xref: /openbmc/linux/net/core/dev.c (revision 9dae47aba0a055f761176d9297371d5bb24289ec)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149 
150 #include "net-sysfs.h"
151 
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154 
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;	/* Taps */
162 static struct list_head offload_base __read_mostly;
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166 					 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static seqcount_t devnet_rename_seq;
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 	spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232 
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236 	struct net *net = dev_net(dev);
237 
238 	ASSERT_RTNL();
239 
240 	write_lock_bh(&dev_base_lock);
241 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 	hlist_add_head_rcu(&dev->index_hlist,
244 			   dev_index_hash(net, dev->ifindex));
245 	write_unlock_bh(&dev_base_lock);
246 
247 	dev_base_seq_inc(net);
248 }
249 
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255 	ASSERT_RTNL();
256 
257 	/* Unlink dev from the device chain */
258 	write_lock_bh(&dev_base_lock);
259 	list_del_rcu(&dev->dev_list);
260 	hlist_del_rcu(&dev->name_hlist);
261 	hlist_del_rcu(&dev->index_hlist);
262 	write_unlock_bh(&dev_base_lock);
263 
264 	dev_base_seq_inc(dev_net(dev));
265 }
266 
267 /*
268  *	Our notifier list
269  */
270 
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272 
273 /*
274  *	Device drivers call our routines to queue packets here. We empty the
275  *	queue in the local softnet handler.
276  */
277 
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280 
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302 
303 static const char *const netdev_lock_name[] = {
304 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319 
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322 
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325 	int i;
326 
327 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 		if (netdev_lock_type[i] == dev_type)
329 			return i;
330 	/* the last key is used by default */
331 	return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333 
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 						 unsigned short dev_type)
336 {
337 	int i;
338 
339 	i = netdev_lock_pos(dev_type);
340 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 				   netdev_lock_name[i]);
342 }
343 
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 	int i;
347 
348 	i = netdev_lock_pos(dev->type);
349 	lockdep_set_class_and_name(&dev->addr_list_lock,
350 				   &netdev_addr_lock_key[i],
351 				   netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 						 unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362 
363 /*******************************************************************************
364  *
365  *		Protocol management and registration routines
366  *
367  *******************************************************************************/
368 
369 
370 /*
371  *	Add a protocol ID to the list. Now that the input handler is
372  *	smarter we can dispense with all the messy stuff that used to be
373  *	here.
374  *
375  *	BEWARE!!! Protocol handlers, mangling input packets,
376  *	MUST BE last in hash buckets and checking protocol handlers
377  *	MUST start from promiscuous ptype_all chain in net_bh.
378  *	It is true now, do not change it.
379  *	Explanation follows: if protocol handler, mangling packet, will
380  *	be the first on list, it is not able to sense, that packet
381  *	is cloned and should be copied-on-write, so that it will
382  *	change it and subsequent readers will get broken packet.
383  *							--ANK (980803)
384  */
385 
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388 	if (pt->type == htons(ETH_P_ALL))
389 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 	else
391 		return pt->dev ? &pt->dev->ptype_specific :
392 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394 
395 /**
396  *	dev_add_pack - add packet handler
397  *	@pt: packet type declaration
398  *
399  *	Add a protocol handler to the networking stack. The passed &packet_type
400  *	is linked into kernel lists and may not be freed until it has been
401  *	removed from the kernel lists.
402  *
403  *	This call does not sleep therefore it can not
404  *	guarantee all CPU's that are in middle of receiving packets
405  *	will see the new packet type (until the next received packet).
406  */
407 
408 void dev_add_pack(struct packet_type *pt)
409 {
410 	struct list_head *head = ptype_head(pt);
411 
412 	spin_lock(&ptype_lock);
413 	list_add_rcu(&pt->list, head);
414 	spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417 
418 /**
419  *	__dev_remove_pack	 - remove packet handler
420  *	@pt: packet type declaration
421  *
422  *	Remove a protocol handler that was previously added to the kernel
423  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *	from the kernel lists and can be freed or reused once this function
425  *	returns.
426  *
427  *      The packet type might still be in use by receivers
428  *	and must not be freed until after all the CPU's have gone
429  *	through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433 	struct list_head *head = ptype_head(pt);
434 	struct packet_type *pt1;
435 
436 	spin_lock(&ptype_lock);
437 
438 	list_for_each_entry(pt1, head, list) {
439 		if (pt == pt1) {
440 			list_del_rcu(&pt->list);
441 			goto out;
442 		}
443 	}
444 
445 	pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447 	spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450 
451 /**
452  *	dev_remove_pack	 - remove packet handler
453  *	@pt: packet type declaration
454  *
455  *	Remove a protocol handler that was previously added to the kernel
456  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *	from the kernel lists and can be freed or reused once this function
458  *	returns.
459  *
460  *	This call sleeps to guarantee that no CPU is looking at the packet
461  *	type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465 	__dev_remove_pack(pt);
466 
467 	synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470 
471 
472 /**
473  *	dev_add_offload - register offload handlers
474  *	@po: protocol offload declaration
475  *
476  *	Add protocol offload handlers to the networking stack. The passed
477  *	&proto_offload is linked into kernel lists and may not be freed until
478  *	it has been removed from the kernel lists.
479  *
480  *	This call does not sleep therefore it can not
481  *	guarantee all CPU's that are in middle of receiving packets
482  *	will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486 	struct packet_offload *elem;
487 
488 	spin_lock(&offload_lock);
489 	list_for_each_entry(elem, &offload_base, list) {
490 		if (po->priority < elem->priority)
491 			break;
492 	}
493 	list_add_rcu(&po->list, elem->list.prev);
494 	spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497 
498 /**
499  *	__dev_remove_offload	 - remove offload handler
500  *	@po: packet offload declaration
501  *
502  *	Remove a protocol offload handler that was previously added to the
503  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *	is removed from the kernel lists and can be freed or reused once this
505  *	function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *	and must not be freed until after all the CPU's have gone
509  *	through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513 	struct list_head *head = &offload_base;
514 	struct packet_offload *po1;
515 
516 	spin_lock(&offload_lock);
517 
518 	list_for_each_entry(po1, head, list) {
519 		if (po == po1) {
520 			list_del_rcu(&po->list);
521 			goto out;
522 		}
523 	}
524 
525 	pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 	spin_unlock(&offload_lock);
528 }
529 
530 /**
531  *	dev_remove_offload	 - remove packet offload handler
532  *	@po: packet offload declaration
533  *
534  *	Remove a packet offload handler that was previously added to the kernel
535  *	offload handlers by dev_add_offload(). The passed &offload_type is
536  *	removed from the kernel lists and can be freed or reused once this
537  *	function returns.
538  *
539  *	This call sleeps to guarantee that no CPU is looking at the packet
540  *	type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544 	__dev_remove_offload(po);
545 
546 	synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549 
550 /******************************************************************************
551  *
552  *		      Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555 
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558 
559 /**
560  *	netdev_boot_setup_add	- add new setup entry
561  *	@name: name of the device
562  *	@map: configured settings for the device
563  *
564  *	Adds new setup entry to the dev_boot_setup list.  The function
565  *	returns 0 on error and 1 on success.  This is a generic routine to
566  *	all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570 	struct netdev_boot_setup *s;
571 	int i;
572 
573 	s = dev_boot_setup;
574 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 			memset(s[i].name, 0, sizeof(s[i].name));
577 			strlcpy(s[i].name, name, IFNAMSIZ);
578 			memcpy(&s[i].map, map, sizeof(s[i].map));
579 			break;
580 		}
581 	}
582 
583 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585 
586 /**
587  * netdev_boot_setup_check	- check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597 	struct netdev_boot_setup *s = dev_boot_setup;
598 	int i;
599 
600 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 		    !strcmp(dev->name, s[i].name)) {
603 			dev->irq = s[i].map.irq;
604 			dev->base_addr = s[i].map.base_addr;
605 			dev->mem_start = s[i].map.mem_start;
606 			dev->mem_end = s[i].map.mem_end;
607 			return 1;
608 		}
609 	}
610 	return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613 
614 
615 /**
616  * netdev_boot_base	- get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627 	const struct netdev_boot_setup *s = dev_boot_setup;
628 	char name[IFNAMSIZ];
629 	int i;
630 
631 	sprintf(name, "%s%d", prefix, unit);
632 
633 	/*
634 	 * If device already registered then return base of 1
635 	 * to indicate not to probe for this interface
636 	 */
637 	if (__dev_get_by_name(&init_net, name))
638 		return 1;
639 
640 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 		if (!strcmp(name, s[i].name))
642 			return s[i].map.base_addr;
643 	return 0;
644 }
645 
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651 	int ints[5];
652 	struct ifmap map;
653 
654 	str = get_options(str, ARRAY_SIZE(ints), ints);
655 	if (!str || !*str)
656 		return 0;
657 
658 	/* Save settings */
659 	memset(&map, 0, sizeof(map));
660 	if (ints[0] > 0)
661 		map.irq = ints[1];
662 	if (ints[0] > 1)
663 		map.base_addr = ints[2];
664 	if (ints[0] > 2)
665 		map.mem_start = ints[3];
666 	if (ints[0] > 3)
667 		map.mem_end = ints[4];
668 
669 	/* Add new entry to the list */
670 	return netdev_boot_setup_add(str, &map);
671 }
672 
673 __setup("netdev=", netdev_boot_setup);
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
724 /**
725  *	__dev_get_by_name	- find a device by its name
726  *	@net: the applicable net namespace
727  *	@name: name to find
728  *
729  *	Find an interface by name. Must be called under RTNL semaphore
730  *	or @dev_base_lock. If the name is found a pointer to the device
731  *	is returned. If the name is not found then %NULL is returned. The
732  *	reference counters are not incremented so the caller must be
733  *	careful with locks.
734  */
735 
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738 	struct net_device *dev;
739 	struct hlist_head *head = dev_name_hash(net, name);
740 
741 	hlist_for_each_entry(dev, head, name_hlist)
742 		if (!strncmp(dev->name, name, IFNAMSIZ))
743 			return dev;
744 
745 	return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748 
749 /**
750  * dev_get_by_name_rcu	- find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760 
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763 	struct net_device *dev;
764 	struct hlist_head *head = dev_name_hash(net, name);
765 
766 	hlist_for_each_entry_rcu(dev, head, name_hlist)
767 		if (!strncmp(dev->name, name, IFNAMSIZ))
768 			return dev;
769 
770 	return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773 
774 /**
775  *	dev_get_by_name		- find a device by its name
776  *	@net: the applicable net namespace
777  *	@name: name to find
778  *
779  *	Find an interface by name. This can be called from any
780  *	context and does its own locking. The returned handle has
781  *	the usage count incremented and the caller must use dev_put() to
782  *	release it when it is no longer needed. %NULL is returned if no
783  *	matching device is found.
784  */
785 
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788 	struct net_device *dev;
789 
790 	rcu_read_lock();
791 	dev = dev_get_by_name_rcu(net, name);
792 	if (dev)
793 		dev_hold(dev);
794 	rcu_read_unlock();
795 	return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798 
799 /**
800  *	__dev_get_by_index - find a device by its ifindex
801  *	@net: the applicable net namespace
802  *	@ifindex: index of device
803  *
804  *	Search for an interface by index. Returns %NULL if the device
805  *	is not found or a pointer to the device. The device has not
806  *	had its reference counter increased so the caller must be careful
807  *	about locking. The caller must hold either the RTNL semaphore
808  *	or @dev_base_lock.
809  */
810 
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813 	struct net_device *dev;
814 	struct hlist_head *head = dev_index_hash(net, ifindex);
815 
816 	hlist_for_each_entry(dev, head, index_hlist)
817 		if (dev->ifindex == ifindex)
818 			return dev;
819 
820 	return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823 
824 /**
825  *	dev_get_by_index_rcu - find a device by its ifindex
826  *	@net: the applicable net namespace
827  *	@ifindex: index of device
828  *
829  *	Search for an interface by index. Returns %NULL if the device
830  *	is not found or a pointer to the device. The device has not
831  *	had its reference counter increased so the caller must be careful
832  *	about locking. The caller must hold RCU lock.
833  */
834 
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837 	struct net_device *dev;
838 	struct hlist_head *head = dev_index_hash(net, ifindex);
839 
840 	hlist_for_each_entry_rcu(dev, head, index_hlist)
841 		if (dev->ifindex == ifindex)
842 			return dev;
843 
844 	return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847 
848 
849 /**
850  *	dev_get_by_index - find a device by its ifindex
851  *	@net: the applicable net namespace
852  *	@ifindex: index of device
853  *
854  *	Search for an interface by index. Returns NULL if the device
855  *	is not found or a pointer to the device. The device returned has
856  *	had a reference added and the pointer is safe until the user calls
857  *	dev_put to indicate they have finished with it.
858  */
859 
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862 	struct net_device *dev;
863 
864 	rcu_read_lock();
865 	dev = dev_get_by_index_rcu(net, ifindex);
866 	if (dev)
867 		dev_hold(dev);
868 	rcu_read_unlock();
869 	return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872 
873 /**
874  *	dev_get_by_napi_id - find a device by napi_id
875  *	@napi_id: ID of the NAPI struct
876  *
877  *	Search for an interface by NAPI ID. Returns %NULL if the device
878  *	is not found or a pointer to the device. The device has not had
879  *	its reference counter increased so the caller must be careful
880  *	about locking. The caller must hold RCU lock.
881  */
882 
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885 	struct napi_struct *napi;
886 
887 	WARN_ON_ONCE(!rcu_read_lock_held());
888 
889 	if (napi_id < MIN_NAPI_ID)
890 		return NULL;
891 
892 	napi = napi_by_id(napi_id);
893 
894 	return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897 
898 /**
899  *	netdev_get_name - get a netdevice name, knowing its ifindex.
900  *	@net: network namespace
901  *	@name: a pointer to the buffer where the name will be stored.
902  *	@ifindex: the ifindex of the interface to get the name from.
903  *
904  *	The use of raw_seqcount_begin() and cond_resched() before
905  *	retrying is required as we want to give the writers a chance
906  *	to complete when CONFIG_PREEMPT is not set.
907  */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910 	struct net_device *dev;
911 	unsigned int seq;
912 
913 retry:
914 	seq = raw_seqcount_begin(&devnet_rename_seq);
915 	rcu_read_lock();
916 	dev = dev_get_by_index_rcu(net, ifindex);
917 	if (!dev) {
918 		rcu_read_unlock();
919 		return -ENODEV;
920 	}
921 
922 	strcpy(name, dev->name);
923 	rcu_read_unlock();
924 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 		cond_resched();
926 		goto retry;
927 	}
928 
929 	return 0;
930 }
931 
932 /**
933  *	dev_getbyhwaddr_rcu - find a device by its hardware address
934  *	@net: the applicable net namespace
935  *	@type: media type of device
936  *	@ha: hardware address
937  *
938  *	Search for an interface by MAC address. Returns NULL if the device
939  *	is not found or a pointer to the device.
940  *	The caller must hold RCU or RTNL.
941  *	The returned device has not had its ref count increased
942  *	and the caller must therefore be careful about locking
943  *
944  */
945 
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 				       const char *ha)
948 {
949 	struct net_device *dev;
950 
951 	for_each_netdev_rcu(net, dev)
952 		if (dev->type == type &&
953 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
954 			return dev;
955 
956 	return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959 
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962 	struct net_device *dev;
963 
964 	ASSERT_RTNL();
965 	for_each_netdev(net, dev)
966 		if (dev->type == type)
967 			return dev;
968 
969 	return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972 
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975 	struct net_device *dev, *ret = NULL;
976 
977 	rcu_read_lock();
978 	for_each_netdev_rcu(net, dev)
979 		if (dev->type == type) {
980 			dev_hold(dev);
981 			ret = dev;
982 			break;
983 		}
984 	rcu_read_unlock();
985 	return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988 
989 /**
990  *	__dev_get_by_flags - find any device with given flags
991  *	@net: the applicable net namespace
992  *	@if_flags: IFF_* values
993  *	@mask: bitmask of bits in if_flags to check
994  *
995  *	Search for any interface with the given flags. Returns NULL if a device
996  *	is not found or a pointer to the device. Must be called inside
997  *	rtnl_lock(), and result refcount is unchanged.
998  */
999 
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 				      unsigned short mask)
1002 {
1003 	struct net_device *dev, *ret;
1004 
1005 	ASSERT_RTNL();
1006 
1007 	ret = NULL;
1008 	for_each_netdev(net, dev) {
1009 		if (((dev->flags ^ if_flags) & mask) == 0) {
1010 			ret = dev;
1011 			break;
1012 		}
1013 	}
1014 	return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017 
1018 /**
1019  *	dev_valid_name - check if name is okay for network device
1020  *	@name: name string
1021  *
1022  *	Network device names need to be valid file names to
1023  *	to allow sysfs to work.  We also disallow any kind of
1024  *	whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028 	if (*name == '\0')
1029 		return false;
1030 	if (strlen(name) >= IFNAMSIZ)
1031 		return false;
1032 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 		return false;
1034 
1035 	while (*name) {
1036 		if (*name == '/' || *name == ':' || isspace(*name))
1037 			return false;
1038 		name++;
1039 	}
1040 	return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043 
1044 /**
1045  *	__dev_alloc_name - allocate a name for a device
1046  *	@net: network namespace to allocate the device name in
1047  *	@name: name format string
1048  *	@buf:  scratch buffer and result name string
1049  *
1050  *	Passed a format string - eg "lt%d" it will try and find a suitable
1051  *	id. It scans list of devices to build up a free map, then chooses
1052  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *	while allocating the name and adding the device in order to avoid
1054  *	duplicates.
1055  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *	Returns the number of the unit assigned or a negative errno code.
1057  */
1058 
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061 	int i = 0;
1062 	const char *p;
1063 	const int max_netdevices = 8*PAGE_SIZE;
1064 	unsigned long *inuse;
1065 	struct net_device *d;
1066 
1067 	if (!dev_valid_name(name))
1068 		return -EINVAL;
1069 
1070 	p = strchr(name, '%');
1071 	if (p) {
1072 		/*
1073 		 * Verify the string as this thing may have come from
1074 		 * the user.  There must be either one "%d" and no other "%"
1075 		 * characters.
1076 		 */
1077 		if (p[1] != 'd' || strchr(p + 2, '%'))
1078 			return -EINVAL;
1079 
1080 		/* Use one page as a bit array of possible slots */
1081 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082 		if (!inuse)
1083 			return -ENOMEM;
1084 
1085 		for_each_netdev(net, d) {
1086 			if (!sscanf(d->name, name, &i))
1087 				continue;
1088 			if (i < 0 || i >= max_netdevices)
1089 				continue;
1090 
1091 			/*  avoid cases where sscanf is not exact inverse of printf */
1092 			snprintf(buf, IFNAMSIZ, name, i);
1093 			if (!strncmp(buf, d->name, IFNAMSIZ))
1094 				set_bit(i, inuse);
1095 		}
1096 
1097 		i = find_first_zero_bit(inuse, max_netdevices);
1098 		free_page((unsigned long) inuse);
1099 	}
1100 
1101 	snprintf(buf, IFNAMSIZ, name, i);
1102 	if (!__dev_get_by_name(net, buf))
1103 		return i;
1104 
1105 	/* It is possible to run out of possible slots
1106 	 * when the name is long and there isn't enough space left
1107 	 * for the digits, or if all bits are used.
1108 	 */
1109 	return -ENFILE;
1110 }
1111 
1112 static int dev_alloc_name_ns(struct net *net,
1113 			     struct net_device *dev,
1114 			     const char *name)
1115 {
1116 	char buf[IFNAMSIZ];
1117 	int ret;
1118 
1119 	BUG_ON(!net);
1120 	ret = __dev_alloc_name(net, name, buf);
1121 	if (ret >= 0)
1122 		strlcpy(dev->name, buf, IFNAMSIZ);
1123 	return ret;
1124 }
1125 
1126 /**
1127  *	dev_alloc_name - allocate a name for a device
1128  *	@dev: device
1129  *	@name: name format string
1130  *
1131  *	Passed a format string - eg "lt%d" it will try and find a suitable
1132  *	id. It scans list of devices to build up a free map, then chooses
1133  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1134  *	while allocating the name and adding the device in order to avoid
1135  *	duplicates.
1136  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137  *	Returns the number of the unit assigned or a negative errno code.
1138  */
1139 
1140 int dev_alloc_name(struct net_device *dev, const char *name)
1141 {
1142 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1143 }
1144 EXPORT_SYMBOL(dev_alloc_name);
1145 
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 		       const char *name)
1148 {
1149 	return dev_alloc_name_ns(net, dev, name);
1150 }
1151 EXPORT_SYMBOL(dev_get_valid_name);
1152 
1153 /**
1154  *	dev_change_name - change name of a device
1155  *	@dev: device
1156  *	@newname: name (or format string) must be at least IFNAMSIZ
1157  *
1158  *	Change name of a device, can pass format strings "eth%d".
1159  *	for wildcarding.
1160  */
1161 int dev_change_name(struct net_device *dev, const char *newname)
1162 {
1163 	unsigned char old_assign_type;
1164 	char oldname[IFNAMSIZ];
1165 	int err = 0;
1166 	int ret;
1167 	struct net *net;
1168 
1169 	ASSERT_RTNL();
1170 	BUG_ON(!dev_net(dev));
1171 
1172 	net = dev_net(dev);
1173 	if (dev->flags & IFF_UP)
1174 		return -EBUSY;
1175 
1176 	write_seqcount_begin(&devnet_rename_seq);
1177 
1178 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1179 		write_seqcount_end(&devnet_rename_seq);
1180 		return 0;
1181 	}
1182 
1183 	memcpy(oldname, dev->name, IFNAMSIZ);
1184 
1185 	err = dev_get_valid_name(net, dev, newname);
1186 	if (err < 0) {
1187 		write_seqcount_end(&devnet_rename_seq);
1188 		return err;
1189 	}
1190 
1191 	if (oldname[0] && !strchr(oldname, '%'))
1192 		netdev_info(dev, "renamed from %s\n", oldname);
1193 
1194 	old_assign_type = dev->name_assign_type;
1195 	dev->name_assign_type = NET_NAME_RENAMED;
1196 
1197 rollback:
1198 	ret = device_rename(&dev->dev, dev->name);
1199 	if (ret) {
1200 		memcpy(dev->name, oldname, IFNAMSIZ);
1201 		dev->name_assign_type = old_assign_type;
1202 		write_seqcount_end(&devnet_rename_seq);
1203 		return ret;
1204 	}
1205 
1206 	write_seqcount_end(&devnet_rename_seq);
1207 
1208 	netdev_adjacent_rename_links(dev, oldname);
1209 
1210 	write_lock_bh(&dev_base_lock);
1211 	hlist_del_rcu(&dev->name_hlist);
1212 	write_unlock_bh(&dev_base_lock);
1213 
1214 	synchronize_rcu();
1215 
1216 	write_lock_bh(&dev_base_lock);
1217 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1218 	write_unlock_bh(&dev_base_lock);
1219 
1220 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1221 	ret = notifier_to_errno(ret);
1222 
1223 	if (ret) {
1224 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1225 		if (err >= 0) {
1226 			err = ret;
1227 			write_seqcount_begin(&devnet_rename_seq);
1228 			memcpy(dev->name, oldname, IFNAMSIZ);
1229 			memcpy(oldname, newname, IFNAMSIZ);
1230 			dev->name_assign_type = old_assign_type;
1231 			old_assign_type = NET_NAME_RENAMED;
1232 			goto rollback;
1233 		} else {
1234 			pr_err("%s: name change rollback failed: %d\n",
1235 			       dev->name, ret);
1236 		}
1237 	}
1238 
1239 	return err;
1240 }
1241 
1242 /**
1243  *	dev_set_alias - change ifalias of a device
1244  *	@dev: device
1245  *	@alias: name up to IFALIASZ
1246  *	@len: limit of bytes to copy from info
1247  *
1248  *	Set ifalias for a device,
1249  */
1250 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1251 {
1252 	struct dev_ifalias *new_alias = NULL;
1253 
1254 	if (len >= IFALIASZ)
1255 		return -EINVAL;
1256 
1257 	if (len) {
1258 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1259 		if (!new_alias)
1260 			return -ENOMEM;
1261 
1262 		memcpy(new_alias->ifalias, alias, len);
1263 		new_alias->ifalias[len] = 0;
1264 	}
1265 
1266 	mutex_lock(&ifalias_mutex);
1267 	rcu_swap_protected(dev->ifalias, new_alias,
1268 			   mutex_is_locked(&ifalias_mutex));
1269 	mutex_unlock(&ifalias_mutex);
1270 
1271 	if (new_alias)
1272 		kfree_rcu(new_alias, rcuhead);
1273 
1274 	return len;
1275 }
1276 
1277 /**
1278  *	dev_get_alias - get ifalias of a device
1279  *	@dev: device
1280  *	@name: buffer to store name of ifalias
1281  *	@len: size of buffer
1282  *
1283  *	get ifalias for a device.  Caller must make sure dev cannot go
1284  *	away,  e.g. rcu read lock or own a reference count to device.
1285  */
1286 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1287 {
1288 	const struct dev_ifalias *alias;
1289 	int ret = 0;
1290 
1291 	rcu_read_lock();
1292 	alias = rcu_dereference(dev->ifalias);
1293 	if (alias)
1294 		ret = snprintf(name, len, "%s", alias->ifalias);
1295 	rcu_read_unlock();
1296 
1297 	return ret;
1298 }
1299 
1300 /**
1301  *	netdev_features_change - device changes features
1302  *	@dev: device to cause notification
1303  *
1304  *	Called to indicate a device has changed features.
1305  */
1306 void netdev_features_change(struct net_device *dev)
1307 {
1308 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1309 }
1310 EXPORT_SYMBOL(netdev_features_change);
1311 
1312 /**
1313  *	netdev_state_change - device changes state
1314  *	@dev: device to cause notification
1315  *
1316  *	Called to indicate a device has changed state. This function calls
1317  *	the notifier chains for netdev_chain and sends a NEWLINK message
1318  *	to the routing socket.
1319  */
1320 void netdev_state_change(struct net_device *dev)
1321 {
1322 	if (dev->flags & IFF_UP) {
1323 		struct netdev_notifier_change_info change_info = {
1324 			.info.dev = dev,
1325 		};
1326 
1327 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1328 					      &change_info.info);
1329 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1330 	}
1331 }
1332 EXPORT_SYMBOL(netdev_state_change);
1333 
1334 /**
1335  * netdev_notify_peers - notify network peers about existence of @dev
1336  * @dev: network device
1337  *
1338  * Generate traffic such that interested network peers are aware of
1339  * @dev, such as by generating a gratuitous ARP. This may be used when
1340  * a device wants to inform the rest of the network about some sort of
1341  * reconfiguration such as a failover event or virtual machine
1342  * migration.
1343  */
1344 void netdev_notify_peers(struct net_device *dev)
1345 {
1346 	rtnl_lock();
1347 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1348 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1349 	rtnl_unlock();
1350 }
1351 EXPORT_SYMBOL(netdev_notify_peers);
1352 
1353 static int __dev_open(struct net_device *dev)
1354 {
1355 	const struct net_device_ops *ops = dev->netdev_ops;
1356 	int ret;
1357 
1358 	ASSERT_RTNL();
1359 
1360 	if (!netif_device_present(dev))
1361 		return -ENODEV;
1362 
1363 	/* Block netpoll from trying to do any rx path servicing.
1364 	 * If we don't do this there is a chance ndo_poll_controller
1365 	 * or ndo_poll may be running while we open the device
1366 	 */
1367 	netpoll_poll_disable(dev);
1368 
1369 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1370 	ret = notifier_to_errno(ret);
1371 	if (ret)
1372 		return ret;
1373 
1374 	set_bit(__LINK_STATE_START, &dev->state);
1375 
1376 	if (ops->ndo_validate_addr)
1377 		ret = ops->ndo_validate_addr(dev);
1378 
1379 	if (!ret && ops->ndo_open)
1380 		ret = ops->ndo_open(dev);
1381 
1382 	netpoll_poll_enable(dev);
1383 
1384 	if (ret)
1385 		clear_bit(__LINK_STATE_START, &dev->state);
1386 	else {
1387 		dev->flags |= IFF_UP;
1388 		dev_set_rx_mode(dev);
1389 		dev_activate(dev);
1390 		add_device_randomness(dev->dev_addr, dev->addr_len);
1391 	}
1392 
1393 	return ret;
1394 }
1395 
1396 /**
1397  *	dev_open	- prepare an interface for use.
1398  *	@dev:	device to open
1399  *
1400  *	Takes a device from down to up state. The device's private open
1401  *	function is invoked and then the multicast lists are loaded. Finally
1402  *	the device is moved into the up state and a %NETDEV_UP message is
1403  *	sent to the netdev notifier chain.
1404  *
1405  *	Calling this function on an active interface is a nop. On a failure
1406  *	a negative errno code is returned.
1407  */
1408 int dev_open(struct net_device *dev)
1409 {
1410 	int ret;
1411 
1412 	if (dev->flags & IFF_UP)
1413 		return 0;
1414 
1415 	ret = __dev_open(dev);
1416 	if (ret < 0)
1417 		return ret;
1418 
1419 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1420 	call_netdevice_notifiers(NETDEV_UP, dev);
1421 
1422 	return ret;
1423 }
1424 EXPORT_SYMBOL(dev_open);
1425 
1426 static void __dev_close_many(struct list_head *head)
1427 {
1428 	struct net_device *dev;
1429 
1430 	ASSERT_RTNL();
1431 	might_sleep();
1432 
1433 	list_for_each_entry(dev, head, close_list) {
1434 		/* Temporarily disable netpoll until the interface is down */
1435 		netpoll_poll_disable(dev);
1436 
1437 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1438 
1439 		clear_bit(__LINK_STATE_START, &dev->state);
1440 
1441 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1442 		 * can be even on different cpu. So just clear netif_running().
1443 		 *
1444 		 * dev->stop() will invoke napi_disable() on all of it's
1445 		 * napi_struct instances on this device.
1446 		 */
1447 		smp_mb__after_atomic(); /* Commit netif_running(). */
1448 	}
1449 
1450 	dev_deactivate_many(head);
1451 
1452 	list_for_each_entry(dev, head, close_list) {
1453 		const struct net_device_ops *ops = dev->netdev_ops;
1454 
1455 		/*
1456 		 *	Call the device specific close. This cannot fail.
1457 		 *	Only if device is UP
1458 		 *
1459 		 *	We allow it to be called even after a DETACH hot-plug
1460 		 *	event.
1461 		 */
1462 		if (ops->ndo_stop)
1463 			ops->ndo_stop(dev);
1464 
1465 		dev->flags &= ~IFF_UP;
1466 		netpoll_poll_enable(dev);
1467 	}
1468 }
1469 
1470 static void __dev_close(struct net_device *dev)
1471 {
1472 	LIST_HEAD(single);
1473 
1474 	list_add(&dev->close_list, &single);
1475 	__dev_close_many(&single);
1476 	list_del(&single);
1477 }
1478 
1479 void dev_close_many(struct list_head *head, bool unlink)
1480 {
1481 	struct net_device *dev, *tmp;
1482 
1483 	/* Remove the devices that don't need to be closed */
1484 	list_for_each_entry_safe(dev, tmp, head, close_list)
1485 		if (!(dev->flags & IFF_UP))
1486 			list_del_init(&dev->close_list);
1487 
1488 	__dev_close_many(head);
1489 
1490 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1491 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1492 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1493 		if (unlink)
1494 			list_del_init(&dev->close_list);
1495 	}
1496 }
1497 EXPORT_SYMBOL(dev_close_many);
1498 
1499 /**
1500  *	dev_close - shutdown an interface.
1501  *	@dev: device to shutdown
1502  *
1503  *	This function moves an active device into down state. A
1504  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1505  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1506  *	chain.
1507  */
1508 void dev_close(struct net_device *dev)
1509 {
1510 	if (dev->flags & IFF_UP) {
1511 		LIST_HEAD(single);
1512 
1513 		list_add(&dev->close_list, &single);
1514 		dev_close_many(&single, true);
1515 		list_del(&single);
1516 	}
1517 }
1518 EXPORT_SYMBOL(dev_close);
1519 
1520 
1521 /**
1522  *	dev_disable_lro - disable Large Receive Offload on a device
1523  *	@dev: device
1524  *
1525  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1526  *	called under RTNL.  This is needed if received packets may be
1527  *	forwarded to another interface.
1528  */
1529 void dev_disable_lro(struct net_device *dev)
1530 {
1531 	struct net_device *lower_dev;
1532 	struct list_head *iter;
1533 
1534 	dev->wanted_features &= ~NETIF_F_LRO;
1535 	netdev_update_features(dev);
1536 
1537 	if (unlikely(dev->features & NETIF_F_LRO))
1538 		netdev_WARN(dev, "failed to disable LRO!\n");
1539 
1540 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1541 		dev_disable_lro(lower_dev);
1542 }
1543 EXPORT_SYMBOL(dev_disable_lro);
1544 
1545 /**
1546  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1547  *	@dev: device
1548  *
1549  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1550  *	called under RTNL.  This is needed if Generic XDP is installed on
1551  *	the device.
1552  */
1553 static void dev_disable_gro_hw(struct net_device *dev)
1554 {
1555 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1556 	netdev_update_features(dev);
1557 
1558 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1559 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1560 }
1561 
1562 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1563 				   struct net_device *dev)
1564 {
1565 	struct netdev_notifier_info info = {
1566 		.dev = dev,
1567 	};
1568 
1569 	return nb->notifier_call(nb, val, &info);
1570 }
1571 
1572 static int dev_boot_phase = 1;
1573 
1574 /**
1575  * register_netdevice_notifier - register a network notifier block
1576  * @nb: notifier
1577  *
1578  * Register a notifier to be called when network device events occur.
1579  * The notifier passed is linked into the kernel structures and must
1580  * not be reused until it has been unregistered. A negative errno code
1581  * is returned on a failure.
1582  *
1583  * When registered all registration and up events are replayed
1584  * to the new notifier to allow device to have a race free
1585  * view of the network device list.
1586  */
1587 
1588 int register_netdevice_notifier(struct notifier_block *nb)
1589 {
1590 	struct net_device *dev;
1591 	struct net_device *last;
1592 	struct net *net;
1593 	int err;
1594 
1595 	rtnl_lock();
1596 	err = raw_notifier_chain_register(&netdev_chain, nb);
1597 	if (err)
1598 		goto unlock;
1599 	if (dev_boot_phase)
1600 		goto unlock;
1601 	for_each_net(net) {
1602 		for_each_netdev(net, dev) {
1603 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1604 			err = notifier_to_errno(err);
1605 			if (err)
1606 				goto rollback;
1607 
1608 			if (!(dev->flags & IFF_UP))
1609 				continue;
1610 
1611 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1612 		}
1613 	}
1614 
1615 unlock:
1616 	rtnl_unlock();
1617 	return err;
1618 
1619 rollback:
1620 	last = dev;
1621 	for_each_net(net) {
1622 		for_each_netdev(net, dev) {
1623 			if (dev == last)
1624 				goto outroll;
1625 
1626 			if (dev->flags & IFF_UP) {
1627 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1628 							dev);
1629 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1630 			}
1631 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1632 		}
1633 	}
1634 
1635 outroll:
1636 	raw_notifier_chain_unregister(&netdev_chain, nb);
1637 	goto unlock;
1638 }
1639 EXPORT_SYMBOL(register_netdevice_notifier);
1640 
1641 /**
1642  * unregister_netdevice_notifier - unregister a network notifier block
1643  * @nb: notifier
1644  *
1645  * Unregister a notifier previously registered by
1646  * register_netdevice_notifier(). The notifier is unlinked into the
1647  * kernel structures and may then be reused. A negative errno code
1648  * is returned on a failure.
1649  *
1650  * After unregistering unregister and down device events are synthesized
1651  * for all devices on the device list to the removed notifier to remove
1652  * the need for special case cleanup code.
1653  */
1654 
1655 int unregister_netdevice_notifier(struct notifier_block *nb)
1656 {
1657 	struct net_device *dev;
1658 	struct net *net;
1659 	int err;
1660 
1661 	rtnl_lock();
1662 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1663 	if (err)
1664 		goto unlock;
1665 
1666 	for_each_net(net) {
1667 		for_each_netdev(net, dev) {
1668 			if (dev->flags & IFF_UP) {
1669 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1670 							dev);
1671 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1672 			}
1673 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1674 		}
1675 	}
1676 unlock:
1677 	rtnl_unlock();
1678 	return err;
1679 }
1680 EXPORT_SYMBOL(unregister_netdevice_notifier);
1681 
1682 /**
1683  *	call_netdevice_notifiers_info - call all network notifier blocks
1684  *	@val: value passed unmodified to notifier function
1685  *	@dev: net_device pointer passed unmodified to notifier function
1686  *	@info: notifier information data
1687  *
1688  *	Call all network notifier blocks.  Parameters and return value
1689  *	are as for raw_notifier_call_chain().
1690  */
1691 
1692 static int call_netdevice_notifiers_info(unsigned long val,
1693 					 struct netdev_notifier_info *info)
1694 {
1695 	ASSERT_RTNL();
1696 	return raw_notifier_call_chain(&netdev_chain, val, info);
1697 }
1698 
1699 /**
1700  *	call_netdevice_notifiers - call all network notifier blocks
1701  *      @val: value passed unmodified to notifier function
1702  *      @dev: net_device pointer passed unmodified to notifier function
1703  *
1704  *	Call all network notifier blocks.  Parameters and return value
1705  *	are as for raw_notifier_call_chain().
1706  */
1707 
1708 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1709 {
1710 	struct netdev_notifier_info info = {
1711 		.dev = dev,
1712 	};
1713 
1714 	return call_netdevice_notifiers_info(val, &info);
1715 }
1716 EXPORT_SYMBOL(call_netdevice_notifiers);
1717 
1718 #ifdef CONFIG_NET_INGRESS
1719 static struct static_key ingress_needed __read_mostly;
1720 
1721 void net_inc_ingress_queue(void)
1722 {
1723 	static_key_slow_inc(&ingress_needed);
1724 }
1725 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1726 
1727 void net_dec_ingress_queue(void)
1728 {
1729 	static_key_slow_dec(&ingress_needed);
1730 }
1731 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1732 #endif
1733 
1734 #ifdef CONFIG_NET_EGRESS
1735 static struct static_key egress_needed __read_mostly;
1736 
1737 void net_inc_egress_queue(void)
1738 {
1739 	static_key_slow_inc(&egress_needed);
1740 }
1741 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1742 
1743 void net_dec_egress_queue(void)
1744 {
1745 	static_key_slow_dec(&egress_needed);
1746 }
1747 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1748 #endif
1749 
1750 static struct static_key netstamp_needed __read_mostly;
1751 #ifdef HAVE_JUMP_LABEL
1752 static atomic_t netstamp_needed_deferred;
1753 static atomic_t netstamp_wanted;
1754 static void netstamp_clear(struct work_struct *work)
1755 {
1756 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1757 	int wanted;
1758 
1759 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1760 	if (wanted > 0)
1761 		static_key_enable(&netstamp_needed);
1762 	else
1763 		static_key_disable(&netstamp_needed);
1764 }
1765 static DECLARE_WORK(netstamp_work, netstamp_clear);
1766 #endif
1767 
1768 void net_enable_timestamp(void)
1769 {
1770 #ifdef HAVE_JUMP_LABEL
1771 	int wanted;
1772 
1773 	while (1) {
1774 		wanted = atomic_read(&netstamp_wanted);
1775 		if (wanted <= 0)
1776 			break;
1777 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1778 			return;
1779 	}
1780 	atomic_inc(&netstamp_needed_deferred);
1781 	schedule_work(&netstamp_work);
1782 #else
1783 	static_key_slow_inc(&netstamp_needed);
1784 #endif
1785 }
1786 EXPORT_SYMBOL(net_enable_timestamp);
1787 
1788 void net_disable_timestamp(void)
1789 {
1790 #ifdef HAVE_JUMP_LABEL
1791 	int wanted;
1792 
1793 	while (1) {
1794 		wanted = atomic_read(&netstamp_wanted);
1795 		if (wanted <= 1)
1796 			break;
1797 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1798 			return;
1799 	}
1800 	atomic_dec(&netstamp_needed_deferred);
1801 	schedule_work(&netstamp_work);
1802 #else
1803 	static_key_slow_dec(&netstamp_needed);
1804 #endif
1805 }
1806 EXPORT_SYMBOL(net_disable_timestamp);
1807 
1808 static inline void net_timestamp_set(struct sk_buff *skb)
1809 {
1810 	skb->tstamp = 0;
1811 	if (static_key_false(&netstamp_needed))
1812 		__net_timestamp(skb);
1813 }
1814 
1815 #define net_timestamp_check(COND, SKB)			\
1816 	if (static_key_false(&netstamp_needed)) {		\
1817 		if ((COND) && !(SKB)->tstamp)	\
1818 			__net_timestamp(SKB);		\
1819 	}						\
1820 
1821 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1822 {
1823 	unsigned int len;
1824 
1825 	if (!(dev->flags & IFF_UP))
1826 		return false;
1827 
1828 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1829 	if (skb->len <= len)
1830 		return true;
1831 
1832 	/* if TSO is enabled, we don't care about the length as the packet
1833 	 * could be forwarded without being segmented before
1834 	 */
1835 	if (skb_is_gso(skb))
1836 		return true;
1837 
1838 	return false;
1839 }
1840 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1841 
1842 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1843 {
1844 	int ret = ____dev_forward_skb(dev, skb);
1845 
1846 	if (likely(!ret)) {
1847 		skb->protocol = eth_type_trans(skb, dev);
1848 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1849 	}
1850 
1851 	return ret;
1852 }
1853 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1854 
1855 /**
1856  * dev_forward_skb - loopback an skb to another netif
1857  *
1858  * @dev: destination network device
1859  * @skb: buffer to forward
1860  *
1861  * return values:
1862  *	NET_RX_SUCCESS	(no congestion)
1863  *	NET_RX_DROP     (packet was dropped, but freed)
1864  *
1865  * dev_forward_skb can be used for injecting an skb from the
1866  * start_xmit function of one device into the receive queue
1867  * of another device.
1868  *
1869  * The receiving device may be in another namespace, so
1870  * we have to clear all information in the skb that could
1871  * impact namespace isolation.
1872  */
1873 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1874 {
1875 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1876 }
1877 EXPORT_SYMBOL_GPL(dev_forward_skb);
1878 
1879 static inline int deliver_skb(struct sk_buff *skb,
1880 			      struct packet_type *pt_prev,
1881 			      struct net_device *orig_dev)
1882 {
1883 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1884 		return -ENOMEM;
1885 	refcount_inc(&skb->users);
1886 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1887 }
1888 
1889 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1890 					  struct packet_type **pt,
1891 					  struct net_device *orig_dev,
1892 					  __be16 type,
1893 					  struct list_head *ptype_list)
1894 {
1895 	struct packet_type *ptype, *pt_prev = *pt;
1896 
1897 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1898 		if (ptype->type != type)
1899 			continue;
1900 		if (pt_prev)
1901 			deliver_skb(skb, pt_prev, orig_dev);
1902 		pt_prev = ptype;
1903 	}
1904 	*pt = pt_prev;
1905 }
1906 
1907 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1908 {
1909 	if (!ptype->af_packet_priv || !skb->sk)
1910 		return false;
1911 
1912 	if (ptype->id_match)
1913 		return ptype->id_match(ptype, skb->sk);
1914 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1915 		return true;
1916 
1917 	return false;
1918 }
1919 
1920 /*
1921  *	Support routine. Sends outgoing frames to any network
1922  *	taps currently in use.
1923  */
1924 
1925 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1926 {
1927 	struct packet_type *ptype;
1928 	struct sk_buff *skb2 = NULL;
1929 	struct packet_type *pt_prev = NULL;
1930 	struct list_head *ptype_list = &ptype_all;
1931 
1932 	rcu_read_lock();
1933 again:
1934 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1935 		/* Never send packets back to the socket
1936 		 * they originated from - MvS (miquels@drinkel.ow.org)
1937 		 */
1938 		if (skb_loop_sk(ptype, skb))
1939 			continue;
1940 
1941 		if (pt_prev) {
1942 			deliver_skb(skb2, pt_prev, skb->dev);
1943 			pt_prev = ptype;
1944 			continue;
1945 		}
1946 
1947 		/* need to clone skb, done only once */
1948 		skb2 = skb_clone(skb, GFP_ATOMIC);
1949 		if (!skb2)
1950 			goto out_unlock;
1951 
1952 		net_timestamp_set(skb2);
1953 
1954 		/* skb->nh should be correctly
1955 		 * set by sender, so that the second statement is
1956 		 * just protection against buggy protocols.
1957 		 */
1958 		skb_reset_mac_header(skb2);
1959 
1960 		if (skb_network_header(skb2) < skb2->data ||
1961 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1962 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1963 					     ntohs(skb2->protocol),
1964 					     dev->name);
1965 			skb_reset_network_header(skb2);
1966 		}
1967 
1968 		skb2->transport_header = skb2->network_header;
1969 		skb2->pkt_type = PACKET_OUTGOING;
1970 		pt_prev = ptype;
1971 	}
1972 
1973 	if (ptype_list == &ptype_all) {
1974 		ptype_list = &dev->ptype_all;
1975 		goto again;
1976 	}
1977 out_unlock:
1978 	if (pt_prev) {
1979 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1980 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1981 		else
1982 			kfree_skb(skb2);
1983 	}
1984 	rcu_read_unlock();
1985 }
1986 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1987 
1988 /**
1989  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1990  * @dev: Network device
1991  * @txq: number of queues available
1992  *
1993  * If real_num_tx_queues is changed the tc mappings may no longer be
1994  * valid. To resolve this verify the tc mapping remains valid and if
1995  * not NULL the mapping. With no priorities mapping to this
1996  * offset/count pair it will no longer be used. In the worst case TC0
1997  * is invalid nothing can be done so disable priority mappings. If is
1998  * expected that drivers will fix this mapping if they can before
1999  * calling netif_set_real_num_tx_queues.
2000  */
2001 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2002 {
2003 	int i;
2004 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2005 
2006 	/* If TC0 is invalidated disable TC mapping */
2007 	if (tc->offset + tc->count > txq) {
2008 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2009 		dev->num_tc = 0;
2010 		return;
2011 	}
2012 
2013 	/* Invalidated prio to tc mappings set to TC0 */
2014 	for (i = 1; i < TC_BITMASK + 1; i++) {
2015 		int q = netdev_get_prio_tc_map(dev, i);
2016 
2017 		tc = &dev->tc_to_txq[q];
2018 		if (tc->offset + tc->count > txq) {
2019 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2020 				i, q);
2021 			netdev_set_prio_tc_map(dev, i, 0);
2022 		}
2023 	}
2024 }
2025 
2026 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2027 {
2028 	if (dev->num_tc) {
2029 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2030 		int i;
2031 
2032 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2033 			if ((txq - tc->offset) < tc->count)
2034 				return i;
2035 		}
2036 
2037 		return -1;
2038 	}
2039 
2040 	return 0;
2041 }
2042 EXPORT_SYMBOL(netdev_txq_to_tc);
2043 
2044 #ifdef CONFIG_XPS
2045 static DEFINE_MUTEX(xps_map_mutex);
2046 #define xmap_dereference(P)		\
2047 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2048 
2049 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2050 			     int tci, u16 index)
2051 {
2052 	struct xps_map *map = NULL;
2053 	int pos;
2054 
2055 	if (dev_maps)
2056 		map = xmap_dereference(dev_maps->cpu_map[tci]);
2057 	if (!map)
2058 		return false;
2059 
2060 	for (pos = map->len; pos--;) {
2061 		if (map->queues[pos] != index)
2062 			continue;
2063 
2064 		if (map->len > 1) {
2065 			map->queues[pos] = map->queues[--map->len];
2066 			break;
2067 		}
2068 
2069 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2070 		kfree_rcu(map, rcu);
2071 		return false;
2072 	}
2073 
2074 	return true;
2075 }
2076 
2077 static bool remove_xps_queue_cpu(struct net_device *dev,
2078 				 struct xps_dev_maps *dev_maps,
2079 				 int cpu, u16 offset, u16 count)
2080 {
2081 	int num_tc = dev->num_tc ? : 1;
2082 	bool active = false;
2083 	int tci;
2084 
2085 	for (tci = cpu * num_tc; num_tc--; tci++) {
2086 		int i, j;
2087 
2088 		for (i = count, j = offset; i--; j++) {
2089 			if (!remove_xps_queue(dev_maps, cpu, j))
2090 				break;
2091 		}
2092 
2093 		active |= i < 0;
2094 	}
2095 
2096 	return active;
2097 }
2098 
2099 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2100 				   u16 count)
2101 {
2102 	struct xps_dev_maps *dev_maps;
2103 	int cpu, i;
2104 	bool active = false;
2105 
2106 	mutex_lock(&xps_map_mutex);
2107 	dev_maps = xmap_dereference(dev->xps_maps);
2108 
2109 	if (!dev_maps)
2110 		goto out_no_maps;
2111 
2112 	for_each_possible_cpu(cpu)
2113 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2114 					       offset, count);
2115 
2116 	if (!active) {
2117 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2118 		kfree_rcu(dev_maps, rcu);
2119 	}
2120 
2121 	for (i = offset + (count - 1); count--; i--)
2122 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2123 					     NUMA_NO_NODE);
2124 
2125 out_no_maps:
2126 	mutex_unlock(&xps_map_mutex);
2127 }
2128 
2129 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2130 {
2131 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2132 }
2133 
2134 static struct xps_map *expand_xps_map(struct xps_map *map,
2135 				      int cpu, u16 index)
2136 {
2137 	struct xps_map *new_map;
2138 	int alloc_len = XPS_MIN_MAP_ALLOC;
2139 	int i, pos;
2140 
2141 	for (pos = 0; map && pos < map->len; pos++) {
2142 		if (map->queues[pos] != index)
2143 			continue;
2144 		return map;
2145 	}
2146 
2147 	/* Need to add queue to this CPU's existing map */
2148 	if (map) {
2149 		if (pos < map->alloc_len)
2150 			return map;
2151 
2152 		alloc_len = map->alloc_len * 2;
2153 	}
2154 
2155 	/* Need to allocate new map to store queue on this CPU's map */
2156 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2157 			       cpu_to_node(cpu));
2158 	if (!new_map)
2159 		return NULL;
2160 
2161 	for (i = 0; i < pos; i++)
2162 		new_map->queues[i] = map->queues[i];
2163 	new_map->alloc_len = alloc_len;
2164 	new_map->len = pos;
2165 
2166 	return new_map;
2167 }
2168 
2169 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2170 			u16 index)
2171 {
2172 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2173 	int i, cpu, tci, numa_node_id = -2;
2174 	int maps_sz, num_tc = 1, tc = 0;
2175 	struct xps_map *map, *new_map;
2176 	bool active = false;
2177 
2178 	if (dev->num_tc) {
2179 		num_tc = dev->num_tc;
2180 		tc = netdev_txq_to_tc(dev, index);
2181 		if (tc < 0)
2182 			return -EINVAL;
2183 	}
2184 
2185 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2186 	if (maps_sz < L1_CACHE_BYTES)
2187 		maps_sz = L1_CACHE_BYTES;
2188 
2189 	mutex_lock(&xps_map_mutex);
2190 
2191 	dev_maps = xmap_dereference(dev->xps_maps);
2192 
2193 	/* allocate memory for queue storage */
2194 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2195 		if (!new_dev_maps)
2196 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2197 		if (!new_dev_maps) {
2198 			mutex_unlock(&xps_map_mutex);
2199 			return -ENOMEM;
2200 		}
2201 
2202 		tci = cpu * num_tc + tc;
2203 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2204 				 NULL;
2205 
2206 		map = expand_xps_map(map, cpu, index);
2207 		if (!map)
2208 			goto error;
2209 
2210 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2211 	}
2212 
2213 	if (!new_dev_maps)
2214 		goto out_no_new_maps;
2215 
2216 	for_each_possible_cpu(cpu) {
2217 		/* copy maps belonging to foreign traffic classes */
2218 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2219 			/* fill in the new device map from the old device map */
2220 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2221 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2222 		}
2223 
2224 		/* We need to explicitly update tci as prevous loop
2225 		 * could break out early if dev_maps is NULL.
2226 		 */
2227 		tci = cpu * num_tc + tc;
2228 
2229 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2230 			/* add queue to CPU maps */
2231 			int pos = 0;
2232 
2233 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2234 			while ((pos < map->len) && (map->queues[pos] != index))
2235 				pos++;
2236 
2237 			if (pos == map->len)
2238 				map->queues[map->len++] = index;
2239 #ifdef CONFIG_NUMA
2240 			if (numa_node_id == -2)
2241 				numa_node_id = cpu_to_node(cpu);
2242 			else if (numa_node_id != cpu_to_node(cpu))
2243 				numa_node_id = -1;
2244 #endif
2245 		} else if (dev_maps) {
2246 			/* fill in the new device map from the old device map */
2247 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2248 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2249 		}
2250 
2251 		/* copy maps belonging to foreign traffic classes */
2252 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2253 			/* fill in the new device map from the old device map */
2254 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2255 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2256 		}
2257 	}
2258 
2259 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2260 
2261 	/* Cleanup old maps */
2262 	if (!dev_maps)
2263 		goto out_no_old_maps;
2264 
2265 	for_each_possible_cpu(cpu) {
2266 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2267 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2268 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2269 			if (map && map != new_map)
2270 				kfree_rcu(map, rcu);
2271 		}
2272 	}
2273 
2274 	kfree_rcu(dev_maps, rcu);
2275 
2276 out_no_old_maps:
2277 	dev_maps = new_dev_maps;
2278 	active = true;
2279 
2280 out_no_new_maps:
2281 	/* update Tx queue numa node */
2282 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2283 				     (numa_node_id >= 0) ? numa_node_id :
2284 				     NUMA_NO_NODE);
2285 
2286 	if (!dev_maps)
2287 		goto out_no_maps;
2288 
2289 	/* removes queue from unused CPUs */
2290 	for_each_possible_cpu(cpu) {
2291 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2292 			active |= remove_xps_queue(dev_maps, tci, index);
2293 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2294 			active |= remove_xps_queue(dev_maps, tci, index);
2295 		for (i = num_tc - tc, tci++; --i; tci++)
2296 			active |= remove_xps_queue(dev_maps, tci, index);
2297 	}
2298 
2299 	/* free map if not active */
2300 	if (!active) {
2301 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2302 		kfree_rcu(dev_maps, rcu);
2303 	}
2304 
2305 out_no_maps:
2306 	mutex_unlock(&xps_map_mutex);
2307 
2308 	return 0;
2309 error:
2310 	/* remove any maps that we added */
2311 	for_each_possible_cpu(cpu) {
2312 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2313 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2314 			map = dev_maps ?
2315 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2316 			      NULL;
2317 			if (new_map && new_map != map)
2318 				kfree(new_map);
2319 		}
2320 	}
2321 
2322 	mutex_unlock(&xps_map_mutex);
2323 
2324 	kfree(new_dev_maps);
2325 	return -ENOMEM;
2326 }
2327 EXPORT_SYMBOL(netif_set_xps_queue);
2328 
2329 #endif
2330 void netdev_reset_tc(struct net_device *dev)
2331 {
2332 #ifdef CONFIG_XPS
2333 	netif_reset_xps_queues_gt(dev, 0);
2334 #endif
2335 	dev->num_tc = 0;
2336 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2337 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2338 }
2339 EXPORT_SYMBOL(netdev_reset_tc);
2340 
2341 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2342 {
2343 	if (tc >= dev->num_tc)
2344 		return -EINVAL;
2345 
2346 #ifdef CONFIG_XPS
2347 	netif_reset_xps_queues(dev, offset, count);
2348 #endif
2349 	dev->tc_to_txq[tc].count = count;
2350 	dev->tc_to_txq[tc].offset = offset;
2351 	return 0;
2352 }
2353 EXPORT_SYMBOL(netdev_set_tc_queue);
2354 
2355 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2356 {
2357 	if (num_tc > TC_MAX_QUEUE)
2358 		return -EINVAL;
2359 
2360 #ifdef CONFIG_XPS
2361 	netif_reset_xps_queues_gt(dev, 0);
2362 #endif
2363 	dev->num_tc = num_tc;
2364 	return 0;
2365 }
2366 EXPORT_SYMBOL(netdev_set_num_tc);
2367 
2368 /*
2369  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2370  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2371  */
2372 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2373 {
2374 	int rc;
2375 
2376 	if (txq < 1 || txq > dev->num_tx_queues)
2377 		return -EINVAL;
2378 
2379 	if (dev->reg_state == NETREG_REGISTERED ||
2380 	    dev->reg_state == NETREG_UNREGISTERING) {
2381 		ASSERT_RTNL();
2382 
2383 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2384 						  txq);
2385 		if (rc)
2386 			return rc;
2387 
2388 		if (dev->num_tc)
2389 			netif_setup_tc(dev, txq);
2390 
2391 		if (txq < dev->real_num_tx_queues) {
2392 			qdisc_reset_all_tx_gt(dev, txq);
2393 #ifdef CONFIG_XPS
2394 			netif_reset_xps_queues_gt(dev, txq);
2395 #endif
2396 		}
2397 	}
2398 
2399 	dev->real_num_tx_queues = txq;
2400 	return 0;
2401 }
2402 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2403 
2404 #ifdef CONFIG_SYSFS
2405 /**
2406  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2407  *	@dev: Network device
2408  *	@rxq: Actual number of RX queues
2409  *
2410  *	This must be called either with the rtnl_lock held or before
2411  *	registration of the net device.  Returns 0 on success, or a
2412  *	negative error code.  If called before registration, it always
2413  *	succeeds.
2414  */
2415 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2416 {
2417 	int rc;
2418 
2419 	if (rxq < 1 || rxq > dev->num_rx_queues)
2420 		return -EINVAL;
2421 
2422 	if (dev->reg_state == NETREG_REGISTERED) {
2423 		ASSERT_RTNL();
2424 
2425 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2426 						  rxq);
2427 		if (rc)
2428 			return rc;
2429 	}
2430 
2431 	dev->real_num_rx_queues = rxq;
2432 	return 0;
2433 }
2434 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2435 #endif
2436 
2437 /**
2438  * netif_get_num_default_rss_queues - default number of RSS queues
2439  *
2440  * This routine should set an upper limit on the number of RSS queues
2441  * used by default by multiqueue devices.
2442  */
2443 int netif_get_num_default_rss_queues(void)
2444 {
2445 	return is_kdump_kernel() ?
2446 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2447 }
2448 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2449 
2450 static void __netif_reschedule(struct Qdisc *q)
2451 {
2452 	struct softnet_data *sd;
2453 	unsigned long flags;
2454 
2455 	local_irq_save(flags);
2456 	sd = this_cpu_ptr(&softnet_data);
2457 	q->next_sched = NULL;
2458 	*sd->output_queue_tailp = q;
2459 	sd->output_queue_tailp = &q->next_sched;
2460 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2461 	local_irq_restore(flags);
2462 }
2463 
2464 void __netif_schedule(struct Qdisc *q)
2465 {
2466 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2467 		__netif_reschedule(q);
2468 }
2469 EXPORT_SYMBOL(__netif_schedule);
2470 
2471 struct dev_kfree_skb_cb {
2472 	enum skb_free_reason reason;
2473 };
2474 
2475 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2476 {
2477 	return (struct dev_kfree_skb_cb *)skb->cb;
2478 }
2479 
2480 void netif_schedule_queue(struct netdev_queue *txq)
2481 {
2482 	rcu_read_lock();
2483 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2484 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2485 
2486 		__netif_schedule(q);
2487 	}
2488 	rcu_read_unlock();
2489 }
2490 EXPORT_SYMBOL(netif_schedule_queue);
2491 
2492 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2493 {
2494 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2495 		struct Qdisc *q;
2496 
2497 		rcu_read_lock();
2498 		q = rcu_dereference(dev_queue->qdisc);
2499 		__netif_schedule(q);
2500 		rcu_read_unlock();
2501 	}
2502 }
2503 EXPORT_SYMBOL(netif_tx_wake_queue);
2504 
2505 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2506 {
2507 	unsigned long flags;
2508 
2509 	if (unlikely(!skb))
2510 		return;
2511 
2512 	if (likely(refcount_read(&skb->users) == 1)) {
2513 		smp_rmb();
2514 		refcount_set(&skb->users, 0);
2515 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2516 		return;
2517 	}
2518 	get_kfree_skb_cb(skb)->reason = reason;
2519 	local_irq_save(flags);
2520 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2521 	__this_cpu_write(softnet_data.completion_queue, skb);
2522 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2523 	local_irq_restore(flags);
2524 }
2525 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2526 
2527 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2528 {
2529 	if (in_irq() || irqs_disabled())
2530 		__dev_kfree_skb_irq(skb, reason);
2531 	else
2532 		dev_kfree_skb(skb);
2533 }
2534 EXPORT_SYMBOL(__dev_kfree_skb_any);
2535 
2536 
2537 /**
2538  * netif_device_detach - mark device as removed
2539  * @dev: network device
2540  *
2541  * Mark device as removed from system and therefore no longer available.
2542  */
2543 void netif_device_detach(struct net_device *dev)
2544 {
2545 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2546 	    netif_running(dev)) {
2547 		netif_tx_stop_all_queues(dev);
2548 	}
2549 }
2550 EXPORT_SYMBOL(netif_device_detach);
2551 
2552 /**
2553  * netif_device_attach - mark device as attached
2554  * @dev: network device
2555  *
2556  * Mark device as attached from system and restart if needed.
2557  */
2558 void netif_device_attach(struct net_device *dev)
2559 {
2560 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2561 	    netif_running(dev)) {
2562 		netif_tx_wake_all_queues(dev);
2563 		__netdev_watchdog_up(dev);
2564 	}
2565 }
2566 EXPORT_SYMBOL(netif_device_attach);
2567 
2568 /*
2569  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2570  * to be used as a distribution range.
2571  */
2572 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2573 		  unsigned int num_tx_queues)
2574 {
2575 	u32 hash;
2576 	u16 qoffset = 0;
2577 	u16 qcount = num_tx_queues;
2578 
2579 	if (skb_rx_queue_recorded(skb)) {
2580 		hash = skb_get_rx_queue(skb);
2581 		while (unlikely(hash >= num_tx_queues))
2582 			hash -= num_tx_queues;
2583 		return hash;
2584 	}
2585 
2586 	if (dev->num_tc) {
2587 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2588 
2589 		qoffset = dev->tc_to_txq[tc].offset;
2590 		qcount = dev->tc_to_txq[tc].count;
2591 	}
2592 
2593 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2594 }
2595 EXPORT_SYMBOL(__skb_tx_hash);
2596 
2597 static void skb_warn_bad_offload(const struct sk_buff *skb)
2598 {
2599 	static const netdev_features_t null_features;
2600 	struct net_device *dev = skb->dev;
2601 	const char *name = "";
2602 
2603 	if (!net_ratelimit())
2604 		return;
2605 
2606 	if (dev) {
2607 		if (dev->dev.parent)
2608 			name = dev_driver_string(dev->dev.parent);
2609 		else
2610 			name = netdev_name(dev);
2611 	}
2612 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2613 	     "gso_type=%d ip_summed=%d\n",
2614 	     name, dev ? &dev->features : &null_features,
2615 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2616 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2617 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2618 }
2619 
2620 /*
2621  * Invalidate hardware checksum when packet is to be mangled, and
2622  * complete checksum manually on outgoing path.
2623  */
2624 int skb_checksum_help(struct sk_buff *skb)
2625 {
2626 	__wsum csum;
2627 	int ret = 0, offset;
2628 
2629 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2630 		goto out_set_summed;
2631 
2632 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2633 		skb_warn_bad_offload(skb);
2634 		return -EINVAL;
2635 	}
2636 
2637 	/* Before computing a checksum, we should make sure no frag could
2638 	 * be modified by an external entity : checksum could be wrong.
2639 	 */
2640 	if (skb_has_shared_frag(skb)) {
2641 		ret = __skb_linearize(skb);
2642 		if (ret)
2643 			goto out;
2644 	}
2645 
2646 	offset = skb_checksum_start_offset(skb);
2647 	BUG_ON(offset >= skb_headlen(skb));
2648 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2649 
2650 	offset += skb->csum_offset;
2651 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2652 
2653 	if (skb_cloned(skb) &&
2654 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2655 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2656 		if (ret)
2657 			goto out;
2658 	}
2659 
2660 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2661 out_set_summed:
2662 	skb->ip_summed = CHECKSUM_NONE;
2663 out:
2664 	return ret;
2665 }
2666 EXPORT_SYMBOL(skb_checksum_help);
2667 
2668 int skb_crc32c_csum_help(struct sk_buff *skb)
2669 {
2670 	__le32 crc32c_csum;
2671 	int ret = 0, offset, start;
2672 
2673 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2674 		goto out;
2675 
2676 	if (unlikely(skb_is_gso(skb)))
2677 		goto out;
2678 
2679 	/* Before computing a checksum, we should make sure no frag could
2680 	 * be modified by an external entity : checksum could be wrong.
2681 	 */
2682 	if (unlikely(skb_has_shared_frag(skb))) {
2683 		ret = __skb_linearize(skb);
2684 		if (ret)
2685 			goto out;
2686 	}
2687 	start = skb_checksum_start_offset(skb);
2688 	offset = start + offsetof(struct sctphdr, checksum);
2689 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2690 		ret = -EINVAL;
2691 		goto out;
2692 	}
2693 	if (skb_cloned(skb) &&
2694 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2695 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2696 		if (ret)
2697 			goto out;
2698 	}
2699 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2700 						  skb->len - start, ~(__u32)0,
2701 						  crc32c_csum_stub));
2702 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2703 	skb->ip_summed = CHECKSUM_NONE;
2704 	skb->csum_not_inet = 0;
2705 out:
2706 	return ret;
2707 }
2708 
2709 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2710 {
2711 	__be16 type = skb->protocol;
2712 
2713 	/* Tunnel gso handlers can set protocol to ethernet. */
2714 	if (type == htons(ETH_P_TEB)) {
2715 		struct ethhdr *eth;
2716 
2717 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2718 			return 0;
2719 
2720 		eth = (struct ethhdr *)skb_mac_header(skb);
2721 		type = eth->h_proto;
2722 	}
2723 
2724 	return __vlan_get_protocol(skb, type, depth);
2725 }
2726 
2727 /**
2728  *	skb_mac_gso_segment - mac layer segmentation handler.
2729  *	@skb: buffer to segment
2730  *	@features: features for the output path (see dev->features)
2731  */
2732 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2733 				    netdev_features_t features)
2734 {
2735 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2736 	struct packet_offload *ptype;
2737 	int vlan_depth = skb->mac_len;
2738 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2739 
2740 	if (unlikely(!type))
2741 		return ERR_PTR(-EINVAL);
2742 
2743 	__skb_pull(skb, vlan_depth);
2744 
2745 	rcu_read_lock();
2746 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2747 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2748 			segs = ptype->callbacks.gso_segment(skb, features);
2749 			break;
2750 		}
2751 	}
2752 	rcu_read_unlock();
2753 
2754 	__skb_push(skb, skb->data - skb_mac_header(skb));
2755 
2756 	return segs;
2757 }
2758 EXPORT_SYMBOL(skb_mac_gso_segment);
2759 
2760 
2761 /* openvswitch calls this on rx path, so we need a different check.
2762  */
2763 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2764 {
2765 	if (tx_path)
2766 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2767 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
2768 
2769 	return skb->ip_summed == CHECKSUM_NONE;
2770 }
2771 
2772 /**
2773  *	__skb_gso_segment - Perform segmentation on skb.
2774  *	@skb: buffer to segment
2775  *	@features: features for the output path (see dev->features)
2776  *	@tx_path: whether it is called in TX path
2777  *
2778  *	This function segments the given skb and returns a list of segments.
2779  *
2780  *	It may return NULL if the skb requires no segmentation.  This is
2781  *	only possible when GSO is used for verifying header integrity.
2782  *
2783  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2784  */
2785 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2786 				  netdev_features_t features, bool tx_path)
2787 {
2788 	struct sk_buff *segs;
2789 
2790 	if (unlikely(skb_needs_check(skb, tx_path))) {
2791 		int err;
2792 
2793 		/* We're going to init ->check field in TCP or UDP header */
2794 		err = skb_cow_head(skb, 0);
2795 		if (err < 0)
2796 			return ERR_PTR(err);
2797 	}
2798 
2799 	/* Only report GSO partial support if it will enable us to
2800 	 * support segmentation on this frame without needing additional
2801 	 * work.
2802 	 */
2803 	if (features & NETIF_F_GSO_PARTIAL) {
2804 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2805 		struct net_device *dev = skb->dev;
2806 
2807 		partial_features |= dev->features & dev->gso_partial_features;
2808 		if (!skb_gso_ok(skb, features | partial_features))
2809 			features &= ~NETIF_F_GSO_PARTIAL;
2810 	}
2811 
2812 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2813 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2814 
2815 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2816 	SKB_GSO_CB(skb)->encap_level = 0;
2817 
2818 	skb_reset_mac_header(skb);
2819 	skb_reset_mac_len(skb);
2820 
2821 	segs = skb_mac_gso_segment(skb, features);
2822 
2823 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2824 		skb_warn_bad_offload(skb);
2825 
2826 	return segs;
2827 }
2828 EXPORT_SYMBOL(__skb_gso_segment);
2829 
2830 /* Take action when hardware reception checksum errors are detected. */
2831 #ifdef CONFIG_BUG
2832 void netdev_rx_csum_fault(struct net_device *dev)
2833 {
2834 	if (net_ratelimit()) {
2835 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2836 		dump_stack();
2837 	}
2838 }
2839 EXPORT_SYMBOL(netdev_rx_csum_fault);
2840 #endif
2841 
2842 /* Actually, we should eliminate this check as soon as we know, that:
2843  * 1. IOMMU is present and allows to map all the memory.
2844  * 2. No high memory really exists on this machine.
2845  */
2846 
2847 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2848 {
2849 #ifdef CONFIG_HIGHMEM
2850 	int i;
2851 
2852 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2853 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2854 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2855 
2856 			if (PageHighMem(skb_frag_page(frag)))
2857 				return 1;
2858 		}
2859 	}
2860 
2861 	if (PCI_DMA_BUS_IS_PHYS) {
2862 		struct device *pdev = dev->dev.parent;
2863 
2864 		if (!pdev)
2865 			return 0;
2866 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2867 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2868 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2869 
2870 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2871 				return 1;
2872 		}
2873 	}
2874 #endif
2875 	return 0;
2876 }
2877 
2878 /* If MPLS offload request, verify we are testing hardware MPLS features
2879  * instead of standard features for the netdev.
2880  */
2881 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2882 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2883 					   netdev_features_t features,
2884 					   __be16 type)
2885 {
2886 	if (eth_p_mpls(type))
2887 		features &= skb->dev->mpls_features;
2888 
2889 	return features;
2890 }
2891 #else
2892 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2893 					   netdev_features_t features,
2894 					   __be16 type)
2895 {
2896 	return features;
2897 }
2898 #endif
2899 
2900 static netdev_features_t harmonize_features(struct sk_buff *skb,
2901 	netdev_features_t features)
2902 {
2903 	int tmp;
2904 	__be16 type;
2905 
2906 	type = skb_network_protocol(skb, &tmp);
2907 	features = net_mpls_features(skb, features, type);
2908 
2909 	if (skb->ip_summed != CHECKSUM_NONE &&
2910 	    !can_checksum_protocol(features, type)) {
2911 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2912 	}
2913 	if (illegal_highdma(skb->dev, skb))
2914 		features &= ~NETIF_F_SG;
2915 
2916 	return features;
2917 }
2918 
2919 netdev_features_t passthru_features_check(struct sk_buff *skb,
2920 					  struct net_device *dev,
2921 					  netdev_features_t features)
2922 {
2923 	return features;
2924 }
2925 EXPORT_SYMBOL(passthru_features_check);
2926 
2927 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2928 					     struct net_device *dev,
2929 					     netdev_features_t features)
2930 {
2931 	return vlan_features_check(skb, features);
2932 }
2933 
2934 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2935 					    struct net_device *dev,
2936 					    netdev_features_t features)
2937 {
2938 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2939 
2940 	if (gso_segs > dev->gso_max_segs)
2941 		return features & ~NETIF_F_GSO_MASK;
2942 
2943 	/* Support for GSO partial features requires software
2944 	 * intervention before we can actually process the packets
2945 	 * so we need to strip support for any partial features now
2946 	 * and we can pull them back in after we have partially
2947 	 * segmented the frame.
2948 	 */
2949 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2950 		features &= ~dev->gso_partial_features;
2951 
2952 	/* Make sure to clear the IPv4 ID mangling feature if the
2953 	 * IPv4 header has the potential to be fragmented.
2954 	 */
2955 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2956 		struct iphdr *iph = skb->encapsulation ?
2957 				    inner_ip_hdr(skb) : ip_hdr(skb);
2958 
2959 		if (!(iph->frag_off & htons(IP_DF)))
2960 			features &= ~NETIF_F_TSO_MANGLEID;
2961 	}
2962 
2963 	return features;
2964 }
2965 
2966 netdev_features_t netif_skb_features(struct sk_buff *skb)
2967 {
2968 	struct net_device *dev = skb->dev;
2969 	netdev_features_t features = dev->features;
2970 
2971 	if (skb_is_gso(skb))
2972 		features = gso_features_check(skb, dev, features);
2973 
2974 	/* If encapsulation offload request, verify we are testing
2975 	 * hardware encapsulation features instead of standard
2976 	 * features for the netdev
2977 	 */
2978 	if (skb->encapsulation)
2979 		features &= dev->hw_enc_features;
2980 
2981 	if (skb_vlan_tagged(skb))
2982 		features = netdev_intersect_features(features,
2983 						     dev->vlan_features |
2984 						     NETIF_F_HW_VLAN_CTAG_TX |
2985 						     NETIF_F_HW_VLAN_STAG_TX);
2986 
2987 	if (dev->netdev_ops->ndo_features_check)
2988 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2989 								features);
2990 	else
2991 		features &= dflt_features_check(skb, dev, features);
2992 
2993 	return harmonize_features(skb, features);
2994 }
2995 EXPORT_SYMBOL(netif_skb_features);
2996 
2997 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2998 		    struct netdev_queue *txq, bool more)
2999 {
3000 	unsigned int len;
3001 	int rc;
3002 
3003 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3004 		dev_queue_xmit_nit(skb, dev);
3005 
3006 	len = skb->len;
3007 	trace_net_dev_start_xmit(skb, dev);
3008 	rc = netdev_start_xmit(skb, dev, txq, more);
3009 	trace_net_dev_xmit(skb, rc, dev, len);
3010 
3011 	return rc;
3012 }
3013 
3014 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3015 				    struct netdev_queue *txq, int *ret)
3016 {
3017 	struct sk_buff *skb = first;
3018 	int rc = NETDEV_TX_OK;
3019 
3020 	while (skb) {
3021 		struct sk_buff *next = skb->next;
3022 
3023 		skb->next = NULL;
3024 		rc = xmit_one(skb, dev, txq, next != NULL);
3025 		if (unlikely(!dev_xmit_complete(rc))) {
3026 			skb->next = next;
3027 			goto out;
3028 		}
3029 
3030 		skb = next;
3031 		if (netif_xmit_stopped(txq) && skb) {
3032 			rc = NETDEV_TX_BUSY;
3033 			break;
3034 		}
3035 	}
3036 
3037 out:
3038 	*ret = rc;
3039 	return skb;
3040 }
3041 
3042 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3043 					  netdev_features_t features)
3044 {
3045 	if (skb_vlan_tag_present(skb) &&
3046 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3047 		skb = __vlan_hwaccel_push_inside(skb);
3048 	return skb;
3049 }
3050 
3051 int skb_csum_hwoffload_help(struct sk_buff *skb,
3052 			    const netdev_features_t features)
3053 {
3054 	if (unlikely(skb->csum_not_inet))
3055 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3056 			skb_crc32c_csum_help(skb);
3057 
3058 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3059 }
3060 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3061 
3062 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3063 {
3064 	netdev_features_t features;
3065 
3066 	features = netif_skb_features(skb);
3067 	skb = validate_xmit_vlan(skb, features);
3068 	if (unlikely(!skb))
3069 		goto out_null;
3070 
3071 	if (netif_needs_gso(skb, features)) {
3072 		struct sk_buff *segs;
3073 
3074 		segs = skb_gso_segment(skb, features);
3075 		if (IS_ERR(segs)) {
3076 			goto out_kfree_skb;
3077 		} else if (segs) {
3078 			consume_skb(skb);
3079 			skb = segs;
3080 		}
3081 	} else {
3082 		if (skb_needs_linearize(skb, features) &&
3083 		    __skb_linearize(skb))
3084 			goto out_kfree_skb;
3085 
3086 		/* If packet is not checksummed and device does not
3087 		 * support checksumming for this protocol, complete
3088 		 * checksumming here.
3089 		 */
3090 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3091 			if (skb->encapsulation)
3092 				skb_set_inner_transport_header(skb,
3093 							       skb_checksum_start_offset(skb));
3094 			else
3095 				skb_set_transport_header(skb,
3096 							 skb_checksum_start_offset(skb));
3097 			if (skb_csum_hwoffload_help(skb, features))
3098 				goto out_kfree_skb;
3099 		}
3100 	}
3101 
3102 	skb = validate_xmit_xfrm(skb, features, again);
3103 
3104 	return skb;
3105 
3106 out_kfree_skb:
3107 	kfree_skb(skb);
3108 out_null:
3109 	atomic_long_inc(&dev->tx_dropped);
3110 	return NULL;
3111 }
3112 
3113 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3114 {
3115 	struct sk_buff *next, *head = NULL, *tail;
3116 
3117 	for (; skb != NULL; skb = next) {
3118 		next = skb->next;
3119 		skb->next = NULL;
3120 
3121 		/* in case skb wont be segmented, point to itself */
3122 		skb->prev = skb;
3123 
3124 		skb = validate_xmit_skb(skb, dev, again);
3125 		if (!skb)
3126 			continue;
3127 
3128 		if (!head)
3129 			head = skb;
3130 		else
3131 			tail->next = skb;
3132 		/* If skb was segmented, skb->prev points to
3133 		 * the last segment. If not, it still contains skb.
3134 		 */
3135 		tail = skb->prev;
3136 	}
3137 	return head;
3138 }
3139 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3140 
3141 static void qdisc_pkt_len_init(struct sk_buff *skb)
3142 {
3143 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3144 
3145 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3146 
3147 	/* To get more precise estimation of bytes sent on wire,
3148 	 * we add to pkt_len the headers size of all segments
3149 	 */
3150 	if (shinfo->gso_size)  {
3151 		unsigned int hdr_len;
3152 		u16 gso_segs = shinfo->gso_segs;
3153 
3154 		/* mac layer + network layer */
3155 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3156 
3157 		/* + transport layer */
3158 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3159 			hdr_len += tcp_hdrlen(skb);
3160 		else
3161 			hdr_len += sizeof(struct udphdr);
3162 
3163 		if (shinfo->gso_type & SKB_GSO_DODGY)
3164 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3165 						shinfo->gso_size);
3166 
3167 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3168 	}
3169 }
3170 
3171 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3172 				 struct net_device *dev,
3173 				 struct netdev_queue *txq)
3174 {
3175 	spinlock_t *root_lock = qdisc_lock(q);
3176 	struct sk_buff *to_free = NULL;
3177 	bool contended;
3178 	int rc;
3179 
3180 	qdisc_calculate_pkt_len(skb, q);
3181 
3182 	if (q->flags & TCQ_F_NOLOCK) {
3183 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3184 			__qdisc_drop(skb, &to_free);
3185 			rc = NET_XMIT_DROP;
3186 		} else {
3187 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3188 			__qdisc_run(q);
3189 		}
3190 
3191 		if (unlikely(to_free))
3192 			kfree_skb_list(to_free);
3193 		return rc;
3194 	}
3195 
3196 	/*
3197 	 * Heuristic to force contended enqueues to serialize on a
3198 	 * separate lock before trying to get qdisc main lock.
3199 	 * This permits qdisc->running owner to get the lock more
3200 	 * often and dequeue packets faster.
3201 	 */
3202 	contended = qdisc_is_running(q);
3203 	if (unlikely(contended))
3204 		spin_lock(&q->busylock);
3205 
3206 	spin_lock(root_lock);
3207 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3208 		__qdisc_drop(skb, &to_free);
3209 		rc = NET_XMIT_DROP;
3210 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3211 		   qdisc_run_begin(q)) {
3212 		/*
3213 		 * This is a work-conserving queue; there are no old skbs
3214 		 * waiting to be sent out; and the qdisc is not running -
3215 		 * xmit the skb directly.
3216 		 */
3217 
3218 		qdisc_bstats_update(q, skb);
3219 
3220 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3221 			if (unlikely(contended)) {
3222 				spin_unlock(&q->busylock);
3223 				contended = false;
3224 			}
3225 			__qdisc_run(q);
3226 		}
3227 
3228 		qdisc_run_end(q);
3229 		rc = NET_XMIT_SUCCESS;
3230 	} else {
3231 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3232 		if (qdisc_run_begin(q)) {
3233 			if (unlikely(contended)) {
3234 				spin_unlock(&q->busylock);
3235 				contended = false;
3236 			}
3237 			__qdisc_run(q);
3238 			qdisc_run_end(q);
3239 		}
3240 	}
3241 	spin_unlock(root_lock);
3242 	if (unlikely(to_free))
3243 		kfree_skb_list(to_free);
3244 	if (unlikely(contended))
3245 		spin_unlock(&q->busylock);
3246 	return rc;
3247 }
3248 
3249 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3250 static void skb_update_prio(struct sk_buff *skb)
3251 {
3252 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3253 
3254 	if (!skb->priority && skb->sk && map) {
3255 		unsigned int prioidx =
3256 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3257 
3258 		if (prioidx < map->priomap_len)
3259 			skb->priority = map->priomap[prioidx];
3260 	}
3261 }
3262 #else
3263 #define skb_update_prio(skb)
3264 #endif
3265 
3266 DEFINE_PER_CPU(int, xmit_recursion);
3267 EXPORT_SYMBOL(xmit_recursion);
3268 
3269 /**
3270  *	dev_loopback_xmit - loop back @skb
3271  *	@net: network namespace this loopback is happening in
3272  *	@sk:  sk needed to be a netfilter okfn
3273  *	@skb: buffer to transmit
3274  */
3275 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3276 {
3277 	skb_reset_mac_header(skb);
3278 	__skb_pull(skb, skb_network_offset(skb));
3279 	skb->pkt_type = PACKET_LOOPBACK;
3280 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3281 	WARN_ON(!skb_dst(skb));
3282 	skb_dst_force(skb);
3283 	netif_rx_ni(skb);
3284 	return 0;
3285 }
3286 EXPORT_SYMBOL(dev_loopback_xmit);
3287 
3288 #ifdef CONFIG_NET_EGRESS
3289 static struct sk_buff *
3290 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3291 {
3292 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3293 	struct tcf_result cl_res;
3294 
3295 	if (!miniq)
3296 		return skb;
3297 
3298 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3299 	mini_qdisc_bstats_cpu_update(miniq, skb);
3300 
3301 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3302 	case TC_ACT_OK:
3303 	case TC_ACT_RECLASSIFY:
3304 		skb->tc_index = TC_H_MIN(cl_res.classid);
3305 		break;
3306 	case TC_ACT_SHOT:
3307 		mini_qdisc_qstats_cpu_drop(miniq);
3308 		*ret = NET_XMIT_DROP;
3309 		kfree_skb(skb);
3310 		return NULL;
3311 	case TC_ACT_STOLEN:
3312 	case TC_ACT_QUEUED:
3313 	case TC_ACT_TRAP:
3314 		*ret = NET_XMIT_SUCCESS;
3315 		consume_skb(skb);
3316 		return NULL;
3317 	case TC_ACT_REDIRECT:
3318 		/* No need to push/pop skb's mac_header here on egress! */
3319 		skb_do_redirect(skb);
3320 		*ret = NET_XMIT_SUCCESS;
3321 		return NULL;
3322 	default:
3323 		break;
3324 	}
3325 
3326 	return skb;
3327 }
3328 #endif /* CONFIG_NET_EGRESS */
3329 
3330 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3331 {
3332 #ifdef CONFIG_XPS
3333 	struct xps_dev_maps *dev_maps;
3334 	struct xps_map *map;
3335 	int queue_index = -1;
3336 
3337 	rcu_read_lock();
3338 	dev_maps = rcu_dereference(dev->xps_maps);
3339 	if (dev_maps) {
3340 		unsigned int tci = skb->sender_cpu - 1;
3341 
3342 		if (dev->num_tc) {
3343 			tci *= dev->num_tc;
3344 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3345 		}
3346 
3347 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3348 		if (map) {
3349 			if (map->len == 1)
3350 				queue_index = map->queues[0];
3351 			else
3352 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3353 									   map->len)];
3354 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3355 				queue_index = -1;
3356 		}
3357 	}
3358 	rcu_read_unlock();
3359 
3360 	return queue_index;
3361 #else
3362 	return -1;
3363 #endif
3364 }
3365 
3366 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3367 {
3368 	struct sock *sk = skb->sk;
3369 	int queue_index = sk_tx_queue_get(sk);
3370 
3371 	if (queue_index < 0 || skb->ooo_okay ||
3372 	    queue_index >= dev->real_num_tx_queues) {
3373 		int new_index = get_xps_queue(dev, skb);
3374 
3375 		if (new_index < 0)
3376 			new_index = skb_tx_hash(dev, skb);
3377 
3378 		if (queue_index != new_index && sk &&
3379 		    sk_fullsock(sk) &&
3380 		    rcu_access_pointer(sk->sk_dst_cache))
3381 			sk_tx_queue_set(sk, new_index);
3382 
3383 		queue_index = new_index;
3384 	}
3385 
3386 	return queue_index;
3387 }
3388 
3389 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3390 				    struct sk_buff *skb,
3391 				    void *accel_priv)
3392 {
3393 	int queue_index = 0;
3394 
3395 #ifdef CONFIG_XPS
3396 	u32 sender_cpu = skb->sender_cpu - 1;
3397 
3398 	if (sender_cpu >= (u32)NR_CPUS)
3399 		skb->sender_cpu = raw_smp_processor_id() + 1;
3400 #endif
3401 
3402 	if (dev->real_num_tx_queues != 1) {
3403 		const struct net_device_ops *ops = dev->netdev_ops;
3404 
3405 		if (ops->ndo_select_queue)
3406 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3407 							    __netdev_pick_tx);
3408 		else
3409 			queue_index = __netdev_pick_tx(dev, skb);
3410 
3411 		if (!accel_priv)
3412 			queue_index = netdev_cap_txqueue(dev, queue_index);
3413 	}
3414 
3415 	skb_set_queue_mapping(skb, queue_index);
3416 	return netdev_get_tx_queue(dev, queue_index);
3417 }
3418 
3419 /**
3420  *	__dev_queue_xmit - transmit a buffer
3421  *	@skb: buffer to transmit
3422  *	@accel_priv: private data used for L2 forwarding offload
3423  *
3424  *	Queue a buffer for transmission to a network device. The caller must
3425  *	have set the device and priority and built the buffer before calling
3426  *	this function. The function can be called from an interrupt.
3427  *
3428  *	A negative errno code is returned on a failure. A success does not
3429  *	guarantee the frame will be transmitted as it may be dropped due
3430  *	to congestion or traffic shaping.
3431  *
3432  * -----------------------------------------------------------------------------------
3433  *      I notice this method can also return errors from the queue disciplines,
3434  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3435  *      be positive.
3436  *
3437  *      Regardless of the return value, the skb is consumed, so it is currently
3438  *      difficult to retry a send to this method.  (You can bump the ref count
3439  *      before sending to hold a reference for retry if you are careful.)
3440  *
3441  *      When calling this method, interrupts MUST be enabled.  This is because
3442  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3443  *          --BLG
3444  */
3445 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3446 {
3447 	struct net_device *dev = skb->dev;
3448 	struct netdev_queue *txq;
3449 	struct Qdisc *q;
3450 	int rc = -ENOMEM;
3451 	bool again = false;
3452 
3453 	skb_reset_mac_header(skb);
3454 
3455 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3456 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3457 
3458 	/* Disable soft irqs for various locks below. Also
3459 	 * stops preemption for RCU.
3460 	 */
3461 	rcu_read_lock_bh();
3462 
3463 	skb_update_prio(skb);
3464 
3465 	qdisc_pkt_len_init(skb);
3466 #ifdef CONFIG_NET_CLS_ACT
3467 	skb->tc_at_ingress = 0;
3468 # ifdef CONFIG_NET_EGRESS
3469 	if (static_key_false(&egress_needed)) {
3470 		skb = sch_handle_egress(skb, &rc, dev);
3471 		if (!skb)
3472 			goto out;
3473 	}
3474 # endif
3475 #endif
3476 	/* If device/qdisc don't need skb->dst, release it right now while
3477 	 * its hot in this cpu cache.
3478 	 */
3479 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3480 		skb_dst_drop(skb);
3481 	else
3482 		skb_dst_force(skb);
3483 
3484 	txq = netdev_pick_tx(dev, skb, accel_priv);
3485 	q = rcu_dereference_bh(txq->qdisc);
3486 
3487 	trace_net_dev_queue(skb);
3488 	if (q->enqueue) {
3489 		rc = __dev_xmit_skb(skb, q, dev, txq);
3490 		goto out;
3491 	}
3492 
3493 	/* The device has no queue. Common case for software devices:
3494 	 * loopback, all the sorts of tunnels...
3495 
3496 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3497 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3498 	 * counters.)
3499 	 * However, it is possible, that they rely on protection
3500 	 * made by us here.
3501 
3502 	 * Check this and shot the lock. It is not prone from deadlocks.
3503 	 *Either shot noqueue qdisc, it is even simpler 8)
3504 	 */
3505 	if (dev->flags & IFF_UP) {
3506 		int cpu = smp_processor_id(); /* ok because BHs are off */
3507 
3508 		if (txq->xmit_lock_owner != cpu) {
3509 			if (unlikely(__this_cpu_read(xmit_recursion) >
3510 				     XMIT_RECURSION_LIMIT))
3511 				goto recursion_alert;
3512 
3513 			skb = validate_xmit_skb(skb, dev, &again);
3514 			if (!skb)
3515 				goto out;
3516 
3517 			HARD_TX_LOCK(dev, txq, cpu);
3518 
3519 			if (!netif_xmit_stopped(txq)) {
3520 				__this_cpu_inc(xmit_recursion);
3521 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3522 				__this_cpu_dec(xmit_recursion);
3523 				if (dev_xmit_complete(rc)) {
3524 					HARD_TX_UNLOCK(dev, txq);
3525 					goto out;
3526 				}
3527 			}
3528 			HARD_TX_UNLOCK(dev, txq);
3529 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3530 					     dev->name);
3531 		} else {
3532 			/* Recursion is detected! It is possible,
3533 			 * unfortunately
3534 			 */
3535 recursion_alert:
3536 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3537 					     dev->name);
3538 		}
3539 	}
3540 
3541 	rc = -ENETDOWN;
3542 	rcu_read_unlock_bh();
3543 
3544 	atomic_long_inc(&dev->tx_dropped);
3545 	kfree_skb_list(skb);
3546 	return rc;
3547 out:
3548 	rcu_read_unlock_bh();
3549 	return rc;
3550 }
3551 
3552 int dev_queue_xmit(struct sk_buff *skb)
3553 {
3554 	return __dev_queue_xmit(skb, NULL);
3555 }
3556 EXPORT_SYMBOL(dev_queue_xmit);
3557 
3558 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3559 {
3560 	return __dev_queue_xmit(skb, accel_priv);
3561 }
3562 EXPORT_SYMBOL(dev_queue_xmit_accel);
3563 
3564 
3565 /*************************************************************************
3566  *			Receiver routines
3567  *************************************************************************/
3568 
3569 int netdev_max_backlog __read_mostly = 1000;
3570 EXPORT_SYMBOL(netdev_max_backlog);
3571 
3572 int netdev_tstamp_prequeue __read_mostly = 1;
3573 int netdev_budget __read_mostly = 300;
3574 unsigned int __read_mostly netdev_budget_usecs = 2000;
3575 int weight_p __read_mostly = 64;           /* old backlog weight */
3576 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3577 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3578 int dev_rx_weight __read_mostly = 64;
3579 int dev_tx_weight __read_mostly = 64;
3580 
3581 /* Called with irq disabled */
3582 static inline void ____napi_schedule(struct softnet_data *sd,
3583 				     struct napi_struct *napi)
3584 {
3585 	list_add_tail(&napi->poll_list, &sd->poll_list);
3586 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3587 }
3588 
3589 #ifdef CONFIG_RPS
3590 
3591 /* One global table that all flow-based protocols share. */
3592 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3593 EXPORT_SYMBOL(rps_sock_flow_table);
3594 u32 rps_cpu_mask __read_mostly;
3595 EXPORT_SYMBOL(rps_cpu_mask);
3596 
3597 struct static_key rps_needed __read_mostly;
3598 EXPORT_SYMBOL(rps_needed);
3599 struct static_key rfs_needed __read_mostly;
3600 EXPORT_SYMBOL(rfs_needed);
3601 
3602 static struct rps_dev_flow *
3603 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3604 	    struct rps_dev_flow *rflow, u16 next_cpu)
3605 {
3606 	if (next_cpu < nr_cpu_ids) {
3607 #ifdef CONFIG_RFS_ACCEL
3608 		struct netdev_rx_queue *rxqueue;
3609 		struct rps_dev_flow_table *flow_table;
3610 		struct rps_dev_flow *old_rflow;
3611 		u32 flow_id;
3612 		u16 rxq_index;
3613 		int rc;
3614 
3615 		/* Should we steer this flow to a different hardware queue? */
3616 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3617 		    !(dev->features & NETIF_F_NTUPLE))
3618 			goto out;
3619 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3620 		if (rxq_index == skb_get_rx_queue(skb))
3621 			goto out;
3622 
3623 		rxqueue = dev->_rx + rxq_index;
3624 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3625 		if (!flow_table)
3626 			goto out;
3627 		flow_id = skb_get_hash(skb) & flow_table->mask;
3628 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3629 							rxq_index, flow_id);
3630 		if (rc < 0)
3631 			goto out;
3632 		old_rflow = rflow;
3633 		rflow = &flow_table->flows[flow_id];
3634 		rflow->filter = rc;
3635 		if (old_rflow->filter == rflow->filter)
3636 			old_rflow->filter = RPS_NO_FILTER;
3637 	out:
3638 #endif
3639 		rflow->last_qtail =
3640 			per_cpu(softnet_data, next_cpu).input_queue_head;
3641 	}
3642 
3643 	rflow->cpu = next_cpu;
3644 	return rflow;
3645 }
3646 
3647 /*
3648  * get_rps_cpu is called from netif_receive_skb and returns the target
3649  * CPU from the RPS map of the receiving queue for a given skb.
3650  * rcu_read_lock must be held on entry.
3651  */
3652 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3653 		       struct rps_dev_flow **rflowp)
3654 {
3655 	const struct rps_sock_flow_table *sock_flow_table;
3656 	struct netdev_rx_queue *rxqueue = dev->_rx;
3657 	struct rps_dev_flow_table *flow_table;
3658 	struct rps_map *map;
3659 	int cpu = -1;
3660 	u32 tcpu;
3661 	u32 hash;
3662 
3663 	if (skb_rx_queue_recorded(skb)) {
3664 		u16 index = skb_get_rx_queue(skb);
3665 
3666 		if (unlikely(index >= dev->real_num_rx_queues)) {
3667 			WARN_ONCE(dev->real_num_rx_queues > 1,
3668 				  "%s received packet on queue %u, but number "
3669 				  "of RX queues is %u\n",
3670 				  dev->name, index, dev->real_num_rx_queues);
3671 			goto done;
3672 		}
3673 		rxqueue += index;
3674 	}
3675 
3676 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3677 
3678 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3679 	map = rcu_dereference(rxqueue->rps_map);
3680 	if (!flow_table && !map)
3681 		goto done;
3682 
3683 	skb_reset_network_header(skb);
3684 	hash = skb_get_hash(skb);
3685 	if (!hash)
3686 		goto done;
3687 
3688 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3689 	if (flow_table && sock_flow_table) {
3690 		struct rps_dev_flow *rflow;
3691 		u32 next_cpu;
3692 		u32 ident;
3693 
3694 		/* First check into global flow table if there is a match */
3695 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3696 		if ((ident ^ hash) & ~rps_cpu_mask)
3697 			goto try_rps;
3698 
3699 		next_cpu = ident & rps_cpu_mask;
3700 
3701 		/* OK, now we know there is a match,
3702 		 * we can look at the local (per receive queue) flow table
3703 		 */
3704 		rflow = &flow_table->flows[hash & flow_table->mask];
3705 		tcpu = rflow->cpu;
3706 
3707 		/*
3708 		 * If the desired CPU (where last recvmsg was done) is
3709 		 * different from current CPU (one in the rx-queue flow
3710 		 * table entry), switch if one of the following holds:
3711 		 *   - Current CPU is unset (>= nr_cpu_ids).
3712 		 *   - Current CPU is offline.
3713 		 *   - The current CPU's queue tail has advanced beyond the
3714 		 *     last packet that was enqueued using this table entry.
3715 		 *     This guarantees that all previous packets for the flow
3716 		 *     have been dequeued, thus preserving in order delivery.
3717 		 */
3718 		if (unlikely(tcpu != next_cpu) &&
3719 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3720 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3721 		      rflow->last_qtail)) >= 0)) {
3722 			tcpu = next_cpu;
3723 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3724 		}
3725 
3726 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3727 			*rflowp = rflow;
3728 			cpu = tcpu;
3729 			goto done;
3730 		}
3731 	}
3732 
3733 try_rps:
3734 
3735 	if (map) {
3736 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3737 		if (cpu_online(tcpu)) {
3738 			cpu = tcpu;
3739 			goto done;
3740 		}
3741 	}
3742 
3743 done:
3744 	return cpu;
3745 }
3746 
3747 #ifdef CONFIG_RFS_ACCEL
3748 
3749 /**
3750  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3751  * @dev: Device on which the filter was set
3752  * @rxq_index: RX queue index
3753  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3754  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3755  *
3756  * Drivers that implement ndo_rx_flow_steer() should periodically call
3757  * this function for each installed filter and remove the filters for
3758  * which it returns %true.
3759  */
3760 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3761 			 u32 flow_id, u16 filter_id)
3762 {
3763 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3764 	struct rps_dev_flow_table *flow_table;
3765 	struct rps_dev_flow *rflow;
3766 	bool expire = true;
3767 	unsigned int cpu;
3768 
3769 	rcu_read_lock();
3770 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3771 	if (flow_table && flow_id <= flow_table->mask) {
3772 		rflow = &flow_table->flows[flow_id];
3773 		cpu = READ_ONCE(rflow->cpu);
3774 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3775 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3776 			   rflow->last_qtail) <
3777 		     (int)(10 * flow_table->mask)))
3778 			expire = false;
3779 	}
3780 	rcu_read_unlock();
3781 	return expire;
3782 }
3783 EXPORT_SYMBOL(rps_may_expire_flow);
3784 
3785 #endif /* CONFIG_RFS_ACCEL */
3786 
3787 /* Called from hardirq (IPI) context */
3788 static void rps_trigger_softirq(void *data)
3789 {
3790 	struct softnet_data *sd = data;
3791 
3792 	____napi_schedule(sd, &sd->backlog);
3793 	sd->received_rps++;
3794 }
3795 
3796 #endif /* CONFIG_RPS */
3797 
3798 /*
3799  * Check if this softnet_data structure is another cpu one
3800  * If yes, queue it to our IPI list and return 1
3801  * If no, return 0
3802  */
3803 static int rps_ipi_queued(struct softnet_data *sd)
3804 {
3805 #ifdef CONFIG_RPS
3806 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3807 
3808 	if (sd != mysd) {
3809 		sd->rps_ipi_next = mysd->rps_ipi_list;
3810 		mysd->rps_ipi_list = sd;
3811 
3812 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3813 		return 1;
3814 	}
3815 #endif /* CONFIG_RPS */
3816 	return 0;
3817 }
3818 
3819 #ifdef CONFIG_NET_FLOW_LIMIT
3820 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3821 #endif
3822 
3823 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3824 {
3825 #ifdef CONFIG_NET_FLOW_LIMIT
3826 	struct sd_flow_limit *fl;
3827 	struct softnet_data *sd;
3828 	unsigned int old_flow, new_flow;
3829 
3830 	if (qlen < (netdev_max_backlog >> 1))
3831 		return false;
3832 
3833 	sd = this_cpu_ptr(&softnet_data);
3834 
3835 	rcu_read_lock();
3836 	fl = rcu_dereference(sd->flow_limit);
3837 	if (fl) {
3838 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3839 		old_flow = fl->history[fl->history_head];
3840 		fl->history[fl->history_head] = new_flow;
3841 
3842 		fl->history_head++;
3843 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3844 
3845 		if (likely(fl->buckets[old_flow]))
3846 			fl->buckets[old_flow]--;
3847 
3848 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3849 			fl->count++;
3850 			rcu_read_unlock();
3851 			return true;
3852 		}
3853 	}
3854 	rcu_read_unlock();
3855 #endif
3856 	return false;
3857 }
3858 
3859 /*
3860  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3861  * queue (may be a remote CPU queue).
3862  */
3863 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3864 			      unsigned int *qtail)
3865 {
3866 	struct softnet_data *sd;
3867 	unsigned long flags;
3868 	unsigned int qlen;
3869 
3870 	sd = &per_cpu(softnet_data, cpu);
3871 
3872 	local_irq_save(flags);
3873 
3874 	rps_lock(sd);
3875 	if (!netif_running(skb->dev))
3876 		goto drop;
3877 	qlen = skb_queue_len(&sd->input_pkt_queue);
3878 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3879 		if (qlen) {
3880 enqueue:
3881 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3882 			input_queue_tail_incr_save(sd, qtail);
3883 			rps_unlock(sd);
3884 			local_irq_restore(flags);
3885 			return NET_RX_SUCCESS;
3886 		}
3887 
3888 		/* Schedule NAPI for backlog device
3889 		 * We can use non atomic operation since we own the queue lock
3890 		 */
3891 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3892 			if (!rps_ipi_queued(sd))
3893 				____napi_schedule(sd, &sd->backlog);
3894 		}
3895 		goto enqueue;
3896 	}
3897 
3898 drop:
3899 	sd->dropped++;
3900 	rps_unlock(sd);
3901 
3902 	local_irq_restore(flags);
3903 
3904 	atomic_long_inc(&skb->dev->rx_dropped);
3905 	kfree_skb(skb);
3906 	return NET_RX_DROP;
3907 }
3908 
3909 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
3910 {
3911 	struct net_device *dev = skb->dev;
3912 	struct netdev_rx_queue *rxqueue;
3913 
3914 	rxqueue = dev->_rx;
3915 
3916 	if (skb_rx_queue_recorded(skb)) {
3917 		u16 index = skb_get_rx_queue(skb);
3918 
3919 		if (unlikely(index >= dev->real_num_rx_queues)) {
3920 			WARN_ONCE(dev->real_num_rx_queues > 1,
3921 				  "%s received packet on queue %u, but number "
3922 				  "of RX queues is %u\n",
3923 				  dev->name, index, dev->real_num_rx_queues);
3924 
3925 			return rxqueue; /* Return first rxqueue */
3926 		}
3927 		rxqueue += index;
3928 	}
3929 	return rxqueue;
3930 }
3931 
3932 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3933 				     struct bpf_prog *xdp_prog)
3934 {
3935 	struct netdev_rx_queue *rxqueue;
3936 	u32 metalen, act = XDP_DROP;
3937 	struct xdp_buff xdp;
3938 	void *orig_data;
3939 	int hlen, off;
3940 	u32 mac_len;
3941 
3942 	/* Reinjected packets coming from act_mirred or similar should
3943 	 * not get XDP generic processing.
3944 	 */
3945 	if (skb_cloned(skb))
3946 		return XDP_PASS;
3947 
3948 	/* XDP packets must be linear and must have sufficient headroom
3949 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3950 	 * native XDP provides, thus we need to do it here as well.
3951 	 */
3952 	if (skb_is_nonlinear(skb) ||
3953 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3954 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3955 		int troom = skb->tail + skb->data_len - skb->end;
3956 
3957 		/* In case we have to go down the path and also linearize,
3958 		 * then lets do the pskb_expand_head() work just once here.
3959 		 */
3960 		if (pskb_expand_head(skb,
3961 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3962 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3963 			goto do_drop;
3964 		if (skb_linearize(skb))
3965 			goto do_drop;
3966 	}
3967 
3968 	/* The XDP program wants to see the packet starting at the MAC
3969 	 * header.
3970 	 */
3971 	mac_len = skb->data - skb_mac_header(skb);
3972 	hlen = skb_headlen(skb) + mac_len;
3973 	xdp.data = skb->data - mac_len;
3974 	xdp.data_meta = xdp.data;
3975 	xdp.data_end = xdp.data + hlen;
3976 	xdp.data_hard_start = skb->data - skb_headroom(skb);
3977 	orig_data = xdp.data;
3978 
3979 	rxqueue = netif_get_rxqueue(skb);
3980 	xdp.rxq = &rxqueue->xdp_rxq;
3981 
3982 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
3983 
3984 	off = xdp.data - orig_data;
3985 	if (off > 0)
3986 		__skb_pull(skb, off);
3987 	else if (off < 0)
3988 		__skb_push(skb, -off);
3989 	skb->mac_header += off;
3990 
3991 	switch (act) {
3992 	case XDP_REDIRECT:
3993 	case XDP_TX:
3994 		__skb_push(skb, mac_len);
3995 		break;
3996 	case XDP_PASS:
3997 		metalen = xdp.data - xdp.data_meta;
3998 		if (metalen)
3999 			skb_metadata_set(skb, metalen);
4000 		break;
4001 	default:
4002 		bpf_warn_invalid_xdp_action(act);
4003 		/* fall through */
4004 	case XDP_ABORTED:
4005 		trace_xdp_exception(skb->dev, xdp_prog, act);
4006 		/* fall through */
4007 	case XDP_DROP:
4008 	do_drop:
4009 		kfree_skb(skb);
4010 		break;
4011 	}
4012 
4013 	return act;
4014 }
4015 
4016 /* When doing generic XDP we have to bypass the qdisc layer and the
4017  * network taps in order to match in-driver-XDP behavior.
4018  */
4019 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4020 {
4021 	struct net_device *dev = skb->dev;
4022 	struct netdev_queue *txq;
4023 	bool free_skb = true;
4024 	int cpu, rc;
4025 
4026 	txq = netdev_pick_tx(dev, skb, NULL);
4027 	cpu = smp_processor_id();
4028 	HARD_TX_LOCK(dev, txq, cpu);
4029 	if (!netif_xmit_stopped(txq)) {
4030 		rc = netdev_start_xmit(skb, dev, txq, 0);
4031 		if (dev_xmit_complete(rc))
4032 			free_skb = false;
4033 	}
4034 	HARD_TX_UNLOCK(dev, txq);
4035 	if (free_skb) {
4036 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4037 		kfree_skb(skb);
4038 	}
4039 }
4040 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4041 
4042 static struct static_key generic_xdp_needed __read_mostly;
4043 
4044 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4045 {
4046 	if (xdp_prog) {
4047 		u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4048 		int err;
4049 
4050 		if (act != XDP_PASS) {
4051 			switch (act) {
4052 			case XDP_REDIRECT:
4053 				err = xdp_do_generic_redirect(skb->dev, skb,
4054 							      xdp_prog);
4055 				if (err)
4056 					goto out_redir;
4057 			/* fallthru to submit skb */
4058 			case XDP_TX:
4059 				generic_xdp_tx(skb, xdp_prog);
4060 				break;
4061 			}
4062 			return XDP_DROP;
4063 		}
4064 	}
4065 	return XDP_PASS;
4066 out_redir:
4067 	kfree_skb(skb);
4068 	return XDP_DROP;
4069 }
4070 EXPORT_SYMBOL_GPL(do_xdp_generic);
4071 
4072 static int netif_rx_internal(struct sk_buff *skb)
4073 {
4074 	int ret;
4075 
4076 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4077 
4078 	trace_netif_rx(skb);
4079 
4080 	if (static_key_false(&generic_xdp_needed)) {
4081 		int ret;
4082 
4083 		preempt_disable();
4084 		rcu_read_lock();
4085 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4086 		rcu_read_unlock();
4087 		preempt_enable();
4088 
4089 		/* Consider XDP consuming the packet a success from
4090 		 * the netdev point of view we do not want to count
4091 		 * this as an error.
4092 		 */
4093 		if (ret != XDP_PASS)
4094 			return NET_RX_SUCCESS;
4095 	}
4096 
4097 #ifdef CONFIG_RPS
4098 	if (static_key_false(&rps_needed)) {
4099 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4100 		int cpu;
4101 
4102 		preempt_disable();
4103 		rcu_read_lock();
4104 
4105 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4106 		if (cpu < 0)
4107 			cpu = smp_processor_id();
4108 
4109 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4110 
4111 		rcu_read_unlock();
4112 		preempt_enable();
4113 	} else
4114 #endif
4115 	{
4116 		unsigned int qtail;
4117 
4118 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4119 		put_cpu();
4120 	}
4121 	return ret;
4122 }
4123 
4124 /**
4125  *	netif_rx	-	post buffer to the network code
4126  *	@skb: buffer to post
4127  *
4128  *	This function receives a packet from a device driver and queues it for
4129  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4130  *	may be dropped during processing for congestion control or by the
4131  *	protocol layers.
4132  *
4133  *	return values:
4134  *	NET_RX_SUCCESS	(no congestion)
4135  *	NET_RX_DROP     (packet was dropped)
4136  *
4137  */
4138 
4139 int netif_rx(struct sk_buff *skb)
4140 {
4141 	trace_netif_rx_entry(skb);
4142 
4143 	return netif_rx_internal(skb);
4144 }
4145 EXPORT_SYMBOL(netif_rx);
4146 
4147 int netif_rx_ni(struct sk_buff *skb)
4148 {
4149 	int err;
4150 
4151 	trace_netif_rx_ni_entry(skb);
4152 
4153 	preempt_disable();
4154 	err = netif_rx_internal(skb);
4155 	if (local_softirq_pending())
4156 		do_softirq();
4157 	preempt_enable();
4158 
4159 	return err;
4160 }
4161 EXPORT_SYMBOL(netif_rx_ni);
4162 
4163 static __latent_entropy void net_tx_action(struct softirq_action *h)
4164 {
4165 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4166 
4167 	if (sd->completion_queue) {
4168 		struct sk_buff *clist;
4169 
4170 		local_irq_disable();
4171 		clist = sd->completion_queue;
4172 		sd->completion_queue = NULL;
4173 		local_irq_enable();
4174 
4175 		while (clist) {
4176 			struct sk_buff *skb = clist;
4177 
4178 			clist = clist->next;
4179 
4180 			WARN_ON(refcount_read(&skb->users));
4181 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4182 				trace_consume_skb(skb);
4183 			else
4184 				trace_kfree_skb(skb, net_tx_action);
4185 
4186 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4187 				__kfree_skb(skb);
4188 			else
4189 				__kfree_skb_defer(skb);
4190 		}
4191 
4192 		__kfree_skb_flush();
4193 	}
4194 
4195 	if (sd->output_queue) {
4196 		struct Qdisc *head;
4197 
4198 		local_irq_disable();
4199 		head = sd->output_queue;
4200 		sd->output_queue = NULL;
4201 		sd->output_queue_tailp = &sd->output_queue;
4202 		local_irq_enable();
4203 
4204 		while (head) {
4205 			struct Qdisc *q = head;
4206 			spinlock_t *root_lock = NULL;
4207 
4208 			head = head->next_sched;
4209 
4210 			if (!(q->flags & TCQ_F_NOLOCK)) {
4211 				root_lock = qdisc_lock(q);
4212 				spin_lock(root_lock);
4213 			}
4214 			/* We need to make sure head->next_sched is read
4215 			 * before clearing __QDISC_STATE_SCHED
4216 			 */
4217 			smp_mb__before_atomic();
4218 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4219 			qdisc_run(q);
4220 			if (root_lock)
4221 				spin_unlock(root_lock);
4222 		}
4223 	}
4224 
4225 	xfrm_dev_backlog(sd);
4226 }
4227 
4228 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4229 /* This hook is defined here for ATM LANE */
4230 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4231 			     unsigned char *addr) __read_mostly;
4232 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4233 #endif
4234 
4235 static inline struct sk_buff *
4236 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4237 		   struct net_device *orig_dev)
4238 {
4239 #ifdef CONFIG_NET_CLS_ACT
4240 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4241 	struct tcf_result cl_res;
4242 
4243 	/* If there's at least one ingress present somewhere (so
4244 	 * we get here via enabled static key), remaining devices
4245 	 * that are not configured with an ingress qdisc will bail
4246 	 * out here.
4247 	 */
4248 	if (!miniq)
4249 		return skb;
4250 
4251 	if (*pt_prev) {
4252 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4253 		*pt_prev = NULL;
4254 	}
4255 
4256 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4257 	skb->tc_at_ingress = 1;
4258 	mini_qdisc_bstats_cpu_update(miniq, skb);
4259 
4260 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4261 	case TC_ACT_OK:
4262 	case TC_ACT_RECLASSIFY:
4263 		skb->tc_index = TC_H_MIN(cl_res.classid);
4264 		break;
4265 	case TC_ACT_SHOT:
4266 		mini_qdisc_qstats_cpu_drop(miniq);
4267 		kfree_skb(skb);
4268 		return NULL;
4269 	case TC_ACT_STOLEN:
4270 	case TC_ACT_QUEUED:
4271 	case TC_ACT_TRAP:
4272 		consume_skb(skb);
4273 		return NULL;
4274 	case TC_ACT_REDIRECT:
4275 		/* skb_mac_header check was done by cls/act_bpf, so
4276 		 * we can safely push the L2 header back before
4277 		 * redirecting to another netdev
4278 		 */
4279 		__skb_push(skb, skb->mac_len);
4280 		skb_do_redirect(skb);
4281 		return NULL;
4282 	default:
4283 		break;
4284 	}
4285 #endif /* CONFIG_NET_CLS_ACT */
4286 	return skb;
4287 }
4288 
4289 /**
4290  *	netdev_is_rx_handler_busy - check if receive handler is registered
4291  *	@dev: device to check
4292  *
4293  *	Check if a receive handler is already registered for a given device.
4294  *	Return true if there one.
4295  *
4296  *	The caller must hold the rtnl_mutex.
4297  */
4298 bool netdev_is_rx_handler_busy(struct net_device *dev)
4299 {
4300 	ASSERT_RTNL();
4301 	return dev && rtnl_dereference(dev->rx_handler);
4302 }
4303 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4304 
4305 /**
4306  *	netdev_rx_handler_register - register receive handler
4307  *	@dev: device to register a handler for
4308  *	@rx_handler: receive handler to register
4309  *	@rx_handler_data: data pointer that is used by rx handler
4310  *
4311  *	Register a receive handler for a device. This handler will then be
4312  *	called from __netif_receive_skb. A negative errno code is returned
4313  *	on a failure.
4314  *
4315  *	The caller must hold the rtnl_mutex.
4316  *
4317  *	For a general description of rx_handler, see enum rx_handler_result.
4318  */
4319 int netdev_rx_handler_register(struct net_device *dev,
4320 			       rx_handler_func_t *rx_handler,
4321 			       void *rx_handler_data)
4322 {
4323 	if (netdev_is_rx_handler_busy(dev))
4324 		return -EBUSY;
4325 
4326 	/* Note: rx_handler_data must be set before rx_handler */
4327 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4328 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4329 
4330 	return 0;
4331 }
4332 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4333 
4334 /**
4335  *	netdev_rx_handler_unregister - unregister receive handler
4336  *	@dev: device to unregister a handler from
4337  *
4338  *	Unregister a receive handler from a device.
4339  *
4340  *	The caller must hold the rtnl_mutex.
4341  */
4342 void netdev_rx_handler_unregister(struct net_device *dev)
4343 {
4344 
4345 	ASSERT_RTNL();
4346 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4347 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4348 	 * section has a guarantee to see a non NULL rx_handler_data
4349 	 * as well.
4350 	 */
4351 	synchronize_net();
4352 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4353 }
4354 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4355 
4356 /*
4357  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4358  * the special handling of PFMEMALLOC skbs.
4359  */
4360 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4361 {
4362 	switch (skb->protocol) {
4363 	case htons(ETH_P_ARP):
4364 	case htons(ETH_P_IP):
4365 	case htons(ETH_P_IPV6):
4366 	case htons(ETH_P_8021Q):
4367 	case htons(ETH_P_8021AD):
4368 		return true;
4369 	default:
4370 		return false;
4371 	}
4372 }
4373 
4374 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4375 			     int *ret, struct net_device *orig_dev)
4376 {
4377 #ifdef CONFIG_NETFILTER_INGRESS
4378 	if (nf_hook_ingress_active(skb)) {
4379 		int ingress_retval;
4380 
4381 		if (*pt_prev) {
4382 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4383 			*pt_prev = NULL;
4384 		}
4385 
4386 		rcu_read_lock();
4387 		ingress_retval = nf_hook_ingress(skb);
4388 		rcu_read_unlock();
4389 		return ingress_retval;
4390 	}
4391 #endif /* CONFIG_NETFILTER_INGRESS */
4392 	return 0;
4393 }
4394 
4395 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4396 {
4397 	struct packet_type *ptype, *pt_prev;
4398 	rx_handler_func_t *rx_handler;
4399 	struct net_device *orig_dev;
4400 	bool deliver_exact = false;
4401 	int ret = NET_RX_DROP;
4402 	__be16 type;
4403 
4404 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4405 
4406 	trace_netif_receive_skb(skb);
4407 
4408 	orig_dev = skb->dev;
4409 
4410 	skb_reset_network_header(skb);
4411 	if (!skb_transport_header_was_set(skb))
4412 		skb_reset_transport_header(skb);
4413 	skb_reset_mac_len(skb);
4414 
4415 	pt_prev = NULL;
4416 
4417 another_round:
4418 	skb->skb_iif = skb->dev->ifindex;
4419 
4420 	__this_cpu_inc(softnet_data.processed);
4421 
4422 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4423 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4424 		skb = skb_vlan_untag(skb);
4425 		if (unlikely(!skb))
4426 			goto out;
4427 	}
4428 
4429 	if (skb_skip_tc_classify(skb))
4430 		goto skip_classify;
4431 
4432 	if (pfmemalloc)
4433 		goto skip_taps;
4434 
4435 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4436 		if (pt_prev)
4437 			ret = deliver_skb(skb, pt_prev, orig_dev);
4438 		pt_prev = ptype;
4439 	}
4440 
4441 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4442 		if (pt_prev)
4443 			ret = deliver_skb(skb, pt_prev, orig_dev);
4444 		pt_prev = ptype;
4445 	}
4446 
4447 skip_taps:
4448 #ifdef CONFIG_NET_INGRESS
4449 	if (static_key_false(&ingress_needed)) {
4450 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4451 		if (!skb)
4452 			goto out;
4453 
4454 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4455 			goto out;
4456 	}
4457 #endif
4458 	skb_reset_tc(skb);
4459 skip_classify:
4460 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4461 		goto drop;
4462 
4463 	if (skb_vlan_tag_present(skb)) {
4464 		if (pt_prev) {
4465 			ret = deliver_skb(skb, pt_prev, orig_dev);
4466 			pt_prev = NULL;
4467 		}
4468 		if (vlan_do_receive(&skb))
4469 			goto another_round;
4470 		else if (unlikely(!skb))
4471 			goto out;
4472 	}
4473 
4474 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4475 	if (rx_handler) {
4476 		if (pt_prev) {
4477 			ret = deliver_skb(skb, pt_prev, orig_dev);
4478 			pt_prev = NULL;
4479 		}
4480 		switch (rx_handler(&skb)) {
4481 		case RX_HANDLER_CONSUMED:
4482 			ret = NET_RX_SUCCESS;
4483 			goto out;
4484 		case RX_HANDLER_ANOTHER:
4485 			goto another_round;
4486 		case RX_HANDLER_EXACT:
4487 			deliver_exact = true;
4488 		case RX_HANDLER_PASS:
4489 			break;
4490 		default:
4491 			BUG();
4492 		}
4493 	}
4494 
4495 	if (unlikely(skb_vlan_tag_present(skb))) {
4496 		if (skb_vlan_tag_get_id(skb))
4497 			skb->pkt_type = PACKET_OTHERHOST;
4498 		/* Note: we might in the future use prio bits
4499 		 * and set skb->priority like in vlan_do_receive()
4500 		 * For the time being, just ignore Priority Code Point
4501 		 */
4502 		skb->vlan_tci = 0;
4503 	}
4504 
4505 	type = skb->protocol;
4506 
4507 	/* deliver only exact match when indicated */
4508 	if (likely(!deliver_exact)) {
4509 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4510 				       &ptype_base[ntohs(type) &
4511 						   PTYPE_HASH_MASK]);
4512 	}
4513 
4514 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4515 			       &orig_dev->ptype_specific);
4516 
4517 	if (unlikely(skb->dev != orig_dev)) {
4518 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4519 				       &skb->dev->ptype_specific);
4520 	}
4521 
4522 	if (pt_prev) {
4523 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4524 			goto drop;
4525 		else
4526 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4527 	} else {
4528 drop:
4529 		if (!deliver_exact)
4530 			atomic_long_inc(&skb->dev->rx_dropped);
4531 		else
4532 			atomic_long_inc(&skb->dev->rx_nohandler);
4533 		kfree_skb(skb);
4534 		/* Jamal, now you will not able to escape explaining
4535 		 * me how you were going to use this. :-)
4536 		 */
4537 		ret = NET_RX_DROP;
4538 	}
4539 
4540 out:
4541 	return ret;
4542 }
4543 
4544 /**
4545  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4546  *	@skb: buffer to process
4547  *
4548  *	More direct receive version of netif_receive_skb().  It should
4549  *	only be used by callers that have a need to skip RPS and Generic XDP.
4550  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4551  *
4552  *	This function may only be called from softirq context and interrupts
4553  *	should be enabled.
4554  *
4555  *	Return values (usually ignored):
4556  *	NET_RX_SUCCESS: no congestion
4557  *	NET_RX_DROP: packet was dropped
4558  */
4559 int netif_receive_skb_core(struct sk_buff *skb)
4560 {
4561 	int ret;
4562 
4563 	rcu_read_lock();
4564 	ret = __netif_receive_skb_core(skb, false);
4565 	rcu_read_unlock();
4566 
4567 	return ret;
4568 }
4569 EXPORT_SYMBOL(netif_receive_skb_core);
4570 
4571 static int __netif_receive_skb(struct sk_buff *skb)
4572 {
4573 	int ret;
4574 
4575 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4576 		unsigned int noreclaim_flag;
4577 
4578 		/*
4579 		 * PFMEMALLOC skbs are special, they should
4580 		 * - be delivered to SOCK_MEMALLOC sockets only
4581 		 * - stay away from userspace
4582 		 * - have bounded memory usage
4583 		 *
4584 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4585 		 * context down to all allocation sites.
4586 		 */
4587 		noreclaim_flag = memalloc_noreclaim_save();
4588 		ret = __netif_receive_skb_core(skb, true);
4589 		memalloc_noreclaim_restore(noreclaim_flag);
4590 	} else
4591 		ret = __netif_receive_skb_core(skb, false);
4592 
4593 	return ret;
4594 }
4595 
4596 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4597 {
4598 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4599 	struct bpf_prog *new = xdp->prog;
4600 	int ret = 0;
4601 
4602 	switch (xdp->command) {
4603 	case XDP_SETUP_PROG:
4604 		rcu_assign_pointer(dev->xdp_prog, new);
4605 		if (old)
4606 			bpf_prog_put(old);
4607 
4608 		if (old && !new) {
4609 			static_key_slow_dec(&generic_xdp_needed);
4610 		} else if (new && !old) {
4611 			static_key_slow_inc(&generic_xdp_needed);
4612 			dev_disable_lro(dev);
4613 			dev_disable_gro_hw(dev);
4614 		}
4615 		break;
4616 
4617 	case XDP_QUERY_PROG:
4618 		xdp->prog_attached = !!old;
4619 		xdp->prog_id = old ? old->aux->id : 0;
4620 		break;
4621 
4622 	default:
4623 		ret = -EINVAL;
4624 		break;
4625 	}
4626 
4627 	return ret;
4628 }
4629 
4630 static int netif_receive_skb_internal(struct sk_buff *skb)
4631 {
4632 	int ret;
4633 
4634 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4635 
4636 	if (skb_defer_rx_timestamp(skb))
4637 		return NET_RX_SUCCESS;
4638 
4639 	if (static_key_false(&generic_xdp_needed)) {
4640 		int ret;
4641 
4642 		preempt_disable();
4643 		rcu_read_lock();
4644 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4645 		rcu_read_unlock();
4646 		preempt_enable();
4647 
4648 		if (ret != XDP_PASS)
4649 			return NET_RX_DROP;
4650 	}
4651 
4652 	rcu_read_lock();
4653 #ifdef CONFIG_RPS
4654 	if (static_key_false(&rps_needed)) {
4655 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4656 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4657 
4658 		if (cpu >= 0) {
4659 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4660 			rcu_read_unlock();
4661 			return ret;
4662 		}
4663 	}
4664 #endif
4665 	ret = __netif_receive_skb(skb);
4666 	rcu_read_unlock();
4667 	return ret;
4668 }
4669 
4670 /**
4671  *	netif_receive_skb - process receive buffer from network
4672  *	@skb: buffer to process
4673  *
4674  *	netif_receive_skb() is the main receive data processing function.
4675  *	It always succeeds. The buffer may be dropped during processing
4676  *	for congestion control or by the protocol layers.
4677  *
4678  *	This function may only be called from softirq context and interrupts
4679  *	should be enabled.
4680  *
4681  *	Return values (usually ignored):
4682  *	NET_RX_SUCCESS: no congestion
4683  *	NET_RX_DROP: packet was dropped
4684  */
4685 int netif_receive_skb(struct sk_buff *skb)
4686 {
4687 	trace_netif_receive_skb_entry(skb);
4688 
4689 	return netif_receive_skb_internal(skb);
4690 }
4691 EXPORT_SYMBOL(netif_receive_skb);
4692 
4693 DEFINE_PER_CPU(struct work_struct, flush_works);
4694 
4695 /* Network device is going away, flush any packets still pending */
4696 static void flush_backlog(struct work_struct *work)
4697 {
4698 	struct sk_buff *skb, *tmp;
4699 	struct softnet_data *sd;
4700 
4701 	local_bh_disable();
4702 	sd = this_cpu_ptr(&softnet_data);
4703 
4704 	local_irq_disable();
4705 	rps_lock(sd);
4706 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4707 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4708 			__skb_unlink(skb, &sd->input_pkt_queue);
4709 			kfree_skb(skb);
4710 			input_queue_head_incr(sd);
4711 		}
4712 	}
4713 	rps_unlock(sd);
4714 	local_irq_enable();
4715 
4716 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4717 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4718 			__skb_unlink(skb, &sd->process_queue);
4719 			kfree_skb(skb);
4720 			input_queue_head_incr(sd);
4721 		}
4722 	}
4723 	local_bh_enable();
4724 }
4725 
4726 static void flush_all_backlogs(void)
4727 {
4728 	unsigned int cpu;
4729 
4730 	get_online_cpus();
4731 
4732 	for_each_online_cpu(cpu)
4733 		queue_work_on(cpu, system_highpri_wq,
4734 			      per_cpu_ptr(&flush_works, cpu));
4735 
4736 	for_each_online_cpu(cpu)
4737 		flush_work(per_cpu_ptr(&flush_works, cpu));
4738 
4739 	put_online_cpus();
4740 }
4741 
4742 static int napi_gro_complete(struct sk_buff *skb)
4743 {
4744 	struct packet_offload *ptype;
4745 	__be16 type = skb->protocol;
4746 	struct list_head *head = &offload_base;
4747 	int err = -ENOENT;
4748 
4749 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4750 
4751 	if (NAPI_GRO_CB(skb)->count == 1) {
4752 		skb_shinfo(skb)->gso_size = 0;
4753 		goto out;
4754 	}
4755 
4756 	rcu_read_lock();
4757 	list_for_each_entry_rcu(ptype, head, list) {
4758 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4759 			continue;
4760 
4761 		err = ptype->callbacks.gro_complete(skb, 0);
4762 		break;
4763 	}
4764 	rcu_read_unlock();
4765 
4766 	if (err) {
4767 		WARN_ON(&ptype->list == head);
4768 		kfree_skb(skb);
4769 		return NET_RX_SUCCESS;
4770 	}
4771 
4772 out:
4773 	return netif_receive_skb_internal(skb);
4774 }
4775 
4776 /* napi->gro_list contains packets ordered by age.
4777  * youngest packets at the head of it.
4778  * Complete skbs in reverse order to reduce latencies.
4779  */
4780 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4781 {
4782 	struct sk_buff *skb, *prev = NULL;
4783 
4784 	/* scan list and build reverse chain */
4785 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4786 		skb->prev = prev;
4787 		prev = skb;
4788 	}
4789 
4790 	for (skb = prev; skb; skb = prev) {
4791 		skb->next = NULL;
4792 
4793 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4794 			return;
4795 
4796 		prev = skb->prev;
4797 		napi_gro_complete(skb);
4798 		napi->gro_count--;
4799 	}
4800 
4801 	napi->gro_list = NULL;
4802 }
4803 EXPORT_SYMBOL(napi_gro_flush);
4804 
4805 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4806 {
4807 	struct sk_buff *p;
4808 	unsigned int maclen = skb->dev->hard_header_len;
4809 	u32 hash = skb_get_hash_raw(skb);
4810 
4811 	for (p = napi->gro_list; p; p = p->next) {
4812 		unsigned long diffs;
4813 
4814 		NAPI_GRO_CB(p)->flush = 0;
4815 
4816 		if (hash != skb_get_hash_raw(p)) {
4817 			NAPI_GRO_CB(p)->same_flow = 0;
4818 			continue;
4819 		}
4820 
4821 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4822 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4823 		diffs |= skb_metadata_dst_cmp(p, skb);
4824 		diffs |= skb_metadata_differs(p, skb);
4825 		if (maclen == ETH_HLEN)
4826 			diffs |= compare_ether_header(skb_mac_header(p),
4827 						      skb_mac_header(skb));
4828 		else if (!diffs)
4829 			diffs = memcmp(skb_mac_header(p),
4830 				       skb_mac_header(skb),
4831 				       maclen);
4832 		NAPI_GRO_CB(p)->same_flow = !diffs;
4833 	}
4834 }
4835 
4836 static void skb_gro_reset_offset(struct sk_buff *skb)
4837 {
4838 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4839 	const skb_frag_t *frag0 = &pinfo->frags[0];
4840 
4841 	NAPI_GRO_CB(skb)->data_offset = 0;
4842 	NAPI_GRO_CB(skb)->frag0 = NULL;
4843 	NAPI_GRO_CB(skb)->frag0_len = 0;
4844 
4845 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4846 	    pinfo->nr_frags &&
4847 	    !PageHighMem(skb_frag_page(frag0))) {
4848 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4849 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4850 						    skb_frag_size(frag0),
4851 						    skb->end - skb->tail);
4852 	}
4853 }
4854 
4855 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4856 {
4857 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4858 
4859 	BUG_ON(skb->end - skb->tail < grow);
4860 
4861 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4862 
4863 	skb->data_len -= grow;
4864 	skb->tail += grow;
4865 
4866 	pinfo->frags[0].page_offset += grow;
4867 	skb_frag_size_sub(&pinfo->frags[0], grow);
4868 
4869 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4870 		skb_frag_unref(skb, 0);
4871 		memmove(pinfo->frags, pinfo->frags + 1,
4872 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4873 	}
4874 }
4875 
4876 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4877 {
4878 	struct sk_buff **pp = NULL;
4879 	struct packet_offload *ptype;
4880 	__be16 type = skb->protocol;
4881 	struct list_head *head = &offload_base;
4882 	int same_flow;
4883 	enum gro_result ret;
4884 	int grow;
4885 
4886 	if (netif_elide_gro(skb->dev))
4887 		goto normal;
4888 
4889 	gro_list_prepare(napi, skb);
4890 
4891 	rcu_read_lock();
4892 	list_for_each_entry_rcu(ptype, head, list) {
4893 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4894 			continue;
4895 
4896 		skb_set_network_header(skb, skb_gro_offset(skb));
4897 		skb_reset_mac_len(skb);
4898 		NAPI_GRO_CB(skb)->same_flow = 0;
4899 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4900 		NAPI_GRO_CB(skb)->free = 0;
4901 		NAPI_GRO_CB(skb)->encap_mark = 0;
4902 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4903 		NAPI_GRO_CB(skb)->is_fou = 0;
4904 		NAPI_GRO_CB(skb)->is_atomic = 1;
4905 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4906 
4907 		/* Setup for GRO checksum validation */
4908 		switch (skb->ip_summed) {
4909 		case CHECKSUM_COMPLETE:
4910 			NAPI_GRO_CB(skb)->csum = skb->csum;
4911 			NAPI_GRO_CB(skb)->csum_valid = 1;
4912 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4913 			break;
4914 		case CHECKSUM_UNNECESSARY:
4915 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4916 			NAPI_GRO_CB(skb)->csum_valid = 0;
4917 			break;
4918 		default:
4919 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4920 			NAPI_GRO_CB(skb)->csum_valid = 0;
4921 		}
4922 
4923 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4924 		break;
4925 	}
4926 	rcu_read_unlock();
4927 
4928 	if (&ptype->list == head)
4929 		goto normal;
4930 
4931 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4932 		ret = GRO_CONSUMED;
4933 		goto ok;
4934 	}
4935 
4936 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4937 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4938 
4939 	if (pp) {
4940 		struct sk_buff *nskb = *pp;
4941 
4942 		*pp = nskb->next;
4943 		nskb->next = NULL;
4944 		napi_gro_complete(nskb);
4945 		napi->gro_count--;
4946 	}
4947 
4948 	if (same_flow)
4949 		goto ok;
4950 
4951 	if (NAPI_GRO_CB(skb)->flush)
4952 		goto normal;
4953 
4954 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4955 		struct sk_buff *nskb = napi->gro_list;
4956 
4957 		/* locate the end of the list to select the 'oldest' flow */
4958 		while (nskb->next) {
4959 			pp = &nskb->next;
4960 			nskb = *pp;
4961 		}
4962 		*pp = NULL;
4963 		nskb->next = NULL;
4964 		napi_gro_complete(nskb);
4965 	} else {
4966 		napi->gro_count++;
4967 	}
4968 	NAPI_GRO_CB(skb)->count = 1;
4969 	NAPI_GRO_CB(skb)->age = jiffies;
4970 	NAPI_GRO_CB(skb)->last = skb;
4971 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4972 	skb->next = napi->gro_list;
4973 	napi->gro_list = skb;
4974 	ret = GRO_HELD;
4975 
4976 pull:
4977 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4978 	if (grow > 0)
4979 		gro_pull_from_frag0(skb, grow);
4980 ok:
4981 	return ret;
4982 
4983 normal:
4984 	ret = GRO_NORMAL;
4985 	goto pull;
4986 }
4987 
4988 struct packet_offload *gro_find_receive_by_type(__be16 type)
4989 {
4990 	struct list_head *offload_head = &offload_base;
4991 	struct packet_offload *ptype;
4992 
4993 	list_for_each_entry_rcu(ptype, offload_head, list) {
4994 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4995 			continue;
4996 		return ptype;
4997 	}
4998 	return NULL;
4999 }
5000 EXPORT_SYMBOL(gro_find_receive_by_type);
5001 
5002 struct packet_offload *gro_find_complete_by_type(__be16 type)
5003 {
5004 	struct list_head *offload_head = &offload_base;
5005 	struct packet_offload *ptype;
5006 
5007 	list_for_each_entry_rcu(ptype, offload_head, list) {
5008 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5009 			continue;
5010 		return ptype;
5011 	}
5012 	return NULL;
5013 }
5014 EXPORT_SYMBOL(gro_find_complete_by_type);
5015 
5016 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5017 {
5018 	skb_dst_drop(skb);
5019 	secpath_reset(skb);
5020 	kmem_cache_free(skbuff_head_cache, skb);
5021 }
5022 
5023 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5024 {
5025 	switch (ret) {
5026 	case GRO_NORMAL:
5027 		if (netif_receive_skb_internal(skb))
5028 			ret = GRO_DROP;
5029 		break;
5030 
5031 	case GRO_DROP:
5032 		kfree_skb(skb);
5033 		break;
5034 
5035 	case GRO_MERGED_FREE:
5036 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5037 			napi_skb_free_stolen_head(skb);
5038 		else
5039 			__kfree_skb(skb);
5040 		break;
5041 
5042 	case GRO_HELD:
5043 	case GRO_MERGED:
5044 	case GRO_CONSUMED:
5045 		break;
5046 	}
5047 
5048 	return ret;
5049 }
5050 
5051 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5052 {
5053 	skb_mark_napi_id(skb, napi);
5054 	trace_napi_gro_receive_entry(skb);
5055 
5056 	skb_gro_reset_offset(skb);
5057 
5058 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5059 }
5060 EXPORT_SYMBOL(napi_gro_receive);
5061 
5062 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5063 {
5064 	if (unlikely(skb->pfmemalloc)) {
5065 		consume_skb(skb);
5066 		return;
5067 	}
5068 	__skb_pull(skb, skb_headlen(skb));
5069 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5070 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5071 	skb->vlan_tci = 0;
5072 	skb->dev = napi->dev;
5073 	skb->skb_iif = 0;
5074 	skb->encapsulation = 0;
5075 	skb_shinfo(skb)->gso_type = 0;
5076 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5077 	secpath_reset(skb);
5078 
5079 	napi->skb = skb;
5080 }
5081 
5082 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5083 {
5084 	struct sk_buff *skb = napi->skb;
5085 
5086 	if (!skb) {
5087 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5088 		if (skb) {
5089 			napi->skb = skb;
5090 			skb_mark_napi_id(skb, napi);
5091 		}
5092 	}
5093 	return skb;
5094 }
5095 EXPORT_SYMBOL(napi_get_frags);
5096 
5097 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5098 				      struct sk_buff *skb,
5099 				      gro_result_t ret)
5100 {
5101 	switch (ret) {
5102 	case GRO_NORMAL:
5103 	case GRO_HELD:
5104 		__skb_push(skb, ETH_HLEN);
5105 		skb->protocol = eth_type_trans(skb, skb->dev);
5106 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5107 			ret = GRO_DROP;
5108 		break;
5109 
5110 	case GRO_DROP:
5111 		napi_reuse_skb(napi, skb);
5112 		break;
5113 
5114 	case GRO_MERGED_FREE:
5115 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5116 			napi_skb_free_stolen_head(skb);
5117 		else
5118 			napi_reuse_skb(napi, skb);
5119 		break;
5120 
5121 	case GRO_MERGED:
5122 	case GRO_CONSUMED:
5123 		break;
5124 	}
5125 
5126 	return ret;
5127 }
5128 
5129 /* Upper GRO stack assumes network header starts at gro_offset=0
5130  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5131  * We copy ethernet header into skb->data to have a common layout.
5132  */
5133 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5134 {
5135 	struct sk_buff *skb = napi->skb;
5136 	const struct ethhdr *eth;
5137 	unsigned int hlen = sizeof(*eth);
5138 
5139 	napi->skb = NULL;
5140 
5141 	skb_reset_mac_header(skb);
5142 	skb_gro_reset_offset(skb);
5143 
5144 	eth = skb_gro_header_fast(skb, 0);
5145 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5146 		eth = skb_gro_header_slow(skb, hlen, 0);
5147 		if (unlikely(!eth)) {
5148 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5149 					     __func__, napi->dev->name);
5150 			napi_reuse_skb(napi, skb);
5151 			return NULL;
5152 		}
5153 	} else {
5154 		gro_pull_from_frag0(skb, hlen);
5155 		NAPI_GRO_CB(skb)->frag0 += hlen;
5156 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5157 	}
5158 	__skb_pull(skb, hlen);
5159 
5160 	/*
5161 	 * This works because the only protocols we care about don't require
5162 	 * special handling.
5163 	 * We'll fix it up properly in napi_frags_finish()
5164 	 */
5165 	skb->protocol = eth->h_proto;
5166 
5167 	return skb;
5168 }
5169 
5170 gro_result_t napi_gro_frags(struct napi_struct *napi)
5171 {
5172 	struct sk_buff *skb = napi_frags_skb(napi);
5173 
5174 	if (!skb)
5175 		return GRO_DROP;
5176 
5177 	trace_napi_gro_frags_entry(skb);
5178 
5179 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5180 }
5181 EXPORT_SYMBOL(napi_gro_frags);
5182 
5183 /* Compute the checksum from gro_offset and return the folded value
5184  * after adding in any pseudo checksum.
5185  */
5186 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5187 {
5188 	__wsum wsum;
5189 	__sum16 sum;
5190 
5191 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5192 
5193 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5194 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5195 	if (likely(!sum)) {
5196 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5197 		    !skb->csum_complete_sw)
5198 			netdev_rx_csum_fault(skb->dev);
5199 	}
5200 
5201 	NAPI_GRO_CB(skb)->csum = wsum;
5202 	NAPI_GRO_CB(skb)->csum_valid = 1;
5203 
5204 	return sum;
5205 }
5206 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5207 
5208 static void net_rps_send_ipi(struct softnet_data *remsd)
5209 {
5210 #ifdef CONFIG_RPS
5211 	while (remsd) {
5212 		struct softnet_data *next = remsd->rps_ipi_next;
5213 
5214 		if (cpu_online(remsd->cpu))
5215 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5216 		remsd = next;
5217 	}
5218 #endif
5219 }
5220 
5221 /*
5222  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5223  * Note: called with local irq disabled, but exits with local irq enabled.
5224  */
5225 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5226 {
5227 #ifdef CONFIG_RPS
5228 	struct softnet_data *remsd = sd->rps_ipi_list;
5229 
5230 	if (remsd) {
5231 		sd->rps_ipi_list = NULL;
5232 
5233 		local_irq_enable();
5234 
5235 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5236 		net_rps_send_ipi(remsd);
5237 	} else
5238 #endif
5239 		local_irq_enable();
5240 }
5241 
5242 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5243 {
5244 #ifdef CONFIG_RPS
5245 	return sd->rps_ipi_list != NULL;
5246 #else
5247 	return false;
5248 #endif
5249 }
5250 
5251 static int process_backlog(struct napi_struct *napi, int quota)
5252 {
5253 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5254 	bool again = true;
5255 	int work = 0;
5256 
5257 	/* Check if we have pending ipi, its better to send them now,
5258 	 * not waiting net_rx_action() end.
5259 	 */
5260 	if (sd_has_rps_ipi_waiting(sd)) {
5261 		local_irq_disable();
5262 		net_rps_action_and_irq_enable(sd);
5263 	}
5264 
5265 	napi->weight = dev_rx_weight;
5266 	while (again) {
5267 		struct sk_buff *skb;
5268 
5269 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5270 			rcu_read_lock();
5271 			__netif_receive_skb(skb);
5272 			rcu_read_unlock();
5273 			input_queue_head_incr(sd);
5274 			if (++work >= quota)
5275 				return work;
5276 
5277 		}
5278 
5279 		local_irq_disable();
5280 		rps_lock(sd);
5281 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5282 			/*
5283 			 * Inline a custom version of __napi_complete().
5284 			 * only current cpu owns and manipulates this napi,
5285 			 * and NAPI_STATE_SCHED is the only possible flag set
5286 			 * on backlog.
5287 			 * We can use a plain write instead of clear_bit(),
5288 			 * and we dont need an smp_mb() memory barrier.
5289 			 */
5290 			napi->state = 0;
5291 			again = false;
5292 		} else {
5293 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5294 						   &sd->process_queue);
5295 		}
5296 		rps_unlock(sd);
5297 		local_irq_enable();
5298 	}
5299 
5300 	return work;
5301 }
5302 
5303 /**
5304  * __napi_schedule - schedule for receive
5305  * @n: entry to schedule
5306  *
5307  * The entry's receive function will be scheduled to run.
5308  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5309  */
5310 void __napi_schedule(struct napi_struct *n)
5311 {
5312 	unsigned long flags;
5313 
5314 	local_irq_save(flags);
5315 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5316 	local_irq_restore(flags);
5317 }
5318 EXPORT_SYMBOL(__napi_schedule);
5319 
5320 /**
5321  *	napi_schedule_prep - check if napi can be scheduled
5322  *	@n: napi context
5323  *
5324  * Test if NAPI routine is already running, and if not mark
5325  * it as running.  This is used as a condition variable
5326  * insure only one NAPI poll instance runs.  We also make
5327  * sure there is no pending NAPI disable.
5328  */
5329 bool napi_schedule_prep(struct napi_struct *n)
5330 {
5331 	unsigned long val, new;
5332 
5333 	do {
5334 		val = READ_ONCE(n->state);
5335 		if (unlikely(val & NAPIF_STATE_DISABLE))
5336 			return false;
5337 		new = val | NAPIF_STATE_SCHED;
5338 
5339 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5340 		 * This was suggested by Alexander Duyck, as compiler
5341 		 * emits better code than :
5342 		 * if (val & NAPIF_STATE_SCHED)
5343 		 *     new |= NAPIF_STATE_MISSED;
5344 		 */
5345 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5346 						   NAPIF_STATE_MISSED;
5347 	} while (cmpxchg(&n->state, val, new) != val);
5348 
5349 	return !(val & NAPIF_STATE_SCHED);
5350 }
5351 EXPORT_SYMBOL(napi_schedule_prep);
5352 
5353 /**
5354  * __napi_schedule_irqoff - schedule for receive
5355  * @n: entry to schedule
5356  *
5357  * Variant of __napi_schedule() assuming hard irqs are masked
5358  */
5359 void __napi_schedule_irqoff(struct napi_struct *n)
5360 {
5361 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5362 }
5363 EXPORT_SYMBOL(__napi_schedule_irqoff);
5364 
5365 bool napi_complete_done(struct napi_struct *n, int work_done)
5366 {
5367 	unsigned long flags, val, new;
5368 
5369 	/*
5370 	 * 1) Don't let napi dequeue from the cpu poll list
5371 	 *    just in case its running on a different cpu.
5372 	 * 2) If we are busy polling, do nothing here, we have
5373 	 *    the guarantee we will be called later.
5374 	 */
5375 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5376 				 NAPIF_STATE_IN_BUSY_POLL)))
5377 		return false;
5378 
5379 	if (n->gro_list) {
5380 		unsigned long timeout = 0;
5381 
5382 		if (work_done)
5383 			timeout = n->dev->gro_flush_timeout;
5384 
5385 		if (timeout)
5386 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5387 				      HRTIMER_MODE_REL_PINNED);
5388 		else
5389 			napi_gro_flush(n, false);
5390 	}
5391 	if (unlikely(!list_empty(&n->poll_list))) {
5392 		/* If n->poll_list is not empty, we need to mask irqs */
5393 		local_irq_save(flags);
5394 		list_del_init(&n->poll_list);
5395 		local_irq_restore(flags);
5396 	}
5397 
5398 	do {
5399 		val = READ_ONCE(n->state);
5400 
5401 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5402 
5403 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5404 
5405 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5406 		 * because we will call napi->poll() one more time.
5407 		 * This C code was suggested by Alexander Duyck to help gcc.
5408 		 */
5409 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5410 						    NAPIF_STATE_SCHED;
5411 	} while (cmpxchg(&n->state, val, new) != val);
5412 
5413 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5414 		__napi_schedule(n);
5415 		return false;
5416 	}
5417 
5418 	return true;
5419 }
5420 EXPORT_SYMBOL(napi_complete_done);
5421 
5422 /* must be called under rcu_read_lock(), as we dont take a reference */
5423 static struct napi_struct *napi_by_id(unsigned int napi_id)
5424 {
5425 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5426 	struct napi_struct *napi;
5427 
5428 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5429 		if (napi->napi_id == napi_id)
5430 			return napi;
5431 
5432 	return NULL;
5433 }
5434 
5435 #if defined(CONFIG_NET_RX_BUSY_POLL)
5436 
5437 #define BUSY_POLL_BUDGET 8
5438 
5439 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5440 {
5441 	int rc;
5442 
5443 	/* Busy polling means there is a high chance device driver hard irq
5444 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5445 	 * set in napi_schedule_prep().
5446 	 * Since we are about to call napi->poll() once more, we can safely
5447 	 * clear NAPI_STATE_MISSED.
5448 	 *
5449 	 * Note: x86 could use a single "lock and ..." instruction
5450 	 * to perform these two clear_bit()
5451 	 */
5452 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5453 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5454 
5455 	local_bh_disable();
5456 
5457 	/* All we really want here is to re-enable device interrupts.
5458 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5459 	 */
5460 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5461 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5462 	netpoll_poll_unlock(have_poll_lock);
5463 	if (rc == BUSY_POLL_BUDGET)
5464 		__napi_schedule(napi);
5465 	local_bh_enable();
5466 }
5467 
5468 void napi_busy_loop(unsigned int napi_id,
5469 		    bool (*loop_end)(void *, unsigned long),
5470 		    void *loop_end_arg)
5471 {
5472 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5473 	int (*napi_poll)(struct napi_struct *napi, int budget);
5474 	void *have_poll_lock = NULL;
5475 	struct napi_struct *napi;
5476 
5477 restart:
5478 	napi_poll = NULL;
5479 
5480 	rcu_read_lock();
5481 
5482 	napi = napi_by_id(napi_id);
5483 	if (!napi)
5484 		goto out;
5485 
5486 	preempt_disable();
5487 	for (;;) {
5488 		int work = 0;
5489 
5490 		local_bh_disable();
5491 		if (!napi_poll) {
5492 			unsigned long val = READ_ONCE(napi->state);
5493 
5494 			/* If multiple threads are competing for this napi,
5495 			 * we avoid dirtying napi->state as much as we can.
5496 			 */
5497 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5498 				   NAPIF_STATE_IN_BUSY_POLL))
5499 				goto count;
5500 			if (cmpxchg(&napi->state, val,
5501 				    val | NAPIF_STATE_IN_BUSY_POLL |
5502 					  NAPIF_STATE_SCHED) != val)
5503 				goto count;
5504 			have_poll_lock = netpoll_poll_lock(napi);
5505 			napi_poll = napi->poll;
5506 		}
5507 		work = napi_poll(napi, BUSY_POLL_BUDGET);
5508 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5509 count:
5510 		if (work > 0)
5511 			__NET_ADD_STATS(dev_net(napi->dev),
5512 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
5513 		local_bh_enable();
5514 
5515 		if (!loop_end || loop_end(loop_end_arg, start_time))
5516 			break;
5517 
5518 		if (unlikely(need_resched())) {
5519 			if (napi_poll)
5520 				busy_poll_stop(napi, have_poll_lock);
5521 			preempt_enable();
5522 			rcu_read_unlock();
5523 			cond_resched();
5524 			if (loop_end(loop_end_arg, start_time))
5525 				return;
5526 			goto restart;
5527 		}
5528 		cpu_relax();
5529 	}
5530 	if (napi_poll)
5531 		busy_poll_stop(napi, have_poll_lock);
5532 	preempt_enable();
5533 out:
5534 	rcu_read_unlock();
5535 }
5536 EXPORT_SYMBOL(napi_busy_loop);
5537 
5538 #endif /* CONFIG_NET_RX_BUSY_POLL */
5539 
5540 static void napi_hash_add(struct napi_struct *napi)
5541 {
5542 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5543 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5544 		return;
5545 
5546 	spin_lock(&napi_hash_lock);
5547 
5548 	/* 0..NR_CPUS range is reserved for sender_cpu use */
5549 	do {
5550 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5551 			napi_gen_id = MIN_NAPI_ID;
5552 	} while (napi_by_id(napi_gen_id));
5553 	napi->napi_id = napi_gen_id;
5554 
5555 	hlist_add_head_rcu(&napi->napi_hash_node,
5556 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5557 
5558 	spin_unlock(&napi_hash_lock);
5559 }
5560 
5561 /* Warning : caller is responsible to make sure rcu grace period
5562  * is respected before freeing memory containing @napi
5563  */
5564 bool napi_hash_del(struct napi_struct *napi)
5565 {
5566 	bool rcu_sync_needed = false;
5567 
5568 	spin_lock(&napi_hash_lock);
5569 
5570 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5571 		rcu_sync_needed = true;
5572 		hlist_del_rcu(&napi->napi_hash_node);
5573 	}
5574 	spin_unlock(&napi_hash_lock);
5575 	return rcu_sync_needed;
5576 }
5577 EXPORT_SYMBOL_GPL(napi_hash_del);
5578 
5579 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5580 {
5581 	struct napi_struct *napi;
5582 
5583 	napi = container_of(timer, struct napi_struct, timer);
5584 
5585 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5586 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5587 	 */
5588 	if (napi->gro_list && !napi_disable_pending(napi) &&
5589 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5590 		__napi_schedule_irqoff(napi);
5591 
5592 	return HRTIMER_NORESTART;
5593 }
5594 
5595 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5596 		    int (*poll)(struct napi_struct *, int), int weight)
5597 {
5598 	INIT_LIST_HEAD(&napi->poll_list);
5599 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5600 	napi->timer.function = napi_watchdog;
5601 	napi->gro_count = 0;
5602 	napi->gro_list = NULL;
5603 	napi->skb = NULL;
5604 	napi->poll = poll;
5605 	if (weight > NAPI_POLL_WEIGHT)
5606 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5607 			    weight, dev->name);
5608 	napi->weight = weight;
5609 	list_add(&napi->dev_list, &dev->napi_list);
5610 	napi->dev = dev;
5611 #ifdef CONFIG_NETPOLL
5612 	napi->poll_owner = -1;
5613 #endif
5614 	set_bit(NAPI_STATE_SCHED, &napi->state);
5615 	napi_hash_add(napi);
5616 }
5617 EXPORT_SYMBOL(netif_napi_add);
5618 
5619 void napi_disable(struct napi_struct *n)
5620 {
5621 	might_sleep();
5622 	set_bit(NAPI_STATE_DISABLE, &n->state);
5623 
5624 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5625 		msleep(1);
5626 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5627 		msleep(1);
5628 
5629 	hrtimer_cancel(&n->timer);
5630 
5631 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5632 }
5633 EXPORT_SYMBOL(napi_disable);
5634 
5635 /* Must be called in process context */
5636 void netif_napi_del(struct napi_struct *napi)
5637 {
5638 	might_sleep();
5639 	if (napi_hash_del(napi))
5640 		synchronize_net();
5641 	list_del_init(&napi->dev_list);
5642 	napi_free_frags(napi);
5643 
5644 	kfree_skb_list(napi->gro_list);
5645 	napi->gro_list = NULL;
5646 	napi->gro_count = 0;
5647 }
5648 EXPORT_SYMBOL(netif_napi_del);
5649 
5650 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5651 {
5652 	void *have;
5653 	int work, weight;
5654 
5655 	list_del_init(&n->poll_list);
5656 
5657 	have = netpoll_poll_lock(n);
5658 
5659 	weight = n->weight;
5660 
5661 	/* This NAPI_STATE_SCHED test is for avoiding a race
5662 	 * with netpoll's poll_napi().  Only the entity which
5663 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5664 	 * actually make the ->poll() call.  Therefore we avoid
5665 	 * accidentally calling ->poll() when NAPI is not scheduled.
5666 	 */
5667 	work = 0;
5668 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5669 		work = n->poll(n, weight);
5670 		trace_napi_poll(n, work, weight);
5671 	}
5672 
5673 	WARN_ON_ONCE(work > weight);
5674 
5675 	if (likely(work < weight))
5676 		goto out_unlock;
5677 
5678 	/* Drivers must not modify the NAPI state if they
5679 	 * consume the entire weight.  In such cases this code
5680 	 * still "owns" the NAPI instance and therefore can
5681 	 * move the instance around on the list at-will.
5682 	 */
5683 	if (unlikely(napi_disable_pending(n))) {
5684 		napi_complete(n);
5685 		goto out_unlock;
5686 	}
5687 
5688 	if (n->gro_list) {
5689 		/* flush too old packets
5690 		 * If HZ < 1000, flush all packets.
5691 		 */
5692 		napi_gro_flush(n, HZ >= 1000);
5693 	}
5694 
5695 	/* Some drivers may have called napi_schedule
5696 	 * prior to exhausting their budget.
5697 	 */
5698 	if (unlikely(!list_empty(&n->poll_list))) {
5699 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5700 			     n->dev ? n->dev->name : "backlog");
5701 		goto out_unlock;
5702 	}
5703 
5704 	list_add_tail(&n->poll_list, repoll);
5705 
5706 out_unlock:
5707 	netpoll_poll_unlock(have);
5708 
5709 	return work;
5710 }
5711 
5712 static __latent_entropy void net_rx_action(struct softirq_action *h)
5713 {
5714 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5715 	unsigned long time_limit = jiffies +
5716 		usecs_to_jiffies(netdev_budget_usecs);
5717 	int budget = netdev_budget;
5718 	LIST_HEAD(list);
5719 	LIST_HEAD(repoll);
5720 
5721 	local_irq_disable();
5722 	list_splice_init(&sd->poll_list, &list);
5723 	local_irq_enable();
5724 
5725 	for (;;) {
5726 		struct napi_struct *n;
5727 
5728 		if (list_empty(&list)) {
5729 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5730 				goto out;
5731 			break;
5732 		}
5733 
5734 		n = list_first_entry(&list, struct napi_struct, poll_list);
5735 		budget -= napi_poll(n, &repoll);
5736 
5737 		/* If softirq window is exhausted then punt.
5738 		 * Allow this to run for 2 jiffies since which will allow
5739 		 * an average latency of 1.5/HZ.
5740 		 */
5741 		if (unlikely(budget <= 0 ||
5742 			     time_after_eq(jiffies, time_limit))) {
5743 			sd->time_squeeze++;
5744 			break;
5745 		}
5746 	}
5747 
5748 	local_irq_disable();
5749 
5750 	list_splice_tail_init(&sd->poll_list, &list);
5751 	list_splice_tail(&repoll, &list);
5752 	list_splice(&list, &sd->poll_list);
5753 	if (!list_empty(&sd->poll_list))
5754 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5755 
5756 	net_rps_action_and_irq_enable(sd);
5757 out:
5758 	__kfree_skb_flush();
5759 }
5760 
5761 struct netdev_adjacent {
5762 	struct net_device *dev;
5763 
5764 	/* upper master flag, there can only be one master device per list */
5765 	bool master;
5766 
5767 	/* counter for the number of times this device was added to us */
5768 	u16 ref_nr;
5769 
5770 	/* private field for the users */
5771 	void *private;
5772 
5773 	struct list_head list;
5774 	struct rcu_head rcu;
5775 };
5776 
5777 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5778 						 struct list_head *adj_list)
5779 {
5780 	struct netdev_adjacent *adj;
5781 
5782 	list_for_each_entry(adj, adj_list, list) {
5783 		if (adj->dev == adj_dev)
5784 			return adj;
5785 	}
5786 	return NULL;
5787 }
5788 
5789 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5790 {
5791 	struct net_device *dev = data;
5792 
5793 	return upper_dev == dev;
5794 }
5795 
5796 /**
5797  * netdev_has_upper_dev - Check if device is linked to an upper device
5798  * @dev: device
5799  * @upper_dev: upper device to check
5800  *
5801  * Find out if a device is linked to specified upper device and return true
5802  * in case it is. Note that this checks only immediate upper device,
5803  * not through a complete stack of devices. The caller must hold the RTNL lock.
5804  */
5805 bool netdev_has_upper_dev(struct net_device *dev,
5806 			  struct net_device *upper_dev)
5807 {
5808 	ASSERT_RTNL();
5809 
5810 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5811 					     upper_dev);
5812 }
5813 EXPORT_SYMBOL(netdev_has_upper_dev);
5814 
5815 /**
5816  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5817  * @dev: device
5818  * @upper_dev: upper device to check
5819  *
5820  * Find out if a device is linked to specified upper device and return true
5821  * in case it is. Note that this checks the entire upper device chain.
5822  * The caller must hold rcu lock.
5823  */
5824 
5825 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5826 				  struct net_device *upper_dev)
5827 {
5828 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5829 					       upper_dev);
5830 }
5831 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5832 
5833 /**
5834  * netdev_has_any_upper_dev - Check if device is linked to some device
5835  * @dev: device
5836  *
5837  * Find out if a device is linked to an upper device and return true in case
5838  * it is. The caller must hold the RTNL lock.
5839  */
5840 bool netdev_has_any_upper_dev(struct net_device *dev)
5841 {
5842 	ASSERT_RTNL();
5843 
5844 	return !list_empty(&dev->adj_list.upper);
5845 }
5846 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5847 
5848 /**
5849  * netdev_master_upper_dev_get - Get master upper device
5850  * @dev: device
5851  *
5852  * Find a master upper device and return pointer to it or NULL in case
5853  * it's not there. The caller must hold the RTNL lock.
5854  */
5855 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5856 {
5857 	struct netdev_adjacent *upper;
5858 
5859 	ASSERT_RTNL();
5860 
5861 	if (list_empty(&dev->adj_list.upper))
5862 		return NULL;
5863 
5864 	upper = list_first_entry(&dev->adj_list.upper,
5865 				 struct netdev_adjacent, list);
5866 	if (likely(upper->master))
5867 		return upper->dev;
5868 	return NULL;
5869 }
5870 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5871 
5872 /**
5873  * netdev_has_any_lower_dev - Check if device is linked to some device
5874  * @dev: device
5875  *
5876  * Find out if a device is linked to a lower device and return true in case
5877  * it is. The caller must hold the RTNL lock.
5878  */
5879 static bool netdev_has_any_lower_dev(struct net_device *dev)
5880 {
5881 	ASSERT_RTNL();
5882 
5883 	return !list_empty(&dev->adj_list.lower);
5884 }
5885 
5886 void *netdev_adjacent_get_private(struct list_head *adj_list)
5887 {
5888 	struct netdev_adjacent *adj;
5889 
5890 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5891 
5892 	return adj->private;
5893 }
5894 EXPORT_SYMBOL(netdev_adjacent_get_private);
5895 
5896 /**
5897  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5898  * @dev: device
5899  * @iter: list_head ** of the current position
5900  *
5901  * Gets the next device from the dev's upper list, starting from iter
5902  * position. The caller must hold RCU read lock.
5903  */
5904 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5905 						 struct list_head **iter)
5906 {
5907 	struct netdev_adjacent *upper;
5908 
5909 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5910 
5911 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5912 
5913 	if (&upper->list == &dev->adj_list.upper)
5914 		return NULL;
5915 
5916 	*iter = &upper->list;
5917 
5918 	return upper->dev;
5919 }
5920 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5921 
5922 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5923 						    struct list_head **iter)
5924 {
5925 	struct netdev_adjacent *upper;
5926 
5927 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5928 
5929 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5930 
5931 	if (&upper->list == &dev->adj_list.upper)
5932 		return NULL;
5933 
5934 	*iter = &upper->list;
5935 
5936 	return upper->dev;
5937 }
5938 
5939 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5940 				  int (*fn)(struct net_device *dev,
5941 					    void *data),
5942 				  void *data)
5943 {
5944 	struct net_device *udev;
5945 	struct list_head *iter;
5946 	int ret;
5947 
5948 	for (iter = &dev->adj_list.upper,
5949 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
5950 	     udev;
5951 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5952 		/* first is the upper device itself */
5953 		ret = fn(udev, data);
5954 		if (ret)
5955 			return ret;
5956 
5957 		/* then look at all of its upper devices */
5958 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5959 		if (ret)
5960 			return ret;
5961 	}
5962 
5963 	return 0;
5964 }
5965 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5966 
5967 /**
5968  * netdev_lower_get_next_private - Get the next ->private from the
5969  *				   lower neighbour list
5970  * @dev: device
5971  * @iter: list_head ** of the current position
5972  *
5973  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5974  * list, starting from iter position. The caller must hold either hold the
5975  * RTNL lock or its own locking that guarantees that the neighbour lower
5976  * list will remain unchanged.
5977  */
5978 void *netdev_lower_get_next_private(struct net_device *dev,
5979 				    struct list_head **iter)
5980 {
5981 	struct netdev_adjacent *lower;
5982 
5983 	lower = list_entry(*iter, struct netdev_adjacent, list);
5984 
5985 	if (&lower->list == &dev->adj_list.lower)
5986 		return NULL;
5987 
5988 	*iter = lower->list.next;
5989 
5990 	return lower->private;
5991 }
5992 EXPORT_SYMBOL(netdev_lower_get_next_private);
5993 
5994 /**
5995  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5996  *				       lower neighbour list, RCU
5997  *				       variant
5998  * @dev: device
5999  * @iter: list_head ** of the current position
6000  *
6001  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6002  * list, starting from iter position. The caller must hold RCU read lock.
6003  */
6004 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6005 					struct list_head **iter)
6006 {
6007 	struct netdev_adjacent *lower;
6008 
6009 	WARN_ON_ONCE(!rcu_read_lock_held());
6010 
6011 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6012 
6013 	if (&lower->list == &dev->adj_list.lower)
6014 		return NULL;
6015 
6016 	*iter = &lower->list;
6017 
6018 	return lower->private;
6019 }
6020 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6021 
6022 /**
6023  * netdev_lower_get_next - Get the next device from the lower neighbour
6024  *                         list
6025  * @dev: device
6026  * @iter: list_head ** of the current position
6027  *
6028  * Gets the next netdev_adjacent from the dev's lower neighbour
6029  * list, starting from iter position. The caller must hold RTNL lock or
6030  * its own locking that guarantees that the neighbour lower
6031  * list will remain unchanged.
6032  */
6033 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6034 {
6035 	struct netdev_adjacent *lower;
6036 
6037 	lower = list_entry(*iter, struct netdev_adjacent, list);
6038 
6039 	if (&lower->list == &dev->adj_list.lower)
6040 		return NULL;
6041 
6042 	*iter = lower->list.next;
6043 
6044 	return lower->dev;
6045 }
6046 EXPORT_SYMBOL(netdev_lower_get_next);
6047 
6048 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6049 						struct list_head **iter)
6050 {
6051 	struct netdev_adjacent *lower;
6052 
6053 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6054 
6055 	if (&lower->list == &dev->adj_list.lower)
6056 		return NULL;
6057 
6058 	*iter = &lower->list;
6059 
6060 	return lower->dev;
6061 }
6062 
6063 int netdev_walk_all_lower_dev(struct net_device *dev,
6064 			      int (*fn)(struct net_device *dev,
6065 					void *data),
6066 			      void *data)
6067 {
6068 	struct net_device *ldev;
6069 	struct list_head *iter;
6070 	int ret;
6071 
6072 	for (iter = &dev->adj_list.lower,
6073 	     ldev = netdev_next_lower_dev(dev, &iter);
6074 	     ldev;
6075 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6076 		/* first is the lower device itself */
6077 		ret = fn(ldev, data);
6078 		if (ret)
6079 			return ret;
6080 
6081 		/* then look at all of its lower devices */
6082 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6083 		if (ret)
6084 			return ret;
6085 	}
6086 
6087 	return 0;
6088 }
6089 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6090 
6091 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6092 						    struct list_head **iter)
6093 {
6094 	struct netdev_adjacent *lower;
6095 
6096 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6097 	if (&lower->list == &dev->adj_list.lower)
6098 		return NULL;
6099 
6100 	*iter = &lower->list;
6101 
6102 	return lower->dev;
6103 }
6104 
6105 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6106 				  int (*fn)(struct net_device *dev,
6107 					    void *data),
6108 				  void *data)
6109 {
6110 	struct net_device *ldev;
6111 	struct list_head *iter;
6112 	int ret;
6113 
6114 	for (iter = &dev->adj_list.lower,
6115 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6116 	     ldev;
6117 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6118 		/* first is the lower device itself */
6119 		ret = fn(ldev, data);
6120 		if (ret)
6121 			return ret;
6122 
6123 		/* then look at all of its lower devices */
6124 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6125 		if (ret)
6126 			return ret;
6127 	}
6128 
6129 	return 0;
6130 }
6131 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6132 
6133 /**
6134  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6135  *				       lower neighbour list, RCU
6136  *				       variant
6137  * @dev: device
6138  *
6139  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6140  * list. The caller must hold RCU read lock.
6141  */
6142 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6143 {
6144 	struct netdev_adjacent *lower;
6145 
6146 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6147 			struct netdev_adjacent, list);
6148 	if (lower)
6149 		return lower->private;
6150 	return NULL;
6151 }
6152 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6153 
6154 /**
6155  * netdev_master_upper_dev_get_rcu - Get master upper device
6156  * @dev: device
6157  *
6158  * Find a master upper device and return pointer to it or NULL in case
6159  * it's not there. The caller must hold the RCU read lock.
6160  */
6161 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6162 {
6163 	struct netdev_adjacent *upper;
6164 
6165 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6166 				       struct netdev_adjacent, list);
6167 	if (upper && likely(upper->master))
6168 		return upper->dev;
6169 	return NULL;
6170 }
6171 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6172 
6173 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6174 			      struct net_device *adj_dev,
6175 			      struct list_head *dev_list)
6176 {
6177 	char linkname[IFNAMSIZ+7];
6178 
6179 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6180 		"upper_%s" : "lower_%s", adj_dev->name);
6181 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6182 				 linkname);
6183 }
6184 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6185 			       char *name,
6186 			       struct list_head *dev_list)
6187 {
6188 	char linkname[IFNAMSIZ+7];
6189 
6190 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6191 		"upper_%s" : "lower_%s", name);
6192 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6193 }
6194 
6195 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6196 						 struct net_device *adj_dev,
6197 						 struct list_head *dev_list)
6198 {
6199 	return (dev_list == &dev->adj_list.upper ||
6200 		dev_list == &dev->adj_list.lower) &&
6201 		net_eq(dev_net(dev), dev_net(adj_dev));
6202 }
6203 
6204 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6205 					struct net_device *adj_dev,
6206 					struct list_head *dev_list,
6207 					void *private, bool master)
6208 {
6209 	struct netdev_adjacent *adj;
6210 	int ret;
6211 
6212 	adj = __netdev_find_adj(adj_dev, dev_list);
6213 
6214 	if (adj) {
6215 		adj->ref_nr += 1;
6216 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6217 			 dev->name, adj_dev->name, adj->ref_nr);
6218 
6219 		return 0;
6220 	}
6221 
6222 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6223 	if (!adj)
6224 		return -ENOMEM;
6225 
6226 	adj->dev = adj_dev;
6227 	adj->master = master;
6228 	adj->ref_nr = 1;
6229 	adj->private = private;
6230 	dev_hold(adj_dev);
6231 
6232 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6233 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6234 
6235 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6236 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6237 		if (ret)
6238 			goto free_adj;
6239 	}
6240 
6241 	/* Ensure that master link is always the first item in list. */
6242 	if (master) {
6243 		ret = sysfs_create_link(&(dev->dev.kobj),
6244 					&(adj_dev->dev.kobj), "master");
6245 		if (ret)
6246 			goto remove_symlinks;
6247 
6248 		list_add_rcu(&adj->list, dev_list);
6249 	} else {
6250 		list_add_tail_rcu(&adj->list, dev_list);
6251 	}
6252 
6253 	return 0;
6254 
6255 remove_symlinks:
6256 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6257 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6258 free_adj:
6259 	kfree(adj);
6260 	dev_put(adj_dev);
6261 
6262 	return ret;
6263 }
6264 
6265 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6266 					 struct net_device *adj_dev,
6267 					 u16 ref_nr,
6268 					 struct list_head *dev_list)
6269 {
6270 	struct netdev_adjacent *adj;
6271 
6272 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6273 		 dev->name, adj_dev->name, ref_nr);
6274 
6275 	adj = __netdev_find_adj(adj_dev, dev_list);
6276 
6277 	if (!adj) {
6278 		pr_err("Adjacency does not exist for device %s from %s\n",
6279 		       dev->name, adj_dev->name);
6280 		WARN_ON(1);
6281 		return;
6282 	}
6283 
6284 	if (adj->ref_nr > ref_nr) {
6285 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6286 			 dev->name, adj_dev->name, ref_nr,
6287 			 adj->ref_nr - ref_nr);
6288 		adj->ref_nr -= ref_nr;
6289 		return;
6290 	}
6291 
6292 	if (adj->master)
6293 		sysfs_remove_link(&(dev->dev.kobj), "master");
6294 
6295 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6296 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6297 
6298 	list_del_rcu(&adj->list);
6299 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6300 		 adj_dev->name, dev->name, adj_dev->name);
6301 	dev_put(adj_dev);
6302 	kfree_rcu(adj, rcu);
6303 }
6304 
6305 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6306 					    struct net_device *upper_dev,
6307 					    struct list_head *up_list,
6308 					    struct list_head *down_list,
6309 					    void *private, bool master)
6310 {
6311 	int ret;
6312 
6313 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6314 					   private, master);
6315 	if (ret)
6316 		return ret;
6317 
6318 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6319 					   private, false);
6320 	if (ret) {
6321 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6322 		return ret;
6323 	}
6324 
6325 	return 0;
6326 }
6327 
6328 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6329 					       struct net_device *upper_dev,
6330 					       u16 ref_nr,
6331 					       struct list_head *up_list,
6332 					       struct list_head *down_list)
6333 {
6334 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6335 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6336 }
6337 
6338 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6339 						struct net_device *upper_dev,
6340 						void *private, bool master)
6341 {
6342 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6343 						&dev->adj_list.upper,
6344 						&upper_dev->adj_list.lower,
6345 						private, master);
6346 }
6347 
6348 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6349 						   struct net_device *upper_dev)
6350 {
6351 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6352 					   &dev->adj_list.upper,
6353 					   &upper_dev->adj_list.lower);
6354 }
6355 
6356 static int __netdev_upper_dev_link(struct net_device *dev,
6357 				   struct net_device *upper_dev, bool master,
6358 				   void *upper_priv, void *upper_info,
6359 				   struct netlink_ext_ack *extack)
6360 {
6361 	struct netdev_notifier_changeupper_info changeupper_info = {
6362 		.info = {
6363 			.dev = dev,
6364 			.extack = extack,
6365 		},
6366 		.upper_dev = upper_dev,
6367 		.master = master,
6368 		.linking = true,
6369 		.upper_info = upper_info,
6370 	};
6371 	int ret = 0;
6372 
6373 	ASSERT_RTNL();
6374 
6375 	if (dev == upper_dev)
6376 		return -EBUSY;
6377 
6378 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6379 	if (netdev_has_upper_dev(upper_dev, dev))
6380 		return -EBUSY;
6381 
6382 	if (netdev_has_upper_dev(dev, upper_dev))
6383 		return -EEXIST;
6384 
6385 	if (master && netdev_master_upper_dev_get(dev))
6386 		return -EBUSY;
6387 
6388 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6389 					    &changeupper_info.info);
6390 	ret = notifier_to_errno(ret);
6391 	if (ret)
6392 		return ret;
6393 
6394 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6395 						   master);
6396 	if (ret)
6397 		return ret;
6398 
6399 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6400 					    &changeupper_info.info);
6401 	ret = notifier_to_errno(ret);
6402 	if (ret)
6403 		goto rollback;
6404 
6405 	return 0;
6406 
6407 rollback:
6408 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6409 
6410 	return ret;
6411 }
6412 
6413 /**
6414  * netdev_upper_dev_link - Add a link to the upper device
6415  * @dev: device
6416  * @upper_dev: new upper device
6417  *
6418  * Adds a link to device which is upper to this one. The caller must hold
6419  * the RTNL lock. On a failure a negative errno code is returned.
6420  * On success the reference counts are adjusted and the function
6421  * returns zero.
6422  */
6423 int netdev_upper_dev_link(struct net_device *dev,
6424 			  struct net_device *upper_dev,
6425 			  struct netlink_ext_ack *extack)
6426 {
6427 	return __netdev_upper_dev_link(dev, upper_dev, false,
6428 				       NULL, NULL, extack);
6429 }
6430 EXPORT_SYMBOL(netdev_upper_dev_link);
6431 
6432 /**
6433  * netdev_master_upper_dev_link - Add a master link to the upper device
6434  * @dev: device
6435  * @upper_dev: new upper device
6436  * @upper_priv: upper device private
6437  * @upper_info: upper info to be passed down via notifier
6438  *
6439  * Adds a link to device which is upper to this one. In this case, only
6440  * one master upper device can be linked, although other non-master devices
6441  * might be linked as well. The caller must hold the RTNL lock.
6442  * On a failure a negative errno code is returned. On success the reference
6443  * counts are adjusted and the function returns zero.
6444  */
6445 int netdev_master_upper_dev_link(struct net_device *dev,
6446 				 struct net_device *upper_dev,
6447 				 void *upper_priv, void *upper_info,
6448 				 struct netlink_ext_ack *extack)
6449 {
6450 	return __netdev_upper_dev_link(dev, upper_dev, true,
6451 				       upper_priv, upper_info, extack);
6452 }
6453 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6454 
6455 /**
6456  * netdev_upper_dev_unlink - Removes a link to upper device
6457  * @dev: device
6458  * @upper_dev: new upper device
6459  *
6460  * Removes a link to device which is upper to this one. The caller must hold
6461  * the RTNL lock.
6462  */
6463 void netdev_upper_dev_unlink(struct net_device *dev,
6464 			     struct net_device *upper_dev)
6465 {
6466 	struct netdev_notifier_changeupper_info changeupper_info = {
6467 		.info = {
6468 			.dev = dev,
6469 		},
6470 		.upper_dev = upper_dev,
6471 		.linking = false,
6472 	};
6473 
6474 	ASSERT_RTNL();
6475 
6476 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6477 
6478 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6479 				      &changeupper_info.info);
6480 
6481 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6482 
6483 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6484 				      &changeupper_info.info);
6485 }
6486 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6487 
6488 /**
6489  * netdev_bonding_info_change - Dispatch event about slave change
6490  * @dev: device
6491  * @bonding_info: info to dispatch
6492  *
6493  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6494  * The caller must hold the RTNL lock.
6495  */
6496 void netdev_bonding_info_change(struct net_device *dev,
6497 				struct netdev_bonding_info *bonding_info)
6498 {
6499 	struct netdev_notifier_bonding_info info = {
6500 		.info.dev = dev,
6501 	};
6502 
6503 	memcpy(&info.bonding_info, bonding_info,
6504 	       sizeof(struct netdev_bonding_info));
6505 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6506 				      &info.info);
6507 }
6508 EXPORT_SYMBOL(netdev_bonding_info_change);
6509 
6510 static void netdev_adjacent_add_links(struct net_device *dev)
6511 {
6512 	struct netdev_adjacent *iter;
6513 
6514 	struct net *net = dev_net(dev);
6515 
6516 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6517 		if (!net_eq(net, dev_net(iter->dev)))
6518 			continue;
6519 		netdev_adjacent_sysfs_add(iter->dev, dev,
6520 					  &iter->dev->adj_list.lower);
6521 		netdev_adjacent_sysfs_add(dev, iter->dev,
6522 					  &dev->adj_list.upper);
6523 	}
6524 
6525 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6526 		if (!net_eq(net, dev_net(iter->dev)))
6527 			continue;
6528 		netdev_adjacent_sysfs_add(iter->dev, dev,
6529 					  &iter->dev->adj_list.upper);
6530 		netdev_adjacent_sysfs_add(dev, iter->dev,
6531 					  &dev->adj_list.lower);
6532 	}
6533 }
6534 
6535 static void netdev_adjacent_del_links(struct net_device *dev)
6536 {
6537 	struct netdev_adjacent *iter;
6538 
6539 	struct net *net = dev_net(dev);
6540 
6541 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6542 		if (!net_eq(net, dev_net(iter->dev)))
6543 			continue;
6544 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6545 					  &iter->dev->adj_list.lower);
6546 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6547 					  &dev->adj_list.upper);
6548 	}
6549 
6550 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6551 		if (!net_eq(net, dev_net(iter->dev)))
6552 			continue;
6553 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6554 					  &iter->dev->adj_list.upper);
6555 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6556 					  &dev->adj_list.lower);
6557 	}
6558 }
6559 
6560 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6561 {
6562 	struct netdev_adjacent *iter;
6563 
6564 	struct net *net = dev_net(dev);
6565 
6566 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6567 		if (!net_eq(net, dev_net(iter->dev)))
6568 			continue;
6569 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6570 					  &iter->dev->adj_list.lower);
6571 		netdev_adjacent_sysfs_add(iter->dev, dev,
6572 					  &iter->dev->adj_list.lower);
6573 	}
6574 
6575 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6576 		if (!net_eq(net, dev_net(iter->dev)))
6577 			continue;
6578 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6579 					  &iter->dev->adj_list.upper);
6580 		netdev_adjacent_sysfs_add(iter->dev, dev,
6581 					  &iter->dev->adj_list.upper);
6582 	}
6583 }
6584 
6585 void *netdev_lower_dev_get_private(struct net_device *dev,
6586 				   struct net_device *lower_dev)
6587 {
6588 	struct netdev_adjacent *lower;
6589 
6590 	if (!lower_dev)
6591 		return NULL;
6592 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6593 	if (!lower)
6594 		return NULL;
6595 
6596 	return lower->private;
6597 }
6598 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6599 
6600 
6601 int dev_get_nest_level(struct net_device *dev)
6602 {
6603 	struct net_device *lower = NULL;
6604 	struct list_head *iter;
6605 	int max_nest = -1;
6606 	int nest;
6607 
6608 	ASSERT_RTNL();
6609 
6610 	netdev_for_each_lower_dev(dev, lower, iter) {
6611 		nest = dev_get_nest_level(lower);
6612 		if (max_nest < nest)
6613 			max_nest = nest;
6614 	}
6615 
6616 	return max_nest + 1;
6617 }
6618 EXPORT_SYMBOL(dev_get_nest_level);
6619 
6620 /**
6621  * netdev_lower_change - Dispatch event about lower device state change
6622  * @lower_dev: device
6623  * @lower_state_info: state to dispatch
6624  *
6625  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6626  * The caller must hold the RTNL lock.
6627  */
6628 void netdev_lower_state_changed(struct net_device *lower_dev,
6629 				void *lower_state_info)
6630 {
6631 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6632 		.info.dev = lower_dev,
6633 	};
6634 
6635 	ASSERT_RTNL();
6636 	changelowerstate_info.lower_state_info = lower_state_info;
6637 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6638 				      &changelowerstate_info.info);
6639 }
6640 EXPORT_SYMBOL(netdev_lower_state_changed);
6641 
6642 static void dev_change_rx_flags(struct net_device *dev, int flags)
6643 {
6644 	const struct net_device_ops *ops = dev->netdev_ops;
6645 
6646 	if (ops->ndo_change_rx_flags)
6647 		ops->ndo_change_rx_flags(dev, flags);
6648 }
6649 
6650 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6651 {
6652 	unsigned int old_flags = dev->flags;
6653 	kuid_t uid;
6654 	kgid_t gid;
6655 
6656 	ASSERT_RTNL();
6657 
6658 	dev->flags |= IFF_PROMISC;
6659 	dev->promiscuity += inc;
6660 	if (dev->promiscuity == 0) {
6661 		/*
6662 		 * Avoid overflow.
6663 		 * If inc causes overflow, untouch promisc and return error.
6664 		 */
6665 		if (inc < 0)
6666 			dev->flags &= ~IFF_PROMISC;
6667 		else {
6668 			dev->promiscuity -= inc;
6669 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6670 				dev->name);
6671 			return -EOVERFLOW;
6672 		}
6673 	}
6674 	if (dev->flags != old_flags) {
6675 		pr_info("device %s %s promiscuous mode\n",
6676 			dev->name,
6677 			dev->flags & IFF_PROMISC ? "entered" : "left");
6678 		if (audit_enabled) {
6679 			current_uid_gid(&uid, &gid);
6680 			audit_log(current->audit_context, GFP_ATOMIC,
6681 				AUDIT_ANOM_PROMISCUOUS,
6682 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6683 				dev->name, (dev->flags & IFF_PROMISC),
6684 				(old_flags & IFF_PROMISC),
6685 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6686 				from_kuid(&init_user_ns, uid),
6687 				from_kgid(&init_user_ns, gid),
6688 				audit_get_sessionid(current));
6689 		}
6690 
6691 		dev_change_rx_flags(dev, IFF_PROMISC);
6692 	}
6693 	if (notify)
6694 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6695 	return 0;
6696 }
6697 
6698 /**
6699  *	dev_set_promiscuity	- update promiscuity count on a device
6700  *	@dev: device
6701  *	@inc: modifier
6702  *
6703  *	Add or remove promiscuity from a device. While the count in the device
6704  *	remains above zero the interface remains promiscuous. Once it hits zero
6705  *	the device reverts back to normal filtering operation. A negative inc
6706  *	value is used to drop promiscuity on the device.
6707  *	Return 0 if successful or a negative errno code on error.
6708  */
6709 int dev_set_promiscuity(struct net_device *dev, int inc)
6710 {
6711 	unsigned int old_flags = dev->flags;
6712 	int err;
6713 
6714 	err = __dev_set_promiscuity(dev, inc, true);
6715 	if (err < 0)
6716 		return err;
6717 	if (dev->flags != old_flags)
6718 		dev_set_rx_mode(dev);
6719 	return err;
6720 }
6721 EXPORT_SYMBOL(dev_set_promiscuity);
6722 
6723 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6724 {
6725 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6726 
6727 	ASSERT_RTNL();
6728 
6729 	dev->flags |= IFF_ALLMULTI;
6730 	dev->allmulti += inc;
6731 	if (dev->allmulti == 0) {
6732 		/*
6733 		 * Avoid overflow.
6734 		 * If inc causes overflow, untouch allmulti and return error.
6735 		 */
6736 		if (inc < 0)
6737 			dev->flags &= ~IFF_ALLMULTI;
6738 		else {
6739 			dev->allmulti -= inc;
6740 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6741 				dev->name);
6742 			return -EOVERFLOW;
6743 		}
6744 	}
6745 	if (dev->flags ^ old_flags) {
6746 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6747 		dev_set_rx_mode(dev);
6748 		if (notify)
6749 			__dev_notify_flags(dev, old_flags,
6750 					   dev->gflags ^ old_gflags);
6751 	}
6752 	return 0;
6753 }
6754 
6755 /**
6756  *	dev_set_allmulti	- update allmulti count on a device
6757  *	@dev: device
6758  *	@inc: modifier
6759  *
6760  *	Add or remove reception of all multicast frames to a device. While the
6761  *	count in the device remains above zero the interface remains listening
6762  *	to all interfaces. Once it hits zero the device reverts back to normal
6763  *	filtering operation. A negative @inc value is used to drop the counter
6764  *	when releasing a resource needing all multicasts.
6765  *	Return 0 if successful or a negative errno code on error.
6766  */
6767 
6768 int dev_set_allmulti(struct net_device *dev, int inc)
6769 {
6770 	return __dev_set_allmulti(dev, inc, true);
6771 }
6772 EXPORT_SYMBOL(dev_set_allmulti);
6773 
6774 /*
6775  *	Upload unicast and multicast address lists to device and
6776  *	configure RX filtering. When the device doesn't support unicast
6777  *	filtering it is put in promiscuous mode while unicast addresses
6778  *	are present.
6779  */
6780 void __dev_set_rx_mode(struct net_device *dev)
6781 {
6782 	const struct net_device_ops *ops = dev->netdev_ops;
6783 
6784 	/* dev_open will call this function so the list will stay sane. */
6785 	if (!(dev->flags&IFF_UP))
6786 		return;
6787 
6788 	if (!netif_device_present(dev))
6789 		return;
6790 
6791 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6792 		/* Unicast addresses changes may only happen under the rtnl,
6793 		 * therefore calling __dev_set_promiscuity here is safe.
6794 		 */
6795 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6796 			__dev_set_promiscuity(dev, 1, false);
6797 			dev->uc_promisc = true;
6798 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6799 			__dev_set_promiscuity(dev, -1, false);
6800 			dev->uc_promisc = false;
6801 		}
6802 	}
6803 
6804 	if (ops->ndo_set_rx_mode)
6805 		ops->ndo_set_rx_mode(dev);
6806 }
6807 
6808 void dev_set_rx_mode(struct net_device *dev)
6809 {
6810 	netif_addr_lock_bh(dev);
6811 	__dev_set_rx_mode(dev);
6812 	netif_addr_unlock_bh(dev);
6813 }
6814 
6815 /**
6816  *	dev_get_flags - get flags reported to userspace
6817  *	@dev: device
6818  *
6819  *	Get the combination of flag bits exported through APIs to userspace.
6820  */
6821 unsigned int dev_get_flags(const struct net_device *dev)
6822 {
6823 	unsigned int flags;
6824 
6825 	flags = (dev->flags & ~(IFF_PROMISC |
6826 				IFF_ALLMULTI |
6827 				IFF_RUNNING |
6828 				IFF_LOWER_UP |
6829 				IFF_DORMANT)) |
6830 		(dev->gflags & (IFF_PROMISC |
6831 				IFF_ALLMULTI));
6832 
6833 	if (netif_running(dev)) {
6834 		if (netif_oper_up(dev))
6835 			flags |= IFF_RUNNING;
6836 		if (netif_carrier_ok(dev))
6837 			flags |= IFF_LOWER_UP;
6838 		if (netif_dormant(dev))
6839 			flags |= IFF_DORMANT;
6840 	}
6841 
6842 	return flags;
6843 }
6844 EXPORT_SYMBOL(dev_get_flags);
6845 
6846 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6847 {
6848 	unsigned int old_flags = dev->flags;
6849 	int ret;
6850 
6851 	ASSERT_RTNL();
6852 
6853 	/*
6854 	 *	Set the flags on our device.
6855 	 */
6856 
6857 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6858 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6859 			       IFF_AUTOMEDIA)) |
6860 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6861 				    IFF_ALLMULTI));
6862 
6863 	/*
6864 	 *	Load in the correct multicast list now the flags have changed.
6865 	 */
6866 
6867 	if ((old_flags ^ flags) & IFF_MULTICAST)
6868 		dev_change_rx_flags(dev, IFF_MULTICAST);
6869 
6870 	dev_set_rx_mode(dev);
6871 
6872 	/*
6873 	 *	Have we downed the interface. We handle IFF_UP ourselves
6874 	 *	according to user attempts to set it, rather than blindly
6875 	 *	setting it.
6876 	 */
6877 
6878 	ret = 0;
6879 	if ((old_flags ^ flags) & IFF_UP) {
6880 		if (old_flags & IFF_UP)
6881 			__dev_close(dev);
6882 		else
6883 			ret = __dev_open(dev);
6884 	}
6885 
6886 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6887 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6888 		unsigned int old_flags = dev->flags;
6889 
6890 		dev->gflags ^= IFF_PROMISC;
6891 
6892 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6893 			if (dev->flags != old_flags)
6894 				dev_set_rx_mode(dev);
6895 	}
6896 
6897 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6898 	 * is important. Some (broken) drivers set IFF_PROMISC, when
6899 	 * IFF_ALLMULTI is requested not asking us and not reporting.
6900 	 */
6901 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6902 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6903 
6904 		dev->gflags ^= IFF_ALLMULTI;
6905 		__dev_set_allmulti(dev, inc, false);
6906 	}
6907 
6908 	return ret;
6909 }
6910 
6911 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6912 			unsigned int gchanges)
6913 {
6914 	unsigned int changes = dev->flags ^ old_flags;
6915 
6916 	if (gchanges)
6917 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6918 
6919 	if (changes & IFF_UP) {
6920 		if (dev->flags & IFF_UP)
6921 			call_netdevice_notifiers(NETDEV_UP, dev);
6922 		else
6923 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6924 	}
6925 
6926 	if (dev->flags & IFF_UP &&
6927 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6928 		struct netdev_notifier_change_info change_info = {
6929 			.info = {
6930 				.dev = dev,
6931 			},
6932 			.flags_changed = changes,
6933 		};
6934 
6935 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
6936 	}
6937 }
6938 
6939 /**
6940  *	dev_change_flags - change device settings
6941  *	@dev: device
6942  *	@flags: device state flags
6943  *
6944  *	Change settings on device based state flags. The flags are
6945  *	in the userspace exported format.
6946  */
6947 int dev_change_flags(struct net_device *dev, unsigned int flags)
6948 {
6949 	int ret;
6950 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6951 
6952 	ret = __dev_change_flags(dev, flags);
6953 	if (ret < 0)
6954 		return ret;
6955 
6956 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6957 	__dev_notify_flags(dev, old_flags, changes);
6958 	return ret;
6959 }
6960 EXPORT_SYMBOL(dev_change_flags);
6961 
6962 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6963 {
6964 	const struct net_device_ops *ops = dev->netdev_ops;
6965 
6966 	if (ops->ndo_change_mtu)
6967 		return ops->ndo_change_mtu(dev, new_mtu);
6968 
6969 	dev->mtu = new_mtu;
6970 	return 0;
6971 }
6972 EXPORT_SYMBOL(__dev_set_mtu);
6973 
6974 /**
6975  *	dev_set_mtu - Change maximum transfer unit
6976  *	@dev: device
6977  *	@new_mtu: new transfer unit
6978  *
6979  *	Change the maximum transfer size of the network device.
6980  */
6981 int dev_set_mtu(struct net_device *dev, int new_mtu)
6982 {
6983 	int err, orig_mtu;
6984 
6985 	if (new_mtu == dev->mtu)
6986 		return 0;
6987 
6988 	/* MTU must be positive, and in range */
6989 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6990 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6991 				    dev->name, new_mtu, dev->min_mtu);
6992 		return -EINVAL;
6993 	}
6994 
6995 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6996 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6997 				    dev->name, new_mtu, dev->max_mtu);
6998 		return -EINVAL;
6999 	}
7000 
7001 	if (!netif_device_present(dev))
7002 		return -ENODEV;
7003 
7004 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7005 	err = notifier_to_errno(err);
7006 	if (err)
7007 		return err;
7008 
7009 	orig_mtu = dev->mtu;
7010 	err = __dev_set_mtu(dev, new_mtu);
7011 
7012 	if (!err) {
7013 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7014 		err = notifier_to_errno(err);
7015 		if (err) {
7016 			/* setting mtu back and notifying everyone again,
7017 			 * so that they have a chance to revert changes.
7018 			 */
7019 			__dev_set_mtu(dev, orig_mtu);
7020 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7021 		}
7022 	}
7023 	return err;
7024 }
7025 EXPORT_SYMBOL(dev_set_mtu);
7026 
7027 /**
7028  *	dev_set_group - Change group this device belongs to
7029  *	@dev: device
7030  *	@new_group: group this device should belong to
7031  */
7032 void dev_set_group(struct net_device *dev, int new_group)
7033 {
7034 	dev->group = new_group;
7035 }
7036 EXPORT_SYMBOL(dev_set_group);
7037 
7038 /**
7039  *	dev_set_mac_address - Change Media Access Control Address
7040  *	@dev: device
7041  *	@sa: new address
7042  *
7043  *	Change the hardware (MAC) address of the device
7044  */
7045 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7046 {
7047 	const struct net_device_ops *ops = dev->netdev_ops;
7048 	int err;
7049 
7050 	if (!ops->ndo_set_mac_address)
7051 		return -EOPNOTSUPP;
7052 	if (sa->sa_family != dev->type)
7053 		return -EINVAL;
7054 	if (!netif_device_present(dev))
7055 		return -ENODEV;
7056 	err = ops->ndo_set_mac_address(dev, sa);
7057 	if (err)
7058 		return err;
7059 	dev->addr_assign_type = NET_ADDR_SET;
7060 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7061 	add_device_randomness(dev->dev_addr, dev->addr_len);
7062 	return 0;
7063 }
7064 EXPORT_SYMBOL(dev_set_mac_address);
7065 
7066 /**
7067  *	dev_change_carrier - Change device carrier
7068  *	@dev: device
7069  *	@new_carrier: new value
7070  *
7071  *	Change device carrier
7072  */
7073 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7074 {
7075 	const struct net_device_ops *ops = dev->netdev_ops;
7076 
7077 	if (!ops->ndo_change_carrier)
7078 		return -EOPNOTSUPP;
7079 	if (!netif_device_present(dev))
7080 		return -ENODEV;
7081 	return ops->ndo_change_carrier(dev, new_carrier);
7082 }
7083 EXPORT_SYMBOL(dev_change_carrier);
7084 
7085 /**
7086  *	dev_get_phys_port_id - Get device physical port ID
7087  *	@dev: device
7088  *	@ppid: port ID
7089  *
7090  *	Get device physical port ID
7091  */
7092 int dev_get_phys_port_id(struct net_device *dev,
7093 			 struct netdev_phys_item_id *ppid)
7094 {
7095 	const struct net_device_ops *ops = dev->netdev_ops;
7096 
7097 	if (!ops->ndo_get_phys_port_id)
7098 		return -EOPNOTSUPP;
7099 	return ops->ndo_get_phys_port_id(dev, ppid);
7100 }
7101 EXPORT_SYMBOL(dev_get_phys_port_id);
7102 
7103 /**
7104  *	dev_get_phys_port_name - Get device physical port name
7105  *	@dev: device
7106  *	@name: port name
7107  *	@len: limit of bytes to copy to name
7108  *
7109  *	Get device physical port name
7110  */
7111 int dev_get_phys_port_name(struct net_device *dev,
7112 			   char *name, size_t len)
7113 {
7114 	const struct net_device_ops *ops = dev->netdev_ops;
7115 
7116 	if (!ops->ndo_get_phys_port_name)
7117 		return -EOPNOTSUPP;
7118 	return ops->ndo_get_phys_port_name(dev, name, len);
7119 }
7120 EXPORT_SYMBOL(dev_get_phys_port_name);
7121 
7122 /**
7123  *	dev_change_proto_down - update protocol port state information
7124  *	@dev: device
7125  *	@proto_down: new value
7126  *
7127  *	This info can be used by switch drivers to set the phys state of the
7128  *	port.
7129  */
7130 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7131 {
7132 	const struct net_device_ops *ops = dev->netdev_ops;
7133 
7134 	if (!ops->ndo_change_proto_down)
7135 		return -EOPNOTSUPP;
7136 	if (!netif_device_present(dev))
7137 		return -ENODEV;
7138 	return ops->ndo_change_proto_down(dev, proto_down);
7139 }
7140 EXPORT_SYMBOL(dev_change_proto_down);
7141 
7142 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7143 		     struct netdev_bpf *xdp)
7144 {
7145 	memset(xdp, 0, sizeof(*xdp));
7146 	xdp->command = XDP_QUERY_PROG;
7147 
7148 	/* Query must always succeed. */
7149 	WARN_ON(bpf_op(dev, xdp) < 0);
7150 }
7151 
7152 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7153 {
7154 	struct netdev_bpf xdp;
7155 
7156 	__dev_xdp_query(dev, bpf_op, &xdp);
7157 
7158 	return xdp.prog_attached;
7159 }
7160 
7161 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7162 			   struct netlink_ext_ack *extack, u32 flags,
7163 			   struct bpf_prog *prog)
7164 {
7165 	struct netdev_bpf xdp;
7166 
7167 	memset(&xdp, 0, sizeof(xdp));
7168 	if (flags & XDP_FLAGS_HW_MODE)
7169 		xdp.command = XDP_SETUP_PROG_HW;
7170 	else
7171 		xdp.command = XDP_SETUP_PROG;
7172 	xdp.extack = extack;
7173 	xdp.flags = flags;
7174 	xdp.prog = prog;
7175 
7176 	return bpf_op(dev, &xdp);
7177 }
7178 
7179 static void dev_xdp_uninstall(struct net_device *dev)
7180 {
7181 	struct netdev_bpf xdp;
7182 	bpf_op_t ndo_bpf;
7183 
7184 	/* Remove generic XDP */
7185 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7186 
7187 	/* Remove from the driver */
7188 	ndo_bpf = dev->netdev_ops->ndo_bpf;
7189 	if (!ndo_bpf)
7190 		return;
7191 
7192 	__dev_xdp_query(dev, ndo_bpf, &xdp);
7193 	if (xdp.prog_attached == XDP_ATTACHED_NONE)
7194 		return;
7195 
7196 	/* Program removal should always succeed */
7197 	WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7198 }
7199 
7200 /**
7201  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7202  *	@dev: device
7203  *	@extack: netlink extended ack
7204  *	@fd: new program fd or negative value to clear
7205  *	@flags: xdp-related flags
7206  *
7207  *	Set or clear a bpf program for a device
7208  */
7209 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7210 		      int fd, u32 flags)
7211 {
7212 	const struct net_device_ops *ops = dev->netdev_ops;
7213 	struct bpf_prog *prog = NULL;
7214 	bpf_op_t bpf_op, bpf_chk;
7215 	int err;
7216 
7217 	ASSERT_RTNL();
7218 
7219 	bpf_op = bpf_chk = ops->ndo_bpf;
7220 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7221 		return -EOPNOTSUPP;
7222 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7223 		bpf_op = generic_xdp_install;
7224 	if (bpf_op == bpf_chk)
7225 		bpf_chk = generic_xdp_install;
7226 
7227 	if (fd >= 0) {
7228 		if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7229 			return -EEXIST;
7230 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7231 		    __dev_xdp_attached(dev, bpf_op))
7232 			return -EBUSY;
7233 
7234 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7235 					     bpf_op == ops->ndo_bpf);
7236 		if (IS_ERR(prog))
7237 			return PTR_ERR(prog);
7238 
7239 		if (!(flags & XDP_FLAGS_HW_MODE) &&
7240 		    bpf_prog_is_dev_bound(prog->aux)) {
7241 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7242 			bpf_prog_put(prog);
7243 			return -EINVAL;
7244 		}
7245 	}
7246 
7247 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7248 	if (err < 0 && prog)
7249 		bpf_prog_put(prog);
7250 
7251 	return err;
7252 }
7253 
7254 /**
7255  *	dev_new_index	-	allocate an ifindex
7256  *	@net: the applicable net namespace
7257  *
7258  *	Returns a suitable unique value for a new device interface
7259  *	number.  The caller must hold the rtnl semaphore or the
7260  *	dev_base_lock to be sure it remains unique.
7261  */
7262 static int dev_new_index(struct net *net)
7263 {
7264 	int ifindex = net->ifindex;
7265 
7266 	for (;;) {
7267 		if (++ifindex <= 0)
7268 			ifindex = 1;
7269 		if (!__dev_get_by_index(net, ifindex))
7270 			return net->ifindex = ifindex;
7271 	}
7272 }
7273 
7274 /* Delayed registration/unregisteration */
7275 static LIST_HEAD(net_todo_list);
7276 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7277 
7278 static void net_set_todo(struct net_device *dev)
7279 {
7280 	list_add_tail(&dev->todo_list, &net_todo_list);
7281 	dev_net(dev)->dev_unreg_count++;
7282 }
7283 
7284 static void rollback_registered_many(struct list_head *head)
7285 {
7286 	struct net_device *dev, *tmp;
7287 	LIST_HEAD(close_head);
7288 
7289 	BUG_ON(dev_boot_phase);
7290 	ASSERT_RTNL();
7291 
7292 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7293 		/* Some devices call without registering
7294 		 * for initialization unwind. Remove those
7295 		 * devices and proceed with the remaining.
7296 		 */
7297 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7298 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7299 				 dev->name, dev);
7300 
7301 			WARN_ON(1);
7302 			list_del(&dev->unreg_list);
7303 			continue;
7304 		}
7305 		dev->dismantle = true;
7306 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7307 	}
7308 
7309 	/* If device is running, close it first. */
7310 	list_for_each_entry(dev, head, unreg_list)
7311 		list_add_tail(&dev->close_list, &close_head);
7312 	dev_close_many(&close_head, true);
7313 
7314 	list_for_each_entry(dev, head, unreg_list) {
7315 		/* And unlink it from device chain. */
7316 		unlist_netdevice(dev);
7317 
7318 		dev->reg_state = NETREG_UNREGISTERING;
7319 	}
7320 	flush_all_backlogs();
7321 
7322 	synchronize_net();
7323 
7324 	list_for_each_entry(dev, head, unreg_list) {
7325 		struct sk_buff *skb = NULL;
7326 
7327 		/* Shutdown queueing discipline. */
7328 		dev_shutdown(dev);
7329 
7330 		dev_xdp_uninstall(dev);
7331 
7332 		/* Notify protocols, that we are about to destroy
7333 		 * this device. They should clean all the things.
7334 		 */
7335 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7336 
7337 		if (!dev->rtnl_link_ops ||
7338 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7339 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7340 						     GFP_KERNEL, NULL);
7341 
7342 		/*
7343 		 *	Flush the unicast and multicast chains
7344 		 */
7345 		dev_uc_flush(dev);
7346 		dev_mc_flush(dev);
7347 
7348 		if (dev->netdev_ops->ndo_uninit)
7349 			dev->netdev_ops->ndo_uninit(dev);
7350 
7351 		if (skb)
7352 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7353 
7354 		/* Notifier chain MUST detach us all upper devices. */
7355 		WARN_ON(netdev_has_any_upper_dev(dev));
7356 		WARN_ON(netdev_has_any_lower_dev(dev));
7357 
7358 		/* Remove entries from kobject tree */
7359 		netdev_unregister_kobject(dev);
7360 #ifdef CONFIG_XPS
7361 		/* Remove XPS queueing entries */
7362 		netif_reset_xps_queues_gt(dev, 0);
7363 #endif
7364 	}
7365 
7366 	synchronize_net();
7367 
7368 	list_for_each_entry(dev, head, unreg_list)
7369 		dev_put(dev);
7370 }
7371 
7372 static void rollback_registered(struct net_device *dev)
7373 {
7374 	LIST_HEAD(single);
7375 
7376 	list_add(&dev->unreg_list, &single);
7377 	rollback_registered_many(&single);
7378 	list_del(&single);
7379 }
7380 
7381 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7382 	struct net_device *upper, netdev_features_t features)
7383 {
7384 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7385 	netdev_features_t feature;
7386 	int feature_bit;
7387 
7388 	for_each_netdev_feature(&upper_disables, feature_bit) {
7389 		feature = __NETIF_F_BIT(feature_bit);
7390 		if (!(upper->wanted_features & feature)
7391 		    && (features & feature)) {
7392 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7393 				   &feature, upper->name);
7394 			features &= ~feature;
7395 		}
7396 	}
7397 
7398 	return features;
7399 }
7400 
7401 static void netdev_sync_lower_features(struct net_device *upper,
7402 	struct net_device *lower, netdev_features_t features)
7403 {
7404 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7405 	netdev_features_t feature;
7406 	int feature_bit;
7407 
7408 	for_each_netdev_feature(&upper_disables, feature_bit) {
7409 		feature = __NETIF_F_BIT(feature_bit);
7410 		if (!(features & feature) && (lower->features & feature)) {
7411 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7412 				   &feature, lower->name);
7413 			lower->wanted_features &= ~feature;
7414 			netdev_update_features(lower);
7415 
7416 			if (unlikely(lower->features & feature))
7417 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7418 					    &feature, lower->name);
7419 		}
7420 	}
7421 }
7422 
7423 static netdev_features_t netdev_fix_features(struct net_device *dev,
7424 	netdev_features_t features)
7425 {
7426 	/* Fix illegal checksum combinations */
7427 	if ((features & NETIF_F_HW_CSUM) &&
7428 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7429 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7430 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7431 	}
7432 
7433 	/* TSO requires that SG is present as well. */
7434 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7435 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7436 		features &= ~NETIF_F_ALL_TSO;
7437 	}
7438 
7439 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7440 					!(features & NETIF_F_IP_CSUM)) {
7441 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7442 		features &= ~NETIF_F_TSO;
7443 		features &= ~NETIF_F_TSO_ECN;
7444 	}
7445 
7446 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7447 					 !(features & NETIF_F_IPV6_CSUM)) {
7448 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7449 		features &= ~NETIF_F_TSO6;
7450 	}
7451 
7452 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7453 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7454 		features &= ~NETIF_F_TSO_MANGLEID;
7455 
7456 	/* TSO ECN requires that TSO is present as well. */
7457 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7458 		features &= ~NETIF_F_TSO_ECN;
7459 
7460 	/* Software GSO depends on SG. */
7461 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7462 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7463 		features &= ~NETIF_F_GSO;
7464 	}
7465 
7466 	/* GSO partial features require GSO partial be set */
7467 	if ((features & dev->gso_partial_features) &&
7468 	    !(features & NETIF_F_GSO_PARTIAL)) {
7469 		netdev_dbg(dev,
7470 			   "Dropping partially supported GSO features since no GSO partial.\n");
7471 		features &= ~dev->gso_partial_features;
7472 	}
7473 
7474 	if (!(features & NETIF_F_RXCSUM)) {
7475 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7476 		 * successfully merged by hardware must also have the
7477 		 * checksum verified by hardware.  If the user does not
7478 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
7479 		 */
7480 		if (features & NETIF_F_GRO_HW) {
7481 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7482 			features &= ~NETIF_F_GRO_HW;
7483 		}
7484 	}
7485 
7486 	return features;
7487 }
7488 
7489 int __netdev_update_features(struct net_device *dev)
7490 {
7491 	struct net_device *upper, *lower;
7492 	netdev_features_t features;
7493 	struct list_head *iter;
7494 	int err = -1;
7495 
7496 	ASSERT_RTNL();
7497 
7498 	features = netdev_get_wanted_features(dev);
7499 
7500 	if (dev->netdev_ops->ndo_fix_features)
7501 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7502 
7503 	/* driver might be less strict about feature dependencies */
7504 	features = netdev_fix_features(dev, features);
7505 
7506 	/* some features can't be enabled if they're off an an upper device */
7507 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7508 		features = netdev_sync_upper_features(dev, upper, features);
7509 
7510 	if (dev->features == features)
7511 		goto sync_lower;
7512 
7513 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7514 		&dev->features, &features);
7515 
7516 	if (dev->netdev_ops->ndo_set_features)
7517 		err = dev->netdev_ops->ndo_set_features(dev, features);
7518 	else
7519 		err = 0;
7520 
7521 	if (unlikely(err < 0)) {
7522 		netdev_err(dev,
7523 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7524 			err, &features, &dev->features);
7525 		/* return non-0 since some features might have changed and
7526 		 * it's better to fire a spurious notification than miss it
7527 		 */
7528 		return -1;
7529 	}
7530 
7531 sync_lower:
7532 	/* some features must be disabled on lower devices when disabled
7533 	 * on an upper device (think: bonding master or bridge)
7534 	 */
7535 	netdev_for_each_lower_dev(dev, lower, iter)
7536 		netdev_sync_lower_features(dev, lower, features);
7537 
7538 	if (!err) {
7539 		netdev_features_t diff = features ^ dev->features;
7540 
7541 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7542 			/* udp_tunnel_{get,drop}_rx_info both need
7543 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7544 			 * device, or they won't do anything.
7545 			 * Thus we need to update dev->features
7546 			 * *before* calling udp_tunnel_get_rx_info,
7547 			 * but *after* calling udp_tunnel_drop_rx_info.
7548 			 */
7549 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7550 				dev->features = features;
7551 				udp_tunnel_get_rx_info(dev);
7552 			} else {
7553 				udp_tunnel_drop_rx_info(dev);
7554 			}
7555 		}
7556 
7557 		dev->features = features;
7558 	}
7559 
7560 	return err < 0 ? 0 : 1;
7561 }
7562 
7563 /**
7564  *	netdev_update_features - recalculate device features
7565  *	@dev: the device to check
7566  *
7567  *	Recalculate dev->features set and send notifications if it
7568  *	has changed. Should be called after driver or hardware dependent
7569  *	conditions might have changed that influence the features.
7570  */
7571 void netdev_update_features(struct net_device *dev)
7572 {
7573 	if (__netdev_update_features(dev))
7574 		netdev_features_change(dev);
7575 }
7576 EXPORT_SYMBOL(netdev_update_features);
7577 
7578 /**
7579  *	netdev_change_features - recalculate device features
7580  *	@dev: the device to check
7581  *
7582  *	Recalculate dev->features set and send notifications even
7583  *	if they have not changed. Should be called instead of
7584  *	netdev_update_features() if also dev->vlan_features might
7585  *	have changed to allow the changes to be propagated to stacked
7586  *	VLAN devices.
7587  */
7588 void netdev_change_features(struct net_device *dev)
7589 {
7590 	__netdev_update_features(dev);
7591 	netdev_features_change(dev);
7592 }
7593 EXPORT_SYMBOL(netdev_change_features);
7594 
7595 /**
7596  *	netif_stacked_transfer_operstate -	transfer operstate
7597  *	@rootdev: the root or lower level device to transfer state from
7598  *	@dev: the device to transfer operstate to
7599  *
7600  *	Transfer operational state from root to device. This is normally
7601  *	called when a stacking relationship exists between the root
7602  *	device and the device(a leaf device).
7603  */
7604 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7605 					struct net_device *dev)
7606 {
7607 	if (rootdev->operstate == IF_OPER_DORMANT)
7608 		netif_dormant_on(dev);
7609 	else
7610 		netif_dormant_off(dev);
7611 
7612 	if (netif_carrier_ok(rootdev))
7613 		netif_carrier_on(dev);
7614 	else
7615 		netif_carrier_off(dev);
7616 }
7617 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7618 
7619 static int netif_alloc_rx_queues(struct net_device *dev)
7620 {
7621 	unsigned int i, count = dev->num_rx_queues;
7622 	struct netdev_rx_queue *rx;
7623 	size_t sz = count * sizeof(*rx);
7624 	int err = 0;
7625 
7626 	BUG_ON(count < 1);
7627 
7628 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7629 	if (!rx)
7630 		return -ENOMEM;
7631 
7632 	dev->_rx = rx;
7633 
7634 	for (i = 0; i < count; i++) {
7635 		rx[i].dev = dev;
7636 
7637 		/* XDP RX-queue setup */
7638 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7639 		if (err < 0)
7640 			goto err_rxq_info;
7641 	}
7642 	return 0;
7643 
7644 err_rxq_info:
7645 	/* Rollback successful reg's and free other resources */
7646 	while (i--)
7647 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7648 	kfree(dev->_rx);
7649 	dev->_rx = NULL;
7650 	return err;
7651 }
7652 
7653 static void netif_free_rx_queues(struct net_device *dev)
7654 {
7655 	unsigned int i, count = dev->num_rx_queues;
7656 	struct netdev_rx_queue *rx;
7657 
7658 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7659 	if (!dev->_rx)
7660 		return;
7661 
7662 	rx = dev->_rx;
7663 
7664 	for (i = 0; i < count; i++)
7665 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7666 }
7667 
7668 static void netdev_init_one_queue(struct net_device *dev,
7669 				  struct netdev_queue *queue, void *_unused)
7670 {
7671 	/* Initialize queue lock */
7672 	spin_lock_init(&queue->_xmit_lock);
7673 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7674 	queue->xmit_lock_owner = -1;
7675 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7676 	queue->dev = dev;
7677 #ifdef CONFIG_BQL
7678 	dql_init(&queue->dql, HZ);
7679 #endif
7680 }
7681 
7682 static void netif_free_tx_queues(struct net_device *dev)
7683 {
7684 	kvfree(dev->_tx);
7685 }
7686 
7687 static int netif_alloc_netdev_queues(struct net_device *dev)
7688 {
7689 	unsigned int count = dev->num_tx_queues;
7690 	struct netdev_queue *tx;
7691 	size_t sz = count * sizeof(*tx);
7692 
7693 	if (count < 1 || count > 0xffff)
7694 		return -EINVAL;
7695 
7696 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7697 	if (!tx)
7698 		return -ENOMEM;
7699 
7700 	dev->_tx = tx;
7701 
7702 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7703 	spin_lock_init(&dev->tx_global_lock);
7704 
7705 	return 0;
7706 }
7707 
7708 void netif_tx_stop_all_queues(struct net_device *dev)
7709 {
7710 	unsigned int i;
7711 
7712 	for (i = 0; i < dev->num_tx_queues; i++) {
7713 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7714 
7715 		netif_tx_stop_queue(txq);
7716 	}
7717 }
7718 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7719 
7720 /**
7721  *	register_netdevice	- register a network device
7722  *	@dev: device to register
7723  *
7724  *	Take a completed network device structure and add it to the kernel
7725  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7726  *	chain. 0 is returned on success. A negative errno code is returned
7727  *	on a failure to set up the device, or if the name is a duplicate.
7728  *
7729  *	Callers must hold the rtnl semaphore. You may want
7730  *	register_netdev() instead of this.
7731  *
7732  *	BUGS:
7733  *	The locking appears insufficient to guarantee two parallel registers
7734  *	will not get the same name.
7735  */
7736 
7737 int register_netdevice(struct net_device *dev)
7738 {
7739 	int ret;
7740 	struct net *net = dev_net(dev);
7741 
7742 	BUG_ON(dev_boot_phase);
7743 	ASSERT_RTNL();
7744 
7745 	might_sleep();
7746 
7747 	/* When net_device's are persistent, this will be fatal. */
7748 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7749 	BUG_ON(!net);
7750 
7751 	spin_lock_init(&dev->addr_list_lock);
7752 	netdev_set_addr_lockdep_class(dev);
7753 
7754 	ret = dev_get_valid_name(net, dev, dev->name);
7755 	if (ret < 0)
7756 		goto out;
7757 
7758 	/* Init, if this function is available */
7759 	if (dev->netdev_ops->ndo_init) {
7760 		ret = dev->netdev_ops->ndo_init(dev);
7761 		if (ret) {
7762 			if (ret > 0)
7763 				ret = -EIO;
7764 			goto out;
7765 		}
7766 	}
7767 
7768 	if (((dev->hw_features | dev->features) &
7769 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7770 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7771 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7772 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7773 		ret = -EINVAL;
7774 		goto err_uninit;
7775 	}
7776 
7777 	ret = -EBUSY;
7778 	if (!dev->ifindex)
7779 		dev->ifindex = dev_new_index(net);
7780 	else if (__dev_get_by_index(net, dev->ifindex))
7781 		goto err_uninit;
7782 
7783 	/* Transfer changeable features to wanted_features and enable
7784 	 * software offloads (GSO and GRO).
7785 	 */
7786 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7787 	dev->features |= NETIF_F_SOFT_FEATURES;
7788 
7789 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
7790 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7791 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7792 	}
7793 
7794 	dev->wanted_features = dev->features & dev->hw_features;
7795 
7796 	if (!(dev->flags & IFF_LOOPBACK))
7797 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7798 
7799 	/* If IPv4 TCP segmentation offload is supported we should also
7800 	 * allow the device to enable segmenting the frame with the option
7801 	 * of ignoring a static IP ID value.  This doesn't enable the
7802 	 * feature itself but allows the user to enable it later.
7803 	 */
7804 	if (dev->hw_features & NETIF_F_TSO)
7805 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7806 	if (dev->vlan_features & NETIF_F_TSO)
7807 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7808 	if (dev->mpls_features & NETIF_F_TSO)
7809 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7810 	if (dev->hw_enc_features & NETIF_F_TSO)
7811 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7812 
7813 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7814 	 */
7815 	dev->vlan_features |= NETIF_F_HIGHDMA;
7816 
7817 	/* Make NETIF_F_SG inheritable to tunnel devices.
7818 	 */
7819 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7820 
7821 	/* Make NETIF_F_SG inheritable to MPLS.
7822 	 */
7823 	dev->mpls_features |= NETIF_F_SG;
7824 
7825 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7826 	ret = notifier_to_errno(ret);
7827 	if (ret)
7828 		goto err_uninit;
7829 
7830 	ret = netdev_register_kobject(dev);
7831 	if (ret)
7832 		goto err_uninit;
7833 	dev->reg_state = NETREG_REGISTERED;
7834 
7835 	__netdev_update_features(dev);
7836 
7837 	/*
7838 	 *	Default initial state at registry is that the
7839 	 *	device is present.
7840 	 */
7841 
7842 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7843 
7844 	linkwatch_init_dev(dev);
7845 
7846 	dev_init_scheduler(dev);
7847 	dev_hold(dev);
7848 	list_netdevice(dev);
7849 	add_device_randomness(dev->dev_addr, dev->addr_len);
7850 
7851 	/* If the device has permanent device address, driver should
7852 	 * set dev_addr and also addr_assign_type should be set to
7853 	 * NET_ADDR_PERM (default value).
7854 	 */
7855 	if (dev->addr_assign_type == NET_ADDR_PERM)
7856 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7857 
7858 	/* Notify protocols, that a new device appeared. */
7859 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7860 	ret = notifier_to_errno(ret);
7861 	if (ret) {
7862 		rollback_registered(dev);
7863 		dev->reg_state = NETREG_UNREGISTERED;
7864 	}
7865 	/*
7866 	 *	Prevent userspace races by waiting until the network
7867 	 *	device is fully setup before sending notifications.
7868 	 */
7869 	if (!dev->rtnl_link_ops ||
7870 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7871 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7872 
7873 out:
7874 	return ret;
7875 
7876 err_uninit:
7877 	if (dev->netdev_ops->ndo_uninit)
7878 		dev->netdev_ops->ndo_uninit(dev);
7879 	if (dev->priv_destructor)
7880 		dev->priv_destructor(dev);
7881 	goto out;
7882 }
7883 EXPORT_SYMBOL(register_netdevice);
7884 
7885 /**
7886  *	init_dummy_netdev	- init a dummy network device for NAPI
7887  *	@dev: device to init
7888  *
7889  *	This takes a network device structure and initialize the minimum
7890  *	amount of fields so it can be used to schedule NAPI polls without
7891  *	registering a full blown interface. This is to be used by drivers
7892  *	that need to tie several hardware interfaces to a single NAPI
7893  *	poll scheduler due to HW limitations.
7894  */
7895 int init_dummy_netdev(struct net_device *dev)
7896 {
7897 	/* Clear everything. Note we don't initialize spinlocks
7898 	 * are they aren't supposed to be taken by any of the
7899 	 * NAPI code and this dummy netdev is supposed to be
7900 	 * only ever used for NAPI polls
7901 	 */
7902 	memset(dev, 0, sizeof(struct net_device));
7903 
7904 	/* make sure we BUG if trying to hit standard
7905 	 * register/unregister code path
7906 	 */
7907 	dev->reg_state = NETREG_DUMMY;
7908 
7909 	/* NAPI wants this */
7910 	INIT_LIST_HEAD(&dev->napi_list);
7911 
7912 	/* a dummy interface is started by default */
7913 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7914 	set_bit(__LINK_STATE_START, &dev->state);
7915 
7916 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7917 	 * because users of this 'device' dont need to change
7918 	 * its refcount.
7919 	 */
7920 
7921 	return 0;
7922 }
7923 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7924 
7925 
7926 /**
7927  *	register_netdev	- register a network device
7928  *	@dev: device to register
7929  *
7930  *	Take a completed network device structure and add it to the kernel
7931  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7932  *	chain. 0 is returned on success. A negative errno code is returned
7933  *	on a failure to set up the device, or if the name is a duplicate.
7934  *
7935  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7936  *	and expands the device name if you passed a format string to
7937  *	alloc_netdev.
7938  */
7939 int register_netdev(struct net_device *dev)
7940 {
7941 	int err;
7942 
7943 	rtnl_lock();
7944 	err = register_netdevice(dev);
7945 	rtnl_unlock();
7946 	return err;
7947 }
7948 EXPORT_SYMBOL(register_netdev);
7949 
7950 int netdev_refcnt_read(const struct net_device *dev)
7951 {
7952 	int i, refcnt = 0;
7953 
7954 	for_each_possible_cpu(i)
7955 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7956 	return refcnt;
7957 }
7958 EXPORT_SYMBOL(netdev_refcnt_read);
7959 
7960 /**
7961  * netdev_wait_allrefs - wait until all references are gone.
7962  * @dev: target net_device
7963  *
7964  * This is called when unregistering network devices.
7965  *
7966  * Any protocol or device that holds a reference should register
7967  * for netdevice notification, and cleanup and put back the
7968  * reference if they receive an UNREGISTER event.
7969  * We can get stuck here if buggy protocols don't correctly
7970  * call dev_put.
7971  */
7972 static void netdev_wait_allrefs(struct net_device *dev)
7973 {
7974 	unsigned long rebroadcast_time, warning_time;
7975 	int refcnt;
7976 
7977 	linkwatch_forget_dev(dev);
7978 
7979 	rebroadcast_time = warning_time = jiffies;
7980 	refcnt = netdev_refcnt_read(dev);
7981 
7982 	while (refcnt != 0) {
7983 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7984 			rtnl_lock();
7985 
7986 			/* Rebroadcast unregister notification */
7987 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7988 
7989 			__rtnl_unlock();
7990 			rcu_barrier();
7991 			rtnl_lock();
7992 
7993 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7994 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7995 				     &dev->state)) {
7996 				/* We must not have linkwatch events
7997 				 * pending on unregister. If this
7998 				 * happens, we simply run the queue
7999 				 * unscheduled, resulting in a noop
8000 				 * for this device.
8001 				 */
8002 				linkwatch_run_queue();
8003 			}
8004 
8005 			__rtnl_unlock();
8006 
8007 			rebroadcast_time = jiffies;
8008 		}
8009 
8010 		msleep(250);
8011 
8012 		refcnt = netdev_refcnt_read(dev);
8013 
8014 		if (time_after(jiffies, warning_time + 10 * HZ)) {
8015 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8016 				 dev->name, refcnt);
8017 			warning_time = jiffies;
8018 		}
8019 	}
8020 }
8021 
8022 /* The sequence is:
8023  *
8024  *	rtnl_lock();
8025  *	...
8026  *	register_netdevice(x1);
8027  *	register_netdevice(x2);
8028  *	...
8029  *	unregister_netdevice(y1);
8030  *	unregister_netdevice(y2);
8031  *      ...
8032  *	rtnl_unlock();
8033  *	free_netdev(y1);
8034  *	free_netdev(y2);
8035  *
8036  * We are invoked by rtnl_unlock().
8037  * This allows us to deal with problems:
8038  * 1) We can delete sysfs objects which invoke hotplug
8039  *    without deadlocking with linkwatch via keventd.
8040  * 2) Since we run with the RTNL semaphore not held, we can sleep
8041  *    safely in order to wait for the netdev refcnt to drop to zero.
8042  *
8043  * We must not return until all unregister events added during
8044  * the interval the lock was held have been completed.
8045  */
8046 void netdev_run_todo(void)
8047 {
8048 	struct list_head list;
8049 
8050 	/* Snapshot list, allow later requests */
8051 	list_replace_init(&net_todo_list, &list);
8052 
8053 	__rtnl_unlock();
8054 
8055 
8056 	/* Wait for rcu callbacks to finish before next phase */
8057 	if (!list_empty(&list))
8058 		rcu_barrier();
8059 
8060 	while (!list_empty(&list)) {
8061 		struct net_device *dev
8062 			= list_first_entry(&list, struct net_device, todo_list);
8063 		list_del(&dev->todo_list);
8064 
8065 		rtnl_lock();
8066 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8067 		__rtnl_unlock();
8068 
8069 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8070 			pr_err("network todo '%s' but state %d\n",
8071 			       dev->name, dev->reg_state);
8072 			dump_stack();
8073 			continue;
8074 		}
8075 
8076 		dev->reg_state = NETREG_UNREGISTERED;
8077 
8078 		netdev_wait_allrefs(dev);
8079 
8080 		/* paranoia */
8081 		BUG_ON(netdev_refcnt_read(dev));
8082 		BUG_ON(!list_empty(&dev->ptype_all));
8083 		BUG_ON(!list_empty(&dev->ptype_specific));
8084 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8085 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8086 		WARN_ON(dev->dn_ptr);
8087 
8088 		if (dev->priv_destructor)
8089 			dev->priv_destructor(dev);
8090 		if (dev->needs_free_netdev)
8091 			free_netdev(dev);
8092 
8093 		/* Report a network device has been unregistered */
8094 		rtnl_lock();
8095 		dev_net(dev)->dev_unreg_count--;
8096 		__rtnl_unlock();
8097 		wake_up(&netdev_unregistering_wq);
8098 
8099 		/* Free network device */
8100 		kobject_put(&dev->dev.kobj);
8101 	}
8102 }
8103 
8104 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8105  * all the same fields in the same order as net_device_stats, with only
8106  * the type differing, but rtnl_link_stats64 may have additional fields
8107  * at the end for newer counters.
8108  */
8109 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8110 			     const struct net_device_stats *netdev_stats)
8111 {
8112 #if BITS_PER_LONG == 64
8113 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8114 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8115 	/* zero out counters that only exist in rtnl_link_stats64 */
8116 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
8117 	       sizeof(*stats64) - sizeof(*netdev_stats));
8118 #else
8119 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8120 	const unsigned long *src = (const unsigned long *)netdev_stats;
8121 	u64 *dst = (u64 *)stats64;
8122 
8123 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8124 	for (i = 0; i < n; i++)
8125 		dst[i] = src[i];
8126 	/* zero out counters that only exist in rtnl_link_stats64 */
8127 	memset((char *)stats64 + n * sizeof(u64), 0,
8128 	       sizeof(*stats64) - n * sizeof(u64));
8129 #endif
8130 }
8131 EXPORT_SYMBOL(netdev_stats_to_stats64);
8132 
8133 /**
8134  *	dev_get_stats	- get network device statistics
8135  *	@dev: device to get statistics from
8136  *	@storage: place to store stats
8137  *
8138  *	Get network statistics from device. Return @storage.
8139  *	The device driver may provide its own method by setting
8140  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8141  *	otherwise the internal statistics structure is used.
8142  */
8143 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8144 					struct rtnl_link_stats64 *storage)
8145 {
8146 	const struct net_device_ops *ops = dev->netdev_ops;
8147 
8148 	if (ops->ndo_get_stats64) {
8149 		memset(storage, 0, sizeof(*storage));
8150 		ops->ndo_get_stats64(dev, storage);
8151 	} else if (ops->ndo_get_stats) {
8152 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8153 	} else {
8154 		netdev_stats_to_stats64(storage, &dev->stats);
8155 	}
8156 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8157 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8158 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8159 	return storage;
8160 }
8161 EXPORT_SYMBOL(dev_get_stats);
8162 
8163 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8164 {
8165 	struct netdev_queue *queue = dev_ingress_queue(dev);
8166 
8167 #ifdef CONFIG_NET_CLS_ACT
8168 	if (queue)
8169 		return queue;
8170 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8171 	if (!queue)
8172 		return NULL;
8173 	netdev_init_one_queue(dev, queue, NULL);
8174 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8175 	queue->qdisc_sleeping = &noop_qdisc;
8176 	rcu_assign_pointer(dev->ingress_queue, queue);
8177 #endif
8178 	return queue;
8179 }
8180 
8181 static const struct ethtool_ops default_ethtool_ops;
8182 
8183 void netdev_set_default_ethtool_ops(struct net_device *dev,
8184 				    const struct ethtool_ops *ops)
8185 {
8186 	if (dev->ethtool_ops == &default_ethtool_ops)
8187 		dev->ethtool_ops = ops;
8188 }
8189 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8190 
8191 void netdev_freemem(struct net_device *dev)
8192 {
8193 	char *addr = (char *)dev - dev->padded;
8194 
8195 	kvfree(addr);
8196 }
8197 
8198 /**
8199  * alloc_netdev_mqs - allocate network device
8200  * @sizeof_priv: size of private data to allocate space for
8201  * @name: device name format string
8202  * @name_assign_type: origin of device name
8203  * @setup: callback to initialize device
8204  * @txqs: the number of TX subqueues to allocate
8205  * @rxqs: the number of RX subqueues to allocate
8206  *
8207  * Allocates a struct net_device with private data area for driver use
8208  * and performs basic initialization.  Also allocates subqueue structs
8209  * for each queue on the device.
8210  */
8211 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8212 		unsigned char name_assign_type,
8213 		void (*setup)(struct net_device *),
8214 		unsigned int txqs, unsigned int rxqs)
8215 {
8216 	struct net_device *dev;
8217 	unsigned int alloc_size;
8218 	struct net_device *p;
8219 
8220 	BUG_ON(strlen(name) >= sizeof(dev->name));
8221 
8222 	if (txqs < 1) {
8223 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8224 		return NULL;
8225 	}
8226 
8227 	if (rxqs < 1) {
8228 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8229 		return NULL;
8230 	}
8231 
8232 	alloc_size = sizeof(struct net_device);
8233 	if (sizeof_priv) {
8234 		/* ensure 32-byte alignment of private area */
8235 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8236 		alloc_size += sizeof_priv;
8237 	}
8238 	/* ensure 32-byte alignment of whole construct */
8239 	alloc_size += NETDEV_ALIGN - 1;
8240 
8241 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8242 	if (!p)
8243 		return NULL;
8244 
8245 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8246 	dev->padded = (char *)dev - (char *)p;
8247 
8248 	dev->pcpu_refcnt = alloc_percpu(int);
8249 	if (!dev->pcpu_refcnt)
8250 		goto free_dev;
8251 
8252 	if (dev_addr_init(dev))
8253 		goto free_pcpu;
8254 
8255 	dev_mc_init(dev);
8256 	dev_uc_init(dev);
8257 
8258 	dev_net_set(dev, &init_net);
8259 
8260 	dev->gso_max_size = GSO_MAX_SIZE;
8261 	dev->gso_max_segs = GSO_MAX_SEGS;
8262 
8263 	INIT_LIST_HEAD(&dev->napi_list);
8264 	INIT_LIST_HEAD(&dev->unreg_list);
8265 	INIT_LIST_HEAD(&dev->close_list);
8266 	INIT_LIST_HEAD(&dev->link_watch_list);
8267 	INIT_LIST_HEAD(&dev->adj_list.upper);
8268 	INIT_LIST_HEAD(&dev->adj_list.lower);
8269 	INIT_LIST_HEAD(&dev->ptype_all);
8270 	INIT_LIST_HEAD(&dev->ptype_specific);
8271 #ifdef CONFIG_NET_SCHED
8272 	hash_init(dev->qdisc_hash);
8273 #endif
8274 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8275 	setup(dev);
8276 
8277 	if (!dev->tx_queue_len) {
8278 		dev->priv_flags |= IFF_NO_QUEUE;
8279 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8280 	}
8281 
8282 	dev->num_tx_queues = txqs;
8283 	dev->real_num_tx_queues = txqs;
8284 	if (netif_alloc_netdev_queues(dev))
8285 		goto free_all;
8286 
8287 	dev->num_rx_queues = rxqs;
8288 	dev->real_num_rx_queues = rxqs;
8289 	if (netif_alloc_rx_queues(dev))
8290 		goto free_all;
8291 
8292 	strcpy(dev->name, name);
8293 	dev->name_assign_type = name_assign_type;
8294 	dev->group = INIT_NETDEV_GROUP;
8295 	if (!dev->ethtool_ops)
8296 		dev->ethtool_ops = &default_ethtool_ops;
8297 
8298 	nf_hook_ingress_init(dev);
8299 
8300 	return dev;
8301 
8302 free_all:
8303 	free_netdev(dev);
8304 	return NULL;
8305 
8306 free_pcpu:
8307 	free_percpu(dev->pcpu_refcnt);
8308 free_dev:
8309 	netdev_freemem(dev);
8310 	return NULL;
8311 }
8312 EXPORT_SYMBOL(alloc_netdev_mqs);
8313 
8314 /**
8315  * free_netdev - free network device
8316  * @dev: device
8317  *
8318  * This function does the last stage of destroying an allocated device
8319  * interface. The reference to the device object is released. If this
8320  * is the last reference then it will be freed.Must be called in process
8321  * context.
8322  */
8323 void free_netdev(struct net_device *dev)
8324 {
8325 	struct napi_struct *p, *n;
8326 
8327 	might_sleep();
8328 	netif_free_tx_queues(dev);
8329 	netif_free_rx_queues(dev);
8330 
8331 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8332 
8333 	/* Flush device addresses */
8334 	dev_addr_flush(dev);
8335 
8336 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8337 		netif_napi_del(p);
8338 
8339 	free_percpu(dev->pcpu_refcnt);
8340 	dev->pcpu_refcnt = NULL;
8341 
8342 	/*  Compatibility with error handling in drivers */
8343 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8344 		netdev_freemem(dev);
8345 		return;
8346 	}
8347 
8348 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8349 	dev->reg_state = NETREG_RELEASED;
8350 
8351 	/* will free via device release */
8352 	put_device(&dev->dev);
8353 }
8354 EXPORT_SYMBOL(free_netdev);
8355 
8356 /**
8357  *	synchronize_net -  Synchronize with packet receive processing
8358  *
8359  *	Wait for packets currently being received to be done.
8360  *	Does not block later packets from starting.
8361  */
8362 void synchronize_net(void)
8363 {
8364 	might_sleep();
8365 	if (rtnl_is_locked())
8366 		synchronize_rcu_expedited();
8367 	else
8368 		synchronize_rcu();
8369 }
8370 EXPORT_SYMBOL(synchronize_net);
8371 
8372 /**
8373  *	unregister_netdevice_queue - remove device from the kernel
8374  *	@dev: device
8375  *	@head: list
8376  *
8377  *	This function shuts down a device interface and removes it
8378  *	from the kernel tables.
8379  *	If head not NULL, device is queued to be unregistered later.
8380  *
8381  *	Callers must hold the rtnl semaphore.  You may want
8382  *	unregister_netdev() instead of this.
8383  */
8384 
8385 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8386 {
8387 	ASSERT_RTNL();
8388 
8389 	if (head) {
8390 		list_move_tail(&dev->unreg_list, head);
8391 	} else {
8392 		rollback_registered(dev);
8393 		/* Finish processing unregister after unlock */
8394 		net_set_todo(dev);
8395 	}
8396 }
8397 EXPORT_SYMBOL(unregister_netdevice_queue);
8398 
8399 /**
8400  *	unregister_netdevice_many - unregister many devices
8401  *	@head: list of devices
8402  *
8403  *  Note: As most callers use a stack allocated list_head,
8404  *  we force a list_del() to make sure stack wont be corrupted later.
8405  */
8406 void unregister_netdevice_many(struct list_head *head)
8407 {
8408 	struct net_device *dev;
8409 
8410 	if (!list_empty(head)) {
8411 		rollback_registered_many(head);
8412 		list_for_each_entry(dev, head, unreg_list)
8413 			net_set_todo(dev);
8414 		list_del(head);
8415 	}
8416 }
8417 EXPORT_SYMBOL(unregister_netdevice_many);
8418 
8419 /**
8420  *	unregister_netdev - remove device from the kernel
8421  *	@dev: device
8422  *
8423  *	This function shuts down a device interface and removes it
8424  *	from the kernel tables.
8425  *
8426  *	This is just a wrapper for unregister_netdevice that takes
8427  *	the rtnl semaphore.  In general you want to use this and not
8428  *	unregister_netdevice.
8429  */
8430 void unregister_netdev(struct net_device *dev)
8431 {
8432 	rtnl_lock();
8433 	unregister_netdevice(dev);
8434 	rtnl_unlock();
8435 }
8436 EXPORT_SYMBOL(unregister_netdev);
8437 
8438 /**
8439  *	dev_change_net_namespace - move device to different nethost namespace
8440  *	@dev: device
8441  *	@net: network namespace
8442  *	@pat: If not NULL name pattern to try if the current device name
8443  *	      is already taken in the destination network namespace.
8444  *
8445  *	This function shuts down a device interface and moves it
8446  *	to a new network namespace. On success 0 is returned, on
8447  *	a failure a netagive errno code is returned.
8448  *
8449  *	Callers must hold the rtnl semaphore.
8450  */
8451 
8452 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8453 {
8454 	int err, new_nsid;
8455 
8456 	ASSERT_RTNL();
8457 
8458 	/* Don't allow namespace local devices to be moved. */
8459 	err = -EINVAL;
8460 	if (dev->features & NETIF_F_NETNS_LOCAL)
8461 		goto out;
8462 
8463 	/* Ensure the device has been registrered */
8464 	if (dev->reg_state != NETREG_REGISTERED)
8465 		goto out;
8466 
8467 	/* Get out if there is nothing todo */
8468 	err = 0;
8469 	if (net_eq(dev_net(dev), net))
8470 		goto out;
8471 
8472 	/* Pick the destination device name, and ensure
8473 	 * we can use it in the destination network namespace.
8474 	 */
8475 	err = -EEXIST;
8476 	if (__dev_get_by_name(net, dev->name)) {
8477 		/* We get here if we can't use the current device name */
8478 		if (!pat)
8479 			goto out;
8480 		if (dev_get_valid_name(net, dev, pat) < 0)
8481 			goto out;
8482 	}
8483 
8484 	/*
8485 	 * And now a mini version of register_netdevice unregister_netdevice.
8486 	 */
8487 
8488 	/* If device is running close it first. */
8489 	dev_close(dev);
8490 
8491 	/* And unlink it from device chain */
8492 	err = -ENODEV;
8493 	unlist_netdevice(dev);
8494 
8495 	synchronize_net();
8496 
8497 	/* Shutdown queueing discipline. */
8498 	dev_shutdown(dev);
8499 
8500 	/* Notify protocols, that we are about to destroy
8501 	 * this device. They should clean all the things.
8502 	 *
8503 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
8504 	 * This is wanted because this way 8021q and macvlan know
8505 	 * the device is just moving and can keep their slaves up.
8506 	 */
8507 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8508 	rcu_barrier();
8509 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8510 	if (dev->rtnl_link_ops && dev->rtnl_link_ops->get_link_net)
8511 		new_nsid = peernet2id_alloc(dev_net(dev), net);
8512 	else
8513 		new_nsid = peernet2id(dev_net(dev), net);
8514 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid);
8515 
8516 	/*
8517 	 *	Flush the unicast and multicast chains
8518 	 */
8519 	dev_uc_flush(dev);
8520 	dev_mc_flush(dev);
8521 
8522 	/* Send a netdev-removed uevent to the old namespace */
8523 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8524 	netdev_adjacent_del_links(dev);
8525 
8526 	/* Actually switch the network namespace */
8527 	dev_net_set(dev, net);
8528 
8529 	/* If there is an ifindex conflict assign a new one */
8530 	if (__dev_get_by_index(net, dev->ifindex))
8531 		dev->ifindex = dev_new_index(net);
8532 
8533 	/* Send a netdev-add uevent to the new namespace */
8534 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8535 	netdev_adjacent_add_links(dev);
8536 
8537 	/* Fixup kobjects */
8538 	err = device_rename(&dev->dev, dev->name);
8539 	WARN_ON(err);
8540 
8541 	/* Add the device back in the hashes */
8542 	list_netdevice(dev);
8543 
8544 	/* Notify protocols, that a new device appeared. */
8545 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8546 
8547 	/*
8548 	 *	Prevent userspace races by waiting until the network
8549 	 *	device is fully setup before sending notifications.
8550 	 */
8551 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8552 
8553 	synchronize_net();
8554 	err = 0;
8555 out:
8556 	return err;
8557 }
8558 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8559 
8560 static int dev_cpu_dead(unsigned int oldcpu)
8561 {
8562 	struct sk_buff **list_skb;
8563 	struct sk_buff *skb;
8564 	unsigned int cpu;
8565 	struct softnet_data *sd, *oldsd, *remsd = NULL;
8566 
8567 	local_irq_disable();
8568 	cpu = smp_processor_id();
8569 	sd = &per_cpu(softnet_data, cpu);
8570 	oldsd = &per_cpu(softnet_data, oldcpu);
8571 
8572 	/* Find end of our completion_queue. */
8573 	list_skb = &sd->completion_queue;
8574 	while (*list_skb)
8575 		list_skb = &(*list_skb)->next;
8576 	/* Append completion queue from offline CPU. */
8577 	*list_skb = oldsd->completion_queue;
8578 	oldsd->completion_queue = NULL;
8579 
8580 	/* Append output queue from offline CPU. */
8581 	if (oldsd->output_queue) {
8582 		*sd->output_queue_tailp = oldsd->output_queue;
8583 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8584 		oldsd->output_queue = NULL;
8585 		oldsd->output_queue_tailp = &oldsd->output_queue;
8586 	}
8587 	/* Append NAPI poll list from offline CPU, with one exception :
8588 	 * process_backlog() must be called by cpu owning percpu backlog.
8589 	 * We properly handle process_queue & input_pkt_queue later.
8590 	 */
8591 	while (!list_empty(&oldsd->poll_list)) {
8592 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8593 							    struct napi_struct,
8594 							    poll_list);
8595 
8596 		list_del_init(&napi->poll_list);
8597 		if (napi->poll == process_backlog)
8598 			napi->state = 0;
8599 		else
8600 			____napi_schedule(sd, napi);
8601 	}
8602 
8603 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8604 	local_irq_enable();
8605 
8606 #ifdef CONFIG_RPS
8607 	remsd = oldsd->rps_ipi_list;
8608 	oldsd->rps_ipi_list = NULL;
8609 #endif
8610 	/* send out pending IPI's on offline CPU */
8611 	net_rps_send_ipi(remsd);
8612 
8613 	/* Process offline CPU's input_pkt_queue */
8614 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8615 		netif_rx_ni(skb);
8616 		input_queue_head_incr(oldsd);
8617 	}
8618 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8619 		netif_rx_ni(skb);
8620 		input_queue_head_incr(oldsd);
8621 	}
8622 
8623 	return 0;
8624 }
8625 
8626 /**
8627  *	netdev_increment_features - increment feature set by one
8628  *	@all: current feature set
8629  *	@one: new feature set
8630  *	@mask: mask feature set
8631  *
8632  *	Computes a new feature set after adding a device with feature set
8633  *	@one to the master device with current feature set @all.  Will not
8634  *	enable anything that is off in @mask. Returns the new feature set.
8635  */
8636 netdev_features_t netdev_increment_features(netdev_features_t all,
8637 	netdev_features_t one, netdev_features_t mask)
8638 {
8639 	if (mask & NETIF_F_HW_CSUM)
8640 		mask |= NETIF_F_CSUM_MASK;
8641 	mask |= NETIF_F_VLAN_CHALLENGED;
8642 
8643 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8644 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8645 
8646 	/* If one device supports hw checksumming, set for all. */
8647 	if (all & NETIF_F_HW_CSUM)
8648 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8649 
8650 	return all;
8651 }
8652 EXPORT_SYMBOL(netdev_increment_features);
8653 
8654 static struct hlist_head * __net_init netdev_create_hash(void)
8655 {
8656 	int i;
8657 	struct hlist_head *hash;
8658 
8659 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8660 	if (hash != NULL)
8661 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8662 			INIT_HLIST_HEAD(&hash[i]);
8663 
8664 	return hash;
8665 }
8666 
8667 /* Initialize per network namespace state */
8668 static int __net_init netdev_init(struct net *net)
8669 {
8670 	if (net != &init_net)
8671 		INIT_LIST_HEAD(&net->dev_base_head);
8672 
8673 	net->dev_name_head = netdev_create_hash();
8674 	if (net->dev_name_head == NULL)
8675 		goto err_name;
8676 
8677 	net->dev_index_head = netdev_create_hash();
8678 	if (net->dev_index_head == NULL)
8679 		goto err_idx;
8680 
8681 	return 0;
8682 
8683 err_idx:
8684 	kfree(net->dev_name_head);
8685 err_name:
8686 	return -ENOMEM;
8687 }
8688 
8689 /**
8690  *	netdev_drivername - network driver for the device
8691  *	@dev: network device
8692  *
8693  *	Determine network driver for device.
8694  */
8695 const char *netdev_drivername(const struct net_device *dev)
8696 {
8697 	const struct device_driver *driver;
8698 	const struct device *parent;
8699 	const char *empty = "";
8700 
8701 	parent = dev->dev.parent;
8702 	if (!parent)
8703 		return empty;
8704 
8705 	driver = parent->driver;
8706 	if (driver && driver->name)
8707 		return driver->name;
8708 	return empty;
8709 }
8710 
8711 static void __netdev_printk(const char *level, const struct net_device *dev,
8712 			    struct va_format *vaf)
8713 {
8714 	if (dev && dev->dev.parent) {
8715 		dev_printk_emit(level[1] - '0',
8716 				dev->dev.parent,
8717 				"%s %s %s%s: %pV",
8718 				dev_driver_string(dev->dev.parent),
8719 				dev_name(dev->dev.parent),
8720 				netdev_name(dev), netdev_reg_state(dev),
8721 				vaf);
8722 	} else if (dev) {
8723 		printk("%s%s%s: %pV",
8724 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8725 	} else {
8726 		printk("%s(NULL net_device): %pV", level, vaf);
8727 	}
8728 }
8729 
8730 void netdev_printk(const char *level, const struct net_device *dev,
8731 		   const char *format, ...)
8732 {
8733 	struct va_format vaf;
8734 	va_list args;
8735 
8736 	va_start(args, format);
8737 
8738 	vaf.fmt = format;
8739 	vaf.va = &args;
8740 
8741 	__netdev_printk(level, dev, &vaf);
8742 
8743 	va_end(args);
8744 }
8745 EXPORT_SYMBOL(netdev_printk);
8746 
8747 #define define_netdev_printk_level(func, level)			\
8748 void func(const struct net_device *dev, const char *fmt, ...)	\
8749 {								\
8750 	struct va_format vaf;					\
8751 	va_list args;						\
8752 								\
8753 	va_start(args, fmt);					\
8754 								\
8755 	vaf.fmt = fmt;						\
8756 	vaf.va = &args;						\
8757 								\
8758 	__netdev_printk(level, dev, &vaf);			\
8759 								\
8760 	va_end(args);						\
8761 }								\
8762 EXPORT_SYMBOL(func);
8763 
8764 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8765 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8766 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8767 define_netdev_printk_level(netdev_err, KERN_ERR);
8768 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8769 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8770 define_netdev_printk_level(netdev_info, KERN_INFO);
8771 
8772 static void __net_exit netdev_exit(struct net *net)
8773 {
8774 	kfree(net->dev_name_head);
8775 	kfree(net->dev_index_head);
8776 	if (net != &init_net)
8777 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8778 }
8779 
8780 static struct pernet_operations __net_initdata netdev_net_ops = {
8781 	.init = netdev_init,
8782 	.exit = netdev_exit,
8783 };
8784 
8785 static void __net_exit default_device_exit(struct net *net)
8786 {
8787 	struct net_device *dev, *aux;
8788 	/*
8789 	 * Push all migratable network devices back to the
8790 	 * initial network namespace
8791 	 */
8792 	rtnl_lock();
8793 	for_each_netdev_safe(net, dev, aux) {
8794 		int err;
8795 		char fb_name[IFNAMSIZ];
8796 
8797 		/* Ignore unmoveable devices (i.e. loopback) */
8798 		if (dev->features & NETIF_F_NETNS_LOCAL)
8799 			continue;
8800 
8801 		/* Leave virtual devices for the generic cleanup */
8802 		if (dev->rtnl_link_ops)
8803 			continue;
8804 
8805 		/* Push remaining network devices to init_net */
8806 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8807 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8808 		if (err) {
8809 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8810 				 __func__, dev->name, err);
8811 			BUG();
8812 		}
8813 	}
8814 	rtnl_unlock();
8815 }
8816 
8817 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8818 {
8819 	/* Return with the rtnl_lock held when there are no network
8820 	 * devices unregistering in any network namespace in net_list.
8821 	 */
8822 	struct net *net;
8823 	bool unregistering;
8824 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8825 
8826 	add_wait_queue(&netdev_unregistering_wq, &wait);
8827 	for (;;) {
8828 		unregistering = false;
8829 		rtnl_lock();
8830 		list_for_each_entry(net, net_list, exit_list) {
8831 			if (net->dev_unreg_count > 0) {
8832 				unregistering = true;
8833 				break;
8834 			}
8835 		}
8836 		if (!unregistering)
8837 			break;
8838 		__rtnl_unlock();
8839 
8840 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8841 	}
8842 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8843 }
8844 
8845 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8846 {
8847 	/* At exit all network devices most be removed from a network
8848 	 * namespace.  Do this in the reverse order of registration.
8849 	 * Do this across as many network namespaces as possible to
8850 	 * improve batching efficiency.
8851 	 */
8852 	struct net_device *dev;
8853 	struct net *net;
8854 	LIST_HEAD(dev_kill_list);
8855 
8856 	/* To prevent network device cleanup code from dereferencing
8857 	 * loopback devices or network devices that have been freed
8858 	 * wait here for all pending unregistrations to complete,
8859 	 * before unregistring the loopback device and allowing the
8860 	 * network namespace be freed.
8861 	 *
8862 	 * The netdev todo list containing all network devices
8863 	 * unregistrations that happen in default_device_exit_batch
8864 	 * will run in the rtnl_unlock() at the end of
8865 	 * default_device_exit_batch.
8866 	 */
8867 	rtnl_lock_unregistering(net_list);
8868 	list_for_each_entry(net, net_list, exit_list) {
8869 		for_each_netdev_reverse(net, dev) {
8870 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8871 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8872 			else
8873 				unregister_netdevice_queue(dev, &dev_kill_list);
8874 		}
8875 	}
8876 	unregister_netdevice_many(&dev_kill_list);
8877 	rtnl_unlock();
8878 }
8879 
8880 static struct pernet_operations __net_initdata default_device_ops = {
8881 	.exit = default_device_exit,
8882 	.exit_batch = default_device_exit_batch,
8883 };
8884 
8885 /*
8886  *	Initialize the DEV module. At boot time this walks the device list and
8887  *	unhooks any devices that fail to initialise (normally hardware not
8888  *	present) and leaves us with a valid list of present and active devices.
8889  *
8890  */
8891 
8892 /*
8893  *       This is called single threaded during boot, so no need
8894  *       to take the rtnl semaphore.
8895  */
8896 static int __init net_dev_init(void)
8897 {
8898 	int i, rc = -ENOMEM;
8899 
8900 	BUG_ON(!dev_boot_phase);
8901 
8902 	if (dev_proc_init())
8903 		goto out;
8904 
8905 	if (netdev_kobject_init())
8906 		goto out;
8907 
8908 	INIT_LIST_HEAD(&ptype_all);
8909 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8910 		INIT_LIST_HEAD(&ptype_base[i]);
8911 
8912 	INIT_LIST_HEAD(&offload_base);
8913 
8914 	if (register_pernet_subsys(&netdev_net_ops))
8915 		goto out;
8916 
8917 	/*
8918 	 *	Initialise the packet receive queues.
8919 	 */
8920 
8921 	for_each_possible_cpu(i) {
8922 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8923 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8924 
8925 		INIT_WORK(flush, flush_backlog);
8926 
8927 		skb_queue_head_init(&sd->input_pkt_queue);
8928 		skb_queue_head_init(&sd->process_queue);
8929 #ifdef CONFIG_XFRM_OFFLOAD
8930 		skb_queue_head_init(&sd->xfrm_backlog);
8931 #endif
8932 		INIT_LIST_HEAD(&sd->poll_list);
8933 		sd->output_queue_tailp = &sd->output_queue;
8934 #ifdef CONFIG_RPS
8935 		sd->csd.func = rps_trigger_softirq;
8936 		sd->csd.info = sd;
8937 		sd->cpu = i;
8938 #endif
8939 
8940 		sd->backlog.poll = process_backlog;
8941 		sd->backlog.weight = weight_p;
8942 	}
8943 
8944 	dev_boot_phase = 0;
8945 
8946 	/* The loopback device is special if any other network devices
8947 	 * is present in a network namespace the loopback device must
8948 	 * be present. Since we now dynamically allocate and free the
8949 	 * loopback device ensure this invariant is maintained by
8950 	 * keeping the loopback device as the first device on the
8951 	 * list of network devices.  Ensuring the loopback devices
8952 	 * is the first device that appears and the last network device
8953 	 * that disappears.
8954 	 */
8955 	if (register_pernet_device(&loopback_net_ops))
8956 		goto out;
8957 
8958 	if (register_pernet_device(&default_device_ops))
8959 		goto out;
8960 
8961 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8962 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8963 
8964 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8965 				       NULL, dev_cpu_dead);
8966 	WARN_ON(rc < 0);
8967 	rc = 0;
8968 out:
8969 	return rc;
8970 }
8971 
8972 subsys_initcall(net_dev_init);
8973