1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <linux/bpf.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <net/busy_poll.h> 101 #include <linux/rtnetlink.h> 102 #include <linux/stat.h> 103 #include <net/dst.h> 104 #include <net/dst_metadata.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/iw_handler.h> 115 #include <asm/current.h> 116 #include <linux/audit.h> 117 #include <linux/dmaengine.h> 118 #include <linux/err.h> 119 #include <linux/ctype.h> 120 #include <linux/if_arp.h> 121 #include <linux/if_vlan.h> 122 #include <linux/ip.h> 123 #include <net/ip.h> 124 #include <net/mpls.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/pci.h> 133 #include <linux/inetdevice.h> 134 #include <linux/cpu_rmap.h> 135 #include <linux/static_key.h> 136 #include <linux/hashtable.h> 137 #include <linux/vmalloc.h> 138 #include <linux/if_macvlan.h> 139 #include <linux/errqueue.h> 140 #include <linux/hrtimer.h> 141 #include <linux/netfilter_ingress.h> 142 #include <linux/sctp.h> 143 #include <linux/crash_dump.h> 144 145 #include "net-sysfs.h" 146 147 /* Instead of increasing this, you should create a hash table. */ 148 #define MAX_GRO_SKBS 8 149 150 /* This should be increased if a protocol with a bigger head is added. */ 151 #define GRO_MAX_HEAD (MAX_HEADER + 128) 152 153 static DEFINE_SPINLOCK(ptype_lock); 154 static DEFINE_SPINLOCK(offload_lock); 155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 156 struct list_head ptype_all __read_mostly; /* Taps */ 157 static struct list_head offload_base __read_mostly; 158 159 static int netif_rx_internal(struct sk_buff *skb); 160 static int call_netdevice_notifiers_info(unsigned long val, 161 struct net_device *dev, 162 struct netdev_notifier_info *info); 163 164 /* 165 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 166 * semaphore. 167 * 168 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 169 * 170 * Writers must hold the rtnl semaphore while they loop through the 171 * dev_base_head list, and hold dev_base_lock for writing when they do the 172 * actual updates. This allows pure readers to access the list even 173 * while a writer is preparing to update it. 174 * 175 * To put it another way, dev_base_lock is held for writing only to 176 * protect against pure readers; the rtnl semaphore provides the 177 * protection against other writers. 178 * 179 * See, for example usages, register_netdevice() and 180 * unregister_netdevice(), which must be called with the rtnl 181 * semaphore held. 182 */ 183 DEFINE_RWLOCK(dev_base_lock); 184 EXPORT_SYMBOL(dev_base_lock); 185 186 /* protects napi_hash addition/deletion and napi_gen_id */ 187 static DEFINE_SPINLOCK(napi_hash_lock); 188 189 static unsigned int napi_gen_id = NR_CPUS; 190 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 191 192 static seqcount_t devnet_rename_seq; 193 194 static inline void dev_base_seq_inc(struct net *net) 195 { 196 while (++net->dev_base_seq == 0); 197 } 198 199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 200 { 201 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 202 203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 204 } 205 206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 207 { 208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 209 } 210 211 static inline void rps_lock(struct softnet_data *sd) 212 { 213 #ifdef CONFIG_RPS 214 spin_lock(&sd->input_pkt_queue.lock); 215 #endif 216 } 217 218 static inline void rps_unlock(struct softnet_data *sd) 219 { 220 #ifdef CONFIG_RPS 221 spin_unlock(&sd->input_pkt_queue.lock); 222 #endif 223 } 224 225 /* Device list insertion */ 226 static void list_netdevice(struct net_device *dev) 227 { 228 struct net *net = dev_net(dev); 229 230 ASSERT_RTNL(); 231 232 write_lock_bh(&dev_base_lock); 233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 235 hlist_add_head_rcu(&dev->index_hlist, 236 dev_index_hash(net, dev->ifindex)); 237 write_unlock_bh(&dev_base_lock); 238 239 dev_base_seq_inc(net); 240 } 241 242 /* Device list removal 243 * caller must respect a RCU grace period before freeing/reusing dev 244 */ 245 static void unlist_netdevice(struct net_device *dev) 246 { 247 ASSERT_RTNL(); 248 249 /* Unlink dev from the device chain */ 250 write_lock_bh(&dev_base_lock); 251 list_del_rcu(&dev->dev_list); 252 hlist_del_rcu(&dev->name_hlist); 253 hlist_del_rcu(&dev->index_hlist); 254 write_unlock_bh(&dev_base_lock); 255 256 dev_base_seq_inc(dev_net(dev)); 257 } 258 259 /* 260 * Our notifier list 261 */ 262 263 static RAW_NOTIFIER_HEAD(netdev_chain); 264 265 /* 266 * Device drivers call our routines to queue packets here. We empty the 267 * queue in the local softnet handler. 268 */ 269 270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 271 EXPORT_PER_CPU_SYMBOL(softnet_data); 272 273 #ifdef CONFIG_LOCKDEP 274 /* 275 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 276 * according to dev->type 277 */ 278 static const unsigned short netdev_lock_type[] = 279 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 280 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 281 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 282 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 283 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 284 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 285 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 286 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 287 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 288 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 289 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 290 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 291 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 292 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 293 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 294 295 static const char *const netdev_lock_name[] = 296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 308 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 309 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 310 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 311 312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 314 315 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 316 { 317 int i; 318 319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 320 if (netdev_lock_type[i] == dev_type) 321 return i; 322 /* the last key is used by default */ 323 return ARRAY_SIZE(netdev_lock_type) - 1; 324 } 325 326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 327 unsigned short dev_type) 328 { 329 int i; 330 331 i = netdev_lock_pos(dev_type); 332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 333 netdev_lock_name[i]); 334 } 335 336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 337 { 338 int i; 339 340 i = netdev_lock_pos(dev->type); 341 lockdep_set_class_and_name(&dev->addr_list_lock, 342 &netdev_addr_lock_key[i], 343 netdev_lock_name[i]); 344 } 345 #else 346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 347 unsigned short dev_type) 348 { 349 } 350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 351 { 352 } 353 #endif 354 355 /******************************************************************************* 356 357 Protocol management and registration routines 358 359 *******************************************************************************/ 360 361 /* 362 * Add a protocol ID to the list. Now that the input handler is 363 * smarter we can dispense with all the messy stuff that used to be 364 * here. 365 * 366 * BEWARE!!! Protocol handlers, mangling input packets, 367 * MUST BE last in hash buckets and checking protocol handlers 368 * MUST start from promiscuous ptype_all chain in net_bh. 369 * It is true now, do not change it. 370 * Explanation follows: if protocol handler, mangling packet, will 371 * be the first on list, it is not able to sense, that packet 372 * is cloned and should be copied-on-write, so that it will 373 * change it and subsequent readers will get broken packet. 374 * --ANK (980803) 375 */ 376 377 static inline struct list_head *ptype_head(const struct packet_type *pt) 378 { 379 if (pt->type == htons(ETH_P_ALL)) 380 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 381 else 382 return pt->dev ? &pt->dev->ptype_specific : 383 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 384 } 385 386 /** 387 * dev_add_pack - add packet handler 388 * @pt: packet type declaration 389 * 390 * Add a protocol handler to the networking stack. The passed &packet_type 391 * is linked into kernel lists and may not be freed until it has been 392 * removed from the kernel lists. 393 * 394 * This call does not sleep therefore it can not 395 * guarantee all CPU's that are in middle of receiving packets 396 * will see the new packet type (until the next received packet). 397 */ 398 399 void dev_add_pack(struct packet_type *pt) 400 { 401 struct list_head *head = ptype_head(pt); 402 403 spin_lock(&ptype_lock); 404 list_add_rcu(&pt->list, head); 405 spin_unlock(&ptype_lock); 406 } 407 EXPORT_SYMBOL(dev_add_pack); 408 409 /** 410 * __dev_remove_pack - remove packet handler 411 * @pt: packet type declaration 412 * 413 * Remove a protocol handler that was previously added to the kernel 414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 415 * from the kernel lists and can be freed or reused once this function 416 * returns. 417 * 418 * The packet type might still be in use by receivers 419 * and must not be freed until after all the CPU's have gone 420 * through a quiescent state. 421 */ 422 void __dev_remove_pack(struct packet_type *pt) 423 { 424 struct list_head *head = ptype_head(pt); 425 struct packet_type *pt1; 426 427 spin_lock(&ptype_lock); 428 429 list_for_each_entry(pt1, head, list) { 430 if (pt == pt1) { 431 list_del_rcu(&pt->list); 432 goto out; 433 } 434 } 435 436 pr_warn("dev_remove_pack: %p not found\n", pt); 437 out: 438 spin_unlock(&ptype_lock); 439 } 440 EXPORT_SYMBOL(__dev_remove_pack); 441 442 /** 443 * dev_remove_pack - remove packet handler 444 * @pt: packet type declaration 445 * 446 * Remove a protocol handler that was previously added to the kernel 447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 448 * from the kernel lists and can be freed or reused once this function 449 * returns. 450 * 451 * This call sleeps to guarantee that no CPU is looking at the packet 452 * type after return. 453 */ 454 void dev_remove_pack(struct packet_type *pt) 455 { 456 __dev_remove_pack(pt); 457 458 synchronize_net(); 459 } 460 EXPORT_SYMBOL(dev_remove_pack); 461 462 463 /** 464 * dev_add_offload - register offload handlers 465 * @po: protocol offload declaration 466 * 467 * Add protocol offload handlers to the networking stack. The passed 468 * &proto_offload is linked into kernel lists and may not be freed until 469 * it has been removed from the kernel lists. 470 * 471 * This call does not sleep therefore it can not 472 * guarantee all CPU's that are in middle of receiving packets 473 * will see the new offload handlers (until the next received packet). 474 */ 475 void dev_add_offload(struct packet_offload *po) 476 { 477 struct packet_offload *elem; 478 479 spin_lock(&offload_lock); 480 list_for_each_entry(elem, &offload_base, list) { 481 if (po->priority < elem->priority) 482 break; 483 } 484 list_add_rcu(&po->list, elem->list.prev); 485 spin_unlock(&offload_lock); 486 } 487 EXPORT_SYMBOL(dev_add_offload); 488 489 /** 490 * __dev_remove_offload - remove offload handler 491 * @po: packet offload declaration 492 * 493 * Remove a protocol offload handler that was previously added to the 494 * kernel offload handlers by dev_add_offload(). The passed &offload_type 495 * is removed from the kernel lists and can be freed or reused once this 496 * function returns. 497 * 498 * The packet type might still be in use by receivers 499 * and must not be freed until after all the CPU's have gone 500 * through a quiescent state. 501 */ 502 static void __dev_remove_offload(struct packet_offload *po) 503 { 504 struct list_head *head = &offload_base; 505 struct packet_offload *po1; 506 507 spin_lock(&offload_lock); 508 509 list_for_each_entry(po1, head, list) { 510 if (po == po1) { 511 list_del_rcu(&po->list); 512 goto out; 513 } 514 } 515 516 pr_warn("dev_remove_offload: %p not found\n", po); 517 out: 518 spin_unlock(&offload_lock); 519 } 520 521 /** 522 * dev_remove_offload - remove packet offload handler 523 * @po: packet offload declaration 524 * 525 * Remove a packet offload handler that was previously added to the kernel 526 * offload handlers by dev_add_offload(). The passed &offload_type is 527 * removed from the kernel lists and can be freed or reused once this 528 * function returns. 529 * 530 * This call sleeps to guarantee that no CPU is looking at the packet 531 * type after return. 532 */ 533 void dev_remove_offload(struct packet_offload *po) 534 { 535 __dev_remove_offload(po); 536 537 synchronize_net(); 538 } 539 EXPORT_SYMBOL(dev_remove_offload); 540 541 /****************************************************************************** 542 543 Device Boot-time Settings Routines 544 545 *******************************************************************************/ 546 547 /* Boot time configuration table */ 548 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 549 550 /** 551 * netdev_boot_setup_add - add new setup entry 552 * @name: name of the device 553 * @map: configured settings for the device 554 * 555 * Adds new setup entry to the dev_boot_setup list. The function 556 * returns 0 on error and 1 on success. This is a generic routine to 557 * all netdevices. 558 */ 559 static int netdev_boot_setup_add(char *name, struct ifmap *map) 560 { 561 struct netdev_boot_setup *s; 562 int i; 563 564 s = dev_boot_setup; 565 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 566 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 567 memset(s[i].name, 0, sizeof(s[i].name)); 568 strlcpy(s[i].name, name, IFNAMSIZ); 569 memcpy(&s[i].map, map, sizeof(s[i].map)); 570 break; 571 } 572 } 573 574 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 575 } 576 577 /** 578 * netdev_boot_setup_check - check boot time settings 579 * @dev: the netdevice 580 * 581 * Check boot time settings for the device. 582 * The found settings are set for the device to be used 583 * later in the device probing. 584 * Returns 0 if no settings found, 1 if they are. 585 */ 586 int netdev_boot_setup_check(struct net_device *dev) 587 { 588 struct netdev_boot_setup *s = dev_boot_setup; 589 int i; 590 591 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 592 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 593 !strcmp(dev->name, s[i].name)) { 594 dev->irq = s[i].map.irq; 595 dev->base_addr = s[i].map.base_addr; 596 dev->mem_start = s[i].map.mem_start; 597 dev->mem_end = s[i].map.mem_end; 598 return 1; 599 } 600 } 601 return 0; 602 } 603 EXPORT_SYMBOL(netdev_boot_setup_check); 604 605 606 /** 607 * netdev_boot_base - get address from boot time settings 608 * @prefix: prefix for network device 609 * @unit: id for network device 610 * 611 * Check boot time settings for the base address of device. 612 * The found settings are set for the device to be used 613 * later in the device probing. 614 * Returns 0 if no settings found. 615 */ 616 unsigned long netdev_boot_base(const char *prefix, int unit) 617 { 618 const struct netdev_boot_setup *s = dev_boot_setup; 619 char name[IFNAMSIZ]; 620 int i; 621 622 sprintf(name, "%s%d", prefix, unit); 623 624 /* 625 * If device already registered then return base of 1 626 * to indicate not to probe for this interface 627 */ 628 if (__dev_get_by_name(&init_net, name)) 629 return 1; 630 631 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 632 if (!strcmp(name, s[i].name)) 633 return s[i].map.base_addr; 634 return 0; 635 } 636 637 /* 638 * Saves at boot time configured settings for any netdevice. 639 */ 640 int __init netdev_boot_setup(char *str) 641 { 642 int ints[5]; 643 struct ifmap map; 644 645 str = get_options(str, ARRAY_SIZE(ints), ints); 646 if (!str || !*str) 647 return 0; 648 649 /* Save settings */ 650 memset(&map, 0, sizeof(map)); 651 if (ints[0] > 0) 652 map.irq = ints[1]; 653 if (ints[0] > 1) 654 map.base_addr = ints[2]; 655 if (ints[0] > 2) 656 map.mem_start = ints[3]; 657 if (ints[0] > 3) 658 map.mem_end = ints[4]; 659 660 /* Add new entry to the list */ 661 return netdev_boot_setup_add(str, &map); 662 } 663 664 __setup("netdev=", netdev_boot_setup); 665 666 /******************************************************************************* 667 668 Device Interface Subroutines 669 670 *******************************************************************************/ 671 672 /** 673 * dev_get_iflink - get 'iflink' value of a interface 674 * @dev: targeted interface 675 * 676 * Indicates the ifindex the interface is linked to. 677 * Physical interfaces have the same 'ifindex' and 'iflink' values. 678 */ 679 680 int dev_get_iflink(const struct net_device *dev) 681 { 682 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 683 return dev->netdev_ops->ndo_get_iflink(dev); 684 685 return dev->ifindex; 686 } 687 EXPORT_SYMBOL(dev_get_iflink); 688 689 /** 690 * dev_fill_metadata_dst - Retrieve tunnel egress information. 691 * @dev: targeted interface 692 * @skb: The packet. 693 * 694 * For better visibility of tunnel traffic OVS needs to retrieve 695 * egress tunnel information for a packet. Following API allows 696 * user to get this info. 697 */ 698 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 699 { 700 struct ip_tunnel_info *info; 701 702 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 703 return -EINVAL; 704 705 info = skb_tunnel_info_unclone(skb); 706 if (!info) 707 return -ENOMEM; 708 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 709 return -EINVAL; 710 711 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 712 } 713 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 714 715 /** 716 * __dev_get_by_name - find a device by its name 717 * @net: the applicable net namespace 718 * @name: name to find 719 * 720 * Find an interface by name. Must be called under RTNL semaphore 721 * or @dev_base_lock. If the name is found a pointer to the device 722 * is returned. If the name is not found then %NULL is returned. The 723 * reference counters are not incremented so the caller must be 724 * careful with locks. 725 */ 726 727 struct net_device *__dev_get_by_name(struct net *net, const char *name) 728 { 729 struct net_device *dev; 730 struct hlist_head *head = dev_name_hash(net, name); 731 732 hlist_for_each_entry(dev, head, name_hlist) 733 if (!strncmp(dev->name, name, IFNAMSIZ)) 734 return dev; 735 736 return NULL; 737 } 738 EXPORT_SYMBOL(__dev_get_by_name); 739 740 /** 741 * dev_get_by_name_rcu - find a device by its name 742 * @net: the applicable net namespace 743 * @name: name to find 744 * 745 * Find an interface by name. 746 * If the name is found a pointer to the device is returned. 747 * If the name is not found then %NULL is returned. 748 * The reference counters are not incremented so the caller must be 749 * careful with locks. The caller must hold RCU lock. 750 */ 751 752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 753 { 754 struct net_device *dev; 755 struct hlist_head *head = dev_name_hash(net, name); 756 757 hlist_for_each_entry_rcu(dev, head, name_hlist) 758 if (!strncmp(dev->name, name, IFNAMSIZ)) 759 return dev; 760 761 return NULL; 762 } 763 EXPORT_SYMBOL(dev_get_by_name_rcu); 764 765 /** 766 * dev_get_by_name - find a device by its name 767 * @net: the applicable net namespace 768 * @name: name to find 769 * 770 * Find an interface by name. This can be called from any 771 * context and does its own locking. The returned handle has 772 * the usage count incremented and the caller must use dev_put() to 773 * release it when it is no longer needed. %NULL is returned if no 774 * matching device is found. 775 */ 776 777 struct net_device *dev_get_by_name(struct net *net, const char *name) 778 { 779 struct net_device *dev; 780 781 rcu_read_lock(); 782 dev = dev_get_by_name_rcu(net, name); 783 if (dev) 784 dev_hold(dev); 785 rcu_read_unlock(); 786 return dev; 787 } 788 EXPORT_SYMBOL(dev_get_by_name); 789 790 /** 791 * __dev_get_by_index - find a device by its ifindex 792 * @net: the applicable net namespace 793 * @ifindex: index of device 794 * 795 * Search for an interface by index. Returns %NULL if the device 796 * is not found or a pointer to the device. The device has not 797 * had its reference counter increased so the caller must be careful 798 * about locking. The caller must hold either the RTNL semaphore 799 * or @dev_base_lock. 800 */ 801 802 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 803 { 804 struct net_device *dev; 805 struct hlist_head *head = dev_index_hash(net, ifindex); 806 807 hlist_for_each_entry(dev, head, index_hlist) 808 if (dev->ifindex == ifindex) 809 return dev; 810 811 return NULL; 812 } 813 EXPORT_SYMBOL(__dev_get_by_index); 814 815 /** 816 * dev_get_by_index_rcu - find a device by its ifindex 817 * @net: the applicable net namespace 818 * @ifindex: index of device 819 * 820 * Search for an interface by index. Returns %NULL if the device 821 * is not found or a pointer to the device. The device has not 822 * had its reference counter increased so the caller must be careful 823 * about locking. The caller must hold RCU lock. 824 */ 825 826 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 827 { 828 struct net_device *dev; 829 struct hlist_head *head = dev_index_hash(net, ifindex); 830 831 hlist_for_each_entry_rcu(dev, head, index_hlist) 832 if (dev->ifindex == ifindex) 833 return dev; 834 835 return NULL; 836 } 837 EXPORT_SYMBOL(dev_get_by_index_rcu); 838 839 840 /** 841 * dev_get_by_index - find a device by its ifindex 842 * @net: the applicable net namespace 843 * @ifindex: index of device 844 * 845 * Search for an interface by index. Returns NULL if the device 846 * is not found or a pointer to the device. The device returned has 847 * had a reference added and the pointer is safe until the user calls 848 * dev_put to indicate they have finished with it. 849 */ 850 851 struct net_device *dev_get_by_index(struct net *net, int ifindex) 852 { 853 struct net_device *dev; 854 855 rcu_read_lock(); 856 dev = dev_get_by_index_rcu(net, ifindex); 857 if (dev) 858 dev_hold(dev); 859 rcu_read_unlock(); 860 return dev; 861 } 862 EXPORT_SYMBOL(dev_get_by_index); 863 864 /** 865 * netdev_get_name - get a netdevice name, knowing its ifindex. 866 * @net: network namespace 867 * @name: a pointer to the buffer where the name will be stored. 868 * @ifindex: the ifindex of the interface to get the name from. 869 * 870 * The use of raw_seqcount_begin() and cond_resched() before 871 * retrying is required as we want to give the writers a chance 872 * to complete when CONFIG_PREEMPT is not set. 873 */ 874 int netdev_get_name(struct net *net, char *name, int ifindex) 875 { 876 struct net_device *dev; 877 unsigned int seq; 878 879 retry: 880 seq = raw_seqcount_begin(&devnet_rename_seq); 881 rcu_read_lock(); 882 dev = dev_get_by_index_rcu(net, ifindex); 883 if (!dev) { 884 rcu_read_unlock(); 885 return -ENODEV; 886 } 887 888 strcpy(name, dev->name); 889 rcu_read_unlock(); 890 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 891 cond_resched(); 892 goto retry; 893 } 894 895 return 0; 896 } 897 898 /** 899 * dev_getbyhwaddr_rcu - find a device by its hardware address 900 * @net: the applicable net namespace 901 * @type: media type of device 902 * @ha: hardware address 903 * 904 * Search for an interface by MAC address. Returns NULL if the device 905 * is not found or a pointer to the device. 906 * The caller must hold RCU or RTNL. 907 * The returned device has not had its ref count increased 908 * and the caller must therefore be careful about locking 909 * 910 */ 911 912 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 913 const char *ha) 914 { 915 struct net_device *dev; 916 917 for_each_netdev_rcu(net, dev) 918 if (dev->type == type && 919 !memcmp(dev->dev_addr, ha, dev->addr_len)) 920 return dev; 921 922 return NULL; 923 } 924 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 925 926 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 927 { 928 struct net_device *dev; 929 930 ASSERT_RTNL(); 931 for_each_netdev(net, dev) 932 if (dev->type == type) 933 return dev; 934 935 return NULL; 936 } 937 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 938 939 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 940 { 941 struct net_device *dev, *ret = NULL; 942 943 rcu_read_lock(); 944 for_each_netdev_rcu(net, dev) 945 if (dev->type == type) { 946 dev_hold(dev); 947 ret = dev; 948 break; 949 } 950 rcu_read_unlock(); 951 return ret; 952 } 953 EXPORT_SYMBOL(dev_getfirstbyhwtype); 954 955 /** 956 * __dev_get_by_flags - find any device with given flags 957 * @net: the applicable net namespace 958 * @if_flags: IFF_* values 959 * @mask: bitmask of bits in if_flags to check 960 * 961 * Search for any interface with the given flags. Returns NULL if a device 962 * is not found or a pointer to the device. Must be called inside 963 * rtnl_lock(), and result refcount is unchanged. 964 */ 965 966 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 967 unsigned short mask) 968 { 969 struct net_device *dev, *ret; 970 971 ASSERT_RTNL(); 972 973 ret = NULL; 974 for_each_netdev(net, dev) { 975 if (((dev->flags ^ if_flags) & mask) == 0) { 976 ret = dev; 977 break; 978 } 979 } 980 return ret; 981 } 982 EXPORT_SYMBOL(__dev_get_by_flags); 983 984 /** 985 * dev_valid_name - check if name is okay for network device 986 * @name: name string 987 * 988 * Network device names need to be valid file names to 989 * to allow sysfs to work. We also disallow any kind of 990 * whitespace. 991 */ 992 bool dev_valid_name(const char *name) 993 { 994 if (*name == '\0') 995 return false; 996 if (strlen(name) >= IFNAMSIZ) 997 return false; 998 if (!strcmp(name, ".") || !strcmp(name, "..")) 999 return false; 1000 1001 while (*name) { 1002 if (*name == '/' || *name == ':' || isspace(*name)) 1003 return false; 1004 name++; 1005 } 1006 return true; 1007 } 1008 EXPORT_SYMBOL(dev_valid_name); 1009 1010 /** 1011 * __dev_alloc_name - allocate a name for a device 1012 * @net: network namespace to allocate the device name in 1013 * @name: name format string 1014 * @buf: scratch buffer and result name string 1015 * 1016 * Passed a format string - eg "lt%d" it will try and find a suitable 1017 * id. It scans list of devices to build up a free map, then chooses 1018 * the first empty slot. The caller must hold the dev_base or rtnl lock 1019 * while allocating the name and adding the device in order to avoid 1020 * duplicates. 1021 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1022 * Returns the number of the unit assigned or a negative errno code. 1023 */ 1024 1025 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1026 { 1027 int i = 0; 1028 const char *p; 1029 const int max_netdevices = 8*PAGE_SIZE; 1030 unsigned long *inuse; 1031 struct net_device *d; 1032 1033 p = strnchr(name, IFNAMSIZ-1, '%'); 1034 if (p) { 1035 /* 1036 * Verify the string as this thing may have come from 1037 * the user. There must be either one "%d" and no other "%" 1038 * characters. 1039 */ 1040 if (p[1] != 'd' || strchr(p + 2, '%')) 1041 return -EINVAL; 1042 1043 /* Use one page as a bit array of possible slots */ 1044 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1045 if (!inuse) 1046 return -ENOMEM; 1047 1048 for_each_netdev(net, d) { 1049 if (!sscanf(d->name, name, &i)) 1050 continue; 1051 if (i < 0 || i >= max_netdevices) 1052 continue; 1053 1054 /* avoid cases where sscanf is not exact inverse of printf */ 1055 snprintf(buf, IFNAMSIZ, name, i); 1056 if (!strncmp(buf, d->name, IFNAMSIZ)) 1057 set_bit(i, inuse); 1058 } 1059 1060 i = find_first_zero_bit(inuse, max_netdevices); 1061 free_page((unsigned long) inuse); 1062 } 1063 1064 if (buf != name) 1065 snprintf(buf, IFNAMSIZ, name, i); 1066 if (!__dev_get_by_name(net, buf)) 1067 return i; 1068 1069 /* It is possible to run out of possible slots 1070 * when the name is long and there isn't enough space left 1071 * for the digits, or if all bits are used. 1072 */ 1073 return -ENFILE; 1074 } 1075 1076 /** 1077 * dev_alloc_name - allocate a name for a device 1078 * @dev: device 1079 * @name: name format string 1080 * 1081 * Passed a format string - eg "lt%d" it will try and find a suitable 1082 * id. It scans list of devices to build up a free map, then chooses 1083 * the first empty slot. The caller must hold the dev_base or rtnl lock 1084 * while allocating the name and adding the device in order to avoid 1085 * duplicates. 1086 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1087 * Returns the number of the unit assigned or a negative errno code. 1088 */ 1089 1090 int dev_alloc_name(struct net_device *dev, const char *name) 1091 { 1092 char buf[IFNAMSIZ]; 1093 struct net *net; 1094 int ret; 1095 1096 BUG_ON(!dev_net(dev)); 1097 net = dev_net(dev); 1098 ret = __dev_alloc_name(net, name, buf); 1099 if (ret >= 0) 1100 strlcpy(dev->name, buf, IFNAMSIZ); 1101 return ret; 1102 } 1103 EXPORT_SYMBOL(dev_alloc_name); 1104 1105 static int dev_alloc_name_ns(struct net *net, 1106 struct net_device *dev, 1107 const char *name) 1108 { 1109 char buf[IFNAMSIZ]; 1110 int ret; 1111 1112 ret = __dev_alloc_name(net, name, buf); 1113 if (ret >= 0) 1114 strlcpy(dev->name, buf, IFNAMSIZ); 1115 return ret; 1116 } 1117 1118 static int dev_get_valid_name(struct net *net, 1119 struct net_device *dev, 1120 const char *name) 1121 { 1122 BUG_ON(!net); 1123 1124 if (!dev_valid_name(name)) 1125 return -EINVAL; 1126 1127 if (strchr(name, '%')) 1128 return dev_alloc_name_ns(net, dev, name); 1129 else if (__dev_get_by_name(net, name)) 1130 return -EEXIST; 1131 else if (dev->name != name) 1132 strlcpy(dev->name, name, IFNAMSIZ); 1133 1134 return 0; 1135 } 1136 1137 /** 1138 * dev_change_name - change name of a device 1139 * @dev: device 1140 * @newname: name (or format string) must be at least IFNAMSIZ 1141 * 1142 * Change name of a device, can pass format strings "eth%d". 1143 * for wildcarding. 1144 */ 1145 int dev_change_name(struct net_device *dev, const char *newname) 1146 { 1147 unsigned char old_assign_type; 1148 char oldname[IFNAMSIZ]; 1149 int err = 0; 1150 int ret; 1151 struct net *net; 1152 1153 ASSERT_RTNL(); 1154 BUG_ON(!dev_net(dev)); 1155 1156 net = dev_net(dev); 1157 if (dev->flags & IFF_UP) 1158 return -EBUSY; 1159 1160 write_seqcount_begin(&devnet_rename_seq); 1161 1162 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1163 write_seqcount_end(&devnet_rename_seq); 1164 return 0; 1165 } 1166 1167 memcpy(oldname, dev->name, IFNAMSIZ); 1168 1169 err = dev_get_valid_name(net, dev, newname); 1170 if (err < 0) { 1171 write_seqcount_end(&devnet_rename_seq); 1172 return err; 1173 } 1174 1175 if (oldname[0] && !strchr(oldname, '%')) 1176 netdev_info(dev, "renamed from %s\n", oldname); 1177 1178 old_assign_type = dev->name_assign_type; 1179 dev->name_assign_type = NET_NAME_RENAMED; 1180 1181 rollback: 1182 ret = device_rename(&dev->dev, dev->name); 1183 if (ret) { 1184 memcpy(dev->name, oldname, IFNAMSIZ); 1185 dev->name_assign_type = old_assign_type; 1186 write_seqcount_end(&devnet_rename_seq); 1187 return ret; 1188 } 1189 1190 write_seqcount_end(&devnet_rename_seq); 1191 1192 netdev_adjacent_rename_links(dev, oldname); 1193 1194 write_lock_bh(&dev_base_lock); 1195 hlist_del_rcu(&dev->name_hlist); 1196 write_unlock_bh(&dev_base_lock); 1197 1198 synchronize_rcu(); 1199 1200 write_lock_bh(&dev_base_lock); 1201 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1202 write_unlock_bh(&dev_base_lock); 1203 1204 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1205 ret = notifier_to_errno(ret); 1206 1207 if (ret) { 1208 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1209 if (err >= 0) { 1210 err = ret; 1211 write_seqcount_begin(&devnet_rename_seq); 1212 memcpy(dev->name, oldname, IFNAMSIZ); 1213 memcpy(oldname, newname, IFNAMSIZ); 1214 dev->name_assign_type = old_assign_type; 1215 old_assign_type = NET_NAME_RENAMED; 1216 goto rollback; 1217 } else { 1218 pr_err("%s: name change rollback failed: %d\n", 1219 dev->name, ret); 1220 } 1221 } 1222 1223 return err; 1224 } 1225 1226 /** 1227 * dev_set_alias - change ifalias of a device 1228 * @dev: device 1229 * @alias: name up to IFALIASZ 1230 * @len: limit of bytes to copy from info 1231 * 1232 * Set ifalias for a device, 1233 */ 1234 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1235 { 1236 char *new_ifalias; 1237 1238 ASSERT_RTNL(); 1239 1240 if (len >= IFALIASZ) 1241 return -EINVAL; 1242 1243 if (!len) { 1244 kfree(dev->ifalias); 1245 dev->ifalias = NULL; 1246 return 0; 1247 } 1248 1249 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1250 if (!new_ifalias) 1251 return -ENOMEM; 1252 dev->ifalias = new_ifalias; 1253 1254 strlcpy(dev->ifalias, alias, len+1); 1255 return len; 1256 } 1257 1258 1259 /** 1260 * netdev_features_change - device changes features 1261 * @dev: device to cause notification 1262 * 1263 * Called to indicate a device has changed features. 1264 */ 1265 void netdev_features_change(struct net_device *dev) 1266 { 1267 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1268 } 1269 EXPORT_SYMBOL(netdev_features_change); 1270 1271 /** 1272 * netdev_state_change - device changes state 1273 * @dev: device to cause notification 1274 * 1275 * Called to indicate a device has changed state. This function calls 1276 * the notifier chains for netdev_chain and sends a NEWLINK message 1277 * to the routing socket. 1278 */ 1279 void netdev_state_change(struct net_device *dev) 1280 { 1281 if (dev->flags & IFF_UP) { 1282 struct netdev_notifier_change_info change_info; 1283 1284 change_info.flags_changed = 0; 1285 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1286 &change_info.info); 1287 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1288 } 1289 } 1290 EXPORT_SYMBOL(netdev_state_change); 1291 1292 /** 1293 * netdev_notify_peers - notify network peers about existence of @dev 1294 * @dev: network device 1295 * 1296 * Generate traffic such that interested network peers are aware of 1297 * @dev, such as by generating a gratuitous ARP. This may be used when 1298 * a device wants to inform the rest of the network about some sort of 1299 * reconfiguration such as a failover event or virtual machine 1300 * migration. 1301 */ 1302 void netdev_notify_peers(struct net_device *dev) 1303 { 1304 rtnl_lock(); 1305 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1306 rtnl_unlock(); 1307 } 1308 EXPORT_SYMBOL(netdev_notify_peers); 1309 1310 static int __dev_open(struct net_device *dev) 1311 { 1312 const struct net_device_ops *ops = dev->netdev_ops; 1313 int ret; 1314 1315 ASSERT_RTNL(); 1316 1317 if (!netif_device_present(dev)) 1318 return -ENODEV; 1319 1320 /* Block netpoll from trying to do any rx path servicing. 1321 * If we don't do this there is a chance ndo_poll_controller 1322 * or ndo_poll may be running while we open the device 1323 */ 1324 netpoll_poll_disable(dev); 1325 1326 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1327 ret = notifier_to_errno(ret); 1328 if (ret) 1329 return ret; 1330 1331 set_bit(__LINK_STATE_START, &dev->state); 1332 1333 if (ops->ndo_validate_addr) 1334 ret = ops->ndo_validate_addr(dev); 1335 1336 if (!ret && ops->ndo_open) 1337 ret = ops->ndo_open(dev); 1338 1339 netpoll_poll_enable(dev); 1340 1341 if (ret) 1342 clear_bit(__LINK_STATE_START, &dev->state); 1343 else { 1344 dev->flags |= IFF_UP; 1345 dev_set_rx_mode(dev); 1346 dev_activate(dev); 1347 add_device_randomness(dev->dev_addr, dev->addr_len); 1348 } 1349 1350 return ret; 1351 } 1352 1353 /** 1354 * dev_open - prepare an interface for use. 1355 * @dev: device to open 1356 * 1357 * Takes a device from down to up state. The device's private open 1358 * function is invoked and then the multicast lists are loaded. Finally 1359 * the device is moved into the up state and a %NETDEV_UP message is 1360 * sent to the netdev notifier chain. 1361 * 1362 * Calling this function on an active interface is a nop. On a failure 1363 * a negative errno code is returned. 1364 */ 1365 int dev_open(struct net_device *dev) 1366 { 1367 int ret; 1368 1369 if (dev->flags & IFF_UP) 1370 return 0; 1371 1372 ret = __dev_open(dev); 1373 if (ret < 0) 1374 return ret; 1375 1376 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1377 call_netdevice_notifiers(NETDEV_UP, dev); 1378 1379 return ret; 1380 } 1381 EXPORT_SYMBOL(dev_open); 1382 1383 static int __dev_close_many(struct list_head *head) 1384 { 1385 struct net_device *dev; 1386 1387 ASSERT_RTNL(); 1388 might_sleep(); 1389 1390 list_for_each_entry(dev, head, close_list) { 1391 /* Temporarily disable netpoll until the interface is down */ 1392 netpoll_poll_disable(dev); 1393 1394 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1395 1396 clear_bit(__LINK_STATE_START, &dev->state); 1397 1398 /* Synchronize to scheduled poll. We cannot touch poll list, it 1399 * can be even on different cpu. So just clear netif_running(). 1400 * 1401 * dev->stop() will invoke napi_disable() on all of it's 1402 * napi_struct instances on this device. 1403 */ 1404 smp_mb__after_atomic(); /* Commit netif_running(). */ 1405 } 1406 1407 dev_deactivate_many(head); 1408 1409 list_for_each_entry(dev, head, close_list) { 1410 const struct net_device_ops *ops = dev->netdev_ops; 1411 1412 /* 1413 * Call the device specific close. This cannot fail. 1414 * Only if device is UP 1415 * 1416 * We allow it to be called even after a DETACH hot-plug 1417 * event. 1418 */ 1419 if (ops->ndo_stop) 1420 ops->ndo_stop(dev); 1421 1422 dev->flags &= ~IFF_UP; 1423 netpoll_poll_enable(dev); 1424 } 1425 1426 return 0; 1427 } 1428 1429 static int __dev_close(struct net_device *dev) 1430 { 1431 int retval; 1432 LIST_HEAD(single); 1433 1434 list_add(&dev->close_list, &single); 1435 retval = __dev_close_many(&single); 1436 list_del(&single); 1437 1438 return retval; 1439 } 1440 1441 int dev_close_many(struct list_head *head, bool unlink) 1442 { 1443 struct net_device *dev, *tmp; 1444 1445 /* Remove the devices that don't need to be closed */ 1446 list_for_each_entry_safe(dev, tmp, head, close_list) 1447 if (!(dev->flags & IFF_UP)) 1448 list_del_init(&dev->close_list); 1449 1450 __dev_close_many(head); 1451 1452 list_for_each_entry_safe(dev, tmp, head, close_list) { 1453 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1454 call_netdevice_notifiers(NETDEV_DOWN, dev); 1455 if (unlink) 1456 list_del_init(&dev->close_list); 1457 } 1458 1459 return 0; 1460 } 1461 EXPORT_SYMBOL(dev_close_many); 1462 1463 /** 1464 * dev_close - shutdown an interface. 1465 * @dev: device to shutdown 1466 * 1467 * This function moves an active device into down state. A 1468 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1469 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1470 * chain. 1471 */ 1472 int dev_close(struct net_device *dev) 1473 { 1474 if (dev->flags & IFF_UP) { 1475 LIST_HEAD(single); 1476 1477 list_add(&dev->close_list, &single); 1478 dev_close_many(&single, true); 1479 list_del(&single); 1480 } 1481 return 0; 1482 } 1483 EXPORT_SYMBOL(dev_close); 1484 1485 1486 /** 1487 * dev_disable_lro - disable Large Receive Offload on a device 1488 * @dev: device 1489 * 1490 * Disable Large Receive Offload (LRO) on a net device. Must be 1491 * called under RTNL. This is needed if received packets may be 1492 * forwarded to another interface. 1493 */ 1494 void dev_disable_lro(struct net_device *dev) 1495 { 1496 struct net_device *lower_dev; 1497 struct list_head *iter; 1498 1499 dev->wanted_features &= ~NETIF_F_LRO; 1500 netdev_update_features(dev); 1501 1502 if (unlikely(dev->features & NETIF_F_LRO)) 1503 netdev_WARN(dev, "failed to disable LRO!\n"); 1504 1505 netdev_for_each_lower_dev(dev, lower_dev, iter) 1506 dev_disable_lro(lower_dev); 1507 } 1508 EXPORT_SYMBOL(dev_disable_lro); 1509 1510 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1511 struct net_device *dev) 1512 { 1513 struct netdev_notifier_info info; 1514 1515 netdev_notifier_info_init(&info, dev); 1516 return nb->notifier_call(nb, val, &info); 1517 } 1518 1519 static int dev_boot_phase = 1; 1520 1521 /** 1522 * register_netdevice_notifier - register a network notifier block 1523 * @nb: notifier 1524 * 1525 * Register a notifier to be called when network device events occur. 1526 * The notifier passed is linked into the kernel structures and must 1527 * not be reused until it has been unregistered. A negative errno code 1528 * is returned on a failure. 1529 * 1530 * When registered all registration and up events are replayed 1531 * to the new notifier to allow device to have a race free 1532 * view of the network device list. 1533 */ 1534 1535 int register_netdevice_notifier(struct notifier_block *nb) 1536 { 1537 struct net_device *dev; 1538 struct net_device *last; 1539 struct net *net; 1540 int err; 1541 1542 rtnl_lock(); 1543 err = raw_notifier_chain_register(&netdev_chain, nb); 1544 if (err) 1545 goto unlock; 1546 if (dev_boot_phase) 1547 goto unlock; 1548 for_each_net(net) { 1549 for_each_netdev(net, dev) { 1550 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1551 err = notifier_to_errno(err); 1552 if (err) 1553 goto rollback; 1554 1555 if (!(dev->flags & IFF_UP)) 1556 continue; 1557 1558 call_netdevice_notifier(nb, NETDEV_UP, dev); 1559 } 1560 } 1561 1562 unlock: 1563 rtnl_unlock(); 1564 return err; 1565 1566 rollback: 1567 last = dev; 1568 for_each_net(net) { 1569 for_each_netdev(net, dev) { 1570 if (dev == last) 1571 goto outroll; 1572 1573 if (dev->flags & IFF_UP) { 1574 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1575 dev); 1576 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1577 } 1578 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1579 } 1580 } 1581 1582 outroll: 1583 raw_notifier_chain_unregister(&netdev_chain, nb); 1584 goto unlock; 1585 } 1586 EXPORT_SYMBOL(register_netdevice_notifier); 1587 1588 /** 1589 * unregister_netdevice_notifier - unregister a network notifier block 1590 * @nb: notifier 1591 * 1592 * Unregister a notifier previously registered by 1593 * register_netdevice_notifier(). The notifier is unlinked into the 1594 * kernel structures and may then be reused. A negative errno code 1595 * is returned on a failure. 1596 * 1597 * After unregistering unregister and down device events are synthesized 1598 * for all devices on the device list to the removed notifier to remove 1599 * the need for special case cleanup code. 1600 */ 1601 1602 int unregister_netdevice_notifier(struct notifier_block *nb) 1603 { 1604 struct net_device *dev; 1605 struct net *net; 1606 int err; 1607 1608 rtnl_lock(); 1609 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1610 if (err) 1611 goto unlock; 1612 1613 for_each_net(net) { 1614 for_each_netdev(net, dev) { 1615 if (dev->flags & IFF_UP) { 1616 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1617 dev); 1618 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1619 } 1620 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1621 } 1622 } 1623 unlock: 1624 rtnl_unlock(); 1625 return err; 1626 } 1627 EXPORT_SYMBOL(unregister_netdevice_notifier); 1628 1629 /** 1630 * call_netdevice_notifiers_info - call all network notifier blocks 1631 * @val: value passed unmodified to notifier function 1632 * @dev: net_device pointer passed unmodified to notifier function 1633 * @info: notifier information data 1634 * 1635 * Call all network notifier blocks. Parameters and return value 1636 * are as for raw_notifier_call_chain(). 1637 */ 1638 1639 static int call_netdevice_notifiers_info(unsigned long val, 1640 struct net_device *dev, 1641 struct netdev_notifier_info *info) 1642 { 1643 ASSERT_RTNL(); 1644 netdev_notifier_info_init(info, dev); 1645 return raw_notifier_call_chain(&netdev_chain, val, info); 1646 } 1647 1648 /** 1649 * call_netdevice_notifiers - call all network notifier blocks 1650 * @val: value passed unmodified to notifier function 1651 * @dev: net_device pointer passed unmodified to notifier function 1652 * 1653 * Call all network notifier blocks. Parameters and return value 1654 * are as for raw_notifier_call_chain(). 1655 */ 1656 1657 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1658 { 1659 struct netdev_notifier_info info; 1660 1661 return call_netdevice_notifiers_info(val, dev, &info); 1662 } 1663 EXPORT_SYMBOL(call_netdevice_notifiers); 1664 1665 #ifdef CONFIG_NET_INGRESS 1666 static struct static_key ingress_needed __read_mostly; 1667 1668 void net_inc_ingress_queue(void) 1669 { 1670 static_key_slow_inc(&ingress_needed); 1671 } 1672 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1673 1674 void net_dec_ingress_queue(void) 1675 { 1676 static_key_slow_dec(&ingress_needed); 1677 } 1678 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1679 #endif 1680 1681 #ifdef CONFIG_NET_EGRESS 1682 static struct static_key egress_needed __read_mostly; 1683 1684 void net_inc_egress_queue(void) 1685 { 1686 static_key_slow_inc(&egress_needed); 1687 } 1688 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1689 1690 void net_dec_egress_queue(void) 1691 { 1692 static_key_slow_dec(&egress_needed); 1693 } 1694 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1695 #endif 1696 1697 static struct static_key netstamp_needed __read_mostly; 1698 #ifdef HAVE_JUMP_LABEL 1699 /* We are not allowed to call static_key_slow_dec() from irq context 1700 * If net_disable_timestamp() is called from irq context, defer the 1701 * static_key_slow_dec() calls. 1702 */ 1703 static atomic_t netstamp_needed_deferred; 1704 #endif 1705 1706 void net_enable_timestamp(void) 1707 { 1708 #ifdef HAVE_JUMP_LABEL 1709 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1710 1711 if (deferred) { 1712 while (--deferred) 1713 static_key_slow_dec(&netstamp_needed); 1714 return; 1715 } 1716 #endif 1717 static_key_slow_inc(&netstamp_needed); 1718 } 1719 EXPORT_SYMBOL(net_enable_timestamp); 1720 1721 void net_disable_timestamp(void) 1722 { 1723 #ifdef HAVE_JUMP_LABEL 1724 if (in_interrupt()) { 1725 atomic_inc(&netstamp_needed_deferred); 1726 return; 1727 } 1728 #endif 1729 static_key_slow_dec(&netstamp_needed); 1730 } 1731 EXPORT_SYMBOL(net_disable_timestamp); 1732 1733 static inline void net_timestamp_set(struct sk_buff *skb) 1734 { 1735 skb->tstamp.tv64 = 0; 1736 if (static_key_false(&netstamp_needed)) 1737 __net_timestamp(skb); 1738 } 1739 1740 #define net_timestamp_check(COND, SKB) \ 1741 if (static_key_false(&netstamp_needed)) { \ 1742 if ((COND) && !(SKB)->tstamp.tv64) \ 1743 __net_timestamp(SKB); \ 1744 } \ 1745 1746 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1747 { 1748 unsigned int len; 1749 1750 if (!(dev->flags & IFF_UP)) 1751 return false; 1752 1753 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1754 if (skb->len <= len) 1755 return true; 1756 1757 /* if TSO is enabled, we don't care about the length as the packet 1758 * could be forwarded without being segmented before 1759 */ 1760 if (skb_is_gso(skb)) 1761 return true; 1762 1763 return false; 1764 } 1765 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1766 1767 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1768 { 1769 if (skb_orphan_frags(skb, GFP_ATOMIC) || 1770 unlikely(!is_skb_forwardable(dev, skb))) { 1771 atomic_long_inc(&dev->rx_dropped); 1772 kfree_skb(skb); 1773 return NET_RX_DROP; 1774 } 1775 1776 skb_scrub_packet(skb, true); 1777 skb->priority = 0; 1778 skb->protocol = eth_type_trans(skb, dev); 1779 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1780 1781 return 0; 1782 } 1783 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1784 1785 /** 1786 * dev_forward_skb - loopback an skb to another netif 1787 * 1788 * @dev: destination network device 1789 * @skb: buffer to forward 1790 * 1791 * return values: 1792 * NET_RX_SUCCESS (no congestion) 1793 * NET_RX_DROP (packet was dropped, but freed) 1794 * 1795 * dev_forward_skb can be used for injecting an skb from the 1796 * start_xmit function of one device into the receive queue 1797 * of another device. 1798 * 1799 * The receiving device may be in another namespace, so 1800 * we have to clear all information in the skb that could 1801 * impact namespace isolation. 1802 */ 1803 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1804 { 1805 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1806 } 1807 EXPORT_SYMBOL_GPL(dev_forward_skb); 1808 1809 static inline int deliver_skb(struct sk_buff *skb, 1810 struct packet_type *pt_prev, 1811 struct net_device *orig_dev) 1812 { 1813 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1814 return -ENOMEM; 1815 atomic_inc(&skb->users); 1816 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1817 } 1818 1819 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1820 struct packet_type **pt, 1821 struct net_device *orig_dev, 1822 __be16 type, 1823 struct list_head *ptype_list) 1824 { 1825 struct packet_type *ptype, *pt_prev = *pt; 1826 1827 list_for_each_entry_rcu(ptype, ptype_list, list) { 1828 if (ptype->type != type) 1829 continue; 1830 if (pt_prev) 1831 deliver_skb(skb, pt_prev, orig_dev); 1832 pt_prev = ptype; 1833 } 1834 *pt = pt_prev; 1835 } 1836 1837 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1838 { 1839 if (!ptype->af_packet_priv || !skb->sk) 1840 return false; 1841 1842 if (ptype->id_match) 1843 return ptype->id_match(ptype, skb->sk); 1844 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1845 return true; 1846 1847 return false; 1848 } 1849 1850 /* 1851 * Support routine. Sends outgoing frames to any network 1852 * taps currently in use. 1853 */ 1854 1855 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1856 { 1857 struct packet_type *ptype; 1858 struct sk_buff *skb2 = NULL; 1859 struct packet_type *pt_prev = NULL; 1860 struct list_head *ptype_list = &ptype_all; 1861 1862 rcu_read_lock(); 1863 again: 1864 list_for_each_entry_rcu(ptype, ptype_list, list) { 1865 /* Never send packets back to the socket 1866 * they originated from - MvS (miquels@drinkel.ow.org) 1867 */ 1868 if (skb_loop_sk(ptype, skb)) 1869 continue; 1870 1871 if (pt_prev) { 1872 deliver_skb(skb2, pt_prev, skb->dev); 1873 pt_prev = ptype; 1874 continue; 1875 } 1876 1877 /* need to clone skb, done only once */ 1878 skb2 = skb_clone(skb, GFP_ATOMIC); 1879 if (!skb2) 1880 goto out_unlock; 1881 1882 net_timestamp_set(skb2); 1883 1884 /* skb->nh should be correctly 1885 * set by sender, so that the second statement is 1886 * just protection against buggy protocols. 1887 */ 1888 skb_reset_mac_header(skb2); 1889 1890 if (skb_network_header(skb2) < skb2->data || 1891 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1892 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1893 ntohs(skb2->protocol), 1894 dev->name); 1895 skb_reset_network_header(skb2); 1896 } 1897 1898 skb2->transport_header = skb2->network_header; 1899 skb2->pkt_type = PACKET_OUTGOING; 1900 pt_prev = ptype; 1901 } 1902 1903 if (ptype_list == &ptype_all) { 1904 ptype_list = &dev->ptype_all; 1905 goto again; 1906 } 1907 out_unlock: 1908 if (pt_prev) 1909 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1910 rcu_read_unlock(); 1911 } 1912 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1913 1914 /** 1915 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1916 * @dev: Network device 1917 * @txq: number of queues available 1918 * 1919 * If real_num_tx_queues is changed the tc mappings may no longer be 1920 * valid. To resolve this verify the tc mapping remains valid and if 1921 * not NULL the mapping. With no priorities mapping to this 1922 * offset/count pair it will no longer be used. In the worst case TC0 1923 * is invalid nothing can be done so disable priority mappings. If is 1924 * expected that drivers will fix this mapping if they can before 1925 * calling netif_set_real_num_tx_queues. 1926 */ 1927 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1928 { 1929 int i; 1930 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1931 1932 /* If TC0 is invalidated disable TC mapping */ 1933 if (tc->offset + tc->count > txq) { 1934 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1935 dev->num_tc = 0; 1936 return; 1937 } 1938 1939 /* Invalidated prio to tc mappings set to TC0 */ 1940 for (i = 1; i < TC_BITMASK + 1; i++) { 1941 int q = netdev_get_prio_tc_map(dev, i); 1942 1943 tc = &dev->tc_to_txq[q]; 1944 if (tc->offset + tc->count > txq) { 1945 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1946 i, q); 1947 netdev_set_prio_tc_map(dev, i, 0); 1948 } 1949 } 1950 } 1951 1952 #ifdef CONFIG_XPS 1953 static DEFINE_MUTEX(xps_map_mutex); 1954 #define xmap_dereference(P) \ 1955 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1956 1957 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1958 int cpu, u16 index) 1959 { 1960 struct xps_map *map = NULL; 1961 int pos; 1962 1963 if (dev_maps) 1964 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1965 1966 for (pos = 0; map && pos < map->len; pos++) { 1967 if (map->queues[pos] == index) { 1968 if (map->len > 1) { 1969 map->queues[pos] = map->queues[--map->len]; 1970 } else { 1971 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1972 kfree_rcu(map, rcu); 1973 map = NULL; 1974 } 1975 break; 1976 } 1977 } 1978 1979 return map; 1980 } 1981 1982 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1983 { 1984 struct xps_dev_maps *dev_maps; 1985 int cpu, i; 1986 bool active = false; 1987 1988 mutex_lock(&xps_map_mutex); 1989 dev_maps = xmap_dereference(dev->xps_maps); 1990 1991 if (!dev_maps) 1992 goto out_no_maps; 1993 1994 for_each_possible_cpu(cpu) { 1995 for (i = index; i < dev->num_tx_queues; i++) { 1996 if (!remove_xps_queue(dev_maps, cpu, i)) 1997 break; 1998 } 1999 if (i == dev->num_tx_queues) 2000 active = true; 2001 } 2002 2003 if (!active) { 2004 RCU_INIT_POINTER(dev->xps_maps, NULL); 2005 kfree_rcu(dev_maps, rcu); 2006 } 2007 2008 for (i = index; i < dev->num_tx_queues; i++) 2009 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2010 NUMA_NO_NODE); 2011 2012 out_no_maps: 2013 mutex_unlock(&xps_map_mutex); 2014 } 2015 2016 static struct xps_map *expand_xps_map(struct xps_map *map, 2017 int cpu, u16 index) 2018 { 2019 struct xps_map *new_map; 2020 int alloc_len = XPS_MIN_MAP_ALLOC; 2021 int i, pos; 2022 2023 for (pos = 0; map && pos < map->len; pos++) { 2024 if (map->queues[pos] != index) 2025 continue; 2026 return map; 2027 } 2028 2029 /* Need to add queue to this CPU's existing map */ 2030 if (map) { 2031 if (pos < map->alloc_len) 2032 return map; 2033 2034 alloc_len = map->alloc_len * 2; 2035 } 2036 2037 /* Need to allocate new map to store queue on this CPU's map */ 2038 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2039 cpu_to_node(cpu)); 2040 if (!new_map) 2041 return NULL; 2042 2043 for (i = 0; i < pos; i++) 2044 new_map->queues[i] = map->queues[i]; 2045 new_map->alloc_len = alloc_len; 2046 new_map->len = pos; 2047 2048 return new_map; 2049 } 2050 2051 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2052 u16 index) 2053 { 2054 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2055 struct xps_map *map, *new_map; 2056 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 2057 int cpu, numa_node_id = -2; 2058 bool active = false; 2059 2060 mutex_lock(&xps_map_mutex); 2061 2062 dev_maps = xmap_dereference(dev->xps_maps); 2063 2064 /* allocate memory for queue storage */ 2065 for_each_online_cpu(cpu) { 2066 if (!cpumask_test_cpu(cpu, mask)) 2067 continue; 2068 2069 if (!new_dev_maps) 2070 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2071 if (!new_dev_maps) { 2072 mutex_unlock(&xps_map_mutex); 2073 return -ENOMEM; 2074 } 2075 2076 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2077 NULL; 2078 2079 map = expand_xps_map(map, cpu, index); 2080 if (!map) 2081 goto error; 2082 2083 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2084 } 2085 2086 if (!new_dev_maps) 2087 goto out_no_new_maps; 2088 2089 for_each_possible_cpu(cpu) { 2090 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2091 /* add queue to CPU maps */ 2092 int pos = 0; 2093 2094 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2095 while ((pos < map->len) && (map->queues[pos] != index)) 2096 pos++; 2097 2098 if (pos == map->len) 2099 map->queues[map->len++] = index; 2100 #ifdef CONFIG_NUMA 2101 if (numa_node_id == -2) 2102 numa_node_id = cpu_to_node(cpu); 2103 else if (numa_node_id != cpu_to_node(cpu)) 2104 numa_node_id = -1; 2105 #endif 2106 } else if (dev_maps) { 2107 /* fill in the new device map from the old device map */ 2108 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2109 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2110 } 2111 2112 } 2113 2114 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2115 2116 /* Cleanup old maps */ 2117 if (dev_maps) { 2118 for_each_possible_cpu(cpu) { 2119 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2120 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2121 if (map && map != new_map) 2122 kfree_rcu(map, rcu); 2123 } 2124 2125 kfree_rcu(dev_maps, rcu); 2126 } 2127 2128 dev_maps = new_dev_maps; 2129 active = true; 2130 2131 out_no_new_maps: 2132 /* update Tx queue numa node */ 2133 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2134 (numa_node_id >= 0) ? numa_node_id : 2135 NUMA_NO_NODE); 2136 2137 if (!dev_maps) 2138 goto out_no_maps; 2139 2140 /* removes queue from unused CPUs */ 2141 for_each_possible_cpu(cpu) { 2142 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2143 continue; 2144 2145 if (remove_xps_queue(dev_maps, cpu, index)) 2146 active = true; 2147 } 2148 2149 /* free map if not active */ 2150 if (!active) { 2151 RCU_INIT_POINTER(dev->xps_maps, NULL); 2152 kfree_rcu(dev_maps, rcu); 2153 } 2154 2155 out_no_maps: 2156 mutex_unlock(&xps_map_mutex); 2157 2158 return 0; 2159 error: 2160 /* remove any maps that we added */ 2161 for_each_possible_cpu(cpu) { 2162 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2163 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2164 NULL; 2165 if (new_map && new_map != map) 2166 kfree(new_map); 2167 } 2168 2169 mutex_unlock(&xps_map_mutex); 2170 2171 kfree(new_dev_maps); 2172 return -ENOMEM; 2173 } 2174 EXPORT_SYMBOL(netif_set_xps_queue); 2175 2176 #endif 2177 /* 2178 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2179 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2180 */ 2181 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2182 { 2183 int rc; 2184 2185 if (txq < 1 || txq > dev->num_tx_queues) 2186 return -EINVAL; 2187 2188 if (dev->reg_state == NETREG_REGISTERED || 2189 dev->reg_state == NETREG_UNREGISTERING) { 2190 ASSERT_RTNL(); 2191 2192 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2193 txq); 2194 if (rc) 2195 return rc; 2196 2197 if (dev->num_tc) 2198 netif_setup_tc(dev, txq); 2199 2200 if (txq < dev->real_num_tx_queues) { 2201 qdisc_reset_all_tx_gt(dev, txq); 2202 #ifdef CONFIG_XPS 2203 netif_reset_xps_queues_gt(dev, txq); 2204 #endif 2205 } 2206 } 2207 2208 dev->real_num_tx_queues = txq; 2209 return 0; 2210 } 2211 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2212 2213 #ifdef CONFIG_SYSFS 2214 /** 2215 * netif_set_real_num_rx_queues - set actual number of RX queues used 2216 * @dev: Network device 2217 * @rxq: Actual number of RX queues 2218 * 2219 * This must be called either with the rtnl_lock held or before 2220 * registration of the net device. Returns 0 on success, or a 2221 * negative error code. If called before registration, it always 2222 * succeeds. 2223 */ 2224 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2225 { 2226 int rc; 2227 2228 if (rxq < 1 || rxq > dev->num_rx_queues) 2229 return -EINVAL; 2230 2231 if (dev->reg_state == NETREG_REGISTERED) { 2232 ASSERT_RTNL(); 2233 2234 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2235 rxq); 2236 if (rc) 2237 return rc; 2238 } 2239 2240 dev->real_num_rx_queues = rxq; 2241 return 0; 2242 } 2243 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2244 #endif 2245 2246 /** 2247 * netif_get_num_default_rss_queues - default number of RSS queues 2248 * 2249 * This routine should set an upper limit on the number of RSS queues 2250 * used by default by multiqueue devices. 2251 */ 2252 int netif_get_num_default_rss_queues(void) 2253 { 2254 return is_kdump_kernel() ? 2255 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2256 } 2257 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2258 2259 static void __netif_reschedule(struct Qdisc *q) 2260 { 2261 struct softnet_data *sd; 2262 unsigned long flags; 2263 2264 local_irq_save(flags); 2265 sd = this_cpu_ptr(&softnet_data); 2266 q->next_sched = NULL; 2267 *sd->output_queue_tailp = q; 2268 sd->output_queue_tailp = &q->next_sched; 2269 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2270 local_irq_restore(flags); 2271 } 2272 2273 void __netif_schedule(struct Qdisc *q) 2274 { 2275 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2276 __netif_reschedule(q); 2277 } 2278 EXPORT_SYMBOL(__netif_schedule); 2279 2280 struct dev_kfree_skb_cb { 2281 enum skb_free_reason reason; 2282 }; 2283 2284 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2285 { 2286 return (struct dev_kfree_skb_cb *)skb->cb; 2287 } 2288 2289 void netif_schedule_queue(struct netdev_queue *txq) 2290 { 2291 rcu_read_lock(); 2292 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2293 struct Qdisc *q = rcu_dereference(txq->qdisc); 2294 2295 __netif_schedule(q); 2296 } 2297 rcu_read_unlock(); 2298 } 2299 EXPORT_SYMBOL(netif_schedule_queue); 2300 2301 /** 2302 * netif_wake_subqueue - allow sending packets on subqueue 2303 * @dev: network device 2304 * @queue_index: sub queue index 2305 * 2306 * Resume individual transmit queue of a device with multiple transmit queues. 2307 */ 2308 void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2309 { 2310 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2311 2312 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) { 2313 struct Qdisc *q; 2314 2315 rcu_read_lock(); 2316 q = rcu_dereference(txq->qdisc); 2317 __netif_schedule(q); 2318 rcu_read_unlock(); 2319 } 2320 } 2321 EXPORT_SYMBOL(netif_wake_subqueue); 2322 2323 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2324 { 2325 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2326 struct Qdisc *q; 2327 2328 rcu_read_lock(); 2329 q = rcu_dereference(dev_queue->qdisc); 2330 __netif_schedule(q); 2331 rcu_read_unlock(); 2332 } 2333 } 2334 EXPORT_SYMBOL(netif_tx_wake_queue); 2335 2336 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2337 { 2338 unsigned long flags; 2339 2340 if (likely(atomic_read(&skb->users) == 1)) { 2341 smp_rmb(); 2342 atomic_set(&skb->users, 0); 2343 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2344 return; 2345 } 2346 get_kfree_skb_cb(skb)->reason = reason; 2347 local_irq_save(flags); 2348 skb->next = __this_cpu_read(softnet_data.completion_queue); 2349 __this_cpu_write(softnet_data.completion_queue, skb); 2350 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2351 local_irq_restore(flags); 2352 } 2353 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2354 2355 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2356 { 2357 if (in_irq() || irqs_disabled()) 2358 __dev_kfree_skb_irq(skb, reason); 2359 else 2360 dev_kfree_skb(skb); 2361 } 2362 EXPORT_SYMBOL(__dev_kfree_skb_any); 2363 2364 2365 /** 2366 * netif_device_detach - mark device as removed 2367 * @dev: network device 2368 * 2369 * Mark device as removed from system and therefore no longer available. 2370 */ 2371 void netif_device_detach(struct net_device *dev) 2372 { 2373 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2374 netif_running(dev)) { 2375 netif_tx_stop_all_queues(dev); 2376 } 2377 } 2378 EXPORT_SYMBOL(netif_device_detach); 2379 2380 /** 2381 * netif_device_attach - mark device as attached 2382 * @dev: network device 2383 * 2384 * Mark device as attached from system and restart if needed. 2385 */ 2386 void netif_device_attach(struct net_device *dev) 2387 { 2388 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2389 netif_running(dev)) { 2390 netif_tx_wake_all_queues(dev); 2391 __netdev_watchdog_up(dev); 2392 } 2393 } 2394 EXPORT_SYMBOL(netif_device_attach); 2395 2396 /* 2397 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2398 * to be used as a distribution range. 2399 */ 2400 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2401 unsigned int num_tx_queues) 2402 { 2403 u32 hash; 2404 u16 qoffset = 0; 2405 u16 qcount = num_tx_queues; 2406 2407 if (skb_rx_queue_recorded(skb)) { 2408 hash = skb_get_rx_queue(skb); 2409 while (unlikely(hash >= num_tx_queues)) 2410 hash -= num_tx_queues; 2411 return hash; 2412 } 2413 2414 if (dev->num_tc) { 2415 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2416 qoffset = dev->tc_to_txq[tc].offset; 2417 qcount = dev->tc_to_txq[tc].count; 2418 } 2419 2420 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2421 } 2422 EXPORT_SYMBOL(__skb_tx_hash); 2423 2424 static void skb_warn_bad_offload(const struct sk_buff *skb) 2425 { 2426 static const netdev_features_t null_features; 2427 struct net_device *dev = skb->dev; 2428 const char *name = ""; 2429 2430 if (!net_ratelimit()) 2431 return; 2432 2433 if (dev) { 2434 if (dev->dev.parent) 2435 name = dev_driver_string(dev->dev.parent); 2436 else 2437 name = netdev_name(dev); 2438 } 2439 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2440 "gso_type=%d ip_summed=%d\n", 2441 name, dev ? &dev->features : &null_features, 2442 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2443 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2444 skb_shinfo(skb)->gso_type, skb->ip_summed); 2445 } 2446 2447 /* 2448 * Invalidate hardware checksum when packet is to be mangled, and 2449 * complete checksum manually on outgoing path. 2450 */ 2451 int skb_checksum_help(struct sk_buff *skb) 2452 { 2453 __wsum csum; 2454 int ret = 0, offset; 2455 2456 if (skb->ip_summed == CHECKSUM_COMPLETE) 2457 goto out_set_summed; 2458 2459 if (unlikely(skb_shinfo(skb)->gso_size)) { 2460 skb_warn_bad_offload(skb); 2461 return -EINVAL; 2462 } 2463 2464 /* Before computing a checksum, we should make sure no frag could 2465 * be modified by an external entity : checksum could be wrong. 2466 */ 2467 if (skb_has_shared_frag(skb)) { 2468 ret = __skb_linearize(skb); 2469 if (ret) 2470 goto out; 2471 } 2472 2473 offset = skb_checksum_start_offset(skb); 2474 BUG_ON(offset >= skb_headlen(skb)); 2475 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2476 2477 offset += skb->csum_offset; 2478 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2479 2480 if (skb_cloned(skb) && 2481 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2482 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2483 if (ret) 2484 goto out; 2485 } 2486 2487 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2488 out_set_summed: 2489 skb->ip_summed = CHECKSUM_NONE; 2490 out: 2491 return ret; 2492 } 2493 EXPORT_SYMBOL(skb_checksum_help); 2494 2495 /* skb_csum_offload_check - Driver helper function to determine if a device 2496 * with limited checksum offload capabilities is able to offload the checksum 2497 * for a given packet. 2498 * 2499 * Arguments: 2500 * skb - sk_buff for the packet in question 2501 * spec - contains the description of what device can offload 2502 * csum_encapped - returns true if the checksum being offloaded is 2503 * encpasulated. That is it is checksum for the transport header 2504 * in the inner headers. 2505 * checksum_help - when set indicates that helper function should 2506 * call skb_checksum_help if offload checks fail 2507 * 2508 * Returns: 2509 * true: Packet has passed the checksum checks and should be offloadable to 2510 * the device (a driver may still need to check for additional 2511 * restrictions of its device) 2512 * false: Checksum is not offloadable. If checksum_help was set then 2513 * skb_checksum_help was called to resolve checksum for non-GSO 2514 * packets and when IP protocol is not SCTP 2515 */ 2516 bool __skb_csum_offload_chk(struct sk_buff *skb, 2517 const struct skb_csum_offl_spec *spec, 2518 bool *csum_encapped, 2519 bool csum_help) 2520 { 2521 struct iphdr *iph; 2522 struct ipv6hdr *ipv6; 2523 void *nhdr; 2524 int protocol; 2525 u8 ip_proto; 2526 2527 if (skb->protocol == htons(ETH_P_8021Q) || 2528 skb->protocol == htons(ETH_P_8021AD)) { 2529 if (!spec->vlan_okay) 2530 goto need_help; 2531 } 2532 2533 /* We check whether the checksum refers to a transport layer checksum in 2534 * the outermost header or an encapsulated transport layer checksum that 2535 * corresponds to the inner headers of the skb. If the checksum is for 2536 * something else in the packet we need help. 2537 */ 2538 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) { 2539 /* Non-encapsulated checksum */ 2540 protocol = eproto_to_ipproto(vlan_get_protocol(skb)); 2541 nhdr = skb_network_header(skb); 2542 *csum_encapped = false; 2543 if (spec->no_not_encapped) 2544 goto need_help; 2545 } else if (skb->encapsulation && spec->encap_okay && 2546 skb_checksum_start_offset(skb) == 2547 skb_inner_transport_offset(skb)) { 2548 /* Encapsulated checksum */ 2549 *csum_encapped = true; 2550 switch (skb->inner_protocol_type) { 2551 case ENCAP_TYPE_ETHER: 2552 protocol = eproto_to_ipproto(skb->inner_protocol); 2553 break; 2554 case ENCAP_TYPE_IPPROTO: 2555 protocol = skb->inner_protocol; 2556 break; 2557 } 2558 nhdr = skb_inner_network_header(skb); 2559 } else { 2560 goto need_help; 2561 } 2562 2563 switch (protocol) { 2564 case IPPROTO_IP: 2565 if (!spec->ipv4_okay) 2566 goto need_help; 2567 iph = nhdr; 2568 ip_proto = iph->protocol; 2569 if (iph->ihl != 5 && !spec->ip_options_okay) 2570 goto need_help; 2571 break; 2572 case IPPROTO_IPV6: 2573 if (!spec->ipv6_okay) 2574 goto need_help; 2575 if (spec->no_encapped_ipv6 && *csum_encapped) 2576 goto need_help; 2577 ipv6 = nhdr; 2578 nhdr += sizeof(*ipv6); 2579 ip_proto = ipv6->nexthdr; 2580 break; 2581 default: 2582 goto need_help; 2583 } 2584 2585 ip_proto_again: 2586 switch (ip_proto) { 2587 case IPPROTO_TCP: 2588 if (!spec->tcp_okay || 2589 skb->csum_offset != offsetof(struct tcphdr, check)) 2590 goto need_help; 2591 break; 2592 case IPPROTO_UDP: 2593 if (!spec->udp_okay || 2594 skb->csum_offset != offsetof(struct udphdr, check)) 2595 goto need_help; 2596 break; 2597 case IPPROTO_SCTP: 2598 if (!spec->sctp_okay || 2599 skb->csum_offset != offsetof(struct sctphdr, checksum)) 2600 goto cant_help; 2601 break; 2602 case NEXTHDR_HOP: 2603 case NEXTHDR_ROUTING: 2604 case NEXTHDR_DEST: { 2605 u8 *opthdr = nhdr; 2606 2607 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay) 2608 goto need_help; 2609 2610 ip_proto = opthdr[0]; 2611 nhdr += (opthdr[1] + 1) << 3; 2612 2613 goto ip_proto_again; 2614 } 2615 default: 2616 goto need_help; 2617 } 2618 2619 /* Passed the tests for offloading checksum */ 2620 return true; 2621 2622 need_help: 2623 if (csum_help && !skb_shinfo(skb)->gso_size) 2624 skb_checksum_help(skb); 2625 cant_help: 2626 return false; 2627 } 2628 EXPORT_SYMBOL(__skb_csum_offload_chk); 2629 2630 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2631 { 2632 __be16 type = skb->protocol; 2633 2634 /* Tunnel gso handlers can set protocol to ethernet. */ 2635 if (type == htons(ETH_P_TEB)) { 2636 struct ethhdr *eth; 2637 2638 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2639 return 0; 2640 2641 eth = (struct ethhdr *)skb_mac_header(skb); 2642 type = eth->h_proto; 2643 } 2644 2645 return __vlan_get_protocol(skb, type, depth); 2646 } 2647 2648 /** 2649 * skb_mac_gso_segment - mac layer segmentation handler. 2650 * @skb: buffer to segment 2651 * @features: features for the output path (see dev->features) 2652 */ 2653 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2654 netdev_features_t features) 2655 { 2656 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2657 struct packet_offload *ptype; 2658 int vlan_depth = skb->mac_len; 2659 __be16 type = skb_network_protocol(skb, &vlan_depth); 2660 2661 if (unlikely(!type)) 2662 return ERR_PTR(-EINVAL); 2663 2664 __skb_pull(skb, vlan_depth); 2665 2666 rcu_read_lock(); 2667 list_for_each_entry_rcu(ptype, &offload_base, list) { 2668 if (ptype->type == type && ptype->callbacks.gso_segment) { 2669 segs = ptype->callbacks.gso_segment(skb, features); 2670 break; 2671 } 2672 } 2673 rcu_read_unlock(); 2674 2675 __skb_push(skb, skb->data - skb_mac_header(skb)); 2676 2677 return segs; 2678 } 2679 EXPORT_SYMBOL(skb_mac_gso_segment); 2680 2681 2682 /* openvswitch calls this on rx path, so we need a different check. 2683 */ 2684 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2685 { 2686 if (tx_path) 2687 return skb->ip_summed != CHECKSUM_PARTIAL; 2688 else 2689 return skb->ip_summed == CHECKSUM_NONE; 2690 } 2691 2692 /** 2693 * __skb_gso_segment - Perform segmentation on skb. 2694 * @skb: buffer to segment 2695 * @features: features for the output path (see dev->features) 2696 * @tx_path: whether it is called in TX path 2697 * 2698 * This function segments the given skb and returns a list of segments. 2699 * 2700 * It may return NULL if the skb requires no segmentation. This is 2701 * only possible when GSO is used for verifying header integrity. 2702 * 2703 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2704 */ 2705 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2706 netdev_features_t features, bool tx_path) 2707 { 2708 if (unlikely(skb_needs_check(skb, tx_path))) { 2709 int err; 2710 2711 skb_warn_bad_offload(skb); 2712 2713 err = skb_cow_head(skb, 0); 2714 if (err < 0) 2715 return ERR_PTR(err); 2716 } 2717 2718 /* Only report GSO partial support if it will enable us to 2719 * support segmentation on this frame without needing additional 2720 * work. 2721 */ 2722 if (features & NETIF_F_GSO_PARTIAL) { 2723 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2724 struct net_device *dev = skb->dev; 2725 2726 partial_features |= dev->features & dev->gso_partial_features; 2727 if (!skb_gso_ok(skb, features | partial_features)) 2728 features &= ~NETIF_F_GSO_PARTIAL; 2729 } 2730 2731 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2732 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2733 2734 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2735 SKB_GSO_CB(skb)->encap_level = 0; 2736 2737 skb_reset_mac_header(skb); 2738 skb_reset_mac_len(skb); 2739 2740 return skb_mac_gso_segment(skb, features); 2741 } 2742 EXPORT_SYMBOL(__skb_gso_segment); 2743 2744 /* Take action when hardware reception checksum errors are detected. */ 2745 #ifdef CONFIG_BUG 2746 void netdev_rx_csum_fault(struct net_device *dev) 2747 { 2748 if (net_ratelimit()) { 2749 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2750 dump_stack(); 2751 } 2752 } 2753 EXPORT_SYMBOL(netdev_rx_csum_fault); 2754 #endif 2755 2756 /* Actually, we should eliminate this check as soon as we know, that: 2757 * 1. IOMMU is present and allows to map all the memory. 2758 * 2. No high memory really exists on this machine. 2759 */ 2760 2761 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2762 { 2763 #ifdef CONFIG_HIGHMEM 2764 int i; 2765 if (!(dev->features & NETIF_F_HIGHDMA)) { 2766 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2767 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2768 if (PageHighMem(skb_frag_page(frag))) 2769 return 1; 2770 } 2771 } 2772 2773 if (PCI_DMA_BUS_IS_PHYS) { 2774 struct device *pdev = dev->dev.parent; 2775 2776 if (!pdev) 2777 return 0; 2778 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2779 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2780 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2781 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2782 return 1; 2783 } 2784 } 2785 #endif 2786 return 0; 2787 } 2788 2789 /* If MPLS offload request, verify we are testing hardware MPLS features 2790 * instead of standard features for the netdev. 2791 */ 2792 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2793 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2794 netdev_features_t features, 2795 __be16 type) 2796 { 2797 if (eth_p_mpls(type)) 2798 features &= skb->dev->mpls_features; 2799 2800 return features; 2801 } 2802 #else 2803 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2804 netdev_features_t features, 2805 __be16 type) 2806 { 2807 return features; 2808 } 2809 #endif 2810 2811 static netdev_features_t harmonize_features(struct sk_buff *skb, 2812 netdev_features_t features) 2813 { 2814 int tmp; 2815 __be16 type; 2816 2817 type = skb_network_protocol(skb, &tmp); 2818 features = net_mpls_features(skb, features, type); 2819 2820 if (skb->ip_summed != CHECKSUM_NONE && 2821 !can_checksum_protocol(features, type)) { 2822 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2823 } else if (illegal_highdma(skb->dev, skb)) { 2824 features &= ~NETIF_F_SG; 2825 } 2826 2827 return features; 2828 } 2829 2830 netdev_features_t passthru_features_check(struct sk_buff *skb, 2831 struct net_device *dev, 2832 netdev_features_t features) 2833 { 2834 return features; 2835 } 2836 EXPORT_SYMBOL(passthru_features_check); 2837 2838 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2839 struct net_device *dev, 2840 netdev_features_t features) 2841 { 2842 return vlan_features_check(skb, features); 2843 } 2844 2845 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2846 struct net_device *dev, 2847 netdev_features_t features) 2848 { 2849 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2850 2851 if (gso_segs > dev->gso_max_segs) 2852 return features & ~NETIF_F_GSO_MASK; 2853 2854 /* Support for GSO partial features requires software 2855 * intervention before we can actually process the packets 2856 * so we need to strip support for any partial features now 2857 * and we can pull them back in after we have partially 2858 * segmented the frame. 2859 */ 2860 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2861 features &= ~dev->gso_partial_features; 2862 2863 /* Make sure to clear the IPv4 ID mangling feature if the 2864 * IPv4 header has the potential to be fragmented. 2865 */ 2866 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2867 struct iphdr *iph = skb->encapsulation ? 2868 inner_ip_hdr(skb) : ip_hdr(skb); 2869 2870 if (!(iph->frag_off & htons(IP_DF))) 2871 features &= ~NETIF_F_TSO_MANGLEID; 2872 } 2873 2874 return features; 2875 } 2876 2877 netdev_features_t netif_skb_features(struct sk_buff *skb) 2878 { 2879 struct net_device *dev = skb->dev; 2880 netdev_features_t features = dev->features; 2881 2882 if (skb_is_gso(skb)) 2883 features = gso_features_check(skb, dev, features); 2884 2885 /* If encapsulation offload request, verify we are testing 2886 * hardware encapsulation features instead of standard 2887 * features for the netdev 2888 */ 2889 if (skb->encapsulation) 2890 features &= dev->hw_enc_features; 2891 2892 if (skb_vlan_tagged(skb)) 2893 features = netdev_intersect_features(features, 2894 dev->vlan_features | 2895 NETIF_F_HW_VLAN_CTAG_TX | 2896 NETIF_F_HW_VLAN_STAG_TX); 2897 2898 if (dev->netdev_ops->ndo_features_check) 2899 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2900 features); 2901 else 2902 features &= dflt_features_check(skb, dev, features); 2903 2904 return harmonize_features(skb, features); 2905 } 2906 EXPORT_SYMBOL(netif_skb_features); 2907 2908 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2909 struct netdev_queue *txq, bool more) 2910 { 2911 unsigned int len; 2912 int rc; 2913 2914 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2915 dev_queue_xmit_nit(skb, dev); 2916 2917 len = skb->len; 2918 trace_net_dev_start_xmit(skb, dev); 2919 rc = netdev_start_xmit(skb, dev, txq, more); 2920 trace_net_dev_xmit(skb, rc, dev, len); 2921 2922 return rc; 2923 } 2924 2925 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2926 struct netdev_queue *txq, int *ret) 2927 { 2928 struct sk_buff *skb = first; 2929 int rc = NETDEV_TX_OK; 2930 2931 while (skb) { 2932 struct sk_buff *next = skb->next; 2933 2934 skb->next = NULL; 2935 rc = xmit_one(skb, dev, txq, next != NULL); 2936 if (unlikely(!dev_xmit_complete(rc))) { 2937 skb->next = next; 2938 goto out; 2939 } 2940 2941 skb = next; 2942 if (netif_xmit_stopped(txq) && skb) { 2943 rc = NETDEV_TX_BUSY; 2944 break; 2945 } 2946 } 2947 2948 out: 2949 *ret = rc; 2950 return skb; 2951 } 2952 2953 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2954 netdev_features_t features) 2955 { 2956 if (skb_vlan_tag_present(skb) && 2957 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2958 skb = __vlan_hwaccel_push_inside(skb); 2959 return skb; 2960 } 2961 2962 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2963 { 2964 netdev_features_t features; 2965 2966 features = netif_skb_features(skb); 2967 skb = validate_xmit_vlan(skb, features); 2968 if (unlikely(!skb)) 2969 goto out_null; 2970 2971 if (netif_needs_gso(skb, features)) { 2972 struct sk_buff *segs; 2973 2974 segs = skb_gso_segment(skb, features); 2975 if (IS_ERR(segs)) { 2976 goto out_kfree_skb; 2977 } else if (segs) { 2978 consume_skb(skb); 2979 skb = segs; 2980 } 2981 } else { 2982 if (skb_needs_linearize(skb, features) && 2983 __skb_linearize(skb)) 2984 goto out_kfree_skb; 2985 2986 /* If packet is not checksummed and device does not 2987 * support checksumming for this protocol, complete 2988 * checksumming here. 2989 */ 2990 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2991 if (skb->encapsulation) 2992 skb_set_inner_transport_header(skb, 2993 skb_checksum_start_offset(skb)); 2994 else 2995 skb_set_transport_header(skb, 2996 skb_checksum_start_offset(skb)); 2997 if (!(features & NETIF_F_CSUM_MASK) && 2998 skb_checksum_help(skb)) 2999 goto out_kfree_skb; 3000 } 3001 } 3002 3003 return skb; 3004 3005 out_kfree_skb: 3006 kfree_skb(skb); 3007 out_null: 3008 atomic_long_inc(&dev->tx_dropped); 3009 return NULL; 3010 } 3011 3012 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 3013 { 3014 struct sk_buff *next, *head = NULL, *tail; 3015 3016 for (; skb != NULL; skb = next) { 3017 next = skb->next; 3018 skb->next = NULL; 3019 3020 /* in case skb wont be segmented, point to itself */ 3021 skb->prev = skb; 3022 3023 skb = validate_xmit_skb(skb, dev); 3024 if (!skb) 3025 continue; 3026 3027 if (!head) 3028 head = skb; 3029 else 3030 tail->next = skb; 3031 /* If skb was segmented, skb->prev points to 3032 * the last segment. If not, it still contains skb. 3033 */ 3034 tail = skb->prev; 3035 } 3036 return head; 3037 } 3038 3039 static void qdisc_pkt_len_init(struct sk_buff *skb) 3040 { 3041 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3042 3043 qdisc_skb_cb(skb)->pkt_len = skb->len; 3044 3045 /* To get more precise estimation of bytes sent on wire, 3046 * we add to pkt_len the headers size of all segments 3047 */ 3048 if (shinfo->gso_size) { 3049 unsigned int hdr_len; 3050 u16 gso_segs = shinfo->gso_segs; 3051 3052 /* mac layer + network layer */ 3053 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3054 3055 /* + transport layer */ 3056 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3057 hdr_len += tcp_hdrlen(skb); 3058 else 3059 hdr_len += sizeof(struct udphdr); 3060 3061 if (shinfo->gso_type & SKB_GSO_DODGY) 3062 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3063 shinfo->gso_size); 3064 3065 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3066 } 3067 } 3068 3069 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3070 struct net_device *dev, 3071 struct netdev_queue *txq) 3072 { 3073 spinlock_t *root_lock = qdisc_lock(q); 3074 struct sk_buff *to_free = NULL; 3075 bool contended; 3076 int rc; 3077 3078 qdisc_calculate_pkt_len(skb, q); 3079 /* 3080 * Heuristic to force contended enqueues to serialize on a 3081 * separate lock before trying to get qdisc main lock. 3082 * This permits qdisc->running owner to get the lock more 3083 * often and dequeue packets faster. 3084 */ 3085 contended = qdisc_is_running(q); 3086 if (unlikely(contended)) 3087 spin_lock(&q->busylock); 3088 3089 spin_lock(root_lock); 3090 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3091 __qdisc_drop(skb, &to_free); 3092 rc = NET_XMIT_DROP; 3093 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3094 qdisc_run_begin(q)) { 3095 /* 3096 * This is a work-conserving queue; there are no old skbs 3097 * waiting to be sent out; and the qdisc is not running - 3098 * xmit the skb directly. 3099 */ 3100 3101 qdisc_bstats_update(q, skb); 3102 3103 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3104 if (unlikely(contended)) { 3105 spin_unlock(&q->busylock); 3106 contended = false; 3107 } 3108 __qdisc_run(q); 3109 } else 3110 qdisc_run_end(q); 3111 3112 rc = NET_XMIT_SUCCESS; 3113 } else { 3114 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3115 if (qdisc_run_begin(q)) { 3116 if (unlikely(contended)) { 3117 spin_unlock(&q->busylock); 3118 contended = false; 3119 } 3120 __qdisc_run(q); 3121 } 3122 } 3123 spin_unlock(root_lock); 3124 if (unlikely(to_free)) 3125 kfree_skb_list(to_free); 3126 if (unlikely(contended)) 3127 spin_unlock(&q->busylock); 3128 return rc; 3129 } 3130 3131 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3132 static void skb_update_prio(struct sk_buff *skb) 3133 { 3134 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3135 3136 if (!skb->priority && skb->sk && map) { 3137 unsigned int prioidx = 3138 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3139 3140 if (prioidx < map->priomap_len) 3141 skb->priority = map->priomap[prioidx]; 3142 } 3143 } 3144 #else 3145 #define skb_update_prio(skb) 3146 #endif 3147 3148 DEFINE_PER_CPU(int, xmit_recursion); 3149 EXPORT_SYMBOL(xmit_recursion); 3150 3151 /** 3152 * dev_loopback_xmit - loop back @skb 3153 * @net: network namespace this loopback is happening in 3154 * @sk: sk needed to be a netfilter okfn 3155 * @skb: buffer to transmit 3156 */ 3157 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3158 { 3159 skb_reset_mac_header(skb); 3160 __skb_pull(skb, skb_network_offset(skb)); 3161 skb->pkt_type = PACKET_LOOPBACK; 3162 skb->ip_summed = CHECKSUM_UNNECESSARY; 3163 WARN_ON(!skb_dst(skb)); 3164 skb_dst_force(skb); 3165 netif_rx_ni(skb); 3166 return 0; 3167 } 3168 EXPORT_SYMBOL(dev_loopback_xmit); 3169 3170 #ifdef CONFIG_NET_EGRESS 3171 static struct sk_buff * 3172 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3173 { 3174 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list); 3175 struct tcf_result cl_res; 3176 3177 if (!cl) 3178 return skb; 3179 3180 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set 3181 * earlier by the caller. 3182 */ 3183 qdisc_bstats_cpu_update(cl->q, skb); 3184 3185 switch (tc_classify(skb, cl, &cl_res, false)) { 3186 case TC_ACT_OK: 3187 case TC_ACT_RECLASSIFY: 3188 skb->tc_index = TC_H_MIN(cl_res.classid); 3189 break; 3190 case TC_ACT_SHOT: 3191 qdisc_qstats_cpu_drop(cl->q); 3192 *ret = NET_XMIT_DROP; 3193 kfree_skb(skb); 3194 return NULL; 3195 case TC_ACT_STOLEN: 3196 case TC_ACT_QUEUED: 3197 *ret = NET_XMIT_SUCCESS; 3198 consume_skb(skb); 3199 return NULL; 3200 case TC_ACT_REDIRECT: 3201 /* No need to push/pop skb's mac_header here on egress! */ 3202 skb_do_redirect(skb); 3203 *ret = NET_XMIT_SUCCESS; 3204 return NULL; 3205 default: 3206 break; 3207 } 3208 3209 return skb; 3210 } 3211 #endif /* CONFIG_NET_EGRESS */ 3212 3213 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3214 { 3215 #ifdef CONFIG_XPS 3216 struct xps_dev_maps *dev_maps; 3217 struct xps_map *map; 3218 int queue_index = -1; 3219 3220 rcu_read_lock(); 3221 dev_maps = rcu_dereference(dev->xps_maps); 3222 if (dev_maps) { 3223 map = rcu_dereference( 3224 dev_maps->cpu_map[skb->sender_cpu - 1]); 3225 if (map) { 3226 if (map->len == 1) 3227 queue_index = map->queues[0]; 3228 else 3229 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3230 map->len)]; 3231 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3232 queue_index = -1; 3233 } 3234 } 3235 rcu_read_unlock(); 3236 3237 return queue_index; 3238 #else 3239 return -1; 3240 #endif 3241 } 3242 3243 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3244 { 3245 struct sock *sk = skb->sk; 3246 int queue_index = sk_tx_queue_get(sk); 3247 3248 if (queue_index < 0 || skb->ooo_okay || 3249 queue_index >= dev->real_num_tx_queues) { 3250 int new_index = get_xps_queue(dev, skb); 3251 if (new_index < 0) 3252 new_index = skb_tx_hash(dev, skb); 3253 3254 if (queue_index != new_index && sk && 3255 sk_fullsock(sk) && 3256 rcu_access_pointer(sk->sk_dst_cache)) 3257 sk_tx_queue_set(sk, new_index); 3258 3259 queue_index = new_index; 3260 } 3261 3262 return queue_index; 3263 } 3264 3265 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3266 struct sk_buff *skb, 3267 void *accel_priv) 3268 { 3269 int queue_index = 0; 3270 3271 #ifdef CONFIG_XPS 3272 u32 sender_cpu = skb->sender_cpu - 1; 3273 3274 if (sender_cpu >= (u32)NR_CPUS) 3275 skb->sender_cpu = raw_smp_processor_id() + 1; 3276 #endif 3277 3278 if (dev->real_num_tx_queues != 1) { 3279 const struct net_device_ops *ops = dev->netdev_ops; 3280 if (ops->ndo_select_queue) 3281 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3282 __netdev_pick_tx); 3283 else 3284 queue_index = __netdev_pick_tx(dev, skb); 3285 3286 if (!accel_priv) 3287 queue_index = netdev_cap_txqueue(dev, queue_index); 3288 } 3289 3290 skb_set_queue_mapping(skb, queue_index); 3291 return netdev_get_tx_queue(dev, queue_index); 3292 } 3293 3294 /** 3295 * __dev_queue_xmit - transmit a buffer 3296 * @skb: buffer to transmit 3297 * @accel_priv: private data used for L2 forwarding offload 3298 * 3299 * Queue a buffer for transmission to a network device. The caller must 3300 * have set the device and priority and built the buffer before calling 3301 * this function. The function can be called from an interrupt. 3302 * 3303 * A negative errno code is returned on a failure. A success does not 3304 * guarantee the frame will be transmitted as it may be dropped due 3305 * to congestion or traffic shaping. 3306 * 3307 * ----------------------------------------------------------------------------------- 3308 * I notice this method can also return errors from the queue disciplines, 3309 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3310 * be positive. 3311 * 3312 * Regardless of the return value, the skb is consumed, so it is currently 3313 * difficult to retry a send to this method. (You can bump the ref count 3314 * before sending to hold a reference for retry if you are careful.) 3315 * 3316 * When calling this method, interrupts MUST be enabled. This is because 3317 * the BH enable code must have IRQs enabled so that it will not deadlock. 3318 * --BLG 3319 */ 3320 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3321 { 3322 struct net_device *dev = skb->dev; 3323 struct netdev_queue *txq; 3324 struct Qdisc *q; 3325 int rc = -ENOMEM; 3326 3327 skb_reset_mac_header(skb); 3328 3329 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3330 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3331 3332 /* Disable soft irqs for various locks below. Also 3333 * stops preemption for RCU. 3334 */ 3335 rcu_read_lock_bh(); 3336 3337 skb_update_prio(skb); 3338 3339 qdisc_pkt_len_init(skb); 3340 #ifdef CONFIG_NET_CLS_ACT 3341 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 3342 # ifdef CONFIG_NET_EGRESS 3343 if (static_key_false(&egress_needed)) { 3344 skb = sch_handle_egress(skb, &rc, dev); 3345 if (!skb) 3346 goto out; 3347 } 3348 # endif 3349 #endif 3350 /* If device/qdisc don't need skb->dst, release it right now while 3351 * its hot in this cpu cache. 3352 */ 3353 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3354 skb_dst_drop(skb); 3355 else 3356 skb_dst_force(skb); 3357 3358 txq = netdev_pick_tx(dev, skb, accel_priv); 3359 q = rcu_dereference_bh(txq->qdisc); 3360 3361 trace_net_dev_queue(skb); 3362 if (q->enqueue) { 3363 rc = __dev_xmit_skb(skb, q, dev, txq); 3364 goto out; 3365 } 3366 3367 /* The device has no queue. Common case for software devices: 3368 loopback, all the sorts of tunnels... 3369 3370 Really, it is unlikely that netif_tx_lock protection is necessary 3371 here. (f.e. loopback and IP tunnels are clean ignoring statistics 3372 counters.) 3373 However, it is possible, that they rely on protection 3374 made by us here. 3375 3376 Check this and shot the lock. It is not prone from deadlocks. 3377 Either shot noqueue qdisc, it is even simpler 8) 3378 */ 3379 if (dev->flags & IFF_UP) { 3380 int cpu = smp_processor_id(); /* ok because BHs are off */ 3381 3382 if (txq->xmit_lock_owner != cpu) { 3383 if (unlikely(__this_cpu_read(xmit_recursion) > 3384 XMIT_RECURSION_LIMIT)) 3385 goto recursion_alert; 3386 3387 skb = validate_xmit_skb(skb, dev); 3388 if (!skb) 3389 goto out; 3390 3391 HARD_TX_LOCK(dev, txq, cpu); 3392 3393 if (!netif_xmit_stopped(txq)) { 3394 __this_cpu_inc(xmit_recursion); 3395 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3396 __this_cpu_dec(xmit_recursion); 3397 if (dev_xmit_complete(rc)) { 3398 HARD_TX_UNLOCK(dev, txq); 3399 goto out; 3400 } 3401 } 3402 HARD_TX_UNLOCK(dev, txq); 3403 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3404 dev->name); 3405 } else { 3406 /* Recursion is detected! It is possible, 3407 * unfortunately 3408 */ 3409 recursion_alert: 3410 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3411 dev->name); 3412 } 3413 } 3414 3415 rc = -ENETDOWN; 3416 rcu_read_unlock_bh(); 3417 3418 atomic_long_inc(&dev->tx_dropped); 3419 kfree_skb_list(skb); 3420 return rc; 3421 out: 3422 rcu_read_unlock_bh(); 3423 return rc; 3424 } 3425 3426 int dev_queue_xmit(struct sk_buff *skb) 3427 { 3428 return __dev_queue_xmit(skb, NULL); 3429 } 3430 EXPORT_SYMBOL(dev_queue_xmit); 3431 3432 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3433 { 3434 return __dev_queue_xmit(skb, accel_priv); 3435 } 3436 EXPORT_SYMBOL(dev_queue_xmit_accel); 3437 3438 3439 /*======================================================================= 3440 Receiver routines 3441 =======================================================================*/ 3442 3443 int netdev_max_backlog __read_mostly = 1000; 3444 EXPORT_SYMBOL(netdev_max_backlog); 3445 3446 int netdev_tstamp_prequeue __read_mostly = 1; 3447 int netdev_budget __read_mostly = 300; 3448 int weight_p __read_mostly = 64; /* old backlog weight */ 3449 3450 /* Called with irq disabled */ 3451 static inline void ____napi_schedule(struct softnet_data *sd, 3452 struct napi_struct *napi) 3453 { 3454 list_add_tail(&napi->poll_list, &sd->poll_list); 3455 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3456 } 3457 3458 #ifdef CONFIG_RPS 3459 3460 /* One global table that all flow-based protocols share. */ 3461 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3462 EXPORT_SYMBOL(rps_sock_flow_table); 3463 u32 rps_cpu_mask __read_mostly; 3464 EXPORT_SYMBOL(rps_cpu_mask); 3465 3466 struct static_key rps_needed __read_mostly; 3467 EXPORT_SYMBOL(rps_needed); 3468 3469 static struct rps_dev_flow * 3470 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3471 struct rps_dev_flow *rflow, u16 next_cpu) 3472 { 3473 if (next_cpu < nr_cpu_ids) { 3474 #ifdef CONFIG_RFS_ACCEL 3475 struct netdev_rx_queue *rxqueue; 3476 struct rps_dev_flow_table *flow_table; 3477 struct rps_dev_flow *old_rflow; 3478 u32 flow_id; 3479 u16 rxq_index; 3480 int rc; 3481 3482 /* Should we steer this flow to a different hardware queue? */ 3483 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3484 !(dev->features & NETIF_F_NTUPLE)) 3485 goto out; 3486 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3487 if (rxq_index == skb_get_rx_queue(skb)) 3488 goto out; 3489 3490 rxqueue = dev->_rx + rxq_index; 3491 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3492 if (!flow_table) 3493 goto out; 3494 flow_id = skb_get_hash(skb) & flow_table->mask; 3495 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3496 rxq_index, flow_id); 3497 if (rc < 0) 3498 goto out; 3499 old_rflow = rflow; 3500 rflow = &flow_table->flows[flow_id]; 3501 rflow->filter = rc; 3502 if (old_rflow->filter == rflow->filter) 3503 old_rflow->filter = RPS_NO_FILTER; 3504 out: 3505 #endif 3506 rflow->last_qtail = 3507 per_cpu(softnet_data, next_cpu).input_queue_head; 3508 } 3509 3510 rflow->cpu = next_cpu; 3511 return rflow; 3512 } 3513 3514 /* 3515 * get_rps_cpu is called from netif_receive_skb and returns the target 3516 * CPU from the RPS map of the receiving queue for a given skb. 3517 * rcu_read_lock must be held on entry. 3518 */ 3519 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3520 struct rps_dev_flow **rflowp) 3521 { 3522 const struct rps_sock_flow_table *sock_flow_table; 3523 struct netdev_rx_queue *rxqueue = dev->_rx; 3524 struct rps_dev_flow_table *flow_table; 3525 struct rps_map *map; 3526 int cpu = -1; 3527 u32 tcpu; 3528 u32 hash; 3529 3530 if (skb_rx_queue_recorded(skb)) { 3531 u16 index = skb_get_rx_queue(skb); 3532 3533 if (unlikely(index >= dev->real_num_rx_queues)) { 3534 WARN_ONCE(dev->real_num_rx_queues > 1, 3535 "%s received packet on queue %u, but number " 3536 "of RX queues is %u\n", 3537 dev->name, index, dev->real_num_rx_queues); 3538 goto done; 3539 } 3540 rxqueue += index; 3541 } 3542 3543 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3544 3545 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3546 map = rcu_dereference(rxqueue->rps_map); 3547 if (!flow_table && !map) 3548 goto done; 3549 3550 skb_reset_network_header(skb); 3551 hash = skb_get_hash(skb); 3552 if (!hash) 3553 goto done; 3554 3555 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3556 if (flow_table && sock_flow_table) { 3557 struct rps_dev_flow *rflow; 3558 u32 next_cpu; 3559 u32 ident; 3560 3561 /* First check into global flow table if there is a match */ 3562 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3563 if ((ident ^ hash) & ~rps_cpu_mask) 3564 goto try_rps; 3565 3566 next_cpu = ident & rps_cpu_mask; 3567 3568 /* OK, now we know there is a match, 3569 * we can look at the local (per receive queue) flow table 3570 */ 3571 rflow = &flow_table->flows[hash & flow_table->mask]; 3572 tcpu = rflow->cpu; 3573 3574 /* 3575 * If the desired CPU (where last recvmsg was done) is 3576 * different from current CPU (one in the rx-queue flow 3577 * table entry), switch if one of the following holds: 3578 * - Current CPU is unset (>= nr_cpu_ids). 3579 * - Current CPU is offline. 3580 * - The current CPU's queue tail has advanced beyond the 3581 * last packet that was enqueued using this table entry. 3582 * This guarantees that all previous packets for the flow 3583 * have been dequeued, thus preserving in order delivery. 3584 */ 3585 if (unlikely(tcpu != next_cpu) && 3586 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3587 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3588 rflow->last_qtail)) >= 0)) { 3589 tcpu = next_cpu; 3590 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3591 } 3592 3593 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3594 *rflowp = rflow; 3595 cpu = tcpu; 3596 goto done; 3597 } 3598 } 3599 3600 try_rps: 3601 3602 if (map) { 3603 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3604 if (cpu_online(tcpu)) { 3605 cpu = tcpu; 3606 goto done; 3607 } 3608 } 3609 3610 done: 3611 return cpu; 3612 } 3613 3614 #ifdef CONFIG_RFS_ACCEL 3615 3616 /** 3617 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3618 * @dev: Device on which the filter was set 3619 * @rxq_index: RX queue index 3620 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3621 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3622 * 3623 * Drivers that implement ndo_rx_flow_steer() should periodically call 3624 * this function for each installed filter and remove the filters for 3625 * which it returns %true. 3626 */ 3627 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3628 u32 flow_id, u16 filter_id) 3629 { 3630 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3631 struct rps_dev_flow_table *flow_table; 3632 struct rps_dev_flow *rflow; 3633 bool expire = true; 3634 unsigned int cpu; 3635 3636 rcu_read_lock(); 3637 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3638 if (flow_table && flow_id <= flow_table->mask) { 3639 rflow = &flow_table->flows[flow_id]; 3640 cpu = ACCESS_ONCE(rflow->cpu); 3641 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3642 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3643 rflow->last_qtail) < 3644 (int)(10 * flow_table->mask))) 3645 expire = false; 3646 } 3647 rcu_read_unlock(); 3648 return expire; 3649 } 3650 EXPORT_SYMBOL(rps_may_expire_flow); 3651 3652 #endif /* CONFIG_RFS_ACCEL */ 3653 3654 /* Called from hardirq (IPI) context */ 3655 static void rps_trigger_softirq(void *data) 3656 { 3657 struct softnet_data *sd = data; 3658 3659 ____napi_schedule(sd, &sd->backlog); 3660 sd->received_rps++; 3661 } 3662 3663 #endif /* CONFIG_RPS */ 3664 3665 /* 3666 * Check if this softnet_data structure is another cpu one 3667 * If yes, queue it to our IPI list and return 1 3668 * If no, return 0 3669 */ 3670 static int rps_ipi_queued(struct softnet_data *sd) 3671 { 3672 #ifdef CONFIG_RPS 3673 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3674 3675 if (sd != mysd) { 3676 sd->rps_ipi_next = mysd->rps_ipi_list; 3677 mysd->rps_ipi_list = sd; 3678 3679 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3680 return 1; 3681 } 3682 #endif /* CONFIG_RPS */ 3683 return 0; 3684 } 3685 3686 #ifdef CONFIG_NET_FLOW_LIMIT 3687 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3688 #endif 3689 3690 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3691 { 3692 #ifdef CONFIG_NET_FLOW_LIMIT 3693 struct sd_flow_limit *fl; 3694 struct softnet_data *sd; 3695 unsigned int old_flow, new_flow; 3696 3697 if (qlen < (netdev_max_backlog >> 1)) 3698 return false; 3699 3700 sd = this_cpu_ptr(&softnet_data); 3701 3702 rcu_read_lock(); 3703 fl = rcu_dereference(sd->flow_limit); 3704 if (fl) { 3705 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3706 old_flow = fl->history[fl->history_head]; 3707 fl->history[fl->history_head] = new_flow; 3708 3709 fl->history_head++; 3710 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3711 3712 if (likely(fl->buckets[old_flow])) 3713 fl->buckets[old_flow]--; 3714 3715 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3716 fl->count++; 3717 rcu_read_unlock(); 3718 return true; 3719 } 3720 } 3721 rcu_read_unlock(); 3722 #endif 3723 return false; 3724 } 3725 3726 /* 3727 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3728 * queue (may be a remote CPU queue). 3729 */ 3730 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3731 unsigned int *qtail) 3732 { 3733 struct softnet_data *sd; 3734 unsigned long flags; 3735 unsigned int qlen; 3736 3737 sd = &per_cpu(softnet_data, cpu); 3738 3739 local_irq_save(flags); 3740 3741 rps_lock(sd); 3742 if (!netif_running(skb->dev)) 3743 goto drop; 3744 qlen = skb_queue_len(&sd->input_pkt_queue); 3745 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3746 if (qlen) { 3747 enqueue: 3748 __skb_queue_tail(&sd->input_pkt_queue, skb); 3749 input_queue_tail_incr_save(sd, qtail); 3750 rps_unlock(sd); 3751 local_irq_restore(flags); 3752 return NET_RX_SUCCESS; 3753 } 3754 3755 /* Schedule NAPI for backlog device 3756 * We can use non atomic operation since we own the queue lock 3757 */ 3758 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3759 if (!rps_ipi_queued(sd)) 3760 ____napi_schedule(sd, &sd->backlog); 3761 } 3762 goto enqueue; 3763 } 3764 3765 drop: 3766 sd->dropped++; 3767 rps_unlock(sd); 3768 3769 local_irq_restore(flags); 3770 3771 atomic_long_inc(&skb->dev->rx_dropped); 3772 kfree_skb(skb); 3773 return NET_RX_DROP; 3774 } 3775 3776 static int netif_rx_internal(struct sk_buff *skb) 3777 { 3778 int ret; 3779 3780 net_timestamp_check(netdev_tstamp_prequeue, skb); 3781 3782 trace_netif_rx(skb); 3783 #ifdef CONFIG_RPS 3784 if (static_key_false(&rps_needed)) { 3785 struct rps_dev_flow voidflow, *rflow = &voidflow; 3786 int cpu; 3787 3788 preempt_disable(); 3789 rcu_read_lock(); 3790 3791 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3792 if (cpu < 0) 3793 cpu = smp_processor_id(); 3794 3795 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3796 3797 rcu_read_unlock(); 3798 preempt_enable(); 3799 } else 3800 #endif 3801 { 3802 unsigned int qtail; 3803 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3804 put_cpu(); 3805 } 3806 return ret; 3807 } 3808 3809 /** 3810 * netif_rx - post buffer to the network code 3811 * @skb: buffer to post 3812 * 3813 * This function receives a packet from a device driver and queues it for 3814 * the upper (protocol) levels to process. It always succeeds. The buffer 3815 * may be dropped during processing for congestion control or by the 3816 * protocol layers. 3817 * 3818 * return values: 3819 * NET_RX_SUCCESS (no congestion) 3820 * NET_RX_DROP (packet was dropped) 3821 * 3822 */ 3823 3824 int netif_rx(struct sk_buff *skb) 3825 { 3826 trace_netif_rx_entry(skb); 3827 3828 return netif_rx_internal(skb); 3829 } 3830 EXPORT_SYMBOL(netif_rx); 3831 3832 int netif_rx_ni(struct sk_buff *skb) 3833 { 3834 int err; 3835 3836 trace_netif_rx_ni_entry(skb); 3837 3838 preempt_disable(); 3839 err = netif_rx_internal(skb); 3840 if (local_softirq_pending()) 3841 do_softirq(); 3842 preempt_enable(); 3843 3844 return err; 3845 } 3846 EXPORT_SYMBOL(netif_rx_ni); 3847 3848 static void net_tx_action(struct softirq_action *h) 3849 { 3850 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3851 3852 if (sd->completion_queue) { 3853 struct sk_buff *clist; 3854 3855 local_irq_disable(); 3856 clist = sd->completion_queue; 3857 sd->completion_queue = NULL; 3858 local_irq_enable(); 3859 3860 while (clist) { 3861 struct sk_buff *skb = clist; 3862 clist = clist->next; 3863 3864 WARN_ON(atomic_read(&skb->users)); 3865 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3866 trace_consume_skb(skb); 3867 else 3868 trace_kfree_skb(skb, net_tx_action); 3869 3870 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 3871 __kfree_skb(skb); 3872 else 3873 __kfree_skb_defer(skb); 3874 } 3875 3876 __kfree_skb_flush(); 3877 } 3878 3879 if (sd->output_queue) { 3880 struct Qdisc *head; 3881 3882 local_irq_disable(); 3883 head = sd->output_queue; 3884 sd->output_queue = NULL; 3885 sd->output_queue_tailp = &sd->output_queue; 3886 local_irq_enable(); 3887 3888 while (head) { 3889 struct Qdisc *q = head; 3890 spinlock_t *root_lock; 3891 3892 head = head->next_sched; 3893 3894 root_lock = qdisc_lock(q); 3895 spin_lock(root_lock); 3896 /* We need to make sure head->next_sched is read 3897 * before clearing __QDISC_STATE_SCHED 3898 */ 3899 smp_mb__before_atomic(); 3900 clear_bit(__QDISC_STATE_SCHED, &q->state); 3901 qdisc_run(q); 3902 spin_unlock(root_lock); 3903 } 3904 } 3905 } 3906 3907 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 3908 /* This hook is defined here for ATM LANE */ 3909 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3910 unsigned char *addr) __read_mostly; 3911 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3912 #endif 3913 3914 static inline struct sk_buff * 3915 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 3916 struct net_device *orig_dev) 3917 { 3918 #ifdef CONFIG_NET_CLS_ACT 3919 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 3920 struct tcf_result cl_res; 3921 3922 /* If there's at least one ingress present somewhere (so 3923 * we get here via enabled static key), remaining devices 3924 * that are not configured with an ingress qdisc will bail 3925 * out here. 3926 */ 3927 if (!cl) 3928 return skb; 3929 if (*pt_prev) { 3930 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3931 *pt_prev = NULL; 3932 } 3933 3934 qdisc_skb_cb(skb)->pkt_len = skb->len; 3935 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3936 qdisc_bstats_cpu_update(cl->q, skb); 3937 3938 switch (tc_classify(skb, cl, &cl_res, false)) { 3939 case TC_ACT_OK: 3940 case TC_ACT_RECLASSIFY: 3941 skb->tc_index = TC_H_MIN(cl_res.classid); 3942 break; 3943 case TC_ACT_SHOT: 3944 qdisc_qstats_cpu_drop(cl->q); 3945 kfree_skb(skb); 3946 return NULL; 3947 case TC_ACT_STOLEN: 3948 case TC_ACT_QUEUED: 3949 consume_skb(skb); 3950 return NULL; 3951 case TC_ACT_REDIRECT: 3952 /* skb_mac_header check was done by cls/act_bpf, so 3953 * we can safely push the L2 header back before 3954 * redirecting to another netdev 3955 */ 3956 __skb_push(skb, skb->mac_len); 3957 skb_do_redirect(skb); 3958 return NULL; 3959 default: 3960 break; 3961 } 3962 #endif /* CONFIG_NET_CLS_ACT */ 3963 return skb; 3964 } 3965 3966 /** 3967 * netdev_rx_handler_register - register receive handler 3968 * @dev: device to register a handler for 3969 * @rx_handler: receive handler to register 3970 * @rx_handler_data: data pointer that is used by rx handler 3971 * 3972 * Register a receive handler for a device. This handler will then be 3973 * called from __netif_receive_skb. A negative errno code is returned 3974 * on a failure. 3975 * 3976 * The caller must hold the rtnl_mutex. 3977 * 3978 * For a general description of rx_handler, see enum rx_handler_result. 3979 */ 3980 int netdev_rx_handler_register(struct net_device *dev, 3981 rx_handler_func_t *rx_handler, 3982 void *rx_handler_data) 3983 { 3984 ASSERT_RTNL(); 3985 3986 if (dev->rx_handler) 3987 return -EBUSY; 3988 3989 /* Note: rx_handler_data must be set before rx_handler */ 3990 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3991 rcu_assign_pointer(dev->rx_handler, rx_handler); 3992 3993 return 0; 3994 } 3995 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3996 3997 /** 3998 * netdev_rx_handler_unregister - unregister receive handler 3999 * @dev: device to unregister a handler from 4000 * 4001 * Unregister a receive handler from a device. 4002 * 4003 * The caller must hold the rtnl_mutex. 4004 */ 4005 void netdev_rx_handler_unregister(struct net_device *dev) 4006 { 4007 4008 ASSERT_RTNL(); 4009 RCU_INIT_POINTER(dev->rx_handler, NULL); 4010 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4011 * section has a guarantee to see a non NULL rx_handler_data 4012 * as well. 4013 */ 4014 synchronize_net(); 4015 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4016 } 4017 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4018 4019 /* 4020 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4021 * the special handling of PFMEMALLOC skbs. 4022 */ 4023 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4024 { 4025 switch (skb->protocol) { 4026 case htons(ETH_P_ARP): 4027 case htons(ETH_P_IP): 4028 case htons(ETH_P_IPV6): 4029 case htons(ETH_P_8021Q): 4030 case htons(ETH_P_8021AD): 4031 return true; 4032 default: 4033 return false; 4034 } 4035 } 4036 4037 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4038 int *ret, struct net_device *orig_dev) 4039 { 4040 #ifdef CONFIG_NETFILTER_INGRESS 4041 if (nf_hook_ingress_active(skb)) { 4042 if (*pt_prev) { 4043 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4044 *pt_prev = NULL; 4045 } 4046 4047 return nf_hook_ingress(skb); 4048 } 4049 #endif /* CONFIG_NETFILTER_INGRESS */ 4050 return 0; 4051 } 4052 4053 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4054 { 4055 struct packet_type *ptype, *pt_prev; 4056 rx_handler_func_t *rx_handler; 4057 struct net_device *orig_dev; 4058 bool deliver_exact = false; 4059 int ret = NET_RX_DROP; 4060 __be16 type; 4061 4062 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4063 4064 trace_netif_receive_skb(skb); 4065 4066 orig_dev = skb->dev; 4067 4068 skb_reset_network_header(skb); 4069 if (!skb_transport_header_was_set(skb)) 4070 skb_reset_transport_header(skb); 4071 skb_reset_mac_len(skb); 4072 4073 pt_prev = NULL; 4074 4075 another_round: 4076 skb->skb_iif = skb->dev->ifindex; 4077 4078 __this_cpu_inc(softnet_data.processed); 4079 4080 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4081 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4082 skb = skb_vlan_untag(skb); 4083 if (unlikely(!skb)) 4084 goto out; 4085 } 4086 4087 #ifdef CONFIG_NET_CLS_ACT 4088 if (skb->tc_verd & TC_NCLS) { 4089 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 4090 goto ncls; 4091 } 4092 #endif 4093 4094 if (pfmemalloc) 4095 goto skip_taps; 4096 4097 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4098 if (pt_prev) 4099 ret = deliver_skb(skb, pt_prev, orig_dev); 4100 pt_prev = ptype; 4101 } 4102 4103 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4104 if (pt_prev) 4105 ret = deliver_skb(skb, pt_prev, orig_dev); 4106 pt_prev = ptype; 4107 } 4108 4109 skip_taps: 4110 #ifdef CONFIG_NET_INGRESS 4111 if (static_key_false(&ingress_needed)) { 4112 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4113 if (!skb) 4114 goto out; 4115 4116 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4117 goto out; 4118 } 4119 #endif 4120 #ifdef CONFIG_NET_CLS_ACT 4121 skb->tc_verd = 0; 4122 ncls: 4123 #endif 4124 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4125 goto drop; 4126 4127 if (skb_vlan_tag_present(skb)) { 4128 if (pt_prev) { 4129 ret = deliver_skb(skb, pt_prev, orig_dev); 4130 pt_prev = NULL; 4131 } 4132 if (vlan_do_receive(&skb)) 4133 goto another_round; 4134 else if (unlikely(!skb)) 4135 goto out; 4136 } 4137 4138 rx_handler = rcu_dereference(skb->dev->rx_handler); 4139 if (rx_handler) { 4140 if (pt_prev) { 4141 ret = deliver_skb(skb, pt_prev, orig_dev); 4142 pt_prev = NULL; 4143 } 4144 switch (rx_handler(&skb)) { 4145 case RX_HANDLER_CONSUMED: 4146 ret = NET_RX_SUCCESS; 4147 goto out; 4148 case RX_HANDLER_ANOTHER: 4149 goto another_round; 4150 case RX_HANDLER_EXACT: 4151 deliver_exact = true; 4152 case RX_HANDLER_PASS: 4153 break; 4154 default: 4155 BUG(); 4156 } 4157 } 4158 4159 if (unlikely(skb_vlan_tag_present(skb))) { 4160 if (skb_vlan_tag_get_id(skb)) 4161 skb->pkt_type = PACKET_OTHERHOST; 4162 /* Note: we might in the future use prio bits 4163 * and set skb->priority like in vlan_do_receive() 4164 * For the time being, just ignore Priority Code Point 4165 */ 4166 skb->vlan_tci = 0; 4167 } 4168 4169 type = skb->protocol; 4170 4171 /* deliver only exact match when indicated */ 4172 if (likely(!deliver_exact)) { 4173 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4174 &ptype_base[ntohs(type) & 4175 PTYPE_HASH_MASK]); 4176 } 4177 4178 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4179 &orig_dev->ptype_specific); 4180 4181 if (unlikely(skb->dev != orig_dev)) { 4182 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4183 &skb->dev->ptype_specific); 4184 } 4185 4186 if (pt_prev) { 4187 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 4188 goto drop; 4189 else 4190 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4191 } else { 4192 drop: 4193 if (!deliver_exact) 4194 atomic_long_inc(&skb->dev->rx_dropped); 4195 else 4196 atomic_long_inc(&skb->dev->rx_nohandler); 4197 kfree_skb(skb); 4198 /* Jamal, now you will not able to escape explaining 4199 * me how you were going to use this. :-) 4200 */ 4201 ret = NET_RX_DROP; 4202 } 4203 4204 out: 4205 return ret; 4206 } 4207 4208 static int __netif_receive_skb(struct sk_buff *skb) 4209 { 4210 int ret; 4211 4212 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4213 unsigned long pflags = current->flags; 4214 4215 /* 4216 * PFMEMALLOC skbs are special, they should 4217 * - be delivered to SOCK_MEMALLOC sockets only 4218 * - stay away from userspace 4219 * - have bounded memory usage 4220 * 4221 * Use PF_MEMALLOC as this saves us from propagating the allocation 4222 * context down to all allocation sites. 4223 */ 4224 current->flags |= PF_MEMALLOC; 4225 ret = __netif_receive_skb_core(skb, true); 4226 tsk_restore_flags(current, pflags, PF_MEMALLOC); 4227 } else 4228 ret = __netif_receive_skb_core(skb, false); 4229 4230 return ret; 4231 } 4232 4233 static int netif_receive_skb_internal(struct sk_buff *skb) 4234 { 4235 int ret; 4236 4237 net_timestamp_check(netdev_tstamp_prequeue, skb); 4238 4239 if (skb_defer_rx_timestamp(skb)) 4240 return NET_RX_SUCCESS; 4241 4242 rcu_read_lock(); 4243 4244 #ifdef CONFIG_RPS 4245 if (static_key_false(&rps_needed)) { 4246 struct rps_dev_flow voidflow, *rflow = &voidflow; 4247 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4248 4249 if (cpu >= 0) { 4250 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4251 rcu_read_unlock(); 4252 return ret; 4253 } 4254 } 4255 #endif 4256 ret = __netif_receive_skb(skb); 4257 rcu_read_unlock(); 4258 return ret; 4259 } 4260 4261 /** 4262 * netif_receive_skb - process receive buffer from network 4263 * @skb: buffer to process 4264 * 4265 * netif_receive_skb() is the main receive data processing function. 4266 * It always succeeds. The buffer may be dropped during processing 4267 * for congestion control or by the protocol layers. 4268 * 4269 * This function may only be called from softirq context and interrupts 4270 * should be enabled. 4271 * 4272 * Return values (usually ignored): 4273 * NET_RX_SUCCESS: no congestion 4274 * NET_RX_DROP: packet was dropped 4275 */ 4276 int netif_receive_skb(struct sk_buff *skb) 4277 { 4278 trace_netif_receive_skb_entry(skb); 4279 4280 return netif_receive_skb_internal(skb); 4281 } 4282 EXPORT_SYMBOL(netif_receive_skb); 4283 4284 DEFINE_PER_CPU(struct work_struct, flush_works); 4285 4286 /* Network device is going away, flush any packets still pending */ 4287 static void flush_backlog(struct work_struct *work) 4288 { 4289 struct sk_buff *skb, *tmp; 4290 struct softnet_data *sd; 4291 4292 local_bh_disable(); 4293 sd = this_cpu_ptr(&softnet_data); 4294 4295 local_irq_disable(); 4296 rps_lock(sd); 4297 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4298 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4299 __skb_unlink(skb, &sd->input_pkt_queue); 4300 kfree_skb(skb); 4301 input_queue_head_incr(sd); 4302 } 4303 } 4304 rps_unlock(sd); 4305 local_irq_enable(); 4306 4307 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4308 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4309 __skb_unlink(skb, &sd->process_queue); 4310 kfree_skb(skb); 4311 input_queue_head_incr(sd); 4312 } 4313 } 4314 local_bh_enable(); 4315 } 4316 4317 static void flush_all_backlogs(void) 4318 { 4319 unsigned int cpu; 4320 4321 get_online_cpus(); 4322 4323 for_each_online_cpu(cpu) 4324 queue_work_on(cpu, system_highpri_wq, 4325 per_cpu_ptr(&flush_works, cpu)); 4326 4327 for_each_online_cpu(cpu) 4328 flush_work(per_cpu_ptr(&flush_works, cpu)); 4329 4330 put_online_cpus(); 4331 } 4332 4333 static int napi_gro_complete(struct sk_buff *skb) 4334 { 4335 struct packet_offload *ptype; 4336 __be16 type = skb->protocol; 4337 struct list_head *head = &offload_base; 4338 int err = -ENOENT; 4339 4340 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4341 4342 if (NAPI_GRO_CB(skb)->count == 1) { 4343 skb_shinfo(skb)->gso_size = 0; 4344 goto out; 4345 } 4346 4347 rcu_read_lock(); 4348 list_for_each_entry_rcu(ptype, head, list) { 4349 if (ptype->type != type || !ptype->callbacks.gro_complete) 4350 continue; 4351 4352 err = ptype->callbacks.gro_complete(skb, 0); 4353 break; 4354 } 4355 rcu_read_unlock(); 4356 4357 if (err) { 4358 WARN_ON(&ptype->list == head); 4359 kfree_skb(skb); 4360 return NET_RX_SUCCESS; 4361 } 4362 4363 out: 4364 return netif_receive_skb_internal(skb); 4365 } 4366 4367 /* napi->gro_list contains packets ordered by age. 4368 * youngest packets at the head of it. 4369 * Complete skbs in reverse order to reduce latencies. 4370 */ 4371 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4372 { 4373 struct sk_buff *skb, *prev = NULL; 4374 4375 /* scan list and build reverse chain */ 4376 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4377 skb->prev = prev; 4378 prev = skb; 4379 } 4380 4381 for (skb = prev; skb; skb = prev) { 4382 skb->next = NULL; 4383 4384 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4385 return; 4386 4387 prev = skb->prev; 4388 napi_gro_complete(skb); 4389 napi->gro_count--; 4390 } 4391 4392 napi->gro_list = NULL; 4393 } 4394 EXPORT_SYMBOL(napi_gro_flush); 4395 4396 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4397 { 4398 struct sk_buff *p; 4399 unsigned int maclen = skb->dev->hard_header_len; 4400 u32 hash = skb_get_hash_raw(skb); 4401 4402 for (p = napi->gro_list; p; p = p->next) { 4403 unsigned long diffs; 4404 4405 NAPI_GRO_CB(p)->flush = 0; 4406 4407 if (hash != skb_get_hash_raw(p)) { 4408 NAPI_GRO_CB(p)->same_flow = 0; 4409 continue; 4410 } 4411 4412 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4413 diffs |= p->vlan_tci ^ skb->vlan_tci; 4414 diffs |= skb_metadata_dst_cmp(p, skb); 4415 if (maclen == ETH_HLEN) 4416 diffs |= compare_ether_header(skb_mac_header(p), 4417 skb_mac_header(skb)); 4418 else if (!diffs) 4419 diffs = memcmp(skb_mac_header(p), 4420 skb_mac_header(skb), 4421 maclen); 4422 NAPI_GRO_CB(p)->same_flow = !diffs; 4423 } 4424 } 4425 4426 static void skb_gro_reset_offset(struct sk_buff *skb) 4427 { 4428 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4429 const skb_frag_t *frag0 = &pinfo->frags[0]; 4430 4431 NAPI_GRO_CB(skb)->data_offset = 0; 4432 NAPI_GRO_CB(skb)->frag0 = NULL; 4433 NAPI_GRO_CB(skb)->frag0_len = 0; 4434 4435 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4436 pinfo->nr_frags && 4437 !PageHighMem(skb_frag_page(frag0))) { 4438 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4439 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 4440 } 4441 } 4442 4443 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4444 { 4445 struct skb_shared_info *pinfo = skb_shinfo(skb); 4446 4447 BUG_ON(skb->end - skb->tail < grow); 4448 4449 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4450 4451 skb->data_len -= grow; 4452 skb->tail += grow; 4453 4454 pinfo->frags[0].page_offset += grow; 4455 skb_frag_size_sub(&pinfo->frags[0], grow); 4456 4457 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4458 skb_frag_unref(skb, 0); 4459 memmove(pinfo->frags, pinfo->frags + 1, 4460 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4461 } 4462 } 4463 4464 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4465 { 4466 struct sk_buff **pp = NULL; 4467 struct packet_offload *ptype; 4468 __be16 type = skb->protocol; 4469 struct list_head *head = &offload_base; 4470 int same_flow; 4471 enum gro_result ret; 4472 int grow; 4473 4474 if (!(skb->dev->features & NETIF_F_GRO)) 4475 goto normal; 4476 4477 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad) 4478 goto normal; 4479 4480 gro_list_prepare(napi, skb); 4481 4482 rcu_read_lock(); 4483 list_for_each_entry_rcu(ptype, head, list) { 4484 if (ptype->type != type || !ptype->callbacks.gro_receive) 4485 continue; 4486 4487 skb_set_network_header(skb, skb_gro_offset(skb)); 4488 skb_reset_mac_len(skb); 4489 NAPI_GRO_CB(skb)->same_flow = 0; 4490 NAPI_GRO_CB(skb)->flush = 0; 4491 NAPI_GRO_CB(skb)->free = 0; 4492 NAPI_GRO_CB(skb)->encap_mark = 0; 4493 NAPI_GRO_CB(skb)->is_fou = 0; 4494 NAPI_GRO_CB(skb)->is_atomic = 1; 4495 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4496 4497 /* Setup for GRO checksum validation */ 4498 switch (skb->ip_summed) { 4499 case CHECKSUM_COMPLETE: 4500 NAPI_GRO_CB(skb)->csum = skb->csum; 4501 NAPI_GRO_CB(skb)->csum_valid = 1; 4502 NAPI_GRO_CB(skb)->csum_cnt = 0; 4503 break; 4504 case CHECKSUM_UNNECESSARY: 4505 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4506 NAPI_GRO_CB(skb)->csum_valid = 0; 4507 break; 4508 default: 4509 NAPI_GRO_CB(skb)->csum_cnt = 0; 4510 NAPI_GRO_CB(skb)->csum_valid = 0; 4511 } 4512 4513 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4514 break; 4515 } 4516 rcu_read_unlock(); 4517 4518 if (&ptype->list == head) 4519 goto normal; 4520 4521 same_flow = NAPI_GRO_CB(skb)->same_flow; 4522 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4523 4524 if (pp) { 4525 struct sk_buff *nskb = *pp; 4526 4527 *pp = nskb->next; 4528 nskb->next = NULL; 4529 napi_gro_complete(nskb); 4530 napi->gro_count--; 4531 } 4532 4533 if (same_flow) 4534 goto ok; 4535 4536 if (NAPI_GRO_CB(skb)->flush) 4537 goto normal; 4538 4539 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4540 struct sk_buff *nskb = napi->gro_list; 4541 4542 /* locate the end of the list to select the 'oldest' flow */ 4543 while (nskb->next) { 4544 pp = &nskb->next; 4545 nskb = *pp; 4546 } 4547 *pp = NULL; 4548 nskb->next = NULL; 4549 napi_gro_complete(nskb); 4550 } else { 4551 napi->gro_count++; 4552 } 4553 NAPI_GRO_CB(skb)->count = 1; 4554 NAPI_GRO_CB(skb)->age = jiffies; 4555 NAPI_GRO_CB(skb)->last = skb; 4556 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4557 skb->next = napi->gro_list; 4558 napi->gro_list = skb; 4559 ret = GRO_HELD; 4560 4561 pull: 4562 grow = skb_gro_offset(skb) - skb_headlen(skb); 4563 if (grow > 0) 4564 gro_pull_from_frag0(skb, grow); 4565 ok: 4566 return ret; 4567 4568 normal: 4569 ret = GRO_NORMAL; 4570 goto pull; 4571 } 4572 4573 struct packet_offload *gro_find_receive_by_type(__be16 type) 4574 { 4575 struct list_head *offload_head = &offload_base; 4576 struct packet_offload *ptype; 4577 4578 list_for_each_entry_rcu(ptype, offload_head, list) { 4579 if (ptype->type != type || !ptype->callbacks.gro_receive) 4580 continue; 4581 return ptype; 4582 } 4583 return NULL; 4584 } 4585 EXPORT_SYMBOL(gro_find_receive_by_type); 4586 4587 struct packet_offload *gro_find_complete_by_type(__be16 type) 4588 { 4589 struct list_head *offload_head = &offload_base; 4590 struct packet_offload *ptype; 4591 4592 list_for_each_entry_rcu(ptype, offload_head, list) { 4593 if (ptype->type != type || !ptype->callbacks.gro_complete) 4594 continue; 4595 return ptype; 4596 } 4597 return NULL; 4598 } 4599 EXPORT_SYMBOL(gro_find_complete_by_type); 4600 4601 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4602 { 4603 switch (ret) { 4604 case GRO_NORMAL: 4605 if (netif_receive_skb_internal(skb)) 4606 ret = GRO_DROP; 4607 break; 4608 4609 case GRO_DROP: 4610 kfree_skb(skb); 4611 break; 4612 4613 case GRO_MERGED_FREE: 4614 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) { 4615 skb_dst_drop(skb); 4616 kmem_cache_free(skbuff_head_cache, skb); 4617 } else { 4618 __kfree_skb(skb); 4619 } 4620 break; 4621 4622 case GRO_HELD: 4623 case GRO_MERGED: 4624 break; 4625 } 4626 4627 return ret; 4628 } 4629 4630 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4631 { 4632 skb_mark_napi_id(skb, napi); 4633 trace_napi_gro_receive_entry(skb); 4634 4635 skb_gro_reset_offset(skb); 4636 4637 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4638 } 4639 EXPORT_SYMBOL(napi_gro_receive); 4640 4641 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4642 { 4643 if (unlikely(skb->pfmemalloc)) { 4644 consume_skb(skb); 4645 return; 4646 } 4647 __skb_pull(skb, skb_headlen(skb)); 4648 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4649 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4650 skb->vlan_tci = 0; 4651 skb->dev = napi->dev; 4652 skb->skb_iif = 0; 4653 skb->encapsulation = 0; 4654 skb_shinfo(skb)->gso_type = 0; 4655 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4656 4657 napi->skb = skb; 4658 } 4659 4660 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4661 { 4662 struct sk_buff *skb = napi->skb; 4663 4664 if (!skb) { 4665 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4666 if (skb) { 4667 napi->skb = skb; 4668 skb_mark_napi_id(skb, napi); 4669 } 4670 } 4671 return skb; 4672 } 4673 EXPORT_SYMBOL(napi_get_frags); 4674 4675 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4676 struct sk_buff *skb, 4677 gro_result_t ret) 4678 { 4679 switch (ret) { 4680 case GRO_NORMAL: 4681 case GRO_HELD: 4682 __skb_push(skb, ETH_HLEN); 4683 skb->protocol = eth_type_trans(skb, skb->dev); 4684 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4685 ret = GRO_DROP; 4686 break; 4687 4688 case GRO_DROP: 4689 case GRO_MERGED_FREE: 4690 napi_reuse_skb(napi, skb); 4691 break; 4692 4693 case GRO_MERGED: 4694 break; 4695 } 4696 4697 return ret; 4698 } 4699 4700 /* Upper GRO stack assumes network header starts at gro_offset=0 4701 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4702 * We copy ethernet header into skb->data to have a common layout. 4703 */ 4704 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4705 { 4706 struct sk_buff *skb = napi->skb; 4707 const struct ethhdr *eth; 4708 unsigned int hlen = sizeof(*eth); 4709 4710 napi->skb = NULL; 4711 4712 skb_reset_mac_header(skb); 4713 skb_gro_reset_offset(skb); 4714 4715 eth = skb_gro_header_fast(skb, 0); 4716 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4717 eth = skb_gro_header_slow(skb, hlen, 0); 4718 if (unlikely(!eth)) { 4719 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 4720 __func__, napi->dev->name); 4721 napi_reuse_skb(napi, skb); 4722 return NULL; 4723 } 4724 } else { 4725 gro_pull_from_frag0(skb, hlen); 4726 NAPI_GRO_CB(skb)->frag0 += hlen; 4727 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4728 } 4729 __skb_pull(skb, hlen); 4730 4731 /* 4732 * This works because the only protocols we care about don't require 4733 * special handling. 4734 * We'll fix it up properly in napi_frags_finish() 4735 */ 4736 skb->protocol = eth->h_proto; 4737 4738 return skb; 4739 } 4740 4741 gro_result_t napi_gro_frags(struct napi_struct *napi) 4742 { 4743 struct sk_buff *skb = napi_frags_skb(napi); 4744 4745 if (!skb) 4746 return GRO_DROP; 4747 4748 trace_napi_gro_frags_entry(skb); 4749 4750 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4751 } 4752 EXPORT_SYMBOL(napi_gro_frags); 4753 4754 /* Compute the checksum from gro_offset and return the folded value 4755 * after adding in any pseudo checksum. 4756 */ 4757 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4758 { 4759 __wsum wsum; 4760 __sum16 sum; 4761 4762 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4763 4764 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4765 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4766 if (likely(!sum)) { 4767 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4768 !skb->csum_complete_sw) 4769 netdev_rx_csum_fault(skb->dev); 4770 } 4771 4772 NAPI_GRO_CB(skb)->csum = wsum; 4773 NAPI_GRO_CB(skb)->csum_valid = 1; 4774 4775 return sum; 4776 } 4777 EXPORT_SYMBOL(__skb_gro_checksum_complete); 4778 4779 /* 4780 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4781 * Note: called with local irq disabled, but exits with local irq enabled. 4782 */ 4783 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4784 { 4785 #ifdef CONFIG_RPS 4786 struct softnet_data *remsd = sd->rps_ipi_list; 4787 4788 if (remsd) { 4789 sd->rps_ipi_list = NULL; 4790 4791 local_irq_enable(); 4792 4793 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4794 while (remsd) { 4795 struct softnet_data *next = remsd->rps_ipi_next; 4796 4797 if (cpu_online(remsd->cpu)) 4798 smp_call_function_single_async(remsd->cpu, 4799 &remsd->csd); 4800 remsd = next; 4801 } 4802 } else 4803 #endif 4804 local_irq_enable(); 4805 } 4806 4807 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4808 { 4809 #ifdef CONFIG_RPS 4810 return sd->rps_ipi_list != NULL; 4811 #else 4812 return false; 4813 #endif 4814 } 4815 4816 static int process_backlog(struct napi_struct *napi, int quota) 4817 { 4818 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4819 bool again = true; 4820 int work = 0; 4821 4822 /* Check if we have pending ipi, its better to send them now, 4823 * not waiting net_rx_action() end. 4824 */ 4825 if (sd_has_rps_ipi_waiting(sd)) { 4826 local_irq_disable(); 4827 net_rps_action_and_irq_enable(sd); 4828 } 4829 4830 napi->weight = weight_p; 4831 while (again) { 4832 struct sk_buff *skb; 4833 4834 while ((skb = __skb_dequeue(&sd->process_queue))) { 4835 rcu_read_lock(); 4836 __netif_receive_skb(skb); 4837 rcu_read_unlock(); 4838 input_queue_head_incr(sd); 4839 if (++work >= quota) 4840 return work; 4841 4842 } 4843 4844 local_irq_disable(); 4845 rps_lock(sd); 4846 if (skb_queue_empty(&sd->input_pkt_queue)) { 4847 /* 4848 * Inline a custom version of __napi_complete(). 4849 * only current cpu owns and manipulates this napi, 4850 * and NAPI_STATE_SCHED is the only possible flag set 4851 * on backlog. 4852 * We can use a plain write instead of clear_bit(), 4853 * and we dont need an smp_mb() memory barrier. 4854 */ 4855 napi->state = 0; 4856 again = false; 4857 } else { 4858 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4859 &sd->process_queue); 4860 } 4861 rps_unlock(sd); 4862 local_irq_enable(); 4863 } 4864 4865 return work; 4866 } 4867 4868 /** 4869 * __napi_schedule - schedule for receive 4870 * @n: entry to schedule 4871 * 4872 * The entry's receive function will be scheduled to run. 4873 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 4874 */ 4875 void __napi_schedule(struct napi_struct *n) 4876 { 4877 unsigned long flags; 4878 4879 local_irq_save(flags); 4880 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4881 local_irq_restore(flags); 4882 } 4883 EXPORT_SYMBOL(__napi_schedule); 4884 4885 /** 4886 * __napi_schedule_irqoff - schedule for receive 4887 * @n: entry to schedule 4888 * 4889 * Variant of __napi_schedule() assuming hard irqs are masked 4890 */ 4891 void __napi_schedule_irqoff(struct napi_struct *n) 4892 { 4893 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4894 } 4895 EXPORT_SYMBOL(__napi_schedule_irqoff); 4896 4897 void __napi_complete(struct napi_struct *n) 4898 { 4899 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4900 4901 list_del_init(&n->poll_list); 4902 smp_mb__before_atomic(); 4903 clear_bit(NAPI_STATE_SCHED, &n->state); 4904 } 4905 EXPORT_SYMBOL(__napi_complete); 4906 4907 void napi_complete_done(struct napi_struct *n, int work_done) 4908 { 4909 unsigned long flags; 4910 4911 /* 4912 * don't let napi dequeue from the cpu poll list 4913 * just in case its running on a different cpu 4914 */ 4915 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4916 return; 4917 4918 if (n->gro_list) { 4919 unsigned long timeout = 0; 4920 4921 if (work_done) 4922 timeout = n->dev->gro_flush_timeout; 4923 4924 if (timeout) 4925 hrtimer_start(&n->timer, ns_to_ktime(timeout), 4926 HRTIMER_MODE_REL_PINNED); 4927 else 4928 napi_gro_flush(n, false); 4929 } 4930 if (likely(list_empty(&n->poll_list))) { 4931 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state)); 4932 } else { 4933 /* If n->poll_list is not empty, we need to mask irqs */ 4934 local_irq_save(flags); 4935 __napi_complete(n); 4936 local_irq_restore(flags); 4937 } 4938 } 4939 EXPORT_SYMBOL(napi_complete_done); 4940 4941 /* must be called under rcu_read_lock(), as we dont take a reference */ 4942 static struct napi_struct *napi_by_id(unsigned int napi_id) 4943 { 4944 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4945 struct napi_struct *napi; 4946 4947 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4948 if (napi->napi_id == napi_id) 4949 return napi; 4950 4951 return NULL; 4952 } 4953 4954 #if defined(CONFIG_NET_RX_BUSY_POLL) 4955 #define BUSY_POLL_BUDGET 8 4956 bool sk_busy_loop(struct sock *sk, int nonblock) 4957 { 4958 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0; 4959 int (*busy_poll)(struct napi_struct *dev); 4960 struct napi_struct *napi; 4961 int rc = false; 4962 4963 rcu_read_lock(); 4964 4965 napi = napi_by_id(sk->sk_napi_id); 4966 if (!napi) 4967 goto out; 4968 4969 /* Note: ndo_busy_poll method is optional in linux-4.5 */ 4970 busy_poll = napi->dev->netdev_ops->ndo_busy_poll; 4971 4972 do { 4973 rc = 0; 4974 local_bh_disable(); 4975 if (busy_poll) { 4976 rc = busy_poll(napi); 4977 } else if (napi_schedule_prep(napi)) { 4978 void *have = netpoll_poll_lock(napi); 4979 4980 if (test_bit(NAPI_STATE_SCHED, &napi->state)) { 4981 rc = napi->poll(napi, BUSY_POLL_BUDGET); 4982 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 4983 if (rc == BUSY_POLL_BUDGET) { 4984 napi_complete_done(napi, rc); 4985 napi_schedule(napi); 4986 } 4987 } 4988 netpoll_poll_unlock(have); 4989 } 4990 if (rc > 0) 4991 __NET_ADD_STATS(sock_net(sk), 4992 LINUX_MIB_BUSYPOLLRXPACKETS, rc); 4993 local_bh_enable(); 4994 4995 if (rc == LL_FLUSH_FAILED) 4996 break; /* permanent failure */ 4997 4998 cpu_relax(); 4999 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) && 5000 !need_resched() && !busy_loop_timeout(end_time)); 5001 5002 rc = !skb_queue_empty(&sk->sk_receive_queue); 5003 out: 5004 rcu_read_unlock(); 5005 return rc; 5006 } 5007 EXPORT_SYMBOL(sk_busy_loop); 5008 5009 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5010 5011 void napi_hash_add(struct napi_struct *napi) 5012 { 5013 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5014 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5015 return; 5016 5017 spin_lock(&napi_hash_lock); 5018 5019 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */ 5020 do { 5021 if (unlikely(++napi_gen_id < NR_CPUS + 1)) 5022 napi_gen_id = NR_CPUS + 1; 5023 } while (napi_by_id(napi_gen_id)); 5024 napi->napi_id = napi_gen_id; 5025 5026 hlist_add_head_rcu(&napi->napi_hash_node, 5027 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5028 5029 spin_unlock(&napi_hash_lock); 5030 } 5031 EXPORT_SYMBOL_GPL(napi_hash_add); 5032 5033 /* Warning : caller is responsible to make sure rcu grace period 5034 * is respected before freeing memory containing @napi 5035 */ 5036 bool napi_hash_del(struct napi_struct *napi) 5037 { 5038 bool rcu_sync_needed = false; 5039 5040 spin_lock(&napi_hash_lock); 5041 5042 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5043 rcu_sync_needed = true; 5044 hlist_del_rcu(&napi->napi_hash_node); 5045 } 5046 spin_unlock(&napi_hash_lock); 5047 return rcu_sync_needed; 5048 } 5049 EXPORT_SYMBOL_GPL(napi_hash_del); 5050 5051 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5052 { 5053 struct napi_struct *napi; 5054 5055 napi = container_of(timer, struct napi_struct, timer); 5056 if (napi->gro_list) 5057 napi_schedule(napi); 5058 5059 return HRTIMER_NORESTART; 5060 } 5061 5062 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5063 int (*poll)(struct napi_struct *, int), int weight) 5064 { 5065 INIT_LIST_HEAD(&napi->poll_list); 5066 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5067 napi->timer.function = napi_watchdog; 5068 napi->gro_count = 0; 5069 napi->gro_list = NULL; 5070 napi->skb = NULL; 5071 napi->poll = poll; 5072 if (weight > NAPI_POLL_WEIGHT) 5073 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5074 weight, dev->name); 5075 napi->weight = weight; 5076 list_add(&napi->dev_list, &dev->napi_list); 5077 napi->dev = dev; 5078 #ifdef CONFIG_NETPOLL 5079 spin_lock_init(&napi->poll_lock); 5080 napi->poll_owner = -1; 5081 #endif 5082 set_bit(NAPI_STATE_SCHED, &napi->state); 5083 napi_hash_add(napi); 5084 } 5085 EXPORT_SYMBOL(netif_napi_add); 5086 5087 void napi_disable(struct napi_struct *n) 5088 { 5089 might_sleep(); 5090 set_bit(NAPI_STATE_DISABLE, &n->state); 5091 5092 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5093 msleep(1); 5094 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5095 msleep(1); 5096 5097 hrtimer_cancel(&n->timer); 5098 5099 clear_bit(NAPI_STATE_DISABLE, &n->state); 5100 } 5101 EXPORT_SYMBOL(napi_disable); 5102 5103 /* Must be called in process context */ 5104 void netif_napi_del(struct napi_struct *napi) 5105 { 5106 might_sleep(); 5107 if (napi_hash_del(napi)) 5108 synchronize_net(); 5109 list_del_init(&napi->dev_list); 5110 napi_free_frags(napi); 5111 5112 kfree_skb_list(napi->gro_list); 5113 napi->gro_list = NULL; 5114 napi->gro_count = 0; 5115 } 5116 EXPORT_SYMBOL(netif_napi_del); 5117 5118 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5119 { 5120 void *have; 5121 int work, weight; 5122 5123 list_del_init(&n->poll_list); 5124 5125 have = netpoll_poll_lock(n); 5126 5127 weight = n->weight; 5128 5129 /* This NAPI_STATE_SCHED test is for avoiding a race 5130 * with netpoll's poll_napi(). Only the entity which 5131 * obtains the lock and sees NAPI_STATE_SCHED set will 5132 * actually make the ->poll() call. Therefore we avoid 5133 * accidentally calling ->poll() when NAPI is not scheduled. 5134 */ 5135 work = 0; 5136 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5137 work = n->poll(n, weight); 5138 trace_napi_poll(n, work, weight); 5139 } 5140 5141 WARN_ON_ONCE(work > weight); 5142 5143 if (likely(work < weight)) 5144 goto out_unlock; 5145 5146 /* Drivers must not modify the NAPI state if they 5147 * consume the entire weight. In such cases this code 5148 * still "owns" the NAPI instance and therefore can 5149 * move the instance around on the list at-will. 5150 */ 5151 if (unlikely(napi_disable_pending(n))) { 5152 napi_complete(n); 5153 goto out_unlock; 5154 } 5155 5156 if (n->gro_list) { 5157 /* flush too old packets 5158 * If HZ < 1000, flush all packets. 5159 */ 5160 napi_gro_flush(n, HZ >= 1000); 5161 } 5162 5163 /* Some drivers may have called napi_schedule 5164 * prior to exhausting their budget. 5165 */ 5166 if (unlikely(!list_empty(&n->poll_list))) { 5167 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5168 n->dev ? n->dev->name : "backlog"); 5169 goto out_unlock; 5170 } 5171 5172 list_add_tail(&n->poll_list, repoll); 5173 5174 out_unlock: 5175 netpoll_poll_unlock(have); 5176 5177 return work; 5178 } 5179 5180 static void net_rx_action(struct softirq_action *h) 5181 { 5182 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5183 unsigned long time_limit = jiffies + 2; 5184 int budget = netdev_budget; 5185 LIST_HEAD(list); 5186 LIST_HEAD(repoll); 5187 5188 local_irq_disable(); 5189 list_splice_init(&sd->poll_list, &list); 5190 local_irq_enable(); 5191 5192 for (;;) { 5193 struct napi_struct *n; 5194 5195 if (list_empty(&list)) { 5196 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5197 return; 5198 break; 5199 } 5200 5201 n = list_first_entry(&list, struct napi_struct, poll_list); 5202 budget -= napi_poll(n, &repoll); 5203 5204 /* If softirq window is exhausted then punt. 5205 * Allow this to run for 2 jiffies since which will allow 5206 * an average latency of 1.5/HZ. 5207 */ 5208 if (unlikely(budget <= 0 || 5209 time_after_eq(jiffies, time_limit))) { 5210 sd->time_squeeze++; 5211 break; 5212 } 5213 } 5214 5215 __kfree_skb_flush(); 5216 local_irq_disable(); 5217 5218 list_splice_tail_init(&sd->poll_list, &list); 5219 list_splice_tail(&repoll, &list); 5220 list_splice(&list, &sd->poll_list); 5221 if (!list_empty(&sd->poll_list)) 5222 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5223 5224 net_rps_action_and_irq_enable(sd); 5225 } 5226 5227 struct netdev_adjacent { 5228 struct net_device *dev; 5229 5230 /* upper master flag, there can only be one master device per list */ 5231 bool master; 5232 5233 /* counter for the number of times this device was added to us */ 5234 u16 ref_nr; 5235 5236 /* private field for the users */ 5237 void *private; 5238 5239 struct list_head list; 5240 struct rcu_head rcu; 5241 }; 5242 5243 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5244 struct list_head *adj_list) 5245 { 5246 struct netdev_adjacent *adj; 5247 5248 list_for_each_entry(adj, adj_list, list) { 5249 if (adj->dev == adj_dev) 5250 return adj; 5251 } 5252 return NULL; 5253 } 5254 5255 /** 5256 * netdev_has_upper_dev - Check if device is linked to an upper device 5257 * @dev: device 5258 * @upper_dev: upper device to check 5259 * 5260 * Find out if a device is linked to specified upper device and return true 5261 * in case it is. Note that this checks only immediate upper device, 5262 * not through a complete stack of devices. The caller must hold the RTNL lock. 5263 */ 5264 bool netdev_has_upper_dev(struct net_device *dev, 5265 struct net_device *upper_dev) 5266 { 5267 ASSERT_RTNL(); 5268 5269 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper); 5270 } 5271 EXPORT_SYMBOL(netdev_has_upper_dev); 5272 5273 /** 5274 * netdev_has_any_upper_dev - Check if device is linked to some device 5275 * @dev: device 5276 * 5277 * Find out if a device is linked to an upper device and return true in case 5278 * it is. The caller must hold the RTNL lock. 5279 */ 5280 static bool netdev_has_any_upper_dev(struct net_device *dev) 5281 { 5282 ASSERT_RTNL(); 5283 5284 return !list_empty(&dev->all_adj_list.upper); 5285 } 5286 5287 /** 5288 * netdev_master_upper_dev_get - Get master upper device 5289 * @dev: device 5290 * 5291 * Find a master upper device and return pointer to it or NULL in case 5292 * it's not there. The caller must hold the RTNL lock. 5293 */ 5294 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5295 { 5296 struct netdev_adjacent *upper; 5297 5298 ASSERT_RTNL(); 5299 5300 if (list_empty(&dev->adj_list.upper)) 5301 return NULL; 5302 5303 upper = list_first_entry(&dev->adj_list.upper, 5304 struct netdev_adjacent, list); 5305 if (likely(upper->master)) 5306 return upper->dev; 5307 return NULL; 5308 } 5309 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5310 5311 void *netdev_adjacent_get_private(struct list_head *adj_list) 5312 { 5313 struct netdev_adjacent *adj; 5314 5315 adj = list_entry(adj_list, struct netdev_adjacent, list); 5316 5317 return adj->private; 5318 } 5319 EXPORT_SYMBOL(netdev_adjacent_get_private); 5320 5321 /** 5322 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5323 * @dev: device 5324 * @iter: list_head ** of the current position 5325 * 5326 * Gets the next device from the dev's upper list, starting from iter 5327 * position. The caller must hold RCU read lock. 5328 */ 5329 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5330 struct list_head **iter) 5331 { 5332 struct netdev_adjacent *upper; 5333 5334 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5335 5336 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5337 5338 if (&upper->list == &dev->adj_list.upper) 5339 return NULL; 5340 5341 *iter = &upper->list; 5342 5343 return upper->dev; 5344 } 5345 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5346 5347 /** 5348 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 5349 * @dev: device 5350 * @iter: list_head ** of the current position 5351 * 5352 * Gets the next device from the dev's upper list, starting from iter 5353 * position. The caller must hold RCU read lock. 5354 */ 5355 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 5356 struct list_head **iter) 5357 { 5358 struct netdev_adjacent *upper; 5359 5360 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5361 5362 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5363 5364 if (&upper->list == &dev->all_adj_list.upper) 5365 return NULL; 5366 5367 *iter = &upper->list; 5368 5369 return upper->dev; 5370 } 5371 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 5372 5373 /** 5374 * netdev_lower_get_next_private - Get the next ->private from the 5375 * lower neighbour list 5376 * @dev: device 5377 * @iter: list_head ** of the current position 5378 * 5379 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5380 * list, starting from iter position. The caller must hold either hold the 5381 * RTNL lock or its own locking that guarantees that the neighbour lower 5382 * list will remain unchanged. 5383 */ 5384 void *netdev_lower_get_next_private(struct net_device *dev, 5385 struct list_head **iter) 5386 { 5387 struct netdev_adjacent *lower; 5388 5389 lower = list_entry(*iter, struct netdev_adjacent, list); 5390 5391 if (&lower->list == &dev->adj_list.lower) 5392 return NULL; 5393 5394 *iter = lower->list.next; 5395 5396 return lower->private; 5397 } 5398 EXPORT_SYMBOL(netdev_lower_get_next_private); 5399 5400 /** 5401 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5402 * lower neighbour list, RCU 5403 * variant 5404 * @dev: device 5405 * @iter: list_head ** of the current position 5406 * 5407 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5408 * list, starting from iter position. The caller must hold RCU read lock. 5409 */ 5410 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5411 struct list_head **iter) 5412 { 5413 struct netdev_adjacent *lower; 5414 5415 WARN_ON_ONCE(!rcu_read_lock_held()); 5416 5417 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5418 5419 if (&lower->list == &dev->adj_list.lower) 5420 return NULL; 5421 5422 *iter = &lower->list; 5423 5424 return lower->private; 5425 } 5426 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5427 5428 /** 5429 * netdev_lower_get_next - Get the next device from the lower neighbour 5430 * list 5431 * @dev: device 5432 * @iter: list_head ** of the current position 5433 * 5434 * Gets the next netdev_adjacent from the dev's lower neighbour 5435 * list, starting from iter position. The caller must hold RTNL lock or 5436 * its own locking that guarantees that the neighbour lower 5437 * list will remain unchanged. 5438 */ 5439 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5440 { 5441 struct netdev_adjacent *lower; 5442 5443 lower = list_entry(*iter, struct netdev_adjacent, list); 5444 5445 if (&lower->list == &dev->adj_list.lower) 5446 return NULL; 5447 5448 *iter = lower->list.next; 5449 5450 return lower->dev; 5451 } 5452 EXPORT_SYMBOL(netdev_lower_get_next); 5453 5454 /** 5455 * netdev_all_lower_get_next - Get the next device from all lower neighbour list 5456 * @dev: device 5457 * @iter: list_head ** of the current position 5458 * 5459 * Gets the next netdev_adjacent from the dev's all lower neighbour 5460 * list, starting from iter position. The caller must hold RTNL lock or 5461 * its own locking that guarantees that the neighbour all lower 5462 * list will remain unchanged. 5463 */ 5464 struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter) 5465 { 5466 struct netdev_adjacent *lower; 5467 5468 lower = list_entry(*iter, struct netdev_adjacent, list); 5469 5470 if (&lower->list == &dev->all_adj_list.lower) 5471 return NULL; 5472 5473 *iter = lower->list.next; 5474 5475 return lower->dev; 5476 } 5477 EXPORT_SYMBOL(netdev_all_lower_get_next); 5478 5479 /** 5480 * netdev_all_lower_get_next_rcu - Get the next device from all 5481 * lower neighbour list, RCU variant 5482 * @dev: device 5483 * @iter: list_head ** of the current position 5484 * 5485 * Gets the next netdev_adjacent from the dev's all lower neighbour 5486 * list, starting from iter position. The caller must hold RCU read lock. 5487 */ 5488 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 5489 struct list_head **iter) 5490 { 5491 struct netdev_adjacent *lower; 5492 5493 lower = list_first_or_null_rcu(&dev->all_adj_list.lower, 5494 struct netdev_adjacent, list); 5495 5496 return lower ? lower->dev : NULL; 5497 } 5498 EXPORT_SYMBOL(netdev_all_lower_get_next_rcu); 5499 5500 /** 5501 * netdev_lower_get_first_private_rcu - Get the first ->private from the 5502 * lower neighbour list, RCU 5503 * variant 5504 * @dev: device 5505 * 5506 * Gets the first netdev_adjacent->private from the dev's lower neighbour 5507 * list. The caller must hold RCU read lock. 5508 */ 5509 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 5510 { 5511 struct netdev_adjacent *lower; 5512 5513 lower = list_first_or_null_rcu(&dev->adj_list.lower, 5514 struct netdev_adjacent, list); 5515 if (lower) 5516 return lower->private; 5517 return NULL; 5518 } 5519 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 5520 5521 /** 5522 * netdev_master_upper_dev_get_rcu - Get master upper device 5523 * @dev: device 5524 * 5525 * Find a master upper device and return pointer to it or NULL in case 5526 * it's not there. The caller must hold the RCU read lock. 5527 */ 5528 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 5529 { 5530 struct netdev_adjacent *upper; 5531 5532 upper = list_first_or_null_rcu(&dev->adj_list.upper, 5533 struct netdev_adjacent, list); 5534 if (upper && likely(upper->master)) 5535 return upper->dev; 5536 return NULL; 5537 } 5538 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 5539 5540 static int netdev_adjacent_sysfs_add(struct net_device *dev, 5541 struct net_device *adj_dev, 5542 struct list_head *dev_list) 5543 { 5544 char linkname[IFNAMSIZ+7]; 5545 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5546 "upper_%s" : "lower_%s", adj_dev->name); 5547 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 5548 linkname); 5549 } 5550 static void netdev_adjacent_sysfs_del(struct net_device *dev, 5551 char *name, 5552 struct list_head *dev_list) 5553 { 5554 char linkname[IFNAMSIZ+7]; 5555 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5556 "upper_%s" : "lower_%s", name); 5557 sysfs_remove_link(&(dev->dev.kobj), linkname); 5558 } 5559 5560 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 5561 struct net_device *adj_dev, 5562 struct list_head *dev_list) 5563 { 5564 return (dev_list == &dev->adj_list.upper || 5565 dev_list == &dev->adj_list.lower) && 5566 net_eq(dev_net(dev), dev_net(adj_dev)); 5567 } 5568 5569 static int __netdev_adjacent_dev_insert(struct net_device *dev, 5570 struct net_device *adj_dev, 5571 struct list_head *dev_list, 5572 void *private, bool master) 5573 { 5574 struct netdev_adjacent *adj; 5575 int ret; 5576 5577 adj = __netdev_find_adj(adj_dev, dev_list); 5578 5579 if (adj) { 5580 adj->ref_nr++; 5581 return 0; 5582 } 5583 5584 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 5585 if (!adj) 5586 return -ENOMEM; 5587 5588 adj->dev = adj_dev; 5589 adj->master = master; 5590 adj->ref_nr = 1; 5591 adj->private = private; 5592 dev_hold(adj_dev); 5593 5594 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 5595 adj_dev->name, dev->name, adj_dev->name); 5596 5597 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 5598 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 5599 if (ret) 5600 goto free_adj; 5601 } 5602 5603 /* Ensure that master link is always the first item in list. */ 5604 if (master) { 5605 ret = sysfs_create_link(&(dev->dev.kobj), 5606 &(adj_dev->dev.kobj), "master"); 5607 if (ret) 5608 goto remove_symlinks; 5609 5610 list_add_rcu(&adj->list, dev_list); 5611 } else { 5612 list_add_tail_rcu(&adj->list, dev_list); 5613 } 5614 5615 return 0; 5616 5617 remove_symlinks: 5618 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5619 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5620 free_adj: 5621 kfree(adj); 5622 dev_put(adj_dev); 5623 5624 return ret; 5625 } 5626 5627 static void __netdev_adjacent_dev_remove(struct net_device *dev, 5628 struct net_device *adj_dev, 5629 struct list_head *dev_list) 5630 { 5631 struct netdev_adjacent *adj; 5632 5633 adj = __netdev_find_adj(adj_dev, dev_list); 5634 5635 if (!adj) { 5636 pr_err("tried to remove device %s from %s\n", 5637 dev->name, adj_dev->name); 5638 BUG(); 5639 } 5640 5641 if (adj->ref_nr > 1) { 5642 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 5643 adj->ref_nr-1); 5644 adj->ref_nr--; 5645 return; 5646 } 5647 5648 if (adj->master) 5649 sysfs_remove_link(&(dev->dev.kobj), "master"); 5650 5651 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5652 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5653 5654 list_del_rcu(&adj->list); 5655 pr_debug("dev_put for %s, because link removed from %s to %s\n", 5656 adj_dev->name, dev->name, adj_dev->name); 5657 dev_put(adj_dev); 5658 kfree_rcu(adj, rcu); 5659 } 5660 5661 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 5662 struct net_device *upper_dev, 5663 struct list_head *up_list, 5664 struct list_head *down_list, 5665 void *private, bool master) 5666 { 5667 int ret; 5668 5669 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 5670 master); 5671 if (ret) 5672 return ret; 5673 5674 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 5675 false); 5676 if (ret) { 5677 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5678 return ret; 5679 } 5680 5681 return 0; 5682 } 5683 5684 static int __netdev_adjacent_dev_link(struct net_device *dev, 5685 struct net_device *upper_dev) 5686 { 5687 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 5688 &dev->all_adj_list.upper, 5689 &upper_dev->all_adj_list.lower, 5690 NULL, false); 5691 } 5692 5693 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 5694 struct net_device *upper_dev, 5695 struct list_head *up_list, 5696 struct list_head *down_list) 5697 { 5698 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5699 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 5700 } 5701 5702 static void __netdev_adjacent_dev_unlink(struct net_device *dev, 5703 struct net_device *upper_dev) 5704 { 5705 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5706 &dev->all_adj_list.upper, 5707 &upper_dev->all_adj_list.lower); 5708 } 5709 5710 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 5711 struct net_device *upper_dev, 5712 void *private, bool master) 5713 { 5714 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 5715 5716 if (ret) 5717 return ret; 5718 5719 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 5720 &dev->adj_list.upper, 5721 &upper_dev->adj_list.lower, 5722 private, master); 5723 if (ret) { 5724 __netdev_adjacent_dev_unlink(dev, upper_dev); 5725 return ret; 5726 } 5727 5728 return 0; 5729 } 5730 5731 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 5732 struct net_device *upper_dev) 5733 { 5734 __netdev_adjacent_dev_unlink(dev, upper_dev); 5735 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5736 &dev->adj_list.upper, 5737 &upper_dev->adj_list.lower); 5738 } 5739 5740 static int __netdev_upper_dev_link(struct net_device *dev, 5741 struct net_device *upper_dev, bool master, 5742 void *upper_priv, void *upper_info) 5743 { 5744 struct netdev_notifier_changeupper_info changeupper_info; 5745 struct netdev_adjacent *i, *j, *to_i, *to_j; 5746 int ret = 0; 5747 5748 ASSERT_RTNL(); 5749 5750 if (dev == upper_dev) 5751 return -EBUSY; 5752 5753 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5754 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper)) 5755 return -EBUSY; 5756 5757 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper)) 5758 return -EEXIST; 5759 5760 if (master && netdev_master_upper_dev_get(dev)) 5761 return -EBUSY; 5762 5763 changeupper_info.upper_dev = upper_dev; 5764 changeupper_info.master = master; 5765 changeupper_info.linking = true; 5766 changeupper_info.upper_info = upper_info; 5767 5768 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 5769 &changeupper_info.info); 5770 ret = notifier_to_errno(ret); 5771 if (ret) 5772 return ret; 5773 5774 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 5775 master); 5776 if (ret) 5777 return ret; 5778 5779 /* Now that we linked these devs, make all the upper_dev's 5780 * all_adj_list.upper visible to every dev's all_adj_list.lower an 5781 * versa, and don't forget the devices itself. All of these 5782 * links are non-neighbours. 5783 */ 5784 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5785 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5786 pr_debug("Interlinking %s with %s, non-neighbour\n", 5787 i->dev->name, j->dev->name); 5788 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 5789 if (ret) 5790 goto rollback_mesh; 5791 } 5792 } 5793 5794 /* add dev to every upper_dev's upper device */ 5795 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5796 pr_debug("linking %s's upper device %s with %s\n", 5797 upper_dev->name, i->dev->name, dev->name); 5798 ret = __netdev_adjacent_dev_link(dev, i->dev); 5799 if (ret) 5800 goto rollback_upper_mesh; 5801 } 5802 5803 /* add upper_dev to every dev's lower device */ 5804 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5805 pr_debug("linking %s's lower device %s with %s\n", dev->name, 5806 i->dev->name, upper_dev->name); 5807 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 5808 if (ret) 5809 goto rollback_lower_mesh; 5810 } 5811 5812 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5813 &changeupper_info.info); 5814 ret = notifier_to_errno(ret); 5815 if (ret) 5816 goto rollback_lower_mesh; 5817 5818 return 0; 5819 5820 rollback_lower_mesh: 5821 to_i = i; 5822 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5823 if (i == to_i) 5824 break; 5825 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5826 } 5827 5828 i = NULL; 5829 5830 rollback_upper_mesh: 5831 to_i = i; 5832 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5833 if (i == to_i) 5834 break; 5835 __netdev_adjacent_dev_unlink(dev, i->dev); 5836 } 5837 5838 i = j = NULL; 5839 5840 rollback_mesh: 5841 to_i = i; 5842 to_j = j; 5843 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5844 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5845 if (i == to_i && j == to_j) 5846 break; 5847 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5848 } 5849 if (i == to_i) 5850 break; 5851 } 5852 5853 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5854 5855 return ret; 5856 } 5857 5858 /** 5859 * netdev_upper_dev_link - Add a link to the upper device 5860 * @dev: device 5861 * @upper_dev: new upper device 5862 * 5863 * Adds a link to device which is upper to this one. The caller must hold 5864 * the RTNL lock. On a failure a negative errno code is returned. 5865 * On success the reference counts are adjusted and the function 5866 * returns zero. 5867 */ 5868 int netdev_upper_dev_link(struct net_device *dev, 5869 struct net_device *upper_dev) 5870 { 5871 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL); 5872 } 5873 EXPORT_SYMBOL(netdev_upper_dev_link); 5874 5875 /** 5876 * netdev_master_upper_dev_link - Add a master link to the upper device 5877 * @dev: device 5878 * @upper_dev: new upper device 5879 * @upper_priv: upper device private 5880 * @upper_info: upper info to be passed down via notifier 5881 * 5882 * Adds a link to device which is upper to this one. In this case, only 5883 * one master upper device can be linked, although other non-master devices 5884 * might be linked as well. The caller must hold the RTNL lock. 5885 * On a failure a negative errno code is returned. On success the reference 5886 * counts are adjusted and the function returns zero. 5887 */ 5888 int netdev_master_upper_dev_link(struct net_device *dev, 5889 struct net_device *upper_dev, 5890 void *upper_priv, void *upper_info) 5891 { 5892 return __netdev_upper_dev_link(dev, upper_dev, true, 5893 upper_priv, upper_info); 5894 } 5895 EXPORT_SYMBOL(netdev_master_upper_dev_link); 5896 5897 /** 5898 * netdev_upper_dev_unlink - Removes a link to upper device 5899 * @dev: device 5900 * @upper_dev: new upper device 5901 * 5902 * Removes a link to device which is upper to this one. The caller must hold 5903 * the RTNL lock. 5904 */ 5905 void netdev_upper_dev_unlink(struct net_device *dev, 5906 struct net_device *upper_dev) 5907 { 5908 struct netdev_notifier_changeupper_info changeupper_info; 5909 struct netdev_adjacent *i, *j; 5910 ASSERT_RTNL(); 5911 5912 changeupper_info.upper_dev = upper_dev; 5913 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 5914 changeupper_info.linking = false; 5915 5916 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 5917 &changeupper_info.info); 5918 5919 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5920 5921 /* Here is the tricky part. We must remove all dev's lower 5922 * devices from all upper_dev's upper devices and vice 5923 * versa, to maintain the graph relationship. 5924 */ 5925 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5926 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 5927 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5928 5929 /* remove also the devices itself from lower/upper device 5930 * list 5931 */ 5932 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5933 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5934 5935 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 5936 __netdev_adjacent_dev_unlink(dev, i->dev); 5937 5938 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5939 &changeupper_info.info); 5940 } 5941 EXPORT_SYMBOL(netdev_upper_dev_unlink); 5942 5943 /** 5944 * netdev_bonding_info_change - Dispatch event about slave change 5945 * @dev: device 5946 * @bonding_info: info to dispatch 5947 * 5948 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 5949 * The caller must hold the RTNL lock. 5950 */ 5951 void netdev_bonding_info_change(struct net_device *dev, 5952 struct netdev_bonding_info *bonding_info) 5953 { 5954 struct netdev_notifier_bonding_info info; 5955 5956 memcpy(&info.bonding_info, bonding_info, 5957 sizeof(struct netdev_bonding_info)); 5958 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 5959 &info.info); 5960 } 5961 EXPORT_SYMBOL(netdev_bonding_info_change); 5962 5963 static void netdev_adjacent_add_links(struct net_device *dev) 5964 { 5965 struct netdev_adjacent *iter; 5966 5967 struct net *net = dev_net(dev); 5968 5969 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5970 if (!net_eq(net, dev_net(iter->dev))) 5971 continue; 5972 netdev_adjacent_sysfs_add(iter->dev, dev, 5973 &iter->dev->adj_list.lower); 5974 netdev_adjacent_sysfs_add(dev, iter->dev, 5975 &dev->adj_list.upper); 5976 } 5977 5978 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5979 if (!net_eq(net, dev_net(iter->dev))) 5980 continue; 5981 netdev_adjacent_sysfs_add(iter->dev, dev, 5982 &iter->dev->adj_list.upper); 5983 netdev_adjacent_sysfs_add(dev, iter->dev, 5984 &dev->adj_list.lower); 5985 } 5986 } 5987 5988 static void netdev_adjacent_del_links(struct net_device *dev) 5989 { 5990 struct netdev_adjacent *iter; 5991 5992 struct net *net = dev_net(dev); 5993 5994 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5995 if (!net_eq(net, dev_net(iter->dev))) 5996 continue; 5997 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5998 &iter->dev->adj_list.lower); 5999 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6000 &dev->adj_list.upper); 6001 } 6002 6003 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6004 if (!net_eq(net, dev_net(iter->dev))) 6005 continue; 6006 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6007 &iter->dev->adj_list.upper); 6008 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6009 &dev->adj_list.lower); 6010 } 6011 } 6012 6013 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6014 { 6015 struct netdev_adjacent *iter; 6016 6017 struct net *net = dev_net(dev); 6018 6019 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6020 if (!net_eq(net, dev_net(iter->dev))) 6021 continue; 6022 netdev_adjacent_sysfs_del(iter->dev, oldname, 6023 &iter->dev->adj_list.lower); 6024 netdev_adjacent_sysfs_add(iter->dev, dev, 6025 &iter->dev->adj_list.lower); 6026 } 6027 6028 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6029 if (!net_eq(net, dev_net(iter->dev))) 6030 continue; 6031 netdev_adjacent_sysfs_del(iter->dev, oldname, 6032 &iter->dev->adj_list.upper); 6033 netdev_adjacent_sysfs_add(iter->dev, dev, 6034 &iter->dev->adj_list.upper); 6035 } 6036 } 6037 6038 void *netdev_lower_dev_get_private(struct net_device *dev, 6039 struct net_device *lower_dev) 6040 { 6041 struct netdev_adjacent *lower; 6042 6043 if (!lower_dev) 6044 return NULL; 6045 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6046 if (!lower) 6047 return NULL; 6048 6049 return lower->private; 6050 } 6051 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6052 6053 6054 int dev_get_nest_level(struct net_device *dev) 6055 { 6056 struct net_device *lower = NULL; 6057 struct list_head *iter; 6058 int max_nest = -1; 6059 int nest; 6060 6061 ASSERT_RTNL(); 6062 6063 netdev_for_each_lower_dev(dev, lower, iter) { 6064 nest = dev_get_nest_level(lower); 6065 if (max_nest < nest) 6066 max_nest = nest; 6067 } 6068 6069 return max_nest + 1; 6070 } 6071 EXPORT_SYMBOL(dev_get_nest_level); 6072 6073 /** 6074 * netdev_lower_change - Dispatch event about lower device state change 6075 * @lower_dev: device 6076 * @lower_state_info: state to dispatch 6077 * 6078 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6079 * The caller must hold the RTNL lock. 6080 */ 6081 void netdev_lower_state_changed(struct net_device *lower_dev, 6082 void *lower_state_info) 6083 { 6084 struct netdev_notifier_changelowerstate_info changelowerstate_info; 6085 6086 ASSERT_RTNL(); 6087 changelowerstate_info.lower_state_info = lower_state_info; 6088 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev, 6089 &changelowerstate_info.info); 6090 } 6091 EXPORT_SYMBOL(netdev_lower_state_changed); 6092 6093 int netdev_default_l2upper_neigh_construct(struct net_device *dev, 6094 struct neighbour *n) 6095 { 6096 struct net_device *lower_dev, *stop_dev; 6097 struct list_head *iter; 6098 int err; 6099 6100 netdev_for_each_lower_dev(dev, lower_dev, iter) { 6101 if (!lower_dev->netdev_ops->ndo_neigh_construct) 6102 continue; 6103 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n); 6104 if (err) { 6105 stop_dev = lower_dev; 6106 goto rollback; 6107 } 6108 } 6109 return 0; 6110 6111 rollback: 6112 netdev_for_each_lower_dev(dev, lower_dev, iter) { 6113 if (lower_dev == stop_dev) 6114 break; 6115 if (!lower_dev->netdev_ops->ndo_neigh_destroy) 6116 continue; 6117 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n); 6118 } 6119 return err; 6120 } 6121 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct); 6122 6123 void netdev_default_l2upper_neigh_destroy(struct net_device *dev, 6124 struct neighbour *n) 6125 { 6126 struct net_device *lower_dev; 6127 struct list_head *iter; 6128 6129 netdev_for_each_lower_dev(dev, lower_dev, iter) { 6130 if (!lower_dev->netdev_ops->ndo_neigh_destroy) 6131 continue; 6132 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n); 6133 } 6134 } 6135 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy); 6136 6137 static void dev_change_rx_flags(struct net_device *dev, int flags) 6138 { 6139 const struct net_device_ops *ops = dev->netdev_ops; 6140 6141 if (ops->ndo_change_rx_flags) 6142 ops->ndo_change_rx_flags(dev, flags); 6143 } 6144 6145 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6146 { 6147 unsigned int old_flags = dev->flags; 6148 kuid_t uid; 6149 kgid_t gid; 6150 6151 ASSERT_RTNL(); 6152 6153 dev->flags |= IFF_PROMISC; 6154 dev->promiscuity += inc; 6155 if (dev->promiscuity == 0) { 6156 /* 6157 * Avoid overflow. 6158 * If inc causes overflow, untouch promisc and return error. 6159 */ 6160 if (inc < 0) 6161 dev->flags &= ~IFF_PROMISC; 6162 else { 6163 dev->promiscuity -= inc; 6164 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6165 dev->name); 6166 return -EOVERFLOW; 6167 } 6168 } 6169 if (dev->flags != old_flags) { 6170 pr_info("device %s %s promiscuous mode\n", 6171 dev->name, 6172 dev->flags & IFF_PROMISC ? "entered" : "left"); 6173 if (audit_enabled) { 6174 current_uid_gid(&uid, &gid); 6175 audit_log(current->audit_context, GFP_ATOMIC, 6176 AUDIT_ANOM_PROMISCUOUS, 6177 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6178 dev->name, (dev->flags & IFF_PROMISC), 6179 (old_flags & IFF_PROMISC), 6180 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6181 from_kuid(&init_user_ns, uid), 6182 from_kgid(&init_user_ns, gid), 6183 audit_get_sessionid(current)); 6184 } 6185 6186 dev_change_rx_flags(dev, IFF_PROMISC); 6187 } 6188 if (notify) 6189 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6190 return 0; 6191 } 6192 6193 /** 6194 * dev_set_promiscuity - update promiscuity count on a device 6195 * @dev: device 6196 * @inc: modifier 6197 * 6198 * Add or remove promiscuity from a device. While the count in the device 6199 * remains above zero the interface remains promiscuous. Once it hits zero 6200 * the device reverts back to normal filtering operation. A negative inc 6201 * value is used to drop promiscuity on the device. 6202 * Return 0 if successful or a negative errno code on error. 6203 */ 6204 int dev_set_promiscuity(struct net_device *dev, int inc) 6205 { 6206 unsigned int old_flags = dev->flags; 6207 int err; 6208 6209 err = __dev_set_promiscuity(dev, inc, true); 6210 if (err < 0) 6211 return err; 6212 if (dev->flags != old_flags) 6213 dev_set_rx_mode(dev); 6214 return err; 6215 } 6216 EXPORT_SYMBOL(dev_set_promiscuity); 6217 6218 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6219 { 6220 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6221 6222 ASSERT_RTNL(); 6223 6224 dev->flags |= IFF_ALLMULTI; 6225 dev->allmulti += inc; 6226 if (dev->allmulti == 0) { 6227 /* 6228 * Avoid overflow. 6229 * If inc causes overflow, untouch allmulti and return error. 6230 */ 6231 if (inc < 0) 6232 dev->flags &= ~IFF_ALLMULTI; 6233 else { 6234 dev->allmulti -= inc; 6235 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6236 dev->name); 6237 return -EOVERFLOW; 6238 } 6239 } 6240 if (dev->flags ^ old_flags) { 6241 dev_change_rx_flags(dev, IFF_ALLMULTI); 6242 dev_set_rx_mode(dev); 6243 if (notify) 6244 __dev_notify_flags(dev, old_flags, 6245 dev->gflags ^ old_gflags); 6246 } 6247 return 0; 6248 } 6249 6250 /** 6251 * dev_set_allmulti - update allmulti count on a device 6252 * @dev: device 6253 * @inc: modifier 6254 * 6255 * Add or remove reception of all multicast frames to a device. While the 6256 * count in the device remains above zero the interface remains listening 6257 * to all interfaces. Once it hits zero the device reverts back to normal 6258 * filtering operation. A negative @inc value is used to drop the counter 6259 * when releasing a resource needing all multicasts. 6260 * Return 0 if successful or a negative errno code on error. 6261 */ 6262 6263 int dev_set_allmulti(struct net_device *dev, int inc) 6264 { 6265 return __dev_set_allmulti(dev, inc, true); 6266 } 6267 EXPORT_SYMBOL(dev_set_allmulti); 6268 6269 /* 6270 * Upload unicast and multicast address lists to device and 6271 * configure RX filtering. When the device doesn't support unicast 6272 * filtering it is put in promiscuous mode while unicast addresses 6273 * are present. 6274 */ 6275 void __dev_set_rx_mode(struct net_device *dev) 6276 { 6277 const struct net_device_ops *ops = dev->netdev_ops; 6278 6279 /* dev_open will call this function so the list will stay sane. */ 6280 if (!(dev->flags&IFF_UP)) 6281 return; 6282 6283 if (!netif_device_present(dev)) 6284 return; 6285 6286 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6287 /* Unicast addresses changes may only happen under the rtnl, 6288 * therefore calling __dev_set_promiscuity here is safe. 6289 */ 6290 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6291 __dev_set_promiscuity(dev, 1, false); 6292 dev->uc_promisc = true; 6293 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6294 __dev_set_promiscuity(dev, -1, false); 6295 dev->uc_promisc = false; 6296 } 6297 } 6298 6299 if (ops->ndo_set_rx_mode) 6300 ops->ndo_set_rx_mode(dev); 6301 } 6302 6303 void dev_set_rx_mode(struct net_device *dev) 6304 { 6305 netif_addr_lock_bh(dev); 6306 __dev_set_rx_mode(dev); 6307 netif_addr_unlock_bh(dev); 6308 } 6309 6310 /** 6311 * dev_get_flags - get flags reported to userspace 6312 * @dev: device 6313 * 6314 * Get the combination of flag bits exported through APIs to userspace. 6315 */ 6316 unsigned int dev_get_flags(const struct net_device *dev) 6317 { 6318 unsigned int flags; 6319 6320 flags = (dev->flags & ~(IFF_PROMISC | 6321 IFF_ALLMULTI | 6322 IFF_RUNNING | 6323 IFF_LOWER_UP | 6324 IFF_DORMANT)) | 6325 (dev->gflags & (IFF_PROMISC | 6326 IFF_ALLMULTI)); 6327 6328 if (netif_running(dev)) { 6329 if (netif_oper_up(dev)) 6330 flags |= IFF_RUNNING; 6331 if (netif_carrier_ok(dev)) 6332 flags |= IFF_LOWER_UP; 6333 if (netif_dormant(dev)) 6334 flags |= IFF_DORMANT; 6335 } 6336 6337 return flags; 6338 } 6339 EXPORT_SYMBOL(dev_get_flags); 6340 6341 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6342 { 6343 unsigned int old_flags = dev->flags; 6344 int ret; 6345 6346 ASSERT_RTNL(); 6347 6348 /* 6349 * Set the flags on our device. 6350 */ 6351 6352 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6353 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6354 IFF_AUTOMEDIA)) | 6355 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6356 IFF_ALLMULTI)); 6357 6358 /* 6359 * Load in the correct multicast list now the flags have changed. 6360 */ 6361 6362 if ((old_flags ^ flags) & IFF_MULTICAST) 6363 dev_change_rx_flags(dev, IFF_MULTICAST); 6364 6365 dev_set_rx_mode(dev); 6366 6367 /* 6368 * Have we downed the interface. We handle IFF_UP ourselves 6369 * according to user attempts to set it, rather than blindly 6370 * setting it. 6371 */ 6372 6373 ret = 0; 6374 if ((old_flags ^ flags) & IFF_UP) 6375 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 6376 6377 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6378 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6379 unsigned int old_flags = dev->flags; 6380 6381 dev->gflags ^= IFF_PROMISC; 6382 6383 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6384 if (dev->flags != old_flags) 6385 dev_set_rx_mode(dev); 6386 } 6387 6388 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6389 is important. Some (broken) drivers set IFF_PROMISC, when 6390 IFF_ALLMULTI is requested not asking us and not reporting. 6391 */ 6392 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6393 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6394 6395 dev->gflags ^= IFF_ALLMULTI; 6396 __dev_set_allmulti(dev, inc, false); 6397 } 6398 6399 return ret; 6400 } 6401 6402 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6403 unsigned int gchanges) 6404 { 6405 unsigned int changes = dev->flags ^ old_flags; 6406 6407 if (gchanges) 6408 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6409 6410 if (changes & IFF_UP) { 6411 if (dev->flags & IFF_UP) 6412 call_netdevice_notifiers(NETDEV_UP, dev); 6413 else 6414 call_netdevice_notifiers(NETDEV_DOWN, dev); 6415 } 6416 6417 if (dev->flags & IFF_UP && 6418 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6419 struct netdev_notifier_change_info change_info; 6420 6421 change_info.flags_changed = changes; 6422 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 6423 &change_info.info); 6424 } 6425 } 6426 6427 /** 6428 * dev_change_flags - change device settings 6429 * @dev: device 6430 * @flags: device state flags 6431 * 6432 * Change settings on device based state flags. The flags are 6433 * in the userspace exported format. 6434 */ 6435 int dev_change_flags(struct net_device *dev, unsigned int flags) 6436 { 6437 int ret; 6438 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6439 6440 ret = __dev_change_flags(dev, flags); 6441 if (ret < 0) 6442 return ret; 6443 6444 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6445 __dev_notify_flags(dev, old_flags, changes); 6446 return ret; 6447 } 6448 EXPORT_SYMBOL(dev_change_flags); 6449 6450 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 6451 { 6452 const struct net_device_ops *ops = dev->netdev_ops; 6453 6454 if (ops->ndo_change_mtu) 6455 return ops->ndo_change_mtu(dev, new_mtu); 6456 6457 dev->mtu = new_mtu; 6458 return 0; 6459 } 6460 6461 /** 6462 * dev_set_mtu - Change maximum transfer unit 6463 * @dev: device 6464 * @new_mtu: new transfer unit 6465 * 6466 * Change the maximum transfer size of the network device. 6467 */ 6468 int dev_set_mtu(struct net_device *dev, int new_mtu) 6469 { 6470 int err, orig_mtu; 6471 6472 if (new_mtu == dev->mtu) 6473 return 0; 6474 6475 /* MTU must be positive. */ 6476 if (new_mtu < 0) 6477 return -EINVAL; 6478 6479 if (!netif_device_present(dev)) 6480 return -ENODEV; 6481 6482 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6483 err = notifier_to_errno(err); 6484 if (err) 6485 return err; 6486 6487 orig_mtu = dev->mtu; 6488 err = __dev_set_mtu(dev, new_mtu); 6489 6490 if (!err) { 6491 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6492 err = notifier_to_errno(err); 6493 if (err) { 6494 /* setting mtu back and notifying everyone again, 6495 * so that they have a chance to revert changes. 6496 */ 6497 __dev_set_mtu(dev, orig_mtu); 6498 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6499 } 6500 } 6501 return err; 6502 } 6503 EXPORT_SYMBOL(dev_set_mtu); 6504 6505 /** 6506 * dev_set_group - Change group this device belongs to 6507 * @dev: device 6508 * @new_group: group this device should belong to 6509 */ 6510 void dev_set_group(struct net_device *dev, int new_group) 6511 { 6512 dev->group = new_group; 6513 } 6514 EXPORT_SYMBOL(dev_set_group); 6515 6516 /** 6517 * dev_set_mac_address - Change Media Access Control Address 6518 * @dev: device 6519 * @sa: new address 6520 * 6521 * Change the hardware (MAC) address of the device 6522 */ 6523 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6524 { 6525 const struct net_device_ops *ops = dev->netdev_ops; 6526 int err; 6527 6528 if (!ops->ndo_set_mac_address) 6529 return -EOPNOTSUPP; 6530 if (sa->sa_family != dev->type) 6531 return -EINVAL; 6532 if (!netif_device_present(dev)) 6533 return -ENODEV; 6534 err = ops->ndo_set_mac_address(dev, sa); 6535 if (err) 6536 return err; 6537 dev->addr_assign_type = NET_ADDR_SET; 6538 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6539 add_device_randomness(dev->dev_addr, dev->addr_len); 6540 return 0; 6541 } 6542 EXPORT_SYMBOL(dev_set_mac_address); 6543 6544 /** 6545 * dev_change_carrier - Change device carrier 6546 * @dev: device 6547 * @new_carrier: new value 6548 * 6549 * Change device carrier 6550 */ 6551 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6552 { 6553 const struct net_device_ops *ops = dev->netdev_ops; 6554 6555 if (!ops->ndo_change_carrier) 6556 return -EOPNOTSUPP; 6557 if (!netif_device_present(dev)) 6558 return -ENODEV; 6559 return ops->ndo_change_carrier(dev, new_carrier); 6560 } 6561 EXPORT_SYMBOL(dev_change_carrier); 6562 6563 /** 6564 * dev_get_phys_port_id - Get device physical port ID 6565 * @dev: device 6566 * @ppid: port ID 6567 * 6568 * Get device physical port ID 6569 */ 6570 int dev_get_phys_port_id(struct net_device *dev, 6571 struct netdev_phys_item_id *ppid) 6572 { 6573 const struct net_device_ops *ops = dev->netdev_ops; 6574 6575 if (!ops->ndo_get_phys_port_id) 6576 return -EOPNOTSUPP; 6577 return ops->ndo_get_phys_port_id(dev, ppid); 6578 } 6579 EXPORT_SYMBOL(dev_get_phys_port_id); 6580 6581 /** 6582 * dev_get_phys_port_name - Get device physical port name 6583 * @dev: device 6584 * @name: port name 6585 * @len: limit of bytes to copy to name 6586 * 6587 * Get device physical port name 6588 */ 6589 int dev_get_phys_port_name(struct net_device *dev, 6590 char *name, size_t len) 6591 { 6592 const struct net_device_ops *ops = dev->netdev_ops; 6593 6594 if (!ops->ndo_get_phys_port_name) 6595 return -EOPNOTSUPP; 6596 return ops->ndo_get_phys_port_name(dev, name, len); 6597 } 6598 EXPORT_SYMBOL(dev_get_phys_port_name); 6599 6600 /** 6601 * dev_change_proto_down - update protocol port state information 6602 * @dev: device 6603 * @proto_down: new value 6604 * 6605 * This info can be used by switch drivers to set the phys state of the 6606 * port. 6607 */ 6608 int dev_change_proto_down(struct net_device *dev, bool proto_down) 6609 { 6610 const struct net_device_ops *ops = dev->netdev_ops; 6611 6612 if (!ops->ndo_change_proto_down) 6613 return -EOPNOTSUPP; 6614 if (!netif_device_present(dev)) 6615 return -ENODEV; 6616 return ops->ndo_change_proto_down(dev, proto_down); 6617 } 6618 EXPORT_SYMBOL(dev_change_proto_down); 6619 6620 /** 6621 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 6622 * @dev: device 6623 * @fd: new program fd or negative value to clear 6624 * 6625 * Set or clear a bpf program for a device 6626 */ 6627 int dev_change_xdp_fd(struct net_device *dev, int fd) 6628 { 6629 const struct net_device_ops *ops = dev->netdev_ops; 6630 struct bpf_prog *prog = NULL; 6631 struct netdev_xdp xdp = {}; 6632 int err; 6633 6634 if (!ops->ndo_xdp) 6635 return -EOPNOTSUPP; 6636 if (fd >= 0) { 6637 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 6638 if (IS_ERR(prog)) 6639 return PTR_ERR(prog); 6640 } 6641 6642 xdp.command = XDP_SETUP_PROG; 6643 xdp.prog = prog; 6644 err = ops->ndo_xdp(dev, &xdp); 6645 if (err < 0 && prog) 6646 bpf_prog_put(prog); 6647 6648 return err; 6649 } 6650 EXPORT_SYMBOL(dev_change_xdp_fd); 6651 6652 /** 6653 * dev_new_index - allocate an ifindex 6654 * @net: the applicable net namespace 6655 * 6656 * Returns a suitable unique value for a new device interface 6657 * number. The caller must hold the rtnl semaphore or the 6658 * dev_base_lock to be sure it remains unique. 6659 */ 6660 static int dev_new_index(struct net *net) 6661 { 6662 int ifindex = net->ifindex; 6663 for (;;) { 6664 if (++ifindex <= 0) 6665 ifindex = 1; 6666 if (!__dev_get_by_index(net, ifindex)) 6667 return net->ifindex = ifindex; 6668 } 6669 } 6670 6671 /* Delayed registration/unregisteration */ 6672 static LIST_HEAD(net_todo_list); 6673 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 6674 6675 static void net_set_todo(struct net_device *dev) 6676 { 6677 list_add_tail(&dev->todo_list, &net_todo_list); 6678 dev_net(dev)->dev_unreg_count++; 6679 } 6680 6681 static void rollback_registered_many(struct list_head *head) 6682 { 6683 struct net_device *dev, *tmp; 6684 LIST_HEAD(close_head); 6685 6686 BUG_ON(dev_boot_phase); 6687 ASSERT_RTNL(); 6688 6689 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 6690 /* Some devices call without registering 6691 * for initialization unwind. Remove those 6692 * devices and proceed with the remaining. 6693 */ 6694 if (dev->reg_state == NETREG_UNINITIALIZED) { 6695 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 6696 dev->name, dev); 6697 6698 WARN_ON(1); 6699 list_del(&dev->unreg_list); 6700 continue; 6701 } 6702 dev->dismantle = true; 6703 BUG_ON(dev->reg_state != NETREG_REGISTERED); 6704 } 6705 6706 /* If device is running, close it first. */ 6707 list_for_each_entry(dev, head, unreg_list) 6708 list_add_tail(&dev->close_list, &close_head); 6709 dev_close_many(&close_head, true); 6710 6711 list_for_each_entry(dev, head, unreg_list) { 6712 /* And unlink it from device chain. */ 6713 unlist_netdevice(dev); 6714 6715 dev->reg_state = NETREG_UNREGISTERING; 6716 } 6717 flush_all_backlogs(); 6718 6719 synchronize_net(); 6720 6721 list_for_each_entry(dev, head, unreg_list) { 6722 struct sk_buff *skb = NULL; 6723 6724 /* Shutdown queueing discipline. */ 6725 dev_shutdown(dev); 6726 6727 6728 /* Notify protocols, that we are about to destroy 6729 this device. They should clean all the things. 6730 */ 6731 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6732 6733 if (!dev->rtnl_link_ops || 6734 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6735 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 6736 GFP_KERNEL); 6737 6738 /* 6739 * Flush the unicast and multicast chains 6740 */ 6741 dev_uc_flush(dev); 6742 dev_mc_flush(dev); 6743 6744 if (dev->netdev_ops->ndo_uninit) 6745 dev->netdev_ops->ndo_uninit(dev); 6746 6747 if (skb) 6748 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 6749 6750 /* Notifier chain MUST detach us all upper devices. */ 6751 WARN_ON(netdev_has_any_upper_dev(dev)); 6752 6753 /* Remove entries from kobject tree */ 6754 netdev_unregister_kobject(dev); 6755 #ifdef CONFIG_XPS 6756 /* Remove XPS queueing entries */ 6757 netif_reset_xps_queues_gt(dev, 0); 6758 #endif 6759 } 6760 6761 synchronize_net(); 6762 6763 list_for_each_entry(dev, head, unreg_list) 6764 dev_put(dev); 6765 } 6766 6767 static void rollback_registered(struct net_device *dev) 6768 { 6769 LIST_HEAD(single); 6770 6771 list_add(&dev->unreg_list, &single); 6772 rollback_registered_many(&single); 6773 list_del(&single); 6774 } 6775 6776 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 6777 struct net_device *upper, netdev_features_t features) 6778 { 6779 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6780 netdev_features_t feature; 6781 int feature_bit; 6782 6783 for_each_netdev_feature(&upper_disables, feature_bit) { 6784 feature = __NETIF_F_BIT(feature_bit); 6785 if (!(upper->wanted_features & feature) 6786 && (features & feature)) { 6787 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 6788 &feature, upper->name); 6789 features &= ~feature; 6790 } 6791 } 6792 6793 return features; 6794 } 6795 6796 static void netdev_sync_lower_features(struct net_device *upper, 6797 struct net_device *lower, netdev_features_t features) 6798 { 6799 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6800 netdev_features_t feature; 6801 int feature_bit; 6802 6803 for_each_netdev_feature(&upper_disables, feature_bit) { 6804 feature = __NETIF_F_BIT(feature_bit); 6805 if (!(features & feature) && (lower->features & feature)) { 6806 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 6807 &feature, lower->name); 6808 lower->wanted_features &= ~feature; 6809 netdev_update_features(lower); 6810 6811 if (unlikely(lower->features & feature)) 6812 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 6813 &feature, lower->name); 6814 } 6815 } 6816 } 6817 6818 static netdev_features_t netdev_fix_features(struct net_device *dev, 6819 netdev_features_t features) 6820 { 6821 /* Fix illegal checksum combinations */ 6822 if ((features & NETIF_F_HW_CSUM) && 6823 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6824 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 6825 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 6826 } 6827 6828 /* TSO requires that SG is present as well. */ 6829 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 6830 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 6831 features &= ~NETIF_F_ALL_TSO; 6832 } 6833 6834 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 6835 !(features & NETIF_F_IP_CSUM)) { 6836 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 6837 features &= ~NETIF_F_TSO; 6838 features &= ~NETIF_F_TSO_ECN; 6839 } 6840 6841 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 6842 !(features & NETIF_F_IPV6_CSUM)) { 6843 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 6844 features &= ~NETIF_F_TSO6; 6845 } 6846 6847 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 6848 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 6849 features &= ~NETIF_F_TSO_MANGLEID; 6850 6851 /* TSO ECN requires that TSO is present as well. */ 6852 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 6853 features &= ~NETIF_F_TSO_ECN; 6854 6855 /* Software GSO depends on SG. */ 6856 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 6857 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 6858 features &= ~NETIF_F_GSO; 6859 } 6860 6861 /* UFO needs SG and checksumming */ 6862 if (features & NETIF_F_UFO) { 6863 /* maybe split UFO into V4 and V6? */ 6864 if (!(features & NETIF_F_HW_CSUM) && 6865 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) != 6866 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) { 6867 netdev_dbg(dev, 6868 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 6869 features &= ~NETIF_F_UFO; 6870 } 6871 6872 if (!(features & NETIF_F_SG)) { 6873 netdev_dbg(dev, 6874 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 6875 features &= ~NETIF_F_UFO; 6876 } 6877 } 6878 6879 /* GSO partial features require GSO partial be set */ 6880 if ((features & dev->gso_partial_features) && 6881 !(features & NETIF_F_GSO_PARTIAL)) { 6882 netdev_dbg(dev, 6883 "Dropping partially supported GSO features since no GSO partial.\n"); 6884 features &= ~dev->gso_partial_features; 6885 } 6886 6887 #ifdef CONFIG_NET_RX_BUSY_POLL 6888 if (dev->netdev_ops->ndo_busy_poll) 6889 features |= NETIF_F_BUSY_POLL; 6890 else 6891 #endif 6892 features &= ~NETIF_F_BUSY_POLL; 6893 6894 return features; 6895 } 6896 6897 int __netdev_update_features(struct net_device *dev) 6898 { 6899 struct net_device *upper, *lower; 6900 netdev_features_t features; 6901 struct list_head *iter; 6902 int err = -1; 6903 6904 ASSERT_RTNL(); 6905 6906 features = netdev_get_wanted_features(dev); 6907 6908 if (dev->netdev_ops->ndo_fix_features) 6909 features = dev->netdev_ops->ndo_fix_features(dev, features); 6910 6911 /* driver might be less strict about feature dependencies */ 6912 features = netdev_fix_features(dev, features); 6913 6914 /* some features can't be enabled if they're off an an upper device */ 6915 netdev_for_each_upper_dev_rcu(dev, upper, iter) 6916 features = netdev_sync_upper_features(dev, upper, features); 6917 6918 if (dev->features == features) 6919 goto sync_lower; 6920 6921 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 6922 &dev->features, &features); 6923 6924 if (dev->netdev_ops->ndo_set_features) 6925 err = dev->netdev_ops->ndo_set_features(dev, features); 6926 else 6927 err = 0; 6928 6929 if (unlikely(err < 0)) { 6930 netdev_err(dev, 6931 "set_features() failed (%d); wanted %pNF, left %pNF\n", 6932 err, &features, &dev->features); 6933 /* return non-0 since some features might have changed and 6934 * it's better to fire a spurious notification than miss it 6935 */ 6936 return -1; 6937 } 6938 6939 sync_lower: 6940 /* some features must be disabled on lower devices when disabled 6941 * on an upper device (think: bonding master or bridge) 6942 */ 6943 netdev_for_each_lower_dev(dev, lower, iter) 6944 netdev_sync_lower_features(dev, lower, features); 6945 6946 if (!err) 6947 dev->features = features; 6948 6949 return err < 0 ? 0 : 1; 6950 } 6951 6952 /** 6953 * netdev_update_features - recalculate device features 6954 * @dev: the device to check 6955 * 6956 * Recalculate dev->features set and send notifications if it 6957 * has changed. Should be called after driver or hardware dependent 6958 * conditions might have changed that influence the features. 6959 */ 6960 void netdev_update_features(struct net_device *dev) 6961 { 6962 if (__netdev_update_features(dev)) 6963 netdev_features_change(dev); 6964 } 6965 EXPORT_SYMBOL(netdev_update_features); 6966 6967 /** 6968 * netdev_change_features - recalculate device features 6969 * @dev: the device to check 6970 * 6971 * Recalculate dev->features set and send notifications even 6972 * if they have not changed. Should be called instead of 6973 * netdev_update_features() if also dev->vlan_features might 6974 * have changed to allow the changes to be propagated to stacked 6975 * VLAN devices. 6976 */ 6977 void netdev_change_features(struct net_device *dev) 6978 { 6979 __netdev_update_features(dev); 6980 netdev_features_change(dev); 6981 } 6982 EXPORT_SYMBOL(netdev_change_features); 6983 6984 /** 6985 * netif_stacked_transfer_operstate - transfer operstate 6986 * @rootdev: the root or lower level device to transfer state from 6987 * @dev: the device to transfer operstate to 6988 * 6989 * Transfer operational state from root to device. This is normally 6990 * called when a stacking relationship exists between the root 6991 * device and the device(a leaf device). 6992 */ 6993 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 6994 struct net_device *dev) 6995 { 6996 if (rootdev->operstate == IF_OPER_DORMANT) 6997 netif_dormant_on(dev); 6998 else 6999 netif_dormant_off(dev); 7000 7001 if (netif_carrier_ok(rootdev)) { 7002 if (!netif_carrier_ok(dev)) 7003 netif_carrier_on(dev); 7004 } else { 7005 if (netif_carrier_ok(dev)) 7006 netif_carrier_off(dev); 7007 } 7008 } 7009 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7010 7011 #ifdef CONFIG_SYSFS 7012 static int netif_alloc_rx_queues(struct net_device *dev) 7013 { 7014 unsigned int i, count = dev->num_rx_queues; 7015 struct netdev_rx_queue *rx; 7016 size_t sz = count * sizeof(*rx); 7017 7018 BUG_ON(count < 1); 7019 7020 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7021 if (!rx) { 7022 rx = vzalloc(sz); 7023 if (!rx) 7024 return -ENOMEM; 7025 } 7026 dev->_rx = rx; 7027 7028 for (i = 0; i < count; i++) 7029 rx[i].dev = dev; 7030 return 0; 7031 } 7032 #endif 7033 7034 static void netdev_init_one_queue(struct net_device *dev, 7035 struct netdev_queue *queue, void *_unused) 7036 { 7037 /* Initialize queue lock */ 7038 spin_lock_init(&queue->_xmit_lock); 7039 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7040 queue->xmit_lock_owner = -1; 7041 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7042 queue->dev = dev; 7043 #ifdef CONFIG_BQL 7044 dql_init(&queue->dql, HZ); 7045 #endif 7046 } 7047 7048 static void netif_free_tx_queues(struct net_device *dev) 7049 { 7050 kvfree(dev->_tx); 7051 } 7052 7053 static int netif_alloc_netdev_queues(struct net_device *dev) 7054 { 7055 unsigned int count = dev->num_tx_queues; 7056 struct netdev_queue *tx; 7057 size_t sz = count * sizeof(*tx); 7058 7059 if (count < 1 || count > 0xffff) 7060 return -EINVAL; 7061 7062 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7063 if (!tx) { 7064 tx = vzalloc(sz); 7065 if (!tx) 7066 return -ENOMEM; 7067 } 7068 dev->_tx = tx; 7069 7070 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7071 spin_lock_init(&dev->tx_global_lock); 7072 7073 return 0; 7074 } 7075 7076 void netif_tx_stop_all_queues(struct net_device *dev) 7077 { 7078 unsigned int i; 7079 7080 for (i = 0; i < dev->num_tx_queues; i++) { 7081 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7082 netif_tx_stop_queue(txq); 7083 } 7084 } 7085 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7086 7087 /** 7088 * register_netdevice - register a network device 7089 * @dev: device to register 7090 * 7091 * Take a completed network device structure and add it to the kernel 7092 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7093 * chain. 0 is returned on success. A negative errno code is returned 7094 * on a failure to set up the device, or if the name is a duplicate. 7095 * 7096 * Callers must hold the rtnl semaphore. You may want 7097 * register_netdev() instead of this. 7098 * 7099 * BUGS: 7100 * The locking appears insufficient to guarantee two parallel registers 7101 * will not get the same name. 7102 */ 7103 7104 int register_netdevice(struct net_device *dev) 7105 { 7106 int ret; 7107 struct net *net = dev_net(dev); 7108 7109 BUG_ON(dev_boot_phase); 7110 ASSERT_RTNL(); 7111 7112 might_sleep(); 7113 7114 /* When net_device's are persistent, this will be fatal. */ 7115 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7116 BUG_ON(!net); 7117 7118 spin_lock_init(&dev->addr_list_lock); 7119 netdev_set_addr_lockdep_class(dev); 7120 7121 ret = dev_get_valid_name(net, dev, dev->name); 7122 if (ret < 0) 7123 goto out; 7124 7125 /* Init, if this function is available */ 7126 if (dev->netdev_ops->ndo_init) { 7127 ret = dev->netdev_ops->ndo_init(dev); 7128 if (ret) { 7129 if (ret > 0) 7130 ret = -EIO; 7131 goto out; 7132 } 7133 } 7134 7135 if (((dev->hw_features | dev->features) & 7136 NETIF_F_HW_VLAN_CTAG_FILTER) && 7137 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7138 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7139 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7140 ret = -EINVAL; 7141 goto err_uninit; 7142 } 7143 7144 ret = -EBUSY; 7145 if (!dev->ifindex) 7146 dev->ifindex = dev_new_index(net); 7147 else if (__dev_get_by_index(net, dev->ifindex)) 7148 goto err_uninit; 7149 7150 /* Transfer changeable features to wanted_features and enable 7151 * software offloads (GSO and GRO). 7152 */ 7153 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7154 dev->features |= NETIF_F_SOFT_FEATURES; 7155 dev->wanted_features = dev->features & dev->hw_features; 7156 7157 if (!(dev->flags & IFF_LOOPBACK)) 7158 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7159 7160 /* If IPv4 TCP segmentation offload is supported we should also 7161 * allow the device to enable segmenting the frame with the option 7162 * of ignoring a static IP ID value. This doesn't enable the 7163 * feature itself but allows the user to enable it later. 7164 */ 7165 if (dev->hw_features & NETIF_F_TSO) 7166 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7167 if (dev->vlan_features & NETIF_F_TSO) 7168 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7169 if (dev->mpls_features & NETIF_F_TSO) 7170 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7171 if (dev->hw_enc_features & NETIF_F_TSO) 7172 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7173 7174 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7175 */ 7176 dev->vlan_features |= NETIF_F_HIGHDMA; 7177 7178 /* Make NETIF_F_SG inheritable to tunnel devices. 7179 */ 7180 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7181 7182 /* Make NETIF_F_SG inheritable to MPLS. 7183 */ 7184 dev->mpls_features |= NETIF_F_SG; 7185 7186 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7187 ret = notifier_to_errno(ret); 7188 if (ret) 7189 goto err_uninit; 7190 7191 ret = netdev_register_kobject(dev); 7192 if (ret) 7193 goto err_uninit; 7194 dev->reg_state = NETREG_REGISTERED; 7195 7196 __netdev_update_features(dev); 7197 7198 /* 7199 * Default initial state at registry is that the 7200 * device is present. 7201 */ 7202 7203 set_bit(__LINK_STATE_PRESENT, &dev->state); 7204 7205 linkwatch_init_dev(dev); 7206 7207 dev_init_scheduler(dev); 7208 dev_hold(dev); 7209 list_netdevice(dev); 7210 add_device_randomness(dev->dev_addr, dev->addr_len); 7211 7212 /* If the device has permanent device address, driver should 7213 * set dev_addr and also addr_assign_type should be set to 7214 * NET_ADDR_PERM (default value). 7215 */ 7216 if (dev->addr_assign_type == NET_ADDR_PERM) 7217 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7218 7219 /* Notify protocols, that a new device appeared. */ 7220 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7221 ret = notifier_to_errno(ret); 7222 if (ret) { 7223 rollback_registered(dev); 7224 dev->reg_state = NETREG_UNREGISTERED; 7225 } 7226 /* 7227 * Prevent userspace races by waiting until the network 7228 * device is fully setup before sending notifications. 7229 */ 7230 if (!dev->rtnl_link_ops || 7231 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7232 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7233 7234 out: 7235 return ret; 7236 7237 err_uninit: 7238 if (dev->netdev_ops->ndo_uninit) 7239 dev->netdev_ops->ndo_uninit(dev); 7240 goto out; 7241 } 7242 EXPORT_SYMBOL(register_netdevice); 7243 7244 /** 7245 * init_dummy_netdev - init a dummy network device for NAPI 7246 * @dev: device to init 7247 * 7248 * This takes a network device structure and initialize the minimum 7249 * amount of fields so it can be used to schedule NAPI polls without 7250 * registering a full blown interface. This is to be used by drivers 7251 * that need to tie several hardware interfaces to a single NAPI 7252 * poll scheduler due to HW limitations. 7253 */ 7254 int init_dummy_netdev(struct net_device *dev) 7255 { 7256 /* Clear everything. Note we don't initialize spinlocks 7257 * are they aren't supposed to be taken by any of the 7258 * NAPI code and this dummy netdev is supposed to be 7259 * only ever used for NAPI polls 7260 */ 7261 memset(dev, 0, sizeof(struct net_device)); 7262 7263 /* make sure we BUG if trying to hit standard 7264 * register/unregister code path 7265 */ 7266 dev->reg_state = NETREG_DUMMY; 7267 7268 /* NAPI wants this */ 7269 INIT_LIST_HEAD(&dev->napi_list); 7270 7271 /* a dummy interface is started by default */ 7272 set_bit(__LINK_STATE_PRESENT, &dev->state); 7273 set_bit(__LINK_STATE_START, &dev->state); 7274 7275 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7276 * because users of this 'device' dont need to change 7277 * its refcount. 7278 */ 7279 7280 return 0; 7281 } 7282 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7283 7284 7285 /** 7286 * register_netdev - register a network device 7287 * @dev: device to register 7288 * 7289 * Take a completed network device structure and add it to the kernel 7290 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7291 * chain. 0 is returned on success. A negative errno code is returned 7292 * on a failure to set up the device, or if the name is a duplicate. 7293 * 7294 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7295 * and expands the device name if you passed a format string to 7296 * alloc_netdev. 7297 */ 7298 int register_netdev(struct net_device *dev) 7299 { 7300 int err; 7301 7302 rtnl_lock(); 7303 err = register_netdevice(dev); 7304 rtnl_unlock(); 7305 return err; 7306 } 7307 EXPORT_SYMBOL(register_netdev); 7308 7309 int netdev_refcnt_read(const struct net_device *dev) 7310 { 7311 int i, refcnt = 0; 7312 7313 for_each_possible_cpu(i) 7314 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7315 return refcnt; 7316 } 7317 EXPORT_SYMBOL(netdev_refcnt_read); 7318 7319 /** 7320 * netdev_wait_allrefs - wait until all references are gone. 7321 * @dev: target net_device 7322 * 7323 * This is called when unregistering network devices. 7324 * 7325 * Any protocol or device that holds a reference should register 7326 * for netdevice notification, and cleanup and put back the 7327 * reference if they receive an UNREGISTER event. 7328 * We can get stuck here if buggy protocols don't correctly 7329 * call dev_put. 7330 */ 7331 static void netdev_wait_allrefs(struct net_device *dev) 7332 { 7333 unsigned long rebroadcast_time, warning_time; 7334 int refcnt; 7335 7336 linkwatch_forget_dev(dev); 7337 7338 rebroadcast_time = warning_time = jiffies; 7339 refcnt = netdev_refcnt_read(dev); 7340 7341 while (refcnt != 0) { 7342 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7343 rtnl_lock(); 7344 7345 /* Rebroadcast unregister notification */ 7346 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7347 7348 __rtnl_unlock(); 7349 rcu_barrier(); 7350 rtnl_lock(); 7351 7352 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7353 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7354 &dev->state)) { 7355 /* We must not have linkwatch events 7356 * pending on unregister. If this 7357 * happens, we simply run the queue 7358 * unscheduled, resulting in a noop 7359 * for this device. 7360 */ 7361 linkwatch_run_queue(); 7362 } 7363 7364 __rtnl_unlock(); 7365 7366 rebroadcast_time = jiffies; 7367 } 7368 7369 msleep(250); 7370 7371 refcnt = netdev_refcnt_read(dev); 7372 7373 if (time_after(jiffies, warning_time + 10 * HZ)) { 7374 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7375 dev->name, refcnt); 7376 warning_time = jiffies; 7377 } 7378 } 7379 } 7380 7381 /* The sequence is: 7382 * 7383 * rtnl_lock(); 7384 * ... 7385 * register_netdevice(x1); 7386 * register_netdevice(x2); 7387 * ... 7388 * unregister_netdevice(y1); 7389 * unregister_netdevice(y2); 7390 * ... 7391 * rtnl_unlock(); 7392 * free_netdev(y1); 7393 * free_netdev(y2); 7394 * 7395 * We are invoked by rtnl_unlock(). 7396 * This allows us to deal with problems: 7397 * 1) We can delete sysfs objects which invoke hotplug 7398 * without deadlocking with linkwatch via keventd. 7399 * 2) Since we run with the RTNL semaphore not held, we can sleep 7400 * safely in order to wait for the netdev refcnt to drop to zero. 7401 * 7402 * We must not return until all unregister events added during 7403 * the interval the lock was held have been completed. 7404 */ 7405 void netdev_run_todo(void) 7406 { 7407 struct list_head list; 7408 7409 /* Snapshot list, allow later requests */ 7410 list_replace_init(&net_todo_list, &list); 7411 7412 __rtnl_unlock(); 7413 7414 7415 /* Wait for rcu callbacks to finish before next phase */ 7416 if (!list_empty(&list)) 7417 rcu_barrier(); 7418 7419 while (!list_empty(&list)) { 7420 struct net_device *dev 7421 = list_first_entry(&list, struct net_device, todo_list); 7422 list_del(&dev->todo_list); 7423 7424 rtnl_lock(); 7425 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7426 __rtnl_unlock(); 7427 7428 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 7429 pr_err("network todo '%s' but state %d\n", 7430 dev->name, dev->reg_state); 7431 dump_stack(); 7432 continue; 7433 } 7434 7435 dev->reg_state = NETREG_UNREGISTERED; 7436 7437 netdev_wait_allrefs(dev); 7438 7439 /* paranoia */ 7440 BUG_ON(netdev_refcnt_read(dev)); 7441 BUG_ON(!list_empty(&dev->ptype_all)); 7442 BUG_ON(!list_empty(&dev->ptype_specific)); 7443 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 7444 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 7445 WARN_ON(dev->dn_ptr); 7446 7447 if (dev->destructor) 7448 dev->destructor(dev); 7449 7450 /* Report a network device has been unregistered */ 7451 rtnl_lock(); 7452 dev_net(dev)->dev_unreg_count--; 7453 __rtnl_unlock(); 7454 wake_up(&netdev_unregistering_wq); 7455 7456 /* Free network device */ 7457 kobject_put(&dev->dev.kobj); 7458 } 7459 } 7460 7461 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 7462 * all the same fields in the same order as net_device_stats, with only 7463 * the type differing, but rtnl_link_stats64 may have additional fields 7464 * at the end for newer counters. 7465 */ 7466 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 7467 const struct net_device_stats *netdev_stats) 7468 { 7469 #if BITS_PER_LONG == 64 7470 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 7471 memcpy(stats64, netdev_stats, sizeof(*stats64)); 7472 /* zero out counters that only exist in rtnl_link_stats64 */ 7473 memset((char *)stats64 + sizeof(*netdev_stats), 0, 7474 sizeof(*stats64) - sizeof(*netdev_stats)); 7475 #else 7476 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 7477 const unsigned long *src = (const unsigned long *)netdev_stats; 7478 u64 *dst = (u64 *)stats64; 7479 7480 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 7481 for (i = 0; i < n; i++) 7482 dst[i] = src[i]; 7483 /* zero out counters that only exist in rtnl_link_stats64 */ 7484 memset((char *)stats64 + n * sizeof(u64), 0, 7485 sizeof(*stats64) - n * sizeof(u64)); 7486 #endif 7487 } 7488 EXPORT_SYMBOL(netdev_stats_to_stats64); 7489 7490 /** 7491 * dev_get_stats - get network device statistics 7492 * @dev: device to get statistics from 7493 * @storage: place to store stats 7494 * 7495 * Get network statistics from device. Return @storage. 7496 * The device driver may provide its own method by setting 7497 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 7498 * otherwise the internal statistics structure is used. 7499 */ 7500 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 7501 struct rtnl_link_stats64 *storage) 7502 { 7503 const struct net_device_ops *ops = dev->netdev_ops; 7504 7505 if (ops->ndo_get_stats64) { 7506 memset(storage, 0, sizeof(*storage)); 7507 ops->ndo_get_stats64(dev, storage); 7508 } else if (ops->ndo_get_stats) { 7509 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 7510 } else { 7511 netdev_stats_to_stats64(storage, &dev->stats); 7512 } 7513 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 7514 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 7515 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler); 7516 return storage; 7517 } 7518 EXPORT_SYMBOL(dev_get_stats); 7519 7520 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 7521 { 7522 struct netdev_queue *queue = dev_ingress_queue(dev); 7523 7524 #ifdef CONFIG_NET_CLS_ACT 7525 if (queue) 7526 return queue; 7527 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 7528 if (!queue) 7529 return NULL; 7530 netdev_init_one_queue(dev, queue, NULL); 7531 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 7532 queue->qdisc_sleeping = &noop_qdisc; 7533 rcu_assign_pointer(dev->ingress_queue, queue); 7534 #endif 7535 return queue; 7536 } 7537 7538 static const struct ethtool_ops default_ethtool_ops; 7539 7540 void netdev_set_default_ethtool_ops(struct net_device *dev, 7541 const struct ethtool_ops *ops) 7542 { 7543 if (dev->ethtool_ops == &default_ethtool_ops) 7544 dev->ethtool_ops = ops; 7545 } 7546 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 7547 7548 void netdev_freemem(struct net_device *dev) 7549 { 7550 char *addr = (char *)dev - dev->padded; 7551 7552 kvfree(addr); 7553 } 7554 7555 /** 7556 * alloc_netdev_mqs - allocate network device 7557 * @sizeof_priv: size of private data to allocate space for 7558 * @name: device name format string 7559 * @name_assign_type: origin of device name 7560 * @setup: callback to initialize device 7561 * @txqs: the number of TX subqueues to allocate 7562 * @rxqs: the number of RX subqueues to allocate 7563 * 7564 * Allocates a struct net_device with private data area for driver use 7565 * and performs basic initialization. Also allocates subqueue structs 7566 * for each queue on the device. 7567 */ 7568 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 7569 unsigned char name_assign_type, 7570 void (*setup)(struct net_device *), 7571 unsigned int txqs, unsigned int rxqs) 7572 { 7573 struct net_device *dev; 7574 size_t alloc_size; 7575 struct net_device *p; 7576 7577 BUG_ON(strlen(name) >= sizeof(dev->name)); 7578 7579 if (txqs < 1) { 7580 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 7581 return NULL; 7582 } 7583 7584 #ifdef CONFIG_SYSFS 7585 if (rxqs < 1) { 7586 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 7587 return NULL; 7588 } 7589 #endif 7590 7591 alloc_size = sizeof(struct net_device); 7592 if (sizeof_priv) { 7593 /* ensure 32-byte alignment of private area */ 7594 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 7595 alloc_size += sizeof_priv; 7596 } 7597 /* ensure 32-byte alignment of whole construct */ 7598 alloc_size += NETDEV_ALIGN - 1; 7599 7600 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7601 if (!p) 7602 p = vzalloc(alloc_size); 7603 if (!p) 7604 return NULL; 7605 7606 dev = PTR_ALIGN(p, NETDEV_ALIGN); 7607 dev->padded = (char *)dev - (char *)p; 7608 7609 dev->pcpu_refcnt = alloc_percpu(int); 7610 if (!dev->pcpu_refcnt) 7611 goto free_dev; 7612 7613 if (dev_addr_init(dev)) 7614 goto free_pcpu; 7615 7616 dev_mc_init(dev); 7617 dev_uc_init(dev); 7618 7619 dev_net_set(dev, &init_net); 7620 7621 dev->gso_max_size = GSO_MAX_SIZE; 7622 dev->gso_max_segs = GSO_MAX_SEGS; 7623 7624 INIT_LIST_HEAD(&dev->napi_list); 7625 INIT_LIST_HEAD(&dev->unreg_list); 7626 INIT_LIST_HEAD(&dev->close_list); 7627 INIT_LIST_HEAD(&dev->link_watch_list); 7628 INIT_LIST_HEAD(&dev->adj_list.upper); 7629 INIT_LIST_HEAD(&dev->adj_list.lower); 7630 INIT_LIST_HEAD(&dev->all_adj_list.upper); 7631 INIT_LIST_HEAD(&dev->all_adj_list.lower); 7632 INIT_LIST_HEAD(&dev->ptype_all); 7633 INIT_LIST_HEAD(&dev->ptype_specific); 7634 #ifdef CONFIG_NET_SCHED 7635 hash_init(dev->qdisc_hash); 7636 #endif 7637 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 7638 setup(dev); 7639 7640 if (!dev->tx_queue_len) { 7641 dev->priv_flags |= IFF_NO_QUEUE; 7642 dev->tx_queue_len = 1; 7643 } 7644 7645 dev->num_tx_queues = txqs; 7646 dev->real_num_tx_queues = txqs; 7647 if (netif_alloc_netdev_queues(dev)) 7648 goto free_all; 7649 7650 #ifdef CONFIG_SYSFS 7651 dev->num_rx_queues = rxqs; 7652 dev->real_num_rx_queues = rxqs; 7653 if (netif_alloc_rx_queues(dev)) 7654 goto free_all; 7655 #endif 7656 7657 strcpy(dev->name, name); 7658 dev->name_assign_type = name_assign_type; 7659 dev->group = INIT_NETDEV_GROUP; 7660 if (!dev->ethtool_ops) 7661 dev->ethtool_ops = &default_ethtool_ops; 7662 7663 nf_hook_ingress_init(dev); 7664 7665 return dev; 7666 7667 free_all: 7668 free_netdev(dev); 7669 return NULL; 7670 7671 free_pcpu: 7672 free_percpu(dev->pcpu_refcnt); 7673 free_dev: 7674 netdev_freemem(dev); 7675 return NULL; 7676 } 7677 EXPORT_SYMBOL(alloc_netdev_mqs); 7678 7679 /** 7680 * free_netdev - free network device 7681 * @dev: device 7682 * 7683 * This function does the last stage of destroying an allocated device 7684 * interface. The reference to the device object is released. 7685 * If this is the last reference then it will be freed. 7686 * Must be called in process context. 7687 */ 7688 void free_netdev(struct net_device *dev) 7689 { 7690 struct napi_struct *p, *n; 7691 7692 might_sleep(); 7693 netif_free_tx_queues(dev); 7694 #ifdef CONFIG_SYSFS 7695 kvfree(dev->_rx); 7696 #endif 7697 7698 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 7699 7700 /* Flush device addresses */ 7701 dev_addr_flush(dev); 7702 7703 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 7704 netif_napi_del(p); 7705 7706 free_percpu(dev->pcpu_refcnt); 7707 dev->pcpu_refcnt = NULL; 7708 7709 /* Compatibility with error handling in drivers */ 7710 if (dev->reg_state == NETREG_UNINITIALIZED) { 7711 netdev_freemem(dev); 7712 return; 7713 } 7714 7715 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 7716 dev->reg_state = NETREG_RELEASED; 7717 7718 /* will free via device release */ 7719 put_device(&dev->dev); 7720 } 7721 EXPORT_SYMBOL(free_netdev); 7722 7723 /** 7724 * synchronize_net - Synchronize with packet receive processing 7725 * 7726 * Wait for packets currently being received to be done. 7727 * Does not block later packets from starting. 7728 */ 7729 void synchronize_net(void) 7730 { 7731 might_sleep(); 7732 if (rtnl_is_locked()) 7733 synchronize_rcu_expedited(); 7734 else 7735 synchronize_rcu(); 7736 } 7737 EXPORT_SYMBOL(synchronize_net); 7738 7739 /** 7740 * unregister_netdevice_queue - remove device from the kernel 7741 * @dev: device 7742 * @head: list 7743 * 7744 * This function shuts down a device interface and removes it 7745 * from the kernel tables. 7746 * If head not NULL, device is queued to be unregistered later. 7747 * 7748 * Callers must hold the rtnl semaphore. You may want 7749 * unregister_netdev() instead of this. 7750 */ 7751 7752 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 7753 { 7754 ASSERT_RTNL(); 7755 7756 if (head) { 7757 list_move_tail(&dev->unreg_list, head); 7758 } else { 7759 rollback_registered(dev); 7760 /* Finish processing unregister after unlock */ 7761 net_set_todo(dev); 7762 } 7763 } 7764 EXPORT_SYMBOL(unregister_netdevice_queue); 7765 7766 /** 7767 * unregister_netdevice_many - unregister many devices 7768 * @head: list of devices 7769 * 7770 * Note: As most callers use a stack allocated list_head, 7771 * we force a list_del() to make sure stack wont be corrupted later. 7772 */ 7773 void unregister_netdevice_many(struct list_head *head) 7774 { 7775 struct net_device *dev; 7776 7777 if (!list_empty(head)) { 7778 rollback_registered_many(head); 7779 list_for_each_entry(dev, head, unreg_list) 7780 net_set_todo(dev); 7781 list_del(head); 7782 } 7783 } 7784 EXPORT_SYMBOL(unregister_netdevice_many); 7785 7786 /** 7787 * unregister_netdev - remove device from the kernel 7788 * @dev: device 7789 * 7790 * This function shuts down a device interface and removes it 7791 * from the kernel tables. 7792 * 7793 * This is just a wrapper for unregister_netdevice that takes 7794 * the rtnl semaphore. In general you want to use this and not 7795 * unregister_netdevice. 7796 */ 7797 void unregister_netdev(struct net_device *dev) 7798 { 7799 rtnl_lock(); 7800 unregister_netdevice(dev); 7801 rtnl_unlock(); 7802 } 7803 EXPORT_SYMBOL(unregister_netdev); 7804 7805 /** 7806 * dev_change_net_namespace - move device to different nethost namespace 7807 * @dev: device 7808 * @net: network namespace 7809 * @pat: If not NULL name pattern to try if the current device name 7810 * is already taken in the destination network namespace. 7811 * 7812 * This function shuts down a device interface and moves it 7813 * to a new network namespace. On success 0 is returned, on 7814 * a failure a netagive errno code is returned. 7815 * 7816 * Callers must hold the rtnl semaphore. 7817 */ 7818 7819 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 7820 { 7821 int err; 7822 7823 ASSERT_RTNL(); 7824 7825 /* Don't allow namespace local devices to be moved. */ 7826 err = -EINVAL; 7827 if (dev->features & NETIF_F_NETNS_LOCAL) 7828 goto out; 7829 7830 /* Ensure the device has been registrered */ 7831 if (dev->reg_state != NETREG_REGISTERED) 7832 goto out; 7833 7834 /* Get out if there is nothing todo */ 7835 err = 0; 7836 if (net_eq(dev_net(dev), net)) 7837 goto out; 7838 7839 /* Pick the destination device name, and ensure 7840 * we can use it in the destination network namespace. 7841 */ 7842 err = -EEXIST; 7843 if (__dev_get_by_name(net, dev->name)) { 7844 /* We get here if we can't use the current device name */ 7845 if (!pat) 7846 goto out; 7847 if (dev_get_valid_name(net, dev, pat) < 0) 7848 goto out; 7849 } 7850 7851 /* 7852 * And now a mini version of register_netdevice unregister_netdevice. 7853 */ 7854 7855 /* If device is running close it first. */ 7856 dev_close(dev); 7857 7858 /* And unlink it from device chain */ 7859 err = -ENODEV; 7860 unlist_netdevice(dev); 7861 7862 synchronize_net(); 7863 7864 /* Shutdown queueing discipline. */ 7865 dev_shutdown(dev); 7866 7867 /* Notify protocols, that we are about to destroy 7868 this device. They should clean all the things. 7869 7870 Note that dev->reg_state stays at NETREG_REGISTERED. 7871 This is wanted because this way 8021q and macvlan know 7872 the device is just moving and can keep their slaves up. 7873 */ 7874 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7875 rcu_barrier(); 7876 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7877 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 7878 7879 /* 7880 * Flush the unicast and multicast chains 7881 */ 7882 dev_uc_flush(dev); 7883 dev_mc_flush(dev); 7884 7885 /* Send a netdev-removed uevent to the old namespace */ 7886 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 7887 netdev_adjacent_del_links(dev); 7888 7889 /* Actually switch the network namespace */ 7890 dev_net_set(dev, net); 7891 7892 /* If there is an ifindex conflict assign a new one */ 7893 if (__dev_get_by_index(net, dev->ifindex)) 7894 dev->ifindex = dev_new_index(net); 7895 7896 /* Send a netdev-add uevent to the new namespace */ 7897 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 7898 netdev_adjacent_add_links(dev); 7899 7900 /* Fixup kobjects */ 7901 err = device_rename(&dev->dev, dev->name); 7902 WARN_ON(err); 7903 7904 /* Add the device back in the hashes */ 7905 list_netdevice(dev); 7906 7907 /* Notify protocols, that a new device appeared. */ 7908 call_netdevice_notifiers(NETDEV_REGISTER, dev); 7909 7910 /* 7911 * Prevent userspace races by waiting until the network 7912 * device is fully setup before sending notifications. 7913 */ 7914 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7915 7916 synchronize_net(); 7917 err = 0; 7918 out: 7919 return err; 7920 } 7921 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 7922 7923 static int dev_cpu_callback(struct notifier_block *nfb, 7924 unsigned long action, 7925 void *ocpu) 7926 { 7927 struct sk_buff **list_skb; 7928 struct sk_buff *skb; 7929 unsigned int cpu, oldcpu = (unsigned long)ocpu; 7930 struct softnet_data *sd, *oldsd; 7931 7932 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 7933 return NOTIFY_OK; 7934 7935 local_irq_disable(); 7936 cpu = smp_processor_id(); 7937 sd = &per_cpu(softnet_data, cpu); 7938 oldsd = &per_cpu(softnet_data, oldcpu); 7939 7940 /* Find end of our completion_queue. */ 7941 list_skb = &sd->completion_queue; 7942 while (*list_skb) 7943 list_skb = &(*list_skb)->next; 7944 /* Append completion queue from offline CPU. */ 7945 *list_skb = oldsd->completion_queue; 7946 oldsd->completion_queue = NULL; 7947 7948 /* Append output queue from offline CPU. */ 7949 if (oldsd->output_queue) { 7950 *sd->output_queue_tailp = oldsd->output_queue; 7951 sd->output_queue_tailp = oldsd->output_queue_tailp; 7952 oldsd->output_queue = NULL; 7953 oldsd->output_queue_tailp = &oldsd->output_queue; 7954 } 7955 /* Append NAPI poll list from offline CPU, with one exception : 7956 * process_backlog() must be called by cpu owning percpu backlog. 7957 * We properly handle process_queue & input_pkt_queue later. 7958 */ 7959 while (!list_empty(&oldsd->poll_list)) { 7960 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 7961 struct napi_struct, 7962 poll_list); 7963 7964 list_del_init(&napi->poll_list); 7965 if (napi->poll == process_backlog) 7966 napi->state = 0; 7967 else 7968 ____napi_schedule(sd, napi); 7969 } 7970 7971 raise_softirq_irqoff(NET_TX_SOFTIRQ); 7972 local_irq_enable(); 7973 7974 /* Process offline CPU's input_pkt_queue */ 7975 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 7976 netif_rx_ni(skb); 7977 input_queue_head_incr(oldsd); 7978 } 7979 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 7980 netif_rx_ni(skb); 7981 input_queue_head_incr(oldsd); 7982 } 7983 7984 return NOTIFY_OK; 7985 } 7986 7987 7988 /** 7989 * netdev_increment_features - increment feature set by one 7990 * @all: current feature set 7991 * @one: new feature set 7992 * @mask: mask feature set 7993 * 7994 * Computes a new feature set after adding a device with feature set 7995 * @one to the master device with current feature set @all. Will not 7996 * enable anything that is off in @mask. Returns the new feature set. 7997 */ 7998 netdev_features_t netdev_increment_features(netdev_features_t all, 7999 netdev_features_t one, netdev_features_t mask) 8000 { 8001 if (mask & NETIF_F_HW_CSUM) 8002 mask |= NETIF_F_CSUM_MASK; 8003 mask |= NETIF_F_VLAN_CHALLENGED; 8004 8005 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8006 all &= one | ~NETIF_F_ALL_FOR_ALL; 8007 8008 /* If one device supports hw checksumming, set for all. */ 8009 if (all & NETIF_F_HW_CSUM) 8010 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8011 8012 return all; 8013 } 8014 EXPORT_SYMBOL(netdev_increment_features); 8015 8016 static struct hlist_head * __net_init netdev_create_hash(void) 8017 { 8018 int i; 8019 struct hlist_head *hash; 8020 8021 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8022 if (hash != NULL) 8023 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8024 INIT_HLIST_HEAD(&hash[i]); 8025 8026 return hash; 8027 } 8028 8029 /* Initialize per network namespace state */ 8030 static int __net_init netdev_init(struct net *net) 8031 { 8032 if (net != &init_net) 8033 INIT_LIST_HEAD(&net->dev_base_head); 8034 8035 net->dev_name_head = netdev_create_hash(); 8036 if (net->dev_name_head == NULL) 8037 goto err_name; 8038 8039 net->dev_index_head = netdev_create_hash(); 8040 if (net->dev_index_head == NULL) 8041 goto err_idx; 8042 8043 return 0; 8044 8045 err_idx: 8046 kfree(net->dev_name_head); 8047 err_name: 8048 return -ENOMEM; 8049 } 8050 8051 /** 8052 * netdev_drivername - network driver for the device 8053 * @dev: network device 8054 * 8055 * Determine network driver for device. 8056 */ 8057 const char *netdev_drivername(const struct net_device *dev) 8058 { 8059 const struct device_driver *driver; 8060 const struct device *parent; 8061 const char *empty = ""; 8062 8063 parent = dev->dev.parent; 8064 if (!parent) 8065 return empty; 8066 8067 driver = parent->driver; 8068 if (driver && driver->name) 8069 return driver->name; 8070 return empty; 8071 } 8072 8073 static void __netdev_printk(const char *level, const struct net_device *dev, 8074 struct va_format *vaf) 8075 { 8076 if (dev && dev->dev.parent) { 8077 dev_printk_emit(level[1] - '0', 8078 dev->dev.parent, 8079 "%s %s %s%s: %pV", 8080 dev_driver_string(dev->dev.parent), 8081 dev_name(dev->dev.parent), 8082 netdev_name(dev), netdev_reg_state(dev), 8083 vaf); 8084 } else if (dev) { 8085 printk("%s%s%s: %pV", 8086 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8087 } else { 8088 printk("%s(NULL net_device): %pV", level, vaf); 8089 } 8090 } 8091 8092 void netdev_printk(const char *level, const struct net_device *dev, 8093 const char *format, ...) 8094 { 8095 struct va_format vaf; 8096 va_list args; 8097 8098 va_start(args, format); 8099 8100 vaf.fmt = format; 8101 vaf.va = &args; 8102 8103 __netdev_printk(level, dev, &vaf); 8104 8105 va_end(args); 8106 } 8107 EXPORT_SYMBOL(netdev_printk); 8108 8109 #define define_netdev_printk_level(func, level) \ 8110 void func(const struct net_device *dev, const char *fmt, ...) \ 8111 { \ 8112 struct va_format vaf; \ 8113 va_list args; \ 8114 \ 8115 va_start(args, fmt); \ 8116 \ 8117 vaf.fmt = fmt; \ 8118 vaf.va = &args; \ 8119 \ 8120 __netdev_printk(level, dev, &vaf); \ 8121 \ 8122 va_end(args); \ 8123 } \ 8124 EXPORT_SYMBOL(func); 8125 8126 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8127 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8128 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8129 define_netdev_printk_level(netdev_err, KERN_ERR); 8130 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8131 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8132 define_netdev_printk_level(netdev_info, KERN_INFO); 8133 8134 static void __net_exit netdev_exit(struct net *net) 8135 { 8136 kfree(net->dev_name_head); 8137 kfree(net->dev_index_head); 8138 } 8139 8140 static struct pernet_operations __net_initdata netdev_net_ops = { 8141 .init = netdev_init, 8142 .exit = netdev_exit, 8143 }; 8144 8145 static void __net_exit default_device_exit(struct net *net) 8146 { 8147 struct net_device *dev, *aux; 8148 /* 8149 * Push all migratable network devices back to the 8150 * initial network namespace 8151 */ 8152 rtnl_lock(); 8153 for_each_netdev_safe(net, dev, aux) { 8154 int err; 8155 char fb_name[IFNAMSIZ]; 8156 8157 /* Ignore unmoveable devices (i.e. loopback) */ 8158 if (dev->features & NETIF_F_NETNS_LOCAL) 8159 continue; 8160 8161 /* Leave virtual devices for the generic cleanup */ 8162 if (dev->rtnl_link_ops) 8163 continue; 8164 8165 /* Push remaining network devices to init_net */ 8166 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8167 err = dev_change_net_namespace(dev, &init_net, fb_name); 8168 if (err) { 8169 pr_emerg("%s: failed to move %s to init_net: %d\n", 8170 __func__, dev->name, err); 8171 BUG(); 8172 } 8173 } 8174 rtnl_unlock(); 8175 } 8176 8177 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8178 { 8179 /* Return with the rtnl_lock held when there are no network 8180 * devices unregistering in any network namespace in net_list. 8181 */ 8182 struct net *net; 8183 bool unregistering; 8184 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8185 8186 add_wait_queue(&netdev_unregistering_wq, &wait); 8187 for (;;) { 8188 unregistering = false; 8189 rtnl_lock(); 8190 list_for_each_entry(net, net_list, exit_list) { 8191 if (net->dev_unreg_count > 0) { 8192 unregistering = true; 8193 break; 8194 } 8195 } 8196 if (!unregistering) 8197 break; 8198 __rtnl_unlock(); 8199 8200 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8201 } 8202 remove_wait_queue(&netdev_unregistering_wq, &wait); 8203 } 8204 8205 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8206 { 8207 /* At exit all network devices most be removed from a network 8208 * namespace. Do this in the reverse order of registration. 8209 * Do this across as many network namespaces as possible to 8210 * improve batching efficiency. 8211 */ 8212 struct net_device *dev; 8213 struct net *net; 8214 LIST_HEAD(dev_kill_list); 8215 8216 /* To prevent network device cleanup code from dereferencing 8217 * loopback devices or network devices that have been freed 8218 * wait here for all pending unregistrations to complete, 8219 * before unregistring the loopback device and allowing the 8220 * network namespace be freed. 8221 * 8222 * The netdev todo list containing all network devices 8223 * unregistrations that happen in default_device_exit_batch 8224 * will run in the rtnl_unlock() at the end of 8225 * default_device_exit_batch. 8226 */ 8227 rtnl_lock_unregistering(net_list); 8228 list_for_each_entry(net, net_list, exit_list) { 8229 for_each_netdev_reverse(net, dev) { 8230 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8231 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8232 else 8233 unregister_netdevice_queue(dev, &dev_kill_list); 8234 } 8235 } 8236 unregister_netdevice_many(&dev_kill_list); 8237 rtnl_unlock(); 8238 } 8239 8240 static struct pernet_operations __net_initdata default_device_ops = { 8241 .exit = default_device_exit, 8242 .exit_batch = default_device_exit_batch, 8243 }; 8244 8245 /* 8246 * Initialize the DEV module. At boot time this walks the device list and 8247 * unhooks any devices that fail to initialise (normally hardware not 8248 * present) and leaves us with a valid list of present and active devices. 8249 * 8250 */ 8251 8252 /* 8253 * This is called single threaded during boot, so no need 8254 * to take the rtnl semaphore. 8255 */ 8256 static int __init net_dev_init(void) 8257 { 8258 int i, rc = -ENOMEM; 8259 8260 BUG_ON(!dev_boot_phase); 8261 8262 if (dev_proc_init()) 8263 goto out; 8264 8265 if (netdev_kobject_init()) 8266 goto out; 8267 8268 INIT_LIST_HEAD(&ptype_all); 8269 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8270 INIT_LIST_HEAD(&ptype_base[i]); 8271 8272 INIT_LIST_HEAD(&offload_base); 8273 8274 if (register_pernet_subsys(&netdev_net_ops)) 8275 goto out; 8276 8277 /* 8278 * Initialise the packet receive queues. 8279 */ 8280 8281 for_each_possible_cpu(i) { 8282 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8283 struct softnet_data *sd = &per_cpu(softnet_data, i); 8284 8285 INIT_WORK(flush, flush_backlog); 8286 8287 skb_queue_head_init(&sd->input_pkt_queue); 8288 skb_queue_head_init(&sd->process_queue); 8289 INIT_LIST_HEAD(&sd->poll_list); 8290 sd->output_queue_tailp = &sd->output_queue; 8291 #ifdef CONFIG_RPS 8292 sd->csd.func = rps_trigger_softirq; 8293 sd->csd.info = sd; 8294 sd->cpu = i; 8295 #endif 8296 8297 sd->backlog.poll = process_backlog; 8298 sd->backlog.weight = weight_p; 8299 } 8300 8301 dev_boot_phase = 0; 8302 8303 /* The loopback device is special if any other network devices 8304 * is present in a network namespace the loopback device must 8305 * be present. Since we now dynamically allocate and free the 8306 * loopback device ensure this invariant is maintained by 8307 * keeping the loopback device as the first device on the 8308 * list of network devices. Ensuring the loopback devices 8309 * is the first device that appears and the last network device 8310 * that disappears. 8311 */ 8312 if (register_pernet_device(&loopback_net_ops)) 8313 goto out; 8314 8315 if (register_pernet_device(&default_device_ops)) 8316 goto out; 8317 8318 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8319 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8320 8321 hotcpu_notifier(dev_cpu_callback, 0); 8322 dst_subsys_init(); 8323 rc = 0; 8324 out: 8325 return rc; 8326 } 8327 8328 subsys_initcall(net_dev_init); 8329