1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <linux/ipv6.h> 122 #include <linux/in.h> 123 #include <linux/jhash.h> 124 #include <linux/random.h> 125 #include <trace/events/napi.h> 126 #include <trace/events/net.h> 127 #include <trace/events/skb.h> 128 #include <linux/pci.h> 129 #include <linux/inetdevice.h> 130 #include <linux/cpu_rmap.h> 131 #include <linux/static_key.h> 132 133 #include "net-sysfs.h" 134 135 /* Instead of increasing this, you should create a hash table. */ 136 #define MAX_GRO_SKBS 8 137 138 /* This should be increased if a protocol with a bigger head is added. */ 139 #define GRO_MAX_HEAD (MAX_HEADER + 128) 140 141 static DEFINE_SPINLOCK(ptype_lock); 142 static DEFINE_SPINLOCK(offload_lock); 143 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 144 struct list_head ptype_all __read_mostly; /* Taps */ 145 static struct list_head offload_base __read_mostly; 146 147 /* 148 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 149 * semaphore. 150 * 151 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 152 * 153 * Writers must hold the rtnl semaphore while they loop through the 154 * dev_base_head list, and hold dev_base_lock for writing when they do the 155 * actual updates. This allows pure readers to access the list even 156 * while a writer is preparing to update it. 157 * 158 * To put it another way, dev_base_lock is held for writing only to 159 * protect against pure readers; the rtnl semaphore provides the 160 * protection against other writers. 161 * 162 * See, for example usages, register_netdevice() and 163 * unregister_netdevice(), which must be called with the rtnl 164 * semaphore held. 165 */ 166 DEFINE_RWLOCK(dev_base_lock); 167 EXPORT_SYMBOL(dev_base_lock); 168 169 seqcount_t devnet_rename_seq; 170 171 static inline void dev_base_seq_inc(struct net *net) 172 { 173 while (++net->dev_base_seq == 0); 174 } 175 176 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 177 { 178 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 179 180 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 181 } 182 183 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 184 { 185 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 186 } 187 188 static inline void rps_lock(struct softnet_data *sd) 189 { 190 #ifdef CONFIG_RPS 191 spin_lock(&sd->input_pkt_queue.lock); 192 #endif 193 } 194 195 static inline void rps_unlock(struct softnet_data *sd) 196 { 197 #ifdef CONFIG_RPS 198 spin_unlock(&sd->input_pkt_queue.lock); 199 #endif 200 } 201 202 /* Device list insertion */ 203 static int list_netdevice(struct net_device *dev) 204 { 205 struct net *net = dev_net(dev); 206 207 ASSERT_RTNL(); 208 209 write_lock_bh(&dev_base_lock); 210 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 211 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 212 hlist_add_head_rcu(&dev->index_hlist, 213 dev_index_hash(net, dev->ifindex)); 214 write_unlock_bh(&dev_base_lock); 215 216 dev_base_seq_inc(net); 217 218 return 0; 219 } 220 221 /* Device list removal 222 * caller must respect a RCU grace period before freeing/reusing dev 223 */ 224 static void unlist_netdevice(struct net_device *dev) 225 { 226 ASSERT_RTNL(); 227 228 /* Unlink dev from the device chain */ 229 write_lock_bh(&dev_base_lock); 230 list_del_rcu(&dev->dev_list); 231 hlist_del_rcu(&dev->name_hlist); 232 hlist_del_rcu(&dev->index_hlist); 233 write_unlock_bh(&dev_base_lock); 234 235 dev_base_seq_inc(dev_net(dev)); 236 } 237 238 /* 239 * Our notifier list 240 */ 241 242 static RAW_NOTIFIER_HEAD(netdev_chain); 243 244 /* 245 * Device drivers call our routines to queue packets here. We empty the 246 * queue in the local softnet handler. 247 */ 248 249 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 250 EXPORT_PER_CPU_SYMBOL(softnet_data); 251 252 #ifdef CONFIG_LOCKDEP 253 /* 254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 255 * according to dev->type 256 */ 257 static const unsigned short netdev_lock_type[] = 258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 270 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 271 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 272 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 273 274 static const char *const netdev_lock_name[] = 275 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 276 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 277 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 278 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 279 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 280 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 281 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 282 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 283 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 284 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 285 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 286 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 287 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 288 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 289 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 290 291 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 292 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 293 294 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 295 { 296 int i; 297 298 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 299 if (netdev_lock_type[i] == dev_type) 300 return i; 301 /* the last key is used by default */ 302 return ARRAY_SIZE(netdev_lock_type) - 1; 303 } 304 305 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 306 unsigned short dev_type) 307 { 308 int i; 309 310 i = netdev_lock_pos(dev_type); 311 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 312 netdev_lock_name[i]); 313 } 314 315 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 316 { 317 int i; 318 319 i = netdev_lock_pos(dev->type); 320 lockdep_set_class_and_name(&dev->addr_list_lock, 321 &netdev_addr_lock_key[i], 322 netdev_lock_name[i]); 323 } 324 #else 325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 326 unsigned short dev_type) 327 { 328 } 329 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 330 { 331 } 332 #endif 333 334 /******************************************************************************* 335 336 Protocol management and registration routines 337 338 *******************************************************************************/ 339 340 /* 341 * Add a protocol ID to the list. Now that the input handler is 342 * smarter we can dispense with all the messy stuff that used to be 343 * here. 344 * 345 * BEWARE!!! Protocol handlers, mangling input packets, 346 * MUST BE last in hash buckets and checking protocol handlers 347 * MUST start from promiscuous ptype_all chain in net_bh. 348 * It is true now, do not change it. 349 * Explanation follows: if protocol handler, mangling packet, will 350 * be the first on list, it is not able to sense, that packet 351 * is cloned and should be copied-on-write, so that it will 352 * change it and subsequent readers will get broken packet. 353 * --ANK (980803) 354 */ 355 356 static inline struct list_head *ptype_head(const struct packet_type *pt) 357 { 358 if (pt->type == htons(ETH_P_ALL)) 359 return &ptype_all; 360 else 361 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 362 } 363 364 /** 365 * dev_add_pack - add packet handler 366 * @pt: packet type declaration 367 * 368 * Add a protocol handler to the networking stack. The passed &packet_type 369 * is linked into kernel lists and may not be freed until it has been 370 * removed from the kernel lists. 371 * 372 * This call does not sleep therefore it can not 373 * guarantee all CPU's that are in middle of receiving packets 374 * will see the new packet type (until the next received packet). 375 */ 376 377 void dev_add_pack(struct packet_type *pt) 378 { 379 struct list_head *head = ptype_head(pt); 380 381 spin_lock(&ptype_lock); 382 list_add_rcu(&pt->list, head); 383 spin_unlock(&ptype_lock); 384 } 385 EXPORT_SYMBOL(dev_add_pack); 386 387 /** 388 * __dev_remove_pack - remove packet handler 389 * @pt: packet type declaration 390 * 391 * Remove a protocol handler that was previously added to the kernel 392 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 393 * from the kernel lists and can be freed or reused once this function 394 * returns. 395 * 396 * The packet type might still be in use by receivers 397 * and must not be freed until after all the CPU's have gone 398 * through a quiescent state. 399 */ 400 void __dev_remove_pack(struct packet_type *pt) 401 { 402 struct list_head *head = ptype_head(pt); 403 struct packet_type *pt1; 404 405 spin_lock(&ptype_lock); 406 407 list_for_each_entry(pt1, head, list) { 408 if (pt == pt1) { 409 list_del_rcu(&pt->list); 410 goto out; 411 } 412 } 413 414 pr_warn("dev_remove_pack: %p not found\n", pt); 415 out: 416 spin_unlock(&ptype_lock); 417 } 418 EXPORT_SYMBOL(__dev_remove_pack); 419 420 /** 421 * dev_remove_pack - remove packet handler 422 * @pt: packet type declaration 423 * 424 * Remove a protocol handler that was previously added to the kernel 425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 426 * from the kernel lists and can be freed or reused once this function 427 * returns. 428 * 429 * This call sleeps to guarantee that no CPU is looking at the packet 430 * type after return. 431 */ 432 void dev_remove_pack(struct packet_type *pt) 433 { 434 __dev_remove_pack(pt); 435 436 synchronize_net(); 437 } 438 EXPORT_SYMBOL(dev_remove_pack); 439 440 441 /** 442 * dev_add_offload - register offload handlers 443 * @po: protocol offload declaration 444 * 445 * Add protocol offload handlers to the networking stack. The passed 446 * &proto_offload is linked into kernel lists and may not be freed until 447 * it has been removed from the kernel lists. 448 * 449 * This call does not sleep therefore it can not 450 * guarantee all CPU's that are in middle of receiving packets 451 * will see the new offload handlers (until the next received packet). 452 */ 453 void dev_add_offload(struct packet_offload *po) 454 { 455 struct list_head *head = &offload_base; 456 457 spin_lock(&offload_lock); 458 list_add_rcu(&po->list, head); 459 spin_unlock(&offload_lock); 460 } 461 EXPORT_SYMBOL(dev_add_offload); 462 463 /** 464 * __dev_remove_offload - remove offload handler 465 * @po: packet offload declaration 466 * 467 * Remove a protocol offload handler that was previously added to the 468 * kernel offload handlers by dev_add_offload(). The passed &offload_type 469 * is removed from the kernel lists and can be freed or reused once this 470 * function returns. 471 * 472 * The packet type might still be in use by receivers 473 * and must not be freed until after all the CPU's have gone 474 * through a quiescent state. 475 */ 476 void __dev_remove_offload(struct packet_offload *po) 477 { 478 struct list_head *head = &offload_base; 479 struct packet_offload *po1; 480 481 spin_lock(&offload_lock); 482 483 list_for_each_entry(po1, head, list) { 484 if (po == po1) { 485 list_del_rcu(&po->list); 486 goto out; 487 } 488 } 489 490 pr_warn("dev_remove_offload: %p not found\n", po); 491 out: 492 spin_unlock(&offload_lock); 493 } 494 EXPORT_SYMBOL(__dev_remove_offload); 495 496 /** 497 * dev_remove_offload - remove packet offload handler 498 * @po: packet offload declaration 499 * 500 * Remove a packet offload handler that was previously added to the kernel 501 * offload handlers by dev_add_offload(). The passed &offload_type is 502 * removed from the kernel lists and can be freed or reused once this 503 * function returns. 504 * 505 * This call sleeps to guarantee that no CPU is looking at the packet 506 * type after return. 507 */ 508 void dev_remove_offload(struct packet_offload *po) 509 { 510 __dev_remove_offload(po); 511 512 synchronize_net(); 513 } 514 EXPORT_SYMBOL(dev_remove_offload); 515 516 /****************************************************************************** 517 518 Device Boot-time Settings Routines 519 520 *******************************************************************************/ 521 522 /* Boot time configuration table */ 523 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 524 525 /** 526 * netdev_boot_setup_add - add new setup entry 527 * @name: name of the device 528 * @map: configured settings for the device 529 * 530 * Adds new setup entry to the dev_boot_setup list. The function 531 * returns 0 on error and 1 on success. This is a generic routine to 532 * all netdevices. 533 */ 534 static int netdev_boot_setup_add(char *name, struct ifmap *map) 535 { 536 struct netdev_boot_setup *s; 537 int i; 538 539 s = dev_boot_setup; 540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 541 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 542 memset(s[i].name, 0, sizeof(s[i].name)); 543 strlcpy(s[i].name, name, IFNAMSIZ); 544 memcpy(&s[i].map, map, sizeof(s[i].map)); 545 break; 546 } 547 } 548 549 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 550 } 551 552 /** 553 * netdev_boot_setup_check - check boot time settings 554 * @dev: the netdevice 555 * 556 * Check boot time settings for the device. 557 * The found settings are set for the device to be used 558 * later in the device probing. 559 * Returns 0 if no settings found, 1 if they are. 560 */ 561 int netdev_boot_setup_check(struct net_device *dev) 562 { 563 struct netdev_boot_setup *s = dev_boot_setup; 564 int i; 565 566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 567 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 568 !strcmp(dev->name, s[i].name)) { 569 dev->irq = s[i].map.irq; 570 dev->base_addr = s[i].map.base_addr; 571 dev->mem_start = s[i].map.mem_start; 572 dev->mem_end = s[i].map.mem_end; 573 return 1; 574 } 575 } 576 return 0; 577 } 578 EXPORT_SYMBOL(netdev_boot_setup_check); 579 580 581 /** 582 * netdev_boot_base - get address from boot time settings 583 * @prefix: prefix for network device 584 * @unit: id for network device 585 * 586 * Check boot time settings for the base address of device. 587 * The found settings are set for the device to be used 588 * later in the device probing. 589 * Returns 0 if no settings found. 590 */ 591 unsigned long netdev_boot_base(const char *prefix, int unit) 592 { 593 const struct netdev_boot_setup *s = dev_boot_setup; 594 char name[IFNAMSIZ]; 595 int i; 596 597 sprintf(name, "%s%d", prefix, unit); 598 599 /* 600 * If device already registered then return base of 1 601 * to indicate not to probe for this interface 602 */ 603 if (__dev_get_by_name(&init_net, name)) 604 return 1; 605 606 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 607 if (!strcmp(name, s[i].name)) 608 return s[i].map.base_addr; 609 return 0; 610 } 611 612 /* 613 * Saves at boot time configured settings for any netdevice. 614 */ 615 int __init netdev_boot_setup(char *str) 616 { 617 int ints[5]; 618 struct ifmap map; 619 620 str = get_options(str, ARRAY_SIZE(ints), ints); 621 if (!str || !*str) 622 return 0; 623 624 /* Save settings */ 625 memset(&map, 0, sizeof(map)); 626 if (ints[0] > 0) 627 map.irq = ints[1]; 628 if (ints[0] > 1) 629 map.base_addr = ints[2]; 630 if (ints[0] > 2) 631 map.mem_start = ints[3]; 632 if (ints[0] > 3) 633 map.mem_end = ints[4]; 634 635 /* Add new entry to the list */ 636 return netdev_boot_setup_add(str, &map); 637 } 638 639 __setup("netdev=", netdev_boot_setup); 640 641 /******************************************************************************* 642 643 Device Interface Subroutines 644 645 *******************************************************************************/ 646 647 /** 648 * __dev_get_by_name - find a device by its name 649 * @net: the applicable net namespace 650 * @name: name to find 651 * 652 * Find an interface by name. Must be called under RTNL semaphore 653 * or @dev_base_lock. If the name is found a pointer to the device 654 * is returned. If the name is not found then %NULL is returned. The 655 * reference counters are not incremented so the caller must be 656 * careful with locks. 657 */ 658 659 struct net_device *__dev_get_by_name(struct net *net, const char *name) 660 { 661 struct hlist_node *p; 662 struct net_device *dev; 663 struct hlist_head *head = dev_name_hash(net, name); 664 665 hlist_for_each_entry(dev, p, head, name_hlist) 666 if (!strncmp(dev->name, name, IFNAMSIZ)) 667 return dev; 668 669 return NULL; 670 } 671 EXPORT_SYMBOL(__dev_get_by_name); 672 673 /** 674 * dev_get_by_name_rcu - find a device by its name 675 * @net: the applicable net namespace 676 * @name: name to find 677 * 678 * Find an interface by name. 679 * If the name is found a pointer to the device is returned. 680 * If the name is not found then %NULL is returned. 681 * The reference counters are not incremented so the caller must be 682 * careful with locks. The caller must hold RCU lock. 683 */ 684 685 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 686 { 687 struct hlist_node *p; 688 struct net_device *dev; 689 struct hlist_head *head = dev_name_hash(net, name); 690 691 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 692 if (!strncmp(dev->name, name, IFNAMSIZ)) 693 return dev; 694 695 return NULL; 696 } 697 EXPORT_SYMBOL(dev_get_by_name_rcu); 698 699 /** 700 * dev_get_by_name - find a device by its name 701 * @net: the applicable net namespace 702 * @name: name to find 703 * 704 * Find an interface by name. This can be called from any 705 * context and does its own locking. The returned handle has 706 * the usage count incremented and the caller must use dev_put() to 707 * release it when it is no longer needed. %NULL is returned if no 708 * matching device is found. 709 */ 710 711 struct net_device *dev_get_by_name(struct net *net, const char *name) 712 { 713 struct net_device *dev; 714 715 rcu_read_lock(); 716 dev = dev_get_by_name_rcu(net, name); 717 if (dev) 718 dev_hold(dev); 719 rcu_read_unlock(); 720 return dev; 721 } 722 EXPORT_SYMBOL(dev_get_by_name); 723 724 /** 725 * __dev_get_by_index - find a device by its ifindex 726 * @net: the applicable net namespace 727 * @ifindex: index of device 728 * 729 * Search for an interface by index. Returns %NULL if the device 730 * is not found or a pointer to the device. The device has not 731 * had its reference counter increased so the caller must be careful 732 * about locking. The caller must hold either the RTNL semaphore 733 * or @dev_base_lock. 734 */ 735 736 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 737 { 738 struct hlist_node *p; 739 struct net_device *dev; 740 struct hlist_head *head = dev_index_hash(net, ifindex); 741 742 hlist_for_each_entry(dev, p, head, index_hlist) 743 if (dev->ifindex == ifindex) 744 return dev; 745 746 return NULL; 747 } 748 EXPORT_SYMBOL(__dev_get_by_index); 749 750 /** 751 * dev_get_by_index_rcu - find a device by its ifindex 752 * @net: the applicable net namespace 753 * @ifindex: index of device 754 * 755 * Search for an interface by index. Returns %NULL if the device 756 * is not found or a pointer to the device. The device has not 757 * had its reference counter increased so the caller must be careful 758 * about locking. The caller must hold RCU lock. 759 */ 760 761 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 762 { 763 struct hlist_node *p; 764 struct net_device *dev; 765 struct hlist_head *head = dev_index_hash(net, ifindex); 766 767 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 768 if (dev->ifindex == ifindex) 769 return dev; 770 771 return NULL; 772 } 773 EXPORT_SYMBOL(dev_get_by_index_rcu); 774 775 776 /** 777 * dev_get_by_index - find a device by its ifindex 778 * @net: the applicable net namespace 779 * @ifindex: index of device 780 * 781 * Search for an interface by index. Returns NULL if the device 782 * is not found or a pointer to the device. The device returned has 783 * had a reference added and the pointer is safe until the user calls 784 * dev_put to indicate they have finished with it. 785 */ 786 787 struct net_device *dev_get_by_index(struct net *net, int ifindex) 788 { 789 struct net_device *dev; 790 791 rcu_read_lock(); 792 dev = dev_get_by_index_rcu(net, ifindex); 793 if (dev) 794 dev_hold(dev); 795 rcu_read_unlock(); 796 return dev; 797 } 798 EXPORT_SYMBOL(dev_get_by_index); 799 800 /** 801 * dev_getbyhwaddr_rcu - find a device by its hardware address 802 * @net: the applicable net namespace 803 * @type: media type of device 804 * @ha: hardware address 805 * 806 * Search for an interface by MAC address. Returns NULL if the device 807 * is not found or a pointer to the device. 808 * The caller must hold RCU or RTNL. 809 * The returned device has not had its ref count increased 810 * and the caller must therefore be careful about locking 811 * 812 */ 813 814 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 815 const char *ha) 816 { 817 struct net_device *dev; 818 819 for_each_netdev_rcu(net, dev) 820 if (dev->type == type && 821 !memcmp(dev->dev_addr, ha, dev->addr_len)) 822 return dev; 823 824 return NULL; 825 } 826 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 827 828 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 829 { 830 struct net_device *dev; 831 832 ASSERT_RTNL(); 833 for_each_netdev(net, dev) 834 if (dev->type == type) 835 return dev; 836 837 return NULL; 838 } 839 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 840 841 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 842 { 843 struct net_device *dev, *ret = NULL; 844 845 rcu_read_lock(); 846 for_each_netdev_rcu(net, dev) 847 if (dev->type == type) { 848 dev_hold(dev); 849 ret = dev; 850 break; 851 } 852 rcu_read_unlock(); 853 return ret; 854 } 855 EXPORT_SYMBOL(dev_getfirstbyhwtype); 856 857 /** 858 * dev_get_by_flags_rcu - find any device with given flags 859 * @net: the applicable net namespace 860 * @if_flags: IFF_* values 861 * @mask: bitmask of bits in if_flags to check 862 * 863 * Search for any interface with the given flags. Returns NULL if a device 864 * is not found or a pointer to the device. Must be called inside 865 * rcu_read_lock(), and result refcount is unchanged. 866 */ 867 868 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 869 unsigned short mask) 870 { 871 struct net_device *dev, *ret; 872 873 ret = NULL; 874 for_each_netdev_rcu(net, dev) { 875 if (((dev->flags ^ if_flags) & mask) == 0) { 876 ret = dev; 877 break; 878 } 879 } 880 return ret; 881 } 882 EXPORT_SYMBOL(dev_get_by_flags_rcu); 883 884 /** 885 * dev_valid_name - check if name is okay for network device 886 * @name: name string 887 * 888 * Network device names need to be valid file names to 889 * to allow sysfs to work. We also disallow any kind of 890 * whitespace. 891 */ 892 bool dev_valid_name(const char *name) 893 { 894 if (*name == '\0') 895 return false; 896 if (strlen(name) >= IFNAMSIZ) 897 return false; 898 if (!strcmp(name, ".") || !strcmp(name, "..")) 899 return false; 900 901 while (*name) { 902 if (*name == '/' || isspace(*name)) 903 return false; 904 name++; 905 } 906 return true; 907 } 908 EXPORT_SYMBOL(dev_valid_name); 909 910 /** 911 * __dev_alloc_name - allocate a name for a device 912 * @net: network namespace to allocate the device name in 913 * @name: name format string 914 * @buf: scratch buffer and result name string 915 * 916 * Passed a format string - eg "lt%d" it will try and find a suitable 917 * id. It scans list of devices to build up a free map, then chooses 918 * the first empty slot. The caller must hold the dev_base or rtnl lock 919 * while allocating the name and adding the device in order to avoid 920 * duplicates. 921 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 922 * Returns the number of the unit assigned or a negative errno code. 923 */ 924 925 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 926 { 927 int i = 0; 928 const char *p; 929 const int max_netdevices = 8*PAGE_SIZE; 930 unsigned long *inuse; 931 struct net_device *d; 932 933 p = strnchr(name, IFNAMSIZ-1, '%'); 934 if (p) { 935 /* 936 * Verify the string as this thing may have come from 937 * the user. There must be either one "%d" and no other "%" 938 * characters. 939 */ 940 if (p[1] != 'd' || strchr(p + 2, '%')) 941 return -EINVAL; 942 943 /* Use one page as a bit array of possible slots */ 944 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 945 if (!inuse) 946 return -ENOMEM; 947 948 for_each_netdev(net, d) { 949 if (!sscanf(d->name, name, &i)) 950 continue; 951 if (i < 0 || i >= max_netdevices) 952 continue; 953 954 /* avoid cases where sscanf is not exact inverse of printf */ 955 snprintf(buf, IFNAMSIZ, name, i); 956 if (!strncmp(buf, d->name, IFNAMSIZ)) 957 set_bit(i, inuse); 958 } 959 960 i = find_first_zero_bit(inuse, max_netdevices); 961 free_page((unsigned long) inuse); 962 } 963 964 if (buf != name) 965 snprintf(buf, IFNAMSIZ, name, i); 966 if (!__dev_get_by_name(net, buf)) 967 return i; 968 969 /* It is possible to run out of possible slots 970 * when the name is long and there isn't enough space left 971 * for the digits, or if all bits are used. 972 */ 973 return -ENFILE; 974 } 975 976 /** 977 * dev_alloc_name - allocate a name for a device 978 * @dev: device 979 * @name: name format string 980 * 981 * Passed a format string - eg "lt%d" it will try and find a suitable 982 * id. It scans list of devices to build up a free map, then chooses 983 * the first empty slot. The caller must hold the dev_base or rtnl lock 984 * while allocating the name and adding the device in order to avoid 985 * duplicates. 986 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 987 * Returns the number of the unit assigned or a negative errno code. 988 */ 989 990 int dev_alloc_name(struct net_device *dev, const char *name) 991 { 992 char buf[IFNAMSIZ]; 993 struct net *net; 994 int ret; 995 996 BUG_ON(!dev_net(dev)); 997 net = dev_net(dev); 998 ret = __dev_alloc_name(net, name, buf); 999 if (ret >= 0) 1000 strlcpy(dev->name, buf, IFNAMSIZ); 1001 return ret; 1002 } 1003 EXPORT_SYMBOL(dev_alloc_name); 1004 1005 static int dev_alloc_name_ns(struct net *net, 1006 struct net_device *dev, 1007 const char *name) 1008 { 1009 char buf[IFNAMSIZ]; 1010 int ret; 1011 1012 ret = __dev_alloc_name(net, name, buf); 1013 if (ret >= 0) 1014 strlcpy(dev->name, buf, IFNAMSIZ); 1015 return ret; 1016 } 1017 1018 static int dev_get_valid_name(struct net *net, 1019 struct net_device *dev, 1020 const char *name) 1021 { 1022 BUG_ON(!net); 1023 1024 if (!dev_valid_name(name)) 1025 return -EINVAL; 1026 1027 if (strchr(name, '%')) 1028 return dev_alloc_name_ns(net, dev, name); 1029 else if (__dev_get_by_name(net, name)) 1030 return -EEXIST; 1031 else if (dev->name != name) 1032 strlcpy(dev->name, name, IFNAMSIZ); 1033 1034 return 0; 1035 } 1036 1037 /** 1038 * dev_change_name - change name of a device 1039 * @dev: device 1040 * @newname: name (or format string) must be at least IFNAMSIZ 1041 * 1042 * Change name of a device, can pass format strings "eth%d". 1043 * for wildcarding. 1044 */ 1045 int dev_change_name(struct net_device *dev, const char *newname) 1046 { 1047 char oldname[IFNAMSIZ]; 1048 int err = 0; 1049 int ret; 1050 struct net *net; 1051 1052 ASSERT_RTNL(); 1053 BUG_ON(!dev_net(dev)); 1054 1055 net = dev_net(dev); 1056 if (dev->flags & IFF_UP) 1057 return -EBUSY; 1058 1059 write_seqcount_begin(&devnet_rename_seq); 1060 1061 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1062 write_seqcount_end(&devnet_rename_seq); 1063 return 0; 1064 } 1065 1066 memcpy(oldname, dev->name, IFNAMSIZ); 1067 1068 err = dev_get_valid_name(net, dev, newname); 1069 if (err < 0) { 1070 write_seqcount_end(&devnet_rename_seq); 1071 return err; 1072 } 1073 1074 rollback: 1075 ret = device_rename(&dev->dev, dev->name); 1076 if (ret) { 1077 memcpy(dev->name, oldname, IFNAMSIZ); 1078 write_seqcount_end(&devnet_rename_seq); 1079 return ret; 1080 } 1081 1082 write_seqcount_end(&devnet_rename_seq); 1083 1084 write_lock_bh(&dev_base_lock); 1085 hlist_del_rcu(&dev->name_hlist); 1086 write_unlock_bh(&dev_base_lock); 1087 1088 synchronize_rcu(); 1089 1090 write_lock_bh(&dev_base_lock); 1091 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1092 write_unlock_bh(&dev_base_lock); 1093 1094 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1095 ret = notifier_to_errno(ret); 1096 1097 if (ret) { 1098 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1099 if (err >= 0) { 1100 err = ret; 1101 write_seqcount_begin(&devnet_rename_seq); 1102 memcpy(dev->name, oldname, IFNAMSIZ); 1103 goto rollback; 1104 } else { 1105 pr_err("%s: name change rollback failed: %d\n", 1106 dev->name, ret); 1107 } 1108 } 1109 1110 return err; 1111 } 1112 1113 /** 1114 * dev_set_alias - change ifalias of a device 1115 * @dev: device 1116 * @alias: name up to IFALIASZ 1117 * @len: limit of bytes to copy from info 1118 * 1119 * Set ifalias for a device, 1120 */ 1121 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1122 { 1123 char *new_ifalias; 1124 1125 ASSERT_RTNL(); 1126 1127 if (len >= IFALIASZ) 1128 return -EINVAL; 1129 1130 if (!len) { 1131 kfree(dev->ifalias); 1132 dev->ifalias = NULL; 1133 return 0; 1134 } 1135 1136 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1137 if (!new_ifalias) 1138 return -ENOMEM; 1139 dev->ifalias = new_ifalias; 1140 1141 strlcpy(dev->ifalias, alias, len+1); 1142 return len; 1143 } 1144 1145 1146 /** 1147 * netdev_features_change - device changes features 1148 * @dev: device to cause notification 1149 * 1150 * Called to indicate a device has changed features. 1151 */ 1152 void netdev_features_change(struct net_device *dev) 1153 { 1154 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1155 } 1156 EXPORT_SYMBOL(netdev_features_change); 1157 1158 /** 1159 * netdev_state_change - device changes state 1160 * @dev: device to cause notification 1161 * 1162 * Called to indicate a device has changed state. This function calls 1163 * the notifier chains for netdev_chain and sends a NEWLINK message 1164 * to the routing socket. 1165 */ 1166 void netdev_state_change(struct net_device *dev) 1167 { 1168 if (dev->flags & IFF_UP) { 1169 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1170 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1171 } 1172 } 1173 EXPORT_SYMBOL(netdev_state_change); 1174 1175 /** 1176 * netdev_notify_peers - notify network peers about existence of @dev 1177 * @dev: network device 1178 * 1179 * Generate traffic such that interested network peers are aware of 1180 * @dev, such as by generating a gratuitous ARP. This may be used when 1181 * a device wants to inform the rest of the network about some sort of 1182 * reconfiguration such as a failover event or virtual machine 1183 * migration. 1184 */ 1185 void netdev_notify_peers(struct net_device *dev) 1186 { 1187 rtnl_lock(); 1188 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1189 rtnl_unlock(); 1190 } 1191 EXPORT_SYMBOL(netdev_notify_peers); 1192 1193 static int __dev_open(struct net_device *dev) 1194 { 1195 const struct net_device_ops *ops = dev->netdev_ops; 1196 int ret; 1197 1198 ASSERT_RTNL(); 1199 1200 if (!netif_device_present(dev)) 1201 return -ENODEV; 1202 1203 /* Block netpoll from trying to do any rx path servicing. 1204 * If we don't do this there is a chance ndo_poll_controller 1205 * or ndo_poll may be running while we open the device 1206 */ 1207 ret = netpoll_rx_disable(dev); 1208 if (ret) 1209 return ret; 1210 1211 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1212 ret = notifier_to_errno(ret); 1213 if (ret) 1214 return ret; 1215 1216 set_bit(__LINK_STATE_START, &dev->state); 1217 1218 if (ops->ndo_validate_addr) 1219 ret = ops->ndo_validate_addr(dev); 1220 1221 if (!ret && ops->ndo_open) 1222 ret = ops->ndo_open(dev); 1223 1224 netpoll_rx_enable(dev); 1225 1226 if (ret) 1227 clear_bit(__LINK_STATE_START, &dev->state); 1228 else { 1229 dev->flags |= IFF_UP; 1230 net_dmaengine_get(); 1231 dev_set_rx_mode(dev); 1232 dev_activate(dev); 1233 add_device_randomness(dev->dev_addr, dev->addr_len); 1234 } 1235 1236 return ret; 1237 } 1238 1239 /** 1240 * dev_open - prepare an interface for use. 1241 * @dev: device to open 1242 * 1243 * Takes a device from down to up state. The device's private open 1244 * function is invoked and then the multicast lists are loaded. Finally 1245 * the device is moved into the up state and a %NETDEV_UP message is 1246 * sent to the netdev notifier chain. 1247 * 1248 * Calling this function on an active interface is a nop. On a failure 1249 * a negative errno code is returned. 1250 */ 1251 int dev_open(struct net_device *dev) 1252 { 1253 int ret; 1254 1255 if (dev->flags & IFF_UP) 1256 return 0; 1257 1258 ret = __dev_open(dev); 1259 if (ret < 0) 1260 return ret; 1261 1262 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1263 call_netdevice_notifiers(NETDEV_UP, dev); 1264 1265 return ret; 1266 } 1267 EXPORT_SYMBOL(dev_open); 1268 1269 static int __dev_close_many(struct list_head *head) 1270 { 1271 struct net_device *dev; 1272 1273 ASSERT_RTNL(); 1274 might_sleep(); 1275 1276 list_for_each_entry(dev, head, unreg_list) { 1277 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1278 1279 clear_bit(__LINK_STATE_START, &dev->state); 1280 1281 /* Synchronize to scheduled poll. We cannot touch poll list, it 1282 * can be even on different cpu. So just clear netif_running(). 1283 * 1284 * dev->stop() will invoke napi_disable() on all of it's 1285 * napi_struct instances on this device. 1286 */ 1287 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1288 } 1289 1290 dev_deactivate_many(head); 1291 1292 list_for_each_entry(dev, head, unreg_list) { 1293 const struct net_device_ops *ops = dev->netdev_ops; 1294 1295 /* 1296 * Call the device specific close. This cannot fail. 1297 * Only if device is UP 1298 * 1299 * We allow it to be called even after a DETACH hot-plug 1300 * event. 1301 */ 1302 if (ops->ndo_stop) 1303 ops->ndo_stop(dev); 1304 1305 dev->flags &= ~IFF_UP; 1306 net_dmaengine_put(); 1307 } 1308 1309 return 0; 1310 } 1311 1312 static int __dev_close(struct net_device *dev) 1313 { 1314 int retval; 1315 LIST_HEAD(single); 1316 1317 /* Temporarily disable netpoll until the interface is down */ 1318 retval = netpoll_rx_disable(dev); 1319 if (retval) 1320 return retval; 1321 1322 list_add(&dev->unreg_list, &single); 1323 retval = __dev_close_many(&single); 1324 list_del(&single); 1325 1326 netpoll_rx_enable(dev); 1327 return retval; 1328 } 1329 1330 static int dev_close_many(struct list_head *head) 1331 { 1332 struct net_device *dev, *tmp; 1333 LIST_HEAD(tmp_list); 1334 1335 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1336 if (!(dev->flags & IFF_UP)) 1337 list_move(&dev->unreg_list, &tmp_list); 1338 1339 __dev_close_many(head); 1340 1341 list_for_each_entry(dev, head, unreg_list) { 1342 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1343 call_netdevice_notifiers(NETDEV_DOWN, dev); 1344 } 1345 1346 /* rollback_registered_many needs the complete original list */ 1347 list_splice(&tmp_list, head); 1348 return 0; 1349 } 1350 1351 /** 1352 * dev_close - shutdown an interface. 1353 * @dev: device to shutdown 1354 * 1355 * This function moves an active device into down state. A 1356 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1357 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1358 * chain. 1359 */ 1360 int dev_close(struct net_device *dev) 1361 { 1362 int ret = 0; 1363 if (dev->flags & IFF_UP) { 1364 LIST_HEAD(single); 1365 1366 /* Block netpoll rx while the interface is going down */ 1367 ret = netpoll_rx_disable(dev); 1368 if (ret) 1369 return ret; 1370 1371 list_add(&dev->unreg_list, &single); 1372 dev_close_many(&single); 1373 list_del(&single); 1374 1375 netpoll_rx_enable(dev); 1376 } 1377 return ret; 1378 } 1379 EXPORT_SYMBOL(dev_close); 1380 1381 1382 /** 1383 * dev_disable_lro - disable Large Receive Offload on a device 1384 * @dev: device 1385 * 1386 * Disable Large Receive Offload (LRO) on a net device. Must be 1387 * called under RTNL. This is needed if received packets may be 1388 * forwarded to another interface. 1389 */ 1390 void dev_disable_lro(struct net_device *dev) 1391 { 1392 /* 1393 * If we're trying to disable lro on a vlan device 1394 * use the underlying physical device instead 1395 */ 1396 if (is_vlan_dev(dev)) 1397 dev = vlan_dev_real_dev(dev); 1398 1399 dev->wanted_features &= ~NETIF_F_LRO; 1400 netdev_update_features(dev); 1401 1402 if (unlikely(dev->features & NETIF_F_LRO)) 1403 netdev_WARN(dev, "failed to disable LRO!\n"); 1404 } 1405 EXPORT_SYMBOL(dev_disable_lro); 1406 1407 1408 static int dev_boot_phase = 1; 1409 1410 /** 1411 * register_netdevice_notifier - register a network notifier block 1412 * @nb: notifier 1413 * 1414 * Register a notifier to be called when network device events occur. 1415 * The notifier passed is linked into the kernel structures and must 1416 * not be reused until it has been unregistered. A negative errno code 1417 * is returned on a failure. 1418 * 1419 * When registered all registration and up events are replayed 1420 * to the new notifier to allow device to have a race free 1421 * view of the network device list. 1422 */ 1423 1424 int register_netdevice_notifier(struct notifier_block *nb) 1425 { 1426 struct net_device *dev; 1427 struct net_device *last; 1428 struct net *net; 1429 int err; 1430 1431 rtnl_lock(); 1432 err = raw_notifier_chain_register(&netdev_chain, nb); 1433 if (err) 1434 goto unlock; 1435 if (dev_boot_phase) 1436 goto unlock; 1437 for_each_net(net) { 1438 for_each_netdev(net, dev) { 1439 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1440 err = notifier_to_errno(err); 1441 if (err) 1442 goto rollback; 1443 1444 if (!(dev->flags & IFF_UP)) 1445 continue; 1446 1447 nb->notifier_call(nb, NETDEV_UP, dev); 1448 } 1449 } 1450 1451 unlock: 1452 rtnl_unlock(); 1453 return err; 1454 1455 rollback: 1456 last = dev; 1457 for_each_net(net) { 1458 for_each_netdev(net, dev) { 1459 if (dev == last) 1460 goto outroll; 1461 1462 if (dev->flags & IFF_UP) { 1463 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1464 nb->notifier_call(nb, NETDEV_DOWN, dev); 1465 } 1466 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1467 } 1468 } 1469 1470 outroll: 1471 raw_notifier_chain_unregister(&netdev_chain, nb); 1472 goto unlock; 1473 } 1474 EXPORT_SYMBOL(register_netdevice_notifier); 1475 1476 /** 1477 * unregister_netdevice_notifier - unregister a network notifier block 1478 * @nb: notifier 1479 * 1480 * Unregister a notifier previously registered by 1481 * register_netdevice_notifier(). The notifier is unlinked into the 1482 * kernel structures and may then be reused. A negative errno code 1483 * is returned on a failure. 1484 * 1485 * After unregistering unregister and down device events are synthesized 1486 * for all devices on the device list to the removed notifier to remove 1487 * the need for special case cleanup code. 1488 */ 1489 1490 int unregister_netdevice_notifier(struct notifier_block *nb) 1491 { 1492 struct net_device *dev; 1493 struct net *net; 1494 int err; 1495 1496 rtnl_lock(); 1497 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1498 if (err) 1499 goto unlock; 1500 1501 for_each_net(net) { 1502 for_each_netdev(net, dev) { 1503 if (dev->flags & IFF_UP) { 1504 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1505 nb->notifier_call(nb, NETDEV_DOWN, dev); 1506 } 1507 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1508 } 1509 } 1510 unlock: 1511 rtnl_unlock(); 1512 return err; 1513 } 1514 EXPORT_SYMBOL(unregister_netdevice_notifier); 1515 1516 /** 1517 * call_netdevice_notifiers - call all network notifier blocks 1518 * @val: value passed unmodified to notifier function 1519 * @dev: net_device pointer passed unmodified to notifier function 1520 * 1521 * Call all network notifier blocks. Parameters and return value 1522 * are as for raw_notifier_call_chain(). 1523 */ 1524 1525 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1526 { 1527 ASSERT_RTNL(); 1528 return raw_notifier_call_chain(&netdev_chain, val, dev); 1529 } 1530 EXPORT_SYMBOL(call_netdevice_notifiers); 1531 1532 static struct static_key netstamp_needed __read_mostly; 1533 #ifdef HAVE_JUMP_LABEL 1534 /* We are not allowed to call static_key_slow_dec() from irq context 1535 * If net_disable_timestamp() is called from irq context, defer the 1536 * static_key_slow_dec() calls. 1537 */ 1538 static atomic_t netstamp_needed_deferred; 1539 #endif 1540 1541 void net_enable_timestamp(void) 1542 { 1543 #ifdef HAVE_JUMP_LABEL 1544 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1545 1546 if (deferred) { 1547 while (--deferred) 1548 static_key_slow_dec(&netstamp_needed); 1549 return; 1550 } 1551 #endif 1552 WARN_ON(in_interrupt()); 1553 static_key_slow_inc(&netstamp_needed); 1554 } 1555 EXPORT_SYMBOL(net_enable_timestamp); 1556 1557 void net_disable_timestamp(void) 1558 { 1559 #ifdef HAVE_JUMP_LABEL 1560 if (in_interrupt()) { 1561 atomic_inc(&netstamp_needed_deferred); 1562 return; 1563 } 1564 #endif 1565 static_key_slow_dec(&netstamp_needed); 1566 } 1567 EXPORT_SYMBOL(net_disable_timestamp); 1568 1569 static inline void net_timestamp_set(struct sk_buff *skb) 1570 { 1571 skb->tstamp.tv64 = 0; 1572 if (static_key_false(&netstamp_needed)) 1573 __net_timestamp(skb); 1574 } 1575 1576 #define net_timestamp_check(COND, SKB) \ 1577 if (static_key_false(&netstamp_needed)) { \ 1578 if ((COND) && !(SKB)->tstamp.tv64) \ 1579 __net_timestamp(SKB); \ 1580 } \ 1581 1582 static inline bool is_skb_forwardable(struct net_device *dev, 1583 struct sk_buff *skb) 1584 { 1585 unsigned int len; 1586 1587 if (!(dev->flags & IFF_UP)) 1588 return false; 1589 1590 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1591 if (skb->len <= len) 1592 return true; 1593 1594 /* if TSO is enabled, we don't care about the length as the packet 1595 * could be forwarded without being segmented before 1596 */ 1597 if (skb_is_gso(skb)) 1598 return true; 1599 1600 return false; 1601 } 1602 1603 /** 1604 * dev_forward_skb - loopback an skb to another netif 1605 * 1606 * @dev: destination network device 1607 * @skb: buffer to forward 1608 * 1609 * return values: 1610 * NET_RX_SUCCESS (no congestion) 1611 * NET_RX_DROP (packet was dropped, but freed) 1612 * 1613 * dev_forward_skb can be used for injecting an skb from the 1614 * start_xmit function of one device into the receive queue 1615 * of another device. 1616 * 1617 * The receiving device may be in another namespace, so 1618 * we have to clear all information in the skb that could 1619 * impact namespace isolation. 1620 */ 1621 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1622 { 1623 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1624 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1625 atomic_long_inc(&dev->rx_dropped); 1626 kfree_skb(skb); 1627 return NET_RX_DROP; 1628 } 1629 } 1630 1631 skb_orphan(skb); 1632 nf_reset(skb); 1633 1634 if (unlikely(!is_skb_forwardable(dev, skb))) { 1635 atomic_long_inc(&dev->rx_dropped); 1636 kfree_skb(skb); 1637 return NET_RX_DROP; 1638 } 1639 skb->skb_iif = 0; 1640 skb->dev = dev; 1641 skb_dst_drop(skb); 1642 skb->tstamp.tv64 = 0; 1643 skb->pkt_type = PACKET_HOST; 1644 skb->protocol = eth_type_trans(skb, dev); 1645 skb->mark = 0; 1646 secpath_reset(skb); 1647 nf_reset(skb); 1648 return netif_rx(skb); 1649 } 1650 EXPORT_SYMBOL_GPL(dev_forward_skb); 1651 1652 static inline int deliver_skb(struct sk_buff *skb, 1653 struct packet_type *pt_prev, 1654 struct net_device *orig_dev) 1655 { 1656 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1657 return -ENOMEM; 1658 atomic_inc(&skb->users); 1659 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1660 } 1661 1662 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1663 { 1664 if (!ptype->af_packet_priv || !skb->sk) 1665 return false; 1666 1667 if (ptype->id_match) 1668 return ptype->id_match(ptype, skb->sk); 1669 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1670 return true; 1671 1672 return false; 1673 } 1674 1675 /* 1676 * Support routine. Sends outgoing frames to any network 1677 * taps currently in use. 1678 */ 1679 1680 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1681 { 1682 struct packet_type *ptype; 1683 struct sk_buff *skb2 = NULL; 1684 struct packet_type *pt_prev = NULL; 1685 1686 rcu_read_lock(); 1687 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1688 /* Never send packets back to the socket 1689 * they originated from - MvS (miquels@drinkel.ow.org) 1690 */ 1691 if ((ptype->dev == dev || !ptype->dev) && 1692 (!skb_loop_sk(ptype, skb))) { 1693 if (pt_prev) { 1694 deliver_skb(skb2, pt_prev, skb->dev); 1695 pt_prev = ptype; 1696 continue; 1697 } 1698 1699 skb2 = skb_clone(skb, GFP_ATOMIC); 1700 if (!skb2) 1701 break; 1702 1703 net_timestamp_set(skb2); 1704 1705 /* skb->nh should be correctly 1706 set by sender, so that the second statement is 1707 just protection against buggy protocols. 1708 */ 1709 skb_reset_mac_header(skb2); 1710 1711 if (skb_network_header(skb2) < skb2->data || 1712 skb2->network_header > skb2->tail) { 1713 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1714 ntohs(skb2->protocol), 1715 dev->name); 1716 skb_reset_network_header(skb2); 1717 } 1718 1719 skb2->transport_header = skb2->network_header; 1720 skb2->pkt_type = PACKET_OUTGOING; 1721 pt_prev = ptype; 1722 } 1723 } 1724 if (pt_prev) 1725 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1726 rcu_read_unlock(); 1727 } 1728 1729 /** 1730 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1731 * @dev: Network device 1732 * @txq: number of queues available 1733 * 1734 * If real_num_tx_queues is changed the tc mappings may no longer be 1735 * valid. To resolve this verify the tc mapping remains valid and if 1736 * not NULL the mapping. With no priorities mapping to this 1737 * offset/count pair it will no longer be used. In the worst case TC0 1738 * is invalid nothing can be done so disable priority mappings. If is 1739 * expected that drivers will fix this mapping if they can before 1740 * calling netif_set_real_num_tx_queues. 1741 */ 1742 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1743 { 1744 int i; 1745 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1746 1747 /* If TC0 is invalidated disable TC mapping */ 1748 if (tc->offset + tc->count > txq) { 1749 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1750 dev->num_tc = 0; 1751 return; 1752 } 1753 1754 /* Invalidated prio to tc mappings set to TC0 */ 1755 for (i = 1; i < TC_BITMASK + 1; i++) { 1756 int q = netdev_get_prio_tc_map(dev, i); 1757 1758 tc = &dev->tc_to_txq[q]; 1759 if (tc->offset + tc->count > txq) { 1760 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1761 i, q); 1762 netdev_set_prio_tc_map(dev, i, 0); 1763 } 1764 } 1765 } 1766 1767 #ifdef CONFIG_XPS 1768 static DEFINE_MUTEX(xps_map_mutex); 1769 #define xmap_dereference(P) \ 1770 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1771 1772 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1773 int cpu, u16 index) 1774 { 1775 struct xps_map *map = NULL; 1776 int pos; 1777 1778 if (dev_maps) 1779 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1780 1781 for (pos = 0; map && pos < map->len; pos++) { 1782 if (map->queues[pos] == index) { 1783 if (map->len > 1) { 1784 map->queues[pos] = map->queues[--map->len]; 1785 } else { 1786 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1787 kfree_rcu(map, rcu); 1788 map = NULL; 1789 } 1790 break; 1791 } 1792 } 1793 1794 return map; 1795 } 1796 1797 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1798 { 1799 struct xps_dev_maps *dev_maps; 1800 int cpu, i; 1801 bool active = false; 1802 1803 mutex_lock(&xps_map_mutex); 1804 dev_maps = xmap_dereference(dev->xps_maps); 1805 1806 if (!dev_maps) 1807 goto out_no_maps; 1808 1809 for_each_possible_cpu(cpu) { 1810 for (i = index; i < dev->num_tx_queues; i++) { 1811 if (!remove_xps_queue(dev_maps, cpu, i)) 1812 break; 1813 } 1814 if (i == dev->num_tx_queues) 1815 active = true; 1816 } 1817 1818 if (!active) { 1819 RCU_INIT_POINTER(dev->xps_maps, NULL); 1820 kfree_rcu(dev_maps, rcu); 1821 } 1822 1823 for (i = index; i < dev->num_tx_queues; i++) 1824 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1825 NUMA_NO_NODE); 1826 1827 out_no_maps: 1828 mutex_unlock(&xps_map_mutex); 1829 } 1830 1831 static struct xps_map *expand_xps_map(struct xps_map *map, 1832 int cpu, u16 index) 1833 { 1834 struct xps_map *new_map; 1835 int alloc_len = XPS_MIN_MAP_ALLOC; 1836 int i, pos; 1837 1838 for (pos = 0; map && pos < map->len; pos++) { 1839 if (map->queues[pos] != index) 1840 continue; 1841 return map; 1842 } 1843 1844 /* Need to add queue to this CPU's existing map */ 1845 if (map) { 1846 if (pos < map->alloc_len) 1847 return map; 1848 1849 alloc_len = map->alloc_len * 2; 1850 } 1851 1852 /* Need to allocate new map to store queue on this CPU's map */ 1853 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1854 cpu_to_node(cpu)); 1855 if (!new_map) 1856 return NULL; 1857 1858 for (i = 0; i < pos; i++) 1859 new_map->queues[i] = map->queues[i]; 1860 new_map->alloc_len = alloc_len; 1861 new_map->len = pos; 1862 1863 return new_map; 1864 } 1865 1866 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index) 1867 { 1868 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1869 struct xps_map *map, *new_map; 1870 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1871 int cpu, numa_node_id = -2; 1872 bool active = false; 1873 1874 mutex_lock(&xps_map_mutex); 1875 1876 dev_maps = xmap_dereference(dev->xps_maps); 1877 1878 /* allocate memory for queue storage */ 1879 for_each_online_cpu(cpu) { 1880 if (!cpumask_test_cpu(cpu, mask)) 1881 continue; 1882 1883 if (!new_dev_maps) 1884 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1885 if (!new_dev_maps) 1886 return -ENOMEM; 1887 1888 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1889 NULL; 1890 1891 map = expand_xps_map(map, cpu, index); 1892 if (!map) 1893 goto error; 1894 1895 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1896 } 1897 1898 if (!new_dev_maps) 1899 goto out_no_new_maps; 1900 1901 for_each_possible_cpu(cpu) { 1902 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 1903 /* add queue to CPU maps */ 1904 int pos = 0; 1905 1906 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1907 while ((pos < map->len) && (map->queues[pos] != index)) 1908 pos++; 1909 1910 if (pos == map->len) 1911 map->queues[map->len++] = index; 1912 #ifdef CONFIG_NUMA 1913 if (numa_node_id == -2) 1914 numa_node_id = cpu_to_node(cpu); 1915 else if (numa_node_id != cpu_to_node(cpu)) 1916 numa_node_id = -1; 1917 #endif 1918 } else if (dev_maps) { 1919 /* fill in the new device map from the old device map */ 1920 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1921 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1922 } 1923 1924 } 1925 1926 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 1927 1928 /* Cleanup old maps */ 1929 if (dev_maps) { 1930 for_each_possible_cpu(cpu) { 1931 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1932 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1933 if (map && map != new_map) 1934 kfree_rcu(map, rcu); 1935 } 1936 1937 kfree_rcu(dev_maps, rcu); 1938 } 1939 1940 dev_maps = new_dev_maps; 1941 active = true; 1942 1943 out_no_new_maps: 1944 /* update Tx queue numa node */ 1945 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 1946 (numa_node_id >= 0) ? numa_node_id : 1947 NUMA_NO_NODE); 1948 1949 if (!dev_maps) 1950 goto out_no_maps; 1951 1952 /* removes queue from unused CPUs */ 1953 for_each_possible_cpu(cpu) { 1954 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 1955 continue; 1956 1957 if (remove_xps_queue(dev_maps, cpu, index)) 1958 active = true; 1959 } 1960 1961 /* free map if not active */ 1962 if (!active) { 1963 RCU_INIT_POINTER(dev->xps_maps, NULL); 1964 kfree_rcu(dev_maps, rcu); 1965 } 1966 1967 out_no_maps: 1968 mutex_unlock(&xps_map_mutex); 1969 1970 return 0; 1971 error: 1972 /* remove any maps that we added */ 1973 for_each_possible_cpu(cpu) { 1974 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1975 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1976 NULL; 1977 if (new_map && new_map != map) 1978 kfree(new_map); 1979 } 1980 1981 mutex_unlock(&xps_map_mutex); 1982 1983 kfree(new_dev_maps); 1984 return -ENOMEM; 1985 } 1986 EXPORT_SYMBOL(netif_set_xps_queue); 1987 1988 #endif 1989 /* 1990 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1991 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1992 */ 1993 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1994 { 1995 int rc; 1996 1997 if (txq < 1 || txq > dev->num_tx_queues) 1998 return -EINVAL; 1999 2000 if (dev->reg_state == NETREG_REGISTERED || 2001 dev->reg_state == NETREG_UNREGISTERING) { 2002 ASSERT_RTNL(); 2003 2004 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2005 txq); 2006 if (rc) 2007 return rc; 2008 2009 if (dev->num_tc) 2010 netif_setup_tc(dev, txq); 2011 2012 if (txq < dev->real_num_tx_queues) { 2013 qdisc_reset_all_tx_gt(dev, txq); 2014 #ifdef CONFIG_XPS 2015 netif_reset_xps_queues_gt(dev, txq); 2016 #endif 2017 } 2018 } 2019 2020 dev->real_num_tx_queues = txq; 2021 return 0; 2022 } 2023 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2024 2025 #ifdef CONFIG_RPS 2026 /** 2027 * netif_set_real_num_rx_queues - set actual number of RX queues used 2028 * @dev: Network device 2029 * @rxq: Actual number of RX queues 2030 * 2031 * This must be called either with the rtnl_lock held or before 2032 * registration of the net device. Returns 0 on success, or a 2033 * negative error code. If called before registration, it always 2034 * succeeds. 2035 */ 2036 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2037 { 2038 int rc; 2039 2040 if (rxq < 1 || rxq > dev->num_rx_queues) 2041 return -EINVAL; 2042 2043 if (dev->reg_state == NETREG_REGISTERED) { 2044 ASSERT_RTNL(); 2045 2046 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2047 rxq); 2048 if (rc) 2049 return rc; 2050 } 2051 2052 dev->real_num_rx_queues = rxq; 2053 return 0; 2054 } 2055 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2056 #endif 2057 2058 /** 2059 * netif_get_num_default_rss_queues - default number of RSS queues 2060 * 2061 * This routine should set an upper limit on the number of RSS queues 2062 * used by default by multiqueue devices. 2063 */ 2064 int netif_get_num_default_rss_queues(void) 2065 { 2066 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2067 } 2068 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2069 2070 static inline void __netif_reschedule(struct Qdisc *q) 2071 { 2072 struct softnet_data *sd; 2073 unsigned long flags; 2074 2075 local_irq_save(flags); 2076 sd = &__get_cpu_var(softnet_data); 2077 q->next_sched = NULL; 2078 *sd->output_queue_tailp = q; 2079 sd->output_queue_tailp = &q->next_sched; 2080 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2081 local_irq_restore(flags); 2082 } 2083 2084 void __netif_schedule(struct Qdisc *q) 2085 { 2086 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2087 __netif_reschedule(q); 2088 } 2089 EXPORT_SYMBOL(__netif_schedule); 2090 2091 void dev_kfree_skb_irq(struct sk_buff *skb) 2092 { 2093 if (atomic_dec_and_test(&skb->users)) { 2094 struct softnet_data *sd; 2095 unsigned long flags; 2096 2097 local_irq_save(flags); 2098 sd = &__get_cpu_var(softnet_data); 2099 skb->next = sd->completion_queue; 2100 sd->completion_queue = skb; 2101 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2102 local_irq_restore(flags); 2103 } 2104 } 2105 EXPORT_SYMBOL(dev_kfree_skb_irq); 2106 2107 void dev_kfree_skb_any(struct sk_buff *skb) 2108 { 2109 if (in_irq() || irqs_disabled()) 2110 dev_kfree_skb_irq(skb); 2111 else 2112 dev_kfree_skb(skb); 2113 } 2114 EXPORT_SYMBOL(dev_kfree_skb_any); 2115 2116 2117 /** 2118 * netif_device_detach - mark device as removed 2119 * @dev: network device 2120 * 2121 * Mark device as removed from system and therefore no longer available. 2122 */ 2123 void netif_device_detach(struct net_device *dev) 2124 { 2125 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2126 netif_running(dev)) { 2127 netif_tx_stop_all_queues(dev); 2128 } 2129 } 2130 EXPORT_SYMBOL(netif_device_detach); 2131 2132 /** 2133 * netif_device_attach - mark device as attached 2134 * @dev: network device 2135 * 2136 * Mark device as attached from system and restart if needed. 2137 */ 2138 void netif_device_attach(struct net_device *dev) 2139 { 2140 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2141 netif_running(dev)) { 2142 netif_tx_wake_all_queues(dev); 2143 __netdev_watchdog_up(dev); 2144 } 2145 } 2146 EXPORT_SYMBOL(netif_device_attach); 2147 2148 static void skb_warn_bad_offload(const struct sk_buff *skb) 2149 { 2150 static const netdev_features_t null_features = 0; 2151 struct net_device *dev = skb->dev; 2152 const char *driver = ""; 2153 2154 if (dev && dev->dev.parent) 2155 driver = dev_driver_string(dev->dev.parent); 2156 2157 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2158 "gso_type=%d ip_summed=%d\n", 2159 driver, dev ? &dev->features : &null_features, 2160 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2161 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2162 skb_shinfo(skb)->gso_type, skb->ip_summed); 2163 } 2164 2165 /* 2166 * Invalidate hardware checksum when packet is to be mangled, and 2167 * complete checksum manually on outgoing path. 2168 */ 2169 int skb_checksum_help(struct sk_buff *skb) 2170 { 2171 __wsum csum; 2172 int ret = 0, offset; 2173 2174 if (skb->ip_summed == CHECKSUM_COMPLETE) 2175 goto out_set_summed; 2176 2177 if (unlikely(skb_shinfo(skb)->gso_size)) { 2178 skb_warn_bad_offload(skb); 2179 return -EINVAL; 2180 } 2181 2182 /* Before computing a checksum, we should make sure no frag could 2183 * be modified by an external entity : checksum could be wrong. 2184 */ 2185 if (skb_has_shared_frag(skb)) { 2186 ret = __skb_linearize(skb); 2187 if (ret) 2188 goto out; 2189 } 2190 2191 offset = skb_checksum_start_offset(skb); 2192 BUG_ON(offset >= skb_headlen(skb)); 2193 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2194 2195 offset += skb->csum_offset; 2196 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2197 2198 if (skb_cloned(skb) && 2199 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2200 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2201 if (ret) 2202 goto out; 2203 } 2204 2205 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2206 out_set_summed: 2207 skb->ip_summed = CHECKSUM_NONE; 2208 out: 2209 return ret; 2210 } 2211 EXPORT_SYMBOL(skb_checksum_help); 2212 2213 /** 2214 * skb_mac_gso_segment - mac layer segmentation handler. 2215 * @skb: buffer to segment 2216 * @features: features for the output path (see dev->features) 2217 */ 2218 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2219 netdev_features_t features) 2220 { 2221 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2222 struct packet_offload *ptype; 2223 __be16 type = skb->protocol; 2224 2225 while (type == htons(ETH_P_8021Q)) { 2226 int vlan_depth = ETH_HLEN; 2227 struct vlan_hdr *vh; 2228 2229 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 2230 return ERR_PTR(-EINVAL); 2231 2232 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2233 type = vh->h_vlan_encapsulated_proto; 2234 vlan_depth += VLAN_HLEN; 2235 } 2236 2237 __skb_pull(skb, skb->mac_len); 2238 2239 rcu_read_lock(); 2240 list_for_each_entry_rcu(ptype, &offload_base, list) { 2241 if (ptype->type == type && ptype->callbacks.gso_segment) { 2242 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2243 int err; 2244 2245 err = ptype->callbacks.gso_send_check(skb); 2246 segs = ERR_PTR(err); 2247 if (err || skb_gso_ok(skb, features)) 2248 break; 2249 __skb_push(skb, (skb->data - 2250 skb_network_header(skb))); 2251 } 2252 segs = ptype->callbacks.gso_segment(skb, features); 2253 break; 2254 } 2255 } 2256 rcu_read_unlock(); 2257 2258 __skb_push(skb, skb->data - skb_mac_header(skb)); 2259 2260 return segs; 2261 } 2262 EXPORT_SYMBOL(skb_mac_gso_segment); 2263 2264 2265 /* openvswitch calls this on rx path, so we need a different check. 2266 */ 2267 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2268 { 2269 if (tx_path) 2270 return skb->ip_summed != CHECKSUM_PARTIAL; 2271 else 2272 return skb->ip_summed == CHECKSUM_NONE; 2273 } 2274 2275 /** 2276 * __skb_gso_segment - Perform segmentation on skb. 2277 * @skb: buffer to segment 2278 * @features: features for the output path (see dev->features) 2279 * @tx_path: whether it is called in TX path 2280 * 2281 * This function segments the given skb and returns a list of segments. 2282 * 2283 * It may return NULL if the skb requires no segmentation. This is 2284 * only possible when GSO is used for verifying header integrity. 2285 */ 2286 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2287 netdev_features_t features, bool tx_path) 2288 { 2289 if (unlikely(skb_needs_check(skb, tx_path))) { 2290 int err; 2291 2292 skb_warn_bad_offload(skb); 2293 2294 if (skb_header_cloned(skb) && 2295 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 2296 return ERR_PTR(err); 2297 } 2298 2299 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2300 skb_reset_mac_header(skb); 2301 skb_reset_mac_len(skb); 2302 2303 return skb_mac_gso_segment(skb, features); 2304 } 2305 EXPORT_SYMBOL(__skb_gso_segment); 2306 2307 /* Take action when hardware reception checksum errors are detected. */ 2308 #ifdef CONFIG_BUG 2309 void netdev_rx_csum_fault(struct net_device *dev) 2310 { 2311 if (net_ratelimit()) { 2312 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2313 dump_stack(); 2314 } 2315 } 2316 EXPORT_SYMBOL(netdev_rx_csum_fault); 2317 #endif 2318 2319 /* Actually, we should eliminate this check as soon as we know, that: 2320 * 1. IOMMU is present and allows to map all the memory. 2321 * 2. No high memory really exists on this machine. 2322 */ 2323 2324 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2325 { 2326 #ifdef CONFIG_HIGHMEM 2327 int i; 2328 if (!(dev->features & NETIF_F_HIGHDMA)) { 2329 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2330 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2331 if (PageHighMem(skb_frag_page(frag))) 2332 return 1; 2333 } 2334 } 2335 2336 if (PCI_DMA_BUS_IS_PHYS) { 2337 struct device *pdev = dev->dev.parent; 2338 2339 if (!pdev) 2340 return 0; 2341 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2342 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2343 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2344 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2345 return 1; 2346 } 2347 } 2348 #endif 2349 return 0; 2350 } 2351 2352 struct dev_gso_cb { 2353 void (*destructor)(struct sk_buff *skb); 2354 }; 2355 2356 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2357 2358 static void dev_gso_skb_destructor(struct sk_buff *skb) 2359 { 2360 struct dev_gso_cb *cb; 2361 2362 do { 2363 struct sk_buff *nskb = skb->next; 2364 2365 skb->next = nskb->next; 2366 nskb->next = NULL; 2367 kfree_skb(nskb); 2368 } while (skb->next); 2369 2370 cb = DEV_GSO_CB(skb); 2371 if (cb->destructor) 2372 cb->destructor(skb); 2373 } 2374 2375 /** 2376 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2377 * @skb: buffer to segment 2378 * @features: device features as applicable to this skb 2379 * 2380 * This function segments the given skb and stores the list of segments 2381 * in skb->next. 2382 */ 2383 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2384 { 2385 struct sk_buff *segs; 2386 2387 segs = skb_gso_segment(skb, features); 2388 2389 /* Verifying header integrity only. */ 2390 if (!segs) 2391 return 0; 2392 2393 if (IS_ERR(segs)) 2394 return PTR_ERR(segs); 2395 2396 skb->next = segs; 2397 DEV_GSO_CB(skb)->destructor = skb->destructor; 2398 skb->destructor = dev_gso_skb_destructor; 2399 2400 return 0; 2401 } 2402 2403 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol) 2404 { 2405 return ((features & NETIF_F_GEN_CSUM) || 2406 ((features & NETIF_F_V4_CSUM) && 2407 protocol == htons(ETH_P_IP)) || 2408 ((features & NETIF_F_V6_CSUM) && 2409 protocol == htons(ETH_P_IPV6)) || 2410 ((features & NETIF_F_FCOE_CRC) && 2411 protocol == htons(ETH_P_FCOE))); 2412 } 2413 2414 static netdev_features_t harmonize_features(struct sk_buff *skb, 2415 __be16 protocol, netdev_features_t features) 2416 { 2417 if (skb->ip_summed != CHECKSUM_NONE && 2418 !can_checksum_protocol(features, protocol)) { 2419 features &= ~NETIF_F_ALL_CSUM; 2420 features &= ~NETIF_F_SG; 2421 } else if (illegal_highdma(skb->dev, skb)) { 2422 features &= ~NETIF_F_SG; 2423 } 2424 2425 return features; 2426 } 2427 2428 netdev_features_t netif_skb_features(struct sk_buff *skb) 2429 { 2430 __be16 protocol = skb->protocol; 2431 netdev_features_t features = skb->dev->features; 2432 2433 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs) 2434 features &= ~NETIF_F_GSO_MASK; 2435 2436 if (protocol == htons(ETH_P_8021Q)) { 2437 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2438 protocol = veh->h_vlan_encapsulated_proto; 2439 } else if (!vlan_tx_tag_present(skb)) { 2440 return harmonize_features(skb, protocol, features); 2441 } 2442 2443 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2444 2445 if (protocol != htons(ETH_P_8021Q)) { 2446 return harmonize_features(skb, protocol, features); 2447 } else { 2448 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2449 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2450 return harmonize_features(skb, protocol, features); 2451 } 2452 } 2453 EXPORT_SYMBOL(netif_skb_features); 2454 2455 /* 2456 * Returns true if either: 2457 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2458 * 2. skb is fragmented and the device does not support SG. 2459 */ 2460 static inline int skb_needs_linearize(struct sk_buff *skb, 2461 int features) 2462 { 2463 return skb_is_nonlinear(skb) && 2464 ((skb_has_frag_list(skb) && 2465 !(features & NETIF_F_FRAGLIST)) || 2466 (skb_shinfo(skb)->nr_frags && 2467 !(features & NETIF_F_SG))); 2468 } 2469 2470 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2471 struct netdev_queue *txq) 2472 { 2473 const struct net_device_ops *ops = dev->netdev_ops; 2474 int rc = NETDEV_TX_OK; 2475 unsigned int skb_len; 2476 2477 if (likely(!skb->next)) { 2478 netdev_features_t features; 2479 2480 /* 2481 * If device doesn't need skb->dst, release it right now while 2482 * its hot in this cpu cache 2483 */ 2484 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2485 skb_dst_drop(skb); 2486 2487 features = netif_skb_features(skb); 2488 2489 if (vlan_tx_tag_present(skb) && 2490 !(features & NETIF_F_HW_VLAN_TX)) { 2491 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2492 if (unlikely(!skb)) 2493 goto out; 2494 2495 skb->vlan_tci = 0; 2496 } 2497 2498 /* If encapsulation offload request, verify we are testing 2499 * hardware encapsulation features instead of standard 2500 * features for the netdev 2501 */ 2502 if (skb->encapsulation) 2503 features &= dev->hw_enc_features; 2504 2505 if (netif_needs_gso(skb, features)) { 2506 if (unlikely(dev_gso_segment(skb, features))) 2507 goto out_kfree_skb; 2508 if (skb->next) 2509 goto gso; 2510 } else { 2511 if (skb_needs_linearize(skb, features) && 2512 __skb_linearize(skb)) 2513 goto out_kfree_skb; 2514 2515 /* If packet is not checksummed and device does not 2516 * support checksumming for this protocol, complete 2517 * checksumming here. 2518 */ 2519 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2520 if (skb->encapsulation) 2521 skb_set_inner_transport_header(skb, 2522 skb_checksum_start_offset(skb)); 2523 else 2524 skb_set_transport_header(skb, 2525 skb_checksum_start_offset(skb)); 2526 if (!(features & NETIF_F_ALL_CSUM) && 2527 skb_checksum_help(skb)) 2528 goto out_kfree_skb; 2529 } 2530 } 2531 2532 if (!list_empty(&ptype_all)) 2533 dev_queue_xmit_nit(skb, dev); 2534 2535 skb_len = skb->len; 2536 rc = ops->ndo_start_xmit(skb, dev); 2537 trace_net_dev_xmit(skb, rc, dev, skb_len); 2538 if (rc == NETDEV_TX_OK) 2539 txq_trans_update(txq); 2540 return rc; 2541 } 2542 2543 gso: 2544 do { 2545 struct sk_buff *nskb = skb->next; 2546 2547 skb->next = nskb->next; 2548 nskb->next = NULL; 2549 2550 /* 2551 * If device doesn't need nskb->dst, release it right now while 2552 * its hot in this cpu cache 2553 */ 2554 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2555 skb_dst_drop(nskb); 2556 2557 if (!list_empty(&ptype_all)) 2558 dev_queue_xmit_nit(nskb, dev); 2559 2560 skb_len = nskb->len; 2561 rc = ops->ndo_start_xmit(nskb, dev); 2562 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2563 if (unlikely(rc != NETDEV_TX_OK)) { 2564 if (rc & ~NETDEV_TX_MASK) 2565 goto out_kfree_gso_skb; 2566 nskb->next = skb->next; 2567 skb->next = nskb; 2568 return rc; 2569 } 2570 txq_trans_update(txq); 2571 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2572 return NETDEV_TX_BUSY; 2573 } while (skb->next); 2574 2575 out_kfree_gso_skb: 2576 if (likely(skb->next == NULL)) 2577 skb->destructor = DEV_GSO_CB(skb)->destructor; 2578 out_kfree_skb: 2579 kfree_skb(skb); 2580 out: 2581 return rc; 2582 } 2583 2584 static void qdisc_pkt_len_init(struct sk_buff *skb) 2585 { 2586 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2587 2588 qdisc_skb_cb(skb)->pkt_len = skb->len; 2589 2590 /* To get more precise estimation of bytes sent on wire, 2591 * we add to pkt_len the headers size of all segments 2592 */ 2593 if (shinfo->gso_size) { 2594 unsigned int hdr_len; 2595 2596 /* mac layer + network layer */ 2597 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2598 2599 /* + transport layer */ 2600 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2601 hdr_len += tcp_hdrlen(skb); 2602 else 2603 hdr_len += sizeof(struct udphdr); 2604 qdisc_skb_cb(skb)->pkt_len += (shinfo->gso_segs - 1) * hdr_len; 2605 } 2606 } 2607 2608 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2609 struct net_device *dev, 2610 struct netdev_queue *txq) 2611 { 2612 spinlock_t *root_lock = qdisc_lock(q); 2613 bool contended; 2614 int rc; 2615 2616 qdisc_pkt_len_init(skb); 2617 qdisc_calculate_pkt_len(skb, q); 2618 /* 2619 * Heuristic to force contended enqueues to serialize on a 2620 * separate lock before trying to get qdisc main lock. 2621 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2622 * and dequeue packets faster. 2623 */ 2624 contended = qdisc_is_running(q); 2625 if (unlikely(contended)) 2626 spin_lock(&q->busylock); 2627 2628 spin_lock(root_lock); 2629 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2630 kfree_skb(skb); 2631 rc = NET_XMIT_DROP; 2632 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2633 qdisc_run_begin(q)) { 2634 /* 2635 * This is a work-conserving queue; there are no old skbs 2636 * waiting to be sent out; and the qdisc is not running - 2637 * xmit the skb directly. 2638 */ 2639 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2640 skb_dst_force(skb); 2641 2642 qdisc_bstats_update(q, skb); 2643 2644 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2645 if (unlikely(contended)) { 2646 spin_unlock(&q->busylock); 2647 contended = false; 2648 } 2649 __qdisc_run(q); 2650 } else 2651 qdisc_run_end(q); 2652 2653 rc = NET_XMIT_SUCCESS; 2654 } else { 2655 skb_dst_force(skb); 2656 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2657 if (qdisc_run_begin(q)) { 2658 if (unlikely(contended)) { 2659 spin_unlock(&q->busylock); 2660 contended = false; 2661 } 2662 __qdisc_run(q); 2663 } 2664 } 2665 spin_unlock(root_lock); 2666 if (unlikely(contended)) 2667 spin_unlock(&q->busylock); 2668 return rc; 2669 } 2670 2671 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2672 static void skb_update_prio(struct sk_buff *skb) 2673 { 2674 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2675 2676 if (!skb->priority && skb->sk && map) { 2677 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2678 2679 if (prioidx < map->priomap_len) 2680 skb->priority = map->priomap[prioidx]; 2681 } 2682 } 2683 #else 2684 #define skb_update_prio(skb) 2685 #endif 2686 2687 static DEFINE_PER_CPU(int, xmit_recursion); 2688 #define RECURSION_LIMIT 10 2689 2690 /** 2691 * dev_loopback_xmit - loop back @skb 2692 * @skb: buffer to transmit 2693 */ 2694 int dev_loopback_xmit(struct sk_buff *skb) 2695 { 2696 skb_reset_mac_header(skb); 2697 __skb_pull(skb, skb_network_offset(skb)); 2698 skb->pkt_type = PACKET_LOOPBACK; 2699 skb->ip_summed = CHECKSUM_UNNECESSARY; 2700 WARN_ON(!skb_dst(skb)); 2701 skb_dst_force(skb); 2702 netif_rx_ni(skb); 2703 return 0; 2704 } 2705 EXPORT_SYMBOL(dev_loopback_xmit); 2706 2707 /** 2708 * dev_queue_xmit - transmit a buffer 2709 * @skb: buffer to transmit 2710 * 2711 * Queue a buffer for transmission to a network device. The caller must 2712 * have set the device and priority and built the buffer before calling 2713 * this function. The function can be called from an interrupt. 2714 * 2715 * A negative errno code is returned on a failure. A success does not 2716 * guarantee the frame will be transmitted as it may be dropped due 2717 * to congestion or traffic shaping. 2718 * 2719 * ----------------------------------------------------------------------------------- 2720 * I notice this method can also return errors from the queue disciplines, 2721 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2722 * be positive. 2723 * 2724 * Regardless of the return value, the skb is consumed, so it is currently 2725 * difficult to retry a send to this method. (You can bump the ref count 2726 * before sending to hold a reference for retry if you are careful.) 2727 * 2728 * When calling this method, interrupts MUST be enabled. This is because 2729 * the BH enable code must have IRQs enabled so that it will not deadlock. 2730 * --BLG 2731 */ 2732 int dev_queue_xmit(struct sk_buff *skb) 2733 { 2734 struct net_device *dev = skb->dev; 2735 struct netdev_queue *txq; 2736 struct Qdisc *q; 2737 int rc = -ENOMEM; 2738 2739 skb_reset_mac_header(skb); 2740 2741 /* Disable soft irqs for various locks below. Also 2742 * stops preemption for RCU. 2743 */ 2744 rcu_read_lock_bh(); 2745 2746 skb_update_prio(skb); 2747 2748 txq = netdev_pick_tx(dev, skb); 2749 q = rcu_dereference_bh(txq->qdisc); 2750 2751 #ifdef CONFIG_NET_CLS_ACT 2752 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2753 #endif 2754 trace_net_dev_queue(skb); 2755 if (q->enqueue) { 2756 rc = __dev_xmit_skb(skb, q, dev, txq); 2757 goto out; 2758 } 2759 2760 /* The device has no queue. Common case for software devices: 2761 loopback, all the sorts of tunnels... 2762 2763 Really, it is unlikely that netif_tx_lock protection is necessary 2764 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2765 counters.) 2766 However, it is possible, that they rely on protection 2767 made by us here. 2768 2769 Check this and shot the lock. It is not prone from deadlocks. 2770 Either shot noqueue qdisc, it is even simpler 8) 2771 */ 2772 if (dev->flags & IFF_UP) { 2773 int cpu = smp_processor_id(); /* ok because BHs are off */ 2774 2775 if (txq->xmit_lock_owner != cpu) { 2776 2777 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2778 goto recursion_alert; 2779 2780 HARD_TX_LOCK(dev, txq, cpu); 2781 2782 if (!netif_xmit_stopped(txq)) { 2783 __this_cpu_inc(xmit_recursion); 2784 rc = dev_hard_start_xmit(skb, dev, txq); 2785 __this_cpu_dec(xmit_recursion); 2786 if (dev_xmit_complete(rc)) { 2787 HARD_TX_UNLOCK(dev, txq); 2788 goto out; 2789 } 2790 } 2791 HARD_TX_UNLOCK(dev, txq); 2792 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2793 dev->name); 2794 } else { 2795 /* Recursion is detected! It is possible, 2796 * unfortunately 2797 */ 2798 recursion_alert: 2799 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2800 dev->name); 2801 } 2802 } 2803 2804 rc = -ENETDOWN; 2805 rcu_read_unlock_bh(); 2806 2807 kfree_skb(skb); 2808 return rc; 2809 out: 2810 rcu_read_unlock_bh(); 2811 return rc; 2812 } 2813 EXPORT_SYMBOL(dev_queue_xmit); 2814 2815 2816 /*======================================================================= 2817 Receiver routines 2818 =======================================================================*/ 2819 2820 int netdev_max_backlog __read_mostly = 1000; 2821 EXPORT_SYMBOL(netdev_max_backlog); 2822 2823 int netdev_tstamp_prequeue __read_mostly = 1; 2824 int netdev_budget __read_mostly = 300; 2825 int weight_p __read_mostly = 64; /* old backlog weight */ 2826 2827 /* Called with irq disabled */ 2828 static inline void ____napi_schedule(struct softnet_data *sd, 2829 struct napi_struct *napi) 2830 { 2831 list_add_tail(&napi->poll_list, &sd->poll_list); 2832 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2833 } 2834 2835 #ifdef CONFIG_RPS 2836 2837 /* One global table that all flow-based protocols share. */ 2838 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2839 EXPORT_SYMBOL(rps_sock_flow_table); 2840 2841 struct static_key rps_needed __read_mostly; 2842 2843 static struct rps_dev_flow * 2844 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2845 struct rps_dev_flow *rflow, u16 next_cpu) 2846 { 2847 if (next_cpu != RPS_NO_CPU) { 2848 #ifdef CONFIG_RFS_ACCEL 2849 struct netdev_rx_queue *rxqueue; 2850 struct rps_dev_flow_table *flow_table; 2851 struct rps_dev_flow *old_rflow; 2852 u32 flow_id; 2853 u16 rxq_index; 2854 int rc; 2855 2856 /* Should we steer this flow to a different hardware queue? */ 2857 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2858 !(dev->features & NETIF_F_NTUPLE)) 2859 goto out; 2860 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2861 if (rxq_index == skb_get_rx_queue(skb)) 2862 goto out; 2863 2864 rxqueue = dev->_rx + rxq_index; 2865 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2866 if (!flow_table) 2867 goto out; 2868 flow_id = skb->rxhash & flow_table->mask; 2869 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2870 rxq_index, flow_id); 2871 if (rc < 0) 2872 goto out; 2873 old_rflow = rflow; 2874 rflow = &flow_table->flows[flow_id]; 2875 rflow->filter = rc; 2876 if (old_rflow->filter == rflow->filter) 2877 old_rflow->filter = RPS_NO_FILTER; 2878 out: 2879 #endif 2880 rflow->last_qtail = 2881 per_cpu(softnet_data, next_cpu).input_queue_head; 2882 } 2883 2884 rflow->cpu = next_cpu; 2885 return rflow; 2886 } 2887 2888 /* 2889 * get_rps_cpu is called from netif_receive_skb and returns the target 2890 * CPU from the RPS map of the receiving queue for a given skb. 2891 * rcu_read_lock must be held on entry. 2892 */ 2893 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2894 struct rps_dev_flow **rflowp) 2895 { 2896 struct netdev_rx_queue *rxqueue; 2897 struct rps_map *map; 2898 struct rps_dev_flow_table *flow_table; 2899 struct rps_sock_flow_table *sock_flow_table; 2900 int cpu = -1; 2901 u16 tcpu; 2902 2903 if (skb_rx_queue_recorded(skb)) { 2904 u16 index = skb_get_rx_queue(skb); 2905 if (unlikely(index >= dev->real_num_rx_queues)) { 2906 WARN_ONCE(dev->real_num_rx_queues > 1, 2907 "%s received packet on queue %u, but number " 2908 "of RX queues is %u\n", 2909 dev->name, index, dev->real_num_rx_queues); 2910 goto done; 2911 } 2912 rxqueue = dev->_rx + index; 2913 } else 2914 rxqueue = dev->_rx; 2915 2916 map = rcu_dereference(rxqueue->rps_map); 2917 if (map) { 2918 if (map->len == 1 && 2919 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2920 tcpu = map->cpus[0]; 2921 if (cpu_online(tcpu)) 2922 cpu = tcpu; 2923 goto done; 2924 } 2925 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2926 goto done; 2927 } 2928 2929 skb_reset_network_header(skb); 2930 if (!skb_get_rxhash(skb)) 2931 goto done; 2932 2933 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2934 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2935 if (flow_table && sock_flow_table) { 2936 u16 next_cpu; 2937 struct rps_dev_flow *rflow; 2938 2939 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2940 tcpu = rflow->cpu; 2941 2942 next_cpu = sock_flow_table->ents[skb->rxhash & 2943 sock_flow_table->mask]; 2944 2945 /* 2946 * If the desired CPU (where last recvmsg was done) is 2947 * different from current CPU (one in the rx-queue flow 2948 * table entry), switch if one of the following holds: 2949 * - Current CPU is unset (equal to RPS_NO_CPU). 2950 * - Current CPU is offline. 2951 * - The current CPU's queue tail has advanced beyond the 2952 * last packet that was enqueued using this table entry. 2953 * This guarantees that all previous packets for the flow 2954 * have been dequeued, thus preserving in order delivery. 2955 */ 2956 if (unlikely(tcpu != next_cpu) && 2957 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2958 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2959 rflow->last_qtail)) >= 0)) { 2960 tcpu = next_cpu; 2961 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2962 } 2963 2964 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2965 *rflowp = rflow; 2966 cpu = tcpu; 2967 goto done; 2968 } 2969 } 2970 2971 if (map) { 2972 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2973 2974 if (cpu_online(tcpu)) { 2975 cpu = tcpu; 2976 goto done; 2977 } 2978 } 2979 2980 done: 2981 return cpu; 2982 } 2983 2984 #ifdef CONFIG_RFS_ACCEL 2985 2986 /** 2987 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2988 * @dev: Device on which the filter was set 2989 * @rxq_index: RX queue index 2990 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2991 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2992 * 2993 * Drivers that implement ndo_rx_flow_steer() should periodically call 2994 * this function for each installed filter and remove the filters for 2995 * which it returns %true. 2996 */ 2997 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2998 u32 flow_id, u16 filter_id) 2999 { 3000 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3001 struct rps_dev_flow_table *flow_table; 3002 struct rps_dev_flow *rflow; 3003 bool expire = true; 3004 int cpu; 3005 3006 rcu_read_lock(); 3007 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3008 if (flow_table && flow_id <= flow_table->mask) { 3009 rflow = &flow_table->flows[flow_id]; 3010 cpu = ACCESS_ONCE(rflow->cpu); 3011 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3012 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3013 rflow->last_qtail) < 3014 (int)(10 * flow_table->mask))) 3015 expire = false; 3016 } 3017 rcu_read_unlock(); 3018 return expire; 3019 } 3020 EXPORT_SYMBOL(rps_may_expire_flow); 3021 3022 #endif /* CONFIG_RFS_ACCEL */ 3023 3024 /* Called from hardirq (IPI) context */ 3025 static void rps_trigger_softirq(void *data) 3026 { 3027 struct softnet_data *sd = data; 3028 3029 ____napi_schedule(sd, &sd->backlog); 3030 sd->received_rps++; 3031 } 3032 3033 #endif /* CONFIG_RPS */ 3034 3035 /* 3036 * Check if this softnet_data structure is another cpu one 3037 * If yes, queue it to our IPI list and return 1 3038 * If no, return 0 3039 */ 3040 static int rps_ipi_queued(struct softnet_data *sd) 3041 { 3042 #ifdef CONFIG_RPS 3043 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 3044 3045 if (sd != mysd) { 3046 sd->rps_ipi_next = mysd->rps_ipi_list; 3047 mysd->rps_ipi_list = sd; 3048 3049 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3050 return 1; 3051 } 3052 #endif /* CONFIG_RPS */ 3053 return 0; 3054 } 3055 3056 /* 3057 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3058 * queue (may be a remote CPU queue). 3059 */ 3060 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3061 unsigned int *qtail) 3062 { 3063 struct softnet_data *sd; 3064 unsigned long flags; 3065 3066 sd = &per_cpu(softnet_data, cpu); 3067 3068 local_irq_save(flags); 3069 3070 rps_lock(sd); 3071 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 3072 if (skb_queue_len(&sd->input_pkt_queue)) { 3073 enqueue: 3074 __skb_queue_tail(&sd->input_pkt_queue, skb); 3075 input_queue_tail_incr_save(sd, qtail); 3076 rps_unlock(sd); 3077 local_irq_restore(flags); 3078 return NET_RX_SUCCESS; 3079 } 3080 3081 /* Schedule NAPI for backlog device 3082 * We can use non atomic operation since we own the queue lock 3083 */ 3084 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3085 if (!rps_ipi_queued(sd)) 3086 ____napi_schedule(sd, &sd->backlog); 3087 } 3088 goto enqueue; 3089 } 3090 3091 sd->dropped++; 3092 rps_unlock(sd); 3093 3094 local_irq_restore(flags); 3095 3096 atomic_long_inc(&skb->dev->rx_dropped); 3097 kfree_skb(skb); 3098 return NET_RX_DROP; 3099 } 3100 3101 /** 3102 * netif_rx - post buffer to the network code 3103 * @skb: buffer to post 3104 * 3105 * This function receives a packet from a device driver and queues it for 3106 * the upper (protocol) levels to process. It always succeeds. The buffer 3107 * may be dropped during processing for congestion control or by the 3108 * protocol layers. 3109 * 3110 * return values: 3111 * NET_RX_SUCCESS (no congestion) 3112 * NET_RX_DROP (packet was dropped) 3113 * 3114 */ 3115 3116 int netif_rx(struct sk_buff *skb) 3117 { 3118 int ret; 3119 3120 /* if netpoll wants it, pretend we never saw it */ 3121 if (netpoll_rx(skb)) 3122 return NET_RX_DROP; 3123 3124 net_timestamp_check(netdev_tstamp_prequeue, skb); 3125 3126 trace_netif_rx(skb); 3127 #ifdef CONFIG_RPS 3128 if (static_key_false(&rps_needed)) { 3129 struct rps_dev_flow voidflow, *rflow = &voidflow; 3130 int cpu; 3131 3132 preempt_disable(); 3133 rcu_read_lock(); 3134 3135 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3136 if (cpu < 0) 3137 cpu = smp_processor_id(); 3138 3139 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3140 3141 rcu_read_unlock(); 3142 preempt_enable(); 3143 } else 3144 #endif 3145 { 3146 unsigned int qtail; 3147 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3148 put_cpu(); 3149 } 3150 return ret; 3151 } 3152 EXPORT_SYMBOL(netif_rx); 3153 3154 int netif_rx_ni(struct sk_buff *skb) 3155 { 3156 int err; 3157 3158 preempt_disable(); 3159 err = netif_rx(skb); 3160 if (local_softirq_pending()) 3161 do_softirq(); 3162 preempt_enable(); 3163 3164 return err; 3165 } 3166 EXPORT_SYMBOL(netif_rx_ni); 3167 3168 static void net_tx_action(struct softirq_action *h) 3169 { 3170 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3171 3172 if (sd->completion_queue) { 3173 struct sk_buff *clist; 3174 3175 local_irq_disable(); 3176 clist = sd->completion_queue; 3177 sd->completion_queue = NULL; 3178 local_irq_enable(); 3179 3180 while (clist) { 3181 struct sk_buff *skb = clist; 3182 clist = clist->next; 3183 3184 WARN_ON(atomic_read(&skb->users)); 3185 trace_kfree_skb(skb, net_tx_action); 3186 __kfree_skb(skb); 3187 } 3188 } 3189 3190 if (sd->output_queue) { 3191 struct Qdisc *head; 3192 3193 local_irq_disable(); 3194 head = sd->output_queue; 3195 sd->output_queue = NULL; 3196 sd->output_queue_tailp = &sd->output_queue; 3197 local_irq_enable(); 3198 3199 while (head) { 3200 struct Qdisc *q = head; 3201 spinlock_t *root_lock; 3202 3203 head = head->next_sched; 3204 3205 root_lock = qdisc_lock(q); 3206 if (spin_trylock(root_lock)) { 3207 smp_mb__before_clear_bit(); 3208 clear_bit(__QDISC_STATE_SCHED, 3209 &q->state); 3210 qdisc_run(q); 3211 spin_unlock(root_lock); 3212 } else { 3213 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3214 &q->state)) { 3215 __netif_reschedule(q); 3216 } else { 3217 smp_mb__before_clear_bit(); 3218 clear_bit(__QDISC_STATE_SCHED, 3219 &q->state); 3220 } 3221 } 3222 } 3223 } 3224 } 3225 3226 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3227 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3228 /* This hook is defined here for ATM LANE */ 3229 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3230 unsigned char *addr) __read_mostly; 3231 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3232 #endif 3233 3234 #ifdef CONFIG_NET_CLS_ACT 3235 /* TODO: Maybe we should just force sch_ingress to be compiled in 3236 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3237 * a compare and 2 stores extra right now if we dont have it on 3238 * but have CONFIG_NET_CLS_ACT 3239 * NOTE: This doesn't stop any functionality; if you dont have 3240 * the ingress scheduler, you just can't add policies on ingress. 3241 * 3242 */ 3243 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3244 { 3245 struct net_device *dev = skb->dev; 3246 u32 ttl = G_TC_RTTL(skb->tc_verd); 3247 int result = TC_ACT_OK; 3248 struct Qdisc *q; 3249 3250 if (unlikely(MAX_RED_LOOP < ttl++)) { 3251 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3252 skb->skb_iif, dev->ifindex); 3253 return TC_ACT_SHOT; 3254 } 3255 3256 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3257 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3258 3259 q = rxq->qdisc; 3260 if (q != &noop_qdisc) { 3261 spin_lock(qdisc_lock(q)); 3262 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3263 result = qdisc_enqueue_root(skb, q); 3264 spin_unlock(qdisc_lock(q)); 3265 } 3266 3267 return result; 3268 } 3269 3270 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3271 struct packet_type **pt_prev, 3272 int *ret, struct net_device *orig_dev) 3273 { 3274 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3275 3276 if (!rxq || rxq->qdisc == &noop_qdisc) 3277 goto out; 3278 3279 if (*pt_prev) { 3280 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3281 *pt_prev = NULL; 3282 } 3283 3284 switch (ing_filter(skb, rxq)) { 3285 case TC_ACT_SHOT: 3286 case TC_ACT_STOLEN: 3287 kfree_skb(skb); 3288 return NULL; 3289 } 3290 3291 out: 3292 skb->tc_verd = 0; 3293 return skb; 3294 } 3295 #endif 3296 3297 /** 3298 * netdev_rx_handler_register - register receive handler 3299 * @dev: device to register a handler for 3300 * @rx_handler: receive handler to register 3301 * @rx_handler_data: data pointer that is used by rx handler 3302 * 3303 * Register a receive hander for a device. This handler will then be 3304 * called from __netif_receive_skb. A negative errno code is returned 3305 * on a failure. 3306 * 3307 * The caller must hold the rtnl_mutex. 3308 * 3309 * For a general description of rx_handler, see enum rx_handler_result. 3310 */ 3311 int netdev_rx_handler_register(struct net_device *dev, 3312 rx_handler_func_t *rx_handler, 3313 void *rx_handler_data) 3314 { 3315 ASSERT_RTNL(); 3316 3317 if (dev->rx_handler) 3318 return -EBUSY; 3319 3320 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3321 rcu_assign_pointer(dev->rx_handler, rx_handler); 3322 3323 return 0; 3324 } 3325 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3326 3327 /** 3328 * netdev_rx_handler_unregister - unregister receive handler 3329 * @dev: device to unregister a handler from 3330 * 3331 * Unregister a receive hander from a device. 3332 * 3333 * The caller must hold the rtnl_mutex. 3334 */ 3335 void netdev_rx_handler_unregister(struct net_device *dev) 3336 { 3337 3338 ASSERT_RTNL(); 3339 RCU_INIT_POINTER(dev->rx_handler, NULL); 3340 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3341 } 3342 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3343 3344 /* 3345 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3346 * the special handling of PFMEMALLOC skbs. 3347 */ 3348 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3349 { 3350 switch (skb->protocol) { 3351 case __constant_htons(ETH_P_ARP): 3352 case __constant_htons(ETH_P_IP): 3353 case __constant_htons(ETH_P_IPV6): 3354 case __constant_htons(ETH_P_8021Q): 3355 return true; 3356 default: 3357 return false; 3358 } 3359 } 3360 3361 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3362 { 3363 struct packet_type *ptype, *pt_prev; 3364 rx_handler_func_t *rx_handler; 3365 struct net_device *orig_dev; 3366 struct net_device *null_or_dev; 3367 bool deliver_exact = false; 3368 int ret = NET_RX_DROP; 3369 __be16 type; 3370 3371 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3372 3373 trace_netif_receive_skb(skb); 3374 3375 /* if we've gotten here through NAPI, check netpoll */ 3376 if (netpoll_receive_skb(skb)) 3377 goto out; 3378 3379 orig_dev = skb->dev; 3380 3381 skb_reset_network_header(skb); 3382 if (!skb_transport_header_was_set(skb)) 3383 skb_reset_transport_header(skb); 3384 skb_reset_mac_len(skb); 3385 3386 pt_prev = NULL; 3387 3388 rcu_read_lock(); 3389 3390 another_round: 3391 skb->skb_iif = skb->dev->ifindex; 3392 3393 __this_cpu_inc(softnet_data.processed); 3394 3395 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { 3396 skb = vlan_untag(skb); 3397 if (unlikely(!skb)) 3398 goto unlock; 3399 } 3400 3401 #ifdef CONFIG_NET_CLS_ACT 3402 if (skb->tc_verd & TC_NCLS) { 3403 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3404 goto ncls; 3405 } 3406 #endif 3407 3408 if (pfmemalloc) 3409 goto skip_taps; 3410 3411 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3412 if (!ptype->dev || ptype->dev == skb->dev) { 3413 if (pt_prev) 3414 ret = deliver_skb(skb, pt_prev, orig_dev); 3415 pt_prev = ptype; 3416 } 3417 } 3418 3419 skip_taps: 3420 #ifdef CONFIG_NET_CLS_ACT 3421 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3422 if (!skb) 3423 goto unlock; 3424 ncls: 3425 #endif 3426 3427 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3428 goto drop; 3429 3430 if (vlan_tx_tag_present(skb)) { 3431 if (pt_prev) { 3432 ret = deliver_skb(skb, pt_prev, orig_dev); 3433 pt_prev = NULL; 3434 } 3435 if (vlan_do_receive(&skb)) 3436 goto another_round; 3437 else if (unlikely(!skb)) 3438 goto unlock; 3439 } 3440 3441 rx_handler = rcu_dereference(skb->dev->rx_handler); 3442 if (rx_handler) { 3443 if (pt_prev) { 3444 ret = deliver_skb(skb, pt_prev, orig_dev); 3445 pt_prev = NULL; 3446 } 3447 switch (rx_handler(&skb)) { 3448 case RX_HANDLER_CONSUMED: 3449 goto unlock; 3450 case RX_HANDLER_ANOTHER: 3451 goto another_round; 3452 case RX_HANDLER_EXACT: 3453 deliver_exact = true; 3454 case RX_HANDLER_PASS: 3455 break; 3456 default: 3457 BUG(); 3458 } 3459 } 3460 3461 if (vlan_tx_nonzero_tag_present(skb)) 3462 skb->pkt_type = PACKET_OTHERHOST; 3463 3464 /* deliver only exact match when indicated */ 3465 null_or_dev = deliver_exact ? skb->dev : NULL; 3466 3467 type = skb->protocol; 3468 list_for_each_entry_rcu(ptype, 3469 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3470 if (ptype->type == type && 3471 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3472 ptype->dev == orig_dev)) { 3473 if (pt_prev) 3474 ret = deliver_skb(skb, pt_prev, orig_dev); 3475 pt_prev = ptype; 3476 } 3477 } 3478 3479 if (pt_prev) { 3480 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3481 goto drop; 3482 else 3483 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3484 } else { 3485 drop: 3486 atomic_long_inc(&skb->dev->rx_dropped); 3487 kfree_skb(skb); 3488 /* Jamal, now you will not able to escape explaining 3489 * me how you were going to use this. :-) 3490 */ 3491 ret = NET_RX_DROP; 3492 } 3493 3494 unlock: 3495 rcu_read_unlock(); 3496 out: 3497 return ret; 3498 } 3499 3500 static int __netif_receive_skb(struct sk_buff *skb) 3501 { 3502 int ret; 3503 3504 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3505 unsigned long pflags = current->flags; 3506 3507 /* 3508 * PFMEMALLOC skbs are special, they should 3509 * - be delivered to SOCK_MEMALLOC sockets only 3510 * - stay away from userspace 3511 * - have bounded memory usage 3512 * 3513 * Use PF_MEMALLOC as this saves us from propagating the allocation 3514 * context down to all allocation sites. 3515 */ 3516 current->flags |= PF_MEMALLOC; 3517 ret = __netif_receive_skb_core(skb, true); 3518 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3519 } else 3520 ret = __netif_receive_skb_core(skb, false); 3521 3522 return ret; 3523 } 3524 3525 /** 3526 * netif_receive_skb - process receive buffer from network 3527 * @skb: buffer to process 3528 * 3529 * netif_receive_skb() is the main receive data processing function. 3530 * It always succeeds. The buffer may be dropped during processing 3531 * for congestion control or by the protocol layers. 3532 * 3533 * This function may only be called from softirq context and interrupts 3534 * should be enabled. 3535 * 3536 * Return values (usually ignored): 3537 * NET_RX_SUCCESS: no congestion 3538 * NET_RX_DROP: packet was dropped 3539 */ 3540 int netif_receive_skb(struct sk_buff *skb) 3541 { 3542 net_timestamp_check(netdev_tstamp_prequeue, skb); 3543 3544 if (skb_defer_rx_timestamp(skb)) 3545 return NET_RX_SUCCESS; 3546 3547 #ifdef CONFIG_RPS 3548 if (static_key_false(&rps_needed)) { 3549 struct rps_dev_flow voidflow, *rflow = &voidflow; 3550 int cpu, ret; 3551 3552 rcu_read_lock(); 3553 3554 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3555 3556 if (cpu >= 0) { 3557 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3558 rcu_read_unlock(); 3559 return ret; 3560 } 3561 rcu_read_unlock(); 3562 } 3563 #endif 3564 return __netif_receive_skb(skb); 3565 } 3566 EXPORT_SYMBOL(netif_receive_skb); 3567 3568 /* Network device is going away, flush any packets still pending 3569 * Called with irqs disabled. 3570 */ 3571 static void flush_backlog(void *arg) 3572 { 3573 struct net_device *dev = arg; 3574 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3575 struct sk_buff *skb, *tmp; 3576 3577 rps_lock(sd); 3578 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3579 if (skb->dev == dev) { 3580 __skb_unlink(skb, &sd->input_pkt_queue); 3581 kfree_skb(skb); 3582 input_queue_head_incr(sd); 3583 } 3584 } 3585 rps_unlock(sd); 3586 3587 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3588 if (skb->dev == dev) { 3589 __skb_unlink(skb, &sd->process_queue); 3590 kfree_skb(skb); 3591 input_queue_head_incr(sd); 3592 } 3593 } 3594 } 3595 3596 static int napi_gro_complete(struct sk_buff *skb) 3597 { 3598 struct packet_offload *ptype; 3599 __be16 type = skb->protocol; 3600 struct list_head *head = &offload_base; 3601 int err = -ENOENT; 3602 3603 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3604 3605 if (NAPI_GRO_CB(skb)->count == 1) { 3606 skb_shinfo(skb)->gso_size = 0; 3607 goto out; 3608 } 3609 3610 rcu_read_lock(); 3611 list_for_each_entry_rcu(ptype, head, list) { 3612 if (ptype->type != type || !ptype->callbacks.gro_complete) 3613 continue; 3614 3615 err = ptype->callbacks.gro_complete(skb); 3616 break; 3617 } 3618 rcu_read_unlock(); 3619 3620 if (err) { 3621 WARN_ON(&ptype->list == head); 3622 kfree_skb(skb); 3623 return NET_RX_SUCCESS; 3624 } 3625 3626 out: 3627 return netif_receive_skb(skb); 3628 } 3629 3630 /* napi->gro_list contains packets ordered by age. 3631 * youngest packets at the head of it. 3632 * Complete skbs in reverse order to reduce latencies. 3633 */ 3634 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3635 { 3636 struct sk_buff *skb, *prev = NULL; 3637 3638 /* scan list and build reverse chain */ 3639 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3640 skb->prev = prev; 3641 prev = skb; 3642 } 3643 3644 for (skb = prev; skb; skb = prev) { 3645 skb->next = NULL; 3646 3647 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3648 return; 3649 3650 prev = skb->prev; 3651 napi_gro_complete(skb); 3652 napi->gro_count--; 3653 } 3654 3655 napi->gro_list = NULL; 3656 } 3657 EXPORT_SYMBOL(napi_gro_flush); 3658 3659 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3660 { 3661 struct sk_buff *p; 3662 unsigned int maclen = skb->dev->hard_header_len; 3663 3664 for (p = napi->gro_list; p; p = p->next) { 3665 unsigned long diffs; 3666 3667 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3668 diffs |= p->vlan_tci ^ skb->vlan_tci; 3669 if (maclen == ETH_HLEN) 3670 diffs |= compare_ether_header(skb_mac_header(p), 3671 skb_gro_mac_header(skb)); 3672 else if (!diffs) 3673 diffs = memcmp(skb_mac_header(p), 3674 skb_gro_mac_header(skb), 3675 maclen); 3676 NAPI_GRO_CB(p)->same_flow = !diffs; 3677 NAPI_GRO_CB(p)->flush = 0; 3678 } 3679 } 3680 3681 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3682 { 3683 struct sk_buff **pp = NULL; 3684 struct packet_offload *ptype; 3685 __be16 type = skb->protocol; 3686 struct list_head *head = &offload_base; 3687 int same_flow; 3688 enum gro_result ret; 3689 3690 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3691 goto normal; 3692 3693 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3694 goto normal; 3695 3696 gro_list_prepare(napi, skb); 3697 3698 rcu_read_lock(); 3699 list_for_each_entry_rcu(ptype, head, list) { 3700 if (ptype->type != type || !ptype->callbacks.gro_receive) 3701 continue; 3702 3703 skb_set_network_header(skb, skb_gro_offset(skb)); 3704 skb_reset_mac_len(skb); 3705 NAPI_GRO_CB(skb)->same_flow = 0; 3706 NAPI_GRO_CB(skb)->flush = 0; 3707 NAPI_GRO_CB(skb)->free = 0; 3708 3709 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 3710 break; 3711 } 3712 rcu_read_unlock(); 3713 3714 if (&ptype->list == head) 3715 goto normal; 3716 3717 same_flow = NAPI_GRO_CB(skb)->same_flow; 3718 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3719 3720 if (pp) { 3721 struct sk_buff *nskb = *pp; 3722 3723 *pp = nskb->next; 3724 nskb->next = NULL; 3725 napi_gro_complete(nskb); 3726 napi->gro_count--; 3727 } 3728 3729 if (same_flow) 3730 goto ok; 3731 3732 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3733 goto normal; 3734 3735 napi->gro_count++; 3736 NAPI_GRO_CB(skb)->count = 1; 3737 NAPI_GRO_CB(skb)->age = jiffies; 3738 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3739 skb->next = napi->gro_list; 3740 napi->gro_list = skb; 3741 ret = GRO_HELD; 3742 3743 pull: 3744 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3745 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3746 3747 BUG_ON(skb->end - skb->tail < grow); 3748 3749 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3750 3751 skb->tail += grow; 3752 skb->data_len -= grow; 3753 3754 skb_shinfo(skb)->frags[0].page_offset += grow; 3755 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3756 3757 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3758 skb_frag_unref(skb, 0); 3759 memmove(skb_shinfo(skb)->frags, 3760 skb_shinfo(skb)->frags + 1, 3761 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3762 } 3763 } 3764 3765 ok: 3766 return ret; 3767 3768 normal: 3769 ret = GRO_NORMAL; 3770 goto pull; 3771 } 3772 3773 3774 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3775 { 3776 switch (ret) { 3777 case GRO_NORMAL: 3778 if (netif_receive_skb(skb)) 3779 ret = GRO_DROP; 3780 break; 3781 3782 case GRO_DROP: 3783 kfree_skb(skb); 3784 break; 3785 3786 case GRO_MERGED_FREE: 3787 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 3788 kmem_cache_free(skbuff_head_cache, skb); 3789 else 3790 __kfree_skb(skb); 3791 break; 3792 3793 case GRO_HELD: 3794 case GRO_MERGED: 3795 break; 3796 } 3797 3798 return ret; 3799 } 3800 3801 static void skb_gro_reset_offset(struct sk_buff *skb) 3802 { 3803 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3804 const skb_frag_t *frag0 = &pinfo->frags[0]; 3805 3806 NAPI_GRO_CB(skb)->data_offset = 0; 3807 NAPI_GRO_CB(skb)->frag0 = NULL; 3808 NAPI_GRO_CB(skb)->frag0_len = 0; 3809 3810 if (skb->mac_header == skb->tail && 3811 pinfo->nr_frags && 3812 !PageHighMem(skb_frag_page(frag0))) { 3813 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3814 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3815 } 3816 } 3817 3818 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3819 { 3820 skb_gro_reset_offset(skb); 3821 3822 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 3823 } 3824 EXPORT_SYMBOL(napi_gro_receive); 3825 3826 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3827 { 3828 __skb_pull(skb, skb_headlen(skb)); 3829 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3830 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3831 skb->vlan_tci = 0; 3832 skb->dev = napi->dev; 3833 skb->skb_iif = 0; 3834 3835 napi->skb = skb; 3836 } 3837 3838 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3839 { 3840 struct sk_buff *skb = napi->skb; 3841 3842 if (!skb) { 3843 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3844 if (skb) 3845 napi->skb = skb; 3846 } 3847 return skb; 3848 } 3849 EXPORT_SYMBOL(napi_get_frags); 3850 3851 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3852 gro_result_t ret) 3853 { 3854 switch (ret) { 3855 case GRO_NORMAL: 3856 case GRO_HELD: 3857 skb->protocol = eth_type_trans(skb, skb->dev); 3858 3859 if (ret == GRO_HELD) 3860 skb_gro_pull(skb, -ETH_HLEN); 3861 else if (netif_receive_skb(skb)) 3862 ret = GRO_DROP; 3863 break; 3864 3865 case GRO_DROP: 3866 case GRO_MERGED_FREE: 3867 napi_reuse_skb(napi, skb); 3868 break; 3869 3870 case GRO_MERGED: 3871 break; 3872 } 3873 3874 return ret; 3875 } 3876 3877 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3878 { 3879 struct sk_buff *skb = napi->skb; 3880 struct ethhdr *eth; 3881 unsigned int hlen; 3882 unsigned int off; 3883 3884 napi->skb = NULL; 3885 3886 skb_reset_mac_header(skb); 3887 skb_gro_reset_offset(skb); 3888 3889 off = skb_gro_offset(skb); 3890 hlen = off + sizeof(*eth); 3891 eth = skb_gro_header_fast(skb, off); 3892 if (skb_gro_header_hard(skb, hlen)) { 3893 eth = skb_gro_header_slow(skb, hlen, off); 3894 if (unlikely(!eth)) { 3895 napi_reuse_skb(napi, skb); 3896 skb = NULL; 3897 goto out; 3898 } 3899 } 3900 3901 skb_gro_pull(skb, sizeof(*eth)); 3902 3903 /* 3904 * This works because the only protocols we care about don't require 3905 * special handling. We'll fix it up properly at the end. 3906 */ 3907 skb->protocol = eth->h_proto; 3908 3909 out: 3910 return skb; 3911 } 3912 3913 gro_result_t napi_gro_frags(struct napi_struct *napi) 3914 { 3915 struct sk_buff *skb = napi_frags_skb(napi); 3916 3917 if (!skb) 3918 return GRO_DROP; 3919 3920 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 3921 } 3922 EXPORT_SYMBOL(napi_gro_frags); 3923 3924 /* 3925 * net_rps_action sends any pending IPI's for rps. 3926 * Note: called with local irq disabled, but exits with local irq enabled. 3927 */ 3928 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3929 { 3930 #ifdef CONFIG_RPS 3931 struct softnet_data *remsd = sd->rps_ipi_list; 3932 3933 if (remsd) { 3934 sd->rps_ipi_list = NULL; 3935 3936 local_irq_enable(); 3937 3938 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3939 while (remsd) { 3940 struct softnet_data *next = remsd->rps_ipi_next; 3941 3942 if (cpu_online(remsd->cpu)) 3943 __smp_call_function_single(remsd->cpu, 3944 &remsd->csd, 0); 3945 remsd = next; 3946 } 3947 } else 3948 #endif 3949 local_irq_enable(); 3950 } 3951 3952 static int process_backlog(struct napi_struct *napi, int quota) 3953 { 3954 int work = 0; 3955 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3956 3957 #ifdef CONFIG_RPS 3958 /* Check if we have pending ipi, its better to send them now, 3959 * not waiting net_rx_action() end. 3960 */ 3961 if (sd->rps_ipi_list) { 3962 local_irq_disable(); 3963 net_rps_action_and_irq_enable(sd); 3964 } 3965 #endif 3966 napi->weight = weight_p; 3967 local_irq_disable(); 3968 while (work < quota) { 3969 struct sk_buff *skb; 3970 unsigned int qlen; 3971 3972 while ((skb = __skb_dequeue(&sd->process_queue))) { 3973 local_irq_enable(); 3974 __netif_receive_skb(skb); 3975 local_irq_disable(); 3976 input_queue_head_incr(sd); 3977 if (++work >= quota) { 3978 local_irq_enable(); 3979 return work; 3980 } 3981 } 3982 3983 rps_lock(sd); 3984 qlen = skb_queue_len(&sd->input_pkt_queue); 3985 if (qlen) 3986 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3987 &sd->process_queue); 3988 3989 if (qlen < quota - work) { 3990 /* 3991 * Inline a custom version of __napi_complete(). 3992 * only current cpu owns and manipulates this napi, 3993 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3994 * we can use a plain write instead of clear_bit(), 3995 * and we dont need an smp_mb() memory barrier. 3996 */ 3997 list_del(&napi->poll_list); 3998 napi->state = 0; 3999 4000 quota = work + qlen; 4001 } 4002 rps_unlock(sd); 4003 } 4004 local_irq_enable(); 4005 4006 return work; 4007 } 4008 4009 /** 4010 * __napi_schedule - schedule for receive 4011 * @n: entry to schedule 4012 * 4013 * The entry's receive function will be scheduled to run 4014 */ 4015 void __napi_schedule(struct napi_struct *n) 4016 { 4017 unsigned long flags; 4018 4019 local_irq_save(flags); 4020 ____napi_schedule(&__get_cpu_var(softnet_data), n); 4021 local_irq_restore(flags); 4022 } 4023 EXPORT_SYMBOL(__napi_schedule); 4024 4025 void __napi_complete(struct napi_struct *n) 4026 { 4027 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4028 BUG_ON(n->gro_list); 4029 4030 list_del(&n->poll_list); 4031 smp_mb__before_clear_bit(); 4032 clear_bit(NAPI_STATE_SCHED, &n->state); 4033 } 4034 EXPORT_SYMBOL(__napi_complete); 4035 4036 void napi_complete(struct napi_struct *n) 4037 { 4038 unsigned long flags; 4039 4040 /* 4041 * don't let napi dequeue from the cpu poll list 4042 * just in case its running on a different cpu 4043 */ 4044 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4045 return; 4046 4047 napi_gro_flush(n, false); 4048 local_irq_save(flags); 4049 __napi_complete(n); 4050 local_irq_restore(flags); 4051 } 4052 EXPORT_SYMBOL(napi_complete); 4053 4054 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4055 int (*poll)(struct napi_struct *, int), int weight) 4056 { 4057 INIT_LIST_HEAD(&napi->poll_list); 4058 napi->gro_count = 0; 4059 napi->gro_list = NULL; 4060 napi->skb = NULL; 4061 napi->poll = poll; 4062 napi->weight = weight; 4063 list_add(&napi->dev_list, &dev->napi_list); 4064 napi->dev = dev; 4065 #ifdef CONFIG_NETPOLL 4066 spin_lock_init(&napi->poll_lock); 4067 napi->poll_owner = -1; 4068 #endif 4069 set_bit(NAPI_STATE_SCHED, &napi->state); 4070 } 4071 EXPORT_SYMBOL(netif_napi_add); 4072 4073 void netif_napi_del(struct napi_struct *napi) 4074 { 4075 struct sk_buff *skb, *next; 4076 4077 list_del_init(&napi->dev_list); 4078 napi_free_frags(napi); 4079 4080 for (skb = napi->gro_list; skb; skb = next) { 4081 next = skb->next; 4082 skb->next = NULL; 4083 kfree_skb(skb); 4084 } 4085 4086 napi->gro_list = NULL; 4087 napi->gro_count = 0; 4088 } 4089 EXPORT_SYMBOL(netif_napi_del); 4090 4091 static void net_rx_action(struct softirq_action *h) 4092 { 4093 struct softnet_data *sd = &__get_cpu_var(softnet_data); 4094 unsigned long time_limit = jiffies + 2; 4095 int budget = netdev_budget; 4096 void *have; 4097 4098 local_irq_disable(); 4099 4100 while (!list_empty(&sd->poll_list)) { 4101 struct napi_struct *n; 4102 int work, weight; 4103 4104 /* If softirq window is exhuasted then punt. 4105 * Allow this to run for 2 jiffies since which will allow 4106 * an average latency of 1.5/HZ. 4107 */ 4108 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 4109 goto softnet_break; 4110 4111 local_irq_enable(); 4112 4113 /* Even though interrupts have been re-enabled, this 4114 * access is safe because interrupts can only add new 4115 * entries to the tail of this list, and only ->poll() 4116 * calls can remove this head entry from the list. 4117 */ 4118 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 4119 4120 have = netpoll_poll_lock(n); 4121 4122 weight = n->weight; 4123 4124 /* This NAPI_STATE_SCHED test is for avoiding a race 4125 * with netpoll's poll_napi(). Only the entity which 4126 * obtains the lock and sees NAPI_STATE_SCHED set will 4127 * actually make the ->poll() call. Therefore we avoid 4128 * accidentally calling ->poll() when NAPI is not scheduled. 4129 */ 4130 work = 0; 4131 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4132 work = n->poll(n, weight); 4133 trace_napi_poll(n); 4134 } 4135 4136 WARN_ON_ONCE(work > weight); 4137 4138 budget -= work; 4139 4140 local_irq_disable(); 4141 4142 /* Drivers must not modify the NAPI state if they 4143 * consume the entire weight. In such cases this code 4144 * still "owns" the NAPI instance and therefore can 4145 * move the instance around on the list at-will. 4146 */ 4147 if (unlikely(work == weight)) { 4148 if (unlikely(napi_disable_pending(n))) { 4149 local_irq_enable(); 4150 napi_complete(n); 4151 local_irq_disable(); 4152 } else { 4153 if (n->gro_list) { 4154 /* flush too old packets 4155 * If HZ < 1000, flush all packets. 4156 */ 4157 local_irq_enable(); 4158 napi_gro_flush(n, HZ >= 1000); 4159 local_irq_disable(); 4160 } 4161 list_move_tail(&n->poll_list, &sd->poll_list); 4162 } 4163 } 4164 4165 netpoll_poll_unlock(have); 4166 } 4167 out: 4168 net_rps_action_and_irq_enable(sd); 4169 4170 #ifdef CONFIG_NET_DMA 4171 /* 4172 * There may not be any more sk_buffs coming right now, so push 4173 * any pending DMA copies to hardware 4174 */ 4175 dma_issue_pending_all(); 4176 #endif 4177 4178 return; 4179 4180 softnet_break: 4181 sd->time_squeeze++; 4182 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4183 goto out; 4184 } 4185 4186 struct netdev_upper { 4187 struct net_device *dev; 4188 bool master; 4189 struct list_head list; 4190 struct rcu_head rcu; 4191 struct list_head search_list; 4192 }; 4193 4194 static void __append_search_uppers(struct list_head *search_list, 4195 struct net_device *dev) 4196 { 4197 struct netdev_upper *upper; 4198 4199 list_for_each_entry(upper, &dev->upper_dev_list, list) { 4200 /* check if this upper is not already in search list */ 4201 if (list_empty(&upper->search_list)) 4202 list_add_tail(&upper->search_list, search_list); 4203 } 4204 } 4205 4206 static bool __netdev_search_upper_dev(struct net_device *dev, 4207 struct net_device *upper_dev) 4208 { 4209 LIST_HEAD(search_list); 4210 struct netdev_upper *upper; 4211 struct netdev_upper *tmp; 4212 bool ret = false; 4213 4214 __append_search_uppers(&search_list, dev); 4215 list_for_each_entry(upper, &search_list, search_list) { 4216 if (upper->dev == upper_dev) { 4217 ret = true; 4218 break; 4219 } 4220 __append_search_uppers(&search_list, upper->dev); 4221 } 4222 list_for_each_entry_safe(upper, tmp, &search_list, search_list) 4223 INIT_LIST_HEAD(&upper->search_list); 4224 return ret; 4225 } 4226 4227 static struct netdev_upper *__netdev_find_upper(struct net_device *dev, 4228 struct net_device *upper_dev) 4229 { 4230 struct netdev_upper *upper; 4231 4232 list_for_each_entry(upper, &dev->upper_dev_list, list) { 4233 if (upper->dev == upper_dev) 4234 return upper; 4235 } 4236 return NULL; 4237 } 4238 4239 /** 4240 * netdev_has_upper_dev - Check if device is linked to an upper device 4241 * @dev: device 4242 * @upper_dev: upper device to check 4243 * 4244 * Find out if a device is linked to specified upper device and return true 4245 * in case it is. Note that this checks only immediate upper device, 4246 * not through a complete stack of devices. The caller must hold the RTNL lock. 4247 */ 4248 bool netdev_has_upper_dev(struct net_device *dev, 4249 struct net_device *upper_dev) 4250 { 4251 ASSERT_RTNL(); 4252 4253 return __netdev_find_upper(dev, upper_dev); 4254 } 4255 EXPORT_SYMBOL(netdev_has_upper_dev); 4256 4257 /** 4258 * netdev_has_any_upper_dev - Check if device is linked to some device 4259 * @dev: device 4260 * 4261 * Find out if a device is linked to an upper device and return true in case 4262 * it is. The caller must hold the RTNL lock. 4263 */ 4264 bool netdev_has_any_upper_dev(struct net_device *dev) 4265 { 4266 ASSERT_RTNL(); 4267 4268 return !list_empty(&dev->upper_dev_list); 4269 } 4270 EXPORT_SYMBOL(netdev_has_any_upper_dev); 4271 4272 /** 4273 * netdev_master_upper_dev_get - Get master upper device 4274 * @dev: device 4275 * 4276 * Find a master upper device and return pointer to it or NULL in case 4277 * it's not there. The caller must hold the RTNL lock. 4278 */ 4279 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4280 { 4281 struct netdev_upper *upper; 4282 4283 ASSERT_RTNL(); 4284 4285 if (list_empty(&dev->upper_dev_list)) 4286 return NULL; 4287 4288 upper = list_first_entry(&dev->upper_dev_list, 4289 struct netdev_upper, list); 4290 if (likely(upper->master)) 4291 return upper->dev; 4292 return NULL; 4293 } 4294 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4295 4296 /** 4297 * netdev_master_upper_dev_get_rcu - Get master upper device 4298 * @dev: device 4299 * 4300 * Find a master upper device and return pointer to it or NULL in case 4301 * it's not there. The caller must hold the RCU read lock. 4302 */ 4303 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4304 { 4305 struct netdev_upper *upper; 4306 4307 upper = list_first_or_null_rcu(&dev->upper_dev_list, 4308 struct netdev_upper, list); 4309 if (upper && likely(upper->master)) 4310 return upper->dev; 4311 return NULL; 4312 } 4313 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4314 4315 static int __netdev_upper_dev_link(struct net_device *dev, 4316 struct net_device *upper_dev, bool master) 4317 { 4318 struct netdev_upper *upper; 4319 4320 ASSERT_RTNL(); 4321 4322 if (dev == upper_dev) 4323 return -EBUSY; 4324 4325 /* To prevent loops, check if dev is not upper device to upper_dev. */ 4326 if (__netdev_search_upper_dev(upper_dev, dev)) 4327 return -EBUSY; 4328 4329 if (__netdev_find_upper(dev, upper_dev)) 4330 return -EEXIST; 4331 4332 if (master && netdev_master_upper_dev_get(dev)) 4333 return -EBUSY; 4334 4335 upper = kmalloc(sizeof(*upper), GFP_KERNEL); 4336 if (!upper) 4337 return -ENOMEM; 4338 4339 upper->dev = upper_dev; 4340 upper->master = master; 4341 INIT_LIST_HEAD(&upper->search_list); 4342 4343 /* Ensure that master upper link is always the first item in list. */ 4344 if (master) 4345 list_add_rcu(&upper->list, &dev->upper_dev_list); 4346 else 4347 list_add_tail_rcu(&upper->list, &dev->upper_dev_list); 4348 dev_hold(upper_dev); 4349 4350 return 0; 4351 } 4352 4353 /** 4354 * netdev_upper_dev_link - Add a link to the upper device 4355 * @dev: device 4356 * @upper_dev: new upper device 4357 * 4358 * Adds a link to device which is upper to this one. The caller must hold 4359 * the RTNL lock. On a failure a negative errno code is returned. 4360 * On success the reference counts are adjusted and the function 4361 * returns zero. 4362 */ 4363 int netdev_upper_dev_link(struct net_device *dev, 4364 struct net_device *upper_dev) 4365 { 4366 return __netdev_upper_dev_link(dev, upper_dev, false); 4367 } 4368 EXPORT_SYMBOL(netdev_upper_dev_link); 4369 4370 /** 4371 * netdev_master_upper_dev_link - Add a master link to the upper device 4372 * @dev: device 4373 * @upper_dev: new upper device 4374 * 4375 * Adds a link to device which is upper to this one. In this case, only 4376 * one master upper device can be linked, although other non-master devices 4377 * might be linked as well. The caller must hold the RTNL lock. 4378 * On a failure a negative errno code is returned. On success the reference 4379 * counts are adjusted and the function returns zero. 4380 */ 4381 int netdev_master_upper_dev_link(struct net_device *dev, 4382 struct net_device *upper_dev) 4383 { 4384 return __netdev_upper_dev_link(dev, upper_dev, true); 4385 } 4386 EXPORT_SYMBOL(netdev_master_upper_dev_link); 4387 4388 /** 4389 * netdev_upper_dev_unlink - Removes a link to upper device 4390 * @dev: device 4391 * @upper_dev: new upper device 4392 * 4393 * Removes a link to device which is upper to this one. The caller must hold 4394 * the RTNL lock. 4395 */ 4396 void netdev_upper_dev_unlink(struct net_device *dev, 4397 struct net_device *upper_dev) 4398 { 4399 struct netdev_upper *upper; 4400 4401 ASSERT_RTNL(); 4402 4403 upper = __netdev_find_upper(dev, upper_dev); 4404 if (!upper) 4405 return; 4406 list_del_rcu(&upper->list); 4407 dev_put(upper_dev); 4408 kfree_rcu(upper, rcu); 4409 } 4410 EXPORT_SYMBOL(netdev_upper_dev_unlink); 4411 4412 static void dev_change_rx_flags(struct net_device *dev, int flags) 4413 { 4414 const struct net_device_ops *ops = dev->netdev_ops; 4415 4416 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4417 ops->ndo_change_rx_flags(dev, flags); 4418 } 4419 4420 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4421 { 4422 unsigned int old_flags = dev->flags; 4423 kuid_t uid; 4424 kgid_t gid; 4425 4426 ASSERT_RTNL(); 4427 4428 dev->flags |= IFF_PROMISC; 4429 dev->promiscuity += inc; 4430 if (dev->promiscuity == 0) { 4431 /* 4432 * Avoid overflow. 4433 * If inc causes overflow, untouch promisc and return error. 4434 */ 4435 if (inc < 0) 4436 dev->flags &= ~IFF_PROMISC; 4437 else { 4438 dev->promiscuity -= inc; 4439 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 4440 dev->name); 4441 return -EOVERFLOW; 4442 } 4443 } 4444 if (dev->flags != old_flags) { 4445 pr_info("device %s %s promiscuous mode\n", 4446 dev->name, 4447 dev->flags & IFF_PROMISC ? "entered" : "left"); 4448 if (audit_enabled) { 4449 current_uid_gid(&uid, &gid); 4450 audit_log(current->audit_context, GFP_ATOMIC, 4451 AUDIT_ANOM_PROMISCUOUS, 4452 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4453 dev->name, (dev->flags & IFF_PROMISC), 4454 (old_flags & IFF_PROMISC), 4455 from_kuid(&init_user_ns, audit_get_loginuid(current)), 4456 from_kuid(&init_user_ns, uid), 4457 from_kgid(&init_user_ns, gid), 4458 audit_get_sessionid(current)); 4459 } 4460 4461 dev_change_rx_flags(dev, IFF_PROMISC); 4462 } 4463 return 0; 4464 } 4465 4466 /** 4467 * dev_set_promiscuity - update promiscuity count on a device 4468 * @dev: device 4469 * @inc: modifier 4470 * 4471 * Add or remove promiscuity from a device. While the count in the device 4472 * remains above zero the interface remains promiscuous. Once it hits zero 4473 * the device reverts back to normal filtering operation. A negative inc 4474 * value is used to drop promiscuity on the device. 4475 * Return 0 if successful or a negative errno code on error. 4476 */ 4477 int dev_set_promiscuity(struct net_device *dev, int inc) 4478 { 4479 unsigned int old_flags = dev->flags; 4480 int err; 4481 4482 err = __dev_set_promiscuity(dev, inc); 4483 if (err < 0) 4484 return err; 4485 if (dev->flags != old_flags) 4486 dev_set_rx_mode(dev); 4487 return err; 4488 } 4489 EXPORT_SYMBOL(dev_set_promiscuity); 4490 4491 /** 4492 * dev_set_allmulti - update allmulti count on a device 4493 * @dev: device 4494 * @inc: modifier 4495 * 4496 * Add or remove reception of all multicast frames to a device. While the 4497 * count in the device remains above zero the interface remains listening 4498 * to all interfaces. Once it hits zero the device reverts back to normal 4499 * filtering operation. A negative @inc value is used to drop the counter 4500 * when releasing a resource needing all multicasts. 4501 * Return 0 if successful or a negative errno code on error. 4502 */ 4503 4504 int dev_set_allmulti(struct net_device *dev, int inc) 4505 { 4506 unsigned int old_flags = dev->flags; 4507 4508 ASSERT_RTNL(); 4509 4510 dev->flags |= IFF_ALLMULTI; 4511 dev->allmulti += inc; 4512 if (dev->allmulti == 0) { 4513 /* 4514 * Avoid overflow. 4515 * If inc causes overflow, untouch allmulti and return error. 4516 */ 4517 if (inc < 0) 4518 dev->flags &= ~IFF_ALLMULTI; 4519 else { 4520 dev->allmulti -= inc; 4521 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 4522 dev->name); 4523 return -EOVERFLOW; 4524 } 4525 } 4526 if (dev->flags ^ old_flags) { 4527 dev_change_rx_flags(dev, IFF_ALLMULTI); 4528 dev_set_rx_mode(dev); 4529 } 4530 return 0; 4531 } 4532 EXPORT_SYMBOL(dev_set_allmulti); 4533 4534 /* 4535 * Upload unicast and multicast address lists to device and 4536 * configure RX filtering. When the device doesn't support unicast 4537 * filtering it is put in promiscuous mode while unicast addresses 4538 * are present. 4539 */ 4540 void __dev_set_rx_mode(struct net_device *dev) 4541 { 4542 const struct net_device_ops *ops = dev->netdev_ops; 4543 4544 /* dev_open will call this function so the list will stay sane. */ 4545 if (!(dev->flags&IFF_UP)) 4546 return; 4547 4548 if (!netif_device_present(dev)) 4549 return; 4550 4551 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4552 /* Unicast addresses changes may only happen under the rtnl, 4553 * therefore calling __dev_set_promiscuity here is safe. 4554 */ 4555 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4556 __dev_set_promiscuity(dev, 1); 4557 dev->uc_promisc = true; 4558 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4559 __dev_set_promiscuity(dev, -1); 4560 dev->uc_promisc = false; 4561 } 4562 } 4563 4564 if (ops->ndo_set_rx_mode) 4565 ops->ndo_set_rx_mode(dev); 4566 } 4567 4568 void dev_set_rx_mode(struct net_device *dev) 4569 { 4570 netif_addr_lock_bh(dev); 4571 __dev_set_rx_mode(dev); 4572 netif_addr_unlock_bh(dev); 4573 } 4574 4575 /** 4576 * dev_get_flags - get flags reported to userspace 4577 * @dev: device 4578 * 4579 * Get the combination of flag bits exported through APIs to userspace. 4580 */ 4581 unsigned int dev_get_flags(const struct net_device *dev) 4582 { 4583 unsigned int flags; 4584 4585 flags = (dev->flags & ~(IFF_PROMISC | 4586 IFF_ALLMULTI | 4587 IFF_RUNNING | 4588 IFF_LOWER_UP | 4589 IFF_DORMANT)) | 4590 (dev->gflags & (IFF_PROMISC | 4591 IFF_ALLMULTI)); 4592 4593 if (netif_running(dev)) { 4594 if (netif_oper_up(dev)) 4595 flags |= IFF_RUNNING; 4596 if (netif_carrier_ok(dev)) 4597 flags |= IFF_LOWER_UP; 4598 if (netif_dormant(dev)) 4599 flags |= IFF_DORMANT; 4600 } 4601 4602 return flags; 4603 } 4604 EXPORT_SYMBOL(dev_get_flags); 4605 4606 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4607 { 4608 unsigned int old_flags = dev->flags; 4609 int ret; 4610 4611 ASSERT_RTNL(); 4612 4613 /* 4614 * Set the flags on our device. 4615 */ 4616 4617 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4618 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4619 IFF_AUTOMEDIA)) | 4620 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4621 IFF_ALLMULTI)); 4622 4623 /* 4624 * Load in the correct multicast list now the flags have changed. 4625 */ 4626 4627 if ((old_flags ^ flags) & IFF_MULTICAST) 4628 dev_change_rx_flags(dev, IFF_MULTICAST); 4629 4630 dev_set_rx_mode(dev); 4631 4632 /* 4633 * Have we downed the interface. We handle IFF_UP ourselves 4634 * according to user attempts to set it, rather than blindly 4635 * setting it. 4636 */ 4637 4638 ret = 0; 4639 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4640 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4641 4642 if (!ret) 4643 dev_set_rx_mode(dev); 4644 } 4645 4646 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4647 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4648 4649 dev->gflags ^= IFF_PROMISC; 4650 dev_set_promiscuity(dev, inc); 4651 } 4652 4653 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4654 is important. Some (broken) drivers set IFF_PROMISC, when 4655 IFF_ALLMULTI is requested not asking us and not reporting. 4656 */ 4657 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4658 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4659 4660 dev->gflags ^= IFF_ALLMULTI; 4661 dev_set_allmulti(dev, inc); 4662 } 4663 4664 return ret; 4665 } 4666 4667 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4668 { 4669 unsigned int changes = dev->flags ^ old_flags; 4670 4671 if (changes & IFF_UP) { 4672 if (dev->flags & IFF_UP) 4673 call_netdevice_notifiers(NETDEV_UP, dev); 4674 else 4675 call_netdevice_notifiers(NETDEV_DOWN, dev); 4676 } 4677 4678 if (dev->flags & IFF_UP && 4679 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4680 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4681 } 4682 4683 /** 4684 * dev_change_flags - change device settings 4685 * @dev: device 4686 * @flags: device state flags 4687 * 4688 * Change settings on device based state flags. The flags are 4689 * in the userspace exported format. 4690 */ 4691 int dev_change_flags(struct net_device *dev, unsigned int flags) 4692 { 4693 int ret; 4694 unsigned int changes, old_flags = dev->flags; 4695 4696 ret = __dev_change_flags(dev, flags); 4697 if (ret < 0) 4698 return ret; 4699 4700 changes = old_flags ^ dev->flags; 4701 if (changes) 4702 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4703 4704 __dev_notify_flags(dev, old_flags); 4705 return ret; 4706 } 4707 EXPORT_SYMBOL(dev_change_flags); 4708 4709 /** 4710 * dev_set_mtu - Change maximum transfer unit 4711 * @dev: device 4712 * @new_mtu: new transfer unit 4713 * 4714 * Change the maximum transfer size of the network device. 4715 */ 4716 int dev_set_mtu(struct net_device *dev, int new_mtu) 4717 { 4718 const struct net_device_ops *ops = dev->netdev_ops; 4719 int err; 4720 4721 if (new_mtu == dev->mtu) 4722 return 0; 4723 4724 /* MTU must be positive. */ 4725 if (new_mtu < 0) 4726 return -EINVAL; 4727 4728 if (!netif_device_present(dev)) 4729 return -ENODEV; 4730 4731 err = 0; 4732 if (ops->ndo_change_mtu) 4733 err = ops->ndo_change_mtu(dev, new_mtu); 4734 else 4735 dev->mtu = new_mtu; 4736 4737 if (!err) 4738 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4739 return err; 4740 } 4741 EXPORT_SYMBOL(dev_set_mtu); 4742 4743 /** 4744 * dev_set_group - Change group this device belongs to 4745 * @dev: device 4746 * @new_group: group this device should belong to 4747 */ 4748 void dev_set_group(struct net_device *dev, int new_group) 4749 { 4750 dev->group = new_group; 4751 } 4752 EXPORT_SYMBOL(dev_set_group); 4753 4754 /** 4755 * dev_set_mac_address - Change Media Access Control Address 4756 * @dev: device 4757 * @sa: new address 4758 * 4759 * Change the hardware (MAC) address of the device 4760 */ 4761 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4762 { 4763 const struct net_device_ops *ops = dev->netdev_ops; 4764 int err; 4765 4766 if (!ops->ndo_set_mac_address) 4767 return -EOPNOTSUPP; 4768 if (sa->sa_family != dev->type) 4769 return -EINVAL; 4770 if (!netif_device_present(dev)) 4771 return -ENODEV; 4772 err = ops->ndo_set_mac_address(dev, sa); 4773 if (err) 4774 return err; 4775 dev->addr_assign_type = NET_ADDR_SET; 4776 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4777 add_device_randomness(dev->dev_addr, dev->addr_len); 4778 return 0; 4779 } 4780 EXPORT_SYMBOL(dev_set_mac_address); 4781 4782 /** 4783 * dev_change_carrier - Change device carrier 4784 * @dev: device 4785 * @new_carries: new value 4786 * 4787 * Change device carrier 4788 */ 4789 int dev_change_carrier(struct net_device *dev, bool new_carrier) 4790 { 4791 const struct net_device_ops *ops = dev->netdev_ops; 4792 4793 if (!ops->ndo_change_carrier) 4794 return -EOPNOTSUPP; 4795 if (!netif_device_present(dev)) 4796 return -ENODEV; 4797 return ops->ndo_change_carrier(dev, new_carrier); 4798 } 4799 EXPORT_SYMBOL(dev_change_carrier); 4800 4801 /** 4802 * dev_new_index - allocate an ifindex 4803 * @net: the applicable net namespace 4804 * 4805 * Returns a suitable unique value for a new device interface 4806 * number. The caller must hold the rtnl semaphore or the 4807 * dev_base_lock to be sure it remains unique. 4808 */ 4809 static int dev_new_index(struct net *net) 4810 { 4811 int ifindex = net->ifindex; 4812 for (;;) { 4813 if (++ifindex <= 0) 4814 ifindex = 1; 4815 if (!__dev_get_by_index(net, ifindex)) 4816 return net->ifindex = ifindex; 4817 } 4818 } 4819 4820 /* Delayed registration/unregisteration */ 4821 static LIST_HEAD(net_todo_list); 4822 4823 static void net_set_todo(struct net_device *dev) 4824 { 4825 list_add_tail(&dev->todo_list, &net_todo_list); 4826 } 4827 4828 static void rollback_registered_many(struct list_head *head) 4829 { 4830 struct net_device *dev, *tmp; 4831 4832 BUG_ON(dev_boot_phase); 4833 ASSERT_RTNL(); 4834 4835 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 4836 /* Some devices call without registering 4837 * for initialization unwind. Remove those 4838 * devices and proceed with the remaining. 4839 */ 4840 if (dev->reg_state == NETREG_UNINITIALIZED) { 4841 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 4842 dev->name, dev); 4843 4844 WARN_ON(1); 4845 list_del(&dev->unreg_list); 4846 continue; 4847 } 4848 dev->dismantle = true; 4849 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4850 } 4851 4852 /* If device is running, close it first. */ 4853 dev_close_many(head); 4854 4855 list_for_each_entry(dev, head, unreg_list) { 4856 /* And unlink it from device chain. */ 4857 unlist_netdevice(dev); 4858 4859 dev->reg_state = NETREG_UNREGISTERING; 4860 } 4861 4862 synchronize_net(); 4863 4864 list_for_each_entry(dev, head, unreg_list) { 4865 /* Shutdown queueing discipline. */ 4866 dev_shutdown(dev); 4867 4868 4869 /* Notify protocols, that we are about to destroy 4870 this device. They should clean all the things. 4871 */ 4872 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4873 4874 if (!dev->rtnl_link_ops || 4875 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 4876 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 4877 4878 /* 4879 * Flush the unicast and multicast chains 4880 */ 4881 dev_uc_flush(dev); 4882 dev_mc_flush(dev); 4883 4884 if (dev->netdev_ops->ndo_uninit) 4885 dev->netdev_ops->ndo_uninit(dev); 4886 4887 /* Notifier chain MUST detach us all upper devices. */ 4888 WARN_ON(netdev_has_any_upper_dev(dev)); 4889 4890 /* Remove entries from kobject tree */ 4891 netdev_unregister_kobject(dev); 4892 #ifdef CONFIG_XPS 4893 /* Remove XPS queueing entries */ 4894 netif_reset_xps_queues_gt(dev, 0); 4895 #endif 4896 } 4897 4898 synchronize_net(); 4899 4900 list_for_each_entry(dev, head, unreg_list) 4901 dev_put(dev); 4902 } 4903 4904 static void rollback_registered(struct net_device *dev) 4905 { 4906 LIST_HEAD(single); 4907 4908 list_add(&dev->unreg_list, &single); 4909 rollback_registered_many(&single); 4910 list_del(&single); 4911 } 4912 4913 static netdev_features_t netdev_fix_features(struct net_device *dev, 4914 netdev_features_t features) 4915 { 4916 /* Fix illegal checksum combinations */ 4917 if ((features & NETIF_F_HW_CSUM) && 4918 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4919 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 4920 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4921 } 4922 4923 /* Fix illegal SG+CSUM combinations. */ 4924 if ((features & NETIF_F_SG) && 4925 !(features & NETIF_F_ALL_CSUM)) { 4926 netdev_dbg(dev, 4927 "Dropping NETIF_F_SG since no checksum feature.\n"); 4928 features &= ~NETIF_F_SG; 4929 } 4930 4931 /* TSO requires that SG is present as well. */ 4932 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 4933 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 4934 features &= ~NETIF_F_ALL_TSO; 4935 } 4936 4937 /* TSO ECN requires that TSO is present as well. */ 4938 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 4939 features &= ~NETIF_F_TSO_ECN; 4940 4941 /* Software GSO depends on SG. */ 4942 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 4943 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 4944 features &= ~NETIF_F_GSO; 4945 } 4946 4947 /* UFO needs SG and checksumming */ 4948 if (features & NETIF_F_UFO) { 4949 /* maybe split UFO into V4 and V6? */ 4950 if (!((features & NETIF_F_GEN_CSUM) || 4951 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 4952 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4953 netdev_dbg(dev, 4954 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 4955 features &= ~NETIF_F_UFO; 4956 } 4957 4958 if (!(features & NETIF_F_SG)) { 4959 netdev_dbg(dev, 4960 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 4961 features &= ~NETIF_F_UFO; 4962 } 4963 } 4964 4965 return features; 4966 } 4967 4968 int __netdev_update_features(struct net_device *dev) 4969 { 4970 netdev_features_t features; 4971 int err = 0; 4972 4973 ASSERT_RTNL(); 4974 4975 features = netdev_get_wanted_features(dev); 4976 4977 if (dev->netdev_ops->ndo_fix_features) 4978 features = dev->netdev_ops->ndo_fix_features(dev, features); 4979 4980 /* driver might be less strict about feature dependencies */ 4981 features = netdev_fix_features(dev, features); 4982 4983 if (dev->features == features) 4984 return 0; 4985 4986 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 4987 &dev->features, &features); 4988 4989 if (dev->netdev_ops->ndo_set_features) 4990 err = dev->netdev_ops->ndo_set_features(dev, features); 4991 4992 if (unlikely(err < 0)) { 4993 netdev_err(dev, 4994 "set_features() failed (%d); wanted %pNF, left %pNF\n", 4995 err, &features, &dev->features); 4996 return -1; 4997 } 4998 4999 if (!err) 5000 dev->features = features; 5001 5002 return 1; 5003 } 5004 5005 /** 5006 * netdev_update_features - recalculate device features 5007 * @dev: the device to check 5008 * 5009 * Recalculate dev->features set and send notifications if it 5010 * has changed. Should be called after driver or hardware dependent 5011 * conditions might have changed that influence the features. 5012 */ 5013 void netdev_update_features(struct net_device *dev) 5014 { 5015 if (__netdev_update_features(dev)) 5016 netdev_features_change(dev); 5017 } 5018 EXPORT_SYMBOL(netdev_update_features); 5019 5020 /** 5021 * netdev_change_features - recalculate device features 5022 * @dev: the device to check 5023 * 5024 * Recalculate dev->features set and send notifications even 5025 * if they have not changed. Should be called instead of 5026 * netdev_update_features() if also dev->vlan_features might 5027 * have changed to allow the changes to be propagated to stacked 5028 * VLAN devices. 5029 */ 5030 void netdev_change_features(struct net_device *dev) 5031 { 5032 __netdev_update_features(dev); 5033 netdev_features_change(dev); 5034 } 5035 EXPORT_SYMBOL(netdev_change_features); 5036 5037 /** 5038 * netif_stacked_transfer_operstate - transfer operstate 5039 * @rootdev: the root or lower level device to transfer state from 5040 * @dev: the device to transfer operstate to 5041 * 5042 * Transfer operational state from root to device. This is normally 5043 * called when a stacking relationship exists between the root 5044 * device and the device(a leaf device). 5045 */ 5046 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5047 struct net_device *dev) 5048 { 5049 if (rootdev->operstate == IF_OPER_DORMANT) 5050 netif_dormant_on(dev); 5051 else 5052 netif_dormant_off(dev); 5053 5054 if (netif_carrier_ok(rootdev)) { 5055 if (!netif_carrier_ok(dev)) 5056 netif_carrier_on(dev); 5057 } else { 5058 if (netif_carrier_ok(dev)) 5059 netif_carrier_off(dev); 5060 } 5061 } 5062 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5063 5064 #ifdef CONFIG_RPS 5065 static int netif_alloc_rx_queues(struct net_device *dev) 5066 { 5067 unsigned int i, count = dev->num_rx_queues; 5068 struct netdev_rx_queue *rx; 5069 5070 BUG_ON(count < 1); 5071 5072 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5073 if (!rx) 5074 return -ENOMEM; 5075 5076 dev->_rx = rx; 5077 5078 for (i = 0; i < count; i++) 5079 rx[i].dev = dev; 5080 return 0; 5081 } 5082 #endif 5083 5084 static void netdev_init_one_queue(struct net_device *dev, 5085 struct netdev_queue *queue, void *_unused) 5086 { 5087 /* Initialize queue lock */ 5088 spin_lock_init(&queue->_xmit_lock); 5089 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5090 queue->xmit_lock_owner = -1; 5091 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5092 queue->dev = dev; 5093 #ifdef CONFIG_BQL 5094 dql_init(&queue->dql, HZ); 5095 #endif 5096 } 5097 5098 static int netif_alloc_netdev_queues(struct net_device *dev) 5099 { 5100 unsigned int count = dev->num_tx_queues; 5101 struct netdev_queue *tx; 5102 5103 BUG_ON(count < 1); 5104 5105 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5106 if (!tx) 5107 return -ENOMEM; 5108 5109 dev->_tx = tx; 5110 5111 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5112 spin_lock_init(&dev->tx_global_lock); 5113 5114 return 0; 5115 } 5116 5117 /** 5118 * register_netdevice - register a network device 5119 * @dev: device to register 5120 * 5121 * Take a completed network device structure and add it to the kernel 5122 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5123 * chain. 0 is returned on success. A negative errno code is returned 5124 * on a failure to set up the device, or if the name is a duplicate. 5125 * 5126 * Callers must hold the rtnl semaphore. You may want 5127 * register_netdev() instead of this. 5128 * 5129 * BUGS: 5130 * The locking appears insufficient to guarantee two parallel registers 5131 * will not get the same name. 5132 */ 5133 5134 int register_netdevice(struct net_device *dev) 5135 { 5136 int ret; 5137 struct net *net = dev_net(dev); 5138 5139 BUG_ON(dev_boot_phase); 5140 ASSERT_RTNL(); 5141 5142 might_sleep(); 5143 5144 /* When net_device's are persistent, this will be fatal. */ 5145 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5146 BUG_ON(!net); 5147 5148 spin_lock_init(&dev->addr_list_lock); 5149 netdev_set_addr_lockdep_class(dev); 5150 5151 dev->iflink = -1; 5152 5153 ret = dev_get_valid_name(net, dev, dev->name); 5154 if (ret < 0) 5155 goto out; 5156 5157 /* Init, if this function is available */ 5158 if (dev->netdev_ops->ndo_init) { 5159 ret = dev->netdev_ops->ndo_init(dev); 5160 if (ret) { 5161 if (ret > 0) 5162 ret = -EIO; 5163 goto out; 5164 } 5165 } 5166 5167 if (((dev->hw_features | dev->features) & NETIF_F_HW_VLAN_FILTER) && 5168 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 5169 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 5170 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 5171 ret = -EINVAL; 5172 goto err_uninit; 5173 } 5174 5175 ret = -EBUSY; 5176 if (!dev->ifindex) 5177 dev->ifindex = dev_new_index(net); 5178 else if (__dev_get_by_index(net, dev->ifindex)) 5179 goto err_uninit; 5180 5181 if (dev->iflink == -1) 5182 dev->iflink = dev->ifindex; 5183 5184 /* Transfer changeable features to wanted_features and enable 5185 * software offloads (GSO and GRO). 5186 */ 5187 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5188 dev->features |= NETIF_F_SOFT_FEATURES; 5189 dev->wanted_features = dev->features & dev->hw_features; 5190 5191 /* Turn on no cache copy if HW is doing checksum */ 5192 if (!(dev->flags & IFF_LOOPBACK)) { 5193 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5194 if (dev->features & NETIF_F_ALL_CSUM) { 5195 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5196 dev->features |= NETIF_F_NOCACHE_COPY; 5197 } 5198 } 5199 5200 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5201 */ 5202 dev->vlan_features |= NETIF_F_HIGHDMA; 5203 5204 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5205 ret = notifier_to_errno(ret); 5206 if (ret) 5207 goto err_uninit; 5208 5209 ret = netdev_register_kobject(dev); 5210 if (ret) 5211 goto err_uninit; 5212 dev->reg_state = NETREG_REGISTERED; 5213 5214 __netdev_update_features(dev); 5215 5216 /* 5217 * Default initial state at registry is that the 5218 * device is present. 5219 */ 5220 5221 set_bit(__LINK_STATE_PRESENT, &dev->state); 5222 5223 linkwatch_init_dev(dev); 5224 5225 dev_init_scheduler(dev); 5226 dev_hold(dev); 5227 list_netdevice(dev); 5228 add_device_randomness(dev->dev_addr, dev->addr_len); 5229 5230 /* If the device has permanent device address, driver should 5231 * set dev_addr and also addr_assign_type should be set to 5232 * NET_ADDR_PERM (default value). 5233 */ 5234 if (dev->addr_assign_type == NET_ADDR_PERM) 5235 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 5236 5237 /* Notify protocols, that a new device appeared. */ 5238 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5239 ret = notifier_to_errno(ret); 5240 if (ret) { 5241 rollback_registered(dev); 5242 dev->reg_state = NETREG_UNREGISTERED; 5243 } 5244 /* 5245 * Prevent userspace races by waiting until the network 5246 * device is fully setup before sending notifications. 5247 */ 5248 if (!dev->rtnl_link_ops || 5249 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5250 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5251 5252 out: 5253 return ret; 5254 5255 err_uninit: 5256 if (dev->netdev_ops->ndo_uninit) 5257 dev->netdev_ops->ndo_uninit(dev); 5258 goto out; 5259 } 5260 EXPORT_SYMBOL(register_netdevice); 5261 5262 /** 5263 * init_dummy_netdev - init a dummy network device for NAPI 5264 * @dev: device to init 5265 * 5266 * This takes a network device structure and initialize the minimum 5267 * amount of fields so it can be used to schedule NAPI polls without 5268 * registering a full blown interface. This is to be used by drivers 5269 * that need to tie several hardware interfaces to a single NAPI 5270 * poll scheduler due to HW limitations. 5271 */ 5272 int init_dummy_netdev(struct net_device *dev) 5273 { 5274 /* Clear everything. Note we don't initialize spinlocks 5275 * are they aren't supposed to be taken by any of the 5276 * NAPI code and this dummy netdev is supposed to be 5277 * only ever used for NAPI polls 5278 */ 5279 memset(dev, 0, sizeof(struct net_device)); 5280 5281 /* make sure we BUG if trying to hit standard 5282 * register/unregister code path 5283 */ 5284 dev->reg_state = NETREG_DUMMY; 5285 5286 /* NAPI wants this */ 5287 INIT_LIST_HEAD(&dev->napi_list); 5288 5289 /* a dummy interface is started by default */ 5290 set_bit(__LINK_STATE_PRESENT, &dev->state); 5291 set_bit(__LINK_STATE_START, &dev->state); 5292 5293 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5294 * because users of this 'device' dont need to change 5295 * its refcount. 5296 */ 5297 5298 return 0; 5299 } 5300 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5301 5302 5303 /** 5304 * register_netdev - register a network device 5305 * @dev: device to register 5306 * 5307 * Take a completed network device structure and add it to the kernel 5308 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5309 * chain. 0 is returned on success. A negative errno code is returned 5310 * on a failure to set up the device, or if the name is a duplicate. 5311 * 5312 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5313 * and expands the device name if you passed a format string to 5314 * alloc_netdev. 5315 */ 5316 int register_netdev(struct net_device *dev) 5317 { 5318 int err; 5319 5320 rtnl_lock(); 5321 err = register_netdevice(dev); 5322 rtnl_unlock(); 5323 return err; 5324 } 5325 EXPORT_SYMBOL(register_netdev); 5326 5327 int netdev_refcnt_read(const struct net_device *dev) 5328 { 5329 int i, refcnt = 0; 5330 5331 for_each_possible_cpu(i) 5332 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5333 return refcnt; 5334 } 5335 EXPORT_SYMBOL(netdev_refcnt_read); 5336 5337 /** 5338 * netdev_wait_allrefs - wait until all references are gone. 5339 * @dev: target net_device 5340 * 5341 * This is called when unregistering network devices. 5342 * 5343 * Any protocol or device that holds a reference should register 5344 * for netdevice notification, and cleanup and put back the 5345 * reference if they receive an UNREGISTER event. 5346 * We can get stuck here if buggy protocols don't correctly 5347 * call dev_put. 5348 */ 5349 static void netdev_wait_allrefs(struct net_device *dev) 5350 { 5351 unsigned long rebroadcast_time, warning_time; 5352 int refcnt; 5353 5354 linkwatch_forget_dev(dev); 5355 5356 rebroadcast_time = warning_time = jiffies; 5357 refcnt = netdev_refcnt_read(dev); 5358 5359 while (refcnt != 0) { 5360 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5361 rtnl_lock(); 5362 5363 /* Rebroadcast unregister notification */ 5364 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5365 5366 __rtnl_unlock(); 5367 rcu_barrier(); 5368 rtnl_lock(); 5369 5370 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5371 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5372 &dev->state)) { 5373 /* We must not have linkwatch events 5374 * pending on unregister. If this 5375 * happens, we simply run the queue 5376 * unscheduled, resulting in a noop 5377 * for this device. 5378 */ 5379 linkwatch_run_queue(); 5380 } 5381 5382 __rtnl_unlock(); 5383 5384 rebroadcast_time = jiffies; 5385 } 5386 5387 msleep(250); 5388 5389 refcnt = netdev_refcnt_read(dev); 5390 5391 if (time_after(jiffies, warning_time + 10 * HZ)) { 5392 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 5393 dev->name, refcnt); 5394 warning_time = jiffies; 5395 } 5396 } 5397 } 5398 5399 /* The sequence is: 5400 * 5401 * rtnl_lock(); 5402 * ... 5403 * register_netdevice(x1); 5404 * register_netdevice(x2); 5405 * ... 5406 * unregister_netdevice(y1); 5407 * unregister_netdevice(y2); 5408 * ... 5409 * rtnl_unlock(); 5410 * free_netdev(y1); 5411 * free_netdev(y2); 5412 * 5413 * We are invoked by rtnl_unlock(). 5414 * This allows us to deal with problems: 5415 * 1) We can delete sysfs objects which invoke hotplug 5416 * without deadlocking with linkwatch via keventd. 5417 * 2) Since we run with the RTNL semaphore not held, we can sleep 5418 * safely in order to wait for the netdev refcnt to drop to zero. 5419 * 5420 * We must not return until all unregister events added during 5421 * the interval the lock was held have been completed. 5422 */ 5423 void netdev_run_todo(void) 5424 { 5425 struct list_head list; 5426 5427 /* Snapshot list, allow later requests */ 5428 list_replace_init(&net_todo_list, &list); 5429 5430 __rtnl_unlock(); 5431 5432 5433 /* Wait for rcu callbacks to finish before next phase */ 5434 if (!list_empty(&list)) 5435 rcu_barrier(); 5436 5437 while (!list_empty(&list)) { 5438 struct net_device *dev 5439 = list_first_entry(&list, struct net_device, todo_list); 5440 list_del(&dev->todo_list); 5441 5442 rtnl_lock(); 5443 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5444 __rtnl_unlock(); 5445 5446 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5447 pr_err("network todo '%s' but state %d\n", 5448 dev->name, dev->reg_state); 5449 dump_stack(); 5450 continue; 5451 } 5452 5453 dev->reg_state = NETREG_UNREGISTERED; 5454 5455 on_each_cpu(flush_backlog, dev, 1); 5456 5457 netdev_wait_allrefs(dev); 5458 5459 /* paranoia */ 5460 BUG_ON(netdev_refcnt_read(dev)); 5461 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5462 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5463 WARN_ON(dev->dn_ptr); 5464 5465 if (dev->destructor) 5466 dev->destructor(dev); 5467 5468 /* Free network device */ 5469 kobject_put(&dev->dev.kobj); 5470 } 5471 } 5472 5473 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5474 * fields in the same order, with only the type differing. 5475 */ 5476 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5477 const struct net_device_stats *netdev_stats) 5478 { 5479 #if BITS_PER_LONG == 64 5480 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5481 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5482 #else 5483 size_t i, n = sizeof(*stats64) / sizeof(u64); 5484 const unsigned long *src = (const unsigned long *)netdev_stats; 5485 u64 *dst = (u64 *)stats64; 5486 5487 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5488 sizeof(*stats64) / sizeof(u64)); 5489 for (i = 0; i < n; i++) 5490 dst[i] = src[i]; 5491 #endif 5492 } 5493 EXPORT_SYMBOL(netdev_stats_to_stats64); 5494 5495 /** 5496 * dev_get_stats - get network device statistics 5497 * @dev: device to get statistics from 5498 * @storage: place to store stats 5499 * 5500 * Get network statistics from device. Return @storage. 5501 * The device driver may provide its own method by setting 5502 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5503 * otherwise the internal statistics structure is used. 5504 */ 5505 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5506 struct rtnl_link_stats64 *storage) 5507 { 5508 const struct net_device_ops *ops = dev->netdev_ops; 5509 5510 if (ops->ndo_get_stats64) { 5511 memset(storage, 0, sizeof(*storage)); 5512 ops->ndo_get_stats64(dev, storage); 5513 } else if (ops->ndo_get_stats) { 5514 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5515 } else { 5516 netdev_stats_to_stats64(storage, &dev->stats); 5517 } 5518 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5519 return storage; 5520 } 5521 EXPORT_SYMBOL(dev_get_stats); 5522 5523 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5524 { 5525 struct netdev_queue *queue = dev_ingress_queue(dev); 5526 5527 #ifdef CONFIG_NET_CLS_ACT 5528 if (queue) 5529 return queue; 5530 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5531 if (!queue) 5532 return NULL; 5533 netdev_init_one_queue(dev, queue, NULL); 5534 queue->qdisc = &noop_qdisc; 5535 queue->qdisc_sleeping = &noop_qdisc; 5536 rcu_assign_pointer(dev->ingress_queue, queue); 5537 #endif 5538 return queue; 5539 } 5540 5541 static const struct ethtool_ops default_ethtool_ops; 5542 5543 void netdev_set_default_ethtool_ops(struct net_device *dev, 5544 const struct ethtool_ops *ops) 5545 { 5546 if (dev->ethtool_ops == &default_ethtool_ops) 5547 dev->ethtool_ops = ops; 5548 } 5549 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 5550 5551 /** 5552 * alloc_netdev_mqs - allocate network device 5553 * @sizeof_priv: size of private data to allocate space for 5554 * @name: device name format string 5555 * @setup: callback to initialize device 5556 * @txqs: the number of TX subqueues to allocate 5557 * @rxqs: the number of RX subqueues to allocate 5558 * 5559 * Allocates a struct net_device with private data area for driver use 5560 * and performs basic initialization. Also allocates subquue structs 5561 * for each queue on the device. 5562 */ 5563 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5564 void (*setup)(struct net_device *), 5565 unsigned int txqs, unsigned int rxqs) 5566 { 5567 struct net_device *dev; 5568 size_t alloc_size; 5569 struct net_device *p; 5570 5571 BUG_ON(strlen(name) >= sizeof(dev->name)); 5572 5573 if (txqs < 1) { 5574 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 5575 return NULL; 5576 } 5577 5578 #ifdef CONFIG_RPS 5579 if (rxqs < 1) { 5580 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 5581 return NULL; 5582 } 5583 #endif 5584 5585 alloc_size = sizeof(struct net_device); 5586 if (sizeof_priv) { 5587 /* ensure 32-byte alignment of private area */ 5588 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5589 alloc_size += sizeof_priv; 5590 } 5591 /* ensure 32-byte alignment of whole construct */ 5592 alloc_size += NETDEV_ALIGN - 1; 5593 5594 p = kzalloc(alloc_size, GFP_KERNEL); 5595 if (!p) 5596 return NULL; 5597 5598 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5599 dev->padded = (char *)dev - (char *)p; 5600 5601 dev->pcpu_refcnt = alloc_percpu(int); 5602 if (!dev->pcpu_refcnt) 5603 goto free_p; 5604 5605 if (dev_addr_init(dev)) 5606 goto free_pcpu; 5607 5608 dev_mc_init(dev); 5609 dev_uc_init(dev); 5610 5611 dev_net_set(dev, &init_net); 5612 5613 dev->gso_max_size = GSO_MAX_SIZE; 5614 dev->gso_max_segs = GSO_MAX_SEGS; 5615 5616 INIT_LIST_HEAD(&dev->napi_list); 5617 INIT_LIST_HEAD(&dev->unreg_list); 5618 INIT_LIST_HEAD(&dev->link_watch_list); 5619 INIT_LIST_HEAD(&dev->upper_dev_list); 5620 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5621 setup(dev); 5622 5623 dev->num_tx_queues = txqs; 5624 dev->real_num_tx_queues = txqs; 5625 if (netif_alloc_netdev_queues(dev)) 5626 goto free_all; 5627 5628 #ifdef CONFIG_RPS 5629 dev->num_rx_queues = rxqs; 5630 dev->real_num_rx_queues = rxqs; 5631 if (netif_alloc_rx_queues(dev)) 5632 goto free_all; 5633 #endif 5634 5635 strcpy(dev->name, name); 5636 dev->group = INIT_NETDEV_GROUP; 5637 if (!dev->ethtool_ops) 5638 dev->ethtool_ops = &default_ethtool_ops; 5639 return dev; 5640 5641 free_all: 5642 free_netdev(dev); 5643 return NULL; 5644 5645 free_pcpu: 5646 free_percpu(dev->pcpu_refcnt); 5647 kfree(dev->_tx); 5648 #ifdef CONFIG_RPS 5649 kfree(dev->_rx); 5650 #endif 5651 5652 free_p: 5653 kfree(p); 5654 return NULL; 5655 } 5656 EXPORT_SYMBOL(alloc_netdev_mqs); 5657 5658 /** 5659 * free_netdev - free network device 5660 * @dev: device 5661 * 5662 * This function does the last stage of destroying an allocated device 5663 * interface. The reference to the device object is released. 5664 * If this is the last reference then it will be freed. 5665 */ 5666 void free_netdev(struct net_device *dev) 5667 { 5668 struct napi_struct *p, *n; 5669 5670 release_net(dev_net(dev)); 5671 5672 kfree(dev->_tx); 5673 #ifdef CONFIG_RPS 5674 kfree(dev->_rx); 5675 #endif 5676 5677 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 5678 5679 /* Flush device addresses */ 5680 dev_addr_flush(dev); 5681 5682 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5683 netif_napi_del(p); 5684 5685 free_percpu(dev->pcpu_refcnt); 5686 dev->pcpu_refcnt = NULL; 5687 5688 /* Compatibility with error handling in drivers */ 5689 if (dev->reg_state == NETREG_UNINITIALIZED) { 5690 kfree((char *)dev - dev->padded); 5691 return; 5692 } 5693 5694 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5695 dev->reg_state = NETREG_RELEASED; 5696 5697 /* will free via device release */ 5698 put_device(&dev->dev); 5699 } 5700 EXPORT_SYMBOL(free_netdev); 5701 5702 /** 5703 * synchronize_net - Synchronize with packet receive processing 5704 * 5705 * Wait for packets currently being received to be done. 5706 * Does not block later packets from starting. 5707 */ 5708 void synchronize_net(void) 5709 { 5710 might_sleep(); 5711 if (rtnl_is_locked()) 5712 synchronize_rcu_expedited(); 5713 else 5714 synchronize_rcu(); 5715 } 5716 EXPORT_SYMBOL(synchronize_net); 5717 5718 /** 5719 * unregister_netdevice_queue - remove device from the kernel 5720 * @dev: device 5721 * @head: list 5722 * 5723 * This function shuts down a device interface and removes it 5724 * from the kernel tables. 5725 * If head not NULL, device is queued to be unregistered later. 5726 * 5727 * Callers must hold the rtnl semaphore. You may want 5728 * unregister_netdev() instead of this. 5729 */ 5730 5731 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5732 { 5733 ASSERT_RTNL(); 5734 5735 if (head) { 5736 list_move_tail(&dev->unreg_list, head); 5737 } else { 5738 rollback_registered(dev); 5739 /* Finish processing unregister after unlock */ 5740 net_set_todo(dev); 5741 } 5742 } 5743 EXPORT_SYMBOL(unregister_netdevice_queue); 5744 5745 /** 5746 * unregister_netdevice_many - unregister many devices 5747 * @head: list of devices 5748 */ 5749 void unregister_netdevice_many(struct list_head *head) 5750 { 5751 struct net_device *dev; 5752 5753 if (!list_empty(head)) { 5754 rollback_registered_many(head); 5755 list_for_each_entry(dev, head, unreg_list) 5756 net_set_todo(dev); 5757 } 5758 } 5759 EXPORT_SYMBOL(unregister_netdevice_many); 5760 5761 /** 5762 * unregister_netdev - remove device from the kernel 5763 * @dev: device 5764 * 5765 * This function shuts down a device interface and removes it 5766 * from the kernel tables. 5767 * 5768 * This is just a wrapper for unregister_netdevice that takes 5769 * the rtnl semaphore. In general you want to use this and not 5770 * unregister_netdevice. 5771 */ 5772 void unregister_netdev(struct net_device *dev) 5773 { 5774 rtnl_lock(); 5775 unregister_netdevice(dev); 5776 rtnl_unlock(); 5777 } 5778 EXPORT_SYMBOL(unregister_netdev); 5779 5780 /** 5781 * dev_change_net_namespace - move device to different nethost namespace 5782 * @dev: device 5783 * @net: network namespace 5784 * @pat: If not NULL name pattern to try if the current device name 5785 * is already taken in the destination network namespace. 5786 * 5787 * This function shuts down a device interface and moves it 5788 * to a new network namespace. On success 0 is returned, on 5789 * a failure a netagive errno code is returned. 5790 * 5791 * Callers must hold the rtnl semaphore. 5792 */ 5793 5794 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 5795 { 5796 int err; 5797 5798 ASSERT_RTNL(); 5799 5800 /* Don't allow namespace local devices to be moved. */ 5801 err = -EINVAL; 5802 if (dev->features & NETIF_F_NETNS_LOCAL) 5803 goto out; 5804 5805 /* Ensure the device has been registrered */ 5806 if (dev->reg_state != NETREG_REGISTERED) 5807 goto out; 5808 5809 /* Get out if there is nothing todo */ 5810 err = 0; 5811 if (net_eq(dev_net(dev), net)) 5812 goto out; 5813 5814 /* Pick the destination device name, and ensure 5815 * we can use it in the destination network namespace. 5816 */ 5817 err = -EEXIST; 5818 if (__dev_get_by_name(net, dev->name)) { 5819 /* We get here if we can't use the current device name */ 5820 if (!pat) 5821 goto out; 5822 if (dev_get_valid_name(net, dev, pat) < 0) 5823 goto out; 5824 } 5825 5826 /* 5827 * And now a mini version of register_netdevice unregister_netdevice. 5828 */ 5829 5830 /* If device is running close it first. */ 5831 dev_close(dev); 5832 5833 /* And unlink it from device chain */ 5834 err = -ENODEV; 5835 unlist_netdevice(dev); 5836 5837 synchronize_net(); 5838 5839 /* Shutdown queueing discipline. */ 5840 dev_shutdown(dev); 5841 5842 /* Notify protocols, that we are about to destroy 5843 this device. They should clean all the things. 5844 5845 Note that dev->reg_state stays at NETREG_REGISTERED. 5846 This is wanted because this way 8021q and macvlan know 5847 the device is just moving and can keep their slaves up. 5848 */ 5849 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5850 rcu_barrier(); 5851 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5852 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5853 5854 /* 5855 * Flush the unicast and multicast chains 5856 */ 5857 dev_uc_flush(dev); 5858 dev_mc_flush(dev); 5859 5860 /* Send a netdev-removed uevent to the old namespace */ 5861 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 5862 5863 /* Actually switch the network namespace */ 5864 dev_net_set(dev, net); 5865 5866 /* If there is an ifindex conflict assign a new one */ 5867 if (__dev_get_by_index(net, dev->ifindex)) { 5868 int iflink = (dev->iflink == dev->ifindex); 5869 dev->ifindex = dev_new_index(net); 5870 if (iflink) 5871 dev->iflink = dev->ifindex; 5872 } 5873 5874 /* Send a netdev-add uevent to the new namespace */ 5875 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 5876 5877 /* Fixup kobjects */ 5878 err = device_rename(&dev->dev, dev->name); 5879 WARN_ON(err); 5880 5881 /* Add the device back in the hashes */ 5882 list_netdevice(dev); 5883 5884 /* Notify protocols, that a new device appeared. */ 5885 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5886 5887 /* 5888 * Prevent userspace races by waiting until the network 5889 * device is fully setup before sending notifications. 5890 */ 5891 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5892 5893 synchronize_net(); 5894 err = 0; 5895 out: 5896 return err; 5897 } 5898 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 5899 5900 static int dev_cpu_callback(struct notifier_block *nfb, 5901 unsigned long action, 5902 void *ocpu) 5903 { 5904 struct sk_buff **list_skb; 5905 struct sk_buff *skb; 5906 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5907 struct softnet_data *sd, *oldsd; 5908 5909 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5910 return NOTIFY_OK; 5911 5912 local_irq_disable(); 5913 cpu = smp_processor_id(); 5914 sd = &per_cpu(softnet_data, cpu); 5915 oldsd = &per_cpu(softnet_data, oldcpu); 5916 5917 /* Find end of our completion_queue. */ 5918 list_skb = &sd->completion_queue; 5919 while (*list_skb) 5920 list_skb = &(*list_skb)->next; 5921 /* Append completion queue from offline CPU. */ 5922 *list_skb = oldsd->completion_queue; 5923 oldsd->completion_queue = NULL; 5924 5925 /* Append output queue from offline CPU. */ 5926 if (oldsd->output_queue) { 5927 *sd->output_queue_tailp = oldsd->output_queue; 5928 sd->output_queue_tailp = oldsd->output_queue_tailp; 5929 oldsd->output_queue = NULL; 5930 oldsd->output_queue_tailp = &oldsd->output_queue; 5931 } 5932 /* Append NAPI poll list from offline CPU. */ 5933 if (!list_empty(&oldsd->poll_list)) { 5934 list_splice_init(&oldsd->poll_list, &sd->poll_list); 5935 raise_softirq_irqoff(NET_RX_SOFTIRQ); 5936 } 5937 5938 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5939 local_irq_enable(); 5940 5941 /* Process offline CPU's input_pkt_queue */ 5942 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 5943 netif_rx(skb); 5944 input_queue_head_incr(oldsd); 5945 } 5946 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 5947 netif_rx(skb); 5948 input_queue_head_incr(oldsd); 5949 } 5950 5951 return NOTIFY_OK; 5952 } 5953 5954 5955 /** 5956 * netdev_increment_features - increment feature set by one 5957 * @all: current feature set 5958 * @one: new feature set 5959 * @mask: mask feature set 5960 * 5961 * Computes a new feature set after adding a device with feature set 5962 * @one to the master device with current feature set @all. Will not 5963 * enable anything that is off in @mask. Returns the new feature set. 5964 */ 5965 netdev_features_t netdev_increment_features(netdev_features_t all, 5966 netdev_features_t one, netdev_features_t mask) 5967 { 5968 if (mask & NETIF_F_GEN_CSUM) 5969 mask |= NETIF_F_ALL_CSUM; 5970 mask |= NETIF_F_VLAN_CHALLENGED; 5971 5972 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 5973 all &= one | ~NETIF_F_ALL_FOR_ALL; 5974 5975 /* If one device supports hw checksumming, set for all. */ 5976 if (all & NETIF_F_GEN_CSUM) 5977 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 5978 5979 return all; 5980 } 5981 EXPORT_SYMBOL(netdev_increment_features); 5982 5983 static struct hlist_head *netdev_create_hash(void) 5984 { 5985 int i; 5986 struct hlist_head *hash; 5987 5988 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5989 if (hash != NULL) 5990 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5991 INIT_HLIST_HEAD(&hash[i]); 5992 5993 return hash; 5994 } 5995 5996 /* Initialize per network namespace state */ 5997 static int __net_init netdev_init(struct net *net) 5998 { 5999 if (net != &init_net) 6000 INIT_LIST_HEAD(&net->dev_base_head); 6001 6002 net->dev_name_head = netdev_create_hash(); 6003 if (net->dev_name_head == NULL) 6004 goto err_name; 6005 6006 net->dev_index_head = netdev_create_hash(); 6007 if (net->dev_index_head == NULL) 6008 goto err_idx; 6009 6010 return 0; 6011 6012 err_idx: 6013 kfree(net->dev_name_head); 6014 err_name: 6015 return -ENOMEM; 6016 } 6017 6018 /** 6019 * netdev_drivername - network driver for the device 6020 * @dev: network device 6021 * 6022 * Determine network driver for device. 6023 */ 6024 const char *netdev_drivername(const struct net_device *dev) 6025 { 6026 const struct device_driver *driver; 6027 const struct device *parent; 6028 const char *empty = ""; 6029 6030 parent = dev->dev.parent; 6031 if (!parent) 6032 return empty; 6033 6034 driver = parent->driver; 6035 if (driver && driver->name) 6036 return driver->name; 6037 return empty; 6038 } 6039 6040 static int __netdev_printk(const char *level, const struct net_device *dev, 6041 struct va_format *vaf) 6042 { 6043 int r; 6044 6045 if (dev && dev->dev.parent) { 6046 r = dev_printk_emit(level[1] - '0', 6047 dev->dev.parent, 6048 "%s %s %s: %pV", 6049 dev_driver_string(dev->dev.parent), 6050 dev_name(dev->dev.parent), 6051 netdev_name(dev), vaf); 6052 } else if (dev) { 6053 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6054 } else { 6055 r = printk("%s(NULL net_device): %pV", level, vaf); 6056 } 6057 6058 return r; 6059 } 6060 6061 int netdev_printk(const char *level, const struct net_device *dev, 6062 const char *format, ...) 6063 { 6064 struct va_format vaf; 6065 va_list args; 6066 int r; 6067 6068 va_start(args, format); 6069 6070 vaf.fmt = format; 6071 vaf.va = &args; 6072 6073 r = __netdev_printk(level, dev, &vaf); 6074 6075 va_end(args); 6076 6077 return r; 6078 } 6079 EXPORT_SYMBOL(netdev_printk); 6080 6081 #define define_netdev_printk_level(func, level) \ 6082 int func(const struct net_device *dev, const char *fmt, ...) \ 6083 { \ 6084 int r; \ 6085 struct va_format vaf; \ 6086 va_list args; \ 6087 \ 6088 va_start(args, fmt); \ 6089 \ 6090 vaf.fmt = fmt; \ 6091 vaf.va = &args; \ 6092 \ 6093 r = __netdev_printk(level, dev, &vaf); \ 6094 \ 6095 va_end(args); \ 6096 \ 6097 return r; \ 6098 } \ 6099 EXPORT_SYMBOL(func); 6100 6101 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6102 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6103 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6104 define_netdev_printk_level(netdev_err, KERN_ERR); 6105 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6106 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6107 define_netdev_printk_level(netdev_info, KERN_INFO); 6108 6109 static void __net_exit netdev_exit(struct net *net) 6110 { 6111 kfree(net->dev_name_head); 6112 kfree(net->dev_index_head); 6113 } 6114 6115 static struct pernet_operations __net_initdata netdev_net_ops = { 6116 .init = netdev_init, 6117 .exit = netdev_exit, 6118 }; 6119 6120 static void __net_exit default_device_exit(struct net *net) 6121 { 6122 struct net_device *dev, *aux; 6123 /* 6124 * Push all migratable network devices back to the 6125 * initial network namespace 6126 */ 6127 rtnl_lock(); 6128 for_each_netdev_safe(net, dev, aux) { 6129 int err; 6130 char fb_name[IFNAMSIZ]; 6131 6132 /* Ignore unmoveable devices (i.e. loopback) */ 6133 if (dev->features & NETIF_F_NETNS_LOCAL) 6134 continue; 6135 6136 /* Leave virtual devices for the generic cleanup */ 6137 if (dev->rtnl_link_ops) 6138 continue; 6139 6140 /* Push remaining network devices to init_net */ 6141 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6142 err = dev_change_net_namespace(dev, &init_net, fb_name); 6143 if (err) { 6144 pr_emerg("%s: failed to move %s to init_net: %d\n", 6145 __func__, dev->name, err); 6146 BUG(); 6147 } 6148 } 6149 rtnl_unlock(); 6150 } 6151 6152 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6153 { 6154 /* At exit all network devices most be removed from a network 6155 * namespace. Do this in the reverse order of registration. 6156 * Do this across as many network namespaces as possible to 6157 * improve batching efficiency. 6158 */ 6159 struct net_device *dev; 6160 struct net *net; 6161 LIST_HEAD(dev_kill_list); 6162 6163 rtnl_lock(); 6164 list_for_each_entry(net, net_list, exit_list) { 6165 for_each_netdev_reverse(net, dev) { 6166 if (dev->rtnl_link_ops) 6167 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6168 else 6169 unregister_netdevice_queue(dev, &dev_kill_list); 6170 } 6171 } 6172 unregister_netdevice_many(&dev_kill_list); 6173 list_del(&dev_kill_list); 6174 rtnl_unlock(); 6175 } 6176 6177 static struct pernet_operations __net_initdata default_device_ops = { 6178 .exit = default_device_exit, 6179 .exit_batch = default_device_exit_batch, 6180 }; 6181 6182 /* 6183 * Initialize the DEV module. At boot time this walks the device list and 6184 * unhooks any devices that fail to initialise (normally hardware not 6185 * present) and leaves us with a valid list of present and active devices. 6186 * 6187 */ 6188 6189 /* 6190 * This is called single threaded during boot, so no need 6191 * to take the rtnl semaphore. 6192 */ 6193 static int __init net_dev_init(void) 6194 { 6195 int i, rc = -ENOMEM; 6196 6197 BUG_ON(!dev_boot_phase); 6198 6199 if (dev_proc_init()) 6200 goto out; 6201 6202 if (netdev_kobject_init()) 6203 goto out; 6204 6205 INIT_LIST_HEAD(&ptype_all); 6206 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6207 INIT_LIST_HEAD(&ptype_base[i]); 6208 6209 INIT_LIST_HEAD(&offload_base); 6210 6211 if (register_pernet_subsys(&netdev_net_ops)) 6212 goto out; 6213 6214 /* 6215 * Initialise the packet receive queues. 6216 */ 6217 6218 for_each_possible_cpu(i) { 6219 struct softnet_data *sd = &per_cpu(softnet_data, i); 6220 6221 memset(sd, 0, sizeof(*sd)); 6222 skb_queue_head_init(&sd->input_pkt_queue); 6223 skb_queue_head_init(&sd->process_queue); 6224 sd->completion_queue = NULL; 6225 INIT_LIST_HEAD(&sd->poll_list); 6226 sd->output_queue = NULL; 6227 sd->output_queue_tailp = &sd->output_queue; 6228 #ifdef CONFIG_RPS 6229 sd->csd.func = rps_trigger_softirq; 6230 sd->csd.info = sd; 6231 sd->csd.flags = 0; 6232 sd->cpu = i; 6233 #endif 6234 6235 sd->backlog.poll = process_backlog; 6236 sd->backlog.weight = weight_p; 6237 sd->backlog.gro_list = NULL; 6238 sd->backlog.gro_count = 0; 6239 } 6240 6241 dev_boot_phase = 0; 6242 6243 /* The loopback device is special if any other network devices 6244 * is present in a network namespace the loopback device must 6245 * be present. Since we now dynamically allocate and free the 6246 * loopback device ensure this invariant is maintained by 6247 * keeping the loopback device as the first device on the 6248 * list of network devices. Ensuring the loopback devices 6249 * is the first device that appears and the last network device 6250 * that disappears. 6251 */ 6252 if (register_pernet_device(&loopback_net_ops)) 6253 goto out; 6254 6255 if (register_pernet_device(&default_device_ops)) 6256 goto out; 6257 6258 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6259 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6260 6261 hotcpu_notifier(dev_cpu_callback, 0); 6262 dst_init(); 6263 rc = 0; 6264 out: 6265 return rc; 6266 } 6267 6268 subsys_initcall(net_dev_init); 6269