1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/dst_metadata.h> 103 #include <net/pkt_sched.h> 104 #include <net/checksum.h> 105 #include <net/xfrm.h> 106 #include <linux/highmem.h> 107 #include <linux/init.h> 108 #include <linux/module.h> 109 #include <linux/netpoll.h> 110 #include <linux/rcupdate.h> 111 #include <linux/delay.h> 112 #include <net/iw_handler.h> 113 #include <asm/current.h> 114 #include <linux/audit.h> 115 #include <linux/dmaengine.h> 116 #include <linux/err.h> 117 #include <linux/ctype.h> 118 #include <linux/if_arp.h> 119 #include <linux/if_vlan.h> 120 #include <linux/ip.h> 121 #include <net/ip.h> 122 #include <net/mpls.h> 123 #include <linux/ipv6.h> 124 #include <linux/in.h> 125 #include <linux/jhash.h> 126 #include <linux/random.h> 127 #include <trace/events/napi.h> 128 #include <trace/events/net.h> 129 #include <trace/events/skb.h> 130 #include <linux/pci.h> 131 #include <linux/inetdevice.h> 132 #include <linux/cpu_rmap.h> 133 #include <linux/static_key.h> 134 #include <linux/hashtable.h> 135 #include <linux/vmalloc.h> 136 #include <linux/if_macvlan.h> 137 #include <linux/errqueue.h> 138 #include <linux/hrtimer.h> 139 #include <linux/netfilter_ingress.h> 140 141 #include "net-sysfs.h" 142 143 /* Instead of increasing this, you should create a hash table. */ 144 #define MAX_GRO_SKBS 8 145 146 /* This should be increased if a protocol with a bigger head is added. */ 147 #define GRO_MAX_HEAD (MAX_HEADER + 128) 148 149 static DEFINE_SPINLOCK(ptype_lock); 150 static DEFINE_SPINLOCK(offload_lock); 151 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 152 struct list_head ptype_all __read_mostly; /* Taps */ 153 static struct list_head offload_base __read_mostly; 154 155 static int netif_rx_internal(struct sk_buff *skb); 156 static int call_netdevice_notifiers_info(unsigned long val, 157 struct net_device *dev, 158 struct netdev_notifier_info *info); 159 160 /* 161 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 162 * semaphore. 163 * 164 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 165 * 166 * Writers must hold the rtnl semaphore while they loop through the 167 * dev_base_head list, and hold dev_base_lock for writing when they do the 168 * actual updates. This allows pure readers to access the list even 169 * while a writer is preparing to update it. 170 * 171 * To put it another way, dev_base_lock is held for writing only to 172 * protect against pure readers; the rtnl semaphore provides the 173 * protection against other writers. 174 * 175 * See, for example usages, register_netdevice() and 176 * unregister_netdevice(), which must be called with the rtnl 177 * semaphore held. 178 */ 179 DEFINE_RWLOCK(dev_base_lock); 180 EXPORT_SYMBOL(dev_base_lock); 181 182 /* protects napi_hash addition/deletion and napi_gen_id */ 183 static DEFINE_SPINLOCK(napi_hash_lock); 184 185 static unsigned int napi_gen_id; 186 static DEFINE_HASHTABLE(napi_hash, 8); 187 188 static seqcount_t devnet_rename_seq; 189 190 static inline void dev_base_seq_inc(struct net *net) 191 { 192 while (++net->dev_base_seq == 0); 193 } 194 195 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 196 { 197 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 198 199 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 200 } 201 202 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 203 { 204 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 205 } 206 207 static inline void rps_lock(struct softnet_data *sd) 208 { 209 #ifdef CONFIG_RPS 210 spin_lock(&sd->input_pkt_queue.lock); 211 #endif 212 } 213 214 static inline void rps_unlock(struct softnet_data *sd) 215 { 216 #ifdef CONFIG_RPS 217 spin_unlock(&sd->input_pkt_queue.lock); 218 #endif 219 } 220 221 /* Device list insertion */ 222 static void list_netdevice(struct net_device *dev) 223 { 224 struct net *net = dev_net(dev); 225 226 ASSERT_RTNL(); 227 228 write_lock_bh(&dev_base_lock); 229 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 230 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 231 hlist_add_head_rcu(&dev->index_hlist, 232 dev_index_hash(net, dev->ifindex)); 233 write_unlock_bh(&dev_base_lock); 234 235 dev_base_seq_inc(net); 236 } 237 238 /* Device list removal 239 * caller must respect a RCU grace period before freeing/reusing dev 240 */ 241 static void unlist_netdevice(struct net_device *dev) 242 { 243 ASSERT_RTNL(); 244 245 /* Unlink dev from the device chain */ 246 write_lock_bh(&dev_base_lock); 247 list_del_rcu(&dev->dev_list); 248 hlist_del_rcu(&dev->name_hlist); 249 hlist_del_rcu(&dev->index_hlist); 250 write_unlock_bh(&dev_base_lock); 251 252 dev_base_seq_inc(dev_net(dev)); 253 } 254 255 /* 256 * Our notifier list 257 */ 258 259 static RAW_NOTIFIER_HEAD(netdev_chain); 260 261 /* 262 * Device drivers call our routines to queue packets here. We empty the 263 * queue in the local softnet handler. 264 */ 265 266 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 267 EXPORT_PER_CPU_SYMBOL(softnet_data); 268 269 #ifdef CONFIG_LOCKDEP 270 /* 271 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 272 * according to dev->type 273 */ 274 static const unsigned short netdev_lock_type[] = 275 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 276 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 277 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 278 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 279 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 280 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 281 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 282 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 283 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 284 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 285 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 286 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 287 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 288 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 289 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 290 291 static const char *const netdev_lock_name[] = 292 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 293 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 294 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 295 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 296 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 297 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 298 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 299 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 300 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 301 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 302 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 303 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 304 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 305 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 306 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 307 308 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 309 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 310 311 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 312 { 313 int i; 314 315 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 316 if (netdev_lock_type[i] == dev_type) 317 return i; 318 /* the last key is used by default */ 319 return ARRAY_SIZE(netdev_lock_type) - 1; 320 } 321 322 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 323 unsigned short dev_type) 324 { 325 int i; 326 327 i = netdev_lock_pos(dev_type); 328 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 329 netdev_lock_name[i]); 330 } 331 332 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 333 { 334 int i; 335 336 i = netdev_lock_pos(dev->type); 337 lockdep_set_class_and_name(&dev->addr_list_lock, 338 &netdev_addr_lock_key[i], 339 netdev_lock_name[i]); 340 } 341 #else 342 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 343 unsigned short dev_type) 344 { 345 } 346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 347 { 348 } 349 #endif 350 351 /******************************************************************************* 352 353 Protocol management and registration routines 354 355 *******************************************************************************/ 356 357 /* 358 * Add a protocol ID to the list. Now that the input handler is 359 * smarter we can dispense with all the messy stuff that used to be 360 * here. 361 * 362 * BEWARE!!! Protocol handlers, mangling input packets, 363 * MUST BE last in hash buckets and checking protocol handlers 364 * MUST start from promiscuous ptype_all chain in net_bh. 365 * It is true now, do not change it. 366 * Explanation follows: if protocol handler, mangling packet, will 367 * be the first on list, it is not able to sense, that packet 368 * is cloned and should be copied-on-write, so that it will 369 * change it and subsequent readers will get broken packet. 370 * --ANK (980803) 371 */ 372 373 static inline struct list_head *ptype_head(const struct packet_type *pt) 374 { 375 if (pt->type == htons(ETH_P_ALL)) 376 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 377 else 378 return pt->dev ? &pt->dev->ptype_specific : 379 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 380 } 381 382 /** 383 * dev_add_pack - add packet handler 384 * @pt: packet type declaration 385 * 386 * Add a protocol handler to the networking stack. The passed &packet_type 387 * is linked into kernel lists and may not be freed until it has been 388 * removed from the kernel lists. 389 * 390 * This call does not sleep therefore it can not 391 * guarantee all CPU's that are in middle of receiving packets 392 * will see the new packet type (until the next received packet). 393 */ 394 395 void dev_add_pack(struct packet_type *pt) 396 { 397 struct list_head *head = ptype_head(pt); 398 399 spin_lock(&ptype_lock); 400 list_add_rcu(&pt->list, head); 401 spin_unlock(&ptype_lock); 402 } 403 EXPORT_SYMBOL(dev_add_pack); 404 405 /** 406 * __dev_remove_pack - remove packet handler 407 * @pt: packet type declaration 408 * 409 * Remove a protocol handler that was previously added to the kernel 410 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 411 * from the kernel lists and can be freed or reused once this function 412 * returns. 413 * 414 * The packet type might still be in use by receivers 415 * and must not be freed until after all the CPU's have gone 416 * through a quiescent state. 417 */ 418 void __dev_remove_pack(struct packet_type *pt) 419 { 420 struct list_head *head = ptype_head(pt); 421 struct packet_type *pt1; 422 423 spin_lock(&ptype_lock); 424 425 list_for_each_entry(pt1, head, list) { 426 if (pt == pt1) { 427 list_del_rcu(&pt->list); 428 goto out; 429 } 430 } 431 432 pr_warn("dev_remove_pack: %p not found\n", pt); 433 out: 434 spin_unlock(&ptype_lock); 435 } 436 EXPORT_SYMBOL(__dev_remove_pack); 437 438 /** 439 * dev_remove_pack - remove packet handler 440 * @pt: packet type declaration 441 * 442 * Remove a protocol handler that was previously added to the kernel 443 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 444 * from the kernel lists and can be freed or reused once this function 445 * returns. 446 * 447 * This call sleeps to guarantee that no CPU is looking at the packet 448 * type after return. 449 */ 450 void dev_remove_pack(struct packet_type *pt) 451 { 452 __dev_remove_pack(pt); 453 454 synchronize_net(); 455 } 456 EXPORT_SYMBOL(dev_remove_pack); 457 458 459 /** 460 * dev_add_offload - register offload handlers 461 * @po: protocol offload declaration 462 * 463 * Add protocol offload handlers to the networking stack. The passed 464 * &proto_offload is linked into kernel lists and may not be freed until 465 * it has been removed from the kernel lists. 466 * 467 * This call does not sleep therefore it can not 468 * guarantee all CPU's that are in middle of receiving packets 469 * will see the new offload handlers (until the next received packet). 470 */ 471 void dev_add_offload(struct packet_offload *po) 472 { 473 struct packet_offload *elem; 474 475 spin_lock(&offload_lock); 476 list_for_each_entry(elem, &offload_base, list) { 477 if (po->priority < elem->priority) 478 break; 479 } 480 list_add_rcu(&po->list, elem->list.prev); 481 spin_unlock(&offload_lock); 482 } 483 EXPORT_SYMBOL(dev_add_offload); 484 485 /** 486 * __dev_remove_offload - remove offload handler 487 * @po: packet offload declaration 488 * 489 * Remove a protocol offload handler that was previously added to the 490 * kernel offload handlers by dev_add_offload(). The passed &offload_type 491 * is removed from the kernel lists and can be freed or reused once this 492 * function returns. 493 * 494 * The packet type might still be in use by receivers 495 * and must not be freed until after all the CPU's have gone 496 * through a quiescent state. 497 */ 498 static void __dev_remove_offload(struct packet_offload *po) 499 { 500 struct list_head *head = &offload_base; 501 struct packet_offload *po1; 502 503 spin_lock(&offload_lock); 504 505 list_for_each_entry(po1, head, list) { 506 if (po == po1) { 507 list_del_rcu(&po->list); 508 goto out; 509 } 510 } 511 512 pr_warn("dev_remove_offload: %p not found\n", po); 513 out: 514 spin_unlock(&offload_lock); 515 } 516 517 /** 518 * dev_remove_offload - remove packet offload handler 519 * @po: packet offload declaration 520 * 521 * Remove a packet offload handler that was previously added to the kernel 522 * offload handlers by dev_add_offload(). The passed &offload_type is 523 * removed from the kernel lists and can be freed or reused once this 524 * function returns. 525 * 526 * This call sleeps to guarantee that no CPU is looking at the packet 527 * type after return. 528 */ 529 void dev_remove_offload(struct packet_offload *po) 530 { 531 __dev_remove_offload(po); 532 533 synchronize_net(); 534 } 535 EXPORT_SYMBOL(dev_remove_offload); 536 537 /****************************************************************************** 538 539 Device Boot-time Settings Routines 540 541 *******************************************************************************/ 542 543 /* Boot time configuration table */ 544 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 545 546 /** 547 * netdev_boot_setup_add - add new setup entry 548 * @name: name of the device 549 * @map: configured settings for the device 550 * 551 * Adds new setup entry to the dev_boot_setup list. The function 552 * returns 0 on error and 1 on success. This is a generic routine to 553 * all netdevices. 554 */ 555 static int netdev_boot_setup_add(char *name, struct ifmap *map) 556 { 557 struct netdev_boot_setup *s; 558 int i; 559 560 s = dev_boot_setup; 561 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 562 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 563 memset(s[i].name, 0, sizeof(s[i].name)); 564 strlcpy(s[i].name, name, IFNAMSIZ); 565 memcpy(&s[i].map, map, sizeof(s[i].map)); 566 break; 567 } 568 } 569 570 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 571 } 572 573 /** 574 * netdev_boot_setup_check - check boot time settings 575 * @dev: the netdevice 576 * 577 * Check boot time settings for the device. 578 * The found settings are set for the device to be used 579 * later in the device probing. 580 * Returns 0 if no settings found, 1 if they are. 581 */ 582 int netdev_boot_setup_check(struct net_device *dev) 583 { 584 struct netdev_boot_setup *s = dev_boot_setup; 585 int i; 586 587 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 588 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 589 !strcmp(dev->name, s[i].name)) { 590 dev->irq = s[i].map.irq; 591 dev->base_addr = s[i].map.base_addr; 592 dev->mem_start = s[i].map.mem_start; 593 dev->mem_end = s[i].map.mem_end; 594 return 1; 595 } 596 } 597 return 0; 598 } 599 EXPORT_SYMBOL(netdev_boot_setup_check); 600 601 602 /** 603 * netdev_boot_base - get address from boot time settings 604 * @prefix: prefix for network device 605 * @unit: id for network device 606 * 607 * Check boot time settings for the base address of device. 608 * The found settings are set for the device to be used 609 * later in the device probing. 610 * Returns 0 if no settings found. 611 */ 612 unsigned long netdev_boot_base(const char *prefix, int unit) 613 { 614 const struct netdev_boot_setup *s = dev_boot_setup; 615 char name[IFNAMSIZ]; 616 int i; 617 618 sprintf(name, "%s%d", prefix, unit); 619 620 /* 621 * If device already registered then return base of 1 622 * to indicate not to probe for this interface 623 */ 624 if (__dev_get_by_name(&init_net, name)) 625 return 1; 626 627 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 628 if (!strcmp(name, s[i].name)) 629 return s[i].map.base_addr; 630 return 0; 631 } 632 633 /* 634 * Saves at boot time configured settings for any netdevice. 635 */ 636 int __init netdev_boot_setup(char *str) 637 { 638 int ints[5]; 639 struct ifmap map; 640 641 str = get_options(str, ARRAY_SIZE(ints), ints); 642 if (!str || !*str) 643 return 0; 644 645 /* Save settings */ 646 memset(&map, 0, sizeof(map)); 647 if (ints[0] > 0) 648 map.irq = ints[1]; 649 if (ints[0] > 1) 650 map.base_addr = ints[2]; 651 if (ints[0] > 2) 652 map.mem_start = ints[3]; 653 if (ints[0] > 3) 654 map.mem_end = ints[4]; 655 656 /* Add new entry to the list */ 657 return netdev_boot_setup_add(str, &map); 658 } 659 660 __setup("netdev=", netdev_boot_setup); 661 662 /******************************************************************************* 663 664 Device Interface Subroutines 665 666 *******************************************************************************/ 667 668 /** 669 * dev_get_iflink - get 'iflink' value of a interface 670 * @dev: targeted interface 671 * 672 * Indicates the ifindex the interface is linked to. 673 * Physical interfaces have the same 'ifindex' and 'iflink' values. 674 */ 675 676 int dev_get_iflink(const struct net_device *dev) 677 { 678 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 679 return dev->netdev_ops->ndo_get_iflink(dev); 680 681 return dev->ifindex; 682 } 683 EXPORT_SYMBOL(dev_get_iflink); 684 685 /** 686 * dev_fill_metadata_dst - Retrieve tunnel egress information. 687 * @dev: targeted interface 688 * @skb: The packet. 689 * 690 * For better visibility of tunnel traffic OVS needs to retrieve 691 * egress tunnel information for a packet. Following API allows 692 * user to get this info. 693 */ 694 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 695 { 696 struct ip_tunnel_info *info; 697 698 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 699 return -EINVAL; 700 701 info = skb_tunnel_info_unclone(skb); 702 if (!info) 703 return -ENOMEM; 704 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 705 return -EINVAL; 706 707 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 708 } 709 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 710 711 /** 712 * __dev_get_by_name - find a device by its name 713 * @net: the applicable net namespace 714 * @name: name to find 715 * 716 * Find an interface by name. Must be called under RTNL semaphore 717 * or @dev_base_lock. If the name is found a pointer to the device 718 * is returned. If the name is not found then %NULL is returned. The 719 * reference counters are not incremented so the caller must be 720 * careful with locks. 721 */ 722 723 struct net_device *__dev_get_by_name(struct net *net, const char *name) 724 { 725 struct net_device *dev; 726 struct hlist_head *head = dev_name_hash(net, name); 727 728 hlist_for_each_entry(dev, head, name_hlist) 729 if (!strncmp(dev->name, name, IFNAMSIZ)) 730 return dev; 731 732 return NULL; 733 } 734 EXPORT_SYMBOL(__dev_get_by_name); 735 736 /** 737 * dev_get_by_name_rcu - find a device by its name 738 * @net: the applicable net namespace 739 * @name: name to find 740 * 741 * Find an interface by name. 742 * If the name is found a pointer to the device is returned. 743 * If the name is not found then %NULL is returned. 744 * The reference counters are not incremented so the caller must be 745 * careful with locks. The caller must hold RCU lock. 746 */ 747 748 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 749 { 750 struct net_device *dev; 751 struct hlist_head *head = dev_name_hash(net, name); 752 753 hlist_for_each_entry_rcu(dev, head, name_hlist) 754 if (!strncmp(dev->name, name, IFNAMSIZ)) 755 return dev; 756 757 return NULL; 758 } 759 EXPORT_SYMBOL(dev_get_by_name_rcu); 760 761 /** 762 * dev_get_by_name - find a device by its name 763 * @net: the applicable net namespace 764 * @name: name to find 765 * 766 * Find an interface by name. This can be called from any 767 * context and does its own locking. The returned handle has 768 * the usage count incremented and the caller must use dev_put() to 769 * release it when it is no longer needed. %NULL is returned if no 770 * matching device is found. 771 */ 772 773 struct net_device *dev_get_by_name(struct net *net, const char *name) 774 { 775 struct net_device *dev; 776 777 rcu_read_lock(); 778 dev = dev_get_by_name_rcu(net, name); 779 if (dev) 780 dev_hold(dev); 781 rcu_read_unlock(); 782 return dev; 783 } 784 EXPORT_SYMBOL(dev_get_by_name); 785 786 /** 787 * __dev_get_by_index - find a device by its ifindex 788 * @net: the applicable net namespace 789 * @ifindex: index of device 790 * 791 * Search for an interface by index. Returns %NULL if the device 792 * is not found or a pointer to the device. The device has not 793 * had its reference counter increased so the caller must be careful 794 * about locking. The caller must hold either the RTNL semaphore 795 * or @dev_base_lock. 796 */ 797 798 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 799 { 800 struct net_device *dev; 801 struct hlist_head *head = dev_index_hash(net, ifindex); 802 803 hlist_for_each_entry(dev, head, index_hlist) 804 if (dev->ifindex == ifindex) 805 return dev; 806 807 return NULL; 808 } 809 EXPORT_SYMBOL(__dev_get_by_index); 810 811 /** 812 * dev_get_by_index_rcu - find a device by its ifindex 813 * @net: the applicable net namespace 814 * @ifindex: index of device 815 * 816 * Search for an interface by index. Returns %NULL if the device 817 * is not found or a pointer to the device. The device has not 818 * had its reference counter increased so the caller must be careful 819 * about locking. The caller must hold RCU lock. 820 */ 821 822 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 823 { 824 struct net_device *dev; 825 struct hlist_head *head = dev_index_hash(net, ifindex); 826 827 hlist_for_each_entry_rcu(dev, head, index_hlist) 828 if (dev->ifindex == ifindex) 829 return dev; 830 831 return NULL; 832 } 833 EXPORT_SYMBOL(dev_get_by_index_rcu); 834 835 836 /** 837 * dev_get_by_index - find a device by its ifindex 838 * @net: the applicable net namespace 839 * @ifindex: index of device 840 * 841 * Search for an interface by index. Returns NULL if the device 842 * is not found or a pointer to the device. The device returned has 843 * had a reference added and the pointer is safe until the user calls 844 * dev_put to indicate they have finished with it. 845 */ 846 847 struct net_device *dev_get_by_index(struct net *net, int ifindex) 848 { 849 struct net_device *dev; 850 851 rcu_read_lock(); 852 dev = dev_get_by_index_rcu(net, ifindex); 853 if (dev) 854 dev_hold(dev); 855 rcu_read_unlock(); 856 return dev; 857 } 858 EXPORT_SYMBOL(dev_get_by_index); 859 860 /** 861 * netdev_get_name - get a netdevice name, knowing its ifindex. 862 * @net: network namespace 863 * @name: a pointer to the buffer where the name will be stored. 864 * @ifindex: the ifindex of the interface to get the name from. 865 * 866 * The use of raw_seqcount_begin() and cond_resched() before 867 * retrying is required as we want to give the writers a chance 868 * to complete when CONFIG_PREEMPT is not set. 869 */ 870 int netdev_get_name(struct net *net, char *name, int ifindex) 871 { 872 struct net_device *dev; 873 unsigned int seq; 874 875 retry: 876 seq = raw_seqcount_begin(&devnet_rename_seq); 877 rcu_read_lock(); 878 dev = dev_get_by_index_rcu(net, ifindex); 879 if (!dev) { 880 rcu_read_unlock(); 881 return -ENODEV; 882 } 883 884 strcpy(name, dev->name); 885 rcu_read_unlock(); 886 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 887 cond_resched(); 888 goto retry; 889 } 890 891 return 0; 892 } 893 894 /** 895 * dev_getbyhwaddr_rcu - find a device by its hardware address 896 * @net: the applicable net namespace 897 * @type: media type of device 898 * @ha: hardware address 899 * 900 * Search for an interface by MAC address. Returns NULL if the device 901 * is not found or a pointer to the device. 902 * The caller must hold RCU or RTNL. 903 * The returned device has not had its ref count increased 904 * and the caller must therefore be careful about locking 905 * 906 */ 907 908 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 909 const char *ha) 910 { 911 struct net_device *dev; 912 913 for_each_netdev_rcu(net, dev) 914 if (dev->type == type && 915 !memcmp(dev->dev_addr, ha, dev->addr_len)) 916 return dev; 917 918 return NULL; 919 } 920 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 921 922 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 923 { 924 struct net_device *dev; 925 926 ASSERT_RTNL(); 927 for_each_netdev(net, dev) 928 if (dev->type == type) 929 return dev; 930 931 return NULL; 932 } 933 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 934 935 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 936 { 937 struct net_device *dev, *ret = NULL; 938 939 rcu_read_lock(); 940 for_each_netdev_rcu(net, dev) 941 if (dev->type == type) { 942 dev_hold(dev); 943 ret = dev; 944 break; 945 } 946 rcu_read_unlock(); 947 return ret; 948 } 949 EXPORT_SYMBOL(dev_getfirstbyhwtype); 950 951 /** 952 * __dev_get_by_flags - find any device with given flags 953 * @net: the applicable net namespace 954 * @if_flags: IFF_* values 955 * @mask: bitmask of bits in if_flags to check 956 * 957 * Search for any interface with the given flags. Returns NULL if a device 958 * is not found or a pointer to the device. Must be called inside 959 * rtnl_lock(), and result refcount is unchanged. 960 */ 961 962 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 963 unsigned short mask) 964 { 965 struct net_device *dev, *ret; 966 967 ASSERT_RTNL(); 968 969 ret = NULL; 970 for_each_netdev(net, dev) { 971 if (((dev->flags ^ if_flags) & mask) == 0) { 972 ret = dev; 973 break; 974 } 975 } 976 return ret; 977 } 978 EXPORT_SYMBOL(__dev_get_by_flags); 979 980 /** 981 * dev_valid_name - check if name is okay for network device 982 * @name: name string 983 * 984 * Network device names need to be valid file names to 985 * to allow sysfs to work. We also disallow any kind of 986 * whitespace. 987 */ 988 bool dev_valid_name(const char *name) 989 { 990 if (*name == '\0') 991 return false; 992 if (strlen(name) >= IFNAMSIZ) 993 return false; 994 if (!strcmp(name, ".") || !strcmp(name, "..")) 995 return false; 996 997 while (*name) { 998 if (*name == '/' || *name == ':' || isspace(*name)) 999 return false; 1000 name++; 1001 } 1002 return true; 1003 } 1004 EXPORT_SYMBOL(dev_valid_name); 1005 1006 /** 1007 * __dev_alloc_name - allocate a name for a device 1008 * @net: network namespace to allocate the device name in 1009 * @name: name format string 1010 * @buf: scratch buffer and result name string 1011 * 1012 * Passed a format string - eg "lt%d" it will try and find a suitable 1013 * id. It scans list of devices to build up a free map, then chooses 1014 * the first empty slot. The caller must hold the dev_base or rtnl lock 1015 * while allocating the name and adding the device in order to avoid 1016 * duplicates. 1017 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1018 * Returns the number of the unit assigned or a negative errno code. 1019 */ 1020 1021 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1022 { 1023 int i = 0; 1024 const char *p; 1025 const int max_netdevices = 8*PAGE_SIZE; 1026 unsigned long *inuse; 1027 struct net_device *d; 1028 1029 p = strnchr(name, IFNAMSIZ-1, '%'); 1030 if (p) { 1031 /* 1032 * Verify the string as this thing may have come from 1033 * the user. There must be either one "%d" and no other "%" 1034 * characters. 1035 */ 1036 if (p[1] != 'd' || strchr(p + 2, '%')) 1037 return -EINVAL; 1038 1039 /* Use one page as a bit array of possible slots */ 1040 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1041 if (!inuse) 1042 return -ENOMEM; 1043 1044 for_each_netdev(net, d) { 1045 if (!sscanf(d->name, name, &i)) 1046 continue; 1047 if (i < 0 || i >= max_netdevices) 1048 continue; 1049 1050 /* avoid cases where sscanf is not exact inverse of printf */ 1051 snprintf(buf, IFNAMSIZ, name, i); 1052 if (!strncmp(buf, d->name, IFNAMSIZ)) 1053 set_bit(i, inuse); 1054 } 1055 1056 i = find_first_zero_bit(inuse, max_netdevices); 1057 free_page((unsigned long) inuse); 1058 } 1059 1060 if (buf != name) 1061 snprintf(buf, IFNAMSIZ, name, i); 1062 if (!__dev_get_by_name(net, buf)) 1063 return i; 1064 1065 /* It is possible to run out of possible slots 1066 * when the name is long and there isn't enough space left 1067 * for the digits, or if all bits are used. 1068 */ 1069 return -ENFILE; 1070 } 1071 1072 /** 1073 * dev_alloc_name - allocate a name for a device 1074 * @dev: device 1075 * @name: name format string 1076 * 1077 * Passed a format string - eg "lt%d" it will try and find a suitable 1078 * id. It scans list of devices to build up a free map, then chooses 1079 * the first empty slot. The caller must hold the dev_base or rtnl lock 1080 * while allocating the name and adding the device in order to avoid 1081 * duplicates. 1082 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1083 * Returns the number of the unit assigned or a negative errno code. 1084 */ 1085 1086 int dev_alloc_name(struct net_device *dev, const char *name) 1087 { 1088 char buf[IFNAMSIZ]; 1089 struct net *net; 1090 int ret; 1091 1092 BUG_ON(!dev_net(dev)); 1093 net = dev_net(dev); 1094 ret = __dev_alloc_name(net, name, buf); 1095 if (ret >= 0) 1096 strlcpy(dev->name, buf, IFNAMSIZ); 1097 return ret; 1098 } 1099 EXPORT_SYMBOL(dev_alloc_name); 1100 1101 static int dev_alloc_name_ns(struct net *net, 1102 struct net_device *dev, 1103 const char *name) 1104 { 1105 char buf[IFNAMSIZ]; 1106 int ret; 1107 1108 ret = __dev_alloc_name(net, name, buf); 1109 if (ret >= 0) 1110 strlcpy(dev->name, buf, IFNAMSIZ); 1111 return ret; 1112 } 1113 1114 static int dev_get_valid_name(struct net *net, 1115 struct net_device *dev, 1116 const char *name) 1117 { 1118 BUG_ON(!net); 1119 1120 if (!dev_valid_name(name)) 1121 return -EINVAL; 1122 1123 if (strchr(name, '%')) 1124 return dev_alloc_name_ns(net, dev, name); 1125 else if (__dev_get_by_name(net, name)) 1126 return -EEXIST; 1127 else if (dev->name != name) 1128 strlcpy(dev->name, name, IFNAMSIZ); 1129 1130 return 0; 1131 } 1132 1133 /** 1134 * dev_change_name - change name of a device 1135 * @dev: device 1136 * @newname: name (or format string) must be at least IFNAMSIZ 1137 * 1138 * Change name of a device, can pass format strings "eth%d". 1139 * for wildcarding. 1140 */ 1141 int dev_change_name(struct net_device *dev, const char *newname) 1142 { 1143 unsigned char old_assign_type; 1144 char oldname[IFNAMSIZ]; 1145 int err = 0; 1146 int ret; 1147 struct net *net; 1148 1149 ASSERT_RTNL(); 1150 BUG_ON(!dev_net(dev)); 1151 1152 net = dev_net(dev); 1153 if (dev->flags & IFF_UP) 1154 return -EBUSY; 1155 1156 write_seqcount_begin(&devnet_rename_seq); 1157 1158 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1159 write_seqcount_end(&devnet_rename_seq); 1160 return 0; 1161 } 1162 1163 memcpy(oldname, dev->name, IFNAMSIZ); 1164 1165 err = dev_get_valid_name(net, dev, newname); 1166 if (err < 0) { 1167 write_seqcount_end(&devnet_rename_seq); 1168 return err; 1169 } 1170 1171 if (oldname[0] && !strchr(oldname, '%')) 1172 netdev_info(dev, "renamed from %s\n", oldname); 1173 1174 old_assign_type = dev->name_assign_type; 1175 dev->name_assign_type = NET_NAME_RENAMED; 1176 1177 rollback: 1178 ret = device_rename(&dev->dev, dev->name); 1179 if (ret) { 1180 memcpy(dev->name, oldname, IFNAMSIZ); 1181 dev->name_assign_type = old_assign_type; 1182 write_seqcount_end(&devnet_rename_seq); 1183 return ret; 1184 } 1185 1186 write_seqcount_end(&devnet_rename_seq); 1187 1188 netdev_adjacent_rename_links(dev, oldname); 1189 1190 write_lock_bh(&dev_base_lock); 1191 hlist_del_rcu(&dev->name_hlist); 1192 write_unlock_bh(&dev_base_lock); 1193 1194 synchronize_rcu(); 1195 1196 write_lock_bh(&dev_base_lock); 1197 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1198 write_unlock_bh(&dev_base_lock); 1199 1200 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1201 ret = notifier_to_errno(ret); 1202 1203 if (ret) { 1204 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1205 if (err >= 0) { 1206 err = ret; 1207 write_seqcount_begin(&devnet_rename_seq); 1208 memcpy(dev->name, oldname, IFNAMSIZ); 1209 memcpy(oldname, newname, IFNAMSIZ); 1210 dev->name_assign_type = old_assign_type; 1211 old_assign_type = NET_NAME_RENAMED; 1212 goto rollback; 1213 } else { 1214 pr_err("%s: name change rollback failed: %d\n", 1215 dev->name, ret); 1216 } 1217 } 1218 1219 return err; 1220 } 1221 1222 /** 1223 * dev_set_alias - change ifalias of a device 1224 * @dev: device 1225 * @alias: name up to IFALIASZ 1226 * @len: limit of bytes to copy from info 1227 * 1228 * Set ifalias for a device, 1229 */ 1230 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1231 { 1232 char *new_ifalias; 1233 1234 ASSERT_RTNL(); 1235 1236 if (len >= IFALIASZ) 1237 return -EINVAL; 1238 1239 if (!len) { 1240 kfree(dev->ifalias); 1241 dev->ifalias = NULL; 1242 return 0; 1243 } 1244 1245 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1246 if (!new_ifalias) 1247 return -ENOMEM; 1248 dev->ifalias = new_ifalias; 1249 1250 strlcpy(dev->ifalias, alias, len+1); 1251 return len; 1252 } 1253 1254 1255 /** 1256 * netdev_features_change - device changes features 1257 * @dev: device to cause notification 1258 * 1259 * Called to indicate a device has changed features. 1260 */ 1261 void netdev_features_change(struct net_device *dev) 1262 { 1263 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1264 } 1265 EXPORT_SYMBOL(netdev_features_change); 1266 1267 /** 1268 * netdev_state_change - device changes state 1269 * @dev: device to cause notification 1270 * 1271 * Called to indicate a device has changed state. This function calls 1272 * the notifier chains for netdev_chain and sends a NEWLINK message 1273 * to the routing socket. 1274 */ 1275 void netdev_state_change(struct net_device *dev) 1276 { 1277 if (dev->flags & IFF_UP) { 1278 struct netdev_notifier_change_info change_info; 1279 1280 change_info.flags_changed = 0; 1281 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1282 &change_info.info); 1283 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1284 } 1285 } 1286 EXPORT_SYMBOL(netdev_state_change); 1287 1288 /** 1289 * netdev_notify_peers - notify network peers about existence of @dev 1290 * @dev: network device 1291 * 1292 * Generate traffic such that interested network peers are aware of 1293 * @dev, such as by generating a gratuitous ARP. This may be used when 1294 * a device wants to inform the rest of the network about some sort of 1295 * reconfiguration such as a failover event or virtual machine 1296 * migration. 1297 */ 1298 void netdev_notify_peers(struct net_device *dev) 1299 { 1300 rtnl_lock(); 1301 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1302 rtnl_unlock(); 1303 } 1304 EXPORT_SYMBOL(netdev_notify_peers); 1305 1306 static int __dev_open(struct net_device *dev) 1307 { 1308 const struct net_device_ops *ops = dev->netdev_ops; 1309 int ret; 1310 1311 ASSERT_RTNL(); 1312 1313 if (!netif_device_present(dev)) 1314 return -ENODEV; 1315 1316 /* Block netpoll from trying to do any rx path servicing. 1317 * If we don't do this there is a chance ndo_poll_controller 1318 * or ndo_poll may be running while we open the device 1319 */ 1320 netpoll_poll_disable(dev); 1321 1322 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1323 ret = notifier_to_errno(ret); 1324 if (ret) 1325 return ret; 1326 1327 set_bit(__LINK_STATE_START, &dev->state); 1328 1329 if (ops->ndo_validate_addr) 1330 ret = ops->ndo_validate_addr(dev); 1331 1332 if (!ret && ops->ndo_open) 1333 ret = ops->ndo_open(dev); 1334 1335 netpoll_poll_enable(dev); 1336 1337 if (ret) 1338 clear_bit(__LINK_STATE_START, &dev->state); 1339 else { 1340 dev->flags |= IFF_UP; 1341 dev_set_rx_mode(dev); 1342 dev_activate(dev); 1343 add_device_randomness(dev->dev_addr, dev->addr_len); 1344 } 1345 1346 return ret; 1347 } 1348 1349 /** 1350 * dev_open - prepare an interface for use. 1351 * @dev: device to open 1352 * 1353 * Takes a device from down to up state. The device's private open 1354 * function is invoked and then the multicast lists are loaded. Finally 1355 * the device is moved into the up state and a %NETDEV_UP message is 1356 * sent to the netdev notifier chain. 1357 * 1358 * Calling this function on an active interface is a nop. On a failure 1359 * a negative errno code is returned. 1360 */ 1361 int dev_open(struct net_device *dev) 1362 { 1363 int ret; 1364 1365 if (dev->flags & IFF_UP) 1366 return 0; 1367 1368 ret = __dev_open(dev); 1369 if (ret < 0) 1370 return ret; 1371 1372 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1373 call_netdevice_notifiers(NETDEV_UP, dev); 1374 1375 return ret; 1376 } 1377 EXPORT_SYMBOL(dev_open); 1378 1379 static int __dev_close_many(struct list_head *head) 1380 { 1381 struct net_device *dev; 1382 1383 ASSERT_RTNL(); 1384 might_sleep(); 1385 1386 list_for_each_entry(dev, head, close_list) { 1387 /* Temporarily disable netpoll until the interface is down */ 1388 netpoll_poll_disable(dev); 1389 1390 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1391 1392 clear_bit(__LINK_STATE_START, &dev->state); 1393 1394 /* Synchronize to scheduled poll. We cannot touch poll list, it 1395 * can be even on different cpu. So just clear netif_running(). 1396 * 1397 * dev->stop() will invoke napi_disable() on all of it's 1398 * napi_struct instances on this device. 1399 */ 1400 smp_mb__after_atomic(); /* Commit netif_running(). */ 1401 } 1402 1403 dev_deactivate_many(head); 1404 1405 list_for_each_entry(dev, head, close_list) { 1406 const struct net_device_ops *ops = dev->netdev_ops; 1407 1408 /* 1409 * Call the device specific close. This cannot fail. 1410 * Only if device is UP 1411 * 1412 * We allow it to be called even after a DETACH hot-plug 1413 * event. 1414 */ 1415 if (ops->ndo_stop) 1416 ops->ndo_stop(dev); 1417 1418 dev->flags &= ~IFF_UP; 1419 netpoll_poll_enable(dev); 1420 } 1421 1422 return 0; 1423 } 1424 1425 static int __dev_close(struct net_device *dev) 1426 { 1427 int retval; 1428 LIST_HEAD(single); 1429 1430 list_add(&dev->close_list, &single); 1431 retval = __dev_close_many(&single); 1432 list_del(&single); 1433 1434 return retval; 1435 } 1436 1437 int dev_close_many(struct list_head *head, bool unlink) 1438 { 1439 struct net_device *dev, *tmp; 1440 1441 /* Remove the devices that don't need to be closed */ 1442 list_for_each_entry_safe(dev, tmp, head, close_list) 1443 if (!(dev->flags & IFF_UP)) 1444 list_del_init(&dev->close_list); 1445 1446 __dev_close_many(head); 1447 1448 list_for_each_entry_safe(dev, tmp, head, close_list) { 1449 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1450 call_netdevice_notifiers(NETDEV_DOWN, dev); 1451 if (unlink) 1452 list_del_init(&dev->close_list); 1453 } 1454 1455 return 0; 1456 } 1457 EXPORT_SYMBOL(dev_close_many); 1458 1459 /** 1460 * dev_close - shutdown an interface. 1461 * @dev: device to shutdown 1462 * 1463 * This function moves an active device into down state. A 1464 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1465 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1466 * chain. 1467 */ 1468 int dev_close(struct net_device *dev) 1469 { 1470 if (dev->flags & IFF_UP) { 1471 LIST_HEAD(single); 1472 1473 list_add(&dev->close_list, &single); 1474 dev_close_many(&single, true); 1475 list_del(&single); 1476 } 1477 return 0; 1478 } 1479 EXPORT_SYMBOL(dev_close); 1480 1481 1482 /** 1483 * dev_disable_lro - disable Large Receive Offload on a device 1484 * @dev: device 1485 * 1486 * Disable Large Receive Offload (LRO) on a net device. Must be 1487 * called under RTNL. This is needed if received packets may be 1488 * forwarded to another interface. 1489 */ 1490 void dev_disable_lro(struct net_device *dev) 1491 { 1492 struct net_device *lower_dev; 1493 struct list_head *iter; 1494 1495 dev->wanted_features &= ~NETIF_F_LRO; 1496 netdev_update_features(dev); 1497 1498 if (unlikely(dev->features & NETIF_F_LRO)) 1499 netdev_WARN(dev, "failed to disable LRO!\n"); 1500 1501 netdev_for_each_lower_dev(dev, lower_dev, iter) 1502 dev_disable_lro(lower_dev); 1503 } 1504 EXPORT_SYMBOL(dev_disable_lro); 1505 1506 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1507 struct net_device *dev) 1508 { 1509 struct netdev_notifier_info info; 1510 1511 netdev_notifier_info_init(&info, dev); 1512 return nb->notifier_call(nb, val, &info); 1513 } 1514 1515 static int dev_boot_phase = 1; 1516 1517 /** 1518 * register_netdevice_notifier - register a network notifier block 1519 * @nb: notifier 1520 * 1521 * Register a notifier to be called when network device events occur. 1522 * The notifier passed is linked into the kernel structures and must 1523 * not be reused until it has been unregistered. A negative errno code 1524 * is returned on a failure. 1525 * 1526 * When registered all registration and up events are replayed 1527 * to the new notifier to allow device to have a race free 1528 * view of the network device list. 1529 */ 1530 1531 int register_netdevice_notifier(struct notifier_block *nb) 1532 { 1533 struct net_device *dev; 1534 struct net_device *last; 1535 struct net *net; 1536 int err; 1537 1538 rtnl_lock(); 1539 err = raw_notifier_chain_register(&netdev_chain, nb); 1540 if (err) 1541 goto unlock; 1542 if (dev_boot_phase) 1543 goto unlock; 1544 for_each_net(net) { 1545 for_each_netdev(net, dev) { 1546 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1547 err = notifier_to_errno(err); 1548 if (err) 1549 goto rollback; 1550 1551 if (!(dev->flags & IFF_UP)) 1552 continue; 1553 1554 call_netdevice_notifier(nb, NETDEV_UP, dev); 1555 } 1556 } 1557 1558 unlock: 1559 rtnl_unlock(); 1560 return err; 1561 1562 rollback: 1563 last = dev; 1564 for_each_net(net) { 1565 for_each_netdev(net, dev) { 1566 if (dev == last) 1567 goto outroll; 1568 1569 if (dev->flags & IFF_UP) { 1570 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1571 dev); 1572 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1573 } 1574 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1575 } 1576 } 1577 1578 outroll: 1579 raw_notifier_chain_unregister(&netdev_chain, nb); 1580 goto unlock; 1581 } 1582 EXPORT_SYMBOL(register_netdevice_notifier); 1583 1584 /** 1585 * unregister_netdevice_notifier - unregister a network notifier block 1586 * @nb: notifier 1587 * 1588 * Unregister a notifier previously registered by 1589 * register_netdevice_notifier(). The notifier is unlinked into the 1590 * kernel structures and may then be reused. A negative errno code 1591 * is returned on a failure. 1592 * 1593 * After unregistering unregister and down device events are synthesized 1594 * for all devices on the device list to the removed notifier to remove 1595 * the need for special case cleanup code. 1596 */ 1597 1598 int unregister_netdevice_notifier(struct notifier_block *nb) 1599 { 1600 struct net_device *dev; 1601 struct net *net; 1602 int err; 1603 1604 rtnl_lock(); 1605 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1606 if (err) 1607 goto unlock; 1608 1609 for_each_net(net) { 1610 for_each_netdev(net, dev) { 1611 if (dev->flags & IFF_UP) { 1612 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1613 dev); 1614 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1615 } 1616 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1617 } 1618 } 1619 unlock: 1620 rtnl_unlock(); 1621 return err; 1622 } 1623 EXPORT_SYMBOL(unregister_netdevice_notifier); 1624 1625 /** 1626 * call_netdevice_notifiers_info - call all network notifier blocks 1627 * @val: value passed unmodified to notifier function 1628 * @dev: net_device pointer passed unmodified to notifier function 1629 * @info: notifier information data 1630 * 1631 * Call all network notifier blocks. Parameters and return value 1632 * are as for raw_notifier_call_chain(). 1633 */ 1634 1635 static int call_netdevice_notifiers_info(unsigned long val, 1636 struct net_device *dev, 1637 struct netdev_notifier_info *info) 1638 { 1639 ASSERT_RTNL(); 1640 netdev_notifier_info_init(info, dev); 1641 return raw_notifier_call_chain(&netdev_chain, val, info); 1642 } 1643 1644 /** 1645 * call_netdevice_notifiers - call all network notifier blocks 1646 * @val: value passed unmodified to notifier function 1647 * @dev: net_device pointer passed unmodified to notifier function 1648 * 1649 * Call all network notifier blocks. Parameters and return value 1650 * are as for raw_notifier_call_chain(). 1651 */ 1652 1653 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1654 { 1655 struct netdev_notifier_info info; 1656 1657 return call_netdevice_notifiers_info(val, dev, &info); 1658 } 1659 EXPORT_SYMBOL(call_netdevice_notifiers); 1660 1661 #ifdef CONFIG_NET_INGRESS 1662 static struct static_key ingress_needed __read_mostly; 1663 1664 void net_inc_ingress_queue(void) 1665 { 1666 static_key_slow_inc(&ingress_needed); 1667 } 1668 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1669 1670 void net_dec_ingress_queue(void) 1671 { 1672 static_key_slow_dec(&ingress_needed); 1673 } 1674 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1675 #endif 1676 1677 static struct static_key netstamp_needed __read_mostly; 1678 #ifdef HAVE_JUMP_LABEL 1679 /* We are not allowed to call static_key_slow_dec() from irq context 1680 * If net_disable_timestamp() is called from irq context, defer the 1681 * static_key_slow_dec() calls. 1682 */ 1683 static atomic_t netstamp_needed_deferred; 1684 #endif 1685 1686 void net_enable_timestamp(void) 1687 { 1688 #ifdef HAVE_JUMP_LABEL 1689 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1690 1691 if (deferred) { 1692 while (--deferred) 1693 static_key_slow_dec(&netstamp_needed); 1694 return; 1695 } 1696 #endif 1697 static_key_slow_inc(&netstamp_needed); 1698 } 1699 EXPORT_SYMBOL(net_enable_timestamp); 1700 1701 void net_disable_timestamp(void) 1702 { 1703 #ifdef HAVE_JUMP_LABEL 1704 if (in_interrupt()) { 1705 atomic_inc(&netstamp_needed_deferred); 1706 return; 1707 } 1708 #endif 1709 static_key_slow_dec(&netstamp_needed); 1710 } 1711 EXPORT_SYMBOL(net_disable_timestamp); 1712 1713 static inline void net_timestamp_set(struct sk_buff *skb) 1714 { 1715 skb->tstamp.tv64 = 0; 1716 if (static_key_false(&netstamp_needed)) 1717 __net_timestamp(skb); 1718 } 1719 1720 #define net_timestamp_check(COND, SKB) \ 1721 if (static_key_false(&netstamp_needed)) { \ 1722 if ((COND) && !(SKB)->tstamp.tv64) \ 1723 __net_timestamp(SKB); \ 1724 } \ 1725 1726 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb) 1727 { 1728 unsigned int len; 1729 1730 if (!(dev->flags & IFF_UP)) 1731 return false; 1732 1733 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1734 if (skb->len <= len) 1735 return true; 1736 1737 /* if TSO is enabled, we don't care about the length as the packet 1738 * could be forwarded without being segmented before 1739 */ 1740 if (skb_is_gso(skb)) 1741 return true; 1742 1743 return false; 1744 } 1745 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1746 1747 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1748 { 1749 if (skb_orphan_frags(skb, GFP_ATOMIC) || 1750 unlikely(!is_skb_forwardable(dev, skb))) { 1751 atomic_long_inc(&dev->rx_dropped); 1752 kfree_skb(skb); 1753 return NET_RX_DROP; 1754 } 1755 1756 skb_scrub_packet(skb, true); 1757 skb->priority = 0; 1758 skb->protocol = eth_type_trans(skb, dev); 1759 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1760 1761 return 0; 1762 } 1763 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1764 1765 /** 1766 * dev_forward_skb - loopback an skb to another netif 1767 * 1768 * @dev: destination network device 1769 * @skb: buffer to forward 1770 * 1771 * return values: 1772 * NET_RX_SUCCESS (no congestion) 1773 * NET_RX_DROP (packet was dropped, but freed) 1774 * 1775 * dev_forward_skb can be used for injecting an skb from the 1776 * start_xmit function of one device into the receive queue 1777 * of another device. 1778 * 1779 * The receiving device may be in another namespace, so 1780 * we have to clear all information in the skb that could 1781 * impact namespace isolation. 1782 */ 1783 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1784 { 1785 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1786 } 1787 EXPORT_SYMBOL_GPL(dev_forward_skb); 1788 1789 static inline int deliver_skb(struct sk_buff *skb, 1790 struct packet_type *pt_prev, 1791 struct net_device *orig_dev) 1792 { 1793 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1794 return -ENOMEM; 1795 atomic_inc(&skb->users); 1796 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1797 } 1798 1799 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1800 struct packet_type **pt, 1801 struct net_device *orig_dev, 1802 __be16 type, 1803 struct list_head *ptype_list) 1804 { 1805 struct packet_type *ptype, *pt_prev = *pt; 1806 1807 list_for_each_entry_rcu(ptype, ptype_list, list) { 1808 if (ptype->type != type) 1809 continue; 1810 if (pt_prev) 1811 deliver_skb(skb, pt_prev, orig_dev); 1812 pt_prev = ptype; 1813 } 1814 *pt = pt_prev; 1815 } 1816 1817 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1818 { 1819 if (!ptype->af_packet_priv || !skb->sk) 1820 return false; 1821 1822 if (ptype->id_match) 1823 return ptype->id_match(ptype, skb->sk); 1824 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1825 return true; 1826 1827 return false; 1828 } 1829 1830 /* 1831 * Support routine. Sends outgoing frames to any network 1832 * taps currently in use. 1833 */ 1834 1835 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1836 { 1837 struct packet_type *ptype; 1838 struct sk_buff *skb2 = NULL; 1839 struct packet_type *pt_prev = NULL; 1840 struct list_head *ptype_list = &ptype_all; 1841 1842 rcu_read_lock(); 1843 again: 1844 list_for_each_entry_rcu(ptype, ptype_list, list) { 1845 /* Never send packets back to the socket 1846 * they originated from - MvS (miquels@drinkel.ow.org) 1847 */ 1848 if (skb_loop_sk(ptype, skb)) 1849 continue; 1850 1851 if (pt_prev) { 1852 deliver_skb(skb2, pt_prev, skb->dev); 1853 pt_prev = ptype; 1854 continue; 1855 } 1856 1857 /* need to clone skb, done only once */ 1858 skb2 = skb_clone(skb, GFP_ATOMIC); 1859 if (!skb2) 1860 goto out_unlock; 1861 1862 net_timestamp_set(skb2); 1863 1864 /* skb->nh should be correctly 1865 * set by sender, so that the second statement is 1866 * just protection against buggy protocols. 1867 */ 1868 skb_reset_mac_header(skb2); 1869 1870 if (skb_network_header(skb2) < skb2->data || 1871 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1872 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1873 ntohs(skb2->protocol), 1874 dev->name); 1875 skb_reset_network_header(skb2); 1876 } 1877 1878 skb2->transport_header = skb2->network_header; 1879 skb2->pkt_type = PACKET_OUTGOING; 1880 pt_prev = ptype; 1881 } 1882 1883 if (ptype_list == &ptype_all) { 1884 ptype_list = &dev->ptype_all; 1885 goto again; 1886 } 1887 out_unlock: 1888 if (pt_prev) 1889 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1890 rcu_read_unlock(); 1891 } 1892 1893 /** 1894 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1895 * @dev: Network device 1896 * @txq: number of queues available 1897 * 1898 * If real_num_tx_queues is changed the tc mappings may no longer be 1899 * valid. To resolve this verify the tc mapping remains valid and if 1900 * not NULL the mapping. With no priorities mapping to this 1901 * offset/count pair it will no longer be used. In the worst case TC0 1902 * is invalid nothing can be done so disable priority mappings. If is 1903 * expected that drivers will fix this mapping if they can before 1904 * calling netif_set_real_num_tx_queues. 1905 */ 1906 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1907 { 1908 int i; 1909 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1910 1911 /* If TC0 is invalidated disable TC mapping */ 1912 if (tc->offset + tc->count > txq) { 1913 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1914 dev->num_tc = 0; 1915 return; 1916 } 1917 1918 /* Invalidated prio to tc mappings set to TC0 */ 1919 for (i = 1; i < TC_BITMASK + 1; i++) { 1920 int q = netdev_get_prio_tc_map(dev, i); 1921 1922 tc = &dev->tc_to_txq[q]; 1923 if (tc->offset + tc->count > txq) { 1924 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1925 i, q); 1926 netdev_set_prio_tc_map(dev, i, 0); 1927 } 1928 } 1929 } 1930 1931 #ifdef CONFIG_XPS 1932 static DEFINE_MUTEX(xps_map_mutex); 1933 #define xmap_dereference(P) \ 1934 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1935 1936 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1937 int cpu, u16 index) 1938 { 1939 struct xps_map *map = NULL; 1940 int pos; 1941 1942 if (dev_maps) 1943 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1944 1945 for (pos = 0; map && pos < map->len; pos++) { 1946 if (map->queues[pos] == index) { 1947 if (map->len > 1) { 1948 map->queues[pos] = map->queues[--map->len]; 1949 } else { 1950 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1951 kfree_rcu(map, rcu); 1952 map = NULL; 1953 } 1954 break; 1955 } 1956 } 1957 1958 return map; 1959 } 1960 1961 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1962 { 1963 struct xps_dev_maps *dev_maps; 1964 int cpu, i; 1965 bool active = false; 1966 1967 mutex_lock(&xps_map_mutex); 1968 dev_maps = xmap_dereference(dev->xps_maps); 1969 1970 if (!dev_maps) 1971 goto out_no_maps; 1972 1973 for_each_possible_cpu(cpu) { 1974 for (i = index; i < dev->num_tx_queues; i++) { 1975 if (!remove_xps_queue(dev_maps, cpu, i)) 1976 break; 1977 } 1978 if (i == dev->num_tx_queues) 1979 active = true; 1980 } 1981 1982 if (!active) { 1983 RCU_INIT_POINTER(dev->xps_maps, NULL); 1984 kfree_rcu(dev_maps, rcu); 1985 } 1986 1987 for (i = index; i < dev->num_tx_queues; i++) 1988 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1989 NUMA_NO_NODE); 1990 1991 out_no_maps: 1992 mutex_unlock(&xps_map_mutex); 1993 } 1994 1995 static struct xps_map *expand_xps_map(struct xps_map *map, 1996 int cpu, u16 index) 1997 { 1998 struct xps_map *new_map; 1999 int alloc_len = XPS_MIN_MAP_ALLOC; 2000 int i, pos; 2001 2002 for (pos = 0; map && pos < map->len; pos++) { 2003 if (map->queues[pos] != index) 2004 continue; 2005 return map; 2006 } 2007 2008 /* Need to add queue to this CPU's existing map */ 2009 if (map) { 2010 if (pos < map->alloc_len) 2011 return map; 2012 2013 alloc_len = map->alloc_len * 2; 2014 } 2015 2016 /* Need to allocate new map to store queue on this CPU's map */ 2017 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2018 cpu_to_node(cpu)); 2019 if (!new_map) 2020 return NULL; 2021 2022 for (i = 0; i < pos; i++) 2023 new_map->queues[i] = map->queues[i]; 2024 new_map->alloc_len = alloc_len; 2025 new_map->len = pos; 2026 2027 return new_map; 2028 } 2029 2030 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2031 u16 index) 2032 { 2033 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2034 struct xps_map *map, *new_map; 2035 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 2036 int cpu, numa_node_id = -2; 2037 bool active = false; 2038 2039 mutex_lock(&xps_map_mutex); 2040 2041 dev_maps = xmap_dereference(dev->xps_maps); 2042 2043 /* allocate memory for queue storage */ 2044 for_each_online_cpu(cpu) { 2045 if (!cpumask_test_cpu(cpu, mask)) 2046 continue; 2047 2048 if (!new_dev_maps) 2049 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2050 if (!new_dev_maps) { 2051 mutex_unlock(&xps_map_mutex); 2052 return -ENOMEM; 2053 } 2054 2055 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2056 NULL; 2057 2058 map = expand_xps_map(map, cpu, index); 2059 if (!map) 2060 goto error; 2061 2062 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2063 } 2064 2065 if (!new_dev_maps) 2066 goto out_no_new_maps; 2067 2068 for_each_possible_cpu(cpu) { 2069 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2070 /* add queue to CPU maps */ 2071 int pos = 0; 2072 2073 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2074 while ((pos < map->len) && (map->queues[pos] != index)) 2075 pos++; 2076 2077 if (pos == map->len) 2078 map->queues[map->len++] = index; 2079 #ifdef CONFIG_NUMA 2080 if (numa_node_id == -2) 2081 numa_node_id = cpu_to_node(cpu); 2082 else if (numa_node_id != cpu_to_node(cpu)) 2083 numa_node_id = -1; 2084 #endif 2085 } else if (dev_maps) { 2086 /* fill in the new device map from the old device map */ 2087 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2088 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2089 } 2090 2091 } 2092 2093 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2094 2095 /* Cleanup old maps */ 2096 if (dev_maps) { 2097 for_each_possible_cpu(cpu) { 2098 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2099 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2100 if (map && map != new_map) 2101 kfree_rcu(map, rcu); 2102 } 2103 2104 kfree_rcu(dev_maps, rcu); 2105 } 2106 2107 dev_maps = new_dev_maps; 2108 active = true; 2109 2110 out_no_new_maps: 2111 /* update Tx queue numa node */ 2112 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2113 (numa_node_id >= 0) ? numa_node_id : 2114 NUMA_NO_NODE); 2115 2116 if (!dev_maps) 2117 goto out_no_maps; 2118 2119 /* removes queue from unused CPUs */ 2120 for_each_possible_cpu(cpu) { 2121 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2122 continue; 2123 2124 if (remove_xps_queue(dev_maps, cpu, index)) 2125 active = true; 2126 } 2127 2128 /* free map if not active */ 2129 if (!active) { 2130 RCU_INIT_POINTER(dev->xps_maps, NULL); 2131 kfree_rcu(dev_maps, rcu); 2132 } 2133 2134 out_no_maps: 2135 mutex_unlock(&xps_map_mutex); 2136 2137 return 0; 2138 error: 2139 /* remove any maps that we added */ 2140 for_each_possible_cpu(cpu) { 2141 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2142 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2143 NULL; 2144 if (new_map && new_map != map) 2145 kfree(new_map); 2146 } 2147 2148 mutex_unlock(&xps_map_mutex); 2149 2150 kfree(new_dev_maps); 2151 return -ENOMEM; 2152 } 2153 EXPORT_SYMBOL(netif_set_xps_queue); 2154 2155 #endif 2156 /* 2157 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2158 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2159 */ 2160 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2161 { 2162 int rc; 2163 2164 if (txq < 1 || txq > dev->num_tx_queues) 2165 return -EINVAL; 2166 2167 if (dev->reg_state == NETREG_REGISTERED || 2168 dev->reg_state == NETREG_UNREGISTERING) { 2169 ASSERT_RTNL(); 2170 2171 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2172 txq); 2173 if (rc) 2174 return rc; 2175 2176 if (dev->num_tc) 2177 netif_setup_tc(dev, txq); 2178 2179 if (txq < dev->real_num_tx_queues) { 2180 qdisc_reset_all_tx_gt(dev, txq); 2181 #ifdef CONFIG_XPS 2182 netif_reset_xps_queues_gt(dev, txq); 2183 #endif 2184 } 2185 } 2186 2187 dev->real_num_tx_queues = txq; 2188 return 0; 2189 } 2190 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2191 2192 #ifdef CONFIG_SYSFS 2193 /** 2194 * netif_set_real_num_rx_queues - set actual number of RX queues used 2195 * @dev: Network device 2196 * @rxq: Actual number of RX queues 2197 * 2198 * This must be called either with the rtnl_lock held or before 2199 * registration of the net device. Returns 0 on success, or a 2200 * negative error code. If called before registration, it always 2201 * succeeds. 2202 */ 2203 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2204 { 2205 int rc; 2206 2207 if (rxq < 1 || rxq > dev->num_rx_queues) 2208 return -EINVAL; 2209 2210 if (dev->reg_state == NETREG_REGISTERED) { 2211 ASSERT_RTNL(); 2212 2213 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2214 rxq); 2215 if (rc) 2216 return rc; 2217 } 2218 2219 dev->real_num_rx_queues = rxq; 2220 return 0; 2221 } 2222 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2223 #endif 2224 2225 /** 2226 * netif_get_num_default_rss_queues - default number of RSS queues 2227 * 2228 * This routine should set an upper limit on the number of RSS queues 2229 * used by default by multiqueue devices. 2230 */ 2231 int netif_get_num_default_rss_queues(void) 2232 { 2233 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2234 } 2235 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2236 2237 static inline void __netif_reschedule(struct Qdisc *q) 2238 { 2239 struct softnet_data *sd; 2240 unsigned long flags; 2241 2242 local_irq_save(flags); 2243 sd = this_cpu_ptr(&softnet_data); 2244 q->next_sched = NULL; 2245 *sd->output_queue_tailp = q; 2246 sd->output_queue_tailp = &q->next_sched; 2247 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2248 local_irq_restore(flags); 2249 } 2250 2251 void __netif_schedule(struct Qdisc *q) 2252 { 2253 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2254 __netif_reschedule(q); 2255 } 2256 EXPORT_SYMBOL(__netif_schedule); 2257 2258 struct dev_kfree_skb_cb { 2259 enum skb_free_reason reason; 2260 }; 2261 2262 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2263 { 2264 return (struct dev_kfree_skb_cb *)skb->cb; 2265 } 2266 2267 void netif_schedule_queue(struct netdev_queue *txq) 2268 { 2269 rcu_read_lock(); 2270 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2271 struct Qdisc *q = rcu_dereference(txq->qdisc); 2272 2273 __netif_schedule(q); 2274 } 2275 rcu_read_unlock(); 2276 } 2277 EXPORT_SYMBOL(netif_schedule_queue); 2278 2279 /** 2280 * netif_wake_subqueue - allow sending packets on subqueue 2281 * @dev: network device 2282 * @queue_index: sub queue index 2283 * 2284 * Resume individual transmit queue of a device with multiple transmit queues. 2285 */ 2286 void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2287 { 2288 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2289 2290 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) { 2291 struct Qdisc *q; 2292 2293 rcu_read_lock(); 2294 q = rcu_dereference(txq->qdisc); 2295 __netif_schedule(q); 2296 rcu_read_unlock(); 2297 } 2298 } 2299 EXPORT_SYMBOL(netif_wake_subqueue); 2300 2301 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2302 { 2303 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2304 struct Qdisc *q; 2305 2306 rcu_read_lock(); 2307 q = rcu_dereference(dev_queue->qdisc); 2308 __netif_schedule(q); 2309 rcu_read_unlock(); 2310 } 2311 } 2312 EXPORT_SYMBOL(netif_tx_wake_queue); 2313 2314 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2315 { 2316 unsigned long flags; 2317 2318 if (likely(atomic_read(&skb->users) == 1)) { 2319 smp_rmb(); 2320 atomic_set(&skb->users, 0); 2321 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2322 return; 2323 } 2324 get_kfree_skb_cb(skb)->reason = reason; 2325 local_irq_save(flags); 2326 skb->next = __this_cpu_read(softnet_data.completion_queue); 2327 __this_cpu_write(softnet_data.completion_queue, skb); 2328 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2329 local_irq_restore(flags); 2330 } 2331 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2332 2333 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2334 { 2335 if (in_irq() || irqs_disabled()) 2336 __dev_kfree_skb_irq(skb, reason); 2337 else 2338 dev_kfree_skb(skb); 2339 } 2340 EXPORT_SYMBOL(__dev_kfree_skb_any); 2341 2342 2343 /** 2344 * netif_device_detach - mark device as removed 2345 * @dev: network device 2346 * 2347 * Mark device as removed from system and therefore no longer available. 2348 */ 2349 void netif_device_detach(struct net_device *dev) 2350 { 2351 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2352 netif_running(dev)) { 2353 netif_tx_stop_all_queues(dev); 2354 } 2355 } 2356 EXPORT_SYMBOL(netif_device_detach); 2357 2358 /** 2359 * netif_device_attach - mark device as attached 2360 * @dev: network device 2361 * 2362 * Mark device as attached from system and restart if needed. 2363 */ 2364 void netif_device_attach(struct net_device *dev) 2365 { 2366 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2367 netif_running(dev)) { 2368 netif_tx_wake_all_queues(dev); 2369 __netdev_watchdog_up(dev); 2370 } 2371 } 2372 EXPORT_SYMBOL(netif_device_attach); 2373 2374 /* 2375 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2376 * to be used as a distribution range. 2377 */ 2378 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2379 unsigned int num_tx_queues) 2380 { 2381 u32 hash; 2382 u16 qoffset = 0; 2383 u16 qcount = num_tx_queues; 2384 2385 if (skb_rx_queue_recorded(skb)) { 2386 hash = skb_get_rx_queue(skb); 2387 while (unlikely(hash >= num_tx_queues)) 2388 hash -= num_tx_queues; 2389 return hash; 2390 } 2391 2392 if (dev->num_tc) { 2393 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2394 qoffset = dev->tc_to_txq[tc].offset; 2395 qcount = dev->tc_to_txq[tc].count; 2396 } 2397 2398 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2399 } 2400 EXPORT_SYMBOL(__skb_tx_hash); 2401 2402 static void skb_warn_bad_offload(const struct sk_buff *skb) 2403 { 2404 static const netdev_features_t null_features = 0; 2405 struct net_device *dev = skb->dev; 2406 const char *name = ""; 2407 2408 if (!net_ratelimit()) 2409 return; 2410 2411 if (dev) { 2412 if (dev->dev.parent) 2413 name = dev_driver_string(dev->dev.parent); 2414 else 2415 name = netdev_name(dev); 2416 } 2417 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2418 "gso_type=%d ip_summed=%d\n", 2419 name, dev ? &dev->features : &null_features, 2420 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2421 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2422 skb_shinfo(skb)->gso_type, skb->ip_summed); 2423 } 2424 2425 /* 2426 * Invalidate hardware checksum when packet is to be mangled, and 2427 * complete checksum manually on outgoing path. 2428 */ 2429 int skb_checksum_help(struct sk_buff *skb) 2430 { 2431 __wsum csum; 2432 int ret = 0, offset; 2433 2434 if (skb->ip_summed == CHECKSUM_COMPLETE) 2435 goto out_set_summed; 2436 2437 if (unlikely(skb_shinfo(skb)->gso_size)) { 2438 skb_warn_bad_offload(skb); 2439 return -EINVAL; 2440 } 2441 2442 /* Before computing a checksum, we should make sure no frag could 2443 * be modified by an external entity : checksum could be wrong. 2444 */ 2445 if (skb_has_shared_frag(skb)) { 2446 ret = __skb_linearize(skb); 2447 if (ret) 2448 goto out; 2449 } 2450 2451 offset = skb_checksum_start_offset(skb); 2452 BUG_ON(offset >= skb_headlen(skb)); 2453 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2454 2455 offset += skb->csum_offset; 2456 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2457 2458 if (skb_cloned(skb) && 2459 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2460 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2461 if (ret) 2462 goto out; 2463 } 2464 2465 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2466 out_set_summed: 2467 skb->ip_summed = CHECKSUM_NONE; 2468 out: 2469 return ret; 2470 } 2471 EXPORT_SYMBOL(skb_checksum_help); 2472 2473 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2474 { 2475 __be16 type = skb->protocol; 2476 2477 /* Tunnel gso handlers can set protocol to ethernet. */ 2478 if (type == htons(ETH_P_TEB)) { 2479 struct ethhdr *eth; 2480 2481 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2482 return 0; 2483 2484 eth = (struct ethhdr *)skb_mac_header(skb); 2485 type = eth->h_proto; 2486 } 2487 2488 return __vlan_get_protocol(skb, type, depth); 2489 } 2490 2491 /** 2492 * skb_mac_gso_segment - mac layer segmentation handler. 2493 * @skb: buffer to segment 2494 * @features: features for the output path (see dev->features) 2495 */ 2496 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2497 netdev_features_t features) 2498 { 2499 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2500 struct packet_offload *ptype; 2501 int vlan_depth = skb->mac_len; 2502 __be16 type = skb_network_protocol(skb, &vlan_depth); 2503 2504 if (unlikely(!type)) 2505 return ERR_PTR(-EINVAL); 2506 2507 __skb_pull(skb, vlan_depth); 2508 2509 rcu_read_lock(); 2510 list_for_each_entry_rcu(ptype, &offload_base, list) { 2511 if (ptype->type == type && ptype->callbacks.gso_segment) { 2512 segs = ptype->callbacks.gso_segment(skb, features); 2513 break; 2514 } 2515 } 2516 rcu_read_unlock(); 2517 2518 __skb_push(skb, skb->data - skb_mac_header(skb)); 2519 2520 return segs; 2521 } 2522 EXPORT_SYMBOL(skb_mac_gso_segment); 2523 2524 2525 /* openvswitch calls this on rx path, so we need a different check. 2526 */ 2527 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2528 { 2529 if (tx_path) 2530 return skb->ip_summed != CHECKSUM_PARTIAL; 2531 else 2532 return skb->ip_summed == CHECKSUM_NONE; 2533 } 2534 2535 /** 2536 * __skb_gso_segment - Perform segmentation on skb. 2537 * @skb: buffer to segment 2538 * @features: features for the output path (see dev->features) 2539 * @tx_path: whether it is called in TX path 2540 * 2541 * This function segments the given skb and returns a list of segments. 2542 * 2543 * It may return NULL if the skb requires no segmentation. This is 2544 * only possible when GSO is used for verifying header integrity. 2545 */ 2546 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2547 netdev_features_t features, bool tx_path) 2548 { 2549 if (unlikely(skb_needs_check(skb, tx_path))) { 2550 int err; 2551 2552 skb_warn_bad_offload(skb); 2553 2554 err = skb_cow_head(skb, 0); 2555 if (err < 0) 2556 return ERR_PTR(err); 2557 } 2558 2559 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2560 SKB_GSO_CB(skb)->encap_level = 0; 2561 2562 skb_reset_mac_header(skb); 2563 skb_reset_mac_len(skb); 2564 2565 return skb_mac_gso_segment(skb, features); 2566 } 2567 EXPORT_SYMBOL(__skb_gso_segment); 2568 2569 /* Take action when hardware reception checksum errors are detected. */ 2570 #ifdef CONFIG_BUG 2571 void netdev_rx_csum_fault(struct net_device *dev) 2572 { 2573 if (net_ratelimit()) { 2574 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2575 dump_stack(); 2576 } 2577 } 2578 EXPORT_SYMBOL(netdev_rx_csum_fault); 2579 #endif 2580 2581 /* Actually, we should eliminate this check as soon as we know, that: 2582 * 1. IOMMU is present and allows to map all the memory. 2583 * 2. No high memory really exists on this machine. 2584 */ 2585 2586 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2587 { 2588 #ifdef CONFIG_HIGHMEM 2589 int i; 2590 if (!(dev->features & NETIF_F_HIGHDMA)) { 2591 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2592 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2593 if (PageHighMem(skb_frag_page(frag))) 2594 return 1; 2595 } 2596 } 2597 2598 if (PCI_DMA_BUS_IS_PHYS) { 2599 struct device *pdev = dev->dev.parent; 2600 2601 if (!pdev) 2602 return 0; 2603 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2604 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2605 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2606 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2607 return 1; 2608 } 2609 } 2610 #endif 2611 return 0; 2612 } 2613 2614 /* If MPLS offload request, verify we are testing hardware MPLS features 2615 * instead of standard features for the netdev. 2616 */ 2617 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2618 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2619 netdev_features_t features, 2620 __be16 type) 2621 { 2622 if (eth_p_mpls(type)) 2623 features &= skb->dev->mpls_features; 2624 2625 return features; 2626 } 2627 #else 2628 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2629 netdev_features_t features, 2630 __be16 type) 2631 { 2632 return features; 2633 } 2634 #endif 2635 2636 static netdev_features_t harmonize_features(struct sk_buff *skb, 2637 netdev_features_t features) 2638 { 2639 int tmp; 2640 __be16 type; 2641 2642 type = skb_network_protocol(skb, &tmp); 2643 features = net_mpls_features(skb, features, type); 2644 2645 if (skb->ip_summed != CHECKSUM_NONE && 2646 !can_checksum_protocol(features, type)) { 2647 features &= ~NETIF_F_ALL_CSUM; 2648 } else if (illegal_highdma(skb->dev, skb)) { 2649 features &= ~NETIF_F_SG; 2650 } 2651 2652 return features; 2653 } 2654 2655 netdev_features_t passthru_features_check(struct sk_buff *skb, 2656 struct net_device *dev, 2657 netdev_features_t features) 2658 { 2659 return features; 2660 } 2661 EXPORT_SYMBOL(passthru_features_check); 2662 2663 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2664 struct net_device *dev, 2665 netdev_features_t features) 2666 { 2667 return vlan_features_check(skb, features); 2668 } 2669 2670 netdev_features_t netif_skb_features(struct sk_buff *skb) 2671 { 2672 struct net_device *dev = skb->dev; 2673 netdev_features_t features = dev->features; 2674 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2675 2676 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs) 2677 features &= ~NETIF_F_GSO_MASK; 2678 2679 /* If encapsulation offload request, verify we are testing 2680 * hardware encapsulation features instead of standard 2681 * features for the netdev 2682 */ 2683 if (skb->encapsulation) 2684 features &= dev->hw_enc_features; 2685 2686 if (skb_vlan_tagged(skb)) 2687 features = netdev_intersect_features(features, 2688 dev->vlan_features | 2689 NETIF_F_HW_VLAN_CTAG_TX | 2690 NETIF_F_HW_VLAN_STAG_TX); 2691 2692 if (dev->netdev_ops->ndo_features_check) 2693 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2694 features); 2695 else 2696 features &= dflt_features_check(skb, dev, features); 2697 2698 return harmonize_features(skb, features); 2699 } 2700 EXPORT_SYMBOL(netif_skb_features); 2701 2702 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2703 struct netdev_queue *txq, bool more) 2704 { 2705 unsigned int len; 2706 int rc; 2707 2708 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2709 dev_queue_xmit_nit(skb, dev); 2710 2711 len = skb->len; 2712 trace_net_dev_start_xmit(skb, dev); 2713 rc = netdev_start_xmit(skb, dev, txq, more); 2714 trace_net_dev_xmit(skb, rc, dev, len); 2715 2716 return rc; 2717 } 2718 2719 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2720 struct netdev_queue *txq, int *ret) 2721 { 2722 struct sk_buff *skb = first; 2723 int rc = NETDEV_TX_OK; 2724 2725 while (skb) { 2726 struct sk_buff *next = skb->next; 2727 2728 skb->next = NULL; 2729 rc = xmit_one(skb, dev, txq, next != NULL); 2730 if (unlikely(!dev_xmit_complete(rc))) { 2731 skb->next = next; 2732 goto out; 2733 } 2734 2735 skb = next; 2736 if (netif_xmit_stopped(txq) && skb) { 2737 rc = NETDEV_TX_BUSY; 2738 break; 2739 } 2740 } 2741 2742 out: 2743 *ret = rc; 2744 return skb; 2745 } 2746 2747 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2748 netdev_features_t features) 2749 { 2750 if (skb_vlan_tag_present(skb) && 2751 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2752 skb = __vlan_hwaccel_push_inside(skb); 2753 return skb; 2754 } 2755 2756 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2757 { 2758 netdev_features_t features; 2759 2760 if (skb->next) 2761 return skb; 2762 2763 features = netif_skb_features(skb); 2764 skb = validate_xmit_vlan(skb, features); 2765 if (unlikely(!skb)) 2766 goto out_null; 2767 2768 if (netif_needs_gso(skb, features)) { 2769 struct sk_buff *segs; 2770 2771 segs = skb_gso_segment(skb, features); 2772 if (IS_ERR(segs)) { 2773 goto out_kfree_skb; 2774 } else if (segs) { 2775 consume_skb(skb); 2776 skb = segs; 2777 } 2778 } else { 2779 if (skb_needs_linearize(skb, features) && 2780 __skb_linearize(skb)) 2781 goto out_kfree_skb; 2782 2783 /* If packet is not checksummed and device does not 2784 * support checksumming for this protocol, complete 2785 * checksumming here. 2786 */ 2787 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2788 if (skb->encapsulation) 2789 skb_set_inner_transport_header(skb, 2790 skb_checksum_start_offset(skb)); 2791 else 2792 skb_set_transport_header(skb, 2793 skb_checksum_start_offset(skb)); 2794 if (!(features & NETIF_F_ALL_CSUM) && 2795 skb_checksum_help(skb)) 2796 goto out_kfree_skb; 2797 } 2798 } 2799 2800 return skb; 2801 2802 out_kfree_skb: 2803 kfree_skb(skb); 2804 out_null: 2805 return NULL; 2806 } 2807 2808 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 2809 { 2810 struct sk_buff *next, *head = NULL, *tail; 2811 2812 for (; skb != NULL; skb = next) { 2813 next = skb->next; 2814 skb->next = NULL; 2815 2816 /* in case skb wont be segmented, point to itself */ 2817 skb->prev = skb; 2818 2819 skb = validate_xmit_skb(skb, dev); 2820 if (!skb) 2821 continue; 2822 2823 if (!head) 2824 head = skb; 2825 else 2826 tail->next = skb; 2827 /* If skb was segmented, skb->prev points to 2828 * the last segment. If not, it still contains skb. 2829 */ 2830 tail = skb->prev; 2831 } 2832 return head; 2833 } 2834 2835 static void qdisc_pkt_len_init(struct sk_buff *skb) 2836 { 2837 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2838 2839 qdisc_skb_cb(skb)->pkt_len = skb->len; 2840 2841 /* To get more precise estimation of bytes sent on wire, 2842 * we add to pkt_len the headers size of all segments 2843 */ 2844 if (shinfo->gso_size) { 2845 unsigned int hdr_len; 2846 u16 gso_segs = shinfo->gso_segs; 2847 2848 /* mac layer + network layer */ 2849 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2850 2851 /* + transport layer */ 2852 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2853 hdr_len += tcp_hdrlen(skb); 2854 else 2855 hdr_len += sizeof(struct udphdr); 2856 2857 if (shinfo->gso_type & SKB_GSO_DODGY) 2858 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2859 shinfo->gso_size); 2860 2861 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2862 } 2863 } 2864 2865 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2866 struct net_device *dev, 2867 struct netdev_queue *txq) 2868 { 2869 spinlock_t *root_lock = qdisc_lock(q); 2870 bool contended; 2871 int rc; 2872 2873 qdisc_pkt_len_init(skb); 2874 qdisc_calculate_pkt_len(skb, q); 2875 /* 2876 * Heuristic to force contended enqueues to serialize on a 2877 * separate lock before trying to get qdisc main lock. 2878 * This permits __QDISC___STATE_RUNNING owner to get the lock more 2879 * often and dequeue packets faster. 2880 */ 2881 contended = qdisc_is_running(q); 2882 if (unlikely(contended)) 2883 spin_lock(&q->busylock); 2884 2885 spin_lock(root_lock); 2886 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2887 kfree_skb(skb); 2888 rc = NET_XMIT_DROP; 2889 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2890 qdisc_run_begin(q)) { 2891 /* 2892 * This is a work-conserving queue; there are no old skbs 2893 * waiting to be sent out; and the qdisc is not running - 2894 * xmit the skb directly. 2895 */ 2896 2897 qdisc_bstats_update(q, skb); 2898 2899 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 2900 if (unlikely(contended)) { 2901 spin_unlock(&q->busylock); 2902 contended = false; 2903 } 2904 __qdisc_run(q); 2905 } else 2906 qdisc_run_end(q); 2907 2908 rc = NET_XMIT_SUCCESS; 2909 } else { 2910 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2911 if (qdisc_run_begin(q)) { 2912 if (unlikely(contended)) { 2913 spin_unlock(&q->busylock); 2914 contended = false; 2915 } 2916 __qdisc_run(q); 2917 } 2918 } 2919 spin_unlock(root_lock); 2920 if (unlikely(contended)) 2921 spin_unlock(&q->busylock); 2922 return rc; 2923 } 2924 2925 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2926 static void skb_update_prio(struct sk_buff *skb) 2927 { 2928 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2929 2930 if (!skb->priority && skb->sk && map) { 2931 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2932 2933 if (prioidx < map->priomap_len) 2934 skb->priority = map->priomap[prioidx]; 2935 } 2936 } 2937 #else 2938 #define skb_update_prio(skb) 2939 #endif 2940 2941 DEFINE_PER_CPU(int, xmit_recursion); 2942 EXPORT_SYMBOL(xmit_recursion); 2943 2944 #define RECURSION_LIMIT 10 2945 2946 /** 2947 * dev_loopback_xmit - loop back @skb 2948 * @net: network namespace this loopback is happening in 2949 * @sk: sk needed to be a netfilter okfn 2950 * @skb: buffer to transmit 2951 */ 2952 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 2953 { 2954 skb_reset_mac_header(skb); 2955 __skb_pull(skb, skb_network_offset(skb)); 2956 skb->pkt_type = PACKET_LOOPBACK; 2957 skb->ip_summed = CHECKSUM_UNNECESSARY; 2958 WARN_ON(!skb_dst(skb)); 2959 skb_dst_force(skb); 2960 netif_rx_ni(skb); 2961 return 0; 2962 } 2963 EXPORT_SYMBOL(dev_loopback_xmit); 2964 2965 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2966 { 2967 #ifdef CONFIG_XPS 2968 struct xps_dev_maps *dev_maps; 2969 struct xps_map *map; 2970 int queue_index = -1; 2971 2972 rcu_read_lock(); 2973 dev_maps = rcu_dereference(dev->xps_maps); 2974 if (dev_maps) { 2975 map = rcu_dereference( 2976 dev_maps->cpu_map[skb->sender_cpu - 1]); 2977 if (map) { 2978 if (map->len == 1) 2979 queue_index = map->queues[0]; 2980 else 2981 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 2982 map->len)]; 2983 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2984 queue_index = -1; 2985 } 2986 } 2987 rcu_read_unlock(); 2988 2989 return queue_index; 2990 #else 2991 return -1; 2992 #endif 2993 } 2994 2995 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 2996 { 2997 struct sock *sk = skb->sk; 2998 int queue_index = sk_tx_queue_get(sk); 2999 3000 if (queue_index < 0 || skb->ooo_okay || 3001 queue_index >= dev->real_num_tx_queues) { 3002 int new_index = get_xps_queue(dev, skb); 3003 if (new_index < 0) 3004 new_index = skb_tx_hash(dev, skb); 3005 3006 if (queue_index != new_index && sk && 3007 sk_fullsock(sk) && 3008 rcu_access_pointer(sk->sk_dst_cache)) 3009 sk_tx_queue_set(sk, new_index); 3010 3011 queue_index = new_index; 3012 } 3013 3014 return queue_index; 3015 } 3016 3017 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3018 struct sk_buff *skb, 3019 void *accel_priv) 3020 { 3021 int queue_index = 0; 3022 3023 #ifdef CONFIG_XPS 3024 if (skb->sender_cpu == 0) 3025 skb->sender_cpu = raw_smp_processor_id() + 1; 3026 #endif 3027 3028 if (dev->real_num_tx_queues != 1) { 3029 const struct net_device_ops *ops = dev->netdev_ops; 3030 if (ops->ndo_select_queue) 3031 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3032 __netdev_pick_tx); 3033 else 3034 queue_index = __netdev_pick_tx(dev, skb); 3035 3036 if (!accel_priv) 3037 queue_index = netdev_cap_txqueue(dev, queue_index); 3038 } 3039 3040 skb_set_queue_mapping(skb, queue_index); 3041 return netdev_get_tx_queue(dev, queue_index); 3042 } 3043 3044 /** 3045 * __dev_queue_xmit - transmit a buffer 3046 * @skb: buffer to transmit 3047 * @accel_priv: private data used for L2 forwarding offload 3048 * 3049 * Queue a buffer for transmission to a network device. The caller must 3050 * have set the device and priority and built the buffer before calling 3051 * this function. The function can be called from an interrupt. 3052 * 3053 * A negative errno code is returned on a failure. A success does not 3054 * guarantee the frame will be transmitted as it may be dropped due 3055 * to congestion or traffic shaping. 3056 * 3057 * ----------------------------------------------------------------------------------- 3058 * I notice this method can also return errors from the queue disciplines, 3059 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3060 * be positive. 3061 * 3062 * Regardless of the return value, the skb is consumed, so it is currently 3063 * difficult to retry a send to this method. (You can bump the ref count 3064 * before sending to hold a reference for retry if you are careful.) 3065 * 3066 * When calling this method, interrupts MUST be enabled. This is because 3067 * the BH enable code must have IRQs enabled so that it will not deadlock. 3068 * --BLG 3069 */ 3070 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3071 { 3072 struct net_device *dev = skb->dev; 3073 struct netdev_queue *txq; 3074 struct Qdisc *q; 3075 int rc = -ENOMEM; 3076 3077 skb_reset_mac_header(skb); 3078 3079 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3080 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3081 3082 /* Disable soft irqs for various locks below. Also 3083 * stops preemption for RCU. 3084 */ 3085 rcu_read_lock_bh(); 3086 3087 skb_update_prio(skb); 3088 3089 /* If device/qdisc don't need skb->dst, release it right now while 3090 * its hot in this cpu cache. 3091 */ 3092 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3093 skb_dst_drop(skb); 3094 else 3095 skb_dst_force(skb); 3096 3097 #ifdef CONFIG_NET_SWITCHDEV 3098 /* Don't forward if offload device already forwarded */ 3099 if (skb->offload_fwd_mark && 3100 skb->offload_fwd_mark == dev->offload_fwd_mark) { 3101 consume_skb(skb); 3102 rc = NET_XMIT_SUCCESS; 3103 goto out; 3104 } 3105 #endif 3106 3107 txq = netdev_pick_tx(dev, skb, accel_priv); 3108 q = rcu_dereference_bh(txq->qdisc); 3109 3110 #ifdef CONFIG_NET_CLS_ACT 3111 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 3112 #endif 3113 trace_net_dev_queue(skb); 3114 if (q->enqueue) { 3115 rc = __dev_xmit_skb(skb, q, dev, txq); 3116 goto out; 3117 } 3118 3119 /* The device has no queue. Common case for software devices: 3120 loopback, all the sorts of tunnels... 3121 3122 Really, it is unlikely that netif_tx_lock protection is necessary 3123 here. (f.e. loopback and IP tunnels are clean ignoring statistics 3124 counters.) 3125 However, it is possible, that they rely on protection 3126 made by us here. 3127 3128 Check this and shot the lock. It is not prone from deadlocks. 3129 Either shot noqueue qdisc, it is even simpler 8) 3130 */ 3131 if (dev->flags & IFF_UP) { 3132 int cpu = smp_processor_id(); /* ok because BHs are off */ 3133 3134 if (txq->xmit_lock_owner != cpu) { 3135 3136 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 3137 goto recursion_alert; 3138 3139 skb = validate_xmit_skb(skb, dev); 3140 if (!skb) 3141 goto drop; 3142 3143 HARD_TX_LOCK(dev, txq, cpu); 3144 3145 if (!netif_xmit_stopped(txq)) { 3146 __this_cpu_inc(xmit_recursion); 3147 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3148 __this_cpu_dec(xmit_recursion); 3149 if (dev_xmit_complete(rc)) { 3150 HARD_TX_UNLOCK(dev, txq); 3151 goto out; 3152 } 3153 } 3154 HARD_TX_UNLOCK(dev, txq); 3155 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3156 dev->name); 3157 } else { 3158 /* Recursion is detected! It is possible, 3159 * unfortunately 3160 */ 3161 recursion_alert: 3162 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3163 dev->name); 3164 } 3165 } 3166 3167 rc = -ENETDOWN; 3168 drop: 3169 rcu_read_unlock_bh(); 3170 3171 atomic_long_inc(&dev->tx_dropped); 3172 kfree_skb_list(skb); 3173 return rc; 3174 out: 3175 rcu_read_unlock_bh(); 3176 return rc; 3177 } 3178 3179 int dev_queue_xmit(struct sk_buff *skb) 3180 { 3181 return __dev_queue_xmit(skb, NULL); 3182 } 3183 EXPORT_SYMBOL(dev_queue_xmit); 3184 3185 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3186 { 3187 return __dev_queue_xmit(skb, accel_priv); 3188 } 3189 EXPORT_SYMBOL(dev_queue_xmit_accel); 3190 3191 3192 /*======================================================================= 3193 Receiver routines 3194 =======================================================================*/ 3195 3196 int netdev_max_backlog __read_mostly = 1000; 3197 EXPORT_SYMBOL(netdev_max_backlog); 3198 3199 int netdev_tstamp_prequeue __read_mostly = 1; 3200 int netdev_budget __read_mostly = 300; 3201 int weight_p __read_mostly = 64; /* old backlog weight */ 3202 3203 /* Called with irq disabled */ 3204 static inline void ____napi_schedule(struct softnet_data *sd, 3205 struct napi_struct *napi) 3206 { 3207 list_add_tail(&napi->poll_list, &sd->poll_list); 3208 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3209 } 3210 3211 #ifdef CONFIG_RPS 3212 3213 /* One global table that all flow-based protocols share. */ 3214 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3215 EXPORT_SYMBOL(rps_sock_flow_table); 3216 u32 rps_cpu_mask __read_mostly; 3217 EXPORT_SYMBOL(rps_cpu_mask); 3218 3219 struct static_key rps_needed __read_mostly; 3220 3221 static struct rps_dev_flow * 3222 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3223 struct rps_dev_flow *rflow, u16 next_cpu) 3224 { 3225 if (next_cpu < nr_cpu_ids) { 3226 #ifdef CONFIG_RFS_ACCEL 3227 struct netdev_rx_queue *rxqueue; 3228 struct rps_dev_flow_table *flow_table; 3229 struct rps_dev_flow *old_rflow; 3230 u32 flow_id; 3231 u16 rxq_index; 3232 int rc; 3233 3234 /* Should we steer this flow to a different hardware queue? */ 3235 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3236 !(dev->features & NETIF_F_NTUPLE)) 3237 goto out; 3238 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3239 if (rxq_index == skb_get_rx_queue(skb)) 3240 goto out; 3241 3242 rxqueue = dev->_rx + rxq_index; 3243 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3244 if (!flow_table) 3245 goto out; 3246 flow_id = skb_get_hash(skb) & flow_table->mask; 3247 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3248 rxq_index, flow_id); 3249 if (rc < 0) 3250 goto out; 3251 old_rflow = rflow; 3252 rflow = &flow_table->flows[flow_id]; 3253 rflow->filter = rc; 3254 if (old_rflow->filter == rflow->filter) 3255 old_rflow->filter = RPS_NO_FILTER; 3256 out: 3257 #endif 3258 rflow->last_qtail = 3259 per_cpu(softnet_data, next_cpu).input_queue_head; 3260 } 3261 3262 rflow->cpu = next_cpu; 3263 return rflow; 3264 } 3265 3266 /* 3267 * get_rps_cpu is called from netif_receive_skb and returns the target 3268 * CPU from the RPS map of the receiving queue for a given skb. 3269 * rcu_read_lock must be held on entry. 3270 */ 3271 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3272 struct rps_dev_flow **rflowp) 3273 { 3274 const struct rps_sock_flow_table *sock_flow_table; 3275 struct netdev_rx_queue *rxqueue = dev->_rx; 3276 struct rps_dev_flow_table *flow_table; 3277 struct rps_map *map; 3278 int cpu = -1; 3279 u32 tcpu; 3280 u32 hash; 3281 3282 if (skb_rx_queue_recorded(skb)) { 3283 u16 index = skb_get_rx_queue(skb); 3284 3285 if (unlikely(index >= dev->real_num_rx_queues)) { 3286 WARN_ONCE(dev->real_num_rx_queues > 1, 3287 "%s received packet on queue %u, but number " 3288 "of RX queues is %u\n", 3289 dev->name, index, dev->real_num_rx_queues); 3290 goto done; 3291 } 3292 rxqueue += index; 3293 } 3294 3295 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3296 3297 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3298 map = rcu_dereference(rxqueue->rps_map); 3299 if (!flow_table && !map) 3300 goto done; 3301 3302 skb_reset_network_header(skb); 3303 hash = skb_get_hash(skb); 3304 if (!hash) 3305 goto done; 3306 3307 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3308 if (flow_table && sock_flow_table) { 3309 struct rps_dev_flow *rflow; 3310 u32 next_cpu; 3311 u32 ident; 3312 3313 /* First check into global flow table if there is a match */ 3314 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3315 if ((ident ^ hash) & ~rps_cpu_mask) 3316 goto try_rps; 3317 3318 next_cpu = ident & rps_cpu_mask; 3319 3320 /* OK, now we know there is a match, 3321 * we can look at the local (per receive queue) flow table 3322 */ 3323 rflow = &flow_table->flows[hash & flow_table->mask]; 3324 tcpu = rflow->cpu; 3325 3326 /* 3327 * If the desired CPU (where last recvmsg was done) is 3328 * different from current CPU (one in the rx-queue flow 3329 * table entry), switch if one of the following holds: 3330 * - Current CPU is unset (>= nr_cpu_ids). 3331 * - Current CPU is offline. 3332 * - The current CPU's queue tail has advanced beyond the 3333 * last packet that was enqueued using this table entry. 3334 * This guarantees that all previous packets for the flow 3335 * have been dequeued, thus preserving in order delivery. 3336 */ 3337 if (unlikely(tcpu != next_cpu) && 3338 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3339 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3340 rflow->last_qtail)) >= 0)) { 3341 tcpu = next_cpu; 3342 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3343 } 3344 3345 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3346 *rflowp = rflow; 3347 cpu = tcpu; 3348 goto done; 3349 } 3350 } 3351 3352 try_rps: 3353 3354 if (map) { 3355 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3356 if (cpu_online(tcpu)) { 3357 cpu = tcpu; 3358 goto done; 3359 } 3360 } 3361 3362 done: 3363 return cpu; 3364 } 3365 3366 #ifdef CONFIG_RFS_ACCEL 3367 3368 /** 3369 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3370 * @dev: Device on which the filter was set 3371 * @rxq_index: RX queue index 3372 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3373 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3374 * 3375 * Drivers that implement ndo_rx_flow_steer() should periodically call 3376 * this function for each installed filter and remove the filters for 3377 * which it returns %true. 3378 */ 3379 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3380 u32 flow_id, u16 filter_id) 3381 { 3382 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3383 struct rps_dev_flow_table *flow_table; 3384 struct rps_dev_flow *rflow; 3385 bool expire = true; 3386 unsigned int cpu; 3387 3388 rcu_read_lock(); 3389 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3390 if (flow_table && flow_id <= flow_table->mask) { 3391 rflow = &flow_table->flows[flow_id]; 3392 cpu = ACCESS_ONCE(rflow->cpu); 3393 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3394 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3395 rflow->last_qtail) < 3396 (int)(10 * flow_table->mask))) 3397 expire = false; 3398 } 3399 rcu_read_unlock(); 3400 return expire; 3401 } 3402 EXPORT_SYMBOL(rps_may_expire_flow); 3403 3404 #endif /* CONFIG_RFS_ACCEL */ 3405 3406 /* Called from hardirq (IPI) context */ 3407 static void rps_trigger_softirq(void *data) 3408 { 3409 struct softnet_data *sd = data; 3410 3411 ____napi_schedule(sd, &sd->backlog); 3412 sd->received_rps++; 3413 } 3414 3415 #endif /* CONFIG_RPS */ 3416 3417 /* 3418 * Check if this softnet_data structure is another cpu one 3419 * If yes, queue it to our IPI list and return 1 3420 * If no, return 0 3421 */ 3422 static int rps_ipi_queued(struct softnet_data *sd) 3423 { 3424 #ifdef CONFIG_RPS 3425 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3426 3427 if (sd != mysd) { 3428 sd->rps_ipi_next = mysd->rps_ipi_list; 3429 mysd->rps_ipi_list = sd; 3430 3431 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3432 return 1; 3433 } 3434 #endif /* CONFIG_RPS */ 3435 return 0; 3436 } 3437 3438 #ifdef CONFIG_NET_FLOW_LIMIT 3439 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3440 #endif 3441 3442 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3443 { 3444 #ifdef CONFIG_NET_FLOW_LIMIT 3445 struct sd_flow_limit *fl; 3446 struct softnet_data *sd; 3447 unsigned int old_flow, new_flow; 3448 3449 if (qlen < (netdev_max_backlog >> 1)) 3450 return false; 3451 3452 sd = this_cpu_ptr(&softnet_data); 3453 3454 rcu_read_lock(); 3455 fl = rcu_dereference(sd->flow_limit); 3456 if (fl) { 3457 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3458 old_flow = fl->history[fl->history_head]; 3459 fl->history[fl->history_head] = new_flow; 3460 3461 fl->history_head++; 3462 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3463 3464 if (likely(fl->buckets[old_flow])) 3465 fl->buckets[old_flow]--; 3466 3467 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3468 fl->count++; 3469 rcu_read_unlock(); 3470 return true; 3471 } 3472 } 3473 rcu_read_unlock(); 3474 #endif 3475 return false; 3476 } 3477 3478 /* 3479 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3480 * queue (may be a remote CPU queue). 3481 */ 3482 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3483 unsigned int *qtail) 3484 { 3485 struct softnet_data *sd; 3486 unsigned long flags; 3487 unsigned int qlen; 3488 3489 sd = &per_cpu(softnet_data, cpu); 3490 3491 local_irq_save(flags); 3492 3493 rps_lock(sd); 3494 if (!netif_running(skb->dev)) 3495 goto drop; 3496 qlen = skb_queue_len(&sd->input_pkt_queue); 3497 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3498 if (qlen) { 3499 enqueue: 3500 __skb_queue_tail(&sd->input_pkt_queue, skb); 3501 input_queue_tail_incr_save(sd, qtail); 3502 rps_unlock(sd); 3503 local_irq_restore(flags); 3504 return NET_RX_SUCCESS; 3505 } 3506 3507 /* Schedule NAPI for backlog device 3508 * We can use non atomic operation since we own the queue lock 3509 */ 3510 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3511 if (!rps_ipi_queued(sd)) 3512 ____napi_schedule(sd, &sd->backlog); 3513 } 3514 goto enqueue; 3515 } 3516 3517 drop: 3518 sd->dropped++; 3519 rps_unlock(sd); 3520 3521 local_irq_restore(flags); 3522 3523 atomic_long_inc(&skb->dev->rx_dropped); 3524 kfree_skb(skb); 3525 return NET_RX_DROP; 3526 } 3527 3528 static int netif_rx_internal(struct sk_buff *skb) 3529 { 3530 int ret; 3531 3532 net_timestamp_check(netdev_tstamp_prequeue, skb); 3533 3534 trace_netif_rx(skb); 3535 #ifdef CONFIG_RPS 3536 if (static_key_false(&rps_needed)) { 3537 struct rps_dev_flow voidflow, *rflow = &voidflow; 3538 int cpu; 3539 3540 preempt_disable(); 3541 rcu_read_lock(); 3542 3543 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3544 if (cpu < 0) 3545 cpu = smp_processor_id(); 3546 3547 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3548 3549 rcu_read_unlock(); 3550 preempt_enable(); 3551 } else 3552 #endif 3553 { 3554 unsigned int qtail; 3555 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3556 put_cpu(); 3557 } 3558 return ret; 3559 } 3560 3561 /** 3562 * netif_rx - post buffer to the network code 3563 * @skb: buffer to post 3564 * 3565 * This function receives a packet from a device driver and queues it for 3566 * the upper (protocol) levels to process. It always succeeds. The buffer 3567 * may be dropped during processing for congestion control or by the 3568 * protocol layers. 3569 * 3570 * return values: 3571 * NET_RX_SUCCESS (no congestion) 3572 * NET_RX_DROP (packet was dropped) 3573 * 3574 */ 3575 3576 int netif_rx(struct sk_buff *skb) 3577 { 3578 trace_netif_rx_entry(skb); 3579 3580 return netif_rx_internal(skb); 3581 } 3582 EXPORT_SYMBOL(netif_rx); 3583 3584 int netif_rx_ni(struct sk_buff *skb) 3585 { 3586 int err; 3587 3588 trace_netif_rx_ni_entry(skb); 3589 3590 preempt_disable(); 3591 err = netif_rx_internal(skb); 3592 if (local_softirq_pending()) 3593 do_softirq(); 3594 preempt_enable(); 3595 3596 return err; 3597 } 3598 EXPORT_SYMBOL(netif_rx_ni); 3599 3600 static void net_tx_action(struct softirq_action *h) 3601 { 3602 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3603 3604 if (sd->completion_queue) { 3605 struct sk_buff *clist; 3606 3607 local_irq_disable(); 3608 clist = sd->completion_queue; 3609 sd->completion_queue = NULL; 3610 local_irq_enable(); 3611 3612 while (clist) { 3613 struct sk_buff *skb = clist; 3614 clist = clist->next; 3615 3616 WARN_ON(atomic_read(&skb->users)); 3617 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3618 trace_consume_skb(skb); 3619 else 3620 trace_kfree_skb(skb, net_tx_action); 3621 __kfree_skb(skb); 3622 } 3623 } 3624 3625 if (sd->output_queue) { 3626 struct Qdisc *head; 3627 3628 local_irq_disable(); 3629 head = sd->output_queue; 3630 sd->output_queue = NULL; 3631 sd->output_queue_tailp = &sd->output_queue; 3632 local_irq_enable(); 3633 3634 while (head) { 3635 struct Qdisc *q = head; 3636 spinlock_t *root_lock; 3637 3638 head = head->next_sched; 3639 3640 root_lock = qdisc_lock(q); 3641 if (spin_trylock(root_lock)) { 3642 smp_mb__before_atomic(); 3643 clear_bit(__QDISC_STATE_SCHED, 3644 &q->state); 3645 qdisc_run(q); 3646 spin_unlock(root_lock); 3647 } else { 3648 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3649 &q->state)) { 3650 __netif_reschedule(q); 3651 } else { 3652 smp_mb__before_atomic(); 3653 clear_bit(__QDISC_STATE_SCHED, 3654 &q->state); 3655 } 3656 } 3657 } 3658 } 3659 } 3660 3661 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3662 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3663 /* This hook is defined here for ATM LANE */ 3664 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3665 unsigned char *addr) __read_mostly; 3666 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3667 #endif 3668 3669 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3670 struct packet_type **pt_prev, 3671 int *ret, struct net_device *orig_dev) 3672 { 3673 #ifdef CONFIG_NET_CLS_ACT 3674 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 3675 struct tcf_result cl_res; 3676 3677 /* If there's at least one ingress present somewhere (so 3678 * we get here via enabled static key), remaining devices 3679 * that are not configured with an ingress qdisc will bail 3680 * out here. 3681 */ 3682 if (!cl) 3683 return skb; 3684 if (*pt_prev) { 3685 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3686 *pt_prev = NULL; 3687 } 3688 3689 qdisc_skb_cb(skb)->pkt_len = skb->len; 3690 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3691 qdisc_bstats_cpu_update(cl->q, skb); 3692 3693 switch (tc_classify(skb, cl, &cl_res, false)) { 3694 case TC_ACT_OK: 3695 case TC_ACT_RECLASSIFY: 3696 skb->tc_index = TC_H_MIN(cl_res.classid); 3697 break; 3698 case TC_ACT_SHOT: 3699 qdisc_qstats_cpu_drop(cl->q); 3700 case TC_ACT_STOLEN: 3701 case TC_ACT_QUEUED: 3702 kfree_skb(skb); 3703 return NULL; 3704 case TC_ACT_REDIRECT: 3705 /* skb_mac_header check was done by cls/act_bpf, so 3706 * we can safely push the L2 header back before 3707 * redirecting to another netdev 3708 */ 3709 __skb_push(skb, skb->mac_len); 3710 skb_do_redirect(skb); 3711 return NULL; 3712 default: 3713 break; 3714 } 3715 #endif /* CONFIG_NET_CLS_ACT */ 3716 return skb; 3717 } 3718 3719 /** 3720 * netdev_rx_handler_register - register receive handler 3721 * @dev: device to register a handler for 3722 * @rx_handler: receive handler to register 3723 * @rx_handler_data: data pointer that is used by rx handler 3724 * 3725 * Register a receive handler for a device. This handler will then be 3726 * called from __netif_receive_skb. A negative errno code is returned 3727 * on a failure. 3728 * 3729 * The caller must hold the rtnl_mutex. 3730 * 3731 * For a general description of rx_handler, see enum rx_handler_result. 3732 */ 3733 int netdev_rx_handler_register(struct net_device *dev, 3734 rx_handler_func_t *rx_handler, 3735 void *rx_handler_data) 3736 { 3737 ASSERT_RTNL(); 3738 3739 if (dev->rx_handler) 3740 return -EBUSY; 3741 3742 /* Note: rx_handler_data must be set before rx_handler */ 3743 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3744 rcu_assign_pointer(dev->rx_handler, rx_handler); 3745 3746 return 0; 3747 } 3748 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3749 3750 /** 3751 * netdev_rx_handler_unregister - unregister receive handler 3752 * @dev: device to unregister a handler from 3753 * 3754 * Unregister a receive handler from a device. 3755 * 3756 * The caller must hold the rtnl_mutex. 3757 */ 3758 void netdev_rx_handler_unregister(struct net_device *dev) 3759 { 3760 3761 ASSERT_RTNL(); 3762 RCU_INIT_POINTER(dev->rx_handler, NULL); 3763 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3764 * section has a guarantee to see a non NULL rx_handler_data 3765 * as well. 3766 */ 3767 synchronize_net(); 3768 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3769 } 3770 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3771 3772 /* 3773 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3774 * the special handling of PFMEMALLOC skbs. 3775 */ 3776 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3777 { 3778 switch (skb->protocol) { 3779 case htons(ETH_P_ARP): 3780 case htons(ETH_P_IP): 3781 case htons(ETH_P_IPV6): 3782 case htons(ETH_P_8021Q): 3783 case htons(ETH_P_8021AD): 3784 return true; 3785 default: 3786 return false; 3787 } 3788 } 3789 3790 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 3791 int *ret, struct net_device *orig_dev) 3792 { 3793 #ifdef CONFIG_NETFILTER_INGRESS 3794 if (nf_hook_ingress_active(skb)) { 3795 if (*pt_prev) { 3796 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3797 *pt_prev = NULL; 3798 } 3799 3800 return nf_hook_ingress(skb); 3801 } 3802 #endif /* CONFIG_NETFILTER_INGRESS */ 3803 return 0; 3804 } 3805 3806 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3807 { 3808 struct packet_type *ptype, *pt_prev; 3809 rx_handler_func_t *rx_handler; 3810 struct net_device *orig_dev; 3811 bool deliver_exact = false; 3812 int ret = NET_RX_DROP; 3813 __be16 type; 3814 3815 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3816 3817 trace_netif_receive_skb(skb); 3818 3819 orig_dev = skb->dev; 3820 3821 skb_reset_network_header(skb); 3822 if (!skb_transport_header_was_set(skb)) 3823 skb_reset_transport_header(skb); 3824 skb_reset_mac_len(skb); 3825 3826 pt_prev = NULL; 3827 3828 another_round: 3829 skb->skb_iif = skb->dev->ifindex; 3830 3831 __this_cpu_inc(softnet_data.processed); 3832 3833 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3834 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3835 skb = skb_vlan_untag(skb); 3836 if (unlikely(!skb)) 3837 goto out; 3838 } 3839 3840 #ifdef CONFIG_NET_CLS_ACT 3841 if (skb->tc_verd & TC_NCLS) { 3842 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3843 goto ncls; 3844 } 3845 #endif 3846 3847 if (pfmemalloc) 3848 goto skip_taps; 3849 3850 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3851 if (pt_prev) 3852 ret = deliver_skb(skb, pt_prev, orig_dev); 3853 pt_prev = ptype; 3854 } 3855 3856 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 3857 if (pt_prev) 3858 ret = deliver_skb(skb, pt_prev, orig_dev); 3859 pt_prev = ptype; 3860 } 3861 3862 skip_taps: 3863 #ifdef CONFIG_NET_INGRESS 3864 if (static_key_false(&ingress_needed)) { 3865 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3866 if (!skb) 3867 goto out; 3868 3869 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 3870 goto out; 3871 } 3872 #endif 3873 #ifdef CONFIG_NET_CLS_ACT 3874 skb->tc_verd = 0; 3875 ncls: 3876 #endif 3877 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3878 goto drop; 3879 3880 if (skb_vlan_tag_present(skb)) { 3881 if (pt_prev) { 3882 ret = deliver_skb(skb, pt_prev, orig_dev); 3883 pt_prev = NULL; 3884 } 3885 if (vlan_do_receive(&skb)) 3886 goto another_round; 3887 else if (unlikely(!skb)) 3888 goto out; 3889 } 3890 3891 rx_handler = rcu_dereference(skb->dev->rx_handler); 3892 if (rx_handler) { 3893 if (pt_prev) { 3894 ret = deliver_skb(skb, pt_prev, orig_dev); 3895 pt_prev = NULL; 3896 } 3897 switch (rx_handler(&skb)) { 3898 case RX_HANDLER_CONSUMED: 3899 ret = NET_RX_SUCCESS; 3900 goto out; 3901 case RX_HANDLER_ANOTHER: 3902 goto another_round; 3903 case RX_HANDLER_EXACT: 3904 deliver_exact = true; 3905 case RX_HANDLER_PASS: 3906 break; 3907 default: 3908 BUG(); 3909 } 3910 } 3911 3912 if (unlikely(skb_vlan_tag_present(skb))) { 3913 if (skb_vlan_tag_get_id(skb)) 3914 skb->pkt_type = PACKET_OTHERHOST; 3915 /* Note: we might in the future use prio bits 3916 * and set skb->priority like in vlan_do_receive() 3917 * For the time being, just ignore Priority Code Point 3918 */ 3919 skb->vlan_tci = 0; 3920 } 3921 3922 type = skb->protocol; 3923 3924 /* deliver only exact match when indicated */ 3925 if (likely(!deliver_exact)) { 3926 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3927 &ptype_base[ntohs(type) & 3928 PTYPE_HASH_MASK]); 3929 } 3930 3931 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3932 &orig_dev->ptype_specific); 3933 3934 if (unlikely(skb->dev != orig_dev)) { 3935 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3936 &skb->dev->ptype_specific); 3937 } 3938 3939 if (pt_prev) { 3940 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3941 goto drop; 3942 else 3943 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3944 } else { 3945 drop: 3946 atomic_long_inc(&skb->dev->rx_dropped); 3947 kfree_skb(skb); 3948 /* Jamal, now you will not able to escape explaining 3949 * me how you were going to use this. :-) 3950 */ 3951 ret = NET_RX_DROP; 3952 } 3953 3954 out: 3955 return ret; 3956 } 3957 3958 static int __netif_receive_skb(struct sk_buff *skb) 3959 { 3960 int ret; 3961 3962 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3963 unsigned long pflags = current->flags; 3964 3965 /* 3966 * PFMEMALLOC skbs are special, they should 3967 * - be delivered to SOCK_MEMALLOC sockets only 3968 * - stay away from userspace 3969 * - have bounded memory usage 3970 * 3971 * Use PF_MEMALLOC as this saves us from propagating the allocation 3972 * context down to all allocation sites. 3973 */ 3974 current->flags |= PF_MEMALLOC; 3975 ret = __netif_receive_skb_core(skb, true); 3976 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3977 } else 3978 ret = __netif_receive_skb_core(skb, false); 3979 3980 return ret; 3981 } 3982 3983 static int netif_receive_skb_internal(struct sk_buff *skb) 3984 { 3985 int ret; 3986 3987 net_timestamp_check(netdev_tstamp_prequeue, skb); 3988 3989 if (skb_defer_rx_timestamp(skb)) 3990 return NET_RX_SUCCESS; 3991 3992 rcu_read_lock(); 3993 3994 #ifdef CONFIG_RPS 3995 if (static_key_false(&rps_needed)) { 3996 struct rps_dev_flow voidflow, *rflow = &voidflow; 3997 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 3998 3999 if (cpu >= 0) { 4000 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4001 rcu_read_unlock(); 4002 return ret; 4003 } 4004 } 4005 #endif 4006 ret = __netif_receive_skb(skb); 4007 rcu_read_unlock(); 4008 return ret; 4009 } 4010 4011 /** 4012 * netif_receive_skb - process receive buffer from network 4013 * @skb: buffer to process 4014 * 4015 * netif_receive_skb() is the main receive data processing function. 4016 * It always succeeds. The buffer may be dropped during processing 4017 * for congestion control or by the protocol layers. 4018 * 4019 * This function may only be called from softirq context and interrupts 4020 * should be enabled. 4021 * 4022 * Return values (usually ignored): 4023 * NET_RX_SUCCESS: no congestion 4024 * NET_RX_DROP: packet was dropped 4025 */ 4026 int netif_receive_skb(struct sk_buff *skb) 4027 { 4028 trace_netif_receive_skb_entry(skb); 4029 4030 return netif_receive_skb_internal(skb); 4031 } 4032 EXPORT_SYMBOL(netif_receive_skb); 4033 4034 /* Network device is going away, flush any packets still pending 4035 * Called with irqs disabled. 4036 */ 4037 static void flush_backlog(void *arg) 4038 { 4039 struct net_device *dev = arg; 4040 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4041 struct sk_buff *skb, *tmp; 4042 4043 rps_lock(sd); 4044 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4045 if (skb->dev == dev) { 4046 __skb_unlink(skb, &sd->input_pkt_queue); 4047 kfree_skb(skb); 4048 input_queue_head_incr(sd); 4049 } 4050 } 4051 rps_unlock(sd); 4052 4053 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4054 if (skb->dev == dev) { 4055 __skb_unlink(skb, &sd->process_queue); 4056 kfree_skb(skb); 4057 input_queue_head_incr(sd); 4058 } 4059 } 4060 } 4061 4062 static int napi_gro_complete(struct sk_buff *skb) 4063 { 4064 struct packet_offload *ptype; 4065 __be16 type = skb->protocol; 4066 struct list_head *head = &offload_base; 4067 int err = -ENOENT; 4068 4069 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4070 4071 if (NAPI_GRO_CB(skb)->count == 1) { 4072 skb_shinfo(skb)->gso_size = 0; 4073 goto out; 4074 } 4075 4076 rcu_read_lock(); 4077 list_for_each_entry_rcu(ptype, head, list) { 4078 if (ptype->type != type || !ptype->callbacks.gro_complete) 4079 continue; 4080 4081 err = ptype->callbacks.gro_complete(skb, 0); 4082 break; 4083 } 4084 rcu_read_unlock(); 4085 4086 if (err) { 4087 WARN_ON(&ptype->list == head); 4088 kfree_skb(skb); 4089 return NET_RX_SUCCESS; 4090 } 4091 4092 out: 4093 return netif_receive_skb_internal(skb); 4094 } 4095 4096 /* napi->gro_list contains packets ordered by age. 4097 * youngest packets at the head of it. 4098 * Complete skbs in reverse order to reduce latencies. 4099 */ 4100 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4101 { 4102 struct sk_buff *skb, *prev = NULL; 4103 4104 /* scan list and build reverse chain */ 4105 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4106 skb->prev = prev; 4107 prev = skb; 4108 } 4109 4110 for (skb = prev; skb; skb = prev) { 4111 skb->next = NULL; 4112 4113 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4114 return; 4115 4116 prev = skb->prev; 4117 napi_gro_complete(skb); 4118 napi->gro_count--; 4119 } 4120 4121 napi->gro_list = NULL; 4122 } 4123 EXPORT_SYMBOL(napi_gro_flush); 4124 4125 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4126 { 4127 struct sk_buff *p; 4128 unsigned int maclen = skb->dev->hard_header_len; 4129 u32 hash = skb_get_hash_raw(skb); 4130 4131 for (p = napi->gro_list; p; p = p->next) { 4132 unsigned long diffs; 4133 4134 NAPI_GRO_CB(p)->flush = 0; 4135 4136 if (hash != skb_get_hash_raw(p)) { 4137 NAPI_GRO_CB(p)->same_flow = 0; 4138 continue; 4139 } 4140 4141 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4142 diffs |= p->vlan_tci ^ skb->vlan_tci; 4143 if (maclen == ETH_HLEN) 4144 diffs |= compare_ether_header(skb_mac_header(p), 4145 skb_mac_header(skb)); 4146 else if (!diffs) 4147 diffs = memcmp(skb_mac_header(p), 4148 skb_mac_header(skb), 4149 maclen); 4150 NAPI_GRO_CB(p)->same_flow = !diffs; 4151 } 4152 } 4153 4154 static void skb_gro_reset_offset(struct sk_buff *skb) 4155 { 4156 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4157 const skb_frag_t *frag0 = &pinfo->frags[0]; 4158 4159 NAPI_GRO_CB(skb)->data_offset = 0; 4160 NAPI_GRO_CB(skb)->frag0 = NULL; 4161 NAPI_GRO_CB(skb)->frag0_len = 0; 4162 4163 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4164 pinfo->nr_frags && 4165 !PageHighMem(skb_frag_page(frag0))) { 4166 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4167 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 4168 } 4169 } 4170 4171 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4172 { 4173 struct skb_shared_info *pinfo = skb_shinfo(skb); 4174 4175 BUG_ON(skb->end - skb->tail < grow); 4176 4177 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4178 4179 skb->data_len -= grow; 4180 skb->tail += grow; 4181 4182 pinfo->frags[0].page_offset += grow; 4183 skb_frag_size_sub(&pinfo->frags[0], grow); 4184 4185 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4186 skb_frag_unref(skb, 0); 4187 memmove(pinfo->frags, pinfo->frags + 1, 4188 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4189 } 4190 } 4191 4192 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4193 { 4194 struct sk_buff **pp = NULL; 4195 struct packet_offload *ptype; 4196 __be16 type = skb->protocol; 4197 struct list_head *head = &offload_base; 4198 int same_flow; 4199 enum gro_result ret; 4200 int grow; 4201 4202 if (!(skb->dev->features & NETIF_F_GRO)) 4203 goto normal; 4204 4205 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad) 4206 goto normal; 4207 4208 gro_list_prepare(napi, skb); 4209 4210 rcu_read_lock(); 4211 list_for_each_entry_rcu(ptype, head, list) { 4212 if (ptype->type != type || !ptype->callbacks.gro_receive) 4213 continue; 4214 4215 skb_set_network_header(skb, skb_gro_offset(skb)); 4216 skb_reset_mac_len(skb); 4217 NAPI_GRO_CB(skb)->same_flow = 0; 4218 NAPI_GRO_CB(skb)->flush = 0; 4219 NAPI_GRO_CB(skb)->free = 0; 4220 NAPI_GRO_CB(skb)->udp_mark = 0; 4221 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4222 4223 /* Setup for GRO checksum validation */ 4224 switch (skb->ip_summed) { 4225 case CHECKSUM_COMPLETE: 4226 NAPI_GRO_CB(skb)->csum = skb->csum; 4227 NAPI_GRO_CB(skb)->csum_valid = 1; 4228 NAPI_GRO_CB(skb)->csum_cnt = 0; 4229 break; 4230 case CHECKSUM_UNNECESSARY: 4231 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4232 NAPI_GRO_CB(skb)->csum_valid = 0; 4233 break; 4234 default: 4235 NAPI_GRO_CB(skb)->csum_cnt = 0; 4236 NAPI_GRO_CB(skb)->csum_valid = 0; 4237 } 4238 4239 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4240 break; 4241 } 4242 rcu_read_unlock(); 4243 4244 if (&ptype->list == head) 4245 goto normal; 4246 4247 same_flow = NAPI_GRO_CB(skb)->same_flow; 4248 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4249 4250 if (pp) { 4251 struct sk_buff *nskb = *pp; 4252 4253 *pp = nskb->next; 4254 nskb->next = NULL; 4255 napi_gro_complete(nskb); 4256 napi->gro_count--; 4257 } 4258 4259 if (same_flow) 4260 goto ok; 4261 4262 if (NAPI_GRO_CB(skb)->flush) 4263 goto normal; 4264 4265 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4266 struct sk_buff *nskb = napi->gro_list; 4267 4268 /* locate the end of the list to select the 'oldest' flow */ 4269 while (nskb->next) { 4270 pp = &nskb->next; 4271 nskb = *pp; 4272 } 4273 *pp = NULL; 4274 nskb->next = NULL; 4275 napi_gro_complete(nskb); 4276 } else { 4277 napi->gro_count++; 4278 } 4279 NAPI_GRO_CB(skb)->count = 1; 4280 NAPI_GRO_CB(skb)->age = jiffies; 4281 NAPI_GRO_CB(skb)->last = skb; 4282 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4283 skb->next = napi->gro_list; 4284 napi->gro_list = skb; 4285 ret = GRO_HELD; 4286 4287 pull: 4288 grow = skb_gro_offset(skb) - skb_headlen(skb); 4289 if (grow > 0) 4290 gro_pull_from_frag0(skb, grow); 4291 ok: 4292 return ret; 4293 4294 normal: 4295 ret = GRO_NORMAL; 4296 goto pull; 4297 } 4298 4299 struct packet_offload *gro_find_receive_by_type(__be16 type) 4300 { 4301 struct list_head *offload_head = &offload_base; 4302 struct packet_offload *ptype; 4303 4304 list_for_each_entry_rcu(ptype, offload_head, list) { 4305 if (ptype->type != type || !ptype->callbacks.gro_receive) 4306 continue; 4307 return ptype; 4308 } 4309 return NULL; 4310 } 4311 EXPORT_SYMBOL(gro_find_receive_by_type); 4312 4313 struct packet_offload *gro_find_complete_by_type(__be16 type) 4314 { 4315 struct list_head *offload_head = &offload_base; 4316 struct packet_offload *ptype; 4317 4318 list_for_each_entry_rcu(ptype, offload_head, list) { 4319 if (ptype->type != type || !ptype->callbacks.gro_complete) 4320 continue; 4321 return ptype; 4322 } 4323 return NULL; 4324 } 4325 EXPORT_SYMBOL(gro_find_complete_by_type); 4326 4327 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4328 { 4329 switch (ret) { 4330 case GRO_NORMAL: 4331 if (netif_receive_skb_internal(skb)) 4332 ret = GRO_DROP; 4333 break; 4334 4335 case GRO_DROP: 4336 kfree_skb(skb); 4337 break; 4338 4339 case GRO_MERGED_FREE: 4340 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4341 kmem_cache_free(skbuff_head_cache, skb); 4342 else 4343 __kfree_skb(skb); 4344 break; 4345 4346 case GRO_HELD: 4347 case GRO_MERGED: 4348 break; 4349 } 4350 4351 return ret; 4352 } 4353 4354 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4355 { 4356 trace_napi_gro_receive_entry(skb); 4357 4358 skb_gro_reset_offset(skb); 4359 4360 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4361 } 4362 EXPORT_SYMBOL(napi_gro_receive); 4363 4364 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4365 { 4366 if (unlikely(skb->pfmemalloc)) { 4367 consume_skb(skb); 4368 return; 4369 } 4370 __skb_pull(skb, skb_headlen(skb)); 4371 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4372 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4373 skb->vlan_tci = 0; 4374 skb->dev = napi->dev; 4375 skb->skb_iif = 0; 4376 skb->encapsulation = 0; 4377 skb_shinfo(skb)->gso_type = 0; 4378 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4379 4380 napi->skb = skb; 4381 } 4382 4383 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4384 { 4385 struct sk_buff *skb = napi->skb; 4386 4387 if (!skb) { 4388 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4389 napi->skb = skb; 4390 } 4391 return skb; 4392 } 4393 EXPORT_SYMBOL(napi_get_frags); 4394 4395 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4396 struct sk_buff *skb, 4397 gro_result_t ret) 4398 { 4399 switch (ret) { 4400 case GRO_NORMAL: 4401 case GRO_HELD: 4402 __skb_push(skb, ETH_HLEN); 4403 skb->protocol = eth_type_trans(skb, skb->dev); 4404 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4405 ret = GRO_DROP; 4406 break; 4407 4408 case GRO_DROP: 4409 case GRO_MERGED_FREE: 4410 napi_reuse_skb(napi, skb); 4411 break; 4412 4413 case GRO_MERGED: 4414 break; 4415 } 4416 4417 return ret; 4418 } 4419 4420 /* Upper GRO stack assumes network header starts at gro_offset=0 4421 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4422 * We copy ethernet header into skb->data to have a common layout. 4423 */ 4424 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4425 { 4426 struct sk_buff *skb = napi->skb; 4427 const struct ethhdr *eth; 4428 unsigned int hlen = sizeof(*eth); 4429 4430 napi->skb = NULL; 4431 4432 skb_reset_mac_header(skb); 4433 skb_gro_reset_offset(skb); 4434 4435 eth = skb_gro_header_fast(skb, 0); 4436 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4437 eth = skb_gro_header_slow(skb, hlen, 0); 4438 if (unlikely(!eth)) { 4439 napi_reuse_skb(napi, skb); 4440 return NULL; 4441 } 4442 } else { 4443 gro_pull_from_frag0(skb, hlen); 4444 NAPI_GRO_CB(skb)->frag0 += hlen; 4445 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4446 } 4447 __skb_pull(skb, hlen); 4448 4449 /* 4450 * This works because the only protocols we care about don't require 4451 * special handling. 4452 * We'll fix it up properly in napi_frags_finish() 4453 */ 4454 skb->protocol = eth->h_proto; 4455 4456 return skb; 4457 } 4458 4459 gro_result_t napi_gro_frags(struct napi_struct *napi) 4460 { 4461 struct sk_buff *skb = napi_frags_skb(napi); 4462 4463 if (!skb) 4464 return GRO_DROP; 4465 4466 trace_napi_gro_frags_entry(skb); 4467 4468 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4469 } 4470 EXPORT_SYMBOL(napi_gro_frags); 4471 4472 /* Compute the checksum from gro_offset and return the folded value 4473 * after adding in any pseudo checksum. 4474 */ 4475 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4476 { 4477 __wsum wsum; 4478 __sum16 sum; 4479 4480 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4481 4482 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4483 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4484 if (likely(!sum)) { 4485 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4486 !skb->csum_complete_sw) 4487 netdev_rx_csum_fault(skb->dev); 4488 } 4489 4490 NAPI_GRO_CB(skb)->csum = wsum; 4491 NAPI_GRO_CB(skb)->csum_valid = 1; 4492 4493 return sum; 4494 } 4495 EXPORT_SYMBOL(__skb_gro_checksum_complete); 4496 4497 /* 4498 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4499 * Note: called with local irq disabled, but exits with local irq enabled. 4500 */ 4501 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4502 { 4503 #ifdef CONFIG_RPS 4504 struct softnet_data *remsd = sd->rps_ipi_list; 4505 4506 if (remsd) { 4507 sd->rps_ipi_list = NULL; 4508 4509 local_irq_enable(); 4510 4511 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4512 while (remsd) { 4513 struct softnet_data *next = remsd->rps_ipi_next; 4514 4515 if (cpu_online(remsd->cpu)) 4516 smp_call_function_single_async(remsd->cpu, 4517 &remsd->csd); 4518 remsd = next; 4519 } 4520 } else 4521 #endif 4522 local_irq_enable(); 4523 } 4524 4525 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4526 { 4527 #ifdef CONFIG_RPS 4528 return sd->rps_ipi_list != NULL; 4529 #else 4530 return false; 4531 #endif 4532 } 4533 4534 static int process_backlog(struct napi_struct *napi, int quota) 4535 { 4536 int work = 0; 4537 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4538 4539 /* Check if we have pending ipi, its better to send them now, 4540 * not waiting net_rx_action() end. 4541 */ 4542 if (sd_has_rps_ipi_waiting(sd)) { 4543 local_irq_disable(); 4544 net_rps_action_and_irq_enable(sd); 4545 } 4546 4547 napi->weight = weight_p; 4548 local_irq_disable(); 4549 while (1) { 4550 struct sk_buff *skb; 4551 4552 while ((skb = __skb_dequeue(&sd->process_queue))) { 4553 rcu_read_lock(); 4554 local_irq_enable(); 4555 __netif_receive_skb(skb); 4556 rcu_read_unlock(); 4557 local_irq_disable(); 4558 input_queue_head_incr(sd); 4559 if (++work >= quota) { 4560 local_irq_enable(); 4561 return work; 4562 } 4563 } 4564 4565 rps_lock(sd); 4566 if (skb_queue_empty(&sd->input_pkt_queue)) { 4567 /* 4568 * Inline a custom version of __napi_complete(). 4569 * only current cpu owns and manipulates this napi, 4570 * and NAPI_STATE_SCHED is the only possible flag set 4571 * on backlog. 4572 * We can use a plain write instead of clear_bit(), 4573 * and we dont need an smp_mb() memory barrier. 4574 */ 4575 napi->state = 0; 4576 rps_unlock(sd); 4577 4578 break; 4579 } 4580 4581 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4582 &sd->process_queue); 4583 rps_unlock(sd); 4584 } 4585 local_irq_enable(); 4586 4587 return work; 4588 } 4589 4590 /** 4591 * __napi_schedule - schedule for receive 4592 * @n: entry to schedule 4593 * 4594 * The entry's receive function will be scheduled to run. 4595 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 4596 */ 4597 void __napi_schedule(struct napi_struct *n) 4598 { 4599 unsigned long flags; 4600 4601 local_irq_save(flags); 4602 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4603 local_irq_restore(flags); 4604 } 4605 EXPORT_SYMBOL(__napi_schedule); 4606 4607 /** 4608 * __napi_schedule_irqoff - schedule for receive 4609 * @n: entry to schedule 4610 * 4611 * Variant of __napi_schedule() assuming hard irqs are masked 4612 */ 4613 void __napi_schedule_irqoff(struct napi_struct *n) 4614 { 4615 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4616 } 4617 EXPORT_SYMBOL(__napi_schedule_irqoff); 4618 4619 void __napi_complete(struct napi_struct *n) 4620 { 4621 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4622 4623 list_del_init(&n->poll_list); 4624 smp_mb__before_atomic(); 4625 clear_bit(NAPI_STATE_SCHED, &n->state); 4626 } 4627 EXPORT_SYMBOL(__napi_complete); 4628 4629 void napi_complete_done(struct napi_struct *n, int work_done) 4630 { 4631 unsigned long flags; 4632 4633 /* 4634 * don't let napi dequeue from the cpu poll list 4635 * just in case its running on a different cpu 4636 */ 4637 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4638 return; 4639 4640 if (n->gro_list) { 4641 unsigned long timeout = 0; 4642 4643 if (work_done) 4644 timeout = n->dev->gro_flush_timeout; 4645 4646 if (timeout) 4647 hrtimer_start(&n->timer, ns_to_ktime(timeout), 4648 HRTIMER_MODE_REL_PINNED); 4649 else 4650 napi_gro_flush(n, false); 4651 } 4652 if (likely(list_empty(&n->poll_list))) { 4653 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state)); 4654 } else { 4655 /* If n->poll_list is not empty, we need to mask irqs */ 4656 local_irq_save(flags); 4657 __napi_complete(n); 4658 local_irq_restore(flags); 4659 } 4660 } 4661 EXPORT_SYMBOL(napi_complete_done); 4662 4663 /* must be called under rcu_read_lock(), as we dont take a reference */ 4664 struct napi_struct *napi_by_id(unsigned int napi_id) 4665 { 4666 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4667 struct napi_struct *napi; 4668 4669 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4670 if (napi->napi_id == napi_id) 4671 return napi; 4672 4673 return NULL; 4674 } 4675 EXPORT_SYMBOL_GPL(napi_by_id); 4676 4677 void napi_hash_add(struct napi_struct *napi) 4678 { 4679 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4680 4681 spin_lock(&napi_hash_lock); 4682 4683 /* 0 is not a valid id, we also skip an id that is taken 4684 * we expect both events to be extremely rare 4685 */ 4686 napi->napi_id = 0; 4687 while (!napi->napi_id) { 4688 napi->napi_id = ++napi_gen_id; 4689 if (napi_by_id(napi->napi_id)) 4690 napi->napi_id = 0; 4691 } 4692 4693 hlist_add_head_rcu(&napi->napi_hash_node, 4694 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4695 4696 spin_unlock(&napi_hash_lock); 4697 } 4698 } 4699 EXPORT_SYMBOL_GPL(napi_hash_add); 4700 4701 /* Warning : caller is responsible to make sure rcu grace period 4702 * is respected before freeing memory containing @napi 4703 */ 4704 void napi_hash_del(struct napi_struct *napi) 4705 { 4706 spin_lock(&napi_hash_lock); 4707 4708 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4709 hlist_del_rcu(&napi->napi_hash_node); 4710 4711 spin_unlock(&napi_hash_lock); 4712 } 4713 EXPORT_SYMBOL_GPL(napi_hash_del); 4714 4715 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 4716 { 4717 struct napi_struct *napi; 4718 4719 napi = container_of(timer, struct napi_struct, timer); 4720 if (napi->gro_list) 4721 napi_schedule(napi); 4722 4723 return HRTIMER_NORESTART; 4724 } 4725 4726 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4727 int (*poll)(struct napi_struct *, int), int weight) 4728 { 4729 INIT_LIST_HEAD(&napi->poll_list); 4730 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 4731 napi->timer.function = napi_watchdog; 4732 napi->gro_count = 0; 4733 napi->gro_list = NULL; 4734 napi->skb = NULL; 4735 napi->poll = poll; 4736 if (weight > NAPI_POLL_WEIGHT) 4737 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4738 weight, dev->name); 4739 napi->weight = weight; 4740 list_add(&napi->dev_list, &dev->napi_list); 4741 napi->dev = dev; 4742 #ifdef CONFIG_NETPOLL 4743 spin_lock_init(&napi->poll_lock); 4744 napi->poll_owner = -1; 4745 #endif 4746 set_bit(NAPI_STATE_SCHED, &napi->state); 4747 } 4748 EXPORT_SYMBOL(netif_napi_add); 4749 4750 void napi_disable(struct napi_struct *n) 4751 { 4752 might_sleep(); 4753 set_bit(NAPI_STATE_DISABLE, &n->state); 4754 4755 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 4756 msleep(1); 4757 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 4758 msleep(1); 4759 4760 hrtimer_cancel(&n->timer); 4761 4762 clear_bit(NAPI_STATE_DISABLE, &n->state); 4763 } 4764 EXPORT_SYMBOL(napi_disable); 4765 4766 void netif_napi_del(struct napi_struct *napi) 4767 { 4768 list_del_init(&napi->dev_list); 4769 napi_free_frags(napi); 4770 4771 kfree_skb_list(napi->gro_list); 4772 napi->gro_list = NULL; 4773 napi->gro_count = 0; 4774 } 4775 EXPORT_SYMBOL(netif_napi_del); 4776 4777 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 4778 { 4779 void *have; 4780 int work, weight; 4781 4782 list_del_init(&n->poll_list); 4783 4784 have = netpoll_poll_lock(n); 4785 4786 weight = n->weight; 4787 4788 /* This NAPI_STATE_SCHED test is for avoiding a race 4789 * with netpoll's poll_napi(). Only the entity which 4790 * obtains the lock and sees NAPI_STATE_SCHED set will 4791 * actually make the ->poll() call. Therefore we avoid 4792 * accidentally calling ->poll() when NAPI is not scheduled. 4793 */ 4794 work = 0; 4795 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4796 work = n->poll(n, weight); 4797 trace_napi_poll(n); 4798 } 4799 4800 WARN_ON_ONCE(work > weight); 4801 4802 if (likely(work < weight)) 4803 goto out_unlock; 4804 4805 /* Drivers must not modify the NAPI state if they 4806 * consume the entire weight. In such cases this code 4807 * still "owns" the NAPI instance and therefore can 4808 * move the instance around on the list at-will. 4809 */ 4810 if (unlikely(napi_disable_pending(n))) { 4811 napi_complete(n); 4812 goto out_unlock; 4813 } 4814 4815 if (n->gro_list) { 4816 /* flush too old packets 4817 * If HZ < 1000, flush all packets. 4818 */ 4819 napi_gro_flush(n, HZ >= 1000); 4820 } 4821 4822 /* Some drivers may have called napi_schedule 4823 * prior to exhausting their budget. 4824 */ 4825 if (unlikely(!list_empty(&n->poll_list))) { 4826 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 4827 n->dev ? n->dev->name : "backlog"); 4828 goto out_unlock; 4829 } 4830 4831 list_add_tail(&n->poll_list, repoll); 4832 4833 out_unlock: 4834 netpoll_poll_unlock(have); 4835 4836 return work; 4837 } 4838 4839 static void net_rx_action(struct softirq_action *h) 4840 { 4841 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4842 unsigned long time_limit = jiffies + 2; 4843 int budget = netdev_budget; 4844 LIST_HEAD(list); 4845 LIST_HEAD(repoll); 4846 4847 local_irq_disable(); 4848 list_splice_init(&sd->poll_list, &list); 4849 local_irq_enable(); 4850 4851 for (;;) { 4852 struct napi_struct *n; 4853 4854 if (list_empty(&list)) { 4855 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 4856 return; 4857 break; 4858 } 4859 4860 n = list_first_entry(&list, struct napi_struct, poll_list); 4861 budget -= napi_poll(n, &repoll); 4862 4863 /* If softirq window is exhausted then punt. 4864 * Allow this to run for 2 jiffies since which will allow 4865 * an average latency of 1.5/HZ. 4866 */ 4867 if (unlikely(budget <= 0 || 4868 time_after_eq(jiffies, time_limit))) { 4869 sd->time_squeeze++; 4870 break; 4871 } 4872 } 4873 4874 local_irq_disable(); 4875 4876 list_splice_tail_init(&sd->poll_list, &list); 4877 list_splice_tail(&repoll, &list); 4878 list_splice(&list, &sd->poll_list); 4879 if (!list_empty(&sd->poll_list)) 4880 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4881 4882 net_rps_action_and_irq_enable(sd); 4883 } 4884 4885 struct netdev_adjacent { 4886 struct net_device *dev; 4887 4888 /* upper master flag, there can only be one master device per list */ 4889 bool master; 4890 4891 /* counter for the number of times this device was added to us */ 4892 u16 ref_nr; 4893 4894 /* private field for the users */ 4895 void *private; 4896 4897 struct list_head list; 4898 struct rcu_head rcu; 4899 }; 4900 4901 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 4902 struct list_head *adj_list) 4903 { 4904 struct netdev_adjacent *adj; 4905 4906 list_for_each_entry(adj, adj_list, list) { 4907 if (adj->dev == adj_dev) 4908 return adj; 4909 } 4910 return NULL; 4911 } 4912 4913 /** 4914 * netdev_has_upper_dev - Check if device is linked to an upper device 4915 * @dev: device 4916 * @upper_dev: upper device to check 4917 * 4918 * Find out if a device is linked to specified upper device and return true 4919 * in case it is. Note that this checks only immediate upper device, 4920 * not through a complete stack of devices. The caller must hold the RTNL lock. 4921 */ 4922 bool netdev_has_upper_dev(struct net_device *dev, 4923 struct net_device *upper_dev) 4924 { 4925 ASSERT_RTNL(); 4926 4927 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper); 4928 } 4929 EXPORT_SYMBOL(netdev_has_upper_dev); 4930 4931 /** 4932 * netdev_has_any_upper_dev - Check if device is linked to some device 4933 * @dev: device 4934 * 4935 * Find out if a device is linked to an upper device and return true in case 4936 * it is. The caller must hold the RTNL lock. 4937 */ 4938 static bool netdev_has_any_upper_dev(struct net_device *dev) 4939 { 4940 ASSERT_RTNL(); 4941 4942 return !list_empty(&dev->all_adj_list.upper); 4943 } 4944 4945 /** 4946 * netdev_master_upper_dev_get - Get master upper device 4947 * @dev: device 4948 * 4949 * Find a master upper device and return pointer to it or NULL in case 4950 * it's not there. The caller must hold the RTNL lock. 4951 */ 4952 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4953 { 4954 struct netdev_adjacent *upper; 4955 4956 ASSERT_RTNL(); 4957 4958 if (list_empty(&dev->adj_list.upper)) 4959 return NULL; 4960 4961 upper = list_first_entry(&dev->adj_list.upper, 4962 struct netdev_adjacent, list); 4963 if (likely(upper->master)) 4964 return upper->dev; 4965 return NULL; 4966 } 4967 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4968 4969 void *netdev_adjacent_get_private(struct list_head *adj_list) 4970 { 4971 struct netdev_adjacent *adj; 4972 4973 adj = list_entry(adj_list, struct netdev_adjacent, list); 4974 4975 return adj->private; 4976 } 4977 EXPORT_SYMBOL(netdev_adjacent_get_private); 4978 4979 /** 4980 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 4981 * @dev: device 4982 * @iter: list_head ** of the current position 4983 * 4984 * Gets the next device from the dev's upper list, starting from iter 4985 * position. The caller must hold RCU read lock. 4986 */ 4987 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4988 struct list_head **iter) 4989 { 4990 struct netdev_adjacent *upper; 4991 4992 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4993 4994 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4995 4996 if (&upper->list == &dev->adj_list.upper) 4997 return NULL; 4998 4999 *iter = &upper->list; 5000 5001 return upper->dev; 5002 } 5003 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5004 5005 /** 5006 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 5007 * @dev: device 5008 * @iter: list_head ** of the current position 5009 * 5010 * Gets the next device from the dev's upper list, starting from iter 5011 * position. The caller must hold RCU read lock. 5012 */ 5013 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 5014 struct list_head **iter) 5015 { 5016 struct netdev_adjacent *upper; 5017 5018 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5019 5020 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5021 5022 if (&upper->list == &dev->all_adj_list.upper) 5023 return NULL; 5024 5025 *iter = &upper->list; 5026 5027 return upper->dev; 5028 } 5029 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 5030 5031 /** 5032 * netdev_lower_get_next_private - Get the next ->private from the 5033 * lower neighbour list 5034 * @dev: device 5035 * @iter: list_head ** of the current position 5036 * 5037 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5038 * list, starting from iter position. The caller must hold either hold the 5039 * RTNL lock or its own locking that guarantees that the neighbour lower 5040 * list will remain unchanged. 5041 */ 5042 void *netdev_lower_get_next_private(struct net_device *dev, 5043 struct list_head **iter) 5044 { 5045 struct netdev_adjacent *lower; 5046 5047 lower = list_entry(*iter, struct netdev_adjacent, list); 5048 5049 if (&lower->list == &dev->adj_list.lower) 5050 return NULL; 5051 5052 *iter = lower->list.next; 5053 5054 return lower->private; 5055 } 5056 EXPORT_SYMBOL(netdev_lower_get_next_private); 5057 5058 /** 5059 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5060 * lower neighbour list, RCU 5061 * variant 5062 * @dev: device 5063 * @iter: list_head ** of the current position 5064 * 5065 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5066 * list, starting from iter position. The caller must hold RCU read lock. 5067 */ 5068 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5069 struct list_head **iter) 5070 { 5071 struct netdev_adjacent *lower; 5072 5073 WARN_ON_ONCE(!rcu_read_lock_held()); 5074 5075 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5076 5077 if (&lower->list == &dev->adj_list.lower) 5078 return NULL; 5079 5080 *iter = &lower->list; 5081 5082 return lower->private; 5083 } 5084 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5085 5086 /** 5087 * netdev_lower_get_next - Get the next device from the lower neighbour 5088 * list 5089 * @dev: device 5090 * @iter: list_head ** of the current position 5091 * 5092 * Gets the next netdev_adjacent from the dev's lower neighbour 5093 * list, starting from iter position. The caller must hold RTNL lock or 5094 * its own locking that guarantees that the neighbour lower 5095 * list will remain unchanged. 5096 */ 5097 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5098 { 5099 struct netdev_adjacent *lower; 5100 5101 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 5102 5103 if (&lower->list == &dev->adj_list.lower) 5104 return NULL; 5105 5106 *iter = &lower->list; 5107 5108 return lower->dev; 5109 } 5110 EXPORT_SYMBOL(netdev_lower_get_next); 5111 5112 /** 5113 * netdev_lower_get_first_private_rcu - Get the first ->private from the 5114 * lower neighbour list, RCU 5115 * variant 5116 * @dev: device 5117 * 5118 * Gets the first netdev_adjacent->private from the dev's lower neighbour 5119 * list. The caller must hold RCU read lock. 5120 */ 5121 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 5122 { 5123 struct netdev_adjacent *lower; 5124 5125 lower = list_first_or_null_rcu(&dev->adj_list.lower, 5126 struct netdev_adjacent, list); 5127 if (lower) 5128 return lower->private; 5129 return NULL; 5130 } 5131 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 5132 5133 /** 5134 * netdev_master_upper_dev_get_rcu - Get master upper device 5135 * @dev: device 5136 * 5137 * Find a master upper device and return pointer to it or NULL in case 5138 * it's not there. The caller must hold the RCU read lock. 5139 */ 5140 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 5141 { 5142 struct netdev_adjacent *upper; 5143 5144 upper = list_first_or_null_rcu(&dev->adj_list.upper, 5145 struct netdev_adjacent, list); 5146 if (upper && likely(upper->master)) 5147 return upper->dev; 5148 return NULL; 5149 } 5150 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 5151 5152 static int netdev_adjacent_sysfs_add(struct net_device *dev, 5153 struct net_device *adj_dev, 5154 struct list_head *dev_list) 5155 { 5156 char linkname[IFNAMSIZ+7]; 5157 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5158 "upper_%s" : "lower_%s", adj_dev->name); 5159 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 5160 linkname); 5161 } 5162 static void netdev_adjacent_sysfs_del(struct net_device *dev, 5163 char *name, 5164 struct list_head *dev_list) 5165 { 5166 char linkname[IFNAMSIZ+7]; 5167 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5168 "upper_%s" : "lower_%s", name); 5169 sysfs_remove_link(&(dev->dev.kobj), linkname); 5170 } 5171 5172 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 5173 struct net_device *adj_dev, 5174 struct list_head *dev_list) 5175 { 5176 return (dev_list == &dev->adj_list.upper || 5177 dev_list == &dev->adj_list.lower) && 5178 net_eq(dev_net(dev), dev_net(adj_dev)); 5179 } 5180 5181 static int __netdev_adjacent_dev_insert(struct net_device *dev, 5182 struct net_device *adj_dev, 5183 struct list_head *dev_list, 5184 void *private, bool master) 5185 { 5186 struct netdev_adjacent *adj; 5187 int ret; 5188 5189 adj = __netdev_find_adj(adj_dev, dev_list); 5190 5191 if (adj) { 5192 adj->ref_nr++; 5193 return 0; 5194 } 5195 5196 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 5197 if (!adj) 5198 return -ENOMEM; 5199 5200 adj->dev = adj_dev; 5201 adj->master = master; 5202 adj->ref_nr = 1; 5203 adj->private = private; 5204 dev_hold(adj_dev); 5205 5206 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 5207 adj_dev->name, dev->name, adj_dev->name); 5208 5209 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 5210 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 5211 if (ret) 5212 goto free_adj; 5213 } 5214 5215 /* Ensure that master link is always the first item in list. */ 5216 if (master) { 5217 ret = sysfs_create_link(&(dev->dev.kobj), 5218 &(adj_dev->dev.kobj), "master"); 5219 if (ret) 5220 goto remove_symlinks; 5221 5222 list_add_rcu(&adj->list, dev_list); 5223 } else { 5224 list_add_tail_rcu(&adj->list, dev_list); 5225 } 5226 5227 return 0; 5228 5229 remove_symlinks: 5230 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5231 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5232 free_adj: 5233 kfree(adj); 5234 dev_put(adj_dev); 5235 5236 return ret; 5237 } 5238 5239 static void __netdev_adjacent_dev_remove(struct net_device *dev, 5240 struct net_device *adj_dev, 5241 struct list_head *dev_list) 5242 { 5243 struct netdev_adjacent *adj; 5244 5245 adj = __netdev_find_adj(adj_dev, dev_list); 5246 5247 if (!adj) { 5248 pr_err("tried to remove device %s from %s\n", 5249 dev->name, adj_dev->name); 5250 BUG(); 5251 } 5252 5253 if (adj->ref_nr > 1) { 5254 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 5255 adj->ref_nr-1); 5256 adj->ref_nr--; 5257 return; 5258 } 5259 5260 if (adj->master) 5261 sysfs_remove_link(&(dev->dev.kobj), "master"); 5262 5263 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5264 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5265 5266 list_del_rcu(&adj->list); 5267 pr_debug("dev_put for %s, because link removed from %s to %s\n", 5268 adj_dev->name, dev->name, adj_dev->name); 5269 dev_put(adj_dev); 5270 kfree_rcu(adj, rcu); 5271 } 5272 5273 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 5274 struct net_device *upper_dev, 5275 struct list_head *up_list, 5276 struct list_head *down_list, 5277 void *private, bool master) 5278 { 5279 int ret; 5280 5281 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 5282 master); 5283 if (ret) 5284 return ret; 5285 5286 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 5287 false); 5288 if (ret) { 5289 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5290 return ret; 5291 } 5292 5293 return 0; 5294 } 5295 5296 static int __netdev_adjacent_dev_link(struct net_device *dev, 5297 struct net_device *upper_dev) 5298 { 5299 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 5300 &dev->all_adj_list.upper, 5301 &upper_dev->all_adj_list.lower, 5302 NULL, false); 5303 } 5304 5305 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 5306 struct net_device *upper_dev, 5307 struct list_head *up_list, 5308 struct list_head *down_list) 5309 { 5310 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5311 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 5312 } 5313 5314 static void __netdev_adjacent_dev_unlink(struct net_device *dev, 5315 struct net_device *upper_dev) 5316 { 5317 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5318 &dev->all_adj_list.upper, 5319 &upper_dev->all_adj_list.lower); 5320 } 5321 5322 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 5323 struct net_device *upper_dev, 5324 void *private, bool master) 5325 { 5326 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 5327 5328 if (ret) 5329 return ret; 5330 5331 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 5332 &dev->adj_list.upper, 5333 &upper_dev->adj_list.lower, 5334 private, master); 5335 if (ret) { 5336 __netdev_adjacent_dev_unlink(dev, upper_dev); 5337 return ret; 5338 } 5339 5340 return 0; 5341 } 5342 5343 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 5344 struct net_device *upper_dev) 5345 { 5346 __netdev_adjacent_dev_unlink(dev, upper_dev); 5347 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5348 &dev->adj_list.upper, 5349 &upper_dev->adj_list.lower); 5350 } 5351 5352 static int __netdev_upper_dev_link(struct net_device *dev, 5353 struct net_device *upper_dev, bool master, 5354 void *private) 5355 { 5356 struct netdev_notifier_changeupper_info changeupper_info; 5357 struct netdev_adjacent *i, *j, *to_i, *to_j; 5358 int ret = 0; 5359 5360 ASSERT_RTNL(); 5361 5362 if (dev == upper_dev) 5363 return -EBUSY; 5364 5365 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5366 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper)) 5367 return -EBUSY; 5368 5369 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper)) 5370 return -EEXIST; 5371 5372 if (master && netdev_master_upper_dev_get(dev)) 5373 return -EBUSY; 5374 5375 changeupper_info.upper_dev = upper_dev; 5376 changeupper_info.master = master; 5377 changeupper_info.linking = true; 5378 5379 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 5380 &changeupper_info.info); 5381 ret = notifier_to_errno(ret); 5382 if (ret) 5383 return ret; 5384 5385 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private, 5386 master); 5387 if (ret) 5388 return ret; 5389 5390 /* Now that we linked these devs, make all the upper_dev's 5391 * all_adj_list.upper visible to every dev's all_adj_list.lower an 5392 * versa, and don't forget the devices itself. All of these 5393 * links are non-neighbours. 5394 */ 5395 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5396 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5397 pr_debug("Interlinking %s with %s, non-neighbour\n", 5398 i->dev->name, j->dev->name); 5399 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 5400 if (ret) 5401 goto rollback_mesh; 5402 } 5403 } 5404 5405 /* add dev to every upper_dev's upper device */ 5406 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5407 pr_debug("linking %s's upper device %s with %s\n", 5408 upper_dev->name, i->dev->name, dev->name); 5409 ret = __netdev_adjacent_dev_link(dev, i->dev); 5410 if (ret) 5411 goto rollback_upper_mesh; 5412 } 5413 5414 /* add upper_dev to every dev's lower device */ 5415 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5416 pr_debug("linking %s's lower device %s with %s\n", dev->name, 5417 i->dev->name, upper_dev->name); 5418 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 5419 if (ret) 5420 goto rollback_lower_mesh; 5421 } 5422 5423 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5424 &changeupper_info.info); 5425 return 0; 5426 5427 rollback_lower_mesh: 5428 to_i = i; 5429 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5430 if (i == to_i) 5431 break; 5432 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5433 } 5434 5435 i = NULL; 5436 5437 rollback_upper_mesh: 5438 to_i = i; 5439 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5440 if (i == to_i) 5441 break; 5442 __netdev_adjacent_dev_unlink(dev, i->dev); 5443 } 5444 5445 i = j = NULL; 5446 5447 rollback_mesh: 5448 to_i = i; 5449 to_j = j; 5450 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5451 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5452 if (i == to_i && j == to_j) 5453 break; 5454 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5455 } 5456 if (i == to_i) 5457 break; 5458 } 5459 5460 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5461 5462 return ret; 5463 } 5464 5465 /** 5466 * netdev_upper_dev_link - Add a link to the upper device 5467 * @dev: device 5468 * @upper_dev: new upper device 5469 * 5470 * Adds a link to device which is upper to this one. The caller must hold 5471 * the RTNL lock. On a failure a negative errno code is returned. 5472 * On success the reference counts are adjusted and the function 5473 * returns zero. 5474 */ 5475 int netdev_upper_dev_link(struct net_device *dev, 5476 struct net_device *upper_dev) 5477 { 5478 return __netdev_upper_dev_link(dev, upper_dev, false, NULL); 5479 } 5480 EXPORT_SYMBOL(netdev_upper_dev_link); 5481 5482 /** 5483 * netdev_master_upper_dev_link - Add a master link to the upper device 5484 * @dev: device 5485 * @upper_dev: new upper device 5486 * 5487 * Adds a link to device which is upper to this one. In this case, only 5488 * one master upper device can be linked, although other non-master devices 5489 * might be linked as well. The caller must hold the RTNL lock. 5490 * On a failure a negative errno code is returned. On success the reference 5491 * counts are adjusted and the function returns zero. 5492 */ 5493 int netdev_master_upper_dev_link(struct net_device *dev, 5494 struct net_device *upper_dev) 5495 { 5496 return __netdev_upper_dev_link(dev, upper_dev, true, NULL); 5497 } 5498 EXPORT_SYMBOL(netdev_master_upper_dev_link); 5499 5500 int netdev_master_upper_dev_link_private(struct net_device *dev, 5501 struct net_device *upper_dev, 5502 void *private) 5503 { 5504 return __netdev_upper_dev_link(dev, upper_dev, true, private); 5505 } 5506 EXPORT_SYMBOL(netdev_master_upper_dev_link_private); 5507 5508 /** 5509 * netdev_upper_dev_unlink - Removes a link to upper device 5510 * @dev: device 5511 * @upper_dev: new upper device 5512 * 5513 * Removes a link to device which is upper to this one. The caller must hold 5514 * the RTNL lock. 5515 */ 5516 void netdev_upper_dev_unlink(struct net_device *dev, 5517 struct net_device *upper_dev) 5518 { 5519 struct netdev_notifier_changeupper_info changeupper_info; 5520 struct netdev_adjacent *i, *j; 5521 ASSERT_RTNL(); 5522 5523 changeupper_info.upper_dev = upper_dev; 5524 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 5525 changeupper_info.linking = false; 5526 5527 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 5528 &changeupper_info.info); 5529 5530 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5531 5532 /* Here is the tricky part. We must remove all dev's lower 5533 * devices from all upper_dev's upper devices and vice 5534 * versa, to maintain the graph relationship. 5535 */ 5536 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5537 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 5538 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5539 5540 /* remove also the devices itself from lower/upper device 5541 * list 5542 */ 5543 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5544 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5545 5546 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 5547 __netdev_adjacent_dev_unlink(dev, i->dev); 5548 5549 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5550 &changeupper_info.info); 5551 } 5552 EXPORT_SYMBOL(netdev_upper_dev_unlink); 5553 5554 /** 5555 * netdev_bonding_info_change - Dispatch event about slave change 5556 * @dev: device 5557 * @bonding_info: info to dispatch 5558 * 5559 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 5560 * The caller must hold the RTNL lock. 5561 */ 5562 void netdev_bonding_info_change(struct net_device *dev, 5563 struct netdev_bonding_info *bonding_info) 5564 { 5565 struct netdev_notifier_bonding_info info; 5566 5567 memcpy(&info.bonding_info, bonding_info, 5568 sizeof(struct netdev_bonding_info)); 5569 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 5570 &info.info); 5571 } 5572 EXPORT_SYMBOL(netdev_bonding_info_change); 5573 5574 static void netdev_adjacent_add_links(struct net_device *dev) 5575 { 5576 struct netdev_adjacent *iter; 5577 5578 struct net *net = dev_net(dev); 5579 5580 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5581 if (!net_eq(net,dev_net(iter->dev))) 5582 continue; 5583 netdev_adjacent_sysfs_add(iter->dev, dev, 5584 &iter->dev->adj_list.lower); 5585 netdev_adjacent_sysfs_add(dev, iter->dev, 5586 &dev->adj_list.upper); 5587 } 5588 5589 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5590 if (!net_eq(net,dev_net(iter->dev))) 5591 continue; 5592 netdev_adjacent_sysfs_add(iter->dev, dev, 5593 &iter->dev->adj_list.upper); 5594 netdev_adjacent_sysfs_add(dev, iter->dev, 5595 &dev->adj_list.lower); 5596 } 5597 } 5598 5599 static void netdev_adjacent_del_links(struct net_device *dev) 5600 { 5601 struct netdev_adjacent *iter; 5602 5603 struct net *net = dev_net(dev); 5604 5605 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5606 if (!net_eq(net,dev_net(iter->dev))) 5607 continue; 5608 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5609 &iter->dev->adj_list.lower); 5610 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5611 &dev->adj_list.upper); 5612 } 5613 5614 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5615 if (!net_eq(net,dev_net(iter->dev))) 5616 continue; 5617 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5618 &iter->dev->adj_list.upper); 5619 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5620 &dev->adj_list.lower); 5621 } 5622 } 5623 5624 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 5625 { 5626 struct netdev_adjacent *iter; 5627 5628 struct net *net = dev_net(dev); 5629 5630 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5631 if (!net_eq(net,dev_net(iter->dev))) 5632 continue; 5633 netdev_adjacent_sysfs_del(iter->dev, oldname, 5634 &iter->dev->adj_list.lower); 5635 netdev_adjacent_sysfs_add(iter->dev, dev, 5636 &iter->dev->adj_list.lower); 5637 } 5638 5639 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5640 if (!net_eq(net,dev_net(iter->dev))) 5641 continue; 5642 netdev_adjacent_sysfs_del(iter->dev, oldname, 5643 &iter->dev->adj_list.upper); 5644 netdev_adjacent_sysfs_add(iter->dev, dev, 5645 &iter->dev->adj_list.upper); 5646 } 5647 } 5648 5649 void *netdev_lower_dev_get_private(struct net_device *dev, 5650 struct net_device *lower_dev) 5651 { 5652 struct netdev_adjacent *lower; 5653 5654 if (!lower_dev) 5655 return NULL; 5656 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 5657 if (!lower) 5658 return NULL; 5659 5660 return lower->private; 5661 } 5662 EXPORT_SYMBOL(netdev_lower_dev_get_private); 5663 5664 5665 int dev_get_nest_level(struct net_device *dev, 5666 bool (*type_check)(struct net_device *dev)) 5667 { 5668 struct net_device *lower = NULL; 5669 struct list_head *iter; 5670 int max_nest = -1; 5671 int nest; 5672 5673 ASSERT_RTNL(); 5674 5675 netdev_for_each_lower_dev(dev, lower, iter) { 5676 nest = dev_get_nest_level(lower, type_check); 5677 if (max_nest < nest) 5678 max_nest = nest; 5679 } 5680 5681 if (type_check(dev)) 5682 max_nest++; 5683 5684 return max_nest; 5685 } 5686 EXPORT_SYMBOL(dev_get_nest_level); 5687 5688 static void dev_change_rx_flags(struct net_device *dev, int flags) 5689 { 5690 const struct net_device_ops *ops = dev->netdev_ops; 5691 5692 if (ops->ndo_change_rx_flags) 5693 ops->ndo_change_rx_flags(dev, flags); 5694 } 5695 5696 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 5697 { 5698 unsigned int old_flags = dev->flags; 5699 kuid_t uid; 5700 kgid_t gid; 5701 5702 ASSERT_RTNL(); 5703 5704 dev->flags |= IFF_PROMISC; 5705 dev->promiscuity += inc; 5706 if (dev->promiscuity == 0) { 5707 /* 5708 * Avoid overflow. 5709 * If inc causes overflow, untouch promisc and return error. 5710 */ 5711 if (inc < 0) 5712 dev->flags &= ~IFF_PROMISC; 5713 else { 5714 dev->promiscuity -= inc; 5715 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 5716 dev->name); 5717 return -EOVERFLOW; 5718 } 5719 } 5720 if (dev->flags != old_flags) { 5721 pr_info("device %s %s promiscuous mode\n", 5722 dev->name, 5723 dev->flags & IFF_PROMISC ? "entered" : "left"); 5724 if (audit_enabled) { 5725 current_uid_gid(&uid, &gid); 5726 audit_log(current->audit_context, GFP_ATOMIC, 5727 AUDIT_ANOM_PROMISCUOUS, 5728 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 5729 dev->name, (dev->flags & IFF_PROMISC), 5730 (old_flags & IFF_PROMISC), 5731 from_kuid(&init_user_ns, audit_get_loginuid(current)), 5732 from_kuid(&init_user_ns, uid), 5733 from_kgid(&init_user_ns, gid), 5734 audit_get_sessionid(current)); 5735 } 5736 5737 dev_change_rx_flags(dev, IFF_PROMISC); 5738 } 5739 if (notify) 5740 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 5741 return 0; 5742 } 5743 5744 /** 5745 * dev_set_promiscuity - update promiscuity count on a device 5746 * @dev: device 5747 * @inc: modifier 5748 * 5749 * Add or remove promiscuity from a device. While the count in the device 5750 * remains above zero the interface remains promiscuous. Once it hits zero 5751 * the device reverts back to normal filtering operation. A negative inc 5752 * value is used to drop promiscuity on the device. 5753 * Return 0 if successful or a negative errno code on error. 5754 */ 5755 int dev_set_promiscuity(struct net_device *dev, int inc) 5756 { 5757 unsigned int old_flags = dev->flags; 5758 int err; 5759 5760 err = __dev_set_promiscuity(dev, inc, true); 5761 if (err < 0) 5762 return err; 5763 if (dev->flags != old_flags) 5764 dev_set_rx_mode(dev); 5765 return err; 5766 } 5767 EXPORT_SYMBOL(dev_set_promiscuity); 5768 5769 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 5770 { 5771 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 5772 5773 ASSERT_RTNL(); 5774 5775 dev->flags |= IFF_ALLMULTI; 5776 dev->allmulti += inc; 5777 if (dev->allmulti == 0) { 5778 /* 5779 * Avoid overflow. 5780 * If inc causes overflow, untouch allmulti and return error. 5781 */ 5782 if (inc < 0) 5783 dev->flags &= ~IFF_ALLMULTI; 5784 else { 5785 dev->allmulti -= inc; 5786 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 5787 dev->name); 5788 return -EOVERFLOW; 5789 } 5790 } 5791 if (dev->flags ^ old_flags) { 5792 dev_change_rx_flags(dev, IFF_ALLMULTI); 5793 dev_set_rx_mode(dev); 5794 if (notify) 5795 __dev_notify_flags(dev, old_flags, 5796 dev->gflags ^ old_gflags); 5797 } 5798 return 0; 5799 } 5800 5801 /** 5802 * dev_set_allmulti - update allmulti count on a device 5803 * @dev: device 5804 * @inc: modifier 5805 * 5806 * Add or remove reception of all multicast frames to a device. While the 5807 * count in the device remains above zero the interface remains listening 5808 * to all interfaces. Once it hits zero the device reverts back to normal 5809 * filtering operation. A negative @inc value is used to drop the counter 5810 * when releasing a resource needing all multicasts. 5811 * Return 0 if successful or a negative errno code on error. 5812 */ 5813 5814 int dev_set_allmulti(struct net_device *dev, int inc) 5815 { 5816 return __dev_set_allmulti(dev, inc, true); 5817 } 5818 EXPORT_SYMBOL(dev_set_allmulti); 5819 5820 /* 5821 * Upload unicast and multicast address lists to device and 5822 * configure RX filtering. When the device doesn't support unicast 5823 * filtering it is put in promiscuous mode while unicast addresses 5824 * are present. 5825 */ 5826 void __dev_set_rx_mode(struct net_device *dev) 5827 { 5828 const struct net_device_ops *ops = dev->netdev_ops; 5829 5830 /* dev_open will call this function so the list will stay sane. */ 5831 if (!(dev->flags&IFF_UP)) 5832 return; 5833 5834 if (!netif_device_present(dev)) 5835 return; 5836 5837 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 5838 /* Unicast addresses changes may only happen under the rtnl, 5839 * therefore calling __dev_set_promiscuity here is safe. 5840 */ 5841 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 5842 __dev_set_promiscuity(dev, 1, false); 5843 dev->uc_promisc = true; 5844 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 5845 __dev_set_promiscuity(dev, -1, false); 5846 dev->uc_promisc = false; 5847 } 5848 } 5849 5850 if (ops->ndo_set_rx_mode) 5851 ops->ndo_set_rx_mode(dev); 5852 } 5853 5854 void dev_set_rx_mode(struct net_device *dev) 5855 { 5856 netif_addr_lock_bh(dev); 5857 __dev_set_rx_mode(dev); 5858 netif_addr_unlock_bh(dev); 5859 } 5860 5861 /** 5862 * dev_get_flags - get flags reported to userspace 5863 * @dev: device 5864 * 5865 * Get the combination of flag bits exported through APIs to userspace. 5866 */ 5867 unsigned int dev_get_flags(const struct net_device *dev) 5868 { 5869 unsigned int flags; 5870 5871 flags = (dev->flags & ~(IFF_PROMISC | 5872 IFF_ALLMULTI | 5873 IFF_RUNNING | 5874 IFF_LOWER_UP | 5875 IFF_DORMANT)) | 5876 (dev->gflags & (IFF_PROMISC | 5877 IFF_ALLMULTI)); 5878 5879 if (netif_running(dev)) { 5880 if (netif_oper_up(dev)) 5881 flags |= IFF_RUNNING; 5882 if (netif_carrier_ok(dev)) 5883 flags |= IFF_LOWER_UP; 5884 if (netif_dormant(dev)) 5885 flags |= IFF_DORMANT; 5886 } 5887 5888 return flags; 5889 } 5890 EXPORT_SYMBOL(dev_get_flags); 5891 5892 int __dev_change_flags(struct net_device *dev, unsigned int flags) 5893 { 5894 unsigned int old_flags = dev->flags; 5895 int ret; 5896 5897 ASSERT_RTNL(); 5898 5899 /* 5900 * Set the flags on our device. 5901 */ 5902 5903 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5904 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5905 IFF_AUTOMEDIA)) | 5906 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5907 IFF_ALLMULTI)); 5908 5909 /* 5910 * Load in the correct multicast list now the flags have changed. 5911 */ 5912 5913 if ((old_flags ^ flags) & IFF_MULTICAST) 5914 dev_change_rx_flags(dev, IFF_MULTICAST); 5915 5916 dev_set_rx_mode(dev); 5917 5918 /* 5919 * Have we downed the interface. We handle IFF_UP ourselves 5920 * according to user attempts to set it, rather than blindly 5921 * setting it. 5922 */ 5923 5924 ret = 0; 5925 if ((old_flags ^ flags) & IFF_UP) 5926 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5927 5928 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5929 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5930 unsigned int old_flags = dev->flags; 5931 5932 dev->gflags ^= IFF_PROMISC; 5933 5934 if (__dev_set_promiscuity(dev, inc, false) >= 0) 5935 if (dev->flags != old_flags) 5936 dev_set_rx_mode(dev); 5937 } 5938 5939 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5940 is important. Some (broken) drivers set IFF_PROMISC, when 5941 IFF_ALLMULTI is requested not asking us and not reporting. 5942 */ 5943 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5944 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5945 5946 dev->gflags ^= IFF_ALLMULTI; 5947 __dev_set_allmulti(dev, inc, false); 5948 } 5949 5950 return ret; 5951 } 5952 5953 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 5954 unsigned int gchanges) 5955 { 5956 unsigned int changes = dev->flags ^ old_flags; 5957 5958 if (gchanges) 5959 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 5960 5961 if (changes & IFF_UP) { 5962 if (dev->flags & IFF_UP) 5963 call_netdevice_notifiers(NETDEV_UP, dev); 5964 else 5965 call_netdevice_notifiers(NETDEV_DOWN, dev); 5966 } 5967 5968 if (dev->flags & IFF_UP && 5969 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5970 struct netdev_notifier_change_info change_info; 5971 5972 change_info.flags_changed = changes; 5973 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5974 &change_info.info); 5975 } 5976 } 5977 5978 /** 5979 * dev_change_flags - change device settings 5980 * @dev: device 5981 * @flags: device state flags 5982 * 5983 * Change settings on device based state flags. The flags are 5984 * in the userspace exported format. 5985 */ 5986 int dev_change_flags(struct net_device *dev, unsigned int flags) 5987 { 5988 int ret; 5989 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 5990 5991 ret = __dev_change_flags(dev, flags); 5992 if (ret < 0) 5993 return ret; 5994 5995 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 5996 __dev_notify_flags(dev, old_flags, changes); 5997 return ret; 5998 } 5999 EXPORT_SYMBOL(dev_change_flags); 6000 6001 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 6002 { 6003 const struct net_device_ops *ops = dev->netdev_ops; 6004 6005 if (ops->ndo_change_mtu) 6006 return ops->ndo_change_mtu(dev, new_mtu); 6007 6008 dev->mtu = new_mtu; 6009 return 0; 6010 } 6011 6012 /** 6013 * dev_set_mtu - Change maximum transfer unit 6014 * @dev: device 6015 * @new_mtu: new transfer unit 6016 * 6017 * Change the maximum transfer size of the network device. 6018 */ 6019 int dev_set_mtu(struct net_device *dev, int new_mtu) 6020 { 6021 int err, orig_mtu; 6022 6023 if (new_mtu == dev->mtu) 6024 return 0; 6025 6026 /* MTU must be positive. */ 6027 if (new_mtu < 0) 6028 return -EINVAL; 6029 6030 if (!netif_device_present(dev)) 6031 return -ENODEV; 6032 6033 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6034 err = notifier_to_errno(err); 6035 if (err) 6036 return err; 6037 6038 orig_mtu = dev->mtu; 6039 err = __dev_set_mtu(dev, new_mtu); 6040 6041 if (!err) { 6042 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6043 err = notifier_to_errno(err); 6044 if (err) { 6045 /* setting mtu back and notifying everyone again, 6046 * so that they have a chance to revert changes. 6047 */ 6048 __dev_set_mtu(dev, orig_mtu); 6049 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6050 } 6051 } 6052 return err; 6053 } 6054 EXPORT_SYMBOL(dev_set_mtu); 6055 6056 /** 6057 * dev_set_group - Change group this device belongs to 6058 * @dev: device 6059 * @new_group: group this device should belong to 6060 */ 6061 void dev_set_group(struct net_device *dev, int new_group) 6062 { 6063 dev->group = new_group; 6064 } 6065 EXPORT_SYMBOL(dev_set_group); 6066 6067 /** 6068 * dev_set_mac_address - Change Media Access Control Address 6069 * @dev: device 6070 * @sa: new address 6071 * 6072 * Change the hardware (MAC) address of the device 6073 */ 6074 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6075 { 6076 const struct net_device_ops *ops = dev->netdev_ops; 6077 int err; 6078 6079 if (!ops->ndo_set_mac_address) 6080 return -EOPNOTSUPP; 6081 if (sa->sa_family != dev->type) 6082 return -EINVAL; 6083 if (!netif_device_present(dev)) 6084 return -ENODEV; 6085 err = ops->ndo_set_mac_address(dev, sa); 6086 if (err) 6087 return err; 6088 dev->addr_assign_type = NET_ADDR_SET; 6089 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6090 add_device_randomness(dev->dev_addr, dev->addr_len); 6091 return 0; 6092 } 6093 EXPORT_SYMBOL(dev_set_mac_address); 6094 6095 /** 6096 * dev_change_carrier - Change device carrier 6097 * @dev: device 6098 * @new_carrier: new value 6099 * 6100 * Change device carrier 6101 */ 6102 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6103 { 6104 const struct net_device_ops *ops = dev->netdev_ops; 6105 6106 if (!ops->ndo_change_carrier) 6107 return -EOPNOTSUPP; 6108 if (!netif_device_present(dev)) 6109 return -ENODEV; 6110 return ops->ndo_change_carrier(dev, new_carrier); 6111 } 6112 EXPORT_SYMBOL(dev_change_carrier); 6113 6114 /** 6115 * dev_get_phys_port_id - Get device physical port ID 6116 * @dev: device 6117 * @ppid: port ID 6118 * 6119 * Get device physical port ID 6120 */ 6121 int dev_get_phys_port_id(struct net_device *dev, 6122 struct netdev_phys_item_id *ppid) 6123 { 6124 const struct net_device_ops *ops = dev->netdev_ops; 6125 6126 if (!ops->ndo_get_phys_port_id) 6127 return -EOPNOTSUPP; 6128 return ops->ndo_get_phys_port_id(dev, ppid); 6129 } 6130 EXPORT_SYMBOL(dev_get_phys_port_id); 6131 6132 /** 6133 * dev_get_phys_port_name - Get device physical port name 6134 * @dev: device 6135 * @name: port name 6136 * 6137 * Get device physical port name 6138 */ 6139 int dev_get_phys_port_name(struct net_device *dev, 6140 char *name, size_t len) 6141 { 6142 const struct net_device_ops *ops = dev->netdev_ops; 6143 6144 if (!ops->ndo_get_phys_port_name) 6145 return -EOPNOTSUPP; 6146 return ops->ndo_get_phys_port_name(dev, name, len); 6147 } 6148 EXPORT_SYMBOL(dev_get_phys_port_name); 6149 6150 /** 6151 * dev_change_proto_down - update protocol port state information 6152 * @dev: device 6153 * @proto_down: new value 6154 * 6155 * This info can be used by switch drivers to set the phys state of the 6156 * port. 6157 */ 6158 int dev_change_proto_down(struct net_device *dev, bool proto_down) 6159 { 6160 const struct net_device_ops *ops = dev->netdev_ops; 6161 6162 if (!ops->ndo_change_proto_down) 6163 return -EOPNOTSUPP; 6164 if (!netif_device_present(dev)) 6165 return -ENODEV; 6166 return ops->ndo_change_proto_down(dev, proto_down); 6167 } 6168 EXPORT_SYMBOL(dev_change_proto_down); 6169 6170 /** 6171 * dev_new_index - allocate an ifindex 6172 * @net: the applicable net namespace 6173 * 6174 * Returns a suitable unique value for a new device interface 6175 * number. The caller must hold the rtnl semaphore or the 6176 * dev_base_lock to be sure it remains unique. 6177 */ 6178 static int dev_new_index(struct net *net) 6179 { 6180 int ifindex = net->ifindex; 6181 for (;;) { 6182 if (++ifindex <= 0) 6183 ifindex = 1; 6184 if (!__dev_get_by_index(net, ifindex)) 6185 return net->ifindex = ifindex; 6186 } 6187 } 6188 6189 /* Delayed registration/unregisteration */ 6190 static LIST_HEAD(net_todo_list); 6191 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 6192 6193 static void net_set_todo(struct net_device *dev) 6194 { 6195 list_add_tail(&dev->todo_list, &net_todo_list); 6196 dev_net(dev)->dev_unreg_count++; 6197 } 6198 6199 static void rollback_registered_many(struct list_head *head) 6200 { 6201 struct net_device *dev, *tmp; 6202 LIST_HEAD(close_head); 6203 6204 BUG_ON(dev_boot_phase); 6205 ASSERT_RTNL(); 6206 6207 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 6208 /* Some devices call without registering 6209 * for initialization unwind. Remove those 6210 * devices and proceed with the remaining. 6211 */ 6212 if (dev->reg_state == NETREG_UNINITIALIZED) { 6213 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 6214 dev->name, dev); 6215 6216 WARN_ON(1); 6217 list_del(&dev->unreg_list); 6218 continue; 6219 } 6220 dev->dismantle = true; 6221 BUG_ON(dev->reg_state != NETREG_REGISTERED); 6222 } 6223 6224 /* If device is running, close it first. */ 6225 list_for_each_entry(dev, head, unreg_list) 6226 list_add_tail(&dev->close_list, &close_head); 6227 dev_close_many(&close_head, true); 6228 6229 list_for_each_entry(dev, head, unreg_list) { 6230 /* And unlink it from device chain. */ 6231 unlist_netdevice(dev); 6232 6233 dev->reg_state = NETREG_UNREGISTERING; 6234 on_each_cpu(flush_backlog, dev, 1); 6235 } 6236 6237 synchronize_net(); 6238 6239 list_for_each_entry(dev, head, unreg_list) { 6240 struct sk_buff *skb = NULL; 6241 6242 /* Shutdown queueing discipline. */ 6243 dev_shutdown(dev); 6244 6245 6246 /* Notify protocols, that we are about to destroy 6247 this device. They should clean all the things. 6248 */ 6249 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6250 6251 if (!dev->rtnl_link_ops || 6252 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6253 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 6254 GFP_KERNEL); 6255 6256 /* 6257 * Flush the unicast and multicast chains 6258 */ 6259 dev_uc_flush(dev); 6260 dev_mc_flush(dev); 6261 6262 if (dev->netdev_ops->ndo_uninit) 6263 dev->netdev_ops->ndo_uninit(dev); 6264 6265 if (skb) 6266 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 6267 6268 /* Notifier chain MUST detach us all upper devices. */ 6269 WARN_ON(netdev_has_any_upper_dev(dev)); 6270 6271 /* Remove entries from kobject tree */ 6272 netdev_unregister_kobject(dev); 6273 #ifdef CONFIG_XPS 6274 /* Remove XPS queueing entries */ 6275 netif_reset_xps_queues_gt(dev, 0); 6276 #endif 6277 } 6278 6279 synchronize_net(); 6280 6281 list_for_each_entry(dev, head, unreg_list) 6282 dev_put(dev); 6283 } 6284 6285 static void rollback_registered(struct net_device *dev) 6286 { 6287 LIST_HEAD(single); 6288 6289 list_add(&dev->unreg_list, &single); 6290 rollback_registered_many(&single); 6291 list_del(&single); 6292 } 6293 6294 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 6295 struct net_device *upper, netdev_features_t features) 6296 { 6297 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6298 netdev_features_t feature; 6299 int feature_bit; 6300 6301 for_each_netdev_feature(&upper_disables, feature_bit) { 6302 feature = __NETIF_F_BIT(feature_bit); 6303 if (!(upper->wanted_features & feature) 6304 && (features & feature)) { 6305 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 6306 &feature, upper->name); 6307 features &= ~feature; 6308 } 6309 } 6310 6311 return features; 6312 } 6313 6314 static void netdev_sync_lower_features(struct net_device *upper, 6315 struct net_device *lower, netdev_features_t features) 6316 { 6317 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6318 netdev_features_t feature; 6319 int feature_bit; 6320 6321 for_each_netdev_feature(&upper_disables, feature_bit) { 6322 feature = __NETIF_F_BIT(feature_bit); 6323 if (!(features & feature) && (lower->features & feature)) { 6324 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 6325 &feature, lower->name); 6326 lower->wanted_features &= ~feature; 6327 netdev_update_features(lower); 6328 6329 if (unlikely(lower->features & feature)) 6330 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 6331 &feature, lower->name); 6332 } 6333 } 6334 } 6335 6336 static netdev_features_t netdev_fix_features(struct net_device *dev, 6337 netdev_features_t features) 6338 { 6339 /* Fix illegal checksum combinations */ 6340 if ((features & NETIF_F_HW_CSUM) && 6341 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6342 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 6343 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 6344 } 6345 6346 /* TSO requires that SG is present as well. */ 6347 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 6348 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 6349 features &= ~NETIF_F_ALL_TSO; 6350 } 6351 6352 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 6353 !(features & NETIF_F_IP_CSUM)) { 6354 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 6355 features &= ~NETIF_F_TSO; 6356 features &= ~NETIF_F_TSO_ECN; 6357 } 6358 6359 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 6360 !(features & NETIF_F_IPV6_CSUM)) { 6361 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 6362 features &= ~NETIF_F_TSO6; 6363 } 6364 6365 /* TSO ECN requires that TSO is present as well. */ 6366 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 6367 features &= ~NETIF_F_TSO_ECN; 6368 6369 /* Software GSO depends on SG. */ 6370 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 6371 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 6372 features &= ~NETIF_F_GSO; 6373 } 6374 6375 /* UFO needs SG and checksumming */ 6376 if (features & NETIF_F_UFO) { 6377 /* maybe split UFO into V4 and V6? */ 6378 if (!((features & NETIF_F_GEN_CSUM) || 6379 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 6380 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6381 netdev_dbg(dev, 6382 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 6383 features &= ~NETIF_F_UFO; 6384 } 6385 6386 if (!(features & NETIF_F_SG)) { 6387 netdev_dbg(dev, 6388 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 6389 features &= ~NETIF_F_UFO; 6390 } 6391 } 6392 6393 #ifdef CONFIG_NET_RX_BUSY_POLL 6394 if (dev->netdev_ops->ndo_busy_poll) 6395 features |= NETIF_F_BUSY_POLL; 6396 else 6397 #endif 6398 features &= ~NETIF_F_BUSY_POLL; 6399 6400 return features; 6401 } 6402 6403 int __netdev_update_features(struct net_device *dev) 6404 { 6405 struct net_device *upper, *lower; 6406 netdev_features_t features; 6407 struct list_head *iter; 6408 int err = -1; 6409 6410 ASSERT_RTNL(); 6411 6412 features = netdev_get_wanted_features(dev); 6413 6414 if (dev->netdev_ops->ndo_fix_features) 6415 features = dev->netdev_ops->ndo_fix_features(dev, features); 6416 6417 /* driver might be less strict about feature dependencies */ 6418 features = netdev_fix_features(dev, features); 6419 6420 /* some features can't be enabled if they're off an an upper device */ 6421 netdev_for_each_upper_dev_rcu(dev, upper, iter) 6422 features = netdev_sync_upper_features(dev, upper, features); 6423 6424 if (dev->features == features) 6425 goto sync_lower; 6426 6427 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 6428 &dev->features, &features); 6429 6430 if (dev->netdev_ops->ndo_set_features) 6431 err = dev->netdev_ops->ndo_set_features(dev, features); 6432 else 6433 err = 0; 6434 6435 if (unlikely(err < 0)) { 6436 netdev_err(dev, 6437 "set_features() failed (%d); wanted %pNF, left %pNF\n", 6438 err, &features, &dev->features); 6439 /* return non-0 since some features might have changed and 6440 * it's better to fire a spurious notification than miss it 6441 */ 6442 return -1; 6443 } 6444 6445 sync_lower: 6446 /* some features must be disabled on lower devices when disabled 6447 * on an upper device (think: bonding master or bridge) 6448 */ 6449 netdev_for_each_lower_dev(dev, lower, iter) 6450 netdev_sync_lower_features(dev, lower, features); 6451 6452 if (!err) 6453 dev->features = features; 6454 6455 return err < 0 ? 0 : 1; 6456 } 6457 6458 /** 6459 * netdev_update_features - recalculate device features 6460 * @dev: the device to check 6461 * 6462 * Recalculate dev->features set and send notifications if it 6463 * has changed. Should be called after driver or hardware dependent 6464 * conditions might have changed that influence the features. 6465 */ 6466 void netdev_update_features(struct net_device *dev) 6467 { 6468 if (__netdev_update_features(dev)) 6469 netdev_features_change(dev); 6470 } 6471 EXPORT_SYMBOL(netdev_update_features); 6472 6473 /** 6474 * netdev_change_features - recalculate device features 6475 * @dev: the device to check 6476 * 6477 * Recalculate dev->features set and send notifications even 6478 * if they have not changed. Should be called instead of 6479 * netdev_update_features() if also dev->vlan_features might 6480 * have changed to allow the changes to be propagated to stacked 6481 * VLAN devices. 6482 */ 6483 void netdev_change_features(struct net_device *dev) 6484 { 6485 __netdev_update_features(dev); 6486 netdev_features_change(dev); 6487 } 6488 EXPORT_SYMBOL(netdev_change_features); 6489 6490 /** 6491 * netif_stacked_transfer_operstate - transfer operstate 6492 * @rootdev: the root or lower level device to transfer state from 6493 * @dev: the device to transfer operstate to 6494 * 6495 * Transfer operational state from root to device. This is normally 6496 * called when a stacking relationship exists between the root 6497 * device and the device(a leaf device). 6498 */ 6499 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 6500 struct net_device *dev) 6501 { 6502 if (rootdev->operstate == IF_OPER_DORMANT) 6503 netif_dormant_on(dev); 6504 else 6505 netif_dormant_off(dev); 6506 6507 if (netif_carrier_ok(rootdev)) { 6508 if (!netif_carrier_ok(dev)) 6509 netif_carrier_on(dev); 6510 } else { 6511 if (netif_carrier_ok(dev)) 6512 netif_carrier_off(dev); 6513 } 6514 } 6515 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 6516 6517 #ifdef CONFIG_SYSFS 6518 static int netif_alloc_rx_queues(struct net_device *dev) 6519 { 6520 unsigned int i, count = dev->num_rx_queues; 6521 struct netdev_rx_queue *rx; 6522 size_t sz = count * sizeof(*rx); 6523 6524 BUG_ON(count < 1); 6525 6526 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6527 if (!rx) { 6528 rx = vzalloc(sz); 6529 if (!rx) 6530 return -ENOMEM; 6531 } 6532 dev->_rx = rx; 6533 6534 for (i = 0; i < count; i++) 6535 rx[i].dev = dev; 6536 return 0; 6537 } 6538 #endif 6539 6540 static void netdev_init_one_queue(struct net_device *dev, 6541 struct netdev_queue *queue, void *_unused) 6542 { 6543 /* Initialize queue lock */ 6544 spin_lock_init(&queue->_xmit_lock); 6545 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 6546 queue->xmit_lock_owner = -1; 6547 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 6548 queue->dev = dev; 6549 #ifdef CONFIG_BQL 6550 dql_init(&queue->dql, HZ); 6551 #endif 6552 } 6553 6554 static void netif_free_tx_queues(struct net_device *dev) 6555 { 6556 kvfree(dev->_tx); 6557 } 6558 6559 static int netif_alloc_netdev_queues(struct net_device *dev) 6560 { 6561 unsigned int count = dev->num_tx_queues; 6562 struct netdev_queue *tx; 6563 size_t sz = count * sizeof(*tx); 6564 6565 if (count < 1 || count > 0xffff) 6566 return -EINVAL; 6567 6568 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6569 if (!tx) { 6570 tx = vzalloc(sz); 6571 if (!tx) 6572 return -ENOMEM; 6573 } 6574 dev->_tx = tx; 6575 6576 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 6577 spin_lock_init(&dev->tx_global_lock); 6578 6579 return 0; 6580 } 6581 6582 void netif_tx_stop_all_queues(struct net_device *dev) 6583 { 6584 unsigned int i; 6585 6586 for (i = 0; i < dev->num_tx_queues; i++) { 6587 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 6588 netif_tx_stop_queue(txq); 6589 } 6590 } 6591 EXPORT_SYMBOL(netif_tx_stop_all_queues); 6592 6593 /** 6594 * register_netdevice - register a network device 6595 * @dev: device to register 6596 * 6597 * Take a completed network device structure and add it to the kernel 6598 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6599 * chain. 0 is returned on success. A negative errno code is returned 6600 * on a failure to set up the device, or if the name is a duplicate. 6601 * 6602 * Callers must hold the rtnl semaphore. You may want 6603 * register_netdev() instead of this. 6604 * 6605 * BUGS: 6606 * The locking appears insufficient to guarantee two parallel registers 6607 * will not get the same name. 6608 */ 6609 6610 int register_netdevice(struct net_device *dev) 6611 { 6612 int ret; 6613 struct net *net = dev_net(dev); 6614 6615 BUG_ON(dev_boot_phase); 6616 ASSERT_RTNL(); 6617 6618 might_sleep(); 6619 6620 /* When net_device's are persistent, this will be fatal. */ 6621 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 6622 BUG_ON(!net); 6623 6624 spin_lock_init(&dev->addr_list_lock); 6625 netdev_set_addr_lockdep_class(dev); 6626 6627 ret = dev_get_valid_name(net, dev, dev->name); 6628 if (ret < 0) 6629 goto out; 6630 6631 /* Init, if this function is available */ 6632 if (dev->netdev_ops->ndo_init) { 6633 ret = dev->netdev_ops->ndo_init(dev); 6634 if (ret) { 6635 if (ret > 0) 6636 ret = -EIO; 6637 goto out; 6638 } 6639 } 6640 6641 if (((dev->hw_features | dev->features) & 6642 NETIF_F_HW_VLAN_CTAG_FILTER) && 6643 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 6644 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 6645 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 6646 ret = -EINVAL; 6647 goto err_uninit; 6648 } 6649 6650 ret = -EBUSY; 6651 if (!dev->ifindex) 6652 dev->ifindex = dev_new_index(net); 6653 else if (__dev_get_by_index(net, dev->ifindex)) 6654 goto err_uninit; 6655 6656 /* Transfer changeable features to wanted_features and enable 6657 * software offloads (GSO and GRO). 6658 */ 6659 dev->hw_features |= NETIF_F_SOFT_FEATURES; 6660 dev->features |= NETIF_F_SOFT_FEATURES; 6661 dev->wanted_features = dev->features & dev->hw_features; 6662 6663 if (!(dev->flags & IFF_LOOPBACK)) { 6664 dev->hw_features |= NETIF_F_NOCACHE_COPY; 6665 } 6666 6667 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 6668 */ 6669 dev->vlan_features |= NETIF_F_HIGHDMA; 6670 6671 /* Make NETIF_F_SG inheritable to tunnel devices. 6672 */ 6673 dev->hw_enc_features |= NETIF_F_SG; 6674 6675 /* Make NETIF_F_SG inheritable to MPLS. 6676 */ 6677 dev->mpls_features |= NETIF_F_SG; 6678 6679 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 6680 ret = notifier_to_errno(ret); 6681 if (ret) 6682 goto err_uninit; 6683 6684 ret = netdev_register_kobject(dev); 6685 if (ret) 6686 goto err_uninit; 6687 dev->reg_state = NETREG_REGISTERED; 6688 6689 __netdev_update_features(dev); 6690 6691 /* 6692 * Default initial state at registry is that the 6693 * device is present. 6694 */ 6695 6696 set_bit(__LINK_STATE_PRESENT, &dev->state); 6697 6698 linkwatch_init_dev(dev); 6699 6700 dev_init_scheduler(dev); 6701 dev_hold(dev); 6702 list_netdevice(dev); 6703 add_device_randomness(dev->dev_addr, dev->addr_len); 6704 6705 /* If the device has permanent device address, driver should 6706 * set dev_addr and also addr_assign_type should be set to 6707 * NET_ADDR_PERM (default value). 6708 */ 6709 if (dev->addr_assign_type == NET_ADDR_PERM) 6710 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 6711 6712 /* Notify protocols, that a new device appeared. */ 6713 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 6714 ret = notifier_to_errno(ret); 6715 if (ret) { 6716 rollback_registered(dev); 6717 dev->reg_state = NETREG_UNREGISTERED; 6718 } 6719 /* 6720 * Prevent userspace races by waiting until the network 6721 * device is fully setup before sending notifications. 6722 */ 6723 if (!dev->rtnl_link_ops || 6724 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6725 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6726 6727 out: 6728 return ret; 6729 6730 err_uninit: 6731 if (dev->netdev_ops->ndo_uninit) 6732 dev->netdev_ops->ndo_uninit(dev); 6733 goto out; 6734 } 6735 EXPORT_SYMBOL(register_netdevice); 6736 6737 /** 6738 * init_dummy_netdev - init a dummy network device for NAPI 6739 * @dev: device to init 6740 * 6741 * This takes a network device structure and initialize the minimum 6742 * amount of fields so it can be used to schedule NAPI polls without 6743 * registering a full blown interface. This is to be used by drivers 6744 * that need to tie several hardware interfaces to a single NAPI 6745 * poll scheduler due to HW limitations. 6746 */ 6747 int init_dummy_netdev(struct net_device *dev) 6748 { 6749 /* Clear everything. Note we don't initialize spinlocks 6750 * are they aren't supposed to be taken by any of the 6751 * NAPI code and this dummy netdev is supposed to be 6752 * only ever used for NAPI polls 6753 */ 6754 memset(dev, 0, sizeof(struct net_device)); 6755 6756 /* make sure we BUG if trying to hit standard 6757 * register/unregister code path 6758 */ 6759 dev->reg_state = NETREG_DUMMY; 6760 6761 /* NAPI wants this */ 6762 INIT_LIST_HEAD(&dev->napi_list); 6763 6764 /* a dummy interface is started by default */ 6765 set_bit(__LINK_STATE_PRESENT, &dev->state); 6766 set_bit(__LINK_STATE_START, &dev->state); 6767 6768 /* Note : We dont allocate pcpu_refcnt for dummy devices, 6769 * because users of this 'device' dont need to change 6770 * its refcount. 6771 */ 6772 6773 return 0; 6774 } 6775 EXPORT_SYMBOL_GPL(init_dummy_netdev); 6776 6777 6778 /** 6779 * register_netdev - register a network device 6780 * @dev: device to register 6781 * 6782 * Take a completed network device structure and add it to the kernel 6783 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6784 * chain. 0 is returned on success. A negative errno code is returned 6785 * on a failure to set up the device, or if the name is a duplicate. 6786 * 6787 * This is a wrapper around register_netdevice that takes the rtnl semaphore 6788 * and expands the device name if you passed a format string to 6789 * alloc_netdev. 6790 */ 6791 int register_netdev(struct net_device *dev) 6792 { 6793 int err; 6794 6795 rtnl_lock(); 6796 err = register_netdevice(dev); 6797 rtnl_unlock(); 6798 return err; 6799 } 6800 EXPORT_SYMBOL(register_netdev); 6801 6802 int netdev_refcnt_read(const struct net_device *dev) 6803 { 6804 int i, refcnt = 0; 6805 6806 for_each_possible_cpu(i) 6807 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 6808 return refcnt; 6809 } 6810 EXPORT_SYMBOL(netdev_refcnt_read); 6811 6812 /** 6813 * netdev_wait_allrefs - wait until all references are gone. 6814 * @dev: target net_device 6815 * 6816 * This is called when unregistering network devices. 6817 * 6818 * Any protocol or device that holds a reference should register 6819 * for netdevice notification, and cleanup and put back the 6820 * reference if they receive an UNREGISTER event. 6821 * We can get stuck here if buggy protocols don't correctly 6822 * call dev_put. 6823 */ 6824 static void netdev_wait_allrefs(struct net_device *dev) 6825 { 6826 unsigned long rebroadcast_time, warning_time; 6827 int refcnt; 6828 6829 linkwatch_forget_dev(dev); 6830 6831 rebroadcast_time = warning_time = jiffies; 6832 refcnt = netdev_refcnt_read(dev); 6833 6834 while (refcnt != 0) { 6835 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 6836 rtnl_lock(); 6837 6838 /* Rebroadcast unregister notification */ 6839 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6840 6841 __rtnl_unlock(); 6842 rcu_barrier(); 6843 rtnl_lock(); 6844 6845 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6846 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 6847 &dev->state)) { 6848 /* We must not have linkwatch events 6849 * pending on unregister. If this 6850 * happens, we simply run the queue 6851 * unscheduled, resulting in a noop 6852 * for this device. 6853 */ 6854 linkwatch_run_queue(); 6855 } 6856 6857 __rtnl_unlock(); 6858 6859 rebroadcast_time = jiffies; 6860 } 6861 6862 msleep(250); 6863 6864 refcnt = netdev_refcnt_read(dev); 6865 6866 if (time_after(jiffies, warning_time + 10 * HZ)) { 6867 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 6868 dev->name, refcnt); 6869 warning_time = jiffies; 6870 } 6871 } 6872 } 6873 6874 /* The sequence is: 6875 * 6876 * rtnl_lock(); 6877 * ... 6878 * register_netdevice(x1); 6879 * register_netdevice(x2); 6880 * ... 6881 * unregister_netdevice(y1); 6882 * unregister_netdevice(y2); 6883 * ... 6884 * rtnl_unlock(); 6885 * free_netdev(y1); 6886 * free_netdev(y2); 6887 * 6888 * We are invoked by rtnl_unlock(). 6889 * This allows us to deal with problems: 6890 * 1) We can delete sysfs objects which invoke hotplug 6891 * without deadlocking with linkwatch via keventd. 6892 * 2) Since we run with the RTNL semaphore not held, we can sleep 6893 * safely in order to wait for the netdev refcnt to drop to zero. 6894 * 6895 * We must not return until all unregister events added during 6896 * the interval the lock was held have been completed. 6897 */ 6898 void netdev_run_todo(void) 6899 { 6900 struct list_head list; 6901 6902 /* Snapshot list, allow later requests */ 6903 list_replace_init(&net_todo_list, &list); 6904 6905 __rtnl_unlock(); 6906 6907 6908 /* Wait for rcu callbacks to finish before next phase */ 6909 if (!list_empty(&list)) 6910 rcu_barrier(); 6911 6912 while (!list_empty(&list)) { 6913 struct net_device *dev 6914 = list_first_entry(&list, struct net_device, todo_list); 6915 list_del(&dev->todo_list); 6916 6917 rtnl_lock(); 6918 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6919 __rtnl_unlock(); 6920 6921 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6922 pr_err("network todo '%s' but state %d\n", 6923 dev->name, dev->reg_state); 6924 dump_stack(); 6925 continue; 6926 } 6927 6928 dev->reg_state = NETREG_UNREGISTERED; 6929 6930 netdev_wait_allrefs(dev); 6931 6932 /* paranoia */ 6933 BUG_ON(netdev_refcnt_read(dev)); 6934 BUG_ON(!list_empty(&dev->ptype_all)); 6935 BUG_ON(!list_empty(&dev->ptype_specific)); 6936 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6937 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6938 WARN_ON(dev->dn_ptr); 6939 6940 if (dev->destructor) 6941 dev->destructor(dev); 6942 6943 /* Report a network device has been unregistered */ 6944 rtnl_lock(); 6945 dev_net(dev)->dev_unreg_count--; 6946 __rtnl_unlock(); 6947 wake_up(&netdev_unregistering_wq); 6948 6949 /* Free network device */ 6950 kobject_put(&dev->dev.kobj); 6951 } 6952 } 6953 6954 /* Convert net_device_stats to rtnl_link_stats64. They have the same 6955 * fields in the same order, with only the type differing. 6956 */ 6957 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6958 const struct net_device_stats *netdev_stats) 6959 { 6960 #if BITS_PER_LONG == 64 6961 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6962 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6963 #else 6964 size_t i, n = sizeof(*stats64) / sizeof(u64); 6965 const unsigned long *src = (const unsigned long *)netdev_stats; 6966 u64 *dst = (u64 *)stats64; 6967 6968 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6969 sizeof(*stats64) / sizeof(u64)); 6970 for (i = 0; i < n; i++) 6971 dst[i] = src[i]; 6972 #endif 6973 } 6974 EXPORT_SYMBOL(netdev_stats_to_stats64); 6975 6976 /** 6977 * dev_get_stats - get network device statistics 6978 * @dev: device to get statistics from 6979 * @storage: place to store stats 6980 * 6981 * Get network statistics from device. Return @storage. 6982 * The device driver may provide its own method by setting 6983 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6984 * otherwise the internal statistics structure is used. 6985 */ 6986 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6987 struct rtnl_link_stats64 *storage) 6988 { 6989 const struct net_device_ops *ops = dev->netdev_ops; 6990 6991 if (ops->ndo_get_stats64) { 6992 memset(storage, 0, sizeof(*storage)); 6993 ops->ndo_get_stats64(dev, storage); 6994 } else if (ops->ndo_get_stats) { 6995 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6996 } else { 6997 netdev_stats_to_stats64(storage, &dev->stats); 6998 } 6999 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 7000 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 7001 return storage; 7002 } 7003 EXPORT_SYMBOL(dev_get_stats); 7004 7005 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 7006 { 7007 struct netdev_queue *queue = dev_ingress_queue(dev); 7008 7009 #ifdef CONFIG_NET_CLS_ACT 7010 if (queue) 7011 return queue; 7012 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 7013 if (!queue) 7014 return NULL; 7015 netdev_init_one_queue(dev, queue, NULL); 7016 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 7017 queue->qdisc_sleeping = &noop_qdisc; 7018 rcu_assign_pointer(dev->ingress_queue, queue); 7019 #endif 7020 return queue; 7021 } 7022 7023 static const struct ethtool_ops default_ethtool_ops; 7024 7025 void netdev_set_default_ethtool_ops(struct net_device *dev, 7026 const struct ethtool_ops *ops) 7027 { 7028 if (dev->ethtool_ops == &default_ethtool_ops) 7029 dev->ethtool_ops = ops; 7030 } 7031 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 7032 7033 void netdev_freemem(struct net_device *dev) 7034 { 7035 char *addr = (char *)dev - dev->padded; 7036 7037 kvfree(addr); 7038 } 7039 7040 /** 7041 * alloc_netdev_mqs - allocate network device 7042 * @sizeof_priv: size of private data to allocate space for 7043 * @name: device name format string 7044 * @name_assign_type: origin of device name 7045 * @setup: callback to initialize device 7046 * @txqs: the number of TX subqueues to allocate 7047 * @rxqs: the number of RX subqueues to allocate 7048 * 7049 * Allocates a struct net_device with private data area for driver use 7050 * and performs basic initialization. Also allocates subqueue structs 7051 * for each queue on the device. 7052 */ 7053 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 7054 unsigned char name_assign_type, 7055 void (*setup)(struct net_device *), 7056 unsigned int txqs, unsigned int rxqs) 7057 { 7058 struct net_device *dev; 7059 size_t alloc_size; 7060 struct net_device *p; 7061 7062 BUG_ON(strlen(name) >= sizeof(dev->name)); 7063 7064 if (txqs < 1) { 7065 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 7066 return NULL; 7067 } 7068 7069 #ifdef CONFIG_SYSFS 7070 if (rxqs < 1) { 7071 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 7072 return NULL; 7073 } 7074 #endif 7075 7076 alloc_size = sizeof(struct net_device); 7077 if (sizeof_priv) { 7078 /* ensure 32-byte alignment of private area */ 7079 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 7080 alloc_size += sizeof_priv; 7081 } 7082 /* ensure 32-byte alignment of whole construct */ 7083 alloc_size += NETDEV_ALIGN - 1; 7084 7085 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7086 if (!p) 7087 p = vzalloc(alloc_size); 7088 if (!p) 7089 return NULL; 7090 7091 dev = PTR_ALIGN(p, NETDEV_ALIGN); 7092 dev->padded = (char *)dev - (char *)p; 7093 7094 dev->pcpu_refcnt = alloc_percpu(int); 7095 if (!dev->pcpu_refcnt) 7096 goto free_dev; 7097 7098 if (dev_addr_init(dev)) 7099 goto free_pcpu; 7100 7101 dev_mc_init(dev); 7102 dev_uc_init(dev); 7103 7104 dev_net_set(dev, &init_net); 7105 7106 dev->gso_max_size = GSO_MAX_SIZE; 7107 dev->gso_max_segs = GSO_MAX_SEGS; 7108 dev->gso_min_segs = 0; 7109 7110 INIT_LIST_HEAD(&dev->napi_list); 7111 INIT_LIST_HEAD(&dev->unreg_list); 7112 INIT_LIST_HEAD(&dev->close_list); 7113 INIT_LIST_HEAD(&dev->link_watch_list); 7114 INIT_LIST_HEAD(&dev->adj_list.upper); 7115 INIT_LIST_HEAD(&dev->adj_list.lower); 7116 INIT_LIST_HEAD(&dev->all_adj_list.upper); 7117 INIT_LIST_HEAD(&dev->all_adj_list.lower); 7118 INIT_LIST_HEAD(&dev->ptype_all); 7119 INIT_LIST_HEAD(&dev->ptype_specific); 7120 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 7121 setup(dev); 7122 7123 if (!dev->tx_queue_len) 7124 dev->priv_flags |= IFF_NO_QUEUE; 7125 7126 dev->num_tx_queues = txqs; 7127 dev->real_num_tx_queues = txqs; 7128 if (netif_alloc_netdev_queues(dev)) 7129 goto free_all; 7130 7131 #ifdef CONFIG_SYSFS 7132 dev->num_rx_queues = rxqs; 7133 dev->real_num_rx_queues = rxqs; 7134 if (netif_alloc_rx_queues(dev)) 7135 goto free_all; 7136 #endif 7137 7138 strcpy(dev->name, name); 7139 dev->name_assign_type = name_assign_type; 7140 dev->group = INIT_NETDEV_GROUP; 7141 if (!dev->ethtool_ops) 7142 dev->ethtool_ops = &default_ethtool_ops; 7143 7144 nf_hook_ingress_init(dev); 7145 7146 return dev; 7147 7148 free_all: 7149 free_netdev(dev); 7150 return NULL; 7151 7152 free_pcpu: 7153 free_percpu(dev->pcpu_refcnt); 7154 free_dev: 7155 netdev_freemem(dev); 7156 return NULL; 7157 } 7158 EXPORT_SYMBOL(alloc_netdev_mqs); 7159 7160 /** 7161 * free_netdev - free network device 7162 * @dev: device 7163 * 7164 * This function does the last stage of destroying an allocated device 7165 * interface. The reference to the device object is released. 7166 * If this is the last reference then it will be freed. 7167 */ 7168 void free_netdev(struct net_device *dev) 7169 { 7170 struct napi_struct *p, *n; 7171 7172 netif_free_tx_queues(dev); 7173 #ifdef CONFIG_SYSFS 7174 kvfree(dev->_rx); 7175 #endif 7176 7177 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 7178 7179 /* Flush device addresses */ 7180 dev_addr_flush(dev); 7181 7182 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 7183 netif_napi_del(p); 7184 7185 free_percpu(dev->pcpu_refcnt); 7186 dev->pcpu_refcnt = NULL; 7187 7188 /* Compatibility with error handling in drivers */ 7189 if (dev->reg_state == NETREG_UNINITIALIZED) { 7190 netdev_freemem(dev); 7191 return; 7192 } 7193 7194 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 7195 dev->reg_state = NETREG_RELEASED; 7196 7197 /* will free via device release */ 7198 put_device(&dev->dev); 7199 } 7200 EXPORT_SYMBOL(free_netdev); 7201 7202 /** 7203 * synchronize_net - Synchronize with packet receive processing 7204 * 7205 * Wait for packets currently being received to be done. 7206 * Does not block later packets from starting. 7207 */ 7208 void synchronize_net(void) 7209 { 7210 might_sleep(); 7211 if (rtnl_is_locked()) 7212 synchronize_rcu_expedited(); 7213 else 7214 synchronize_rcu(); 7215 } 7216 EXPORT_SYMBOL(synchronize_net); 7217 7218 /** 7219 * unregister_netdevice_queue - remove device from the kernel 7220 * @dev: device 7221 * @head: list 7222 * 7223 * This function shuts down a device interface and removes it 7224 * from the kernel tables. 7225 * If head not NULL, device is queued to be unregistered later. 7226 * 7227 * Callers must hold the rtnl semaphore. You may want 7228 * unregister_netdev() instead of this. 7229 */ 7230 7231 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 7232 { 7233 ASSERT_RTNL(); 7234 7235 if (head) { 7236 list_move_tail(&dev->unreg_list, head); 7237 } else { 7238 rollback_registered(dev); 7239 /* Finish processing unregister after unlock */ 7240 net_set_todo(dev); 7241 } 7242 } 7243 EXPORT_SYMBOL(unregister_netdevice_queue); 7244 7245 /** 7246 * unregister_netdevice_many - unregister many devices 7247 * @head: list of devices 7248 * 7249 * Note: As most callers use a stack allocated list_head, 7250 * we force a list_del() to make sure stack wont be corrupted later. 7251 */ 7252 void unregister_netdevice_many(struct list_head *head) 7253 { 7254 struct net_device *dev; 7255 7256 if (!list_empty(head)) { 7257 rollback_registered_many(head); 7258 list_for_each_entry(dev, head, unreg_list) 7259 net_set_todo(dev); 7260 list_del(head); 7261 } 7262 } 7263 EXPORT_SYMBOL(unregister_netdevice_many); 7264 7265 /** 7266 * unregister_netdev - remove device from the kernel 7267 * @dev: device 7268 * 7269 * This function shuts down a device interface and removes it 7270 * from the kernel tables. 7271 * 7272 * This is just a wrapper for unregister_netdevice that takes 7273 * the rtnl semaphore. In general you want to use this and not 7274 * unregister_netdevice. 7275 */ 7276 void unregister_netdev(struct net_device *dev) 7277 { 7278 rtnl_lock(); 7279 unregister_netdevice(dev); 7280 rtnl_unlock(); 7281 } 7282 EXPORT_SYMBOL(unregister_netdev); 7283 7284 /** 7285 * dev_change_net_namespace - move device to different nethost namespace 7286 * @dev: device 7287 * @net: network namespace 7288 * @pat: If not NULL name pattern to try if the current device name 7289 * is already taken in the destination network namespace. 7290 * 7291 * This function shuts down a device interface and moves it 7292 * to a new network namespace. On success 0 is returned, on 7293 * a failure a netagive errno code is returned. 7294 * 7295 * Callers must hold the rtnl semaphore. 7296 */ 7297 7298 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 7299 { 7300 int err; 7301 7302 ASSERT_RTNL(); 7303 7304 /* Don't allow namespace local devices to be moved. */ 7305 err = -EINVAL; 7306 if (dev->features & NETIF_F_NETNS_LOCAL) 7307 goto out; 7308 7309 /* Ensure the device has been registrered */ 7310 if (dev->reg_state != NETREG_REGISTERED) 7311 goto out; 7312 7313 /* Get out if there is nothing todo */ 7314 err = 0; 7315 if (net_eq(dev_net(dev), net)) 7316 goto out; 7317 7318 /* Pick the destination device name, and ensure 7319 * we can use it in the destination network namespace. 7320 */ 7321 err = -EEXIST; 7322 if (__dev_get_by_name(net, dev->name)) { 7323 /* We get here if we can't use the current device name */ 7324 if (!pat) 7325 goto out; 7326 if (dev_get_valid_name(net, dev, pat) < 0) 7327 goto out; 7328 } 7329 7330 /* 7331 * And now a mini version of register_netdevice unregister_netdevice. 7332 */ 7333 7334 /* If device is running close it first. */ 7335 dev_close(dev); 7336 7337 /* And unlink it from device chain */ 7338 err = -ENODEV; 7339 unlist_netdevice(dev); 7340 7341 synchronize_net(); 7342 7343 /* Shutdown queueing discipline. */ 7344 dev_shutdown(dev); 7345 7346 /* Notify protocols, that we are about to destroy 7347 this device. They should clean all the things. 7348 7349 Note that dev->reg_state stays at NETREG_REGISTERED. 7350 This is wanted because this way 8021q and macvlan know 7351 the device is just moving and can keep their slaves up. 7352 */ 7353 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7354 rcu_barrier(); 7355 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7356 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 7357 7358 /* 7359 * Flush the unicast and multicast chains 7360 */ 7361 dev_uc_flush(dev); 7362 dev_mc_flush(dev); 7363 7364 /* Send a netdev-removed uevent to the old namespace */ 7365 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 7366 netdev_adjacent_del_links(dev); 7367 7368 /* Actually switch the network namespace */ 7369 dev_net_set(dev, net); 7370 7371 /* If there is an ifindex conflict assign a new one */ 7372 if (__dev_get_by_index(net, dev->ifindex)) 7373 dev->ifindex = dev_new_index(net); 7374 7375 /* Send a netdev-add uevent to the new namespace */ 7376 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 7377 netdev_adjacent_add_links(dev); 7378 7379 /* Fixup kobjects */ 7380 err = device_rename(&dev->dev, dev->name); 7381 WARN_ON(err); 7382 7383 /* Add the device back in the hashes */ 7384 list_netdevice(dev); 7385 7386 /* Notify protocols, that a new device appeared. */ 7387 call_netdevice_notifiers(NETDEV_REGISTER, dev); 7388 7389 /* 7390 * Prevent userspace races by waiting until the network 7391 * device is fully setup before sending notifications. 7392 */ 7393 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7394 7395 synchronize_net(); 7396 err = 0; 7397 out: 7398 return err; 7399 } 7400 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 7401 7402 static int dev_cpu_callback(struct notifier_block *nfb, 7403 unsigned long action, 7404 void *ocpu) 7405 { 7406 struct sk_buff **list_skb; 7407 struct sk_buff *skb; 7408 unsigned int cpu, oldcpu = (unsigned long)ocpu; 7409 struct softnet_data *sd, *oldsd; 7410 7411 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 7412 return NOTIFY_OK; 7413 7414 local_irq_disable(); 7415 cpu = smp_processor_id(); 7416 sd = &per_cpu(softnet_data, cpu); 7417 oldsd = &per_cpu(softnet_data, oldcpu); 7418 7419 /* Find end of our completion_queue. */ 7420 list_skb = &sd->completion_queue; 7421 while (*list_skb) 7422 list_skb = &(*list_skb)->next; 7423 /* Append completion queue from offline CPU. */ 7424 *list_skb = oldsd->completion_queue; 7425 oldsd->completion_queue = NULL; 7426 7427 /* Append output queue from offline CPU. */ 7428 if (oldsd->output_queue) { 7429 *sd->output_queue_tailp = oldsd->output_queue; 7430 sd->output_queue_tailp = oldsd->output_queue_tailp; 7431 oldsd->output_queue = NULL; 7432 oldsd->output_queue_tailp = &oldsd->output_queue; 7433 } 7434 /* Append NAPI poll list from offline CPU, with one exception : 7435 * process_backlog() must be called by cpu owning percpu backlog. 7436 * We properly handle process_queue & input_pkt_queue later. 7437 */ 7438 while (!list_empty(&oldsd->poll_list)) { 7439 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 7440 struct napi_struct, 7441 poll_list); 7442 7443 list_del_init(&napi->poll_list); 7444 if (napi->poll == process_backlog) 7445 napi->state = 0; 7446 else 7447 ____napi_schedule(sd, napi); 7448 } 7449 7450 raise_softirq_irqoff(NET_TX_SOFTIRQ); 7451 local_irq_enable(); 7452 7453 /* Process offline CPU's input_pkt_queue */ 7454 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 7455 netif_rx_ni(skb); 7456 input_queue_head_incr(oldsd); 7457 } 7458 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 7459 netif_rx_ni(skb); 7460 input_queue_head_incr(oldsd); 7461 } 7462 7463 return NOTIFY_OK; 7464 } 7465 7466 7467 /** 7468 * netdev_increment_features - increment feature set by one 7469 * @all: current feature set 7470 * @one: new feature set 7471 * @mask: mask feature set 7472 * 7473 * Computes a new feature set after adding a device with feature set 7474 * @one to the master device with current feature set @all. Will not 7475 * enable anything that is off in @mask. Returns the new feature set. 7476 */ 7477 netdev_features_t netdev_increment_features(netdev_features_t all, 7478 netdev_features_t one, netdev_features_t mask) 7479 { 7480 if (mask & NETIF_F_GEN_CSUM) 7481 mask |= NETIF_F_ALL_CSUM; 7482 mask |= NETIF_F_VLAN_CHALLENGED; 7483 7484 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 7485 all &= one | ~NETIF_F_ALL_FOR_ALL; 7486 7487 /* If one device supports hw checksumming, set for all. */ 7488 if (all & NETIF_F_GEN_CSUM) 7489 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 7490 7491 return all; 7492 } 7493 EXPORT_SYMBOL(netdev_increment_features); 7494 7495 static struct hlist_head * __net_init netdev_create_hash(void) 7496 { 7497 int i; 7498 struct hlist_head *hash; 7499 7500 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 7501 if (hash != NULL) 7502 for (i = 0; i < NETDEV_HASHENTRIES; i++) 7503 INIT_HLIST_HEAD(&hash[i]); 7504 7505 return hash; 7506 } 7507 7508 /* Initialize per network namespace state */ 7509 static int __net_init netdev_init(struct net *net) 7510 { 7511 if (net != &init_net) 7512 INIT_LIST_HEAD(&net->dev_base_head); 7513 7514 net->dev_name_head = netdev_create_hash(); 7515 if (net->dev_name_head == NULL) 7516 goto err_name; 7517 7518 net->dev_index_head = netdev_create_hash(); 7519 if (net->dev_index_head == NULL) 7520 goto err_idx; 7521 7522 return 0; 7523 7524 err_idx: 7525 kfree(net->dev_name_head); 7526 err_name: 7527 return -ENOMEM; 7528 } 7529 7530 /** 7531 * netdev_drivername - network driver for the device 7532 * @dev: network device 7533 * 7534 * Determine network driver for device. 7535 */ 7536 const char *netdev_drivername(const struct net_device *dev) 7537 { 7538 const struct device_driver *driver; 7539 const struct device *parent; 7540 const char *empty = ""; 7541 7542 parent = dev->dev.parent; 7543 if (!parent) 7544 return empty; 7545 7546 driver = parent->driver; 7547 if (driver && driver->name) 7548 return driver->name; 7549 return empty; 7550 } 7551 7552 static void __netdev_printk(const char *level, const struct net_device *dev, 7553 struct va_format *vaf) 7554 { 7555 if (dev && dev->dev.parent) { 7556 dev_printk_emit(level[1] - '0', 7557 dev->dev.parent, 7558 "%s %s %s%s: %pV", 7559 dev_driver_string(dev->dev.parent), 7560 dev_name(dev->dev.parent), 7561 netdev_name(dev), netdev_reg_state(dev), 7562 vaf); 7563 } else if (dev) { 7564 printk("%s%s%s: %pV", 7565 level, netdev_name(dev), netdev_reg_state(dev), vaf); 7566 } else { 7567 printk("%s(NULL net_device): %pV", level, vaf); 7568 } 7569 } 7570 7571 void netdev_printk(const char *level, const struct net_device *dev, 7572 const char *format, ...) 7573 { 7574 struct va_format vaf; 7575 va_list args; 7576 7577 va_start(args, format); 7578 7579 vaf.fmt = format; 7580 vaf.va = &args; 7581 7582 __netdev_printk(level, dev, &vaf); 7583 7584 va_end(args); 7585 } 7586 EXPORT_SYMBOL(netdev_printk); 7587 7588 #define define_netdev_printk_level(func, level) \ 7589 void func(const struct net_device *dev, const char *fmt, ...) \ 7590 { \ 7591 struct va_format vaf; \ 7592 va_list args; \ 7593 \ 7594 va_start(args, fmt); \ 7595 \ 7596 vaf.fmt = fmt; \ 7597 vaf.va = &args; \ 7598 \ 7599 __netdev_printk(level, dev, &vaf); \ 7600 \ 7601 va_end(args); \ 7602 } \ 7603 EXPORT_SYMBOL(func); 7604 7605 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 7606 define_netdev_printk_level(netdev_alert, KERN_ALERT); 7607 define_netdev_printk_level(netdev_crit, KERN_CRIT); 7608 define_netdev_printk_level(netdev_err, KERN_ERR); 7609 define_netdev_printk_level(netdev_warn, KERN_WARNING); 7610 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 7611 define_netdev_printk_level(netdev_info, KERN_INFO); 7612 7613 static void __net_exit netdev_exit(struct net *net) 7614 { 7615 kfree(net->dev_name_head); 7616 kfree(net->dev_index_head); 7617 } 7618 7619 static struct pernet_operations __net_initdata netdev_net_ops = { 7620 .init = netdev_init, 7621 .exit = netdev_exit, 7622 }; 7623 7624 static void __net_exit default_device_exit(struct net *net) 7625 { 7626 struct net_device *dev, *aux; 7627 /* 7628 * Push all migratable network devices back to the 7629 * initial network namespace 7630 */ 7631 rtnl_lock(); 7632 for_each_netdev_safe(net, dev, aux) { 7633 int err; 7634 char fb_name[IFNAMSIZ]; 7635 7636 /* Ignore unmoveable devices (i.e. loopback) */ 7637 if (dev->features & NETIF_F_NETNS_LOCAL) 7638 continue; 7639 7640 /* Leave virtual devices for the generic cleanup */ 7641 if (dev->rtnl_link_ops) 7642 continue; 7643 7644 /* Push remaining network devices to init_net */ 7645 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 7646 err = dev_change_net_namespace(dev, &init_net, fb_name); 7647 if (err) { 7648 pr_emerg("%s: failed to move %s to init_net: %d\n", 7649 __func__, dev->name, err); 7650 BUG(); 7651 } 7652 } 7653 rtnl_unlock(); 7654 } 7655 7656 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 7657 { 7658 /* Return with the rtnl_lock held when there are no network 7659 * devices unregistering in any network namespace in net_list. 7660 */ 7661 struct net *net; 7662 bool unregistering; 7663 DEFINE_WAIT_FUNC(wait, woken_wake_function); 7664 7665 add_wait_queue(&netdev_unregistering_wq, &wait); 7666 for (;;) { 7667 unregistering = false; 7668 rtnl_lock(); 7669 list_for_each_entry(net, net_list, exit_list) { 7670 if (net->dev_unreg_count > 0) { 7671 unregistering = true; 7672 break; 7673 } 7674 } 7675 if (!unregistering) 7676 break; 7677 __rtnl_unlock(); 7678 7679 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 7680 } 7681 remove_wait_queue(&netdev_unregistering_wq, &wait); 7682 } 7683 7684 static void __net_exit default_device_exit_batch(struct list_head *net_list) 7685 { 7686 /* At exit all network devices most be removed from a network 7687 * namespace. Do this in the reverse order of registration. 7688 * Do this across as many network namespaces as possible to 7689 * improve batching efficiency. 7690 */ 7691 struct net_device *dev; 7692 struct net *net; 7693 LIST_HEAD(dev_kill_list); 7694 7695 /* To prevent network device cleanup code from dereferencing 7696 * loopback devices or network devices that have been freed 7697 * wait here for all pending unregistrations to complete, 7698 * before unregistring the loopback device and allowing the 7699 * network namespace be freed. 7700 * 7701 * The netdev todo list containing all network devices 7702 * unregistrations that happen in default_device_exit_batch 7703 * will run in the rtnl_unlock() at the end of 7704 * default_device_exit_batch. 7705 */ 7706 rtnl_lock_unregistering(net_list); 7707 list_for_each_entry(net, net_list, exit_list) { 7708 for_each_netdev_reverse(net, dev) { 7709 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 7710 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 7711 else 7712 unregister_netdevice_queue(dev, &dev_kill_list); 7713 } 7714 } 7715 unregister_netdevice_many(&dev_kill_list); 7716 rtnl_unlock(); 7717 } 7718 7719 static struct pernet_operations __net_initdata default_device_ops = { 7720 .exit = default_device_exit, 7721 .exit_batch = default_device_exit_batch, 7722 }; 7723 7724 /* 7725 * Initialize the DEV module. At boot time this walks the device list and 7726 * unhooks any devices that fail to initialise (normally hardware not 7727 * present) and leaves us with a valid list of present and active devices. 7728 * 7729 */ 7730 7731 /* 7732 * This is called single threaded during boot, so no need 7733 * to take the rtnl semaphore. 7734 */ 7735 static int __init net_dev_init(void) 7736 { 7737 int i, rc = -ENOMEM; 7738 7739 BUG_ON(!dev_boot_phase); 7740 7741 if (dev_proc_init()) 7742 goto out; 7743 7744 if (netdev_kobject_init()) 7745 goto out; 7746 7747 INIT_LIST_HEAD(&ptype_all); 7748 for (i = 0; i < PTYPE_HASH_SIZE; i++) 7749 INIT_LIST_HEAD(&ptype_base[i]); 7750 7751 INIT_LIST_HEAD(&offload_base); 7752 7753 if (register_pernet_subsys(&netdev_net_ops)) 7754 goto out; 7755 7756 /* 7757 * Initialise the packet receive queues. 7758 */ 7759 7760 for_each_possible_cpu(i) { 7761 struct softnet_data *sd = &per_cpu(softnet_data, i); 7762 7763 skb_queue_head_init(&sd->input_pkt_queue); 7764 skb_queue_head_init(&sd->process_queue); 7765 INIT_LIST_HEAD(&sd->poll_list); 7766 sd->output_queue_tailp = &sd->output_queue; 7767 #ifdef CONFIG_RPS 7768 sd->csd.func = rps_trigger_softirq; 7769 sd->csd.info = sd; 7770 sd->cpu = i; 7771 #endif 7772 7773 sd->backlog.poll = process_backlog; 7774 sd->backlog.weight = weight_p; 7775 } 7776 7777 dev_boot_phase = 0; 7778 7779 /* The loopback device is special if any other network devices 7780 * is present in a network namespace the loopback device must 7781 * be present. Since we now dynamically allocate and free the 7782 * loopback device ensure this invariant is maintained by 7783 * keeping the loopback device as the first device on the 7784 * list of network devices. Ensuring the loopback devices 7785 * is the first device that appears and the last network device 7786 * that disappears. 7787 */ 7788 if (register_pernet_device(&loopback_net_ops)) 7789 goto out; 7790 7791 if (register_pernet_device(&default_device_ops)) 7792 goto out; 7793 7794 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 7795 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 7796 7797 hotcpu_notifier(dev_cpu_callback, 0); 7798 dst_subsys_init(); 7799 rc = 0; 7800 out: 7801 return rc; 7802 } 7803 7804 subsys_initcall(net_dev_init); 7805