++)
7029 		rx[i].dev = dev;
7030 	return 0;
7031 }
7032 #endif
7033 
7034 static void netdev_init_one_queue(struct net_device *dev,
7035 				  struct netdev_queue *queue, void *_unused)
7036 {
7037 	/* Initialize queue lock */
7038 	spin_lock_init(&queue->_xmit_lock);
7039 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7040 	queue->xmit_lock_owner = -1;
7041 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7042 	queue->dev = dev;
7043 #ifdef CONFIG_BQL
7044 	dql_init(&queue->dql, HZ);
7045 #endif
7046 }
7047 
7048 static void netif_free_tx_queues(struct net_device *dev)
7049 {
7050 	kvfree(dev->_tx);
7051 }
7052 
7053 static int netif_alloc_netdev_queues(struct net_device *dev)
7054 {
7055 	unsigned int count = dev->num_tx_queues;
7056 	struct netdev_queue *tx;
7057 	size_t sz = count * sizeof(*tx);
7058 
7059 	if (count < 1 || count > 0xffff)
7060 		return -EINVAL;
7061 
7062 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7063 	if (!tx) {
7064 		tx = vzalloc(sz);
7065 		if (!tx)
7066 			return -ENOMEM;
7067 	}
7068 	dev->_tx = tx;
7069 
7070 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7071 	spin_lock_init(&dev->tx_global_lock);
7072 
7073 	return 0;
7074 }
7075 
7076 void netif_tx_stop_all_queues(struct net_device *dev)
7077 {
7078 	unsigned int i;
7079 
7080 	for (i = 0; i < dev->num_tx_queues; i++) {
7081 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7082 		netif_tx_stop_queue(txq);
7083 	}
7084 }
7085 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7086 
7087 /**
7088  *	register_netdevice	- register a network device
7089  *	@dev: device to register
7090  *
7091  *	Take a completed network device structure and add it to the kernel
7092  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7093  *	chain. 0 is returned on success. A negative errno code is returned
7094  *	on a failure to set up the device, or if the name is a duplicate.
7095  *
7096  *	Callers must hold the rtnl semaphore. You may want
7097  *	register_netdev() instead of this.
7098  *
7099  *	BUGS:
7100  *	The locking appears insufficient to guarantee two parallel registers
7101  *	will not get the same name.
7102  */
7103 
7104 int register_netdevice(struct net_device *dev)
7105 {
7106 	int ret;
7107 	struct net *net = dev_net(dev);
7108 
7109 	BUG_ON(dev_boot_phase);
7110 	ASSERT_RTNL();
7111 
7112 	might_sleep();
7113 
7114 	/* When net_device's are persistent, this will be fatal. */
7115 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7116 	BUG_ON(!net);
7117 
7118 	spin_lock_init(&dev->addr_list_lock);
7119 	netdev_set_addr_lockdep_class(dev);
7120 
7121 	ret = dev_get_valid_name(net, dev, dev->name);
7122 	if (ret < 0)
7123 		goto out;
7124 
7125 	/* Init, if this function is available */
7126 	if (dev->netdev_ops->ndo_init) {
7127 		ret = dev->netdev_ops->ndo_init(dev);
7128 		if (ret) {
7129 			if (ret > 0)
7130 				ret = -EIO;
7131 			goto out;
7132 		}
7133 	}
7134 
7135 	if (((dev->hw_features | dev->features) &
7136 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7137 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7138 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7139 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7140 		ret = -EINVAL;
7141 		goto err_uninit;
7142 	}
7143 
7144 	ret = -EBUSY;
7145 	if (!dev->ifindex)
7146 		dev->ifindex = dev_new_index(net);
7147 	else if (__dev_get_by_index(net, dev->ifindex))
7148 		goto err_uninit;
7149 
7150 	/* Transfer changeable features to wanted_features and enable
7151 	 * software offloads (GSO and GRO).
7152 	 */
7153 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7154 	dev->features |= NETIF_F_SOFT_FEATURES;
7155 	dev->wanted_features = dev->features & dev->hw_features;
7156 
7157 	if (!(dev->flags & IFF_LOOPBACK))
7158 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7159 
7160 	/* If IPv4 TCP segmentation offload is supported we should also
7161 	 * allow the device to enable segmenting the frame with the option
7162 	 * of ignoring a static IP ID value.  This doesn't enable the
7163 	 * feature itself but allows the user to enable it later.
7164 	 */
7165 	if (dev->hw_features & NETIF_F_TSO)
7166 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7167 	if (dev->vlan_features & NETIF_F_TSO)
7168 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7169 	if (dev->mpls_features & NETIF_F_TSO)
7170 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7171 	if (dev->hw_enc_features & NETIF_F_TSO)
7172 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7173 
7174 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7175 	 */
7176 	dev->vlan_features |= NETIF_F_HIGHDMA;
7177 
7178 	/* Make NETIF_F_SG inheritable to tunnel devices.
7179 	 */
7180 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7181 
7182 	/* Make NETIF_F_SG inheritable to MPLS.
7183 	 */
7184 	dev->mpls_features |= NETIF_F_SG;
7185 
7186 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7187 	ret = notifier_to_errno(ret);
7188 	if (ret)
7189 		goto err_uninit;
7190 
7191 	ret = netdev_register_kobject(dev);
7192 	if (ret)
7193 		goto err_uninit;
7194 	dev->reg_state = NETREG_REGISTERED;
7195 
7196 	__netdev_update_features(dev);
7197 
7198 	/*
7199 	 *	Default initial state at registry is that the
7200 	 *	device is present.
7201 	 */
7202 
7203 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7204 
7205 	linkwatch_init_dev(dev);
7206 
7207 	dev_init_scheduler(dev);
7208 	dev_hold(dev);
7209 	list_netdevice(dev);
7210 	add_device_randomness(dev->dev_addr, dev->addr_len);
7211 
7212 	/* If the device has permanent device address, driver should
7213 	 * set dev_addr and also addr_assign_type should be set to
7214 	 * NET_ADDR_PERM (default value).
7215 	 */
7216 	if (dev->addr_assign_type == NET_ADDR_PERM)
7217 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7218 
7219 	/* Notify protocols, that a new device appeared. */
7220 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7221 	ret = notifier_to_errno(ret);
7222 	if (ret) {
7223 		rollback_registered(dev);
7224 		dev->reg_state = NETREG_UNREGISTERED;
7225 	}
7226 	/*
7227 	 *	Prevent userspace races by waiting until the network
7228 	 *	device is fully setup before sending notifications.
7229 	 */
7230 	if (!dev->rtnl_link_ops ||
7231 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7232 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7233 
7234 out:
7235 	return ret;
7236 
7237 err_uninit:
7238 	if (dev->netdev_ops->ndo_uninit)
7239 		dev->netdev_ops->ndo_uninit(dev);
7240 	goto out;
7241 }
7242 EXPORT_SYMBOL(register_netdevice);
7243 
7244 /**
7245  *	init_dummy_netdev	- init a dummy network device for NAPI
7246  *	@dev: device to init
7247  *
7248  *	This takes a network device structure and initialize the minimum
7249  *	amount of fields so it can be used to schedule NAPI polls without
7250  *	registering a full blown interface. This is to be used by drivers
7251  *	that need to tie several hardware interfaces to a single NAPI
7252  *	poll scheduler due to HW limitations.
7253  */
7254 int init_dummy_netdev(struct net_device *dev)
7255 {
7256 	/* Clear everything. Note we don't initialize spinlocks
7257 	 * are they aren't supposed to be taken by any of the
7258 	 * NAPI code and this dummy netdev is supposed to be
7259 	 * only ever used for NAPI polls
7260 	 */
7261 	memset(dev, 0, sizeof(struct net_device));
7262 
7263 	/* make sure we BUG if trying to hit standard
7264 	 * register/unregister code path
7265 	 */
7266 	dev->reg_state = NETREG_DUMMY;
7267 
7268 	/* NAPI wants this */
7269 	INIT_LIST_HEAD(&dev->napi_list);
7270 
7271 	/* a dummy interface is started by default */
7272 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7273 	set_bit(__LINK_STATE_START, &dev->state);
7274 
7275 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7276 	 * because users of this 'device' dont need to change
7277 	 * its refcount.
7278 	 */
7279 
7280 	return 0;
7281 }
7282 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7283 
7284 
7285 /**
7286  *	register_netdev	- register a network device
7287  *	@dev: device to register
7288  *
7289  *	Take a completed network device structure and add it to the kernel
7290  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7291  *	chain. 0 is returned on success. A negative errno code is returned
7292  *	on a failure to set up the device, or if the name is a duplicate.
7293  *
7294  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7295  *	and expands the device name if you passed a format string to
7296  *	alloc_netdev.
7297  */
7298 int register_netdev(struct net_device *dev)
7299 {
7300 	int err;
7301 
7302 	rtnl_lock();
7303 	err = register_netdevice(dev);
7304 	rtnl_unlock();
7305 	return err;
7306 }
7307 EXPORT_SYMBOL(register_netdev);
7308 
7309 int netdev_refcnt_read(const struct net_device *dev)
7310 {
7311 	int i, refcnt = 0;
7312 
7313 	for_each_possible_cpu(i)
7314 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7315 	return refcnt;
7316 }
7317 EXPORT_SYMBOL(netdev_refcnt_read);
7318 
7319 /**
7320  * netdev_wait_allrefs - wait until all references are gone.
7321  * @dev: target net_device
7322  *
7323  * This is called when unregistering network devices.
7324  *
7325  * Any protocol or device that holds a reference should register
7326  * for netdevice notification, and cleanup and put back the
7327  * reference if they receive an UNREGISTER event.
7328  * We can get stuck here if buggy protocols don't correctly
7329  * call dev_put.
7330  */
7331 static void netdev_wait_allrefs(struct net_device *dev)
7332 {
7333 	unsigned long rebroadcast_time, warning_time;
7334 	int refcnt;
7335 
7336 	linkwatch_forget_dev(dev);
7337 
7338 	rebroadcast_time = warning_time = jiffies;
7339 	refcnt = netdev_refcnt_read(dev);
7340 
7341 	while (refcnt != 0) {
7342 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7343 			rtnl_lock();
7344 
7345 			/* Rebroadcast unregister notification */
7346 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7347 
7348 			__rtnl_unlock();
7349 			rcu_barrier();
7350 			rtnl_lock();
7351 
7352 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7353 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7354 				     &dev->state)) {
7355 				/* We must not have linkwatch events
7356 				 * pending on unregister. If this
7357 				 * happens, we simply run the queue
7358 				 * unscheduled, resulting in a noop
7359 				 * for this device.
7360 				 */
7361 				linkwatch_run_queue();
7362 			}
7363 
7364 			__rtnl_unlock();
7365 
7366 			rebroadcast_time = jiffies;
7367 		}
7368 
7369 		msleep(250);
7370 
7371 		refcnt = netdev_refcnt_read(dev);
7372 
7373 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7374 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7375 				 dev->name, refcnt);
7376 			warning_time = jiffies;
7377 		}
7378 	}
7379 }
7380 
7381 /* The sequence is:
7382  *
7383  *	rtnl_lock();
7384  *	...
7385  *	register_netdevice(x1);
7386  *	register_netdevice(x2);
7387  *	...
7388  *	unregister_netdevice(y1);
7389  *	unregister_netdevice(y2);
7390  *      ...
7391  *	rtnl_unlock();
7392  *	free_netdev(y1);
7393  *	free_netdev(y2);
7394  *
7395  * We are invoked by rtnl_unlock().
7396  * This allows us to deal with problems:
7397  * 1) We can delete sysfs objects which invoke hotplug
7398  *    without deadlocking with linkwatch via keventd.
7399  * 2) Since we run with the RTNL semaphore not held, we can sleep
7400  *    safely in order to wait for the netdev refcnt to drop to zero.
7401  *
7402  * We must not return until all unregister events added during
7403  * the interval the lock was held have been completed.
7404  */
7405 void netdev_run_todo(void)
7406 {
7407 	struct list_head list;
7408 
7409 	/* Snapshot list, allow later requests */
7410 	list_replace_init(&net_todo_list, &list);
7411 
7412 	__rtnl_unlock();
7413 
7414 
7415 	/* Wait for rcu callbacks to finish before next phase */
7416 	if (!list_empty(&list))
7417 		rcu_barrier();
7418 
7419 	while (!list_empty(&list)) {
7420 		struct net_device *dev
7421 			= list_first_entry(&list, struct net_device, todo_list);
7422 		list_del(&dev->todo_list);
7423 
7424 		rtnl_lock();
7425 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7426 		__rtnl_unlock();
7427 
7428 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7429 			pr_err("network todo '%s' but state %d\n",
7430 			       dev->name, dev->reg_state);
7431 			dump_stack();
7432 			continue;
7433 		}
7434 
7435 		dev->reg_state = NETREG_UNREGISTERED;
7436 
7437 		netdev_wait_allrefs(dev);
7438 
7439 		/* paranoia */
7440 		BUG_ON(netdev_refcnt_read(dev));
7441 		BUG_ON(!list_empty(&dev->ptype_all));
7442 		BUG_ON(!list_empty(&dev->ptype_specific));
7443 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7444 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7445 		WARN_ON(dev->dn_ptr);
7446 
7447 		if (dev->destructor)
7448 			dev->destructor(dev);
7449 
7450 		/* Report a network device has been unregistered */
7451 		rtnl_lock();
7452 		dev_net(dev)->dev_unreg_count--;
7453 		__rtnl_unlock();
7454 		wake_up(&netdev_unregistering_wq);
7455 
7456 		/* Free network device */
7457 		kobject_put(&dev->dev.kobj);
7458 	}
7459 }
7460 
7461 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7462  * all the same fields in the same order as net_device_stats, with only
7463  * the type differing, but rtnl_link_stats64 may have additional fields
7464  * at the end for newer counters.
7465  */
7466 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7467 			     const struct net_device_stats *netdev_stats)
7468 {
7469 #if BITS_PER_LONG == 64
7470 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7471 	memcpy(stats64, netdev_stats, sizeof(*stats64));
7472 	/* zero out counters that only exist in rtnl_link_stats64 */
7473 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7474 	       sizeof(*stats64) - sizeof(*netdev_stats));
7475 #else
7476 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7477 	const unsigned long *src = (const unsigned long *)netdev_stats;
7478 	u64 *dst = (u64 *)stats64;
7479 
7480 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7481 	for (i = 0; i < n; i++)
7482 		dst[i] = src[i];
7483 	/* zero out counters that only exist in rtnl_link_stats64 */
7484 	memset((char *)stats64 + n * sizeof(u64), 0,
7485 	       sizeof(*stats64) - n * sizeof(u64));
7486 #endif
7487 }
7488 EXPORT_SYMBOL(netdev_stats_to_stats64);
7489 
7490 /**
7491  *	dev_get_stats	- get network device statistics
7492  *	@dev: device to get statistics from
7493  *	@storage: place to store stats
7494  *
7495  *	Get network statistics from device. Return @storage.
7496  *	The device driver may provide its own method by setting
7497  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7498  *	otherwise the internal statistics structure is used.
7499  */
7500 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7501 					struct rtnl_link_stats64 *storage)
7502 {
7503 	const struct net_device_ops *ops = dev->netdev_ops;
7504 
7505 	if (ops->ndo_get_stats64) {
7506 		memset(storage, 0, sizeof(*storage));
7507 		ops->ndo_get_stats64(dev, storage);
7508 	} else if (ops->ndo_get_stats) {
7509 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7510 	} else {
7511 		netdev_stats_to_stats64(storage, &dev->stats);
7512 	}
7513 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7514 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7515 	storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7516 	return storage;
7517 }
7518 EXPORT_SYMBOL(dev_get_stats);
7519 
7520 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7521 {
7522 	struct netdev_queue *queue = dev_ingress_queue(dev);
7523 
7524 #ifdef CONFIG_NET_CLS_ACT
7525 	if (queue)
7526 		return queue;
7527 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7528 	if (!queue)
7529 		return NULL;
7530 	netdev_init_one_queue(dev, queue, NULL);
7531 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7532 	queue->qdisc_sleeping = &noop_qdisc;
7533 	rcu_assign_pointer(dev->ingress_queue, queue);
7534 #endif
7535 	return queue;
7536 }
7537 
7538 static const struct ethtool_ops default_ethtool_ops;
7539 
7540 void netdev_set_default_ethtool_ops(struct net_device *dev,
7541 				    const struct ethtool_ops *ops)
7542 {
7543 	if (dev->ethtool_ops == &default_ethtool_ops)
7544 		dev->ethtool_ops = ops;
7545 }
7546 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7547 
7548 void netdev_freemem(struct net_device *dev)
7549 {
7550 	char *addr = (char *)dev - dev->padded;
7551 
7552 	kvfree(addr);
7553 }
7554 
7555 /**
7556  *	alloc_netdev_mqs - allocate network device
7557  *	@sizeof_priv:		size of private data to allocate space for
7558  *	@name:			device name format string
7559  *	@name_assign_type: 	origin of device name
7560  *	@setup:			callback to initialize device
7561  *	@txqs:			the number of TX subqueues to allocate
7562  *	@rxqs:			the number of RX subqueues to allocate
7563  *
7564  *	Allocates a struct net_device with private data area for driver use
7565  *	and performs basic initialization.  Also allocates subqueue structs
7566  *	for each queue on the device.
7567  */
7568 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7569 		unsigned char name_assign_type,
7570 		void (*setup)(struct net_device *),
7571 		unsigned int txqs, unsigned int rxqs)
7572 {
7573 	struct net_device *dev;
7574 	size_t alloc_size;
7575 	struct net_device *p;
7576 
7577 	BUG_ON(strlen(name) >= sizeof(dev->name));
7578 
7579 	if (txqs < 1) {
7580 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7581 		return NULL;
7582 	}
7583 
7584 #ifdef CONFIG_SYSFS
7585 	if (rxqs < 1) {
7586 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7587 		return NULL;
7588 	}
7589 #endif
7590 
7591 	alloc_size = sizeof(struct net_device);
7592 	if (sizeof_priv) {
7593 		/* ensure 32-byte alignment of private area */
7594 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7595 		alloc_size += sizeof_priv;
7596 	}
7597 	/* ensure 32-byte alignment of whole construct */
7598 	alloc_size += NETDEV_ALIGN - 1;
7599 
7600 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7601 	if (!p)
7602 		p = vzalloc(alloc_size);
7603 	if (!p)
7604 		return NULL;
7605 
7606 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
7607 	dev->padded = (char *)dev - (char *)p;
7608 
7609 	dev->pcpu_refcnt = alloc_percpu(int);
7610 	if (!dev->pcpu_refcnt)
7611 		goto free_dev;
7612 
7613 	if (dev_addr_init(dev))
7614 		goto free_pcpu;
7615 
7616 	dev_mc_init(dev);
7617 	dev_uc_init(dev);
7618 
7619 	dev_net_set(dev, &init_net);
7620 
7621 	dev->gso_max_size = GSO_MAX_SIZE;
7622 	dev->gso_max_segs = GSO_MAX_SEGS;
7623 
7624 	INIT_LIST_HEAD(&dev->napi_list);
7625 	INIT_LIST_HEAD(&dev->unreg_list);
7626 	INIT_LIST_HEAD(&dev->close_list);
7627 	INIT_LIST_HEAD(&dev->link_watch_list);
7628 	INIT_LIST_HEAD(&dev->adj_list.upper);
7629 	INIT_LIST_HEAD(&dev->adj_list.lower);
7630 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
7631 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
7632 	INIT_LIST_HEAD(&dev->ptype_all);
7633 	INIT_LIST_HEAD(&dev->ptype_specific);
7634 #ifdef CONFIG_NET_SCHED
7635 	hash_init(dev->qdisc_hash);
7636 #endif
7637 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7638 	setup(dev);
7639 
7640 	if (!dev->tx_queue_len) {
7641 		dev->priv_flags |= IFF_NO_QUEUE;
7642 		dev->tx_queue_len = 1;
7643 	}
7644 
7645 	dev->num_tx_queues = txqs;
7646 	dev->real_num_tx_queues = txqs;
7647 	if (netif_alloc_netdev_queues(dev))
7648 		goto free_all;
7649 
7650 #ifdef CONFIG_SYSFS
7651 	dev->num_rx_queues = rxqs;
7652 	dev->real_num_rx_queues = rxqs;
7653 	if (netif_alloc_rx_queues(dev))
7654 		goto free_all;
7655 #endif
7656 
7657 	strcpy(dev->name, name);
7658 	dev->name_assign_type = name_assign_type;
7659 	dev->group = INIT_NETDEV_GROUP;
7660 	if (!dev->ethtool_ops)
7661 		dev->ethtool_ops = &default_ethtool_ops;
7662 
7663 	nf_hook_ingress_init(dev);
7664 
7665 	return dev;
7666 
7667 free_all:
7668 	free_netdev(dev);
7669 	return NULL;
7670 
7671 free_pcpu:
7672 	free_percpu(dev->pcpu_refcnt);
7673 free_dev:
7674 	netdev_freemem(dev);
7675 	return NULL;
7676 }
7677 EXPORT_SYMBOL(alloc_netdev_mqs);
7678 
7679 /**
7680  *	free_netdev - free network device
7681  *	@dev: device
7682  *
7683  *	This function does the last stage of destroying an allocated device
7684  * 	interface. The reference to the device object is released.
7685  *	If this is the last reference then it will be freed.
7686  *	Must be called in process context.
7687  */
7688 void free_netdev(struct net_device *dev)
7689 {
7690 	struct napi_struct *p, *n;
7691 
7692 	might_sleep();
7693 	netif_free_tx_queues(dev);
7694 #ifdef CONFIG_SYSFS
7695 	kvfree(dev->_rx);
7696 #endif
7697 
7698 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7699 
7700 	/* Flush device addresses */
7701 	dev_addr_flush(dev);
7702 
7703 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7704 		netif_napi_del(p);
7705 
7706 	free_percpu(dev->pcpu_refcnt);
7707 	dev->pcpu_refcnt = NULL;
7708 
7709 	/*  Compatibility with error handling in drivers */
7710 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7711 		netdev_freemem(dev);
7712 		return;
7713 	}
7714 
7715 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7716 	dev->reg_state = NETREG_RELEASED;
7717 
7718 	/* will free via device release */
7719 	put_device(&dev->dev);
7720 }
7721 EXPORT_SYMBOL(free_netdev);
7722 
7723 /**
7724  *	synchronize_net -  Synchronize with packet receive processing
7725  *
7726  *	Wait for packets currently being received to be done.
7727  *	Does not block later packets from starting.
7728  */
7729 void synchronize_net(void)
7730 {
7731 	might_sleep();
7732 	if (rtnl_is_locked())
7733 		synchronize_rcu_expedited();
7734 	else
7735 		synchronize_rcu();
7736 }
7737 EXPORT_SYMBOL(synchronize_net);
7738 
7739 /**
7740  *	unregister_netdevice_queue - remove device from the kernel
7741  *	@dev: device
7742  *	@head: list
7743  *
7744  *	This function shuts down a device interface and removes it
7745  *	from the kernel tables.
7746  *	If head not NULL, device is queued to be unregistered later.
7747  *
7748  *	Callers must hold the rtnl semaphore.  You may want
7749  *	unregister_netdev() instead of this.
7750  */
7751 
7752 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7753 {
7754 	ASSERT_RTNL();
7755 
7756 	if (head) {
7757 		list_move_tail(&dev->unreg_list, head);
7758 	} else {
7759 		rollback_registered(dev);
7760 		/* Finish processing unregister after unlock */
7761 		net_set_todo(dev);
7762 	}
7763 }
7764 EXPORT_SYMBOL(unregister_netdevice_queue);
7765 
7766 /**
7767  *	unregister_netdevice_many - unregister many devices
7768  *	@head: list of devices
7769  *
7770  *  Note: As most callers use a stack allocated list_head,
7771  *  we force a list_del() to make sure stack wont be corrupted later.
7772  */
7773 void unregister_netdevice_many(struct list_head *head)
7774 {
7775 	struct net_device *dev;
7776 
7777 	if (!list_empty(head)) {
7778 		rollback_registered_many(head);
7779 		list_for_each_entry(dev, head, unreg_list)
7780 			net_set_todo(dev);
7781 		list_del(head);
7782 	}
7783 }
7784 EXPORT_SYMBOL(unregister_netdevice_many);
7785 
7786 /**
7787  *	unregister_netdev - remove device from the kernel
7788  *	@dev: device
7789  *
7790  *	This function shuts down a device interface and removes it
7791  *	from the kernel tables.
7792  *
7793  *	This is just a wrapper for unregister_netdevice that takes
7794  *	the rtnl semaphore.  In general you want to use this and not
7795  *	unregister_netdevice.
7796  */
7797 void unregister_netdev(struct net_device *dev)
7798 {
7799 	rtnl_lock();
7800 	unregister_netdevice(dev);
7801 	rtnl_unlock();
7802 }
7803 EXPORT_SYMBOL(unregister_netdev);
7804 
7805 /**
7806  *	dev_change_net_namespace - move device to different nethost namespace
7807  *	@dev: device
7808  *	@net: network namespace
7809  *	@pat: If not NULL name pattern to try if the current device name
7810  *	      is already taken in the destination network namespace.
7811  *
7812  *	This function shuts down a device interface and moves it
7813  *	to a new network namespace. On success 0 is returned, on
7814  *	a failure a netagive errno code is returned.
7815  *
7816  *	Callers must hold the rtnl semaphore.
7817  */
7818 
7819 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7820 {
7821 	int err;
7822 
7823 	ASSERT_RTNL();
7824 
7825 	/* Don't allow namespace local devices to be moved. */
7826 	err = -EINVAL;
7827 	if (dev->features & NETIF_F_NETNS_LOCAL)
7828 		goto out;
7829 
7830 	/* Ensure the device has been registrered */
7831 	if (dev->reg_state != NETREG_REGISTERED)
7832 		goto out;
7833 
7834 	/* Get out if there is nothing todo */
7835 	err = 0;
7836 	if (net_eq(dev_net(dev), net))
7837 		goto out;
7838 
7839 	/* Pick the destination device name, and ensure
7840 	 * we can use it in the destination network namespace.
7841 	 */
7842 	err = -EEXIST;
7843 	if (__dev_get_by_name(net, dev->name)) {
7844 		/* We get here if we can't use the current device name */
7845 		if (!pat)
7846 			goto out;
7847 		if (dev_get_valid_name(net, dev, pat) < 0)
7848 			goto out;
7849 	}
7850 
7851 	/*
7852 	 * And now a mini version of register_netdevice unregister_netdevice.
7853 	 */
7854 
7855 	/* If device is running close it first. */
7856 	dev_close(dev);
7857 
7858 	/* And unlink it from device chain */
7859 	err = -ENODEV;
7860 	unlist_netdevice(dev);
7861 
7862 	synchronize_net();
7863 
7864 	/* Shutdown queueing discipline. */
7865 	dev_shutdown(dev);
7866 
7867 	/* Notify protocols, that we are about to destroy
7868 	   this device. They should clean all the things.
7869 
7870 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7871 	   This is wanted because this way 8021q and macvlan know
7872 	   the device is just moving and can keep their slaves up.
7873 	*/
7874 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7875 	rcu_barrier();
7876 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7877 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7878 
7879 	/*
7880 	 *	Flush the unicast and multicast chains
7881 	 */
7882 	dev_uc_flush(dev);
7883 	dev_mc_flush(dev);
7884 
7885 	/* Send a netdev-removed uevent to the old namespace */
7886 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7887 	netdev_adjacent_del_links(dev);
7888 
7889 	/* Actually switch the network namespace */
7890 	dev_net_set(dev, net);
7891 
7892 	/* If there is an ifindex conflict assign a new one */
7893 	if (__dev_get_by_index(net, dev->ifindex))
7894 		dev->ifindex = dev_new_index(net);
7895 
7896 	/* Send a netdev-add uevent to the new namespace */
7897 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7898 	netdev_adjacent_add_links(dev);
7899 
7900 	/* Fixup kobjects */
7901 	err = device_rename(&dev->dev, dev->name);
7902 	WARN_ON(err);
7903 
7904 	/* Add the device back in the hashes */
7905 	list_netdevice(dev);
7906 
7907 	/* Notify protocols, that a new device appeared. */
7908 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7909 
7910 	/*
7911 	 *	Prevent userspace races by waiting until the network
7912 	 *	device is fully setup before sending notifications.
7913 	 */
7914 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7915 
7916 	synchronize_net();
7917 	err = 0;
7918 out:
7919 	return err;
7920 }
7921 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7922 
7923 static int dev_cpu_callback(struct notifier_block *nfb,
7924 			    unsigned long action,
7925 			    void *ocpu)
7926 {
7927 	struct sk_buff **list_skb;
7928 	struct sk_buff *skb;
7929 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7930 	struct softnet_data *sd, *oldsd;
7931 
7932 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7933 		return NOTIFY_OK;
7934 
7935 	local_irq_disable();
7936 	cpu = smp_processor_id();
7937 	sd = &per_cpu(softnet_data, cpu);
7938 	oldsd = &per_cpu(softnet_data, oldcpu);
7939 
7940 	/* Find end of our completion_queue. */
7941 	list_skb = &sd->completion_queue;
7942 	while (*list_skb)
7943 		list_skb = &(*list_skb)->next;
7944 	/* Append completion queue from offline CPU. */
7945 	*list_skb = oldsd->completion_queue;
7946 	oldsd->completion_queue = NULL;
7947 
7948 	/* Append output queue from offline CPU. */
7949 	if (oldsd->output_queue) {
7950 		*sd->output_queue_tailp = oldsd->output_queue;
7951 		sd->output_queue_tailp = oldsd->output_queue_tailp;
7952 		oldsd->output_queue = NULL;
7953 		oldsd->output_queue_tailp = &oldsd->output_queue;
7954 	}
7955 	/* Append NAPI poll list from offline CPU, with one exception :
7956 	 * process_backlog() must be called by cpu owning percpu backlog.
7957 	 * We properly handle process_queue & input_pkt_queue later.
7958 	 */
7959 	while (!list_empty(&oldsd->poll_list)) {
7960 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7961 							    struct napi_struct,
7962 							    poll_list);
7963 
7964 		list_del_init(&napi->poll_list);
7965 		if (napi->poll == process_backlog)
7966 			napi->state = 0;
7967 		else
7968 			____napi_schedule(sd, napi);
7969 	}
7970 
7971 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7972 	local_irq_enable();
7973 
7974 	/* Process offline CPU's input_pkt_queue */
7975 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7976 		netif_rx_ni(skb);
7977 		input_queue_head_incr(oldsd);
7978 	}
7979 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7980 		netif_rx_ni(skb);
7981 		input_queue_head_incr(oldsd);
7982 	}
7983 
7984 	return NOTIFY_OK;
7985 }
7986 
7987 
7988 /**
7989  *	netdev_increment_features - increment feature set by one
7990  *	@all: current feature set
7991  *	@one: new feature set
7992  *	@mask: mask feature set
7993  *
7994  *	Computes a new feature set after adding a device with feature set
7995  *	@one to the master device with current feature set @all.  Will not
7996  *	enable anything that is off in @mask. Returns the new feature set.
7997  */
7998 netdev_features_t netdev_increment_features(netdev_features_t all,
7999 	netdev_features_t one, netdev_features_t mask)
8000 {
8001 	if (mask & NETIF_F_HW_CSUM)
8002 		mask |= NETIF_F_CSUM_MASK;
8003 	mask |= NETIF_F_VLAN_CHALLENGED;
8004 
8005 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8006 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8007 
8008 	/* If one device supports hw checksumming, set for all. */
8009 	if (all & NETIF_F_HW_CSUM)
8010 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8011 
8012 	return all;
8013 }
8014 EXPORT_SYMBOL(netdev_increment_features);
8015 
8016 static struct hlist_head * __net_init netdev_create_hash(void)
8017 {
8018 	int i;
8019 	struct hlist_head *hash;
8020 
8021 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8022 	if (hash != NULL)
8023 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8024 			INIT_HLIST_HEAD(&hash[i]);
8025 
8026 	return hash;
8027 }
8028 
8029 /* Initialize per network namespace state */
8030 static int __net_init netdev_init(struct net *net)
8031 {
8032 	if (net != &init_net)
8033 		INIT_LIST_HEAD(&net->dev_base_head);
8034 
8035 	net->dev_name_head = netdev_create_hash();
8036 	if (net->dev_name_head == NULL)
8037 		goto err_name;
8038 
8039 	net->dev_index_head = netdev_create_hash();
8040 	if (net->dev_index_head == NULL)
8041 		goto err_idx;
8042 
8043 	return 0;
8044 
8045 err_idx:
8046 	kfree(net->dev_name_head);
8047 err_name:
8048 	return -ENOMEM;
8049 }
8050 
8051 /**
8052  *	netdev_drivername - network driver for the device
8053  *	@dev: network device
8054  *
8055  *	Determine network driver for device.
8056  */
8057 const char *netdev_drivername(const struct net_device *dev)
8058 {
8059 	const struct device_driver *driver;
8060 	const struct device *parent;
8061 	const char *empty = "";
8062 
8063 	parent = dev->dev.parent;
8064 	if (!parent)
8065 		return empty;
8066 
8067 	driver = parent->driver;
8068 	if (driver && driver->name)
8069 		return driver->name;
8070 	return empty;
8071 }
8072 
8073 static void __netdev_printk(const char *level, const struct net_device *dev,
8074 			    struct va_format *vaf)
8075 {
8076 	if (dev && dev->dev.parent) {
8077 		dev_printk_emit(level[1] - '0',
8078 				dev->dev.parent,
8079 				"%s %s %s%s: %pV",
8080 				dev_driver_string(dev->dev.parent),
8081 				dev_name(dev->dev.parent),
8082 				netdev_name(dev), netdev_reg_state(dev),
8083 				vaf);
8084 	} else if (dev) {
8085 		printk("%s%s%s: %pV",
8086 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8087 	} else {
8088 		printk("%s(NULL net_device): %pV", level, vaf);
8089 	}
8090 }
8091 
8092 void netdev_printk(const char *level, const struct net_device *dev,
8093 		   const char *format, ...)
8094 {
8095 	struct va_format vaf;
8096 	va_list args;
8097 
8098 	va_start(args, format);
8099 
8100 	vaf.fmt = format;
8101 	vaf.va = &args;
8102 
8103 	__netdev_printk(level, dev, &vaf);
8104 
8105 	va_end(args);
8106 }
8107 EXPORT_SYMBOL(netdev_printk);
8108 
8109 #define define_netdev_printk_level(func, level)			\
8110 void func(const struct net_device *dev, const char *fmt, ...)	\
8111 {								\
8112 	struct va_format vaf;					\
8113 	va_list args;						\
8114 								\
8115 	va_start(args, fmt);					\
8116 								\
8117 	vaf.fmt = fmt;						\
8118 	vaf.va = &args;						\
8119 								\
8120 	__netdev_printk(level, dev, &vaf);			\
8121 								\
8122 	va_end(args);						\
8123 }								\
8124 EXPORT_SYMBOL(func);
8125 
8126 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8127 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8128 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8129 define_netdev_printk_level(netdev_err, KERN_ERR);
8130 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8131 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8132 define_netdev_printk_level(netdev_info, KERN_INFO);
8133 
8134 static void __net_exit netdev_exit(struct net *net)
8135 {
8136 	kfree(net->dev_name_head);
8137 	kfree(net->dev_index_head);
8138 }
8139 
8140 static struct pernet_operations __net_initdata netdev_net_ops = {
8141 	.init = netdev_init,
8142 	.exit = netdev_exit,
8143 };
8144 
8145 static void __net_exit default_device_exit(struct net *net)
8146 {
8147 	struct net_device *dev, *aux;
8148 	/*
8149 	 * Push all migratable network devices back to the
8150 	 * initial network namespace
8151 	 */
8152 	rtnl_lock();
8153 	for_each_netdev_safe(net, dev, aux) {
8154 		int err;
8155 		char fb_name[IFNAMSIZ];
8156 
8157 		/* Ignore unmoveable devices (i.e. loopback) */
8158 		if (dev->features & NETIF_F_NETNS_LOCAL)
8159 			continue;
8160 
8161 		/* Leave virtual devices for the generic cleanup */
8162 		if (dev->rtnl_link_ops)
8163 			continue;
8164 
8165 		/* Push remaining network devices to init_net */
8166 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8167 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8168 		if (err) {
8169 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8170 				 __func__, dev->name, err);
8171 			BUG();
8172 		}
8173 	}
8174 	rtnl_unlock();
8175 }
8176 
8177 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8178 {
8179 	/* Return with the rtnl_lock held when there are no network
8180 	 * devices unregistering in any network namespace in net_list.
8181 	 */
8182 	struct net *net;
8183 	bool unregistering;
8184 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8185 
8186 	add_wait_queue(&netdev_unregistering_wq, &wait);
8187 	for (;;) {
8188 		unregistering = false;
8189 		rtnl_lock();
8190 		list_for_each_entry(net, net_list, exit_list) {
8191 			if (net->dev_unreg_count > 0) {
8192 				unregistering = true;
8193 				break;
8194 			}
8195 		}
8196 		if (!unregistering)
8197 			break;
8198 		__rtnl_unlock();
8199 
8200 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8201 	}
8202 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8203 }
8204 
8205 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8206 {
8207 	/* At exit all network devices most be removed from a network
8208 	 * namespace.  Do this in the reverse order of registration.
8209 	 * Do this across as many network namespaces as possible to
8210 	 * improve batching efficiency.
8211 	 */
8212 	struct net_device *dev;
8213 	struct net *net;
8214 	LIST_HEAD(dev_kill_list);
8215 
8216 	/* To prevent network device cleanup code from dereferencing
8217 	 * loopback devices or network devices that have been freed
8218 	 * wait here for all pending unregistrations to complete,
8219 	 * before unregistring the loopback device and allowing the
8220 	 * network namespace be freed.
8221 	 *
8222 	 * The netdev todo list containing all network devices
8223 	 * unregistrations that happen in default_device_exit_batch
8224 	 * will run in the rtnl_unlock() at the end of
8225 	 * default_device_exit_batch.
8226 	 */
8227 	rtnl_lock_unregistering(net_list);
8228 	list_for_each_entry(net, net_list, exit_list) {
8229 		for_each_netdev_reverse(net, dev) {
8230 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8231 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8232 			else
8233 				unregister_netdevice_queue(dev, &dev_kill_list);
8234 		}
8235 	}
8236 	unregister_netdevice_many(&dev_kill_list);
8237 	rtnl_unlock();
8238 }
8239 
8240 static struct pernet_operations __net_initdata default_device_ops = {
8241 	.exit = default_device_exit,
8242 	.exit_batch = default_device_exit_batch,
8243 };
8244 
8245 /*
8246  *	Initialize the DEV module. At boot time this walks the device list and
8247  *	unhooks any devices that fail to initialise (normally hardware not
8248  *	present) and leaves us with a valid list of present and active devices.
8249  *
8250  */
8251 
8252 /*
8253  *       This is called single threaded during boot, so no need
8254  *       to take the rtnl semaphore.
8255  */
8256 static int __init net_dev_init(void)
8257 {
8258 	int i, rc = -ENOMEM;
8259 
8260 	BUG_ON(!dev_boot_phase);
8261 
8262 	if (dev_proc_init())
8263 		goto out;
8264 
8265 	if (netdev_kobject_init())
8266 		goto out;
8267 
8268 	INIT_LIST_HEAD(&ptype_all);
8269 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8270 		INIT_LIST_HEAD(&ptype_base[i]);
8271 
8272 	INIT_LIST_HEAD(&offload_base);
8273 
8274 	if (register_pernet_subsys(&netdev_net_ops))
8275 		goto out;
8276 
8277 	/*
8278 	 *	Initialise the packet receive queues.
8279 	 */
8280 
8281 	for_each_possible_cpu(i) {
8282 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8283 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8284 
8285 		INIT_WORK(flush, flush_backlog);
8286 
8287 		skb_queue_head_init(&sd->input_pkt_queue);
8288 		skb_queue_head_init(&sd->process_queue);
8289 		INIT_LIST_HEAD(&sd->poll_list);
8290 		sd->output_queue_tailp = &sd->output_queue;
8291 #ifdef CONFIG_RPS
8292 		sd->csd.func = rps_trigger_softirq;
8293 		sd->csd.info = sd;
8294 		sd->cpu = i;
8295 #endif
8296 
8297 		sd->backlog.poll = process_backlog;
8298 		sd->backlog.weight = weight_p;
8299 	}
8300 
8301 	dev_boot_phase = 0;
8302 
8303 	/* The loopback device is special if any other network devices
8304 	 * is present in a network namespace the loopback device must
8305 	 * be present. Since we now dynamically allocate and free the
8306 	 * loopback device ensure this invariant is maintained by
8307 	 * keeping the loopback device as the first device on the
8308 	 * list of network devices.  Ensuring the loopback devices
8309 	 * is the first device that appears and the last network device
8310 	 * that disappears.
8311 	 */
8312 	if (register_pernet_device(&loopback_net_ops))
8313 		goto out;
8314 
8315 	if (register_pernet_device(&default_device_ops))
8316 		goto out;
8317 
8318 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8319 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8320 
8321 	hotcpu_notifier(dev_cpu_callback, 0);
8322 	dst_subsys_init();
8323 	rc = 0;
8324 out:
8325 	return rc;
8326 }
8327 
8328 subsys_initcall(net_dev_init);
8329